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Foreword

This volume presents selected papers from the eigth ICOSAHOM (International
Conference On Spectral and High Order Methods) conference which was held at the
Norwegian University of Science and Technology (NTNU), Trondheim, Norway,
during the week June 22–26, 2009. These papers were refereed by members of the
scientific committee of ICOSAHOM as well as by other leading scientists.

The first ICOSAHOM conference was held in Como, Italy, in 1989. At that point
the importance of high order methods was recognized and it was deciced to organize
a series of conferences to be held every 3 years (Montpelier, France, 1992; Houston,
TX, USA, 1995; Tel Aviv, Israel, 1998; Uppsala, Sweden, 2001; Providence, RI,
USA, 2004; and Beijing, China, 2007).

At the conference in Beijing in 2007, it was decided to organize the conferences
every other year. This decision was made partly due to the growing importance and
the growing activity in this field. From the interest seen at ICOSAHOM 2009, this
seems to have been an appropriate decision. The number of registered participants
was over 200, while the total number of talks was 215, comprising nine invited
talks, 153 talks in 19 different topic-specific minisymposia, and 53 talks in various
contributed sessions. The ICOSAHOM conferences remain the main meeting place
for researchers with interest in the theoretical, applied and computational aspects of
high order methods for the numerical solution of partial differential equations.

The content of the proceedings is organized as follows. First, contributions from
the invited speakers are included, listed in alphabetical order according to the invited
speaker. Next, contributions from the speakers at all the minisymposia are included,
listed in alphabetical order according to the first author of each paper. Finally, con-
tributions from the speakers at the various contributed sessions are included, also
listed in alphabetical order according to the the first author.

As part of the conference, a special minisymposium was organized in memory of
David Gottlieb who passed away in December 2008, and who left an indelible mark
on the field of applied mathematics in general and spectral methods in particular.

The success of the meeting was ensured through the generous financial support
by the Research Council of Norway, the National Science Foundation (NSF), the
Norwegian University of Science and Technology (NTNU – through the Faculty
of Information Technology, Mathematics and Electrical Engineering and through
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vi Foreword

the Program for Computational Science and Visualization), and Simula Research
Laboratory (through Center for Biomedical Computing).

Finally, the conference could not have happened without the invaluable support
and assistance of conference coordinator Anne Kajander. Special thanks also go to
Tormod Bjøntegaard for all his contributions. The assistance from the members of
the Numerical Analysis Group and from the graduate students at the Department of
Mathematical Sciences at NTNU is also gratefully acknowledged.

Jan S. Hesthaven
Einar M. Rønquist
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Sébastien Boyaval

vii



viii Contents

A Proof, Based on the Euler Sum Acceleration, of the
Recovery of an Exponential (Geometric) Rate of Convergence
for the Fourier Series of a Function with Gibbs Phenomenon . . . . . . . . . . . . . . . .131
John P. Boyd

A Seamless Reduced Basis Element Method for 2D Maxwell’s
Problem: An Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141
Yanlai Chen, Jan S. Hesthaven, and Yvon Maday

An hp-Nitsche’s Method for Interface Problems with
Nonconforming Unstructured Finite Element Meshes . . . . . . . . . . . . . . . . . . . . . . . . .153
Alexey Chernov and Peter Hansbo

Hybrid Explicit–Implicit Time Integration for Grid-
Induced Stiffness in a DGTD Method for Time Domain
Electromagnetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
Victorita Dolean, Hassan Fahs, Loula Fezoui, and Stéphane Lanteri
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G. Poëtte, B. Després, and D. Lucor

Reduced Basis Approximation for Shape Optimization
in Thermal Flows with a Parametrized Polynomial Geometric
Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307
Gianluigi Rozza, Toni Lassila, and Andrea Manzoni

Constrained Approximation in hp-FEM: Unsymmetric
Subdivisions and Multi-Level Hanging Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317
Andreas Schröder
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A New Discontinuous Galerkin Method for the Navier–Stokes
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373
M. Borrel and J. Ryan

A P
˛;ˇ
n -Based Method for Linear Nonconstant Coefficients

High Order Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383
F.I. Dragomirescu

Spectral Element Discretization of Optimal Control Problems . . . . . . . . . . . . . . .393
Loredana Gaudio and Alfio Quarteroni

Applications of High Order Methods to Vortex Instability
Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403
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hp-FEM for the Contact Problem with Tresca
Friction in Linear Elasticity: The Primal
Formulation

P. Dörsek and J.M. Melenk

Abstract
method for the primal formulation of frictional contact in linear elasticity. We
introduce a new limiting case estimate for the interpolation error at Gauss and
Gauss-Lobatto quadrature points. An hp-adaptive strategy is presented; numerical
results show that this strategy can lead to exponential convergence.

1 Introduction

We study the hp-version of the finite element method (hp-FEM) APPLIED to a
contact problem with Tresca friction in two-dimensional linear elasticity. In con-
trast to the more realistic Coulomb friction model, Tresca friction leads to a convex
minimisation problem, which is simpler from a mathematical point of view. Nev-
ertheless, the efficient numerical treatment of Tresca friction problems is important
since solvers for such problems are building blocks for solvers for Coulomb friction
problems (see [17, Sect. 2.5.4]).

The mathematical formulation of the frictional contact problem as a minimisa-
tion problem is provided in [10] and can be shown to be equivalent to a variational
inequality of the second kind. First order h-version approximations have been avail-
able since the 1980s, see [12, 13], where the approximations can actually be chosen
to be conforming and the nondifferentiable functional can be evaluated exactly.
When moving to higher order discretisations, it is highly impractical to retain these
properties. For the closely related variational inequalities of the first kind stemming
from non-frictional obstacle and contact problems, Maischak and Stephan analysed
hp-boundary element methods in [21, 22], and obtained convergence rates under
certain regularity assumptions on the exact solution; they also presented an adaptive
strategy based on a multilevel estimator. Results for the frictional contact problem in

J.M. Melenk (B) and P. Dörsek
Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna
e-mail: melenk@tuwien.ac.at

J.S. Hesthaven and E.M. Rønquist (eds.), Spectral and High Order Methods for Partial
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2 P. Dörsek and J.M. Melenk

the hp-boundary element method were next provided in [5]; however, the variational
crimes associated with approximating the nondifferentiable friction functional j ,
which is clearly necessary in a high order context, were not addressed. In [15], this
discretisation error was analysed.

In the present article, we focus on two issues: Firstly, we provide an a priori
analysis for the errors arising from a discretisation of the non-differentiable fric-
tion functional j . We proceed in a different way than it was done in [15] and base
our analysis on a new limiting case interpolation error estimate for functions in
the Besov space B1=22;1 .a; b/. Secondly, we show numerically for a two-dimensional
model problem from [16] that hp-adaptivity can yield exponential convergence.

2 Problem Formulation

Let ˝ � R
2 be a polygonal domain. We decompose its boundary � with nor-

mal vector � into three relatively open, disjoint parts �D, �N and �C. On �D with
j�Dj > 0 we prescribe homogeneous Dirichlet conditions, on �N Neumann con-
ditions with given traction t, and on �C contact conditions with Tresca friction,
where the friction coefficient g is assumed to be constant. The volume forces are
denoted by F. Furthermore, we assume that contact holds on the entirety of �C. For
simplicity of exposition, we will assume that �C is a single edge of ˝ .

We denote by Hs.˝/ the usual Sobolev spaces on ˝ , and similarly on the
boundary parts, with norms defined through the Slobodeckij seminorms (see [26]).
The dual space of Hs.�C/ is denoted by .Hs.�C//

0. The Besov spaces Bs2;q.˝/,
s 2 .k; k C 1/, k 2 N0, q 2 Œ1;1�, are defined as the interpolation spaces
.Hk.˝/;HkC1.˝//s�k;q (note that the J - and the K-method of interpolation gen-
erate the same spaces with equivalent norms, see e.g. [27, Lemma 24.3]).

We employ standard notation of linear elasticity: "ij .v/ WD 1
2

�
@vi

@xj
C @vj

@xi

�

denotes the small strain tensor and � .v/ WD C".v/ the stress tensor. Here, C is
the Hooke tensor, which is assumed to be uniformly positive definite. A vector field
� on �C can be decomposed in its normal component �n WD � � � and its tangen-
tial component �t WD � � .� � �/�. With the trace operator �0;�D W .H1.˝//2 !
.H1=2.�D//

2, we set

V WD ˚v 2 �H1.˝/�2 W �0;�D.v/ D 0
�
: (1)

Next, we define the bilinear form aWV � V ! R, the linear form L W V ! R and
the convex, nondifferentiable functional j W V ! R by

a.v;w/ WD
Z

˝

� .v/ W ".w/dx; (2)

L.v/ WD
Z

˝

F � vdxC
Z

�N

t � vdsx; j.v/ WD
Z

�C

gjvt jdsx: (3)
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The primal version of the continuous linearly elastic contact problem with Tresca
friction then reads:

Find the minimiser u 2 V of J.v/ WD 1

2
a.v; v/ �L.v/C j.v/: (4)

As is well-known, this minimiser can also be characterised by (see [10])

a.u; v � u/C j.v/� j.u/ � L.v � u/ 8v 2 V: (5)

The unique solvability of (4) follows by standard arguments since the Hooke tensor
C is uniformly positive definite and j�Dj > 0, see [16, 17, 19].

Choosing a discrete finite-dimensional subspace VN � V and a discretisation
jN WVN ! R of j , we obtain the discrete primal formulation:

Find the minimiser uN 2 VN of JN .v/ WD 1

2
a.v; v/ �L.v/C jN .v/: (6)

Let TN be a shape regular triangulation of ˝ consisting of affine triangles or
quadrilateral elements K 2 TN with diameter hN;K ; no hanging nodes are admit-
ted for simplicity. Assume that the boundary parts �C, �D and �N are resolved by
the mesh. For each K 2 TN , let pN;K 2 N be a polynomial degree. We assume
that neighboring elements have comparable polynomial degrees, i.e. there exists
Cpoly > 0 independent of TN such that

C�1
poly pN;K � pN;K0 � Cpoly pN;K 8K;K 0 2 TN with K \K 0 ¤ ;: (7)

Letting FK be the affine (if K is a triangle) or bilinear (if K is a quadrilateral)
element map, we set

VN WD fvN 2 V W vN jK ı FK 2 ˘pN;K .K/ for all K 2 TN g ; (8)

where ˘p.K/ is the space of polynomials of (total) degree p if K is a triangle and
˘p.K/ is the tensor product space Qp of polynomials of degree p in each variable
(see [26, p. 178, (4.4.30)]) if K is a quadrilateral.

We denote the set of edges on the contact boundary by EC;N , that is,

EC;N WD fEWE � �C is an edge of TN g: (9)

We see that for every E 2 EC;N , there exists a unique KE 2 TN such that E is an
edge of KE .
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3 A Priori Error Estimates

We obtain the discretisations jN of the functionals j by a quadrature formula: For
each edge E 2 EC;N , let eGE;q be the points of either the Gauss or Gauss-Lobatto
quadrature on E with q C 1 points, together with the corresponding weights !E;q;x
for x 2 E , which are obtained by applying an affine transformation from the ref-
erence edge OE D .�1;C1/ to E . Then, for vN 2 VN , and choosing a vector
.qN;E /E2EC;N

� N0, we define

jN .vN / WD
X

E2EC;N

jN;E .vN /; where (10)

jN;E .vN / WD
X

x2eGE;qN;E

gjvN;t .x/j!E;qN;E ;x: (11)

Note, in particular, that jN is well-defined, as vN is continuous on˝, and thus also
on �C. We shall assume that there exists a constant Cquad > 0 independent of N and
E such that

C�1
quad pN;KE

� qN;E � Cquad pN;KE
: (12)

The main result of this section is:

Theorem 3.1. Let u 2 H3=2.˝/ be the solution of (4) and uN 2 VN be the solution
of (6) where jN is chosen as in (10), (11). Assuming (12), we have

ku � uN kH1.˝/ � Cu max
K2TN

h
1=4
N;Kp

�1=4
N;K .1C 4

p
lnpN;K/; (13)

where Cu depends on u, the shape-regularity of TN , and Cpoly, Cquad.

The proof of Theorem 3.1 is given in Sect. 3.3.

3.1 An Interpolation Error Estimate for B1=2

2;1 -Functions

In [2], error estimates for the one-dimensional Gauss-Lobatto iN and Gauss inter-
polation operators jN are proved, namely, for u 2 H1=2C". OE/,

ku � iN ukL2. OE/ C ku � jN ukL2. OE/ � C"N�1=2�"jujH1=2C". OE/; (14)

where OE WD .�1;C1/ is the reference element and " > 0 arbitrary. As functions in
H1=2. OE/ are not necessarily continuous, the choice " D 0 is not admissible. Thus,
we consider the Besov space B1=22;1 . OE/ D

�
L2. OE/;H1. OE/�

1=2;1
, which is defined as

the J -method interpolation space of L2. OE/ and H1. OE/ with parameters � D 1=2

and q D 1, and consists of continuous functions.
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The main result is:

Theorem 3.2. There exists C > 0 independent of N 2 N such that

ku � iNukL2. OE/ C ku � jN ukL2. OE/ � CN�1=2kuk
B1=2

2;1
. OE/ 8u 2 B1=22;1 .

OE/:

We shall only provide proofs for the case of Gauss-Lobatto interpolation; for
Gauss interpolation, one proceeds analogously.

The following result is a multiplicative variant of [1, Lemme III.1.4] obtained
by applying the Gagliardo-Nirenberg-Sobolev inequality instead of the Sobolev
imbedding theorem:

Lemma 3.3. There exists C > 0 such that for all bounded intervals .a; b/ � R and
all  2 H1.a; b/

k k2L1.a;b/ � C
�

1

b � ak k
2
L2.a;b/

C k kL2.a;b/k 0kL2.a;b/

�
: (15)

Let �N;i D cos.�N;i / and 	N;i , i D 0; : : : ; N , be the nodes and weights of
the Gauss-Lobatto quadrature with N C 1 points. With the Lagrange interpolation
polynomials LN;j .t/ WD Q

k¤j
t��N;k

�N;j ��N;k
, j D 0; : : : ; N , we define the Gauss-

Lobatto interpolation operator iN WC.Œ�1;C1�/! PN by

iN u WD
NX
jD0

u.�N;j /LN;j : (16)

By applying the sharper estimate given in Lemma 3.3 in the proof of [1, Théorème
III.1.15], we obtain the following multiplicative result:

Proposition 3.4. There exists C > 0 such that for all N 2 N and all u 2 H1. OE/
we have the bound

kiN uk2
L2. OE/ � C

�
N�2 �ju.�1/j2 C ju.1/j2�C kuk2

L2. OE/
CN�1kukL2. OE/ku0p1 � x2kL2. OE/

�
: (17)

Remark 3.5. Proposition 3.4 is a special case of the following, more general result.
Let Hk;˛. OE/ be the space of all functions with

kvk2
Hk;˛ . OE/ WD

kX
`D0

Z C1

�1
ju.`/.x/j2.1 � x2/˛C`dx <1; (18)

and set L2;˛. OE/ WD H0;˛. OE/. These spaces were also considered in [14, Sect. 3].
One can show for the Gauss-Jacobi-Lobatto interpolant i˛N with ˛ > �1 (see [8,
Appendix])
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ki˛N uk2
L2;˛. OE/ .kuk2

L2;˛. OE/ CN�1kukL2;˛. OE/ku0kL2;˛C1. OE/
CN�2�2˛ �u.�1/2 C u.C1/2� (19)

for all u 2 H1;˛.�1;C1/ \ C.Œ�1;C1�/. For the special case ˛ D �1=2, i.e.
the Chebyshev-Lobatto interpolation operator, one can show additionally (see [8,
Appendix] for details)

ki�1=2N uk2
L2;�1=2. OE/ .kuk2

L2;�1=2. OE/ CN�1kukL2;�1=2. OE/kukH1;�1=2. OE/ (20)

and that i�1=2N is stable on H1;�1=2.�1;C1/ as well as on the interpolation space�
L2;�1=2. OE/;H1;�1=2. OE/�

1=2;1
.

Combining Lemma 3.3 with Proposition 3.4 yields:

Corollary 3.6. There exists C > 0 such that for all N 2 N and all u 2 H1. OE/
there holds

kiN ukL2. OE/ � C
�
kukL2. OE/ CN�1=2kuk1=2

L2. OE/kuk
1=2

H1. OE/
�
: (21)

A key step towards the proof of Theorem 3.2 is the following result:

Theorem 3.7. Let TN WC.Œ�1;C1�/ ! PN , N 2 N, be continuous linear opera-
tors satisfying for a C > 0 independent of N 2 N

TNp D p for p 2 PN and (22)

kTN ukL2. OE/ � C
�
kukL2. OE/ CN�1=2kuk1=2

L2. OE/kuk
1=2

H1. OE/
�
8 u 2 H1. OE/: (23)

Then there exists a constant C > 0 such that for all N 2 N

ku � TN ukL2. OE/ � CN�1=2kuk
B1=2

2;1
. OE/ for all u 2 B1=22;1 . OE/: (24)

Note that TN WB1=22;1 . OE/ ! PN is well-defined and continuous as we have the

continuous injection B1=22;1 . OE/ ,! C.Œ�1;C1�/ (see [27]).

Proof. We shall first prove the multiplicative error estimate

ku � TN ukL2. OE/ . N�1=2kuk1=2
L2. OE/kuk

1=2

H1. OE/: (25)

To that end, we start by observing that [23, Prop. A.2] provides sequence of
operators 
N WL2. OE/! PN with
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k
N ukL2. OE/ . kukL2. OE/ for all u 2 L2. OE/; (26)

ku � 
N ukL2. OE/ . N�1kukH1. OE/ for all u 2 H1. OE/; (27)

and k
N ukH1. OE/ . kukH1. OE/ for all u 2 H1. OE/: (28)

As TN ı 
N D 
N , we see by (23) that

ku � TN ukL2. OE/ � ku � 
N ukL2. OE/ C kTN .u� 
N u/kL2. OE/
. ku � 
N ukL2. OE/ CN�1=2ku � 
N uk1=2

L2. OE/ku � 
N uk1=2
H1. OE/

. N�1=2kuk1=2
L2. OE/kuk

1=2

H1. OE/: (29)

A careful analysis of the proof of [27, Theorem 25.3] shows that this yields

ku � TN ukL2. OE/ . N�1=2kuk
B1=2

2;1
. OE/; (30)

that is, the claimed estimate. ut
Theorem 3.2 follows by combining Corollary 3.6 and Theorem 3.7.

3.2 A Polynomial Inverse Estimate

We need the following inverse estimate:

Lemma 3.8 (Generalised B1=22;1 -H1=2 p-version inverse inequality). There exists
a constant C > 0 such that for all polynomials q 2 Pp and all � 2 R,

		jqj � �		
B1=2

2;1
. OE/ � C.1C

p
lnp/

�
jqjH1=2. OE/ C j� � Nqj

�
; (31)

where Nq WD 1
2

R C1
�1 jq.x/jdx is the integral mean of jqj.

The particular choices � D Nq and � D 0 lead to

		jqj � Nq		
B1=2

2;1
. OE/ � C.1C

p
lnp/

�
jqjH1=2. OE/

�
;

		jqj		
B1=2

2;1
. OE/ � C.1C

p
lnp/

�
jqjH1=2. OE/Cj Nqj

�
� C.1Cplnp/kqkH1=2. OE/:

Proof. We use the K-method of interpolation (see [26, 27]). Let

K.t; u/ WD inf
v2H1. OE/

h
ku � vk2

L2. OE/ C t2kvk2H1. OE/
i1=2

: (32)

By [6, p. 193, (7.4)], we see that for arbitrary " 2 .0; 1�,
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		jqj � �		
B1=2

2;1
. OE/ 	

Z 1

0

t�1=2K.t; jqj � �/dt

t

D
Z "

0

t�1=2K.t; jqj � �/dt

t
C
Z 1

"

t�1=2K.t; jq � �j/dt

t
: (33)

For 0 < s � 1 we recall the equivalence of norms

kwk2
Hs . OE/ 	 jwj2Hs. OE/ C

�
1

2

Z C1

�1
w.x/dx

�2
; (34)

which is proved by a standard compactness argument as for the Deny-Lions Lemma
(see also [27, Lemma 11.1]). Hence, for 0 < s � 1, we have

kw � 1
2

Z C1

�1
w.x/dxk2

Hs . OE/ 	 jwj2Hs. OE/ for all w 2 Hs. OE/: (35)

To treat the first integral in (33) we choose v D jqj � � in (32) so that

Z "

0

t�1=2K.t; jqj � �/dt

t
�
Z "

0

t1=2
		jqj � �		H1. OE/

dt

t

D 2p"		jqj � �		H1. OE/ � 2
p
"
�		jqj � Nq		H1. OE/ C

p
2j� � Nqj

�

. 2
p
"
�ˇ̌jqjˇ̌H1. OE/ C

p
2j� � Nqj

�
: (36)

Note that
ˇ̌jqjˇ̌H1. OE/ D jqjH1. OE/. The inverse inequality in [3, p. 100, Theorem

III.4.2] together with (35) implies

p
"jqjH1. OE/ �

p
"kq � NqkH1. OE/ .

p
"pkq � NqkH1=2. OE/ .

p
"pjqjH1=2. OE/: (37)

For the second integral in (33), the Cauchy-Schwarz inequality for the measure dt
t

applied to the functions t 7! 1 and t 7! t�1=2K.t; jqj � �/ and the characterization
of
		jqj � �		H1=2. OE/ by the K-method of interpolation yield

Z 1

"

t�1=2K.t; jqj � �/dt

t
�
sZ 1

"

dt

t

sZ 1

"

�
t�1=2K.t; jqj � �/�2 dt

t

.
r

ln
1

"

		jqj � �		H1=2. OE/ .
r

ln
1

"

�		jqj � Nq		H1=2. OE/ C j� � Nqj
�

.
r

ln
1

"

�ˇ̌jqjˇ̌H1=2. OE/ C j� � Nqj
�
; (38)

where the last step again follows from (35). Additionally, by the definition of the
H1=2-seminorm, we see easily that

ˇ̌jqjˇ̌H1=2. OE/ � jqjH1=2. OE/, which yields
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Z 1

"

t�1=2K.t; jqj � �/dt

t
.
r

ln
1

"

�
jqjH1=2. OE/ C j� � Nqj

�
; (39)

We set " WD 1
p2 and obtain by inserting (37), (39) in (33)

		jqj � �		
B1=2

2;1
. OE/ . .1Cplnp/jqjH1=2. OE/ C .p�1 Cplnp/j� � Nqj

� .1Cplnp/
�
jqjH1=2. OE/ C j� � Nqj

�
: (40)

ut

3.3 Convergence Rates: Proof of Theorem 3.1

We now prove a convergence rate result for the primal formulation of the friction
problem. We follow in style the article [4]. A similar estimate was derived in [15,
Lemma 4.1] using different techniques.

In the following, u and uN denote the solutions of (4) and (6).

Proposition 3.9. Define Su.v/ WD a.u; v/� L.v/. Then, for all vN 2 VN ,

a.u � uN ;u � uN / � a.u � uN ;u � vN /C Su.vN � u/

C jN .vN /� j.vN /C j.uN /� jN .uN /C j.vN � u/: (41)

Proof. It follows from (6) that

a.u� uN ;u � uN / D
a.u� uN ;u � vN /C a.u; vN � uN /� a.uN ; vN � uN /

� a.u � uN ;u � vN /C a.u; vN � uN / �L.vN � uN /C jN .vN / � jN .uN /
� a.u � uN ;u � vN /C Su.vN � uN /C jN .vN /� jN .uN /:

Since for all v 2 V we have

Su.vN � uN / D Su.vN � u/C Su.u� v/C Su.v� uN /

� Su.vN � u/C j.v/ � j.u/C Su.v � uN /; (42)

we obtain

a.u� uN ;u � uN / � a.u� uN ;u � vN /C Su.vN � u/C Su.v � uN /

C jN .vN / � j.u/C j.v/� jN .uN /: (43)

Choose now v D uN and note that j.vN / � j.vN �u/Cj.u/, and thus�j.u/ �
�j.vN /C j.u � vN /. The claim then follows. ut
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Proposition 3.9 shows that the main task is to estimate the error introduced by
approximating j by jN on VN . This will be done now.

Theorem 3.10. For everyE 2 EC;N letKE 2 TN be such thatE is an edge ofKE .
For wN 2 VN , set

jE .wN / WD
Z

E

gjwN jdsx: (44)

Then, we have the estimates

jjE .wN /� jN;E .wN /j �C
�
hN;KE

.1CplnpN;KE
/q

�1=2
N;E jwN jH1.KE /

�
(45)

�C
�
hN;KE

.1CplnpN;KE
/p

�1=2
N;KE

jwN jH1.KE/

�
: (46)

Here, C > 0 depends only on the shape regularity of TN and Cquad.

Proof. It is clear that

jN;E .wN / D g
Z

E

iE;qN;E
jwN jdsx; (47)

where iE;qN;E
denotes the local interpolation operator on E at the qN;E C 1 Gauss-

Lobatto points. Therefore, we have to estimate

jjE .wN /� jN;E .wN /j D jgj k jwN j � iE;qN;E
jwN j kL1.E/

� Ch1=2E k jwN j � iE;qN;E
jwN j kL2.E/: (48)

Theorem 3.2 provides a constant C > 0 such that

		jwj � iqjwj
		

L2. OE/ � Cq�1=2kwk
B1=2

2;1
. OE/ 8q 2 N: (49)

Apply now a scaling argument: Let ˚E W OE ! E be an invertible, affine mapping.
As iE;qN;E

reproduces constant functions, we have for any � 2 R,

		jwN j � iE;qN;E
jwN jkL2.E/ D k.jwN j � �/� iE;qN;E

.jwN j � �/kL2.E/

D h
1=2
N;E

2

		.jwN ı ˚E j � �/� iqN;E
.jwN ı ˚E j � �/

		
L2. OE/

� Ch1=2N;Eq�1=2
N;E

		jwN ı ˚E j � �
		

B1=2
2;1

. OE/: (50)

With the choice � WD 1
2

R
OE jwN ı ˚E jdx, Lemma 3.8 gives

		jwN ı ˚E j � �
		

B1=2
2;1

. OE/ .
�
1CplnpN;E

�
jwN ı ˚E jH1=2. OE/: (51)

Thus, inserting (51) in (50) and scaling produces
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kjwN j � iE;qN;E
jwN jkL2.E/ . h

1=2
N;E .1C

p
lnpN;E /q

�1=2
N;E jwN jH1=2.E/:

Finally, inserting this in (48) we get with the trace theorem

jjE .wN /� jN;E .wN /j . hN;E .1C
p

lnpN;E /q
�1=2
N;E jwN jH1=2.E/

. hN;KE
.1CplnpN;KE

/q
�1=2
N;E jwN jH1.KE /

:

This proves (45). The bound (46) follows from (46) and (12). ut
Let hN , pN and qN be the local mesh width, polynomial degree and quadrature

order, respectively, and introduce the local approximation quantification

!N WD h1=2N p
�1=2
N .1CplnpN /: (52)

Corollary 3.11. Set SN WD S
E2EC;N

KE . Let !N be given by (52). Then there
exists C > 0 independent of N such that for every wN 2 VN

jj.wN /� jN .wN /j � Ck!NrwN kL2.SN /
� Ck!NrwN kL2.˝/: (53)

Proof. Applying Theorem 3.10 to wN and summing over E 2 EC;N , we obtain by
the discrete Cauchy-Schwarz inequality and the trace theorem that

jjN .wN / � j.wN /j �
X

E2EC;N

jjE .wN / � jN;E .wN /j

.
X

E2EC;N

h
1=2
N;Eh

1=2
N;E .1C

p
lnpN;KE

/q
�1=2
N;E jwN jH1.KE /

�
0
@ X
E2EC;N

hN;E

1
A
1=20

@ X
E2EC;N

hN;E .1C lnpN;KE
/q�1
N;KE

jwN j2H1.KE/

1
A
1=2

D j�Cj1=2
0
@ X
E2EC;N

hN;E .1C lnpN;KE
/q�1
N;KE

jwN j2H1.KE /

1
A
1=2

. kh1=2N .1CplnpN /q
�1=2
N rwN kL2.SN /

ut
Theorem 3.12. There exists C > 0 independent of N such that the following is
true. Set SN WD S

E2EC;N
KE , and let uN and u be the solutions of (6) and (4),

respectively. Let !N be given by (52). Then:
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ku � uN kH1.˝/ � C inf
vN 2VN

�
k!NruN kL2.SN /

C k!NrvN kL2.SN /

C ku � vN kH1.˝/ C ku � vN k2H1.˝/
C jSu.u� vN /j

�1=2
:

Before proving Theorem 3.12, we remark that we can trivially estimate

k!NruN kL2.SN /
C k!NrvN kL2.SN /

� k!NruN kL2.˝/ C k!NrvN kL2.˝/:

(54)
This estimate is rather generous: for quasi-uniform meshes the strip SN has area
O.h/, and hence the left-hand side of (54) can be expected to be significantly smaller
than the right-hand of (54).

Proof. We employ Proposition 3.9. By the V -boundedness and V -ellipticity of a
and the V -boundedness of j , we see that

ku� uN k2H1.˝/
. ku� uN kH1.˝/ku � vN kH1.˝/ C kvN � ukH1.˝/

C jN .vN / � j.vN /C j.uN / � jN .uN /C Su.vN � u/;

from which it follows by applying the "-trick that

ku � uN k2H1.˝/
. ku � vN k2H1.˝/

C ku � vN kH1.˝/

C jjN .vN / � j.vN /j C jjN .uN /� j.uN /j C Su.vN � u/:

Applying Corollary 3.11 to uN and vN , the result now follows by the local equiva-
lence of pN and qN . ut
Clearly, choosing vN 2 VN to be the best approximation of u with respect to
the H1-norm proves that kh1=2N .1 C plnpN /p

�1=2
N vN kH1.˝/ stays bounded and

converges with a rate of h1=2N .1 C plnpN /p
�1=2
N , and ku � vN kH1.˝/ ! 0 if

hN =pN ! 0. It still remains to show that kuN kH1.˝/ stays bounded.

Lemma 3.13. The norms in H1.˝/ of the solutions uN of (6) stay bounded for
N !1.

Proof. Choose vN D 0. Then, as jN .wN / � 0 for all wN 2 VN ,

a.uN ;uN / � L.uN / � jN .uN / � L.uN /: (55)

The result now follows by the coercitivity of a and the boundedness of L. ut
Remark 3.14. Lemma 3.13 shows convergence of the primal method if

S
N VN is

dense in V . This can also be shown similarly as in [15] using Glowinski’s theorem.

Finally, Theorem 3.1 now easily follows from Theorem 3.12, the trivial bound
(54), and hp-approximation results given, for example, in [23].
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4 Numerical Experiments

4.1 A Posteriori Error Estimation

One way to realise numerically the minimisation problem (6) is by dualisation.
Specifically, we assume that the quadrature points QGE;qN;E

are the Gauss points
and that

qN;E � pN;KE
� 1 8E 2 EC;N : (56)

We introduce the bilinear forms b and bN by

b.u; �/ WD g
Z

�C

ut�dsx; bN .u; �/ WD g
X

E2EC;N

X

x2 QGE;qN;E

!E;qN;E ;xut .x/�.x/;

WN WD f� 2 L2.�C/ W �jE 2 PqN;E 8E 2 EC;N g;
N WD f� 2 WN W j�.x/j � 1 8x 2 QGE;qN;E

8E 2 EC;N g;

where, in the present 2D setting, we view the tangential component ut of u as
a scalar function in the definition of b and bN . It is easy to see that jN .u/ D
sup�2�N

bN .u; �/. Hence, the minimisation problem (6) can be reformulated as
a saddle point problem of finding .uN ; �N / 2 VN �N such that

a.uN ; v/ CbN .v; �N / D L.v/ 8v 2 VN ; (57a)

bN .uN ; � � �N / � 0 8� 2 N : (57b)

(57) has solutions; the component uN is the unique solution of (6), which justifies
our using the same symbol. Any Lagrange multiplier �N can be used for a posteriori
error estimation. Indeed, exploiting the fact that b.v; �/ D bN .v; �/ for all v 2 VN
and � 2 WN , one can proceed as in [7, Sec. 4] to show the following result (see [8,
Appendix] for the details):

Theorem 4.1. Assume (56). Let u, uN solve (4), (6), and let �N be a Langrange
multiplier satisfying (57). Then ku � uN k2H1.˝/

� C�2N , where the error indicator

�2N WD
X
K2TN

�2N;K (58)

is defined in terms of element error indicators

�2N;K WDh2N;Kp�2
N;KkrKk2L2.K/

C hN;Kp�1
N;K

X
E�@K

kREk2L2.E/
(59)

C j@K\�C.uN /� b@K\�C.uN ; Q�N /C g2k�N � Q�N k2.H1=2.@K\�C//
0 I

here, the element residuals rK and the edge jumps RE are given by
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rK WD � div � .uN / � F; RE WD

8
ˆ̂̂
<̂
ˆ̂̂
:̂

1
2
Œ� .uN / � ��E if E � ˝;

.� .uN / � �/t C g�N if E � �C

� .uN / � � � t if E � �N;

0 if E � �D:

Finally, Q�N is the L2.�C/-projection of �N ontoN .

Remark 4.2. In our numerical experiments, we estimate the error indicator �N
further by replacing the

�
H 1=2

�0
-norm by the L2-norm and estimating rather gener-

ously the contributions of j@K\�C .uN /� b@K\�C.uN ; Q�N / for those edges E � �C

where �N jE ¤ Q�N jE . See [7, Remark 4.3] for details.

4.2 Numerical Examples

We consider the two-dimensional numerical problem of [16, Example 6.12]. Let
˝ D .0; 4/ � .0; 4/, assume homogeneous Dirichlet conditions on �D WD f4g �
.0; 4/, frictional contact on �C WD .0; 4/ � f0g, and Neumann conditions on �N WD
.f0g � .0; 4// [ ..0; 4/� f4g/, where t.0; s/ D .150.5 � s/;�75/ daN mm�2 for
s 2 .0; 4/ and t D 0 on .0; 4/ � f4g. The elasticity parameters are chosen to be
E D 1;500 daN mm�2 and � D 0:4, the friction coefficient is g D 450 daN mm�2.
We assume plane stress conditions.

We perform six numerical experiments: h-uniform and h-adaptive methods with
polynomial degrees 2 and 3; a p-uniform method starting with polynomial degree 2;
and an hp-adaptive method starting with polynomial degree 3. The initial meshes
are uniform and consist of 16 squares.

Quadrilateral meshes with hanging nodes are used. We require the “one hang-
ing node rule” and that all irregular nodes be one-irregular. Differing polynomial
degrees on neighbouring elements are resolved by using the minimum rule on the
edge. For the discretisation of j , we choose Gaussian quadrature and qN;E D
pN;KE

�1 forE 2 EC;N , i.e. we use pN;KE
quadrature points in (11). As described

in Sect. 4.1, the minimisation problem (6) is recast in primal-dual form and the
resulting first kind variational inequality is solved with the MPRGP algorithm (see
[9]). As a by-product, we obtain a Lagrange multiplier �N 2 WN , which is used to
define the error indicators of (58). These are plotted in Fig. 1. All calculations were
done using maiprogs, [20]. Static condensation of the internal degrees of freedom
was realized with pardiso, [18, 24, 25].

In the hp-adaptive scheme, each adaptive step refines those 20% of the elements
that have the largest error indicators (59). The decision of whether to perform an
h-refinement or a p-enrichnement is based on [7, Algorithm 5.1] with ı D 1. The
essential idea of that algorithm is similar to Strategy II of [11]: A p-enrichment for
an elementK can only be done if two conditions are met: (1) the coefficients of the
Legendre expansion of the displacement field decay sufficiently rapidly and (2), if
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K has an edge E on the contact boundary �C, then �N satisfies k�N kL1.E/ � 1.
This last condition k�N kL1.E/ � 1 is strictly enforced by ensuring that an upper
bound for k�N kL1.E/ is bounded by 1. This upper bound is obtained by expanding
the polynomial �N jE into a Legendre series, computing the extrema of the leading
quadratic part explicitly and estimating the remainder with the triangle inequality;
we refer to [7] for details, where a similar strategy is employed in the context of a
primal-dual formulation.

Figure 1 shows the error indicators for the two uniform and adaptive h-methods,
the uniformp-method and the hp-adaptive method. Assuming that the error behaves
like ku � uN kH1.˝/ D CN�˛ in the uniform h- and p-versions and the adaptive
h-versions, we obtain by a least squares fit rates of about ˛ D 0:44 for the h-uniform
and ˛ D 0:33 for the p-uniform methods and about ˛ D 0:64 and ˛ D 0:87 for
the adaptive schemes with polynomial degrees 2 and 3, respectively. For the hp-
adaptivity, we obtain � D 0:35, assuming an error behaviour of the form ku �
uN kH1.˝/ D C exp.��N 1=3/.

Acknowledgements The first author gratefully acknowledges partial support by the FWF
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On Multivariate Chebyshev Polynomials
and Spectral Approximations on Triangles

Brett N. Ryland and Hans Z. Munthe-Kaas

Abstract In this paper we describe the use of multivariate Chebyshev polynomials
in computing spectral derivations and Clenshaw–Curtis type quadratures. The multi-
variate Chebyshev polynomials give a spectrally accurate approximation of smooth
multivariate functions. In particular we investigate polynomials derived from the
A2 root system. We provide analytic formulas for the gradient and integral of A2
bivariate Chebyshev polynomials. This yields triangular based Clenshaw–Curtis
quadrature and spectral derivation algorithms with O.N logN/ computational com-
plexity. Through linear and nonlinear mappings, these methods can be applied to
arbitrary triangles and non-linearly transformed triangles. A MATLAB toolbox and
a CCC library have also been developed for these methods.

1 Introduction

Classical Chebyshev polynomials are among the most important building blocks
in approximation theory. We recall some of their beautiful and immensely useful
properties:

� Polynomial interpolation in Chebyshev zeros and Chebyshev extremal points
converges exponentially fast for analytic functions on Œ�1; 1� and with super-
algebraic speed for smooth functions.

� The Lebesgue constant for Chebyshev interpolation grows logarithmically in the
number of interpolation points N .

� Chebyshev polynomials are orthogonal both with a continuous weighted inner
product and also with discrete inner products based on Gauss-Chebyshev or
Gauss-Chebyshev-Lobatto quadrature (nodes in Chebyshev zeros or Chebyshev
extremal points).
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� Chebyshev polynomial interpolation is equivalent to discrete Fourier cosine
transform under a change of variables, thus all basic operations can be computed
in O.N logN/ operations using FFT. This includes transforms between nodal
values and expansion coefficients, mesh refinement and coarsening, products,
integration and derivations.

� Integration and derivation of Chebyshev polynomial expansions can be done
exactly. This leads to the highly accurate Clenshaw–Curtis quadrature and
spectral Chebyshev derivation.

Chebyshev polynomials are also frequently used for multidimensional approxi-
mations. The standard approach is to construct multivariate polynomials as tensor
products of univariate polynomials. However, this approach limits the application of
multivariate Chebyshev approximations to rectangular and brick shaped domains,
and domains that can be constructed from these by, e.g., spectral elements.

In this paper we will discuss families of multivariate Chebyshev polynomials
obtained by an alternative construction, where tensor products of univariate poly-
nomials appears as just one particular case. The construction is based on central
ideas in group theory and representation theory. The construction was first done for
particular cases by Koornwinder [12, 13] and later in full generality by Hoffman
and Withers [10], see also [1, 5, 15]. Applications of these polynomials in numer-
ical algorithms were discussed in [17]. For an introduction to the group theoretic
background of this paper we refer to [6, 11].

This work is in particular motivated by the goal to construct spectral type discreti-
sations on domains subdivided into triangles and simplices. Approximation theory
on triangles have been discussed in various contexts, see [2–4, 7–9, 18, 20, 22]. Fast
Fourier type transforms for the symmetric functions that appear in the context of
multivariate Chebyshev polynomials are discussed in [16, 19].

The construction of multivariate Chebyshev polynomials starts by looking at
periodic exponential functions through a kaleidoscope of mirrors acting on R

d .
More specifically we ask:

Which polytopes S � R
d generate a periodic tessellation of R

d under reflec-
tions about its faces?

Up to group isomorphisms there is just one such S for d D 1, four for d D 2

and seven for d D 3. For d D 1 we can take the domain S D Œ0; 
� � R, which
generates a 2
 periodic tessellation. For d D 2 the four possibilities are S being
a rectangle or a triangle with 60ı�60ı�60ı, 45ı�45ı�90ı or 30ı�60ı�90ı angles.
In d D 3, the possible polytopes are prisms with base polygon being one of the
four 2-d cases, as well as three particular tetrahedra. For each of these polytopes,
there exists a family of multivariate Chebyshev polynomials, which are orthogonal
on a domain which is the image of S under a certain change of variables. The clas-
sification of all these polytopes S , and thus also the classification of multivariate
Chebyshev polynomials, is done in terms of Dynkin diagrams. This is a graph with
d nodes, each node representing one mirror in R

d . The nodes are not connected if
the mirrors are orthogonal, connected with one edge if the mirrors meet at 60ı, two
edges if they meet at 45ı and three edges for 30ı. If two sets of nodes are totally dis-
connected, the mirrors form two subsets which are mutually orthogonal. In this case
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the corresponding polynomials become tensor products of each of the connected
components. Thus, it is sufficient to classify only the connected Dynkin diagrams.
The complete classification of connected Dynkin diagrams is shown.

A0

B0

C0

D0

E6

E7

E8

F4

G2

The classical univariate polynomials are represented by the diagram consisting
of a single dot, A1. Tensor product polynomials in d dimensions is represented as
a diagram of d separate dots. The 2-d triangles 60ı�60ı�60ı, 45ı�45ı�90ı and
30ı�60ı�90ı are given by the diagrams A2, B2 and G2.

Given such a domain S , we find a domain of periodicity P such that S �
P � R

d . The construction of multivariate Chebyshev polynomials goes as follows,
exemplified by the classical case:

1. Take the Fourier basis functions on P . Classical: S D Œ0; 
�, P D Œ�
; 
�,
Fourier basis exp.ik�/.

2. Using reflection symmetries, fold the Fourier basis to symmetric functions on S .
Classical: cos.k�/ D 1

2
.exp.ik�/C exp.�ik�//.

3. Use the symmetrised generators for the Fourier basis to change variables. This
turns the symmetrised Fourier basis into Chebyshev polynomials on a trans-
formed domain eS . Classical: x D 1

2
.exp.i�/ C exp.�i�// D cos.�/, eS D

Œ�1; 1�.
It should be remarked that these polynomials enjoy most of the beautiful prop-

erties of their univariate cousins. However, in the classical case the transformed
domain eS is still an interval, whereas in the general case S is typically a simplex
or a product of simplices, e.g., a prism, while the transformed domain eS is a more
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complicated domain which is usually non-convex and often has cusps in the cor-
ners. Coping with the shape of eS is the main difficulty in the practical use of the
multivariate Chebyshev polynomials.

This paper is organised as follows. In Sect. 2 we review basic properties of root
systems and multivariate Chebyshev polynomials with special emphasis on the A2
case related to symmetries of the equilateral triangle. Section 3 treats new spec-
trally accurate methods for computing gradients on triangles. Section 4 discusses
Clenshaw–Curtis type quadratures for triangles. Lastly, in Sect. 5 we demonstrate
the algorithms through numerical experiments.

2 Chebyshev Polynomials and Root Systems

In this section we will review the basic definitions and properties of multivariate
Chebyshev polynomials. Root systems give explicit information about the reflec-
tions and translations discussed in the introduction, and are hence important for
computational algorithms.

2.1 Root Systems

A root system ˚ on a vector space V is a collection of vectors satisfying the
following four conditions [11]:

i. ˚ spans V
ii. If ˛ 2 ˚ , then c˛ 2 ˚ ” c 2 f1;�1g

iii. If ˛ 2 ˚ , then ˚ is closed under the reflection �˛ D I � 2˛˛T

˛T ˛

iv. Integrality condition: ˛; ˇ 2 ˚ H) < ˇ; ˛ >D 2 .˛;ˇ/
.˛;˛/

2 Z, where .˛; ˇ/ D
˛T ˇ.

In one dimension, the only root system is given by ˚ D f˛;�˛g, where ˛ is a
non-zero vector. In two dimensions, there are four root systems, which are shown in
Fig. 1. The first of these is a tensor product of the 1-dimensional root system, while
the remainder are irreducible. A complete classification of irreducible root systems
is given by the Dynkin diagrams An, Bn, Cn, Dn, E6, E7, E8, F4 and G2.

A2 B2 G2

α1α1α1α1

α2

α2α2α2

A1 × A1

Fig. 1 Root systems in two dimensions
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2.2 Multivariate Chebyshev Polynomials

Following [17], let ˚ be a root system with a basis f˛1; : : : ; ˛d g where the ˛i are
simple positive roots of ˚ . Corresponding to this root system is the Weyl group
W D f�˛j˛ 2 ˚g, where �˛ is the reflection in the hyperplane orthogonal to ˛.
Expressed in the basis f˛j g, W is generated by the integer matrices

e� i D I � eieTi C; i D 1; : : : d;

where C is the Cartan matrix Cjk D 2 ˛
T
j
˛k

˛T
j
˛j

, I is the identity matrix, and feig is the

standard basis on R
d .

The root lattice is the set of all translations generated by the roots  D
span

Z
f˛1; : : : ; ˛d g, and the affine Weyl group eW D  Ì W is the group gener-

ated by both translations and reflections along the roots. The fundamental domain
of eW is a polytope S � R

d and the periodicity domain P is the parallelepiped
spanned by the simple positive roots ˛j .

In terms of the basis 1
2�
f˛1=j˛1j; : : : ; ˛d=j˛d jg, we identify P with the abelian

groupG D .R=2
Z/d , whose dual group is bG D Z
d . The Fourier basis for periodic

functions is defined via the pairing

.k; �/ WD eik�� ;

where k 2 bG and � 2 G. Via the symmetries of the Weyl group, one can define the
symmetrised pairing

.k; �/s WD 1

jW j
X
g2W

.k; g�/ D 1

jW j
X
g2W

.gT k; �/;

where jW j is the number of elements in the Weyl groupW .
Note that in the same way that G can be recovered (up to periodicity) from the

fundamental domain by application of elements from the Weyl group, one can define
a dual fundamental domain (i.e., a fundamental domain in bG) such that bG is recov-
ered from the dual fundamental domain by application of the transpose of elements
from the Weyl group.

We can now define the multivariate Chebyshev polynomials in the following
way:

Definition 1. The multivariate Chebyshev polynomial of degree k is given by

Tk.z/ WD .k; �/s ; (1)

where zj .�/ D .ej ; �/s for j D 1; : : : ; d , and the ej are the standard basis vectors
in R

d .
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The multivariate Chebyshev polynomials are related to each other via the
following relations

T0 D 1;
Tej
D zj ;

Tk D TgT k for g 2 W;
T�k D Tk;

TkTl D 1

jW j
X
g2W

TkCgT l D
1

jW j
X
g2W

TlCgT k :

(2)

These relations clearly show that the multivariate Chebyshev polynomials are
indeed polynomials in the zj .

A multivariate function may be expanded in an infinite weighted sum over
multivariate Chebyshev polynomials,

f .z/ D
X

k2bG
a.k/Tk.z/;

where the coefficients a.k/ can be obtained via a Fourier transform, i.e.,

X

k2bG
a.k/Tk.z/ D 1

jW j
X

k2bG
a.k/

X
g2W

.gT k; �/

D 1

jW j
X

k2bG

X
g2W

a.gT k/.gT k; �/

D
X

k2bG
a.k/.k; �/

since a.k/ D a.gT k/ for all g 2 W . Thus a.k/ D bfs.�/, where fs.�/ is the pull-
back of f .z/ to the periodicity domain P . Note that fs.�/ is a symmetric function,
fs.g�/ D fs.�/ for all g 2 W .

To do numerical computations, we discretise P with a regular lattice and sample
f .z/. It is essential that this lattice respects all the symmetries of eW . There are
several ways to accomplish this. One possibility is to downscale the root lattice 
by a factor N so that P contains an N � N grid. This grid is invariant under the
action of eW . Thus we obtain a finite polynomial approximation

f .z/ 
 PN .z/ D
X

k2bGN

aN .k/Tk.z/; (3)

where bGN D .Z=NZ/d is the d -dimensional N -periodic integer lattice. If the
approximating polynomial, PN .z/, is evaluated at the set of points

˚
z� D z.�j /

�
,
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where j 2 bGN and �j D 2
j=N 2 R
d , then the expansion of PN .z/ is

PN .z.�j // D
N�1X
kd D0

� � �
N�1X
k1D0

aN .k/ exp.ik � �j /;

which is simply an unnormalised d -dimensional inverse discrete Fourier transform.
Thus, the aN .k/ are given by

aN .k/ D 1

N d

N�1X
jd D0

� � �
N�1X
j1D0

PN .z.�j // exp.ik � �j /; (4)

which can be computed quickly via the d -dimensional fast Fourier transform Fd ,

faN .k/g D 1

N d
Fd fPN .z�/g :

In the sequel, we omit the subscriptN and write just a.k/ � aN .k/.

2.3 The A2 Root System

The Weyl group for the A2 root system is

W D

�
1 0

0 1

�
;

��1 1
0 1

�
;

�
1 0

1 �1
�
;

��1 1
�1 0

�
;

�
0 �1
1 �1

�
;

�
0 �1
�1 0

�
: (5)

Here the fundamental domain is that of the eA2 affine Weyl group, which is an equi-
lateral triangle in the plane (see Fig. 2), and the dual fundamental domain is the set
of points in Fourier space given by fk 2 .Z=NZ/2jk2 � k1; 2k1 C k2 � N g.

With this Weyl group, (2) gives rise to the following recursion formulas

T0;0 D 1; T1;0 D z1; T0;1 D z2 D T�1;0 D z1;

Tn;0 D 3z1Tn�1;0 � 3z2Tn�2;0 C Tn�3;0;

Tn;m D 1

2
.3Tn;0Tm;0 � Tn�m;0/:

However, it is more convenient, in practice, to work in the real-valued coordinates

x1 D 1

2
.z1 C z2/ D 1

3
.cos.�1/C cos.�2/C cos.�1 � �2//;

x2 D 1

2i
.z1 � z2/ D 1

3
.sin.�1/� sin.�2/� sin.�1 � �2//:
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θ1

θ2

Fig. 2 The A2 root system showing fundamental domain (yellow triangle), translation group (blue
hexagonal lattice) and downscaled lattice (small black dots) for the downscaling factor N D 12.
The blue arrows indicate the � coordinates
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Fig. 3 N D 12 equally spaced tangent lines to the deltoid in x and � coordinates. The points
fx�.�/g lie at the intersection of these lines, cf. Fig. 2

Clearly, the multivariate Chebyshev polynomials are also polynomials in these
coordinates.

While the multivariate Chebyshev polynomials are defined in a unit cell of the
lattice, they exist in � coordinates as multiple images (not necessarily whole) of
the fundamental domain. For the A2 root system, this is the equilateral triangle on
the right of Fig. 3. However, in the x coordinates, this triangle is mapped to a deltoid
as shown on the left of Fig. 3.

Lemma 1. The Lebesgue constant �.N / for the points x� grows as O..log.N //2/.
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In higher dimensions the Lebesgue constant grows as O..log.N //d /. The proof
of this result relies on properties of the multidimensional Dirichlet kernel, see
also [14].

3 Computing Gradients

Let us consider the gradient of the approximating function PN .z/,

rzf .z/ 
 rzPN .z/ D
X

k2bGN

a.k/rzTk.z/: (6)

For the univariate Chebyshev polynomials, the derivative of the approximating
polynomial can be written exactly as a weighted sum over Chebyshev polynomials
via the relation,

@zPN .z/ D
NX
kD0

a.k/@zTk.z/ D
N�1X
kD0

b.k/Tk.z/; (7)

where the b.k/ are calculated recursively by

b.k � 1/ D b.k C 1/C 2ka.k/ for k D N � 1; : : : ; 1; (8)

with b.NC1/ D b.N / D 0. This recursion formula can be obtained by substituting
the relation

2Tk.z/ D @zTkC1.z/
k C 1 � @zTk�1.z/

k � 1 ;

into (7) and matching terms.
In the general multivariate case the coefficients of the gradient are vectors b.k/ 2

C
d . It can be shown that these satisfy the recursion

jW jka.k/ D
dX
lD1

X
�2W

b.k � �T el/l.�T el/: (9)

The b.m/ in (9) can be obtained by setting b.M/ D 0 and a.M/ D 0 forM outside
the dual fundamental domain and iteratively determining the b.m/ asm approaches
the origin.
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3.1 Gradients in the A2 Root System

As mentioned earlier, we prefer to work in the real-valued .x1; x2/ coordinates
when dealing with the A2 root system. The effect of this is that the gradient of
the approximating polynomial becomes

rxPN .x/ D Jx.z/�T Jz.�/
�T X

k2bGN

a.k/r�Tk.�/ D Jx.z/�T
X

m2bGN

b.m/Tm.�/;

(10)
where Jz.�/ is the Jacobian of the transformation between the � and z domains, and

Jx.z/
�T D

�
1 1

i �i

�
:

The recursion formula (9) can then be used to determine the b.m/ from the a.k/ via
the following 3 steps:

1. Sort the k in the dual fundamental domain by k1C k2 D c for c D 0; 1; : : : , and
with increasing k2 for each c (see Fig. 4).

2. Assume that b.k/ D 0 for k not in the dual fundamental domain and apply the
stencils in Fig. 5 to each of the k in the fundamental domain in the reverse order
to the sorting in step 1.

– If k2 > 0, use stencil (a) to obtain b.k1; k2/1:

b.k1; k2/1 D 3.k1C1/a.k1C1; k2/C b.k1 C 2; k2 � 1/1 C b.k1 C 2; k2/2
�b.k1; k2 C 1/2

otherwise, use stencil (b):

b.k1; 0/1 D 3.k1C1/a.k1C1; 0/Cb.k1C1; 1/1Cb.k1C2; 0/2�b.k1; 1/2:

– If k1 > 0, use stencil (c) to obtain b.k1; k2/2:

b.k1; k2/2 D 3.k2 C 1/a.k1; k2 C 1/C b.k1 � 1; k2C2/2 C b.k1; k2C2/1
�b.k1 C 1; k2/1

otherwise use stencil (d):

b.0; 0/2 D 3a.0; 1/C b.1; 1/2 C b.0; 2/1 � b.1; 0/1:

– Apply the conjugate symmetry:

b.k2; k1/1 D b.k1; k2/2;
b.k2; k1/2 D b.k1; k2/1:
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8
7

6

5

4

3

2

1

k2

k1

c = 0

Fig. 4 Sorted dual fundamental domain for the A2 root system with N D 12

b(0, 2)1

b(k1, k2+1)2

a(k1+1, k2)

b(k1+2, k2)2
b(k1, k2)1

b(k1+2, k2−1)1

a

c

b

d

b(k1, k2)2

b(k1+1, k2)1

a(k1, k2+1)

b(k1, k2+2)1

b(k1−1, k2+2)2

b(k1, 0)1

b(k1, 1)2 b(k1+1, 1)1

a(k1+1, 0)
b(k1+2, 0)2

a(0, 1)
b(1, 1)2

b(1, 0)1
b(0, 0)2

Fig. 5 Stencils for use in step 2

3. Apply the symmetries from the symmetry group W to obtain the rest of the
coefficients:

b.gT k/ D b.k/ for g 2 W:
By using this recursion formula, one can calculate the gradient of a function

in O.N 2 C ˛.N 2 logN 2// time, where ˛ indicates the amount of the time spent
performing the fast Fourier transform and its inverse. Note that there are O.N 2/
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sample points in the computational domain, thus in terms of the number of sample
points, the computational complexity of this approach is only marginally greater
than linear, the main cost being the FFT.

4 Clenshaw–Curtis Quadrature

Clenshaw–Curtis quadrature is a well-known technique for univariate integration.
For a function on Œ�1; 1� the method amounts to approximating a given function by
a finite Chebyshev expansion and integrating this polynomial exactly. For smooth
functions this method behaves nearly as good as Gaussian quadrature [21].

As with the univariate Chebyshev polynomials, the integral of a multivariate
function may be evaluated rapidly with a multivariate Clenshaw–Curtis quadrature
technique.

Z

˝z

f .z/dz 

Z

˝z

PN .z/dz D
X

k2bGN

a.k/

Z

˝�

Tk.�/jJz.�/jd�; (11)

where jJz.�/j is the absolute value of the determinant of the Jacobian and ˝z and
˝� are the fundamental domains in z and � coordinates respectively.

Since both Tk.�/ and the Jacobian Jz.�/ have terms of the form .k; �/ as building
blocks, we can expand the integrals in (11) as

Z

˝�

Tk.�/jJz.�/jd� D
X

	2bGN

b.�/

Z

˝�

.�; �/d�; (12)

for some b.�/ that is only non-zero near � D k. Furthermore, these integrals need
only be computed once.

4.1 Clenshaw–Curtis Quadrature in the A2 Root System

For the A2 root system, the determinant of the Jacobian Jx.�/ is

� D 1

9
.sin.�1 C �2/C sin.�1 � 2�2/� sin.2�1 � �2//

D � i

2
� 1
9

���
1

1

�
; �

�
�
���1
�1
�
; �

�
C
��

1

�2
�
; �

�

�
���1

2

�
; �

�
C
���2

1

�
; �

�
�
��

2

�1
�
; �

��
;
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which is zero on the boundary of the fundamental domain and negative within it.
Furthermore, the orientation of the deltoid in the x coordinates is opposite to that of
the fundamental domain in � coordinates. Thus, (12) becomes

Z

˝�

Tk.�/jJx.�/jd� D i

2
� 1
9
� 1jW j

X
	2S

ı	

Z

˝�

.�; �/d� (13)

for the set S consisting of gT k C l , where g 2 W ,

l 2

�
1

1

�
;

��1
2

�
;

�
2

�1
�
;

��2
1

�
;

�
1

�2
�
;

��1
�1
�
;

and

ı	 D

8
ˆ̂̂̂
<
ˆ̂̂
:̂

1 if l 2
("

1

1

#
;

"
1

�2

#
;

"
�2
1

#)
;

�1 if l 2
("
�1
�1

#
;

"
�1
2

#
;

"
2

�1

#)
:

The fundamental domain in � coordinates is the region bounded by

�1 C �2 D 2
;
�1 D 2�2;
�2 D 2�1:

Therefore, the integral
R
˝�
.�; �/d� becomes

Z

˝�

.�; �/d� D
Z 2�

3

0

Z 2�2

1
2
�2

.�; �/d�1d�2 C
Z 4�

3

2�
3

Z 2���2

1
2
�2

.�; �/d�1d�2;

which evaluates to

Z

˝�

.�; �/d� D

8̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂̂
:̂

2
2

3
if �1 D �2 D 0;

4
 i
3�1

if �1 ¤ 0; �2 C 1
2
�1 D 0;

� 2
 i
3�1

if �1 ¤ 0; �2 C 2�1 D 0;

� 2
 i
3�1

if �1 ¤ 0; �2 � �1 D 0;

3

2�22
.�.�2; 4
3 /C 2.�2;

2

3
/� 1/ if �1 D 0; �2 ¤ 0;

� 1
�1
. 1
�2C2�1

..�2 C 2�1;
2

3
/� 1/

� 1

�2C
1
2 �1
..�2 C 1

2
�1;

4

3
/� 1/

C 1
�2��1

.�2 � �1;
2

3
/..�2 � �1;

2

3
/� 1// otherwise.

(14)
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Note that due to the symmetries in bGN , one need only evaluateR
˝�
Tk.�/jJx.�/jd� for values of k in the dual fundamental domain. The full inte-

gral (11) can then be computed by summing over just the k lying in the dual
fundamental domain and weighting each a.k/ by the size of the orbit of k under
the group action of W . Curiously, due to the symmetries of Tk.�/ and jJx.�/j, we
have the following lemma.

Lemma 2. The integral
R
˝�
Tk.�/jJx.�/jd� is zero unless k1D k2 or

jk1 � k2j D 3.

Proof. First, let us rewrite (13) as

Z

˝�

Tk.�/jJx.�/jd� D i

18jW j
X
	2S

ı	

Z

˝�

.�; �/d�

D i

18jW j
X
m

ım
X
g2W

ıg

Z

˝�

.gTm; �/d�;

where

m 2 kC �T l D

�
k1C1
k2C1

�
;

�
k1�1
k2C2

�
;

�
k1�2
k2C1

�
;

�
k1�1
k2�1

�
;

�
k1C1
k2�2

�
;

�
k1C2
k2�1

�

and ım 2 f1;�1; 1;�1; 1;�1g respectively. The set S D gTm is then given by

S D

�
m1
m2

�
;

� �m1
m1 Cm2

�
;

��m1 �m2
m1

�
;

��m2
�m1

�
;

�
m2

�m1 �m2
�
;

�
m1 Cm2
�m2

�

(15)
with ıg 2 f1;�1; 1;�1; 1;�1g respectively, such that ı	 D ımıg .

Note that if k1 � k2 2 f�3; 0; 3g, then for some � 2 S we have that �1 D �2,
�1C 2�2 D 0 or 2�1C �2 D 0. In this case, the first four lines of (14) play a part in
the sum and the integral can be non-zero. On the other hand, if k1�k2 … f�3; 0; 3g,
then none of the first four lines of (14) play a part in the sum.

Let us consider the reduced sum

X
g2W

ıg

Z

˝�

�
gTm; �

�
d�: (16)

Now, if one of the � 2 gTm in this sum is of the form �1 D 0, �2 ¤ 0, then it can
be easily seen from (15) that S reduces to three distinct pairs, each of which have
ıg being of opposite sign. Thus, the terms in (16) coming from the fifth line of (14)
identically cancel.

It just remains to consider (16) where all of the integrals
R
˝�
.gTm; �/d� are

evaluated by the last line of (14). Directly evaluating this sum, one finds that after
some simple but tedious manipulation, (16) reduces to
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X
g2W

ıg

Z

˝�

�
gTm; �

�
d� D 4

�
m21 Cm1m2 Cm22

�2 �
˛ � ˛2�

m1m2
�
m22 �m21

�
.m1 C 2m2/ .m2 C 2m1/ ;

where ˛ D �
�2 � �1; 2�3

� D �
�2 C 2�1; 2�3

� D �
�2 C 1

2
�1;

4�
3

�
and ˛ � ˛2 D 0

since �2 � �1 2 Z for all k.
Thus, the integral

R
˝�
Tk.�/jJx.�/jd� over the deltoid is zero unless k1 D k2 or

jk1 � k2j D 3. ut

5 Triangles

The reader is no doubt aware that deltoids are not, in general, good shapes for
decomposing surfaces into. Rather, it is much more desirable to decompose a sur-
face into a number of triangles, which can then be mapped to a standard triangle
either with linear or non-linear maps.

The difficulty now arises as to how to apply the multivariate Chebyshev poly-
nomials (which naturally live on the deltoid) to such a triangle. We envisage two
possible methods of doing this:

1. Stretch the deltoid to the triangle with corners at the corners of the deltoid.
2. Use the equilateral triangle that is inscribed in the deltoid.

Method (1) is appealing, since all of the data points in the deltoid lie within the
triangle. Straightening maps are discussed in [17]. However, due to the shape of the
deltoid, with its singularities at the corners, we are not able to straighten the deltoid
to a triangle without compromising spectral convergence.

On the other hand, method (2) has the advantage that it does not require any fur-
ther mappings (the gradient algorithm can be used directly and the Clenshaw–Curtis
quadrature algorithm can be used with only a small modification to the integral of
.k; �/ over the fundamental domain). However, this method makes use of the data
points that lie outside the triangle to obtain the coefficients a.k/. This has impli-
cations for the use of these algorithms in spectral and spectral element methods on
domains with boundaries, which will be discussed in a later paper.

5.1 Clenshaw–Curtis Quadrature Over a Triangle

Since we are restricting the domain of integration, ˝x , to the equilateral triangle
inscribed within the deltoid (red triangle in Fig. 3), the integrals

R
˝�
.�; �/d� in

Sect. 4 must be modified. They become

Z

˝�

.�; �/d� D
Z 2�

3

�
3

Z �2C �
3

�
3

.�; �/d�1d�2 C
Z �

2�
3

Z �

�2� �
3

.�; �/d�1d�2;
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where ˝� is the restriction of the fundamental domain to the equilateral triangle in
� coordinates.

As with the integral over the deltoid, this integral can be evaluated directly to
give

Z

˝�

.�; �/d�D

8
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂:


2

3
if �1 D �2 D 0;

i

3�2
..�2;



3
/� .�2; 
//C 1

�22
.2.�2;

2

3
/�.�2; 
/�.�2; 
3 // if �1D 0; �2 ¤ 0;

i

3�1
..�1;



3
/�.�1; 
//C 1

�21
.2.�1;

2

3
/�.�1; 
/� .�1;



3
// if �2D 0; �1 ¤ 0;

2

�21
.1� cos.�1 
3 //C 2


3�1
sin.�1 
3 / if �1C�2 D 0;

1
�1�2

�
.�1;



3
/..�2;

2

3
/�.�2; 
3 //� .�1; 
/..�2; 
/�.�2; 2
3 //

�

C 1
�1.�2C�1/

�
.�1;

2

3
/..�2; 
/C .�2;



3
//

�.�2; 2
3 /..�1; 
/C .�1;


3
//
�

otherwise.
(17)

Again, the symmetries of Tk.�/ and jJx.�/j restrict the values of k for which the
integral

R
˝�
Tk.�/jJx.�/jd� is non-zero. We obtain the following lemma.

Lemma 3. The integral
R
˝�
Tk.�/jJx.�/jd� is zero unless k1 � k2 D 0 .mod 3/.

Proof. As with the proof of Lemma 2, we consider the reduced sum

X
g2W

ıg

Z

˝�

.gTm; �/d�; (18)

where m and ıg are given in Lemma 2 and the integrals are evaluated by (17).
Ifm1 D 0,m2 D 0 orm1Cm2 D 0, then it can be easily seen from (15) that the

gTm occur in pairs with ıg being of opposite sign. Thus the contributions to (18)
from the first four lines of (17) identically cancel with each other and we need only
consider the contributions coming from the last line of (17).

Directly evaluating (18) where the integrals are evaluated by the last line of (17)
gives X

g2W
ıg

Z

˝�

.gTm; �/d� D 2i.m1˛ Cm2ˇ/
m1m2.m1 Cm2/ ;

where

˛ D � sin.m1
=3/C sin..m1 � 2m2/
=3/C sin..m2 C 3m1/
=3/
C sin..m1 C 3m2/
=3/� sin..m1 Cm2/
=3/C sin..3m1 C 2m2/
=3/

and

ˇ D � sin.m2
=3/C sin..m2 � 2m1/
=3/C sin..m1 C 3m2/
=3/
C sin..m2 C 3m1/
=3/� sin..m2 Cm1/
=3/C sin..3m2 C 2m1/
=3/:

Now, let a D m2 �m1, such that ˛ and ˇ become
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˛ D � sin.m1
=3/ .1C 2 cos.2a
=3//� sin.2m1
=3/ .cos.a
/C 2 cos.a
=3//

and

ˇ D � sin.m2
=3/ .1C 2 cos.2a
=3//� sin.2m2
=3/ .cos.a
/C 2 cos.a
=3// ;

which are only non-zero if a D 0 .mod 3/.
Sincem1�m2 D k1�k2 .mod 3/, we find that the integral

R
˝�
Tk.�/jJx.�/jd�

over the triangle is only non-zero if k1 � k2 D 0 .mod 3/. ut

5.2 Nonlinear Transformations

Given a nonlinear mapping � W R2 7! R
2 such that y D �.x/, the Jacobian of this

map can be calculated numerically at each point y.x/ as

Jy.x/ D
"
@y1

@x1

@y1

@x2
@y2

@x1

@y2

@x2

#

using the gradient algorithm of Sect. 3.1.
The gradient of a function f .y/ on the nonlinear triangle can then be obtained

by multiplying the gradient obtained from the gradient algorithm by the inverse
transpose of the Jacobian at each point in the domain. i.e.,

ryf .y/ D Jy.x/�Trxf .x/: (19)

Integrals using Clenshaw–Curtis quadrature can also be performed on nonlin-
ear triangles. This is done by transforming the integral back to the x domain and
performing the integration there. For example,

Z

˝y

F.f .y/;ryf .y//dy D
Z

˝x

jJy.x/jF.f .�.x//; Jy.x/�Tryf .�.x///dx
(20)

where ˝y is the nonlinear triangle and ˝x is the equilateral triangle (see Fig. 6).
This integral can then be evaluated by Clenshaw–Curtis quadrature and numerical
gradient computations.

The computational cost of computing the Jacobian of the map at each point
in the domain is approximately twice the cost of computing a gradient. However,
for a fixed mapping the Jacobian can be precomputed. The further computational
costs associated with the above modifications to the gradient and Clenshaw–Curtis
quadrature are also O.N 2/ and only marginally increase the running time of the
algorithms.
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f

f

WyWx

f (y)

y = f(x) ∈R2x ∈R2

Fig. 6 A function f .y/ is defined on a nonlinear triangle˝y , which is mapped from the equilateral
triangle ˝x by the map �

5.3 Linear Transformations

If the mapping � happens to be a linear mapping, then the gradient and Clenshaw–
Curtis quadrature techniques for the transformed triangles simplify as the Jacobian
Jy.x/ is a constant matrix for such transformations.

Thus, when calculating the gradient, the inverse transpose of the Jacobian need
only be calculated once, however, it must still be applied to each point in the domain.
Furthermore, in Clenshaw–Curtis quadrature, the constant factor of jJy.x/j in the
integral of PN .y/ can be applied after the integral of PN .x/ is calculated. That is,
(20) becomes

Z

˝y

F.f .y/;ryf .y//dy D jJy.x/j
Z

˝x

F.f .�.x//; Jy.x/
�Tryf .�.x///dx

(21)
These simplifications provide a marginal improvement in the running times of the
gradient and Clenshaw–Curtis algorithms.

6 Numerics

In this section, we show timing and convergence results for the gradient and
Clenshaw–Curtis quadrature algorithms using the test function exp.sin.y1/ sin.y2//
on the triangle with corners f.0; 0/; .0; 1/; .1; 0/g. We also show timing and
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Fig. 7 Integration of exp.sin.y1/ sin.y2// on the triangle

convergence results for the calculation of the surface area of a spherical triangle,
which requires the use of both algorithms on a non-linearly transformed triangle. All
computations are performed using a combination of MEX and MATLAB R2007b
on a single 2.4 GHz processor.

Quadratic reference timing curves (fitted using least squares) have also been plot-
ted to emphasise the efficiency of the algorithms. Again, we would like to emphasise
that there are O.N 2/ points within the fundamental domain, of which, just over half
lie within the triangle, thus our methods achieve spectral accuracy with nearly linear
computational complexity in the number of sample points.

We begin with Clenshaw–Curtis quadrature of our test function on the triangle.
Figure 7 shows the spectral rate of convergence of the Clenshaw–Curtis quadrature
algorithm for a sufficiently smooth function. Most of the variation in the timing
curve comes from the two dimensional fast Fourier transform (which is performed
by FFTW) and is reproducible (cf. Figs. 8 and 9).

If instead of the test function exp.sin.y1/ sin.y2//, one uses a monomial of
degree p, one finds that the Clenshaw–Curtis quadrature algorithm becomes exact
forN greater than some value (typically aroundN=2). This occurs because the non-
zero Fourier coefficients of the approximation PN .x/ for a monomial of degree p
are limited to a hexagon of radius p centered at the origin of the dual fundamental
domain. The required value of N to make the integration exact is then the smallest
value of N such that the dual fundamental domain contains all of the k such that
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Fig. 8 Gradient of exp.sin.y1/ sin.y2// on the triangle

both a.k/ ¤ 0 and
R
˝�
Tk.�/jJx.�/jd� ¤ 0. A similar result holds true for the

gradient algorithm.
We now proceed to the calculation of the gradient of our test function using the

recursion formula of Sect. 3. Figure 8 shows that the gradient algorithm also has
a spectral rate of convergence. The two curves on the left of this figure are the
L2 norms of the absolute error in the y1 and y2 components of the gradient. The
numerical error in the gradient for large N is entirely due to accumulated round-
off error and grows as O.�N 2/, where � is machine precision. This phenomenon is
consistent with the general rule that numerical integration is stable while numerical
differentiation is unstable.

Lastly, in Fig. 9, we show convergence and timing results for our gradient and
Clenshaw–Curtis quadrature algorithms applied to a nonlinear triangle. Instead of
showing these separately, we demonstrate their use by calculating the surface area
of the spherical triangle on the unit sphere with corners . Ox1; Ox2; Ox3/, where Oxi are
normalised versions of the xi :

x1 D

2
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� 1p
3

1

3
75 ; x2 D

2
64
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3
1p
3
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3
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2
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2
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3
5 :
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Fig. 9 Surface area of a spherical triangle with corners . Ox1; Ox2; Ox3/

The surface area of a function f .y1; y2/ is calculated by first computing the gradient
ryf .y/ and then by integrating over the domain the function

S D
s
1C

�
@f

@y1

�2
C
�
@f

@y2

�2
:

From Fig. 9 one can clearly see that the gradient and Clenshaw–Curtis quadrature
algorithms perform as well and almost as fast for nonlinear maps as they do for
linear maps.

7 Summary

In this paper, we have constructed a family of multivariate Chebyshev polynomi-
als based on a symmetric extension of the fundamental domain of the affine Weyl
group associated with a root system. Based on these multivariate Chebyshev polyno-
mials, we have developed algorithms to approximate the gradient and the integral of
functions over the fundamental domain associated with a root system. These algo-
rithms are spectrally accurate and extremely fast, with computational complexity
dominated by FFTs.
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Here, we have focussed our attention on theA2 root system, which is the simplest
of the two dimensional root systems with a triangular fundamental domain. This root
system gives rise to multivariate Chebyshev polynomials that live on the interior of
the deltoid 3.x21 C x22/2 � 8x1.x21 � 3x22/C 6.x21 C x22/ D 1. However, by restrict-
ing the domain of integration to the equilateral triangle that is inscribed within this
deltoid, the Clenshaw–Curtis quadrature algorithm can be used to integrate over this
triangle. Furthermore, given a (possibly nonlinear) mapping of this equilateral tri-
angle, the Jacobian of this mapping can be computed numerically using the gradient
algorithm, which allows for the computation of gradients and integrals on arbitrary
(possibly nonlinear) triangles using our gradient and Clenshaw–Curtis quadrature
algorithms. We have created MATLAB and CCC libraries of our algorithms for
the A2 root system, which will be made available at http://hans.munthe-kaas.no/
Chebyshev for public use.
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Boston, 1992

7. F. X. Giraldo and T. Warburton. A nodal triangle-based specral element method for the shallow
water equations on the sphere. J. Comp. Phys., 2005

8. W. Heinrichs. Improved Lebesgue constant on the triangle. J. Comp. Phys., 207:625–638, 2005
9. J. S. Hesthaven. From electrostatics to almost optimal nodal sets for polynomial interpolation

in a simplex. SIAM J. Numer. Anal., 35(2):655–676, 1998
10. M. E. Hoffman and W. D. Withers. Generalized Chebyshev polynomials associated with affine

Weyl groups. Trans. AMS, 308(1):91–104, 1988
11. J. E. Humphreys. Introduction to Lie algebras and representation theory. Springer, New York,

1970
12. T. Koornwinder. Orthogonal polynomials in two variables which are eigenfunctions of two

algebraically independent partial differential operators I–IV. Indag. Math., 36:48–66 and
357–381, 1974

13. T. Koornwinder. Two-variable analogues of the classical orthogonal polynomials. In R. Askey,
editor, Theory and application of special functions. Academic Press, New York, 1975

14. H. Li, J. Sun, and Y. Xu. Discrete Fourier analysis, cubature and interpolation on a hexagon
and a triangle. SIAM J. Numer. Anal., 46:1653–1681, 2008

15. R. Lidl. Tchebyscheffpolynome in mehreren Variabelen. J. Reine Angew. Math., 273:178–198,
1975

16. H. Munthe-Kaas. Symmetric FFTs; a general approach. In Topics in linear algebra for vector-
and parallel computers, PhD thesis. NTNU, Trondheim, Norway, 1989. Available at: http://
hans.munthe-kaas.no

http://hans.munthe-kaas.no/Chebyshev
http://hans.munthe-kaas.no/Chebyshev
http://
hans.munthe-kaas.no


On Multivariate Chebyshev Polynomials and Spectral Approximations on Triangles 41

17. H.Z. Munthe-Kaas. On group Fourier analysis and symmetry preserving discretizations of
PDEs. J. Phys. A Math. Gen., 39(19):5563–5584, 2006

18. R. Pasquetti and F. Rapetti. Spectral element methods on triangles and quadrilaterals: compar-
isons and applications. J. Comp. Phys., 198(1):349–362, 2004
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Stochastic Spectral Galerkin and Collocation
Methods for PDEs with Random Coefficients:
A Numerical Comparison

Joakim Bäck, Fabio Nobile, Lorenzo Tamellini, and Raul Tempone

Abstract Much attention has recently been devoted to the development of Stochas-
tic Galerkin (SG) and Stochastic Collocation (SC) methods for uncertainty quantifi-
cation. An open and relevant research topic is the comparison of these two methods.
By introducing a suitable generalization of the classical sparse grid SC method, we
are able to compare SG and SC on the same underlying multivariate polynomial
space in terms of accuracy vs. computational work. The approximation spaces con-
sidered here include isotropic and anisotropic versions of Tensor Product (TP), Total
Degree (TD), Hyperbolic Cross (HC) and Smolyak (SM) polynomials. Numerical
results for linear elliptic SPDEs indicate a slight computational work advantage of
isotropic SC over SG, with SC-SM and SG-TD being the best choices of approxima-
tion spaces for each method. Finally, numerical results corroborate the optimality of
the theoretical estimate of anisotropy ratios introduced by the authors in a previous
work for the construction of anisotropic approximation spaces.

Keywords Elliptic equations �Multivariate polynomial approximation � PDEs with
random data � Smolyak approximation � Stochastic collocation methods � Stochastic
Galerkin methods � Uncertainty quantification

1 Introduction

Nowadays, we observe a widespread need for including uncertainty in mathematical
models and quantify its effect on given outputs of interest used in decision making.
Such uncertainty may reflect, on one side, our ignorance or inability to properly
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characterize all input parameters of the mathematical model; on the other side, it
may describe intrinsic variability of the event we model. Probability theory offers a
natural framework to describe uncertainty, where all uncertain inputs are treated as
random variables or more generally as random fields.

Monte Carlo Sampling (MCS) is probably the most natural and widely used
technique to forward propagate the input randomness onto the system response or
specific quantities of interest. While being very flexible and easy to implement,
MCS features a very slow convergence and does not exploit the possible regularity
that the solution might have with respect to the input variables.

Much attention has been recently devoted towards alternative methods which
exploit such regularity and achieve sometimes a better convergence rate. Stochastic
Galerkin (SG) and Stochastic Collocation (SC) are examples of such methods for
uncertainty quantification. An open and relevant research topic is the comparison
of these two approaches. This work provides, on a couple of numerical examples,
a fair comparison between the performances of SG and SC methods with the same
underlying approximation space.

Traditionally, the SG method approximates the solution in a multivariate poly-
nomial space of given total degree (see e.g. [11, 13, 27] and references therein), or
in anisotropic tensor product polynomial spaces [2, 8, 14]. Other global polynomial
spaces has been considered recently, see for instance [5, 24], as well as different
approximation spaces such as piecewise polynomials [2, 12, 25].

On the other hand the SC method adopted so far for SPDEs follows the classical
Smolyak construction, see e.g. [9, 16, 26] and the references therein. It is very rele-
vant to this work the fact that the sparse collocation method considered in [16, 26]
leads to an approximate solution in a polynomial space, which we call hereafter
Smolyak space, that differs from the total degree polynomial space most commonly
used in SG approximation.

In this work we will consider several choices of multivariate polynomial spaces,
namely: tensor product (TP), total degree (TD), hyperbolic cross (HC) and Smolyak
(SM) spaces. We consider on the one hand, SG approximations in either of these
spaces. On the other hand, we propose a generalization of the classical sparse col-
location method that allows us to achieve approximations in these same spaces. By
following this path, we are able to compare the two alternative approaches (SG vs.
SC) given the same underlying multivariate polynomial space.

Once both SG and SC are posed on the same approximation space the second
ingredient in a fair comparison is the computational work associated to each of
them for the same level of accuracy. Since SC entails the solution of a number of
uncoupled deterministic problems, its corresponding computational work is directly
proportional to the number of collocation points. On the other hand, SG entails the
solution of a large system of coupled deterministic problems whose size corresponds
to the number of stochastic degrees of freedom (sdof). This can be achieved by an
iterative strategy, here chosen to be a Preconditioned Conjugate Gradient solver fol-
lowing [18]. Therefore, a natural approximation of its computational work is given
by the product of the number of sdof times the number of iterations performed.
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This work assesses, on a numerical example having eight input random vari-
ables, the performances of the SG and SC methods in terms of accuracy vs.
(estimated) computational cost. The numerical study shows that the two approaches
have comparable performances. Actually, SC seems to be more efficient for relative
errors larger than 10�4, whereas SG is better for smaller errors.

The second numerical example that we propose contains four input random
variables that have largely different influence on the solution. It is thus suited for
anisotropic approximations, where higher polynomials degrees are used to dis-
cretize the dependence on the random variables that have a greater influence on
the solution. We introduce anisotropic versions of both the SG and SC methods
and compare their performances for different choices of anisotropy ratios. The
results show that theoretically derived anisotropy ratios following [15] have the best
performance and that our formula for the optimal anisotropy ratios is sharp.

2 Problem Setting

Let D be a convex bounded polygonal domain in R
d and .˝;F ; P / be a complete

probability space. Here ˝ is the set of outcomes, F � 2˝ is the �-algebra of
events and P W F ! Œ0; 1� is a probability measure. Consider the stochastic linear
elliptic boundary value problem: find a random function, u W ˝ �D ! R, such that
P -almost everywhere in ˝ , or in other words almost surely (a.s.), the following
equation holds:

(
� div.a.!; x/ru.!; x// D f .x/ x 2 D;
u.!; x/ D 0 x 2 @D: (1)

where the operators div and r imply differentiation with respect to the physical
coordinate only.

The theory presented in this work extends straightforwardly to the case of a ran-
dom forcing term f D f .!; x/ as well as to a non homogeneous, possibly random,
Dirichlet datum on the boundary. For easiness of presentation, we will consider the
case where the randomness appears only in the diffusion coefficient, which is, how-
ever, the most difficult case, since the solution u depends nonlinearly on it, whereas
it depends linearly on the forcing term and boundary data.

We will make the following assumptions on the random diffusion coefficient:

(A1) a.!; x/ is strictly positive and bounded with probability 1, i.e., there exist
amin > 0 and amax <1 such that

P.amin � a.!; x/ � amax; 8x 2 D/ D 1

(A2) a.!; x/ has the form
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a.!; x/ D b0.x/C
NX
nD1

yn.!/bn.x/ (2)

where y D Œy1; : : : ; yN �
T W ˝ ! R

N , is a vector of independent random
variables.

We denote by �n D yn.˝/ the image set of the random variable yn, � D
�1 � : : : � �N , and we assume that the random vector y has a joint probability
density function 	 W � ! RC that factorizes as 	.y/ D QN

nD1 	n.yn/; 8y 2 � .
Observe that for assumption (A1) to hold, the image set � has to be a bounded set
in R

N .
After assumption (A2), the solution u of (1) depends on the single realization! 2

˝ only through the value taken by the random vector y. We can therefore replace
the probability space .˝;F ; P / with .�; B.� /; 	.y/dy/, where B.� / denotes the
Borel �-algebra on � and 	.y/dy is the distribution measure of the vector y.

Finally, we introduce the functional spaceH 1.D/ of square integrable functions
in D with square integrable distributional derivatives; its subspace H 1

0 .D/ of func-
tions with zero trace on the boundary, and the space L2
.� / of square integrable
functions on � with respect to the measure 	.y/dy.

We are now in the position to write a weak formulation of problem (1):
find u 2 H 1

0 .D/˝ L2
.� / such that 8v 2 H 1
0 .D/˝L2
.� /

Z

�

Z

D

 
b0.x/C

NX
nD1

ynbn.x/

!
ru.x; y/ � rv.x; y/ 	.y/ dx dy

D
Z

�

Z

D

f .x/v.x; y/ 	.y/ dx dy: (3)

Under assumption (A1), a straightforward application of the Lax-Milgram lemma
allows to prove that there exists a unique solution to problem (3) for any f 2
L2.D/. Moreover, the following estimate holds:

krukL2.D/˝L2
�.� /
� Cp

amin
kf kL2.D/

where Cp is the Poincaré constant such that kukL2.D/ � CpkrukL2.D/ for any
u 2 H 1

0 .D/.
It is well known (see e.g. [3, 14]) that the solution depends analytically on each

parameter yn 2 �n. In particular, denoting � �
n D

Q
j¤n �j and y�

n an arbitrary
element of � �

n , there exists a constantM and regions˙n � C in the complex plane
for n D 1; : : : ; N , with ˙n � �n, in which the solution u.x; yn; y�

n/ admits an
analytic continuation u.x; z; y�

n/; z 2 ˙n. Moreover

max
z2˙n

max
y�

n2� �

n

kru.�; z; y�
n/kH1.D/ �M; for n D 1; : : : ; N:
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2.1 Finite Element Approximation in the Physical Space

Let Th be a triangulation of the physical domain D and Vh.D/ � H 1
0 .D/ a finite

element space of piecewise continuous polynomials on Th, with dimension Nh D
dim.Vh.D//. We introduce the semi-discrete problem: find uh 2 Vh.D/ ˝ L2
.� /
such that 8vh 2 Vh.D/

Z

D

 
b0.x/C

NX
nD1

ynbn.x/

!
ruh.x; y/ � rvh.x/ dx D

Z

D

f .x/vh.x/ dx; (4)

	-a.e. in �:

Problem (4) admits a unique solution for almost every y 2 � . Moreover, uh
satisfies the same analyticity result as the continuous solution u.

Let f�igNh

iD1 be a Lagrangian basis of Vh.D/ and consider the expansion of

the semi-discrete solution as uh.x; y/ D
PNh

iD1 ui .y/�i .x/. Denoting by U.y/ D
Œu1.y/; : : : ; uNh

.y/�T the vector of nodal values as functions of the random variables
y, problem (4) can be written in algebraic form as

 
K0 C

NX
nD1

ynKn

!
U.y/ D F; 	-a.e. in � (5)

where .Kn/ij D
R
D
bn.x/r�j .x/ � r�i .x/, for n D 0; : : : ; N , are deterministic

stiffness matrices and Fi D
R
D
f .x/�i .x/ is a deterministic right hand side.

In writing (5) we have heavily exploited the fact that the random diffusion coef-
ficient is an affine function of the random variables yn. This allows of an efficient
evaluation of the stochastic stiffness matrix A.y/ D K0CPN

nD1 ynKn in any point
y 2 � and greatly simplifies the implementation of the SG method that will be
presented in the next section.

3 Polynomial Approximation in the Stochastic Dimension

We seek a further approximation of uh.�; y/with respect to y by global polynomials,
which is sound because of the analyticity of the semi-discrete solution with respect
to the input random variables y.

In this work we aim at comparing numerically several choices of multivariate
polynomials spaces. We remark that the choice of the polynomial space is criti-
cal when the number of input random variables, N , is large, since the number of
stochastic degrees of freedom might grow very fast with N , even exponentially, for
instance when isotropic tensor product polynomials are used, cf. (6). This effect is
known as the curse of dimensionality.
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Let w 2 N be an integer index denoting the level of approximation and p D
.p1; : : : ; pN / a multi-index. We introduce a sequence of increasing index sets.w/
such that.0/ D f.0; : : : ; 0/g and.w/ � .wC1/, for w � 0. Finally, we denote
by P�.w/.� / the multivariate polynomial space

P�.w/.� / D span

(
NY
nD1

ypn
n ; with p 2 .w/

)

and seek a fully discrete approximation uhw 2 Vh.D/˝ P�.w/.� /.
In the following we consider four possible choices of index sets:

Tensor product polynomial space (TP)

.w/ D fp 2 N
N W max

nD1:::;N
pn � wg (6)

Total degree polynomial space (TD)

.w/ D fp 2 N
N W

NX
nD1

pn � wg (7)

Hyperbolic cross space (HC)

.w/ D fp 2 N
N W

NY
nD1

.pn C 1/ � wC 1g (8)

Smolyak polynomial space (SM)

.w/ D fp 2 N
N W

nX
nD1

f .pn/ � f .w/g; with f .p/ D

8
ˆ̂<
ˆ̂:

0; p D 0
1; p D 1
dlog2.p/e; p � 2

(9)

TP and TD spaces are the most common choices. The first suffers greatly from
the curse of dimensionality and is impractical for a large dimension N . The second
has a reduced curse of dimensionality and has been widely used in SG approxi-
mations (see e.g. [11, 13, 17, 23, 27]). HC spaces have been introduced in [1] in
the context of approximation of periodic functions by trigonometric polynomi-
als. Recently they have been used to solve elliptic PDEs in high dimension in
[21]. Finally, the SM space is an unusual choice in the context of SG approx-
imations. The reason for introducing it will be made clear later, as this space
appears naturally when performing interpolation on a sparse grid following the
Smolyak construction (see Sect. 3.2). Observe that the Smolyak space is similar
to the hyperbolic cross space; indeed, the HC index set can be equivalently written
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asHC .w/ D fp 2 N
N W PN

nD1 log2.pnC 1/ � log2.wC 1/g. Other polynomial
spaces have been introduced e.g. in [24].

It is also useful to introduce anisotropic versions of these spaces. Let ˛ D
.˛1; : : : ; ˛N / 2 R

NC be a vector of positive weights, and ˛min D minn ˛. The
anisotropic version of the spaces previously defined reads:

Anisotropic tensor product polynomial space (ATP)

.w/ D fp 2 N
N W max

nD1:::;N
˛npn � ˛minwg (10)

Anisotropic total degree polynomial space (ATD)

.w/ D fp 2 N
N W

NX
nD1

˛npn � ˛minwg (11)

Anisotropic hyperbolic cross space (AHC)

.w/ D fp 2 N
N W

NY
nD1

.pn C 1/
˛n

˛min � wC 1g (12)

Anisotropic Smolyak polynomial space (ASM)

.w/ D fp 2 N
N W

NX
nD1

˛nf .pn/ � ˛minf .w/g (13)

In all cases introduced except for the Smolyak space, the maximum polynomial
degree used in each direction yn does not exceed the index w and there is at least
one direction (corresponding to the minimum weight ˛min) for which the monomial
yw
n is in the polynomial space. For the Smolyak space this property holds only if

log2.w/ is integer.
In the next sections we introduce and compare two possible ways of obtaining a

fully-discrete approximation uhw 2 Vh.D/˝P�.w/.� /, namely Galerkin projection
and collocation on a suitable sparse grid.

3.1 Stochastic Galerkin Approximation

The Stochastic Galerkin (SG) – Finite Element approximation consists in restricting
the weak formulation (3) to the subspace Vh.D/˝ P�.w/.� / and reads: find uSG

hw 2
Vh.D/˝ P�.w/.� / such that 8vhw 2 Vh.D/˝ P�.w/.� /
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Z

�

Z

D

 
b0.x/C

NX
nD1

ynbn.x/

!
ruSGhw .x; y/ � rvhw.x; y/ 	.y/ dx dy

D
Z

�

Z

D

f .x/vhw.x; y/ 	.y/ dx dy: (14)

Let f n;pg1pD0 be the sequence of orthonormal polynomials in �n with respect
to the weight 	n, i.e. for any n D 1; : : : ; N and p � 0

Z

�n

 n;p.t/v.t/	n.t/ dt D 0 8v 2 Pp�1.�n/:

Given a multi-index p D .p1; : : : ; pN /, let  p.y/ D QN
nD1  n;pn

.yn/ be the
product of one dimensional orthonormal polynomials. Then a basis for the space
P�.w/.� / is given by f p;p 2 .w/g and the SG solution can be expanded as

uSGhw .x; y/ D
X

p2�.w/
up.x/ p.y/ D

X
p2�.w/

NhX
iD1

up;i�i .x/ p.y/: (15)

Given this expansion and exploiting the orthonormality of the basis
˚
 p.y/

�
,

one can easily compute mean and variance of uSG
hw as E

�
uSG
hw

�
.x/ D u0.x/ and

Var
�
uSG
hw

�
.x/ DPp2�.w/ u2p.x/� E

�
uSG
hw

�2
.x/.

Let Up D Œup;1; : : : ; up;Nh
�T be the vector of nodal values of the finite element

solution corresponding to the p multi-index. Then inserting expression (15) into (14)
and recalling the definition of the deterministic stiffness matricesKn, we obtain the
system of Nw D dim.P�.w/.� // coupled finite element problems

K0Up C
NX
nD1

X
q2�.w/

Gnp;qKnUq D Fı0p; 8p 2 .w/ (16)

whereGnp;q D
R
�
yn p.y/ q.y/	.y/ dy and ıij is the usual Kroneker symbol.Gnp;q

can be explicitly calculated via the well known three terms relation for orthogonal
polynomials, see e.g. [10, 20].

The resulting matrix of the algebraic system (16) is highly sparse, symmetric and
positive definite. See e.g. [18] for sparsity plots. For its solution we consider a Pre-
conditioned Conjugate Gradient (PCG) method with block diagonal preconditioner
Pq;q D K0CPN

nD1Gnq;qKn as suggested in [18]. It follows easily from assumption
(A1) that the condition number of the preconditioned matrix is independent of the
discretization parameters both in the physical and stochastic spaces, see [7, 19] for
a detailed analysis of the condition number of the SG matrix.

Each PCG iteration implies the solution of Nw deterministic problems with
matrixPq;q. If the finite element discretization is relatively coarse and the dimension
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of the probability space is moderate, a Cholesky factorization of all matrices Pq;q

could be computed once and for all. In general, this strategy could lead to exces-
sive memory requirements and an iterative method should be preferred. Observe
that in certain cases (e.g. for uniform random variables) all blocks are equal and this
reduces considerably the computational burden.

Let us now denote by WFE the cost for solving one deterministic problem and
by Niter the number of PCG iterations. In this work we focus on the computational
cost for solving the linear system (16) and neglect the time for assembling the full
stochastic matrix, which highly depends on how much the computer code has been
optimized. Therefore, we can estimate the total costWSGFE for SG – finite element as

WSGFE 
 Nw WFE Niter: (17)

This estimate will be used to compare the SG method with the SC method in the
numerical tests presented in Sect. 4.

3.2 Stochastic Collocation Approximation on Sparse Grids

The Stochastic Collocation (SC) – Finite Element method consists in collocat-
ing the semi-discrete problem (4) in a set of points f�j 2 �; j D 1; : : : ;Mwg,
i.e., computing the solutions uh.�;�j / and building a global polynomial approx-
imation uSC

hw (not necessarily interpolatory) upon those evaluations: uSC
hw .x; y/ DPMw

jD1 uh.x;�j / Q j .y/ for suitable multivariate polynomials f Q j gMw
jD1.

We consider here a generalization of the classical Smolyak construction (see e.g.
[4,22]) to build a multivariate polynomial approximation on a sparse grid. For each
direction yn we introduce a sequence of one dimensional polynomial interpolant
operators of increasing order: Um.i/n W C 0.�n/! Pm.i/�1.�n/. Here i � 1 denotes
the level of approximation and m.i/ the number of collocation points used to build
the interpolation at level i , with the requirement thatm.1/ D 1 andm.i/ < m.iC1/
for i � 1. In addition, let m.0/ D 0 and Um.0/n D 0: In this work the collocation
points f� .i/n;j ; j D 1; : : : ; m.i/g for the one dimensional interpolation formulaUm.i/n

will be taken as the Gauss points with respect to the weight 	n, that is the zeros of
the orthogonal polynomial  n;m.i/. To simplify the presentation of the sparse grid
approximation (18), we now introduce the difference operators

�m.i/n D Um.i/n � Um.i�1/n :

Given an integer w � 0 and a multi-index i D .i1; : : : ; iN / 2 N
NC , i � 1, we

introduce a function g W NNC ! N strictly increasing in each argument and define a
sparse grid approximation of uh as

uSChw D Sm;gw Œuh� D
X

i2N
N
C

Wg.i/�w

NO
nD1

�m.in/n .uh/: (18)
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The previous formula implies evaluation of the function uh in a finite set of points
Hm;g

w � � (sparse grid). From the construction (18) one can easily build the corre-
sponding quadrature formula, and evaluate e.g. E

�
uSC
hw

�
.x/ D PM!

jD1 !j uh.x;�j /

and Var
�
uSC
hw

� D !j u2
h
.x;�j / � E

�
uSC
hw

�2
.x/. To fully characterize the sparse

approximation operatorSm;gw one has to provide the two strictly increasing functions
m W NC ! NC and g W N

NC ! N. The first defines the relation between the level
i and the number of points m.i/ in the corresponding one dimensional polynomial
interpolation formula Um.i/, while the second characterizes the set of multi-indices
used to construct the sparse approximation. Since m is not surjective in N

C (unless
it is affine) we introduce a left inverse m�1.k/ D minfi 2 NC W m.i/ � kg:
Observe that with this choice m�1 is a (non-strictly) increasing function satisfying
m�1.m.i// D i; and m.m�1.k// � k:

Let m.i/ D .m.i1/; : : : ; m.iN // and consider the polynomial order set

m;g.w/ D fp 2 N
N ; g.m�1.pC 1// � wg:

The following result characterizes the polynomial space underlying the sparse
approximation Sm;gw Œuh�:

Proposition 1.

(a) For any f 2 C 0.� /, we have Sm;gw Œf � 2 P�m;g.w/.
(b) Moreover, Sm;gw Œv� D v; 8v 2 P�m;g.w/.

Proof. Let us denote by Pm.i/�1 the tensor product polynomial space

Pm.i/�1 D span

(
NY
nD1

ypn
n ; pn � m.in/� 1

)
:

Clearly we have that
NN
nD1�

m.in/
n .f / 2 Pm.i/�1.� / and

Sm;gw Œf � 2 span
n [

i2N
N
C

W g.i/�w

Pm.i/�1.� /
o

� span
n [

i2N
N
C

W g.i/�w

spanf
NY
nD1

ypn
n ; p � m.i/ � 1g

o

� span
n [

i2N
N
C

W g.i/�w

spanf
NY
nD1

ypn
n ; m�1.pC 1/ � ig

o

� spanf
NY
nD1

ypn
n ; g.m�1.pC 1// � wg DW P�m;g.w/.� /:
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This proves (a). Due to linearity in (18), to prove point (b) we only need to show
that the approximation formula Sm;gw is exact for all monomials

QN
nD1 y

pn
n with

p 2 m;g.w/. We have

Sm;gw

"
NY
nD1

ypn
n

#
D

X

i2N
N
C

W g.i/�w

NO
nD1

�m.in/n yp

D
X

i2N
N
C

W g.i/�w

NY
nD1

�
.Um.in/ � Um.in�1//ypn

n

�
:

Observe that Um.in/ypn
n will be an exact interpolation wheneverm.in/ � pnC1 and

therefore the term
QN
nD1.Um.in/�Um.in�1//ypn

n will vanish if any of them.in�1/ �
pnC1 or equivalently if there exists at least one n such that in � m�1.pnC1/C1.
Let Nin D m�1.pnC 1/ for n D 1; : : : ; N . The multi-index Ni D .Ni1; : : : ; NiN / satisfies
the constraint g.Ni/ � p.

Then, the previous formula reduces to

Sm;gw

"
NY
nD1

ypn
n

#
D
X

i�Ni

NY
nD1

�
.Um.in/ � Um.in�1//ypn

n

�

D
NY
nD1

NinX
inD0

�
.Um.in/ � Um.in�1//ypn

n

�
D

NY
nD1

Um.Nin/ypn
n :

The final result follows from the fact that m.Nin/ D m.m�1.pn C 1// � pn C 1 and
therefore the interpolant Um.Nin/ is exact for ypn

n . ut
Remark 1. Observe that in the previous Lemma we have never used the assumption
that the one dimensional interpolants are based on Gauss points. Hence, the previ-
ous result still holds for interpolants based on arbitrary (distinct) knots and for an
arbitrary strictly increasing functionm.i/.

We recall that the most typical choice of m and g is given by (see [4, 22])

m.i/ D
(
1; for i D 1
2i�1 C 1; for i > 1

and g.i/ D
NX
nD1

.in � 1/

This choice ofm, combined with the choice of Clenshaw–Curtis interpolation points
(extrema of Chebyshev polynomials) leads to nested sequences of one dimensional
interpolation formulas and a reduced sparse grid. In the same vein, it is possible to
show that the underlying polynomial space associated to the operator Sm;gw is the
Smolyak space P�.w/ defined in (9).

On the other hand, if we choose m.i/ D i , it is easy to find functions g for
the construction of sparse collocation approximations in the polynomial spaces
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Table 1 Sparse approximation formulas and corresponding underlying polynomial space

Approximation space SC: m, g SG: .w/

Tensor product (TP) m.i/ D i fp 2 N
N W maxn pn � wg

g.i/ D maxn.in � 1/ � w

Total degree (TD) m.i/ D i fp 2 N
N W Pn pn � wg

g.i/ D P
n.in � 1/ � w

Hyperbolic cross (HC) m.i/ D i fp 2 N
N W Q

n.pn C 1/ � w C 1g
g.i/ D Q

n.in/ � w C 1

Smolyak (SM) m.i/ D
(
2i�1 C 1; i > 1

1; i D 1
fp 2 N

N W P
n f .pn/ � f .w/g

g.i/ D P
n.in � 1/ � w f .p/ D

8̂
<
:̂

0; p D 0

1; p D 1

dlog2.p/ep 	 2

introduced in Sect. 3, namely tensor product (6), total degree (7) and hyperbolic
cross (8) spaces. Table 1 summarizes several available. It is also straightforward to
build the corresponding anisotropic sparse approximation formulas.

Let now Hm;g
w be the sparse grid associated to the formula Sm;gw and Mw D

#Hm;g
w the number of distinct collocation points in Hm;g

w . To form the sparse collo-
cation solution uh;w we only have to solve Mw independent deterministic problems.
Observe, however, that in general the number of points Mw is much larger than the
dimensionNw of the corresponding polynomial space P�m;g.w/. The computational
cost of the SC – Finite Element method can therefore be estimated as

WSCFE 
Mw WFE; (19)

to be compared with the cost of the SG – Finite Element method in the same
polynomial space, given by (17).

4 Numerical Results

4.1 Test Case 1: Isotropic Problem

In this first test case we consider a thermal diffusion problem in the form of (1)
defined in the unit square Œ0; 1�2, with homogeneous Dirichlet boundary conditions
and stochastic conductivity coefficient that depends on a finite, small, number of
random variables. The coefficient is chosen in such a way that each random input
has more or less the same influence on the solution (isotropic problem).
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Fig. 1 Left: geometry for test case 1. Middle: expected value of the solution. Right: standard
deviation of the solution

Figure 1 (left) shows the geometry of the test case. The forcing term is deter-
ministic, f .x/ D 100�F .x/, where �F .x/ is the indicator function of F , a square
subdomain with side length equal to 0:2, centered in the domain. The material fea-
tures 8 circular inclusions with radius r D 0:13 and symmetrically distributed with
respect to the center of the square, each with a uniformly distributed random con-
ductivity. Let �n.x/; n D 1; : : : ; 8 be the indicator function for each circle. The
expression of the stochastic conductivity coefficient is then in the form of (2), with
bn.x/ D �n.x/:

a.!; x/ D b0.x/C
8X
nD1

yn.!/�n.x/; with b0 D 1 and yn.!/ 	 U.�0:99;�0:2/:

As a consequence, the basis functions  n;p for SG methods will be Legendre poly-
nomials orthonormal with respect to the uniform probability measure in
Œ�0:99;�0:2�, and the collocation points for SC will be the corresponding Gauss
points.

We will compare the accuracy of the Stochastic Galerkin (SG) and Stochastic
Collocation (SC) methods by looking at statistical indicators of two quantities of
interest:

�  1.u/ D
R
F

u.x/dx
�  2.u/ D

R
C
@xu.x/dx.

The quantity  2.u/ is defined only on C , the upper right part of F , since by
symmetry its expected value on F is 0 whatever (isotropic) Galerkin or Collocation
approximation is considered.

Let up be an approximate solution (computed either with SG or SC) and uex the
exact solution. For both quantities  1 and  2 we will check the convergence of the
following errors:

� Error in the mean: "mean
�
 j
� D jE � j .up/

� � E
�
 j .uex/

� j
� Error in the variance: "var

�
 j
� D jVar

�
 j .up/

� � Var
�
 j .uex/

� j
� Error in L2 norm: "norm

�
 j
� D

q
E
�
. i .up/�  i .uex//2

�
.
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Since we do not know the exact solution for this problem, we will check
the convergence of the statistical indicators with respect to an overkill solution,
which we consider close enough to the exact one. To this end we take the solu-
tion computed with SG-TD at level 9, which has approximately 24;000 stochastic
degrees of freedom (sdof). The L2 error will be calculated via a MCS approxi-

mation, i.e., "norm
�
 j
� ' 1

M

�PM
lD1

�
 j .up.yl// �  j .uex.yl//

�2�1=2
, where yl ,

l D 1; : : : ;M , are M randomly chosen points in � . To this end we have used
M D 1;000 points.

We remark that here and in the following test all the computations are performed
on the same physical mesh, which is supposed to be refined enough to solve ade-
quately the elliptic problem for every value y of the random variables. Moreover
notice that, as stated in Sect. 2.1, the FEM solution and the exact solution have the
same regularity with respect to the stochastic variables. Therefore we expect the
convergence in the stochastic dimension not to be affected by space discretization.

We have compared the performances of the SG and Collocation methods with the
four choices of polynomial spaces presented in Table 1. In our convergence plots we
have also added the performance of the classical MCS method.

Figure 2 shows the error "mean Œ 1� vs. the estimated computational cost (normal-
ized to the costWFE of a deterministic solve) given by formula (17) for SG methods
and (19) for SC methods. For the MCS method the cost is simply M WFE, where
M is the number of samples used. The MCS has been repeated 20 times and only
the average error over the 20 repetitions is shown.

As one can see, MCS has the worst performance, followed by tensor product
polynomial spaces both in the SG and SC version, as expected. All other choices
lead to similar, however much more accurate, results, with TD being the best space
for Galerkin method and SM the best for Collocation.

We notice that different choices of collocation points for SC-SM (Gauss vs. Clen-
shaw Curtis) lead to similar results (see Fig. 2 (right)). Therefore from now on we
will only use SC-SM with Gauss points.

