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Preface

Fractional calculus (FC) generalizes integrals and derivatives to non-integer orders.
During the last decade, FC was found to play a fundamental role in the modeling
of a considerable number of phenomena, in particular, the modeling of memory-
dependent phenomena and complex media such as porous media. FC emerged
as an important and efficient tool for the study of dynamical systems where
classical methods reveal strong limitations. This book is devoted to the existence
and uniqueness of solutions for various classes of Darboux problem for hyperbolic
differential equations or inclusions involving the Caputo fractional derivative, the
best fractional derivative of the time. Some equations present delay which may
be finite, infinite, or state-dependent. Others are subject to impulsive effect. The
tools used include classical fixed point theorems as well as sharp (new) ones such
as the one by Dhage on ordered Banach algebras and the fixed point theorem
for contraction multivalued maps due to Covitz and Nadier, as well as some
generalizations of the Gronwall’s lemma. Each chapter concludes with a section
devoted to notes and bibliographical remarks and all abstract results are illustrated
by examples.

The content of this book is new and complements the existing literature in
fractional calculus. It is useful for researchers and graduate students for research,
seminars, and advanced graduate courses, in pure and applied mathematics, engi-
neering, biology, and all other applied sciences.

We owe a great deal to R.P. Agarwal, L. Gérniewicz, J. Henderson, J.J. Nieto,
B.A. Slimani, J.J. Trujillo, A.N. Vityuk, and Y. Zhou for their collaboration
in research related to the problems considered in this book. We express our
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appreciation to Professor George Anastassiou who strongly supported our project.
Finally, we thank the editorial assistance of Springer, especially Elizabeth Loew and
Jacob Gallay.

Saida, Algeria S. Abbas
Sidi Bel-Abbes, Algeria M. Benchohra
Baltimore, Maryland, USA G.M. N’Guérékata
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Chapter 1
Introduction

Fractional calculus is a generalization of the ordinary differentiation and integration
to arbitrary non-integer order. The subject is as old as the differential calculus and
goes back to times when Leibniz and Newton invented differential calculus. One
owes to Leibniz in a letter to L’Hospital, dated September 30, 1695 [181], the
exact birthday of the fractional calculus and the idea of the fractional derivative.
L’Hospital asked the question as to the meaning of d"y/dx" if n = %; ie.,
what if n is fractional? Leibniz replied that d 2x will be equal to x+/dx : x. In
the letters to J. Wallis and J. Bernoulli (in 1697), Leibniz mentioned the possible
approach to fractional-order differentiation in that sense that for non-integer values
; = m"e™. In 1730, Euler
mentioned interpolating between integral orders of a derivative and suggested to

use the following relationship: % = ;}:ﬁ—ﬁ_)l)xm_", where I'(.) is the (Euler’s)

Gamma function defined by I"'(§) = fooo t5=1e7dt, £ > 0. Also for negative or
non-integer (rational) values of n. Taking m = 1 and n = l Euler obtained:

1
Cx = /& = Z-x3. In 1812, Laplace [1820 vol. 3, 85 and 186] defined a
dx2
fractional derivative by means of an integral, and in 1819 there appeared the first
discussion of a derivative of fractional order in a calculus text written by Lacroix
[171]. The first step to generalization of the notion of differentiation for arbitrary

functions was done by Fourier (1822) [125]. After introducing his famous formula

+o00

f) = = / F(2)dz / cos(px — p2dp,

—00
Fourier made a remark that
+o00

d" f(x) = / f(z)dz/cos(px—pz+n2)dp,

dxn

—0o0

S. Abbas et al., Topics in Fractional Differential Equations, Developments 1
in Mathematics 27, DOI 10.1007/978-1-4614-4036-9_1,
© Springer Science+Business Media New York 2012



2 1 Introduction

and this relationship could serve as a definition of the nth order derivative for
non-integer n. In 1823, Abel [38], considered the integral representation

[ S’ (n)
2 4p = i
0/ o dn = Y

for arbitrary o and then wrote

sin(mx)xa : w(xt) dt 1 d“"lﬂ(x).

S0 = A—0=" " T—a) sx
0

The first great theory of fractional derivation is due to Liouville (1832) [185].

I. In his first definition, according to exponential representation of a function

- d'f(x) _ <
fx) = Z cpe®”, he generalized the formula P Z cpa, e,
n=0 n=0

II. Second type of his definition was Fractional Integral

m [e9)
_ 1 el
/@D(x)dx“ = (—l)l‘—l"(,u) x/(t X)) @d(1)dr,

n X
[ L _ )l
/@D(x)dx F(M)_i (x — o) @(r)dr.

III. Third definition includes Fractional derivative

d'F(x)  (=D* © p(p —1)
AT (F(x)—TF(x+h)+TF(x+2h)—---),
d"F(x) 1

—( (x)—%F(x—h)—i—MF()C—%)—W).

dxr A 1.2

But the formula most often used today, called Riemann—Liouville integral, was
given by Riemann (1847). His definition of Fractional Integral is

D™ f(x) = ﬁ / (r = 0" £t + P (0).
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On these historical concepts, one will be able to refer to work of Dugowson
[117]. According to Riemann-Liouville the notion of fractional integral of
order &, o > 0 for a function f(¢), is a natural consequence of the well-known
formula (Cauchy—Dirichlet), which reduces the calculation of the n—fold
primitive of a function f(¢) to a single integral of convolution type.

/(t — )" ' f(v)dr, n € N,

a

1
I f() = =1

vanishes at# = a along with its derivatives of order 1,2, ...,n—1. One requires
S(@)and I, f(1) to be causal functions, that is, vanishing for # < 0. Then one
extends to any positive real value by using the Gamma function, (n — 1)! =
I'(n). So, the left-sided mixed Riemann-Liouville integral of order « of f is
defined by

150 = s [ =0 roae

The operator of fractional derivative D¢ f(¢) can be defined by the Transform
of Laplace integrals, the derivative of order @ < 0 a causal function f(¢) is
given by the Riemann—Liouville integral:

1

zg-—a—l
DYf(t) = S —§)dE. (1.1)
0/ I'(—a)
If @ > 0, we can pose
f —o—1
D* f(t) = PF ﬁ(_a)f(t—é)dé,a>0,a¢N,
0

where PF represents the finite part of the integral (Schwartz). In 1867,
Griinwald and Letnikov joined this definition which is sometimes useful

—a
[ h

oD F(0) = lim B Y (<D =) = Y (=DFOS0). (12)
k=0

k=0

This definition of fractional derivative of a function f(z) based on finite

differences is obtained from the classical definition of integer order deriva-

tive (Griinwald [137]). We can get an idea of the equivalence of defini-

tions (1.1) and (1.2) using the factorial function I'(«) by Gauss: I'(¢) =
klk®

I .
koo a(ar + 1) -~ (@ + k)

A list of mathematicians, who have provided



4 1 Introduction

important contributions up to the middle of the last century, includes N.Ya. Sonin
(1869), A.V. Letnikov (1872), H. Laurent (1884), P.A. Nekrassov (1888),
A. Krug (1890), J. Hadamard (1892) , O. Heaviside (1892-1912), S. Pincherle
(1902), G.H. Hardy and J.E. Littlewood (1917-1928), H. Weyl (1917), P. Lévy
(1923), A. Marchaud (1927), H.T. Davis (1924-1936), E. L. Post (1930),
A. Zygmund (1935- 1945), E.R. Love (1938-1996), A. Erdélyi (1939-1965),
H. Kober (1940), D.V. Widder (1941), M. Riesz (1949), W. Feller (1952), and
K. Nishimoto (1987-). They considered the Cauchy Integral formula

Q)
(n)
0 =55 2mi / (t— Z)’H’ldt’

and substituted n by v to obtain

x+
S To+D T 0
DSy = / - ar.

_Z)v+1

The Riemann—Liouville definition of fractional calculus is the popular defini-
tion, it is this which shows joining of two previous definitions.

o _ S(de _
DEF(1) = a) < /( l<a<n.

t_.[)oz —n+1"

The Riemann-Liouville derivative has certain disadvantages when trying to
model real-world phenomena with fractional differential equations. Therefore,
we shall introduce a modified fractional differential operator { D;* proposed by
Caputo (1967) first in his work on the theory of viscoelasticity [91] and 2 years
later in his book [92]. Caputo’s definition can be written as

t
cpe _ 1 S (0)dr
Tt Fm—a) ) (t -+l
a

n—1<a<n.

The Mittag-Leffler function is a generalization of the exponential function that
plays an important role in fractional calculus. The function was developed by
the Scandinavian mathematician Mittag-Leffler (1846-1927) [195, 196], who was
a contemporary of Oliver Heaviside(1850—-1925). In 1993, Miller and Ross used
differential operator D as D¥ f(t) = D*'D* ... D% f(1); & = (a1, 0, ...,0,),
in which D% are Riemann—Liouville or Caputo definitions. The idea of fractional
calculus and fractional order differential equations and inclusions has been a
subject of interest not only among mathematicians but also among physicists and
engineers. Indeed, we can find numerous applications in rheology, porous media,
viscoelasticity, electrochemistry, electromagnetism, signal processing, dynamics of
earthquakes, optics, geology, viscoelastic materials, biosciences, bioengineering,
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medicine, economics, probability and statistics, astrophysics, chemical engineering,
physics, splines, tomography, fluid mechanics, electromagnetic waves, nonlinear
control, control of power electronic, converters, chaotic dynamics, polymer science,
proteins, polymer physics, electrochemistry, statistical physics, thermodynamics,
neural networks, etc. [115,133,134,151,187,189,191,208,209,220,229,231,250].
The problem of the existence of solutions of Cauchy-type problems for ordinary
differential equations of fractional order and without delay in spaces of integrable
functions was studied in some works [164, 228]. The similar problem in spaces
of continuous functions was studied in [243]. Recently several papers have been
devoted to the study of hyperbolic partial integer order differential equations and
inclusions with local and nonlocal conditions; see for instance [85-88, 176], the
nonlocal conditions of this type can be applied in the theory of elasticity with better
effect than the initial or Darboux conditions. For similar results with set-valued
right-hand side we refer to [74—76,89,158,213]. During the last 10 years, hyperbolic
ordinary and partial differential equations and inclusions of fractional order have
been intensely studied by many mathematicians; see for instance [4—6,15,244-247].

In recent years, there has been a significant development in fractional calculus
techniques in ordinary and partial functional differential equations and inclusions,
some recent contributions can be seen in the monographs of Anastassiou [52],
Baleanu et al. [61], Diethelm [113], Kaczorek [156], Kilbas et al. [166], Laksh-
mikantham et al. [175], Miller and Ross [192], Podlubny [214], Samko et al. [225],
the papers of Abbas et al. [25, 30, 32, 35, 36], Abbas and Benchohra [5, 6,9, 10],
Agarwal et al. [39, 43, 45, 46], Ahmad and Nieto [47], Ait Dads et al. [49],
Almeida and Torres [50,51], Araya and Lizama [53], Arshad and Lupulescu [54],
Balachandran et al. [59, 60], Baleanu and Vacaru [62], Bazhlekova [64], Belarbi
et al. [66], Benchohra et al. [67-69, 71, 73], Burton [83], Chang and Nieto [94],
Darwish et al. [100], Danca and Diethelm [99], Debbouche [102], Debbouche and
Baleanu [103], Delbosco and Rodino [105], Denton and Vatsala [106], Diagana
et al. [112], Diethelm [114, 115], Dong et al. [116], El-Borai [118, 119], El-Borai
et al. [120, 121], El-Sayed [122-124], Furati and Tatar [131, 132], Henderson
and Ouahab [144, 145], Herzallah et al. [149, 150], Ibrahim [154], Kadem and
Baleanu [157], Kaufmann and Mboumi [163], Kilbas and Marzan [165], Kirane
et al. [167], Kiryakova and Luchko [168], Li et al. [183], Labidi and Tatar [170],
Lakshmikanthan [173], Lakshmikantham and Vatsala [178], Li and N’Guérékata
[182], Luchko [186], Magin et al. [188], Mainardi [189], Moaddy et al. [197],
Mophou [198], Mophou et al. [199-204], Muslih and Agrawal [205], Muslih et al.
[206], Nieto [207], Podlubny et al. [216], Ramrez and Vatsala [217], Razminia et al.
[218], Rivero et al. [219], Sabatier et al. [221], Salem [222-224], Samko et al. [226],
Tarasov [232], Tarasov and Edelman [233], Tenreiro Machado [234-236], Tenreiro
Machado et al. [237-239], Trigeassou et al. [240], Vzquez [241], Wang et al. [248],
Vityuk [242], Vityuk and Golushkov [244], Yu and Gao [249], Zhang [251], Zhou
et al. [253-255], and the references therein.

Applied problems require definitions of fractional derivative allowing the uti-
lization of physically interpretable initial conditions. Caputo’s fractional derivative,
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originally introduced by Caputo [90] and afterwards adopted in the theory of linear
viscoelasticity, satisfies this demand. For a consistent bibliography on this topic,
historical remarks, and examples, we refer to [41,48,49,77,214,215].

The method of upper and lower solutions has been successfully applied to study
the existence of multiple solutions for initial and boundary value problems of the
first-and second-order partial differential equations. This method plays an important
role in the investigation of solutions for differential and partial differential equations
and inclusions. We refer to the monographs by Benchohra et al. [70], the papers
of Abbas and Benchohra [7, 8, 12, 14], Heikkila and Lakshmikantham [143], Ladde
et al. [172], Lakshmikantham and Pandit [176], Lakshmikantham et al. [177], Pandit
[213], and the references cited therein.

The theory of impulsive integer order differential equations and inclusions has
become important in some mathematical models of real processes and phenomena
studied in physics, chemical technology, population dynamics, biotechnology, and
economics. The study of impulsive fractional differential equations and inclusions
was initiated in the 1960s by Milman and Myshkis [193, 194]. At present the
foundations of the general theory are already laid, and many of them are investigated
in detail in the books of Benchohra et al. [70], Lakshmikantham et al. [174],
Samoilenko and Peresyuk [227], and the references therein. There was an intensive
development of the impulse theory, especially in the area of impulsive differential
equations and inclusions with fixed moments. The theory of impulsive differential
equations and inclusions with variable time is relatively less developed due to the
difficulties created by the state-dependent impulses. Some interesting extensions to
impulsive differential equations with variable times have been done by Bajo and Liz
[58], Abbas et al. [2,26,27], Abbas and Benchohra [13], Belarbi and Benchohra
[65], Benchohra et al. [70, 72], Frigon and O’Regan [128-130], Kaul et al. [160],
Kaul and Liu [161, 162], and the references cited therein. In the case of non-integer
order derivative, impulsive differential equations and inclusions have been initiated
in the papers [41,77]. See also [40,48,49].

Functional differential equations with state-dependent delay appear frequently in
applications as model of equations and for this reason the study of these types of
equations has received great attention in the last year; see for instance [140, 141]
and the references therein. The literature related to partial functional differential
equations with state-dependent delay is limited; see for instance [11,37, 148]. The
literature related to ordinary and partial functional differential equations with delay
for which p(t,.) = t or (p1(x, y,.), p2(x,y,.)) = (x,y) is very extensive; see for
instance [5, 6, 139] and the references therein.

Implicit differential equations involving the regularized fractional derivative
were analyzed by many authors, in the last year; see for instance [16, 17, 33, 34,
246,247] and the references therein.

Integral equations are one of the useful mathematical tools in both pure and
applied analysis. This is particularly true of problems in mechanical vibrations
and the related fields of engineering and mathematical physics. There has been
a significant development in ordinary and partial fractional integral equations in
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recent years; see the monographs of Miller and Ross [192], Podlubny [214], Abbas
et al. [18-23,28,29], Banas et al. [63], Darwish et al. [100], Dhage [107-111], and
the references therein.

In this book we are interested by initial value problems (IVP for short) for
partial hyperbolic functional differential equations and inclusions with Caputo’s
fractional derivative and partial hyperbolic implicit differential equations involving
the regularized fractional derivative. Our results may be interpreted as extensions
of previous results of Dawidowski and Kubiaczyk [101], Kamont [158], Kamont
and Kropielnicka [159] obtained for “classical” hyperbolic differential equations
and inclusions with integer order derivative and those of Kilbas and Marzan [165]
considered with fractional derivative and without delay. In fact, in the proof of our
theorems we essentially use several fixed-point techniques. This book is arranged
and organized as follows:

In Chap. 2, we introduce notations, definitions, and some preliminary notions.
In Sect. 2.1, we give some notations from the theory of Banach spaces and Banach
algebras. Section 2.2 is concerned to recall some basic definitions and facts on
partial fractional calculus theory. In Sect. 2.3, we give some properties of set-valued
maps. Section 2.4 is devoted to fixed-points theory, here we give the main theorems
that will be used in the following chapters. In Sect. 2.5, we give some generalizations
of Gronwall’s lemmas for two independent variables and singular kernel.

In Chap. 3, we shall be concerned by fractional order partial functional differ-
ential equations. In Sect. 3.2, we study initial value problem for a class of partial
hyperbolic differential equations. We give two results, one based on Banach fixed-
point theorem and the other based on the nonlinear alternative of Leray—Schauder
type. We present two similar results to nonlocal problems. An example will be
presented in the last illustrating the abstract theory. Section 3.3 is concerned to study
a system of perturbed partial hyperbolic differential equations. We give two results,
one based on Banach fixed-point theorem and other based on a fixed-point theorem
due to Burton and Kirk for the sum of contraction and completely continuous
operators. Also, we give similar results to nonlocal problems and we present an
illustrative example. Section 3.4 is devoted to study initial value problem for partial
neutral functional differential equations. We present some existence results using
Krasnoselskii’s fixed-point theorem. Also we present an example illustrating the
applicability of the imposed conditions. In Sect.3.5, we shall be concerned by
partial hyperbolic differential equations in Banach algebras. We shall prove the
existence of solutions, as well as the existence of extremal solutions. Our approach
is based, for the existence of solutions, on a fixed-point theorem due to Dhage under
Lipschitz and Carathéodory conditions, and for the existence of extremal solutions,
on the concept of upper and lower solutions combined with a fixed-point theorem
on ordered Banach algebras established by Dhage under certain monotonicity
conditions. An example is presented in the last part of this section. In Sect. 3.6, we
investigate the existence of solutions for a class of initial value problem for partial
hyperbolic differential equations by using the lower and upper solutions method
combined with Schauder’s fixed-point theorem. In Sect. 3.7, we study a system of
partial hyperbolic differential equations with infinite delay. We present two results,
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one based on Banach fixed-point theorem and the other based on the nonlinear
alternative of Leray—Schauder type. Section 3.8 is devoted to study the existence and
uniqueness of solutions of some classes of partial functional and neutral functional
hyperbolic differential equations with state-dependent delay. Some examples will
be presented in the last part of this section. In the last section of this paper, we
shall be concerned by global uniqueness results for partial hyperbolic differential
equations. We investigate the global existence and uniqueness of solutions of four
classes of partial hyperbolic differential equations with finite and infinite delays and
we present some illustrative examples.

In Chap. 4, we shall be concerned by functional partial differential inclusions.
In Sect. 4.2, we investigate the existence of solutions of a class of partial hyperbolic
differential inclusions with finite delay. We shall present two existence results, when
the right-hand side is convex as well as nonconvex valued. The first result relies on
the nonlinear alternative of Leray—Schauder type. In the second result, we shall
use the fixed-point theorem for contraction multivalued maps due to Covitz and
Nadler. In Sect. 4.3, we prove a Filippov-type existence result for a class of partial
hyperbolic differential inclusions by applying the contraction principle in the space
of selections of the multifunction instead of the space of solutions. The second result
is about topological structure of the solution set, more exactly, we prove that the
solution set is not empty and compact. Section 4.4 is devoted to an existence result
of solutions for functional differential inclusions. Our proof relies on the nonlinear
alternative of Leray—Schauder combined with lower and upper solutions method.
Section 4.5 deals with the existence of solutions for the initial value problems for
fractional-order hyperbolic and neutral hyperbolic functional differential inclusions
with infinite delay by using the nonlinear alternative of Leray—Schauder type for
multivalued operators. In Sect. 4.6, we investigate the existence of solutions for
a system of integral inclusions of fractional order. Our approach is based on
appropriate fixed-point theorems, namely Bohnenblust—Karlin fixed-point theorem
for the convex case and Covitz-Nadler for the nonconvex case.

In Chap. 5, we shall be concerned with functional impulsive partial hyperbolic
differential equations. Section 5.2 deals with the existence and uniqueness of
solutions of a class of partial hyperbolic differential equations with fixed time
impulses. We present two results, the first one is based on Banach’s contraction
principle and the second one on the nonlinear alternative of Leray—Schauder type.
As an extension to nonlocal problems, we present two similar results. Finally
we present an illustrative example. In Sect. 5.3, we investigate the existence and
uniqueness of solutions of a class of partial hyperbolic differential equations with
variable time impulses. We present two results, the first one is based on Schaefer’s
fixed-point and the second one on Banach’s contraction principle. As an extension
to nonlocal problems, we present two similar results. An example will be presented
in the last illustrating the abstract theory. Section 5.4 deals with the existence
of solutions and extremal solutions to partial hyperbolic differential equations of
fractional order with impulses in Banach algebras under Lipschitz and Carathéodory
conditions and certain monotonicity conditions. Finally we present an illustrative
example. Section 5.5 deals with the existence of solutions to partial functional
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differential equations with impulses at variable times and infinite delay. Our works
will be considered by using the nonlinear alternative of Leray—Schauder type and
we present an illustrative example. Section 5.6 is devoted to study the existence and
uniqueness of solutions of two classes of partial hyperbolic differential equations
with fixed time impulses and state-dependent delay. We present two results for
each of our problems, the first one is based on Banach’s contraction principle and
the second one on the nonlinear alternative of Leray—Schauder type. In Sect. 5.7,
we investigate the existence and uniqueness of solutions of two classes of partial
hyperbolic differential equations with variable time impulses and state-dependent
delay, we present existence results for our problems based on Schaefer’s fixed-
point. In Sect. 5.8, we investigate the existence of solutions for a class of initial
value problem for impulsive partial hyperbolic differential equations by using the
lower and upper solutions method combined with Schauder’s fixed-point theorem.

In Chap. 6, we shall be concerned with impulsive partial hyperbolic functional
differential inclusions. Section 6.2 deals with the existence of solutions of a class
of partial hyperbolic differential inclusions with fixed time impulses. We shall
present existence results when the right-hand side is convex as well as nonconvex
valued. We present three results, the first one is based on the nonlinear alternative of
Leray—Schauder type. In the second result, we shall use the fixed-point theorem for
contraction multivalued maps due to Covitz and Nadler. The third result relies on
the nonlinear alternative of Leray—Schauder type for single-valued map combined
with a selection theorem due to Bressan and Colombo for lower semicontinuous
multivalued operators with closed and decomposable values. In Sect.6.3, we
investigate the existence of solutions of some classes of partial impulsive hyperbolic
differential inclusions at variable times by using the nonlinear alternative of Leray—
Schauder type. In Sect. 6.4, we use the upper and lower solutions method combined
with fixed-point theorem of Bohnnenblust-Karlin for investigating the existence of
solutions of a class of partial hyperbolic differential inclusions at fixed moments of
impulse.

In Chap.7, we shall be concerned with implicit partial hyperbolic differential
equations.In Section 7.2 we investigate the existence and uniqueness of solutions for
implicit partial hyperbolic functional differential equations. We present two results,
the first one is based on Banach’s contraction principle and the second one on
the nonlinear alternative of Leray—Schauder type. Section 7.3 deals with a global
uniqueness result for fractional-order implicit differential equations, we make use
of the nonlinear alternative of Leray—Schauder type for contraction maps on Fréchet
spaces. To illustrate the result an example is provided. In Sect. 7.4, we shall be
concerned with implicit partial hyperbolic differential equations with finite delay,
infinite delay, and with state-dependent delay. We present two results for each of
our problems, the first one is based on Banach’s contraction principle and the second
one on the nonlinear alternative of Leray—Schauder type. We illustrate our results by
some examples. Section 7.5 deals with the existence and uniqueness of solutions of a
class of implicit impulsive partial hyperbolic differential equations. We present two
results for our problem, the first one is based on Banach’s contraction principle and
the second one on the nonlinear alternative of Leray—Schauder type. To illustrate
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the results an example is provided. In Sect. 7.6, we shall be concerned with the
existence and uniqueness of solutions of two classes of partial implicit impulsive
hyperbolic differential equations with fixed time impulses and state-dependent
delay. We present two results for each of our problems, the first one is based on
Banach’s contraction principle and the second one on the nonlinear alternative of
Leray—Schauder type. Also, we present some illustrative examples.

In Chap. 8, we shall be concerned with Riemann—Liouville integral equations
of fractional order. In Sect. 8.2 we study the existence and uniqueness of solutions
of a certain Fredholm-type Riemann—Liouville integral equation of two variables
by using Banach contraction principle. Section 8.3 deals with the existence and
uniqueness of solutions for a system of integral equations of fractional order with
multiple time delay by using some fixed-point theorems. We illustrate our results
with some examples. In Sect. 8.4 we prove an existence result for a nonlinear
quadratic Volterra integral equation of fractional order. Our technique is based
on a fixed-point theorem due to Dhage [109]. Finally, an example illustrating the
main existence result is presented in the last section. Section 8.5 deals with the
existence and global asymptotic stability of solutions of a class of fractional order
functional integral equations by using the Schauder fixed-point theorem. Also, we
obtain some results about the asymptotic stability of solutions of the equation in
question. Finally, we present an example illustrating the applicability of the imposed
conditions. In Sect. 8.6 we prove the existence and local asymptotic attractivity of
solutions for a functional integral equation of Riemann-Liouville fractional order in
Banach algebras, by using a fixed-point theorem of Dhage [109]. Also, we present
an example illustrating the applicability of the imposed conditions.



Chapter 2
Preliminary Background

In this chapter, we introduce notations, definitions, and preliminary facts that will
be used in the remainder of this book.

2.1 Notations and Definitions

Let J := [0,a] x [0,b]; a,b > 0 and p > 0. Denote L”(J,R") the space of
Lebesgue-integrable functions u : J/ — R” with the norm

1
P

a b
lulr = / / luGr. y)lPdydx | .
0 0

where ||.|| denotes a suitable complete norm on R”. Also L'(J,R") is endowed with

norm ||.|| ;1 defined by
a b
lulls = / / uCx. )]l dydx.
0 0

Let L°°(J,R") be the Banach space of measurable functions u : J — R" which
are bounded, equipped with the norm

lle|| oo = inf{c > O : ||u(x, y)|| <c, a.e. (x,y) € J}.

As usual, by AC(J,R") we denote the space of absolutely continuous functions
from J into R”, and C(J,R") is the Banach space of all continuous functions from
J into R” with the norm

[ulloo = sup [u(x,y)].
(x.y)eJ

Also C(J,R) is endowed with norm ||. || defined by |ullooc = sup |u(x, y)|.
(x,y)eJ
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Define a multiplication - by

(w-v)(x,y) = u(x, y)v(x,y), for(x,y) e J.

Then C(J,R) is a Banach algebra with above norm and multiplication.
Ifu e C([—w,a] x [-B,b],R"); a,b,a, B > 0 then for any (x, y) € J define
U(x.y) by
Uy (s, 1) =ulx + s,y +1),

for (s,¢) € [—a, 0] x [, 0]. Here u(, (., .) represents the history of the state from
time (x — o, y — ) up to the present time (x, y).

2.2 Properties of Partial Fractional Calculus

In this section, we introduce notations, definitions, and preliminary lemmas con-
cerning partial fractional calculus theory.

Definition 2.1 ([216, 225]). The Riemann-Liouville fractional integral of order
a € (0, 00) of a function & € L'([0,5],R"); b > 0 is defined by

1 t
I¢h(t) = @ /(r —5)* " h(s)ds.
0

Definition 2.2 ([216,225]). The Riemann-Liouville fractional derivative of order
a € (0, 1] of a function & € L'([0, 5], R") is defined by

d —o
DEh(t) = 5101 h(1)

- ﬁdr /(t — ) *h(s)ds; for almostall z € [0, b].

Definition 2.3 ([216,225]). The Caputo fractional derivative of order « € (0, 1] of
a function 1 € L'([0, b],R") is defined by

o d
“DJh(t) Eh(t)

t

1 d

= m /(t — s)_“ah(s)ds; for almost all ¢ € [0, b].
0
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Definition 2.4 ([166, 225]). Let « € (0,00) and u € L'(J,R"). The partial
Riemann-Liouville integral of order o of u(x, y) with respect to x is defined by
the expression

1 X
Iy u(x,y) = m /(x —5)* (s, y)ds; for almost all (x, y) € J.
0

Analogously, we define the integral

Igu(x,y) = /(y —5)% 'u(x, s)ds; for almost all (x, y) € J.

(@)

Definition 2.5 ([166,225]). Let « € (0,1] and u € L'(J,R"). The Riemann—
Liouville fractional derivative of order o of u(x, y) with respect to x is defined by

d
(Dg ) (x,y) = —Il_“u(x, y); foralmostall (x,y) € J.
Analogously, we define the derivative
d
(Dgyu)(x,y) = —I0 “u(x,y); for almost all (x,y) € J.

Definition 2.6 ([166, 225]). Let « € (0,1] and u € L'(J,R"). The Caputo
fractional derivative of order o of u(x,y) with respect to x is defined by the
expression

ad
“Dgu(x,y) = IOV ™ —u(x, y); for almostall (x, y) € J.
Analogously, we define the derivative
ad
“Dg u(x,y) = 10} o —u(x, y); foralmost all (x,y) € J.

Definition 2.7 ([244]). Letr = (r1,72) € (0,00) x (0,00) and u € L'(J,R").
The left-sided mixed Riemann—Liouville integral of order r of u is defined by

Xy
r _ 1 _ ri—1 _ n\n—1
(Lyu)(x,y) = —F(rl)F(rz) //(x )Ty — )" u(s, t)deds.
0 0
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In particular,
x
(Igu)(x,y) =u(x,y), ([Ju)(x,y) = //u(s,t)dtds; for almost all (x, y) € J,
00

where o = (1, 1).
For instance, Iju exists for all ri,r, > 0, when u € LI(J, R"™). Note also that
when u € C(J,R"), then (/Ju) € C(J,R"); moreover,
(Igw)(x,0) = (Igu)(0,y) = 0; x €[0,a], y €[0,b].

Example 2.8. LetA,w € (—1,00) and r = (r1,r2) € (0,00) x (0, 00), then

fixhy = — LUANIA+0) oy,

— ®+2. for almost all (x, y) € J.
FA+A+rI(1+w+r) Y )

By 1 —r we mean (1 —ry, 1 —r2) € [0,1) x [0, 1). Denote by D7, := %, the

mixed second-order partial derivative.

Definition 2.9 ([244]). Let r € (0,1] x (0,1] and u € L'(J,R"). The
Caputo fractional-order derivative of order r of u is defined by the expression
(‘Dgu)(x,y) = (I;7" D u)(x,y) and the mixed fractional Riemann-Liouville
derivative of order r of u is defined by the expression (Dfu)(x, y) = (D7, 1§~ u)
(x. ¥).

The case 0 = (1, 1) is included and we have
“Dgu)(x,y) = (DJu)(x,y) = (D)%yu)(x, y); for almost all (x, y) € J.
Example 2.10. Let A,w € (—1,00) and r = (r1,12) € (0, 1] x (0, 1], then

B I+ 0)ra+ w) Ay
T4+ A—r)IA+w—r)

y“~"2; for almost all (x, y) € J.

Definition 2.11 ([247]). For a functionu : J — R”, we set

q(-xa y) = u(x, y) - M(X,O) - M(Ov y) + M(0,0)

By the mixed regularized derivative of order r = (r;,r2) € (0,1] x (0,1] of a
function u(x, y), we name the function

Dou(x,y) = Djq(x, y).

The function
Dy u(x, ) = Dl [u(x. y) — u(0, y)],
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is called the partial r; —order regularized derivative of the function u(x, y) : J — R”
with respect to the variable x. Analogously, we define the derivative

Dy yu(x.y) = D, [u(x, y) — u(x,0)].

Leta; € [0,a], z¥ = (a1,0) € J, J. = [a1,a] x[0,b]. Forw € L'(J.,R"), the
expression

x Yy
r — ; _ ri—1 _ -1
I0503) = oo [ [ =977 =0 . aras,
ar 0

is called the left-sided mixed Riemann-Liouville integral of order r of w.
The Caputo fractional-order derivative of order r of w is defined by (° D Z’ wi(x,y) =

(Izl+_ 4 Diy w)(x, y) and the mixed fractional Riemann—Liouville derivative of order
r of w is defined by (D7, w)(x, y) = (Diylzljfrw)(x, »).
Let f,g € L'(J,R").

Lemma 2.12 ([5,6]). A functionu € AC(J,R") such that its mixed derivative D)%y
exists and is integrable on J is a solution of problems

(“Dou)(x,y) = f(x,y): (x,y) € J,
u(x,0) = ¢(x); x €[0,al], u(0,y) =¥(y); y €[0,b],
@(0) = ¥(0),

if and only if u(x, y) satisfies
u(x,y) = p(x,y) + (g f)(x, 9); (x,y) € J,

where
pn(x,y) = @(x) + ¥ (y) — ¢0).

Lemma 2.13 ([35]). A function u € AC(J,R") such that the mixed derivative
ny (u — g) exists and is integrable on J is a solution of problems

CD(;[u(xvy) —g(x,y)] = f(xdf); (x,y) S J?
u(x,0) = ¢(x); x €[0,a], u(0,y) =¥ (y); y €[0,b],
®(0) = ¥ (0),

if and only if u(x, y) satisfies

u(x,y) = p(x,y)+g(x, y)—g(x,0)—g(0, y)+g(0,0)+ 15 (f)(x,y); (x,y) € J.
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Let h € C([xk, Xk+1] X [0,b],R"), z% = (xx,0), 0 = xp < X1 < -++ < X <
Xm+1 = a and

wi(x,y) = u(x,0) + u(x,:r,y) —u(x,:L,O); k=0,...,m.

Lemma 2.14 ([7,8]). A function u € AC([xk, xr+1] x [0,b],R"); k = 0,...,m
whose r-derivative exists on [xy, xr+1] X [0,b], k = 0,...,m is a solution of the
differential equation

(DL u)(x.y) = h(x.y): (x.y) € [xx, xp41] x [0. D],

if and only if u(x, y) satisfies

u(x, y) = pr(x, y) + (I h)(x, y); (x,y) € [xk, xk41] x [0, b].
Let Jo = [0, x1]x[0,b], Jx = (xk, Xk+1]%[0,0]; k =1,...,m, [ : R" - R";
k=0,1,...,mand denote u(x, y) := uo(x,y); (x,y) € J.

Lemma 2.15 ([7,8]). Let h : J — R" be continuous. A function u whose
r-derivative exists on Ji; k = 0,...,m is a solution of the fractional integral
equation

Xy

1) + T / /(x — )"y = 10)> " h(s, 1)deds:
0 0

if (x.y) €[0.x,] x [0, ].

k
(X, y) + > (i y) = Ii(u(x;. 0)))
i=1

u(x,y) =

Xi

k y
+_I‘(r_1)11"_(_r2_) Z / / (xi = )" (y = 6)> " (s, 1)deds
i=1 0

Xj—1

Xy
+m//(x — )" Ny — 1) h(s, t)deds;

Xk O

if (x,y) € (g, x1] X [0,0], k=1,...,m,

if and only if u is a solution of the fractional IVP

‘D u(x,y) =h(x,y); (x,y) €k, k=0,....m.
u(l, ) = ur,y) + Le(uxg, ) y € 0.6 k=1,....m.
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Lemma 2.16 ([2]). Leth : J — R" be continuous. A function u whose r-derivative
exists on Ji; k = 0,...,m is a solution of the fractional integral equation

X

y

wx.y) + m//(x—s)"“l(y—t)"z‘lh(s,t)dtds;
0 0

if (x.y) €[0,x1] x [0, 5],

u(x,y) = o(x) + I (u(xgk, v)) — I (u(xg, 0))
x oy
+m / /(x — )" Ny — )2 h(s, t)deds;

Xk O

if (x,y) € (g, x1] X [0,0], k=1,...,m,

if and only if u is a solution of the fractional IVP

“Diu(x,y) =h(x,y); (x,y)€J; k=0,....m,
u(x,j',y) = Iy (u(xg,y)); vy €[0,b], k=1,...,m.

Let f € C(J,R*), g € L'(J,R) and po(x,y) = f(i%) + ;ﬂ((()y;) — f%(%).

Lemma 2.17 ([32]). A function u € AC(J,R) such that the mixed derivative
D)%y (%) exists and is integrable on J is a solution of problems

“Di(6dh) = 8w ) €,
u(x,0) = ¢(x); x € [0,a], u(0,y) =¥ (y); y €[0,b],
9(0) = v(0),

if and only if u(x, y) satisfies

ux,y) = £ (o) + (I79)(x. 1) ): (x.3) € J.

Let f S C([Xk, -xk+l] X [Os b]sR*)s g € Ll([-xkvxk-l—l] X [Os b]sR), Ik = ()Ck,O),
and
u@,0) uly) u(x.0)
f&x0) - ity fE0)

=0,...,m.

Ho,k(xv y) =

Lemma 2.18 ([3]). A functionu € AC([xg, xr+1] X [0,b],R), k =0,...,m such
that the mixed derivative ny (%) exists and is integrable on [xi, x;+1] %[0, b], k =
0,...,m is a solution of the differential equation

u

"Défk(f)(x,y) = g(x,»); (x,¥) € [xx, Xen1] x [0, 5],
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if and only if u(x, y) satisfies

u(r, ) = £0r, ) (Rox (e 9) + (HLg)(x.3)): (x.9) € Dt Xea] X [0,].

Let pL/ = 1o,0-
Lemma 2.19 ([3]). Let f : J — R*, g : J — R be continuous. A function u
such that the mixed derivative Dﬁy(%) exists and is integrableon Ji.; k = 0,...,m

is a solution of the fractional integral equation

x
4 ; _ oY1y, 21 .
Foe, ) (x, ) + T () O/O/(X )T (y — 1) g(s, t)deds);

if (x, ) € [0,x1] x [0, ],
(LG, y) fwufmj

e (., y) + oY) LR

e ' (x,y) Z( o) Fe.0)

i=l1

! : ([ ri—l1 ro—1
+m ; / O/(Xi —) (y—1) g(s,t)drds

u(x,y) =

x y
1 ri—1 _ rn—I1 .
+m/0f(x—s) (y =) g(s, t)deds];

if (x,y) € (X, Xp41] X [0,b], k =1,...,m,

if and only if u is a solution of the fractional IVP

Dy, (7) (r,y) =gl y); () €Jis k=0,....m,
u(xt.y)=u(xg.y) + L (w(xg.y)): yel0.b; k=1,....m.

2.3 Properties of Set-Valued Maps

Let (X, || - ||) be a Banach space. Denote P(X) = {Y € X : Y # 0}, Pu(X) =
{Y € P(X) : Yclosed}, Py(X) = {Y € P(X) : Y bounded}, P.,(X) = {Y €
P(X):Y compact} 1, and Py (X)) = {Y € P(X) : Y compact and convex}.

Definition 2.20. A multivalued map 7 : X — P(X) is convex (closed) valued if
T (x) is convex (closed) for all x € X. T is bounded on bounded sets if 7 (B) =
UrepT'(x) is boundedin X forall B € Pp(X) (i.e. Sup,ep supyery) ¥l <00). T
is called upper semicontinuous (u.s.c.) on X if for each xo € X, the set T'(x¢)
is a nonempty closed subset of X, and if for each open set N of X containing
T (xo), there exists an open neighborhood Ny of x¢ such that T(Ny) € N. T is
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lower semi-continuous (l.s.c.) if the set {x € X : T'(x) N A # @} is open for any
open subset A C X. T is said to be completely continuous if 7'(B) is relatively
compact for every B € P,(X). T has a fixed point if there is x € X such that
x € T(x). The fixed point set of the multivalued operator 7" will be denoted by
FixT. A multivalued map G : X — P, (R") is said to be measurable if for every
v € R, the function x —> d(v, G(x)) = inf{|v — z| : z € G(x)} is measurable.

For more details on multivalued maps see the books of Aubin and Cellina
[56], Aubin and Frankowska [57], Deimling [104], Gorniewicz [135], Hu and
Papageorgiou [153], and Kisielewicz [169].

Lemma 2.21 ([153]). Let G be a completely continuous multivalued map with
nonempty compact values, then G is u.s.c. if and only if G has a closed graph
(i.e, uy —> u, wy, = w, w, € G(u) implyw € G(u)).

Definition 2.22. A multivalued map F : J x R* — P(R") is said to be
Carathéodory if

(i) (x,y) —> F(x,y,u) is measurable for each u € R".
(ii) u —> F(x,y,u) is upper semicontinuous for almost all (x, y) € J.

F is said to be L'-Carathéodory if (i), (ii) and the following condition holds;

(iii) For each ¢ > 0, there exists 0. € L'(J,Ry) such that

sup{[l. /]l - f € F(x,y,u)}

oc(x,y) forall |u| <c and for a.e. (x,y) € J.

IF(x. . w)llp

IA

For each u € C(J,R"), define the set of selections of F by
Sku=1{we L' (J.R") :w(x,y) € F(x,y,u(x,y)) ae. (x,y) € J}.

Definition 2.23. Let A be a subset of J X R". A is £ ® I measurable if A belongs
to the calgebra generated by all sets of the form AY ® D where N is Lebesgue
measurable in J and D is Borel measurable in R". A subset Z of L'(J,R") is
decomposable if forall u,v € Z and N C J measurable, uyz + vy ;—n € Z, where
x s stands for the characteristic function of J.

Definition 2.24. Let F : J x R" — P(R") be a multivalued map with nonempty
compact values. Assign to F the multivalued operator F: C(J,R") — P
(L'(J,R")) by letting F(u) = Sp,. We say F is Ls.c. if F is ls.c. and has
nonempty closed and decomposable values.

The above operator F is called the Niemytzki operator associated to F.

Definition 2.25. Let X be a separable metric space and N : X — P(L'(J,R"))
be a multivalued operator. We say N has property (BC) if
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1. N is lower semicontinuous (L.s.c.)
2. N has nonempty closed and decomposable values

Next we state a selection theorem due to Bressan and Colombo.

Lemma 2.26 (Bressan-Colombo [82]). Let X be a separable metric space and
N : X — P(L'(J,R")) be a multivalued operator which has property (BC). Then
N has a continuous selection, i.e., there exists a continuous function (single-valued)
g: X = L'(J,R") such that g(u) € N(u) for everyu € X.

Let (X, d) be a metric space induced from the normed space (X, || - ||). Consider
H; : P(X)xP(X) — R4 U {oo} given by

H;(A, B) = max {supd(a, B),supd(A,b); ,
a€A beB
where d(A,b) = ingd(a,b), d(a,B) = bin]g d(a,b). Then (Pp(X), Hy) is a
ae €
metric space and (P.; (X)), Hy) is a generalized metric space (see [169]).

Definition 2.27. A multivalued operator N : X — P.;(X) is called
(a) y-Lipschitz if and only if there exists y > 0 such that

H;(N(u), N(v)) < yd(u,v) foreach u, v € X,

(b) A contraction if and only if it is y-Lipschitz with y < 1.

Now, we recall some basic definitions and facts on the theory of Banach algebras.
Let X be a Banach algebra with norm || - ||.

Definition 2.28. An operator T : X — X is called compact if T (X) is a relatively
compact bounded subset of X. Similarly 7 : X — X is called rotally bounded
if 7 maps a bounded subset of X into the relatively compact subset of X. Finally
T : X — X is called completely continuous operator if it is continuous and totally
bounded operator on X.

It is clear that every compact operator is totally bounded, but the converse may
not be true.

Definition 2.29. A function f : J x R — R is called Chandrabhan if

(i) The function (x, y) — f(x,y,z) is measurable for each z € R
(i) The functionz — f(x, y, z) is nondecreasing for almost each (x, y) € J

Definition 2.30. A nonempty closed set K in a Banach algebra X is called a
cone if

i) K+KCcK
(ii)) AK C KforhAeR, A >0
(iii)) {—K} N K = 0, where 0 is the zero element of X
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The cone K is called to be positive if
(iv) K o K C K, where “o” is a multiplication composition in X

We introduce an order relation < in X as follows. Let u,v € X. Thenu < v if
and only if v —u € K. A cone K is said to be normal if the norm || - || is monotone
increasing on K. It is known that if the cone K is normal in X, then every order-
bounded set in X is norm-bounded. For any v,w € X,v < w, the order interval
[v,w] is a setin X given by

wl={ue X :v<u=<sw}.

Lemma 2.31 (Dhage [108]). Let K be a positive cone in a real Banach algebra X
and let uy, ur, vi,vo € K be such that uy < vy and uy < v,. Then ujur < vivs.

2.4 Fixed Point Theorems

By U and 90U we denote the closure of U and the boundary of U respectively. Let us
start by stating a well-known result, the nonlinear alternative.

Theorem 2.32 (Nonlinear alternative of Leray Schauder type [136]). Let X be
a Banach space and C a nonempty convex subset of X. Let U a nonempty open
subset of C with0 € U and T : U — C continuous and compact operator:

Then either

(a) T has fixed points or
(b) There existu € dU and A € (0, 1) with u = AT (u)

The multivalued version of nonlinear alternative:

Lemma 2.33 ([136]). Let X be a Banach space and C a nonempty convex subset
of X. Let U a nonempty open subset of C with0 € U and T : U — P(C) an upper
semicontinuous and compact multivalued operator.

Then either

(a) T has fixed points or
(b) There existu € dU and A € (0, 1) withu € AT (u)

Theorem 2.34 (Schaefer [146]). Let X be a Banach space and N : X — X
completely continuous operator. If the set

E(N)={ue X : u=AN(u) for some A € (0,1)}

is bounded, then N has fixed points.

The nonlinear alternative of Schaefer type recently proved by Dhage [107] is
embodied in the following theorem.
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Theorem 2.35 (Dhage [107]). Let X be a Banach algebra andlet A,B : X — X
be two operators satisfying

(a) A is Lipschitz with a Lipschitz constant o
(b) B is compact and continuous
(¢c) aM < 1, where M = || B(X)|| := sup{||Bz|| : z € X}.

Then either

(i) The equation A[Au Bu] = u has a solution for 0 < A < 1, or
(ii) Theset E ={u e X : A{AuBu] = u, 0 < A < 1} is unbounded.

Other single-valued fixed point theorems:

Theorem 2.36 (Burton-Kirk [84]). Ler X be a Banach space, and A, B : X — X
two operators satisfying:

(i) A is a contraction
(ii) B is completely continuous.

Then either

(a) The operator equation u = A(u) + B(u) has a solution, or

(b) ThesetE ={ue X :u= AA(;) + AB(u)} is unbounded for A € (0, 1)

Theorem 2.37 (Krasnoselskii [44]). Let X be a Banach space, let D be a bounded
closed convex subset of X and let A, B be maps of D into X such that Au+ Bv € D
for every (u,v) € D. If A is a contraction and B is completely continuous, then the
equation

Aw + Bw = w has a solution w on D.

Next we state two multivalued fixed point theorems

Lemma 2.38 (Bohnenblust-Karlin [81]). Let X be a Banach space and K <
Perev(X) and suppose that the operator G : K — Py ,(K) is upper semicon-
tinuous and the set G(K) is relatively compact in X. Then G has a fixed point in K.

Lemma 2.39 (Covitz—Nadler [96]). Ler (X, d) be a complete metric space. If N :
X — P.1(X) is a contraction, then N has fixed points.

We will make use of the following fixed point theorems of Dhage [108] for
proving the existence of extremal solutions for our problems in Sects. 3.5 and 5.4
under certain monotonicity conditions.

Theorem 2.40. Let K be a cone in a Banach algebra X and let v,w € X. Suppose
that A, B : [v,w] — K are two operators such that

(a) A is completely continuous

(b) B is totally bounded

(c) AuiBuy € [v,w] forall ui,u, € [v,w]
(d) A and B are nondecreasing
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Further if the cone K is positive and normal, then the operator equation Au Bu = u
has a least and a greatest positive solution in [v, w].

Theorem 2.41. Let K be a cone in a Banach algebra X and let v,w € X. Suppose
that A, B : [v,w] — K are two operators such that

(a) A is Lipschitz with a Lipschitz constant o
(b) B is totally bounded

(c) Auy Buy € [v,w] for all uy,u; € [v, w]
(d) A and B are nondecreasing

Further if the cone K is positive and normal, then the operator equation Au Bu = u
has a least and a greatest positive solution in [v,w], whenever aM < 1, where
M = |[B([v.wD| := sup{||Bul : u € [v, w]}.

Remark 2.42. Note that hypothesis (c¢) of Theorems 2.40 and 2.41 holds if the
operators A and B are positive monotone increasing and there exist elements v and
win X such thatv < Av Bvand Aw Bw < w.

2.5 Gronwall Lemmas

In the sequel we will make use of the following generalizations of Gronwall’s
lemmas for two independent variables and singular kernel.

Lemma 2.43 ([142]). Let v : J — [0,00) be a real function and w(.,.) be a
nonnegative, locally integrable function on J. If there are constants ¢ > 0 and
0 < ry,ry < 1 such that

v(s,t)

x Yy
v(x,y) <olx,y)+c —————duds,
O/O/(X—S) (y—1)

then there exists a constant § = §(ry, rp) such that

Xy
v(x,y) <w(x,y) + 8¢ // G S‘;EIS(;)_ ¥ dtds,
0 0

forevery (x,y) € J.

Lemma 2.44 ([142]). Let v,w : J — [0, 00) be nonnegative, locally integrable
functions on J. If there are constants ¢ > 0 and 0 < ry,r, < 1 such that

x
v(x,y) <ow(x,y)+c // (x — S)i;(qsé;)_ )= deds,
0 0
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then, for every (x,y) € J,

X

7 oo c]"(rl)['(rz)) w(s, t)dtds
vix.y) 5“’(’“”*//2 TG Gra)(x — )=y — 0=
0 0

Jj=1

If w(x,y) = w constant on J, then the inequality (3.8) is reduced to

v(x,y) S wE4 ) (cF(rl)F(rz)x”y’z),

where E(;, ., is the Mittag-Leffler function [166], defined by

0 k

Z
Er r = ) i (C, N i 0; | = 1,2
(r1.r2)(2) ;F(krl—i—l)]"(krz—i—l) rj,z € e(rj)>0; j




Chapter 3
Partial Hyperbolic Functional Differential
Equations

3.1 Introduction

In this chapter, we shall present existence results for some classes of IVP for partial
hyperbolic differential equations with fractional order.

3.2 Partial Hyperbolic Differential Equations

3.2.1 Introduction

This section is concerned with the existence and uniqueness of solutions to
fractional order IVP, for the system

(‘Dou)(x,y) = f(x,y,uey). if (x,y) € J:=[0,a] x[0,0], (3.1
u(x, y) = ¢(xv y)s if (X, y) € j = [—a,a] X [_:Bsb]\(ova] S (O, b], (32)
u(x,0) = ¢(x), x €[0,a], u(0,y) = ¥(y), y €[0,0], (3.3)

where o, B,a,b > 0, “Dj is the standard Caputo’s fractional derivative of order
r = (ri,r) € (0,1 x (0,1], f : J x C — R" is a given function, ¢ : J —
R”" is a given continuous function, ¢ : [0,a] — R", ¢ : [0,b] — R”" are given
absolutely continuous functions with ¢(x) = ¢(x,0), ¥(y) = ¢(0, y) for each
x €[0,a], y € [0,b] and C := C([—«, 0] x [-8, 0], R") is the space of continuous
functions on [—«, 0] x [—f, 0].

Next we consider the following nonlocal initial value problem

(Dou)(x, y) = f(x,y, u@p), if (x,y) € J, (3.4)

S. Abbas et al., Topics in Fractional Differential Equations, Developments 25
in Mathematics 27, DOI 10.1007/978-1-4614-4036-9_3,
© Springer Science+Business Media New York 2012
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u(x,y) = ¢(x,y). if (x,y) € J, (3.5)
u(x,0) + Q) = ¢(x), x € [0,a], u(0,y) + K@) = y(y), y € [0,b], (3.6)

where f, ¢, @,V are as in problem (3.1)-(3.3) and Q,K : C(J,R") — R”" are
continuous functions.

3.2.2 Existence of Solutions

Let us start by defining what we mean by a solution of the problem (3.1)—(3.3).

Definition 3.1. A function u € C(p) := C([—a,a] x [-B,b],R") whose mixed
derivative ny exists and is integrable is said to be a solution of (3.1)—(3.3) if u

satisfies (3.1) and (3.3) on J and the condition (3.2) on J.

Further, we present conditions for the existence and uniqueness of a solution of
problem (3.1)—(3.3).

Theorem 3.2. Assume that the following hypotheses hold:

(3.2.1) f :J xC — R" is a continuous function.

(3.2.2) Foranyu, v € C and (x,y) € J, there exists k > 0 such that
If e yw) = fx, y )l < kllu—vlc.

If
ka" b -
F(ri+ DI (rp+1)

1, (3.7)

then there exists a unique solution for IVP (3.1)—(3.3) on [—«, a] x [—8, b].

Proof. Transform the problem (3.1)—(3.3) into a fixed-point problem. Consider the
operator N : C, ) = C(p) defined by,

P (x.y). (x.y)eJ,
x y
V@) = 1809 + e [ =97 — o
0 0
x f(s,t, u,)deds, (x,y) e J.

(3.8)
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Letv,w € C(yp)- Then, for (x, y) € [-o,a] x [-8, b],

INO)Cx, y) = Nw)(x, y)

x )
1
< oD O/ 0/ LG5t vs) = G5t w) |

|0 = )" Iy = )* 7 |deds

x )y
k
= FeSTOD — )"y =) My — Wi lleded
T I'(r)l () //(x 2 & ) ”v("t) W("t)”C s
00
x )y
< vl [ [ - tas
T Ir'(r)I(r)
00
< kx 1y’
rri+DC(rm+1)

v —wlls.

Consequently,

karlbrz
INO =N = e rem + 1

v =wl.

By (3.7), N is a contraction, and hence N has a unique fixed point by Banach’s
contraction principle. O

Theorem 3.3. Assume that (3.2.1) and the following hypothesis hold:
(3.3.1) There exist p,q € C(J,Ry) such that

/Gy, wl < p(x,y) +q(x,y)lullc,

for (x,y) € J and eachu € C. Then the IVP (3.1)—(3.3) have at least one solution
on [—a,a] x [-B,b].

Proof. Transform the problem (3.1)—(3.3) into a fixed point problem. Consider the
operator N defined in (3.8). We shall show that the operator N is continuous and
completely continuous.

Step 1: N is continuous. Let {u,} be a sequence such that u, — u in C, ). Let
n > 0 be such that |ju,| < 1. Then
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[N (un)(x, y) = NQ@)(x, y) ||

x Yy
1
P o1 —t r—1 .t B 1, drd
—zwnﬂww>!!wx sy =P S ttnisy) = (5.8 ) | drds

a b

oy ] [

< - lx — sy — 1]
F(rl)F(rz)OO

x sup || f(s,t, unisn) — f(5,t, ue,)deds
(s,0)ed

atb | f o ttngy) = St oo
- rir I (r) I (rp)
Since f is a continuous function, we have
a" b f (. uny) = i) lloo
r'ri+0)Ir(r+1)
Step 2: N maps bounded sets into bounded sets in C, ). Indeed, it is enough to

— 0asn — oo.

IN @) = NW)lloo =

show that, for any n* > 0, there exists a positive constant £ such that, for each

ue By ={ueCup:|luloo < n*}, wehave |N(u)|loo < €. By (H3) we have
for each (x, y) € J,

I[N @) (e, y)

Xy
1 oy
< I + i | [ 6= 0 =0 lards
0 0

Xy
1 ri—1 _ n\n—1
§||ﬂ(x’J’)||+m //(X—S) (y =)™ p(s,t)deds
00

x )y
1 _ o
troarog | =0T =0 g D s
0 0

) 1Pllos e
_wuyw+F(ﬂTﬁ//u 9711y — 1ydrds

oo RO
FMﬂvg//“ ST =T drds.

Thus

2o + g llcon™

npn = .
T(n+ O+ D)

INWloo = 1lloo +
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Step 3: N maps bounded sets into equicontinuous sets in Cyp). Let (x1,y1),
(x2,¥2) € (0,a] x (0,b], x1 < X2, y1 < y2, By+ be a bounded set of C,p) as
in Step 2, and let u € By«. Then

[N (@) (x2, y2) — N(@)(x1, yO || = [l(x1, y1) — plx2, y2) |l

X1 )
ri—1 rn—1 ri—1 r—1
m //[(xz—s) =" =1 =) -]

X2 )2

1 ri—1 _ ry—1
T () (x2=8)"" (r2=1)">" f (s, 1, ugsp))deds

XV

X f(S, t, u(s,,))dtds—i-

Xy )2

1 .
(2 —5)"1 1y, — t)’z_lf(s, 1, U, )deds

R
0 yi

X2 V1
(x2 =) Yy — )27 (s, 2, U,y )deds
1 0

1
+rmﬂwax

2o + g lloon™

= (i y1) = plx2, y2)Il + r(rol (r2)

X1 )1

[Cer =) =027 = (e = 5)" 7 (y2 — 1) drds
0 0

X2 )2
+ * _ —
+||p9_'02r )1|_|"i’|‘|o)o77 //(xz_s)rl l(yz_t)rz ldtds
1 2

X1 )1

X1 )2
bl ™ f s, oo
— — — )2 ded
T reorey [T e
J1

X2 V1

bl il f i oy, e

— — — )2 ded

T reorey [ e e
X1

= leCrers yn) — pxa, y2)|l

2o + llglloon®
F(l‘l + 1)1_'(7'24- 1)

+x' Y =Xy =200 —x) " (y2 — y1)"

2957 (x2 = x1)™ + 253" (y2 — y1)”
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As x; — X2, y1 — ) the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases x; < x, < 0, y; < y» < 0and x; < 0 < xp,
y1 < 0 < y, is obvious. As a consequence of Steps 1-3, together with the Arzela—
Ascoli theorem, we can conclude that N is continuous and completely continuous.

Step 4: A priori bounds. We now show there exists an open set U C C, ;) with
u # AN(u), for A € (0,1) and u € 9U. Let u € C, ) and u = AN (u) for some
0 < A < 1. Thus for each (x, y) € J,

x )
A
e, ) = () + s [ [T =0 s,
0 0
This implies by (3.3.1) that, for each (x, y) € J, we have
L
u(x, = X, + = x =)y -0t
. )l < . ) ”’1)”’2)0/0/( -0

x[p(s,t) + q(s,t)|ugllcldeds

||p||00 arlbrz

< e, I+ NCESYRCE

x Y
1
S — _ qyn—l —t ra—1 t ] dtds.

We consider the function t defined by
7(x,y) = sup{flu(s, )] : —« <s <x, <t <y, 0<x<a, 0<y<bh}

Let (x*, y*) € [-a, x] x [, y] be such that (x, y) = [lu(x™, y*)|. If (x*, y*) €
J, then by the previous inequality, we have for (x, y) € J,

||17||0o arlbrz

R R e oy by oy

x )y
; _ ri—1 _ ry—1
+F(r1)F(r2) O/O/(X T =07 qls (s 1)deds

I 1loo .
< X, + a'b”
< lnC, M CESACE)
91|00

x
_nrnr _ -l _ -1
I(r)I(r2) ) O/(X 0 =07 e (s 1)deds.

If (x*, y*) € J, then 7(x, y) = ||¢||c and the previous inequality holds.
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By Lemma 2.43, there exists a constant § = §(ry, r;) such that

a"b"| pllo :|
rri+DC(m+1)

811110 RO
F(rl)F(rz)/ / (=) =0 drds

a"b"| pllo
< | lulloo +
'ri+ DL +1)

80" b |q oo }
1+ =M
) [ T+ DI (ry + 1)

T(r.y) < [nunm +

Since for every (x,y) € J, |luw,y)llc < t(x,y), we have

[ulloo = max(ligpllc. M) := R.

Set
U={uce C(a,b) ulloo < R+ 13

31

By our choice of U, there is no u € dU such that u = AN (u), for A € (0,1). As a
consequence of the nonlinear alternative of Leray—Schauder type [136], we deduce

that N has a fixed point « in U which is a solution to problem (3.1)—(3.3).

|

Now we present two similar existence results for the nonlocal problem (3.4)-

(3.6).

Definition 3.4. A function u € C(, ) is said to be a solution of (3.4)—(3.6) if u

satisfies (3.4) and (3.6) on J and the condition (3.5) on J.
Theorem 3.5. Assume that (3.2.1), (3.2.2), and the following conditions,
(3.5.1) There exists k > 0 such that

10w = QW) < kllu—Vlloo. for anyu.v € C(J.R"),
(3.5.2) There exists k* > 0 such that

K@) — KOW)| < k*||lu—v|loo, for any u,v € C(J,R")
hold. If

ka" b"

k+k*+ <1,
Fri+DICr+1)

then there exists a unique solution for IVP (3.4)—(3.6) on [—«, a] x [P, b].

Theorem 3.6. Assume that (3.2.1), (3.3.1), and the following conditions

(3.9)
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(3.6.1) There exists d > 0 such that

Q@) = d(1 + |lulloo). for anyu & C(J.R"),
(3.6.2) There exists d* > 0 such that

K@ = d*(1+ llullo), for anyu € C(J,R")

hold, then there exists at least one solution for IVP (3.4)—(3.6) on [—«, a] x [, b].

3.2.3 An Example

As an application of our results we consider the following partial hyperbolic
functional differential equations of the form:

1

Ger )1+ lu(x — 1,y —2)|) if (x, y) €[0,1] x [0, 1],

(Do) (x. y) =

(3.10)
u(x,0) = x, u(0,y) = y% x,y €[0,1], (3.11)
u(x,y) = x4+ y% (x.y) € [-1, 1] x [<2, 1]\(0, 1] x (0, 1]. (3.12)

Set

1

(3ex+y+2)(1 + |u(x _ 1,y _ 2)|)7 (X, y) € [O, 1] X [07 1]

f(xv Y, ”(x,y)) =
For each u, u € R and (x, y) € [0, 1] x [0, 1] we have

LfCeyouiey) = fp taep)| = 5 llu—Tdlle.

3e?

Hence condition (3.2.2) is satisfied with k = ﬁ We shall show that condition (3.7)
holds with a = b = 1. Indeed

ka" b" B 1 -
F'(ri+ D)y +1) 3200 4+ DI+ 1)

’

which is satisfied for each (r1,r;) € (0,1] x (0, 1]. Consequently, Theorem 3.2
implies that problem (3.10)—(3.12) has a unique solution defined on [—1, 1]x[—2, 1].
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3.3 Perturbed Partial Differential Equations
3.3.1 Introduction

In this section we discuss the existence of solutions to the Darboux problem for the
fractional order IVP, for the system

“Dyu)(x,y) = f(x,y. uy) + g(x, y,uey). if (x,y) € J, (3.13)
u(x,y) = ¢(x,y), if (x,y) € J := [—-a,a] x [-B,b]\(0.a] x (0,b], (3.14)
u(x,0) = ¢(x), x €[0,a], u(0,y) =¥ (), y €[0,b], (3.15)

where J = [0,a] x [0,b], a,b,a, >0, f,g :J x C — R are given functions,
¢ : J — R is a given continuous function, ¢ : [0,a] — R, ¥ : [0,b] — R are
given absolutely continuous functions with p(x) = ¢(x,0), ¥(y) = ¢(0, y) for
eachx € [0,a], y € [0,b] and C := C([—«, 0] x [-B, 0], R). Next we consider the
following nonlocal initial value problem:

(“Dou)(x,y) = f(x,y,u@xy) + &X, ¥y, uxy), if (x,y) € J, (3.16)
u(x,y) = ¢(x,y). if (x,y) € J, 3.17)
u(x,0) + Qu) = ¢(x), x €[0,a], u(0,y) + K(u) = ¢(y), y €[0,b], (3.18)

where f, g, ¢, ¢, ¥ are as in problem (3.13)-(3.15)and O, K : C(J,R) — R are
continuous functions.

3.3.2 Existence of Solutions

Let us start by defining what we mean by a solution of the problem (3.13)—(3.15).

Definition 3.7. A function u € Cyp) := C([—a.a] x [, b],R) whose mixed
derivative ny exists and integrable is said to be a solution of (3.13)—(3.15) if u

satisfies (3.13) and (3.15) on J and the condition (3.14) on J.
Theorem 3.8. Assume that the following hypotheses

(3.8.1) The functions f, g : J x C — R are continuous,
(3.8.2) There exists k > 0 such that for (x,y) € J

||g(x,y,u) —g(x,y,v)|| Ek”M—V”C, foranyu, Ve Cv

(3.8.3) There exist p,q € C(J,Ry) such that
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|f ey )] = plx.y) +q(x. p)llullc. for (x.y) € J andu € C,
hold. If
ka"b" -
rri+DIC(m+1)
then the IVP (3.13)—(3.15) have at least one solution on [—a, a] x [—f, b].

1, (3.19)

Proof. Consider the operators F, G : C, ) — C(4 ) defined by

b (x,y), (x.y) e J.
x
F(M)(X,y): M(X,y)—i—m/ (X—S)rl—l(y—t)rz—l
0 0
x f(s,t, ug,)deds, (x,y)e J,
and
Oa (‘x’ y) € j’
x
6. = { ey [ [ =9 -0
0 0
xg(8, 1, u,y)deds, (x,y) e J.

Then the problem of finding the solutions of the IVP (3.13)—(3.15) is reduced to
finding the solutions of the operator equation F(u)(s,t) + G(u)(s,t) = u(s,1),
(s,t) € J. We shall show that the operators F' and G satisfy all the conditions of
Theorem 2.36 The proof will be given in several steps.

Step 1: F is continuous. Let {u,} be a sequence such that u, — u in C(, ). Let
n > 0 such that ||u, ||co < 1 and ||u|jec < 1. Then

|F(un)(x,y) — F(u)(x, )|

Xy
1
< —s|" My =17 f (st — f(s.1, drd
—nmnm!!” SOy = Gttt ) = (5,1l

IA

a b
”f(""“”("'))_f(""”('*'))”“’//|x—s|’1‘1|y—t|’2‘1dtds.
I(ri)I(r2) s g

Since f is a continuous function, we have

a' b f (e tngn) = FCue ) loo
rm+0)rm+1)

[IN @) = N@W)]loo =

— Qasn — oo.
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Step 2: F maps bounded sets into bounded sets in C, ). Indeed, it is enough
show that, for any n* > 0, there exists a positive constant £ such that, for each

ue By ={uecCaup : llullooc <n*}, wehave || N(u)|oo < £. By (3.8.3) we have

for each (x, y) € J,

Xy
F )] = )+ s [ [e=sr o=
0 0

Thus

Step 3: F maps bounded sets into equicontinuous sets in Cyp)y. Let (x1, y1),
(x2,)2) € (0,a] x (0,b], x; < x2,y1 < y2, By be a bounded set of Cy, ) as

x| f(s.t, ue,y)|dtds

< |M(x’y)| 4 1700 T Moo ”p”OO + ||CI||oo77 //(x S)rl l(y t)rz ldldS

L (r)I(r2)

2o + g lloon™

npn =g,
rrn+ O+ 1)

IF)lloo < lltlloo +

in Step 2, and let u € By«. Then

|F () (x2, y2) = F () (x1. y1)]

Xp )1

< e y2) = e )|+ / / [ — )™ (s — )2

I(r)l(r2) )

— (=) =07 (st s )deds |

X2 V2
1 - —
i ] [0 o0 e pparas
X1 )1
1 X 2
i ] [0 o0 et paras
0 »
1 X2 V1
i ] [ o 0n T et paras
X1 0

< |plx2, y2) — plxr, y1)|

2o + g lloon™
F(l‘l + 1)F(l‘2+ 1)

X1y = x5y = 200 — x) (2 — y1)"?].

[2952(x2 — x1)"" +2x5' (y2 — y1)"”
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As x| = X3, y; — y; the right-hand side of the above inequality tends to zero. The
equicontinuity for the cases x; < x, < 0, y; < y» <O0andx; <0 < xp, y; <
0 < y, is obvious. As a consequence of Steps 1-3, together with the Arzela—Ascoli
theorem, we can conclude that I : C(,5) — C ) is continuous and completely

continuous.

Step 4: G is a contraction. Let u,v € C,p. Then, for each (x,y) € J we, have

x )y
1 . .
IG5 = G0N = oy [ [ =9 =
0 0

x|g(s,t, ) — g(s,t, v ,)|deds

k”"‘ V]oo //(x 5)1- l(y 1~ Ldzds.

= nnl(r)(r)

Thus,

ka™ b
GOlleo = T(n+ )l +1)

G () —

[l = vlleo.

Since by (3.19), G is a contraction.

Step 5: A priori bounds. Now it remains to show that the set

£ = {ueC(J,R):u:)LF(u)—f—)LG (%) for some 0 < A < 1}

is bounded. Let u € &, then u = AF(u) + AG(3) for some 0 < A < 1. Thus, for

each (x,y) € J we have

x )y
A
x,) = A 3) + T / / (r =) 0 — )2 (s 1, ugey)deds
0 0

x Yy
s | [T e (s 1 as
0 0

This implies by (3.8.2) and (3.8.3) that, for each (x, y) € J, we have
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u - I 7lloo -1 rpm1
I(x,y)l_lu(x,y)l+r(r e 2)//(x )Ny — )27 deds

x Y
I19lo0 / - .

T (r)C(r) - —1)"7 . llcded
rmrey ) J (= )" 7'y = 1) e | cdeds

Xy
; _ oyl _ -1
+F(r1)F(r2) 0/0/(x =0

X ‘g (s,t, M(;t)) —g(s, t,O)‘ drds

Xy
; _ -1 _ n\n2—1
+F(rl)r(r2) O/O/(X S) (y t) |g(s,t,0)|dtds

lllloo

< ri—1 ro—1
_|M(va’)|+F(r Y (r 2)//()6 TNy — 1) deds

x
I¢1loo / - .

() (r) - —n" drd
I (r)I(r2) 0 b (=) =07 upllcdrds

R
k ) .
+m//(x — )"y =) MNusllcdeds

rlb’Zg
F(r1 + DI (ry+ 1)

where g* = sup ||g(s,,0)||. We consider the function t defined by
(s.0)e]

T(x,y) =supf{ju(s,t)]:0<s<x,0<t<y,0<x<a, 0<y<bh}

37

Let (x*, y*) € [—a, x] X [, y] be such that T(x, y) = |u(x™*, y*)|. If (x*, y*) €

J, then by the previous inequality, we have for (x, y) € J

a"b"(||pllec + &%)
F(r1 + 1)1"(r2+ 1)

T(x,y) < |pu(x, )| +

x
1lgllee + & A
I'(ri)I(rp) O/O/(X )Ty =07 (s, 1)deds.
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If (x*, y*) € J, then 7(x, y) = ||¢||c and the previous inequality holds. If (x, y) €
J, Lemma?2.43 implies that there exists k = k(ry, r2) such that

a”b” (|| plloo +g*))

o) = (Ineel + o e D

y 1+;Ilqlloﬁk
I (ri)I(r2) /

a’lb"2(||p||oo+g*)) (1+; (lIglloct+k)a" b ) )
C(ri+1)(rp+1) F(ri+1)I(rp+1) ’

y
/(x — )"y — )2 deds
0

< (|u<x,y)|+ -k

Since for every (x,y) € J, |luw,y)llc < t(x,y), we have

[ulloo < max([[¢]lc. R) := A.
This shows that the set £ is bounded. As a consequence of Theorem 2.36, we deduce
that F 4 G has a fixed point u which is a solution to problem (3.13)—(3.15). O

Now we present (without proof) two existence results for the nonlocal problem
(3.16)—(3.18).

Definition 3.9. A function u € C,y) is said to be a solution of (3.16)—(3.18) if u
satisfies equations (3.16) and (3.18) on J and the condition (3.17) on J.

Theorem 3.10. Assume (3.8.1)—(3.8.3) and the following conditions
(3.10.1) There exists k > 0 such that

10@w) = Q)| < kllu=Vloo. for anyu,v € C(J.R),
(3.10.2) There exists k* > 0 such that
|[K(u) — KOv)| < k*|lu —v||oo, for any u,v € C(J,R)

hold. If
ka"th"
<
Fri+DI'(r+1)
then there exists at least one solution for IVP (3.16)—(3.18) on [—«, a] x [—8, b].

k+k*+

’

Theorem 3.11. Assume (3.8.1)—(3.8.3) and the following conditions
(3.11.1) There exists d > 0 such that

|Q )] < d(1 + ||lullo), for anyu € C(J,R),
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(3.11.2) There exists d* > 0 such that
|[K(u)| < d*(1 + ||ul|loo), for anyu € C(J,R)

hold. If (3.19) is satisfied, then there exists at least one solution for IVP
(3.16)—(3.18) on [—a, a] x [—B, b].

3.3.3 An Example

As an application of our results we consider the following partial perturbed
functional differential equations of the form

1+ 3" 2(Ju(x — 1,y —2)| +2)
321 + lu(x — 1,y —2)|)

(“Dou)(x,y) = . if (x, y) € [0, 1] x [0, 1],
(3.20)
u(x,0) = x, u(0,y) = y* x,y €[0,1], (3.21)
u(x,y) =x+y% (x,y) € [-1,1] x [=2,1]\(0, 1] x (0,1].  (3.22)

Set
lu(x —1,y —=2)| + 2
1+ Ju(x—1,y =2)|

FOey uey) = (x,y) €[0,1] x [0, 1],

and

1
3exty2(1 4+ Ju(x — 1,y = 2)|)’

glx, y,uy) = (x,y) €[0,1] x [0,1].

For each u, u € R and (x, y) € [0, 1] x [0, 1] we have

|g(xsysu(X,y))_g(xvyvﬁ()f,y))l = ”M_EHC

3e?
1

Hence condition (3.8.2) is satisfied with k = 32 We shall show that condition
e

(3.19) holds with @ = b = 1. Indeed

ka" b" B 1 -
F'(ri+ D)y +1) 3200 4+ DI+ 1)

17

which is satisfied for each (r1, 1) € (0, 1]x(0, 1]. Also, the function f is continuous
on [0, 1] x [0, 1] x [0, c0) and

| f(x,y,w)| < |w|+ 2, foreach (x, y,w) € [0,1] x [0, 1] x [0, c0).
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Thus conditions (3.8.1) and (3.8.3) hold. Consequently, Theorem 3.8 implies that
problems (3.20)—(3.22) have at least one solution defined on [—1, 1] x [-2, 1].

3.4 Neutral Partial Differential Equations

3.4.1 Introduction

This section is concerned with the existence of solutions of fractional order IVP for
the system

Dy [u(x,y) - g(x,y,u<x,y))] = f(x,y,uqxy); if (x,y) € J :=[0,a] x [0,5],

(3.23)
M()C, y) = ¢(-xs y)v if(-xs y) € j = [—Ol,(l] X [—,B,b]\(O,a] X (Ovb]v (324)
u(x,0) = ¢(x), x €[0,a], u(0,y) = ¥(y), y €[0,0], (3.25)

where a,b,a,f > 0, f,g : J x C — R”" are given functions, ¢, ¢, ¥ are as in
problem (3.1)—(3.3) and C := C([—«, 0] x [, 0], R"). We present some existing
results for the problem (3.23)—(3.25) using Krasnoselskii’s fixed point theorem.

3.4.2 Existence of Solutions

Let us start by defining what we mean by a solution of the problem (3.23)—(3.25).

Definition 3.12. A function u € Cy ) = C([—a,a] x [-B,b],R") is said to be
a solution of (3.1)—(3.3) if u satisfies equations (3.23) and (3.25) on J and the
condition (3.24) on J .

For each § > 0 we consider the following set,

As = Ju € Cup):ulj =¢ and sup [u(x,y) —pu(x. y)|| <8¢ .
(x.y)eJ

Theorem 3.13. Assume that the following hypotheses

(3.13.1) The function (x,y) — f(x,y,u) is measurable on J for eachu € C,
(3.13.2) The functionu — f(x, y,u) is continuous on C for a.e. (x,y) € J,
(3.13.3) There exist 0 < r3 < min{ry,r,} and a real-valued function m(x, y) €

L s (J) such that

1 G,y uiepll < m(x, y). for anyu € As and for (x, y) € J,
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(3.13.4) Foranyu € As; g(x,y,uxy) = 81(X, Y, u(x,y)) + 820X, ¥, tx ).
(3.13.5) g1 is continuous and for any u,v € As and (x,y) € J, we have

1
lg1(x, y,u) — gi(x, y, V| < llu = V|0, where0 <1 < T

(3.13.6) g2 is completely continuous and for any bounded set A € As, the set
{(x,y) = g2(x, ¥, ucxy)), u € A} is equicontinuous in C(J,R")

are satisfied. Then the IVP (3.23)—(3.25) have at least one solution on [—«, a] X
[-B.b].

