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Preface

The well-known monographs by G.S. Ladde, V. Lakshmikantham and B.G. Zhang
[248], I. Győri and G. Ladas [192], L.H. Erbe, Q. Kong and B.G. Zhang [154], R.P.
Agarwal, M. Bohner and W.-T. Li [3], R.P. Agarwal, S.R. Grace and D. O’Regan
[8] and D.D. Bainov and D.P. Mishev [34] are devoted to the oscillation theory of
functional differential equations. Each of these monographs contains nonoscillation
tests, but their main objective was to present methods and results concerning oscil-
lation of all solutions for the functional differential equations under consideration.

The main purpose of the present monograph is to consider nonoscillation and
existence of positive solutions for functional differential equations and to describe
their applications to maximum principles, boundary value problems and the stability
of these equations.

In view of this objective, we consider a wide class of equations:

1. scalar equations and systems of different types: linear and nonlinear first-order
functional differential equations, second-order equations with or without damp-
ing terms, high-order equations, systems of functional differential equations;

2. equations with variable types of delays: delay differential equations, integrodif-
ferential equations, equations with a distributed delay, neutral equations;

3. equations with variable deviations of the argument: advanced and mixed (includ-
ing both delayed and advanced terms) differential equations;

4. both continuous and impulsive equations: first- and second-order linear and first-
order nonlinear impulsive differential equations;

5. specific classes of linear and nonlinear equations, as well as linear differential
equations with abstract Volterra (causal) operators;

6. both initial and boundary value problems are considered for functional differen-
tial equations.

Note that we do not use methods specific only to equations with continuous pa-
rameters since we consider models with measurable coefficients and delays.

Nonoscillation results are applied

• to nonlinear nonautonomous equations of mathematical biology with both con-
centrated and distributed delays;

v
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• to stability problems; and
• to boundary value problems.

Chapter 1 is a brief survey of introductory notions and ideas in nonoscillation the-
ory: autonomous equations, characteristic equations, solution representations, dif-
ferential and integral equations, and inequalities. Though elementary in its presen-
tation (we believe it can easily be understood by senior undergraduate students),
this chapter incorporates many basic ideas that will be employed later: equiva-
lence of nonoscillation and existence of a nonnegative solution of the generalized
characteristic inequality and the application of solution representation, linearization
and the approach to impulsive equations. The main population dynamics equations
(Hutchinson’s, Lasota-Wazewska, Mackey-Glass, Nicholson’s blowflies) are also
introduced in Chap. 1.

Chapter 2 presents basic results for first-order linear delay equations with pos-
itive coefficients: nonoscillation criteria, comparison theorems, explicit nonoscil-
lation and oscillation results, sufficient conditions for positivity of solutions with
given initial conditions and slowly nonoscillating solutions. In Chap. 3, some of
these results are generalized to equations with positive and negative coefficients; it
is also illustrated that some of the results cannot be extended. Chapter 4 is concerned
with a general linear equation with a distributed delay that is nonautonomous and
can include integral and concentrated delay terms. The case of positive kernels of
integrals and coefficients is considered, as well as terms of different signs.

In Chap. 5, nonoscillation of linear equations of advanced and mixed types is
studied. The main results of this chapter are based on various fixed-point theorems.
Chapter 6 is concerned with linear neutral equations of the first order that include
the derivative of the unknown function both with and without delays.

In Chaps. 7 and 8, we consider linear second-order delay equations without
damping and with damping, respectively. Chapter 9 deals with linear systems of
delay differential equations and also higher-order differential equations. In addition
to the problems considered in the previous chapters, Chap. 9 includes an extensive
section on stability of nonoscillatory systems.

Chapters 10 and 11 are devoted to nonlinear equations. In Chap. 10, the lineariza-
tion method is applied to various nonautonomous models of population dynamics
(in particular, logistic, Lasota-Wazewska and Nicholson’s blowflies equations), and
all equations are considered with a distributed delay. In Chap. 11, some equations
that cannot be handled with the linearization approach are studied (mostly different
variations of the logistic model).

Chapters 12–14 are concerned with impulsive equations. Chapter 12 presents
nonoscillation results for first-order linear impulsive differential equations with both
concentrated and distributed delays. It is also demonstrated that nonoscillation of
an impulsive equation can be reduced to nonoscillation of a specially constructed
equation without impulses but with discontinuous coefficients. Chapter 13 deals
with second-order differential equations, and generally in the models considered
any linear jumps of both the solution and the first derivative can occur. In Chap. 14,
linearization methods are applied to first-order nonlinear impulsive equations.
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The study of many classical questions in the qualitative theory of linear n-th-
order ordinary differential equations, such as existence and uniqueness of solutions
of the interpolation boundary value problems, positivity, or a corresponding regular
behavior of their Green’s functions, maximum principles and stability, was con-
nected with and even based on the notion of nonoscillation intervals of correspond-
ing linear ordinary differential equations. In Chaps. 15–17 we create a concept of
nonoscillation intervals for functional differential equations that can actually be con-
sidered as an analogue of nonoscillation theory for ordinary differential equations.
Various relations between the noted properties are obtained for functional differen-
tial equations on the basis of nonoscillation. Linear and nonlinear equations with
Volterra (causal) operators were previously studied in the monographs [29, 98, 239,
251]. In Chaps. 15–17, we consider equations with Volterra operators. It should be
noted that it is not only a generalization but also an important instrument for study-
ing the behavior of a corresponding component xr of a solution vector. We construct
an equation for this component in Chap. 16. Even in the case of systems of ordinary
differential equations, this differential equation for xr is of quite a general form that
includes Volterra operators. In these chapters, we also study such questions as maxi-
mum principles, existence and uniqueness of solutions to boundary value problems,
regular behavior of their Green’s functions, and applications to study stability that
are not considered in previous chapters.

All chapters conclude with a discussion, some open problems, and topics for
possible future research.

Finally, Appendices A and B include some reference material. Appendix A con-
tains all auxiliary notions and functional analysis results used in the monograph:
definitions of functional spaces, measures and Volterra operators, compactness con-
ditions for sets and linear operators, and fixed-point theorems in Banach spaces with
or without order. These results are applied in the study of a variety of types of equa-
tions: with several concentrated and distributed delays, with general Volterra and
non-Volterra equations and systems, linear and nonlinear, and continuous and im-
pulsive. Appendix B presents existence and uniqueness conditions for all functional
differential equations considered in this monograph; in addition, solution represen-
tations are given for linear equations.
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Chapter 1
Introduction to Oscillation Theory

1.1 Introduction

In this chapter, we introduce some known results for autonomous delay differential
equations. We will also use these equations to illustrate some of the main ideas of
this monograph for linear and nonlinear equations.

The history of delay equations, especially in the form of integrodifferential equa-
tions, goes back to the beginning of the 20th century; for example, to the works of
Vito Volterra. These models are based on the idea that the derivative at a certain
moment of time depends not only on the present state but on some of the previous
states. However, the systematic study of delay differential equations started only
in the first half of the 1950s. The best-studied models are autonomous equations
where the initial point can be shifted without any influence on the solution if the
initial function is shifted accordingly.

Generally, most qualitative properties of such equations are derived from ex-
plicitly constructed algebraic equations that include exponential functions called
characteristic equations. In this monograph, we obtain new oscillation results for
autonomous equations as corollaries of the results for general equations that are
established without application of characteristic equations.

In this chapter, we introduce autonomous analogues of all equations that will later
be considered in the monograph. Section 1.2 considers linear equations with several
delays. Section 1.3 describes linearization techniques applied to nonlinear equations
of mathematical biology. Section 1.4 involves simple linear impulsive models, while
Sect. 1.5 contains an overview of models that were not explicitly discussed in the
previous sections.

1.2 Nonoscillation of Autonomous Delay Equations with
Positive Coefficients

Consider the scalar autonomous equation with several delays

R.P. Agarwal et al., Nonoscillation Theory of Functional Differential Equations
with Applications, DOI 10.1007/978-1-4614-3455-9_1,
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2 1 Introduction to Oscillation Theory

ẋ(t)+
m∑

k=1

akx(t − τk)= f (t), τk > 0, t ≥ t0. (1.2.1)

Let us introduce

t−1 = t0 − max
k
τk

and consider (1.2.1) with the initial condition

x(t)= ϕ(t), t ∈ [t−1, t0]. (1.2.2)

The existence and uniqueness result for the solution of (1.2.1), (1.2.2) is established
by the so-called method of steps. If

τmin = min
k
τk,

then the solution of (1.2.1), (1.2.2) on the interval [t0, t0 + τmin] is

x(t)= ϕ(t0)−
∫ t

t0

akϕ(s − τk) ds +
∫ t

t0

f (s) ds, t ∈ [t0, t0 + τmin].

Further, we consider (1.2.1) for t ≥ t0 +τmin rather than t ≥ t0 with the known initial
function on [t−1 + τmin, t0 + τmin]. Repeating this process, we obtain existence of
the unique solution of (1.2.1), (1.2.2) for any t ≥ t0.

So far we have not discussed properties of the initial function. In most publica-
tions, ϕ(t) is assumed to be continuous and the solution continuously differentiable.
However, any Lebesgue measurable function can be considered as an initial func-
tion, not necessarily continuous, if the solution can be absolutely continuous (con-
tinuous differentiability is not required). In most results of the present monograph,
we consider absolutely continuous solutions.

The method of steps allows us to construct a solution for each t ≥ t0. However,
a more useful solution representation applies the notion of the fundamental function
X(t, s), which is a solution of the homogeneous equation

ẋ(t)+
m∑

k=1

akx(t − τk)= 0 (1.2.3)

for t ≥ s satisfying the initial conditions

x(t)= 0, t < s, x(s)= 1. (1.2.4)

Direct computation implies that the unique solution of (1.2.1), (1.2.2) has the
representation

x(t)=X(t, t0)x(t0)+
∫ t

t0

X(t, s)f (s) ds −
m∑

k=1

∫ t

t0

X(t, s)akϕ(s − τk) ds, (1.2.5)

where we assume ϕ(s)= 0, if s > t0.
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Definition 1.1 We will say that (1.2.3) is nonoscillatory if there exists an initial
function ϕ such that the solution of initial value problem (1.2.1), (1.2.2) is eventually
positive or eventually negative. Otherwise, (1.2.3) is oscillatory.

Together with (1.2.3), we will consider the differential inequality

ẋ(t)+
m∑

k=1

akx(t − τk)≤ 0. (1.2.6)

Theorem 1.1 includes nonoscillation criteria for (1.2.3) and will be generalized
to various classes of equations with deviating arguments in the following chapters.

Theorem 1.1 Suppose ak > 0, τk ≥ 0, k = 1, · · · ,m. Then the following hypotheses
are equivalent:

1) Inequality (1.2.6) has an eventually positive solution.
2) There exists t1 ≥ t0 such that the inequality

u(t)≥
m∑

k=1

ak exp

{∫ t

t−τk
u(s) ds

}
, (1.2.7)

where u(t)= 0 for t < t1, has a solution u(t) locally integrable and nonnegative
for t ≥ t1.

3) There exists t2 ≥ t0 such that X(t, s) > 0, t ≥ s ≥ t2.
4) Equation (1.2.3) is nonoscillatory.

The proof of a more general result will be presented in Chap. 2.
Assuming in (1.2.7)

u(t)= e

m∑

k=1

ak,

we immediately obtain that (1.2.7) is satisfied with u as above if

m∑

k=1

ak max
k
τk ≤ 1

e
. (1.2.8)

For autonomous equations, inequality (1.2.7) has an eventually positive solution
if and only if it has a constant solution λ > 0. Then x(t)= e−λt is a nonoscillatory
solution of (1.2.3). Moreover, (1.2.3) has a nonoscillatory solution if and only if the
equality corresponding to (1.2.7) has a positive constant solution (see, for example,
[192]).

Theorem 1.2 Suppose ak > 0, τk ≥ 0, k = 1, · · · ,m. Then the following hypotheses
are equivalent:

1) Equation (1.2.3) is nonoscillatory.
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2) The characteristic equation

λ+
m∑

k=1

ake
−τkλ = 0 (1.2.9)

has a negative root.

The proof of the fact that oscillation of (1.2.3) is equivalent to nonexistence of
real roots for characteristic equation (1.2.9) uses the Laplace transform of (1.2.3);
see [192, Theorem 2.1.1] for details. If λ < 0 is a solution of (1.2.9), then x(t)= eλt

is a positive solution of (1.2.3).

Remark 1.1 The statement of the theorem is valid for a general autonomous equa-
tion (1.2.3) with coefficients ak of arbitrary sign if we change existence of a negative
root of the characteristic equation to existence of a real root of (1.2.9); see [192] for
the proof. However, for ak > 0, by Theorem 1.1, existence of a negative root of
the characteristic equation is equivalent to the positivity of the fundamental func-
tion, which is not true for coefficients of arbitrary sign, as the following example
demonstrates.

Example 1.1 Consider the equation with a positive and a negative coefficient

ẋ(t)+ 2x(t − 3)− 1.9x(t − 5)= 0. (1.2.10)

Its characteristic equation

λ+ 2e−3λ − 1.9e−5λ = 0 (1.2.11)

has a negative root, λ≈ −0.2075. Since the fundamental function X(t,0) satisfies
(1.2.10) with x(0)= 1, x(t)= 0, t < 0,

X(t,0)= 1, t ∈ [0,3], X(t,0)= 1 − 2(t − 3)= 7 − 2t, t ∈ [3,5],
and X(4,0)= −1< 0. Moreover, X(s + 4,4)= −1 for any s, and thus the funda-
mental function is not positive for any t1 and t > s ≥ t1.

Positivity of the fundamental function is one of the important properties for any
linear functional differential equation. In particular, by the results of Chap. 9, posi-
tivity of the fundamental function implies exponential stability of the equation (un-
der some natural additional assumptions). For (1.2.3), we have the following result.

Theorem 1.3 Suppose ak > 0, k = 1, · · · ,m and there exists a negative root
of (1.2.9). Then (1.2.3) is exponentially stable; i.e., there exist positive constants
M and α such that

∣∣X(t, s)
∣∣≤Me−α(t−s). (1.2.12)
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Proof Since u(t) = −λ > 0 is a positive solution of (1.2.7), by Theorem 1.1 the
fundamental function of (1.2.3) is positive. Positivity of all the coefficients implies

Ẋ(t, s)= −
m∑

k=1

akX(t − τk, s)≤ 0,

so the fundamental function is nonincreasing in t . ThusX(t, s)≤ 1, t ∈ [s, s+τmax],
where

τmax = max
k
τk,

and for t ∈ [s + τmax, s + 2τmax] we have

Ẋ(t, s)= −
m∑

k=1

akX(t − τk, s) <−
m∑

k=1

akX(t, s),

and hence

X(t, s)≤ exp

{
−

m∑

k=1

ak(t − τmax − s)

}
.

We can continue by induction, deducing that

Ẋ(t, s)= −
m∑

k=1

akX(t − τk, s)

<−
m∑

k=1

akX(t, s), t ∈
[
s + nτmax, s + (n+ 1)τmax

]
.

Thus (1.2.12) is satisfied with

α =
m∑

k=1

ak, M = exp

{
m∑

k=1

akτmax

}
,

which completes the proof. �

For the autonomous equation with one delay,

ẋ(t)+ ax(t − τ)= 0, (1.2.13)

inequality (1.2.8) is necessary and sufficient for nonoscillation, which implies the
following result.

Corollary 1.1 Let a > 0, τ > 0. Then the following hypotheses are equivalent:

1) Equation (1.2.13) is nonoscillatory.
2) The characteristic equation

λ+ ae−τλ = 0 (1.2.14)

has a real root.
3) aτ ≤ 1/e.
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Theorem 1.1 can be applied to compare oscillation properties of two different
autonomous equations as well as two different solutions of the same equation. Con-
sider together with (1.2.3) the equation

ẋ(t)+
m∑

k=1

bkx(t − σk)= 0. (1.2.15)

Theorem 1.4 Suppose ak > 0, ak ≥ bk , 0 ≤ σk ≤ τk , k = 1, · · · ,m and there exists a
negative root λ0 of (1.2.9). Then (1.2.15) has a positive solution, and its fundamental
function is positive.

Proof First, we refer only to positive coefficients in (1.2.15). Let bk > 0, k =
1, · · · , l, l ≤ m, and bk < 0, k = l + 1, · · · ,m (this includes the case m = l when
all coefficients are positive). Consider the continuous function

f (λ)= λ+
l∑

k=1

bke
−σkλ.

Then f (0) > 0 and for λ0 < 0 the following inequality is valid:

f (λ0)= λ0 +
l∑

k=1

bke
−σkλ0 ≤ λ0 +

m∑

k=1

ake
−τkλ0 = 0.

Thus there exists λ1, λ0 ≤ λ1 < 0 that is a solution of the characteristic equation
f (λ)= 0. By Theorem 1.2, the fundamental function Z(t, s) of the equation

ż(t)+
l∑

k=1

bkz(t − σk)= 0 (1.2.16)

is positive, and (1.2.16) has an eventually positive solution. If l =m, the theorem is
proven.

Now suppose l < m. Since (1.2.15) can be rewritten as the equation with the
right-hand side

ẋ(t)+
l∑

k=1

bkx(t − σk)=
m∑

k=l+1

(−bk)x(t − σk), bk < 0, k = l + 1, · · · ,m,

the solution representation formula (1.2.5) yields that the fundamental function
x(t)=X(t, s) of (1.2.15) satisfies

x(t)= Z(t, s)−
m∑

k=l+1

bk

∫ t

s

Z(t, ζ )x(ζ − σk) dζ, x(s)= 1, x(ζ )= 0, ζ < s,

where bk < 0, k = l + 1, · · · ,m. Assuming that there exist points where x(t) ≤ 0
and recalling x(s)= 1, we choose a point t∗ such that x(t) > 0 for s ≤ t < t∗ and
x(t∗)= 0.
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Then x(t)≥ 0 for t ≤ t∗ and

x
(
t∗
)= Z(t, s)+

m∑

k=l+1

(−bk)
∫ t

s

Z(t, ζ )x(ζ − σk) dζ > 0

as a sum of two positive terms, which contradicts the assumption x(t∗) = 0. Thus
X(t, s) > 0, which completes the proof. �

Corollary 1.2 Suppose ak > 0, k = 1, · · · , l, ak < 0, k = l + 1, · · · ,m and any of
the following conditions holds:

1. Equation

ẋ(t)+
l∑

k=1

akx(t − τk)= 0

has a positive solution.
2. Inequality

ẋ(t)+
l∑

k=1

akx(t − τk)≤ 0

has a positive solution.
3. The characteristic equation

λ+
l∑

k=1

ake
−τkλ = 0 (1.2.17)

has a negative root.
4. The inequality

l∑

k=1

ak max
k=1,···,l

τk ≤ 1

e

is fulfilled.

Then (1.2.3) has a positive solution, and its fundamental function is positive.

Corollary 1.2 is applicable to equations with positive and negative coefficients,
but the requirement that the characteristic equation (1.2.17) have a negative root is
rather restrictive. For the equation with a positive and a negative coefficient

ẋ(t)+ ax(t − τ)− bx(t − σ)= 0, a, b > 0, τ, σ ≥ 0, (1.2.18)

the following result is valid; see the argument above and Chap. 3.

Theorem 1.5 Equation (1.2.18) has a nonoscillatory solution if and only if its char-
acteristic equation

λ+ ae−τλ − be−σλ = 0 (1.2.19)

has a real root.
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If a > b and τ > σ , then the following hypotheses are equivalent:

1. Equation (1.2.18) has a positive decreasing solution.
2. There exists a positive root u of the inequality

u≥ aeτu − beσu. (1.2.20)

3. There exists a negative root of the characteristic equation (1.2.19).
4. The fundamental function of (1.2.18) is positive.
5. Inequality

ẋ(t)+ ax(t − τ)− bx(t − σ)≤ 0

has a positive decreasing solution.

Let us now compare two solutions of different autonomous delay equations with
the same delays. To this end, consider together with problem (1.2.1), (1.2.2) the
nonhomogeneous equation

ẏ(t)+
m∑

k=1

bky(t − τk)= g(t), t ≥ t0, (1.2.21)

with the initial conditions

y(t)=ψ(t), t < t0, y(t0)= y0. (1.2.22)

Theorem 1.6 If ak > 0, k = 1, · · · ,m, there exists a negative solution λ0 of (1.2.9),

ak ≥ bk ≥ 0, g(t)≥ f (t), ϕ(t)≥ψ(t), t < t0, y0 ≥ x0, (1.2.23)

and the solution of (1.2.1), (1.2.2) is positive (x(t) > 0), then y(t)≥ x(t) > 0.

Proof By Theorem 1.4, the fundamental functions X(t, s) of (1.2.1) and Y(t, s) of
(1.2.21) are both positive. If we rewrite (1.2.1) in the form

ẋ(t)+
m∑

k=1

bkx(t − τk)= f (t)+
m∑

k=1

[bk − ak]x(t − τk),

then by the solution representation formula, (1.2.23) and positivity of Y(t, s) and
x(t) we have

x(t)= Y(t, t0)x0 −
m∑

k=1

bk

∫ t

t0

Y(t, s)ϕ(s − τk) ds

+
∫ t

t0

Y(t, s)f (s) ds −
m∑

k=1

(ak − bk)

∫ t

t0

Y(t, s)x(s − τk) ds

≤ Y(t, t0)y0 −
m∑

k=1

bk

∫ t

t0

Y(t, s)ψ(s − τk) ds +
∫ t

t0

Y(t, s)g(s) ds = y(t),

and thus y(t)≥ x(t) > 0, which completes the proof. �

Similar methods are applicable to vector delay differential equations and systems
of differential equations; see Chap. 9.
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1.3 Nonlinear Equations of Mathematical Biology

1.3.1 Linearization of Nonlinear Delay Equations

In this section, we consider autonomous equations of mathematical biology (mainly
population ecology). For these equations, initial conditions are usually assumed to
be nonnegative with a positive initial value. Typically, solutions of these equations
are positive, and oscillation about a unique positive equilibrium is considered rather
than oscillation about zero.

Many autonomous equations of mathematical biology after some transformations
(the positive equilibrium is shifted to zero) can be written in the form

ẋ(t)+
m∑

k=1

akfk
(
x(t − τk)

)= 0, (1.3.1)

where

ak > 0, τk ≥ 0, fk : R →R are continuous, ufk(u) > 0, u �= 0, k = 1, · · · ,m
(1.3.2)

and

lim
u→0

fk(u)

u
= 1, k = 1, · · · ,m. (1.3.3)

The linearization method deduces nonoscillation and oscillation properties of the
nonlinear equation (1.3.1) from the relevant properties of the linear equation

ẋ(t)+
m∑

k=1

akx(t − τk)= 0 (1.3.4)

or of the linear equations with smaller proportional coefficients.
The following results are valid.

Theorem 1.7 If (1.3.2) is satisfied, then any nonoscillatory solution of (1.3.1) tends
to zero.

Theorem 1.8 Assume that conditions (1.3.2) and (1.3.3) hold.

a) If for some ε > 0 all solutions of the equation

ẋ(t)+ (1 − ε)

m∑

k=1

akx(t − τk)= 0 (1.3.5)

are oscillatory, then all solutions of (1.3.1) are also oscillatory.
b) If either 0< fk(u) ≤ u for u > 0 or 0> fk(x) ≥ x for x < 0 and there exists a

nonoscillatory solution of (1.3.4), then (1.3.1) also has a nonoscillatory solution.

For the proof of a more general result, see Chap. 10.
Some sharper oscillation results can be obtained specifically for autonomous

equations; see [192, Sect. 4.1].
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1.3.2 Hutchinson’s Equation

The logistic equation

Ṅ(t)= rN(t)

[
1 − N(t)

K

]
(1.3.6)

is one of the most common models of population dynamics. Here N > 0 is the pop-
ulation size (or density, or a biomass), r > 0 is the intrinsic growth rate and K > 0
is the carrying capacity of the environment. The model assumes that the per capita
growth rate 1

N(t)
dN
dt

is a linear decreasing function. All positive solutions of (1.3.6)
are monotone and converge to the positive equilibrium K , which is in contrast to
ecological observations: oscillations frequently occur in nature. To incorporate os-
cillations in the model, Hutchinson [209] proposed the delay modification

dN

dt
= rN(t)

[
1 − N(t − τ)

K

]
, (1.3.7)

where the per capita growth rate depends on the population size τ units of time ago.
Hutchinson’s equation (1.3.7) was studied in [213, 214, 334]; see also [192].

After the substitution

N(t)=Kex(t), (1.3.8)

the delay logistic equation (1.3.7) becomes

ẋ(t)+ r
[
ex(t−τ) − 1

]= 0, (1.3.9)

where (1.3.9) oscillates if and only if (1.3.7) oscillates aboutK . Since f (x)= ex−1
is a continuous function satisfying the conditions in (1.3.2) and (1.3.3) and f (x)≥ x

for x < 0, Theorem 1.8 implies the following nonoscillation criterion for (1.3.7).

Theorem 1.9 The following hypotheses are equivalent:

1. Equation (1.3.7) has a solution nonoscillatory about K .
2. The characteristic equation of the linearized equation

λ+ re−λτ = 0 (1.3.10)

has a real root.
3. The following condition is fulfilled:

rτ ≤ 1

e
. (1.3.11)

There are numerous modifications of Hutchinson’s equation (1.3.7).

1. First, the per capita growth rate may negatively depend on the population size
not only at a certain moment in the past but on several past moments,

dN

dt
=N(t)

[
α −

m∑

k=1

βkN(t − τk)

]
, α,βk > 0, τk ≥ 0, k = 1, · · · ,m; (1.3.12)



1.3 Nonlinear Equations of Mathematical Biology 11

see [192]. Then the linearized version of (1.3.12) is

ẋ(t)+
m∑

k=1

akx(t − τk)= 0, (1.3.13)

where the positive equilibrium N∗ and coefficients ak are defined as

N∗ = α∑m
k=1 βk

, ak = βkN
∗. (1.3.14)

Equation (1.3.12) has solutions nonoscillatory about N∗ if and only if the char-
acteristic equation of (1.3.13),

λ+
m∑

k=1

ake
−τkλ = 0,

has a real root.
2. The logistic equation with several delays (1.3.12) also has the multiplicative ver-

sion

Ṅ(t)= rN(t)

m∏

k=1

(
1 − N(t − τk)

K

)∣∣∣∣1 − N(t − τk)

K

∣∣∣∣
αk−1

, (1.3.15)

where

r > 0,K > 0, αk > 0, k = 1, · · · ,m,
m∑

k=1

αk = 1,

and the right-hand side of (1.3.15) is equal to zero if N(t − τk) =K . After the
substitution

x(t)= N(t)

K
− 1, (1.3.16)

(1.3.15) becomes

ẋ(t)= −r(1 + x(t)
) m∏

k=1

x(t − τk)
∣∣x(t − τk)

∣∣αk−1
. (1.3.17)

An equation more general than (1.3.17) will be studied in Chap. 11.
3. The logistic equation (1.3.6) is often criticized since a linear per capita growth

function does not match real ecological phenomena. It was suggested that a func-
tion more general than 1 − N

K
should be chosen for this purpose. For example,

the “food-limited” equation

Ṅ(t)= rN(t)
K −N(t)

K + crN(t)
(1.3.18)

was introduced in [319]. Similar to (1.3.6), all positive solutions of (1.3.18) con-
verge monotonically to the equilibrium K . In contrast to (1.3.18), solutions of
the time-delayed “food-limited” equation

Ṅ(t)= rN(t)
K −N(t − τ)

K + crN(t − τ)
(1.3.19)

may oscillate about the positive equilibrium K .
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After the substitution (1.3.8), equation (1.3.19) has the form

ẋ(t)(t)+ r
ex(t−τ) − 1

1 + crex(t−τ)
= 0, (1.3.20)

which is nonoscillatory if and only if its linearized equation

ẋ(t)(t)+ r

1 + cr
x(t − τ)= 0 (1.3.21)

is nonoscillatory. Thus, (1.3.19) has a solution that does not oscillate about its
positive equilibrium K if and only if

rτ

1 + cr
≤ 1

e
; (1.3.22)

see [168].
4. The generalization of the logistic model

Ṅ(t)= rN(t)

(
1 − N(t)

K

)α
(1.3.23)

has the delay analogue

Ṅ(t)= rN(t)

m∑

k=1

(
1 − N(t − τk)

K

)∣∣∣∣1 − N(t − τk)

K

∣∣∣∣
αk−1

, (1.3.24)

where

r > 0, K > 0, αk > 0, k = 1, · · · ,m,
and the right-hand side of (1.3.24) is equal to zero if N(t − τk)=K .

After the substitution (1.3.16), equation (1.3.24) becomes

ẋ(t)= −r(1 + x(t)
) m∑

k=1

x(t − τk)
∣∣x(t − τk)

∣∣αk−1
. (1.3.25)

An equation more general than (1.3.25) will be studied in Chap. 11.

1.3.3 Lasota-Wazewska Equation

The delay differential equation

Ṅ(t)= −μN(t)+ pe−γN(t−τ), t ≥ 0 (1.3.26)

was introduced by Lasota and Wazewska-Czyzewska [331] to describe the survival
of red blood cells in an animal. Here N(t) is the number of red blood cells at time t ,
μ is the per capita death rate (the probability of death for blood cells that currently
circulate) and p and γ define red blood cell production functions: p can be described
as the production limit when the number of cells tends to zero, the decay of cell
production for large cell number becomes faster with the growth of γ and delay τ
is the time required to produce a red blood cell.
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Equation (1.3.26) is considered with a nonnegative initial function and a positive
initial value

N(t)= ϕ(t), ϕ(t)≥ 0, −τ ≤ t < 0, N(0)=N0 > 0. (1.3.27)

Evidently (1.3.26) with initial condition (1.3.27) has a unique solution that is posi-
tive for any t ≥ 0; moreover, it exceeds

z(t)=N0e
−μt ,

which is the solution of (1.3.26) with p = 0.
Equation (1.3.26) has a positive equilibrium N∗ that satisfies the equation

N∗ = p

μ
e−γN∗

. (1.3.28)

After the change of variables

N(t)=N∗ + 1

γ
x(t),

(1.3.26) becomes

ẋ(t)+μx(t)+μγN∗[1 − e−x(t−τ)
]= 0. (1.3.29)

Then the following nonoscillation result for (1.3.26) is valid [192, 238].

Theorem 1.10 The following hypotheses are equivalent:

1. Equation (1.3.26) has a solution nonoscillatory about N∗.
2. The characteristic equation of the linearized equation

λ+μ+μγN∗e−λτ = 0 (1.3.30)

has a real root.
3. The inequality

μτγN∗eμτ ≤ 1

e
(1.3.31)

is fulfilled.

We will not present any justification for this theorem since a proof of a more
general result is included in Chap. 10.

1.3.4 Nicholson’s Blowflies Equation

Nicholson’s blowflies equation

Ṅ(t)= −δN(t)+ pN(t − τ)e−aN(t−τ) (1.3.32)

was used in [177] to describe periodic oscillations in Nicholson’s classic experi-
ments [291] with the Australian sheep blowfly, Lucila cuprina. Here N(t) is the
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size of the blowfly population at time t , p is the maximum per capita daily egg pro-
duction rate, 1

a
is the population size at which this maximum reproduction rate is

attained, δ is the per capita daily adult death rate and τ is the maturation time from
an egg to a blowfly.

Equation (1.3.32) is considered with a nonnegative initial function and a positive
initial value

N(t)= ϕ(t), ϕ(t)≥ 0, −τ ≤ t < 0, N(0)=N0 > 0. (1.3.33)

Evidently (1.3.32) with initial condition (1.3.33) has a unique solution that is posi-
tive for any t ≥ 0; moreover, it exceeds

z(t)=N0e
−δt ,

which is the solution of (1.3.32) with p = 0.
If p ≤ δ, then all solutions of (1.3.32) tend to zero, which is the only equilibrium.
If p > δ, then there is a positive equilibrium

N∗ = 1

a
ln

(
p

δ

)
. (1.3.34)

After the transformation

N =N∗ + 1

a
x, (1.3.35)

(1.3.32) becomes

ẋ(t)+ δx(t)− δx(t − τ)e−x(t−τ) + δ ln

(
p

δ

)[
1 − e−x(t−τ)

]= 0, (1.3.36)

where solution N(t) of (1.3.32) oscillates about N∗ if and only if x oscillates about
zero.

For δ < p ≤ δe, all solutions such that the initial function does not oscillate about
N∗ are also nonoscillatory. This means that oscillation and nonoscillation properties
of the solution depend on the initial function only. With appropriate initial functions,
there are an infinite number of oscillatory solutions of (1.3.32); see [195] for the
original result and also [86] for some generalizations.

In the case p > δe, the following oscillation and nonoscillation result for (1.3.32)
is valid [192, 238].

Theorem 1.11 Let p > δe.

1. If

δτeδτ
[

ln

(
p

δ

)
− 1

]
>

1

e
, (1.3.37)

then any solution of (1.3.32) with initial condition (1.3.33) oscillates about N∗.
2. If in addition p > δe2, then any solution of (1.3.32), (1.3.33) oscillates about N∗

if and only if (1.3.37) is satisfied.

A proof of a more general result is included in Chap. 10.
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1.3.5 Mackey-Glass Equations

Let us demonstrate that the linearization technique presented above does not work
for all equations of population ecology.

In [272, 279, 280], the delay equation (the Mackey-Glass, or the hematopoiesis,
equation)

Ṅ = aN(t − τ)

1 +N(t − τ)γ
− bN(t), (1.3.38)

where

a > b > 0, γ > 0, τ ≥ 0,

was applied to model white blood cell production. Here N(t) is the density of ma-
ture cells in blood circulation, the function rNτ

1+Nγ
τ

models blood cell reproduction,
the time lag τ describes the maturational phase before blood cells are released into
circulation and the mortality rate bN was assumed to be proportional to the circula-
tion. Equation (1.3.38) was introduced to explain the oscillations in the number of
neutrophils observed in some cases of chronic myelogenous leukemia [272, 279].
Let us note that another model introduced in [279] to describe red blood cell pro-
duction is described by the equation

Ṅ = a

c+N(t − τ)γ
− bN(t). (1.3.39)

Equation (1.3.38) has the unique positive equilibrium

N∗ =
(
a

b
− 1

)1/γ

. (1.3.40)

After the transformation y =N −N∗, (1.3.38) has the form

ẏ(t)= a[y(g(t))+N∗]
1 + (y(g(t))+N∗)γ

− by(t)− bN∗,

which can be rewritten as

ẏ(t)+ by(t)− b

[
a[y(g(t))+N∗]

b[1 + (y(g(t))+N∗)γ ] −N∗
]

= 0. (1.3.41)

It is possible to check that the standard linearization techniques cannot be applied to
(1.3.41). Some oscillation results can be found in [60]. For linearization methods,
(1.3.2) and (1.3.3) are usually fulfilled for the appropriate choice of functions fk ,
which allows us to obtain sufficient oscillation conditions for nonlinear models.
However, the condition

either 0< fk(u)≤ u, u > 0, or u≤ fk(u) < 0, u < 0, (1.3.42)

is more restrictive. Nicholson’s blowflies equation for P/δ < e2 and the Mackey-
Glass equation are examples of the models for which (1.3.42) is not satisfied. Some
alternative methods were developed to study nonoscillation of nonlinear delay equa-
tions. For example, the fixed-point theory is widely used to establish existence of
positive solutions, see Chap. 11.
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1.4 Impulsive Equations

The theory of impulsive equations goes back to 1960, when it was first introduced by
Milman and Myshkis [287]. Since then, impulsive equations have been intensively
studied, especially in the last three decades. To illustrate the oscillation theory for
impulsive differential equations, consider the autonomous equation with one delay
and constant impulsive perturbations applied at time distances equal to the delay

ẋ(t)+ ax(t − τ)= 0, t ≥ 0, (1.4.1)

x(nτ) := x
(
(nτ)+

)− x(nτ)= bx(nτ), n= 0,1, · · · , (1.4.2)

where

a > 0, τ ≥ 0, b >−1. (1.4.3)

A solution of impulsive equation (1.4.1), (1.4.2) is a function that is absolutely
continuous on (nτ, (n+ 1)τ ), n = 0,1, · · ·, left continuous at t = nτ and satisfies
(1.4.2),

x
(
(nτ)+

)= (1 + b)x(nτ).

Let us introduce the continuous function

y(t)= (1 + b)−([t/τ ]+1)x(t), t ≥ 0, (1.4.4)

where x(t) is a solution of (1.4.1), (1.4.2) and [s] is the integer part of s.
Hence

x(t)= (1 + b)[t/τ ]+1y(t),

ẋ(t)= (1 + b)[t/τ ]+1ẏ(t)= −ax(t − τ)= −a(1 + b)[t/τ ]y(t − τ),

which implies

ẏ(t)+ a

1 + b
y(t − τ)= 0. (1.4.5)

By (1.4.3) and (1.4.4), y(t) is nonoscillatory if and only if x(t) does not oscillate.
This means that oscillation properties of impulsive equations (1.4.1), (1.4.2) are
equivalent to the oscillation properties of (1.4.5) without impulses, which yields the
following result.

Theorem 1.12 Let b >−1. Impulsive equation (1.4.1), (1.4.2) has a nonoscillatory
solution if and only if (1.4.5) is nonoscillatory.

Applying Corollary 1.1, we immediately obtain the following result.

Theorem 1.13 Impulsive equation (1.4.1), (1.4.2) has a nonoscillatory solution if
and only if

aτ

1 + b
≤ 1

e
. (1.4.6)
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Consider the case where the distance between impulses is k times smaller than
the delay:

x

(
n
τ

k

)
= bx

(
n
τ

k

)
, n= 0,1, · · · , k ∈N. (1.4.7)

Then the substitution

y(t)= (1 + b)−([tk/τ ]+1)x(t), t ≥ 0, (1.4.8)

leads to the nonimpulsive equation for y(t)

ẏ(t)+ a(1 + b)−ky(t − τ)= 0, (1.4.9)

which implies the following nonoscillation criterion.

Theorem 1.14 Impulsive equation (1.4.1), (1.4.7) has a nonoscillatory solution if
and only if

aτ

(1 + b)k
≤ 1

e
. (1.4.10)

If we assume that the distance between impulses is k times greater than the delay

x(nkτ)= bx(nkτ), n= 0,1, · · · , k ∈N, (1.4.11)

then y(t) defined as

y(t)= (1 + b)−([t/(τk)]+1)x(t), t ≥ 0, (1.4.12)

satisfies

ẏ(t)+ a

1 + b
y(t − τ)= 0 if t ∈ (nkτ, (nk+ 1)τ

]
, n= 0,1, · · · , (1.4.13)

and

ẏ(t)+ ay(t − τ)= 0 if t �∈ (nkτ, (nk+ 1)τ
]
, n= 0,1, · · · . (1.4.14)

Overall, if we define

c(t)=
{
a/(1 + b) if t ∈ (nkτ, (nk+ 1)τ ],
a if t ∈ ((nk + 1)τ, (n+ 1)kτ ], n= 0,1, · · · , (1.4.15)

then y(t) satisfies the equation

ẏ(t)+ c(t)y(t − τ)= 0 (1.4.16)

with a variable discontinuous coefficient. The sufficient nonoscillation condition for
this equation,

aτ max

{
1,

1

1 + b

}
≤ 1

e
, (1.4.17)

can be deduced from the comparison result similar to Theorem 1.4 (see Chap. 2).
This model partially justifies our interest in equations with generally discontinu-

ous coefficients. For most equations considered in this monograph, coefficients are



18 1 Introduction to Oscillation Theory

not assumed to be continuous but just Lebesgue measurable, locally bounded func-
tions.

Chapters 12–14 deal with impulsive equations: Chap. 12 with first-order linear
equations, Chap. 13 with second-order linear equations and Chap. 14 with nonlinear
equations. For second-order equations, the first derivative can be subject to impul-
sive conditions or the solution, or both.

The main method of these chapters is based on the reduction of impulsive delay
differential equations to delay differential equations without impulses that have an
explicit form, as was illustrated above for simple autonomous impulsive equations.

1.5 Some Other Classes of Equations

In order to illustrate models and ideas of the present monograph, let us introduce
autonomous analogues of other types of equations that will be considered later:

a) the integrodifferential equation with an infinite delay

ẋ(t)+
∫ t

−∞
K(t − s)x(s) ds = 0; (1.5.1)

b) the integrodifferential equation with bounded delays

ẋ(t)+
m∑

j=1

∫ t

t−τj
Kj (t − s)x(s) ds = 0; (1.5.2)

c) the equation with an infinite number of delays

ẋ(t)+
∞∑

k=1

akx(t − τk)= 0; (1.5.3)

d) the equation with a distributed infinite delay

ẋ(t)+
∫ t

−∞
x(s) dsR(t − s)= 0; (1.5.4)

e) the equation with distributed bounded delays

ẋ(t)+
m∑

k=1

∫ t

t−τk
x(s) dsRk(t − s)= 0; (1.5.5)

f) the neutral differential equation

ẋ(t)− bẋ(t − σ)+
∞∑

k=1

akx(t − τk)= 0. (1.5.6)

For (1.5.1)–(1.5.6), oscillation results similar to Theorems 1.1–1.6 can be ob-
tained. For example, the analogue of Theorem 1.1 for (1.5.1) can be formulated as
follows.
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Theorem 1.15 Suppose K(u) ≥ 0 is integrable on [0,∞). Then the following hy-
potheses are equivalent:

1) The inequality

ẏ(t)+
∫ t

−∞
K(t − s)y(s) ds ≤ 0

has an eventually positive solution.
2) There exists t1 ≥ 0 such that the inequality

u(t)≥
∫ t

−∞
K(t − s)e

∫ t
s u(τ ) dτ ds, t ≥ t1

has a locally integrable nonnegative solution u(t), where we assume u(t) = 0
for t < t1.

3) There exists t1 ≥ 0 such that the fundamental function of (1.5.1) is positive:
X(t, s) > 0 for t ≥ s ≥ t1.

4) Equation (1.5.1) has a nonoscillatory solution.

More general results for nonautonomous equations (1.5.1)–(1.5.6) are presented
in Chaps. 4 and 6.

In Chap. 5, we consider linear equations of advanced and mixed types. The for-
mer type involves an advanced x(t + σ), σ > 0, rather than a delayed argument,
while the latter model includes both delayed and advanced terms and in the au-
tonomous case has the form

ẋ(t)+ ax(t − τ)+ bx(t + σ)= 0, τ > 0, σ > 0. (1.5.7)

As a corollary of the results of Chap. 5, we have the following theorem.

Theorem 1.16

1. Suppose a > 0, b > 0, aτebτ ≤ 1/e. Then (1.5.7) has an eventually positive non-
increasing solution.

2. Suppose a < 0, b < 0, bσeaσ ≤ 1/e. Then (1.5.7) has an eventually positive
nondecreasing solution.

In Chaps. 7 and 8, we consider linear second-order delay equations without and
with damping. Second-order delay differential equations with damping have many
applications; for example, they were applied by Minorski [288] in 1962 to the prob-
lem of stabilizing the rolling of a ship by the “activated tank method”.

Chapter 9 deals with linear systems of delay differential equations; as corollaries,
we obtain nonoscillation conditions for equations of higher order.

All the linear equations considered above, except the advanced and the mixed
equations, can be written in the abstract form

ẋ(t)+ (Hx)(t)= 0, (1.5.8)

where H is a linear bounded Volterra operator that acts from the space of locally
absolutely continuous functions to the space of locally integrable functions. We say
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that the linear operator H is a Volterra (or causal) operator if for any b > 0 equality
x(t)= 0 for t ∈ [0, b] implies (Hx)(t)= 0 for t ∈ [0, b].

Linear and nonlinear equations with Volterra (causal) operators were studied in
the monographs [29, 98, 239, 251] and the papers [97, 162]. In the present mono-
graph, equations with linear Volterra operators are studied in Chaps. 15–17. In these
chapters, we also consider some questions that are not considered in the previous
chapters; for example, boundary value problems and positivity of the Green’s func-
tions for such problems.

1.6 Discussion and Open Problems

In this chapter, we presented an overview of the main nonoscillation results and
methods for scalar delay autonomous equations and introduced most types of equa-
tions that will be considered later in the monograph: linear equations, nonlinear
equations of mathematical biology, impulsive equations and equations with a dis-
tributed delay.

Finally, we outline some open problems and topics for research and discussion.
The study of autonomous equations is not the main purpose of the present mono-
graph, so we omit here the references to the recent results in this area, leaving the
review of the literature to the reader.

1. The inequalities
m∑

k=1

ak max
k
τk <

1

e
and

m∑

k=1

ak min
k
τk >

1

e
(1.6.1)

provide sufficient nonoscillation and oscillation conditions, respectively, for au-
tonomous equation (1.2.3). Consider the case where both inequalities in (1.6.1)
are not satisfied, and deduce explicit necessary and/or sufficient nonoscillation
and oscillation conditions.

2. Is it possible to develop a general approach to deduce nonoscillation of nonlin-
ear autonomous equations when the linearization technique cannot be applied;
for example, for the Mackey-Glass equation?

In certain cases, using linearization, nonoscillation of nonlinear equations
can be established as existence of nonoscillatory solutions exceeding the equi-
librium or smaller than the equilibrium if only one of the conditions 0 <
fk(u) ≤ u for u > 0 and 0 > fk(x) ≥ x for x < 0 holds. For example, for
Nicholson’s blowflies equation, only the existence of a solution 0 < x(t) < K
can be established. Consider existence of nonoscillatory solutions in the inter-
vals where the linearization technique is not applicable.

3. Deduce explicit nonoscillation and oscillation conditions for autonomous equa-
tions with a distributed delay. The results for some types of kernels with finite
and infinite delays are presented in Chap. 4.

4. Extend linearization theory to study nonoscillation of (1.3.1) with positive and
negative coefficients.
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5. Extend linearization theory to study nonoscillation of the equation with several
delays

ẋ(t)+ f
(
x(t − τ1), · · · , x(t − τm)

)= 0.

6. Suppose that the conditions of Theorem 1.8, Part b, hold. Prove or disprove that
any solution (not necessarily positive) of this equation tends to zero.

7. Suppose that the conditions of Theorem 1.8, Part b, hold. Prove or disprove that
the equation

ẋ(t)+
m∑

k=1

akfk
(
x(t − τk)

)−
l∑

k=1

bkgk
(
x(t − δk)

)= 0

has a nonoscillatory solution, where bk > 0, xgk(x) > 0, x �= 0.
8. Compare nonoscillation and oscillation properties of (1.3.1) and the equation

ẋ(t)+
m∑

k=1

bkgk
(
x(t − δk)

)= 0.

9. Compare positive solutions of (1.3.1) and the corresponding differential in-
equality.

10. Suppose that conditions of Theorem 1.8, Part b, hold. Prove or disprove that if
ϕ(t) < x(t0) and x(t0) > 0, then the solution of the initial value problem for
(1.3.1) is positive for t ≥ t0.



Chapter 2
Scalar Delay Differential Equations on Semiaxes

2.1 Introduction

This chapter deals with nonoscillation properties of scalar differential equations
with a finite number of delays. There are a lot of papers devoted to oscillation
conditions for this class of equations. In comparison with oscillation, there are not
so many results on nonoscillation of these equations, especially in monographs on
oscillation theory. One of the aims of this chapter is to consider nonoscillation to-
gether with relevant problems: differential inequalities, comparison results, solution
estimations, stability and so on. The second purpose is to derive some nonoscilla-
tion methods that will be used for other classes of functional differential equations.
In particular, we apply a solution representation formula, so the most important
nonoscillation property is positivity of the fundamental function of the considered
equation.

The chapter is organized as follows. Section 2.2 contains relevant definitions
and the solution representation formula. In Sect. 2.3, we prove that the following
four assertions are equivalent: nonoscillation of the equation and the correspond-
ing differential inequality, positivity of the fundamental function and existence of
a nonnegative solution for a certain nonlinear integral inequality that is constructed
explicitly from the differential equation. Section 2.4 involves comparison theorems
that compare oscillation properties of various equations and also solutions of these
equations. Next, in Sects. 2.5 and 2.6, explicit nonoscillation conditions for several
classes of equations are considered. Section 2.7 includes several oscillation condi-
tions that will be used in the following chapters. In Sect. 2.8, we obtain estimations
for solutions and for the fundamental function of nonoscillatory equations. Sec-
tion 2.9 presents conditions on initial functions and initial values that imply positiv-
ity of solutions. Section 2.10 considers slowly oscillating solutions. In Sect. 2.11,
connection between nonoscillation and stability is established. Finally, Sect. 2.12
involves some discussion and open problems.

R.P. Agarwal et al., Nonoscillation Theory of Functional Differential Equations
with Applications, DOI 10.1007/978-1-4614-3455-9_2,
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2.2 Preliminaries

We consider the scalar delay differential equation

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)= 0, t ≥ 0, (2.2.1)

under the following conditions:

(a1) ak , k = 1, · · · ,m, are Lebesgue measurable functions essentially bounded on
each finite interval [0, b].

(a2) hk : [0,∞)→ R are Lebesgue measurable functions, hk(t)≤ t , limt→∞ hk(t)

= ∞, k = 1, · · · ,m.

Together with (2.2.1), we consider for each t0 ≥ 0 the initial value problem

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)= f (t), t ≥ t0, (2.2.2)

x(t)= ϕ(t), t < t0, x(t0)= x0. (2.2.3)

We also assume that the following hypothesis holds:

(a3) f : [t0,∞) → R is a Lebesgue measurable function essentially bounded in
each finite interval [t0, b], and ϕ : (−∞, t0) → R is a Borel measurable
bounded function.

Definition 2.1 A function x : R → R absolutely continuous on each interval [t0, b]
is called a solution of problem (2.2.2), (2.2.3) if it satisfies (2.2.2) for almost all
t ∈ [t0,∞) and equalities (2.2.3) for t ≤ t0.

Definition 2.2 For each s ≥ 0, the solution X(t, s) of the problem

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)= 0, x(t)= 0, t < s, x(s)= 1, (2.2.4)

is called a fundamental function of (2.2.1).

We assume X(t, s)= 0, 0 ≤ t < s.
Theorem B.1 implies the following result.

Lemma 2.1 Let (a1)–(a3) hold. Then there exists a unique solution of problem
(2.2.2), (2.2.3) that has the form

x(t)=X(t, t0)x0 +
∫ t

t0

X(t, s)f (s)ds −
m∑

k=1

∫ t

t0

X(t, s)ak(s)ϕ
(
hk(s)

)
ds, (2.2.5)

where ϕ(hk(s))= 0, if hk(s) > t0.
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2.3 Nonoscillation Criteria

Definition 2.3 We will say that (2.2.1) has a positive solution for t0 ≥ 0 if there
exist an initial function ϕ and a number x0 such that the solution of initial value
problem (2.2.2), (2.2.3) (f ≡ 0) is positive.

Consider together with (2.2.1) the delay differential inequality

ẏ(t)+
m∑

k=1

ak(t)y
(
hk(t)

)≤ 0. (2.3.1)

The following theorem establishes nonoscillation criteria.

Theorem 2.1 Suppose ak(t)≥ 0, k = 1, · · · ,m. Then the following hypotheses are
equivalent:

1) There exists t0 ≥ 0 such that (2.3.1) has a positive solution for t0 ≥ 0.
2) There exist a point t1 ≥ 0 and a locally essentially bounded function u(t) non-

negative for t ≥ t1 and satisfying the inequality

u(t)≥
m∑

k=1

ak(t) exp

{∫ t

hk(t)

u(s)ds

}
, t ≥ t1, (2.3.2)

where we assume u(t)= 0, t < t1.
3) There exists t1 ≥ 0 such that X(t, s) > 0, t ≥ s ≥ t1.
4) There exists t1 ≥ 0 such that (2.2.1) has a positive solution for t ≥ t1.

Proof 1)⇒ 2) Let y(t) be a positive solution of (2.3.1) for t ≥ t0. Without loss of
generality, we can assume that y(hk(t)) > 0, t ≥ t0. By (a2), there exists a point t1
such that hk(t)≥ t0 if t ≥ t1, k = 1, · · · ,m.

Denote

u1(t)= − d

dt
ln
y(t)

y(t1)
, t ≥ t0.

Then

y(t)= y(t1) exp

{
−
∫ t

t1

u1(s)ds

}
,

y
(
hk(t)

)= y(t1) exp

{
−
∫ hk(t)

t1

u1(s)ds

}
, (2.3.3)

ẏ(t)= −u1(t)y(t1) exp

{
−
∫ t

t1

u1(s)ds

}
, t ≥ t1.

We substitute (2.3.3) into (2.3.1) and obtain

−u1(t)y(t1) exp

{
−
∫ t

t1

u1(s)ds

}
+

m∑

k=1

y(t1)ak(t) exp

{
−
∫ hk(t)

t1

u1(s)ds

}
≤ 0.
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Hence

− exp

{
−
∫ t

t1

u1(s)ds

}
y(t1)

[
u1(t)−

m∑

k=1

ak(t) exp

{∫ t

hk(t)

u1(s)ds

}]
≤ 0. (2.3.4)

Since y(t) > 0 for t ≥ t0 and ak(t)≥ 0, we have y(t1) > 0 and

u1(t)≥
m∑

k=1

ak(t) exp

{∫ t

hk(t)

u1(s)ds

}
, t ≥ t1. (2.3.5)

After denoting

u(t)=
{
u1(t), t ≥ t1

0, t < t1,

(2.3.5) implies (2.3.2).
2)⇒ 3) Step 1. Consider the initial value problem

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)= f (t), t ≥ t1, x(t)= 0, t ≤ t1. (2.3.6)

Denote

z(t)= ẋ(t)+ u(t)x(t), (2.3.7)

where x is the solution of (2.3.6) and u is a nonnegative solution of (2.3.2). The
assumption x(t)= 0, t ≤ t1 implies z(t)= 0 for t ≤ t1.

The solution x(t) of (2.3.7) satisfies

x(t)=
∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds, (2.3.8)

x
(
hk(t)

)=
∫ hk(t)

t1

exp

{
−
∫ hk(t)

s

u(τ )dτ

}
z(s)ds, (2.3.9)

ẋ(t)= z(t)− u(t)

∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds. (2.3.10)

After substituting (2.3.9) and (2.3.10) into the left-hand side of (2.3.6), we have

z(t)− u(t)

∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds

+
m∑

k=1

∫ hk(t)

t1

exp

{
−
∫ hk(t)

s

u(τ )dτ

}
z(s)ds

= z(t)−
∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds

[
u(t)−

m∑

k=1

ak(t) exp

{∫ t

hk(t)

u(s)ds

}]
.

Hence (2.3.6) can be rewritten in the form

z−Hz= f, (2.3.11)
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where

(Hz)(t)=
∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds

[
u(t)−

m∑

k=1

ak(t) exp

{∫ t

hk(t)

u(s)ds

}]
.

Inequality (2.3.2) yields that if z(t) ≥ 0 then (Hz)(t) ≥ 0 (i.e., operator H is posi-
tive). Besides, the operatorH : L∞[t1, b] → L∞[t1, b] is an integral Volterra opera-
tor with the kernel essentially bounded on [t1, b]×[t1, b]. By Theorem A.4, operator
H is weakly compact in the space L∞[t1, b]; Theorem A.7 implies that the spectral
radius is r(H)= 0< 1.

Thus, if in (2.3.11) f (t)≥ 0, then

z(t)= f (t)+ (Hf )(t)+ (H 2f
)
(t)+ · · · ≥ 0.

The solution of (2.3.6) has the form (2.3.8), with z being a solution of (2.3.11).
Hence, if in (2.3.6) f (t)≥ 0, then for the solution of this equation we have x(t)≥ 0.
On the other hand, the solution of (2.3.6) can be presented in the form (2.2.5)

x(t)=
∫ t

t1

X(t, s)f (s)ds.

As was shown above, f (t)≥ 0 implies x(t)≥ 0, and consequently the kernel of the
integral operator is nonnegative; i.e., X(t, s)≥ 0 for t ≥ s > t1.

Step 2. Let us prove that in fact the strict inequality X(t, s) > 0 holds. Denote

x(t)=X(t, t1)− exp

{
−
∫ t

t1

u(s)ds

}
, x(t)= 0, t < t1.

The function X(t, t1) is a solution of homogeneous equation (2.3.6). After substi-
tuting x(t) into the left-hand side of (2.3.6), we have

u(t) exp

{
−
∫ t

t1

u(s)ds

}
−

m∑

k=1

ak(t) exp

{
−
∫ hk(t)

t1

u(s)ds

}

= exp

{
−
∫ t

t1

u(s)ds

}[
u(t)−

m∑

k=1

ak(t) exp

{∫ t

hk(t)

u(s)ds

}]
≥ 0.

Hence x(t) is a solution of (2.3.6) with f (t)≥ 0; as demonstrated above, x(t)≥ 0.
Consequently,

X(t, t1)≥ exp

{
−
∫ t

t1

u(s)ds

}
> 0.

For s > t1, the inequality X(t, s) > 0 can be justified similarly.
3)⇒ 4) A function x(t)=X(t, t1) is a positive solution of (2.2.1) for t ≥ t1.
Implication 4)⇒ 1) is evident. �

Remark 2.1 If there exists a nonnegative solution of inequality (2.3.2) for t ≥ t1,
then assertions 1), 3) and 4) of Theorem 2.1 are also fulfilled for t ≥ t1.
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We will end this section with the result on the asymptotic behavior of nonoscil-
latory solutions.

Theorem 2.2 Suppose ak(t)≥ 0, k = 1, · · · ,m,
∫∞
t0

∑m
k=1 ak(s)ds = ∞. Then, for

any nonoscillatory solution of (2.2.1), we have limt→∞ x(t)= 0.

Proof Suppose x is an eventually positive solution of (2.2.1). Then x is an eventu-
ally monotonically decreasing function, and hence there exists a nonnegative limit
limt→∞ x(t)= d <∞. If d > 0, then for some t1 we have x(t) > d − ε > 0, t ≥ t1.
Hence

x(t)= x(t1)−
∫ t

t1

m∑

k=1

ak(s)x
(
hk(s)

)
ds ≤ x(t0)− (d − ε)

∫ t

t1

m∑

k=1

ak(s)ds.

Thus limt→∞ x(t)= −∞, and we have a contradiction, so d = 0, which completes
the proof. �

2.4 Comparison Theorems

Theorem 2.1 can be employed to obtain comparison results in oscillation theory. To
this end, consider together with (2.2.1) the equation

ẋ(t)+
m∑

k=1

bk(t)x
(
hk(t)

)= 0, t ≥ 0. (2.4.1)

Suppose (a1) and (a2) hold for (2.4.1). Denote by Y(t, s) the fundamental func-
tion of (2.4.1).

Theorem 2.3 Suppose ak(t) ≥ 0, ak(t) ≥ bk(t), t ≥ t0, and condition 2) of The-
orem 2.1 holds for (2.2.1). Then (2.4.1) has a positive solution for t ≥ t1 and
Y(t, s) > 0 for t ≥ s ≥ t1.

Proof By Theorem 2.1 and Remark 2.1, the fundamental function X(t, s) of (2.2.1)
is positive for t ≥ t1.

Consider the equation with the zero initial conditions

ẋ(t)+
m∑

k=1

bk(t)x
(
hk(t)

)= f (t), t ≥ t1, x(t)= 0, t ≤ t1. (2.4.2)

We will show that if f (t) ≥ 0, then the solution of (2.4.2) is nonnegative. To this
end, let us rewrite (2.4.2) in the form

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)+
m∑

k=1

[
bk(t)− ak(t)

]
x
(
hk(t)

)

= f (t), t ≥ t1, x(t)= 0, t ≤ t1.
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Denote

z(t)= ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)
.

By solution representation formula (2.2.5),

x(t)=
∫ t

t1

X(t, s)z(s)ds, x
(
hk(t)

)= χ[t1,∞)

(
hk(t)

) ∫ hk(t)

t1

X
(
hk(t), s

)
z(s)ds,

where χI is the characteristic set of the interval I ,

χ[t1,∞)(t)=
{

1, t ≥ t1,

0, t < t1.

Thus (2.4.2) is equivalent to the equation

z− T z= f, (2.4.3)

where

(T z)(t)=
m∑

k=1

[
ak(t)− bk(t)

]
χ[t1,∞)

(
hk(t)

) ∫ hk(t)

t1

X
(
hk(t), s

)
z(s)ds.

By Corollary B.1, we have the estimate

∣∣X(t, s)
∣∣≤ exp

m∑

k=1

∫ b

t1

∣∣ak(τ )
∣∣dτ, t1 ≤ s ≤ t ≤ b,

so the kernel of the integral operator T is essentially bounded on [t1, b] × [t1, b].
By Theorem A.4, operator T is a weakly compact operator in the space L∞[t1, b].
Theorem A.7 implies that the spectral radius r(T )= 0< 1.

Theorem 2.1 implies X(t, s) > 0, t ≥ s ≥ t1, and hence operator T is positive.
Therefore, for the solution of (2.4.3), we have

z(t)= f (t)+ (Tf )(t)+ (T 2f
)
(t)+ · · · ≥ 0 if f (t)≥ 0.

Then, as in the proof of Theorem 2.1, we conclude that Y(t, s) > 0, t ≥ s ≥ t1, and
therefore x(t)= Y(t, t1) is a positive solution of (2.4.1).

Positivity of Y(t, s) for an arbitrary s > t1 is demonstrated similarly. �

Corollary 2.1 Suppose that ak(t) ≥ 0, ak(t) ≥ bk(t) for t ≥ t0 and (2.2.1) has a
positive solution for t ≥ t0. Then there exists t1 ≥ t0 such that (2.4.1) has a positive
solution for t ≥ t1.

Denote

a+ = max{a,0}.
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Corollary 2.2

1) If the inequality

ẋ(t)+
m∑

k=1

a+
k (t)x

(
hk(t)

)≤ 0 (2.4.4)

has an eventually positive solution, then (2.2.1) also has an eventually positive
solution.

2) If condition 2) of Theorem 2.1 holds for (2.2.1), where inequality (2.3.2) is re-
placed by

u(t)≥
m∑

k=1

a+
k (t) exp

{∫ t

hk(t)

u(s)ds

}
, t ≥ t1, (2.4.5)

then (2.2.1) has a positive solution for t ≥ t1 and X(t, s) > 0 for t ≥ s ≥ t1.

Proof Consider the equation

ẋ(t)+
m∑

k=1

a+
k (t)x

(
hk(t)

)= 0.

Either of the two assumptions of the corollary imply that all hypotheses of Theo-
rem 2.1 hold. Since ak(t) ≤ a+

k (t) and a+
k (t) ≥ 0, Theorem 2.3 implies this corol-

lary. �

Inequality (2.4.5) can be employed to obtain a comparison result that improves
the statement of Theorem 2.3.

Consider the equation

ẋ(t)+
m∑

k=1

bk(t)x
(
gk(t)

)= 0, (2.4.6)

and suppose that the hypotheses (a1) and (a2) hold for (2.4.6); denote by Y(t, s) the
fundamental function of this equation.

Theorem 2.4 Suppose that ak(t) ≥ 0 and there exists t0 ≥ 0 such that for (2.2.1)
anyone of assertions 1)–4) of Theorem 2.1 holds for t ≥ t0. If

bk(t)≤ ak(t), hk(t)≤ gk(t), k = 1, · · · ,m, (2.4.7)

then there exists t1 ≥ t0 such that (2.4.6) has a positive solution for t ≥ t1 and
Y(t, s) > 0, t ≥ s ≥ t1.

Proof Theorem 2.1 implies that for some t1 ≥ t0 there exists a nonnegative solution
u of inequality (2.3.2) for t ≥ t1. Inequalities (2.4.7) yield that this function is also
a solution of the inequality

u(t)≥
m∑

k=1

b+
k (t) exp

{∫ t

gk(t)

u(s)ds

}
, t ≥ t1.
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Hence, by Corollary 2.2, (2.4.6) has a positive solution for t ≥ t1 and the fundamen-
tal function of (2.4.6) is positive, which completes the proof. �

The inequality X(t, s) > 0 can be employed to compare solutions of two distinct
differential equations. To this end, consider together with (2.2.2), (2.2.3) the initial
value problem with the same delays:

ẏ(t)+
m∑

k=1

bk(t)y
(
hk(t)

)= g(t), t ≥ t1, (2.4.8)

y(t)=ψ(t), t < t1, y(t1)= y0. (2.4.9)

Suppose (a1)–(a3) hold for (2.4.8), (2.4.9). Denote by x(t), X(t, s) the solution
and the fundamental function of problem (2.2.2), (2.2.3), where the initial point t0
is replaced by t1 and by y(t), Y (t, s) the solution and the fundamental function of
problem (2.4.8), (2.4.9).

Theorem 2.5 Suppose that condition 2) of Theorem 2.1 holds for (2.2.1), x(t) > 0
and

ak(t)≥ bk(t)≥ 0, g(t)≥ f (t), ϕ(t)≥ψ(t), t < t1, y0 ≥ x0.

Then y(t)≥ x(t) > 0.

Proof Denote by u(t) a nonnegative solution of (2.3.2). Inequality ak(t) ≥ bk(t)

yields that the function u(t) is also a solution of the inequality corresponding to
(2.3.2) for (2.4.8). Hence, by Theorem 2.1 we have X(t, s) > 0 and Y(t, s) > 0 for
t0 ≤ s < t .

Equation (2.2.2) can be rewritten in the form

ẋ(t)+
m∑

k=1

bk(t)x
(
hk(t)

)=
m∑

k=1

[
bk(t)− ak(t)

]
x
(
hk(t)

)+ f (t), t ≥ t1,

which implies

x(t)= Y(t, t1)x0 −
m∑

k=1

∫ t

t1

Y(t, s)bk(s)ϕ
(
hk(s)

)
ds

+
∫ t

t1

Y(t, s)f (s)ds −
m∑

k=1

∫ t

t1

Y(t, s)
[
ak(s)− bk(s)

]
x
(
hk(s)

)
ds

≤ Y(t, t1)y0 −
m∑

k=1

∫ t

t1

Y(t, s)bk(s)ψ
(
hk(s)

)
ds +

∫ t

t1

Y(t, s)g(s)ds = y(t),

where ϕ(hk(s))=ψ(hk(s))= 0 if hk(s)≥ t1 and x(hk(s))= 0 if hk(s) < t1. There-
fore y(t)≥ x(t) > 0. �

Corollary 2.3 Suppose that ak(t)≥ 0, condition 2) of Theorem 2.1 holds for (2.2.1)
and x and y are positive solutions of (2.2.1) and (2.3.1) for t ≥ t1, respectively. If
x(t)≤ y(t) for t < t1 and x(t1)= y(t1), then x(t)≥ y(t) for t ≥ t1.
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Since the fundamental function of any ordinary differential equation ẋ(t) +
a(t)x(t)= 0 is positive, we immediately obtain the following result.

Corollary 2.4 If ak(t)≥ 0, k = 1, · · · ,m, then the fundamental function X(t, s) of
the equation

ẋ(t)+ a(t)x(t)−
m∑

k=1

ak(t)x
(
hk(t)

)= 0, t ≥ 0,

is positive for 0 ≤ s ≤ t . In addition, for the solutions y and z of the inequalities

ẏ(t)+ a(t)y(t)−
m∑

k=1

ak(t)y
(
hk(t)

)≤ 0, t ≥ 0,

ż(t)+ a(t)z(t)−
m∑

k=1

ak(t)z
(
hk(t)

)≥ 0, t ≥ 0,

satisfying for any t0 the equality x(t)= y(t)= z(t), t ≤ t0, we have y(t) ≤ x(t) ≤
z(t) for t > t0.

2.5 Nonoscillation Conditions, Part 1

Inequality (2.4.5) can be applied to obtain explicit nonoscillation conditions. Corol-
lary 2.2, Part 2, immediately implies the following result if we assume u(t)≡ λ.

Theorem 2.6 Suppose that there exist a point t1 ≥ 0 and a constant λ > 0 such that

m∑

j=1

a+
j (t)e

λ(t−hk(t)) ≤ λ, t ≥ t1.

Then the fundamental function X(t, s) of (2.2.1) is positive for t ≥ s ≥ t1.

Theorem 2.7 Suppose that there exists a point t1 ≥ 0 such that
∫ t

mink{hk(t)}

m∑

j=1

a+
j (s)ds ≤ 1

e
, t ≥ t1. (2.5.1)

Then the fundamental function X(t, s) of (2.2.1) is positive for t ≥ s ≥ t1.

Proof Let us demonstrate that the function

u(t)= e

m∑

k=1

a+
k (t)

is a nonnegative solution of (2.4.5). By (2.5.1), we have for t ≥ t1
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m∑

k=1

a+
k (t) exp

{∫ t

hk(t)

u(s)ds

}

=
m∑

k=1

a+
k (t) exp

{∫ t

hk(t)

e

m∑

i=1

a+
i (s)ds

}

≤
m∑

k=1

a+
k (t) exp

{
e

∫ t

mink hk(t)

m∑

i=1

a+
i (s)ds

}

≤
m∑

k=1

a+
k (t)e= u(t),

so u(t) satisfies (2.4.5). By Corollary 2.2, the fundamental function of (2.2.1) is
positive for t ≥ t1. �

Let us note that the constant 1/e is the best possible since the equation

ẋ(t)+ x(t − τ)= 0

is oscillatory for τ > 1/e.

Corollary 2.5 Suppose

lim sup
t→∞

∫ t

mink{hk(t)}

m∑

j=1

a+
j (s)ds <

1

e
. (2.5.2)

Then there exists an eventually positive solution of (2.2.1).

Corollary 2.6 Suppose that there exists τ > 0 such that t−hk(t)≤ τ , k = 1, · · · ,m
and

∫ ∞

t0

m∑

k=1

a+
k (s)ds <∞.

Then there exists an eventually positive solution of (2.2.1).

In the monograph [192], the authors construct a counterexample that demon-
strates that condition (2.5.2) is not necessary for nonoscillation of (2.2.1).

By [192, Theorem 3.4.3], the inequality

lim sup
t→∞

∫ t

maxk{hk(t)}

m∑

j=1

aj (s)ds ≤ 1 (2.5.3)

is necessary for nonoscillation of (2.2.1) with nonnegative coefficients ak(t)≥ 0 and
monotonically nondecreasing deviations of arguments hk(t).

Let us find sufficient nonoscillation conditions when the number

lim sup
t→∞

∫ t

maxk{hk(t)}

m∑

j=1

a+
j (s)ds

is between 1/e and 1.
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First, consider (2.2.1) with constant delays τk(t)= const:

ẋ(t)+
m∑

k=1

ak(t)x(t − τk)= 0, τk > 0, k = 1, · · · ,m. (2.5.4)

Theorem 2.8 Suppose that there exist a number n0 ≥ 0 and a sequence {λn}∞n=n0
,

where all λn > 1, such that
m∑

k=1

a+
k (t)≤ λne

−(λn−1(nτ−t)+λn(t−(n−1)τ )), (n− 1)τ ≤ t ≤ nτ, n≥ n0, (2.5.5)

where τ = maxk τk .
Then (2.5.4) has a positive fundamental function X(t, s) for t ≥ s ≥ t0 = n0τ .

Proof Let us demonstrate that the function

u(t)= λn, (n− 1)τ ≤ t ≤ nτ, n≥ n0,

is a solution of (2.4.5) for t ≥ n0.
In the interval (n− 1)τ ≤ t ≤ nτ , we have

m∑

k=1

a+
k (t) exp

{∫ t

t−τk
u(s)ds

}

≤
m∑

k=1

a+
k (t) exp

{∫ t

t−τ
u(s)ds

}

=
m∑

k=1

a+
k (t) exp

{∫ (n−1)τ

t−τ
λn−1ds +

∫ t

(n−1)τ
λnds

}

=
m∑

k=1

a+
k (t) exp

{
λn−1(nτ − t)+ λn

(
t − (n− 1)τ

)}≤ λn = u(t).

Hence (2.4.5) is equivalent to (2.5.5), which completes the proof. �

By Theorem 2.4, we obtain a more general result.

Corollary 2.7 Suppose there exists τk > 0 such that t −hk(t)≤ τk . If all the condi-
tions of Theorem 2.8 hold, then (2.2.1) has a positive fundamental function X(t, s)
for t ≥ s ≥ t0.

Example 2.1 Consider the equation

ẋ(t)+ a(t)x(t − τ)= 0, (2.5.6)

where τ = 1 and

a(t)=
{
e−(2n−t+1), 2n− 1 ≤ t < 2n, n≥ 1,

2e−(t−2n+1), 2n≤ t < 2n+ 1, n≥ 0.
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Denote

λ2n = 1, λ2n−1 = 2.

Then all the conditions of Theorem 2.8 hold, and thus (2.5.6) has a positive funda-
mental function.

In addition, we have

lim sup
t→∞

∫ t

t−1
a(s)ds = 2

(
e−1 − e−2)>

1

e
.

Hence (2.5.2) does not hold for (2.5.6). Thus (2.5.2) is not necessary for nonoscil-
lation of (2.2.1).

We apply the idea of Example 2.1 to prove the following theorem.

Theorem 2.9 For any α ∈ (1/e,1), there exists nonoscillatory equation (2.5.6) with
a(t)≥ 0 such that

sup
t≥τ

∫ t

t−τ
a(s)ds = α. (2.5.7)

Proof It is sufficient to prove the theorem for τ = 1. Suppose λ > 0, a > 1. Consider
(2.5.6), where τ = 1 and

a(t)=
{
λe−(2λ(a−1)n−λ(a−1)t+λ), 2n− 1 ≤ t < 2n, n≥ 1,

λae−(λ(a−1)t−2λ(a−1)n+λ), 2n≤ t < 2n+ 1, n≥ 0.

Denote

λ2n = λ, λ2n−1 = λa.

Then all the conditions of Theorem 2.8 hold, and hence (2.5.6) has a positive fun-
damental function.

We have

sup
t≥1

∫ t

t−1
a(s)ds = a

a − 1

(
e−λ − e−λa

)
.

The function

f (λ)= a

a − 1

(
e−λ − e−λa

)

has the maximum maxf (λ)= f (λ0)= e−λ0 at the point λ0 = lna
a−1 . Let us note that

lim
a→1

lna

a − 1
= 1, lim

a→∞
lna

a − 1
= 0,

and take λ= lna
a−1 in the definition of function a(t). Then

sup
t≥1

∫ t

t−1
a(s)ds = e− lna/(a−1).
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Since

lim
a→1

sup
t≥1

∫ t

t−1
a(s)ds = 1/e, lim

a→∞ sup
t≥1

∫ t

t−1
a(s)ds = 1,

the continuous function supt≥1

∫ t
t−1 a(s)ds of a takes all the values from the interval

(1/e,1), which completes the proof. �

Now we proceed to an integral nonoscillation condition similar to Theorem 2.8.

Theorem 2.10 Suppose that there exist n0 ≥ 0 and a sequence {λn}∞n=n0
, where all

λn > 1, such that

λn−1

∫ (n−1)τ

t−τ

m∑

k=1

a+
k (s)ds + λn

∫ t

(n−1)τ

m∑

k=1

a+
k (s)ds ≤ lnλn, (n− 1)τ ≤ t ≤ nτ,

(2.5.8)

n ≥ n0, where τ = maxk τk . Then (2.5.4) has a positive fundamental function for
t ≥ s ≥ t0 = n0τ .

Proof The proof is similar to the proof of the previous theorem if we put

u(t)= λna(t), (n− 1)τ ≤ t ≤ nτ, n≥ n0,

where a(t)=∑m
k=1 a

+
k (s)ds. �

Corollary 2.8 Suppose there exists τk > 0 such that t − hk(t) ≤ τk . If all the con-
ditions of Theorem 2.10 hold, then (2.2.1) has a positive fundamental function for
t ≥ s ≥ t0.

Let us note that if in (2.5.6) we substitute the maximum delay by the minimum
delay

lim sup
t→∞

∫ t

mink hk(t)

m∑

j=1

aj (s)ds ≤ 1, (2.5.9)

this condition is not necessary for nonoscillation.

Example 2.2 The equation

x′(t)+ 0.01x(t − 10)+ 0.3x(t)= 0 (2.5.10)

is nonoscillatory since the characteristic equation λ+ 0.01e−10λ + 0.3 = 0 has two
real roots, λ1 ≈ −0.3261 and λ1 ≈ −0.5536. However, (2.5.9) is not satisfied since
10(0.01 + 0.3)= 3.01> 1.
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2.6 Nonoscillation Conditions, Part 2

The explicit nonoscillation condition in (2.5.1) is easily checked but contains only
“the worst delay”. To give a sharper result, where all delays are included, denote

Aij = sup
t≥t1

∫ t

hi (t)

a+
j (s)ds, 1 ≤ i, j ≤m. (2.6.1)

Theorem 2.11 Suppose there exist a point t1 ≥ 0 and positive numbers xi, i =
1, · · · ,m such that Aij <∞, t ≥ t1 and

lnxi ≥
m∑

j=1

Aijxj , i = 1, · · · ,m. (2.6.2)

Then (2.2.1) has a positive fundamental function X(t, s) for t ≥ s ≥ t1.

Proof Inequality (2.6.2) implies that for any t ≥ t1

xk ≥ exp

{
m∑

j=1

∫ t

hk(t)

xj a
+
j (s)ds

}
.

After introducing the function

u(t)=
m∑

j=1

xja
+
j (t), t ≥ t1, u(t)= 0, t ≤ t1,

we obtain
m∑

k=1

a+
k (t) exp

{∫ t

hk(t)

u(s)ds

}

=
m∑

k=1

a+
k (t) exp

{∫ t

hk(t)

m∑

j=1

xja
+
j (s)ds

}

≤
m∑

k=1

a+
k (t)xk = u(t).

Then all the conditions of Part 2 of Corollary 2.2 are satisfied. Hence (2.2.1) has a
positive fundamental function for t ≥ t1. �

Theorem 2.11 contains only implicit nonoscillation conditions. To derive explicit
conditions from this theorem, we consider first the equation with two delays

ẋ(t)+ a(t)x
(
h(t)

)+ b(t)x
(
g(t)

)= 0, (2.6.3)

where

a(t)≥ 0, b(t)≥ 0, h(t)≤ t, g(t)≤ t.

Similar to (2.6.1), we denote (and assume A,B,C,D are finite)
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A= sup
t≥t1

∫ t

h(t)

a+(s)ds, B = sup
t≥t1

∫ t

h(t)

b+(s)ds,

C = sup
t≥t1

∫ t

g(t)

a+(s)ds, D = sup
t≥t1

∫ t

g(t)

b+(s)ds.
(2.6.4)

By Theorem 2.11, the existence of positive solutions of the system

lnx1 ≥Ax1 +Bx2, lnx2 ≥ Cx1 +Dx2, (2.6.5)

implies nonoscillation of (2.6.3).

Theorem 2.12 Let

lim sup
t→∞

∫ t

g(t)

a+(s)ds = lim sup
t→∞

∫ t

g(t)

b+(s)ds = 0 (2.6.6)

and

AeB <
1

e
. (2.6.7)

Then (2.6.3) has an eventually positive fundamental function.

Proof It is sufficient to prove the existence of a positive solution (x1, x2), x1 > 0,
x2 > 0 for the system

lnx1 >A0x1 +B0x2, lnx2 > 0, (2.6.8)

where

A0 = lim sup
t→∞

∫ t

h(t)

a+(s)ds, B0 = lim sup
t→∞

∫ t

h(t)

b+(s)ds.

Assume first A0 > 0, B0 > 0, and put x1 = 1
A0

. Then (2.6.8) takes the form

B0 <B0x2 <−1 − lnA0.

By (2.6.7), there exists C > 0 such that B0 <C <−1 − lnA0. Therefore the pair

(x1, x2)=
(

1

A0
,
C

B0

)

will be a solution of the system (2.6.8).
If A0 > 0, B0 = 0, then the pair (x1, x2), where x1 = e, x2 > 1, is a solution

of (2.6.8).
The case A0 = 0,B0 > 0 is treated similarly.
Existence of a positive solution of (2.6.8) in the case A0 = B0 = 0 is obvi-

ous. �

Example 2.3 Consider the equation

ẋ(t)+ ax(t − 1)+ bx
(
g(t)

)= 0, (2.6.9)
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where a, b are positive numbers, limt→∞(t − g(t)) = 0. We have A = a, B = b,
C =D = 0. Then the condition

aeb <
1

e

implies nonoscillation of (2.6.9).

Example 2.4 Consider the equation

ẋ(t)+ a

t
x

(
t

μ

)
+ b

t
x(t − τ)= 0, t ≥ t0 > 0, (2.6.10)

where a > 0, b > 0, μ > 1, τ > 0. We have A = a lnμ, B = b lnμ, C = D = 0.
Hence, if the condition

aμb <
1

e lnμ

holds, then (2.6.10) has a nonoscillatory solution.

Example 2.5 Consider the equation

ẋ(t)+ a

t ln t
x
(
tα
)+ b

t
x(t − τ)= 0, t ≥ t0 > 1, (2.6.11)

where a > 0, b > 0, 1> α > 0, τ > 0. We have A= a ln 1
α

, B = b ln 1
α

, C =D = 0.
Hence, if the condition

aα−b < 1

e ln 1
α

holds, then (2.6.11) has a nonoscillatory solution.

Theorem 2.13 Suppose that for some t1 ≥ 0 at least one of the following conditions
holds:

1) 0<A≤ 1
e
, B > 0, and there exists a number y0 > 0 such that

y0 ≤ −1 + lnA

B
,
C

A
+Dy0 ≤ lny0;

2) C > 0, 0<D ≤ 1
e
, and there exists a number x0 > 0 such that

x0 ≤ −1 + lnD

C
,
B

D
+Ax0 ≤ lnx0.

Then the fundamental function X(t, s) of (2.6.3) is positive for t ≥ s ≥ t1.

Proof Suppose the inequalities in 1) hold. The function y = (lnx −Ax)/B has the
unique maximum ymax = − 1+lnA

B
at the point xmax = 1

A
. The inequality

−(1 + lnA)≥ By0 > 0

implies ymax > 0, while y0 ≤ − 1+lnA
B

yields that the point (xmax, y0) satisfies the
first inequality in (2.6.5) in the case y0 < ymax. Since C

A
+Dy0 < lny0, this point
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also satisfies the second inequality in (2.6.5). If y0 = ymax, then there exists y1 < y0

for which the inequality C
A

+Dy1 < lny1 still holds. Then (xmax, y1) is a solution
of (2.6.5). If 2) holds, the proof is similar. �

Corollary 2.9 Suppose that there exists a point t1 ≥ 0 such that at least one of the
following conditions holds:

0<A≤ 1

e
, B > 0,

C

A
− D(1 + lnA)

B
≤ ln

(
−1 + lnA

B

)
, (2.6.12)

C > 0, 0<D ≤ 1

e
,
B

D
− A(1 + lnD)

C
≤ ln

(
−1 + lnD

C

)
. (2.6.13)

Then the fundamental function X(t, s) of (2.6.3) is positive for t ≥ s ≥ t1.

Proof If (2.6.12) holds, then there exists ε > 0 such that for y0 = − 1+lnA
B

− ε the
first condition of Theorem 2.13 is satisfied. Similarly, (2.6.13) implies the second
condition. �

Remark 2.2 In Theorem 2.13, it is assumed that either A > 0, B > 0 or C > 0,
D > 0. Including the cases where these conditions are not satisfied, by analyzing
(2.6.5) we immediately obtain the following sufficient nonoscillation conditions:

1. B = 0, D > 0, A< 1/e, 1 + lnD +C/e < 0;
2. C = 0, A> 0, D < 1/e, 1 + lnA+B/e < 0;
3. A= 0, D > 0, CeB/D + 1 + lnD < 0;
4. D = 0, A> 0, beC/A + lnA+ 1< 0;
5. B = 0, C = 0, A< 1/e, D < 1/e;
6. A= 0, C = 0, D < 1/e;
7. B = 0, D = 0, A< 1/e.

For A=D = 0, the situation is a little bit more complicated in that there exists
an eventually positive solution if the following condition is satisfied:

8. A = D = 0, and there exists either x > 0 such that lnx > BeCx or y > 0 such
that lny > CeBy .

Example 2.6 Consider the equation

ẋ(t)+ 0.2

π
sin2 tx(t − π)+ 0.2

π
cos2 tx(t − 2π)= 0. (2.6.14)

By simple calculations, we have A= B = 0.1, C =D = 0.2. Condition (2.6.12)
in Corollary 2.9 is not satisfied, but inequality (2.6.13) holds. Hence (2.6.14) has an
eventually positive solution.

Figure 2.1 illustrates the domain for (x, y) where the inequalities of type (2.6.5)
hold:

lnx ≥ 0.1x + 0.1y, lny ≥ 0.2x + 0.2y. (2.6.15)
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Fig. 2.1 In the domain
between the curves, the
system of inequalities
(2.6.15) has a positive
solution, so (2.6.14) has an
eventually positive solution.
Here A= B = 0.1,
C =D = 0.2

We observe that the maximum of f (x)= 10 ln(x)− x is not in the domain between
the curves (thus, (2.6.12) is not satisfied), while the maximum of the function g(y)=
5 ln(y)− y is in the intersection domain, so (2.6.13) holds. It should be noted that
Theorem 2.7 fails for this equation.

Let us present different sufficient conditions for the existence of positive solu-
tions.

Theorem 2.14 Suppose that there exists a point t1 ≥ 0 such that at least one of the
following conditions holds:

1) There exists y0 > 0 such that y0 < (1 −Ae)/B , Ce+Dy0 < lny0.
2) There exists x0 > 0 such that x0 < (1 −De)/C, Ax0 +Be < lnx0.

Then the fundamental function of (2.6.3) is positive.

Proof Suppose 1) holds. Then Ae < 1 and (e, y0) is a solution of the system of
inequalities (2.6.5). Similarly, if 2) holds, then (x0, e) is a solution of (2.6.5). �

Remark 2.3 In Theorem 2.14, the value x = e was chosen to minimize the coeffi-
cient of x in the first inequality of the system

(
A− lnx

x

)
x +By < 0, Cx +

(
D − lny

y

)
y < 0,

which is equivalent to (2.6.5), and y = e minimizes the coefficient of y in the second
inequality.

Corollary 2.10 Suppose that there exists a point t1 ≥ 0 such that at least one of the
following inequalities holds:

Ce+ D

B
(1 −Ae)≤ ln

(
1 −Ae

B

)
, (2.6.16)
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Be+ A

C
(1 −De)≤ ln

(
1 −De

C

)
. (2.6.17)

Then the fundamental function of (2.6.3) is positive.

Let us modify Example 2.6 to demonstrate that there are cases where either The-
orem 2.13 or Theorem 2.14 can be applied while the other one fails.