SG: dim−stoc * iter−CG / MC: sample size
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Fig. 2 Error "mean Œ 1� vs. estimated computational cost. Left: comparison between SG methods
and Monte Carlo. Right: comparison between SC methods and SG-TD
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Fig. 3 Convergence curves for "var Œ 1� (left) and "norm Œ 1� (right) with respect to the computa-
tional cost. Comparison between SG-TD and SC-SM methods
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Fig. 4 Convergence curves for "mean Œ 2� (left) and "var Œ 2� (right) with respect to the computa-
tional cost. Comparison between SG-TD and SC-SM methods

From Fig. 2 (right) we conclude that the SC method is the best method with
respect to the computational cost, at least for “practical” tolerances, while, for very
small tolerances (�10�10), SG is a better choice. The same happens also for the
other error indicators "var Œ 1� and "norm Œ 1�, (see Fig. 3), as well as for the quantity
 2 (see Fig. 4).

We should point out that the plots may not represent a completely fair compari-
son. Actually, the solution of the global linear system for SG method is performed
through preconditioned conjugate gradient iterations, with a fixed tolerance (� D
10�12); this clearly over-resolves the system when the error in the stochastic dimen-
sion is much larger than �. The performance of SG may be therefore improved by
tuning the tolerance of the PCG method to an a posteriori estimation of the stochas-
tic error. However, we have observed that running the same SG simulations with
tolerance � D 10�8 changes only slightly the results, so we can say that the choice
of the tolerance for the PCG method is not deeply affecting our performance/cost
analysis.
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Fig. 5 Convergence curves
for "mean Œ 1� with respect to
the dimension of the
stochastic space. Comparison
between SG and SC methods
with TD and SM polynomial
spaces
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Fig. 6 Left: geometry for test case 2. Middle: expected value of the solution. Right: standard
deviation of the solution

It is also instructive to look at the convergence plots of the error vs. the dimen-
sion of the stochastic space (Fig. 5). As expected from L2 optimality, for a given
polynomial space the Galerkin solution is more accurate than the collocation solu-
tion. We remind once more, however, that the computational cost in the two cases is
quite different and the convergence plots in Fig. 2 give a more complete picture of
the performances of the two methods.

4.2 Test Case 2: Anisotropic Problem

In this test we consider an anisotropic problem in which different random vari-
ables contribute differently to the total variability of the solution, in order to study
the advantages of the anisotropic version of the SC and SG methods. We take the
geometry and problem definition similar to test case 1; however, since our focus
is on anisotropy, we consider only four inclusions (the ones in the corners, cf.
Fig. 6 (left)) so that we can test many different choices of the weights that define
the anisotropic spaces (10)–(13). Nonetheless, the anisotropic setting is particularly
meant to be used in high dimensional spaces (see e.g. [15]). For convenience we
consider a forcing term uniformly distributed on the whole domain and we look just
at "mean Œ 1�.
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The random coefficient is a.!; x/ D 1 CP4
nD1 �nyn.!/�n.x/, with yn.!/ 	

U.�0:99; 0/ and �n � 1. The values of the coefficients �n are shown in Fig. 6 (left).
Notice that these values give different importance to the four random variables. In
particular, the inclusion in the bottom-left corner has the largest variance and we
expect it to contribute the most to the total variance of the solution. It is therefore
intuitively justified to use polynomial degrees higher in the corresponding direction
of the stochastic multidimensional space rather than in the other ones. Figure 6 also
shows the mean value (middle) and the standard deviation (right) of the solution.

Our goal is to assess the performances of anisotropic polynomial spaces in com-
parison with their isotropic counterpart. For this we need to estimate the weights to
be used in the construction of the anisotropic polynomial space.

We follow closely the argument in [15]. The overall random conductivity coef-
ficient in the n-th inclusion ˝n is a uniform random variable U.an; bn/ with
an D 1 � 0:99�n and bn D 1. This can be rewritten as

a.!; x/j˝n
D an C bn

2
C bn � an

2
Oyn; with Oyn 	 U.�1; 1/:

It is easy to show that the solution u D u.�; Oyn/ admits an analytic continuation in
the complex region ˙n D fz 2 C W Re .z/ > �wng with wn D anCbn

bn�an
D 2�0:99�n

0:99�n
,

which contains, in particular, the interior of the ellipse

E
n
D



z 2 C W Re .z/ D 	n C 	�1
n

2
cos�; Im .z/ D 	n � 	�1

n

2
sin �; �2 Œ0; 2
/



with 	n D wn C
p

w2n � 1.
Standard spectral approximation analysis (see e.g. [6]) allows us to say that inter-

polation of u.�; Oyn/ in pn C 1 Gauss-Legendre points converges exponentially fast
with rate e�gnpn , with gn D log 	n D log.wn C

p
w2n � 1/.

Therefore the theoretical estimate (a priori choice) of the weight to be used for
the n-th variable is ˛n D gn. The larger �n, the smaller the corresponding weight
˛n. In practice, we have renormalized the weights by dividing them by the smallest
one. Notice that the spaces (10)–(13) remain unchanged by this normalization. The
corresponding theoretical weights are in this case ˛th D Œ1; 3:5; 5:5; 7:5�. To assess
the effectiveness of the proposed theoretical estimate, we also consider the weights
˛ D Œ1; 2; 3; 4� (nearly half the theoretical estimate) and ˛ D Œ1; 7; 11; 15� (twice
the theoretical estimate). Finally, we have also considered an experimental (a poste-
riori) estimate of the coefficients (as suggested in [15]), where the exponential decay
e�gnpn is estimated numerically by increasing the approximation level in only one
direction at a time; the resulting weights are ˛exp D Œ1; 2:5; 4; 5:5�.

In this example we consider only SG methods in anisotropic TD spaces as they
seem to be the most appropriate for this type of problem. Similarly, we restrict our
study only to SC methods in the same ATD spaces, so they are directly comparable
with the corresponding Galerkin version. The use of SC-ASM methods is expected
to give even better results.
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SG: dim−stoc * iter−CG / MC: sample size
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Fig. 7 Performance of SG-ATD (left) and SC-ATD (right) methods with different choices of
weights, in the computation of E Œ 1�. Error "mean Œ 1� vs. computational cost
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Fig. 8 Comparison between SG-ATD and SC-ATD methods with best weights in the computation
of E Œ 1�. Error "mean Œ 1� vs. computational cost

We have computed the SG-ATD and SC-ATD with the different choices of
weights up to level w D 21 and compared them with an overkill solution computed
by SG-TD isotropic method at level w D 22. This solution has about 14000 sdof .
In comparison, the SG-ATD solution has 837 sdof with weights ˛ D Œ1; 2; 3; 4�,
434 sdof with the experimental weights ˛exp D Œ1; 2:5; 4; 5:5�, 220 sdof with
the theoretical weights ˛th D Œ1; 3:5; 5:5; 7:5�, and 68 sdof with the weights
˛ D Œ1; 7; 11; 15�. We observe that the level w D 22 isotropic TD space contains
all the ATD spaces with level w < 22, therefore our overkill solution is much more
accurate than the other ones considered here.

Figure 7 shows the error in computing E Œ 1� vs. the estimated computational
cost when using the SG-ATD (left) or SC-ATD (right) methods. For reference
purposes we have also added the convergence plot for MCS.
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First, we observe that SC and SG outperform the standard MCS. Figure 7 also
shows that the theoretical estimate of the weights performs better than all other
choices and seems to be very close to optimum for both SC and SG methods, while
the a posteriori choice gives slightly worse results although the convergence curve
is smoother.

In Fig. 8 we compare the performances of the SG-ATD and SC-ATD methods
with the theoretical and experimental choices of the weights. In this test, the col-
location method seems to be superior to the Galerkin one, even for very small
tolerances.
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Hybridizable Discontinuous Galerkin Methods

N.C. Nguyen, J. Peraire, and B. Cockburn

Abstract We present an overview of recent developments of HDG methods for
numerically solving partial differential equations in fluid mechanics.

1 Background

In recent years, discontinuous Galerkin (DG) finite element methods have emerged
as a competitive alternative for solving nonlinear hyperbolic systems of conserva-
tion laws. The advantages of the DG methods over classical finite difference and
finite volume methods are well-documented in the literature: the DG methods work
well on arbitrary meshes, result in stable high-order accurate discretizations of the
convective and diffusive operators, allow for a simple and unambiguous imposi-
tion of boundary conditions and are very flexible to parallelization and adaptivity.
Despite all these advantages, DG methods have not yet made a significant impact for
practical applications. This is largely due to the high computational cost associated
to them when compared to finite differences or finite volume schemes.

The hybridizable discontinuous Galerkin (HDG) methods were recently intro-
duced to try to address this issue. In this paper, we present an overview of the recent
developments of these methods with implicit time-marching integration as applied
to some basic models in fluid mechanics.

The HDG methods retain the advantages of standard DG methods and result in a
significantly reduced degree of freedom count, therefore allowing for a substantial
reduction in the computational cost and memory storage. Hybridizable DG methods
were initially developed for elliptic problems [4, 5, 9, 10, 12, 13] and have already
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been developed and demonstrated for linear and nonlinear convection-diffusion
problems [6, 20, 21], linear elasticity [27], and incompressible flow [7, 11, 22–24].

The HDG methods we consider have the following main advantages over many
existing discontinuous Galerkin methods:

� Reduced number of globally coupled degrees of freedom Unlike many other
DG methods (analyzed in [1]) which result in a final system involving all the
degrees of freedom of the approximate field variables, the HDG methods pro-
duce a final system in terms of the degrees of freedom of the approximate traces
of the field variables. Since the approximate traces are defined on the element
borders only, the HDG methods have significantly less the globally coupled
unknowns as other DG methods. In fact, a variant of the HDG method – the
Embedded DG method (EDG) [12, 17]) – has the same number of globally cou-
pled unknowns than a standard continuous Galerkin method. This large reduction
in the degrees of freedom can lead to significant savings for both computational
time and memory storage.

� Superconvergence For convection-diffusion problems, the HDG methods pro-
vide optimal convergence for the approximation of the gradient – a special
convergence property of the HDG methods for diffusion problems – whereas, for
all of the DG methods studied in [1], as well as the standard continuous Galerkin
approach the approximate gradient converges suboptimally. For incompressible
flows, the approximate velocity, pressure, velocity gradient, and vorticity con-
verge with the optimal order. This has to be contrasted with the fact that all the
other DG methods display the suboptimal order of convergence for the approx-
imate pressure, velocity gradient, and vorticity. Moreover, the HDG methods
have superconvergence properties for the numerical traces and the average of
the approximate variables.

� Local postprocessing Based on the optimal convergence and superconvergence
of the HDG methods, local postprocessing can be developed to increase by one
the spatial order of convergence of the numerical solution. For incompressible
flows, local postprocessing can be employed to obtain a new approximation
of the velocity which is exactly divergence-free, H .div/-conforming, and con-
verges with an additional order. For time-dependent problems, postprocessing
only needs to be done at those time levels for which a more accurate result is
desired. Moreover, since the postprocessing is performed at the element level, it
is less expensive than the solution procedure.

� Geometric flexibility and mesh adaptation The HDG methods can be imple-
mented on general unstructured meshes and are well suited to handle h=p
adaptivity since grid refinement or coarsening can be achieved without taking
into account the continuity restrictions typical of conforming methods, and since
different order of approximations can be used on different elements/subdomains.
Adaptivity is of particular importance in compressible flow given the complexity
of the solution structure and geometries involved.

� Parallelization The HDG methods remain highly parallelizable even when
implicit time integration is used since the local problems are formulated at the
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element or subdomain level, they can be solved independently for each of the sub-
domain blocks. For the global problem, the iterative techniques with p-multigrid
and block ILU preconditioning developed for DG methods can also be applied
here [26].

We attempt to give an overview of recent developments of the HDG methods for
fluid dynamics. In Sect. 2 we describe the basic ideas of HDG methodology for a
convection-diffusion model equation: a mixed formulation of the model equation, a
characterization of the numerical solution in terms of the approximate trace, rela-
tionship between the HDG method and the standard DG methods, the choice of the
stabilization parameter, and the local postprocessing to improve the order of conver-
gence. In Sect. 3 we show how the main ideas can be extended to time-dependent
and nonlinear convection-diffusion problems, Stokes flows, and incompressible
Navier–Stokes equations. In Sect. 4 we present numerical results for fluid dynam-
ics to demonstrate the performance and accuracy of the HDG method. Finally, in
Sect. 5, we end the paper with some concluding remarks on future developments.

2 The HDG Method

2.1 The Convection-Diffusion Model Equation

We will describe the main ideas behind the hybridized discontinuous Galerkin
method using the linear convection-diffusion equation as a model problem

r � .cu/� r � .�ru/ D f; in ˝; (1)

with boundary conditions

u D gD ; on �D;
.��ruC cu/ � n D gN ; on �N :

(2)

Here u is the field variable, c and � > 0 are constant and f , gD and gN are given
(see [20] for additional details).

We introduce the auxiliary variable q D ��ru and rewrite the above equation
as a first order system of equations

q C �ru D 0; in ˝;
r � .cuC q/ D f; in ˝;

(3)

with boundary conditions

u D gD ; on �D;
.q C cu/ � n D gN ; on �N :

(4)

Next, we introduce the notation necessary for the description of the HDG method.
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2.2 Mesh and Trace Operators

Let Th be a collection of disjoint elements that partition ˝ . We denote by @Th the
set f@K W K 2 Thg. For an element K of the collection Th, F D @K \ @˝ is the
boundary face if the d � 1 Lebesgue measure of F is nonzero. For two elements
KC andK� of the collection Th, F D @KC\@K� is the interior face betweenKC
and K� if the d � 1 Lebesgue measure of F is nonzero. Let E o

h
and E @

h
denote the

set of interior and boundary faces, respectively. We denote by Eh the union of E o
h

and E @
h

.
Let nC and n� be the outward unit normals of @KC and @K�, respectively, and

let .q˙; u˙/ be the traces of .q; u/ on F from the interior of K˙. Then, we define
the mean values ff�gg and jumps ��� as follows. For F 2 E o

h
, we set

ffqgg D .qC C q�/=2 ffugg D .uC C u�/=2;

�q � n� D qC � nC C q� � n� �un� D uCnC C u�n�:

For F 2 E @
h

, the set of boundary edges on which q and u are singled value, we set

ffqgg D q ffugg D u;

�q � n� D q � n �un� D un:

Note that the jump in u is a vector, but the jump in q is a scalar. Furthermore, the
jumps will be zero for a continuous function.

2.3 Approximation Spaces

Let Pm.D/ denote the set of polynomials of degree at most m on a domainD. We
introduce discontinuous finite element spaces

Wh D fw 2 L2.˝/ W wjK 2Pk.K/; 8K 2 Thg;

and
V h D fv 2 .L2.˝//d W vjK 2 .Pk.K//

d ; 8K 2 Thg:
Here L2.D/ is the space of square integrable functions on D. In addition, we
introduce a traced finite element space

Mh D f� 2 L2.Eh/ W �jF 2Pk.F /; 8F 2 Ehg:

We also set Mh.gD/ D f� 2 Mh W � D PgD on �Dg, where P denotes the
L2-projection into the space f�j@˝ 8� 2 Mhg. Note that Mh consists of functions
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which are continuous inside the faces (or edges) F 2 Eh and discontinuous at their
borders.

For functions w and v in .L2.D//d , we denote .w; v/D D
R
D w � v. For functions

u and v in L2.D/, we denote .u; v/D D
R
D

uv ifD is a domain in R
d and hu; viD DR

D
uv if D is a domain in R

d�1. We finally introduce

.w; v/Th
D

X
K2Th

.w; v/K ; h�; 	i@Th
D

X
K2Th

hw; vi@K ; h�; �iEh
D

X
F2Eh

h�; �iF ;

for functions w; v defined on Th, �; 	 defined on @Th, and �; � defined on Eh.

2.4 HDG Formulation

We seek an approximation .qh; uh/ 2 V h �Wh such that for all K 2 Th,

�
��1qh; v

�
K
� .uh;r � v/K C hbuh; v � ni@K D 0; 8 v 2 .Pk.K//

d ;

� .cuh C qh;rw/K C h.bcuh Cbqh/ � n;wi@K D .f;w/K ; 8w 2Pk.K/:
(5)

Here, the numerical traces bcuh Cbqh andbuh are approximations to cu � �ru and u
over @K , respectively. Next, we express .qh; uh/ in terms ofbuh only. To this end,
we consider numerical traces bcuh Cbqh of the form

bcuh Cbqh D cbuh C qh C �.uh �buh/n; on @K: (6)

Here, � is the so-called local stabilization parameter; it has an important effect on
both the stability and accuracy of the resulting scheme. The selection of the value
of the parameter � will be described below. Note that both bcuh and cbuh are different
approximations to the same quantity cu and that the former is defined in terms of
the latter.

We next expressbuh in terms of the boundary data gD and a new variable �h 2
Mh.0/ as

buh D



PgD ; on Eh \ �D;
�h; on Ehn�D:

By adding the contributions of (5) over all the elements and enforcing the continuity
of the normal component of the numerical flux, we arrive at the following problem:
find an approximation .qh; uh; �h/ 2 V h �Wh �Mh.0/ such that

.��1qh; v/Th
� .uh;r � v/Th

C h�h; v � ni@Th
D �hgD ; v � ni�D

; 8v 2 V h;

�.cuh C qh;rw/Th
C h.bcuh Cbqh/ � n;wi@Th

D .f;w/Th
; 8w 2 Wh;

h�.bcuh Cbqh/ � n�; �iEh
D hgN ; �i�N

; 8� 2 Mh.0/:

(7)
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Note that the Dirichlet boundary condition has been enforced by requiring thatbuh D
PgD on Eh \ �D , whereas the continuity of the normal component of bcuh Cbqh is
enforced explicitly by the last equation.

We observe that �h is uniquely defined over each edge since �h belongs to Mh.
Furthermore, if �.bcuh Cbqh/ � n� belongs to Mh, then the last equation (7) simply
states that �.bcuhCbqh/�n� D 0 pointwise over Ehn�N and that .bcuhCbqh/�n D PgN
on �N ; in other words, the normal component of the numerical trace bcuh Cbqh is
single-valued. Hence, both �h and bcuhCbqh are conservative fluxes according to the
definition in [1]. Note that our numerical traces remain conservative even when the
diffusion coefficient � is discontinuous at the interior element interface.

We note that, due to the discontinuous nature of both V h and Wh, the first two
equations in (6) can be used to eliminate both qh and uh to obtain a weak formula-
tion in terms of �h only and thus a global system of equations involving the degrees
of freedom of �h, as described below.

2.5 Characterization of the Numerical Trace

We first introduce the so-called local solver which associate to each function
.m; f / 2 Mh � L2.˝/, the pair .qm;f

h
; um;f
h

/ on ˝ whose restriction to each
element K is in .Pk.K//

d �Pk.K/ and satisfies

.��1qm;f
h

; v/K � .um;f
h

;r � v/K D� hm; v � ni@K ; (8a)

�.cum;f
h
C q

m;f
h

;rw/K C
D
.bcum;f

h
Cbqm;f

h
/ � n;w

E
@K
D .f;w/K ; (8b)

for all .v;w/ 2 .Pk.K//
d �Pk.K/, where

bcum;f
h
Cbqm;f

h
D cmC q

m;f
h
C �.um;f

h
�m/n: (8c)

It is now clear, see (7), that the approximate solution .qh; uh/ 2 V h �Wh satisfies

1qh D q
�h;f

h
; uh D u�h;f

h
; (9a)

where �h 2 Mh.0/ is such that

D
�.bcu�h;f

h
Cbq�h;f

h
/ � n�; �

E
Eh

D hgN ; �i�N
; 8� 2Mh.0/: (9b)

We next show that we can eliminate qh and uh from the above equations to obtain a
weak formulation in terms of �h only.

Let .qm;0
h
; um;0
h
/ (respectively, .q0;f

h
; u0;f
h
/) solve (8) when we set f D 0

(respectively, m D 0). If, for all � and � 2Mh, we set
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ah.�; �/ D�
D
�.bcu�;0

h
Cbq�;0

h
/ � n�; �

E
Eh

; (10a)

bh.�/ D
D
�.bcu0;f

h
Cbq0;f

h
/ � n�; �

E
Eh

; (10b)

we have from (9b) and linearity of the problem (8) that the function �h 2 Mh.0/ is
the solution of the variational formulation

ah.�h; �/ D bh.�/ � hgN ; �i�N
; 8� 2 Mh.0/: (11)

The existence and uniqueness of the numerical trace �h is presented in [20].
The above weak formulation gives rise to a matrix system of the form

K  D F; (12)

where  is the vector of degrees of freedom of �h, K is the matrix associated with
the bilinear form ah.�; �/, and F the vector associated with the linear form bh.�/ �
hgN ; �i�N

. Note that since

ah.�; �/ D �
D
.bcu�;0

h
Cbq�;0

h
/ � n; �

E
@Th

;

we can easily deduce that if the support of � is the interior face F D @KC\@K�, or
the boundary face F D @K\@˝ , then ah.�; �/ D 0when the support of � does not
intersect @KC [ @K�, or @K , respectively. Thus, the matrix K has a block-structure
of blocks of square matrices of order dim Pk . In each block-row or block-column,
there are at most five non-zero blocks when the elements are triangles, and at most
seven non-zero blocks in three space dimension.

The construction of the matrix system (12) can be carried out in two steps. In the
first step, we solve the local problem (8) for every element K 2 Th. In the second
step, we evaluate the face integrals (10) by using the standard finite element quadra-
ture rule and assembly. This procedure can be implemented for arbitrary polynomial
degrees. The detailed implementation discussed in [20] is omitted here to save space.

2.6 Relation to Other DG Methods

In order to derive an explicit expression for the numerical traces in terms of .uh; qh/,
we proceed as follows. Since the conservativity condition implies �.dcuhCbqh/ �n� D
0 pointwise, we have, using expression (6), that

�qh � n�C �CuC
h
C ��u�

h � .�C C ��/�h D 0; on E oh :

Solving for �h and inserting the result into the expression for bcuh C bqh (6), we
obtain on E o

h
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�h D �C

�C C �� uC
h
C ��

�C C �� u�
h C

�
1

�C C ��

�
�qh � n�;

bcuh Cbqh D c�h C ��

�C C �� qC
h
C �C

�C C �� q�
h C

�
�C��

�C C ��

�
�uhn�:

(13)

These expressions for the numerical traces highlight the relationship between the
HDG method and the more standard DG methods, as discussed below.

In the convective limit we have � D 0 and consequently qh D 0. In this case, the
expressions (13) become

�h D �C

�C C �� uC
h
C ��

�C C �� u�
h ;

bcuh � nC D �C

�C C �� .c � nC C ��/uC
h
C ��

�C C �� .c � nC � �C/u�
h :

(14)

In the diffusive limit c D 0, expressions (13) become

�h D �C

�C C �� uC
h
C ��

�C C �� u�
h C

�
1

�C C ��

�
�qh � n�;

bqh D ��

�C C �� qC
h
C �C

�C C �� q�
h C

�
�C��

�C C ��

�
�uhn�:

(15)

This case has been originally studied in [3]; see also [4, 9, 13].
By rearranging terms these expressions can be transformed into the more stan-

dard form considered in [3],

bqh D ffqhgg C C11�uhn�C C 12�qh � n�;

�h D Ouh D ffuhgg � C 12 � �uhn�C C22�qh � n� :
(16)

where,

C11 D
�

�C��

�C C ��

�
; C 12 D 1

2

�
��n�

�C C ��

�
; C22 D

�
1

�C C ��

�
:

It is interesting to note that for the simple choice of �˙ of order unity everywhere
HDG methods yield optimal convergence rate of k C 1 for both the scalar vari-
able and the flux, and that they display superconvergence properties of the scalar
variable [4, 6, 13].

We point out that in the Local DG method [15], the trace �h is chosen to be
independent of qh, that is C22 D 0. This has the advantage of allowing the degrees
of freedom associated with the qh to be locally eliminated and a global system
involving only the degrees of freedom associated to uh is thus solved. However,
using C22 D 0 yields suboptimal convergence for the approximate gradient. It
is shown in [13] that the superconvergent schemes require that C22 be non-zero.
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While this presents a serious inconvenience for LDG methods, for HDG methods
this represents no difficulty.

2.7 The Local Stabilization Parameter �

To account for the diffusion and convection effects our local stabilization parameter
� will take the following form

� D �d C �c
where �d and �c are the local stabilization parameters related to the diffusion and
convection, respectively. This allows us to write each component of the numerical
tracebqh C bcuh as

bqh D qh C �d .uh � �h/n;
bcuh D c�h C �c.uh � �h/n:

A suitable expression for �c and �d is to take on each edge �C
c D ��

c D �c and
�C
d
D ��

d
D �d , where

�c D jc � nj; �d D �

`
; (17)

where ` denotes a representative diffusive length scale which is typically of unity
order and independent of the mesh size h. In this case, the expressions for the
numerical traces becomes

�h D ffuhgg C 1

2�
�qh � n�;

bcuh Cbqh D c �hCffqhgg C
�

2
�uhn�:

It can be shown that the HDG method is well-defined with the above choice of the
stabilization parameter. Alternative forms for �c and �d can be found in [20].

Numerical experiment and theory (see [6, 20]) confirm that the above choice of
the stabilization parameter is optimal in the sense that both the approximate scalar
variable and gradient converge with the optimal order k C 1. We point out that our
stabilization parameter is independent of the polynomial degree and the mesh size.
This is different from some DG methods such as the interior penalty DG method
which typically select stabilization parameter to depend on the mesh size.

2.8 Local Postprocessing

We first show that we can postprocess the total approximate flux qT
h
D qh C cuh

and its numerical tracebqT
h
D bqh C bcuh with an element-by-element procedure to
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obtain an approximation of qCcu, denoted qT �
h

that belongs toH.div;˝/ and also
converges in an optimal fashion [2, 6, 14]. On each simplex K 2 Th, we define the
new total flux qT�

h
as the only element of .Pk.K//

d C xPk.K/ satisfying, for
k � 0,

h.qT�
h �bqTh / � n; �iF D 0; 8� 2Pk.F /;8F 2 @K;
.qT�
h � qTh ; v/K D 0; 8v 2 .Pk�1.K//d if k � 1: (18)

It is clear that the function qT�
h

belongs toH.div;˝/, thanks to the singlevaluedness
of the normal component of the numerical tracebqh C bcuh.

Next, we consider postprocessing uh, qh, and bqh to obtain the new approxi-
mate scalar variable u�

h
of u. Towards this end, we find .u�

h
; q�
h
; ��
h
/ 2 Pk�.K/ �

.Pk�.K//d � .Pk�.F //dC1 for k� D k C 1 on the simplex K 2 Th such that

�
��1rq�

h; v
�
K
� �u�

h;r � v
�
K
C ˝��

h; v � n
˛
@K
D 0

� �q�
h C cu�

h;rw
�
K
C ˝.bq�

h C bcu�
h/ � n;w

˛
@K
D
�
r � qT�

h ;w
�
K
;

˝
.bq�
h C bcu�

h/ � n; �
˛
@K
D
D
qT�
h � n; �

E
@K
;

�
u�
h; 1

�
K
D .uh; 1/K ;

(19)

for all .v;w; �/ 2 .Pk� .K//d �Pk�.K/� .Pk�.F //dC1, where

bq�
h C bcu�

h D q�
h C c��

h C �.u�
h � ��

h/n:

We note that this local postprocessing is nothing but the HDG discretization at the
element level of the following convection-diffusion Neumann problem

r � .��ruC cu/ D r � qT�
h ; in K;

.��ruC cu/ � n D qT �
h � n; on @K;

.u; 1/K D .uh; 1/K :
(20)

Therefore, the new approximation u�
h

is even much less expensive to compute than
the original approximation uh. This is because the local problems (19) have very
few degrees of freedom and also because they can be solved independently of each
other.

Our postprocessing procedure relies on the optimal convergence of qT�
h

and its
divergence r � qT�

h
, and on the superconvergence of the average of the approxi-

mate scalar variable uh. In fact, these properties for the HDG method have been
theoretically analyzed and confirmed by numerical experiments for the steady sym-
metric diffusion case in [4, 13]: both qT�

h
and r � qT�

h
converge with order k C 1,

while .uh; 1/K superconverges with order kC 2. We may thus expect that the scalar
variable u�

h
converges with order k C 2.
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3 Extensions of the Basic Algorithm

In this section, we present several extensions of the basic algorithm described in the
previous section.

3.1 Time-Dependent Convection-Diffusion Problems

We consider the time-dependent convection-diffusion model written as a system of
first-order equations

q C �ru D 0; in ˝ � .0; T �;
@u

@t
Cr � .cuC q/ D f; in ˝ � .0; T �;

u D gD ; on �D � .0; T �;
.q C cu/ � n D gN ; on �N � .0; T �;

u D u0; in ˝ for t D 0:

(21)

The HDG method of lines for the above problem seeks an approximation .qh; uh/ 2
V h �Wh such that for all K 2 Th,

�
��1qh; v

�
K
� .uh;r � v/K C hbuh; v � ni@K D 0;

�@uh
@t
;w
�
K
� .cuh C qh;rw/K C h.bcuh Cbqh/ � n;wi@K D .f;w/K ;

(22)

for all .v;w/ 2 .Pk.K//
d �Pk.K/ and for all t 2 .0; T �. Here, the numerical

traces bcuhCbqh andbuh are approximations to cu��ru and u over @K , respectively.
The above HDG formulation (22) can then be discretized in time using an

appropriate time-stepping scheme. Here we consider backward difference formu-
laes (BDF) for the discretization of the time derivative. For instance, using the
Backward-Euler scheme at time-level tn with timestep �tn the HDG method then
seeks an approximation .qn

h
; un
h
; �n
h
/ 2 V h �Wh �Mh.0/ such that

.��1qn
h
; v/Th

� .un
h
;r � v/Th

C ˝�n
h
; v � n˛

@Th
D �hgD ; v � ni�D

;

1

�tn

�
unh;w

�
Th
� .cunh C qnh;rw/Th

C˝.bcun
h
Cbqn

h
/ � n;w˛

@Th
D .f;w/Th

C 1

�tn

�
uk�1
h ;w

�
Th

;
˝
�.bcun

h
Cbqn

h
/ � n�; �

˛
Eh
D hgN ; �i�N

;

(23)
for all .v;w; �/ 2 V h �Wh �Mh.0/, where, as we did for the steady-state case, we
choose bcun

h
Cbqn

h
of the form

bcunh Cbqnh D cbunh C qnh C �.unh �bunh/n; on @K:
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This discrete system has a similar form as the system (7) for the steady-state case.
Hence, we can apply exactly the same solution procedure described earlier for the
steady-state case to the time-dependent case at every time step.

Of course, a similar procedure can be applied to treat any higher-order BDF
method such as the widely used second-order and third-order BDF schemes. The
HDG method can also work with other implicit time-stepping methods such as the
fully implicit Runge–Kutta methods and DG methods in time.

The post-processing method described for the steady state convection diffusion
problem can also be applied in the time-dependent case with identical results. That
is, both qT

h
and r �qT

h
converge spatially with order pC1, while .uh; 1/K supercon-

verges in space with order pC2. This means that it is then possible to reconstruct, at
any desired time level, a new scalar variable, u�

h
, which superconverges with order

p C 2 (see [20] for additional details).

3.2 Nonlinear Convection-Diffusion Problems

Here, we describe the HDG method for steady-state nonlinear convection-diffusion
equations presented in [21]. Consider a nonlinear convection-diffusion equation of
the form

�r � .�ru/Cr � F .u/ D f; in ˝;
u D gD ; on @˝:

(24)

We rewrite the above equation as a first order system of equations

q C �ru D 0; in ˝;
r � .q C F .u// D f; in ˝;

u D gD ; on @˝:
(25)

Here, F 2 .L1.˝//d are vector-valued nonlinear functions of the scalar variable u.
Multiplying the first two equations of (25) by test functions, integrating by parts,

and enforcing the continuity of the normal component of the total numerical flux,
we obtain the following problem: find an approximation .qh; uh;buh/ 2 V h �Wh �
Mh.gD/ such that

�
��1qh; v

�
Th
� .uh;r � v/Th

C hbuh; v � ni@Th
D 0;

� .qh C F .uh/;rw/Th
C
D�
bqh C bF h

�
� n;w

E
@Th

D .f;w/Th
;D

.bqh C bF h/ � n; �
E
@Th

D 0;

(26)

for all .v;w; �/ 2 V h �Wh �Mh.0/, where

bqh C bF h D qhCF .buh/C �.uh;buh/.uh �buh/n; on Eh: (27)
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This completes the definition of the general form of the HDG method. This nonlin-
ear system of equations is solved by the Newton–Raphson method as described in
[21]. Here we observe that, at each Newton iteration, we recover the HDG structure
of the linear problem (7), and thus solve for the degrees of freedom ofbuh only.

The choice of the numerical fluxbqh C bF h is an extension of the expression for
the numerical flux used for the linear case. The main difference is that, due to the
nonlinearity of the convection, the stabilization function �.�; �/ W @Th ! IR can
now be a nonlinear function of uh andbuh. This implies that the last equation (26)
cannot force the normal component of the total flux bqh C bF h to be single valued
on all interior faces e 2 E o

h
; it only forces its L2-projection into Mh.0/ to be single

valued. This is enough to guarantee the local conservativity of the method, as we
can see from the second term of the left-hand side of the second equation (26).

Suitable expressions for the stabilization function and the associated entropy
inequality as well as the extension to nonlinear time dependent problems and the
postprocessing procedure are described in [21].

3.3 Stokes Flows

We describe here a hybridizable discontinuous Galerkin (HDG) method for the
Stokes system [22]

���uCrp D f ; in ˝;
r � u D 0; in ˝;

u D g; on @˝:
(28)

We rewrite the above equation as the following first order system of equations

L � ru D 0; in ˝
��r � LCrp D f ; in ˝;

r � u D 0; in ˝;
u D g on @˝:

(29)

As usual we assume that g satisfies the compatibility condition
R
@˝

g � n D 0.
We first introduce discontinuous finite element approximation spaces for the

gradient, velocity, and pressure as

Gh D fG 2 .L2.Th//d
d W GjK 2 .Pk.D//
d
d ; 8K 2 Thg;

V h D fv 2 .L2.Th//d W vjK 2 .Pk.K//
d ; 8K 2 Thg;

Ph D fq 2 L2.Th/ W qjK 2Pk.K/; 8K 2 Thg:

In addition, we introduce a finite element approximation space for the approximate
trace of the velocity

Mh D f� 2 .L2.Eh//d W �jF 2 .Pk.F //
d ; 8F 2 Ehg:
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We also set
Mh.g/ D f� 2Mh W � D Pg on @˝g;

where P denotes the L2-projection into the space f�j@˝ 8 � 2 Mhg. We further
denote by �h the set of functions in L2.@Th/ that are constant on each @K for all
elements K

�h D fr 2 L2.@Th/ W r 2P0.@K/; 8K 2 Thg:

The mean of our approximate pressure will belong to this space. For a function q in
L2.@Th/, the mean of q on the element boundary @K of an elementK is defined as

qj@K D 1

j@Kj
Z

@K

q:

Obviously, we have q D q for any q in �h.
We next define various inner products for our finite element spaces as

.r; q/Th
D
X
K2Th

.r; q/K ; .w; v/Th
D
X
K2Th

.w; v/K ; .H;G/Th
D
X
K2Th

.H;G/K ;

for r; q 2 L2.Th/, w; v 2 .L2.Th//d , and H;G 2 .L2.Th//d
d . We also define
the boundary inner products as

hr; qi@Th
D
X
K2Th

hr; qi@K ; hw; vi@Th
D
X
K2Th

hw; vi@K ; hH;Gi@Th
D
X
K2Th

hH;Gi@K ;

for r; q 2 L2.Eh/, w; v 2 .L2.Eh//d , and H;G 2 .L2.Eh//d
d . Recall the standard
notation .H;G/D D

R
D tr.HTG/, where tr is the trace operator.

The HDG method then seeks an approximation .Lh;uh; ph;buh; 	h/ 2 Gh�V h�
Ph �Mh.g/ � �h such that

.Lh;G/Th
C .uh;r � G/Th

� hbuh;G � ni@Th
D 0;

.�Lh � phI;rv/Th
C
D
.��bLh CbphI/ � n; v

E
@Th

D .f ; v/Th
;

�.uh;rq/Th
C hbuh � n; q � qi@Th

D 0;

ph � 	h D 0;D
.��bLh CbphI/ � n;�

E
@Th

D 0;
˝buh � n;  

˛
@Th
D 0;

.ph; 1/Th
D 0;

(30)

for all .G; v; q;�;  / 2 Gh � V h � Ph �Mh.0/ � �h, where

� �bLh CbphI D ��Lh C phIC S.uh �buh/˝ n: (31)
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Here S is the second-order tensor consisting of stabilization parameters and I is the
second-order identity tensor. Note also that the Dirichlet boundary condition has
been enforced by requiring thatbuh 2Mh.g/.

The first four equations of (30) define the local solver which can be used to elim-
inate all the variables Lh, uh, and ph by inserting them into the last three equations
of (30), thereby obtaining a linear system in terms of .buh; 	h/ only. Since buh is
defined on the element faces and 	h has one degree of freedom per element, the
HDG method reduces significantly the number of the globally coupled unknowns.
In practice, we implement the HDG method by using the augmented Lagrangian
approach [16]; see [22] for a detailed discussion.

Finally, we use the element-by-element postprocessing proposed in [11] obtain
a new approximate velocity which is exactly divergence-free, H .div/-conforming,
and converges with the order k C 2. In the three dimensional case, we define the
postprocessed approximate velocity u?

h
on the tetrahedron K 2 Th as the element

of .PkC1.K//d such that

h.u?h �buh/ � n; �iF D 0 8 � 2Pk.F /; (32a)

h.n � r/.u?h � n/� n � . ffLthggn/; .n � r/�iF D 0 8 � 2PkC1.F /?; (32b)

for all faces F of K , and such that

.u?h � uh;rw/K D 0 8 w 2Pk.K/; (32c)

.r � u?h � wh; .r � v/ BK/K D 0 8 v 2 S k.K/: (32d)

Here

PkC1.F /? WD f� 2PkC1.F / W h�;e�iF D 0; 8e� 2Pk.F /g;

and
wh WD .Lh32 � Lh23;L

h
13 � Lh31;L

h
21 � Lh12/

is the approximation to the vorticity. Furthermore, BK is the so-called symmetric
bubble matrix introduced in [8], namely,

BK WD
3X
`D0

�`�3�`�2�`�1r�` ˝r�`;

where �i are the barycentric coordinates associated with the tetrahedronK . Finally,
S k.K/ WD fp 2 N k W .p;r�/K D 0 for all � 2 PkC1.K/g, where N k D
Pk�1.K/˚ S k and S ` is the space of vector-valued homogeneous polynomials v
of degree ` such that v � x D 0; see [18, 19].

In the two dimensional case, the postprocessing is defined by the above equations
if (32d) is replaced by
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.r � u?h � wh;w bK/K D 0 8 w 2Pk�1.K/;

where bK WD �0�1�2 and wh WD Lh21 � Lh12.
We refer the reader to [11] for a proof of the fact that u?

h
is a divergence-free

velocity in H .d iv;˝/ and converges with the order k C 2 in the L2-norm.

3.4 Incompressible Navier–Stokes Equations

Let us extend the HDG method described above to the steady incompressible
Navier–Stokes equations written in conservative form

L � ru D 0; in ˝
��r � LCrp Cr � .u˝ u/ D f ; in ˝;

r � u D 0; in ˝;
u D g; on @˝:

(33)

The Navier–Stokes system differs from the Stokes one due to the presence of the
nonlinear convective term r � .u˝ u/.

The HDG method for the above system seeks an approximation .Lh;uh; ph;buh;
	h/ 2 Gh � V h � Ph �Mh.g/ � �h such that

.Lh;G/Th
C .uh;r � G/Th

� hbuh;Gni@Th
D 0;

.�Lh � phI � uh ˝ uh;rv/Th

C
D
.��bLh CbphICbuh ˝buh/n; v

E
@Th

D .f ; v/Th
;

�.uh;rq/Th
C hbuh � n; q � qi@Th

D 0;
ph � 	h D 0;D

.��bLh CbphICbuh ˝buh/n;�
E
@Th

D 0;
˝buh � n;  

˛
@Th
D 0;

.ph; 1/Th
D 0;

(34)

for all .G; v; q;�;  / 2 Gh � V h � Ph �Mh.0/ � �h, where

�
��bLh CbphI

�
n D .��Lh C phI/nC sh.uh;buh/: (35)

Here sh.uh;buh/ is the stabilization vector-valued function the choice of which is
crucial since it does have an important effect on both the stability and accuracy of
the method. We consider an extension of the expression for sh.uh;buh/ proposed in
[11, 22] for the Stokes system as follows

sh.uh;buh/ D S.uh;buh/.uh �buh/; (36)

where S.uh;buh/ is the stabilization tensor which may depend on uh andbuh.
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Substituting (35) into (34) we obtain that .Lh;uh; ph;buh; 	h/ 2 Gh�V h�Ph �
Mh.g/ � �h is the solution of

.Lh;G/Th
C .uh;r � G/Th

� hbuh;Gni@Th
D 0;

.r � .��Lh C phI/; v/Th
� .uh ˝ uh;rv/Th

Ch.buh ˝buh/nC sh.uh;buh/; vi@Th
D .f ; v/Th

;

�.uh;rq/Th
C hbuh � n; q � qi@Th

D 0;

ph � 	h D 0;

h.��Lh C phICbuh ˝buh/nC sh.uh;buh/;�i@Th
D 0;˝buh � n;  

˛
@Th
D 0;

.ph; 1/Th
D 0;

(37)

for all .G; v; q;�;  / 2 Gh � V h � Ph �Mh.0/ � �h.
The above nonlinear system of equations is solved by the Newton–Raphson

method: Given the mth current iterate .Lm
h
;um
h
; pm
h
;bum
h
; 	mh /, we find an increment

.ıLm
h
; ıum

h
; ıpm

h
; ıbum

h
; ı	mh / 2 Gh � V h � Ph �Mh.0/ � �h such that

.ıLmh ;G/Th C .ıumh ;r � G/Th � ˝
ıbumh ;Gn

˛
@Th D r1.G/;

.r � .��ıLmh C ıpmh I/; v/Th � .ıumh ˝ umh C umh ˝ ıumh ;rv/Th

C ˝
.ıbumh ˝bumh Cbumh ˝ ıbumh /n C @1sh.umh ;bumh /ıumh C @2sh.umh ;bumh /ıbumh ; v

˛
@Th D r2.v/;

�.ıumh ;rq/Th C ˝
ıbumh � n; q � q

˛
@Th D r3.q/;

ıpmh � ı	mh D r4;
˝
.��ıLmh C ıpmh I C ıbumh ˝bumh Cbumh ˝ ıbumh /n

˛
@Th

C ˝
@1sh.umh ;bumh /ıumh C @2sh.umh ;bumh /ıbumh ;�

˛
@Th D r5.�/;

˝
ıbumh � n;  

˛
@Th D r6. /;

.ıpmh ; 1/Th D r7;

(38)

for all .G; v; q;�;  / 2 Gh�V h�Ph�Mh.0/��h. Note here that the right-hand
side residuals are evaluated from (37) at the current iterate.

We observe that the above system (38) has a similar structure as the HDG sys-
tem (30) for the Stokes flow except that there are some additional terms due to the
convective nonlinearity. Therefore, it can be solved in a similar manner by means
of the hybridization technique. This leads to a linear system of algebraic equations
involving the degrees of freedom of .ıbum

h
; ı	mh / only. Alternatively, we may apply

the augmented Lagrangian approach to the nonlinear system (37) and then use the
hybridization technique to obtain a system in terms of ıbum only [23].

Although our discussion has focused primarily on the steady-state case, the same
HDG method can be applied to the time-dependent problem with using an implicit
time-stepping method; see Sect. 3.1 for further details. Finally, we emphasize that
the postprocessing procedure described for Stokes flow can be used for both the
steady and unsteady Navier–Stokes problems.
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4 Numerical Results

In this section, we present numerical results for a benchmark problem in
fluid dynamics. We would like to refer the readers to the previous work [4, 6, 7,
11, 20–23, 27] for many other examples which demonstrate the performance and
accuracy of the HDG methods described in this paper.

The Taylor vortex problem is a well-known example of the unsteady incompress-
ible Navier–Stokes equations. The problem has an exact solution of the form

ux D � cos.
x/ sin.
y/ exp
�

�2�2t
Re

�
;

uy D sin.
x/ cos.
y/ exp
�

�2�2t
Re

�
;

p D �1
4
.cos.2
x/C cos.2
y// exp

�
�4�2t
Re

�
;

where Re D 1=� is the Reynolds number. We consider the above problem on ˝ D
.0; 1/2 with Reynolds numberRe D 20 and final time T D 1. We take the Dirichlet
boundary condition for the velocity as the restriction of the exact solution to the
domain boundary and the initial condition as an instantiation of the exact solution
at t D 0.

In our experiments, we consider triangular meshes that are obtained by splitting a
regular n�n Cartesian grid into a total of 2n2 triangles, giving uniform element sizes
of h D 1=n. On these meshes, we consider polynomials of degree k to represent all
the approximate variables using a nodal basis within each element, with the nodes
uniformly distributed. We use the third-order backward difference formula (BDF3)
for the temporal discretization. The stabilization tensor S is chosen as

S D
�
� 0

0 �

�
;

where � is equal to 1 on Eh.
We first look at the convergence and accuracy in terms of both k and h refine-

ments. For this purpose, we select a small timestep of�t D 0:005, so that the spatial
error is dominant and the temporal error is negligible. We present in Table 1 the his-
tory of convergence of the HDG method at the final time t D 1. We observe that
the approximate velocity, pressure, and velocity gradient converge with the optimal
order k C 1 for k D 1; 2; 3. The fact that the HDG method yields optimal conver-
gence for both the approximate pressure and velocity gradient is a very important
advantage since many other DG methods provide suboptimal convergence of order
k for the approximate pressure and velocity gradient. Moreover, we observe that all
the approximate variables converge exponentially with the polynomial degree k as
depicted in Fig. 1. We emphasize that these results are obtained with � being set to
1 and thus independent of both k and h.

Equally important is the fact that the postprocessed velocity u�
h

converges with
the order k C 2, which is one order higher than the original approximate velocity
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Table 1 History of convergence of the HDG method for the Taylor vortex problem withRe D 20

Degree Mesh ku � uhkTh kp � phkTh kL � LhkTh ku � u?hkTh

k 1/h Error Order Error Order Error Order Error Order

2 4.73e–2 – 3.44e–2 – 3.29e–1 – 3.40e–2 –
4 1.27e–2 1.89 8.59e–3 2.00 1.26e–1 1.39 8.04e–3 2.08

1 8 2.94e–3 2.11 2.14e–3 2.01 3.85e–2 1.71 1.34e–3 2.59
16 6.95e–4 2.08 5.38e–4 1.99 1.07e–2 1.84 1.89e–4 2.82
32 1.70e–4 2.03 1.36e–4 1.99 2.85e–3 1.91 2.50e–5 2.92
2 1.14e–2 – 6.67e–3 – 1.04e–1 – 8.35e–3 –

4 1.26e–3 3.17 8.43e–4 2.98 1.72e–2 2.60 6.12e–4 3.77
2 8 1.51e–4 3.06 1.07e–4 2.98 2.60e–3 2.73 4.07e–5 3.91

16 1.87e–5 3.01 1.33e–5 3.00 3.64e–4 2.84 2.70e–6 3.91
32 2.33e–6 3.00 1.67e–6 3.00 4.85e–5 2.91 1.76e–7 3.94
2 1.81e–3 – 1.00e–3 – 2.01e–2 – 1.22e–3 –

4 1.08e–4 4.06 7.00e–5 3.84 1.72e–3 3.54 4.67e–5 4.70
3 8 6.59e–6 4.04 4.33e–6 4.01 1.29e–4 3.74 1.63e–6 4.84

16 4.08e–7 4.01 2.68e–7 4.01 8.92e–6 3.85 5.48e–8 4.89
32 2.55e–8 4.00 1.67e–8 4.00 5.88e–7 3.92 1.82e–9 4.91
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Fig. 1 The L2 error in log scale as a function of h and k for uh (top left), ph (top right), Lh (bottom
left), and u�

h (bottom right)
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Fig. 2 The approximate velocity uh (left) and the postprocessed velocity u�

h (right) for k D 2 on
the grid h D 1=2, with horizontal velocity at the top and vertical velocity at the bottom

uh. Furthermore, we emphasize that u�
h

is an exactly divergence-free and H .div/-
conforming velocity field. To visualize the effect of the local postprocessing, we
show in Fig. 2 the plots of the approximate velocity and the postprocessed velocity
for k D 2 on the grid h D 1=2. We observe that the local postprocessing does
provide a significant improvement in the approximation of the velocity field, since
u�
h

is clearly superior to uh.
Moreover, since the local postprocessing is performed at the element level and

only at the timestep where higher accuracy is desired, it adds very little to the over-
all computational cost. As a result, with the HDG method, the .k C 2/-convergent
velocity, .kC 1/-convergent pressure, and .kC 1/-convergent velocity gradient can
be computed at the cost of a DG approximation using polynomials of degree k.

5 Conclusions

We present an overview of recent developments of HDG methods for numerically
solving partial differential equations in fluid mechanics. The main philosophy of the
HDG methodology includes the following steps:
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� Identify the globally coupled unknowns as the numerical traces of the field
variables associated with the essential boundary condition.

� Enforce explicitly the continuity of the normal component of the numerical
fluxes associated with the Neumann boundary condition. This is called the
conservativity condition.

� Define the local solver by applying the HDG method to the governing equations
at the element level.

� Substitute all the volumetric unknowns from the local solver into the conser-
vativity condition to obtain a final system in terms of the numerical traces
only.

� Apply the local postprocessing to obtain an improved approximation of the field
variables.

The above guidelines are very general and applicable beyond problems consid-
ered in this paper. Indeed, based on this general framework we have successfully
developed HDG methods for the compressible Euler and Navier–Stokes equa-
tions [25]. Inspired by the simplicity and generality of this new DG methodology,
our current research effort focuses on devising HDG methods for multi-physics
applications.
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Multivariate Modified Fourier Expansions

Ben Adcock and Daan Huybrechs

Abstract In this paper, we review recent advances in the approximation of multi-
variate functions using eigenfunctions of the Laplace operator subject to homoge-
neous Neumann boundary conditions. Such eigenfunctions are known explicitly on
a variety of domains, including the d -variate cube, equilateral triangle and numerous
other higher dimensional simplices. Practical construction of truncated expansions
is achieved using a mixture of asymptotic and classical quadratures. Moreover, by
exploiting the hyperbolic cross, the number of expansion coefficients need only
grow mildly with dimension.

Despite converging uniformly throughout the domain, the rate of convergence of
such expansions may be slow. We review two techniques to accelerate convergence.
The first smoothes the function by interpolating certain derivatives of the func-
tion evaluated on the boundary of the domain. The second numerically computes
a smooth, periodic extension of the function on a larger domain.

1 Introduction

The subject of this paper is the approximation of a multivariate function f W ˝ ! R

in eigenfunctions of the Laplace operator subject to homogeneous Neumann bound-
ary conditions:

�4�.x/ D ��.x/; x 2 ˝; @�

@n
.x/ D 0; x 2 @˝: (1)
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The one-dimensional case of (1) was proposed and studied in [15] and has led to a
rapidly growing list of papers on numerical aspects of eigenfunction expansions and
related topics, which we will briefly review throughout this text.

We assume that the domain ˝ � R
d is non-empty, bounded and simply con-

nected with piecewise smooth boundary. The eigenvalues of (1), �n � 0, n 2 N,
are real, countable and have no finite limit point in R. The corresponding eigen-
functions, �n.x/, are orthogonal. Aside from the zero eigenvalue �0 D 0 with
eigenfunction �0.x/ � 1, all eigenvalues are positive.

Let .�; �/ be the standard Euclidean inner product on˝ with associated norm k�k.
A function f may be expanded in the infinite series

f .x/ 	
1X
nD0

1

k�nk2
Ofn�n.x/; (2)

where Ofn D .f; �n/. Standard spectral theory confirms density of the set f�n W n 2
Ng in L2.˝/ [11], thereby verifying convergence of this expansion in the L2.˝/
norm.

In the unit interval˝ D .�1; 1/, trivial calculations establish that

f .x/ 	 1

2
Of Œ0�0 C

1X
nD1

n Of Œ0�n �Œ0�n .x/C Of Œ1�n �Œ1�n .x/
o
; (3)

where �Œ0�n .x/ D cosn
x and �Œ1�n .x/ D sin.n � 1
2
/
x. Such expansion bears a

striking resemblance to the classical Fourier expansion. For this reason we refer
to (2) as a modified Fourier expansion. However, unlike the former, the series (3)
converges uniformly on Œ�1; 1�. If this series is truncated afterN terms, the uniform
error is O

�
N�1�, whereas away from the endpoints the pointwise error is O

�
N�2�

[19]. In comparison, the truncated Fourier sum exhibits an O
�
N�1� error away

from the endpoints, but uniform convergence is lacking (the Gibbs phenomenon).
The improvement in convergence stems from the Neumann boundary condi-

tions. Suppose that � ¤ 0 is a Laplace–Neumann eigenvalue with corresponding
eigenfunction �. Then, for f 2 H 2.˝/, two applications of Stokes’ theorem yields

.f; �/ D � 1
�
.f;4�/

D � 1
�

Z

@˝

f .x/
@�.x/

@n
dx C 1

�

Z

@˝

@f .x/

@n
�.x/dx � 1

�
.4f; �/:

After substituting the boundary conditions, we obtain

.f; �/ D 1

�

Z

@˝

@f .x/

@n
�.x/dx � 1

�
.4f; �/:
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In the univariate setting, for example, the coefficients Of Œi �n D O
�
n�2�, ensuring

uniform convergence of the expansion. In fact, iterating the above process, we obtain

Of Œi �n D
k�1X
rD0

.�1/nCi �f .2rC1/.1/C .�1/iC1f .2rC1/.�1/�

Œ.n � i
2
/
�2rC2 CO

�
n�2k�2

�
; (4)

for any k 2 NC D Nnf0g. In comparison, the classical Fourier sine coefficient

Z 1

�1
f .x/ sin n
x dx D O

�
n�1� :

Non-uniform convergence of the Fourier expansion is now apparent.
Modified Fourier expansions possess great generality and relative simplicity.

However, in the tensor product setting at least, they are usually cast aside in favour
of spectrally convergent approximations comprised of orthogonal polynomials.

Nonetheless, such expansions enjoy a number of advantages. First, the coeffi-
cients Ofn can be computed efficiently using a variety of numerical quadratures.
The mainstay of this is the observation that the eigenfunctions �n become increas-
ingly oscillatory for large n, thus facilitating the use of efficient computational
schemes for highly oscillatory integrals. These enable the computation of coeffi-
cients one-by-one at a fixed cost per coefficient. In this manner, any M coefficients
can be computed in O .M/ operations. This approach is also completely adap-
tive: increasing M does not require recalculation of existing values. When looking
at the computational cost, such a scheme compares favourably over alternative
approaches, in particular the FFT. On the other hand, unlike in the FFT, the accu-
racy of each computed coefficient is not necessarily coupled to the total number
of coefficients. Still, due to this adaptivity, modified Fourier expansions can suc-
cessfully exploit tools such as the hyperbolic cross to greatly reduce the number of
approximation coefficients. We consider this further in Sect. 3. For a discussion of
the particular quadratures used in modified Fourier expansions, we refer the reader
to [14–16].

Modified Fourier series offer a number of benefits with regard to applications.
First, they lead to considerably better conditioned matrices than polynomial-based
spectral methods for differential equations [2,3]. Second, they allow for cheaper and
faster calculation of spectra of highly oscillatory Fredholm operators [8].

Modified Fourier expansions possess at least one other virtue: Laplace–Neumann
eigenfunctions are known explicitly in a number of non-tensor product domains,
including the equilateral triangle [14]. We consider this further in Sect. 5.

Unfortunately the convergence rate of such expansions may be slow. In Sect. 4
we introduce two techniques to accelerate convergence.
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2 The d-Variate Cube

Univariate modified Fourier expansions were introduced in [15]. Their extension to
the d -variate cube˝ D .�1; 1/d , studied in [16], is obtained by Cartesian products.
If n D .n1; : : : ; nd / 2 N

d and i D .i1; : : : ; id / 2 f0; 1gd are multi-indices then

f .x/ 	
X

i2f0;1gd

X

n2Nd

Of Œi �n �Œi �n .x/; (5)

where �Œi �n .x/ D �Œi1�n1
.x1/ : : : �

Œid �
nd
.xd /. Convergence of the expansion (5) has been

addressed in [2]. As described, this is best studied in so-called Sobolev spaces of
dominating mixed smoothness:

H q
mix.˝/ D ff 2 L2.˝/ W @ˇ1

x1
: : : @ˇd

xd
f 2 L2.˝/; 0 � ˇ1; : : : ; ˇd � qg; q 2 N:

Observe that H qd .˝/ � H
q

mix.˝/ � H q.˝/, where H q.˝/ is the qth classical
Sobolev space. Such spaces occur in a range of applications, including sparse grids
[9] and hyperbolic cross approximations [20, 21]. In relation to modified Fourier
expansions, we have the following result:

Theorem 1 (Adcock [2]). The set f�Œi �n W n 2 N
d ; i 2 f0; 1gdg is dense and

orthogonal in H 1
mix.�1; 1/d .

This theorem highlights the advantage over the Fourier basis. Uniform conver-
gence of the expansion (5) follows immediately from the continuous embedding
H 1

mix.˝/ ,! C. N̋ / [2].
For numerical computations we must truncate the expansion (5) suitably. To do

so, we include only those coefficients n 2 IN , where IN � N
d is finite. Standard

intuition leads to the full index set

IN D fn 2 N
d W 0 � n1; : : : ; nd � N g: (6)

Provided the function f is sufficiently smooth, convergence rates of O
�
N�2�

and O
�
N�1� are observed inside the domain and on the boundary respectively

[2, 19]. Unfortunately jIN j D O
�
N d

�
, rendering such expansions expensive to

construct in two or more dimensions. However, as we now consider, this figure can
be significantly reduced without affecting convergence rates unduly.

3 The Hyperbolic Cross

The majority of coefficients Of Œi �n with indices n in the set (6) have negligible con-
tribution to the overall approximation. An alternative criterion to define IN is to
include only those coefficients with absolute value greater than some tolerance �.
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Due to the simple tensor product setting, the coefficients Of Œi �n are O
�
n�2
1 : : : n�2

d

�
for large n1; : : : ; nd , provided f 2 H 2

mix.˝/. In fact, by applying the univariate
expansion (4) in each variable, we readily obtain a multivariate analogue [2, 16].
Returning to the construction of IN and setting the tolerance � D N�2 we obtain
the hyperbolic cross index set

IN D fn 2 N
d W Nn1 : : : Nnd � N g; (7)

where Nm D maxfm; 1g for m 2 N. A simple calculation (see [13]) verifies that
jIN j D O

�
N.logN/d�1�. This figure grows much more mildly with dimension

than the corresponding value of O
�
N d

�
for the index set (6).

The application of the hyperbolic cross (7) to modified Fourier expansions was
introduced in [13]. As the following theorem demonstrates, this greatly increases
their effectiveness without deteriorating the convergence rate unduly:

Theorem 2 (Adcock [2]). Suppose that fN is the truncated modified Fourier
expansion of f based on (7). Then f .x/�fN .x/ is O

�
N�2.logN/d�1� for x 2 ˝

and O
�
N�1.logN/d�1� for x 2 @˝ .

4 Accelerating Convergence

As demonstrated, the convergence rate of modified Fourier expansion is typically
slow. In this section we discuss two approaches to accelerate convergence.

4.1 The Lanczos Representation and Its Computation

Consider the univariate setting. The quality of the approximation fN is improved if
f satisfies

f .2rC1/.˙1/ D 0; r D 0; : : : ; k � 1; (8)

for some k D 1; 2; : : : (the analogue of periodicity for modified Fourier expansions).
This is manifested in a number of ways. First, recalling (4), we observe more rapid
decay of the coefficients Of Œi �n D O

�
n�2k�2�. Moreover, the expansion fN con-

verges to f in the H 2kC1.�1; 1/ norm [3], and the pointwise convergence rate is
O
�
N�2k�2� in .�1; 1/ and O

�
N�2k�1� at the endpoints [19]. If f does not satisfy

(8) a standard approach is to seek a smooth function p such that

p.2rC1/.˙1/ D f .2rC1/.˙1/; r D 0; : : : ; k � 1; (9)

and decompose f as .f �p/Cp. This is referred to as the Lanczos representation
[18]. Since f �p obeys (8), the new approximation defined by gN D fN �pN Cp
converges at the faster rates prescribed above. Usually the function p is chosen to
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be a polynomial of degree 2k. In view of this fact, this process is often referred to
as polynomial subtraction [17].

Unfortunately, this process requires exact derivatives. Such values (or functions
of .d � 1/ variables when d � 2) are unknown in general. However, if approxi-
mated to sufficient accuracy, the convergence rate of gN need not deteriorate. One
approach to accomplish this is Eckhoff’s method [10].

The approximation gN (a linear combination of a finite modified Fourier sum
and a polynomial) with p satisfying (9) also satisfies cgN Œi�n D Of Œi �n C O

�
n�2k�2�.

To avoid the use of derivatives, we construct a new function gN that satisfies this
condition approximately: cgN Œi�n D Of Œi �n , n D 0; : : : ; N C k, i D 0; 1. With gN
defined in this manner, it can be shown that the convergence rate does not deteriorate
in comparison to polynomial subtraction [4].

The extension of this method to the d -variate cube is achieved by formulating an
approximation gN satisfying

cgN Œi�n D Of Œi �n ; 0 � n1; : : : ; nd � N C k; i 2 f0; 1gd :

In this setting, gN consists of Cartesian products of univariate polynomials and
modified Fourier eigenfunctions. Analysis of this approximation was presented
in [1].

4.2 The Fourier Extension Problem

An alternative to the explicit subtraction of a smooth function interpolating bound-
ary conditions is to enlarge the initial function space. A particular example that
leads to interesting results and analysis is to consider both Laplace–Neumann and
Laplace–Dirichlet eigenfunctions, as pursued in [12]. This combination of two
orthogonal bases is no longer a basis itself, but a frame. It is overcomplete and
therefore many representations of f may exist. The approach taken in [12] to sin-
gle out a useful representation is through a least squares criterion, following earlier
results in [6, 7]. It is shown that exponential convergence is achieved when f is
analytic.

Laplace–Dirichlet eigenfunctions on Œ�1; 1� are cos.n� 1
2
/
x and sinn
x, n D

1; 2; : : :. Combined with (3) and rearranging terms, this leads to an approximation
gN .x/ of the form

f .x/ 
 gN .x/ D 1

2
a0 C

NX
nD1

�
an cosn




2
x C bn sin n




2
x
�
:

Thus one is looking for a periodic function on Œ�2; 2�, to represent f on Œ�1; 1�.
This function has exactly the form of a classical Fourier series, hence the name
Fourier extension. It is shown in [12] that the least squares problem can be converted
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Fig. 1 Log uniform error log10 kf � gNk1 where gN is Eckhoff’s approximation with k D 2

(squares), k D 4 (diamonds), k D 8 (circles) or the Fourier extension approximation (crosses)

into a polynomial approximation problem. Convergence theory and fast algorithms
then follow from existing results on orthogonal polynomials. In particular, assuming
sufficient analyticity of f near Œ�1; 1�, we have (see [12, Theorem 3.14])

f .x/ � gN .x/ 	 .3C 2
p
2/�N ; x 2 Œ�1; 1�:

The extension of this approach to multivariate functions is straightforward in prac-
tice (see [7]), but delicate in theory. The generalisation of the theoretical analysis in
[12] to many dimensions is a topic of current research. Preliminary results are along
the lines of the theory described in Sect. 5.

In Fig. 1 we compare this approach and Eckhoff’s method for univariate and
bivariate examples. Exponential convergence of the former is verified. Despite offer-
ing only algebraic convergence, when k D 8 Eckhoff’s approach yields similar
results.

5 The Non-Tensor Product Case

The identification of modified Fourier expansions with eigenfunctions of the Laplace
operator provides a useful link with geometry. The scope of multivariate modified
Fourier expansions can be extended to include all domains for which eigenfunc-
tions of the Laplace operator are known explicitly. A large and interesting family
of domains consists of the so-called fundamental regions of root systems. These are
simplical domains with special symmetry properties such that R

d can be tiled by
reflecting the domain across all its sides and repeating the process indefinitely. It
was first observed in [5] that eigenfunctions of the Laplace operator are obtained by
symmetrizing classical multivariate Fourier series with respect to the set of symme-
tries described by a root system. The simplest example is the one-dimensional case,
related to even symmetry in the root system A1:

cosn
x D 1

2
ein�x C 1

2
e�in�x:
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In two dimensions, three triangles are associated to root systems: the equilateral tri-
angle (root system A2), the right isosceles triangle (B2) and the triangle with angles
�
2
; �
3

and �
6

(C2). The case of the equilateral triangle has been described in the
context of modified Fourier series in more detail in [14]. In this case, each eigen-
function is a linear combination of six plane waves, and the symmetries involved
are those of the dihedral groupD3. It is expected that the other cases can be treated
similarly and, moreover, the theory of root systems may enable the approximation
of multivariate functions on a long list of three- and higher dimensional simplices.
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Constraint Oriented Spectral Element Method

E. Ahusborde, M. Azaı̈ez, and R. Gruber

Abstract An original polynomial approximation to solve partial differential equa-
tions is presented. This spectral element version takes into account the underlying
nature of the corresponding physical problem. For different types of operators,
this approach allows to all terms in a variational form to be represented by the
same functional dependence and by the same regularity, thus eliminating regularity
constraints imposed by standard numerical methods. This method satisfies automat-
ically different type of constraints, such as occur for the grad(div) and curl(curl)
operators, and this for any geometry. It can be applied to a wide range of physical
problems [Physical Review E, 75(5), 056704 (2007)], including fluid flows, electro-
magnetism, material sciences, ideal linear magnetohydrodynamic stability analysis,
and Alfvèn wave heating of fusion plasmas [Communications in Computational
Physics, 5(2–4), 413–425 (2009)].

1 Introduction

A wide range of physical phenomena can be described by mathematical models
based on a set of coupled partial differential equations. Some operators pose sig-
nificant problems, in particular those that are restricted by physical constraints. For
example, for an incompressible flow, velocity u must satisfy the incompressibility
constraint r � u D 0. For some operators, such as grad(div) and curl(curl) opera-
tors, the solution is restricted by constraints that are an integral part of the solution.
For example, in the case of the grad(div) operator, there are two classes of eigenso-
lutions. The solenoidal modes are infinitely degenerate with �2 D 0 and r � u D 0.
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The second class of irrotational modes are represented by a discrete spectrum with
eigenmodes satisfying r �u D 0. If these strong internal conditions cannot be sat-
isfied precisely, so-called spectral pollution [1] appears and the numerical approach
does not stably converge to the physical solution.

Our goal is to propose an approach taking into account the nature of the physical
problem and avoiding the generation of nonphysical solutions.

2 Constraint Oriented Polynomial Approximation

Let ˝ be a bounded connected open set in IR2, with a Lipschitz-continuous bound-
ary @˝ . To describe the method, we introduce a partition of ˝ without overlap:
˝ D [N

kD1˝k and ˝k \ ˝ 0

k
D ;; 1 � k < k

0 � N: For simplification, we
consider only rectilinear elements with edges collinear to the x, y- axis, that is:
˝k D�ck ; c0

k
Œ��dk ; d 0

k
Œ:

For each integer p, let IPp.˝k/ be the space of restrictions to˝k of polynomials
with two variables and degree less or equal to p with respect to each variable.

We recall the standard quadrature formula: let ˙GLL D f.�i ; 	i /I 0 � i � pg
and ˙GL D f.�i ; !i /I 1 � i � pg respectively denote the sets of Gauss–
Lobatto–Legendre and Gauss–Legendre quadrature nodes and weights associated
to polynomials of degree p (see [2]).

The canonical polynomial interpolation basis hi .x/ 2 IPp. �� 1;C1Œ / built on
˙GLL is given by the relationships:

hi .x/ D � 1

p.p C 1/
1

Lp.�i /

.1 � x2/ L0
p.x/

.x � �i / ; �1 � x � C1; 0 � i � p:
(1)

Denoting by Fk the mapping which sends the square �� 1;C1Œ2 onto ˝k ,
we define the discrete product, for any u and v continuous on ˝: .u; v/h DPN
kD1

j˝k j
4

Pp
iD0

Pp
jD0 u ı Fk.�i ; �j /v ı Fk.�i ; �j /	i	j . j ˝k j is the measure

of ˝k .
Finally, we introduce the Lagrange interpolation operator Ih. For any continu-

ous function ' on ˝ , Ih 'j˝k
belongs to IPp.˝k/ and is equal to ' at all nodes

Fk.�i ; �j /; 0 � i; j � p.
We use the standard notation for the Sobolev spaces H 1.˝/, provided with the

corresponding norms.

2.1 Definition and Properties

We consider the set of functions gi .x/ associated to the canonical basis (1) through
the relationships:

gi .x/ D hi .x/ � ˇiLp.x/; 0 � i � p; (2)
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where the constants ˇi are such that all gi .x/ 2 IPp�1. � � 1;C1Œ /. The functions
gi .x/ have the following properties:

1. Their moments up to order .p � 1/ are equal to those of their corresponding
element in the GLL canonical basis, i.e.,: For 0 � i � p,

Z C1

�1
.gi .x/ � hi .x// xj dx D 0; 8 j; 0 � j � .p � 1/: (3)

The difference .gi .x/ � hi .x// being proportional to Lp.x/ is orthogonal to all
polynomials of degree less or equal to .p � 1/.

2. Interpolation of their corresponding element in the canonical basis at the GL
nodes, i.e.,: For 0 � i � p,

gi .�j / D hi .�j /; 8 j; 1 � j � p: (4)

3. The constants ˇi can be obtained through a series expansion of (1) and one gets:

ˇi D 1

.p C 1/Lp.�i / ; 0 � i � p: (5)

The set of .p C 1/ functions gi .x/ 2 IPp�1. � � 1;C1Œ / is linearly dependent.
However, the preceding properties ensure that any combination of p elements in
the list is linearly independent. We therefore arbitrarily discard one element in the
set fgi .x/gpiD0 (for, instance the first one, g0.x/) and use the remaining elements to
span the IPp�1. � � 1;C1Œ / space.

For any continuous function ' on ��1;C1Œ we consider two polynomial approx-
imations. The Lagrange one, based on the hj basis is given by:

'p.x/ D
pX
jD0

'.�j /hj .x/; (6)

and a second one uses the new basis .gj /, j D 1; � � �p:

'
.0/
p�1.x/ D

pX
jD1

'
.0/
j gj .x/: (7)

The coefficients in expansion (7) can be derived from those of (6) thanks to the p
relationships:

Z 1

�1

�
'p.x/ � '.0/p�1.x/

�
gi .x/ dx D 0; 8 i; 1 � i � p: (8)
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One can easily verify:
Theorem 1.

8 i; 1 � i � p; '
.0/
i D '.�i /C ˛i'.�0/; (9)

where the coefficients ˛i are the unique solutions of:

8 i; 1 � i � p;
pX
jD1

�
gj ; gi

�
˛j D .g0; gi / : (10)

Let’s introduce the projection operator 
.0/
h

defined on ˝ by: for any function f ,



.0/

h
fj˝k

belongs to IPp�1.˝k/ and satisfies:

Z

˝k

�
fj˝k

� 
.0/
h
fj˝k

�
gidx D 0; 8 i; 1 � i � p: (11)

2.1.1 First Numerical Result

The first experiment is made on �� 1; 1Œ divided into N equal elements. Its purpose
is to test the efficiency of the new basis to approximate any given function. For
instance, we consider the function f .x/ D sin

�
.x2 � 1/ � .x C 3/�.

Figure 1 shows the efficiency of 
.0/
h
f to approximate the function f since the

expected algebraic O.N�p/ (see [2, 3]) decrease is observed. Ihf is a piecewise-
polynomial function of degreep on each˝k and continuous across element borders.
It can be used to be derived. The function 
.0/

h
f is a piecewise-polynomial function

of degree p � 1 less regular than Ihf and discontinuous across element borders
when p D 1. It can be used to represent variations in directions without derivatives.
By consequent, the key of our approach is the possibility to use both approximations
Ihf or 
.0/

h
f depending if the function is derived or not.
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Fig. 1 The L2.˝/–norm jjf � 

.0/

h f jj error behavior. Left: as a function of N with p D 1 on a
logarithmic scale. Right: as a function of p with N D 10 on a semi-logarithmic scale
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2.2 Extension to Multidimensional Case

Extension to the multidimensional case is almost straightforward. For a given vector
field u D .ux; uy/, we consider three different possibilities of approximation:

u.0/r .x; y/ D
NxX
eD1

NyX
fD1

pX
iDıe1

pX
jDıf 1

uref
ij gi .xef /gj .yef /; (12)

u.1/r .x; y/ D
NxX
eD1

NyX
fD1

pX
iDıe1

pX
jDıf 1

uref
ij hi .xef /gj .yef /; (13)

u.2/r .x; y/ D
NxX
eD1

NyX
fD1

pX
iDıe1

pX
jDıf 1

uref
ij gi .xef /hj .yef /: (14)

Here, ıe1 and ıf1 are the Kronecker symbols and the index r denotes x or y. Nr
is the number of elements on the r-direction. The piecewise-polynomial functions
u.s/r .s D 0; 1; 2/ have different regularity and different local polynomial degree.

Remark 1. Following the relation (9), one can verify that if the vector field belongs
to .H 1

0 .˝//
2, all the coefficients in the expansions (12)–(14) are the same while

the functions are different. The approximation of the vector field u D .ux; uy/ can
be achieved using any of the following collocative expressions according to the
functional dependence and the regularity required:

u.0/r .x; y/ D
NxX
eD1

NyX
fD1

pX
iDıe1

pX
jDıf 1

ur.�efi ; �
ef
j / gi .xef /gj .yef /; (15)

u.1/r .x; y/ D
NxX
eD1

NyX
fD1

pX
iDıe1

pX
jDıf 1

ur.�efi ; �
ef
j / hi .xef /gj .yef /; (16)

u.2/r .x; y/ D
NxX
eD1

NyX
fD1

pX
iDıe1

pX
jDıf 1

ur.�efi ; �
ef
j / gi .xef /hj .yef /: (17)

The approximation u.0/r will be used when ur is not derived whereas the approx-
imations u.1/r and u.2/r will be used respectively when ur is derived in the directions
x and y.
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3 The Constraint Oriented Effect

To illustrate the capability of our approach to satisfy different constraints with-
out changing the definition of the spectral element, let’s consider a formal test
problem which consists in solving an eigenvalue problem written on the square
˝ WD Œ�1;C1�2 cut intoN 2 elements. The variational form of our problem consists
in: Finding u 2 .H 1

0 .˝//
2 and � such that:

Z

˝

ru � rvdxC ˛
Z

˝

r � u r � v dxC ˇ
Z

˝

r � u � r � vdx D �2
Z

˝

u � v dx:

When ˇ D 0 and ˛ is large enough, the resulting eigenvalues are those of Stokes
and the associated eigenvectors are divergence-free. For ˛ D 0 and ˇ large enough,
the eigenvalues remain the same but the associated eigenvectors become curl-free.

To provide a stable element we suggest to replace in (18) the two penalty bilinear
forms by a stable approximation using the new basis. The discrete version is then:
Find uh D .ux; uy/ 2 Xh and � such that:

Ah.uh; vh/C ˛Bh.uh; vh/C ˇ Ch.uh; vh/ D �2
Z

˝

uh � vh dx; 8vh 2 Xh;

(18)
where:

Ah.uh; vh/ D .ruh;rvh/h; (19)

Bh.uh; vh/ D
 
@u.1/x
@x
C @u.2/y

@y
;
@v.1/x
@x
C @v.2/y

@y

!

h

; (20)

Ch.uh; vh/ D
 
@u.1/y
@x
� @u.2/x

@y
;
@v.1/y
@x
� @v.2/x

@y

!

h

: (21)

Xh is the space of continuous piecewise-polynomial functions vanishing on @˝ .
We remark that all terms in the right-hand side of (20) and (21) are piecewise-

polynomial functions with a local degree equal to p � 1, a basic requirement to
ensure a stable approximation for grad(div) and curl(curl) operators.

3.1 Numerical Results

This section discusses some numerical results related to the problem (18) showing
its numerical efficiency in comparison with classical approaches. We start with case
ˇ D 0 and ˛ D 105.

The eigenvalue problem (18) gives 2.Np�1/2 eigenvalues and associated eigen-
vectors corresponding to the degrees of freedom in Xh. Among these eigenvalues,
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Fig. 2 The dependence of the grad(div) spectrum computed using a standard hp method with p
for fixed N D 4 (left), and with N for fixed p D 4 (right)

there are the Stokes eigenvalues and the non-zero eigenvalues of the grad(div) oper-
ator multiplied by ˛. We are particularly interested in predicting the number of
Stokes eigenvalues NS . This number corresponds to the size of the kernel of the dis-
cretized grad(div) operator, ie to the number of zero eigenvalues. It can be prooved
that NS D .Np � 2/2. Consequently, the resolution of the problem (18) must lead
to .Np � 2/2 Stokes eigenmodes. The .Np/2 � 2 remaining eigenmodes are those
of the grad(div) operator multiplied by ˛.

Thus, the main difficulty to solve the problem (18) consists in providing a sta-
ble discretization to the grad(div) operator. If a standard approach is chosen, the
solution to the problem (18) is searched in Xh D IP 0p .˝/

2. With such a choice
the discretization of the grad(div) operator is unstable and so-called spectral pol-
lution appears [1]. Indeed, Fig. 2 represents the spectrum of the grad(div) operator
computed using a standard hp method as a function of p (left) and N (right).

In both cases, besides the expected eigenvalues �i .1 � i � 4/, the class of
divergence-free eigensolutions expands to an unphysical discrete spectrum. Conse-
quently, in the resolution of the problem (18) the number of Stokes eigenvalues is
false and besides the non-zero eigenvalues of the grad(div) operator, we can notice
the presence of spurious eigenvalues.

Our approach offers a stable discretization of grad(div) operator and conse-
quently we obtain .Np � 2/2 Stokes eigenvalues and no spurious modes.

Figure 3 illustrates the convergence of the difference � between the four lowest
Stokes eigenvalues computed by our method with those produced by Leriche et al.
in [4]. The left part of the figure exhibits the error convergence as a function of p for
N D 2 on a semi-logarithmic scale. The error is exponentially decreasing. The right
part of the figure shows the same error convergence as a function of N for p D 1

on a log-log diagram. Here, we observe an algebraic decrease.
The second experiment concerns the case ˛ D 0 and ˇ D 105. Here the main

difficulty consists in providing a stable discretization of the curl(curl) operator. The
numerical conclusion is almost the same than for the previous study. We limit ourself
to the production of the graphs (Fig. 4).
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Fig. 3 Convergence plots obtained using the penalty method for the four lowest divergence-free
modes (circle D �1, square D �2, diamond D �3, triangle D �4). Left: as a function of p with
fixed N D 2. Right: as a function of N with fixed p D 1
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Fig. 4 Convergence plots obtained using the penalty method for the four lowest curl-free modes
(circle D �1, square D �2, diamond D �3, triangle D �4). Left: as a function of p with fixed
N D 4. Right: as a function of N with fixed p D 1

The similarity between the two results proves the efficiency of our approach to
solve two different constraints without a significant modification of the spectral ele-
ment. The same tools remain valid to ensure the stability and expected convergence.
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Convergence Rates of Sparse Tensor GPC FEM
for Elliptic sPDEs

Marcel Bieri, Roman Andreev, and Christoph Schwab

Abstract We propose a novel class of sparse tensor algorithms for the numerical
solution of stochastic elliptic PDEs. The methods are based on a hierarchic dis-
cretization in both, physical and probability space. The discretization spaces are then
intertwined in a sparse tensor product fashion, leading to algorithms of log-linear
complexity. We will present this idea in the framework of the stochastic Galerkin
method. Theoretical results as well as numerical examples indicate the superior-
ity of this sparse tensor product algorithms, compared to the full tensor product
approaches used so far.

1 Introduction

Most, if not all, engineering models are subject to significant uncertainties, due to
either variabilities in the model parameters or a fundamental lack of knowledge of
the processes and quantities identified with the model. Neglecting the latter type of
model uncertainties, we will only consider inherent parameter uncertainties mod-
eled as random fields. Our model problem under consideration, is the following
stochastic diffusion problem


 �div.a.!; x/ru.!; x// D f .x/ in D;

u.!; x/jx2@D D 0; P�a:e: ! 2 ˝ (1)

where D � R
d is a Lipschitz domain, .˝;˙;P / a complete probability space and

the diffusivity a a random field. To guarantee existence and uniqueness of a solution,
we assume f 2 H�1.D/ and, by Lax-Milgram,
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P



! 2 ˝ W amin � ess inf

x2D
a.!; x/ ^ ess sup

x2D
a.!; x/ � amax


D 1; (2)

i.e. the diffusion coefficient is bounded from above and below.
All numerical schemes to approximate the solution u to (1), e.g. [1,2,8,9,11,12],

consist of a sequence of stochastic approximations, e.g. polynomial chaos (PC) or
collocation interpolation operators, to the law of the random solution and a spa-
tial approximation, e.g. by finite elements, chosen independently of the stochastic
approximant. Thus, they exhibit an overall complexity, i.e. total number of degrees
of freedom, ofO.ND �N˝/, whereND denotes the number of degrees of freedom
of the spatial discretization and N˝ the number of stochastic degrees of freedom,
e.g. number of terms in the PC expansion. This is prohibitive, especially if a fine
resolution of the spatial behavior or a description of the random input by a large
number of variables is required, e.g. due to short correlation lengths in the input
random fields. The main idea of this work is to choose suitable hierarchic approx-
imations in space and random parameter domain and combine them in a sparse
tensor product fashion, leading to algorithms ofO.ND logN˝CN˝ logND/ over-
all complexity, and hence a considerable reduction in computation time and memory
requirement.

The outline of this work is as follows: In Sect. 2, we will derive a parametrized
form of the model problem (1) and associated variational formulations. In Sect. 3,
we will then present the sparse tensor stochastic Galerkin method, along with theo-
retical results on the convergence rates. Finally, in Sect. 4, we will show a numerical
example to underline the superiority of this novel approach, compared to existing
ones.

We note here, that the present work is based on [4, 5] and the theoretical results
presented here, can be found therein. Moreover, we mention that the same idea
is applicable in the framework of stochastic collocation algorithms, and has been
thoroughly investigated in [3, 4].

2 Parametrization of the Model Problem

The sparse tensor stochastic Galerkin method presented here, relies on a separation
of spatial and stochastic parts in the input parameter a. Assuming so, one can then
derive the parametrized variational formulation of the model problem, on which the
Galerkin scheme is based.

2.1 Separation of Stochastic and Deterministic Variables

Assumption 1. We assume that the diffusion coefficient is given by a series of the
form
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a.!; x/ D Ea.x/C
X
m	1

 m.x/Ym.!/; (3)

where Ea denotes the mean field, the  m are L2.D/-orthonormalized functions
in L1.D/, satisfying fk mkL1gm2N 2 `1, and Ym W ˝ ! R are pairwise
uncorrelated random variables.

Such a series can e.g. be derived from a so-called Karhunen-Loève (KL) expan-
sion of the random field a. The KL expansion is guaranteed to exist if we assume
that a has finite second moments, i.e. the mean field Ea and covariance Ca exist.
In this case, the covariance operator Ca W L2.D/ �! L2.D/, defined through
.Cau/.x/ WD R

D Ca.x; x
0/u.x0/ dx0, has, under some general assumptions on Ca, a

countable sequence of eigenpairs .�m; 'm/m2N. Setting  D p�m'm, the series
(3) is in fact the KL series of a.

To be able to numerically handle the series (3), it is truncated afterM terms, i.e.
we define

aM .!; x/ D Ea.x/C
MX
mD1

 m.x/Ym.!/; (4)

where M is usually determined in the course of the discretization process.

2.2 Parametric Deterministic Problem

We make the following assumption on the random variables Ym and deterministic
functions  m in the series representation (3) of a.

Assumption 2. (a) The family .Ym/m	1 W ˝ ! R is independent,

(b) With each random variable Ym.!/ in (3), is associated a complete probability
space .˝m; ˙m; Pm/, with

(i) The range of Ym, �m WD Ran.Ym/ � R, is compact and, after eventually
rescaling, equal to Œ�1; 1� for all m,

(ii) The probability measure Pm admits a uniform probability density function
	m D 1

2
such that dPm.!/ D 	m.ym/dym, m 2 N, ym 2 �m, and

(c) The deterministic functions  m are decaying at least algebraically to zero, i.e.
k mkL1 � Cm�s with s > 1.

Due to the independency, one can view the Ym as different coordinates in
probability space, and we therefore set ym WD Ym.!/ 2 �m. Furthermore, we define

� WD �1 � � � � � �M ; y D .y1; : : : ; yM / 2 �; 	.y/ D
MY
mD1

	m.ym/:
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Hence, the (truncated) diffusion coefficient can equivalently be stated as

aM .y; x/ D Ea.x/C
MX
mD1

 m.x/ym: (5)

By L2
.� IH 1
0 .D//, we denote the Bochner space of functions v W � ! H 1

0 .D/,
for which kv.y; �/kH1

0
.D/ W � ! R belongs to L2
.� /. It holds

L2
.� IH 1
0 .D// Š L2
.� /˝H 1

0 .D/; (6)

where ˝ denotes the tensor product between separable Hilbert spaces, see e.g. [10,
Chap. 1].

Replacing the random coefficient a in (1) by its parametrized version (5) and
multiplying with a test function v, gives rise to the parametric deterministic varia-
tional formulation: find u 2 L2
.� IH 1

0 .D//, s.t.

b.u; v/ D l.v/; 8 v 2 L2
.� IH 1
0 .D//; (7)

where the bilinear and linear form b and l , respectively, are given by

b.u; v/ D E

�Z

D

aM .y; x/ru.y; x/ � rv.y; x/dx
�
; l.v/ D E

�Z

D

f .x/v.y; x/dx
�
:

(8)
The unique solvability of (7) is a direct consequence of (2).

3 Sparse Tensor Stochastic Galerkin Method

3.1 Sparse Tensor Galerkin Formulation

In stochastic Galerkin finite element methods (sGFEM), we discretize the varia-
tional formulation (7) by Galerkin projection onto a hierarchic sequence of finite
dimensional subspaces of L2
.� IH 1

0 .D// in (6), i.e.

V �0 � V �1 � � � � � L2
.� / and V D0 � V D1 � � � �H 1
0 .D/ (9)

We introduce detail spacesW �
l1

andW D
l2

such that

V �l1 D V �l1�1 ˚W �
l1

and V Dl2 D V Dl2�1 ˚W D
l2

for l1; l2 D 1; 2; : : : (10)

where l1; l2 denote the stochastic and spatial level of refinement, respectively. Fur-
ther, we set W �

0 WD V �0 and W D
0 WD V D0 . The sums in (10) are direct, so

that the (finite-dimensional) approximation spaces V �L and V DL admit a multilevel
decomposition
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V �L D
LM

l1D0
W �
l1

and V DL D
LM

l2D0
W D
l2
:

We denote by

V �L ˝ V DL D
M

0�l1;l2�L
W �
l1
˝W D

l2
� L2
.� /˝H 1

0 .D/ (11)

the (full) tensor product space of the finite dimensional component subspaces
V DL and V �L , respectively. However, we approximate the parametric deterministic
problem (7) by Galerkin projection onto the sparse tensor product space

V �L Ő V DL WD
M

0�l1Cl2�L
W �
l1
˝W D

l2
: (12)

Hence, the sparse tensor sGFEM discretization can be written as, in variational
form: find Ou 2 V �L Ő V DL

b.Ou; v/ D l.v/ 8 v 2 V �L Ő V DL ; (13)

where b and l are given by (8).

3.2 Hierarchic Discretization in L2	.� /

Here, we propose a best-N -term approximation of u W � ! H 1
0 .D/, based on an

expansion in Legendre polynomials.
By N

M
0 denote the set of all multiindices of lengthM . If ˛ 2 N

M
0 , denote by

L˛.y/ WD L˛1
.y1/ � � �L˛M

.yM /

the tensorized Legendre polynomial of degree ˛. Hence, u can be represented in
terms of Legendre polynomials as

u.y; x/ D
X

˛2N
M
0

u˛.x/L˛.y/; (14)

with ‘coefficients’ u˛ 2 H 1
0 .D/. For a parameter � > 0 and a level l1 2 N0, define

the index sets

� .l1/ WD arg max
��N

M
0

j�jDd2�l1 e

 X
˛2�
ku˛kH1

0

!
� N

M
0 ; l1 D 0; 1; 2; : : : (15)
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and the truncated Legendre expansion

u�� .l1/ D
X

˛2�� .l1/

u˛.x/L˛.y/ (16)

Given the space � .l1/, the stochastic approximation spaces in (9) are defined
by

V �l1 WD fv 2 L2
.� / W v D
X

˛2�� .l1/

v˛L˛; v˛ 2 Rg:

The index sets � .l1/ are in general not computationally available. In Sect. 4, how-
ever, we will present an algorithm to find index sets Q� .l1/, which prove to be close
to optimal in numerical examples. With the L2
-projection P�

l1
W L2
.� / ! V �

l1
,

defined by P�
l1

u WD u�� .l1/ as in (16), the following approximation properties hold:

Proposition 1. Let s > 1 be the decay rate of  m.x/ as assumed in Assumption 2.
If u solves (7), then, for each 0 < r < s � 3

2
there exists a constant C.r/, s.t. for

every � > 0 and for the sequence of projections P�
l1

, corresponding to the index
sets � .l1/ in (15), it holds

ku � P�l1 ukL2
�.� IH1

0
.D// � C.r/.N�

l1
/�r jujAr.H

1
0
.D//; (17)

where N�
l1
WD j�.l1/j or, equivalently,

ku � P�l1 ukL2
�.� IH1

0
.D// � C.r/2�l1�r jujAr .H

1
0
.D//: (18)

In the above proposition, Ar .H
1
0 / denotes the space of functions inL2
.� IH 1

0 .D//,
which can be best-N -term approximated at rate r . For details and a proof, we refer
to [5, Sect. 3.2] and [4, Sect. 7.1].

3.3 Hierarchic Discretization in D

As a basis for the spatial approximation spaces V D
l2

, we choose linear finite element
wavelets, based on a nested sequence fTl2gl2	0 of regular simplicial triangulations
of D, i.e.

V Dl2 WD S1.D;Tl2/ D
˚
u 2 H 1

0 .D/ W ujT 2P1.T / for T 2 Tl2
�
:

For the construction of such wavelet bases, we refer to [5, Sect. 3.3] and, more
generally, to [6]. They satisfy the approximation property

ku � PDl2 ukH1.D/ � C2�l2tkukH1Ct .D/; t 2 Œ0; 1�; (19)
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or, w.r.t. ND
l2

,

ku � PDl2 ukH1.D/ � C.ND
l2
/�t=dkukH1Ct .D/; t 2 Œ0; 1�; (20)

where PD
l2
W L2.D/! V D

l2
denotes the H 1-projection onto V D

l2
.

3.4 Convergence Rates of Sparse Tensor sGFEM

In the present section, we state our main result, that the sparse tensor sGFEM con-
verges algebraically in terms of the total numbers of degrees of freedom. We define
the sparse tensor product projection operator OPL W L2
.� /˝H 1

0 .D/ ! V �L Ő V DL
by

. OPLv/.y; x/ WD
X

0�l1Cl2�L

�
P�l1 � P�l1�1

�
˝
�
PDl2 � PDl2�1

�
v.y; x/:

Proposition 2. Let the solution u to the model problem (1) satisfy

u 2 Ar..H
1Ct \H 1

0 /.D// for some 0 < r < s � 3
2
; 0 < t � 1 (21)

with s > 3
2

as in Assumption 2. Let Ou denote the sGFEM solution to the problem
(13) w.r.t. the sparse tensor product spaces sequence V �L Ő V DL , defined in (12).
Then, there exists a constant C.ˇ/ > 0, independent of L andM , such that

ku � OukL2
�.� IH1

0
.D// � C.ˇ/L1Cˇ ON�ˇ

L kukAr .H1Ct .D//; (22)

where ONL WD dim.V �L Ő V DL / and ˇ D min.r; t=d/.

Hence, by using the sparse tensor formulation of the sGFEM, we retrieve the less of
the two convergence rates r and t

d
, stemming from the stochastic (17) and spatial

(20) discretization, respectively. In a full tensor approach (11), on the other hand,
the convergence rates can be shown to be

ku � PDL ˝ P�L uk � C.NL/� ŇkukAr ..H
1
0

\HpC1/.D//; (23)

with Ň D .d=t C 1=r/�1, see [5, Remark 3.7].
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4 Implementation and Numerical Examples

In this final section, we will first provide an algorithm to identify a quasi-optimal set
Q� .l1/ and then show a numerical example which confirms the theoretical results

presented in Sect. 3.4.

4.1 Localization of Quasi-Best-N-Term Coefficients

The identification of Q� .l1/ is based on the observation, proved in [5], that the
decay of the coefficients  m of the input random field determines the decay of the
coefficients u˛ in the expansion (14). Precisely, one can show that

ku˛kW .D/ . ��˛ WD
Y
m	1

��˛m
m

where ��1
m . k mkL1m1Cı and ��1

m . m�sC.1Cı/, with s given as in Assumption
2. Hence, the index sets Q� .L/ consist simply of the d2�Le largest upper bounds
��� , i.e.

Q� .L/ WD arg max
��N

M
0

j�jDd2�Le

 X
˛2�

��˛
!
� N

M
0 ; l1 D 0; 1; 2; : : : (24)

It has been shown in [5], that the computation of these index sets can be done linear
in time and memory requirement, w.r.t. to their size.

4.2 Numerical Example

We consider a problem of the form (1) on the unit square D D Œ�1; 1�2 with a
diffusion coefficient a given by a series as in (3). To verify the convergence result
provided by Proposition 2, we choose  mn.x/ D

p
�m�n'm.x1/'n.x2/ where

�m D 85=2

.
.2m � 1//5 ; 'm.xi / D sin

�
xi C 1p
2�m

�
; i D 1; 2;

hence the sequence k mkL1.D/ exhibits an algebraic decay with rate s D 5
2

, which,
by Proposition 1, in turn implies a stochastic rate of r D 1. Furthermore, we assume
Ea.x/ D x1 C 5 and f � 1. Using piecewise linear wavelets in space corresponds
to a spatial approximation rate t

d
D 1

2
, provided the solution is accordingly regular.

Hence, by Proposition 2, we expect a sparse tensor rate of ˇ D 1
2

while as in the full
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Fig. 1 Left: Convergence of the solution computed by a sparse tensor Galerkin (STG), full ten-
sor Galerkin (FTG) and Monte Carlo (MC) method. Right: Corresponding estimated orders of
convergence

tensor case we expect a rate Ň D 1
3

, see (23). Those rates are exactly retrieved by the
numerical experiment as one can see in Fig. 1. There, we plot the relative error of the
computed solutions in the L2
.� IH 1

0 .D//- and L2
.� IL2.D//-norm, respectively,
the expected convergence of the Monte Carlo method and the estimated order of
convergence, computed between consecutive data points.
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A Conservative Spectral Element Method
for Curvilinear Domains

Mick Bouman, Artur Palha, Jasper Kreeft, and Marc Gerritsma

Abstract This paper describes a mimetic spectral element method on curvilinear
grids applied to the Poisson equation. The Poisson equation is formulated in terms
of differential forms. The spectral basis functions in which the differential forms are
expressed lead to a metric free discrete representation of the gradient and the diver-
gence operator. Using the fact that the pullback operator commutes with the wedge
product and the exterior derivative leads to a mimetic spectral element formulation
on curvilinear grids which displays exponential convergence and satisfies the diver-
gence exactly. The robustness of the proposed scheme will be demonstrated for a
sample problem for which exponential convergence is obtained.

1 Introduction

Mimetic discretization schemes aim to reformulate partial differential equations
in discrete form such that its structure is preserved as much as possible. Many
invariants/symmetries can be described in terms of algebraic topology, where these
operators can be defined without any reference to metric. The continuous counter-
part of Algebraic Topology is Differential Geometry, expressing the variables in
terms of differential forms. The continuous description is necessary for the expres-
sion of the metric dependent part. The relation between the continuous formulation
in terms of differential forms and algebraic topology can be found in [1–5, 9, 12].
Recently, these ideas have also been introduced for spectral methods, [7, 10, 11]. In
this paper these ideas are extended to curvilinear domains.
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2 The Poisson Equation in Terms of Differential Forms

Consider
div q D f; u D grad�; q D u; (1)

in a domain ˝ , with n D dim.˝/. Along the boundary a combination of �
and q �n is prescribed, where n is the outward unit normal to @˝ . An equivalent
representation in terms of differential forms is given by

dq.n�1/ D f .n/; d�.0/ D u.1/; q.n�1/ D ?u.1/: (2)

Here �.0/ is a 0-form, u.1/ a 1-form, q.n�1/ a .n � 1/-form and f .n/ a n-form in
T �˝ , the cotangent bundle of ˝ . d is the exterior derivative which maps k-forms
onto .k C 1/-forms and ? is the Hodge-? operator which establishes an isometry
between k-forms and .n� k/-forms.

The wedge product, ^, is an anti-symmetric, multi-linear operator which maps
k-forms andm-forms onto .k Cm/-forms, i.e.,

^ W k.˝/ �m.˝/ 7! kCm.˝/; (3)

with
˛.k/ ^ ˛.k/ � 0.2k/ ; 8˛.k/ 2 k.˝/; (4)

where k.˝/ is the space of k-forms on ˝ . If we define an inner-product, .�; �/ for
k-forms in terms of its vector proxies, the Hodge-? operator maps

? W k.˝/ 7! .n�k/ .˝/ ; (5)

defined by

�.k/ ^ ?�.k/ WD
�
�.k/; �.k/

�
!.n/; (6)

where !.n/ is the normalized n-form which satisfies !.n/ ^ ?!.n/ D !.n/. We have
that

? ?�.k/ D .�1/k.n�k/ �.k/; (7)

for a metric with positive signature.
A mapping ˚ W ˝ 0 7! ˝ induces a map ˚� W k.˝/ 7! k.˝ 0/,

called the pullback operator. The pullback operator maps differential forms over˝
to differential forms over˝ 0, such that for all ˛.k/ 2 k.˝/ we have

Z

˚.˝0/

˛.k/ �
Z

˝0

˚�˛.k/: (8)

For the spectral method on arbitrary domains, we rely on two important properties
of the pullback operator:
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1. The pullback operator commutes with the exterior derivative: For all ˛.k/ 2
k.˝/

˚� �d˛.k/
�
D d

�
˚�˛.k/

�
I (9)

2. The pullback operator is an algebra homomorphism: For all ˛.k/ 2 k.˝/ and
ˇ.m/ 2 m.˝/

˚�
�
˛.k/ ^ ˇ.m/

�
D
�
˚�˛.k/

�
^
�
˚�ˇ.m/

�
: (10)

Using these properties of the pullback operator we can transform (2) from an
arbitrary curvilinear domain˝ to an orthogonal domain ˝ 0

d˚�q.n�1/ D ˚�f .n/ ; d˚��.0/ D ˚�u.1/ ; ˚�q.n�1/ D ˚� ?
�
˚���1˚�u.1/:

(11)
Introducing the transformed variables Q̨ .k/ D ˚�˛.k/, this gives

d Qq.n�1/ D Qf .n/; d Q�.0/ D Qu.1/; Qq.n�1/ D Q?Qu.1/; (12)

where
Q? WD

�
˚� ?

�
˚���1� W k �˝ 0� �! .n�k/ �˝ 0� : (13)

Note that (12) represents the Poisson equation mapped onto the orthonormal domain,
˝ 0.

Now that we have transformed our problem form curvilinear coordinates in ˝
to orthogonal coordinates in ˝ 0, we can use the mimetic spectral element scheme
described in the next section. Once we have solved (12) for Q�.0/ and Qq.n�1/, we
retrieve the solution in physical space by pre-multiplication by .˚�/�1, such as

�.0/ D �˚���1 Q�.0/; q.n�1/ D �˚���1 Qq.n�1/: (14)

For a more extensive discussion on differential forms see, for instance, [1, 6].

3 Discretization of the Transformed Poisson Equation

Gauss-Lobatto Grid Let n D 2 and ˝ 0 D Œ�1; 1�2 with coordinates .�; �/, then
the k-forms can be expanded in terms of Lagrange and edge functions. Consider
the Gauss-Lobatto-Legendre (GLL) nodes in the interval Œ�1; 1� given by theN C1
zeros, �i , of the polynomial

�
1 � �2�L0

N .�/. Let hi .�/ be the Lagrange polynomials
through the GLL-nodes,

hi .�j / D
8
<
:
1 if i D j

0 if i ¤ j
; i; j D 0; : : : ; N: (15)
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The edge functions, ei .�/, are expressed in terms of the Lagrange functions as

ei .�/ D �
i�1X
kD0

dhk.�/ D �
i�1X
kD0

dhk

d�
d� ; i D 1; : : : ; N: (16)

The edge functions satisfy

Z k

k�1

ei .�/ D
8
<
:
1 if i D k

0 if i ¤ k
; i; j D 0; : : : ; N: (17)

See [7] for a derivation and properties of the edge functions.
These basis functions can be seen as differential forms, where hi .�/ is a 0-form

and ei .�/ a 1-form. Now any k-form (0 � k � n) can be constructed by selecting
one of the two for each direction, as will be shown below.

Expand the normal flux Qq.1/ in

�
Qq.1/

�N
.�; �/ D �

NX
iD1

NX
jD0

q
�
i;j ei .�/hj .�/C

NX
iD0

NX
jD1

q

i;jhi .�/ej .�/; (18)

where qi;j and q�i;j are the normal flux components as shown in Fig. 1. Let

� Qf .2/
�N

.�; �/ D
NX
iD1

NX
jD1

fi;j ei .�/ej .�/; (19)

and insert this in the equation d Qq.1/ D Qf .2/, we obtain

Fig. 1 Gauss-Lobatto grid
and locations of q�i;j and q�i;j
for N D 2 −1 0 1
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NX
iD1

NX
jD1

h
q

i;j � qi�1;j C q�i;j � q�i;j�1 � fi;j

i
ei .�/ej .�/ D 0: (20)

Since, the basis functions, ei .�/ are linearly independent, this can only be satisfied
when

q

i;j � qi�1;j C q�i;j � q�i;j�1 � fi;j D 0 ; i; j D 1; : : : ; N: (21)

The result is a finite-volume formulation for the divergence relation. It can be shown
that this is an exact, metric-free discretization, [7]. The discrete divergence equation
becomes

Dq D f; (22)

where matrixD consists only of the values �1, 0 and 1.

Extended Gauss Grid The gradient equation, d Q�.0/ D Qu.1/, will be discretized
on a second grid which is dual to the GLL grid. The reason for the two dual grids
stems from the fact that the variables in the divergence equation are externally ori-
ented with respect to the geometric objects they are associated with, whereas the
variables in the gradient equation are internally oriented with respect to the under-
lying geometric elements, see [9, 12] for a lucid explanation of this difference. The
dual grid consists of the Gauss points plus boundary points, which are the zeros of
the Legendre polynomial LN . Q�i / complemented with nodes on the boundary, see
Fig. 2. This grid will be referred to as the extended Gauss grid. Let Qhi .�/ be the
one-dimensional Lagrange polynomial through the extended Gauss points, then the
expansion of Q�.0/ is given by

� Q�.0/
�N

.�; �/ D
NX
iD1

NX
jD1

�i;j Qhi .�/ Qhj .�/ for �; � 2 ˝ 0; (23)

Fig. 2 Extended Gauss grid
and the locations of �.0/i;j for
N D 2 −1 1

−1

1

f0,2

f0,1

f1,0 f2,0

f1,1 f2,1 f3,1

f1,2 f2,2 f3,2

f1,3 f2,3
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for the interior part of domain˝ 0 and

� Q�.0/
�N

.�; �/ D

8
ˆ̂̂
<
ˆ̂̂
:

�.�;�1/ DPN
iD1 �i;0 Qhi .�/

�.�; 1/ DPN
iD1 �i;NC1 Qhi .�/

�.�1; �/ DPN
jD1 �0;j Qhj .�/

�.1; �/ DPN
jD1 �NC1;j Qhj .�/

(24)

for the boundary of the domain, @˝ 0.
If we discretize Qu.1/ along the edges of the dual grid, one can show that the gra-

dient equation is also metric-free and exact, see [7]. The discrete gradient operator
on the extended Gauss grid is directly related to the divergence matrix defined on
the Gauss-Lobatto grid (22), as

G D �DT : (25)

Hodge-?Operator The discrete Hodge-? operator maps k-forms on the extended
Gauss grid to .n � k/-forms on the GLL grid, thus establishing the connection
between the two dual meshes. This connection is based on the definition of the
Hodge-? operator (6), integrated over the domain˝ , and is written as

Z

˝

�
q.1/; ?d�.0/

�
!.n/ D

Z

˝

��
˚���1 Qq.1/; ?d �˚���1 Q�.0/

� �
˚���1 Q!.n/

D
Z

˝

�
˚���1 Qq.1/ ^ ? ? �˚���1 d Q�.0/

D
Z

˝0

Qq.1/ ^˚� ? ?
�
˚���1 d Q�.0/

D �
Z

˝0

Qq.1/ ^ d Q�.0/

D �
Z

@˝0

Qq.1/ ^ Q�.0/ C
Z

˝0

d Qq.1/ ^ Q�.0/; 8Qq.1/: (26)

This is the support operator method proposed by Hyman et al., [8]. The divergence
operator was already defined in (20), the gradient operator and Hodge-? operator,
?d , are implicitly defined in (26). At the righthand side a division is made between
the domain interior and its boundary. Note that the complete righthand side is inde-
pendent of any mapping and can thus be integrated on the standard domain ˝ 0. All
the metric is in the lefthand side. This connection relation is given in a variational
form, as is common in finite element methods.

For the implementation, (18) is substituted in (26) for Qq.n�1/, (23) is used for
the domain integral and (24) for the boundary integral. By numerical integration the
discrete Hodge,H is found. The discrete values � and q are found by solving
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�
H DT

D 0

� �
q
�

�
D
�
0

f

�
: (27)

4 Results

In this section we want to establish that div q D f is satisfied exactly on curvi-
linear grids (implying that the scheme is conservative) and that the convergence
rate toward the exact solution is exponential in the L2-norm. Consider therefore the
exact solution given by

�.x; y/ D sin.
x/ sin.
y/; .x; y/ 2 Œ�1; 1�2: (28)

Curvilinear coordinates are obtained by the mapping ˚.�; �/ D .x; y/ given by

x.�; �/ D � C c sin.
�/ sin.
�/; (29)

y.�; �/ D �C c sin.
�/ sin.
�/; �; � 2 Œ�1; 1�:

The shape parameter c is used to create the curvilinear coordinate system, see Fig. 3.
Figure 4 shows the convergence of the error in the L2-norm of �.0/ and q.1/ as a
function of the polynomial degreeN . Also depicted in this figure is the interpolation
error of the exact solution, denoted by k�ex��kL2 . This figure shows that exponen-
tial convergence is retained in curvilinear coordinates even for the self-overlapping
case c D 0:6. Figure 4 also demonstrates that the divergence equation is satisfied up
to machine precision for all grids and all polynomial degrees N in the L1- and L1
norm, which is a direct consequence of the fact that (21) is metric-free and exact.
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Fig. 3 Three grids with, from left to right, increasing shape parameter c
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Fig. 4 Convergence of L2 error for �.0/ and q.1/, and the L1 error of the divergence equation, as
a function of the polynomial degree for the three grids

5 Concluding Remarks

In this paper a framework is described that leads to a finite-volume like metric-free
discretization of the divergence and gradient operators. These equations are satisfied
exactly, independent of the shape of the grid and the polynomial degree used in the
approximation. This is a consequence of the use of the edge functions. The metric
dependent part of the Poisson equation is in the Hodge-? operator, for which the
support operator method is introduced. Therefore the conservative spectral element
method presented is a combination of a finite volume method for the first-order
derivatives and a higher-order finite element method for the Hodge-? relation.