Proof. First, it is easy to obtain that f is Lebesgue measurable on J according to
conditions (3.13.1) and (3.13.2). A direct calculation gives that (x — s)"""!(y —
H el BE ([0, x] x [0, ¥]), for (x, y) € J. In the light of the Holder inequality

and (3.13.3), we obtain that (x—s)" ! (y—1)">"" f(s,, us.)) is Lebesgue integrable
with respect to (s,7) € [0, x] x [0, y] forall (x,y) € J and u € As, and

X

y
/ / (=) (y = 1YV f(s. 12 s ) s
0 0
< |(x —s)" Ny —)*! m .
ey et el IR T B

Leta € As be defined as $|J~ = ¢, Fq;(x,y) = p(x,y) forall (x,y) € J. Ifu
is a solution of the IVP (3.23)-(3.25), let u(x, y) = ¢(x,y) + v(x,y), (x,y) €
[—a, a] x [-B.b], then we have u(y y) = P(x,y) + V(xy), (x,¥) € [—a,a] x [, b].
Thus according to (3.13.4), the function v satisfies the equation

x Yy
_ 1 _ 1 _ -1
¥E9) = o 0/ 0/ (=57 —1)

X f(s, t,%,n + V(s.n)dids

+21 (5 Y. By + Vi) + L2050 Y. By + Vi)

—g1(x.0.$(x0) + v(r0) — 82(x.0, $x0) + v(x0)

~£1(0.7. 90,5 +v0.) — 820, ¥, $0) + Vo)

+£1(0,0,¢(0,0) + v.0)) + £2(0,0,$(0,0) + v0): (x,y) € J.
(3.26)

Since g1, g are continuous and u is continuous in (x, y) there exists a’,b’ > 0,
when (x, y) € [0,a’) x [0,b),

—_ 1)
g1(x, ¥, Pxy) + Vixy) — £1(0,0,8(0,0) + v | < =7 (3.27)
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and
— 1)
llg2(x, ¥, dx.y) + Vixy)) — £2(0,0,0(0,0) + v < 7- (3.28)
Choose
(1.0 = {(@.b).@.b). @".")}.
where
@b = ST (r) T (r2) (1 + py)'= ) TF0=
T ™ '
1
S (r) I (r2)(1 4 pp)' =73\ TFT=7)
™ ’
and
ry — 1 Iy — 1
= B = d M = 1 .
N T bl )

Define Ej as follows:

Es = {v e C([—a, n]x[—B,].R") : v(x, y) = 0, for (x,y) € J and |v|| < §}.

Then Ej5 is a closed bounded and convex subset of C([—«, n] x [—f, (], R"). On Ej
we define the operators U and V' as follows:

0, (x.y) el
UW(x,y) =\ 81(x.y.bx.y) + Vixy) — 81X, 0.9 (x.0) + V(x.0)
—£1(0,¥,9(0,y) +V(0,y)) +£1(0,0,9(0,0)+v0,0)) (x,¥) €[0,7] x[0,4],

0, (x,y)ef,

X

)
1 . -
TGO (r2) //(x —s)" Ny =)
00

Xf(S, l,zw) + V(L,))d[dS .
+82(%, Y, $ey) T V) — 8205, 0,9c0) + Vi 0)
—2(0.y,$0.y) + vo.y) + 82(0,0,9(0,0) + vo0) (x,») €[0,7] X [0,].

Vi (x.y) =

It is easy to see that if the operator equation
v=Uv+ Vy, (3.29)

has a solution v € Ej if and only if v is a solution of (3.26). Thus u(x,y) =
a(x, y) + v(x,y) is a solution of (3.23)—(3.25) on [0, ] x [0, ¢]. Therefore, the
existence of a solution of the IVP (3.23)—(3.25) is equivalent to (3.29) having a
fixed point in E5. Now we show that U + V has a fixed point in Es. The proof is
divided into three steps.
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Step1: Uu+ Vv e Es forevery u,v € Es. In fact, foreveryu,v € Es, Uu+Vv €
C([—a,n] x [-B,t],R"). Also, it is obvious that (Uu + Vv)(x,y) = 0, (x,y) €
[—a, n] x [—B,t]. Moreover, for (x,y) € [0,n] x [0,¢] by (3.26)—(3.28) and the
condition (3.13.3) we have

1Uu(x, y) + Vvix, y)|

< lg1(x. ¥, By + tgey) — 81(0.0.6 + u)|
+ = g1(x.0.$(0) + tr0) + g1(0.0,6(0,0) + 1)
+ 11 = 2100, 5, $0.y) + 0.) + &10,0,$(0,0) + u@o)|
+ (182X, ¥ By + Vi) — 82(0.0.6(0.0) + vioo))ll
+ 1| = g2(x. 0. B0y + vir0) + £2(0.0.6(0.0) + vo0) |
+ 1= 2200, 7. 60, + Vo) + £(0,0,¢(0,0) + v

x Yy
1 _ r1—l _ rz—l
+rmﬂvg!!“ =0

X || (5.2, Psy + vis.y) | deds

Hmnm //@_W”U—W?m@

3

x )y
N 68
//(m(s,z))r‘sdzds + =
0 0

1 jj( i (- )P asar
< x—s)3(y —1)T=n3ds
reore) \J J g

3

a b
//(m(s,t))%dtds +6—78
0 0

68 Mn(1+01)(1—r3)L(1+p2)(1_r3)
<=+
-7 I'(r) ()1 + pl)(l—rs)(] + ,02)(1_’3)
<3.

l—r3

Therefore,

Uu+ Vy| = sup Uu(x,y) + Vv(x, y)| <6,
(x.y)€[0.7]x[0.4]

which means that Uu + Vv € Es for every u,v € Ej.
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Step 2: U is a contraction on Es. Forany u,u € Es, u(y y) —i—g(x,y),ﬁ(qu) +?¢7(x,y) €
As. So by (3.13.5), we get that

|Uu— U = g1(x. 3. By + thie) — 8105 Y. Peyy + Tige)
+ 81(x,0.P(0) + tx0) — g1(x. 0, B0y + Tix.0)
+£100.y. $0y) + u.y) — &1(0, ¥. P + Fo.y)
+ £1(0,0,¢(0,0) + u©,0) — £1(0,0,¢(0,0) + u0)
< 4l|lu—uljoo.

which implies that
[Uu—Uul < 4l ju— | -

Inview of 0 < 4/ < 1, U is a contraction on Ej.
Step 3: V is a completely continuous operator. Let

0, (x,y) € J,
) (x,y) =\ g2(x.y, Py T V) = 82(0,0,dw0) + Vo)
—2200,y, 90,5 + vo.y) T £2(0,0,$(0,0) + v0), (x,y) €[0,n] X [0,,

0, (x.y) e J.
x )y
V0n) = 4 e [ [T — o
0 0
Xf($,t, P50 + Visry)deds, (x,y) €[0,n] x[0,].

Clearly, V' = V| + V5. Since g, is completely continuous, V; is continuous and
{Viv : v € Es} is uniformly bounded. From the condition that the set {(x,y) —
g2(x,y,u(x,y) : u € A} be equicontinuous for any bounded set A in Az, we can
conclude that V] is a completely continuous operator. On the other hand, for any
(x,y) €10,n] x [0, (], we have

[Vav(x, y)

x y
1 _ r1—l _ rz—l e
75?W5!!“ D0 =S5t i + v lards

x Yy 1—r3

1 =l vl
< X —g)l—" —t) =3 drds
—mem)!!( )00

Xy
X 0/()/(m(s,t))ﬂdtds

Mn(1+,01)(I—VS)L(1+P2)(1—I‘3)
< .
T L) (r) (14 p)I=r3)(1 + p)(1773)

3
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Hence, {V,v : v € Es} is uniformly bounded. Now, we will prove that {V,v : v € Es}
is equicontinuous. Let (x1, y1), (x2, y2) € (0,n] x (0,¢], x; < x2,y1 < y, and let
u € Eg. Then

X1 )1

1
[ — )"y — 1)
/

[ V20)(x2, y2) = Va(0) (x1, y) || < T ()
— (1= )" T 1 = O (508, Py + Visn))deds
X2 )2
1 r1—l _ rz—l e
+ TS [ [ =50 =0 6 B + v
X1 )1

Xy )2

1 _ r1—l _ rz—l -~
+ o 0/ [ =572 = 0 £ By i s
Y1

X2 )1
1

TN )" =) f (s 1. @ drd
" L'(r)I(r2) o (2 =02 =S58 b+ vie)drds
X1

X s
= % , 0/[(XI =) =0 = (x2 = 5)" (y2 — 1)”]deds
X2 ¥2 1—r3
" ﬁ /(x2 —5)?1(y2 — 1)drds
X1 V1
+ M XI/yz(x — )P (y2 — )P deds -
reore) \J J 2 2
X2 V1 1—r3
+ % \ O/(Xz —$)" (y2 — 1)drds
X1

As x; — X2, y1 — Y the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases x; < x, < 0, y; < y» < 0and x; < 0 < xp,
y1 < 0 < y, is obvious, which means that {V,v : v € Ejs} is equicontinuous.
Moreover, it is clear that V5 is continuous. So V; is a completely continuous operator.
Then V = V) 4 V, is a completely continuous operator. Therefore, Krasnoselskii’s
fixed point theorem (Theorem 2.37, [44]) shows that U 4 V has a fixed point on Es
which is a solution to problem (3.23)—(3.25). ]
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In the case where g = 0, we get the following result.

Theorem 3.14. Assume that (3.13.1)—(3.13.3) and g satisfy (3.13.6). Then the IVP
(3.23)—(3.25) has at least one solution [—a, a] x [—8, b].

In the case where g, = 0, we get the following result.

Theorem 3.15. Assume that (3.13.1)—(3.13.3) and g satisfy (3.13.5). Then the IVP
(3.23)—(3.25) have at least one solution [—a, a] x [—f, b].

3.4.3 An Example

As an application of our results we consider the following partial hyperbolic
functional differential equations of the form:

1
e (u(x,y) —e U -1y -2) - 321+ Ju(x — 1,y —2)|))
P u(x — 1,y —2)|
= , if (x, 0,1 0, 1], 3.30
P — if (x,y) €[0,1] x [0, 1] (3.30)
u(x,0) = x, u(0,y) = y* x,y €10,1], (3.31)

u(x,y) =x+y% (x,y) € [-1,1] x [-2,1]\(0, 1] x (0,1].  (3.32)
Set

e u(x — 1,y —2)|
I+ Ju(x — 1,y —2)]
gx, ¥y uy) = g1(x, ¥, ux,y) + 82(x, ¥, ucx,y)), (x,y) €[0,1] x [0,1],

FOey uey) = , (x,y) €0, 1] x [0, 1],

where

1
3e (1 + u(x — 1,y = 2)|)’

gl (xv yv M(x,y)) -
g2(x7 Y, M(x,y)) = ex+yu(x - 17 y - 2)
For each (x, y) € [0, 1] x [0, 1] we have

lg1(x, ¥, uxy)) — g1(x, Y, tx )| < @HM —llc.

1
Hence conditions (3.13.4) and (3.13.5) are satisfied with [ = 32 It is clear that
e

conditions (3.13.1), (3.13.2), (3.13.3), and (3.13.6) hold with m(x, y) = ety 2,
Consequently, Theorem 3.13 implies that problems (3.30)—(3.32) have at least one
solution defined on [—1, 1] x [-2, 1].
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3.5 Discontinuous Partial Differential Equations in Banach
Algebras

3.5.1 Introduction

This section is concerned with the existence of solutions of fractional order IVP, for
the system

cyr u(x, y) . )
b (m) = g(x, yulx, y)), it (e, y) €4, (3:33)
u(x,0) = p(x), x € [0,a], u(0,y) =y (y), y €[0,b], (3.34)

where J = [0,a] x [0,b], a,b > 0, f : J xR - R*, g :J xR — R are
given functions satisfying suitable conditions and ¢ : [0,a] — R, ¥ : [0,0] - R
are given absolutely continuous functions with ¢(0) = 1(0). We prove existence
of extremal solutions under discontinuous nonlinearity under certain Lipschitz and
monotonicity conditions.

3.5.2 Existence of Solutions

Let us start by defining what we mean by a solution of the problem (3.33)—(3.34).

Definition 3.16. A function u € C(J,R) is said to be a solution of (3.33)—
(3.34), if

(i) The function (x, y) (%) is absolutely continuous,

(i1) u satisfies the equations (3.33)—(3.34) on J

Now, we are concerned with the existence of solutions for the problem (3.33)—
(3.34). Note that if the function f is continuous on J X R, then from the continuity
of ¢ and v it follows that u € C(J,R). Let

= lA Lee.

Theorem 3.17. Assume that the hypotheses

(3.17.1) The function f is continuous on J x R
(3.17.2) There exists a function « € C(J,Ry) such that

[ f(x,y.2) = f(x, 9.2 Salx,y)|z—2, forall(x,y) € J, forallz,Z€ R
(3.17.3) The function g is Carathéodory, and there exists h € L*°(J,R) such that

lg(x,v,2)| <h(x,y), ae (x,y)€J, forallzeR
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hold. If

al‘]brzh*
oo [uuuoo 4 ] L

F(ri+0D)I'(rp+1) (3.35)

Then the IVP (3.33)—(3.34) have at least one solution on J.
Proof. Let X := C(J,R). Define two operators A and B on X by

Au(x,y) = f(x,y,u(x,y)); (x,y)€J, (3.36)

Xy
— 1 _ r1—l _ rz—l
Bu(x.y) = w(x.) + s [ = =0
0 0

x g(s,t,u(s, t))deds;  (x,y) € J. (3.37)

Clearly A and B define the operators A, B : X — X. Now solving (3.33)—(3.34)
is equivalent to solving (3.46), which is further equivalent to solving the operator
equation

Au(x,y) Bu(x,y) = u(x,y), (x,y)e€J. (3.38)

We show that operators A and B satisfy all the assumptions of Theorem 2.35. First
we shall show that A4 is a Lipschitz. Let u;, u, € X. Then by (3.17.2),

|[Aur(x, y) = Auz(x, y)| = | f(x, your(x, y)) = f(x, y, u2(x, )|
a(x, y)|ur(x, y) —ua(x, y)|

IA

IA

leelloo ey — ulloo-

Taking the maximum over (x, y) in the above inequality yields
[Aur — Auzlloo < lltfloo [lur — w20,

and so A is a Lipschitz with a Lipschitz constant ||¢||«. Next, we show that B is a
compact operator on X . Let {u,} be a sequence in X . From (3.17.3) it follows that

anb
Fri+ DL+ 1)

[Bunlloo =< llptlloc +

Asaresult{Bu, : n € N}isauniformly bounded setin X. Let (x1, y1), (x2, y2)€J.
Then
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| Buy (x1, y1) — Buy(x2, y2)| < [(x1, y1) — p(x2, y2)|

X1 )1

; _ oyl _ -1 _ _ -l _ -l
+ 1"(1‘1)1_'(1‘2))0/0/[()(2 (2= 1) (x1 =9)"" (i —1) ]

x g(s,t,u,(s, t))dtds‘

X2 )2
+ m /(X2 — )" Ny — 1) g (s, 1, uy (s, 2))deds
+ m /(X2 =) (= 1) g (s, £, uy (s, 1))deds
+ m /(xz — )" Ny — 1) g (s, u, (s, 1))deds
X1 0

< |p(xr, y1) — p(xa, y2)|
X1 )1

h* ri—1 _ -1
AV CESN ) J O/[(XZ_S) 2 =0)

— (x1 = )"y — 1) "drds

h* X2 )2
R — / (x2 — $)" 7 (y2 — 1) deds
I'(r)I(r
(r) I (r2) g
Xy 2
h* /( )1'1—1( t)rz_ldld
+ = X2 — Y2 — S
I'(r) I (r
(r) I (r2) )
X2 )1
h* ri—1 r—1
+ —F(rl)l"(rz) /(xz =) (y2— 1) deds
x1 0

< |pxr, y1) — p(xa, y2)|

*

+
Fri+ DI+ 1)
r L, L, rn

+x1' v = x5yt =200 — x1)" (y2 — y)"]

— 0, as(x1,1) = (x2.y2).

[2y7 (x2 = x1)™ + 253" (y2 — yD)”
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From this we conclude that {Bu, : n € N} is an equicontinuous set in X. Hence
B : X — X is compact by Arzela—Ascoli theorem. Moreover,

M = [|B(X)||

y
< InCey)l + ‘/@—SW*OwﬁYFWﬁ&LM&UHmM
0

1 X
F(rl)r(rz)o/

al‘]brzh*
'ri+ DI+ 1)’

< lltlloo +

and so,

ab"”h*
oM < ||« + <1,
< el (Ile + 75—t 1m0 575)

by assumption (3.35). To finish, it remains to show that either the conclusion (i) or
the conclusion (ii) of Theorem 2.35 holds. We now will show that the conclusion (ii)
is not possible. Let u € X be any solution to (3.33)—(3.34). Then, for any A € (0, 1)
we have

u(x,y) = ALf (e, you(x, )] | m(x. y)

x
; _ -l _ -l

+F(r1)1"(r2)0/0/(x )TNy =) g (s, t,u(s, 1))deds |
for (x, y) € J. Therefore,
luCe, ) = [fCe, youlx, )| [, p)]

1 ol
- _ 1'1—1 _ 1‘2—1
+F(r1)F(r2)0/0/(x S) (y Z) |g(S,Z,M(S,Z))|dZdS

< [If(x,yulx.y)) — f(x.y.0)| + | f(x..0)]

Xy
1 r1—l _ rz—l
X |M(X,J/)|+m//(x—s) (y =) h(s,t)drds
00

a"b"h* )

< ol + 1) (Il + s
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where f* = sup(, ,)es | f(x,,0)|, and consequently

rlbrzh*
fr [”H”oo + m]

a'th2h* ]

=M.
L= ltlloo [itlloo + 7t

lulloo <

Thus the conclusion (ii) of Theorem2.35 does not hold. Therefore the IVP
(3.33)—(3.34) has a solution on J. O

3.5.3 Existence of Extremal Solutions

We equip the space C(J,RR) with the order relation < with the help of the cone
defined by
K={ueC(,R): u(x,y) >0, V(x,y)eJ}.

Thus u < u if and only if u(x, y) < u(x, y) for each (x,y) € J. It is well known
that the cone K is positive and normal in C(J,R) ([143]). If u,u € C(J,R) and
u < u, we put

[w,u] ={ueC(J,R):u<u<u}.
Definition 3.18. A function u(-,-) € C(J,R) is said to be a lower solution of
(3.33)—(3.34) if we have

: u(x,y)
CDr =
0[f(x, you(x,y))

u(x,0) <p(x), u©,y) <v¥(y), (x,y) €J.

] <glx,y,ulx,y)), (x,y)e,

Similarly a function u(-, -) € C(J, R) is said to be an upper solution of (3.33)—(3.34)
if we have

S,y ulx, y))

u(x,0) = (x), u(©,y) =¢(y), (x,y) €J.

] >g(x,y,u(x,y)), (x,y)€],

Definition 3.19. A solution u), of the problem (3.33)—(3.34) is said to be maximal
if for any other solution u to the problem (3.33)—(3.34) one has u(x, y) < upm(x,y),
for all (x,y) € J. Again a solution u,, of the problem (3.33)—(3.34) is said to be
minimal if u,,(x,y) < u(x,y), for all (x,y) € J where u is any solution of the
problem (3.33)—(3.34)on J.

Let
h* = ||| oo
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Theorem 3.20. Assume that the hypotheses (3.17.2) and
(3.20.1) f:J xRy - R%,g:J xRy - Ry, ¥(y) >00n|0,b] and
o) g(0)
Sf(x.0.0(x)) ~ f(0.0.¢(0))

(3.20.2) The functions f and g are Chandrabhan,
(3.20.3) There exists a function h € L*°(J,Ry) such that

forall x € ]0,4a],

lg(x, y.2)| < h(x.y). ae (x,y)eJ, forallz €R,

(3.20.4) The problem (3.33)—(3.34) has a lower solution u and an upper solution u
with u <,

hold. If
anbh*
llelloo | IAtlloo + <1,

r'm+1O)Ir'+1)
then the problem (3.33)—(3.34) has a minimal and a maximal positive solution on J.

Proof. Let X = C(J,R) and consider a closed interval [u,u] in X which is well
defined in view of hypothesis (3.20.4). Define two operators A, B : [u,u] — X
by (3.36) and (3.37), respectively. Clearly A and B define the operators A4, B :
[u,u] — K. Now solving (3.33)—(3.34) is equivalent to solving (3.46), which is
further equivalent to solving the operator equation

Au(x,y) Bu(x,y) = u(x,y), (x,y)elJ. (3.39)

We show that operators A and B satisfy all the assumptions of Theorem 2.41. As in
Theorem 3.17 we can prove that A4 is Lipschitz with a Lipschitz constant ||| and
B is a completely continuous operator on [u, u]. Now hypothesis (3.20.2) implies
that A and B are nondecreasing on [u, u]. To see this, let uy, uy € [u, u] be such that
u; < up. Then by (3.20.2), we get

AM](X,y) = f(va’,Ml(st)) =< f(xvvaZ(-xsy)) = AuZ(xvy)s V()C,y) € Js

and
1 Fr
Bun(x. ) = (¥ )+ s / / (rm) ™ (y—t)* g s 1,y (5. ) drds
0 0

1

x Yy
ri—1lgy,_\r2—1
W s 0/ 0/ (e (=)™ g (5. 1, us(s. £))drds

B“Z(xvy)7 V(X,y)EJ.
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So A and B are nondecreasing operators on [u, u]. Again hypothesis (3.20.4) implies

u(x,y) = [f(x,y,uCx, y)] | nCx,y)
1 F T
_ -l _ -1
+—F("1)F(rz)0/0/(x s) (y —1)"? "g(s,t,u(s,t)) deds
< [fx .z D] | m(x, y)
1 F T
_ r1—l _ rz—l
+—F(r1)1"(r2)0/0/(x s) (y —1)? "g(s,t,z(s,t))dtds
< [fCey,ule, yDI | pnix, y)

x y
_ 1 ri—1 _ rp—1 —
T 0/ 0/ (x =)y =07 g (s, 1, W(s.1))drds

< u(x,y),
forall (x,y) € J and z € [u, u]. As aresult
u(x,y) < Az(x, y)Bz(x,y) <u(x,y), V(x,y) € Jandze€ [uul

Hence Az Bz € [u, u], for all z € [u, u].
Notice for any u € [u, u],

M = || B([u,u))|
Xy
1 ri—1 _ n\n2—1
SlM(XJ’)H‘m //(X—S) (y =07 g(t,s,u(t,s))deds
0 0

a'bh*

(ri+0)I(r, + 1)'

< lulleo +

and so,

anbrh*
M < < 1.
aM = flalio | Iillos + T o
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Thus the operators A and B satisfy all the conditions of Theorem 2.41 and so the
operator equation (3.37) has a least and a greatest solution in [u, u]. This further
implies that the problem (3.33)—(3.34) has a minimal and a maximal positive
solution on J. O

Theorem 3.21. Assume that hypotheses (3.17.1), (3.20.1)—(3.20.4) hold. Then the
problem (3.33)—(3.34) has a minimal and a maximal positive solution on J.

Proof. Let X = C(J,R). Consider the order interval [u, u] in X and define two
operators A and B on [u, u] by (3.36) and (3.37), respectively. Then the problem
(3.33)—(3.34) is transformed into an operator equation Au(x,y) Bu(x,y) =
u(x,y), (x,y) € J in a Banach algebra X. Notice that (3.20.1) implies 4, B :
[#,u] — K. Since the cone K in X is normal, [u, %] is a norm-bounded set in X.

Next we show that A4 is completely continuous on [u, %]. Now the cone K in X is
normal, so the order interval [, u] is norm-bounded. Hence there exists a constant
o0 > 0 such that ||u|| < o for all u € [u,u]. As f is continuous on the compact set
J x[—o, o], it attains its maximum , say M . Therefore, for any subset S of [u, u] we
have

IA(S)I| = sup{|Aul| : u € S}

= Sup{ sup | f(x,y,u(x, )| :ue S}
(.y)el

IA

sup{ sup | f(x,y,u)| :ue [‘&Q]}
(x.)es
< M.

This shows that A(S) is a uniformly bounded subset of X. We note that the
function f(x, y,u) is uniformly continuous on J X [—p, g]. Therefore, for any
(x1,¥1), (x2, y2) € J we have

| f(xryu) = fx2, y2,u)| = 0 as (x1, y1) = (x2, y2).
for all u € [—o, o]. Similarly for any u;, u, € [—o0, 0]
LfCeyu) = f(x,y,u)| = 0 asuy — ua,
for all (x, y) € J. Hence any (x1, y1), (x2, y2) € J, and for any u € S one has

|Au(xy, y1) — Au(xa, y2)| = | f(x1, y1,u(x1, y1)) = f(x2, y2, u(x2, y2))|
[ f(x1, y1,uxr, y1) = f(x2, y2, u(xi, y1)|
+| f(x2, y2, ulx1, y1)) — f(x2, y2, u(x2, y2))|

IA

— 0 as (x,y1) = (x2,¥2).
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This shows that A(S) is an equicontinuous set in K. Now an application of the
Arzela—Ascoli theorem yields that A is a completely continuous operator on [u, u].
Next it can be shown as in the proof of Theorem 3.20 that B is a compact operator
on [u, u]. Now an application of Theorem 2.40 yields that the problems (3.33)—(3.34)
have a minimal and maximal positive solution on J. O

3.5.4 An Example

As an application of our results we consider the following partial hyperbolic
functional differential equations of the form:

‘D (%) =g(x,y,u(x,y)), if(x,y)e€0,1]x]0,1], (3.40)
u(x,0) = ¢(x), x € [0,1], u(0,y) =¥ (y), y € [0,1], (3.41)

where f, g : [0, 1] x [0, 1] x R — R defined by
1

SV U) = e Loon 342
S0 = ST (3.42)
and |
glx.y.u) = m- (3.43)
The functions ¢, ¥ : [0, 1] — R are defined by
e(x) =x%71% and ¥ (y) = ye !0 forall x,y €[0,1]. (3.44)

We show that the functions ¢, ¥, f, and g satisfy all the hypotheses of Theorem 3.17.
We have f : [0,1] x [0, 1] x R — R%, g : [0,1] x [0, 1] x R — R.. Clearly, the
function f satisfies (3.17.1) and (3.17.2) with a(x, y) = m and ||ot]jco = #
Also, the function g satisfies (3.17.3) with i (x, y) = ﬁ and h* = eig A simple
computation gives

p(x,y) = e x*(1 +x2) + e y(1 + |y]),

and || ]|eo < 4e. We shall show that condition (3.35) holds. Indeed

T L P P :
o —_— e
oo | Il & D P + 1) | = o0 ST+ DI(m + 1)

<1,

for some (1, 72) € (0, 1]x(0, 1]. Hence by Theorem 3.17, the problem (3.40)—(3.41)
have a solution defined on [0, 1] x [0, 1].
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3.6 Upper and Lower Solutions Method for Partial
Hyperbolic Differential Equations

3.6.1 Introduction

This section deals with the existence of solutions to the Darboux problem for the
fractional order IVP , for the system

(“Dou)(x,y) = f(x,y,ulx,y)); if (x,y) € J, (3.45)
u(x,0) = @(x), x €[0,a], u(0,y) =¥ (y), y €10,b], (3.46)

where J = [0,a] x[0,b], a,b >0, f: JxR—>R, ¢:[0,a] > R, ¥ :[0,b] >
R are given absolutely continuous functions with ¢(0) = ¥ (0).

3.6.2 Main Result

Let us start by defining what we mean by a solution of the problem (3.45)—(3.46).

Definition 3.22. A function u € C(J,R) whose mixed derivative D)%y exists
and integrable is said to be a solution of (3.45)—(3.46) if u satisfies (3.45) and (3.46)
on J.

Definition 3.23. A function z € C(J,R) is said to be a lower solution of (3.45)—
(3.46) if z satisfies

(“Do2)(x,y) = f(x,y,2(x,¥)), 2(x,0) < ¢(x), 2(0,y) < ¥ (y)on J,
and z(0,0) < ¢(0).
The function z is said to be an upper solution of (3.45)—(3.46) if the reversed
inequalities hold.
Further, we present conditions for the existence of a solution of our problem.
Theorem 3.24. Assume that the following hypotheses:

(3.24.1) The function f : J x R — R is continuous,
(3.24.2) There exist vand w € C(J,R), lower and upper solutions for the problem
(3.45)—(3.46) such that v < w,

hold. Then the problems (3.45)—(3.46) have at least one solution u such that

v(x,y) <u(x,y) =wlx,y) forall (x,y) € J.
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Proof. Transform the problems (3.45)—(3.46) into a fixed point problem. Consider
the following modified problems:

(“Dgu)(x,y) = g(x, y,u(x,y)), if (x,y) € J, (3.47)
u(x,0) = ¢(x), u(0,y) = ¥(y), x €[0,a], y €[0,b], (3.48)

where
gx,y,u(x,y)) = f(x,y,h(x,y,u(x,y))),
h(x,y,u(x,y)) = max{v(x, y), min{u(x, y), w(x, y)}},

for each (x,y) € J. A solution to (3.47)—(3.48) is a fixed point of the operator
N :C(J,R) — C(J,R) defined by

x y
NG9 = w3+ s | [ G =0 et ),
0 0

Notice that g is a continuous function, and from (3.24.2) there exists M > 0 such
that

lg(x.y,u)| < M, foreach (x,y) € J, andu € R. (3.49)
Set
P R L
1= e e T D + 1)
and

D ={ueC.R): |ulloo <7}

Clearly D is a closed convex subset of C(J,RR) and that N maps D into D. We
shall show that N satisfies the assumptions of Schauder’s fixed point theorem. The
proof will be given in several steps.

Step 1: N is continuous. Let {u, } be a sequence such that ,, — u in D. Then

[N () (x, y) = N@)(x. y)|

Xy
1 // ri—1 -1
< = x—s|" —t|" St up(s,t)) —g(s,t,u(s,t))|deds
< Tarm | | Pl oA gt ) gttt )

a b
< ”g(-s-vun(-v'))_g('s-vu)HOO//|x_s|r1—l|y_[|r2—ldtds'
I(r)I(r2) ,

Since g is a continuous function, we have

a"b"|g(., ., un(...)) — g( ., ul.,))lloo
Fri+ DI+ 1)

”N(“n) - N(“)”oo =

— 0asn — oo.
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Step 2: N(D) is bounded. This is clear since N(D) C D and D is bounded.

Step 3: N(D) is equicontinuous. Let (x1, y1), (x2, y2) € (0,a] x (0,b], x; < x2,
y1 < yzandu € D. Then

[N (u)(x2, y2) — N(u)(x1, y1)|
= |p(x1, y1) — p(x2, y2)|

X1 )1
; _ o\l _ -1 _ _ 1 _ n\n2—1
+)F(r1)1"(r2) ()/()/[(x2 T2 =) (1 =) =]

xg(s,t,u(s,t))dtds

X2 )2
+m /(xz — )" Ny — 1) g(s. 1, u(s, t))deds
X1 )1
1 Xy )2
+m /(xz — )" Ny — 1) g(s. 1, u(s, t))deds
0 »n
X2 V1

1 ri—l1 _ r—1
+mx O/(XZ =) (v — 1) g(s, t,u(s,t))deds

< pu(xr, y1) — plx2, y2)|

M
2 r2 _ r 2 r _ r
e F DG 1 22 e ) 2 0 =)

., 1,2

+X1'017 =Xyt =200 — x1)" (2 — y)"?]

As x; — X3, y1 — > the right-hand side of the above inequality tends to zero.
As a consequence of steps 1-3 together with the Arzela—Ascoli theorem, we can
conclude that N : D — D is continuous and compact. From an application of
Schauder’s theorem, we deduce that N has a fixed point u which is a solution of the
problem (3.47)—(3.48).

Step 4: The solution u of (3.47)—(3.48) satisfies
v(x,y) <u(x,y) <w(x,y) forall (x,y) € J.

We prove that
u(x,y) <w(x,y) forall (x,y) e J.

Assume that # — w attains a positive maximumon J at (x,y) € J;i.e.,

(u—w)(x,y) = max{u(x,y) —w(x,y): (x,y) € J}>0.
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We distinguish the following cases.

Case 1. If (x,y) € (0,a) x [0, b] there exists (x*, y*) € (0,a) x [0, b] such that

[u(x, y*) = w(x, )] + [u(x™, y) —w(x™, y)] = [u(x*, y*) = w(x™, y*)] < 0;
forall (x, y) € ([x*,X] x {y™}) U ({x*} x [y*, b)), (3.50)

and
u(x,y) —w(x,y) >0, forall (x,y) € (x*,X] x [y*,b]. (3.51)

By the definition of / one has
“D'u(x,y) = f(x,y,w(x,y)) forall (x,y) € [x*,X] x[y*,b].
An integration on [x*, x] x [y*, y] for each (x, y) € [x*,X] x [y*, b] yields
u(x, y) +ulx™, y*) —ulx, y*) —u(x*, y)

1 /X /y ri—1 -1
= — x —s)" —n" s,t,w(s, t))deds.  (3.52)
O ) e y*( T =0 A )
From (3.52) and using the fact that w is an upper solution to (3.45)—(3.46) we get

u(x,y) +u(x*, y*) —ulx, y*) —u(x*, y) < w(x,y) +wx*, y*)
—w(x, y*) —w(x*, y),

which gives,

[u(x, y) —w(x, )] < [u(x,y*) —wx, y*)] + [u(x*, y) —w(x*, y)]
—[u(x*, y*) —w(x™, y)]. (3.53)

Thus from (3.50), (3.51), and (3.53) we obtain the contradiction

0 < [u(x.y) —wx, )] = [ulx, y*) —wlx, )] + [u(x™, y) —w(x*, y)]
—[u(x*, y*) —w(x*, y*)] < 0; forall (x,y)
€ [x*,x] x [y*, b].
Case 2. If x = 0, then w(0,y) < u(0,y) < w(0,y) which is a contradiction. Thus
u(x,y) <w(x,y)forall (x,y) € J.
Analogously, we can prove that u(x, y) > v(x,y); forall (x,y) € J. This shows

that the problems (3.47)—(3.48) have a solution u satisfying v < u < w which is
solution of (3.45)—(3.46). O
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3.7 Partial Functional Differential Equations with Infinite
Delay

3.7.1 Introduction

In this section we discuss the existence of solutions to the Darboux problem for the
fractional order IVP, for the system

(“Dou)(x,y) = f(x,y,ucx.y), if (x,y) € J, (3.54)
u(x.y) = ¢(x,y). if (x,y) € J', (3.55)
u(x,0) = ¢(x), x €[0,a], u(0,y) =v¥(y), y €[0,b], (3.56)

where J = [0,a] x [0,b], a,b > 0, J' = (=00, a] x (—oo, b]\(0,a] x (0,b], f :
JxB—R" ¢:J — R"are given continuous functions, ¢, ¥ are as in problems
(3.1)—(3.3) and B is called a phase space that will be specified later. We denote by

U(x,y) the element of BB defined by
Uy ($,1) = u(x + 5,y +1): (5,1) € (—00,0] x (—00, 0],

here uy (., .) represents the history of the state from time —oo up to the present
time x and from time —oo up to the present time y.

Next we consider the following initial value problem for partial neutral functional
differential equations:

"Dy (ux. ) = g(x. y.e)) = fr vy () €S (BSD)
u(x,y) = ¢(x,y), if (x,y) € J', (3.58)
u(x,0) = ¢(x), x €[0,a], u(0,y) = ¥(y), y €0,b], (3.59)

where f, ¢, ¢, ¥ are as in problems (3.54)—(3.56)and g : J x B — R”" is a given
continuous function.

3.7.2 The Phase Space B

The notation of the phase space B plays an important role in the study of both
qualitative and quantitative theory for functional differential equations. A usual
choice is a seminormed space satisfying suitable axioms , which was introduced
by Hale and Kato [138]. For further applications see for instance, the books
[139,152,179] and their references. For any (x, y) € J denote E(, ) = [0, x] x
{0} U {0} x [0, y]; furthermore, in case x = a, y = b we write simply E.
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Consider the space (B, ||(., .)||5), the seminormed linear space of functions mapping
(—00, 0] x (—00, 0] into R”, and satisfying the following fundamental axioms which
were adapted from those introduced by Hale and Kato for ordinary differential
functional equations:

(41) If z : (—o00,a] x (—o0,b] — R" is continuous on J and z(,,) € B, for
all (x,y) € E, then there are constants H, K, M > 0 such that for any
(x,y) € J the following conditions hold:

(i) 2(x.y) isin B
(@0) Nz, M = Hllzep 8
((i0) Nz llB < K supg pyeo.xxpo.y 126s: DI + M SUD(s,1)€ By ) lzs.)llB

(A>) For the function z(., .) in (A1), Z(x,y) is a B-valued continuous function on J.
(A3) The space B is complete.

Now, we present some examples of phase spaces [97,98].

Example 3.25. Let B be the set of all functions ¢ : (—o0, 0] X (—o0, 0] = R” which
are continuous on [—«, 0] x [—f, 0], «, 8 > 0, with the seminorm

Iolls = sup lp(s. Ol

(5.) €[=0,0x[—p,0]

Then we have H = K = M = 1. The quotient space B= B/|.|I5 is isometric to
the space C([—«, 0] x [, 0], R") of all continuous functions from [—a, 0] x [—f, 0]
into R” with the supremum norm, this means that partial differential functional
equations with finite delay are included in our axiomatic model.

Example 3.26. Let y be a real constant and Let C, be the set of all continuous
functions ¢ : (—o0, 0] x (—oco, 0] — R” for which a limit limj; ;)j—c0 € “ T (s, )
exists, with the norm

lllc, = sup e’ g (s, 1)]].
(5.1) €(—00.0]X(—00.0]
Then we have H = 1 and K = M = max{e 7@ *? 1}.
Example 3.27. Leta, 8,y > 0 and let

0 0
Idler, = swp b0l + / / &5 6 (s, 1) | drds.

()€l O [~B.0] o
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be the seminorm for the space CL, of all functions ¢ : (=00, 0] x (=00, 0] — R”"
which are continuous on [—¢, 0] x [—f, 0] measurable on (—oo, —«] X (—o0,0] U
(=00, 0] x (=00, —pB], and such that ||$|cL, < co. Then

0 0
H=1, K= //eﬂ”’)dms, M =2.
—B

—u

3.7.3 Main Results

Let us start by defining what we mean by a solution of the problems (3.54)—(3.56).
Let the space

2 :={u: (—00,a] x (—o00,b] = R" : u(,) € Bfor (x,y) € E and
ul; € C(J,RM}.
Definition 3.28. A function u € £2 is said to be a solution of (3.54)—(3.56) if u
satisfies (3.54) and (3.56) on J and the condition (3.55) on J'.

Our first existence result for the IVP (3.54)—(3.56) is based on the Banach
contraction principle.

Theorem 3.29. Assume that the following hypotheses hold:
(3.29.1) There exists £ > 0 such that

Il f(x,y,u)— f(x,y,v)| <L|u—v|5, foranyu, v e Band (x,y) € J.

If
{Ka"'b" -
F(ri+ DI (rp+1)

1, (3.60)

then there exists a unique solution for IVP (3.54)—(3.56) on (—o0, a] x (—o0, b].

Proof. Transform the problems (3.54)—(3.56) into a fixed point problem. Consider
the operator N : §2 — §2 defined by

d(x,y), (x,y) e J,
Xy
N@ ) = § ) + s [ [ =9 (3.61)
0 0
x(y = 1)1 f(s,t, U py)deds, (x,y) e J.

Letv(.,.) : (—o0,a] x (—oo, b] — R" be the function defined by
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P(x,y). (x,y) e J,

V) = { w(x. ). (xoy) € J.

Then v(, ) = ¢ forall (x,y) € E. Foreachw € C(J,R") such that w(x,y) = 0
for each (x, y) € E. We denote by w the function defined by

07 ('x7y)€j/’

W y) = { wx.y) (x.y) € J.

If u(., .) satisfies the integral equation

x Yy
u(x.y) = p(x.y) + m / / (x = )17 (y = 2 £ (5. 1 ey )deds,
0 0

we can decompose u(.,.) asu(x, y) = w(x, y)+v(x,y); (x,y) € J, whichimplies
U(x,y) = W(x,y) T+ V(x.y), for every (x, y) € J, and the function w(., .) satisfies

x Yy
1
W(X,y) = m / /(X —S)rl_l (y —l‘)rz_lf(s,l‘,W(s’t) + V(S’[))dtds.
0 0

Set

Co={weC,R"): w(x,y) =0 for(x,y) € E},

and let ||.||(4.,») be the seminorm in Cy defined by

IWll@ey = sup [weplls + sup [wlx, y)ll = sup [wx, p)ll. we Co.
(x.y)€E (x.y)eJ (x.y)eJ
Cy is a Banach space with norm ||.| ). Let the operator P : Cy — Cj be
defined by

Xy
1 .
(Pw)(x,y) = T () / /(x =) TNy = )2 f (5,8, Wiy + Vis.)dids,
0 0

(3.62)

for each (x,y) € J. The operator N has a fixed point, which is equivalent to P
having a fixed point, and so we turn to proving that P has a fixed point. We shall
show that P : Cy — C is a contraction map. Indeed, consider w, w* € Cy. Then
we have for each (x, y) € J
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[Pw)(x, y) = PWH)(x., p)l

x Yy
< ; _ -1 _ n\n2—1
_”m”m!!ws><yn

X ”f(sv Z‘7"_‘}(&1) + V(s,t)) - f(S, t,F(s,[) =+ V(S,[))”dtds

x oy
1 —
< _ — ri—1 _trz_le_g _ *\“
—nmnm!!“S)(y) ¥ = 7

x Yy
< 1 _ r1—l _ rz—l
—mmmm!!“ O 0T K

x sup  [[w(s, 1) —w*(s, 1) drds
(s,1)€[0,x]x[0,y]

x Y
LK // . - J—
< — x —s)" — )" deds||w — w*|| b
= Tl / | ( 'y —1) [ ll@.6)

Therefore

{Ka"'b"™
Pw)— P(W")|a a
1P = PO len = Fop oy 5717~ 7 e

and hence P is a contraction. Therefore, P has a unique fixed point by Banach’s
contraction principle. O

Now we give an existence result based on the nonlinear alternative of Leray—
Schauder type [136].

Theorem 3.30. Assume that the following hypotheses hold:
(3.30.1) There exist p,q € C(J,Ry) such that

If Gy, wll = p(x.y) + (. ) |ulls. for (x.y) € J and eachu € B.

Then the IVP (3.54)—(3.56) have at least one solution on (—o0, a] X (—oo, b].

Proof. Let P : Cy — Cj be defined as in (3.62). We shall show that the operator P
is continuous and completely continuous.

Step 1: P is continuous. Let {w, } be a sequence such that w, — w in Cy. Then
120553~ P 95, = s [usw%ynw
I'(r)I(r2)

X ||f(S, t, Wn(s,t)+Vn(s,t))_f(ss z, W(s,t)+v(s,t))||dtds'
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Since f is a continuous function, we have

XY fCo o Wiy + V) = FG Wiy +ve))lleo
rm+0)rm+1)

a" b f (oW vae) = fGa Wy vl
- 'ri+DC@+1)

— 0asn — oo.

1P (wn) = P(W) oo

IA

Step 2: P maps bounded sets into bounded sets in Cy. Indeed, it is enough to show
that, for any > 0, there exists a positive constant £ such that, foreachw € B, =

we Co: W@y <n}, wehave |P(W)]leo < £.Letw € B,. By (3.30.1) we have
for each (x, y) € J,

y
1 r1—l _ rz—l —_—
1P = s 0/ 0/ ()1 ()2 £ (5 1. W) V(o) s

171l e
= F(rl)F(rz)/ / (x =)y = 1) drds

llglloom -1 r—1

r(rl)r(rz)/ / (r =)y = )" drds
o ploo + 1allos” s e

T~ I'nm+DHIC(n+1)

where

Wiy +venlls < Wenlls + Ivenlls
< Kn+ K|[¢©0,0)| + M||pli5z :=n".

Hence, | P(W)|lco < £*.

Step 3: P maps bounded sets into equicontinuous sets in Cy. Let (x1, y1), (x2, y2) €
(0,a] x (0,b], x1 < x2, y1 < y2, B, be abounded set as in step 2, and let w € B,,.
Then
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[P (w)(x2, y2) = P(w)(x1, y1)l

X1 )1

1 [(XZ - s)l'1—1(y2 _ t)rz—l _ (xl _ S)rl—l(yl _ t)rz—l]

=TT ()

X2 M2
/(xz =) —0)”!

X1

1
X f(s,t,uy)dtds + —————
A TR

Xf(s, 1, W(s,t) + V(s,z‘))dtds H

Xy »n2
1
T — )" 2= f (s 1w dtd
treoroy ] ] 2T 0= 0TS G 8 e+ vien) deds
0 »n
X2 V1

1

T — )" =0 f (s 1w dtd
Tl 0(” T2 = DTS 1 W + visn) [ deds
X1

[Plloo + lIglloon
< 2 — r r _ r
= T+ DI + D2 20 020
14,2

— (2 —x1)" (2 — y1) + x'y — x5y

[Plloc + l1¢lloon
rri+1H)Ir'm+1)

[2llco + lIglloon
r'n+HI'(rn+1)

[2llco + lIglloon
r'n+HI’'(rn+1)

_ _lIPlloo + lIglloon
T+ DI+ 1)

+ X1y =2 yst =200 — x1)" (v — y1)").

(2 —x)" (y2 — y1)"”

x5 — (x2 — x1)"(y2 — y1)"”

(2 —x)" [y — (2 — y1)"]

[2y57 (x2 = x1)" + 253" (32 — yD)”

As x; — X3, y1 — > the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases x; < x» < 0, y; < y» < 0and x; < 0 < xp,
y1 < 0 < y, is obvious. As a consequence of Steps 1-3, together with the Arzela—
Ascoli theorem , we can conclude that P : Cy — C is continuous and completely
continuous.

Step 4: A priori bounds. We now show that there exists an open set U C Cj with
w # AP(w), for A € (0,1) and w € dU. Let w € Cy and w = AP (w) for some
0 < A < 1. Thus for each (x, y) € J,

X Yy
A
W(X,y) = m//(x —S)rl_l(y —t)rz_lf(s,t,u(s,,))dtds.
0 0
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This implies by (3.30.1) that, for each (x, y) € J, we have

X )
1 _ -l _ -1
(D < s 0/ 0/ (=5 =0 o)

+q (5. )| Wis.) + Vsl gldeds

o oo 1 /
T L+ D+ 1) Fr)Il(r)
0

y
/ (=) (=) g (5.1)
0

X|[Ws,)+V (.|| deds.
But

Wiy + visnlls = W lls + Ve ls

< Ksup{w(3,7) : (5.7) € [0,s] x [0,¢]}
+M | ¢l + Kll$(0,0)]l. (3.63)
If we name z(s, t) the right-hand side of (3.63), then we have
Wiy + v lls = 2(x, p),

and therefore, for each (x, y) € J we obtain

|plloca™ b"™
1+ D0+ 1)

e ) <

x Yy
; _ -l _ -1
+F(r1)F(r2) O/O/(X $)" T (y =) g (s, 1)z(s, t)deds.

(3.64)
Using the above inequality and the definition of z for each (x, y) € J, we have

K| plloca™ b
Fri+ DI+ 1)

2(x.y) = M|i¢lls + K|[¢(0.0)[| +

Klplloo

x oy
_ e _ -l _ -l
I(r)I(r2) O/O/(X ST =), deds.

Then by Lemma 2.43, there exists § = §(r, r;) such that we have

x
Kllglloo // —1 —1
X, <R+§—"—7— x —s)" — )7 ' Rdtds,
llz(x, )l F(rl)F(rz)O 0( 'y =)
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where
K| plloca™b"
R=M|gls + K900 + Frmmm gy
Hence
RSK anpr —
leloo < R + — 0K l1allo _ 7.

F(1+1)F(”2+1)
Then, (3.64) implies that

rhr
a 1 2

< M =M.
oo = o i (1P eo + Ml

lw

Set
U={weCy: W@y < M*+1}.

P : U — C, is continuous and completely continuous. By our choice of U, there is
now € dU such thatw = AP (w), for A € (0, 1). As a consequence of the nonlinear
alternative of Leray—Schauder type [136], we deduce that N has a fixed point which
is a solution to problem (3.54)—(3.56). ]

Now we present two similar existence results for the problem (3.57)—(3.59).

Definition 3.31. A function u € £2 is said to be a solution of (3.57)—(3.59) if u
satisfies (3.57) and (3.59) on J and the condition (3.58) on J'.

Theorem 3.32. Assume that (3.29.1) holds and moreover
(3.32.1) There exists a nonnegative constant £’ such that

le(x, v, u) —g(x, v, v)|| <|lu—v|s, foreach (x,y) € J, andu, v € B.

If

K |40 + tanib™ <1 (3.65)
F(r1+1)F(r2+1) ’ ’

then there exists a unique solution for IVP (3.57)—(3.59) on (—o0, a] x (—o0, b].
Proof. Consider the operator N : £2 — £2 defined by

P(x.y), (x,y) e J,
[L(X y) + g(x Y, U(x, y)) _g(x 0, u(x,O))
—g(0, y,M(Oy)) + 20,0, u0.0)

+F(,1)F(r2)//(x_s)rl l(y Z‘)rz 1

x f(s,t, u(s,,f))dtds, (x,y) e J.

Ni(u)(x,y) =
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In analogy to Theorem 3.29, we consider the operator P; : Cy — Cj defined by

Pi(x,y) = g(x, Vs Wxy) + V(x,y)) —glx, 0, w0 + V(X,O))
—2(0,y, W,y + vo.) + g(0,0, W00 + v.0)

x Y
1 - - —
* oo | [ om0 s + s
0 0

(x,y) e J.

We shall show that the operator P is a contraction. Let w, wy € Cy, then following
the steps of Theorem 3.29, we have

[Pr(w)(x, y) = Pr(ws)(x, y) |
< g, y. W) + viey) — 80 ¥, W (xy) + V)l
+11g(x,0,W(r0) + vir0) — &(x, 0, Wi (x0) + vir.0) |l
+11g(0, y. wo,y) + vo.») — &0, y. Wx0.5) + vl
+[8(0,0,w +v) — g(0,0,Wx(0.0) + V0.0l

x Yy
1 _ -l _ -1
+F(r1)r(r2)0/ 0/ (=" =1

X”f(S’ tvw(s,l‘) + V(s,t)) - f(s7 [ W_*(S,t) + V(s,[))”dtds

Xy
1
<4K|w—Wxll@ +—//x—s”—l — )t
7=l + Ry | [ =770 =0

XL K |w — wx||dtds.
Therefore

La" b
F(ri+ DI () +1

1PLow) = Pl < K [w + } % — W5 -

which implies by (3.65) that P; is a contraction. Hence P; has a unique fixed point
by Banach’s contraction principle. O

Our last existence result for the IVP (3.57)—(3.59) is based on the nonlinear
alternative of Leray—Schauder type.

Theorem 3.33. Assume (3.29.1)—(3.30.1) and the following conditions:

(3.33.1) The function g is continuous and completely continuous, and for any
bounded set D in $2, the set {(x,y) — g(x,y.uw, : u € D}, is
equicontinuous in C(J,R"),
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(3.33.2) There exist constants dy, d>» > 0 such that0 < d| K < 4—11 and
lgCx, y.wl < dilluls+dr, (x.y)eJ, ueb.

Then the IVP (3.57)—(3.59) have at least one solution on (—o0, a] X (—oo, b].

Proof. Let Py : Cy — () defined as in Theorem 3.32. We shall show that the
operator P; is continuous and completely continuous. Using (3.33.1) it suffices to
show that the operator P defined in (3.62) is continuous and completely continuous.
This was proved in Theorem 3.30. We now show there exists an open set U € Cy
with w # AP;(w), for A € (0,1) andw € dU. Letw € Cy and w = Ap;(w) for
some 0 < A < 1. Thus for each (x, y) € J,

w(x,y) = Ag(X, Y, Wiy + Vixy) — &(X, 0, Wi 0) + Vix0)

—2(0,y, W,y + vo.5) + £(0,0, W00 + vo.0)]

x Yy
A
—_— —s)1 N (y =)t LW s.ry)deds,
N ars O/ O/ (r = )N — )2 5.1 Woy + Vo) drds

and

[ Plloca™ b"
rm+0)r'm+1)

Iw(e, Ml = 4di[Wery) +venls +

Xy
1 _ _ _
+m//()€—s)” Yy=0)"""q (s, 1) |[W(s.)+Vs. | deds.
00

Using the above inequality and the definition of z we have that

R8K|¢*[looa™b"

<R = La
lzllo = R1 + (1—4dK)(ri + DI (r; + 1)
where
O 8o K + — Klplloca™ b
T4k 7T T T+ DR+ D
and
14100
* _ - "
”q ”oo - 1—4d1K'
Then
a"b" *
IWlloo < 4d1[ll5+8da+4Ld1 + (IPllootLllleo) = L.

C(ri+1)I(rp+1)
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Set
U, = {W e Cy: ”W”(a,b) <L*+ 1}

By our choice of Uy, there isnow € dU such thatw = AP;(w), forA € (0,1). Asa
consequence of the nonlinear alternative of Leray—Schauder type [136], we deduce
that N has a fixed point which is a solution to problem (3.57)—(3.59). O

3.7.4 An Example

As an application of our results we consider the following partial hyperbolic
functional differential equations of the form:

ce¥ty—rix+y) ||M(x,y) I

(ex-l—y + e_x_y)(l + ““(x,y) ”) ’

“Dyu)(x,y) = if (x,y) € J :=[0,1] x [0, 1],

(3.66)
u(x,0) = x, u(0,y) =y, x €[0,1],y €[0,1], (3.67)
u(x,y) =x+y% (x,y) e J', (3.68)

where J' := (—o0, 1] x (—o0, 1]\(0, 1] x (0, 1], ¢ =
real constant.
Let

2 ..
m and Yy a pOSlthe

B, = Ju e C((—00,0] x (—00,0],R) :  lim "My, n) exists in R .
@.ml—oc0

The norm of B, is given by

ull, = sup e’ (6, ).
(0.1)€(—00,0]%(—00.0]

Let
E :=10,1] x {0} U {0} x [0, 1],

and u : (=00, 1] x (—oo, 1] — R such that u(, ,, € B, for (x,y) € E, then

lim e’y (0,n) =  lim Ty, )
1©.m =00 1©.m =00

=e 70 qim ey, ) < .
@.ml—oc0
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Hence u(, y) € B, . Finally we prove that

ey lly = K sup{lu(s, 0)] = (s,2) € [0, x] x [0, y]}
+M Sup{”"‘(SJ)”y (s,1) € E(x,y)}a

where K =M = 1land H = 1.
Ifx+6 <0, y+n=<0weget

lucelly = supfluts, 0)] = (s.1) € (=00,0] x (—00, 0]},
andif x + 6 > 0, y 4+ n > 0 then we have
lucenlly = suplu(s. )] : (s.1) € [0, x] x [0, y]}.
Thus forall (x + 0,y + 1) € [0, 1] x [0, 1], we get
e lly = supilus, )] : (5,1) € (=00,0] x (~00,0]}
+ sup{|u(s, t)| : (s,¢) € [0,x] x [0, y]}.
Then
e lly = suptllunlly : (s.1) € E} 4 suplu(s. )| : (s.7) € [0, x] x [0, y]}.
(By. |.1ly) is a Banach space. We conclude that B, is a phase space . Set

ceXty—rx+y) ||M(x,y) I

(ex+y + e_x_y)(l + ““(xy))” 7

f(xv J’vu(x,y)) = (X, y) € [Os 1] X [07 1]

For each u, u € B, and (x, y) € [0, 1] x [0, 1] we have

e u—1lp

LGy ueey) = fx y i) < @ F o)

IA

~llu—1ul 5.
c

Hence condition (3.29.1) is satisfied with £ = % Sincea = b = K = 1 we get

La" b K 1 1

= = - <1,
rm+0)Ir'm+1) cl(r+ 1)+ 1) 2

for each (r1,72) € (0, 1] x (0, 1]. Consequently Theorem 3.29 implies that problem
(3.66)—(3.68) has a unique solution defined on (—oo, 1] x (—o0, 1].
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3.8 Partial Hyperbolic Differential Equations
with State-Dependent Delay

3.8.1 Introduction

The first result of this section deals with the existence and uniqueness of solutions
to fractional order IVP, for the system

(CD(I;M)(xv y) = f(xv Y, M(Pl(X,y,u(x_y)),pz(x,y,u(x_y))))7 if (.X, J’) € Jv (369)
u(x,y) = ¢p(x,y), if (x,y) € J := [~a,a] x [-B.b]\(0,a] x (0,b], (3.70)
u(x,0) = ¢(x), x € [0,a], u(0,y) =¥ (y), y €10,b], (3.71)

where J = [0,a] x [0,b], a.b,a,p >0, ¢ € C(J,R"), f:JxC = R", p;:
JxC — [—-a,a], pp: J xC — [—B, b] are given functions, ¢, 1 are as in problem
(3.1)-(3.3)and C := C([—«, 0] x [-B,0], R").

Next we consider the following system of partial neutral hyperbolic differential
equations of fractional order:

“Dylu(x,y) —g(x,y, Upy (x.,y.,u(x.y)),Pz(xvyﬁu(x.y))))]

= f(X Y (o (x vy pr oy y))s 1 (X, ) € T, (3.72)
u(x,y) = ¢(x,y). if (x,y) € J, (3.73)
u(x,0) = @(x), x €[0,a], u(0,y) =¥ (y), y €[0,5], (3.74)

where f, p1, p2, ¢, @, ¥ are as in problem (3.69)—(3.71)and g : J x C — R" is
a given continuous function.

The third result deals with the existence of solutions to fractional order partial
differential equations

(CD(r)u)(-xs y) = f(xs Y, u(pl(x,y,u(xw),pz(x,y,u(x,y))))v if ()C, y) € J, (375)
u(x,y) = ¢(x,y), if (x,y) € J' 1= [~00,a] x [—00, b]\(0,a] x (0,b], (3.76)
u(x,0) = ¢(x), x €[0,a], u(0.y) =¥ (y). y €0,5], (3.77)

where ¢, V are as in problem (3.69)~(3.71), f : J x B = R", ¢ € C(J',R"), p; :
J x B — (—00,a], pr:J x B— (—o0,b] and B is a phase space .

Finally we consider the following initial value problem for partial neutral
functional differential equations:

¢ D6 [u(x,y) —g(x,y, "‘(pl(x.,y.,u(x.y)),Pz(xﬁyvu(x.y))))]
= f(X. Y (o (v vy pr ey y)s 1 (X, ) € J, (3.78)
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u(x,y) = ¢(x,y), if (x,y) € J', (3.79)
u(x,0) = ¢(x), x €[0,a], u(0,y) = ¥(y), y €[0,b], (3.80)

where f, p1, p2, ¢, ¢,y are as in problems (3.75)—(3.77)and g : J x B — R" is
a given continuous function.

3.8.2 Existence of Solutions for Finite Delay

Definition 3.34. A function u € C, ) := C([—a,a] x [-B,b],R") is said to be
a solution of (3.69)-(3.71) if u satisfies (3.69) and (3.71) on J and the condition
(3.70)on J.

Set R := R(Pl_'/’z_)

= {(p1(s,t,u), pa(s,t,u)) : (s,t,u) € J xC, pi(s,t,u) <0;i=1,2}.
We always assume that p; : J xC — [—«, a], py : J xC — [—p, b] are continuous
and the function (s,?) — us) is continuous from R into C.

Further, we present conditions for the existence and uniqueness of a solution of
problem (3.69)—(3.71).

Theorem 3.35. Let us assume that the following hypotheses hold:

(3.35.1) The f : J x C — R" is continuous.
(3.35.2) There exists k > 0 such that

Il fCxe,y,u)— f(x,y,v)| < kllu—vlc, foranyu, ve C and (x,y) € J.

If
ka'b"
<1,
F(ri+ DI (rp+1)
then there exists a unique solution for IVP (3.69)—(3.71) on [—a, a] x [—f, b].

(3.81)

Proof. Transform the problem (3.69)—(3.71) into a fixed point problem. Consider
the operator N : C, ) — C4) defined by

P(x.y); (x,y) e J,

Xy

N(x.y) = pulx, y) + F(rl)ll“(rz) //(x —s) Ny =)t
0

x f(s.1, u(pl(SstvM(A.t))sPZ(Svtsu(.\'.t))))dtds; (x,y) € J.
(3.82)
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Letv,w € C(yp)- Then, for (x, y) € [-o,a] x [-8, b],
INW)(x,y) = Nw)(x, y)
x oy
; _ oyl _ \n2—1
Snmmm!!WTQ =0

XIS, 2 Vo1 (5,500 02 5.10600) — S (S5 8 Wi (5.0,05.10).2 (5.1, ) [| DS

x )y
k
< x—=8)"" Yy =) v
=T (r) ([([( ) (¥ ) ” (p1(5:8,u(s,1))p2(8.1 (s.1)))

—W(pr (s,t,15.),p2 (5. ) [ A S

— ri—1 r—1
< rrs Ik//@ 917 (= 1> duds,

Consequently,

ING) = Nowlle,, < ——— "y
’ WCer =T s Drm e

By (3.81), N is a contraction, and hence N has a unique fixed point by Banach’s
contraction principle. O

Theorem 3.36. Assume (3.35.1) and the following hypothesis hold:
(3.36.1) There exist p,q € C(J,R4) such that

| fCe,y,wl < p(x,y) +q(x, ) ullc, foreachu € C and (x,y) € J.

Then the IVP (3.69)—(3.71) have at least one solution on [—a, a] x [—f, b].

Proof. Transform the problems (3.69)—(3.71) into a fixed point problem. Consider
the operator N defined in (3.82). We shall show that the operator N is continuous
and completely continuous.

Step 1: N is continuous. Let {u,} be a sequence such that u, — u in C(,p). Let
n > 0 be such that |lu,|| < n. Then
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IN () (x, y) = N(u) (x, y)|

x Yy
< 1 _ ri—1 _ r—1
_—F(r1)F(rz)O/O/|(x 1y — 0y

X “ f(s’ t’ un(pl (S’I?MI'I(A,I))’pz(s’tﬁuﬂ(A,t))))

=SS, 85 oy 5.t g5 2 5.0.0,.00)) | A2

x Yy
< 1 _ r1—l _ rz—l
—F(rl)mz)of 0/ (=)0 =1)

X sup || fCS, 20 tn(or 5.0 02 5.t s 1))
(s,t)eJ

=S (S UGy (5.0.00517).p (5. 05.)) || A DS

x Yy
IfCuncy) = FC s w)lloo -t -
(x =)' (y — 1) 'drds.
0/0/

IA

Ir'(r)I(r2)

Since f is a continuous function, we have

a b | f (. uniy) = fG o uc)) oo

— 0asn — oo.
r'ri+0)Ir(r+1)

IN @) = NW)lloo =

Step 2: N maps bounded sets into bounded sets in C, ). Indeed, it is enough to
show that, for any n* > 0, there exists a positive constant £ such that, for each

u€ By ={ueCup : |lullooc <n*}, wehave | N(u)]oo < €. By (3.36.1) we have
for each (x,y) € J,

x )y
1
N , < , - _ ri—1 —t r—1
IN@E I = It + o [ [ =
0 0
X|| S8, 2, o (5.0 1)),p25.1.0,.0)) | dE DS

x oy
< I+ o [ [ =70 = 0" b naras
0 0

x )y
1 _ r1—l _ rz—l
e TaTar 0/ 0/ (x =57 (5 = 1" g (s.1)
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X |6y (5..005.17).02 50050 | oo 2 A

) 1Plloe . .
—”“(x’”'”r(r)r(r)//( _ 9y — 1)\ deds

lgllcon -1 a1
F(mr(rz)/ / (r =)y =1y deds.

Thus

Ploo + laloo™ 5
Fm+0DIr'm+1)
Step 3: N maps bounded sets into equicontinuous sets in C(, py. Let (x1, y1), (X2, 2)

€ (0,a] x (0,b], x1 < x2, y1 < y2, By+ be a bounded set of C(, ) as in Step 2, and
let u € By«. Then

INWloo = litlloo +

[N () (x2, y2) = N@)(xr, yO I < (s y1) — p(x2, y2) ||

X1 )1

: / [ — )" (2 — 1Y = (1 = )1 — 1) ]
0

T T

x f(s,t, u(Pl(Sqf,u(s.r)),Pz(&tqu(s.r))))dtds

X2 )2

- —1
/(xz - 1(y2 =0 [t ”(Pl(s,tqu(s.r)),pz(s,tqu(s.x))))dtds

X1

1
T T ()

Xy )2

1 . L
g | 6T 0= 0 st s ) s
0

X2 V1

1 - —1
/ (2 = )" 7 2 = LG 1 oy 5 o) o 0500 | dE DS
0

T TeOT )

< (s y1) — 2, y2) |l
[ 2lloo + lIqlloon™
rm+0)Ir'm+1)

1,2 .,

+ X1y = X5y = 200 — x1)" (02 =y

[2y5 (2 — x1)"™" + 225" (y2 — y1)"?

As x1 — X2, y1 — ¥» the right-hand side of the above inequality tends to zero. The
equicontinuity for the cases x; < x» < 0, y; < y» <Oandx; <0 < x3, y1 <
0 < y, is obvious. As a consequence of Steps 1-3, together with the Arzela—Ascoli
theorem, we can conclude that N : C(, ) — Cap). is continuous and completely
continuous.
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Step 4: A priori bounds. We now show that there exists an open set U C C, ).
with u # AN(u), for A € (0,1) and u € 9U. Letu € C(yp).) and u = AN (u) for
some 0 < A < 1. Thus for each (x, y) € J,

x y
— ; _ -l _ -1
U, ) = A ) + 0/ 0/ (=9 =)

X (S5 8 UGy (5,8,5.1) 93 (5,15 1)) ) 2D

This implies by (3.36.1) that, for each (x, y) € J, we have

x )
< ; _ oyl _ \r—l1
e, )1 = e )+ s 0/ 0/ (v =5y 1)

X[p(s.1) + g (s, o (s.t.u4.).0205.0..0) | c]dEds

I2lloo

a'b"
Fri+ DI (rp+1)

< llnGx. I+

x )y
1 _ o
trarog | @ =T =0 g ledrds
0 0

We consider the function t defined by
(x,y) = sup{flu(s,t)||: —a <s <x, =<t <y,0<x<a,0<y<bh}.

Let (x*, y*) € [—a, x] x [=8, y] be such that t(x, y) = [lu(x™*, y*)|. If (x*, y*) €
J, then by the previous inequality, we have for (x, y) € J,

Il 2lloo

a'b”?
rri+1H)Ir'm+1)

T(x,y) < [|uCx, y)I| +

x )y
; _ ri—l1 _ ry—1
+F(rl)1—v(r2) !!(x S) (y Z) q(s,l‘)r(s,t)dtds

21l

e
r'ri+DC(m+1)

< lpe, I+

19 1l00

x
_nrnr _ -l _ -1
I(r)I(r2) ) O/(X T =07 (s, dids.
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If (x*, y*) € J,then 7(x, y) = ||¢| ¢ and the previous inequality holds. By Lemma
2.43 we have

arlbrz
t(x,y) =< (”M(x,y)” T I12lo0 )

rri+DI'(r+1)

19|00 =1 ra—1
b r(rl)r(rz)/ / (r =)0y — )" deds

a" b plleo ) ( a" b ¢l )
< , + =M
= (”“(x M+ rosorm o) \Fo s orm + 0

Since for every (x,y) € J, |luw,yllc < t(x,y), we have
[ulloo = max(fl¢llc. M) := R.

Set
={u € Cup : ullo < R+ 1}

By our choice of U, there is no u € dU such that u = AN (u), for A € (0,1). As a
consequence of the nonlinear alternative of Leray—Schauder type [136], we deduce
that N has a fixed point « in U which is a solution to problem (3.69)—(3.71). ]

Now, we present existence results for the problem (3.72)—(3.74). We give two
results, the first one considered by using Banach’s contraction principle (Theorem
3.38) and the second result is based on the nonlinear alternative of Leray—Schauder
(Theorem 3.39).

Definition 3.37. A function u € C(, ) is said to be a solution of (3.72)—(3.74) if u
satisfies equations (3.72) and (3.74) on J and the condition (3.73) on J.

Theorem 3.38. Assume (3.35.1) and the following hypotheses hold:

(3.38.1) The function g : J x C — R" is continuous.
(3.38.2) There exists a constant ¢y > 0 such that for every (x,y) € J

lgCx,y.u) —g(x,y. M| < cillu=vlc, foranyu, veC

(3.38.3) There exists a constant £ > 0 such that for every (x,y) € J,
”f(xv y?”) - f(xv y,V)” = E”” - V”C, forany u,ve C.

If
tanpn
4ey + <1, 3.83
T T+ Ot 1) (3.83)

then there exists a unique solution for the IVP (3.72)—(3.74) on [—a, a] x [—8, b].
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Proof. Consider the operator Ny : C(4 ) — C(a,) defined by

P(x. ), (x.y)elJ,

p(x,y) + g(x, y, ugx.y))

—g(x,0,ucx0) — g0, y,u0,)) + g(0,0,u)
x y

1 —1 —1
+Tooroy / /(X )"y 0"
0 0

XSS, 1, Uy (s.t.ags)).pa(s.tgey))) DS, (x.y) € J,

Ni(u)(x,y) = (3.84)

We shall show that the operator N, is a contraction. Let v, w € C(, ). Then we have

[N () (x, ¥)) = Ni(w)(x, y)l
= ”g(xv Y, V(x,y)) - g(xv Y, W(x,y))” + ”g(-xs 07 V(X,O)) - g(-xs 07 W(X,O))”
+||g(07 Y, V(O,y)) - g(O, Y, W(O,y))” + ”g(os 07 V) - g(O, Os W)”

Xy
1 // 1 -1
e x —s|" —t|"”
Foara | | oo

XIS 8 Vo1 (5.t.5.0) 025,000 ) — S S5 E Wiy (5,050 025.0..0)) || A2 A

<ci(lvieyy = weenlle + Ivieo) = weeo lle + Ivo,y) —wonllc + 1lv—wllc)

x )y
1 _ ri—1 _ rp—1
e 0/ 0/ (=" (1)

X sup ”f(s’tvV(pl(Sst.,M(A,z)),Pz(S.,t,u(.\v,t))))
(s.0)ed

_f(s, Zv W(pl (S,t,u(s_;)),pz(S,l‘,M(SQ;)))) ||]dtds

<4c1||v = wllj—aalx[-.5]

x )y
e ri—1 r—1
—_— v — _ _ — —1)?7ded
+F(r1)1“(r2) [V — Wll[—a.a1x(—p.5] O/O/(X )Ty —1) s

gxrlyrz
+ Vv —w|= —_Bh]-
T(ri+ DI (2 + 1)” limaaxi=pa)

<A4ci||v = wllj—aa)x[-.5]

Consequently

La" b ” I
V—W|[[— — .
F(rl 1) F(rz 1) [—o,a]x[—B,b]

N0 (e ) — Ny () (o ) | < [4c1 +
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By (3.83), N, is a contraction , and hence N, has a unique fixed point by Banach’s
contraction principle. O

Our second existence result for IVP (3.72)—(3.74) is based on the nonlinear
alternative of Leray—Schauder.

Theorem 3.39. Assume (3.35.1), (3.38.1) and that the following hypotheses
hold:

(3.39.1) There exist p,q € C(J,Ry) such that

If Gyl = p(x,y) +q(x, y)ulle for (x.y) € J andu € C.

(3.39.2) The function g is completely continuous , and for any bounded set B in
Ciap), the set {(x,y) — g(x,y,ui,y)) : u € B} is equicontinuous in
C(J,R"), and there exist constants 0 < dy < %, dy > 0 such that

g,y )l < dillullc + da. (x.y) € J, ueC.

Then the I VP (3.72)—(3.74) have at least one solution on [—«, a] x [P, b].

Proof. Consider the operator N; defined in (3.84). We shall show that the operator
N is continuous and completely continuous . Using (HZ;) it suffices to show that
the operator N, : C, 5y — C(a ) defined by

P (x,y). (x.y) e,
plx,y)
RO
No(u)(x,y) = _ _
2( )( y) F(rl)r(rz) //(X _S)r1 l(y _t)rz 1
0
X f (s, 1, u, (s,t,u(l\_,)),m(s,t,%_,))))dt ds, (x,y) e J,

is continuous and completely continuous . As in Theorem 3.6 [6], we can show that
N, is continuous and completely continuous. We now show there exists an open set
U C Cpy withu # AN (u), for A € (0,1) and u € 9U.

Letu € Cup) and u = AN, (u) for some 0 < A < 1. Then for each (x, y) € J,

u(x, y) =A [M(xv y) + g(-xs J’su(x,y)) _g(xvos M(X,O)) - g(O, yv”(O,y)) + g(0,0,M)

x )y
1 _ r1—l _ rz—l
+F(V1)F(V2)O/ 0/ =)0 =0

XS (S8 (o (5.5 0).2 5t ) )LD ]
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This implies by (3.39.1) and (3.39.2) that, for each (x, y) € J, we have
lu(e, M = [l I+ di(lucenlle + luolle + luonlle + lullc) + 4da
1 [T
trares | e o =0 60 + a6
I'(r)I(r2)
0 0
X[ty 5.5 25 ) | € 1dE s

a"b"”| plleo
Fri+ DI (rp+1)

x )y
1 . e
rroors | e o= a0l learas
0 0

=< ”M(xv Y)” + 4d, + 4d, ”””[—a,a]x[—ﬂ,b] +

We consider the function w defined by
o(x,y) =supfu(s,t): —a <s<x, —B<t<y},0<x<a, 0<y<bh.

Let (x*, y*) € [—a, x] x [-8, y] such that w(x, y) = |ju(x*, y*)||. By the previous
inequality we have, for (x, y) € J,

I ) + 4dy + a"b"| plleo
X,
1= 4q, | M5 2T T+ DI+ 1)

w(x,y) =
1 Fr
_— _ -l -l
+F(r1)F(r2) sz(x S) (y Z) q(ssl)a)(s,t)dtds

a"b”||plloo
)+ 4d
1= aa, | I+t e r e

IA

19 1l00

Xy
_ ri—1 _ n\n2—1
DIESY, 0/ (x =5)"7(y =) w(s. 1)drds

If (x*,y*) € J, then w(x,y) = ||¢|lc and the previous inequality holds. Then
Lemma2.43 implies
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o(x,y) < e )|+ 4o+ — 0Pl
C1-4d T(ri+ D(ry + 1)
gl ([
qlloo . o
1+ //X—S‘ — )27 deds
(1 —4d\) I (r1)I(ry) /) (X ="y —1)
a"'b”|plleo
: 4d
S L

a"b"||qlloo ) —
1 =M.
% ( A ad i+ DI+ 1)

Since for every (x,y) € J, |lux,yllc < @(x,y), we have
lulloo < max{li¢flc, M} := R.

Set
Ur ={u€ Cup): |lulloc < R+ 1}.

The operator N; : U, —» C.p) is continuous and completely continuous. From
the choice of U there is no u € dU, such that u = AN,(u) for A € (0,1). As a
consequence of the nonlinear alternative of Leray—Schauder type [136], we deduce
that N has fixed point « in U}, which is a solution of the IVP (3.72)—(3.74). O

3.8.3 Existence of Solutions for Infinite Delay

Let us start in this section by defining what we mean by a solution of the problem
(3.75)—(3.77). Let the space

Q2 :={u:(—o0,a] x (—00,b] - R" : uwy € Bfor(x,y) € E
and ul; € C(J,R")}.

Definition 3.40. A function u € £2 is said to be a solution of (3.75)—(3.77) if u
satisfies (3.75) and (3.77) on J and the condition (3.76) on J'.

Set R/ ;= R/(PI_’PZ_)
={(p1(s,t,u), pa(s,t,u)) : (s,t,u) € J x B, p;i(s,t,u) <0; i =1,2}.

We always assume that p; : J x B — (—00,a], po : J x B — (—00,b] are
continuous and the function (s, #) —> u(s ) is continuous from R’ into 5.
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We will need to introduce the following hypothesis:

(Cg) There exists a continuous bounded function L : R'(,~ ,7) — (0,00) such
that

Ipenlls < Ls.0)|¢]ls. forany(s. 1) € R'.

In the sequel we will make use of the following generalization of a consequence of
the phase space axioms ([147], Lemma 2.1).

Lemma 3.41. Ifu € $2, then

lusnlls = (M + L)|plls + K sup (0, ),
(6,n)€[0,max{0,s}]x[0,max{0,}]

where

L' = sup L(s,1).
(s,t)ER’/

Our first existence result for the IVP (3.75)—(3.77) is based on the Banach
contraction principle.

Theorem 3.42. Assume that the following hypothesis holds:

(3.42.1) There exists £’ > 0 such that

| fGx.y.u)— f(x,y, V)| <|lu—v|g. foranyu, ve Band (x,y) € J.

If
U'Ka"'b™
<1,
rri+DIC(rm+1)

(3.85)

then there exists a unique solution for IVP (3.75)—(3.77) on (—o0, a] x (—o0, b].