Example 2.7 Consider the following modified version of (2.6.14):

ẋ(t)+ 0.5

π
sin2 tx(t − π)+ 0.08

π
cos2 tx(t − 2π)= 0. (2.6.18)

Then A= 0.25, B = 0.04, C = 0.5, D = 0.08 and (2.6.16) becomes

0.5e+ 2(1 − 0.25e)= 2< 2.08 ≈ ln

(
1 − 0.25e

0.04

)
;

i.e., (2.6.16) is satisfied and there exists an eventually positive solution of (2.6.18).
Theorem 2.7 fails for (2.6.18) since 0.5 + 0.08> 1/e. Simple computations demon-
strate that (2.6.12), (2.6.13) and (2.6.17) also fail for (2.6.18).

On the other hand, for the equation

ẋ(t)+ 0.2

π
sin2 tx(t − π)+ 0.25

π
cos2 tx(t − 2π)= 0 (2.6.19)

with A= 0.1, B = 0.125, C = 0.2, D = 0.25, inequality (2.6.13) is satisfied. This
implies existence of an eventually positive solution for (2.6.19), while Theorem 2.7,
(2.6.16), (2.6.17) and (2.6.12) fail.

Next, consider (2.2.1) with several delays.

Theorem 2.15 Suppose that there exists a point t1 ≥ 0 and an index k,1 ≤ k ≤m,
such that

Bi :=
∑

j �=k
Aij ≤ 1

e
, i = 1,2, · · · ,m, (2.6.20)

where Aij are defined in (2.6.1), and there exists z > 0 satisfying the inequalities

z≤ min
i �=k

1 −Bie

Aik
,
∑

j �=k
Akj e+Akkz≤ ln z. (2.6.21)

Then the fundamental function of (2.2.1) is positive.

Proof Suppose that such k exists. Let xi = e, i �= k;xi = z, i = k. Then the first
inequality in (2.6.21) implies all inequalities in (2.6.2) but the k-th one, which is a
corollary of the latter inequality in (2.6.21). Thus (2.6.2) has a positive solution, so
(2.2.1) has an eventually positive solution, which completes the proof. �
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Corollary 2.11 Suppose there exist a point t1 ≥ 0 and an index k, 1 ≤ k ≤m, such
that

e
∑

j �=k
Akj +AkkB ≤ lnB, (2.6.22)

where B = mini �=k 1−Bie
Aik

and Akj are denoted by (2.6.1). Then the fundamental
function of (2.2.1) is positive.

Proof Due to the continuity of the function lnx − Akkx, there exists ε > 0 such
that if we substitute z = B − ε instead of B , the inequality (2.6.22) is still valid;
i.e., the second inequality in (2.6.21) is satisfied. Then z ≤ 1−Bie

Aik
for any i �= k,

where Bi are defined in (2.6.20), so the first inequality in (2.6.21) is also satisfied.
By Theorem 2.15, (2.2.1) has an eventually positive solution. �

Using Theorem 2.4, we can also apply Theorem 2.13 to general equations with
several delays.

Theorem 2.16 Suppose ak(t)≥ 0, k = 1, · · · ,m, and let I1 ⊂ I = {1, · · · ,m}, I2 =
I\I1. Denote

a(t)=
∑

k∈I1
ak(t), b(t)=

∑

k∈I2
ak(t), h(t)= min

k∈I1
hk(t), g(t)= min

k∈I2
hk(t).

Here we assume h(t)≡ t or g(t)≡ t if I1 = ∅ or I2 = ∅, respectively. Suppose that
there exists a point t1 ≥ 0 such that the hypotheses of Theorem 2.13 or Remark 2.2
are satisfied, whereA,B,C,D are defined in (2.6.4). Then the fundamental function
of (2.2.1) is positive.

Proof Nonoscillation of (2.6.3) and Theorem 2.4 imply nonoscillation of (2.2.1). �

Remark 2.4 Theorem 2.16 contains 2m different nonoscillation conditions. In par-
ticular, if I1 = I, I2 = ∅, then Remark 2.2 implies Theorem 2.7. Indeed, in this case
we have a(t)=∑m

k=1 ak(t), b(t)≡ 0, h(t)= mink∈I hk(t), g(t)≡ t . We have

A= sup
t≥t1

∫ t

h(t)

m∑

k=1

ak(s)ds, B = C =D = 0.

If we take x1 = e, x2 > 1, then inequalities (2.6.5) have the form A≤ 1
e
, lnx2 > 0,

which is equivalent to (2.5.1).

2.7 Oscillation Conditions

There are many explicit oscillation conditions for equations with one delay and
only a few for equations with several delays (2.2.1). We present here some explicit
oscillation tests. First, let us mention two known oscillation conditions.
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Lemma 2.2 [192] Suppose ak(t) ≥ 0 and at least one of the following conditions
holds:

1)

lim inf
t→∞

∫ t

maxk hk(t)

m∑

i=1

ai(s)ds >
1

e
,

2) hk are nondecreasing and

lim sup
t→∞

∫ t

maxk hk(t)

m∑

i=1

ai(s)ds > 1.

Then all solutions of (2.2.1) are oscillatory.

Lemma 2.3 [192] Suppose ak(t)≥ 0, k = 1, · · · ,m and

lim inf
t→∞

m∑

k=1

ak(t)
(
t − hk(t)

)
>

1

e
.

Then all solutions of (2.2.1) are oscillatory.

The conditions of Lemma 2.2 are given in the integral form but contain only the
worst delay function. The inequality of Lemma 2.3 contains all the delays but is
presented in the pointwise form. The following result contains all the delays and
has the integral form.

Theorem 2.17 Suppose ak(t) ≥ 0, k = 1, · · · ,m and there exists a set of indices
J ⊂ {1, · · · ,m} such that

∑
k∈J ak(t) �= 0 almost everywhere,

∫∞
t0

∑m
i=1 ai(s)ds =

∞ and

lim inf
t→∞

m∑

k=1

ak(t)∑
i∈J ai(t)

∫ t

hk(t)

∑

i∈J
ai(s)ds >

1

e
. (2.7.1)

Then all solutions of (2.2.1) are oscillatory.

Proof After the substitution

s =
∫ t

t0

∑

k∈J
ak(τ )dτ, y(s)= x(t), lk(s)=

∫ hk(t)

t0

∑

k∈J
ak(τ )dτ,

(2.2.1) has the form

ẏ(s)+
m∑

k=1

ak(t)∑
i∈J ai(t)

y
(
lk(s)

)= 0. (2.7.2)

Evidently oscillation of (2.2.1) is equivalent to oscillation of (2.7.2).
Since s − lk(s) = ∫ t

hk(t)

∑
i∈J ai(s)ds, Lemma 2.3 and condition (2.7.1) imply

this theorem. �
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Remark 2.5 The first part of Lemma 2.2 can be obtained as a corollary of Theo-
rem 2.17 for J = {1, · · · ,m}.

Consider now (2.2.1) with two delays:

ẋ(t)+ a(t)x
(
h(t)

)+ b(t)x
(
g(t)

)= 0. (2.7.3)

Corollary 2.12 Suppose a(t)≥ 0, b(t)≥ 0 and at least one of the following condi-
tions holds:

1. a(t) �= 0 almost everywhere (a.e.) and

lim inf
t→∞

(∫ t

h(t)

a(s)ds + b(t)

a(t)

∫ t

g(t)

a(s)ds

)
>

1

e
;

2. b(t) �= 0 a.e. and

lim inf
t→∞

(
a(t)

b(t)

∫ t

h(t)

b(s)ds +
∫ t

g(t)

b(s)ds

)
>

1

e
;

3. a(t)+ b(t) �= 0 a.e. and

lim inf
t→∞

(
a(t)

a(t)+ b(t)

∫ t

h(t)

[
a(s)+ b(s)

]
ds + b(t)

a(t)+ b(t)

∫ t

g(t)

[
a(s)+ b(s)

]
ds

)

>
1

e
.

Then all solutions of (2.7.3) are oscillatory.

Proof We fix the sets of indices J = {1}, J = {2} and J = {1,2}, respectively. �

Consider (2.7.3) with a nondelay term,

ẋ(t)+ a(t)x(t)+ b(t)x
(
g(t)

)= 0. (2.7.4)

Corollary 2.13 Suppose a(t)≥ 0, b(t)≥ 0, a(t) �= 0 a.e. and

lim inf
t→∞

b(t)

a(t)

∫ t

g(t)

a(s)ds >
1

e
.

Then all solutions of (2.7.3) are oscillatory.

Example 2.8 By Part 3 of Corollary 2.12, the equation

ẋ(t)+ [1 + sin(2πt)
]
x
(
h(t)

)+ γ
[
1 + sin(2πt)

]
x(t − 1)= 0, (2.7.5)

where h(t)≤ t , limt→∞ h(t)= t , is oscillatory if

γ >
1

e
(2.7.6)

since
∫ t

t−1

[
1 + sin(2πs)

]
ds = 1 for any t,

b(t)

a(t)
= γ.
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However, Lemma 2.2 cannot be applied to establish oscillation since max{t, t − 1}
= t , and the condition of Lemma 2.3 is not satisfied since lim inft→∞ γ [1 +
sin(2πt)] = 0 for any γ .

2.8 Estimations of Solutions

First let us obtain a lower estimation of the fundamental function.

Theorem 2.18 Suppose conditions of Theorem 2.7 hold. Then

X(t, s)≥ exp

{
−e
∫ t

s

m∑

k=1

a+
k (s)ds

}
, t ≥ s ≥ t1.

Proof Suppose first that ak(t) ≥ 0, t ≥ t0 and conditions of Theorem 2.1, Part 2,
hold. In the proof of Theorem 2.1, it was shown that

X(t, t1)≥ exp

{
−
∫ t

t1

u(s)ds

}
, t ≥ t1,

where the function u(t) was denoted in Part 2 of Theorem 2.1.
The same calculations lead to the estimate

X(t, s)≥ exp

{
−
∫ t

s

u(s)ds

}
, t ≥ s ≥ t1.

By the proof of Theorem 2.7, the function u(t) = e
∑m

k=1 a
+
k (t) satisfies all the

conditions of Part 2 of Theorem 2.1. Hence the theorem is true for the case ak(t)≥ 0.
Consider now the general case and denote by X+(t, s) the fundamental function

of the equation

ẋ(t)+
m∑

k=1

a+
k (t)x

(
hk(t)

)= 0.

As was proven before, X+(t, s)≥ exp{−e ∫ t
s

∑m
k=1 a

+
k (s)ds}, t ≥ s ≥ t1.

The fundamental function X(t, s) of (2.2.1) is the solution of the initial value
problem

ẋ(t)+
m∑

k=1

a+
k (t)x

(
hk(t)

)−
m∑

k=1

a−
k (t)x

(
hk(t)

)= 0, t ≥ s,

x(t)= 0, t < s, x(s)= 1.

Hence, by solution representation formula (2.2.5) for t ≥ t1,

X(t, s)=X+(t, s)+
∫ t

s

X+(t, τ )
m∑

k=1

a−
k (τ )X

(
hk(τ ), s

)
dτ.
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By Theorem 2.7, we have X(t, s) > 0, t ≥ s ≥ t1. Then

X(t, s)≥X+(t, s)≥ exp

{
−e
∫ t

s

m∑

k=1

a+
k (s)ds

}
. �

Now let us proceed to upper estimates of the fundamental function.

Theorem 2.19 In (2.2.1), let

ak(t)≥ 0, X(t, s) > 0, t ≥ s ≥ t0, t − hk(t)≤H, t ≥ t0.

Then, for t > s ≥ t0,

0<X(t, s)≤ Y(t, s) :=
{

exp{− ∫ t
s+H

∑m
k=1 ak(τ )dτ }, t ≥ s +H,

1, s ≤ t ≤ s +H.

Proof It is sufficient to prove the theorem for s = t0 since the general case is con-
sidered similarly. Denote

x(t)=X(t, t0), y(t)= Y(t, t0), t > t0 +H, y(t)=X(t, t0), t ≤ t0 +H.

Then, x(t)= y(t) for t ≤ t0 +H , and for t ≥ t0 +H we have

ẏ(t)+
m∑

k=1

ak(t)y
(
hk(t)

)

= −
m∑

k=1

ak(t) exp

{
−
∫ t

t0+H

m∑

k=1

ak(τ )dτ

}
+

m∑

k=1

ak(t)rk(t)

=
m∑

k=1

ak(t)

[
rk(t)− exp

{
−
∫ t

t0+H

m∑

k=1

ak(τ )dτ

}]
≥ 0,

where

rk(t)=
{

exp{− ∫ hk(t)
t0+H

∑m
k=1 ak(τ )dτ }, hk(t)≥ t0 +H,

X(t, t0), t0 ≤ hk(t)≤ t0 +H.

Theorem 2.5 implies y(t)≥ x(t). Hence Y(t, t0)≥X(t, t0), t ≥ t0 +H .
Inequality X(t, t0)≤ 1 is valid since X(t0, t0)= 1 and X′

t (t, t0)≤ 0. Hence 1 =
Y(t, t0)≥X(t, t0) for t0 ≤ t ≤ t0 +H . �

Corollary 2.14 Let

ak(t)≥ 0,
m∑

k=1

ak(t)≥ a > 0, X(t, s) > 0, t ≥ s ≥ t0, t − hk(t)≤H, t ≥ t0.

Then, for t > s ≥ t0,

0<X(t, s)≤ Y(t, s) :=
{

exp{−a(t − s −H)}, t ≥ s +H,

1, s ≤ t ≤ s +H.
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Theorem 2.20 Suppose ak(t) ≥ 0,
∑m

k=1 ak(t) ≥ a > 0, X(t, s) > 0, t ≥ s ≥ t0,
t − hk(t)≤H , t ≥ t0. Then, for the solution of problem (2.2.2), (2.2.3), we have the
estimates

∣∣x(t)
∣∣≤ ∣∣x(t0)

∣∣+
(

‖f ‖ +
m∑

k=1

‖ak‖‖ϕ‖
)
(t − t0), t0 ≤ t < t0 +H,

∣∣x(t)
∣∣≤
(
∣∣x(t0)

∣∣+ 1

a

(
eaH − 1

) m∑

k=1

‖ak‖‖ϕ‖
)
e−a(t−t0−H) + ‖f ‖

a
eaH ,

t ≥ t0 +H,

where

‖ϕ‖ = sup
t0−H≤t≤t0

∣∣ϕ(t)
∣∣, ‖f ‖ = sup

t≥t0

∣∣f (t)
∣∣, ‖ak‖ = sup

t≥t0

∣∣ak(t)
∣∣.

Proof By solution representation formula (2.2.5), we have

∣∣x(t)
∣∣≤X(t, t0)

∣∣x(t0)
∣∣+
∫ t

t0

X(t, s)

(
m∑

k=1

ak(s)
∣∣ϕ
(
hk(s)

)∣∣+ ∣∣f (s)∣∣
)
ds,

where ϕ(t)= 0, t ≥ t0.
Suppose first t0 ≤ t ≤ t0 +H . Then

∣∣x(t)
∣∣≤ ∣∣x(t0)

∣∣+
∫ t

t0

(
m∑

k=1

ak(s)
∣∣ϕ
(
hk(s)

)∣∣+ ∣∣f (s)∣∣
)
ds

≤ ∣∣x(t0)
∣∣+
(

‖f ‖ +
m∑

k=1

‖ak‖‖ϕ‖
)
(t − t0).

Next, let t ≥ t0 +H . Then

∣∣x(t)
∣∣≤ ∣∣x(t0)

∣∣e−a(t−t0−H) +
∫ t0+H

t0

e−a(t−s−H)
m∑

k=1

ak(s)
∣∣ϕ
(
hk(s)

)∣∣ds

+
∫ t

t0

e−a(t−s−H)
∣∣f (s)

∣∣ds

≤ ∣∣x(t0)
∣∣e−a(t−t0−H) +

m∑

k=1

‖ak‖‖ϕ‖1

a

(
eaH − 1

)
e−a(t−t0−H) + ‖f ‖

a
eaH .

�

Another integral estimation of the fundamental function can be obtained using
the following result.

Theorem 2.21 Suppose ak(t) ≥ 0 and the fundamental function of (2.2.1) is posi-
tive: X(t, s) > 0, t ≥ s ≥ t0. Then there exists t1 ≥ t0 such that

0 ≤
∫ t

t1

X(t, s)

m∑

k=1

ak(s)ds ≤ 1. (2.8.1)
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Proof The function x(t)≡ 1, t > t0, is a solution of the problem

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)=
m∑

k=1

ak(t)χ(t0,∞)

(
hk(t)

)
, x(t)= 0, t ≤ t0,

where χ(t0,∞)(t) is the characteristic function of the interval (t0,∞).
Hence, by (2.2.5) we have

1 =
∫ t

t0

X(t, s)

m∑

k=1

ak(s)χ(t0,∞)

(
hk(s)

)
ds.

There exists t1 ≥ t0 such that all hk(t)≥ t0 for t ≥ t1, and thus for any t ≥ t1

∫ t1

t0

X(t, s)

m∑

k=1

ak(s)χ(t0,∞)

(
hk(s)

)
ds +

∫ t

t1

X(t, s)

m∑

k=1

ak(s)ds = 1,

which implies inequality (2.8.1). �

Remark 2.6 If t − hk(t)≤H , then we can take t1 = t0 +H .

2.9 Positivity of Solutions

Now we proceed to the analysis of positivity for solutions of problem (2.2.2),
(2.2.3). We will show that if the inequality (2.3.2) has a nonnegative solution and
the condition

0 ≤ ϕ(t)≤ x(t0), t ≤ t0, x(t0) > 0, (2.9.1)

holds, then the solution of the initial value problem (2.2.1), (2.2.3) is positive. This
result supplements some statements in [192].

Theorem 2.22 Suppose ak(t)≥ 0, f (t)≥ 0 and there exists a nonnegative solution
of the inequality

u(t)≥
m∑

k=1

ak(t)

∫ t

max{t0,hk(t)}
u(s)ds, t ≥ t0, (2.9.2)

for a certain t0 ≥ 0 and conditions (2.9.1) hold. Then the solution of problem (2.2.2),
(2.2.3) is positive for t ≥ t0.

Proof Let u(t)≥ 0, t ≥ t0 be a solution of (2.9.2). Denote u(t)= 0, t < t0. Then

u(t)≥
m∑

k=1

ak(t)

∫ t

hk(t)

u(s)ds, t ≥ t0.

Hence all conditions of Theorem 2.1 are satisfied, and thus the fundamental function
X(t, s) is positive: X(t, s) > 0 for t ≥ s ≥ t0.
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First assume f ≡ 0. Consider the auxiliary problem

ż(t)+
m∑

k=1

ak(t)z
(
hk(t)

)= 0, t ≥ t0, z(t)= x0, t ≤ t0. (2.9.3)

Denote

v(t)=
{
x0 exp{− ∫ t

t0
u(s)ds}, t ≥ t0,

x0, t < t0,

and for a fixed t ≥ t0 define the sets

N1(t)=
{
k : hk(t)≥ t0

}
, N2(t)=

{
k : hk(t) < t0

}
.

We obtain

v̇(t)+
m∑

k=1

ak(t)v
(
hk(t)

)

= −x0u(t) exp

{
−
∫ t

t0

u(s)ds

}

+ x0

∑

k∈N1(t)

ak(t) exp

{
−
∫ hk(t)

t0

u(s)ds

}
+ x0

∑

k∈N2(t)

ak(t)

= −x0 exp

{
−
∫ t

t0

u(s)ds

}[
u(t)−

∑

k∈N1(t)

ak(t) exp

{∫ t

hk(t)

u(s)ds

}

−
∑

k∈N2(t)

ak(t) exp

{∫ t

t0

u(s)ds

}]

= −x0 exp

{
−
∫ t

t0

u(s)ds

}[
u(t)−

∑

k∈N1(t)

ak(t) exp

{∫ t

max{t0,hk(t)}
u(s)ds

}

−
∑

k∈N2(t)

ak(t) exp

{∫ t

max{t0,hk(t)}
u(s)ds

}]

= −x0 exp

{
−
∫ t

t0

u(s)ds

}[
u(t)−

m∑

k=1

ak(t) exp

{∫ t

max{t0,hk(t)}
u(s)ds

}]
≤ 0.

Hence v(t) is a solution of the problem

v̇(t)+
m∑

k=1

ak(t)v
(
hk(t)

)= g(t), t ≥ t0, v(t)= x0, t ≤ t0,

with g(t)≤ 0. Theorem 2.5 implies that z(t)≥ v(t) > 0.
Conditions (2.9.1) and Corollary 2.3 imply x(t) ≥ z(t) > 0, t ≥ t0. For the case

f ≡ 0, the theorem is proven. The general case also follows from Theorem 2.5 since
f (t)≥ 0. �
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Corollary 2.15 Suppose ak(t)≥ 0, f (t)≥ 0 and
∫ t

max{t0,mink hk(t)}

m∑

j=1

a+
j (s)ds ≤ 1

e
, t ≥ t0,

for a certain t0 ≥ 0 and conditions (2.9.1) hold. Then the solution of the problem
(2.2.2), (2.2.3) is positive for t ≥ t0.

Proof As demonstrated in the proof of Theorem 2.7, the function u(t) =
e
∑m

k=1 ak(t) is a solution of inequality (2.9.2). Application of Theorem 2.22 com-
pletes the proof. �

2.10 Slowly Oscillating Solutions for Delay Differential
Equations

Definition 2.4 A solution x of (2.2.1) is said to be slowly oscillating if for every
t0 ≥ 0 there exist t1 > t0, t2 > t1 such that hk(t) ≥ t1 for t ≥ t2, x(t1) = x(t2)= 0,
x(t) > 0, t ∈ (t1, t2).

In particular, if hk(t) = t − τk , τk > 0 and for every t0 ≥ 0 there exist t1 > t0,
t2 > t1 such that x(t1) = x(t2) = 0, x(t) > 0, t ∈ (t1, t2), t2 − t1 ≥ maxk τk , then
x(t) is slowly oscillating.

Theorem 2.23 Let ak(t) ≥ 0. If there exists a slowly oscillating solution of (2.2.1)
(inequality (2.3.1)), then all solutions of this equation (inequality) are oscillatory.

Proof Denote by x a slowly oscillating solution of (2.2.1). Suppose that this equa-
tion has a nonoscillatory solution. Then, by Theorem 2.1, for a certain t0 ≥ 0 the
fundamental function satisfies X(t, s) > 0 if t ≥ s > t0.

There exist t1 > t0, t2 > t1 such that

hk(t)≥ t1 for t ≥ t2, x(t1)= x(t2)= 0, x(t) > 0, t ∈ (t1, t2). (2.10.1)

Due to solution representation formula (2.2.5), for t ≥ t2, solution x(t) has the
form

x(t)= −
∫ t

t2

X(t, s)

m∑

k=1

ak(s)x
(
hk(s)

)
ds, (2.10.2)

where x(hk(s))= 0 if hk(s) > t2. The inequality hk(t)≥ t1 for t ≥ t2 yields that the
expression under the integral in (2.10.2) can differ from zero only if t1 < hk(s) < t2.
Therefore (2.10.1) yields that in (2.10.2) we have x(hk(s)) > 0. Consequently,
(2.10.2) implies x(t) ≤ 0 for each t ≥ t2. This contradicts the assumption that x
is an oscillatory solution. �

Corollary 2.16 Suppose ak(t) ≥ 0 and there exists a nonoscillatory solution of
(2.2.1). Then (2.2.1) has no slowly oscillating solutions.
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2.11 Stability and Nonoscillation

In this section, we present a corollary of Theorem 9.18 that will later be obtained
for systems of linear delay differential equations.

Theorem 2.24 Suppose that ak(t) ≥ 0,
∑m

k=1 ak(t) ≥ a0 > 0, t − hk(t) ≤ h0, k =
1, · · · ,m, and there exists an eventually positive solution of (2.2.1). Then (2.2.1) is
exponentially stable.

Corollary 2.17 Suppose that ak > 0, k = 1, · · · ,m, and there exists a positive solu-
tion λ of the equation

λ=
m∑

k=1

ake
λτk .

Then the autonomous equation

ẋ(t)+
m∑

k=1

akx(t − τk)= 0

is exponentially stable.

Corollary 2.18 Suppose that ak(t)≥ 0,
∑m

k=1 ak(t)≥ a0 > 0, t − hk(t)≤ h0, k =
1, · · · ,m, and the conditions of anyone of Theorems 2.7, 2.8, 2.10, 2.11, 2.15 and
2.16 hold. Then (2.2.1) is exponentially stable.

Corollary 2.19 Suppose a(t) ≥ 0, b(t) ≥ 0, a(t) + b(t) ≥ a0 > 0, t − h(t) ≤ h0,
t − g(t) ≤ g0 and conditions of one of either Theorems 2.12 or 2.14 or Corollar-
ies 2.9 or 2.10 hold. Then (2.6.3) is exponentially stable.

In particular, all equations in Examples 2.1, 2.6 and 2.7 are exponentially stable.

2.12 Discussion and Open Problems

This chapter deals with some properties of a scalar delay differential equation that
are equivalent to nonoscillation. For most classes of autonomous functional dif-
ferential equations, nonoscillation is equivalent to existence of a real root of the
characteristic equation [192].

As was demonstrated in [192], for a nonautonomous scalar linear delay differen-
tial equation, nonoscillation is equivalent to existence of a nonnegative solution for
a certain nonlinear integral equation that was called “the generalized characteristic
equation”. In [80], for a neutral scalar differential equation, an integral nonlinear
inequality was constructed that has a nonnegative solution if and only if the funda-
mental function of this equation is positive.
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For a scalar differential equation with one delay, the equivalence of nonoscilla-
tion and the existence of a nonnegative solution of the same inequality as in [80] was
justified in [154, 232]. Unlike [154, 192, 232], it is assumed in this monograph that
coefficients of the equation, delays and the initial function are not necessarily con-
tinuous but Lebesgue measurable. Such weak constraints on equation parameters
are sufficient if a solution is an absolutely continuous function. Besides, a solution
is not assumed to be a continuous extension of the initial function, which is a natural
assumption for impulsive differential equations, considered further in Chaps. 12–14.

The main result of this chapter is Theorem 2.1, where it is demonstrated that
nonoscillation is equivalent to the three other properties of (2.2.1). Such theorems
are very popular for delay equations (see, for example, [192, Theorem 3.1.1]). How-
ever, in contrast to [192], we also show the equivalence of nonoscillation and posi-
tivity of the fundamental function. This property of the fundamental function is very
important in stability theory, boundary value problems, control theory and generally
in the qualitative theory of differential equations; we apply here positivity of the
fundamental function, in particular, to prove comparison theorems.

Comparison theorems appear to be an efficient tool in oscillation theory [154,
167, 192, 228, 289]. In paper [193], a rather general comparison result was pre-
sented for a nonlinear delay differential equation. In Sect. 2.3, a similar result is
obtained for a linear equation using a different technique based on the equivalence
of nonoscillation and positivity of the fundamental function. Here we follow the pa-
per [41], where some results of [193] were improved and extended to a more general
class of equations.

Explicit nonoscillation conditions were obtained in Sects. 2.4 and 2.5. Theo-
rems 2.8 and 2.10 outline the fact that for the equation

ẋ(t)+ a(t)x
(
h(t)

)= 0, (2.12.1)

where a(t)≥ 0, the condition

lim sup
t→∞

∫ t

h(t)

a(s)ds <
1

e
(2.12.2)

is not necessary for nonoscillation.
Some nonoscillation conditions of Sect. 2.5 were taken from the paper [41], while

Sect. 2.6 is based on [64].
Consider the equation

ẋ(t)+ a(t)x(t − τ)= 0, (2.12.3)

where a(t)≥ 0, τ ≥ 0 and a(t) is a continuous function.
For (2.12.3), the situation where

lim inf
t→∞

[
a(t)− 1

τe

]
= 0

is called the critical case (see, for example, [104]) because a small perturbation can
change oscillation properties of (2.12.3). In [104, 109], nonoscillation and oscilla-
tion results were obtained for (2.12.3) in the critical case.
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Theorem 2.25 [104] Let us assume that for some number k ∈ N and large t we
have a(t)≤ ak(t), where

ak(t) := 1

eτ
+ τ

8et2
+ τ

8e(t ln t)2
+ τ

8e(t ln t ln2 t)2
+ · · ·

+ τ

8e(t ln t ln2 t · · · lnk t)2
,

lnk t = ln ln · · · ln t .
Then there exists a positive solution of (2.12.3) such that

x(t) < e−t/τ
√
t ln t ln2 t · · · lnk t .

If

a(t) > ak−2 + θτ

8e(t ln t ln2 t · · · lnk t)2

for some θ > 1, then all solutions of (2.12.3) are oscillatory.
In [109], the authors extend this result for (2.12.3) with continuous delay τ(t)

and obtain the following result.

Theorem 2.26 [109] Suppose in (2.12.3) that τ = τ(t) is a nonnegative continuous
function. If for large t

a(t)≤ 1

τ(t)
exp

{
−
∫ t

t−τ(t)
ds

τ (s)

}
,

then (2.12.3) has a positive solution such that

x(t) < exp

{
−
∫ t

t0−τ(t0)
ds

τ (s)

}

for some t0 ≥ 0.

Some other nonoscillation and oscillation results in the critical case can be found
in the papers [35, 105, 144, 317, 324].

For the noncritical case, a summary of some other nonoscillation results is pre-
sented in the following theorem.

Theorem 2.27 Suppose at least one of the following conditions holds:

1. [302, 336] For sufficiently large T and for some λ > 0,

−λ+ sup
t≥T

m∑

i=1

a+
i (t) exp

{
λ
(
t − hi(t)

)}≤ 0.

2. [303] t − hi(t) = τi > 0, and there exist λ > 0 and a sufficiently large T such
that

−λ+ sup
t≥T

max
j=1,···,m

n∑

k=1

pjk(t)e
λτk ≤ 0,

where pjk(t)= 1
τj

∫ t
t−τj a

+
k (s)ds.

Then there exists a nonoscillatory solution of (2.2.1).
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There are a lot of papers devoted to explicit oscillation conditions for (2.2.1).
A review of these results for equations with one delay is presented in the paper [320]
and for equations with several delays in [170]. In [323, 352], a connection between
oscillation properties of a linear differential equation with several constant delays
and an explicitly constructed linear second-order ordinary differential equation was
established.

In the following theorem, some explicit oscillation conditions for (2.2.1) with
several delays are outlined.

Theorem 2.28 Let ak(t) ≥ 0, k = 1, · · · ,m. All solutions of (2.2.1) are oscillatory
if any of the following conditions hold:

1. [18] Let hi(t) := t − τi , τi > 0,

lim inf
t→∞

∫ t+τi

t

ai(s)ds > 0,

and at least one of the following three inequalities holds:
a. p∗

ij := lim inft→∞
∫ t
t−τi aj (s)ds > 1/e for some i, j ;

b. [∏n
i=1
∑n

j=1 p
∗
ij ]1/n > 1/e;

c.
∑m

i=1 p
∗
ij + 2

∑m
i<j (p

∗
ijp

∗
ji)

1/2 >m/2 for some j .
2. [208] Coefficients and delays satisfy ak(t) > 0, 0< t − hk(t) < σ , k = 1, · · · ,m,

and

lim inf
t→∞

m∑

k=1

ak(t)
(
t − hk(t)

)
>

1

e
.

3. [180] There exist indices il ∈ {1, · · · ,m} such that

lim inf
t→∞

(
t − hil (t)

)
> 0, lim inf

t→∞

m∑

i=1

ail (t) > 0

and at least one of the following inequalities holds:

a.

lim inf
t→∞

[
inf
λ>0

{
1

λ

m∑

i=1

ai(t) exp
{
λ
(
t − hi(t)

)}
}]

> 1,

b.

lim inf
t→∞

{[
m∏

i=1

ai(t)

]1/m[ m∑

i=1

(
t − hi(t)

)
]}

>
1

e
.

4. [302] There exist a nonempty set I ⊂ {1, · · · ,m} and constants τ0, τ1, τ0 >

τ1 > 0, such that

t − hi(t)≥ τ0, i ∈ I, lim inf
t→∞

∫ t+τ1

t

∑

t∈I
ai(s)ds > 0,
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lim sup
t→∞

{
max
k

∫ t

hk(t)

m∑

k=1

ak(s)ds

}
<∞,

and at least one of the following inequalities holds:
a. For all λ > 0 and some T > 0,

−λ+ inf
t≥T

∑m
k=1 ak(t) exp{λ ∫ t

hk(t)

∑m
i=1 ai(s)ds}∑m

k=1 ak(t)
> 0.

b.

lim inf
t→∞

∑m
k=1 ak(t)

∫ t
hk(t)

∑m
i=1 ai(s)ds∑m

k=1 ak(t)
>

1

e
.

5. [303] Let t − hi(t)= τi > 0, and at least one of the following conditions holds:
a. For every λ > 0 and sufficiently large T ,

−λ+ inf
t≥T min

j=1,···,m

m∑

k=1

pjk(t)e
λτk > 0,

where

pjk(t)= 1

τj

∫ t

t−τj
ak(s)ds.

b.

lim inf
t→∞ min

j=1,···,m

m∑

k=1

pjk(t) >
1

e
.

6. [153] There exist indices il ∈ {1, · · · ,m} such that

lim inf
t→∞

(
t − hil (t)

)
> 0, lim inf

t→∞

m∑

i=1

ail (t) > 0,

and at least one of the following inequalities holds:
a. For every λ > 0 and i = 1, · · · ,m,

lim inf
t→∞

1

λτi(t)

m∑

k=1

∫ t+τk(t)

t

ak(s)e
λτk(s)ds > 1.

b. For every i = 1, · · · ,m,

lim inf
t→∞

1

τi(t)

m∑

k=1

∫ t+τk(t)

t

ak(s)τk(s)ds >
1

e
.

Some other oscillation results were obtained in the papers [229, 257, 258, 290].
In Sect. 2.8, we obtain lower and upper estimates of the fundamental function for

a nonoscillatory equation. Applying these bounds, we can estimate a solution of the
initial value problem for such equations. Moreover, we obtain here an estimation of
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the integral of the fundamental function; such estimations are very useful in stability
theory. The results of this section were partially published in [62, 63].

In [193], several sufficient conditions on equation parameters and initial func-
tions were established that yield that the solution of the initial value problem is
positive. We supplement the results of [193] in Sect. 2.9. Namely, as is demon-
strated in Sect. 2.7, if the nonlinear integral inequality has a nonnegative solution,
then under certain conditions on the initial function (the same as in [193]) the so-
lution of the initial value problem is positive. We used here the results of paper
[41].

For ordinary linear differential equations of the second order, the following os-
cillation criterion is known: if the equation has an oscillatory solution, then all its
solutions oscillate. As is well known, for delay differential equations this is not true.
Y. Domshlak [140] revised the result above for differential equation (2.2.1) with
monotone delays. He demonstrated that if an associated equation has a slowly os-
cillating solution, then every solution of (2.2.1) is oscillating. In [78, 142, 144],
several new explicit sufficient conditions of oscillation were obtained by explicit
construction of such slowly oscillating solutions.

In particular, the following theorem was obtained in [78].

Theorem 2.29 [78] Let A+D > 0 and the system
⎧
⎪⎨

⎪⎩

(AD −BC)x1x2 −Ax1 −Dx2 + 1 = 0,

lnx1 −Ax1 −Bx2 < 0,

lnx2 −Cx1 −Dx2 < 0,

(2.12.4)

have a positive solution {x1, x2}, where A, B , C, D are defined by (2.6.4). Then all
solutions of (2.6.3) are oscillatory.

Application of Theorem 2.29 to (2.6.9) gives the sufficient condition aeb > 1
e

for oscillation of all solutions. Note that in Example 2.3 (by application of The-
orem 2.12) the inequality aeb < 1

e
implies nonoscillation of (2.6.9). Thus The-

orems 2.12 and 2.29 give sharp nonoscillation and oscillation conditions for the
equation with two delays and nonnegative coefficients.

Similarly, if μb < 1
e lnμ , then (2.6.10) has a nonoscillatory solution; if aμb >

1
e lnμ , then all solutions of (2.6.10) are oscillatory. If aα−b < 1

e ln(α−1)
, then (2.6.11)

has a nonoscillatory solution. If aα−b > 1
e ln(α−1)

, then all solutions of (2.6.10) are
oscillatory.

In Sect. 2.10, we present an oscillation criterion similar to Domshlak’s result,
where the existence of a slowly oscillating solution is assumed for (2.2.1) and not
for the associated equation; moreover, the delays are not necessarily monotone. We
prove the following result: if an equation has a nonoscillatory solution, then it has
no slowly oscillating solutions; this result was also first obtained in [41].

Some other nonoscillation results for scalar delay differential equations can be
found in the papers [66, 74, 106, 107, 152, 156, 284, 317, 352]. For example, in the
papers [317, 352], oscillation properties of first-order delay differential equations
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are compared with second-order ordinary differential equations. In particular, the
following theorems were obtained.

Theorem 2.30 [317] Assume that

t − τ(t)≥ 1

e
, lim sup

t→∞

(
t − τ(t)− 1

e

)
ee(t−τ(t)) < a < 1,

and the second-order ordinary differential equation

ẍ(t)+ 2

1 − a
e2+e(t−τ(t))

(
t − τ(t)− 1

e

)
x(t)= 0

has an eventually positive solution. Then the equation ẋ(t)+ x(τ(t))= 0 also has
an eventually positive solution.

Theorem 2.31 [352] Suppose pi ∈ C([t0,∞),R+), τi > 0. Then the equation

ẋ(t)+
m∑

i=1

pi(t)x(t − τi)= 0

has a nonoscillatory solution if and only if the equation

ẍ(t)+ 2em∑m
i=1 τi

m∑

i=1

[
pi(t)− 1

emτi

]
x(t)= 0

has a nonoscillatory solution.

Finally, let us formulate some open problems and topics for research and discus-
sion.

1. Prove or disprove that inequality (2.12.2) implies nonoscillation of (2.12.1) with-
out the assumption that a(t)≥ 0.

2. Find necessary and/or sufficient nonoscillation conditions for some partial cases
of (2.2.1): equations with periodic coefficients and delays t−hk(t) and equations
with delays of the form hk(t)= λkt

βk , t ≥ 1, 0< λk < 1, 0< βk ≤ 1.
3. Find lower and upper bounds of the fundamental function of nonoscillatory equa-

tion (2.2.1) without the assumption that ak(t)≥ 0.
4. Is it possible to extend Theorems 2.22 and 2.23 to equations with oscillatory

coefficients?
5. Can Lemmas 2.2 and 2.3 be generalized to equations with positive and negative

coefficients?



Chapter 3
Scalar Delay Differential Equations on Semiaxis
with Positive and Negative Coefficients

3.1 Introduction

In the present chapter, we deal with the equation

ẋ(t)+ a(t)x
(
h(t)

)− b(t)x
(
g(t)

)= 0, t ≥ 0, (3.1.1)

where a(t)≥ 0 and b(t)≥ 0, and with the general equation including several posi-
tive and negative terms

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)−
n∑

k=1

bk(t)x
(
gk(t)

)= 0, t ≥ 0, (3.1.2)

where ak(t)≥ 0, k = 1, · · · ,m, and bk(t)≥ 0, k = 1, · · · , n.
Such equations are more challenging for investigation, and there are only a few

known nonoscillation results. The behavior of solutions is also more complicated
than for equations with positive coefficients. In particular, an eventually positive
solution is not in general an eventually monotone function. Existence of positive
solutions does not imply positivity of the fundamental function (see Example 3.1).

The main result as in Chap. 2 is the nonoscillation criteria given in Theo-
rem 3.2. This theorem and some comparison tests are considered in Sect. 3.2. Ex-
plicit nonoscillation conditions are presented in Sects. 3.3 and 3.4. In Sect. 3.2, we
consider an equation with one delay and an oscillating coefficient. The last section
includes a discussion and some open problems.

3.2 Nonoscillation Criteria

As a corollary of Theorem 2.3, we obtain a simple nonoscillation condition for
(3.1.2).
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Theorem 3.1 If the delay equation

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)= 0 (3.2.1)

has a nonoscillatory solution, then (3.1.2) also has a nonoscillatory solution, and
the fundamental function of this equation is positive.

The aim of this chapter is to obtain conditions when the fundamental function
of (3.1.1) and (3.1.2) is positive without a similar assumption on (3.2.1). We re-
mark here that nonoscillation properties of (3.1.1) are more complicated than those
of (3.2.1). In particular, existence of a nonoscillatory solution of (3.1.1) does not
imply positivity of the fundamental function for this equation, as the following ex-
ample demonstrates.

Example 3.1 Consider the delay differential equation

ẋ(t)+ x
(
h(t)

)− 2x
(
g(t)

)= 0, (3.2.2)

where

h(t)= [t], 2n≤ t < 2n+ 1, h(t)= [t − 1], 2n+ 1 ≤ t < 2n+ 2, n ∈ N,

g(t)= [t − 1], 2n≤ t < 2n+ 1, g(t)= [t], 2n+ 1 ≤ t < 2n+ 2, n ∈ N.

Here [t] is the integer part of t (the maximal integer not exceeding t), and a(t)−
b(t)= −1 �≡ 0. Integration of (3.2.2) from 2n to 2n+ 1 leads to

x(2n+ 1)− x(2n)= −x(2n)+ 2x(2n− 1)

or x(2n+ 1)= 2x(2n− 1).
Integration of (3.2.2) from 2n+ 1 to 2n+ 2 gives

x(2n+ 2)− x(2n+ 1)= 2x(2n+ 1)− x(2n),

so x(2n+ 2)= 3x(2n+ 1)− x(2n)= 6x(2n− 1)− x(2n). Between integer points
t = k and t = k+ 1, any solution is a linear function. Denoting Y(n)= (x(2n− 1),
x(2n))T , we get a system of difference equations in R

2,

Y(n+ 1)=AY(n)=
[

2 0
6 −1

]
Y(n).

The eigenvalues of A are 2 and −1, with eigenvectors (1,2)T and (0,1)T ,
respectively. The eigenvalue λ = −1 corresponds to the fundamental function
X(t, s), where s is an even integer s = 2n: X(2n − 1,2n) = 0, X(2n,2n) = 1,
X(2(n+ k)− 1,2n)= 0,

X
(
2(n+ k),2n

)= (−1)k, k ∈ N.

Thus the fundamental function is not eventually positive, while there is a positive
solution for x(−1)= 1, x(0)= 2 corresponding to the former eigenvalue:

x(2n)= x(2n+ 1)= 2n+1.
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We consider scalar delay differential equation (3.1.1) under the following condi-
tions:

(b1) a(t)≥ 0, b(t)≥ 0 are Lebesgue measurable functions essentially bounded on
the halfline [0,∞);

(b2) h(t), g(t) : [0,∞) → R are Lebesgue measurable functions, h(t) ≤ t ,
g(t)≤ t , limt→∞ h(t)= limt→∞ g(t)= ∞.

We will assume that (b1) and (b2) are satisfied for all equations considered in
this chapter, and the same assumptions hold for coefficients and delays of (3.1.2).

Together with (3.1.1), we consider the differential inequality

ẏ(t)+ a(t)y
(
h(t)

)− b(t)y
(
g(t)

)≤ 0. (3.2.3)

The following theorem is the main result of the chapter.

Theorem 3.2 Suppose a(t)≥ b(t), h(t)≤ g(t). Then the following hypotheses are
equivalent:

1) Inequality (3.2.3) has an eventually positive solution with an eventually nonpos-
itive derivative.

2) There exist a point t1 ≥ 0 and a locally essentially bounded function u(t) ≥ 0
such that

u(t)≥ a(t) exp

{∫ t

h(t)

u(s)ds

}
− b(t) exp

{∫ t

g(t)

u(s)ds

}
, t ≥ t1, (3.2.4)

where we assume u(t)= 0, t < t1.
3) There exists t1 ≥ 0 such that X(t, s) > 0 for t ≥ s ≥ t1, and (3.1.1) has an even-

tually positive solution with an eventually nonpositive derivative.

Proof 1)⇒ 2). Let y(t) be a positive solution with a nonpositive derivative of in-
equality (3.2.3) for t ≥ t1.

Denote

u(t)= − d

dt
ln
y(t)

y(t1)
, t ≥ t1, u(t)= 0, t < t1.

Then u(t)≥ 0, t ≥ t1, and

y(t)= y(t1) exp

{
−
∫ t

t1

u(s)ds

}
, t ≥ t1. (3.2.5)

We substitute (3.2.5) into (3.2.3) and obtain by carrying the exponent out of the
brackets

− exp

{
−
∫ t

t1

u(s)ds

}
y(t1)

[
u(t)− a(t) exp

{∫ t

h(t)

u(s)ds

}

+ b(t) exp

{∫ t

g(t)

u(s)ds

}]
≤ 0, t ≥ t1.

Thus inequality (3.2.4) holds.
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2)⇒ 3). Step 1. Let us first prove the positivity of the fundamental function.
Consider the initial value problem

ẋ(t)+ a(t)x
(
h(t)

)− b(t)x
(
g(t)

)= f (t), t ≥ t1, x(t)= 0, t ≤ t1. (3.2.6)

Denote

z(t)= ẋ(t)+ u(t)x(t), z(t)= 0, t ≤ t1, (3.2.7)

where x is the solution of (3.2.6) and u is a nonnegative solution of (3.2.4). Equality
(3.2.7) implies

x(t)=
∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds, t ≥ t1, (3.2.8)

ẋ(t)= z(t)− u(t)

∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds, t ≥ t1. (3.2.9)

After substituting (3.2.8) and (3.2.9) into (3.2.6), equation (3.2.6) can be rewritten
in the form

z(t)− u(t)

∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds

+ a(t)

∫ h(t)

t1

exp

{
−
∫ h(t)

s

u(τ )dτ

}
z(s)ds

− b(t)

∫ g(t)

t1

exp

{
−
∫ g(t)

s

u(τ )dτ

}
z(s)ds = f (t).

Hence we obtain the equation in z

z(t)− u(t)

∫ h(t)

t1

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds

+ a(t)

∫ h(t)

t1

exp

{
−
∫ t

s

u(τ )dτ

}
exp

{∫ t

h(t)

u(τ )dτ

}
z(s)ds

− b(t)

∫ h(t)

t1

exp

{
−
∫ t

s

u(τ )dτ

}
exp

{∫ t

g(t)

u(τ )dτ

}
z(s)ds

− u(t)

∫ t

h(t)

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds

− b(t)

∫ g(t)

h(t)

exp

{
−
∫ g(t)

s

u(τ )dτ

}
z(s)= f (t),

which has the form

z− T z= f, (3.2.10)

with
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(T z)(t)=
∫ h(t)

t1

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds

×
[
u(t)− a(t) exp

{∫ t

h(t)

u(s)ds

}
+ b(t) exp

{∫ t

g(t)

u(s)ds

}]

+ u(t)

∫ t

h(t)

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds

+ b(t)

∫ g(t)

h(t)

exp

{
−
∫ g(t)

s

u(τ )dτ

}
z(s)ds.

Inequality (3.2.4) yields that if z(t)≥ 0, then (T z)(t)≥ 0. Besides, for an arbitrary
c ≥ t1, the operator T : L∞[t1, c] → L∞[t1, c] is a sum of linear integral Volterra
operators with kernels essentially bounded on [t1, c] × [t1, c]. Hence T is a linear
integral Volterra operator with a kernel essentially bounded on [t1, c] × [t1, c]. By
Theorem A.4, operator T is a weakly compact operator on the space L∞[t1, c].
Theorem A.7 implies that the spectral radius r(T )= 0< 1.

Thus, if in (3.2.10) we have f (t)≥ 0, then

z(t)= f (t)+ (Tf )(t)+ (T 2f
)
(t)+ · · · ≥ 0.

The solution of (3.2.6) has the form (3.2.8), with z being a solution of (3.2.10).
Hence, if f (t)≥ 0 in (3.2.6), then for the solution of this equation we have x(t)≥ 0.
On the other hand, the solution of (3.2.6) can be presented in the form

x(t)=
∫ t

t1

X(t, s)f (s)ds.

As was demonstrated above, f (t)≥ 0 implies x(t)≥ 0, and consequently the kernel
of the integral operator is nonnegative (i.e., X(t, s)≥ 0 for t ≥ s > t1).

Step 2. Let us prove that in fact the strict inequality X(t, s) > 0 holds. Denote

x(t)=X(t, t1)− exp

{
−
∫ t

t1

u(s)ds

}
, x(t)= 0, t ≤ t1.

Then

ẋ(t)+ a(t)x
(
h(t)

)− b(t)x
(
g(t)

)

= u(t) exp

{
−
∫ t

t1

u(s)ds

}
− a(t) exp

{
−
∫ h(t)

t1

u(s)ds

}

+ b(t) exp

{
−
∫ g(t)

t1

u(s)ds

}

= exp

{
−
∫ t

t1

u(s)ds

}[
u(t)− a(t) exp

{∫ t

h(t)

u(s)ds

}

+ b(t) exp

{∫ t

g(t)

u(s)ds

}]
≥ 0.
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We conclude that x(t) is a solution of (3.2.6) with f (t)≥ 0. Hence, as was proven
above, x(t)≥ 0, and consequently

X(t, t1)≥ exp

{
−
∫ t

t1

u(s)ds

}
> 0.

For s > t1, the inequality X(t, s) > 0 can be justified similarly.
Next, let us prove the existence of an eventually positive solution with a nonpos-

itive derivative.
Consider the following sequence of functions uk , k = 0,1,2, · · · , where u0(t),

t ≥ t1 is a nonnegative solution of inequality (3.2.4):

un+1 = a(t) exp

{∫ t

h(t)

un(s)ds

}
− b(t) exp

{∫ t

g(t)

un(s)ds

}
.

Since a(t)≥ b(t)≥ 0 and g(t)≥ h(t), we have u1(t)≥ 0, t ≥ t1. Inequality (3.2.4)
implies u1(t)≤ u0(t).

Further, let us prove 0 ≤ un+1(t)≤ un(t) by induction. Assume that 0 ≤ un(t)≤
un−1(t), and let us demonstrate that 0 ≤ un+1(t)≤ un(t).

Inequality 0 ≤ un+1(t) is evident since un(t)≥ 0. By definition,

un = a(t) exp

{∫ t

h(t)

un−1(s)ds

}
− b(t) exp

{∫ t

g(t)

un−1(s)ds

}
, (3.2.11)

and we have to show that

a(t) exp

{∫ t

h(t)

un(s)ds

}
− b(t) exp

{∫ t

g(t)

un(s)ds

}

≤ a(t) exp

{∫ t

h(t)

un−1(s)ds

}
− b(t) exp

{∫ t

g(t)

un−1(s)ds

}
,

which is equivalent to the inequality

a(t)

[
exp

{∫ t

h(t)

un−1(s)ds

}
− exp

{∫ t

h(t)

un(s)ds

}]

≥ b(t)

[
exp

{∫ t

g(t)

un−1(s)ds

}
− exp

{∫ t

g(t)

un(s)ds

}]
.

We have

exp

{∫ t

h(t)

un−1(s)ds

}
− exp

{∫ t

h(t)

un(s)ds

}

= exp

{∫ t

h(t)

un(s)ds

}[
exp

{∫ t

h(t)

(
un−1(s)− un(s)

)
ds

}
− 1

]

≥ exp

{∫ t

g(t)

un(s)ds

}[
exp

{∫ t

g(t)

(
un−1(s)− un(s)

)
ds

}
− 1

]

= exp

{∫ t

g(t)

un−1(s)ds

}
− exp

{∫ t

g(t)

un(s)ds

}
.

Thus 0 ≤ un+1(t)≤ un(t).
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The monotone positive sequence {un(t)} has a pointwise limit u(t) ≥ 0, t ≥ t1.
By the Lebesgue monotone convergence theorem (Theorem A.1) applied to equality
(3.2.11), we have

u(t)= a(t) exp

{∫ t

h(t)

u(s)ds

}
− b(t) exp

{∫ t

g(t)

u(s)ds

}
.

Then the function

x(t)= exp

{
−
∫ t

t1

u(s)ds

}

is a positive solution of (3.1.1) with a nonnegative derivative.
Implication 3)⇒ 1) is evident. �

Without the assumption that a(t)≥ b(t), we have the following theorem.

Theorem 3.3 Suppose h(t)≤ g(t), and consider the following hypotheses:

1) Inequality (3.2.3) has an eventually positive solution with an eventually nonpos-
itive derivative.

2) Inequality (3.2.4) has a nonnegative locally integrable solution u(t) ≥ 0, t ≥ t1
with u(t)= 0, t < t1.

3) There exists t1 ≥ 0 such that X(t, s) > 0, t ≥ s ≥ t1.
4) There exists a nonoscillatory solution of (3.1.1).

Then 1)⇒ 2)⇒ 3)⇒ 4).

Proof The implications in the statement of the theorem are justified similarly to the
proof of Theorem 3.2. �

As a corollary, we obtain the following interesting result.

Corollary 3.1 Suppose b(t) ≥ a(t), h(t) ≤ g(t), t ≥ t1. Then, for the fundamental
function of (3.1.1), we have X(t, s) > 0, t ≥ s ≥ t1.

Proof The function u(t)≡ 0 is a solution of inequality (3.2.4) for t ≥ t1. �

Theorems 3.2 and 3.3 can be employed to obtain comparison results in oscillation
theory. To this end, consider together with (3.1.1) the equation

ẋ(t)+ a1(t)x
(
h1(t)

)− b1(t)x
(
g1(t)

)= 0. (3.2.12)

Corollary 3.2 If

a1(t)≤ a(t), b1(t)≥ b(t), h(t)≤ h1(t)≤ g1(t)≤ g(t)

and inequality (3.2.4) has a nonnegative locally integrable solution for t ≥ t1, then
the fundamental function of (3.2.12) is positive for t ≥ t1.

If a1(t)≥ b1(t), then (3.2.12) has an eventually positive solution with an eventu-
ally nonpositive derivative.
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Proof Let u(t)≥ 0 be a solution of inequality (3.2.4). Hence u(t) is also a solution
of (3.2.4) with parameters a1, b1, h1, g1. By Theorem 3.3, (3.2.12) has a positive
fundamental function. The second part of the theorem follows from Theorem 3.2. �

Consider the autonomous equation

ẋ(t)+ ax(t − δ)− bx(t − σ)= 0, (3.2.13)

where a > 0, b > 0, δ ≥ σ ≥ 0.

Corollary 3.3 If

a(t)≤ a, b(t)≥ b, t − δ ≤ h(t)≤ g(t)≤ t − σ, t ≥ t1,

and the characteristic inequality

λ≥ aeλδ − beλσ (3.2.14)

has a positive solution λ > 0, then the fundamental function of (3.1.1) is positive for
t ≥ s ≥ t1.

If a(t)≥ b(t), then (3.1.1) has an eventually positive solution with an eventually
nonpositive derivative.

In the following theorem, we deduce asymptotic properties of nonoscillatory so-
lutions.

Theorem 3.4 Suppose conditions of Theorem 3.2 hold and a(t) − b(t) ≥ α > 0.
Then, for any eventually positive solution x of (3.1.1) with a nonpositive derivative,
we have limt→∞ x(t)= 0.

Proof Suppose x(t) > 0 and ẋ(t) ≤ 0 for t ≥ t1 and h(t) > t1 for t > t2. Since
x(h(t))≥ x(g(t)), for t ≥ t2 we have

ẋ(t)≤ −a(t)x(h(t))+ b(t)x
(
h(t)

)≤ −αx(h(t)). (3.2.15)

Hence

x(t)≤ x(t2)− α

∫ t

t2

x
(
h(s)

)
ds, t ≥ t2.

A nonincreasing function x(t) bounded below has a limit as t → ∞. Let
limt→∞ x(t) > 0. Then the limit of the right-hand side of (3.2.15) equals −∞,
so limt→∞ x(t)= −∞, which contradicts the positivity of x(t). �

3.3 Nonoscillation Conditions, Part 1

Now we proceed to nonoscillation conditions.
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Theorem 3.5 Suppose h(t)≤ g(t). There exists λ, 0< λ< 1 such that a(t)≥ λb(t)

for t ≥ t1 and

sup
t≥t1

∫ g(t)

h(t)

[
a(s)− λb(s)

]
ds ≤ 1

e
ln

1

λ
, (3.3.1)

sup
t≥t1

∫ t

h(t)

[
a(s)− λb(s)

]
ds ≤ 1

e
. (3.3.2)

Then the fundamental function of (3.1.1) is positive for t ≥ s ≥ t1. If a(t) ≥ b(t),
then there exists an eventually positive solution with an eventually nonpositive
derivative.

Proof By inequality (3.3.2), for t ≥ t1, the function

u(t)= e
[
a(t)− λb(t)

]
(3.3.3)

is a solution of the inequality

u(t)≥ [a(t)− λb(t)
]

exp

{∫ t

h(t)

u(s)ds

}
, t ≥ t1,

which can be rewritten in the form

u(t)≥ a(t) exp

{∫ t

h(t)

u(s)ds

}
− b(t) exp

{∫ t

g(t)

u(s)ds

}

+ b(t)

[
exp

{∫ t

g(t)

u(s)ds

}
− λ exp

{∫ t

h(t)

u(s)ds

}]
. (3.3.4)

Inequality (3.3.1) implies for u defined by (3.3.3)
∫ g(t)

h(t)

u(s)ds ≤ ln
1

λ
.

Thus

exp

{∫ t

g(t)

u(s)ds

}
− λ exp

{∫ t

h(t)

u(s)ds

}
≥ 0,

and so (3.3.4) yields

u(t)≥ a(t) exp

{∫ t

h(t)

u(s)ds

}
− b(t) exp

{∫ t

g(t)

u(s)ds

}
.

Hence u(t) is a nonnegative solution of inequality (3.2.4). Theorem 3.3 implies that
(3.1.1) has a positive fundamental function. The second part follows from Theo-
rem 3.2. �

Corollary 3.4 Suppose h(t)≤ g(t), b(t)≤ ea(t) for t ≥ t1 and

sup
t≥t1

∫ t

h(t)

[
a(s)− 1

e
b(s)

]
ds ≤ 1

e
.
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Then the fundamental function of (3.1.1) is positive for t ≥ s ≥ t1. If a(t) ≥ b(t),
then there exists an eventually positive solution with an eventually nonpositive
derivative.

Proof The corollary is obtained by setting λ= 1
e

in Theorem 3.5. �

Remark 3.1 The coefficient 1
e

of b(s) in Corollary 3.4 is the best possible. Indeed,
consider the equation

ẋ(t)+ ax(t − τ)− bx(t)= 0. (3.3.5)

After the substitution x(t)= y(t)ebt , this equation has the form

ẏ(t)+ ae−bτ y(t − τ)= 0. (3.3.6)

Hence the inequality

a ≤ ebτ

τe
(3.3.7)

is necessary and sufficient for nonoscillation of (3.3.6) and therefore of (3.3.5).
Corollary 3.4 yields that if

a ≤ 1

e
b+ 1

τe
, (3.3.8)

then (3.3.5) has a nonoscillatory solution. Taking into account the equality ebτ = 1+
bτ + · · · and comparing conditions (3.3.7) and (3.3.8), we can see that the constant
1
e

is the best possible.

Corollary 3.5 Suppose a > 0, b > 0, δ > σ and 0 ≤ (a − 1
e
b)δ ≤ 1

e
. Then the

fundamental function of (3.2.13) is positive for t ≥ t1. If a ≥ b, then there exists an
eventually positive solution with an eventually nonpositive derivative.

Denote

λ0 = sup
t≥t1

∫ t
h(t)

a(s)ds − 1
e∫ t

h(t)
b(s)ds

.

Corollary 3.6 Suppose λ0 ∈ (0,1),

h(t)≤ g(t), a(t)≥ λ0b(t),

∫ t

h(t)

a(s)ds ≥ 1

e
, t ≥ t1

and

sup
t≥t1

∫ g(t)

h(t)

[
a(s)− λ0b(s)

]
ds ≤ 1

e
ln

(
1

λ0

)
, t ≥ t1.

Then the fundamental function of (3.1.1) is positive for t ≥ s ≥ t1. If a(t) ≥ b(t),
then there exists an eventually positive solution with an eventually nonpositive
derivative.
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Proof We have

λ0 ≥
∫ t
h(t)

a(s)ds − 1
e∫ t

h(t)
b(s)ds

, t ≥ t1.

Hence inequality (3.3.2) is satisfied for λ= λ0. Inequality (3.3.1) holds by the corol-
lary assumption. �

Corollary 3.7 Suppose

1

e
≤ aδ ≤ 1

e
+ bδ, 0< δ − σ < δ ln

b

a − 1
δe

. (3.3.9)

Then the fundamental function of (3.2.13) is positive for t ≥ s ≥ δ. If a ≥ b then
there exists an eventually positive solution with an eventually nonpositive derivative.

Proof All the conditions of Corollary 3.6 hold for λ0 = (aδ − 1
e
)/(bδ). �

Example 3.2 Consider the equation

ẋ(t)+ 2

e
x(t − 1)− 1.8

e
x(t − 0.9)= 0. (3.3.10)

By Corollary 3.7, (3.3.10) has a positive fundamental function. Corollary 3.5 fails
for this equation.

Now let us obtain some additional explicit nonoscillation conditions for (3.1.1)
and (3.2.13).

Lemma 3.1 Suppose a > 0, b > 0, τ > 0, σ > 0,

aδ < 1 + bσ, aδ ≤ (1 + bσ) exp

{
bδ

1 + bσ
− 1

}
. (3.3.11)

Then there exists a positive solution of inequality (3.2.14).

Proof Since eu > 1 + u for any positive u, it is sufficient to prove that there exists a
positive solution of the inequality

λ≥ aeλδ − b(1 + λσ),

which is equivalent to the relation

λ≥ a

1 + bσ
eλδ − b

1 + bσ
. (3.3.12)

Inequalities (3.3.11) imply that

λ0 = −1

δ
ln

aδ

1 + bσ

is a positive solution of (3.3.12) and thus of inequality (3.2.14). �
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Corollary 3.8 Let the conditions of Lemma 3.1 hold and δ > σ . Then the au-
tonomous equation (3.2.13) is nonoscillatory and for its fundamental function we
have X(t, s) > 0, t ≥ s ≥ δ. If a ≥ b, then there exists an eventually positive solu-
tion with an eventually nonpositive derivative.

Example 3.3 Consider the equation

ẋ(t)+ ax(t − 1)− 0.5x(t − 0.5)= 0.

By Corollary 3.8, if 0.5/e ≤ a < 0.686, then the fundamental function of this equa-
tion is positive.

By Corollary 3.5, the sufficient condition of nonoscillation is 0.184 ≈ 0.5/e <
a < 1.5/e≈ 0.5518. Corollary 3.7 gives the condition 1

e
≤ a ≤ 0.4.

Theorem 3.6 Suppose that a(t)≥ b(t)≥ 0, g(t)≥ h(t), a(t) �= b(t) almost every-
where, and there exists t1 ≥ 0 such that

Aδ < Bσ + 1, Aδ ≤ (1 +Bσ) exp

{
Bδ

1 +Bσ
− 1

}
, (3.3.13)

where positive numbers A, B , τ , σ satisfy the inequalities (almost everywhere)

a(t)

a(t)− b(t)
≤A,

b(t)

a(t)− b(t)
≥ B, t ≥ t1, (3.3.14)

∫ t

h(t)

[
a(s)− b(s)

]
ds ≤ δ,

∫ t

g(t)

[
a(s)− b(s)

]
ds ≥ σ, t ≥ t1. (3.3.15)

Then the fundamental function of (3.1.1) is positive for t ≥ s ≥ t1 and there exists
an eventually positive solution with an eventually nonpositive derivative.

Proof Let us demonstrate that the function u(t) = λ[a(t) − b(t)] for t ≥ t1 and
u(t)= 0 for t < t1 is a solution of inequality (3.2.4) for some λ > 0 or, equivalently,
that λ is a solution of the inequality

λ≥ a(t)

a(t)− b(t)
exp

{
λ

∫ t

h(t)

[
a(s)− b(s)

]
ds

}

− b(t)

a(t)− b(t)
exp

{
λ

∫ t

g(t)

[
a(s)− b(s)

]
ds

}
. (3.3.16)

By Lemma 3.1, the inequality λ ≥ Aeλτ − Beλσ , where A, B , τ , σ are defined in
(3.3.14), (3.3.15), has a positive solution λ0. This number is also a positive solution
of inequality (3.3.16). Theorem 3.3 implies that the fundamental function of (3.1.1)
is positive, which completes the proof. �

Example 3.4 Consider the equation

ẋ(t)+ a|sin t |x(t − 2π)− 0.1|sin t |x(t − π)= 0, (3.3.17)

where a > 0.1. Assume A= a
a−0.1 , B = 0.1

a−0.1 ,
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δ = (a − 0.1)
∫ 2π

0
|sin t |dt = 4(a − 0.1),

σ = (a − 0.1)
∫ π

0
|sin t |dt = 2(a − 0.1).

Inequalities (3.3.13) for (3.3.17) have the form

4a < 1.2, 4a ≤ 1.2 exp

(
0.2

1.2
− 1

)
≈ 0.52.

Hence, if 0.1 < a < 0.13, then the fundamental function of (3.3.17) is positive.
We remark that the upper bound is rather sharp (numerical simulations demonstrated
oscillation for a = 0.158).

Let us compare conditions of Corollary 3.4 and Theorem 3.6.

Example 3.5 Consider the equation

ẋ(t)+ a| sin t |x(t − 2π)− 0.1| sin t |x(g(t))= 0,

where g(t)≥ t − 2π . Then the inequality in Corollary 3.4 for this equation has the
form

(
a − 0.1

e

)∫ 2π

0
| sin s|ds < 1

e
.

Hence, if a ≤ 1.4
4e ≈ 0.129, then the fundamental function of the equation is positive.

For g(t) = t − π , Theorem 3.6 gives a better estimate, a < 0.13 (see Exam-
ple 3.4), of the parameter a than Corollary 3.4, but the corollary gives a unique
estimation for all delays g(t).

3.4 Nonoscillation Conditions, Part 2

Now we will obtain different nonoscillation conditions for (3.1.1).

Theorem 3.7 Suppose a(t)≥ b(t), g(t)≥ h(t) and there exist t1 ≥ 0 and numbers
x1 > 0, x2 > 0 such that

lnx1 ≥ x1

∫ t

h(t)

a(s)ds − x2

∫ t

h(t)

b(s)ds, t ≥ t1,

lnx1 ≤ x1

∫ t

g(t)

a(s)ds − x2

∫ t

g(t)

b(s)ds, t ≥ t1.

Then the fundamental function of (3.1.1) is positive for t ≥ s ≥ t1 and there exists
an eventually positive solution with an eventually nonpositive derivative.
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Proof Since

x1 ≥ exp

{
x1

∫ t

h(t)

a(s)ds − x2

∫ t

h(t)

b(s)ds

}
,

x2 ≤ exp

{
x1

∫ t

g(t)

a(s)ds − x2

∫ t

g(t)

b(s)ds

}
,

we have for t ≥ t1

x1a(t)− x2b(t)≥ a(t) exp

{
x1

∫ t

h(t)

a(s)ds − x2

∫ t

h(t)

b(s)ds

}

− b(t) exp

{
x1

∫ t

g(t)

a(s)ds − x2

∫ t

g(t)

b(s)ds

}
.

Then u(t)= x1a(t)− x2b(t) for t ≥ t1, u(t)= 0 for t < t1 is a nonnegative solution
of inequality (3.2.4). By Theorem 3.2, the fundamental function of (3.1.1) is positive
for t ≥ s ≥ t1 and there exists an eventually positive solution with an eventually
nonpositive derivative. �

Denote

B11 = sup
t≥t1

∫ t

h(t)

a(s)ds, B12 = inf
t≥t1

∫ t

h(t)

b(s)ds,

B21 = sup
t≥t1

∫ t

g(t)

a(s)ds, B22 = inf
t≥t1

∫ t

g(t)

b(s)ds.

Corollary 3.9 Suppose a(t)≥ b(t), g(t)≥ h(t) and there exist t1 ≥ 0, x1 > 0, x2 >

0 such that the system
{

lnx1 ≥ x1B11 − x2B12,

lnx2 ≤ x1B21 − x2B22,
(3.4.1)

has a positive solution (x1, x2), where x1a(t)− x2b(t)≥ 0 for t ≥ t1.
Then the fundamental function of (3.1.1) is positive for t ≥ s ≥ t1 and there exists

an eventually positive solution with an eventually nonpositive derivative.

Corollary 3.10 Suppose a(t)≥ b(t), g(t)≥ h(t) and there exist t1 ≥ 0 and C > 0
such that B11 �= 0, B12 �= 0, B21 = B22 = 0,

ln(eB11)≤ C ≤ B12, (3.4.2)

and for t ≥ t1

a(t)

B11
≥ Cb(t)

B12
. (3.4.3)

Then the fundamental function of (3.1.1) is positive for t ≥ s ≥ t1 and there exists
an eventually positive solution with an eventually nonpositive derivative.
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Proof Under the conditions of the corollary, system (3.4.1) takes the form
{

lnx1 ≥ x1B11 − x2B12,

lnx2 ≤ 0.
(3.4.4)

Inequalities (3.4.2) yield that (x1, x2)= ( 1
B11
, C
B12
) is a solution of (3.4.4). Inequality

(3.4.3) implies x1a1(t) ≥ x2b1(t). Hence, for (3.1.1) the statement of the corollary
holds. �

For (3.2.13), we can now obtain new explicit nonoscillation conditions under
which there exists an eventually positive solution with an eventually nonnegative
derivative.

Corollary 3.11 Suppose a ≥ b, δ ≥ σ ,

(aδ)σ/δ ln(aδe)≤ bδ ≤ (aδ)σ/δ. (3.4.5)

Then the fundamental function of (3.2.13) is positive for t ≥ δ and there exists an
eventually positive solution with an eventually nonpositive derivative.

Proof For (3.2.13), system (3.4.1) has the form

lnx1 ≥ aδx1 − bδx2, lnx2 ≤ aσx1 − bσx2,

so it is sufficient to prove that the following system of two equations has a positive
solution:

{
lnx1 = aδx1 − bδx2,

lnx2 = aσx1 − bσx2.
(3.4.6)

We have lnx1
lnx2

= δ
σ

, and hence x2 = x
σ/δ

1 . After the substitution of x2 in the first
equation of system (3.4.6), we have

x1 = 1

aδ
lnx1 + b

a
x
σ/δ

1 . (3.4.7)

Denote

f (x)= x − 1

aδ
lnx, g(x)= b

a
xσ/δ.

Equation (3.4.7) has a solution if for some x1 > 0 we have f (x1)= g(x1). Since

f (x) > 0, 0< x < 1, lim
x→0

f (x)= lim
x→∞f (x)= ∞, g(0)= 0, lim

x→∞g(x)= ∞,

the function f (x) has a minimum point x0. We will prove that f (x0) ≤ g(x0). It
will imply that there exists x1 ∈ (0, x0] such that f (x1) = g(x1) and hence (3.4.7)
has a positive solution. Since

f ′(x)= 1 − 1

aδx
= 0, x0 = 1

aδ
, fmin(x0)= 1

aδ
ln(aδe), g(x0)= b

a(aδ)σ/δ
,
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inequality fmin(x0) < g(x0) has the form

ln(aδe) <
bδ

(aδ)σ/δ
,

which follows from the left inequality in (3.4.5). Hence the system (3.4.6) has a
positive solution,

(x1, x2), where x1 ≤ 1

aδ
, x2 = x

σ
δ

1 ≤ 1

(aδ)
σ
δ

.

We have only to check the inequality a(t)x1 ≥ b(t)x2 in Corollary 3.9. For (3.2.12),
this inequality has the form 1

δ
≥ b

(aδ)σ/δ
, or bδ ≤ (aδ)σ/δ , which follows from the

right inequality in (3.4.5). �

Example 3.6 Consider the equation

ẋ(t)+ 0.8x(t − 1)− 0.7x(t − 0.5)= 0.

By Corollary 3.11, this equation has a positive fundamental function. Corollaries 3.5
and 3.7 fail for this equation.

Corollary 3.12 Suppose that

b ≤ b(t)≤ a(t)≤ a, t − δ ≤ h(t)≤ g(t)≤ t − σ

and at least one of the conditions of Corollaries 3.5, 3.7 and 3.11 hold. Then the
fundamental function of (3.1.1) is eventually positive (for t ≥ s ≥ t1) and there exists
an eventually positive solution with an eventually nonpositive derivative.

Let us illustrate the results above with several examples.

Example 3.7 Consider the equation

ẋ(t)+ ax(t − δ)− bx
(
g(t)

)= 0, t ≥ t0, (3.4.8)

where a ≥ b, δ > 0, g(t)≤ t , limt→∞(t − g(t))= 0.
For nonoscillation conditions, we apply Corollary 3.10. We have B11 = aδ,

B12 = bδ, B21 = B22 = 0. Inequality (3.4.3) becomes C < 1, and (3.4.2) is satis-
fied whenever

ln(aδe)≤ bδ, aδ ≤ 1. (3.4.9)

Thus, if (3.4.9) holds, then (3.4.8) has a positive fundamental function and an even-
tually positive solution with an eventually nonpositive derivative.

If ln(aδe) > bδ, then [78] all solutions of (3.4.8) are oscillatory.

Example 3.8 Consider the equation

ẋ(t)+ a√
t
x(t − √

t)− b√
t
x(t − τ)= 0, t ≥ t0 > 0, (3.4.10)

where a ≥ b, τ > 0. For Bij , we have B11 = a, B12 = b, B21 = B22 = 0.
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By the same calculations as in Example 3.7, we have that if

ae−b ≤ 1

e
, a ≤ 1, (3.4.11)

then (3.4.10) has a positive fundamental function and an eventually positive solution
with an eventually nonpositive derivative. If

ae−b > 1

e
, (3.4.12)

then [78] all solutions of (3.4.10) are oscillatory.

Example 3.9 Consider the equation

ẋ(t)+ a

t
x

(
t

μ

)
− b

t
x(t − τ)= 0, t ≥ t0 > 0, (3.4.13)

where a ≥ b, μ> 1, τ > 0.
For Bij , we have B11 = a lnμ, B12 = b lnμ, B21 = B22 = 0. If

aμ−b ≤ 1

e lnμ
, (3.4.14)

then (3.4.13) has an eventually positive solution with an eventually nonpositive
derivative.

If

aμ−b > 1

e lnμ
, (3.4.15)

then [78] all solutions of (3.4.13) are oscillatory.

Example 3.10 Consider the equation

ẋ(t)+ a

t
x

(
t

μ

)
− b

t
x

(
t

ν

)
= 0, t ≥ t0, (3.4.16)

where a ≥ b, μ> ν > 1. Corollary 3.4 implies that if
(
a − b

e

)
lnμ≤ 1

e
,

then (3.4.16) has an eventually positive solution with an eventually nonpositive
derivative.

Let us note that if

(a − b)

(
1 + a ln

μ

ν

)
lnν >

1

e
,

then [78] all solutions of (3.4.16) are oscillatory.

To extend the results obtained in this chapter for equations with an arbitrary
number of positive and negative coefficients, we consider the equation

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)−
n∑

i=1

bi(t)x
(
gi(t)

)= 0, t ≥ t0, (3.4.17)
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where for all the parameters of this equation conditions (b1) and (b2) hold. It is not
difficult to generalize the results obtained for (3.1.1) to this equation.

Denote

a(t)=
m∑

k=1

ak(t), b(t)=
n∑

i=1

ai(t),

h(t)= min
k

{
hk(t)

}
, g(t)= min

i

{
gi(t)

}
,H(t)= max

k

{
hk(t)

}
, G(t)= max

i

{
gi(t)

}
.

In the future, we will need the following lemma.

Lemma 3.2 Suppose ck(t) ≥ 0, rk(t), k = 1, · · · , n are measurable functions
and x(t) is a continuous function. Then there exists a measurable function r(t),
mink rk(t) ≤ r(t) ≤ maxk rk(t), such that

∑n
k=1 ck(t)x(rk(t)) =

(
∑n

k=1 ck(t))x(r(t)).

Proof For a fixed t , denote A= mink rk(t), B = maxk rk(t). Then

n∑

k=1

ck(t)x
(
rk(t)

)≤
n∑

k=1

ck(t)max
k
x
(
rk(t)

)≤
n∑

k=1

ck(t) max
A≤t≤B x(t),

and similarly

n∑

k=1

ck(t)x
(
rk(t)

)≥
n∑

k=1

ck(t) min
A≤t≤B x(t).

By the Intermediate Value Theorem,
∑n

k=1 ck(t)x(rk(t))∑n
k=1 ck(t)

= x(D),

where A ≤ D ≤ B , which completes the proof of the lemma if we denote
r(t) :=D. �

Theorem 3.8 Suppose

ak(t)≥ 0, bi(t)≥ 0, H(t)≤ g(t),

m∑

k=1

ak(t)≥
n∑

i=1

bi(t), t ≥ t1,

and the inequality

u(t)≥ a(t) exp

{∫ t

h(t)

u(s)ds

}
− b(t) exp

{∫ t

G(t)

u(s)ds

}
, t ≥ t1, (3.4.18)

has a nonnegative locally integrable solution satisfying u(t) ≥ 0 for t ≥ t1 and
u(t) = 0 for t < t1. Then, for the fundamental function of (3.4.17), we have
X(t, s) > 0, t ≥ s ≥ t1 and (3.4.17) has an eventually positive solution with an
eventually nonpositive derivative.
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Proof Let x(t)=X(t, t1). By Lemma 3.2, x(t) is a solution of the equation

ẋ(t)+ a(t)x
(
h̃(t)

)− b(t)x
(
g̃(t)

)= 0, t ≥ t1, (3.4.19)

for some h(t) ≤ h̃(t) ≤ H(t), g(t) ≤ g̃(t) ≤ G(t). If u(t) ≥ 0 is a solution of in-
equality (3.4.18), then this function is also a nonnegative solution of the inequality

u(t)≥ a(t) exp

{∫ t

h̃(t)

u(s)ds

}
− b(t) exp

{∫ t

g̃(t)

u(s)ds

}
, t ≥ t1. (3.4.20)

Theorem 3.2 implies that the fundamental function Y(t, s) of (3.4.19) is positive.
But Y(t, t1)=X(t, t1), so also X(t, t1) > 0. Inequality X(t, s) > 0 for any t ≥ s ≥
t1 is proven similarly. �

Theorems 3.5 and 3.8 immediately imply the following result.

Corollary 3.13 Suppose

ak(t)≥ 0, bk(t)≥ 0, H(t)≤ g(t),

m∑

k=1

ak(t)≥
n∑

i=1

bi(t), t ≥ t1.

If there exists λ ∈ (0,1) such that

lim sup
t→∞

∫ G(t)

h(t)

[
a(s)− λb(s)

]
ds <

1

e
ln

1

λ
,

lim sup
t→∞

∫ t

h(t)

[
a(s)− λb(s)

]
ds <

1

e
,

then, for the fundamental function of (3.4.17), we have X(t, s) > 0, t ≥ s ≥ t1 and
(3.4.17) has an eventually positive solution with an eventually nonnegative deriva-
tive.

3.5 Equations with an Oscillatory Coefficient

Consider the equation with a variable delay and a variable oscillating coefficient

ẋ(t)+ a(t)x
(
h(t)

)= 0, (3.5.1)

where h(t)≤ t .
First, let us discuss the connection of stability and nonoscillation for (3.5.1),

where the coefficient a(t) can be oscillatory but in some sense its positive part “pre-
vails”. Can we claim that under the assumption

∫∞
0 a(s)ds = ∞ all positive solu-

tions tend to zero? The following example demonstrates that there is no easy answer
to this question.

Example 3.11 Consider (3.5.1) with

a(t)=
{
α+ β, t ∈ (2n,2n+ 1],
−α, t ∈ (2n+ 1,2n+ 2],
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t − h(t)=
{

{t} + 1, t ∈ (2n,2n+ 1],
0, t ∈ (2n+ 1,2n+ 2],

where α > 0, β > 0 and {t} is the fractional part of t . Then (3.5.1) becomes

x′(t)=
{

−(α + β)x(2n− 1), t ∈ (2n,2n+ 1],
αx(t), t ∈ (2n+ 1,2n+ 2]. (3.5.2)

Consider (3.5.2) for t ≥ 0 with x(s)= s+ 1 for s ≤ 0. Then x(−1)= 0, x(0)= 1 =
x(1), x(2)= eα , x(3)= eα − α − β, · · · , x(2n+ 1)= x(2n− 1)[eα − α − β] and

lim sup
t→∞

∫ t

h(t)

a(s)ds =
∫ t

t−2
a(s)ds = β,

∫ ∞

0
a(s)ds = ∞.

However, for any β > 0, there exists α > 0 large enough that eα −α−β > 1, which
means that x(2n+ 1) > x(2n− 1), so the solution is unstable and nonoscillatory.
Thus there is no constant A such that for equations with oscillating a(t) the inequal-
ity

lim sup
t→∞

∫ t

h(t)

a(s)ds < A

implies stability if two additional conditions hold:

lim inf
t→∞

∫ t+H

t

a(s)ds > 0 for some H > 0,
∫ ∞

0
a(s)ds = ∞.

Example 3.11 implies that for any α > 0 there exists a nonoscillatory equation
(3.5.1) with oscillating a(t) such that

lim sup
t→∞

∫ t

h(t)

a(s)ds = α.

Some new sufficient stability results for (3.5.1) with oscillatory coefficients can
be found in the recent paper [67].

Next, let us proceed to necessary nonoscillation conditions. In private discus-
sions, Y. Domshlak and I. Stavroulakis proposed the following hypothesis.

Conjecture Consider (3.5.1) with an oscillatory coefficient a(t). The inequality

lim sup
t→∞

∫ t

h(t)

a(s)ds <
1

e
(3.5.3)

implies nonoscillation of (3.5.1), and the condition

lim inf
t→∞

∫ t

h(t)

a(s)ds >
1

e
(3.5.4)

implies oscillation of (3.5.1).
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The following example demonstrates that the second part is incorrect; moreover,
there is no A> 0 such that the inequality

lim inf
t→∞

∫ t

h(t)

a(s)ds > A (3.5.5)

implies oscillation of all solutions. Thus the inequality

lim inf
t→∞

∫ t

h(t)

a(s)ds ≤ 1

e

is no longer necessary for nonoscillation if the coefficient of (3.5.1) may become
negative.

Example 3.12 Consider (3.5.1) with

t − h(t)=
{

2, t ∈ (2n,2n+ 1],
{t} + 3, t ∈ (2n+ 1,2n+ 2], a(t)=

{
−α, t ∈ (2n,2n+ 1],
eα − 1, t ∈ (2n+ 1,2n+ 2],

where α > 0. Then (3.5.1) becomes

x′(t)=
{
αx(t − 2), t ∈ (2n,2n+ 1],
(eα − 1)x(2n− 2), t ∈ (2n+ 1,2n+ 2]. (3.5.6)

Thus, the solution of (3.5.6) with the initial function

x(t)=
{
eα(t+2), t ∈ [−2,−1],
eα − (eα − 1)(t + 1), t ∈ [−1,0],

is two-periodic. In fact,

x′(t)= αeαt , t ∈ [0,1], x(0)= 1 ⇒ x(t)= eαt , t ∈ [0,1],
x′(t)= −(eα − 1

)
x(−2)= 1 − eα, t ∈ [1,2]

⇒ x(t)= eα − (eα − 1
)
(t − 1), t ∈ [1,2],

so x(2)= 1. This solution is two-periodic and nonoscillatory, while

lim inf
t→∞

∫ t

h(t)

a(s)ds =
∫ 2n

2n−3
a(s)ds = eα − 2α − 1>

1

e

for α ≥ α0 ≈ 1.4522. Here α0 is the only positive solution of the equation ex −
2x − 1 = 1/e (the function on the left-hand side is increasing). Moreover, lim inf
exceeds 1/e for α > 1.4522. Thus (3.5.6) has a nonoscillatory solution, while A<
eα − 2α − 1 for some α in (3.5.5) can be any positive number.

3.6 Discussion and Open Problems

For nonautonomous delay differential equations (DDEs) with positive and negative
coefficients, the first oscillation result [246] was obtained only in 1984, much later
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than the first oscillation results for delay differential equations with positive coeffi-
cients appeared. Chuanxi and Ladas [94] obtained for the equation

ẋ(t)+ a(t)x(t − τ)− b(t)x(t − σ)= 0, t ≥ t0, (3.6.1)

a(t)≥ 0, b(t)≥ 0, τ > 0, σ > 0, the following well-known result.

Theorem 3.9 [94] Suppose a(t) and b(t) are continuous functions, τ > σ ,
∫ t

t−τ+σ
b(s)ds ≤ 1, a(t)≥ b(t − τ + σ), (3.6.2)

lim inf
t→∞

∫ t

t−τ
[
a(s)− b(s − τ + σ)

]
ds >

1

e
. (3.6.3)

Then all the solutions of (3.6.1) are oscillatory.

Similar results were obtained in [155, 235]. Later many publications appeared
that improved the results of [94, 155, 235] and extended them to various classes of
equations, including the second-order and higher-order equations and neutral type
equations. Here we refer the reader to the papers [92, 143, 179, 259–261, 342, 346,
357] and references therein.

In [261], the following result was obtained.

Theorem 3.10 [261] Suppose a(t) and b(t) are continuous functions, τ > σ , con-
dition (3.6.2) holds and

lim inf
t→∞

(∫ t

t−τ
[
a(s)− b(s − τ + σ)

]
ds + 1

e

∫ t

t−τ+σ
b(s − τ)ds

)
>

1

e
.

Then all solutions of (3.6.1) are oscillatory.

However, all these publications except [143] consider equations with constant
delays only, condition (3.6.2) remains unchanged and only (3.6.3) is improved. In
the present chapter, we deal with a more general case: unlike the publications above,
we consider instead of (3.6.1) equation (3.1.1) with arbitrary delays and coefficients;
moreover, a(t)≥ 0 and b(t)≥ 0 are not assumed to be continuous. Besides, instead
of the second inequality in (3.6.2), we consider the condition a(t) ≥ b(t), which
seems to be more natural. The method of investigation is based on the properties of
linear operators in the corresponding spaces. The basic result is that the existence
of a nonnegative solution of a nonlinear integral inequality, which is explicitly con-
structed by (3.1.1), implies positivity of the fundamental function for this equation.

Theorems of this kind are well known and widely applied for delay differen-
tial equations with positive coefficients (see Chap. 2). For (3.1.1), this result was
published in [81]. As an immediate corollary of the main proposition, we obtained
the comparison theorem for (3.1.1) and the result that all nonoscillatory solutions
tend to zero at infinity, which is well known for equations with positive coefficients.
Here we presented various explicit conditions for the existence of a nonoscillatory
solution of (3.1.1). It should be noted that, unlike oscillation, nonoscillation even
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of (3.6.1) has not been extensively studied. We mention here [92] and [154, Theo-
rem 2.5.2]. Examples illustrate sharpness of nonoscillation conditions obtained in
the present chapter and their applications.