Although we considered one spectral element only in this paper, the extension
to multiple elements follows naturally. This extension will be published shortly.
Another development which fits nicely into this framework is the extension to
anisotropic steady diffusion problems, such as considered by Hyman et al., [8].
These results will also be presented in future publications.
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An Efficient Control Variate Method
for Parametrized Expectations

Sébastien Boyaval

Abstract Two new variance reduction approaches have been recently introduced
in [A variance reduction method for parametrized stochastic differential equa-
tions using the reduced basis paradigm, Commun. Math. Sci. 8, 2010], to speed
up the Monte-Carlo evaluations of the expectations of many parametrized random
variables at many values of the parameter, when the random variables are scalar
functional of parametrized Itô stochastic processes.

The two approaches make an original use of ideas previously developed in the
certified reduced-basis method initiated by [Reliable real-time solution of para-
metrized partial differential equations: Reduced-basis output bounds methods, JFE,
124(1):7–80, 2002]. Indeed, although the reduced-basis method is now developed
by many contributors and allows one to fast compute many parametrized solutions
to a large variety of partial differential equations, it accelerates only deterministic
computational methods. The variance reduction viewpoint allows one to extend the
use of some essential reduced-basis ideas to probabilistic computational methods.
(We refer to the recent review [Reduced Basis Techniques for Stochastic Problems,
Archives of Computational Methods in Engineering, December 2009] and the bib-
liography therein for an overview of the reduced-basis capabilities.)

In this work, we concentrate on one of the two variance reduction approaches. We
first briefly recall the motivations for, and the principles of, our accelerated variance
reduction technique. Then, the parallel with ideas underpinning the reduced-basis
method is emphasized, to explain why and how we expect our variance reduction
approach to achieve computational reductions. Last, we present two open prob-
lems about better understanding and better using this very recent variance reduction
approach (some previously unpublished numerical results give a partial answer to
the second question). Our goal is to encourage further studies about this method.
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1 A Control Variate Method for Parametrized Expectations

1.1 Setting of the Problem

Let .˝;F ;P/ be a probability space. We denote EP .Z/ the expectation of a d -
dimensional integrable random variable Z (with respect to P), d 2 N>0. There
are many applications where one manipulates parametrized collections of square-
integrable random variablesZ� 2 L2

P
.˝/, using a parameter � 2  which belongs

to a bounded subset  of R
P , P 2 N>0, and where one has to compute EP

�
Z�
�

for many values of the parameter �. For instance, this is the case in some opti-
mization algorithms for parameter estimation, where the parameter � is calibrated
in order to fit observed data, or in segregated algorithms simulating a system of
equations, where EP

�
Z�
�

is used by one group of equations and � is defined by
another equation. We refer to [1] for specific examples in finance and rheology of
these so-called many-query frameworks, where many expectations EP

�
Z�
�

have to
be computed for many values of � (see also the references therein for details about
the probabilistic framework that we use here).

We are interested in situations where EP

�
Z�
�

is approximated by a Monte-Carlo
(MC) method. The simpler MC method reads as such: one directly simulates the law
of Z� using (pseudo-)random numbers, and by virtue of the law of large numbers,
EP

�
Z�
�

is approximated as one realization of the random variable EM
�
Z�
� WD

1
M

PM
mD1Z�m using M independant copies Z�m, m D 1; : : : ;M , of Z�. Unfortu-

nately, the previous simple MC approach converges very slowly with respect to M .
Indeed, by virtue of the Chebyshev inequality:

8� > 0 ; P

�ˇ̌
ˇEM

�
Z�
�
� EP

�
Z�
�ˇ̌
ˇ � �

�
� VarP

�
Z�
�

M�2
; (1)

so the control we have on the error committed in the approximation of EP

�
Z�
�

by EM
�
Z�
�

decreases slowly with M . Similarly, the quantitative estimates of the
probabilities of the events “the statistical error is below a given level” which are
suggested by the Central Limit Theorem (CLT) when one expects to be close to the
asymptotic regimeM !1 are also scaled by the same ratio VarP

�
Z�
�
=M :

8a > 0 ; P

0
@
ˇ̌
ˇEM

�
Z�
�
� EP

�
Z�
�ˇ̌
ˇ � a

s
VarP

�
Z�
�

M

1
A �!
M!1

Z a

�a
e�x2=2

p
2


dx :

(2)
Now, a remedy to slow convergence is to develop more refined MC approaches.

In particular, since the variance VarP

�
Z�
�

also enters the MC error bounds (1)
and (2), one possibility for more elaborate MC approaches is typically to invoke
the law of large numbers for another random variable than Z�, which has less vari-
ance (a i.e., reduced variance compared to Z�) but still permits the computation of
EP

�
Z�
�

in the end. Among many possible approaches to variance reduction [3], we
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next concentrate on the control variate method (see Sect. 1.2). We focus in particular
on the many-query frameworks which are so computationally demanding that even
a refined MC approach using a variance reduction method would still be untractable
for a large number of queries (that is, many parameter values � 2 ). More pre-
cisely, assuming that two random variablesZ�1 andZ�2 are correlated one another
for any �1 ¤ �2 in , our goal is to use the control variate method in combina-
tion with ideas from the Reduced-Basis (RB) method [2, 4, 5] for speeding up the
numerous reiterated computations involved in a refined MC approach of EP

�
Z�
�

for many queries � 2 .

1.2 The Control Variate Method

Let � 2  be fixed, the control variate method aims at evaluating EP

�
Z�
�

as

EP

�
Z�
�
D EP

�
Z� � Y �

�
C EP

�
Y �
�

using a so-called control variate Y � 2 L2
P
.˝/, which is chosen such that EP

�
Y �
�

is easily evaluated and the expectation EP

�
Z� � Y �� is easily approximated by

Monte-Carlo estimations (that is VarP

�
Z�
� � VarP

�
Z� � Y ��). Here, we will

next choose Y � such that EP

�
Y �
� D 0, that is EP

�
Z�
� D EP

�
Z� � Y ��. Then the

choice Y �o � Z��EP

�
Z�
�

is clearly optimal in the sense that VarP

�
Z� � Y �o

� D
0, but it is of course idealistic since one needs EP

�
Z�
�

for the computation of Y �o .
In practice, a first possible choice is to take Y �M1

D Z� � EM1

�
Z�
�

as a control

variate approximating the optimal choice Y �o , where the MC estimator EM1

�
Z�
�

uses a large fixed numberM1 2 N of independent copies of Z�. Then, the residual
variance obtained after using the control variate is indeed reduced and reads:

VarP

�
Z� � Y �M1

�
D VarP

�
EM1

�
Z�m

��
D 1

M1

VarP

�
Z�
�
: (3)

But of course there is no gain if, for each � 2 , one computes Y �M1
and

then EM
�
Z� � Y �M1

�
to evaluate EP

�
Z� � Y �M1

�
D EP

�
Z�
�
, since this in fact

requiresM �M1 independent copies of Z�: it has the same variance and the same
computational cost as the simpler MC estimator EM
M1

�
Z�
�
.

A second practical approach is to take, as control variate, a linear combina-
tion Y �M1;N

D PN
nD1 ˛n.�/Y

�n.�/
M1

using N elements Y �n.�/
M1

to be chosen in

YM1
D Span

�
Y �M1

; � 2 
�

, with coefficients f˛n.�/ 2 R ; 1 � n � N g to

be determined with a view to minimizing the variance VarP

�
Z� � Y �M1;N

�
. The

latter choice reduces the variance at least as much as the former since Y �M1
2 YM1
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is a possible value for the linear combination Y �M1;N
. Moreover, although the com-

putations for one Y �M1;N
are more expensive than those for Y �M1

, the choice Y �M1;N

in fact suggests a third possible choice which yields a similar reduction of vari-
ance, plus interesting computational reductions in the many-query limit of many
parameter values � 2 .

Our choice is a third possible control variate Y �N;M1
D PN

nD1 ˛n.�/Y
�n

M1
with

fixed �n, n D 1; � � � ; N , in the linear combination Y �N;M1
. With such �n chosen

once, for all � 2  (in contrast with Y �M1;N
), the choice Y �N;M1

can still yield a

good reduction of variance if the variations of Y �M1
in L2

P
.˝/ with respect to � 2 

are smooth. In the sequel, we recall from [1] how to use the control variate Y �N;M1

in practice, based on a parallel with the RB method [2, 4, 5]. Taking profit by the
many-query setting, a practical methodology can indeed be developed to efficiently
compute many control variates Y �N;M1

at many parameter values � 2  with a fixed

precomputed set fY �n

M1
; n D 1; : : : ; N g, and with coefficients f˛n.�/ 2 R ; n D

1; : : : ; N g chosen at each � 2  to minimize the variance

VarP

�
Z� � Y �N;M1

�
D EP

�
jY �o � Y �N;M1

j2
�
: (4)

One point is how to identify a fixed N -dimensional subset YN;M1
� YM1

, so that
the worst1 residual variance for � 2  (after reduction) is controlled (�minimized).

1.3 A Practical Approach of the Control Variate Method Deduced
from Parallels with the Standard Reduced-Basis Method

The standard RB method has been developed for applications where one has to
compute many �-parametrized functions u.�/ 2 X in a Hilbert space X , for many
values of the input parameter � 2 . In the many-query frameworks of application
(real-time simulation, parameter optimization, multiscale computation, . . . ), u.�/ is
typically the solution to a (well-posed, e.g. coercive and continuous)�-parametrized
elliptic Boundary Value Problem (BVP) with variational formulation:

a.u.�/; vI�/ D l.v/ ; 8v 2 X :

Then, usual linear discrete subspaces XN � X (e.g. finite-element spaces) which
yield accurate Galerkin approximations uN .�/ 2 XN at any fixed � 2  typically
have very large dimension N . So it is expensive to compute uN .�/ for many � in

1 The worst is to be understood as the largest residual variance in  as opposed to e.g. a L2 mean
of the residual variances for instance provided is endowed with a topology; the latter would have
suggested a parallel with Proper Orthogonal Decomposition (POD) methods rather than RB. We
make this choice on purpose, to follow RB ideas.
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a many-query framework. The RB method aims at rigorously reducing the total cost
of computations, based on the fact that if uN .�/ is a smooth function of �, then
the set fuN .�/; � 2 g is only a thin portion of XN close to a small-dimensional
linear subspace of XN (say with dimension N � N ).

Assume a.�; �I�/ is bilinear and symmetric for the sake of simplicity, on noting

uN .�/ D arginf
v2XN

p
a.u.�/� v; u.�/� vI�/ ; 8� 2  ; (5)

the RB method suggests to approximate uN .�/ by uN ;N .�/ 2 XN ;N solution to
a similar least-squares problem in a N -dimensional vector subspace XN ;N � XN

uN ;N .�/ D arginf
v2XN ;N

p
a.uN .�/ � v; uN .�/ � vI�/ ; 8� 2  : (6)

In practice, it is still computationally expensive to findXN ;N such that the worst
approximation error kuN .�/ � uN ;N .�/kX for � 2  is small. The RB method
suggests a pratical approach to that difficulty, which has proved feasible and compu-
tatially profitable in most of the many-query frameworks where it has been applied
(provided sufficiently many queries in parameter values � 2  compensate for the
expensive construction of XN ;N ). It combines inexpensive a posteriori error esti-
mators for kuN .�/ � uN ;N .�/kX with an iterative construction of XN ;N (that is,
such that XN ;N � XN ;NC1) through a greedy algorithm (see e.g. [2, 4]).

We now present at the same time the main ideas of the RB computational strategy
to address the standard �-parametrized elliptic BVP above and the �-parametrized
MC problem with control-variates of Sect. 1.2. The parallel between an efficient
practical approach for reiterated least-squares problems (4) and the standard RB
approach for reiterated Galerkin approximations (5) should thus be clear. We assume

M1 is such that the reduced variance VarP

�
Z� � Y �M1

�
is small enough for all

� 2 .

1. The RB approximation spaces are spanned by “snapshot” solutions, hence:

XN ;N D Span
�
uN .�Nn / ; n D 1; : : : ; N

�
and YM1;N D Span

�
Y
�Nn
M1
; n D 1; : : : ; N

�
;

invokingN accurate approximations: uN .�Nn / for u.�Nn / and Y �
N
n

M1
for Y �

N
n

o , at
N well-chosen parameter values, resp. .�Nn /nD1;:::;N 2 N and .�Nn /nD1;:::;N 2
N.

2. The linear approximation spaces XN ;N and YM1;N are constructed in an offline
stage as approximations to the “optimal” spaces that minimize (resp.)2

2 The fact that the energy norm
p
a.�; �I�/ depends on � in (5,7) and not in (4,8) is rather an

additional difficulty for the standard RB method, and does not preclude comparisons.
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min
f�N

n ;nD1;:::;N g��
sup
�2�

min
v2XN ;N

p
a.uN .�/� v; uN .�/ � vI�/ ;

(7)

min
f�N

n ;nD1;:::;N g��
sup
�2�

min
f˛n.�/ ;nD1;:::;N g��

VarP

 
Y �o �

NX
nD1

˛n.�/Y
�N

n

M1

!
;

(8)

using a greedy algorithm. Hence we choose iteratively, until sufficiently largeN :

�Nn � �n �Nn � �n n D 0; : : : ; N � 1 ;

by (a) solving successive one-dimensional optimization problems rather than by
solving straightforwardly the N -dimensional minimization problems (7, 8) and
(b) replacing the suprema over the whole parameter range in (7, 8) by suprema
in a discrete training sample trial �  (see details in e.g. [2, 4]).

3. RB approximations uN ;N .�/ 2 XN ;N � XN and Y �N;M1;M2
2 YM1;N � YM1

are next computed online for many queries in . For a given �, the computa-
tions are fast and the RB error can be certified: uN ;N .�/ is solution to a small
N -dimenionsal linear system and the RB error is evaluated fast using the same
a posteriori estimator as offline. For a given �, coefficients ˛N;M1

n;M2
.�/ 2 R in

Y �N;M1;M2
D PN

nD1 ˛
N;M1

n;M2
.�/Y

�n

M1
are computed fast, as minimizers of a cheap

MC estimation of the L2
P
.˝/ distance between Y �o and YM1;N function of some

˛n.�/:

min
Y �2YM1;N

VarP

�
Z� � Y �

�
D min
Y �2YM1;N

EP

�
jY �o � Y �j2

�
: (9)

The MC estimation of (9) should use a small number M2 of copies for Z� and
Y
�n

M1
, n D 1; : : : ; N ; and after minimization in ˛n.�/, the resulting minimum

V � � VarM2

�
Z� �PN

nD1 ˛
N;M1

n;M2
.�/Y

�n

M1

�
can be used to evaluate the statis-

tical error in the MC estimation E� � EM2

�
Z� �PN

nD1 ˛
N;M1

n;M2
.�/Y

�n

M1

�
of

the output EP

�
Z�
�
. (Note that in the two latter MC estimators the coefficients

˛
N;M1

n;M2
.�/ are fixed.)

To sum up our RB algorithm will compute fast many control variates in two
stages:

(a) (Offline pre-computations) a greedy algorithm selects iteratively N parameter
values �n, n D 1; : : : ; N , in a training sample trial: for n D 1; : : : ; N � 1, it

chooses some �nC1 2 argmax
n
VarP

�
Z� � Y �n;M1

�
; � 2 trial

o
and computes

Y
�nC1

M1
(in fact, only an accurate MC estimation EM1

�
Z�nC1

� ' EP

�
Z�nC1

�
with M1 � 1);
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(b) (Online queries) for each query � 2 , a control variate Y �N;M1;M2
is computed

as an approximate minimizer of (9). That is, the variance in (9) is computed by a
MC estimator usingM2 copies and as a function of unknown coefficients ˛n.�/,
then coefficients ˛N;M1

n;M2
.�/ are compute to minimize the MC estimator. Finally,

we obtain a certified estimation of the output as EP

�
Z�
� ' E� ˙O.V �/.

Like in the applications of the standard RB method, our practical approach is
interesting when the number of online queries is large enough to compensate for the
offline computations. Unlike the standard RB method, the evaluation of the error
due to reduction is not fully rigorous, in particular because the evaluation of the
output E� and its error bound V � invokes MC estimations.

Remark 1. In the offline stage, the greedy algorithm also needs to numerically eval-

uate variances: VarP

�
Z� � Y �n;M1

�
, 8� 2 trial and n D 0; : : : ; N � 1. This also

necessitates approximations, which in turn influence the selection by the greedy
algorithm of the �n in Y �N;M1;M2

. In practice, to evaluate those variances, we use

the same procedure as online for V �: at each step n D 0; : : : ; N � 1, for all

� 2 trial, VarM2

�
Z� �Pn

mD1 ˛
n;M1

m;M2
.�/Y

�p

M1

�
is approximated with the same

number M2 � M1 of copies. So the approximation error is fast, and consistent
throughout the procedure with that in the V � used online as a bound of the error
jEP

�
Z�
� � E�j.

2 Open Questions

2.1 Rigorous Certification of the Variance Reduction?

Proposition 1. Let Y �o depend smoothly on � 2  (in the sense of the assump-
tions of Proposition 1 in [1]). Then one can choose f�n ; n 2 N>0g �  such that

Y �o;N D
PN
nD1 ˇn.�/Y

�n
o

L2
P
.˝/�!

N!1 Y �o for all � 2 , with coefficients ˇn.�/ minimiz-

ing VarP

�
Z� � Y �o;N

�
. If in addition, 8N;M1;M2 2 N>0, the N � N matrices

with entries EM2

�
Y
�i

M1
Y
�j

M1

�
, 1 � i; j � N , are almost surely (a:s:) non-singular

(whereM1CM2 independent copies are used for the MC estimations), then it holds
for all � 2 

lim
N!1 lim

M2!1 lim
M1!1 EM2

�
Z� �

XN

nD1˛
N;M1

n;M2
.�/Y

�n

M1

�
a:s:D EP

�
Z�
�

and

lim
N!1 lim

M2!1 lim
M1!1 VarM2

�
Z� �

XN

nD1˛
N;M1

n;M2
.�/Y

�n

M1

�
a:s:D 0 :
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Proof. For fixedN;M2, first apply the strong law of large numbers whenM1 !1.
Then, by virtue of the strong law of large numbers when M2 ! 1, and on noting

lim
M2!1 lim

M1!1 ˛
N;M1

n;M2
.�/

a:s:D ˇn.�/ (because the MC estimations of the covariance

matrices are a.s. non-singular so we can pass to the limit in Cramers’ rule), we obtain

lim
M2!1 lim

M1!1 VarM2

�
Z� �

XN

nD1˛
N;M1

n;M2
.�/Y

�n

M1

�
a:s:D VarP

�
Z� � Y �o;N

�
and

lim
M2!1 lim

M1!1 EM2

�
Z� �

XN

nD1˛
N;M1

n;M2
.�/Y

�n

M1

�
a:s:D EP

�
Z�
�
:

Last, we get the result for N !1 by Proposition 1 in [1]. ut
The Proposition 1 above is only M1-asymptotic, so there are still interest-

ing questions: conditionally to the M1 offline copies, do the random variables

VarM2

�
Z� �PN

nD1 ˛
N;M1

n;M2
.�/Y

�n

M1

�
and EM2

�
Z� �PN

nD1 ˛
N;M1

n;M2
.�/Y

�n

M1

�
con-

verge as M2 ! 1? Does a CLT hold and allow one to derive rigorous error
bounds?

2.2 Computational Efficiency: Optimize MC Estimations?

Let ıt denote the marginal time needed for computing one realization of Z�, for a
given � 2 . The total cost of computations in the procedure of Sect. 1.2 is then

� (offline)O
�jtrialj.ıt CM 2

2 /CNM1ıt
�

plus
� (online)O

�
J.ıt CM 2

2 /
�

where J is the number of � values queried online, and
the same small numberM2 of copies as offline is used for the MC estimations.

This cost has to be compared to O.JM1M2ıt/ for a direct one-stage MC approach
with a similar variance (hence, with a similar statistical error) in the end. So the
gain depends on how large J and M1 are, M2 being as small as possible. Now,
as sets of M2 independent copies are first repeatedly used offline (at each step
n D 0; : : : ; N � 1 of the greedy algorithm) for MC estimations of variances

VarM2

�
Z� �Pn

mD1 ˛
n;M1

m;M2
.�/Y

�p

M1

�
when � 2 trial, before M2 copies are inten-

sively used online (“step” n D N ) for MC estimations of the similar variances at
any � 2 , one might want to optimize the choice of those fewM2 copies step after
step during the greedy in trial, so that the selection of M2 “good” copies (using
e.g. concepts from Quasi-Monte-Carlo (QMC) methods [3]) yields online MC esti-
mators VarM2 and EM2 that are as accurate as possible 8� 2  (M2 being fixed
small).

We show in Fig. 1 the results of a first test about how the variance reduc-
tion achieved by our RB approach depends on the M2 copies of the collection
fZ� ; � 2 trialg that are used online to compute both control variates and MC
estimations V � for residual variances. The results are for the same FENE-dumbbell
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Fig. 1 Two figures (left/right): different choices for the M2 copies used online (� different from
one another, and also different from the offline M2 copies, in contrast to Fig. 4.7 in [1]). In each
figure, three curves: minimum C, mean 
 and maximum ı of a realization of residual vari-
ances VarM2 .Z

� � Y �N;M1;M2
/ (y-axis) for a sample of parameter values � 2 Œ�1; 1�4. Number

of precomputed expectations used for the control variates Y �N;M1;M2
: N D 0; : : : ; 20 (x-axis)

test-problem as in [1]. The output is Z� D X�1 .T /
2 where X�1 .T / denotes the

first component at final time T of a 2-d vector stochastic process X�.t/ solution on
t 2 Œ0; T � to dX�.t/ D �

�X�.t/ � F.X�.t//� dt C dB.t/, where .B.t// is a 2-d
Brownian motion, F.X/ D X=.1 � jX j2=b/ with b D 9 is the Finitely-Extensible
Nonlinear Elastic (FENE) force and � is a 2 � 2 traceless matrix with entries
in Œ�1; 1�4. Computing viscoelastic flows with the FENE-dumbbell model indeed
defines a challenging many-query parametric framework that has useful applica-
tions to the simulation of dilute polymer flows in rheology (X models polymer
molecules).

For this test-problem, the Fig. 4.7 in [1] show results obtained when the M2

online copies of the stochastic processes .X�.t/; � 2 trial/, which are used to
both compute control variates Y �N;M1;M2

and then evaluate residual variances V �

at each �, were exactly the same as the M2 offline copies used during the greedy
algorithm. (In fact, M2 copies of the same Brownian motion are used for all �.)
Here in Fig. 1, we test different choices for the M2 copies of the stochastic pro-
cesses .X�.t/; � 2 trial/ that are used online. We use for the online stage either
M2 online copies that are different and independent from the M2 offline one (left),
or only the first half of the same M2 copies as offline, hence only M2=2 copies in
fact (right). Notice that not only the MC estimations of the residual variances change
online, but also the coefficients ˛N;M1

n;M2
.�/ in the linear combinations Y �N;M1;M2

used
as control variates.

Little difference is observed here whatever the online choice for M2: the results
in fact seem hardly sensitive to the choice of the M2 copies! This is good news for
the robustness of our approach. But the question whether this is quite a general fact
or only due to the FENE model is still open. As a con to going further in optimizing
the M2 online copies, the analysis of the residual statistical error could complicate,
in particular because no simple CLT holds for MC estimators where the M2 opti-
mally selected realizations are not independent (this is the case in QMC). Yet, in
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some cases, optimized choices of the M2 online realizations might be interesting,
especially for applications where cheap but accurate MC estimations are crucial
(applications where the variance is very sensitive to the choice of the M2 copies!).
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A Proof, Based on the Euler Sum Acceleration,
of the Recovery of an Exponential (Geometric)
Rate of Convergence for the Fourier Series
of a Function with Gibbs Phenomenon

John P. Boyd

Abstract When a function f .x/ is singular at a point xs on the real axis, its Fourier
series, when truncated at theN th term, gives a pointwise error of onlyO.1=N/ over
the entire real axis. Boyd and Moore [Summability methods for Hermite functions.
Dyn. Atmos. Oceans 10, 51–62 (1986)] and Boyd [A lag-averaged generalization of
Euler’s method for accelerating series. Appl. Math. Comput. 72, 146–166 (1995)]
proved that it is possible to recover an exponential rate of convegence at all points
away from the singularity in the sense that jf .x/ � f �N .x/j 	 O.exp.��.x/N //
where f �N .x/ is the result of applying a summability method to the partial sum
fN .x/ and �.x/ is a proportionality constant that is a function of d.x/ � jx � xs j,
the distance from x to the singularity. Here we improve these earlier results and give
an elementary proof of great generality using conformal mapping in a dummy vari-
able z, which is the Euler acceleration. We show exp.�.x// 
 min.2; cos.d.x/=2//
for the Euler filter when the Fourier period is 2
 and f .x/ has no off-axis singulari-
ties very close to the real axis. We correct recent claims that only a root-exponential
rate of convergence can be recovered.

1 Introduction

Let f .x/ denote the sum of the Fourier series

f .x/ D
1X

nD�1
cn exp.inx/ (1)

with a convergence-slowing singularity on the real axis.

John P. Boyd
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For simplicity, we shall focus attention on functions for which there is just a
single such singularity which without loss of generality we shall assume is at the
origin. Our goal is to show that by elementary means that it is possible to recover
a geometric rate of convergence, that is, an error proportional to exp.��.x/N /,
everywhere except at the singularity itself by using the Euler acceleration.

The Euler acceleration is a local filter in the sense that it accelerates the series
at a given x without using information from different x. The Gibbs reprojection
filter developed by Gottleib and Shu accelerates the Fourier series by replacing it
by a polynomial approximation at all x simultaneously, thus treating different x
collectively [8]. Such nonlocal filters are very powerful, but also more complicated,
and share the defect of spatial non-uniformity, failing at the singularities themselves.
Because of page limits, comparisons of local and non-local filters must be left for
another time.

Although recovery-of-geometric-convergence by the Euler acceleration was ana-
lytically demonstrated in 1984 by Boyd and Moore [6] and again by Boyd in [1],
articles in 2002 and 2005 displayed filters which recovered only “root-exponential”
convergence, which is coefficients falling proportional to exp.q0pn/ for some pos-
itive constant q0 [13, 14], These “adaptive filters” are described in the first half
of Tadmor’s review [12]. Our goal here is to remove some of this confusion, and
strengthen the conclusions of our earlier papers by replacing the qualitative asser-
tion of geometric convergence by a new theorem that gives the quantitative rate of
convergence.

The central result is the following.

Theorem 1. Let f .x/ be a 2
-periodic analytic function which is singular only at
x D x0 D 0 and also xj D �j C i�j where the number of off-axis singularities
xj may be zero, finite or infinite. Let f �N .xIN/ denote its Euler-accelerated partial
sum:

f �N �
NX

nD�N
�E .n=.N C 1/IN/ cn exp.inx/ (2)

where �E .0/ D 1, �E
� jj j
NC1

�
D PN

kDj �Nk ; jj j D 1; 2; : : :M , �Nk D
NŠ
2N

1
kŠ.N�k/Š .

Then
jf .x/ � f �N .x/j � p.x/ exp.��.x/N / (3)

exp.�.x// D 	.x/ D



min.2; j�1.x/j; j�2.x/j; : : :/; jxj � .2=3/

min.j�0.x/j; j�1.x/j; : : :/; jxj < .2=3/ 


(4)

where, denoting rj � exp.j=.xj /j/,

j�j j D 2rjq
1C r2j C 2rj cos.x �<.xj //

(5)
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which is greater than one – geometric convergence – for all j=.xj /j > 0, and

j�0.x/j D 1

cos.x=2/
(6)

which is also always greater than one except for x D 0.
Furthermore, if the singularity on the real axis is no stronger than a Dirac delta-

function, the N -independent factor in (3)jp.x/j � C=jxj.

2 Acceleration by Conformal Mapping

2.1 Abel Extension and Conformal Mapping

The Euler acceleration is a particular case of a general acceleration strategy:

1. Inflate the series to a function of a dummy variable z by multiplying the nth term
of the series by zn

2. Apply a conformal mapping by replacing z by a new � where

z D Z .�/ (7)

with the mapping chosen to be an analytic function such that, (a) Z .1/ D 1 and
(b) Z .z/ / � for small �.

3. Expand the N th partial sum of the inflated series as a power series in �; because
of the requirement that z / � C O.�2/ for small �, the first N terms in the �
series are completely determined by only the first N terms in the original series.

The accelerated approximation is then just the partial sum of the � series evaluated
at � D z D 1. The inflated series is dubbed the “Abel extension” of the sum S in [6].

Reviews of acceleration-by-conformal-mapping include [9–11].
To understand the magic of the transformation from a power series in z to the

power series in �, we need to recall the following.

Theorem 2 (Convergence of a power series). Suppose that the disk j�j < 	 is
the largest disk centered on the origin in the complex �-plane which is free of sin-
gularities of an analytic function S.�/. Then the power series of S.�/ converges
everywhere within the disk and 	 is the “radius of convergence” of the series. Let
SN .�/ denote the partial sum of the power series up to and including the Nth term.
Then

jS.�/� SN .�/j � constant exp.�N log.	 � �// (8)

for all N with a proportionality constant independent of N where � > 0 is a
constant that may be arbitrarily small.
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2.2 Möbius Transformation and Euler Acceleration

Euler acceleration is the choice of the simple rational transformation

z D �

2 � � $ � D 2z

1C z
(9)

To motivate this, consider an example which is an alternating series,

S log2 � log.2/ D
1X
nD1

.�1/nC1=n (10)

S log2;Abel.z/ D log.1C z/ D
1X
nD1

.�1/nC1

n
zn (11)

The Abel extension is logarithmically singular at z D �1. Consequently, its power
series in z has a unit radius of convergence. At z D 1, the point corresponding to the
original series for log.2/, the power series converges very slowly because this point
is right on the boundary of the disk of convergence. And yet the inflated function
S log2;Abel.z/ is not singular at z D 1, the only value of z that we really care about,
but only at z D �1.

The Euler mapping takes the singular point, z D �1, to � D1.

S log2;Abel.z.�// D log.1C �=.2� �// D � log.1 � �=2/

D
1X
nD1

.�1/nC1

n

�
�

2 � �
�n

(12)

D �
1X
nD1

2

n

�
1

2

�n
�n (13)

Evaluating the last series at � D 1 gives a sum which converges geometrically
with each term smaller than its predecessor by a factor of one-half. Because of
the singularity in the mapping itself at � D 2, the radius of convergence in � is
	 D 2 so that � D 1 is only one-half of the distance to the boundary of the disk of
convergence.

A rational map which is linear in both the numerator and denominator polynomi-
als is also known as a “Möbius transformation.” It has the important property that all
Möbius transformations map circles to circles. The nth term decays proportionally
to exp.� log.2/jnj/. Six-digit accuracy requires about a million terms of the original
series, but only 20 (D � log2.10

�6/) terms of the Eulerized expansion.
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3 Accelerating a Fourier Series

There is no loss of generality in assuming a period of 2
 since a general period P
in y may be normalized by the trivial dilation x D .2
=P /y. The most significant
restriction we shall impose is that the Fourier series is slowly converging because
of a single singularity on x 2 Œ�
; 
�. We shall not exclude the possibility that
f .x/ has singularities off the real axis at x D xk ; k D 1; 2; : : : ; ns where ns is any
integer between zero and infinity and j=.xk/j is nonzero for all k. Without loss of
generality, we shall assume that the singularity on the real axis is located at x D 0

(and, by periodicity, at x D ˙2
m where m is an integer). A singularity at a point
w D x0 in a coordinate w can be translated into our standard form by defining
x D w � xs .

To inflate f .x/ to a power series in z, it is helpful to write

f .x/ D f1.x/C f2.x/ (14)

where

f1.x/ D
1X
nD0

cn exp.inx/I f2.x/ D
1X
nD1

c�n exp.�inx/ (15)

f Abel.x; z/ D f Abel1 .x; z/C f Abel2 .x; z/ (16)

f Abel1 .x; z/ D
1X
nD0

cn zn exp.inx/I f Abel2 .x; z/ D
1X
nD1

c�n zn exp.�inx/ (17)

To determine the x-dependent rate of convergence, we need to determine (1) the
images of the singularities of f .x/ in the z-plane and (2) the images of these same
singularities in the �-plane. This geometry-of-singularities is described the last three
theorems of this section.

To prove the first, we need the following.

Theorem 3. If the Fourier coefficients satisfy

jcnj � constant exp.�qjnj/n2m (18)

for some positive constant q and constant m, then the Fourier series is ANALYTIC

everywhere within the strip
j=.x/j < q (19)

Noted on p. 271 of [7].

Theorem 4. The function f1.x/ � P1
nD0 cn exp.inx/ has no singularities in

the upper half-plane =.x/ > 0 while f2.x/ � P1
nD1 c�n exp.�inx/ is free of

singularities in the lower half-plane.
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Proof. Let x D � C i� . Then

f1.� C i�/ D
1X
nD0

cn exp.�n�/ exp.in�/ (20)

When � D =.x/ > 0, the series converges geometrically. Theorem 3 then implies
that f1.x/ must be analytic for all � and similarly for f2.

Theorem 5 (Location of Singularities in z). Suppose f .x/ has a singularity at

xj D �j C i�j ; j D 0; 1; 2; : : : (21)

Then the corresponding singularity of f Abel1 .x; z/ is at

=.xj / < 0; jzJ j D exp.j�j j/; arg.zj .x// D <.xj /� x

The image of the singularity at x D 0 is

jzj D 1; arg.z0.x// D �x (22)

Those of f Abel2 are the same except arg.zj .x// D x � <.xj / and arg.z0.x// D x.

Proof. With x D � C i� and z D r exp.i�/,

f Abel1 .x; z/ D
1X
nD0

cn exp.nŒlog.r/ � ��/ exp.inŒ� C ��/ (23)

Thus, f Abel1 .x; z/ does not depend on r and � separately nor on � and � sepa-
rately, but only on the combinations log.r/ � � and � C � . Similar remarks apply
to f Abel2 .x; z/. It follows that if f1.x/ D f Abel1 .x; z D 1/ has a singularity at
x D � C i� where, as already proved, �j � 0, then

log.jzj j.�// D =.x/ � �j & arg.zj /.x/ D <.xj / �<.x/ (24)

When x is real, these specialize to the theorem.

Theorem 6. If f .z/ is singular at z D rj exp.i�j /, then f .z.�// is singular at

j�j j D 2rjq
1C r2j C 2rj cos.�j /

(25)
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Proof. Let z denotes the complex conjugate of z. Recall that � D 2z=.1C z/. Then
multiplying both sides by � yield

j�j2 D 4jzj2
1C zC zC jzj2 (26)

Substituting z D rj exp.i�j / and zCz D 2 cos.arg.z// gives the theorem. The proof
that the constant C is independent of x is omitted.

Theorem 1 then follows from combining Theorems 2, 4–6. At a given x, the
Fourier sum converges at a rate proportional to .1=	.x//N where 	.x/ is the
radius of convergence of the � power series. This is the simply j�j j for whichever
singularity is closest to � D 0.

4 Numerical Illustration of Geometric Convergence

A useful example is the “shifted sawtooth” function, [1]

Sws.x/ �


x � 
 x 2 Œ0; 2
�
Sws.x C 2
m/ otherwise; m D integer

(27)

for which c0 D 0; cn D i; c�n D �i for n D 1; 2; : : :.
Figure 1 shows the errors for the Euler-accelerated Fourier series. On a log-

linear plot, a geometric rate of convergence appears as a straight line. The errors
in the Fourier series fluctuate with N , but the envelope displays the predicted rate
of convergence.

Fig. 1 The solid curve is the
error of the Euler-accelerated
series for the function
f .x/ D Sws.x/ for
x D 
=8. The dotted line is
the theoretical prediction of
the envelope of the errors,
2 exp.��.x/N /=N where
�.x/ D � log.cos.x=2//
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Fig. 2 Errors at x D 
=12 vs. the truncation N for f .x/ D Sws.x/ C  where  D .1 �
p2/=.1 C p2/ � 2 p cos.x � 
/ as accelerated by three different filters. The dashed guidelines
show that the rate of convergence is geomeric – proportional to exp.��N/ for some constant � –
for all three filters. The function  has poles on the imaginary axis; such off-axis singularities do
not destroy the efficacy of filters

5 Summary

Tanner’s [15] Hermite Distributed Approximating Function (HDAF) and Boyd’s
ErfcLog filter [2] are x-adaptive in the sense that contain an order parameter p, and
both are best applied with spatially varying order. Both are more accurate than the
Euler acceleration as shown in Fig. 2. The point is not that the Euler acceleration is
best, but rather than it has the simplest theory. In work in progress, we show that a
generalized adaptive Euler method is better than the HDAF and ErfcLog filters.

Recovery of spectral accuracy in the presence of shocks and other singularities
has become a “big business.” A partial list of other efforts to accelerate Fourier series
through local filters include [1,3–6,12–14,16]. It therefore seems worthwhile to give
an elementary proof “spectral recovery.” Theorem 1 improves on [1] by quantifying
the effects of off-axis singularities.

A much longer version of this article may be found on ArXiv at http://arxiv.org/
abs/1003.5263.
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Abstract We present a reduced basis element method (RBEM) for the time-
harmonic Maxwell’s equation. The RBEM is a Reduced Basis Method (RBM) with
parameters describing the geometry of the computational domain, coupled with a
domain decomposition method. The basic idea is the following. First, we decompose
the computational domain into a series of subdomains, each of which is deformed
from some reference domain. Then, we associate with each reference domain pre-
computed solutions to the same governing partial differential equation, but with
different choices of deformations. Finally, one seeks the approximation on a new
domain as a linear combination of the corresponding precomputed solutions on each
subdomain. Unlike the work on RBEM for thermal fin and fluid flow problems, we
do not need a mortar type method to “glue” the various local functions. This “glu-
ing” is done “automatically” thanks to the use of a discontinuous Galerkin method.
We present the rationale for the method together with numerical results showing
exponential convergence for the simulation of a metallic pipe with both ends open.

Keywords Discontinuous Galerkin method � Domain Decomposition � Reduced
basis element method � Reduced basis method � Reduced order model � Maxwell’s
equations

Y. Chen (B), and J.S. Hesthaven
Division of Applied Mathematics, Brown University, 182 George St, Providence, RI 02912, USA
e-mail: Yanlai Chen@Brown.edu, Jan.Hesthaven@Brown.edu

Y. Maday
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1 Introduction

There is a need to rapidly, perhaps even in real time, and accurately predict some
quantities of interest under the variation of a set of parameters in applications such as
computational optimization, control and design, the development of efficient ways
to quantify uncertainties and their impact. In such cases, an output of interest, here
denoted by se, is defined by a functional applied to the solution of a parameterized
partial differential equation (PDE). Let us write the problem in weak form as

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

For an input � 2 D � R
p the output is defined by

se.�/ WD l.ue.�/I �/ 2 C;

where ue.�/ 2 Xe is the exact solution of

a.ue.�/; vI �/ D f .vI �/; 8 v 2 Xe;

(1)

where a and f are bilinear and linear forms, respectively, associated to the PDE,
and Xe is the space of the exact solution ue.

To approximate its solution uN .�/ ' ue.�/, one could use the following finite
element (FE) discretization: Given � 2 D � R

P , find uN .�/ 2 XN satisfying
aN .uN .�/; vI �/ D f N .vI �/, 8v 2 XN . Here XN is the finite element space
approximatingXe with dim.XN / � N , and aN .�; �I �/ and f N .�I �/ are computable
approximations of a.�; �I �/ and f .�I �/, respectively. We assume uN provides a refer-
ence solution (called the truth approximation) that is accurate enough for all � 2 D.
For that purpose, one usually must choose a very large N . This makes it time-
consuming to solve for the truth approximation, in particular when the solution is
needed for many instances of �.

The Reduced Basis Method (RBM) is particularly well suited for this “many-
query” scenario to improve the simulation efficiency. It was introduced in [6, 13].
See [4, 7, 14, 17] for recent developments including rigorous a posteriori error esti-
mators and greedy algorithm to form the global approximation spaces. See also the
review paper [16] and the extensive reference therein. The first theoretical a priori
convergence result for a 1D parametric space problem is presented in [10] where
exponential convergence of the reduced basis approximation is confirmed.

The key idea of the RBM is to store the solutions of the PDE for a specific set of
parameters, and then find the reduced basis approximation for a new parameter as
a linear combination of these precomputed solutions. The fundamental observation
is that the parameter dependent solution ue.�/ is not simply an arbitrary member
of the infinite-dimensional space associated with the PDE, but rather that it evolves
on a lower-dimensional manifold induced by the parametric dependence. Under this
assumption we can expect that as � .2 D � R

q/ varies, the set of all solutions ue.�/
can be well approximated by a finite and low dimensional vector space. How to
choose the initial set of parameters used to compute the basis functions is crucial
to the method. It is guided by the a posteriori error estimators, which are also used
to certify the quality of the approximations.
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In this paper, we are going to concentrate on the case of � in (1) describing the
geometries. This special parameter allows us to combine domain decomposition
ideas with RBM to obtain a method called reduced basis element method. It was
introduced in [11] and later applied to a thermal fin problem [12] and the Stokes
problem [9]. We shall here, for the first time, apply it to Maxwell’s equation. The
first ingredient of reduced basis element method (RBEM) is a domain decompo-
sition approach to generalize a discretization method, originally designed over a
simple geometry, to a complicated one. The second ingredient is the RBM men-
tioned above. The extension from RBM to RBEM is like the one from a single
element method to a multi-element method. We first decompose the computational
domain into a series of subdomains that are deformed from several generic, refer-
ence building blocks. As a precomputation, we associate with each reference domain
solutions to the same problem, but with different choices of the parameters describ-
ing the deformations. Finally, we seek the approximation on a new shape as a linear
combination of the precomputed solutions mapped from the reference block onto
each particular subdomain of interest.

We focus on the time-harmonic Maxwell’s problem. The motivation is the design
of waveguides, where pipes of different shapes have to be connected together. For
the RBEM introduced in [9, 11, 12], a mortar type method is needed to “glue” the
local functions on the subdomains due to the non-conformity of the method. This
“gluing” is not necessary for our method. Since it is formulated in such a way that
the reduced basis element space is a subspace of the finite element space, and the
connection between neighboring elements are taken care of by the numerical fluxes.

The paper is organized as follows. In Sect. 2, we formulate the RBEM. Some
numerical results are given in Sect. 3 to show the superior convergence toward
the truth approximation with a seamless “gluing” of the decomposed subdomains.
Finally, concluding remarks are presented in Sect. 4.

2 Reduced Basis Element Method

In this section, we discuss the reduced basis element method for electromagnetics.
We first formulate the RBM with geometry as a parameter and lay out the numerical
scheme for the truth approximation. Then, we study the RBEM. Finally, we discuss
the a posteriori error estimate for the RBEM.

2.1 Reduced Basis Method with Geometry As a Parameter

We are seeking the frequency-domain solution of the 2D Maxwell’s equations in
normalized differential form,
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8
ˆ̂<
ˆ̂:

��!2bE C 1
�
@
@�

�
@bE�

@
� @bE�

@�

�
D i!J ;

��!2bE� � 1
�
@
@

�
@bE�

@
� @bE�

@�

�
D i!J�:

(2)

As shown by Fig. 1, we want to solve the problem on a domain,˝a, which con-
sists of three subdomains, denoted from left to right by ˝a

1 , ˝a
2 and ˝a

3 . A dipole
antenna is located in ˝a

1 . To the left of the antenna is Bérenger’s perfectly matched
layer (PML), see [3, 5], also [1], which is also used in the symmetric part of ˝a

3 .
A Silver–Müller condition is enforced on the exterior boundary of the PML. The
other boundaries are assumed to be perfectly electrically conducting (PEC) metal-
lic wall, i.e., boundary condition bE On� � bE� On D 0 is enforced. Here, . On ; On�/
denotes the unit outward normal. This models a metallic pipe with segments of
varying shapes and both ends open.

As the parameter � WD .˛; ˇ; �/ change, it appears that we need to change
the computational domain. In fact, the computation is always done on a reference
domain, ˝ , as shown by Fig. 2. The deformation of the i -th subdomain is denoted
by Fi , i.e., ˝a

i D Fi .˝i /. We denote by bK an element in ˝a corresponding to a
reference domain element K . The map Fi , shown in Fig. 3, is defined as follows

Fi
��
x

y

��
D
 
ai

Li
sin �i 0

ai

Li
cos �i 1

!�
x � xi
y

�
C
�
�i
�i

�

with .�i ; �i /T defined recursive by

ΓiPML

PML

�

®

®

¯

Fig. 1 Actual decomposed domain

0

0.3

0.7

1
Ω1 Ω2 Ω3

ΓiPML PML

Fig. 2 Decomposed reference domain
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Li �i
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Fig. 3 A generic mapping on one subdomain
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�
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�
0

0

�
;

�
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�
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��
xi C Li
0

��
:

To maintain tangential components and map H.curl; bK/ to H.curl;K/, we apply
the Piola transform (see [2] and [15] for a more complete presentation) to
.bE�;�bE/T :

 bE�
�bE

!
D Pi

��
Ey
�Ex

��
WD 1

jJFi jJFi
�
Ey
�Ex

�
;

where JFi is the Jacobian matrix of the map Fi . After the application of the Piola
transform Pi , we obtain, on the reference domain ˝i , the following system of
equations 8

ˆ̂̂
<
ˆ̂̂
:

i!�Hz C Li

ai sin�i

�
@Ey

@x
� @Ex

@y

�
D 0;

i�!
�

Li

ai sin�i
Ex � .cot �i /Ey

�
� 1
�
@Hz
@y
D Jx ;

i�!Ey C 1
�

�
Li

ai sin �i

@Hz
@x
� .cot �i /

@Hz
@y

�
D Jy :

(3)

Next, we account for the PML by modifying the system as follows (see [3,5] for
details).

8̂
ˆ̂<
ˆ̂̂:

.i!�C ��
�
/Hz C Li

ai sin �i

�
@Ey

@x
� @Ex

@y

�
D 0;

i�!
�

Li

ai sin �i
Ex � cot �i .1 � i�

�!
/Ey

�
� 1
�
.1 � i�

�!
/
@Hz
@y
D .1 � i�

�!
/Jx;

i�!.1 � i�
�!
/Ey C 1

�

�
Li

ai sin �i

@Hz
@x
� .cot �i /

@Hz
@y

�
D Jy :

(4)

Here, � is a piecewise quadratic C 1-function of x (constant along the y-axis). It
is identically zero in the non-PML region and monotonically increasing from the
PML/non-PML interfaces to both boundaries on the left end and right end. If we let

u D
0
@
Hz

Ex
Ey

1
A F.u/ D

0
@
e3 � E
e1 �H
e2 �H

1
A S D

0
@

0

.1 � i�
�!
/Jx

Jy

1
A ;
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we haver �F.u/ D
�
@Ex

@y
� @Ey

@x
; � @Hz

@y
;
@Hz
@x

�T
and the system (4) can be rewritten

as
A.Li ; ai ; �i / uC B.Li ; ai ; �i /r � F.u/ D S;

where, for any given functions L.x/, a.x/, and �.x/, the matrices A.L.x/; a.x/;
�.x// and B.L.x/; a.x/; �.x// are defined by

A D

0
B@
�i! C �

�
� 0 0

0 i�!L.x/
a.x/ sin �.x/ � cot �.x/.i�! C �/

0 0 i�! C �

1
CA ;

B D

0
B@
� L.x/
a.x/ sin�.x/ 0 0

0 1
�
.1 � i�

�!
/ 0

0 1
�

cot �.x/ L.x/
�a.x/ sin �.x/

1
CA :

Now, we can state the equation on the domain˝ WD ˝1S˝2
S
˝3 as,

A.L.x/; a.x/; �.x// uC B.L.x/; a.x/; �.x//r � F.u/ D S; (5)

where, L.x/ is a piecewise function defined to be equal to the width of ˝i on ˝i ,
a.x/ is equal to ˛ on ˝1

S
˝3 and ˇ on˝2, �.x/ is equal to �

2
on ˝1

S
˝3 and �

on ˝2. Given a mesh Th, we define the following finite element space

XN D fv 2 �L2.Th/
�3 W for all elements K 2 Th; vjK 2 .Pk.K//3g;

and use a discontinuous Galerkin method [8] to solve (5) as in [4] with the same
numerical fluxes, but without the elimination of Hz since this cannot be done with
PML and Silver–Müller boundary condition present. As a result, we obtain the
following system

aN .uN .�/; vI˛; ˇ; �/ D f N .v/; 8 v 2 XN : (6)

Here,

aN .uN .�/; vI˛; ˇ; �/ D .A uN .�/; v/Th
C hBbF .uN .�//n; vi@Th

�.BF.uN .�//;rv/Th
;

and f N .v/ D .S; v/Th
, where bF D .e3�bE; e1� bH; e2� bH/T , n the unit outward

normal vector, .�; �/Th
denotes the broken inner product on the elements and .�; �/@Th

the broken inner product on the set of faces of all the elements. The standard RBM
is then applied to build the reduced basis space. The accuracy of the reduced basis
solution is certified by the residual-based a posteriori error estimate. This error esti-
mate is cheap to obtain on-line. It also guides the selection of the parameters and
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�1

�D

PML PML

¯D® ®
¯1

Fig. 4 A general domain decomposed into D C 2 subdomains

thus the building of the reduced basis space in the greedy algorithm. See, e.g., [4,16]
for details.

2.2 Reduced Basis Element Method: Formulation

In this subsection, we discuss in detail how we apply RBEM to our problem to
enable a highly efficient simulation on more complicated domains. We are going
to concentrate on domains consisting of pipes such as that shown in Fig. 4. The
standard discontinuous Galerkin FE method for the full problem would result in
system:

aN
�
uN .�/; vI .˛Iˇ1; �1I � � � IˇD ; �D/

� D f N .v/; 8v 2 XN : (7)

We observe, see, e.g., Fig. 7, that the global solution has a certain amount of “repet-
itiveness” in the middle domains. The two ends have different behavior because of
the PML material. Moreover, there is a dipole antenna in the left end. This moti-
vates us to treat the three parts differently, to decompose the domain, and to make
assumptions in the following way: We can subdivide the middle part into many
blocks. Since the solution has similar patterns on all these blocks, we can mimic
RBM, and only seek the solution on each block in a space spanned by a certain
set of precomputed functions instead of the (very rich) FE space. Moreover, these
spaces on all the blocks can be assumed to be the same.

The natural choice of the elementary block is, of course, rectangles in our case.
So we denote the subdomains from left to right by S0, S1, � � � , SD , SDC1. Obviously,
S0 corresponds to ˝a

1 in Fig. 1, SDC1 to ˝a
3 and all the remaining to ˝a

2 .
Next, we need to identify an appropriate set of functions as our basic patterns. We

take the basis functions in the reduced basis space obtained in Sect. 2.1. Note that
we have built a reduced basis space that is spanned by N solutions (on the domain
as in Fig. 1) to (6) at N judiciously chosen parameters [4, 14, 17]:

W N D span fuN .�1/; � � � ; uN .�N /g:
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We can cut each of these solutions into three pieces to obtain three sets of basis
functions to be used on S0, fS1, � � � , SDg, SDC1. That is, we define a space YN of
dimension N .D C 2/,

YN D fv 2 XN s. t. vjS0
2 span

n
uN .�1/j˝1

; � � � ; uN .�N /j˝1

o

vjSDC1
2 span

n
uN .�1/j˝3

; � � � ; uN .�N /j˝3

o
(8)

vjSi
2 span

n
uN .�1/j˝2

; � � � ; uN .�N /j˝2

o
for i D 1; � � � ;Dg:

The RBEM is nothing but to seek a solution in the space YN , i.e., the RBEM
solution is the solution of the following problem:

Find uN .�/ 2 YN such that

aN
�

uN .�/; vI .˛Iˇ1; �1I � � � IˇD; �D/
�
D f N .v/; 8v 2 YN : (9)

Note that no “gluing” is necessary since our original space XN consists of dis-
continuous functions and the new space YN is naturally a subspace of XN . This
dramatic difference from the method in [9, 11, 12] motivates the name of our
method – seamless reduced basis element method.

2.3 Reduced Basis Element Method: Error Estimate

To end this section, we briefly remark on the error estimate. Since the space YN
is a subspace of XN , the error estimate can be done in exactly the same ways as
the RBM. The parameter .˛Iˇ1; �1I � � � IˇD ; �D/ has a higher dimension than for
the RBM used to build YN . However, this is not much of a problem for relatively
small D.

3 Numerical Results

In this paper, we set D D 1 and thus only consider problems with three sub-
domains. Next, we show numerical results for a two-parameter case and then a
three-parameter case.
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Fig. 5 History of convergence for (a) RBM and (b) RBEM. Three pieces and two parameters

3.1 Two-Parameter Case

We choose two parameters: the length of ˝a
1 (i.e. ˝a

3 ), ˛, and the length of ˝a
2 , ˇ

and let � D �
2

. The parameter domain is set to be .˛; ˇ/ 2 Œ0:48; 1:00��Œ0:84; 1:75�.
We set Jx D 0, Jy D cos.!.y � 1

2
//ı�i

.
First, we perform a reduced basis analysis on ˝ WD ˝1

S
˝2

S
˝3. We use

the standard reduced basis method, see, e.g., [4, 16], to obtain 26 bases. To test the
validity of our basis, we solve for the reduced basis solution for parameters in a set
�test containing 250 randomly selected points. The history of convergence of the
reduced basis solution toward the truth approximation is shown in Fig. 5(a). Clearly,
exponential convergence is observed.

Then, we test RBEM on the same set�test. The maximum, median and minimum
of the error between the reduced basis element solution and the truth approximation
is plotted in Fig. 5(b). The exponential convergence with respect to the number of
bases used in the RBEM is observed. This clearly shows that the RBEM is working
as expected. It is not surprising that RBEM is providing much more accurate solu-
tions than RBM since the RBEM solution are sought in a higher dimensional (3N )
space. Note that for a given RB dimension, the RBM is performing better. However
the construction of 3N basis functions for the RBEM requires onlyN FE solutions,
which considerably reduces the offline effort. Moreover, with the same settings for
˛, ˇ and D > 1 (addressed in a future paper), RBEM can solve problems on a
domain having length up to D � 1:75C 2:0, but RBM can reach at most 3:75.

3.2 Three-Parameter Case

Here, we vary � in Œ3�
7
; 4�
7
�. A set of 50 bases are generated through the reduced

basis analysis. The RBM and RBEM are tested on a set consisting of 500 randomly
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Fig. 6 History of convergence for (a) RBM and (b) RBEM. Three pieces and three parameters

Fig. 7 RBEM solution with .˛; ˇ; �/ D .0:6; 1:75; 3

7
/: the left column is the solution to the

parametrized PDE .Ex; Ey/, and the right column is the solution on the actual domain .bE�;bE�/;

from top to bottom is real part of Ex (bE� ), real part of Ey (bE�), imaginary part of Ex (bE� ) and

imaginary part of Ey (bE�)
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chosen points in the parameter domain Œ0:48; 1:00� � Œ0:84; 1:75� � Œ3�
7
; 4�
7
�. The

convergence results, shown in Fig. 6, are similar to the two-parameter case.
Moreover, we plot in Fig. 7 the RBEM solutions for the case with the subdomain

lengths being 0:6, 1:75 and 0:6 with � D 3�
7

. We see that the discontinuity (due to
the piecewise Piola transform) in Ex is clearly captured by our method, and then
recovered nicely (see bE) after the (piece-wise) application of the inverse Piola
transformP�1

i . The solutions on three patches are “glued” together seamlessly. Note
that the Piola transform for Ey in our particular case is identity.

4 Concluding Remarks

In this paper, we have formulated a reduced basis element method to simulate elec-
tromagnetic wave propagation in a domain consisting of pipes of different shapes.
High efficiency and accuracy of the method is confirmed. The second part of this
series is going to be devoted to the study of the multi-element case, i.e., D � 2.
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An hp-Nitsche’s Method for Interface Problems
with Nonconforming Unstructured Finite
Element Meshes

Alexey Chernov and Peter Hansbo

Abstract In this paper we propose an hp-Nitsche’s method for the finite element
solution of interface elliptic problems using non-matched unstructured meshes of
triangles and parallelograms in R

2 and tetrahedra and parallelepipeds in R
3. We

obtain an explicit lower bound for the penalty weighting function in terms of the
local inverse inequality constant. We prove a priori error estimates which are explicit
in the mesh size h and in the polynomial degree p. The error bound is optimal in h
and suboptimal in polynomial degree by p1=2.

1 Introduction

Let us consider a bounded open domain in ˝ � R
d , d D 2; 3 with polyg-

onal (polyhedral) boundary, decomposed into two mutually disjoint subdomains
˝ D ˝1 [ ˝2. We assume that the interface � D ˝1 \ ˝2 is a polygonal
curve (polyhedral surface). � is allowed to be open or closed, and in the latter case
@˝ \ @˝ i D ;, � D @˝ i and @˝3�i D @˝ [ � for i D 1 or 2. For any function
v on ˝ we abbreviate vi WD vj˝i . We want to solve for u the diffusion equation,
i D 1; 2

� r � .�irui / D f in ˝ i ; (1)

ui D 0 on @˝ \ @˝ i ; (2)

u1 � u2 D 0 on � (3)

�1ru1 � n1 C �2ru2 � n2 D 0 on �: (4)
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Here f 2 L2.˝/; � 2 L1.˝/ and �� � �.x/ � �C for almost all x 2 ˝; ni is
the outward normal vector field on @˝ i , i D 1; 2. We utilize the standard Sobolev
spaces and abbreviate

V WD V 1 � V 2; where V i WD fv 2 H 1.˝ i / W vj@˝\@˝i D 0g: (5)

This problem has already been proposed and analyzed in [2] in the h-refinement
setting. We here extend it to the hp-setting. In this context the proofs require an
auxiliary formulation with the bilinear form Ahp (23) using lifting operators. This
is done only for technical purposes and formulation (22), similar to that of [2] (and
equivalent to (23) on the discrete level), should be used for implementation due to
its simpler form.

2 Discretization and Notations

By assumption @˝ i , i D 1; 2 have a piecewise flat boundary. We assume that we are
given a conforming partition T i

h
of @˝ i into triangles and parallelograms (tetrahe-

dra or parallelepipeds)˝ i D [
K2T i

h
K and set Th WD T 1

h
[T 2

h
. In order to define

the finite element spaces, we assume that every K 2 Th is an affine image of the
standard simplex Sd D fxi � 0;

Pd
iD1 xi � 1g or of the standard cube Œ0; 1�d :

8K 2 Th 9FK W

 OK ! K

Ox 7! AOxC x0
; OK D Sd or Œ0; 1�d : (6)

We define the local polynomial spaces by

Rp. OK/ WD



polynomials of total degree � p on Sd if OK D Sd ;
polynomials of degree � pi in Oxi on Œ0; 1�d if OK D Œ0; 1�d : (7)

In the latter case p is understood as a multiindex p D .p1; : : : ; pd /. We utilize the
global finite element spaces of piecewise polynomials

Vhp D V 1hp � V 2hp; V ihp D fv 2 V i W vjK ı Fk 2 Rp. OK/g; (8)

Whp D W 1
hp
�W 2

hp
; W i

hp D fv 2 L2.˝ i / W vjK ı Fk 2 Rp. OK/g: (9)

Note that V i
hp

consists of continuous and W i
hp

consists of possibly discontinuous

functions and rVhp � W d
hp

. We utilize the standard scalar- and vector-valued jump

operators, cf. e.g., [1, 4]. For v 2 V , v 2 V d we define on �

Œv� WD v1 � v2; �v� WD v1n1 C v2n2: (10)
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Note that Œu�Œv� D �u� ��v� almost everywhere on � , and the transmission conditions
(3) and (4) reduce to

Œu� D 0 , �u� D 0I ��ru� D 0: (11)

Let �A.x/ D 1 for x 2 A � R
d and zero otherwise. For v 2 V \ .C 0.˝1/ �

C 0.˝2// and some fixed 0 � ˛ � 1 we define a weighting operator

fvg˛ WD ˛v1�
˝1 C .1 � ˛/v2�˝2 : (12)

Note that fvg˛j� D ˛v1C.1�˛/v2j� . We carry out the error analysis in the follow-
ing mesh dependent norm, cf. e.g., [2–4,8], which mimics the energy norm for (24).
Suppose � 2 L1.� / is a uniformly positive function of local mesh parameters. For
every v 2 V we define the norm

kvkhp;� WD
�Z

˝

�jrvj2 C
Z

�

�Œv�2
�1=2

; (13)

where the piecewise gradient operator is understood as rvj˝i WD rvi for i D 1; 2.

Remark 1. Note that k � khp;� is an equivalent norm on V if �.x/ � �� where
�� does not depend on the discretization parameters. In the case @˝ \ @˝ i ¤ ;,
i D 1; 2 this follows by the standard Poincare inequality. The argument is more
elaborate if � does not intersect @˝ , cf. [3, 5] for more details.

For technical purposes we introduce a lifting operator L W V ! W d
hp

elementwise

8K 2 Th

Z

K

L .v/jK � w D
Z

@K\�
�v� � w ; 8w 2 Rp.K/

d : (14)

Lifting operators of this type is often used in the analysis of Discontinuous Galerkin
methods, cf. [1, 7]. Note that L .v/ vanishes on K if none of its faces is a subset of
� and with (12) we have

Z

˝

L .v/ � fwg˛ D
Z

�

�v� � fwg˛ ; 8w 2 W d
hp (15)

Lemma 1 (Inverse inequality). Let K 2 Th, J be a face of K and w ı FK 2
Rp. OK/. Z

J

w2 � GK

Z

K

w2; (16)

where GK D

8̂
<̂
ˆ̂:

.p C 1/.p C 1/
d

volume.J /

volume.K/
; if OK D Sd

.pJ? C 1/2 volume.J /

volume.K/
; if OK D Œ0; 1�d

(17)
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where pJ? is the polynomial degree of w ı FK in the direction orthogonal to the
face F �1.J /.

Proof. The proof for OK D Sd is given in [9, Theorem 5]. The proof for OK D Œ0; 1�d
follows similarly, cf. [3].

From now on we assume for simplicity that �jK D �K is constant on K 2 Th.
We write similarly G jK WD GK and G i WD G j˝i .

Lemma 2. For all v 2 V there holds
Z

˝i

�i jL .v/j2 �
Z

�

�iG i Œv�2; i D 1; 2: (18)

Proof. For arbitraryK 2 Th with a face J D K \ � and w ı FK 2 Rp. OK/d there
holds

Z

K

L .v/jK � w .14/D
Z

J

�v� � w �
�Z

J

Œv�2
�1=2 �Z

J

jwj2
�1=2

(19)

.16/�
�Z

J

Œv�2
�1=2 �

GK

Z

K

jwj2
�1=2

; (20)

hence we have
Z

K

jL .v/j2 � GK

Z

J

Œv�2 and thus

Z

˝i

�i jL .v/j2 �
X

K2T i
h

�iKG i
K

Z

K\�
Œv�2 D

Z

�

�iG i Œv�2 (21)

3 hp-Nitsche’s Method

For a fixed discretization Vhp and f�rug˛ D ˛�1ru1 C .1 � ˛/�2ru2 we define

ahp.u; v/ WD
Z

˝

�ru � rv �
Z

�

�u� � f�rvg˛ �
Z

�

f�rug˛ � �v�C
Z

�

�Œu�Œv�; (22)

Ahp.u; v/

WD
Z

˝

�ru � rv �
Z

˝

L .u/ � f�rvg˛ �
Z

˝

f�rug˛ �L .v/C
Z

�

�Œu�Œv�;

(23)
Consider the problem of finding uhp 2 Vhp:

ahp.u; v/ D
Z

˝

f v or Ahp.u; v/ D
Z

˝

f v 8v 2 Vhp (24)
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The above formulations are equivalent, since ahp � Ahp on Vhp � Vhp due to (15),
but (22) does not include the lifting operator and therefore is easier to implement.
We shall use (23) in the error analysis, see [3] for more details. In order to quantify
inconsistency of the second formulation we define a residual operator

Rhp;�.w/ WD sup
0¤v2Vhp

Z

˝

f v � Ahp.w; v/
kvkhp;� : (25)

We denote by ˘hp W L2.˝1/d � L2.˝2/d ! W d
hp

the L2 projection. Note that
Whp consists of in general discontinuous piecewise polynomials, thus˘hp is a local
projection.

Theorem 1 (Consistency error). Suppose u 2 V is a weak solution of (1)–(4), then

Rhp;� .u/ �
�Z

�

1

�

ˇ̌f�.˘hp.ru/� ru/g˛
ˇ̌2�1=2

(26)

for arbitrary � 2 L1.� / such that �.x/ � �� > 0 almost everywhere on � .

Proof. Recalling the transmission conditions (11) and (14) we get L .u/ � 0,

Z

�

f�rug˛ � �v� D
Z

�

�1ru1 � n1v1 C
Z

�

�2ru2 � n2v2 (27)

and by partial integration over˝1 and ˝2

Z

˝

f v �Ahp.u; v/ D
Z

˝

f v �
Z

˝

�ru � rvC
Z

˝

f�rug˛ �L .v/ (28)

D �
Z

�

f�rug˛ � �v�C
Z

˝

f�rug˛ �L .v/: (29)

Recall that � is piecewise constant on Th, hence f�rug˛;L .v/ 2 W d
hp

yielding

Z

˝

f�rug˛ �L .v/ D
Z

˝

f�˘hp.ru/g˛ �L .v/
.15/D

Z

�

f�˘hp.ru/g˛ � �v� (30)

thus
Z

˝

f v �Ahp.u; v/ D
Z

�

f�.˘hp.ru/� ru/g˛ � �v� (31)

�
�Z

�

1

�

ˇ̌f�.˘hp.ru/� ru/g˛
ˇ̌2�1=2 �Z

�

�Œv�2
�1=2

(32)

and (26) follows for any uniformly positive and bounded � .
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4 Quasi-Optimal Convergence

Lemma 3 (Continuity). For 8v;w 2 V and Q̨ D max.˛; .1 � ˛// there holds

Ahp.w; v/ � .1C Q̨ /kwkhp;f�C	G g˛
kvkhp;f�C	G g˛

: (33)

Proof. We bound all terms in Ahp.w; v/ by the Cauchy–Schwarz inequality. In

particular we have
Z

˝i

�irwi � rvi �
�Z

˝i

�i jrwi j2
�1=2 �Z

˝i

�i jrvi j2
�1=2

;

Z

˝

f�rwg˛ �L .v/ � ˛
�Z

˝1

�1jrw1j2
�1=2 �Z

˝1

�1jL .v/j2
�1=2

(34)

C.1 � ˛/
�Z

˝2

�2jrw2j2
�1=2 �Z

˝2

�2jL .v/j2
�1=2

(35)

and

Z

�

�Œw�Œv� �
�Z

�

�Œw�2
�1=2 �Z

�

�Œv�2
�1=2

: (36)

We use Lemma 1 and obtain the bound Ahp.w; v/ � T .w/T .v/ where

T .v/2 D .1C Q̨ /
Z

˝

�jrvj2 C
Z

�

.˛.�1G 1/C .1 � ˛/.�2G 2/C �/Œv�2 (37)

and the assertion follows, since T .v/ � p1C Q̨kvkhp;�Cf	G g˛
.

Lemma 4 (Coercivity). For 8v 2 Vhp and Q̨ D max.˛; 1 � ˛/ there holds

Ahp.v; v/ � ı � Q̨
ı
kvk2hp;��ıf	G g˛

(38)

provided ı > Q̨ and � > ıf�G g˛ almost everywhere on � .

Proof. We have

Ahp.v; v/ D
Z

˝

�jrvj2 � 2
Z

˝

f�rvg˛ �L .v/C
Z

�

�Œv�2: (39)

We use the arithmetic-geometric mean inequality 2ab � ı�1a2 C ıb2 for ı > 0

and Lemma 1 to obtain
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2

Z

˝

f�rvg˛ �L .v/ � ˛
�
1

ı

Z

˝1

�1jrv1j2 C ı
Z

�

�1G 1Œv�2
�

(40)

C.1 � ˛/
�
1

ı

Z

˝2

�2jrv2j2 C ı
Z

�

�2G 2Œv�2
�

(41)

� Q̨
ı

Z

˝

�jrvj2 C
Z

�

ıf�G g˛Œv�2: (42)

Inserting this in (39) we obtain

Ahp.v; v/ � ı � Q̨
ı

Z

˝

�jrvj2 C
Z

�

.� � ıf�G g˛/Œv�2 (43)

and (38) follows.

We remark that the norms k � khp;.�Cf	G g˛/ and k � khp;.��ıf	G g˛/ are equivalent
on the finite dimensional space Vhp and equivalence constants are independent of
the discretization parameters if the penalty weighting function � is chosen such that
�=f�G g˛ > �0 > ı. The Lax-Milgram Lemma guarantees unique solvability of
discrete formulations (24).

Theorem 2 (Quasi-optimal convergence). Suppose u 2 V is a weak solution of
(1)–(4) and uhp 2 Vhp is a solution of (24) with the penalty weighting function
� WD �0f�G g˛ with a fixed constant �0 > ı > Q̨ . Then

ku�uhpkhp;f	G g˛
� ..1C Q̨ /c Q̨ ;ı;�0

C1/ inf
v2Vhp

ku�vkhp;f	G g˛
C c Q̨ ;ı;�0

�0 C 1Rhp;f	G g˛
.u/

(44)
with a positive constant

c Q̨ ;ı;�0
D ı

ı � Q̨
�0 C 1

min.�0 � ı; 1/ : (45)

Proof. For any v 2 V , �.x/ � �� > 0 and a > 0 there holds

min.a; 1/kvk2hp;� � kvk2hp;a� D
Z

˝

�jrvj2 C a
Z

�

�Œv�2 � max.a; 1/kvk2hp;� ;
(46)

hence Lemma 4 gives for arbitrary v 2 Vhp
.ı � Q̨ /min.�0 � ı; 1/

ı
kuhp � vk2hp;f	G g˛

� Ahp.uhp � v; uhp � v/ (47)

D Ahp.u � v; uhp � v/C
Z

˝

f v �Ahp.u; uhp � v/: (48)
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We use continuity (33) and definition (25) of the residual and obtain

Ahp.u � v; uhp � v/ � .1C Q̨ /.�0 C 1/ku� vkhp;f	G g˛
kuhp � vkhp;f	G g˛

(49)Z

˝

f v � Ahp.u; uhp � v/ � Rhp;f	G g˛
.u/kuhp � vkhp;f	G g˛

(50)

hence

kuhp � vkhp;f	G g˛
� 1C Q̨
1 � Q̨ı�1

�0 C 1
min.�0 � ı; 1/ku � vkhp;f	G g˛

(51)

C 1

.1 � Q̨ı�1/min.�0 � ı; 1/Rhp;f	G g˛
.u/: (52)

Finally, we use triangle inequality

ku � uhpkhp;f	G g˛
� ku � vkhp;f	G g˛

C kuhp � vkhp;f	G g˛
(53)

and obtain (44) taking infimum over all v 2 Vhp.

The following theorem gives the convergence estimate for quasiuniform dis-
cretization, see [3] for more details.

Theorem 3. Suppose u 2 V \ .H s.˝1/�H s.˝2// with s � 2 is a weak solution
of (1)–(4) and uhp 2 Vhp is a solution of (24) based on quasiuniform shape regular
mesh Th, uniform polynomial degree p and the penalty weighting function � WD
�0f�G g˛, 0 � ˛ � 1 with a constant �0 > max.˛; 1 � ˛/. Let

h WD max
K2Th

diam.K/; p WD min
K2Th

pK ; (54)

then 9C > 0 independent of the discretization parameters such that

2X
iD1
kui � uihpkH1.˝i / � C

hminfs�1;pg

ps�3=2
2X
iD1
kuikH s.˝i /: (55)

Remark 2. As Theorem 3 shows, the convergence rate is optimal in h and sub-
optimal in p by p1=2, which agrees with related results for DG-FEM cf. e.g.,
[6, 7].

Remark 3. As Theorem 3 shows, convergence is achieved for every 0 � ˛ � 1. We
remark that a better sparsity pattern of the stiffness matrix is achieved if ˛ D 0 or
1. This becomes more important if at least one of ˝ i is discretized with boundary
elements, cf. [3] for this generalization and more details.
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7. D. Schötzau, C. Schwab, A. Toselli, Mixed hp-DGFEM for incompressible flows, SIAM J.
Numer. Anal., 40 (2002), 2171–2194 (electronic) (2003)
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Hybrid Explicit–Implicit Time
Integration for Grid-Induced Stiffness
in a DGTD Method for Time Domain
Electromagnetics

Victorita Dolean, Hassan Fahs, Loula Fezoui, and Stéphane Lanteri

Abstract In the recent years, there has been an increasing interest in discontinuous
Galerkin time domain (DGTD) methods for the numerical modeling of electromag-
netic wave propagation. Such methods most often rely on explicit time integration
schemes which are constrained by a stability condition that can be very restrictive
on highly refined meshes. In this paper, we report on some efforts to design a hybrid
explicit–implicit DGTD method for solving the time domain Maxwell equations
on locally refined simplicial meshes. The proposed method consists in applying an
implicit time integration scheme locally in the refined regions of the mesh while
preserving an explicit time scheme in the complementary part.

1 Introduction

Nowadays, a variety of methods exist for the numerical treatment of the time
domain Maxwell equations, ranging from the well established and still prominent
finite difference time domain (FDTD) methods based on Yee’s scheme to the more
recent finite element time domain (FETD) and discontinuous Galerkin time domain
(DGTD) methods. The latter are very well adapted to local mesh refinement but at
the expense of a restrictive time step in order to preserve the stability of the explicit
time integration schemes. In the first one, a local time stepping strategy is combined
to an explicit time integration scheme, while the second approach relies on the use
of an implicit or a hybrid explicit–implicit time integration scheme. In the present
work, we consider the second approach.
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Explicit–implicit methods for the solution of the system of Maxwell equations
have been studied by several authors with the shared goal of designing numerical
methodologies able to deal with hybrid structured-unstructured meshes. For exam-
ple, a stable hybrid FDTD–FETD method is considered by Rylander and Bondeson
in [8], while Degerfeldt and Rylander [3] propose a FETD method with stable
hybrid explicit–implicit time stepping working on brick-tetrahedral meshes that do
not require an intermediate layer of pyramidal elements. In [6], the authors study
the application of explicit–implicit Runge–Kutta (so-called IMEX-RK) methods in
conjunction with high order discontinuous Galerkin discretizations on unstructured
triangular meshes, in the framework of unsteady compressible flow problems (i.e.,
the numerical solution of Euler or Navier–Stokes equations).

This study is concerned with the design of a non-dissipative hybrid explicit–
implicit DGTD method for solving the time domain Maxwell equations on unstruc-
tured simplicial meshes. The hybrid explicit–implicit DGTD method considered
here has been initially introduced by Piperno [7]. However, to our knowledge, this
hybrid explicit–implicit DGTD method has not been investigated numerically so far
for the simulation of realistic electromagnetic wave propagation problems. The rest
of the paper is organized as follows: in Sect. 2, we state the initial and boundary
value problem to be solved; the discretization in space by a discontinuous Galerkin
method is discussed in Sect. 3 while the integration in time is considered in Sect. 4;
numerical results and conclusions are respectively reported in Sect. 5.

2 Continuous Problem

We consider the Maxwell equations in three space dimensions for linear isotropic
media with no source. The electric and magnetic fields E.x; t/ and H.x; t// verify:

"@tE � curlH D �J; �@tHC curlE D 0; (1)

where J.x; t/ is a current source term. These equations are set on a bounded poly-
hedral domain˝ of R

3. The permittivity ".x/ and the magnetic permeability tensor
�.x/ are varying in space, time-invariant and both positive functions. Our goal is to
solve system (1) in a domain ˝ with boundary @˝ D �a [ �m, where we impose
the following boundary conditions:

8
<̂
:̂

n � E D 0 on �m;

n � E �
r
�

"
n � .H � n/ D n � Einc �

r
�

"
n � .Hinc � n/ on �a:

(2)

Here n denotes the unit outward normal to @˝ and .Einc;Hinc/ is a given incident
field. The first boundary condition is called metallic (referring to a perfectly con-
ducting surface) while the second condition is called absorbing and takes here the
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form of the Silver–Müller condition which is a first order approximation of the exact
absorbing boundary condition. This absorbing condition is applied on �a which rep-
resents an artificial truncation of the computational domain. Finally, system (1) is
supplemented with initial conditions: E0.x/ D E.x; t/ and H0.x/ D H.x; t/.

3 Discretization in Space

We consider a partition Th of˝ into a set of tetrahedra �i of size hi with boundary
@�i such that h D max�i 2Th

hi . For each �i , Vi denotes its volume, and "i and�i are
respectively the local electric permittivity and magnetic permeability of the medium,
which are assumed constant inside the element �i . For two distinct tetrahedra �i and
�k in Th, the intersection �i \ �k is a triangle aik which we will call interface. For
a given partition Th, we seek approximate solutions to (1) in the finite dimensional
subspace Vp.Th/ D fv 2 L2.˝/3 W vk j�i 2 Pp.�i /; for k D 1; 3 and 8�i 2 Thg
where Pp.�i / denotes the space of nodal polynomial functions of degree at most p
inside the element �i . Following the discontinuous Galerkin approach, the electric
and magnetic fields inside each finite element are searched for as linear combina-
tions .Ei ;Hi / of linearly independent basis vector fields 'ij ; 1 � j � d , where
d denotes the local number of degrees of freedom inside �i . The discretization in
space yields the following system of ODEs:

M "
i

dEi
dt
D KiHi �

X
k2Vi

SikHk; M
�
i

dHi

dt
D �KiEi C

X
k2Vi

SikEk ; (3)

where the symmetric positive definite mass matrices M �
i (� stands for " or �), the

symmetric stiffness matrix Ki and the symmetric interface matrix Sik (all of size
d � d ) are given by:

.M �
i /jl D �i

R
�i

t'ij � 'i l ; .Sik/jl D
1

2

R
aik

t'ij � .'kl � nik/;

.Ki /jl D 1

2

R
�i

t'ij � curl'i l C t'i l � curl'ij :

4 Time Discretization

The choice of the time discretization method is a crucial step for the global effi-
ciency of the numerical method. Then, a possible alternative is to combine the
strengths of explicit (easy to implement, greater accuracy with less computational
effort) and implicit schemes (unconditional stability) applying an implicit time inte-
gration scheme locally in the refined regions of the mesh while preserving an explicit
time scheme in the complementary part, resulting in an hybrid explicit–implicit
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(or locally implicit) time integration strategy. The set of local system of ordinary
differential equations for each �i (3) can be formally transformed in a global system.
To this end, we suppose that all electric (resp. magnetic) unknowns are gathered in
a column vector E (resp. H) of size dg D NTh

d where NTh
stands for the number

of elements in Th. Then system (3) can be rewritten as (we set S D K � A � B):

M
" dE

dt
D KH�AH�BH D SH; M

� dH

dt
D �KECAE�BE D � tSE: (4)

where we have the following definitions and properties:

� M
";M� and K are dg � dg block diagonal matrices with diagonal blocks equal

to M "
i ;M

�
i and Ki respectively.

� A is also a dg � dg block sparse matrix, whose non-zero blocks are equal to Sik
when aik is an internal interface of the mesh.

� B is a dg � dg block diagonal matrix, whose non-zero blocks are associated to
the numerical treatment of the boundary conditions (2).

4.1 Explicit and Implicit Time Schemes

The system (4) can be time integrated using a second-order Leap–Frog scheme as:

M
"

�
E
nC1 � E

n

�t

�
D SH

nC 1
2 ; M

�

 
H
nC 3

2 �H
nC 1

2

�t

!
D � tSE

nC1: (5)

The resulting fully explicit DGTD-Pp method is analyzed in [5] where it is shown
that the method is non-dissipative, conserves a discrete form of the electromagnetic
energy and is stable under the CFL-like condition:

�t � 2

d2
; with d2 Dk .M��/

1
2
t
S .M�"/

1
2 k; (6)

where k:k denote the canonical norm of a matrix .8X; kAXk � kAkkXk/, and
the matrix .M�� / 1

2 is the inverse square root of M
� . Alternatively, (4) can be time

integrated using a second-order Crank–Nicolson scheme as:

8
ˆ̂<
ˆ̂:

M
"

�
E
nC1 � E

n

�t

�
D S

�
H
n CH

nC1

2

�
;

M
�

�
H
nC1 �H

n

�t

�
D � tS

�
E
n C E

nC1

2

�
:

(7)

Such a fully implicit DGTD-Pp method is considered in [2] for the solution of the
2D Maxwell equations. In particular, the resulting method is unconditionally stable.
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4.2 Hybrid Explicit–Implicit Time Scheme

We consider here a method of this kind that was recently proposed by Piperno in
[7]. The set of elements �i of the mesh is now assumed to be partitioned into two
subsets: one made of the smallest elements and the other one gathering the remain-
ing elements. In the following, these two subsets are respectively referred as Si and
Se . In the proposed hybrid time scheme, the small elements are handled using a
Crank–Nicolson scheme while all other elements are time advanced using a variant
of the classical Leap–Frog scheme known as the Verlet method. Then, starting from
the values of the fields at time tn D n�t , the proposed hybrid explicit–implicit time
integration scheme consists in three sub-steps:

1. The components of H and E associated to the set Se are time advanced from tn

to tnC 1
2 with time step �t=2 using a pseudo-forward Euler scheme,

2. The components of H and E associated to the set Si are time advanced from tn

to tnC1 with time step �t using the Crank-Nicolson scheme,
3. The components of H and E1 associated to the set Se are time advanced from
tnC 1

2 to tnC1 with time step �t=2 using the reversed pseudo-forward Euler
scheme.

In order to further describe this scheme, the problem unknowns are reordered such
that sub-vectors with an e subscript (respectively, an i subscript) are associated to
the elements of the set Se (respectively, the set Si ). Thus, the global system of
ordinary differential equations (4) can be split into two systems:

8
<̂
:̂

M
"
e

dEe

dt
D SeHe �AeiHi ;

M
�
e

dHe

dt
D � tSeEe C AeiEi ;

8̂
<̂
ˆ̂:

M
"
i

dEi

dt
D SiHi � AieHe;

M
�
i

dHi

dt
D � tSiEi CAieEe :

(8)

Then, the proposed hybrid explicit–implicit algorithm consists in the following
steps:

Step 1 W

8̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
:

M
�
e

0
@H

nC 1
2

e �H
n
e

�t=2

1
A D � tSeEne C AeiE

n
i ;

M
"
e

0
@E

nC 1
2

e � E
n
e

�t=2

1
A D SeH

nC 1
2

e � AeiH
n
i :

(9)

Step 2 W

8
ˆ̂̂
<̂
ˆ̂̂
:̂

M
"
i

 
E
nC1
i � E

n
i

�t

!
D Si

 
H
nC1
i CH

n
i

2

!
�AieH

nC 1
2

e ;

M
�
i

 
H
nC1
i �H

n
i

�t

!
D � tSi

 
E
nC1
i C E

n
i

2

!
C AieE

nC 1
2

e :

(10)
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Step 3 W

8̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
:̂

M
"
e

0
@E

nC1
e � E

nC 1
2

e

�t=2

1
A D SeH

nC 1
2

e �AeiH
nC1
i ;

M
�
e

0
@H

nC1
e �H

nC 1
2

e

�t=2

1
A D � tSeEnC1

e C AeiE
nC1
i :

(11)

In [7], the author shows that the hybrid explicit–implicit scheme (9)-(11) for time
integration of the semi-discrete system (4) associated to the DGTD-Pp method
exactly conserves the following quadratic form of the numerical unknowns E

n
e , E

n
i ,

H
n
e and H

n
i :

E n D E ne C E ni C E nh with

8
ˆ̂̂<
ˆ̂̂
:

E ne D t
E
n
eM

"
eE
n
e C t

H
nC 1

2
e M

�
e H

n� 1
2

e ;

E ni D t
E
n
i M

"
iE
n
i C t

H
n
i M

�
i H

n
i ;

E n
h
D ��t

2

4
t
H
n
i
t
Aei .M

"
e/

�1
AeiH

n
i ;

(12)

as far as �a D ;. However, the condition under which E n is a positive definite
quadratic form and thus represents a discrete form of the electromagnetic energy is
not given. In the following we state such a condition on the global time step �t .

Lemma 1. The discrete electromagnetic energy E n given by (12) is a positive
definite quadratic form of the numerical unknowns E

n
e , E

n
i , H

n
e and H

n
i if:

�t � 2

˛e Cmax.ˇei ; �ei /
with

8
ˆ̂<
ˆ̂:

˛e D k .M"
e/

� 1
2 Se.M

�
e /

� 1
2 k;

ˇei D k .M"
e/

� 1
2 Aei .M

�
i /

� 1
2 k;

�ei D k .M�
e /

� 1
2 Aei .M

"
i /

� 1
2 k;

(13)

where k : k denotes a matrix norm and the matrix .M�
e=i
/� 1

2 is the inverse of the
square root of the matrix M

�
e=i

(� stands for " or �).

The proof can be found in [4]. In summary, (13) states that the stability of the hybrid
explicit–implicit DGTD-Pp method is deduced from a criterion which is essentially
the one obtained for the fully explicit method here restricted to the subset of explicit
elements Se, augmented by two terms involving elements of the implicit subset Si

associated to hybrid internal interfaces (i.e., interfaces aik such that �i 2 Se and
�k 2 Si ).

5 Numerical Results

In this section we apply the proposed hybrid explicit–implicit DGTD-Pp method to
the simulation of a 3D problem involving the scattering of a plane wave (F D 1GHz)
by a perfectly conducting sphere with wall thickness e D 5 10�3 m and radius
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XY

Z

XY

Z

Fig. 1 Scattering of plane wave by a spherical mesh cavity with a hole. Geometry setting and
unstructured mesh (left), contour lines of Ex for the hybrid explicit–implicit DGTD-P2 method
(right)

R D 0:2m with a hole of radius r D 2:5 10�2 m at one of its pole (see Fig. 1
left for a view of the geometry and the unstructured mesh in a selected plane). The
computational domain is artificially bounded by a cubic surface on which the Silver–
Müller boundary condition is applied. The underlying tetrahedral mesh consists of
56,482 vertices and 301,116 tetrahedra. The contour lines of Ex for a physical sim-
ulation time corresponding to 10 periods of the incident wave are shown on Fig. 1
right. The definition of the subsets Si and Se relies on the geometric criterion
cg.�i / D 4minj2Vi

ViVj

PiPj
. In the present case, the threshold value 2:5 10�3 m has

been selected resulting in jSej D 300;526 and jSi j D 590 (i.e., only 0.2% of
the mesh elements are treated implicitly). The time steps used in the simulations
are the following: 0:34 (2:8) picosec for the explicit (hybrid) DGTD-P1 method
and 0:17 (1:4) picosec for the explicit (hybrid) DGTD-P2 method. Numerical sim-
ulations have been conducted on a cluster of Intel Xeon 2.33 GHz based nodes
interconnected by a high performance Myrinet network. Each node consists of a
dual processor quad core board sharing 16 GB of RAM memory. The parallelization
of the hybrid explicit–implicit DGTD-Pp method relies on a SPMD (Single Pro-
gram Multiple Data) strategy which combines a partitioning of the tetrahedral mesh
with a message passing programming using the MPI interface. Performance results
for the simulations based on the DGTD-P1 and DGTD-P2 methods are summarized
in Table 1 where “RAM (LU)” is the maximum per-processor memory overhead
for computing and storing the sparse L and U factors (after an AMD reordering for
the minimization of the bandwidth), while “Time (LU)” gives the maximum factors
construction time. The direct solver used is MUMPS (see [1]) The results of Table 1
show that the memory overhead associated to the construction and the storage of
the L and U factors of the implicit matrix is acceptable while the gain in computing
time is roughly equal to 4.4 for both the P1 and P2 interpolation methods.
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Table 1 Scattering of plane wave by a spherical mesh cavity. Performance results (Ns D 8

processing units)

Method RAM (LU) Time (LU) Total time

Explicit DGTD-P1 – – 44 mn
Hybrid explicit–implicit DGTD-P1 2 MB <1 s 10 mn
Explicit DGTD-P2 – – 4 h 24 mn
Hybrid explicit–implicit DGTD-P2 8 MB <1 s 56 mn

6 Conclusions

We have presented some preliminary results of the development of a hybrid explicit–
implicit DGTD method for overcoming the grid-induced stiffness in time domain
electromagnetics. The proposed method allows to reduce notably the overall com-
puting time as compared to a fully explicit method, when a rather small number of
the mesh elements are treated implicitly (typically a few percent) which is often the
case in practical situations involving locally refined simplicial meshes. Future works
will follow several directions: (a) improvement of the temporal accuracy by study-
ing the combination of a high order Leap-Frog scheme with a high order implicit
time scheme, (b) design of an auto-adaptive solution strategy for the selection of
the reference time step minimizing dispersion error and, (c) treatment of load bal-
ancing issues raised by the separation of mesh elements into two subsets in order to
obtained a scalable hybrid explicit–implicit DGTD method.
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High-Order Quasi-Uniform Approximation
on the Sphere Using Fourier-Finite-Elements

T. Dubos

Abstract Solving transport equations on the whole sphere using an explicit time
stepping and a Eulerian formulation on a latitude-longitude grid is relatively straight-
forward but suffers from the pole problem: due to the increased zonal resolution near
the pole, numerical stability requires unacceptably small time steps. Commonly
used workarounds such as near-pole zonal filters affect the qualitative properties
of the numerical method. Rigorous solutions based on spherical harmonics have a
high computational cost. The numerical method we propose to avoid this problem
is based on a Galerkin formulation in a subspace of a Fourier-finite element spatial
discretization, providing quasi-uniform resolution and high-order accuracy. For N 2

degrees of freedom, the computational cost is O.N 2 logN/, intermediate between
finite-difference or finite-volume methods and spherical harmonics methods. We
present experimental results and standard benchmarks demonstrating the accuracy
and stability of the method applied to the rotating shallow-water equations.

1 Introduction

Global weather and climate modelling require the numerical solution of partial
differential equations on the whole sphere. A difficult part of this task is the dis-
cretization of the dynamical core, dealing with the transport of mass, momentum and
various species. Ideally a numerical scheme should be accurate, stable and computa-
tionally efficient. In the context of climate studies, a crucial additional requirement
is that it be conservative: the discretized system should enforce the exact conser-
vation of a discrete approximation of the total mass, momentum and, if possible,
energy and enstrophy. For an in-depth review of the evolution of dynamical cores,
the reader is referred to [17]. Although a single optimal scheme has not emerged
yet, most dynamical cores in use today use either one of two methods: the finite
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difference method [1, 2, 13] or the spectral transform method [9, 14], both using a
structured latitude-longitude grid.

With explicit time-stepping, the temporal stability is limited by a Courant–
Friedrichs–Lewy (CFL) condition. With finite-difference methods in latitude-
longitude coordinates, zonal grid intervals near the poles are 	 a=N 2 with a the
Earth radius, much smaller than the grid interval	 a=N near the Equator. By repre-
senting the solution as a combination of spherical harmonics, the spectral transform
method elegantly removes the singularity at the pole introduced by spherical coordi-
nates. This comes at a fairly high computational cost. Furthermore because temporal
integration is usually of low order, the overall accuracy is typically no better than
third order.

Much current research on numerical schemes for dynamical cores has abandoned
the latitude-longitude grid and focuses on the use of quasi-uniform grids with less
severe singularities [11, 17]. In [6] instead, a new numerical method formulated
on the familiar latitude-longitude grid is designed which is more accurate than
finite differences and more efficient than the spectral transform, borrowing from
the two approaches to achieve comparable stability and conservation properties.
Constructing the method boils down to designing the functional space used for the
approximation of the dynamical fields. Adhering to the Galerkin framework then
guarantees the conservation of linear and quadratic invariants.

[6] is restricted to non-divergent flows while the minimal testbed for atmospheric
applications is the compressible Saint-Venant model. This restriction was motivated
by the fact that exact conservation of linear and quadratic integral invariants can
be generically obtained within the Galerkin framework. The energy and enstro-
phy of the Saint-Venant model are not quadratic invariants, and will not be exactly
conserved. Nevertheless the method developed in [6] can be readily extended to
compressible flows. For this we use here the stream function – velocity potential
representation of the velocity field, as in spectral models.

In Sect. 2 the functional space used in [6] is described. Zonal Fourier dis-
cretization brings spectral accuracy, zonal invariance and fast transform. Latitudinal
finite elements provide adjustable accuracy, exact quadrature and spatial locality.
Latitude-dependant zonal truncation controlled by the largest eigenvalue of the
Laplacian operator brings quasi-uniform resolution, overcoming the pole problem.
In Sect. 3 the rotating shallow-water equations are solved using this functional
space. A standard benchmark is implemented and the properties of accuracy and
conservation of the method are discussed.

2 Quasi-Uniform Approximation of Scalar Fields
by Fourier-Finite Elements

Let .x; y; z/ be a set of Cartesian coordinates, and .�; �; r/ the associated longitude-
latitude-radius coordinates, i.e., x D r cos� cos�, y D r sin� cos� and z D
r sin �. Here � 2 Œ�
; 
� is the longitude and � 2 Œ�
=2; 
=2� is the latitude. We
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note .e�; e�; er / the local orthonormal basis associated to the longitude-latitude-
radius coordinates. Smoothness of a scalar function f across the poles � D ˙
=2
imposes that the zonal Fourier modes Ofm.�/ decay like cosjmj � as � ! ˙
=2:

Ofm.�/ D 1

2


Z
f .�; �/ e�im�d� 	 cosjmj � � ! ˙
=2: (1)

These conditions hold for m � k if f is k times continuously differentiable. We
consider the space S 0 spanned by basis functions Fml where

F2ml D Bl .sin �/ e2mi� F2mC1 l D cos� Bl .sin�/ e.2mC1/i�

where the Bl are B�splines of degree d relative to nodes �1 D z0 < z1 < � � � <
zN D 1 subdividing the latitudinal interval in N elements. The nodes zk can be
chosen arbitrarily. We choose equally spaced latitudes: zk D cos.
k=N/. We have
not tried to improve the accuracy or stability of the numerical method by adjust-
ing the nodes zk . Notice that other families of piecewise polynomials can replace
B�splines. The multiplicative factor cos� in front of odd zonal modes is consistent
with the decay rule (1) and ensures that exact quadrature rules exist for products of
functions belonging to S 0. Indeed the integral

hf i D
Z
f d� cos�d� D 2


Z
Of0dz (2)

can be computed in two steps from the values of f on a regular latitude-longitude
grid, by applying first equal-weight quadrature in the zonal direction then element-
wise Gaussian quadrature in the latitudinal direction [6].

When integrating a transport equation with an explicit temporal scheme, the time
the step � must satisfy the CFL criterion

�U � cı: (3)

where c is a constant depending on the details of the temporal scheme, U is the
maximum velocity, and

ı�2 D kSkS 0 D sup
g2S 0

S.g; g/

kgk2 where S.f; g/ D hrf � � rgi : (4)

The effective grid scale ı entering (3) and controlling the time step is therefore
defined from the largest eigenvalue of the Laplacian operator. Within the functional
space S 0, ı is controlled by the near-pole zonal resolution, much finer than near
the Equator. This fine resolution is wasted since the discretization error made near
the equator eventually propagates to the whole sphere under the effect of advection.
This excess resolution is now removed by restricting the Galerkin formulation to a
subspace S 00 of S 0.
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For this we discard for each zonal mode m a number L.m/ of near-pole degrees
of freedom and define S 00 as the space spanned by the .Fml /.m;l/2K with K D
f�M � m � M and L.m/ � l < N C d � L.m/. Since the Laplacian does not
couple the different zonal modes,

kSkS 00 D max
0�m�M kSkS L.m/

m
(5)

where S L
m the space spanned by the basis functions .Fml /withL � l < NCd�L.

Since the basis functions for �1 � m � 1 have the correct near-pole decay, we
decide that L.m/ D 0 for �1 � m � 1. We then define L.m/ for l > 1 as the
smallest number L such that kSkS L

m
� ı�2 where

ı�2 D max
�
kSkS 0

0
; kSkS 0

1

�
(6)

and kSkS L
m

is defined as in (4). The resolution ı is entirely determined by the lati-
tudinal resolution, e.g., by the numberN of latitudinal intervals and by the positions
of the nodes zk . Notice that kSkS L

m
� m2, which also bounds the number M of

zonal modes for a given N . We now set N D M . By analogy with spectral trunca-
tion, a specific choice of M is called in the sequel the “truncationM ,” for instance
T42 in the case M D N D 42. Calculations show that ı is roughly 1/3 the zonal
grid size at the Equator [6].

We now show that, despite near-pole zonal truncation, the functional space S 00
provides an approximation of the same order as S 0, i.e., of order d C 1. For this we
pick a point .�0; �0/ on the sphere and consider two scalar functions, a Gaussian:

f .�; �/ D exp
cos˛ � 1
˛2c

(7)

and a cosine-bell:
f .�; �/ D 1C cos .
min .1; ˛=˛c// (8)

where ˛ is the geodesic angle between .�; �/ and .�0; �0/ and ˛c D 
=8. We com-
pute an approximation Qf 2 S 00 from the value of f at the quadrature points then the
maximal pointwise error, as well as the largest pointwise error in the approximation
of the gradient:

".N; d/ D max
ˇ̌
ˇf .�i ; �j /� Qf .�i ; �j /

ˇ̌
ˇ ; (9)

"r.N; d/ D max
			rf .�i ; �j / � r Qf .�i ; �j /

			 : (10)

We repeat the process for 100 random values of .�0; �0/ and retain the largest
errors. Figure 1 displays ".N; d/ and "r.N; d/ as a function of the zonal grid size
at the Equator 360=N , for finite elements of degree d D 1; 2; 3 (circles, crosses,
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Fig. 1 Discretization errors ".N; d/ D max
ˇ̌
ˇf .�i ; �j /� Qf .�i ; �j /

ˇ̌
ˇ (left) and "r.N; d/ D

max
			rf .�i ; �j /� r Qf .�i ; �j /

			 (right) as a function of the zonal grid size 360=Nlon (degrees)

for finite elements of degree d D 1; 2; 3 (circles, crosses, triangles), for the Gaussian (dashed
line) and for the cosine bell (solid line)

triangles), for the Gaussian (solid line) and for the cosine bell (dashed line). For the
cosine bell, the error scales like " 	 N�2, indicating second-order accuracy. This
is consistent with the fact that the cosine bell is only continuously differentiable
with a bounded second derivative. For the Gaussian however, the error scales like
" 	 N�.dC1/ demonstrating that the formal order of accuracy is indeed achieved in
practice. As expected for a finite-element method, the order of the approximation of
the gradients is one less than the order of the pointwise approximation.

3 Rotating Shallow-Water Equations

The rotating shallow-water equations describe the quasi-horizontal motion of a thin
fluid layer over a spherical Earth of radius a rotating at an angular rate ˝ . The
flow state is described by the velocity field u and the geopotential p, equal to the
hydrostatic pressure divided by the fluid density, and to the fluid layer thickness
multiplied by the acceleration of gravity. Motion results from the Coriolis force and
hydrostatic pressure. Among several possible equivalent formulations, we use the
so-called vector-invariant form:

@tp C div pu D 0 (11)

@tuC .f C �/er � uCrH D 0 (12)

where H D p C u � u
2
; (13)
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f D 2˝ sin� is the local Coriolis parameter and � D er � curl u is the relative
vorticity. Taking the curl of (12) yields:

@t .f C �/C div.f C �/u D 0: (14)

Combining (11) and (12) yields the conservation of axial angular momentum and
total energy:

@tLz D 0 Lz D ez � hx � pui (15)

@tE D 0 E D 1

2

˝
p2 C pu � u˛ : (16)

Combining (11) and (14) yields the conservation of total enstrophy:

@tZ D 0 Z D 1

2

*
.f C �/2

p

+
: (17)

We discretize (11)–(13) by the Galerkin method. The velocity field derives from
a stream function  and a potential 
:

u D r
 C er � r : (18)

The unknown, time-dependent scalar fields 
; ; p;H belong to the finite-
dimensional space S 00. Equation (11)–(13) is tested against test functions OH; Op; OuD
r O
 C er � r O :

8 OH
D OHH

E
D
D OH

�
p C u � u

2

�E
(19)

8 Op h Op@tpi � hr Op � pui D 0 (20)

8Ou h Ou@tui C hOu.f C �/ � ui C hOu � rH i D 0: (21)

We run Williamson’s Rossby–Haurwitz test case 3.6 [16] at coarse resolutions
T21 and T42. Let the Courant number be C D �

p
ghmax=ı where g D 9:80616

is the acceleration of gravity and hmax D 10;350m is the maximum initial fluid
layer thickness. We find that a leap-frog temporal scheme is stable up to C ' 0:98,
corresponding at resolution T 42 to a time step of 5min. The results shown below are
obtained with a low-storage, three-step, third-order Runge-Kutta temporal scheme
[18] which was found stable up to C ' 1:7, corresponding at resolution T 42 to a
time step of 8min.

We display in Fig. 2 the relative drift with time of the integral invariants. Mass is
conserved to machine accuracy and not plotted. Energy and angular momentum are
very well conserved (about 10�8 relative drift at T42). The relative drift in enstrophy
is larger (about 10�5 at T42) but still small. Since enstrophy involves vorticity, a
gradient quantity, this is consistent with the accuracy results shown in Fig. 1.
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Fig. 2 Relative drift of the integral invariants during the integration of Williamson Rossby–
Haurwitz’ wave test case; at resolutions T21 and T42

4 Discussion

We have designed a conservative, accurate and stable method for the solution of
scalar PDEs on the whole sphere. Attractive features of the method are its simplic-
ity associated to the latitude-longitude grid and its efficiency, intermediate between
finite difference and spectral methods. Conservativity of the method relies on the
Galerkin framework and exact quadrature of nonlinear terms. The pole problem is
overcome by varying the zonal resolution near the poles. [6] discusses relationships
with the spectral transform method, other finite-element methods [5], the spectral
element method [3, 15], zonal filters [4, 10] and finite-volume methods [7, 8, 12].

We have used the functional spaces developed in [6] to solve the Saint-Venant
equations in vorticity-streamfunction formulation. The energy and enstrophy of the
Saint-Venant model are not quadratic invariants, and are not exactly conserved even
with exact quadrature. Nevertheless good to very good conservation of the integral
invariants is found in the widely accepted Rossby–Haurwitz wave test case.

An alternative to using the vorticity-streamfunction formulation would be to
design functional spaces to represent the zonal and latitudinal wind components,
with their specific near-pole behavior. This may be slightly more economical since
the required smoothness, hence polynomial degree, is less. More importantly, the
next step towards a full-blown dynamical core is to implement a multi-layer shallow-
water model and submit it to baroclinic benchmarks. Work is under way towards this
goal.
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An hp Certified Reduced Basis Method
for Parametrized Parabolic Partial Differential
Equations

Jens L. Eftang, Anthony T. Patera, and Einar M. Rønquist

Abstract We extend previous work on a parameter multi-element hp certified
reduced basis method for elliptic equations to the case of parabolic equations.
A POD (in time)/Greedy (in parameter) sampling procedure is invoked both in
the partitioning of the parameter domain (h-refinement) and in the construction
of individual reduced basis approximation spaces for each parameter subdomain
(p-refinement). The critical new issue is proper balance between additional POD
modes and additional parameter values in the initial subdivision process. We present
numerical results to compare the computational cost of the new approach to the
standard (p-type) reduced basis method.

1 Introduction

The reduced basis (RB) method is a model-order reduction framework for rapid
evaluation of functional outputs – such as surface temperatures or fluxes – for par-
tial differential equations which depend on an input parameter vector – such as
geometric factors or material properties. Given any parameter vector from a pre-
defined parameter domain, the field variable is approximated as a Galerkin-optimal
linear combination of accurately pre-computed “truth” finite element (FE) snapshots
of the solution at judiciously selected parameter values [2,6]; assuming that the field
depends smoothly on the parameters, a RB approximation can be obtained with very
few snapshots. Moreover, rigorous a posteriori upper bounds for the error in the
RB approximation with respect to the truth discretization can be developed [4, 9].
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The RB equation formation, solution, and error estimation can be made very effi-
cient in the case of (perhaps approximate) “affine” parameter dependence through
an offline-online procedure [8, 9]; the method is computationally attractive in two
important engineering contexts – “real-time” and “many-query”.

For many problems, the field variable may be quite different in different regions
of the parameter domain, and hence a snapshot from one region may be of little value
in approximating the solution in another region: the RB space is thus in some sense
too large. In [3], an hp reduced basis method is introduced for linear elliptic equa-
tions: we adaptively subdivide the original parameter domain into smaller regions;
we then build individual RB approximation spaces spanned by snapshots restricted
to parameter vectors within each parameter subdomain. The RB approximation
associated with any new parameter vector is then constructed as a linear (Galerkin)
combination of snapshots from the parameter subdomain in which the new parame-
ter vector resides. We thus expect the dimension of the (local) approximation space,
and thus the online computational cost, to be very low: every basis function con-
tributes significantly to the RB approximation. An alternative parameter-element
reduced-order “interpolation” approach is introduced in [1].

In this paper, we extend the work in [3] to linear parabolic equations through
a POD (in time)/Greedy (in parameter) sampling approach [5, 7]. This procedure
determines the partition of the parameter domain and the construction of the individ-
ual RB approximation spaces for each subdomain. The elliptic machinery from [3]
readily extends to the parabolic case since we only subdivide the parameter (and not
the temporal) domain. The critical new issue is proper balance between additional
POD modes and additional parameter values in the initial subdivision process.

Let ˝ � R2, define L2.˝/ D fv W R
˝

v2 d˝ < 1g, H 1.˝/ D fv W jrvj 2
L2.˝/g, H 1

0 .˝/ D fv 2 H 1.˝/ W vj@˝ D 0g, and introduce Xe � Xe.˝/ such
that H 1

0 .˝/ � Xe.˝/ � H 1.˝/. The admissible parameter domain is D � RP .
For each � 2 D , a.�; �I�/ is a coercive and continuous bilinear form, b.�; �I�/
is an L2.˝/ inner-product, and f .�I�/ is a linear and bounded functional. We
assume that a, b and f admit affine expansions in at most Q terms in the sense
that (for example) a.�; �I�/ DPQa

qD1�q.�/aq.�; �/, where the �q are �-dependent
functions and the aq.�; �/ are �-independent bilinear forms, 1 � q � Qa.� Q/;
similar expansions in Qb � Q and Qf � Q terms apply for b and f , respec-
tively. Let N� 2 D be a fixed “reference parameter”, and denote the symmetric
part of a by as ; we then define the X -inner-product and X -norm by as.�; �I N�/ and
k � kX D .as.�; �I N�//1=2, respectively.