Proof. Transform the problem (3.75)—(3.77) into a fixed point problem. Consider
the operator N : §2 — §2 defined by

P (x, ). (x,y) e J',
x Y
N@ ) = § ) + s [ [=or - or!
0 0
X (S, 8, Uy (5,8,u5.1).p2(5,1,15.1)) ) TS, (x,y) € J.
(3.86)

Letv(.,.) : (—o0,a] x (—oo, b] — R" be a function defined by
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P(x,y). (x,y) e J,

V“”°={uuyxadoEi

Then v(, ) = ¢ forall (x,y) € E. Foreachw € C(J,R") with w(x, y) = 0 for
each (x, y) € E we denote by w the function defined by

07 ('x7y)€j/’

m*”z{quanei

If u(., .) satisfies the integral equation

Xy
— 1 _ r1—l _ rz—l
ute,) = we) + s [ = o=
0 0

X (S, 80 Uy (5,0,5.0)) 925,815, ) A DS

we can decompose u(., .) as u(x, y) = w(x, y)+v(x,y); (x,y) € J, which implies
U(x,y) = W(x,y) + V(x.y), for every (x, y) € J, and the function w(., .) satisfies

Xy
— 1 _ r1—l _ rz—l
“*”‘Faﬁﬁﬁjj“ 90—

X S, W(p (s.t105.00)25.1105.00)) T Vo1 (5,500 02.5.8,15.)) )AL DS

Set
Co={we2: w,y)=0 for(x,y) € E},

and let ||.||(4.,») be the seminorm in Cy defined by

IWll@ey = sup [weplls + sup [wlx, y)ll = sup [wx, p)ll. we Co.
(x.y)€E (x.y)eJ (x.y)eJ
Cy is a Banach space with norm ||.| ). Let the operator P : Cy — Cj be
defined by

Xy
_ 1 _ ri—1 _ ry—1
(P) = s | =9 o =0
0 0

X S, 8 W(py (5,000 2 (5.10s.00)) T Vo1 (5.1 2.5.105.11)) VA2 DS,
(3.87)

for each (x,y) € J. The operator N has a fixed point if and only if P has a
fixed point, and so we turn to proving that P has a fixed point. We shall show that
P : Cy — Cy is a contraction map. Indeed, consider w, w* € Cy. Then we have for
each (x,y) e J
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[Pw)(x,y) = POWH)(x, »)|

x Y
< ; _ -l _ -1
—rmﬂva!!“ 9y 1)

XSS 8 Wy 5.t,5.) 02 (5,000 T Vo (5.t ), (5.t 1))

_f(S’ r,w* (Pp1(8,8,(s,0))p2(S,1 U(s.1))) + Vo (SJqu(s.r)),Pz(SJqu(s.r))))”dtds

x Yy
< 1 _ -l _ \n—1ly/
—Fﬁﬁﬂﬁjf“ 91—

X Wy (5,8,15.0),02(5,tt5.10) = W (1 (5105000215, | AL A

x Y
%
< _ ri—1 —t r—1|55 X dtd
< F(rl)F(rz)O/O/(x )Y =D [ Wsay — W [dids

< _ -l ry—1
—rmﬂv»//“ 91— 1)

x o osup [[W(s, 1) —w*(s,1)||deds
(s,1)€[0,x]x[0,y]

y

UK

=TT — )"y — )2 deds||w — w* drds.
_FMHWﬁOZQ )" = 1) deds 37 — W . drds

Therefore

UKa"b"
T+ D) + 1

[P(W) = PW*)l(ap) < W —w*ll @)

and hence P is a contraction. Therefore, P has a unique fixed point by Banach’s
contraction principle. O

Now we give an existence result based on the nonlinear alternative of Leray—
Schauder type [136].

Theorem 3.43. Assume (Cy) and the following hypothesis:
(3.43.1) There exist p,q € C(J,R4) such that

If ey, wll < p(x.y) +qCx. y)lulls for (x.y) € J and eachu € B.

Then the IVP (3.75)—(3.77) have at least one solution on (—oo, a] x (—oco, b].
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Proof. Let P : Cy — Cj defined as in (3.87). We shall show that the operator P is
continuous and completely continuous.

Step 1: P is continuous. Let {w, } be a sequence such that w, — w in Cy. Then

Xy
P05 3) = PO = s [ [ ==
0 0

X”f(s’ t, Wn(o1 (5.2t (s5,0)) 02(5 ot 5.0))) + Vﬂ(pl(S.,t,un(.u)).,Pz(SJ.,Mn(A,z))))

=S LW (o (5.0 )2 5.t ts.00)) T Vo1 (510510 02.5.1005.)) [T DS

x )y
1 _ r1—l _ rz—l
o T 0/ 0/ (=) (y = 1)

X f ot Wagsy + Vi) = S8, 8, Wis.y + Vis.y)[ldeds.
Since f is a continuous function, we have

Xy fC Wiy +vaen) = fGa W) Hvie))lleo
Fri+DIC@+1)

- a' b f( o Wa .y Fvaey) = FG W)y Fve)lleo
- Fri+DC@2+1)

— 0asn — oo.

1P (wn) = PW)lleo =

Step 2: P maps bounded sets into bounded sets in Cy. Indeed, it is enough to show

that, for any n > 0, there exists a positive constant £ such that, foreachw € B, =

{fweCo: W@y <n}, wehave | P(W)]|eo < £.
Lemma3.41 implies that

”W(s,t) + V(s,l‘)“B =< ||W(S,t)||8 + ”V(SJ)”B
< Kn+ K|[¢©0,0)[ + (M + L)|ll5.

Set
n* = Kn+ K|¢0,0)] + (M + L')|¢] 5.

Letw € B,. By (C2) we have for each (x, y) € J,
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x oy
1 _ ri—1 _ ry—1
ummummsfavﬁﬁfjw 9 -0

XIS (S0 8 Wy (5.t,5.0) 025,000 F Vipr 5.ttt (5. ) | dE DS

1

x Y
< — _ ri—1 -l
T I(r)I(r) O/O/(X STy =) p(s, 1)deds

x )
1 _ ri—1 _ ry—1
+ﬁ$ﬁ5!!“3)(y” 465.1)

X Wy (5,8,5.1), 02 (5. 1t1s00) T Vo (5.1, (5.t ) | BAE DS

T P
< —F(rl)F(rz) J O/(x )TN (y — )2 deds

x )y
g lloon™ / =1 -1
_ x—s)" — )27 drds
nmmmoo( =D

Pl + gl e
T I'(n+1D)I'(m+1)

Step 3: P maps bounded sets into equicontinuous sets in Cy. Let (x1, y1), (x2, y2) €
(0,a] x (0,b], x1 < x2, y1 < y2, B, be abounded set as in step 2, and let w € B,,.
Then

[ P(w)(x2, y2) — P(w)(x1, y1)||
RS

1 /mrﬂw*@r4w*—urww*m—nmﬂ
0

< —_
—r(r)I(r)

X f(s, 1, up, (SJ-,M(A,z)),pz(s,t.,u(A,t))))dtds

1 X2 )2
_ r1—l _t rz—l
* oras | [ 02020
X1 )1

x f(s,t, W(Pl(Sqf,u(s.r)),Pz(SJqu(s.r))) + V(Pl(Sqf,u(s.r)),Pz(SJqu(s.r))))dtds ”
X1 )2
/(xz _ S)”_l(yz _ t)rz—l

1

1
+mmmm0
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X || f (s, t’W(Pl (5:2,u(s,0))p2(8.1U(s.1))) + Vo (SJqu(s.r)),Pz(SJqu(s.r))))”dtds

X2 )1

1 X
(2 —5)"" (2 —0)”!

+mmmmx0

X || f (s, t’W(Pl (5:2,u(s,0))p2(8.1U(s.1))) + Vo (SJqu(s.r)),Pz(SJqu(s.r))))”dtds

X1 V1
1Pl + Idllcon T
s—ﬁmﬁa—!!mln (3 —1)

— (x2 — )" (y2 — 1) deds

+ ”p”OO + ”q”OOn//(x S)l] l(yz t)lz ldtds

r'(r)I(ry)
X1 )N
1Plloo + lglleon [ [
Plloco dlloc ri—1 ry—1
—_— - —t drd
o !/m $1 (v — 1) deds
N

X2 V1

||p||oo+||q||oon// -1 el

- —q) —t n drd

Frerey )T
X1

lPlloc + g lloon r
< 252 (02 — x1)" + 2x5" (y2 — y1)"
= Fh+ DI+ 1) 22 e =2 3 (2= 1)

+ X'y = X'y = 200 — x) (2 — y1)"™.

As x; — X3, y1 — > the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases x; < x» < 0, y; < y» < 0Oand x; < 0 < xp,
y1 < 0 < y, is obvious. As a consequence of Steps 1-3, together with the Arzela—
Ascoli theorem, we can conclude that P : Cy — Cj is continuous and completely
continuous.

Step 4: A priori bounds. We now show there exists an open set U C C, with
w # AP(w), for A € (0,1) and w € dU. Let w € Cy and w = AP (w) for some
0 < A < 1. Then for each (x, y) € J,

x y
— ; _ -l _ -1
) = iy | [0
0 0

XS (S5 8 UGy (5,8,5.11), 92 (5,1,15.)) ) A DS
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This implies by (3.43.1) that, for each (x, y) € J, we have

x Yy
1 ri—l1 _ \n—l1
e = T 0/ 0/ (=50 = 0 [t

+q (s, t) ”W(m (s.8,1(5.0)) 2 (8,8 u(s.6))) + V(o1 (s.tugsy)p2(s.tugs.r))) ”B]d[ds

[Plloca™b"™
T+ DI+

x y
1 _ _ _
+m//()€—s)rl Yy =027 q(s, )Wy + Vi llpdrds.
00

But

Wiy + v lls < Weolls + Ivenlls
< Ksup{w(s,7) : (5,7) € [0,s] x [0, 7]}
+(M + L")||pllz + K¢ (0,0)]. (3.88)

If we name z(s, ¢) the right-hand side of (3.88), then we have
Wity + v lls < 2(x, y),
and therefore, for each (x, y) € J, we obtain

(e, )| < P lecd” 57
’ - F(r1+1)F(r2+1)

Xy
; _ oyl _ -1
+F(r1)1"(r2) O/O/(X )Ny =) g (s, t)z(s, t)deds.

(3.89)
Using the above inequality and the definition of z for each (x, y) € J we have

Kl plloca™b"

20,0 = (M +L)Igls + K900+ Fro e

Klplloo

Xy
- - - _ 1‘1—1 _ r2—1
T (r) J O/(X TNy — 1) z(s, t)deds.
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Then by Lemma2.43, there exists § = §(r1, r2) such that we have

- 191l 0o -1 et
”deH_R+%Y)FML//@ )Ny — ) ' Rdrds,

where

K| plloca"b"

=M + L)¢lls + K[¢0,0)] + L(ri+ D02+ 1)

Hence RSK llooa’ b
q OOa —_—
<R =M.
Izlloo = NRCESRCESS

Then, (3.89) implies that

11b12

o < o+ M|qlle) := M*.
ko = oo (7 1ee + Ml lo)

Set
={weCo:|wlap <M*+1j}.

P : U — C, is continuous and completely continuous. By our choice of U, there is
now € dU such thatw = AP (w), for A € (0, 1). As a consequence of the nonlinear
alternative of Leray—Schauder type [136], we deduce that N has a fixed point which
is a solution to problem (3.75)—(3.77). ]

Now we present two similar existence results for the problems (3.78)—(3.80).

Definition 3.44. A function u € £2 is said to be a solution of (3.78)—(3.80) if u
satisfies (3.78) and (3.80) on J and the condition (3.79) on J'.

Theorem 3.45. Assume that (3.42.1) holds and moreover (3.45.1) There exists a
nonnegative constant ¢, such that

g, y,u) —g(x, y,v)|| < c2llu—vls, foreach (x,y) € J, andu, v € B.

If

E/ rlbrz
K |4 1 .
[”+rm+nrm+n}<’ G20

then there exists a unique solution for IVP (3.78)—(3.80) on (—o0, a] x (—o0, b].
Proof. Consider the operator N; : £2 — §2 defined by
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P(x. ). (x,y)eJ’,
w(x, y) +g(x, ¥, uw.y) —g(x,0,ux0))
—g(0, J’v”(Oy)) +g(0 0, u0,0))

ri—l1 rp—1
rm)r(rz)//(x_s)1 =07

St ugp, (s,t,um)>,pz<s,r,u(s.,>>>)df ds, (x,y) € J.

Ni(u)(x,y) =

In analogy to Theorem 3.42, we consider the operator P; : Cy — Cj defined by

Pi(x,y) = g(x, Vs Wry) + V(x,y)) —glx, 0, w(x0) + V(X,O))
—8(0,y,W(,y) + vo.5) + £(0,0, W0 + v©,0)

1 Fr
L N PRS-
I (ri)I(r2)
0 0
XSS 8 W(p (5.5 2 5.10(5.1)))
V(o1 (5,105 025,10 ) )AEAS, (X, y) € J.

We shall show that the operator P; is a contraction. Let w, wy € Cy, then following
the steps of Theorem 3.42, we have

[P (w)(x, ) = Pr(ws)(x, ») |l
< [lgx, ¥, Wiy + Vi) — (X, ¥ Wax ) + V)l
+1g(x, 0, Wir0) + vix0) — &(x,0, Wi (x 0) + Vo)l
+180, y. W,y + vo.y) — 80, y. Wx(0y) + vl
+11£(0,0,w +v) — g(0,0, Wi (0,0) + v0.0) |l

R
1 _ ri—1 _ r—1
+rmﬂvﬁ!!“ A

XSS 8 Wy 5.t,15.0) 02 (5.05.00) T Vipr (5.t ). (s.ts.1)))

_f(s, z, W_*(pl (8.8.U(s5,1))-02 (8,1, U(s.1))) + V(Pl (S,tqu(s_r)),PZ(Sqf,M(s,;)))) ||dtds

x )y
1
<40 Klw —wa _ -l _Zrz—l
< 40K T =T ln + oo | =9 o0
0 0

x0' K||w — wy ||d¢ds.
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Therefore

la" b
F'ri+ DI (p)+1

MMM—HWQMMSKPq+ yW—WMw

which implies by (3.90) that P; is a contraction. Hence P; has a unique fixed point
by Banach’s contraction principle. O

Our last existence result for the IVP (3.78)—(3.80) is based on the nonlinear
alternative of Leray—Schauder type.

Theorem 3.46. Assume (Cy), (3.42.1), (3.43.1), and the following conditions:

(3.46.1) The function g is continuous and completely continuous, and for any
bounded set D in §2, the set {(x,y) — g(x,y,ux,y : u € D}, is
equicontinuous in C(J,R"),

(3.46.2) There exist constants dy, d> > 0 such that 0 < d|K < % and

lgCe.y.u)|| <dilullg+dr, (x.y)eJ., uebB.

Then the IVP (3.78)—(3.80) have at least one solution on (—oo, a] x (—oco, b].

Proof. Let Py : Cy — C defined as in Theorem 3.45. We shall show that the
operator P; is continuous and completely continuous. Using (3.46.1) it suffices to
show that the operator P, : Cy — Cj defined by

Py(w)(x,y) = g(x, ¥, W,y + Vix,y) — 8(x, 0, W 0) + V(x,0))
—g(0, y,W(o.y) + vo.y)) + &(0,0,W0,0) + v0.0))

x )y
1 _ r1—l _ rz—l
+FMng!!“ =0

Xf(s? t, W(Pl (8.8.u(s5,1))-P2(8:L.U(5.1))) + Vo (SJqu(s.r)),Pz(Sqf,u(s.r))))dtds7

is continuous and completely continuous . This was proved in Theorem 3.36. We
now show there exists an open set U € Cy with w # AP,(w), for A € (0,1)
and w € dU. Letw € Cy and w = Apy(w) for some 0 < A < 1. Then for each
(x.y) e,

w(x,y) = Ag(x, ¥, W y) + Vi) — (X, 0, W(x.0) + V(x.0)
—g(0,y, W) + Vo) + &(0,0,w0,0) + Vo)l

x Yy
A’ _ ri—1 _ -1
+FmMVﬁ!!“ ST =D

xf(s, [’W(Pl (8.8.,u(s5,1)) P2 (8,1, U(s.1))) + Vo (S,tqu(s.r))qu(&hu(s.r))))dl‘ds’
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and

[ 2llooa™ b"
Fri+ DI (rp+1)

w(x, I = 4di|[Wwey) +vieplls +

x oy
1 _ _ _
+m//()€—s)” Yy=0)"""q(s, D) [Ws. Vsl pdids.
00

Using the above inequality and the definition of z we have that

R8K||g™ [|looa™ b

<R =1L,
l2lloo = Ry + (1—4d,K)[(ri + DI (r2 + 1)
where : Kl pllooa b
p ooal T
R =—— |84K ,
! 1—4d1K[ At T A DI+ 1)}
and lal
* _ qllco
4"l = =45 %
Then
4d 8d,+4Ld arbr L 7
< = .
IWlloo = 419158 4L+ e (Iplloe + Lllg o)
Set

Ui ={weCo:|[wlapn <L+ 1}

By our choice of Uy, there is now € dU such thatw = AP,(w), forA € (0,1). Asa
consequence of the nonlinear alternative of Leray—Schauder type [136], we deduce
that N; has a fixed point which is a solution to problems (3.78)—(3.80). O

3.8.4 Examples

3.8.4.1 Example 1

As an application of our results we consider the following fractional order hyper-
bolic partial functional differential equations of the form:

lu(x —o1(u(x,y)),y —oa(u(x, y))lg + 2
10e¥ 0 H4(1 + Ju(x — o1 (u(x, ), y — oa(u(x, y)|)’
if (x,y) €[0,1] x [0, 1], (3.91)

(‘Dou)(x.y) =
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u(x,0) = x, u(0,y) = y* x €[0,1]. y €[0,1], (3.92)
u(x,y) = x +y2 (x,y) € [1,1] x [-2,1]\(0, 1] x (0, 1],  (3.93)
where o1 € C(R, [0, 1]), 02 € C(R, [0, 2]). Set
pi(x.y,9) = x —01(¢(0.0)), (x,y,9) € J x C([-1,0] x [-2,0],R),
p2(x,y,9) =y —02(¢(0,0)), (x,y,¢) € JxC([-1,0] x[-2,0],R),

_ lp|+2
SO = o (e

(x.y) € [0,1]x[0. 1], ¢ € C([~1,0] x [-2,0], R).

For each ¢, ¢ € C([-1,0] x [-2,0],R) and (x, y) € [0, 1] x [0, 1] we have

1

W”‘P —9llc.

| f(x,y,90) = f(x,y,9)] <

1

Hence conditions (3.35.1) and (3.35.2) are satisfied with k = Toet" We shall show
e

that condition (3.81) holds with @ = b = 1. Indeed

ka b 1
= 1,
T+ DI+ 106 T(h+ DIh+ 1)

which is satisfied for each (r,72) € (0, 1] x (0, 1]. Consequently, Theorem 3.35
implies that problems (3.91)—(3.93) have a unique solution defined on [—1, 1] x
-2, 1].

3.8.4.2 Example 2

Consider the following fractional order hyperbolic partial functional differential
equations of the form

lu(x —o1(u(x,y)), y —oa(u(x, y)))|
10e¥ 0 H4(1 + Ju(x — o1 (u(x, ), y — oa(u(x, y)|)’
if (x, y) €[0,1] x [0, 1], (3.94)

(“Dou)(x,y) =

u(x,0) = x, u(0,y) =y x €l0,1], y €[0,1], (3.95)
u(x,y) =x+y% (x,y) € [-1,1] x [-2,1]\(0, 1] x (0,1],  (3.96)

where 01 € C(R,[0,1]), oo € C(R,]0,2]). Theorem3.36 implies that problem
(3.94)—(3.95) has at least one solution defined on [—1, 1] x [-2, 1].
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3.8.4.3 Example 3

Consider now the following fractional order hyperbolic partial neutral functional
differential equations of the form

C r 1
Do (“(x’ V) = Gt (1 T ulx — o1 (a(x9)).y —oaalx, y)))n)
a0y (u(x. ). y — 2. )| + 2
10 (1 + [u(x — 01 (u(x ). y — o2(u(x. y))))
if (x,) € [0,1] x [0, 1], (3.97)

u(x,0) = x, u(0,y) = y%, x €[0,1], y €[0,1]. (3.98)
u(x,y) = x +y2, (x,y) € [1,1] x [-2,1]\(0, 1] x (0, 1],  (3.99)

where 01 € C(R,[0,1]), oo € C(R,][0,2]). We can easily show that hypotheses
(Hf)) — (H.L) are satisfied and condition (3.83) holds with a = b = 1.
Consequently, Theorem 3.38 implies that problems (3.97)—(3.99) have a unique
solution defined on [—1, 1] x [-2, 1].

3.8.4.4 Example 4

We consider now the following fractional order partial hyperbolic differential
equations with infinite delay of the form:

x+y—y(x+y)
(“Dou)(x,y) = :iy_’_ﬁ
lu(x — o1 (u(x, y)), y — oa(u(x, y)))|
1+ |u(x — o1 (u(x, ), y — o2 (u(x, y)I’

if (x,y) €[0,1] x [0, 1], (3.100)

u(x,0) = x, u(0,y) = y* x €[0,1], y € [0, 1], (3.101)
u(x,y) = x +y% (x.y) € (=00, 1] x (=00, 1]\(0. 1] x (0.1].  (3.102)
where J := [0,1] x [0,1], ¢ = m y a positive real constant, and

01,00 € C(R,[0,00)). Let B, be the phase space defined in the Example of
Sect.3.7. Set

pl(-xsys(p) = X—O’l((p(0,0)), (xvva) €J x B)/v

p2(xv va) =y _0—2(¢(070))s ()C, Vs (p) €J x By’
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ce¥ Tyt )
@ + e ) (1 + o))’
For each ¢, ¢ € B, and (x, y) € [0, 1] x [0, 1] we have

fx,y.0) = (x,y) €[0,1] x[0,1], ¢ € By.

1
[f(x.y.0) = f(x.y.9)| < ;Ilfp —olly-

1
Hence condition (3.42.1) is satisfied with £’ = —. Sincea = b = K = 1 we get
c
Kla"b”K 1 1

= =-<1,
r'm+0O)Ir'(r+1) '+ D0F+1) 2

for each (ry, ;) € (0, 1] x (0, 1]. Consequently, Theorem 3.42 implies that problems
(3.100)—(3.102) have a unique solution defined on (—oo, 1] x (—o0, 1].

3.8.4.5 Example 5

Consider the following partial neutral functional differential equations of the form:

C r 1
Dy (”(x’ y) - Ger ) (1 + [u(x — o1 (u(x, ), y — o2 (ulx, y)))l)
e u(x — oy (u(x, ). y — oa(u(x. y)))|
1+ Ju(x —o1(u(x,y)), y — oz (u(x, y))|
if (x,y) € [0,1] x [0, 1], (3.103)

u(x,0) = x, u(0,y) = y% x €[0,1], y €[0,1], (3.104)
u(x,y) = x +y% (x.y) € (oo, 1] x (o0, 1]\(0. 1] x (0. 1], (3.105)

where 01,02 € C(R, [0, 00)). Let B := By —o. Set

p1(x,y,9) = x —01(¢(0,0)), (x,y,¢) €J xB,
p2(x,y,9) =y —02(¢(0,0)), (x,y,9) €J xB,

ex+y+2|(p|
S, y,9) = —-—, (x,y) €[0,1] x[0,1], p € B
1+ o]
and
1
gx,y,9) =

Ber ) (1 + |o])’
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For each ¢, ¢ € Band (x, y) € [0, 1] x [0, 1] we have

1

@Hfﬂ —9lls.

lg(x,y,90) —g(x,y,9)| <

1
Hence condition (3.45.1) holds with ¢, = 32
e
It is clear that condition (3.42.1) holds with £ = e%. Sincea = b = K = 1 we
get
Vah” K
] <
F(n+1)I'(rn+1)
for each (11, 2) € (0, 1] x (0, 1]. Consequently, Theorem 3.45 implies that problems
(3.103)—(3.105) have a unique solution defined on (—oo, 1] x (—o0, 1].

K[4c, + 1,

3.9 Global Uniqueness Results for Partial Hyperbolic
Differential Equations

3.9.1 Introduction

In this section, we provide sufficient conditions for the global existence and unique-
ness of some classes of fractional order partial hyperbolic differential equations.
Firstly, we present a global existence and uniqueness of solutions to fractional order
IVP, for the system

“Dou)(x,y) = f(x,y,uixp)s if (x,¥) € Joo, (3.106)

u(x, y) = ¢(x, ), if (x,) € Joo, (3.107)

u(x,0) = ¢(x), x € [0,00), u(0,y) =¥ (y), y €[0,00),  (3.108)

where Joo = [0,00) x [0,00), @, B > 0, Joo 1= [—a,00) x [=B, 00)\(0, 00) x
(0,00), f 1 JoxC = R", ¢ € C(Joo,R"), ¢, ¥ : [0,00) — R", are given
absolutely continuous functions with ¢(x) = ¢(x,0) and ¥ (y) = ¢ (0, y) for each

x,y €]0,00) and C := C([—,0] x [-f,0]). If u € C([—, 00) X [, 00),R"),
then for any (x, y) € Joo define u(, ) by

Uy (s, 1) =ulx +s,y + 1), for (s, 1) € [, 0] x [-8,0].

Next we consider the following IVP for partial neutral functional differential
equations with finite delay of the form:

‘D (u(x, y)—g(x,y, u(x,y))> = f(x,y,u@xy)), if (x,y) € Jo, (3.109)
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u(x,y) = ¢(x,y), if (x,y) € Joo, (3.110)
u(x,0) = ¢(x), x €[0,00), u(0,y) = ¥(»), y €[0,00), (3.111)

where f, ¢, ¢, are as in problems (3.106)—(3.108) and g : Joo x C — R"is a
given function. The third result deals with the existence of solutions to fractional
order partial hyperbolic functional differential equations with infinite delay of the
form

(“Dou)(x,y) = f(x,y,uex p)s if (X, ) € Joo, (3.112)
u(x.y) = ¢(x,y): if (x,y) € JL, (3.113)
u(x,0) = ¢(x), x € [0,00), u(0,y) =¥ (y), y €[0,00),  (3.114)

where ¢, ¥ are as in problems (3.106)—(3.108) and JZO = R?\(0, 00) x (0,00), [ :
Joo x B — R", ¢ € C(J5,R") and B is a phase space. We denote by u(y ) the
element of 13 defined by

Uy (s, 1) =ulx + 5,y +1); (5,1) € (—00,0] x (=00, 0].

Finally we consider the following initial value problem for partial neutral functional
differential equations with infinite delay :

CD(S(M(X’y) _g(x’yﬂ/l(x,y))) = f(x,y, Ux,y)), if (x,y) € Joo. (3.115)

u(x,y) = (x,y), if (x,y) € JL, (3.116)
u(x,0) = @(x), x € [0,00), u(0,y) = ¥(»), y € [0,00), (3.117)

where f, ¢, ¢, ¥ are as in problem (3.112)—(3.114)and g : Joo X B — R" is a given
continuous function.

Let X be a Fréchet space with a family of seminorms {|| - ||, }»en. We assume that
the family of seminorms {|| - ||, } verifies:

Ilxllt < llxll2 < lxllz < ... foreveryx € X.

Let Y C X, we say that Y is bounded if for every n € N, there exists ‘M, > 0 such
that o
Iylln <M, forally €Y.

To X we associate a sequence of Banach spaces {(X”, || - ||»)} as follows : For
every n € N, we consider the equivalence relation ~, defined by : x ~, y if and
only if ||x — y||, = O for x,y € X. We denote X" = (X]|~,, | - ||l») the quotient
space, the completion of X" with respect to || - ||,. To every ¥ C X, we associate
a sequence {¥"} of subsets Y" C X" as follows : For every x € X, we denote
[x]. the equivalence class of x of subset X” and we defined Y" = {[x], : x € Y'}.
We denote Y”, int, (Y") and 9, Y", respectively, the closure, the interior, and the
boundary of Y” with respect to | - ||, in X”. For more information about this subject
see [127].
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Definition 3.47. Let X be a Fréchet space . A function N : X —> X is said to be
a contraction if for each n € IN there exists k,, € (0, 1) such that

IN@) — NW)|lx < knllu—v]|, forallu,ve X.

Theorem 3.48. [127] Let X be a Fréchet space and Y C X a closed subset in X.
Let N : Y — X be a contraction such that N(Y') is bounded. Then one of the
following statements holds:

(a) The operator N has a unique fixed point.
(b) There exists A € [0,1), n € Nandu € 0,Y" such that |u — AN (u)|, = 0.

3.9.2 Global Result for Finite Delay

For each p € N we consider following set C, = C([—«, p] x [-8, p]. R") and we
define in Coo := C([—, 00) X [—f, 00), R") the seminorms by

lull, = sup{flu(x, )| : —« <x <p, =B <y < p}.

Then Co is a Fréchet space with the family of seminorms {||u|,} pen.
Let us start by defining what we mean by a solution of the problem (3.106)-
(3.108).

Definition 3.49. A function u € Co whose mixed derivative Diy exists and is
integrable is said to be a solution of (3~. 106)—(3.108) if u satisfies (3.106) and (3.108)
on J and the condition (3.107) on Joo.

Further, we present conditions for the existence and uniqueness of a solution of
problems (3.106)—(3.108).

Theorem 3.50. Let Jy := [0, p] x [0, p]; p € N. Assume that

(3.50.1) The function f : Joo X C — R" is continuous
(3.50.2) Foreach p € N, there exists [, € C(Jo, Ry) such that for each (x,y) €
Jo

||f(x,y,u)—f(x,y,v)|| =< lp(xvy)”u_v”(:v foreaCh u, ve C
If
[* pritn
p? <1,
rri+DIC(rm+1)

(3.118)

where

15 = sup Ip(x,y),
(x.y)€Jo
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then there exists a unique solution for IVP (3.106)—(3.108) on [—a, 00) X [—f, 00).

Proof. Transform the problems (3.106)—(3.108) into a fixed point problem. Con-
sider the operator N : Co, — C defined by

¢(X,y), (xy)’)e-]oo’
p(x, y)
N@)(x,y) = Lo
+m / /(x — )Ty = )2 (s, 1 ugsry)deds, (x,y) € Jo.
00

Let u be a possible solution of the problem u = AN () for some 0 < A < 1. This
implies that for each (x, y) € Joy, we have

x )y
A
) = Al 9) + s / / (r =) 0 = 1) (s 1, ugey)dids.
0 0

This implies by (3.50.2) that

f*pr1+r2
Fri+0)I'(rp+1)

lluCe. M < Nl )+

x

1
- _ -l —t rz—ll .t X drd 7
+F(r1)1“(rz)0/0/()C )T =07 (s, O llugs.p e deds

where

fr= sup [ fCx.y.0).

(x,y)€Jy

We consider the function t defined by
‘C()C,y) = Sup{”M(ssZ)” =S =X, _ﬂ =r=y x,y€ [Os p]}

Let (x*, y*) € [—a, x] X [—8, y] be such that t(x, y) = [lu(x™*, y*)|. If (x*, y*) €
Jo, then by the previous inequality, we have for (x, y) € Jo,

f*prl-l-rz
'ri+ DL+ 1)

luCe, M < Ml )+

X )
; _ oyl _ l‘z—ll
+1"(r1)1-V(r2) !!(‘x S) (y t) p(S,l)‘L'(S,l)dtds.

(3.119)
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If (x*,y*) € Joo. then 7(x,y) = |/¢]lc and the previous inequality holds. By
(3.119) we obtain that

f*prl-l-rz
T(x, < X, +
(x,y) < llpCx, NCESYACE)

y
—1 ri—1 _ -1
+F(r1)F(r2) O/O/(X_S) (y =02 (s, 0)(s, )drds

f*prl-l-rz
< X, +
< @ NCESYACE)

_ ri—1 _ \r—l1
F(rl)lﬂ(rz)//()C T =07 e (s, nydeds,

and Lemma 2.43 implies that there exists a constant § = §(ry, r2) such that

o) < (udy + L il )(1+ ol )
)= "T T+ DI + 1) [+ DI+ 1)
=M,.

Then from (3.119) we have

f* ri+r

Mpl;
+
Fri+DICr+1) r'ri+DC(m+1)
M.

leell, = llpell, +

Since for every (x,y) € Jo, |lux,yllc < t(x,y), we have

lull, < max(ll¢lc. M) == R,.
Set

U={ueCx:|ul, <R,+ 1forall p e N}.

We shall show that N : U — C,, is a contraction map. Indeed, consider v,w € U.
Then for each (x, y) € Jy, we have

INW(x. y) = Nw)(x. )l

1 ri—1 _ -1 _
fF@ﬁﬂﬁ!!“‘” (= 512 v600) = .10 e
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x )y
1
< —_— — "y =)l Jt s1) — Wis drd
_F(rl)F(rz)O/O/(x )Y =0 g (5, D) Ivis.ry — Wi llcdids

l * o r1+12

T I'(n+ DI+ 1)

v —=wlp.

Thus

ri+r;
lp pitn
r'(n+1D)I'(rn+1)
Hence by (3.118), N : U — C,, is a contraction. By our choice of U, there is no
u € 9,U" such that u = AN (u), for A € (0, 1). As a consequence of Theorem 3.48,
we deduce that N has a unique fixed point # in U which is a solution to problem
(3.106)—(3.108). O

INW) = NW)l, = v =wlp.

Now we present a global existence and uniqueness result for the problems
(3.109)—(3.111).

Definition 3.51. A function u € C([—«a, 00) x [—f, 00), R") is said to be a global
solution of (3). 109)—(3.111)if u satisfies (3.109) and (3.111) on J~, and the condition
(3.110) on Jo.

Theorem 3.52. Assume that (3.50.1), (3.50.2): and the following condition hold

L such

(3.52.1) For each p = 1,2,..., there exists a constant ¢, with 0 < ¢, <

that for each (x,y) € Jy we have
lgCx,y,u) —gx, .V <cpllu—v|, foreachu,v e C.

I
l*prl +r

4e, + P <1,
P+ D+ 1)

then there exists a unique solution for IVP (3.109)—(3.111) on [—a, 00) X [—f, 00).

Proof. Transform the problems (3.109)—(3.111) into a fixed point problem. Con-
sider the operator N; : Coo — C defined by

P(x, ). (x,y) € Joo.
u(x,y) + g(x, y, ux.y) — g(x,0,uc.0)
—g(0, J’v"‘(Oy)) +g(0 0, u(0,0))

+ e / / =9t — o

xf(s,t,u(s,,))dtds, (X, y) € Joo,

Ni(u)(x,y) =
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In order to use the nonlinear alternative, we shall obtain a priori estimates for the
solutions of the integral equation

u(x,y) = A(u(x, y)+g(x, y,u.y)—g(x, 0, ui.0)—g(0, y,u0.,))+g (0,0, u0,0)
A Fr
- _ ri—1 —t ry—1 ,t, dtd ,
TS 0/ 0/ (6 =) (0 = 077 (st drds

for some A € (0, 1). Then using (3.50.1), (3.50.2), (3.52.1), and (3.119) we get

f*pr1+r2
rri+1H)Ir'm+1)

g Ce, vy uie )1+ (e, 0, ue0) 141180, v, )l
+11£(0,0, u0.0))ll

x oy
; _ -l _ -l
+F(rl)1—v(r2) !!(x S) (y Z) lp(s,t)f(s,t)dlds,

luCe. M < Nl I+

then we obtain

f* 1'1+r2
Fri+ DI+ 1)
+acpt(x, y)+lg(x. ¥, 0)+g(x,0,0)[[+]g(0, y,0)[|+]£ (0, 0.0

ri—1 _ -1
m//(X—S) (y =) (s, 1)deds. (3.120)

lluCe, M < Ml )+

Replacing (3.120) in the definition of 7(x, y) we get

f*pr1+r2
4g*i|
rri+1H)r'm+1)

T(x,y) =

L [nu(x,y)n v

_ ri—1 _ n\n—1
F(rl)r(rz) /(x S) (y t) T(S t)dldS
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Whelreflv;‘7 = 1—I+cp and g, = ( st;le)] llg(x,y,0)|. By Lemma 2.43, there exists a
x.y)€dy
constant § = §(ry, rp) such that

frpnte .
4
1—dc, [”“”” TR gﬂ}

§T*
1+ P =D,. 3.121
8 [ TG+ DI(rs + 1)} . G-12D)

Then from (3.120) and (3.121) we get

Izl <

f*pr1+rz
r'nn+1D)I(rn+1)
D
Tri+DC(r+1)°

leell, < llpallp + +4g,

+4c, D)y +

Since for every (x, y) € Jo, u,yllc < t(x,y), we have
lull, < max(igllc, Dy) := Rj.

Set
U ={uecCo:llul, <R+ lforallp=12,...}

Clearly, U, is a closed subset of Cy. As in Theorem 3.50, we can show that N; :
U, — C, is a contraction operator. Indeed

*pr1+r2
Ni(v)— N <l4 d — ;
IM0) = NiGll, < ( e+ D+ 1)) 7=l

for each v,w € Uy, and (x,y) € Jy. From the choice of Uy, there isno u € 9,U}
such that u = AN;(u), for some A € (0,1). As a consequence of Theorem 3.48,

we deduce that N; has a unique fixed point # in U; which is a solution to problem
(3.109)—(3.111). O

3.9.3 Global Result for Infinite Delay

In this section we present a global existence and uniqueness result for problem
(3.112)—(3.114). Let the space

Q:=1{u:R* > R": ug, € Bfor(x,y) € Ex andul|;, € C(Joo, R")},

where Eoo = [0, 00) x {0} U {0} x [0, 00).
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Definition 3.53. A function u € 2 is said to be a solution of (3.112)~(3.114) if u
satisfies (3.13) and (3.114) on J and the condition (3.113) on J/.

For each p € IN we consider the following set;

C; ={u:(—00,p] x (=00, p] > R" :u e BNC(Jo,R"), t4x,) =0
for (x,y) € Epp)}.

and we define in

Cloi={u:R* > R":ueBnNC(0,00) x [0,00),R"), ty.) =0
for (x,y) € Exc}

the seminorms by

lully = sup |lu,ylls+ sup [lulx, y)ll
(X, y)€EE, (x.y)EJo

= sup |lu(x,y)|, ueC,.
(x,y)€Jy

Then C/ is a Fréchet space with the family of seminorms {||u|| }.
Further, we present conditions for the existence and uniqueness of a solution of
problems (3.112)—(3.114).

Theorem 3.54. (3.54.1) The function [ : Joo X B —> R" is continuous,
(3.54.2) For each p € N there exists l; € C(Jo, R") such that for (x,y) € Jo, we
have

| FCe, v u) — FCe, vy, < (Ce, ) |lu—v5, foreachu, v € B.

If
Kl/* 1'1+r2
r P <1, (3.122)
F(ri+ DI (rp+1)
where

I'* = sup I'(x.y),
P (x,y)EJ() P

then there exists a unique solution for IVP (3.112)—~(3.114) on R>.

Proof. Transform the problems (3.112)—(3.114) into a fixed point problem. Con-
sider the operator N’ : £2 — §2 defined by



3.9 Global Uniqueness Results for Partial Hyperbolic Differential Equations 107

¢ (x.y); (x.y) € JL.
p(x,y)
x
N'(u)(x,y) = . e
(u)(x,y) +F(r1)lF(1~2) //(x — ) l(y -0 1
0 0
X f(8, ¢, u,)deds; (x,7) € Joo-

Let v(.,.) : R — R". be a function defined by

P(x, ) (x,y) € JL,

vex.y) = { w(x,y): (x,) € Joo.

Then v(y,) = ¢ forall (x, y) € E. Foreachw € C(J,R") with w(x, y) = 0, for
all (x, y) € Ex, we denote by w the function defined by

0; (x,y) € jéo,

W) = {W(x,y); (x.y) € Joo.

If u(., .) satisfies the integral equation

x )y
— ; _ ri—1 _ r2—1
5, ) = () + o 0/ 0/ (=57 = 07 f G5,

we can decompose u(.,.) as u(x, y) = w(x, y) + v(x,y), x,y > 0, which implies
that u(y y) = W(x,,) + V(x,y), forevery x, y > 0, and the function w(., .) satisfies

Xy
1
W(X,y) = m / /(X —S)rl_l (y —l‘)rz_lf(s,l‘,W(s’t) + V(S’[))dtds.
0 0

Let the operator P’ : C,, — C/, be defined by

RO
|
(Pw)(x.y) = — / / (= sy Ny — oy
Tor
() I (r2) J Y
Xf(S,I,W(S,t) + V(S,t))dlds; (x,y) € Jso. (3.123)

The operator N’ has a fixed point if and only if P’ has a fixed point, and so we
turn to prove that P’ has a fixed point. We shall use the alternative to prove that P’
has a fixed point. Let w be a possible solution of the problem w = P’(w) for some
0 < A < 1. This implies that for each (x, y) € Jy, we have
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Xy
A o _
w(x,y) = m//(x — )" TNy = )2 f (5,1, Wisr) + Vis.))deds.
00

This implies by (3.54.1) that

Xy
fp*prl+r2 1
x, )| =< + x ="y —0nn!
N = S * T | [ 60
00
1,5, D[Wes.oy + visn) |l pdeds, (3.124)
where
£y = suplll f(x, »,0)]| : (x, ) € Jo}.
But

Wiy + v lls < Weolls + v lls
< Ksup{u(5,7) : (5,7) € [0,s] x [0,1]}
+M|¢lls + K|$(0,0)]. (3.125)

If we name z(s, t) the right-hand side of (3.125), then we have
[Wes.) + visnlls < 2(s.1). (3.126)
Therefore, from (3.124) and (3.126) we get

fp*prl-‘rrz
<
W = e Fm D

x )y
; _ ri—l1 _ r—177
+F(r1)F(r2)0/0/(x $)"TH(y = )27 (s, 1)z(s, 1)deds.
(3.127)

Replacing (3.127) in the definition of w, we have that

Kfp*])rl+r2
+ DI (r+1)

eI = + Mglls

KI?

x Y
_— _ qyn—l _ \n—1
+F(r1)F(r2)0 0/ (= )"y =) 2(s, )deds.
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By Lemma 2.43, there exists a constant § = §(ry, 2) such that

||z|| - Kfp*prl-i-rz
P=\Irm+0)r@+1)

SKI¥
x| 1+
Fri+0D)IC(rp+1)

=M.

+ M||¢||B)

Then from (3.127) we have

’M" l;*pr1+r2 fp*pr1+r2 _ ’M"*
r'm+ DI (41 Tn+D0(n+1)

Iwllpr =<

Set
U' ={weClL:|wly <M*+1forall p e N}.

We shall show that P’ : U' — C ; is a contraction map. Indeed, consider w, w* €
U’. Then for each (x, y) € Jy, we have

[P/ (w)(x,y) — P (W*)(x, y)
x Yy
1 _ ri—1 _ r—1
ffﬁﬁﬁﬁjju 9"y —1)
X”f(S’ LWy + V(s,t)) - f(S, I,F(s,,) + V(s,t))”dlds

Xy
1 —
< — )" Ny =) (5, ) |[Wis sy — W sy || gdEd
< F(rl)F(rz)O/O/(x )"y =) (. D) Wiy — W | BdEds

/ +
lp*prl rn
rri+DC(rm+1)

lw = w*[l,.

Thus

"% rir

Kl
1P/ (w) — P (W) < p P
F(r1 + 1)F(r2+ 1)

Hence by (3.122), P/ : U’ —> C; is a contraction. By our choice of U’, there
isnow € 9,(U")" such that w = AP'(w), for A € (0,1). As a consequence of
Theorem 3.48, we deduce that N’ has a unique fixed point which is a solution to
problems (3.112)—(3.114). O

lw = w*[l,-

Now we present an existence result for the problems (3.115)—(3.117).
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Definition 3.55. A functionu € §2 is said to be a global solution of (3.115)—(3.117)
if u satisfies (3.115) and (3.117) on Jo, and the condition (3.116) on J/.

Theorem 3.56. Let f,g : Joo X B —> R" be continuous functions. Assume that
(3.54.1), (3.54.2), and the following condition hold:

(3.56.1) Foreach p =1,2,..., there exists a constant c; with 0 < Kc;7 < % such
that for any (x, y) € Jo, we have

”g(xv y?”) - g(xv y,V)” = C/ ”M - V”B, forany u,ve B.
If

KZ/* ri+ry
4c’ + p P
T+ D+ 1)

<1, foreach p € N,
then there exists a unique solution for IVP (3.115)—(3.117) on R?.
Proof. Consider the operator N{ : 2 — 2 defined by

P(x.y), (x.y) € JL.
pu(x,y) + g(x, ¥, ugx.y)) — &(x, 0, u(x )
—2(0,y,u0,)) + (0,0, u0,0)

x Yy

1 —1 -1
] R AR
0 0

x f(s,t, ue,yy)deds, (x,7) € Joo-

N{@)(x,y) =

In analogy to Theorem 3.54, we consider the operator P} : C, — C/ defined by

P{(w)(x,y) = (X, y. W(xy) + Vixy) — 8(X. 0, W 0) + Vix0)
—g(0,y, W,y + v.5) + &(0,0, W00 + vo.0)

x )y
1 _ r1—l _ rz—l
+Fmﬂwg!!“ =0

xf(s, t,\/_V(S,t) =+ V(s,t))dl‘ds, (x, y) e J.

In order to use the nonlinear alternative, we shall obtain a priori estimates for the
solutions of the integral equation

w(x,y) = Ag(x, Y, W,y + Vix,y) — 8(x, 0, W 0) + Vix,0)
—£(0, ¥y, Wo.y) + V0.y)) + £(0,0, W0 + v0.0))

x Y
—AI - r— —
T (m) //(x‘s)” Ny =027 f (5,8, W) + vis)dtds,
0 0
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for some A € (0, 1). Then from (3.54.1), (3.54.2), (3.56.1), (3.124) and (3.126) we
get

f pr1+r2
O RSy
+lgCx, y,0)[ + llg(x, 0,0)[ + [1g(0, y,0)]| + [1€(0, 0, 0)]

+4c,z(x, p)

Xy
! / / - L
+—— x —s)" — )27 (s, 1)z(s, t)deds. (3.128)
Fooras ] oo o0 G0k
0 0
Replacing (3.128) in the definition of z(x, y) we get

2(x,y) < [M plls + 4K]/¢(0,0)] + 4K g(0,0,4(0,0))]

1
1—-4Kc,

+4Kg) +

Kfp*pr1+r2
rri+1H)Ir'm+1)

-7 _ ri—1 r—1
F("])F(l‘z) //(X S) (y ) Z(S f)dtds

~ l/*
where /,*(x, y) = 1=z &, = suplllg(x,y, 0)[ = (x,») € Jo}.
By (3.128) and Lemma 2.43, there exists a constant § = §(ry, r2) such that

1
. Kfp*pr1+rz
BN Py p 1)}
1+ iy Y 3.129
x o+ 1)r(r2 1) ‘ (3.129)

Then from (3.128) and (3.129) we get

(D/l;* +fp*)Prl+r2
Fri+ DI+ 1)
= D",

lwll +4c, D"+ 4g;
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Since for every (x,y) € Jo, |[wq.y)llg < z(x,y), we have
Iwll, < max(ll¢llz. D) := R™.

Set
U ={weCL :|wly <R*+1}.

Clearly, U/ is a closed subset of C/,. As in Theorem 3.54, we can show that P| :
U/ — C[, is a contraction operator. From the choice of U/, there is now € 9, U’
such that w = AP{(w), for some A € (0,1). As a consequence of Theorem 3.48,
we deduce that N/ has a unique fixed point which is a solution to problem (3.115)—
(3.117). O

3.9.4 Examples

3.94.1 Example 1

As an application of our results we consider the following partial hyperbolic
functional differential equations with finite delay of the form

Cp

Diu(x,y) = 0 e 1y D)) if (x,y) € [0, 00) x [0, 00),
(3.130)
u(x,0) = x, u(0,y) = y% x,y €[0,00), (3.131)
u(x,y) =x 4+ y2, (x,y) € [-1,00) x [<2,00)\(0, 00) x (0,00),  (3.132)
where
r nr 1
= (rn+DI(r2 + ); »e N,
ri+r2
p
Set
Cp

; (x,y) €]0,00) x [0, 00).

Sy uiep) = 21+ Ju(x — 1,y = 2)])’

For each p € N* and (x, y) € Jy we have
_ ¢ _
LG,y ueey) = f(x 9. Ty < e—ZHM —ulc.

Hence conditions (3.50.1) and (3.50.2) are satisfied with Z; = C—Z. We shall show
e
that condition (3.118) holds for all p € IN*. Indeed

l; prl +r 1

= — <1,
Fri+DI(rp+1) €2
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which is satisfied for each (r,7;) € (0,1] x (0, 1]. Consequently, Theorem 3.50
implies that problems (3.130)—(3.132) have at least one solution defined on [—1, co)
x[=2, 00).

3.9.4.2 Example 2

We consider now the following partial hyperbolic functional differential equations
with infinite delay of the form:

4exty

C'Dr , —
(" Dou)(x. y) Cpn2(6x+y +e )

§ ] ]y D u(x + 0.y + n)dydf
I+x+0)H+ O +n?)

if (x,y) € [0,00) x [0, 00), (3.133)
u(x,y) = x +y% (x,) € R?\(0, 00) x (0, 0), (3.134)
u(x,0) = x, u(0,y) =y, x € [0,00), y € [0, 0), (3.135)

rpr L.
where ¢, = %, p € N*, and y a positive real constant. Let B, be the

phase space defined in the Example of Sect. 3.7 and let

v =y
4erty / / e’CTMu(x + 6,y +1n)
) ¢

X.y.u) = dndo;
R R 0+ ()
—00 —O0

for each (x, y,u) € Joo X B,. Then for each u, v € B, we have
|f(x,y,u) - f(x,y,v)|
—x —y
3 4erty /X / e’ Ou(x 4+ 60,y + 1)
cpm2(e¥ty e ) A4+ &x+0)HA+(+m?)
—00 —O0
—x —y
4ety / / "t y(x + 60,y + 1)
cpm2(exty +em¥y) I+ (x+ 601+ +mn?)
—00 —00
Zx —y
_ 4erty / / ey<9+’7>|u(x+9,y+n)—V(x+9,y+n)ld 40
S e o) I+ G0+

—00 —00
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0 0
4exty / / 37(9+”)|u(9, 7]) - V(ea 77)|

< dndé

= ne T T e a+od+p
—00 —O0
oo o0

- de* ™ / / ! dndfJu—v|

.

= onten e | areyar ol

0 0
ex+y
e —vll,.

=
cp(e¥ Ty + e )

Hence condition (3.54.2) is satisfied with / ;, (x,y) = cp(e*f;%*—y) Since
I”* = sup et 2 (x,y) €[0,00) x [0,00)7 < 1
cp(eX Y +e7¥7) Cp
and K = 1, we have
K™ pritr 1

< 1.

I+l (m+1) 3

Hence condition (3.122) holds for each (r1,r;) € (0,1] x (0,1] and all p € N*.
Consequently, Theorem 3.54 implies that problems (3.133)—(3.135) have a unique
solution defined on R?.

3.10 Notes and Remarks

The results of Chap. 3 are taken from Abbas and Benchohra [5-7, 10, 14] and Abbas
et al. [3,30,32,35,37]. Other results may be found in [41,44, 66,71, 110, 244,245,
247,249,251-255].



Chapter 4
Partial Hyperbolic Functional Differential
Inclusions

4.1 Introduction

In this chapter, we shall present existence results for some classes of initial
value problems for partial hyperbolic differential inclusions with fractional order
involving the Caputo fractional derivative, when the right-hand side is convex as
well as nonconvex valued. Some results rely on the nonlinear alternative of Leray—
Schauder type. In other results, we shall use the fixed-point theorem for contraction
multivalued maps due to Covitz and Nadler.

4.2 Partial Hyperbolic Differential Inclusions

4.2.1 Introduction

This section deals with the existence of solutions to fractional order IVP, for the
system

(CDSM) (x,y) € F (x,y,u(x,y)), if (x,y) € J :=10,a] x[0,b], 4.1)

u(x,y) = ¢(x,y). if (x,y) € J := [~a,a] x [-B,b]\(0.a] x (0.b], (4.2)
u(x,0) = @(x), x €[0,a], u(0,y) =y¥(y), y €10,5], 4.3)

where a,b,a, 8 > 0, F : J x C — P(R) is a compact-valued multivalued map,
P(R) is the family of all subsets of R, ¢ € C(J.R), ¢ : [0,a] — R, ¢ : [0,b] —
R are given absolutely continuous functions with ¢(x) = ¢(x,0), ¥(y) = ¢ (0, y)
foreach x € [0,a], y €[0,b],and C := C([—«, 0] x [-8,0],R).

S. Abbas et al., Topics in Fractional Differential Equations, Developments 115
in Mathematics 27, DOI 10.1007/978-1-4614-4036-9_4,
© Springer Science+Business Media New York 2012
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4.2.2 The Convex Case

In this section, we are concerned with the existence of solutions for the problems
(4.1)—(4.3) when the right-hand side is compact and convex valued.

Definition 4.1. A function u € Cyp) = C([—a,a] x [-B,b],R) such that its
mixed derivative ny exists on J is said to be a solution of (4.1)—(4.3), if there
exists a function f € L'(J,R) with f(x,y) € F(x,y,ux.y)), forae. (x,y) € J,
such that (“Dju)(x,y) = f(x,y) forae. (x, y) € J, and u satisfies (4.3) on J and
the condition (4.2) on J.

Theorem 4.2. Assume the following hypotheses hold:

(4.2.1) F:J xR — Ppev(R) is a Carathéodory multivalued map.
(4.2.2) There exist p € C(J,Ry) and ¥ : [0,00) — (0,00) continuous and
nondecreasing such that

[Fx,y.wlpr < plx. y)¥(|ul) for (x,y) € J and each u € R,
(4.2.3) There exists | € C(J,R4) such that
Hy(F(x,y,u), F(x,y,u)) <Il(x,y)|lu—1u| foreveryu,u € R,

and

d(0, F(x,y,0)) <l(x,y), ae (x,y) € J,
(4.2.4) There exists a number M > 0 such that
M
U (M)p*a"b"
Fri+DI'(r+1)

> 1, 4.4)

el +

where p* = sup p(x,y). Then the IVP (4.1)—(4.3) have at least one solution on
(x.y)eJ

[—o,a] x [-B,b].
Proof. Transform the problems (4.1)—(4.3) into a fixed-point problem. Consider the
multivalued operator N : C,p) = P(Cap)) defined by N(u) = {h € C(, )} with

#(x.y), (x,y) e J,
wu(x,y)

hx.y) = A & S
+m0/0/(x — )" (y =) f(s,t)deds, (x,y) € J,

where f € Sp,,.



4.2 Partial Hyperbolic Differential Inclusions 117

Remark 4.3. Clearly, from Lemma 2.12, the fixed points of N are solutions to
4.1)-(4.3).

We shall show that N satisfies the assumptions of the nonlinear alternative of Leray—
Schauder type . The proof will be given in several steps.

Step 1: N(u) is convex for each u € C(,p). Indeed, if h, h» belong to N(u), then
there exist fi, f2 € Sr, such that for each (x, y) € J we have

x y
X _ ; _ ri—I1 _ rn—1 r .
hi(x,y) = u(x,y) + O (a) O/O/(x s) (y—1) fi(s,t)deds, i =1,2.

Let0 < d < 1. Then, for each (x, y) € J, we have

x
(i + (1= )x.3) = x3) + oo [ [ er=or =0
x[dfi(s,t) + (1 — d)fzo(s,ot)]dtds,
and for each (x, y) € J, we have
(dhy + (1 = d)hy)(x,y) = ¢(x.y).
Since S, is convex (because F has convex values), we have
dhy + (1 —d)h, € N(u).

Step 2: N maps bounded sets into bounded sets in C(,py. Let Byx = {u € Cip) :
l#llo < n*} be abounded setin C,p) and u € By«. Then for each i € N (u), there
exists f € Sg, such that

x Y
J— 1 _ r1—l _ rz—l
hix,y) = u(x,y) + —F(rl)F(rz) O/O/(x )"y =) f(s, t)deds.
By (4.2.2) we have for each (x,y) € J,

x )y
< ; _ Vi1l el
)] = 1) + o 0/ 0/ (=5 = 0 £ ) fdeds

Xy
1 _ e
< |plx, y)| + m/[(x—s)” Yo =02 p(s. )W (llugs ) ) drds.
00
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Then
qj(n*)arlbrzp* B
Fri+DC(ra+1)

1hlloo < llitlloo + .

On the other hand, for each (x, y) € J s
7lloo < ll@lloo := £a.
Thus, for each (x, y) € [—a,a] x [-8, b],
[2]loo < min {£y, €5} := .

Step 3: N maps bounded sets into equicontinuous sets of Cp). Let (xi, y1),
(x2,)2) € J, x1 < xp and y; < y», By+ be a bounded set of C(, ;) as in Step
2,letu € By~ and h € N(u), then

|h(x2, y2) = h(xi, y1)]

X1 )1

= |uean y2) = pxroy) + /Km—wV“%m—»W”
0

1
I(r)I(ry) 0/

—(x1 =) =)' f (s, 1)deds

X2 )2
/ (x2 — )" Ly — )27 f(s, t)deds

X1 )1

1
")

X1 )2
/ (x2 — )" Ly — )27 f(s, t)deds

1

1
+rmﬂwg0

X2 V1

1 ri—1 _ r—1
+mx 0/(Xz—S) (y2—1)"*" f(s,t)dtds

< |p(xi, y1) = p(x2, y2)|
P (n)

Frn+HC(r+1)

X1 Y7 = X5y = 200 = x)" (2 — y)"].

[2052(x2 — x1)" + 2x3" (2 — y1)"”

As x; — xp and y; —> Yy, the right-hand side of the above inequality tends
to zero. The equicontinuity for the cases x; < x; < 0, y; < y» < Oand x| <
0 < x3, y1 <0 < y, is obvious. As a consequence of Steps 1-3 together with the
Arzeld—Ascoli theorem, we can conclude that N is completely continuous.
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Step 4: N has a closed graph. Let u, — ux, h, € N(u,), and h, — hs. We need
to show that i1, € N(uy).
hy, € N(u,) means that there exists f, € Sr,, such that, for each (x,y) € J,

1

x )y
hn , — , e _ -l _ \r—l1 (s, ,
(53) = B+ 0/ 0/ (v =) =17 ol )i

and for (x,y) € J, hy(x,y) = ¢(x, y).
We must show that there exists fi € Sp,, such that, for each (x, y) € J,

x )y
1
h* s = 5 N =~ —s)n! —)! x5, s
(x,y) = plx,y) + F(rl)r(rz)()/o/(x )Ty =)™ fuls, t)deds

and for (x,y) € J, he(x,y) = ¢(x,y).
Since F(x,y,-) is upper semicontinuous, then for every ¢ > 0, there exist
no(€) > 0 such that for every n > ng, we have

Ja(x,y) € F(x,y,unx,y)) C F(X,y, ux(xy)) +€B(0,1), ae. (x,y) € J.
Since F(.,.,.) has compact values, then there exists a subsequence f,, such that
fnm('s ') - f*(s ') aam — o

and
Jo(x,y) € F(x,y, uxx,y)), ae. (x,y) € J.

For every w € F(X, y, tx(x,y)), we have
| S (5 3) = s (06, I < [ Sy (6, ) = Wl 4w = fulx, )

Then
[ o v ) = fue )] = d( (62 9). F .yt

By an analogous relation, obtained by interchanging the roles of f,,, and fs, it
follows that

| fo (X, ¥) —ux(x, y)| < Hd(F(xva”n(x,y))v F(xva”*(x,y)))

< 10, y) llun — oo
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Then

Xy
1 r1—l _ rz—l
1An(e,y) = hae| = m()/o/(x_s) =" fn(s, 1)
— f« (s, t)|dtds

x Yy
I* |l _”*”oo// =1 -1
< —r = x —s)1! —)" dtds,
DI, 0( o=

where [* = sup [(x,y). Hence
(x.y)eJ

h ” _ al‘]brzl*
T T P 4+ DO+ 1)

17

ltty,, — Us]loo — 0 as m — oo.

Step 5: A priori bounds on solutions. Let u be a possible solution of the problems
(4.1)-(4.3). Then, there exists f € S, such that, for each (x,y) € J,

Xy
1 ri—l1 _ 21
x| = 0+ T 0/ 0/ (v =5 = 02 f ) drds

x y
1
< G+ oo [ 6 =977 0 =0 0w e s
0 0

Y (llugsa D)

= eI @)

x
//(x — )" Ny =) p(s, 1)deds
0 0

U(||lulloo) p*a™ b
Fri+ D+’

< llulloo +

and for each (x,y) € J, |u(x,y)| = |¢(x,y)|. This implies by (4.2.2) that, for
each (x, y) € J, we have

llel oo
Y(|lulloo) p*a™ b
Fri+ DI+ 1)

el +

Then by condition (4.4), there exists M such that ||u|. # M.
Let

U = {M € C(a,h) : ”u”oo < M*},
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where M* = min{M,|¢|c}. The operator N : U — P(Cp) is upper
semicontinuous and completely continuous. From the choice of U, there is no
u € dU suchthatu € AN (u) for some A € (0, 1). As a consequence of the nonlinear
alternative of Leray—Schauder type (Lemma 2.33, [136]), we deduce that N has a
fixed point u in U which is a solution of the problems (4.1)—(4.3). O

We present another existence result for problems (4.1)—(4.3) using Bohnenblust—
Karlin fixed-point theorem [81].

Theorem 4.4. Assume (4.2.1), (4.2.2) and the following hypothesis holds:
(4.4.1) There exist p € C(J,Ry) such that

IF(.y.wllp < p(x, y)(ul + 1) for (x,y) € J and each u € R.
If
[+ DI +1) > p*a”'b™, 4.5)

then problems (4.1)—(4.3) have at least one solution.
Proof. We shall show that the operator N defined in Theorem 4.2 satisfies fixed-
point theorem. Let p > 0 be such that

L'(ri4+ DI (2 + Dlplloc + p*ab™
F'(ri+ DI+ 1)— p*a”b™

and consider the subset
D, ={uc Cup : |lulloc < p}.

Clearly, the subset D, is closed, bounded, and convex. From (4.5) we have
N(D,) € D,. As before the multivalued operator N : D, — P(D,) is upper
semicontinuous and completely continuous. Hence Lemma 2.38 implies that N has
a fixed point which is a solution to problems (4.1)—(4.3). ]

4.2.3 The Nonconvex Case

We present now a result for the problems (4.1)—(4.3) with a nonconvex-valued right-
hand side. Our considerations are based on the fixed-point theorem for contraction
multivalued maps given by Covitz and Nadler [96].

Theorem 4.5. Assume (4.2.3) and the following hypothesis holds:

(45.1) F : J xR —> Pc,(R) has the property that F(-,u) : J — Pcp(R) is
measurable for each u € R.
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If

[*a" b -
Fri+ DI +1)

1, (4.6)

then the IVP (4.1)—(4.3) has at least one solution on J.

Remark 4.6. For each u € C(, ), the set Sr, is nonempty since by (4.5.1), F has
a measurable selection (see [93], Theorem III.6).

Proof. We shall show that N satisfies the assumptions of Lemma 2.39. The proof
will be given in two steps.

Step 1: N(u) € Poi(Cupy) for each u € C,py. Indeed, let (u,),>0 € N(u) such
that u, —> &t in C(4p). Then, 2 € C(,p) and there exists f,(.,.) € Sr, such that,
for each (x,y) € J,

x Y
u — ; _ -l _ -1
n(x,y) = plx,y) + Tl () O/O/(X )Ny =) (s, )deds,

and for each (x, y) € J,
un(x,y) = ¢(x,y).

Using the fact that F has compact values and from (4.2.3), we may pass to a
subsequence if necessary to get that f,(.,.) converges weakly to f in L! (J,R) (the
space endowed with the weak topology). A standard argument shows that f,(.,.)
converges strongly to f and hence f € Sr,. Then, for each (x, y) € J,

x )
— 0 — ; _ oyl _ -1
i (5,3) — (2. 3) = W5, 9) + 0/ 0/ (v =97 =02 s s,

and for each (x, y) € J, u,(x,y) —> it(x,y) = ¢(x, y).
So, u € N(u).

Step 2: There exists y < 1 such that
Hi(N(u), N(m)) < y|lu—1ulloo for each u,u € Cp).

Let u,u € Cypy and h € N(u). Then, there exists f(x,y) € F(x,y,u(,y) such
that for each (x, y) € J

x oy
h(x.y) = plx.y) + m / /(x — )"y =) f(s,1)dtds,
00

and for each (x, y) € J, h(x,y) = ¢(x, y).
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From (4.2.3) it follows that
Hy(F(x,y.uiey)), F(x,y,Ux,y)) <10 p) ue,y) — -
Hence, there exists w € F(x, y, U(,y)) such that
L, y) = wl < 10x, p)|uey) = eyl () € J.
Consider U : J — P(R) given by
Ulx.y) ={weR:[f(x.y) —w| < I(x. y)luey) — Uy}

Since the multivalued operator U; (x, y) = U(x, y) N F(x, y,U,y)) is measurable
(see Proposition IIL.4 in [93]), there exists a function f (x, y) which is a measurable
selection for Uj. So, f(x,y) € F(x, y,U(.y)), and for each (x, y) € J,

|fCe.y) = ) = 1 p)[uiey) =l |-

Let us define for each (x,y) € J
1 [T
h(x,y) = u(x, +—//x—s"‘_1 — )27V F (s, 1)deds,
(x,y) = p(x,y) F("I)F("Z)OO( T =0 f(s.0)

and for each (x,y) € J, h(x,y) = ¢(x,y). Then for each (x,y) € J,
IIh — h|loo = 0, and for each (x, y) € J

Xy
T < 1 _ r1—l _ rz—l
) =B )| = s [ =9 =0 i)
0 0

—f(s.1)|drds
x )y
< roorag | e o= s
0 0
—l(s,)||deds
x Yy
< roorog | e o= s
0 0
—1(s,p||dtds
_ x
< ”u('”))_u("'))”w//(x—s)”_l(y—t)"z‘ll(s,t)dzds,
0 0

L (r)I(r2)
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Thus, for each (x, y) € [—a, a] x [-8, b]

_ l* rhHr
= Filloo < a’b it — oo
F(r1 + 1)F(l‘2 + 1)

By an analogous relation, obtained by interchanging the roles of u and #, it follows
that
[*a" b"
H;(Nu), Nun)) < U—1Ullso.
dN@. N@) = o sl =l

So by (4.6), N is a contraction and thus, by Lemma 2.39, N has a fixed point u
which is solution to (4.1)-(4.3). O

4.2.4 An Example

As an application of the main results, we consider the fractional differential
inclusion

“D'u(x,y) € F(x,y,uxy), ae (x,y) € J =1[0,1] x [0,1], (4.7)
u(x,y) = x + y2 ae. (x.y) € (-1, 1] x [<2, 1) \(0,1] x (0, 1],  (4.8)
u(x,0) = x, u(0,y) =y x €[0,1], y €[0,1], 4.9)

where r = (r1, ;) € (0, 1] x (0, 1]. Set

F(x,y.upy) ={u€R: fi(x,y,uiy) Su< folx,y.upy)) .

where f1, f» : [0,1] x [0,1] x C([-1,0] x [-2,0],R) — R. We assume that
for each (x,y) € J, fi(x,y,.) is lower semicontinuous (i.e., the set {z €
C([-1,0] x [-2,0],R) : fi(x,y,z) > u} is open for each u € R), and assume
that for each (x,y) € J, fa(x,y,.) is upper semicontinuous (i.e., the set {z €
C([-1,0] x [-2,0],R) : fa(x,y,z) < w}is open for each € R). Assume that
there are p € C(J,R4) and ¥* : [0, 00) — (0, 00) continuous and nondecreasing
such that

max(|f1(x, yvz)lv |f2(-x5 ysZ)D =< p(-xs Y)w*(”Z”),

foreach (x,y) € J and all z € C([-1,0] x [-2, 0], R).

It is clear that F' is compact and convex valued, and it is upper semi-continuous
(see [104]). Since all the conditions of Theorem 4.2 are satisfied, problem (4.7)—
(4.9) has at least one solution u on [—1, 1] x [-2, 1].
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4.3 Existence Results for Partial Hyperbolic Differential
Inclusions

4.3.1 Introduction

In this section we study the following fractional order IVP, for the system:
(‘Dou)(x,y) € F(x,y,u(x,y)), if (x,y) € J, (4.10)

u(x,0) = ¢(x), x €[0,a], u(0,y) = ¥(y), y €[0,b], (4.11)

where J = [0,a] x [0,b], a,b > 0, F : J xR" — P(R") is a compact-valued
multivalued map, P(R") is the family of all subsets of R"”, ¢ : [0,a] — R", ¢ :
[0, b] — R" are given absolutely continuous functions with ¢(0) = ¥ (0).

4.3.2 Existence of Solutions

Let us start by defining what we mean by a solution of the problems (4.10) and
(4.11).

Definition 4.7. A function u € C(J,R") with its mixed derivative ny exists and
is integrable is said to be a solution of (4.10) and (4.11), if there exists a function
f e LY(J,R") with f(x,y) € F(x,y,u(x, y)) such that (‘ Dju)(x, y) = f(x,y),
and u satisfies (4.11) on J.

Definition 4.8. Let (X, d) be a metric space and consider a set-valued map 7" on
X with nonempty closed values in X. 7 is said to be a A-contraction if there exists
0 < A < 1 such that for each u,v € X,

Hy(T(u), T(v)) < Ad(u,v).

Remark 4.9. If X is complete, then every set-valued contraction has a fixed point.

We denote by Fix(7') the set of all fixed points of the set-valued map 7. Obviously,
Fix(T) is closed.

Lemma 4.10 ([184]). Let X be a complete metric space and suppose that Ty, T,
are A-contractions with closed values in X. Then

Ha (Fix(T}).Fix(T2) = - supd (T3 @), Tx(2).
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Theorem 4.11. Assume that the following hypotheses:
(4.11.1) F : J x R" — P (R") has the property that

F(,- u):J — P,y(R") is measurable for each u € R",
(4.11.2) There exists | € C(J,Ry) such that
H;(F(x,y,u), F(x,y,u)) <Il(x,y)|lu—u| foreveryu,ueR",

and
d(0, F(x,y,0) <I(x,y), ae (x,y) € J,

are satisfied and let v(.,.) € L'(J,R") be such that there exists q(.,.) €
L'(J,R) with

d(“Dyv(x,y), F(x,y,v(x,y))) <q(x,y) foreach (x,y) € J.

If
a'b[*

NCESVACES 4.12)

where [* = sup{l(x,y) : (x,y) € J}, then for every € > O there exists
u(.,.) a solution of (4.10) and (4.11) satisfying for all (x,y) € J

a"b”|lq

— < . 4.13
lu—vi < T3 Dl + 1) bl +e (4.13)

Proof. Forw(.,.) € L'(J,R") define the following set-valued maps:

My (x.y) = F(x.p (e ) + I )i (y) € S (@14)
Tw) ={$(..) € L'(J.R"); §(x,y) € My(x, 1)}, (x,3) € J. (4.15)

It follows from Lemma 2.12 that u(., .) is a solution of (4.10) and (4.11) if and only if
¢Duf.,.) is a fixed point of 7. We shall prove first that 7' (w) is nonempty and closed
for every w € L'(J,R"). The fact that the set-valued map M,,(.,.) is measurable is
well known. For example, the map

(x,y) = u(x,y) + Uw)(x, y)

can be approximated by step functions and we can apply Theorem III. 40 in [93].
Since the values of F are closed with the measurable selection theorem (Theorem
II1.6 in [93]) we infer that M,,(.,.) admits a measurable selection ¢. First (4.14) and
(4.15) imply that for each (x, y) € J,
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9 Cro ) < d (0. F(x3.0)) + dig (Fx 3.0 Fx. v, ulx.3) + Lw)(x. 1))
< 100 )1 + oo + UG 2)).

which shows that ¢ € L'(J,R") and T (w) is nonempty. On the other hand, the set
T (w) is also closed. Indeed, if ¢, € T (w) and ||¢, — ¢||; — O then we can pass
to a subsequence ¢,, € T(w) such that ¢, (x,y) — ¢(x,y) forae. (x,y) € J,
and we find that ¢ € T (w). We show next that 7'(.) is a contraction on L'(J, R").
Let 2.z € L'(J,R") be given, ¢ € T(z) and let § > 0. Consider the following
set-valued map:

)
Gx.y)=M:(x.y) N ju €R" : lp(x. y)—ull = — +1(x. )Ly (c —2)(x.y)

From Proposition II1.4 in [93], G is measurable and from (4.11.1) and (4.11.2), G
has nonempty closed values. Therefore, there exists y(.,.) a measurable selection
of G(.,.). It follows that y € T'(w) and according to the definition of the norm we
have for each (x, y) € J,

a b
|W—ﬂh=//ﬂwmw—yaywww
0 0

O/ao/b% ydx"‘/ao/bl(x (U (z—72))(x, y)dydx
a b

a b
1
l _ ri—1 _ ry—1
+nmmm!! !!“”W T =07 dyd

x||z(s, 1) —z(s, )| deds
arlbrzl*

< -z,
= +F(r1+1)r(r2+1)”Z Zlh

hence

al‘]brzl*
- <9 —zlh.
¢ —ylh <86+ F(r1+1)F(r2+l)||Z zZlh

Since § > 0 was chosen arbitrary, we deduce that

llbrzl* _
4@ T = fo— ey le =2l
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Replacing z by Z we obtain

athn]*
du(T(2),T([) = Tn +1)F(2+1)II =zl

thus by (4.12), T is a contraction on Ll(J ,R™). We consider next the following
set-valued maps:

F(x,y,u) = F(x,y,u) + qCe, »)[=1, 1] (x, y,u) € J xR",
M,(x.y) = Fi(x.p. 05 ) + Iw)(x )i (xy) € J.
Tw) =1{$(..) € L'(J,R"); ¢(x,y) € M(x, )}, (x,y) € J.
Obviously, F(.,.,.) satisfies hypotheses (4.11.1) and (4.11.2). Repeating the

previous step of the proof we obtain that 7 is also a contraction on L'(J,R") with
closed nonempty values. We prove next the following estimate:

a b
an( o). T = [ [ atx.yavax (4.16)
0 0
Let¢ € T(w), § > 0 and define

_ — )
Glx.y) = (e, 1 2 € B o) —2) = gtx) + o

With the same arguments used for the set-valued map G(., .), we deduce that G (., .)

is measurable with nonempty closed values. Hence let ¥(.,.) be a measurable
selection of G (., .). It follows that ¢ € T (w) and one has for each (x, y) € J,

16— WM=//waw—wwywwm

a b

<l o

0 0

a b
+ //q(x,y)dydx.
0 0

Since § is arbitrary, as above we obtain (4.16). We apply Lemma 4.10 and we infer
that
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a b
1
" T / / gq(x,y)dydx

T TriADTFD )

a b
F(r1 + DI (ry + 1)
= q(x,y)dydx.
[

dy (Fix(T), Fix(T))

IA

'+ 1)+ 1) —anbnl*

Since ¢ Djv(.,.) € Fix(T) it follows that there exists w € Fix(T') such that for any
€ > 0 we have

a b

, Fri+ DI (r+1) //

DIy —wl||, < y)dyd

106y =l = S D G+ 1) —arpers | ] 470
0 0

r nr 1
L L+ D+ D 4.17)
a" b
We define

u(x,y) = p(x,y) + Lgw)(x, y); (x,y) € J.

By (4.17) we get for each (x, y) € J,

a b
|W—Vm—://WMLy)—WLyW®@x
0 0

a b a b
SFE%ﬁﬁzj !!u—wﬂw—wﬂww

x|[w(s, ) = D{v(s,t)||dtds
a"b"
<
T I+ +1)
5 a"b" g
T I+ DL+ 1) —anbrl*

[lw = Dovlh

Hence, for all (x, y) € J,

a"b” gl L

— <
b=l < e DG + ) =@t o
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Remark 4.12. Suppose that the assumptions in Theorem 4.11 are satisfied with
v = 0, then for every € > 0, problems (4.10) and (4.11) have at least one solution u
on J such that

Jull < a”b7lal
'S T+ DO+ 1) —anbrl*

+ €.

4.3.3 Qualitative Properties and Topological Structure
of the Solution Set

4.3.3.1 Topological Structure of the Solution Set

Now, we present a result on the topological structure of the set of solutions of (4.10)
and (4.11).

Theorem 4.13. Assume that (4.11.1), (4.11.2), and the following hypothesis
hold:

(4.13.1) There exists p(.,.) € C(J,Ry) such that
|F(x,y,2lp < p(x,y)for (x,y) € J and each 7 € R".

Then the solution set of (4.10) and (4.11) in not empty and compact in C(J,R").
Proof. Let

S ={ueC(J,R") :u is solution of (4.10)and (4.11)}.

From Theorem 4.11, S # @. Now, we can prove that S is compact. Let (u,),cN €
S, then there exists f,, € Sr,, such that for (x,y) € J,

un(x, y) = p(x, y) + (g fu) (x. y).
From (4.13.1) we can prove that there exists a constant M > 0 such that
ltnlloo < M, foreveryn > 1.
We can easily show that the set {u, : n > 1} is equicontinuous in C(J, R"); hence
by Arzéla—Ascoli theorem we can conclude that there exists a subsequence (denoted

again by {u,}) of {u,} such that u, converges to u in C(J,R"). We shall show that
there exist f(.,.) € F(.,.,u.) such that

u(x,y) = p(x,y) + g f)x, p).
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Since F(x,y,.) is upper semicontinuous, then for every ¢ > 0, there exists
no(e) > 0 such that for every n > ng, we have

Ju(x,¥) € F(x,y,uy(x,y)) C F(x,y,u(x,y)) +eB(0,1), ae. (x,y) € J.
Since F has compact values, there exists subsequence f,,, (.) such that

S, () = f(,.) asm — oo
and
f(x.y) € F(x,y,u(x,y)), ae. (x,y) € J.
It is clear that

I /o, .V < p(x,y), ae. (x,y) €J.