Finally, let us formulate some open problems as well as topics for research and
discussion.

1. For (3.1.1) with coefficients of arbitrary signs, find sufficient conditions on the
parameters of the equation where existence of a positive solution implies posi-
tivity of the fundamental function. In particular, these conditions include (but we
believe are not reduced to) the case of nonnegative coefficients.

2. Prove or disprove:
For any given a(t) > b(t) ≥ 0 and h(t) ≤ t , there exists g(t) ≤ t such that

(3.1.1) has a nonoscillatory solution.
3. Prove or disprove:

If
∑m

k=1 ak(t)≤
∑n

k=1 bk(t), then (3.4.17) has a nonoscillatory solution.
4. Prove or disprove:

Suppose that the conditions of Theorem 3.2 hold. If x(t1) > 0 and supt≤t1 ϕ(t)
< x(t1), then the solution of the initial value problem is positive.

5. Find nonoscillation conditions for (3.1.1) without the assumption that h(t) ≤
g(t).

6. Prove or disprove:
If the assumptions of Theorem 3.4 hold, then for any solution x of (3.1.1) we

have limt→∞ x(t)= 0.
7. Find sufficient conditions under which any nonoscillatory solution of (3.5.1) with

an oscillating coefficient tends to zero.
8. Prove or disprove:

The inequality

lim sup
t→∞

∫ t

h(t)

a(s)ds <
1

e
(3.6.4)

implies nonoscillation of (3.5.1) with an oscillatory coefficient.



Chapter 4
Oscillation of Equations with Distributed Delays

4.1 Introduction

In this chapter, we consider for any point t1 the scalar equation with a distributed
delay

ẋ(t)+
t∫

−∞
x(s) dsR(t, s)= f (t), t > t1, (4.1.1)

where R(t, ·) is a function of a bounded variation and f is locally essentially
bounded, with the initial function

x(t)= ϕ(t), t < t1. (4.1.2)

As particular cases, homogeneous equation (4.1.1) includes the following mod-
els:

1) the differential equation with several variable delays

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)= 0, (4.1.3)

if we assume that R =R1, where

R1(t, s)=
m∑

k=1

ak(t)χ(hk(t),∞)(s), (4.1.4)

where χI is the characteristic function of interval I ;
2) the integrodifferential equation

ẋ(t)+
∫ t

−∞
K(t, s)x(s) ds = 0, (4.1.5)

if we assume that R =R2, where

R2(t, s)=
∫ s

−∞
K(t, ζ ) dζ ; (4.1.6)
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3) the mixed equation

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)+
∫ t

−∞
K(t, s)x(s) ds = 0, (4.1.7)

where R(t, s) = R3(t, s) = R1(t, s) + R2(t, s) and R1 and R2 are defined by
(4.1.4) and (4.1.6), respectively;

4) the mixed equation with an infinite number of delays,

ẋ(t)+
∞∑

k=1

ak(t)x
(
hk(t)

)+
∫ t

−∞
K(t, s)x(s) ds = 0, (4.1.8)

which is obtained if R(t, s)=R4(t, s), where

R4(t, s)=
∞∑

k=1

ak(t)χ(hk(t),∞)(s)+
∫ s

−∞
K(t, ζ ) dζ. (4.1.9)

Equation (4.1.8) is the most general among (4.1.3), (4.1.5), (4.1.7), (4.1.8). How-
ever, it should be noted that not any function of bounded variation can be presented
in the form (4.1.9) as a sum of an infinite number of step functions and an abso-
lutely continuous function. Once oscillation of (4.1.1) has been studied, the relevant
results for (4.1.3), (4.1.5), (4.1.7), (4.1.8) can be deduced.

The chapter is organized as follows. Section 4.2 contains relevant definitions and
known results. In Sect. 4.3, we prove that the following four assertions are equiv-
alent: nonoscillation of the equation and the corresponding differential inequality,
positivity of the fundamental function and existence of a nonnegative solution of
a certain nonlinear integral inequality that is constructed explicitly from the differ-
ential equation. Section 4.4 involves comparison theorems that in particular allow
us to compare oscillation properties of equations with concentrated and distributed
delays. Next, in Sect. 4.5, sharp nonoscillation conditions for several classes of au-
tonomous integrodifferential equations are considered. Further, using comparison
theorems, we obtain efficient nonoscillation conditions for various classes of nonau-
tonomous delay equations. Section 4.6 contains efficient nonoscillation and oscilla-
tion conditions. Section 4.7 considers slowly oscillating solutions, while Sect. 4.8
presents nonoscillation conditions for equations with positive and negative coeffi-
cients. Finally, Sect. 4.9 involves some discussion and open problems.

4.2 Preliminaries

We study initial value problem (4.1.1), (4.1.2) for the equation with a distributed
delay under the following assumptions:

(a1) R(t, ·) is a left continuous scalar function of bounded variation, and for each s
its variation on the segment [t1, s]

P(t, s)= Varτ∈[t1,s]R(t, τ ) (4.2.1)
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is a locally integrable function in t for any s > t1 and R(t, s) = R(t, t+) =
lims→t+ R(t, s) for t < s.

(a2) There exist M > 0 and λ > 0 such that for any s and t the inequality
∫ t

s

∣∣dτR(t, τ )
∣∣≤Me−λ(t−s) (4.2.2)

holds.
(a3) f : [t1,∞)→ R is a Lebesgue measurable locally essentially bounded func-

tion and ϕ : (−∞, t1)→ R is a Lebesgue measurable locally bounded function
such that the Lebesgue-Stieltjes integral in (4.1.1) exists; in particular, if ϕ is
a continuous function then (4.1.1) is well defined for any R(t, s). We assume
also that for some M1 > 0 and μ ∈ [0, λ)

∣∣ϕ(t)
∣∣≤M1e

−μ(t−t1), t ≤ t1. (4.2.3)

Definition 4.1 As in the previous chapters, a function x : R →R is called a solution
of (4.1.1), (4.1.2) if it satisfies (4.1.1) for almost every t ∈ [t1,∞), and (4.1.2) holds
for t < t1.

All the functions of bounded variation considered in this chapter are left contin-
uous, so all the integrals are understood as

∫ t

−∞
x(s) dsR(t, s)=

∫ t+

−∞
x(s) dsR(t, s)= lim

τ→t+

∫ τ

−∞
x(s) dsR(t, s);

in particular, for R(t, s)= a(t)χ(t,∞)(s),
∫ t

−∞
x(s) dsR(t, s)= a(t)x(t),

which corresponds to a nondelay term.

Definition 4.2 For each s ≥ t1, denote by X(t, s) the solution of the problem

ẋ(t)+
∫ t

−∞
x(τ) dτR(t, τ )= 0, t ≥ s, x(t)= 0, t < s, x(s)= 1. (4.2.4)

X(t, s) is called the fundamental function of (4.1.1).

By Theorem B.3, there exists one and only one solution of problem (4.1.1),
(4.1.2), and it can be presented in the form

x(t)=X(t, t1)x0 +
∫ t

t1

X(t, s)f (s)ds −
∫ t

t1

X(t, s) ds

∫ s

−∞
ϕ(τ) dτR(s, τ ),

(4.2.5)

where ϕ(τ)= 0, if τ > t1.
We will also study (4.1.1), (4.1.2) with a bounded aftereffect; i.e., when the fol-

lowing hypothesis holds:
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(a4) R(t, s)=∑∞
k=1Rk(t, s), r(t) :=

∑∞
k=1

∫ t
−∞ dsRk(t, s) is a locally essentially

bounded function and for each t1 and k there exists sk =
sk(t1)≤ t1 such that Rk(t, s)= 0 for s < sk , t > t1, where infk(sk(t)) >−∞,
limt→∞ infk sk(t)= ∞.

If (a4) holds, then we can introduce the function

hk(t)= inf
s≤t
{
s|Rk(t, s) �= 0

}
(4.2.6)

such that limt→∞ hk(t)= ∞ and rewrite homogeneous equation (4.1.1) in the form

ẋ(t)+
∞∑

k=1

∫ t

hk(t)

x(s) dsRk(t, s)= 0, t ≥ t1. (4.2.7)

Together with (4.1.1), let us consider the homogeneous equation

ẋ(t)+
∫ t

−∞
x(s) dsR(t, s)= 0, t ≥ t1, (4.2.8)

and the differential inequality

ẏ(t)+
∫ t

−∞
y(s) dsR(t, s)≤ 0, t ≥ t1. (4.2.9)

Let us study the existence of an eventually positive solution of (4.2.8), (4.1.2).

Definition 4.3 Equation (4.2.8) has a positive solution for t ≥ t1 if there exists an
initial function ϕ such that a solution of (4.2.8), (4.1.2) is positive for t ≥ t1.

4.3 Existence of a Positive Solution—General Results

Theorem 4.1 Suppose (a1)–(a3) hold and R(t, ·) is a nondecreasing function. Then
the following hypotheses are equivalent:

1) There exists a point t1 and an initial function ϕ(t)≥ 0 such that problem (4.2.9),
(4.1.2) has a positive solution for t ≥ t1.

2) There exists a point t1 such that the inequality

u(t)≥
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsR(t, s) (4.3.1)

has a nonnegative locally integrable solution u(t) for t ≥ t1, where u(t) = 0,
t < t1.

3) There exists a point t1 such that X(t, s) > 0 for t > s ≥ t1.
4) There exists a point t1 such that (4.2.8) has a positive solution for t ≥ t1, with
x(t)= 0, t < t1.

Proof Let us prove the implications 1)⇒ 2)⇒ 3)⇒ 4)⇒ 1).
1)⇒ 2) Let y be a positive solution of (4.2.9), (4.1.2), where ϕ(t)≥ 0.
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Since ẏ(t)≤ 0 for t ≥ t1, the solution y(t) is nonincreasing, and u(t) defined for
t ≥ t1 as

u(t)= − d

dt
ln
y(t)

y(t1)

satisfies u(t)≥ 0. We have

y(t)= y(t1) exp

{
−
∫ t

t1

u(s) ds

}
.

Inequality (4.2.9) is equivalent to

ẏ(t)+
∫ t1

−∞
ϕ(s) dsR(t, s)+

∫ t

t1

y(s) dsR(t, s)≤ 0.

By substituting y into this inequality, we obtain

−y(t1) exp

{
−
∫ t

t1

u(s) ds

}
u(t)+

∫ t1

−∞
ϕ(s) dsR(t, s)

+ y(t1)

∫ t

t1

exp

{
−
∫ s

t1

u(τ) dτ

}
dsR(t, s)≤ 0,

which implies

y(t1) exp

{
−
∫ t

t1

u(s) ds

}[
−u(t)+

∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsR(t, s)

]
≤ 0. (4.3.2)

The first factor is positive since y(t1) > 0, so the expression in the brackets is non-
positive and

u1(t)≥
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsR(t, s), t ≥ t1. (4.3.3)

2)⇒ 3)As the first step, let us prove that the fundamental solution is nonnegative
for t ≥ s ≥ t1.

Consider the initial value problem

ẋ(t)+
∫ t

−∞
x(s) dsR(t, s)= f (t), t > t1, x(t)= 0, t ≤ t1. (4.3.4)

This problem is equivalent to

ẋ(t)+
∫ t

t1

x(s) dsR(t, s)= f (t), t > t1, x(t1)= 0.

Denote by z the function

z(t)= ẋ(t)+ u(t)x(t),

where u is a nonnegative solution of (4.3.1) and x is the solution of (4.3.4). Thus

x(t)=
∫ t

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds, t ≥ t1. (4.3.5)
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After substituting x into (4.3.4), we obtain

z(t)− u(t)

∫ t

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

+
∫ t

t1

(∫ s

t1

exp

{
−
∫ s

θ

u(τ ) dτ

}
z(θ) dθ

)
dsR(t, s)= f (t).

After changing the order of integration in the second integral, we have

z(t)− u(t)

∫ t

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

+
∫ t

t1

z(s) ds

∫ t

s

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθR(t, θ)= f (t).

Thus the left-hand side is equal to

z(t)− u(t)

∫ t

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

+
∫ t

t1

z(s) ds

∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}
exp

{∫ t

θ

u(τ ) dτ

}
dθR(t, θ)

−
∫ t

t1

z(s) ds

∫ s

t1

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθR(t, θ)

= z(t)−
∫ t

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

[
u(t)

−
∫ t

t1

exp

{∫ t

θ

u(τ ) dτ

}
dθR(t, θ)

]

−
∫ t

t1

z(s) ds

∫ s

t1

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθR(t, θ)= f (t).

Consequently we obtain the operator equation

z−Hz= f, (4.3.6)

which is equivalent to (4.3.4), where

(Hz)(t)=
∫ t

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

×
[
u(t)−

∫ t

t1

exp

{∫ t

θ

u(τ ) dτ

}
dθR(t, θ)

]

+
∫ t

t1

z(s) ds

∫ s

t1

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθR(t, θ).

Inequality (4.3.1) yields that if z(t) ≥ 0, then (Hz)(t) ≥ 0; i.e., H is a positive
operator (t > t1). Besides, in each finite interval [t1, b], the operator H is a sum
of integral Volterra operators, which are weakly compact in the space L[t1, b] by
Theorem A.5.

Theorem A.8 implies that the spectral radius is r(H)= 0< 1, and, consequently,
if in (4.3.6) the right-hand side f is nonnegative, then

z(t)= f (t)+ (Hf )(t)+ (H 2f
)
(t)+ (H 3f

)
(t)+ · · · ≥ 0.
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We recall that the solution of (4.3.4) has the form (4.3.5), with z being a solution
of (4.3.6). Thus, if in (4.3.4) we have f ≥ 0, then x(t) ≥ 0. On the other hand, the
solution of (4.3.4) has the representation

x(t)=
∫ t

t1

X(t, s)f (s) ds,

where f (t) ≥ 0 implies x(t) ≥ 0. Hence the kernel of the integral operator is non-
negative (i.e., X(t, s)≥ 0 for t ≥ s > t1).

As the second step, let us prove that X(t, s) is strictly positive: X(t, s) > 0. To
this end, consider

x(t)=X(t, t1)− exp

{
−
∫ t

t1

u(s) ds

}
, x(t)= 0, t < t1,

and substitute x(t) into the left-hand side of (4.3.4),

X′
t (t, t1)+ u(t) exp

{
−
∫ t

t1

u(s) ds

}
+
∫ t

t1

X(s, t1) dsR(t, s)

−
∫ t

t1

exp

{
−
∫ s

t1

u(τ) dτ

}
dsR(t, s)

= 0 + exp

{
−
∫ t

t1

u(s) ds

}[
u(t)−

∫ t

t1

exp

{∫ t

s

u(s) ds

}
dsR(t, s)

]
≥ 0.

Hence x(t) is a solution of (4.3.4) with a nonnegative right-hand side. As was
demonstrated above, x(t)≥ 0, and consequently

X(t, t1)≥ exp

{
−
∫ t

t1

u(s) ds

}
> 0.

For any s > t1, inequality X(t, s) > 0 is verified in a similar way.
3)⇒ 4) Function x(t)=X(t, t1) is a positive solution of (4.2.8) for t ≥ t1.
Implication 4)⇒ 1) is obvious. �

Corollary 4.1 Suppose (a1) and (a2) hold, R(t, ·) is a nondecreasing function for
any t and at least one of the following hypotheses holds:

1) Inequality (4.2.9) has a positive solution for any t ∈R.
2) The inequality

u(t)≥
∫ t

−∞
exp

{∫ t

s

u(τ ) dτ

}
dsR(t, s) (4.3.7)

has a nonnegative locally integrable solution u(t) for any t ∈ R.

Then:

a) X(t, s) > 0 for any t > s.
b) For any t1, (4.2.8) has a positive solution for t ≥ t1.
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Proof 1) Suppose x is a solution of (4.2.9) for any t ∈ R. After fixing a point t1
and denoting y(t) = x(t) for t ≥ t1, ϕ(t) = x(t) for t < t1, we observe that y is a
positive solution of problem (4.2.9), (4.1.2) with a nonnegative initial function ϕ(t).

2) If u is a nonnegative solution of (4.3.7), then for any t1 it also solves the
inequality

u(t)≥
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsR(t, s),

which completes the proof. �

Consider together with (4.1.7) the relevant inequality

ẏ(t)+
m∑

k=1

ak(t)y
(
hk(t)

)+
∫ t

−∞
K(t, s)y(s) ds ≤ 0. (4.3.8)

Corollary 4.2 Suppose that the following conditions are satisfied:

(b1) ak ≥ 0, k = 1, · · · ,m are Lebesgue measurable locally essentially bounded
functions, hk : [t0,∞) → R are Lebesgue measurable functions satisfying
hk(t)≤ t , lim supt→∞ hk(t)= ∞, k = 1, · · · ,m.

(b2) K(t, s)≥ 0 is Lebesgue integrable over each finite square [t0, b] × [t0, b], and
there exist M > 0 and λ > 0 such that

K(t, s)≤Me−λ(t−s).
Then the following hypotheses are equivalent:

1) There exists a point t1 ≥ t0 and an initial function ϕ(t) ≥ 0 such that problem
(4.3.8), (4.1.2) has a positive solution for t ≥ t1.

2) There exists t1 ≥ t0 such that the inequality

u(t)≥
m∑

k=1

ak(t) exp

{∫ t

hk(t)

u(s) ds

}
+
∫ t

t1

K(t, s) exp

{∫ t

s

u(τ ) dτ

}
ds (4.3.9)

has a nonnegative locally integrable solution u for t ≥ t1 (in (4.3.9) it is assumed
that u(t)= 0 for t < t1).

3) There exists t1 ≥ t0 such that the fundamental function of (4.1.7) is positive for
t > s ≥ t1.

4) There exists t1 ≥ 0 such that (4.1.7) has a positive solution for t ≥ t1, where
x(t)= 0 for t < t1.

Corollary 4.3 Suppose that Rk(t, ·) are nondecreasing functions for each t and
k ∈N, (a1), (a2) and (a4) hold. Then the following hypotheses are equivalent:

1) Inequality

ẏ(t)+
∞∑

k=1

∫ t

hk(t)

y(t) dsRk(t, s)≤ 0

has an eventually positive solution.
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2) There exists t1 such that the inequality

u(t)≥
∞∑

k=1

∫ t

hk(t)

exp

{∫ t

s

u(τ ) dτ

}
dsRk(t, s) (4.3.10)

has a nonnegative locally integrable solution u for t ≥ t1 (in (4.3.10) we assume
u(t)= 0 for t < t1).

3) There exists t1 such that X(t, s) > 0, t > s ≥ t1.
4) Equation (4.2.7) has an eventually positive solution.

Corollary 4.4 Suppose that (b1) with m= ∞ and (b2) hold, as well as the follow-
ing condition:

(c1) a(t)=∑∞
k=1 ak(t)χ[hk(t),∞)(t) is a locally essentially bounded function.

Then the following hypotheses are equivalent:

1) There exist a point t1 and an initial function ϕ(t)≥ 0 such that the problem

ẋ(t)+
∞∑

k=1

ak(t)x
(
hk(t)

)+
∫ t

−∞
K(t, s)x(s) ds ≤ 0, (4.3.11)

(4.1.2) has a positive solution for t ≥ t1.
2) There exists t1 such that the inequality

u(t)≥
∞∑

k=1

ak(t) exp

{∫ t

hk(t)

u(s) ds

}
+
∫ t

t1

K(t, s) exp

{∫ t

s

u(τ ) dτ

}
ds

(4.3.12)

has a nonnegative locally integrable solution u for t ≥ t1, where u(t) = 0 for
t < t1.

3) There exists t1 such that the fundamental function of (4.1.8) is positive for t ≥
s ≥ t1.

4) There exists t1 such that (4.1.8), with f ≡ 0, has a positive solution for t ≥ t1,
where x(t)= 0 for t < t1.

Corollary 4.5 Suppose (b1), (b2) and (c1) hold, as well as the following condition:

(c2) There exists a function h0(t)≤ t , limt→∞ h0(t)= ∞ such that K(t, s)= 0 for
s < h0(t).

Then the following hypotheses are equivalent:

1) The inequality

ẋ(t)+
∞∑

k=1

ak(t)x
(
hk(t)

)+
∫ t

h0(t)

K(t, s)x(s) ds ≤ 0 (4.3.13)

has an eventually positive solution.



92 4 Oscillation of Equations with Distributed Delays

2) There exists t1 such that the inequality

u(t)≥
∞∑

k=1

ak(t) exp

{∫ t

hk(t)

u(s) ds

}
+
∫ t

h0(t)

K(t, s) exp

{∫ t

s

u(τ ) dτ

}
ds

(4.3.14)

has a nonnegative locally integrable solution u for t ≥ t1, where u(t) = 0 for
t < t1.

3) There exists t1 such that the fundamental function of (4.1.8) is positive for t >
s ≥ t1.

4) Equation (4.1.8) has an eventually positive solution.

4.4 Comparison Theorems

Consider together with (4.2.8) the equation with a different distributed delay

ẋ(t)+
∫ t

−∞
x(s)dsT (t, s)= 0, t ≥ t1. (4.4.1)

We compare the properties of (4.2.8) and (4.4.1) related to the existence of a
nonnegative solution. Theorem 4.1 immediately implies the following result.

Theorem 4.2 Suppose R, T satisfy (a1) and (a2) and functions R(t, ·), T (t, ·) and
the differenceR(t, ·)−T (t, ·) are nondecreasing for each t ≥ t1. If inequality (4.3.1)
has a nonnegative solution for t ≥ t1 (with u(t) = 0, t < t1), then (4.4.1) has a
positive solution for t ≥ t1 and its fundamental solution Y(t, s) is positive for t ≥
s ≥ t1.

Proof Let u(t) be a solution of (4.3.1) nonnegative for t ≥ t1. Since

u(t)≥
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsR(t, s)

=
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsT (t, s)

+
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
ds
[
R(t, s)− T (t, s)

]

≥
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsT (t, s),

then (4.4.1) has a nonnegative solution for t ≥ t1, with u(t)= 0 for t ≤ t1, and thus
by Theorem 4.1 its fundamental solution Y(t, s) is positive for t ≥ s ≥ t1. �
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Corollary 4.6 Let R, T satisfy (a1) and (a2).

1. If the functionsR(t, ·), T (t, ·) and the differenceR(t, ·)−T (t, ·) are nondecreas-
ing for each t and (4.2.8) has a nonoscillatory solution, then (4.4.1) also has a
nonoscillatory solution.

2. If the functionsR(t, ·), T (t, ·) and the difference T (t, ·)−R(t, ·) are nondecreas-
ing for each t and all the solutions of (4.4.1) are oscillatory, then all the solutions
of (4.2.8) are oscillatory.

In the future, we will need a more advanced comparison result.

Theorem 4.3 Suppose that (a1) and (a2) hold for R, T , and

lim
s→−∞R(t, s)= lim

s→−∞T (t, s)= 0, R(t, s)≥ T (t, s)≥ 0, (4.4.2)

where R(t, s) and T (t, s) are nondecreasing in s for each t . If inequality (4.3.7) has
a nonnegative solution, then for any t1 (4.4.1) has a positive solution for t ≥ t1 and
its fundamental solution Y(t, s) is positive for t ≥ s ≥ t1.

Proof Since (4.3.7) holds, we have

u(t)≥
∫ t

−∞
exp

{∫ t

s

u(τ ) dτ

}
dsR(t, s)

= exp

{∫ t

s

u(τ ) dτ

}
R(t, s)

∣∣∣∣
s=t

s→−∞
+
∫ t

−∞
R(t, s)u(s) exp

{∫ t

s

u(τ ) dτ

}
ds

=R(t, t)− 0 +
∫ t

−∞
R(t, s)u(s) exp

{∫ t

s

u(τ ) dτ

}
ds

≥ T (t, t)+
∫ t

−∞
T (t, s)u(s) exp

{∫ t

s

u(τ ) dτ

}
ds

=
∫ t

−∞
exp

{∫ t

s

u(τ ) dτ

}
dsT (t, s).

Application of Corollary 4.1 completes the proof. �

Let us compare (4.1.7) with the equation

ẋ(t)+
m∑

k=1

bk(t)x
(
gk(t)

)+
∫ t

−∞
M(t, s)x(s) ds = 0. (4.4.3)

Theorem 4.4 Suppose ak and bk , hk and gk , and K(t, s) and M(t, s) satisfy con-
ditions (b1) and (b2) of Corollary 4.2, ak(t) ≥ bk(t) ≥ 0, hk(t) ≤ gk(t) ≤ t and
K(t, s)≥M(t, s)≥ 0 for any t ≥ t1. If inequality (4.3.9) has a nonnegative solution
for t ≥ t1, then (4.4.3) has a positive solution for t ≥ t1 and its fundamental solution
Y(t, s) is positive for t ≥ s ≥ t1.
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Proof We have

u(t)≥
m∑

k=1

ak(t) exp

{∫ t

hk(t)

u(s) ds

}
+
∫ t

t1

K(t, s) exp

{∫ t

s

u(τ ) dτ

}
ds

≥
m∑

k=1

bk(t) exp

{∫ t

gk(t)

u(s) ds

}
+
∫ t

t1

M(t, s) exp

{∫ t

s

u(τ ) dτ

}
ds.

Corollary 4.2 implies the statement of this theorem. �

By Corollary 4.4, we obtain the following result.

Theorem 4.5 Let conditions (b1), (b2) with m= ∞ and (c1) of Corollary 4.4 hold
for (4.1.8) and for

ẋ(t)+
∞∑

k=1

bk(t)x
(
gk(t)

)+
∫ t

−∞
M(t, s)x(s) ds = 0, (4.4.4)

K(t, s)≥M(t, s)≥ 0, ak(t)≥ bk(t)≥ 0 and hk(t)≤ gk(t)≤ t .

1. If (4.1.8) has a nonoscillatory solution, then (4.4.4) also has a nonoscillatory
solution.

2. If all solutions of (4.1.8) are oscillatory, then all solutions of (4.4.4) are also
oscillatory.

Any function of bounded variation can be presented as a difference of two non-
decreasing functions (in s for each t):

R(t, s)= P(t, s)−Q(t, s), where lim
s→−∞P(t, s)= lim

s→−∞Q(t, s)= 0. (4.4.5)

Corollary 4.7 Suppose that (a1) and (a2) hold.

a) If the inequality

ẋ(t)+
∫ t

−∞
x(s) dsP (t, s)≤ 0 (4.4.6)

has an eventually positive solution, then (4.2.8) has a nonoscillatory solution.
b) If the inequality

u(t)≥
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsP (t, s) (4.4.7)

has a nonnegative locally integrable solution u for all t ≥ t1, where u(t)= 0 for
t < t1, then (4.2.8) has a positive solution for t ≥ t1 and its fundamental solution
X(t, s) > 0, t ≥ s ≥ t1.

Proof Let us compare the solutions of (4.2.8) and the equation

ẋ(t)+
∫ t

−∞
x(s) dsP (t, s)= 0, t ≥ t1.
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Theorem 4.2 yields that there exists a positive solution of (4.2.8) since Q= P −R

is nondecreasing in s for each t and all the hypotheses of Theorem 4.1 are satisfied
for (4.2.8) as well. �

Theorem 4.3 generalizes comparison Theorem 2.4. It compares oscillation prop-
erties of two equations with generally different types of delays.

Now let us compare solutions of the following two problems:

ẋ(t)+
∫ t

−∞
x(s) dsR(t, s)= f (t), x(t)= ϕ(t), t ≤ t1, x(t1)= x0, (4.4.8)

ẏ(t)+
∫ t

−∞
y(s) dsT (t, s)= g(t), y(t)=ψ(t), t ≤ t1, y(t1)= y0. (4.4.9)

Denote by Y(t, s) the fundamental function of (4.4.9); we recall that X(t, s) is
the fundamental function of (4.4.8).

Theorem 4.6 Let the parameters of (4.4.8), (4.4.9) satisfy (a1)–(a3). Suppose that
there exists a nonnegative solution of inequality (4.3.1) for t ≥ t1, functions R(t, ·),
T (t, ·) and R(t, ·)− T (t, ·) are nondecreasing for each t ≥ t1 and

g(t)≥ f (t), ϕ(t)≥ψ(t)≥ 0, t ≤ t1, y0 ≥ x0. (4.4.10)

If x(t) > 0, then y(t) ≥ x(t) > 0, where x(t) and y(t) are solutions of (4.4.8) and
(4.4.9), respectively.

Proof Since R(t, ·)− T (t, ·) is nondecreasing in s for each t , then

u(t)≥
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsR(t, s)

=
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
ds
(
R(t, s)− T (t, s)+ T (t, s)

)

=
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
ds
(
R(t, s)− T (t, s)

)

+
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsT (t, s)

≥
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsT (t, s). (4.4.11)

Thus, by Theorem 4.1 we have X(t, s) > 0, Y(t, s) > 0.
Equation (4.4.8) can be rewritten as

ẋ(t)+
∫ t

−∞
x(s) dsT (t, s)−

∫ t

−∞
x(s) ds

(
T (t, s)−R(t, s)

)= f (t), t ≥ t1,

and consequently
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x(t)= Y(t, t1)x0 −
∫ t

t1

Y(t, s) ds

∫ s

−∞
ϕ(τ) dτ T (s, τ )+

∫ t

t1

Y(t, s)f (s) ds

−
∫ t

t1

Y(t, s) ds

∫ s

−∞
x(τ) dτ

(
R(s, τ )− T (s, τ )

)
, t ≥ t1. (4.4.12)

If equality (4.4.12) is compared with

y(t)= Y(t, t1)y0 −
∫ t

t1

Y(t, s) ds

∫ s

−∞
ψ(τ)dτ T (s, τ )+

∫ t

t1

Y(t, s)g(s) ds,

one can observe y(t)≥ x(t)≥ 0 since (4.4.10) holds. �

Let us present a result on the positivity of solutions for equations with a dis-
tributed delay.

Theorem 4.7 Suppose thatR(t, s) is nondecreasing in s for any t , there exists u≥ 0
such that (4.3.1) has a nonnegative solution for t ≥ t1, f (t)≥ 0 and

0 ≤ ϕ(x)≤ x0, x0 > 0. (4.4.13)

Then the solution of problem (4.4.8) is positive.

Proof Let u(t), t ≥ t1, be a solution of (4.3.1), where u(t)= 0 for t < t1. By The-
orem 4.1, the fundamental function of the equation in problem (4.4.8) is positive:
X(t, s) > 0 for t ≥ s ≥ t1. First assume f ≡ 0. Consider the auxiliary problem

ż(t)+
∫ t

−∞
z(s) dsR(t, s)= 0, t ≥ t1, x(t)= x0, t ≤ t1. (4.4.14)

Let us define the positive function v(t)= x0 exp{− ∫ t
t1
u(s)ds} for any t .

Due to inequality (4.3.1), we have

v̇(t)+
∫ t

−∞
v(s) dsR(t, s)

= −x0u(t) exp

{
−
∫ t

t1

u(s)ds

}
+ x0

∫ t

t1

exp

{
−
∫ s

t1

u(τ) dτ

}
dsR(t, s)

= −x0 exp

{
−
∫ t

t1

u(s)ds

}[
u(t)−

∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsR(t, s)

]
≤ 0.

Hence v(t) > 0 is a solution of the problem

v̇(t)+
∫ t

−∞
v(s) dsR(t, s)= g(t), t ≥ t0, v(t)= x0, t ≤ t0,

with g(t)≤ 0. Theorem 4.6 implies z(t)≥ v(t) > 0. In the general case of an arbi-
trary positive f , the application of Theorem 4.6 completes the proof. �
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4.5 Nonoscillation Criteria for Some Autonomous
Integrodifferential Equations

Consider nonoscillation conditions for the autonomous equation

ẋ(t)+
∫ t

−∞
K(t, s)x(s) ds = 0, (4.5.1)

where K(t, s)=G(t − s) > 0.

Example 4.1 Let K(t, s)=Aχ[t−h,t](s), A> 0, h > 0. We have the equation

ẋ(t)+
∫ t

t−h
Ax(s) ds = 0. (4.5.2)

By Theorem 4.1, it has a nonoscillatory solution as far as the inequality

λ≥
∫ t

t−h
Aeλ(t−s)ds = A

λ

(
eλh − 1

)

has a positive solution λ. Thus, if there exists x > 0 such that

f (x)= x2 −A
(
ehx − 1

)≥ 0,

then (4.5.2) has a nonoscillatory solution. For this x, we have

A≤ x2

ehx − 1
.

Thus, (4.5.2) is nonoscillatory if and only if

A≤ B1(h) := sup
x>0

(
x2

ehx − 1

)
. (4.5.3)

Obviously B1(h) is decreasing in h. For h≈ 0.8047, we haveA= B1(h)= 1, which
is attained at x ≈ 1.98. For h≈ 0.569, we have A= B1(h)= 2 attained at x ≈ 2.8,
which illustrates the difference between equations with distributed and concentrated
delays. For equations with concentrated delay ẋ+ax(t−h)= 0, the sharp nonoscil-
lation condition ah ≤ 1/e implies that the delay boundary for h decays twice as a
is doubled.

The graph ofA(h)= B1(h) is presented in Fig. 4.1, left. Let us note that hA(h)=
hB1(h) is unbounded in contrast to the case for the constant concentrated delay (see
Fig. 4.1, right).

Example 4.2 Let A> 0, h > 0 and

K(t, s)=
{
A(s + h− t), t − s ≤ h,

0, otherwise.

Then we have

ẋ(t)+
∫ t

t−h
A(s − t + h)x(s) ds = 0. (4.5.4)



98 4 Oscillation of Equations with Distributed Delays

Fig. 4.1 Function A = A(h) = B1(h) (left) described in (4.5.3) and the graph of Ah = hB1(h)

(right), which tends to infinity as h→ 0

There exists a positive solution if for some positive λ

A

∫ t

t−h
(s − t + h)eλ(t−s)ds =A

(
−1

λ
(s − t + h)eλ(t−s) − 1

λ2
eλ(t−s)

)∣∣∣∣
s=t

s=t−h

= A

λ2

(
eλh − 1 − λh

)≤ λ.

Thus, if

A≤ B2(h) := sup
x>0

[
x3

ehx − hx − 1

]
, (4.5.5)

then (4.5.4) is nonoscillatory. For the graph of A=A(h)= B2(h), see Fig. 4.2.
Let us also note that the supremum in (4.5.5) does not exceed

sup
x>0

[
x3

h3x3/6 + h2x2/2

]
≤ 6

h3
.

Example 4.3 Let K(t, s)=Aeν(s−t), A> 0, ν > 0. Then the equation is

ẋ(t)+
∫ t

−∞
Aeν(s−t)x(s) ds = 0. (4.5.6)

Equation (4.5.6) has a nonoscillatory solution if for some λ > 0 and t1 ≥ 0 we have

A

∫ t

t1

eν(s−t)+λ(t−s)ds ≤ λ.

The equation is autonomous, so the supremum of the left-hand side in t is the inte-
gral with the lower bound −∞, which diverges for ν ≤ λ, so we can consider ν > λ
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Fig. 4.2 Function
A=A(h)= B2(h) described
in (4.5.5)

only,

A

∫ t

−∞
eν(s−t)+λ(t−s)ds =A

∫ t

−∞
e(ν−λ)(s−t)ds

= A

ν − λ
e(ν−λ)(s−t)

∣∣∣∣
s=t

s→−∞
= A

ν − λ
≤ λ,

which means that the quadratic inequality

x2 − νx +A≤ 0

has a positive root (which is valid if and only if the discriminant is nonnegative).
Thus, (4.5.6) is nonoscillatory if and only if

ν2 ≥ 4A. (4.5.7)

Example 4.4 Further, consider the truncated Gaussian kernel K(t, s)=Ae−ν(s−t)2 ,
A> 0, ν > 0. Then the equation is

ẋ(t)+
∫ t

−∞
Ae−ν(s−t)2x(s) ds = 0. (4.5.8)

Then we obtain (here we make a substitution η= s− t) the nonoscillation condition

A

∫ t

−∞
e−ν(s−t)2+λ(t−s)ds =A

∫ 0

−∞
e−νη2−λη dη

≤ A

∫ ∞

−∞
e−νη2−λη dη=Aeλ

2/(4ν)
√
π

ν
≤ λ,

and for A≤
√
ν
π

supx>0[xe−x2/(4ν)] equation (4.5.8) has a nonoscillatory solution.

The supremum on the right-hand side is attained for x = √
2ν and equals

√
2ν
e

, so
the sufficient nonoscillation condition is

A≤ ν

√
2

πe
. (4.5.9)
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Remark 4.1 In Example 4.4, we have obtained a simple but just sufficient nonoscil-
lation condition. Since

A

∫ 0

−∞
e−νη2−λη dη= A

2

√
π

ν
eλ

2/(4ν)
[

1 + erf

(
λ

2
√
ν

)]
≥ λ,

where erf(x) is the Gaussian error function [1, Chap. 7]

erf(x)= 2√
π

∫ x

0
e−t2 dt,

this leads to the sharp nonoscillation condition

A≤ sup
x>0

2
√
νxe−x2/(4ν)

√
π[1 + erf(x/(2

√
ν))] . (4.5.10)

Using Theorem 4.3, we can obtain several efficient nonoscillation conditions.

Theorem 4.8 Let (b1) and (b2) hold.
If at least one of the hypotheses

1) K(t, s) = 0 for t − s > h and K(t, s) ≤ B1(h) for t − s ≤ h, where B1(h) is
defined in (4.5.3),

2) K(t, s) = 0 for t − s > h and K(t, s) ≤ B2(h)(s − t + h) for t − s ≤ h, where
B2(h) is defined in (4.5.5),

3) there exists ν > 0 such that K(t, s)≤ ν2e−ν(t−s)/4, or

4) there exists ν > 0 such that K(t, s)≤ ν

√
2
πe
e−ν(s−t)2

holds for t ≥ s ≥ t1 for some t1 ≥ 0, then (4.1.5) has a nonoscillatory solution.
If at least one of the hypotheses

5) t − hk(t) ≤ h, k = 1, · · · ,m and
∑m

k=1 ak(t)χ(hk(t),∞)(s)≤ B1(h)(s − t + h),
where B1(h) is defined in (4.5.3),

6) t−hk(t)≤ h, k = 1, · · · ,m and
∑m

k=1 ak(t)χ(hk(t),∞)(s)≤ B2(h)(t − s + h)2/2,
where B2(h) is defined in (4.5.5), or

7) the delays are ordered h1(t)≤ h2(t)≤ · · · ≤ hm(t),

a1(t)≤ A

ν
e−ν(t−h1(t)) and ak(t)≤ A

ν
e−νt

[
eνhk(t) − e−νhk−1(t)

]
, k = 2, · · · ,m,

holds, then (4.1.3) has a nonoscillatory solution.

Proof Comparing (4.1.5) to nonoscillatory equations (4.5.2), (4.5.4), (4.5.6) and
(4.5.8), and applying Theorem 4.4 together with nonoscillation conditions (4.5.3),
(4.5.5), (4.5.7) and (4.5.9), respectively, we immediately obtain 1)–4).

In order to deduce 5) and 6), we apply Theorem 4.3 and note that

T (t, s)=
m∑

k=1

ak(t)χ(hk(t),∞)(s)
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should be compared with R(t, s)= ∫ s−∞K(t, ζ ) dζ , which equals

A

∫ s

t−h
dζ =A(s − t + h) and A

∫ s

t−h
(ζ − t + h)dζ = (s − t + h)2

2

for (4.5.2) and (4.5.4), respectively. This implies 5) and 6).
To justify 7), let us first note that since T (t, s) is a nondecreasing step func-

tion and R(t, s) is nondecreasing in s for any t , it is enough to check the in-
equality T (t, hk(t)+) ≤ R(t,hk(t)

+) (where R(t,hk(t)+) = lims→0+ R(t,hk(t)+
s)) only and prove T (t, h1(t)

+) ≤ R(t,h1(t)
+), T (t, hk(t)+) − T (t, hk−1(t)

+) ≤
R(t,hk(t)

+)−R(t,hk−1(t)
+), k = 2, · · · ,m. Since

R
(
t, h1(t)

)=A

∫ h1(t)

−∞
eν(ζ−t) dζ = A

ν
e−ν(t−h1(t)),

R
(
t, hk(t)

+)−R
(
t, hk−1(t)

+)

=A

∫ hk(t)

hk−1(t)

eν(ζ−t) dζ = A

ν

[
e−ν(t−hk) − e−ν(t−hk−1)

]

and T (t, h1(t)
+) = a1(t), T (t, hk(t)+) − T (t, hk−1(t)

+) = ak(t), this implies the
statement of 7), which completes the proof. �

Example 4.5 Consider differential equation (4.1.3) with coefficients compared to
(4.5.2), where A= 2, h≈ 0.569. Then the delay equation

ẋ(t)+
55∑

k=1

akx(t − hk)= ẋ(t)+
55∑

k=1

0.02x(t − 0.01k)= 0 (4.5.11)

is nonoscillatory by Theorem 4.8, Part 5, while

55∑

k=1

akhk =
55∑

k=1

0.02 0.01k = 0.308.

Let us also remark that the number above describes the total area of rectangles in-
scribed in the triangle with the legs of 0.568 (x-axis) and 2 (y-axis). Whatever par-
tition we choose satisfying Part 5 of Theorem 4.8, the total area will be less than
1/e≈ 0.36788 since

m∑

k=1

akhk >
1

e

is a sufficient oscillation condition for autonomous equations [192]. Nevertheless,
the area of the triangle exceeds 0.5> 1/e. Let us also note that

∑55
k=1 ak maxk hk =

0.605> 1/e.

4.6 Explicit Nonoscillation and Oscillation Conditions

Now let us proceed to explicit nonoscillation conditions.
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We recall that any function of bounded variation (in s for any t) can be repre-
sented as a difference of two nondecreasing functions of bounded variation in s for
any t

R(t, s)= P(t, s)−Q(t, s). (4.6.1)

This representation of R(t, s) will be further applied, with an additional assumption

R(t, s)= P(t, s)=Q(t, s)= 0 for s ≤ h(t), (4.6.2)

where

hk(t)= inf
s≤t
{
s|R(t, s) �= 0

}
.

Then

Vars∈[h(τ),τ ] P(t, s)= P(t, τ )− P
(
t, h(τ )

)
.

Theorem 4.9 Suppose that P(t, s) defined by (4.6.1) is nondecreasing in s for any
t and conditions (a1) and (a2) and one of the following two conditions holds:

1) (a4) is satisfied together with the inequality

lim sup
t→∞

∫ t

h(t)

Vars∈[h(τ),τ ] P(t, s) dτ

= lim sup
t→∞

∫ t

h(t)

[
P(t, τ )− P

(
t, h(τ )

)]
dτ <

1

e
. (4.6.3)

2) For some t1 ≥ t0, the following inequality is satisfied:

lim sup
t→∞

∫ t

t1

Vars∈[h(τ),τ ] P(t, s) dτ = lim sup
t→∞

∫ t

t1

[
P(t, τ )− P

(
t, h(τ )

)]
dτ <

1

e
.

(4.6.4)

Then (4.2.8) has a nonoscillatory solution.

Proof 1) Let t1 > t0 be such that
∫ t

h(t)

Vars∈[h(τ),τ ] P(t, s) dτ <
1

e
, t > t1.

Let us choose

u(t)=
{
eVars∈[h(t),t]P(t, s), t > t1,
0, t ≤ t1.

(4.6.5)

Let t2 > t1 be such that P(t, s)= 0 if s ≤ t1, t > t2. Then, for t > t2,
∫ t

t2

exp

{∫ t

s

u(τ ) dτ

}
dsP (t, s)

=
∫ t

h(t)

exp

{
e

∫ t

s

Vars∈[h(τ),τ ] P(τ, s)dτ
}
dsP (t, s)
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≤
∫ t

h(t)

exp

{
e

1

e

}
dsP (t, s)

≤ eVars∈[h(t),t]P(t, s)= u(t).

By Corollary 4.7, (4.2.8) has an eventually positive solution.
2) Let us choose

u(t)=
{
eVars∈[t1,t] P(t, s), t > t1,
0, t ≤ t1.

(4.6.6)

Then the inequalities
∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsP (t, s)

=
∫ t

t1

exp

{
e

∫ t

s

Vars∈[t1,τ ] P(τ, s)dτ
}
dsP (t, s)

≤
∫ t

t1

exp

{
e

1

e

}
dsP (t, s)

≤ eVars∈[t1,t]P(t, s)= u(t)

and the reference to Corollary 4.7 complete the proof of the theorem. �

Denote

f+(t)= max
{
f (t),0

}

and

h̃(t)= inf
k=0,1,···hk(t),

where h0 was defined in condition (c2) of Corollary 4.5.
Let us note that for the equation

ẋ(t)+
∞∑

k=1

ak(t)x
(
hk(t)

)+
∫ t

h0(t)

K(t, s)x(s) ds = 0 (4.6.7)

we have

R(t, s)=
m∑

k=1

ak(t)χ(hk(t),∞)(s)+
∫ s

h0(s)

K(t, ζ ) dζ,

P (t, s)=
m∑

k=1

a+
k (t)χ(hk(t),∞)(s)+

∫ s

h0(s)

K+(t, ζ ) dζ, (4.6.8)

where function P(t, s) nondecreasing in s for any t was defined in (4.6.1).

Corollary 4.8 If (b1) and (b2) with m= ∞ and (c1) and (c2) hold, and

lim sup
t→∞

∫ t

h̃(t)

[ ∞∑

k=1

a+
k (τ )+

∫ τ

h0(τ )

K+(τ, s) ds
]
dτ <

1

e
, (4.6.9)

then (4.6.7) has a nonoscillatory solution.
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Lemma 4.1 Suppose R(t, s) is nondecreasing in s for each t and satisfies (a1)
and (a2), h(t) ≤ t , and x(t) is a continuous function for t ≥ t1. Then there exists a
measurable function r(t) satisfying h(t)≤ r(t)≤ t such that

∫ t

h(t)

x(s)dsR(t, s)= a(t)x
(
r(t)
)
,

where a(t)= ∫ t
h(t)

dsR(t, s) > 0 almost everywhere.

Proof For any fixed t > t1, we have

a(t) min
h(t)≤ζ≤t x(ζ )≤

∫ t

h(t)

x(s)dsR(t, s)≤ a(t) max
h(t)≤ζ≤t

x(ζ ), (4.6.10)

and hence for the continuous function x(t) on [h(t), t]
1

a(t)

∫ t

h(t)

x(s)dsR(t, s) ∈
[

min
h(t)≤ζ≤t x(ζ ), max

h(t)≤ζ≤t
x(ζ )

]
.

By the Intermediate Value Theorem, there exists c ∈ [h(t), t] such that

1

a(t)

∫ t

h(t)

x(s)dsR(t, s)= x(c).

Now, we can denote r(t) = c and notice that r is measurable since the medium
function in (4.6.10) and a(t) are measurable. �

Remark 4.2 Since R(t, ·) is nondecreasing, then

a(t)=
∫ t

h(t)

dsR(t, s)=R(t, t)−R
(
t, h(t)

)=R(t, t)− 0 =R(t, t).

As an application of Lemma 4.1, consider the equation with two distributed de-
lays,

ẋ(t)+
∫ t

h(t)

x(s)dsH(t, s)+
∫ t

g(t)

x(s)dsG(t, s)= 0, (4.6.11)

where for functions H(t, s),G(t, s), h(t), g(t) conditions of Lemma 4.1 hold.
Denote

a(t)=
∫ t

h(t)

dsH(t, s), b(t)=
∫ t

g(t)

dsG(t, s),

A= lim sup
t→∞

∫ t

h(t)

a(s)ds, B = lim sup
t→∞

∫ t

h(t)

a(s)b(s)ds.

Theorem 4.10 Suppose (a1) and (a2) hold for H , G, h and g, H(t, ·) and G(t, ·)
are nondecreasing,

lim sup
t→∞

∫ t

g(t)

a(s)ds = lim sup
t→∞

∫ t

g(t)

b(s)ds = 0,

and AeB < 1/e. Then (4.6.11) has an eventually positive fundamental function.
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Proof Theorem 2.12 implies that the equation

ẋ(t)+ a(t)x
(
h(t)

)+ b(t)x
(
g(t)

)= 0 (4.6.12)

has a nonoscillatory solution. By Theorem 2.1, there exist a point t1 ≥ 0 and a lo-
cally essentially bounded function u(t) nonnegative for t ≥ t1 and satisfying the
inequality

u(t)≥ a(t) exp

{∫ t

h(t)

u(s)ds

}
+ b(t) exp

{∫ t

g(t)

u(s)ds

}
, t ≥ t1, (4.6.13)

where we assume u(t)= 0, t < t1.
Suppose X(t, s) is the fundamental function of (4.6.11) and x(t)=X(t, t1). By

Lemma 4.1, there exist r(t) and p(t), h(t)≤ r(t)≤ t , g(t)≤ p(t)≤ t such that x is
a solution of (4.6.11),

ẋ(t)+ a(t)x
(
r(t)
)+ b(t)x

(
p(t)

)= 0, (4.6.14)

where x(t) = 0, t < t1, x(t1) = 1. If u is a nonnegative solution of inequality
(4.6.13), then u is also a nonnegative solution of the inequality

u(t)≥ a(t) exp

{∫ t

r(t)

u(s)ds

}
+ b(t) exp

{∫ t

p(t)

u(s)ds

}
, t ≥ t1. (4.6.15)

Theorem 2.1 implies that Y(t, s) > 0, t ≥ s ≥ t1, where Y(t, s) is the fundamental
function of (4.6.14). Since x(t) = Y(t, t1) > 0, (4.6.11) has a nonoscillatory solu-
tion. �

Theorem 4.11 If (a1), (a2) and (a4) hold, Rk(t, s), k ∈ N are nondecreasing in s
for each t and

lim inf
t→∞

∞∑

k=1

∫ t

hk(t)

Vars∈[hk(t),τ ]Rk(t, s) dτ = lim inf
t→∞

∞∑

k=1

∫ t

hk(t)

Rk(t, τ ) dτ >
1

e
,

(4.6.16)

then all solutions of (4.2.7) are oscillatory.

Proof Suppose there exists a nonoscillatory solution of (4.2.7). By Theorem 4.1,
there exist t1 and a positive locally integrable function u that satisfies

u(t)≥
∞∑

k=1

∫ t

t1

exp

{∫ t

s

u(τ ) dτ

}
dsRk(t, s), t > t1. (4.6.17)

Since et ≥ et for positive t and the functions Rk(t, s) are nondecreasing in s, for t
such that hk(t)≥ t1 we have

u(t)≥
∞∑

k=1

∫ t

hk(t)

e

(∫ t

s

u(τ ) dτ

)
dsRk(t, s)

= e

∞∑

k=1

∫ t

hk(t)

u(τ ) dτ

(∫ τ

hk(t)

dsRk(t, s)

)
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= e

∞∑

k=1

∫ t

hk(t)

u(τ )Vars∈[hk(t),τ ]Rk(t, s) dτ

≥ inf
t≥t1

u(t)e

∞∑

k=1

∫ t

hk(t)

Vars∈[hk(t),τ ]Rk(t, s) dτ.

Hence

inf
t≥t1

u(t)≥ inf
t≥t1
{
u(t)

}
e inf
t≥t1

{ ∞∑

k=1

∫ t

hk(t)

Vars∈[hk(t),τ ]Rk(t, s) dτ
}
,

which implies

inf
t≥t1

{ ∞∑

k=1

∫ t

hk(t)

Vars∈[hk(t),τ ]Rk(t, s) dτ
}

≤ 1

e
.

The same inequality can be obtained for any t2 > t1, and consequently

lim inf
t→∞

∞∑

k=1

∫ t

hk(t)

Vars∈[hk(t),τ ]Rk(t, s) dτ ≤ 1

e
.

We have a contradiction with (4.6.16), which completes the proof. �

Corollary 4.9 If (b1) and (b2) with m= ∞ and (c1) and (c2) hold, and

lim inf
t→∞

[ ∞∑

k=1

ak(t)
(
t − hk(t)

)+
∫ t

h0(t)

K(t, s)(t − s) ds

]
>

1

e
, (4.6.18)

then all solutions of (4.6.7) are oscillatory.

Proof Without loss of generality, we can assume that the expression in the brackets
in (4.6.18) is greater than 1/e for t ≥ t1. Then, for t ≥ t1, we have

∞∑

k=0

∫ t

hk(t)

Vars∈[hk(t),τ ]Rk(t, s) dτ

=
∞∑

k=1

∫ t

hk(t)

Vars∈[h(t),τ ]
(
ak(t)χ(hk(t),∞)(s)

)
dτ

+
∫ t

h0(t)

Vars∈[h0(t),τ ]
∫ s

h0(s)

K(t, ζ ) dζ dτ

=
∞∑

k=1

∫ t

hk(t)

ak(t) dτ +
∫ t

hk(t)

∫ τ

h0(t)

K(t, ζ ) dζ dτ

=
∞∑

k=1

ak(t)
(
t − hk(t)

)+
∫ t

h0(t)

∫ τ

h0(t)

K(t, ζ ) dζ dτ
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=
∞∑

k=1

ak(t)
(
t − hk(t)

)+
∫ t

h0(t)

K(t, ζ ) dζ

∫ t

ζ

dτ

=
∞∑

k=1

ak(t)
(
t − hk(t)

)+
∫ t

h0(t)

K(t, s)(t − s) ds >
1

e
.

By Theorem 4.11, all solutions of (4.6.7) are oscillatory. �

The results of this section generalize Theorems 2.9.1 and 2.9.2 in [248] and con-
clusions of Chap. 2.

4.7 Slowly Oscillating Solutions

For ordinary linear differential equations of the second order, it is known that if an
equation has an oscillatory solution, then all its solutions are oscillating. As is well
known, for delay differential equations this is not true. Y. Domshlak demonstrated
that if an associated equation has a slowly oscillatory solution, then every solution
of (4.1.3) is oscillating. In [142, 144], several new explicit sufficient conditions of
oscillation were obtained by an explicit construction of such slowly oscillating so-
lutions.

We present here a similar oscillation result for (4.2.8), only the existence of a
slowly oscillating solution is assumed for (4.2.8) and not for the associated equation.
This result extends Theorem 2.23 of Chap. 2 to equations with a distributed delay.

For (4.1.1) with finite memory (i.e., satisfying (a4)), the following definition can
be introduced.

Definition 4.4 A solution x of (4.2.8) is called a slowly oscillating solution if for
each t1 ≥ t0 there exist t3 > t2 > t1 such that R(t, s) = 0 if t > t3, s < t2, x(t2) =
x(t3)= 0 and x(t) > 0, t ∈ (t2, t3).

For (4.1.8), this means that for every t1 ≥ t0 there exist t2, t3 such that t3 >
t2 > t1, K(t, s) = 0 for t > t3, s < t2, hk(t) ≥ t2 for t > t3 and x(t2) = x(t3) = 0,
x(t) > 0, t ∈ (t2, t3).

The following theorem is a more general case of the results obtained in Theo-
rem 2.23 for equations of type (4.1.3).

Theorem 4.12 Suppose R(t, ·) is nondecreasing for each t . If there exists a slowly
oscillating solution of (4.2.8) (of inequality (4.2.9)), then all solutions of (4.2.8) (of
inequality (4.2.9)) are oscillatory.

Proof Let x be a slowly oscillating solution of (4.2.8). Suppose that there exists a
nonoscillatory solution of the same equation. Then, by Theorem 4.1, t1 can be found
such that X(t, s) > 0 for t ≥ s > t1.
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By the definition of a slowly oscillating solution, there exist t2, t3 exceeding t1
and satisfying

R(t, s)= 0 if t > t3, s < t2, x(t2)= x(t3)= 0, x(t) > 0, t ∈ (t2, t3). (4.7.1)

By (4.2.5), the solution x can be presented in the form (with t3 as the initial point)

x(t)= −
∫ t

t3

X(t, s) ds

∫ s

−∞
x(τ) dτR(s, τ ), (4.7.2)

where x(τ) under the second integral is assumed to be zero if τ > t3.
Since in addition R(t, s) = 0 for t > t3, s < t2, the expression under the inte-

gral on the right-hand side of (4.7.2) can differ from zero only for s ∈ (t2, t3). By
(4.7.1), the inequality x(t)≤ 0 is satisfied for each t ≥ t3 since the right-hand side in
(4.7.2) is negative for t > t3. Thus x is an eventually nonoscillatory solution, which
contradicts the assumption that it is slowly oscillating and thus oscillatory.

The proof in the case of inequality (4.2.9) is similar. �

Remark 4.3 The statement of the theorem implies that if (4.2.8) with nondecreasing
R(t, ·) for each t has a nonoscillatory solution, then (4.2.8) has no slowly oscillating
solutions.

Corollary 4.10 If (b1), (b2) and (c1) hold, K(t, s) and ak(t) are nonnegative func-
tions and there exists a slowly oscillating solution of (4.1.8), then all solutions of
(4.1.8) are oscillatory.

4.8 Equations with Positive and Negative Coefficients

We consider the equation with two distributed delays

ẋ(t)+
∫ t

−∞
x(s) dsR(t, s)−

∫ t

−∞
x(s) dsT (t, s)= 0, t ≥ t0, (4.8.1)

where both R(t, s) and T (t, s) are nondecreasing in s for each t .
Equation (4.8.1) includes the following special cases:

1. the delay differential equation

ẋ(t)+
n∑

k=1

ak(t)x
(
hk(t)

)−
m∑

l=1

bl(t)x
(
gl(t)

)= 0, (4.8.2)

where ak(t)≥ 0, bl(t)≥ 0, if we assume

R(t, s)=
n∑

k=1

ak(t)χ(hk(t),∞)(s), T (t, s)=
m∑

l=1

bl(t)χ(gl(t),∞)(s); (4.8.3)

2. the integrodifferential equation

ẋ(t)+
∫ t

−∞
K1(t, s)x(s) ds −

∫ t

−∞
K2(t, s) ds = 0, (4.8.4)
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where Ki(t, s)≥ 0,

R(t, s)=
∫ s

−∞
K1(t, ζ ) dζ, T (t, s)=

∫ s

−∞
K2(t, ζ ) dζ ; (4.8.5)

3. some types of mixed equations, two of which we will consider:

ẋ(t)+
∞∑

k=1

ak(t)x
(
hk(t)

)−
∫ t

−∞
K(t, s)x(s) ds = 0, (4.8.6)

ẋ(t)+
n∑

k=1

ak(t)x
(
hk(t)

)−
m∑

l=1

bl(t)x
(
gk(t)

)

+
∫ t

−∞
K1(t, s)x(s) ds −

∫ t

−∞
K2(t, s)x(s) ds = 0, (4.8.7)

where R(t, s) and T (t, s) are defined similarly.

We consider scalar delay differential equation (4.8.1) under the following assump-
tions:

(A1) R(t, ·) and T (t, ·) are left continuous functions of bounded variation, and for
each s their variations on the segment [t0, s]

PR(t, s)= Varτ∈[t0,s]R(t, τ ), PT (t, s)= Varτ∈[t0,s] T (t, τ ) (4.8.8)

are locally integrable functions in t , R(t, s) = R(t, t+), T (t, s) = T (t, t+),
t < s.

(A2) R(t, ·), T (t, ·) are nondecreasing functions for each t , R(t, s) ≥ T (t, s) for
each t , s.

(A3) For each t1, there exist s1 = s(t1)≤ t1 and r1 = r(t1)≤ t1 such thatR(t, s)= 0
for s < s1, t > t1 and T (t, s)= 0 for s < r1, t > t1; in addition, functions s(t),
r(t) satisfy

lim
t→∞ s(t)= ∞, lim

t→∞ r(t)= ∞.

If (A3) holds, then we can introduce the functions

h(t)= inf
{
s|R(t, s) �= 0

}
, g(t)= inf

{
s|T (t, s) �= 0

}
, (4.8.9)

such that limt→∞ h(t)= ∞, limt→∞ g(t)= ∞, and (4.8.1) can be rewritten as

ẏ(t)+
∫ t

h(t)

y(s) dsR(t, s)−
∫ t

g(t)

y(s) dsT (t, s)= 0, t ≥ t0. (4.8.10)

If (A2) and (A3) hold, then obviously h(t)≤ g(t).
We will apply the results of the previous sections and will also need the following

trivial result.

Lemma 4.2 Let μ be a nonnegative function of bounded variation and f be an ab-
solutely continuous function on [a, b]. Suppose in addition that f is nonincreasing
and μ(a)= 0. Then

∫ b
a
f (t) dμ(t)≥ 0.



110 4 Oscillation of Equations with Distributed Delays

Proof Evidently,
∫ b

a

f (t) dμ(t)= f (b)μ(b)− f (a)μ(a)−
∫ b

a

μ(t) df (t)

= f (b)μ(b)−
∫ b

a

μ(t) df (t)≥ 0,

which completes the proof. �

Together with (4.8.10), we consider for each t0 ≥ 0 the initial value problem

ẏ(t)+
∫ t

h(t)

y(s) dsR(t, s)−
∫ t

g(t)

y(s) dsT (t, s)= f (t), t ≥ t0, (4.8.11)

x(t)= ϕ(t), t < t0, x(t0)= x0. (4.8.12)

We also assume that the following hypothesis holds:

(A4) f : [t0,∞)→ R is a Lebesgue measurable locally essentially bounded func-
tion and ϕ is such that all the integrals exist; in particular, we can consider
continuous ϕ : (−∞, t0)→ R.

Consider together with (4.8.10) the delay differential inequality

ẏ(t)+
∫ t

h(t)

y(s) dsR(t, s)−
∫ t

g(t)

y(s) dsT (t, s)≤ 0, t ≥ t0. (4.8.13)

The next theorem establishes sufficient nonoscillation conditions.

Theorem 4.13 Suppose (A1)–(A3) hold. Consider the following hypotheses:

1) There exists t1 ≥ t0 such that the inequality

u(t)≥
∫ t

h(t)

exp

{∫ t

s

u(τ )dτ

}
dsR(t, s)−

∫ t

g(t)

exp

{∫ t

s

u(τ )dτ

}
dsT (t, s)

(4.8.14)

has a nonnegative locally integrable solution for t ≥ t1, where we assume u(t)=
0 for t < t1.

2) There exists t2 ≥ t0 such that the fundamental function X(t, s) of (4.8.10) satis-
fies X(t, s) > 0 for t ≥ s ≥ t2.

3) Equation (4.8.10) has a nonoscillatory solution.
4) Inequality (4.8.13) has an eventually positive solution.

Then the implications 1)⇒ 2)⇒ 3)⇒ 4) are valid.

Proof 1)⇒ 2) Step 1. Let us prove that the fundamental solution is nonnegative for
t ≥ s ≥ t1, so in fact t2 = t1. To this end, consider the initial value problem

ẋ(t)+
∫ t

h(t)

x(s) dsR(t, s)−
∫ t

g(t)

x(s) dsT (t, s)= f (t), t ≥ t1, x(t)= 0, t ≤ t1.

(4.8.15)
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Denote

z(t)= ẋ(t)+ u(t)x(t), z(t)= 0, t ≤ t1, (4.8.16)

where x is a solution of (4.8.15) and u is a nonnegative solution of (4.8.14).
Equality (4.8.16) implies

x(t)=
∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}
z(s)ds, t ≥ t1. (4.8.17)

After substituting (4.8.17) into (4.8.15), we have

z(t)− u(t)

∫ t

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

+
∫ t

h(t)

(∫ s

t1

exp

{
−
∫ s

θ

u(τ ) dτ

}
z(θ) dθ

)
dsR(t, s)

−
∫ t

g(t)

(∫ s

t1

exp

{
−
∫ s

θ

u(τ ) dτ

}
z(θ) dθ

)
dsT (t, s)= f (t).

In the second and the third integrals (in s), the integrand vanishes for s < t1. After
changing the order of integration in the second and third integrals, we have

z(t)− u(t)

∫ t

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

+
∫ t

h(t)

z(s) ds

∫ t

s

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθR(t, θ)

−
∫ t

g(t)

z(s) ds

∫ t

s

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθT (t, θ)= f (t).

Thus the left-hand side equals

z(t)− u(t)

∫ h(t)

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

+
∫ h(t)

t1

z(s) ds

∫ t

s

exp

{
−
∫ t

s

u(τ )dτ

}
exp

{∫ t

θ

u(τ ) dτ

}
dθR(t, θ)

−
∫ h(t)

t1

z(s) ds

∫ t

s

exp

{
−
∫ t

s

u(τ )dτ

}
exp

{∫ t

θ

u(τ ) dτ

}
dθT (t, θ)

− u(t)

∫ t

h(t)

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

+
∫ t

h(t)

z(s) ds

∫ t

h(t)

exp

{
−
∫ t

s

u(τ )dτ

}
exp

{∫ t

θ

u(τ ) dτ

}
dθR(t, θ)

−
∫ t

h(t)

z(s) ds

∫ t

g(t)

exp

{
−
∫ t

s

u(τ )dτ

}
exp

{∫ t

θ

u(τ ) dτ

}
dθT (t, θ)

−
∫ t

h(t)

z(s) ds

∫ s

h(t)

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθ
[
R(t, θ)− T (t, θ)

]
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−
∫ t

h(t)

z(s) ds

∫ g(t)

h(t)

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθT (t, θ),

which can be rewritten as

z(t)− u(t)

∫ h(t)

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

+
∫ h(t)

t1

z(s) ds

∫ t

s

exp

{
−
∫ t

h(t)

u(τ )dτ

}
exp

{∫ t

θ

u(τ ) dτ

}
dθR(t, θ)

−
∫ h(t)

t1

z(s) ds

∫ t

s

exp

{
−
∫ t

g(t)

u(τ )dτ

}
exp

{∫ t

θ

u(τ ) dτ

}
dθT (t, θ)

− u(t)

∫ t

h(t)

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

+
∫ t

h(t)

z(s) ds

∫ t

h(t)

exp

{
−
∫ t

s

u(τ )dτ

}
exp

{∫ t

θ

u(τ ) dτ

}
dθR(t, θ)

−
∫ t

h(t)

z(s) ds

∫ t

g(t)

exp

{
−
∫ t

s

u(τ )dτ

}
exp

{∫ t

θ

u(τ ) dτ

}
dθT (t, θ)

−
∫ t

h(t)

z(s) ds

∫ s

h(t)

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθ
[
R(t, θ)− T (t, θ)

]

−
∫ t

h(t)

z(s) ds

∫ g(t)

h(t)

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθT (t, θ).

This in turn is equal to

z(t)−
∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}
z(s) ds

[
u(t)−

∫ t

h(t)

exp

{∫ t

θ

u(τ ) dτ

}
dθR(t, θ)

+
∫ t

g(t)

exp

{∫ t

θ

u(τ ) dτ

}
dθT (t, θ)

]
− u(t)

∫ h(t)

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

−
∫ t

h(t)

z(s) ds

∫ s

h(t)

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθ
[
R(t, θ)− T (t, θ)

]

−
∫ t

h(t)

z(s) ds

∫ g(t)

h(t)

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθT (t, θ)

since R(t, s)= 0 for s < h(t) and T (t, s)= 0 for s < g(t). Consequently, we obtain
the operator equation

z−Hz= f, (4.8.18)

which is equivalent to (4.8.15), where

(Hz)(t)=
∫ t

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

[
u(t)−

∫ t

h(t)

exp

{∫ t

θ

u(τ ) dτ

}
dθR(t, θ)

+
∫ t

g(t)

exp

{∫ t

θ

u(τ ) dτ

}
dθT (t, θ)

]
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+
∫ t

h(t)

z(s) ds

∫ g(t)

h(t)

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθT (t, θ)

+ u(t)

∫ h(t)

t1

exp

{
−
∫ t

s

u(τ ) dτ

}
z(s) ds

+
∫ t

h(t)

z(s) ds

∫ s

h(t)

exp

{
−
∫ θ

s

u(τ ) dτ

}
dθ
[
R(t, θ)− T (t, θ)

]
.

Let z(t) ≥ 0. Then, by (4.8.14), the first term is positive, the last term is nonnega-
tive due to Lemma 4.2 (R(t, θ)− T (t, θ) is nonnegative and exp{− ∫ θ

s
u(τ ) dτ } is

nonincreasing in θ ); i.e., operator H is positive.
Besides, in each finite interval [t1, b], operatorH is a sum of integral Volterra op-

erators, which by Theorem A.5 are weakly compact operators in the space L[t1, b].
Theorem A.8 implies that its spectral radius r(H) = 0 < 1 and consequently if in
(4.8.18) the right-hand side f is nonnegative, then

z(t)= f (t)+ (Hf )(t)+ (H 2f
)
(t)+ (H 3f

)
(t)+ · · · ≥ 0.

We recall that the solution of (4.8.15) has form (4.8.17), with z being a solution of
(4.8.18). Thus if in (4.8.15) we have f (t)≥ 0, then x(t)≥ 0. On the other hand, the
solution of (4.8.15) has the representation

x(t)=
∫ t

t1

X(t, s)f (s) ds.

As was demonstrated above, f (t) ≥ 0 implies x(t) ≥ 0. Hence the kernel of the
integral operator is nonnegative; i.e., X(t, s)≥ 0 for t ≥ s > t1.

Step 2. Let us prove that in fact the strict inequality X(t, s) > 0 holds. After
denoting

x(t)=X(t, t1)− exp

{
−
∫ t

t1

u(s)ds

}
, x(t)= 0, t ≤ t1,

and substituting x(t) into the left-hand side of (4.8.15), we obtain

X′
t (t, t1)+ u(t) exp

{
−
∫ t

t1

u(s) ds

}
+
∫ t

h(t)

X(s, t1) dsR(t, s)

−
∫ t

g(t)

X(s, t1) dsT (t, s)−
∫ t

h(t)

exp

{
−
∫ s

t1

u(τ) dτ

}
dsR(t, s)

+
∫ t

g(t)

exp

{
−
∫ s

t1

u(τ) dτ

}
dsT (t, s)

= 0 + exp

{
−
∫ t

t1

u(s) ds

}[
u(t)−

∫ t

h(t)

exp

{∫ t

s

u(s) ds

}
dsR(t, s)

+
∫ t

g(t)

exp

{∫ t

s

u(s) ds

}
dsT (t, s)

]
≥ 0.
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Therefore, x(t) is a solution of (4.8.15) with a nonnegative right-hand side. Hence,
as was demonstrated above, x(t)≥ 0. Consequently,

X(t, t1)≥ exp

{
−
∫ t

t1

u(s)ds

}
> 0.

For s > t1, inequality X(t, s) > 0 can be proven similarly.
Implication 2)⇒ 3) is valid since the function x(t)=X(t, t1) is a positive solu-

tion of (4.8.10) for t ≥ t1.
Implication 3)⇒ 4) is evident, which completes the proof. �

Let us compare oscillation properties of (4.8.10) and the equation with two dif-
ferent distributed delays

ẏ(t)+
∫ t

h1(t)

y(s) dsR1(t, s)−
∫ t

g1(t)

y(s) dsT1(t, s)= 0, t ≥ t0. (4.8.19)

Theorem 4.14 Suppose that (A1)–(A3) hold for parameters of (4.8.10) and
(4.8.19), h1(t) ≤ h(t), g1(t) ≥ g(t), functions R(t, s) − R1(t, s) and T1(t, s) −
T (t, s) are nondecreasing in s for t ≥ t1, and inequality (4.8.14) has a nonnega-
tive locally integrable solution for t ≥ t1 (vanishing for t < t1). Then (4.8.19) has a
nonoscillatory solution.

Proof Let u(t) be a nonnegative solution of (4.8.14). Then

u(t)≥
∫ t

h(t)

exp

{∫ t

s

u(τ )dτ

}
dsR(t, s)−

∫ t

g(t)

exp

{∫ t

s

u(τ )dτ

}
dsT (t, s)

≥
∫ t

h1(t)

exp

{∫ t

s

u(τ )dτ

}
dsR(t, s)−

∫ t

g1(t)

exp

{∫ t

s

u(τ )dτ

}
dsT (t, s)

=
∫ t

h1(t)

exp

{∫ t

s

u(τ )dτ

}
dsR1(t, s)−

∫ t

g1(t)

exp

{∫ t

s

u(τ )dτ

}
dsT1(t, s)

+
∫ t

h1(t)

exp

{∫ t

s

u(τ )dτ

}
ds
[
R(t, s)−R1(t, s)

]

+
∫ t

g1(t)

exp

{∫ t

s

u(τ )dτ

}
ds
[
T1(t, s)− T (t, s)

]

≥
∫ t

h1(t)

exp

{∫ t

s

u(τ )dτ

}
dsR1(t, s)−

∫ t

g1(t)

exp

{∫ t

s

u(τ )dτ

}
dsT1(t, s).

By Theorem 4.13, (4.8.19) has a nonoscillatory solution, which completes the
proof. �

Consider the modification of (4.8.10) with several terms of each sign

ẏ(t)+
n∑

k=1

∫ t

hk(t)

y(s) dsRk(t, s)−
m∑

l=1

∫ t

gl (t)

y(s) dsTl(t, s)= 0, t ≥ t0, (4.8.20)

where Rk , Tl , hk , gl satisfy the following conditions:
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(A1�) Rk(t, ·), Tl(t, ·) are left continuous functions of bounded variation and for
each s their variations PRk (t, s), PTl (t, s) on the segment [t0, s] are locally
integrable functions in t , Rk(t, s)=Rk(t, t

+), Tl(t, s)= Tl(t, t
+), t < s.

(A2�) Rk(t, ·), Tl(t, ·) are nondecreasing functions for each t , and
n∑

k=1

Rk(t, s)≥
m∑

l=1

Tl(t, s) for each t, s.

(A3�) limt→∞ hk(t)= ∞, k = 1, · · · , n and limt→∞ gl(t)= ∞, l = 1, · · · ,m.

In order to reformulate Theorem 4.13 for (4.8.20), consider the corresponding
inequality

ẏ(t)+
n∑

k=1

∫ t

hk(t)

y(s) dsRk(t, s)−
m∑

l=1

∫ t

gl (t)

y(s) dsTl(t, s)≤ 0, t ≥ t0. (4.8.21)

Theorem 4.15 Suppose (A1�)–(A3�) hold. Consider the following hypotheses:

1) There exists t1 ≥ t0 such that the inequality

u(t)≥
n∑

k=1

∫ t

hk(t)

exp

{∫ t

s

u(τ )dτ

}
dsRk(t, s)

−
m∑

l=1

∫ t

gl (t)

exp

{∫ t

s

u(τ )dτ

}
dsTl(t, s) (4.8.22)

has a nonnegative locally integrable solution for t ≥ t1, where u(t) = 0 for
t < t1.

2) There exists t1 ≥ t0 such that X(t, s) > 0 for t ≥ s ≥ t1.
3) Equation (4.8.20) has a nonoscillatory solution.
4) Inequality (4.8.21) has an eventually positive solution.

Then the implications 1)⇒ 2)⇒ 3)⇒ 4) are valid.

Let us proceed to explicit nonoscillation conditions. Assuming that (A1) and
(A3) hold, we will use the following condition:

(A5) R(t, s)− T (t, s − h(t)+ g(t)) is a positive nondecreasing function in s.

Let us note that for the particular case of the equation with two concentrated
delays (3.1.1), condition (A5) is satisfied if a(t)≥ b(t) and h(t)≤ g(t).

Theorem 4.16 Suppose (A1)–(A3) hold for (4.8.10) and there exists λ ∈ (0,1) such
that R(t, s)−λT (t, s) is nonnegative and nondecreasing in s for any t large enough
and the following two inequalities hold:

lim sup
t→∞

∫ g(t)

h(t)

[
R
(
s, s+

)− λT
(
s, s+

)]
ds <

1

e
ln

1

λ
, (4.8.23)

lim sup
t→∞

∫ t

h(t)

[
R
(
s, s+

)− λT
(
s, s+

)]
ds <

1

e
. (4.8.24)

Then (4.8.10) has a nonoscillatory solution.
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Proof By (4.8.24), there exists t1 ≥ t0 such that for t ≥ t1 the function

u(t)= e
[
R
(
t, t+

)− λT
(
t, t+

)]
(4.8.25)

is a nonnegative solution of the inequality

u(t)≥ exp

{∫ t

h(t)

u(τ )dτ

}[
R
(
t, t+

)− λT
(
t, t+

)]
,

which can be rewritten in the form

u(t)≥ exp

{∫ t

h(t)

u(τ )dτ

}[∫ t

h(t)

dsR(t, s)− λ

∫ t

g(t)

dsT (t, s)

]

= exp

{∫ t

h(t)

u(τ )dτ

}∫ t

h(t)

ds
[
R(t, s)− λT

(
t, s − h(t)+ g(t)

)]

=
∫ t

h(t)

exp

{∫ t

h(t)

u(τ )dτ

}
ds
[
R(t, s)− λT

(
t, s − h(t)+ g(t)

)]
.

The function

R(t, s)− λT
(
t, s − h(t)+ g(t)

)

= (R(t, s)− T
(
t, s − h(t)+ g(t)

))+ (1 − λ)T
(
t, s − h(t)+ g(t)

)

is nondecreasing as a sum of two nondecreasing functions. Consequently, the in-
tegral becomes smaller if the function under the integral is changed by a smaller
one:

u(t)≥
∫ t

h(t)

exp

{∫ t

s

u(τ )dτ

}
ds
[
R(t, s)− λT

(
t, s − h(t)+ g(t)

)]

=
∫ t

h(t)

exp

{∫ t

s

u(τ )dτ

}
dsR(t, s)−

∫ t

g(t)

exp

{∫ t

s

u(τ )dτ

}
dsT (t, s)

+
[∫ t

g(t)

exp

{∫ t

s

u(τ )dτ

}
dsT (t, s)

− λ

∫ t

h(t)

exp

{∫ t

s

u(τ )dτ

}
dsT
(
t, s − h(t)+ g(t)

)]
. (4.8.26)

Let us demonstrate that the expression in the brackets is nonnegative. Inequality
(4.8.23) implies that for u defined by (4.8.25), t large enough and any s ≥ g(t),

∫ s

s+h(t)−g(t)
u(τ )dτ ≤ ln

1

λ
, (4.8.27)

which yields
∫ t

g(t)

exp

{∫ t

s

u(τ )dτ

}
dsT (t, s)− λ

∫ t

h(t)

exp

{∫ t

s

u(τ )dτ

}
dsT
(
t, s − h(t)+ g(t)

)

=
∫ t

g(t)

(
exp

{∫ t

s

u(τ )dτ

}
− λ exp

{∫ t

s+h(t)−g(t)
u(τ )dτ

})
dsT (t, s)

=
∫ t

g(t)

exp

{∫ t

s

u(τ )dτ

}(
1 − λ exp

{∫ s

s+h(t)−g(t)
u(τ )dτ

})
dsT (t, s)≥ 0.
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By inequalities (4.8.26) and (4.8.27), we have

u(t)≥
∫ t

h(t)

exp

{∫ t

s

u(τ )dτ

}
dsR(t, s)−

∫ t

g(t)

exp

{∫ t

s

u(τ )dτ

}
dsT (t, s),

and hence u is a nonnegative solution of (4.8.14). By Theorem 4.13, (4.8.10) has a
nonoscillatory solution. �

Corollary 4.11 Suppose (A1)–(A3) and (A5) hold for (4.8.10) and

lim sup
t→∞

∫ t

h(t)

[
R
(
s, s+

)− 1

e
T
(
s, s+

)]
ds <

1

e
. (4.8.28)

Then (4.8.10) has a nonoscillatory solution.

This corollary is obtained by setting λ= 1/e in Theorem 4.16. Similarly to The-
orem 4.16, the following result can be obtained.

Theorem 4.17 Suppose n = m, conditions (A1�)–(A3�) are satisfied,∑n
k=1[R(t, s) − T (t, s − h(t) + g(t))] is a positive nondecreasing function in s

for t large enough and the inequality

lim sup
t→∞

n∑

k=1

∫ t

mink hk(t)

[
Rk
(
s, s+

)− 1

e
Tk
(
s, s+

)]
ds <

1

e
(4.8.29)

holds. Then (4.8.20) has a nonoscillatory solution.

Remark 4.4 The coefficient 1/e of b(s) is unimprovable. Indeed, for the equation

ẋ(t)+ ax(t − τ)− bx(t)= 0, (4.8.30)

the inequality

a ≤ ebτ

τe
(4.8.31)

is necessary and sufficient for nonoscillation.

Theorem 4.18 Suppose (A1)–(A3) and (A5) hold for (4.8.10) and there exist non-
decreasing functions L(t, s), D(t, s) for each t such that

D(t, s)≤ T (t, s)≤R(t, s)≤ L(t, s)

and there exist finite limits

B11 = lim
t→∞

∫ t

h(t)

L
(
s, s+

)
ds, B12 = lim

t→∞

∫ t

h(t)

D
(
s, s+

)
ds,

B21 = lim
t→∞

∫ t

g(t)

L
(
s, s+

)
ds, B22 = lim

t→∞

∫ t

g(t)

D
(
s, s+

)
ds.

(4.8.32)

Suppose in addition that the system
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lnx1 > x1B11 − x2B12,

lnx2 < x1B21 − x2B22,
(4.8.33)

has a positive solution (x1, x2) such that for t large enough

x1L
(
t, t+

)≥ x2D
(
t, t+

)
.

Then (4.8.10) has a nonoscillatory solution.

Proof Consider the function u(t) = x1L(t, t
+) − x2D(t, t

+), which is eventually
nonnegative. System (4.8.33) can be rewritten as

x1 > exp{x1B11 − x2B12}, x2 < exp{x1B21 − x2B22}.
By definitions (4.8.32), there exists t1 ≥ t0 such that for t ≥ t1

x1 ≥ exp

{
x1

∫ t

h(t)

L(s, s+)ds − x2

∫ t

h(t)

D(s, s+)ds
}

= exp

{∫ t

h(t)

u(s)ds

}

and

−x2 ≥ − exp

{
x1

∫ t

g(t)

L(s, s+)ds − x2

∫ t

g(t)

D(s, s+)ds
}

= − exp

{∫ t

g(t)

u(s)ds

}
.

Similar to the definition of h, g in (4.8.9), let us define functions H(t) and G(t)
for L(t, s) and D(t, s). Then H(t) ≤ h(t), G(t) ≥ g(t). Since L(t, ·), D(t, ·) are
nondecreasing for each t , for any t ≥ t1 we have

x1L
(
t, t+

)=
∫ t

H(t)

x1dsL(t, s)≥
∫ t

h(t)

exp

{∫ s

h(s)

u(τ )dτ

}
dsL(t, s),

−x2D
(
t, t+

)= −
∫ t

G(t)

x2dsD(t, s)≥ −
∫ t

g(t)

exp

{∫ s

g(s)

u(τ )dτ

}
dsD(t, s).

The summation of the two equalities gives

u(t)≥
∫ t

h(t)

exp

{∫ s

h(s)

u(τ )dτ

}
dsL(t, s)−

∫ t

g(t)

exp

{∫ s

g(s)

u(τ )dτ

}
dsD(t, s).

By Theorem 4.13, (4.8.10), where R and T are changed by L and D, respectively,
has a nonoscillatory solution. �

4.9 Discussion and Open Problems

It is usually believed that equations with a distributed delay provide a more realistic
description for models of population dynamics and mathematical biology in general.
For example, if a maturation delay is involved in the equation, then the maturation
time is generally not constant but is distributed around its expectancy value.
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Historically, equations with a distributed delay had been studied even before rele-
vant models with concentrated delays appeared. For example, in 1926 Volterra [329]
considered the logistic equation with a distributed delay

Ṅ(t)= rN(t)

∫ ∞

0
k(τ )

[
1 − N(t − τ)

K

]
dτ, (4.9.1)

before Hutchinson’s equation (the logistic equation with a concentrated delay)

Ṅ(t)= rN(t)

[
1 − N(t − τ)

K

]
(4.9.2)

was introduced in 1948 [209].
To the best of our knowledge, the first systematic study of equations with a dis-

tributed delay can be found in the monograph of Myshkis [289], and the results
obtained by 1993 are summarized in the book of Kuang [236]. Presently equations
with distributed delays are being intensively studied. For various models of mathe-
matical biology with distributed and concentrated delays, see the monographs [85,
167, 231, 236]. In most publications, integrodifferential equations are studied; how-
ever, sometimes applied models, as in the present chapter, incorporate both integral
terms and concentrated delays.

Oscillation properties of an equation that is equivalent to (4.1.1) were investi-
gated in [248] (see also references therein). The results presented in this chapter are
more general than in [248] from the following points of view:

1. In [248], an additional integral condition on R(t, s) is imposed, which leads to
continuous coefficients ak and kernel K in (4.1.3)–(4.1.8). We deal with measur-
able essentially bounded (locally integrable) functions. Many applied problems
lead to equations with discontinuous coefficients. In addition, this is important
for mathematical applications. For example, in [193] it was demonstrated that os-
cillation properties of difference equations can be derived from oscillation prop-
erties of some delay differential equations with discontinuous delays. As was
demonstrated in [40, 44, 54] and will be discussed in Chaps. 12 and 13, we can
study oscillation of nonimpulsive delay equations with discontinuous coefficients
rather than the oscillation of an impulsive delay equation.

2. Explicit oscillation (nonoscillation) conditions in [248] are obtained in the case
where R(t, s) is nondecreasing in s for each t (which corresponds to positive
coefficients in (4.1.3)–(4.1.8)). In some of the results, we succeed in avoiding
such a constraint and consider both positive and negative terms.

Among numerous publications on the oscillation of equations with deviating ar-
guments, we mention here [54, 178, 181, 322], which are concerned with a dis-
tributed delay. In particular, in [322] sufficient oscillation conditions were obtained
for integrodifferential equations.

The main results of this chapter were published in [48], [58], [59], [68].
The results of the second part of Theorem 4.8 can be viewed in the following

way. If the integrodifferential equation is approximated by the equation with several
concentrated delays in such a way that the coefficient of x(hj (t)) does not exceed



120 4 Oscillation of Equations with Distributed Delays

either the integral
∫ hj (t)
−∞ K(t, s) ds or

∫ hj−1(t)

hj (t)
K(t, s) ds and the integral equation

is nonoscillatory, then so is the approximating equation with several concentrated
delays. This means that nonoscillation of the integrodifferential equation implies
nonoscillation of its approximation by an equation with concentrated delays under
certain monotonicity conditions.

By Theorem 4.3, nonoscillation of the equation

ẋ(t)+ a(t)x
(
h(t)

)= 0, a(t)≥ 0, h(t)≤ t, (4.9.3)

yields nonoscillation of the integrodifferential equation

ẋ(t)+
∫ t

h(t)

K(t, s)x(s) ds = 0, where
∫ t

h(t)

K(t, s) ds = a(t), K(t, s)≥ 0.