We shall consider problems already discretized in time with the Euler Backward
(EB) method. Let Œ0; T � be the time interval and introduce K C 1 discrete time-
values tk D k�t , 0 � k � K , where �t D T=K is the step-size. Our “exact”
(hence e) problem then reads: Given any � 2 D , find ue.tk ; �/ 2 Xe, 1 � k � K ,
such that

1

�t
b
�
ue.tk I�/ � ue.tk�1I�/; vI��C a�ue.tk I�/; vI�� D f .vI�/; 8v 2 XeI

(1)
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we assume zero initial conditions, ue.t0I�/ D 0. The output of interest can now be
evaluated as a functional of the field variable; in this paper however, for simplicity
of exposition, we consider no particular outputs of interest. Note that since our prob-
lem is linear time-invariant (LTI), we may also readily treat time-dependent (offline
unknown) control functions through an impulse approach [4].

The RB approximation will be built upon truth FE approximations to the “exact”
solution; let X � XN .˝/ � Xe.˝/ denote a FE space of dimension N . We shall
assume that X is rich enough that the error between the truth and “exact” solutions
is in practice negligible. The truth discretization then reads: Given any � 2 D , find
uk.�/ � u.tkI�/ 2 X , 1 � k � K , such that

1

�t
b
�
uk.�/ � uk�1.�/; vI��C a�uk.�/; vI�� D f .vI�/; 8v 2 X I (2)

for initial condition u0.�/ D 0.
In Sect. 2, we formulate the hp RB method for parabolic problems, review the

POD/greedy sampling procedure from [5], and discuss the new parameter domain
partitioning approach. In Sect. 3, we present numerical results and discuss the
computational cost of the new approach relative to the standard method.

2 The hp Reduced Basis Method

Reduced Basis Approximation Assume that D is divided intoM parameter sub-
domains Vm � D , 1 � m � M . The partitioning procedure is briefly reviewed
below; see [3] for further details. Each subdomain has an associated set of nested
RB approximation spaces XN;m � X , 1 � N � Nmax;m, (where dim.XN;m/ D N )
constructed by the POD/Greedy sampling procedure. The parameter domain parti-
tioning, the POD/Greedy sampling, and the computation of the truth snapshots are
all effected in an offline computational stage; this stage may be rather expensive in
terms of computational cost, but is carried out only once as a pre-processing step.

Given any new � 2 D in the online stage, the algorithm first determines which
subdomain Vm� � D contains �, and then selects the associated approximation
space XN;m� from a database of offline-constructed spaces. Once m� (1 � m� �
M ) is determined, the RB approximation reads: Given any N and any � 2 D , find
ukN .�/ � ukON;m�

.�/ 2 X ON;m� , 1 � k � K , such that

1

�t
b.ukN .�/ � uk�1

N .�/; vI�/C a.ukN .�/; vI�/ D f .vI�/; 8v 2 X ON;m�
; (3)

subject to u0N .�/ D 0; here ON D minfN;Nmax;m�g. The offline-online decoupling
and associated computational procedures are explained in detail in [8, 9]. In par-
ticular, the online computational cost and storage requirements are independent
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of N – the dimension of the truth FE space – thanks to our “affine” assumption
on the parameter dependence.

A Posteriori Error Estimation For each � 2 D , denote by ˛LB.�/ < ˛.�/ D
infv2X a.v; vI�/=kvk2X a lower bound for the coercivity constant of a.�; �I�/. We
then define the “energy norm” for wk 2 X , 1 � k � K ,

jjjwkjjj D
�
b.wk;wk I�/C�t

kX
k0D1

as.w
k0

;wk
0 I�/

�1=2
; 1 � k � K: (4)

Given an RB approximation for � 2 Vm � D , ukN .�/, 1 � k � K , we write the
residual as rkN .vI�/ D f .vI�/ � b.ukN .�/ � uk�1

N .�/; vI�/=�t � a.ukN .�/; vI�/
and denote by �kN .�/ D supv2X rkN .vI�/=kvkX the residual dual norm. The energy
norm of the RB error ekN .�/ D uk.�/ � ukN .�/, 1 � k � K , is bounded by

�kN .�/ �
�
�t

kX
k0D1

.�k
0

N .�//
2
.
˛LB.�/

�1=2 � jjjekN .�/jjj: (5)

For a proof of (5) and the associated (offine-online) computational procedures for
the dual norm of the residuals and the coercivity lower bound, see [4, 8, 9].

POD/Greedy Sampling In order to determine the parameter domain partitioning
(h-refinement) and, associated with each subdomain, individual RB approxima-
tion spaces (p-refinement), we invoke the POD/Greedy sampling procedure intro-
duced in [5] (see also [7]). We first describe in this section the standard p-type
POD/Greedy procedure applied to the entire parameter domain D . We then con-
sider in the next section the application of the POD/Greedy procedure in the hp
context.

Let the function POD(fwk 2 X; 1 � k � Kg; R) return R � K X -orthonormal
functions f�i 2 X; 1 � i � Rg such that PR D spanf�i ; 1 � i � Rg satisfies the
optimality property

PR D arg inf
Y�spanfwk ;1�k�Kg

�
1

K

KX
kD1

inf
w2Y kw

k � wk2X
�1=2

: (6)

To obtain the set f�i ; 1 � i � Rg – the first R POD modes of spanfw1; : : : ;wKg –
we first solve the eigenvalue problem C i D �i i for . i 2 RK ; �i 2 R/ associ-
ated with theR largest eigenvalues ofC , whereCij D .wi ;wj /X=K , 1 � i , j � K;
we then compute �i DPK

kD1  ikwk for 1 � i � R.
Let� � D be a (typically very rich) finite training sample over D . We initialize

the POD/Greedy(R;L) algorithm by choosing (randomly, say) �� 2 D and setting
N D 0, XN D f0g. Then, while N < L, we first compute the projection error
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ekN;proj.�
�/ D uk.��/ � projXN

.uk.��//, 1 � k � K , where projXN
.w/ denotes

the X -orthogonal projection of w 2 X onto XN . Next, we define R (nested) RB
spaces asXNCi � XN˚spanfPOD.fekN;proj.�

�/; 1 � k � Kg; i /g, 1 � i � R, and
setN  N CR. Finally, the next parameter vector is chosen greedily over� based
on the a posteriori error estimator at the final time: ��  arg max�2� �KN .�/.
Parameter Domain Partitioning Since we subdivide only the parameter (and not
the temporal) domain, the hp reduced basis framework described in detail for elliptic
problems in [3] also applies to the parabolic context of this paper. The “parabolic”
algorithm developed here differs from the “elliptic” algorithm of [3] in the definition
of the error bound and in particular in the choice of the parameter sampling proce-
dure: care must be taken to properly balance additional POD modes and additional
parameter values in partitioning the parameter domain.

The parameter domain partition is determined in the offline stage. We start from
the original domain D , choose �� D ��

0 2 D , and perform the POD/Greedy(R;L)
algorithm over D with R D R1 � 1 and L D R1 (such that we perform only a
single POD). We denote the resulting (nested) approximation spaces as XN;1, 1 �
N � R1, and the next parameter vector as ��

1 . Based on proximity (e.g. Euclidian
distance) to the two parameter anchor points ��

0 and ��
1 , we can now divide D into

two new subdomains V0 � D , V1 � D , respectively. We now repeat the procedure
within each subdomain for �� D ��

0 and �� D ��
1 as the initial parameter vectors,

respectively; note that one of the two “child” subdomains inherits the parameter
anchor point, and thus the associated approximation space, from its “parent.” In
Fig. 1, we illustrate the partitioning algorithm with two levels of refinement; we
proceed recursively until the error bound at the final time is less than �1tol (over train
samples) over each subdomain.

We must comment on the tuning parameter R1, which is crucial to the conver-
gence of the h-refinement stage of the algorithm. In particular, R1 must be chosen
large enough such that the RB error bound associated with the (R1-dimensional)
RB approximation at the final time is less than �1tol in a neighborhood of ��. Other-
wise, the procedure would not converge since the tolerance would not be reached.
Note it is not sufficient that the tolerance is satisfied only at ��, since then the toler-
ance might not be satisfied at any point arbitrarily close to ��, and the partitioning
algorithm might yield arbitrarily small subdomains.

In particular, we shall require that the error bound associated with the RB approx-
imation of uK.��/ based on R1 POD modes is less than �1tol=	1 with 	1 > 1. This
requirement ensures that the RB error bound is smaller than �1tol in a neighborhood of
��; the refinement algorithm will then converge since eventually a finite subdomain
containing �� will be included in this neighborhood. Note that choosing 	1 > 1 too

Fig. 1 Hierarchical
partitioning of the parameter
domain based on proximity to
greedily chosen parameter
anchor points
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small would lead to a large number of subdomains, while large 	1 will require more
POD modes to be included in the RB space; in the limit 	1 ! 1, we would need
to include all K POD modes in the RB space in order to achieve a zero RB error
(bound) at �� at the final time – as in the elliptic case, there would thus perforce be
a neighborhood around �� where the RB error bound would be very small and in
particular less than �1tol.

It remains to determineR1 automatically. Towards that end, we note that the POD
norm defined in (6) is similar to the energy norm defined in (4); since ek0;proj.�

�/ D
uk.��/, the POD error is thus closely related to the associated RB error at ��. As
an initial guess, we thus choose R1 such that the POD error at �� – realized as the
square root of the sum of the eigenvalues �i , i D R1 C 1; : : : ; K – is less than
�1tol=.	1	2/, where we choose 	2 � ˛LB.�

�/1=2 because the POD error is a lower
bound for the RB error (and thus RB error bound) divided by ˛LB.�

�/1=2. Next,
we compute the RB error bound associated with the RB approximation of uk.��/,
1 � k � K , based on R1 POD modes: if the error bound is smaller than �1tol=	1,
we conclude that R1 is sufficiently large; if not, we successively set R1  R1 C 1,
increase the number of POD modes, and compute a new RB error bound – until the
tolerance is satisfied.

This h-refinement results in a total of M subdomains Vm � D , 1 � m � M .
The next step is p-refinement: we expand the approximation spaces associated with
each subdomain Vm,m D 1; : : : ;M , by application of the POD/Greedy(R;L) sam-
pling procedure (but not initialized; hence N D R1) for R D R2 and L > R1
“specified”; in actual practice, we terminate the POD/Greedy in subdomain m for
L � Nmax;m.�

2
tol/ such that the error bound is less than a second tolerance �2tol < �

1
tol

(over the training sample) over the subdomain – the final approximation spaces
XN;m, 1 � N � Nmax;m, 1 � m � M , will thus in general have different dimen-
sions. We typically choose R2 D 1; note that R2 > 1 will lead to improved offline
performance but worse online performance.

We now turn to the online stage: for every new � 2 D , the algorithm first deter-
mines which approximation space to invoke, and then computes the RB approxima-
tion and associated RB error bound. Note that since the subdomains are constructed
hierarchically based on proximity to the parameter anchor points associated with
each subdomain, we can determine the subdomain containing � in an efficient (typ-
ically negligible) O.log2M/-operations binary search. In particular, once Vm� � D
containing � is found, we solve (3) for the RB space XN;m� , and compute the error
bound (5); the total cost is O.N 3 CQ2N 2/, as described in more detail shortly.

3 A Convection-Diffusion Model Problem

We now apply the hp RB method to a convection-diffusion model problem
parametrized by the angle and magnitude of the specified velocity field: let � D
.�1; �2/ (hence P D 2 parameters) and define V.�/ D Œ�2 cos�1; �2 sin�1�T;
we shall consider � 2 D D Œ0; 
� � Œ1; 10�. The physical domain is ˝ D f.x; y/ W
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x2 C y2 < 2g; the final time is T D 1 and the timestep is �t D 0:05 such
that K D 20. The “exact” field Que.t; �/ satisfies .Que.tk I�/ � Que.tk�1I�//=�t �
r2 Que.tk I�/CV.�/�r Que.tkI�/ D 10, 1 � k � K; we apply homogeneous Dirich-
let boundary conditions; we consider an inhomogeneous initial condition (hence the
tilde) Que.t0/ D g, where g satisfies �r2g D 10 in ˝ .

We now reduce our equation to the desired form (1). We first write Que D
ue C g such that ue now satisfies homogeneous initial conditions. We then define
b.w; vI�/ D R

˝ wv d˝ , a.w; vI�/ D R
˝ rw � rv d˝ C R˝

�
V.�/ � rw

�
v d˝ , and

f .vI�/ D 10 R
˝

v d˝�a.g; vI�/; note that as is�-independent and in fact we may
choose ˛LB.�/ D 1. Thus ue satisfies (1) (and homogeneous initial conditions) with
Qa D 3,Qb D 1, andQf D 4. We next introduce a truth spaceX � XN .˝/: five
spectral elements each of polynomial order 10. Figure 2 depicts the truth solution at
t D 0; 0:1; 0:25 for the parameter value � D .
; 10/. As the parameters vary, the
solution changes dramatically – a good candidate for hp treatment.

We now apply the POD/Greedy procedure to partition D into M parameter sub-
domains; the resulting hp RB approximation can then be written in the form (3). In
Fig. 3, we show the partition of the parameter domain for M D 97 andM D 2;258
subdomains corresponding to �1tol D 5 and �1tol D 1, respectively; we choose 	1 D 2
and 	2 D 1. We also report, for each of the two partitions shown, the maximum of
the error bound over the training samples over all subdomains as a function of N ;
we include the standard p-type RB approximation (M D 1) as well. Clearly, with
smaller subdomains we need fewer basis functions for each approximation space.

We summarize in Table 1 for different error tolerances �2tol the offline and
online performance of the hp approach relative to that of the standard p-type
RB method. We report the number of truth solves (effectively, parameters visited
in the POD/Greedy); the number of operations for online evaluation of ukN .�/,
1 � k � K , and�kN .�/; and the online storage. The values in the table are based on
the theoretical operation count and storage requirement. For N basis functions the
online operation count (for our LTI system) is roughly 2N 3=3C 2KN 2 operations

Fig. 2 Example solutions for
the convection-diffusion
problem at t D 0; 0:1; 0:25

for the parameter value
� D .
; 10/

Fig. 3 Partition of D into
M D 97 and M D 2;258

subdomains (�tol D 5 and
�1tol D 1, respectively);
maximum error bound as a
function of the RB
approximation space
dimension m1

m2
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Table 1 Offline and online effort relative to the standard (p-type) RB method for the two partitions
M D 97 subdomains (left) and M D 2;258 subdomains (right) for different tolerances �2tol

Tolerance, �2tol 10�2 10�3 10�4

Truth solves 39:2 40:7 40:6

Online ukN .�/ 0:20 0:22 0:21

Online �k
N .�/ 0:25 0:28 0:28

Online storage 16:7 17:7 17:5

Tolerance, �2tol 10�2 10�3 10�4

Truth solves 597 660 659
Online ukN .�/ 0.08 0.09 0.09
Online�k

N .�/ 0.11 0.13 0.14
Online storage 166 200 197

for the RB solution (and, in practice, output), and O.Q2N 2CKN 2/ operations for
the RB error bound (see [4, 8] for details); we neglect the O.QN 2/ cost of forming
the RB system and the O.log2M/ cost of finding the correct subdomain. For each
space (subdomain) the storage requirement is O.Q2N 2/.

The new method is admittedly more expensive in terms of the offline cost – the
number of truth solves. However, significant computational savings are achieved in
the online computation of the RB solution and RB error bound; note that for modest
Q the costs of the RB solution and RB error bound are comparable. For real-time
or many-query applications the online cost is often our main concern and the hp
approach is thus very attractive. Note however, that p-type refinement plays a crucial
role in controlling the offline cost, in particular in higher parameter dimensions.

Future work on the hp approach will focus on quadratically nonlinear problems:
in these cases the online operation count is O.N 4/ and thus computational perfor-
mance can greatly benefit from the (further) dimension reduction afforded by the hp
approach.
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Highly Accurate Discretization
of the Navier–Stokes Equations
in Streamfunction Formulation

D. Fishelov, M. Ben-Artzi, and J.-P. Croisille

Dedicated to the memory of Professor David Gottlieb for his Wisdom and Generosity

Abstract A discrete version of the pure streamfunction formulation of the Navier–
Stokes equation is presented. The proposed scheme is fourth order in both two and
three spatial dimensions.

1 Fourth Order Scheme for the Navier–Stokes Equations
in Two Dimensions

We consider the Navier–Stokes equations in pure streamfunction form, which in the
two-dimensional case leads to the scalar equation



@t� Cr? � r� � ��2 D f .x; y; t/;
 .x; y; t/ D  0.x; y/: (1)

Recall that r? D .�@y ; @x / is the velocity vector. The no-slip boundary
condition associated with this formulation is

 D @ 

@n
D 0; .x; y/ 2 @˝; t > 0 (2)
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and the initial condition is

 .x; y; 0/ D  0.x; y/; .x; y/ 2 ˝: (3)

The spatial derivatives in Equation (1) are discretized as we describe next. The
fourth order discrete Laplacian Q�h and biharmonic Q�2

h
 operators introduced

in [4] are perturbations of the second order operators �h D .ı2x C ı2y/ and
�2
h
 D .ı4x C ı4y C 2ı2xı2y/ . They are designed as follows.

Q�h i;j D 2�h i;j � .ıx. x/i;j C ıy. y/i;j / D .� /i;j CO.h4/: (4)

Here,  x;  y are the fourth-order Hermitian approximations to @x ; @y described
as
8
ˆ̂<
ˆ̂:

�x x D 1

6
. x/i�1;j C 2

3
. x/i;j C 1

6
. x/iC1;j D ıx i;j ; 1 � i; j � N � 1

�y y D 1

6
. y/i;j�1 C 2

3
. y/i;j C 1

6
. y/i;jC1 D ıy i;j ; 1 � i; j � N � 1:

(5)
We use the standard central difference operators ıx; ıy , ı2x; ı

2
y .

The fourth-order approximation to the biharmonic operator�2 is

Q�2h D ı4x C ı4y C 2ı2xı2y �
h2

6
.ı4xı

2
y C ı4yı2x / D �2 CO.h4/; (6)

where ı4x and ı4y are the compact approximations of @4x and @4y , respectively.

ı4x i;j D
12

h2

�
.ıx x/i;j � ı2x i;j

�
; ı4x D @4x �

1

720
h4@8x CO.h6/; (7)

ı4y i;j D
12

h2

�
.ıy y/i;j � ı2y i;j

�
; ı4y D @4y �

1

720
h4@8y CO.h6/: (8)

The convective term in (1) is C. / D �@y �.@x / C @x �.@y /: Its fourth-
order approximation needs special care. The mixed derivative @x@2y may be

approximated to fourth-order accuracy by Q yyx using a suitable combination of
lower order approximations.

Q yyx D ı2y x C ıxı2y � ıxıy y D @x@2y CO.h4/: (9)

For the pure third order derivative @3x we note that if  is smooth then

 xxx D 3

2h2

�
10ıx � h2ı2x@x � 10@x 

�
i;j
CO.h4/: (10)
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One needs to approximate @x to sixth-order accuracy in order to obtain from (10) a
fourth-order approximation for @3x . Denoting this approximation by Q x , we invoke
the Pade formulation [5], having the following form.

1

3
. Q x/iC1;j C . Q x/i;j C 1

3
. Q x/i�1;j D 14

9

 iC1;j �  i�1;j
2h

C 1
9

 iC2;j �  i�2;j
4h

:

(11)
At near-boundary points we apply a special treatment as in [5]. Carrying out the
same procedure for @y , which yields the approximate value Q y , and combining
with all other mixed derivatives, a fourth order approximation of the convective
term is

QCh. / D � y
�
�h Q x C 5

2

�
6
ıx � Q x

h2
� ı2x Q x

�C ıxı2y � ıxıy Q y
�

(12)

C  x
�
�h Q y C 5

2

�
6
ıy � Q y

h2
� ı2y Q y

�C ıyı2x � ıyıx Q x
�

D C. /CO.h4/:

Our implicit–explicit time-stepping scheme is of the Crank–Nicholson type as
follows.

. Q�h i;j /nC1=2 � . Q�h i;j /n
�t=2

D � QCh .n/ C �

2
Œ Q�2h nC1=2

i;j C Q�2h ni;j � (13)

. Q�h i;j /nC1 � . Q�h i;j /n
�t

D � QCh .nC1=2/ C �

2
Œ Q�2h nC1

i;j C Q�2h ni;j �: (14)

Due to stability reasons we have chosen an Explicit–Implicit time stepping scheme.
It is possible however to use an explicit time-stepping scheme if one can afford a
small time step in order to advance the solution in time. The set of linear equations is
solved via a FFT solver using the Sherman–Morrison formula (see [2]). This solver
is of O.N 2logN / operations, where N is the number of grid points in each spatial
direction. For the application of the pure streamfunction formulation on an irregular
domain see [3].

2 The Pure Streamfunction Formulation in Three Dimensions

Let˝ be a bounded domain in R3. The three-dimensional Navier–Stokes equations
in vorticity-velocity formulation is
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!t Cr � .! � u/ � ��! D r � f; in ˝

! D r � u; r � u D 0; in ˝

u D 0 on @˝
!.x; 0/ D !0.x/ WD r � u0; in ˝:

(15)

where ! D r � u and the no-slip boundary condition has been imposed. The pure
streamfunction formulation for this system is obtained by introducing a streamfunc-
tion  .x; t/ 2 R3, such that

u D �r �  : (16)

This is always possible since r � u D 0. Thus,

! D r � u D � � r.r �  /: (17)

Imposing a gauge condition
r �  D 0; (18)

yields
! D � : (19)

The system (15) can now be rewritten as

@� 

@t
� r � .� � .r �  // D ��2 Cr � f; in ˝: (20)

The boundary conditions u D 0 translates to r �  D 0 on @˝ . We require that

n �  D 0; n � .r �  / D 0; on @˝: (21)

The condition n� D 0 means that is parallel to n, hence the normal component
of the velocity vector is zero on the boundary. Adding the condition n�.r� / D 0
ensures that the full velocity vector vanishes on the boundary. The requirements
in (21) are equivalent to four scalar conditions, namely the vanishing of the two
tangential components of  and r �  .

Turning now to the gauge condition r �  D 0, we add the condition

@. � n/
@n

D 0; on @˝: (22)

Together with the vanishing of the tangential components of  , it implies that
r �  D 0 on @˝ .

Equations (21) and (22) consist of five scalar conditions for  on the bound-
ary. We can still add one more scalar boundary condition, as the equations for the
3-component streamfunction  contain the fourth order biharmonic operator. The
sixth scalar boundary condition that we choose to add is

�.r �  / D 0; on @˝: (23)
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We thus obtain
r �  D 0; �.r �  / D 0; on @˝: (24)

We assume that the initial value  .x; 0/ satisfies .r �  /.x; 0/ D 0. Taking the
divergence of (20) we obtain an evolution equation for r �  .

@�.r �  /
@t

D ��2.r �  /; in ˝: (25)

Equations (24) and (25) together with the assumption that r � D 0 initially ensure
that r �  D 0 for all t > 0. See also [1, 6, 7]. Finally, we have the following
three-dimensional pure streamfunction formulation

8
<̂
:̂

@� 
@t
� r � .� � .r �  // D ��2 Cr � f; in ˝

n �  D 0; @. �n/
@n
D 0; on @˝

n � .r �  / D 0; �.r �  / D 0; on @˝:

(26)

3 The Numerical Scheme

Our numerical scheme is based on the approximation of the following equation

@� 

@t
� ..r � / � r/� C .� � r/.r � /� ��2 D r � f; in ˝; (27)

assuming that  2 H 2
0 .˝/. For the vector function  we construct a fourth-

order approximation to the biharmonic operator as follows. The pure fourth-order
derivatives are approximated by ı4x; ı

4
y ; ı

4
z as in (7) and (8).

The mixed terms  xxyy ,  yyzz and  zzxx are approximated by

8
ˆ̂̂<
ˆ̂̂:

Qı2xy i;j;k D 3ı2xı2y i;j;k � ı2xıy y;i;j;k � ı2yıx x;i;j;k D @2x@2y i;j;k CO.h4/
Qı2yz i;j;k D 3ı2yı2z  i;j;k � ı2yız z;i;j;k � ı2z ıy y;i;j;k D @2y@2z i;j;k CO.h4/
Qı2zx i;j;k D 3ı2z ı2x i;j;k � ı2z ıx z;i;j;k � ı2xız x;i;j;k D @2z @2x i;j;k CO.h4/:

(28)
A fourth order approximation of the biharmonic operator is then obtained as

Q�2h D ı4x C ı4y C ı4z  C 2 Qı2xy C 2 Qı2yz C 2 Qı2zx : (29)

The approximate derivatives  x ,  y and  z are related to  via the Hermitian
derivatives as in (5).

Equation (29) provides a fourth order compact operator for�2 , which involves
values of ; x ;  y and z at .i; j; k/ and at its 26 nearest neighbors. The Laplacian
operator is approximated by a fourth order operator via
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Q�h D 2�h � .ıx x C ıy y C ız z/: (30)

The nonlinear part in (27) consists of two terms, the convective term and
the stretching term. We design a fourth-order scheme which approximates the
convective term. The convective term in the three-dimensional case is

C. / D �..r �  / � r/� D u�@x C v�@z C w�@z : (31)

Here .u; v;w/ D u D �r� is the velocity vector, whose components contain first
order derivatives of the streamfunction, and thus may be approximated to fourth-
order accuracy. The terms�@x ;�@z ;�@z may be approximated as in the two-
dimensional case. The term �@x , for example, may be written as

�@x D @3x C @x@2y C @x@2z : (32)

Here, the pure and mixed type derivatives may be approximated as in the two-
dimensional Navier–Stokes equations (see (9) and (10)). We denote the approxi-
mation to the convective term by QCh. /.

Now, we construct a fourth-order approximation to the stretching term S D
.! � r/u D �.� � r/.r �  /. Note that the stretching term contains � and
mixed second order derivatives of the streamfunction. The Laplacian of  may be
approximated to fourth-order accuracy, as in (30). The second order mixed terms,
such as @x@y , may be approximated using a Hermitian approximation of the type

.�x�y/. xy/i;j;k D ıxıy i;j;k: (33)

Hence,

.I C h2

6
ı2x/.I C

h2

6
ı2y/. xy/i;j;k D ıxıy i;j;k ; 1 � i; j; k � N � 1 (34)

is an implicit equation for  xy . We denote the approximation of the stretching term
by QSh. /. For the approximation in time, we apply a Crank–Nicholson scheme (see
the comment after (13) and (14)).

We obtain the following scheme

. Q�h i;j;k /
nC1=2�. Q�h i;j;k /

n

�t=2
D � QCh .n/i;j;k C QSh 

.n/
i;j;k
C �
2 Œ
Q�2
h
 
nC1=2
i;j;k

C Q�2
h
 n
i;j;k

�

(35)
. Q�h i;j;k /

nC1�. Q�h i;j;k /
n

�t
D � QCh .nC1=2/

i;j;k
C QSh .nC1=2/

i;j;k
C �
2 Œ
Q�2
h
 nC1
i;j
C Q�2

h
 n
i;j;k

�:

(36)

At present, a direct solver is invoked to solve the linear set of equations (35) and
(36).

Some preliminary MATLAB computations with coarse grids confirm the fourth
order accuracy of the scheme. We first show numerical results for the time-dependent
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Stokes equations
@� 

@t
D ��2 C f; in ˝: (37)

We have picked the exact solution  

 T .x; t/ D �1
4
e�t �z4; x4; y4� (38)

in the cube ˝ D .0; 1/3. Here, f is chosen such that  in (38) satisfied (37)
exactly. Infg the numerical results shown here we have chosen the time step �t
of order h2 in order to retain the overall fourth-order accuracy of the scheme. In
practice, if we are interested mainly in the steady state solution, a larger time step,
which is independent of h, may be used. In Table 1 we show results for the Stokes
problem with�t D 0:1h2 and t D 0:00625. Here e is the error in the l2

h
norm, i.e.,

e2 D
X
i

X
j

X
k

. 3.xi ; yj ; zk/� Q 3.xi ; yj ; zk//2h3;

where  3 is the z component of the exact solution and Q 3 is the z component of the
approximate solution. ey is the l2

h
in the y derivative of  3. In Table 2 we display

the results for t D 0:0625 using �t D h2.
Next we show results for the Navier–Stokes Equations

@� 

@t
� ..r �  / � r/� C .� � r/.r �  / � ��2 D r � f; in ˝ (39)

in the cube ˝ D .0; 1/3. Here, the source term g D r � f is chosen such that
 T .x; t/ D �1

4
e�t �z4; x4; y4� is an exact solution of (39). In Table 3 we present

results for t D 0:00625 using�t D 0:1h2.

Table 1 Stokes equations for t D 0:00625 using �t D 0:1h2

Grid Rate Grid Rate Grid
5
 5
 5 9
 9
 9 17
 17
 17

e 2.5460(�9) 3.82 1.8017(�10) 3.98 1.1443(�11)
ey 7.7417(�9) 3.73 5.8037(�10) 3.96 3.7391(�11)
div . / 1.3409(�8) 3.74 1.0052(�9) 3.96 6.4621(�11)

Table 2 Stokes equations with �t D h2 for t D 0:0625

Grid Rate Grid Rate Grid
5
 5
 5 9
 9
 9 17
 17
 17

e 9.6461(�7) 4.41 4.5309(�8) 4.00 2.8291(�9)
ey 3.0293(�6) 4.33 1.5049(�7) 3.99 9.4269(�9)
div . / 5.2470(�6) 4.33 2.6066(�7) 4.00 1.6328(�8)
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Table 3 Navier–Stokes equations for t D 0:00625 using �t D 0:1h2

Grid Rate Grid Rate Grid
5
 5
 5 9
 9
 9 17
 17
 17

e 2.4497(�9) 3.86 1.6924(�10) 4.01 1.0473(�11)
ey 7.6486(�9) 3.75 5.6845(�10) 3.98 3.5917(�11)
div . / 1.2294(�8) 3.71 9.3619(�10) 3.92 6.1700(�11)

Table 4 Navier–Stokes equations for t D 0:0625 using �t D h2

Grid Rate Grid Rate Grid
5
 5
 5 9
 9
 9 17
 17
 17

e 9.4418(�7) 4.46 4.2709(�8) 4.04 2.5934(�9)
ey 2.9836(�6) 4.38 1.4334(�7) 4.03 8.7800(�9)
div . / 5.0471(�6) 4.40 2.3944(�7) 4.02 1.4778(�8)
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Fig. 1 Navier–Stokes : Errors in (a)  3 and (b) . 3/y for N D 17, t D 0:0625; dt D h2

In Table 4 we show results for the Navier–Stokes Equations with �t D h2 for
t D 0:0625. In Fig. 1a, b we display the errors for Navier–Stokes equations in  3
and . 3/y at t D 0:0625 with dt D h2 and a 173 grid.
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Edge Functions for Spectral Element Methods

Marc Gerritsma

Abstract It is common practice in finite element methods to expand the unknowns
in nodal functions. The discretization of the gradient, curl and divergence operators
requiresH 1, H.curl/ and H.div/ function spaces and their discrete representation.
Especially in mixed formulations this involved quite some mathematical machin-
ery which can be avoided once we recognize that not all unknowns are associated
with point-values. In this short paper higher order basis functions will be presented
which have the property that conservation laws become independent of the basis
functions. The basis functions proposed in this paper yield a discrete representation
of grad, curl and div which are exact and completely determined by the topology
of the grid. The discretization of these vector operators is invariant under general
C 1 transformations.

1 Introduction

Mimetic discretization schemes aim to preserve symmetries of the physical system
to be modeled. If we are able to represent such symmetries in a discrete setting, we
satisfy the associated conservation law in the discrete sense.

Mimetic discretizations are based on the strong analogy between differen-
tial geometry and algebraic topology. The global, metric-free description can be
rephrased without error in terms of cochains, while the local description requires
differential field reconstructions. For an introduction to the interplay between
differential forms and cochains the reader is referred to [1–3, 5, 6, 8, 12, 15].

A key ingredient in mimetic methods is to re-establish the explicit connection
between physical variables and the geometric objects these variables are associated
with. The operation that connects the physical variable with its associated geometric
object is integration, where the geometry, C , enters the integral as the domain of

M. Gerritsma
TU Delft, Delft, The Netherlands
e-mail: M.I.Gerritsma@TUDelft.nl

J.S. Hesthaven and E.M. Rønquist (eds.), Spectral and High Order Methods for Partial
Differential Equations, Lecture Notes in Computational Science and Engineering 76,

c

199

DOI 10.1007/978-3-642-15337-2 17, � Springer-Verlag Berlin Heidelberg 2011

M.I.Gerritsma@TUDelft.nl


200 M. Gerritsma

integration and the physical variable, ˚ , appears as the integrand.

Z

C

˚ dC D hC ; ˚i 2 R: (1)

Equation (1) expresses the fact that geometric integration is in fact duality pair-
ing between geometry, C , and physical variables, ˚ , since integration is a bilinear
operation.

In [9, 10, 13] this approach is applied to spectral element methods. The main
ingredient in this approach is the use of spectral basis functions which are associated
with points, lines, surfaces and volumes. This paper focuses on the construction of
the basis function associated with line segments, the so-called edge functions. Since
we will consider quadrilateral elements only and employ tensor products to form the
spectral element basis, the higher-dimensional basis functions are formed naturally
by applying tensor products. For instance, the surface element is the tensor product
of two edge functions and one nodal function, whereas the volume basis function is
the tensor product of three edge functions.

The outline of the paper is as follows: In Sect. 2 the so-called edge functions will
be derived for a simple one-dimensional equation. In Sect. 3 the edge functions will
be used to discretize the differential operators, grad, curl and div. In Sect. 4 the
transformation of differential forms is presented. Concluding remarks can be found
in Sect. 5.

2 The Edge Functions

Consider the one-dimensional equation

u.�/ D d�

d�
; � 2 Œa; b�: (2)

Let a D �0 < �1 < � � � < �N�1 < �N D b be a partitioning of the interval Œa; b�,
then the function �.�/ can be expanded in nodal basis functions

�.�/ D
NX
iD0

�ihi .�/; (3)

in which hi .�/ are Lagrange basis functions through the points �i , i D 0; : : : ; N

and �i D �.�i /. The traditional way to discretize (2) is to expand u.�/ in the same
Lagrangian basis functions hi .�/, i.e.,

u.�/ D
NX
iD0

uihi .�/: (4)
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If we insert the expansions (3) and (4) in (2) we obtain

NX
iD0

uihi .�/ D
NX
iD0

�i
dhi

d�
: (5)

There are however a few objections to this approach: First, a polynomial of degree
N on the left hand side is equated to a polynomial of degree N � 1 on the right
hand side. Second, this formulation is not invariant under general C 1 coordinate
transformations. These shortcomings can be attributed to the fact that u cannot be
associated with nodes. In terms of differential geometry: If � is a 0-form, then
u D d� is a 1-form which is associated with line segments. On a more engineering
level we have that

�.p/ D �.q/C
Z p

q

u.x/ dx; (6)

i.e., the point-wise evaluation of � in two arbitrary points p and q is associated
with the integral of u over the interval .p; q/. Let us therefore define the integral
quantities

ui D
Z i

i�1

u.x/ dx; i D 1; : : : ; N: (7)

Note that by defining ui as an integral quantity instead of the value in particular
points, we exactly satisfy ui D �i � �i�1, which is the discrete analogue of the
integral relation (6). Interpolation of integral quantities is called histopolation, see
Robidoux [14].

We have that

uN .�/ D
NX
iD0

�idhi .�/

D
NX
iD0

.�i � �k/ dhi .�/

D
NX
iD0

2
4�

kX
jDiC1

uj C
iX

jDkC1
uj

3
5dhi .�/

D �
k�1X
iD0

dhi .�/

kX
jDiC1

uj C
NX

iDkC1
dhi .�/

iX
jDkC1

uj

D �
kX
jD1

 
j�1X
iD0

dhi .�/

!
uj C

NX
jDkC1

0
@

NX
iDj

dhj .�/

1
A uj (8)

The first line states that the discrete approximation (histopolation) of u, denoted by
uN .�/, can be exactly expressed as the derivative of the discrete interpolation of
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�.�/. In the second line we use

NX
iD0

hi .�/ � 1 H)
NX
iD0

dhi .�/ D d
NX
iD0

hi .�/ � 0; (9)

and in the third line we used ui D �i � �i�1 repeatedly. In the remaining lines we
re-arrange the summations. Since (8) is true for all k D 0; : : : ; N , we can eliminate
k by averaging over all k

uN .�/ D 1

N C 1
NX
kD0

uN .�/

D � 1

N C 1
NX
kD0

kX
jD1

 
j�1X
iD0

dhi .�/

!
uj C 1

N C 1
NX
kD0

NX
jDkC1

0
@

NX
iDj

dhj .�/

1
A uj

D 1

N C 1
NX
jD1

2
4� .N C 1 � j / uj

j�1X
iD0

dhi .�/C juj

NX
iDj

dhi .�/

3
5

D 1

N C 1
NX
jD1

"
� .N C 1/ uj

j�1X
iD0

dhi .�/C juj

NX
iD0

dhi .�/

#

D �
NX
jD1

uj

j�1X
iD0

dhi .�/: (10)

If we now define the basis functions

ej .�/ D �
j�1X
iD0

dhi .�/; j D 1; : : : ; N; (11)

we can express u in terms of the integral quantities ui as

uN .�/ D
NX
iD1

uiei .�/: (12)

The basis functions ei .�/ can be interpreted as polynomial indicator functions,
Fig. 1, because they satisfy

Z k

k�1

ei .�/ D ıi;k D
8
<
:
1 if i D k

0 if i ¤ k
: (13)

Compare this with the nodal interpolation where we have that hi .�j / D ıi;j . The
basis functions ei .�/ correspond to higher order Whitney forms, see [3,6,19]. Note
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Fig. 1 Example of an edge function: Partitioning of the interval [�1,1] with Gauss–Lobatto nodes
and the edge function e3.�/

that we have dej .�/ D �d ı dPhi .�/ � 0, see for instance Flanders [7]. This
property will be used repeatedly in the next section. If we insert the expansion of u
in terms of edge functions into our one-dimensional model problem, we obtain

NX
iD1

uiei .�/ D
NX
iD0

�idhi .�/

D �
NX
iD1

.�i � �i�1/
i�1X
jD0

dhj .�/

D
NX
iD1

.�i � �i�1/ ei .�/ (14)

This shows that there is strict equality: The polynomial degrees on both sides are
the same and this relation remains valid under arbitrary C 1 transformations, since
the basis functions on both sides of the equality sign transform in the same way.
Because the basis functions ei .�/ are linearly independent, we in fact have

NX
iD1

Œui � .�i � �i�1/� ei .�/ D 0 H) ui � .�i � �i�1/ D 0: (15)

This is a purely topological, metric-free relation because all the metric properties
are encoded in the basis functions and its form is solely determined by the topology
of the grid. Once we know which nodes form the boundary of a given line segment,
we can set up this relation. The definitions of ui , (7), and �i show that (15) is exact;
no approximations are involved.

The metric-free form, (15), resembles a finite volume discretization, see for
instance [11, 16–18] of the sample problem. In the next section discrete represen-
tations of vector operators in terms of the edge functions will be addressed. The
resulting discrete equations also resemble finite volume discretizations.
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3 Application of Edge Functions to grad, curl and div

The gradient operator
Consider u D grad�: (16)

Let � be expanded as a tensor product of nodal functions in the coordinates .�; �; �/

�.�; �; �/ D
NX
iD0

NX
jD0

NX
kD0

�i;j;khi .�/hj .�/hk.�/; (17)

then it can be shown by straightforward calculation that

u�i;j;k D �i;j;k � �i�1;j;k ; u�i;j;k D �i;j;k � �i;j�1;k and

u
�

i;j;k D �i;j;k � �i;j;k�1; (18)

with

u� .�; �; �/ D
NX
iD1

NX
jD0

NX
kD0

u�i;j;kei .�/hj .�/hk.�/;

u�.�; �; �/ D
NX
iD0

NX
jD1

NX
kD0

u
�

i;j;khi .�/ej .�/hk.�/;

u� .�; �; �/ D
NX
iD0

NX
jD0

NX
kD1

u�i;j;khi .�/hj .�/ek.�/: (19)

Equation (18) is exact, coordinate free and invariant under C1 transformations.

The curl operator
Let u be defined along edges, (19), then ! D curl u is given by

!
�

i;j;k D u�i;j;k � u�i;j�1;k � u�i;j;k C u�i;j;k�1;

!
�

i;j;k D u�i;j;k � u�i;j;k�1 � u�i;j;k C u�i�1;j;k ;

!
�

i;j;k D u�i;j;k � u�i�1;j;k � u�i;j;k C u�i;j�1;k ; (20)

with

!�.�; �; �/ D
NX
iD0

NX
jD1

NX
kD1

!
�

i;j;khi .�/ej .�/ek.�/;

!�.�; �; �/ D
NX
iD1

NX
jD0

NX
kD1

!
�

i;j;kei .�/hj .�/ek.�/;

!�.�; �; �/ D
NX
iD1

NX
jD1

NX
kD0

!
�

i;j;kei .�/ej .�/hk.�/:

If u is a gradient, (18), then !� D !� D !� � 0, which implies

u D grad � ” curl u � 0: (21)

Equation (20) is exact, metric-free and invariant under C1 transformations.
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The divergence operator

Consider the divergence equation
a D divf : (22)

Given fluxes defined over surfaces. Let the flux vector be expanded as

f �.�; �; �/ D
NX
iD0

NX
jD1

NX
kD1

f
�

i;j;khi .�/ej .�/ek.�/;

f �.�; �; �/ D
NX
iD1

NX
jD0

NX
kD1

f
�

i;j;kei .�/hj .�/ek.�/;

f �.�; �; �/ D
NX
iD1

NX
jD1

NX
kD0

f
�

i;j;kei .�/ej .�/hk.�/: (23)

If a is expanded in terms of volume basis functions

a.�; �; �/ D
NX
iD1

NX
jD1

NX
kD1

ai;j;kei .�/ej .�/ek.�/; (24)

the divergence equation reduces to

ai;j;k D f
�

i;j;k � f
�

i�1;j;k C f
�

i;j;k � f
�

i;j�1;k C f
�

i;j;k � f
�

i;j;k�1: (25)

Again we see that the divergence equation reduces to a topological equation which is inde-
pendent of the basis functions. And therefore these relations will remain unchanged under

general coordinate transformations. The unknowns ai;j;k and f
�

i;j;k represent

ai;j;k D
Z �i

�i�1

Z �j

�j�1

Z �k

�k�1

a.�; �; �/ d�d�d�; f
�

i;j;k D
Z �j

�j�1

Z �k

�k�1

f � .�; �; �/ d�d�;

(26)
it follows that (25) is an exact representation of the divergence equation. No numerical
approximations are involved. If the fluxes f are the curl of a vector !, i.e., f D curl !
then also in the discrete setting we have

div f D 0 ” f D curl ! (27)

4 Transformations

Let V p be a p-dimensional, compact oriented submanifold of M n, dim.M n/ D n

and let F W M n ! W m be a C 1 map into a manifold W m, dim.W m/ D m.
The image of F.V / in W m need not be a submanifold. It might even have self-
intersections and all sorts of pathologies. Still, if ˇp is a differential form on W m,
it makes sense to talk about the integral of ˇp over F.V / and in fact we have
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Z

F.Vp/

ˇp D
Z

Vp

F ?ˇp ; (28)

where F ? is the pull-back operator associated with F , which is a linear map from
the cotangent bundle T ?W m onto the cotangent bundle T ?M n, [8, p. 155].

Let M n be the domain Œ�1; 1�n and F a map onto a curvilinear domain Ő ,
then any differential form ˇp on Ő is mapped onto a p-form F ?ˇp on the par-
ent domain, M n. Due to the fact that (28) holds and the unknowns in our system
are integral quantities (so-called co-chains), we can expand F ?ˇp in a tensor prod-
uct as described in Sect. 3. Let Qej be an edge function along a curvilinear contour
bounded by Q�i�1 D F.�i�1/ and Q�i D F.�i /, then

Z Qi

Qi�1

Qej D
Z F.i /

F .i�1/

Qej D
Z i

i�1

F ? Qej D
Z i

i�1

ej D ıi;j ; (29)

by (13). All expansion coefficients are integral quantities (co-chains) which remain
invariant due to (28). Furthermore, the pullback operator commutes with the exterior
derivative, F ? ı d � d ı F ?. These properties demonstrate that the relations in
Sect. 3 are valid under a wide class of transformations. This is what one would
expect, since the relations in Sect. 3, representing the generalized Stokes’ Theorem,
are purely topological and cannot depend on the particular coordinate system or
polynomial representation. An example of this invariance is used in [4].

5 Concluding Remarks

In this paper the edge functions ei .x/ were derived, representing basis functions
along line segments. Using tensor products, these edge functions can be used to rep-
resent variables defined over surfaces and volumes. The extension to higher order
dimensions is straightforward. Using these basis functions the discrete representa-
tion of the gradient, curl and divergence are purely topological and independent
of the basis functions. These relations are exact; no numerical approximation is
involved. Since these operations are metric-free, they are preserved under C 1 map-
pings and in this sense they extend the Thomas-Raviart and Nédélec elements,
which are only invariant under affine transformations. Although an arbitrary par-
titioning was considered, for spectral element methods usually the Gauss–Lobatto
nodes are taken. An application of these edge function for partial differential
equations in curvilinear coordinates can be found in Bouman [4].
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Modeling Effects of Electromagnetic
Waves on Thin Wires with a High-Order
Discontinuous Galerkin Method

N. Gödel, T. Warburton, and M. Clemens

Abstract An efficient method for modeling a strong coupling between electromag-
netic fields and currents in a thin wire is presented. The Discontinuous Galerkin
Finite Element Method (DG-FEM) is used to discretize both, Maxwell’s equations
and the wire equations in the time domain. Suitable tests for investigation of the
accuracy of the model and its implementation are provided.

1 Introduction

Since electrical devices are getting more and more sophisticated, the modeling of
these devices, especially the treatment of small and detailed parts is challenging
the development of simulation codes. In general, DG-FEM is able to treat small
parts, i.e., electrical wires and harnesses in enclosures simply by meshing them
with very small elements. This results in high geometric aspect ratios and, conse-
quently, severe time step restrictions for explicit timestepping schemes. One method
to improve timestepping efficiency is the implementation of a multirate timestepping
method as described in [4].

In this work, a field-wire coupling formulation is implemented using a thin wire
discretization, where the wire is not discretized with volume elements, but along
a curve defined inside the computational domain. There are two possible imple-
mentations of this model: the curve can be defined along the tetrahedral edges or
alternatively arbitrarily in space. The former solution leads to an easier tetrahedra-
wire coupling implementation but includes severe constraints for the tetrahedral
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mesh generation algorithm. The latter results in a curve definition that is completely
independent from tetrahedral mesh generation. However, the coupling of fields on
the wire and fields inside the tetrahedrons is more sophisticated.

Having realistic applications with complex 3D geometries in mind, this work
focuses on the second option of defining the wire geometry. Since CAD data man-
agement and mesh generation is still challenging and often time consuming, the
guideline of this work is to avoid any additional mesh generation constraints and
to make the wire discretization completely independent from the volume mesh
generation.

Thin wire modeling was first presented by Holland et al. in [7] and discretized
using a finite difference method. Edelvik et al. used this formulation for a contin-
uous FEM approach in [2] and Volpert et al. suggested a first DG-FEM thin wire
model in [9]. In this work, a DG-FEM formulation with upwind fluxes is used to
discretize both, Maxwell’s equations as well as the thin wire equations. A full cou-
pling between the electromagnetic fields and the wire currents is implemented and
first benchmarks are presented.

The paper is organized as follows: In Sect. 2, the DG-FEM discretization of
Maxwell’s equations in the time domain is briefly introduced. Section 3 contains the
thin wire equations and their discretization. In Sect. 4, the coupling mechanism of
the field to wire coupling is numerically analyzed. Section 5 describes the effects of
a radiating wire to the ambient field and Sect. 6 highlights the proposed formulation
of the full coupling algorithm.

2 DG-FEM Discretization of Maxwell’s Equations

For the discretization of Maxwell’s equations in the time domain, the DG-FEM has
proven to be an efficient and suitable formulation [3,6]. The two main characteristics
of DG-FEM are its parallel efficiency due to the elementwise FEM approach and
the ability of using explicit time integration schemes. Both characteristics together
allow for a highly parallel implementation on specialized hardware such as graphics
processing units (GPU), which provide high memory bandwidth and floating point
performance [5, 8].

A variational formulation of Maxwell’s equations in the time domain with a
vectorial testfunction E� defined in the computational domain ˝ and its boundary
� D @˝ is derived in [6] with

. E�;�d EH
dt
Cr � EE/˝ C . E�; En � . EE� � EE//�D@˝ D 0; (1)

. E�; "d EE
dt
� r � EH/˝ � . E�; En � . EH� � EH//�D@˝ D � . E�; EJ /˝ ; (2)
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where EE and EH denote the electric and magnetic field variables, respectively, and
EJ the electric current density. This formulation can be solved elementwise with

the boundary terms ensuring the connection between the elements with help of the
numerical fluxes EH� and EE�. The electric permittivity is identified by " and the
magnetic permeability by �. The vector En is the outward pointing normal vector on
the elemental boundaries.

As presented in [6], (1) and (2) can be decomposed into a discretized system
of six equations for the 3D components of EE and EH , leading to an elementwise
formulation on 3D simplices. In this work, nodal Lagrange polynomials are used as
basis functions and a tetrahedral mesh is used as geometric discretization.

3 Thin Wire Equations and DG-FEM Discretization

The current I and the charges per unit length q0 on a perfectly conducting thin wire
can be expressed with help of the Holland formulation published in [7]

L0
�
@

@t
I C v2

@

@s
q0
�
D Es; (3)

@

@t
q0 C @

@s
I D 0: (4)

Here, v denotes the wave speed and L0 the wire inductance per unit length. The
partial derivative @

@s
is a directional derivative in wire direction. The right-hand side

reflects the excitation term with Es being the projected electric field onto the wire.
A variational formulation of (3) and (4) with a testfunction  reads

�
 ;L0

�
dI

dt
C v2

dq0

ds

��

˝

C �
 ;L0v2.f �

I � fI /
�

	 D@˝
D . ;Es/˝

; (5)

�
 ;

dq0

dt
C dI

ds

�

˝

C �
 ; .f �

q0 � fq0/
�

	 D@˝
D 0: (6)

Here, f �
I and f 0�

q denote the flux terms for the current and charge evaluation, being

f �
I � fI D .q0� � q0/C ˛.I� � I / (7)

f �
q0 � fq0 D .I� � I /C ˛.q0� � q0/: (8)

The parameter ˛ is 0 for a central flux and 1 for an upwind flux. For modeling
currents and charges in a thin wire, the penalization of jumps in the current is suit-
able, since there is no physical explanation of jumps in a current density. However,
although it is not considered in this work, the quantity of charges along a straight
wire can jump in case of jumps in the conductivity. In this case, penalty terms for
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the charges would be less suitable. With a wire oriented in x-direction, a DG-FEM
discretization on each wire element is given by

d

dt
I D �v2DxqCM�1F

�
f

�

I � fI
�
C El
L
; (9)

d

dt
q D �DxICM�1F

�
f

�

q � fq
�
; (10)

with Dx being the differentiation matrix in x-direction and M;F representing
the DG-FEM mass- and fluxmatrices on the wire, respectively. The term El

L
is

responsible for the excited currents on the wire. The wire inductance L

L D �0

2

log

r0 C a
2a

; (11)

has to be chosen according to the problem geometry where a is the wire radius and
r0 the radius within electric fields have effects on the wire.

4 Field to Wire Coupling

As a first benchmark, a receiving dipole antenna is simulated. The antenna is a wire
of l D 41m length as used in [2] and a radius of 10 mm is used to model the thin
wire inductance in (11). The wire is excited by a broadband electric pulse presented
in Fig. 1, where the time signal as well as the spectral properties are presented. The
excitation signal is coupled into the thin wire equation through the electric field term
of the right-hand side of (9), where the electric field forces the charges in the wire to
move along the wire resulting in an electric current. With this broadband excitation
different modes of the wire current can be excited. The analytic modes

fn D n � v

l=2
; n 2 N (12)

Fig. 1 Excitation signal in
time and frequency domain
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Fig. 2 Excited current in
time and frequency domain

Fig. 3 Wire to tetrahedra
connectivity wire segment

wire segment

wire segment

as well as the computed modes and the time signal are presented in Fig. 2. Once
the electric pulse has passed the wire, different modes are excited. A fourier trans-
formation of the time signal provides the numerical modes of the wire, which are
almost exactly matching the analytic modes (12). Since there is no backcoupling
enabled into Maxwell’s equations at this point, the energy coupled into the wire
is maintained. For a coupling into Maxwell’s equations, the wire current I has to
treated as a input value into Ampère’s Law as a current density.

5 Wire to Field Coupling

In this section the coupling of a wire current into Maxwell’s equations is investi-
gated. Since the current in the wire is a global quantity, it has to be divided by the
wire cross section to get the current density, which couples into the DG discretiza-
tion of Ampre’s Law. As highlighted in Fig. 3, the current on the wire is discretized
in a 1D polynomial space. The electromagnetic fields in the tetrahedra are approx-
imated by 3D polynomial spaces. Consequently, for the coupling, the wire current
has to be extended to a 3D current-density.

Figure 3 describes the wire element decomposition into wire segments with
respect to the intersections with the tetrahedral boundaries. On each wire segment,
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Fig. 4 Geometry of a
radiating dipole antenna with
evaluation line

Fig. 5 Electric field components of a radiating dipole antenna compared to the analytic solution
of an ideal dipole

Gauss nodes are defined and the wire current is interpolated at these Gauss nodes.
The wire node data is lifted onto the volume node data at these Gauss nodes with
help of a dirac function which reflects the lowest energy approximation of the wire
field by the volume data.

To test this algorithm, a transmitting dipole antenna is simulated with help of this
formulation. The wire is 0.5 m long with a radius of 0.2 mm and is situated in free
space as presented in Fig. 4. The vacuum space is discretized with 85,235 tetrahedra
and the fields are approximated using fourth order polynomials. A sinusoidal exci-
tation current with a wavelength of 3 m is provided and the radiating electric field is
computed along the evaluation line. Figure 5 shows the envelope of the electric field
along the evaluation line compared to an analytic solution. Since analytic solutions
to this kind of problem are only available for the ideal dipole of zero length, the
comparison in Fig. 5 has to be treated carefully, especially in the ultra-near field of
the antenna.

The radial component of the electric field should decay with a 1=r2 behaviour
and the propagating azimuthal componentE� with 1=r characteristic. To investigate
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Table 1 Convergence of the
singular solution with respect
to the mesh size

No. of neighboring L2-error
tetrahedra

12 4.5466
36 0.0072
43 2.8598e-4
109 2.8596e-4
575 2.6975e-4
3,056 2.5954e-4

Fig. 6 Convergence of the singular solution

the convergence of the singular solutions of the azimuthal and radial components at
the wire location, effects of a mesh refinement in the vicinity of the wire is analyzed.
TheL2-error of the azimuthal component is computed along the evaluation line with
radius 2:687 � r � 9:0. Table 1 lists the L2-error for different numbers of tetra-
hedra within a sphere of radius D 0:5. In Fig. 6, the convergence is presented. It
can be seen that the solution converges with decreasing mesh size to a minimum
L2-error of order 10�4. The field computation is executed on a Nvidia Tesla GPU
with single precision accuracy. In earlier investigations published in [8], the effects
of the single precision accuracy within GPU computations is of order 10�6, which
can be confirmed for normalized cavity simulations with simple geometries. Here,
the singularity of the wire to field coupling influences the accuracy of the computa-
tion by the largest field value approximating the singularity. The highest values can
be found at the wire ends and are of order 102 in the performed simulation.

6 Full Field to Wire coupling

This section combines the two presented interactions between electromagnetic
waves and wires, i.e., a current excited by an external electric field also leads to
a radiation of the wire itself. The fully coupled field wire system can be described
with help of the variational formulation
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. E�;�d EH
dt
Cr � EE/˝ C . E�; En � . EE� � EE//�D@˝ D 0 (13)

. E�; "d EE
dt
� r � EH/˝ � . E�; En � . EH� � EH//�D@˝ D � . E�; I ıw

A
//˝ ;

(14)

. ;L0
�

dI

dt
C v2

dq0

ds

�
/ C . ;L0v2.f 0�

I � fI // D . ;Es/ (15)

. ;
dq0

dt
C dI

ds
/ C . ; .f �

q � fq// D 0; (16)

where the right-hand sides describe the interchange between the field equations
and the wire equations. The fully coupled system is stable with the following semi
discrete energy equation inequality

d

dt
.
�

2
jjHjj2˝ C

"

2
jjEjj2˝ C

�

4

jjIjj2˝w

C 1

4
"
jjq0jj2˝w

/ (17)

D �
KX
kD1

#facesX
fD1

.
�

2
jj On � ŒH�jj2 C "

2
jj On � ŒE�jj2 C �

4

jjŒI�jj2 C 1

4
"
jjŒq0�jj2/ <D 0;

as long as the coupling terms show symplectic behaviour for the field energyWf and
the wire energyWw transitions, i.e.,

d

dt
.Wf CWw/ D 0 (18)

resulting in a equivalent power loss and gain of the two systems with

PE D
�
E
I

A
ıwd˝ D

�
EIds D PI ; (19)

which is ensured by the variational formulation of the Holland equations.
The consistency of the proposed method is subject to further investigation. In

[1], Cockburn and Guzmán provided fundamental analysis and a consistency proof
of a field problem with discontinuous initial data resulting in oscillatory behaviour.
These oscillations are shown in [1] to remain localized within a region whose extent
depends on the mesh size, time step size, and simulation time.

In order to test the fully coupled field wire solver, a thin wire is situated in a
box as presented in Fig. 7. The cylinder surrounding the wire is defined for mesh-
ing purpose. An inflow boundary condition with a Gaussian pulse is defined at the
coloured face of the box. The pictures in Fig. 8 are highlighting the resulting fields
for different time steps and with different scalings. The two left pictures show the
incoming wave hitting the wire such that the field in the vicinity of the wire is dis-
turbed. With this scaling, no back-scattering can be observed. The right picture has
a different scaling showing a maximum of 2% of the excitation signal. Here, the
back-scattering of the thin wire can be observed.
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Fig. 7 Computational domain of the full field wire coupling test case

0.0 1.0

Ex-Field in V /m

–0.02

Ex-Field in V /m

0.02

Fig. 8 Electric field components of a radiating dipole antenna compared to the analytic solution
of an ideal dipole

7 Conclusion and Outlook

A strong coupling between Maxwell’s equations and Holland’s thin wire equations
in the time domain has been presented. The field to wire coupling has been inves-
tigated by computing the modes of a receiving dipole antenna. The wire to field
coupling has been tested by simulating a transmitting dipole antenna. For the full
coupling, a back-scattering of a thin wire in free space has been computed.
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A Hybrid Method for the Resolution
of the Gibbs Phenomenon

Jae-Hun Jung

Abstract For the resolution of the Gibbs phenomenon, the inverse polynomial and
the statistical filter methods were proposed independently. In this paper, we show
how these two methods are different and similar, both mathematically and numeri-
cally. After comparing these methods, we propose a hybrid inverse polynomial and
statistical filter method for the resolution of the Gibbs phenomenon.

1 Introduction

If a function to be approximated is analytic and periodic, its Fourier approximation
yields a fast convergence. If not, then the Fourier approximation is highly oscilla-
tory near the domain boundaries and the local jump discontinuity resulting in the
deterioration of spectral accuracy. This is known as the Gibbs phenomenon. Since
Gottlieb and his coworkers developed the Gegenbauer reconstruction method to
recover spectral accuracy in the Fourier reconstruction contaminated by the Gibbs
phenomenon in 1992 [3, 4], several other methods have also been developed to
resolve the Gibbs phenomenon in the Fourier or polynomial approximations of
discontinuous functions (for review, see Boyd’s paper and references therein [2]).

In this paper, we consider two Gibbs-defeating methods: (1) the inverse poly-
nomial reconstruction method (IPRM) [7, 10], and the statistical filter (SF) method
[11]. The purpose of this paper is to compare these two methods mathematically and
propose a Gibbs-defeating hybrid method to remedy the weaknesses of these meth-
ods, which include the ill-conditioning, slow convergence and high dimensionality
of the transformation matrix.
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Since the IPRM was developed, several issues related to the IPRM have been
addressed including the uniqueness, convergence, ill-posedness [7] and the trunca-
tion method for the removal of round-off errors [8]. The method was also applied to
two-dimensional applications [1]. More rigorous proof of the existence of the IPRM
was provided by Krebs in 2007 [9], and the generalized IPRM was recently proposed
by Hrycak and Gröchenig in 2010 [5]. Although the SF method was published in
1995, it has not been recognized in the literature until recently.

These two methods are mathematically very similar although their numerical
performances differ. No previous research has been done to study the mathematical
relation between these two methods. As the numerical results in this paper show, the
proposed hybrid method exploits strengths of these two methods and, consequently,
is more robust and efficient than the IPRM and SF methods. Furthermore, the paper
demonstrates how the recent development of the IPRM, such as the recent work by
Hrycat and Gröchenig [5], could be generalized in the SF method.

Section 2 briefly explains the IPRM and the SF method. In Sect. 3, mathematical
comparisons are made. In Sect. 4, a hybrid method is proposed and numerical results
are given; and in Sect. 5, a brief summary is provided.

2 The Inverse and Statistical Filter Methods

We assume that the unknown function f .x/ 2 L2Œ�1; 1� is analytic but not neces-
sarily periodic and can be represented as a polynomial f .x/ D P1

lD0 glLl.x/;
where Ll .x/ are the orthogonal polynomials such as the Legendre polynomials
and gl the corresponding expansion coefficients with the proper inner product
.�; �/. We also assume that the finite Fourier data f OfkgN�N of f .x/ is given a
priori. Let the expansion coefficient vector in the Legendre polynomials be g D
.g0; g1; � � � /T and the Fourier coefficient vector Of be Of D . Of�N ; � � � ; OfN /T . The
Legendre inner product .�; �/L and the Fourier inner product .�; �/F are used for
the expansion coefficients, gl D .f .x/; Ll .x//L WD 2lC1

2

R 1
�1 f .x/Ll .x/dx; and

Ofk D .f .x/; exp.ik
x//F WD 1
2

R 1
�1 f .x/ exp.�ik
x/dx; respectively. We define

the transformation matrix (or connection matrix) A 2 CM
1 as

Akl D .Ll.x/; exp.ik
x//F ; (1)

where M D 2N C 1. Then the Fourier coefficients are obtained by Of D Ag:

2.1 Inverse Polynomial Reconstruction Method

The IPRM seeks a reconstruction Qf .x/ such that Qf .x/ is a polynomial of degree
at most m as Qf .x/ D Pm

lD0 Qgl l .x/; where  l .x/ is the polynomial of degree l
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and Qgl is the corresponding expansion coefficient. Here the basis polynomials l.x/
are not necessarily to be orthogonal [7]. The reconstruction is unique whether it is
expanded by the orthogonal or non-orthogonal polynomials. If the function f .x/ is
a polynomial of finite degree, the reconstruction Qf .x/ is exact, i.e., Qf .x/ D f .x/,
and the IPRM yields spectral accuracy [7, 9]. The unknown expansion coefficients
with the IPRM are found by minimizing the reconstruction in the Galerkin sense,
that is, .f .x/ � Qf .x// ? FN , where FN is the given Fourier space of dim D
2N C 1 spanned by fexp.ik
x/gN�N and the symbol ? denotes that the residue
between the reconstruction and the function is orthogonal to the Fourier space, FN
in the sense of the Fourier inner product. Then the expansion coefficients f QglgmlD0
are determined by W � Qg D Of; where the transformation matrix is given by Wkl D
. l .x/; exp.ik
x//F :

2.2 Statistical Filter Method

The reconstruction Qf .x/ by the SF method is given by the infinite sum of polynomi-
als. For example, Qf .x/ D P1

lD0 QglLl.x/; where Qgl are the expansion coefficients
and Ll .x/ are the Legendre polynomials. Let Qg be the expansion coefficient vector.
The SF method determines the expansion coefficients by minimizing k Qg � P Of k2
and the minimizing matrix P is given by the pseudo-inversion [11] P D C.AC/;
where� denotes the pseudo-inversion. The matrix C is the covariance matrix diag-
onal elements of which are the expectation values of the square of gl [11]. Thus for
any analytic function, the diagonal elements Ci i decay when the reconstruction is
sought with orthogonal polynomials and all the off-diagonal elements of C vanish.
Since we seek a reconstruction by the linear sum of orthogonal polynomials, we
use C whose non-zero elements are only diagonal elements. Then the expansion
coefficients are given by Qg D C.AC/Of:

Spectral convergence of the SF method has not been proven yet in the literature.
To see spectral convergence, we define the error functionE.x/

E.x/ WD Qf .x/ � f .x/ D
1X
lD0
. Qgl � gl /Ll .x/: (2)

Notice that Qg is not given byAOf but byC.AC/Of using the covariance matrix. This
is because the linear system AQg D Of is under-determined possibly yielding infinitely
many solutions for g and the direct pseudo-inverse of A does not necessarily guar-
antee the convergence of the method. By using the covariance matrix C , the SF
method seeks the convergence and the condition on C is crucial for the successful
performance of the SF method.

We remark that the generalized IPRM was proposed recently by Hrycak and
Gröchenig [5] that uses a similar formulation as the SF method but does not
require the covariance matrix. Instead, the generalized method uses much larger
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matrix (e.g., N � m2) [5]. However, our proposed hybrid method can reduce the
matrix size significantly by using the covariance matrix in the generalized IPRM
framework.

3 Convergence, Accuracy and Exactness

3.1 Convergence

For spectral convergence of the IPRM, let the truncation error function TE.x/ be
TE.x/ D fm.x/ � Qfm.x/; where fm.x/ is the truncated sum of f .x/ as fm.x/ DPm
lD0 glLl.x/. The recovery of spectral accuracy can be shown by proving that the

L1 norm of the projection of TE.x/ to the Fourier space decays with N , such that

max�1�x�1 jTEN .x/j � C1A.	/q
N ; (3)

where TEN .x/ is the Fourier approximation of TE.x/, C1 a positive constant inde-
pendent of N , A the function of 	 only, 	 the distance from the singularity of f .x/
in complex plane and 0 < q < 1.

As for the SF method, note that the SF method seeks Qf .x/ in the same space
where f .x/ resides and no truncation or regularization errors are introduced in the
error analysis. Using Qg D C.AC/Of,

max
�1�x�1

jE.x/j D max
�1�x�1

j
1X
lD0

. Qgl � gl/Ll .x/j � j
1X
lD0

. Qgl � gl /j �k C.AC/�Of� g k1 :

Thus using Of D Ag; we have

max
�1�x�1

jE.x/j � k C.AC/�ACC�1 � I k1k g k1� D1 k C.AC/�ACC�1 � I k1
D D1 k C..AC/�AC � I /C�1 k1; (4)

where D1 is a constant independent of N and we use the Parseval’s theorem for
f .x/ 2 L2. k � k1 denotes the matrix 1�norm. Since the rank of A is only
2N C 1, .AC /AC ¤ I and the error vanishes only when N ! 1, i.e.,
limN!1.AC /AC D I . Let U and V be such that AC D U Œ˙N 0�V T ; where
˙N is the diagonal matrix composed of the singular values of AC and U and V are
unitary vectors. Then

.AC /AC D V
�
IN 0
0 0

�
V T ; (5)
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where IN is the identity matrix, I .2NC1/
.2NC1/ and 0 the null matrix. The con-
vergence of the SF method depends on how fast .AC /AC converges to I . Since
V depends on the choice of C , convergence of the SF depends on C . This implies
that how to choose the covariance matrix C is the critical question to obtain spec-
tral convergence for the SF method while the IPRM does not necessarily need such
condition.

3.2 Covariance Matrix

In order to suggest the improved SF method, we consider special cases for which C
is not necessarily a covariance matrix,

C D
�
� 0
0 0

�
; � 2 RM
M :

Case I (M D 2N C 1): First consider the case that � is a diagonal matrix and its
diagonal elements are arbitrary;

� D

2
64
d11 0

: : :

0 dMM

3
75 : (6)

Then we have C.AC/ D C .ŒAlAr �C / D
�
A�1
l

0

�
; where Al 2 CM
M , Ar 2

CM
1, A D ŒAl Ar � and 0 the null matrix with M columns. By definition, this
case is the same as the IPRM. Notice that no particular conditions for the elements of
�were used.� is not necessarily the identity matrix or its diagonal elements are not
necessarily decaying. For any choice of � the formulation is the same. Following
the error analysis for the IPRM, the error is given by

max�1�x�1 jE.x/j �k A
�1
l Arg

? k1 C k g? k1;

where g? D .gMC1; � � � /T . Convergence is determined by how A�1
l
Ar increases

or decreases. The error is determined solely by the properties of the transformation
matrix and the matrix C is irrelevant. Although the SF method is equivalent to the
IPRM for this case, this formulation yields different results numerically. For exam-
ple, consider the simple case that C D �. Then the SF method is Qg D �.Al�/

Of:
Mathematically, we obtain Qg D �.Al�/

Of D A�1
l
Of, but numerically we obtain

two different set of Qg due to round-off errors. By using the truncated singular value
decomposition (SVD) method for the pseudo-inversion, the SF method yields more
robust method than the IPRM.
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Case II: We consider the case that � has the rankm < M . Then

C.AC/ D
�
�.Al�/


0

�
;

where Al 2 CM
m. Since the reconstruction has a polynomial order m, this
method yields the over-determined problem. This case is close to the IPRM with
Al 2 Cm
m and the inversion is carried out by the pseudo-inverse.

For both cases I and II, we use any arbitrary diagonal matrix� and the results are
equal or close to the inverse or pseudo-inverse methods respectively. The matrix C
is independent of the regularity of f .x/ for these cases. In particular when Al is the
square matrix, C is completely arbitrary. In this aspect, the SF method is different
from the IPRM. That is, the method is generalized to

g D
�
A
l

0

�
Of: (7)

3.3 Spectral Accuracy and Exactness

As explained in the previous section, the matrix C has to be prescribed properly
for the SF method. Due to the analyticity of the function, it is reasonable to have
Cii D q2.i�1/; for i D 1; 2; � � � , where q < 1 and Cij D 0 if i ¤ j . The free
parameter q was chosen to be q 	 1

2
in [11]. This implies that (1) the SF method

is not exact for a polynomial f .x/, (2) if q � 1, the SF method is close to the
low order IPRM and thus the method does not yield exponential convergence after a
certain polynomial order, and (3) if q 	 1, the SF method is very slowly convergent.
As the SF method is not exact, the exactness is only achieved when � is adopted,
that is, the exactness is recovered only when the IPRM is used. Suppose that the
unknown function is indeed a polynomial of order m and m < M D 2N C 1;
f .x/ D Pm

lD0 glLl.x/: Then we have Of D Al .g0; � � � ; gm; 0; 0; � � � /T ; and Qg D
C.AC/Al .g0; � � � ; gm; 0; 0; � � � /T ; where Al 2 CM
m. For the exactness, Qg D g,
we need I � C.AC/Al D 0: This is only possible when� is a unit matrix whose
size is m � m. Then by the definition of the pseudo-inverse, I � C.AC/Al D
I �A

l
Al D I � I D 0: This is exactly the same as the IPRM of orderm.

3.4 Numerical Convergence with Round-Off Errors

The numerical convergence of the IPRM or the SF method is affected by round-
off errors [7, 11]. The source of round-off errors for the SF method are singular
values that are much smaller than machine accuracy. By truncating such small sin-
gular values, the SF method can be less sensitive to round-off errors. Let "t be the
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tolerance level that all the singular values smaller than "t are truncated, such that
˙C D diag.1=�1; � � � ; 1=�Nt

; 0; � � � ; 0/; where ˙C is the pseudo-inverse of the
singular value matrix, �i the singular values, andNt the index for 8�i � "t ; i > Nt .
Based on the truncated SVD, two improvements can be made: (1) use Al 2 CM
m
with m < M and g D A

l
f , for which no priori assumption for C is necessary.

A similar idea was proposed and the rigorous proof of the bounded condition num-
ber (N � m2) was given in [5]. And (2) use the IPRM with the preconditioner
C and pseudo-inversion, i.e., Qg D C.AlC/

f . This makes the IPRM less sen-
sitive to round-off errors. Recently a similar idea was applied to the polynomial
reconstruction for the resolution of the Runge phenomenon [6].

4 A Hybrid IPRM and SF Method: Numerical Results

The proposed hybrid method is that the IPRM is used with the square matrix A for
given N and A is preconditioned by C . Then the pseudo-inverse is used for the
reconstruction.

For numerical experiments, first we consider f .x/ D sin.0:4
x/. The left figure
of Fig. 1 shows the pointwise errors of the IPRM forN D 64, andA 2 C .129/
.129/
with various q D 0:95; 0:9, and 0:8. The MATLAB command pinv is used for the
pseudo-inverse which uses the truncated SVD. The MATLAB computation of the
condition number of A is 2:6848� 1017. The figure shows that the improved IPRM
(blue, green and purple solid lines) improves a lot the original IPRM (red solid line).

The right figure of Fig. 1 shows a convergence of the SF method with differ-
ent values of q. We use the matrix A 2 C .2NC1/
.10N/ D C .129/
.640/, that is,
N D 64 and A is truncated at the 10N D 640th column. The figure shows how
the convergence of the SF method can be affected by q. The best performance of the
SF method was obtained with q D 0:8. Our numerical results (not included in the
figure for graphical clarity) also shows that almost similar errors were obtained with
q D 0:7 and 0:5. The red solid line in the right figure shows the hybrid method with
q D 0:8. The figure shows that the hybrid method achieves almost similar results as
the SF method with q D 0:8. But the hybrid method uses much smaller matrix.
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Fig. 1 The pointwise errors in logarithmic scale. Left: the IPRM (red) and improved IPRM recon-
structions with q D 0:8 (blue), q D 0:9 (green), and q D 0:95 (purple). Right: the SF methods
(q D 0:95; 0:9; 0:85; 0:8 (brown, purple, green, blue) and the hybrid method q D 0:8 (red)
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Fig. 2 The pointwise errors in logarithmic scale for the IPRM (left) and the hybrid method (right).
N D 8; 16; 32

We also consider f .x/ D sin.5:5
x/. Figure 2 shows the pointwise errors for
the IPRM and the hybrid method with N D 8; 16; 32. For the hybrid method, we
use q D 0:7. As shown in the figure, the hybrid method performs much better and
yields better convergence than the direct IPRM.

5 Conclusions

In this paper, the IPRM and the SF method are mathematically compared. Based on
this comparison, we propose a hybrid IPRM and SF method. The baseline hybrid
method is the IPRM with the covariance matrix defined in the SF method, which
significantly reduces round-off errors and the size of the connection matrix. Future
research should center around the optimization of parameter q.
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5. T. Hrycak, K. Gröchenig, Pseudospectral Fourier reconstruction with the modified inverse
polynomial reconstruction method, J. Comput. Phys. 229 (2010), 933–946



A Hybrid Method for the Resolution of the Gibbs Phenomenon 227

6. J.-H. Jung, W. Stefan, A simple regularization of the polynomial interpolation for the resolution
of the Runge phenomenon, J. Sci. Comput. DOI: 10.1007/s10915-010-9397-7

7. J.-H. Jung, B. D. Shizgal, Generalization of the inverse polynomial reconstruction method in
the resolution of the Gibbs phenomena, J. Comput. Appl. Math. 172 (2004), 131–151

8. J.-H. Jung, B. D. Shizgal, On the numerical convergence with the inverse polynomial recon-
struction method for the resolution of the Gibbs phenomenon, J. Comput. Phys. 224l (2007),
477–488

9. M. Krebs, Reduktion des Gibbs-Phänomens in der Magnetresonanztomographie, Master’s
thesis, Technical University of Dortmund, 2007

10. B. D. Shizgal, J.-H Jung, Towards the resolution of the Gibbs phenomena, J. Comput. Appl.
Math. 161 (2003), 41–65

11. A. Solomonoff, Reconstruction of a discontinuous function from a few Fourier coefficients
using bayesian estimation, J. Sci. Comput. 10 (1995), 29–80



Numerical Simulation of Fluid–Structure
Interaction in Human Phonation: Verification
of Structure Part

Martin Larsson and Bernhard Müller

Abstract A high order finite-difference method has been developed to model fluid–
structure interaction during phonation in the human larynx. The motion of the vocal
folds is obtained by solving the elastic equations while the airflow is modeled by
solving the compressible Navier–Stokes equations. In this paper, we address the
problem of obtaining time-stable solutions for the linear elastic equations.

1 Introduction

Fluid–structure interaction in the human larynx generates our voice [5, 9]. We have
developed a high order difference method to simulate the interaction of compress-
ible flow in the larynx with the elastic structure of the vocal folds [3]. This paper
deals with obtaining time-stable solutions for the linear elastic wave equation in a
first-order formulation, which form the basis for more advanced structure models.

When written as a system of first order equations, the stability theory which
is well developed for hyperbolic systems, applies directly. The disadvantage com-
pared with a second order formulation in time is the increased computational effort
required for the additional variables. Our main motivation for using a first order for-
mulation is, however, related to the application of fluid–structure interaction where
the traction boundary condition dictates the stresses on the elastic body. In the first
order formulation, the traction boundary condition can be easily formulated as a
simple Dirichlet condition for a subset of the solution variables. Dirichlet boundary
conditions are not at all straight-forward to impose in a second order formulation [6].
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2 Theory

The 2D linear elastic wave equation in first order form are

ut D .1=	/fx C .1=	/gy
vt D .1=	/gx C .1=	/hy
ft D .�C 2�/ux C �vy
gt D �vx C �uy
ht D �ux C .�C 2�/vy

(1)

where u; v are the velocity components and f; g; h are the three independent com-
ponents of the symmetric Cauchy stress tensor. The Lamé parameters �;� and the
density 	 are here taken to be constant in space and time.

Introducing the solution vector q and coefficient matrices A and B allows us to
write the linear elastic wave equation (1) as a first order hyperbolic system

qt D Aqx CBqy ; (2)

where q D .u; v; f; g; h/T. The wave speeds of the system are cs D
p
�=	 and

cp D
p
.�C 2�/=	, referred to as secondary (or shear) and primary wave velocity,

respectively. For convenience, we also define the parameter ˛ D .� C 2�/=� D
c2p=.c

2
p � 2c2s /.

In order to obtain simultaneous approximation (SAT) terms (to be explained
below) for the system, we need to transform the system to characteristic variables.
This can indeed be done, since the system (2) is hyperbolic. Thus, there exists an
invertible matrix T .k/ for all directions k in 2D such that T �1.k/P.k/T .k/D.k/,
where P.k/ D k1AC k2B . The diagonal real eigenvalue matrix .k/ can be cho-
sen such that the eigenvalues occur in descending order. For the x- and y-directions,
we get the following characteristic variables for the system (2).

u.x/ D T �1
x q D 1

2

2
666664

�u=cp C f=˛
vC g=.	cs/
�2f=˛C 2h
v � g=.	cs/
��u=cp C f=˛

3
777775
; u.y/ D T �1

y q D 1

2

2
666664

�v=cp C h=˛
uC g=.	cs/
2f � 2h=˛
u � g=.	cs/
��v=cp C h=˛

3
777775
:

(3)

Note that we use the symbol u to refer to both the vector of characteristic variables
and the first velocity component. The meaning of u should be clear from context.
The transformation back to flow variables is given by q D T u.
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3 Summation by Parts Operators

The idea behind the summation by parts technique [8] is to construct a difference
operatorQ which satisfies a discrete analogue to the continuous integration by parts
property. This is called a summation by parts (SBP) property and by the energy
method (cf. e.g., [2]), the discrete problem then satisfies the same energy estimate
as the continuous problem.

For diagonal norm matrices H , there exist difference operators Q accurate to
order O.h2s/ in the interior and O.hs/ near the boundaries for s D 1; 2; 3 and 4.
These operators have an effective order of accuracy O.hsC1/ in the entire domain.
Explicit forms of such operators Q and norm matrices H have been derived by
Strand [8]. For this study, we use an SBP operator based on the central sixth order
explicit finite difference operator .s D 3/ which has been modified near the bound-
aries in order to satisfy the SBP property giving an effective O.h4/ order of accuracy
in the whole domain.

With the injection method, numerical solutions with stable schemes can still
exhibit a nonphysical growth in time which is not explained by the continuous equa-
tion. Simultaneous approximation terms (SAT) were devised to obtain time-stable
solutions [1]. In this approach, a linear combination of the boundary condition and
the differential equation is solved at the boundary instead of injecting the value at
the end of each Runge–Kutta stage. This leads to a weak imposition of the physical
boundary conditions. The imposition of SAT boundary conditions is accomplished
by adding a term to the derivative operator, proportional to the difference between
the value of the discrete solution uN and the boundary condition to be fulfilled.

The strictly stable SAT method for a hyperbolic system in one space dimension
with diagonal coefficient matrices was derived in [1] and is the basis for this work.
The continuous 1D model problem is ut D ux, 0 � x � 1, with r unknowns and
r equations and the coefficient matrix  is chosen such that the eigenvalues are in
descending order, i.e., �1 > �2 > : : : > �k > 0 > �kC1 > : : : > �r . We split
the solution vector into two parts corresponding to positive and negative eigenvalues
uI D .u.1/; : : : ;u.k//T and uII D .u.kC1/; : : : ;u.r//T. For the variables in uI (each a
grid function of lengthNC1) we have boundary conditions at x D 1, and for uII we
need to specify boundary conditions at x D 0, as this is required for well-posedness.

Since we are here dealing with characteristic variables, we need to transform our
physical boundary conditions to boundary conditions for the characteristic variables.
This is done through the boundary functions gI.t/ D .g.1/.t/; : : : ; g.k/.t//, gII.t/ D
.g.kC1/.t/; : : : ; g.r/.t// and the coupling matrices R and L defined by

uI.1; t/ D RuII.1; t/C gI.t/; uII.0; t/ D LuI.0; t/C gII.t/ (4)

The SAT method is then:

du.i/

dt
D �iQu.i/ � �i�S.i/.u.i/N � .RuII/

.i/
N � g.i/.t//; 1 � i � k

du.i/

dt
D �iQu.i/ C �i�S.i/.u.i/0 � .LuI/

.i�k/
0 � g.i/.t//; k C 1 � i � r (5)
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where S.i/ D H�1.0; 0; : : : ; 1/T for 1 � i � k and S.i/ D H�1.1; 0; : : : ; 0/T for
k C 1 � i � r . Regarding the notation, .RuII/

.i/
N should be interpreted as follows:

uII is an .r�k/�1 vector where each component is a grid function of lengthN C1.
Multiplying R (being a k � .r � k/ matrix) with uII yields a new vector of grid
functions (k � 1 vector). Take the .i/th grid function in this vector and finally the
N th component in the resulting grid function. As shown in [1], the SAT method is
both stable and time stable provided that

1 � 1p1 � jRjjLj
jRjjLj � � � 1C 1p1� jRjjLj

jRjjLj (6)

with the additional constraint that jRjjLj � 1, where the matrix norm is defined as
jRj D 	.RTR/1=2 and 	 is the spectral radius.

4 Application to Elastic Wave Equation

Now, we shall apply the general method outlined above to derive SAT expressions
for boundary conditions on the velocity components. The vector of characteristic
variables in the x-direction is given in (3), but henceforth we drop the superscript .x/.
The derivation for the y-direction is analogous.

We let the grid functions u and v in 2D with points labeled 0 � i � N and
0 � j � M in the x- and y-directions, respectively, correspond to the solution
variables u and v in the discretization of the linear elastic wave equation. We label
the boundary i D 0 “left,” i D N “right,” j D 0 “bottom,” j D M “top.”

The boundary conditions for the velocity components in 2D are of the form
u.x D 0; y; t/ D uleft.y; t/, i.e., a given function of time, which we write for the
discrete variables as u0;j .t/ D uleft;j .t/, with similar notation for the other edges
and the other solution variables. The SAT expressions, one for each spatial direction
and for each solution variable, will also be grid functions.

We split the vector of characteristic variables into two smaller vectors corre-
sponding to the positive and negative eigenvalues, omitting the characteristic with
zero eigenvalue as the corresponding SAT expression will be zero,

uI D 1

2

�
.�=cp/uC .1=˛/f

vC .1=cp	/g
�
; uII D 1

2

�
v � .1=cp	/g

.��=cp/uC .1=˛/f
�

and define the coefficient matrices I D diag.cp; cs/, II D diag.�cs ;�cp/. The
boundary functions gI, gII, and the matricesL andR are defined by the relations (4).

If we impose the boundary condition in the x-direction u.x D 1; t/ D uright.t/,
v.x D 1; t/ D vright.t/, u.x D 0; t/ D uleft.t/,v.x D 0; t/ D vleft.t/, then the
boundary matrices and functions are given by
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R D
�
0 1

�1 0
�
; L D

�
0 �1
1 0

�
; gI D

�
�uright.t/=cp

vright.t/

�
; gII.t/ D

�
vleft.t/

��uleft.t/=cp

�
:

In the y-direction, dictating u.y D 1; t/ D utop.t/,v.y D 1; t/ D vtop.t/, u.y D
0; t/ D ubottom.t/,v.y D 0; t/ D vbottom.t/, we get, likewise

R D
�
0 1

�1 0
�
; L D

�
0 �1
1 0

�
; gI D

�
�vtop.t/=cp

utop.t/

�
; gII.t/ D

�
ubottom.t/

��vbottom.t/=cp

�
:

Corresponding expressions can be derived for boundary conditions on the stress
components, but these are omitted here due to space limitations. We note that, as the
spectral radius of both L and R is 1 in each case, the inequalities (6) lend no other
choice than � D 1 for time-stability.

Using the definition (5) with the expressions above, the SAT terms are first
obtained for the characteristic variables, and then for the flow variables by applying
the transformation matrices T for the x- and y-directions. The resulting expressions
are

SAT
x

i;j;1 D �cp�h�1
00

�
ıiN
�
uN;j � uright;j .t/

�C ıi0
�
u0;j � uleft;j .t/

��
SAT

x

i;j;2 D �cs�h�1
00

�
ıiN
�
vN;j � vright;j .t/

�C ıi0
�
v0;j � vleft;j .t/

��
SAT

x

i;j;3 D �.�C 2�/�h�1
00

�
ıiN
�
uN;j � uright;j .t/

� � ıi0
�
u0;j � uleft;j .t/

��
SAT

x

i;j;4 D ���h�1
00

�
ıiN
�
vN;j � vright;j .t/

� � ıi0
�
v0;j � vleft;j .t/

��
SAT

x

i;j;5 D ���h�1
00

�
ıiN
�
uN;j � uright;j .t/

� � ıi0
�
u0;j � uleft;j .t/

��
(7)

SAT
y

i;j;1 D �cs�h�1
00

�
ıjM

�
ui;M � utop;i .t/

�C ıj0 .ui;0 � ubottom;i .t//
�

SAT
y

i;j;2 D �cp�h�1
00

�
ıjM

�
vi;M � vtop;i .t/

�C ıj0 .vi;0 � vbottom;i .t//
�

SAT
y

i;j;3 D ���h�1
00

�
ıjM

�
vi;M � vtop;i .t/

� � ıj0 .vi;0 � vbottom;i .t//
�

SAT
y

i;j;4 D ���h�1
00

�
ıjM

�
ui;M � utop;i .t/

� � ıj0 .ui;0 � ubottom;i .t//
�

SAT
y

i;j;5 D �.�C 2�/�h�1
00

�
ıjM

�
vi;M � vtop;i .t/

� � ıj0 .vi;0 � vbottom;i .t//
�
;

(8)
where ıij is the Dirac delta function, i.e., ıij D 1 if i D j and 0 otherwise. The
overline stands for physical (flow) variables.

5 Discretization

We consider the mapping x D x.�; �/, y D y.�; �/ and introduce an equidis-
tant computational grid with coordinates �i ; i D 0; : : : ; N , �j ; j D 0; : : : ;M . The
Jacobian determinant of the transformation is given by J�1 D xy� � x�y . The
linear elastic wave equation can then be written

Oqt D . OA Oq/ C . OB Oq/� (9)
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where the hats signify that the quantities are in transformed coordinates, i.e.,
Oq D J�1q, OA D �xAC �yB and OB D �xAC �yB .

Introduce a vector Oq D . Oqijk/
T D . Oq001; : : : ; Oq005; Oq101; : : : ; Oq105; : : : ; OqNM5/

T

where the three indices i; j and k represent the �-coordinate, �-coordinate and
the solution variable, respectively. We shall define our discretization in terms of
Kronecker products. This formulation is convenient because it mimics the finite dif-
ference implementation. Let Q D Q ˝ I� ˝ I5 and Q� D I ˝Q� ˝ I5 where
Q is the 1D difference operator in the �-direction and I is the unit matrix of size
.N C 1/ � .N C 1/. In the other direction, Q� and I� are .M C 1/ � .M C 1/
matrices. The computation of the spatial derivatives of Oq can then be seen as oper-
ating on Oq with one of the Kronecker products, i.e., Q� Oq operates on the second
index and yields a vector of the same size as Oq representing the first derivative in
the �-direction. To express the semi-discrete linear elastic wave equation, we also
need to define OA D I ˝ I� ˝ OA and OB D I ˝ I� ˝ OB . Note that these prod-
ucts are never actually explicitly formed as they are merely theoretical constructs to
make the notation more compact. Using the Kronecker products defined above, the
semidiscrete linear elastic wave equation including the SAT term can be written

d Oq
dt
D Q. OA Oq/CQ�. OB Oq/C bSAT: (10)

This system of ordinary differential equations, including the SAT expression is
solved using the classical 4th order explicit Runge–Kutta method. No injection is
needed to impose boundary conditions, as this is taken care of by the SAT method.
A 6th order explicit filter [7] is used to suppress unresolved modes.

Equations (7) and (8) give the expressions in Cartesian coordinates. However, we
need the SAT expression for curvilinear coordinates. These can be obtained by con-
sidering the system Oqt = ..kxAC kyB/ Oq/k for the two spatial directions k D �; �.
As the expressions become quite long, they are omitted here (cf. [4]).

6 Numerical Experiment

We consider now a simple test for our 2D discretization: a square domain occu-
pies the region �1m � x � 1m, �1m � y � 1m. At t D 0 s, we give an
initial condition for the stress component g.x; y; t D 0/ D g0.x; y/, while all
other variables are initially zero. The initial condition is defined by g0.x; y/ D
s.2r1C0:5/�s.2r2C0:5/, where r21 D .x�0:5m/2Cy2, r22 D .xC0:5m/2Cy2
and

s.r/ D
(

exp.�1=r � 1=.1� r/C 4/ kg=.m � s2/; if 0m < r < 1m

0; otherwise.
(11)
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Fig. 1 Contour plots showing the absolute value of the velocity components u and v with contour
levels spaced 0.01 m s�1 apart

Thus, g0.x; y/ is a smooth function with infinitely many derivatives and compact
support representing two sources located at .˙0:5; 0/m. The material parameters
are � D � D 1:0 kg=.m � s2/, 	 D 1:0 kg m�3. We integrate the solution with
CFL number 0:8 and impose homogeneous Dirichlet boundary conditions for u and
v using the SAT approach (3). We plot the solution evaluated at time t D 0:5 s
in Fig. 1a, b. Since the largest wave speed cp D

p
.�C 2�/=	 D p3m s�1, at

t D 0:5 s the P-wave will have reached and been reflected from the left and right
boundaries which are situated a distance 0:5m from the sources. As the solution is
symmetric with respect to the center lines x D 0 and y D 0, only the first quadrant
is shown. The value of the velocity components at the boundary is zero, as enforced
by the SAT term.

For the same set of parameters and initial/boundary conditions, we compute the
solution at different grid resolutions and consider the solution at the finest grid to be
exact. We can then calculate the error at each grid level and thus determine the rate
of convergence. We define the 2-norm of the error at any grid level k as

e
.k/
2 D

2
4 1

NM

X
�2fu;v;f;g;hg

NX
iD0

MX
jD0

ˇ̌
ˇ�.k/i;j � �.k/exact;i;j

ˇ̌
ˇ
2

3
5
1=2

; (12)

where �.k/exact is the restriction of the solution �.0/ on the finest grid to the grid on
level k. As can be seen in Table 1, the order in the 2-norm approaches 4 as N and
M increase, which is what we expected.
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Table 1 2-norms of error
and rates of convergence

N 
M k e
.k/
2 log2.e

.kC1/
2 =e

.k/
2 /

32 
 32 6 3:646 
 10�2 �
64 
 64 5 6:800 
 10�3 2:423

128 
 128 4 8:521 
 10�4 2:996

256 
 256 3 7:421 
 10�5 3:521

512 
 512 2 4:558 
 10�6 4:025

1;024 
 1;024 1 2:710 
 10�7 4:072

2;048 
 2;048 0 0 �

7 Conclusions

We have derived simultaneous approximation terms (SAT) for the 2D linear elastic
wave equation in first-order form to yield strictly stable schemes for general Dirich-
let boundary conditions. The implementation of the SAT approach for a fourth order
difference scheme has proved that the convergence rate is indeed fourth order for a
test case with smooth data. The advantage of our approach is that Dirichlet bound-
ary conditions can easily be imposed for either the velocity or the stress components
which is required for fluid-structure interaction. In the future, we plan to apply this
approach to the nonlinear elastic equations based on a Neo-Hookean model.
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A New Spectral Method on Triangles

Youyun Li, Li-Lian Wang, Huiyuan Li, and Heping Ma

Abstract We propose in this note a spectral method on triangles based on a new
rectangle-to-triangle mapping, which leads to more reasonable grid distributions
and efficient implementations than the usual approaches based on the collapsed
transform. We present the detailed implementation for spectral approximations
on a triangle and discuss the extension to spectral-element methods and three
dimensions.

1 Introduction

Spectral element methods, which are capable of extending the standard spec-
tral methods to complex geometries, have become an important tool for sim-
ulations of fluid dynamics, atmospheric modeling and many other phenomena.
Since the seminal work [1], a large body of literature has been devoted to the
tensor-based quadrilateral/hexahedral element methods (QSEM) (see, e.g., [2]).
Recently, some progress has also been made in the triangular/tetrahedral spec-
tral/hp element methods (TSEM), and the current approaches are mainly based on
(1) the Koornwinder-Dubiner polynomials [3, 4]; (2) non-polynomial on triangular
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(–1, –1) (1, –1)

(1, 1)(–1, 1)a

(–1, –1) (1, –1)

(1, 1)(–1, 1)b

(0, 0) (1, 0)

(0, 1)c

1 1
2 2)( ,

(0, 0) (1, 0)

(0, 1)d

Fig. 1 (a) Illustration of the mapping (1) from the square Q onto the triangle f.x; y/ W �1 �
x; yI x C y � 0g; (b) tensorial Legendre–Gauss–Lobatto (LGL) grids on Q; (c) mapped LGL
grids on T using the mapping (3); (d) mapped LGL grids on T using Duffy’s transform in [4]

elements [5,6]; or (3) special nodal points [7,8]. In the first approach, the collapsed
mapping (i.e., the Duffy’s transform) is used to generate warped tensorial orthogonal
polynomials on triangles/tetrahedra from the tensorial polynomial bases on rectan-
gles/hexahedra. The second technique is also based on such a mapping to generate
rational basis functions rather than polynomials. It is known that the Duffy’s trans-
form collapses one edge/face of the reference rectangle/hexahedron into a vertex of
the triangle/tetrahedron, so the computational grids are severely clustered near the
singular vertex.

This note aims to introduce a new rectangle-to-triangle mapping, which pulls one
edge (at the middle point) of the triangle to two edges of the reference rectangle (cf.
Fig. 1a). In contrast with the collapsed mapping, such a mapping is one-to-one, and
leads to a more reasonable distribution on the triangle (cf. Fig. 1c, d). Most impor-
tantly, with a slight modification of the nodal Lagrange polynomial basis on the
reference rectangle, we can derive a nodal basis (formed by irrational functions) on
the triangles, which allows for an efficient implementation as with the QSEM. In a
nutshell, we can view a triangular element as a deformed rectangular element, and
demonstrate that the numerical issues induced by the deformation can be handled
effectively. Significantly, this provides a great flexibility for the mesh generation and
improves the performance of QSEM. Typically, allowing the elements being trian-
gles along the boundaries, one can handle more complex computational domains
with more regular meshes.

In this note, we first introduce the mapping and the nodal basis, then consider the
implementation on a triangle, followed by the extensions to three dimensions and
spectral-element methods.

2 Rectangle-to-Triangle Mapping and Nodal Basis

Hereafter, .x; y/ is the Cartesian coordinate of a generic point in a triangle, while
.�; �/ represents the Cartesian coordinate of a point in the reference square: Q D
.�1; 1/2. Given the vertex coordinates

˚
.xA; yA/; .xB ; yB /; .xD ; yD/

�
of a triangle

4
ABD

, we can one-to-one map the square Q to the triangle region through

.x; y/ D �
xA; yA

� .1� �/.1� �/

4
C �

xB; yB
� .1C �/.3� �/

8
C �

xD; yD
� .3� �/.1C �/

8
:

(1)
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Under this mapping, the vertices .�1;�1/; .1;�1/ and .�1; 1/ of Q correspond to
the vertices A;B;D of 4

ABD
, respectively, while the middle point C of the edge

BD is the image of the vertex .1; 1/ of Q. Hence, this mapping deforms two edges
(� D 1 and � D 1) of Q into one single edge (BD) of4

ABD
. An illustration of such

a one-to-one correspondence is depicted in Fig. 1.
To be more specific, we confine ourselves to the special triangle:

T WD ˚.x; y/ W 0 < x; y < 1; 0 < x C y < 1�; (2)

and in this case, the mapping (1) (with BD being the hypotenuse) takes the form:

x D 1

8
.1C �/.3 � �/; y D 1

8
.3 � �/.1C �/; 8 .�; �/ 2 Q; (3)

with the inversion
8<
:
� D 1C x � y �p.x � y/2 C 4.1� x � y/;
� D 1 � x C y �p.x � y/2 C 4.1� x � y/;

8 .x; y/ 2 T: (4)

Under this mapping, we have

@x

@�
D 3 � �

8
;

@x

@�
D �1C �

8
;

@y

@�
D �1C �

8
;

@y

@�
D 3 � �

8
; (5)

so the Jacobian determinant is given by

J D det

�
@.x; y/

@.�; �/

�
D 2 � � � �

16
: (6)

In the sequel, we always associate a function u in T with a unction Qu in Q via the
mapping (3): Qu.�; �/ D u.x; y/ and likewise for Qv etc. One verifies that

ru D �
@xu; @yu

� D 2

2� � � �

�
.3��/@� QuC.1C�/@� Qu; .1C�/@� QuC.3��/@�Qu

�
WDerQu; (7)

and
ZZ

T
ru � rv dxdy D

ZZ

Q

�erQu � erQv� J d�d�

D
ZZ

Q

�
G1.�/@ Qu@ QvCG2.�; �/

�
@ Qu@� QvC @� Qu@ Qv

�CG1.�/@� Qu@� Qv
� 1
J
d�d�;

(8)

where G1 and G2 are given by

G1.z/ D 1

64

�
.1C z/2 C .3 � z/2

�
; G2.�; �/ D 1

8
� 1

32
.1 � �/.1 � �/: (9)
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Consequently, the space H 1.T/ is mapped to the weighted space over Q:

eH 1
!.Q/ WD

n
Qu 2 L2!.Q/ W erQu 2 L2!.Q/

o
with ! D J; (10)

and vice verse. We observe from (7) and (8) that if ru is well-defined at the middle
point .1

2
; 1
2
/ of the hypotenuse of T, then we have

�@Qu
@�
C @Qu
@�

�ˇ̌
ˇ
.1;1/
D 0: (11)

This condition induced by the rectangle-to-triangle deformation can be viewed as
an analogy of the pole condition in the polar and spherical coordinates. An essential
point here is how to treat this condition effectively without loss of accuracy and
implementation efficiency. For this purpose, we next construct a nodal basis for the
finite-dimensional approximation space over QW

eXN WD eH 1
!.Q/\ ŒPN �

2 D
n
� 2 ŒPN �

2 W �@� C @��
�ˇ̌
.1;1/
D 0

o
; (12)

where PN is the set of all algebraic polynomials of degree � N in .�1; 1/: Let
fzj gNjD0 (with z0 D �1 and zN D 1) be the Legendre–Gauss–Lobatto points, i.e.,
the zeros of the polynomial .1�z2/L0

N .z/;whereLN is the Legendre polynomial of

degree N: Let
˚
hj
�N
jD0 be the Lagrange polynomial basis associated with fzj gNjD0,

and denote djk D h0
k
.zj /: Define

Qhj .z/ WD hj .z/ � dNj

2dNN
hN .z/; 0 � j � N � 1: (13)

It is clear that hj .z/ 2PN and

Qhj .zk/ D ıkj ; Qhj .1/ D � dNj

2dNN
; Qh0

j .1/ D
dNj

2
; 0 � k; j � N � 1: (14)

Setting

 ij .�; �/ D

8̂
ˆ̂<
ˆ̂̂
:

hi .�/hj .�/; 0 � i; j � N � 1;
Qhi .�/hN .�/; 0 � i � N � 1I j D N .edge W � D 1/;
hN .�/ Qhj .�/; i D N; 0 � j � N � 1 .edge W � D 1/;

(15)

and
�N WD

˚
.i; j / W 0 � i; j � N but .i; j / 6D .N;N /�;

we find from (14) that all the  ij satisfy (11) and
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eXN D span
˚
 ij W .i; j / 2 �N

� ) dim
�eXN

� D .N C 1/2 � 1: (16)

It is seen that we modified the usual tensorial nodal basis
˚
hi .�/hj .�/

�N
i;jD0 along

the edges: � D 1 and � D 1 of Q so as to meet the condition (11) at the singular
point. In view of (14),

˚
 ij

�
i;j2�N

forms a nodal basis of eXN : More precisely, we
have

 ij .�p ; �q/ D ıpiıqj ; 8 .i; j /; .p; q/ 2 �N ; (17)

where
˚
�k D �k D zk

�N
kD0 are the LGL points as before.

The above nodal basis is complete in eH 1
!.Q/; but in order to enforce continuity

across the elements, we need to define a nodal basis function at the singular vertex
.1; 1/: Define

 NN .�; �/ D QhN .�/ QhN .�/; (18)

where QhN .z/ D .1C dNN � zdNN
�
hN .z/: Observe that  NN 62 eXN and satisfies

�@ NN
@�
C @ NN

@�

�ˇ̌
ˇ
.1;1/
D 0;  NN .�p ; �q/ D ıpN ıqN ; 0 � p; q � N: (19)

Hence,  NN must be linearly independent with the basis functions defined in (15).
Hereafter, we update eXN by adding  NN with dimensionality .N C 1/2:

Another important property of this basis is that the singularity induced by the
transform is removable in the following sense.

Lemma 1. For any Qu; Qv 2 eXN ;
˚�erQu � erQv�J �

ˇ̌
ˇ
.1;1/
D 0; (20)

where J and er are defined in (6) and (7), respectively.

Proof. For any Qu 2 eXN ; define

w.�; �/ WD .3 � �/@ QuC .1C �/@� Qu;

and we have �
@ QuC @� Qu

�ˇ̌
.1;1/
D 0 ) w.1; 1/ D 0:

Using Taylor expansion yields

w.�; �/ D �.1� �/@�w.1; 1/� .1� �/@�w.1; 1/CO
�
.1� �/2 C .1� �/.1� �/C .1� �/2

�
:

It is obvious that

0 � 1 � �
.1 � �/C .1 � �/ � 1; 0 � .1 � �/2

.1 � �/C .1 � �/ � 1 � �; 8 .�; �/ 2 Q;
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and likewise for 1 � � and other terms in big “O ,” so we have

w.�; �/

2 � � � �
ˇ̌
ˇ
.1;1/
D constant:

Consequently,erQu is well-defined at .1; 1/; so is erQv: As the determinant Jacobian J
vanishes at .1; 1/; (20) holds.

3 Implementations and Numerical Results

To test the approximation property of the foregoing nodal basis, we now implement
the spectral methods for the elliptic equation in T:

� div
�
a grad u

�C b u D f in TI u D 0 on �1I @u

@n
D g on �2; (21)

where a; b and f are given functions satisfying

a 2 L1.T/; a.x; y/ � a0 > 0; b.x; y/ � 0; 8 .x; y/ 2 T; (22)

for certain constant a0; �1 (resp. �2) consists of the edges x D 0 and y D 0 (resp.
x C y D 1), and n is the unit outer normal vector along �2. The weak formulation
of (21) is to find u 2 H 1

�1
.T/ WD ˚u 2 H 1.T/ W uj�1

D 0� such that

B.u; v/ D �aru;rv
�

T C
�
bu; v

�
T D .f; v/T C .ag; v/�2

; 8 v 2 H 1
�1
.T/; (23)

where .g; v/�2
D R

�2
gvd�:

We view T as a deformed triangle as a deformed quadrilateral element, and
perform the numerical integration and differentiation on the reference element Q:
Define the discrete inner product associated with the usual tensorial LGL quadrature
rule:

hu; viN;T D
X

0�p;q�N

�Qu Qv J �ˇ̌
.p;�q/

!p!q WD
˝Qu; QvJ ˛

N;Q; 8 u; v 2 C.T/; (24)

where f!kg are the LGL quadrature weights associated with LGL points f�k D �kg:
Similarly, we can define the discrete rule, denoted by h�; �iN;�2

; along �2; which
sums the contributions from two edges � D 1 and � D 1:

The Galerkin approximation with numerical integration (GaNI) of (23) is to find
uN 2 VN WD span

˚
�ij .x; y/ D  ij .�; �/ 2 eXN W 1 � i; j � N

�
such that

BN .uN ; vN / D
˝
aruN ;rvN

˛
N;T C

˝
buN ; vN

˛
N;T

D hf; vN iN;T C hag; vN iN;�2
; 8vN 2 VN : (25)
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Table 1 L2-error, Max-error and the error at the middle point .1=2; 1=2/ for Example 1

Without (18) With (18)
N L2 Max .1=2; 1=2/ L2 Max .1=2; 1=2/

4 2.186e–3 5.624e–3 2.782e–4 2.186e–3 5.624e–3 3.538e–3
8 4.784e–7 3.693e–6 1.733e–6 4.784e–7 4.781e–6 4.781e–6
12 1.180e–10 1.486e–9 1.614e–10 1.180e–10 1.486e–9 2.070e–10
16 3.422e–14 3.457e–13 6.006e–14 3.422e–14 3.457e–13 1.267e–13
20 2.075e–14 9.892e–14 2.231e–14 2.075e–14 9.892e–14 2.120e–14
24 1.344e–13 6.971e–13 3.363e–14 1.344e–13 6.971e–13 3.386e–14
28 2.109e–13 1.000e–12 1.841e–13 2.109e–13 1.000e–12 1.874e–13
32 8.701e–14 3.211e–13 1.387e–13 8.701e–14 3.211e–13 1.371e–13

Some remarks are in order. Firstly, we could remove the extra basis function (18) at
the singular point from VN for a single triangle. Moreover, in view of Lemma 1, the
physical values of the terms at the singular point vanish. The well-posedness of (23)
and (25) can be proved by a standard argument.