By Lebesgue’s dominated convergence theorem, we conclude that f € L!(J,R")
which implies that f € Sg,. Thus

u(x,y) = u(x,y) + Uy f)x. y): (x,y) € J.

Hence S € P.,(C(J,R")). O

4.3.3.2 On the Set of Solutions for the Darboux Problem for Fractional
Order Partial Hyperbolic Differential Inclusions

Now, we prove the arcwise connectedness of the solution set for the IVP, for the
system

“Dou(x,y) € F(x,y,u(x,y), G(x,y,u(x,y))); if (x,y) € J :=10,a] x [0,b],
(4.18)
u(x,0) = ¢(x); x €[0,a],
u(0,y) =¥ (y): y €10,0], (4.19)
¢(0) = ¥(0),
where a,b > 0, F : J xR"xR" - P(R"), G : J xR" — P(R") are given
multifunctions, ¢ € AC([0,a],R") and ¢ € AC(]0, b], R").
Given a continuous functiond : J — (0, co), we denote by L' the Banach space

of all (equivalence class of) Lebesgue measurable functions w : J — R”, endowed
with the norm

a b
il = / / d(x. y)wx. )lldydx. (4.20)
0 0
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Definition 4.14. A space X is said to be arcwise connected if any two distinct
points can be joined by an arc, i.e., a path f which is a homeomorphism between
the unit interval [0, 1] and its image f([0, 1]). A metric space Z is called absolute
retract if, for any metric space X and any X, € P.;(X), every continuous function
g : Xo — Z has a continuous extension g : X — Z over X.

Every continuous image of an absolute retract is an arcwise connected space.
Let S be a separable Banach space. Set E := L'(J).

Lemma 4.15 ([190]). Assume that G : S x E — Py(E) and F : S x E x
E — P, (E) are Hausdorff continuous multifunctions with decomposable values,
satisfying the following conditions:

(a) There exists L € [0, 1) such that, for every s € S and every u,u’ € E,
Hy(G(s,u),G(s,u')) < Llju—u|;.

(b) There exists M € [0, 1) such that L + M < 1 and for every s € S and every
u,v,w,z € E.

Hy(F(s,u.2), F(s.v,w) | = M(lu = vl + llz = wll).

Set Fix(I'(s,.)) ={u€ E :u € I'(s,u)}, where
I'(s,u) = F(s,u,G(s,u)); (s,u) € S x E.

Then

1. Forevery s € S the set Fix(I' (s, .)) is nonempty and arcwise connected.

2. For any s; € S, and any u; € Fix(I'(s,.)); i = 1,...,p, there exists
a continuous function y(s) € Fix(['(s,.)) for all s € S and y(s;) = u;;
i=1,...,p.

Lemma 4.16 ([190]). Let U : J — Py(R") and V : J x R" — P, (R") be two

multifunctions, satisfying the following conditions:

(a) U is measurable and there exists p € E such that H;(U(x, y)),{0}) < p(x, y)
Sfor almost all (x,y) € J.

(b) The multifunction (x,y) — V(x, y, u) is measurable for everyu € E.

(¢) The multifunction u — V(x, y,u) is Hausdorff continuous for all (x, y) € J.

Letv : J — R" be a measurable selection from (x,y) — V(x,y,U(x,y)). Then
there exists a selection u € E such that v(x, y) € V(x,y,u(x,y)); (x,y) € J.

Lemma 4.17 ([80]). Let ¢ € (0,1) and let N : J — [0,00) be an integrable
function. Then there exists a continuous function d : J — (0, 00) which, for every
(x,y) € J, satisfies
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a b
//N(s,t)d(s,t)dtds =¢(d(x,y)—1).
x oy

Theorem 4.18. Let G : J xR" — Py (R") and F : J x R" x R" — P (R") be
two set-valued maps, satisfying the following assumptions:

(4.18.1) The set-valued maps (x,y) — F(x, y,u,v) and (x,y) — G(x, y,u) are
measurable for all u,v € R".

(4.18.2) There exists a positive integrable function | : J — R such that, for every
u,u € R",

Hy(G(x,y,u),G(x,y,u)) <I(x,y)|lu—u|; ae (x,y) € J.

(4.18.3) There exists a positive integrable functionm : J — R and n € [0, 1] such
that, for every u,v,u',v' € R",

Hq(F(x,p,u,v), Gx, y,u',v)) <m(x, p)lu—=d' | +n(lv=>'ll; ae (x.y) € J.
(4.18.4) There exist positive integrable functions f, g : J — R such that

Hd({o}s F()C, y,{O},{O})) =< f(xv y)s a.e. (X, y) eJ

and
Hy ({0}, G(x,y,{0})) < g(x,y); a.e (x,y) € J.
Then,

1. For every ;1 € M, the solution set S(u) of problems (4.18) and (4.19) is
nonempty and arcwise connected in the space C(J).

2. Forany u; € M and any u; € S(n); i = 1,..., p, there exists a continuous
Sfunction s : M — C(J) such that s(it) € S(u) for any u € M and s(u;) =
ui; i =1,...,p.

3. The set S = UuemS() is arcwise connected in the space C(J).

Proof. In what follows N(x,y) = max{l/(x,y),m(x,y); (x,y) € J} and take
e (0,1)suchthat2l +n < landd : J — (0,00) in (4.20) is the corresponding
mapping found in Lemma 4.17.

1. For,ue./\/landueLl,set

up(x,y) = p(x,y) + (Lgu)(x,y); (x,y) € J.

Define the multifunctions o : M x L' — P(LY) and B : M x L' x L' —
P(L") by

a(u,u) ={ve L :v(x,y) e G(x,y uu(x,y)); ae. (x,y)e J},
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B u,v) = {we L' :w(x,y) € F(x,y,u,(x,y),v(x,y)); ae. (x,y) € J},

where i € M and u,v € L'. We prove that o and f satisfy the hypotheses of
Lemma 4.15.

Since u,, is measurable and G satisfies hypotheses (4.18.1) and (4.18.2),
the multifunction G, : (x,y) — G(x,y,u,(x,y)) is measurable and G, €
P.(L"), G, has a measurable selection. Therefore due to hypothesis (4.18.4),
we get a(u, u) # @. Also, by simple computation, it follows that the set o (¢, u)
is closed and decomposable. In the same way we obtain that a(u, u) € P (L")
is a decomposable set.

Setd = [ fob d(x, y)dydx. Pick (u,u), (ju1,u;) € M x L' and choose
v € a(u,u). For each € > 0 there exists vi € a(u,u;) such that, for every
(x,y) € J one has

[vCr. ) =i )l = Ha (G y.w, (). Gyt (v, 7)) + €
x oy
_ 1 _ r1—l _ rz—l
= NG () = i o) + s 0/ 0/ (=9 =)
lus, 1) — u: (s, t)||dtds) te

Hence, for any € > 0,

a

b
=il < e = pirloo / d(x. y)N(x. y)dydx
0 0

a b
1
+m0/0/d(x’Y)N(X7Y)

X

y
X / (x — )"y — )2 Yuls, t)—uy (s, 1)||deds |dydx—+ed
00

a b
1
<¢@(@ )= D=l + oo 0/0/ Jus. 1) = w5, 1)

a b
X //(x — )"y = )27 d(x, y)N(x, y)dydx | dtds + ed
st
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= &d(a,b) = Dllp = pilloo
1 a b
trares | e - .ol
rrr(m) Jo Jo ‘
@ rb =1 =l 1-r3
x(/ /(x—s)l—rs(y—z)l—rsdydx)
s Jt
a pb N N 3
x(/ / d*z(x,y)Nfz(x,Y)dydx) dtds + ed,
s t

where 0 < r3 < min{ry, r2}. Then, for any € > 0,

al@r+D(1=r3) (@2 +1)(1=r3)
(@1 + DU (@p + DI ()T (r2)

[v=villpr = {d(@ b) = Dl — pilloo +

a rb 1 o r
x/ / §’3(df3 (s,)N 7 (s,t)—l) lus. 1) — uy (s.2)||deds + ed,
0 0

where w; = ;‘__r;, wy = % Thus, for any € > 0,

q@1+DU=r3) p(@2+1)(1=r3)
(w1 + DU (wy + D)= (r) I (r2)

v =villpr = &(d(a.b) = Dlp—pilloo+

XCON* u—wu || + ed,

1—r
where N* = sup NT3(x, y). Hence, for any € > 0,
(x.y)es

[v—=villzr <&(d(a,b) = Dllp— pilloo
o N *q @1+ D)1=r3) p(@2+1D(1-r3)

o+ DU (@w; + DO TG ()

llw — up|| 1 + ed.

This implies that,

di(v,a(uy,uy)) < &d(a,b) — )| — irlloo
é-r3N*a(a)l+l)(l—r3)b(6()2+1)(1_r3)

(a)l + 1)(1_,,3) (CUZ + 1)(1_1'3)1—'(7'1)1—'(7'2) ”M —Uuj ”Ll P

for all v € a(u, u). Therefore,

dp(a(p,u),a(pr,ur)) < &(da,b) —Dllp — pilloo
é-rsN*a(wl+1)(1—r3)b(w2+1)(1—1‘3)

(w1 + DI (@wy + D)L (r) T (r2)
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Consequently,

Hy(a(p,u), (1, u1)) < §(d(a,b) —Dllp— pilloo
§1‘3N*a(w1+1)(1—r3)b(w2+1)(1—1‘3)

(w1 + DU (w, + DI () (r2)

which shows that « is Hausdorff continuous and satisfies the assumptions of
Lemma 4.15. Also, by the same method, we obtain that the multifunction B
is Hausdorff continuous and satisfies the assumptions of Lemma 4.15. Define
T(p,u) = B, u,a(u,u); (u,u) € M x L', According to Lemma 4.15, the
set Fix(I'(s,.) = {u € E : u € I'(s,u)} is nonempty and arcwise connected in L'.
Moreover, for fixed u; € M and u; € Fix(I'(p;,.)); i = 1,..., p, there exists a
continuous function y : M — L' such that

y(u) € Fix(I'(w,.); for all u € M, 4.21)
y(wW) =u;; i =1,...,p. (4.22)
We shall prove that
Fix(FM(1.)) = {u € L' ulx.y) € F(x,yau(x. ). G(x. y.u, (x. 9)):
xa.e. (x,y) € J} . (4.23)

Denote by A(w) the right-hand side of (4.23). If u € Fix(/'(u,.)) then there is
v € a(u,v) such that u € B(i, u, v). Therefore, v(x, y) € G(x, y,u,(x,y)) and

u(x,y) € F(x,y,uu(x,y),v(x,y)) C F(x,y,uu(x,y),G(x, y,uu(x,y)));
xa.e. (x,y)eJ,

so that Fix(I"(u,.)) C A(u). Let now u € A(p). By Lemma 4.16, there exists a
selection v € L' of the multifunction (x, y) — G(x, y,u,(x, y)) satisfying

u(x,y) € F(x,y,u,(x,y),v(x,y)); ae. (x,y) € J.

Hence v € a(u,v) and u € (i, u,v) and thus u € I'(u,u), which implies that
A(p) C Fix(I'(u, .)) and so that (4.23).
We next note that the function 7 : L! — C ),

T@)(x,y) = Iju(x,y); (x,y) €J
is continuous and one has
S(p) = pn+ TFx((1,.); peM. (4.24)

Since Fix(I" (i, .)) is nonempty and arcwise connected in L', the set S(u) has the
same properties in C(J).
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2. Let u; € Mandletu; € S(u;); i = 1,..., p be fixed. By (4.24) there exists
v;i € Fix(I"(u;, .)) such that

M,‘ZMZ‘-FT(Vi);l':l,...,p.

Ify: M— L' is a continuous function satisfying (4.21) and (4.22) we define,
for every u € M,

S(p) = p+ T(yw).

Obviously, the function s : M — C(J) is continuous, s(u) € S(u) for all
n € M, and

S(i) =i +T(y(ui)) =i +TOi) =w; i =1,...,p.

3. Let uj,up € § = UﬂeM S(w) and choose u; € M; i = 1,2 such that
u; € S(u;); i = 1,2. From the conclusion of 2 we deduce the existence of
a continuous function s : M — S(J) satisfying s(u;) = u;; i = 1,2 and
s(u) € S(n); w € M. Leth : [0,1] = M be a continuous function such that
h(0) = g and h(1) = w,. Then the functionsoh : [0, 1] — C(J) is continuous
and verifies

soh(0) =uy, soh(l) = uy,
soh(u) € S(h(n) C S; peM. O

4.3.3.3 On the Set of Solutions of Fractional Order Riemann-Liouville
Integral Inclusions

Now, we prove the arcwise connectedness of the solution set for the following
Fredholm-type fractional-order Riemann—Liouville integral inclusion:

a b
_ 1 _ oyl _ \n—1
) = (D) + s 0/ Of (@—5)""" (b — )" fx, yos. 1, E(s. £))drds.
(4.25)

£0r.y) € F(x,y.u(x.9). G (x.y.u(x.)) ): if (x.3) € J := [0.a] x 0,b),
(4.26)
wherea,b,ri,r, € (0,00), u:J = R", f:JxJxR" — R" are given functions,
F:JxR"xR"—- PR"), G:J xR" — P(R") are given multifunctions.

Theorem 4.19. Let G : J xR" — Py (R") and F : J x R" x R" — P (R") be
two set-valued maps, satisfying the following assumptions:
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(4.19.1) The set-valued maps (x,y) — F(x,y,u,v) and (x,y) — G(x, y,u) are
measurable for all u,v € R".

(4.19.2) There exists a positive integrable function | : J — R such that, for every
u,u’ € R",

Hy(G(x,y,u),G(x,y,u)) <I(x,y)|lu—u|; ae (x,y) € J.

(4.19.3) There exists a positive integrable functionm : J — R and n € [0, 1] such
that, for every u,v,u’,v' € R",
Hd(F(xv y.u, V), G(X, Vs M/s V)) = m(-xs y)”"t - Lt/” + 77||V - V/”;

we deduce the existence of a continuous (x,y) € J.

(4.19.4) There exist positive integrable functions fi, f, : J — R such that

Hy ({0}, F(x, y.{0}.{0})) = fi(x.y), a.e. (x,y) € J
Hy({0}.G(x,y.{0})) = falx.y):
we deduce the existence of a continuous (x,y) € J.

(4.19.5) The function f : J x J x R" — R" is continuous and bounded and there
exists a constant M > 0 such that

”f(-xsyssstvgl)_f(-xsyssstng)” = M”%‘l _EZH; Elv%‘Z e R".

Then,

1. For every u € C(J), the solution set S(jt) of problems (4.25) and (4.26) is
nonempty and arcwise connected in the space C(J).

2. Forany u; € C(J) and anyu; € S(in); i = 1,..., p, there exists a continuous
function s : C(J) — C(J) such that s(u) € S(u) for any u € C(J) and

s(ui) =u;; i =1,...,p.
3. The set S = Uyec)S(w) is arcwise connected in the space C(J).

Proof. In what follows N(x,y) = max{l(x,y),m(x,y); (x,y) € J}and ¢ €
(0, 1) will be taken such that 2 +n < land d : J — (0,00) in (4.20) is the
corresponding mapping found in Lemma 4.17.

1. Forpu € C(J)andu € L', set

a b
— ; _ ri—1 _ r—1
(3. 3) = W) + s 0/ 0/ (a—s)""' (b —1)

X f(x,y,s,t,&E(s,t))deds; (x,y) € J.
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Define the multifunctions o : C(J) x L' — P(L"Y and B : C(J) x L' x L' —
P(L") by
a(pn. &) ={velL 1v(x,y)e G(x,y,u,(x,y)); ae. (x,y) € J,
B, &,v) = {we L' tw(x,y) € F(x,y,uu(x,y),v(x,y)); ae. (x,y) € J,

where € C(J) and &,v € L'. We prove that o and S satisfy the hypothesis of
Lemma 4.15.

Since u, is measurable and G satisfies hypothesis (4.19.1) and (4.19.2),
the multifunction G, : (x,y) — G(x,y,u,(x,y)) is measurable and G, €
Pa(L'), G, has a measurable selection. Therefore due to hypothesis (4.19.4),
we get a(u, &) # 0. Also, by simple computation, it follows that the set o(, §)
is closed and decomposable. In the same way we obtain that a(u, £) € Pe (L")
is a decomposable set.

Setd := f(f fob d(x, y)dydx. Pick (u,§), (u1,£) € C(J) x L' and choose
v € a(u,&). For each € > 0 there exists vi € a(ug, &) such that, for every
(x,y) € J, one has
v, ) = vi e = Ha (G y (6, 9)), G, oy (5,7))) + €

< N(x,y)(llu(x,y) — i

x Yy
; _qy1—ly el
TS 0/ 0/ (=" =0 Mg Gs.0)

—E.(s, t)||dtds) te

Thus, for any € > 0,

a b

=il < = pialoo / / d(x. y)N(x. y)dydx
0 0

a b
M
TS O/ 0/ d(x. y)N(. y)

ab
x //(a — )N b — )2 V£ (s, 1) —£1 (s, 0)||deds |dydxted

00
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a b
M
s;(d(a,b)—1>||u—m||oo+mofofnas,r)—sl(s,z)u

a b
x //(a—s)"_l(b—t)’z_ld(x,y)N(x,y)dydx dtds + ed
N t

< {(d(a.b) = Dl = pilloo

a b
M
T / / 1660 — 85,0l
1—r3

a b
ri—l1 rh—I1
x //(a—s)l‘?s(b—z)ﬁ*rsdydx
t

s

3

a b
X / /d%(x, y)N%(x, y)dydx | dtds + ed,
s

where 0 < r3 < min{ry, r»}. Then, for any € > 0,

v =il = &(d(a.b) = Dlln — pillo
Ma @ +D1=r3) p@+1)(1-r3)

o+ D@ + DO )T ()
a b

x / / (a7 .08 T 5.~ 1) e 0)
0 0

—&1(s,t)||dtds + ed,

ri—1 _ 1r—1
1—r3? (U2 - 1—r3

where w; = . Then, for any € > 0,

lv=viller = ¢(d(@.b) = Dl = ti1lloc
M q@rtDU=r3) pl@2+1)(1-r3)

o+ D0 (@; + DO )T ()
XCEN*[E = £1ll1 + ed.
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1=
where N* = sup N 7 (x,y). Hence, for any € > 0, we have
(x.y)eJ

[v—=viller <&(d(a,b) = Dllp— pilloo
M§1‘3N*a(w1+1)(1—l‘3)b(w2+1)(1—73)

@ + D0y + DTGy e e

This implies that

dp(v,a(pr, &) < ¢d(a,b) =D — pilloo
ML N *g@1tD=r3) p(@+1)(1=r3)

(w1 + )37 (wy + 1) () (r2)

1€ — &l

for all v € a(t, u). Therefore,

dp(a(p,§),a(ur,61)) < §(da,b) — Dllp— il
Mé-rsN*a(wl+1)(1—r3)b(w2+1)(1—r3)

(@1 + D0 (@, + DO ()T (1) 1E—E1ll -
Consequently,
Hy(o(p, §) (1. §1) < ¢(d(a,b) — Dllp — pilloo
N =l

(w1 + )37 (wy + 1) () (r2)

which shows that o is Hausdorff continuous and satisfies the assumptions of
Lemma 4.15. Also, by the same method, we obtain that the multifunction j
is Hausdorff continuous and satisfies the assumptions of Lemma 4.15. Define
(&) = B(u, & a(w,£)); (u, &) € C(J) x L. According to Lemma 4.15,
the set Fix(I'(s,.) = {£ € E : £ € I'(s, &)} is nonempty and arcwise connected
in L'. Moreover, for fixed u; € C(J) and & € Fix(I'(u;,.); i = 1,...,p,
there exists a continuous function y : C(J) — L' such that

y(u) € Fix(I' (i, .); for all u € C(J), (4.27)
y(w) =&:i=1,....p. (4.28)
We shall prove that

Fix(I'(,.)) = {£ € L' 1 £(x, y) € Fx,y,uu(x,y), G(x, y,u,(x, ¥)));
ae. (x,y)eJ}. (4.29)
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Denote by A() the right-hand side of (4.29). If £ € Fix(I"(u,.)) then there is
v € a(w,v) such that £ € B(u, &, v). Therefore, v(x, y) € G(x, y,u,(x,y)) and

§(x,y) € Fx,y,up(x,y),v(x,y)) C F(x,y,uu(x,y)
xG(x,y,u,(x,y)));ae. (x,y) € J,

so that Fix(I"(u,.)) C A(u). Letnow £ € A(n). By Lemma 4.16, there exists a
selection v € L' of the multifunction (x, y) — G(x, y, u,(x, y)) satisfying

E(x,y) € F(x,y,up(x,y),v(x,y)); ae. (x,y) € J.

Hence v € a(u,v) and § € B(u, &, v) and thus € € I'(u, u), which implies that
A(p) C Fix(I"(u, .)) and so that (4.29).
We next note that by (4.19.5), the function 7 : L' — C(J),

a b
— 1 _ r1—l _ rz—l
T@w.) = oo [ [a=sre-n
0 0

x f(x,y,s,t,E(s,t))dtds; (x,y) € J,

is continuous and one has

S(u) = p+ TFx( (1, )); p € CWJ). (4.30)

Since Fix(I"(u,.)) is nonempty and arcwise connected in L', the set S(u) has
the same properties in C(J).

2. Letu; e C(J)andletu; € S(u;); i = 1,..., p be fixed. By (4.30) there exists
v; € Fix(I"(u;, .)) such that

M,‘ZMZ‘-FT(V,');Z':L...,[?.

Ify : C(J) — L'is acontinuous function satisfying (4.27) and (4.28) we define,
forevery u € C(J),

S(u) = p+ T(yuw).

Obviously, the function s : C(J) — C(J) is continuous, s(u) € S(w) for all
pweC(J),and

Su)=wi +Ty(w))=wi +TOW;)=u;;i=1,...,p.
3. Let uj,up € § = UueM S(w) and choose u; € M; i = 1,2 such that

u; € S(u;); i = 1,2. From the conclusion of 2 we deduce the existence of
a continuous function s : C(J) — S(J) satisfying s(;) = u;; i = 1,2 and
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s(un) € S(u); we C(J).Leth : [0,1] — C(J) be a continuous function such
that #(0) = p; and (1) = p,. Then the function s o £ : [0,1] — C(J) is
continuous and verifies

soh(0) =uy, soh(l) = uy,
soh(u) e S(h(p)) C S; peCJ).

O
Corollary 4.20. Consider the following Fredholm-type integral inclusion:
a b
u(x,y) = pu(x,y) + / / f(x,y,s,t,&(s,t))deds, (4.31)
00
£(x.y) € F(x.y,u(x,9).G(x,y,u(x.)) ): if (x.v) € J := [0.a] x [0,].
(4.32)

Suppose that Hypotheses (4.19.1)—(4.19.5) hold. Then,

1. For every p € C(J), the solution set S'(u) of problems (4.31) and (4.32) is
nonempty and arcwise connected in the space C(J).

2. Forany pu; € C(J) and anyu; € S'(n); i = 1,..., p, there exists a continuous
Sunction s’ : C(J) — C(J) such that s'(;1) € S'(u) for any p € C(J) and
sS'(Wi) =wuis i =1,...,p.

3. The set 8" = Uyec(s)S' (1) is arcwise connected in the space C(J).

4.4 Upper and Lower Solutions Method for Partial
Differential Inclusions

4.4.1 Introduction

This section deals with the existence of solutions to the Darboux problem for the
fractional order hyperbolic differential inclusion

(“Dou)(x,y) € F(x,y,u(x,y)), if (x,y) € J, (4.33)
u(x,0) = ¢(x), x €[0,a], u(0,y) = ¥(y), y €0,b], (4.34)

where J = [0,a] x [0,b], a,b > 0, F : J xR" — P(R") is a compact-valued
multivalued map and ¢, ¥ are as in problems (4.10) and (4.11)
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4.4.2 Main Result

Let us start by defining what we mean by a solution of problem (4.33) and (4.34).

Definition 4.21. A function u € C(J,R") is said to be a solution of (4.33) and
(4.34), if there exists a function f € L'(J,R") with f(x,y) € F(x,y,u(x,y))
such that (° D{u)(x,y) = f(x,y), and u satisfies the (4.34) on J.

Letz, 7 € C(J,R") be such that
z2(x,y) = (@(x,¥),22(x, ¥), -y zn(x, p), (x,y) €J

and
zZ(x,y) = @ (X »). 22(x. y), ..., Za(x, ), (x,p) € J.

The notation z < 7 means that
Zi(xvy) Szi(X,Y)v i = 17---7’1-

Theorem 4.22. Assume that the following hypotheses:

(4.22.1) F : J xR" —> P, ,(R") is L'-Carathéodory
(4.22.2) There exists | € C(J,Ry) such that

Hy(F(x.y.u), F(x,y,0) < I(x, y)|u—al| foreveryu,ii € R"

and
d(0, F(x,y,0)) <Il(x,y), ae (x,y) € J

(4.22.3) There exist vand w € C(J,R"), lower and upper solutions for the prob-
lems (4.33) and (4.34) such that v(x, y) < w(x, y) for each (x,y) € J

hold. Then problem (4.33) and (4.34) has at least one solution u such that
v(x,y) =ulx,y) =w(x,y) forall (x,y) € J.

Proof. Transform problem (4.33) and (4.34) into a fixed-point problem. Consider
the following modified problem:

(‘Dou)(x,y) € F(x,y,gu(x, y))), if (x,y) € J, (4.35)
u(x,0) = p(x), u(0,y) =v¥(y), x €[0,a] and y € [0, b], (4.36)

where g : C(J,R") — C(J,R") be the truncation operator defined by
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v(x,y), ulx,y) <v(x,y),
(gu)(x,y) = u(x,y), v(x,y) <u(x,y) <wx,y),
w(x, y), u(x,y) > w(x,y).

A solution to (4.35) and (4.36) is a fixed point of the operator G : C(J,R") —
P(C(J,R")) defined by

heCU,RY:
h(x,y) = p(x,y)
x y

Gl = 1 ~ -1 -1
+m 0/ O/(x —)" Ny =) f(s,t)dtds, (x,y) € J,

where f € §F,g(u) = {f € SF,g(u) : f(xv y) = fl(xv y) on Al and f(-xs y) =
f2(-xsy) on AZ}s Al = {(X,y) e J: M()C,y) < V(st) =< w(x,y)}, A2 =
{(x,y) € J rulx,y) wlx,y) <u(x,y)}.

Remark 4.23. (A) For each u € C(J,R"), the set Sp,g(u) is nonempty. In fact,
(4.15.1) implies that there exists f3 € Srg(u), SO We set

f=fixa+ faxa, + f3xas
where x4, is the characteristic function of 4;; i = 1,2, and
Az ={(x.y) € J 1v(x.y) =u(x,y) < w(x,y)}.
Then, by decomposability, /' € S F.a(u)s

(B) By the definition of g it is clear that F(.,., g(u)(.,.)) is an L'-Carathéodory
multivalued map with compact convex values and there exists ¢; € C(J,R4)

such that
[ F(x,y,gu(x,y)»r < ¢i1(x,y) foreach u € R".
Set
a" by
= + k]
=l + 7o T D FmH T D

where

o1 = sup{pi(x.y) : (x,y) € J}
and

D ={ueCU,R"):|ullo <1}
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Clearly D is a closed convex subset of C(J,R") and that G maps D into D. We
shall show that D satisfies the assumptions of Lemma 2.38. The proof will be given
in several steps.

Step 1: G(u) is convex for each u € D. Indeed, if h;, h; belong to G(u), then there
exist ur, uy € Sr ¢ such that for each (x, y) € J we have

hi(x,y) = p(x,y)

x )y
1
+_ x—s)"7 Ny —¢ rz_lui s, t)deds, i =1,2.
””)””)o/o/( YUy — 0 (s 1)

Let 0 < & < 1. Then, for each (x, y) € J, we have

x )y
—_ J— ; _ r1—l _ rz—l
(6 + (1= ). 9) = 1(+.9) + T 0/ 0/ (==

x[Eur(s,1) + (1 — §)ua(s, 0)]drds.
Since § F.g() 18 convex (because F has convex values), we have
§h 4 (1 =&)hy € G(w).

Step 2: G(D) is bounded. This is clear since G(D) C D and D is bounded.

Step 3: G(D) is equicontinuous. Let (x1, y1), (X2, y2) € J, x1 < xp and y; < ya,
letu € D and h € G(u), then there exists z € Sr g, such that for each (x, y) € J
we have

A (x2, y2) =h(x1, y1)||

Xp )1

— _ ; _ oyl _ 21
= it ) = 130 + 0/ 0/ [0 =)™ 2 = 1)

—(x1 = )"y = ) z(s, t)dsdt

X1 )2
1
—_— — )1 (yy =)t t)drd
om0 =0t naras
0
X2 )1

! ri—1 _ -1
+mx O/(XZ—S) (y2 — 1) z(s, t)dtds
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X2 »
//(xz—s)" Yya = )27 1g(s, t)dtdsH
X1y
< llm(xr, y1) — p(x2, y2) ||
Pr
1"(r1 + DI+ 1)

.,

+x1'y? = x5y =200 — x) (v2 — y1)".

F(rl)F(rz)

[2y57 (2 — x1)"" 4+ 2x3' (y2 — y1)"

As x; — x, and y; —> )», the right-hand side of the above inequality tends to
zero. As a consequence of Steps 1-3 together with the Arzeld—Ascoli theorem, we
can conclude that G : D — P(D) is compact.

Step 4: G has a closed graph. Let u,, — ux, h, € G(u,), and h, — h,. We need
to show that i € G(ux). y
hy, € G(u,) means that there exists z, € Sr g(,) such that, for each (x, y) € J,

x oy
1
ha(x,y) = u(x,y) + ———=— / /(x — )" Ny — )27z, (s, £)dtds.
I(r)I(r2)
0 0
We must show that there exists z4« € S F.g(uy) Such that, for each (x, y) € J,

x
— ; _ r1—l _ rz—l
he(x,y) = u(x,y) + T () O/O/(x )Ty — 1) zk (s, £)deds.

Since F(x, y,-) is upper semicontinuous, then for every & > 0, there exist ng(¢) > 0
such that for every n > ny, we have

fu(x,y) € F(x,y,u,(x,y)) C F(x,y,ux(x,y)) +eB(0,1), ae. (x,y) € J.
Since F(.,.,.) has compact values, then there exists a subsequence f,, such that
S Go) = fu(-,-)asm — oo

and
fx(x,y) € F(x,y,us)(x,y), ae. (x,y) € J.

Forevery w € F(x, y,u«(x,y)), we have

Il fo G, 9) = s 6 Y= Sy O, ) = Wl 4w = S, ) -
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Then
| fo G 3) = feGeo )= d(fu (6 90, F 6,y 9))-

By an analogous relation, obtained by interchanging the roles of f,,, and fs, it
follows that

| f,y (x5 ) — s (e, V|| < Ha(F(x, y,un(x, ), F(x, p, ux(x, y))
<1 )y — x| oo-

Then

x Yy
Vi, (5. ) = b, )| < m / / (=) 5 — 1) | o (s21)
0 0
— fx(s,0)||deds
r'(r)I(ry)

x Yy
< l|t4n,,, — ts |l oo /(x _ S)r1—1(y _ t)l‘z—ll(s’ t)drds
0 0

al‘]brzl*
5 ”u"m
Fri+DIC@r+1)

_“*”om

where
I* = sup{l(x,y): (x,y) € J}.
Hence
ry ] *
h”m _h*”OO f ? b Z
'ri+DC @+ 1)

lun,, — ts]loo = 0 as m — oo.

Step 5: The solution u of (4.35) and (4.36) satisfies
v(x,y) <u(x,y) <w(x,y) forall (x,y) e J.

We prove that
u(x,y) <w(x,y) forall (x,y)eJ.

Assume that u — w attains a positive maximumon J at (x,y) € J;i.e.,
(u—w)(x,y) = max{u(x,y) —w(x,y): (x,y) e J}>0.

We distinguish the following cases.
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Case 1 If (x,y) € (0,a) x [0, b] there exists (x*, y*) € (0,a) x [0, b] such that
[, y™) —wlx, yO)] + [u(x™, y) —w(x™, y)]

= [u(x™, y*) —w(x*, y")] = 0: forall (x, ) € (x*, X] x {y"H U ({x"} x [y*.b])
(4.37)

and
u(x,y) —w(x,y) >0, forall (x,y) € (x*,%] x [y*, b]. (4.38)

By the definition of g one has
‘Diu(x.y) € F(x,y, g(u(x, y))) forall (x,y) € [x".X]x [y*.b],

then there exists f € F(x, y, g(u(x, y))) such that
“Diu(x,y) = f(x,y)forall (x,y) € [x*,X] x [y*,b].
An integration on [x*, x] x [y*, y] for each (x, y) € [x*,X] x [y*, b] yields
u(x, y) +ulx*, y*) —ulx, y*) —u(x*, y)

Xy

—; _ oyl _ -l

= F(rl)F(rz)[[(x )"y =) f(s, t)deds. (4.39)
X*y

From (4.39) and using the fact that w is an upper solution to (3.1)—(3.2) we get
ulx, y)Fu(x™, y*)—u(x, y*)—u(x*, y) < wx, y)+w(x*, y*)—wlx, y*)—w(x*, y),
which gives

[u(x, y) = wx, )] < [u(x, y*) —wlx, yO)] + [u(x™, y) = w(x™, y)]
—[u(x™, y*) = wx", )] (4.40)

Thus from (4.37), (4.38) and (4.40) we obtain the contradiction

0 < [u(x,y) —w(x,y)]
< [ue, y*) = wie, yO)] + [u(x™, y) = wx™, p)] = [u(x™, y*) —w(x™, y*)] < 0;
for all (x,y) € [x*,X] x [y, b].
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case 2 If X = 0, then w(0,y) < u(0,y) < w(0,y) which is a contradiction. Thus
u(x,y) <w(x,y)forall (x,y) € J.

Analogously, we can prove that u(x, y) > v(x, y), forall (x,y) € J. This shows
that the problems (4.35) and (4.36) have a solution u satisfying v < u < w which is
a solution of (4.33) and (4.34). ]

4.5 Partial Functional Differential Inclusions
with Infinite Delay

4.5.1 Introduction

This section deals with the existence of solutions to fractional order IVP , for the
system

(“Dgu)(x,y) € F(x,y,ucy). if (x,y) € J, (4.41)
u(x,y) = ¢(x,y), if (x,y) € J', (4.42)
u(x,0) = ¢(x), x € [0,a], u(0,y) =y¥(y), y €10,b], (4.43)

where J = [0,a] x [0,b], a,b > 0, J' = (—00,a] x (—o0, b]\(0,a] x (0,b], F :
J x B — P(R") is a multivalued map with compact, convex values, P(R") is the
family of all subsets of R", ¢ : J > R'isa given continuous function, ¢, ¥ are as
in problem (3.1)—(3.3) and B is a phase space. Next we consider the following IVP
for partial neutral functional differential inclusions:

C'D(')ﬁ[u(xv y) - g(xv Y, M(X,y))] € F()C, Y, u(x,y))v if ()C, y) € J, (4‘44)
u(x,y) = ¢(x,y). if (x,y) € J', (4.45)
u(x,0) = ¢(x), x €[0,a], u(0,y) = ¥(y), y €[0,b], (4.46)

where F, ¢, ¢, are as in problem (4.41)—(4.43)and g : J xB — P(R") is a given
continuous function.

4.5.2 Main Results

Let us start by defining what we mean by a solution of the problem (4.41)—(4.43).
Let the space

2 :={u:(—o00,a] x (—o0,b] = R" : u( ) € Bfor(x,y)

€ E and u|;is continuous}.
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Definition 4.24. A function u € £2 is said to be a solution of (4.41)—(4.43) if
there exists a function /' € L'(J,R") with f(x,y) € F(x,y,u(.y)) such that
(“Dju)(x,y) = f(x,y) and u satisfies (4.43) on J and the condition (4.42) on J'.

Theorem 4.25. Assume that
(4.25.1) F : J x B = Pepev(R") is a Carathéodory multivalued map
(4.25.2) There exists | € L*°(J,R) such that
Hy(F(x,y,u), F(x,y,u)) <lIl(x,y)||lu—ul|gforeveryuuclh
and
d, F(x,y,0)) <Il(x,y), ae (x,y) € J.
Then the IVP (4.41)—(4.43) has at least one solution on (—oo, a] x (—oo, b].
Proof. Let [* = ||l||Lec. Transform the problems (4.41)—(4.43) into a fixed-point
problem. Consider the multivalued operator N : 2 — P(£2) defined by
N(x,y) =1{h € 2},

such that

¢(x, ). (x.y) et
hx.y) = | HO50) .

+romra /S =) Ty =027 f(s,0)deds, f € Spus (x,y) € J.

00

Letv(.,.) : (—00,a] x (=00, b] — R". be a function defined by,

P(x.y). (x.y) € J,

v y) = { wix.y). (x.y) € J.

Then v( ) = ¢ forall (x,y) € E. Foreachw € C(J,R") with w(0,0) = 0, we
denote by w the function defined by

0, (x,y)ef’,

W) = { w(x.y) (eoy) € J.

If u(., .) satisfies the integral equation
o
u(x,y) = u(x, +—//x—s”_l — )27 £(s, H)deds,
€0 =D+ iy | [0 =0 0

we can decompose u(.,.) asu(x, y) = w(x, y)+v(x,y); (x,y) € J, whichimplies
U(x,y) = W(x,y) T+ V(x.y), for every (x, y) € J, and the function w(., .) satisfies
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Xy
_ 1 _ ri—1 _ r—1
w(x,y) = —F(Fl)r(rz)o/o/(x Ty =) f(s, t)deds,

where f € Sk, 4y - Set
Co={weC(J,R"): w(x,y)=0 for(x,y) € E},
and let ||.||(4,») be the seminorm in Cy defined by

[Wll@py = sup [waplls + sup [wlx, y)[| = sup [w(x,y)|. we Co.
(x.y)EE (x.y)es (x.y)es

Co is a Banach space with norm ||.||( ). Let the operator P : Cy — P(Co) be
defined by
(Pw)(x,y) = {h € Co},

such that
1 Fr
— _ r —1 _ rz—l
ha””‘?@ﬁﬁ;!!“ 1y — 0 f(s.0)drds, (x.y) € .

where f € Sri,, +v,,- Obviously, that the operator N has a fixed point is
equivalent to P has a fixed point .

Step 1: P(u) is convex for each u € Cy. Indeed, if hy, h, belong to P(u), then
there exist f1, f2 € Srw ., v, Such that for each (x, y) € J we have

x
. _ 1 _ ri—1 _ -1 .
hi(x,y) = —F(rl)F(rz) O/O/(x Ty =) fi(s,t)deds, i =1,2.

Let 0 < & < 1. Then, for each (x, y) € J, we have

Xy
1
h 1-8h)(x,y) = =—— —5)" 7y -t
(Ehi + (1= O (x. ) nmnm!!“s)(y)
x[Ef1(s, 1) + (1 =§) fals, 1)]deds.
Since § Finn +vi 18 convex (because F has convex values), we have

§hi+ (1 =8§)hy € P(u).
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Step 2: P maps bounded sets into bounded sets in Cy. Indeed, it is enough to
show that there exists a positive constant £ such that, for each z € B, = {u €
Co : ||zl < p}, one has ||P(z)|| < £.Letz € B, and h € P(z). Then there exists
J € SFw.+vin» Such that, for each (x, y) € J, we have

x Yy
— 1 _ -l _ -1
h(x,y) = FOT () O/O/(x )Ty =) f(s, t)deds.

Then, for each (x, y) € J,

x y
< 1 _ r1—l _ rz—l
I = g | [ €= 0 =0 s
0 0

x Yy
< 1 _ ri—1 _ -1
—FEﬁW5!!“ 9N — 0 (s 1)

X(1 + Wiy + Vsl B)deds

<l(1+,0)

x oy
_ -l _ -1
< —F(rl)l"(rz) J O/(x s) (y =) 'dtds

a"b"*(1 + p*)
“I(rn+0D)Cra+1)

where

Wity + v lls < Wenlls + Ivenlls
< Kp+ M|¢|s = p*.

Step 3: P(B,) is equicontinuous. Let P(B,) as in Step 2 and let (x1, y1), (X2, y2)
€J, x1 <xpand y; < yp,letu € B, and h € P(u), then there exists f €
SF ()4 Such that for each (x, y) € J we have

172:(x2, y2) = h(x1, yo)l

X1 )1

= ; _ oyl _ -1 -l a1
_HF(rl)F(rz)O/ 0/ (b = 2 =0 = b = =07

X2 )2

1 ri—1 _n\n—1
x f(s,t)dtds + m//(xz—s) (y2 — 1) f(s,t)deds

X1
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xXp 2
1 ri—1 _ -1
"‘mofy/(n — )" Ny = )27 f(s, t)dtds

X2 )1

1 ri—1 _ -1
+m}( O/(Xz—S) (2 —1) f(s,t)dtdsH

_ I*(1+ p*)
“I'(n+0)IC(r+1)

2952 (2 — x1)"" + 2x5" (y2 — y1)"”

L, 1,2

+x1' Y = x5 vyt =200 — x1) (2 — y1)"”.

As x; — x3 and y; —> )», the right-hand side of the above inequality tends to
zero. As a consequence of Steps 1-3 together with the Arzeld—Ascoli theorem, we
can conclude that N : Co —> P.,(Co) is completely continuous.

Step 4: P has a closed graph. Let u, — ux, h, € P(u,),and h, — h«. We need
to show that h« € P(ux). hy, € P(u,) means that there exists f, € Srw, +ve
such that, for each (x, y) € J,

x )y
_ 1 _ ri—1 _ -1
““”*‘Faﬁﬂﬁjju 17y — 1) £y (s 1)drds,

We must show that there exists fi € S Finay+ven) Such that, for each (x, y) € J,

x ¥
1
h s = —=— — )t —1 r2-1 ,t)drds.
W) = o [ =T e =0 e naras
0 0
Since F(x, y,-) is upper semicontinuous, then for every & > 0, there exist ng(¢) > 0
such that for every n > ny, we have
Ja(x,y) € F(x,y,Wa(x, y)+v,y) C F(x,y, Wy ,)+eB(0,1), ae. (x,y) € J.
Since F(., .,.) has compact values, then there exists a subsequence f,, such that
S Go) = fu(-,-)asm — oo

and
Se(x,y) € F(x,y,Wa(x,y) + v(x,))), ae. (x,y) € J.

Then for every w € F(x,y, w(x,y) + v(x.)), we have

o (25 ¥) = S Ce D= M Sy (2, 3) =Wl v = S (s )
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Then
[ (6 = St = d (o (600, FE 3,02, 9) + )

By an analogous relation, obtained by interchanging the roles of f, and fs, it
follows that

I o (6 )= Fielts DI = Ha(F 3.3 06 0)4000)s F O 9,206 ) 4000))

< 1 Y)W =W -

Then

1720, (2 ¥) = R, )|

Xy
; AN e A b e N1
Hmnm!!@ "= 07, (5.0)
—Wx(s,t)||dtds

”an — W ”(a,b)

Xy
— ri—l1 _ rz—ll
1"(’,1)11(’_2) 0/!(x S) (y t) (S,t)dtds

a" b l*

T I'(n+DHIC(rn+1)

”an - W*”(a,b)-

Hence

a b l*

i+ D+ 1)

70, — sl @py < Wn,, — Wxll@p) = 0 asm — oo.

Step 5: (A priori bounds). We now show there exists an open set U C Cj with
w € AP(w), for A € (0,1) and w € dU. Letw € Cy and w € AP(w) for some
0 < A < 1. Thus there exists f* € Sy, +v, such that, for each (x, y) € J,

Xy
— ; _ oyl _ o\l
w(x,y) = F(rl)F(rz)//(x )Ny =) f(s, t)deds.
00

This implies by (4.25.2) that, for each (x, y) € J, we have

X )
1 _ -l _ -1
””*””fFaﬁﬂﬁjj“ DI

xI(s, 1) (1 + (W) + v llg)deds
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- [*a" b
- F(r1+1)F(r2+1)

x )y
[* B L
g | =0 =0 e + v s
0 0

But
Wiy +vsolls < Wenlls + Ivsnls
< Ksup{w(3,7) : (5,7) € [0,5] x [0,¢]} + M |¢| 5.
If we name z(s, t) the right-hand side of (4.47), then we have

Wiy + v lls < 2(x, p),
and therefore, for each (x, y) € J, we obtain

Z* l]brz
Wl = e DG+

x Y
L _ ri—1 _ -l
+F(r1)F(r2)0/ 0/ (x =)y = 1) z(s. 1)drds.

Using the above inequality and the definition of z we have that
Kl*a"1b"
F'ri+DC@+1)

x,y) = Mol +

x oy
K—l* _ ri—1 _ ry—1
+F(r1)F(rz)0/ 0/ (=)' =07 s ydids,

for each (x, y) € J. Then, Lemma 2.43 implies there exists § = §(ry, r2)

lzGr )l < R + 8 RK’*Z)//(x §Y Ny — 1y deds,

r(rl(
where
Kl*a" b
R=M|¢|s+ .
Ils + F o D+ D
Hence RSKI[*a" b
lzllo < R+ =M.

I'(n +1)F(r2+1)

(4.47)

(4.48)
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Then, (4.48) implies that

Z* r1br2
Iwloo = NCESNACES))

(1+M):=M*
Set
U={weCy: W@y < M*+1}.

P : U — Cy is continuous and completely continuous. By Theorem 2.33 and
our choice of U, there is no w € dU such that w € AP(w), for A € (0,1). As a
consequence of the nonlinear alternative of Leray—Schauder type [136], we deduce
that N has a fixed point which is a solution to problems (4.41)—(4.43). O

Now we present a similar existence result for the problems (4.44)—(4.46).

Definition 4.26. A function u € 2 is said to be a solution of (4.44)—(4.46) if
there exists f € F(x,y,u(,y) ) such that u satisfies the equations “ D{[u(x, y) —
g(x,y,uxy)] = f(x,y) and (4.46) on J and the condition (4.45) on J'.

Theorem 4.27. Assume (4.25.1) and (4.25.2) and the following condition holds:

(4.27.1) The function g is continuous and completely continuous, and for any
bounded set B in §2, the set {(x,y) — g(x,y,u) : u € B}, is
equicontinuous in C(J,R"), and there exist constants dy,d, > 0 such
that 0 < Kd, < } and

g,y < dilluls + da, (x.y) € J, ueb.

Then the IVP (4.44)—(4.46) have at least one solution on (—oo, a] x (—oco, b].
Proof. Consider the operator N, : £2 — P(£2) defined by

P(x.y). (x,y) et
w(x,y) + g(x,y, Ui y))

—g(x,0,u(x0)) — g0, y,uq,y))
(Nu)(x,y) = h €82 :h(x,y) =1 +g£(0,0, M(OO)) .
+ e ff("_s)” :

(y—1)7" lf(s,t)dtds, (x,y) e J,

where f € Sg,. In analogy to Theorem 4.25, we consider the operator P : Cy —
P(Co) defined by
0, (x,y)eJ’,

g6 Y, Wix y) + V()
—g(x,0, W 0) + V(x,0)

. —£(0,y,w(,y)
(Piu)(x,y) = he R h(x,y) = y
+vo, y)) + g(O 0.W(0,0) + v(0,0))

+ T ff(x —9n
(y—1)"" lf(s,l‘)dtds, (x,y) e,
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where f € Spw+,. We shall show that the operator P is continuous and completely
continuous. Using (4.27.1) it suffices to show that the operator P, : Cy — P(Cy)
defined by

0, (x,y) e J,
1 T 1
(Pau)(x,y) = hef:h(x,y) = mff(x —s5)1 ,
00
(y =)' f(s,0)deds, (x,y) € J,

is continuous and completely continuous. This was proved in Theorem 4.25. We
now show that there exists an open set U C Cy with w € AP;(w), for A € (0,1)
and w € dU. Let w € Cy and w € AP;(w) for some 0 < A < 1. Thus for each
(x,y)ed,

w(x,y) = Alg(x, ¥, Wixy) + Vi y) — 8(X,0,W(x0) + V(x0)

—g(0,,W(0,y) + vo.y)) + &£(0,0,%(0.0) + v0.0))]

Xy
; — )1y =yl
JrF(rl)l“(rz) O/O/(x $)" Ty =) f(s, t)deds,

where f € F(x,y,w + v). Then

[*a"h"

rm+0)Ir'm+1)

[w(x, y)|| < 4d1||w(x,y) + V(x,y)”B +

x )
1
—_— —s)1 N y—1)27l ,D)|w drds.
TS O/ 0/ (=) =2 5, W50y + s s

Using the above inequality and the definition of z we have that

R15(7‘1, rz)Kl**a"lb’Z

<R = La
lzllo = R1 + (1—4dK)C(ri + DI (r; + 1)
where 1 Kl*a" b
a
Ri=——_ |8K
! 1—4d1K[ 2R F(r1+1)1“(’2+1)}
and
l*
l** R
1—-4d, K

Then

anb2l*(1+L)
F'(ri+ 0Ol (rm+1)

Wlloo < 4di|plls + 8dr + 4Ld; +
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Set
U ={weCo:|wlap <L*+1}.

By Theorem 2.33 and our choice of Uy, there is no w € dU such that w € AP, (w),
for A € (0,1). As a consequence of the nonlinear alternative of Leray—Schauder
type [136], we deduce that N; has a fixed point which is a solution to problems
(4.44)—(4.406). O

4.5.3 An Example

As an application of our results we consider the following partial hyperbolic
functional differential inclusion of the form:

(“Dou)(x,y) € F(x,y,uey), if (x,y) € J :=[0,1] x [0, 1], (4.49)

u(x, y) = ¢(xv y)s ()C, y) € (—OO, 1] 2 (—OO, 1]\(05 1] X (07 1]7 (4’50)
Let y > 0 and consider the phase space B, defined in the example of Sect. 3.7. Set

F(x,y,u@,y) = ueR: filx,y, Uy)) Su < falx, y, "‘(X,y))}7

where fi. f> @ [0,1] x [0,1] x B, — R. We assume that for each (x,y) €
J, fi(x.y,.) is lower semicontinuous (i.e., the set {z € By : fi(x,y,z) > v}is
open for each v € R), and assume that for each (x,y) € J, fa(x,y,.) is upper
semicontinuous (i.e., the set {z € B, : fa(x,y,z) < v} is open for each v € R).
Assume that there are [ € L*°(J,R4) and ¥ : [0,00) — (0, 00) continuous and
nondecreasing such that

max(| fi(x,y.2)|. [ a(x, . 2)[) = I(x, y)¥(|z]). forae. (x,y) € Jand allz € B, .
It is clear that F is compact and convex valued, and it is upper semi-continuous (see

[104]). Since all the conditions of Theorem 4.25 are satisfied, problems (4.49) and
(4.50) have at least one solution defined on (—o0, 1] X (—o0, 1].

4.6 Fractional Order Riemann-Liouville Integral Inclusions
with two Independent Variables and Multiple Time Delay

4.6.1 Introduction

This section deals with the existence and uniqueness of solutions for the following
system of fractional integral inclusions:
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m

u(x, y)— Zb; (v, u(x—&, y—ui) € IJF(x, y,u(x,y)); if (x,y) € J : =[0,a] x [0,b], (4.51)

i=1

u(x,y) = d(x,y): if (x,y) € J = [-£,a] x [-p,b]\(0.a] x (0.b], (4.52)

J xR" — P(R") is a set-valued function with nonempty values in R”, P(R") is
the family of all nonempty subsets of R", I} F(x, y,u(x, y)) is the definite integral
for the set-valued functions F of order r = (ry,r;) € (0,00) x (0,00), b; : J —
R i=1---m,and @ : J — R" are given continuous functions such that

B(x,0) =Y bi(x.00d(x —&.—p): x €[0.4]

i=1
and
m
®(0,y) = Y bi(0,y)P(—E.y — u); y € [0,b].
i=1
We establish the existence results for the problems (4.51) and (4.52) when the right-
hand side is convex as well as when it is nonconvex valued. Our approach is based on
appropriate fixed-point theorems, namely, Bohnenblust—Karlin fixed-point theorem
for the convex case and Covitz—Nadler for the nonconvex case. This approach is

now standard; however, its utilization is new in the framework of the considered
integral inclusions.

4.6.2 Existence of Solutions

Let C := C([-£, a] x [-u, b], R") be the Banach space of all continuous functions
from [—&, a] x [—u, b] into R" with the norm

Iwllc = sup [w(x, »)].
(x.,y)€[—¢€.a]x[—p.b]

Let us start by defining what we mean by a solution of the problems (4.51) and
(4.52).

Definition 4.28. A function u € C is said to be a solution of (4.51) and (4.52) if
there exists f € Sp, such that u satisfies the equation

w(x,y) = D bi(x, y)u(x = x;,y — yi) + 1; f(x, )

i=1

on J and condition (4.52) on J.
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Lemma 4.29 ([180]). Let X be a Banach space. Let F : J x X —> Pper(X)
be an L'-Carathéodory multivalued map and let A be a linear continuous mapping
from L'(J, X) to C(J, X), then the operator

AOSF . C(J,X) _)Pcp,cv(c(*]v X))a
u > (A o SF)(”) = A(SF,u)

is a closed graph operatorin C(J, X) x C(J, X).

Let F : J xR" — P(R") be a set-valued function with nonempty values in R”.
I§ F(x,y,u(x,y)) are the definite integral for the set-valued functions F* of order
r = (r1,r2) € (0,00) x (0, 00) which is defined as

Ig F(x,y,u(x,y))

Xy
= ; _ 1l g2l .
= oo O/ 0/ (x =)~ (= 0" (s 0)dtds ¢ £(x.) € S

Set
B

,glax{ sup ||bi(x,y>||}.

i 1em (x,y)ej
Theorem 4.30 (Convex case). Assume

(4.30.1) The multifunction F is Carathéodory,
(4.30.2) There exist positive functions h,l € L°°(J) such that

|F(x,y,wp <h(x,y) +1(x, y)|ul, ae (x,y) € J forallu e R".
If
a b l*
<1,
rA+r)I(1+r)
where [* = ||l|| oo, then the problems (4.51) and (4.52) have at least one solution
uon|[—§&,a] x[—u,b].

Proof. Transform the problems (4.51) and (4.52) into a fixed-point problem.
Consider the multivalued operator N : C — P(C) defined by

mB +

D(x,y): (x,y) e J,

N@)(x,y)=1g€C:g(x,y) = Zbi(x,y)u(x—&,y—ui)
i=1
+19rf(x7y)s fESF,u; (x,y)EJ.
(4.53)
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Clearly, the fixed points of N are solutions to (4.51) and (4.52). Let
Br ={ueC:lulc =R}

be a closed bounded and convex subset of C, where

arlbrzh*
(1=—mB) (1 +r)C(1+r)—arbrl*

R = Max||®||,

and
h* = |hlLee.

We shall show that N satisfies the assumptions of Lemma 2.38. The proof will be
given by several steps.

Step 1: N(Br) C Bg. Let u € Bg. We must show that N(u) € Bg. For each
g € N(u), there exists f € Sp, such that, for each (x, y) € J, we have

lgCe )l < 3 15 )l — &,y — )
i=1
1 b7
- _ ri—1 -l
JrF(rl)F(rz)O/O/()C )"y =) f (s 0)]|deds

Xy
1 ri—1 _ r—1
SmB||“||+m//(X—S) (y =) (h(s,1)
0 0

+1(s, t)||ul)deds

a" b
<mBR + h* +I1*R) =R,
=m r(a+mr( +r2)( )

and, for all (x, y) € J and g(x, y) € N(u), we have

lgx. M = 2. y)Il = R.
Thus, we get for all (x, y) € [-£,a] x [—u,b] and g(x, y) € N(u), we have

lgCe. I < R.

Step 2: N(Bg) is a relatively compact set. We must show that N is a compact
operator. Since By, is a bounded closed and convex set and N(Bg) C Bg, it follows
that N(Bpg) is a bounded closed and convex set. Moreover, for 0 < x| < x; < a
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and 0 < y; < y, < b and u € By, then for each g € N(u), there exists f € Sr,
such that, for each (x, y) € J, we have

llg(x1, y1) — g(x2, y2)l|

<Y b e youCer — & y1 — i) = bi (x2, y2)u(xa — & y2 — )|

i=1

X1 )1

1

_ ri—1 _ ry—1
T | [ 1000

—(x1 = )" o =027 £ (5. 0) | deds

X2 )2

troaron | e 0 =0 G aras
1 L

A Tar 0/ y/ (x2 = )" (32 = 07 (s, Dl deds
e

- _ r1—l _ rz—l
R yams 0/ (62 = 9" (= 1) £ (5. 1) s

< B lluxi — &y — i) —ulxa — . y2 — i)

i=1
+L
L (r)I(r2)

L,

+x1 Y = Xy vy =200 — x1) (y2 — y1)"

[2y7 (x2 — x1)"" 4+ 2x5' (2 — y1)"

As x; — xp and y; —> y», the right-hand side of the above inequality tends to
zero. The equicontinuity for the cases x; < x, <0, y; < y» <0and x; <0 < xp,
y1 < 0 < y; is obvious. An application of Arzela—Ascoli theorem yields that N
maps Bg into C a compact set in C, i.e., N : Bg — P(C) is a compact operator.
Thus N (Bp) is relatively compact.

Step 3: N is upper semicontinuous on Bg. Let u, — us, h, € N(u,) and h, —
h«. We need to show that /1, € N(ux).
hy, € N(u,) means that there exists f, € Sp,, such that
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ha(x,y) = @(x,y) (x,y) e J,

ha(x, ) = D bi (X, y)un(x — &,y — i)

i=1

Xy
+ o) S =) v =0T fus, Ddids (x,y) € .
00
We must show that there exists fix € S, such that

ha(x,y) = @(x, ) (x,y)eJ,

ha(x, ) = Y bi (X, Yt (X — &,y — ;)

i=1

xy
+roras ) [ =) Ty =) fi(s,0)deds (x,y) €.
00

Now, we consider the linear continuous operator

A Ll([_gva] S [_M’b]) — C?
f — A(f)(x.y)

such that

A(f)(x,y) = ®(x, ) (x.y) € J,
A ) = D bi(x, Y (x — &,y — i)

i=1

Xy
] (=97 0 =0 G ndrds () €.

From Lemma 4.29, it follows that A o Sf is a closed graph operator. Clearly, for
each (x, y) € J, we have

" [hn(x, Y)= ) by (x — &y — m)]

i=1

- |:h*(x,y) — Zbi(x,y)u*(x &,y —,u,-):| " — 0 as n — oo.

i=1

Moreover, from the definition of A, we have

[hn(x, V)= D b yun(x =&,y — Mi):| € A(Sru,)-

i=1



4.6 Fractional Order Riemann—Liouville Integral Inclusions... 165

Since u,, — ux, it follows from Lemma 4.29 that, for some fi € A(SF,, ), we have

B (X, 3) = D by, Y (x — €1,y — )

i=1

Xy
= rortrey /=S @ = 0 s, ) deds.
00

From Lemma 2.21, we can conclude that N is u.s.c.

Step 4: N has convex values. Let u € C and gi,g> € N(u), then there exist
fi, /> € Sk, such that

ge(x,y) = ) bi(x, yulx — &,y — ) + I filx, y); k =1,2.

i=1

Let 0 < ¢ < 1, then for each (x, y) € J, we have

[Lgr + (1= Dgal(x, y) = D bilx, y)Culx — &,y — i)

i=1

+(1 = Oulx =&,y — i)l
+[Cfi + (1 =8) fo](x. p)
= Y bile, Yulx—&, y—p)+ L fi+(1=0) fSl(x, y),

i=1

and for each (x, y) € J, we have [¢g, + (1 — 0)ga](x, y) = @(x, ).

The convexity of Sz, and F(x, y, u) implies that [g,+(1—{)g2] € N(u). Hence
N(u) is convex for each u € C. As a consequence of Lemma 2.38, we deduce that
N has a fixed point which is a solution for the problems (4.51) and (4.52). O

Theorem 4.31 (Non-convex case). Assume

(4.31.1) The multifunction F : J x R" — P.,(R") has the property that
F(, - u) 1 J — Pep(R") is measurable for each u € R",
(4.31.2) There exists a positive function m € L*°(J) such that
Ha(F(x, y,u), F(x, y,v)) < m(x, y)llu—v]| for everyu,v € R,

and

d(0, F(x,y,0)) <m(x,y), ae (x,y) € J.
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If
B b 4.54
mB + <1, .
F(l+r1)F(1+r2) ( )
where m* = ||m|| oo, then problems (4.51) and (4.52) have at least one solution on
[—§.a] x [-p. b].

Proof. For each u € C the set Sp, is nonempty since by (4.31.1), F has a
nonempty measurable selection (see [93], Theorem III.6). We shall show that N
defined in Theorem 4.30 satisfies the assumptions of Lemma 2.39. The proof will
be given in two steps.

Step 1: N(u) € P, (C) for each u € C. Indeed, let (g,)s>0 € N(u) such that
gn — g. Then, g € C and there exists f, € Sr, such that, for each (x, y) € J,

gn(x,y) = (x,y) (x.y)eJ,
gn(x,y) = Y bi(x, yulx — &,y — i)

i=1

Xy
e [ =T 0 = 0T (s ndrds (v, ) € .
00

Using the fact that F' has compact values and from (4.31.2), we may pass to a
subsequence if necessary to get that f,(.,.) converges weakly to f in L! (J) (the
space endowed with the weak topology). An application of a standard argument
shows that f,(.,.) converges strongly to f and hence f € Sg,. Then, for each

(x,y) € [<§.,a] x [-u,b], gu(x,y) — g(x,y), where

gx,y) = ®(x,y) (x.y) €,
g(x,y) =Y bilx, yu(x =&,y — u)

i=1

Xy
+mofof(x — )"y =) f(s.0)deds  (x,y) € J.

So, g € N(u).

Step 2: There exists y < 1 such that H; (N (1), N(v)) < y|lu—v||c for eachu,v €
C.Letu,v e C and g € N(u). Then, there exists f € S, such that

glx,y) = ®(x,y) (x.y) €,
g(x,y) =Y bilx, yu(x =&,y — u)

i=1

xy
+m{{(x — )"y =) f(s.0)deds  (x,y) € J.
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From (4.31.2) it follows that

Hy(F(x,y,u(x,y)), F(x,y,v(x,y))) <m(x,y)|u(x,y) —v(x, y)].

Hence, there exists w € Sg, such that

[ f(x,y) =wle, | < m(x, y)llulx, y) —v(x, »)II; (x,y) € J.

Consider U : J — P(R") given by

Ulx,y) ={we C || f(x.y) —wlx. p)|| = mx, y)[ulx, y) —v(x. y)[}.

Since the multivalued operator u(x, y) = U(x,y) N F(x,y,v(x,y)) is measurable
(see Proposition I11.4 in [93]), there exists a function u, (x, y) which is a measurable
selection for u. So, f(x,y) € Sr,, and for each (x, y) € J,

I fCe,y) = fC ) <m(x, y)lulx, y) —vix, y)].

Let us define
Z(x.y) = D(x.y) (x.y) e,

g, y) =Y bile, y)v(x — &,y — )

i=1

Xy -
oo S =) Ty =0T f(s,n)dids (x,p) € J.
00

Then, for each (x, y) € [-£§, a] x [—u, b], we get

lgCe.y) =30 I < Y ki G ) Hlux = &,y — i) = v(x =&,y — )|

i=1

Xy
+—F(,1)1F(,2)Of{(x — )"y =)t
x| f(s,t) — f (s, 1) deds

mBllu—v|c¢

IA

xy
1 —1 —1
+r<r1>r<r2>0f{(x =)y =n"

xm(s,t)||lu—v||cdtds

IA

rLpr2
mBllu—vlc +m* rrsFamy v —vie

m*a’1h"2

= (mB + e ) Iu —vle.
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Thus, for each (x, y) € [-§,a] x [-u, b], we get

m*arlbl‘z
rA+r)r(d+ry)

lg —%lc < (mB + Y= vle.

By an analogous relation, obtained by interchanging the roles of u and v, it follows
that
m*a"b"
u—vlc.
r+mrd+ rz)) lu=vlle
So by (4.54), N is a contraction and thus, by Lemma 2.39, N has a fixed point u
which is solution to (4.51) and (4.52) on [—£, a] x [—u, b]. O

Hy(N(w), N(v)) < (mB T

4.6.3 An Example

As an application of our results we consider the following system of fractional
integral inclusions of the form:

Xy

3 4.2 1
u(x,y)—%u(x—l,y—?:)—}— P u(x—2,y—z)

1 3
+ ﬁ“ (x - E,y —2) e lgF(x,y,u);if (x,y) e J :=1[0,1] x [0, 1], (4.55)

u(x,y) = ®(x,y); if (x,y) € J :=[-2,1] x [-3,1]\(0, 1] x (0,1],  (4.56)

wherem =3, r = (%,%),

ex+y—% ex+y(1+e—10|u|)
Lful ™ T uf

F(x,y,u) = |: :|; a.a. (x,y) € J and forall u € R,

and @ : J — R is a continuous function satisfying

1 3 1 3
P(x,0) = —@ (x - 5’_2)’ ®0,y)=—@ (——,y —2); x,y €[0,1].

14 14 2
(4.57)
Notice that condition (4.57) is satisfied by @ = 0.
Set 3 4.2
x’y xy 1
b ) -~ b ) - ) b ) - T
1(x.y) = == ba(x.y) = —5-. bs(x.y) =

Then, B = % and

|F(x,y,u)|| <& + e Oul) forae. (x,y) € J and all u € R.
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It is clear that F is Carathéodory; hence condition (4.30.1) is satisfied. We shall
show that condition (4.30.2) holds witha = b = 1,h* = 2, [* = ¢78. A simple
computation shows that

a"b"l* 3 1

B+ =4+ — <1
T T+ r(+r) 8 Srrd)

In view of Theorem 4.30, the problem (4.55) and (4.56) have a solution defined on
[—2,1] x [-3,1].
4.7 Notes and Remarks

The results of Chap. 3 are taken from Abbas and Benchohra [8,9, 12,15, 18, 19,24]
and Abbas et al. [4,36]. Other results may be found in [49,242,243].



Chapter 5
Impulsive Partial Hyperbolic Functional
Differential Equations

5.1 Introduction

In this chapter, we shall present existence results for some classes of initial value
problems for fractional order partial hyperbolic differential equations with impulses
at fixed or variable times impulses.

5.2 TImpulsive Partial Hyperbolic Functional Differential
Equations

5.2.1 Introduction

This section concerns the existence results to fractional order IVP , for the system

(DL w(x,y) = f(x,p,ulx,y)), if (x,y) € y; k=0,....m, (5.1)
u(x,j',y) =u(x;,y)+ Ix(u(x;,y)); ifyel0,b], k=1,....m, (5.2)
u(x,0) = p(x), u(0,y) =v¥(y), ifx €[0,a] and y € [0, b], (5.3)

where Jo = [0, x1] X [0,b], Jx = (xk, xk+1] X [0,b]; k =1,...,m, a,b >0, 0=
Xo<X| <+ <Xy <Xpy1=a, [ IxXR"=>R" J =1]0,a] x[0,b], and I, :
R" - R", k = 0,1,...,m are given functions, ¢ : [0,a] — R", ¥ : [0,b] —
R are absolutely continuous functions with ¢(0) = ¥ (0). Next we consider the
following nonlocal IVP , for the system:

(‘DL uw)(x,y) = f(x,y,u(x,y)); if (x,y) € Jx; k =0,....,m (5.4)

w(xi,y) = u(xg, y) + Lu(xg, y)); ify €[0,6], k=1,...,m, (5.5)

S. Abbas et al., Topics in Fractional Differential Equations, Developments 171
in Mathematics 27, DOI 10.1007/978-1-4614-4036-9_5,
© Springer Science+Business Media New York 2012
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u(x,0) + Q) = p(x), u(0,y) + K(u) = ¢¥(y), if x € [0,a] and y € [0, 5],
(5.6)

where f, ¢, ¥, Ix; k = 1,...m, are as in problems (5.1-5.3) and Q,K :
PC(J,R") — R" are continuous functions. PC(J,R") is a Banach space to be
specified later.

5.2.2 Existence of Solutions

To define the solutions of problem (5.1)—(5.3), we shall consider the space

PCJR") ={u:J > R":ue C(J,R"); k=0,1,....m, and there
exist u(x, , y) and u(x,j',y); k=1,...,m,

with u(x; , y) = u(xy, y) foreach y € [0, b]}
This set is a Banach space with the norm

lullpc = sup [lu(x, y)|.
(x.y)eJ

Definition 5.1. A function u € PC(J;,R"); k = 0,...,m whose r-derivative
exists on Ji; k = 0,...,m is said to be a solution of (5.1)—(5.3) if u satisfies
(“Dy uw)(x,y) = f(x,y,u(x,y)) on Ji; k =0,...,m, and conditions (5.2), (5.3)
are satisfied.

Our first result is based on the Banach fixed-point theorem.
Theorem 5.2. Assume that

(5.2.1) There exists a constant | > 0 such that

1/ G, you) = fCx, y, w)|

<I[|lu—1ul, foreach (x,y) € J,and each u,u € R".
(5.2.2) There exists a constant [* > 0 such that
() — Iy@)|| <I*|lu—1u|, foreachu,ueR", k=1,...,m.

If
2la" b
<1,
rri+DC(m+1)
then (5.1)—(5.3) have a unique solution on J.

2ml* + (5.7
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Proof. We transform the problem (5.1)—(5.3) into a fixed-point problem. Consider
the operator F : PC(J,R") — PC(J,R") defined by

F)(x.y) = p(x. )+ > (Te(ulxg. ) — Le(u(x; . 0)))

0<xp<x
X Y
‘//W—WH@—Wﬂ
k—1 0

1
)

O<xp<x

x f(s,t,u(s,t))dtds

X )y
; _ ri—1 _ r—1
+nmmmJ!“S)<yﬂ F(s.t,u(s, )drds.

Clearly that by Lemma 2.15, the fixed points of the operator F' are solution of the
problem (5.1)—(5.3). We shall use the Banach contraction principle to prove that F
has a fixed point. We shall show that F is a contraction. Let u,v € PC(J,R").
Then, for each (x, y) € J, we have

IF@)(x, y) = F)(x, p)|

< D (Ml y) = Tk )+ i (i, 0) = Le(v(x, 0))]])
k=1

X Y
1 - _ r1 —1 _ rz—l
+ﬁ$ﬁ@§i/!m 9751

X || f (s, t,u(s, t)) — f(s,t,v(s,t))||deds

x

1 _ r1—l _ rz—l
+mmnm/!“S)(y”
X || f(s,t,u(s, 1)) — f(s,t,v(s,t))|deds

<Y (e, y) = v I e 0) = vx, 0))
k=1
/ m Xk oy
ri—1 _ \n—1 _
+m§[ O/(Xk—S> (v = 0" Mluls. 1) — v(s, 1) || deds

X )
; — ri—1 _ -1 _
+mmmmJ!“ M =07 uls. 1) = vis, )| deds



174 5 TImpulsive Partial Hyperbolic Functional Differential Equations

N la"b" la"b"
< |2ml* + It — v]loo

Tt Ot )  TrheDlmtD

2la™ p" i| | I
u—v .
I'(ri+ D, +1) o

< [2ml*+

By the condition (5.7), we conclude that F is a contraction . As a consequence of
Banach fixed-point theorem, we deduce that F' has a fixed point which is a solution
of the problems (5.1)—(5.3). O

In the following theorem we give an existence result for the problems (5.1)—(5.3)
by applying the nonlinear alternative of Leray—Schauder type.

Theorem 5.3. Let f(-,-,u) € PC(J,R") for each u € R". Assume that the
following conditions hold:

(5.3.1) There exists ¢y € C(J,Ry) and Y« : [0,00) — (0,00) continuous and
nondecreasing such that

1f eyl < ¢r(xe. )V llull) - forall (x,y) € J, ueR".
(5.3.2) There exists ¢* : [0, 00) — (0, 00) continuous and nondecreasing such that
Ik @ < ¥*(lul)  forallueR",
(5.3.3) There exists a number M > 0 such that

M

)

— >
R Zarlbrztﬁ(}T//*(M)
litlloo + 2myr* (M) + Fr D

where qb?p =sup{¢/(x,y): (x,y) € J}.
Then (5.1)—(5.3) has at least one solution on J .

Proof. Consider the operator I defined in Theorem 5.2.

Step 1: F is continuous. Let {u,} be a sequence such that u,, — u in PC(J,R").
There exists 7 > 0 such that |u,| < 5. Then for each (x, y) € J, we have

I (un) (x. y) = F(u)(x, y)|

< D k(e 9)) = T, )+ a1 (0 00) = L (o, 0)) )
k=1

Xeoy
1 . _ ri—1 _ rp—1
+ TS o 0/ (=) (= 1)

k=17
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X |Lf s tun (s, 1)) — f(s.2,u(s. 1)) deds

1 [T
trares | [e-orTio =0
I'(r)I(r2)
X 0
X || f(s,t,u,(s,t)) — f(s,t,u(s,t))|deds.
Since f and I;; kK = 1,..., m are continuous functions, we have
| F(un) — F(u)|loo > 0 asn — oo.
Step 2: F maps bounded sets into bounded sets in PC(J,R"). Indeed, it is enough
to show that for any n* > 0, there exists a positive constant £ such that for each

ue By ={ue PC(J,R" : |ulloo < n*}, we have | F(u)|oo < €. (Hi24) and
(H\25) imply that for each (x, y) € J,

IF @) e )<l e )+ Y (o y D+ k(e 0)))

k=1
m Xk Y
! _ -l _ -1
+F(r1)F("2)I;Xk/ 0/ (v =) "1y = 1)
x| f (s, t,u(s,1))||deds
Xy

—1 ri—1 _ n\n2—1
+F(V1)F(r2)/ 0/ (=) =PI S (s 1 us. 1)) | deds

2a"1b’2¢?w*(n*) .
Fr+DC(rm+1)

< itlloo + 2my*(n*) +

Step 3: F maps bounded sets into equicontinuous sets of PC(J,R"). Let (1, y1),
(12, ¥2) € [0,a] x[0,b], 71 < o and y; < y», By* be a bounded set of PC(J,R")
as in Step 2, and let u € B,«. Then for each (x, y) € J, we have

[ F () (T2, y2) = F Q) (T, yo)l

< (e, y0) = e, )l + Dk (g, y0) = T y2) )
k=1

Xk V1

1 (= )" [ = 12 = (= 1))

RO 2

k=1 Xk—1 0
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X f(s,t,u(s,t))deds
w2

; _ ri—1 _ r—1
+F(V1)F(rz)kz_:l //(Xk " (=) f (s, t,u(s, b)) deds

T Xk—1 )1

1 o n _ ri—1 _ rp—1 _ _ ri—1 _ ra—1
rrooreg | [ =T =0 = =9 =
X f(s,t,u(s,t))dtds

; = ” _ ri—1 _ rp—1
i ] [ @ e s oparas]

; o ” _ ri—1 _ rp—1
trenras [ @ om0 s oparas]

; = _ oyl _ -l
+F(r1)[‘(r2) /Il (2 =5)"" (2 =) | f (s, 2, u(s, 1))drds||
< (e y)) = (@ y) I+ D (H (lx y1) = T (e, y2))|)
k=1

¢(1)’1/f*(77*) LN r—1 r—1 r—1
m;[ 0/(Xk—S) [(y2 —1)>7" = (y1 — 1) ']deds
U T B -

F(rl)F(rz)Z / / (o = ) 0a = 8™ deds

xk N
¢?W*(7I*)

2 Ly _ ri 2 I _ n
F(r1+1)F(r2+1)[ V(=) + 25 (ya — y1)

+o' v — 'y =2 — )" (y2 — vl

As 11 — 1 and y; —> )», the right-hand side of the above inequality tends to
zero. As a consequence of Steps 1-3 together with the Arzela-Ascoli theorem, we
can conclude that F : PC(J,R") — PC(J,R") is completely continuous.

Step 4: A priori bound. For A € [0, 1], let u be such that for each (x,y) € J we
have u(x,y) = A(Fu)(x, y). For each (x,y) € J, then from (5.3.1) and (5.3.2)
we have

el oo

<
2a"1 5245 P (lul)
Itlloo + 2myr*(llull) + Forrirm T

By condition (5.3.3), there exists M such that ||u||o, 7 M. Let
U={uePCWU,R"): |ul|lo <M}
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The operator F : U — PC(J,R") is continuous and completely continuous. From
the choice of U, there is no u € dU such that u = AF (u) for some A € (0,1). As a
consequence of the nonlinear alternative of Leray—Schauder type [136], we deduce
that F has a fixed point u in U which is a solution of the problems (5.1)-(5.3). O

Now we present two existence results for the nonlocal problems (5.4)—(5.6).
Their proofs are similar to those for problems (5.1)—(5.3).