(4.9.4)

In fact, (4.9.3) and (4.9.4) can be written as

ẋ(t)+
∫ t

h(t)

x(s) dsR(t, s)= 0,

ẋ(t)+
∫ t

h(t)

x(s) dsT (t, s)= 0,

respectively.
We assume that K(t, s) = 0 for s ≤ h(t). Thus, for s ≤ h(t) we have R(t, s) =

T (t, s)= 0 and for any s ∈ (h(t), t)

R(t, s)= a(t)=
∫ t

h(t)

K(t, s)x(s) ds ≥
∫ s

h(t)

K(t, ζ ) dζ = T (t, s).

For s > t , we have R(t, s) = R(t, t+) = a(t) = T (t, t+). Since both R(t, s) and
T (t, s) are nondecreasing in s for any t , by Theorem 4.3, the inequality R(t, s) ≥
T (t, s) and nonoscillation of (4.9.3) imply nonoscillation of (4.9.4).

This is usually described in the following form: nonoscillation and stability prop-
erties of an equation with a distributed delay are better than for an equation with con-
centrated delays. We have demonstrated above that we can deduce nonoscillation
of equations with concentrated delays from nonoscillation of an integrodifferential
equation.

Oscillation of integrodifferential and mixed equations was studied in [71, 322].
For (4.5.2) and its modifications with a variable delay h(t) and also the upper bound
τ(t), where h(t)≤ τ(t)≤ t , sharp oscillation results were recently obtained in [281,
312].

We can mention also the paper [293], where oscillation of the first-order linear
retarded differential equation

x′(t)+
∫ h(t)

0
x(t − s)dsR(t, s)= 0

is investigated.



4.9 Discussion and Open Problems 121

Finally, let us formulate some open problems.

1. If we have the same “total weight” a(t) and the maximal delay equals h(t),
then nonoscillation of (4.9.3) implies nonoscillation of (4.9.4). If we assume the
contrary, that h(t) is the minimal delay, then by Theorem 4.3 nonoscillation of
the equation

ẋ(t)+
∫ h(t)

−∞
K(t, s)x(s) ds = 0 with

∫ h(t)

−∞
K(t, s) ds = a(t), (4.9.5)

where K(t, s)≥ 0, implies nonoscillation of (4.9.3).
Prove or disprove:
The equation with a distributed delay is nonoscillating if the equation with the

same total weight a(t) and the single delay concentrated at the “center of mass”
(expectation) of the delay is nonoscillatory; i.e., nonoscillation of (4.9.3) implies
nonoscillation of the equation

ẋ(t)+
∫ t

g(t)

K(t, s)x(s) ds = 0, (4.9.6)

where
∫ t

h(t)

K(t, s)(t − s) ds = a(t)
(
t − g(t)

)
,

∫ t

h(t)

K(t, s) ds = a(t). (4.9.7)

2. For the general integrodifferential equation, there is a gap between nonoscillation
and oscillation conditions. If

lim sup
t→∞

∫ t

h(t)

K(t, s) ds >
1

e

but

lim inf
t→∞

∫ t

h(t)

K(t, s)(t − s) ds <
1

e
,

lim sup
t→∞

∫ t

h(t)

K(t, s)(t − s) ds < 1,

then [71, 322] the known tests do not allow us to establish oscillation properties
of the equation. Develop sharp nonoscillation conditions for integrodifferential
equations, at least in the case where lim sup and lim inf coincide.

3. Most efficient nonoscillation tests for nonautonomous equations were obtained
under the assumption that the delays are finite and tend to infinity as t → ∞.
Deduce explicit nonoscillation and oscillation conditions for equations with a
distributed delay in the case where (a4) is not satisfied and the relevant kernels
do not have an exponential estimate and are not bounded by a Gaussian func-
tion (which would allow us to apply the comparison with Examples 4.3 and 4.4,
respectively).

4. If R(t, s) is nondecreasing, obtain sufficient conditions under which any
nonoscillatory solution of (4.2.8) is asymptotically and exponentially stable.



Chapter 5
Scalar Advanced and Mixed Differential
Equations on Semiaxes

5.1 Introduction

This chapter deals with nonoscillation properties of scalar advanced differential
equations and mixed (including delay and advanced terms) differential equations.

Equations considered here differ from equations studied in the previous chap-
ters. It is not clear how to formulate an initial value problem. To study oscillation,
we need to assume that there exists a solution of such an equation on the halfline.
For equations with both advanced and delayed terms (mixed equations), there is no
solution representation formula, so we cannot apply the techniques of the previous
chapters. Instead, we use fixed-point theorems in Banach functional spaces.

We start with advanced equations in Sect. 5.2. Advanced differential equations
appear, for example, in dynamic economic models. In Sects. 5.3–5.6, all kinds of
mixed differential equations are considered, including equations with positive co-
efficients, with negative coefficients, and with coefficients of different signs. Sec-
tion 5.7 includes some comments, and several open problems are presented.

Everywhere in this chapter, we assume that there exists a solution of considered
advanced and mixed equations. However, in most of our results (for example, Theo-
rems 5.1, 5.3, 5.4, 5.6, 5.7, 5.8, etc.), existence of a solution is justified. This solution
is positive and either can be obtained using a limit of successive approximations or
its existence is deduced using the Schauder Fixed-Point Theorem.

5.2 Advanced Equations

Consider the equation

ẋ(t)−
m∑

k=1

ak(t)x
(
hk(t)

)= 0 (5.2.1)

under the following conditions:

R.P. Agarwal et al., Nonoscillation Theory of Functional Differential Equations
with Applications, DOI 10.1007/978-1-4614-3455-9_5,
© Springer Science+Business Media, LLC 2012
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http://dx.doi.org/10.1007/978-1-4614-3455-9_5
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(a1) ak(t)≥ 0, k = 1, · · · ,m, are Lebesgue measurable functions locally essentially
bounded for t ≥ 0.

(a2) hk : [0,∞)→ R are Lebesgue measurable functions, hk(t)≥ t , k = 1, · · · ,m.

Definition 5.1 A locally absolutely continuous function x : [t0,∞)→R is called a
solution of (5.2.1) if it satisfies (5.2.1) for almost all t ∈ [t0,∞).

The same definition will be used for all further advanced equations.

Theorem 5.1 Suppose that the inequality

u(t)≥
m∑

k=1

ak(t) exp

{∫ hk(t)

t

u(s)ds

}
, t ≥ t0, (5.2.2)

has a nonnegative solution that is integrable on each interval [t0, b]. Then (5.2.1)
has a positive solution for t ≥ t0.

Proof Let u0(t) be a nonnegative solution of inequality (5.2.2). Denote

un+1(t)=
m∑

k=1

ak(t) exp

{∫ hk(t)

t

un(s)ds

}
, n= 0,1, · · · .

Then

u1(t)=
m∑

k=1

ak(t) exp

{∫ hk(t)

t

u0(s)ds

}
≤ u0(t).

By induction, we have 0 ≤ un+1(t)≤ un(t)≤ u0(t). Hence there exists a pointwise
limit u(t)= limn→∞ un(t). By the Lebesgue convergence theorem (Theorem A.1),
we have

u(t)=
m∑

k=1

ak(t) exp

{∫ hk(t)

t

u(s)ds

}
.

Then the function

x(t)= x(t0) exp

{∫ t

t0

u(s)ds

}
for any x(t0) > 0

is a positive solution of (5.2.1). �

Corollary 5.1 If

∫ maxk hk(t)

t

m∑

i=1

ai(s)ds ≤ 1

e
, t ≥ t0, (5.2.3)

then (5.2.1) has a positive solution for t ≥ t0.
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Proof Let u0(t)= e
∑m

k=1 ak(t). Then the function u0 satisfies inequality (5.2.2) at
any point t where

∑m
k=1 ak(t) = 0. In the case where

∑m
k=1 ak(t) �= 0, inequality

(5.2.3) implies

u0(t)
∑m

k=1 ak(t) exp{∫ hk(t)
t

u0(s)ds}
≥ u0(t)
∑m

k=1 ak(t) exp{∫ maxk hk(t)
t

u0(s)ds}
= e

∑m
k=1 ak(t)∑m

k=1 ak(t) exp{e ∫ maxk hk(t)
t

∑m
i=1 ai(s)ds}

≥ e
∑m

k=1 ak(t)∑m
k=1 ak(t)e

= 1.

Hence u0(t) is a positive solution of inequality (5.2.2). By Theorem 5.1, (5.2.1) has
a positive solution for t ≥ t0. �

Corollary 5.2 If there exists σ > 0 such that hk(t)− t ≤ σ and
∫ ∞

0

m∑

k=1

ak(s)ds <∞,

then (5.2.1) has an eventually positive solution.

Corollary 5.3 If there exists σ > 0 such that hk(t)− t ≤ σ and limt→∞ ak(t)= 0,
then (5.2.1) has an eventually positive solution.

Proof Under the conditions of either Corollary 5.2 or Corollary 5.3, obviously there
exists t0 ≥ 0 such that (5.2.3) is satisfied. �

Theorem 5.2 Let
∫∞∑m

k=1 ak(s)ds = ∞ and x be an eventually positive solution
of (5.2.1). Then limt→∞ x(t)= ∞.

Proof Suppose x(t) > 0 for t ≥ t1. Then ẋ(t)≥ 0 for t ≥ t1 and

ẋ(t)≥
m∑

k=1

ak(t)x(t1), t ≥ t1,

which implies

x(t)≥ x(t1)

∫ t

t1

m∑

k=1

ak(s)ds.

Thus limt→∞ x(t)= ∞. �

Consider together with (5.2.1) the equation

ẋ(t)−
m∑

k=1

bk(t)x
(
gk(t)

)= 0 (5.2.4)

for t ≥ t0. We assume that for (5.2.4) conditions (a1) and (a2) also hold.
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Theorem 5.3 Suppose that t ≤ gk(t) ≤ hk(t), 0 ≤ bk(t) ≤ ak(t), t ≥ t0 and the
conditions of Theorem 5.1 hold. Then (5.2.4) has a positive solution for t ≥ t0.

Proof Let u0(t)≥ 0 be a solution of inequality (5.2.2) for t ≥ t0. Then this function
is also a solution of this inequality if ak(t) and hk(t) are replaced by bk(t) and gk(t),
respectively. The reference to Theorem 5.1 completes the proof. �

Corollary 5.4 Suppose that there exist āk > 0 and σk > 0 such that 0 ≤ ak(t)≤ āk ,
t ≤ hk(t)≤ t + σk , t ≥ t0 and the inequality

λ≥
m∑

k=1

āke
λσk

has a solution λ≥ 0. Then (5.2.1) has a positive solution for t ≥ t0.

Proof Consider the equation with constant parameters

ẋ(t)−
m∑

k=1

ākx(t + σk)= 0. (5.2.5)

Since the function u(t) ≡ λ is a solution of inequality (5.2.2) corresponding to
(5.2.5), by Theorem 5.1, (5.2.5) has a positive solution. Theorem 5.3 implies this
corollary. �

Corollary 5.5 Suppose that 0 ≤ ak(t)≤ āk , t ≤ hk(t)≤ t + σ for t ≥ t0 and

m∑

k=1

āk ≤ 1

eσ
.

Then (5.2.1) has a positive solution for t ≥ t0.

Proof Since
∑m

k=1 āk ≤ 1
eσ

, the number λ= 1
σ

is a positive solution of the inequal-
ity

λ≥
(

m∑

k=1

āk

)
eλσ ,

which completes the proof. �

Consider now the equation with positive coefficients

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)= 0. (5.2.6)

Theorem 5.4 Suppose that ak(t)≥ 0 are continuous functions that are bounded on
[t0,∞) and hk are equicontinuous functions on [t0,∞) satisfying 0 ≤ hk(t)− t ≤ δ.
Then (5.2.6) has a nonoscillatory solution.
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Proof In the space C[t0,∞) of continuous functions on [t0,∞), consider the set

M =
{
u

∣∣∣0 ≤ u≤
m∑

k=1

ak(t)

}

and the operator

(Hu)(t)=
m∑

k=1

ak(t) exp

{
−
∫ hk(t)

t

u(s)ds

}
.

If u ∈M , then Hu ∈M .
For the integral operator

(T u)(t) :=
∫ hk(t)

t

u(s)ds,

we will demonstrate that TM is a compact set in the space C[t0,∞). If u ∈M , then

∥∥(T u)(t)
∥∥
C[t0,∞)

≤ sup
t≥t0

∫ t+δ

t

∣∣u(s)
∣∣ds ≤ sup

t≥t0

m∑

k=1

ak(t)δ <∞,

and hence the functions in the set TM are uniformly bounded in the space C[t0,∞).
Functions hk are equicontinuous on [t0,∞), so for any ε > 0 there exists a σ0 > 0

such that for |t − s|< σ0 the inequality

∣∣hk(t)− hk(s)
∣∣<

ε

2

(
sup
t≥t0

m∑

k=1

ak(t)

)−1

, k = 1, · · · ,m,

holds. From the relation
∫ hk(t0)

t0

−
∫ hk(t)

t

=
∫ t

t0

+
∫ hk(t0)

t

−
∫ hk(t0)

t

−
∫ hk(t)

hk(t0)

=
∫ t

t0

−
∫ hk(t)

hk(t0)

,

we have for

|t − t0|<min

{
σ0,

ε

2 supt≥t0
∑m

k=1 ak(t)

}

and u ∈M the estimate

∣∣(T u)(t)− (T u)(t0)
∣∣=
∣∣∣∣
∫ hk(t)

t

u(s)−
∫ hk(t0)

t0

u(s)ds

∣∣∣∣

≤
∫ t

t0

∣∣u(s)
∣∣ds +

∫ hk(t)

hk(t0)

∣∣u(s)
∣∣ds

≤ |t − t0| sup
t≥t0

m∑

k=1

ak(t)+
∣∣hk(t)− hk(t0)

∣∣ sup
t≥t0

m∑

k=1

ak(t)

<
ε

2
+ ε

2
= ε.
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Hence the set TM contains functions that are uniformly bounded and equicontinu-
ous on [t0,∞), so by Theorem A.2 it is compact in the space C[t0,∞); thus the set
HM is also compact in C[t0,∞).

By the Schauder Fixed-Point Theorem (Theorem A.15), there exists a continuous
function u ∈M such that u=Hu, and then the function

x(t)= exp

{
−
∫ t

t0

u(s)ds

}

is a bounded positive solution of (5.2.6). Moreover, since u is nonnegative, this
solution is nonincreasing on [t0,∞). �

Theorem 5.5 Suppose that the conditions of Theorem 5.4 hold,
∫ ∞

t0

m∑

k=1

ak(s)ds = ∞,

and x is a nonoscillatory solution of (5.2.6). Then limt→∞ x(t)= 0.

Proof Let x(t) > 0 for t ≥ t0. Then ẋ(t)≤ 0 for t ≥ t0. Hence x(t) is nonincreasing
and thus has a finite limit. If limt→∞ x(t)= d > 0, then x(t) > d for any t and thus
ẋ(t)≤ −d∑m

k=1 ak(t), which implies limt→∞ x(t)= −∞. By the assumption, x(t)
is positive; the contradiction proves that limt→∞ x(t)= 0. �

Let us note that we cannot guarantee any (exponential or polynomial) rate of
convergence to zero even for constant coefficients ak , as the following example
demonstrates.

Example 5.1 Consider the equation ẋ(t)+ x(h(t)) = 0, where h(t) = t t ln t , t ≥ 3,
x(3)= 1/ ln 3. Then x(t)= 1/(ln t) is the solution, which tends to zero slower than
t−r for any r > 0.

Consider now the advanced equation with positive and negative coefficients

ẋ(t)−
m∑

k=1

[
ak(t)x

(
hk(t)

)− bk(t)x
(
gk(t)

)]= 0, t ≥ 0. (5.2.7)

Theorem 5.6 Suppose that ak(t) and bk(t) are Lebesgue measurable locally essen-
tially bounded functions, ak(t) ≥ bk(t) ≥ 0, hk(t) and gk(t) are Lebesgue measur-
able functions, hk(t)≥ gk(t)≥ t and inequality (5.2.2) has a nonnegative solution.
Then (5.2.7) has a nonoscillatory solution; moreover, it has a positive nondecreasing
and a negative nonincreasing solution.

Proof Let u0 be a nonnegative solution of (5.2.2), and denote

un+1(t)=
m∑

k=1

[
ak(t) exp

{∫ hk(t)

t

un(s)ds

}
− bk(t) exp

{∫ gk(t)

t

un(s)ds

}]
,
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t ≥ t0, n≥ 0. We have u0 ≥ 0, and by (5.2.2)

u0 ≥
m∑

k=1

ak(t) exp

{∫ hk(t)

t

u0(s)ds

}

≥
m∑

k=1

[
ak(t) exp

{∫ hk(t)

t

u0(s)ds

}
− bk(t) exp

{∫ gk(t)

t

u0(s)ds

}]
= u1(t).

Since ak(t)≥ bk(t)≥ 0 and t ≤ gk(t)≤ hk(t), then u1(t)≥ 0.
Next, let us assume that 0 ≤ un(t) ≤ un−1(t). The assumptions of the theorem

imply un+1 ≥ 0. Let us demonstrate that un+1(t) ≤ un(t). This inequality has the
form

m∑

k=1

[
ak(t) exp

{∫ hk(t)

t

un(s)ds

}
− bk(t) exp

{∫ gk(t)

t

un(s)ds

}]

≤
m∑

k=1

[
ak(t) exp

{∫ hk(t)

t

un−1(s)ds

}
− bk(t) exp

{∫ gk(t)

t

un−1(s)ds

}]
,

which is equivalent to

m∑

k=1

exp

{∫ hk(t)

t

un(s)ds

}[
ak(t)− bk(t) exp

{
−
∫ hk(t)

gk(t)

un(s)ds

}]

≤
m∑

k=1

exp

{∫ hk(t)

t

un−1(s)ds

}[
ak(t)− bk(t) exp

{
−
∫ hk(t)

gk(t)

un−1(s)ds

}]
.

This inequality is evident for any 0 ≤ un(t) ≤ un−1(t), ak(t) ≥ 0 and bk ≥ 0, and
thus we have un+1(t)≤ un(t).

By the Lebesgue convergence theorem (Theorem A.1), there is a pointwise limit
u(t)= limn→∞ un(t) satisfying

u(t)=
m∑

k=1

[
ak(t) exp

{∫ hk(t)

t

u(s)ds

}
− bk(t) exp

{∫ gk(t)

t

u(s)ds

}]
, t ≥ t0,

u(t)≥ 0, t ≥ t0. Then the function

x(t)= x(t0) exp

{∫ t

t0

u(s)ds

}
, t ≥ t0,

is a positive nondecreasing solution of (5.2.7) for any x(t0) > 0 and is a negative
nonincreasing solution of (5.2.7) for any x(t0) < 0. �

Corollary 5.6 Let ak(t) and bk(t) be Lebesgue measurable locally essentially
bounded functions satisfying ak(t) ≥ bk(t) ≥ 0, hk(t) and gk(t) be Lebesgue mea-
surable functions, where hk(t) ≥ gk(t) ≥ t . Assume in addition that inequality
(5.2.3) holds. Then (5.2.7) has a nonoscillatory solution.



130 5 Scalar Advanced and Mixed Differential Equations on Semiaxes

Consider now the equation with constant deviations of advanced arguments

ẋ(t)−
m∑

k=1

[
ak(t)x(t + τk)− bk(t)x(t + σk)

]= 0, (5.2.8)

where ak , bk are continuous functions, τk ≥ 0, σk ≥ 0.
Denote Ak = supt≥t0 ak(t), āk = inft≥t0 ak(t), Bk = supt≥t0 bk(t), b̄k =

inft≥t0 bk(t).

Theorem 5.7 Suppose that āk ≥ 0, b̄k ≥ 0,Ak <∞,Bk <∞.
If there exists a number λ0 < 0 such that

m∑

k=1

(
āke

λ0τk −Bk
)≥ λ0, (5.2.9)

m∑

k=1

(
Ak − b̄ke

λ0σk
)≤ 0, (5.2.10)

then (5.2.8) has a nonoscillatory solution; moreover, it has a positive nonincreasing
and a negative nondecreasing solution.

Proof In the space C[t0,∞), consider the set M = {u|λ0 ≤ u≤ 0} and the operator

(Hu)(t)=
m∑

k=1

[
ak(t) exp

{∫ t+τk

t

u(s)ds

}
− bk(t) exp

{∫ t+σk

t

u(s)ds

}]
.

For u ∈M , we have from (5.2.9) and (5.2.10)

(Hu)(t)≤
m∑

k=1

(
Ak − b̄ke

λ0σk
)≤ 0,

(Hu)(t)≥
m∑

k=1

(
āke

λ0τk −Bk
)≥ λ0.

Hence HM ⊂M .
Consider the integral operator

(T u)(t) :=
∫ t+δ

t

u(s)ds, δ > 0.

We will show that TM is a compact set in the space C[t0,∞). For u ∈M , we have

∥∥(T u)(·)∥∥
C[t0,∞)

≤ sup
t≥t0

∫ t+δ

t

∣∣u(s)
∣∣ds ≤ |λ0|δ,

and hence the functions in the set TM are uniformly bounded in the space C[t0,∞).
The equality

∫ t0+δ

t0

−
∫ t+δ

t

=
∫ t

t0

+
∫ t0+δ

t

−
∫ t0+δ

t

−
∫ t+δ

t0+δ
=
∫ t

t0

−
∫ t+δ

t0+δ
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implies

∣∣(T u)(t)− (T u)(t0)
∣∣=
∣∣∣∣
∫ t+δ

t

u(s)−
∫ t0+δ

t0

u(s)ds

∣∣∣∣

≤
∫ t

t0

∣∣u(s)
∣∣ds +

∫ t+δ

t0+δ
∣∣u(s)

∣∣ds ≤ 2|λ0||t − t0|.

Hence, by Theorem A.2, the set TM and so the set HM are compact in the space
C[t0,∞).

By the Schauder Fixed-Point Theorem (Theorem A.15), there exists a continuous
function u satisfying λ0 ≤ u≤ 0 such that u=Hu, and thus the function

x(t)= x(t0) exp

{∫ t

t0

u(s)ds

}
, t ≥ t0,

is a positive nonincreasing solution of (5.2.8) for any x(t0) > 0 and is a negative
nondecreasing solution of (5.2.7) for any x(t0) < 0. �

Let us remark that (5.2.10) for any λ0 < 0 implies
∑m

k=1(Ak − bk) < 0.

Corollary 5.7 Let
∑m

k=1(Ak − bk) < 0,
∑m

k=1Ak > 0, and for

λ0 = ln

(∑m
k=1Ak∑m
k=1 bk

)/
max
k
σk (5.2.11)

the inequality
m∑

k=1

(
ake

λ0τk −Bk
)≥ λ0 (5.2.12)

hold. Then (5.2.8) has a bounded positive solution.

Proof The negative number λ0 defined in (5.2.11) is a solution of both (5.2.9) and
(5.2.10). By definition, it satisfies (5.2.10), and (5.2.12) implies (5.2.9). �

Example 5.2 Consider the equation with constant advances and coefficients

ẋ(t)− ax(t + r)+ bx(t + d)= 0, (5.2.13)

where 0 < a < b, d > 0, r ≥ 0. Then λ0 = 1
d

ln( a
b
) is the minimal value of λ for

which inequality (5.2.10) holds; for (5.2.13) it has the form a − beλd ≤ 0.
Inequality (5.2.9) for (5.2.13) can be rewritten as

f (λ)= aeλr − b− λ≥ 0,

where the function f (x) decreases on (−∞,− ln(ar)/r] if τ > 0 and for any neg-
ative x if r = 0; besides, f (0) < 0. Thus, if f (λ1) < 0 for some λ1 < 0, then
f (λ) < 0 for any λ ∈ [λ1,0). Hence the inequality

f (λ0)= a

(
a

b

)r/d
− b− 1

d
ln

(
a

b

)
≥ 0 (5.2.14)
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Fig. 5.1 The domain of
values (d, r) satisfying
inequality (5.2.15). If the
values of advances d and r
are under the curve, then
(5.2.13) has a positive
solution

is necessary and sufficient for the conditions of Theorem 5.7 to be satisfied for
(5.2.13).

Figure 5.1 demonstrates possible values of advances d and r such that Corol-
lary 5.7 implies existence of a positive solution in the case 1 = a < b = 2. Then
(5.2.14) has the form 0.5r/d ≥ 2− (ln 2)/d , which is possible only for d > 0.5 ln 2 ≈
0.347 and for these values is equivalent to

r ≤ −d ln(2 − ln 2/d)

ln 2
. (5.2.15)

5.3 Mixed Equations with Positive Coefficients

In this section, we consider the equation

ẋ(t)+ a(t)x
(
g(t)

)+ b(t)x
(
h(t)

)= 0, t ≥ t0, (5.3.1)

with nonnegative bounded coefficients a(t), b(t), one delayed argument g(t) ≤ t

and one advanced argument h(t)≥ t .

Theorem 5.8 Suppose a(t) and b(t) are continuous bounded and g(t) and h(t) are
uniformly continuous on the interval [t0,∞),

lim sup
t→∞

[
t − g(t)

]= r <∞, lim sup
t→∞

[
h(t)− t

]= p <∞, (5.3.2)

and there exists a nonoscillatory solution of the delay differential equation

ẏ(t)+ a(t)y
(
g(t)

)+ b(t)y(t)= 0. (5.3.3)

Then there exists a nonoscillatory solution of (5.3.1).

Proof Theorem 2.1 applied to (5.3.3) implies the existence of a function u0(t)≥ 0
and t0 ≥ 0 such that

u0(t)≥ a(t) exp

{∫ t

g(t)

u0(s)ds

}
+ b(t), t ≥ t0. (5.3.4)
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Consider the space C[t0,∞) of all continuous and bounded functions on [t0,∞)

with supremum norm ‖ · ‖, and consider the operator

(Au)(t) := a(t) exp

{∫ t

g(t)

u(s)ds

}
+ b(t) exp

{
−
∫ h(t)

t

u(s)ds

}
.

Let S = {u ∈ C[t0,∞) | 0 ≤ u(t)≤ u0(t)}. Inequality (5.3.4) implies 0 ≤ (Au)(t)≤
u0(t). For u ∈ S, denote the integral operators

(Hu)(t) :=
∫ t

g(t)

u(s)ds, (Ru)(t) :=
∫ h(t)

t

u(s)ds.

Conditions (5.3.2) imply
∣∣(Hu)(t)

∣∣≤ r‖u0‖,
∣∣(Ru)(t)

∣∣≤ p‖u0‖.
Hence the sets HS and RS are bounded in the space C[t0,∞). For u ∈ S, we obtain

∣∣(Hu)(t2)− (Hu)(t1)
∣∣≤
∣∣∣∣
∫ g(t2)

g(t1)

u(s)ds

∣∣∣∣+
∣∣∣∣
∫ t2

t1

u(s)ds

∣∣∣∣

≤ ‖u0‖
(∣∣g(t2)− g(t1)

∣∣+ |t2 − t1|
)

and
∣∣(Ru)(t2)− (Ru)(t1)

∣∣≤ ‖u0‖
(∣∣h(t2)− h(t1)

∣∣+ |t2 − t1|
)
.

Hence the sets of functionsHS and RS are equicontinuous. Then, by Theorem A.2,
the sets HS and RS are compact. Therefore, the set AS is also compact.

The Schauder Fixed-Point Theorem (Theorem A.15) implies that there exists a
solution u ∈ S of the equation u=Au. Therefore, the function

x(t)= x(t1) exp

{
−
∫ t

t1

u(s)ds

}
, t ≥ t1,

is a positive solution of (5.3.1). �

Corollary 5.8 Suppose a(t) and b(t) are continuous bounded and g(t) and h(t)
are continuous on [t0,∞), (5.3.2) holds and

lim sup
t→∞

∫ t

g(t)

a(s) exp

{∫ s

g(s)

b(τ )dτ

}
ds <

1

e
. (5.3.5)

Then (5.3.1) has a nonoscillatory solution.

Proof Substituting y(t)= z(t) exp{− ∫ t
t0
b(s)ds} in (5.3.3), we obtain

ż(t)+ a(t) exp

{∫ t

g(t)

b(s)ds

}
z
(
g(t)

)= 0.

Theorem 2.7 and (5.3.5) imply that this equation and therefore (5.3.1) has a
nonoscillatory solution. �
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Corollary 5.9 Suppose a(t) and b(t) are continuous bounded and g(t) and h(t)
are continuous on [t0,∞), b(t) is bounded on [t0,∞), (5.3.2) holds and

∫ ∞

t0

a(s)ds <∞. (5.3.6)

Then (5.3.1) has a nonoscillatory solution.

Proof Condition (5.3.2) implies

lim sup
t→∞

∫ t

g(t)

a(s) exp

{∫ s

g(s)

b(τ )dτ

}
ds

≤ er‖b‖ lim sup
t→∞

∫ t

g(t)

a(s)ds = 0<
1

e
.

By Corollary 5.8, (5.3.1) has a nonoscillatory solution. �

Theorem 5.9 Suppose
∫ ∞

t0

a(s)ds = ∞
and x is a nonoscillatory solution of (5.3.1). Then limt→∞ x(t)= 0.

Proof Suppose x(t) > 0, t ≥ t1 and g(t)≥ t1, t ≥ t2. Then ẋ(t)≤ 0, t ≥ t2. Denote
u(t)= − ẋ(t)

x(t)
, t ≥ t2. Then u(t)≥ 0, t ≥ t2. After substituting

x(t)= x(t2) exp

{
−
∫ t

t2

u(s)ds

}
, t ≥ t2, (5.3.7)

into (5.3.1), we have

u(t)= a(t) exp

{∫ t

g(t)

u(s)ds

}
+ b(t) exp

{
−
∫ h(t)

t

u(s)ds

}
, t ≥ t2. (5.3.8)

Hence u(t) ≥ a(t) and therefore
∫∞
t0
u(s)ds = ∞. Equality (5.3.7) implies

limt→∞ x(t)= 0, which completes the proof. �

5.4 Mixed Equation with Negative Coefficients

Consider now the mixed differential equation

ẋ(t)− a(t)x
(
g(t)

)− b(t)x
(
h(t)

)= 0, t ≥ t0, (5.4.1)

where a(t)≥ 0, b(t)≥ 0, g(t)≤ t , h(t)≥ t .

Theorem 5.10 Suppose a(t) and b(t) are continuous bounded, g(t) and h(t) are
uniformly continuous on [t0,∞), (5.3.2) holds and the equation

ẏ(t)− a(t)y(t)− b(t)y
(
h(t)

)= 0, t ≥ t0, (5.4.2)

has a nonoscillatory solution.
Then (5.4.1) has a nonoscillatory solution.
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Proof In the space C[t0,∞), consider the operator

(Bu)(t) := a(t) exp

{
−
∫ t

g(t)

u(s)ds

}
+ b(t) exp

{∫ h(t)

t

u(s)ds

}
.

Theorem 5.1 implies that there exists a nonnegative solution u0(t) of the equality

u(t)= a(t)+ b(t) exp

{∫ h(t)

t

u(s)ds

}
, t ≥ t0.

Let S = {u|0 ≤ u(t) ≤ u0(t)}. As in the proof of Theorem 5.8, we obtain BS ⊂ S,
and the set BS is compact. Therefore, the equation u= Bu has a nonnegative solu-
tion u. Hence the function

x(t)= x(t0) exp

{∫ t

t0

u(s)ds

}
, t ≥ t0,

is a positive solution of (5.4.1). �

Corollary 5.10 Suppose a(t) and b(t) are continuous bounded and g(t) and h(t)
are uniformly continuous on [t0,∞), (5.3.2) holds and

lim sup
t→∞

∫ g(t)

t

b(s) exp

{∫ g(s)

s

a(τ )dτ

}
ds <

1

e
.

Then (5.4.1) has a nonoscillatory solution.

The proof of this corollary is similar to the proof of Corollary 5.8.

Corollary 5.11 Suppose a(t) and b(t) are continuous bounded and g and h are
uniformly continuous on [t0,∞), (5.3.2) holds and

∫∞
t0
b(s)ds <∞. Then (5.4.1)

has a nonoscillatory solution.

Theorem 5.11 Suppose
∫∞
t0
b(s)ds = ∞ and x is a nonoscillatory solution of

(5.4.1). Then limt→∞ x(t)= ∞.

The proof of this theorem is similar to the proof of Theorem 5.9.

5.5 Positive Delay Term, Negative Advanced Term

In this section, the equation

ẋ(t)+ a(t)x
(
g(t)

)− b(t)x
(
h(t)

)= 0, t ≥ t0, (5.5.1)

with a positive delay term and a negative advanced term is considered. In this section
and the next, we will assume that the following conditions hold:

(b1) a(t)≥ 0, b(t)≥ 0 are Lebesgue measurable locally essentially bounded func-
tions [t0,∞)→ R.
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(b2) g : [t0,∞)→ R, h : [t0,∞)→ R are Lebesgue measurable functions, g(t)≤
t , h(t)≥ t , limt→∞ g(t)= ∞.

Theorem 5.12 Suppose (b1) and (b2) hold and a(t) ≥ b(t). Then the following
conditions are equivalent:

1. The differential inequality

ẋ(t)+ a(t)x
(
g(t)

)− b(t)x
(
h(t)

)≤ 0, t ≥ t0, (5.5.2)

has an eventually nonincreasing positive solution.
2. The integral inequality

u(t)≥ a(t) exp

{∫ t

g(t)

u(s)ds

}
− b(t) exp

{
−
∫ h(t)

t

u(s)ds

}
, t ≥ t1, (5.5.3)

has a nonnegative locally integrable solution for some t1 ≥ t0, where we assume
u(t)= 0 for t < t1.

3. Differential equation (5.5.1) has an eventually positive nonincreasing solution.

Proof 1)⇒ 2). Let x be a solution of (5.5.2) such that x(t) > 0, ẋ(t) ≤ 0, t ≥ t0.
For some t1 ≥ t0, we have g(t) ≥ t0 for t ≥ t1. Denote u(t) = −ẋ(t)/x(t), t ≥ t1,
u(t)= 0, t < t1. Then

x(t)= x(t1) exp

{
−
∫ t

t1

u(s)ds

}
, t ≥ t1. (5.5.4)

After substituting (5.5.4) into (5.5.2) and carrying the exponent out of the brackets,
we obtain

− exp

{
−
∫ t

t1

u(s)ds

}
x(t1)

[
u(t)− a(t) exp

{∫ t

g(t)

u(s)ds

}

+ b(t) exp

{
−
∫ h(t)

t

u(s)ds

}]
≤ 0,

which implies (5.5.3).
2)⇒ 3). Suppose u0(t)≥ 0 is a solution of inequality (5.5.3) for t ≥ t1. Consider

the sequence

un+1(t)= a(t) exp

{∫ t

g(t)

un(s)ds

}
− b(t) exp

{
−
∫ h(t)

t

un(s)ds

}
, n≥ 0. (5.5.5)

Since un(t)≥ a(t)− b(t)≥ 0 and u0 ≥ u1, then by induction

0 ≤ un+1(t)≤ un(t)≤ · · · ≤ u0(t).

Hence there exists a pointwise limit

u(t)= lim
n→∞un(t).
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The Lebesgue convergence theorem (Theorem A.1) and (5.5.5) imply

u(t)= a(t) exp

{∫ t

g(t)

u(s)ds

}
− b(t) exp

{
−
∫ h(t)

t

u(s)ds

}
. (5.5.6)

Then x(t) denoted by (5.5.4) is a nonnegative nonincreasing solution of (5.5.1).
Implication 3)⇒ 1) is evident. �

For comparison, consider now the mixed differential equation

ẋ(t)+ a1(t)x
(
g1(t)

)− b1(t)x
(
h1(t)

)= 0, t ≥ t0. (5.5.7)

Corollary 5.12 Suppose (b1) and (b2) hold for a, b, h, g, a1, b1, h1, g1 and

b1(t)≤ b(t)≤ a(t)≤ a1(t), g(t)≥ g1(t), h(t)≤ h1(t). (5.5.8)

If (5.5.7) has an eventually positive solution with an eventually nonpositive deriva-
tive, then the same is valid for (5.5.1).

Proof Suppose (5.5.7) has an eventually positive solution with an eventually non-
positive derivative. By Theorem 5.12, the integral inequality

u(t)≥ a1(t) exp

{∫ t

g1(t)

u(s)ds

}
− b1(t) exp

{
−
∫ h1(t)

t

u(s)ds

}
, t ≥ t1,

has a nonnegative locally integrable solution u(t) for some t1. Inequalities (5.5.8)
imply that u(t) also satisfies (5.5.3). Thus, by Theorem 5.12, (5.5.1) has an eventu-
ally positive solution with an eventually nonpositive derivative. �

Corollary 5.13 Suppose (b1) and (b2) hold for t sufficiently large, a(t)≥ b(t) and

b(t)≥ a(t)

[
exp

{∫ t

g(t)

a(s)ds

}
− 1

]
exp

{∫ h(t)

t

a(s)ds

}
.

Then there exists an eventually positive solution with an eventually nonpositive
derivative of (5.5.1).

Proof It is easy to see that u(t) = a(t) is a nonnegative solution of inequality
(5.5.3). �

Corollary 5.14 Suppose (b1) and (b2) hold and there exist a > 0, b > 0, τ > 0,
σ > 0 such that

b ≤ b(t)≤ a(t)≤ a, g(t)≥ t − τ, h(t)≤ t + σ.

If there exists a solution λ > 0 of the algebraic equation

−λ+ aeλτ − be−λσ = 0, (5.5.9)

then (5.5.1) has an eventually positive solution with an eventually nonpositive
derivative.
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Proof The function x(t)= e−λt is a positive solution of the autonomous equation

ẋ(t)+ ax(t − τ)− bx(t + σ)= 0, t ≥ t0. (5.5.10)

By Corollary 5.12, (5.5.1) has a nonoscillatory solution. �

Corollary 5.15 Suppose (b1) and (b2) hold, a(t)≥ b(t) and there exists a nonoscil-
latory solution of the delay equation

ẋ(t)+ a(t)x
(
g(t)

)= 0. (5.5.11)

Then there exists an eventually positive solution with an eventually nonpositive
derivative of (5.5.1).

Proof Theorem 2.1 implies that there exists a nonnegative solution u(t) of the in-
equality

u(t)≥ a(t) exp

{∫ t

g(t)

u(s)ds

}
.

Hence u(t) is also a nonnegative solution of inequality (5.5.3). Then, by Theo-
rem 5.12, (5.5.1) has a nonoscillatory solution. �

Remark 5.1 Let us recall that (5.5.11) has a nonoscillatory solution if for t suffi-
ciently large

∫ t

g(t)

a(s) ds ≤ 1

e
.

Corollary 5.16 Suppose (b1) and (b2) hold, a(t)≥ b(t), integral inequality (5.5.3)
has a nonnegative solution for t ≥ t1 and

∫∞
0 [a(s)− b(s)]ds = ∞. Then there ex-

ists an eventually positive solution x(t) with an eventually nonpositive derivative of
(5.5.1) such that limt→∞ x(t)= 0.

Proof By the assumption of the corollary, there exists a nonnegative solution u(t)
of inequality (5.5.3) and also (by the proof of Theorem 5.12) of the relevant equa-
tion (5.5.6), and the inequality u(t) ≥ a(t) − b(t) is obviously satisfied. Then the
function x(t) defined by (5.5.4) is a solution of (5.5.1). For this solution, we have

0< x(t)≤ x(t1) exp

{
−
∫ t

0

[
a(s)− b(s)

]
ds

}
,

which immediately implies limt→∞ x(t)= 0. �

Corollaries 5.15 and 5.16 imply the following statement.

Corollary 5.17 Suppose (b1) and (b2) hold, a(t) ≥ b(t),
∫ t
g(t)

a(s) ds ≤ 1
e

for t
sufficiently large and

∫ ∞

0

[
a(s)− b(s)

]
ds = ∞.
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Then the equation

ẋ(t)+ a(t)x
(
g(t)

)− b(t)x
(
h(t)

)= 0

has an eventually positive solution x(t) with an eventually nonpositive derivative
such that limt→∞ x(t)= 0.

Example 5.3 Consider the equation

ẋ(t)+ 1.4x(t − 0.3)− 1.3x(t + 0.3)= 0. (5.5.12)

Then u(t)≡ 1 is a solution of the relevant inequality (5.5.3) since

1.4e0.3 − 1.3e−0.3 ≈ 0.9267< 1.

We remark that since 1.3 · 0.3 = 0.39 > 1/e ≈ 0.368, then all solutions of both
equations

ẋ(t)+ 1.4x(t − 0.3)= 0 (5.5.13)

and

ẋ(t)− 1.3x(t + 0.3)= 0 (5.5.14)

are oscillatory [248]. The characteristic equation

−λ+ 1.4e0.3λ − 1.3e−0.3λ = 0 (5.5.15)

has three real roots: λ1 ≈ −4.2282, λ2 ≈ 0.5436 and λ3 ≈ 3.3541. Thus e−λ1t , e−λ2t

and e−λ3t are three nonoscillatory solutions of (5.5.12): the first one is unbounded
on [t0,∞) and the two others are bounded and have a negative derivative.

Example 5.4 Consider the equation

ẋ(t)+ (1.375 + 0.025 sin t)x(t − 0.3)− (1.325 + 0.025 cos t)x(t + 0.3)= 0.
(5.5.16)

Since 1.3 ≤ 1.325+0.025 cos t ≤ 1.35 ≤ 1.375+0.025 sin t ≤ 1.4, applying Corol-
lary 5.14 and the results of Example 5.3, we obtain that (5.5.16) has an eventually
positive solution x(t) with an eventually nonpositive derivative. Moreover, since
the integral of a continuous nonnegative periodic function

∫∞
0 (0.05 + 0.025 sin t −

0.025 cos t) dt diverges, by Corollary 5.16 this solution satisfies limt→∞ x(t)= 0.

Theorem 5.13 Suppose (b1) and (b2) hold and b(t) ≥ a(t). Then the following
conditions are equivalent:

1. The differential inequality

ẋ(t)+ a(t)x
(
g(t)

)− b(t)x
(
h(t)

)≥ 0, t ≥ t0, (5.5.17)

has an eventually positive solution with an eventually nonnegative derivative.
2. The integral inequality

u(t)≥ b(t) exp

{∫ h(t)

t

u(s)ds

}
− a(t) exp

{
−
∫ t

g(t)

u(s)ds

}
, t ≥ t1, (5.5.18)

u(t)= 0, t < t1, has a nonnegative locally integrable solution for some t1 ≥ t0.
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3. Differential equation (5.5.1) has an eventually positive solution with an eventu-
ally nonnegative derivative.

Proof 1)⇒ 2). Let x be a solution of (5.5.17) such that x(t) > 0, ẋ(t)≥ 0, t ≥ t0.
For some t1 ≥ t0, we have g(t) ≥ t0 for t ≥ t1. Denote u(t) = ẋ(t)/x(t), t ≥ t1.
Then

x(t)= x(t1) exp

{∫ t

t1

u(s)ds

}
, t ≥ t1. (5.5.19)

After substituting (5.5.19) into (5.5.17) and carrying the exponent out of the brack-
ets, we obtain

exp

{∫ t

t1

u(s)ds

}
x(t1)

[
u(t)− b(t) exp

{∫ h(t)

t

u(s)ds

}

+ a(t) exp

{
−
∫ t

g(t)

u(s)ds

}]
≥ 0.

Hence (5.5.18) holds.
2)⇒ 3). Let u0(t)≥ 0 be a solution of inequality (5.5.18). Consider the sequence

un+1(t)= b(t) exp

{∫ h(t)

t

un(s)ds

}
− a(t) exp

{
−
∫ t

g(t)

un(s)ds

}
, n≥ 0. (5.5.20)

Inequalities un(t)≥ b(t)− a(t)≥ 0 and u0 ≥ u1 imply

0 ≤ un+1(t)≤ un(t)≤ · · · ≤ u0(t),

so there exists a pointwise limit

u(t)= lim
n→∞un(t).

By the Lebesgue convergence theorem (Theorem A.1) and (5.5.20), we have

u(t)= b(t) exp

{∫ h(t)

t

u(s)ds

}
− a(t) exp

{
−
∫ t

g(t)

u(s)ds

}
. (5.5.21)

Then x(t) defined by (5.5.19) is a positive solution of (5.5.1) with a nonnegative
derivative.

Implication 3)⇒ 1) is evident. �

The proofs of the following results are similar to those of the corollaries of The-
orem 5.12 and thus will be omitted.

Corollary 5.18 Suppose (b1) and (b2) hold for (5.5.1) and (5.5.7),

a1(t)≤ a(t)≤ b(t)≤ b1(t), g(t)≥ g1(t), h(t)≤ h1(t).

If (5.5.7) has an eventually positive solution with an eventually nonnegative deriva-
tive, then so does (5.5.1).
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Corollary 5.19 Suppose (b1) and (b2) hold, for t sufficiently large b(t)≥ a(t), and

a(t)≥ b(t)

[
exp

{∫ h(t)

t

b(s)ds

}
− 1

]
exp

{∫ t

g(t)

b(s)ds

}
.

Then there exists an eventually positive solution of (5.5.1) with an eventually non-
negative derivative.

Proof It is easy to see that u(t) = b(t) is a nonnegative solution of inequality
(5.5.18). �

Corollary 5.20 Suppose (b1) and (b2) hold and there exist a > 0, b > 0, τ > 0 and
σ > 0 such that

a ≤ a(t)≤ b(t)≤ b, g(t)≥ t − τ, h(t)≤ t + σ.

If there is a positive solution λ > 0 of the algebraic equation

λ+ ae−λτ − beλσ = 0, (5.5.22)

then there exists an eventually positive solution of (5.5.1) with an eventually non-
negative derivative.

Corollary 5.21 Suppose (b1) and (b2) hold, b(t)≥ a(t) and there exists a nonoscil-
latory solution of the advanced equation

ẋ(t)− b(t)x
(
h(t)

)= 0. (5.5.23)

Then there exists an eventually positive solution of (5.5.1) with an eventually non-
negative derivative.

Remark 5.2 If for t sufficiently large
∫ h(t)

t

b(s) ds ≤ 1

e
,

then by Corollary 5.1 there exists a nonoscillatory solution of (5.5.23).

Corollary 5.22 Suppose (b1) and (b2) hold, b(t) ≥ a(t), the integral inequality
(5.5.3) has a nonnegative solution for t ≥ t1 and

∫∞
0 [b(s) − a(s)]ds = ∞. Then

there exists an eventually positive solution x(t) of (5.5.1) with an eventually non-
negative derivative such that limt→∞ x(t)= ∞.

5.6 Negative Delay Term, Positive Advanced Term

In this section, we consider the scalar mixed differential equation

ẋ(t)− a(t)x
(
g(t)

)+ b(t)x
(
h(t)

)= 0, t ≥ t0, (5.6.1)

for which assumptions (b1) and (b2) are satisfied.
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Theorem 5.14 Suppose that a(t) and b(t) are continuous functions that are
bounded on [t0,∞), functions g(t) and h(t) are uniformly continuous on [t0,∞),
there exist positive numbers a1, a2, b1, b2, τ , σ , t1 such that

a1 ≤ a(t)≤ a2, b1 ≤ b(t)≤ b2, t − g(t)≤ τ, h(t)− t ≤ σ, t ≥ t1, (5.6.2)

and the algebraic system
{
a2e

yτ − b1e
−yσ ≤ x,

b2e
xσ − a1e

−xτ ≤ y,
(5.6.3)

has a solution x = d1 > 0, y = d2 > 0.
Then (5.6.1) has a nonoscillatory solution.

Proof Define the operator

(Au)(t)= a(t) exp

{
−
∫ t

g(t)

u(s)ds

}
− b(t) exp

{∫ h(t)

t

u(s)ds

}
, t ≥ t1,

in the space C[t1,∞) of all functions bounded continuous on [t1,∞) with the usual
sup-norm, where we assume that u(t)= 0, t ≤ t1. Let x = d1, y = d2 be a positive
solution of system (5.6.3). Then the inequality −d2 ≤ u(t) ≤ d1 implies −d2 ≤
(Au)(t)≤ d1. This means that AS ⊂ S, where

S = {u|−d2 ≤ u(t)≤ d1
}
.

Now we will prove that AS is a compact set in the space C[t1,∞). Denote the
integral operators

(Hu)(t) :=
∫ t

g(t)

u(s)ds, (Ru)(t) :=
∫ h(t)

t

u(s)ds.

We have for u ∈ S
∣∣(Hu)(t)

∣∣≤ max{d1, d2}τ,
∣∣(Ru)(t)

∣∣≤ max{d1, d2}σ.
Hence the sets HS and RS are bounded in the space C[t1,∞).

Let u ∈ S. Then

∣∣(Hu)(τ2)− (Hu)(τ1)
∣∣≤
∣∣∣∣
∫ g(τ2)

g(τ1)

∣∣u(s)
∣∣ds
∣∣∣∣+
∣∣∣∣
∫ τ2

τ1

∣∣u(s)
∣∣ds
∣∣∣∣

≤ max{d1, d2}
(∣∣g(τ2)− g(τ1)

∣∣+ |τ2 − τ1|
)

and, similarly,
∣∣(Ru)(τ2)− (Ru)(τ1)

∣∣≤ max{d1, d2}
(∣∣h(τ2)− h(τ1)

∣∣+ |τ2 − τ1|
)
.

Since g and h are uniformly continuous in [t1,∞), functions in HS and RS are
equicontinuous. Then, by Theorem A.2, the sets HS and RS are compact, and con-
sequently AS is also a compact set.

Schauder’s Fixed-Point Theorem (Theorem A.15) implies that there exists a so-
lution u ∈ S of operator equation u = Au. Therefore x(t) = x(t1) exp{∫ t

t1
u(s)ds},

t ≥ t1, is a positive solution of (5.6.1). �
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Corollary 5.23 Suppose that a(t), b(t) are functions which are continuous and
bounded on [t0,∞), g ≤ t and h ≥ are uniformly continuous on [t0,∞) and there
exist positive numbers a1, a2, b1, b2, τ , σ such that (5.6.2) is satisfied and at least
one of the following conditions holds:

1) b2 < a1, 0< a2 − b1 <
1

τ+σ ln a1
b2

,

2) a2 < b1, 0< b2 − a1 <
1

τ+σ ln b1
a2

.

Then (5.6.1) has a nonoscillatory solution.

Proof It is enough to prove that system (5.6.3) has a positive solution. Suppose
condition 1) holds. For the second condition, the proof is similar.

Let us define the functions F(x)= b2e
xσ −a1e

−xτ andG(y)= a2e
yτ −b1e

−yσ ,
which are both monotonically increasing. We have F(0) < 0, F(x1)= 0, where

x1 = 1

τ + σ
ln
a1

b2
.

Since G(y) is a monotone function, there exists the monotonically increasing in-
verse function G−1(x), for which we have G−1(x2)= 0, where x2 = a2 − b1 > 0.

Denote H(x)=G−1(x)− F(x). Condition 1) implies x2 < x1, then F(x2) < 0
and thus H(x2) > 0. From the equality G(y) = a2e

yτ − b1e
−yσ = x, we have

a2e
yτ ≤ x + b1 for y ≥ 0, and thus

G−1(x)≤ 1

τ
ln
x + b1

a2
and H(x)≤ 1

τ
ln
x + b1

a2
− b2e

xσ + a1

for x large enough. Hence limx→∞H(x)= −∞.
Since H is continuous, there exists x0 > x2 > 0 such that H(x0) = 0, i.e.

F(x0) = G−1(x0). Therefore, x0, y0 = F(x0) is a solution of system (5.6.3), and
(5.6.1) has a nonoscillatory solution. �

If the conditions of Corollary 5.23 do not hold, we can apply numerical methods
to prove that system (5.6.3) has a positive solution.

Example 5.5 Consider the equation

ẋ(t)− (1.3 + 0.1 sin t)x(t − 0.1 − 0.1 cos t)

+ (1.7 + 0.1 cos t)x(t + 0.2 + 0.1 sin t)= 0, t ≥ 0. (5.6.4)

Then a1 = 1.2, a2 = 1.4, b1 = 1.6, b2 = 1.8, τ = 0.2, σ = 0.3 and (5.6.3) has a
positive solution x = 2, y = 3, since

a2e
yτ − b1e

−yσ = 1.4e0.6 − 1.6e−0.9 ≈ 1.9< x = 2,

b2e
xσ − a1e

−xτ ≤ y = 1.8e0.6 − 1.2e−0.4 ≈ 2.48< y = 3.

Hence (5.6.4) has a nonoscillatory solution.
Figure 5.2 illustrates the domain of values (x, y) satisfying the system of inequal-

ities (5.6.3) for (5.6.4), which is between the two curves.
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Fig. 5.2 The domain of
values (x, y) satisfying the
system of inequalities (5.6.3)
for (5.6.4) is between the
curves. The chosen value
x = 2, y = 3 inside the
domain is also marked on the
graph

Example 5.6 Consider the equation with constant coefficients and variable advance
and delay

ẋ(t)− ax
(
g(t)

)+ bx
(
h(t)

)= 0, t ≥ t0, (5.6.5)

where t ≥ g(t)≥ t − 0.2, t ≤ h(t)≤ t + 0.3. Thus in (5.6.3) we have τ = 0.2, δ =
0.3. All values below the curve in Fig. 5.3 are such that the system of inequalities
(5.6.3) has a positive solution and hence (5.6.5) has a nonoscillatory solution.

For comparison, we also included the line

0.2a + 0.3b= 1

e
. (5.6.6)

Remark 5.3 The autonomous equation

ẋ(t)− ax(t − τ)+ bx(t + σ)= 0, a > 0, b > 0, τ > 0, σ > 0 (5.6.7)

always has a positive solution eλt , where λ is a solution of the characteristic equation

f (λ)= λ− ae−τλ + beσλ = 0. (5.6.8)

Since limλ→±∞ f (λ) = ±∞, there is always a real λ satisfying (5.6.8). There is
a positive solution satisfying limt→∞ x(t) = ∞ if b < a and a positive solution
satisfying limt→∞ x(t)= 0 if b > a.

5.7 Discussion and Open Problems

Recently results on oscillation of delay differential equations (DDEs) have taken
the shape of a developed theory presented in monographs [3, 7, 154, 167, 192, 248].
Most oscillation criteria for DDEs can be extended to equations of advanced type
(ADEs) (see [229, 248] and also the recent papers [10, 268, 286]). In comparison
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Fig. 5.3 The domain of
values a, b such that the
system of inequalities (5.6.3)
for (5.6.5) has a positive
solution is under the curve

with these papers, Sect. 5.2 contains the following new results: criteria for existence
of a positive solution and a comparison theorem for advanced equations with nega-
tive coefficients (Theorems 5.1 and 5.3) and nonoscillation conditions for advanced
equations with positive coefficients and with positive and negative coefficients (The-
orems 5.4–5.6). We note that these two classes of advanced equations have not been
considered before.

For mixed differential equations (MDEs), equations with delay and advanced
arguments, there are only a few publications dealing with oscillation problems.

In this chapter, we considered a mixed differential equation,

ẋ(t)+ δ1a(t)x
(
g(t)

)+ δ2b(t)x
(
h(t)

)= 0, t ≥ t0, (5.7.1)

with variable coefficients a(t) ≥ 0, b(t) ≥ 0, and one delayed (g(t) ≤ t) and one
advanced (h(t) ≥ t) argument. To the best of our knowledge, oscillation of such
equations has not been studied before except partial cases of autonomous equa-
tions [171, 247], equations of the second or higher order [151, 240] and equations
with constant delays [337]. In [166], nonoscillation only of (5.7.1) and higher-order
equations was considered, where δ1 and δ2 have the same sign. In [290], the author
considers a differential equation with a deviating argument without the assumption
that it is either a delay or an advanced equation, so the results of [290] can be applied
to MDE (5.7.1). The results presented in this chapter and in [290] are independent.

Functional differential equations

ẋ(t)+
m∑

k=1

ak(t)x
(
rk(t)

)= 0

without the assumption that either rk(t)≤ t or rk(t)≥ t were considered in [199].
We presented results for equations with variable arguments and coefficients, one

delay and one advanced term in the case where coefficients have any of four possible
sign combinations.

The results of Sect. 5.2 were published in [69]. The results of Sects. 5.3 and 5.4
were published in [79], and the results of Sects. 5.5 and 5.6 were extracted from [76].
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If the delayed term is positive, we not only claim the existence of a positive so-
lution but present sufficient conditions under which its asymptotics can be deduced
(i.e., a nonincreasing solution that tends to zero or a nondecreasing solution that
tends to infinity).

Below we present some open problems and topics for research and discussion.

1. Prove or disprove the following conjecture:
If (5.2.1), with ak(t) ≥ 0, has a nonoscillatory solution, then (5.2.7) with

positive and negative coefficients also has a nonoscillatory solution.
As the first step in this direction, prove or disprove:
If h(t)≥ t and the equation

ẋ(t)− a+(t)x
(
h(t)

)= 0

has a nonoscillatory solution, then the equation

ẋ(t)− a(t)x
(
h(t)

)= 0

also has a nonoscillatory solution, where a+(t)= max{a(t),0}.
If these conjectures are valid, obtain comparison results for advanced equa-

tions.
2. Deduce nonoscillation conditions for (5.2.1) with oscillatory coefficients. Os-

cillation results for an equation with a constant advance and an oscillatory co-
efficient were recently obtained in [264].

3. Consider advanced equations with positive and negative coefficients when the
numbers of positive and negative terms do not coincide.

4. Study existence and/or uniqueness problems for the initial value problem or
boundary value problems for advanced differential equations. Generally speak-
ing, it is not clear how to set up such problems.

5. Consider mixed equations of the form

ẋ(t)+
m∑

k=1

αkak(t)x
(
hk(t)

)+
n∑

i=1

βibi(t)x
(
gi(t)

)= 0, αk,βi = ±1,

and obtain sufficient nonoscillation conditions.
6. Prove or disprove:

Theorem 5.14 remains true without the assumption that the system (5.6.3)
has a positive solution.

7. Prove or disprove:
If a(t) ≥ b(t) ≥ 0 and (5.5.1) has an eventually positive solution with an

eventually nonpositive derivative that tends to zero, then all solutions of the
ordinary differential equation

ẋ(t)+ [a(t)− b(t)
]
x(t)= 0 (5.7.2)

tend to zero as t → ∞.
If b(t) ≥ a(t) ≥ 0 and (5.5.1) has an eventually positive solution with an

eventually nonnegative derivative that tends to infinity as t → ∞, then all solu-
tions of (5.7.2) tend to infinity.
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8. Find sufficient conditions when (5.6.1) has a positive nonincreasing so-
lution x(t) such that limt→∞ x(t) = 0 or find sufficient conditions when
(5.6.1) has a positive solution x(t) with a nonnegative derivative such that
limt→∞ x(t)= ∞.

9. Obtain sufficient conditions when the equation with one term that can be both
advanced and delayed and an oscillating coefficient

ẋ(t)+ a(t)x
(
g(t)

)= 0 (5.7.3)

has a positive solution. For instance, if a(t)[t − g(t)] is either positive or neg-
ative for any t , then (5.7.3) can be rewritten in the form (5.5.1) or (5.6.1), and
thus some conditions can be deduced from the results of the present chapter.

10. Prove or disprove:
Suppose a(t)≥ 0, b(t)≥ 0,

∫∞
0 [a(t)+ b(t)]dt = ∞.

If (5.3.1) has a positive solution, then this equation is asymptotically stable.
If (5.4.1) has a positive solution, then the absolute value of any nontrivial

solution tends to infinity.



Chapter 6
Neutral Differential Equations

6.1 Introduction and Preliminaries

In this chapter, we consider oscillation and nonoscillation properties of the scalar
neutral differential equation

ẋ(t)− a(t)ẋ
(
g(t)

)+ b(t)x
(
h(t)

)= 0, t ≥ t0. (6.1.1)

The chapter is organized as follows. Section 6.1 contains relevant definitions, no-
tations and auxiliary lemmas. Section 6.2 includes the main results of the chapter on
the equivalence of nonoscillation of (6.1.1), the existence of a positive solution for
a differential inequality and the existence of a nonnegative solution of some nonlin-
ear integral inequality explicitly constructed by (6.1.1). Sections 6.2 and 6.3 include
a comparison theorem and nonoscillation results for (6.1.1). Section 6.4 presents
conditions when all solutions of (6.1.1) are oscillatory. These results are obtained
by applying nonoscillation criteria and comparison with a differential equation con-
taining an infinite number of delays. It is to be noted that in the cases where the
neutral equation turns into a delay equation (either a(t)≡ 0 or g(t)≡ t), the oscil-
lation results for (6.1.1) coincide with these known for delay equations.

Section 6.5 contains conditions on initial functions and initial values that imply
positivity of the solution of the initial value problem. In Sect. 6.6, we discuss the
relation between nonoscillation and existence of a slowly oscillating solution. In
Sect. 6.7, we consider equations with positive and negative coefficients. Section 6.8
contains discussion and open problems.

We consider (6.1.1) under the following conditions:

(a1) a(t), b(t), g(t) and h(t) are Lebesgue measurable locally essentially bounded
functions.

(a2) a(t)≥ 0, supt≥t0 a(t) < 1.
(a3) g(t) ≤ t , limt→∞ g(t) = ∞ and the condition mesE = 0 implies

mesg−1(E)= 0, where mesE is the Lebesgue measure of the set E.
(a4) h(t)≤ t , limt→∞ h(t)= ∞.
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By Theorem A.10, see also papers [146, 147], the operator S : L∞[t0, b] →
L∞[t0, b] defined by the equality

(Sy)(t)=
{
a(t)y(g(t)), g(t)≥ t0,

0, g(t) < t0,
(6.1.2)

is bounded for any b > t0, and its spectral radius is r(S) < 1.
As a corollary of this result, we have the following lemma.

Lemma 6.1 Suppose a, g are Lebesgue measurable locally essentially bounded
functions and conditions (a2), (a3) hold. Then, for every b > t0 the inverse to the
I − S operator can be presented as (I − S)−1 = I + S + S2 + · · · , where I is the
identity operator. Operator (I − S)−1 is positive if a(t)≥ 0.

Consider now the differential equation with an infinite number of delays

ẋ(t)+
∞∑

k=0

bk(t)x
(
hk(t)

)= 0, t ≥ t0, (6.1.3)

where

b0(t)= b(t), bk+1(t)= (Sbk)(t), h0(t)= h(t), hk+1(t)= hk
(
g(t)

)
. (6.1.4)

By induction it is easy to see that

sup
t∈[t0,b]

∣∣bk(t)
∣∣≤ sup

t∈[t0,b]
∣∣a(t)

∣∣k sup
t∈[t0,b]

∣∣b(t)
∣∣.

Then

B(t)=
∞∑

k=0

bk(t)

is an essentially locally bounded function. Equation (6.1.3) with this condition co-
incides with (4.1.8), where K(t, s) ≡ 0, so all the results for (4.1.8) obtained in
Chap. 4 can be applied to (6.1.3).

Together with (6.1.1), we consider the initial value problem

ẋ(t)− a(t)ẋ
(
g(t)

)+ b(t)x
(
h(t)

)= f (t), t ≥ t0, (6.1.5)

x(t)= ϕ(t), ẋ(t)=ψ(t), t < t0, x(t0)= x0. (6.1.6)

We also assume that the following hypothesis holds:

(a5) f : [t0,∞)→ R is a Lebesgue measurable locally essentially bounded func-
tion and ϕ,ψ : (−∞, t0)→ R are Borel measurable bounded functions.

Definition 6.1 An absolutely continuous function x :R → R on each interval [t0, b]
is called a solution of problem (6.1.5), (6.1.6) if it satisfies (6.1.5) for almost all
t ∈ [t0,∞) and also satisfies (6.1.6).
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Definition 6.2 For each s ≥ t0, the solution X(t, s) of the problem

ẋ(t)− a(t)ẋ
(
g(t)

)+ b(t)x
(
h(t)

)= 0, x(t)= 0, ẋ(t)= 0, t < s, x(s)= 1
(6.1.7)

is called the fundamental function of (6.1.1).

We assumeX(t, s)= 0, 0 ≤ t < s. Note that the fundamental functions of (6.1.1)
and (6.1.3) coincide. Indeed, the condition x(t) = 0, ẋ(t) = 0, t < s implies that
(6.1.1) can be rewritten in the form (I − S)ẋ(t)+ b(t)x(h(t))= 0, t ≥ s, which is
equivalent to (6.1.3). By Theorem B.4, we have the following lemma.

Lemma 6.2 There exists one and only one solution of problem (6.1.5), (6.1.6); this
solution can be presented in the form

x(t)=X(t, t0)x0 +
∫ t

t0

X(t, s)
[
(I − S)−1f

]
(s)ds

+
∫ t

t1

X(t, s)
[
(I − S)−1F

]
(s)ds, (6.1.8)

where F(t) = a(t)ψ(g(t)) − b(t)ϕ(h(t)) and ψ(g(t)) = 0 for g(t) ≥ t0 and
ϕ(h(t))= 0 for h(t)≥ t0.

Definition 6.3 We will say that (6.1.1) has a nonoscillatory solution if there exists
a solution of (6.1.5), (6.1.6) with f ≡ 0 that is eventually positive or eventually
negative; otherwise, all solutions of (6.1.1) are oscillatory.

The same definition will be used for (6.1.3). We will need some properties
of (6.1.3). Consider together with (6.1.3) the equation

ẋ(t)+
∞∑

k=0

ck(t)x
(
pk(t)

)= 0, (6.1.9)

where functions ck are essentially locally bounded and for pk conditions (a4) hold.
The following lemma follows from Theorems 4.1 and 4.4.

Lemma 6.3

1) Suppose bk(t) ≥ 0 and (6.1.3) has a nonoscillatory solution. Then there exists
t0 ≥ 0 such that the fundamental function of (6.1.3) is positive for t ≥ s ≥ t0.

2) Suppose all solutions of (6.1.3) are oscillatory and ck(t) ≥ bk(t) ≥ 0, pk(t) ≤
hk(t). Then all solutions of (6.1.9) are oscillatory.

6.2 Nonoscillation Criteria

The following theorem establishes nonoscillation criteria.
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Theorem 6.1 Suppose b(t)≥ 0. Then the following hypotheses are equivalent:

1) For some t1 ≥ 0, the differential inequality

ẏ(t)− a(t)ẏ
(
g(t)

)+ b(t)y
(
h(t)

)≤ 0 (6.2.1)

has a positive solution y(t) > 0 for t > t1 satisfying y(t)= ẏ(t)= 0 for t < t1.
2) For some t1 ≥ 0, the integral inequality

u(t)≥ a(t)u
(
g(t)

)
exp

{∫ t

g(t)

u(s)ds

}
+ b(t) exp

{∫ t

h(t)

u(s)ds

}
(6.2.2)

has a nonnegative locally integrable solution u(t) for t ≥ t1, where u(t)= 0 for
t < t1.

3) For some t1 ≥ 0, (6.1.1) has a positive solution x(t) > 0, t > t1 with x(t) =
ẋ(t)= 0 for t < t1.

4) There exists t1 ≥ 0 such that the fundamental function is positive: X(t, s) > 0,
t ≥ s ≥ t1.

Proof 1)⇒ 2) Let y(t) be a positive solution of inequality (6.2.1); i.e., y(t) > 0 for
t ≥ t1 and y(t)= ẏ(t)= 0 for t < t1. Then y is also a solution of the inequality

ẏ(t)+ (I − S)−1[b(t)y
(
h(t)

)]≤ 0, t ≥ t1;
i.e., ẏ(t) ≤ −(I − S)−1[b(t)y(h(t))] ≤ 0 for each t ≥ t1 since by Lemma 6.1 the
operator (I − S)−1 is positive. Hence y is nonincreasing, the function u(t) defined
as

u(t)= − d

dt
ln
y(t)

y(t1)

is nonnegative for t ≥ t1 and

y(t)= y(t1) exp

{
−
∫ t

t1

u(s)ds

}
, t ≥ t1. (6.2.3)

After substituting (6.2.3) into (6.2.1) and carrying the exponent out of the brackets,
we obtain

− exp

{
−
∫ t

t1

u(s)ds

}
y(t0)

[
u(t)− a(t)u

(
g(t)

)
exp

{∫ t

g(t)

u(s)ds

}

− b(t) exp

{∫ t

h(t)

u(s)ds

}]
≤ 0,

which implies (6.2.2).
2)⇒ 3) Suppose u0(t), t ≥ t1, is a nonnegative solution of (6.2.2). Denote

un+1(t)= a(t)un
(
g(t)

)
exp

{∫ t

g(t)

un(s)ds

}
+ b(t) exp

{∫ t

h(t)

un(s)ds

}
. (6.2.4)

Since a, b are nonnegative and (6.2.2) holds for u= u0, we have

0 ≤ un+1(t)≤ un(t)≤ · · · ≤ u0(t).



6.2 Nonoscillation Criteria 153

Hence there exists a pointwise limit u(t) = limn→∞ un(t). The Lebesgue conver-
gence theorem (Theorem A.1) and (6.2.4) imply

u(t)= a(t)u
(
g(t)

)
exp

{∫ t

g(t)

u(s)ds

}
+ b(t) exp

{∫ t

h(t)

u(s)ds

}
.

Obviously

x(t)= exp

{
−
∫ t

t1

u(s)ds

}
, t ≥ t1, x(t)= ẋ(t)= 0, t < t1,

is a nonoscillatory solution of (6.1.1).
3)⇒ 4) Suppose x(t) > 0, t ≥ t0, x(t)= ẋ(t)= 0, t < t1 is a solution of (6.1.1).

Then it is also a positive solution of (6.1.3). Corollary 4.5 implies that the fundamen-
tal function of (6.1.3) is positive: X(t, s) > 0, t ≥ s ≥ t1. Since (6.1.1) and (6.1.3)
have the same fundamental functions, the fundamental function of (6.1.1) is also
positive for t ≥ s ≥ t1.

The implication 4)⇒ 1) is obvious. �

Remark 6.1 The equivalence of oscillation properties for (6.1.1) and the corre-
sponding differential inequality was demonstrated in [91, 252].

Corollary 6.1 Equation (6.1.3) has a nonoscillatory solution if and only if (6.1.1)
has a nonoscillatory solution.

Proof Equations (6.1.1) and (6.1.3) have the same fundamental functions, and the
reference to Theorem 6.1 completes the proof. �

As the next corollary of Theorem 6.1, let us obtain a comparison result. Consider
the neutral differential equation

ẋ(t)− a1(t)ẋ
(
g(t)

)+ b1(t)x
(
h1(t)

)= 0, (6.2.5)

where for parameters of (6.2.5) hypotheses (a1)–(a4) hold.

Theorem 6.2

1) Suppose that

0 ≤ a1(t)≤ a(t), 0 ≤ b1(t)≤ b(t), h(t)≤ h1(t),

(6.1.1) has a nonoscillatory solution, and its fundamental function is positive
for t ≥ t1. Then (6.2.5) also has a nonoscillatory solution, and its fundamental
function is positive for t ≥ t1.

2) Suppose that

0 ≤ a(t)≤ a1(t), 0 ≤ b(t)≤ b1(t), h1(t)≤ h(t),

and all solutions of (6.1.1) are oscillatory. Then all solutions of (6.2.5) are also
oscillatory.
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Proof 1) Theorem 6.1 yields that there exists a nonnegative solution u of inequality
(6.2.2). Then u is also a solution of this inequality, where a, b, g, h are replaced by
a1, b1, g1, h1. By Theorem 6.1, (6.2.5) has a nonoscillatory solution.

Statement 1) immediately implies 2). �

Remark 6.2 Another comparison theorem for (6.1.1) was obtained in [182].

Corollary 6.2 Let 0< a < 1, b > 0, σ ≥ 0, τ ≥ 0. Suppose that 0 ≤ a(t) ≤ a, 0 ≤
b(t)≤ b, g(t)= t − σ , h(t)≥ t − τ and the equation

ẋ(t)− aẋ(t − σ)+ bx(t − τ)= 0 (6.2.6)

has a nonoscillatory solution. Then (6.1.1) also has a nonoscillatory solution.
If a(t) ≥ a ≥ 0, b(t) ≥ b ≥ 0, g(t) = t − σ , h(t) ≤ t − τ and all solutions of

(6.2.6) are oscillatory, then all solutions of (6.2.6) are oscillatory.

In Theorem 6.2, we compared nonoscillation and oscillation properties of (6.1.1)
and (6.2.5) under the condition b(t)≥ 0, b1(t)≥ 0. In the next theorem, b1(t) is not
assumed to be nonnegative.

Theorem 6.3 Suppose b(t) ≥ 0, 0 ≤ a1(t) ≤ a(t), b1(t) ≤ b(t), h(t) ≤ h1(t),
(6.1.1) has a nonoscillatory solution, and its fundamental function is positive for
t ≥ t1. Then (6.2.5) also has a nonoscillatory solution, and its fundamental function
is positive for t ≥ t1.

Proof Since 0 ≤ b+
1 (t) ≤ b(t), by Theorem 6.2 the fundamental function X+(t, s)

of the equation

ẋ(t)− a1(t)ẋ
(
g(t)

)+ b+
1 (t)x

(
h1(t)

)= 0 (6.2.7)

is positive for t ≥ t1.
Consider the following problem for f ≥ 0, where f is a locally essentially

bounded function on [t1,∞):

ẋ(t)− a1(t)ẋ
(
g(t)

)+ b1(t)x
(
h1(t)

)= f (t), t ≥ t1, x(t)= ẋ(t)= 0, t ≤ t1.

(6.2.8)

Then

ẋ(t)− a1(t)ẋ
(
g(t)

)+ b+
1 (t)x

(
h1(t)

)= b−
1 (t)x

(
h1(t)

)+ f (t), t ≥ t1,

x(t)= ẋ(t)= 0 for t ≤ t1. Hence

x(t)=
∫ t

t1

X+(t, s)(I − S)−1[b−
1 (s)x

(
h1(s)

)]
ds + v(t),

where v(t)= ∫ t
t1
X+(t, s)(I −S)−1f (s)ds. By Corollary B.3, the functionX+(t, s)

is essentially bounded on [t1, b] × [t0, b] for any b > t0.
Then v(t)≥ 0 and v ∈ L∞[t1, b] for any b > t1.
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Denote

(T x)(t)=
∫ t

t1

X+(t, s)(I − S)−1[b−
1 (s)x

(
h1(s)

)]
ds.

Then T =KH , where

(Hx)(t)= (I − S)−1[b−
1 (t)x

(
h1(t)

)]
, (Ky)(t)=

∫ t

t1

X+(t, s)y(s)ds.

Operator H is a Volterra linear bounded operator (for the definition of Volterra op-
erators, see Appendix A) in the space L∞[t1, b]. Theorem A.4 implies that K is a
Volterra integral weakly compact operator in the space L∞[t1, b]. Then T =KH is
a weakly compact Volterra linear operator in the space L∞[t1, b] as a composition
of a continuous and a weakly compact operator. By Theorem A.7, its spectral radius
is r(T )= 0.

Hence, for the solution of problem (6.2.8) we have x(t) = (I − T )−1v(t) ≥ 0
for any v(t) ≥ 0. But we have another representation for this solution, x(t) =∫ t
t1
X(t, s)v(s)ds ≥ 0 for v(t) ≥ 0. Hence X(t, s) ≥ 0 for t ≥ s ≥ t1. The strict in-

equality X(t, s) > 0, t ≥ s ≥ t1 can be obtained as in the proof of Theorem 2.1. �

Corollary 6.3 Suppose that the integral inequality

u(t)≥ a(t)u
(
g(t)

)
exp

{∫ t

g(t)

u(s)ds

}
+ b+(t) exp

{∫ t

h(t)

u(s)ds

}
(6.2.9)

has a nonnegative locally integrable solution for t ≥ t1. Then (6.1.1) has a nonoscil-
latory solution, and its fundamental function is positive for t ≥ t1.

Let us now compare solutions of two neutral equations. To this end, consider
together with (6.1.5) and (6.1.6) the problem

ẏ(t)− a1(t)ẏ
(
g(t)

)+ b1(t)y
(
h(t)

)= f1(t), t ≥ t0, (6.2.10)

y(t)= ϕ1(t), ẏ(t)=ψ1(t), t < t0, y(t0)= y0. (6.2.11)

Suppose that for parameters of (6.2.10) and (6.2.11) conditions (a1)–(a5) hold. De-
note by Y(t, s) the fundamental function of (6.2.10).

Theorem 6.4 Suppose

a(t)≥ a1(t)≥ 0, b(t)≥ b1(t)≥ 0, f1(t)≥ f (t),

ϕ(t)≥ ϕ1(t), ψ1(t)≥ψ(t), y0 ≥ x0.

Suppose in addition that the solution x of (6.1.5) and (6.1.6) is positive and the
derivative ẋ is nonpositive for t > t0. Then y(t)≥ x(t) > 0, where y is the solution
of (6.2.10) and (6.2.11).
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Proof Let us rewrite (6.1.5) in the form

ẋ(t)− a1(t)ẋ
(
g(t)

)+ b1(t)x
(
h(t)

)

= [a(t)− a1(t)
]
ẋ
(
g(t)

)− [b(t)− b1(t)
]
x
(
h(t)

)+ f (t).

Then solution representation (6.1.8) for (6.1.5) and (6.1.6) has the form

x(t)= Y(t, t0)x0 +
∫ t

t0

Y(t, s)
[
(I − S)−1f

]
(s)ds

+
∫ t

t0

Y(t, s)(I − S)−1[(a(s)− a1(s)
)
ẋ
(
g(s)

)− (b(s)− b1(s)
)
x
(
h(s)

)]
ds

+
∫ t

t0

Y(t, s)(I − S)−1[a(s)ψ
(
g(s)

)− b(s)ϕ
(
h(s)

)]
ds,

where (I − S)−1 is a positive operator. For the solution y of (6.2.10) and (6.2.11),
we have

y(t)= Y(t, t0)y0 +
∫ t

t0

Y(t, s)
[
(I − S)−1f1

]
(s)ds

+
∫ t

t0

Y(t, s)(I − S)−1[a1(s)ψ1
(
g(s)

)− b1(s)ϕ1
(
h(s)

)]
ds.

Hence y(t)≥ x(t) > 0. �

6.3 Efficient Nonoscillation Conditions

Using Theorem 6.1 and Corollary 6.3, we will now obtain explicit nonoscillation
conditions.

Theorem 6.5 Suppose b+(t) > 0 almost everywhere and at least one of the follow-
ing conditions holds:

1) 0< λ< lim inf
t→∞

[
1

e
− a(t)b+(g(t))

b+(t)

]
exp

{
1

λ

∫ h(t)

g(t)

b+(s)ds
}
, (6.3.1)

where λ= lim supt→∞
∫ t
g(t)

b(s)ds;

2) 0< λ< lim inf
t→∞

[
1

e
− a(t)b+(g(t))

b+(t)
exp

{
1

λ

∫ g(t)

h(t)

b+(s)ds
}]
,

where λ= lim supt→∞
∫ t
h(t)

b+(s)ds;

3) 0< λ< lim inf
t→∞

1

e

[
1 − a(t)b+(g(t))

b(t)
exp

{
1

λ

∫ t

g(t)

b+(s)ds
}]
, (6.3.2)

where λ= lim supt→∞
∫ t
h(t)

b+(s)ds.
Then (6.1.1) has a nonoscillatory solution, and the fundamental function of this

equation is eventually positive.
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Proof It is sufficient to prove the theorem for b(t) ≥ 0. In the general case, Theo-
rem 6.3 can be applied.

1) We will show that u(t)= b(t)
λ

is a solution of inequality (6.2.2).
The definition of λ and inequality (6.3.1) yield that for some t1 > t0 and ε > 0

λ≤
(

1

e1+ε − a(t)b(g(t))

b(t)

)
exp

{
1

λ

∫ h(t)

g(t)

b(s)ds

}
, t ≥ t1, (6.3.3)

1

λ

∫ t

g(t)

b(s)ds ≤ 1 + ε, t ≥ t1. (6.3.4)

Inequality (6.3.3) implies

b(t)

λe1+ε ≥ 1

λ
a(t)b

(
g(t)

)+ b(t) exp

{
1

λ

∫ g(t)

h(t)

b(s)ds

}
.

Since by (6.3.4) we have 1
e1+ε ≤ exp{− 1

λ

∫ t
g(t)

b(s)ds},
b(t)

λ
exp

{
−1

λ

∫ t

g(t)

b(s)ds

}
≥ 1

λ
a(t)b

(
g(t)

)+ b(t) exp

{
1

λ

∫ g(t)

h(t)

b(s)ds

}

for t ≥ t1. Thus

b(t)

λ
≥ 1

λ
a(t)b

(
g(t)

)
exp

{
1

λ

∫ t

g(t)

b(s)ds

}
+ b(t) exp

{
1

λ

∫ t

h(t)

b(s)ds

}
, (6.3.5)

which implies that u(t) = b(t)
λ

is a nonnegative solution of inequality (6.2.2); con-
sequently, (6.1.1) has a nonoscillatory solution.

The proof if condition 2) holds is similar, with the same solution u(t)= b(t)
λ

of
inequality (6.2.2).

3) We will show that u(t)= b(t)
λ

is a solution of inequality (6.2.2).
The definition of λ and inequality (6.3.2) imply for some t1 > t0 and ε > 0

1

λ

∫ t

g(t)

b(s)ds ≤ 1 + ε, t ≥ t1,

λb(t)e1+ε ≤ b(t)− a(t)b
(
g(t)

)
exp

{
1

λ

∫ t

g(t)

b(s)ds

}
, t ≥ t1.

Then

λb(t) exp

{
1

λ

∫ t

h(t)

b(s)ds

}
≤ b(t)− a(t)b

(
g(t)

)
exp

{
1

λ

∫ t

g(t)

b(s)ds

}

for t ≥ t1, which is equivalent to (6.3.5). Therefore, by Theorem 6.1, (6.1.1) has a
nonoscillatory solution. �

Corollary 6.4 Suppose b+(t) > 0 almost everywhere and at least one of the follow-
ing conditions is satisfied:

1) g(t)≤ h(t), 0< lim sup
t→∞

∫ t

g(t)

b+(s)ds < lim inf
t→∞

[
1

e
− a(t)b+(g(t))

b+(t)

]
.
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2) h(t)≤ g(t), 0< lim sup
t→∞

∫ t

h(t)

b+(s)ds < lim inf
t→∞

[
1

e
− a(t)b+(g(t))

b+(t)

]
.

Then (6.1.1) has a nonoscillatory solution, and the fundamental function of this
equation is eventually positive.

Proof Since ex > 1 for x > 0, the statement of the corollary follows from conditions
1) and 2) of Theorem 6.5. �

Corollary 6.5 Suppose 0 < a < 1, b > 0, τ > 0, σ > 0 and at least one of the
following conditions holds:

1) bσ < ( 1
e

− a)e1− τ
σ ;

2) bτ < 1
e

− ae1− σ
τ ;

3) bτ < 1
e
(1 − ae

σ
τ ).

Then (6.2.6) has a nonoscillatory solution, and the fundamental function of this
equation is eventually positive.

Remark 6.3

1. The same results as in Corollary 6.5 by a different method were obtained in
[167].

2. Corollaries 6.1 and 6.5 can be employed to obtain explicit nonoscillation condi-
tions for (6.1.1).

Another set of explicit nonoscillation conditions for (6.1.1) can be obtained by
applying the following result.

Theorem 6.6 Suppose b+(t) > 0 almost everywhere and at least one of the follow-
ing conditions holds:

1) 0< λ< lim inf
t→∞

[
1

e(1 − a(t))
− a(t)b+(g(t))
b+(t)(1 − a(g(t)))

]
exp

{
1

λ

∫ h(t)

g(t)

b+(s)
1 − a(s)

ds

}
,

where

λ= lim sup
t→∞

∫ t

g(t)

b+(s)
1 − a(s)

ds;

2) 0< λ< lim inf
t→∞

[
1

e(1 − a(t))
− a(t)b+(g(t))
b+(t)(1 − a(g(t)))

exp

{
1

λ

∫ g(t)

h(t)

b+(s)
1 − a(s)

ds

}]
,

where

λ= lim sup
t→∞

∫ t

h(t)

b+(s)
1 − a(s)

ds;

3) 0< λ< lim inf
t→∞

1

e

[
1

1 − a(t)
− a(t)b+(g(t))
b+(t)(1 − a(g(t)))

exp

{
1

λ

∫ t

g(t)

b+(s)
1 − a(s)

ds

}]
,
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where

λ= lim sup
t→∞

∫ t

h(t)

b+(s)
1 − a(s)

ds.

Then (6.1.1) has a nonoscillatory solution, and the fundamental function of this
equation is eventually positive.

Proof The argument is similar to the proof of Theorem 6.5 if we assume

u(t)= b(t)

λ(1 − a(t))
. �

Corollary 6.6 Suppose b+(t) > 0 almost everywhere and at least one of the follow-
ing conditions is satisfied:

1) g(t)≤ h(t) and

0< lim sup
t→∞

∫ t

g(t)

b+(s)
1 − a(s)

ds < lim inf
t→∞

(
1

e(1 − a(t))
− a(t)b+(g(t))
b+(t)(1 − a(g(t)))

)
;

2) h(t)≤ g(t) and

0< lim sup
t→∞

∫ t

h(t)

b+(s)
1 − a(s)

ds < lim inf
t→∞

(
1

e(1 − a(t))
− a(t)b+(g(t))
b+(t)(1 − a(g(t)))

)
.

Then (6.1.1) has a nonoscillatory solution, and the fundamental function of this
equation is eventually positive.

Remark 6.4 If in (6.1.1) we assume g(t) ≡ t , then Theorem 6.6 implies the best
possible nonoscillation condition for this delay equation:

lim sup
t→∞

∫ t

h(t)

b+(s)
1 − a(s)

ds <
1

e
.

The following theorem is a generalization of the well-known nonoscillation con-
dition for delay differential equations.

Theorem 6.7 Suppose b+(t) > almost everywhere,
∫ ∞

t1

b+(s)ds <∞, lim sup
t→∞

[
1

e
− a(t)b+(g(t))

b+(t)

]
> 0, (6.3.6)

and h(t)− g(t) is a nonoscillatory function.
Then (6.1.1) has a nonoscillatory solution.

Proof We have

lim sup
t→∞

∫ t

h(t)

b+(s)ds = lim sup
t→∞

∫ t

g(t)

b+(s)ds = 0.