We next present some examples to illustrate the approximability of the nodal
basis.

Example 1. We consider (21) with a.x; y/ D xC2; b.x; y/ D xCy and a smooth
exact solution:

u.x; y/ D exCy�1 sin
�
3y
�
y �
p
3

2
x C
p
3

4

��
: (26)

We tabulate in Table 1 the maximum pointwise and discrete L2 errors on T for vari-
ousN: Particularly, we single out the errors at the singular middle point .1=2; 1=2/;
and list the numerical errors for the scheme (25) with or without the extra basis
function (18). We observe an exponential decay of the errors with a convergence
behavior similar to that of the quadrilateral element case using tensorial Lagrange
polynomial basis (see, e.g., Fig. 2.17 in [9]). Moreover, the presence of the basis
function (18) essentially does not affect the performance of the scheme (25).

Example 2. We consider (21) with a D b D 1 and test the exact solution with a
finite regularity

u.x; y/ D .1 � x � y/ 5
2 .exy � 1/ 2 H 3��.T/; � > 0: (27)

We list in Table 2 the errors for various N; which indicates an algebraic decay of
the errors with a convergence rate around O.N�3/. It is known that for a tensor-
based spectral approximation on a rectangle, the theoretical order of convergence
is O.N�3C"/: Although we have not provided the analysis, the proposed scheme
really enjoys a similar convergence behavior.
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Table 2 L2-error, Max-error and the error at the middle point .1=2; 1=2/ for Example 2

Without (18) With (18)
N

L2 Max .1=2; 1=2/ L2 Max .1=2; 1=2/

15 2.866e–6 1.018e–5 5.895e–6 2.866e–6 1.018e–5 5.895e–6
30 3.410e–7 1.203e–6 7.045e–7 3.410e–7 1.203e–6 7.045e–7
45 9.940e–8 3.513e–7 2.054e–7 9.940e–8 3.513e–7 2.054e–7
60 4.158e–8 1.469e–7 8.600e–8 4.159e–8 1.468e–7 8.598e–8
75 2.101e–8 7.599e–8 4.757e–8 2.118e–8 7.486e–8 4.375e–8
90 1.221e–8 4.318e–8 2.533e–8 1.222e–8 4.316e–8 2.528e–8
105 7.669e–9 2.723e–8 1.620e–8 7.683e–9 2.706e–8 1.553e–8
120 1.075e–8 3.472e–8 2.632e–8 5.279e–9 1.942e–8 1.817e–8

4 Extensions and Discussions

A key point in the previous discussion is to one-to-one map a triangular element
to the reference rectangle, and to view it as a deformed quadrilateral element.
This provides some flexibility for mesh generation of QSEM. Typically, a hybrid
spectral-element method can be constructed by using the triangular elements along
the boundaries (with the singular edges facing the boundaries) and quadrilateral
elements in the interior of the computational domains. This might lead to a more
regular mesh and enhance the capability of QSEM for more complex geometries.
On the other hand, the number of points on the singular edge is double of the points
on the other two edges, so the singular edge should adjoin two quadrilateral ele-
ments and/or triangular elements (but share two nonsingular edges), or a triangular
element (but share the singular edge). The availability of the aforementioned nodal
basis makes the implementation of the hybrid spectral-element method almost as
efficient as the usual QSEM.

We now discuss the extensions to tetrahedral elements. Let T be a tetrahedron
with verticesA;B;C andD. Denote by Q the reference cube f.�; �; �/ W �1 < �; �;
� < 1g. The counterpart of (1) reads

.x; y; z/ D .xA; yA; zA/
.1� �/.1� �/.1� �/

8
C .xB ; yB ; zB/

.1C �/.7� 2�� 2� C ��/

24

C .xC ; yC ; zC /
.1C �/.7� 2� � 2� C ��/

24
C .xD; yD; zD/

.1C �/.7� 2� � 2�C ��/

24
;

which is one-to-one and maps the vertices .�1;�1;�1/; .1;�1;�1/; .�1; 1;�1/
and .�1;�1; 1/ of Q to the vertices of A;B;C and D of the tetrahedron T, respec-
tively, while the images of vertices .�1; 1; 1/; .1;�1; 1/; .1; 1;�1/ and .1; 1; 1/ of
Q are the middle points of the sides CD;DB;BC and the barycenter of the face
4BCD, respectively. An illustration of this mapping is depicted in Fig. 2a.

In particular, for the specific tetrahedron

T D f.x; y; z/ W 0 � x; y; zI x C y C z � 1g ;



A New Spectral Method on Triangles 245

(1, 1, 1)

(1, 1, –1)

(–1, 1, 1)

C

(1, –1, 1)

B (1, –1, –1)

(–1, –1, –1)

(–1, –1, 1)

A

D

a

(–1, 1, –1) (0, 1, 0)

(1, 0, 0)

(0, 0, 1)

(0, 0, 0)

b

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

(0, 0, 0)

c

(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

d

Fig. 2 (a) Illustration of the mapping from the cube Q D .�1; 1/3 and the tetrahedron f.x; y; z/ W
�1 < x; y; zI x C y C z < �1g; (b) mapped tensorial Legendre–Gauss–Lobatto (LGL) grids on
T based on the Duffy’s mapping in [4]; (c) mapped LGL grids on T using the mapping (28); (d)
distribution of the grids on the singular face x C y C z D 1 of T

the mapping takes the form

8̂
<̂
ˆ̂:

x D 1
24
.1C �/.7 � 2�� 2� C ��/;

y D 1
24
.1C �/.7 � 2� � 2� C ��/;

z D 1
24
.1C �/.7 � 2� � 2�C ��/:

(28)

We plot in Fig. 2b, c the distributions of the mapped tensorial Legendre–Gauss–
Lobatto grids on T based on the Duffy’s mapping and the mapping (28). The Duffy’s
mapping collapses one face of Q into a vertex of T; so many collocation points
cluster near the singular vertex, which turn out to be wasted. In contrast, the use
of (28) leads to a more reasonable grid distribution. Like (11), similar conditions
induced by the mapping should be imposed along the three lines that connect the
barycenter and the middle points of three side of the singular face of T: Hence, the
construction of the nodal basis is much more involved.

We shall report the numerical analysis and the applications of such spectral-
element methods in a forthcoming paper.
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The Reduced Basis Element Method:
Offline-Online Decomposition
in the Nonconforming, Nonaffine Case

A.E. Løvgren, Y. Maday, and E.M. Rønquist

Abstract This work focuses on the reduced basis element method applied to the
steady Stokes problem with geometric parameter dependence [2, 4]. We present a
decoupling of the operators involved in the steady Stokes problem, which together
with empirical interpolation [1] allows for complete separation of the offline-online
complexity for the nonaffine case. We present numerical results from a hierarchi-
cal flow system in two dimensions, where both pipes and bifurcations are used as
building blocks.

1 Introduction

We let ˝ be a domain given by

˝ D ˚.b̋/ D
K[
kD1

˝k; (1)

where each building block˝k is defined as a one-to-one mapping of one of several
reference domains b̋ , i.e., ˝k D ˚k.b̋/. Corresponding to each reference domain
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there is a set of precomputed basis functions f. Oui; Opi /gNiD1, found as the velocity–
pressure solutions of the steady Stokes problem for different mappings ˚i of the
given reference domain; see Løvgren et al. [2] for details.

The reduced basis element approximation .uN ; pN / is found by mapping the
basis functions to the appropriate generic domains f˝kgK

kD1, and then solving the
steady Stokes equations through a Galerkin projection. To ensure weak continuity
of the reduced basis velocity across subdomain interfaces, Lagrange multipliers are
imposed when solving the steady Stokes problem [2]. We note that the resulting
reduced basis element approximation is nonconforming [3].

2 Offline-Online Decomposition

We use the viscous operator in the steady Stokes problem to illustrate the offline-
online decomposition. On a generic domain ˝ D ˚.b̋/, the computation of the
reduced basis approximation involves the calculation of

a.Qv; QwI˚/ D �
Z

˝

rQv � r Qwd˝; (2)

where Qv and Qw represent the velocity basis functions f OuigNiD1 mapped to the generic
domain through the inverse Piola transformation

Qv D ��1.Ov; ˚/ D 1

jJ jJ .Ov ı ˚�1/: (3)

Here J is the Jacobian of the map ˚ , and J is the corresponding Jacobian
determinant. We show that forQ D 17 we may write

a.Qv; QwI˚/ D
QX
qD1

aq.Ov; Ow; gq.˚//; (4)

where the parameter dependent part of gq.˚/ can be evaluated online by empirical
interpolation [1]. In the following we set the viscosity � D 1.

The generic domain is not known in the offline stage, so we map the operator in
(2) to the corresponding reference domain, and get

a.Qv; QwI˚/ D
Z
b̋J �Tbr.Qv ı ˚/ �J �Tbr. Qw ı ˚/jJ jd b̋; (5)

where br D J Tr. Using (3), we replace the velocities with their counterparts
stored on the reference domain, and (5) gives

a.Qv; QwI˚/ D
Z
b̋J �Tbr. 1jJ jJ Ov/ �J

�Tbr. 1jJ jJ Ow/jJ jd b̋: (6)
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If we do not use the Piola transformation to map the velocities, we may collect
the contributions from the transposed inverse Jacobians and the Jacobian determi-
nant in a tensor Tij , and use the elements of this tensor as the parameter dependent
shape functions. This procedure is shown in detail in [4] and is sufficient as long
as the inflow and outflow boundaries of the generic domain are undeformed relative
to the reference domain. Since the Jacobian of the generic mapping is present in
the gradient operator in (6), things get a little more complicated. We introduce the
notation

Ov D
� Ov
Ov�
�
; J D

�
J11 J12

J21 J22

�
; (7)

for the components of the velocities and the Jacobian. After multiplying the Jacobian
with the reference velocities, we get the component form of (6)

Z
b̋J �Tbr. 1jJ j .J11 OvCJ12 Ov�// �J �Tbr. 1jJ j.J11 OwCJ12 Ow�//jJ j d b̋

C
Z
b̋J �Tbr. 1jJ j.J21 OvCJ22 Ov�// �J �Tbr. 1jJ j .J21 OwCJ22 Ow�//jJ j d b̋:

(8)

Next we note that bru D Œ @u
@
; @u
@�
�T , and use this to get the equivalent form

Z
b̋J �T

"
@
@
. 1jJ j .J11 OvCJ12 Ov�//

@
@�
. 1jJ j .J11 OvCJ12 Ov�//

#
�J �T

"
@
@
. 1jJ j .J11 OwCJ12 Ow�//

@
@�
. 1jJ j .J11 OwCJ12 Ow�//

#
jJ j d b̋

C
Z
b̋J �T

"
@
@
. 1jJ j .J21 OvCJ22 Ov�//

@
@�
. 1jJ j .J21 OvCJ22 Ov�//

#
�J �T

"
@
@
. 1jJ j .J21 OwCJ22 Ow�//

@
@�
. 1jJ j .J21 OwCJ22 Ow�//

#
jJ j d b̋:

(9)

After multiplying each vector in (9) with J �T and writing out the inner products,
we get the sum of four products under each integral. The first of these four products
is as follows,

1

jJ j
�

J22

@

@�
.
1

jJ j .J11 OvCJ12 Ov�//�J21

@

@�
.
1

jJ j.J11 OvCJ12 Ov�//
�


�
J22

@

@�
.
1

jJ j.J11 OwCJ12 Ow�// �J21

@

@�
.
1

jJ j .J11 OwCJ12 Ow�//
�
:

(10)

The other three products are similar, only the indices are different. To separate the
elements of the Jacobian from the components of the reference velocity, we first
differentiate with respect to � and � inside the four products. From the first product
(10) we then get
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1

jJ j
��

J22

@

@�

J11

jJ j �J21

@

@�

J11

jJ j
�
Ov C

�
J22

@

@�

J12

jJ j �J21

@

@�

J12

jJ j
�
Ov�

C 1

jJ j
�

J22.J11

@Ov
@�
CJ12

@Ov�
@�
/�J21.J11

@Ov
@�
CJ12

@Ov�
@�
/

��

(11)


��

J22

@

@�

J11

jJ j �J21

@

@�

J11

jJ j
�
Ow C

�
J22

@

@�

J12

jJ j �J21

@

@�

J12

jJ j
�
Ow�

C 1

jJ j
�

J22.J11

@ Ow
@�
CJ12

@ Ow�
@�

/�J21.J11

@ Ow
@�
CJ12

@ Ow�
@�

/

��
:

After carrying out the multiplications for all four products, and collecting terms
corresponding to the same velocity components, we find that we may decouple the
viscous operator as in (4) for Q D 17. As an example of the operators in the
decoupling, we let

a1.Ov; Ow; g1.˚// D
Z
b̋.
@Ov
@�

@ Ow
@�
C @Ov�
@�

@ Ow�
@�

/g1.˚/d b̋; (12)

with corresponding parameter dependent function

g1.˚/ D 1

jJ j3 .J
2
11 CJ 2

21/.J
2
12 CJ 2

22/: (13)

The rest of the operators in the decoupling with corresponding parameter functions
can be found in Tables 1–3.

We use empirical interpolation to approximate the parameter functions as

gq.˚/ 

MqX
mD1

ˇqm.˚/ Qgqm; q D 1; : : : ;Q; (14)

where each ˇqm.˚/ is a constant, and Qgqm are modified versions of the parameter
functions gq.˚/, sampled at predefined mappings˚m.

In the offline stage we thus compute

A
mq
ij D aq. Oui; Ouj; Qgqm/; (15)

for all i; j D 1; : : : ; N , q D 1; : : : ;Q, and m D 1; : : : ;Mq . In the online stage the

coefficients fˇqm.˚/gMq

mD1 are found for each q by sampling the parameter function
gq.˚/ inMq points and solving a lower triangular matrix. Once the coefficients are
found, we assemble

a. Qui; QujI˚/ 

QX
qD1

MqX
mD1

ˇqm.˚/A
mq
ij : (16)
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Table 1 The operators in the decoupling of the viscous operator

a1.Ov; Ow; g1.˚// D R
Ő
.
@Ov�
@�

@Ow�
@�

C @Ov�
@�

@Ow�
@�
/g1.˚/d Ő

a2.Ov; Ow; g2.˚// D R
Ő
.
@Ov�
@�

@Ow�
@�

C @Ov�
@�

@Ow�
@�

C @Ov�
@�

@Ow�
@�

C @Ov�
@�

@Ow�
@�
/g2.˚/d Ő

a3.Ov; Ow; g3.˚// D R
Ő
.
@Ov�
@�

@Ow�
@�
/g3.˚/d Ő

a4.Ov; Ow; g4.˚// D R
Ő
.
@Ov�
@�

@Ow�
@�
/g4.˚/d Ő

a5.Ov; Ow; g5.˚// D R
Ő
.
@Ov�
@�

@Ow�
@�

C @Ov�
@�

@Ow�
@�

� @Ov�
@�

@Ow�
@�

� @Ov�
@�

@Ow�
@�
/g5.˚/d Ő

a6.Ov; Ow; g6.˚// D R
Ő
.
@Ov�
@�

@Ow�
@�

C @Ov�
@�

@Ow�
@�

� @Ov�
@�

@Ow�
@�

� @Ov�
@�

@Ow�
@�
/g6.˚/d Ő

a7.Ov; Ow; g7.˚// D R
Ő
.Ov� Ow� /g7.˚/d Ő

a8.Ov; Ow; g8.˚// D R
Ő
.Ov� Ow� C Ov� Ow� /g8.˚/d Ő

a9.Ov; Ow; g9.˚// D R
Ő
.Ov� Ow�/g9.˚/d Ő

a10.Ov; Ow; g10.˚// D R
Ő
.
@Ov�
@�

Ow� C Ov� @Ow�
@�
/g10.˚/d Ő

a11.Ov; Ow; g11.˚// D R
Ő
.
@Ov�
@�

Ow� C Ov� @Ow�
@�
/g11.˚/d Ő

a12.Ov; Ow; g12.˚// D R
Ő
.
@Ov�
@�

Ow� C Ov� @Ow�
@�
/g12.˚/d Ő

a13.Ov; Ow; g13.˚// D R
Ő
.
@Ov�
@�

Ow� C Ov� @Ow�
@�
/g13.˚/d Ő

a14.Ov; Ow; g14.˚// D R
Ő
.
@Ov�
@�

Ow� C Ov� @Ow�
@�
/g14.˚/d Ő

a15.Ov; Ow; g15.˚// D R
Ő
.
@Ov�
@�

Ow� C Ov� @Ow�
@�
/g15.˚/d Ő

a16.Ov; Ow; g16.˚// D R
Ő
.
@Ov�
@�

Ow� C Ov� @Ow�
@�
/g16.˚/d Ő

a17.Ov; Ow; g17.˚// D R
Ő
.
@Ov�
@�

Ow� C Ov� @Ow�
@�
/g17.˚/d Ő

Together with simimlar contributions from the divergence operator in the steady
Stokes problem, we build the reduced basis system matrix and solve the reduced
basis steady Stokes problem.

3 A Posteriori Error Estimation

Following the ideas of Maday et al. [3], we propose a conforming correction of
the reduced basis element approximation in order to compute bounds on the output
of interest. This involves solving local Stokes problems on small domains related
to the subdomain interfaces on the generic domain. The jump in the reduced basis
element approximation across the interface is given as a boundary condition in the
local problem, and the solution is added to the reduced basis element approximation
in order to produce a conforming approximation. Using the conforming approx-
imation we are able to compute the bound gap sC.uN I˚/ � s�.uN I˚/ for the
output of interest also in the multi-domain case. To decouple the computation of
the conforming correction in an offline-online procedure, we introduce a basis for
the jump across the interface, and precompute solutions to the local Stokes prob-
lem in the offline stage. In the online stage the jump in the reduced basis element
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Table 2 The parameter functions g1; : : : ; g11 in the decoupling of the viscous operator

g1.˚/ D 1
jJ j

3

�
J 2

11 C J 2
21

� �
J 2

12 C J 2
22

�

g2.˚/ D � 1
jJ j

3

�
J11J12 C J21J22

�2
g3.˚/ D 1

jJ j
3

�
J 2

12 C J 2
22

�2
g4.˚/ D 1

jJ j
3

�
J 2

11 C J 2
21

�2
g5.˚/ D 1

jJ j
3

�
J 2

12 C J 2
22

� �
J11J12 C J21J22

�
g6.˚/ D 1

jJ j
3

�
J 2

11 C J 2
21

� �
J11J12 C J21J22

�

g7.˚/ D 1
jJ j

��
J22

@
@�

J11

jJ j
� J21

@
@�

J11

jJ j

�2 C
�
J12

@
@�

J11

jJ j
� J11

@
@�

J11

jJ j

�2

C
�
J22

@
@�

J21

jJ j
� J21

@
@�

J21

jJ j

�2 C
�
J12

@
@�

J21

jJ j
� J11

@
@�

J21

jJ j

�2�

g8.˚/ D 1
jJ j

��
J22

@
@�

J11

jJ j
� J21

@
@�

J11

jJ j

��
J22

@
@�

J12

jJ j
� J21

@
@�

J12

jJ j

�

C
�
J12

@
@�

J11

jJ j
� J11

@
@�

J11

jJ j

� �
J12

@
@�

J12

jJ j
� J11

@
@�

J12

jJ j

�

C
�
J22

@
@�

J21

jJ j
� J21

@
@�

J21

jJ j

� �
J22

@
@�

J22

jJ j
� J21

@
@�

J22

jJ j

�

C
�
J12

@
@�

J21

jJ j
� J11

@
@�

J21

jJ j

� �
J12

@
@�

J22

jJ j
� J11

@
@�

J22

jJ j

��

g9.˚/ D 1
jJ j

��
J22

@
@�

J12

jJ j
� J21

@
@�

J12

jJ j

�2 C
�
J12

@
@�

J12

jJ j
� J11

@
@�

J12

jJ j

�2

C
�
J22

@
@�

J22

jJ j
� J21

@
@�

J22

jJ j

�2 C
�
J12

@
@�

J22

jJ j
� J11

@
@�

J22

jJ j

�2�

g10.˚/ D 1
jJ j

2

�
J22J11

�
J22

@
@�

J11

jJ j
� J21

@
@�

J11

jJ j

�

CJ12J11

�
J12

@
@�

J11

jJ j
� J11

@
@�

J11

jJ j

�

CJ22J21

�
J22

@
@�

J21

jJ j
� J21

@
@�

J21

jJ j

�

CJ12J21

�
J12

@
@�

J21

jJ j
� J11

@
@�

J21

jJ j

��

g11.˚/ D 1
jJ j

2

�
J22J12

�
J22

@
@�

J11

jJ j
� J21

@
@�

J11

jJ j

�

CJ12J12

�
J12

@
@�

J11

jJ j
� J11

@
@�

J11

jJ j

�

CJ22J22

�
J22

@
@�

J21

jJ j
� J21

@
@�

J21

jJ j

�

CJ12J22

�
J12

@
@�

J21

jJ j
� J11

@
@�

J21

jJ j

��

approximation then defines coefficients used when adding the precomputed con-
forming corrections to the reduced basis element approximation. All details on a
posteriori error estimation and the basis for the jump across subdomain interfaces
will be presented in future work.

4 Numerical Experiment

To illustrate the effect of the offline-online decomposition, we solve the steady
Stokes problem on the domain ˝ depicted in Fig. 1. Clearly, ˝ consists of four
subdomains, where each subdomain is a one-to-one map of either a reference pipe,
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Table 3 The parameter functions g12; : : : ; g17 in the decoupling of the viscous operator

g12.˚/ D 1
jJ j

2

�
J22J11

�
J22

@
@�

J12

jJ j
� J21

@
@�

J12

jJ j

�

CJ12J11

�
J12

@
@�

J12

jJ j
� J11

@
@�

J12

jJ j

�

CJ22J21

�
J22

@
@�

J22

jJ j
� J21

@
@�

J22

jJ j

�

CJ12J21

�
J12

@
@�

J22

jJ j
� J11

@
@�

J22

jJ j

��

g13.˚/ D 1
jJ j

2

�
J22J12

�
J22

@
@�

J12

jJ j
� J21

@
@�

J12

jJ j

�

CJ12J12

�
J12

@
@�

J12

jJ j
� J11

@
@�

J12

jJ j

�

CJ22J22

�
J22

@
@�

J22

jJ j
� J21

@
@�

J22

jJ j

�

CJ12J22

�
J12

@
@�

J22

jJ j
� J11

@
@�

J22

jJ j

��

g14.˚/ D � 1
jJ j

2

�
J21J11

�
J22

@
@�

J11

jJ j
� J21

@
@�

J11

jJ j

�

CJ11J11

�
J12

@
@�

J11

jJ j
� J11

@
@�

J11

jJ j

�

CJ21J21

�
J22

@
@�

J21

jJ j
� J21

@
@�

J21

jJ j

�

CJ11J21

�
J12

@
@�

J21

jJ j
� J11

@
@�

J21

jJ j

��

g15.˚/ D � 1
jJ j

2

�
J21J12

�
J22

@
@�

J11

jJ j
� J21

@
@�

J11

jJ j

�

CJ11J12

�
J12

@
@�

J11

jJ j
� J11

@
@�

J11

jJ j

�

CJ22J21

�
J22

@
@�

J21

jJ j
� J21

@
@�

J21

jJ j

�

CJ11J22

�
J12

@
@�

J21

jJ j
� J11

@
@�

J21

jJ j

��

g16.˚/ D � 1
jJ j

2

�
J21J11

�
J22

@
@�

J12

jJ j
� J21

@
@�

J12

jJ j

�

CJ11J11

�
J12

@
@�

J12

jJ j
� J11

@
@�

J12

jJ j

�

CJ21J21

�
J22

@
@�

J22

jJ j
� J21

@
@�

J22

jJ j

�

CJ11J21

�
J12

@
@�

J22

jJ j
� J11

@
@�

J22

jJ j

��

g17.˚/ D � 1
jJ j

2

�
J21J12

�
J22

@
@�

J12

jJ j
� J21

@
@�

J12

jJ j

�

CJ11J12

�
J12

@
@�

J12

jJ j
� J11

@
@�

J12

jJ j

�

CJ21J22

�
J22

@
@�

J22

jJ j
� J21

@
@�

J22

jJ j

�

CJ11J22

�
J12

@
@�

J22

jJ j
� J11

@
@�

J22

jJ j

��

or a reference bifurcation. We consider the vertical top-left boundary to be the inflow
boundary, and we have four outflow boundaries in the bottom-right of the domain.
The walls between the inflow and outflow are considered to be no-slip boundaries.

Following the procedure described in Løvgren et al. [2], we compute separate
sets of basis functions for each reference domain and each type of inflow/outflow
boundary condition. We use a spectral element code with polynomials of degree
N D 20 to compute the basis functions, and we also compute a reference solution
of the steady Stokes problem on the entire domain. We are not interested in the
error of the reduced basis approximation itself, but the absolute error of an output
derived from this approximation. Our output of interest s.uI˚/ is the volume flow
rate across the inflow boundary, and for the reference solution we get s.uI˚/ D
4:80 � 10�4. We use Np D 15 basis functions on the pipe domain in Fig. 1, and
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Fig. 1 The computational
domain ˝
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Table 4 Comparison of the
computation time spent when
solving the steady Stokes
problem on the domain
depicted in Fig. 1

Method Time

Spectral element 4;746 s � 1 h20m
Reduced basis element 299 s � 5m
RB offline-online 38 s

Nb D 30 basis functions on the bifurcation domains. The mappings used to generate
the basis functions are the same as in [2]. For the resulting reduced basis element
approximation the lower bound for the output of interest is s.uI˚/� s�.uN I˚/ D
1:5 � 10�7, both with and without the offline-online decoupling. The upper bound is
more conservative, giving sC.uN I˚/ � s.uI˚/ D 8:1 � 10�5; see [2] for details.

In Table 4 we present the time spent to compute the reference solution and the
reduced basis approximation with and without offline-online decoupling. The speed-
up when applying the offline-online decoupling is almost a factor 10 relative to the
reduced basis element method, and more than a factor 100 relative to the spectral
element method.
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The Challenges of High Order Methods
in Numerical Weather Prediction

Catherine Mavriplis

Abstract This paper reports on the communications made at the 2009 ICOSAHOM
meeting minisymposium on the challenges of high order methods in numerical
weather prediction, with contributions from mathematicians as well as atmospheric
and ocean modelers. Motivation for an investment in high order method develop-
ment for numerical weather prediction is given in terms of the potential payoff
in light of the current challenges in the field. Among other issues, the imple-
mentation of physical parameterizations with high order methods stands out as
a yet-unexplored and potentially difficult challenge to resolve. Adaptivity is also
expected by some to significantly advance the state-of-the-art but no consensus
seems to be reached that it will be feasible. Among the recommendations expressed
at the workshop are the need for demonstrated efficiency comparisons between high
order and low order methods for a desired level of accuracy in resolving waves.

1 Introduction

The following paper reflects the communications made at the 2009 ICOSAHOM
meeting in the minisymposium with the same title organised by the author. The goal
of this workshop was to bring together mathematicians and geoscientists to exam-
ine and discuss the challenges of introducing and sustaining the development of
high order methods in the field of numerical weather prediction. While numerical
weather prediction distinguishes itself from climate and other atmospheric model-
ing, it shares with these fields as well as similar efforts in ocean modeling some
basic characteristics. The workshop therefore gathered ocean as well atmospheric
modelers, from both the high and low order communities.

Traditionally, high order methods have been confined to more theoretical applica-
tions: for example, studies of isotropic turbulence in a cubical domain are routinely

C. Mavriplis
University of Ottawa, Ottawa, Canada
e-mail: Catherine.Mavriplis@uottawa.ca

J.S. Hesthaven and E.M. Rønquist (eds.), Spectral and High Order Methods for Partial
Differential Equations, Lecture Notes in Computational Science and Engineering 76,

c

255

DOI 10.1007/978-3-642-15337-2 23, � Springer-Verlag Berlin Heidelberg 2011

Catherine.Mavriplis@uottawa.ca


256 C. Mavriplis

studied with spectral methods. High order methods have excellent convergence
properties, e.g., spectral methods exhibit exponential convergence to smooth solu-
tions and have very low dispersion and dissipation errors. However, the smoothness
implied tends to restrict their application to sets of problems that do not exhibit dis-
continuities (such as compressible aerodynamics) nor sharp gradients (such as sharp
weather fronts in otherwise noisy fields). With the development of the Spectral Ele-
ment (SE) method [1] however, and later, the Discontinuous Galerkin (DG) method
[2] and others, high order methods have become more accessible to engineering cal-
culations and modeling of real, complex phenomena. High order methods are also
quite expensive in comparison with low order methods for relatively low accuracy.
However as accuracy requirements increase there is a trade-off: high order methods
converge much more quickly and hence become more efficient. Furthermore, with
the advent of massively parallel computers the expense has become less restrictive
since high order subdomain calculations make use of the power and speed of indi-
vidual processors and the disjoint subdomain formulation decreases interprocessor
communication, the bottleneck of parallel machines, e.g., [3, 4].

The intent of the minisymposium and this paper is to broaden the applicability
of high order methods to real, complex physical problems of grand challenge type.
As stated above, the advantages and disadvantages of high order versus low order
methods are intertwined and are not always clear to physical modelers. Perception
and unfamiliarity with the methods that others use often limit progress. It is indeed
difficult to introduce new techniques to those who have worked and dedicated them-
selves to tremendous advances with traditionally used methods because of the vast
infrastructure development. Some progress has been made in several fields: whereas
the first (1989) ICOSAHOM featured mostly classical fluid mechanics problems
with simple geometries [5], the most recent meeting in Beijing (2007) featured min-
isymposia on aeroacoustics, plasma physics, biomechanics, electromagnetics and
significantly more complex fluid mechanics [6]. In the atmospheric sciences, while
spectral Fourier methods have enjoyed a relatively long history in global circulation
modeling (using spherical harmonics in longitude), since the 1990s there has been
steady development of more flexible high order models (e.g., the Spectral Element
Atmospheric Model (SEAM) [7], the US National Center for Atmospheric Research
(NCAR) High Order Method Modeling Environment (HOMME) [8], which now
also contains a Discontinuous Galerkin model for global atmospheric modeling [9]).

However, in mesoscale meteorology where weather modeling and short term pre-
dictions are sought, finite difference (FD) methodologies have dominated modeling
efforts 50 years. Most current operational mesoscale numerical weather prediction
models employ fixed grid FD methods with high order FD in some areas. Across
the globe weather modelers are striving to increase resolution, but, due to the fixed
grid scheme, the only choice is to reduce grid spacing dx. Adaptivity in atmospheric
modeling remains rare, as it does in most high order efforts in other fields as well.
There are certainly good arguments for reluctance to move to high order methods in
mesoscale meteorology: the microphysics of atmospheric modeling, such as evap-
oration, precipitation, radiation and chemistry, are quite complex and at a level of
accuracy that is much lower than that of the fluid dynamics. On the other hand,
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the calculations of multiple passive scalars for the modeling of cloud processes and
atmospheric chemistry require large amounts of computation and, if efficiency can
be increased, significant gains can be made. Lastly, local storm modeling can be
aided by higher resolution adaptive grid methodologies as localized structures such
as tornadoes moving and developing quickly across large terrains are often poorly
forecast by or missing from existing operational and research models [10].

The motivation is therefore clearly laid out to spur research in high order meth-
ods for numerical weather prediction. The challenges, however, are many and the
workshop discussion of these is captured in this paper.

2 Overview of Atmospheric Modeling Challenges and Status

As summarized by Boyd at the workshop1 [11], contemporary atmospheric models
are made up of two basic components: the dynamics core which solves the fluid
mechanics equation models of the desired atmospheric flows and the “physics”, a
comprehensive package to treat the complex associated physical phenomena such
as radiative transfer, photochemistry, phase change, precipitation, etc. Atmospheric
models also vary according to their intended use, with global circulation models
(GCM) being used for long term climate studies, global weather forecasting (GWF)
for large scale predictions and limited area models (LAM) for local or national
weather prediction. While GCMs are run at low resolution for long times with arbi-
trary initial conditions to reach statistical equilibrium, GWFs run at high resolution
for a handful of days starting with initial conditions derived from observation of
the atmosphere. LAMs use even smaller computational domains at very high res-
olution, often nested in a global model. Data assimilation models are also used
where observational data is input to the simulation at regular intervals to“corral”
the simulation to reality. Obviously, none of these situations lends itself to a clean
mathematical initial value problem statement reflecting the reality of the atmo-
sphere. Initial conditions need to reflect the dynamical balances (quasi-geostrophic,
i.e., between Coriolis and pressure gradient forces, and hydrostatic) that dominate
atmospheric flows. With poorly defined initial and boundary conditions, high order
models immediately run into problems as their high order accuracy and low disper-
sion and dissipation errors will create spurious phenomena, such as artificial gravity
waves, that will persist in long time simulations.

Other peculiarities of atmospheric models have found work-around solutions in
the atmospheric modeling community that have become so entrenched they are
difficult to sort out when proposing a new approach such as high order methods.
For one, there is a large difference in scale between the horizontal and vertical in
atmospheric modeling, this difference also varying depending on the application.
Indeed, for GCMs, a thin layer of the atmosphere is assumed, at its simplest using

1 The workshop participants’ names are listed in the Acknowledgement section of this paper.



258 C. Mavriplis

the shallow water equations. For weather modeling, however, particularly in strong
convection environments such as for storms, the vertical component is dominant.
In NCAR’s Community Climate Model, e.g., the vertical is treated by finite dif-
ferences, while the horizontal is treated by spectral methods. Resolution in the
horizontal is usually much coarser than in the vertical, creating a cell anisotropy
that can be problematic for efficient schemes, e.g., O (25 km) horizontally versus
O (0.5 km) vertically in a typical high resolution LAM run. Marginal horizontal
resolutions have also led to fixes such as “convective parameterizations”, wherein
a local convection event, e.g., moisture rising from a mountain and creating local
precipitation, must be sub-grid-triggered within a larger cell.

These different situations lead to different assumptions in the equation mod-
els from the outset. For example, while a hydrostatic assumption is the norm for
GCMs and GWFs, the non-hydrostatic equations must be used for severe weather
prediction. The hydrostatic assumption ignores vertical momentum terms other than
pressure gradient and gravity. This effectively eliminates the meteorologically unim-
portant, but very rapidly propagating acoustic waves. However, with an increased
interest in higher resolution, the need to treat the vertical direction more completely
requires a non-hydrostatic assumption. In this case, as pointed out by Durran at the
workshop [12], the treatment of the acoustic waves will have to be dealt with effi-
ciently, since they do not contribute to the meteorological dynamics but do make
the compressible equations stiff. Several methods are being used: (1) filtering the
governing equations to remove the acoustic waves through the Boussinesq approxi-
mation (ignoring density variations in the mass conservation principle as well as in
vertical momentum terms but including density in the buoyancy terms), the anelastic
formulation (in which a reference density varying only with the vertical is included
in mass conservation) or the pseudo-incompressible system (in which density per-
turbations are included in mass conservation but only depend on reference rather
than perturbation pressure as well as temperature); (2) advancing the acoustic waves
implicitly or on a separate shorter time step through either complete or partial oper-
ator splitting. In both of the latter cases, divergence generated by the operators is
evaluated on the large time step and propagated by the system. In the complete
splitting, this divergence accumulates over the series of steps taken. While partial
operator splitting keeps the divergence changes small during the small steps, it has
been shown to be unstable; and yet it is used with work-around solutions of filtering
[13] or divergence damping [14].

In the above methodologies, conservation is compromised to differing degrees.
For weather prediction, with strong convective motion, local conservation takes on a
more crucial role than in long-term climate calculations, where global conservation
is important. For this reason, many modelers are now considering finite volume, e.g.,
[15], discontinuous Galerkin, e.g., [16] and other flux-based methods as alternates
to the familiar spectral and finite difference methods.

Lagrangian approaches are preferred to Eulerian by some groups in the commu-
nity. A Lagrangian frame of reference eliminates the nonlinear advection terms,
thereby alleviating restrictive advective time-stepping CFL (Courant–Friedrichs–
Lewy stability) conditions. Additional backward trajectory calculations are needed
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however, and these may introduce errors: higher order interpolation is used to
improve the accuracy of marginally resolved waves. This practice is sometimes also
used in finite difference Eulerian schemes: the advection terms are approximated to
a higher order. Semi-implicit semi-Lagrangian schemes are popular in global mod-
eling as the time-splitting can resolve faster moving gravity waves with a larger time
step, revealing the method to be more efficient than its Eulerian counterpart [12,17].

Indeed, for Eulerian schemes as well, semi-implicit methods are popular for the
same reason. Efficiently resolving the geophysical waves in all atmospheric model-
ing is challenging due to the different speeds of propagation of the acoustic, gravity
and Rossby waves. While the advection terms are usually treated explicitly and the
pressure gradient and divergence terms implicitly, the different wave speeds suggest
time splitting or implicit treatment: the fastest moving waves may be treated implic-
itly in order to avoid drastically small time steps to accommodate those high speeds.
At the same time, any nonlinear parts of the other terms may be treated explicitly.
For high order methods, explicit schemes are expensive as the CFL-limited time
steps can be quite restrictive due to the non-uniform collocation point distribution of
element-based spectral basis functions. However, trade-offs between the savings in
the number of degrees of freedom required to resolve waves and the increased com-
putational expense need to be quantified to determine whether the shift to high order
methods can be justified. Efficient time stepping schemes for high order methods
will need to be demonstrated.

Another peculiarity of atmospheric modeling is the “pole problem”: the fact
that a latitude-longitude grid converges at the poles creating singularities. Many
novel grids as well polar filtering have been proposed to alleviate this problem. The
Lagrangian approach also circumvents this problem. Global spectral and subdomain-
based high order methods sidestep the pole problem quite naturally either through
spherical harmonics or the cubed sphere tiling approach, e.g., [18, 19]. Dubos pre-
sented a mixed Fourier-finite element method at the workshop [20], that offers con-
servation and elimination of the pole problem. For low order methods unstructured
icosahedral grids are becoming more popular for this reason among others [21].

Orography, or the topography of the Earth’s surface, also factors into the accu-
racy and stability of numerical atmospheric models. While terrain-following vertical
coordinate systems have been in use for many years, terrain-intersecting grids are
now being explored as a means of increasing resolution while maintaining numerical
stability, e.g., [22] and have been tested in the Deutscher Wetterdienst COSMO-DE
model. Lock [23] presented a high resolution method based on a terrain-intersecting
grid for flow over very steep orography at the workshop.

As models become more powerful, in particular because of the increased com-
puter power and storage, and hence the ability to use finer grid spacing, some of
the entrenched modeling approximations are hitting their limits. For example, the
hydrostatic assumption has conveniently served to filter out sound waves, that, while
they exist, do not affect the meteorology. At high resolution, mathematical formula-
tion of the governing equations should change to properly describe nonhydrostatic
motions, but this change also allows the system to support gravity and sound waves,
with large as well as small scale motions becoming three-dimensional, which can
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force a reduction in the maximum stable time step and significantly increase the
computational burden (see, e.g., [24]). Many high-resolution models now use the
mode-splitting or a even filtered equation set approach [25] to more efficiently inte-
grate the non-hydrostatic equations. The convective parameterization mentioned
above also becomes useless [26, 27] at finer resolutions, e.g., mysteriously absent
thunderstorms in the refined portion of the grid within a coarse grid region of thun-
derstorm activity according to Boyd [11]. In such cases, the “fixes” implemented
by the accumulated infrastructure may need to be rethought in the context of new
methods, such as high order and adaptive methods. For a discussion of physical
parameterizations in the context of new weather prediction models see [28].

Adaptivity seems to be a natural approach to modeling currently unresolved
features, either calculated, such as waves, or modeled, such as orography. But as
more and more features get resolved, more appear and the “physics” respond poorly
because they have been built and tuned over many years for regular grids with rela-
tively low resolution. This is an area ripe for investigation. Furthermore, because
of this continual underresolution, areas of transition between adapted grids will
probably trigger spurious waves, unless the adaptivity is done carefully. Again,
standard work-around solutions exist such as a relaxation zone [29] between the
coarse grid and fine LAM grid. Continuously-varying resolution reduces some of
the reflections at least in the long waves. Recent work in adaptive mesh refine-
ment with second order finite volume schemes was presented by Jablonowski at
the workshop: Fig. 1a shows an adapted grid for the calculation of a shallow water
model case where two cyclonic Rankine vortices initially placed near the Equa-
tor in the Southern Hemisphere merge. This work [30] has successfully shown that
more meteorologically-important features can be resolved and tracked but has also
uncovered a host of issues: such as wave reflections at coarse/fine grid interfaces
and dispersion and diffusion on coarse cells. A comparison with spectral element
adaptive calculations of St-Cyr’s [31] showed that the spectral element method was
better able to control global errors. Refinement criteria are also under investigation:
flow-based criteria, such as the vorticity-based one used in the calculation of Fig. 1a,
seem to be tailored to specific flow conditions. Numerically-based refinement cri-
teria that are naturally implemented with high order methods [32] may be applied
more generally. Adjoint-based techniques that are gaining ground in other compu-
tational arenas are also making an appearance in the geoscience community [33].
More investigation with complex atmospheric flows is needed here.

Some similarities can be drawn between ocean and atmospheric modeling. While
the ocean dynamics equations are similar, much of the “physics” mentioned above
can be omitted while tracking salt and biological influences becomes pertinent. In
ocean modeling, the domain is perhaps more complex at least at the coarsest level:
domains are multiply-connected basins with islands and continents creating grid-
ding and boundary value problem challenges. Depth can also be approximated by
shallow water assumptions in the simplest of models, but eventually becomes more
important as model fidelity increases. Ocean modelers have very sparse observa-
tional data and forecasting is less common. The models are used mainly for long
term prediction and circulation understanding. The current research trend leans
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(a) Adaptive mesh refinement second order
finite volume solution and grid for a shallow
water model of two merging cyclonic Rank-
ine vortices initially placed near the Equator
in the Southern Hemisphere. A snapshot of
the relative vorticity field at day 5 is depicted.
Blue indicates a clockwise rotation, red indi-
cates counterclockwise rotation. Each adapted
block contains additional grid points that are
not shown [30]. Courtesy of C. Jablonowski

(b) Snapshot of a global simulation of
the 2004 Great Andaman–Sumatra Tsunami,
using an unstructured triangular mesh for
accurate topography representation and a sec-
ond order conforming/non-conforming finite
element numerical scheme, developed at
Alfred Wegener Institute and implemented in
the operational tsunami model TsunAWI [34].
Red indicates height above mean sea level,
blue below. Courtesy of J. Behrens/S. Harig

Fig. 1 Advanced low order atmosphere and ocean simulations

toward coupled ocean-atmosphere dynamics. A unified approach would obviously
simplify modeling efforts, but many challenges remain in the understanding of the
coupling and the disparity of scales.

One particular case where many parallels can be drawn, however, is in tsunami
modeling, a topic addressed by Behrens [34] in the workshop. The problem of
tsunami prediction is closely related to severe weather event prediction, such as hur-
ricanes and tornadoes in particular. The short warning times of 23 mn for tsunamis
and 18 mn for tornadoes preclude long simulation times in prediction codes. The
detrimental effect of false warnings is also a shared characteristic. The interaction
of these phenomena with inhabited areas is a complex problem: e.g., in the case
of tsunamis: ragged coastlines with topography and more complex (debris-filled
and obstacle impeded) flow in inundation areas. These requirements may preclude
the use of expensive, more detailed high order methods at least for short-term pre-
diction. An example result of a simulation of the 2004 Great Andaman–Sumatra
Tsunami, performed with TsunAWI, an unstructured grid finite element operational
tsunami model, is shown in Fig. 1b.
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In more general ocean modeling, advances are also being made in numerical
modeling: spectral element, discontinuous Galerkin and unstructured grid methods
are being considered as alternatives to structured finite difference methods. Legat
[35] has worked to implement the discontinuous Galerkin method in this field, and
in particular to accurately represent complex boundaries (e.g., coastlines and curved
manifolds) with suitable high fidelity grids that do not compromise the increased
accuracy of a higher order DG method (e.g., fourth order).

In summary, there are many challenging characteristics to atmospheric and, in
particular, numerical weather modeling. Several different methods (global spec-
tral, finite difference, finite volume, discontinuous Galerkin and spectral element
methods) have been used in the field, each presenting potential advantages. As we
move forward, with advances on all fronts, it is difficult to predict which meth-
ods will be clear winners. In fact, few direct comparisons between high order
and low order methods exist. Global spectral methods were compared to finite
differences of up to sixth order in [36]: the spectral methods were shown to be
more efficient for a prescribed high accuracy. A comparison of a new finite vol-
ume version of the Community Climate System Model (CCSM3) has been made
with its previous spectral dynamics core showing significant improvements in some
areas [37]. A recent comparison of finite volume and spectral element methods by
Jablonowski and St-Cyr was presented at the workshop [31]. Spectral element and
discontinuous Galerkin nonhydrostatic models were recently compared in [16]. A
systematic comparison for both model problems such as those shown by Crowell
[38] (Fig. 2) and Jablonowski [31] at the workshop can start to establish some met-
rics for comparison, as well as meaningful test cases, while uncovering areas in need
of future development. Figure 2 shows the ability of the discontinuous Galerkin
method to reduce errors around and provide better definition of complex structures
in comparison with finite difference methods for the same CPU time.
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Fig. 2 Deformational flow: a tracer is advected by an array of vortices into fine structures. Com-
parison of finite difference (FD) and discontinuous Galerkin (DG) solutions for same CPU time.
Representative solution (left) (FD–DG solution looks similar) and FD and DG log10 errors (right)
for same CPU time. Resolutions: FD: sixth order Œ320 
 320�, DG: tenth order Œ180 
 180�. The
DG solution restricts errors to finer areas [38]
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3 Challenges

Given this history and current status of atmospheric modeling and, in particular,
numerical weather prediction, it is difficult to predict whether high order methods
will have an immediate or future impact on the field. Nevertheless, many issues
raised are ripe for a fresh look at them. With the recent progress in high order method
implementations for model equations [7–9] and more complex systems [16], adap-
tive methodologies [30, 32] and high performance computing [3], it is clear that
on-going efforts are needed to determine the possibility of success, perhaps uncov-
ering difficulties to surmount, but hopefully also providing breakthroughs in some
areas. From the workshop discussion, the following conclusions were drawn.

3.1 Where High Order Holds Promise

High order subdomain-based methods will ease gridding problems, and potentially
prove as efficient as lower order methods on high performance computing platforms.
It was not clear, however, how high an order would be best to pursue. While some
participants felt that second order was high enough (i.e., that high order is not nec-
essary), some thought fourth order would be more than adequate, in particular in
the context of the “physics” being the limiting factor. High order methods will cer-
tainly help in resolving a wider range of waves with lower dissipation than low order
methods. High order is viewed as attractive for adaptivity in particular for lossless
transition between regions of varying grid density.

3.2 Where High Order Instills Doubts

High order methods will perhaps not ever be as efficient as lower order methods
for atmospheric flows because of the complexity of the system and the continual
marginal resolution capabilities. Some researchers question the ability of high order
methods to give stable solutions in this underresolved regime, both for the dynam-
ics and the physics, bringing up the need for examination of filters for high order
methods in the atmospheric context. Of course the more applied problem solvers
often feel it is better to get a “quick and dirty” approximate solution than wait for
a really accurate one that bears little resemblance to reality. For these people, low
order methods seem most promising to pursue. Lastly, the coupling with the physi-
cal parameterizations as they have been developed is overwhelmingly viewed as the
greatest roadblock to acceptance of high order methods in this community.
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3.3 Recommendations

The recommendations for further research therefore are to:

� Carry out more comprehensive comparisons of low and high order methods on
both simple model problems and more sophisticated test cases providing a fair
basis of comparison for storage, efficiency, and accuracy.

� Explore the behaviour and the stability limitations of high order methods in
underresolved calculations including the use of adaptivity to resolve certain (but
not all – how do we limit?) features.

� Tackle the problem of the physical parameterization schemes: either explor-
ing how they could be coupled meaningfully and efficiently to a high order
dynamical core or rethinking the framework of how they are linked to the
dynamics.

Many of these suggestions mirror those distilled from a similar meeting on adaptive
methodologies for atmospheric and ocean modeling held in Reading this year [39].
We recommend that the two efforts be combined, in particular that the high order
community involve itself in the proposed Newton Institute program.

4 Conclusions

In conclusion, it is evident that atmospheric and ocean modeling, and in particular,
numerical weather prediction are very complex fields, whose vast incremental devel-
opment make them difficult to penetrate as modelers or mathematicians uninitiated
to their many particularities. As such, the introduction of newer, high order methods
is a challenge, but evidence of initial successes has emerged in the last decades. The
task of rethinking the framework in the context of a new computational modeling
tool is before us. It will require careful comparison testing, development of efficient
schemes and a cooperative effort with physical modelers.

Acknowledgements The author wishes to acknowledge the input of all the workshop participants:
Jörn Behrens (Alfred Wegener Institute for Polar and Marine Research), John Boyd (University
of Michigan), Sean Crowell (University of Oklahoma), Thomas Dubos (École Polytechnique,
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GMRES for Oscillatory Matrix-Valued
Differential Equations

Sheehan Olver

Abstract We investigate the use of Krylov subspace methods to solve linear, oscil-
latory ODEs. When we apply a Krylov subspace method to a properly formulated
equation, we retain the asymptotic accuracy of the asymptotic expansion whilst con-
verging to the exact solution. We demonstrate the effectiveness of this method by
computing error and Mathieu functions.

1 Introduction

Our aim is to compute the fundamental solution to the differential equation

Y 0.t/ D .B.t/C !A.t//Y.t/; t 2 .a; b/ (1)

where A and B are d � d matrix-valued functions and ! is large. Applications of
such equations include the computation of special functions (such as Airy, Bessel,
hypergeometric and Mathieu functions [1]) the time-independent Schrödinger equa-
tion and semi-discretizations of the linear time-dependent Schrödinger equation.

When the eigenvalues ofA are imaginary, the solutions to (1) become more oscil-
latory as ! !1. Thus traditional time-stepping methods are inefficient for large!.
The accuracy of modified Magnus expansions [5] does not degenerate as! increases
when used to compute (1). On the other hand, the approach we construct actually
improves with accuracy as ! increases, and at an arbitrarily high asymptotic order.
Moreover, we solve the equation globally, allowing us to compute over unbounded
domains and to higher accuracy than a time stepping approach can achieve.

The simplest form of (1) is when d D 1, in which case we obtain the solution
exactly:
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Y D exp
Z
.B C !A/dt:

The inhomogeneous form of (1) is the Levin differential equation [6] (changing
notation to emphasize that these are scalar functions)

L y D y0 C i!g0y D f: (2)

A particular solution is

y D e�i!g
Z
f ei!gdt:

In other words, solving (2) allows us to compute oscillatory integrals:

Z b

a

f ei!gdt D y.b/ei!g.b/ � y.a/ei!g.a/:

Many methods have been developed in recent years for computing oscillatory
integrals, with a recent review in [4]. One particular approach is to apply the
GMRES method [10] directly to the differential equation [7–9], which we refer
to as differential GMRES. By reformulating (2) as a shifted linear system

M u D .M0 C i!/u D f; (3)

where M0 represents a linear operator, we achieve an asymptotic error in residual
of

O.!�n�1/;

where n is the number of GMRES iterations. This is the same asymptotic order as
an asymptotic expansion, however, differential GMRES actually converges for fixed
!, subject to a condition on the growth of f in the complex plane. In Sect. 2, we
review the details of this approach.

The goal, then, is to generalize this approach to the higher dimensional case of
(1). This is accomplished by reforming the equation as a (matrix-valued) shifted lin-
ear system (3). By doing so, we obtain a method which also simultaneously achieves
high asymptotic order and (based on numerical results) convergence.

Differential GMRES in its pure form requires taking derivatives (and inte-
grals in the higher dimensional case) of the functions involved. In the general
case, this is impractical. To avoid this, while we develop the framework in the
infinite-dimensional setting, in practice we represent non-oscillatory functions as
Chebyshev polynomials. This could be handled automatically and adaptive by the
chebfun system [2], however, for concreteness and speed we use fixed order
Chebyshev polynomials in our examples. More precisely, we represent functions
by their values at Chebyshev–Lobatto points, and the fast cosine transform can be
used to compute derivatives and anti-derivatives.



GMRES for Oscillatory Matrix-Valued Differential Equations 269

2 Oscillatory Integrals

GMRES [10] is an iterative algorithm originally developed for solving finite-
dimensional linear systems

Av D b for A 2 C
d
d and b 2 C

d :

The Krylov subspace is defined as

KnŒA;b� D span fb; Ab; : : : ; An�1bg:

GMRES finds an element v 2 KnŒA;b� such that the norm

jjAv � bjj2
is minimized. This is accomplished through Arnoldi iteration [11], which constructs
an orthonormal matrix Qn D .q1; : : : ; qn/ whose columns span KnŒA;b� and an
upper Hessenberg (only zeros below the first subdiagonal) matrix H 2 C

.nC1/
n
such that

AQn D QnC1H and q1 D b
jjbjj2

:

Then c 2 C
n is chosen to minimize the norm

jjHc � jjbjj2 e1jj2 : (4)

The GMRES approximation is now v D Qnc. Assuming that (4) decreases rapidly
as n increases, v is indeed a good approximation to the true inverse:

jjAv � bjj2 D jjAQnc � jjbjj2Qne1jj2 D jjQnC1ŒHc � jjbjj2 e1�jj2 D (4):

In [7, 9], this was generalized for unbounded, infinite-dimensional operators
such as the differentiation operator D . In exactly the same manner as the finite-
dimensional case, given the linear operator L , function f and a semi-inner prod-
uct h�; �i, Arnoldi iteration determines a row-vector qn D .q1; : : : ; qn/ whose
entries span the Krylov subspace KnŒL ; f � and an upper Hessenberg matrix
H 2 C

.nC1/
n such that (where we use the convention L qn D .L q1; : : : ;L qn/)

L qn D qnC1H and q1 D f

jjf jj :

Similarly, differential GMRES finds a function v 2 KnŒL ; f � that minimizes the
seminorm

jjL v � f jj :
This is accomplished by finding c 2 C

n that minimizes the finite-dimensional norm
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jjHc � jjbjj e1jj2 ;

thence v D qnc.
Now consider the case of Arnoldi iteration applied to a shifted linear system of

the form (3). We will denote the Hessenberg matrix produced by Arnoldi iteration
for a particular value of ! by H! . A fact known from the finite-dimensional case
which is also true in the infinite-dimensional case is that the orthonormal basis qn
is independent of ! and

H! D H0 C i!In;nC1: [3]

In other words, we only need to compute the Arnoldi iteration for one choice of ! to
determine the GMRES approximation for all choices of !. Furthermore, GMRES
satisfies the property that the error in residual is

jjM v � f jj D O.w�n/: [9]

In our particular case we wish to solve the Levin differential equation (2). But L
is not in the form of a shifted linear operator. If we assume that g0 does not vanish,
we can trivially put it into the required form:

M D L
1

g0 D D
1

g0 C i!:

We thus apply differential GMRES to M , f and a suitable inner product to obtain
v. Then y D v

g 0
and hence we approximate the oscillatory integral by

v.b/

g0.b/
ei!g.a/ � v.a/

g0.a/
ei!g.a/:

since we represent functions by their values, we use the standard dot product on the
sample vector at Chebyshev–Lobatto points.

If the integral does contain a stationary point, i.e., g0 vanishes in Œa; b�, modifying
the operator to take the form of a shifted linear operator is more complicated, and
detailed in [8].

Consider the integral

Z 1

1

ei!t2dt D
p

erfc

p�i!

2
p�i!

for ! > 0:

Since the interval is unbounded, we represent functions by rational Chebyshev
series – i.e., in terms of the basis Tk.

t�2
t
/ – or, more precisely, by the values

they take at the mapped Chebyshev–Lobatto points. In Fig. 1, we compute the
absolute error of our approximation for several choices of !. As can be seen, the
rate of convergence as n ! 1 increases with the frequency, and the number of



GMRES for Oscillatory Matrix-Valued Differential Equations 271

5 10 15 20
n

0.1

10–13

10–10

10–7

10–4

10 20 30 40 50
n

0.1

10–13

10–10

10–7

10–4

Fig. 1 The error in computing
p


erfc
p

�i!

2
p

�i!
using differential GMRES with 15 (left figure) and 50

(right figure) mapped Chebyshev–Lobatto points, for ! D 1 (plain), 10 (dotted), 100 (dashed) and
1,000 (thick)

mapped Chebyshev–Lobatto points required to achieve machine precision accuracy
decreases with the frequency.

3 Oscillatory Differential Equations

We will use the notation exp to denote the matrix exponential, though we only apply
it to diagonal matrices, where

exp diag .d1; : : : ; dn/ D diag .expd1; : : : ; expdn/:

We will use the indefinite integral notation to denote

Z
A.t/dt D

Z t

a

A.t/dt:

We now consider the solution of (1). Motivated by the preceding section, our
goal is to transform this equation into a inhomogeneous shifted linear system. We
will only consider the case where A is diagonalizable with distinct eigenvalues.
Thus assume that there exists a matrix-valued function V that is nonsingular for
all t 2 Œa; b� and diagonal matrix-valued function  D diag .�1; : : : ; �d / where
�i ¤ �j for any i and j , so that

AV D V:

The requirement that V is smooth and nonsingular prevents application of this
expansion to coalescing eigenvalues. This is similar to the case of stationary points
for oscillatory integrals, and likewise outside the scope of this discussion. Note also
that V is not determined uniquely, however, our approach works for any choice of V .
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We apply the transformation Y D V W to obtain

.V W /0 D .B C !A/V W ,
V 0W C V W 0 D .BV C !V/W ,

W 0 D .H C !/W for H D V �1BV � V �1V 0:

We now apply the transformation

W D .I C U /e
R
.diagHC!�/dtm

where diagH is the diagonal matrix whose entries are the diagonal ofH . Therefore

U 0 C .I C U /.diagH C !/ D .H C !/.I C U /:
We can rephrase this as

LU D F for LU D U 0 C U diagH �HU C !ŒU;�;
where ŒU;� is the standard matrix commutator ŒU;� D U � U and F D
H � diagH .

Our goal now is to premultiply this operator by an inverse to the commuta-
tor operator. Because of our choice of transformations, we have ensured that F
has zeros along the diagonal. Thus we can utilize the following inverse to the
commutator:

Definition 1. For  D diag .�1; : : : ; �n/ with distinct entries and M with zeros
along the diagonal,

QM D

0
BBBBB@

0 m12

�2��1
: : : m1n

�n��1

m21

�1��2
0

: : :
:::

:::
: : :

: : : m.n�1/n

�n��n�1
mn1

�1��n
: : :

mn.n�1/

�n�1��n
0

1
CCCCCA

From inspection, it is clear then that ŒQF;� D QŒF � �QŒF � D F:
However, the term

L QF D .QF /0 C .QF /diagH �HQF C !F

will not necessarily have zeros along the diagonal, because of the term HQF . In
other words, we cannot generate the Krylov subspace for L Q and F . Fortunately,
diagonal matrices lie in the kernel of the commutator. Hence we use the following,
alternative commutator inverse:

Œ�; ��1U D QU C
Z

diag .HQU /dt:
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Then (using D D R diag .HQF /dt)

MF D L Œ�; ��1F D .QF /0 C diag .HQF /�HQF

C .QF /diagH CDdiagH �HD C !F:

Since QF has zeros along the diagonal, the first and fourth terms also have zeros
along the diagonal. The second term cancels the diagonal of the third term. Finally,
since D is diagonal

DdiagH �HD D .diagH �H/D
also has zeros on the diagonal. Thus M successfully maps the set of infinitely
differentiable matrix-valued functions with zeros along the diagonal to itself.

Without modification, we can now construct a differential GMRES method for
M and F , provided an appropriate semi-inner product is used. We will use the
Frobenius inner product, where the dot product of two functions remains the dot
product of their values at Chebyshev–Lobatto points. This returns a function G
which satisfies

F 
MG D L Œ�; ��1G:
Therefore, Y 0 
 .B C !A/Y for

Y D V.I C Œ�; ��1G/e
R
.diagHC!�/dt :

The fundamental solution is then

YF.t/ D Y.t/Y.0/�1:

4 Example: Mathieu Functions

Consider the system

Y 0 D .B˛ C !A/Y;

B˛ D
�
0 1

˛ 0

�
and A D

�
0 1

� cosh 2t 0

�
:

The eigenvalues of A are ˙i
p

cosh 2t , hence the solution is highly oscillatory.
Indeed, as t ! 1, it becomes exponentially more oscillatory. The fundamental
solution to this equation can be written in terms of Mathieu functions [1] as

0
@C.˛.1C !/;

1
2
!.1C !/; it/ �S.˛.1C !/; 1

2
!.1C !/; it/

i
C 0.˛.1C!/; 1

2
!.1C!/;it/

1C! �i
S 0.˛.1C!/; 1

2
!.1C!/;it/

1C!

1
A :

We apply our approach to approximate this function with ˛ D 0 and! D 10 over
the interval .0; 5/. As can be seen in Fig. 2, our solution is equal to that of the built-in
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Fig. 2 In the left graph, the .1; 1/-entry (plain) and the .1; 2/-entry (dotted) of the differential
GMRES approximation to the fundamental solution of the Mathieu equation with ˛ D 0 and
! D 10. In the right graph, a comparison of the .1; 1/-entry of the GMRES approximation (solid)
to the real part of Mathematica’s built-in routine (dotted)

Mathematica routine (after scaling to obtain the fundamental solution) for com-
puting Mathieu functions when t is small. As t increases, the Mathematica
routine quickly explodes, whereas our method remains nicely behaved. Further-
more, the true solution must be real, as is our approximate solution, whilst the
Mathematica routine grows a nonzero imaginary component. Comparison with
a numerical ODE solver with a very small step size reveals that our solution is
indeed the correct one. We omit a graph of the convergence rate for different values
of !, which is similar in behaviour to Fig. 1: the larger ! is, the faster the rate of
convergence.
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Sensitivity Analysis of Heat Exchangers
Using Perturbative Methods

J.C. Pacio, C.A. Dorao, and M. Fernandino

Abstract The solution of heat exchanger models is usually influenced by dif-
ferent parameters related to fluid properties, geometry and flow conditions. This
implies that several simulations are usually required for design and optimization
purposes. In this work, a sensitivity analysis using perturbative methods is presented
as an alternative for reducing the computational cost of studying the sensitivity of
the solution to different parameters. The method is based on the computation of
the adjoint problem, and thus only one extra simulation is required for studying the
sensitivity of an integral response, regardless of the number of parameters. Both the
direct and the adjoint problem were solved using a least squares formulation.

1 Introduction

The design, optimization and scaling up of new processes require to take into
account the most favorable and most disfavorable conditions in order to guaran-
tee optimal performance and production under specifications. For that reason, it is
important to quantify the influence of different parameters in the predictive solution
by performing a sensitivity analysis.

Heat transfer is influenced by several parameters, such as mass flow rates, fluid
properties, inlet pressure and temperature, geometry. The effect of variations in these
parameters on the solution can be quantified by determining the sensitivity coef-
ficients which can be computed by performing a set of simulations for different
variations in the parameters. This approach is commonly referred to as construc-
tion of response surfaces and is widely used for reliability analysis. However, this
approach can result in overwhelming computational costs if a lot of parameters are
present. For a problem with eight parameters and considering five representative
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values for each one, 58 
 400:000 simulations are required for obtaining the res-
ponse surface.

An interesting alternative to the direct calculation is the methodology of Sensitiv-
ity Analysis using Generalized Perturbation Theory (GPT), widely used in reactors
physics and thermal-hydraulics [2, 8, 9]. Sensitivity analysis consists on estimating
the variation in the response due to a perturbation in the parameters.

GPT makes use of the solution in a point of interest, and requires one extra sim-
ulation for computing sensitivity coefficients. The main advantage is that it can be
accomplished without previously choosing the parameter to be studied, and the cal-
culations are faster and more efficient, since the system of equations that describes
the physical behavior of the problems is solved only once. However, the main dis-
advantage of this methodology is that the answer is linearized around a point of
interest. Such disadvantage can be minimized through the application of higher
order GPT [4], but this escapes the limits of this work.

The GPT method results in the formulation of the adjoint problem, which is
dependent on the integral response chosen. For a complete mathematical formula-
tion, further reading of [3, 4, 9] is recommended.

In this work the GPT method is applied for studying the sensitivity of a heat
exchanger model to variations in the model parameters. The main goal of the work
is to analyze the advantages, accuracy and limitations of GPT. Although the GPT
method is commonly applied for studying some thermo-hydraulic models, the
application in the context of heat exchanger models is rather limited.

The final models, i.e. the direct and adjoint problems are solved numerically.
Usually variations of the Finite Difference Method (FDM) or Finite Volume Method
(FVM) are used for GPT, e.g. [3, 7]. In this work a least squares spectral element
method (LSSEM) is used for solving all the governing equations. For the general
description of the method, refer to [5,6]. For smooth problems, this method shows a
spectral convergence [1]. This means that each simulation can be solved faster and
more accurately when compared to the traditional formulations.

The structure of this paper is as follows. The heat exchanger model used in this
work is presented in Sect. 2. Section 3 presents the reference case. The GPT results
are shown in Sect. 4, and their accuracy is studied in Sect. 5. Final conclusions and
remarks are treated in Sect. 6.

2 The One–Dimensional Horizontal Heat Exchanger Problem

The scope of this work is limited to configurations that can be represented by a 1D
analysis and operating conditions that fit the following approximations:

� Steady state
� Horizontal and constant cross section
� Two streams: single phase incompressible, constant physical properties
� Heat leakage, axial conduction and radiation heat transfer are negligible small.
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Fig. 1 Two–streams tube–in–tube heat exchanger

Table 1 Nomenclature used in this work
Symbol Meaning SI unit Symbol Meaning SI unit

p Pressure Pa T Temperature K

z Position m f Friction factor �
Pm Mass flow rate kg=s G Mass flux kg=.m2s/

	 Density kg=m3 cp Heat capacity J=.kgK/

Dh Hydraulic diameter m di Inner diameter m

t Wall thickness m do Outer diameter m

� Thermal conductivity W=.Km/ Oh Standard heat transfer coefficient W=.Km2/

Re Reynolds number � UP Linear heat transfer coefficient W=.Km/

P r Prandtl number � Q Heat duty W

N u Nusselt number � PWp Pumping power W

Considering all these constraints, the geometry chosen for study was a tube–in–
tube heat exchanger, as shown in Fig. 1. This configuration is widely used for small
scale and laboratory applications, since it’s the cheapest and simplest option to build
and maintain [11].

With these approximations, 1D momentum and energy balance equations are
formulated for each stream j as follows (Table 1 summarizes the nomenclature):

� @pj

@z
D fj

2

G2j

	iDhj

(1)

˙ Pmj cpj

@Tj

@z
D fj

2

PmjG2j
	2iDhj

C UP.Tk � Tj / (2)

with proper inlet boundary conditions. The proper sign should be chosen for both
streams flowing in opposite (counterflow) or the same direction (co-current flow,
as in Fig. 1). As a consequence of the previous approximations, there are no
acceleration or gravitational terms in (1) and (2).
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The pressure drop is modeled with single phase Moody friction factor f . For
turbulent regime the Haaland formula [12] for smooth tubes applies:

f D Œ1:8ln.6:9=Re/��2 (3)

The heat transfer between both streams is represented by a linear heat transfer
coefficient (HTC) UP . For steady–state, from a thermal resistance analysis.

1

UP
D ln.1C 2t=di /

2
�wal l
C 1


.di C 2t/ Ohh
C 1


di Ohc
(4)

Generally, an empirical or semi–empirical correlation is used to compute Oh. In
this case, the Dittus-Bolter correlation is appropriate for the inner tube (cold), and
the annulus flow (hot) is represented by the Pethukov and Roizen formula [10] as
follows:

Ohc D N uc�c
Dhc

D 0:023Re0:8c P r0:3c
�c

Dhc

(5)

Ohh D N uh�h
Dhh

D 0:020Re0:8h P r0:4h
�h

Dhh

�
do

di C 2t
�0:86

(6)

The physical properties in (5) and (6) are evaluated at inlet conditions.
From a design perspective, some integral results (FOM D figures of merit) may

be more interesting that the exact distribution of pressure and temperatures, such as:

� Heat duty: Q D R LzD0 UP.Th � Tc/d z
� Pressure drop on stream i : �pi D ˙ Œpi .z D 0/� pi .z D L/�
� Pumping power: PWp D Pmh


h
�ph C Pmc


c
�pc

In the following sections, a reference case is defined and the sensitivity of these
FOM is studied around this working point.

3 Reference Case

For a given wall material (stainless steel), the wall thermal conductivity �wal l can
be assumed constant; and for given working fluids (both water), their thermophys-
ical properties depend only on the inlet pressure and temperature. Therefore, the
problem is completely defined by only nine independent parameters

p D �pc0
; ph0

; Tc0
; Th0

; Pmc ; Pmh; di ; t; do
�

(7)
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Fig. 2 Reference solution for the temperature and pressure profiles

The reference case is in parallel flow arrangement, and the parameters are fixed
in their reference values.1 Figure 2 shows the solution for this reference case. These
plots were obtained with a coarse mesh (only one element) and a high order approx-
imation (order 10). This was chosen because of the spectral convergence of the
method for smooth problems. This yields a least-squares error of J 
 10�8, in a
short CPU time (t < 10�2s).

4 Sensitivity Analysis Results

With one extra simulation, GPT gives the derivative of the response against all
parameters, i.e. the gradient, which is the best direction for optimization. Figure 3
shows the response surface of Q and PWp for perturbations on the inner diameter
(di ) and the hot mass flow rate ( Pmh) up to ˙20% around their reference values.
Underneath every point of this surface, the GPT results is plotted as the gradient
vector (normal to constant level lines), pointing towards the optimum.

The response surface was constructed for 40 values of each parameter, i.e.
402 D 1;600 simulations were required. This is an example with only two parame-
ters, a complete analysis should consider all the nine parameters listed in p2, but this
could not be plotted. Therefore, 409 
 2 � 1014 would be required for computing
the response surface. When lots of parameters are present, computing the response
surface is practically impossible. With GPT, local information is obtained in each
point with only one extra simulation, pointing towards the optimum, and the number
of simulations required for optimization can be reduced significantly.

1 pc0 D ph0 D 5bar , Tc0 D20ıC, Th0 D 60ıC, Pmc D Pmh D 1
kg

s
, di D 20mm, t D 0:15mm,

do D 30mm.
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Fig. 3 Q and Wp for different Pmh and di around their reference values

Table 2 Important
parameters for every response

Integral response Important parameters

Q Thi n, Tci n, Pmc , Pmh, do
�pc Pmc , di
�ph Pmh, di , do
Wp Pmc , Pmh, di , do

With GPT we can also identify which parameters are important for design. If
a ˙10% perturbation on a parameter produces an effect smaller than ˙1% on the
response, it is considered negligible. Table 2 summarizes these results.

The inlet pressure is not relevant, since their effect on physical properties is very
small (the HTC only changes 0.003% and cp a 0.007% for ˙20% perturbation on
pc0

or ph0
). For the same reason, the inlet temperatures are only relevant to the heat

duty, mainly given by the temperature difference.

5 Sensitivity Analysis Accuracy

An open question arises concerning the limitations of the method and the need for
higher order GPT. The mathematical formulation of GPT [2, 9] does not introduce
any approximation, and therefore the sensitivity coefficients obtained are exact. But
this is a first–order approximation for estimating variations in the response; therefore
the accuracy of this approximation is related to dependence of the response on the
parameters. An accuracy analysis for˙10% perturbations on all the parameters for
the four integral responses is presented in Fig. 4.

As expected, in all cases a better accuracy is obtained for smaller perturbations.
This accuracy is acceptable for perturbations as large as ˙10%, except in the case
of the influence of diameters on pressure drops and pumping power. The reason for
this is that the dependence of these responses on these parameters is far away from
being linear, as can be seen in Fig. 5.
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Fig. 5 The effect of diameters on �ph and Wp is not linear

6 Conclusions

In this work first–order GPT was used for a sensitivity analysis on single–phase
one–dimensional heat exchangers. With only one extra simulation, GPT gives
the sensitivity of an integral response to all parameters around a reference point.
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This analysis allows to easily identify the important parameters for every integral
response (heat duty, pressure drop and pumping power were analysed).

Since first–order GPT is a linear approximation, its accuracy is better for small
perturbations on the parameters. An accuracy analysis shows that the results are
acceptable for ˙5% perturbations on the diameters and ˙10% on the rest of the
parameters.

This sensitivity analysis can be implemented in an optimization algorithm. Since
one extra simulation gives all the sensitivity coefficients on a working point, GPT
gives the ‘best direction’ for finding a new working point in order to optimize a
properly defined figure of merit as an integral response. With this iterative proce-
dure, there is no need to perform new simulations for new values of every parameter,
and the computational cost is expected to be reduced considerably.
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Spectral Element Approximation of the Hodge-?
Operator in Curved Elements

Artur Palha and Marc Gerritsma

Abstract Mimetic approaches to the solution of partial differential equations
(PDE’s) produce numerical schemes which are compatible with the structural prop-
erties – conservation of certain quantities and symmetries, for example – of the
systems being modelled. Least Squares (LS) schemes offer many desirable prop-
erties, most notably the fact that they lead to symmetric positive definite algebraic
systems, which represent an advantage in terms of computational efficiency of the
scheme. Nevertheless, LS methods are known to lack proper conservation properties
which means that a mimetic formulation of LS, which guarantees the conservation
properties, is of great importance. In the present work, the LS approach appears in
order to minimize the error between the dual variables, implementing weakly the
material laws, obtaining an optimal approximation for both variables. The applica-
tion to a 2D Poisson problem and a comparison will be made with a standard LS
finite element scheme, see, for example, Cai et al. (J. Numer. Anal. 34:425–454,
1997).

1 Introduction

Numerical schemes are an essential tool for solving partial differential equations
(PDE’s). These schemes, being a model reduction, inherently lead to loss of infor-
mation of the system being modeled, namely on its structure, e.g., conservation
of certain quantities – mass, momentum, energy, etc. – and symmetries, which are
embedded into the PDE’s as a result of the geometrical properties of the differen-
tial operators. It is known today, see [3, 13, 15], that the well-posedness of many
PDE problems reflects geometrical, algebraic topological and homological struc-
tures underlying the problem. It is, therefore, important for the numerical scheme to
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be compatible with these structures (the physics), i.e., to mimic them. The goal of
mimetic methods is to satisfy exactly, or as good as possible, the structural proper-
ties of the continuous model. It is becoming clear that in doing so, one obtains stable
schemes. Additionally, a clear separation between the processes of discretization
and approximation arises, the latter only take place in the constitutive relations.

Least Squares (LS) schemes offer many desirable properties, most notably the
fact that they lead to symmetric positive definite algebraic systems, which represent
an advantage in terms of computational efficiency of the scheme. Nevertheless, LS
methods fail to satisfy the conservation laws [14]. A mimetic LS formulation will
satisfy the conservation law exactly. In the current paper, the LS approach is used to
minimize the error between the dual variables, obtaining an optimal approximation.
This LS approximation is known in the literature as the implementation of Weak
Material Laws, as proposed by Bochev and Hyman in [1].

2 Mimetic Approaches for the 2D Poisson Equation

The introduction of mimetic approaches to the solution of PDE’s relies on a prior
knowledge of differential geometry, mainly of the concepts of k-differential forms,
of the wedge product,^, of the exterior derivative, d, of the inner product, .�; �/, and
of the Hodge-? operator, ?. It is out of the scope of this work to give an introduction
to this theory, for that, the reader is referred to the works by Flanders [7], Burke [5]
and Bossavit [3]. For a very short introduction with the same notation followed in
this work, the reader is referred to the prior works of the authors [8, 11]. One can
rewrite the Poisson equation using the framework of differential geometry, obtaining
a system of first order PDE’s:1


 �r� D u
r � u D f

,
8
<
:
�d�0 D u1

dQv1 D Qf 2
Qv1 D ?u1

; (1)

where one clearly sees that the u1 that appears in the first equation is not equal to the
Qv1 (a twisted 1-form) that appears in the second equation, but rather it is related to
it through a material constitutive relation. This is not explicit when using standard
vector calculus and, as it will be seen later (Sects. 3 and 4), it plays an important
role in the accurate numerical solution of the Poisson equation.

In order to numerically solve this problem, different discretization approaches
may be implemented. The approach followed in this work satisfies exactly the equi-
librium equations between unknown physical quantities but relaxes the constitutive
equation, being enforced weakly. Hence, discretization of the problem in appropri-
ate function spaces leads to the following Tonti diagram to be solved (dotted lines

1 Here f 2 denotes a 2-form. Not to be confused with the square of f .
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represent weakly imposed relations):

�0
h

d

��

Qf 2
h

u1
h ?

�� Qv1
h

d

��
(2)

3 Weak Material Laws: The Role of Least-Squares

As proposed by Bochev and Hyman [1] and Bochev and Gunzburger [2], a way
of defining the Hodge-? operator and hence the constitutive equation in a weak
sense is by using a least-squares minimization process that penalizes the discrepancy
between the dual physical quantities. The exact equilibrium equation appears as a
linear constraint that must be satisfied by the minimizers of the functional. Hence
the problem is reduced to a constrained minimization problem:

Seek .�0
h
; u1
h
; Qv1
h
/ in 0

h
�1

h
� Q1

h
such that (3)

I .�0
h
; u1
h
; Qv1
h
/ D 1

2

�
k ? Qv1

h
C u1

h
k20 C kdQv1h � Qf 2k20

�

subject to: � d�0h D u1h (4)

The choice for an L2 inner product lies on the fact that, using such an inner product,
it is possible to demonstrate an optimal error estimate, as can be seen in Bochev
et al. [2, Sect. 3.2]. If the subspaces 0

h
, 1

h
and 2

h
, and the twisted ones, are

chosen in such a way that they constitute a de Rham complex:

R
�� 0
h

?

��

d �� 1
h

?

��

d �� 2
h

?

��
Q2
h

Q1
hd

�� Q0
hd

��
R

��

(5)

then (4) is satisfied exactly and one can substitute u1
h

by �d�0
h

without any approx-
imation involved. In this way the constrained minimization problem is reduced to a
simple minimization problem only on two variables, �0

h
and Qv1

h
:

Seek .�0
h
; Qv1
h
/ in 0

h
� Q1

h
such that (6)

I .�0
h
; Qv1
h
/ D 1

2

�
k ? Qv1

h
� d�0k20 C kdQv1h � Qf 2k20

�

In this way, the Hodge-? operator is implemented as L2 projections between the
different dual spaces.
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4 Application to the 2D Poisson Equation

4.1 Straight Elements

To apply the above mentioned scheme to the 2D Poisson equation first the appro-
priate subspaces 0

h
, 1

h
and 2

h
, and the associated twisted form spaces, must be

specified. Since one will use a spectral/hp LS method, these spaces are defined as:

0h;p D span
n
h
p
i .�/h

p
j .�/

o
; i D 0; : : : ; p j D 0; : : : ; p

1h;p D span
n
e
p
i .�/h

p
j .�/˝ hpn .�/epm.�/

o
; i; m D 1; : : : ; p j; n D 0; : : : ; p

2h;p D span
n
e
p
i .�/e

p
j .�/

o
; i D 1; : : : ; p j D 1; : : : ; p

where hpi .�/ is the i -th Lagrange interpolant of order p over Gauss–Lobatto–
Legendre points and epi .�/ is the i -th edge interpolant of order p, introduced in
[9]. We see that with this choice the degrees of freedom associated with these
bases of the discrete subspaces are located where they should be: at nodal points
(for 0-forms), at edges (for 1-forms) and at volumes (for 2-forms). In this way, the
resulting reconstructed physical quantities will have different continuity properties:
continuity across elements (0-forms), tangential (or normal) continuity along edges
(1-forms) and no continuity across elements (2-forms). It is possible to show that
these subspaces constitute a de Rham complex, as in (5) and hence they are suitable
to be used to represent the unknown degrees of freedom. Kopriva [12], employed a
similar use of staggered spectral element grids.

In order to assess the above described method, it will be applied to the solution
of the 2D Poisson equation with a particular right hand side and Dirichlet boundary
conditions in order to obtain the following analytical solution: �.x; y/ D cos.x2/C
y2, .x; y/ 2 Œ�1; 1� � Œ�1; 1�.

In Fig. 2 (left), one sees the convergence of the error in � and u with the mesh
size. In the mimetic approach one obtains again the optimal convergence rate of
p C 1, in u, that was lost in the standard LS case. This result confirms what was
stated in Bochev et al. [2, Sect. 3.2]. In Fig. 2 (right), one sees that the convergence
of the error of r � u is higher for the mimetic case.

4.2 Curved Elements

The extension to curved elements requires some care, since the usual operations
like the inner product of k-forms and the Hodge-? behave in a more sophisticated
way, since, as it will be shown, the canonical space, b̋ , of local coordinates .�; �/ is
not Euclidean as the physical space of each element,˝ , of coordinates .x; y/. This
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Fig. 1 L2 convergence for mimetic and standard LS (left) and r 
 u for mimetic LS and standard
LS (right), as a function of the order p of the approximation space

Fig. 2 L2 convergence for mimetic and standard LS (left) and r 
 u for mimetic LS and standard
LS (right), as a function of mesh size h

is induced by the transformation of coordinates implied to map from the physical
space to the canonical space, where all basis k-forms are defined.

4.2.1 The Inner Product

A mapping ˚ W b̋ �! ˝ induces a map ˚� W T �.˝/ �! T �.b̋/, called the
pullback operator, and its inverse ..˚�/�1/. The pullback operator maps differential
forms over˝ to differential forms over b̋ , such that for all ˛k 2 k.˝/ we have

˚� W ˛k.x; y/ �!
h
˚�˛k

i
.�; �/ D c̨k.�; �/: (7)

As stated above, b̋ is not like R
2, in the sense that it does not have a metric identical

to the identity, which means that one can no longer compute the inner products
as in R

2, that is ˝: hdxi ; dxj i D gij D ıij . For b̋ one will have in general:
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hd�i ; d�j i D bgij ¤ ıij . The problem lies, then, in computing bgij . This is done
passing the k-forms from b̋ to ˝ with (.˚�/�1), then computing the inner product
in ˝ and then pushing back with ˚�. Hence

d� D �xdx C �ydy D
��
˚���1 y�dx � �˚���1 x�dy

� 1

.˚�/�1 J
(8)

where �i
xj D @i

@xj and J is the Jacobian determinant of the mapping ˚ . To obtain
this equality the derivative of the inverse function was used. The inner product can
now be computed in the usual way, yielding:

2.d�; d�/ D 1

.˚�/�1 J 2
��
˚���1 y2� C

�
˚���1 x2�

�
: (9)

Pulling back with ˚� one gets:

.d�; d�/ D 1

J 2

�
y2� C x2�

�
: (10)

The same procedure can be applied to the rest of the inner products, obtaining:

.d�; d�/ D 1

J 2

�
y2 C x2

�
; .d�; d�/ D .d�; d�/ D � 1

J 2

�
xx� C yy�

�
(11)

which gives the metric bgij D �
d�i ; d�j

�
. In this way the inner product of forms

˛ DP aid�i and ˇ DP bid�i is given by:

.˛; ˇ/ D
X

aibjbgij (12)

4.2.2 The Hodge-? Operator

The Hodge-? operator can be defined in the following way, see [6],

b?d�i Dbgikb�kj d�j (13)

wherebgij is the metric tensor andb�ij is the usual Levi–Civita tensor, see [6]. In this
way one has:

b?d� D 1

J

��
y�y C x�y

�
d� C �x2� C y2�

�
d�
�

(14)

b?d� D 1

J

h
�
�
x2 C y2

�
d� � �y�y C x�y

�
d�
i

(15)
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which is the same as: ˚� ? .˚�/�1 d� D b?d�, as in [10]. Hence, the commutation
relation of ˚� with ? is:

˚� ? ˛ D ˚� ?
�
˚���1˚�˛ Db?˚�˛ Db?b̨ (16)

4.2.3 The Least-Squares Residual

Having defined the Hodge-? and the inner product in curved domains one can easily
define the LS residual in curved domains. In straight domains one has:

I D 1

2

Z

˝

.?v � d�; ?v � d�/ dxdy C 1

2

Z

˝

.dv � f; dv � f / dxdy (17)

and in curved domains one has:

I D 1

2

Z
b̋
�
b?v �cd�; b?v �cd�

�
1dxdy C 1

2

Z
b̋
�bdv � bf ; bdv � bf

�
1dxdy (18)

where we have used the property:
R
˚.b̋/D˝ ˛ �

R
b̋ b̨.

But it was already seen that: b?v Db?bv, cd� D db� and 1dxdy D J d�d�. Hence:

I D 1

2

Z
b̋
�
b?bv � db�;b?bv � db�

�
J d�d�C

Z
b̋
�

dbv � bf ; dbv � bf
�
J d�d� (19)

Now the discretization can be done in the local element and then transformed to the
physical domain with the inverse of the pullback, as was back in the computation
of the metric to pass k-forms in b̋ to ˝ . Figure 3 (left) shows the curved element
mesh used to assess this scheme. Since the outer boundaries are the ones of a square,
it is good to compare this case to the case of a straight element mesh. Figure 3
(right) shows the plot of the convergence of the error of � for both the curved and
straight elements. One can see an exponential convergence even for curved ele-
ments, although with a smaller rate when compared to the straight elements, as
expected. This result, although requiring further investigation, seems promising,
especially when compared to the results in Arnold et al. [4], where RT0 elements
fail to converge in non affine elements when implemented in a LS method.

5 Concluding Remarks

As can be seen in Fig. 1, the mimetic LS method results in smaller errors, especially
for the u variable. Additionally, with regard to r�u one sees a great improvement in
the mimetic LS method, where the errors are approximately 2 orders of magnitude
smaller compared to conventional LS. The primal–dual differences, k ? Qv1

h
C u1

h
k0,
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Fig. 3 On the left, the curved computational mesh. On the right, the plot of the L2 error of � as
a function of the order p used for the approximation space, for the curved elements mesh (dashed
line) and for the straight elements mesh (dotted line)

appears to be a good estimator for the error of the numerical solution, as can be seen
in Fig. 1.
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Uncertainty Propagation for Systems
of Conservation Laws, High Order Stochastic
Spectral Methods
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Abstract The application of the stochastic Galerkin-generalized Polynomial Chaos
approach (sG-gPC) (Wiener, Am. J. Math. 60:897–936, 1938; Cameron and Mar-
tin, Ann. Math. 48:385–392, 1947; Xiu and Karniadakis, SIAM J. Sci. Comp.
24(2):619–644, 2002) for Uncertainty Propagation through NonLinear Systems of
Conservation Laws (SLC) is known to encounter several difficulties: dimensionality
(see, e.g., Nobile et al., SIAM J. Numer. Anal. 46(5):2309–2345,2008; Blatman and
Sudret, C. R. Méc. 336:518–523, 2008; Witteveen and Bijl, Comp. Struct. 86(23–
24):2123–2140, 2008), non linearities (see, e.g., Debusshere et al., J. Sci. Comp.
26:698–719, 2004; Witteveen and Bijl, 47th AIAA Aerospace Sciences Meeting
and Exhibit, 2006–2066, 2006), discontinuities (see Wan and Karniadakis, SIAM
J. Sci. Comp. 27(1–3), 2006; Lin et al., J. Comp. Phys. 217:260–276, 2006; Le
Maı̂tre and Knio, J. Comp. Phys. 197:28–57, 2004; Le Maitre et al., J. Comp. Phys.
197:502–531, 2004; Abgrall, Rapport de Recherche INRIA, 2007). In this paper,
we first illustrate on a simple SLC (p-system) the difficulties occuring when dealing
with non linearities and discontinuities. We will then present a new non adaptive
high order uncertainty propagation method based on the entropy of the system
of conservation laws, efficient on NonLinear systems and discontinuous solutions.
Convergence tests are performed and spectral convergence is reached.
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294 G. Poëtte et al.

1 Mathematical Framework

We are interested in the resolution of stochastic SLC thanks to Polynomial Chaos
theory. We first briefly recall the main principles of theories of 1-D SLC and of
generalized Polynomial Chaos (gPC).

1.1 SLC in a Nutshell

We are interested in Hyperbolic SLC. The general form for 1-D SLC is

@tuC @xf .u/ D 0; with u W D��0; T Œ�! U � R
n

.x; t/ �! u.x; t/
. (1)

The field f is the flux. Hyperbolicity ensures the existence and the stability of
the solution of the SLC [14, 15]. To prove hyperbolicity, two theorems are used
in practice [14]:

Theorem 1 (Hyperbolicity of a 1-D SLC). The SLC (1) is hyperbolic iff the Jaco-
bian of the flux, A D ruf .u/, is diagonalizable in R

n in a complete basis of
eigenvectors 8u 2 U .

Definition 1 (Mathematical entropy of a 1-D SLC). A real function u 2 U �
R
n �! s.u/ 2 R is a mathematical entropy for (1) if it exists a function u 2 U �

R
n �! g.u/ 2 R, the entropy flux, such that

@t s.u/C @xg.u/ D 0; for smooth solutions of (1);
@t s.u/C @xg.u/ � 0; for discontinuous solutions of (1):

(2)

Theorem 2 (Hyperbolicity of a 1-D SLC (entropy formulation)). If a SLC (1)
owns a strictly convex mathematical entropy then the SLC is hyperbolic.

Note that Theorem 2 implies the conditions of Theorem 1.

1.2 gPC in a Nutshell

The following convergence theorem is at the basis of gPC theory. It is a generaliza-
tion by [17, 20] of Cameron Martin’s theorem [3]:

Theorem 3 (Cameron–Martin [3]). Let .˝;F ;P/ be a probability space. Let
� D .�1; : : : ; �d /t be a random vector (rv) of independent components of respec-
tive probability measures .dP�i

/i2f1;:::;dg. We denote by dP� the tensorized
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measure. Let .�i
k
/k2N;i2f1;:::;dg be the gPC basis.1 We denote by .�k/k2N the

tensorization of .�i
k
/k2N;i2f1;:::;dg: Let u.�.!// be a unknown rv. Then

Z

!2˝
u2.�.!//dP� .!/ <1 H) ˘P u.�.!//

D
PX
kD0

uk�k.�.!//
L2.˝;F ;P/�!
P!1 u.�.!// (3)

where uk D
Z

!2˝
u.�.!//�k.�.!//dP� .!/:

The application of the gPC approach will consist in developing our vector of
unknown u on the polynomial basis truncated to order P potentially high (depend-
ing on the regularity of the solution). In the following, we apply sG-gPC to a simple
SLC.

2 Application of sG-gPC to the p-System in Lagrangian
Coordinates

We want to apply the sG-gPC method to the p-system in Lagrangian coordinates
given by



@t� � @xu D 0;
@tuC @xp D 0; (4)

where � denotes the specific volume, u is the velocity, here x is the mass coordinate
(@x D 1

�
@y where y denotes the position) and p.�/ is the closure.2 Physically,

this system describes the adiabatic evolution of a gas. The aim of this section is to
emphasize certain important difficulties.

Theorem 4 (Hyperbolicity). The SLC (4) is hyperbolic if the eos satisfies
p0.�/ < 0.

Proof. It is simple verifying Theorem 1’s hypothesis studying the Jacobian of
the flux.

Suppose p is as in Theorem 4 and given initial and boundary conditions. Suppose,
for example, the initial condition (IC) are uncertain,3 modelled by a uniform law4 on

1 I.e. orthonormal polynomial basis with respect to .dP�i /i2f1;:::;dg, see [17, 20] for more details.
2 Equation of state (eos).
3 Note that the derived equations (5) and (6) also apply when considering uncertain boundary
conditions or even uncertain model parameters: here, we decided to consider uncertain IC.
4 This simplifies the study without loss of generalities.
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Œ�1; 1� and let’s apply sG-gPC. The approach consists in considering the polynomial
basis5 orthonormal with respect to the uniform measure dP.�/ D 1

2
IŒ�1;1�.�/d�

and developing the vector of unknown .�; u/t on the P -truncated polynomial basis,
see (5):

8̂
<̂
ˆ̂:

� 
 �p DPp

kD0 �k�k ;
u 
 up DPp

kD0 uk�k ;

8k 2 f0; : : : ; P g; pk D
Z
p�kdP� :

(5)

We inject the development (5) in (4) and perform a Galerkin projection to obtain
the high order truncated system (6):

8
ˆ̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂
:

@t

0
@
�0
: : :

�P

1
A � @x

0
@

u0
: : :

uP

1
A D 0;

@t

0
@

u0
: : :

uP

1
AC @x

0
@
p0
: : :

pP

1
A D 0:

(6)

The system (6) is a new SLC of high order which has to be closed and then studied.

Theorem 5 (Hyperbolicity of (6)). The SLC (6) is hyperbolic iff the matrix AP of
general term APi;j D @pi

@�j
is definite negative.

Proof. The Jacobian matrix of the flux of (6) is given by (7)

JP D
�
0PC1;PC1 �IPC1;PC1
AP 0PC1;PC1

�
; (7)

where 0PC1;PC1 and IPC1;PC1 denote the null and identity matrices of size
.P C 1/ � .P C 1/. We denote by AP the matrix of general term APi;j D @pi

@�j
.

The characteristic polynomial of JP is given by (8)

QJP .�/ D
ˇ̌
ˇ��2IPC1;PC1 �AP

ˇ̌
ˇ ; (8)

where jBj denotes the determinant of matrix B . From the expression of QJP , we
deduce the sufficient and necessary condition of hyperbolicity of Theorem 5.

5 In this particular case, it corresponds to the orthonormalized Legendre polynomials .�k/k2N .
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The first difficulty encountered when studying (6) is linked to the important size, 2�
.P C 1/, of the system:6 we, here, were able to state the conditions of hyperbolicity
of Theorem 5 mainly because of the simplicity of the SLC (4). For other systems,7

the study is not conceivable due to the high-order truncation and complexity.
The second difficulty is linked to the definition of the closure of (6) satisfying the

conditions of Theorem 5. This issue is dealt with in the next section.

2.1 Closure of (6) or Treatment of Non Linearities

The problem of closure of (6) is known in the literature as the “Treatment of non
linearities” step, see for example [4, 19]. It consists in defining 8k 2 f0; : : : ; P g;
pk.�0; : : : ; �P / according to a given p.�/. Let’s consider two eos for (4):

p.�/ D 1
�2

and p.�/ D � ln.�/: (9)

The first one is a perfect gas closure (with � D 2) and the second is used to model
metals.8

Several methods have been suggested in the literature in order to close (6). We
suggest to study three of them:9

1. First Method, suggested in [4]: let’s consider eos p.�/ D 1
�2 . The method con-

sists in a Galerkin projection of �2p D 1. The quantities � and p are developed
on the gPC basis so that .pk/k2f0;:::;P g satisfies:

0
BBB@

: : :

: : :

PX
kD0

PX
lD0

�k�lck;l;i;j : : :

: : :

1
CCCA

0
@
p0
: : :

pP

1
A D

0
@
1

: : :

0

1
A (10)

where ci;j;k;l D
Z
�i�j�k�ldP� ; 8.i; j; k; l/ 2 f0; : : : ; P g4. The main prob-

lem with such a method is that it can not be applied to eos p.�/ D � ln.�/: This
leads to the second one.

6 Note that this size 2 
 .P C 1/ increases exponentially fast as the stochastic dimensions d and
the truncation order in every direction grows, see [12, 13]. This problem is known as the Curse of
dimensionality: it is an important problem but it will not be dealt with in this paper as the other
presented difficulties (non linearities/discontinuities) also occur in 1-D stochastic problems.
7 Euler, MHD system, for example.
8 Note that both eos satisfy the condition of Theorem 4 giving birth to well posed systems iff � > 0.
9 Note that according to the respective authors, the three methods converges as P ! 1.
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2. Second Method, suggested in [4]: the method is based on a Taylor expansion of
p around its mean, � is then developed on the polynomial basis to obtain:

p.�/ 
 p.�0/C
PX
kD0

dkp

d�k
.�0/

 
PX
kD1

�k�k

!k

kŠ
: (11)

The coefficients .pk/k2f0;:::;P g are obtained by integration of (11) against
.�k/k2f0;:::;P g.

3. Third Method, suggested in [19]: it consists in considering (12)

p 
 pP D p
 

PX
kD0

�k�k

!
; (12)

so that the closure of (6) is given by (13)

8k 2 f0; : : : ; P g; pk D
Z
p

 
PX
lD0

�l�l

!
�kdP� : (13)

In this case, the closure can be studied analytically8P 2 N, see [12]. We showed
that AP satisfies the conditions of Theorem 5 iff

PP
kD0 �k�k > 0 (C1). Under

C1, (6) is hyperbolic: Section 2.2 will show that C1 is not always satisfied.

The question we tackle is whether the closure methods (1)–(3) enable to preserve
the physical and mathematical properties of (6). The results of the study are given
in Table 1. The calculations are not recalled but can be found in [12]. Table 1 shows
several difficulties: (1) do not ensure the positiveness of p (physical problem), (2)
do not ensure hyperbolicity (mathematical problem), (3) ensures hyperbolicity iff
C1 is respected: in the next section we show that C1 can be violated.

Table 1 Conclusions of the study of the three methods for treatment of non linearities

p.�/ D 1
�2

(1) (2) (3)

System P D 1 Hyperbolic under C1 Weakly hyperbolic Hyperbolic under C1
System P D 2 Hyperbolic under C1 Weakly hyperbolic Hyperbolic under C1
System (higher orders: 8P ) ? ? Hyperbolic under C1
Pressure P D 1 Negative Negative Positive
Pressure P D 2 Negative Negative Positive
Pressure (higher orders: 8P ) ? ? Positive
p.�/ D � ln.�/ (1) (2) (3)
System P D 1 Not applicable Weakly hyperbolic Hyperbolic under C1
System P D 2 Not applicable Weakly hyperbolic Hyperbolic under C1
System (higher orders: 8P ) Not applicable ? Hyperbolic under C1
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Fig. 1 Stochastic Riemann problem for the p-system, application of sG-gPC. Left of the interface
� D 1; u D 0. Right of the interface � D 0:125; u D 0

2.2 Discontinuous Solutions and Gibbs Phenomenon

SLC are known for developing discontinuous solutions in finite times (see [9] for
example): let’s consider a discontinuous uncertain IC,10 an uncertain Riemann prob-
lem: a light fluid (left) and a heavy fluid (right) at rest are separated by an interface
whose initial position xinterface is uncertain, modelled by an uniform law on Œ�1; 1�.
Figure 1 (left) shows the mean and standard deviation (std) of � at t D 0. Figure 1
(right) shows the IC in the random space at m D 0:5. The analytical solution
presents a discontinuity with respect to (w.r.t.) the random parameter �. sG-gPC
is such that for P D 5, 9I � Œ�1; 1� of strictly positive measure such that
� 2 I H) P5

kD0 �k�k < 0. Consequently, C1 is not satisfied and the system
is not hyperbolic (even with the method (3): numerically, the code crashes.

Several methods have been investigated in order to deal with Gibbs phenomenon
[1, 2, 6–8, 18]. All these methods are adaptive and do not ensure the well-posedness
in the case of a system of conservation laws. In the next sections, we present a non
adaptive Polynomial Chaos method consistent with systems of conservation laws.

3 The Intrusive Polynomial Moment Method (IPMM)

The method has already been presented in [13]. We here briefly recall the main
principles. The method is inspired on both Kinetic theory (Kt) [11] and Moment
theory (Mt) [5, 10].

10 Note that the same problem can occur dynamically for t > 0. Note that it can also happen
when dealing with uncertain boundary conditions or uncertain model parameters. In this section,
we chose to illustrate the difficulty through uncertain IC.
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3.1 Analogy with Kt and Mt for the Closure

The stochastic SLC we want to solve has the same structure of some models in
Kt. In Kt, one wants to solve the Boltzmann equation whose unknown is f .x; t; v/
where v denotes the velocity. To do so, one defines the moments of f with respect
to a polynomial basis 1; v; v2; : : : to obtain the well-known Euler system, Navier–
Stokes system etc. In uncertainty propagation, the velocity v is replaced by a rv
� , the moments of the solution are defined w.r.t. the gPC basis and the associated
probability measure. In both cases, this leads to systems which are not closed.

In Kt, the system is closed by application of Mt: it consists in solving the
underdetermined inverse problem

Find f 2 L2.˝;F ;P/ /8̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂̂
ˆ̂:

Z
f l0dP D f0;

: : : ;Z
f lkdP D fk ;

: : : ;Z
f lP dP D fP ;

(14)

where .li /i2f0;:::;P g are real functions defined on ˝ , basis of L2.˝;F ;P/ and
where f0; : : : ; fP are the datas of the problem, called the moments of f , with f
being the unknown.

We would like to do the same for Uncertainty Propagation: in this case,
.li /i2f0;:::;P g D .�i /i2f0;:::;P g corresponding to the gPC basis. The distribution f P

solution of (14) is not unique: in Kt, one introduces the closure entropy (Shannon)

�.f / D
Z
f ln.f /dP : This results in a well posed moments problem: find f P

as the minimum of � under the constraints (14), solved, in practice, by standard
methods of optimization under constraints.

Let’s now go back to our Uncertainty Propagation/gPC formalism: let’s consider
an arbitrary closure entropy11 �. We now want to solve the following system

8̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂:

@tu0.�0; :; �P /C @xf0.�0; :; �P / D 0;
: : :

@tuk.�0; :; �P /C @xfk.�0; :; �P / D 0;
: : :

@tuP .�0; :; �P /C @xfP .�0; :; �P / D 0:

(15)

where .�k/k2f0;:::;P g minimizes (closure)

11 A closure entropy is a strictly convex vector field ensuring the uniqueness of its minimum.
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T .�0; ::; �P / D �
Z
�.uP .�0; ::; �P //dP C

PX
kD0

Z
uP .�0; ::; �P /�k�kdP

�
PX
kD0

uk�k: (16)

We suggest to study more precisely the closure of system (15) given by (16).
Performing Functional Variation w.r.t. uP on (16) leads to:12

ru�.u
P .�0; ::; �P // D

PX
kD0

�k�k; i.e. uP .�0; ::; �P / D .ru�/
�1
 

PX
kD0

�k�k

!
:

(17)

Consequently, in the gPC formalism, IPMM consists in developing the new variable
ru�.uP .�0; : : : ; �P //, called associate variable, on the gPC basis rather than the
main variable u.

The closure entropy � represents the main degree of freedom of IPMM. Let’s
consider different entropies:

� If we choose �.u/ D u2

2
, then uP D .ru�/

�1.�/ D u: in this case, the associate
variable is the main variable and IPMM degenerate into sG-gPC.

� Let’s go back to the p-system problem: by choosing �.�/ D � ln.�/ � � , then
.r��/�1.�/ D �P .�/ D e� > 0 and the positiveness of � is ensured for P 2 N

(see [12]).
� Now consider the case � D s, i.e., the closure entropy is chosen as the mathe-

matical entropy of the studied SLC. Then rus.u/ D � D v, called the entropic
variable [11].

Consider the last case, for which the entropic variable is developed on the gPC basis.
This variable has the property of symmetrizing the non truncated SLC: this leads to
Theorem 6.

Theorem 6 (Hyperbolicity of (15) closed by (16)). Let’s consider the P -truncated

system (15) closed by (16) in the special case � D s. Then .S;G/ D
�Z

sdP;
Z
gdP

�
is a mathematical entropy for the SLC (15)–(16) and the system13 is

hyperbolic 8P 2 N.

Proof. See [12, 13].

12 The inversion of ru� is possible as by hypothesis, � is strictly convex.
13 According to Theorem 2.
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Thanks to an analogy with both Kt and Mt, we have shown that it is possible to
preserve the mathematical properties of the P -truncated SLC. This ensures the exis-
tence and stability of the solution of the new SLC. In the next sections, we present
other properties of IPMM through numerical examples.

4 Numerical Tests

We solve the stochastic Burgers and Euler equations with IPMM and sG-gPC.
We show that the issues encountered in Sect. 2 are solved by construction of the
truncated system.

4.1 Comparison Between sG-gPC and IPMM: Burgers

Burgers’ equation is given by

@tuC @x u2

2
D 0; (18)

for which every strictly convex function is a mathematical entropy. This equation is
convenient to compare sG-gPC and IPMM as, being a scalar equation [14], every
strictly convex function is a mathematical entropy. Consequently, even the trun-
cated system obtained by sG-gPC is hyperbolic. Besides, analytical solutions can
be computed.

We consider an IC with two states separated by a slope, blue curve of Fig. 2 (left).
We suppose the position of the slope is uncertain modelled by an uniform rv � on
Œ�1; 1�. Figure 2 shows the time evolution of one realization of� . At time t D 0:09,
for every realizations of� , a shock has formed in the physical space and propagates

realisations of the r.a.
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Fig. 2 Right: the different colors refer to the different entropies: s0.u/, s1.u/, s2.u/, s2.u/. The
black curve corresponds to the analytical solution
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Fig. 3 Error (log-scale) on the mean and std on the whole physical space at time t D 0:09.
Spectral convergence is reached for IPMM, for early P . For higher P , a threshold due to the
spatial discretization is reached. Note that the non-monotonical behaviour of the IPMM curve for
the std remains an open question

in the random space: see the analytical solution14 � �! u.x D 1:5; t D 0:09; �/ of
Fig. 2 (right).

The truncated system is solved with a Roe scheme.15 The following entropies are
tested:

8
ˆ̂̂
<
ˆ̂̂
:

s0.u/ D u2
2
;

s1.u/ D �ln.u � u�/;
s2.u/ D �ln.u � u�/ � ln.uC � u/;
s2.u/ D .u � u�/ ln.u � u�/C .uC � u/ ln.uC � u/� 2uC u� � uC :

(19)

The solutions are presented on Fig. 2: the polynomial order is the same for every
entropies, P D 5. Convergence tests have been performed (with closure entropy s2)
for several spatial discretizations, see Fig. 3. Spectral convergence is reached with
IPMM.

4.2 Stochastic Riemann Problem: Euler System

We consider the Euler system

8<
:
@t	C @x	u D 0;
@t	uC @x.	u2 C p/ D 0;
@t	e C @x.	ueC pu/ D 0;

(20)

14 Black curve of Fig. 2.
15 See [12, 13]: here the stress is put on the stochastic resolution, not on the numerical scheme.
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Fig. 4 Stochastic Riemann problem. The IC are the same as in the previous section with, in addi-
tion, p D 1 on the right and p D 0:1 on the left of the interface. The left column shows the IC in
mean and std for 	. The left column shows the mean and std of 	 at time t D 0:14. The computation
has 200 cells, P D 20. Numerical integration is performed thanks to a 1-D Clenshaw–Curtis rule
with level 7. The reference solutions, mean and std of 	, are obtained by analytical integrations of
analytical formulae available for this Riemann problem, see [10]

where 	 is the mass density, u is the velocity, e is the specific total energy and p is
the pressure of the fluid. The SLC is closed by a perfect gas eosp D .��1/	� where
� D e � u2

2
is the specific internal energy and � D 1:4. The system is hyperbolic iff

� > 0. It exists a mathematical entropy .s; g/ for (20) given by

(
s.	; 	u; 	e/ D �	 ln

�
	��

�
	e � .
u/2

2


��

g.	; 	u; 	e/ D 
u


s .	; 	u; 	e/ :

(21)

This mathematical entropy is chosen in the following as a closure entropy for IPMM
so that hyperbolicity of the truncated system is ensured.