Definition 5.4. A function u € PC(J;,R"); k = 0,...,m whose r-derivative
exists on Ji; k = 0,...,m, is said to be a solution of (5.4)—(5.6) if u satisfies
(‘D uw)(x,y) = f(x,y,u(x,y)) onJi; k =0,...,m and conditions (5.5), (5.6)
are satisfied.

Theorem 5.5. Assume that (5.2.1), (5.2.2), and the following conditions:
(5.5.1) There exists I > 0 such that

10w) — Q)| < Iflu—v]. foranyu.v e PC(J.R"),
(5.5.2) There exists I* > 0 such that
IK(u) — KOW)|| < Z~*||u —v|, foranyu,v € PC(J,R"),

hold. If
2la"b"
<1,
Fri+ 1) (rn+1)
then there exists a unique solution for IVP (5.4)—(5.6) on J.

Theorem 5.6. Let f(-,-,u) € PC(J,R") for each u € R". Assume that (5.3.1),
(5.3.2), and the following conditions:

(5.6.1) There exists d > 0 such that

[+1* +2ml* +

10| < d(1 + |lul)), foranyu e PC(J,R"),
(5.6.2) There exists d* > 0 such that
K@l < d*(1+ |[ul), foranyu e PC(J,R"),
(5.6.3) There exists a number M s > 0 such that
M,
(d +d*) (1 + M) + || plloo + 2my=(My) +

)

— >
2a"l br2¢(}1ﬂ* (M )
L(ri+1D)I(r2+1)

hold. Then there exists at least one solution for IVP (5.4)—(5.6) on J.
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5.2.3 An Example

As an application of our results we consider the following impulsive partial
hyperbolic differential equations of the form:

1
(10e ) (1 + Ju(x, y)])’

Dy uw(x,y) =

if (x,y) € Jis k=0,....m, (5.8)

1
cifyel0, 1], k=1,....,m,
G (1 + G,y Y €0l

u(x;,y) = u(xp,y) +

(5.9
u(x,0) = x, u(0,y) = y* if x €[0,1]and y € [0, 1]. (5.10)
Set
fGe ) 1 (x.) € [0.1]x 0,1
X, y,u) = ;X s , 1,
J (102 (1 + u))’ 7
1
1 s = , y €10,1].
Foreachu, w € Rand (x, y) € [0, 1] x [0, 1] we have
_ 1 _
|f(x7y’“)_f(xvy’u)| = IOCZIM_ML
and
1) = 1@ < —fu—
«(u (@) < o u—ul.
1

1
Hence conditions (5.2.1) and (5.2.2) are satisfied with [ = To2 and [* = s
e e
We shall show that condition (5.7) holds with @ = b = 1. Indeed, if we assume, for

instance, that the number of impulses m = 3, then we have

2la" b . 1 n 1 -1
L(ri+DI(r+1) et 520 (r 4+ DI+ 1) ’

2ml* +

which is satisfied for each (r1,72) € (0, 1] x (0, 1]. Consequently, Theorem 5.2
implies that problem (5.8)—(5.10) has a unique solution defined on [0, 1] x [0, 1].
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5.3 Impulsive Partial Hyperbolic Differential Equations
at Variable Times

5.3.1 Introduction

In this section, we shall be concerned with the existence and uniqueness of solutions
for the following impulsive partial hyperbolic fractional order differential equations
at variable times:

(‘DLw(x,y) = f(x,y,ulx,y); if(x,y) € Jr; k=0,....,m, (5.11)
ulxt,y) = Li(u(x, y)); if (x,y)eJ, x =x(u(x,y), k=1,....m, (5.12)

u(x,0) = @(x), u0,y) = ¥(y); x €[0,a], y €0,b], (5.13)
where Jo = [0,x1] x [0,b], Jk = (xp,xk41] X [0,6]; k& = 1,....m, x; =
xe(w(x,y); k =1,....m, a,b >0, 0 =2x0 < x| <+ < Xy < X1 =

a, f:JxR"—-R" J=][0,a] x[0,b], Iy : R" - R"; k =1,...,m are given
functions and ¢ : [0,a] — R”", ¢ : [0, b] — R" are absolutely continuous functions
with ¢(0) = ¥ (0).

5.3.2 Existence of Solutions

Let us define what we mean by a solution of problem (5.11)—(5.13).

Definition 5.7. A function u € £ N U_| AC(J;,R") whose r-derivative exists
on Ji; k = 0,...,m is said to be a solution of (5.11)—(5.13) if u satisfies
(“Dyuw(x,y) = f(x,y,u(x,y)) on Ji; k = 0,...,m and conditions (5.12) and
(3.3) are satisfied.

We are now in a position to state and prove our existence result for our problem
based on Schaefer’s fixed point .

Theorem 5.8. Assume that

(5.8.1) The function [ : J x R" — R”" is continuous

(5.8.2) There exists a constant M > 0 such that || f(x, y,u)|| < M(1 + ||u|), for
each (x,y) € J, and eachu € R"

(5.8.3) The function x; € C'(R",R) fork = 1,...,m. Moreover,

0=xo(u) <x1(u) < <xpu) <xXmp1(w) =a, foralueR"

(5.8.4) There exists a constant M* > 0 such that |1 (w)|| < M*(1 + |ul|), for
eachueR" andk =1,...,m,
(5.8.5) Forallu € R", x; (Ix (u)) < xx(u) < xg1(Ix (), fork =1,...,m
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(5.8.6) Forall (s,t,u) € J xR", we have
/ / ry — 1 /
4y
x;(u) | @'(s) TGO (r)
Xk
t
x [ =052 =y p(6 . u@. myanas | £ 1
0

k=1,...,m.Then (5.11)~«(5.13) has at least one solution on J.
Proof. The proof will be given in several steps.

Step 1: Consider the following problem:
(‘Dou)(x,y) = f(x,y,u(x,y)); if (x,y) € J, (5.14)
u(x,0) = ¢(x), u(0,y) = ¥(y): x €[0.4], y €[0,b]. (5.15)

Transform problem (5.14) and (5.15) into a fixed-point problem. Consider the
operator N : C(J,R") — C(J,R") defined by

x )y
_ 1 _ ri—1 _ n\n2—1
NG (. 9) = 12 9) + s 0/ 0/ (=5 =0)

X f(s,t,u(s,t))deds.

Lemma 2.14 implies that the fixed points of operator N are solutions of problem
(5.14) and (5.15). We shall show that the operator N is continuous and completely
continuous.

Claim 1. N is continuous. Let {u,} be a sequence such that u, — u in C(J,R").
Let 7 > 0 be such that ||u,|| < 1. Then for each (x, y) € J, we have

IN () (x, y) = N(u) (x, y)|

x Yy
< 1 _ r1—l _ rz—l
e P 0/ 0/ (=) (1)

X | f(s,t,u,(s,t)) — f(s,t,u(s, t))|deds

a b
”f(v . un()) - f(s ) M)HOO ri—1 ra—1
(x—=5)""(y —t)? dtds
0/0/

I(r)I(r2)

_ @RS tn ) = S ) lloo
o r'm+1O)Ir'+1) .
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Since f is a continuous function, we have
IN@,) — Nw)|oo — 0 asn — oo.

Claim 2. N maps bounded sets into bounded sets in C(J, R"). Indeed, it is enough
to show that for any n* > 0, there exists a positive constant £ such that for each
u€ By ={ueC,R": |ullooc <n*}, wehave |[N(u)|looc < {.By (5.8.2) we
have for each (x, y) € J, we have

x Yy
u < u 1 _ ri—1 _ -1
INGE I = )]+ s 0/ 0[ (=9 -0

x || f(s.t,u(s, t))||deds
M(1 4+ n*)a" b"

< ||u(x,u)| + T'(ri+ DI (ry + 1).

M(+n)a b2 .

Thus [[N(@)[leo < [tllec + TorH)TFD =

Claim 3. N maps bounded sets into equicontinuous sets of C(J,R"). Let (1, y1),
(2, ¥2) € J, 1 < 1pand y; < y,, By be abounded set of C(J,R) as in Claim 2,
and let u € B,x. Then for each (x, y) € J, we have

[N (u)(z2, y2) — N(u)(z1, y1)|

1 o I _ ri—1 _ -1
Foore )y | oo
—(t1 =) "Ny =) f (s, t,u(s, t))deds

= H,u(rl, ) — pu(t2, y2) +

1 (2 ) -1 -

+F(71)F(l‘2) /;1 " (2 —5) (-1 f(s,t,u(s,t))deds
1 al 2 -1 -

+F(71)F(l‘2) /(; /yl (2 —5) (-1 f(s,t,u(s,t))deds

1 1] 1 -1 -
+m/ﬁ ; (2 =9)""(2—1) f(s,t,u(s,t))dtdsH

M +n")
r'm+ 1)+ 1)

20 (2 —y)? + 1y -1y =2 — )" (2 — v

=<l y) — (w2, y2) | + 295} (za — 1)

As 11 —> 15 and y; —> )», the right-hand side of the above inequality tends to
zero. As a consequence of Claims 1-3 together with the Arzela-Ascoli theorem, we
can conclude that N : C(J,R") — C(J,R") is completely continuous.
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Claim 4. A priori bounds. Now it remains to show that the set
E={ueC(,R"):u=AN(u) forsome 0 < A < 1} is bounded. Let u € &,
then u = AN (u) for some 0 < A < 1. Thus, for each (x, y) € J, we have

; * ! _ oyl _ \r—1
e, )1 = e )+ o= [ [ ==

X”f(s,t,l/l(s,t))”d[ds
Ma"' b
L+ DC(r+ 1)

L [ _ o\l oyl
+F(r1)1"(r2)/0 /(;()C S) (y Z) ||u(s,t)||dtds.

< llnlloo +

Set
Ma" b M
, = .
I+ DI+ 1) I'(r)I(r2)

o = [illoo +
Then Lemma 2.44 implies that for each (x, y) € J,
luCx. M < @E ) (eI (r) I (r2)a"b™) := R.
This shows that the set £ is bounded. As a consequence of Schaefer’s fixed-point

theorem, we deduce that N has a fixed point which is a solution of the problem
(5.14) and (5.15). Denote this solution by u;. Define the function

Fea(x,y) = xp(ui(x,y)) —x, forx>0,y>0.

Hypothesis (5.8.3) implies that r, 1(0,0) # Ofork = 1,...,m. If rg1(x,y) # 0
onJ fork=1,...,m;ie.,

X # xx(ui(x,y)), onJ fork=1,...,m,

then u; is a solution of the problem (5.11)—(5.13). It remains to consider the
case when 7y (x,y) = 0 for some (x,y) € J. Now since r;1(0,0) # 0 and
r11 is continuous, there exists x; > 0,y; > 0 such that r ;(x;,y;) = 0, and
rLi(x,y) # 0. forall (x, y) € [0.x1) x [0, y1).

Thus by (5.8.6) we have

ri1(x1, y1) = 0and r1(x, y) # 0, forall (x, y) € [0, x1) x [0, y1] U (y1, b].

Suppose that there exist (X, ¥) € [0, x1) x [0, y1] U (y1, b] such that ry (X, y) = 0.
The function r; ; attains a maximum at some point (s, ) € [0, x1) x [0, b]. Since

(CD;IMI)(xsy) = f(xsysul(-xsy))s fOI'()C,y) € le
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then
w exists, and ——= 11(S t) X1 (uy (s, 1)) 8u1(s 2 —1=0.
Since
Xy
M g4 s [ =0 =0 s paras,
0 0
then

mmw»¢@+n)nm/

x/@—ew*a—nw*fwwmmammme —1,
0

which contradicts (5.8.6). From (5.8.3) we have
rea(x,y) # Oforall (x,y) € [0,x1) x[0,p]and k = 1,...,m
Step 2: In what follows set
Xy = [xr,a]l x[0,b]; k=1,...,m
Consider now the problem

(‘DL uw)(x,y) = f(x,y,u(x,y)), if (x,y) € X1, (5.16)
u(x;", y) = Li(u(x1,y)), y €[0,b]. (5.17)

Consider the operator N; : C(X,R") — C(X;,R") defined as

Ni(u) = @(x) + I (ui(x1,y)) — Ii (ur(x1,0))

Xy
- rn—=l¢y, _ pyr2—l
+F(r1)F(r2)/ 0/ (x =)y = )27 f (s, 1, u(s, 1))drds.

Asin Step 1 we can show that N, is completely continuous. Now it remains to show
that the set £* = {u € C(X,R") : u = AN (u) forsome 0 < A < 1} is bounded.
Letu € £*, then u = AN;(u) for some 0 < A < 1. Thus, from (5.8.2) and (5.8.4)
we get for each (x, y) € X1,
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e I = @)+ 1 G G ) |+ 11 (e, 0D
1 x oy
+m/ /0 (=) = 0 (st s 1) | deds

Ma" b
F'ri+DC(m+1)

L * ! — ri—1 _ rp—1
i b [ 6o =0 s ojas.

< l@lloo + 2M*(1 + ||uy||) +

Set

Ma" b M
L= )
Fr+DI'(rn+1) L)l (r2)

0" = |¢lloo + 2M*(1 + |lu1])) +

Then Lemma 2.44 implies that for each (x, y) € Xy,
luCe, V)| < @* Eryryy (T (r)) T (rp)a” b™) := R*.

This shows that the set £* is bounded. As a consequence of Schaefer’s fixed-point
theorem, we deduce that N; has a fixed point # which is a solution to problems
(5.16) and (5.17). Denote this solution by u,. Define

rra(x,y) = xp(ua(x,y)) —x, for(x,y) € Xi.

If rea(x,y) # Oon (x1,a] x [0,b] and forall k = 1,...,m, then

Lt](X,y), if(xvy)e [O,XI)X[O,b],

u.y) = ur(x,y), if (x,y) € [x1,a] x [0, 5],

is a solution of the problems (5.11)—(5.13). It remains to consider the case when
ry2(x,y) = 0, for some (x, y) € (x1,a] x [0, b]. By (5.8.5), we have
raa(xt, y1) = xa(ua(x y1) — xi
= x2(L1 (u1(x1, y1))) — x1
> xl(ul(xl, yl)) — X1

=rii(x, y1) =0.

Since r; ; is continuous, there exists x, > xj, ¥, > yj such that r;,(x2, y2) = 0,
and ry5(x, y) # 0 forall (x, y) € (x1,x2) x [0, b]. It is clear by (5.8.3) that

rea(x,y) #0 forall (x,y) € (x1,x2)] x[0,b], k =2,...,m.
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Now suppose that there are (s,2) € (x1, x2) X [0, b] such that r; 5(s,#) = 0. From
(5.8.5) it follows that
ria(xt v = x1a(x, y1) — x
= x1(I1 (u1(x1, y1))) — x1
< xi(ui(xr, y1) — xi
=ry1(x;,y1) =0.

Thus ry ; attains a nonnegative maximum at some point (s, #;) € (xy,a) x [0, x2) U
(x2, b]. Since

(‘DL u2)(x,y) = f(x,y,u2(x,y)), for (x,y) € Xi,

then we get

ur(x,y) = @(x) + Li(ui(x1, y)) — Ii (u1(x1,0))
Xy
; _ 1‘1—1 _ r2—1 u
+F(r1)r(r2)!0/(x )TNy =07 f(s 1 ua (s, 1))deds,

hence

9 L[

U ! - 12 _ -1
5?“”*””“+FEVE5J!“ Y20 — 1 f(s. 1, us(s. 1) drds,

then

a1, 9
rl,Z(Sl 1) — Xi(uz(slatl))ﬂ(sl’tl) —1=0.
ox ax

Therefore

s 0

ﬁwmmm)wmn+7£§%5//@rﬁw*m—mwl
x1 0

Xf(ev n, u2(9, ﬂ))dnde = 17

which contradicts (5.8.6).

Step 3: We continue this process and take into account that u, 4+, = u is a
XITI

solution to the problem

(D, w(x.y) = f(x.y.u(x.y). ae. (x.y) € (xn.a] x[0.5],

M(X,—:, y) = Im(um—l(xms y))s y e [Ovb]
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The solution u of the problems (5.11)—(5.13) is then defined by

u(x,y), if (x.y) € [0.x1] x [0, 5],
u(x, y) = uz(x,y), if (x,y) € (x1,x2] x [0, 8],
Umi1(x,y), if (x,y) € (xp,a] x [0,5].
[m]

We give now (without proof) a uniqueness result for the problems (5.11)—(5.13)
using the Banach contraction principle.

Theorem 5.9. Assume (5.8.1), (5.8.3), (5.8.5), (5.8.6) and the following condi-
tions:

(5.9.1) There exists d > 0 such that

If ey w) = f(x,p, )l < dlu—ull, foreach (x,y) € J, u,u € R",
(5.9.2) There exists ¢, > 0; k = 1,2,...,m such that

|1k (x, y,u) — I (x, y,0)|| < ckl|lu— i, foreach (x,y) € J, u,u € R",

hold. If
da" b
<1,
'ri+ DI+ 1)
then the IVP (5.11)—(5.13) have a unique solution.

2¢cr +

5.3.3 Nonlocal Impulsive Partial Differential Equations

Now, we shall present existence results for the following nonlocal initial value
problem:

(‘DL uw(x,y) = f(x,y,u(x,y)); if (x,y) € Jy; k =0,...,m, (5.18)
u(xt,y) = Li(u(x, y)); if (x,y)eJ, x = xx(u(x,y)), k=0,....m, (5.19)
u(x,0)+ Q) = ¢(x), u(0,y)+ K(u) = ¢ (y); x € [0,a]and y € [0, 5], (5.20)

where f, ¢, ¥, I; kK = 1,...,m, are as in problems (5.11)—(5.13) and Q, K :
C(J,R") — R" are continuous functions.
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Definition 5.10. A function u € £ N Uy_ AC(Jy,R") whose r-derivative exists
on J’ is said to be a solution of (5.18)—(5.20) if u satisfies (‘Dju)(x,y) =
f(x,y,u(x,y)) on J" and conditions (5.19) and (5.20) are satisfied.

Theorem 5.11. Assume that (5.8.1)—(5.8.6) and the following conditions:
(5.11.1) There exists L > 0 such that

Q)| < L + ||ulloo). for any u € C(J.R"),
(5.11.2) There exists L* > 0 such that
IK@Il < L*(1 + |lulloo), for anyu € C(J,R"),

hold. Then there exists at least one solution for IVP (5.18)—(5.20) on J.

Theorem 5.12. Assume that (5.8.1), (5.8.3), (5.8.5), (5.8.6), (5.9.1), (5.9.2), and
the following conditions:

(5.12.1) There exists [ > 0 such that
1Q@w) — QW) < llu = Vlco, for anyu.v e C(J.R"),
(5.12.2) There exists [* > 0 such that
| K@) — KO < I*lu— Voo, foranyu,v € C(J,R"),
hold. If
da"b"

<
Fri+DIC@r+1)
then there exists a unique solution for IVP (5.18)—(5.20) on J.

[+ 1" 4+ 2c + 1,

5.3.4 An Example

As an application of our results we consider the following impulsive partial
hyperbolic functional differential equations of the form:

. L+ux.y)
( kabl)(x,y) = W, if (X,y) € Jk,Xk = xk(u(x,y)), k= O, cee,m,
(5.21)
u(xt.y) = diu(xe, y):y €[0,1], (5.22)

u(x,0) = x, u(0,y) = y* x,y € [0,1], (5.23)
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where J = [0,1] x [0,1], r = (r1,72), 0 <ri,r2 <1, xe(u) =1 —

1,...,mand“/75<dk§1; k=1,...,m.
Set

1 . —
T k=

1+u

[ypeess (x,y) €[0,1]x[0,1], u € R,

S yu) =
and
Ii(u)=dyu; ueR, k=1,...,m.

Let u € R then we have

X1 (1) — xx () = 0;k=1,...,m.

T >
2k+1(1 + MZ)

Hence 0 < x;(u) < x2(u) < --- < x;y(u) < 1, foreach u € R. Also, foreachu € R
we have

14+ Qd}—1)u? 0
>
211+ u?)(1 + d})

Finally, for all (x, y) € J and each u € R we get

X1 (T (1) — xi () =

k()| = |diu| < [u| <3(1+ [ul); k=1,....m,

and

1+ 1
LGy w| = Srotr = E(l + [ul).

Since all conditions of Theorem 5.8 are satisfied, problem (5.21)—(5.23) has at least
one solution on [0, 1] x [0, 1].

5.4 Impulsive Discontinuous Partial Hyperbolic Differential
Equations on Banach Algebras

5.4.1 Introduction

This section deals with the existence of solutions to fractional order IVP, for the
system

¢pr ( u(x, y)

m) = g(x,y,ulx, y), if (x,y) € Jis k= 0,....m,

(5.24)
u(x;t y) =ulxi,y) + L(u(xg . y)); if y €[00 k=1,....m,  (5.25)
u(x,0) = ¢(x), u(0,y) =¥ (»), x €[0,a], y €[0,5], (5.26)
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where a,b >0, 0 = xg < x] <+ < Xpp < Xp+1 =a, [ :J xR > R* g
JxR—Rand I} :R— R, k =1,...,m are given functions satisfying suitable
conditions and ¢ : [0,a] — R, ¥ : [0,b] — R are given absolutely continuous
functions with ¢(0) = 1 (0).

5.4.2 Existence of Solutions

Let us start by defining what we mean by a solution of the problems (5.24)—(5.26).
Consider the space

PC(J.R)={u:J > R:ueC(Jy.R); k=1,...,m, and there exist u(x; , y)

and u(x,j',y);k =1,....m, withu(x,,y) =u(xx,y), y € [O,b]}.

This set is a Banach space with the norm [[u| pc = sup, ey u(x, y)|.

Definition 5.13. A functionu € PC(J,R) whose r-derivative exists on Ji; k = 0,
.,m is said to be a solution of (5.24)—(5.26) if
u(x.y)
Sxyu(x.y)
(i) u satisfies “ DI, (7)) = g(x,y,u(x,y)) on Ji; k = 0,...,m and

.. Slyulxy)/ 7
conditions (5.25), (5.26) are satisfied

(i) The function (x, y) is absolutely continuous

Theorem 5.14. Assume that the following hypotheses:

(5.14.1) The function f is continuous on J x R
(5.14.2) There exists a function a € C(J,Ry) such that

| f(x,y,u)— f(x,y,0)| <a(x,y)|u—1ul, forall (x,y) € J andu,u € R,
(5.14.3) The function g is Carathéodory, and there exists h € L°°(J,Ry) such that
lg(x, y,u)| < h(x,y); ae (x,y)elJ, forallueR,
(5.14.4) There exists a function B € C(J,Ry) such that

()

Tor | =BG, forall (v.y) € J andu e B,

hold. If

24" ] oo
Fri+ DI (rp+1)

loloo [uuuoo - 2ml|Blles + ] <1, 627
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Then the IVP (5.24)—(5.26) have at least one solution on J.
Proof. Let X := PC(J,R). Define two operators A and B on X by

Au(x,y) = fx,y,u(x,y));  (x,y) €J, (5.28)
< 1i(u(x;,y)) 1; (u(x;,0))
Bu(x,y) = p(x,y) + Z (f(x, T ) f(x?’o’u(x?’o)))

- ri—l1 r—1
+ F(rl)F(rz) /x, 1/ (xl S) (y t) (S t, M(S Z))dtds

* _ r1—l _ rz—l
+F(V1)F(r2) /0 (=0 =1

X g(s,t,u(s,t))deds; (x,y) € J. (5.29)

Solving (5.24)—(5.26) is equivalent to solving (3.46), which is further equivalent to
solving the operator equation

Au(x,y) Bu(x,y) = u(x,y), (x,y)eJ. (5.30)

We show that operators A and B satisfy all the assumptions of Theorem 2.35. First
we shall show that A is a Lipschitz. Let u;, u, € X. Then by (5.14.2),

[Aui(x. y) = Auz(x, y)| = [ f(x, your (x, ) = f(x, y,uz(x, )]
= Ol(x, y)'”l(-xs y) - u2(-x5 y)l

< llelloollur — uallpc-

Taking the maximum over (x, y) in the above inequality yields

|Auy — Auz | pc < [|alloollur — usl| pe,

and so A is a Lipschitz with a Lipschitz constant ||| . Next, we show that B is
compact operator on X. Let {u,} be a sequence in X. From (5.14.3) and (5.14.4) it
follows that

2a"b" || h| oo
Fri+ DL+ 1)

[Bunlpc < litlloo +2m||Blloo +

As aresult {Bu, : n € N} is a uniformly bounded set in X. Let (1, y1), (12, y2) €
J, 11 <1 and y; < yy, then for each (x, y) € J,
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| B(un) (2, y2) — B(uy)(z1, y1)|

<|u(ti, y1)— “(TZvyz)H'Z I (u(x s y1)) I (u(x . y2))

f(xk yl,M(x, Y1) f(xk yz,u(x, ., ¥2))

X )1

ri—1 Y N
F(rl)F(rz)Z / / =9)" (2 —1) (1 — )7

Ty o
x g(s,t,u(s,t))deds
1 Xk )2
+ = (e — )" Ny — )27 g(s, £, u(s, 1))|drds
XEATRES kg )" |8 (s. 1.u(s. 1))

Xk—1 V1

; K . _ oyl o\l _ -l _ 1
troorog | ] @m0 = = -0
x g(s,t,u(s,t))deds

; & " _ -l -l
+F(V1)F(r2) /n /yl (=) (2= 1) |g(s. £, uls, 1)) |deds

R L SRR
JrF(rl)l“(rz)/o (2= 9)"" (y2— 1) |g(s, 1, u(s,1))|drds

; = _ -l -l
JrF(rl)l“(rz)/rl /0 (2= 9)"" (y2—1)"" " |g(s, 1, u(s,1))|drds

m

<|p(z1, y1)— “(TZsJ’z)H-Z L (u(x;, y1)) I (u(x, y2))

Fogt yrout ) FOgE o u(xt, 32)

o )Z / / — ) 2 = 07 = (1 — 1) Vdeds

F(rl)F(rz
7]l oo w7 o .
F(rl)F(rz)Z //(xk—s)l (y2 — 1) 'deds
Ui 1)1
|7l Lo ”

ri—1 21 ol -l
Tl Jy Jy (@) =)= =(m=s) (=)™ Jdids

||h||Loo /fz /yz(T2 B s)”_l(J’2 _ l)rz_ldtds
F(rl)F(rZ) 7] 1

[172]] oo

Y2
TAYRES) 7 — )" (32 — 1)*deds
Tl Jo ), @797 0270

1
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|All Lo n - -
m/ / (=" (y2—1)” dids

m

<lntaey)u 2+ 3 ACIENID) (. y2)

f(xk Y1,M(x, 1) f(xk J’2,M(x, ., ¥2))

Xk V1

|h||L°° ri—1 r—1 N
F(mr(mz / / (o =)' 02 = 07 = (=0 Jdeds

|Ih||L°° Z / /(-xk —S)ll l(yZ )rz ldtdS

F(rl)F(rz)
Xk 1)
7o ,
2 2 _ r 2 r _ rn
F(r] + 1)1"(’,2 + 1) [ %) (Tz Tl) + %) (YZ YI)

r,,rmn r ,,rmn

+o P =5y = 2(n =) (2 = y)].

As 11 — 1 and y; —> », the right-hand side of the above inequality tends to
zero. From this we conclude that {Bu, : n € N} is an equicontinuous set in X.
Hence B : X — X is compact by Arzela-Ascoli theorem. Moreover,

M = ||B(X)|
2a"b"||h| oo

< 2 ,
< ltlloo +2mllBlloc + NCESUACESY

and so,

247 b7 ]
oM =< o (nunm +2mlBlloe + 1

rri+DC(m+1)

by assumption (5.27). To finish, it remains to show that either the conclusion
(i) or the conclusion (ii) of Theorem 2.35 holds. We now will show that the
conclusion (ii) is not possible. Let # € X be any solution to (5.24)—(5.26), then
forany A € (0, 1) we have

= L. y)  Lelu(xg . 0)
u(x, y)=Af(x,y, u(x, Y))[H(X, Y)+0<sz:<x (f(x;', youxt.y)) f(xlj-’o’ u(xl-"',O)))
! _ -1 rp—1
F(rl)F(rz) Z / /(xk 5) -0 g(s,t,u(s, t))drds

0<xp<x y

x Y
; _ oyl _ -1 u
+ F(Vl)F(rz)/O/(x s) (y—1) g(s,t, (s,t))dtds].
Xk
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for (x, y) € J. Therefore,

2a"1b" || h oo
'(ri+ DI+ 1))
< [1/(x, y,ux, y) = f(x,3,0)| + [ f(x,9,0)]

2a"b" || h| Lo )
r'm+ DI (rm+1)

2a" b || h| oo
F(r1+1)F(r2+1))

2a" b ||h]| Lo
r'(r+1)I'(r, + 1))

(e )| < 1 fCryute. ) (|u(x,y>| 4 2m]|Blloo +

x (110 )]+ 2m[1Blloo +

=[llerlloolute, )|+ 1] (||M(va’)||+2m”,3||oo+

< llelloollullpc + 7] (Ilulloo + 2m||Blloo +

where f* = sup{| f(x, y,0)| : (x,y) € J}, and consequently

. 247 b7 ||| oo
I [uuuoo +2mlBlloe + L

r'm+1O)Ir @ +1)
20 b [ s }
Fri+0H)IC(rp+1)

=M.

lullpc <

1= el [nunm - 2mlBlloe +

Thus the conclusion (ii) of Theorem 2.35 does not hold. Therefore the IVP (5.24)—
(5.26) have a solution on J. O

5.4.3 Existence of Extremal Solutions

We equip the space PC(J,R) with the order relation < with the help of the cone
defined by

K={ue PC(J,R): u(x,y) >0, V(x,y)eJ}.

Thus u < u if and only if u(x, y) < u(x, y) for each (x, y) € J. It is well known
that the cone K is positive and normal in P C(J, R).
Definition 5.15. A function u(-,-) € PC(J,R) is said to be a lower solution of
(5.24)—(5.26) if we have
CD;k I: Z(x7 y)

Sx p.ulx, y))
uxt, ) < w0, ») + ey, p), 1 (n,y) € Jis k= 1,....m,

u(x,0) <(x), u(0,y) =y(y). (x.y) € J.

] <g(x,y,ulx,y), x,y)ei;k=0,....m,
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Similarly a function u(:,-) € PC(J,R) is said to be an upper solution of
(5.24)—(5.26) if we have
cDr |: IZ(X, y)
MLy (e, y))
u(xl . y) = a(xi,y) + L(axg,y), if(x.y)eisk=1,....m
u(x,0) = ¢(x),  u(0,y) =¥ (y), (x,y) €J.

|z gty ). () edik=0.m

Definition 5.16. A solution u), of the problems (5.24-5.26) is said to be maximal if
for any other solution u to the problems (5.24)—(5.26) one has u(x, y) < upy(x,y),
for all (x, y) € J. Again a solution u,, of the problems (5.24)—(5.26) is said to be
minimal if u,,(x,y) < u(x,y), for all (x,y) € J where u is any solution of the
problems (5.24)—(5.26) on J.

Theorem 5.17. Assume that hypotheses (5.14.2) and
(5.17.1) f:J xRy - R%, g:J xRy — Ry, ¥(y) = 00n|0,b] and
px)  __ »0)
f(x.0.0(x)) ~ f(0.0.¢(0))

(5.17.2) The functions f and g are Chandrabhan
(5.17.3) There exists a function h € L*°(J,Ry) such that

, forall x € [0,a],

lg(x, y,u)| < E(x,y), ae. (x,y) € J, forallu € R,
(5.17.4) There exists afunction,g e C(J,Ry) such that

' Iy (u)

VACI AT

(5.17.5) The problem (5.24)—(5.26) have a lower solution u and an upper solution
uwithu <u,

hold. If

‘ (x y), forall (x,y) e J, forallu € R,

< 2a"b"2 ||| oo
llet]l oo [Ilulloo +2m|| Bl +

Fri+ DI+ 1)

then the problems (5.24)—(5.26) have a minimal and a maximal positive solution
onJ.

Proof. Let X = PC(J;,R); k = 0,...,m and consider a closed interval [u, u]
in X which is well defined in view of hypothesis (5.17.5). Define two operators
A, B : [u,u] — X by (5.28) and (5.29), respectively. Clearly A and B define the
operators A, B : [u,u] — K. Now solving (5.24)—(5.26) is equivalent to solving
(3.46), which is further equivalent to solving the operator equation

Au(x,y) Bu(x,y) = u(x,y), ((x,y)€ Ji; k=0,...,m. (5.31)
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We show that operators A and B satisfy all the assumptions of Theorem 2.41. As
in Theorem 5.14 we can prove that A is Lipschitz with a Lipschitz constant ||| oo
and B is completely continuous operator on [u, u]. Now hypothesis (5.17.2) implies
that A and B are nondecreasing on [u, u]. To see this, let uy, uy € [u, u] be such that
u; < up. Then by (5.17.2), we get

Aul(-xsy) = f(x,y,ul(x,y)) = f(xsysMZ(-xsy)) = AMZ(xvy)s
V(x,y)€Ji; k=0,....,m

and

BM](X,y)

=puxy)+ )

O<xp<x

( L. y)  L(u(x.0) )
Fod oyt y)  fOgT0.u(xt.0)

1

T, / / (i =) 0 = 0 g s 1w (5. 1))drds

O<xp<x 4

Xy
; _ ri—1 _ ry—1
+ I'(ri)I(r2) /O/(X STy =) g(s, 1 un (s, 1))deds

( IO, y) s, 0)) )
FO vty fOqh 0, u(xT,0))

spe)+ Y

0<xp<x

1

T T 2 / /(x"_s)rl Yy =) g(s. 1, up(s, 1)deds

O<xp<x y

x
; _ oyl _ -1
+ L (r)I(ra) /O/(X )"y =07 g(s, t,ua(s, 1))deds

= Bup(x,y), V(x,y)elJ.

So A and B are nondecreasing operators on [, u#]. Again hypothesis (5.17.5) implies

( L ,y) Ikux; 0) )
f .0))

u(x, y) = [f(x, y, ulx, y))] (M(X,y)-i- > T
. koo V. ulx; * u

0<xj<x

- 1 _ \n—l1
+F(r1)F(r2) Z //(Xk Ty — 1) g(s, t,u(s, t))drds

0<xk <Xy
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Xy
; _ 1 _ 1
+F(r1)F(r2) /O/(X TNy =0 g (s, 1, uls, l))dtds)

( L(u(x, ) L (u(x,0)) )

=Lyt (’“”H 2 Tttt ™ 70 0t )

0<xj<x
RIS

; — o)1y — )21
R 2 [ 0/ (ke =) (y = 0)*7 g(s, 7, u(s, 1))drds

0<xp<x Xk

x Yy
; _ 1 _ -1
TTeore [ 0/ (=9 1) g(s,t,u(s,t))dzds)

L @(xg . ) L (@(x . 0)) )

= eyt ) (M(x’y)Jr 2 (f(x,f,y,u(x*,y)) )

0<xj<x
Xk Y

+m Z / /(xk — )"y — )2 g (s, t, (s, t))drds

0<xj<x i1 0

vy
+mn[0/(x — 9"y —z)’z—lg(s,z,u(s,z))dzds)
<u(x,y),
forall (x,y) € J and u € [u, u]. As aresult
u(x, y)<Au(x, y)Bu(x, y)<u(x,y), VY(x,y) € Ji; k=0,...,m, andu € [u,u.

Hence Au Bu € [u,u], for all u € [u, u].
Notice for any u € [u, u],
M = || B([u. u])|

3 LGGEy)  LGg0)
Sl +| 3 (f(x:,y,uu,*,y)) f(x;,o,wx,*,on)

0<xp<x

Xpoy
! ri—1 _ -l
+ T () Z / /(-xk =) (y =) g(s, t,u(s,t))deds

O<xp<x 7 | 0
1 ol
—i——//x—s”_l — "2V e (s, 1, u(s, t))deds
Foarm | | 970~ g )
Xk

2a"1b" |7 oo
F(r1 + 1)F(r2 + 1)‘

< Iitlloo + 2ml|B| +
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and so,

~ 2a"b"||h| Lo

aM < |a +2m + < 1.
< oo (uuuoo 1B+ o Do
Thus the operators A and B satisfy all the conditions of Theorem 2.41 and so the
operator equation (5.29) has a least a greatest solution in [u, u]. This further implies
that the problems (5.24)—(5.26) have a minimal and a maximal positive solution

on J. O

Theorem 5.18. Assume that hypotheses (5.14.1), (5.17.1)—(5.17.5) hold. Then the
problems (5.24)—(5.26) have a minimal and a maximal positive solution on J.

Proof. Let X = PC(J,R). Consider the order interval [u, u] in X and define two
operators A and B on [u, u] by (5.28) and (5.29), respectively. Then the problems
(5.24)—(5.26) are transformed into an operator equation Au(x,y) Bu(x,y) =
u(x,y), (x,y) € J in a Banach algebra X. Notice that (Hy4;) implies A, B :
[u,u] — K. Since the cone K in X is normal, [u, u] is a norm-bounded set in
X. Next we show that A4 is completely continuous on [u, u]. Now the cone K in X is
normal, so the order interval [u, u] is norm-bounded. Hence there exists a constant
o > 0 such that ||u| < o for all u € [u,u]. As f is continuous on compact set
J x [—o, 0], it attains its maximum , say M. Therefore, for any subset S of [u, u] we
have

IA(S)I| = sup{|Aul : u € S}

= sup{ sup | f(x, y,u(x,y))| :ue S}
(x.y)es

< sup{ sup | f(x,y,u)|:ue [—o,o]}
(x.y)eJ

<M.

This shows that A(S) is a uniformly bounded subset of X. We note that the
function f(x, y,u) is uniformly continuous on J x [—0,o]. Therefore, for any
(71, y1), (12, y2) € J we have

|/ (i, yiu) = f(12, y2, )| = 0 as (71, y1) = (12, )2),
for all u € [—0, o]. Similarly for any u;, u, € [—0, 0]
LfCey u) = f(x,y,u)| = 0 asuy — ua,
for all (x, y) € J. Hence for any (zy, y1), (72, y2) € J and for any u € S one has
|[Au(ti, y1) — Au(za, y2)| = [ f (71, y1, u(Ti, y1) — f(12, y2, u(T2, y2))|
= [f(x yru(t, y1) — f(w2, y2, u(T, yi)l
+ [ f (72, y2, u(ti, y1)) — f(72. y2, u(z2, ¥2))|

— 0 as(t1,y1) = (12, y2).
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This shows that A(S) is an equicontinuous set in K. Now an application of Arzela-
Ascoli theorem yields that A is a completely continuous operator on [u, u]. Next it
can be shown as in the proof of Theorem 5.17 that B is a compact operator on [u, u].
Now an application of Theorem 2.40 yields that the problems (5.24)—(5.26) have a
minimal and maximal positive solution on J. O

5.4.4 An Example

As an application of our results we consider the following partial hyperbolic
functional differential equations of the form:

u(x,y)
CDr N
"k (f(x,y,u(x,y))

L = I 1 I if 0,1 5.33
u Esy _u(z vy)+l(u(§ vy))vlye[v]v ( )

u(x,0) = ¢(x), x € [0,1], u(0,y) = ¥(y), y €[0,1], (5.34)

where Jo = [0, 3] x [0,1], J; = (3, 1] x [0, 1], fig:[0,1]x[0,1] x R — R and
I; : R — R are defined by

) =g(x,y,u(x,y)), if(x,y) € Jy; k=0,1, (5.32)

1
S,y u) = m,
_ 1
S =GRy
and 0w
8+e”
I (u) = ( )

5121001 + |ul)?”
The functions ¢, ¥ : [0, 1] — R are defined by

X—;e_lo; if x € [0, %],
bx) = 24-10. ; |
x*e % ifx € (5. 1],

and
U(y) = ye ' forall y € [0,1].

We show that the functions ¢, ¥, f, g, and I; satisfy all the hypotheses of Theorem
5.14. Clearly, the function f satisfies (5.14.1) and (5.14.2) with a(x,y) =
1

ex+y+10 and

lelloo = ol0”
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1

Also, the function g satisfies (5.14.3) with i(x, y) = e and
ex+y+8
1
Il = 5.
. » . leX 8le?
Finally, condition (5.14.4) holds with S(x,y) = and ||Bllec =

512°
A simple computation gives ||it||co < 4e. Condition (5.27) holds. Indeed

2a" b || h|| Loo :|
rri+DC(m+1)
81e? 2 :|

1
<— |4
o0 [ T 256 TS+ OIm T 1)

oo [nunm +2m)Blloe +

<1,

for each (ry,r;) € (0,1] x (0, 1]. Hence by Theorem 5.14, the problems (5.32)—
(5.34) have a solution defined on [0, 1] x [0, 1].

5.5 Impulsive Partial Hyperbolic Differential Equations
with Variable Times and Infinite Delay

5.5.1 Introduction

In this section, we shall be concerned with the existence of solutions for the
following impulsive partial hyperbolic differential equations:

(DL u)(x,y) = f(x,y,ucy); if (x,y) € Jes k=0,....m,

xp = xx(u(x,y); k=1,...,m, (5.35)

u(x,y) = L(u(x,y)); ify €[0,b], x = xx(u(x.y)), k =1,....m, (5.36)
u(x,y) = ¢(x,y)s if (x,y) € J', (5.37)

u(x,0) = ¢(x), x €[0,a], u(0,y) =¥ (y): y €[0,5], (5.38)

where a,b > 0, J' = (=00, a] x (—o0, b]\(0,a] x (0,b], ¢ € C(J,R"), ¢,y are
as in problems (3.1)-(3.3),0 = xo < x| <+ < Xpp < Xpt1 =4, f I xB —
R, I : R" - R", k = 1,...,m are given functions and 55 is a phase space.
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5.5.2 Main Result

To define the solutions of problems (5.35)—(5.38), we shall consider the space

2 = {u: (—00,a] x (—00,b] = R" : u(y,y) € Bfor(x,y) € E and there exist
0=12x0<x] <X3 <:+ <Xy < Xpy1 = a such that x; = xx(u(xg,.)),
and u(x; ,.), u(x,j', Jexist with u(x,,.) = u(xg,.); k=1,...,m,

andu € C(Jp,R");k =0,...,m},
where Ji := (xk, Xk+1] X (0, b]. Let ||u| e be the seminorm in §2 defined by

lule = llglls + sup{llull. k = 0,....mj,

where uy, is the restriction of u to Ji; kK = 0,...,m. Let us define what we mean
by a solution of problems (5.35)—(5.38).

Definition 5.19. A function ¥ € £2 whose r-derivative exists on Ji; k =
0,...,m is said to be a solution of (5.35)~(5.38) if u satisfies (“Dy, u)(x,y) =
f(x,y,u(x,y)) onJy; k =0,...,m and conditions (5.36)—(5.38) are satisfied.

Theorem 5.20. Let f : J x B — R" be a Carathéodory function. Assume that
(5.20.1) The function x;, € C'(R",R) fork = 1,...,m. Moreover,

0=xou) <x1(u) <---<xp(u) <xpy1(w) =a, foralueR",
(5.20.2) There exists a constant M > O such that
IlfCe, y,w| < M(1+ ||lullg), for each (x,y) € J, and eachu € B,

(5.20.3) Forall (s,t,u) € J xR" and u( ) € B, we have

st
/ / -1 r— r— .
X {w O+ e [ 0[ (=02 -) 1f<e,n,u<e,,,)>dnd9}é1,

k=1,....,m,
(5.20.4) Forallu € R", x; (I (u)) < xx (1) < xp+1(Ix(w)) fork = 1,...,m,
(5.20.5) There exists a constant M * > 0 such that

I @)|| < M*(1 + ||u||B), foreachu € B; k=1,...,m.

Then the IVP (5.35)—(5.38) has at least one solution on (—oo, a] x (—oo, b].

Proof. The proof will be given in several steps.
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Step 1: Set
20={u: (—o00,a] x (—00,b] - R" : u ) € Bfor (x,y)€ E andu € C(J,R")}.

Consider the following problem:

(CD(r)“)(x’y) = f(x7y7“(x,y))v if (x,y) € J, (5.39)
u(x,y) = ¢(x,y): if (x,y) € J', (5.40)
u(x,0) = ¢(x), x € [0,a], u(0,y) =¥ (y), y €[0,b]. (5.41)

Transform problems (5.39)—(5.41) into a fixed-point problem. Consider the operator
N : 2y — £2¢ defined by

$(x.y); (x,y) e J,
00 wlx, y) ,
Nw)(x,y) = x
+F(r1)F(r2) /(x — )Ny =027 (5,1, ugspy))deds; (x,p) € J.
0

(5.42)
Letv(.,.) : (—00,a] x (=00, b] — R" be a function defined by

Py (x.y) e
v y) = { wx.y). (x.y) € J.

Then v(, ) = ¢ forall (x,y) € E. Foreachw € C(J,R") with w(0,0) = 0, we
denote by w the function defined by

0, (x,y)ef’,

W) = { W, y) (r.y) € J.

If u(., .) satisfies the integral equation
1 [T
= —_— — )" Ny =) f (s, drd
u(x,y) = u(lx,y) + F(h)F(rz)O/O/(x )Ty =) f(s 1 ug,)deds,

we can decompose u(.,.) asu(x, y) = w(x, y)+v(x,y); (x,y) € J, whichimplies
U(x,y) = W(x,y) + V(x.y), for every (x, y) € J, and the function w(., .) satisfies

x )y
_ 1 _ ri—1 _ -1 —
WD) = s 0/ 0/ (r =) 0 = 1) (5,1 s + Vo).
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Set
Co={we 2y: wix,y) =0 for(x,y) € E},

and let ||.|(4.,») be the norm in Cy defined by

Wll@s = sup [wepls + sup [wlx, »)| = sup [wlx, »)[. we Co.
(x.y)€E (x,y)eJ] (x.y)€J]

Co is a Banach space with norm |.[|4s). Let the operator P : Co — Cp be
defined by

x Yy
1
memz—————//u—wﬂw—wﬂ
I I
(r1)I(r2) ,
Xf(S,I,W(SJ) + V(S,t))dlds, (x, y) e J. (5.43)

The operator N has a fixed point is equivalent to P has a fixed point, and so we turn
to proving that P has a fixed point. We shall use the Leray—Schauder alternative to
prove that P has fixed point. We shall show that the operator P is continuous and
completely continuous.

Claim 1. P is continuous. Let{w, } be a sequence such that w, — w in Cy. Then

1P (wn)(x, y) = P(w)(x. )l

a b
< 1 _ r1—l _ rz—l
—mmmm!!“S)(y”

x| f(s,t, Wa(s.) + Vn(s,t)) = f(s,1, Wisr) + V(s,t))”dtds-

Since f is a Carathéodory function, then we have

a" b\ f (W) +vae) = S Wiy Fve)lleo
Fri+0DIC@r,+1)

— Qasn — oo.

1P (wn) = P(W) o =

Claim 2. P maps bounded sets into bounded sets in Cy. Indeed, it is enough to

show that, for any n > 0, there exists a positive constant £ such that, for each

(H 1) we have for each (x, y) € J,

we B, ={weC: |wlapn < n}, wehave [PW)|o < €. Letw € B,. By
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X )
1 _ ri—1 _ ry—1
”wm”mfﬁmﬁajj“ 9=

x| f(s,t, Ws,) + V(s,t)) ||dzds

x )y
1 _ r1—l _ rz—l
fnmnm!!“S)(y”

XM + Wiy + v lls)deds

- M(1 + n*)

a b
_ r1—l _ rz—l
=< —F(rl)l"(rz) J O/(x )T (y — 1) deds

Ma"b"(1+7*) o
EAGEAGCET

where

Wiy +venlls < Wenlls + Ivenlls
< Kn+ K|$0.0)] + M|plis := n*.
Hence ||P(W)]loo < £*.

Claim 3. P maps bounded sets into equicontinuous sets in Cy. Let (x;, y1), (x2, y2) €
(0,a] x(0,b], x1 < x2, y1 < y2, B, be abounded set as in Claim 2, and let w € B,,.
Then

| P(w)(x2, y2) — P(w)(x1, y1)l

X1 )1

! [ — )™ (3 — 1)

= Tl ()

—(x1 = )" o =027 f (5.1 s )deds
(s,1)

X2 V2
+m (XZ — S)rl_l (y2 — l)rz_lf(s, LWy + V(S,t))dlds
X1 )1
1 Xy 2
+m / /(xz — )" T 2 = )2 f (5. 1. W) + visay) I dzds
0
1 X2 V1

r1—l rz—l -
_— — —1 .1, s s drd
+ Tl (r) J (2 =8)"" (2 = O f (5,1, Wsay + Vs lldids
X1
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M(l + n) rl—l _ 1‘2—1 _ _ 1'1—1 _ 7‘2—1
F(rl)r(rz)// =)' —1) (x2 — )" "N (yy — £)>"V]dtds

M(1+n) r— 1 _ n— 1
r(rl)r(rz)/ / (2 = $) (2 = ) "drds

X1 )1

M(l + n) r— 1 _ n— 1
F(rl)F(rz) O/y/(x s) (yo — 1) 'dtds
M(1+n)

X2 Y1
_ r1—l _ rz—l
FT () / (2 = 8)"(y2 = 1) drds

x1 0
M(1+n)
“I'(n+DI(rn+1)

+x1'y? = x5y =200 — x) (v2 — y1)".

2y7 (x2 — x1)" 4+ 2x5" (2 — y1)"

As x; — X2, y1 — ) the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases x; < x, < 0, y; < y» < 0and x; < 0 < xp,
y1 < 0 < y;, is obvious. As a consequence of Claims 1-3, together with the Arzela—
Ascoli theorem , we can conclude that P : Cy — Cy is continuous and completely
continuous.

Claim 4. (A priori bounds): We now show there exists an open set U < Cj with
w # AP(w), for A € (0,1) and w € dU. Let w € Cy and w = AP (w) for some
0 < A < 1. Thus for each (x, y) € J,

Xy
A
W(X,y) = m//(x —S)rl_l(y —t)rz_lf(s,t,u(s,,))dtds.
0 0

This implies by (5.20.2) that, for each (x, y) € J, we have

1
, < - — )" Ny — )2 M1+ 5 drds.
e 9 < oo 0[ 0[ (6 =57 = 0 M [ i lslards

But

Wiy +venlls < Wenlls + Ivenlls
< Ksup{w(s,7) : (5,7) € [0,s] x [0, 7]}
+M|ols+ Kl|¢0,0)]. (5.44)
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If we name z(s,t) the right-hand side of (5.44), then we have

”w(s,t) + V(s,t)”lS’ = Z(-xs Y)y

and therefore, for each (x, y) € J we obtain

x
M _ r1—l _ rz—l
[wix, »)| < —F(rl)['(rz) O/O/(x )Ty =) (1 + z(s, t))deds.  (5.45)

Using the above inequality and the definition of z we have that

2(x,y) = Mllglls + Kl$(0,0)l

— — ri—1 rp—1
+F(V1)F(Vz)//(x )"y =)+ z(s, 1))deds

KMa" b
F(ri+0)I'(rh+1)

= Mllpls + Kllp(0.0)[ +

Xy
_ KM I
+F(r1)F(r2) J 0/(x $)"T (Y — )7 z(s, t)drds,

for each (x, y) € J. Set

KMa"' b
Fri+ DL+ 1)

R =Ml|¢ls+ Kl¢0.0)] +

Then for Lemma 2.43, there exists § = §(ry, r) such that

<l

el = R |14 s | =
oo = NCESCES

Then, (5.45) implies that

MQ + Ma"b>
F'r+D)Cm+1)

Wlloo <

Set
={weCo:|wlapn <M*+1j}.

P : U — C, is continuous and completely continuous. By our choice of U, there
isnow € 9dU such that w = AP(w), for A € (0,1). As a consequence of the
nonlinear alternative of Leray—Schauder type [136], we deduce that N has a fixed



206 5 TImpulsive Partial Hyperbolic Functional Differential Equations

point which is a solution to problems (5.39)—(5.41). Denote this solution by ;.
Define the functions

Fea(x,y) = xp(ui(x,y)) —x, forx>0,y>0.

Hypothesis (5.20.1) implies that 7 ;(0,0) # O fork = 1,...,m.
Ifrii(x,y) #0on J fork = 1,...,m;ie.,

X # xx(ui(x,y)), onJ fork=1,...,m,

then u; is a solution of the problems (5.35)—(5.38). It remains to consider the
case when 7y (x,y) = 0 for some (x,y) € J. Now since r;1(0,0) # 0 and
r11 is continuous, there exists x; > 0,y; > 0 such that r ;(x;,y;) = 0, and

ria(x,y) # 0, forall (x, y) € [0,x1) x [0, y1).
Thus, we have

ria(xr,y1) =0and ry;(x,y) # 0, forall (x,y) € [0,x1) x [0, y;] U (y1,b].

Suppose that there exist (X, ¥) € [0, x1) x [0, y1] U (y1, b] such that r ; (X, y) = 0.
The function r; ; attains a maximum at some point (s, ) € [0, x1) x [0, b]. Since

(“Dour)(x,y) = f(x,y,u1(x.y)). for (x,y) € J,
then

8u1(x, Y) eXiStS, and M = xi (ul(s, t))

ox ox

ouy(s, 1) _

1=0.
ox

Since

x Yy
aul(xv y) o rn—1 120, 2
MR =0+ e 0/ 0/ (= )20 = 1) (s 1,5,

then
_1 st
X s.1) {«/(mm | [sor=a—n"se. n,ul(e,m)d@dn} -1
0 0

which contradicts (5.20.3). From (5.20.1) we have

rea(x,y) # O0forall (x,y) € [0,x1) x[0,b]and k = 1,...m.
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Step 2: In what follows set
2 :{u (=00, a] x (—o00,b] = R" 1 u(y ) € Bfor (x,y) € E and there exist
0=x0<Xx] <X3 <-+< Xy < Xp41 = a such that x; = xg(u(xg,.)),
and u(x; ,.), u(x,j',.) exist with u(x; ,.) = ulxg,.); k=1,...,m,
andu € C(X;,R");k =0,...,m},

where
Xk = [xkva] X [O,b], k = 1,...,m.

Consider now the problem

(‘DL u)(x,y) = f(x,y,uny), if (x,y) € Xy, (5.46)
u(x;", y) = LG (x1,y)) (5.47)
u(x,y) = u(x,y), if (x,y) € J U0, x;) x [0, b]. (5.48)

Consider the operator Ny : £21 — §2 defined as

up(x,y), (x.y) € JU[0,x1) x [0, ],
@(x) + 11 (ui(x1, y)) = I1(u1(x1,0))

Xy
N = — -
1) (x,y) + F(rl)ll“(rz) //(x — )" l(y — )" 1

X1 0

X f (8.1, ugsy)deds, (x.y) € Xi.

As in Step 1 we can show that N; is completely continuous. We now show there
exists an open set U’ € §2; with w # AN;(w), for A € (0,1) and w € 9U’. Let
w € £21 and w = AN (w) for some 0 < A < 1. Thus, from (5.20.2) and (5.20.5) we
get for each (x, y) € X|,

wGe, I < NleCll 4+ 11y Cer, YD+ 11 (1 (x1, 0)) ]
1 Y 1 1
+m/ /0 (x =) (y =) f (s, 1, us.) || deds
< |@lloo + 2M*(1 + |Jus])
M L X .
+m/o /0 (x — S)”_l(y — l‘)’z_l(l + ||Z(S,l)||)dtds

M(1 + M)a"b>
Lr+DCm+1)

*

< |l@lloo +2M*(1 + ||uy||) +

Set
U={we2 :|w|<R"+1}.
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N, : U’ — £, is continuous and completely continuous . By our choice of U’,
there is no w € dU’ such that w = AN;(w), for A € (0, 1). As a consequence of
the nonlinear alternative of Leray—Schauder type [136], we deduce that N; has a
fixed point # which is a solution to problem (5.46)—(5.48). Denote this solution by
uy. Define

rk,Z(va):xk(MZ(xvy))_-xs fOI'()C,y)EXl.
If rea(x, y) # Oon (x1,a] x [0,b] and forall k = 1,...,m, then

u(x, y) = ur(x,y), if (x,y) € J U0, x1) x [0, 4],
, ux(x,y), if(x,y) € [x1,a] x[0,5],

is a solution of the problems (5.35)—(5.38). It remains to consider the case when
r22(x,y) = 0, for some (x, y) € (x1,a] x [0, b]. By (5.20.4), we have

raa(x ) = X y) —x
= x2(11 (u1(x1, y1))) — x1
> xp(ur(x1, y1)) — xi
=rii(x;, ) =0.

Since r; ; is continuous, there exists x, > xj, ¥, > y; such that r,(x2, y2) = 0,
and ry5(x, y) # 0 forall (x, y) € (x1,x2) x [0, b]. Itis clear by (5.20.1) that

rea(x,y) #0 forall (x,y) € (x1,x2) x[0,b], k =2,...,m.

Now suppose that there are (s,2) € (x1, x2) X [0, b] such that r; 5(s,#) = 0. From
(5.20.4) it follows that

ria(x, y1) = x1(ua(x;t, yi) — xy
= x1(L1(u1(x1, y1))) — x1
< x1(u1(x1, y1)) — x1

=ri1(x;, ) =0.

Thus ry ; attains a nonnegative maximum at some point (s, #;) € (xy,a) x [0, x2) U
(x2, b]. Since

(CD;IMZ)(-X’ y) = f(-xs yﬂ”Z(X,y))s for (X, y) S le

then we get

uz(x,y) = @(x) + Ii(ur(x1,y)) — I1 (ur(x1,0))

x Yy
1 _ r1—l _ rz—l
e / 0/ (r =) 0 — ) (s 1. ey,
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hence

0 Lol

o — ¢ _n-C — )" 2y =) fls,t drd

T200) =0+ g [ = =0 s,
x; 0

then

dria(si.t 9
ri2(s1, 1) _ xi(uz(sl,tl))ﬂ(sl’tl) —1=0.
ox ox

Therefore
s1 4
/ / rl_l r—2 r—1 —
X (s1, 1) {90 0+ s [ [er=ora-n f(9,n,uz<9,n))dnd0} -1,
X100

which contradicts (5.20.3).

Step 3: We continue this process and take into account that u, 4+, = u p is a
solution to the problem !
(‘DL w)(x,y) = f(x,y,uxy), ae (x,y) € (xn, a] x[0,0],
M(-x;:v y) = IM(um—l(-xmv y))v
u(x,y) = ui(x,y)., if (x,y) € JU[0,x1) x [0, 5],
u(x,y) = uz(x,y), if (x, y) € [x1,x2) x [0, 5],
u(x,y) = uy(x,y), if (x,y) € [xm—1,xn) x [0, b].
The solution u of the problems (5.35)—(5.38) is then defined by
u(x, ), if (x,y) e JU[0,x1] x [0, 5],
_Jua(x, y), if (x,y) € (x1,x2] x [0, b],
u(x,y) =
um—l—l(xvy)s if(x,y)e(xm,a]x[O,b].
]

5.5.3 An Example

As an application of our results we consider the following impulsive partial
hyperbolic differential equations of the form:
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Dy (x.y) = % if (x,y) € Jis k=0,....m,
xp = xx(u(x,y)): k=1,...,m, (5.49)
w(xi,y) = deulxe, y); y € 0,10, k=1,...,m, (5.50)
u(x,y) = x 4+ y% (x,y) € (=00, 1] x (=00, 1]\(0, 1] x (0, 1], (5.51)
u(x,0) = x, u(0,y) = y* x,y €[0,1], (5.52)

where J = [0,1] x [0,1], r = (r1,72), 0 <ri,r <1, x4 (u) =1— m§ k =

1,...,m and % <diy <1; k =1,...,m. Let B, be the phase space defined in
the Example of Sect. 3.7. Set

1+ el
SOy uy) = ﬁ’ (x,y) €0, 1] x [0, 1], u(x,y) € By,
and
LLiiwy=dwuw, ueR, k=1,...,,m.

Let u € R then we have

Xi+1(1) — xp () = 0;k=1,...,m.

1
T >
2k+1(1 + MZ)

Hence 0 < x1(u) < x2(u) < -+ < x;y(u) < 1, foreach u € R. Also, foreachu € R
we have

14+ (2d? — Nu? -
21 4+ u?)(1 + d})

Xie1 (L () — xic (u) =
Finally, for all (x, y) € J and each u € R we get
[Ix ()| = |dru| < |u] <30+ |ul); k=1,....m,

and

[T+ ul

1
Syl = 5= = (14 ful).

e*ty 7 10

Since all conditions of Theorem 5.20 are satisfied, problem (5.49)—(5.52) have at
least one solution on (—oo, 1] X (—o0, 1].
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5.6 Impulsive Partial Hyperbolic Functional Differential
Equations of Fractional Order with State-Dependent
Delay

5.6.1 Introduction

In this section, we start by studying the existence result to fractional order IVP , for
the system

(“D;ku)(x, y) = f(x, y, M(PI(X,y,M(x.y)),Pz(xsysll(x.y)))); if (x, y) e Ji; k=0,...,m,
(5.53)

u(it y) = ulg, y) + L(w(xg.y)): ify €[00 k=1,....m,  (5.54)
u(x,y) =¢(x,y), if (x,y) € J = [—a,a] x [-B,b]\(0,a] x (0,b], (5.55)
u(x,0) = ¢(x), x €[0,a], u(0,y) =¥ (y), y €[0,b], (5.56)

where a,b, o, >0, 0 =x9g < x] <+ < Xpy < X1 = d, P : J >R J =
[0,a] x [0, b], is a given continuous function, ¢, Y are as in problems (3.1)—(3.3),
f:JIJxC >R p:JxC —[-a,a], pp: J xC — [-8,b], I; : R" -
R"; k =1,...,m are given functions and C is the Banach space defined by

C =Cp) ={u:[—a,0] x [-,0] = R" : continuous and there exist
T € (—o,0) with u(z; ", y) and u(x,j, ¥), k =1,...,m, exist for any
y € [-B.0] with u(t, ., y) = u(tx. )7)},

with norm

lullpc = sup lluCx, )1
() E[~a 0] x[~B.0)

Next we consider the following system of partial hyperbolic differential equations
of fractional order with infinite delay

(DL w)(x, ) = f(X, Y5 Ui (v y e ) ooy py))s i (X, 9) € Tk k=0,...,m,
(5.57)

u(t,y) = u(xg, y) + L(ulxg, y): if (v, y) € Jis k=1,...,m,  (5.58)
u(x,y) = ¢(x,y), if (x,y) € J' := (—00,a] x (—o0, b]\(0,a] x (0,b], (5.59)
u(x,0) = @(x), u(0,y) = ¢ (y); x.y €[0.b], (5.60)

where ¢, V¥, I are as in problems (5.53)—(5.56), fiIxB—->R" pj:JxB—
(—o0,a], pr: J xB— (—00,b], ¢ : J' — R" and B is a phase space.
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5.6.2 Impulsive Partial Differential Equations with Finite
Delay

Consider the Banach space

PC := PC(J,R")
={u:J >R":ueCU,R"); k=1,....,m, and there exist u(x; , y)
andu(x;", y)ik =1,....m, withu(x;,y) = u(xr.y), y €[0,b]},

with the norm
lullpc = sup [lu(x, y)|.

(x.y)eJ

Set PC := PC([—a,a] x [-B, D], R"), which is a Banach space with the norm
lullzz = sup{lluCx, y)|| : (x,y) € [-a,a] x [-B, D]}

Definition 5.21. A function u € PC such that its mixed derivative Dﬁy exists
on Ji; k = 0,...,m is said to be a solution of (5.53)—(5.56) if u satisfies the
condition (5.55) on J, (5.53)on Ji; k = 0, ..., m and conditions (5.54) and (5.56)
are satisfied.

Set R := R(Pl_'/’z_)
= {(p1(s,t,u), p2(s,t,u)) : (s,t,u) € J x C, p;(s,t,u) <0;i =1,2}.

We always assume that p; : J x C — R; i = 1,2 are continuous and the function
(s, t) —> u(,) is continuous from R into C.
The first result is based on Banach fixed-point theorem.

Theorem 5.22. Let f : J x C —> R" be continuous. Assume that

(5.22.1) There exists a constant | > 0 such that
| f(x,y,u)— f(x,y,0)||<I||lu—ul|lc, foreach (x,y)eJ and each u,ucC,
(5.22.2) There exists a constant [* > 0 such that
I (w) — I @)|| < I*||lu—1ul|, foreachu,ueR"; k=1,...,m.
If
2la" b

<
F(ri+0O)I'(rp+1)
then (5.53)—(5.56) have a unique solution on [—«, a] x [—8, b].

2ml* + 1, (5.61)
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Proof. We transform the problems (5.53)—(5.56) into a fixed-point problem. Con-
sider the operator F' : PC — PC defined by

P(x. ). (x.y)e ],
py) + Y Te(uCx s ) = Ie(u(xi, 0)))
O<xp<x
ot 2 / / (=9 =0y
F(u)(x,y) = 0<x<x )

X f(s,t, M(PI(HM(\”)PZ(”M@ o))deds

+F(11)F(12)//(x_s)rl Hy =)t

x f(s.1, M(m(s.,t,u@_,)),pz<s,r,u@,t>)))df ds, (x.y)eJ.

Clearly, from Lemma 2.15 the fixed points of the operator F' are solutions of the
problems (5.53)—(5.56). We shall use the Banach contraction principle to prove that
F has a fixed point. For this, we show that F is a contraction. Let u,v € PC , then
for each (x, y) € J, we have

IF @) (x, y) = FW)(x, y)|

<Y (e, ) = e DI+ i (u(xg,0) = Te (v, 0)])

k=1

X Y
1 m
+ Xie—S r—l —t r2=1 S, I, S8, (s St
F(rl)F(rz)]; / 0/( k=) =0T S (S 1 oy (5.t o .t geny))
Xk—1

= fs.1, V(o1 (SJqu(s.r)),Pz(Sqf,u(s.r)))) [[drds

Xy
1
+ — x—s)1 Ny —1)! S, 1, 5,1, s,
s / (=900 = O L s )
Xge

= S L V(o (5.0 1)), (5.1 ugs ) | dE S

< Dl y) = v )+ llut, 0) = v, 0)l)
k=1

F(rl)F(rz)Z / /(Xk—s)rl l(y )rz 1

XUy (5..005.00).2 5t005.0)) — Vo1 (5.1 025. 1005, | € AE LS
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x Y
+ s [ e -
I'(ri)I(r2)
xr 0
XUy (5..005.00).2 5t005.)) — Vo1 5.1 025. 1005, | € AE LS

_ [2 4 20a" b } | |
m u—v .
= T(ri+ O+ 1) ¢

By the condition (5.61), we conclude that F is a contraction . As a consequence of
Banach’s fixed-point theorem, we deduce that F' has a unique fixed point which is a
solution of the problems (5.53)—(5.56). O

In the following theorem we give an existence result for the problems (5.53)—
(5.56) by applying the nonlinear alternative of Leray—Schauder type [136].

Theorem 5.23. Let f : J x C —> R" be continuous. Assume that the following
conditions hold:

(5.23.1) There exists ¢y € C(J,Ry) and ¢ : [0,00) — (0, 00) continuous and
nondecreasing such that

If Gyl < ¢ )Y lullc).  forall (x,y) € J, ueC,
(5.23.2) There exists ¥* : [0,00) — (0, 00) continuous and nondecreasing such
that
1@l < ¥ (lul)),  forallueR",

(5.23.3) There exists a number M > 0 such that

M

— > 1
Ty o 24 bRy (M) '
ltlloo + 2my* (M) + +rmrmTn

where ¢% = sup{¢/(x,y) : (x,y) € J}.
Then (5.53)—(5.56) have at least one solution on [—a, a] x [—8, b].

Proof. Consider the operator F' defined in Theorem 5.22. We shall show that the
operator F is continuous and completely continuous.

A priori estimate. For A € [0, 1], let u# be such that for each (x, y) € J we have
u(x,y) = A(Fu)(x, y). For each (x, y) € J, then from (5.23.1) and (5.23.2) we
have

e, I < Dt e I+ D Ui, DI+ 1k (e 0)))

k=1

m kY
1 _ 1 _ n\n2—1
py ey ; ] / 0/ (e =9)" "y =)

x| f (s, 1, Upy (Sqf,u(s.r)),Pz(&tqu(s.r)))) l[drds



5.6 Impulsive Partial Hyperbolic Functional Differential Equations... 215

R
1 _ ri—1 _ ry—1
+r(r1)r(r2)f 0/ =yt =1

x| f (s, 1, M(Pl(Snfs“(s.t))sPZ(Sstvu(s.t)))) l[drds

2a" b5 (||ull)

Thus
lull pc

<1
2a" 0725y (lullpc) —
Iilloo + 2my*(lullpc) + —rorirosn—
By condition (5.23.3), there exists M such that ||u|lco # M.
Let . o
U={uePC:|lullpsz < M}.

The operator F : U — PC is continuous and completely continuous. From the
choice of U, there is no u € dU such that u = AF(u) for some A € (0,1). As a
consequence of the nonlinear alternative of Leray—Schauder type [136], we deduce
that F has a fixed point u in U which is a solution of the problems (5.53)—(5.56).

|

5.6.3 Impulsive Partial Differential Equations
with Infinite Delay

Now we present two existence results for the problems (5.57)—(5.60). Let us start in
this section by defining what we mean by a solution of the problems (5.57)—(5.60).
Let the space

2 :={u:(—00,a] x (—oo,b] - R" : u( ), € Bfor(x,y) € E andu|; € PC}.

Definition 5.24. A function u € £2 such that its mixed derivative Diy exists on
Jii k= 0,~. .., mis said to be a solution of (5.57)—(5.60) if u satisfies the condition
(5.59) on J’, (5.57) on Ji, and conditions (5.58) and (5.60) are satisfied on J.

Set R/ = R/(PT,P;)
={(p1(s,t,u), pa(s,t,u)) : (s,t,u) € J x B, p;j(s,t,u) <0; i =1,2}.

We always assume that p; : J x B — (—o0,a], p : J X B — (—00,b] are
continuous and the function (s, #) —> us,) is continuous from R’ into 5.



216 5 TImpulsive Partial Hyperbolic Functional Differential Equations

We will need to introduce the following hypothesis:

(Hy) There exists a continuous bounded function L : R'(,- ,;-) — (0, 00) such
that

lpnlis < L(s.0)l|¢lls, forany(s. 1) € R'.

In the sequel we will make use of the following generalization of a consequence of
the phase space axioms ([148]).

Lemma 5.25. Ifu € $2, then

lunlls = (M + L)|¢lls + K sup (0, ),
(6,n)€[0,max{0,s}]x[0,max{0,}]

where

L' = sup L(s,1).
(s.1)ER’/

Our first existence result for the IVP (5.57)—(5.60) is based on the Banach
contraction principle.

Theorem 5.26. Assume that the following hypotheses hold:
(5.26.1) There exists £’ > 0 such that
IfCeoyu) = fCe, y | < Ulu—vl, foranyu, v e Band (x,y) € J,

(5.26.2) There exists a constant [* > 0 such that
1 (w) — ;@) < I*||lu—1ul|, foreachu,u e R"; k =1,...,m

If
2K Lam b
2mi* + <1, 5.62
T T+ )+ 1) (5-62)

then there exists a unique solution for IVP (5.57)—(5.60) on (—o0, a] X (—o0, b].

Proof. Transform the problems (5.57)—(5.60) into a fixed-point problem. Consider
the operator N : §2 — §2 defined by

P(x, ). (x.y)eJ',
pOey)+ Y (e, ) — I (u(xi, 0))
0<xp<x
| / (=9 =0
N@)(x,y) = 0<u<r |

X f(s,t, M(pmtuon)pz(stu(\n)))dfds

[‘(rl)['(rz)//(x_s)rl l(y )rz 1

Xk 0

XSS5 Uipy (5,1,5.00) 0250510 AT DS, (x,y) € J.
(5.63)
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Letv(.,.) : (—00,a] x (—oo, b] — R”" be a function defined by

P(x,y). (x,y) e J,

VoY) = { w(x. ). (xoy) € J.

Then v(, y) = ¢ forall (x,y) € E. Foreachw € C(J,R") with w(x, y) = 0 for
each (x, y) € E we denote by w the function defined by

07 ('x7y)€j/’

W) = { wx.y) (x.y) € J.

If u(., .) satisfies the integral equation

x )y
— 1 _ r1—l _ rz—l
ute,) = we) + s [ = o—n
0 0

XSS, 8, Uy (5,8,5.0)) 92 (5.8, 15.)) ) A DS

we can decompose u(.,.) asu(x, y) = w(x, y)+v(x,y); (x,y) € J, whichimplies
U(x,y) = W(x,y) T+ V(x.y), for every (x, y) € J, and the function w(., .) satisfies

wx.y) = Y (Te(ulx, ) — (u(x; . 0)))

O<xp<x
. Xy
_ r1—l _ rz—l
*ores, 2, | 0/ e

O<xp<x .~

x f(s,t, U(p, (S,tqu(s.r))qu(&hu(s.r))))dl‘ds

x )y
1 _ ri—1 _ r—1
+r(r1)r(r2)f 0/ =yt =1

XS (S5 8 UGy (5,8,5.1), 2 (5,1 5.)) ) LD

Set
Co={we2: w,y)=0 for(x,y) € E},

and let ||.||(4.,») be the seminorm in Cy defined by

Wll@p) = sup [wapls + sup [lwlx, )l = sup [wx,»)]l, we Co.
(x.))eE (rel (x.es
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Cy is a Banach space with norm ||.| ). Let the operator P : Cy — Cj be
defined by
P(x,y) = Y (k(u(x, ) — L(u(x; ,0)))
0<xp<x
> / /(Xk DI e
F(rl)F(rz) 0imer

x f (s, t’V_V(pl(S,I,Mm.z)),pz(S.,t,u(.\v.t))) + V(pl(S,t.,u@.t)),pz(w‘,um.z))))dtds

x Yy
1 _ r1—l _ rz—l
+F(r1>r(r2>/ 0/ =" =0

X F (S, 8 W(p (s.t105.0)025.105.0)) T Vo1 (5.t,005.)02(5.8,15.1)) )T DS

(5.64)

for each (x,y) € J. The operator N has a fixed point is equivalent to P has a
fixed point, and so we turn to proving that P has a fixed point. We can easily show
that P : Cy — Cy is a contraction map, and hence it has a unique fixed point by
Banach’s contraction principle. O

Now we give an existence result based on the nonlinear alternative of Leray—
Schauder type [136].

Theorem 5.27. Assume (Hy) and
(5.27.1) There exist p,q € C(J,R4) such that
I/ y.wll = p(x.y) +q(x. y)|ulls. for (x.y) € J and eachu € B,
(5.27.2) There existcy > 0; kK = 1,...,m such that
k)| <cx forallueR".
Then the IVP (5.57)—(5.60) have at least one solution on (—o0, a] X (—oo, b].

Proof. Let P : Cy — C defined as in (5.64). As in Theorem 5.22, we can show
that the operator P is continuous and completely continuous. We now show that
there exists an open set U € Cy with w # AP(w), for A € (0,1) and w € 9U. Let
w e Cypand w = AP(w) for some 0 < A < 1. By (5.27.1) and (5.27.2) for each
(x,y) € J, we have

2||pllooa™b™
§ :2
bee = 220+ e D F i + 1)

x Yy
2 _ -l _ -1
T 0/ O/ (=" =17 g (s.)

X ||W(S,t) + Vis.t) ||zdzds.
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But Lemma 5.25 implies that
Wity +vinlls = Wenlls + venlls
< Ksup{w(s,7) : (5,7) € [0,s] x [0, 7]}
+(M + L)lglls + Kl¢(0,0)]. (5.65)
If we name z(s, ¢) the right-hand side of (5.65), then we have
[Wes.y + visnlls = 2(x, ),

and therefore, for each (x, y) € J we obtain

2| plloca™b"
Fri+0O)I'(rp+1)

Iwee )l <23 e +
k=1

x y
; _ oyl _ -1
+F(r1)F(r2)0/0/(x )" =0 g(s. t)z(s. )drds.
(5.66)

Using the above inequality and the definition of z for each (x, y) € J we have

2| plleca™b™
rm+0)Ir'm+1)

2x.y) = (M + L)l + Kl|¢0.0)| +2) e +
k=1

Xy
2K lloc BT
mo O/(X—S) (y — 1) "z(s, t)deds.

Then by Lemma 2.43, there exists § = §(ry, r2) such that we have

2K|Iqlloo -1 el
z(e, M = R+8F( )F(rz)//(x )" Ny —t)? ' Rdtds,

where

2| plloca™b™
'(ri+ DI+ 1)‘

R=(M+L)|¢ls+ K[$©0.0) +2) e +
k=1

Hence

2R5K ||qlloca" b™ ~
Zoo < R+ =M.
Kllee = R+ G D F 1)
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Then, (5.66) implies that

2a"b"?

M =M.
Th+ DI + 1)(||P||c>o + Mlqlloo)

m
[Wleo < chk +
k=1

Set
U={weCy:|wl@p <M*+1}.