Corollary 6.4 implies that (6.1.1) has a nonoscillatory solution. �
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Corollary 6.7 Suppose
∫ ∞

t1

b+(s)ds <∞, lim sup
t→∞

a(t) <
1

e
, lim sup

t→∞
b+(g(t))
b+(t)

≤ 1,

and h(t)− g(t) is a nonoscillatory function.
Then (6.1.1) has a nonoscillatory solution.

Proof For some t1 ≥ t1, ε > 0, we have

a(t)≤ 1

e
− ε,

b+(g(t))
b+(t)

≤ 1 + ε, t ≥ t1.

Hence
a(t)b+(g(t))

b+(t)
≤ 1

e
− ε

(
1 − 1

e

)
− ε2, t ≥ t1.

Then

lim sup
t→∞

[
1

e
− a(t)b+(g(t))

b+(t)

]
> 0. �

Example 6.1 Consider the equation

ẋ(t)− a(t)ẋ(t − σ)+ b

tα
x
(
h(t)

)= 0, t ≥ t1 > 0, (6.3.7)

where 0 ≤ lim supt→∞ a(t) < 1
e
, b > 0, α > 1, σ > 0, limt→∞ h(t)= ∞, h(t)≤ t .

By Corollary 6.7, (6.3.7) has a nonoscillatory solution.

Theorem 6.8 Let b(t) ≥ 0,
∫∞
t1
b(s)ds = ∞. Then, for every nonoscillatory solu-

tion of (6.1.1), we have limt→∞ x(t)= 0.

Proof If x(t) > 0 for t ≥ t1, then for some t2 ≥ t1 the function u(t) = − ẋ(t)
x(t)

is a
nonnegative solution of (6.2.2) for t ≥ t2 (see the proof of Theorem 6.1). Inequality
(6.2.2) implies u(t) ≥ b(t); hence

∫∞
t1
u(s)ds = ∞. For the solution x of (6.1.1),

we have x(t) = x(t2) exp{− ∫ t
t2
u(s)ds} for t ≥ t2. Then limt→∞ x(t) = 0, which

completes the proof. �

6.4 Explicit Oscillation Conditions

In this section, we assume that b(t)≥ 0.
Denote p(t)= max{g(t), h(t)}.

Theorem 6.9 Suppose

lim inf
t→∞

∫ t

p(t)

[
a(s)b

(
g(s)

)
exp

{∫ p(s)

g(s)

b(τ )dτ

}

+ b(s) exp

{∫ p(s)

h(s)

b(τ )dτ

}]
ds >

1

e
. (6.4.1)

Then all solutions of (6.1.1) are oscillatory.
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Proof Suppose there exists a nonoscillatory solution of (6.1.1). Then there exists a
nonnegative solution u of inequality (6.2.2) for t ≥ t1 ≥ t1. Let us rewrite inequality
(6.2.2) in the form

u(t) exp

{
−
∫ t

p(t)

u(s)ds

}
≥ a(t)u

(
g(t)

)
exp

{∫ p(t)

g(t)

u(s)ds

}

+ b(t) exp

{∫ p(t)

h(t)

u(s)ds

}
, t ≥ t1.

Then
∫ t

p(t)

u(s) exp

{
−
∫ s

p(s)

u(τ )dτ

}
ds

≥
∫ t

p(t)

[
a(s)u

(
g(s)

)
exp

{∫ p(s)

g(s)

u(τ )dτ

}
+ b(s) exp

{∫ p(s)

h(s)

u(τ )dτ

}]
ds

for t ≥ t1. Inequality (6.2.2) implies u(t)≥ b(t), and therefore
∫ t

p(t)

u(s) exp

{
−
∫ s

p(s)

u(τ )dτ

}
ds

≥
∫ t

p(t)

[
a(s)b

(
g(s)

)
exp

{∫ p(s)

g(s)

b(τ )dτ

}
+ b(s) exp

{∫ p(s)

h(s)

b(τ )dτ

}]
ds

for t ≥ t1. From
∫ t

p(t)

u(s) exp

{
−
∫ s

p(s)

u(τ )dτ

}
ds

≤
∫ t

p(t)

u(s) exp

{
− inf
t≥t1

∫ t

p(t)

u(τ )dτ

}
ds

= exp

{
− inf
t≥t1

∫ t

p(t)

u(τ )dτ

}∫ t

p(t)

u(s)ds,

we conclude that

exp

{
− inf
t≥t1

∫ t

p(t)

u(τ )dτ

}
inf
t≥t1

∫ t

p(t)

u(s)ds

≥ inf
t≥t1

∫ t

p(t)

[
a(s)b

(
g(s)

)
exp

{∫ p(s)

g(s)

b(τ )dτ

}
+ b(s) exp

{∫ p(s)

h(s)

b(τ )dτ

}]
ds.

The equality supt≥0 te
−t = 1/e implies

lim inf
t→∞

∫ t

p(t)

[
a(s)b

(
g(s)

)
exp

{∫ p(s)

g(s)

b(τ )dτ

}
+ b(s) exp

{∫ p(s)

h(s)

b(τ )dτ

}]
ds ≤ 1

e
.

This is a contradiction with (6.4.1), which proves the theorem. �

Corollary 6.8 Suppose 0 < a < 1, b > 0, τ ≥ 0, σ ≥ 0 and at least one of the
following conditions holds:
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1) σ ≤ τ , σb(a + eτ−σ ) > 1/e;
2) σ ≥ τ , τb(1 + aeσ−τ ) > 1/e.

Then all solutions of (6.2.6) are oscillatory.

Corollary 6.1 yields that oscillation properties of (6.1.1) and (6.1.3) are equiva-
lent. As a corollary of this statement, we can obtain additional explicit oscillation
conditions.

Theorem 6.10 Suppose all solutions of the delay differential equation

ẋ(t)+ b(t)x
(
h(t)

)= 0 (6.4.2)

are oscillatory. Then all solutions of (6.1.1) are oscillatory.

Proof Suppose (6.1.1) has a nonoscillatory solution. Corollary 6.1 yields that
(6.1.3) has a nonoscillatory solution. Hence, for some t1 ≥ t1, solution x of (6.1.3)
with x(t)= 0 for t ≤ t1 and x(t1)= 1 is positive. Then

ẋ(t)+ b(t)x
(
h(t)

)≤ 0, t ≥ t1.

By Theorem 2.1, (6.4.2) has a nonoscillatory solution. We have a contradiction with
the assumption of the theorem, which completes the proof. �

Corollary 6.9 Suppose

lim inf
t→∞

∫ t

h(t)

b(s)ds >
1

e
.

Then all solutions of (6.1.1) are oscillatory.

Corollary 6.10 Suppose h(t)≡ t , and

lim inf
t→∞

∫ t

g(t)

a(s)b
(
g(s)

)
exp

{∫ s

g(s)

b(τ )dτ

}
ds >

1

e
. (6.4.3)

Then all solutions of (6.1.1) are oscillatory.

Proof If h(t)≡ t , then (6.1.3) has the form

ẋ(t)+ b(t)x(t)+ a(t)b
(
g(t)

)
x
(
g(t)

)+ · · · = 0. (6.4.4)

After substituting x(t) = y(t) exp{− ∫ t
t1
b(s)ds} in (6.4.4) and multiplying both

sides by exp{∫ t
t1
b(s)ds}, we have

ẏ(t)+ a(t)b
(
g(t)

)
exp

{∫ t

g(t)

b(s)ds

}
y
(
g(t)

)+ · · · = 0.

Condition (6.4.3) and the proof of Theorem 6.10 imply that all solutions of this
equation and therefore all solutions of (6.1.1) are oscillatory. �
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Theorem 6.11 Suppose h(t) is a nondecreasing function and all solutions of the
equation

ẋ(t)+ ((I − S)−1b
)
(t)x

(
h(t)

)= 0 (6.4.5)

are oscillatory. Then all solutions of (6.1.1) are oscillatory, where the operator S is
defined by (6.1.2) and acts in the space L∞[t1, c] for any c > t1.

Proof Equation (6.4.5) can be rewritten in the form

ẋ(t)+
∞∑

k=0

bk(t)x
(
h(t)

)= 0, (6.4.6)

where bk(t) are defined by (6.1.4). We have h(g(t))≤ h(t) and hence hk(t)≤ h(t),
with hk(t) also defined in (6.1.4). Lemma 6.3 implies that all solutions of (6.1.3) are
oscillatory. By Corollary 6.1, all solutions of (6.1.1) are also oscillatory. �

Corollary 6.11 Suppose h(t) is a nondecreasing function and

lim inf
t→∞

∫ t

h(t)

(
(I − S)−1b

)
(s)ds >

1

e
.

Then all solutions of (6.1.1) are oscillatory.

Corollary 6.12 Suppose h(t) is a nondecreasing function and for some n ≥ 0 all
solutions of the equation

ẋ(t)+
n∑

k=0

bk(t)x
(
h(t)

)= 0

are oscillatory, where the coefficients bk are defined in (6.1.4). Then all solutions of
(6.1.1) are also oscillatory.

Corollary 6.13 Let 0< a < 1, b > 0, τ ≥ 0, σ ≥ 0, bτe > 1 −a. Then all solutions
of (6.2.6) are oscillatory.

Proof We have ((I − S)−1b)(t) = b + abχ[τ,∞)(t) + a2bχ[2τ,∞)(t) + · · · , where
χI is the characteristic function of the interval I .

Hence t ∈ [nτ, (n+ 1)τ ) implies
∫ t

t−τ
(
(I − S)−1b

)
(s)ds = bτ + abτ + · · · + anbτ.

Then, by the conditions of the corollary,

lim inf
t→∞

∫ t

t−τ
(
(I − S)−1b

)
(s)ds = bτ + abτ + · · · + anbτ + · · · = bτ

1 − a
>

1

e
. �
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6.5 Positivity of Solutions

In this section, explicit conditions on initial data are obtained that imply positivity
of the solution of initial value problem (6.1.5), (6.1.6).

Theorem 6.12 Suppose b(t)≥ 0 and for t ≥ t1 there exists a nonnegative solution
of the inequality

u(t)≥ a(t)u
(
g(t)

)
exp

{∫ t

max{t1,g(t)}
u(s)ds

}

+ b(t) exp

{∫ t

max{t1,h(t)}
u(s)ds

}
, (6.5.1)

where u(t)= 0, t ≥ t1. If

x(t1)= x0 > 0, ϕ(t)≤ x(t1), ψ(t)≥ 0, f (t)≥ 0, (6.5.2)

then for the solution of (6.1.5), (6.1.6) we have x(t) > 0, t ≥ t1.

Proof Let u be a nonnegative solution of (6.5.1). Denote

v(t)=
{
x0 exp{− ∫ t

t1
u(s)ds}, t ≥ t1,

x0, t ≤ t1.

We have for t ≥ t1

v̇(t)− a(t)v̇
(
g(t)

)+ b(t)v
(
h(t)

)

= −x0u(t) exp

{
−
∫ t

t1

u(s)ds

}
+ x0a(t)u

(
g(t)

)
exp

{
−
∫ g(t)

t1

u(s)ds

}

+ x0b(t) exp

{
−
∫ h(t)

t1

u(s)ds

}

= −x0 exp

{
−
∫ t

t1

u(s)ds

}[
u(t)− a(t)u

(
g(t)

)
exp

{∫ t

max{t1,g(t)}
u(s)ds

}

− b(t) exp

{∫ t

max{t1,h(t)}
u(s)ds

}]
≤ 0.

Hence v(t) is a solution of the problem

v̇(t)− a(t)v̇
(
g(t)

)+ b(t)v
(
h(t)

)= r(t),

v(t)= x0, t ≤ t1, v̇(t)= 0, t < t1,

where r(t)≤ 0.
The assumptions of this theorem and Theorem 6.4 imply that the solution x of

(6.1.5), (6.1.6) satisfies x(t)≥ v(t) > 0, which completes the proof. �



6.6 Slowly Oscillating Solutions 165

6.6 Slowly Oscillating Solutions

As was mentioned in the previous sections, if an ordinary linear differential equation
of the second order has an oscillatory solution, then all its solutions are oscillatory.
For delay differential equations this is not true, but under certain conditions the
existence of a slowly oscillating solution for either the associated or the original
equation implies oscillation of all solutions.

In [142, 145], several new explicit sufficient conditions of oscillation for neutral
equations are obtained by an explicit construction of such slowly oscillating solu-
tions for the associated equation.

We present here a similar oscillation criterion for a neutral equation. Unlike the
results of [142, 145] and similar to the previous chapters, the existence of a slowly
oscillatory solution is assumed for (6.1.1) and not for the associated equation. More-
over, the delays are not necessarily monotone. Let us start with the definition of
slowly oscillating solutions for a neutral equation.

Definition 6.4 A solution x of (6.1.1) is said to be slowly oscillating if for every
t0 ≥ t0 there exist t1 > t0 and t2 > t0 such that

g(t)≥ t1, h(t)≥ t1 for t ≥ t2;
x(t2)= 0; x(t) > 0, ẋ(t)≤ 0, t ∈ [t1, t2).

(6.6.1)

Remark 6.5 In the case of constant delays g(t) = t − τ , h(t) = t − σ , the solu-
tion x is slowly oscillating if there exists a sequence of intervals [t1n, t2n) such that
x(t1n)= x(t2n)= 0, the solution is positive and its derivative is nonpositive on these
intervals, while the lengths of the intervals are greater than max{τ, σ }.
Theorem 6.13 Suppose b(t) ≥ 0. If there exists a slowly oscillating solution
of (6.1.1), then all solutions of this equation are oscillatory.

Proof Denote by x a slowly oscillating solution of (6.1.1). Suppose that this equa-
tion also has a nonoscillatory solution. Then, by Theorem 6.1, for a certain t0 ≥ t0
we have X(t, s) > 0 if t ≥ s > t0.

There exist numbers t1 > t0 and t2 > t0 such that condition (6.6.1) holds.
Due to (6.1.8), for t ≥ t2, the solution x can be presented as

x(t)=
∫ t

t2

X(t, s)
[
a(t)ẋ

(
g(s)

)− b(t)x
(
h(s)

)]
ds, (6.6.2)

where x(g(s))= 0 if g(s) > t2 and x(h(s))= 0 if h(s) > t2. The inequalities g(t)≥
t1, h(t) ≥ t1 for t ≥ t2 yield that the expression under the integral in (6.6.2) can
differ from zero only if t1 < g(t), h(s) < t2. Therefore, by (6.6.1) in the equality
(6.6.2), we have x(h(s)) > 0, ẋ(g(t)) ≤ 0. Consequently, (6.6.2) implies x(t) ≤ 0
for each t ≥ t2. This contradicts the assumption that x is an oscillatory solution,
which completes the proof. �

Corollary 6.14 Suppose b(t) ≥ 0 and there exists a nonoscillatory solution
of (6.1.1). Then (6.1.1) has no slowly oscillating solutions.
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6.7 Neutral Equations with Positive and Negative Coefficients

In this section, we consider the equation

ẋ(t)− a(t)ẋ
(
g(t)

)+ b(t)x
(
h(t)

)− c(t)x
(
r(t)
)= 0, t ≥ t0, (6.7.1)

where conditions (a1)–(a3) hold and b(t)≥ c(t)≥ 0, h(t)≤ r(t)≤ t .

Theorem 6.14 Suppose that the integral inequality

u(t)≥ a(t)u
(
g(t)

)
exp

{∫ t

g(t)

u(s)ds

}

+ b(t) exp

{∫ t

h(t)

u(s)ds

}
− c(t) exp

{∫ t

r(t)

u(s)ds

}
, (6.7.2)

where u(t)= 0, t < t1, has a nonnegative locally integrable solution for t ≥ t1. Then
the fundamental function of (6.7.1) is positive for t ≥ s ≥ t1.

Proof Suppose that u0(t), t ≥ t1 is a nonnegative solution of (6.7.2). Denote

un+1(t)= a(t)un
(
g(t)

)
exp

{∫ t

g(t)

un(s)ds

}

+ b(t) exp

{∫ t

h(t)

un(s)ds

}
− c(t) exp

{∫ t

r(t)

un(s)ds

}
. (6.7.3)

We have

un+1(t)= a(t)un
(
g(t)

)
exp

{∫ t

g(t)

un(s)ds

}

+ (b(t)− c(t)
)

exp

{∫ t

h(t)

un(s)ds

}

+ c(t)

[
exp

{∫ t

h(t)

un(s)ds

}
− exp

{∫ t

r(t)

un(s)ds

}]
.

By (6.7.2) and the theorem assumptions, we have u0(t) ≥ u1(t) ≥ 0, and hence
by induction

0 ≤ un+1(t)≤ un(t)≤ · · · ≤ u0(t).

The monotone sequence un(t) has a pointwise limit u(t) = limn→∞ un(t). The
Lebesgue convergence theorem (Theorem A.1) and (6.7.3) imply

u(t)= a(t)u
(
g(t)

)
exp

{∫ t

g(t)

u(s)ds

}
+ b(t) exp

{∫ t

h(t)

u(s)ds

}

− c(t) exp

{∫ t

r(t)

u(s)ds

}
,
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and thus the function

x(t)= exp

{
−
∫ t

t0

u(s)ds

}
, t ≥ t0, x(t)= ẋ(t)= 0, t < t1,

is a nonoscillatory solution of (6.7.1), which completes the proof. �

For comparison, consider the equation

ẋ(t)− a1(t)ẋ
(
g(t)

)+ b1(t)x
(
h1(t)

)− c1(t)x
(
r1(t)

)= 0, t ≥ t0. (6.7.4)

We assume that for (6.7.4) conditions (a1)–(a3) hold and b1(t)≥ c1(t)≥ 0, h1(t)≤
r1(t)≤ t .

Corollary 6.15 Suppose

a1(t)≤ a(t), c(t)≤ c1(t)≤ b1(t)≤ b(t),

h(t)≤ h1(t)≤ r1(t)≤ r(t).

If inequality (6.7.2) has a nonnegative locally integrable solution for t ≥ t1, then the
fundamental function of (6.7.4) is positive for t ≥ s ≥ t1.

Proof If u(t), t ≥ t0, is a nonnegative solution of inequality (6.7.2), then this func-
tion is also a solution of the same inequality, where a, b, c, h, r are replaced by a1,
b1, c1, h1, r1. �

Corollary 6.16 Let 0< a < 1, 0 ≤ c ≤ c(t)≤ b(t)≤ b, σ > 0, τ > 0, δ > 0, δ ≤ τ ,

a(t)≤ a, c ≤ c(t)≤ b(t)≤ b, g(t)= t − σ, t − τ ≤ h(t)≤ r(t)≤ t − δ,

and suppose that the inequality

λ
(
1 − aeλσ

)≥ beλτ − ceλδ (6.7.5)

has a positive solution. Then (6.7.1) has a nonoscillatory solution.

Proof The equation

ẋ(t)− aẋ(t − σ)+ bx(t − τ)− cx(t − δ)= 0 (6.7.6)

has a nonoscillatory solution [192] if and only if the inequality (6.7.5) has a positive
solution, which implies the result of the corollary. �

The following theorem gives explicit nonoscillation conditions based on Theo-
rem 6.14.

Theorem 6.15 Suppose for t ≥ t1
∫ t

min{g(t),h(t)}
[
eb(s)− c(s)

]
ds + ln

[
a(t)(eb(g(t))− c(g(t)))

b(t)
+ 1

]
≤ 1. (6.7.7)

Then (6.7.1) has a positive fundamental function for t ≥ s ≥ t1.
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Proof Consider

ẋ(t)− a(t)ẋ
(
g(t)

)+ b(t)x
(
h(t)

)− c(t)x(t)= 0 (6.7.8)

as a comparison equation. Inequality (6.7.2) for this equation has the form

u(t)≥ a(t)u
(
g(t)

)
exp

{∫ t

g(t)

u(s)ds

}
+ b(t) exp

{∫ t

h(t)

u(s)ds

}
− c(t). (6.7.9)

If inequality (6.7.9) has a nonnegative solution, then (6.7.8) has a positive funda-
mental function, and hence (6.7.1) also has a positive fundamental function.

We will show that the function u0(t) = eb(t) − c(t) is a solution of inequality
(6.7.9). After substituting u(t)= u0(t) in (6.7.9), we have

eb(t)≥ a(t)
[
eb
(
g(t)

)− c
(
g(t)

)]
exp

{∫ t

g(t)

(
eb(s)− c(s)

)
ds

}

+ b(t) exp

{∫ t

h(t)

(
eb(s)− c(s)

)
ds

}
. (6.7.10)

Inequality (6.7.10) holds if the condition

eb(t)≥ [a(t)(eb(g(t))− c
(
g(t)

))+ b(t)
]

exp

{∫ t

min{g(t),h(t)}
(
eb(s)− c(s)

)
ds

}

is satisfied, which is equivalent to (6.7.7). The proof of the theorem is complete. �

Corollary 6.17 If b(t)≥ 0 and
∫ t

min{g(t),h(t)}
b(s)ds + 1

e
ln

[
ea(t)b(g(t))

b(t)
+ 1

]
≤ 1

e
, t ≥ t1,

then (6.1.1) has a positive fundamental function for t ≥ s ≥ t1.

Corollary 6.18 If 0< a < 1, 0< c < b, σ ≥ 0, 0 ≤ δ ≤ τ and

(eb− c)max{τ, σ } + ln

(
a(eb− c)

b
+ 1

)
≤ 1,

then (6.7.6) has a positive fundamental function.

Corollary 6.19 If 0< a < 1, b > 0, τ ≥ 0, σ ≥ 0 and

bmax{τ, σ } + 1

e
ln(ea + 1)≤ 1

e
,

then (6.2.6) has a positive fundamental function.

6.8 Discussion and Open Problems

This chapter deals with nonoscillation and oscillation of scalar neutral differential
equations.
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A linear neutral type equation can be written in the two forms

(
x(t)− a(t)x

(
g(t)

))′ +
m∑

k=1

bk(t)x
(
hk(t)

)= 0, (6.8.1)

ẋ(t)− a(t)ẋ
(
g(t)

)+
m∑

k=1

bk(t)x
(
hk(t)

)= 0, (6.8.2)

where g(t)≤ t , hk(t)≤ t . Equations (6.8.1) and (6.8.2) are similar; however, there
are differences between them. For example, unlike (6.8.2), solution x of (6.8.1) is
an arbitrary continuous function such that x(t)− a(t)x(g(t)) is differentiable. Thus
(6.8.1) in general cannot be rewritten in the form (6.8.2) and vice versa. Concerning
the connection of (6.8.1) with (6.8.2), we mention here the paper [145], where the
oscillation of (6.8.1) was studied by applying an adjoint equation that has the form
(6.8.2). For the autonomous case in the neutral part when a(t)≡ a and g(t)≡ t−σ ,
(6.8.1) and (6.8.2) are the same once we consider only differentiable solutions x(t).
In this case, the results of this chapter coincide with the known ones.

It is to be emphasized that (6.8.1) is much better studied than (6.8.2). Extensive
literature on (6.8.1) is concerned with existence and uniqueness theorems and es-
pecially stability and oscillation theories; see monographs [154, 167, 192, 201] and
references therein.

Equation (6.8.2) is a natural representative of neutral type equations. There ex-
ist applied problems that can be written in the form (6.8.2); see [226]. The mono-
graph [29] contains solvability and uniqueness results, the solution representation
for (6.8.2) and elements of stability theory. The recent monograph [239] involves
stability results for (6.8.2). We also mention here papers [22–24], where a new
method based on the Bohl-Perron theorem was applied to investigate the stability
of (6.8.2).

Though there exists a developed stability theory for (6.8.2), surprisingly there
are only a few publications on its oscillation. We mention here the paper [182],
where comparison results for (6.8.2) were obtained and two papers [80, 178] where
positivity of the fundamental function of (6.8.2) was studied.

Theorem 6.14 and Theorem 6.15 are new. All other results of this chapter were
published in [51, 52, 56]. More results on nonoscillation of neutral type equations
can be found in [88, 205, 253, 270, 273, 274, 277, 304, 316, 321, 356, 358], see also
[196, 212, 245, 305, 344, 345, 355].

Finally, let us state some open problems in the theory of neutral equations, pos-
sible generalizations, topics for research and discussion.

1. Consider nonoscillation and oscillation properties of (6.1.1) in the case −1 <
a(t) < 0.

2. Consider nonoscillation and oscillation properties of (6.1.1) in the case |a(t)|<1,
where a(t) is an oscillatory function; for example,

a(t)= α sin t, |α|< 1.

3. Consider oscillation properties of (6.1.1) in the case where b(t) is an oscillatory
function.
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4. Consider nonoscillation and oscillation properties of the following neutral equa-
tions:

• integrodifferential neutral equation

ẋ(t)−
∫ t

−∞
K(t, s)ẋ(s)ds +

∫ t

−∞
L(t, s)x(s)ds = 0,

• neutral equation with distributed delays

ẋ(t)−
∫ t

−∞
ẋ(s)dsR(t, s)+

∫ t

−∞
x(s)dsP (t, s)= 0,

and mixed equations containing both delay and integral terms where for the ker-
nels of the integral operators the following conditions hold:

∫ t

−∞
∣∣K(t, s)

∣∣ds ≤ λ < 1,
∫ t

−∞
∣∣dsR(t, s)

∣∣≤ λ < 1.

5. Suppose b(t) ≥ b0 > 0 and (6.1.1) has a nonoscillatory solution. Prove or dis-
prove:

Every nonoscillatory solution of (6.1.1) tends to zero.
Is it is true for any solution of (6.1.1)?



Chapter 7
Second-Order Delay Differential Equations

7.1 Introduction

In this chapter, we consider oscillation of second-order delay differential equations.
The methods previously used for the study of first-order equations are applied here
to equations of the second order.

The chapter is organized as follows. Section 7.2 contains relevant definitions and
notation. In Sect. 7.3, the equivalence of four properties is established: nonoscilla-
tion of solutions of a delay differential equation and the corresponding differential
inequality, positivity of the fundamental function and the existence of a nonnegative
solution of a generalized Riccati inequality. In Sect. 7.4, comparison results are pre-
sented. Section 7.5 includes some explicit nonoscillation and oscillation tests. Sec-
tion 7.7 contains conditions under which the solution of the initial value problem is
positive. Section 7.8 discusses the results, and some open problems are outlined.

7.2 Preliminaries

We consider the scalar delay differential equation of the second order

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= 0 (7.2.1)

under the following conditions:

(a1) ak , k = 1, · · · ,m, are Lebesgue measurable and locally essentially bounded
functions on [0,∞).

(a2) gk : [0,∞) → R are Lebesgue measurable functions, gk(t) ≤ t , t ≥ 0,
limt→∞ gk(t)= ∞, k = 1, · · · ,m.

Together with (7.2.1), consider for each t0 ≥ 0 the initial value problem

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= f (t), t ≥ t0, (7.2.2)
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x(t)= ϕ(t), t < t0, x(t0)= x0, ẋ(t0)= x′
0. (7.2.3)

We also assume that the following hypothesis holds:

(a3) f : [t0,∞)→ R is a Lebesgue measurable locally essentially bounded func-
tion and ϕ : (−∞, t0)→R is a Borel measurable bounded function.

Definition 7.1 A function x : R → R with derivative ẋ locally absolutely continu-
ous on [t0,∞) is called a solution of problem (7.2.2), (7.2.3) if it satisfies (7.2.2)
for almost every t ∈ [t0,∞) and equalities (7.2.3) for t ≤ t0.

Definition 7.2 For each s ≥ 0, the solution X(t, s) of the problem

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= 0, t ≥ s,

x(t)= 0, t ≤ s, ẋ(s)= 1,

(7.2.4)

is called the fundamental function of (7.2.1).

We assume X(t, s) = 0, 0 ≤ t < s. Let functions x1 and x2 be the solutions of
the problems

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= 0, t ≥ t0, x(t)= 0, t < t0,

with the initial values x1(t0)= 1, ẋ1(t0)= 0 and x2(t0)= 0, ẋ2(t0)= 1, respectively.
By definition, x2(t)=X(t, t0).

Theorem B.5 implies the following result.

Lemma 7.1 Let (a1)–(a3) hold. Then there exists one and only one solution of prob-
lem (7.2.2), (7.2.3) that can be presented in the form

x(t)= x1(t)x0 +X(t, t0)x
′
0 +
∫ t

t0

X(t, s)f (s)ds

−
m∑

k=1

∫ t

t0

X(t, s)ak(s)ϕ
(
gk(s)

)
ds, (7.2.5)

where ϕ(gk(s))= 0 if gk(s) > t0.

7.3 Nonoscillation Criteria

Definition 7.3 We will say that (7.2.1) has a positive solution for t > t0 if there
exist an initial function ϕ and numbers x0 and x′

0 such that the solution of initial
value problem (7.2.2), (7.2.3) (f ≡ 0) is positive for t > t0.
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Together with (7.2.1), consider the second-order delay differential inequality

ÿ(t)+
m∑

k=1

ak(t)y
(
gk(t)

)≤ 0. (7.3.1)

The following theorem establishes nonoscillation criteria.

Theorem 7.1 Suppose ak(t)≥ 0 for t ≥ 0, k = 1, · · · ,m. Then the following state-
ments are equivalent:

1) Inequality (7.3.1) has an eventually positive solution.
2) There exists t1 ≥ 0 such that the inequality

u̇(t)+ u2(t)+
m∑

k=1

ak(t) exp

{
−
∫ t

gk(t)

u(s)ds

}
≤ 0, (7.3.2)

where u(t)= 0 for t < t1, has a nonnegative locally absolutely continuous solu-
tion for t ≥ t1.

3) There exists t2 ≥ 0 such that X(t, s) > 0, t > s ≥ t2.
4) Equation (7.2.1) has an eventually positive solution.

Proof Let us justify the implications 1)⇒ 2)⇒ 3)⇒ 4)⇒ 1).
1) ⇒ 2) Let y(t) be a positive solution of inequality (7.3.1) for t > t0. Then

there exists a point t1 such that gk(t)≥ t0 if t ≥ t1. We can assume without loss of
generality that y(t1)= 1. Since y(t) > 0 and ÿ(t)≤ 0, t ≥ t1, we have ẏ(t)≥ 0 for
t ≥ t1.

Let us assume the contrary, that d = ẋ(t2) < 0 for some t2 > t1. Then ẍ(t) ≤ 0
for t ≥ s implies ẋ(t) ≤ ẋ(t2) < 0 for t > t2, and thus limt→∞ x(t) = −∞, which
contradicts the assumption x(t)≥ 0, t ≥ t1.

Denote u(t)= ẏ(t)
y(t)

if t ≥ t1 and u(t)= 0 if t < t1. Then u is a nonnegative locally
absolutely continuous function. Equalities ẏ(t)− u(t)y(t)= 0, y(t1)= 1 imply

y(t)= exp

{∫ t

t1

u(s)ds

}
, ẏ(t)= u(t) exp

{∫ t

t1

u(s)ds

}
,

ÿ(t)= u̇(t) exp

{∫ t

t1

u(s)ds

}
+ u2(t) exp

{∫ t

t1

u(s)ds

}
, t ≥ t1.

(7.3.3)

We substitute (7.3.3) into (7.3.1) and obtain after carrying the exponent out of the
brackets the inequality

exp

{∫ t

t1

u(s)ds

}[
u̇(t)+ u2(t)+

m∑

k=1

ak(t) exp

{
−
∫ t

gk(t)

u(s)ds

}]
≤ 0. (7.3.4)

Since ak(t)≥ 0, inequality (7.3.4) implies (7.3.2).
2)⇒ 3) Consider the initial value problem

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= f (t), t ≥ t1,

x(t)= 0, t < t1, x(t1)= ẋ(t1)= 0.

(7.3.5)



174 7 Second-Order Delay Differential Equations

Denote

z(t)= ẋ(t)− u(t)x(t), (7.3.6)

where x is the solution of (7.3.5) and u is a nonnegative solution of (7.3.2). From
(7.3.6), we obtain

x(t)=
∫ t

t1

exp

{∫ t

s

u(τ )dτ

}
z(s)ds,

ẋ(t)= z(t)+ u(t)

∫ t

t1

exp

{∫ t

s

u(τ )dτ

}
z(s)ds,

ẍ(t)= ż(t)+ u̇(t)

∫ t

t1

exp

{∫ t

s

u(τ )dτ

}
z(s)ds

+ u(t)

[
z(t)+ u(t)

∫ t

t1

exp

{∫ t

s

u(τ )dτ

}
z(s)ds

]

= ż(t)+ u(t)z(t)+ (u̇(t)+ u2(t)
) ∫ t

t1

exp

{∫ t

s

u(τ )dτ

}
z(s)ds

(7.3.7)

for t ≥ t1.
Substituting x and ẍ into (7.3.5), we have

ż(t)+ u(t)z(t)+ (u̇(t)+ u2(t)
)∫ t

t1

exp

{∫ t

s

u(τ )dτ

}
z(s)ds

+
m∑

k=1

ak(t)

∫ gk(t)

t1

exp

{∫ gk(t)

s

u(τ )dτ

}
z(s)ds = f (t). (7.3.8)

Equalities (7.3.5) and (7.3.6) imply z(t1) = 0. Hence we can rewrite (7.3.8) in the
form

ż(t)+ u(t)z(t)

= −
[
u̇(t)+ u2(t)+

m∑

k=1

ak(t) exp

{
−
∫ t

gk(t)

u(s)ds

}]

×
∫ t

t1

exp

{∫ t

s

u(τ )dτ

}
z(s)ds +

m∑

k=1

ak(t)

∫ t

gk(t)

exp

{∫ gk(t)

s

u(τ )dτ

}
z(s)ds

+ f (t), z(t1)= 0. (7.3.9)

Then (7.3.9) is equivalent to the equation

z=Hz+ p, (7.3.10)

where
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(Hz)(t)=
∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}[
−
(
u̇(s)+ u2(s)

+
m∑

k=1

ak(s) exp

{
−
∫ s

gk(s)

u(τ )dτ

})∫ s

t1

exp

{∫ s

τ

u(ξ)dξ

}
z(τ )dτ

(7.3.11)

+
m∑

k=1

ak(s)

∫ s

gk(s)

exp

{∫ gk(s)

τ

u(ξ)dξ

}
z(τ )dτ

]
ds,

p(t)=
∫ t

t1

exp

{
−
∫ t

s

u(τ )dτ

}
f (s)ds.

Inequality (7.3.2) yields that if z(t) ≥ 0 for t ≥ t1, then (Hz)(t) ≥ 0 for t ≥ t1
(i.e., operator H is positive).

Denote

c(t)= u̇(t)+ u2(t)+
m∑

k=1

ak(t) exp

{
−
∫ t

gk(t)

u(s)ds

}
.

Since u(t) is absolutely continuous on each finite interval, the function c ∈ L[t1, b]
for every b > t1.

We have for t ∈ [t1, b]

|(Hz)(t)| ≤ exp

{∫ b

t1

u(τ)dτ

}∫ t

t1

(
|c(s)| +

m∑

k=1

|ak(s)|
)∫ s

t1

|z(τ )|dτds

= exp

{∫ b

t1

u(τ)dτ

}∫ t

t1

(∫ t

τ

(
|c(s)| +

m∑

k=1

|ak(s)|
)
ds

)
|z(τ )|dτ.

The kernel of the Volterra integral operatorH is bounded in each square [t1, b]×
[t1, b]. By Theorem A.4, operator H is a weakly compact operator in the space
L∞[t1, b]; Theorem A.7 implies that the spectral radius r(H)= 0< 1.

Thus, if in (7.3.10) we have p(t)≥ 0 for t ≥ t1, then

z(t)= p(t)+ (Hp)(t)+ (H 2p
)
(t)+ · · · ≥ 0 for t ≥ t1.

If f (t) ≥ 0 for t ≥ t1, then by (7.3.12) we have p(t) ≥ 0 for t ≥ t1. Hence, for
(7.3.8) the following statement is valid: if f (t) ≥ 0 for t ≥ t1, then z(t) ≥ 0 for
t ≥ t1. Therefore (7.3.7) implies that the solution of (7.3.5) is nonnegative for any
nonnegative right-hand side. The solution of this initial value problem can be pre-
sented in the form (7.2.5), which is

x(t)=
∫ t

t1

X(t, s)f (s)ds. (7.3.12)

As was shown above, f (t) ≥ 0, t ≥ t1, implies x(t) ≥ 0, t ≥ t1. Consequently, the
kernel of the integral operator (7.3.12) is nonnegative. Therefore X(t, s) ≥ 0 for
t ≥ s ≥ t1. The function x(t)=X(t, s) is a nonnegative solution of (7.2.4) for t ≥ s,
and hence x(t)≥ 0 and ẍ(t)≤ 0 for t ≥ s, which implies ẋ(t)≥ 0, t ≥ s.
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Since ẋ(s)= 1 implies ẋ(t) > 0 on some interval [s, s + σ ], the strict inequality
x(t)=X(t, s) > 0 holds for t > s ≥ t1.

3)⇒ 4) The function x(t)=X(t, t2) is a positive solution of (7.2.1).
The implication 4)⇒ 1) is evident. �

Corollary 7.1 Equation (7.2.1) is nonoscillatory if and only if inequality (7.3.1)
has a positive solution.

Remark 7.1 If there exists a nonnegative solution of inequality (7.3.2) for t ≥ t0,
then statements 1), 3) and 4) of the theorem are also valid for t ≥ t0.

7.4 Comparison Theorems

Theorem 7.1 can be employed for comparison of oscillation properties. To this end,
together with (7.2.1), consider the equation

ẍ(t)+
m∑

k=1

bk(t)x
(
gk(t)

)= 0, t ≥ 0. (7.4.1)

We assume that (a1) and (a2) hold for (7.4.1) and denote by Y(t, s) the fundamental
function of this equation.

Theorem 7.2 Suppose ak(t)≥ 0, ak(t)≥ bk(t) for t ≥ t0 and inequality (7.3.2) has
a nonnegative solution for t ≥ t0. Then (7.4.1) has a positive solution for t ≥ t0, and
Y(t, s) > 0, t > s ≥ t0.

Proof Consider the problem

ẍ(t)+
m∑

k=1

bk(t)x
(
gk(t)

)= f (t), t ≥ t0, x(t)= 0, t < t0, x(t0)= ẋ(t0)= 0.

(7.4.2)

We will demonstrate that if f (t)≥ 0 for t ≥ t0, then the solution of (7.4.2) is posi-
tive.

Problem (7.4.2) can be rewritten in the form

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)+
m∑

k=1

[
bk(t)− ak(t)

]
x
(
gk(t)

)= f (t), t ≥ t0, (7.4.3)

x(t)= 0, t < t0, x(t0)= ẋ(t0)= 0. (7.4.4)

Let x be the solution of the equation

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= z(t)
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satisfying initial conditions (7.4.4). Then

x(t)=
∫ t

t0

X(t, s)z(s)ds, (7.4.5)

where X(t, s) is the fundamental function of (7.2.1), and

x
(
gk(t)

)=
∫ gk(t)

t0

X
(
gk(t), s

)
z(s)ds =

∫ t

t0

X
(
gk(t), s

)
z(s)ds.

Substituting the equality above into (7.4.2), we obtain that (7.4.2) is equivalent to
the equation

z− T z= f (7.4.6)

with

(T z)(t)=
∫ t

t0

m∑

k=1

X
(
gk(t), s

)[
ak(t)− bk(t)

]
z(s)ds, t ≥ t0.

By Theorem B.7, the fundamental function X(t, s) is bounded on the square
[t0, b]×[t0, b]. Hence, by Theorem A.4, the Volterra integral operator T is a weakly
compact operator acting on the space L∞[t0, b] for every b > t0. Theorem A.7
implies that the spectral radius of this operator r(T ) = 0 < 1. By Theorem 7.1,
X(t, s) > 0 for t > s ≥ t0, so operator T is positive. Therefore, for the solution
of (7.4.6), we have

z(t)= f (t)+ (Tf )(t)+ (T 2f
)
(t)+ · · · ≥ 0 if f (t)≥ 0 for t ≥ t0.

Then, similar to the proof of Theorem 7.1, we conclude that Y(t, s)≥ 0, t > s ≥ t0,
and we only need to prove that the strict inequality Y(t, s) > 0, t > s ≥ t0 holds.

After denoting y(t)= Y(t, s), t ≥ s, we notice that y(t) is a solution of the prob-
lem

ÿ(t)+
m∑

k=1

bk(t)y
(
gk(t)

)= 0, t ≥ s, (7.4.7)

y(t)= 0, t ≤ s, ẏ(s)= 1. (7.4.8)

After rewriting (7.4.7) in the form

ÿ(t)+
m∑

k=1

ak(t)y
(
gk(t)

)=
m∑

k=1

[
ak(t)− bk(t)

]
y
(
gk(t)

)
,

we see that for the solution of problem (7.4.7), (7.4.8) solution representation (7.2.5)
implies

y(t)= Y(t, s)=X(t, s)+
∫ t

s

X(t, τ )

m∑

k=1

[
ak(τ )− bk(τ )

]
Y
(
gk(τ ), s

)
dτ.

Thus Y(t, s)≥X(t, s) > 0, which completes the proof. �
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Corollary 7.2 Suppose ak(t)≥ 0, ak(t)≥ bk(t), k = 1, · · · ,m for t ≥ t0 and (7.2.1)
has a positive solution for t > t0. Then there exists t1 ≥ t0 such that (7.4.1) has a
positive solution for t > t1.

Denote a+ = max{a,0}.

Corollary 7.3

1) If the inequality

ẍ(t)+
m∑

k=1

a+
k (t)x

(
gk(t)

)≤ 0 (7.4.9)

has a positive solution for t > t0, then there exists t1 ≥ t0 such that (7.2.1) has a
positive solution for t > t1.

2) If the inequality

u̇(t)+ u2(t)+
m∑

k=1

a+
k (t) exp

{
−
∫ t

gk(t)

u(s)ds

}
≤ 0, t ≥ t0, (7.4.10)

has a nonnegative absolutely continuous solution, where the sum contains only
those terms for which gk(t) ≥ t0, then (7.2.1) has a positive solution for t > t0
and X(t, s) > 0, t > s ≥ t0.

Proof Consider the equation

ẍ(t)+
m∑

k=1

a+
k (t)x

(
gk(t)

)= 0. (7.4.11)

Theorem 7.1 implies that for (7.4.11) all assertions of this theorem hold. Since
ak(t)≤ a+

k (t), the reference to Theorem 7.2 completes the proof. �

Corollary 7.3 can be employed to obtain a comparison result that improves the
statement of Theorem 7.2.

Consider the equation

ẍ(t)+
m∑

k=1

bk(t)x
(
hk(t)

)= 0, t ≥ 0, (7.4.12)

and suppose that (a1) and (a2) hold for (7.4.12) and denote by Y(t, s) the funda-
mental function of this equation.

Theorem 7.3 Suppose ak(t) ≥ 0 for t ≥ t0 and there exists t0 ≥ 0 such that for
(7.2.1) any of assertions 1)–4) of Theorem 7.1 hold. If

bk(t)≤ ak(t), hk(t)≤ gk(t) for t ≥ t0, (7.4.13)

then there exists t1 ≥ t0 such that (7.4.12) has a positive solution for t > t1 and
Y(t, s) > 0, t > s ≥ t1.
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Proof Theorem 7.1 implies that for some t1 ≥ t0 there exists a nonnegative solution
u(t) of inequality (7.3.2) for t ≥ t1. Conditions (7.4.13) yield that this function is
also a solution of the inequality

u̇(t)+ u2(t)+
m∑

k=1

b+
k (t) exp

{
−
∫ t

hk(t)

u(s)ds

}
≤ 0, t ≥ t0,

where the sum contains only those terms for which hk(t) ≥ t0. By Corollary 7.3,
(7.4.12) has a positive solution for t > t1 and the fundamental function of this equa-
tion is positive, which completes the proof. �

Corollary 7.4 Suppose ak(t)≥ 0. If the ordinary differential equation

ẍ(t)+
(

m∑

k=1

ak(t)

)
x(t)= 0 (7.4.14)

has a positive solution for t ≥ t0, then (7.2.1) has a positive solution for t > t0 and
its fundamental function satisfies X(t, s) > 0 for t > s ≥ t0.

If all solutions of (7.2.1) are oscillatory, then all solutions of (7.4.14) are also
oscillatory.

Now let us compare solutions of (7.2.2), (7.2.3) and of the initial value problem

ÿ(t)+
m∑

k=1

bk(t)y
(
gk(t)

)= r(t), t ≥ t0, (7.4.15)

y(t)=ψ(t), t < t0, y(t0)= y0, ẏ(t0)= y′
0. (7.4.16)

Denote by x(t) and y(t) the solutions of (7.2.2), (7.2.3) and (7.4.15), (7.4.16),
respectively, and let Y(t, s) be the fundamental function of (7.4.15).

Theorem 7.4 Suppose that there exists a positive solution x(t) of (7.3.2) for t ≥ t0
and

ak(t)≥ bk(t)≥ 0, r(t)≥ f (t) for t ≥ t0, ϕ(t)≥ψ(t) for t < t0,

y0 = x0, y
′
0 ≥ x′

0.

Then y(t)≥ x(t) for t ≥ t0.

Proof Denote by u(t) a nonnegative solution of (7.3.2). The inequality ak(t) ≥
bk(t), t ≥ t0, yields that the function u(t) is also a solution of the inequality cor-
responding to (7.3.2) for (7.4.15). Hence, by Theorem 7.1 we have Y(t, s) > 0 for
t > s ≥ t0.

After rewriting (7.2.2) in the form

ẍ(t)+
m∑

k=1

bk(t)x
(
gk(t)

)= −
m∑

k=1

[
ak(t)− bk(t)

]
x
(
gk(t)

)+ f (t)
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and applying solution representation (7.2.5), for the solutions of (7.2.2), (7.2.3) and
(7.4.15), (7.4.16) we have

x(t)= y1(t)x0 + Y(t, t0)x
′
0 −

m∑

k=1

∫ t

t0

Y(t, s)
[
ak(s)− bk(s)

]
x
(
gk(s)

)
ds

−
m∑

k=1

∫ t

t0

Y(t, s)bk(s)ϕ
(
gk(s)

)
ds +

∫ t

t0

Y(t, s)f (s)ds,

y(t)= y1(t)y0 + Y(t, t0)y
′
0 −

m∑

k=1

∫ t

t0

Y(t, s)bk(s)ψ
(
gk(s)

)
ds +

∫ t

t0

Y(t, s)r(s)ds,

where y1 is the solution of (7.4.15), (7.4.16) with r ≡ 0, ψ ≡ 0, y0 = 1, y′
0 = 0 and

ϕ(gk(s))=ψ(gk(s))= 0 if gk(s) > t0, x(gk(s))= 0 if gk(s) < t0.
Therefore y(t)≥ x(t) > 0, t ≥ t0, which completes the proof. �

In the next statement, the equality x0 = y0 is replaced by x0 ≥ y0.

Theorem 7.5 Suppose that there exists a positive solution x(t) of (7.3.2) for t ≥ t0,

ak(t)≥ bk(t)≥ 0, r(t)≥ f (t) for t ≥ t0, ϕ(t)≥ψ(t) for t < t0.

If x0 ≥ y0 > 0 and y′
0 + αy0 ≥ y0 ≥ x′

0 + αx0 for some α > 0, then

y(t)− x(t)≥ e−α(t−t0)(y0 − x0) for t ≥ t0.

In particular, if x0 ≥ y0 > 0 and y′
0 > x

′
0, then

lim inf
t→∞

[
y(t)− x(t)

]≥ 0.

Proof First assume that f ≡ r ≡ 0. As in the proof of Theorem 7.4, we obtain that
Y(t, s) > 0 for t ≥ s. The inequalities x(t) > 0, ẍ(t)≤ 0 for t ≥ t0 imply ẋ(t)≥ 0,
t ≥ t0. Then x(t)≥ x0 and hence x(t) > x0e

−α(t−t0) for t ≥ t0 for any α > 0.
Denote

u(t)=
{
x(t)− x0e

−α(t−t0), t ≥ t0,

ϕ(t), t < t0,

v(t)=
{
y(t)− y0e

−α(t−t0), t ≥ t0,

ψ(t), t < t0.

Then u and v are the solutions of the problems

ü(t)+
m∑

k=1

ak(t)u
(
gk(t)

)= −x0

[
α2e−α(t−t0) +

m∑

k=1

ak(t)e
−α(gk(t)−t0)

]
, (7.4.17)

u(t)= ϕ(t), t < t0, u(t0)= 0, u̇(t0)= x′
0 + αx0, (7.4.18)
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and

v̈(t)+
m∑

k=1

bk(t)v
(
gk(t)

)= −y0

[
α2e−α(t−t0) +

m∑

k=1

bk(t)e
−α(gk(t)−t0)

]
, (7.4.19)

v(t)=ψ(t), t < t0, v(t0)= 0, v̇(t0)= y′
0 + αy0, (7.4.20)

respectively. The assumptions of this theorem and Theorem 7.4 imply v(t) ≥ u(t)

for t ≥ t0 (i.e., y(t) − y0e
−α(t−t0) ≥ x(t) − x0e

−α(t−t0) for t ≥ t0), which can be
rewritten in the form

y(t)− x(t)≥ e−α(t−t0)(y0 − x0), t ≥ t0.

If y′
0 > x

′
0, then, for a sufficiently small α > 0, we have y′

0 + αy0 > x
′
0 + αx0.

Therefore y(t)− x(t)≥ e−α(t−t0)(y0 − x0) for t ≥ t0, which completes the proof in
the case f ≡ r ≡ 0.

In the general case, denote by x1 and y1 the solutions of problems (7.2.2), (7.2.3)
and (7.4.15), (7.4.16), respectively, with f ≡ r ≡ 0, and by x2 and y2 the solutions
of these problems with x0 = x′

0 = y0 = y′
0 = 0. By Theorem 7.4, y2(t) ≥ x2(t) for

t ≥ t0. Clearly, y(t)− x(t)= [y1(t)− x1(t)] + [y2(t)− x2(t)], and hence

y(t)− x(t)≥ e−α(t−t0)(y0 − x0) for t ≥ t0,

which concludes the proof. �

We obtain the most complete result if we compare two solutions x and y of
the same equation (7.2.2). In this case, we will not assume that ak(t) ≥ 0 and the
solutions x and y are positive.

Theorem 7.6 Assume that inequality (7.4.10) has a nonnegative solution for t ≥
t0 ≥ 0, x and y are two solutions of (7.2.2), (7.2.3) with right-hand sides f and r
and initial functions ϕ and ψ , respectively. Moreover,

ak(s)ϕ
(
gk(s)

)≥ ak(s)ψ
(
gk(s)

)
for s such that gk(s) < t0; r(t)≥ f (t) for t ≥ t0.

1) If x0 = y0, y′
0 ≥ x′

0, then y(t)≥ x(t), t ≥ t0.
2) If x0 ≥ y0 > 0 and y′

0 + αy0 ≥ x′
0 + αx0 for some α > 0, then

y(t)− x(t)≥ e−α(t−t0)(y0 − x0) for t ≥ t0.

3) If x0 ≥ y0 > 0 and y′
0 > x

′
0, then

lim inf
t→∞

[
y(t)− x(t)

]≥ 0.

Proof 1) By Corollary 7.3, the inequality X(t, s) > 0, t > s ≥ t0 holds for the fun-
damental function of (7.2.1).

For the solutions x and y, we have

x(t)= x1(t)x0 +X(t, t0)x
′
0

−
m∑

k=1

∫ t

t0

X(t, s)ak(s)ϕ
(
gk(s)

)
ds +

∫ t

t0

X(t, s)f (s)ds,
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y(t)= x1(t)y0 +X(t, t0)y
′
0

−
m∑

k=1

∫ t

t0

X(t, s)ak(s)ψ
(
gk(s)

)
ds +

∫ t

t0

X(t, s)r(s)ds,

where ϕ(gk(s)) = ψ(gk(s)) = 0 if gk(s) ≥ t0. The theorem assumptions yield that
y(t)≥ x(t) for t ≥ t0.

The proof of 2) and 3) is similar to the proof of the previous theorem. �

Remark 7.2 Explicit constructions of solutions for inequality (7.4.10) will be pre-
sented in the next section.

7.5 Explicit Nonoscillation and Oscillation Conditions

We will employ Corollary 7.2 to obtain explicit sufficient nonoscillation conditions.

Theorem 7.7 For some t ≥ t0, let

sup
t≥t0

m∑

k=1

a+
k (t)

√
t3gk(t) lngk(t)

ln t
≤ 1

4
, t ≥ t0,

and gk(t) > 1 for t ≥ t0, k = 1, · · · ,m. Then there exists t1 ≥ t0 such that (7.2.1) has
a positive solution for t > t1.

Proof The statement of the theorem yields that x(t)= √
t ln t is a positive solution

of inequality (7.4.9) for t > t0. In fact,

ẍ(t)+
m∑

k=1

a+
k (t)x

(
gk(t)

)= − ln t

4t
√
t

+
m∑

k=1

√
gk(t) lngk(t)

= ln t

t
√
t

[
−1

4
+

m∑

k=1

a+
k (t)

√
t3gk(t) lngk(t)

ln t

]
≤ 0.

Part 1) of Corollary 7.3 implies the statement of the theorem. �

Now we proceed to the oscillation problem and start with the following oscilla-
tion criterion.

Theorem 7.8 Suppose ak(t) ≥ 0 and there exists δ > 0 such that t − gk(t) ≤ δ.
Then all solutions of (7.2.1) are oscillatory if and only if all solutions of ordinary
differential equation (7.4.14) are oscillatory.

Proof By Corollary 7.4, oscillation of (7.2.1) yields that (7.4.14) is also oscillatory.
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Suppose now that all solutions of (7.4.14) are oscillatory but (7.2.1) has a positive
solution x(t) > 0, t ≥ t0. By Theorem 7.3, the equation

ẍ(t)+
m∑

k=1

ak(t)x(t − δ)= 0 (7.5.1)

has a positive solution for t > t0, and its fundamental function Y(t, s) is positive for
t > t0.

Denote x(t) = Y(t, t0) > 0, t ≥ t0. This function is a solution of (7.5.1), where
x(t0)= 0, ẋ(t0)= 1. Let us rewrite (7.5.1) in the form

ẍ(t)+
m∑

k=1

ak(t)x(t)+
m∑

k=1

ak(t)
[
x(t − δ)− x(t)

]= 0. (7.5.2)

Inequality ẍ(t)≤ 0, t > t0 implies that ẋ(t), t > t0 is nonincreasing. Then ẋ(t−δ)≥
ẋ(t). After integrating this inequality from t0 + δ to t , we obtain x(t − δ)− x(t0)≥
x(t)− x(t0 + δ), where x(t0)= 0. Thus x(t)− x(t − δ)≤ x(t0 + δ), and therefore
(7.5.2) implies the inequality

ẍ(t)+
m∑

k=1

ak(t)
[
x(t)− x(t0 + δ)

]≤ 0.

Hence the function z(t)= x(t)− x(t0 + δ) is a positive solution (for t > t0 + δ) of
the inequality

z̈(t)+
m∑

k=1

ak(t)z(t)≤ 0.

Theorem 7.1 implies that (7.4.14) has a positive solution, which contradicts the
assumption that all solutions of (7.4.14) are oscillatory. �

Consider the equation

ẍ(t)+ a(t)x
(
g(t)

)= 0, ct ≤ g(t)≤ t for t ≥ 0,0< c < 1, a(t)≥ 0 for t ≥ 0,
(7.5.3)

with continuous functions a and g. In [283], the following result was obtained. If
the ordinary differential equation

ẍ(t)+ ca(t)x(t)= 0

is oscillatory, then (7.5.3) is also oscillatory. We generalize this statement to (7.2.1)
with several delays.

Theorem 7.9 Suppose ak(t) ≥ 0, there exist constants ck such that 0 < ck < 1,
gk(t)≥ ckt for t ≥ 0, k = 1, · · · ,m and the ordinary differential equation

ẍ(t)+
m∑

k=1

ckak(t)x(t)= 0 (7.5.4)

is oscillatory. Then (7.2.1) is also oscillatory.
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Proof Suppose that delay equation (7.2.1) is nonoscillatory. Then, by Theorem 7.3,
the equation

ẍ(t)+
m∑

k=1

ak(t)x(ckt)= 0 (7.5.5)

is also nonoscillatory. Theorem 7.1 implies that there exists t0 ≥ 0 such that
Y(t, s) > 0, t > s ≥ t0, where Y(t, s) is the fundamental function of (7.5.5). Hence
y(t)= Y(t, t0) is a nonnegative solution of the problem

ÿ(t)+
m∑

k=1

ak(t)y(ckt)= 0, t ≥ t0,

y(t)= 0, t ≤ t0, ẏ(t0)= 1.

(7.5.6)

Let us rewrite (7.5.5) in the form

ÿ(t)+
m∑

k=1

ckak(t)y(t)+
m∑

k=1

ak(t)
[
y(ckt)− cky(t)

]= 0. (7.5.7)

Since ẏ is a nonincreasing function, ẏ(ckt) ≥ ẏ(t). By integrating this inequality
from t0 to t , we obtain

1

ck
y(ckt)− 1

ck
y(ckt0)≥ y(t)− y(t0),

where y(t0)= y(ckt0)= 0. Thus, y(ckt)≥ cky(t), and (7.5.6) implies

ÿ(t)+
m∑

k=1

ckak(t)y(t)≤ 0 for t ≥ t0.

Theorem 7.1 yields that (7.5.4) is nonoscillatory, which contradicts the assumption
of the theorem. �

Remark 7.3 As a consequence of Theorem 7.9, we obtain (m= 1) that the condition
lim inft→∞ a(t)t2 > 1

4c is sufficient for oscillation. Domshlak [140, 141] replaced
the constant 1

4c with a certain constant Bc and showed that this constant is strict.

The following statement is well known (see, for example, [84]): if, for a certain
k, 0< k < 1, the ordinary differential equation

ẍ(t)+ k
g(t)

t
a(t)x(t)= 0

is oscillatory, then the delay equation

ẍ(t)+ a(t)x
(
g(t)

)= 0

is also oscillatory.
The corollary of the following theorem generalizes this statement.
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Theorem 7.10 Suppose ak(t)≥ 0 for t ≥ 0 and for every c > 0 the ordinary differ-
ential equation

ẍ(t)+
m∑

k=1

ak(t)
gk(t)− c

t − c
x(t)= 0, t > c,

is oscillatory. Then (7.2.1) is also oscillatory.

Proof Suppose that (7.2.1) is nonoscillatory. Then, similar to the proof of the pre-
vious theorem, there exists t0 ≥ 0 such that the solution y of the problem

ÿ(t)+
m∑

k=1

ak(t)y
(
gk(t)

)= 0, t ≥ t0,

y(t)= 0, t ≤ t0, ẏ(t0)= 1,

(7.5.8)

is positive for t > t0. For y(t), we have ÿ ≤ 0, so ẏ(t) is nonincreasing. The inequal-
ity

y(t)− y(t0)≥ ẏ(t)(t − t0), t ≥ t0,

implies y(t)− ẏ(t)(t − t0)≥ 0. Then the function

f (t)= y(t)

t − t0
, t > t0,

is nonincreasing and therefore

y(t)

t − t0
≤ y(gk(t))

gk(t)− t0
,

which yields

y
(
gk(t)

)≥ gk(t)− t0

t − t0
y(t), t > t0. (7.5.9)

Then,

ÿ(t)+
m∑

k=1

ak(t)
gk(t)− t0

t − t0
y(t)≤ 0, t > t0,

and the corresponding ordinary differential equation

ÿ(t)+
m∑

k=1

ak(t)
gk(t)− t0

t − t0
y(t)= 0, t > t0, (7.5.10)

is nonoscillatory, which contradicts the assumption of the theorem. �

Corollary 7.5 Suppose ai(t) ≥ 0 and for some ki , 0< ki < 1, i = 1,2, · · · ,m, the
ordinary differential equation

ẍ(t)+
m∑

i=1

ki
gi(t)

t
ai(t)x(t)= 0

is oscillatory. Then (7.2.1) is also oscillatory.
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Proof Suppose c > 0. The inequality

ki
gi(t)

t
≤ gi(t)− c

t − c
(7.5.11)

is equivalent to the relation

ct − ckigi(t)≤ (1 − ki)tgi(t). (7.5.12)

Since limt→∞ gi(t) = ∞, there exists ti ≥ 0 such that (7.5.11) holds for t ≥ ti .
Hence, for t ≥ t0 = maxi{ti}, inequalities (7.5.9) hold for all i, i = 1,2, · · · ,m.
Application of Theorems 7.3 and 7.9 completes the proof. �

To obtain explicit oscillation conditions for delay equations, we can apply any
known oscillation test for ordinary differential equations; for example, we can use
the following result.

Lemma 7.2 [206] Suppose p(t) ≥ 0 is a locally integrable function and at least
one of the following conditions holds:

1) lim sup
t→∞

t

∫ ∞

t

p(s)ds > 1

or

2) lim inf
t→∞ t

∫ ∞

t

p(s)ds >
1

4
.

(It is assumed that the conditions are satisfied if the integral diverges.)
Then all solutions of the equation

ẍ(t)+ p(t)x(t)= 0

are oscillatory.

Corollary 7.6 Suppose ai(t)≥ 0 and at least one of the following conditions holds:

lim sup
t→∞

t

∫ ∞

t

m∑

i=1

gi(s)

s
ai(s)ds > 1 (7.5.13)

or

lim inf
t→∞ t

∫ ∞

t

m∑

i=1

gi(s)

s
ai(s)ds >

1

4
. (7.5.14)

Then (7.2.1) is oscillatory.

Proof Suppose (7.5.13) holds. Then there exists q > 1 such that

lim sup
t→∞

t

∫ ∞

t

m∑

i=1

gi(s)

s
ai(s)ds > q;
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i.e., for ki = 1
q
< 1 we have

lim sup
t→∞

t

∫ ∞

t

m∑

i=1

ki
gi(s)

s
ai(s)ds > 1.

The reference to Lemma 7.2 and Corollary 7.5 completes the proof. The case where
(7.5.14) holds is considered similarly. �

7.6 Slowly Oscillating Solutions

For linear ordinary differential equations of the second order, the following oscilla-
tion criterion is well known: if an equation has an oscillatory solution, then all its
solutions are oscillatory. It is known that for delay differential equations this state-
ment is not true.

We will show that if (7.2.1) has a slowly oscillating solution, then all solutions of
this equation are oscillatory. A similar result for delay differential equations of the
first order was obtained in Chapter 2.

Definition 7.4 A solution x of (7.2.1) is slowly oscillating if for every t0 ≥ 0 there
exist t2 > t1 > t0 such that

gk(t)≥ t1 for t ≥ t2, x(t1)= x(t2)= 0, x(t) > 0, t ∈ (t1, t2),
and at the point t2 the function x(t) has a sign change.

Let us remark that for ordinary differential equations any oscillatory solution is
slowly oscillating. Thus the following theorem implies the well-known result on
oscillation of all solutions of an ordinary differential equation once a solution oscil-
lates.

Theorem 7.11 Suppose ak(t) ≥ 0 for t ≥ 0. If there exists a slowly oscillating so-
lution of (7.2.1), then all solutions of this equation are oscillatory.

Proof Denote by x a slowly oscillating solution of (7.2.1). Suppose that this equa-
tion has a nonoscillatory solution. Then, by Theorem 7.1, for a certain t0 ≥ 0 the
fundamental function is positive, X(t, s) > 0 for t > s ≥ t0.

There exist t1 > t0, t2 > t0, σ > 0 such that

g(t)≥ t1 for t ≥ t2,

x(t1)= x(t2)= 0, x(t) > 0, t ∈ (t1, t2), x(t) < 0, t ∈ (t2, t2 + σ ]. (7.6.1)

Due to solution representation (7.2.5), this solution for t ≥ t2 can be presented in
the form

x(t)=X(t, t2)ẋ(t2)−
m∑

k=1

∫ t

t2

X(t, s)ak(s)x
(
gk(s)

)
ds, (7.6.2)

where x(gk(s))= 0 if gk(s) > t2.
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Inequality gk(t) ≥ t1 for t ≥ t2 yields that the expression under the integral in
(7.6.2) may differ from zero only if t1 < gk(s) < t2, and therefore x(gk(s)) > 0 in
(7.6.2).

Besides, x(t) has a sign change at the point t2; thus ẋ(t2)≤ 0. Hence (7.6.2) im-
plies x(t)≤ 0 for each t ≥ t2. This contradicts the assumption that x is an oscillatory
solution. �

Corollary 7.7 Suppose that ak(t) ≥ 0 for t ≥ 0 and (7.2.1) has a positive solution
for t > t0 ≥ 0. Then (7.2.1) has no slowly oscillating solutions.

Remark 7.4 Yu. Domshlak [140, 141] demonstrated that if gk are monotonically in-
creasing functions and an associated equation has a slowly oscillating solution, then
every solution of (7.2.1) is oscillatory. He obtained several new explicit sufficient
oscillation conditions by explicit construction of such slowly oscillating solutions.

7.7 Existence of a Positive Solution

In this section, we assume that (7.2.1) is nonoscillatory and present conditions on
the initial function and the initial values that imply positivity of the solution of initial
value problem (7.2.2), (7.2.3).

For delay differential equations of the first order, a few papers contain such re-
sults. In paper [193], the most general result is presented. The method applied in
this section uses the same ideas as in Chap. 2 for equations of the first order.

Theorem 7.12 Suppose that ak(t) ≥ 0, f (t) ≥ 0 for t ≥ 0, x(t) is a solution of
problem (7.2.2), (7.2.3) and u(t) is a nonnegative solution of the inequality

u̇(t)+ u2(t)+
m∑

k=1

ak(t) exp

{
−
∫ t

max{t0,gk(t)}
u(s)ds

}
≤ 0, t ≥ t0. (7.7.1)

If

x0 > 0, ϕ(t)≤ x0, t ≤ t0, and x′
0 ≥ u(t0)x0,

then x(t) > 0 for t ≥ t0.

Proof First assume that f ≡ 0. Consider the auxiliary problem

z̈(t)+
m∑

k=1

ak(t)z
(
gk(t)

)= 0, t ≥ t0,

z(t)= x0, t ≤ t0, ż(t0)= u(t0)x0.

Denote

v(t)=
{
x0 exp{∫ t

t0
u(s)ds}, t ≥ t0,

x0, t < t0,
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and for a fixed t ≥ t0 define the sets

N1(t)=
{
k | gk(t)≥ t0

}
, N2(t)=

{
k | gk(t) < t0

}
.

We have

v̈(t)+
m∑

k=1

ak(t)v
(
gk(t)

)

= x0 exp

{∫ t

t0

u(s)ds

}(
u̇(t)+ u2(t)

)

+ x0

∑

k∈N1(t)

ak(t) exp

{∫ gk(t)

t0

u(s)ds

}
+ x0

∑

k∈N2(t)

ak(t)

= x0 exp

{∫ t

t0

u(s)ds

}[
u̇(t)+ u2(t)+

∑

k∈N1(t)

ak(t) exp

{
−
∫ t

gk(t)

u(s)ds

}

+
∑

k∈N2(t)

ak(t) exp

{
−
∫ t

t0

u(s)ds

}]

= x0 exp

{∫ t

t0

u(s)ds

}[
u̇(t)+ u2(t)+

∑

k∈N1(t)

ak(t) exp

{
−
∫ t

max{t0,gk(t)}
u(s)ds

}

+
∑

k∈N2(t)

ak(t) exp

{
−
∫ t

max{t0,gk(t)}
u(s)ds

}]

= x0 exp

{∫ t

t0

u(s)ds

}[
u̇(t)+ u2(t)+

m∑

k=1

ak(t) exp

{
−
∫ t

max{t0,gk(t)}
u(s)ds

}]

≤ 0.

Therefore

v̈(t)+
m∑

k=1

ak(t)v
(
gk(t)

)= r(t),

where r(t) ≤ 0, t ≥ t0. Inequality (7.7.1) implies (7.3.2). Since z(t) = v(t) = x0,
t ≤ t0, z′0 = v′

0 = u(t0)x0, Theorem 7.6 yields that z(t)≥ v(t) > 0 for t ≥ t0. Hence
the hypotheses of this theorem and Theorem 7.6 imply x(t)≥ z(t) > 0 for t ≥ t0.

In the case f ≡ 0, the proof is complete. The general case is also a consequence
of Theorem 7.6 since f (t)≥ 0 for t ≥ 0. �

Corollary 7.8 Suppose

ak(t)≥ 0, f (t)≥ 0 for t ≥ t0 > 0; ϕ(t)≤ x0 for t ≤ t0; x0 > 0, x′
0 ≥ 1

2t0
x0

and

sup
t≥t0

m∑

k=1

ak(t)

√
t3 max

{
t0, gk(t)

}≤ 1

4
. (7.7.2)

Then the solution of problem (7.2.2), (7.2.3) is positive.
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Proof Let us demonstrate that the function u(t) = 1
2t is a solution of inequality

(7.7.1). Substituting u(t) into (7.7.1), we obtain

u̇(t)+ u2(t)+
m∑

k=1

ak(t) exp

{
−
∫ t

max{t0,gk(t)}
u(s)ds

}

= − 1

2t2
+ 1

4t2
+

m∑

k=1

ak(t) exp

{
−
∫ t

max{t0,gk(t)}
1

2s
ds

}

= − 1

4t2
+

m∑

k=1

ak(t) exp

{
ln

(
max{t0, gk(t)}

t

)1/2}

= − 1

4t2
+

m∑

k=1

ak(t)

(
max{t0, gk(t)}

t

)1/2

≤ 0

by (7.7.2), and thus (7.7.1) is satisfied for u(t)= 1
2t , which completes the proof. �

7.8 Discussion and Open Problems

This chapter deals with nonoscillation properties of a scalar linear delay differential
equation of the second order. Such equations attract the attention of many math-
ematicians due to their significance in applications. We mention here the mono-
graphs of A.D. Myshkis [289], S.B. Norkin [292], G.S. Ladde, V. Lakshmikantham
and B.G. Zhang [248], I. Győri and G. Ladas [192], L.N. Erbe, Q. Kong and B.G.
Zhang [154] and references therein.

The main result of this chapter (Theorem 7.1) states that under some natural as-
sumptions for a delay differential equation the following four assertions are equiva-
lent: nonoscillation of solutions of this equation and the corresponding differential
inequality, positivity of the fundamental function and the existence of a nonnegative
solution for the generalized Riccati inequality. The connection between hypothe-
ses 1) and 3) of Theorem 7.1 was first established in [20]. The generalized Riccati
equation appeared for the first time in [80].

The equivalence of oscillation properties of the differential equation and the cor-
responding differential inequality has been applied to obtain new explicit conditions
for nonoscillation and oscillation and also to prove some well-known results in a
different way. We employ the generalized Riccati inequality to compare oscillation
properties of two equations without comparing their solutions. These results can be
regarded as a natural generalization of the well-known Sturm comparison theorem
for second-order ordinary differential equations.

By applying positivity of the fundamental function, we compare positive solu-
tions of two nonoscillatory equations. There are a lot of results of this kind for
delay differential equations of the first order and only a few for the second-order
equations. A. D. Myshkis [289] obtained one of the first comparison theorems for
second-order equations. The result presented in this chapter is more general and is
proven in a different way.
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The chapter also contains conditions on the initial function and the initial val-
ues that imply that the corresponding solution is positive. Such conditions are well
known for first-order delay differential equations but not for second-order equations.

Some of the results presented in this chapter extend known nonoscillation tests
to the case of discontinuous parameters (we only need the minimal requirement of
measurability). A new technique based on a generalized Riccati inequality made
it possible to deal with discontinuous parameters and to obtain explicit oscillation
criteria.

In this chapter, we obtain oscillation conditions for (7.2.1) by comparing oscil-
lation properties of this equation and a certain ordinary differential equation of the
second order. The results of this chapter are published in the paper [43].

Explicit oscillation conditions different from these obtained in this chapter are
presented in [84, 300, 301, 306], see also the papers [163, 174, 217, 221, 263, 305,
327, 335]. In the very interesting paper [227], many new oscillation conditions for
(7.2.1) in the case m= 1,

ẍ(t)+ a(t)x
(
h(t)

)= 0, (7.8.1)

were obtained, where a(t)≥ 0.
In particular, paper [227] contains the following two results.

Theorem 7.13 [227] Suppose a(t)≥ 0 and either h is nondecreasing and

lim sup
t→∞

∫ t

h(t)

[
h(s)+

∫ h(s)

0
τh(τ)a(τ )dτ

]
a(s)ds > 1

or

lim inf
t→∞

∫ t

h(t)

[
h(s)+

∫ h(s)

0
τh(τ)a(τ )dτ

]
a(s)ds >

1

e
.

Then all solutions of (7.8.1) are oscillatory.

Theorem 7.14 [227] Suppose a(t)≥ 0, h(t) is a nondecreasing function and

lim sup
t→∞

[∫ t

h(t)

a(s)h(s)ds + h(t)

∫ ∞

t

a(s)ds

]
> 1.

Then all solutions of (7.8.1) are oscillatory.

Some positivity conditions for the fundamental function of second-order delay
differential equations were established by M. I. Gil’. In particular, in [159] he sug-
gested positivity conditions for autonomous equations and then applied these condi-
tions to the Aizerman-Myshkis problem in the absolute stability theory of nonlinear
delay differential equations. In [160], using positivity conditions from [159], under
certain assumptions, positivity and boundedness of solutions for nonlinear delay dif-
ferential equations were established. The results of [160] were slightly improved in
[161]; see also nonoscillation results for delay differential equations of the second
order in [297].
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Finally, let us present some open problems.

1. Obtain oscillation and nonoscillation conditions for (7.2.1) in the case of oscil-
lating coefficients ak(t).

2. Establish oscillation and nonoscillation properties of the equation with positive
and negative coefficients

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)−
n∑

k=1

bk(t)x
(
hk(t)

)= 0,

where ak(t)≥ 0, bk(t)≥ 0.
In particular, consider two cases: ak(t)≥ bk(t) and ak(t) < bk(t).

3. If ak(t)≥ 0, then any positive solution of (7.2.1) is a nondecreasing function.
Find sufficient conditions when this solution has a finite limit, and give an

asymptotic representation of this limit.



Chapter 8
Second-Order Delay Differential Equations
with Damping Terms

8.1 Introduction

In this chapter, we consider differential equations of the second order with damping,
which are in some sense similar to the equations without damping described in the
previous chapter. In particular, we study the existence of positive solutions with a
nonnegative derivative.

The chapter is organized as follows. Section 8.2 contains relevant definitions
and notation. In Sect. 8.3, the main result of this chapter is obtained. Section 8.4
deals with comparison results. Section 8.5 includes some explicit nonoscillation
conditions. Section 8.6 involves discussion and states open problems.

8.2 Preliminaries

We consider the scalar delay differential equation of the second order

ẍ(t)+
r∑

k=1

ak(t)ẋ
(
hk(t)

)+
m∑

k=1

bk(t)x
(
gk(t)

)= 0, t ≥ 0, (8.2.1)

under the following assumptions:

(a1) ak , bk are Lebesgue measurable functions locally essentially bounded on
[0,∞).

(a2) hk , gk are Lebesgue measurable functions,

hk(t)≤ t, lim
t→∞hk(t)= ∞, gk(t)≤ t, lim

t→∞gk(t)= ∞.

In the theory of linear second-order ordinary differential equations, the term that
includes the first derivative is called the damping term, so we further refer to (8.2.1)
as the equation with damping terms.

R.P. Agarwal et al., Nonoscillation Theory of Functional Differential Equations
with Applications, DOI 10.1007/978-1-4614-3455-9_8,
© Springer Science+Business Media, LLC 2012
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Together with (8.2.1), consider for each t0 ≥ 0 the initial value problem with a
nonzero right-hand side

ẍ(t)+
r∑

k=1

ak(t)ẋ
(
hk(t)

)+
m∑

k=1

bk(t)x
(
gk(t)

)= f (t), t ≥ t0, (8.2.2)

x(t)= ϕ(t), ẋ(t)=ψ(t), t < t0; x(t0)= x0, ẋ(t0)= x′
0. (8.2.3)

We also assume that the following hypothesis holds:

(a3) f : [t0,∞)→ R is a Lebesgue measurable locally essentially bounded func-
tion and ϕ,ψ : (−∞, t0)→R are Borel measurable bounded functions.

Definition 8.1 Suppose that a function x : [t0,∞) → R is differentiable, ẋ is a
locally absolutely continuous function and the functions x and ẋ are extended for
t ≤ t0 by equalities (8.2.3). We say that the extended function x is a solution of
problem (8.2.2), (8.2.3) if it satisfies (8.2.2) for almost every t ∈ [t0,∞).

Definition 8.2 For each s ≥ 0, the solution X(t, s) of the problem

ẍ(t)+
r∑

k=1

ak(t)ẋ
(
hk(t)

)+
m∑

k=1

bk(t)x
(
gk(t)

)= 0, t ≥ s,

x(t)= 0, ẋ(t)= 0, t < s, x(s)= 0, ẋ(s)= 1,

(8.2.4)

is called the fundamental function of (8.2.1).

We assume X(t, s) = 0, 0 ≤ t < s. Let functions x1 and x2 be the solutions of
the problem

ẍ(t)+
r∑

k=1

ak(t)ẋ
(
hk(t)

)+
m∑

k=1

bk(t)x
(
gk(t)

)= 0, t ≥ t0,

x(t)= 0, ẋ(t)= 0, t < t0,

with initial values x(t0) = 1, ẋ(t0) = 0 for x1 and x(t0) = 0, ẋ(t0) = 1 for x2, re-
spectively. By definition, x2(t)=X(t, t0).

Theorem B.5 implies the following result.

Lemma 8.1 Let (a1)–(a3) hold. Then there exists one and only one solution of prob-
lem (8.2.2), (8.2.3), and it can be presented in the form

x(t)= x1(t)x0 + x2(t)x
′
0 −

m∑

k=1

∫ t

t0

X(t, s)bk(s)ϕ
(
gk(s)

)
ds

−
r∑

k=1

∫ t

t0

X(t, s)ak(s)ψ
(
hk(s)

)
ds +

∫ t

t0

X(t, s)f (s)ds. (8.2.5)

The functions ϕ(t) and ψ(t) that describe “the prehistory” of the process are not
defined for t ≥ t0; in (8.2.5) we assume ϕ(s)= 0 and ψ(s)= 0 if s > t0.
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8.3 Nonoscillation Criteria

Denote

a+ = max{a,0}, a− = max{−a,0}.
The following theorem establishes a sufficient condition for the existence of a

nonoscillatory solution.

Theorem 8.1 Suppose that there exist t0 ≥ 0 and a nonnegative locally absolutely
continuous function u, u(t)= 0 for t ≤ t0 such that u satisfies the inequality

u̇(t)+ u2(t)+
r∑

k=1

a+
k (t)u

(
hk(t)

)
exp

{
−
∫ t

hk(t)

u(s)ds

}

+
m∑

k=1

b+
k (t) exp

{
−
∫ t

gk(t)

u(s)ds

}
≤ 0 (8.3.1)

and the equation

ż(t)+ u(t)z(t)+
r∑

k=1

ak(t)z
(
hk(t)

)= 0 (8.3.2)

has a positive fundamental function Z(t, s) > 0 for t > s > t0.
Then:

1) The fundamental function of (8.2.1) is positive and its derivative X′
t in t is non-

negative for t > s > t0,

X(t, s) > 0, X′
t (t, s)≥ 0, t > s > t0.

2) There exists a solution x(t) of (8.2.1) such that x(t) > 0 and ẋ(t)≥ 0 for t > t0.

Proof 1) Consider the initial value problem

ẍ(t)+
r∑

k=1

ak(t)ẋ
(
hk(t)

)+
m∑

k=1

bk(t)x
(
gk(t)

)= f (t), t ≥ t0,

x(t)= ẋ(t)= 0, t ≤ t0.

(8.3.3)

Denote

z(t)= ẋ(t)− u(t)x(t), (8.3.4)

where x is the solution of (8.3.3) and u is a nonnegative solution of (8.3.1). Equality
(8.3.4) implies

x(t)=
∫ t

t0

exp

{∫ t

s

u(τ )dτ

}
z(s)ds (8.3.5)

and

ẋ = z+ ux, ẍ = ż+ u̇x + uz+ u2x = ż+ uz+ (u̇+ u2)x.
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Substituting ẋ and ẍ into (8.3.3), we obtain

ż(t)+ u(t)z(t)+
r∑

k=1

ak(t)z
(
hk(t)

)

= −(u̇(t)+ u2(t)
)
x(t)−

r∑

k=1

ak(t)u
(
hk(t)

)
x
(
hk(t)

)

−
m∑

k=1

bk(t)x
(
gk(t)

)+ f (t). (8.3.6)

Equalities (8.3.3) and (8.3.4) imply z(t0)= 0. Using (8.3.5), we can rewrite (8.3.6)
in the form

ż(t)+ u(t)z(t)+
r∑

k=1

ak(t)z
(
hk(t)

)

= −
(
u̇(t)+ u2(t)+

r∑

k=1

a+
k (t)u

(
hk(t)

)
exp

{
−
∫ t

hk(t)

u(s)ds

}

+
m∑

k=1

b+
k (t) exp

{
−
∫ t

gk(t)

u(s)ds

})∫ t

t0

exp

{∫ t

s

u(τ )dτ

}
z(s)ds

+
r∑

k=1

a+
k (t)u

(
hk(t)

) ∫ t

hk(t)

exp

{∫ hk(t)

s

u(τ )dτ

}
z(s)ds

+
m∑

k=1

b+
k (t)

∫ t

gk(t)

exp

{∫ gk(t)

s

u(τ )dτ

}
z(s)ds

+
r∑

k=1

a−
k (t)u

(
hk(t)

) ∫ hk(t)

t0

exp

{∫ hk(t)

s

u(τ )dτ

}
z(s)ds

+
m∑

k=1

b−
k (t)

∫ gk(t)

t0

exp

{∫ gk(t)

s

u(τ )dτ

}
z(s)ds + f (t), z(t0)= 0.

(8.3.7)

Denote by Z(t, s) the fundamental function of (8.3.2) and by Fz+f the right-hand
side of (8.3.7). Then (8.3.7) is equivalent to the equation

z=Hz+ p, (8.3.8)

where

(Hz)(t)=
∫ t

t0

Z(t, s)(Fz)(s)ds, p(t)=
∫ t

t0

Z(t, s)f (s)ds. (8.3.9)

Inequalities (8.3.1) and Z(t, s) > 0 yield that z(t)≥ 0 implies (Hz)(t)≥ 0 (i.e., the
operator H is positive).



8.3 Nonoscillation Criteria 197

Denote

c(t)= u̇(t)+ u2(t)+
r∑

k=1

a+
k (t)u

(
hk(t)

)
exp

{
−
∫ t

hk(t)

u(s)ds

}

+
m∑

k=1

b+
k (t) exp

{
−
∫ t

gk(t)

u(s)ds

}
.

Since u is locally absolutely continuous, the function c ∈ L[t0, b] for every b > t0,
where L[a,b] is the space of all Lebesgue integrable functions on [a, b] with the
usual L1 norm.

By Corollary B.1, the function Z(t, s) is bounded in any square [t0, b] × [t0, b],
and hence for a certain K > 0 the estimate |Z(t, s)| ≤K holds for b ≥ t ≥ s ≥ t0.
Then we have for t ∈ [t0, b]

∣∣(Hz)(t)
∣∣≤K exp

{∫ b

t0

u(τ)dτ

}∫ t

t0

(
∣∣c(s)

∣∣

+
r∑

k=1

∣∣ak(s)
∣∣∣∣u
(
hk(s)

)∣∣+
m∑

k=1

∣∣bk(s)
∣∣
)∫ s

t0

∣∣z(τ )
∣∣dτds

=K exp

{∫ b

t0

u(τ)dτ

}∫ t

t0

(∫ t

τ

[
∣∣c(s)

∣∣+
r∑

k=1

∣∣ak(s)
∣∣∣∣u
(
hk(s)

)∣∣

+
m∑

k=1

∣∣bk(s)
∣∣
]
ds

)
∣∣z(τ )

∣∣dτ.

The kernel of the Volterra integral operator H is bounded in each square
[t0, b] × [t0, b]. Hence, by Theorem A.4, the operator H : L∞[t0, b] → L∞[t0, b]
is a weakly compact operator. By Theorem A.7, the spectral radius of a compact
Volterra integral operator in the space L∞[a, b] is equal to zero.

Thus, if in (8.3.8) we have p(t)≥ 0, then

z(t)= p(t)+ (Hp)(t)+ (H 2p
)
(t)+ · · · ≥ 0.

If f (t)≥ 0, then by (8.3.9) p(t)≥ 0. Hence, for (8.3.6) we have that if f (t)≥ 0,
then the solution of this equation satisfies z(t)≥ 0.

Therefore equality (8.3.5) implies that the solution of (8.3.3) and its derivative
are nonnegative for any nonnegative right-hand side.

The solution of (8.3.3) can be presented in the form of (8.2.5) with ϕ(s) =
ψ(s)= 0 for s ≤ t0 and consequently

x(t)=
∫ t

t0

X(t, s)f (s)ds, ẋ(t)=
∫ t

t0

X′
t (t, s)f (s)ds. (8.3.10)

As was shown above, f (t)≥ 0 implies x(t)≥ 0 and ẋ(t)≥ 0, so the kernels of the
integral operators (8.3.9) are nonnegative and thereforeX(t, s)≥ 0 andX′

t (t, s)≥ 0.
Since X′

t (s, s)= 1 implies X′
t (t, s) > 0 on some interval [s, s + σ ] for a certain

σ > 0, the strict inequality X(t, s) > 0 holds for t > s ≥ t0.
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2) The function x(t)=X(t, t0) is a positive solution of (8.2.1) with a nonnegative
derivative. �

Corollary 8.1 Suppose ak(t) ≤ 0 and there exist t0 ≥ 0 and a nonnegative locally
absolutely continuous function u such that the inequality

u̇(t)+ u2(t)+
m∑

k=1

b+
k (t) exp

{
−
∫ t

gk(t)

u(s)ds

}
≤ 0

holds for t ≥ t0.
Then:

1) X(t, s) > 0, X′
t (t, s)≥ 0, t > s > t0.

2) There exists a solution x(t) of (8.2.1) such that x(t) > 0, ẋ(t)≥ 0, t > t0.