We consider the same Riemann problem as in Sect. 2 for which sG-gPC failed.
The numerical results are displayed in Fig. 4. The numerical scheme used for Fig. 4
is described in [12, 13] and is not detailed here as the stress is on IPMM.

5 Conclusions

IPMM is a High-Order Spectral Method. It is numerically stable, conservative and
non adaptive. The mathematical properties (hyperbolicity) are preserved by con-
struction, the preservation of the physical properties (	 > 0; � > 0; p > 0) is a
corollary.
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15. D. Serre. Systèmes Hyperboliques de Lois de Conservation, partie II. Diderot, Paris, 1996
10. E.F. Toro. Riemann solver and numerical methods for fluid dynamics. Springer, Berlin, 1997
17. X. Wan and G.E. Karniadakis. Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs.

SIAM J. Sci. Comp., 27(1–3):455–464, 2006
18. X. Wan and G.E. Karniadakis. Multi-Element generalized Polynomial Chaos for Arbitrary

Probability Measures. SIAM J. Sci. Comp., 28(3):901–928, 2006
19. J.A.S. Witteveen and H. Bijl. Using Polynomial Chaos for Uncertainty Quantification in

Problems with Non Linearities. 47th AIAA Aerospace Sciences Meeting and Exhibit, AIAA
2006–2066, 2006

20. D. Xiu and G.E. Karniadakis. The Wiener–Askey Polynomial Chaos for Stochastic Differential
Equations. SIAM J. Sci. Comp., 24:619–644, 2002



Reduced Basis Approximation for Shape
Optimization in Thermal Flows
with a Parametrized Polynomial
Geometric Map

Gianluigi Rozza, Toni Lassila, and Andrea Manzoni

Abstract Reduced basis approximations for geometrically parametrized advection-
diffusion equations are investigated. The parametric domains are assumed to be
images of a reference domain through a piecewise polynomial map; this may lead to
nonaffinely parametrized diffusion tensors that are treated with an empirical inter-
polation method. An a posteriori error bound including a correction term due to this
approximation is given. Results concerning the applied methodology and the rigor
of the corrected error estimator are shown for a shape optimization problem in a
thermal flow.

1 Introduction

We consider the parametrized advection-diffusion equation in a bounded and piece-
wise smooth domain˝o.�/ � R

2, whose shape depends on a vector of geometrical
parameters � residing in a low-dimensional parameter space D � R

P (e.g.,
P � 10). The weak form of the equation reads as follows: for any given � 2 D,
find u 2 H 1.˝o.�// s.t. u D uD on �D and

Z

˝o.�/

."ru � rvC vb � ru/ d˝ D
Z

˝o.�/

f v d˝ 8v 2 H 1.˝o.�// (1)
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where b is a given divergence-free constant vector field, �D denotes the Dirichlet
boundary, while homogeneous Neumann conditions are imposed on �N D @˝n�D .
Our interest is to solve (1) in a way that is:

� Efficient in the sense that for any � a numerical solution is obtained in real-time
for arbitrarily fine discretizations.

� Reliable in the sense that for any � the obtained solution is verifiable within some
prescribed tolerance from the finite element solution computed using a very fine
mesh for discretization. Any error bound should be rigorous, that is to say, it
should be a safe upper bound for the true error.

To that end, we employ the reduced basis (RB) method originally developed for non-
linear structural mechanics in the 1980s and more recently systematized for elliptic
and parabolic, coercive and noncoercive, PDEs. The method is analyzed in detail
in [9, 13] and in their references; previous works on reduced basis methods for the
advection-diffusion equation include [3, 10, 15]. This method is a model reduction
scheme for parametric PDEs based on the use of “snapshot” finite element solutions
of the PDE (for certain values of the parameters) as global approximation basis
functions. Our objective is to use the efficient evaluation of the RB solutions in a
multi-query context, required for example in shape optimization of PDE modelled
systems.

2 Reduced Basis Approximation of Parametric
Advection-Diffusion Equations

We assume that the parametric domains˝o.�/ are obtained by mapping from a ref-
erence domain ˝ with T .x;�/ a piecewise polynomial map w.r.t. both arguments,
as ˝ 7! ˝o.�/ WD T .˝;�/. Problem (1) is thus traced back to the reference
domain as
Z

˝

."�Tru � rvC v�T b � ru/ d˝ D
Z

˝

�T f v d˝ 8 v 2 X � H 1.˝/; (2)

where the parametric transformation tensors �T .x;�/, �T .x;�/ and �T .x;�/ are
obtained from a change of coordinates (with the Jacobian of T denoted by JT ) as

�T D J�T
T J�1

T jJT j; �T D J�1
T jJT j; �T D jJT j: (3)

We may rewrite (2) as

A.u; vI�/ D f .vI�/ 8 v 2 X ; (4)

where the parametric bilinear form A.�; �I�/ is coercive and the linear functional
f .�I�/ is continuous. The standard Galerkin finite element (FE) approximation of
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(4) is to find uN 2 XN s.t. A.uN ; vI�/ D f .vI�/ for all v 2 XN , where XN is a
FE space constructed by using, e.g., piecewise linear shape functions on a discrete
mesh [11]. Here we denote by N the dimension of the FE space, which is assumed
to be large enough that the repeated assembly and solution of the FE system is too
expensive for a multi-query context.

In order to find an approximation to uN in an efficient and reliable way, we
use Galerkin projection on a reduced subspace of basis functions. Let �1; : : : ;�N

be a collection of parameters and define the reduced basis approximation space as
XN
N WD spanfuN .�n/ W n D 1; : : : ; N g, where each uN .�n/ 2 XN is a FE solution

for a given parameter value �n. The reduced basis formulation reads as follows: find
uN
N 2 XN

N s.t. A.uN
N ; vI�/ D f .v/, for all v 2 XN

N . In practice, an orthonormal-
ization procedure is required to build a basis f˚ngNnD1 for the RB space XN

N that
guarantees algebraic stability [9]. As long as the parametric bilinear form is affinely
parametrized [13], that is to say of the form

A.u; vI�/ D
QaX
qD1

�qa .�/a
q.u; v/C

QbX
qD1

�
q

b
.�/bq.u; v/ (5)

for some integers Qa, Qb , where �qa.�/ D ˇ
i;j

k
.�/, �q

b
.�/ D �

i;j

k
.�/, q is a

condexed index for i; j; k and

aq.i;j;k/.u; v/ D "
Z

˝

�
i;j

k
.x/

@u

@xi

@v

@xj
d˝; bq.i;j;k/.u; v/ D

Z

˝

�
i;j

k
.x/bi

@u

@xj
v d˝;

�
i;j
T .x;�/ D

Ka
ijX

kD1
ˇ
i;j

k
.�/�

i;j

k
.x/; �

i;j
T .x;�/ D

Kb
ijX

kD1
�
i;j

k
.�/�

i;j

k
.x/;

the solution of the reduced basis problem splits into two stages. In the so-called
offline stage we assemble and store once and for all the parameter-independent
system matrices Aq and Bq of components

ŒAq �m;n D aq.˚n; ˚m/; ŒBq �m;n D bq.˚m; ˚n/ (6)

using the global reduced basis functions ˚k , and similarly for the right-hand-sides.
Then in the online stage for a given parameter � the parametric coefficients�qa .�/,
�
q

b
.�/ are evaluated and the reduced basis matrix AN D

PQa

qD1�
q
a.�/A

q CPQb

qD1�
q

b
.�/Bq is assembled, and similarly for the right-hand-side. This linear

system of dimension N � N is dense, but inexpensive to solve: the online com-
plexity is independent of the FE solution dimension N and thus we fulfill the first
requirement of efficiency.

The following greedy algorithm for choosing the parameters �n has been used [9,
13,16]. Let�train � D be a finite training sample of parameter points chosen accord-
ing to a uniform or log-uniform distribution. Define the parameter-independent
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norm jjvjjX WD
q
A.v; vI N�/C �jjvjjL2.˝/ for some N� 2 D and � > 0 large enough

such that the resulting norm is well-defined. Given the first parameter value �1 and
a sharp, inexpensive a posteriori error bound �n.�/ for the norm jj � jjX such that
jjuN .�/ � uN

n .�/jjX � �n.�/ for all � 2 �train, we choose the remaining param-
eter values as the solutions �n D arg max�2�train �n�1.�/, for n D 2; : : : ; N . The
quality of the reduced basis approximation depends crucially on the quality of the
a posteriori error estimator. The standard RB error estimator in literature [9] for
problems that satisfy the affinity assumption (5) is

�N .�/ WD jjr.�;�/jjX 0

˛LB.�/
� jjuN

N � uN jjX D jje.�/jjX ; (7)

where jjr.�;�/jjX 0 is the dual norm of the residual r.v;�/ D f .v/ � A.uN
N ; vI�/

and ˛LB.�/ is a computable lower bound for the discrete coercivity constant

0 < ˛LB.�/ � ˛.�/ D inf
u2XN

A.u; uI�/
jjujj2X

: (8)

For efficient and reliable methods of computing both jjr.�;�/jjX 0 and ˛LB.�/ we
refer the reader to [2, 4, 6, 13]. In the greedy basis construction algorithm we usu-
ally fix a priori an error tolerance "RBtol and then we continue the process until the
condition�N .�/ � "RBtol for all � 2 �train is achieved.

If the affinity assumption does not hold, we rely on the empirical interpola-
tion method (EIM) [1], which is an interpolation method for parametric functions
based on adaptively chosen interpolation points and global shape functions. When
the geometric transformation T .x;�/ is polynomial the advection tensor �T .x;�/
is polynomial and therefore always affinely parametrized, while the diffusion one
�T .x;�/ is a nonaffine tensor. To approximate each component �i;jT .x;�/ of the
tensor we use a different set of interpolation points and thus look for an affine
approximation

Q�i;jT .x;�/ WD
MijX
mD1

# i;jm .�/�i;jm .x/ D �i;jT .x;�/C "i;j .xI�/; (9)

with the error terms under some tolerance, i.e., jj"i;j .�I�/jj1 < "EIM
tol 8� 2 D.

For the reliability of the methodology we need to guarantee an a posteriori error
bound between the “truth” finite element solution and the reduced basis approxi-
mation. The snapshot solutions uN .�n/ should be obtained by a FE stable method:
for the advection-diffusion equation we can use a Galerkin formulation with either
Galerkin least-squares (GLS) or streamline upwind (SUPG) stabilizers [11]. For
more details on coupling the stabilizer with the reduced basis framework, see [3,10].
To simplify things we choose the physical Peclet number Pe D "�1 small enough
such that the finite element approximations are always guaranteed to be stable
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without adding any stabilizing terms. By applying the coercivity property it holds
that

˛.�/jje.�/jj2X � A.e.�/; e.�/I�/: (10)

Using the ideas from [1, 8] we can prove an a posteriori error estimate of the
form (7) also in the nonaffine case. Defining the trilinear forms ai;j .u; v; '/ WD
"
R
˝
' @u
@xi

@v
@xj

d˝ and the residual of the reduced basis solution uN
N as

rN .vI�/ WD f .v/�
QbX
qD1

�
q

b
.�/bq.uN

N ; v/�
2X

i;jD1
ai;j .u

N
N ; v; Q�i;jT /;

we have the following a posteriori error bound:

jje.�/jjX � jjrN .�I�/jjX 0

˛LB.�/
C sup

w2X

P2
i;jD1 ai;j .uN

N ;w; �
i;j
T � Q�i;jT /

˛LB.�/jjwjjX : (11)

By using the definitions of the error e.�/ and the residual we get

A.e.�/; e.�/I�/ � rN .e.�/I�/�
2X

i;jD1
ai;j .u

N
N .�/; e.�/; �

i;j
T � Q�i;jT /I

by property (10) it follows that

jje.�/jjX � 1

˛.�/

 
rN .e.�/I�/
jje.�/jjX �

P2
i;jD1 ai;j .uN

N ; e.�/; �
i;j
T � Q�i;jT /

jje.�/jjX

!

and (11) is obtained by taking sups. The correction term originating from the empir-
ical interpolation is of order O.juN

N j1/ and therefore does not vanish as N !1 if
the number of terms in the empirical interpolation approximation is kept fixed. We
need to choose the tolerance "EIM

tol � jjrN .�I�/jjX 0=." juN
N j1/, so that the correction

term does not dominate the error estimate. To obtain an error estimate computable
online without N -dependence we use the estimator�corr

N .�/ proposed in [1]:

jje.�/jjX . jjrN .�I�/jjX 0

˛LB.�/
C sup

w2X

P2
i;jD1 Q"i;jMij

ai;j .uN
N ;w; �

i;j
Mij C1/

˛LB.�/jjwjjX ; (12)

where Q"i;jMij
WD j�i;jT .zMij C1;�/ � Q�i;jT .zMij C1;�/j is a one-point estimate for the

error jj"i;j .�;�/jjL1.˝/ computed using the .MijC1/th interpolation point zMij C1.
By “.” we mean that the bound is no longer fully rigorous.
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3 Numerical Example

We consider an optimal heat exchange problem. A NACA0012 airfoil is placed in
a thermal flow; our control variables are the vertical position of the airfoil and its
shape (for small perturbations). The reference geometry is shown in Fig. 1. The
objective is to obtain the correct desired average temperature utarget at the outflow
given a fixed angle of attack �0 for the airfoil:

min
�2D

�
utarget � 1

j�outj
Z

�out

u.x/ d�

�2
C � Œ�.�/� �0�2 ;

s.t.
Z

˝o.�/

."ru � rvC vb � ru/ d˝o D
Z

˝o.�/

f v d˝o 8v 2 H 1.˝o.�//

with u D T0 on �in [ �free; u D T1 on �surf; u D T2 on the airfoil:
(13)

We parametrize the geometry around the airfoil using free-form deformations (FFD)
[14]: a 6� 6 lattice of control points is placed around the airfoil and the closest four
control points are allowed to move in the x2-direction. This results in a polynomial
geometric map T .x;�/ with P D 4 parameters built using Bernstein polynomials.
In Fig. 1 we also display the control points and the deformation of the reference
shape as the control points are moved. For more details on the FFD parametrization
setup we refer the reader to [7]. For the finite element computations N D 15;718

degrees of freedom are used.
To solve the optimization problem (13), the algorithm based on sequential

quadratic programming (SQP) provided in Matlab has been used; convergence to
the optimal solution has been reached after 25 functional evaluations. In order to
evaluate effectively the state equation in the constraint of (13) we replace the FE
solution uN with the RB approximation uN

N . The nonaffinely parametrized diffusion
tensor has been approximated with the empirical interpolation method using a toler-

Γin Γout

Γfree

Γsurf

Γin Γout

Γfree

Γsurf

Fig. 1 Reference domain ˝ and a deformed configuration ˝o.�/ using FFDs
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Fig. 2 Convergence of sup�2D ke.�/kX versus the corrected�corr
N .�/ and non-corrected �N .�/

error estimates for M D 108 (left) and M D 208 (right), respectively

ance of "EIM
tol D 10�4 and, then, "EIM

tol D 10�6, resulting inM DP2
i;jD1Mij D 108

and M D 208 terms, respectively, in the affine expansion. After this the reduced
basis offline stage consists of assembly of the matrices (6), performing the suc-
cessive constraint method [6] for estimation of the lower bound ˛LB .�/ of the
coercivity constant, and finally a greedy procedure for choosing the reduced basis
snapshots and the corresponding basis functions. The maximum number of basis
functions used was N D 38. In Fig. 2 we show the error estimates (with and with-
out the correction term from the empirical interpolation) �N .�/ and �corr

N .�/ as
functions of N , compared to the true error e.�/ in the worst-case, for M D 108

andM D 208. In the first case the approximation performed by EIM is too poor and
the correction term wider than in the second test, with a more accurate and rigorous
error estimator. Moreover, in the first test we still have some plateau effect to be
reduced [12]. ForM D 208we observe a reduction of 140:1 in the time to solve the
RB system versus the assembling and solution of the FE system, while the reduction
in the linear system size is 400:1.

Including the cost of the offline stage, we estimate that after 500 parametric PDE
solutions we have passed the break-even point where RB computations are more
efficient. The use of FFD also reduces the number of shape parameters: compared
to a local boundary variations approach by moving individual mesh nodes we obtain
a reduction of 238:1 in the number of geometric parameters. In Fig. 3 the optimal
design for two particular configurations, together with the field solutions, are shown.

4 Conclusions

A reduced basis approximation for a shape optimization problem in a thermal flow
has been presented. Recovering the assumption of parametric affinity is impor-
tant to obtain a reduction in the online computational costs. When the geometric
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Fig. 3 Optimal design of the airfoil for the cases �0 D 7ı, utarget D 4:1 (left) and �0 D �5ı,
utarget D 4:5 (right)

transformation map is polynomial, only the diffusive transformation tensor needs to
be treated with the empirical interpolation method. This leads to a correction term
in the a posteriori error bounds. We have demonstrated that the correction term is
rigorous. In the proposed shape optimization problem of an airfoil in thermal flow
with four shape parameters we observed a reduction of 140:1 in the computational
time to solve the RB system versus the assembling procedure and the solution of the
FE system.
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Constrained Approximation in hp-FEM:
Unsymmetric Subdivisions and Multi-Level
Hanging Nodes

Andreas Schröder

Abstract In conform hp-finite element schemes on irregular meshes, one has to
ensure the finite element functions to be continuous across edges and faces in
the presence of hanging nodes. A key approach is to constrain the appropriate
shape functions using so-called connectivity matrices. In this work the connectivity
matrices for hierarchical tensor product shape functions are explicitly determined.
In particular, the presented approach includes both unsymmetric subdivisions and
multi-level hanging nodes not using hierarchical or multi-level information of
subdivisions. Moreover, the problem of edge and face orientations is considered.

1 Introduction

In adaptive finite element schemes, local refinements are typically realized by subdi-
visions of mesh elements. Using conform finite element schemes, one has to ensure
the finite element functions to be continuous across edges and faces. In the presence
of hanging or irregular nodes, this is done through constraint of the local basis func-
tions associated to them and to adjacent irregular edges and faces, which is known
as constrained approximation. A natural approach is to use connectivity matrices in
the assembly process. Let T WD fT0; T1; : : : ; g be a mesh subordinate to ˝ � R

k ,
k 2 f2; 3g, where T i \T j is empty or a vertex, an edge or a face of Ti or Tj , i ¤ j .
Furthermore, let �T W OT ! T 2 T be a bijective and sufficiently smooth mapping
for some reference element OT , e.g., OT WD Œ�1; 1�k for quadrangles or hexahedrons,
and let PT be a finite polynomial space on OT . Thus, the space of piecewise contin-
uous polynomials is defined as S WD fv 2 C 0.˝/ j 8T 2 T W vjT ı �T 2PT g.
We denote the global basis functions of S by f'ig0�i<n and the local basis func-
tions of PT by f�T;ig0�i<nT

. The matrices 
T 2 R
n
nT , T 2 T , connecting the

local and global basis functions are called connectivity matrices and are given by
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'i jT D
PnT �1
jD0 
T;ij�T;j ı ��1

T . The assembly of the stiffness matrix K and the

load vector F is thus given by K WD P
T2T 
TKT


>
T and F WD P

T2T 
TFT
for the local stiffness matrices KT 2 R

nT 
nT and local load vectors FT 2 R
nT ,

T 2 T .
A fundamental problem in finite element implementations is to provide con-

nectivity matrices through suitable data structures as their computation is highly
dependent on the choice of shape functions and refinement patterns. Moreover,
the edge and face orientations have to be taken into account. If mesh elements
containing hanging nodes are subdivided, multi-level hanging nodes occur. This
significantly complicates the computation of the connectivity matrices and, in par-
ticular, their implementation. Therefore, most finite element codes do not allow for
more than one hanging node per edge or face.

In the literature, connectivity matrices, their calculation and several data struc-
tures are described. In [1], the constraints are stated for integrated Legendre shape
functions on quadrangles. Also, the extension to multi-level hp-refinement is dis-
cussed. The constraints are inserted via data structures representing a sparse data
format for connectivity matrices. In [3], some data structure arrays for quadrangles
storing the constraint information are proposed which also describe connectivity
matrices in sparse data format. Similar approaches are suggested in [2, 4, 7, 11, 12].
A broad overview on data structures and algorithms for constrained approximation
in 2D and 3D is given in the comprehensive monographs by Demkowicz et al. [5,6].

The aim of this work is to compute the connectivity matrices for hierarchical
tensor product shape functions including both unsymmetric subdivisions and multi-
level hanging nodes. The basic idea is to consider an irregular face as a subset of a
regular face regardless of whether it results from a multi-level, symmetric or unsym-
metric subdivision and to compute the entries of the connectivity matrices from this
information only. Hence, no hierarchical or multi-level information of the subdivi-
sions is needed. This simplifies the implementation greatly. A further emphasis of
this work is on edge and face orientations and on implementation aspects based on
some simple data structures for the storage of mesh elements.

2 Tensor Product Shape Functions of Legendre Type

Tensor product shape functions based on integrated Legendre or Gauss–Lobatto
polynomials are a widely used family of shape functions for higher-order FEM.
Using Gegenbauer polynomials fG%i gi2N0

defined as .i C 1/G
%
iC1.x/ D 2.i C

%/xG
%
i .x/ � .i C 2% � 1/G%i�1.x/ with % 2 R, G%0 .x/ WD 1 and G%1 .x/ WD 2%x,

we obtain integrated Legendre (ˇi WD 1) or Gauss–Lobatto (ˇi WD
p
.2i � 1/=2)

polynomials �0.x/ WD 1
2
.1 � x/, �1.x/ WD 1

2
.1 C x/, and �i .x/ WD ˇiG

�1=2
i .x/

for i D 2; : : : ; p. Tensor product shape functions are constructed on the unit cube
Œ�1; 1�k via

�˛.x/ WD
k�1Y
rD0

�˛r
.xr /; x 2 R

k
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Fig. 1 Index tuple identifying nodes, edges and faces of the reference cube

for a k-tuple ˛ with ˛r 2 f0; : : : ; prg, 0 � r < k and local polynomial degrees
p0; : : : ; pk�1 � 1, cf. [8, Chap. 3]. Usually, the shape functions are separated into
nodal, edge, face and inner modes. For this purpose, we associate a node, an edge or
a face to a k-tuple with values in f0; 1; 2g as shown in Fig. 1 and the unit cube itself
to the k-tuple .2; : : : ; 2/. In the following, let b be such a k-tuple. Typically, one also
introduces additional local polynomial degrees for edges and faces, for instance, to
ensure the minimum rule, cf. [11]. We denote these degrees by pbr 2 f1; : : : ; prg
for all r D 0; : : : ; k � 1 with br D 2. With these preparations at hand, the modes
associated to b are f�˛g˛2Ib with

I b WD f˛ j ˛r WD br if br 2 f0; 1g; otherwise ˛r 2 f2; : : : ; pbr gg:

Also serendipity shape functions with reduced number of face and inner modes
(cf. [8]) can be captured using this notation. Let qb be a polynomial degree which
is assigned to b and let ` be the dimension of the object associated to b. With
pbr WD qb � 2.` � 1/, the index set is given by QI b WD f˛ 2 I b j Pk�1

rD0; br D2 ˛r 2
f2`; : : : ; qbgg. In most finite element implementations, a mesh element T 2 T
is represented by a special data structure which enables the storage of informa-
tion like coordinates, polynomial degrees, global numbering or to generate some
information about the combinatorial structure of the mesh element. A simple data
structure is given by the representation of T through GT D .G0T ; : : : ; G

k�1
T / 2

.G0/
�0�: : :�.Gk�1/�k�1 where �` WD �k` WD 2k�`kŠ=.`Š.k�`/Š/ denotes the num-

ber of `-dimensional adjacent objects in a k-dimensional cube. The set G0 � R
k

represents the set of all nodes of T , G` � .G0/2
`

of all edges or faces of T ,
0 � ` < k, respectively. For completeness, we define Gk WD fG0T j T 2 T g.
A natural orientation of edges and faces is shown in Fig. 2a, which is equivalently
given by the matrices

I 1;2 WD
�
0 1 3 0

1 2 2 3

�
; I 1;3 WD

�
0 1 3 0 0 1 2 3 4 5

1 2 2 3 4 5 6 7 5 6

7 4

6 7

�
; I 2;3 WD

0
BB@

0 1 3 4 0 0

1 2 2 5 3 1

2 6 6 6 7 5

3 5 7 7 4 4

1
CCA :

Here, the entries of the j -th column denotes the node indices of the edge or face
with index j . We assume that for all 1 � ` < k and 0 � � < �`, there exists a
unique 0 � i < 2` such that
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a b

Fig. 2 (a) Edge and face orientations in the reference element, (b) non matching orientations

.G0T /I `;k
0;


D ..G`T /�/i : (1)

We denote this index by g.GT ; `; �/. Furthermore, we assume that for all 1 � ` < k
and 0 � � < �` there exists a unique ı 2 f�1; 1g such that

.G0T /I `;k
i;


D ..G`T /�/.g.GT ;`;�/Cıi/mod2` (2)

for all 0 � i < 2`. Given h.GT ; `; �/ WD ı, we obtain g.GT ; 1; 4/ D 1,
h.GT ; 1; 4/ D �1, g.GT ; 2; 5/ D 2 and h.GT ; 2; 5/ D �1 in Fig. 2b. Conditions
(1) and (2) ensure, that the edges and faces consist of the nodes given by G0T and
that they can be transferred to the reference edge or face by rotation or reflections,
respectively.

The approximation space S is defined through a degree distribution which is
given by the global polynomial degrees p.G/0; : : : ; p.G/`�1. Here, G 2 G`, 1 �
` � k represents a non-hanging or regular edge, face or a mesh element in T .
In the case that G represents a face, we associate p.G/0 to the direction given
by the nodes G0 and G1, and p.G/1 to the direction given by G1 and G2. In the
following, let M.G; ˇ/ be a suitable global numbering where ˇ is an `-tuple with
ˇr 2 f2; : : : ; p.G/rg, 0 � r < ` which denotes the modes associated to G.

In the following, let b.G/ be the k-tuple associated to G D .G`T /� for some
0 � ` < k, 0 � � < �` or to G D G0T with ` D k. Furthermore, let ˛ 2
I b.G/. To construct continuous functions, we have to adjust the edge and face modes
to the orientation of G given by the mappings g and h. This adjustment may be
done switching the entries in ˛ or using a sign number �.˛/. For this purpose, we
specify the local polynomial degrees pb.G/r , the `-tuple ˇ.˛/ and the sign number
�.˛/. In the case ` D 1, we set pb.G/r WD p.G/0, ˇ.˛/0 WD ˛r and �.˛/ D
h.GT ; 1; �/

ˇ.˛/0 for the unique r 2 f0; : : : ; k � 1g with b.G/r D 2. In the case
` D 2, we have unique r0; r1 2 f0; : : : ; k � 1g with b.G/r0 D b.G/r1 D 2 and
r0 < r1. Here, we distinguish four cases depending on the values of f .GT ; �/ WD
.g.GT ; 2; �/ C .h.GT ; 2; �/ � 1/=2/mod4 2 f0; : : : ; 3g. For j D 0; 1, we define
p
b.G/
rj WD p.G/j , ˇ.˛/j D ˛rj if f .GT ; �/ 2 f0; 2g, and pb.G/r.j C1/ mod 2

WD p.G/j
and ˇ.˛/.jC1/mod2 D ˛rj otherwise. Furthermore, we set

�.˛/ WD .�0h.GT ; 2; �//ˇ.˛/0�ˇ.˛/11
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with �i WD 1, i D 0; 1, if f .GT ; �/ 2 fi; i C 1g, and �i WD �1 otherwise. For
completeness, we define pb.G/j WD p.G/j , j D 0; 1; 2, and ˇ.˛/ D ˛, if ` D 3, and
�.˛/ WD 1 if ` 2 f0; kg. Using all these preparations, the connectivity matrices are
given by


T;M.G;ˇ.˛//;mT .˛/ WD �.˛/ (3)

wheremT .˛/ is a suitable local numbering, cf. [8, Chap. 4.1.5.1]. All entries which
are not captured by (3) are set to 0. Note that we implicitly assume that �T maps
the vertices of the unit cube onto the nodes G0� in the same order as given in Fig. 1.
This is, e.g., done by �T WDP0��<2k �b..G0

T
/
/
.G0T /� .

3 Constraints Coefficients and Multi-Level Hanging Nodes

To calculate the connectivity matrices for elements with irregular nodes, edges or
faces, we introduce a further data structure GF D .G0F ; : : : ; G

k�2
F / 2 Gk�1 �

G Q�1

1 : : :� G
Q�k�2

k�2 , Q�` WD �k�1
`

, which represents an edge F � R
2 or a face F � R

3

of T for k D 2; 3, respectively. Based onGF , we define Qb.G/ as the k�1-tuple with
values in f0; 1; 2g which is associated to the node or edge G D .G`F /� as depicted
in Fig. 1 or to G D G0F with Qb.G/ WD .2; : : : ; 2/. Furthermore, let OF � R

k be the
unique regular edge or face of T with F � OF . We assume that there exists numbers
vr ;wr 2 R, 0 � r < k � 1, such that

˚.��1
F ..G0OF /�// D ��1

F ..G0F /�/; (4)

for all 0 � � < 2` with �F WDP
0��<2k�1 � Qb..G0

F
/
/
.G0F /� and ˚.x/r D vrxr C

wr , vr 2 .0; 1�. Note that �F maps Œ�1; 1�k�1 onto F and that ˚ is a compression.
Furthermore, we assume that

g.GF ; `; �/ D g.G OF ; `; �/; h.GF ; `; �/ D h.G OF ; `; �/ (5)

for all 1 � ` < k � 1 and 0 � � < Q�`. The conditions (4) and (5) ensure that GF
and G OF have the same orientation and ��1

F . OF / is paraxial, cf. Fig. 3a.

a b

Fig. 3 (a) Orientation of F , OF and their edges, (b) irregular 2D mesh for which the generation of
C results in an infinite loop
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Define p.G0F /r WDp.G0OF /r , 0 � r < k � 1, and p..G1F /�/0WDmaxfp..G1OF /�/0;
p.G0OF /�mod2g if .G1F /� represents an irregular edge. Given assumption (4), the basic
problem is to compute the so-called constraints coefficients � O�;� , which are given by

� O� ı ˚ D
X

G2adj.GF /; �2I Qb.G/

� O�;���

for O� 2 I Qb. OG/, adj.GF / WD fG0F g [ f.G`F /� j 0 � ` < k � 2; 0 � � < Q�`g
and OG 2 adj.G OF /. Due to the tensor product structure and the properties of ˚ , the

coefficients are determined by � O�;� D
Q`�1
rD0 N� O�r ;�r

.vr ;wr /, where the coefficients
N�ij .v;w/ solve the problem

�i .vx C w/ D
pX
jD0
N�ij .v;w/�j .x/; x 2 R (6)

for v;w 2 R, cf. [9]. A simple method to calculate the coefficients in (6) is to solve
the linear equation �i .vxs C w/ D Pp

jD0 N�ij .v;w/�j .xs/ with suitable test points
xs 2 .�1; 1/, s D 0; : : : ; p, cf. [11,12]. In most finite element codes, the constraints
coefficients are calculated for v D 0:5 and w 2 f�0:5; 0:5g describing symmetric
subdivisions. In [9], an explicit and recursive formula for N�ij .v;w/ and arbitrary v
and w is derived for the integrated Legendre and Gauss–Lobatto polynomials. This
formula enables us to efficiently calculate the constraints coefficients for arbitrary
subdivisions fulfilling condition (4).

To calculate the entries of the connectivity matrices, two preprocessing steps
have to be accomplished. The first step is to iterate through all faces F of T , all

G 2 adj.GF / and all � 2 I Qb.G/. If G is associated to a regular node, edge or face,
we set B.G; ˇ.�// WD f.G; ˇ.�/; 1/g. Otherwise, we set

B.G; ˇ.�// WD
n
. OG;ˇ. O�/; � O�;�/ j OG 2 adj.G OF /; G ¤ OG; O� 2 I

Qb. OG/; � O�;� ¤ 0
o
:

The second step is to combine the constraints coefficients through

C .G; ˇ/ WD
n
. OG; Ǒ; �/ j . OG; Ǒ; �/ 2 B.G; ˇ/; OG regular

o ]

. OG; Ǒ;�/2B.G;ˇ/;

OG irregular

�C . OG;ˇ/

with �f.G0; ˇ0; �0/; .G1; ˇ1; �1/; : : :g WD f.G0; ˇ0; ��0/; .G1; ˇ1; ��1/; : : :g and

C0 ] C1 WDf.G; ˇ; �/ j .G; ˇ; �/ 2 C0; 6 9�0 W .G; ˇ; �0/ 2 C1g
[ f.G; ˇ; �/ j .G; ˇ; �/ 2 C1; 6 9�0 W .G; ˇ; �0/ 2 C0g
[ f.G; ˇ; � C �0/ j .G; ˇ; �/ 2 C0; 9�0 W .G; ˇ; �0/ 2 C1g:
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Using these sets, the entries of the connectivity matrix for a mesh element T 2 T
are computed using an extension of (3): For G D .G`T /� 2 G ` and ˛ 2 I b.G/, we
set



T;M. OG; Ǒ/;mT .˛/

WD �.˛/�
for all . OG; Ǒ; �/ 2 C .G; ˇ.˛//.

Note that there are some (possibly artificial) cases for which the recursive defini-
tion of C results in an infinite loop over the hanging nodes. A 2D-example for such
a situation is given in Fig. 3b for hanging nodes A, B, C and D. For implementation
purposes, we need the data structures GT and GF to represent mesh elements and
faces. Furthermore, we need a mapping which gives us the regular face OF for an
irregular face F with F � OF . Such a mapping is easily generated during the refine-
ment process of a regular coarse mesh. The proposed approach may be extended
to higher-dimensional mesh elements (k � 4), given an appropriate definition of
p
b.G/
r , ˇ.˛/ and �.˛/.

4 Numerical Results

In this section, we give some numerical results on the application of unsymmetric
subdivisions and multi-level hanging nodes in 2D and 3D. The problem under con-
sideration is Poisson’s problem ��u D f on an L-shaped domain and on a cube.
The right-hand side f and the boundary conditions are chosen so that u has a cor-
ner singularity in the re-entrant corner of the L-shaped domain and at one corner
of the cube, respectively. We use serendipity shape functions and adapt the finite
element mesh with symmetric (symm.) as well as unsymmetric (unsymm.) subdi-
visions at the corner and an increasing polynomial degree distribution. Figure 4d
shows such an unsymmetric refinement for a cube with polynomial degrees marked
by grey scales. Moreover, we use an automatic hp-adaptive scheme based on two
a posteriori error estimators �T and Q�T which estimate the local discretization error
on T 2 T for different degree distributions pT � QpT . Using well-known a pri-
ori estimates, we estimate the local regularity %T of u with %T 
 log. Q�T =�T /

log.pT = QpT /
C 1.

We increase the polynomial degree if %T � QpT , and refine T otherwise. For more
details, see [10]. We use this strategy for symmetric (Fig. 4a,b – adaptive) as well
as unsymmetric subdivisions (Fig. 4c – unsymm. 2). In Fig. 4c, only the polynomial
degree is adapted whereas in Fig. 4a,e, both the polynomial degree and the mesh are
adapted with multi-level hanging nodes. For all these hp-adaptive refinements, we
obtain exponential convergence rates (Fig. 4f for the L-shaped domain and Fig. 4h
for the cube). Additional refinements of all mesh elements with multi-level hanging
nodes can be applied to ensure 1-irregularity of the mesh. However, in our numeri-
cal experiments with automatic hp-adaptive schemes on the L-shaped domain, the
exponential convergence is lost, see Fig. 4g. This is due to the fact that only mesh
elements at the corner are refined in the first steps of the adaptive refinement so
that multi-level hanging nodes do not occur; but thereafter some mesh elements
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Fig. 4 hp-adaptive meshes in 2D and 3D and convergence rates

are refined which are not at the re-entrant corner so that multi-level hanging nodes
are generated. The additional refinements for the elimination of multi-level hanging
nodes leads to further multi-level hanging nodes on the next layer and so on. In the
end, an almost global refinement is performed, which results in the decrease of the
convergence rate, see Fig. 4b. This underlines the benefit of schemes which are able
to handle multi-level hanging nodes.
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with hp-adaptive finite elements. Vol. II: Frontiers: Three-dimensional elliptic and Maxwell
problems with applications. Chapman & Hall/CRC (2008)

7. Frauenfelder, P., Lage, C.: Concepts – an object-oriented software package for partial
differential equations. M2AN, Math. Model Numer. Anal. 36(5), 937–951 (2002)

8. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp element methods for computational fluid dynam-
ics. 2nd ed. Numerical Mathematics and Scientific Computation. Oxford University Press,
Oxford (2005)
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High Order Filter Methods for Wide Range
of Compressible Flow Speeds

H.C. Yee and Björn Sjögreen

Abstract This paper extends the accuracy of the high order nonlinear filter finite
difference method of Yee and Sjögreen [Development of Low Dissipative High
Order Filter Schemes for Multiscale Navier-Stokes/MHD Systems, J. Comput. Phys.,
225 (2007) 910–934] and Sjögreen and Yee [Multiresolution Wavelet Based Adap-
tive Numerical Dissipation Control for Shock-Turbulence Computation, RIACS
Technical Report TR01.01, NASA Ames research center (Oct 2000); Also J. Scient.
Comput., 20 (2004) 211–255] for compressible turbulence with strong shocks to a
wider range of flow speeds without having to tune the key filter parameter. Such
a filter method consists of two steps: a full time step using a spatially high-order
non-dissipative base scheme, followed by a post-processing filter step. The post-
processing filter step consists of the products of wavelet-based flow sensors and
nonlinear numerical dissipations. For low speed turbulent flows and long time inte-
gration of smooth flows, the existing flow sensor relies on tuning the amount of
shock-dissipation in order to obtain highly accurate turbulent numerical solutions.
The improvement proposed here is to solve the conservative skew-symmetric form
of the governing equations in conjunction with an added flow speed and shock
strength indicator to minimize the tuning of the key filter parameter. Test cases
illustrate the improved accuracy by the proposed ideas without tuning the key filter
parameter of the nonlinear filter step.

1 Original High Order Filter Method

Consider the 3-D compressible Euler equations in Cartesian geometry,
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Here the velocity vector u D .u; v;w/T , the momentum vector m D .	u; 	v; 	w/, 	
is the density, and e is the total energy.

For turbulence with shocks, instead of solely relying on very high order high-
resolution shock-capturing methods for accuracy, our filter schemes [8, 10–13] take
advantage of the effectiveness of the nonlinear dissipation contained in good shock-
capturing schemes as stabilizing mechanisms at locations where needed. The high
order filter method consists of two steps, a full time step of spatially high order
base scheme and a post-processing nonlinear filter step. The nonlinear filter con-
sists of the product of an artificial compression method indicator or wavelet flow
sensor and the nonlinear dissipative portion of a high-resolution shock-capturing
scheme (e.g., any TVD, MUSCL, ENO, or WENO scheme). By design, the flow
sensors, spatial base schemes and nonlinear dissipation models are standalone mod-
ules. Therefore, a whole class of low dissipative high order schemes can be derived
with ease. Unlike standard shock-capturing and/or hybrid shock-capturing methods,
the nonlinear filter method requires one Riemann solve per dimension, independent
of time discretizations. The nonlinear filter method is more efficient than its shock-
capturing method counterparts employing the same order of the respective methods.
An advantage of the wavelet flow sensor of the filter method is that for problems
with physical dissipation the more scales that are resolved, the less the filter is uti-
lized, thereby gaining accuracy and computation time. In the limit when all scales
are resolved, we are left with a “pure” centered high order spatial scheme without
added numerical dissipation.

For viscous gas dynamics the same order of spatial centered base scheme for the
convection terms and the viscous terms are employed. For all of the time-accurate
test cases, the classical fourth-order Runge–Kutta time discretization is employed.
In a Cartesian grid, denote the grid indices for the three spatial directions as .j; k; l/.
The spatial base scheme to approximate the x inviscid flux derivatives F.U /x (with
the grid indices k and l for the y- and z-directions suppressed) is written as

@F

@x

 D08Fj ; (2)

where D08 is the standard eighth-order accurate centered difference operator.
After the completion of a full Runge–Kutta time step of the base scheme

step, the second step is to adaptively apply a nonlinear filter. The nonlinear filter
can be obtained e.g., in the x-direction by taking the full seventh-order WENO
scheme (WENO7) for the inviscid flux derivative in the x-direction and subtracting
D08Fj . The final update of the solution is (with the numerical fluxes in the y- and
z-directions suppressed)

U nC1
j;k;l
D U �

j;k;l �
�t

�x
ŒHjC1=2 �Hj�1=2�: (3)

The nonlinear filter numerical fluxes usually involve the use of field-by-field
approximate Riemann solvers. If Roe type of approximate Riemann solver [7] is
employed, for example, the x-filter numerical flux vectorHjC1=2 is
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HjC1=2 D RjC1=2H jC1=2;

whereRjC1=2 is the matrix of right eigenvectors of the Jacobian of the inviscid flux
vector in terms of the Roe’s average states evaluated at theU � solution from the base

scheme step. Denote the elements of the vectorH jC1=2 by h
l

jC1=2; l D 1; 2; : : : ; 5.

The nonlinear portion of the filter h
l

jC1=2 has the form

h
l

jC1=2 D
�

2
!ljC1=2�

l
jC1=2: (4)

Here !l
jC1=2 is the wavelet flow sensor to activate the nonlinear numerical dissipa-

tion �l
jC1=2 and the original formulation for � is a positive parameter that is less than

or equal to one. Some tuning of the parameter � is needed for different flow types. It
is the purposes of this work to develop a new � to be a local variable depending on
the local Mach number for low speed flows and depending on local shock strength
for high speed flows.

The dissipative portion of the nonlinear filter �l
jC1=2 D gl

jC1=2 � bljC1=2 is the

dissipative portion of WENO7 for the local l th-characteristic wave. Here gl
jC1=2

and bl
jC1=2 are numerical fluxes of WENO7 and the eighth-order central scheme

for the l th characteristic, respectively. Hereafter, we denote this filter scheme as
WENO7fi. For all of the computations, a three-level second-order Harten multires-
olution wavelet decomposition of the computed density and pressure is used as the
flow sensor [8].

A summary of the three basic steps to obtain !l
jC1=2 can be found in Sjögreen

and Yee [8] and Yee and Sjögreen [11]. For example, the flow sensor !l
jC1=2 to turn

on the shock-capturing dissipation using the cut off procedure is a vector (if applied
dimension-by-dimension) consisting of “1’s” and “0’s.”

2 Improved High Order Filter Method

The improvements proposed here for the original high order filter method are to
solve the conservative skew-symmetric form of the governing equations [2] in con-
junction with a new flow speed indicator to minimize the tuning of the key filter
parameter � in (4). It works well for Mach speeds below 1:5. Before present-
ing representative test cases, a relevant summary on the recent improvements is
described.

Studies found that employing the entropy splitting [13] of the inviscid flux deriva-
tive can stabilize the central base scheme for smooth flows. Indirectly, less numerical
dissipation is needed when the split form is used. Unfortunately, entropy splitting is
not suitable for problems with moderate and strong shocks as the split form is not
conservative. The conservative skew-symmetric splitting [2, 9] of the inviscid flux
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derivative can also stabilize the central base scheme. In addition, it is suitable for
smooth flows and for problems containing strong shocks. In this study, in order to
stabilize (minimize the use of added numerical dissipation for accuracy) the base
scheme step for a wider range of flow conditions, the conservative skew-symmetric
splitting is utilized. See [9] for a comparison of different skew-symmetric splittings
of the inviscid flux derivative.

Previous numerical experiments on a wide range of flow conditions indicated
that the filter scheme improves the overall accuracy of the computation compared
with standard shock-capturing schemes of the same order. Studies found that the
improved accuracy is more pronounced if the parameter � in (4) is tuned according
to the flow type. For hypersonic flows with strong shocks, � is set to 1. For high
subsonic and supersonic flows with strong shocks, � is in the range of .0:3; 0:9/. For
low speed turbulent flows without shocks or long time integration of smooth flows,
� can be one to two orders of magnitude smaller than 1. In other words, � should
be flow location and shock strength dependent. The proposed new flow sensor to be
discussed later will take these two factors into consideration. Here a simple minded
modification of � is illustrated with representative numerical examples.

Inspired by Li and Gu’s method to overcome the shortcomings of “low speed Roe
scheme” [6], we modified their flow speed indicator formula to obtain a modified �
denoted by � for (4) to minimize the tuning of the original � for low Mach number
flows. � has the form:

� D f1.M/�; (5)

with

f1.M/ D min

�
M 2

2

p
4C .1 �M 2/2

1CM 2
; 1

�
: (6)

Here M is the maximum Mach number of the entire computational domain at the
initial stage of the time evolution (i.e., the free stream Mach number M1). f1.M/

has the same form as [6] except there is an extra factor “M
2

” added to the first argu-
ment on the right-hand-side of the original form f .M/ in (18) of [6]. The added
factor provides a similar value of the tuning � observed from numerical experimen-
tation. With the flow speed indicator f1.M/ in front of �, the same � used for the
supersonic shock problem can be used without any tuning for the very low speed
turbulent flow cases. This sensor is evaluated only once before the first time step.
Later,

f1.M/ D max.min.
M 2

2

p
4C .1 �M 2/2

1CM 2
; 1/; �/;

where � is a small threshold value to avoid completely switching off the dissipation.
A function which retains the majority of f1.M/ but includes larger Mach number
for not very strong shocks is

f2.M/ D .Q.M; 2/CQ.M; 3:5//=2

or
f2.M/ D max..Q.M; 2/CQ.M; 3:5//=2; �/;
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Fig. 1 Mach number sensors. f .M/ (blue) function by Li and Gu, f1.M/ (red) modified f .M/,
and f2.M/ (black) (includes low supersonic Mach numbers)

where

Q.M; a/ D
(
P.M=a/ M < a

1 otherwise
:

The polynomial
P.x/ D x4.35� 84x C 70x2 � 20x3/

is monotonically increasing from P.0/ D 0 to P.1/ D 1 and has the property
that P 0.x/ has three continuous derivatives at x D 0 and at x D 1. Numerical
experiments indicate that setting � D 0:7works well for a wide range of flow speeds
below hypersonic. The next section illustrates several representative test cases. It is
noted that if the original f .M/ were used instead of f1.M/ or f2.M/ in (5), the
amount of nonlinear filter dissipation can be too large for very low speed turbulent
flows (for the same fixed �). See Fig. 1 for details.

3 Numerical Results

Three different flow types are considered for the numerical experiments. A
1-D supersonic shock/turbulence interaction problem, a 3-D low speed turbulence
problem without shocks (Taylor–Green vortex [1]), and a high speed compressible
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isotropic turbulence with shocklets [5]. For all of the test cases, � D 0:7 and the
skew-symmetric form of the inviscid flux derivative is employed. The accuracy
comparison is among WENO7, WENO7fi and the improved version of WENO7fi
discussed above by replacing � in (4) by � (hereafter denoted by WENO7fiM). All
computations use uniform Cartesian grids.

3.1 1-D Shock/Turbulence Interaction Problem

This 1-D compressible inviscid ideal gas problem is one of the most computed test
cases in the literature to assess the capability of a shock-capturing scheme in the
presence of shock/turbulence interactions. The flow consists of a shock at Mach 3
propagating into a sinusoidal density field with initial data given by

.	L; uL; pL/ D .3:857143; 2:629369; 10:33333/ (7)

to the left of a shock located at x D �4, and

.	R; uR; pR/ D .1C 0:2 sin.5x/; 0; 1/ (8)

to the right of the shock, where 	 is the density, u is the velocity andp is the pressure.
The computational domain is Œ�5; 5� and the computation stops at time equal to 1:8.

Figure 2 shows the comparison among WENO7 and WENO7fiM using a very
coarse uniform grid of 201 with the reference solution. The reference solution is
obtained with WENO5 using a 16,000 grid. The two schemes give the similar accu-
racy near shock waves but with a large difference in accuracy in the fluctuation
region where WENO7fiM is more accurate than WENO7. The result by WENO7fi
is the same as WENO7fiM since f .M/ is nearly 1. Note that in order for WENO5 to
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Fig. 2 1-D shock-turbulence interaction: Enlarge region of density profiles (left) and entropy pro-
files (right) by WENO7 (red) and WENO7fiM (green) using a 201 grid. The solid black line is the
reference solution
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obtain a similar accuracy as WENO7fi, nearly three times the number of grid point

3.2 Taylor–Green Vortex

The second test case solves the 3-D Euler equations of gas dynamics with � D 5=3
and with initial data

	.0; x; y; z/ D 1 (9)

u.0; x; y; z/ D sin.x/ cos.y/ cos.z/ (10)

v.0; x; y; z/ D � cos.x/ sin.y/ cos.z/ (11)

w.0; x; y; z/ D 0 (12)

p.0; x; y; z/ D 100C 1

16
..cos.2z/C 2/.cos.2x/C cos.2y// � 2/ (13)

on the computational domain Œ0; 2
� � Œ0; 2
� � Œ0; 2
�. Here u; v;w are the three
velocity components. The mean pressure is sufficiently high to make the problem
essentially incompressible. This is known as a Taylor–Green vortex [1]. The com-
putation stops at a total time equal to 10. The boundary conditions are periodic. The
initial data are smooth, but the scales in the solution become smaller and smaller
with time. The enstrophy (the square of the L2 norm of the curl of the velocity) is
often used as a measure of the content of small scales in the solution.

Figure 3 shows the temporal evolution of the mean kinetic energy,< 	ui ; ui> =2,
and enstrophy,< !i ; !i> =2, where ! D r��u is the vorticity, normalized by their
initial values. The three schemes give very different accuracy using the same 643

grid. WENO7 is the least accurate and WENO7fiM is the most accurate. For the
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Fig. 3 Taylor–Green vortex: Kinetic energy (left) and enstropy (right) by WENO7 (red),
WENO7fi (blue) and WENO7fiM (green) using a 643 grid. The solid black line is the reference
solution by WENO7fi using a 2563 grid

is needed.
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computed kinetic energy, the solution by WENO7fiM (green line) using a 643 grid
is in-distinguishable from the reference solution (black line). The results indicate
that with �, the same � used for the first test case with the Mach 3 shock can be used
for this nearly incompressible test case with high accuracy.

3.3 Compressible Isotropic Turbulence with Shocklets

The third test case is a 3-D viscous decaying isotropic turbulence with eddy shock-
lets Given a sufficiently high turbulent Mach number,Mt D 0:6, and a high Taylor
scale Reynolds number, Re� D 100, eddy shocklets develop spontaneously from
the turbulent motions. This problem tests the ability of the methods to handle ran-
domly distributed shocklets, as well as the accuracy for broadband motions in the
presence of shocks.

The gas constant is � D 1:4, and the viscosity is assumed to follow a power-law

�

�ref
D
�
T

Tref

�3=4
: (14)

Here �ref D 0:005 and Tref D 1. The heat conduction coefficient is

�.T / D �R

P r.� � 1/�s.T / (15)

where the Prandtl number, Pr, is 0.7. The important parameters are Mt and Re�,
defined as

Mt D
p
3urms

< c >
; Re� D < 	 > urms�

< � >
; urms D

r
< uiui >

3
; (16)

where

� D �x C �y C �z

3
; �2x D

< u2 >

< u2x >
; �2y D

< v2 >

< v2y >
; �2z D

< w2 >

< w2z >
: (17)

The root mean square velocity is

u2rms D
1

3
.< u2 C v2 C w2 > �.< u >2 C < v >2 C < w >2//; (18)

and the speed of sound is c2 D �p=	. See [4] for the initial disturbance setup.
Figure 4 shows root mean square (RMS) of density, pressure and temperature by

WENO7 and WENO7fiM using a 643 grid compared with the reference solution
by WENO7fi using a 2563 grid. Again WENO7fiM is more accurate than WENO7.
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Fig. 4 Isotropic turbulence
with shocklets: Comparison
of RMS quantities by
WENO7 (red) and
WENO7fiM (green) using a
643 grid. The solid black line
is the reference solution by
WENO7fi using a 2563 grid
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However, the accuracy improvement by WENO7fiM is not as pronounced as in
the first two test cases. The result by WENO7fi is the same as WENO7fiM since
f1.M/ is 1. The simple minded improvement proposed here to minimize the use of
added numerical dissipation has been demonstrated for three less complicated flow
types. Solving the conservative skew-symmetric form of the governing equation in
conjunction with an added flow speed indicator has been shown to improve accuracy
using the same key filter parameter �.

4 New Flow Sensor for a Wide Spectrum of Flow Speed
and Shock Strength

As evident from the numerical examples, a new � in front of the wavelet flow sensor
(4) is desirable for providing the location, and correct amount of numerical dissi-
pation to be employed by high order numerical schemes for as wide a spectrum
of flow speed as possible with the least number (and effort) of tuning parameters.
Thus, the new � has to be a local variable depending on the local Mach number
for low speed flows and depending on local shock strength for high speed flows.
The level of increasing complexity for the new � can be investigated by the fol-
lowing stages. The modified � proposed earlier is a good choice for smooth and/or
nearly incompressible flows even though � is based merely on the freestream Mach
number of the flow. Thus, for up to low supersonic speed, for efficiency, the first
level of improvement is to make a time-dependent global � based on the maxi-
mum Mach number of the entire flow field at each time evolution. The second level
of improvement is to make a time-dependent local � based on f1.M/ or f2.M/.
For each non-zero wavelet indicator !l

jC1=2, a local � is determined to provide an
appropriate amount of numerical dissipation (between .0; 1/) to be filtered by the
shock-capturing dissipation. For strong shocks, the shock strength should come into
play. One measure of the shock strength can be based on the numerical Schlieren
formula [3] for the chosen variables that exhibit the strongest shock strength. In the
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vicinity of turbulent fluctuation locations, the local kappa will be kept to the same
order as in the nearly incompressible case except in the vicinity of high shear and
shocklets. In other words, we proposed different new � according to the following
increased level of complexity:

� Up to low supersonic speeds, at each time step, a global � is computed according
to the maximum Mach number of the entire flow field and the value is determined
by f1.M/ or f2.M/ proposed earlier for non-zero !l

jC1=2.

� Up to low supersonic speeds, at each time step, a local �l
jC1=2 is computed

according to the local Mach number and the value is determined by f1.M/ or
f2.M/ (at the jC1=2 grid index) proposed earlier for non-zero!l

jC1=2. In other
word, the filter numerical flux indicated in (4) is replaced by:

h
l

jC1=2 D
1

2
Œ�ljC1=2!

l
jC1=2�

l
jC1=2�: (19)

� Same as above except now the final value of �l
jC1=2 is determined by the previous

local kappa if the local Mach number is below 0:4. Above local Mach number
0:4, at discontinuities detected by the wavelet sensor, the local kappa is deter-
mined by the shock strength (normalized between .0; 1/) based on the Schlieren
formula near discontinuities. At turbulent fluctuation locations, determined by
the Ducros et al. sensor, the local kappa is kept to the same order as in the nearly
incompressible case except in the vicinity of high shear and shocklet locations
where a slightly larger kappa would be used.

Due to a space limitation, the results by the local �l
jC1=2 that take the local flow

speed and shock strength into consideration will be reported in an expanded version
of this paper [14]. Preliminary study with more complex shock turbulence problems
and the applicability of even wider flow types indicates the necessity of the local
�l
jC1=2. The financial support from the NASA Fundamental Aeronautics (Hyper-

sonic) program for the first author is gratefully acknowledged. The authors thank the
DOE/SciDAC turbulence Science Team (S. Lele, PI) for providing insights into the
last two test cases. Work by the second author was performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.
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hp-Adaptive CEM in Practical Applications

Adam Zdunek and Waldemar Rachowicz

Abstract A reduced order hp-FE sub-domain based scattering matrix methodol-
ogy suitable for calculating the Radar Cross-Section (RCS) for electrically huge
jet engine air intakes is presented. The efficiency gain in degrees of freedom
obtained by using hp-version FEM instead of classical low order h-version FEM
is shown to be roughly one order of magnitude. The model reduction achieved by
changing from inter-facial FE-d.o.f:s to guided wave participation factors implies
another gain in degrees of freedom which becomes very substantial for air intakes
with electrically large homogeneous sections. It is shown that the modal reduction
can be made without significant loss of accuracy in the cavity-RCS by compar-
ing results obtained using the scattering matrix approach with coupled full wave
hp-version finite element-infinite element (FECIE) and finite element-boundary
element (FECBE) models.

1 Introduction

The scattering characterisation of aircraft configurations remain one of the most
challenging problems in computational Electromagnetics (CEM). Reliable target
identification is a very important task in both military and civilian applications. It
is based on accurate Radar Cross-Section (RCS) calculations. Measurements have
revealed that the jet engine inlets are one of the major contributors to the overall
RCS signature of an airplane. Jet engine inlets are often electrically huge semi-open
channels (L=� 	 200,D=� 	 20). In the military version they are often curved and
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partially coated with radar absorbing materials (RAM) to hide jet engine fan disks
at the far end.

Highly efficient parallelised computational sub-domain techniques have to be
used to predict the RCS of real jet engine air inlets [1]. Different models, discrete
and for simple cross-sections possibly analytical models, may be used and mixed
along the channel to obtain the requested efficiency, accuracy and reliability of the
RCS prediction. We use the hp-version of the Finite Element Method (FEM) for
modelling sections with material inhomogeneities and for modelling the scattering
on the terminating section consisting of disks with irregular jet engine fan blades.
That is, we investigate if we can benefit from the fast (asymptotically exponential)
convergence that characterises the adaptive hp-FEM. For that purpose we use the
hp3d-code equipped with automatic adaptivity developed by Demkowicz and asso-
ciates [4, 5]. The cavity RCS is predicted using the novel and efficient half-space
modelling technique described in [6]. The modelling of the exterior problem may
include either H(curl)-conforming hp-version infinite elements (IE) or hp-version
boundary elements (BEM) (under development), respectively. We also provide cav-
ity RCS predictions based on uncoupled interior problem analysis and the Kirchhoff
aperture integration procedure. The diffraction at the aperture rim is neglected in
this case. The efficiency gain and modelling error introduced using this simplified
approach is discussed. Calderon operators of the boundary admittance type are used
to represent and couple sub-domains. These may be built using different discretiza-
tions. In order to assemble sub-domain contributions from different discretizations
we project the contributions of coupling neighbours onto an auxiliary complete
basis at the common interface. A choice we investigate for a homogeneous chan-
nel cross-section is the waveguide modal basis. The use of truncated projections
of discrete hp-version FEM type Calderon sub-domain operators is investigated. It
will be shown that efficiency can be gained in this way without significant loss of
accuracy and reliability.

We illustrate our methodology using a generic but non-trivial cylindrical channel
test cases described in [2] and shown in Fig. 1. In this conference paper we focus
on the simpler PEC channel denoted TCA2. The RCS for the RAM coated version
TCA4 are left aside here. The cone at the bottom represents a simplified jet engine
hub. Its sharp apex as well as the RAM interface causes singularities in the electro-
magnetic solution field. The efficiency and accuracy of uniform p- and h-extensions
are studied in terms of the quantity of interest, RCS.

2 The Scattering Matrix Based Approach [1–3]

Consider a homogeneous channel with termination, shown in Fig. 1. In reality
the channel is most often so large so it has to be subdivided into sub-domains
˝ D [˝d ; d D 1; 2; : : : ; N each of which can be regarded as a waveguide. The
ports of these waveguides are denoted ˙p; p D 1; 2; : : : ; N C 1. The electromag-
netic fields on these ports can be expanded in terms of a complete set of orthogonal
guided waves.
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Fig. 1 The TCA1, 2 and 4 test cases. Straight circular PEC cylinder. TCA1 with flat termination.
TCA2 and TCA4 have a conical termination

It is assumed that the Neumann-to-Dirichlet operator NtD for the apertures of
sections of the channel is known. Further, an incident field Hin is given. It sat-
isfies the Maxwell equations, but not necessarily the boundary conditions on the
channel ports and bottom. We look for the resulting perturbation Hsc that satisfies
Maxwell’s equations and is such that the total field Hin CHsc also satisfies the
boundary conditions. This is achieved by fulfilling the following requirement:

D.Hin CHsc/ D NtD.N.Hin CHsc// (1)

where D.H/ denotes the Dirichlet-trace of the total magnetic field H, and N.H/
denotes the Neumann-trace of the same field on the aperture, respectively. In pass-
ing, it is noted that (1) is the definition of the NtD-operator for the aperture. On
account of the linearity of the operators D, N and NtD, we have after putting
known contributions on the right hand-side,

D.Hsc/ �NtD.N.Hsc// D � �D.Hin/ �NtD.N.Hin//
�
: (2)

In (2) Hin is given. It is expanded in guided waves .et;n; kz;n/
1
nD1, where et;n

are eigen-functions (TE- and TM-modes) and kz;n are the associated eigen-values,
i.e. the propagation constants. Using the coordinate system depicted in Fig. 1 and
suppressing sequence index n, in-coming travelling waves propagate in the nega-
tive z-direction as expŒ�ikzz�. The participation factors are computed as usual by
L2.˙/-projection. We assume a similar expansion of Hsc in terms of out-going
travelling waves. These propagate in the positive z-direction as expŒCikzz�. By
L2.˙/-projecting the left and right hand-sides of (2) on suitable eigen-functions,
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and using the appropriate orthogonality among them, we obtain an equation for the
participation factors of the out-going waves. With a truncated set of guided waves
(2) provides a linear algebraic equation for the coefficients of the out-going waves
in terms of the coefficients of the in-coming waves. This linear transformation is
recognised to be the so-called Generalised Scattering Matrix (GSM) [3].

3 Results

3.1 Fully Coupled Interior and Exterior Model

We first present results for the PEC test channel TCA2 as described in Fig. 1
obtained by discretizing the half-space exterior to the channel aperture and the
interior of the channel. This is done using the direct FE+IE E-field formulation
described in [6]. That is, we use a half-space so-called PEC ground plane model
with a Physical Optics (PO) correction for the aperture. The monostatic RCS for the
TCA2 channel is computed at 300 MHz vs. the azimuth angle � , for vertical and hor-
izontal polarisations, respectively. The over-kill solution used as a reference for the
full formulation is shown Fig. 2. It is obtained with a relatively coarse mesh of brick
elements with a uniform polynomial ansatz of order p D 7. These brick elements
are iso-parametric so the cylindrical geometry is described very accurately.

In Fig. 3 we present the error in RCS as a function of � for uniform p D 5 and
p D 6 extensions, relative to the over-kill uniform p D 7 solution shown in Fig. 2.
Note that this fully coupled model includes aperture rim diffraction (as opposed
to the scattering matrix model discussed in Sect. 2 which does not). We conclude
that uniform p D 6 is acceptable for engineering purposes. That is for design or
RCS characterisation purposes, where the accuracy of say 0.5 dBsm is regarded
sufficient for the majority of incidence angles. Moreover, in Fig. 3 it can be seen
that the corresponding uniform p=6 mesh is sufficient for engineering purposes.
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Fig. 2 Monostatic RCS vs. azimuth angle � at 300 MHz. Reference solution, fully coupled interior
and exterior model. (a) Horizontal polarisation. (b) Vertical polarisation
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Fig. 4 Error in monostatic RCS vs. azimuth angle � at 300 MHz. Uniform h-refinements. Fully
coupled interior and exterior model. (a) Horizontal polarisation. (b) Vertical polarisation

In Fig. 4 we present the error in RCS as a function of � using a mesh which is
uniformly h-refined. We use the over-kill solution with uniform p D 7 as a refer-
ence. A refinement of type 3 � h8 means that each brick is split in 8 recursively
three times. It is noted that RCS obtained with uniform p D 7 and uniform 3 � h8
p D 2 meshes, respectively, differ markedly at grazing incidence.

In Fig. 5 RCS results for channels with flat termination and conical termination,
are compared, cf Fig. 1. It is seen that the presence of the cone changes the RCS over
a wide range of incidence angles. At normal incidence it lowers the RCS signifi-
cantly, as expected. The RCS-curves for p D 5 and p D 6 cannot be distinguished
within the graphics.

In Fig. 6 we show RCS predictions that are made with the direct E-field based
model [6], compared to preliminary results obtained with a newly developed hp-
FECBE (MFIE) formulation. The novel MFIE results are probably not fully
converged (appropriate tuning of the required accuracy of the BE-formulation is still
under investigation). The difference from the results obtained with the hp-FECIE
model increases as incidence angle increases. The investigation of the cause of the
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sation

discrepancy is out of the scope of this report. It will be investigated elsewhere using
finer discretizations and a more efficient solver. The RCS values are the largest
in magnitude for incidence angles close to normal. These results are therefore of
greater practical value from the engineering point of view. In passing it should be
noted that using a fully hp-adaptive approach with RCS as the quantity of interest
will probably yield meshes that vary with the incidence angle.

3.2 Scattering Matrix Based Interior Only Model

In Fig. 7 we compare RCS results obtained with a low order h-type discretization
with those obtained with our p D 7 reference solution for the scattering matrix
model (with one sub-domain), respectively. It is concluded that there is a large
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Fig. 8 Monostatic RCS vs. azimuth angle � at 300 MHz. Comparison of RCS predicted with a
fully coupled interior and exterior model [6], with RCS obtained with a scattering matrix based
interior only model. (a) Horizontal polarisation. (b) Vertical polarisation

potential efficiency gain using hp-FEM. Note that the h-FEM reference solution
has 4.8 Mdof, while the uniform p-FEM one at p D 7 uses only 0.41 Mdof. That
is, the uniform p-FEM mesh gives an order of magnitude less physical degrees of
freedom than the h-FEM reference solution giving virtually the same RCS accuracy.
Also note that 115 wave-guide modes, i.e. modal degrees of freedom, are sufficient
to capture the RCS of the TCA2 channel for close to normal incidence angles, cf.
Figs. 7 and 8. The number of physical degrees of freedom of the corresponding
aperture FE-mesh is readily a couple of orders larger.

Finally, in Fig. 8 we show RCS predictions that are made with the fully cou-
pled interior plus exterior model [6], compared to those obtained with the scattering
matrix based, uncoupled, model. The fully coupled model includes edge diffraction
at the aperture. Here the aperture rim is sharp. In reality it is not. The RCS for the
two models is close up to � D 35ıfor horizontal polarisation, and up to � D 45ı for
vertical polarisation. This is contrary to common belief that the uncoupled model
delivers good RCS predictions up to � D 60ı regardless of polarisation.
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Anchor Points Matter in ANOVA
Decomposition

Zhongqiang Zhang, Minseok Choi, and George Em Karniadakis

Abstract We focus on the analysis of variance (ANOVA) method for high dimen-
sional approximations employing the Dirac measure. This anchored-ANOVA rep-
resentation converges exponentially fast for certain classes of functions but the
error depends strongly on the anchor points. We employ the concept of “weights
per dimension” to construct a theory that leads to the optimal anchor points. We
then present examples of a function approximation as well as numerical solutions
of the stochastic advection equation up to 500 dimensions using a combination of
anchored-ANOVA and polynomial chaos expansions.

1 Introduction

We consider an N -dimensional function f , which can be decomposed as

f .x1; x2; � � � ; xN / D f0 C
NX
j1D1

fj1
.xj1

/C
NX

j1<j2

fj1;j2
.xj1

; xj2
/

C � � � C fj1;j2;��� ;jN
.xj1;j2;��� ;jN

/; (1)

where f0 is a constant, and fS are jS j-dimensional functions, called the jS j-order
terms. (Here jS j denotes the cardinality of the index set S ). This is the so-called
ANOVA model. Here we consider the domain IN D Œ0; 1�N , in a tensor-product
form. The terms in the ANOVA decomposition are computed as follows

f0 D
Z

Œ0;1�N
f .x/d�.x/: (2a)
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fS D
Z

Œ0;1�N �jSj

f .x/d�.x�S /�
X
T�S

fT.xT /: (2b)

We note that there are several forms of ANOVA decomposition associated with
different measures. Here we focus on the one using the Dirac measure, d�.x/ D
ı.x � c/ dx (c 2 Œ0; 1�), which leads to the anchored-ANOVA decomposition. The
point “c”, which is often arbitrarily selected, is called the “anchor point”. Another
type is based on the Lebesgue measure, d�.x/ D 	.x/ dx; this is the unanchored-
ANOVA decomposition. See [1, 5] for details.

All the distinct ANOVA terms are mutually orthogonal with respect to the
corresponding measure. Hence, for every term fS with S � f1; 2; � � � ; N g, we have

Z

Œ0;1�

fS .xS /d�.xj / D 0; if j 2 S;

and Z

Œ0;1�N
fS .xS /fT .xT /d�.x/ D 0; if S ¤ T:

The order at which we truncate the ANOVA model is called effective dimension,
beyond which the difference between the ANOVA model and the truncated expan-
sion in a certain measure is very small, see [2, 9, 10, 12]. It is not difficult to show
that the variance of f can be a sum of variances of the ANOVA terms

�2.f /D
Z

Œa;b�N
f 2.x/dx�.

Z

Œa;b�N
f .x/dx/2 D

X
;¤S�f1;2;��� ;N g

Z

Œa;b�jSj

f 2S .xS /dxS :

(3)
or in compact form

�2.f / D
X

;¤S�f1;2;��� ;N g
�2S .f /: (4)

The effective dimension of f in the superposition sense is the smallest integer
ds satisfying X

0<jS j�ds

�2S .f / � p�2.f /; (5)

where S � f1; 2; � � � ; N g. This implies that we will ignore terms in the ANONA
model corresponding to more than ds interactions. The effective dimension is mea-
sured in the L2-norm. Note that p is a proportionality constant with 0 < p < 1 and
close to 1, e.g., p D 0:99 in [2].

2 Weights and Effective Dimension

In order to obtain an estimate of the effective dimension, we adopt proper weights,
which weight in some sense the contribution of each dimension. The concept of
weights here is analogous to the concept employed in analyzing the Quasi Monte
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Carlo (QMC) method [11]. In particular, the idea is to define appropriate weights
so that their minimization also leads to minimization of errors in QMC, see [3, 8].
In general, the weights should be in the interval of [0,1]. In addition, most of the
weights should be less than one in order to have a low effective dimension for a
nominally high-dimensional function.

Assuming a function in tensor product form, the weights in [11] were determined
by the mean and the variance of the corresponding one-dimensional functions.
This can be easily seen from the definition of the mean effective dimension [9].
Specifically, given a tensor product function

f .x/ D
NY
kD1

fk.xk/;

the mean and the variance of the function are

�k D
Z 1

0

fk.xk/ dxk <1; k D 1; 2; � � � ; N;

�2k D
Z 1

0

�
fk.xk/� �k

�2
dxk <1; k D 1; 2; � � � ; N:

The ANOVA terms and the corresponding variances are [9]:

fS D
Y
k2S

�
fk.xk/ � �k

� �
Y
k…S

�k ; (6)

�2S .fS / D
Y
k2S

�2k

Y
k…S

�2k:

Then, the weights �k’s are defined as follows:

�k D
�2
k

�2
k

if �k ¤ 0 for k D 1; 2; � � � ; N:

In the unanchored ANOVA (i.e., using the Lebesgue measure), the effective
dimension has a more clear meaning. The truncation error, when the effective
dimension is �, by definition, is estimated as

						
f �

X
jS j��

fS

						

2

L2

� .1 � p/.kf k2 � .
Z

IN

f dx/2/;

where we use the equality kf k2 D .RIN f dx/
2 C �2.f /. Hence, we have
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f �

X
jS j��

fS

						

2

� .1 � p/.1 � .
R
IN f dx

kf k /2/ kf k2

D .1 � p/.
Z

IN

f dx/2.

NY
kD1

.1C �k/� 1/: (7)

Remark 2.1. From (7), we have that

			f �PjS j�� fS
			

kf k � p1 � p.1 �
NY
kD1

.1C �k/�1/ 1
2 < 0:1;

by choosing p D 0:99. In fact, when p is chosen as 0.99 the effective dimension is
not always an integer. The estimate above corresponds to the worst case and, in fact,
the error can be far better; see [9] for specific examples.

Remark 2.2. From the definition of weights, we have that

						
f �

X
jS j��

fS

						

2

D .
Z

IN

f dx/2
NX

mD�C1

X
jS jDm

Y
k2S

�k:

According to (7),

NX
mD�C1

X
jS jDm

Y
k2S

�k � .1 � p/.
NY
kD1

.1C �k/ � 1/: (8)

As already mentioned, when a function is of low effective dimension, the dom-
inating weights are much smaller than one. In fact, if �k ¤ 0 and �k < 1 for all
k D 1; 2; � � � ; N , the mean effective dimension is [9]

ds D
PN
kD1

�k

�kC1
1 �QN

kD1 1
�kC1

D
N �PN

kD1 1
�kC1

1 �QN
kD1 1

�kC1
: (9)

While the previous discussion concerns the ANOVA version with Lebesque
measure, it is by analogy that we can extend the concept of weights to the anchored-
ANOVA as well. To this end, we define the weights using the L1-norm, as
follows:

�k D kfk � fk.ck/k1jfk.ck/j ; when f .c/ ¤ 0: (10)

Lemma 2.3. Assuming that the anchored-ANOVA is truncated at the Q�th order, and
that pQ� satisfies
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NX
mDQ�C1

X
jS jDm

Y
k2S

�k D .1� pQ�/.
NY
kD1

.1C �k/� 1/:

Then, the relative error in L1-norm can be estimated as

			f �PjS j�Q� fS
			
L1

kf kL1

� .1 � pQ�/.
NY
kD1

.1C �k/ � 1/.
NY
kD1

jfk.ck/j
kfkkL1

/: (11)

Also, for one-signed functions, if the anchored points c D .c1; c2; � � � ; cN / are
selected such that

fk.ck/ D 1

2
max
Œ0;1�

fk.xk/C 1

2
min
Œ0;1�

fk.xk/:

Then, �k D
ˇ̌
ˇmaxŒ0;1� fk .xk/�minŒ0;1� fk .xk/

maxŒ0;1� fk.xk /CminŒ0;1� fk .xk/

ˇ̌
ˇ, and it minimizes the weights defined in

(10).
The minimized weights, in turn, minimize the error estimate in the last lemma.

Proof. Recalling the results from the ANOVA using Lebesgue measure with the
same weights, we have

			f �PjS j�� fS
			
L1

kf kL1

D
			f �PjS j�� fS

			
L1QN

kD1 jfk.ck/j

QN
kD1 jfk.ck/j
kf kL1

�
NX

mDQ�C1

X
jS jDm

Y
k2S

�k.

NY
kD1

jfk.ck/j
kfkkL1

/

� .1 � pQ�/.
NY
kD1

.1C �k/� 1/.
NY
kD1

jfk.ck/j
kfkkL1

/:

This proves the error estimate. The following will complete the proof of how to
minimize weights.

Suppose that fk does not change sign over the interval Œ0; 1�. Without loss of
generality, let fk > 0. Denote the maximum and the minimum of fk by Mk and
mk , respectively, and assume that fk.ck/ D ˛kMkC.1�˛k/mk where ˛k 2 Œ0; 1�.
Then

kfk � fk.ck/k1 D max.Mk�fk.ck/; fk.ck/�mk/ D .Mk�mk/max.1�˛k ; ˛k/;

and the weight �k is

kfk � fk.ck/k1
jfk.ck/j D .Mk �mk/max.1 � ˛k ; ˛k/

˛kMk C .1 � ˛k/mk :
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Let us consider the function of g.˛k/ D .1�y/max.1�˛k ;˛k/
˛kC.1�˛k/y

, where ˛k 2 Œ0; 1�;
y D mk

Mk
2 .0; 1/ and see how to choose ˛k . Notice that

g0.˛k/ D
(

y�1
.˛kC.1�˛k/y/

2 < 0 if ˛k 2 .0; 12 /;
.1�y/y

.˛kC.1�˛k/y/
2 > 0 if ˛k 2 .12 ; 1/:

From this we know that g.1
2
/ reaches the minimum of g.˛k/with ˛k 2 .0; 1/. Then,

˛k D 1
2
; �k D g.12 / D

1� mk
Mk

1C mk
Mk

< 1:

Actually, according to the definition of weights,

.

NY
kD1

.1C �k/� 1/.
NY
kD1

jfk.ck/j
kfkkL1

/ D
NY
kD1

jfk.ck/j C kfk � fk.ck/kL1

kfkkL1

�
NY
kD1

jfk.ck/j
kfkkL1

:

If ˛k >
1
2

,

NY
kD1

.1C �k/ � 1/.
NY
kD1

jfk.ck/j
kfkkL1

/

D
NY
kD1

˛kMk C .1 � ˛k/mk C .Mk �mk/max.1 � ˛k ; ˛k/
Mk

�
NY
kD1

˛kMk C .1 � ˛k/mk
Mk

D
NY
kD1

�
2˛k.1 � mk

Mk

/C mk

Mk

� �
NY
kD1

�
˛k.1 � mk

Mk

/C mk

Mk

�
:

Hence, the first term in the last inequality increases faster than the last term, since
2˛k.1 � mk

Mk
/C mk

Mk
> ˛k.1 � mk

Mk
/C mk

Mk
for ˛k >

1
2

. If ˛k <
1
2

,

NY
kD1

.1C �k/ � 1/.
NY
kD1

jfk.ck/j
kfkkL1

/ D 1 �
NY
kD1

�
˛k.1 � mk

Mk

/C mk

Mk

�
:

Thus ˛k D 1
2

is the best choice when it minimizes the error estimate. Notice here
the choice of ˛k D 1

2
also minimizes the weight. This ends the proof.

Remark 2.4. Weights and corresponding ancor points can also be defined in the
L1-norm using appropriate quadrature formulas, e.g., see [6].
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3 Numerical Examples

Here we present two examples, first in approximating a high-dimensional function
and subsequently in solving the stochastic advection equation.

Example 1. We consider the Genz function [4] f5 D QN
jD1 exp.�cj

ˇ̌
xj � wj

ˇ̌
/

with the parameters cj D exp.�0:2j / and wj following a uniform distribution.

w D .0:695106; 0:851463; 0:413355; 0:410178; 0:226185;

0:7078; 0:478756; 0:183078; 0:0724332; 0:483279/

The centered point refers to .1
2
; 1
2
; � � � ; 1

2
/; while the optimal point is the point cho-

sen according to the Lemma 2.3. Both results in Table 1 demonstrate exponential
accuracy in terms of the truncation dimension but using the optimal anchor points
leads to accuracy close to three orders better than using the centered point.

Example 2. Next we consider the stochastic advection equation

@u

@t
C V.t I �/ @u

@x
D 0

in the interval Œ�1; 1� with periodic boundary conditions and initial condition
u.x; t D 0/ D sin.
.x C 1//. The advection velocity is a stochastic pro-
cess with zero mean and is represented using a Karhunen-Loeve expansion, i.e.,
V.t; �/ D PM

kD0
p
�k�k.t/�k , with �k being uncorrelated and also independent

variables following a uniform distribution. The eigenpairs .�k; �k/ are derived from
the covariance kernel of the form exp Œ�jt1 � t2j=L�, where L is the correlation
length. Here we consider three values of L corresponding to different truncations,
i.e., .L;M/ D .1; 4/I .0:1; 10/I .0:005I 500/ selected so that 90% of the energy
is captured by the coefficients of the truncated expansion. In the simulations we
employ a Fourier-collocation in space and a probabilistic collocation method in
random space using Legendre-chaos (8th-order).

In Fig. 1 we plot the mean solution at t D 0:5 in order to compare the effect of
the anchor point on the convergence of the ANOVA expansion. We see that for the
optimum point c1 D .0; 0; : : : ; 0/ the solution converges to the exact solution when

Table 1 Error in the mean: N D 10

Truncation order Centered point Optimal point

1 6.6207
10�2 3.7949
10�3

2 5.2552
10�3 8.8265
10�5

3 2.3796
10�4 1.2680
10�6

4 6.2412
10�6 1.1568
10�8

5 9.0972
10�8 6.6648
10�11
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Fig. 1 Mean solution using the optimum anchor point c1 (left) and a different point c2 (right).
Here M D 4IL D 1
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Fig. 2 Mean solution (left) and Variance (right) using the optimum anchor point c1 for differ-
ent values of the correlation length (L D 1; 0:1; 0:005/ and corresponding truncation dimension
(� D 2; 2; 1/

� D 2 but for another point c2 D .1; 1; : : : ; 1/ the solution converges to the exact
solution only if � D M D 4, i.e., for the full expansion. Here the exact solution is
computed as in [7]. Using the optimum point we can now vary the correlation length
L and produce accurate solutions in the high-dimensional space for small values of
L and up to M D 500 dimensions as shown in Fig. 2.
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An Explicit Discontinuous Galerkin
Scheme with Divergence Cleaning
for Magnetohydrodynamics

Christoph Altmann

Abstract The explicit space-time expansion discontinuous Galerkin scheme
(Gassner et al., J. Sci. Comp. 34(3):260–286, 2008) is applied for solving ideal and
viscous magnetohydrodynamic equations. Based on a Taylor expansion in space
and time about the barycenter of each cell at the old time level, this predictor-
corrector strategy enables each cell to have its own time step whereas the high order
of accuracy in time is retained. Thus, it may significantly speed up computations.
The discontinuous Galerkin method together with the local time-stepping algorithm
allows for an efficient local sub-cycling for a divergence cleaning using a hyperbolic
transport correction (Dedner et al., J. Comput. Phys. 175(2):645–673, 2002). Con-
vergence tests and test problems are performed to challenge the capabilities of the
space-time expansion scheme.

1 Introduction

Discontinuous Galerkin (DG) schemes gained significantly in popularity, since they
combine flexibility in handling complex geometries, ability of performing h/p-
adaptivity and efficiency in massively parallel calculations. These aspects turn them
into an ideal candidate for modern numerical calculations in various fields of inter-
est, including magnetohydrodynamics (MHD) and plasma physics. The recently
developed [3] explicit space-time expansion discontinuous Galerkin scheme (STE-
DG) provides a perfect basis. With an adapted hyperbolic divergence correction
method that saves computational costs by using the high order explicit local time
stepping functionality of the STE-DG scheme, we can efficiently handle MHD
calculations.
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2 STE-DG Discretization

We will first summarize the basics of the STE-DG scheme and its local time step-
ping functionality. For a detailed view on these topics, the reader is referred to the
corresponding articles [2] or [3]. For the sake of simplicity, we will consider the
advection-diffusion equation

u.x/t C r � f.u.x/;ru.x// D 0: (1)

We initiate the DG discretization as usual by subdividing our domain ˝ into non-
overlapping spatial grid cells Qi and introduce our numerical DG solution. To
obtain the weak formulation of the STE-DG scheme, we multiply by a spatial
test function � D �.x/ and integrate over an arbitrary space-time cell Qn

i WD
Qi � Œtn; tnC1�. Please note that performing a space-time integration is substantially
different from the classical purely spatial dependent DG formulation. In addition to
the classical integration by parts for deriving the weak formulation, Gassner et al.
[2] introduced a new variational formulation for diffusion problems by performing
a second integration by parts. This generates a new diffusion surface integral which
depends on the solution itself. With the definition of suitable numerical fluxes like
the HLLC flux of Li [7] and a suitable numerical state for the second diffusion sur-
face integral as described in [2], we get an adjoint consistent formulation and thus
a discretization with optimal order of convergence. This is accomplished by solv-
ing the so-called diffusive generalized Riemann problem (dGRP). See [2] for more
details on this method of diffusion flux treatment.

Finally, the variational formulation of our advection-diffusion equation results in

R
Qn

i

.ui /t� dxdt � R
Qn

i

fa � r� dxdt C R
Qn

i

�rui � r� dxdtC
R
@Qn

i

ga � n� dsdt � R
@Qn

i

gd � n� dsdt C R
@Qn

i

gs Œr� � n�� dsdt D 0 ; (2)

where the test functions � run through all the basis functions. Here, the term ga

denotes the numerical advection flux, the term gd denotes the numerical diffusion
flux and gs WD �ui � Œ�ui �

� denotes the additional scalar diffusion flux.
For nonlinear flux functions, the space-time integrals in (2) have to be computed

in an approximate way. While this could be done using Gaussian quadrature for-
mulae in space and time, we need to find a way to get approximate values at the
space-time Gauss points. This has to be done in an explicit way, since we are inter-
ested in an explicit scheme. A possible solution is a Taylor series expansion, as
described in the next section.

2.1 Space-Time Expansion

The concept of the STE-DG scheme is a Taylor series expansion at the barycenter
to get a predictive approximate solution in the space-time cell [3]:
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u.x; t/ D u.xi ; tn/C
NX
jD1

1

j Š

�
.t � tn/ @

@t
C .x � xi / � r

�j
u
ˇ̌
ˇ
.x;t/D.xi ;tn/

; (3)

about the barycenter xi of the grid cell Qi at time tn. This expansion provides
approximate values for u and ru at all space-time points .x; t/ 2 ˝n

i . Since no
neighbor information was put into this formulation, we can consider this an predic-
tor of our solution that will be corrected later with neighboring information by the
inter-cell flux exchange. The reader is referred to [4] for more information on this
approach. While the pure space derivatives at .xi ; tn/ are readily available within
the DG framework, the time and mixed space-time derivatives have to be computed
using the Cauchy–Kowalevsky (CK) procedure. This procedure will replace them
with pure spatial derivatives by the differential equation directly. More information
about the CK procedure can be found in [3]. The resulting framework allows for a
natural consistent explicit local time stepping.

2.2 Local Time Stepping

A major disadvantage of a conventional explicit DG scheme is its severe time step
restriction to ensure stability. While for uniform grids, this time step is in the range
of the “physical time step”, needed to capture the right evolution of the unsteady
phenomena, it becomes obstructive for unstructured grids with very small grid cells.
The grid cell with the most restrictive local time step defines the time step for all grid
cells. But, this drop in efficiency can be avoided: Due to the locality of the explicit
STE-DG scheme, each grid cell may run with its own time step in a time-consistent
manner, while the high order of accuracy of the numerical scheme is preserved.
The local time step is determined exclusively by the in-cell time step restriction and
is completely independent of the time steps of neighboring cells. This local time
stepping algorithm minimizes the total number of time steps for a computation with
fixed end time. However, when the difference of time levels of adjacent grid cells is
very small compared to the local time steps, we locally synchronize the time levels
of those cells and therefore reduce the number of flux evaluations to gain efficiency,
as done in [3] or [4]. Common global time levels, needed, e.g., at the end of the
computation, can easily be introduced. This procedure has absolutely no influence
on the accuracy of the underlying numerical scheme, as convergence tests, e.g., in
[3] verify.

3 Divergence Correction and Local Time Stepping

When dealing with MHD, the divergence free (r � B D 0) constraint has to be
maintained. Not doing so, numerical schemes may generate divergence errors that
can have a negative influence on the solution. Since our scheme is running with a
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local time stepping mechanism, all divergence cleaning methods that are based on
operations affecting all cells at the same time (e.g., projection methods) cannot be
applied. Dedner et al. [1] presented a hyperbolic divergence cleaning that is easy
to implement and still yields the desired effect on the divergence errors. It adds a
divergence correction variable to the MHD equation system that can be solved in
a very fast and straight-forward way. Since the effect of this variable on the whole
system is similar to a Lagrangian multiplier, they called this method the Generalized
Lagrange Multiplier (GLM) divergence correction method. With that addition, the
viscous MHD equations as shown in [11] will look like

@
@t
	 D �r � .	v/

@
@t
.	v/ D �r � �	vvt � BBt C �p C 1

2
jBj2� I � ��

@
@t
E D �r � ..E C p/ vC �1

2
jBj2I � BBt

� � v
�v� C �

�
B � rB � r �1

2
jBj2�� � � 1

P r
rT /

@
@t

B D �r � .B � vC �r � BC  I/
@
@t
 D �r � �c2

h
B
� � c2

h

c2
p

;

(4)

with the divergence constraintr �B D 0. Here, � WD �.rvC .rv/T � 2
3
.r �v/ I / is

the viscous stress tensor and P r D cp�

�
the Prandtl number. The pressure (perfect

gas) is derived to p D 	RT D .� � 1/ �E � 1
2
	v2 � 1

2
B2
�
. Setting viscosity � and

resistivity � to zero would result in the ideal MHD system. The additional variable 
is introduced and propagates the divergence error out of the computational domain.

With the addition of � c2
h

c2
p

for the  equation on the right hand side of (4), we will

not only transport the errors out of the computational domain but also damp them.
The damping effect can be scaled by setting the value of cp . We are generally using
a value of 0:18 for cp , as proposed in [1], which is a good compromise between
damping and hyperbolic transport. With that modification, the divergence cleaning
method is then called mixed GLM method. For MHD equations, it was proposed
in [1] to set the hyperbolic transport speed ch to the fastest system wave, whereas
errors are at least spread with the same velocity as they may be generated. Further-
more, it is ensured that the correction subsystem is not affecting the time step of the
overlying MHD calculation.

Since the presented STE-DG scheme relies on local time steps, each cell allows
for a divergence cleaning at a different speed. We therefore need to adapt the original
setting of the GLM system based on global time steps. This is done by adjusting the
calculation of the numerical flux of the correction system. By taking into account the
corresponding local Riemann problem, the numerical flux then reads in one space
dimension as:

�
Bx;m
 m

�
D
�
Bx;l
 l

�
C
 
1
2
.Bx;r � Bx;l/� 1

2ch
. r �  l /

1
2
. r �  l /� ch

2
.Bx;r � Bx;l/

!
: (5)
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Here, Bx denotes the x component of the magnetic field vector B. The correction
speed ch in the above formula will be cell local. Consider two adjacent elementsQi

and Qj with different correction speeds ch;i and ch;j . The flux out of element Qi

into element Qj will then be calculated with the speed ch;i , the flux from element
Qj to Qi with ch;j . A similar approach within a different environment was already
shown in [5]. Please keep in mind that for vanishing divergence errors, our proposed
DG scheme is exactly conservative at all time. This flux can be added directly to the
numerical flux of the MHD equations. Since we are solving 1D Riemann problems
when calculating inter-cell fluxes from one element’s side to its neighboring side,
(5) is all we need even for a multi-dimensional scheme.

By increasing the divergence error transportation speed ch, one will be able to
remove errors even faster. Due to the increased number of time steps we then have
to perform for the cleaning, this method has as a sub-cycling behavior: For each
physical time step, we perform several divergence cleaning steps. When using this
method, a global time step scheme would become computationally inefficient. How-
ever, by making use of local time steps, these limitations can be minimized. The
local time stepping hereby ensures a computationally efficient operation.

An important question is how to choose the correction speed. It seems clear
that strong divergence errors should be treated with high correction speeds while
only small errors do not require going beyond the largest system speed of the
MHD system. We are therefore directly making use of the divergence error itself
by calculating the L2 projection norm of the cell divergence and correlate it to
the corresponding correction speed. By applying two different speed steps for the
correction, the setting seems to be most efficient:

ch D
8
<
:

cmin k r � B kL2
� 5:0e � 3

0:5 cmax for 5:0e � 3 � k r � B kL2
� 5:0e � 2

cmax k r � B kL2
� 5:0e � 2

; (6)

where cmin denotes the maximum physical speed within the cell, determined by the
CFL condition and cmax a user defined maximum correction speed, cmax � cmin. The
introduction of speed steps is balancing areas of slightly varying divergence errors,
building more consistent sub-cycling zones. This strategy showed to be superior to
a direct mapping of the local divergence to the correction speed, since aliasing and
resolution issues may badly affect the divergence calculation.

For analyzing efficiency, the divergenceL2-norm of a test problem with initially
non-zero divergence is plotted over the CPU time for different correction settings in
Fig. 1. Runs were performed by setting the divergence correction speed to be equal
to the maximum CFL determined system speed, to be seven times this speed and
to be in between these both speeds by using the setting (6) described above. It is
obvious that the divergence correction with variable speed outperforms both other
settings. This is due to the local time stepping functionality acting on the different
correction speed steps.
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Fig. 1 Efficiency of the mixed GLM divergence correction with different correction speed settings

4 Numerical Results

In this section we focus on numerical results of the STE-DG scheme for MHD
equations. For all test cases, � D 5

3
.

4.1 Convergence Test

We were using the so-called manufactured solution technique for performing con-
vergence tests of the STE-DG scheme for viscous MHD. To be able to find an exact
solution, we choose an arbitrary smooth analytical function and insert it directly into
the viscous MHD equations. For our test, we have chosen

	 D sin.ˇ/C 2I u D 1I v D 1I
e D sin.ˇ/C 2I Bx D sin.ˇ/C 2I By D � sin.ˇ/C 2; (7)

with ˇ D 2

Pdim
jD1 xj � 4t , where xj are the spatial coordinates and t the time.

Viscosity � and resistivity � were set to 0:05. The resulting right hand side is then
added as a source term into the code. Table 1 shows the convergence order of the
STE-DG scheme for viscous MHD using third and fourth order DG polynomials.
TheL2 error norm of the energy is used for the calculation. Table 1 shows that we do
not obtain the desired order of accuracy when the divergence correction is neglected.
In addition, also the absolute values of the error norms are significantly worse in
that case. By using our proposed correction method, we were able to achieve the
accuracy for both odd and even orders for the viscous MHD equations.

4.2 Orszag–Tang Vortex

The vortex system of Orszag and Tang [8] for ideal MHD is an ambitious test
problem for almost any numerical scheme. In our case, the computational domain
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Table 1 Order of accuracy of the STE-DG scheme with and without divergence correction

Nb cells Nb DOF kEngkL2 w divB corr. OL2 kEngkL2 w/o divB corr. OL2

P3 STE-DG
4 160 1.82E-01 2.70E-01
8 640 9.29E-03 4.3 1.98E-02 3.8
16 2,560 4.98E-04 4.2 9.60E-04 4.4
32 10,240 2.95E-05 4.1 6.58E-05 3.9

P4 STE-DG
4 240 3.63E-02 4.34E-02
8 960 9.82E-04 5.2 1.22E-03 5.2
16 3,840 3.07E-05 5.0 5.19E-05 4.6
32 15,360 9.36E-07 5.0 2.28E-06 4.5

is Œ0I 1� � Œ0I 1� with periodic boundaries. The initial condition of the problem is
given by

	 D � eI u D � sin.2
y/I v D sin.2
x/I
e D 10

24

I Bx D � 1p

4�
sin.2
y/I By D 1p

4�
sin.4
x/:

(8)

The Mach number is set to 1:0. Ideal MHD calculations on a 50�50 and a 100�100
grid run up to t D 0:5. By then, several shocks have crossed the computational
domain and a vortex system is formed near the center. Figure 2a, b show a very
good agreement with reference results in the literature, e.g., [6] or [10]. For various
numerical schemes without divergence cleaning, this test problem fails or will at
least produce severe errors, see [6]. For the 100 � 100 calculation, we were able to
keep the L2 norm of the divergence errors below 1 � 10�2. To capture the shock pro-
files, we are using artificial viscosity similar to [9]. One can see that the 100 � 100
calculation resolves the small-scale structures much better.

5 Conclusions

We have briefly presented the key ingredients of the STE-DG scheme to handle ideal
and viscous MHD equations. Using the scheme’s explicit local time stepping ability
we were able to advance the GLM divergence correction method by using varying
propagation speeds for performing the correction. The results of the presented test
problems indicate that the scheme reaches the estimated order of accuracy and can
handle MHD equations with divergence cleaning efficiently. An efficient adjustment
of the divergence correction speed was also presented. Nevertheless, its settings may
still be improved and are currently under investigation.
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High Order Polynomial Interpolation
of Parameterized Curves

Tormod Bjøntegaard, Einar M. Rønquist, and Øystein Tråsdahl

Abstract Interpolation of parameterized curves differs from classical interpolation
in that we interpolate each spatial variable separately. A difficult challenge arises
from the option of reparameterization: a presumably good interpolation (e.g., at
the Gauss points) of a given parameterization does not necessarily give the best
approximation of the curve, as there may exist a reparameterization better suited
for polynomial interpolation. The reparameterization can be done implicitly by
choosing different sets of interpolation points along the exact curve. We present
common interpolation methods, and propose a new method, based on choosing the
interpolation points in such a way that the interpolant is tangential to the exact (repa-
rameterized) curve at these points. The new method is compared to the traditional
ones in a series of numerical examples, and results show that classical interpolation
is sometimes far from optimal in the sense of the Kolmogorov n-width, i.e., the best
approximation using n degrees-of-freedom.

1 Introduction

The topic of polynomial interpolation of parameterized curves appears in practi-
cal applications in high order methods for solving partial differential equations in
deformed domains [3, 4]. The accuracy of the numerical solution is directly influ-
enced by the accuracy of the geometry representation [7]. If the distortions are not
too large, this representation can readily be achieved via a Gordon-Hall transfinite
interpolation procedure [6]. For a deformed quadrilateral domain, this algorithm
requires that we first construct an accurate representation

.xN .�/; yN .�//; xN ; yN 2 PN .�1; 1/ (1)
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of each of the four boundary curves. This is merely an approximation of the exact
curve, and an easy way to achieve a good approximation is through interpolation.
Then the approximation problem simplifies to the problem of choosing a set of
interpolation points.

In this paper we explore different ways of choosing these interpolation points.
We compare previously proposed methods with a new method. The methods will be
introduced in the context of plane curves, and then later extended to space curves.
The accuracy of the different interpolation methods will be compared in numerical
experiments.

2 Interpolation Methods for Plane Curves

The starting point is a given curve y.x/ in the plane, defined by the parameterization

.x.�/; y.�//; � 2 Œ�1; 1�: (2)

We assume that y.x/ is C 1, so that there is a unique tangent vector at each point on
the curve. Our numerical approximation is an interpolant based on a representation
by high order polynomials (1). A nodal basis for the polynomial xN .�/ is

xN .�/ D
NX
jD0

xj `j .�/;

and similarly for yN .�/. Here, `j .�/ is the j th Lagrangian interpolant through the
Gauss–Lobatto–Legendre (GLL) points �i ; i D 0; : : : ; N , with the property that
`j .�i / D ıij . Hence, the expansion coefficients xj and yj are coordinates some-
where on the exact curve, i.e., xj D x.�j / and yj D y.�j / for some �j 2 Œ�1; 1�.
We impose the restriction that the two end points of the numerical curve are inter-
polation points, i.e., �0 D �1 and �N D 1. However, we do not require the internal
interpolation points �j , j D 1; : : : ; N � 1 to be the internal GLL points, as there
always exists a reparameterization . Qx.�/; Qy.�//, � 2 Œ�1; 1�, such that the inter-
polation points are mapped from the GLL points in the reference domain, i.e.,
xj D Qx.�j / and yj D Qy.�j /. The two parameterizations are connected by the
relationship

Qx.�/ D x.�.�// D x�
NX
jD0

�j `j .�/
�
; (3)

and correspondingly for y. The reparameterization is not unique [8], and we have
here chosen � to be a polynomial of degree N in �. Equation (3) implicitly defines
the reparameterization from the choice of interpolation points.

There are some widely known methods for choosing the values �j . We will first
describe them briefly, and then introduce two alternative methods.
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Fig. 1 Three common methods for choosing interpolation points

2.1 Common Interpolation Methods

The three most common interpolation methods all rely in some way on an affine
mapping of the GLL points from the reference domain to the physical domain [4].
The first, which we will refer to as the standard method, uses an affine mapping
xN .�/ such that the interpolation points are distributed according to a GLL distri-
bution along the x-axis. This implies that yN will not only be a polynomial as a
function of �, but also as a function of xN .

We can also choose a GLL distribution along the chord between the two end
points of the curve; see Fig. 1. This is the chord method, which coincides with the
standard method when the chord is parallel to the x-axis.

The last method is based on a GLL distribution in the arc length variable s, and
is called the arc length method.

2.2 The L2-Method

The three previous methods each have special types of curves where they work well.
However, we do not know how good the resulting interpolants are compared to the
best possible interpolant.

In order to be able to define an optimal interpolant, we restrict our study to curves
that can be described by a function y.x/ for x 2 Œa; b�. Then the L2-norm can be
used to measure the interpolation error, and we define the optimal set f�j gN�1

jD1 of
internal interpolation points to be the one that minimizes the functional

J D jjy � yN jj2L2 D
Z b

a

.y.x/ � yN .x//2 dx: (4)

We can differentiate J with respect to each independent variable �j , j D 1; : : : ;

N � 1, and use Newton’s method to search for the minimum. We will refer to this
method as the L2-method; see [2] for more details. The resulting minimizer can be
viewed as the solution to the Kolmogorov n-width problem applied to the interpola-
tion of curves. Note that we are searching for the global minimum of (4). Newton’s
method uses a local search, and is therefore dependent on a good initial guess.
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In general, we are not guaranteed that xN .�/ is invertible (i.e., that yN .xN / is a
function), but this does not seem to be a big practical problem.

2.3 The Equal-Tangent Method

The functional J uses information about the curves on the entire interval Œa; b�,
which makes the L2-method slow and complicated as N increases. We therefore
propose a method which uses information about the curves only at the interpolation
points. The idea behind the equal-tangent method is to require that the exact and
numerical curves are tangential at the N � 1 internal interpolation points. This can
be achieved if we are able to find the roots �1; �2; : : : ; �N�1 of the nonlinear system

dxN
d�

.�j /
dy

d�
.�j / � dyN

d�
.�j /

dx

d�
.�j / D 0; j D 1; : : : ; N � 1: (5)

The left hand side represents an inner product between a tangent vector to the inter-
polant and a normal vector to the exact curve. In order to solve this system of
equations, we will apply a Newton method. This requires that we differentiate the
left hand side of (5) with respect to theN�1 independent variables �j at the internal
interpolation points.

We remark that the solution of (5) may not be unique; in such cases the particular
solution obtained will depend on the initial guess. The existence of a solution in the
general case has not been proven, however we have not yet encountered a counter-
example. The method works well on a wide range of curves, and we will show a few
examples here; see [2] for more details.

2.4 Numerical Results

The following examples are chosen to illustrate the behavior of the various methods
in different situations. They are all given as functions y.x/; a parameterization (2)
is readily achieved, using an affine mapping x.�/.

The interpolation error is measured in the discrete L2-norm, where the integral
in (4) is evaluated using GLL quadrature [2].

Case 1. The first example we consider is described by the function y.x/ D 1
1C16x2 ,

x 2 Œ�1; 1�. Classical interpolation theory tells us that this function is particularly
difficult to interpolate [5], and as the standard method yields a polynomial yN .xN /,
we expect it to converge very slowly. Figure 2a confirms this, and it shows that
the arc length method is even worse. Compared to this, the convergence rate of our
proposed method is striking. By construction, the L2-method is supposed to be the
best, but it is only best forN < 9; as mentioned earlier, this is due to the complexity
of computing the global minimizer of (4) as N increases.
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Fig. 2 Interpolation error, measured in the discreteL2-norm. Left: for the Runge function, the stan-
dard method and the arc length method both converge slowly, but exponentially. The equal-tangent
method and theL2-method both converge much faster. Right: for this function of limited regularity,
the standard method and the arc length method both yield algebraic convergence. The equal-tangent
method, on the other hand, converges exponentially. The L2-method performs reasonably well, but
has difficulty finding the global minimum

Case 2. From classical interpolation theory we know that approximation of func-
tions of limited regularity with polynomials results in algebraic convergence [1].
Consider the function y.x/ D 1 � jxj3, defined on x 2 Œ�1; 1�. Both the stan-
dard method and the arc length method converge algebraically. The equal-tangent
method, however, converges exponentially; see Fig. 2b. The L2-method again con-
verges fast only up to a certain value of N .

3 Interpolation of Space Curves

We now consider curves in space, defined by a given parameterization

.x.�/; y.�/; z.�//; � 2 Œ�1; 1�:

In order to be able to compare all methods, we restrict ourselves to curves where
both y and z can be described by functions of x. Then, the standard, chord and arc
length methods can all be extended in a natural way.

3.1 The L2-Method

With our restriction on curves, we can define a functional similar to (4), extended to
include the error in the z-variable:

J D
Z b

a

�
.y.x/ � yN .x//2 C .z.x/ � zN .x//

2
�

dx: (6)
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The integral is transformed to the reference variable � and evaluated numeri-
cally using GLL quadrature. With this extension, everything is similar to the
two-dimensional case, including the minimization procedure.

3.2 The Equal-Tangent Method

The extension of the equal-tangent method is not as straightforward. In the plane,
there is a unique normal vector to the curve, but in space there is a whole normal
plane. Hence, one normal vector is not enough to ensure equal tangents. We propose
a method where we use one normal vector from each coordinate plane,

n1 D
2
4

0

�z0.�/
y0.�/

3
5 ; n2 D

2
4

z0.�/
0

�x0.�/

3
5 ; n3 D

2
4
�y0.�/
x0.�/
0

3
5 :

This is one more than we need to span the normal plane, but it gives symmetry in the
space variables. Numerical experiments indicate that this may add to the robustness
of the method. In order to realize the condition of orthogonality for all the three
normal vectors, we square the inner products and take the sum

3X
iD1
.tN � ni /2 D 0; (7)

where tN D .x0
N .�/; y

0
N .�/; z

0
N .�//

T . Newton’s method applied to (7) do not result
in the same set of equations as Newton’s method applied to (5) for curves in the
plane (z.�/ D 0). However, both systems have the same sets of exact solutions.

3.3 Numerical Results

Case 3. The curve we are looking at is a distorted helix, spiraling along the x-axis
with a varying radius. It is defined by the parameterization

x.�/ D �5
2
C 7

4
.�C 1/;

y.�/ D 1

2
e�.1C�/ cos.2
�/;

z.�/ D 1

8
.�C 2/ sin.2
�/;
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Fig. 3 Interpolation error, defined as the square root of (6). Left: the curve is well suited for the
standard method, but we are still able to achieve faster convergence with the equal-tangent method
and the L2-method. Right: the parameterization consists of square and cubic roots, which makes
the standard method a non-optimal choice. In particular, the curve can be reparameterized using
polynomials of degree less than or equal to 6, which is detected by the equal-tangent method

for � 2 Œ�1; 1�. Figure 3a shows that the situation is much the same as it was in two
dimensions: the equal-tangent method is the best, and it almost coincides with the
L2-method up to N D 11. The standard method works well in this case due to the
construction of the example, while the chord and arc length methods converge very
slowly.

Case 4. Consider the curve parameterized by

x.�/ D �C 1;

y.�/ D
r�

�C 9

4

�1=3 � 1;

z.�/ D
�
�C 9

4

�2=3 � 1:

If we let �.�/ D ..˛� C ˇ/2 C 1/3 � 9=4 for suitable constants ˛ and ˇ, we get
a reparameterization where Qy.�/ is affine and Qx.�/ and Qz.�/ are polynomials of
degrees 6 and 4, respectively. Hence, the best distribution of interpolation points
should give an exact representation of the curve from N D 6. Figure 3b shows
that the equal-tangent method indeed finds this optimal solution, with no a priori
knowledge of the optimal distribution of interpolation points.