P : U — C, is continuous and completely continuous. By our choice of U, there is
now € dU such thatw = AP (w), for A € (0, 1). As a consequence of the nonlinear
alternative of Leray—Schauder type [136], we deduce that N has a fixed point which
is a solution to problems (5.57)—(5.60). ]

5.6.4 Examples

5.6.4.1 Example 1

As an application of our results we consider the following impulsive partial
hyperbolic functional differential equations of the form:

e Yy o Iu(_x —al(u(x,y)),y _UZ(M(X7 Y)))|

CDY) = G e ™ T Julx = 01 (uCx. ).y — o )|

if (x,y) € ki k=0.1, (5.67)
A 1\~ -
' ((2) ’y) =o((5) ) ey e e
2/) >
u(x,y) =x +y2, (x,y) € [-1,1] x [-2, 1]\ (0, 1] x (0, 1], (5.69)
u(x,0) = x, u(0,y) = y% xe[0,1], y €0, 1], (5.70)

where Jo = [0, 5]x[0. 1], Ji = (3. 1]x[0. 1], 01 € C(R, [0, 1]), 02 € C(R, [0, 2]).
Set

pl()C, Y, (p) =X _O—l((p(os 0))7 (X, y?@) eJ x Cs

p2(x,y,9) =y —02(¢(0,0)), (x,y,9) €J xC,
where C := C(j . Set

e Vgl

N CRE Ty

(x,y)€[0,1]x[0,1], ¢ € C,

and
I =——, ueR;.
e (1) 3 u +
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A simple computation shows that conditions of Theorem 5.22 are satisfied which
implies that problems (5.67)—(5.70) have a unique solution defined on [—1, 1] x
-2, 1].

5.6.4.2 Example 2

We consider now the following impulsive fractional order partial hyperbolic
differential equations with infinite delay of the form:

Cex+y—y(x+y) IM(X — 0] (“(x’ y))v Yy - UZ(M(Xv y)))l

(DM Y) = CF T + ulr = 01 @r. ).y — oaa(x )

if(x,y)e Jxk; k=0,...,m, (5.71)
(#4)) =+ () ) st
ul\o—) | =ull77—7) ¥ R
k+1 k+1 3mk + |u((£5) .y
yelo 1, k=1,....m, (5.72)
u(x,0) = x, u(0,y) =y%, xel0,1], y €[0,1], (5.73)

u(x.y) =x+y% (x.y) € J := (=00, 1] x (=00, I\(0. 1] x (0. 1].  (5.74)
where ¢ = W(I)“(rﬁ-l)’ y a positive real constant, and 01,0, € C(R, [0, 00)).
Let B, be the phase space defined in the Example of Sect. 3.7. Set

pi1(x,y,9) =x —01(¢(0,0)), (x,y,@)eJ xB,,

p2(xv Vs @) =y _0—2(¢(070))s ()C, Vs (p) €J x By’
ceX Ty D))

JE&2 9 = G e 1 1o

(x,y) €[0,1] x[0,1], ¢ € B,

and

I (u) = sueRy, k=1,...,m.

u
3mk +u
We can easily show that conditions of Theorem 5.23 are satisfied, and hence
problem (5.71)—(5.74) has a unique solution defined on (—oo, 1] x (—o0, 1].
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5.7 Impulsive Partial Hyperbolic Functional Differential
Equations with Variable Times and State-Dependent
Delay

5.7.1 Introduction

In this section, we start by studying the existence and uniqueness of solutions for the
following impulsive partial hyperbolic differential equations with variable times:

(‘D u)(x,y) = FO, Y, Uipy (x,y,u0)).02 (6 p 010 ))
if(x,y)eJi; k=0,....m, xx = xx(u(x,y)), k=1,...,m, (5.75)
u(xt,y) = L(u(x,y)); ify €[0,b], x = xx(u(x, ), k =1,....,m, (5.76)
u(x.y) = ¢(x.y): if (x,y) € J := [~a.a] x [-B.b]\(0.a] x (0,B].  (5.77)
u(x,0) = ¢(x); x €[0,a]. u(0,y) =¥ (y):; y €[0.b], (5.78)

wherea,b, o, >0, 0=x9g < x| << Xjy < Xpt1 =4, ¢ € C(j,R”), o,
are as in problem (3.1)-(3.3), f : / xC - R", p; : J xC — [—a,a], p; :
JxC — [-8,b], Ix : R" - R", k = 1,...,m are given functions, J :=
[0,a] x [0, b], and C is the space defined by

C =Cup = {u : [~@,0] x [-B,0] — R" : continuous and there exist
7 € (—0o,0) such that 7 = 7 (u(tx,.)), with u(z,,y) and u(r]j, ),
k =1,...,m, existforany y € [—f,0] with u(t; . J) = u(t, y)}.

C is a Banach space with norm

lullc = sup lluCx, )1
(ry)€[=a0]x[~B.0)

Next we consider the following system of partial hyperbolic differential equations
of fractional order with infinite delay:

(C D;rck u)(x,y) = f(x,y, M(Pl(Xv)’vu(x.y))vPZ(Xvau(x.y))));

if (x,y) € Ji; k=0,....m, x; = x(ulx,y)), k=1,...,m, (5.79)
u(xt,y) = L(u(x,y)): ify €[0,b], x = xx(u(x,y)), k=1,...,m, (5.80)
u(x,y) = ¢(x,y): if (x,y) € J' := (—00,a] x (—o0, b]\(0,a] x (0,5], (5.81)

u(x,0) = ¢(x); x €[0,a], u(0,y) =¥ (y); y €10,b], (5.82)
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where ¢, ¥, I are as in problems (5.75)—(5.78), ¢ € C(f’,]R"), f:JxB—>
R", p1:J xB — (—00,a], p2 : J x B — (—00, b] are given functions and B is a
phase space.

5.7.2 Impulsive Partial Differential Equations with Finite
Delay

Let us start in this section by defining what we mean by a solution of the problem
(5.75)—-(5.78). Let Ji, PC,and PC be defined as in Sect. 4.7.

Definition 5.28. A function u € PC such that its mixed derivative Diy exists on
Jii k= 0,~. .., m is said to be a solution of (5.75)—(5.78) if u satisfies the condition
(5.77)on J, (5.75) on J; and conditions (5.76) and (5.78) are satisfied on J.

Set R := R(Pl_’/’z_)
= {(p1(s,t,u), pa(s,t,u)) : (s,t,u) € J xC, pi(s,t,u) <0;i =1,2}.

We always assume that p; : J xC — [—«, a], py : J xC — [—p, b] are continuous
and the function (s,?) — us) is continuous from R into C.

Theorem 5.29. Assume that

(5.29.1) The function f : J x C — R" is continuous
(5.29.2) There exists a constant M > 0 such that

1/ Ce.y )| = MQ1+ [|ul)), foreach (x.y) € J, u e C,
(5.29.3) The function x;, € C'(R",R) fork = 1,...,m. Moreover,
0=xo(u) <x1(u) <+ <xpu) <xpr1(w) =a, foralueR",
(5.29.4) There exists a constant M * > 0 such that
@) < M*(1 + |lul)); k=1,...,m, foreachu € C,

(5.29.5) Forallu € C, x;(Ix () < xx(u) < xx41(IxW)), fork =1,...,m,
(5.29.6) Forall (s,t,u) € J x C, we have

K t
/ rn—1 r— ro—
0 + s [ [e=or e —nr
X 0
X f(0, 1, o, 0,n,u0.1).02 010,07 ANAO] # 1,

k=1,...,m.Then (5.75)—(5.78) has at least one solution on [—«, a] x [—8, b].
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Proof. The proof will be given in several steps.

Step 1: Set

PCo={u: [~a,a] x [-B.b] = R" : u(y)€C for (x,y) € J anduc PC(J,R")}.

Consider the following problem:

(“Dou)(x, y) = fX, Y, Uipy (x.y.u)02 (vt )i 1 (X ) € T, (5.83)
u(x,y) = ¢(x,y): if (x.y) € J, (5.84)
u(x,0) = @(x), u(0,y) =¥ (y); x €[0,a]and y € [0,D]. (5.85)

Transform problems (5.83)—(5.85) into a fixed-point problem. Consider the operator
N : PCy — PCj defined by

$(x,); (x,y) e J,

x Y
N@(x.y) = p(x, 9) + 75rrm / /(x - )"y -0~
0 0
XS (S L5 U .. ) .V A2 ASS (x,y)eJ.
Lemma 2.12 implies that the fixed points of operator N are solutions of problems

(5.83)—(5.85). We shall show that the operator N is continuous and completely
continuous.

Claim 1. N is continuous. Let {u,} be a sequence such that u, — u in PCy. Let
n > 0 be such that ||u,| < n. Then for each (x, y) € J, we have

X )
_ 1 _ ri—1 _ r—1
IV () ) = NG )] = s 0/ 0/ (=5 =0)

£ Gs.t, Un(py (SJqu(s.r)),Pz(SJqu(s.r)))) = f(s.1, U(p, (SJqu(s.r)),Pz(Sqf,u(s.r)))) [[drds

a b
< ”f(v ) un()) - f(s o M)”oo -l -l
=< )T () O/O/(X ST (y — ) dsdrt

_ @St ) = G ui) oo
- rri+1H)r'm+1) '

Since f is a continuous function, we have

| N(u,) — N(u)||oo = 0 asn — oo.
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Claim 2. N maps bounded sets into bounded sets in P Cy. Indeed, it is enough to
show that for any n* > 0, there exists a positive constant £ such that for each
ue By ={ue PC: ||lullooc <n*}, wehave | N(u)|loo < £. By (5.29.2) for each
(x,y) € J, we have

x )y
u < u 1 _ r1—l _ rz—l
NG = )]+ s 0/ 0/ (=" =0

XSS 2, o (s..u61), 025,005,000 | dE DS
M1+ n*)a" b
Fri+ DL+ 1)

< G, wll +

M(14+9%)a"1 b2
Thus [N () oo < [ptlloc + AUER g,

Claim 3. N maps bounded sets into equicontinuous sets of P Cy.

Let (71, y1), (12, y2) € J, 11 < 12 and y; < y», By be a bounded set of Py as in
Claim 2, and let u € B,«. Then for each (x, y) € J, we have

IN @) (72, y2) = N(w) (T, y) ||

V1
= Hll(ﬁ, y1) — (12, y2) + (o =)' (ya— )"

oo )
I'(r)I(r2) Jo
(01 = )" T 0 =TS oy st ) .. ) DS

; 2 _ oyl _ o\l
T o) / @ =02 =0)

X (S, 8 Uy (5,8,5.0)),p2(5.1,15.)) ) A DS
1 1 Y2 1 1
r)rr) Jo Jy,
X (S, 8 Uy (5,8,5.0)),p2(5.1,15.1)) ) A DS

1 (%) V1
+——— =)y —1)!
F ) / , 2T 02=

XSS, 8, oy (s.t.151)).p2(5.0.15.))) AT DS H

IA

ez, y1) = (2, y2) |

M(1+7’]) I ri—1 r—1
F(rl)F(rz)/ / (@ =" 01 =0

—(t2 — )" (y2 — 1) ]deds
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M1+ n*) /” /” -1 -1
+— T —s)" — 1) drds
Tl () /., . (2 ) (2 )

M40 [

7, — ) 7 (v, — )27 deds
() Jo . (2 ) (2 )

MQA+9") [

Y1
_ T, —s)1 1 — Y2 drds
rr) |, J, @79 0270

< lu(zr, y1) — p(z2, y2)l|
M(1+n")
F(r1 + DI (ry + 1)

+1' v =0y =2 — )" (2 — )"

2y (za — )" 425, (y2 — Y1)

As 11 — 1 and y; —> », the right-hand side of the above inequality tends to
zero. As a consequence of Claims 1-3 together with the Arzela-Ascoli theorem, we
can conclude that N is completely continuous.

Claim 4. A priori bounds. Now it remains to show that the set & ={u € PCy:u =
AN(u) forsome 0 < A < 1} is bounded. Let u € &, then u = AN(u) for some
0 < A < 1. Thus, for each (x, y) € J, we have

1 [ _ -l _ -1
e, )1 < e+ oo [ oo =)

XIS (8013 oy (s.005.00) 025,005,000 [|dE DS
Ma b
F(l‘l + 1)F(l‘2+ 1)

+M / / T =)y = 1 g ded
[ X —s — uGs. s.
rorm) Jo Jo Y (s

Ma"'b™
'(ri+ DI+ 1)‘

Then Lemma 2.43 implies that for each (x, y) € J, there exists 6 = §(ry, 1) such
that

< llwlloo +

Set

o = [[ptlloc +

< M8 * y _ r1—l _ rz—l
luCx. )] —w[1+—r(r1)r(r2) /0 /0 (= 5"y — 1) dtds}

<w [1 o Méanbn } = R
- NGESGES I
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This shows that the set £ is bounded. As a consequence of Schaefer’s fixed-point
theorem (Theorem 2.34), we deduce that N has a fixed point which is a solution of
the problems (5.83)—(5.85). Denote this solution by u;. Define the function

Fea(x,y) = xp(ui(x,y)) —x, forx>0,y>0.

Hypothesis (5.29.3) implies that 7, ;(0,0) # O fork = 1,....m. If rg1(x,y) #0
onJ fork=1,...,m;ie.,

x # xp(u(x,y)); onJ fork=1,...,m,
then u; is a solution of the problems (5.75)—(5.78).

It remains to consider the case when ry ;(x, y) = 0 for some (x, y) € J. Now
since r1,1(0,0) # 0 and ry; is continuous, there exists x; > 0, y; > 0 such that
ria(xi, y1) = 0,and r11(x, y) # 0, forall (x, y) € [0,x1) x [0, y1).

Thus by (5.29.6) we have

ria(xr, y1) = 0and ry1(x, y) # 0, forall (x,y) €[0,x1) x [0, y1] U (y1,b].

Suppose that there exist (X, ¥) € [0, x1) x [0, y1] U (y1, b] such that ry ; (X, y) = 0.
The function r; ; attains a maximum at some point (s, ) € [0, x1) x [0, b]. Since

(“Dgu)(x,y) = [ (X, ¥, U1(p1 (.00 p2 (7100 )5 TOT (X, ¥) €

then
ouy (x, . 0 1 Oy (s,t
i (x,y) exists, and Inals.n) = x(u1(s,1)) mis 1) _ 1=0.
X ox ox
Since
dur (x, ) Ll
uix,y 7 ry — r—2 r—1
— = _— —s —t
YO e | [ =0
0 0
xf(s.1. ul(m(Sqf,u(s.r)),Pz(&tqu(s.r))))dtdS’
then

n.0) |90+ i [ [s=or=a—nr!
0 0

X f(0, 1, Uipy (0.0,u0.0)).020.m0.)))40dN | = 1,

which contradicts (5.29.6). From (5.29.1) we have

rea(x,y) # O0forall (x,y) € [0,x1) x[0,h]and k = 1,...m.
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Step 2: In what follows set

PCi ={u:[~a.a] x [-B.b] = R" : u(y) € C for (x,y) € J, and there exist
0=12x0<x] <Xx3 <-- <Xy < Xpt1 = a such that x;x = xg(u(xg,.)),
and u(x; ,.), u(x,j', Jexist with u(x,.) = u(xg,.); k=1,....m,
andu € C(X;,R"):k =0,...,m},

where
Xy = [xr,a]l x[0,b]; k=1,...,m.
Consider now the problem
(DL w)(x,y) = X, Y, Uipi(x )02 (evagy)s i (x,y) € X, (5.86)
u(xt,y) = Liui(x1,y)), (5.87)
u(x,y) = ui(x,y). if (x.y) € J U[0,x1) x [0,b]. (5.88)
Consider the operator N; : PC; — P, defined as

i (x, ), (x.y) € JU[0,x1) x [0.b].
p(x) + Li(u (3, ) = L1 (u1(x1,0))

X

Y
Nl(u)(x7y) = +m / /(X _ S)rl—l(y — [)rz—l
0

x1

x f(s.t, Up, (S»l-M(J.rﬂ,pz(&l-uu.r))))dtdsv (x.y) € Xi.

As in Step 1 we can show that N, is completely continuous. Now it remains to show
that the set £* = {u € PC, : u = AN;(u) forsome 0 < A < 1} is bounded. Let
u € &%, then u = AN (u) for some 0 < A < 1. Thus, from (5.29.2) and (5.29.4)
we get for each (x, y) € X,

lluCe, =< NleCl =+ 11 @ Gers )+ 111 (1 (x1, 0)) ]

1 * ’ _ ri—1 _ -1
+r(r1>r(r2)/xl/o(x ST =D

XIS (8013 oy (s.005.00) 02500500 [|dE DS
Ma''b
F(r1 + 1)F(l‘2 + 1)

M x
SRV =)y =0T drds.
sroarig b w9 =0 e laras

< l@lloo + 2M*(1 + ||luy||) +

Set
Ma" b

'(ri+0)I(r, + 1)'

0* = [|@lloo + 2M*(1 + |u1||) +
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Then Lemma 2.43 implies that for each (x, y) € X, there exists § = §(ry, r2) such
that

* L Y L P D }
luGe )l <o p+IWﬂFUﬁA A(x Uy — 1y drds

B P T
@ = .
o F(n+1)I'(rn+1)

This shows that the set £* is bounded. As a consequence of Schaefer’s fixed-point
theorem (Theorem 2.34), we deduce that N; has a fixed point # which is a solution
to problems (5.86)—(5.88). Denote this solution by u,. Define

rk,Z(va):xk(MZ(xvy))_-xs fOI'()C,y)EXl.

If re2(x,y) # 0on (x;,a] x [0,b] and forall k = 1,...,m, then

wi(x,y), if (x,y) € J U[0,x1) x [0, 5],

ux.y) = ur(x,y), if (x,y) € [x1,a] x [0, 5],

is a solution of the problems (5.75)—(5.77). It remains to consider the case when
r22(x,y) = 0, for some (x, y) € (x1,a] x [0, b]. By (5.29.5), we have
raa(xF, y1) = xa(ua(x], y1) — x4
= x2(11 (u1(x1, y1))) — x1
> xp(ur(x1, y1)) — xi
=ria(x, 1) = 0.

Since r; ; is continuous, there exists x, > xj, ¥, > yj such that r,(x2, y2) = 0,
and ry5(x, y) # 0 forall (x, y) € (x1,x2) x [0, b]. It is clear by (5.29.3) that

rea(x,y) #0 forall (x,y) € (x1,x2)] x[0,b]; k =2,...,m.

Now suppose that there are (s,2) € (x1, x2) X [0, b] such that ; 5(s,#) = 0. From
(5.29.5) it follows that
ria(xt v = x1(a(x, y1) — x
= x1(L1(ui(x1, y1))) —x1
< xi(u(x1,y1)) — x1

=ri1(x;, ) =0.
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Thus 7|, attains a nonnegative maximum at some point (s1,#) € (x1,a) x [0, x2) U
(x2, b]. Since

(‘DL u2)(x,y) = f(x,y,u2(x,y)), for (x,y) € X1,

then we get
uz(x,y) = @(x) + Ii(ui(x1,y)) — I1(ui(x1,0))
1 ol
+—//x_sr1—l _trz—l
Fenrey ) JE70 00
x1 0

XSS 1, U (py (5. 1)), p2(s.0.0s.11)) )AL DS,

hence

Xy
% 7 r — 1 _ r—2 _ ry—1
w“”‘wm+ﬁmﬁ5!!“s)(y”

X S 85 Ua(py (5,8,5 1)), (5.01)))) AL DS,

then

9 : d
ria(s1. 1) — xi(uz(slstl))ﬂ(sl’tl) —1=0.
ox ox

Therefore

s1on

ﬁwmmm)wmn+7£§%5//@rﬁw*m—mwl
x1 0

X (6,1, w2051 (0.0,40.1) 02O m0.0))ANAE | =1,

which contradicts (5.29.6).

Step 3: We continue this process and take into account that u, 4+, = u is a
X”l

solution to the problem

(“Dy, WX, ¥)=f (X, ¥, Uy (x.yuge ) pr(xyuiepy))s 8- (X, Y)E(Xm, a] x [0, b],
u(-x;,ta y) = Im(um—l(-xma J’)),
u(x,y) = ui(x,y), if (x,y) € J U [0, x1) x [0, b],

u(x,y) = uy(x,y), if (x, y) € [x1,x2) x [0, b],

u(x,y) = um(x,y), if (x, y) € [Xm—1, %) x [0, b].
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The solution u of the problems (5.75)—(5.77) is then defined by

ul(-xs y)v if(xs y) € [O,)Cl] X [Os b],

u(x, y) = u(x,y), if (x,y) € (x1,x2] x [0, 8],

um+l(xv y)s if(-xs y) € (Xm,(l] X [Os b]

5.7.3 Impulsive Partial Differential Equations
with Infinite Delay

Now we present an existence result for the problems (5.79)—(5.82). Consider the
space

2 ={u:(—o00,a] x (—00,b] > R" : u(yy) € Bfor(x,y) € E andul; € PC}.

Let ||u| o be the seminorm in §2 defined by
lulle = ll¢lls + sup{llukll, k =0,....m},
where uy is the restriction of u to Ji, k =0, ..., m.

Definition 5.30. A function u € 2 such that its mixed derivative D)% exists
on Ji; Kk = 0,...,m is said to be a solution of (5.79)—(5.82) if u satis-
fies (“Dyu)(x,y) = f(x,y,u(x,y)) on Jg; k = 0,....,m and conditions
(5.80)——(5.82) are satisfied.

Set R := R/(Pl_vpz_)
= {(p1(s,t,u), p2(s,t,u)) : (s,t,u) € J x B, pi(s,t,u) <0; i =1,2}.

We always assume that p; : J X B — (—o00,a],p2 : J X B — (—o00,b] are
continuous and the function (s, #) —> us,) is continuous from R’ into 5.
We will need to introduce the following hypothesis:

(Hy) There exists a continuous bounded function L : R'(,- ,;-) — (0, 00) such
that

I¢ells < Lis.0)Iglls. forany(s.1) € R.
In the sequel we will make use of Lemma 5.25.
Theorem 5.31. Let f : J x B — R" be a Carathéodory function. Assume that
(5.31.1) The function x, € CY(R",R) fork = 1,...,m. Moreover,

0=1xo(u) <x1(u) <+ <xp(u) < xp41(w) =a, foralueR",



232 5 TImpulsive Partial Hyperbolic Functional Differential Equations

(5.31.2) There exists a constant M’ > 0 such that
| FCe, v, w)|| < M'(1 + ||lul|g), for each (x,y) € J, and eachu € B,
(5.31.3) Forall (s,t,u) € J xR" and u( ) € B, we have

’ ’ ri—1 [ r—2 rp—1
X () <P(S)+m//(s—9) (t—mn)
Xk 0

f(0,n, "‘(pl(G,U,M(e,q)),Pz(t‘),ww.n))))dnde #1,

k=1,...,m,
(5.31.4) Forallu € R", x; (I (1)) < x;(u) < xp41(Ix(w)) fork =1,...,m,
(5.31.5) There exists a constant M™* > 0 such that

I ()] < M*(1 + ||u||B), foreachu € B, k =1,...,m.
Then the IVP (5.79)—(5.82) have at least one solution on (—oo, a] x (—oco, b].

Proof. The proof will be given in several steps.

Step 1: Set
20 ={u : (—00,a] x (—00,b] = R" : u(y,y) € Bfor (x,y)eE andu € C(J,R")}.

Consider the following problem:

(C DSM)(.X, J’) = f(xv ) M(Pl(X,y,u(x_y)),pz(x,y,u(x_y)))); if (.X, J’) € Jv (589)
u(x,y) = ¢(x.y): if (x.y) € J, (5.90)
u(x,0) = ¢(x), u(0,y) =¥ (y); x €[0,a], y €[0,0]. (5.91)

Transform problems (5.89)—(5.91) into a fixed-point problem. Consider the operator
N : 2y — £2¢ defined by

P(x.y): (x.y)e T,
p(x,y) ,
N, ) = + e //(X -y —nr! (552)
0 0

xf(s.1. Up, (SJqu(s.r)),Pz(Sqf,u(s.r))))dtds; (x,y) € J.
Letv(.,.) : (—o0,a] x (—oo, b] — R". be a function defined by

P(x.y). (x,y) e J,

V) = { Hx.y). (x.y) € J.
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Then v(, ) = ¢ forall (x,y) € E. Foreachw € C(J,R") with w(0,0) = 0, we
denote by w the function defined by

0, (x,y)ej’,

m*”z{wuynmwei

If u(., .) satisfies the integral equation

x )y
— 1 _ r1—l _ rz—l
ute,) = we) + s [ = o=
0 0

X (S, Uipy (5.8,5.0)) 00 5.1 1)) DI DS,

we can decompose u(.,.) asu(x, y) = w(x, y)+v(x,y); (x,y) € J, whichimplies
U(x,y) = W(x,y) T V(x.y), fOr every (x, y) € J, and the function w(., .) satisfies

Xy
— 1 _ r1—l _ rz—l
“*”‘Faﬁﬁﬁjj“ 90—

X S, W(p (s.t105.00)25.1105.00)) T Vo1 (5,500 02.5.8,15.)) )AL DS

Set
Co={we 2y: wix,y) =0 for(x,y) € E},

and let ||.||(4,») be the seminorm in Cy defined by

[Wll@py = sup [wuylls + sup [[wlx,y)| = sup [w(x, ). we Co.
(x,y)€EE (x,y)eJ (x,y)€J
Cy is a Banach space with norm ||.|5). Let the operator P : Cy — Cj be
defined by

X )
_ 1 _ -l _ -1
POI) = Foros | ==
0 0

x f (s, t’V_V(pl(S,I,Mm.z)),pz(S.,t,u(.\v.t))) + V(pl(S,t.,u@.t)),pz(&t,%J))))dtds’
(x,y)elJ. (5.93)

The operator N has a fixed point is equivalent to P has a fixed point, and so we turn
to proving that P has a fixed point. We shall use Schaefer’s fixed point theorem to
prove that P has fixed point. We shall show that the operator P is continuous and
completely continuous.
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Claim 1. P is continuous. Let{w, } be a sequence such that w, — w in Cy. Then
1P (wn)(x, y) = Pw)(x. )l

a b
<; _ -1 _ n\n2—1
< r(n)r(mofof(x N —1)

XSS, 8 Wno1 (5.t )2 (5.8.05.0)) T Vi(or (s.t.105.10).p2 (5:8,105.0))

_f(S’ [’W(Pl (8.8.u(s5,1)) 28,1, U(5.1))) + Vo (S,tqu(s.r))qu(&hu(s.r))))”dtds'
Since f is a Carathéodory function, then we have

a' b f( o Wa iy Fvae) = FG Wiy Fve)lleo

[P(wn) = P(W)|loo < L(ri+ DI+ 1)

— Qasn — oo.

Claim 2. P maps bounded sets into bounded sets in Cy. Indeed, it is enough to
show that, for any n > 0, there exists a positive constant £ such that, for each

we B, ={weCCy:|wlws <n}, wehave || P(W)[|oo < £.
Lemma 5.25 implies that

W (o1 (5.0, (5.1 065.0)) T Vo1 (.15 025,105, | B

< W01 sty pr(s.taion 1B 4 Vo1 (.t pr (st | B
< Kn+ K|[¢0,0)|| + (M + L") ||$] 5.

Set
n* = Kn+ K|[¢0,0)]| + (M + Loz

Letw € B,. By (5.31.2) we have for each (x,y) € J,

Xy
< 1 _ r1—l _ rz—l
1P = o [ [ o=
0 0

3 PACH t’W(Pl (5:2,u(s,0))p2(5.1U(s.1))) + Vo (SJqu(s.r)),Pz(SJqu(s.r))))”dtds

x oy
1 _ ri—1 _ -1
TR Y 0/ 0/ (=) =1)

X M/(l + ”W(Pl (s.ttigs 1) -p2(s:tus ) T Vipr (SJqu(s.r)),Pz(Sqf,u(s.r)))”B)dtds
M'(1+n )// 1 1
(x —8)""(y —1)? 'dtds
I'(r)I'(r2)

M'ab>(1 +n%)
Cri+ O +1)
Hence ||P(W)]loo < £*.

*




5.7 Impulsive Partial Hyperbolic Functional Differential Equations with Variable Times... 235

Claim 3. P maps bounded sets into equicontinuous sets in Cy. Let (z1, y1), (12, y2) €
(0,a] x (0,b], r1 < 12, y1 < y2, B, be abounded set as in Claim 2, and let w € B,,.
Then

| P(w)(t2, y2) — P(w)(z1, y1) I

1 V1
1
s—————w//ﬁn—n“%m—wrl
I'(r)I (r2)
0 0
—(t1 = )" T 1 = TS 1 Uy (st y)pa(s.tany )T dS
T )2

1 _ ri—1 _ -1
e | [ orio

LI

xf(s, [’W(Pl (8.8.u(s5,1))-P2(8:L.U(s.1))) + Vo (S,tqu(s.r))qu(&hu(s.r))))dl‘ds

1 )2

1 / / 1 1
t—F (=" (y2—1)""
I'(r)I(r2)
0 »n
xf(s, [’W(Pl (8.8.,u(s5,1))-P2(8:L.U(s.1)) + Vo (S,tqu(s.r))qu(&hu(s.r))))dl‘ds

o V1

1 _ ri—1 _ r—1
+mmnm/!m 2=

X (8.1, Wo, (st p2(5.8.05.0)) T Vo1 (s.t,tt5.0) 025010500 ) A1 DS |

1 )
M/(l + n) _ ri—1 _ ro—1 _ _ ri—1 _ r—1
fﬂbﬂb!!“ "= 07T = (@ )T (2 = 1) ]drds

M'(1+n)

o )2
_ r1—l _ rz—l
—F(rl)['(rz) /(‘L’z S) (y2 l) deds

LI

T )2

M/(l + 77) ri—1 —
2L - — 1y lded
mmmmO/m 1 (3 — 1y deds
Y1

M(1+n) rll rzl
FMﬂwg//“ —S 02—y dids

M'(1+1n)
“I'(m+ 1)L (rp+1)

L,

+' v =1y =2 — )" (y2 — y1)"

[2y5 (2 — x1)"" 4+ 255" (y2 — y1)"”
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As 1y — 12, y1 — y» the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases x; < x, < 0, y; < y» < 0and x; < 0 < xp,
y1 < 0 < y;, is obvious. As a consequence of Claims 1-3, together with the Arzela—
Ascoli theorem, we can conclude that P : Cy — Cj is continuous and completely
continuous.

Claim 4. (A priori bounds): Now it remains to show that the set F = {u € Cy : u =
AP(u) forsome 0 < A < 1} is bounded. Let u € F, then u = AP (u) for some
0 < A < 1. Thus, for each (x, y) € J, we have

Xy

_ A’ _ ri—1 _ r—1
) = iy | [0
0 0

XS (S8 o 5. ) ..V E DS
This implies by (5.31.2) that, for each (x, y) € J, we have

Xy
1 _ 1 _ n\n2—1
umensfaﬁﬂ5!!w DIt

XM/[I + ”W(Pl (s.ttigs.1)-p2(s:tus ) T Vipr (SJqu(s.r)),Pz(Sqf,u(s.r)))”B]dtds'

But

W01 5.0 02 5.tt50)) F Vipr (s.tugs )25t augs o) 1B
= ”W(pl(SJ,M(A,:)),pz(&l,M(A,z)))”B + ”V(pl(SJ,M(A,:)),pz(&l,M(A,t)))”B
< K sup{w(s,7) : (5,7) € [0, 5] x [0,¢]}
+(M + L)¢llz + K|l¢(0,0)]. (5.94)

If we name z(s,t) the right-hand side of (5.94), then we have

”W(Pl (s.tattgs 1) p2 (5.8 1(s))) T V(o1 (s.atigs 1) 02 (5. 1(s.1)) I < z(s.1),

and therefore, for each (x, y) € J we obtain

x
M/ _ r1—l _ rz—l
[Iw(x, v)| < —F(rl)F(rz) O/O/(X )Ty =) (1 4 z(s, t))deds.  (5.95)

Using the above inequality and the definition of z we have that

2x.y) =M+ L)gls + Klp(0.0)]

x
K—M _ =l -1
+F(V1)F(r2) O/O/(X " =0 A (s, D)deds,
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for each (x, y) € J. Then for Lemma 2.43, there exists § = §(ry, r2) such that we
have

KSM'a" b
lzllooc < R [1 + } =M,

Fri+ DI+ 1)
where

KM'a" b

R = (M + L)l + KISO.0ll + e

Then, (5.95) implies that

*

e < KM/@MOP(A+ M)
T L+ DI+

This shows that the set F is bounded. As a consequence of Schaefer’s fixed-point
theorem (Theorem 2.34), we deduce that P has a fixed point # which is a solution
to problems (5.89)—(5.91). Denote this solution by u;. Define the functions

re1(x,y) = xx(ui(x,y)) —x, forx >0,y >0.

Hypothesis (5.31.1) implies that 74 ;(0,0) #£ Ofork = 1,...,m. If rg1(x,y) #0
onJ fork=1,...,m;ie.,

x # xp(uy(x,y)), onJ fork=1,...,m,

then u; is a solution of the problems (5.79)—(5.82). It remains to consider the
case when r;1(x,y) = 0 for some (x,y) € J. Now since r11(0,0) # 0 and
ri1 is continuous, there exists x; > 0,y; > 0 such that r; ;(x;,y;) = 0, and
rl,l(xv J’) 7é 07 for all ()C, y) € [val) X [07 yl)

Thus, we have

ria(xr, y1) = 0and ry1(x, y) # 0, forall (x,y) €[0,x1) x [0, y1] U (y1,b].

Suppose that there exist (X, ¥) € [0, x1) x [0, y1] U (y1, b] such that r ; (X, y) = 0.
The function r| ; attains a maximum at some point (s, ¢) € [0, x;) X% [0, b]. Since

(‘Dour)(x,y) = F Oy, w oy (e vty 2 ey ) Tor (X, y) € J,

then

ary(s,1)

duy (x,
Ju(x, y) exists, and —a = x| (ui(s, 1))
x

dax

ouy (s, 1) _

—— —1=0.
dax
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Since
oy (x, ) 1T
up(x,y , ry — rn—2 m—1
— = + - —t
W sy | e
0 0
XSS 1, Uy (s.t,05.1)p2(5.1.05.11)) )LD,
then

’ l r—1 [ =2 rp—1
X1 (5.1)) ¢<s)+m//<s—e> (t—n)
0 0

X f (6,1, w1 (o1 8m.u0.10) 020,10, ANAE | =1,

which contradicts (5.31.3). From (5.31.1) we have
rea(x,y) # O0forall (x,y) € [0,x1) x[0,b]and k = 1,...m.

Step 2: In what follows set

2% = {u: (—o00,a] x (—00,b] = R" : u(y,)) € Bfor (x,y) € E and there exist
0=1xp<x] <Xx3 <-+- <Xy < Xpt1 = a such that x; = xp (u(xg,.)),
and u(x ,.), u(x,j', Jexist with u(x;,.) = u(xe,.); k=1,...,m,

andu € C(X;.R"):k =0,....m},

where
Xk = [xkva] X [O,b]; k = 1,...,m-

Consider now the problem
(DY u)(x,y) = f(X, Y, oy (x v oty y)s i (x,y) € X1, (5.96)

u(x;".y) = Ii(ui(x1, ) (5.97)
u(x,y) = ui(x,y), if (x,y) € J'U[0,x;) x [0, b]. (5.98)

Consider the operator N; : £2; — §2; defined as

Lt](X,y), (x,y)ej/U[O,xl)X[O,b],
o(xX)+ 11 (w1 (x1, y)) =11 (u1(x1,0))

x Yy
Nl(u)(x’y): +m//(x_s)rl—l(y—[)rz—l
x;p 0

X S8, Uipy (s.t,u5.0) 025,050 AEDS, (. y) € X
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As in Step 1 we can show that N, is completely continuous. Now it remains to show
that the set 7* = {u € C(X1,R") : u = AN;(u) forsome 0 < A < 1} is bounded.
Letu € F*,thenu = AN;(u) for some 0 < A < 1. Thus, from (5.31.2) and (5.31.5)
we get for each (x, y) € X,

wCe I < Nl + 1111 (ur e, )+ (11 (ur (x1, 0)) |

1 g Y _ -l _ -1
+F(V1)F(F2)Ll/o(x =07

XSS, Uipy (5,150 025050 | dEAS
< |@lloo + 2M*(1 + |Jus])

L Y -l -1
+F(r1)r(r2)/0 /O(X )"y =07 (1 + lz(s, 0)[)deds.

Set
KM'a"' b

'(ri+ )T (r, + 1)'

Then Lemma 2.43 implies that there exists § = §(r1,72) > 0 such that for each
(x.y) € Xi,

C* = ¢lloc +2M*(1 + |lur]) +

KMll C* rlbrz
||w<x,y)||sc*[1+g (1+C*a } )

rri+ DL+ 1)
This shows that the set 7* is bounded. As a consequence of Schaefer’s fixed-point

theorem (Theorem 2.34), we deduce that N; has a fixed point # which is a solution
to problems (5.96)—(5.98). Denote this solution by u,. Define

rk,Z(va):xk(MZ(xvy))_-xs fOI'()C,y)EXl.

If rea(x,y) # O0on (x1,a] x [0,b] and forall k = 1,...,m, then

ur(x,y); if (x,y) € J'U[0,x1) x [0,b],

u(x,y) = ur(x,y), if (x,y) € [x1,a] x [0,D].

is a solution of the problems (5.79)—(5.82). It remains to consider the case when
r22(x,y) = 0, for some (x, y) € (x1,a] x [0, b]. By (5.31.4), we have
ra(xt y) = X y) — x
= xo(L1(u1(x1, y1))) — x1
> x1(u1(x1, y1)) — X1

=rii(x, y1) =0.
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Since r;  is continuous, there exists x, > xj, y» > y; such that r;5(x2, y2) = 0,
and 5 (x, y) # 0 forall (x,y) € (x1,x2) x [0, b].
It is clear by (5.31.1) that

rea(x,y) #0 forall (x,y) € (x1,x2) x [0,b], k =2,...,m.

Now suppose that there are (s,¢) € (x1,x2) X [0, b] such that r; (s,7) = 0. From
(5.31.4) it follows that

ria(x v = x(ua(xt, y) — xi
= x1(I1 (u1(x1, 1)) — x1
< xi(ui(xr, y1) — x1
=ri1(x1, 1) =0.

Thus 7|, attains a nonnegative maximum at some point (s1,#) € (x1,a) x [0, x2) U
(x2, b]. Since

(CD;;luz)(x, y) = f(x.y, U2 (py (x vt py) P2 (e i) FOT (X, p) € X7,

then we get
ur(x,y) = @(x) + Li(u(x1,y)) — i (u1(x1,0))
1 ol
+—//x_sr1—l _trz—l
reore) ) J (==
X1

X S (S5 8, U0y (s.t.as.0)) 2 (s.8.s.0)) ) DS,

hence

x y
% — L 12 _ -1
T2000) = 90 + / 0/ (v =5 1)

X f (S0 8 2o (5.2 5.0 .) )AL DS,

then
ory2(s1,t , u
IriaGr) sy 0) 22 (s1) — 1 = 0.
ox dx
Therefore
s 0
/ / = 1 -0 ri—2 _ -l
Xy (ua(s1, 1)) <P(S1)+—F(rl)r(r2) (s1—=0)""(t1—n)
x1 0

X f(0, 0, U201 (0m,u0.0))-02 O m,0.0))ANAE | =1,

which contradicts (5.31.3).
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Step 3: We continue this process and take into account that u,,+; = u p is a
solution to the problem !
(DL ) (x, )= (X, ¥, oy vy ) o2y y)): . (X, y)E€(xm, alx[0,b],
M()C’j;, y) = IM(um—l(-xmv y))v

u(x,y) = ur(x,y), if (x, y) € J/ U [0, x;) x [0, 5],

M()C, y) = u2(-x5 y)v if (X, y) € [X],Xz) X [O,b],

u(x,y) = uy(x,y), if (x,y) € [xm—1,xn) x [0, b].
The solution u of the problems (5.79)—(5.82) is then defined by

u(x, ), if (x,y) € J/ U0, x1] x[0,],

_ I/tz(X, y)s if ()C, y) € ()Cl,xz] X [Os b],
u(x,y) =

Mm-l—l(-xsy)v lf(-xsy) E()Cm,a]X[O,b].

5.7.4 Examples

5.74.1 Example 1

As an application of our results we consider the following impulsive partial
hyperbolic functional differential equations of the form:

1+ Ju(x — o1 (u(x, y)), y — oa(u(x. y))|

(D). y) = et

if(x,y)eJk; k=0,...,m, xp =x(ulx,y)); k=1,...,m, (5.99)

u(x;t . y) = dyu(xi, y): y € [0.1], (5.100)
u(x,0) = x, u(0,y) = y* x,y €[0,1], (5.101)
u(x.y) = x + 2, (x,y) € [-1.1] x [=2, 1)\ (0. 1] x (0. 1], (5.102)

.
where r = (r1,12), 0 < ri,rm < 1, x,(u) =1 — Fia)

Lcdi<lik=1,...m 0 € C(R,[0,1]), 5 € C(R, [0,2]). Set

=1,...,m and

p1(x,y,9) = x —01(¢(0,0)), (x,y,9) e J xC,

p2(xv y?@) =Yy _0-2(90(070))5 ()C, Vs (p) eJ xC,
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where C := C(y ). Set

1+ ol
S(x,y.9) = Sret (x,y)€[0,1]x[0,1], ¢ € C.

and
Li(u)=dyu; ueR, k=1,...,m.

Let u € R then we have

X1 (1) — xp () = 0;k=1,...,m.

T >
2k+1(1 + MZ)

Hence 0 < x1(u) < xp(u) < -+- < x,,, (1) < 1, foreach u € R.
Also, for each u € R we have

1+ (2d? — i

Xiep1 (D () — xic (u) = 261+ u?)(1 + de) >0

Finally, for all (x, y) € J and each u € R we get
[T ()] = |diu| < |u] <30+ ul); k=1,...,m,

and

1+ 4 1
LGy w| = Srotr = E(l + [ul).

Since all conditions of Theorem 5.29 are satisfied, problems (5.99)—(5.102) have at
least one solution on [—1, 1] x [-2, 1].

5.7.4.2 Example 2

As an application of our results we consider the following impulsive partial
hyperbolic differential equations of the form:

1+ Ju(x — o1 (u(x. y)). y — o2 (u(x, y))I
9 4 exty ’

(‘DL u)(x,y) =
if (x,y)€eJi; k=0,....m, xp =x(u(x,y)); k=1,....,m, (5.103)
u(x; . y) = deu(xe,y), y €01 k=1,....m, (5.104)

u(x,y) = x + y2, (x,y) € (—o0, 1] x (—o0, 1]\(0, 1] x (0, 1], (5.105)

u(x,0) = x, x € [0,1], u(0,y) = y%, y €[0,1], (5.106)
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where r = (r1,r2), 0 < ri,rp <1, x3(u) = 1 — k =1,...,mand

.

= KA+u2)’
‘/TE <di<1l;k=1,....mandoy,0, € C(R,[0,00)). Let B, be the phase space
defined in the Example of Sect. 3.7. Set

pi1(x,y,9) =x —01(¢(0,0)), (x,y,@)eJ xB,,

p2(x,y.9) =y —02(¢(0,0)), (x,y,9) € J xB,,

1+ o]

S0 =g

(x,y) €[0,1] x [0, 1], uexy) € By,
and
Li(u)=dyu; ueR, k=1,...,m.

Let u € R then we have

Xieg1 (1) — x(u) = k=1,...,m.

1
— > 0;
2k+l(1 + MZ)

Hence 0 < x;(u) < x2(u) < --- < x;y(u) < 1, foreach u € R. Also, foreachu € R

we have
14+ (2d? — Du?

211+ u?)(1 4 dP)
Finally, for all (x, y) € J and each u € R we get

X1 (i () — xpc () =

|1 (w)| = |dru| < |u] <31+ ul); k=1,...,m,

and r | .
+u
LGy w| = Srotr = E(l + [ul).

Since all conditions of Theorem 5.31 are satisfied, problem (5.103)—(5.106) has at
least one solution on (—o0, 1] x (—o0, 1].

5.8 Upper and Lower Solutions Method for Impulsive
Partial Hyperbolic Differential Equations

5.8.1 Introduction

This section deals with the existence of solutions to impulsive fractional order IVP,
for the system

(DL u)(x,y) = f(x,y,u(x,y)), if (x,y) € Jx; k =0,...,m, (5.107)
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w(xi,y) = u(xg, y) + L(u(xg, y)); ify € [0,b6], k=1,...,m, (5.108)
u(x,0) = ¢(x), x €[0,a], u(0,y) = ¥(y), y €[0,b], (5.109)

wherea,b >0, 0 =x) <x; < - < Xp < Xpt1 =4, f:JXR" - R"and I} :
R" - R", k=0,1,...,m, ¢ :[0,a] = R", ¥ : [0,b] — R" are given absolutely
continuous functions with ¢(0) = ¥(0). Here u(x;",y), J = [0,a] x [0,b] and
u(x; , y) denote the right and left limits of u(x, y) at x = x, respectively.

5.8.2 Main Result

In what follows set
Jk = (xk,xk_H] X (0, b]

To define the solutions of problem (5.107)—(5.109), we shall consider the Banach
space

PC(J.R") ={u:J > R":ue C(J.,R"); k =1,...,m, and there
exist u(x; , y) andu(x]j,y);y €0,b], k =1,...,m,
with u(x,, y) = u(xg, y)},

with the norm

lullpc = sup [lu(x, y)|.
(x.y)eJ
Definition 5.32. A function u € PC(J,R") N U{Z, C'((xk, Xk+41) X [0,5], R")
such that its mixed derivative D)%y exists on Ji; kK = 0,...,m is said to be

a solution of (5.107)~(5.109) if u satisfies (‘ Dy u)(x,y) = f(x,y,u(x,y)) on
Ji: k = 0,...,m and conditions (5.108), (5.109) are satisfied.

Definition 5.33. A functionz € PC(J,R") U=y C'((xk, xk+1) x [0,5], R") is
said to be a lower solution of (5.107)—(5.109) if z satisfies

(‘DY 2)(x, )< f(x,y.2(x, ), 2(x,0)<@(x), z(0, y)<¥(y) on Ji; k=0,....m,

2 y) <207 y) + Lee(ag. y)). ify € [0.b]: k= 1.....m,
2(x,0) < @(x), z(0,y) < ¥(y)on J,
and z(0,0) < ¢(0).

The function z is said to be an upper solution of (5.107)—(5.109) if the reversed
inequalities hold.
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Let z, z € C(J,R") be such that

20, y) = (@ (x, ¥), 2, ), -,z (X, ), (x,p) € J,
and
Z(x,y) = @(x. ). 22(x, ¥), ..., Za(x, ), (x,p) € J.

The notation z < 7 means that
Zi(xvy) Szi(X,Y)v i = 17---7’1-

Further, we present conditions for the existence of a solution of our problem.
Theorem 5.34. Assume that the following hypotheses hold:

(5.34.1) The function f : J x R" — R" is jointly continuous.

(5.34.2) There existvandw € PC () C'((xk, xk41) X [0,0],R"), k =0,....m
lower and upper solutions for the problems (5.107)—(5.109) such that
v <w.

(5.34.3) Foreachy € [0,b], we have

+ .

VX, ) = min I (u) < ax I (u

() el (. y)wixg )] (&) uel(xiy)wlxp )] )
<wixty), k=1,....m.

Then the problems (5.107)—(5.109) have at least one solution u such that

v(x,y) <u(x,y) <wlx,y) forall (x,y) € J.

Proof. Transform the problems (5.107)—(5.109) into a fixed-point problem. Con-
sider the following modified problem:

“DJu)(x,y) = glx, y,ulx,y)); if (x,y) € J, x #xi; k=1,...,m, (5.110)

u(xit.y) = (g y) + I(h (i, you(xic ) ify € 0.b]: k = 1.....m,
(5.111)
u(x,0) = ¢(x), u(0,y) =y (y); x €[0,a] and y € [0, b], (5.112)

where
glx,y,u(x,y)) = f(x,y,h(x,y,u(x,y))),
h(x,y,u(x,y)) = max{v(x, y), min{u(x, y), w(x, y)}},

for each (x,y) € J. A solution to (5.110)—(5.112) is a fixed point of the operator
N :PC(J,R") - PC(J,R") defined by
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N@)(x,y) = u )+ Y G, youl 1)) = Ieh(xg,0.u(xi . 0))))

0<xp<x

r(n)r(m 2 / / (o = )"0 =0

O<xp<x

x g(s,t,u(s,t))dtds

Xy
; _ il _ -1
+ F(rl)l_'(rz))/()/(x S) (y t) g(S,t,u(S,t))dtds.

Notice that g is a continuous function, and from (5.34.2) there exists M > 0 such
that
lg(x, y,u)| < M; foreach (x,y) € J, andu € R". (5.113)

Also, by the definition of & and from (5.34.3) we have
v(x]j',y) < Iy (h(xg, y,u(xg, y))) < w(x,j',y); yel0,b; k=1,....m

(5.114)
Set

2Ma"'b"
T+ D)L+ 1)

n=ple + 2Zylg[g>}§](IIV(x:,y)ll, Iw(x »ID +
k=1 ’

and
D ={ue PC(J,R"): |lullpc < n}.

Clearly D is a closed convex subset of PC(J,R") and that N maps D into D. We
shall show that N satisfies the assumptions of Schauder’s fixed-point theorem. The
proof will be given in several steps.

Step 1: N is continuous. Let {u, } be a sequence such that ,, — u in D. Then
”N(un)(xv y) - N(“)(X9 y)”
< D (MG y (i 7)) = Ty ue DD
k=1

+ D (e h e, 0,1 (e, 0)) — L (e, 0, ulx”, )

k=1

F(rl)F(rz) Z / /(xk_s)rl Yo =) g (st (s, 1)) — g(s. 1 uls, 1)) ||deds

; I Y e AN T | _
+F(r1)1“(r2)/0/(x T =) g (s, 1, un (5, 1)) =g (s, 1, uls, 1))||deds.
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Since g and I, k = 1, ..., m are continuous functions, we have
IN(u,) — Nw)||pc =0 asn — oc.

Step 2: N(D) is bounded. This is clear since N(D) C D and D is bounded.

Step 3: N(D) is equicontinuous. Let (11, y1), (12, y2) € [0,a] x [0,b], 71 < 12 and
y1 <y, and u € D. Then

[N () (T2, y2) — N(u)(z1, y1) |l
< lp(rr, y1) — (2. y2) |l

+ D (M (h (e, yiuCg s y0)) = Te(h (g, y2, uCxg s y2)))

k=1
X V1
1 - ri—1 rn—1 _ _ -1
R / 0/ (6 =" 02 = 7 = (1 = 1))
xg(s,t,u(s,t))dtds
X% »
1 = ri—1 r—1
+F(r1)1"(rz)1;x/y/(xk_s) (2 =) |lg(s,t,u(s,1))||drds

1 2! »
T Teor®) /0 =" 02 =0 = (=) =0T
xg(s,t,u(s,t))dtds
1 )
MVRETRES) / / (12 =) 2 = 07 1g(s. 1, uls. 1)) | drds
2! Y
1 2! 2
ORG /0 (12— 9" (2 =) lg(s. 1. us. 1) | drds
1
1 [
T / /0 (2= 9)" 7 (2 =) [g(s. 1. u(s. 1)) |drds

< lp(zr, y1) — (T2, y2) |l

+ D (M (h (e, yuuCg s y0) = T (A (g, 2, u(xg, y2)))
k=1

m ko
M ri—l1 -1l _ -1
+m ; X/ /(Xk =" [(y2—1) (y1 — 1) deds
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Xk )2

L S _ ri—1 _ r—1
+1“(r1)1“(r2); //(xk $)" T (y2 — 1) dids

k-1 n

M B . ri—1 _ -1 _ -l _ -1
st [ [ a0 s

M /\772 » 1 1
F—— (ta—8)"" (v — )™ "deds
1"(r1)1"(r2) 7] V1

o [ [ @moroa e
+— T —8)" (yp — 1) deds
Lol Jo Jy,

M /fz /yl( i 1( e Lrd
I — T — )" (yp — 1) deds.
rrol(r2) Jo Jo

As 11 — 1 and y; —> )», the right-hand side of the above inequality tends to
zero. As a consequence of Steps 1-3 together with the Arzela-Ascoli theorem, we
can conclude that N : D — D is continuous and compact . From an application of
Schauder’s theorem, we deduce that N has a fixed point «# which is a solution of the
problems (5.110)—(5.112).

Step 4: The solution u of (5.110)—(5.112) satisfies
v(x,y) <u(x,y) <w(x,y) forall (x,y) e J.

Let u be the above solution to (5.110)—(5.112). We prove that

u(x,y) < w(x,y) forall (x,y) € J.
Assume that # — w attains a positive maximum on [x];" X)X [0,b] at (Xk,y) €
[x,j,xk__H] x [0, b] forsome k =0, ...,m;ie.,

(u—w) Xk, ¥) = max{u(x, y) —w(x, y) : (x,9) € [x;, x;4,] x [0,6]} > 0;

for some k = 0, ..., m. We distinguish the following cases.

Case 1. If (X¢,7) € (x,j',xk_H) x [0, b] there exists (x;,7%) € (x]j',xk_H) x [0, 5]
such that

(e, ™) —wlx, yO)] + [uxg, y) — wlod, ] = [l y™) —wixg, y5)] < 0;
forall (x, y) € (bxg, %] x {y™}) U ({x} x [y™. b)) (5.115)

and
u(x,y) —w(x,y) >0, forall (x,y) € (x5, %] x [y*,b]. (5.116)

By the definition of / one has

”D;:u(x,y) = f(x,y,w(x,y)) forall (x,y) € [x;,Xk] x[y*,b].
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An integration on [x;*, x] x [y*, y] for each (x, y) € [x}, %] x [y*, b] yields

u(x, y) +ulxg, y*) —ulx, y*) —u(xg. y)

= ; [ AN e A S |
- F(V])F(rz) /x: /}:*(x S) (y t) f(S,[’W(s’t))dtdS.
(5.117)

From (5.117) and using the fact that w is an upper solution to (5.107)—(5.109) we get
u(x, y) + u(xg, y*) —ulx, y*) —u(xg, y) < wlx,y)
+W()C/:<,y*) —W()C,y*) —W()C/:(,y),
which gives,
[u(x, y) —w(x, )] < [ulx, y*) —wlx, y5)] + [u(xg, y) — wixg, y)]
—[u(xg, ) —wlxg, y9)) (5.118)
Thus from (5.115), (5.116), and (5.118) we obtain the contradiction
0 < [u(x,y) = w(x, »)] < [ulx, y*) —wx, y)] + [u(x, y) —wixg, y)]
—[u(xp, y*) —w(xg, y*)] < 0; forall (x,y) € [x{,Xk] x [y*,b].
Case 2. If xj, = x]j, k=1,...,m.Then
wxt . Y) < Le(h(xg  u(x . 5)) < wix".y)
which is a contradiction. Thus
u(x,y) <w(x,y)forall (x,y) € J.
Analogously, we can prove that
u(x,y) >v(x,y); forall (x,y) € J.

This shows that the problems (5.110)—(5.112) have a solution u satisfyingv < u <w
which is solution of (5.107)—(5.109). |

5.9 Notes and Remarks

The results of Chap.5 are taken from Abbas and Benchohra [11, 13], and Abbas
etal. [2,3,25,27]. Other results may be found in [58,77,78, 110].



Chapter 6
Impulsive Partial Hyperbolic Functional
Differential Inclusions

6.1 Introduction

In this chapter, we shall present existence results for some classes of initial value
problems for impulsive partial hyperbolic differential inclusions with fractional
order.

6.2 Impulsive Partial Hyperbolic Differential Inclusions

6.2.1 Introduction

This section concerns the existence results to impulsive fractional order IVP for the
system

(‘DL u)(x,y) € F(x,y,u(x,y)), if (x,y) € Jx; k =0,...,m, 6.1)
w(xt,y) = u(xp, y) + Li(u(xg,y), ify €[0.6l k=1,....m, (6.2)
u(x,0) = ¢(x); x € [0,a], u(0,y) =y (y); y €[0,0], (6.3)

where Jy = [0,x1] x [0,b], Jx = (xp,Xk+1]; Kk = 1,....,m, a,b > 0, 0 =
Xo < X} < 00 < Xy < X1 = a, F 1 J xR" - P(R") is a compact-
valued multivalued map, J = [0,a] x [0,b], P(R") is the family of all subsets of
R", It : R" - R", k =0,1,...,m are given functions and ¢ : [0,a] — R", ¢ :
[0, h] — R" are given absolutely continuous functions with ¢(0) = ¥ (0).

To define the solutions of (6.1)—(6.3), we shall consider the Banach space

PC(J,R”):{M J > R": thereexist0 = xg < X] < X3 <+ < X < Xppp1=d
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252 6 Impulsive Partial Hyperbolic Functional Differential Inclusions

such that u(x;, y) and u(x,j', y) exist with u(x;, y) = u(xg, y);
k=0,....,m,andue C(J;,R"): k =O,...,m}.

Definition 6.1. A functionu € PC(J,R")NUI_ AC((xk, Xk+1)* (0, 5], R") such
that its mixed derivative Dﬁy existson Ji; kK = 0,...,m is said to be a solution of
(6.1)—(6.3) if there exists a function f € L'(J,R") with f(x,y) € F(x, y,u(x, y))
such that (‘DY u)(x,y) = f(x,y) on Ji; k = 0,...,m and u satisfies conditions
(6.2) and (6.3).

6.2.2 The Convex Case

Now we are concerned with the existence of solutions for the problems (6.1)—(6.3)
when the right-hand side is compact and convex valued.

Theorem 6.2. Assume the following hypotheses hold:

(6.2.1) F : Ji xR" — Pep(R"), k =0,...,m,is a Carathéodory multivalued
map.

(6.2.2) There exist p € L®°(J,Ry) and ¥+ : [0,00) — (0, 00) continuous and
nondecreasing such that |F(x,y,u)|lp < px,»)¥«(ul) for (x,y) €

J,x #xi, k=0,...,m,and eachu € R".
(6.2.3) There exists | € L>°(J,Ry) such that

H;(F(x,y,u), F(x,y,u)) <Il(x,y)|u—mul for every u,u € R",

and
d, F(x,y,0)) <Il(x,y), ae (x,y) € Jx, k =0,...,m.
(6.2.4) There exist constants ci, such that || Iy (w)|| < ck, kK = 1,...,m for each
ueR"

(6.2.5) There exist constants c,’:, such that
1k () — It @)|| < cf |lu—1ul., foreachu,u e R", k =1,...,m.
(6.2.6) There exists a number M > 0 such that

M

aean (6.4)

+2370 ok +
Il 1]l oo Zk—l k L(ri+ D)L (ra+1)

where p* = || p|lLoo. Then the IVP (6.1)—(6.3) have at least one solution on J.
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Proof. Transform the problem (6.1)—(6.3) into a fixed-point problem. Consider the
multivalued operator N : PC(J,R") — P(PC(J,R")) defined by N(u) = {h €
PC(J,R")} where for f € Sg,,

h)(x, y) = ple,y) + Y (e, »)) — I (ulxg, 0))

0<xp<x

_ -l r—1
F(rl)F(rz) Z //(xk )Ty =) f(s,t)deds

O<xg<x,

Xy
; _ ri—1 _ r—1
+nmnm]!“S)<yﬂ f(s.0)drds.

Remark 6.3. Clearly, from Lemma 2.15, the fixed points of N are solutions to
(6.1)—(6.3).

We shall show that N satisfies the assumptions of the nonlinear alternative of Leray—
Schauder type. The proof of this theorem will be given in several steps.

Step 1: N(u) is convex for eachu € PC(J,R"). Indeed, if i, h; belong to N(u),
then there exist fi, f> € Sr, such that for each (x, y) € J we have

hi@)(x, y) = p(ey) + Y (Te(ulx ) = I(u(xg,0)))

0<xp<x

Z //(Xk s)" N (y—1)"7! fi(s, £)deds

O<xg<x,

1
F(rl)r(rz)

Xy
roorey | [ -0
+ (x — )" — )" fi(s,t)dtds,
Feor ) ST
xXr 0
where f; € Sp, i = 1,2.Let 0 < & < 1. Then, for each (x, y) € J, we have

Em+ (1=§ho)(x, ) = p(x,3) + Y Teulx, ) = Leulxg ,0)))

O<xp<x

F(VI)F(rz) Z / /(Xk )rl l(y )rz 1

0<x N <Xy,

X [Efi(s.1) + (1 = &) fo(s,1)]drds

x Yy
1 _ r1—l _ rz—l
+Fmﬂv»/!“ ST =0

x [Efi(s,t) + (1 — &) fo(s. t)]dtds.
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Since SF, is convex (because F has convex values), we have
Ehy + (1 —=§)hy € N(u).
Step 2: N maps bounded sets into bounded sets in PC(J,R"). Let Byx = {u €

PC(J.R") : |lullco < n*} be bounded set in PC(J,R") and u € By«. Then for
each i € N(u), there exists f € Sp, such that

h@)(x,y) =p(x.y) + Y e(u(xi . y) = I (u(x; . 0))

0<xi<x

ri—l1 r—1
F(rl)F(rz) Z / /(xk 5) y—1 f(s,t)deds

O<xp<xy

Xy
b e
" T(ri)I(ry) /O/(X s)" Ty =) f(s, 1)deds.

By (6.2.2) and (6.2.4) we have for each (x, y) € J,

G I < lnGe )l + Y (e )+ e, 0)])

X1 <X <X

! ri—1 rm—1
F(rl)F(rz) 2 //(xk_s) (v =07 f(s,0)||deds

X1 <Xk<x

x )y
; _ ri—1 _ 21
+F(r1)F(rz)X/0/(x O =07 s Dl deds

< e I+ YUkl )+ Ikl 0D )

k=1

mz / / (6c=)" ™ (=0 s )9 (e

x )
—1 ri—1 _ -1
+roores | 0/ (x =" = 17" (s, (lulhaeds.

Thus
2a"b"2p* Y (n*)
L+ DIr+1)

Ihlloo < Inlloo +2 3 e +
k=1
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Step 3: N maps bounded sets into equicontinuous sets of PC(J,R"). Let (ty, 1),
(t2,)2) € J, 11 < pand y; < y2, By be a bounded set of PC(J,R") as in
Step 2, let u € By~ and h € N(u), then for each (x, y) € J,

@) (T2, y2) — h(u)(z1. yo)l

< lln(er, y1) = (@, y)ll + Y (e, y1)) = Tl y2)))

k=1
F(mr(rz) Z / /y =)' o =0T = =]
X f(S,t,u(s,t))dtc;I; -
F(rl)F(rz) Z [ ] Xk =8)" " v = 0| (s, 1, uls, 1)) | deds
Y1

1 . ri—1 _ -1 _ _ ri—1 _ -1
+ T () /0 /0 [(z2 =) (32— 1) (=" ="
x f(s,t,u(s,t))deds

; S _ -l -l
T Teor ) / /y (22 =) (2 = O f (s 2, uls. 1)) | deds

_ P
+F(r1)F(r2)/0 (2 =8)"" (y2 =0 | f (s, 2, uls. 1)) || drds

1 1] 1 -1 P
+m/n /0 (ta— )" (y2 =) || f(s,t, u(s, 1)) deds

< () = w2 y) |+ D (kg y0)) = Tl y2)))
k=1

Xk )1

¢ﬂﬂ*(n) - - .
F(’l)F(rz) Z / /(xk_s) [((r2 =)' = (1 =)' deds

¢?W*(n*) m k2 . .
*m;x_ . (X =)™ (2 — 1) deds
r(r)r(r) Jo

¢2w*(77*) (A ) - e
*m[ /yl (2= 5)"" (y2 — 1) drds

71 V1
/ [(r2=s)" " (yamt) = (t1—s)" " (y1 ) Vdeds
0
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¢?f¢*(77*)
r(r)I(r2) Jo

¢fw*(n) yl r— l r— l
F(mr(rz)/ / (22 =8)" (2 — 1) "dtds.

71 2
/ (22— )" (2 — 1) \deds
Yy

As 11 —> 1 and y; —> Yy, the right-hand side of the above inequality tends to
zero. As a consequence of Steps 1-3 together with the Arzela-Ascoli theorem, we
can conclude that N is completely continuous.

Step 4: N has a closed graph. Let u,, — ux, h, € N(u,) and h, — h.. We need
to show that 1, € N (ux).
h, € N(u,) means that there exists f, € Sr,, such that, for each (x,y) € J,

ha(x,y) = @, y) + Y el ) = I (un (i, 0)))

0<xp<x

— ri—l rp—1
F(rl)F(rz) 2 //(xk )"y =0 fuls, 1)deds

O<xg<xy

x )y
; _ ri—l1 _ -l
T / 0/ (x =)y =)= fu(s, 1)dtds.

We must show that there exists fix € SF,, such that, for each (x,y) € J,

ha(x,y) = p0e, )+ D (s (3, 3)) = (s, 0))

0<xjp<x

F(rl)F(rz) Z / /(xk _S)’l l(y t)lz 1

O<xg<xy

Fi(s, 1)deds

Xy
; 1=l a2l
+F(r1)F(r2) / 0/ (x =) (y —0)”7 fu(s,1)deds.

Since F(x, y,-) is upper semicontinuous, then for every & > 0, there exist ny(¢) > 0
such that for every n > ng, we have

fu(x,y) € F(x,y,u,(x,y)) C F(x,y,ux(x,y)) +eB(0,1), ae. (x,y) € J.

Since F(.,.,.) has compact values, then there exists a subsequence f,, such that

Jun G) = fu(e,-)asm — oo



6.2 Impulsive Partial Hyperbolic Differential Inclusions 257

and

fe(x,y) € F(x,y,ux(x,y)), ae. (x,y) € J.
For every w(x, y) € F(x,y,u«(x,y)), we have

[ S (5 ) — w5, I = S (5 ) — W, W+ Iw(x, p) = falx, )
Then

||fnm('x’y) _f*(-xsy)” = d(fnm(xvy)sF(-xsysu*(-xsy)))'

By an analogous relation, obtained by interchanging the roles of f,, and fs, it
follows that

||ﬁ1,,,(va’)_“*(x7Y)|| 5 Hd(F(xvy’un(x’y))’F(‘x’y’u*(‘x’y)))
< 1(x, Yy — vl oo

Let [* := ||l|| Lo, then by (6.2.3) and (6.2.5) we obtain for each (x, y) € J,
170 (x, y) = hs (x, p) |

<Y M (g, ) = T (s, )

k=1

+ D it (g, 0)) = T (s (i, 0)) |

k=1

Xk Y
1 _ ri—1 _ -l
) 2 /!m =0

XX <X

X|| fu, (550) — fau(s,2)||deds

x y
; 1=l a2l
+1"(”1)1"(r2)/0/()C =0
X”fﬂm(svt)_f*(s,t)”dlds

m
< llun, _“*HOOZZC;:
k=1
2|un,, — txlloo X/y -1 -1
_— (x—s5)""(y =) (s, t)deds.
FeOTe o o ! -0

Hence

m

2[*a" b
12, =P lloo < |: k§:lck+1—.(rl O+ 1):| llun,, —ttx ] 0o, — 0 as m — oo
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Step S: A priori bounds on solutions. Let u be a possible solution of the problems
(6.1)—(6.3). Then, there exists f € Sp, such that, for each (x, y) € J,

e I < e DI+ Y (e )+ g, 0)))

U (llul) - -

L) () V1<ZY/;<); / /(x" =) (y =) p(s.r)drds
U (flul) i -

F(rl)F(rz) /(x ) =0 p(s, D)drds

2p*a" b Y ([|ulloo)
Fri+ D)+ 1)°

< ptlloo +2) e+
k=1
then

]l oo

2p*a" by ([ulloo) ~
+25"" o +
ll14lloo D k=1 Ck Fri+ 1)l (rn+1)

Thus by condition (6.4), there exists M such that ||u|lcc # M. Let

<1

U={uePCWU,R": ||ulloo < M}.

The operator N : U — P (P C(J,R")) is upper semicontinuous and completely
continuous. From the choice of U, there is no u € dU such that u € AN(u) for
some A € (0,1). As a consequence of the nonlinear alternative of Leray—Schauder
type, we deduce that N has a fixed point « in U which is a solution of the problems
(6.1)—(6.3). O

Theorem 6.4. Assume that (6.2.1), (6.2.4), (6.2.6), and the following condition:
(6.4.1) there exists p € L°°(J,Ry) such that

IF(x.y.wlp = p(x. y)(A + [[ul). for (x.y) € Jand eachu € R",

hold. If
I'(ri+ 1D+ 1) >2p*ab™, (6.5)

* = ||pllLeo, then problem (6.1)—(6.3) has at least one solution.
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Proof. We shall show that the operator N defined in Theorem 6.2 satisfies fixed-point
theorem. Let p > 0 be such that

o Ullloo + 23 i) C(ri + D) (ra + 1) +2p*ab”
C(ri+ DI(ra+ 1) —2p*a"b” ’

and consider the subset
Dy, =1{ue PC(J,R"): |lulloc < p}.

Clearly, the subset D, is closed, bounded, and convex. From (6.5) we have
N(D,) € D,. As before the multivalued operator N : D, — P(D,) is upper
semicontinuous and completely continuous. Hence Lemma 2.38 implies that N has
a fixed point which is a solution to problems (6.1)—(6.3). O

6.2.3 The Nonconvex Case

We present now a result for the problems (6.1)—(6.3) with a nonconvex valued right-
hand side. Our considerations are based on the fixed-point theorem for contraction
multivalued maps given by Covitz and Nadler [96].

Theorem 6.5. Assume (6.2.3), (6.2.5) and the following hypothesis holds:
(6.5.1) F :J xR" — P.,(R") has the property that

F(,ou) 0 J — Pep(R") is measurable for each u € R".

If

- 20*a" b
2) of + <1, 6.6
; CT T+ D0+ 1) e

then the IVP (6.1)—(6.3) have at least one solution on J.

Remark 6.6. Foreachu € PC(J,R"), the set Sf, is nonempty since by (6.4.1), F
has a measurable selection (see [93], Theorem II1.6).

Proof. We shall show that N defined in Theorem 6.2 satisfies the assumptions of
Lemma 2.39. The proof will be given in two steps.

Step 6: N(u) € P (PC(J,R")) for eachu € PC(J,R"). Indeed, let (i,)n>0 €
N(u) such that u, — u in PC(J,R"). Then, u € PC(J,R") and there exists
fn € Sp. such that, for each (x, y) € J,
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Mn(x,)}) = /‘L(x, y) + Z (]k(u(xk_,y)) — Ik(“(xk_,())))

O<xp<x

_ 11 r—1
F(rl)F(rz) 2 //(xk )"y = 0" fuls, 1)deds

O<xg<xy

x )y
; — ri—l1 _ -l
+F(r1)F(r2) / 0/ (x =) (y =) fu(s, 1)deds.

Using the fact that F' has compact values and from (6.5.1), we may pass toa
subsequence if necessary to get that f,(.,.) converges weakly to f in L!(J,R")
(the space endowed with the weak topology). A standard argument shows that
Jfu(.,.) converges strongly to f and hence f € Sg,. Then, for each (x,y) €
J, un(x,y) — u(x,y),

where
i(x,y) = pey)+ )0 (i, y) = Te(u(xic 0))
0<xi<x
F(rl)f'(rz) Z / /(xk $)" Ny =) f(s,t)deds
0<xg <X,
1 ro7
T () / /(x = )"y = 0”7 f(s.0)drds.
xe 0
So, it € N(u).

Step 7: There exists y < 1 such that
H;(N(u), Nm) < yllu — Ul for eachu,u € PC(J,R").

Letu,u € PC(J,R")and h € N(u). Then, there exists f(x,y) € F(x, y,u(x,y))
such that for each (x,y) € J

]’l(-x, y) = M(x, y) + Z (Ik(u(xk_,y)) — Ik(u(xk—’o)))

O<xp<x

! ri—1 r—1
F(rl)[‘(rz) Z //(xk—s) (y =077 f(s,t)deds

O<xp<xy

x
; _ ri—1 _ ra—1
JrF(rl)I"(rz) /O/(X $)" (v =) f(s,1)deds.
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From (6.2.3) it follows that

Hy(F(x,y,u(x, ), F(x,y.u(x, ) < I(x, y)||luCx, y) —u(x, y)|l.
Hence, there exists w(x, y) € F(x, y,u(x, y)) such that
1/ G y) =wle, | < 10, p)fJu(x, y) = ulx, y), (x, ) € J.
Consider U : J — P(R") given by
Ux,y) ={we PC(J.R") . | f(x.y) =wlx, Il = 1(x, y)lulx, y) —ulx, y)I}.
Since the multivalued operator u(x, y) = U(x, y) N F(x, y,u(x, y)) is measurable

(see Proposition II1.4 in [93]), there exists a function u(x, y) which is a measurable
selection for u. So, f(x,y) € F(x, y,u(x,y)), and for each (x, y) € J,

1£ (e, y) = e I < 10, p)llux, y) = a@(x, ).

Let us define for each (x, y) € J

h(x,y) = plx,y) + Y (@, y) — L(@(xg ,0)))

0<xp<x

F(rl)lf(rz) 2 / /(x"_s)rl "y =077 f (s, 1)deds

O<xg<x

x Yy
; _ ri—1 . Fr—1F
*rer | 0/ (=)' =07 f (s, 1)drds,

then we get

(e, y) =R )| < Y Mk, ) = Te (@, y)|

k=1

+ D (g, 0) = Le(a(x , 0))|

k=1

F(rl)F(rz) Z / /(Xk _S)rl l(y t)rz 1

O<xg<x

x|| f(s. 1) — f(s.t)||deds
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x Y
; 1l -l
TS [ 0[ (e =)~ (= 0 £ 5.0)

—f(s.1)|drds
m

< u—u02) cf
k=1

2|ju —ulloo

Xy
_— _ oyl _ n\n2—1
F(rl)F(rz)O/ 0/ (= )"y =) (s, nydeds

m 20*anbr
< |2 * — | so-
—[ ];Ck+F(r1+l)F(r2+l) e =llos

Thus, for each (x, y) € J

- 2[*a" b _
A1 = holleo < [chk + ] llu = ull oo

Pt r'ri+ 1) (r+1)

By an analogous relation, obtained by interchanging the roles of u and u, it
follows that

_ " . 20*a" b _
Hy(N(u), N(@) < |:2kZ::le + T+ DI+ 1):| flu — | o-

So by (6.6), N is a contraction and thus, by Lemma 2.39, N has a fixed point u
which is solution to (6.1)—(6.3). |

Now we present a result for the problems (6.1)—(6.3) in the spirit of the
nonlinear alternative of Leray—Schauder type for single-valued maps combined with
a selection theorem due to Bressan-Colombo.

Theorem 6.7. Assume (6.2.1), (6.2.4) and the following assumption holds:

(6.7.1) F : J xR" — P.,(R") is a nonempty compact-valued multivalued map
such that

(a) (x,y,u) — F(x,y,u)is L ® B measurable for each u € R"
(b) ur> F(x,y,u) is lower semicontinuous for a.e. (x,y) € J

Then problems (6.1)—(6.3) have at least one solution.

Proof. (6.2.2) and (6.7.1) imply by Lemma 2.2 in Frigon [126] that F is of lower
semicontinuous type. The from Lemma 2.26 there exists a continuous function

¢: PC(J,R") = PC(J,R"),
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such that g(u) € F(u) forallu € PC(J,R"). Consider the following problem:

(‘DL u)(x,y) = gu(x,y)); if (x,y) € Jy k =0,...,m, (6.7)
u(t,y) = ulx,y) + L(u(xg, ) ify €[0,b]; k=1,....m, (6.8)
u(x,0) = ¢(x); x € [0,a]; y €10, 5b]. (6.9)

Clearly, if u € PC(J,R") is a solution of the problems (6.7)—(6.9), then u is
a solution to the problems (6.1)—(6.3). Transform the problems (6.7)—(6.9) into
a fixed-point problem. Consider the operator Ny : PC(J,R") — PC(J,R")
defined by

Ni@)(x, ) =p(x,y) + Y (i, ) — L (u(xg ,0)))

0<xp<x

T

O<xp<xy”

Xg Y
1
> (x—=9)" " (v =1)" g (u(s, 1)) deds
/]

x y
; _ ri—1 -l
T 0T / 0/ (x =8)"(y =) g(uls, 1))deds.