Proof We have to prove only positivity of the fundamental function of (8.3.2). The
ordinary differential equation

ż(t)+ u(t)z(t)= 0

has a positive fundamental function. Then inequality ak(t)≤ 0 and Theorem 2.3 im-
ply that the fundamental function of (8.3.2) is positive, which completes the proof. �

We will demonstrate that condition 1) in Theorem 8.1 is necessary for nonoscil-
lation of (8.2.1) with nonnegative coefficients. To this end, consider the delay dif-
ferential inequality

ÿ(t)+
r∑

k=1

ak(t)ẏ
(
hk(t)

)+
m∑

k=1

bk(t)y
(
gk(t)

)≤ 0, t ≥ t0. (8.3.11)

Theorem 8.2 Suppose ak(t)≥ 0, bk(t)≥ 0. If there exists t0 ≥ 0 such that inequal-
ity (8.3.11) has a positive solution with a nonnegative derivative for t > t0, then
there exists t1 ≥ t0 such that inequality (8.3.1) has a nonnegative solution for t ≥ t1.

Proof Let y(t) be a positive solution of inequality (8.3.11) for t > t0 with a non-
negative derivative. Then there exists a point t1 such that hk(t) ≥ t0 and gk(t) ≥ t0
for t ≥ t1. We can assume without loss of generality that y(t1)= 1.

Denote u(t)= ẏ(t)
y(t)

if t ≥ t1 and u(t)= 0 if t < t1. Then u is a nonnegative func-
tion locally absolutely continuous on [t1,∞). The equalities ẏ(t) − u(t)y(t) = 0
and y(t1)= 1 imply

y(t)= exp

{∫ t

t1

u(s)ds

}
,

ẏ(t)= u(t) exp

{∫ t

t1

u(s)ds

}
, (8.3.12)

ÿ(t)= u̇(t) exp

{∫ t

t1

u(s)ds

}
+ u2(t) exp

{∫ t

t1

u(s)ds

}
.
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Substituting (8.3.12) into (8.3.11), we obtain

exp

{∫ t

t1

u(s)ds

}[
u̇(t)+ u2(t)+

r∑

k=1

ak(t)u
(
hk(t)

)
exp

{
−
∫ t

hk(t)

u(s)ds

}

+
m∑

k=1

bk(t) exp

{
−
∫ t

gk(t)

u(s)ds

}]
≤ 0. (8.3.13)

For t ≥ t0, we have y(t) ≥ 0, ẏ(t) ≥ 0, ak(t) ≥ 0, bk(t) ≥ 0. Consequently, the
last two terms in (8.3.13) are positive. Therefore (8.3.13) implies inequality (8.3.1),
which completes the proof. �

In the case hk(t) ≡ t , necessary and sufficient nonoscillation conditions can be
obtained as a corollary of Theorems 8.1 and 8.2. To this end, consider the equation

ẍ(t)+ a(t)ẋ(t)+
m∑

k=1

bk(t)x
(
gk(t)

)= 0, t ≥ 0 (8.3.14)

and the delay differential inequality

ÿ(t)+ a(t)ẏ(t)+
m∑

k=1

bk(t)y
(
gk(t)

)≤ 0, t ≥ 0. (8.3.15)

For (8.3.14), condition 2) of Theorem 8.1 always holds.

Corollary 8.2 Suppose a(t) ≥ 0, bk(t) ≥ 0, k = 1, · · · ,m. Then, for (8.3.14), the
following statements are equivalent:

1) There exists t1 ≥ 0 such that inequality (8.3.15) has a positive solution with a
nonnegative derivative for t > t1.

2) There exists t2 ≥ 0 such that the inequality

u̇(t)+ u2(t)+ a(t)u(t)+
m∑

k=1

bk(t) exp

{
−
∫ t

gk(t)

u(s)ds

}
≤ 0 (8.3.16)

has a nonnegative solution locally absolutely continuous on [t2,∞).
3) There exists t3 ≥ 0 such that X(t, s) > 0 and X′

t (t, s)≥ 0 for t > s ≥ t3.
4) There exists t4 ≥ 0 such that (8.3.14) has a positive solution with a nonnegative

derivative for t > t4.

Remark 8.1 For equations without the damping term (a(t) ≡ 0), this result was
obtained in the previous chapter.
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8.4 Comparison Theorems

Theorem 8.1 can be employed for comparison of oscillation properties. To this end,
consider together with (8.2.1) the equation with the same delays in the damping
term

ẍ(t)+
r∑

k=1

ck(t)ẋ
(
hk(t)

)+
m∑

k=1

dk(t)x
(
pk(t)

)= 0, t ≥ 0. (8.4.1)

Suppose (a1) and (a2) hold for (8.4.1), and denote by Y(t, s) the fundamental func-
tion of this equation.

Theorem 8.3 Suppose ak(t)≥ 0, bk(t)≥ 0 and the conditions of Theorem 8.1 hold
for some t0 ≥ 0. If

ck(t)≤ ak(t), dk(t)≤ bk(t),pk(t)≤ gk(t), t ≥ t0, (8.4.2)

then (8.4.1) has a positive solution with a nonnegative derivative for t > t0 and
Y(t, s) > 0, Y ′

t (t, s)≥ 0, t > s > t0.

Proof By Theorem 8.1, there exists a nonnegative solution u of the inequality
(8.3.1) for t ≥ t0. Inequalities (8.4.2) yield that for t ≥ t0 the function u is also a
solution of the inequality

u̇(t)+ u2(t)+
r∑

k=1

c+k (t)u
(
hk(t)

)
exp

{
−
∫ t

hk(t)

u(s)ds

}

+
m∑

k=1

d+
k (t) exp

{
−
∫ t

pk(t)

u(s)ds

}
≤ 0.

By comparison, when Theorem 2.3 is applied to (8.3.2) and the equation

ż(t)+ u(t)z(t)+
r∑

k=1

ck(t)z
(
hk(t)

)= 0, (8.4.3)

the fundamental function of (8.4.3) is positive. Thus, Theorem 8.1 implies all the
statements of this theorem. �

Corollary 8.3 If a(t)≥ 0, bk(t)≥ 0 and the ordinary differential equation

ÿ(t)+ a(t)ẏ(t)+
m∑

k=1

bk(t)y(t)= 0 (8.4.4)

has a positive solution with a nonnegative derivative, then (8.3.14) also has a posi-
tive solution with a nonnegative derivative for any gk(t)≤ t .

Let us now compare the solutions of (8.2.2), (8.2.3) and the problem

ÿ(t)+
r∑

k=1

ck(t)ẏ
(
hk(t)

)+
m∑

k=1

dk(t)y
(
gk(t)

)= r(t), t ≥ t0, (8.4.5)



8.4 Comparison Theorems 201

y(t)= ϕ̄(t), ẏ(t)= ψ̄(t), t < t0, y(t0)= y0, ẏ(t0)= y′
0. (8.4.6)

Denote by x(t) and X(t, s) the solution and the fundamental function of (8.2.2),
(8.2.3) and by y(t) and Y(t, s) the solution and the fundamental function of (8.4.5),
(8.4.6).

Theorem 8.4 Suppose that all the conditions of Theorem 8.1 hold, x(t) > 0,
ẋ(t) ≥ 0 for t > t0 and ak(t) ≥ ck(t) ≥ 0, bk(t) ≥ dk(t) ≥ 0, r(t) ≥ f (t); ϕ(t) ≥
ϕ̄(t), ψ(t)≥ ψ̄(t), t < t0; y0 = x0, y′

0 ≥ x′
0.

Then y(t)≥ x(t) for t ≥ t0 and Y(t, s)≥X(t, s) > 0 for t > s > t0.

Proof Denote by u a nonnegative solution of inequality (8.3.1). The inequalities
ak(t)≥ ck(t), bk(t)≥ dk(t) yield that the function u is also a solution of the inequal-
ity corresponding to (8.3.1) for (8.4.5). By Theorem 2.3, the fundamental function
of the equation corresponding to (8.3.2) is positive. Hence, by Theorem 8.1 the fun-
damental function Y(t, s) of (8.4.5) is positive: Y(t, s) > 0, t > s > t0.

Equation (8.2.2) can be rewritten in the form

ẍ(t)+
r∑

k=1

ck(t)ẋ
(
hk(t)

)+
m∑

k=1

dk(t)x
(
gk(t)

)

= −
r∑

k=1

[
ak(t)− ck(t)

]
ẋ
(
hk(t)

)−
m∑

k=1

[
bk(t)− dk(t)

]
x
(
gk(t)

)+ f (t).

Hence (see (8.2.5)), for the solutions of (8.2.2), (8.2.3) and (8.4.5), (8.4.6), we have

x(t)= y1(t)x0 + Y(t, t0)x
′
0 −

r∑

k=1

∫ t

t0

Y(t, s)
[
ak(s)− ck(s)

]
ẋ
(
hk(s)

)
ds

−
m∑

k=1

∫ t

t0

Y(t, s)
[
bk(s)− dk(s)

]
x
(
gk(s)

)
ds

−
r∑

k=1

∫ t

t0

Y(t, s)ck(s)ψ
(
hk(s)

)
ds

−
m∑

k=1

∫ t

t0

Y(t, s)dk(s)ϕ
(
gk(s)

)
ds +

∫ t

t0

Y(t, s)f (s)ds

and

y(t)= y1(t)y0 + Y(t, t0)y
′
0 −

r∑

k=1

∫ t

t0

Y(t, s)ck(s)ψ̄
(
hk(s)

)
ds

−
m∑

k=1

∫ t

t0

Y(t, s)dk(s)ϕ̄
(
gk(s)

)
ds +

∫ t

t0

Y(t, s)r(s)ds,
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where ϕ(gk(s)) = ψ(hk(s)) = ϕ̄(gk(s)) = ψ̄(hk(s)) = 0 if hk(s) > t0, gk(s) > t0
and x(gk(s)) = 0, ẋ(hk(s)) = 0 if gk(t) < t0 or hk(s) < t0. Therefore y(t) ≥
x(t) > 0, t > t0.

Comparing the solutions of problem (8.2.4) and the corresponding problem for
Y(t, s), we see that Y(t, s)≥X(t, s) for t > s > t0, which completes the proof. �

If in (8.2.2), (8.2.3) we have bk(t) ≤ 0 and there is no delay in the damping
terms (i.e., hk(t)≡ t), then we can obtain a stronger comparison result. To this end,
consider the two initial value problems

ẍ(t)+ a(t)ẋ(t)−
m∑

k=1

bk(t)x
(
gk(t)

)= f (t), t ≥ t0,

x(t)= ϕ(t), t < t0, x(t0)= x0, ẋ(t0)= x′
0,

(8.4.7)

and

ÿ(t)+ c(t)ẏ(t)−
m∑

k=1

dk(t)y
(
gk(t)

)= r(t), t ≥ t0,

y(t)= ϕ̄(t), t < t0, y(t0)= y0, ẏ(t0)= y′
0.

(8.4.8)

Denote by x(t), y(t) and X(t, s), Y(t, s) solutions and fundamental functions of
(8.4.7) and (8.4.8), respectively.

Theorem 8.5 Let

a(t)≥ c(t), dk(t)≥ bk(t)≥ 0,

ϕ̄(t)≥ ϕ(t)≥ 0, r(t)≥ f (t)≥ 0, y0 ≥ x0 > 0, y′
0 ≥ x′

0 ≥ 0.

Then y(t)≥ x(t) > 0 for t ≥ t0 and Y(t, s)≥X(t, s) > 0 for t > s > t0.

Proof Inequality (8.3.1) for (8.4.7) has the form

u̇(t)+ u2(t)+ a+(t)u(t)≤ 0. (8.4.9)

Straightforward calculations imply that the function

u(t)= exp{− ∫ t
t0
a+(s)ds}

∫ t
t0

exp{− ∫ s
t0
a+(τ )dτ }ds

is a nonnegative solution of the equation corresponding to inequality (8.4.9).
Then, for the equation in (8.4.7) and similarly for the equation in (8.4.8), we have

X(t, s) > 0, Y(t, s) > 0 for t > s > t0.
Next, let us compare solutions x of (8.4.7) and solution z of the problem

z̈(t)+ a(t)ż(t)= f (t), z(t0)= x0, ż(t0)= x′
0. (8.4.10)

Since z(t) can be represented as

z(t)= x0 +
∫ t

t0

[
exp

{
−
∫ s

t0

a(τ)dτ

}
x′

0 +
∫ s

t0

exp

{
−
∫ s

ζ

a(τ )dτ

}
f (ζ )dζ

]
ds,

we have z(t) > 0 for t ≥ t0.
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After rewriting (8.4.10) in the form

z̈(t)+ a(t)ż(t)−
m∑

k=1

bk(t)z
(
gk(t)

)= −
m∑

k=1

bk(t)z
(
gk(t)

)+ f (t),

for the solutions of problems (8.4.7) and (8.4.10) we have

x(t)= x1(t)x0 +X(t, t0)x
′
0 +

m∑

k=1

∫ t

t0

X(t, s)bk(s)ϕ
(
gk(s)

)
ds

+
∫ t

t0

X(t, s)f (s)ds,

z(t)= x1(t)x0 +X(t, t0)x
′
0 +

m∑

k=1

∫ t

t0

X(t, s)bk(s)ϕ
(
gk(s)

)
ds

−
m∑

k=1

∫ t

t0

X(t, s)bk(s)z
(
gk(s)

)
ds +

∫ t

t0

X(t, s)f (s)ds.

Hence x(t) ≥ z(t) > 0 for t > t0 and as a consequence x1(t) > 0. Similarly,
y(t) > 0, y1(t) > 0.

Finally, the same computation as in the proof of the previous theorem implies the
statement of the theorem. �

Corollary 8.4 Suppose that bk(t) ≤ 0 and x and y are solutions of (8.3.14) and
inequality (8.3.15), respectively, such that x(t)= y(t) for t ≤ t0 and ẋ(t0)= ẏ(t0).
Then x(t)≥ y(t) for t ≥ t0.

The proof is based on solution representation (8.2.5) and the inequality
X(t, s) > 0 satisfied for t > s > 0.

8.5 Explicit Nonoscillation Conditions

We will apply Theorem 8.1 to obtain explicit sufficient nonoscillation conditions.

Theorem 8.6 Suppose the following conditions hold: hk(t) > 0 and gk(t) ≥ 0 for
t ≥ t0,

1

2

r∑

k=1

a+
k (t)

√
t3

hk(t)
+

m∑

k=1

b+
k (t)

√
t3gk(t)≤ 1

4
, t ≥ t0, (8.5.1)

m∑

k=1

∫ t

h(t)

a+
k (τ )

√
τ

hk(τ )
dτ ≤ 1

e
, t ≥ t0, (8.5.2)

where h(t)= mink{hk(t)}.
Then (8.2.1) has a positive solution with a nonnegative derivative for t > t0.
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Proof Let u= 1
2t . Then inequality (8.3.1) takes the form

− 1

4t2
+ 1

2

r∑

k=1

a+
k (t)

hk(t)

√
hk(t)

t
+

m∑

k=1

b+
k (t)

√
gk(t)

t
≤ 0,

which is equivalent to inequality (8.5.1).
Equation (8.3.2) with u= 1

2t becomes

ż(t)+ 1

2t
z(t)+

r∑

k=1

a+
k (t)z

(
hk(t)

)= 0. (8.5.3)

Substituting z(t)= v(t)√
t

in (8.5.3), we obtain

v̇(t)+
r∑

k=1

ak(t)

√
t

hk(t)
v
(
hk(t)

)= 0. (8.5.4)

Condition (8.5.2) and Theorem 2.7 yield that the fundamental function of (8.5.4),
and therefore of (8.5.3), is positive. Theorem 8.1 implies the statement of the theo-
rem. �

Corollary 8.5 If the inequality

1

2
a+(t)t +

m∑

k=1

b+
k (t)

√
t3gk(t)≤ 1

4
, t ≥ t0

holds, then (8.3.14) has a positive solution with a nonnegative derivative for t > t0.

8.6 Discussion and Open Problems

This chapter deals with nonoscillation problems for a scalar linear delay differential
equation of the second order. Such equations attract attention of many mathemati-
cians due to their significance in applications. We mention here the monographs
of A.D. Myshkis [289], S.B. Norkin [292], G.S. Ladde, V. Lakshmikantham and
B.G. Zhang [248], I. Győri and G. Ladas [192], L.N. Erbe, Q. Kong and B.G. Zhang
[154] and references therein. The monographs contain examples of physical models
leading to equations of the type

ẍ(t)+
r∑

k=1

ak(t)ẋ
(
hk(t)

)+
m∑

k=1

bk(t)x
(
gk(t)

)= f (t), hk(t)≤ t, gk(t)≤ t.

We can also mention here the paper [164], where the author considered positivity
conditions for the fundamental function of the equation

ẍ(t)+ 2c0(t)ẋ(t)+ c1(t)ẋ(t − h)+ d0(t)x(t)+ d1(t)x(t − h)

+ d2(t)u(t − 2h)= 0,

where all the coefficients are continuous functions.
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The term with the first derivative is usually called “a damping term”. Most pub-
lications deal with equations that do not contain the term with the first derivative.
For these equations, positivity of the coefficients and a solution on the semiaxis im-
plies that its derivative is nonnegative. This fact is very important; it is employed in
most investigations on second-order delay differential equations. If the first deriva-
tive is included in the equation explicitly (i.e., the equation contains the damping
term), then a sign of a solution does not uniquely define the sign of its derivative.
Therefore the study of oscillation properties of the equations with the damping term
is more complicated. This is the reason why such equations are much less studied
than the equations without the damping term. The particular cases were considered
where the damping term is not delayed (see, for example, papers [218, 230]) and
where the delay is constant [172, 173].

In this chapter, we considered the general class of equations containing the damp-
ing term with deviating argument and studied properties of these equations con-
cerned with nonoscillation. The main result is that if a generalized Riccati inequality
(8.3.1) has a nonnegative solution for t ≥ t0, then the differential equation for t ≥ t0
has a positive solution with a nonnegative derivative and the fundamental function
of this equation is positive. If the damping term is not delayed, this immediately
yields that the following four properties are equivalent: nonoscillation of solutions
of this equation and the corresponding differential inequality, positivity of the fun-
damental function and existence of a nonnegative solution of a generalized Riccati
inequality.

We employed a generalized Riccati inequality to compare oscillation properties
of two equations without comparing their solutions. One can treat these results as a
natural generalization of the well-known Sturm comparison theorem for a second-
order ordinary differential equation.

By applying positivity of the fundamental function, we compare positive solu-
tions of two nonoscillatory equations.

The chapter also contains explicit nonoscillation conditions that are obtained by
substituting specific solutions of the generalized Riccati inequality. The results of
the chapter were published in the papers [45, 46].

Another approach that is based on comparing the oscillation properties of the
delay differential equation of second order

ẍ(t)+ a(t)ẋ(t)+ b(t)x
(
h(t)

)= 0 (8.6.1)

and the integrodifferential equation

ẏ(t)+
∫ t

t0

e−
∫ t
s a(ξ)dξ b(s)y

(
h(s)

)
ds = 0

is applied in [77]. In particular, the following result was obtained.

Theorem 8.7 [77] Let t − h(t)≤ δ, δ > 0, t ≥ t0, and let there exist positive num-
bers λ, a0 such that at least one of the following conditions holds:

1) a(t)− λ≥ a0, λ≥ eλδ‖ b+(t)
a(t)−λ‖;
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2) λ < 1, a(t)≥ a0/(1 − λ), λ(1 − λ)a(t)≥ eλ‖a(t)‖δ‖ b+(t)
a(t)

‖.

Then the fundamental function and the fundamental system of (8.6.1) are positive
for t > s ≥ t0.

A connection between nonoscillation and stability for an ordinary differential
equation of the second order with damping was studied in [72]. Stability results
for (8.2.1), which are based on the positivity of the fundamental functions of some
auxiliary delay differential equations of the first order, were obtained in [73].

Below we present some open problems and topics for research and discussion.

1. Derive oscillation properties for (8.2.1).
2. Obtain oscillation and nonoscillation properties for the following equations with

damping that have not been studied in this chapter:

the integrodifferential equation

ẍ(t)+
∫ t

−∞
K(t, s)ẋ(s)ds +

∫ t

−∞
L(t, s)x(s)ds = 0;

the differential equation with a distributed delay

ẍ(t)+
∫ t

−∞
ẋ(s)dsR(t, s)+

∫ t

−∞
x(s)dsT (t, s)= 0;

various mixed differential equations that contain both concentrated delay and
integral terms.

3. Is it possible to obtain nonoscillation conditions for equations with a damping
term and a combination of positive and negative coefficients (or an oscillating
coefficient) when (8.3.1) is not satisfied? In other words, is it possible to obtain
an analogue of (8.3.1) that includes both positive and negative terms?

4. Study differential equations with damping that have positive solutions with non-
positive derivatives. What is the asymptotic behavior of such solutions?



Chapter 9
Vector Delay Differential Equations

9.1 Introduction

This chapter deals with nonoscillation of systems of delay differential equations.
There are several different nonoscillation definitions for such systems. In [192],
a system is called nonoscillatory if there exists a solution for which at least one
component is eventually positive. In [167], and in some results in [192], a nonoscil-
latory system by definition has a solution for which all components are eventually
positive.

Due to their applications in stability and boundary value problems, we will be in-
terested in nonnegativity of the fundamental matrix for systems of linear delay dif-
ferential equations. This means that all entries of this matrix are nonnegative func-
tions, which will imply the existence of a solution with positive components. For
ordinary differential equations, nonnegativity of the fundamental matrix is equiva-
lent to the following classical result of Wazewski.

For solutions of the vector differential equation

X′(t)+A(t)X(t)= 0

and the vector differential inequality

Y ′(t)+A(t)Y (t)≤ 0,

where X(t0)= Y(t0), the inequality Y(t)≤X(t) holds if and only if aij ≤ 0, i �= j ,
where aij , i, j = 1, · · · , n are the entries of the matrix A.

We extend the sufficient part of this result to vector delay differential equations.
We also consider the related problems of comparison of nonoscillation properties
and comparison of solutions, existence of positive solutions, estimations of the fun-
damental matrix and the connection between nonoscillation and asymptotic stability.
For scalar delay differential equations, these topics are well studied. Some of them
have also been investigated for systems of delay equations: positivity of the fun-
damental matrix and comparison results in [139], estimation of solutions in [224]
and the connection between nonoscillation and stability in [31, 36]. In this chap-
ter, we present results on all problems mentioned above. In particular, positivity of

R.P. Agarwal et al., Nonoscillation Theory of Functional Differential Equations
with Applications, DOI 10.1007/978-1-4614-3455-9_9,
© Springer Science+Business Media, LLC 2012
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the fundamental matrix implies exponential stability of the vector delay differential
equation under some quite natural restrictions.

Section 9.2 contains relevant definitions and a solution representation formula.
Section 9.3 deals with nonnegativity of the fundamental matrix for the vector delay
equation. Section 9.4 includes some comparison results: nonoscillation properties
of two delay equations and solutions of these equations are compared. In Sect. 9.5,
previous results are applied to a higher-order scalar delay differential equation. Sec-
tion 9.6 establishes conditions on the initial function and the initial value that imply
positivity of the solution for the initial value problem. An upper estimate for entries
of the fundamental matrix is also presented in Sect. 9.6. Section 9.7 demonstrates
that under some natural conditions an equation with a nonnegative fundamental ma-
trix is exponentially stable. We also give an instability condition based on compar-
ison results. In Sect. 9.8, equations with distributed delays are considered. Finally,
in Sect. 9.9, the results of the chapter are discussed and some open problems are
stated.

9.2 Preliminaries

We consider for t ≥ 0 systems of linear delay differential equations in two equivalent
forms: the system of scalar equations

ẋi (t)+
m∑

k=1

n∑

j=1

akij (t)xj
(
hkij (t)

)= 0, i = 1, · · · , n (9.2.1)

and the vector equation

Ẋ(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)= 0, (9.2.2)

where Ak(t) are n× n matrices with entries akij , i, j = 1, · · · , n, k = 1, · · · ,m.
System (9.2.1) can be rewritten in the form (9.2.2), but due to applications we will

formulate conditions for vector equation (9.2.2) and scalar system (9.2.1) separately.
We consider vector delay differential equation (9.2.2) and scalar system (9.2.1)

under the following conditions:

(a1) Coefficients akij are Lebesgue measurable locally essentially bounded func-
tions.

(a2) Delays hk,hkij : [0,∞) → R are Lebesgue measurable functions, hk(t) ≤ t ,

hkij (t) ≤ t , limt→∞ hk(t) = ∞, limt→∞ hkij (t) = ∞, k = 1, · · · ,m, i, j =
1, · · · , n.

Together with (9.2.2), we consider for each t0 ≥ 0 the initial value problem

Ẋ(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)= F(t), t ≥ t0, (9.2.3)
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X(t)=Φ(t), t < t0, X(t0)=X0, (9.2.4)

where Φ(t)= [ϕ1(t), · · · , ϕn(t)]T and F satisfies the following hypothesis:

(a3) F : [t0,∞) → R
n, where F(t) = [f1(t), · · · , fn(t)]T is a Lebesgue measur-

able locally essentially bounded function and Φ : (−∞, t0)→ R
n is a Borel

measurable bounded function. Here AT is the transposed matrix.

Definition 9.1 An absolutely continuous function X : R → R
n on each interval

[t0, b] is called a solution of problem (9.2.3), (9.2.4) if it satisfies (9.2.3) for almost
all t ∈ [t0,∞) and equalities (9.2.4) for t ≤ t0.

In addition to problem (9.2.3), (9.2.4) whereX, F andΦ are column vector func-
tions, we will consider this problem where F , Φ and X are n× n matrix functions.

Definition 9.2 For each s ≥ 0, the solution C(t, s) of the matrix problem

Ẋ(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)= 0, X(t)= 0, t < s, X(s)= I, (9.2.5)

is called the fundamental matrix (or the Cauchy matrix) of (9.2.2), where C(t, s) is
an n× n matrix function and I is the identity matrix.

By 0 we will also denote the zero column vector and the zero matrix. We assume
C(t, s)= 0, 0 ≤ t < s. By Theorem B.1, we have the following result.

Lemma 9.1 Let (a1)–(a3) hold. Then there exists one and only one solution of prob-
lem (9.2.3), (9.2.4), and it can be presented in the form

X(t)= C(t, t0)X0 +
∫ t

t0

C(t, s)F (s)ds −
m∑

k=1

∫ t

t0

C(t, s)Ak(s)Φ
(
hk(s)

)
ds,

(9.2.6)

where Φ(hk(s))= 0, if hk(s) > t0.

We will writeX ≥ 0,A≥ 0 if all entries of vectorX or matrixA are nonnegative.
Let us proceed to system (9.2.1). Together with (9.2.1), we consider for each t0 ≥ 0
the initial value problem

ẋi (t)+
m∑

k=1

n∑

j=1

akij (t)xj
(
hkij (t)

)= fi(t), i = 1, · · · , n, t ≥ t0, (9.2.7)

xi(t)= ϕi(t), t < t0, xi(t0)= x0
i , (9.2.8)

where ϕi(t) and fi for each i = 1, · · · , n satisfy the following hypothesis:
fi : [t0,∞)→ R is a Lebesgue measurable locally essentially bounded function

and ϕi : (−∞, t0)→ R is a Borel measurable bounded function.
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Definition 9.3 A set of functions xi : R → R, i = 1, · · · , n, absolutely continuous
on each interval [t0, b] is called a solution of problem (9.2.7), (9.2.8) if xi , i =
1, · · · , n satisfy (9.2.7) for almost all t ∈ [t0,∞) and equalities (9.2.8) for t ≤ t0.

Denote X(t)= [x1(t), · · · , xn(t)]T , and let Akij be an n× n matrix with the only

nonzero entry akij . Then (9.2.1) can be rewritten in the vector form

Ẋ(t)+
m∑

k=1

n∑

i,j=1

Akij (t)X
(
hkij (t)

)= 0. (9.2.9)

The fundamental matrix C(t, s) of (9.2.9) will be called the fundamental matrix
of system (9.2.1). Denote X0 = [x0

1 , · · · , x0
n]T , Φ(t)= [ϕ1(t), · · · , ϕn(t)]T , F(t)=

[f1(t), · · · , fn(t)]T . By Lemma 9.1, the solution of (9.2.7), (9.2.8) can be presented
as

X(t)= C(t, t0)X0 +
∫ t

t0

C(t, s)F (s)ds −
m∑

k=1

n∑

i,j=1

∫ t

t0

C(t, s)Akij (s)Φ
(
hkij (s)

)
ds,

(9.2.10)

where Φ(hkij (s))= 0, if hkij (s) > t0.

9.3 Main Results

Theorem 9.1 Suppose akij (t)≤ 0, i �= j , k = 1, · · · ,m, t ≥ t0 and the fundamental
functions Xi(t, s) of the scalar equations

ẋ(t)+
m∑

k=1

[
akii(t)

]+
x
(
hk(t)

)= 0, i = 1, · · · , n, (9.3.1)

are positive for t ≥ s ≥ t0. Then, for the fundamental matrix C(t, s) of the system
(9.2.2), we have C(t, s)≥ 0, t ≥ s ≥ t0.

Proof Consider first the case akii ≥ 0. After introducing diagonal matrices Bk(t)=
diag{ak11, · · · , aknn} and defining Dk(t)= Ak(t)− Bk(t), k = 1, · · · ,m, it is evident
that for the entries dkij of Dk(t) we have dkij ≤ 0, i �= j , dkii = 0. Denote by Y(t, s)
the fundamental matrix of the system

Ẏ (t)+
m∑

k=1

Bk(t)Y
(
hk(t)

)= 0.

Bk(t) are diagonal matrices, and thus Y(t, s)= diag{X1(t, s), · · · ,Xn(t, s)}, where
Xi(t, s) are the fundamental functions of scalar equations (9.3.1), i = 1, · · · , n and
Xi are positive for t ≥ s ≥ t0. Then Y(t, s)≥ 0 for t ≥ s ≥ t0.
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Consider the problem

Ẋ(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)= F(t), t ≥ t0, X(t)= 0, t ≤ t0, (9.3.2)

which can be rewritten in the form

Ẋ(t)+
m∑

k=1

Bk(t)X
(
hk(t)

)+
m∑

k=1

Dk(t)X
(
hk(t)

)= F(t), t ≥ t0,

X(t)= 0, t ≤ t0.

Hence, by (9.2.6), for the solution of (9.3.2), we have

X(t)=
∫ t

t0

Y(t, s)F (s)ds −
∫ t

t0

Y(t, s)

m∑

k=1

Dk(s)X
(
hk(s)

)
ds. (9.3.3)

If we introduce operator H as

(HX)(t)= −
∫ t

t0

Y(t, s)

m∑

k=1

Dk(s)X
(
hk(s)

)
ds, where X

(
hk(s)

)= 0, hk(s)≤ t0,

then system (9.3.3) has the form

X−HX =G, (9.3.4)

whereG(t)= ∫ t
t0
Y(t, s)F (s)ds ≥ 0 if F(t)≥ 0. Let L∞[t0, b] be the space of func-

tions essentially bounded on [t0, b] with the essential supremum norm for every
b > t0. Then (Theorem A.4) H : L∞[t0, b] → L∞[t0, b] is a sum of weakly com-
pact integral Volterra operators, and hence by Theorem A.7 its spectral radius equals
0: r(H)= 0< 1.

If X ≥ 0, then HX ≥ 0 (i.e., H is positive). Thus, for a solution of (9.3.4), we
have X = (I − H)−1G ≥ 0 for G ≥ 0 since (I − H)−1 = I + H + H 2 + · · · .
Hence, for any F ≥ 0 for the solution of (9.3.2), we have X(t) ≥ 0. The solution
representation X(t)= ∫ t

t0
C(t, s)F (s)ds implies C(t, s)≥ 0, t ≥ s ≥ 0.

In the general case, we can write Bk(t)= B+
k (t)−B−

k (t), where

B+
k (t)= diag

{(
ak11

)+
, · · · , (aknn

)+}
, B−

k (t)= B+
k (t)−Bk(t),

and prove the statement similarly. �

Remark 9.1 Theorem 9.1 was first proven in [139] with a different method.

Corollary 9.1 Suppose akij (t)≤ 0, i �= j , t ≥ t0 and

sup
t≥t0

∫ t

max{t0,mink hk(t)}

m∑

k=1

[
akii(s)

]+
ds ≤ 1

e
, i = 1, · · · , n. (9.3.5)

Then the fundamental matrix of system (9.2.2) satisfies C(t, s)≥ 0, t ≥ s ≥ t0.
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Theorem 9.2 Suppose akij (t)≤ 0, i �= j , k = 1, · · · ,m, t ≥ t0, and the fundamental
functions Xi(t, s) of the scalar equations

ẋ(t)+
m∑

k=1

[
akii(t)

]+
x
(
hkii(t)

)= 0, i = 1, · · · , n, (9.3.6)

are positive for t ≥ s ≥ t0. Then, for the fundamental matrix of the system (9.2.1),
we have C(t, s)≥ 0, t ≥ s ≥ t0.

Proof The proof follows from Theorem 9.1 since for system (9.2.9) equations
(9.3.1) have the form (9.3.6). �

Corollary 9.2 Suppose aij (t)≤ 0, i �= j , t ≥ t0 and

sup
t≥t0

∫ t

max{t0,mink hkii (t)}

m∑

k=1

[
akii(s)

]+
ds ≤ 1

e
, i = 1, · · · , n. (9.3.7)

Then the fundamental matrix of the system (9.2.1) satisfies C(t, s)≥ 0, t ≥ s ≥ t0.

Unlike systems of ordinary differential equations, the condition akij (t)≤ 0, i �= j ,
t ≥ t0 generally is not necessary for positivity of the fundamental matrix of a system
of linear delay equations, as the following example demonstrates.

Example 9.1 Consider the system

ẋ(t)+ x(t)= 0,

ẏ(t)− 3x(t)+ y(t)= 0, (9.3.8)

ż(t)+ e−3x(t − 3)− 3y(t)+ z(t)= 0.

Denote X(t, s), t ≥ s ≥ t0 the fundamental matrix of this system. By simple
calculations, we have the following structure of C(t, s). The first row of C(t, s)
is (e−(t−s),0,0). The second row is (3(t − s)e−(t−s), e−(t−s),0). The third row is
(4.5(t − s)2e−(t−s),3(t − s)e−(t−s), e−(t−s)) for t ∈ [s, s + 3] and ([4.5(t − s)2 −
(t − s) + 3]e−(t−s),3(t − s)e−(t−s), e−(t−s)) for t ∈ [s + 3,∞). So C(t, s) ≥ 0,
while one of the nondiagonal coefficients is positive.

However, there are at least two types of delay systems for which the condition
akij (t) ≤ 0, i �= j , t ≥ t0 is necessary. For the first type, all nondiagonal terms have
no delay; such systems can be rewritten in the form

Ẋ(t)+A0(t)X(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)= 0, (9.3.9)

where a0
ii (t)= 0, akij (t)= 0, i �= j , k = 1, · · · ,m.
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Theorem 9.3 Suppose that the fundamental functions of the scalar equations

ẋ(t)+
m∑

k=1

[
akii(t)

]+
x
(
hk(t)

)= 0, i = 1, · · · , n, (9.3.10)

are positive for t ≥ s ≥ t0. If there exists a nonnegative coefficient a0
ij (t)≥ 0, i �= j

such that a0
ij (t) ≥ a0 > 0 in some interval, then the fundamental matrix C(t, s) of

system (9.3.9) is not nonnegative.

Proof The assumptions of the theorem imply that the fundamental functions
Xi(t, s) of the equations

ẋ(t)+ a0
ii (t)x(t)+

m∑

k=1

akii(t)x
(
hk(t)

)= 0, i = 1, · · · , n,

are also positive for t ≥ s ≥ t0. Let us assume the contrary to the statement of the
theorem: C(t, s) ≥ 0 for t ≥ s ≥ t0, and there exist a pair of indices (i, j) and a
number t1 > t0 such that a0

ij (t) ≥ a0 > 0 for t ∈ [t0, t1]; without loss of generality,

we can assume j = 1. Coefficients a0
ij are locally bounded, so for some α > 0 we

have |a0
ij (t)| ≤ α, (i, j) �= (n,1), t0 ≤ t ≤ t1.

Consider now the solution X(t) of (9.3.9) with initial conditions X(t) = 0,
t < t0, X(t0) = B := [1,0, · · · ,0]T , which is the first column of the fundamen-
tal matrix C(t, t0). For the solution of this problem X = [x1, · · · , xn]T , we have
X(t) = C(t, t0)B ≥ 0. Let us choose δ > 0 satisfying δ < a0

a0+α(n−2) . Then there
exists t2 ∈ (t0, t1) such that for t ∈ [t0, t2] we have x1(t) > 1 − δ, xj (t) < δ, j �= 1,
which implies

∑

j �=n
a0
nj (t)xj (t)≥ a0(1 − δ)− αδ(n− 2) > 0.

The last equation in system (9.3.9) has the form

ẋn(t)+
m∑

k=1

aknn(t)xn
(
hk(t)

)= −
∑

j �=n
a0
nj (t)xj (t).

Hence

xn(t)= −
∫ t

t0

Xn(t, s)
∑

j �=n
a0
nj (s)xj (s) ds < 0, t0 ≤ t ≤ t2,

which contradicts nonnegativity of the n-th component xn of the first column of the
fundamental matrix for t0 ≤ t ≤ t2. �

The second case where the condition akij (t)≤ 0, i �= j , t ≥ t0 becomes necessary
is the delay system of two equations with constant delays of nondiagonal terms. For
simplicity, consider the system

{
ẋ1(t)= −a11(t)x1

(
h11(t)

)− a12(t)x2(t − τ12),

ẋ2(t)= −a21(t)x1(t − τ21)− a22(t)x2
(
h22(t)

)
,

(9.3.11)

where τij ≥ 0.
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Theorem 9.4 Suppose the fundamental functions of the scalar equations

ẋ(t)+ [aii(t)
]+
x
(
hii(t)

)= 0, i = 1,2 (9.3.12)

are positive for t ≥ s ≥ t0. If there exists a nonnegative nondiagonal coefficient
aij (t) ≥ 0 (i �= j ) such that aij (t) ≥ a0 > 0 in some interval [t0, t1], t1 − t0 >

max{τij }, then the fundamental matrix C(t, s) of the system (9.3.11) is not a non-
negative function.

Proof Denote by Xi(t, s) the fundamental functions of the equations

ẋ(t)+ aii(t)x
(
hii(t)

)= 0, i = 1,2. (9.3.13)

Then Xi(t, s) > 0, t ≥ s ≥ t0.
Let us assume the contrary to the statement of the theorem: C(t, s) ≥ 0 for any

t ≥ s ≥ t0, while for some t1 > t0 we have aij (t) ≥ a0 > 0 for t ∈ [t0, t1], by the
assumption of the theorem; without loss of generality, we can assume (i, j)= (2,1).

Consider now the solution X(t) of (9.3.11) with the initial conditions X(t)= 0,
t < t0, X(t0) = B := [1,0]T , which is the first column of the fundamental ma-
trix C(t, t0). For the solution of this problem X = [x1, x2]T , we have X(t) =
C(t, t0)B ≥ 0. There exist an interval [t0, t2] and a number δ > 0 such that x1(t)≥
1 − δ > 0, t0 ≤ t ≤ t2 ≤ t0 + τ21. The second equation in system (9.3.11) has the
form

ẋ2(t)+ a22(t)x2
(
h22(t)

)= −a21(t)x1(t − τ21),

where xi(t)= 0, t < t0, x2(t0)= 0. Then

x2(t1)= −
∫ t1

t0

X2(t, s)a21(s)x1(s − τ21)ds

= −
∫ t0+τ21

t0

X2(t, s)a21(s)x1(s − τ21)ds

−
∫ t2+τ21

t0+τ21

X2(t, s)a21(s)x1(s − τ21)ds

−
∫ t1

t2+τ21

X2(t, s)a21(s)x1(s − τ21)ds =: I1 + I2 + I3.

It is evident that I1 = 0, I3 ≤ 0. In the second integral, t0 ≤ s − τ21 ≤ t2. Hence,
in this integral x1(s − τ21) ≥ 1 − δ > 0. Then I2 < 0, and so x2(t1) < 0, which
contradicts our assumption. �

9.4 Comparison Results

Now we can compare two solutions of system (9.2.3) of differential equations.
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Theorem 9.5 Suppose the conditions of Theorem 9.1 hold, X(t) is a solution of
problem (9.2.3), (9.2.4) and Y(t) is a solution of the same problem, where the func-
tion F(t) is replaced by G(t). If G(t)≤ F(t) for t ≥ t0, then Y(t)≤X(t) for t ≥ t0.

The proof follows from solution representation (9.2.6) and inequality C(t, s)≥ 0
for t ≥ s ≥ t0.

Theorem 9.6 Suppose the conditions of Theorem 9.1 hold, X(t) is a solution
of (9.2.2), Y(t) is a solution of the differential inequality

Ẏ (t)+
m∑

k=1

Ak(t)Y
(
hk(t)

)≤ 0, t ≥ t0, (9.4.1)

and X(t)= Y(t), t ≤ t0. Then Y(t)≤X(t) for t ≥ t0.

Now we proceed to comparison results for system (9.2.1).

Theorem 9.7 Suppose the conditions of Theorem 9.2 hold, xi(t) is a solution of
problem (9.2.7), (9.2.8) and yi(t) is a solution of the same problem, where function
fi(t) is replaced by gi(t). If gi(t)≤ fi(t) for t ≥ t0, then yi(t)≤ xi(t) for t ≥ t0.

The proof follows from solution representation (9.2.10) and inequality C(t, s)≥
0 for t ≥ s ≥ t0.

Theorem 9.8 Suppose the conditions of Theorem 9.2 hold, xi(t) is a solution
of (9.2.1), yi(t) is a solution of the differential inequality

ẏi (t)+
m∑

k=1

n∑

j=1

akij (t)yj
(
hkij (t)

)≤ 0, i = 1, · · · , n, t ≥ t0 (9.4.2)

and xi(t)= yi(t) for t ≤ t0. Then yi(t)≤ xi(t) for t ≥ t0.

Consider together with (9.2.2) the following system, for which conditions (a1)
and (a2) hold:

Ẋ(t)+
m∑

k=1

Bk(t)X
(
gk(t)

)= 0, t ≥ 0. (9.4.3)

Denote by Y(t, s) the fundamental matrix of system (9.4.3).

Theorem 9.9 Suppose that akij (t) ≤ 0, bkij (t) ≤ 0 for i �= j , the fundamental func-

tions of scalar equations (9.3.1) are positive for t ≥ s ≥ t0, (akii)
+(t) ≥ (bkii)

+(t)
and gk(t)≥ hk(t) for t ≥ t0. Then Y(t, s)≥ 0 for t ≥ s ≥ t0.

The proof is similar to the proof of Theorem 2.4.
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Consider together with (9.2.1) the system

ẋi (t)+
m∑

k=1

n∑

j=1

bkij (t)xj
(
gkij (t)

)= 0, i = 1, · · · , n, t ≥ 0. (9.4.4)

Suppose that (a1) and (a2) hold for system (9.4.4). Denote by D(t, s) the funda-
mental matrix of system (9.4.4).

Theorem 9.10 Suppose that akij (t)≤ 0, bkij (t)≤ 0 for i �= j , the fundamental func-

tions of scalar equations (9.3.6) are positive for t ≥ s ≥ t0, akii(t) ≥ bkii(t) and
gkii(t)≥ hkii(t) for t ≥ t0. Then D(t, s)≥ 0 for t ≥ s ≥ t0.

Let us compare solutions of differential equations with different matrices and
right-hand sides.

To this end, consider together with (9.2.3), (9.2.4) the initial value problem

Ẏ (t)+
m∑

k=1

Bk(t)Y
(
hk(t)

)=G(t), t ≥ t0, (9.4.5)

Y(t)=Φ(t), t < t0, Y (t0)= Y0. (9.4.6)

Suppose that (a1)–(a3) hold for (9.4.5), (9.4.6). Denote by X(t), C(t, s) the so-
lution and the fundamental matrix of problem (9.2.3), (9.2.4) and by Y(t), D(t, s)
the solution and the fundamental matrix of problem (9.4.5), (9.4.6), respectively.

Theorem 9.11 If akij (t)≤ 0 for i �= j , the fundamental functions of scalar equations
(9.3.1) are positive for t ≥ s ≥ t0, X(t)≥ 0 and

Ak(t)≥ Bk(t), G(t)≥ F(t), Y0 ≥X0,

then Y(t)≥X(t)≥ 0, t ≥ t0.

Proof By Theorem 9.10, the fundamental matrix D(t, s) of vector equation (9.4.5)
is positive for t ≥ s ≥ t0. System (9.2.3) can be rewritten as

Ẋ(t)+
m∑

k=1

Bk(t)X
(
hk(t)

)=
m∑

k=1

[
Bk(t)−Ak(t)

]
X
(
hk(t)

)+ F(t).

Hence, by the solution representation formula,

X(t)=D(t, t0)X0 −
m∑

k=1

∫ t

t0

D(t, s)Bk(s)Φ
(
hk(s)

)
ds

+
∫ t

t0

D(t, s)F (s) ds −
m∑

k=1

∫ t

t0

D(t, s)
[
Ak(s)−Bk(s)

]
X
(
hk(s)

)
ds

≤D(t, t0)Y0 −
m∑

k=1

∫ t

t0

D(t, s)Bk(s)Φ
(
hk(s)

)
ds

+
∫ t

t0

D(t, s)G(s) ds = Y(t),
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where Φ(hk(s)) = 0 if hk(s) ≥ t0 and X(hk(s)) = 0 if hk(s) < t0. Thus X(t) ≤
Y(t), which completes the proof. �

Corollary 9.3 If akij (t)≤ 0 for i �= j , the fundamental functions of scalar equations
(9.3.1) are positive for t ≥ s ≥ t0 and Ak(t)≥ Bk(t), then D(t, s)≥ C(t, s)≥ 0 for
t ≥ s ≥ t0.

9.5 Higher-Order Scalar Delay Differential Equations

In this section, we consider the linear scalar delay differential equation of the n-th
order

y(n)(t)+ an−1(t)y
(n−1)(hn−1(t)

)+ · · · + a1(t)y
′(h1(t)

)+ a0(t)y
(
h0(t)

)= 0
(9.5.1)

for t ≥ t0, where for parameters of (9.5.1) and other higher-order equations it is
assumed that coefficients ak are Lebesgue measurable locally essentially bounded
functions, and delays hk(t)≤ t satisfy limt→∞ hk(t)= ∞, k = 0, · · · , n− 1.

Together with (9.5.1), consider the initial value problem

y(n)(t)+ an−1(t)y
(n−1)(hn−1(t)

)+ · · ·
+ a1(t)y

′(h1(t)
)+ a0(t)y

(
h0(t)

)= f (t), t ≥ t0, (9.5.2)

y(k)(t)= ϕk(t), t < t0, y
(k)(t0)= yk, k = 0, · · · , n− 1. (9.5.3)

Definition 9.4 A function y :R → R with an (n−1)-th derivative y(n−1) absolutely
continuous on each finite interval is called a solution of problem (9.5.2), (9.5.3) if it
satisfies (9.5.2) for almost all t ∈ [t0,∞) and equalities (9.5.3) for t ≤ t0.

Definition 9.5 For each s ≥ 0, the solution Y(t, s) of the problem

y(n)(t)+ an−1(t)y
(n−1)(hn−1(t)

)+ · · · + a1(t)y
′(h1(t)

)

+ a0(t)y
(
h0(t)

)= 0, t ≥ s, (9.5.4)

y(k)(t)= 0, t < s, k = 0, · · · , n− 1,

y(k)(s)= 0, k = 0, · · · , n− 2, y(n−1)(s)= 1, (9.5.5)

is called the fundamental function of (9.5.1).

Further, we will denote by Yk(t, s) a solution of (9.5.4) with the initial conditions

y(j)(t)= 0, t < s, j = 0, · · · , n− 1, y(j)(s)= 0, j �= k,

y(k)(s)= 1, k = 0, · · · , n− 1,

instead of (9.5.5). We assume Y(t, s)= 0 for 0 ≤ t < s and Yk(t, s)= 0 for 0 ≤ t <

s, k = 0, · · · , n− 1; evidently Yn−1(t, s)= Y(t, s).
By Theorem B.5, we have the following result.
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Lemma 9.2 There exists a unique solution of problem (9.5.2), (9.5.3), and it can be
presented in the form

y(t)=
n−1∑

k=0

Yk(t, t0)yk +
∫ t

t0

Y(t, s)f (s)ds −
∫ t

t0

Y(t, s)

n−1∑

k=0

ak(s)ϕ
(
hk(s)

)
ds,

(9.5.6)

where ϕ(hk(s))= 0, if hk(s)≥ t0.

Denote

x1(t)= y(t), x2(t)= y′(t), · · · , xn(t)= y(n−1)(t).

Then

x′
1(t)= x2(t), x

′
2(t)= x3(t), · · · , x′

n−1(t)= xn(t),

x′
n(t)= −

n−1∑

k=1

ak−1(t)xk
(
hk−1(t)

)
.

Denote the column vector X(t)= [x1(t), x2(t), · · · , xn(t)]T and

A0(t)=

⎛

⎜⎜⎜⎜⎝

0 −1 0 · · · 0
0 0 −1 · · · 0
· · · · ·
0 0 0 · · · −1
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
, Ak(t)=

⎛

⎜⎜⎜⎜⎝

0 0 0 · · · 0
· · · · ·
0 0 0 · · · 0
· · · · ·
0 · · · ak−1(t) · · · 0

⎞

⎟⎟⎟⎟⎠
, k = 1, · · · , n,

where Ak(t) are n× n matrices.
Hence (9.5.1) can be rewritten as the system

Ẋ(t)+A0(t)X(t)+
n∑

k=1

Ak(t)X
(
hk−1(t)

)= 0, (9.5.7)

and for its fundamental matrix C(t, s) we can deduce C1n(t, s) = Y(t, s), where
Y(t, s) is the fundamental function of (9.5.1).

As a corollary of Theorem 9.1, we can obtain the following result.

Theorem 9.12 Suppose that ak(t)≤ 0, k = 0, · · · , n− 2 and the fundamental func-
tion X(t, s) of the scalar equation

ẋ(t)+ [an−1(t)
]+
x
(
hn−1(t)

)= 0 (9.5.8)

is positive for t ≥ s ≥ t0. Then, for the fundamental function of (9.5.1), we have
Y(t, s)≥ 0, t ≥ s ≥ t0.

Proof First let us check that all the conditions of Theorem 9.1 hold for sys-
tem (9.5.7). Evidently all the nondiagonal entries of matrices Ak(t), k = 0, · · · , n
are nonpositive.
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Scalar equations (9.3.1) have the form

ẋk(t)= 0, k = 1, · · · , n− 1, ẋn(t)+
[
an−1(t)

]+
xn
(
hn−1(t)

)= 0.

Fundamental functions of all these equations are positive. Theorem 9.1 implies that
the fundamental matrix C(t, s) of system (9.5.7) is nonnegative for t ≥ s ≥ t0. Since
C1n(t, s)= Y(t, s), the fundamental function of (9.5.1) is nonnegative. �

Corollary 9.4 Suppose that ak(t)≤ 0, k = 0, · · · , n− 2, t ≥ t0 and

sup
t≥t0

∫ t

max{t0,hn−1(t)}
[
an−1(s)

]+
ds ≤ 1

e
. (9.5.9)

Then the fundamental function Y(t, s) of (9.5.1) is nonnegative for t ≥ s ≥ t0.

Corollary 9.5 Suppose that ak(t) ≤ 0, k = 1, · · · , n, t ≥ t0. Then the fundamental
function Y(t, s) of (9.5.1) is nonnegative for t ≥ s ≥ t0.

Corollary 9.6 Suppose that the conditions of Theorem 9.12 hold, u(t) is a solution
of problem (9.5.2), (9.5.3) and v(t) is a solution of the problem, where f is replaced
by g. If g(t)≤ f (t), then v(t)≤ u(t), t ≥ t0.

Corollary 9.7 Suppose that the conditions of Theorem 9.12 hold, u(t) is a solution
of (9.5.1) and v(t) is a solution of the differential inequality

y(n)(t)+ an−1(t)y
(n−1)(hn−1(t)

)+ · · · + a0(t)y
(
h0(t)

)≤ 0.

If v(t)= u(t), t ≤ t0, then v(t)≤ u(t), t ≥ t0.

Remark 9.2 Corollary 9.7 extends the famous result obtained by Chaplygin [89] for
an ordinary differential equation of the second order,

y′′(t)+ a(t)y′(t)+ b(t)y(t)= 0.

Together with (9.5.1), consider the equation

z(n)(t)+ bn−1(t)z
(n−1)(gn−1(t)

)+ · · · + b0(t)z
(
g0(t)

)= 0, t ≥ t0. (9.5.10)

Denote by Z(t, s) the fundamental function of (9.5.10).

Theorem 9.13 If

an−1(t)≥ bn−1(t)≥ 0, gn−1(t)≥ hn−1(t)ak(t)≤ 0,

bk(t)≤ 0, k = 0, · · · , n− 2, t ≥ t0,

and the fundamental function of (9.5.1) is nonnegative, then Z(t, s) ≥ 0 for t ≥
s ≥ t0.

Together with (9.5.2), (9.5.3), consider the initial value problem

z(n)(t)+ bn−1(t)z
(n−1)(hn−1(t)

)+ · · · + b0(t)z
(
h0(t)

)= g(t), t ≥ t0, (9.5.11)
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z(k)(t)= ϕk(t), t < t0, z
(k)(t0)= zk, k = 0, · · · , n− 1. (9.5.12)

Further, let y(t), Y (t, s) be the solution and the fundamental function of problem
(9.5.2), (9.5.3) and z(t), Z(t, s) the solution and the fundamental function of prob-
lem (9.5.11), (9.5.12), respectively.

In the following theorem, we compare positive solutions and fundamental func-
tions of two nonoscillatory equations.

Theorem 9.14 Suppose that an−1(t)≥ bn−1(t)≥ 0 for t ≥ t0, y(t)≥ 0, t ≥ t0,

ak(t)≥ bk(t), k = 0, · · · , n− 2, g(t)≥ f (t), yk ≤ zk, k = 0, · · · , n− 1,

and the fundamental function of (9.5.1) is positive for t ≥ s ≥ t0. Then Z(t, s) ≥
Y(t, s)≥ 0 for t ≥ s ≥ t0, and z(t)≥ y(t)≥ 0, t ≥ t0.

9.6 Positivity and Solution Estimates

We begin this section with an analogue of Corollary 2.15 on the existence of a
positive solution.

Theorem 9.15 Suppose that

akii(t)≥ 0, akij (t)≤ 0, i �= j, k = 1, · · · ,m, F (t)≥ 0, t ≥ t0,

0 ≤Φ(t)≤X0, X0 > 0 and inequality (9.3.5) holds. Then, for the solution X(t) of
problem (9.2.3), (9.2.4), we have X(t)≥ 0, t ≥ t0.

Proof First, let F(t)= 0. We recall that

Φ(t)= [ϕ1(t), · · · , ϕn(t)
]T
, X0 = [x0

1 , · · · , x0
n

]T
,

where ϕi(t)≤ x0
i , x0

i > 0. Hence, for solutions yi(t) of initial value problems

ẏ(t)+
m∑

k=1

akii(t)y
(
hk(t)

)= 0, i = 1, · · · , n,

y(t)= ϕi(t), t < t0, y(t0)= x0
i ,

Corollary 2.15 implies yi(t) > 0, t ≥ t0, i = 1, · · · , n.
Denote Y(t)= [y1(t), · · · , yn(t)]T . Then

Ẏ (t)+
m∑

k=1

Ak(t)Y
(
hk(t)

)≤ 0,

Y (t)=X(t), t ≤ t0.

The solution representation implies 0 ≤ Y(t)≤X(t).
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For the case F(t) ≥ 0, the proof also follows from solution representation
(9.2.6). �

Corollary 9.8 If ak(t)≤ 0, k = 0, · · · , n− 2, an−1(t)≥ 0, t ≥ t0, (9.5.9) holds and

0 ≤ ϕk(t)≤ yk, yk > 0, k = 1, · · · , n, f (t)≥ 0,

then for the solution y(t) of initial value problem (9.5.2), (9.5.3) we have y(t)≥ 0,
t ≥ t0.

Let ‖X‖ denote a vector norm for X ∈ R
n. By ‖ · ‖, we will also denote the

associated matrix norm

‖A‖ = sup
‖x‖=1,x∈Rn

‖Ax‖.

Definition 9.6 Let A(t) be a variable matrix. μ(A) is the matrix measure defined
as

μ(A)= lim
θ→0+

‖I + θA‖ − 1

θ
, (9.6.1)

where I is the identity matrix.

The well-known Coppel inequality (see [103] and also [351] for the outline of
the relevant facts for the matrix measure) states that solutions of the system

Ẋ(t)=A(t)X(t) (9.6.2)

satisfy the inequality

∥∥X(t)
∥∥≤ ∥∥X(t0)

∥∥ exp

{∫ t

t0

μ
(
A(τ)

)
dτ

}
. (9.6.3)

For the fundamental matrix of system (9.6.2), the estimate

∥∥C(t, s)
∥∥≤ exp

{∫ t

s

μ
(
A(τ)

)
dτ

}
(9.6.4)

holds.
Let us obtain an upper estimate for the fundamental matrix of system (9.2.2).

Theorem 9.16 Suppose that the conditions of Theorem 9.1 hold and akii(t) ≥ 0,
0 ≤ t − hk(t)≤H for i = 1, · · · , n, k = 1, · · · ,m.

Then
∥∥C(t, s)

∥∥≤ ∥∥M(t, s)∥∥+
∫ t

s

[∥∥M(t, τ )
∥∥∥∥S(τ)

∥∥ exp

{∫ τ

s

μ
(
S(ζ )

)
dζ

}]
dτ,

(9.6.5)

where M = diag{M11, · · · ,Mnn},

Mii = exp

{
−
∫ t

s+H

m∑

k=1

akii(τ ) dτ

}
, (9.6.6)
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S(t)=
m∑

k=1

[
Bk(t)−Ak(t)

]
, Bk(t)= diag

{
ak11, · · · , aknn

}
, k = 1, · · · ,m. (9.6.7)

Proof By Theorem 9.1, the fundamental matrix C(t, s) of system (9.2.2) is nonneg-
ative: C(t, s)≥ 0. On the other hand, it does not exceed the solution of the problem

Ẋ(t)=
m∑

k=1

[
Bk(t)−Ak(t)

]
X
(
hk(t)

)
, X(s)= I, X(t)= 0, t < s.

Since the elements of the matrix Bk(t)−Ak(t) are nonnegative, the entries of X(t)
are increasing functions. Hence

Ẋ(t)=
m∑

k=1

[
Bk(t)−Ak(t)

]
X
(
hk(t)

)≤
m∑

k=1

[
Bk(t)−Ak(t)

]
X(t)= S(t)X(t),

X(s)= I,

and thus
∥∥C(t, s)

∥∥≤ exp

{∫ t

s

μ
(
S(ζ )

)
dζ

}
.

Since S(t)≥ 0, we have μ(S(t))≥ 0, and

∥∥C
(
hk(t), s

)∥∥≤ exp

{∫ hk(t)

s

μ
(
S(ζ )

)
dζ

}
≤ exp

{∫ t

s

μ
(
S(ζ )

)
dζ

}
(9.6.8)

for any t and k = 1, · · · ,m. Denote by Y(t, s) the fundamental matrix of the system

Ẏ (t)+
m∑

k=1

Bk(t)Y
(
hk(t)

)= 0.

Since Bk(t) are diagonal matrices,

Y(t, s)= diag
{
X1(t, s), · · · ,Xn(t, s)

}
,

where Xk(t, s) is the fundamental function of scalar equation (9.3.1), which is pos-
itive for t ≥ s ≥ t0. Thus Y(t, s)≥ 0, t ≥ s ≥ t0.

By Lemma 2.19, we have Xi(t, s)≤Mii(t, s), where Mii are defined in (9.6.6),
so

Y(t, s)≤M(t, s).

Let us fix s and denote X(t)= C(t, s). Since

Ẋ(t)+
m∑

k=1

Bk(t)X
(
hk(t, s)

)=
m∑

k=1

[
Bk(t)−Ak(t)

]
X
(
hk(t)

)
,

by solution representation formula (9.2.6) and (9.6.8) we have

∥∥X(t)
∥∥=

∥∥∥∥∥Y(t, s)+
∫ t

s

Y (t, τ )

m∑

k=1

[
Bk(τ)−Ak(τ)

]
X
(
hk(τ )

)
dτ

∥∥∥∥∥
≤ ∥∥M(t, s)∥∥
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+
∫ t

s

(
∥∥M(t, τ )

∥∥
∥∥∥∥∥

m∑

k=1

[
Bk(τ)−Ak(τ)

]
∥∥∥∥∥ exp

{∫ τ

s

μ
(
S(ζ )

)
dζ

})
dτ

= ∥∥M(t, s)∥∥+
∫ t

s

[∥∥M(t, τ )
∥∥∥∥S(τ)

∥∥ exp

{∫ τ

s

μ
(
S(ζ )

)
dζ

}]
dτ,

which completes the proof. �

Consider now system (9.2.1).

Theorem 9.17 If

akii(t)≥ 0, akij (t)≤ 0, i �= j, k = 1, · · · ,m,
fi(t)≥ 0, t ≥ t0, 0 ≤ ϕi(t)≤ x0

i , x
0
i > 0

and inequality (9.3.7) holds, then for the solution xi(t) of initial value problem
(9.2.7), (9.2.8) we have xi(t)≥ 0 for t ≥ t0.

9.7 Positive Solutions and Stability

In this section, we establish a connection between nonoscillation properties and
stability for delay differential systems. We need some definitions and results.

Definition 9.7 Matrix A is called an M-matrix if aij ≤ 0, i �= j and there exists a
nonnegative inverse matrix A−1 ≥ 0.

We refer to [36, 83] for many equivalent forms of this definition.

Definition 9.8 Equation (9.2.2) is asymptotically stable if for any s ≥ 0 the fun-
damental matrix of this equation satisfies limt→∞C(t, s) = 0. Equation (9.2.2) is
exponentially stable if there exist M > 0 and α > 0 such that

∥∥C(t, s)
∥∥≤Me−α(t−s), t ≥ s ≥ t0. (9.7.1)

The following result is presented in Appendix B as Theorem B.21.

Lemma 9.3 Suppose for (9.2.2) for some t0 ≥ 0 and H > 0 functions akij are essen-
tially bounded on [t0,∞), t−hk(t)≤H and for any function F essentially bounded
on [t0,∞) the solution of the initial value problem

Ẋ(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)= F(t), t > t0, X(t)= 0, t ≤ t0

is bounded on [t0,∞). Then (9.2.2) is exponentially stable.
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Corollary 9.9 Suppose that functions akij are essentially bounded on [t0,∞) and
t − hk(t)≤H . If there exists t1 > t0 such that, for any function F that is essentially
bounded on [t0,∞) and satisfies F(t)= 0 for t ∈ [t0, t1], the solution of the initial
value problem (9.2.9) is bounded on [t0,∞), then (9.2.2) is exponentially stable.

Proof Since the solution of (9.2.2) with the zero initial conditions and the zero right-
hand side on [t0, t1] vanishes on [t0, t1], we can obtain by Lemma 9.3 that (9.2.2)
with the initial point t1 instead of t0 is exponentially stable: ‖C(t, s)‖ ≤M1e

−α(t−s)
for t ≥ s ≥ t1.

The fundamental matrix of a vector equation with coefficients bounded on [t0, t1]
is also bounded on the square (t, s) ∈ [t0, t1] × [t0, t1]: |C(t, s)| ≤M2, t0 ≤ s ≤ t ≤
t1. Consider the matrix initial value problem with the initial point at t1 and the initial
matrix Φ(t), which coincides with C(t, s) for t ≤ t1 and vanishes for t > t1, which
implies Φ(hk(t)) = 0 for t > t1 +H . Then solution representation (9.2.6) implies
for s ∈ [t0, t1] (we note that Φ(t)= 0 for t > t1 +H )

∥∥C(t, s)
∥∥=

∥∥∥∥∥C(t, t1)C(t1, s)−
m∑

k=1

∫ t

t1

C(t, τ )Ak(τ )Φ
(
hk(τ )

)
dτ

∥∥∥∥∥

=
∥∥∥∥∥C(t, t1)C(t1, s)−

m∑

k=1

∫ t1+H

t1

C(t, τ )Ak(τ )Φ
(
hk(τ )

)
dτ

∥∥∥∥∥

≤ ∥∥C(t, t1)
∥∥∥∥C(t1, s)

∥∥+
m∑

k=1

∫ t1+H

t1

∥∥Ak(τ)
∥∥∥∥C

(
hk(τ ), s

)∥∥dτ

≤M1M2e
−α(t−t1) +H sup

t∈[t1,t1+H ]

m∑

k=1

∥∥Ak(τ)
∥∥M1M2e

−α(t−t1−H)

≤Me−α(t−s).
Thus, for any t ≥ s ≥ t0 we have ‖C(t, s)‖ ≤Me−α(t−s), where

M = max

{
1,M1M2e

α(t1−t0) +H

(
sup

τ∈[t1,t1+H ]

m∑

k=1

∥∥Ak(τ)
∥∥
)
M1M2e

α(t1+H−t0)
}
,

which completes the proof. �

For a function essentially bounded on [t0,∞), define the norm

‖f ‖L∞ = ess sup
t≥t0

∥∥f (t)
∥∥.

Theorem 9.18 Suppose that for system (9.2.2) the conditions of Theorem 9.1 hold,
for some t0 ≥ 0 and H > 0 the functions akij are essentially bounded on [t0,∞),

t − hk(t)≤H , akii ≥ 0, i = 1, · · · , n, k = 1, · · · ,m,

inf
t≥t0

m∑

k=1

akii(t)≥ ai > 0,
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and the matrix B = {bij } defined as

bij =
{
ai, i = j,

−∑m
k=1 ‖akij‖L∞, i �= j,

(9.7.2)

is an M-matrix. Then system (9.2.2) is exponentially stable.

Proof We apply Lemma 9.3 and Corollary 9.9. Consider the initial value problem

Ẋ(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)= F(t), X(t)= 0, t ≤ t0, (9.7.3)

where F(t)= 0 for t0 ≤ t ≤ t0 +H . Since F(t)= 0, t ≤ t0 +H , we have X(t)= 0,
t ≤ t0 +H .

Equation (9.7.3) can be rewritten as the system of scalar equations

ẋi (t)+
m∑

k=1

akii(t)xi
(
hk(t)

)= −
∑

j �=i

m∑

k=1

akij (t)xj
(
hk(t)

)+ fi(t), i = 1, · · · , n.

Denote by Xi(t, s) the fundamental function of (9.3.1). By the assumption of
the theorem Xi(t, s) ≥ 0, t ≥ s ≥ t0. Hence we can also rewrite (9.7.3) in the
form

xi(t)= −
∫ t

t0

Xi(t, s)
∑

j �=i

m∑

k=1

akij (s)xj
(
hk(s)

)
ds + gi(t), i = 1, · · · , n,

where

gi(t)=
∫ t

t0

Xi(t, s)fi(s)ds.

By Theorem 2.21, we have

∣∣gi(t)
∣∣≤
∫ t

t0

Xi(t, s)

m∑

k=1

akii(s)ds
‖fi‖L∞
ai

≤ ‖fi‖L∞
ai

,

which implies ess supt≥t0 |gi(t)|<∞.
From the inequality

∣∣xi(t)
∣∣≤
∫ t

t0

Xi(t, s)

m∑

k=1

akii(s)ds
∑

j �=i

m∑

k=1

‖akij‖L∞
ai

sup
0≤s≤t

∣∣xj (s)
∣∣+ ‖gi‖L∞

≤
∑

j �=i

m∑

k=1

‖akij‖L∞
ai

sup
0≤s≤t

∣∣xj (s)
∣∣+ ‖gi‖L∞,

we obtain

sup
0≤s≤t

∣∣xi(s)
∣∣≤
∑

j �=i

m∑

k=1

‖akij‖L∞
ai

sup
0≤s≤t

∣∣xj (s)
∣∣+ ‖gi‖L∞ .
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Denote

yi(t)= sup
0≤s≤t

∣∣xi(s)
∣∣, Y (t)= [y1(t), · · · , yn(t)

]T
,

G(t)= [‖g1‖L∞, · · · ,‖gn‖L∞
]T
,

cij =
{

1, i = j,

− 1
ai

∑m
k=1 ‖akij‖L∞, i �= j,

C = [cij ].

We have CY(t) ≤G for any t > t0. Evidently, if B is an M-matrix, then C is also
an M-matrix. Thus C−1 ≥ 0 and Y(t)≤ C−1G. Hence

sup
t≥t0

∣∣X(t)
∣∣= sup

t≥t0

∣∣Y(t)
∣∣≤ ∥∥C−1G

∥∥<∞.

By Lemma 9.3, (9.2.2) is exponentially stable. �

Corollary 9.10 Suppose that for the scalar equation

ẋ(t)+
m∑

k=1

ak(t)x
(
hk(t)

)= 0 (9.7.4)

for some t0 ≥ 0 and H > 0, functions ak are essentially bounded on [t0,∞), t −
hk(t)≤H , ak ≥ 0, k = 1, · · · ,m,

inf
t≥t0

m∑

k=1

ak(t)≥ a0 > 0,

and the fundamental function of the equation is positive.
Then (9.7.4) is exponentially stable.

Proof Since the matrix B in Theorem 9.1 is equal to the positive number a0, then
all the conditions of Theorem 9.1 hold. �

Corollary 9.11 Suppose that for system (9.2.2) the conditions of Theorem 9.1 hold,
for some t0 ≥ 0 and H > 0 the functions akij are essentially bounded on [t0,∞) and
t − hk(t)≤H . Let matrix B = {bij } be defined as in (9.7.2).

1) If the condition
(A1) there exist two vectors z = [z1, · · · , zn]T and ε = [ε1, · · · , εn]T such that

zi > 0, εi ≥ 1 for i = 1, · · · , n, and

Bz≥ ε, (9.7.5)

holds, then (9.2.2) is exponentially stable and

lim
t→∞

∫ t

0

n∑

j=1

Cij (t, s)ds ≤ zi, i = 1, · · · , n. (9.7.6)
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2) If there exists a matrix Y = {yij } ≥ 0 such that yii > 0 and the inequality

BY ≥ I (9.7.7)

holds, then (9.2.2) is exponentially stable, and the entries of the Cauchy matrix
satisfy the inequalities

lim
t→∞

∫ t

0
Cij (t, s)ds ≤ yij , i, j = 1, · · · , n. (9.7.8)

Proof Let us note that condition (A1) is equivalent to the hypothesis that B is an
M-matrix [83] as well as to the existence of matrix Y such that (9.7.7) holds. For
the estimates (9.7.6) and (9.7.8), see [31, 139]. �

Remark 9.3 It should be emphasized that the requirement that B be an M-matrix
in Theorem 9.18 is essential and becomes necessary in the case of constant coeffi-
cients akij . Note in this connection the following results obtained in [139].

Theorem 9.19 [139] Suppose that all coefficients akij are constants, t − hk(t)≤H

for some t0 ≥ 0 and H > 0, and for system (9.2.2) the conditions of Theorem 9.1
hold. Then system (9.2.2) is exponentially stable if and only if condition (A1) is
satisfied.

Theorem 9.20 [139] Let the conditions of Theorem 9.19 be fulfilled and B be an
M-matrix. Then

lim
t→∞

∫ t

0

n∑

j=1

Cij (t, s) ds = zi, i = 1, · · · , n,

and

lim
t→∞

∫ t

0
Cij (t, s)ds = yij , i, j = 1, · · · , n,

where zi , i = 1, · · · , n and yij , i, j = 1, · · · , n are defined in Corollary 9.11.

In the case of variable coefficients, the following result can be obtained.

Theorem 9.21 Suppose for system (9.2.2) the conditions of Theorem 9.1 hold, t −
hk(t)≤H and

m∑

k=1

n∑

j=1

akij (t)≤ 0, t ≥ t0, i = 1, · · · , n.

Then (9.2.2) is not asymptotically stable.

Proof Denote Y(t) = [1, · · · ,1]T . Then, for t ≥ t0 + H , vector function Y(t) is a
solution of inequality (9.4.1). By Theorem 9.6, we have X(t)≥ Y(t), where X(t)=
Y(t), t ≤ t1. Hence (9.2.2) is not asymptotically stable. �
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For system (9.2.1), stability results similar to Theorems 9.18–9.21 can be ob-
tained. Below we consider only an analogue of Theorem 9.18 and some corollaries
of this result for n= 2.

Theorem 9.22 Suppose that for system (9.2.1) for some t0 ≥ 0 and H > 0 func-
tions akij are essentially bounded on [t0,∞), t − hkij (t) ≤ H , i, j = 1, · · · , n,
k = 1, · · · ,m,

inf
t≥t0

m∑

k=1

akii(t)≥ ai > 0,
∫ t

mink hkii (t)

m∑

k=1

akii(s)ds ≤ 1

e
,

and the matrix B = {bij } defined as

bij =
{
ai, i = j,

−∑m
k=1 ‖akij‖L∞, i �= j,

(9.7.9)

is an M-matrix. Then system (9.2.1) is exponentially stable.

Corollary 9.12 Suppose in system (9.2.1) that n= 2, k = 1, · · · ,m, for some t0 ≥ 0
and H > 0 functions akij are essentially bounded on [t0,∞), t − hkij (t)≤H , i, j =
1,2,

inf
t≥t0

m∑

k=1

akii(t)≥ ai > 0,
∫ t

mink hkii (t)

m∑

k=1

akii(s)ds ≤ 1

e
, i = 1,2,

and

Δ= a1a2 −
m∑

k=1

∥∥ak12

∥∥
L∞

m∑

k=1

∥∥ak21

∥∥
L∞ > 0. (9.7.10)

Then system (9.2.1) is exponentially stable.

Proof The matrix B for n= 2 has the form

B =
(

a1 −∑m
k=1 ‖ak12‖L∞

−∑m
k=1 ‖ak21‖L∞ a2

)
.

Hence

B−1 = 1

Δ

(
a2

∑m
k=1 ‖ak12‖L∞∑m

k=1 ‖ak21‖L∞ a1

)
≥ 0.

This means that the matrix B is an M-matrix. �

Consider the following system with some nondelay terms:
{
ẋ1(t)+ a11(t)x1(t)+ a12(t)x2

(
h(t)

)= 0,

ẋ2(t)+ a21(t)x1
(
g(t)

)+ a22(t)x2(t)= 0.
(9.7.11)

Corollary 9.13 Suppose in system (9.7.11) for some t0 ≥ 0 and H > 0 functions
aij are essentially bounded on [t0,∞), t − h(t)≤H , t − g(t)≤H , inft≥t0 aii(t)≥
ai > 0 and Δ> 0, where Δ is denoted by (9.7.10) for m= 1. Then system (9.7.11)
is exponentially stable.
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9.8 Systems of Differential Equations with a Distributed Delay

In the previous sections, we considered systems of equations with concentrated de-
lays. Results obtained for these systems can be extended to systems with distributed
delays, including integrodifferential systems and mixed type systems.

In this section, we will present most results of this type without proofs since all
proofs are similar to the proofs for equations with concentrated delays.

9.8.1 Nonnegativity of Fundamental Matrices

Consider the vector equation with distributed delays

Ẋ(t)+
m∑

k=1

∫ t

hk(t)

[
dsRk(t, s)

]
X(s)= 0, (9.8.1)

where Rk are n×n matrix functions, the integral in (9.8.1) is the Lebesgue-Stieltjes
integral and the lower bound satisfies −∞< hk(t)≤ t .

We assume that for the parameters of (9.8.1) the following conditions hold:

(a1) all entries rkij of n× n matrices Rk(t, ·) are left continuous scalar functions of
bounded variation and for each s the variation on the segment [t0, s]

pkij (t, s)= Varτ∈[t0,s] rkij (t, τ ), i, j = 1, · · · , n, k = 1, · · · ,m, (9.8.2)

is a locally essentially bounded function in t .
(a2) Rk(t, s) = Rk(t, t

+), t < s, Rk(t, s) = 0, s ≤ hk(t), where Rk(t, t
+) =

lims→t+ Rk(t, s) and the integrals for left continuous functions Rk(t, ·) are
understood as

∫ t

a

[
dsRk(t, s)

]
x(s)= lim

ε→0+

∫ t+ε

a

[
dsRk(t, s)

]
x(s)

for any −∞ ≤ a ≤ t , where t >−∞.

Now we can define the fundamental matrix C(t, s) for system (9.8.1) as was done
for system (9.2.1) and obtain a solution representation formula for the initial value
problem (see Theorem B.3).

Theorem 9.23 Let the nondiagonal entries rkij (t, s), i �= j of Rk(t, s) be nonin-

creasing in s for any t ≥ t0, the diagonal entries rkii(t, s) be nondecreasing in s for
any t ≥ t0 and the fundamental functions Xi(t, s) of the scalar equations

ẋi (t)+
m∑

k=1

∫ t

hk(t)

xi(s)dsr
k
ii (t, s)= 0, i = 1, · · · , n, (9.8.3)

be positive for t ≥ s ≥ t0. Then, for the fundamental matrix C(t, s) of system (9.8.1),
we have C(t, s)≥ 0 for t ≥ s ≥ t0.
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Any function of bounded variation can be presented as a difference of two non-
decreasing functions (see the Hahn decomposition [150, p. 129]), so

rkii (t, s)= ukii(t, s)− vkii(t, s), i = 1, · · · , n, k = 1, · · · ,m, (9.8.4)

where ukii , v
k
ii are nondecreasing functions in s for any t .

Theorem 9.24 Suppose that the nondiagonal entries rkij (t, s), i �= j of Rk(t, s) are
nonincreasing in s for any t ≥ t0 and the fundamental functionsXi(t, s) of the scalar
equations

ẋi (t)+
m∑

k=1

∫ t

hk(t)

xi(s)dsu
k
ii(t, s)= 0, i = 1, · · · , n, (9.8.5)

where ukii , v
k
ii are nondecreasing functions in s for any t defined in (9.8.4), are

positive for t ≥ s ≥ t0. Then, for the fundamental matrix C(t, s) of system (9.8.1),
we have C(t, s)≥ 0, t ≥ s ≥ t0.

Corollary 9.14 Suppose rkij (t, s), i �= j , t ≥ t0, are nonincreasing in s for any t ,

rkii(t, s) = ukii(t, s) − vkii(t, s), where uii and vii are nondecreasing in s for any t
and

∫ t

max{t0,mini hi (t)}

m∑

k=1

ukii
(
τ, τ+)dτ ≤ 1

e
, i = 1, · · · , n.

Then the fundamental matrix of the system (9.2.7) satisfiesC(t, s)≥ 0 for t ≥ s ≥ t0.

Consider now the integrodifferential system

Ẋ(t)+
m∑

l=1

∫ t

hl (t)

Kl(t, s)X(s)ds = 0. (9.8.6)

By klij we denote the entries of the matrix kernelsKl(t, s). Then (a1) and (a2) are

equivalent to the assumption that klij (t, s) are locally essentially bounded functions,
l = 1, · · · ,m, i, j = 1, · · · , n.

Theorem 9.25 Let klij (t, s)≤ 0 for i �= j , t ≥ t0, klii(t, s)≥ 0 and the fundamental
functions of the scalar equations

ẋ(t)+
m∑

l=1

∫ t

hl (t)

klii (t, s)x(s)ds = 0, i = 1, · · · , n, (9.8.7)

be positive for t ≥ s ≥ t0. Then the fundamental matrix C(t, s) of system (9.8.6)
satisfies C(t, s)≥ 0 for t ≥ s ≥ t0.

Since for integral equation (9.8.6) functions ulii(t, s) and vkii(t, s) defined in
(9.8.4) correspond to (klii )

+ and (klii )
−, respectively, where a+ = max{a,0}, a− =

−min{a,0}, the following corollary is a particular case of Corollary 9.14.
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Corollary 9.15 Let kij (t, s)≤ 0, i �= j , t ≥ t0 and

sup
t≥t0

∫ t

max{t0,minj hj (t)}

(
m∑

l=1

∫ τ

hl(τ )

(
klii
)+
(t, s) ds

)
dτ <

1

e
, i = 1, · · · , n. (9.8.8)

Then the fundamental matrix of system (9.8.6) satisfies C(t, s)≥ 0 for t ≥ s ≥ t0.

Next, let us study mixed type systems containing concentrated delay and integral
terms. For simplicity, we consider such a system for n= 2:

{
ẋ1(t)+ a1(t)x1

(
h11(t)

)+ ∫ t
h12(t)

K1(t, s)x2(s)ds = 0,

ẋ2(t)+ a2(t)x1
(
h21(t)

)+ ∫ t
h22(t)

K2(t, s)x2(s)ds = 0.
(9.8.9)

This system can be written as the vector equation

Ẋ(t)+
2∑

i=1

2∑

j=1

∫ t

hij (t)

[
dsRij (t, s)

]
X(s)= 0, (9.8.10)

which is a particular case of (9.8.1), if we assume

R11(t, s)=
[
a1(t)χ(h11(t),∞)(s) 0

0 0

]
, R12(t, s)=

[
0
∫ s
h12(t)

K1(t, τ ) dτ

0 0

]
, (9.8.11)

where χI is the characteristic function of the interval I , and R21(t, s), R22(t, s) are
defined similarly.

Theorem 9.26 Suppose that a2(t) ≤ 0, K1(t, s) ≤ 0, t ≥ t0, and the fundamental
functions of the scalar equations

ẋ(t)+ a+
1 (t)x

(
h11(t)

)= 0

and

ẋ(t)+
∫ t

h22(t)

K+
2 (t, s)x(s)ds = 0

are positive for t ≥ s ≥ t0. Then the fundamental matrix C(t, s) of system (9.8.9)
satisfies C(t, s)≥ 0 for t ≥ s ≥ t0.

Corollary 9.16 Suppose a2(t)≤ 0, K1(t, s)≤ 0, t ≥ t0 and

sup
t≥t0

∫ t

h11(t)

a+
1 (s)ds <

1

e
, sup
t≥t0

∫ t

max{t0,h22(t)}

∫ τ

h22(τ )

K+
2 (t, s) ds dτ <

1

e
.

Then the fundamental matrix C(t, s) of system (9.8.9) satisfies C(t, s) ≥ 0, t ≥
s ≥ t0.

Let us remark that in population dynamics the situation where the growth of a
certain component of the solution is influenced negatively by the size of the same
component and positively by the other components is quite typical. If various com-
ponents correspond to different developmental stages, this means that species at
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the same stage compete for resources, while other stages contribute to the growth
(which can be either maturation of juveniles or reproduction of adults). If we have
a patch structure, then species within the same patch again compete for resources,
while overpopulation of other patches leads to immigration and thus population
growth.

9.8.2 Comparison Results and Positivity of Solutions

In this section, we compare two solutions of the same system and solutions of dif-
ferent systems. First, let us compare two solutions of system (9.2.7) of differential
equations.

Theorem 9.27 Suppose that the conditions of Theorem 9.23 hold, X(t) is a solu-
tion of problem (9.2.7), (9.2.8) and Y(t) is a solution of the same problem, where
function F(t) is replaced by G(t). If G(t) ≤ F(t) for t ≥ t0, then Y(t) ≤ X(t) for
t ≥ t0.

Corollary 9.17 Suppose that conditions of Theorem 9.23 hold, X(t) is a solution
of (9.2.7), Y(t) is a solution of the differential inequality

Ẏ (t)+
m∑

k=1

∫ t

hk(t)

[
dsRk(t, s)

]
Y(s)≤ 0, t ≥ t0, (9.8.12)

and X(t)= Y(t) for t ≤ t0. Then Y(t)≤X(t) for t ≥ t0.

Let us compare solutions of systems with different delay distributions and right-
hand sides. To this end, consider together with (9.2.7), (9.2.8) the initial value prob-
lem

Ẏ (t)+
m∑

k=1

∫ t

hk(t)

[
dsBk(t, s)

]
Y(s)=G(t), t ≥ t0, (9.8.13)

Y(t)=Φ(t), t < t0, Y (t0)= Y0. (9.8.14)

Denote by X(t), C(t, s) the solution and the fundamental matrix of problem
(9.2.7), (9.2.8) and by Y(t), D(t, s) the solution and the fundamental matrix of
problem (9.8.13), (9.8.14), respectively. Let bkij be the entries of Bk .

Theorem 9.28 Let the entries rkij (t, s) of Rk(t, s) be nonincreasing in s for any

t ≥ t0 and i �= j , rkii(t, s), b
k
ii(t, s), i = 1, · · · , n and rkij (t, s) − bkij (t, s), i, j =

1, · · · , n, be nondecreasing in s for any t , the fundamental functions of scalar equa-
tions (9.8.3) be positive for t ≥ s ≥ t0, X(t)≥ 0 for t ≥ t0 and the inequalities

G(t)≥ F(t), t ≥ t0, Y0 ≥X0, Rk(t, s)≥ Bk(t, s)≥ 0, t, s ≥ t0

hold. Then Y(t)≥X(t)≥ 0, t ≥ t0.
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Corollary 9.18 If rkij (t, s) are nonincreasing in s for any t ≥ t0 and i �= j ,

rkij (t, s)− bkij (t, s), i, j = 1, · · · , n are nondecreasing in s for any t , and the funda-
mental functions of scalar equations (9.8.3) are positive for t ≥ s ≥ t0, then we have
D(t, s) ≥ C(t, s) ≥ 0, t ≥ s ≥ t0 for the fundamental functions D(t, s) of (9.8.13)
and C(t, s) of (9.2.7).

As was mentioned in the introduction, the condition that the nondiagonal en-
tries are nonpositive (nonincreasing for equations with a distributed delay), which
is necessary for equations without delay, is no longer necessary for delay equations.
However, if nondiagonal entries are nondelayed and the fundamental matrices of
scalar equations corresponding to the diagonal entries are positive, then this condi-
tion becomes in a certain sense necessary.

Consider the system

Ẋ(t)+A0(t)X(t)+
m∑

k=1

∫ t

hk(t)

[
dsRk(t, s)

]
x(s)= 0. (9.8.15)

Let aij be the entries of A0.

Theorem 9.29 If rkij ≡ 0, i �= j , the fundamental functions of the scalar equations

ẋi (t)+ aii(t)xi(t)+
m∑

k=1

∫ t

hk(t)

xi(s)dsr
k
ii(t, s)= 0, i = 1, · · · , n,

are positive and for some pair (i, j) with i �= j , we have aij (t) ≥ α0 > 0 on some
interval [c, d], d > c, then the fundamental matrix of (9.8.15) is not positive.

Finally, let us obtain an analogue of Lemma 4.7 on the existence of a positive
solution for systems.