4 Conclusions and Future Work

We have looked at interpolation of parameterized plane and space curves using high
order polynomials. We have proposed a new method, iterative in nature, based on
a requirement that the interpolant be tangential to the exact curve at the internal
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interpolation points. Through numerical experiments we show that the new method
can give significantly smaller error than the conventional methods, and we believe
it yields results that are close to optimal in the sense of the Kolmogorov n-width,
i.e., the best approximation using n degrees-of-freedom. The most extreme case is
exponential convergence obtained for a function y.x/ with finite regularity.

The motivation behind this study has been the numerical solution of partial dif-
ferential equations in deformed domains using high order methods. The new method
can be applied to the representation of the domain boundary, which affects the
error of the resulting numerical solution. The preliminary results are promising, and
reported in a separate article [2].

Future work will focus on the representation of surfaces in space, which can
then be applied to the numerical solution of PDEs in deformed three-dimensional
domains.
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A New Discontinuous Galerkin Method
for the Navier–Stokes Equations

M. Borrel and J. Ryan

Abstract We introduce a new discontinuous Galerkin (EDG) method to solve the
compressible Navier–Stokes equations where jumps across element boundaries are
eliminated in the computation of the viscous fluxes using anL2 projection of the dis-
continuous solution on the basis of overlapping elements (elastoplast). This method
is related to the recovery method presented by Van Leer and Lo (AIAA paper, 2007-
4003), and similarly it is compact and stable without introducing penalty terms.
A comparison on a 1D convection-diffusion problem in terms of accuracy and sta-
bility with other viscous DG schemes is given. Finally, the first 2D results both on
Cartesian and unstructured grids illustrate stability, precision and versatility of this
method.

1 Introduction

Discontinuous Galerkin (DG) methods have become the subject of considerable
research over the last decade due to their ability to give high order solutions in com-
plex applications. Albeit well suited to the discretization of first order hyperbolic
problems such as wave propagation phenomena, their extension to elliptic problems
such as diffusion, is far less natural and still an up-to-date subject.

We can classify these extensions into two categories. In the first one, the scheme
is devised through a mixed formulation by introducing an equation for the gradient
that allows to take into account the jump of the solution at interfaces. The scheme
needs to be stabilized by either interior penalty terms or numerical viscosity terms
with parameters to be adjusted. Depending on the formulation, the resulting scheme
is either compact or non compact.

Among the main contributors to this first category, we can cite Bassi and Rebay
with their BR1 and BR2 methods for the compressible Navier–Stokes equations
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[1, 2], Cockburn and Shu with the LDG method [3], Peraire and Person with the
CDG method [4], Brezzi et al. [5,6] with the symmetric interior penalty (IP) method.
In [7], Munz et al. show the link between their diffusive generalized Riemann solver
and the IP approach.

A second category is based on local reconstruction or recovery of the solution to
smooth the discontinuities. Van Leer [8] was the first to propose a recovery method
where the viscous fluxes at element boundaries are computed by merging the adja-
cent elements and defining on this new element a locally smooth P2k recovered
solution that is in the weak sense indistinguishable from the piecewise discontinu-
ous Pk solution. This method eliminates the introduction of penalty terms and the
tuning of parameters. An impediment is the construction of the local merging basis
and the need to solve a linear problem at each interface which can be awkward if
we use an adaptive strategy on unstructured grids.

In this paper, we develop a new DG method for the compressible Navier–Stokes
equations where jumps across element boundaries are eliminated in the computa-
tion of the viscous fluxes using an L2 projection of the piecewise Pk discontinuous
solution on the Pk basis of overlapping rectangular elements: so, we propose to
label this method the elastoplat DG method. This method is a sequel to the shift
cell technique that uses the Green formula [9] that reconstructs the gradient by pro-
jection on the shift cell basis. The main motivation for developing the elastoplast
method, which is closely related to Van Leer’s recovery method, is to devise a sim-
pler numerical procedure easily implemented on unstructured grids. This paper is
devoted to a presentation of the method and an evaluation of its performances.

2 Numerical Discretization

2.1 DG Formulation and Time Stepping

The governing equations to be solved are the 2D time-dependent Navier–Stokes
systems for a Newtonian compressible flow which express conservation of mass,
momentum and energy,

@tW C r � FC .W/� r � FD.W ;rW/ D 0 (1)

where W D .	; 	�!U ; 	E/ is the conservation variable vector with classical notation,
FC and FD are the convective and diffusive fluxes.

Pressure is given with the perfect gas state law with a constant specific heat ratio
� D 1:4. Finally, we assume the gas to be calorifically perfect with the Prandtl
number Pr D 0:72.

These equations are solved in a domain ˝ discretized by a Cartesian or an
unstructured partition Th D

S
˝i and the associated function space Vh,
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Vh D f� 2 L2.˝/ j �=˝i 2 Pkg (2)

where Pk is the space of polynomials of degree k.
The DG formulation based on a weak formulation after a first integration by parts

is of the form: find W in .Vh/4 such that for all ˝i in Th,

8� 2 Vh;
R
˝i
@tW � dx D R

�i
.FC � FD/ � d� �

R
˝i
.FC � FD/r� dx (3)

Here, the numerical fluxes FC ,FD andW are approximations of FC , FD and W .
The inviscid flux FC is determined using the HLLC [10] or LLF techniques and we
will detail in the next section the viscous flux computation.

If we neglect locally the dependancy of � on temperature, the viscous term FD
can be split into a linear and a nonlinear part,

FD D L.r�!U ;rT /CN.�!U � �/ (4)

where T is the temperature and
�!
U the velocity. A second integration by parts can

be done on L.r�!U ;rT / thus giving the following ultra weak formulation,

8� 2 Vh;
R
˝i
@tW � dx D R

�i
.FC � FD C L.�!U ; T // � d�

� R
˝i
.FC C L.�!U ; T /�N.�!U � �//r� dx

(5)

Finally, this formulation results in a system of coupled ordinary differential
equations of the form,

M@tW
h D R.W h/ (6)

whereW h is the vector containing the degrees of freedom associated toW expressed
in a basis of Vh. Here, M is the mass matrix, which is diagonal in our computations
due to our choice of the basis functions, while R is the residual vector which is
a nonlinear function of W h. We have chosen the explicit time stepping RK3 of
Shu–Osher [12] to solve (6).

2.2 The Elastoplast Method (EDG)

The simple idea of the elastoplast method is to reconstruct numerically the solution
W h over each edge of the cell in a rectangular cell Re overlapping this edge (see
Fig. 1). Reconstruction is done through an L2 projection on a DG basis of Re of
the same order k as the original solution using on either side of the edge an equal
number of Gauss quadrature points, the sum of which provides at least the order of
the original solution.

More precisely, for any interface � between ˝1;˝2, for all �pr in the DG-Pk
basis of Re, Wr DPp W

p
r �

p
r where W p

r is defined by:
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Fig. 1 General elastoplast
technique
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(7)

where W p
1 ,W p

2 are the local DG-Pk solutions in ˝1;˝2, Wr the reconstructed
solution in Re and .�; �/ the L2 product in Re, (i.e.:.f; g/ D R

Re
fgdx). All inte-

grals are numerically computed using a n-point Gaussian quadrature rule, such that
2  n � 1 � k, k order of the local DG formulation.

This method is general to any polygonal cells.

2.2.1 DG Basis and Implementation

If .x0; y0/ is the Cartesian or unstructured cell (˝i ) center, the local DG-Pk basis
is built by orthogonalising in L2.˝i / the function set .x � x0/i .y � y0/j , .0 �
i�k; 0 � j � k/ where k is the DG discretization order.

Note on the unstructured grid implementation: All L2 products on a trian-
gle are done by mapping a triangle in .x; y/ space to the standard 2D square:
f.�; �/ j �1 � �; � � 1g. Thus numerical orthogonalisation uses the same
rectangular Gauss quadrature procedures (see [11]).

This allows for a common solver for both structured or unstructured grids and
projection onto the overlapping cell basis is simplified as all data have the same
structure. It is also to be noticed that the use of a rectangular overlapping cell Re
naturally gives rise to a diagonal mass matrix, thus saving storage costs.

3 Numerical Results

All computations are DG-P2 and no limiters were used, except for the mixing layer
test case. For both Cartesian and unstructured computations, we used the same
functional space Vh.
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Table 1 Comparison of experimental order of convergence between EDG and alternative methods

# cells EDG Order BR1 Order BR2 (� D 2/ Order Recovery Order

10 4.92 e–05 9.62 e–05 1.42 e–04 1.35 e–05
20 3.13 e–06 3.97 5.70 e–06 4.07 8.81 e–06 4.01 8.15 e–07 4.05
40 1.96 e–07 3.99 3.51 e–07 4.02 5.50 e–07 4.00 5.02 e–08 4.01
80 1.22 e–08 3.99 2.18 e–08 4.00 3.43 e–08 4.00 3.12 e–09 4.00
D 0.06 0.03 0.04 0.07

3.1 1D Diffusion

Comparison between some classical formulations are shown in Table 1 of the exper-
imental order of convergence for the unsteady diffusion problem ut D � uxx with
sinusoidal initial data u.x; 0/ D sin.2 
 x/; x 2 Œ0; 1�.

In all these computations, for each method, the time step was chosen as large as
possible satisfying a diffusion stability requirement ��t=�x2 � D. The L1 norm
of the error is computed at time Tend D 1 and � D 1.

The behavior of the presented EDG method compares well in terms of stability
and accuracy with the most popular methods such as Bassi and Rebay’s methods
(BR1, BR2) and Van Leer’s recovery method.

3.2 Couette Thermal Flow

This is a simple case to verify the discretization of viscous effects in a laminar flow
between two parallel walls at distance L D 1., a fixed lower wall (U1 D 0.) and
a moving upper wall at velocity (U2 D 1.). Both walls are isothermal at different
temperatures (lower wall T1 D 293., upper wall T2 D 294.). As the plates have
infinite length, there is no physically relevant length scale in the streamwise direc-

tion. The analytical steady solution in this case is U.x; y/ D y and
@2T

@y2
D ��

�
where � and � are viscosity and thermal diffusivity coefficients. In our computation

� D 1=Re, with the Reynolds number ReD 500. and � D ��

P r
. This case was com-

puted with the full Navier–Stokes solver using an 9 � 3 mesh, imposing periodic
boundary conditions in the streamwise direction and flow variables are imposed in
both North and South fictitious cells. Convergence plotted in Fig. 2 is rather slow in
terms of number of time iterations due to the use of an explicit time stepping, but is
quite regular which shows that no numerical uncertainties remain in the numerical
procedures. At convergence, the computed solution is exact. On Fig. 3, solution is
also plotted for a 4 � 3 mesh, showing mesh independence.
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Fig. 2 Numerical
convergence
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3.3 Blasius Boundary Layer

This other classical test case consists in a boundary layer which develops over
a plane plate immersed in an subsonic uniform flow. The numerical solution is
compared with the incompressible Blasius solution obtained in the reduced wall
variables (as given in [13]). The infinity Mach number isM D 0:5 and the Reynolds
number with respect to the length 1 of the plane plate is Re D 10;000. Wall bound-
ary conditions are imposed using a fictitious cell technique where values of the
DG variable are such that antisymmetric conditions are imposed on momentum,
and symmetric conditions on density and energy. Reconstruction of values on the
interface are computed as for inner edges.

Our computational domain is such that the west boundary is situated upstream of
the leading edge and the East boundary cuts the plate at L D 1. North boundary is
situated at L/2 from the plate. This domain is discretized with a 29 � 19 Cartesian
grid with a moderate refinement at the wall (ıy D 4:e � 03) and at the leading
edge (ıx D 4:e � 03). At section x D 0.5, where the profiles are plotted, there
are approximately 12 meshes inside the boundary layer. The convergence plotted
in Fig. 4 is again rather slow in terms of number of time iterations but is still reg-
ular which shows that the no-slip boundary treatment does not modify the scheme
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Fig. 4 Numerical
convergence
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stability. This is confirmed with the close comparison of the profiles of the velocity
components and the friction coefficients with the Blasius solution (Fig. 5).

Note: The exact solution is for an infinite plate. Our computed solutions are self
similar around xD 0.5 but for stations close to the leading edge or close to the East
boundary where an outlet boundary is imposed, velocity in the wall normal differs
from the Blasius profile as mentioned in Hirsch’s book [13].

3.4 Supersonic Mixing Layer

The fourth case has been developed to test the behavior of the scheme for shear
layer vortices. We have chosen a supersonic configuration with Mach numbers of
2 and 4 for the bottom and upper flows in order that the outflow boundary remains
supersonic everywhere. The shear layer is initialized just on one interface at t D 0

and a small Gaussian perturbation in time is imposed for the velocity components at
the inflow boundary x D 0. Cockburn and Shu’s generalized slope limiter (see [3])
was used for this computation. Figures 6 and 7 plotting entropy contours compare
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Fig. 6 Euler mixing layer,
LLF flux

Fig. 7 NS mixing layer, LLF
flux

the inviscid and viscous flows (at Reynold number Re = 200,000) on a 100 � 70
Cartesian grid using the LLF convective Flux after 50,000 time steps enhancing
the scheme stability. (It can be remarked that the initial shear layer in an inviscid
computation without any perturbations remains unchanged: this is the case if we
use the HLLC flux but not the LLF flux.)

4 Conclusions

A new DG scheme to discretize the viscous fluxes in the Navier–Stokes equations
has been presented. Discontinuities are removed near each interface by projection
on an overlapping rectangular element (elastoplast). The main advantage of the pro-
posed scheme is its simplicity to implement either on a Cartesian or an unstructured
grid. Close to Van Leer’s recovery method, it is compact, stable and accurate, with-
out penalty terms, First numerical results indicate that the accuracy and stability
compare well with that of alternative schemes such as the BR2 or the recovery
method. Finally, the proposed scheme seems to be a well adapted method for DNS
or LES and especially if we use a dynamic AMR technique with hybrid meshes.
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A P
˛;ˇ
n -Based Method for Linear Nonconstant

Coefficients High Order Eigenvalue Problems

F.I. Dragomirescu

Abstract A weighted residual method based on generalized Jacobi polynomials is
proposed to solve a class of eigenvalue problems governing the linear stability of
the mechanical equilibria of certain fluids occurring in complex circumstances. One
concrete natural convection problem of great interest from the applications point of
view is numerically investigated. Fairly accurate approximations of the lower part
of the spectrum are given in comparison with other numerical evaluations existing
in the literature.

1 Introduction

The approximation of a function by a finite sum of basis functions is the basic idea
in spectral methods. It is also well known the fact that the choice of the expansion
basis functions influences the superior approximation properties of spectral methods
when compared to finite difference and finite element methods. The expansion func-
tions must have a basic property: they must be easy to evaluate. That is why, most
of the times, trigonometric and polynomials are used in the discretization process.
Another property concerns the completeness of these families of functions such that
each function of the given space can be represented as a limit of a linear combina-
tion of such functions. Chebyshev, Legendre, Jacobi polynomials, sine and cosine
functions satisfy this property. Orthogonality of the expansion functions is however
one of their most important property. In fact, orthogonality of classical polynomials
is the key for the study of many properties of these polynomials and their intensive
applications. Over a finite interval much is known about expansion properties and
periodic Fourier expansions or polynomial expansions are intensively studied [4,5].
Usually the most used in polynomials based spectral methods are the Chebyshev
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and Legendre polynomials. In many scientific papers [1,7,9] it was emphasized that
for spectral methods the use of Chebyshev polynomials has been proving advanta-
geous, offering a great accuracy in the discretization process. However, there has
been a renewed interest in using Jacobi polynomials in spectral methods lately due
to the complicated eigenvalue problems for fluid flows with just simply nonconstant,
degenerated or singular coefficients.

In this paper generalized Jacobi polynomials (GJP) basis of functions are used to
investigate a certain class of eigenvalue problems, in particular, a benchmark model
is used, i.e. an eigenvalue problem governing the linear stability of the mechanical
equilibria of a fluid layer heated from below in the presence of a linear variable
gravity field decreasing across the layer for both the rigid and the free bound-
ary case. The aim of the paper is to emphasize the influence of the parameters
˛, ˇ, indexes of the GJP, on the numerical evaluations of the critical eigenvalue
for this type of high order eigenvalue problem. The paper is organized as fol-
lows. The present section stands like a motivation of such a study. In the second
section of the paper some details on the physical problem and its importance are
given. The mathematical problem, i.e. the eigenvalue problem, is also defined. The
third section provides detailed exposition of the numerical results. Some general
conclusions concerning the application of Jacobi polynomials to solve eigenvalue
problems with nonconstant coefficients will be drawn in the last section of the
paper.

In an article from 2003, Shen [10] pointed out that basis functions which are in
fact compact combinations of Legendre polynomials can be viewed as GJP with
negative indexes. The use of such polynomials not only simplifies the numeri-
cal analysis, but also leads to very good numerical algorithms for high odd-order
differential equations. There is no need for construction of special quadratures
involving derivatives at the end-points as in the collocation approach [3]. For sys-
tems of ordinary differential equations with constant coefficients one property can
be emphasized: the linear systems obtained with this algorithm are well condi-
tioned and sparse. Guo, Shen and Wang [8] also introduced a family of GJP with
real indexes which are in fact orthogonal with respect to the corresponding Jacobi
weights and some of their basic properties were investigated. In [3] some effi-
cient basis choices using GJP are presented. These approximations functions are
used in a Jacobi–Galerkin method in order to solve a general one-dimensional
fourth-order equation subject to various boundary conditions. The presented ellip-
tic equation defined on ˝ D I d [3] is usually subject to the first type boundary
conditions uj@˝ D @u

@n
j@˝ D 0 or either the type second boundary conditions

uj@˝ D @2u
@n2 j@˝ D 0 where I D .�1; 1/d , d D 1 or 2, and n is the outward

normal vector on @˝ [3]. These two types of boundary conditions correspond to
the rigid and the free boundary case, respectively. The advantages of using such
GJP is that each of the expansion functions automatically satisfy all given boundary
conditions of the underlying problem.
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2 Physical and Mathematical Preliminaries

In [2, 3, 8, 10] the GJP based methods were always applied for eigenvalue problems
defined by systems of ordinary differential equations with constant coefficients. It
is our purpose to study the applicability of such methods to eigenvalue problems
defined by systems of ordinary differential equations with non-constant coefficients
and when more than one physical parameter is involved. Although their study started
decades ago, due to the lack of spectral theory for nonselfadjoint operators with
non-constant coefficients and also to the mathematical problems involved (the com-
pleteness of normal modes, the principle of exchange of stabilities) usually this
type of problems are investigated as particular ones. Let us consider a class of such
two-point boundary value problems governing the linear stability of the mechanical
equilibria of the fluid for several type of fluid motions [6]



.D2 � a2/2U D F.z/V;
.D2 � a2/V D �a2RG.z/U; (1)

U D DU D V D 0 at z D 0; 1 (2)

where D denotes the differentiation with respect to the variable z, i.e. D WD d
d z ,

F.z/, G.z/ are known indefinitely derivable functions, a is the wavenumber and R
is the eigenparameter (the most important physical parameter of the problem). The
unknown functions U and V stand for the amplitudes of the perturbations fields
encountered in various convection problems. In (1) and (2) the vector .U; V / repre-
sents the eigenvector andR is the corresponding eigenvalue. In the general case, the
basic mathematical problem is: given F.z/ andG.z/ determine the smallest value of
R for a > 0 such that a solution of (1) and (2) exists. In the following we will restrict
our attention on a particular physical case of natural convection in the presence of a
variable gravity field.

The fluid and atmosphere dynamics introduces variations in the gravity field.
Many gravity fields can be encountered in applications, some of them extremely
important in crystal growth or other convective flows from biomechanics, chemistry,
so on [11]. The onset of convection in a horizontal layer of fluid heated from below
in a presence of a gravity field linearly decreasing across the layer is numerically
investigated here. Consider the horizontal layer of fluid situated between z D 0 and
z D h with the gravity field acting in the vertical direction and assumed orthogonal
on the fluid layer. The linear stability of the corresponding conduction stationary
solution against normal mode perturbations governed in this case by a two-point
problem of the type (1) and (2) with F.z/ D 1 � �z, G.z/ D 1, U D W the
amplitude of the vertical component of the velocity and V D � the amplitude of
the temperature perturbation, R representing the Rayleigh number and � the scale
parameter defining the variation in the gravity field. The boundary conditions on
a free surface are that the perturbations of the stress components are zero. This
implies that a free surface behaves as a rigid one with tangential slip but without
any tangential stress [6]. In our case, for normal modes perturbations, in the free
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boundaries case, the boundary conditions reduce to

W D D2W D � D 0 at z D 0; 1: (3)

Straughan provided in [11] numerical evaluation of the Rayleigh number in the case
of rigid boundaries by using the energy method. Stability bounds were found by us
in the case of rigid boundaries [4] using spectral methods based on trigonometric
series for more than a linearly decreasing variable gravity field and, moreover, the
eigenvalue problem (1) and (2) was studied using expansion series based on shifted
polynomials (Legendre and Chebyshev polynomials) [5].

The necessary spaces to characterize the discretization process here are intro-
duced in the following. Let us denote SN D spanfP ˛;ˇ0 ; P

˛;ˇ
1 ; : : : ; P

˛;ˇ
N g the space

of the Jacobi polynomials P ˛;ˇ
k

, k > 0 defined by the Rodrigues formula [3]

P ˛;ˇn D .�1/n
2nnŠ

.1 � x/�˛.1C x/�ˇDnŒ.1 � x/˛Cn.1C x/ˇCn�; (4)

with ˛; ˇ two complex parameters.
The classical Jacobi polynomials associated with the real parameters ˛; ˇ > �1

are a sequence of orthogonal polynomials, i.e.
R 1

�1 P
.˛;ˇ/
m .x/P

.˛;ˇ/
n .x/w˛;ˇ .x/dxD

�
˛;ˇ
n ın;m with w˛;ˇ .x/ D .1 � x/˛.1 C x/ˇ the Jacobi weight function, ın;m the

Kronecker symbol and �˛;ˇn D 2�� .nC˛C1/� .nCˇC1/
.2nC�/� .nC1/� .nC�/ ; � D ˛ C ˇ C 1: Jacobi

polynomials can also be defined using (4) for ˛; ˇ < �1. However, the main prop-
erty used in numerical applications, the orthogonality in L2

w˛;ˇ for all ˛, ˇ of these
polynomials it is no longer valid.

In order for spectral or pseudo-spectral methods to provide numerical solutions
having a high rate of convergence, boundary conditions must be well taken into con-
sideration. The boundary conditions can be either imposed separately or a restriction
of the numerical operator to exactly enforce the boundary conditions has to be
imposed. Although the first approach is more general and widely used, enforcing
the boundary conditions ensures that for any given order the boundary conditions
are exact to machine precision. That is why, a careful restriction of the polynomial
space in which the solution is sought so that it automatically satisfies the boundary
conditions must be constructed. A suitable transformation imply a mapping of the
physical domain onto the standard interval of definition of the Jacobi polynomials,
i.e. x D 2z � 1, such that the boundary conditions are written at �1 and 1. Let us
consider the spaces

WNi
D f�k 2 SN W �k D Di�k D 0 at x D �1; 1g; i D 1; 2

of �k functions which we will define later on. We will expand the eigenfunctions in

GJP series W.x/ D
NP
kD1

Wk�k.x/; �.x/ D
NP
kD1

�k�k.x/: The derivatives of the

eigenfunctions from (1) are obtained by differentiating these expansions. Replacing
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the above expansions expressions in the system (1) and imposing the condition that
the obtained equations be orthogonal on the trial set of function f j gjD1;:::;N 2 SN ,
not necessarily from WNi

we obtain an algebraic system in the expansion functions
only which can now be solved, i.e. the eigenvalues are obtained by imposing the
condition that non-vanishing coefficientsWk , �k exist.

3 Numerical Results

In the following, several classes of GJP defined in [8] for various values of ˛ and
ˇ are used. In [8] index sets are classified taking into account if ˛ or ˇ are less or
greater than �1. Starting from the classical Jacobi polynomials P ˛;ˇn the GJP are
defined [8]

j ˛;ˇn .x/ D

8
ˆ̂̂
<
ˆ̂̂
:

.1 � x/�˛.1C x/�ˇP�˛;�ˇ
n1 ; ˛ � �1; ˇ � �1; n1 D n� Œ�˛� � Œ�ˇ�;

.1 � x/�˛P�˛;ˇ
n1 ; ˛ � �1; ˇ > �1; n1 D n � Œ�˛�;

.1C x/�ˇP ˛;�ˇ
n1 ; ˛ > �1; ˇ � �1; n1 D n� Œ�ˇ�;

P
˛;ˇ
n .x/; ˛ > �1; ˇ > �1:

(5)

It is worth pointing out that the major advantage of these GJP is that they are
mutually L2

w˛;ˇ .�1; 1; /- orthogonal. Other important properties are also deduced
in [8].

3.1 The Rigid Boundaries Case

Let us introduce the functions �k 2 WN1
, k D 1; 2; : : :, [3]

�.x/ D .1 � x2/2 � P ˛;ˇ
k

.x/; k D 1; : : : ; N

which fulfills the boundary conditions (2). Using the properties of the Jacobi poly-
nomials it is easy to verify that the functions �k.x/, 0 < k < N � 4, are linearly
independent and the dimension of the corresponding generated space WN1

is equal
to N � 3. In fact, these function can be viewed as GJP of the form (5) since we can
write

�.x/ D .1 � x/2.1C x/2P ˛;ˇn .x/ D P ˛0;ˇ 0

n .x/ with ˛0 and ˇ0 real indexes.

Numerical evaluations of the Rayleigh number for various values of the
wavenumber and various linearly decreasing gravity fields are presented in Tables 1
and 2 for both equal or different indexes ˛, ˇ in comparison with previous results
obtained also by us for either trigonometric expansion functions or shifted Legendre
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Table 1 Numerical evaluations of the Rayleigh number for various values of the parameters � and
a and various parameters ˛ D ˇ

� a2 Ra˛;ˇD�1=2 Ra˛;ˇD0 Ra˛;ˇD1=2 Ratrig [4] RaSLP [5]

0 9:711 1730:0 1748:5 1743:9 1715:079356 1749:975727

0:01 9:711 1738:8 1757:2 1752:8 1723:697848 1758:769253

0:2 9:711 1922:2 1942:3 1937:5 1905:643719 1944:243122

0:2 12:0 1951:3 1969:6 1965:1 1937:927940 1977:079049

0:2 14:5 2037:1 2053:9 2049:9 2026:289430 3475:507241

1 10:0 3434:5 3470:8 3461:8 3431:318766 3475:507241

Table 2 Numerical evaluations of the Rayleigh number for various values of the parameters � and
a and various parameters ˛ ¤ ˇ

� a2 R˛D3=2;ˇD0 R˛D0;ˇD3=2 R˛D0;ˇD1=2 R˛D1=2;ˇD0

0 9:711 1754:1 1754:1 1788:7 1788:7

0:01 9:711 1762:8 1763:0 1797:7 1797:7

0:2 9:711 1947:4 1950:1 1987:9 1986:7

0:2 12:0 1973:5 1976:0 2010:6 2009:2

0:2 14:5 2056:7 2059:7 2092:2 2091:0

1 10:0 3459:1 3503:2 3559:2 3539:0

polynomials. It is clear that for the same small value of the spectral parameter,
N D 3, the numerical results obtained here are fairly accurate, but not the best.
In the case of GJP with ˛ D ˇ an increasing value of N leads to very good numer-
ical results with a computational time similar to the one from the trigonometric
Fourier series case for smaller N . In fact it is common that a weight is introduced
such that the ultraspherical polynomials are proportional to P ˛�1=2;˛�1=2

n .x/ [3]
in order to obtain better results. In Fig. 1 neutral curves for the classical case of
Rayleigh–Bénard convection are represented pointing out a numerical convergence
of the algorithm for an increasing spectral parameter N .

3.2 The Free Boundary Case

Following [8], suitable expansion functions in the free boundaries case can be

�k.x/ D j�2;�2
n .x/ D 4.k � 2/.k � 3/

.2k � 3/.2k � 5/
�
Lk�4.x/�

2.2k � 3/
2k � 1 Lk�2.x/C

2k � 5
2k � 1Lk.x/

�

(6)

where Lk.z/ is the Legendre polynomial of the kth used in general to approximate
the solutions of fourth-order equations with Dirichlet boundary conditions [10].
Although there are no boundary conditions on the second order derivatives of �
at x D ˙1 we considered the same trial functions set for this unknown function
as forW . Various approximation basis, taking into account the differentiation order
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Fig. 1 Neutral curves for various values of the spectral parameter N in the classical case of
Rayleigh–Bénard convection (� D 0) for ˛ D ˇ D 0

for each unknown function in the system (1) and the boundary conditions can also
be considered.

A much more flexible and general strategy is considered in [7]. Mainly it trans-
forms the original problem into one containing lower order derivatives in the
differential equation as well as in the boundary conditions. We suggested a method
which takes into account the particularities of the problem (parity of order of dif-
ferentiation, symmetries, etc.) and the problem was reduced from a fourth-order
eigenvalue problem (an even order problem) with Dirichlet and hinged boundary
conditions to a system of second order equations supplied exclusively with Dirichlet
boundary conditions. These boundary conditions are much more simple to handle
than the hinged ones. This procedure simplified considerably the construction of
test and trial functions in tau and Galerkin methods as well as the formulation of
differentiation matrices in the collocation (pseudospectral) method [7].

Taking into account the parity of the differentiation order in (1) and (2) a new
variable was introduced � WD .D2 � a2/W and thus, the two-point boundary value
problem was rewritten as the second order system in the unknown functionsW;�;�
completed with Dirichlet type boundary conditionsW D � D � D 0 at x D �1; 1.
Thus GJP of the form [3]

�k.x/ D j�1;�1
n .x/ D 2.n� 1/

2n � 1 .Ln�2.x/ � Ln.x// (7)

can be used as basis functions to approximate the solution. Our example demon-
strates rather strikingly that the D2 strategy leads to a big improvement of the
numerical results. The implemented GJP based method led to larger algebraic
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problems than the collocation methods so as a consequence the qz step was more
expensive in this case. However, we remark that the necessary computational time
was significantly reduced in this case.

4 Conclusions

This paper dealt with the analytical and numerical study of a certain class of eigen-
value problems governed by systems of ordinary differential equations with variable
coefficients and when more than one physical parameter is involved. When this
parameter exceeds a certain critical value, the existence of a large variety of pattern
bifurcated from the basic flow depends on the strata determined in the parame-
ter space. A physically important convection problem was chosen as a benchmark
model.

Several classes of GJP existing in the literature were proposed for the numerical
investigation of the eigenvalue problem governing the stability of the considered

Table 3 The numerical evaluations of the Rayleigh number and the relative error for various
values of the parameters a and �

� a2 Ra Relative error � a2 Relative error

0 4:92 673:143 2.3% 0 4:92 0.0076%
0.01 4:92 676:52 2.3% 0:01 4:92 0.453%
0.03 4:92 683:351 2.3% 0:03 4:92 0.003%
0.33 4:92 805:99 2.3% 0:33 4:92 0.4%
0.2 5:0 747:803 2.3% 0:2 5:0 0.1%
0.2 9:0 844:65 1.8% 0:2 9:0 0.1%
0.5 7:5 949:74 1.8% 0:5 7:5 1%
0.5 9:0 1012:89 1.8% 0:5 9:0 1%
0.75 10:0 1273:41 1.7% 0:75 10:0 4%

(a) using j�2;�2
n .x/ polynomials (b) using j�1;�1

n .x/ polynomials

Table 4 The numerical evaluations of the Rayleigh number for the j�1;�1
n polynomials and for

various values of the parameters a and �

� a2 R.N D 5/ R.N D 6/ R.N D 8/ R.CC/ R.TS/

0 4:92 658:486 658:692 657:56 657:5133 657:51

0.01 4:92 661:929 662:03 660:84 660:8173 660:81

0.03 4:92 668:69 668:64 667:50 667:5254 667:52

0.33 4:92 793:21 792:54 790:90 787:2880 787:28

0.2 5:0 733:22 733:06 731:54 730:5647 730:56

0.2 9:0 832:15 831:98 830:82 829:3918 829:39

0.5 7:5 948:27 945:87 944:64 930:9239 930:92

0.5 9:0 1013:5 1010:3 1009:4 994:4721 994:47

0.75 10:0 1327:4 1314:1 1312:0 1251:0924 1251:09
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flow. The accuracy and effectiveness of these GJP method for these type of problems
were tested for various values of the parameters corresponding to the GJP indexes.
It is proved that the D2 strategy applied to the problem is by far superior with
respect to accuracy when compared with the same GJP based method for the direct
formulation. The following physical conclusion was also emphasized: the stability
domain increases as the gravity field is linearly decreasing across the layer.
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Spectral Element Discretization of Optimal
Control Problems

Loredana Gaudio and Alfio Quarteroni

Abstract In this work we consider the numerical solution of a distributed optimal
control problem associated with an elliptic partial differential equation. We approx-
imate the optimality system by the spectral element method and derive a posteriori
error estimates with respect to the cost functional. Then we use an hN adaptive
refinement technique to reduce this error: the error indicator is used to mark what
elements must be refined. The choice between an h or N refinement is based on the
use of a predicted error reduction algorithm. Numerical results show the way this
algorithm works.

Keywords A posteriori error estimates � Mesh refinement � Optimal control �
Spectral element method

Introduction

We present an hN adaptive algorithm for a linear optimal control problem dis-
cretized by spectral element method. The use of adaptive algorithms to reduce the
error on the cost functional is generally accepted in the context of finite element
methods, see e.g., [1, 2]. Very few results exist on the use of spectral elements dis-
cretization of optimal control problems. In [3,6] error estimates are obtained for the
control, state and adjoint variables in the natural norms of the corresponding spaces.
However, these results do not guarantee an error bound on the cost functional,
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a quantity of interest in many applications. The purpose of this paper is to derive
a posteriori error estimates for the error on the objective functional besides those on
energy norm error estimates in the context of spectral approximation, then to use
them to guide an hN adaptive design mesh. Starting by an initial conforming spec-
tral element mesh we solve the optimal control problem and estimate the error on
the cost functional. When necessary we adapt the mesh to improve the discretiza-
tion error and we solve again the optimal control problem on the new mesh until
convergence within error tolerance.

The paper is organized as follows. In Sect. 1 we introduce the model linear opti-
mal control problem. In Sect. 2 we introduce the spectral element approximation
space and the discrete problem formulation. In Sect. 3, the error on the cost func-
tional is estimated by the sum of two contributions: the iteration and discretization
errors. In Sect. 4, some numerical results are presented to show how the algorithm
works.

1 Linear Optimal Control Problem

Let ˝ � R
2 be a bounded open set with a Lipschitz boundary @˝ and V , U be

the Hilbert spaces of state and control functions, respectively. On the product space
V � U we introduce a functional J that represents the quantity of physical interest,
the objective of the control problem. The state problem describes, for each given
control variable u 2 U , the way the system evolves. The model problem considered
features a distributed observation and a distributed control problem, in which:

� The functional J is quadratic:

J.y; u/ D 1

2
kCy � zdk2L2.˝/ C

1

2
˛ ku � udk2L2.˝/ ;

where for a given Hilbert space of observationsZ, zd 2 Z is an assigned desired
function,C W V ! Z a bounded operator, ˛ > 0 is a penalization factor, ud 2 U
a given desired control (possibly zero);

� The state problem is an elliptic partial differential equation:

A.y.u/; uIf / D 0;

where A is the linear differential operator defined on the domain ˝ and f is a
given source term. If we introduce the bilinear form a W V �V ! R; a.u; v/ D
< Au; v >V 0;V , with < �; � >V 0;V the duality pairing between V and V 0, then the
variational formulation of the problem is

find y 2 V W a.y; v/ D< f; v >V 0;V C < Bu; v >V 0;V 8v 2 V;

where B W U ! V 0 is a bounded linear functional. We assume a to be a bilinear
continuous coercive form to ensure the well posedness of the state problem for
each control.
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Our optimal control problem reads as follows: look for .y; u/ 2 V � U s.t.

min
.y;u/

J.y.u/; u/ ;

sbj to A.y.u/; uIf / D 0:

Under the assumptions on the bilinear form a and on the functional, it is well-know
that this problem is well-posed, see e.g., [7].

Our approach to solve the problem is to introduce a Lagrangian functional L and
to transform the optimal control problem as the search for the saddle-point of L. We
define L W V � V � U ! R as

L.y; p; u/ WD J.y; u/C < p;A.y; u/ >V 0;V ;

where p is the Lagrange multiplier, also called the adjoint variable.
If x D .y; p; u/ is the optimal solution then rL.x/Œ�; �; � D 0 where the

derivative is of Fréchet type. Upon taking the derivatives with respect to each
variable, this yields the KKT (Karush–Kuhn–Tucker) optimality system:

8
<
:
rpL.x/Œ�� D 0 8� 2 V 7�! state problem,
ryL.x/Œ�� D 0 8� 2 V 7�! adjoint problem,
ruL.x/Œ � D 0 8 2 U 7�! optimality conditions:

For the model problem at hand the KKT system is find .y; p; u/ 2 V � V � U :

8<
:
a.y; v/ D < f CBu; v >V 0;V 8v 2 V;
a�.p; v/ D < C 0Z.Cy � zd /; v >V 0;V 8v 2 V;
< B 0p C ˛U u; Qv >U 0;U D 0 8Qv 2 U;

where a�.�; �/ is the adjoint bilinear form of a, whereas Z W Z ! Z0 and U W
U ! U 0 are the Riesz inclusion operators, see [10]. To solve this problem we use
an iterative method: given u0, we solve the state and the adjoint problem according
to the optimality conditions, then we update the derivative functional ruL.xj /. If
kruL.xj /k � tol (for an assigned tolerance) we stop else we update the control
variable u by a steepest-descent method ujC1 D uj � �ruL.xj /, whit � being a
relaxation parameter.

2 SEM Discretization

At each step of the iterative method used for the solution of the KKT system we
solve the state and the dual problem by a spectral element method. Let us decompose
˝ into K spectral elements: ˝ D [K

kD1˝k , such that 8˝k there exists a bijective
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Fig. 1 Decomposition of ˝,
K D 2

Fig. 2 Decomposition of ˝,
K D 3

transformation 'k W b̋ �! ˝k , b̋ D .�1; 1/2. We denote with
�!
ı D fıkgKkD1

the vector of discretization parameters, ık D .hk; Nk/, hk being the diameter of
˝k and Nk the degree of the polynomial in ˝k . For each couple of neighboring
elements, say ˝k , ˝m, three different situations may occur:

1. Either geometric and polynomial conformity, that is � D ˝k\˝m is a common
(full) side of˝k and˝m, andN D Nk D Nm. In this case theNC1 LGL nodes
on � are called active nodes and I a� is the corresponding set of such nodes;

2. Geometrical conformity but polynomial non-conformity, that isNk ¤ Nm. Then,
I a� is the set of the N C 1 LGL nodes, called active nodes, on � , where N D
min.Nk; Nm/;

3. Full non-conformity, both geometrical and polynomial. In this case one chooses
the longest edge and we call it � . Then on � we choose the smallest value N
of the polynomial degree among those of all the spectral elements sharing � .
Finally, I a� is the set of the N C 1 LGL active nodes on � .

For the sake of illustration, two examples are shown in Figs. 1 and 2, where we
denote with � kq the qth side (according to the local side numbering) of the element

˝k . With reference to Fig. 1 we have K D 2, N1 ¤ N2, � D � 12 D � 24 , N D
min.N1; N2/. With reference to Fig. 2 we have K D 3, N1 ¤ N2 ¤ N3. In Fig. 2
we have two different interfaces on which we enforce pointwise continuity. The
former is � D � 23 D � 31 for which we set N D min.N2; N3/, the latter is � D � 12
on which we set N D min.N1; N2; N3/.

On the non-conforming interface � , we enforce the C 0 continuity by matching
the active and passive (non-active) unknowns on � . The passive degrees of freedom
(d.o.f), corresponding to the passive nodes, will be defined as a linear combination
of the active d.o.f, corresponding to the active nodes. Namely as before, we define
the set of active d.o.f. I a� then, for each passive d.o.f vi on � the following equality
is enforced:
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vi D
X
j2Ia

�

cij vj ; (1)

the constraints coefficients cij are chosen in such a way to have continuity on the
interface and the vj , with j 2 I a� , are the active d.o.f on � . If we introduce the
unconstrained spectral element space Xı :

Xı WD fvı W vı ı 'k 2 QNk
.b̋/ and vık

D 0 on �D \ @˝k ;8k D 1; : : : ; Kg

where QN .˝/ is the set of polynomials of two variables with degree � Nk with
respect to each variable and �D is the Dirichlet boundary. Then, the constrained
SEM space is:

Vı WD fvı 2 Xı W for every passive d.o.f. vi ; .1/ is satisfiedg:

With this formulation we could have nonconformity for both mesh and functional
space, this is a natural situation that may arise after every step of an adaptive algo-
rithm, when only some elements are refined. To ensure comparable mesh diameters
between neighboring elements only one hanging node for side is allowed. So in
addition to the elements marked by the a posteriori indicator, some further refine-
ments could be made. The described formulation is not optimal to solve the PDE
on a nonconforming interface, other formulations like mortar methods as well as
DG could improve the convergence of the method, see e.g., [4]. Now given Vı , Uı
the finite discretization of the state and control space V , U , respectively, we search
.yı ; pı ; uı/ 2 Vı � Vı � Uı :
8
<
:
a.yı ; vı / D< f C Buı ; vı >V 0;V 8vı 2 Vı ;
a�.pı ; vı/ D< C 0Z.Cyı � zd /; vı >V 0;V 8vı 2 Vı ; .2/

< B 0pı C ˛U uı ; vı >U 0;U D 0 8vı 2 Uı :

We highlight that for the problem at hand, the control is discretized on the same
mesh of the state. By the optimality condition, u has the same regularity as the
solution of the adjoint problem, the latter depends on the data regularity of the state
problem.

3 Iteration and Discretization Error Estimates

After the discrete KKT system (2), we analyze the accuracy on the functional that
we have achieved. By proceeding as done in [5], we split the functional error into
two parts:
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ˇ̌
ˇJ.y; u/ � J.yjı ; ujı /

ˇ̌
ˇ � ˇ̌J.y; u/ � J.yj ; uj /ˇ̌„ ƒ‚ …

�
.j /
iter

C
ˇ̌
ˇJ.yj ; uj /� J.yjı ; ujı /

ˇ̌
ˇ

„ ƒ‚ …
�

.j /
dis

;

where .y; u/ is the exact optimal control solution, .yj ; uj / are the hypothetical con-
tinuous solutions at the iterative step j and .yj

ı
; uj
ı
/ is the discrete optimal control

solution. The first part represents the iteration error and the second the discretization
error. We will estimate each term as follows.

Theorem 1. For linear control problems, the iteration error at the j -th iteration
has the following expression:

�
.j /
iter D jJ.y; u/ � J.yj ; uj /j D

1

2
.ruL.xj /; u � uj /:

Corollary 1. If a steepest-descent iterative method with constant relaxation param-

eter � is used, �.j /iter can be estimated as:
ˇ̌
ˇ�.j /iter

ˇ̌
ˇ ' 1

2
�
		ruL.xj /

		2 :

See [5] for the proofs. Then the first part of the error is minimized during the iterative
solution of the KKT system, accordingly with the stopping criterium,

		ruL.xj /
		 �

toliter. For the �.j /dis we use a dual weighted estimation.

Theorem 2. Assume the mesh to be � shape regular, that is 9� > 0 W ��1hk �
hk0 � �hk if k and k0are such that ˝k \ ˝k

0 ¤ ;, with polynomial degrees of
neighboring elements comparable ��1.Nk C 1/ � Nk0 C 1 � �.Nk C 1/. Then for
the spectral element discretization we have:

�
.j /
dis � C

KX
kD1

	
y

k

hk

Nk
krpj

ı
kL2.!1

k
/ C 	pk

hk

Nk
kryj

ı
kL2.!1

k
/ C 	u

k

hk

Nk
krujQı kL2.!1

k
/;

where
	
y

k
WD kR.yj

ı
; uj
ı
/k˝k

C . hk

Nk
/� 1

2 kr.yj
ı
/k@˝k

, 	u
k
WD k˛uı C pık˝k

,

	
p

k
WD kR.pj

ı
; y
j

ı
/k˝k

C . hk

Nk
/� 1

2 kr.pj
ı
/k@˝k

.
Here R.�; �/ (r.�; �/, respectively) are the interior (edge, respectively) residuals

associated with either the state or adjoint elliptic operators, and !1
k
D [m2Ik

˝m,
where Ik is the set of index of the elements sharing at least one vertex with ˝k .

Proof. According to [2] for the Galerkin element discretization we have

�
.j /
dis �

KX
kD1
f	y
k
!
p

k
C 	p

k
!
y

k
C 	u

k!
u
kg;

where !y
k
WD kyj � Iıyj k˝k

C . hk

Nk
/

1
2 kyj � Iıyj k@˝k

, !p
k
WD kpj � Iıpj k˝k

C
. hk

Nk
/

1
2 kpj � Iıpj k@˝k

, !u
k
WD kuj � Iıuj k˝k

. Iıyj , Iıpj , Iıuj are hN -Clément
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interpolant of yj , pj , uj , respectively, see [8]. Now using the estimates for the
Clément interpolant, see e.g., [8], each term in the weights !y

k
, !p

k
, !u

k
can be esti-

mated by the norms of the gradients in the !1
k

domain associated to ˝k . Collecting
the previous estimates concludes the proof.

The choice between h or N refinement strategy is made according to a pre-
dictable error estimates. For both the state and the adjoint equations we construct
a posteriori residual estimates and a predictable estimates. Then we define the total
residual and total predictable estimates as the sum of the two contributions by the
state and adjoint problems. Comparing this total estimates following the algorithm
proposed in [9] we choose between a spatial h (each element is subdivided into four
sub-elements by joining the midpoints) or a functional N (increasing N by one)
refinement.

4 Numerical Results

We present some numerical results to show how the algorithm works. Let ˝ D
.0; 1/2 and consider an initial conform mesh. More particularly ˝ is subdivided in
K D 4 spectral elements and on each element we use a uniform degreeN D 2. The
state equation is: 
 ��y D u in ˝;

y D 0 on @˝:

For the quadratic functional J we fix ˛ D 0:1 and zd D exp.�.x2 C y2/=0:04/.
We solve both the optimization and the adaptive process in an iterative way, the two
tolerances are toliter D toldis D 1e � 7, an we start with an initial control u0 D 1. In
the adaptive process we admit at maximum itmax

dis D 2 iterations because changing
the approximation of the functional J the optimal control calculated on the old
mesh could be very different from the one on the new mesh. In Table 1 we report
the results obtained during the process.

In the figures below we report an intermediate mesh in Fig. 3 and the final mesh
in Fig. 4. For each element we plot the degrees of freedom and the local polynomial
degree. In Fig. 5 the final control function and in Fig. 6 the associated final state
function.

5 Conclusions

In this note we have presented a spectral element method for the discretization of an
elliptic optimal control problem and the use of hN adaptivity to reduce the error on
the cost functional. The proposed estimate for the discretization part has driven to an
automatic design of either the mesh and the polynomial degrees in a configuration
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Table 1 The error estimates at each optimization and adaptive step and the number of elements
refined in h, N at each adaptive step

ititer itdis �iter �dis #fref hg #fref N g
1 0 1.4725e-008 1.2677e-005 0 0
1 1 1.3425e-005 1.9999e-006 1 0
1 2 5.5197e-006 3.5798e-007 1 0
2 0 1.8497e-008 8.0828e-007 0 0
2 1 1.0809e-007 7.6918e-007 1 0
2 2 6.3807e-007 3.0858e-007 2 6
3 0 3.0720e-008 3.4665e-007 0 0
3 1 4.3163e-007 1.3016e-006 3 1
3 2 4.1335e-007 5.3046e-008 5 0
4 0 1.7597e-008 7.0768e-008 0 0

Fig. 3 After 3 steps of the
algorithm
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Fig. 4 Final mesh and
degrees for every element
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Fig. 5 Final control function
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Fig. 6 Final state function
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strictly dependent on the problem considered. More information are used near the
corner where the desired functions and the control variables change more rapidly.
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Applications of High Order Methods to Vortex
Instability Calculations

Leo M. González, Vassilis Theofilis, and Fernando Meseguer-Garrido

Abstract Highly resolved solutions of the two-dimensional incompressible Navier-
Stokes and continuity equations, describing the evolution of vortex systems, have
been obtained accurately and efficiently by spectral collocation methods. Such
solutions have formed the basic state for subsequent three-dimensional BiGlobal
eigenvalue problem (EVP) linear instability analyses, which monitor the modal
response of these vortical systems to small-amplitude perturbations, periodic along
the homogeneous axial spatial direction, without the need to invoke an assumption
of azimuthal spatial homogeneity. A spectral/hp methodology has been adapted to
study instability of vortical flows and has been validated on the isolated Batchelor
vortex. Subsequently, a stability analysis of an aircraft wake model, composed of
two counter-rotating vortices, has been performed by the present spectral/hp element
methodology.

1 Introduction

Work spanning several decades exists, which focuses on the problem of inviscid or
viscous instability of vortical flows. Short of resorting to a direct numerical sim-
ulation methodology analysis [15], an approach hardly appropriate for parametric
studies, practically all instability work has dealt with basic flows that correspond to
vortices either in isolation or in the presence of a shear flow that models the presence
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of a second co- or counter-rotating vortex. By contrast, Hein and Theofilis [6] and
Jacquin et al. [7] have first employed the BiGlobal instability analysis concept [14]
in order to analyze three-dimensional instability of arbitrary vorticity distributions
on the plane normal to the axial direction, treating the latter spatial direction as
homogeneous, but without resorting to the assumption of spatial homogeneity in
the azimuthal; the basic states analyzed in those works were constructed analyti-
cally with the aid of the Batchelor vortex model. Interestingly, validations studies
on the Batchelor vortex [6] have demonstrated the stringent resolution requirements
placed on the stability analysis by the tight structure of the amplitude functions of
the small-amplitude perturbations developing in the core of the basic flow vortex.
The use of a regular Cartesian tensor-product spectral collocation computational
mesh [6] has adversely influenced the convergence of the results presented (though
convergence has been achieved), since a large portion of the available (mapped)
Chebyshev collocation points utilized have been wasted in resolving the innocuous
far-field. It thus becomes natural to depart from the structured-mesh technologies
used in the earlier analyses and focus on numerical methodologies for BiGlobal
instability analysis which rely on unstructured meshes. The work of Broadhurst,
Sherwin and Theofilis [1] was the first step in this direction, employing a spec-
tral/hp element methodology [8]. Building upon earlier low order version work by
González et al. [5], here attention is turned again to a spectral/hp element method-
ology approach for the solution of the incompressible BiGlobal eigenvalue problem
(EVP). In order to eliminate potential influences of the basic state on the quality of
the instability results, two-dimensional direct numerical simulation, based on spec-
tral collocation and an eigenvalue decomposition algorithm, has been employed to
obtain the basic state [13]. Results delivered by this methodology, when the DNS
is initialized on different models of aircraft wing loading, have been found to be in
excellent agreement with those produced by a different, appropriate and efficient,
DNS methodology for this class of problems [2, 15]. Here, the initial conditions
are provided by a counter-rotating pair of vortices; after an initial transient period a
dipole is formed, which descends and diffuses according to the imposed Reynolds
number. Snapshots in time of this flowfield are extracted at predefined characteris-
tic times [9, 11] and are analyzed with respect to their three-dimensional instability.
Turning to the BiGlobal EVP, the present spectral/hp-based methodology has been
validated against instability results of a single-Batchelor vortex [10]. This exer-
cise has delivered information, firstly regarding efficient meshing strategies, and
secondly on resolution requirements for in-core serial solution of the EVP.

Section 2 discusses the theoretical background of both the basic flow and the
eigenvalue problem, as well as the boundary conditions of the stability problem and
aspects of the numerical solution of both basic and perturbed flow. Subsequently,
results are presented in Sect. 3, on the instability of both the isolated Batchelor vor-
tex and that of the numerically-obtained dipoles. Conclusions and projected future
directions of the present research are discussed in Sect. 4.
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2 Theory

The Navier–Stokes equations governing incompressible flows are written in
primitive-variables formulation. A particular non-parallel solution of the Navier–
Stokes equations known as basic flow .Nui ; Np/ is perturbed by small-amplitude
velocity Qui and kinematic pressure Qp perturbations, as follows

ui D Nui C "Qui C c:c: p D Np C " Qp C c:c:; (1)

where " � 1 and c:c: denotes conjugate of the complex quantities .Qui ; Qp/. Lin-
earizing around the basic flow, the equations for the perturbation quantities are
obtained

@Qui
@t
C Nuj @Qui

@xj
C Quj @Nui

@xj
D � @ Qp

@xi
C 1

Re

@2 Qui
@x2j

; (2)

@Qui
@xi
D 0; (3)

The boundary condition used for this system is Qui D 0 on the domain boundary.

2.1 The Basic Flows

A detailed discussion of the numerical approach used to recover the basic states may
be found elsewhere [13]; here a brief summary is exposed. A Cartesian coordinate
system is considered, taking .x1; x2; x3/ � .x; y; z/ and .u1; u2; u3/ � .u; v;w/.
The basic flow is calculated by time-marching the vorticity transport equation,

�t C Nv�y C Nw�z � �r2� D 0; (4)

where � D � Nwy C Nvz is the basic flow vorticity, r2 D @2

@y2 C @2

@z2 , and the
streamfunction,  , is related with the vorticity through

r2 C � D 0: (5)

An equation analogous to (4) is solved for the axial component of veloc-
ity Nu, which is decoupled from the system (4) and (5). Dimensional time t� is
non-dimensionalized as

t D t��
2
a20

(6)

The initial conditions for the flows analyzed are composed of an isolated or sys-
tem of Lamb–Oseen vortices to which an axial flow has been superimposed. The
initial vorticity �0 of a single such vortex and the circulation of the flow � are
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defined in [5]. Additionally, an initial axial velocity, Nu0

Nu0 D U0 e
� r2

a2
0 ; (7)

is defined,U0 being the peak value of the axial velocity; the latter is a free parameter
measuring the jet strength [3, 9]. The vortex radius a is based on the vorticity polar
moments ay ; az on the half-plane defined in [12].

In the present case of a system of two vortices, the initial distance between the
centroids is denoted by b. The flow Reynolds number is defined by Re D � =�, �
being the kinematic viscosity. The numerical solution of the basic flow problem is
detailed in [5].

2.2 The BiGlobal Eigenvalue Problem (EVP)

The Ansatz used to describe the small-amplitude perturbations is

Qui D Oui .y; z/ei.˛x�!t/; (8)

Qp D Op.y; z/ei.˛x�!t/; (9)

where a temporal formulation has been adopted, considering ˛ is a real wavenumber
parameter associated with the axial periodicity length through Lx D 2�

˛
and ! is

the complex eigenvalue sought. Substitution into (2) and (3) results in

i ˛ OuC Ovy C Owz D 0; (10)

L Ou � Nuy Ov � Nuz Ow� i ˛ Op D �i ! Ou; (11)�
L � Nvy

�
Ov � Nvz Ow � Opy D �i ! Ov; (12)

�
L � Nwz

�
Ow � Nwy Ov � Opz D �i ! Ow; (13)

where L D 1=Re
�
�˛2C@2=@y2C@2=@z2

�
� i ˛ Nu�Nv@=@y� Nw@=@z. The complex

generalized eigenvalue problem for the determination of ! may thus be obtained,

A

0
BB@

Ou
Ov
Ow
Op

1
CCA D �i !B

0
BB@

Ou
Ov
Ow
Op

1
CCA : (14)

Here an iterative Arnoldi method has been used for the solution of the EVP. In
both the isolated Batchelor vortex validation case and the dipole analyses that fol-
low, the spatial discretization of (14) is performed using the spectral/hp element
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method. The polynomial order considered for the pressure is P � 2, while the
polynomial order for the velocity is P .

3 Results

3.1 Basic Flow

A system of two counter-rotating vortices has been defined by the parameters
a0 D a.t D 0/ D 0:25; b0 D b.t D 0/ D 1=0:134. A wide square integration
domain has been taken, the extent of which, L is taken to fulfill L� b0, such that
the periodic boundary conditions do not affect the results of the simulations. The
equations of motion (4) and (5) have been integrated in time, until certain predeter-
mined criteria, indicated below, are met. Resolutions upward of Ny D N z D 400

Fourier collocation points per spatial direction have been used. In the multipara-
metric problem at hand a constant initial circulation of unity has always been
considered, while basic flow was run for Reynolds number value, Re D 3;180, the
initial axial velocity values, U0 D 0:5

�
. The vortex aspect ratio, E D az=ay , settles

to a linear growth after a short initial transient, the latter indicating the short period
during which the initially-imposed analytical vorticity distribution adjusts itself to
the equations of motion. Stopping the simulations when this ratio reaches the value
a=b D 1=4 defines one time, t0 
 0:09369, at which one of the subsequent insta-
bility analyses was performed. By the end of the simulation, it has been verified that
the circulation is constant to within 2�10�3. The self-advection speed of the vortex
pair is subtracted such that the vortices remain in the computational domain.

3.2 Instability Analyses

Prior to analyzing the system of vortices obtained in the previous Section, it is
instructive to present results obtained in the well-studied Batchelor vortex instabil-
ity problem [10]. In this case the basic flow is analytically-constructed, .u; v;w/ D
.exp.�r2/;�qz.1 � exp.�r2//=r2; qy.1 � exp.�r2//=r2/, where r is the radial
cylindrical coordinate. This non-dimensional baseflow only depends on the swirl
parameter q, which is the quotient between the circulation velocity and the axial
velocity.

The resulting system is solved in a large domain of 20 times the vortex radius,
such that homogeneous Dirichlet boundary conditions may be imposed on all ampli-
tude functions at the boundary of the domain. While in this limiting case the classic
instability analysis which exploits periodicity in the azimuthal direction [10] could
have been used, here the BiGlobal EVP (10)–(13) has been solved without the need
to resort to this assumption. Stability results at Re D 1;200; q D 0:8 are shown
for P D 7 in Fig. 1. The lack of linearity for the largest values of m and ˛ in the
frequency representation could be improved by mesh refinement.
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α α

Fig. 1 Dependence of amplification rate (left) and frequency (right) vs. wavelength ˛ for the
different unstable modes of an isolated Batchelor vortex at Re D 1;200; q D 0:8. The value of m
indicates the number of equal signed lobes in the structure

The (high-order) spectral/hp is capable of delivering accurate results in flows
where small fluid structures compared to the fluid domain are searched. Spectral
convergence has been obtained in the EVP calculation and a polynomial order
P D 7 has been used for the present calculations. The mesh required in order for
such results to be obtained has h D 842 elements (542 triangles and 300 quadrilat-
erals). In the vicinity of the basic flow vortex this mesh comprises a finely-resolved
structured core of dimension one (in radius units) embedded into an unstructured
mesh, the density of which decreases monotonically to the end of the calculation
domain.

The extent of the domain is calculated on the basis of the following considera-
tions: although the vortex core radius is of order 2
 , homogeneous Dirichlet bound-
ary conditions are imposed in the far-field. As identified by Delbende, Chomaz and
Huerre [3], the amplitude functions of the perturbation components are expected
to decay exponentially as r ! 1 according to e�˛r . In this respect, the far field
boundaries must be situated sufficiently far away from the vortex core, especially for
small ˛ values, in order for the error that the Dirichlet boundary condition induces
to be negligible. The axial disturbance velocity component, Ou, of a Batchelor vortex
at Re D 1;200; q D 0:8 for ˛ D 2:125 (most unstable case for ˛ 2 Œ0; 4�) and
˛ D 2:875 are shown in Fig. 2.

Based on this experience, analogous grids have been calculated for the BiGlobal
instability analysis of an aircraft wake model based on a vortex dipole. Again, the
extent of the domain is the square y; z 2 Œ�40; 40�.

A linear superposition for the axial vorticity of the leading eigenmode upon the
basic state of the most unstable mode at Re D 3;800; ˛ D 3 is shown in Fig. 3.
A key observation in these and all other results obtained but not shown here is the
spatial inhomogeneity of the amplitude functions along the azimuthal direction may
be appreciated. Features of the eigenmodes, known from classic instability anal-
yses which invoke azimuthal homogeneity as assumption, may be seen in these
results. Specifically, remnants of elliptic instability in the vortex core are visible.
Even more significantly, the braids surrounding the vortex core are essential parts
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Fig. 2 The amplitude function of the normalized axial perturbation, Ou, in the Batchelor vortex at
Re D 1; 200; q D 0:8, ˛ D 2:125;m D 4 (left) and ˛ D 2:875;m D 6 (right), obtained through
numerical solution of (10)–(13). Dashed lines denote negative values
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Fig. 3 Axial vorticity superposition upon the steady laminar basic state at Re D 3;180, U0 D
0:5=
 , of its most amplified eigenmode at amplitude 1%. Axial spatial direction reconstructed
using Lx D 2
=˛, with ˛ D 3:0; eigenvalue !i D 0:04603 (growth rate),!r D 0:06072

(frequency)

of the amplitude functions, of the same (or larger) magnitude as the structures in
the vortex cores. Such structures are clearly out of reach of instability approaches
invoking periodicity along the azimuthal direction; use of the BiGlobal instability
concept is mandatory for their recovery.

4 Conclusions and Outlook

A spectrally-accurate two-dimensional DNS methodology has been utilized in order
to obtain the time-evolution of a pair of counter-rotating vortices, the initialization
of which used the Batchelor model. A snapshot of this flow field was considered as
quasi-steady basic state and subsequently analyzed with respect to their instability
against three-dimensional disturbances. The BiGlobal analysis context employed
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permitted relaxing the assumption of azimuthal homogeneity that was invariably
used in earlier analyses of this class of problems. The spatial structure of the (two-
dimensional) amplitude functions of the eigenmodes obtained provide a-posteriori
justification for the use of the BiGlobal concept. From a numerical point of view,
what has become clear by the present work is that the spectral/hp, as applied to the
BiGlobal EVP solution [4], can provide reliable results working on technological
problems.
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Entropy Viscosity Method for High-Order
Approximations of Conservation Laws

J.L. Guermond and R. Pasquetti

Abstract A stabilization technique for conservation laws is presented. It introduces
in the governing equations a nonlinear dissipation function of the residual of the
associated entropy equation and bounded from above by a first order viscous term.
Different two-dimensional test cases are simulated – a 2D Burgers problem, the
“KPP rotating wave” and the Euler system – using high order methods: spectral
elements or Fourier expansions. Details on the tuning of the parameters controlling
the entropy viscosity are given.

1 Introduction

High-order methods, especially spectral methods, are very efficient for solving Par-
tial Differential Equations (PDEs) with smooth solutions since the approximation
error goes exponentially fast to zero as the polynomial degree of the approxima-
tion goes to infinity, i.e. spectral accuracy is observed. Unfortunately this property
breaks down for non-smooth solutions such as those that arise from solving nonlin-
ear conservation laws. This type of equations generates shocks which in turn induce
the so-called Gibbs phenomenon. The problem is not new and many sophisticated
algorithms have been developed to address this issue. Particularly popular among
these methods are the so-called monotone and Total Variation Diminishing (TVD)
schemes that aim at enhancing the accuracy far from the shocks and promoting non-
oscillatory behavior at the shocks. These techniques are mainly based on Essentially
Non Oscillatory polynomial reconstructions (ENO) and the use of flux/slope limiters
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whose goal is to bound the fluxes. One may consult [3] for an overview on this class
of methods, which were mainly developed for Finite Volume approximations.

It is remarkable that few methods have been proposed for solving nonlinear con-
servation laws with high order methods. Among them, in the frame of spectral
methods the well known “spectral vanishing viscosity” technique [6] introduces a
dissipation term only active in the high frequency range of the spectral approxima-
tion. In the same spirit, but on the basis of a hp-finite element approximation and a
Discontinuous Galerkin method, it was also recently proposed to introduce a dissi-
pation term, based on a viscosity controlled by a smoothness indicator [5]. The goal
of the present paper is to present a somewhat different viscosity method, which was
recently introduced in [1] by the authors. Here again the key idea consists of aug-
menting the PDE with a dissipation term, but the viscosity is based on the residual
of the associated entropy equation. Here we propose a simplified formulation of the
method and extend it to two-dimensional problems. The technique is implemented
with Fourier polynomials and the Spectral Element Method (SEM).

The paper is organized as follows. We describe the entropy viscosity method
in Sect. 2. An application to the two-dimensional inviscid Burgers equation with
Fourier polynomials is described in Sect. 3 and convergence tests are reported. The
method is adapted to the SEM setting in Sect. 4 and is illustrated on a nonlinear
conservation law exhibiting a rotating composite wave. In Sect. 5 we adapt the
entropy viscosity method to the two-dimensional Euler system and solve a classical
benchmark problem using the Fourier approximation.

2 The Entropy Viscosity Method

It is well known that the relevant weak solution of the scalar conservation law

@tu.x; t/Cr � f.u.x; t// D 0 ; x 2 ˝ ; t 2 R
C (1)

with appropriate initial and boundary conditions, is the so-called entropy solution,
which is also characterized by u D lim�!0 u� where

@tu� Cr � f.u�/ D ��u�: (2)

Let us recall the following points, see e.g. [3] and references herein: (a) Solving
(2) rather than (1), with a “small” value of �, yields the Von-Neumann-Richtmyer
method, developed for the Euler equations in 1950! Such an approach is however
well known to be too diffusive. (b) Linear techniques such as the Lax-Wendroff
scheme are more accurate than the first-order viscosity regularization but they are
not fully satisfactory since the solution is often polluted by spurious oscillations. To
overcome this difficulty one usually resorts to TVD schemes. (c) High-order (>1)
TVD (and so monotonicity preserving) schemes must be nonlinear, as stated by the
Godunov theorem. (d) Nonlinear schemes with flux/slope limiters essentially add
some nonlinear viscosity dissipation.
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Starting from this last point, the entropy viscosity method introduces a nonlin-
ear dissipation term r:.�hru/ in the right hand side of (1). Let E.u/ be a convex
function and assume that there exists an entropy pair .E.u/;F.u// such that

@tE.u/Cr � F.u/ � 0

characterizes the unique viscous limit to (1) (i.e. the entropy solution). Let rE .u/ WD
@tE.u/ C r � F.u/ be the entropy residual. This quantity is a negative measure
supported on the shocks, i.e. rE < 0 at the shocks and rE D 0 elsewhere.

Assume that the computational domain ˝ is discretized, let h be the grid size
and uh the numerical solution. We propose to construct a local artificial nonlinear
viscosity based on the entropy residual rE .uh/. To this end we first set

�E .x; t/ WD ˛h2.x/R.rE .uh//=kE.uh/� NEk1;˝ (3)

where ˛ is a proportionality coefficient, NE is the space average of E.uh/ (recall that
E is defined up to a constant), k:k1;˝ is the usual L1.˝/ norm and R.rE / is a
positive function (or functional) of the residual rE . The terms h2.x/ and kE.uh/ �NEk1;˝ are scaling factors. The aim of R.rE / is to extract a useful information
from the residual; Hereafter we use R.rE / D jrE j. Note that in smooth parts of u,
one may expect that rE .uh/ scales like the approximation error of the resolution
method.

We now provide an upper bound for the entropy viscosity. For the one-
dimensional scalar conservation equation @tuCf 0.u/@xu D 0, the first-order Finite
Difference upwind scheme (linear monotone scheme) is equivalent to the second-
order centered Finite Difference augmented with a viscous dissipation with viscosity
�max D 1

2
f 0.u/h. By analogy we set

�max.x; t/ D ˛max hmax
y2Vx

jf0.uh.y; t//j; (4)

where ˛max is a constant coefficient, and Vx is a neighborhood of x still to be defined
and dependent on the approximation method. In practice the size of Vx is a few
multiples of h in each direction. Finally the entropy viscosity is defined to be

�h.x; t/ WD S .min.�max; �E // (5)

where S is a smoothing operator. Smoothing may indeed be required because
rE .uh/ is generally highly oscillatory, since when a shock occurs we actually try
to approximate a Dirac distribution. Practical implementation details on the opera-
tor S and on the neighborhoodVx, as well as details on how to tune the coefficients
˛ and ˛max are provided in the examples studied in next sections.
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3 2D Burgers (Fourier)

Let ˝ D .0; 1/2 and consider the following inviscid Burgers problem, where v D
.1; 1/ is a constant vector field:

@tuCr:.1
2

u2v/ D 0; ujtD0 D u0.x; y/ (6)

where u0 D �0:2 if x < 0:5; y > 0:5, u0 D �1 if x > 0:5; y > 0:5, u0 D 0:5 if
x < 0:5; y < 0:5 and u0 D 0:8 if x > 0:5; y < 0:5. The local velocity f0.u/ D uv
is parallel to v and of amplitude u.

To be able to solve this problem with a pseudo-spectral Fourier method we
transform it into a periodic problem by extending the computational domain to
.0; 2/2 and by extending the initial condition by symmetry about the axes fx D 1g,
fy D 1g.

We choose the entropy pair E.u/ D 1
2

u2, F.u/ D 1
3

u3v; and then follow the
procedure described in Sect. 2. The entropy viscosity, �h, and the non-linear flux,
1
2

u2
h
v� �hruh, are computed in the physical space (pseudo-spectral approach). For

each Fourier node x, the neighborhoodVx is composed of the 7�7 Fourier nodes sur-
rounding x. The smoothing operation is performed by doing two smoothing sweeps,
each one based on a two-dimensional averaging rule involving 5 grid-point values,
with weight 4 for the central point and 1 for the 4 closest points.

The time marching is done with the standard Runge-Kutta scheme (RK4). The
entropy viscosity is taken constant in time during the time-step, say from time tn to
tnC1, and so computed at time tn. Using the second order backward finite difference
approximation, the time derivative of the entropy is computed from the values of E
at time tn, tn�1 and tn�2. Space derivatives result from the Fourier approximation.

We show in Fig. 1 computations done at time t D 0:5 with 192 Fourier modes in
each direction, i.e. with 1922 grid points in .0; 1/2. The non-linearity was de-aliased
using the 3

2
padding rule. The entropy viscosity control parameters are ˛ D 0:2 and
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Fig. 1 Fourier-RK4 solution (left) and entropy viscosity (right)
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Table 1 Errors and convergence rates for the 2D Burgers problem

h L1 Rate L2 Rate L1

2.78E–2 1.92E–2 – 1.02E–1 – 1.47
1.39E–2 9.99E–3 0.94 7.28E–2 0.49 1.50
6.94E–3 5.34E–3 0.89 5.41E–2 0.43 1.50
3.47E–3 2.79E–3 0.95 3.80E–2 0.51 1.51

˛max D 1:5. The approximate solution is shown in the left panel of Fig. 1, and the
entropy viscosity is shown in the right panel. The shocks are well described and the
entropy viscosity focuses in the shocks as expected.

The exact solution to (6) can be evaluated at time t D 0:5. Table 1 gives the
relative error in the L1- and L2-norm for different grid sizes. One observes conver-
gence rates close to optimality, i.e. order one in the L1-norm and half order in the
L2-norm. Of course, no convergence is obtained in the L1 norm.

4 KPP Rotating Wave (SEM)

We now use the SEM method to solve the following two-dimensional nonlinear
scalar conservation law:

@tuCr � f.u/ D 0; f.u/ D .sin u; cos u/; ujtD0 D
(
3:5
 if jxj < 1
1
4

 otherwise

in the domain ˝ D .�2; 2/�.�2:5; 1:5/ for t 2 .0; 1/. This problem has been
proposed by Kurganov, Petrova and Popov [2] to test the convergence properties of
some WENO schemes.

The local velocity is v D f0.u/ D .cos u;� sin u/. We choose the entropy pair
E.u/ D 1

2
u2, F.u/ D .u sin uCcos u; u cos u�sin u/. Then we follow the procedure

defined in Sect. 2.
The domain is uniformly discretized using squares of side h and the approx-

imation space is composed of the functions that are continuous and piecewise
polynomial of partial degree at most N . The local shape functions are the Lagrange
polynomials associated with the .N C 1/2 Gauss-Lobatto-Legendre (GLL) points.
To define the entropy viscosity we follow the procedure described in Sect. 2, except
that in (4) we have used the local grid size of the GLL mesh, say hGLL, rather than h.
The neighborhood Vx is defined as the corresponding spectral element of x, during
the assembling procedure. The smoothing is achieved inside each element on the
GLL mesh, by one smoothing sweep based on a two-dimensional averaging rule
involving 5 GLL grid-points. The entropy viscosity control parameters are ˛ D 40

and ˛max D 0:8=N . The time marching is done by using the standard Runge-Kutta
scheme (RK4). The entropy viscosity is made explicit and computed by using the
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Fig. 2 SEM-RK4 solution for the KPP rotating wave. Solution (top left) and corresponding
entropy viscosity (top right) for N D 4 and 962 cells. Ratio �=�max for 962 cells (bottom left)
and 482 (bottom right)

second order backward finite difference approximation for the time derivative of the
entropy.

Results reported in the two top panels of Fig. 2 have be obtained with a grid
composed of 962 square elements and with polynomials of degree N D 4 in each
variable. The numerical solution is shown in the left panel; It exhibits the correct
composite wave structure. The corresponding entropy viscosity is shown in the right
panel; As expected, dissipation is added only where the shock develops.

We finish this section by providing more details on how to adjust the entropy
viscosity parameters. The idea is that to be efficient, the viscosity must reach its
maximum value in the shocks. Consequently, we propose the following two-step
adjustment procedure:

1. Set ˛ D 1 and increase ˛max until obtaining a smooth solution (a good guide-
line is that ˛max D 1

2
is the correct answer in one space dimension on uniform

grids).
2. Once ˛max is fixed, set ˛ so that the entropy viscosity saturates in the shocks,

i.e. max.�/ D �max in shocks.

The two bottom panels in Fig. 2 show the ratio �=�max for two different dis-
cretizations. Observe that this ratio equals 1 in the shock.
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5 2D Euler System (Fourier)

We finish this paper by explaining how the entropy viscosity method can be adapted
to the compressible Euler equations:

@tuCr � f.u/ D 0; u D
0
@
	

	v
E

1
A ; f D

0
@

	v
	v˝ vC pI

v.E C p/

1
A (7)

where p D 	T , T D .��1/.E=	�v2=2/. Usual notations are used: 	; v; p; T; �; E
stand for density, velocity, pressure, temperature, ratio of specific heat, and total
energy, respectively. The physical entropy functional S.p; 	/ D 


��1 log.p=	� / is
such that rS WD @tS Cr � .vS/ � 0.

To understand where and how the entropy dissipation must be set, it is helpful to
follow the physics by considering the viscous fluxes appearing in the Navier-Stokes
equations:

fvisc.u/ D
0
@

0

��rv
��vWrv � �rT

1
A :

The quantity � is the dynamic viscosity and � is the thermal conductivity.
First, we compute �S , except that there is no need to normalize by kS � NSk1;˝

in (5):�S D ˛ h2 	.x; t/jrS .x; t/j. Then, estimating the maximum local wave speed
to be jvj C p�T , we set �max D ˛max h 	.x; t/maxy2Vx.jv.y; t/j C

p
�T .y; t//.

Finally, � D S .min.�max ; �S // and, taking � to be proportional to �, � D ˇ�.
We now validate this approach by solving the benchmark problem number 12

from [4]. It is a two-dimensional Riemann problem set in R
2. In the restricted

computational domain .0; 1/2 the initial set of data is defined as follows:

p D 1:; 	 D 0:8; v D .0:; 0:/; 0: < x < 0:5 0: < y < 0:5;

p D 1:; 	 D 1:; v D .0:7276; 0:/; 0: < x < 0:5; 0:5 < y < 1:;

p D 1:; 	 D 1:; v D .0:; 0:7276/; 0:5 < x < 1:; 0: < y < 0:5;

p D 0:4; 	 D 0:5313; v D .0:; 0:/ 0:5 < x < 1:; 0:5 < y < 1::

The solution is computed at time t D 0:2. Proceeding as in Sect. 3, the problem is
first made periodic by extending the computational domain to .0; 2/2, and the initial
data are extended by symmetry about the axes fx D 1g and fy D 1g.

The time marching algorithm, the definition of the smoothing operator, and the
neighborhood Vx are the same as in Sect. 3. The nonlinear terms are de-aliased. The
control parameters for the entropy viscosity are ˛ D 20, ˛max D 0:5 and ˇ D 2.
We show in Fig. 3 results obtained with 400 Fourier modes in each direction, i.e.
with 400 grid-points in .0; 1/2. They compare well with those obtained with other
more sophisticated shock capturing methods, see [4].
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Fig. 3 Pressure (top left); Density (top right); Temperature (bottom left); Entropy viscosity �
(bottom right)
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High-Order Accurate Numerical Solution
of Incompressible Slip Flow and Heat Transfer
in Microchannels

Kazem Hejranfar, Mir Hamed Mohafez, and Ali Khajeh-Saeed

Abstract A high-order accurate implicit operator scheme is used to solve steady
incompressible slip flow and heat transfer in 2D microchannels. The present method-
ology considers the solution of the Navier–Stokes equations using the artificial
compressibility method with employing the Maxwell and Smoluchowski boundary
conditions to model the slip flow and temperature jump on the walls in microchan-
nels. Since the slip and temperature jump boundary conditions contain the deriva-
tives of the velocity and temperature profiles, using the compact method the bound-
ary conditions can be easily and accurately implemented. The computations are
performed for a 2D microchannel and a 2D backward facing step in the slip regime.
The results for these cases for different conditions are compared with the avail-
able results which show good agreement. The effects of the Knudsen and Reynolds
numbers on the flow field and heat transfer characteristics are also investigated.

1 Introduction

Recently, progress in micro-fabrication techniques has led to development of a large
number of Micro-Electro-Mechanical Systems (MEMS) and microfluidic Tech-
nologies. In MEMS devices, the fluid mechanics and heat transfer of gas-phase
microflows due to non-equilibrium effects such as rarefaction and gas-surface inter-
actions can differ significantly from the macroscopic world and the no-slip boundary
conditions of the Navier–Stokes equations are no longer valid. The applicability of
the Navier–Stokes equations is determined by the Knudsen number Kn which is
defined as the ratio of mean free path of gas molecules � to the characteristic length
of a microdeviceL. Schaaf and Chambre [14] classified different flow regimes based
on the Knudsen number. The continuum fluid flow occurs for Kn < 0:01, the slip
flow regime is considered for 0:01 � Kn � 0:1, the transition flow regime is
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accomplished for 0:1 � Kn � 10 and the free molecular regime exists for Kn > 10.
To model the flow field in the slip flow regime, Kn � 0:1, the Navier–Stokes equa-
tions can be used together with appropriate slip and temperature jump boundary
conditions between gas and substrate. Up to now, many efforts have been made for
solving the flow field in microchannels by using the Navier–Stokes equations with
employing slip and temperature jump boundary conditions (see [1, 3, 5, 8, 11] and
others). These flow solvers for modeling the slip flow regime in microchannels are
based on usual finite-difference methods or finite-volume, finite-volume-element
and spectral-element methods.

In this paper, a fourth-order implicit compact operator method is used for solv-
ing 2D incompressible microchannel flows with heat transfer by using the artificial
compressibility method. Compact methods, compared with the traditional finite-
difference schemes of the same order of accuracy, are shown to be significantly
more accurate with advantage of having good resolution properties without increas-
ing excessively the computational stencil size. The computations are performed for a
2D microchannel and also a 2D backward facing step in slip flow regime. The results
for different conditions are compared with the available results and the effects of the
Knudsen and Reynolds numbers on the solutions are studied.

2 Problem Formulation

The problem considered to be solved is laminar incompressible slip flow and heat
transfer in 2D microchannels. Herein, the thermophysical properties such as the
viscosity and thermal conductivity of the fluid are assumed to be constant. Body
forces and viscous heating are also assumed to be negligible. The 2D incompressible
Navier–Stokes equations using the artificial compressibility method can be written
in dimensionless and conservative form in Cartesian coordinates as:

@Q

@t
C @E

@x
C @F

@y
D 1

Re
.ŒN �r2Q/ (1)

whereQ is the solution vector and E and F are the inviscid flux vectors as follows:

Q D

2
664

p

u
v
T

3
775 ; E D

2
664

ˇu
u2 C p

uv
uT

3
775 ; F D

2
664

ˇv
uv

v2 C p
vT

3
775 ; N D

2
664

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
Pr

3
775 (2)

Here, ˇ is the artificial compressibility parameter, .u; v/ are the Cartesian velocity
components, p is the pressure, T is the temperature, and Pr is the Prandtl number
(Pr D 0:72 for air). Re D Nu H=� denotes the Reynolds number based on the mean
inflow velocity Nu, the channel heightH and the kinematic viscosity �.
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3 Wall Boundary Conditions

The wall boundary conditions used in this study are the Maxwell [12] and Smolu-
chowski boundary conditions [15] that are given respectively as follows:

us � uw D 2 � ��
��

Kn

�
@u

@n

�

s

C 3

2


� � 1
�

Kn2Re

Ec

@T

@s
(3)

Ts � Tw D 2 � �T
�T

2�

� C 1
Kn

Pr

�
@T

@n

�

s

(4)

where s and n denote the local tangential and normal directions, respectively, us
and Ts are the slip velocity and the gas temperature on the wall, respectively, uw and
Tw are the wall velocity and the wall temperature, respectively, �� and �T are the
tangential momentum accommodation coefficient and the thermal accommodation
coefficient, respectively. � is the ratio of specific heats (� D 1:40 for air) and Ec is
the Eckert number. The second term in the right hand side of (3) denotes the thermal
creep effect which accounts for fluid flow induced by the temperature gradient near
the wall along the surface. This term is second order in Knudsen number [2] and
becomes negligible for the moderate temperature gradients in slip flow regime.

4 Numerical Procedure

The numerical method applied is an alternating direction implicit compact operator
scheme which has been used for computing 2D compressible and incompressible
flows [6, 7, 9]. In [11], the algorithm has been extended to model the incompress-
ible flows in 2D microchannels in slip flow regime. Herein, the algorithm is used
and extended for solving incompressible microchannel flows with heat transfer. By
implementing this scheme to the incompressible Navier–Stokes equations,

�
I � 3�t

h
Ai�1;j

�
�Q�

i�1;j C 4�Q�
i;j C

�
I C 3�t

h
AiC1;j

�
�Q�

iC1;j

D RHSi�1;j C 4RHSi;j C RHSiC1;j
(5)

�
I � 3�t

h
Bi;j�1

�
�Qi;j�1 C 4�Qi;j C

�
I C 3�t

h
Bi;jC1

�
�Qi;jC1

D �Q�
i;j�1 C 4�Q�

i;j C�Q�
i;jC1

(6)

where RHS D �t
h
� @E
@x
� @F

@y
C 1

Re
.ŒN �r2Q/

i
andA andB are known as the flux

Jacobian matrices. Note that the spatial derivatives in RHS are computed with the
fourth-order compact scheme. Note also that computing RHS in (5) with satisfying
slip and temperature jump conditions can be easily and accurately performed. For
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example, for calculating the first derivative of the temperature in the y-direction,
one can use the following fourth-order compact relations [10]

T 0
j�1 C 4T 0

j C T 0
jC1 D 3

h

�
TjC1 � Tj�1

�CO.h4/: (7)

For boundary treatment, the following third-order compact formula can be used

T 0
1 C 2T 0

2 D 1
6h
.�15T1 C 12T2 C 3T3/CO.h3/

T 0
jmax C 2T 0

jmax�1 D 1
6h

�
15Tjmax � 12Tjmax�1 � 3Tjmax�2

�CO.h3/: (8)

Since the thermal boundary condition (4) contains the first derivative of the temper-
ature, .Ts D ˛T T 0

s where ˛T D 2��T

�T

2�
�C1

Kn
Pr /, then one can combine (4) and (8)

to perform the appropriate boundary formula:

�
1C 15

6h
˛T
�
T 0
1 C 2T 0

2 D 1
6h
.12T2 C 3T3/CO.h3/�

1C 15
6h
˛T
�
T 0

jmax C 2T 0
jmax�1 D 1

6h

�
12Tjmax�1 � 3Tjmax�2

�CO.h3/ (9)

Now, the compact relation (7) together with the boundary formula (8) can be used to
obtain T 0 through the wall-normal direction with the fourth-order accuracy with no
especial treatment at the wall boundary. The same trend can be used for evaluating
the first derivative of the velocity, u0.

Equations (5) and (6) along with suitable boundary conditions form a block-
tridiagonal system of equations with a block size of 4 � 4 in the I - or J -sweeps to
obtain�Qi;j and then calculate the solution vectorQnC1

i;j D Qn
i;jC�Qi;j . Details

of the numerical method implemented can be found in [9, 11].

5 Numerical Results and Discussion

At first, the results based on the compact scheme are presented for the 2D simple
microchannel (see Fig. 1, h D 0:0) in the slip flow regime with the constant wall
temperature condition. The velocity and temperature are uniform at the inlet and the
fully developed condition for the velocity is assumed at the outlet. Figure 2 gives
the distribution of the local Nusselt number on the wall along the microchannel for
Kn D 0:0; 0:05; 0:10. The computed results are in agreement with those presented in

Fig. 1 Backward facing step
geometry and boundary
conditions used

L3
Tw

Tw

L2

L

H

h

Adiabatic L1

Ti
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Fig. 2 Rarefaction effect on
local Nusselt number for 2D
microchannel

Fig. 3 Rarefaction effect on
temperature contours for 2D
microchannel for different Kn

[4]. In the entrance region, large gradients occur that can produce very large veloc-
ity slip and temperature jump and their magnitudes are significantly reduced as the
flow develops along the channel owing to weaker gradients. It is found that in the
slip flow regime, the thermal developing length is less than 10% of the microchannel
length. It is clear that by increasing Kn (the degree of rarefaction), the local and fully
developed Nusselt numbers due to increasing gas temperature jump close to the wall
are decreased. The figure also indicates that the distribution of Nu in the entrance
region of the microchannel is smoothed. The local and fully developed friction fac-
tor, Cf , due to increasing the slip velocity and therefore decreasing the shear stress
on the wall are also decreased (not shown here). In Fig. 3, the temperature contours
.� D T�Tw

Ti �Tw
; �w D 0:0/ along the microchannel show a decrease in the growth of

the thermal boundary layer along the microchannel due to the rarefaction effect.
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Fig. 4 Comparison of fully
developed Nusselt number
and friction factor for 2D
microchannel

Kn

(N
u

 &
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Renksizbulut .et .al , (Cf.Re)fd

Analytical Solution , (Cf.Re)fd

Present work

Fully Developed Nusselt

Fully Developed Friction Coefficient

Fig. 5 Rarefaction effect on local Nu for backward facing step with Re D 100 (upper) and
Re D 400 (lower) in slip flow regime

As a result, the thermal entrance length increases as Kn increases (see also Fig. 2).
A similar trend has also be found for the hydrodynamic entrance length. Figure 4
gives the rarefaction effect on the fully developed Nu and Cf . It is obvious that by
increasing Kn, both the values of these variables are decreased. A good agreement
between the present results and those of [4, 13] is exhibited.

Now, the results for the 2D backward facing step in slip flow regime (see Fig. 1,
h D H=2) are presented. This geometry contains complex flow features associated
with separation and reattachment. In Fig. 5, the computed local Nu on the walls
for Kn D 0:0; 0:05; 0:10 with Re D 100; 400 are shown. The results for the noslip
case for Re D 100 are in good agreement with those of [16]. Very large reduction
in heat transfer in the entrance region in slip flow regime are due to rarefaction. It
is clear that for constant wall temperature condition by increasing Kn, the variation
of Nu along both the walls is smoothed and the maximum and minimum values of
Nu are reduced and their positions are shifted to the downstream. These effects are
more pronounced for higher Re. Figure 6 depicts the associated flow field and heat
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Fig. 6 Computed flow field and temperature contours for backward facing step with Re D 100

(upper) and 400 (lower) in slip flow regime

Fig. 7 Rarefaction effect on
wall shear distribution for
backward facing step with
Re D 400

transfer characteristics shown by the velocity profiles and temperature contours.
The study demonstrates that by increasing Kn or Re, the reattachment zone near
the lower wall is stretched and the center of recirculating region is moved to the
right accordingly. It is found that the small recirculating zone on the upper wall for
Re D 400 is disappeared due to rarefaction which can clearly be concluded from the
wall shear distribution in Fig. 7. Figure 8 illustrates the u-velocity and temperature
profiles in the slip flow regime at x=H D 1; 10 forReD 100; 400. The figure shows
that the height of reattachment zone is slightly increased by increasing Kn and the
position of the maximum velocity and temperature is moved toward the upper wall.
In the recirculating region, the absolute velocity slip and the temperature jump on
the lower wall are less than those of the upper wall. By increasing Kn, the absolute
slip velocity and temperature jump on both the walls are increased. For higher Re,
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Fig. 8 Computed horizontal velocity and temperature profiles for backward facing stepRe D 100

(upper) and Re D 400 (lower) in slip flow regime at x=H D 1:0; 10:0

the maximum velocity and temperature values are increased and their positions are
moved toward the upper wall due to increasing the height of the recirculating region.

6 Concluding Remarks

A fourth-order compact implicit operator scheme is employed for solving 2D
incompressible microchannel flows with heat transfer. Beside the high-order accu-
racy of the numerical method used, the implementation of slip and temperature jump
conditions can also be done with more ease and accuracy. The present study shows
that rarefaction has significant effects on the flow field and heat transfer characteris-
tics. Note that gas flows in microchannels are usually experience density variations
as a function of the pressure drop. The algorithm presented can be extended for
solving compressible flows in microchannels.

Acknowledgements The authors would like to thank Sharif University of Technology for the
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High-Order Accurate Numerical Solution of Incompressible Slip Flow 427

References

1. Ahmed, I. and Beskok, A.: Rarefaction, Compressibility, and Viscous Heating in Gas Micro-
filters, J. Thermophys. Heat Transf. 16, 161–170 (2002)

2. Beskok, A., Em Karniadakis, G. and Trimmer, W.: Rarefaction and Compressibility Effects in
Gas Microflows, J. Fluid Eng. 118, 448-456 (1996)

3. Barber, R. W. and Emerson, D. R.: Tech. Rep, Comput. Sci. Eng. Dept., CLRC Darebury
Laboratory, (2000)

4. Cetin, B.: Analysis of Single Phase Convective Heat Transfer in Microtubes and Microchan-
nels, MSc Thesis, Mechanical engineering of Middle East Technical University, Ankara,
Turkiye (2005)

5. Darbandi, M., Rikhtegar, F. and Schbeider, G. E.: AIAA Paper 2007–3991, (2007)
6. Ekaterinaris, J. A.: Implicit High-Order Accurate in Space Algorithms for the Navier–Stokes

Equations, AIAA J. 38, 1594–1602 (2000)
7. Ekaterinaris, J. A.: Implicit, High-Resolution, Compact Schemes for Gas Dynamics and

Aeroacoustics, J. Comp. Phys. 156, 272–299 (1991)
8. Hadjiconstantinou, N. G. and Simek O.: Constant-wall-temperature Nusselt Number in Micro

and Nano-channels, J. Heat Transf. 44, 4225–4234 (2002)
9. Hejranfar, K. and Khajeh-Saeed, A.: Implementing a High-Order Accurate Implicit Operator

Scheme for Solving Steady Incompressible Viscous Flows using Artificial Compressibility
Method, Int. J. Num. Meth. Fluid, 2010. DOI: 10.1002/fld.2288

10. Lele, S. K.: Compact Finite Different Schemes with Spectral-Like Resolution. J. Comp. Phys.,
103, 16–42 (1992)

11. Hejranfar, K., Mohafez, M. H. and Khajeh-Saeed, A.: A High-Order Accurate Implicit
Operator Scheme for Solving Incompressible Microchannel Slip Flows Using Artificial Com-
pressibility Method, The 17th Annual (International) Conference on Mechanical Engineering
(ISME2009), Iran (2009)

12. Maxwell, J. C.: On Stress in Rarefied Gases Arising From Inequalities of Temperature. Philos.
Trans. R. Soc. Part 1, 231–256 (1897)

13. Renksizbulut, M., Niazmand, H. and Tercan, G.: Flow and Heat Transfer in Rectangular
Microchannels with Constant Wall Temperature. Int. J. Ther. Sci. 45, 870–881 (2006)

14. Schaaf, S. A. and Chambre, P. L.: Flow of Rarefied Gaseous. Prinston University Press,
Prinston, NJ (1961)

15. Smoluchowski, von M.: Ueber Warmeleitung in Verdunnten Gasen, Annalen der Physik und
Chemie. 64, 101–130 (1898)

16. Valencia, A. and Hinojosa, L.: Numerical Solutions of Pulsating Flow and Heat Transfer Char-
acteristics in a Channel with Backward-Facing Step. Int. J. Heat Mass Transf. 32, 143–148
(1997)



Spectral Methods for Time-Dependent
Variable-Coefficient PDE Based on Block
Gaussian Quadrature

James V. Lambers

Abstract Krylov subspace spectral (KSS) methods have previously been applied
to the variable-coefficient heat equation and wave equation, as well as systems of
coupled equations such as Maxwell’s equations, and have demonstrated high-order
accuracy, as well as stability characteristic of implicit time-stepping schemes, even
though KSS methods are explicit. KSS methods compute each Fourier coefficient
of the solution using techniques developed by Gene Golub and Gérard Meurant
for approximating elements of functions of matrices by Gaussian quadrature in the
spectral, rather than physical, domain. In this paper, we review the most effective
type of KSS method, that relies on block Gaussian quadrature, and compare its
performance to that of Krylov subspace methods from the literature.

1 Introduction

In [13] a class of methods, called block Krylov subspace spectral (KSS) methods,
was introduced for the purpose of solving parabolic variable-coefficient PDE. These
methods are based on techniques developed by Golub and Meurant in [4] for approx-
imating elements of a function of a matrix by Gaussian quadrature in the spectral
domain. In [12], these methods were generalized to the second-order wave equation,
for which these methods have exhibited even higher-order accuracy.

It has been shown in these references that KSS methods, by employing different
approximations of the solution operator for each Fourier coefficient of the solution,
achieve higher-order accuracy in time than other Krylov subspace methods (see, for
example, [8]) for stiff systems of ODE, and they are also quite stable, considering
that they are explicit methods. They are also effective for solving systems of coupled
equations, such as Maxwell’s equations [14].
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In this paper, we review block KSS methods, as applied to various types of PDE,
and compare their performance to other Krylov subspace methods from the liter-
ature. Section 2 reviews the main properties of block KSS methods, as applied to
the parabolic problems for which they were designed. Section 3 discusses imple-
mentation details, and demonstrates why KSS methods need to explicitly generate
only one Krylov subspace, although information from several is used. In Sect. 4,
we discuss modifications that must be made to block KSS methods in order to
apply them to systems of coupled wave equations, such as Maxwell’s equations.
Numerical results are presented in Sect. 5, and conclusions are stated in Sect. 6.

2 Krylov Subspace Spectral Methods

We first review block KSS methods, which are easier to describe for parabolic
problems. Let S.t/ D expŒ�Lt� represent the exact solution operator of the problem

ut C Lu D 0; t > 0; (1)

with appropriate initial conditions and periodic boundary conditions. The operator
L is a second-order, self-adjoint, positive definite differential operator.

Let h�; �i denote the standard inner product of functions defined on Œ0; 2
�. Block
Krylov subspace spectral methods, introduced in [13], use Gaussian quadrature on
the spectral domain to compute the Fourier coefficients of the solution. These meth-
ods are time-stepping algorithms that compute the solution at time t1; t2; : : :, where
tn D n�t for some choice of �t . Given the computed solution Qu.x; tn/ at time tn,
the solution at time tnC1 is computed by approximating the Fourier coefficients that
would be obtained by applying the exact solution operator to Qu.x; tn/,

Ou.!; tnC1/ D
�
1p
2

ei!x; S.�t/Qu.x; tn/

�
: (2)

In [4] Golub and Meurant describe a method for computing quantities of the form

uT f .A/v; (3)

where u and v are N -vectors, A is an N � N symmetric positive definite matrix,
and f is a smooth function. Our goal is to apply this method with A D LN where
LN is a spectral discretization of L, f .�/ D exp.��t/ for some t , and the vectors
u and v are obtained from Oe! and un, where Oe! is a discretization of 1p

2�
ei!x and

un is the approximate solution at time tn, evaluated on an N -point uniform grid.
The basic idea is as follows: since the matrix A is symmetric positive definite, it

has real eigenvalues

b D �1 � �2 � � � � � �N D a > 0; (4)
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and corresponding orthogonal eigenvectors qj , j D 1; : : : ; N . Therefore, the
quantity (3) can be rewritten as

uT f .A/v D
NX
jD1

f .�j /uT qjqTj v: (5)

which can also be viewed as a Riemann–Stieltjes integral

uT f .A/v D I Œf � D
Z b

a

f .�/ d˛.�/: (6)

As discussed in [4], the integral I Œf � can be approximated using Gaussian
quadrature rules, which yields an approximation of the form

I Œf � D
KX
jD1

wjf .�j /CRŒf �; (7)

where the nodes �j , j D 1; : : : ; K , as well as the weights wj , j D 1; : : : ; K , can
be obtained using the symmetric Lanczos algorithm if u D v, and the unsymmetric
Lanczos algorithm if u ¤ v (see [6]).

In the case u ¤ v, there is a possibility that the weights may not be positive,
which destabilizes the quadrature rule (see [1] for details). Instead, we consider

�
u v

�T
f .A/

�
u v

�
; (8)

which results in the 2 � 2 matrix

Z b

a

f .�/ d�.�/ D
�

uT f .A/u uT f .A/v
vT f .A/u vT f .A/v

�
; (9)

where �.�/ is a 2 � 2 matrix function of �, each entry of which is a measure of the
form ˛.�/ from (6).

In [4] Golub and Meurant showed how a block method can be used to generate
quadrature formulas. We will describe this process here in more detail. The inte-
gral

R b
a
f .�/ d�.�/ is now a 2 � 2 symmetric matrix and the most general K-node

quadrature formula is of the form

Z b

a

f .�/ d�.�/ D
KX
jD1

Wjf .Tj /Wj C error; (10)

with Tj and Wj being symmetric 2 � 2 matrices. By diagonalizing each Tj , we
obtain the simpler formula
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Z b

a

f .�/ d�.�/ D
2KX
jD1

f .�j /vj vTj C error; (11)

where, for each j , �j is a scalar and vj is a 2-vector.
Each node �j is an eigenvalue of the matrix

TK D

2
666664

M1 B
T
1

B1 M2 BT2
: : :

: : :
: : :

BK�2 MK�1 BTK�1
BK�1 MK

3
777775
; (12)

which is a block-triangular matrix of order 2K . The vector vj consists of the first
two elements of the corresponding normalized eigenvector. To compute the matrices
Mj andBj , we use the block Lanczos algorithm, which was proposed by Golub and
Underwood in [5].

We are now ready to describe block KSS methods. For each wave number
! D �N=2 C 1; : : : ; N=2, we define R0.!/ D

� Oe! un
�

and compute the QR
factorization R0.!/ D X1.!/B0.!/: We then carry out block Lanczos iteration,
applied to the discretized operator LN , to obtain a block tridiagonal matrix TK.!/
of the form (12), where each entry is a function of !.

Then, we can express each Fourier coefficient of the approximate solution at the
next time step as

Œ OunC1�! D
h
BH0 E

H
12 expŒ�TK.!/�t�E12B0

i
12

(13)

where E12 D
�

e1 e2
�
: The computation of (13) consists of computing the eigen-

values and eigenvectors of TK.!/ in order to obtain the nodes and weights for
Gaussian quadrature, as described earlier.

This algorithm has local temporal accuracyO.�t2K�1/ [13]. Furthermore, block
KSS methods are more accurate than the original KSS methods described in [10],
even though they have the same order of accuracy, because the solution un plays
a greater role in the determination of the quadrature nodes. They are also more
effective for problems with oscillatory or discontinuous coefficients [13].

Block KSS methods are even more accurate for the second-order wave equation,
for which block Lanczos iteration is used to compute both the solution and its time
derivative. In [12, Theorem 6], it is shown that when the leading coefficient is con-
stant and the coefficient q.x/ is bandlimited, the 1-node KSS method, which has
second-order accuracy in time, is also unconditionally stable. In general, as shown
in [12], the local temporal error is O.�t4K�2/ when K block Gaussian nodes are
used.



Spectral Methods Based on Block Gaussian Quadrature 433

3 Implementation

KSS methods compute a Jacobi matrix corresponding to each Fourier coefficient,
in contrast to traditional Krylov subspace methods that normally use only a single
Krylov subspace generated by the initial data or the solution from the previous time
step. While it would appear that KSS methods incur a substantial amount of addi-
tional computational expense, that is not actually the case, because nearly all of the
Krylov subspaces that they compute are closely related by the wave number !, in
the 1-D case, or ! D .!1; !2; : : : ; !n/ in the n-D case.

In fact, the only Krylov subspace that is explicitly computed is the one generated
by the solution from the previous time step, of dimension .K C 1/, where K is
the number of block Gaussian quadrature nodes. In addition, the averages of the
coefficients of Lj , for j D 0; 1; 2; : : : ; 2K � 1, are required, where L is the spatial
differential operator. When the coefficients of L are independent of time, these can
be computed once, during a preprocessing step. This computation can be carried out
in O.N logN/ operations using symbolic calculus [11, 15].

With these considerations, the algorithm for a single time step of a 1-node block
KSS method for solving (1), where Lu D �puxx C q.x/u, with appropriate initial
conditions and periodic boundary conditions, is as follows. We denote the average
of a function f .x/ on Œ0; 2
� by f , and the computed solution at time tn by un.

Oun D fft.un/, v D Lun, Ov D fft.v/
for each ! do

˛1 D �p!2 C q (in preprocessing step)
ˇ1 D Ov.!/ � ˛1 Oun.!/
˛2 D hun; vi � 2Re ŒOun.!/v.!/�C ˛1jun.!/j2
e! D Œhun; uni � jOun.!/j2�1=2

T! D
�

˛1 ˇ1=e!

ˇ1=e! ˛2=e
2
!

�

OunC1.!/ D Œe�T!�t �11 Oun.!/C Œe�T!�t �12e!
end
unC1 D ifft.OunC1/
It should be noted that for a parabolic problem such as (1), the loop over ! only
needs to account for non-negligible Fourier coefficients of the solution, which are
relatively few due to the smoothness of solutions to such problems.

4 Application to Maxwell’s Equations

We consider Maxwell’s equation on the cube Œ0; 2
�3, with periodic boundary
conditions. Assuming nonconductive material with no losses, we have

div OE D 0; div OH D 0; (14)

curl OE D ��@
OH
@t
; curl OH D "@

OE
@t
; (15)



434 J.V. Lambers

where OE, OH are the vectors of the electric and magnetic fields, and ", � are the
electric permittivity and magnetic permeability, respectively.

Taking the curl of both sides of (15) yields

�"
@2 OE
@t2
D � OEC ��1curl OE � r�; (16)

�"
@2 OH
@t2
D � OHC "�1curl OH � r": (17)

In this section, we discuss generalizations that must be made to block KSS methods
in order to apply them to a non-self-adjoint system of coupled equations such as
(16). Additional details are given in [14].

First, we consider the following 1-D problem,

@2u
@t2
C Lu D 0; t > 0; (18)

with appropriate initial conditions, and periodic boundary conditions, where u W
Œ0; 2
� � Œ0;1/! R

n for n > 1, and L.x;D/ is an n � n matrix where the .i; j /
entry is an a differential operator Lij .x;D/ of the form

Lij .x;D/u.x/ D
mijX
�D0

aij� .x/D
�u; D D d

dx
; (19)

with spatially varying coefficients aij� , � D 0; 1; : : : ; mij .
Generalization of KSS methods to a system of the form (18) can proceed as fol-

lows. For i; j D 1; : : : ; n, let Lij .D/ be the constant-coefficient operator obtained
by averaging the coefficients ofLij .x;D/ over Œ0; 2
�. Then, for each wave number
!, we define L.!/ be the matrix with entries Lij .!/, i.e., the symbols of Lij .D/
evaluated at !. Next, we compute the spectral decomposition of L.!/ for each !.
For j D 1; : : : ; n, let qj .!/ be the Schur vectors of L.!/. Then, we define our test
and trial functions by �j;!.x/ D qj .!/˝ ei!x .

For Maxwell’s equations, the matrix AN that discretizes the operator

A OE D 1

�"

�
� OEC ��1curl OE � r�

�

is not symmetric, and for each coefficient of the solution, the resulting quadrature
nodes �j , j D 1; : : : ; 2K , from (11) are now complex and must be obtained by a
straightforward modification of block Lanczos iteration for unsymmetric matrices.
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5 Numerical Results

In this section, we compare the performance of block KSS methods with various
methods based on exponential integrators [7, 9, 18].

5.1 Parabolic Problems

We first consider a 1-D parabolic problem of the form (1), where the differential
operator L is defined by Lu.x/ D �pu00.x/C q.x/u.x/; where p 
 0:4 and

q.x/ 
 �0:44C0:03 cosx�0:02 sinxC0:005 cos 2x�0:004 sin2xC0:0005 cos3x

is constructed so as to have the smoothness of a function with three continuous
derivatives, as is the initial data u.x; 0/. Periodic boundary conditions are imposed.

We solve this problem using the following methods:

� A 2-node block KSS method. Each time step requires construction of a Krylov
subspace of dimension 3 generated by the solution, and the coefficients of L2

and L3 are computed during a preprocessing step.
� A preconditioned Lanczos iteration for approximating e��Av, introduced in [16]

for approximating the matrix exponential of sectorial operators, and adapted in
[18] for efficient application to the solution of parabolic PDE. In this approach,
Lanczos iteration is applied to .I C hA/�1, where h is a parameter, in order
to obtain a restricted rational approximation of the matrix exponential. We use
m D 4 and m D 8 Lanczos iterations, and choose h D �t=10, as in [18].

� A method based on exponential integrators, from [7], that is of order 3 when the
Jacobian is approximated to within O.�t/. We use m D 8 Lanczos iterations.

Since the exact solution is not available, the error is estimated by taking the `2-norm
of the relative difference between each solution, and that of a solution computed
using a smaller time step �t D 1=64 and the maximum number of grid points.

The results are shown in Fig. 1. As the number of grid points is doubled, only the
block KSS method shows an improvement in accuracy; the preconditioned Lanczos
method exhibits a slight degradation in performance, while the explicit fourth-order
exponential integrator-based method requires that the time step be reduced by a
factor of 4 before it can deliver the expected order of convergence; similar behavior
was demonstrated for an explicit 3rd-order method from [8] in [10].

The preconditioned Lanczos method requires 8 Lanczos iterations to match the
accuracy of a block KSS method that uses only 2. On the other hand, the block KSS
method incurs additional expense due to (1) the computation of the moments of L,
for each Fourier coefficient, and (2) the exponentiation of separate Jacobi matrices
for each Fourier coefficient. These expenses are mitigated by the fact that the first
takes place once, during a preprocessing stage, and both tasks require an amount
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Fig. 1 Estimates of relative error at t D 0:1 in solutions of (1) computed using preconditioned
exponential integrator [18] with 4 and 8 Lanczos iterations, a 4th-order method based on an expo-
nential integrator [9], and a 2-node block KSS method. All methods compute solutions on an
N -point grid, with time step �t , for various values of N and �t

of work that is proportional not to the number of grid points, but to the number of
non-negligible Fourier coefficients of the solution.