We can easily show as Theorem 6.2 that N is continuous and completely continuous
and there is no u € dU such that u = AN;(u) for some A € (0, 1). We omit the
details. As a consequence of the nonlinear alternative of Leray—Schauder type [136],
we deduce that N; has a fixed point « in U which is a solution of the problems (6.7)—
(6.9). Hence, u is a solution to the problems (6.1)—(6.3). O

6.2.4 An Example

As an application of the main results, we consider the following impulsive fractional
differential inclusion:

‘Dl u(x.y) € F(x.y.u(x.y)): ae. (x.y) € i k=0.....m,

k
:—,k:l,..., N 6.10
X T m (6.10)
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kT L k o\
u (m) a —((m) ’y)
L_
|u((k+1)kvy)| cyel0 1], k=1,...,m,
3k + [u((z57) = »)l

6.11)
u(x,0) = x, u(0,y) = y* x,y €[0,1], (6.12)
where J = [0,1] x [0, 1], r = (r,7r2) and 0 < ry,r, < 1. Set
L) = —ueRuecRi, k=1,....m.
3k +u
Then for each u € Ry and k = 1,...,m, we have |I;(u)| < k. Hence condition

(6.2.4) is satisfied with ¢ = k, k = 1,...,m. Let u, u € Ry then for each
(x,y) €10,1] x [0, 1], we have
u u

3k +u 3k+u

1 _
< —|lu—mul.
3

i (u) — Ik (@)] =

1

Hence condition (6.2.5) is satisfied with c,f = 3 k=1,...,m.Set

F(x,y,u(x,y)) = {M eR: fl(x,y,u(x,y)) <u= fz(x,y,u(x,y))},

where fi, f» : [0,1] x [0,1] x R — R. We assume that for each (x,y) €
J, fi(x,y,.) is lower semicontinuous (i.e., the set {z € R : fi(x,y,z) > v} is
open for each v € R), and assume that for each (x,y) € J, fa(x,y,.) is upper
semicontinuous (i.e., the set {z € R : f2(x,y,z) < v} is open for each v € R).
Assume that there are P € C(J,R4) and ¥ : [0,00) — (0, 00) continuous and
nondecreasing such that

max(| fi(x,y.2)|. [a(x,y.2)]) = P(x. y)¥(|z]),

for each (x, y) € J and all z € R. It is clear that F is compact and convex valued,
and it is upper semicontinuous (see [104]). Since all the conditions of Theorem 6.2
are satisfied, problems (6.10)—(6.12) have at least one solution « on [0, 1] x [0, 1].
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6.3 Impulsive Partial Hyperbolic Differential Inclusions
with Variable Times

6.3.1 Introduction

This section concerns with the existence of solutions for the following impulsive
partial fractional order IVP, for the system:

Dy u)(x,y) € F(x, y,u(x,y)),
where (x,y) € Ji; k =0,...,m, xp = x,(u(x,y)); k=1,...,m, (6.13)
u(xt,y) = L(u(x,y)), wherey € [0,b], x = xp(u(x,y)); k=1,...,m,
(6.14)
u(x,0) = ¢(x), u(0,y) = ¥ (y), x € [0,a], y €[0,5], (6.15)

wherea,b >0, 0=xp < x| <+ <Xp < Xpy1 =a, F:J xR" - PR")is
a compact-valued multivalued map, P(R") is the family of all subsets of R", xj :
R" - R, Iy : R" - R", k = 1,2,...,m are given functions and ¢, ¥ are as
in problems (6.1)—(6.3). Next we consider the following IVP for impulsive partial
neutral functional differential inclusions:

‘DL fulx, y) — g(x. y,ulx, y)] € F(x,y, u(x,y)):
(x,y)ed; k=0,....m, xp =x(u(x,y)); k=1,...,m, (6.16)
u(x",y) = I (u(x,y)), wherey €[0,b], x = xx(u(x,y); k =1,....m,
6.17)

u(x,0) = ¢(x), u(0,y) =¥ (y), x € [0,a], y €[0,b], (6.18)
where F, o, ¥, x, Ir;k = 1,2,...,m are as in problems (6.13)—(6.15) and g :
J xR" — R" is a given function.

6.3.2 Existence of Solutions
To define the solutions of problems (6.13)—(6.15), we shall consider the Banach
space
2 ={u:J —>R": thereexist0 = xp < X| <X <+ < Xpy < Xpy| = 4d
such that xp = xx (u(xx,.)), and u(x; ,.), u(x,j', )
exist with u(x;,.) = u(xg, .);

k=0,....m andu € C(Jy,R"):;k =0,....m},
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where Ji := (xx, Xx+1] X [0, b], with the norm
lu|le = max{|jux|, Kk =0,...,m},

where uy is the restriction of u to Ji, k =0, ..., m.
In what follows, we will assume that F is a Carathéodory multivalued map. Let
us start by defining what we mean by a solution of the problems (3.1)—(3.3).

Definition 6.8. A functionu € 2NUJ"_ AC(Ji,R") such that its mixed derivative
ny exists on Ji, k = 0,...,m is said to be a solution of (6.13)—(6.15) if there
exists a function f(x,y) € F(x,y,u(x,y)) such that u satisfies (D} u)(x,y) =
f(x,y)on Ji; k =0,...,m and conditions (6.14) and (6.15) are satisfied.

Theorem 6.9. Assume that the hypotheses
(6.9.1) The function x; € C'(R",R) fork = 1,...,m. Moreover,

0=xo(u) <x1(u) <+ <xp(w) <xpr1(w) =a, forallueR",
(6.9.2) Foreach u € R", there exist constants ¢, d; > 0 such that
1k )| < ck|lull + dk, foreachu e R, k =1,...,m,

(6.9.3) There exists a continuous nondecreasing function § : [0, c0) — (0, 00), and
p € L*®(J,Ry) such that

|F(x,y,w)|p < p(x,y)s(Jul]) a.e (x,y) € J, and eachu € R",
(6.9.4) There exists | € L*°(J,Ry); k =1,...,m, such that
Hy(F(x,y.u), F(x,y.u)) < I(x,y)|lu—1ul for every u,u € R",
and
d(0, F(x,y,0) <Il(x,y), ae. (x,y) € Jy, k=0,...,m,

(6.9.5) Forall (s,t,u) € J x R", there exists f € Sp,, such that

, , ry — 1 h
Al KRR P yaTPs) /

x/(s — )2t =) @, p)dndd | £ 1 k=1,...,m,
0
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(6.9.6) Forallu € R", x; (Ix (1)) < xr (1) < xp4+1(Ix(w)) fork =1,...,m,
(6.9.7) There exists M > 0 such that

M
p*a"'b"§(M)
Fri+ DI+ 1)

min

lllloo +

M

b (M) ck=1,....m; >1,

rri+DIC(m+1)

lelloo + 2ck M + 2d; +
(6.19)

where p* = ||p|lLee, hold. Then the initial-value problems (6.13)—(6.15) have at
least one solution on J.

Proof. The proof of this theorem will be given in several steps.

Step 1: Consider the problem

(“Dyu)(x,y) € F(x,y,u(x,y)), where (x,y) € J, (6.20)
u(x,0) = @(x), u(0,y) =¥ (y), x €[0,a], y €[0,0]. (6.21)

Transform the problem into a fixed-point problem. Consider the operator N :
C(J,R") - P(C(J,R")) defined as

x )y

= 1 _ ri—1
Nw)={heCW,R"): h(x.y) = pe.3) + royrey //(x s)
00

x(y =) f(s,0)deds; (x,y) € J, f € Sku

Clearly, the fixed points of N are solutions to (6.20) and (6.21). We shall show that
the operator N is completely continuous. The proof will be given in several claims.

Claim 1. N(u) is convex for eachu € C(J,R")). Indeed, if i, h; belong to N(u),
then there exist fi, f> € S, such that for each (x, y) € J, we have

Xy
hi(x»J’)ZH(x,y)-i-m//(x — )" N y—1)2" fi(s, t)deds, i =1,2.
0 0
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Let 0 < d < 1. Then for each (x, y) € J we have

x Yy
_ _ 1 _ ri—1 _ ry—1
(MrﬂldMMMW—uww+FEvﬁ5!!@ Sy - 1)

x[f1(s,t) + (1 —d) fa(s, t)]dtds.
Since Sr, is convex (because F has convex values) then for each (x, y) € J,

dhy + (1 — d)hs € N(u).

Claim 2. N maps bounded sets into bounded sets in C(J,R"). Indeed, it is sufficient
to show that for any ¢ > 0 there exists a positive constant £ such that for each
ue B, =1{ueCWUR: |u|le < q} we have |[N(u)| < €. Letu € B, and
h € N(u) then there exists f € S, such that for each (x, y) € J we have

Xy
_ 1 =l ]
huw—uww+nmnm!!us)<yn fs.tyands.

Thus,

7Gx, = llwCe, )

Xy
; — ri—1 _ ry—1
+Fmﬂvﬁ!!u 90— 07 pls, 03l ards

< luCe, ) + rf )Iﬁcl()r)//(x $)17 Ny — 1) 'drds.

Then we obtain that

ab?p*i(q)
L(ri+D)C(ra+1)

1201 < Nlpelloo +

Claim 3. N maps bounded sets into equicontinuous sets of C(J,R"). Let (1, y1),
(2, ¥2) € J, 1 < mpand y; < y», B, the bounded set of C(J,R") as in Claim 2.
Letu € B, and h € N(u). Then there exists f € Sr, such that for each (x, y) € J,
we have

x )y
_ I N T |
huw—uww+nmnm!!us)<yn F(s.1)drds,

Then, for each (x, y) € J, we have
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2 (z2, y2) = h(zr, yD)I = HM(H, i) — u(ta, ¥2)

; i . _ 1 _ \r—1
treoreg ), f @m0

—(r =) 7!

x(yy — )2 f(s, t)deds

1 2
+ = — )t — )27 f(s, t)deds
ool )y 1, (=" (=) f(s.1)

1 o 7 _ ol _ \r—1
+F(r1)F(rz)/o A (@2 =)™ = )77 fs, 1)drds

1 ° . _ o\l _ \r—1
+ L(r)I(r2) /n /0 (2 =) (2 =1) s, 1)deds H
Iz, y1) — e, y2)ll

p*8(q)
L+ D)+ 1)

IA

Ry7 (= )" + 215" (y2 — y1)"

+o' v — 5y =2 — )" (2 — )"
As 11 — 1, and y; —> », the right-hand side of the above inequality tends
to zero. As a consequence of Claims 1-3 together and the Arzela-Ascoli theorem

we can conclude that N : C(J,R") — P(C(J,R")) is a completely continuous
multivalued operator.

Claim 4. N has a closed graph. Let u, — ux, h, € N(u,) and h, — h.. We need
to show that i1, € N(uy).
hy, € N(u,) means that there exists f, € Sg,, such that, for each (x, y) € J,

ha(x.y) = p(x )+——i——/w/Qx<W*%—4W”f@ﬂmm
=T T er () Jo s Y n ARG

We must show that there exists fi € SF,, such that, for each (x,y) € J,

ha(x,y) = pu(x )+;/X /y(x—s)"‘_l( — )27 fi(s, H)deds
=T T ere o s Y =

Since F(x, y,-) is upper semicontinuous, then for every & > 0, there exist ng(¢) > 0
such that for every n > ny, we have

Ju(x,y) € F(x,y,up(xy) C F(X,y,txx,yy) +6B(0,1), ae. (x,y) € J.
Since F(.,.,.) has compact values, then there exists a subsequence f,, such that

Jun G) = fu(e,-)asm — oo
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and

Ji(x,y) € F(x,y,txx,y)), ae. (x,y) € J.
For every w € F(x, y, ttx(x,y)), We have
1 fo (62 ¥) = s I < M oy (6 9) =l [l = S, 9

Then
I G = St 0= d (o (600, FE Y ts))-

By an analogous relation, obtained by interchanging the roles of f,,, and fs, it
follows that

I G0 9) = 1 ) = Ha (FG6 3, taa), FOE Yitteie))
< 1G5 )ty — oo

Let [* := ||l|| oo, then by (6.9.4) we obtain for each (x, y) € J,

1720 x.y) = Pxep
1 ! Y ri—1 _ n\n2—1 _
< rooros b [ e o= e - fsolaras

Mt = ttslloo (% ¥ nmr, e
I(r1)I(r2) /o /O(x $)" Ty =) (s, r)deds.

Hence

— h || < arlbrzl*”u"m - M*HOO
* |00 =

hy
I " rri+ DL+ 1)

— 0 asm — oo.

Claim 5. A priori bounds on solutions. Let u be a possible solution of the problems
(6.13)—(6.15). Then, there exists f € S, such that, for each (x, y) € J,

< ! o n—l )21 t)||drd
||u(x,y)||_||u(x,y)||+m/0/O(x—s) (v — 0> £ (5. ) drds

1 X
T ) /0
y
x /0 (r = Y™ — 172 (s, )8(uls. 1) )deds

p*a"b"5(||ul| o)
rri+ H)IC i+ 1)'

< llpCe, I+

< [lilloo +
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This implies that for each (x, y) € J, we have

fl24]] 0o
pra"b"8(|ulloo)
Fri+ DI +1)

<1

el +

Then by condition (6.19), there exists M such that ||u|co # M.
Let

U=1{ueCUR": ||ulle <M}

The operator N : U — P(C(J,IR")) is upper semicontinuous and completely
continuous. From the choice of U, there is no u € dU such that u € AN(u) for
some A € (0, 1). As a consequence of the nonlinear alternative of Leray—Schauder
type (Theorem 2.33), we deduce that N has a fixed point which is a solution of
(6.20) and (6.21). Denote this solution by u;. Define the function

Fea(x,y) = xp(ui(x,y)) —x, forx>0,y>0.

Hypothesis (6.9.1) implies that 741(0,0) # O fork = 1,...,m. If re1(x,y) # 0
onJ fork =1,...,m;ie.,

X # xx(ui(x,y)), onJ fork=1,...,m,

then u; is a solution of the problems (6.13)-(6.15). It remains to consider the
case when 7y (x,y) = 0 for some (x,y) € J. Now since r;1(0,0) # 0 and
r11 is continuous, there exists x; > 0,y; > 0 such that r ;(x;,y;) = 0, and
rii(x,y) # 0, forall (x,y) € [0,x1) x [0, ¥1). Thus by (6.9.1) we have

ria(x,y1) =0and ry;(x,y) # 0, forall (x,y) € [0,x1) x [0, y;] U (y1,b].

Suppose that there exist (X, ¥) € [0, x1) x [0, y1] U (y1, b] such that ry (X, y) = 0.
The function r; ; attains a maximum at some point (s, ) € [0, x1) x [0, b]. Since

( Dour)(x,y) € F(x,y,ur(x,y)), for (x,y) € J,

then there exists a function f(x,y) € F(x, y,u(x,y)) such that

(“Dour)(x,y) = f(x,y), for (x,y) € J.
Hence

ary(s,1)

duy (x,
Ju(x, y) exists, and —a = x| (ui(s, 1))
x

dax

ouy (s, 1) _

1=0.
dax
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Since

x )y
duy(x,y) o ri—1 V=20, _ a1
M =0+ 0/ 0/ (x — )12y — 1) f(s.1)drds,

then
5 6.0) |90+ i [ [6=0r=a—nrto.masan | =1,
0 0

which contradicts (6.9.5). From (6.9.1) we have

rea(x,y) # Oforall (x,y) € [0,x;) x[0,p]and k = 1,...,m

Step 2: In what follows set
Xy = [xk,a]l x[0,b); k=1,...,m
Consider now the problem
(‘DY u)(x,y) € F(x,y,u(x,y)); where (x,y) € X, (6.22)
u(xi™, y) = Liui(x1,y)). (6.23)
Consider the operator N : C(X,R") — P(C(X,R")) defined as
h(x,y) = <P(x) + Ii(ui(x1, y)) — I (ur(x1,0))
Ni(w) = {h € CX1.R") : § +1mr09 //(x -5y -0
xf(s,t)dtdié; (Ox,y) € Xy, f € Sru.
As in Step 1 we can show that N; is upper semicontinuous and completely

continuous. Let u be a possible solution of the problems (6.22) and (6.23). Then,
there exists f € Sr, such that, for each (x, y) € Xj,

e, M =< el + 11 @ (en, )+ (111G (x1, 0)) ]

1 Xy B -
e L ) 6T o=l
X1
< ll¢lloo + 2¢1llull + 24,

X )
; — ri—1 _ ry—1
+1"(r1)1"(r2)0/0/(x 171y — 0 p(s, 08(Jull)drds.
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Then

[l oo

<1
pra"b5(||ulloo)

'+ DI+ 1)
Then by condition (6.19), there exists M’ such that ||u|ec 7# M. Let

l¢lloo + 2¢ilulloc + 2d1 +

U' = {ue CX1,R") : [lulloo < M'}.

The operator Nj : U - P(C(X1,R")) is upper semicontinuous and completely
continuous. From the choice of U’, there is no u € dU’ such that u € AN, (u) for
some A € (0, 1). As a consequence of the nonlinear alternative of Leray—Schauder
type (Theorem 2.33), we deduce that N, has a fixed point which is a solution of
(6.22) and (6.23). Denote this solution by u,. Define

rk,Z(va):xk(MZ(xvy))_-xs fOI'()C,y)EXl.

If re2(x,y) # 0on (x1,a] x [0,b] and forall k = 1,...,m, then

u(x,y); if(x,y) €0, x1) x [0, b],

u(x,y) = up(x,y); if (x,y) € [x1,a] x [0, b],

is a solution of the problems (6.13)—(6.15). It remains to consider the case when
r22(x,y) = 0, for some (x, y) € (x1,a] x [0, b]. By (6.9.6), we have

raa(x;7, 1) = xa(ua(x;t, y1) — xy
= X2 (L1 (ur (x1, y1))) — X3
> x1(ui(x1, y1)) — X1
=ria(x, 1) = 0.

Since r;  is continuous, there exists x, > xj, y» > y; such that r5,(x2, y2) = 0,
and rp5(x, y) # O forall (x,y) € (x1, x2) x [0, b]. It is clear by (6.9.1) that

rea(x,y) #0 forall (x,y) € (x1,x2) x[0,b]; k =2,...,m.
Now suppose that there are (s,2) € (x1, x2) X [0, b] such that ; 5(s,#) = 0. From
(6.9.6) it follows that
ria(xton) = xia(xf y) — x
= x1(Li(ur(x1, y1))) — x1
< xi(u(x1,y1)) —x1

=ri1(x;, ) =0.
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Thus 7|, attains a nonnegative maximum at some point (s1,#) € (x1,a) x [0, x2) U
(x2, b]. Since

(‘DY uz)(x,y) € F(x,y,uz(x,y)), for (x,y) € Xy,

then there exists a function f(x, y) € F(x, y,u(x, y)) such that
(CDLMZ)(X? y) = f(xv y)s for (X, y) S Xl-

Then we get

ur(x,y) = @(x) + Ii(u(x1,y)) — I (ui (x1,0))

Xy
; _ oyl _ \r—l1
+F(r1)F(r2) /O/(X T =0 fls, 1)deds,

hence
X )
Ous W ri—1 12, _ s\
T2 =90+ / 0/ (v =) 20 =07 (s, 1)deds,

then

9 : d
ria(s1. 1) — xi(uz(slstl))ﬂ(sl’tl) —1=0.
ox ox

Therefore
_l s
X (ua(s1.11)) |:</’/(S1) + m / /(Sl —0)" 7 — )T f(6. n)dndG} =1,
x1 0

which contradicts (6.9.5).

is a

Step 3: We continue this process and take into account that u, 4+ = u
XITI

solution to the problem
(‘DL w(x,y) € F(x,y,u(x,y)); ae. (x,y)€ (xn,a]x][0,b],
(et ¥) = Ln(ttm—1 (¥m, ).

The solution u of the problems (6.13)—(6.15) is then defined by

u(x,y); if (x, y) € [0,x1] x [0, B],

u(x, y) = uz(x,y); if (x,y) € (x1, x2] x [0, 5],

um—l—l(xv y)s if(-xs y) € (Xm,(l] X [Os b]
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Now we present (without proof) an existence result as an extension of the result
presented in Theorem 6.9 to problems (6.16)—(6.18).

Definition 6.10. A function u € £ N U'_,AC(J;,R") such that its mixed
derivative Dﬁy exists on J' is said to be a solution of (6.16)—(6.18) if there exists a
function f(x,y) € F(x,y,u(x,y)) such that u satisfies (‘Dyu)(x,y) = f(x,y)
on J’ and conditions (6.17) and (6.18) are satisfied.

Theorem 6.11. Assume that (6.9.1)—(6.9.4), (6.9.6) and the following conditions:

(6.11.1) The function g is nonnegative and completely continuous and there exist
constants 0 < [y < 1, I, > 0 such that

lg(x, y, Wl < hillull + L (x,y) € J,u e R",
(6.11.2) Forall (s,t,u) € J x R", there exists f € S, such that

ag(s,t,u(s,t)) 3 ag(s,0,u(s,0)) rp—1

X () | @' (s) + o 0x I(r)l (r2)

s

X //(s—@)”_z(t—n)rz_lf(e, mdndd | #1; k=1,...,m,
0

Xk

(6.11.3) There exists a number M’ > 0 such that

M/

min p*arlbrza(M/)

ALM 4l L LM
litlloo + 40 M” + 2 T F O+ 1)

M/

p*arlbrzg(M/) 5 k =1..., m > 1’

/ R S—
lplloo + ek +41)M’ + 24y + 41, + CESACE

hold. Then IVP (6.16)—(6.18) has at least one solution on J.

6.3.3 An Example

As an application of our results we consider the following impulsive partial
hyperbolic functional differential inclusions of the form:

(‘DL uw(x,y) € F(x,y,u(x,y)); where(x,y) € Ji; k=0,....m,
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X = xp(u(x,y); k=1,...,m, (6.25)
u(t,y) = L(u(xe, y): y €0, 1], k=1,...,m, (6.26)
u(x,0) = x, u(0,y) = y* x €[0,1], y €[0,1], (6.27)

where r = (r,r), 0 < r;,rm <1, x(w) = 1 k=1,...,m, and

.
T K +ad)’
for each u € R we have xg4(Ix (1)) > xx(u); k = 1,...,m, and also there exist
constants ¢, dy > 0, such that

[T (u(xk, y)| < cxlu(xe. y)| +di, k=1,....m.

Let u € R then we have

1

> 0ik=1.....m
211 + 12) "

Xp+1(1) — xp () =

Hence 0 < x1(u) < x2(u) < -+- < x,, (1) < 1, for each u € R. Set

F(x,y,u(x,y)) = {M eR: fl(x,y,u(x,y)) <u= fz(x,y,u(x,y))},

where f1, > : [0, 1]x[0, 1]xR — R. We assume that foreach (x, y) € J, fi(x,y,.)
is lower semicontinuous (i.e., the set {z € R : fi(x,y,z) > v} is open for each
v € R), and assume that for each (x,y) € J, fo(x,y,.) is upper semicontinuous
(i.e.,theset{z € R: fo(x,y,z) < v}isopenforeach v € R). Assume that there are
p € C([0,1] x [0,1],RT) and § : [0, 00) — (0, c0) continuous and nondecreasing
such that

max(| fi(x.y.2)|. | f2(x, y.2)]) = p(x,y)d(|z]), forae. (x.y) € J andz € R.

Itis clear that F' is compact and convex valued, and it is upper semi-continuous (see
[104]). Moreover, assume that conditions (6.9.5) and (6.9.7) are satisfied. Since all
conditions of Theorem 6.9 are satisfied, problems (6.25)—(6.27) have at least one
solution on [0, 1] x [0, 1].

6.4 The Method of Upper and Lower Solutions for Partial
Hyperbolic Fractional Order Differential Inclusions
with Impulses

6.4.1 Introduction

This section deals with the existence of solutions to impulsive fractional order IVP,
for the system
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(‘DL u)(x,y) € F(x,y,u(x,y)); if (x,y) € Jy; k =0,....,m, (6.28)
u(xit, y) = u(xi, y) + Le(u(xi, y)); ify €[0,b], k =1,...,m, (6.29)
u(x,0) = ¢(x); x € [0,a], u©,y)=1v(); y €[0,b], (6.30)

wherea,b >0, 0=x) < x| <+ < Xp < Xppt1 =a, F:J xR" - PR")is
a compact-valued multivalued map, J = [0, a] x [0, 5], P(R") is the family of all
subsets of R”, I} : R" - R", k = 1,...,m, ¢, ¥ are as in problem (6.1)—(6.3).
Here u(x,j' ,¥) and u(x, , y) denote the right and left limits of u(x, y) at x = xi,
respectively.

6.4.2 Main Result

To define the solutions of problems (6.28)—(6.30), we shall consider the Banach
space PC(J,R") defined in Sect. 6.2.

Definition 6.12. A functionu € PC(J,R") (" U;—o AC((xk, Xk+1) % [0,b], R")
such that its mixed derivative D)%y exists Ji; kK = 0,...,m is said to be a

solution of (6.28)—(6.30) if there exists a function f € L'(J,R") with f(x,y) €
F(x,y,u(x,y)) such that u satisfies (‘D) _u)(x,y) = f(x,y) on Ji; k =

Oxy

0,...,m and conditions (6.29) and (6.30) are satisfied.
Letz, 7 € C(J,R") be such that

2(x, ) = (@ (x, ¥), 2, 9), -,z (X, ), (x,¥) € J,

and
zZ(x,y) = @ (X p). 20, y), ..., Za(x, ), (x,p) € J.

The notation z < 7 means that
Zi(xvy) Szi(X,Y)v i = 17---7’1-

Definition 6.13. A functionz € PC(J,R") Ui~y AC((xk, xk+1)x[0,b], R") is
said to be a lower solution of (6.28)—(6.30) if there exists a function f € L!(J,R")
with f(x,y) € F(x, y,u(x, y)) such that z satisfies

(‘Dy)(x.y) = fx,y.2(x, ), 2(x,0) = ¢(x), 20, y) = ¥(y) on Ji;
k=0,...,m,
2. y) <200, ) + L@, ) ify €0.6], k=1,....m,
2(x,0) = @(x), 2(0,y) < ¥(y)on J,
and z(0,0) < ¢(0).
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The function z is said to be an upper solution of (6.28)—(6.30) if the reversed
inequalities hold.

Theorem 6.14. Assume that the following hypotheses:
(6.14.1) F : J xR" — Pp oo (R") is L'-Carathéodory
(6.14.2) There exists | € C(J,R™) such that
Ha(F(x, y,u), F(x, . 8) < 1(x, y)llu—al| for every u,i € R”
and
d0,F(x,y,0) =l(x,y), ae (x,y) € J

(6.14.3) There exist vand w € PC(J,R")(AC((xk, Xk+1) X [0,b],R"), k =
0,...,m, lower and upper solutions for the problem (6.28)—(6.30) such
that v(x,y) < wl(x,y) foreach (x,y) € J,

(6.14.4) Foreachy € [0,b], we have

n .
v(xF.y) < min Iy (u
( k )= u€lv(xg.y)wlxg )l k@)

<

< max Tie(u)
u€lv(xi.y)wixg .yl

<wxl.y)k=1....m
hold. Then the problem (6.28)—(6.30) has at least one solution u such that

v(x,y) <u(x,y) <wlx,y) forall (x,y) € J.

Proof. Transform the problem (6.28)—(6.30) into a fixed-point problem. Consider
the following modified problem:

(“Du)(x,y) € F(x,y,g(u(x,y)); if; (x,y) € Jk; k=0,....m, (6.31)
(e y) = uCo . y) + L(geg . youlxg, y)): if y €[00 k= 1,....m,
(6.32)
u(x,0) = ¢(x); x € [0,a], u(0,y) =y (y); y €[0,0], (6.33)
where g : PC(J,R") — P C(J,R") be the truncation operator defined by
v(x, ), ulx,y) <v(x,y)

g)(x, ) = u(x,y), v(x,y) <u(x,y) <w(x.y)
w(x, ), u(x,y) > w(x,y).
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A solution to (6.31)-(6.33) is a fixed point of the operator G : PC(J,R") —
P(PC(J,R")) defined by

hePC(J,R"):
h(x,y) = p(x,y)
+ 20<xk<x(1k (g(xk_v Vs M(-xk_v y))) - Ik (g(-xk_v Os u(xk_s 0))))

Xy
Gu) = +m 20<xk<x / /(xk — )" Ny —1)?7 f(s, t)deds
Xk—1 0
x
+m//(x — )"y — 1) f(s, £)deds,
X 0
where
f €8t =S €Sk [(x.3) = filx,y) on 4,
and f(x,y) < fo(x,y) on Ay},
Al = {()C,y) eJ: u(x,y) < V()C,y) =< W()C,y)},
A2 = {()C, y) eJ: u(x, y) = W()C, y) < u(x, y)}s
and

Skew =1/ € L'(J.R") : f(x.y) € F(x, . g(u(x., y))). for (x.y) € J}.

Remark 6.15. (A) For each u € PC(J,R"), the set S’F,g(,,) is nonempty. In fact,
(6.14.1) implies there exists f3 € S g(), SO We set

f=fixa + faxa, + s,
where y 4, is the characteristic function of 4;; i = 1,2, and
Az ={(x,y) € J 1v(x,y) =u(x,y) <w(x,y)}.
Then, by decomposability, f € S‘F,g(,,),
(B) By the definition of g it is clear that F(.,., g(u)(.,.)) is an L'-Carathéodory

multivalued map with compact convex values and there exists ¢; € C(J,Ry)
such that

|F(x,y, g(x,y)I|r < ¢i(x,y) foreach (x,y) € Jand u € R",
(C) By the definition of g and from (6.14.4) we have

u(x; . y) < L(g(xe. you(xe, y)) <w(x,y); y €[0,b]: k =1,....m.
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Set
d)ik = Sup{d’l(-xs y) : (X, y) € J}s
207 b}
'(ri+ DI+ 1)’

m
n=luloo + ZZylg[g)z](IIV(XZ,y)II, w1 +
k=1 ’
and
D ={ue PC(J,R"): |lulpc <n}.

Clearly D is a closed convex subset of PC(J,R") and that G maps D into D. We
shall show that D satisfies the assumptions of Lemma 2.38. The proof will be given
in several steps.

Step 1: G(u) is convex for eachu € D. Indeed, if /11, h» belong to G(u), then there
exist fi, f» € S}:,g(u) such that for each (x, y) € J we have

hi @) (v, y) =, 9) + Y (g, youlxg 1)) = Te(g (xi., 0, u(x;,0)))

0<xp<x

O<xp<x?%

y
; Xk _ -l _ -1,
+ L(r)I(r2) Z /k_l O/(Xk s) (y—1) fi(s,t)deds

y
1 /x/ ri—1 -1
4 —_— x—s)" — )7 fi(s, t)deds.
e )., J ( )Ty =) fils 1)
Let 0 < & < 1. Then, for each (x, y) € J, we have

Em + (=) (x,y) = p(x. )+ Y (gl y. ulxg . )

0<xp<x

— Y kg0, 0,u(x;,0))

0<xp<x
y
1 i _ ri—1 _ rp—1
Tl () OZ/ 0/ (o= =0
x [Efi(s, 1) + (1 = &) fo(s, )] deds

; ) g _ ri—1 _ r—1
) //0 =970 =1
x[Efi(s, 1) + (1 — &) fo(s,1)]deds.

Since 5}, ) is convex (because F has convex values), we have £hy + (1 — §)h;y €

G(u).
Step 2: G(D) is bounded. This is clear since G(D) C D and D is bounded.
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Step 3: G(D) is equicontinuous. Let (t1, y1), (12, )2) € J, ©1 < ©2 and y; < ya,
letu € D and h € G(u), then there exists f € SF o () Such that for each (x,y)eJ
we have

12:(u) (T2, y2) — h(u)(z1, y1)||

< (e ) = w2yl + DMk (g sy ulxi . y1))
k=1

—le(g(x . y2. ulxy  y2))D

Y1
1 “ e ri—1 n—=1 _ _ -1
treorm o), 0/ (=5 [0 =0 = (=1

x|| f(s, )| deds

m 2
; Xk _ ri—l1 _ rp—1
+F(I’1)F(r2) ];/Xk1 /(Xk S) (y2 Z) ”f(ssl)”dtds

1 3 Y1 ri—1 o\ oyl -l
S anarsl A R G R URD AR U e
x| f(s,2)|drds

1 2 2 =1 -
+m/ﬂ /y1 (=) (2 =) || f(s,1)||deds

P — [ " (e = (= 0 £ (5.0 drds
rororr) Jo 2 Y2 ’

+;/ N (-[ — s)rl—l(y _ t)rg—l ”f(S t)”dtds
reore Jo b : ,
| (e, y1) — (o, y2)li

IA

+ D (Mg s yrsulxi y0))) = T (g (s ya, u(xi y2))))
k=1

_ r— 1 _ rp—1
+F(r1)F(rz) / /(xk S [0n = 1)

—(y1 — )" drds

¢)r ri—1 rp—1
+m /x“/(xk $)" 7 (y2 — 1) dtds

=1
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1
F(n)F(rz)/ / [ =" 2 =0
—(r = )" (y1 — 1) ] deds

¢)—ik ” _ -l m—1

T'(r) () / (2 —8)""(y2 — 1) 'dtds

_n O

Tl Jo )y, 9 s
o7

Y1
= 7 — )" 7 (y2 — 1) drds.
reore L, J, ™ »2

As 11 — 1 and y; —> », the right-hand side of the above inequality tends to
zero. As a consequence of Steps 1-3 together with the Arzela-Ascoli theorem, we
can conclude that G : D — P(D) is compact.

Step 4: G has a closed graph. Let u,, — ux, h, € G(u,) and h, — h,. We need
to show that i € G(ux). y
h, € G(u,) means that there exists f, € S Ilr,un such that, for each (x, y) € J,

ha(x,9) = 0, y) 4+ Y (@O, o un (i 3))) = T (8 (i, 0, un (x7, 0))))

O<xp<x

F(rl)]"(rz) > //(xk )"y =027 fu(s, 1)drds

0<x, k<
_— " _ il _ -1
+F(r1)F(r2) / 0/ (o = s

We must show that there exists fx € S~11:u* such that, for each (x, y) € J,

hax,y) = p(e )+ Y Ty, (i, ) = Te(g(x7 . 0, 1 (x7, 0))))

0<xp<x

y
1 Xje het e
NG 0<ij</ . 0/ (xx =)y = )" fuls, p)deds

y
; * _ r1—l _ rz—]
Ty / 0/ (T T s,

Since F(x, y,-) is upper semicontinuous, then for every ¢ > 0, there exist ng(e) > 0
such that for every n > ny, we have

So(x, ) € F(x,y,g(un(x,))) C F(x,y,gux(x,y))+eB(0,1), ae. (x,y) € J.
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Since F(.,.,.) has compact values, then there exists a subsequence f,, such that

S, Cor) = fu(,-) asm — oo

and
Se(x,y) € F(x,y, g(ux(x,y))), ae. (x,y) € J.

For every w(x, y) € F(x, y, g(u«(x, y))), we have

S G, ¥) = e (X P < [y, (6 9) =W I (W, y) = fuCx, )

Then
I G 9) = Fr = d(fo (6, FE 3280 (x 1))

By an analogous relation obtained by interchanging the roles of f, and fs, it
follows that

I fo G5 3) =t e 0 = Ha (Fx. v, g (v, 9))) F(x, v, gl (x. ) )
< 1 y) lun — | oo

Let
I* :=sup{l(x,y): (x,y) € J},
then by (6.14.2) we have for each (x, y) € J,

I e, ) =P Ce <D (€ e ¥t (7 YD) =L (G v s (7, Y|
k=1

+ ) (g (i, 0,1, (i, D)= (g (e 0, use (7, O)) |
k=1

RIS
T L [O/uk—s) Ly — gyl

X <X <X

X|| f,, (5:) = fi(s, 0)||deds

x Yy
1 _ ri—1 _ \n—1
e TATar f 0/ (= )"y — 1)
X|| o, (5,1) — fu(s, 1) deds

< D @Oy, (i 9)) = T (@ (e v, s (e, )|
k=1
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3 (& 0y, (57, 00) — L@ (i, 0, (i O)))
k=1

2tny —texlloo [* 7 nm, e
I (r)I(r2) /O/O(x s)" T (y — 1) (s, 1)deds

m

< (@O 2y, (5 9)) = T (e v s (. )|
k=1

m
(@0, 1y, (. 0)) = L (g (. 0, s (x;. 0))|
k=1
20*a" p
Y T O 5 e~ U lleo:

Hence

17

— hilloo = 0 as m — oo.

nm

Step 5: The solution u of (6.31)—(6.33) satisfies
v(x,y) <u(x,y) <w(x,y) forall (x,y) € J.
Let u be the above solution to (6.31)—(6.33). We prove that
u(x,y) <w(x,y) forall (x,y) e J.

Assume that u — w attains a positive maximum on [x;}, X1l x [0,D] at (X, y) €
[x]j',xk_H] x [0,b] forsome k = 0,...,m;ie.,

(u —w)(Xk,y) = max{u(x, y) —w(x,y): (x,y) € [x;,xk_ﬁ] x [0,b]} > 0;

for some k = 0, ..., m. We distinguish the following cases.

Case 1. If (X¢,7) € (x,j',xk_H) x [0, b] there exists (x, ") € (x]j',xk_H) x [0, b]
such that

[u(x, y*) = w(x, y)] + [u(xg, y) — wlxg, y)]

—[uCxg, y™) —w(x. y )] = 0: forall (x, y) € (e X x {y™ DU {xy < [y™. b).
(6.34)

and
u(x,y) —w(x,y) >0, forall (x,y) € (x;,Xx] x [y*,b]. (6.35)
By the definition of / one has
CD;:u(x,y) € F(x,y,w(x,y)) forall (x,y) € [x;,Xx]x[y*,b].
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An integration on [x}", x] x [y*, y] for each (x, y) € [x},Xx] x [y*, b] yields

u(x, ) +uCxg, y*) —u(x, y*) —ulxg. y)
1 X ey
T LT / . / (&= o =0T s ndids. - (6.36)
X y

where f(x,y) € F(x,y,w(x,y)). From (6.36) and using the fact that w is an upper
solution to (6.28)—(6.30) we get

u(x, y) +ulxg, y*) —ulx, y*) —u(xg. y)
S wlx,y) +wleg, y%) —wlx, y®) —wixg, y),
which gives
[(x, ) —w(x, y)] = [u(x, y™) —w(x, y*)]
(g, y) —wlxg, y)]
—u(x. y™) = wlx. y9))- (6.37)
Thus from (6.34), (6.35), and (6.37) we obtain the contradiction
0 < [u(x,y) —w(x,y)]
< fulx, y™) —wlx, y)]
g, y) —wxg, y)]
—[u(xg. y™) = wlx, ¥y = 0; forall (x, y) € [x, xx] x [y*. b].

Case 2. If Xy = x;"; k = 1,...,m. Then
Wit 3) < Le(h(xic u(ep. ) = w(xi. 5)
which is a contradiction. Thus
u(x,y) <w(x,y) forall (x,y) € J.
Analogously, we can prove that
u(x,y) > v(x,y), forall (x,y) € J.

Finally the problems (6.31)—(6.33) has a solution u satisfying v < u < w, and hence
it is solution of (6.28)—(6.30). O
6.5 Notes and Remarks

The results of Chap. 6 are taken from Abbas and Benchohra [8], and Abbas et al.
[26]. Other results may be found in [49, 55, 65, 230].



Chapter 7
Implicit Partial Hyperbolic Functional
Differential Equations

7.1 Introduction

In this chapter, we shall present existence results for some classes of initial value
problems for partial hyperbolic implicit differential equations with fractional order.

7.2 Darboux Problem for Implicit Differential Equations

7.2.1 Introduction

This section concerns the existence results to fractional order IVP , for the system
5(r)u(x,y) = f(x,y,u(x,y),ﬁgu(x,y));if(x,y) e J:=10,a] x[0,b], (7.1)

u(x,0) = p(x); x €[0,4q],
u(0,y) =¥ (y): y €10,0], (7.2)
¢(0) = ¥(0),

where a,b > 0, 5{) is the mixed regularized derivative of order r = (r,7r;) €
(0,11 x (0,1], f :J xR" x R" — R" is a given function, ¢ € AC([0, a], R") and
¥ e AC([0,bh],R").

We present two results for the problems (7.1)—(7.2), the first one is based on
Banach’s contraction principle and the second one on the nonlinear alternative of
Leray—Schauder type.

S. Abbas et al., Topics in Fractional Differential Equations, Developments 287
in Mathematics 27, DOI 10.1007/978-1-4614-4036-9_7,
© Springer Science+Business Media New York 2012
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7.2.2 Riemann-Liouville and Caputo Partial Fractional
Derivatives

For a function 2 € L'([0,b],R"); b > 0 and @ € (0, 1]. The connection between
D§ and  D§ is given by
—x

“DER(t) = Dh(t) — ﬁh(oﬂ, foralmostall 7 € [0,5].  (7.3)

For more detail see [166].
Corollary 7.1. For a functionu € L'(J,R") and r = (r1, 1) € (0,1] x (0, 1]. The
connection between D(;fxu(x, y) and CD(r)}xu(x, ¥) with respect to x is given by

-

X +
ra " (0™, y). (7.4)

("D u) (x,y) = (Dg'u) (x.y) —

Analogously, the connection between DS?yu(x, y)and € DS?yu(x, y) with respect to
y is given by

("D&,u) (x,y) = (D('fyu) (x,y) — H)lj;frz)u (x.0%). (7.5)

Now, let us give the relation between D{ and “D(, where r = (r1,r2) € (0,1] x
(0,1].

Theorem 7.2. For u(x,y) € AC(J,R") andr = (r1,r2) € (0,1] x (0, 1] we have

(“Dgu) (x.) = Diutx. ) = (D) (v, = =5 (D) @)
y—rz r —rly—rz
i (D' u) (x,0) + RO = 00

Proof. According to ([246], Lemma 1) (56u)(x, y) = (“Dju)(x,y).
Then

(ESM) (x.y) = (Dgq) (x.y) = Diyly"q(x. ).
q(-xa y) = u(x, y) - )/()C, y)v )/()C, y) = M(X,O) + M(O, y) - M(O, 0),
Iy q(x,y) = 1 "u(x, y) — I "y (x. y).

Asu(x,y) = y(x,y) + IJv(x,y), then q(x,y) = IJv(x,y), where v(x,y) =
Dy yu(x,y).
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Hence

Iy77q(x.y) = I (Iv(x. y))
X y S t
F(l—rl)F(l—rz)/O/ O/O/(S_Z)_l(t_t)_z

xv(t,z)dzdr | dtds € AC(J),

1 yl—rz 1
I7y(x,y) = I u(x, 0
N (TS R
1- —r
~ 15710, )

o= ra—m To.

1—r
— y .
(1_rl)(l_rz)r(l—rl)r(l_rz) (070),

besides ([225], Lemma 2.1) I~ y(x,y) € AC(J,R").

Then
I u(x,y) = 1§77 q(x,y) + 17" y(x,y) € AC(J,R").
Finally
—r —r r y_rz 0
Dou(x,y) = Dy 1y q(x,y) = (Dgu) (x,y) — T(1-ry) (Do) Cx.0)
(1 — rz)
X7 x " y_rz
—_ " (pru) o, 0.0)-
R (PR O+ 5 S 00

7.2.3 Existence of Solutions

Let us start by defining what we mean by a solution of the problems (7.1)—(7.2).

Definition 7.3. A function u € C(J,R") such that Dy u(x,y). Dy u(x.y).
E(r)u(x, y) are continuous for (x, y)€J and I} "u(x,y) € AC(J,R") is said to
be a solution of (7.1)—(7.2) if u satisfies (7.1) and conditions (7.2) on J.

For the existence of solutions for the problems (7.1)—(7.2) we need the following
lemma.
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Lemma 7.4 ([247]). Let afunction f(x,y,u,z) : J XR"xXR" — R" be continuous.
Then problem (7.1)—(7.2) are equivalent to the problem of the solution of the
equation

gx,y) = fx,y,u(x,y) + I5g(x.y), g(x,y)).

andifg(x,y) € C(J,R") is the solution of this equation, then u(x, y) = pu(x,y)+
Igg(x, y), where

pn(x,y) = @(x) + ¥ (y) — ¢(0).

Further, we present conditions for the existence and uniqueness of a solution of
problems (7.1)—(7.2).

Theorem 7.5. Assume

(7.5.1) The function [ : J x R" x R" — R" is continuous.
(7.5.2) For any u,v,w,z € R" and (x,y) € J, there exist constants k > 0 and
0 <1 < 1 such that

I f(x.y,u.2) = f(x, yvow)|| < kllu—v| +]z—w].

If
ka" b" -
A-=Dra+r)r{+r)
then there exists a unique solution for IVP (7.1)—(7.2) on J.

1, (7.6)

Proof. Transform the problems (7.1)—(7.2) into a fixed-point problem. Consider the
operator N : C(J,R") — C(J,R") defined by

N@)(x.y) = pu(x.y) + 158(x. y). (7.7)
where g € C(J,R") such that

glx,y) = flx.y.u(x,y). g(x.y)),
By Lemma 7.4, the problem of finding the solutions of the IVP (7.1)—(7.2) is reduced

to finding the solutions of the operator equation N (u) = u.
Letv,w € C(J,R"). Then, for (x, y) € J, we have

x )
_ 1 _ ri—1 _ r—1
NG ) = N )] = o 0/ 0/ (==

x|lg(s,t) — h(s,t)||deds, (7.8)
where g, h € C(J,R") such that

glx,y) = f(x,y,v(x,y), g(x,y))
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and
h(x,y) = f(x,y,w(x,y),h(x,y)).
By (7.5.2), we get
lg(x,y) —h(x, »)II <klvix,y) —wx, )| +1glx,y) —h(x, y).

Then

A

lgCe.y) =hx. M = vCx, y) —wx, y)

1-1

v = wlloo.

<
11
Thus, (7.8) implies that

Xy
< 1 _ r1—l _ rz—l
ING) = Nl = s [ ==
0 0

X 7 lv — wlleodtds
< kantb™ v —wi
vV—Ww .
T =Dr+r)lA+r) o
Hence
ka"'b"
[v—wloo-

INGD =Nl = T Fa T a7 12)

By (7.6), N is a contraction , and hence N has a unique fixed-point by Banach’s
contraction principle. O

Theorem 7.6. Assume (7.5.1) and the following hypothesis hold:
(7.6.3) There exist p,q,d € C(J,Ry) such that

1f e,y u )l < p(x,y) +q e, y)ull + d(x, y) izl
for (x,y) € J and eachu,z € R". If

q*arl brz

d* + <1,
rA+r)lC(1+rp)

(7.9)

where d* = sup d(x,y) and q* = sup q(x,y), then the IVP (7.1)-
(x.y)eJ (x,y)eJ
(7.2) have at least one solution on J .
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Proof. Transform the problem (7.1)—(7.2) into a fixed-point problem. Consider the
operator N defined in (7.7). We shall show that the operator N is continuous and
compact.

Step 1: N is continuous
Let {u,},cN be a sequence such that u, — uin C(J,R"). Let n > 0 be such
that ||u, || < n. Then

Xy
NG ) = N3 = s [ [ = o=t
0 0

x|l gn(s, 1) — g(s,1)||deds, (7.10)
where g,, g € C(J,R") such that

gn(x.y) = f(x, y,un(x, ). g (x.y))
and
glx.y) = flx.y.ulx.y). g(x.y)).
Since u, — uasn — oo and f is a continuous function, we get

gn(x,y) > g(x,y) asn — oo, foreach (x,y) € J.

Hence, (7.10) gives

N a"bn
0o <
@l T+l +r)

NV (un) — lgn — glloo = 0 asn — oo.

Step 2: N maps bounded sets into bounded sets in C(J,R") Indeed, it is enough to
show that for any n* > 0, there exists a positive constant M * such that, for each

ue By ={ueC): |lulleo =n*},
we have | N(¢)]coc < M*. For (x,y) € J, we have

[N @) (x, I =< [l )
x )y
; _ il _ -1
+F(r1)F(r2)0/0/(x "Ny =) g(s,t)||deds,  (7.11)

where g € C(J,R") such that

g(x,y) = f(x,y,u(x,y),g(x,y)).
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By (7.6.3) we have for each (x, y) € J,

lgCe. =< PG, y) + g, Mx, y) + Igg (e, I+ d(x, y)llg(x, y)l

a"b”|g(x, y)ll ) *
+d*||g(x, )l
F(+ )l (1 + r2) gl

<p*+q (Ilulloo +

where p* = sup p(x,y).
(x,y)eJ
Then, by (7.9) we have

P+ llp
lgCe. Wl < Fanp— = M.

1—d*— T+r)I(1+r)

Thus, (7.11) implies that

Ma"b" .
FA+r)C(1+r)

*

IN@lloo = lItlloe +

Step 3: N maps bounded sets into equicontinuous sets in C(J,R"). Let (x, y1),
(x2,)2) € J, x1 < X2, y1 < y2, By be abounded set of C(J,R") as in Step 2, and
let u € By«. Then

[N () (x2, y2) — N(@)(x1, yO I < (2, y2) — p(xa, vl

X1 V1
1 _ ri—1 _ \r—l1
L sy 0/ 0/ [ — )" (32— 1)

—(x1 =) =07 llg(s, 1) | drds

1 X2 )2
T / (02 =9)" " (2 = 1) |Ig(s. 1) drds

X1 )

1 Xy )2
T / (02 =9)" " (2 = 1) |Ig(s. 1) drds

0 »n

X2 V1

; _ -l Y
+F(”1)F(Vz) O/(xz )" (2 =) | g(s, 1) || drds,

where g € C(J,R") such that

g(x,y) = f(x,y,u(x,y), g(x,y)).
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But [[g(x. y)|| = M. Thus

[N (u)(x2, y2) — N(u)(x1, y)ll < lp(x2, y2) — pxr, yo)l|
. M
'l+r)I'(1+r)

.,

VP = X yy =200 = x)" (2 — y1)"?]

[2952(x2 — x1)" + 2x3" (y2 — y1)”

As x| — X2, y1 — Y» the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1-3, together with the Arzela-Ascoli theorem, we can
conclude that N is continuous and completely continuous.

Step 4: A priori bounds We now show there exists an open set U € C(J,R") with
u# AN(u), forA € (0,1) andu € dU. Letu € C(J,R") and u = AN (u) for some
0 < A < 1. Thus for each (x, y) € J, we have

Xy
A
u(x,y) = Au(x,y) + TNl ) / /(x — )"y — 1) g (s, t)drds.
00

This implies by (7.6.3) and as in step 2 that, for each (x, y) € J, we get |u| < M*.
Set

U={ueCU,R"): |[ulloc < M* +1}.

By our choice of U, there is no u € dU such that u = AN (u), for A € (Q, 1). Asa
consequence of Theorem 2.32, we deduce that N has a fixed-point # in U which is
a solution to problems (7.1)—(7.2). |

7.2.4 An Example

As an application of our results we consider the following partial hyperbolic
functional differential equations of the form:

—, 1
D ,y) = — ;
) = S T ute )] + Do)

if (x, y) € [0, 1] x [0, 1], (7.12)

u(x,0) = x, u(0,y) = y% x,y €[0,1]. (7.13)

Set

1
5etr2(1 + [u(x, )| + [Dou(x, »)I)’

FCxy,ulx, y), Dou(x, y)) =
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(x,y) €[0,1] x [0, 1]. Clearly, the function f is continuous. For each u,v,u,v € R
and (x, y) € [0, 1] x [0, 1] we have
1

s =l + lv =D

Lo,y ulx, y),vix, y)) — f(x, y.u(x, y),v(x, p)| <
1
Hence condition (7.5.2) is satisfied with k = [ = T We shall show that condition
e
(7.6) holds with @ = b = 1. Indeed

ka"b” B 1 .
A-DIFA+mT(A+r) GE-DIA+mId+r)

which is satisfied for each (r;,r;) € (0,1] x (0, 1]. Consequently Theorem 7.5
implies that problems (7.12)—(7.13) have a unique solution defined on [0, 1] x [0, 1].

7.3 A Global Uniqueness Result for Implicit Differential
Equations

7.3.1 Introduction

In the present section we are concerned with the global existence and uniqueness of
solutions to fractional order IVP for the system

Dyu(x,y) = f(x,y,u(x,y), Dyu(x, y)); if (x,y) € J := [0,00) x [0, 00),

(7.14)
u(x,0) = ¢(x), u(0,y) = ¥(y): x.y €[0,00), (7.15)
9(0) = v(0),
where 56 is the mixed regularized derivative of order r = (r,1r) € (0,1] x

0,1], f:J xR" xR" — R" is a given function and ¢, ¥ € AC([0, c0),R"). We
make use of the nonlinear alternative of Leray-Schauder type for contraction maps
on Fréchet spaces.

7.3.2 Existence of Solutions

Let us start by defining what we mean by a solution of the problems (7.14)—(7.15).

Definition 7.7. A function u € C(J,R") such that 5(r)fxu(x,y),5(rfyu(x,y),

5:,14()6, y) are continuous for (x,y) € J and I()l_"u(x, y)eAC(J,R") is said to
be a solution of (7.14)—(7.15) if u satisfies (7.14) and conditions (7.15) on J.
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Further, we present conditions for the existence and uniqueness of a solution of
problems (7.14)—(7.15).

Theorem 7.8. Assume

(7.8.1) The function f : J x R" x R" — R”" is continuous
(7.8.2) For each p € N, there exists constants k, > 0 and 0 < [, < 1 such that
foreach (x,y) € Jy := [0, p] x [0, p]

1 Ce.you2) = fQe,y.vow) || < kpllu = vl +1pllz = wl,

foreachu,v,w,z € R".

If

A
kpp’l n

A=)+t - (7.16)

then there exists a unique solution for IVP (7.14)—(7.15) on [0, 00) X [0, 00).

Proof. Transform the problem (7.14)—(7.15) into a fixed-point problem. Consider
the operator N : C(J,R") — C(J,R") defined by

N@)(x,y) = pu(x.y) + Igg(x. ). (7.17)

where g € C(J,R") such that

g(x,y) = f(x,y,ulx,y),g(x,y)),

Let u be a possible solution of the problem u = AN (u) for some 0 < A < 1. This
implies that for each (x, y) € Jy, we have

x oy
— A _ r1—l _ rz—l
u(x,y) = Au(x,y)+ —F(rl)F(rz) O/O/(X )T (y =) g(s,t)deds. (7.18)

By (7.8.2) we get

lgCe. Il = f* + kpllue, I + Ll (e, I

where

f*= sup [[f(x,y,0,0)].
(x.y)€o

Then

4 kpllutx, )l
-1,

g, I <



7.3 A Global Uniqueness Result for Implicit Differential Equations 297

Thus, (7.18) implies that

x )y
u < 1 _ -l _ n\n—1
”“””—”“””W+a—mrmvva!!“ St

x (f* + kpllu(s, 1)])) deds

f*prl-‘rrz
1—=1,) (A +r)l(1+ 1)

Xy
kp N P
+(1 — 1) (r1)I(r2) O/O/(X $)" (v =0 (s, 1)[|drds.

Set

f*prl-‘rrz
1—=1) A +r)l(1+1)

Lemma 2.43 implies that there exists a constant § = §(ry, r2) such that

w=|pll, + (

x
Skp ri—1 _ ry—1
lu(e, M <w (1 - SRR O/O/(x — )" Ny — 1) 'drds
Skppr1+r2 o
=V (1 + (1=I)ra+r)ra+ rz)) =M,

Since for every (x,y) € Jo, |lull, < M,. Set

U={ueCU,R"):|lull, <M, + 1forall p € N}.
We shall show that N : U — C(J)) is a contraction map. Indeed, consider v, w €
C(Jo,R™"). Then, for (x, y) € Jo, we have

Xy
NG 3) = Vo = s [ [ =y =)
0 0

x |lg(s. 1) —h(s,1)||dtds, (7.19)
where g, h € C(Jp, R") such that
glx.y) = fx.y.v(x.y). g(x.y))

and
h(x,y) = f(x,y,w(x,y),h(x,y)).
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By (7.8.2), we get

lg(x,y) —h(x, )| < kpllv(x,y) —wlx, W) + 1,llg(x, y) —h(x, y)].

Then

kp
-1,

llg(x,y) =h(x. ») = v —=wllp.

Thus, (7.19) implies that

Xy
kP ri—1 _ \r2—1 _
ING) = N0y = s s 0/ 0/ (=" = 0 o =l s

kppr1+r2
<
T A=A+l +r)

v =wllp.-

Hence

kppr1+r2
I +r)I(14+1)

INV) =N, = - v =wllp.-

By (7.16), N : U — C(Jy,R") is a contraction . By our choice of U, there is no
u € 0,U" such thatu = AN(u), for A € (0, 1). As a consequence of Theorem 3.48,
we deduce that N has a unique fixed-point # in U which is a solution to problem
(7.14)—(7.15). O

7.3.3 An Example

As an application of our results we consider the following partial hyperbolic
functional differential equations of the form:

J— C
Dou(x,y) = L — ; if (x, y) € [0,00) x [0, 00),
’ e 21 + ¢, lu(x. y)| + [Dgu(x. y)|)
(7.20)
u(x,0) = x, u(0,y) = y2; x,y € [0,00), (7.21)
where
(1 (1
= (I+r)I'( +72); pEN,
pr1+r2
Set
Cp

Gy ulx, y), Dou(x, y)) = — ;
’ 7e-r2(1 + ¢, lu(x, y)| + [Dyu(x, y)))
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(x,y) € [0,1] x [0, 1]. Clearly, the function f is continuous. For each p € N* and
(x,y) € Jo we have

1

|f(x,y,u(x,y),v(x,y))—f(x,y,ﬁ(x,y),ﬁ(x,y)ﬂ =< ﬁ

([l —=ull +¢pllv =D,

for each u, v, u,v € R. Hence condition (7.8.2) is satisfied with [, = % and k, =
%. We shall show that condition (7.16) holds for all p € N*. Indeed

kppr1+rz Cppr1+rz 1

QI+l +r) (G- DIA+rml(+rm) T&—1_ I

Consequently Theorem 7.8 implies that problems (7.20)—(7.21) have a unique
solution defined on [0, 00) x [0, 00).

7.4 Functional Implicit Hyperbolic Differential Equations
with Delay

7.4.1 Introduction

In the present section, we investigate the existence and uniqueness of solutions to
fractional order IVP for the system

Dyu(x,y) = f(x,y, gy, Dyu(x, y)); if (x,y) € J :=[0,a] x [0,b], (7.22)

u(x,y) = ¢(x,y); if (x,y) € J 1= [~a,a] x [-B,b]\(0.a] x (0,b], (7.23)
u(x,0) = ¢(x); x €[0,4],
u(0,y) =¥ (y); y €[0,b],

where a,b, o, > 0, f :J xC xR" — R" is a given function, ¢ € C(f), O

[0,a] — R", ¢ : [0,b] — R" are given absolutely continuous functions with

e(x) = ¢(x,0), ¥v(y) = ¢(0,y) for each x € [0,a], y € [0,b], and C :=

C([—a, 0] x [—p,0]) is the space of continuous functions on [—«, 0] x [—8, 0].
Next, we consider the following fractional order IVP for the system:

(7.24)

Dyu(x,y) = f(x,y, gy, Dyu(x, y)); if (x,y) € J:=[0,a] x [0,b], (7.25)
u(x,y) = ¢(x,y), if (x,y) € J' := (—o00,a] x (—o0, b]\(0, a] x (0, b],
(7.26)
u(x,0) = p(x); x €[0,4a],

(7.27)
u(0,y) = ¥(y): y €[0,b],
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where ¢, ¥ are as in problems (7.22)~(7.24)and ¢ € C(J'), f : J x BxR" — R”
is a given continuous function, and 3 is a phase space.

The third result of this section deals with the existence and uniqueness of
solutions to fractional order IVP for the system

ﬁgu('x’ y) = f(x’ Y M(Pl(Xqu’"(x.y))vPZ(XquM(X.y)))’Egu(x’ y))’ if (x’ y) € Jv (728)

u(x, y) = ¢(x,y); if (x,y) € J, (7.29)

u(x,0) = @(x), u(0,y) = y¥(y): x €[0,a], y €10,5], (7.30)

where f : I XCxR" > R", py: J XC = [-a,a], p : J xC — [—f,b] are
given functions.

Finally we consider the following initial value problem for partial functional
differential equations:

Dyu(x, y) = (X, Y2 iy (5.0 oy ey Dgtt(X, )3 iF (x,y) € J, (7.31)
u(x,y) = p(x.y) if (x.y) € J', (7.32)

u(x,0) = ¢(x), u(0,y) =¥ (y): x €[0,4], y €0,0], (7.33)

where f : I xBxR" > R", p : J xB — (—00,4a], p2 : J X B — (—00,b]
are given functions. We present two results for each of our problems, the first one

is based on Banach’s contraction principle and the second one on the nonlinear
alternative of Leray-Schauder type.

7.4.2 Existence Results with Finite Delay

Let us start by defining what we mean by a solution of the problems (7.22)—(7.24).

Definition 7.9. A function u € C(p) := C([—, a] x [—f, b]) such that u(x, y),
Egtxu(x, ¥), 56?yu(x, y),ﬁreu(x, y) are continuous for (x,y) € J and 191_’
u(x,y) € AC(J) is said to be a solution of (7.22)—(7.24) if u satisfies (7.22) and
(7.24) on J and the condition (7.23) on J.

Further, we present conditions for the existence and uniqueness of a solution of
problems (7.22)—(7.24).

Theorem 7.10. Assume

(7.10.1) The function f :J x C x R" — R" is continuous.
(7.10.2) For any u,v € C, w,z € R" and (x,y) € J, there exist constants £ > 0
and 0 < | < 1 such that

If e,y u.2) = fxy,vow)|| < Ellu—vlle + Illz—wl.
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If
La" b"
<1
A-=Drd+r)(1+r)

(7.34)

then there exists a unique solution for IVP (7.22)—(7.24) on [—a, a] x [—f, b].

Proof. Transform the problems (7.22)—(7.23) into a fixed-point problem. Consider
the operator N : C4,8) — C(q,p) defined by

d(x,y); (x,y) e,

N (x. y) =
DO ZN ) + gy (6oy) € .

(7.35)

where g € C(J) such that

g(x,y) = f(x,y,Ux,y),&(x, ).

Letv,w € C(.p). Then, for (x, y) € J, we have

x y
_ ; _ -l _ -1
INOIG. ) NM@JWSHMHMZJG 9=

X |lg(s,t) — h(s,)||dzds, (7.36)
where g, h € C(J) such that

g(x,y) = f(x, Y, V(xy), &(x, )
and
h(x,y) = f(x, 9. Wy, h(x, y).
By (7.10.2), we get
lg (e, y) = e, M = Elvey) =waplle +1lglx, y) = hlx, y)Il.
Then

14
lgGe. y) =h(x. M = 7= Ve =W le

IA

v =wlloo.

1-1
Thus, (7.36) implies that

x oy
1 ri—1 _ -1 ¢ _
INOW) = NW) oo = m()/o/(x —85)" (-1 T [[v — wlloodtds

_ La"b"
T (A=-Drd4+r)r(1+r)

v =wlloo.
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Hence

La" b
[NO©) = NW)|loo < A Dra s mrd i) v —w|loo-

By (7.34), N is a contraction, and hence N has a unique fixed-point by Banach’s
contraction principle. O

Theorem 7.11. Assume (7.10.1) and the following hypothesis hold:
(7.11.1) There exist p,q,d € C(J,Ry) such that

/e,y w2 < p(x,y) + q(x. p)ulle + dx, y)iz]

for (x,y) € J andeachu € C, z € R".
If
q*arlbrz

d* + <1,
(1 +r)l(+ry)

(7.37)

where d* = sup d(x,y)andq* = sup q(x,y),
(x.y)eJ (x.y)eJ
then the IVP (7.22)—(7.24) have at least one solution on [—a, a] x [—f, b].

Proof. Transform the problems (7.22)—(7.24) into a fixed-point problem. Consider
the operator N defined in (7.35). We shall show that the operator N is continuous
and compact .

Step 1: N is continuous Let {u, }, .y be a sequence such that u,, — uin Cy ). Let
n > 0 be such that |ju,| < 1. Then

Xy
NG ) = N3 = s [ [ = o=
0 0

x|l gn(s, 1) — g(s,2)||deds, (7.38)
where g,, g € C(J) such that

gn(x,y) = f(xJ”“n(x,y)vgn(x’)’))

and
g(x.y) = f(x,y.upxy). g(x,)).

Since u, — uasn — oo and f is a continuous function, we get

gn(x,y) > g(x,y) asn — oo, foreach (x,y) € J.
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Hence, (7.38) gives

ab"”
N - N < — 0 .
IN @) = N@lkoo = Fi s g 18— 8o = 0257 — 00

Step 2: N maps bounded sets into bounded sets in C(, g). Indeed, it is enough show
that for any n* > 0, there exists a positive constant M * such that, for each u €
By = {u € Cap ¢ lulloo < 1}, we have [N()]oo < M*. For (x.y) € J,
we have

IN @) (e, p)IF < (e, )l

x oy
1 ri—1 r—1
TRy TR - )" —1)" dtd 7.
+F(r1)r(r2)0/0/(x )"y =07 llgls, n)lldeds,  (7.39)

where g € C(J) such that
g(x,y) = f(x, . uxy), 8(x, ¥)).

By (7.11.1) we have for each (x, y) € J,

lgCe. I =< PG, y) + g iex, y) + Igg e, I+ d(x, y)llg(x, y)l

a b g(x, y)l ) X
+ d : bl
T+ +r) g e,y

<p"+q" (Ilulloo +

where p* = sup p(x,y). Then, by (7.37) we have
(x,y)eJ

P* A+l
lgCx. ) < q*a,l";’,z = M.

—d*--—4° - -
1 d I'(A+r) I (1+r)

Thus, (7.39) implies that

Ma" b
FA+r)C(1+r)

*

IN@lloo = lItlloe +

Step 3: N maps bounded sets into equicontinuous sets in Cg pgy. Let (xi, y1),
(x2,¥y2) € J, x1 < X2, y1 < Y2, By+ be a bounded set of C(,p) as in Step 2,
and let u € B«. Then

[N (u)(x2, y2) — N(@)(x1, yO I < 2, y2) — p(xa, vl

X1 )1

; _ ri—l1 _ rp—1
TS 0/ 0/ [0 9" (02 =)
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—(e1 =) =0 g (s, 1) |l deds

X2 )2
+m /(xz — )" (y2 = 1) g (s, 1) || deds
X1 )1
1 X1 )2
+m//(x2_s)rl_l(h—’)”_lllg(s,t)||drds
0 »
1 X2 V1

- _ -l Y
+F(”1)F(Vz) 0/(x2 )" (2 — 1) | g(s, 1) || drds,

where g € C(J) such that

glx,y) = f(x,y,u(x,y), g(x,y)).

But [[g(x, y)|| = M. Thus

[N (u)(x2, y2) — N(u)(x1, yO)ll < lp(x2, y2) — i, yo)l|
. M
'l+r)I'(1+r)

+x{'y = x) vy =200 — x1)" (2 — y)"?].

[2952(x2 — x1)"" + 2x3' (y2 — y1)”

As x; — X3, y1 — > the right-hand side of the above inequality tends to zero.
As a consequence of Steps 1-3, together with the Arzela-Ascoli theorem, we can
conclude that N is continuous and completely continuous.

Step 4: A priori bounds. We now show there exists an open set U C Cq gy With
u # AN(u), for A € (0,1) and u € dU. Let u € Cy gy and u = AN (u) for some
0 < A < 1. Thus, for each (x, y) € J, we have

x ¥
A
ulx,y) = Au(x, +—//x—s”_l — )2 La(s, r)drds.
() = M)+ oo | [0 -0 g

00
This implies by (7.11.1) and as in step 2 that |u|| < M *. Hence, for each (x, y) €
[—a, a] x [-B, b], we have

lulloo < max(llpllc. M™) := R.

Set
U= {I/l € C(a.ﬂ) : ”u”oo <R+ 1}
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By our choice of U, there is no u € dU such that u = AN (u), for A € (Q, 1). Asa
consequence of Theorem 2.32, we deduce that N has a fixed-point # in U which is
a solution to problem (7.22)—(7.24). |

7.4.3 Existence Results for Infinite Delay

Let the space

2 :={u:(—o00,a]x (—00,b] - R" : u(y) € Bfor(x,y) € E andul; € C(J,R")}.
Definition 7.12. A function u € £2 is said to be a solution of (7.25)—(7.27) if u
satisfies (7.25) and (7.27) on J and the condition (7.26) on J'.

Our first existence result for the IVP (3.4)—(3.6) is based on the Banach contraction
principle.

Theorem 7.13. Assume that the following hypotheses hold:

(7.13.1) There exist constants £’ > 0 and 0 < I’ < lsuch that

1f Gy u2) = fCeyvow)l < € flu=vlls + Ullz— wl,

foranyu, ve B, zw e R", and (x,y) € J.
If
K{'a"'b" <1
A=A +r)CA+r) ’

(7.40)

then there exists a unique solution for IVP (7.25)—(7.27) on (—o0, a] x (—o0, b].

Proof. Transform the problems (7.25)—(7.27) into a fixed-point problem. Consider
the operator N : §2 — §2 defined by

IEDE (x.y)eJ,
N@u)(x,y) = , (7.41)
px,y) +15g(x, ) (x,y) € J,
where
g(x,y) = f(x,y.uxy), 8(x, )5 (x.y) € J.
Letv(.,.) : (—o0,a] x (—oo, b] — R" be a function defined by

P(x,y). (x,y) e J,

VO = @), (o) € .
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Then v(y,) = ¢ forall (x,y) € E. Foreachw € C(J) with w(x, y) = 0 for each
(x,y) € E we denote by w the function defined by

0, (x,y)ef’,

W) = { W, y) (r.y) € J.

If u(., .) satisfies the integral equation

x
u(x,y) = p(x,y) + m / /(X — )Ny — 1) g (s, t)dtds,
0 0

we can decompose u(., .) as u(x, y) = w(x, y)+v(x,y); (x,y) € J, which implies
U(x,y) = W(x,y) + V(x.y), for every (x, y) € J, and the function w(., .) satisfies

x Yy
— 1 _ r1—l _ rz—l
WD) = s 0/ 0/ (x = )17 (y — 1) g (s, )deds.

where
g(-xsy) = f(xvva(lﬁy) +V(qu)’g(xvy)); ()C,y) € J
Set
Co={weC(J): w(x,y) =0 for(x,y) € E},

and let ||.||(4,») be the seminorm in Cy defined by

IWll@s) = sup lwaylls + sup [w(x, p)Il = sup [lw(x. p)ll. we Co.
(x.y)€E (x.y)eJ (x.y)eJ
Cy is a Banach space with norm ||.| ). Let the operator P : Cy — Cj be
defined by

Xy
1 i
(Pw)(x,y) = m//(x — )"y —f)rz_lf(syl‘,w(s,r) + V(5. &(s,2))dtds,
00

(7.42)
where

g(-xsy) = f(va’vW(x,y) +V(X,y)vg(xvy)); ()C,y) e J.

The operator N has a fixed-point is equivalent to P has a fixed-point, and so we
turn to proving that P has a fixed-point. We shall show that P : Cy — Cj is a
contraction map. Indeed, consider w, w* € Cy. Then we have for each (x, y) € J

x )y
1
1205, 3) = PO = s [ oo
0 0

x||g(s.1) — g*(s,1)||drds,
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where
gXx.y) = f(X,y. W ey + Viey)-

But, for each (x, y) € J, we have

/

v _
lg G, ) = g™ I = 1= W) = W ls.

Thus, we obtain that, for each (x, y) € J

Xy
— * v _ -l _ -1
IP()(x. ) mwxmwnsa_mrmﬂvﬁ!!w - 1)
X[[Ws.r) — W*(s.0) | gdEds

Xy
< Z/ _ r1—l _ rz—l
- (1—1/)F(r1)r(r2)0/0/(x R

xk  sup  |[w(s,t) —w*(s.t)| gdtds
(5.1)€[0.x]x[0.y]

Kt T
_ ri—1 _ r2—1d d — Tk . .
fu—mrmnv»!!“ 9170 = 0 s [ =

Therefore

k0'a" b
'AQ+r+H)C A +r)

I1Pw) = PW)ll @y = 1% = w*ll @)

and hence, by (7.40) P is a contraction. Therefore, P has a unique fixed-point by
Banach’s contraction principle. O

Theorem 7.14. Assume that the following hypotheses hold:
(7.14.1) There exist p',q’,d’ € C(J,R4) such that

G youv)l < p'(xy) + ¢ (o) llulls +d'(x. p) vl
foreach (x,y) € J, ue B, andv € R".
If
q**al‘lbl‘z

d** + <
F(1+r1)F(1+r2)

1, (7.43)

whered** = sup d'(x,y)andq** = sup q'(x,y),thenthe IVP(7.25)—(7.27)
(x.y)€J (x.y)eJ
have at least one solution on (—o0, a] X (—oo, b].
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Proof. Let P : Cy — Cj be defined as in (7.42). We shall show that the operator
P is continuous and completely continuous. As in Theorem 7.11, we can prove that
P is continuous and completely continuous. We now show there exists an open set
U' C Cywithw # AP(w),forA € (0,1)andw € dU’. Letw € Cyandw = AP (w)
for some 0 < A < 1. Thus for each (x, y) € J,

Xy
— A’ _ r1—l _ rz—l
w(x,y) = —F(rl)F(rz) //(x s) (y — 1) " g(s,t)deds.
0 0

where
g(x,y) = f(x,y, ey, 8(x,¥)); (x,y) € J.
By (7.14.1) and (7.43) we get for each (x, y) € J,

P+ q |l
_ _ __g**a"lb
1 d** F(l+r1)F(l+r2)

lgCe. Il < =M,

where p** = sup p’(x,y). This implies that, for each (x, y) € J, we have

(x.y)eJ
‘a"th? —_
bote D = s g =
Hence
Wllary <M.
Set

U'={weCo: |wlup <M + 1}

P : U’ — C, is continuous and completely continuous. By our choice of U’, there
isnow € dU’ such that w = AP(w), for A € (0,1). As a consequence of the
nonlinear alternative of Leray-Schauder type, we deduce that N has a fixed-point
which is a solution to problems (7.25)—(7.27). O

7.4.4 Existence Results with State-Dependent Delay

7.4.4.1 Finite Delay Case

Definition 7.15. A function u € Cgp) such that u(x,y), 5(r)fxu(x, y),
E(rfyu(x, y),ﬁgu(x, y) are continuous for (x, y) € J and Ié)l_’u(x, y) € AC(J)is
said to be a solution of (7.28)—(7.30) if u satisfies equations (7.28), (7.30) on J and
the condition (7.29) on J .
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Set R := R(PT,P;)
= {(p1(s,t,u), p2(s,t,u)) : (s,t,u) € J xC, pi(s,t,u) <0;i =1,2}.
We always assume that p; : J xC — [—«a,a], p2: J xC — [—f, b] are continuous
and the function (s,?) —> u,) is continuous from R into C.

Further, we present conditions for the existence and uniqueness of a solution of
problems (7.28)—(7.30).

Theorem 7.16. Assume that the following hypotheses hold:
(7.16.1) The f : J xC x R" — R" is continuous.
(7.16.2) There exist £y > 0, 0 < [, < 1 such that

ILfCe,youv) = fe p, w V)| < Lxllu —Tlle + Lillv = 7I;

foranyu, ueC,v,veR"and (x,y) € J.
If
Ly a b
<1,
A=1)rA+r)l1+rp)

(7.44)

then there exists a unique solution for IVP (7.28)—(7.30) on [—a, a] x [—f, b].

Proof. Transform the problems (7.28)—(7.30) into a fixed-point problem. Consider
the operator N : C4,8) — C(q,p) defined by

(x,y); (x.y)eJ.
xy
N(x, J’) = ,LL(X, y)+ mff(x — S)rl_l(y — l)rz_l (7.45)
00
xg(s,t)dtds; (x,y) e,

where g € C(J) such that

g(x.y) = (X, Y, Uipy (e300 )p2 (63100 1) & (X5 D).
Letu,v € C(a.p). Then, for (x, y) € [-a,a] x [-B, D],
1 [T
Nu)(x,y)— NW)(x, 5—//x—s"_l —)!
NG =N < s | [ o0 -0

x||g(s,t) — h(s,t)|deds,
where, g, h € C(J) such that

glx,y) = f(x’y’M(Pl(Xvyau(x.y))vPZ(vavM(x.y))’g(x’y))
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and
h(x,y) = f(X Y Vo1 (xyp)pr e 1Y)
Since
g = hloo < 77710 = Wl
we obtain that
Lya b

IN@) = NO)ll s = i v =wllcs-

Lor(14+r)Ir' 1 +r)
Consequently, by (7.44), N is a contraction, and hence N has a unique fixed-point
by Banach’s contraction principle. O
Theorem 7.17. Assume f (7.16.1) and the following hypothesis holds:

(7.17.1) There exist p,q,d € C(J,Ry) such that

/Gy, u, ) < plx,y) +qCx, Ylulle +dx, y)|vi;

foreach ueC,veR"and (x,y) € J.
If
q*arlbrz
<
rd+r)r(1+rp)

where d* = sup d(x,y) and q* = sup q(x,y). Then the IVP (7.28)—(7.30)
(x.y)eJ (x.y)eJ

has at least one solution on [—«, a] x [—, b].

d* + 1, (7.46)

Proof. Consider the operator N defined in (7.45). We can show that the operator N
is continuous and completely continuous.

A priori bounds. We now show that there exists an open set U C C(yp) with
u # AN(u), for A € (0,1) and u € dU. Let u € Cy gy and u = AN (u) for some
0 < A < 1. Thus for each (x, y) € J,

x )y
_ ; _ ri—1 _ -1
x.3) = A5 ) + 0/ 0/ (r = )" (y — 1 Vg (s, )deds.

where, g € C(J) such that

g(x.y) = (X, Y, Uipy (e300 )p2 (63100 1) & (X5 D).

This implies by (7.17.1) and as in step 2 (Theorem 7.11) that, for each (x, y) € J,
we have [|ul|c,, < M™.

U= {M [S C(a,b) : ||u||oo <M*+ 1}.
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By our choice of U, there is no u € dU such that u = AN (u), for A € (0,1). As a
consequence of the nonlinear alternative of Leray-Schauder type, we deduce that N
has a fixed-point u in U which is a solution to problem (7.28)—(7.30). O

7.4.4.2 Infinite Delay Case

Definition 7.18. A function u € £2 such that u(x, y), D, u(x, y),ﬁ(rfyu(x, »),

5;14()6, y) are continuous for (x, y) € J and Ig_’u(x, y) € AC(J) is said to be a
solu~ti0n of (7.31)—(7.33) if u satisfies (7.31), (7.33) on J and the condition (7.32)
onJ'.