Theorem 9.30 Suppose that the nondiagonal entries rkij (t, s), i �= j of Rk(t, s) are

nonincreasing in s for any t ≥ t0, the diagonal entries rkii (t, s) are nondecreasing in
s for any t ≥ t0, F(t)≥ 0 for t ≥ t0, 0 ≤Φ(t)≤X0,X0 > 0 and the inequalities

∫ t

max{t0,mini hi (t)}

m∑

k=1

rkii
(
τ, τ+)dτ ≤ 1

e
, i = 1, · · · , n (9.8.16)

hold. Then, for the solution X(t) of initial value problem (9.2.7), (9.2.8), we have

X(t)≥ 0, t ≥ t0.

9.8.3 Solution Estimates

The following auxiliary results will be used later.
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Consider the scalar equation

ẋ(t)+
m∑

k=1

∫ t

hk(t)

x(s)dsRk(t, s)= 0, t ≥ t0. (9.8.17)

Lemma 9.4 Suppose that Rk(t, s) are scalar functions nondecreasing in s for any t
and the fundamental function X(t, s) of scalar equation (9.8.17) is positive for t ≥
s ≥ t0. Then, for any t1 ≥ t0 such that hk(t) > t0 for t > t1, the following inequality
holds:

0 ≤
m∑

k=1

∫ t

t1

X(t, s)Rk
(
s, s+

)
ds ≤ 1. (9.8.18)

Proof The function x(t)= χ(t0,∞)(t), where χI is the characteristic function of the
interval I , satisfies

ẋ(t)+
m∑

k=1

∫ t

hk(t)

x(s) dsRk(t, s)=
m∑

k=1

[
Rk
(
t, t+

)−Rk
(
t, t+0

)]
, t ≥ t0,

x(t)= 0, t < t0, x(t0)= 0. By solution representation (B.1.22), we have

1 =
∫ t

t0

X(t, s)

m∑

k=1

[
Rk
(
s, s+

)−Rk
(
s, t+0

)]
ds, t ≥ t0.

First, since Rk(t, s) are nondecreasing in s for any t and s ≥ t0, the difference
Rk(s, s

+)−Rk(s, t0) is nonnegative for any s ≥ t0. Next, by (a4) there exists t1 ≥ t0
such that hk(t) ≥ t0 for t ≥ t1. By the definition of hk(t), we have Rk(t, s)= 0 for
s ≤ hk(t), which implies R(s, t+0 )= 0, s > t1. Since

∫ t

t0

X(t, s)

m∑

k=1

[
Rk
(
s, s+

)−Rk
(
s, t+0

)]
ds

=
∫ t1

t0

X(t, s)

m∑

k=1

[
Rk
(
s, s+

)−Rk
(
s, t+0

)]
ds

+
∫ t

t1

X(t, s)

m∑

k=1

[
Rk
(
s, s+

)−Rk
(
s, t+0

)]
ds

=
∫ t1

t0

X(t, s)

m∑

k=1

[
Rk
(
s, s+

)−Rk
(
s, t+0

)]
ds

+
∫ t

t1

X(t, s)

m∑

k=1

Rk
(
s, s+

)
ds = 1,

where the first term is nonnegative and Rk(s, t0) = 0 for any s > t1, we obtain
(9.8.18). �
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We recall that by ‖X‖ we denote the vector norm of X ∈ R
n and also the associ-

ated matrix norm

‖A‖ = sup
‖x‖=1,x∈Rn

‖Ax‖.

Let us obtain an upper estimate for the fundamental matrix of system (9.8.1). First,
consider scalar equation (9.8.17).

Lemma 9.5 Assume that Rk(t, s) are nondecreasing in s for any t ≥ t0 and there
exists H > 0 such that t −H ≤ t − hk(t) ≤ t for t ≥ t0, k = 1, · · · ,m. If the fun-
damental function X(t, s) of (9.8.17) is positive for t ≥ s ≥ t0, then it satisfies the
estimate

∣∣X(t, s)
∣∣≤ exp

{
−

m∑

k=1

∫ t

s+H
Rk
(
τ, τ+)dτ

}
. (9.8.19)

Proof Since X(t, s) > 0 and Rk(t, s) are nondecreasing in s for any t ≥ s ≥ t0,
the fundamental function X(t, s) of (9.8.17) is nonincreasing in t . Thus X(t, s) ≤
X(τ, s) for hk(t)≤ τ ≤ t .

Denoting x(t)=X(t, s), we obtain

ẋ(t)= −
m∑

k=1

∫ t

hk(t)

x(s)dsRk(t, s)

≤
{

0, mink hk(t) < s,

−[∑m
k=1

∫ t
s
dsRk(t, s)]x(t), mink hk(t)≥ s,

and consequently ẋ(t)≤ b(t)x(t), x(s)= 1, where

b(t)=
{

0, s ≤ t < s +H,

−[∑m
k=1Rk(t, t

+)], t ≥ s +H.

By the Gronwall-Bellman inequality (Lemma A.5),

x(t)≤ exp

{∫ t

s

b(τ ) dτ

}

≤ exp

{
−

m∑

k=1

∫ t

s+H
Rk
(
τ, τ+)dτ

}
,

which completes the proof. �

Theorem 9.31 Suppose that the fundamental matrix C(t, s) of system (9.8.1) satis-
fies C(t, s)≥ 0, t ≥ s ≥ t0, rkii(t, s) are nondecreasing and rkij (t, s) are nonincreas-
ing in s for any t , j �= i, 0 ≤ t − hk(t)≤H , i, j = 1, · · · , n, k = 1, · · · ,m. Then, for
the fundamental matrix C(t, s) of system (9.8.1), the estimate

∥∥C(t, s)
∥∥≤ ∥∥M(t, s)∥∥+

∫ t

s

[∥∥M(t, τ )
∥∥∥∥S(τ)

∥∥

× exp

{∫ τ

s

μ
(
S(ζ )

)
dζ

}]
dτ (9.8.20)
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is valid, where M = diag{M11, · · · ,Mnn},

Mii = exp

{
−
∫ t

s+H

m∑

k=1

rkii
(
τ, τ+)dτ

}
, (9.8.21)

S(t)=
m∑

k=1

[
Bk
(
t, t+

)−Rk
(
t, t+

)]
, (9.8.22)

Bk(t, s)= diag{rk11(t, s), · · · , rknn(t, s)}, k = 1, · · · ,m.

Let us apply the result of Theorem 9.31 to the mixed system

Ẋ(t)+
m∑

l=1

Al(t)X
(
hl(t)

)+
∫ t

h0(t)

K(t, s)X(s) ds = 0, (9.8.23)

where akij (t) are the entries of the matrices Ak(t) and kij (t, s) are the entries of
K(t, s).

Corollary 9.19 Suppose that alii(t)≥ 0, alij (t)≤ 0, i �= j , kii(t)≥ 0, kij (t)≤ 0, i �=
j , i, j = 1, · · · , n, 0 ≤ t −hl(t)≤H , l = 0,1, · · · ,m, and the fundamental matrices
of the scalar equations

ẋi (t)+
m∑

l=1

alii(t)xi
(
hl(t)

)+
∫ t

h0(t)

kii(t, s)x(s) ds = 0

are positive. Then the fundamental matrix of (9.8.23) satisfies estimate (9.8.20),
where M = diag{M11, · · · ,Mnn},

Mii = exp

{
−
∫ t

s+H

[
m∑

l=1

alii(τ )+
∫ τ

h0(τ )

kii(τ, ζ ) dζ

]
dτ

}
,

S(t)= B(t)−
m∑

l=1

Al(t)−
∫ t

h0(t)

K(t, s) ds,

B(t)= diag

{
m∑

l=1

al11(t)+
∫ t

h0(t)

k11(t, s) ds, · · · ,
m∑

l=1

alnn(t)+
∫ t

h0(t)

knn(t, s) ds

}
.

9.8.4 Nonoscillation and Stability

In this section, we establish a connection between nonoscillation and stability for
differential systems with a distributed delay. The proofs are based on Theorem B.23,
Lemma 9.4 and the following auxiliary result.
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Lemma 9.6 In (9.8.1), let the matrix functions
∫ t

hk(t)

dsRk(t, s)

be essentially bounded on [t0,∞) and t − hk(t) ≤ H . If there exists t1 > t0 such
that for any function F that is essentially bounded on [t0,∞) and satisfies F(t)= 0
for t ∈ [t0, t1] the solution of the initial value problem (9.2.7) with the zero initial
conditions is bounded on [t0,∞), then (9.8.1) is exponentially stable.

Theorem 9.32 Suppose that rkij (t, s), i �= j are nonincreasing and rkii (t, s) are
nondecreasing in s for any t , k = 1, · · · ,m, the fundamental functions Xi(t, s) of
scalar equations (9.8.3) are positive, t ≥ s ≥ t0, rkij (t, t

+) are essentially bounded
on [t0,∞), there exist H > 0, ai > 0, i, j = 1, · · · , n such that

t − hk(t)≤H, k = 1, · · · ,m, inf
t≥t0

m∑

k=1

rkii
(
t, t+

)≥ ai,

and the matrix B = [bij ] with

bij =
{
ai, i = j,

−∑m
k=1 ‖rkij (·, ·+)‖L∞, i �= j,

is an M-matrix.
Then system (9.8.1) is exponentially stable.

Consider the scalar equation

ẋ(t)+
m∑

l=1

al(t)x
(
hl(t)

)+
∫ t

h0(t)

K(t, s)x(s)ds = 0. (9.8.24)

Corollary 9.20 Suppose K(t, s)≥ 0, al(t)≥ 0 for t ≥ t0, t −h(t)≤H , t −hl(t)≤
H , al and

∫ t
h0(t)

K(s, s+) ds are essentially bounded on [t0,∞), l = 1, · · · ,m and

sup
t≥t0

∫ t

h̃(t)

[∫ τ

h(τ)

K(t, s) ds +
m∑

l=1

al(τ )

]
dτ <

1

e
,

∫ t

h(t)

K(t, τ ) dτ +
m∑

l=1

al(t)≥ a0 > 0,

where

h̃(t)= max
{
t0, min

k=0,···,mhk(t)
}
.

Then (9.8.24) is exponentially stable.
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9.9 Discussion and Open Problems

The main result of this chapter is the generalization to delay equations of the well-
known Wazewski’s result [332] for the ordinary vector differential equation

Ẋ(t)+A(t)X(t)= 0. (9.9.1)

By this result, (9.9.1) has a nonnegative fundamental matrix if and only if aij ≤ 0,
i �= j ; for the proof of this theorem, see [36].

In contrast with Wazewski’s classical theorem, the condition akij ≤ 0, i �= j is
not necessary for nonnegativity of all entries of the fundamental (Cauchy) matrix
C(t, s) for equations with several delays, as was demonstrated in the present chapter.
Theorems 9.1 and 9.13 were proven in [139] by a different method. Paper [113]
deals with nonnegativity of certain entries of the fundamental matrix. In [5], the
authors considered nonoscillation problems for a general vector Volterra equation
on a bounded interval. Most of the results of the present chapter are contained in
[70, 75].

To the best of our knowledge, [31] is the first paper where a connection between
nonnegativity of the fundamental matrix and exponential stability was established,
see also papers [186, 189, 190]. The relation between nonoscillation and asymptotic
properties of solutions for linear and nonlinear functional differential equations was
studied in the papers [183–191, 207].

In [162, 164], positivity of the fundamental function for functional differential
equations of higher order, including integrodifferential equations and equations with
causal operators, was considered.

Nonoscillation results for systems of autonomous equations with distributed de-
lays and for neutral equations with distributed delays were obtained in [254].

Finally, let us formulate some open problems.

1. Suppose for (9.2.2) condition aij ≤ 0, i �= j holds and the fundamental matrix of
this equation is nonnegative. Are the fundamental functions of scalar equations
(9.3.1) necessarily positive?

2. Obtain explicit lower and upper estimates

me−α(t−s) ≤ ∥∥C(t, s)∥∥≤Me−β(t−s), 0< β < α,

for the fundamental matrix (in the case where it is nonnegative) of system (9.2.2)
and for the fundamental function (again when it is nonnegative) of higher-order
equation (9.5.1) when the system/equation is exponentially stable.

3. Is there a connection between nonoscillation and asymptotic stability of (9.5.1)?
4. Establish the relation of nonoscillation and asymptotic stability for (9.2.2) with-

out the assumption akii ≥ 0.
5. Prove or disprove:

Suppose that akii(t) ≥ 0, akij (t) ≤ 0, i �= j , in vector equation (9.2.2). Then
(9.2.2) has a nonnegative solution if and only if its fundamental matrix is non-
negative.

6. Generalize the results of this chapter on nonoscillation of integrodifferential
equations to the case of infinite delays (hk(t)= −∞).
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7. Prove or disprove the following conjecture:
Suppose aij ≤ 0, i �= j , 0 < aii ≤ 1/(eτ), i, j = 1, · · · , n. Then the au-

tonomous system

Ẋ(t)+AX(t − τ)= 0

is exponentially stable if and only if A is an M-matrix.
Can this result be extended to autonomous systems with a distributed delay?



Chapter 10
Linearization Methods for Nonlinear Equations
with a Distributed Delay

10.1 Introduction

Linearization is quite a common tool for studying oscillation of nonlinear equations
(see the papers [55, 192, 225, 238, 242, 243, 307, 318], where linearization results
for delay differential equations with concentrated delays were obtained). For a dif-
ferent approach to study oscillation see, for example, [311].

The chapter is organized as follows. After preliminaries in Sect. 10.2, we present
in Sect. 10.3 our main linearization theorems, which are applied in Sect. 10.4 to
various population ecology models, in particular, to logistic, Lasota-Wazewska and
Nicholson blowflies equations. In Sect. 10.5, we establish “the Mean Value Theo-
rem”, which claims that under certain conditions a solution of a nonlinear equation
with a distributed delay also satisfies a linear equation with a single variable con-
centrated delay. Finally, Sect. 10.6 presents discussion and open problems.

10.2 Preliminaries

We consider a nonlinear differential equation with a distributed delay

ẋ(t)+
m∑

k=1

rk(t)

∫ t

−∞
fk
(
x(s)

)
dsRk(t, s)= 0 (10.2.1)

as well as the equation with a nondelay term

ẋ(t)+ b(t)x(t)+
m∑

k=1

rk(t)

∫ t

−∞
fk
(
x(s)

)
dsRk(t, s)= 0 (10.2.2)

for t > t0 ≥ 0. In most cases, it is assumed that for each t the memory is finite:
for each t1 there exists s1 = s(t1) ≤ t1 such that Rk(t, s) = 0 for s < s1, t > t1,

k = 1, · · · ,m, and limt→∞ s(t)= ∞.
If the condition above is satisfied, then we can introduce the functions

hk(t)= inf
{
s ≤ t |Rk(t, s) �= 0

}
(10.2.3)
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and rewrite (10.2.1), (10.2.2) in the form

ẋ(t)+
m∑

k=1

rk(t)

∫ t

hk(t)

fk
(
x(s)

)
dsRk(t, s)= 0, (10.2.4)

ẋ(t)+ b(t)x(t)+
m∑

k=1

rk(t)

∫ t

hk(t)

fk
(
x(s)

)
dsRk(t, s)= 0, (10.2.5)

for t > t0. Together with (10.2.4), (10.2.5) we assume, for each t0 ≥ 0, that the initial
condition

x(t)= ϕ(t), t ≤ t0, (10.2.6)

is satisfied. We consider (10.2.4) and (10.2.5) under the following assumptions:

(a1) rk(t)≥ 0, k = 1, · · · ,m, b(t)≥ 0 are Lebesgue measurable functions bounded
on the halfline: rk(t) < rk , b(t) < b, t ≥ 0;

(a2) hk : [0,∞)→ R, k = 1, · · · ,m are Lebesgue measurable functions, hk(t)≤ t ,
limt→∞ hk(t)= ∞;

(a3) Rk(t, ·) are left continuous nondecreasing functions for any t , Rk(·, s) are lo-
cally integrable for any s, Rk(t, hk(t))= 0, Rk(t, t+)= 1.

In (a3), the condition Rk(t, hk(t)) = 0 means that the delay is finite, while
Rk(t, t

+) = 1 corresponds to any delay equation, which is “normalized” with the
coefficient rk(t); Rk can be treated as probabilities that the delay at point t exceeds
t − s.

Now let us proceed to the initial function ϕ. This function should satisfy such
conditions that the integral on the left-hand side of (10.2.4) exists almost every-
where. In particular, if Rk(t, ·), k = 1, · · · ,m is absolutely continuous for any t
(which allows us to write (10.2.4) as an integrodifferential equation), then ϕ can
be chosen as a Lebesgue measurable essentially bounded function. If Rk(t, ·),
k = 1, · · · ,m is a combination of step functions (which corresponds to an equation
with concentrated delays), then ϕ should be a Borel measurable bounded function.
For any choice of R, the integral exists if ϕ is bounded and continuous. Thus, we
assume that

(a4) ϕ : (−∞,0] → R is a bounded continuous function

and the following hypothesis for fk is satisfied:

(a5) fk : R → R, k = 1, · · · ,m are continuous differentiable functions and f ′
k are

locally essentially bounded functions.

Remark 10.1 For existence and uniqueness results, in (a5) we can assume that the
functions fk are locally Lipschitz rather than differentiable: for each [a, b] there is
an Mk > 0 (generally depending on [a, b]) such that |fk(x)− fk(y)|<Mk|x − y|
for any x, y ∈ [a, b]; for details see Theorem B.12.
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Let us note that the equation with several concentrated delays

ẋ(t)+
m∑

k=1

rk(t)fk
(
x
(
hk(t)

))= 0, (10.2.7)

the integrodifferential equation

ẋ(t)+
m∑

k=1

rk(t)

∫ t

hk(t)

Mk(t, s)fk
(
x(s)

)
ds = 0 (10.2.8)

and the mixed equation

ẋ(t)+
l∑

k=1

rk(t)fk
(
x
(
hk(t)

))+
m∑

k=l+1

rk(t)

∫ t

hk(t)

Mk(t, s)fk
(
x(s)

)
ds = 0 (10.2.9)

are partial cases of (10.2.4). Here we assume that for the initial value problem con-
ditions (a1), (a2), (a4) and (a5) hold; besides, the parameters of (10.2.8) and (10.2.9)
satisfy the following condition:

(a6) Mk(t, s) are locally integrable functions,
∫ t
hk(t)

Mk(t, s) ds = 1 for any t and
k = 1, · · · ,m.

We will also consider the linear equation

ẋ(t)+
m∑

k=1

rk(t)

∫ t

hk(t)

x(s) dsRk(t, s)= 0 (10.2.10)

corresponding to nonlinear model (10.2.4).
Denote by h(t) and H(t) the maximal and minimal argument functions

h(t)= min
k=1,···,mhk(t), H(t)= max

k=1,···,m
hk(t). (10.2.11)

Consider the equation with a nondelay term

ẋ(t)+ b(t)x(t)+
m∑

k=1

rk(t)

∫ t

hk(t)

x(s) dsRk(t, s)= 0. (10.2.12)

Substituting

z= x exp

{∫ t

t0

b(ζ ) dζ

}
, (10.2.13)

we obtain the equation

ż(t)+ exp

{∫ t

t0

b(ζ ) dζ

} m∑

k=1

rk(t)

×
∫ t

hk(t)

z(s) exp

{
−
∫ s

t0

b(ζ ) dζ

}
dsRk(t, s)= 0, (10.2.14)
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which can be rewritten as

ż(t)+
m∑

k=1

rk(t)

∫ t

hk(t)

z(s) exp

{∫ t

s

b(ζ ) dζ

}
dsRk(t, s)= 0. (10.2.15)

Applying Theorems 4.9 and 4.11 to this equation, we immediately obtain the fol-
lowing result.

Lemma 10.1 Suppose (a1)–(a4) hold and b(t) is a measurable locally essentially
bounded function.

If

lim sup
t→∞

∫ t

h(t)

m∑

k=1

rk(τ )

[∫ τ

hk(τ)

exp

{∫ τ

s

b(ζ ) dζ

}
dsRk(τ, s)

]
dτ <

1

e
, (10.2.16)

then (10.2.14) has a nonoscillatory solution. If

lim inf
t→∞

∫ t

H(t)

m∑

k=1

rk(τ )

[∫ τ

hk(t)

exp

{∫ τ

s

b(ζ ) dζ

}
dsR(τ, s)

]
dτ >

1

e
, (10.2.17)

then all solutions of (10.2.14) are oscillatory. Here h(t), H(t) are defined in
(10.2.11).

In the following sections, we will also consider the particular cases of (10.2.10)

ẋ(t)+
m∑

k=1

rk(t)x
(
hk(t)

)= 0, (10.2.18)

ẋ(t)+
m∑

k=1

rk(t)

∫ t

hk(t)

Mk(t, s)x(s) ds = 0 (10.2.19)

and

ẋ(t)+
l∑

k=1

rk(t)fk
(
x
(
hk(t)

))+
m∑

k=l+1

rk(t)

∫ t

hk(t)

Mk(t, s)x(s) ds = 0, (10.2.20)

corresponding to (10.2.7), (10.2.8) and (10.2.9), respectively.

10.3 Linearized Oscillation

In this section, we assume the existence of a global solution for t ≥ 0.

Theorem 10.1 Suppose (a1)–(a5) hold and
∫ ∞

0

m∑

k=1

rk(t)= ∞, xfk(x) > 0, x �= 0. (10.3.1)
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Then, for any nonoscillatory solution x(t) of (10.2.4), we have

lim
t→∞x(t)= 0. (10.3.2)

Proof The first equality in (10.3.1) implies that at least one of the integrals of rk
diverges. Let it be rj . We also recall that all rk are nonnegative.

Let us assume x(t) > 0, t ≥ t0 (the case of negative x(t) is treated similarly).
Then by (a2) there exists t1 ≥ t0 such that for s > t1 we have h(s) > t0. So ẋ(t) < 0
or x(t) is decreasing for t > t1 and x(t) is bounded since x(t) > 0, t ≥ t1. Con-
sequently, there exists a limit d = limt→∞ x(t) ≥ 0. Let d > 0. By (10.3.1), we
also have fk(d) = dk > 0. Since fk are continuous, there exists t2 > 0 such that
fk(x(t))≥ dk/2, t > t2 and t3 ≥ t2 such that h(t) > t2, t > t3. Integrating from t3 to
infinity, we obtain

∫ ∞

t3

ẋ(τ ) dτ = d − x(t3)= −
∫ ∞

t3

m∑

k=1

rk(τ ) dτ

∫ τ

hk(τ)

fk
(
x(s)

)
dsRk(τ, s)

≤ −
∫ ∞

t3

m∑

k=1

dk

2
rk(τ ) dτ ≤ −dj

2

∫ ∞

t3

rj (τ ) dτ = −∞.

Since d − x(t3) is finite, we obtain a contradiction, which completes the proof. �

Remark 10.2 The example of an ordinary differential equation x′ = x(x − 1)2 (all
solutions of this equation with x(0) ≥ 1 converge to the equilibrium x = 1) illus-
trates that the condition xfk(x)≥ 0 (the nonstrict inequality for x �= 0) is not enough
for convergence to the zero equilibrium. Let us also comment that the inequalities
fk(x) > 0, k = 1, · · · ,m for x > 0 imply convergence to zero for positive solutions,
while fk(x) < 0, x < 0 for negative solutions.

Theorem 10.2 Suppose (a1)–(a5) and (10.3.1) hold and

lim
x→0

fk(x)

x
= 1, k = 1, · · · ,m. (10.3.3)

If for some ε > 0 all solutions of the equation

ẋ(t)+ (1 − ε)

m∑

k=1

rk(t)

∫ t

hk(t)

x(s)dsRk(t, s)= 0 (10.3.4)

are oscillatory, then all solutions of (10.2.4) are also oscillatory.

Proof Let x(t) be an eventually positive solution of (10.2.4). Then limt→0 x(t)= 0
by Theorem 10.1. By (10.3.3), for any ε > 0 there exists t1 such that

fk
(
x(t)

)≥ (1 − ε)x(t), t ≥ t1, k = 1, · · · ,m.
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Thus

ẋ(t)+ (1 − ε)

m∑

k=1

rk(t)

∫ t

hk(t)

x(s)dsRk(t, s)

≤ ẋ(t)+
m∑

k=1

rk(t)

∫ t

hk(t)

fk
(
x(t)

)
dsRk(t, s)= 0.

By Theorem 4.9, (10.3.4) has a nonoscillatory solution and we have a contradiction.
In the case x < 0, for any ε > 0 there exists t1 such that fk(x(t))≤ (1 − ε)x(t),

t ≥ t1, k = 1, · · · ,m. Similar to the previous case, (10.3.4) has a nonoscillatory so-
lution, which completes the proof. �

Corollary 10.1 Suppose (a1), (a2), (a4), (a5), (10.3.1) and (10.3.3) hold. If for some
ε > 0 all solutions of the equation

ẋ(t)+ (1 − ε)

m∑

k=1

rk(t)x
(
hk(t)

)= 0

are oscillatory, then all solutions of (10.2.7) are also oscillatory.

Corollary 10.2 Suppose (a1), (a2), (a4)–(a6), (10.3.1) and (10.3.3) hold. If for some
ε > 0 all solutions of the equation

ẋ(t)+ (1 − ε)

m∑

k=1

rk(t)

∫ t

hk(t)

Mk(t, s)x(s) ds = 0

are oscillatory, then all solutions of (10.2.8) are also oscillatory.

Corollary 10.3 Suppose (a1), (a2), (a4)–(a6), (10.3.1) and (10.3.3) hold. If for some
ε > 0 all solutions of the equation

ẋ(t)+ (1 − ε)

[
l∑

k=1

rk(t)x
(
hk(t)

)+
m∑

k=l+1

rk(t)

∫ t

hk(t)

Mk(t, s)x(s) ds

]
= 0

are oscillatory, then all solutions of (10.2.9) are oscillatory.

Now let us proceed to nonoscillation.

Theorem 10.3 Suppose (a1)–(a5) hold and for all k = 1, · · · ,m either

0< fk(x)≤ x, x > 0, (10.3.5)

or

0> fk(x)≥ x, x < 0, (10.3.6)

and there exists a nonoscillatory solution of (10.2.10). Then there exists a nonoscil-
latory (positive or negative, respectively) solution of (10.2.4).
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Proof First suppose that (10.3.5) holds and there exists a nonoscillatory solution of
(10.2.10). Then by Theorem 4.1 there exists w0(t) ≥ 0, which is a solution of the
following inequality for t ≥ t1:

w0(t)≥
m∑

k=1

rk(t)

∫ t

hk(t)

exp

{∫ t

s

w0(τ ) dτ

}
dsRk(t, s). (10.3.7)

Let us fix b ≥ t1 and define the operator

(T u)(t)= exp

{∫ t

t1

u(τ) dτ

} m∑

k=1

rk(t)

∫ t

hk(t)

fk

(
exp

{
−
∫ s

t1

u(τ) dτ

})
dsRk(t, s)

for t1 ≤ t ≤ b (we assume u(s)= 0, s < t1). For any u from the interval 0 ≤ u≤w0

we have by (10.3.5)

0 ≤ (T u)(t)≤ exp

{∫ t

t1

u(τ) dτ

} m∑

k=1

rk(t)

∫ t

hk(t)

exp

{
−
∫ s

t1

u(τ) dτ

}
dsRk(t, s)

=
m∑

k=1

rk(t)

∫ t

hk(t)

exp

{∫ t

s

u(τ ) dτ

}
dsRk(t, s)≤w0(t),

so 0 ≤ T u≤w0. Thus T maps a closed segment in L∞[t1, b] onto itself.
Now let us prove that for any b > t1 the operator T is compact in L∞[t1, b]. Let

us fix k and omit this index (the sum of m compact operators is compact). Denote

(T1u)(t)=
∫ t

t1

u(τ) dτ, (T2u)(t)= r(t)eu(t)
∫ t

h(t)

e−u(s)dsR(t, s).

For any u in the unit ball

B1 = {u ∈ L∞[t1, b] | 0 ≤ u(t)≤ 1, t ∈ [t1, b]
}
,

the function

y(s)=
∫ s

t1

u(τ) dτ

is continuous; moreover, all such functions are bounded (|y(s)| ≤ b − t1) and
equicontinuous:

∣∣y(t)− y(s)
∣∣=
∣∣∣∣
∫ s

t

u(τ ) dτ

∣∣∣∣≤ ess sup
τ

∣∣u(τ)
∣∣|t − s| ≤ |t − s|.

Thus the image of the unit ball is compact by Theorem A.3.
Then operator T1 is a compact operator in the space L∞[t1, b]. Moreover, it

is compact as an operator T1 : L∞[t1, b] → C[t1, b]. Evidently the operator T2 :
C[t1, b] → L∞[t1, b] is continuous. Then the composition T = T2T1 is a compact
operator in the space L∞[t1, b].
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Thus, by the Schauder Fixed-Point Theorem (Theorem A.15), there exists a non-
negative solution of the equation u= T u. Then the function

x(t)=
{

exp{− ∫ t
t1
u(τ) dτ }, t ≥ t1,

1, t < t1,

is an eventually positive solution of (10.2.4).
If (10.3.6) holds (i.e., f (x) ≥ x for x < 0), then in this case we consider the

segment −w0(t)≤ u(t)≤ 0 and the operator

(T u)(t)= exp

{
−
∫ t

t1

u(τ) dτ

} m∑

k=1

rk(t)

∫ t

hk(t)

fk

(
− exp

{∫ s

t1

u(τ) dτ

})
dsRk(t, s)

in the segment, which satisfies −w0(t)≤ (T u)(t)≤ 0, as far as −w0(t)≤ u(t)≤ 0.
Similarly, we demonstrate that the function

x(t)=
{− exp{∫ t

t1
u(τ) dτ }, t ≥ t1,

−1, t < t1,

is an eventually negative solution of (10.2.4). �

Corollary 10.4 Suppose (a1), (a2), (a4) and (a5) hold, for each k = 1, · · · ,m ei-
ther (10.3.5) or (10.3.6) is satisfied and there exists a nonoscillatory solution of
(10.2.18). Then there exists a nonoscillatory (positive or negative, respectively) so-
lution of nonlinear equation (10.2.7).

Corollary 10.5 Suppose (a1), (a2) and (a4)–(a6) hold, for each k = 1, · · · ,m ei-
ther (10.3.5) or (10.3.6) is satisfied and there exists a nonoscillatory solution of
(10.2.19). Then there exists a nonoscillatory (positive or negative, respectively) so-
lution of nonlinear integrodifferential equation (10.2.8).

Corollary 10.6 Suppose (a1), (a2) and (a4)–(a6) hold, for each k = 1, · · · ,m ei-
ther (10.3.5) or (10.3.6) is satisfied and there exists a nonoscillatory solution of
(10.2.20). Then there exists a nonoscillatory (positive or negative, respectively) so-
lution of mixed equation (10.2.9).

10.4 Applications

For equations of population ecology considered in this section, existence of a global
positive solution is justified in Appendix B (see Theorems B.12–B.17 and their
corollaries) if we assume positive initial conditions:

ϕ(t)≥ 0, t ≤ t0, ϕ(t0) > 0. (10.4.1)
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10.4.1 Logistic Equation

Consider the logistic equation with a distributed delay

Ṅ(t)=N(t)

m∑

k=1

rk(t)

(
1 − 1

K

∫ t

hk(t)

N(s) dsRk(t, s)

)
(10.4.2)

with the initial conditions

N(t)= ϕ(t), t ≤ t0, (10.4.3)

where (a1)–(a4) and (10.4.1) are satisfied and K > 0. The existence of a global
solution is due to Theorem B.14, and this solution is positive if (10.4.1) holds.

After the substitution N(t)=Kex(t), (10.4.2) has the form

ẋ(t)= −
m∑

k=1

rk(t)

∫ t

hk(t)

f
(
x(s)

)
dsRk(t, s), (10.4.4)

where the function f (x)= ex − 1 satisfies both (10.3.3) and (10.3.6).
The results of Sect. 10.3 and Lemma 10.1 imply the following result.

Theorem 10.4 Suppose (a1)–(a4) and (10.4.1) hold. If

lim sup
t→∞

∫ t

h(t)

m∑

k=1

rk(τ )

[∫ τ

hk(τ)

dsRk(t, s)

]
dτ <

1

e
, (10.4.5)

then (10.4.2) has a nonoscillatory solution about K . If

lim inf
t→∞

∫ t

H(t)

m∑

k=1

rk(τ )

[∫ τ

hk(t)

dsRk(t, s)

]
dτ >

1

e
, (10.4.6)

then all solutions of (10.4.2) are oscillatory about K . Here h(t), H(t) are defined
in (10.2.11).

The result of Theorem 10.4 was obtained in [53, Theorem 5] using a different
method. As corollaries, oscillation and nonoscillation results for the logistic equa-
tion with concentrated delays

Ṅ(t)=N(t)

m∑

k=1

rk(t)

(
1 − N(hk(t))

K

)
(10.4.7)

can be obtained (see [192]).

Corollary 10.7 Let rk ≥ 0 be Lebesgue measurable locally essentially bounded
functions, the delays hk(t)≤ t satisfy limt→∞ hk(t)= ∞ and (10.4.1) hold. If

lim sup
t→∞

∫ t

h(t)

m∑

k=1

rk(τ ) dτ <
1

e
, (10.4.8)
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then (10.4.7) has a solution nonoscillatory about K . If

lim inf
t→∞

∫ t

H(t)

m∑

k=1

rk(τ ) dτ >
1

e
, (10.4.9)

then all solutions of (10.4.7) are oscillatory about K . Here h(t), H(t) are defined
in (10.2.11).

It is also possible to deduce a result for the integrodifferential logistic equation

Ṅ(t)=N(t)

m∑

k=1

rk(t)

(
1 − 1

K

∫ t

hk(t)

Mk(t, s)N(s) ds

)
. (10.4.10)

Corollary 10.8 Let rk ≥ 0 be Lebesgue measurable locally essentially bounded
functions, hk(t) ≤ t , limt→∞ hk(t) = ∞, Mk(t, s) be nonnegative Lebesgue mea-
surable locally integrable functions satisfying

∫ t

hk(t)

Mk(t, s) ds = 1, k = 1, · · · ,m, (10.4.11)

and let condition (10.4.1) hold.
If

lim sup
t→∞

∫ t

h(t)

m∑

k=1

rk(τ )

∫ τ

hk(τ)

Mk(τ, s) ds dτ <
1

e
, (10.4.12)

then (10.4.10) has a nonoscillatory solution about K . If

lim inf
t→∞

∫ t

H(t)

m∑

k=1

rk(τ )(t − τ)Mk(t, τ ) dτ >
1

e
, (10.4.13)

then all solutions of (10.4.10) are oscillatory about K . Here h(t), H(t) are defined
in (10.2.11).

10.4.2 Lasota-Wazewska Equation

Consider the generalized Lasota-Wazewska equation [331] for the survival of red
blood cells with a distributed delay

Ṅ(t)= −μN(t)+ p

∫ t

h(t)

e−γN(s) dsR(t, s) (10.4.14)

with initial conditions (10.4.3), where μ > 0, p > 0, γ > 0, (a2) and (a3) and
(10.4.1) are satisfied. The global solution of (10.4.14), (10.4.3) exists and is unique
by Corollary B.4; moreover, this solution is positive if (10.4.1) holds.

The unique positive equilibrium of (10.4.14) is a solution of the equation

N∗ = p

μ
e−γN∗

. (10.4.15)
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After the change of variables

N(t)=N∗ + 1

γ
x(t),

(10.4.14) takes the form

ẋ(t)+μx(t)+μγN∗
∫ t

h(t)

f
(
x(s)

)
dsR(t, s)= 0, (10.4.16)

where the function

f (x)= 1 − e−x (10.4.17)

satisfies conditions (10.3.3) and (10.3.5).
Thus the results of Sect. 10.3 imply the following theorems.

Theorem 10.5 Suppose that (a2), (a3) and (10.4.1) hold, where m = 1 and
R1(t, s) = R(t, s), h1(t) = h(t). If in addition there exists ε > 0 such that all so-
lutions of the linear equation

ẋ(t)+ (1 − ε)μx(t)+ (1 − ε)μγN∗
∫ t

h(t)

x(s)dsR(t, s)= 0 (10.4.18)

are oscillatory, then all solutions of (10.4.14) oscillate about N∗.

Theorem 10.6 Suppose that (a2), (a3) and (10.4.1) hold, where m = 1 and
R1(t, s) = R(t, s), h1(t) = h(t), and there exists a nonoscillatory solution of the
linear equation

ẋ(t)+μx(t)+μγN∗
∫ t

h(t)

x(s)dsR(t, s)= 0. (10.4.19)

Then there exists a solution of (10.4.14) that is nonoscillatory about N∗.

For the particular case of (10.4.14) with a variable concentrated delay

Ṅ(t)= −μN(t)+ pe−γN(h(t)), (10.4.20)

we obtain the following corollary that was earlier deduced in [55].

Corollary 10.9 Let limt→∞ sup(t − h(t)) <∞. If

lim inf
t→∞

[
μγN∗

∫ t

h(t)

exp
{
μ
(
s − h(s)

)}
ds

]
>

1

e
,

then all solutions of (10.4.20) are oscillatory about N∗. If

lim sup
t→∞

[
μγN∗

∫ t

h(t)

exp
{
μ
(
s − h(s)

)}
ds

]
<

1

e
,

then there exists a solution of (10.4.20) nonoscillatory about N∗.
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For the integrodifferential equation

Ṅ(t)= −μN(t)+ p

∫ t

h(t)

M(t, s)e−γN(s) ds, (10.4.21)

Theorem 10.5 implies the following result.

Corollary 10.10 LetM(t, s) be a Lebesgue measurable locally essentially bounded
function, M(t, s)≥ 0, μ> 0, p > 0, γ > 0,

∫ t
h(t)

M(t, s) ds = 1 for any t > 0. If in
addition

lim inf
t→∞

[
μγN∗

∫ t

h(t)

M(t, τ )(t − τ) exp
{
μ
(
τ − h(τ)

)}
dτ

]
>

1

e
,

then all solutions of (10.4.21) are oscillatory about N∗.
If

lim sup
t→∞

[
μγN∗

∫ t

h(t)

dτ

∫ τ

h(τ)

M(τ, s) exp
{
μ
(
s − h(s)

)}
ds

]
<

1

e
,

then there exists a solution of (10.4.21) nonoscillatory about N∗.

To illustrate the application of Theorem 10.5 to different models, consider the
mixed equation

Ṅ(t)= −μN(t)+ p

[∫ t

h(t)

M(t, s)e−γN(s) ds + α(t)e−γN(g(t))
]
, (10.4.22)

where M(t, s)≥ 0, μ> 0, p > 0, γ > 0, α(t)≥ 0.

Corollary 10.11 LetM(t, s) be a Lebesgue measurable locally essentially bounded
function and (a2) hold for h(t) and g(t),

M(t, s)≥ 0, μ > 0, p > 0, γ > 0,
∫ t

h(t)

M(t, s) ds + α(t)= 1, t > 0.

If

lim inf
t→∞ μγN∗

∫ t

max{h(t), g(t)}
[
M(t, τ )(t − τ)eμ(τ−h(τ))

+ α(τ)eμ(τ−g(τ))
]
dτ >

1

e
,

then all solutions of (10.4.22) are oscillatory about N∗.
If

lim sup
t→∞

μγN∗
∫ t

min{h(t),g(t)}

[∫ τ

h(τ)

M(τ, s)eμ(s−h(s)) ds

+ α(τ) eμ(τ−g(τ))
]
dτ <

1

e
,

then there exists a solution of (10.4.22) nonoscillatory about N∗.
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Similar results can be obtained for equations with several concentrated delays
and several integral terms:

Ṅ(t)= −μN(t)+ p

[
l∑

k=1

∫ t

hk(t)

Mk(t, s)e
−γN(s) ds +

m∑

k=l+1

αk(t)e
−γN(hk(t))

]
.

(10.4.23)

Corollary 10.12 Let Mk(t, s) be Lebesgue measurable locally essentially bounded
functions, (a2) hold for hk(t), Mk(t, s) ≥ 0, k = 1, · · · , l, μ > 0, p > 0, γ > 0,
αk(t)≥ 0, k = l + 1, · · · ,m,

l∑

k=1

∫ t

hk(t)

Mk(t, s) ds +
m∑

k=l+1

αk(t)= 1 for any t > 0.

If

lim inf
t→∞ μγN∗

∫ t

maxk{hk(t)}

[
l∑

k=1

Mk(t, τ )(t − τ)eμ(τ−hk(τ))

+
m∑

k=l+1

αk(τ )e
μ(τ−hk(τ))

]
dτ >

1

e
,

then all solutions of (10.4.22) are oscillatory about N∗ .
If

lim sup
t→∞

μγN∗
∫ t

mink{hk(t)}

[
l∑

k=1

∫ τ

hk(τ)

Mk(τ, s)e
μ(s−hk(s)) ds

+
m∑

k=l+1

αk(τ )e
μ(τ−hk(τ))

]
dτ <

1

e
,

then there exists a solution of (10.4.22) nonoscillatory about N∗.

10.4.3 Nicholson’s Blowflies Equation

Now let us apply the results above to Nicholson’s blowflies equation with a dis-
tributed delay

Ṅ(t)− p

∫ t

h(t)

N(s)e−aN(s)dsR(t, s)+ δN(t)= 0, t > t0, (10.4.24)

with initial conditions (10.4.3), where p > δ > 0, a > 0 and (a2)–(a4) are satis-
fied.
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Equation (10.4.24) has the unique positive equilibrium

N∗ = 1

a
ln
p

δ
. (10.4.25)

The global solution of (10.4.24), (10.4.3) exists and is unique by Corollary B.5
(see also [86]); moreover, this solution is positive for t ≥ t0 as far as the initial
conditions are positive.

We can apply the linearization method after the transformation

N =N∗ + 1

a
x, (10.4.26)

where N∗ is defined in (10.4.25). Then (10.4.24) takes the form

ẋ(t)+ δx(t)− δ

∫ t

h(t)

x(s)e−x(s)dsRk(t, s)

+ δ

∫ t

h(t)

ln

(
p

δ

)[
1 − e−x(s)

]
dsRk(t, s)= 0,

which can be rewritten as

ẋ(t)+ δx(t)+ δ

∫ t

h(t)

[
ln

(
p

δ

)(
1 − e−x(s)

)− x(s)e−x(s)
]
dsR(t, s)= 0. (10.4.27)

Consider the function

f (x)= 1

ln(p
δ
)− 1

[
ln

(
p

δ

)(
1 − e−x

)− xe−x
]
. (10.4.28)

Then (10.4.27) has the form

ẋ(t)+ δx(t)+ δ

[
ln

(
p

δ

)
− 1

]∫ t

h(t)

f
(
x(s)

)
dsR(t, s)= 0. (10.4.29)

Lemma 10.2 Let f (x) be defined in (10.4.28) and p > δ > 0.

1) Condition (10.3.3) holds.
2) If p > δe, x �= 0, x > 1 − ln(p/δ), then xf (x) > 0.
3) If p > δe2, then (10.3.5) is satisfied.

Proof Since limx→0
1−e−x
x

= limx→0 e
−x = 1, condition (10.3.3) holds for p > δ.

The function f (x) defined in (10.4.28) vanishes at zero. For p > δe, its derivative
satisfies

f ′(x)= e−x + xe−x

ln(p
δ
)− 1

> 0 for x > 1 − ln

(
p

δ

)
,

and f ′(x) is negative otherwise, so

f (x) > 0 for x > 0 and f (x) < 0 for 1 − ln(p/δ) < x < 0.
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Further, consider g(x)= f (x)− x. Then

g′(x)= e−x − 1 + xe−x

ln(p
δ
)− 1

, g′′(x)= 2 − ln(p
δ
)− x

ln(p
δ
)− 1

e−x.

Thus g(0)= 0, g′(0)= 0 and ln(p
δ
) > 2 imply g′′(x) < 0 for x > 0. Consequently,

for p > δe2 the first derivative is negative for x > 0 and g(x) < g(0)= 0, or f (x) <
x, x > 0. Since also f (x) > 0 for x > 0, then (10.3.5) holds, which completes the
proof. �

Lemma 10.3 Suppose p > δe and a solution N(t) of (10.4.24) is below the equi-
librium N(t) < N∗ for any t > t1 ≥ 0. Then there exists t∗ such that

N(t) >
1

a
, t > t∗. (10.4.30)

Proof Denote

g(x)= p

δ
xe−ax. (10.4.31)

According to (a2), there exists t2 ≥ t1 such that h(t) > t1 for t > t2. Since the solu-
tion N(t) is positive and continuous, there exists

N1 = min
t∈[t1,t2]

N(t) < N∗. (10.4.32)

(1) First, let us demonstrate that N1 > 1/a implies N(t) > 1/a for any t > t1.
Assume the contrary. Denote

t̄ = inf

{
t > t2

∣∣∣N(t) <
1

a

}
.

By definition, N(t̄)= 1/a and N∗ >N(t) > 1/a for t ∈ [t1, t̄). Thus g(N(t)) > N∗
for t ∈ [t1, t̄) (see Fig. 10.1). Consequently, from (10.4.24) we have

Ṅ(t)≥ δ
[

inf
s∈[t1,t]

g
(
N(s)

)−N(t)
]
> δ
(
N∗ −N∗)= 0, t ∈ [t2, t̄)

almost everywhere, and the nonnegative derivative in the segment [t2, t̄) contradicts
the assumption N(t̄)= 1/a < N(t2).

(2) Next, let us assume m<N∗ and prove that once N(t) > m, t ∈ [t1, t2], then
first N(t) > m for any t ≥ t1 and second, if c ≤ g(m) < N∗ and there is t3 such that
N(t3)= c, then N(t)≥ c, t ≥ t3.

As in part (1) of the proof, first assume that there are points where N(t) does
not exceed m and denote t̄ = inf{t > t2 | N(t) < m}. By definition, N(t̄) = m and
N∗ >N(t) > m for t ∈ [t1, t̄). Since N(t) is continuous and g(m) > m, then there
exists ε > 0 such that N(t) < g(m) for t ∈ [t̄ − ε, t̄]. Besides, N(t) < N∗ for any t .
Let us notice that

min
x∈[m,N∗]g(x)= min

{
g(m),N∗} and g

(
N(t)

)
>min

{
g(m),N∗} for t ∈ [t1, t̄].
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Fig. 10.1 The function
g(x)= 8x exp(−6x), the
equilibrium N∗, 1/a = 1/6
and g(N1), g(g(N1)) in the
sequence. In the example
presented, g(g(N1)) already
exceeds 1/a. N2 in part (3) of
the proof exceeds g(N1),
N3 =N∗

Hence, for t ∈ [t̄ − ε, t̄) we have N(t) < g(m) and

Ṅ(t)≥ δ
[

inf
s∈[t1,t̄]

g
(
N(s)

)−N(t)
]
> δ
(
min
{
g(m),N∗}− min

{
g(m),N∗})= 0

(10.4.33)

almost everywhere, which contradicts the assumption N(t̄)=m<N(t̄ − ε).
If g(m) < N∗, N(t3)= c ≤ g(m) and there is t4 > t3, where N(t4) < c. Accord-

ing to the previous part, N(t) > m and g(N(t)) > g(m) for any t > t1. Then, as in
(10.4.33), Ṅ(t)≥ 0 in [t4 − ε1, t4], which contradicts N(t4) < N(t4 − ε1).

(3) Finally, assuming N1 < 1/a, we build a sequence of Nk that eventually ex-
ceeds 1/a and a sequence of increasing points sk such that t ≥ sk impliesN(t)≥Nk ,
t > sk . Let N1 ≤ 1/a. Consider N2 = min{0.5(N∗ + 1/a), g(N1)}, N2 ≥ N1 (see
Fig. 10.1). According to part (2) of the proof, there may be two possibilities: for
some s2 = t3 > t2 we have N(t3) = N2 and also N(t) ≥ N2 for t ≥ s2, or N is in-
creasing (see (10.4.33)) and is less than N2 for any t > t1. The latter is impossible.
In fact, assuming N < N2 implies Ṅ > δ(g(N1) − N1) > 0. Thus N(t) → ∞ as
t → ∞, which contradicts N(t) < N∗. Hence N(t3) = N2 for some t3. Similarly,
we define Nk = min{0.5(N∗ + 1/a), g(Nk−1)}. By induction, we prove that for
some sk > sk−1 we have N(t)≥Nk for t > sk . The sequence {Nk} is nondecreasing
(i.e., each element is less than N∗ and eventually exceeds 1/a). Let Nk > 1/a. Then
sk = t∗, where the existence of t∗ is claimed in the statement of the lemma, which
completes the proof. �

Remark 10.3 Continuing the proof of Lemma 10.3, we could obtain that any solu-
tion of (10.4.24) that is less than the equilibrium converges to N∗.

Let us also note that according to Theorem 10.1 any nonoscillatory solution tends
to zero. Thus, applying Theorems 10.2, 10.3, 4.9 and 4.11, we obtain the following
results.
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Theorem 10.7 Suppose h(t), R(t, s) and the initial conditions satisfy (a2)–(a4),
p > δe. If

δ

[
ln

(
p

δ

)
− 1

]
lim inf
t→∞

∫ t

h(t)

dτ

∫ τ

h(t)

eδ(τ−s)dsR(τ, s) >
1

e
, (10.4.34)

then all solutions of (10.4.24) are oscillatory about N∗.
If p > δe2 and

δ

[
ln

(
p

δ

)
− 1

]
lim sup
t→∞

∫ t

h(t)

dτ

∫ τ

h(τ)

eδ(τ−s)dsR(τ, s) <
1

e
, (10.4.35)

then (10.4.24) has a solution nonoscillatory aboutN∗. For nonoscillatory solutions,
we have limt→∞N(t)=N∗.

Proof Suppose that (10.4.34) holds. It is sufficient to prove that all solutions of
(10.4.29) are oscillatory, where the function f is denoted by (10.4.28). Let us check
that all the conditions of Theorem 10.2 hold.

By Lemma 10.2, condition (10.3.3) is satisfied. After transformation of (10.4.26),
the condition x(t) > 1 − ln(p/δ) is equivalent to the inequality

N(t)=N∗ + 1

a
x >

1

a

[
ln

(
p

δ

)
+ 1 − ln

(
p

δ

)]
= 1

a
.

We recall that N∗ > 1/a for p > δe. Hence, by Lemma 10.3, for any solution x
there exists t1 such that x(t) > 1 − ln(p/δ) for t > t1. By Lemma 10.2, we have
xf (x) > 0.

Condition (10.4.34) and Theorem 4.11 imply that for some ε > 0 all solutions of
linear equation (10.3.4) are oscillatory. By Theorem 10.2, all solutions of (10.4.29)
are also oscillatory.

The second part is based on Theorems 10.3 and 4.9 and is proven similarly. �

To deduce some corollaries, let us consider the following particular cases of
(10.4.24): the equations with several concentrated delays

Ṅ(t)− p

m

m∑

k=1

N
(
hk(t)

)
e−aN(hk(t)) + δN(t)= 0, (10.4.36)

the autonomous equation with a constant delay

Ṅ(t)− pN(t − τ)e−aN(t−τ) + δN(t)= 0, (10.4.37)

and the integrodifferential equation

Ṅ(t)− p

∫ t

h(t)

M(t, s)N(s)e−aN(s) ds + δN(t)= 0. (10.4.38)

Corollary 10.13 If p > δe and

lim inf
t→∞

δ

m

[
ln

(
p

δ

)
− 1

] m∑

k=1

∫ t

maxk hk(t)
eδ(τ−hk(τ)) dτ > 1

e
, (10.4.39)

then all solutions of (10.4.36) are oscillatory about N∗.



258 10 Linearization Methods for Nonlinear Equations with a Distributed Delay

If p > δe2 and

lim sup
t→∞

δ

m

[
ln

(
p

δ

)
− 1

] m∑

k=1

∫ t

mink hk(t)
eδ(τ−hk(τ)) dτ < 1

e
, (10.4.40)

then (10.4.36) has a solution nonoscillatory aboutN∗. For nonoscillatory solutions,
we have limt→∞N(t)=N∗.

Corollary 10.14 [192, 238] If p > δe and

δ

[
ln

(
p

δ

)
− 1

]
τeδτ >

1

e
, (10.4.41)

then all solutions of (10.4.37) are oscillatory about N∗. If p > δe2 and

δ

[
ln

(
p

δ

)
− 1

]
τeδτ <

1

e
, (10.4.42)

then (10.4.37) has a solution nonoscillatory aboutN∗. For nonoscillatory solutions,
we have limt→∞N(t)=N∗.

Corollary 10.15 Let p > δe, M(t, s) be a Lebesgue measurable locally essentially
bounded function, M(t, s)≥ 0 and

∫ t
h(t)

M(t, s) ds = 1 for any t > 0. If

lim inf
t→∞ δ

[
ln

(
p

δ

)
− 1

]∫ t

h(t)

eδ(t−τ)M(t, τ )(t − τ) dτ >
1

e
, (10.4.43)

then all solutions of (10.4.38) are oscillatory about N∗. If p > δe2 and

lim sup
t→∞

δ

[
ln

(
p

δ

)
− 1

]∫ t

h(t)

dτ

∫ τ

h(τ)

eδ(τ−s)M(τ, s) ds < 1

e
, (10.4.44)

then (10.4.38) has a solution nonoscillatory aboutN∗. For nonoscillatory solutions,
we have limt→∞N(t)=N∗.

Let us note that oscillation properties for Nicholson’s blowflies equation with
δ < p < δe are essentially different; see [195] for the constant concentrated delay
and [86] for the distributed delay.

10.5 “Mean Value Theorem” for Equations with a Distributed
Delay

Let us demonstrate that from a certain point of view an equation with a distributed
delay (10.2.4) can be reduced to a linear equation with a single concentrated delay.

Denote

hk(t)= sup
{
s ∈R |Rk(t, s)= 0

}
, h(t)= min

k
hk(t), (10.5.1)
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Gk(t)= inf
{
s ≤ t |Rk(t, s)= 1

}
, G(t)= max

k
Gk(t). (10.5.2)

Let us note that for (10.2.7) with concentrated delays

h(t)= min
k
hk(t), G(t)= max

k
hk(t),

for integrodifferential equation (10.2.8) we have h(t) = mink hk(t) and, generally,
G(t)= t ; however, if for some Fk(t) < Gk(t)

Mk(t, s)= 0, Gk(t) < s ≤ t, Mk(t, s) > 0, Fk(t) < s <Gk(t),

then G(t)= maxk Gk(t). Further, for mixed equation (10.2.9)

h(t)= min
k
hk(t), G(t)= max

{
h1(t), · · · , hl(t),Gl+1(t), · · · ,Gm

}
,

where Gk are defined as above.

Theorem 10.8 Suppose that (a1)–(a5) hold, fk(0) = 0, k = 1, · · · ,m, and fk are
nondecreasing functions. Then, for any ϕ(t) there exist functions ξk(t) and g(t),
where h(t) ≤ g(t) ≤G(t) (h(t),G(t) are defined in (10.5.1) and (10.5.2), respec-
tively) such that the solution of problem (10.2.4), (10.2.6) also satisfies the linear
equation with a single concentrated delay

ẋ(t)+
(

m∑

k=1

rk(t)f
′
k

(
ξk(t)

)
)
x
(
g(t)

)= 0. (10.5.3)

Proof Since fk(x(·)) is continuous for any k and continuous function x, including
the initial function satisfying (a4), then by the Mean Value Theorem for any k and
any t ≥ t0 there exists gk(t) such that hk(t)≤ gk(t)≤Gk(t) and

∫ t

hk(t)

fk
(
x(s)

)
dsRk(t, s)= fk

(
x
(
gk(t)

))∫ t

hk(t)

dsRk(t, s)= fk
(
x
(
gk(t)

))
,

i.e., x(t) is a solution of the equation

ẋ(t)+
m∑

k=1

rk(t)fk
(
x
(
gk(t)

))= 0 (10.5.4)

as well as

ẋ(t)+
m∑

k=1

rk(t)
[
fk
(
x
(
gk(t)

))− fk(0)
]= 0. (10.5.5)

By the Mean Value Theorem, the expression in the brackets equals f ′
k(ξk(t)) ×

x(gk(t)), where ξk(t) is between zero and x(gk(t)), so x(t) is a solution of the
linear equation with several delays and nonnegative coefficients

ẋ(t)+
m∑

k=1

rk(t)f
′
k

(
ξk(t)

)
x
(
gk(t)

)= 0. (10.5.6)
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Let x(t) be a solution of (10.5.6). For any fixed t ≥ 0 and any k = 1, · · · ,m, we have

min
s∈[h(t),G(t)]x(s)≤ x

(
gk(t)

)≤ max
s∈[h(t),G(t)]

x(s).

Since all the derivatives satisfy f ′
k(x)≥ 0, we have

min
s∈[h(t),G(t)]x(s)

m∑

k=1

rk(t)f
′
k

(
ξk(t)

)≤
m∑

k=1

rk(t)f
′
k

(
ξk(t)

)
x
(
gk(t)

)

≤ max
s∈[h(t),G(t)]

x(s)

m∑

k=1

rk(t)f
′
k

(
ξk(t)

)
.

Solution x(s) is continuous so, for any t , by the Intermediate Value Theorem there
is s∗(t) ∈ [h(t),G(t)] such that

x
(
s∗(t)

)=
[
m∑

k=1

rk(t)f
′
k

(
ξk(t)

)
x
(
gk(t)

)
]/[ m∑

k=1

rk(t)f
′
k

(
ξk(t)

)
]
.

Choosing g(t)= s∗(t) for each t , we obtain that the function x is also a solution of
(10.5.3) with one delay, which completes the proof. �

Theorem 10.8 can also be applied to linear equations.

Corollary 10.16 Suppose (a1)–(a4) hold. Then there exists g(t), where h(t) ≤
g(t) ≤ H(t), and h(t) and G(t) are defined in (10.5.1) and (10.5.2), respectively,
such that the solution of (10.2.10) and (10.2.6) also satisfies the linear equation with
a single concentrated delay

ẋ(t)+
(

m∑

k=1

rk(t)

)
x
(
g(t)

)= 0. (10.5.7)

The following result is also an immediate corollary of Theorem 10.8.

Corollary 10.17 Suppose (a1)–(a5) hold, fk(0) = 0, fk are nondecreasing func-
tions, k = 1, · · · ,m and the linear equation

ẋ(t)+
(

m∑

k=1

Akrk(t)

)
x
(
g(t)

)= 0 (10.5.8)

for any g(t) such that h(t)≤ g(t)≤G(t) and any Ak satisfying

0 ≤ inf
t∈Rf

′
k(t)≤Ak ≤ sup

t∈R
f ′
k(t) (10.5.9)

has one of the following properties:

• all solutions of (10.5.8) are oscillatory;
• there exists a nonoscillatory solution of (10.5.8);
• the zero solution of (10.5.8) is stable (globally asymptotically stable);



10.6 Discussion and Open Problems 261

• all solutions of (10.5.8) with nonnegative initial conditions and a positive initial
value are positive (permanent; i.e., satisfy 0< a < x(t) < b <∞ for any t).

Then (10.2.4) has the same property.

For another approach to study asymptotic properties of nonlinear equations with
a distributed delay see [271].

10.6 Discussion and Open Problems

Let us note that in this chapter we considered a general form of delays and coeffi-
cients in the following sense.

1. The distributed delay allows us, for an appropriate choice of the distribution,
to consider integrodifferential equations, equations with several variable concen-
trated delays, and equations with both delayed and integral terms. All parameters
are generally time dependent.

2. Solutions are absolutely continuous, not necessarily continuously differentiable
functions. This corresponds to measurable locally essentially bounded (not nec-
essarily continuous) kernels of integrals and coefficients.

Let us note that the chapter mainly follows the paper [65]. Some oscillation and
nonoscillation results close to the results of this chapter were obtained in [275].

Finally, let us state some open problems.

1. Can the linearization scheme be applied to (10.2.4) and (10.2.5), where coeffi-
cients may be positive or negative? As an easy exercise, consider (10.2.5) with a
nonnegative rk(t) and a nonpositive (or oscillatory) b(t).

2. Is some linearization scheme applicable to the Mackey-Glass equations with a
distributed delay, such as the equation

dN

dt
=
∫ t

−∞
r(s)N(r)

1 + (N(s))γ
dsR(t, s)− b(t)N(t)

describing the production of white blood cells and

dN

dt
=
∫ t

−∞
r(s)

(K(t))γ + (N(s))γ
dsR(t, s)− b(t)N(t)

modeling red blood cell production, where r(s)≥ 0, b(t)≥ 0, K(s) > 0, γ > 0?
3. So far, we have considered equations with a distributed delay of type (10.2.4).

Consider nonoscillation and oscillation of the equation with a distributed delay

ẋ(t)+
m∑

k=1

rk(t)fk

(∫ t

hk(t)

x(s)dsRk(t, s)

)
= 0, (10.6.1)

where (a1)–(a3) are satisfied.
4. Obtain nonoscillation results for Nicholson’s blowflies equation with a dis-

tributed delay in the case δe < p < δe2.



262 10 Linearization Methods for Nonlinear Equations with a Distributed Delay

5. All results of this chapter are obtained under the assumption that all the delays
are finite. Deduce nonoscillation conditions for (10.2.1) with generally an infinite
delay.



Chapter 11
Nonlinear Models—Modifications of Delay
Logistic Equations

11.1 Introduction

In this chapter, we study several nonlinear delay differential equations for which the
linearization method of the previous chapter cannot be applied.

The delay logistic equation

ẏ(t)= r(t)y(t)

(
1 − y(h(t))

K

)
, h(t)≤ t, (11.1.1)

is known as Hutchinson’s equation if r andK are positive constants and h(t)= t−τ
for a positive constant τ . Hutchinson’s equation was investigated by several authors,
see, for example, [213, 214, 285, 334]. Delay logistic equation (11.1.1) was studied
by Gopalsamy and Zhang [167, 354], who gave sufficient conditions for oscillation
and nonoscillation of (11.1.1).

Publications [12, 154, 175, 176, 192, 237, 244, 255, 296, 330, 340] are devoted
to various generalizations of logistic equation (11.1.1). For example, in [12, 154,
237] the authors considered the equation

ẏ(t)= r(t)y(t)

(
1 − y(h(t))

K

)∣∣∣∣1 − y(h(t))

K

∣∣∣∣
α−1

, (11.1.2)

where α < 1 (sublinear case) or α > 1 (superlinear case).
In this chapter, we study (11.1.2) with several delays,

ẏ(t)=
m∑

k=1

rk(t)y(t)

(
1 − y(hk(t))

K

)∣∣∣∣1 − y(hk(t))

K

∣∣∣∣
αk−1

. (11.1.3)

We consider the cases αk ≤ 1, k = 1, · · · ,m, αk ≥ 1, k = 1, · · · ,m and also the
three mixed cases for m= 2. The case αk = 1, k = 1, · · · ,m was considered in the
previous chapter.
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Delay logistic equation (11.1.1) assumes both additive and multiplicative gener-
alizations. For example, in [175] the authors considered the multiplicative logistic
equation

ẏ(t)= r(t)y(t)

(
1 −

m∏

k=1

y(hk(t))

K

)
.

In [90, 336], oscillation properties of the nonlinear delay equation

ẏ(t)+ a(t)y(t)+ b(t)

m∏

k=1

(
y(hk(t))

K

)αk
= 0,

m∑

k=1

αk = 1,

were studied. In [265], the authors considered the nonlinear neutral multiplicative
differential equation

d

dt

[
r(t)− c(t)x(t − r)

]+ p(t)

m∏

k=1

[
x(t − rk)

]αk = 0,

where also
∑m

k=1 αk = 1.
In this chapter, we consider the generalized logistic equation where the sum in

(11.1.3) is replaced by a product:

ẏ(t)=
m∏

k=1

r(t)y(t)

(
1 − y(hk(t))

K

)∣∣∣∣1 − y(hk(t))

K

∣∣∣∣
αk−1

,

m∑

k=1

αk = 1. (11.1.4)

It is interesting to discuss here some methods that are applied to obtain nonoscil-
lation and oscillation results for the delay logistic equations and their generaliza-
tions.

Usually a differential equation is transformed into an operator equation with the
following property: if the operator equation has a nonnegative solution, then the
differential equation has a nonoscillatory solution. For the operator equation, either
the Schauder Fixed-Point Theorem is applied, convergence of monotone approxi-
mations to a solution is demonstrated or the connection of oscillation properties of
the nonlinear logistic equation and a linear delay differential equation is employed.

Here we use all three methods mentioned above. We do not assume that the pa-
rameters of (11.1.3) are continuous functions. Hence, unlike most known results, we
have to apply the Schauder Fixed-Point Theorem in the space L∞ of Lebesgue mea-
surable and locally essentially bounded functions. In the most difficult superlinear
case, we transform the differential equation into an operator equation,

u=AuBu,

where the operator A is monotonically increasing and B is monotonically decreas-
ing. We prove that there exist two functions v, w, where 0 ≤ v(t)≤w(t), such that

v(t)≤ (Av)(t)(Bw)(t), w(t)≥ (Aw)(t)(Bv)(t).

Then the operator T u=AuBu maps the interval v(t)≤ u(t)≤w(t) into itself, and
therefore we can use the Schauder Fixed-Point Theorem.
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The chapter is organized as follows. In Sect. 11.2, we study the generalized lo-
gistic equation with several delays (11.1.3). For this equation, we consider the cases
of sublinear and superlinear equations and also mixed equations that contain both
sublinear and superlinear terms. Section 11.3 includes investigation of nonoscilla-
tion properties for the multiplicative delay logistic equation (11.1.4), which contains
a product of logistic terms. Section 11.4 provides discussion and states some open
problems.

11.2 Generalized Logistic Equation with Several Delays

11.2.1 Preliminaries

Consider the scalar delay differential equation

ẋ(t)= −(1 + x(t)
) m∑

k=1

rk(t)x
(
hk(t)

)∣∣x
(
hk(t)

)∣∣αk−1
, t ≥ 0, (11.2.1)

under the following assumptions:

(a1) rk , k = 1, · · · ,m, are Lebesgue measurable locally essentially bounded func-
tions, rk(t)≥ 0.

(a2) hk : [0,∞) → R are Lebesgue measurable functions, hk(t) ≤ t ,
limt→∞ hk(t) = ∞, k = 1, · · · ,m, and αk > 0, k = 1,2, · · · ,m are real num-
bers.

Together with (11.2.1), we consider for each t0 ≥ 0 the initial value problem

ẋ(t)= −(1 + x(t)
) m∑

k=1

rk(t)x
(
hk(t)

)∣∣x
(
hk(t)

)∣∣αk−1
, t ≥ t0, (11.2.2)

x(t)= ϕ(t), t < t0, x(t0)= x0. (11.2.3)

We also assume that the following hypothesis holds:

(a3) ϕ : (−∞, t0)→R is a Borel measurable bounded function.

Definition 11.1 A function x :R → R absolutely continuous in each interval [t0, b]
is called a solution of problem (11.2.2), (11.2.3) if it satisfies (11.2.2) for almost all
t ∈ [t0,∞) and equalities (11.2.3) for t ≤ t0.

Equation (11.2.1) is obtained from the generalized logistic equation

ẏ(t)=
m∑

k=1

rk(t)y(t)

(
1 − y(hk(t))

K

)∣∣∣∣1 − y(hk(t))

K

∣∣∣∣
αk−1

(11.2.4)

using the substitution

y =K(1 + x).
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Let us note that all solutions of (11.2.4) with a positive initial value and a nonneg-
ative initial function are positive by Theorem B.17. Since for the logistic equation
y(t) > 0 we will consider only such solutions of (11.2.1) for which the inequality

x(t) >−1

holds.

11.2.2 Sublinear Case αk < 1, k = 1, ···,m

Together with (11.2.1), consider the differential inequalities

ẋ(t)≤ −(1 + x(t)
) m∑

k=1

rk(t)x
(
hk(t)

)∣∣x
(
hk(t)

)∣∣αk−1
, t ≥ 0, (11.2.5)

ẋ(t)≥ −(1 + x(t)
) m∑

k=1

rk(t)x
(
hk(t)

)∣∣x
(
hk(t)

)∣∣αk−1
, t ≥ 0. (11.2.6)

As was mentioned before, only such solutions of (11.2.1), (11.2.5) and (11.2.6)
for which the condition

1 + x(t) > 0 (11.2.7)

holds are considered.

Theorem 11.1 The following statements are equivalent:

1. Either inequality (11.2.5) has an eventually positive solution or inequality
(11.2.6) has an eventually negative solution satisfying −1< x(t) < 0.

2. There exist a point t0 ≥ 0, number c and function ϕ : (−∞, t0)→ R with either
ϕ(t)≥ 0, c > 0 or −1< ϕ(t)≤ 0, −1< c < 0, such that the inequality

u(t)≥
(

1 + c exp

{
−
∫ t

t0

u(s)ds

}) m∑

k=1

(Fku)(t) (11.2.8)

has a nonnegative solution locally integrable on [t0,∞), where operators Fk are
defined as

(Fku)(t)

=
{ |c|αk−1rk(t) exp{∫ t

hk(t)
u(s)ds} exp{(1 − αk)

∫ hk(t)
t0

u(s)ds}, hk(t)≥ t0,

rk(t)|c| exp{∫ t
t0
u(s)ds}|ϕ(hk(t))|αk , hk(t) < t0.

3. Equation (11.2.1) has a nonoscillatory solution.

Proof 1)⇒ 2) Let x be a solution of (11.2.5) and x(t) > 0 for t ≥ t1. Then there
exists t0 ≥ t1 such that hk(t) ≥ t1 for t ≥ t0, k = 1, · · · ,m. Denote ϕ(t) = x(t),
t < t0 and c= x(t0). Then ϕ(t) > 0, c > 0.
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Let u(t) = − ẋ(t)
x(t)

, t ≥ t0. For the solution x(t) of (11.2.5), we have ẋ(t) ≤ 0,
t ≥ t0 and consequently u(t)≥ 0. We can now rewrite x in the form

x(t)=
{
c exp{− ∫ t

t0
u(s)ds}, t ≥ t0,

ϕ(t), t < t0.
(11.2.9)

By substituting x in (11.2.5), we obtain inequality (11.2.8). Similarly (11.2.8) can
be obtained if −1< x(t) < 0 is a solution of (11.2.6).

2)⇒ 3) Let u0 be a nonnegative solution of inequality (11.2.8) with −1< ϕ(t)≤
0, −1< c < 0. For the sequence {un} denoted by

un(t)=
(

1 + c exp

{
−
∫ t

t0

un−1(s)ds

}) m∑

k=1

(Fkun−1)(t), (11.2.10)

inequality (11.2.8) implies u1(t)≤ u0(t). By induction, we can prove

0 ≤ un(t)≤ un−1(t)≤ u0(t).

There exists a pointwise limit of the nonincreasing nonnegative sequence un(t). Let
u(t)= limn→∞ un(t). Then, by the Lebesgue convergence theorem, u(t) is locally
integrable and

lim
n→∞(Fkun)(t)= (Fku)(t), k = 1, · · · ,m.

Thus (11.2.10) implies

u(t)=
(

1 + c exp

{
−
∫ t

t0

u(s)ds

}) m∑

k=1

(Fku)(t).

Hence the function x defined by equality (11.2.9) is an eventually negative solution
of (11.2.1).

Further, let u0 be a nonnegative solution of inequality (11.2.8) with ϕ(t)≥ 0 and
c > 0. If inequality (11.2.8) holds for some ϕ, then it holds also for ϕ ≡ 0, so we
can assume that ϕ ≡ 0.

If 0 < c < 1, then denoting c0 = −c we obtain that u0 is also a solution of
(11.2.8) with c0, ϕ ≡ 0 instead of c, ϕ(t). From the previous case, it follows that
there exists an eventually negative solution of (11.2.1).

Next, suppose that c ≥ 1. From (11.2.8), we have

u(t)≥ exp

{
−
∫ t

t0

u(s)ds

} m∑

k=1

cαk rk(t)

× exp

{∫ t

hk(t)

u(s)ds

}
exp

{
(1 − αk)

∫ hk(t)

t0

u(s)ds

}
,

where the sum includes only the terms for which hk(t)≥ t0.
There exists 0 < d ≤ 1 such that cαk > dαk−1, k = 1, · · · ,m if c > 1 and d =

c= 1 if c= 1.
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Hence u(t) ≥∑m
k=1(Fku)(t), where c in the definition of Fk is replaced by d

and ϕ ≡ 0. Denote c0 = −d . Then inequality (11.2.8) holds for −1 < c0 < 0 and
ϕ ≡ 0. As was proven above, there exists a nonnegative function u(t) such that

x(t)= c0 exp

{
−
∫ t

t0

u0(s)ds

}
, t ≥ 0, x(t)= 0, t < t0,

is an eventually negative solution of (11.2.1).
Implication 3)⇒ 1) is evident. �

Corollary 11.1 Suppose that there exist t0 and A> 1 such that the inequality

u(t)≥A

m∑

k=1

rk(t) exp

{∫ t

hk(t)

u(s)ds

}
exp

{
(1 − αk)

∫ hk(t)

t0

u(s)ds

}
, t ≥ t0,

(11.2.11)

has a nonnegative locally integrable solution, where the sum contains only such
terms for which hk(t)≥ t0. Then (11.2.1) has a nonoscillatory solution.

Proof The corollary follows from statement 2) of Theorem 11.1 if we assume ϕ ≡ 0
and −1< c < 0 such that |c|αk−1 <A, k = 1, · · · ,m. �

Corollary 11.2 If there exists an eventually positive solution of (11.2.1), then there
exists an eventually negative solution of (11.2.1).

Proof This result follows from the proof of Theorem 11.1. �

Remark 11.1 Theorem 11.1 and its corollaries remain valid if for some or all indices
k we have αk = 1.

Theorem 11.2 There exists a nonoscillatory solution of (11.2.1) if and only if
∫ ∞

0
rk(t)dt <∞, k = 1, · · · ,m.

Proof Let
∫ ∞

0
rk(t)dt <∞, k = 1, · · · ,m.

Then there exists t0 and A > 1 such that A exp{2 ∫∞
t0

∑m
k=1 rk(s)ds} < 2. For any

nonnegative u, u(t)= 0, for t < t0 we have

A

m∑

k=1

rk(t) exp

{∫ t

hk(t)

u(s)ds

}
exp

{
(1 − αk)

∫ hk(t)

t0

u(s)ds

}

≤A

m∑

k=1

rk(t) exp

{∫ t

t0

u(s)ds

}
.
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Let u(t) = 2
∑m

k=1 rk(t), t ≥ t0. Then u is a solution of inequality (11.2.11).
Corollary 11.1 implies that (11.2.1) has a nonoscillatory solution.

Suppose now that for some i, 1 ≤ i ≤ m, we have
∫∞

0 ri(t)dt = ∞. Let x be
a positive or negative solution of (11.2.1) for t ≥ t1. There exists t0 ≥ t1 such that
hk(t) ≥ t1, t ≥ t0, k = 1, · · · ,m. Let u(t) = − ẋ(t)

x(t)
, t ≥ t0. Then u(t) ≥ 0. We can

now rewrite x in the form (11.2.10), where c= x(t0), ϕ(t)= x(t), t < t0. Since we
consider only solutions x(t) >−1, we have c >−1.

By substituting x in (11.2.1), we obtain for t ≥ t0 the equality

u(t)=
(

1 + c exp

{
−
∫ t

t0

u(s)ds

}) m∑

k=1

(Fku)(t),

which corresponds to inequality (11.2.8).
There exists t2 > t0 such that hk(t)≥ t0 for t ≥ t2. Then, for t ≥ t2 we have

u(t)≥ min{1,1 + c}|c|αi−1ri(t) exp

{
(1 − αi)

∫ t

t1

u(s)ds

}
.

Hence

ri(t)≤ |c|1−αi
min{1,1 + c}u(t) exp

{
−(1 − αi)

∫ t

t1

u(s)ds

}
, t ≥ t2,

which implies
∫ t

t1

ri(s)ds ≤ |c|1−αi
min{1,1 + c}

∫ t

t1

u(s) exp

{
−(1 − αi)

∫ s

t1

u(τ)dτ

}
ds

= |c|1−αi
min{1,1 + c}(1 − αi)

(
1 − exp

{
−(1 − αi)

∫ t

t1

u(s)ds

})

≤ |c|1−αi
min{1,1 + c}(1 − αi)

.

Thus
∫∞
t1
ai(s)ds < ∞, which gives a contradiction. Hence all the solutions of

(11.2.1) are oscillatory. �

Remark 11.2 The sufficient part (“if”) of Theorem 11.2 remains true if some or all
αk are equal to one.

11.2.3 Superlinear Case αk > 1, k = 1, ···,m

Theorem 11.3 Suppose that for some ε > 0 there exists a nonoscillatory solution
of the linear delay differential equation

ẋ(t)= −ε
m∑

k=1

rk(t)x
(
hk(t)

)
. (11.2.12)

Then there exists a nonoscillatory solution of (11.2.1).
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Proof Let t0 ≥ 0, c and ϕ : (−∞, t0) → R be such that −1 < c < 0, ϕ(t) ≤ 0,
|ϕ(t)| < |c| < ε1/(αk−1), k = 1, · · · ,m, and hence c ≤ ϕ(t) ≤ 0. Theorem 2.22 im-
plies that initial value problem (11.2.12), (11.2.3) with initial function ϕ and initial
value x0 = c has a negative solution x0(t) < 0. Denote

w0(t)= − ẋ0(t)

x0(t)
.

Then w0(t)≥ 0 and x0(t)= c exp{− ∫ t
t0
w0(s)ds}, t ≥ t0.

After substituting x0 into (11.2.12), we have

w0(t)= ε

m∑

k=1

rk(t)×
{

exp{∫ t
hk(t)

w0(s)ds}, hk(t)≥ t0,

exp{∫ t
t0
w0(s)ds}ϕ(hk(t))c

, hk(t) < t0.

Consider now the two sequences

wn(t)=
(

1 + c exp

{
−
∫ t

t0

wn−1(s)ds

}) m∑

k=1

rk(t)

×

⎧
⎪⎪⎨

⎪⎪⎩

|c|αk−1 exp{∫ t
hk(t)

wn−1(s)ds} exp{−(αk − 1)
∫ hk(t)
t0

vn−1(s)ds},
hk(t)≥ t0,

exp{∫ t
t0
wn−1(s)ds} |ϕ(hk(t))|αk|c| , hk(t) < t0,

vn(t)=
(

1 + c exp

{
−
∫ t

t0

vn−1(s)ds

}) m∑

k=1

rk(t)

×

⎧
⎪⎪⎨

⎪⎪⎩

|c|αk−1 exp{∫ t
hk(t)

vn−1(s)ds} exp{−(αk − 1)
∫ hk(t)
t0

wn−1(s)ds},
hk(t)≥ t0,

exp{∫ t
t0
vn−1(s)ds} |ϕ(hk(t))|αk|c| , hk(t) < t0,

where w0 was defined above and v0 = 0.
We have |ϕ(hk(t))|αk−1 < |c|αk−1 < ε and 1 + c exp{− ∫ t

t0
w0(s) ds} < 1. Then

w1(t)≤w0(t), v1(t)≥ v0(t)= 0 and w0(t)≥ v0(t). Hence, by induction,

0 ≤wn(t)≤wn−1(t)≤ · · · ≤w0(t), vn(t)≥ vn−1(t)≥ · · · ≥ v0(t)= 0,

and vn(t)≤wn(t)≤w0(t).
There exist pointwise limits of the nonincreasing nonnegative sequence wn(t)

and of the bounded nondecreasing sequence vn(t). If we denotew(t)= limn→∞wn(t)

and v(t) = limn→∞ vn(t), then by the Lebesgue monotone convergence theorem
(see Theorem A.1) we conclude that

w(t)=
(

1 + c exp

{
−
∫ t

t0

w(s)ds

}) m∑

k=1

rk(t)

×

⎧
⎪⎪⎨

⎪⎪⎩

|c|αk−1 exp{∫ t
hk(t)

w(s)ds} exp{−(αk − 1)
∫ hk(t)
t0

v(s)ds},
hk(t)≥ t0,

exp{∫ t
t0
w(s)ds} |ϕ(hk(t))|αk|c| , hk(t) < t0,

(11.2.13)
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and

v(t)=
(

1 + c exp

{
−
∫ t

t0

v(s)ds

}) m∑

k=1

rk(t)

×

⎧
⎪⎪⎨

⎪⎪⎩

|c|αk−1 exp{∫ t
hk(t)

v(s)ds} exp{−(αk − 1)
∫ hk(t)
t0

w(s)ds},
hk(t)≥ t0,

exp{∫ t
t0
v(s)ds} |ϕ(hk(t))|αk|c| , hk(t) < t0.

(11.2.14)

Denote the operator T : L∞[a, b] →: L∞[a, b] by the equality

(T u)(t)=
(

1 + c exp

{
−
∫ t

t0

u(s)ds

}) m∑

k=1

rk(t)

×

⎧
⎪⎪⎨

⎪⎪⎩

|c|αk−1 exp{∫ t
hk(t)

u(s)ds} exp{−(αk − 1)
∫ hk(t)
t0

u(s)ds},
hk(t)≥ t0,

exp{∫ t
t0
u(s)ds} |ϕ(hk(t))|αk|c| , hk(t) < t0.

Equalities (11.2.13), (11.2.14) imply that for every function u from the interval v ≤
u ≤ w we have v ≤ T u ≤ w. Theorem A.6 implies that operator T is a compact
operator in the space L∞[t0, b] for every b > t0. Then, by the Schauder Fixed-
Point Theorem (see Theorem A.15) there exists a nonnegative solution of equation
u= T u.

Thus x(t) defined as

x(t)=
{
c exp{− ∫ t

t0
u(s)ds}, t ≥ t0,

ϕ(t), t < t0.

is a negative solution of (11.2.1), which completes the proof. �

Corollary 11.3 If

lim sup
t→∞

∫ t

mink{hk(t)}

m∑

i=1

ri(s)ds <∞, (11.2.15)

then (11.2.1) has a nonoscillatory solution.

Proof Inequality (11.2.15) yields that for some ε > 0

lim sup
t→∞

∫ t

mink{hk(t)}

m∑

k=1

εrk(s)ds <
1

e
.

Theorems 2.7 and 11.3 imply that (11.2.1) has a nonoscillatory solution. �

Next, consider the case where some αk can equal one.
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Theorem 11.4 Let {1, · · · ,m} = I ∪ J , where αk > 1, k ∈ I , αk = 1, k ∈ J . Sup-
pose that for some ε > 0 there exists a nonoscillatory solution of the linear delay
differential equation

ẋ(t)= −ε
∑

k∈I
rk(t)x

(
hk(t)

)−
∑

k∈J
rk(t)x

(
hk(t)

)
. (11.2.16)

Then there exists a nonoscillatory solution of (11.2.1).

Corollary 11.4 If

lim sup
t→∞

∫ t

mink∈I {hk(t)}

∑

i∈I
ri(s)ds <∞,

lim sup
t→∞

∫ t

mink∈J {hk(t)}

∑

i∈J
ri(s)ds <

1

e
,

then (11.2.1) has a nonoscillatory solution.

The proof of Theorem 11.4 and its corollary is similar to the proof of the previous
theorem and its corollary.

11.2.4 Mixed Cases

For simplicity, we consider in this section model (11.2.1) with m= 2; i.e., the equa-
tion

ẋ(t)= −(1 + x(t)
)[
r1(t)x

(
h1(t)

)∣∣x
(
h1(t)

)∣∣α1−1 + r2(t)x
(
h2(t)

)∣∣x
(
h2(t)

)∣∣α2−1]
.

(11.2.17)

General equation (11.2.1) can be studied in a similar way.

I. Case α1 < 1 = α2.

Theorem 11.5 Let α1 < 1 = α2 and all solutions of at least one of the equations

ẋ(t)= −(1 + x(t)
)
r1(t)x

(
h1(t)

)∣∣x
(
h1(t)

)∣∣α1−1
, (11.2.18)

ẋ(t)= −(1 + x(t)
)
r2(t)x

(
h2(t)

)
, (11.2.19)

be oscillatory. Then all solutions of (11.2.17) are also oscillatory.

Proof Suppose there exists a nonoscillatory solution x of (11.2.17). If x is an even-
tually positive solution of (11.2.17), then there exists t0 ≥ 0 such that

ẋ(t)≤ −(1 + x(t)
)
r1(t)x

(
h1(t)

)∣∣x
(
h1(t)

)∣∣α1−1
, t ≥ t0,
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and

ẋ(t)≤ −(1 + x(t)
)
r2(t)x

(
h2(t)

)
, t ≥ t0.

Theorem 11.1 and Remark 11.1 imply that (11.2.18) and (11.2.19) have nonoscilla-
tory solutions, which gives a contradiction.

The case where (11.2.1) has an eventually negative solution is similar. �

Corollary 11.5 Let m= 2, α1 < 1 = α2. If

either
∫ ∞

0
r1(s)ds = ∞ or lim inf

t→∞

∫ t

h2(t)

r2(s)ds >
1

e
,

then all the solutions of (11.2.17) are oscillatory.

Proof The result follows from Theorems 11.2 and 10.4. �

Theorem 11.6 Let α1 < 1 = α2. If in addition
∫ ∞

0
rk(s)ds <∞, k = 1,2,

then there exists a nonoscillatory solution of (11.2.17).

Proof The result follows from Remark 11.2 and Theorem 11.2. �

II. Case α1 > 1 = α2.

Theorem 11.7 Let α1 > 1 = α2. Suppose that for some ε > 0 there exists a
nonoscillatory solution of the linear equation

ẋ(t)= −εr1(t)x
(
h1(t)

)− r2(t)x
(
h2(t)

)
. (11.2.20)

Then there exists a nonoscillatory solution of (11.2.17).

Proof The proof is similar to the proof of Theorem 11.4. �

Corollary 11.6 Let α1 > 1 = α2. If

lim sup
t→∞

∫ t

min{h1(t),h2(t)}
r1(s)ds <∞ and lim sup

t→∞

∫ t

min{h1(t),h2(t)}
r2(s)ds <

1

e
,

then there exists a nonoscillatory solution of (11.2.17).

Proof The proof follows from Corollary 11.4 for the case m= 2. �

III. Case α1 > 1> α2.

Theorem 11.8 Let α1 > 1 > α2. Suppose there exists a nonoscillatory solution of
(11.2.17) with α1 = 1> α2. Then there exists a nonoscillatory solution of (11.2.17)
with α1 > 1> α2.
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Proof As in the proof of Theorem 11.1 (see also Remark 11.1), there exist t0, c and
ϕ satisfying t0 ≥ 0, −1 < c < 0, −1 < ϕ(t) ≤ 0 such that (11.2.1), (11.2.3) with
m = 2, α1 = 1 > α2 has a negative solution x0(t). Denote w0(t) = − ẋ0(t)

x0(t)
. Then

w0(t)≥ 0 and x0(t)= c exp{− ∫ t
t0
w0(s)ds}, t ≥ t0, where c= x0(t0).