5.2 Maxwell’s Equations

We now apply a 2-node block KSS method to (16), with initial conditions

OE.x; y; z; 0/ D F.x; y; z/;
@ OE
@t
.x; y; z; 0/ D G.x; y; z/; (20)

with periodic boundary conditions. The coefficients � and " are given by

�.x; y; z/ D 0:4077C 0:0039 cos zC 0:0043 cosy � 0:0012 siny

C0:0018 cos.y C z/C 0:0027 cos.y � z/C 0:003 cosx

C0:0013 cos.x � z/C 0:0012 sin.x � z/C 0:0017 cos.x C y/
C0:0014 cos.x � y/; (21)

".x; y; z/ D 0:4065C 0:0025 cos zC 0:0042 cosy C 0:001 cos.y C z/

C0:0017 cosx C 0:0011 cos.x � z/C 0:0018 cos.x C y/
C0:002 cos.x � y/: (22)
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The components of F and G are generated in a similar fashion, except that the
x- and z-components are zero.

We use a block KSS method that uses K D 2 block quadrature nodes per coef-
ficient in the basis described in Sect. 4, that is 6th-order accurate in time, and a
cosine method based on a Gautschi-type exponential integrator [7, 9]. This method
is second-order in time, and in these experiments, we use m D 2 Lanczos iterations
to approximate the Jacobian. It should be noted that when m is increased, even to a
substantial degree, the results are negligibly affected.

Figure 2 demonstrates the convergence behavior for both methods. At both spa-
tial resolutions, the block KSS method exhibits approximately 6th-order accuracy
in time as �t decreases, except that for N D 16, the spatial error arising from trun-
cation of Fourier series is significant enough that the overall error fails to decrease
below the level achieved at �t D 1=8. For N D 32, the solution is sufficiently
resolved in space, and the order of overgence as �t ! 0 is approximately 6.1.

We also note that increasing the resolution does not pose any difficulty from a
stability point of view. Unlike explicit finite-difference schemes that are constrained
by a CFL condition, KSS methods do not require a reduction in the time step to
offset a reduction in the spatial step in order to maintain boundedness of the solution,
because their domain of dependence includes the entire spatial domain for any �t .

KSS,N=16

KSS,N=32

cosine,N=16

cosine,N=32

1 1 / 2 1 / 4 1 / 8 1 / 1 6 1 / 3 2

time step

Maxwell’s equation, 3-D

10–4

10–2

100

10–6

10–8

10–10

re
la

tiv
e 

er
ro

r

10–12

Fig. 2 Estimates of relative error at t D 1 in solutions of (16), (20) computed using a cosine
method based on a Gautschi-type exponential integrator [7, 9] with 2 Lanczos iterations, and a
2-node block KSS method. Both methods compute solutions on an N3-point grid, with time step
�t , for various values of N and �t
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The Gautschi-type exponential integrator method is second-order accurate, as
expected, and delivers nearly identical results for both spatial resolutions, but even
with a Krylov subspace of much higher dimension than that used in the block KSS
method, it is only able to achieve at most second-order accuracy, whereas a block
KSS method, using a Krylov subspace of dimension 3, achieves sixth-order accu-
racy. This is due to the incorporation of the moments of the spatial differential
operator into the computation, and the use of Gaussian quadrature rules specifically
tailored to each Fourier coefficient.

6 Summary and Future Work

We have demonstrated that block KSS methods can be applied to Maxwell’s equa-
tions with smoothly varying coefficients, by appropriate generalization of their
application to the scalar second-order wave equation, in a way that preserves
the order of accuracy achieved for the wave equation. Furthermore, it has been
demonstrated that while traditional Krylov subspace methods based on exponen-
tial integrators are most effective for parabolic problems, especially when aided
by preconditioning as in [18], KSS methods perform best when applied to hyper-
bolic problems, in view of their much higher order of accuracy. Future work will
extend the approach described in this paper to more realistic applications involving
Maxwell’s equations by using symbol modification to efficiently implement per-
fectly matched layers (see [2]), and various techniques (see [3, 17]) to effectively
handle discontinuous coefficients.
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The Spectral Element Method Used to Assess
the Quality of a Global C1 Map

A.E. Løvgren, Y. Maday, and E.M. Rønquist

Abstract In this work we focus on C 1 maps from a reference domain to a family
of deformed domains. The regularity of a map affects the approximation properties
of the mapped mesh, and we use the regularity as a measure of the quality of the
mesh. To compare the regularities of different maps we consider the convergence
of the spectral element method when a Laplace problem is solved on the resulting
meshes.

1 Introduction

We are interested in the numerical solution of partial differential equations defined
on a family of deformed domains. Examples of such situations include dependent
problems where the geometry changes with time, and the reduced basis element
method where solutions on selected sample domains are used to generate global
basis functions on topologically similar domains [8]. In such cases it is of interest
to have access to a global mapping between a reference domain and a family of
deformed domains.
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We let .�; �/ denote the coordinates of the reference domain, and x D .x; y/ the
corresponding coordinates on the deformed domain. The Jacobian of the map from
the reference domain to the deformed domain is then defined as

J D
"
@x
@

@x
@�

@y
@

@y
@�

#
: (1)

The Jacobian is used in the Piola transformation to map vector fields between
the domains. In order for the vector fields to be continuous after they are mapped, the
Jacobian must also be continuous. Thus the map from the reference domain to the
deformed domain must be C 1-continuous.

To compare the regularities of different mapping strategies we consider the con-
vergence of the spectral element method when a Laplace problem is solved on the
deformed domain. Since the convergence of the spectral element method relies on
the regularity of both the solution and the geometry [10], the corresponding con-
vergence rate gives a good indication of the regularity of the underlying global map
when the solution itself is analytic.

2 Methods

In this section we present different strategies to construct global C 1 maps from
a generic reference domain to a domain found as a deformation of the reference
domain. Depending of the topology of the reference domain, and the severity of the
deformation, some of the methods are better suited than others, while some might
not apply at all.

Transfinite Extension

For rectangles and triangles, the method of transfinite extension was developed by
Gordon and coworkers [1, 5], and we present in some detail the method applied
to a rectangular reference domain. Although the method is restricted to simple
domains, complex domains can be decomposed into a union of simpler subdomains
and transfinite interpolation can be applied to map a reference grid to each subdo-
main. Globally the map will not be C 1, but on each subdomain the grid will be
excellent.

The basic idea of transfinite extension is to interpolate between opposing sides
in the reference rectangle, using proper weight functions, linear or non-linear. Given
the reference domain b̋ D Œ0; 1�2, with coordinates .�; �/, we let fb� ig4iD1 denote
the different parts of the boundary (numbered counterclockwise), such that b� 1 D
.0; �/ is the left boundary, and b� 4Ci D b� i .

We assume that the boundaries of a deformed rectangle ˝ D ˚.b̋/, are well
defined as one-to-one maps of the reference boundaries, e.g., �1 D x.0; �/, and
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Fig. 1 Transfinite interpolation

compute the interior coordinates x.�; �/ of the map ˚ . Given regular weight func-
tions f�i .�; �/g4iD1 such that �i D 1 on b� i and �i D 0 on b� iC2, the transfinite
interpolation from b̋ to ˝ is defined by

x.�; �/ D �1.�; �/x.0; �/C �3.�; �/x.1; �/ (2)

C�2.�; �/x.�; 0/C �4.�; �/x.�; 1/ (3)

�
4X
iD1

�i .�; �/�iC1.�; �/xi .1/; (4)

where xi .1/ is the value of x in the corner between �i and �iC1. The first line
(2) preserves the left and right boundaries exactly, and is illustrated by the shaded
area to the left in Fig. 1. Similarly, the second line preserves the top and bottom
boundaries, and is seen as the second shaded area in Fig. 1. The sum of these inter-
polations covers parts of the interior of the domain twice, and in addition regions
outside the domain are included. The final step of the procedure is thus to subtract
the interpolation of the corners, given by (4) and shown by the third shaded area in
Fig. 1.

By introducing 
1.�; �/ D � as the projection of any interior point .�; �/ on the
reference domain to the left boundary b� 1, and similarly for the other boundaries,
we get the more compact form of the transfinite interpolation

x.�; �/ D
4X
iD1
Œ�i .�; �/xi .
i .�; �// � �i .�; �/�iC1.�; �/xi .1/�; (5)

where xi .t/ is the coordinates of �i for t 2 Œ0; 1�. In general the weight functions
�i are one-dimensional, e.g., �1.�; �/ D 1 � �, and only functions of the distance
between two opposing sides, but alternative definitions are also possible. See [6] for
examples and applications to mesh generation. We also mention that the extension
to 3D when the reference domain is the unit cube is straight forward.

Generalized Transfinite Extension

Based on the transfinite extension described above, we generalize the method in
order to use any domain with more than four corners as a reference domain.
The most crucial difference is that we can no longer use one-dimensional weight
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Fig. 2 Illustration of the boundary conditions for the harmonic weight and projection functions
used in the generalized transfinite extension scheme

functions, and we need the projection of the reference coordinates onto each part
of the boundary. The generalized transfinite extension method was first presented in
[9], and we give the details here as well.

On an n-sided reference domain, where n � 4, we denote each side b� i , i D
1; : : : ; n, and number the sides in a counterclockwise manner. Associated with each
side is a weight function �i , and a projection function 
i , both defined over b̋ . To
define the weight functions, we let �i D 1 on b� i , and solve the Laplace problem

��i D 0 in b̋; (6)

with homogeneous Neumann boundary conditions on the two sides of b̋ adjacent
to b� i , and homogeneous Dirichlet boundary conditions on the remaining sides; see
Fig. 2a. On the reference square these harmonic weight functions will coincide with
one-dimensional, linear weight functions, as seen in Fig. 3a, but on a general non-
convex reference domain, the weight functions will be non-affine C 1 functions; see
Fig. 3b, c.

In the generalized transfinite extension scheme, we also need the projection from
the interior onto each side b� i . On the unit square these projections are given by the
reference coordinates as 
1.�; �/ D 
3.�; �/ D � and 
2.�; �/ D 
4.�; �/ D �.
On a general domain we compute the projection function 
i onto the side b� i by
solving the Laplace problem

�
i D 0 in b̋; (7)

with linear Dirichlet boundary condition along b� i , distributed from 0 to 1 with
respect to arc-length. On the sides adjacent to b� i we set 
i equal to either 0 or 1,
and on the remaining sides we use homogeneous Neumann boundary conditions;
see Fig. 2b. On the unit square this procedure will reproduce the linear distribution
of the reference coordinate corresponding to b� i , as seen in Fig. 3d, while on general
reference domains we again get non-affine C 1 functions; see Fig. 3e, f.
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Weight function.

a

Weight function.

b

Weight function.
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Projection function.
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Projection function.
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Fig. 3 Contour lines of the weight and projection functions, �1.�; �/ and 
1.�; �/, associated with
the left side of a rectangle (left), a curved pentagon (middle), and a bifurcation (right). The weight
functions decrease from 1 to 0 going from left to right, the projection functions decrease linearly
with respect to arc-length from 1 to 0 going from top to bottom along the left boundary

In general we have to solve a total of 2n elliptic problems on the reference
domain, but if the reference domain has rotational symmetries, like the curved pen-
tagon in Fig. 2, it is sufficient to solve two elliptic problems related to one of the
sides, and then rotate the solutions to fit the other sides.

Since the boundaries of a general reference domain is not given by varying
one single reference coordinate, as was the case for the square reference domain,
we assume that each boundary �i of the deformed domain can be expressed as a
function of the arc-length, t , of the reference boundary b� i , and let xi .t/ represent
map from b� i to �i . Furthermore we let b� nC1 D b� 1, and define the generalized
transfinite extension as

x.�; �/ D
nX
iD1
Œ�i .�; �/xi .
i .�; �// � �i .�; �/�iC1.�; �/xi .1/�: (8)

Again, xi .1/ denotes the corner between �i and �iC1.
We note that, as for transfinite interpolation on the unit square, the value of the

extension x in any point .�; �/ 2 b̋ only depends on the values of the boundary
functions, xi .t/, in isolated points on the boundary of the reference domain.

Harmonic Extension

Where the transfinite extension only applies to reference domains with corners,
the harmonic extension can be defined on any closed domain. Again we let b̋ be
the reference domain with coordinates .�; �/, and ˝ the deformed domain with
coordinates x D .x; y/. In order to find x, we solve

�x.�; �/ D 0 in b̋
x D xb on @b̋ ; (9)
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Fig. 4 The result of using different methods for mapping a square to an axisymmetric bend

where xb D .xb; yb/ are the boundary coordinates of ˝ defined as a one-to-one
map from the boundary of the reference domain, @b̋ . We note that this is not a
coupled system for x and y, and that each spatial dimension is solved separately.

This is by far the easiest method to set up, since it only requires a standard
Laplace solver and is independent of the reference domain. It has, however, some
limitations with respect to large deformations, as can be seen in Fig. 4a. The square
reference domain .�1; 1/2 is here mapped to an axisymmetric bend using the har-
monic extension method, and we see that some of the points belonging to the interior
are actually mapped outside the boundary of the deformed domain. In comparison,
the transfinite interpolation method described above, yields an optimal distribution
of points the .r; �/-plane on the axisymmetric bend; see Fig. 4b.

Transfinite Barycentric Interpolation

For convex reference domains with piecewise differentiable boundaries, Gordon
and Wixom [7] introduced pseudo-harmonic extension. On a bounded and convex
domain˝ � R

2 the extension u is defined as

u.�; �/ D 1

2


Z 2�

0

�
d2.�/

d1.�/Cd2.�/f .Q1.�//C d1.�/

d1.�/Cd2.�/f .Q2.�//

�
d�;

(10)
where Q1 and Q2 are the intersections between @˝ and the line through the point
.�; �/ at inclination � , and d1 and d2 are the distances from .�; �/ to these intersec-
tion points. Note that on the unit disk it is shown that the extension defined in (10) is
the solution of the Laplace problem (9). At each point .�; �/, the extension u defined
in (10) depends on the value of f along the entire boundary of ˝ . For comparison,
the extension defined through the generalized transfinite extension scheme (8) only
depends on 2n boundary points.

The pseudo-harmonic extension behaves similarly to the harmonic extension,
and for a given reference domain, the necessary weight and distance functions can
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be computed once, allowing for rapid computation of large series of deformed
domains. The pseudo-harmonic extension method was also generalized to non-
convex domains by Belyaev [2].

The mean-value coordinates was introduced by Floater [4], and can be seen as
part of the same general barycentric construction that includes the pseudo-harmonic
extension. The mean-value interpolation only has linear precision, but with a sim-
ple formula for computing weights and distance functions it is easier to implement
than the pseudo-harmonic extension. As for the pseudo-harmonic extension, the
largest benefit is when computing multiple deformed geometries from one reference
geometry.

3 Regularity

We consider the mapping from one of the two domains to the left in Fig. 5 to the
deformed domain to the right in the same figure. To evaluate the different extension
methods we apply the spectral element method and decompose the reference domain
into several subdomains. The discrete space is defined by

XN D fv 2 H 1; vj˝k
ı ˚k 2 PN .b/g; (11)

where PN is the space of all polynomials of degree less than or equal to N in each
spatial direction on b D Œ�1; 1�2. We solve a Laplace problem on the deformed
domain, where the interior points are mapped through the different extension meth-
ods described in the previous section. It is known that the convergence of the spectral
element approximation depends on the regularity of both the solution and the geom-
etry. In order to reveal the regularity of the maps, we choose a known analytic
solution to the Laplace problem, u D ex sin.y/. On a regular mesh the spectral
element approximation, uN , of this solution converges exponentially, but due to the
lower regularity of the mapped meshes we only get algebraic convergence rate with
respect to the polynomial degreeN , i.e., juN � ujH1 � N�m.

When the straight pentagon to the left in Fig. 5 is used as a reference domain,
we see from Table 1 that the harmonic extension gives the best convergence rate.
For the pentagon in the middle of Fig. 5 all corners have the angle �

2
, and we see

that the convergence rates of the harmonic extension and the generalized transfinite

Fig. 5 Two different reference domains (left and middle) and a deformed domain (right)
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Table 1 The convergence rate of the error in the spectral element solution. The difference in the
convergence rate is solely due to the different meshes used

Method Reference domain
Uniform pentagon Curved pentagon

Transfinite extension 3.7 5.0
Harmonic extension 4.3 5.0
Pseudo-harmonic extension 2.5
Mean value extension 2.5

extension have improved. In addition they are now equally good. For more details
and results we refer to Løvgren et al. [9]. The large benefit of using the generalized
transfinite extension compared to the harmonic extension defined in (9) is that all
the weight and projection functions are computed only once. For each new given
boundary @˝ we only need to find the corresponding boundary functions xi .t/, and
perform the linear combination of the functions in (8).

Again we stress the need for globalC 1 maps when vector fields are mapped from
one domain to another while preserving the (in)compressibility of the field. This is
crucial when the reduced basis element method is applied to fluid flow problems [8].
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Stabilization of the Spectral-Element Method
in Turbulent Flow Simulations

J. Ohlsson, P. Schlatter, P.F. Fischer, and D.S. Henningson

Abstract The effect of over-integration and filter-based stabilization in the spectral-
element method is investigated. There is a need to stabilize the SEM for flow
problems involving non-smooth solutions, e.g., turbulent flow simulations. In model
problems such as the Burgers’ equation (similar to Kirby and Karniadakis, J. Com-
put. Phys. 191:249–264, 2003) and the scalar transport equation together with full
Navier–Stokes simulations it is noticed that over-integration with the full 3/2-rule is
not required for stability. The first additional over-integration nodes are the most
efficient to remove aliasing errors. Alternatively, filter-based stabilization can in
many cases alone help to stabilize the computation.

1 Introduction

The spectral-element method (SEM) has mainly been applied to relatively low
Reynolds numbers, with a focus on laminar and, to some extent, transitional flows
(see, e.g., [19–21]). However, for fully turbulent flows at moderate Reynolds num-
bers (Re 	 103�104), there has been less attention [1, 4, 5, 22], which can pro-
bably be ascribed to the anxiety about the stability of the SEM at these Reynolds
numbers. The cause of this instability is thought to be the accumulation of alias-
ing errors, which are strongly enhanced in a turbulent flow simulation. Our belief
is that as soon as these errors are reduced or eliminated in an appropriate way, the
stability of the method can be fully assured for all Re. The reduction or elimi-
nation of aliasing errors can be accomplished either by so-called over-integration
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(see, e.g., [3,11,13]), spectral vanishing viscosity (SVV) techniques [10,15,17,23],
or filter-based stabilization as proposed in [7]. In the framework of the weak form,
the nonlinearity of the governing Navier–Stokes equations gives rise to the inte-
gration of three polynomials of order N . Using Gaussian quadrature, this requires
approximately M D 3=2N points in each direction in order to get an exact inte-
gration, which is similar as the well-known 3/2-rule in pseudo-spectral methods. In
this work, we specifically consider the number of Gauss–Lobatto–Legendre (GLL)
points, M , needed for stability, which may be considerably less. This is exam-
ined first by an eigenvalue analysis of the (linearized) viscous Burgers’ equation
and the linear scalar transport equation; then these ideas are applied to the full
Navier–Stokes equations and evaluated a posteriori.

2 Equations and Discretization

Our interest lies in understanding the cause of the instability of SEM at high
Reynolds numbers. In order to achieve this, simpler model problems in R

1 and
R
2 will be analyzed, eventually leading to the full Navier–Stokes in R

3. Following
[11] we proceed in R

1 by analyzing the viscous Burgers’ equation on the interval
˝ D Œ�1; 1�, written here in non-conservative form,

@u

@t
C u

@u

@x
D � @

2u

@x2
(1)

with initial condition u.0; x/ D u0.x/ D �sin(
x) and periodic boundary condi-
tions. To account for a nontrivial velocity field we need to consider a problem in R

2,
here being the scalar transport equation,

@q

@t
C c � rq D 0 (2)

where q may be a scalar concentration of any kind convected by the velocity field c.
For simplicity, we assume that ˝ D Œ�1; 1�2. Finally, the incompressible Navier–
Stokes equations in R

3,

@u
@t
C u � ru D �rp C 1

Re
r2u in ˝; r � u D 0 in ˝ (3)

are considered, where u is the velocity, p is the pressure and Re D UL=� the
Reynolds number based on characteristic velocity and length scales, U and L

respectively. Discretization in space proceeds by the high-order weighted resid-
ual spectral-element technique, extensively described in [8], whereas temporal
discretization is based on high-order splitting techniques [12].
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3 Stabilization of Turbulent Flow Simulations

The 3/2-rule in pseudo-spectral methods gives the criteria for the evaluation of the
non-linear terms in the Navier–Stokes equations to be free from aliasing errors. The
corresponding over-integration in SEM follows the same idea, since the polynomial
expansion in Legendre space is indeed truncated atN:But since the SEM operates in
physical space, it might be more straightforward to view the over-integration as the
action taken in order for the evaluation (Gaussian quadrature) of the integrals arising
from the weak formulation to be exact, as pointed out in [11]. Either view yields the
same conclusion: 3/2 times more points are needed for the non-linear terms in order
to avoid aliasing errors. If additionally curvature is taken into account, even more
points are required depending on the polynomial order of the curvature.

The first sign of aliasing errors is the occurrence of “spectral blocking”, i.e., the
accumulation of energy in the highest modes. The filter-based stabilization tech-
nique proposed in [7] has the property of suppressing the highest mode, thereby
preventing aliasing errors to occur. In a well-resolved calculation, the solution will
be smooth, and the amount of energy in the high wavenumber coefficients will be
exponentially small. The filter, which operates only on the highest wavenumbers,
has the desirable property of not influencing the well-resolved parts of the flow –
it only impacts the under-resolved regions, which is precisely what is needed for
turbulence. The success of the filter-based stabilization technique was demonstrated
in [7]. Considering the 1D case in a domain ˝ D Œ�1; 1� and PN .˝/ is the space
of polynomials of maximum degreeN defined on˝ , the filter operator,˘N�1, was
originally proposed as the interpolation operator in physical space (but can alterna-
tively and formally equivalent be defined as a filter operator in modal space [2]),
˘N�1 W PN .˝/! PN�1.˝/! PN .˝/. With the use of a relaxation parameter ˛
such that 0 < ˛ < 1 the filter operator F˛ is defined as

F˛ D ˛˘N�1 C .1 � ˛/I 0 � ˛ � 1 (4)

with I being the identity matrix. Acting with F˛ on the velocity vector at each time-
step, such that unC1 D F˛ QunC1 where QunC1 is the unfiltered field at the current
time-step, allows for a smooth damping of the highest mode with effectively no
changes to the existing solver. As pointed out in [16], due to the opposite parity of
the Legendre polynomials LN�1 and LN and the fact that ˘N�1 preserves parity,
the amplitude of the highest mode is not dissipated but rather transferred to the third
highest mode.

4 Analysis of Model Problems

4.1 1D: Stabilization of the Burgers’ Equation

In order to perform a quantitative analysis of the Burgers’ equation, the nonlinear
problem was transformed into a linear problem by defining the convective operator
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Fig. 1 (a) Eigenvalues of the right hand side operator of the linear model problem for (crossed)
unstabilized, (plus) filtered and filled circle over-integrated case with M D N C 4 points for the
convective operator. (b) L2-error with respect to the “exact” numerical solution, where the overall
resolution is increased (circle) and the nonlinear term is computed with increased number of points
(filled circle). dashed lined indicates where M=N D 3=2

based on a constant solution (in time) when the gradients are large, mimicking the
conditions in a highly fluctuating turbulent velocity field. The distribution of the
eigenvalues of the resulting problem, du

dt D Au, are shown in Fig. 1a for the unsta-
bilized, filtered and over-integrated cases. Here, M D N C 4 GLL points are used
to compute the convective operator (compared to M D N C 1 for the other terms),
which apparently has a strong influence on the eigenvalues. In particular, the unsta-
ble eigenvalues (compare to the unstabilized case) have been completely moved over
to the real negative half-plane. Hence, for a marginally resolved simulation subject
to large velocity fluctuations, adding only three extra points for the convective term
can help to stabilize the numerical method. The filtered case improves the situa-
tion by moving the unstable eigenvalues slightly in the negative real direction. In
addition to rendering a simulation stable, one would also like to make sure that the
solution is not polluted by aliasing errors. Here, the error is investigated by means
of the L2-error for a various number of extra points, M , for the nonlinear term and
reported in Fig. 1b. M=N0 D 1 corresponds to equal number of points for the vis-
cous term and for the nonlinear term. As predicted by theory and shown in [11],
beyond M=N0 D 1:5 (indicated by the dashed vertical line) the error stays con-
stant. An increased resolution for all terms yields an exponentially decrease of the
error as expected. However, the resolution has to be more than doubled in order to
get the same error as if 1.5 times more points is added only for the nonlinear term.
Notice also that by performing over-integration with only one extra point decreases
the error by one order of magnitude.



Stabilization of the Spectral-Element Method in Turbulent Flow Simulations 453

4.2 2D: Recovery of Skew-Symmetry for the SEM Convection
Operator in the Scalar Transport Equation

In high Reynolds number flows, structures are not readily dissipated but rather
convected over long distances and times, thus accurate integration of the convec-
tive term is essential to obtain reliable results. Here, we investigate how this can
be achieved in the scalar transport equation in R

2, given by (2). In the case c is
solenoidal and the domain is closed or periodic, the weak form predicts the con-
vective term in (2) to be skew symmetric, i.e., c.v; q/ D �c.q; v/. This is easily
seen by casting the convective term in (2) in the weak form by multiplying by a test
function, v, integrating over the domain,˝ , and using integration by parts, so that

c.v; q/ D
Z

˝

vc � rqdx D
Z

@˝

vqc � OndA�
Z

˝

r � .vc/qdx

D
Z

@˝

vqc � OndA�
Z

˝

qc � rvdx�
Z

˝

r � cvqdx D �c.q; v/:
(5)

The last equality holds as long as the first and the last term on the left hand side
are identically zero. The first term vanishes due to the boundary conditions on v
and q (homogeneous Dirichlet, periodicity or symmetry) and the last because of the
incompressibility constraint, r � c � 0. The remaining equality states the skew-
symmetric property of the convective operator. In a discretized form this can only
be true if skew-symmetry of the involved matrices is preserved. As we shall see,
over-integration may play a crucial role to assure this property. Since the eigen-
values of a skew-symmetric operator are purely imaginary, quadrature errors are
easily detected by eigenvalues of the discretized operator with real part¤ 0. These
errors are reduced by over-integration of the convective term as described earlier. In
the case M D 3.N C 1/=2 the numerical quadrature is exact for all polynomials
c 2 PN . If, however, c has a polynomial order less than this, recovery of this skew-
symmetry – and hence the elimination of the quadrature errors – can be obtained by
performing over-integration withM � 3.N C1/=2, shown by the following exam-
ples. We consider the case c 2 P1, shown in Fig. 2a as a vortical convective field
given by c1 D .�y; x/ and in Fig. 2b as a stagnation point given by c2 D .�x; y/.
Both cases identically fulfil r � c � 0. Although the convective field appears as a
first order polynomial in both cases, the particular tensor product structure of the
spectral-element method distinguishes between the vortical and the stagnation point
velocity fields. For both these cases, each component of the velocity field is separa-
ble, i.e., c1 D .1 � a.y/; b.x/ � 1/ and c2 D .a.x/ � 1; 1 � b.y// and it follows that
the double integral in (5) can be separated (for both components, x and y) in one
symmetric part and one skew-symmetric part. The symmetric part will be symmet-
ric regardless of exact integration, and does not contribute to the skew-symmetric
properties of the convective operator. In this respect, it suffices to examine whether
the skew-symmetric part is integrated correctly or not. For “rotational” velocity
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Fig. 2 (Row a) Vortical convective field with associated eigenvalue distribution of the operator
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field

fields such as the vortex, the skew-symmetric part will indeed be integrated exactly,
since the integrand, p, is a polynomial p D vN qN�1 2 P2N�1. The conclusion is
thus that skew-symmetry (i.e., purely imaginary eigenvalues) is obtained using the
original M D N C 1 grid, which is shown in Fig. 2a. In the latter case the skew-
symmetric part for both components, x and y, cannot be integrated exactly since
the integrand, p, will be a polynomial p D vN c1qN�1 2 P2N . However, by adding
one extra point for the integration so that M D N C 2, skew-symmetry can again
be recovered, as can be seen in Fig. 2b.

5 Application to the Navier–Stokes Equations

In the following, numerical simulations of the incompressible Navier–Stokes equa-
tions (3) are performed and evaluated a posteriori. Equation (3) are solved using the
Legendre polynomial based SEM code nek5000 [6].



Stabilization of the Spectral-Element Method in Turbulent Flow Simulations 455

Fig. 3 Evolution of Re� for
the (stable) transitional
channel flow simulation. The
arrow shows where the
numerical instability
occurred. dotted line DNS by
Schlatter et al.
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5.1 3D: Subcritical K-type Transition Simulations

Direct numerical simulations (DNS) of subcritical K-type transition atReb D 3;333
(similar to [18]) and a resolution of 913 grid points were performed to further high-
light the fact that it is indeed the appearance of intermittent turbulence which might
render a SEM simulation unstable. The initial disturbances of this classical tran-
sition scenario consists of a 2D TS wave (streamwise wave number of ˛ D 1:12

and amplitude 3%) together with two 3D oblique waves (wave numbers ˛ D 1:12

and ˇ D 2:1 and amplitude 0.05%) taken from the solution of the Orr–Sommerfeld
equation and superimposed on a plane Poiseuille flow profile (see [9] and [18]).
The disturbances grow in time, t , and eventually lead to turbulent breakdown. The
laminar stage up to t 
 160 is followed by the highly fluctuating transitional stage
with an overshoot in the skin friction and finally fully turbulent phase, seen in Fig. 3
showing the skin friction Reynolds number,Re� , as a function of time. Unlike [11],
who was able to simulate transition in a triangular duct without any stabilization,
we found that performing the simulation without any filtering or over-integration
of the nonlinear term would yield a numerical instability exactly at the time just
before the skin friction peaks (t D 165). Adding one extra point to compute the
nonlinear term helped to continue the simulation exactly to the skin-friction peak
(t D 169). However, adding four more points could stabilize the simulation through
transition and continue stably in the following fully turbulent stage. This is exactly
half the number of points predicted by the 3/2-rule. It should be pointed out that an
increase of the spatial resolution (91! 127 points in each direction) could not help
to stabilize the simulation, which would experience the instability at approximately
the same time, just before the peak of the skin-friction. The filtering alone was also
able to stabilize the simulation through the skin-friction peak and during the fully
turbulent phase.
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5.2 3D: Fully Turbulent Channel Flow Simulations
at Re� D 590

Finally, fully turbulent flow simulations were performed at a friction Reynolds num-
ber of Re� = 590 similar to [14] in channel geometry in order to see the effect of
the stabilization tools in a moderate Re flow. All statistical quantities were aver-
aged over the homogeneous directions x, z and t (for sufficiently long time) as well
as over the two channel halves. An acceptable resolution was chosen of approx-
imately 75% in each direction of the fine DNS resolution in [14]. Filtering or
over-integration were needed to stabilize the calculation. In one of the two cases
shown in Fig. 4, the full 3/2-rule (dashed) was used to stabilize the computation,
whereas (solid) could be rendered stable with only four extra points. No filter-
ing was used for either of these cases. The obtained mean flow results as well as
fluctuations show very good agreement with results obtained in [14], and no par-
ticular difference can be noticed between the two cases. As an alternative, only
filtering could be used to stabilize the computation, shown in Fig. 4 (thin solid).
Here, as little as 5% filtering of the last mode could ensure a stable computation and
good results compared to the reference data. The obtained shape factors, defined as

H12 D ı�

�
D R 1

�1
�
1 � U.y/

UCLjlam

�
dy=

R 1
�1

U.y/
UCLjlam

�
1 � U.y/

UCLjlam

�
dy (see, e.g., [18]),

where ı� is the displacement thickness, � is the momentum thickness, UCLjlam is
the laminar centerline velocity, U.y/ is the mean velocity profile and the integra-
tion is made between the two walls located at y D ˙1 were H 3.NC1/=2

12 D 1:583,
HNC5
12 D 1:589 andH only filt

12 D 1:589 compared to the reference dataH12 D 1:574
[18]. The obtained skin friction Reynolds number, Re� , based on friction velocity,
u� , and channel half height, h, were Re3.NC1/=2

� D 586:1, ReNC5
� D 585:7 and

Re
only filt
� D 588:6 compared to the reference data Re� D 587:2 [14, 18]. Thus,
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Fig. 4 Turbulent channel flow simulations at Re� D 590 with polynomial order 15 (a resolution
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both these turbulent quantities show a difference on the order of a few per mille,
compared to the reference data.

6 Conclusions

Stabilization techniques for the spectral-element method was investigated through
two model problems: Burgers’ equation in 1D similar to [11] and the scalar transport
equation in 2D together with transitional and turbulent Navier–Stokes channel flow
simulations in 3D.

The general results from the 1D problem show consistently with [11] that
applying over-integration with the full 3/2-rule to an equation with a quadratic non-
linearity indeed enhances both the accuracy and stability of the solution. In addition,
it could be seen in both model problems and in the full Navier–Stokes simulations
that for such equations over-integration with the full 3/2-rule is not needed for sta-
bility. Stability was achieved already with �25% more GLL points, with the first
over-integration point being the most efficient to remove aliasing errors. Filter-based
stabilization can in most cases alone help to stabilize the computation and is nor-
mally not needed together with over-integration, although this combination can be
essential for significantly under-resolved cases. The present study suggest that by
the use of these techniques stability can be achieved at any Re.
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The Spectral-Element and Pseudo-Spectral
Methods: A Comparative Study

J. Ohlsson, P. Schlatter, C. Mavriplis, and D.S. Henningson

Abstract Turbulent and transitional channel flow simulations have been performed
in order to assess the differences concerning speed and accuracy in the pseudo-
spectral code simson and the spectral-element code nek5000. The results indi-
cate that the pseudo-spectral code is 4–6 times faster than the spectral-element code
in fully turbulent channel flow simulations, and up to 10–20 times faster when taking
into account the more severe CFL restriction in the spectral-element code. No par-
ticular difference concerning accuracy could be noticed either in the turbulent nor
the transitional cases, except for the pressure fluctuations at the wall which converge
slower for the spectral-element code.

1 Introduction

The simulation of fluid flows – sensitive and often complicated – puts large require-
ments on the numerical method. Due to the nonlinear nature of the flow, accuracy
may be one of the most important ingredients. In particular for direct simulation
of complex multiscale flows, such as transitional and turbulent flows, high order
methods are preferred. However, the choice of methods, e.g., fully spectral, mul-
tidomain spectral such as spectral element, or compact differences, is not clear as
trade-offs exist between computational efficiency, geometrical flexibility and accu-
racy. Proper comparisons in terms of speed and accuracy are sorely needed. In order
to quantify differences and similarities between high-order methods in a more sys-
tematic way, we have chosen to compare two well established codes based on the
Chebyshev-Fourier pseudo-spectral method (simson [1]) and the spectral-element
method (nek5000 [2]). While the grid is essentially prescribed by the order for the
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pseudo-spectral method, a more flexible point distribution is possible in the spec-
tral element method. In order to concentrate the comparison on relative efficiency,
we have chosen canonical test cases like turbulent and transitional channel flow,
in which the effect of the point distribution might be considerably less crucial for
achieving high accuracy.

2 Study Setup

The study is divided into two parts: Part A is concerned with the computational
efficiency in terms of the wall-clock time per time step and part B deals with accu-
racy, aiming at establishing a way to compare the number of grid-points needed
to compute a given turbulent or transitional quantity with comparable accuracy. In
the first part of the study, turbulent channel flow simulations at a Reynolds num-
ber Re� D 180, based on friction velocity, u� , and channel half height, h, were
considered in a domain of size comparable to that by Moser et al. [6]. Two differ-
ent resolutions called r1 and r2 were simulated (	43 and 95 grid points in each
direction respectively). For the spectral-element code this was achieved by fixing
the polynomial order (seventh) and varying the number of elements (6 and 12 in
each direction). It was noted that by using polynomial order 7 instead of 11 for the
spectral-element simulations increases the speed by 	15% per time step. In order
to make the comparison as fair as possible, the order of the temporal scheme was
synchronized so that a third order time discretization was used in both codes. Also,
the scaling was adapted so that the Re in both codes were based on Reb D 2;800,
based on bulk velocity, ub , and channel half height, h. Timings were made in serial
mode (one core AMD 3.0 GHz) on the same computer. Dealiasing was used in both
codes.

In the second part of the study K-type transition similar to Schlatter et al. [7] and
turbulent channel flow similar to Moser et al. [6] at Re� D 180, based on friction
velocity, u� , and channel half height, h, were simulated for a number of different
resolutions, given in Table 1. It should be pointed out that the two lowest resolution
spectral-element cases had to be stabilized by a filtering procedure described in [4].

Snapshots from each of these two cases are shown in Fig. 1. Important measures
such as the time and amplitude for the skin-friction peak were computed for the
transitional cases, whereas mean velocity profile, Reynolds stresses, pressure and
pressure fluctuations together with integral quantities such as Re� , shape factor and
“point measures”, i.e., max.urms/, were computed and compared for the turbulent
cases.

Table 1 Overview of the different resolutions in terms of degrees of freedom (dof) used in the
present study. Two different polynomial orders were used for the spectral-element simulations.
The number of degrees of freedom was matched as closely as possible for all cases

Fully spectral 243 403 803 1283 1603

Spectral-element (7th/11th) 293 433/453 853/783 1273/1223 1553/1553
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Fig. 1 The canonical flow cases investigated: (a) snapshot of turbulent channel flow at Re� D
180 showing pseudocolor of streamwise velocity and (b) temporal K-type transition showing the
hairpin vortex (isosurfaces of �2 D �0:1) emerging at t D 135
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Fig. 2 Comparison with respect to time advancement in a turbulent channel flow simulation
between the spectral-element code (polynomial order 7) (dashed line) and the pseudo-spectral
code (solid line) for the two different resolutions r1 and r2 (degrees of freedom in each direction).
(a) Wall-clock time per iteration, (b) wall-clock time per unit time

3 Results

3.1 Part A: Efficiency

The wall-clock time per iteration, i.e., one full time step using the largest possible
time step for the spectral-element code and one full Runge Kutta time step (contain-
ing four sub-steps) for the pseudo-spectral code, was measured and is reported in
Fig. 2a below. It can be seen that the lines diverge, i.e., the spectral code gets rel-
atively faster for larger problem sizes, due to the increasingly efficient fast Fourier
transforms (FFT). In particular, the spectral code is 4–6 times faster for these two
problem sizes. In addition, we show wall-clock time per unit time in Fig 2b, where
it can be seen that the spectral code is 10–20 times faster due to the more severe
CFL restriction in the spectral-element code, arising from the clustering of the
Gauss-Lobatto-Legendre points close to each element boundary.
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3.2 Part B: Accuracy in Transitional Flow Simulations

The Reynolds number based on friction velocity, Re� , was computed as a function
of time, t , for all cases in Table 1 during K-type transition [7] and are shown in
Fig. 3. We note that the most underresolved cases lead to a premature transition,
also noted by other authors, followed by an overprediction of the skin-friction in the
fully turbulent phase. This is more pronounced in the fully spectral results, which
is probably due to the fact that the two most underresolved spectral-element cases
had to be stabilized by the filter, which in some sense acts like a simple subgrid
scale (SGS) model. For higher resolutions, the two codes converge (from below)
to the correct Re� for essentially the same number of degrees of freedom, as also
seen in Fig. 4. This behavior indicates that the initial stages of transition are essen-
tially a low-order phenomenon, not requiring full resolution. Thus, the third highest
resolution (803) yields accurate results.
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3.3 Part B: Accuracy in Turbulent Flow Simulations

The turbulent mean velocity profile at Re� D 180 is shown for all cases in Fig. 5.
The most underresolved cases in both the fully spectral Fig. 5a and the spectral-
element Fig. 5b code show the same tendency to underpredict the velocity in the
log region, which is related mainly to the scaling given by an overpredicted fric-
tion velocity, u� , since indeed uC D hui=u� . In a close-up view of the log region
(Fig. 5c), where only the three highest resolution cases (803, 1283, 1603 and sev-
enth order for the spectral-element code) are shown, convergence is seen for the
two codes for the same number of degrees of freedom (shown by an arrow). The
1283 cases are converged and the 1603 cases do not improve the results further. The
spatial distribution of the Reynolds stresses is examined in Fig. 6. While the fully
spectral results capture the peaks correctly when compared to the direct numeri-
cal results (DNS) of Moser et al. [6], even for the most underresolved cases, the
skin-friction Reynolds number is heavily over-predicted as noted in the transitional
simulations. This is in contrast to the spectral-element results, where the peaks
are overpredicted for all normal stress components but the skin-friction Reynolds
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Fig. 5 Turbulent mean velocity profiles for (a) the spectral code (green), (b) the spectral-element
code (blue: 11th order, red: seventh order) and (c) the three highest resolutions of the spectral
and spectral-element (seventh order) simulations. dashed-star-dashed line (243), dashed-crossed-
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direct numerical simulation (DNS) of Moser et al. [6]
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number is only mildly overpredicted. A close-up view of the spectral-element results
is shown in Fig. 6c, where the peak urms is shown to converge in a zig-zag pattern
(indicated by arrows): first, overpredicted for the lowest resolutions, then, under-
predicted for intermediate resolutions, and finally, converging to the reference data
for the same number of degrees of freedom. A similar but less pronounced zig-
zag pattern is seen for the spectral results. The pressure fluctuations (Fig. 7) from
the spectral simulations are fairly good at the wall, whereas those in the channel
center are overpredicted. The spectral-element results show the opposite behavior:
the fluctuations at the wall are overpredicted, whereas those in the core of the flow
are in fairly good agreement with the reference data. A close-up view reveals that
the spectral-element code needs more points (roughly double) than the fully spec-
tral code to converge the pressure fluctuations at the wall (Fig. 7d), which would
make the spectral code around 40 times faster. The reasons for this may be that in
a PN � PN�2 spectral-element method [5] the number of degrees of freedom for
the pressure is less than the velocities and thus less than for the corresponding pres-
sure resolution in the spectral simulation. Another reason may be the absence of a
pressure node at the wall in the spectral-element PN � PN�2 formulation, leading
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to reduced control of the pressure at the wall. Finally, we compare turbulent integral
quantities such as actual Re� and “point measures” such as max(urms). The actual
Re� (given as a simulation result when constant mass-flux is prescribed) is shown
in Fig. 8a, where an overestimation of the Re� for the lowest resolution cases in the
fully spectral simulations already mentioned can be seen. Similarly, the zig-zag pat-
tern described in Sect. 3.3 for the peak urms is seen in Fig. 8b. For both quantities,
convergence seems to follow the same “slope” for the two codes, as well as for the
two different orders in the spectral-element simulations.

4 Conclusions

The present results indicate that the pseudo-spectral code is 4–6 times faster than
the spectral-element code in fully turbulent channel flow simulations. Taking into
account the more severe CFL restriction in the spectral-element method due to the
clustering of the points near the element boundaries, this number rises to 10–20. For
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higher resolutions, the spectral code is relatively faster, due to implementionally
increasingly efficient FFTs as the order increases. Of all the turbulent and transi-
tional quantities computed, there seems to be no favor to any particular method
(or order in the spectral-element code) and quantities such as shape factor, Re� ,
max(urms) and skin-friction peak exhibit the same “convergence-rate”. The excep-
tion seems to be the pressure fluctuations close to the wall which did converge faster
in the spectral code. Taking this into account the spectral code may be around 40
times faster. Moreover, by using polynomial order 7 instead of 11 for the spectral-
element simulations increases the speed by 	15% per time step which, in addition
to the larger time step that can be achieved with a lower order, seems to be a better
choice in general.

Naturally, for canonical flows such as channel flows fully spectral methods are
superior due to their near optimal point distribution. But it should be noted that being
faster on one CPU does not necessarily mean a faster code. For example, taking
into account that a spectral-element code performs spectrally in local elements, this
method has an enormous parallel scalability and might be faster than spectral codes
for very large cases. Moreover, as we progress away from canonical flows towards
more complex geometry flows (see, e.g., Fischer et al. [3]) such as real aircraft
wing geometries, the geometrical flexibility of the spectral element approach will
be favored over the pseudo-spectral approach.
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Adaptive Spectral Filtering and Digital Total
Variation Postprocessing for the DG Method
on Triangular Grids: Application to the Euler
Equations

S. Ortleb, A. Meister, and Th. Sonar

Abstract With respect to the possible presence of discontinuities in the solutions of
nonlinear wave propagation problems high order methods have to be provided with
a dose of supplementary numerical dissipation, otherwise the approximate solution
may severely suffer from the presence of Gibbs oscillations. To prevent these oscilla-
tions from rendering the scheme unstable we apply the spectral filtering framework
to the DG method on triangular grids. The corresponding spectral filter has been
derived in [18] from a spectral viscosity formulation and is applied adaptively in
order to restrict artificial viscosity to shock locations. Furthermore, the image pro-
cessing technique of DTV filtering is shown to be a useful postprocessor. Numerical
experiments are carried out for the two-dimensional Euler equations where we show
results for the Shu-Osher shock–density wave interaction problem as well as the
interaction of a moving vortex with a stationary shock.

1 Introduction

If the discontinuous Galerkin method [5, 13] is applied to hyperbolic problems
where the entropy solution may develop discontinuities, minmod-type limiters are
often employed which reduce the polynomial degree in so-called troubled cells and
thus disregard the information contained in higher oder coefficients. Limiters start-
ing from the higher order coefficients and modifying them only when it is needed
have been suggested in [2,15,26] and WENO or HWENO reconstructions in regions
marked by a shock sensor have been applied in [20–22,27], but these techniques are
computationally expensive. Spectral methods on the other hand may apply spectral
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viscosity [17, 25] in order to stabilize the calculation. As suggested in [9], the sta-
bilization can be carried out within the spectral filtering framework resulting in a
computationally very efficient implementation with successful applications to wave
propagation problems as in [6,7]. In [18] we showed that these promising techniques
usually applied to Fourier and Chebychev spectral methods can also be transferred to
the discontinuous Galerkin discretization on triangular grids. The crucial advantage
of this novel scheme is a reduced computational cost compared to reconstructions
over large stencils. While the results in [18] were limited to scalar equations the
present work deals with their extension to systems of conservation laws with specific
interest in solving the Euler equations. As modal filtering may degrade the accuracy
of the approximation when applied to a large number of time steps, see [12], we
employ spatially adaptive filters in order to restrict the introduced artificial damping
to the vicinity of shock locations. The resulting approximations of these spectral
viscosity solutions at a final time or at certain intermediate times where a truthful
pointwise solution is desired will still suffer from Gibbs oscillations. Popular reme-
dies in the 1D case are postprocessing techniques such as Gegenbauer reprojection
[10] requiring the detection of discontinuities. As edge detection as well as the nec-
essary parameter specification for the Gegenbauer technique will become difficult
for conservation laws in higher dimensions, we use the digital total variation filter
[4] which was developed in the context of image processing and has been applied to
a Chebychev pseudospectral method in [23].

2 The Discontinuous Galerkin Scheme with Spectral Filtering

We consider two-dimensional hyperbolic conservation laws of the form

@

@t
u.x; t/C @

@x1
f1.u.x; t//C @

@x2
f2.u.x; t// D 0; .x; t/ 2 ˝ �RC; (1)

where ˝ � R
2 is an open polygonal domain and u.x; t/ 2 R

n. Furthermore, ini-
tial conditions u.x; 0/ D u0.x/ and appropriate boundary conditions are assumed
to be given. Let T h be a conforming triangulation of the closure ˝ of the com-
putational domain and let V h be the piecewise polynomial space defined by V h D
fvh 2 L1.˝/ j vhj�i 2 PN .�i / 8 �i 2 T hg, where PN .�i / denotes the space
of all polynomials on �i of degree � N . For the discontinuous Galerkin space dis-
cretization an approximation uh W ˝ � RC ! R

n, uh.�; t/ 2 .V h/n is constructed
satisfying the semidiscrete equation

d

dt
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uhvdx D
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�i

�
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@x1
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@x2

�
dx�

Z

@�i

H.ui�;uiC;n/ � v d�;
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for any �i 2 T h; v 2 .V h/n, where H represents a suitable numerical flux function
and ui�; uiC denote the solution within �i and within an adjacent element, respec-
tively. The integrals in (2) are approximated by quadrature formulae of sufficiently
high order. In order to represent the approximate solution on each triangle, we use
the well-known Koornwinder-Dubiner basis [8,13,14] which is given by the polyno-

mials ˚lm.r; s/ D P 0;0l
�
2 1Cr
1�s � 1

��
1�s
2

�l
P
2lC1;0
m .s/ for l; m 2 N0; 0 � lCm �

N , on the reference element T D f.r; s/ 2 R
2 j � 1 � r; sI r C s � 0g, where

P
˛;ˇ
n denotes the one-dimensional Jacobi polynomial of degree n associated to the

weight function w.x/ D .1�x/˛.1Cx/ˇ . Denoting byi W �i ! T an orientation-
preserving affine transformation which maps the specific triangle �i to the refer-
ence element T , the approximation uhj�i can be expanded as uh.�1

i .r; s/; t/ DP
lCm�N Ouilm.t/˚lm.r; s/: The resulting system of ordinary differential equations

for the coefficients Oui
lm

may then be solved by appropriate time integration schemes
depending on the specific application under consideration. In our calculations we
used a 4th order low storage RK scheme, see [3]. This basic DG scheme is now
supplemented by a modal filter which is applied to the Koornwinder-Dubiner
coefficients after each time step. The filter is obtained by an extension of the spec-
tral viscosity method to multidomain Koornwinder-Dubiner expansions, see [18],
and results in a modification of the vector of Koornwinder-Dubiner coefficients
by an exponential filter of the form Oui;mod

lm
D exp

��˛i si�2p
� Oui

lm
; � D lCm

NC1 ,

with shock indicator si , filter order 2p and filter strength ˛i 	 N�t
hi

. As usual,
�t and hi denote the time step size and the shortest distance of the barycen-
ter of �i to the element boundary @�i , respectively. Our experiments indicated to
use rather low order filters because of their adaptive application, hence a forth
order filter is chosen in this work. We focussed on two different shock indica-
tors that were also investigated in [1, 26], i.e. the resolution-based indicator si D
min

n
1; 5000.5N 4C 1/ P lCmDN

�Oui
lm

�2
=
P

lCm<N
�Oui
lm

�2o
first suggested in

[19] as well as the jump indicator [16] si D min
n
1; 1000

R
@�i

ˇ̌
ŒŒui ��=fuig ˇ̌ �

n = j@�i j d�g, where ui and Oui
lm

denote the specific components of uhj�i and Oui
lm

that are chosen for shock indication, the common notation ŒŒui �� D ui�n� C
uiCnC; fuig D 1

2
.ui� C uiC/ is employed and the integral is solved by high-

order Gaussian quadrature. However, as there were no visible differences between
the numerical solutions obtained with the two indicators we dropped their further
investigation and used the resolution indicator requiring less computatational work.

3 The Digital Total Variation Filter

Whereas the adaptive spectral filter is used in every time step, the DTV filter serves
as a pure postprocessing step with the advantage of an already incorporated edge
detection. DTV filtering applies to general graphs ŒV; E� with a finite set of nodes
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V and edges E . If two nodes ˛; ˇ 2 V are linked by an edge, we write ˛ 	 ˇ

and the set of nodes linked to ˛ 2 V is denoted by N˛ D fˇ 2 V j ˛ 	 ˇg.
Let u0 be composed of the oscillatory nodal values u0˛ of one component of the
solution uh.�; tout/ at time tout. Following [4] the DTV filter is implemented as an
iterative procedure unC1

˛ D P
ˇ2N˛

h˛ˇ .un/unˇ C h˛˛.un/u0˛; n D 0; 1; : : :,

where the filter coefficients are given by h˛ˇ .u/ D !˛ˇ .u/=
�
�CP�2N˛

!˛� .u/
�

,

h˛˛.u/ D �=
�
�CP�2N˛

!˛� .u/
�

for appropriate non-negative weights !˛ˇ
measuring the local variation of the given data and a non-negative, user-dependent
parameter � that balances the competing tasks of removing spurious oscillations and
retaining relevant information of the noisy initial data. The weights are chosen by

!˛ˇ .u/ D 1
jr˛uja C 1

jrˇuja , where jr˛uja D
hP

ˇ2N˛
.uˇ � u˛/2 C a

i1=2
is the

regularized local variation at node ˛ equipped with a small regularization parameter
a > 0 to avoid a zero denominator.

To our knowledge, convergence of the DTV filter has not been proven yet. How-
ever, the results in [4, 23] indicate that its iterative application leads to a steady
image. Based on these previous investigations, we evaluated the DG solution at
cartesian grid points and carried out DTV iterations until a steady state was reached.

4 Numerical Experiments

We consider the 2D Euler equations for polytropic ideal gases, i.e. (1) with

u D

0
BB@

%

%v1
%v2
%E

1
CCA ; f1 D

0
BB@

%v1
%v21 C p
%v1v2

v1.%E C p/

1
CCA ; f2 D

0
BB@

%v2
%v1v2
%v22 C p

v2.%E C p/

1
CCA ;

where %; v1; v2; p denote the density, the two components of velocity and the pres-
sure, respectively. The total energy E ist related to these quantities by the equation
of state p D .� � 1/% �E � 1

2
.v21 C v22/

�
, where � denotes the ratio of specific heats

and is set to � D 1:4 in all our tests. The adaptivity indicators for spectral filtering
were always based on the density component.

Shock–Density Wave Interaction

First, we consider the shock–density wave interaction problem by Shu and Osher
[24] which is extended to two space dimensions. The initial conditions are given by

.%; v1; v2; p/ D


.3:857143; 2:629369; 0; 10:333333/ if x < �4;

.1C 0:2 � sin.5x/; 0; 0; 1/ if x � �4:
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Fig. 1 SV filtered and DTV postprocessed density solution, N D 5
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Fig. 2 DTV postprocessed solutions (a) for N D 3; 6; (b) for N D 2; 3; 6, close-up view

Figure 1 shows the density distribution computed by the DG scheme with spectral
filtering for a polynomial degree of N D 5 on the computational domain ˝ D
Œ�5; 5� � Œ0; 0:5� at a final time of tout D 1:8 as well as the DTV postprocessed
solution (100 iterations with � D 5 on 500 � 25 cartesian grid points). For the DG
scheme, a grid consisting of 1,250 triangles has been used where two edge points
have an average distance of 0:1. An additional iterative application of the spectral
filter has been implemented in this test case in order to enforce positive physical
quantities % and p at cell interfaces. Thus, the DG scheme with modal filtering
produces only small overshoots which are removed by the DTV postprocessor.

Figure 2 depicts 1D cuts of the DTV postprocessed solutions for N D 2; 3; 6.
The reference solution is obtained by solving the corresponding 1D problem by
a second order FV scheme with TVD reconstruction on a grid of 30,000 cells.
Here we clearly see that a higher order scheme is necessary to resolve the high fre-
quencies and that the DTV postprocessed solutions are completely free of spurious
oscillations.
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2D Shock–Vortex Interaction

This test case is taken from [11] and describes the interaction between a stationary
shock and a vortex. The computational domain is ˝ D Œ0; 2� � Œ0; 1�. A station-
ary Mach 1.1 shock normal to the x-axis is positioned at x D 0:5. Its left state
is .%; v1; v2; p/ D .1; 1:1

p
�; 0; 1/ and its right state is defined by the Rankine-

Hugoniot conditions. An isentropic vortex, i.e. p=%� D const , is superposed to
the flow and centers at .xc ; yc/ D .0:25; 0:5/. The vortex is described as a per-
turbation of the velocity and the temperature by v0

1 D "�e˛.1��2/ sin �; v0
2 D

�"�e˛.1��2/ cos � and T 0 D �.� � 1/"2e2˛.1��2/=.4˛�/, where � D r=rc,
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Fig. 5 DTV solutions (� D 10,400
200 grid points). (a) Pressure contours with 46 contour
levels from 0.85 to 1.35, tout D 0:05; 0:2; 0:35; (b) Ninety contour levels from 1.09 to 1.37,
tout D 0:6; 0:8

r D p
.x � xc/2 C .y � yc/2 and the remaining parameters are set to rc D

0:05; " D 0:3 and ˛ D 0:204. Figure 3 shows the pressure contours obtained
by the DG scheme with spectral filtering for N D 3 and N D 5 at output times
of tout D 0:05; 0:2; 0:35. The computational grid consists of 2122 triangles with
more resolution at the shock location (average point distances of 0.05 away from
and 0.025 close to the shock). The difference – both in capturing the shock and in
resolving the vortex – is more pronounced in Fig. 4 showing pressure contours for
a later output time of tout D 0:8. For N D 5, a slight improvement in capturing
the shock is visible. Hence, for long time integration a numerical scheme with low
dissipation such as the DG scheme with spectral filtering is necessary. In Fig. 5 the
DTV postprocessed solutions for N D 5 are shown where we observe sharp shock
profiles. For tout D 0:35, Fig. 6 depicts the interacting shock and vortex before and
after postprocessing.
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BDDC and FETI-DP Preconditioners
for Spectral Element Discretizations of Almost
Incompressible Elasticity

Luca F. Pavarino and Olof B. Widlund

1 Introduction

We construct and study a BDDC (Balancing Domain Decomposition by Con-
straints) algorithm, see [1, 2], for the system of almost incompressible elasticity
discretized with Gauss–Lobatto–Legendre (GLL) spectral elements. Related FETI-
DP algorithms, see, e.g., [3–5], could be considered as well. We show that sets of
primal constraints can be found so that these methods have a condition number that
depends only weakly on the polynomial degree, while being independent of the
number of subdomains (scalability) and of the Poisson ratio and Young’s modulus
of the material considered (robustness).

Earlier work on domain decomposition algorithms for mixed elasticity and
Stokes systems can be found in [6–14]. Previous works on BDDC algorithms for
GLL spectral elements have focused on the scalar elliptic case only, see [15, 16].

2 Almost Incompressible Elasticity and Spectral Elements

The Continuous Problem Given a domain ˝ � Rd ; d D 2; 3; and a nonempty
subset @˝D of its boundary, we consider, for the case of constant material proper-
ties, a mixed formulation of linear elasticity for almost incompressible materials as,
e.g., in [17]: find .u; p/ 2 V � U such that



�a.u; v/ C b.v; p/ D F.v/ 8v 2 V
b.u; q/ � 1

�
c.p; q/ D 0 8q 2 U: (1)
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Here,

a.u; v/ WD 2
Z

˝

".u/ W ".v/ dx; b.v; q/ WD �
Z

˝

divv q dx; c.p; q/ WD
Z

˝

pq dx;

V WD fv 2 H 1.˝/3 W vj@˝D
D 0g, U WD L2.˝/ (or L20.˝/ if @˝D D @˝).

F represents the applied forces and � WD E
2.1C�/ and � WD E�

.1C�/.1�2�/ ; where �
and E are the Poisson ratio and Young’s modulus, respectively. We approach the

incompressible limit when � ! 1=2:

We will assume that the domain ˝ can be decomposed into N nonoverlapping
elements ˝i , each of which is an image, ˝i D �i .˝ref/; of a reference square or
cube ˝ref D .�1; 1/d ; d D 2; 3, under an affine mapping �i . In between these ele-
ments, we have the interface �: We will in fact consider the case when the Lamé
parameters �i and �i are constant, but potentially different, in the different ele-
ments; our analysis is reduced to developing bounds for individual elements ˝i :
The global problem can be obtained by assembling contributions to the bilinear
forms from the different elements. Our estimates will be independent of the values
of the Lamé parameters.

GLL Spectral Elements The space of displacements V is discretized, component
by component, by continuous, piecewise tensor product polynomials of degree n:

Vn WD fv 2 V W vkj˝i
ı �i 2 Qn.˝ref/; i D 1; 2; : : : ; N; k D 1; 2; : : : ; d g :

The pressure space U is discretized by discontinuous, piecewise tensor product
polynomials of degree n � 2:

Un WD fq 2 U W qj˝i
ı �i 2 Qn�2.˝ref/; i D 1; 2; : : : ; N g :

We use Gauss–Lobatto–Legendre (GLL(n)) quadrature, which also allows for the
construction of a very convenient nodal tensor-product basis for Vn. We denote by
f�i gniD0 the set of GLL(n) points of Œ�1; 1�, by �i the quadrature weight associ-
ated with �i ; and by li .x/ the Lagrange interpolating polynomial of degree n that
vanishes at all the GLL(n) nodes except at �i , where it equals 1. Each element of
Qn.˝ref/ is expanded in this GLL(n) basis, and anyL2�inner product of two scalar
components u and v is replaced, in the three-dimensional case, by

.u; v/n;˝ D
NX
sD1

nX
i;j;kD0

.u ı �s/.�i ; �j ; �k/.v ı �s/.�i ; �j ; �k/jJs j�i�j�k ;

where jJs j is the determinant of the Jacobian of �s . The mass matrix based on
these basis elements and GLL(n) quadrature is then diagonal. Similarly, a very
convenient basis for Un consists of the tensor-product Lagrangian nodal basis func-
tions associated with the internal GLL(n) nodes; i.e., the endpoints �1 and C1 are
excluded.
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The Qn �Qn�2 method satisfies a nonuniform inf-sup condition

sup
v2Vn

.divv; q/
kvkH1

� ˇnkqkL2 8q 2 Un ; (2)

where ˇn D cn�.d�1/=2, d D 2; 3; and the constant c > 0 is independent of n and
q; see [18]. It is also known that ˇn decays quite slowly for practical values of n;
e.g., n � 16.

Discrete System and Positive Definite Reformulation The discrete system, ob-
tained from the GLL spectral elements, is assembled from the saddle point matrices
of individual elements˝i :

�
�iA

.i/ B.i/T

B.i/ �1=�i C .i/
�
:

Since we are using discontinuous pressures, all pressure degrees of freedom can be
eliminated element by element to obtain reduced positive definite stiffness matrices

K.i/ D �iA.i/ C �iB.i/TC .i/�1B.i/;

that can be subassembled into a global positive definite stiffness matrix K:
The load vector of the full system can similarly be assembled from contributions

from the elements.

3 The BDDC Algorithm

We will associate each spectral element with a subdomain; using several elements
per subdomain would of course also be possible. We split the set of basis func-
tions into interior functions, with the subscript I , and the remaining interface basis
functions, with the subscript � .

Subspaces We will use the framework of [5] Let V .i/ be the local space of spectral
element displacements defined on ˝i and that vanish on @˝i \ @˝D . We split this
space as the direct sum of its interior and interface subspaces V .i/ D V

.i/
I

L
V
.i/
�

and we define the associated product spaces by V I WD QN
iD1 V

.i/
I ; V � WDQN

iD1 V
.i/
� . The functions in V � are generally discontinuous across � , while our

spectral element functions are continuous across � . Therefore, we also define the
subspace

bV � WD ffunctions of V � that are continuous across � g:

We will also need an intermediate subspace eV � WD V �

LbV ˘ defined by further
splitting the interface degrees of freedom into primal (with the subscript ˘ ) and
dual (with the subscript �) degrees of freedom. Here:
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(a)bV ˘ is a global subspace consisting of selected continuous functions, the primal
variables; these can be the subdomain vertex basis functions of bV and/or edge/face
basis functions with constant value at the nodes of the associated edge/face. We will
assume that, after a change of basis, each primal variable correspond to an explicit
degree of freedom; cf. [5, Sect. 3.3]. This simplifies the presentation and also adds
to the robustness of the algorithms; see [19].

(b) V � D QN
iD1 V

.i/
� is the product space of the subspaces V

.i/
� of dual interface

functions that vanish at the primal degrees of freedom.

Restriction and Scaling Operators In order to define our preconditioners, we
need certain restriction and interpolation operators represented by matrices with
elements in the set f0; 1g:

R�� W eV � �! V �; R�˘ W eV � �! bV ˘ ;

R
.i/
� W bV � �! V

.i/
� ; R

.i/
� W V � �! V

.i/
� ; R

.i/
˘ W bV ˘ �! V

.i/
˘ :

With these operators, we build the following operators:

R� W bV � �! V � ; the direct sum of the R.i/� I
eR� W bV � �! eV � ; the direct sum R�˘ ˚R.i/� R��:

We will also need the standard counting functions of Neumann–Neumann methods
and in particular their pseudoinverses ı�i .x/, defined at each node x on the interface
�i WD @�i \ � of subdomain˝i by

ı
�
i .x/ WD �i .x/=.

X
j2Nx

�j .x//; (3)

where Nx is the set of indices of the subdomains having the node x on their bound-
ary; see also [20, Sect. 6.2.1] for alternatives. We define scaled local restriction
operators R.i/D;� and R.i/D;� by multiplying the sole nonzero element of each row

of R.i/� and R.i/� by ı�i .x/: Then, let

RD;� WD the direct sum of R.i/D;� ; eRD;� WD the direct sum R�˘ ˚R.i/D;�R��:

Schur Complement After reordering the interior displacements first and then
those of the interface, resulting in .uI ;u� /, the local spectral element stiffness
matrix for subdomain˝i can be rewritten:

K.i/ D
2
4K

.i/
II K

.i/T
�I

K
.i/
�I K

.i/
� �

3
5 :
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By eliminating the interior displacement variables, we obtain the local Schur com-
plement S .i/, of the subdomain˝i ; as

S .i/ D K.i/
� � �K.i/

�IK
.i/�1
II K

.i/T
�I

and then, by subassembly, the Schur complement

bS D
NX
iD1

R
.i/T
�

bS .i/R.i/� : (4)

The BDDC Preconditioner The splitting of the interface displacements into dual
(with subscript �) and primal (with subscript ˘ ) interface displacements, induces
the following partition of the local stiffness matrices:

K.i/ D

2
64
K
.i/
II K

.i/T
�I K

.i/
˘I

K
.i/
�I K

.i/
�� K

.i/T
˘�

K
.i/
˘I K

.i/
˘� K

.i/
˘˘

3
75 :

The BDDC preconditioner for the Schur complementbS is defined by

M�1
BDDC D eRTD;�eS�1eRD;� ; (5)

where

eS�1 D RT��

0
@

NX
iD1

h
0 R

.i/T

�

i "
K
.i/
II K

.i/T

�I

K
.i/
�I K

.i/
��

#�1 "
0

R
.i/
�

#1
AR��C˚S�1

˘˘˚
T : (6)

The first term in (6) represents local Neumann solves on individual subdomain ˝i
with the primal variables constrained to vanish. The second term involves a coarse
solve for the primal variables, with the coarse matrix

S˘˘ D
NX
iD1

R
.i/T

˘

0
@K.i/

˘˘ �
h
K
.i/
˘I K

.i/
˘�

i "
K
.i/
II K

.i/T

�I

K
.i/
�I K

.i/
��

#�1 "
K
.i/T

˘I

K
.i/T

˘�

#1
AR.i/˘

and a matrix ˚ representing a change of variable given by

˚ D RT�˘ � RT��
NX
iD1

h
0 R

.i/T

�

i "
K
.i/
II K

.i/T

�I

K
.i/
�I K

.i/
��

#�1 "
K
.i/T

˘I

K
.i/T

˘�

#
R
.i/
˘ :

Choice of Primal Constraints In our BDDC algorithm, we choose as pri-
mal variables the displacements at the subdomain (spectral element) vertices and
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the average of the normal displacements on each subdomain edge for the two-
dimensional case. In our experiments, we also explore a richer choice where
the vertex constraints are augmented by the edge averages of both displacement
components.

As is clear from [4] and [5], the three dimensional case is much more compli-
cated; we need to satisfy the two assumptions of [5]. One of these assumptions
guarantees that the dual displacement component has a divergence-free extension
and the other essentially guarantees that the algorithm performs well for com-
pressible elasticity problems. One successful recipe involves using primal vertex
constraints for all subdomain vertices, augmenting them with a primal constraint on
the average of the normal displacement component over each face, and the aver-
ages, over the edges, of the two displacement components orthogonal to each edge.
Following the discussion in [5, Sect. 7], one additional primal constraint per face
is required and it can be chosen as the tangential average of the displacement over
one of the edges of each face. Should the distribution of the Lamé parameters be
particularly difficult around an edge, we in addition have to make such an edge fully
primal, with five primal constraints associated with it; see further [4, Sect. 5]. Given
the sufficiently rich sets of primal constraints just outlined, the following bound can
be proven, see [21].

Theorem 1. The BDDC preconditioned operator, and the FETI-DP operator using
the same set of primal variables, have all eigenvalues �1 and a maximum eigen-
value bounded above by

Cˇ�2
n .1C logn/2:

Here C is independent of n;N; and the values of the Lamé parameters. The param-
eter ˇn is the inf-sup parameter of the mixed Qn �Qn�2 spectral element method.

4 Numerical Results in the Plane

We report on results of numerical experiments in MATLAB for the positive definite
reformulation of the mixed elasticity system with homogeneous Dirichlet bound-
ary conditions, discretized with GLL spectral elements. The domain is the reference
square ˝ D ˝ref , subdivided into N D Nx � Ny square spectral elements (sub-
domains). The reduced interface system with the Schur complement matrix (4) is
solved by the preconditioned conjugate gradient algorithm (PCG) with the BDDC
preconditioner (5), zero initial guess and stopping criterion krkk2=kr0k2 � 10�6,
where rk is the residual at the k�th iterate. The right-hand side is random and
uniformly distributed.

Table 1 reports the iteration counts (it) and maximum eigenvalue (�max) of
the BDDC preconditioned operator with only vertex primal constraints (columns
labeled V), vertex and normal edge average constraints (columns labeled VC1E),
vertex and all (two) edge average constraints per edge (columns labeled VC2E)
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Table 1 2D elasticity, Qn � Qn�2 GLL SEM: iteration counts (it) and maximum eigenvalue
(�max) of BDDC preconditioned operator with only vertex primal constraints (V), vertex and nor-
mal edge average constraints (VC1E), vertex and all (two) edge average constraints (VC2E), as a
function of the polynomial degree n (top) and the number of spectral elements N (bottom). Com-
pressible material with � D 0:4 (left) and almost incompressible material with � D 0:499999

(right). .�bS/ D condition number of the unpreconditioned Schur complement

N D 3
 3 � D 0:4 � D 0:499999

V VC1E VC2E V VC1E VC2E
n .�bS/ it �max it �max it �max .�bS/ it �max it �max it �max

3 9:87 8 3.52 6 1.68 4 1.17 4.7eC5 27 1.6eC5 6 1.75 5 1.24
4 14:34 8 3.55 7 1.90 6 1.40 5.3eC5 31 1.4eC5 8 2.88 6 1.54
5 19:88 9 4.53 8 2.28 6 1.53 5.7eC5 41 1.7eC5 8 2.50 7 1.77
6 25:63 9 4.62 8 2.38 7 1.75 6.1eC5 40 1.6eC5 9 3.86 7 2.04
7 31:51 10 5.37 8 2.66 7 1.85 6.3eC5 44 1.8eC5 10 3.87 8 2.07
8 37:51 10 5.47 9 2.75 8 2.02 6.5eC5 45 1.8eC5 10 4.60 8 2.31
9 43:60 10 6.10 9 2.97 8 2.10 6.7eC5 47 1.9eC5 10 4.53 8 2.35
10 49:79 10 6.23 9 3.08 8 2.35 6.8eC5 49 1.9eC5 10 5.16 8 2.53

n D 3

N

6
 6 47:53 14 4.99 9 2.17 6 1.58 2.7eC6 107 3.1eC5 8 2.39 6 1.53
9
 9 115:1 17 5.73 10 2.52 6 1.62 6.1eC6 149 3.8eC5 10 2.84 6 1.77
12
 12 206:3 18 6.26 10 2.56 6 1.88 1.1eC7 206 4.1eC5 10 2.88 7 1.89
15
 15 322:6 18 6.53 11 2.63 6 1.81 1.7eC7 261 4.3eC5 10 2.97 7 1.92

for two values of Poisson ratio, � D 0:4 (compressible material, left) and � D
0:499999 (almost incompressible material, right). We also report the condition num-
ber �.bS/ of the unpreconditioned Schur complement bS , that becomes increasingly
ill-conditioned as � tends to 1/2. The minimum BDDC eigenvalue �min is not
reported because it is always very close to 1. The results appear to indicate that the
rate of convergence of our BDDC algorithm depends only weakly on the polynomial
degree n and is independent of the number of subdomainsN . The convergence rate
is also independent of the Poisson ratio � for both BDDC algorithms with vertex
and edge constraints, with a better performance for the richer choice with all edge
average constraints for each edge. On the other hand, the convergence rate of the
algorithm with only vertex primal constraints degenerates badly when the material
becomes almost incompressible.
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A Two-Dimensional DG-SEM Approach
to Investigate Resonance Frequencies and Sound
Radiation of Woodwind Instruments

Andreas Richter and Jörg Stiller

Abstract Investigations of musical instruments typically carried out in the fre-
quency domain. In contrast, numerical investigations in the time domain offer sev-
eral advantages. Physical effects and single travelling waves can both be observed
directly. This allows studying how connections, tone holes and bore perturbations
influence the wave propagation and act as sound sources. In contrast to methods,
which are formulated in the frequency domain, time domain investigations also
enable the examination of transient effects. However, these are accompanied by
the disadvantage that acoustic waves have to be tracked over a long period of time.
When using low-order methods, numerical dissipation and dispersion errors can can
have highly distortive effects on the results. In order to overcome these issues we
use a high-order discontinuous Galerkin formulation. Extrapolation boundary con-
ditions in conjunction with a slope limiting procedure provide stable, compact and
non-reflecting boundary conditions. This report presents the results of numerical
investigations of woodwind instruments using the examples of the recorder and the
bassoon.

1 Introduction

The interaction between the geometry and the timbre of the played woodwind instru-
ment can easily be studied by decoupling the resonator from the excitation mech-
anism. Such investigations are typical research methods in the frequency domain.
Our objective is to overcome certain limitations of frequency based approaches
by working in the time domain. This offers several advantages: Acoustical waves
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can be tracked directly, which helps gaining a better insight into the instrument.
Furthermore, the approach allows studying effects basing on the superimposed and
non-homogeneous mean flow as well as transient effects.

Impulse reflectometry is a common tool in the experimental investigation of
acoustical systems [1, 3]. For that purpose, the acoustic system is excited by a short
impulse, e.g., the Dirac impulse. All frequencies of the acoustic system are being
activated evenly, but frequencies that do not correlate with the system are being
damped rapidly. The remaining frequencies are resonance frequencies of the acous-
tic system and can be measured by simple microphone techniques. The perfomance
of numerical investigations requires the tracking of acoustical waves over a long
period of time. Due to numerical dissipation and dispersion errors traditional low-
order schemes fail here. This effect is illustrated by solving the inviscid propagation
of an acoustical wave in a periodic domain with an amplitude of 711 Pa. The config-
uration is given in Fig. 1a. Figure 1b shows the amplitude error after a wave run of
nearly 10 m. The results base on a second and third order Finite Volume solver
(FluentTM) as well as on a discontinuous Galerkin high-order Spectral Element
solver. The third order Finite Volume scheme was achieved by blending a central
differencing scheme and a second order upwind scheme, which gives not a proper
third order convergence. Even though the order of the DG-SEM can be arbitrary,
the third order scheme (p D 2) demonstrates the superiority of the method. Table 1
shows the amplitude error as a function of the non-dimensional wave number kh.

a

configuration

DG-SEM O21.0

0.8

0.6

0.4

0.2

0.0

Δp
 [–

]

22

b

23 24
t [ms]

non-dimensional pressure

25 26

DG-SEM O3
Fluent O2
Fluent O3

Fig. 1 Dissipation error estimation for a linear wave propagation; O2: 2nd order and O3: 3rd order
scheme

Table 1 Error in the pressure amplitude as a function of the non-dimensional wave number kh;
DG2/3: DG-SEM O(2) and O(3), Fl2/3: Fluent O(2) and O(3), respectively

kh "ADG2 "ADG3 "AF l2 "AF l3

0.10 �52:66% �6:85% �59:62% �57:01%
0.04 �23:96% 0:36% �28:17% �25:73%
0.02 �6:80% 0:02% �11:37% �9:67%
0.01 0:12% 3:10�4% �3:97% �3:18%
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2 Discontinuous Galerkin Method for the Euler Equations

2.1 Conservation Equations

The two-dimensional compressible, unsteady Euler equations are considered in the
conservative form

@tUCr � EF D 0 (1)

where U D .	; 	vx; 	vy; 	e/T are the conservative variables, EF D .Fx;Fy/T with
Fx D .	vx; 	v2x C p; 	vxvy ; 	etvx C pvx/T, Fy D .	vy ; 	vxvy ; 	v2y C p; 	etvyC
pvy/T the convective flux, respectively, the density 	, the velocity Ev D .vx; vy/T,
the pressure p and the total energy per unit mass et D 1

��1
p


C 1

2
.v2x C v2y/.

2.2 Numerical Scheme

For the spatial discretization the computational domain˝ is partitioned into a set of
non-overlapping elements f˝eg. Conforming or non-conforming elements of arbi-
trary shape can be used. In the following, we will specifically research quadrilateral
elements with possibly curved sides. Given a test function �e the weak form of 1 is

Z

˝e

�e @tUed˝e D
Z

˝e

r�e � EF.Ue/d˝e �
Z

�e

�eH.Uė ; En/d�e : (2)

This equation needs to be satisfied for any test function from the space of trial
solutions spanned by the basis in ˝e.

Special attention has to be paid to the numerical flux H since it has to be
consistent and keep the transport properties of the system. We use the Roe flux
[4, 6]

H.U˙; En/ D 1

2

h
Fn.U�/C Fn.UC/� jAn. NU/j.UC � U�/

i

where An.U/ D F0
n.U/ is the Jacobian of the normal convective flux Fn D EF � En and

NU the Roe average of U� and UC.
In the spectral element framework functions '.Ex; t/ on element ˝e are trans-

formed to a standard element ˝s and approximated using a set of polynomial
base functions. Various choices are possible for the basis [2, 5]. Hereby, we use
a tensor product basis of one-dimensional Lagrange polynomials f
ig based on the
Gauss–Lobatto–Legendre (GLL) points to approximate '

'.E�; t/ D
PX

p;qD0
'pq.t/
i .�/
j .�/;



490 A. Richter and J. Stiller

with the Lagrange interpolation property 
j .�i / D ıij . For reasons of simplifica-
tion, the polynomial degree and the point distributions were assumed to be constant
although they can vary over the elements and may also be different with respect to
the � and � directions. The weak formulation (2) is transformed into semi-discrete
equations, with the differentiation matrix dij D 
 0

j .�i /, the weights fwkg and a
quadrature scheme that bases on the GLL points .�k ; �l /. These equations can be
assumed as

PUij;e D 1

Jij;ewi

� PX
kD0

wkdkiF;kj;e � 
i .�1/JWj;eHW
j;e � 
i .C1/JEj;eHE

j;e

�

C 1

Jij;ewj

� PX
lD0

wldljF�;il;e � 
j .�1/J Si;eHS
i;e � 
j .C1/JNi;eHN

i;e

� (3)

with .F ;F�/T D J J�T.Fx;Fy/T, the Jacobian matrix J�1 D rE Ex and the Jaco-
bian determinant J . The indices W , E , N , and S indicate the edges of ˝s, e.g.,
W OD .� D �1; �/ and JW is the corresponding boundary Jacobian determinant.

The semi-discrete equations (3) are integrated in time using a 3-stage TVD
Runge-Kutta method following SHU and OSHER [9] with embedded slope limit-
ing and boundary correction [8]. For the implementation of the full Navier-Stokes
equations see [7].

3 The Influence of the Vocal Tract on the Recorder

3.1 Problem Description

While playing the recorder, a player driven volume flow leaves the wind chan-
nel and forms a jet. This jet strikes against the sharp edge, the so-called labium.
Depending on the resonator’s characteristic this jet is disturbed, forms periodical
vortexes and excites the air column to oscillate. The vortex shedding is illustrated in
Fig. 2. The playing condition for the note D6 (1,175 Hz) is computed by solving the
two-dimensional, compressible Navier–Stokes equations

@tUCr � EF D r � ED (4)

where ED is the diffusive flux, respectively. While playing the instrument, the player
can modify the frequency and to some extent the instrument’s timbre by modify-
ing the blowing pressure and also his vocal tract. This mechanism is not yet fully
understood. Numerical investigations have also showed the shedding of smaller vor-
texes at the exit of the wind channel. These vortexes strongly depend on the defined
properties at the inflow of the channel.
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Fig. 2 Vortex shedding at the recorder labium, note D6 (1,175 Hz). 20,546 elements, p D 3.
Vorticity magnitude from 0 : : : Œ75; 000�1s

3.2 Influence of the Vocal Tract

To investigate the acoustical resonator of the instrument we performed the impulse
reflectometry numerically and excited the system with a half sine impulse with
the wave length of � D 0:05m. The pressure amplitude is 7.1 Pa, the reference
temperature is 300 K. This impulse excites frequencies up to 10 kHz in a unique
manner. The cutoff frequency is approximately 14 kHz. The impulse is released
inside the recorder at the beginning of the main bore. Viscous effects don’t influ-
ence the resonators resonance frequencies significantly. Hence, we have solved the
Euler equations for this purpose.

Two vocal tract geometries have been defined. The diameter of these geometries
is constant (1 cm) and corresponds to the human vocal tract, which varies in length.
The first length is approximately the same as the resonator length, the second one
is half as long. Fig. 3 shows the temporal development of the pressure field of vocal
tract 1. After a short time acoustic waves are reflected at the instrument’s tone holes
and openings, they superpose and form a complex pressure field. Particularly inter-
esting is the occurrence of many oscillations with similar amplitudes inside the vocal
tract.

Figure 4 compares the estimated resonance frequencies and the reference model,
which neglects the influence of the vocal tract. This is achieved by defining a
non-reflecting boundary condition [8] at the inflow of the wind channel, which
corresponds to a sound radiation into an infinite tube. The measuring position is
situated inside the instrument and near the labium. The volumes of the vocal tract
and the instrument are only weakly coupled by the wind channel. Although both
figures show a significant influence of the vocal tract on the resonance frequencies,
both the measured amplitudes of the resonator’s fundamental frequency and the
vocal tract are nearly equal. The fundamental frequency of vocal tract 2 is twice the
instrument’s fundamental frequency. Despite this, the amplitude of the instrument’s
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t = 0 ms

a

t = 1 ms

b

t = 2 ms

c

t = 3 ms

d

Fig. 3 Time history of the static pressure field of the recorder, note D6 (1,175 Hz). Pressure
amplitude from �7:1 : : : 7:1 Pa. 5,718 elements, p D 3

0
0

0.01

0.02

0.03

0.04

0.05

|P
|

0.06 infinite windway
vocal tract 1

1 2

f [kHz]

3 4 5 0
0

0.01

0.02

0.03

0.04

0.05

|P
|

0.06 infinite windway
vocal tract 2

1 2
f [kHz]

3 4 5

Fig. 4 Influence of the vocal tract on the resonance frequencies of the recorder, note C5 (523 Hz)

fundamental frequency is also increased. Both figures show additional resonance
frequencies at higher modes. This demonstrates how strong the player can mod-
ify the instrument’s timbre by producing additional resonance frequencies. Also,
non-linear effects between the two resonators can amplify this effect.

4 Sound Radiation of the Bassoon

Unlike recorders, bassoons have a conical bore, a wider range of playable notes,
a more distinct sound radiation characteristic and a timbre, which features a very
rich overtone spectrum. In order to investigate the sound radiation pattern of the
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t = 7 . 5ms

a

t = 15ms

b

Fig. 5 Time history of the bassoon’s static pressure field, note C2 (65 Hz). Pressure amplitude
from �7:1 : : : 7:1 Pa. 104,418 elements, p D 3

Fig. 6 Radiation characteristic of the bassoon for the note C2 (65 Hz)

instrument we have also performed the impulse reflectometry. Figure 5 illustrates
an example of the temporal development of the basson’s pressure field.

To estimate the radiation characteristicswemeasured thepressure signalat equidis-
tant spaced pointsat theouterboundaryof thecircular computationaldomain. In Fig. 6
the radiation behaviour for the note C2 (65 Hz) is given. While the fundamental
note nearly constantly radiates around the instrument, the following overtones show
a distinct radiation characteristic. Interestingly, the radiation characteristic varies
between the overtones. Additional calculations showed that the radiation pattern of
one overtone also varies from one fingering to another. Consequently, it is necessary
to investigate all fingerings and overtones in order to consider and possibly modify
the instrument’s radiation characteristic.
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5 Conclusions

We have performed the widely-used impulse reflectometry numerically in order to
investigate the acoustical behavior of woodwind instruments. Therefore, we used a
high-order discontinuous Galerkin formulation to solve the non-linear, compressible
and unsteady Euler equations according to the required numerical accuracy. The
time domain based approach used in this context overcomes certain limitations of
frequency based methods. Waves can be tracked directly, which helps gaining a
better understanding of the resonator’s behavior. It also allows transient phenomena
and a non-homogeneous mean flow to be investigated.

The investigation of both the influence of the player’s vocal tract on the resonance
frequencies of a recorder and the radiation characteristics of a bassoon proved the
practicability of this approach.
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Spectral Properties of Discontinuous Galerkin
Space Operators on Curved Meshes

Thomas Toulorge and Wim Desmet

Abstract Grids with curved elements are necessary to fully benefit from the high
order of accuracy provided by the Discontinuous Galerkin (DG) method, when deal-
ing with complex geometries. We study the relation between the quadratic shape of
simplex elements and the spectral properties of the semi-discrete space operators,
with emphasis on consequences for the maximum allowable timestep for stabil-
ity in Runge–Kutta DG methods. A strong influence of element curvature on the
eigenvalue spectrum is put in evidence, but no explicit relation could be found to
describe the evolution of the spectral radius in function of geometric properties of
elements. Furthermore, we show that a correct estimation of stability bounds cannot
be obtained by considerations on the norm of integration matrices involved in the
DG Method.

1 Introduction

Among the numerous numerical methods used to solve hyperbolic partial differen-
tial equations on unstructured grids, the Discontinuous Galerkin (DG) Method is
receiving increasing attention in different fields like Computational ElectroMagnet-
ics, Computational Fluid Dynamic or Computational Aeroacoustics. Its ability to
obtain solutions with arbitrarily high order of accuracy is a particularly interesting
feature. Other advantages over concurrent high-order methods are the straightfor-
ward formulation of boundary conditions, as well as the compactness of the scheme,
that allows efficient parallel computation.

Nevertheless, the benefits of using higher-order methods with a lower grid den-
sity are limited if coarse grids made up of straight elements (i.e., elements with
straight edges in 2D or flat faces in 3D) fail to correctly discretize curved boundaries.
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In the framework of the non-linear Euler equations, the necessity of a higher-order
treatment of curved wall boundaries was put in evidence by Bassy and Rebay [1]
and is now generally accepted [2]. In the context of linear aeroacoustic propagation,
the use of higher-order geometry description and its positive impact on accuracy
was reported [3, 4].

However, curved elements used for higher-order geometry representation influ-
ence the conditioning of DG space operators. When explicit methods such as
Runge–Kutta (RK) schemes are used for time integration, this may lead to a more
restrictive CFL condition: the maximum timestep allowed to maintain the stability
of the simulation is then lower, and the global computation cost is increased. Dissi-
pation and dispersion properties of the scheme are also locally affected. The aim of
the work presented in this paper is to study the relation between geometric proper-
ties of curved simplex elements and the spectral properties of DG operators, in order
to draw conclusions on stability and time-stepping in Runge–Kutta Discontinuous
Galerkin (RKDG) methods.

2 Method

2.1 Discontinuous Galerkin Method

As a model for hyperbolic conservation laws, that are the natural target of DG
methods, we consider the scalar advection equation over a domain with periodic
boundary conditions:

@q

@t
C @arq

@xr
D 0 (1)

where q is the unknown, t is the time, xr is the r-th space coordinate, and ar is the
r-th component of the constant advection vector a. Einstein’s summation convention
is used over the r index.

For each element ˝ resulting from the partition of the computational domain, a
basis B D ˚'j ; j D 1 : : : Np

�
is defined, in which the components 'j are polyno-

mials of order p supported on ˝ , with Np D .pC1/.pC2/
2

for triangular elements.
An approximation q˝ of q on ˝ is obtained by a projection on this basis:

q˝ D
NpX
jD1

q˝j 'j

Applying the Discontinuous Galerkin procedure to (1) results in:

M˝ @q
˝

@t
� K˝

r arq
˝ C

X
i

M@˝iF @˝ D 0 (2)
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with:

M˝
kj D

Z

�

'k'j

ˇ̌
ˇJ˝

ˇ̌
ˇ d�

�
K˝

r

�
kj
D
Z

�

�
J˝

��1
sr

@'k

@�s
'j

ˇ̌
ˇJ˝

ˇ̌
ˇ d� (3)

M@˝i

kj
D
Z

@�i

'k'j

ˇ̌
ˇJ @˝i

ˇ̌
ˇd@�i

where F @˝ is the Lax–Friedrichs approximation of the Riemann flux computed
on the element boundary @˝ . In (3), each element ˝ is mapped onto a unique
reference element � by a function M˝ with Jacobian matrix J˝ . Likewise, each
element boundary @˝i is mapped onto a unique edge of � by a function M @˝i

with Jacobian matrix J @˝i . The basis B is then expressed in � with reference
coordinates �.

2.2 Stability Analysis

To deal with element curvature, quadratic functions of � are considered for the map-
pings M˝ . In addition to the vertices of the element, control points on the edges
of the element are used to define M˝ , as in the classical Finite Element Methods.
Elements can then be arranged to form periodic patterns, as shown in Fig. 1.

In 1D, a non-dimensional parameter � is used to define the location of the middle
control point on the segment (see Fig. 1a). Although the element cannot be geomet-
rically curved, the quadratic mapping allows us to mimic the effect of curvature.
In 2D, two non-dimensional parameters are needed to define the curvature of each
edge (see Fig. 1b). Given the periodicity constrains, six parameters characterize the
curvature of the whole pattern.

a

b

Fig. 1 Periodic patterns of elements used for the stability analysis in 1D (a) and 2D (b)
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The global DG space operator L can then be assembled directly by considering a
grid made up of repeated patterns, explicitly imposing periodic boundary conditions
at the boundaries of the computational domain, and formulating the semi-discrete
scheme:

@ Qq
@t
D L Qq

where Qq represents the solution on the whole computational domain. Alternatively,
a Von Neumann-like procedure can be followed by looking for harmonic solutions,
for which the periodicity of patterns can be exploited to diagonalize L with blocks
Lp, yielding:

@ Oq
@t
D Lp Oq

where Oq represents the complex amplitude of the solution on a pattern, and the
operator Lp depends on the position of that pattern in the global grid.

To evaluate the stability of the RKDG method with a given timestep �t , we
compute the eigenvalues � .L/ and compare the spectrum � � �t to the stability
region of the RK scheme, as shown in Fig. 2. Although the presence of the whole
spectrum inside the absolute stability region is not a sufficient condition for the
stability of the fully discrete scheme, it provides an excellent guideline for the choice
of �t [5].

3 Results

In this section, we study the dependence of the eigenvalue spectrum � .L/ on the
curvature of the elements. For this purpose, the spectral radius 	 .L/ D max j� .L/j
is the main quantity of interest.

Fig. 2 Example of a stability
plot for the 2D DG space
operator at p D 1 with
straight elements. The RK
stability region corresponds
to Carpenter’s low-storage
(4,5)-RK scheme
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Fig. 3 Pattern shape (a) and normalized spectral radius (b) for p D 1 to p D 5 for a normal
deformation of one edge in a 2D equilateral pattern
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Fig. 4 Pattern shape (a) and normalized spectral radius (b) for p D 1 to p D 5 for a tangential
deformation of one (already curved) edge in a 2D equilateral pattern

3.1 Qualitative Results in 2D

Figure 3 illustrates the effect of element curvature in 2D. As seen in Fig. 3a, an edge
of a 2D pattern made up of equilateral triangles is deformed in the direction normal
to the straight edge. The normalized spectral radius (i.e., 



0
where 	0 is the spectral

radius for the straight element), plotted in Fig. 3b up to order p D 5, shows that
the conditioning of L is severely influenced by element curvature. This influence
become stronger when the order is increased.

For a deformation in the tangential direction, the impact seems to be milder, but
significant, although the shape of the pattern undergoes little change (see Fig. 4).

These qualitative results show that element curvature can lead to a strong reduc-
tion of the timestep, above all at high order. Even little modifications in the global
pattern shape can affect the conditioning of the operator in a significant manner,
which suggests that local geometric properties of the element govern the effect.
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3.2 Dependence on the Local Jacobian in 1D

An interesting candidate as governing parameter for the scaling of the eigenvalue
spectrum is the local Jacobian

ˇ̌
J˝

ˇ̌
of the quadratic mapping M˝ . Indeed, in

1D,
ˇ̌
J˝

ˇ̌
is the only geometrical parameter involved in the formulation of the DG

scheme, and a basic analysis of the method shows that the spectral radius for straight
elements scales as:

	0 .L/ 	 1

�x
	 1ˇ̌

J˝
ˇ̌

One can thus conjecture that the spectral radius for curved elements scales as:

	 .L/ 	 1ˇ̌
J˝

ˇ̌
min

with
ˇ̌
J˝

ˇ̌
min D min˝

ˇ̌
J˝

ˇ̌
. However, Fig. 5 shows that the dependence of the

normalized spectral radius on the normalized inverse minimal Jacobian (i.e.,
jJ˝

0 j=jJ˝ jmin where
ˇ̌
J˝0

ˇ̌
is the Jacobian for the straight element) is not linear, par-

ticularly at low order. Indeed, the analytical expression for the spectral radius at
p D 1, calculated by means of a Computer Algebra System, is:

	 .L/ D
ˇ̌
ˇ̌ 9

4 � �2 � 3
ˇ̌
ˇ̌

For p D 2, 	 is a complicated non-rational function of � . As
ˇ̌
J˝

ˇ̌
min is a linear

function of � , there cannot be an simple dependence of 	 on
ˇ̌
J˝

ˇ̌
min.

An interesting aspect of the problem is related to the value �inf of � for which
the spectral radius becomes infinitely large. � D 0:5 is the value beyond whichˇ̌
J˝

ˇ̌
min � 0, the element then degenerates and the DG method cannot be used

anymore. However, we measured �inf > 0:5, at least up to orderp D 10. Moreover,
�inf seems to decrease and come closer to 0:5 when the order is increased.
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Fig. 5 Dependence of the normalized spectral radius on the normalized inverse minimal Jacobian
for p D 1 (a) and p D 8 (b) in 1D
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Fig. 6 Evolution of the spectral radius and quantities based on matrix 1-norms for p D 1 (a) and
p D 8 (b) in 1D

3.3 Estimation Based on Integration Matrices in 1D

As the eigenvalue spectrum does not seem to scale with geometric properties in a
simple manner, one can wonder whether the spectral radius can be estimated by
simple considerations on the integration matrices M˝ , K˝ and M@˝i . In 1D, the
geometric properties of the element are only involved through the mass matrix M˝ .
Let the operator L be decomposed as:

L .�/ D M�1 .�/ R

where M is the block-diagonal matrix with blocks M˝ , M˝ being the same for all
elements. The following inequalities hold for any induced norm:

	 .L/ � kLk � 		M�1
		 kRk

Figure 6 shows that
		M�1

		
1
kRk1 is too large and grows faster than 	 with

increasing � , so that no estimation based on
		M�1

		
1

would be useful. Figure 6 indi-
cates that even kLk1 is a bad approximation for 	. This is due to the non-normality
of L, which gets stronger when the deformation and the order p are increased.
Similar results are obtained with the infinity-norm and the 2-norm.

4 Conclusions

In this paper, the conditioning of DG space operators for quadratic elements has
been studied, with the aim of relating the geometrical properties of curved elements
and the maximum allowable timestep in RKDG methods.

The strong influence of element curvature on the scaling of the eigenvalue spec-
trum, specially at high order, has been put in evidence. However, 1D investigations
have not succeeded in explaining the relation between the scaling of the eigenvalues
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and the local Jacobian. Moreover, they have shown that upper bounds based on the
norm of integration matrices are largely overestimated and do not scale like the
eigenvalue spectrum with increasing element deformation.

Further investigations are thus needed to find a satisfying estimation of the
maximum allowable timestep with curved elements.
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Post-Processing of Marginally Resolved
Spectral Element Data

Carl Erik Wasberg

Abstract When derivatives of a spectral element solution are used in a different
context, such as visualization or in calculations with a different numerical method,
the discontinuity of the derivatives at the element interfaces is a potential problem.
Asymptotically, the jumps in the derivatives decay spectrally fast, but it is not always
possible or efficient use of computational resources to repeat the spectral element
calculations with increased resolution. The usual way of treating the discontinu-
ities is discussed here, however it is not always satisfactory. New methods based
on polynomial interpolation across element interfaces and polynomial filtering are
suggested, and illustrated by examples.

1 Introduction

Most spectral element formulations (see e.g. [3, 6]) are based on C 0-continuity
across element interfaces, while the discontinuities in the derivatives decrease with
increasing order of the polynomials representing the solution at each element. In
practical applications, the discontinuity of the derivatives can cause problems, and
examples and possible remedies are presented in this paper. In this context, the term
“marginal resolution” is taken to mean that the solution itself is resolved, but the
derivatives of a given order may be under-resolved.

Even though the solution produced by the spectral element method is the best
solution of the weak form of the partial differential equation, there may be other con-
siderations involved that necessitates smoothing of the derivatives across element
interfaces. Some examples are the use of derived quantities involving derivatives
in visualization, post-processing, and multi-physics systems where different solvers
are combined. It is typical for these applications that quantities involving deriva-
tives from the spectral element solution are transferred to another program, usually
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on a different grid. It is not always possible, or indeed the best way of spending the
computational resources, to increase the resolution of the spectral element solution.

Spectral element methods with C 1-regularity across the interfaces have been
proposed [8, 10], but we choose to keep the well-established C 0 spectral element
method unchanged and only post-process the data. This approach also allows us to
treat higher order derivatives.

2 Numerical Test Problems

The methods described in this work will be tested on two one-dimensional exam-
ples, described in the following. The focus is mainly on the calculation of second
derivatives, because the potential problems are exposed more clearly by differenti-
ating twice, and it illustrates the issue of sequential treatment. In addition, some of
the motivation for this study comes from the work on flow noise described in [4],
and this is used as the second example.

2.1 An Analytical Example

In the first example, a known function is approximated and differentiated. The
exact formulas for the derivatives are used to calculate the errors in the constructed
continuous derivatives. The function is

f .x/ D 1

2C cos.2
x/ ; x 2 Œ0; 2i; (1)

and is shown, together with its second derivative, in Fig. 1.

2.2 Turbulent Channel Flow

The second example illustrates how the discontinuous derivatives at element inter-
faces can lead to problems in applications. We consider direct numerical simulation

Fig. 1 The analytical example function (1). Left: f .x/. Middle: f 00.x/. Right: Close-up of the
spectral element representation of f 00.x/ close to an element interface
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Fig. 2 The dominant source term in Lighthill’s approximation, with discontinuous derivatives at
the 16 element interfaces normal to the x-direction. The horizontal line shows the location of the
one-dimensional results reported in this paper

data of turbulent channel flow at Re� D 180, described in detail in [11]. The results
compare well with the reference data from Moser et al. [9].

Lighthill [7] formulated source terms for a wave equation describing the sound
propagation from turbulent flow. These source terms involve second derivatives of
the velocity components:

�
c20r2 �

@2

@t2

�
	 D � @2Tij

@xi@xj
; Tij D 	uiuj C .p � c2	/ıij � �ij : (2)

Even though the flow is statistically well resolved, the discontinuities in the second
derivatives at the element interfaces normal to the x-direction are clearly seen in the
volume visualization of the term (@2.u2/=@x2) in Fig. 2. For the channel flow case,
this is the dominant term of Tij , and the spikes along the element interfaces act as
artificial sound sources. When we return to this example, we study the calculation
of this term along the horizontal line shown in Fig. 2.

3 Interface Averaging

The standard way of post-processing interface discontinuities is by simple or
weighted averages. The calculation of a derivative f D du

dx
in a one-dimensional

domain˝ can be formulated weakly as

Z

˝

f v dx D
Z

˝

du

dx
v dx; 8 v 2 V; (3)

for a suitable test space V . Following a standard spectral element discretization, the
derivative at an interface point becomes

f I D 1

	LN C 	R0
�
	LNf

L
N C 	R0 f R0

�
; 	ki D 	i lk=2; (4)
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where the superscripts L and R denote the element to the left and right of the inter-
face, respectively, 	i is the Gauss-Lobatto-Legendre weight at the i th point of an
element, and lk is the element size. The “Smoothing interface method” proposed by
Meng et al. [8] also ends up with the expression (4) for the interface values.

The weighting in (4) depends on the element sizes and polynomial orders and
is perhaps not the best choice, but these quantities do not vary in the examples
shown here. Therefore, we simplify by not distinguishing between weighted and
unweighted averages, and just call the method “Interface averaging (IA)”.

We note that the interface averaging viewed as an operator is idempotent, but
does not commute with differentiation, so for higher derivatives the order of the
operations is important:

�
d 2u

dx2

�IA

¤
 
d

dx

�
du

dx

�IA
!IA

�
�
d 2u

dx2

�SIA

(5)

If every differentiation is followed by interface averaging, we denote it “Sequen-
tial Interface Averaging (SIA)”. For mixed derivatives, sequential treatment ensures
that the result of each differentiation is continuous at the interfaces, and is thus
essential to avoid special cases at edges and corners.

As expected from the spectral element theory, both the discontinuous derivatives
and the interface averaging methods converge with spectral accuracy as the num-
ber of grid points is increased, as shown in Fig. 3. However, these methods are not
always satisfactory at moderate polynomial orders, as illustrated at the right-hand
part of Fig. 3, showing the second derivative. Note that all functions shown by lines
are plotted on a very fine grid in order to shown the piecewise polynomial repre-
sentation, and not only the values at the Gauss-Lobatto-Legendre points. This is
relevant because the calculated derivatives are typically interpolated to a different
grid, as mentioned in the Sect. 1.

IA

IA

SIA

1

0.1

0.01

0.001

0.0001

1e – 05

Fig. 3 Left: Max. error in the derivatives of (1), five elements, varying polynomial degree. Right:
IA and SIA applied in the calculation of the second derivative of (1)
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Original SEM
IA

SIA

Fig. 4 Original solution, IA, and SIA applied to the dominant source term in Lighthill’s approxi-
mation

From our other example, the calculation of sound generated by turbulent flow,
we pick the horizontal line shown in Fig. 2. A variety of situations occur at the
element interfaces along this line, and Fig. 4 shows the dominant source term here,
in original and post-processed forms.

4 Improved Interface Treatment

The derivatives plotted in Figs. 3 and 4 indicate that there is more information in the
data than the interface averaging methods can extract. From the plots it is possible
to come up with better guesses for the interface values just by visual inspection, but
the challenge is to formulate this in an algorithm.

Two general points can be made:

� Information from the interior of the elements adjacent to the interface should
be used to obtain better results than just using the two one-sided values at the
interface.

� When the one-sided values differ, it stems from marginal resolution in one of the
elements, or in both. If possible, the “best” of the two values should be given
most weight.

4.1 Polynomial Interpolation

The point about two-sided information is used here, as the value at the element inter-
face is constructed from evaluation of an interpolating polynomial through points at
both sides of the interface. We shall call this method “Interface Interpolation (II)”
in the following.

The simplest interpolation method is just a straight line (first order polynomial)
between the first grid values at both sides of the interface. This is called “II1”,
and is illustrated in Fig. 5 together with third order interpolation (“II3”) using two
neighbour points from each side of the interface.
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Fig. 5 Interface Interpolation. Left: II1, first order, two points. Right: II3, third order, four points

–4

–8

Fig. 6 Left: Max. error in the second derivative of (1), 5 elements, varying polynomial degree.
Right: SIA and II1 applied in the calculation of the second derivative of (1)

SIA
IIA

SII1

Fig. 7 SIA, II1, and SII1 applied to the dominant source term in Lighthill’s approximation

Figure 5 also illustrates the second point made above, as the interpolants follow
the solution from the “smoothest” side of the interface much more closely than from
the other side. (Figure 1 shows that the solution has less structure, and is thus better
resolved, in the first element than in the second.)

Sequential versions (“SII1”, “SII3”, etc.) of the Interface Interpolation for higher
derivatives can be constructed just as for the averaging, by applying the interpola-
tion after each differentiation. Higher order interpolants, based on more values or
derivatives, can also be constructed, but in the experiments done here, there seem to
be little gain in using higher than third order interpolation. Approximation results
for the second derivative of (1) are shown in Fig. 6, while results from the turbulent
channel case are shown in Fig. 7. These figures show the reduction in spikes at the
element interfaces.
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In discontinuous Galerkin methods, post-processing techniques involving con-
volutions have been shown to improve the accuracy for hyperbolic problems, see
e.g. [2]. The present technique is related, but only applied at the interface points and
after the spectral element solution is differentiated.

4.2 Filtering

Giving most weight to the one-sided derivative at the element interface from the
“best” resolved element could be done by analyzing the Legendre coefficients of
the one-dimensional representations used in the calculation of the derivatives, and
try to identify the best resolved side from the rate of decay in the spectrum.

In this paper, however, we try a simpler alternative, namely to filter the fields
before differentiation to try to reduce the influence of oscillations from marginally
resolved elements. A simple filtering procedure that preserves the interface values,
as described in [1], is the polynomial filtering of Fischer and Mullen [5].

For the two examples used above, filtering does not change the results much, but
in another example from the turbulent channel flow, 25% polynomial filtering of the
velocity field combined with the first order interface interpolation really improves
the calculated derivatives. There is a strong front in one element, which gives rise to
fine structures in the second derivative. A comparison with the Sequential Interface
Averaging method is shown for a part of a horizontal plane in Fig. 8.

5 Conclusions

This work is based on the conjecture that there is more information in the spectral
element solution about the derivatives than what is extracted by interface averaging,
and it has been demonstrated that using some information from the interior of the
elements can yield a better approximation of the derivative at the interface. There
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Fig. 8 Calculation of @2.v2/=@y2 from turbulent channel flow. Left: Sequential Interface Averag-
ing. Right: Combined filtering and Interface Interpolation
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is a fine balance between the smoothing effect of using non-local information and
retaining the accuracy. Interpolation of higher than third order does not improve the
results in the examples shown here. However, for functions with large gradients, it
may be advantageous to apply a polynomial filter to the spectral element solution
before the interface corrections are calculated.

For some of the methods described here, spectral accuracy is demonstrated for a
simple test example. However, as the title indicates, the focus is more on improv-
ing the results from a given calculation than studying the asymptotic convergence
properties.

All the techniques discussed in this study only use information from the two ele-
ments that shares an interface. This greatly simplifies the parallel implementation.
They are also inherently one-dimensional, as they are applied along lines in the
differentiation direction, normal to the interfaces. The methods are therefore trivial
to apply in higher dimensions by tensor products, and there is no need for special
treatment of edges or corners.
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