Set R/ ::R/(pr,p;)

={(p1(s,t,u), pa(s,t,u)) : (s,t,u) € J x B p;i(s,t,u) <0;i=1,2}.

We always assume that p; : J x B — (—00,a], po : J x B — (—00,b] are
continuous and the function (s, #) > u(s ) is continuous from R’ into 5.
We will need to introduce the following hypothesis:

(Cy) There exists a continuous bounded function L :R’ (o7 .p5) — (0, 00) such that

g lls = L(s.0)l¢lls. forany (s.7) € R'.

In the sequel we will make use of the following generalization of a consequence of
the phase space axioms ([147], Lemma 2.1).

Lemma 7.19. Ifu € 2, then

lunlls = (M + L)|¢lls + K sup (8, ),
(6,n)€[0,max{0,s}]x[0,max{0,}]

where

L'= sup L(s,1).
(s,t)ER’/

Now, we give (without proof) the existence result for the IVP (7.31)—(7.33)
Theorem 7.20. Assume that the following hypothesis holds:
(7.20.1) There exist £, > 0, 0 <1 < 1 such that

IfGeyouv) = fCey a ) < Ellu—vlis + Lla —:

foranyu, ve B, u,veR'and (x,y) € J.

If
LI Ka"b" <1
A=INHra+r)I'1+r) ’
then there exists a unique solution for IVP (7.31)—(7.33) on (—o0, a] x (—o0, b].

(7.47)
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Theorem 7.21. Assume (Cy) and that the following hypothesis holds:
(7.21.1) There exist p,q,d € C(J,Ry) such that

1 Ce. y u )l < p(x.y) + q(x, p)llulls + dCx, p)Iv]|

for (x,y) € J, ue Bandv e R".
If
* 11
q*a"'b -1,
I +r)I(1+r)

d* + (7.48)

where d* = sup d(x,y)andq* = sup q(x,y),
(x.y)eJ (x.y)eJ
then the IVP (7.31)—(7.33) have at least one solution on (—oo, a] X (—oo, b].

7.4.5 Examples

7.4.5.1 Example 1

Consider the following partial hyperbolic implicit differential equations of the form:

. 1
DoY) = 0 T e — Ly~ 21 + Dyt )]

if (x,y) €[0,1] x [0, 1], (7.49)

u(x,y) =x 4+ y% (x,y) € [-1,1] x [-2,1]\(0, 1] x (0, 1], (7.50)

u(x,0) = x, u(0,y) = y% x,y €[0,1]. (7.51)

Set

1
e 21+ Ju(x — 1,y —2)| + [Dyu(x, y))

f(-x7 y’“(x,y),ﬁg“(x’ J’)) = 5

(x,y) € [0,1] x [0,1]. Clearly, the function f is continuous. For each u,v €
C, u,veRand (x,y) € [0,1] x [0, 1] we have

1
Lf(x,y,ulx, y),v(x,y)) — f(x, y,u(x, ), v(x, y)| < @(Ilu —ulle + [[v="I).

Hence condition (7.10.2) is satisfied with { = [ = %. We shall show that
condition (7.34) holds with a = b = 1. Indeed
La" b 1
(I-=Drd+r)r+r) - Ge2— DI +r)l(1+r) <L
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which is satisfied for each (r,r;) € (0, 1] x (0, 1]. Consequently Theorem 7.10
implies that problems (7.49)—(7.51) have a unique solution defined on [—1, 1] x
-2, 1].

7.4.5.2 Example 2

Consider now the following partial hyperbolic functional implicit differential
equations with infinite delay :

eXty—rx+y) ||M(x,y) I

Do) = e ¥ e+ el | + Dyute. )
if (x,y) €[0,1] x [0, 1], (7.52)
u(x,y) = x 4+ y% (x,y) € (—o0, 1] x (=00, 1]\ (0, 1] x (0,1],  (7.53)
u(x,0) = x, u(0,y) =y, x,y €[0,1], (7.54)

where ¢
constant. Let

= w, r = (r1,r2) € (0,1] x (0,1] and y a positive real

B, = lue C((—00,0] x (—00,0],R) :  lim &My (0, n) exists in R .
(0.m |00

The norm of B, is given by

”u”}/ = sup ey(0+”)|u(6, n)|.
(0.17)€(—00,0]x(—00.0]

Let
E :=10,1] x {0} U {0} x [0, 1],

and u : (—00, 1] x (=00, 1] — R such that u( ) € B, for (x,y) € E. (By, [|.|l,) is
a Banach space and B, is a phase space. Set

eXty—rx+y) ||M(x,y) I
2 + e ) (1 + cllup )l + v, »II
X (x,y) €[0,1] x [0, 1].

fx,y uy),v) =

Foreachu, u e By, v, v€ Rand (x, y) € [0, 1] x [0, 1] we have

If(xa yau(x,y)a V(X, J’)) - f(x7 y7ﬁ(x,y)a‘_}(xv y))|
ex+y

= m(cllu— ullg + lv=>l)

< Slu—als + v -7
_ZM u\|lp 2v V.
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Hence condition (7.13.1) is satisfied with £ = 5, I’ = % Sincea =b =K =1,
we get
kl'a" b c 1

A=A+t Ta+mi(trn 2"

Consequently, Theorem 7.13 implies that problems (7.52)—(7.54) have a unique
solution defined on (—o0, 1] x (—o0, 1].
7.4.5.3 Example 3

Consider now the following fractional order hyperbolic partial functional differen-
tial equations of the form:

lu(x — o1 (u(x, y)), y — oau(x, )| + 2

DotCE ) = LGt a1 4 Jut — on(utx. ).y — o2t )| + [Dyae )
if (x,y) € J :=1[0,1] x [0, 1], (7.55)
u(x,0) = x, u(0,y) = y% x,y €[0,1], (7.56)
u(x,y) =x +y2 (x,y) € [-1,1] x [-2, 1]\[~1.0] x [-2,0], (7.57)

where 01 € C(R, [0, 1]), 02 € C(R, [0,2]). Set
pi(x.y.¢) = x —01(9(0.0)), (x,y.9) € J xC([-1.0] x[-2,0].R).
p2(x.y.9) =y —02((0,0)), (x,y,9) € J xC([~1,0] x [-2,0]. R),
fx.y.0.9) = wl+2

(10eT7H4) (1 + || + |[¥])’

¢ € C([-1,0]x[=2,0],R), ¥ € R.Foreachg, g € C([-1,0]x[-2,0],R), ¥, ¥ €
R and (x, y) € [0, 1] x [0, 1] we have

(x,y) € [0, 1] x [0, 1],

1
10e*

|f(x. v 0.9) — fx,y. 9. 9)] < (lg —@llc + Iy —v ).

1

Hence the condition (7.16.2) is satisfied with £, = [, = Toet" We shall show that
e

condition (7.44) holds with @ = b = 1. Indeed

Lea™ b B 1 <1
A—1L)rA+r)I(1+r)  (Q0e*—DIA+rm) (A +rm)

which is satisfied for each (r1,72) € (0, 1] x (0, 1]. Consequently, Theorem 7.16
implies that problems (7.55)—(7.57) have a unique solution defined on [—1, 1] x
[—2,1].
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7.4.5.4 Example 4

We consider now the following fractional order partial implicit differential equations
with infinite delay of the form:

— ceXty—r(x+y)
Dyu(x,y) = pep—
lu(x — 01 (u(x, y)). y — oz (u(x. y)))|

1+ Ju(x = 01 (u(x, ), y — 02(u(x, y))| + [Dyulx, y)|

if (x,y) € J, (7.58)
u(x,0) = x, u(0,y) = y* x,y €[0,1], (7.59)
u(x,y) =x+y% (x.y) e J, (7.60)

where J = [0,1] x [0,1], J := (—00,1] x (=00, 1]\(0,1] x (0,1],¢ = 1 +
m, y a positive real constant and o7, 0, € C(R, [0, 00)).
Let the phase space

B, = {u e C((—00,0] x (—00,0],R) : | Glillln e’y (6, ) exists in R},
@.m]—o00

defined as in Example 2. Set
pi1(x,y.¢) = x —01(¢(0,0)), (x,y.¢) € JxBy,

PZ(xs Vs (p) =Yy _0—2(@(070))5 (xv va) €J x B)/’
Cex+y_y(x+y)|(p|

(et +e ) (1 + ol + Y]

Jx.y.0.9) = (x,y) €[0,1] x [0, 1], ¢ € B,.

Foreach ¢, ¢ € B,, ¥, ¥ € Rand (x,y) € [0,1] x [0, 1] we have
_ 1 _
|/ y. . 9) = flx. .0, 9)] = E(”‘P =olly + Iy —vlD.

1
Hence condition (7.20.1) is satisfied with £, = [/ = —. Sincea = b = K = 1.
we get ¢
K{la" b B 1 1
(1=IDFA+r)C(r2+1)  (c—DI(1+r)l(1+7r) 2

<1,

for each (ry, ;) € (0, 1] x (0, 1]. Consequently Theorem 7.20 implies that problems
(7.58)—(7.60) have a unique solution defined on (—o0, 1] x (—o0, 1].
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7.5 Darboux Problem for Implicit Impulsive Partial
Hyperbolic Differential Equations

7.5.1 Introduction

This section concerns the existence results to fractional order IVP, for the system
—r T .
D, u(x,y) = f(x,y,u(x,y), D, u(x,y)); if (x,y) € Jx; k =0,...,m,
(7.61)
u(x,j',y) =u(x,,y) + L(u(x,,y)); ifyel0,b], k=1,...,m, (7.62)

u(x,0) = p(x); x €[0,4q],
u(0,y) =y (y); y €[0,0], (7.63)
¢(0) = ¥(0),
wherea,b > 0, Jo = [0, x1] x[0,b], Jx = (xk, Xk+1] X [0,b]; k=1,...,m, 0=
Xo<X| <+ < Xp <Xmg1=a, [ JXR"'XR'" > R", [ :R" > R"; k =
1,....m, J:=[0,a] x[0,b], ¢ € AC([0,a]) and ¢y € AC([0, b]).
We present two results for the problems (7.61)—(7.63), the first one is based on

Banach’s contraction principle and the second one on the nonlinear alternative of
Leray-Schauder type.

7.5.2 Existence of Solutions

To define the solutions of problems (7.61)—(7.63), we shall consider the space
PC(J) ={u J >R :ueCUU,R"); k=0,1,...,m, and there
exist u(x; , y) and u(x]j,y); k=1,....,m,
with u(x; . y) = u(xg, y) foreach y € [0, b]}.
This set is a Banach space with the norm

lullpc = sup [lu(x, y)].
(x.y)eJ

Definition 7.22. A function u € PC(J) such that u(x, y), D' u(x,y), D"

Xk, X Xk»y
u(x,y), D::ru(x,y); k =0,...,m,arecontinuous for (x,y) € Jy; k =0,...,m

and I;;ru(x, y) € AC(Ji); k = 0,...,m is said to be a solution of (7.61)—(7.63)
if u satisfies (7.61) on Ji; k = 0, ..., m and conditions (7.62), (7.63) are satisfied.

From Lemmas 2.15 and 7.4, we conclude the following lemma.
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Lemma 7.23. Let a function f : J xR" xR" — R" be continuous. Then problems
(7.61)—(7.63) are equivalent to the problem of the solution of the equation

g(x,y) = f(x,y,8(x,y),g(x,y)),

where
x oy
HE D)+ T / /(x =)'y = 0" (s )drds;
0 0
if (x,y) €[0,x1] x [0, 5],
k
w(x.y) + Y (L. y)) = I (u(x; . 0)))
S(x,y) = = Xi y
+ 7 Yo / / (i —5)" N (y — 1) g(s. 1)drds
Xi—1 0
X y
+m//(x — )"y =) g(s.1)drds:
xr O
if (x,y) € (k, xk1] X [0,0], k=1,...,m,

plx.y) = @(x) + ¥ (y) — ¢(0).
And if g € C(J) is the solution of this equation, then u(x,y) = £(x, y).

Further, we present conditions for the existence and uniqueness of a solution of
problems (7.61)—(7.63).

Theorem 7.24. Assume

(7.24.1) The function f :J x R" x R" — R" is continuous.
(7.24.2) For any u,v,w,z € R" and (x,y) € J, there exist constants | > 0 and
0 < Iy« < 1 such that
| f(x.y.u.2) — f(x,y.v.w)|| < u—v| + Lllz—w].

(7.24.3) There exists a constant [* > 0 such that

Ik (u) — I @)|| < I*|lu—1ul, foreachu,u € R", k =1,...,m.

If
2la" b

2ml* + <1,
T IO (h+ DIt 1)

(7.64)

then there exists a unique solution for IVP (7.61)—(7.63) on J.
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Proof. Transform the problems (7.61)—(7.63) into a fixed-point problem. Consider
the operator N : PC(J) — PC(J) defined by

N@(x,y) = ple,y) + Y (e, y) = Ie(u(x;,0))

O<xp<x

O<axp <xy

Xp oy
; _ Vil oyl
)T () > / 0/ (xx — )" (y — 1) g(s.1)drds

x Yy
! ri—1 _ n\n—1
+m/0/(x = )" (y —1)?" g(s, t)deds, (7.65)

where g € C(J) such that

g(x,y) = f(x,y,ulx,y),g(x,y)),

By Lemma 7.23, the problem of finding the solutions of the IVP (7.61)—(7.63) is
reduced to finding the solutions of the operator equation N(u) = u. Let v,w €
PC(J). Then, for (x, y) € J, we have

INO)(x, y) = Nw)(x, y)

< (i 9)) = e we DI+ e (v 0) = Te (vl 0))])
k=1

xp oy
! S ri—1 _ -1 _
+ﬁmm5;1!@rﬂ (v =07 lgts.1) — his, s

Xy
1 _ ri—1 _ -1 _ d d 7
+ﬁﬁﬁ5!ﬂx” (=0 lglo.0) = h(s. ) [drds. (7.66)

where g, h € C(J) such that

g(x,y) = f(x,y,v(x,y), g(x,y))

and
h(x,y) = f(x,y,w(x,y), h(x,y)).
By (7.24.2), we get

lgCx,y) =h(x, »)|| < v(x,y) —wlx, Y| + Lllg(x, y) —h(x, y)|l.

Then
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)
lgCr. ) = hx. I = 7= Iv(x.y) = wlx. p)]

IA

1—1, v—wlrc.

Thus, (7.24.3) and (7.66) imply that

INW) = Nw)lre
< 21UV ») = wg I+ v, 0) = w(xg, 0))
k=1

)

m kY
_ ri—1 _ r—1 _
+a—mnmnm2§//m =0y = wllpe de ds

Z [ — ri—l1 _ \r—l1 _
+a—mnmmm!!@ Y'Y =0T v = wlec dr ds.

However,

Xy
l " . B
=) =" v - drd
(1 =1)C () () kZZ:l / O/(Xk )"y =) v —wllpc dids
Xk—1

l ri—1
< e W”Z/““” ds

! k
==l )F(rl)['(rz) T v=wlee Z
- Z 2 = wi ﬁilﬁ
T U=l 1 T
< e e
T (1 =L)r)C () 2 vowiee 1

la™b"

- (1 _l*)F(l +r1)F(1 =+ rz) ||V_W||PC-

319
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Then
la" b
N®Ww) — oml*
INW) = Nw)|pc < ( ml* + By
i e v =i
(A=) + DI+ 1)) 7P
2la" b
2ml* 3 ‘
: ( " * (1—1*)F(r1+1)1"(r2+1))”" W”PC
Hence

ING) = Nl e < (2mi* + 2la”b™ v = w
— m — .
Yo wlee = (=1l (i + D+ 1)) 7 MIPE

By (7.64), N is a contraction, and hence N has a unique fixed-point by Banach’s
contraction principle. O
Theorem 7.25. Assume (7.24.1) and the following hypotheses hold:

(7.25.1) There exist p, q, d € C(J,Ry) such that

IfCe,y,u, )l < p(x,y) +q(x, y)|lull +d(x, )zl

for (x,y) € J and eachu,z € R".
(7.25.2) There exists ¥* : [0,00) — (0,00) continuous and nondecreasing such
that

I @)l < ¥ (lul); k=1.....m, forallueR".

(7.25.3) There exists a number M > 0 such that

M
2a"1 572 (p* +q* |ill o +2mg* y* (M)
20*¥a 1pT2
(1= — Sty ) T+ T (14r2)

> 1,
I itlloo + 2myr* (M) +

where p* = sup p(x,y), ¢*= sup ¢q(x,y)andd* = sup d(x,y).
(x.y)€J (x.y)eJ (x.y)eJ

If
2g*a" b
<1,
F(l + rl)F(l +r2)
then the IVP (7.61)—(7.63) have at least one solution on J.

d* +

(7.67)

Proof. Transform the problems (7.61)—(7.63) into a fixed-point problem. Consider
the operator N defined in (7.65). We shall show that the operator N is continuous
and compact .
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Step 1: N is continuous. Let {u, }, N be a sequence such that u, — uin PC(J).
Let > 0 be such that |uy,| pc < n. Then

[N () (x, y) = N@)(x, )|

<Y (MGt (i 1)) = T @ YD+ I (s (i 0)) = T (e, 0)) )
k=1
1 m Xp oY
ri—1 _ -l _
i m@/ 0/ (e =)~ (0 =0 g (s.1) = g (s.0)|deds

x Yy
1 ri—1 _ -1 _
e / 0/ (=) 0 — )2 gu(s.1) — g(s. 1)l drds, (7.68)

where g,, g € C(J) such that
gn(x.y) = f(x. y,un(x. ). gn(x.y))
and
glx.y) = f(x,y.u(x,y), g(x,y)).
Since u, — uasn — oo and f is a continuous function, we get
gn(x,y) > g(x,y) asn — oo, foreach (x,y) € J.
Hence, (7.68) gives
IN(n) = Nl pc < 2ml*|luy —ulpc

N 2a" b
L1+ r)C(1+r)

lgn — glloc — 0 asn — oco.

Step 2: N maps bounded sets into bounded sets in PC(J). Indeed, it is enough to
show that for any n* > 0, there exists a positive constant M * such that for each

u€ By ={ue PCW):|ullpc <n*},

we have | N(u)| pc < M*. For (x,y) € J, we have

IN@)Ce I < NG I+ Y (i s )+ i (i 0)) )

k=1

XY
! N ri—1 _ -l
TN (m) ;xk/ O/(Xk — )" (y =" llg (s, 1)[|drds

Xy
1 _ o\l _ -l
+rooros | 0/ (v =57 =1 g (s, drds, (7:69)
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where g € C(J) such that

g(x,y) = f(x,y,u(x,y),g(x,y)).

By (7.25.1), for each (x, y) € J, we have

lg(x. M = p(x.y) +qCx. EC, Y+ d(x. p)lgx. y)I.

On the other hand, for each (x, y) € J,

1§ e < el I+ DMk el )+ ki, 0))])

k=1

X )
! - ri—=le -l
+m; / /(Xk—s) (y—0"="lig(s. )|l drds

T Xk—1 0
1 oor
T Teorm) / / (x ="'y =07 g(s.0)]|drds
X 0
2arlbr2
< lulloo 4+ 2my*(n*) + e

F(l + rl)F(l + rz)
Hence, for each (x, y) € J, we have

2a"p"
IF(d+r)lA+r)

lgleo < p*+q" (nunoo L amyt ) + ||g||oo) +d*lglloo.

Then, by (7.67) we have

P+ q*(llulloo + 2mw*(n*)) _

”g”OO f 1 _ d* _ 2g*a’l b2 R
I'(A+r) I (1+r)

Thus, (7.69) implies that

2Ma" b" .

INWlprc < llitlloo +2my™*(n*) + EE (TS =

Step 3: N maps bounded sets into equicontinuous sets in PC(J). Let (11, y1),
(2, y2) € J, 1 < pand y; < y,, B+ be a bounded set of PC(J) as in Step 2,
and let u € B,«. Then for each (x, y) € J, we have
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[N () (72, y2) — N () (z1, y1) ||

< lp(zr, y1) — p(z, y2) | + Z (I s y1) — T (uCxg, y2)) 1)
k=1

Xp o V1

)T () ;;1 [ O/ =) [ =0T = =077
xg(s,t)dtds

Xk )2

5 .
+Hmmmg;//m S 2 = 02 g (s, ) [ drds

Xk—1 )1

1 )1

; _ o\l AV U oyl N
+F(V1)F(r2)0 0/[(T2 020 (="' ="

xg(s, t)dtds

T )2
+FE%W§ /brﬂw*@r4W”anMMs
T )N
1 T )2
yue /brﬂw*@r4W”anMMs
0 »n
T V1

1 ri—l1 _ -1
T !ﬁrw> (02 =7 lgls. Dldrds.

where g € C(J) such that

g(x,y) = f(x,y,u(x,y), g(x,y)).

But ||g]lcc < M. Thus
[N () (T2, y2) — N(@)(z1, y) | < [|ie(zr, y1) — plz2, y2) ||

+ D (M (e . y0) = Le(w(xg . y2)))

k=1
m kY

M ri—1 Y -l
*m,gf O/(X"_S) [ =077 = (31 — )] deds

—1
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Iy m % n
F / /(xk — )" Ny, — 1) N drds
I'(r)I(r2) ];X ;
k—1 V1

1 )1

M ri—1 _ -1 -l a1
+m0/0/[(fz—s) (2 —=1) (r =) (1 — 1) ] deds

o )2
M ri—1 r—1
- - —1)>"ldrd
+ o)) (2=9)""(n2—1) s
1 )
M 1 )2
r1—l rz—l
_ — —t ded
+ T () (2=9)""(n2—1) s
0 »n
M Y1
r1—l rz—l
_ — —t deds.
+ T () (2=9)""(n2—1) s
1 0

As 11 — 1 and y; —> )», the right-hand side of the above inequality tends to
zero. As a consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem,
we can conclude that N is continuous and completely continuous.

Step 4: A priori bounds. We now show that there exists an open set U € PC(J)
with u # AN(u), for A € (0,1) and u € oU. Letu € PC(J) and u = AN (u) for
some 0 < A < 1. Thus for each (x, y) € J, we have

e, I < 1A e, )+ D AU (g, )+ 1k (el 0) )
k=1

X )
B P Y
+F(r1)F(r2) ;Xk/ O/(Xk =)y —1)” 7 lg(s, 1)[|deds

x )y
; _ -l _ -1
rrores ] 0/ (x =" (v = 1" g s, 1) drds

N 2a"1b"
< |tlloo + 2myr™* (JJu(x, y|) + TS lglloo-

But

P 4+ q* (Illoo + 2my*(|lul pc))
lglloo < S .

I —d*— T(+r) T (1+r)
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Thus, for each (x, y) € J, we have

2a"b" (p* 4 g™ | tlloo + 2maq™ ¥*(|lullpc))

fallpe < Nelloo + 2y (lulpc) + LT L] -

Hence

lull pc
2a'1 b’ * * o 2 *
ltlloo + 2ma*yr*(lullpc) + ( 157 (p* +¢* [ ulloo+2my* (lullpc))

2¢*a"1p"2
l—d*—m)r(l+rl)r(l+72)

By condition (7.25.3), there exists M such that ||u||pc # M. Let
U={uec PCUJ):|u|lpc <M +1}.
By our choice of U, there is no u € dU such that u = AN (u), for A € (0,1). As a

consequence of Theorem 2.32, we deduce that N has a fixed-point u in U which is
a solution to problems (7.61)—(7.63). O

7.5.3 An Example

As an application of our results we consider the following impulsive implicit partial
hyperbolic differential equations of the form:

1
B 10e* Ty +2(1 + |u(x, y)| + |ﬁ;ku(x, y)|)’
if(x,y)e Jxk; k=0,...,m, (7.70)

1
;ifyel0, 1], k=1,...,m,
6o L Gy Y <0

5;ku(x, y)

u(x.y) = ulxg . y) +
(7.71)
u(x,0) = x, u(0,y) = y* if x,y €0,1]. (7.72)

Set
1

10eXty+2(1 + [u| + |v])’

Sy, uv) = (x,y) € [0, 1] x[0,1]

and
1

e V(L + fulx, y)I)

Ik(u(xk_’ y)) = 6 , Y € [Os 1]

Clearly, the function f is continuous.
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For each u,v,u,v € R and (x, y) € [0, 1] x [0, 1], we have

_ 1 _ -
FGpuy) = fCry )| = 7o (=] + v =7)

and

_ 1 _
[Tk () — I ()| < @W —ul.

Hence conditionsd (7.24.2) and (7.24.3) are satisfied with [ = [, = ﬁ and [* =
61?. We shall show that condition (7.64) holds with a = b = 1. Indeed, if we
assume, for instance, that the number of impulses m = 3, then we have

2a" b _ 1 2 .
(A=1L)C(r+DL(ra+1) et (10e2— D)+ DI+ 1) ’

2ml* +

which is satisfied for each (r,r;) € (0, 1] x (0, 1]. Consequently Theorem 7.24
implies that problems (7.70)—(7.72) have a unique solution defined on [0, 1] x [0, 1].

7.6 Implicit Impulsive Partial Hyperbolic Differential
Equations with State-Dependent Delay

7.6.1 Introduction

In this section, we start by studying the existence result to fractional order IVP, for
the system

5;ku(‘x’ y) = f(‘x’ Y, M(pl(XquM(x.y))vPZ(XvaM(X.y)))’5;ku(‘x’ y))?
if (x,y) € Jk; k=0,...,m, (7.73)
u(xi.y) =ulxg.y) + L(u(xg, y): if y € (0.6 k=1.....m,  (1.74)
u(x,y) = ¢(x,y); if (x,y) € J := [~a,a] x [-B,b]\(0.a] x (0.b], (7.75)

u(x,0) = p(x); x €[0,4a],

u(0,y) =¥ (y); y €[0,0],
where a,b, o, > 0, r = (r1,r2) € (0,1] x (0,1], 0 = xo < x1 < ++» < xp <
Xmy1 = a, ¢ € C(J), ¢ : [0,a] = R", ¢ : [0,b] — R” such that ¢(x) =
¢(x,0), ¥v(y) = ¢(0,y) foreach x € [0,a], y € [0,b], f :J xC xR" > R"
is a given continuous function, p; : J x C — [—a,a], po : J x C — [-B,b], I; :
R" - R", k = 1,...,m are given functions and C is the space defined by

(7.76)
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C =Cp) = {u:[-a,0] x [-B,0] = R" : continuous and there exists
7 € (—a, 0) with u(z;, ) and u(x,j',j/), k=1,...,m, exists for any

y € [=B.0] withu(z;", y) = u(zi, y)} .

C is a Banach space with norm

lullc = sup lluCx, )1
(ry)el=a.0)x[=p.0)

Next we consider the following system of partial hyperbolic differential equations
of fractional order with infinite delay:

D u(x.y) = [(X Y Uy vyt ) ey e ) Do 40X 1))

if (x,y) e Ji: k=0,...,m, (7.77)

u(x . y) =ulxp,y) + Lu(xg. ) ify €[0,b], k=1,....m,  (7.78)
u(x,y) = ¢(x,y); if (x,y) € J' 1= (=00, a] x (=00, b]\(0,a] x (0,b], (7.79)
u(x,0) = p(x); x €[0,4a],

u(0,y) =¥ (y): y €[0,b],

where ¢, ¥, I; are as in problems (7.73)—(7.76), f : J x BxR" - R"is a givgn
continuous function, p; : J X B — (—00,a], p» : J X B — (—00,b], ¢ € C(J)
and B is a phase space.

(7.80)

7.6.2 Existence Results with Finite Delay

Set
PC = {u : [~a,a] x [-B.b] — R" continuous : u|—aox-g0o € C,
and uljoqxp. € PC}, which is a Banach space with the norm

lullpe = sup llux, Y)II-
(ry)elaalx[=p.0]

Ee:ﬁnition 7.26. A functionu € P C suchthatu(x, y), 5xllwxu(x, ¥), 5Xi’yu(x, y),
Dx:ru(x,y); k = 0,...,m, are continuous for (x,y) € Jx; kK = 0,...,m and
I;;ru(x, y) € AC(Jy); k = 0,...,m is said to be a solution of (7.73)—(7.76) if

u satisfies the condition (7.75) on J, (7.73) on Ji; k = 0,...,m and conditions
(7.74) and (7.76) are satisfied.
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SetR 1= R po7)
= {(p1(s,t,u), p2(s,t,u) : (s,t,u) € J xC, pi(s,t,u) <0;i=1,2}.
We always assume that p; : J xC — [—a,a], p2 : J xC — [—p, b] are continuous
and the function (s,?) —> 1) is continuous from R into C.
The first result is based on the Banach fixed-point theorem.
Theorem 7.27. Assume that

(7.27.1) There exists constants £ > 0, 0 < [ < 1 such that
If ey uv) = fCe, yu V)| < Llu—ulle + v —vI:

foreach (x,y) € J, u,ue C and u,u € R".
(7.27.2) There exists a constant [* > 0 such that

() — I @)|| < I*||lu—71ul|, foreachu,ueR", k=1,...,m.

If
2¢a™ b
<1,
A-Drrm+nrm+1)

2ml* + (7.81)

then (7.73)—(7.76) have a unique solution on [—«o, a] x [—8, b].

Proof. We transform the problem (7.73)—(7.76) into a fixed-point problem. Con-
sider the operator ' : PC — P C defined by

$(x.y) (x.y) €T,
wCey)+ Y el . ) = Ie(u(x; . 0)))
0<xp<x
Xk oy
1 fl— 7'2—
F@0 ) =+ 5050w > / (i = )"y =02 g(s, 1)deds
0

0<xk <Xyp_y

Xy
; _ o)1l _ \—1
+1"(r1)1"(r2)“/0/(x STy — 1) g(s, t)deds (x,y) e J,

where g € C(J) such that

8(x, ) = fx, Y, Uipr vy yy)pa ey ) (X V).

Clearly, the fixed-points of the operator F are solutions of the problems (7.73)—
(7.76). We shall use the Banach contraction principle to prove that F has a fixed-
point . For this, we show that F is a contraction. Let u,v € PC , then for each
(x,y) € J, we have
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IF @) (x, y) = FW)(x, )|

<D (Mg, ) = L, )+ 1k (i, 0)) = e (v(x, 0) )
k=1
| m kY
ri—l1 _ -1 _
+m/;x! O/(Xk—s) (y—=1)"""|lg(s,t) — h(s,t)|dtds

x oy
; _ oyl _ -1 _
+ I'(r)I(r2) /O/(X T = 07g (s, 1) — his, 1)lldids,

where g, h € C(J) such that
g(x.y) = fX ¥, Uipr(x,y.001)p2 (6 v 10 ) s 8 (X0 YD)

h(x,y) = f(x.y, U(p1 (x.7.7(x.3))-02(X.7 U (x 1)) g(x,y)).
By (7.27.2), we get

lgCx,y) —h(x, VIl < kllulx,y) —vx, I +glx,y) —hx, ).

Then

A

lgCe,y) =h(x, Y < llu(x, y) = v(x. y)l

1-1

IA

1_l||“—V||Pc.

Thus, for each (x, y) € J, we have
[ F@)(x,y) = F@)(x, y)ll

<Y (g p) = v )|+ llutxg . 0) = v(xe . 0)])
k=1

Xy
¢ - _ oyl _ -1 _
" A =DIr)r(r2) kZ: / /(Xk STy =07 e =viiee

:lxk—l 0

Xy
e _ ri—1 _ -1 _
+(1—I)F(r1)F(r2)/O/(x )Ty =07 u—v]pcdids

5 (2 4 2banb™ ) = v
m u—v .
= A=DOI'A+r)(1+r) re
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Hence, for each (x, y) € [—«, a] x [-8, b], we get

N 28a" b .
IF@ ) = FO I = (217 + Y il

Consequently

20a" b | -
A=D1+ (1 +ry) ) Vire:

IWM—FMME<@mﬁ+

By the condition (7.81), we conclude that F' is a contraction. As a consequence of
Banach’s fixed-point theorem, we deduce that F' has a unique fixed-point which is
a solution of the problem (7.73)—(7.76). ]

In the following theorem we give an existence result for the problems (7.73)—
(7.76) by applying the nonlinear alternative of Leray-Schauder type.

Theorem 7.28. Assume that the following conditions hold:

(7.28.1) There exist continuous functions p,q,d : J — Ry such that

I1Lf e,y u vl < p(x.y) + g p)llull + dCx, p)Ivil.

foreach (x,y) € J, ue C andz € R".
(7.28.2) There exists a continuous and nondecreasing function ¥ : [0,00) —
(0, 00) such that

17k @l < (llul):  forallu e R".

(7.28.3) There exists a number M > 0 such that

M

— 24" b2 (p*4q* M)
itlloo 4+ 2m¥ (M) + G=rram Fatry

> 1,

where p*= sup p(x,y), ¢"= sup q(x,y)andd*= sup d(x,y).If d*<1,
(x.y)eJ (x.y)eJ (x.y)eJ
then (7.73)—(7.76) have at least one solution on [—«, a] x [—p, b].

Proof. Consider the operator F' defined in Theorem 7.27. We can easily show that
the operator F is continuous and completely continuous.

A priori estimate. For A € [0, 1], let u be such that for each (x, y) € J we have
u(x,y) = A(Fu)(x, y). For each (x, y) € J, by (3.30.1) and (7.28.2) we have
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e, )< MG, I+ D k() + 1 I, 0)) )
k=1

m Xk
o n=l(y _ -l
+1"(I‘1)1"(I‘2) /;Xk/ O/(Xk =)y — 1) lg(s, 1)[|deds

x
1 _ r1—l _ rz—l
—i—m/()/(x )"y —1) llg(s,t)||deds,  (7.82)

where g € C(J) such that

g(x, ¥) = fOX Y oy (x oy 2y aigeyy))s (X5 ).
By (7.28.1), for each (x, y) € J, we have
lgGe, I = plx, y) + q(x, y)llullc +dx, y)lglx, v
=p +q"lulc +d*glx. ).
Thus, for each (x, y) € J, we have

Pr+q"ulc

<
lgGe )l = E0

Then, (7.82) implies that

2a"b" (p* + q*||ullc)

lullo = litloo + 2 (llloo) + 1= s T m (T 170

Hence
lull pc

2a"1b"2 (p*+q* |lull pc)
”M”oo + 2ml1/(||u||Pc) + (l—d*)F(l+r1)F(l-[|)—r2)

By condition (7.28.3), there exists M such that ||u|| pc 7# M.
Let

U={uePC: |ulzz <M}

The operator F : U — PC is continuous and completely continuous . From the
choice of U, there is no u € dU such that u = AF(u) for some A € (0,1). As a
consequence of the nonlinear alternative of Leray-Schauder type, we deduce that I
has a fixed-point « in U which is a solution of the problem (7.73)—(7.76). O
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7.6.3 Existence Results with Infinite Delay

Now we present two existence results for the problems (7.77)—(7.80). Let us start in
this section by defining what we mean by a solution of the problem (7.77)—(7.80).
Let the space

2 :={u:(—00,a] x (—00,b] > R" : u(y € Bfor(x,y) e E andu|; € PC}.

Definition 7.29. A function u € £2 such that u(x, y), 5;quu(x, »), 5:i’yu(x, »),

5;ku(x,y) are continuous for (x,y) € Jx; kK = 0,...,m and lek_ru(x,y) €
AC(Jy); k = 0,...,m is said to be a solution of (7.77)—(7.80) if u satisfies the
condition (7.79) on J', (7.77) on Ji; k = 0, ..., m and conditions (7.78) and (7.80)
are satisfied.

Set R/ ::R/(PT,P;)
= {(p1(s,t,u), pa(s, t,u)) : (s,t,u) € J x B, p;i(s,t,u) <0;i =1,2}.

We always assume that p; : J x B — (—o0,a], pp : J x B — (—o00,b] are
continuous and the function (s, ) —> u(; ) is continuous from R’ into B.
We will need to introduce the following hypothesis:

(Hy) There exists a continuous bounded function L R/ (- ;) — (0, 00) such that

Ipenlls < Lis.t)l¢llp. forany(s,1) € R
In the sequel we will make use of the following generalization of a consequence of
the phase space axioms [148].

Lemma 7.30. Ifu € §2, then

lunlls = (M + L)lgls + K sup [[u(@. m).
(6,n)€[0,max{0,s}]x[0,max{0,7 }]

where

L' = sup L(s,1).
(s,t)ER/

Our first existence result for the IVP (7.77)—(7.80) is based on the Banach
contraction principle.

Theorem 7.31. Assume that the following hypotheses hold:
(7.31.1) there exist £ > 0and 0 < [ < 1 such that

£ e,y uv) = fCe, p, 09| < Elu—w]p + v =7,

forany u, ue€ B, v,veR", and (x,y) € J.
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(7.31.2) There exists a constant [* > 0 such that
I 1) — Iy @)|| < *||lu—1u|, foreachu,u e R, k =1,...,m.
If

2K{a" b o
(1=Dr A +r)CA+ry)

ml* + (7.83)

then there exists a unique solution for IVP (7.77)—(7.80) on (—o0, a] x (—oc0, b].

Proof. Transform the problems (7.77)—(7.80) into a fixed-point problem. Consider
the operator N : §2 — §2 defined by

$(x,), (x,y) e T,
px )+ Y (ulxg, )

0<xp<x
— I (u(x, 0)))
Xk Y
r1—l
//m—@ (7.84)
k—1 0

1
N =1 ey 2

O<xg<xy

x(y — 1) g (s, t)dtds

x Yy
1 _ r1—l
+Fmﬂvg/!“ s)

x(y — 1) g(s, t)deds, (x,y) € J,

where g € C(J) such that

g(x, ) = fx, Y, Uip vy yy)pa ey s 8(X V).

Letv(.,.) : (—o0,a] x (—oo, b] — R" be a function defined by,

P(x.y). (x.y) € J,

v y) = { p(x,y), (x,y) € J.

Then v(, ) = ¢ forall (x,y) € E. Foreachw € C(J,R") with w(x, y) = 0 for
each (x, y) € E we denote by w the function defined by

0, (x,y)ef’,

WL”:{wuyumwei

If u(., .) satisfies the integral equation

x
u(x,y) = p(x,y) + m / /(X — )Ny — 1) g (s, t)dtds,
0 0
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we can decompose u(., .) as u(x, y) = w(x, y)+v(x, y); (x,y) € J, which implies
U(x,y) = W(x,y) T+ V(x.y), fOr every (x, y) € J, and the function w(., .) satisfies

wx,y) = Y (T(ulxg, ) — (u(x; . 0)))

0<xp<x

1 ri—1 r—1
m Z //(xk—s) (y =)™ 'g(s, t)drds

O<xg<x,

Xy
; _ -l _ -1
T () / 0/ (oo =g s,

for each (x, y) € J, where g € C(J) such that

(X, ¥) = S XY, W(p1 (1000260 1000) T V01 (1,010,261 ) & (X5 V)

Set
Co={we 2: wx,y)=0 for(x,y) € E},

and let ||.||(4.,») be the seminorm in Cy defined by

IWll@sy = sup lwaplls + sup [w(x, p)I = sup [w(x, p)[l. we Co.
(x,y)€EE (x,y)eJ (x,y)eJ

Cy is a Banach space with norm ||. || 4. Let the operator P : Cy — C be defined by

(Pw)(x.y) = > (ku(xi.y)) — L(u(x; .0)))

0<xp<x

ri—1 r—1
F(rl)F(rz) 2 //(x"_s) (y — 1) g(s, t)deds

O<xg<x,

x )
; _ ri—l1 _ r—1
+F(r1)F(r2)/ 0/ (=" =0 g (s Ddeds, - (789)
Xk

for each (x, y) € J, where g € C(J) such that

g, ) = fX. Y. Wor vyt )02y i) T Vo1 eyt ) o2 (v ) 8 (X 1)

The operator N has a fixed-point is equivalent to P has a fixed-point, and so we turn
to proving that P has a fixed-point. We will show that P : Cy — Cj is a contraction
map. Indeed, for each u,v € Cy, we get
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) Kb
1PG) = PO < (2mz P )nu—vu(a,b),
=D+ )1+ 1)

and by (7.83), P is a contraction map. Hence P has a unique fixed-point by
Banach’s contraction principle. O

Now we give an existence result based on the nonlinear alternative of Leray-
Schauder type.

Theorem 7.32. Assume (Hy) and

(7.32.1) There exist constants p,q > 0 and 0 < d < 1 such that
I £,y uv)|| < p+qllulls+d v, for (x.y) € J and eachu € B, v € R".
(7.32.2) There existcy > 0; k = 1,...,m such that
()| <cx forallueR".

Then the IVP (7.77)—(7.80) have at least one solution on (—o0, a] X (—oo, b].

Proof. Let P : Cy — Cy defined as in (7.85). As in Theorem 7.31, we can show
that the operator P is continuous and completely continuous.

We now show there exists an open set U’ C Cy with w # AP (w), for A € (0, 1)
and w € dU’. By (7.32.1) for each (x, y) € J, we have

P +qlw+vls
X, E _——.
g, )l -

On the other hand, Lemma 7.30 implies that, for each (s,¢) € J we have
W) +venlls < Weolls + venls
< Ksup{w(3,7) : (5,7) € [0,s] x [0,¢]}
+(M + L)|¢llz + K[¢(0.0)]|. (7.86)

If we name z(s, t) the right-hand side of (7.86), then we have
Wy +venlis < 2(x. y).

Letw € Cpand w = AP (w) for some 0 < A < 1. By (7.32.2), for each (x, y) € J,
we obtain

m Xy
< 2 _ ri—1 _ -1
N e R TAIXTS 0/ 0/ ==

X(p + qWis.py + Vil )deds
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- 2pa" b
< 2¢, +
‘;; ST AU+ T+ 1)
2G [T
q ri—1 ry—1
+ x —s)"! — 1) z(s, t)detds
(= L) I I 0/ 0/ (=0 =02l )
- Xy
<p+ 24 //(x — )" Ny — )2 z(s, 1)dtds,
(=L (r)I(r2) s
(7.87)
where
= 2pa" b
= 2¢ci + .
P k; CT A0+ I+ 1)

Using (7.87) and the definition of z, for each (x, y) € J we have

2x.y) = (M + L)|¢ls + Kllg(0,0)[| + pK

Xy
2Ké _ qyn—l _ n\n—1
+(1—l’)F(r1)F(rz)0/ 0/ (x =)™y = )"zl 1)drds.

Xy
/ 2Kq _ ri—1 _ r—1
z2(x,y) =p + TSRS O/O/(x $) Ny — 1) (s, 1)deds,

where
=M+ L"|¢llz + Kl¢(0,0)[| + oK.

Then by Lemma 2.43, there exists § = §(ry, r2) such that we have

28K Ga’b" ) R
A-IrA+mrd+mn))

el < o (1 +

Hence, (7.87) implies that

2a"b"2GR R
A=A +r)C(1+r)

Wlloo < p +

Set
U = {W € Co: Wllwp < R* + 1} .
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P : U’ — C, is continuous and completely continuous. By our choice of U’, there
isnow € dU’ such that w = AP(w), for A € (0,1). As a consequence of the
nonlinear alternative of Leray-Schauder type, we deduce that N has a fixed-point
which is a solution to problems (7.77)—(7.80). O

7.6.4 Examples

7.6.4.1 Example 1

As an application of our results we consider the following impulsive partial implicit
hyperbolic differential equations of the form:

eV ulx — 01 (u(x, ), y — 02(u(x, y))|

D’ ulx.y) = — :
O+ et + |u(x — o1 (u(x, p)), y — o2(ulx, )| + [Dgulx, y)|)

if (x,y) e Ji; k=0,1, (7.88)

u((%)+y) - u((%) ,y) S ez pee wlf(li()%;—y,)ly)l; velo.ll.  (7.89)

u(x,y) = x +y% (x.y) € [-1,1] x [-2,1]\(0, 1] x (0, 1], (7.90)

u(x,0) = x, u(0,y) = y%: x,y €[0,1], (7.91)

where Jy = [0, %]X[O, 1], J1 = (%, 1]1x]0, 1], o1 € C(R, [0, 1]), 03 € C(R, [0, 2]).
Set

pl(-xsys(p) = X—O’l((p(0,0)), (xvva) eJ xC,
p2(xv y?@) =Yy _0-2(90(070))5 ()C, Vs (p) eJ xC,

where C := C(1 ). Set

. e gp| .
f(x’y’(p’l//)_(9+ex+y)(1 + |€0| + |1//|)’ (X,y) € [Ov 1]X[Ov 1]v §0 € Ca 1[, ER,

and

I (u) = , ueRy.

u
34+u
A simple computation shows that conditions of Theorem 7.27 are satisfied, which

implies that problems (7.88)—(7.91) have a unique solution defined on [—1, 1] x
-2, 1].
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7.6.4.2 Example 2

We consider now the following impulsive fractional order partial hyperbolic
differential equations with infinite delay of the form:

e VO u(x — 03 (u(x, y)), ¥ — 02 (u(x, )|

Egu(x’ y) = — —r ’
Y + e ) + |u(x — o1 (u(x, y)), y — o2 (u(x, y)| + |Dgulx, y)|)
if (x,y) e Ji; k=0,..m, (7.92)
+ - kT
. ( k ) . ::u(( k ) ,¥>+ () )
k+1 k+1 3mk + |u((£5) )

yelo,1, k=1,...,m, (7.93)
u(x,0) = x, u(0,y) = y* x,y €[0,1], (7.94)

u(x,y) =x 4+ y% (x,y) € J := (=00, 1] x (—o0, 1]\(0, 1] x (0, 1],
(7.95)

where Jo = [0.3] x [0.1], Ji = (Z5.55] x[0.1]: k = 1.....m, ¢ =
W(I)“(I-Hz)’ y a positive real constant and 61,0, € C(R, [0, 00)). Let the phase

space

={ue PC((—00,0] x (—00,0],R) :  lim e’®TPy(8, n) exists in R}.

@.m]—o00
The norm of B, is given by
l[ull, = sup (6, ).
(6.17)€(—00,0]x(—00.0]
Set
p1(x,y.9) = x —01(9(0,0)), (x,y.9) € J x B,
pa(x,y,9) =y —02(9(0,0)), (x,y,9) €J x B,,
Cex+y_y(x+y)|(p|
x’ b 9 = 9
JOd ) = G e T T 1ol + 19D
(x,y)€[0,1] x[0,1], p € B,, ¥y €R
and
u
1 =——uelRy, k=1,...,
k() 3mk +u ! + m
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We can easily show that conditions of Theorem 7.31 are satisfied, and hence
problems (7.92)—(7.95) haveL a unique solution defined on (—oo0, 1] x (—o0, 1].

7.7 Notes and Remarks

The results of Chap. 6 are taken from Abbas and Benchohra [16,17] and Abbas et al.
[31,33,34]. Other results may be found in [242,244,246,247].



Chapter 8
Fractional Order Riemann-Liouville Integral
Equations

8.1 Introduction

In this chapter, we shall present existence results for some classes of Riemann—
Liouville integral equations of two variables by using some fixed-point theorems.

8.2 Uniqueness Results for Fredholm-Type Fractional Order
Riemann-Liouville Integral Equations

8.2.1 Introduction

In this section we study the existence and uniqueness of solutions of the Fredholm-
type Riemann-Liouville integral equation of the form

a b
_ 1 _ ri—1 _ -1
ux,) = wte.) + s [ [@=or e -
0 0

x f(x,y,s,t,u(s,t), (“Dyu)(s,t))deds; if (x,y) € J :=[0,a] x [0, b],
(8.1)

where a,b € (0,00), u : J - R", f:J x J x R" xR" — R”" are given
continuous functions.
For w,* Dyw € C(J), denote

Iw(e )l = llwCe, I+ 1€ Dgw(x, y) .

Let E be the space of functions w,* Dyw € C(J), which fulfill the following
condition:

IM >0 |w(x, y)|li < MO for (x,y) € J, (8.2)

S. Abbas et al., Topics in Fractional Differential Equations, Developments 341
in Mathematics 27, DOI 10.1007/978-1-4614-4036-9_8,
© Springer Science+Business Media New York 2012
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where A is a positive constant. In the space E we define the norm [210]

Wiz = sup {lwCx, y)lhe

(x.y)eJ
It is easy to see that (E, ||.||g) is a Banach space. We note that the condition (8.2)
implies that
Iwlle < M. (8.3)

8.2.2 Main Results

Let us start by defining what we mean by a solution of (8.1).

Definition 8.1. We mean by a solution of (8.1), every function w € C(J), such
that the mixed derivative D)% ) (w) exists and is integrable on J, and w satisfies (8.1)
onJ.

Further, we present conditions for the uniqueness of the solution of (8.1).
Theorem 8.2. Assume

(8.2.1) There exist functions py, p> : J x J — RT, such that f and “ Dy ( f) satisfy

1 Ce.yostouv) = f(x,p, 5.6, 0. V)| < pr(x, y, s, 0)(Ju —ul| + v = V)
(8.4)

and

||(CD6f)()C, yssstvusv)_(cDgf)(xv y,s,t,ﬁ,ﬁ)” S pZ(-xs y,S,Z)(||M _ﬁ”
+v=>I), (8.5

foreach (x,y),(s,t) € J andu,v,u,v e R".
(8.2.2) for A as in (8.2), there exist nonnegative constants o, s, a3, B1, B2, and
0 < r3 < min{ry, rp} such that, for (x,y) € J, we have

(e, )l < e,

a

b
1 Lo :
//||f(x,y,s,t,0,0)|| mdrds < o)t e ),
0

) (8.6)

a

b

1 Lo '
//||”D(Sf(x,y,s,t,0,0)||’3dtds5053'36’3(””,
0 0
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and
a b 1 1
//pF (x,y,5,00em 0 drds < B enn ),
0 0
a b 1 1 (87)
//p;‘ (x,y,s,t)e%(sﬂ)dtds < ,3?6:#””.
0 0
If
(B1 + Igz)a(wl+1)(1—r3)b(w2+1)(1—1‘3) S 88)
(01 + DI (@ + DI (1) (r2) ’
where w| = T__ri, Wy = ;2__,,1, then (8.1) has a unique solution on J in E.
Proof. Letu € E and define the operator N : E — E by
| a b
Nu)(x,y) = p(x,y) + ———— a—s)" N b —1)?!
(Vi) (x.3) = () + s | [a=sr -0
00
X f(6, v.5.1,u(s. 1), (€ Dju) (s, 1)deds. (8.9)

Differentiating both sides of (8.9) by applying the Caputo fractional derivative,
we get

a b
. 1
Dy ) = Dyt ) + s [ [la=sy b —nr
0 0
X Do f(x,y,8,t,u(s,t),(C Dju)(s,t))drds. (8.10)

Now, we show that N maps E into itself. Evidently, N (u), “ D{(N u) are continuous
on J. We verify that (8.2) is fulfilled. From (8.3), (8.6), (8.7), and using the
hypotheses, for each (x, y) € J, we have

a b
1 _ -1 _ n\n—1
IV = e D + 0/ 0/ @5y =1)
X[ f (x,y.s.t.u(s, 1), (“Diu) (s, 1)) — f(x,y,5.1,0,0)||drds

a b
; _ ri—1 _ r—1
+F(r1)F(rz)0/ 0/ @@=y b =0 £, ,5,1,0,0)[deds
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a b
; _ -l _ -1
+F(r1)F(r2)0/0/(a e -0

x[|°D§ f (x,y,s,1,u(s, 1), (‘Dyu) (s,1)) = Dy f (x, y,5,1,0,0) |drds

a b
]
+— a—s)"7Nb =0 D! f(x, y,s,t,0,0)|drds
FMHWﬁ!!( Y=l b — 0 | DY fx. y )

a b 1=r3

1 n-l1 =l
< lr@ N + Fos o a—5)" (b — 1) drds
e + oo s !!( VIS b — 1)

a 3

b
X // If (x,y.s,t,u(s,t), (“Dju) (s,1)) — f (x,,5,,0,0) 17 drds
0

0
a b 1-r3
L // - gb—t)%dtds
Treore () @9
0 0
a b 3
x //||f(x,y,s,r,o,0)||%dzds
0 0
1—r3

a b
— //(a—s)%(b—t)%dtds
L(r)I(r2) /) ‘ ’

a b r3
” (// Do f(x, y.s. 2, uls. 1), (C Dou)(s, 1)) = Do f(x, .5.1.0, 0)||’]3dtds)
0

0

a b I—=r3
1 rp—l rp—1
B — )= (h —t) -3 drd.
+Fmﬂww(/!m DG fs)

0

a b r3
X(//||CD6f(X,y,s,t,0,0)||'lzdtds) .
0 0
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Thus, for each (x, y) € J, we obtain

g F)(1=r3) p@+1)(1-r3)

(w1 + 1)) (w, + 1) (r) I (r2)

[(Nw) e )= e, )+

3

a b
x //||f(x,y,s,r,0,0)||%dzds
0 0

a b 3
+ //||CD5f(x,y,s,t,0,0)||%dzds
0 0
a b 1 1 3
+ //pF(x,y,s,t)||u(s,z)||{7dzds
0 0
a b 3

1 1
| [ [ o s ol ol aras
0 0

aq@1+D(U=r3) p (@2 +1)(1-73)

(w1 + D373 (w, + 1) () (r2)

< alek(x+y) +

r3
1

a b
A
x azel(x+y) 4 Ol3e/\(x+y) + ||lulg //plrs (x,y,8,0)e7 (s+t)dtds
0 0

r3

a b
L A
+ule //Pf (x,y.s.0)en “Tdrds
0 0

- (062 + o3+ M,Bl + Mlgz)a(wl+1)(1—r3)b(w2+1)(1—1‘3)
- (@1 + )= (w; + DT ()T ()

:| e)k(x+y)'

Hence, for each (x, y) € J, we get

M M (01 +1)(1=r3) p(@2+1)(1=r3)
IV e < | + 2t MLy MPp)a Z A,
(@1 + D7) (w3 + DI (r) I (r2)

(8.11)

From (8.11), it follows that N(u) € E. This proves that the operator N maps E into
itself. Next, we verify that the operator N is a contraction map. Let u, v € E. From
(8.9), (8.10) and using the hypotheses, for each (x, y) € J, we have
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a b
Vi) = W) = s [ [la=or =
0 0

X || fCe oy, s.t,u(s, t), (CDou) (s, 1)) — f(x,y.5,2,v(s,1), (“Dyv)(s, 1))||drds

a b
; _ -l _ -1
+rmﬂvg!!“ STE-n

x €Dy f(x,y,s,t,u(s, 1), (CDyu)(s, 1)) = Dy f(x,y,5,¢,v(s,1), (CDgyv) (s, 1)) deds
gl@r+1)(1=r3) (@2 +1)(1=r3)
<
T (o1 + DU @y + DAL () T (r2)

r3
1
(// (xuy.s.D)lluls, ) —vis, 0l dtds)
r
1
// P (x.y.s, D)luls, 1) —v(s, )|l deds
r3
gl@r+1)(1=r3) (@2 +1)(1=r3) L (s+1)
< (x y,s,1)en dtds
(@1 + D7) @y + )AL (1) 1 (r2)

r3
(//ﬁ (xyszkw<+mmn) e — vl

(B1 + Br)a @1+ DU=r3) plr+1)1—73)
T (o1 + DU (@ + DAL () (r2)

Dy — v .

Hence

(B1 + Igz)a(wl+1)(1—1‘3)b(w2+1)(1—73)

Nu—N < —v| .
W= e = G = + TGy

From (8.8), it follows that N has a unique fixed point in £ by Banach contraction
principle (see [95], p. 37). The fixed point of N is however a solution of (8.1). O

The next result deals with the uniqueness of a solution of (8.1) in £ when the
functions p;; i € {1, 2} are in the form

0i(x,y,8,1) = hi(s.t)c(x, y) = m;(s, )Ty =570: i e {1,2}.
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Theorem 8.3. Assume

(8.3.1) For A as in (8.2), there exist constants « > 0, 0 < r3 < min{ry, r2}, and

strictly positive functions mi(x, y),my(x,y) € L% (J) such that for each
(x,y),(s,t) € J, u, fand D{(f) satisfy

e,y < o+ (8.12)

and
”f(x7 y, S,I,0,0)” < ml(s7t)e/\(x+y)’

cnr < A(x+y) (8.13)
€Dy f(x,y,5,£,0,0)] <ma(s,t)e .

(8.3.2) There exist strictly positive functions ms(x,y), ms(x,y) € L%(J) such
that for each (x, y), (s,t) € J andu,v,u,v € R", f and D[ (f) satisfy

”f('x’y"g’tvu"}) - f(x’yvsvtvﬁv‘_})” = m3(s7t)

x e E T (|l — 3 + v — ) (8.14)
and
[(“Dg f)(x,y.s.t,u,v) = (“Dg f)(x, y.8. 1,0, 9)|| < my(s.t)
x eSOy — || + [lv — V). (8.15)
If
M M) a@r+DU=r3) p(@2+1)(1=r3)
(M5 + Ma)a <1 (8.16)
(w1 + D)= (wy + 1)) (r1) T (r2)
where
nol 2l M =) i 3.4
w| = , Wy = , M = ||[m;|| 11 s 4y,
! 1— rs 2 1— r3 L’13

then (8.1) has a unique solution on J in E.

Proof. Consider the operator N : E — E defined in (8.9). Now, we show that
N(u) maps E into itself. Evidently, N(u), D{j(Nu) are continuous on J and
N(u), ‘D{(Nu) € R". We verify that (8.2) is fulfilled. From (8.3), (8.14), (8.15)
and using the hypotheses, for each (x, y) € J, we have

a b
< 1 _ r1—l _ rz—l
[N )l = N+ s 0/ O/ @=9""b-0

x| f(x,y,s,t,u(s, 1), (CDiu)(s, 1)) — f(x,y,s,¢,0,0)|dtds
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a b
; _ r —1 _ r2—1
+rmﬂvﬁ!!w ' b = (x. y.5.1,0,0) Jdrds

a b
; _ -l _ -1
+F(r1)1“(r2) O/O/(a b 1)

x|Dg f (x,y.s,t,u(s, 1), (‘Dyu) (s.1)) = Dg f(x,y,s,1,0,0)|drds

a b
1
4 a—s)""Y b= D! X, v,8,t,0,0)|deds
mmmm!!( Yl — 1y | Dy £ (x. y )

a 1—=r3

1
swwwm+ﬁmﬁa‘[

0

b
ri—l1 rp—1
/(a —s)lljs(b - t)lzjsdtds
0
r3

a b
X //IIf(x,y,s,t,u(s,t),("Dgu)(s,t))—f(x,y,s,z,o,o)”%dtds
0 0

a b 1—r3
T— //( VR (b — ) SR ded
TPV aTrR a—s)s(b—1)73deds
I'(r)I(r2)
0 0
a b r3
x //||f(x,y,s,z,o,0)||%dzds
0 0
l—r3

a b
PR //(a—s)%(b—t)%dzds
L (r)I(rp) J ‘ ‘

a b 3
1
X(/ [ 1 DG £ st 0. sy = DSf(x,y,s,r,o,onl’“”ds)
0 0

a b

l—r3
+ ! //( ):l;l(b t)?;ldtd
—_— a—s)=3(b—t)—73drds
L (r)I(r2)
00
a b 3
1
><(//||CD6f(x,y,s,t,O,O)||*3dtds) )
0

0
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Thus, for each (x, y) € J, we obtain

q@r D =r3) p (1D (1—r3)
w1 + D)7 (@, + DI () (r2)

I(Nw) e, ) < e, )+ (

a 3 a 3

b b
x / / (mi(s, TN drds |+ / / (ma (s, 1)) 75 drds
0 0 0 0

a r3

b
1
* //(m3(5,t)||u(3,f)||1ek(x+y_x_”)’3dldS
0 0
a b 3
1
" //WMaowmnm&W”ﬂﬂWMMs
0 0
gl D —r) plerH(1—rs) i

< Aty
S e DT (@, - DO () ()

M+ 4 ppeht)

a b 3
+ [lulle //(m3(s,t)e“x+y))%d;ds
00
a b r3
+ulle //(m4(s,t)e)‘(x+y))%dtds i
00

where
M,‘ = ||m,|L%, I e {1,2}

Hence, for each (x, y) € J, we get

(N u)(Cx, »)
(M1 + My + M(M; + M4))a(w1+1><1—r3)b(w2+1)(1—r3>

<
=|f (@ + DI (@, + DI () ()

e)t(x+y).

(8.17)

From (8.17), it follows that N(u) € E. This proves that the operator N maps
E into itself. Next, we verify that the operator N is a contraction map. Let

u(x,y),v(x,y) € E.From (8.9), (8.10) and using the hypotheses, for each (x, y) €
J, we have
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a b
Vi) = W) = s [ [la=or =
0 0
x| f (xoyos.tuls, 1), (CDGu) (s, 1)) — f (x, y,s.2.v(s,2). (“D§v) (s.1)) ||deds

a b
; _ -l _ -1
+F(r1)F(r2)O/ 0/ (@-sy -1

x €Dy f(x, .5, t,u(s, 1), (CDyu)(s, 1)) = Dy f(x,y,5,1,v(s, 1), (“Dyv)(s, 1)) drds

2@+ D(1=r3) @+ (1-r3)
<
T (w1 + DU (wy + DI () T (r2)

a b 3
1
x (/ / (m3(s, )l|us, 1) — v(s, 0) | 1TV =570) 75 dtds)
00

a b
+ (ma(s, 1) ||uls, £) — v(s, z)||1e*<x+y—s—f>)r§dzds)
/]

0

r3

(M3 4+ My)a' @ +D(=r3) ploatD(1=rs)

e)k(w+y) ”u _
T (o1 + DU (@ + DI (r) T (r2)

v|E.

Hence

(M3 + M4)a(w1+1)(1—r3)b(w2+1)(1_r3)
i + 1)) (wy + D)= () T (r2)

[Nu—Nvle < ( le =Vl

From (8.16), it follows that N has a unique fixed point in £ by Banach contraction
principle (see [95], p. 37). The fixed point of N is however a solution of (8.1). O

For w,¢ Da‘xw," Dazyw € C(J), denote
wie, e = Iwle, ¥+ 11 Dol wle, I+ 11 DgZ, wix, -

Let E be the space of functions w,* D' w,“ D> w € C(J), which fulfill condition
8.2).

Theorem 8.4. Consider the following Fredholm-type Riemann—Liouville integral
equation of the form:

a b
_ 1 _ ri—1 _ -1
x.) = ) + s [ fa=ore -
0 0

X f(x,y.s.tu(s, 1), (¢ Doku)(s, 1), (C Dy’u) (s, t))deds:
if (x,y) € J :=[0,a] x|0,b]. (8.18)
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Assume
(8.4.1) There exist functions p1, p2, p3 : J x J — RT, such that f CD(;fX(f), and
Dy, (f) satisfy
||f(xv yvs’tvuava W) - f(-xv y,S,l,ﬁ,V,v_\/)”
<oy, s, ) (lu—=ull + v =v| + [w—w]) (8.19)
and

”(CD(;,Ixf)(x’ y,s,t,u,v, W) - (CD(;,le)(xv y,S,t,ﬁ,\_/,W)”

< pa (. y.s. D) (lu —ul| + [lv =Vl + [[w—wl]), (8.20)
I D2y S, yos b v w) = (DGl f)(x, y. 5.1, 60,7, W) |
< p3(xy.s. Ol —ul + [lv =Vl + [[w—wl]. (8.21)

foreach (x,y),(s,t) € J andu,v,w,u,v,w € R".
(8.4.2) for A as in (8.2), there exist nonnegative constants o, 3, o3, 4, B1, B2, B3
and 0 < r3 < min{ry, rp} such that, for (x,y) € J, we have

G, W < e+,
a

b
1 Ay
//”f(x,y,s,t,0,0,0)||*3dtds§a2’3er3(“+y),
0

0
[ I ‘ (8.22)
i _ A .
//||CD6,1xf(xvYasat,0,0,0)||’3dtds505;33@(«‘4')/)’
0 0
a b 1
L m A
[ [1D5, s s 00,00 Faras < af 0
0 0
and
o Ao Loy +
Pl (x,y.5.0)en 0 drds < prren ),
€1 2 1,
Py (x.y.s,0en Fdids < Byen ™, (8.23)

i A
i (x, y. 5. 0)e U0 drds < R,

O o— s T T — s T T
o\awo\awo\w
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If
B+ B2+ ,33)a(w1+l)(l—r3)b(wz+l)(l—r3) Ao+ - 8.24)
(w1 + 1)) (@ + DA (1) T (1) ’

where w; = '11_71, wy = ;2__,17 then (8.18) has a unique solution on J in E.

Theorem 8.5. Assume

(8.5.1) For A as in (8.2), there exist constants &« > 0, 0 < r3 < min{ry, r2}, and

strictly positive functions mi(x, y),my(x,y) € L% (J) such that for each
(x,y),(s,t) € J, u, f and®Dy(f) satisfy

(e, )l < et (8.25)

and
| fCx. v, 5.2,0,0,0)| < my(s, 1)er™+»),

(8.26)
DL f(x. y.5.1.0,0,0)[| < my(s. )+,

(8.5.2) Thlere exist strictly positive functions ms(x,y),mq(x,y), ms(x,y) €
L7 (J) such that for each (x,y),(s,t) € J and u,v,u,v € R", f and
“Dy(f) satisfy

I fCe,y st u,v,w) — F(x,p,5,8,8, ), W|| < ms(s, t)etTr=0)
X([lu —ull + lv = VIl + lw —wlD, (8.27)

1€ Df ) Cx v sttt vow) = (DG £, ys. L BT, W) < ma(s. 1)
xe T (lu = + [lv =] + [lw — W) (8.28)

and

1Dz, S, yos b v.w) = (DG, f)(x, y, 8.0, 0,9, W)|| < ms(s. 1)

xe* TSI (|l = + v =V + [lw—w]). (8.29)
If
(M3 4+ My + Ms)g@+D01=r3) et D(1-r3)
8.30
(01 + D)= (@ + )= T (ry) (1) (830
where
Dl = 2l My =il y: i € 43.4.5)
w = —, W) = —, i = ||m;|| 131 y A, 0y,
! 1— r3 2 1— r3 ! ! Lr13

then (8.18) has a unique solution on J in E.
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8.3 Fractional Order Riemann-Liouville Integral Equations
with Multiple Time Delay

8.3.1 Introduction

In this section we investigate the existence and uniqueness of solutions for the
following fractional order integral equations for the system:

u(x,y) = Y g, yulx — &,y — i) + 15 f(x, y,ulx, y));

i=1
if (x,y) € J :=1[0,a] x [0, 5], (8.31)
u(x,y) = ®(x,y): if (x.y) € J := [, a] x [-p.b]\(0.a] x (0.b]. (8.32)

where a,b > 0, &, u; >0, i =1...,m, § =  max &Y, =  max {wit, Iy
1=1...m 1=1...m

is the left-sided mixed Riemann—Liouville integral of order r = (ry, ;) € (0, 00) %
0,00), f:JxR" - R" g :J — R" i = 1...m are given continuous
functions, and @ : J — R” is a given continuous function such that

B(x,0) = Y gi(x,0)P(x — &, —w); x €[0,a],

i=1
and
®0,y) =Y &0, )P(—E, y — w); y €[0,b].
i=1

We present three results for the problems (8.31)—(8.32), the first one is based on
Schauder’s fixed-point theorem, the second one is a uniqueness of the solution by
using the Banach fixed-point theorem, and the last one on the nonlinear alternative
of Leray—Schauder type.

8.3.2 Existence of Solutions

Set C := C([—£, a] x [-u, b]). C is a Banach space endowed with the norm

Iwlle = sup [, p)II-
(ry)el-§alx[-p.b]

Definition 8.6. A function u € C is said to be a solution of (8.31)~(8.32) if u
satisfies (8.31) on J and condition (8.32) on J.
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Set

B = max { sup [g(x, )|}
i=l..m (x’y)e‘/

Theorem 8.7. Assume

(8.7.1) There exists a positive function h € C(J) such that

| fx, v, w)| < h(x,y), forall (x,y) € J andu € R".

If mB < 1, then problems (8.31)—(8.32) have at least one solution u on [—£,a] x
[—n,b].

Proof. Transform problems (8.31)—(8.32) into a fixed-point problem. Consider the
operator N : C — C defined by,

D(x, y); (x,y) e,

Dol yulx =&,y — ) + 1 (6, y,u(x, p); (x,y) €.
= (8.33)

The problem of finding the solutions of problems (8.31)—(8.32) is reduceg to finding
the solutions of the operator equation N(u) = u. Let R > Max||®||, lf—B where

N@)(x,y) =

_ a" b h*
BTEEEES

*

and 1* = ||h||, and consider the set
Br ={ueC:llullc =R}

It is clear that By is a closed bounded and convex subset of C. For every u € By
and (x, y) € J we obtain by (8.7.1) that

IN@ eI < Y llge (e mlllulx =&,y — wo)

i=1

x )
; — ri—1 _ rp—1
TR 0/ 0/ (v =)™ = 0 LG s, ) s

x )y
1 ri—1 _ -1
<mB|ul¢c + m / /(X —5) (y—1) h(s,t)dtds
0 0

a’bn
raA+mI(+r)
<mBR+ (1-mB)R = R.

< mBllullc +h*
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On the other hand, for every u € By and (x, y) € J, we obtain

IN@x, ) =[x »)] < R,

So we obtain that
[Nw)llc < R.

Hence, N(Br) C Bg. Since f is bounded on Bp, thus N(Bg) is equicontinuous.
Schauder fixed-point theorem shows that N has at least one fixed point u* € Bg
which corresponds to the solution of (8.31)—(8.32). ]

For the uniqueness we prove the following theorem.
Theorem 8.8. Assume that following hypothesis hold:

(8.8.1) There exists a positive function | € C(J) such that

I1fCe,yow) = fe y. | < 1(x )=l

foreach (x,y) € J andu,v € R".
If
mBIL(1+r)I(1 4+ 1) +a"b™1*
F'(A+r)'(1+r)

<1, (8.34)

where [* = ||l||co, then problems (8.31)—(8.32) have a unique solution on [—§, a] x
[—p, b].

Proof. Consider the operator N defined in (8.33). Then by (8.8.1), for every
u,v e C and (x,y) € J we have

A

IN@Cx, y) = N0 )< Y g (e mlllute =&,y — i) = v(x — &, )|

i=1

Xy
1 _ ri—1 _ -1
+FmMVﬁ!!“ Ve

x|\ f(s,t,u(s, t)) — f(s,t,v(s,t))||dtds

mBu—vloo

x Yy
1 _ ri—1 _ -1
+FmMVﬁ!!“ ST =D

xI(s,t)||u —v|cdtds

IA
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abn
<mBllu—v|oo +1* u—v
< Bl o 1 o = e

( B4 Lab” )u ||
= m u—v .
A+l +n) ¢

Thus

mBL(1 +r)IC(1 + 1) +a""b™1*
Nu)—N < _
IN@ = NO)lle < o e vl

Hence by (8.34), we have that N is a contraction mapping. Then in view of Banach
fixed-point theorem, N has a unique fixed point which is corresponding to the
solution of problems (8.31)—(8.32). O

Now, we present an existence result for the problems (8.31)—(8.32) based on the
nonlinear alternative of Leray—Schauder type.

Theorem 8.9. Assume

(8.9.1) There exist positive functions p,q € C(J) such that

| fCe,y,wl < p(x,y) +q(x,y)lull, forall (x,y) € J andu € R".

If mB < 1, then problems (8.31)—(8.32) have at least one solution on [—£,a] X
[—p, b].

Proof. Consider the operator N defined in (8.33). We shall show that the operator
N is completely continuous. By the continuity of f and the Arzela-Ascoli Theorem,
we can easily obtain that N is completely continuous.

A priori bounds. We shall show there exists an openset U € C with u # AN (u),
for A € (0,1)and u € dU. Letu € C and u = AN (u) for some 0 < A < 1. Thus
for each (x, y) € J, we have

m
w(x,y) =AY gi(x. yulx —&.y — i) + Aj f(x.y.u(x. y)).
i=1
This implies by (8.9.1) that, for each (x, y) € J, we have

p*arlbl‘z
rA+r)rrd+ry

Xy
L _ -l _ -1
+F(r1)F(r2) ofo/(x T =0 s, D)drds,

uCe, I < mBlu(x, y)|| +
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where p* = || plleo and ¢* = ||¢|l0o- Thus, for each (x, y) € J, we get

p*arlbrz
—mB)['(1 +r) (1 +71)

e )1 = 5

x y
q* _ o\l _ -l
+(1—mB)F(r1)F(rz)0/ 0/ (x =)y =) u(s, 1)drds

X

y
<w+c / /(x — )"y — )2 (s, t)deds,
0

0

where

p*arlbrz
w =
A=—mB)Y LA +r)C(1+4+1r)

and

*

L q
T A=mBY () ()

From Lemma 2.43, there exists § := §(ry,r2) > 0 such that, for each (x,y) € J,
we get

x Y
lulloo <w |1+ 6’8//()6 — )Ny — )2 deds
0 0

Sa" b ~
fw(l—i—ca )::M.

rir;

Set M* := max{||®||,?\7} and
U={uecC:lullc <M*+1}.
By our choice of U, there is no u € dU such that u = AN (u), for A € (0,1). As a

consequence of Theorem 2.32, we deduce that N has a fixed point u in U which is
a solution to problem (8.31)—(8.32). O
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8.3.3 Examples

8.3.3.1 Example 1

As an application of our results we consider the following system of fractional
integral equations of the form:

3 4.2
= s+ {2 1) e -3)
+1g f(x, y,u); if (x,y) € J :=[0,1] x [0, 1], (8.35)
u(x,y) =0; if (x,y) € J := [=2,1] x [-3, 1]\ (0, 1] x (0, 1], (8.36)

wherem =3, r = (%, %) and

fxyu) =™

1+ [ul
Set
3 4.2
_ Xy _ Xy _ 1
gl(st) - 8 ) gZ(XsY) - 12 ) gS(st) - 4

We have B = 4—11 and

| f(x,y,u)| <e*; forall (x,y) € J andu € R.

Then condition (8.7.1) is satisfied and mB = 3 < 1. In view of Theorem 8.7,

problems (8.35)—(8.35) have a solution defined on [—2, 1] x [-3, 1].

ST

8.3.3.2 Example 2

Consider the fractional integral equation

Xy 1\ x%? 2 3\ 1
M(X7Y)=TM(X—1,)’—§)+ B u(x—g,y—z)+§u(x—3,y—2)

+1§ f(x,y,u); if (x,y) € J :=[0,1] x [0, 1], (8.37)

u(x,y) = ®&(x,y); if (x,y) € J :=[-3,1] x [-2,1]\(0, 1] x (0,1],  (8.38)
wherem =3, r = (3. 1), f(x,y.u) =
with

x+y |u|
20 1+]ul

and @ : J — R is continuous

®(x,0) = %dﬁ(x —3,-2), ®(0,y) = %¢(—3,y —2): x,ye[0,1.  (8.39)

Notice that condition (8.39) is satisfied by @ = 0.
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Set
3 4.2

_ Xy _ Xy _1
gilx,y) = A  &(x,y) = 17 » 8&3(x,y) = g

We have B = % It is clear that f satisfies (8.8.1) with [* = %. A simple
computation shows that condition (8.34) is satisfied. Hence by Theorem 8.8,
problems (8.37)—(8.38) have a unique solution defined on [—3, 1] x [-2, 1].

8.4 Nonlinear Quadratic Volterra Riemann-Liouville
Integral Equations of Fractional Order

8.4.1 Introduction

This section deals with the existence of solutions to the following nonlinear
quadratic Volterra integral equation of Riemann—Liouville fractional order:

1
u(x,y) = f (x,y,u(x,y) | np(x,y) + T ()

Xy
x//(x—s)”_l(y—Z)’z_lg(x,y,s,t,u(s,t))dtds ,
00

if (x,y) € J := [0,a] [0, b], (8.40)

wherea,b > 0, r;,r, € (0,00), f:JXxR—->R, g:DxR—->Randpu:J - R
are given continuous functions, where

D={((x,y),(s,t))eJ xJ:s<xandt < y}.

8.4.2 Existence of Solutions

For proving our existence result, we employ the following hybrid fixed-point
theorem of Dhage [109].

Theorem 8.10 (Dhage [109]). Ler D be a closed-convex and bounded subset of the
Banach algebra X and let F,G : D — X be two operators satisfying:

(a) A is Lipschitz with the Lipschitz constant A.

(b) B is completely continuous.

(c) AuBz e D forallu,z € D.

(d) AM < 1 where M = ||B(D)|| = sup || B(u)]||.
u€D
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Then the operator equation AuBu = u has a solution and the set of all solutions is
compactin D.

Now, we are concerned with the existence of solutions for (8.40). The following
hypotheses will be used in the sequel.

(8.11.1) There exists a positive continuous function « : J — R such that
| f(x,y,u)— f(x,y,v)] <a(x,y)|u—v|, forall(x,y)eJ, and u,v € R.
(8.11.2) There exists a positive continuous function f : J — R and a positive
bounded continuous function 4 : [0,00) — R with 4(0) = 0 such that

for all ((x, y),(s,t)) € D, andu,v € R,

lg(x, y.s.tu) — g(x, y,5.1,v)| < B(x, y)h(ju—v]).

Set
K =y ©E718" + [Blloch (1)
= sup