By substituting x0 into (11.2.1) with α1 = 1> α2, we have

w0(t)=
(

1 + c exp

{
−
∫ t

t0

w0(s)ds

}) 2∑

k=1

rk(t)

×

⎧
⎪⎪⎨

⎪⎪⎩

|c|αk−1 exp{∫ t
hk(t)

w0(s)ds} exp{−(αk − 1)
∫ hk(t)
t0

w0(s)ds},
hk(t)≥ t0,

exp{∫ t
t0
w0(s)ds} |ϕ(hk(t))|αk|c| , hk(t) < t0,

where α1 = 1. Then, for α1 > 1> α2, we have

w0(t)≥
(

1 + c exp

{
−
∫ t

t0

w0(s)ds

}) 2∑

k=1

rk(t)

× |c|αk−1 exp

{∫ t

hk(t)

w0(s)ds

}
exp

{
−(αk − 1)

∫ hk(t)

t0

w0(s)ds

}
,

where the sum contains only such terms for which hk(t) ≥ t0. Let v0(t) ≡ 0 and
consider the two sequences

wn(t)

=
(

1 + c exp

{
−
∫ t

t0

wn−1(s)ds

})

×
(
r1(t)|c|α1−1 exp

{∫ t

h1(t)

wn−1(s)ds

}
exp

{
−(α1 − 1)

∫ h1(t)

t0

vn−1(s)ds

}

+ r2(t)|c|α2−1 exp

{∫ t

h2(t)

wn−1(s)ds

}
exp

{
−(α2 − 1)

∫ h2(t)

t0

wn−1(s)ds

})

and

vn(t)

=
(

1 + c exp

{
−
∫ t

t0

vn−1(s)ds

})

×
(
r1(t)|c|α1−1 exp

{∫ t

h1(t)

vn−1(s)ds

}
exp

{
−(α1 − 1)

∫ h1(t)

t0

wn−1(s)ds

}

+ r2(t)|c|α2−1 exp

{∫ t

h2(t)

vn−1(s)ds

}
exp

{
−(α2 − 1)

∫ h2(t)

t0

vn−1(s)ds

})
.

Then, as in the proof of Theorem 11.5, we obtain

0 ≤wn(t)≤wn−1(t)≤ · · · ≤w0(t), vn(t)≥ vn−1(t)≥ · · · ≥ v0(t)= 0,
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and wn(t) ≥ vn(t). Then there exist w(t) = limn→∞wn(t) and v(t) =
limn→∞ vn(t). Hence by the Schauder Fixed-Point Theorem there is u satisfying
v ≤ u≤w, which is a solution of the equation

u(t)=
(

1 + c exp

{
−
∫ t

t0

u(s)ds

})

×
(
r1(t)|c|α1−1 exp

{∫ t

h1(t)

u(s)ds

}
exp

{
−(α1 − 1)

∫ h1(t)

t0

u(s)ds

}

+ r2(t)|c|α2−1 exp

{∫ t

h2(t)

u(s)ds

}
exp

{
−(α2 − 1)

∫ h2(t)

t0

u(s)ds

})
.

Then

x(t)=
{
c exp{− ∫ t

t0
u(s)ds}, t ≥ t0,

0, t < t0,

is a negative solution of (11.2.17), (11.2.3) with x(t0)= c, ϕ ≡ 0, which completes
the proof. �

Corollary 11.7 Let α1 > 1> α2. If
∫ ∞

0
rk(s)ds <∞, k = 1,2,

then there exists a nonoscillatory solution of (11.2.17).

11.2.5 Generalized Logistic Equation—Main Results

The main purpose of this section is to study oscillation of the generalized logistic
equation about the unique positive equilibrium.

Consider

ẏ(t)=
m∑

k=1

rk(t)y(t)

(
1 − y(hk(t))

K

)∣∣∣∣1 − y(hk(t))

K

∣∣∣∣
αk−1

, (11.2.21)

where rk , hk , αk satisfy conditions (a1) and (a2), K > 0 and the initial function ψ
satisfies (a3) with the initial condition

y(t)=ψ(t), t < t0, y(t0)= y0. (11.2.22)

In this section we assume that the initial conditions satisfy

(a4) y0 > 0, ψ(t)≥ 0, t < t0.

By Theorem B.17, there exists a unique positive solution of problem (11.2.21),
(11.2.22).
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Definition 11.2 A positive solution y of (11.2.21) is said to be oscillatory about
K if there exists a sequence tn, tn → ∞ such that y(tn) − K = 0, n = 1,2, · · · ;
y is nonoscillatory about K if there exists T ≥ t0 such that |y(t) − K| > 0 for
t ≥ T . A solution y is eventually positive (eventually negative) about K if y −K is
eventually positive (eventually negative).

Suppose y is a positive solution of (11.2.21), and define x as x = y
K

− 1. Then x
is a solution of (11.2.1) such that 1 + x > 0.

Hence oscillation (or nonoscillation) of y about K is equivalent to oscillation
(nonoscillation) of x.

By applying Theorems 11.1–11.8, we obtain the following results for (11.2.21).

Theorem 11.9 Let αk < 1, k = 1, · · · ,m. There exists a solution of (11.2.21)
nonoscillatory about K if and only if

∫ ∞

0
rk(t)dt <∞, k = 1, · · · ,m.

Theorem 11.10 Let αk > 1, k = 1, · · · ,m.
If

lim sup
t→∞

∫ t

mink{hk(t)}

m∑

i=1

ri(s)ds <∞,

then (11.2.21) has a solution nonoscillatory about K .

Remark 11.3 If m = 1 and the parameters of (11.2.21) are continuous functions,
then the results of Theorems 11.9 and 11.10 were first obtained in [12, 237].

Theorem 11.11 Let m= 2, α1 < 1 = α2. If either
∫ ∞

0
r1(s)ds = ∞

or

lim inf
t→∞

∫ t

h2(t)

r2(s)ds >
1

e
,

then all solutions of (11.2.21) are oscillatory about K .
If

∫ ∞

0
rk(s)ds <∞, k = 1,2,

then there exists a solution of (11.2.21) nonoscillatory about K .

Theorem 11.12 Let m= 2, α1 > 1 = α2.
If

lim sup
t→∞

∫ t

min{h1(t),h2(t)}
r1(s)ds <∞, lim sup

t→∞

∫ t

min{h1(t),h2(t)}
r2(s)ds <

1

e
,

then there exists a solution of (11.2.21) nonoscillatory about K .
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Theorem 11.13 Let m= 2, α1 > 1> α2.
If

∫ ∞

0
rk(s)ds <∞, k = 1,2,

then there exists a solution of (11.2.21) nonoscillatory about K .

11.3 Multiplicative Delay Logistic Equation

11.3.1 Preliminaries

In this section, the scalar multiplicative delay differential equation

ẋ(t)= −r(t)(1 + x(t)
) m∏

k=1

x
(
hk(t)

)∣∣x
(
hk(t)

)∣∣αk−1
, t ≥ 0, (11.3.1)

is considered under the following assumptions:

(b1) r is a Lebesgue measurable locally essentially bounded function, r(t)≥ 0;
(b2) hk : [0,∞) → R are Lebesgue measurable functions, hk(t) ≤ t ,

limt→∞ hk(t) = ∞, k = 1, · · · ,m, αk > 0, k = 1,2, · · · ,m, are real numbers
and

∑m
k=1 αk = 1.

Equation (11.3.1) is obtained from the multiplicative delay logistic equation

ẏ(t)= r(t)y(t)

m∏

k=1

(
1 − y(hk(t))

K

)∣∣∣∣1 − y(hk(t))

K

∣∣∣∣
αk−1

(11.3.2)

by the substitution y(t) = 1 + x(t). Let us note that all solutions of (11.3.2) with
positive initial conditions are positive by Theorem B.17, so x(t) >−1 as far as the
initial values satisfy the inequalities

x(t)≥ −1, t ≤ t0, x(t0) >−1.

Together with (11.3.1), we consider for each t0 ≥ 0 the initial value problem

ẋ(t)= −r(t)(1 + x(t)
) m∏

k=1

x
(
hk(t)

)∣∣x
(
hk(t)

)∣∣αk−1
, t ≥ t0, (11.3.3)

x(t)= ϕ(t), t < t0, x(t0)= x0. (11.3.4)

We also assume that the following hypothesis holds:

(b3) ϕ : (−∞, t0)→R is a Borel measurable bounded function.

Definition 11.3 A function x :R → R absolutely continuous in each interval [t0, b]
is called a solution of problem (11.3.3), (11.3.4) if it satisfies (11.3.3) for almost all
t ∈ [t0,∞) and equalities (11.3.4) for t ≤ t0.
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11.3.2 Nonoscillation Criteria

Together with (11.3.1), consider the differential inequalities

ẋ(t)≤ −r(t)(1 + x(t)
) m∏

k=1

x
(
hk(t)

)∣∣x
(
hk(t)

)∣∣αk−1
, t ≥ 0, (11.3.5)

ẋ(t)≥ −r(t)(1 + x(t)
) m∏

k=1

x
(
hk(t)

)∣∣x
(
hk(t)

)∣∣αk−1
, t ≥ 0. (11.3.6)

In this section, we assume that (b1)–(b3) hold and consider only such solutions of
(11.3.1), (11.3.5) and (11.3.6) for which the following condition holds:

1 + x(t) > 0. (11.3.7)

Theorem 11.14 The following statements are equivalent:

1. Either inequality (11.3.5) has an eventually positive solution or inequality
(11.3.6) has an eventually negative solution.

2. There exist t0 ≥ 0, −∞< c <∞, ϕ : (−∞, t0)→ R, either ϕ(t)≥ 0, c > 0, or
ϕ(t)≤ 0, −1< c < 0, such that the inequality

u(t)≥ r(t)

(
1 + c exp

{
−
∫ t

t0

u(s)ds

}) m∏

k=1

(Fku)(t) (11.3.8)

has a nonnegative locally integrable solution on [t0,∞), where

(Fku)(t)=
{

exp{αk
∫ t
hk(t)

u(s)ds}, hk(t)≥ t0,

1
|c|αk exp{αk

∫ t
t0
u(s)ds}|ϕ(hk(t))|αk , hk(t) < t0,

3. Equation (11.3.1) has a nonoscillatory solution.

Proof 1)⇒ 2) Let x be a solution of (11.3.5) and x(t) > 0 for t ≥ t1. Then there
exists t0 ≥ t1 such that hk(t) ≥ t1 for t ≥ t0, k = 1, · · · ,m. Denote ϕ(t) = x(t),
t < t0 and c= x(t0), c > 0.

Let u(t) = − ẋ(t)
x(t)

, t ≥ t0. For the solution x(t) of (11.3.5), we have ẋ(t) ≤ 0,
t ≥ t0, and consequently u(t)≥ 0. The solution x(t) can be rewritten in the form

x(t)=
{
c exp{− ∫ t

t0
u(s)ds}, t ≥ t0,

ϕ(t), t < t0.
(11.3.9)

After substituting x defined by (11.3.9) into inequality (11.3.5), we obtain (11.3.8).
Similarly, (11.3.8) can be obtained if x(t) < 0 is a solution of (11.3.6).
2)⇒ 3) Let u0 be a nonnegative solution of inequality (11.3.8) with ϕ(t) ≤ 0,

−1< c < 0. For the sequence {un} denoted by

un(t)= r(t)

(
1 + c exp

{
−
∫ t

t0

un−1(s)ds

}) m∏

k=1

(Fkun−1)(t), (11.3.10)
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inequality (11.3.8) implies 0 ≤ u1(t) ≤ u0(t). Since the right-hand side in (11.3.8)
is a nondecreasing operator in u, the inequalities

0 ≤ un(t)≤ un−1(t)≤ u0(t)

can be easily obtained by induction.
Thus there exists a pointwise limit of the nonincreasing nonnegative sequence

un(t). Let u(t)= limn→∞ un(t). By the Lebesgue monotone convergence theorem,
u(t) is locally integrable and

lim
n→∞(Fkun)(t)= (Fku)(t), k = 1, · · · ,m.

Thus (11.3.10) implies

u(t)= r(t)

(
1 + c exp

{
−
∫ t

t0

u(s)ds

}) m∏

k=1

(Fku)(t),

and hence the function x defined by equality (11.3.9) is an eventually negative so-
lution of (11.3.1).

The case where u0 is a nonnegative solution of inequality (11.3.8) with ϕ(t)≥ 0,
c > 0, is considered similarly to the proof of Theorem 11.1.

Implication 3)⇒ 1) is evident. �

The proof of Theorem 11.14 yields the following statement.

Corollary 11.8 If there exists an eventually positive solution of (11.3.1), then there
exists an eventually negative solution of (11.3.1).

Theorem 11.15 If there exists a nonoscillatory solution of the linear equation

ẋ(t)+ r(t)

m∑

k=1

x
(
hk(t)

)= 0, (11.3.11)

then there is a nonoscillatory solution of (11.3.1).

Proof Suppose that linear equation (11.3.11) has a nonoscillatory solution. Theo-
rem 2.1 implies that for some t0 ≥ 0 there exists a solution u(t), nonnegative locally
integrable on t ≥ t0, of the inequality

u(t)≥ r(t) exp

{
m∑

k=1

∫ t

hk(t)

u(s)ds

}
, t ≥ t0,

and hence

u(t)≥ r(t) exp

{
m∑

k=1

αk

∫ t

hk(t)

u(s)ds

}
, t ≥ t0, (11.3.12)

where the sum contains only terms for which hk(t)≥ t0.



280 11 Nonlinear Models—Modifications of Delay Logistic Equations

Then u is also a solution of the inequality

u(t)≥ r(t)

(
1 + c exp

{
−
∫ t

t0

u(s)ds

}) m∏

k=1

exp

{
αk

∫ t

hk(t)

u(s)ds

}

for any −1 < c < 0. The implication 2)⇒ 3) in Theorem 11.14 implies the state-
ment of the theorem if we assume ϕ ≡ 0. �

Corollary 11.9 If

lim sup
t→∞

∫ t

mink hk(t)
r(s)ds <

1

e
,

then (11.3.1) has a nonoscillatory solution.

Proof The proof follows from Theorems 11.15 and 2.7. �

Theorem 11.16 If for some ε > 0 all solutions of the linear equation

ẋ(t)+ (1 − ε)r(t)

m∑

k=1

αkx
(
hk(t)

)= 0 (11.3.13)

are oscillatory, then all solutions of (11.3.1) are also oscillatory.

Proof If there exists a nonoscillatory solution of (11.3.1), then for some t0 by The-
orem 11.14 there is a nonnegative solution u of inequality (11.3.8) for c >−1. We
can assume that ϕ ≡ 0. There exists t1 ≥ t0 such that hk(t)≥ t0, t ≥ t1, k = 1, · · · ,m.

We have u(t)≥ min{1,1 + c}r(t), t ≥ t1. Let
∫∞

0 r(s)ds <∞. Then, by Corol-
lary 2.6, (11.3.1) has a nonoscillatory solution, which contradicts the theorem as-
sumption.

Thus
∫∞

0 r(s)ds = ∞, and so
∫∞

0 u(s)ds = ∞. Hence there exist t2 ≥ t0 and
ε > 0 such that

1 + c exp

{
−
∫ t

t0

u(s)ds

}
> 1 − ε, t ≥ t2,

which implies

u(t)≥ (1 − ε)r(t)

m∑

k=1

exp

{
αk

∫ t

hk(t)

u(s)ds

}
, t ≥ t2.

Theorem 2.1 yields that (11.3.13) has a nonoscillatory solution, which leads to a
contradiction. �

Corollary 11.10 If

lim inf
t→∞

∫ t

maxk hk(t)
r(s)ds >

1

e
,

then all solutions of (11.3.1) are oscillatory.
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11.3.3 Multiplicative Logistic Equation—Main Results

In this section, we consider the equation

ẏ(t)= r(t)y(t)

m∏

k=1

(
1 − y(hk(t))

K

)∣∣∣∣1 − y(hk(t))

K

∣∣∣∣
αk−1

(11.3.14)

with the unique positive equilibrium K and also the differential inequalities

ẏ(t)≥ r(t)y(t)

m∏

k=1

(
1 − y(hk(t))

K

)∣∣∣∣1 − y(hk(t))

K

∣∣∣∣
αk−1

, (11.3.15)

ẏ(t)≤ r(t)y(t)

m∏

k=1

(
1 − y(hk(t))

K

)∣∣∣∣1 − y(hk(t))

K

∣∣∣∣
αk−1

, (11.3.16)

where rk , hk , αk satisfy conditions (b1) and (b2), K > 0. Equation (11.3.14) will be
considered with the initial condition

y(t)=ψ(t), t < t0, y(t0)= y0, (11.3.17)

where the initial function ψ satisfies (b3).
In this section, we assume that an additional condition,

(b4) y0 > 0, ψ(t)≥ 0, t < t0,

holds. By Theorem B.17, there exists a unique positive solution of (11.3.14),
(11.3.17).

Definition 11.4 A positive solution y of (11.3.14), (11.3.17) is oscillatory about K
if there exists a sequence tn, tn → ∞, such that y(tn)−K = 0, n = 1,2, · · · ; y is
nonoscillatory about K if there exists T ≥ t0 such that |y(t)−K|> 0 for t ≥ T .

Let y be a positive solution of (11.3.14) and define x as x = y
K

− 1. Then x is a
solution of (11.3.1) such that 1 + x > 0. Hence oscillation (or nonoscillation) of y
about K is equivalent to oscillation (nonoscillation) of x.

The same equivalence connects the pairs of differential inequalities (11.3.5),
(11.3.15) and (11.3.6), (11.3.16), respectively.

By applying Theorems 11.14–11.16, we obtain the following results for
(11.3.14).

Theorem 11.17 The following statements are equivalent:

1. Either inequality (11.3.15) has a solution eventually greater thanK or inequality
(11.3.16) has a solution eventually less than K .

2. There exist t0 ≥ 0, ϕ : (−∞, t0)→ R, either ϕ(t) ≥ 0, c > 0 or ϕ(t) ≤ 0, 1 <
c < 0, such that inequality (11.3.8) has a nonnegative solution locally integrable
on [t0,∞).

3. Equation (11.3.14) has a solution nonoscillatory about K .
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Corollary 11.11 Suppose that for functions p(t) and gk(t) conditions (b1) and (b2)
hold.

If p(t) ≤ r(t), gk(t) ≥ hk(t) and (11.3.14) has a solution nonoscillatory
about K , then the equation

ẏ(t)= p(t)y(t)

m∏

k=1

(
1 − y(gk(t))

K

)∣∣∣∣1 − y(gk(t))

K

∣∣∣∣
αk−1

(11.3.18)

has a solution nonoscillatory about K .
If p(t) ≥ r(t), gk(t) ≤ hk(t) and all solutions of (11.3.14) are oscillatory

about K , then all the solutions of (11.3.18) are also oscillatory about K .

Proof Let p(t) ≤ r(t), gk(t) ≥ hk(t), and suppose that (11.3.14) has a solution
nonoscillatory about K . Theorem 11.14 implies that inequality (11.3.8) has a non-
negative solution u, and u is also a nonnegative solution of the inequality (11.3.8),
where r and hk are replaced by p and gk , respectively. Hence, again by Theo-
rem 11.14, (11.3.18) has a nonoscillatory solution.

The second assertion of the theorem is a consequence of the first one. �

Theorem 11.18 If there exists a nonoscillatory solution of linear equation
(11.3.11), then there exists a solution of (11.3.14) nonoscillatory about K .

Corollary 11.12 If

lim sup
t→∞

∫ t

mink hk(t)
r(s)ds <

1

e
,

then (11.3.14) has a solution nonoscillatory about K .

Theorem 11.19 If for some ε > 0 all solutions of linear equation (11.3.13) are
oscillatory, then all solutions of (11.3.14) are oscillatory about K .

Corollary 11.13 If

lim inf
t→∞

∫ t

maxk hk(t)
r(s)ds >

1

e
,

then all the solutions of (11.3.14) are oscillatory about K .

11.4 Discussion and Open Problems

All the results of this chapter are obtained under the assumption that coefficients,
delays and initial functions are arbitrarily measurable, and not necessarily contin-
uous, functions. It is important to avoid a usual constraint that the parameters are
continuous since in many interesting applications they are not continuous. In addi-
tion, in [193] the authors proved that oscillation properties of a difference equation
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can be derived from oscillation properties of some delay differential equation with
discontinuous delays. In Chap. 12, it will be shown that we can study oscillation
of nonimpulsive delay equations with discontinuous coefficients rather than oscilla-
tion of an impulsive delay equation. We also note here the paper [175], where the
parameters of the logistic equation were not assumed to be continuous functions.

Some other nonoscillation results for nonlinear delay differential equations can
be found in [294]. The results of this chapter were published in the papers [47, 49].

Finally, let us present some open problems and topics for research and discus-
sion.

1. Find necessary and/or sufficient oscillation conditions for (11.1.3) in the case
where all or some of αk > 1.

2. Prove or disprove the inverse statement to Corollary 11.2: existence of an even-
tually negative solution implies existence of an eventually positive solution.

3. Consider the following generalizations of the logistic equation with concentrated
delays:

• the integrodifferential equations

ẏ(t)= y(t)

m∑

k=1

∫ t

hk(t)

Mk(t, s)

(
1 − y(s)

K

)∣∣∣∣1 − y(s)

K

∣∣∣∣
αk−1

ds;

• equations of a mixed type containing terms with a concentrated delay and also
integral terms;

• the equations with a distributed delay

ẏ(t)= y(t)

m∑

k=1

∫ t

−∞

(
1 − y(s)

K

)∣∣∣∣1 − y(s)

K

∣∣∣∣
αk−1

dsRk(t, s).

4. Consider the following multiplicative delay logistic equations:

• the integrodifferential equations

ẏ(t)= y(t)

∫ t

−∞

m∏

k=1

Lk(t, s)

(
1 − y(s)

K

)∣∣∣∣1 − y(s)

K

∣∣∣∣
αk−1

ds,

ẏ(t)= y(t)

m∏

k=1

∫ t

hk(t)

Lk(t, s)

(
1 − y(s)

K

)∣∣∣∣1 − y(s)

K

∣∣∣∣
αk−1

ds;

• equations of a mixed type containing concentrated delay terms and integral
terms;

• the equations with a distributed delay

ẏ(t)= y(t)

∫ t

−∞

m∏

k=1

(
1 − y(s)

K

)∣∣∣∣1 − y(s)

K

∣∣∣∣
αk−1

dsRk(t, s),

ẏ(t)= y(t)

m∏

k=1

∫ t

hk(t)

(
1 − y(s)

K

)∣∣∣∣1 − y(s)

K

∣∣∣∣
αk−1

dsRk(t, s).
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5. Prove or disprove:
If rk(t)≥ r0 > 0, then any solution of (11.2.21) nonoscillatory about K tends

to K .
6. Prove or disprove:

If rk(t)≥ r0 > 0, then any solution of (11.3.14) nonoscillatory about K tends
to K .

7. Consider oscillation and nonoscillation properties of (11.2.21) with positive and
negative coefficients rk(t) and with oscillatory coefficients.

8. Consider oscillation and nonoscillation properties of (11.3.14) without the as-
sumption that

∑m
k=1 αk = 1.



Chapter 12
First-Order Linear Delay Impulsive
Differential Equations

12.1 Introduction

The theory of impulsive differential equations goes back to the paper of Milman and
Myshkis [287], which appeared in 1960. In 30 years, the results on oscillation of
delay differential equations took the shape of a developed theory; see, for example,
[154, 167, 249]. At the same time, it is an intensively developing field that is an
object of numerous publications. However, for impulsive differential equations there
were relatively few publications dealing with oscillation problems that appeared
before 2000 [40, 126, 169, 353]; for a review of recent results on oscillation and
nonoscillation of impulsive delay differential equations, see [11].

The main result of this chapter is that oscillation (nonoscillation) of the impulsive
delay differential equation is equivalent to oscillation (nonoscillation) of a certain
differential equation without impulses that can be constructed explicitly from an im-
pulsive equation. Thus, oscillation problems (in particular, oscillation and nonoscil-
lation criteria) for an impulsive equation can be reduced to the similar problem for
a certain nonimpulsive equation.

The chapter contains the following results. Theorems 12.2 and 12.3 are con-
cerned with the equivalence of nonoscillation, positivity of a fundamental function
and existence of a positive solution for a certain inequality. They lead to explicit
nonoscillation results (Theorem 12.4). Theorem 12.5 compares nonoscillation con-
ditions for two different impulsive delay differential equations. Theorem 12.6 con-
tains the main result of the chapter connecting oscillation of an impulsive and a
nonimpulsive equation. As a corollary (Theorem 12.7), we obtain explicit oscilla-
tion conditions for an impulsive delay differential equation. Theorems 12.8–12.10
establish the relation between nonoscillation of an impulsive equation with a dis-
tributed delay and a specially constructed nonimpulsive equation.

The chapter is organized as follows. Section 12.2 contains some definitions and
the solution representation formula. Section 12.3 includes results on the relation be-
tween nonoscillation, positivity of the fundamental function and existence of a posi-
tive solution for an integral inequality. Section 12.4 involves comparison results and
explicit nonoscillation conditions. Section 12.5 presents the main result of this chap-
ter, which establishes the relation of nonoscillation properties for a linear impulsive

R.P. Agarwal et al., Nonoscillation Theory of Functional Differential Equations
with Applications, DOI 10.1007/978-1-4614-3455-9_12,
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equation and some specially constructed nonimpulsive equation. Section 12.6 con-
siders oscillation of a linear impulsive equation with a distributed delay. Finally,
Sect. 12.7 presents a discussion and states some open problems.

12.2 Preliminaries

We consider the scalar delay differential equation

ẋ(t)+
m∑

k=1

Ak(t)x
(
hk(t)

)= 0, t ≥ 0 (12.2.1)

with the linear impulsive conditions

x
(
τ+
j

)= Bjx(τj ), j = 1,2, · · · , (12.2.2)

where x(τ+
j )= limt→τ+

j
x(t), under the following assumptions:

(a1) 0 = τ0 < τ1 < τ2 < · · · are fixed points, limj→∞ τj = ∞.
(a2) Ak , k = 1, · · · ,m are Lebesgue measurable functions essentially bounded in

each finite interval [0, b], Bj ∈R, j ∈N.
(a3) hk : [0,∞) → R are Lebesgue measurable functions, hk(t) ≤ t ,

limt→∞ hk(t)= ∞.

Together with (12.2.1), (12.2.2), we will consider for each t0 ≥ 0 the initial value
problem

ẋ(t)+
m∑

k=1

Ak(t)x
(
hk(t)

)= f (t), t ≥ t0, (12.2.3)

x
(
τ+
j

)= Bjx(τj )+ αj , τj > t0, (12.2.4)

x(t0)= x0, x(ξ)= ϕ(ξ), ξ < t0. (12.2.5)

We assume that for the initial function ϕ the following hypothesis holds:

(a4) f are Lebesgue measurable functions essentially bounded in each finite in-
terval [0, b], αj ∈ R and ϕ : (−∞, t0) → R is a Borel measurable bounded
function.

Definition 12.1 A function x : [t0,∞)→ R that is absolutely continuous on each
interval (τj , τj+1], j = 0,1,2, · · · is a solution of impulsive problem (12.2.3)–
(12.2.5) if (12.2.3) is satisfied for almost all t ∈ [0,∞) and condition (12.2.5) for
t ≤ t0 and the equalities (12.2.4) hold.

Definition 12.2 For each s ≥ 0, the solution X(t, s) of the problem

ẋ(t)+
m∑

k=1

Ak(t)x
(
hk(t)

)= 0, t ≥ s; x(ξ)= 0, ξ < s,

x
(
τ+
j

)= Bjx(τj ), τj > s, x(s)= 1,

(12.2.6)
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is the fundamental function of equation (12.2.1), (12.2.2). We assume that
X(t, s)= 0 for 0 ≤ t < s.

The following theorem is the scalar version of Theorem B.18.

Theorem 12.1 Let (a1)–(a4) hold. Then there exists one and only one solution of
problem (12.2.3)–(12.2.5), and it can be presented in the form

x(t)=X(t, t0)x(t0)+
∫ t

t0

X(t, s)f (s)ds

−
m∑

k=1

∫ t

t0

X(t, s)Ak(s)ϕ
(
hk(s)

)
ds +

∑

t0<τj≤t
X(t, τj )αj , (12.2.7)

where ϕ(hk(s))= 0, if hk(s) > t0.

12.3 Nonoscillation Criteria for Impulsive Equations

Definition 12.3 Impulsive equation (12.2.1), (12.2.2) has a nonoscillatory solution
if there exist t0 > 0 and ϕ(t) such that the solution of (12.2.3)–(12.2.5) with f ≡
0, αj = 0 is positive for t ≥ t0. Otherwise, all solutions of (12.2.1), (12.2.2) are
oscillatory.

Denote for any s

Ask(t)=
{
Ak(t) if t ≥ s,

0 if t < s,

hsk(t)=
{
hk(t) if t ≥ s,

s if t < s.

(12.3.1)

Everywhere we assume that a product equals one if the number of factors is equal
to zero.

The following theorem establishes nonoscillation criteria.

Theorem 12.2 Suppose (a1)–(a4) hold, Ak(t) ≥ 0, k = 1, · · · ,m and Bj > 0,
j ∈N. Then the following hypotheses are equivalent:

1) Equation (12.2.1), (12.2.2) has a nonoscillatory solution.
2) There exist t1 ≥ 0 and a nonnegative locally essentially bounded solution u of

the inequality

u(t)≥
m∑

k=1

A
t1
k (t) exp

{∫ t

h
t1
k (t)

u(s)ds

} ∏

h
t1
k (t)≤τj<t

B−1
j , t ≥ t1. (12.3.2)

3) There exists t1 ≥ 0 such that X(t, s) > 0, t1 ≤ s < t <∞.
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Proof The scheme of the proof is 1)⇒ 2)⇒ 3)⇒ 1).
1) ⇒ 2) Let x(t) be a positive solution of (12.2.3)–(12.2.5), where f ≡ 0,

αj = 0. By (a3), for a certain t1 ≥ t0, we have hk(t) > t0, t ≥ t1, k = 1, · · · ,m.
Let us demonstrate that

u(t)= − d

dt
ln

{
x(t)

x(t1)

∏

t1≤τj<t
B−1
j

}
, t ≥ t1

is a solution of (12.3.2). To this end, we integrate the equality

x(t)= x(t1) exp

{
−
∫ t

t1

u(s)ds

} ∏

t1≤τj<t
Bj , t ≥ t1 (12.3.3)

and set ϕ(t) = x(t) for t < t1. Then x(t), t ≥ t1 is a solution of (12.2.3)–(12.2.5)
with the initial point t = t1 and the initial function ϕ(t) > 0. We substitute (12.3.3)
in (12.2.3) with f ≡ 0, αj = 0,

−u(t) exp

{
−
∫ t

t1

u(s)ds

} ∏

t1≤τj<t
Bj

+
∑

k∈N1

Ak(t) exp

{
−
∫ hk(t)

t1

u(s)ds

} ∏

t1≤τj<hk(t)
Bj

+
∑

k∈N2

Ak(t)ϕ
(
hk(t)

)= 0, t ≥ t1, (12.3.4)

where N1 = {k | hk(t)≥ t1}, N2 = {k | hk(t) < t1}.
Using notation in (12.3.1), the equality (12.3.4) can be rewritten in the form

−u(t) exp

{
−
∫ t

t1

u(s)ds

} ∏

t1≤τj<t
Bj

+
m∑

k=1

A
t1
k (t) exp

{
−
∫ h

t1
k (t)

t1

u(s)ds

} ∏

t1≤τj<ht1k (t)
Bj

+
∑

k∈N2

Ak(t)ϕ
(
hk(t)

)= 0, t ≥ t1.

Consequently,
(
u(t)−

m∑

k=1

A
t1
k (t) exp

{∫ t

h
t1
k (t)

u(s)ds

} ∏

h
t1
k (t)≤τj<t

B−1
j

)

× exp

{
−
∫ t

t1

u(s)ds

} ∏

t1≤τj<t
Bj =

∑

k∈N2

Ak(t)ϕ
(
hk(t)

)≥ 0

since ϕ(t) is nonnegative according to our choice of the point t1, which implies 3).
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2)⇒ 3) Consider (12.2.3)–(12.2.5) with the initial point t1, the initial function
ϕ ≡ 0, αj = 0 and initial value x(t1)= 0 on the segment [t1, b]:

ẋ(t)+
m∑

k=1

Ak(t)x
(
hk(t)

)= f (t), t ∈ [t1, b], x(ξ)= 0, ξ < t1,

x(t1)= 0, x
(
τ+
j

)= Bjx(τj ), τj ≥ t1.

(12.3.5)

Besides, we consider the ordinary impulsive differential equation including the
solution u(t)≥ 0 of (12.3.2) as a coefficient:

ẋ(t)+ u(t)x(t)= z(t), t ∈ [t1, b], x
(
τ+
j

)= Bjx(τj ), x(t1)= 0. (12.3.6)

Direct calculations yield that the solution of (12.3.6) has the form

x(t)=
∫ t

t1

exp

{
−
∫ t

s

u(ξ)dξ

} ∏

s≤τj<t
Bj z(s)ds. (12.3.7)

We seek the solution of problem (12.3.5) in the form (12.3.7). By substituting x
and ẋ from (12.3.7) and (12.3.6) into (12.3.5), we obtain

z(t)− u(t)

∫ t

t1

exp

{
−
∫ t

s

u(ξ)dξ

} ∏

s≤τj<t
Bj z(s)ds

+
m∑

k=1

A
t1
k (t)

∫ h
t1
k (t)

t1

exp

{
−
∫ h

t1
k (t)

s

u(ξ)dξ

} ∏

s≤τj<ht1k (t)
Bj z(s)ds = f (t).

(12.3.8)

Equation (12.3.8) is of the type

z−Hz= f, (12.3.9)

where

(Hz)(t)= u(t)

∫ t

t1

exp

{
−
∫ t

s

u(ξ)dξ

} ∏

s≤τj<t
Bj z(s)ds

−
m∑

k=1

A
t1
k (t)

∫ h
t1
k (t)

t1

exp

{
−
∫ h

t1
k (t)

s

u(ξ)dξ

} ∏

s≤τj<ht1k (t)
Bj z(s)ds

=
∫ t

t1

[
u(t) exp

{
−
∫ t

s

u(ξ)dξ

} ∏

s≤τj<t
Bj −

m∑

k=1

(
A
t1
k (t)

× exp

{
−
∫ h

t1
k (t)

s

u(ξ)dξ

} ∏

s≤τj<ht1k (t)
Bj

)
χ[t1,ht1k (t)](s)

]
z(s) ds.

For the kernel K(t, s) of the operator H defined above, we have

∣∣K(t, s)
∣∣≤ sup

s,t∈[t1,b]

∏

s≤τj<t
max{Bj ,1}

(
u(t)+

m∑

k=1

∣∣Ak(t)
∣∣
)
.
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Hence the kernel of H is bounded on the set [t1, b] × [t1, b]. By Theorem A.4, the
operator H : L∞[t1, b] → L∞[t1, b] is a weakly compact Volterra integral opera-
tor. Therefore, by Theorem A.7, its spectral radius is equal to zero. Consequently,
(12.3.9) for any f ∈ L∞[t1, b] has one and only one solution,

z= (I −H)−1f, (12.3.10)

where I is the identity operator.
Let us demonstrate thatH is a positive operator. The operatorH can be rewritten

as a sum H =H1 +H2, where

(H1z)(t)=
(
u(t)−

m∑

k=1

A
t1
k (t) exp

{∫ t

h
t1
k (t)

u(s)ds

} ∏

h
t1
k (t)≤τj<t

B−1
j

)

×
∫ t

t1

exp

{
−
∫ t

s

u(ξ)dξ

} ∏

s≤τj<t
Bj z(s)ds,

(H2z)(t)=
m∑

k=1

A
t1
k (t)

∫ t

h
t1
k (t)

exp

{
−
∫ h

t1
k (t)

s

u(ξ)dξ

} ∏

s≤τj<ht1k (t)
Bj z(s)ds,

where H2 is obviously positive, and inequality (12.3.2) implies H1 ≥ 0, so H =
H1 +H2 ≥ 0. Since the spectral radius of H is equal to zero, we have (I −H)−1 =
I +H +H 2 +· · · ≥ 0. Thus, if f ≥ 0, then the solution z of (12.3.9) is nonnegative:
z ≥ 0. The solution of (12.3.5) has the form (12.3.7), where z is the solution of
(12.3.9). Consequently, f ≥ 0 in (12.3.5) implies f ≥ 0 for the solution of (12.3.5).
On the other hand, the solution of problem (12.3.5) can be presented in the form
(12.2.7)

x(t)=
∫ t

t1

X(t, s)f (s)ds. (12.3.11)

As was shown above, f ≥ 0 implies x ≥ 0, and therefore the kernel of the integral
operator is nonnegative (i.e., X(t, s)≥ 0 for t1 ≤ s ≤ t < b). Since b > t1 is chosen
arbitrarily, X(t, s)≥ 0 for t1 ≤ s < t <∞.

Let us prove that in fact the strict inequality X(t, s) > 0 holds. Denote

x(t)=X(t, t1)− exp

{
−
∫ t

t1

u(s)ds

} ∏

t1≤τj<t
Bj .

Our purpose is to demonstrate that x(t) is nonnegative. The function x(t) is a solu-
tion of (12.2.3)–(12.2.5) with x(t1)= 0, ϕ ≡ 0 and

f (t)= u(t) exp

{
−
∫ t

t1

u(s)ds

} ∏

t1≤τj<t
Bj

−
m∑

k=1

A
t1
k (t) exp

{
−
∫ h

t1
k (t)

t1

u(s)ds

} ∏

t1≤τj<ht1k (t)
Bj
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= exp

{
−
∫ t

t1

u(s)ds

} ∏

t1≤τj<t
Bj

×
(
u(t)−

m∑

k=1

A
t1
k (t) exp

{∫ t

h
t1
k (t)

u(s)ds

} ∏

h
t1
k (t)≤τj<t

B−1
j

)
.

Thus (12.3.2) implies f (t)≥ 0, and therefore in view of (12.2.7) we have

x(t)=
∫ t

t1

X(t, s)f (s)ds ≥ 0

and consequently

X(t, t1)≥ exp

{
−
∫ t

t1

u(s)ds

} ∏

t1≤τj<t
Bj > 0.

For s > t1, the inequality X(t, s) > 0 can be proven similarly.
3) ⇒ 1) Denote x(t) = X(t, t1). Then x(t) is a positive solution of (12.2.3)–

(12.2.5) with f ≡ 0, αj = 0 and the initial function ϕ ≡ 0, which completes the
proof. �

Let us consider (12.2.1), (12.2.2) with coefficients of an arbitrary sign. Denote

a+ = max{a,0}, a− = max{−a,0}.

Theorem 12.3 Suppose (a1)–(a4) hold and Bj > 0.
Consider the following three hypotheses:

1) The initial value problem (12.2.3)–(12.2.5) with the initial point t0 > 0 (f ≡ 0,
αj = 0) has a positive solution.

2) There exists a solution nonnegative integrable on each interval [t0, b], of the
inequality

u(t)≥
m∑

k=1

(
A
t0
k (t)

)+
exp

{∫ t

h
t0
k (t)

u(s)ds

} ∏

h
t0
k (t)≤τj<t

B−1
j , t ≥ t0. (12.3.12)

3) X(t, s) > 0, t0 ≤ s < t <∞.

Then the implications 2)⇒ 3) and 2)⇒ 1) are valid.

Proof The proof of 2)⇒ 3) coincides with the proof of 2)⇒ 3) in Theorem 12.2
up to the place where the operator H is presented as a sum of two terms. Here we
present it as a sum of three terms H =H1 +H2 +H3, where

(H1z)(t)=
(
u(t)−

m∑

k=1

(
A
t0
k (t)

)+ exp

{∫ t

h
t0
k (t)

u(s)ds

} ∏

h
t0
k (t)≤τj<t

B−1
j

)

×
∫ t

t0

exp

{
−
∫ t

s

u(ξ)dξ

} ∏

s≤τj<t
Bj z(s)ds,
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(H2z)(t)=
m∑

k=1

(
A
t0
k (t)

)+
∫ t

h
t0
k (t)

exp

{
−
∫ h

t0
k (t)

s

u(ξ)dξ

} ∏

s≤τj<ht0k (t)
Bj z(s)ds,

(H3z)(t)=
m∑

k=1

(
A
t0
k (t)

)−
∫ h

t0
k (t)

t0

exp

{
−
∫ h

t0
k (t)

s

u(ξ)dξ

} ∏

s≤τj<ht0k (t)
Bj z(s)ds.

Again, as in Theorem 12.2,H1 ≥ 0,H2 ≥ 0,H3 ≥ 0, which impliesH =H1 +H2 +
H3 ≥ 0. The end of the proof coincides with that of Theorem 12.2.

Implication 2)⇒ 1) is evident. �

12.4 Explicit Nonoscillation Tests and Comparison Theorems

Now we proceed to explicit nonoscillation results. Denote

ht0(t)= min
k
h
t0
k (t),

where hsk(t) are defined by (12.3.1).

Theorem 12.4 Suppose (a1)–(a4) hold, Bj > 0 and at least one of the following
three hypotheses holds:

1) Ak(t)≤ 0, t ≥ t0.

2)
m∑

k=1

∫ t

ht0 (t)

(
A
t0
k (s)

)+ ∏

h
t0
k (s)≤τj<s

B−1
j z(s)ds ≤ 1

e
, t ≥ t0. (12.4.1)

3)
m∑

k=1

∫ t

ht0 (t)

(
A
t0
k (s)

)+
ds ≤ 1/e

(
1 +

∑

ht0 (t)≤τj<t, Bj<1

lnBj

)
, t ≥ t0. (12.4.2)

Then the fundamental matrix X(t, s) is positive for t0 ≤ s < t and there exists a
positive solution of (12.2.3)–(12.2.5) with f ≡ 0, αj = 0.

Proof Obviously 1) is a special case of 2). Let us prove the theorem assuming that
(12.4) holds. To this end, we will demonstrate that the function

u(t)= e

m∑

k=1

(
A
t0
k (t)

)+ ∏

h
t0
k (t)≤τj<t

B−1
j

is a nonnegative solution of inequality (12.3.12).



12.4 Explicit Nonoscillation Tests and Comparison Theorems 293

After substituting u(t) into (12.3.12), we obtain

e

m∑

k=1

(
A
t0
k (t)

)+ ∏

h
t0
k (t)≤τj<t

B−1
j

≥
m∑

k=1

(
A
t0
k (t)

)+ exp

{
e

∫ t

h
t0
k (t)

m∑

i=1

(
A
t0
i (s)

)+ ∏

h
t0
i (s)≤τj<s

B−1
j ds

}
∏

h
t0
k (t)≤τj<t

B−1
j ,

which can be deduced from the inequality

e

m∑

k=1

(
A
t0
k (t)

)+ ∏

h
t0
k (t)≤τj<t

B−1
j

≥ exp

{
e

∫ t

ht0 (t)

m∑

k=1

(
A
t0
k (s)

)+ ∏

h
t0
k (s)≤τj<s

B−1
j ds

}
m∑

k=1

(
A
t0
k (t)

)+ ∏

h
t0
k (t)≤τj<t

B−1
j .

After dividing this inequality by its left-hand side and taking the logarithm of both
sides, we obtain

m∑

k=1

∫ t

ht0 (t)

(
A
t0
k (s)

)+ ∏

h
t0
k (s)≤τj<s

B−1
j z(s)ds ≤ 1

e
,

which obviously follows from (12.4).
Further, let 3) hold. We will prove that u(t)= e

∑m
k=1(A

t0
k (t))

+ is a solution of
(12.3.12), which after substituting u takes the form

e

m∑

k=1

(
A
t0
k (t)

)+

≥
m∑

k=1

(
A
t0
k (t)

)+ exp

{
e

∫ t

h
t0
k (t)

m∑

i=1

(
A
t0
i (s)

)+
ds

}
∏

h
t0
k (t)≤τj<t

B−1
j .

This inequality can be deduced from

e

m∑

k=1

(
A
t0
k (t)

)+

≥
m∑

k=1

(
A
t0
k (t)

)+ exp

{
e

∫ t

ht0 (t)

m∑

k=1

(
A
t0
k (s)

)+
ds

}
∏

ht0 (t)≤τj<t
B−1
j ,

where the product contains only the factors for which Bj < 1. The latter inequality,
after dividing by the left-hand side and taking the logarithm of both sides, coincides
with (12.4.2), which completes the proof of the theorem. �
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Let us compare oscillation properties of (12.2.1), (12.2.2) and the equation

ẋ(t)+
m∑

k=1

Ãk(t)x
(
h̃k(t)

)= 0, t ∈ [0,∞),

x
(
τ+
j

)= B̃j x(τj ).

(12.4.3)

Theorem 12.5 Let the hypotheses (a1)–(a4) hold for (12.2.1), (12.2.2) and (12.4.3).
Suppose that any (therefore all) of the hypotheses 1)–3) of Theorem 12.2 holds for
(12.2.1), (12.2.2).

If Ak(t)≥ Ãk(t)≥ 0, B̃j ≥ Bj > 0 and at least one of the hypotheses

1) hk(t)≤ h̃k(t), B̃j ≤ 1, j = 1,2, · · · ,
2) hk(t)= h̃k(t),

holds, then for (12.4.3) assertions 1)–3) of Theorem 12.2 are valid.

Proof By the hypothesis of this theorem, there exists a nonnegative function u(t)
satisfying (12.3.2). Besides, for any nonnegative function u, under this hypotheses
of this theorem the inequality

m∑

k=1

Ak(t) exp

{∫ t

hk(t)

u(s)ds

} ∏

hk(t)≤τj<t
B−1
j

≥
m∑

k=1

Ãk(t) exp

{∫ t

h̃k(t)

u(s)ds

} ∏

h̃k(t)≤τj<t
B̃−1
j

holds. Consequently, if u is a solution of the inequality (12.3.2), then u is also a
solution of this inequality, where Ak , hk , Bj are changed by Ãk , h̃k , B̃j . Thus, by
Theorem 12.2, the other assertions of this theorem also hold. �

Corollary 12.1 Suppose that (a1)–(a4) hold for (12.2.1), (12.2.2) and Bj > 0. Be-
sides, let 0 ≤Ak(t)≤Ak , t − hk(t)≤ hk , Bj ≤ 1.

If there exists a nonoscillatory solution of the impulsive equation

ẋ(t)+
m∑

k=1

Akx(t − hk)= 0, t ∈ [0,∞), x
(
τ+
j

)= Bjx(τj ),

then (12.2.1), (12.2.2) also has a nonoscillatory solution.

Corollary 12.2 Let (a1)–(a4) hold and Ak(t) ≥ 0. If there exists a nonoscillatory
solution of (12.2.1) without impulses and Bj ≥ 1, then there exists a nonoscillatory
solution of impulsive equation (12.2.1), (12.2.2).
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12.5 Reduction to Equations Without Impulses

In this section, we present a fundamental result that enables us to reduce the oscil-
lation problem for (12.2.1), (12.2.2) to oscillation of an equation without impulses.

Consider the auxiliary equation

ẋ(t)+
m∑

k=1

Ak(t)
∏

h0
k(t)≤τj<t

B−1
j x
(
hk(t)

)= 0, t ∈ [0,∞), h0
k(t)=

{
hk(t) if t ≥ 0,

0 if t < 0.

(12.5.1)

Denote by Y(t, s) the fundamental function of (12.5.1).

Theorem 12.6 Suppose (a1)–(a4) hold and Ak(t)≥ 0, Bj > 0. Then:

1) There exists t0 > 0 such that X(t, s) > 0, t0 ≤ s < t < ∞ if and only if there
exists t1 > 0 such that Y(t, s) > 0, t1 ≤ s < t <∞.

2) All solutions of (12.2.1), (12.2.2) are oscillatory if and only if all solutions of
(12.5.1) are oscillatory.

3) There exists a nonoscillatory solution of (12.2.1), (12.2.2) if and only if (12.5.1)
has a nonoscillatory solution.

Proof 1) Let X(t, s) > 0, t0 ≤ s < t <∞. Then, by Theorem 12.2, there exists a
solution of inequality (12.3.1) for t ≥ t1. This inequality coincides with (2.3.2) if we
assume

ak(t)=Ak(t)
∏

h0
k(t)≤τj<t

B−1
j .

Therefore, by Theorem 2.1, we have Y(t, s) > 0, t1 ≤ s < t <∞. The inverse result
can be proven similarly.

2) Suppose all solutions of (12.2.1), (12.2.2) are oscillatory and (12.5.1) has
a positive solution for t ≥ t0 for a certain t0. By Theorem 2.1, the fundamental
function is positive: Y(t, s) > 0, t1 ≤ s < t <∞. Then, as was proven in part 1),
X(t, s) > 0 for t2 ≤ s < t <∞. Consequently, by Theorem 12.2, (12.2.1), (12.2.2)
has a nonoscillatory solution, which contradicts the assumption. The inverse claim
is proven similarly.

Besides, 2) implies 3), which completes the proof. �

Application of Theorem 12.6 and known oscillation (nonoscillation) results for
equations without impulses leads to oscillation results for impulsive equations. As
an example, we present the following statement. Denote

h(t)= min
k
hk(t), h̄(t)= max

k
hk(t).

Theorem 12.7 Let (a1)–(a4) hold for (12.2.1), (12.2.2), Ak(t) ≥ 0 and Bj > 0. If
at least one of the following inequalities holds,
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1)

lim inf
t→∞

∫ t

h(t)

m∑

k=1

Ak(s)
∏

hk(s)≤τj<s
B−1
j ds >

1

e
,

2) hk are nondecreasing functions and

lim sup
t→∞

∫ t

h̄(t)

m∑

k=1

Ak(s)
∏

hk(s)≤τj<s
B−1
j ds > 1,

then all the solutions of (12.2.1), (12.2.2) are oscillatory.

This statement is obtained by applying Theorem 12.6 and Lemma 2.2.

Remark 12.1 In Theorem 12.6, we can omit the condition Ak(t) ≥ 0. In fact, if
x(t) is a solution of (12.2.1), (12.2.2), then y(t) = x(t)

∏
0≤τj<t B

−1
j is a solution

of (12.5.1) with a suitable initial function. We omit the details of the proof of this
statement.

12.6 Impulsive Equations with a Distributed Delay

Consider the linear delay impulsive equation

ẏ(t)+
∫ t

−∞
y(s) dsR(t, s)= 0, t > t0 (12.6.1)

with the initial function

y(t)= ϕ(t), t < t0 (12.6.2)

and the impulsive conditions

y
(
τ+
j

)= Bjy(τj ), j ∈ N (12.6.3)

under some of the following assumptions:

(b1) R(t, ·) is a left continuous function of bounded variation, and for each s its
variation on the segment [t0, s]

P(t, s)= Varτ∈[t0,s]R(t, τ ) (12.6.4)

is a locally integrable function in t .
(b2) R(t, s)=R(t, t+), t ≤ s, and there exist M > 0, λ > 0 such that

∫ t

s

∣∣dτR(t, τ )
∣∣≤Me−λ(t−s).

(b3) For each t1, there exists s1 = s(t1)≤ t1 such that R(t, s)= 0 for s < s1, t > t1
and limt→∞ s(t)= ∞.

(b4) ϕ : (−∞, t0)→R is a continuous bounded function.
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(b5) t0 < τ1 < τ2 < · · ·< τk < · · · satisfy limj→∞ τj = ∞.
(b6) Bj > 0, j = 1,2, · · · .

Definition 12.4 A function absolutely continuous on every interval (τj , τj+1] is a
solution of (12.6.1)–(12.6.3) if it satisfies (12.6.1) almost everywhere for t > t0,
initial condition (12.6.2) for t < t0 and also impulsive conditions (12.6.3).

We assume that the solution is a left continuous function. Equation (12.6.1) in-
cludes equations with nonconstant delays, integrodifferential equations and equa-
tions with both integral and concentrated delay terms as special cases; for a detailed
discussion, see Chap. 4.

Together with impulsive equation (12.6.1), (12.6.3), consider the equation with-
out impulses

ẋ(t)+
∫ t

−∞
x(s) dsT (t, s)= 0, t > t0, (12.6.5)

where

T (t, s)=
∏

s≤τj<t
B−1
j R(t, s). (12.6.6)

Theorem 12.8 Suppose (b1)–(b6) hold. Then impulsive equation (12.6.1), (12.6.3)
is oscillatory (nonoscillatory) if and only if nonimpulsive equation (12.6.5) is oscil-
latory (nonoscillatory).

Proof Let y be a solution of (12.6.1)–(12.6.3). Then x(t) =∏t0≤τj<t B
−1
j y(t) is

continuous and y(t)=∏t0≤τj<t Bjx(t). After substituting y and ẏ =∏t0≤τj<t Bj ẋ
into (12.6.1), we have

∏

t0≤τj<t
Bj ẋ(t)+

∫ t

t0

x(s)
∏

t0≤τj<s
Bj dsR(t, s)= 0, (12.6.7)

which after multiplying by
∏
t0≤τj<t B

−1
j turns into the equation

ẋ(t)+
∫ t

t0

x(s)
∏

s≤τj<t
B−1
j dsR(t, s)= ẋ(t)+

∫ t

−∞
x(s) dsT (t, s)= 0. (12.6.8)

Conversely, if x(t) is a solution of (12.6.5), (12.6.2) without impulses, where T is
defined by (12.6.6), then

y(t)=
∏

t0≤τj<t
Bjx(t)

is a solution of (12.6.1), (12.6.2), (12.6.3). Since Bj > 0, x and y are oscillatory
(nonoscillatory) at the same time, which completes the proof. �

Consider now the inequalities corresponding to (12.6.1), (12.6.5):

ẏ(t)+
∫ t

−∞
y(s) dsR(t, s)≤ 0, t > t0, (12.6.9)
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ẋ(t)+
∫ t

−∞
x(s) dsT (t, s)≤ 0, t > t0, (12.6.10)

ẏ(t)+
∫ t

−∞
y(s) dsR(t, s)≥ 0, t > t0, (12.6.11)

ẋ(t)+
∫ t

−∞
x(s) dsT (t, s)≥ 0, t > t0. (12.6.12)

Similar to Theorem 12.8, the following result can be obtained.

Theorem 12.9 Suppose (b1)–(b6) hold. Then inequality (12.6.9), (12.6.3) (or in-
equality (12.6.11), (12.6.3)) is oscillatory (nonoscillatory) if and only if (12.6.10)
(or (12.6.12)) is oscillatory (nonoscillatory).

Corollary 12.3 Suppose that the following condition is satisfied:

(c1) Ak(t) ≥ 0 are locally essentially bounded functions, and hk(t) are Lebesgue
measurable functions, hk(t)≤ t , k = 1,2, · · · , limt→∞ infk hk(t)= ∞.

Then the equation

ẏ(t)+
m∑

k=1

Ak(t)y
(
hk(t)

)= 0 (12.6.13)

with impulsive conditions (12.6.3) is oscillatory (nonoscillatory) if and only if the
equation

ẋ(t)+
m∑

k=1

Ak(t)
∏

hk(t)≤τj<t
B−1
j x
(
hk(t)

)= 0 (12.6.14)

without impulses is oscillatory (nonoscillatory). The same claim is valid for the
corresponding inequalities.

Note that this corollary partially coincides with Theorem 12.6.

Remark 12.2 Theorem 1 in [338] is a special case of the corollary above when
m= 2, h1(t)= t , h2(t)= t − τ .

Corollary 12.4 The equation

ẏ(t)+
m∑

k=1

Ak(t)y
(
hk(t)

)+
∫ t

−∞
K(t, s)y(s) ds = 0

with impulsive conditions (12.6.3) is oscillatory (nonoscillatory) if and only if

ẋ(t)+
m∑

k=1

Ak(t)
∏

hk(t)≤τj<t
B−1
j x
(
hk(t)

)+
∫ t

−∞
K(t, s)

∏

s≤τj<t
B−1
j x(s) ds = 0

is oscillatory (nonoscillatory). The same result is valid for the corresponding in-
equalities.
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It is to be emphasized that the scheme above is not specific for the oscillation
property. An arbitrary (Q)-property of solutions of linear impulsive and nonimpul-
sive equations can be considered in a similar way; for example, stability, exponential
stability and boundedness of solutions.

Theorem 12.10 Let (b1)–(b5) hold and Bj , τj be such that for any continuous x(t)
two functions x(t) and y(t) =∏t0≤τj<t Bjx(t) enjoy the (Q)-property simultane-
ously. Then all solutions of (12.6.1), (12.6.2), (12.6.3) have the (Q)-property if and
only if all solutions of (12.6.5) have the (Q)-property.

Corollary 12.5 Suppose that there exist positive m,M such that

m≤
∏

t0≤τj<t
|Bj | ≤M

for any t . Then all solutions of (12.6.1), (12.6.2), (12.6.3) are bounded (tend to zero)
if and only if all solutions of (12.6.5) are bounded (tend to zero).

Many similar results can be obtained as a corollary of Theorem 12.10. The pop-
ularity of this approach in the study of oscillation of impulsive equations can be
explained by the simplicity of the solution correspondence condition.

12.7 Discussion and Open Problems

The method proposed in the present chapter, similar to the previous chapters, is
based on the solution representation formula. Such formulas are widely used in sta-
bility investigations of nonimpulsive [33, 347, 359] and impulsive equations [32, 43,
341, 353]. We demonstrate that the existence of a nonoscillatory solution is equiva-
lent to the positivity of the fundamental function. At the same time, it is equivalent
to the solvability of a certain nonlinear inequality that is similar to “the generalized
characteristic equation” in the monograph [249].

Oscillation properties of impulsive delay differential equations is a field of inten-
sive research. Many results in this area were justified using the following scheme.
First the equivalence of oscillation of the impulsive equation (inequality) and of
some specially constructed nonimpulsive equation (inequality) is established. Fur-
ther, on the basis of well-known results for the nonimpulsive case, oscillation of the
impulsive equation is analyzed. To the best of our knowledge, for delay impulsive
equations this method was first applied in [40] and then was employed for various
classes of delay impulsive equations (see, for example, [44, 338, 339]).

In this chapter, the “oscillation equivalence” result was justified for equations
with several delays and for a linear impulsive equation with a distributed delay. This
approach can be extended to other properties of impulsive equations (for example,
stability and asymptotic behavior).

The results of Sects. 12.3, 12.4 and 12.5 were published in [40], while the theo-
rems of Sect. 12.6 are a part of [54].

Finally, let us state some open problems and topics for research and discussion.
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1. Consider linear delay equations with the linear impulsive conditions of a more
general type,

x
(
τ+
j

)=
∫ τj

t0

bj (s)x(s) ds +
∑

t0≤τk<τj
λjkx(τk), (12.7.1)

see [13] for solution representations and some stability results for delay equations
with impulsive conditions (12.7.1). Deduce explicit oscillation and nonoscilla-
tion conditions for (12.2.1) and impulsive conditions (12.7.1).

2. Once the previous problem is solved, consider ẋ(t) = 0 with impulsive condi-
tions (12.7.1), where bj (s) ≡ 0. Then oscillation (nonoscillation) of ẋ(t) = 0
with impulsive conditions (12.7.1) is equivalent to oscillation (nonoscillation) of
the difference equation

x(n)=
n∑

k=n0

Ankx(k). (12.7.2)

Deduce nonoscillation results for (12.7.2) and compare them to known nonoscil-
lation conditions for Volterra difference equations.

3. Prove or disprove:
If
∑m

k=1Ak(t) ≥ a0 ≥ 0 and there are numbers m > 0 and M > 0 such that
for any n

m≤
n∏

j=0

Bj ≤M <∞,

then any solution of (12.2.1), (12.2.2) with f ≡ 0 tends to zero at infinity.
4. Deduce sufficient nonoscillation and oscillation conditions for equations with a

distributed delay and impulsive conditions (12.7.1). Stability of impulsive equa-
tions with a distributed delay was studied in [14] (with impulsive conditions that
are more general than (12.2.2) but a particular case of (12.7.1)). However, there
are still very few publications on oscillation of impulsive equations with a dis-
tributed delay; see [54], where there are no explicit nonoscillation and oscillation
conditions.

5. Obtain an analogue of results of this chapter for the case where the impulses Bj
are functions of the solution x(t) and for the case where impulse moments τk are
also solution-dependent.



Chapter 13
Second-Order Linear Delay Impulsive
Differential Equations

13.1 Introduction

In this chapter, we obtain explicit oscillation and nonoscillation conditions for a
sufficiently general class of scalar linear second-order impulsive delay differential
equations. For equations without impulses, these results coincide with known ones.
We present several examples illustrating these conditions. In the first example, the
impulsive differential equation is nonoscillatory while the corresponding nonimpul-
sive equation is oscillatory. In the second example, the impulsive differential equa-
tion is oscillatory and the corresponding nonimpulsive equation is nonoscillatory.
In both examples, the sequence of values of impulses tends to one. Thus we can
“improve” the oscillation nature of an equation by using a sequence of “disappear-
ing” impulses. Such an example for a second-order impulsive ordinary differential
equation was constructed in [341]. As follows from the previous chapter, this phe-
nomenon is not possible for first-order differential equations.

The chapter is organized as follows. Section 13.2 contains relevant definitions
and notation. In Sect. 13.3, the equivalence of the four properties for second-order
impulsive delay equations is established: nonoscillation of the differential equation
and the corresponding differential inequality, positivity of the fundamental func-
tion and the existence of a solution of a generalized Riccati inequality. Section 13.4
contains comparison theorems. Section 13.5 includes explicit nonoscillation and
oscillation conditions. In the particular case where the values of impulses for the so-
lution and its derivative are equal, a special nonimpulsive delay differential equation
is constructed such that oscillation of an impulsive equation is equivalent to oscil-
lation of the constructed nonimpulsive equation. As a consequence of this theorem,
sharper nonoscillation results for this case of impulsive conditions are obtained. Sec-
tion 13.6 compares oscillation properties of a second-order impulsive equation and
some specially constructed nonimpulsive equation. Section 13.7 contains discussion
and open problems.

R.P. Agarwal et al., Nonoscillation Theory of Functional Differential Equations
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13.2 Preliminaries

We consider the scalar impulsive delay differential equation of the second order

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= 0, t ≥ 0, (13.2.1)

x
(
τ+
j

)=Ajx(τj ), ẋ
(
τ+
j

)= Bj ẋ(τj ), j = 1,2, · · · , (13.2.2)

under the following conditions:

(a1) 0 = τ0 < τ1 < τ2 < · · · are fixed points, limj→∞ τj = ∞.
(a2) ak , k = 1, · · · ,m, are Lebesgue measurable locally essentially bounded func-

tions on [0,∞), Aj ,Bj ∈R, j = 1,2, · · · .
(a3) gk : [0,∞) → R are Lebesgue measurable functions, gk(t) ≤ t ,

limt→∞ gk(t)= ∞, k = 1, · · · ,m.

Together with (13.2.1), (13.2.2), consider for each t0 ≥ 0 the initial value problem

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)

= f (t), t ≥ t0, x(t)= ϕ(t), t < t0, x(t0)= α0, ẋ(t0)= β0, (13.2.3)

x
(
τ+
j

)=Ajx(τj )+ αj , ẋ
(
τ+
j

)= Bj ẋ(τj )+ βj , τj ≥ t0. (13.2.4)

We also assume that the following hypothesis holds:

(a4) f : [t0,∞)→ R is a Lebesgue measurable locally essentially bounded func-
tion and ϕ : (−∞, t0)→R is a Borel measurable bounded function.

Definition 13.1 A function x : R → R with a derivative absolutely continuous on
each interval (τj , τj+1] is called a solution of problem (13.2.3), (13.2.4) if it satisfies
(13.2.3) for almost every t ∈ [t0,∞) and equalities (13.2.4) hold.

Definition 13.2 For each s ≥ 0, denote by X0(t, s) and X(t, s) the solutions of the
problem

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= 0, t ≥ s, x(t)= 0, t < s, (13.2.5)

x
(
τ+
j

)=Ajx(τj ), ẋ
(
τ+
j

)= Bj ẋ(τj ), τj ≥ s, (13.2.6)

with initial conditions x(s) = 1, ẋ(s) = 0 for X0(t, s) and x(s) = 0, ẋ(s) = 1 for
X(t, s), respectively.X(t, s) is called the fundamental function of (13.2.1), (13.2.2).
We assume X(t, s)= 0, 0 ≤ t < s.

Further, the solution representation formula for second-order impulsive equations
will be applied, which is Theorem B.19 in the scalar case.
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Lemma 13.1 Let (a1)–(a4) hold. Then there exists one and only one solution of
problem (13.2.3), (13.2.4), and it can be presented in the form

x(t)=X0(t, t0)α0 +X(t, t0)β0 +
∫ t

t0

X(t, s)f (s)ds

−
m∑

k=1

∫ t

t0

X(t, s)ak(s)ϕ
(
gk(s)

)
ds +

∑

t0≤τj<t
X0(t, τj )αj

+
∑

t0≤τj<t
X(t, τj )βj , (13.2.7)

where ϕ(gk(s))= 0, if gk(s) > t0.

13.3 Nonoscillation Criteria

As usual, we will say that (13.2.1), (13.2.2) has a positive solution for t > t0 if there
exist an initial function ϕ and numbers α0 and β0 such that the solution of initial
value problem (13.2.3), (13.2.4), with f ≡ 0, αj = βj = 0, j = 1,2, · · · , is positive
for t > t0. In this case, (13.2.1), (13.2.2) is nonoscillatory. Otherwise it is called
oscillatory.

Together with (13.2.1), (13.2.2), consider the second-order delay differential in-
equality

ÿ(t)+
m∑

k=1

ak(t)y
(
gk(t)

)≤ 0, t ≥ 0, (13.3.1)

y
(
τ+
j

)=Ajy(τj ), ẏ
(
τ+
j

)= Bj ẏ(τj ), j = 1,2, · · · . (13.3.2)

The following theorem establishes nonoscillation criteria.

Theorem 13.1 Suppose ak(t) ≥ 0, k = 1, · · · ,m, Aj > 0, Bj > 0, j = 1,2, · · · .
Then the following statements are equivalent:

1) There exists t1 such that inequality (13.3.1), (13.3.2) has a positive solution with
a locally essentially bounded second derivative for t > t1.

2) There exists t2 ≥ 0 such that the inequality

u̇(t)+
∏

t2≤τj<t

Bj

Aj
u2(t)+

m∑

k=1

∏

t2≤τj<t

Aj

Bj

×
∏

gk(t)≤τj<t
A−1
j ak(t) exp

{
−
∫ t

gk(t)

∏

t2≤τj<s

Bj

Aj
u(s)ds

}
≤ 0 (13.3.3)

has a locally absolutely continuous solution with a locally essentially bounded
derivative.

3) There exists t3 ≥ 0 such that X(t, s) > 0, t > s ≥ t3.
4) There exists t4 ≥ 0 such that (13.2.1), (13.2.2) has a positive solution for t > t4.
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Proof Let us prove the implications 1)⇒ 2)⇒ 3)⇒ 4)⇒ 1).
1)⇒ 2) Let y(t) be a positive solution of impulsive inequality (13.3.1), (13.3.2)

for t > t1. Then there exists a point t2 such that gk(t)≥ t1 if t ≥ t2. We can assume
without loss of generality that y(t2)= 1.

Denote

u(t)=
∏

t2≤τj<t

Aj

Bj

ẏ(t)

y(t)
if t ≥ t2 and u(t)= 0 if t < t2.

Then u is a locally absolutely continuous function with a locally essentially bounded
derivative. Equalities ẏ(t)−∏t2≤τj<t Bj /Aju(t)y(t) = 0, y(t2) = 1 and (13.3.2)
imply that for t ≥ t2

y(t)=
∏

t2≤τj<t
Aj exp

{∫ t

t2

∏

t2≤τj<s

Bj

Aj
u(s)ds

}
,

ẏ(t)=
∏

t2≤τj<t
Bju(t) exp

{∫ t

t2

∏

t2≤τj<s

Bj

Aj
u(s)ds

}
,

ÿ(t)=
∏

t2≤τj<t
Bj u̇(t) exp

{∫ t

t2

∏

t2≤τj<s

Bj

Aj
u(s)ds

}

+
∏

t2≤τj<t

B2
j

Aj
u2(t) exp

{∫ t

t2

∏

t2≤τj<s

Bj

Aj
u(s)ds

}
.

(13.3.4)

After substituting (13.3.4) into (13.3.1), we have

∏

t2≤τj<t
Bj exp

{∫ t

t2

∏

t2≤τj<s

Bj

Aj
u(s)ds

}[
u̇(t)+

∏

t2≤τj<t

Bj

Aj
u2(t)+

m∑

k=1

∏

t2≤τj<t

Aj

Bj

×
∏

gk≤τj<t
A−1
j ak(t) exp

{
−
∫ t

gk(t)

∏

t2≤τj<s

Bj

Aj
u(s)ds

}]
≤ 0. (13.3.5)

Inequality (13.3.5) implies (13.3.3).
2)⇒ 3) Consider the initial value problem

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= f (t), t ≥ t2,

x(t)= 0, t < t2, x(t2)= ẋ(t2)= 0,

(13.3.6)

with impulsive conditions (13.2.2). Denote

z(t)= ẋ(t)−
∏

t2≤τj<t

Bj

Aj
u(t)x(t), (13.3.7)

where x is a solution of (13.3.6), (13.2.2) and u is a solution of (13.3.3). From
(13.3.7), (13.2.2), we obtain
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x(t)=
∫ t

t2

exp

{∫ t

s

∏

t2≤τj<τ

Bj

Aj
u(τ)dτ

} ∏

s≤τj<t
Aj z(s)ds,

ẋ(t)= z(t)+
∏

t2≤τj<t

Bj

Aj
u(t)

∫ t

t2

exp

{∫ t

s

∏

t2≤τj<τ

Bj

Aj
u(τ)dτ

} ∏

s≤τj<t
Aj z(s)ds,

ẍ(t)= ż(t)+
∏

t2≤τj<t

Bj

Aj
u(t)z(t)+

(
u̇(t)+

∏

t2≤τj<t

Bj

Aj
u2(t)

)

×
∏

t2≤τj<t

Bj

Aj

∫ t

t2

exp

{∫ t

s

∏

t2≤τj<τ

Bj

Aj
u(τ)dτ

} ∏

s≤τj<t
Aj z(s)ds.

Substituting x, ẍ into (13.3.6), we obtain

ż(t)+
∏

t2≤τj<t

Bj

Aj
u(t)z(t)+

(
u̇(t)+

∏

t2≤τj<t

Bj

Aj
u2(t)

)

×
∏

t2≤τj<t

Bj

Aj

∫ t

t2

exp

{∫ t

s

∏

t2≤τj<τ

Bj

Aj
u(τ)dτ

} ∏

s≤τj<t
Aj z(s)ds

+
m∑

k=1

ak(t)

∫ gk(t)

t2

exp

{∫ gk(t)

s

∏

t2≤τj<τ

Bj

Aj
u(τ)dτ

} ∏

s≤τj<gk(t)
Aj z(s)ds

= f (t). (13.3.8)

Equality (13.3.7) implies z(t2)= 0 and

z
(
τ+
i

)= ẋ(τi)−
∏

t2≤τj≤τi

Bj

Aj
u(τi)x(τi)= Biẋ(τi)− Bi

Ai

∏

t2≤τj<τi

Bj

Aj
u(τi)Aix(τi)

= Biz(τi).

Hence we can rewrite (13.3.8) in the form

ż(t)+
∏

t2≤τj<t

Bj

Aj
u(t)z(t)

= −
[
u̇(t)+

∏

t2≤τj<t

Bj

Aj
u2(t)+

m∑

k=1

∏

t2≤τj<t

Aj

Bj

×
∏

gk(t)≤τj<t
A−1
j ak(t) exp

{
−
∫ t

gk(t)

∏

t2≤τj<s

Bj

Aj
u(s)ds

}] ∏

t2≤τj<t

Bj

Aj

×
∫ t

t2

exp

{∫ t

s

∏

t2≤τj<τ

Bj

Aj
u(τ)dτ

} ∏

s≤τj<t
Aj z(s)ds +

m∑

k=1

ak(t)

×
∫ t

gk(t)

exp

{∫ gk(t)

s

∏

t2≤τj<τ

Bj

Aj
u(τ)dτ

} ∏

s≤τj<gk(t)
Aj z(s)ds + f (t),

(13.3.9)
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z(t2)= 0, z
(
τ+
j

)= Bjz(τj ), τj > t2. (13.3.10)

Then (13.3.9), (13.3.10) is equivalent to the equation

z=Hz+ p, (13.3.11)

where

(Hz)(t)=
∫ t

t2

exp

{
−
∫ t

s

∏

t2≤τj<τ

Bj

Aj
u(τ)dτ

}

×
∏

s≤τj<t
Bj

[
−
(
u̇(s)+

∏

t2≤τj<s

Bj

Aj
u2(s)

+
m∑

k=1

∏

t2≤τj<t

Aj

Bj

∏

gk(s)≤τj<s
A−1
j ak(s)

× exp

{
−
∫ s

gk(s)

∏

t2≤τj<τ

Bj

Aj
u(τ)dτ

})

×
∏

t2≤τj<s

Bj

Aj

∫ s

t2

exp

{∫ s

τ

∏

t2≤τj<ξ

Bj

Aj
u(ξ)dξ

} ∏

τ≤τj<s
Aj z(τ )dτ

+
m∑

k=1

ak(s)

∫ s

gk(s)

exp

{∫ gk(s)

τ

∏

t2≤τj<ξ

Bj

Aj
u(ξ)dξ

}

×
∏

τ≤τj<gk(s)
Aj z(τ )dτ

]
ds,

p(t)=
∫ t

t2

exp

{
−
∫ t

s

∏

t2≤τj<τ

Bj

Aj
u(τ)dτ

} ∏

s≤τj<t
Bjf (s)ds. (13.3.12)

Inequality (13.3.3) yields that z(t) ≥ 0 for t ≥ t2 implies (Hz)(t) ≥ 0 for t ≥ t2
(i.e., operator H is positive). Denote

c(t)= u̇(t)+
∏

t2≤τj<t

Bj

Aj
u2(t)

+
m∑

k=1

∏

t2≤τj<t

Aj

Bj

∏

gk(t)≤τj<t
A−1
j ak(t) exp

{
−
∫ t

gk(t)

∏

t2≤τj<s

Bj

Aj
u(s)ds

}
.

Since u is absolutely continuous in each finite interval, we have c ∈ L∞[t2, b] for
every b > t2. For t ∈ [t2, b], we have

∣∣(Hz)(t)
∣∣≤ exp

{∫ b

t2

∏

t2≤τj<τ

Bj

Aj
u(τ)dτ

}∫ t

t2

∏

s≤τj<t
Bj

(
∏

t2≤τj<s

Bj

Aj

∣∣c(s)
∣∣

+
m∑

k=1

∣∣ak(s)
∣∣
)∫ s

t2

∏

τ≤τj<s
Aj
∣∣z(τ )

∣∣dτds
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= exp

{∫ b

t2

∏

t2≤τj<τ

Bj

Aj
u(τ)dτ

}∫ t

t2

[∫ t

τ

∏

τ≤τj<t
Bj

(
∏

t2≤τj<s

Bj

Aj

∣∣c(s)
∣∣

+
m∑

k=1

∣∣ak(s)
∣∣
)
∏

τ≤τj<s
Ajds

]
∣∣z(τ )

∣∣dτ.

The kernel of the Volterra integral operatorH is bounded in each square [t2, b]×
[t2, b]. Hence, by Theorem A.4, we deduce that H : L∞[t2, b] → L∞[t2, b] is a
weakly compact operator. Theorem A.7 implies that the spectral radius of integral
Volterra operator r(H)= 0. Thus, if in (13.3.11) we have p(t)≥ 0 for t ≥ t2, then

z(t)= p(t)+ (Hp)(t)+ (H 2p
)
(t)+ · · · ≥ 0 for t ≥ t2.

If f (t) ≥ 0 for t ≥ t2, then p(t) ≥ 0 for t ≥ t2 by (13.3.12). Hence, for (13.3.8)
we have the following: if f (t)≥ 0 for t ≥ t2, then z(t)≥ 0 for t ≥ t2.

Therefore (13.3.7) implies that the solution of (13.3.6), (13.2.2) is nonnegative
for any nonnegative right-hand side f .

The solution of this equation can be written in the form (13.2.7), which is

x(t)=
∫ t

t2

X(t, s)f (s)ds. (13.3.13)

As was shown above, f (t) ≥ 0, t ≥ t2, implies x(t) ≥ 0, t ≥ t2. Consequently, the
kernel of the integral operator (13.3.13) is nonnegative (i.e., X(t, s) ≥ 0 for t ≥
s ≥ t2). The function x(t)=X(t, s) is a nonnegative solution of (13.2.5) for t ≥ s.
Suppose that for certain t3 > s we have x(t3)= 0 and x(t) > 0 for s < t < t3. Then
ẋ(t3) < 0. By (13.2.7), for t > t3 the solution can be presented as

x(t)=X(t, t3)ẋ(t3)−
m∑

k=1

∫ t

t3

X(t, s)ak(s)ϕ
(
gk(s)

)
ds,

where ϕ(t)= x(t), t < t3. Therefore x(t) < 0 for t > t3, and we get a contradiction.
Hence the strict inequality x(t)=X(t, s) > 0, t > s ≥ t2 holds.

3)⇒ 4) The function x(t)=X(t, t3) is a positive solution of (13.2.1), (13.2.2).
Implication 4)⇒ 1) is evident, which completes the proof. �

Corollary 13.1 Equation (13.2.1), (13.2.2) is nonoscillatory if and only if inequal-
ity (13.3.1), (13.3.2) is nonoscillatory.

Remark 13.1

1) If there exists a nonnegative solution of inequality (13.3.3) for t ≥ t0, then state-
ments 1), 3) and 4) of the theorem are also valid for t ≥ t0.

2) A generalized Riccati equation for a delay differential equation without impulses
appeared for the first time in [43].

3) If inequality (13.3.3) has a nonnegative solution, then (13.2.1), (13.2.2) has a
positive solution with a nonnegative derivative.
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13.4 Comparison Theorems

In this section, we assume everywhere that Aj > 0, Bj > 0.
Theorem 13.1 can be employed for comparison of oscillation properties. To this

end, together with (13.2.1), (13.2.2), consider the equation

ẍ(t)+
m∑

k=1

bk(t)x
(
gk(t)

)= 0, t ≥ 0, (13.4.1)

with impulsive conditions (13.2.2).
Suppose (a2) and (a3) hold for (13.4.1), and denote by Y(t, s) the fundamental

function of this equation.
A proof of Theorem 13.2 below and its corollary is similar to the proof of Theo-

rem 7.2 for equations without impulses, which was first obtained in [43, Theorem 3].

Theorem 13.2 Suppose ak(t) ≥ 0, ak(t) ≥ bk(t) for t ≥ t0 and inequality (13.3.3)
has a solution for t ≥ t0. Then (13.4.1), (13.2.2) has a positive solution for t > t0
and Y(t, s) > 0, t > s ≥ t0.

We recall that a+ = max{a,0}.
Corollary 13.2

1) If the inequality

ẍ(t)+
m∑

k=1

a+
k (t)x

(
gk(t)

)≤ 0 (13.4.2)

with impulsive conditions (13.2.2) is nonoscillatory, then (13.2.1), (13.2.2) is
also nonoscillatory.

2) If the inequality

u̇(t)+
∏

t0≤τj<t
Bj /Aju

2(t)+
m∑

k=1

∏

t0≤τj<t

Aj

Bj

×
∏

gk(t)≤τj<t
A−1
j a+

k (t) exp

{
−
∫ t

gk(t)

∏

t0≤τj<s

Bj

Aj
u(s)ds

}
≤ 0 (13.4.3)

has an absolutely continuous solution for t ≥ t0, then (13.2.1), (13.2.2) has a
positive solution for t > t0 and X(t, s) > 0 for t > s ≥ t0.

Now let us compare solutions of (13.2.3), (13.2.4) and the problem

ÿ(t)+
m∑

k=1

bk(t)y
(
gk(t)

)

= r(t), t ≥ t0, y(t)=ψ(t), t < t0, x(t0)= α0, ẋ(t0)= β0 (13.4.4)

with impulsive conditions (13.2.4). Denote by x(t) and y(t) the solutions of
(13.2.3), (13.2.4) and (13.4.4), (13.2.4), respectively.
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Theorem 13.3 Suppose there exists a solution of (13.3.3) for t ≥ t0, x(t) > 0 for
t ≥ t0 and

ak(t)≥ bk(t)≥ 0, r(t)≥ f (t) for t ≥ t0, ϕ(t)≥ψ(t) for t < t0.

Then y(t) ≥ x(t) for t ≥ t0, where x and y are solutions of (13.2.3), (13.2.4) and
(13.4.4), (13.2.4), respectively.

The proof is similar to the proof of Theorem 7.4; see also [43, Theorem 5].

13.5 Explicit Nonoscillation and Oscillation Conditions

We will employ Corollary 13.2 to obtain explicit sufficient nonoscillation condi-
tions. Everywhere in this section, we assume that Aj > 0, Bj > 0.

Theorem 13.4 Suppose for some t0 > 0, 0< q < 1, r >−1, μ> 0, M > 0, either

sup
t≥t0

∣∣∣∣
∏

t0≤τj<t

Bj

Aj
− 1

∣∣∣∣≤ q,

sup
t≥t0

{
t2

m∑

k=1

∏

gk(t)≤τj<t
A−1
j a+

k (t)

[
gk(t)

t

](1−q)/2}
≤ (1 − q)2

4
,

(13.5.1)

or

μtr ≤ sup
t≥t0

∏

t0≤τj<t
Bj /Aj ≤Mtr,

sup
t≥t0

[
t2

m∑

k=1

∏

gk(t)≤τj<t
A−1
j a+

k (t)

]
≤ μ(1 + r)2

4M
.

(13.5.2)

Then (13.2.1), (13.2.2) has a positive solution with a nonnegative derivative for
t ≥ t0.

Proof Suppose (13.5.1) holds. We will show that the function u(t)= 1
2t is a solution

of inequality (13.4.3). To this end, substitute this function into the left-hand side of
the inequality and consider the function

h(t)= − 1

2t2
+

∏

t0≤τj<t

Bj

Aj

1

4t2
+

m∑

k=1

∏

t0≤τj<t

Aj

Bj

×
∏

gk(t)≤τj<t
A−1
j a+

k (t) exp

{
−
∫ t

gk(t)

∏

t0≤τj<s

Bj

Aj

1

2s
ds

}
.

Denote

sup
t≥t0

∏

t0≤τj<t

Bj

Aj
= α.
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Then 1 − q ≤ α ≤ 1 + q . Hence

h(t)≤ − 1

2t2
+ (1 + q)

1

4t2

+ 1

1 − q

m∑

k=1

∏

gk(t)≤τj<t
A−1
j a+

k (t) exp

{
−
∫ t

gk(t)

(1 − q)
1

2s
ds

}

= − 1

4t2
(1 − q)+ 1

1 − q

m∑

k=1

∏

gk(t)≤τj<t
A−1
j a+

k (t)

[
gk(t)

t

](1−q)/2

= − 1

t2(1 − q)

[
(1 − q)2

4
− t2

m∑

k=1

∏

gk(t)≤τj<t
A−1
j a+

k (t)

(
gk(t)

t

)(1−q)/2]
≤ 0.

Then 1
2t is a nonnegative solution of inequality (13.4.3), and therefore (13.2.1),

(13.2.2) has a positive solution with a nonnegative derivative.
If (13.5.2) holds, then u = 1+r

2Mt1+r is a nonnegative solution of (13.4.3). After
substituting this function into the left-hand side of (13.4.3) and denoting by h(t) the
expression obtained, we have

h(t)≤ − (1 + r)2

2Mt2+r + (1 + r)2

4M2t2+2r

∏

t0≤τj<t

Bj

Aj
+

m∑

k=1

∏

gk(t)≤τj<t
A−1
j

∏

t0≤τj<t

Aj

Bj
a+
k (t)

≤ − (1 + r)2

2Mt2+r + (1 + r)2

4Mt2+r +
m∑

k=1

∏

gk(t)≤τj<t
A−1
j a+

k (t)
1

μtr

= − 1

μt2+r

(
μ(1 + r)2

4M
− t2

m∑

k=1

∏

gk(t)≤τj<t
A−1
j a+

k (t)

)
≤ 0,

which completes the proof. �

Corollary 13.3 Suppose that for t ≥ t0 ≥ 0 we have

ak(t)≤ 0, mtr ≤ sup
t≥t0

∏

t0≤τj<t

Bj

Aj
≤Mtr, r >−1, m > 0, M > 0.

Then (13.2.1), (13.2.2) has a positive solution with a nonnegative derivative for
t ≥ t0.

Corollary 13.4 Suppose for some t0 ≥ 0, 0< q < 1, r >−1,m> 0,M > 0 at least
one of the following conditions holds:

1) sup
t≥t0

∣∣∣∣
∏

t0≤τj<t

Bj

Aj
− 1

∣∣∣∣≤ q, sup
t≥t0
[
t2a+(t)

]≤ (1 − q)2

4
.

2) mtr ≤ sup
t≥t0

∏

t0≤τj<t

Bj

Aj
≤Mtr, sup

t≥t0
[
t2a+(t)

]≤ m(1 + r)2

4M
.
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Then the ordinary differential equation

ẍ(t)+ a(t)x(t)= 0 (13.5.3)

with impulsive conditions (13.2.2) has a positive solution with a nonnegative deriva-
tive for t ≥ t0.

Example 13.1 Consider the delay differential equation

ẍ(t)+ 1

2t2
x(t − δ)= 0 (13.5.4)

with the impulsive conditions

x
(
j+)= j

j + 1
x(j), ẋ(j)= ẋ(j), j = 1,2, · · · , (13.5.5)

or

x
(
j+)= x(j), ẋ

(
j+)= j + 1

j
ẋ(j). (13.5.6)

Then (13.5.4), (13.5.5) and (13.5.4), (13.5.6) are nonoscillatory.
In fact, for (13.5.4), (13.5.5), the inequality

t ≤
∏

t0≤τj<t
Bj /Aj ≤ t + 1 ≤ t

(
1 + 1

t0

)

is satisfied. Thus the first inequality in (13.5.2) holds with r = 1, μ= 1,M = 1+ 1
t0

.
Consider the second inequality of (13.5.2). While its left-hand side is less than

0.5(1 + 1
t0−δ )

[δ]+1 and tends to 0.5 as t0 → ∞, its right-hand side is t0
1+t0 and

tends to 1. Then, for sufficiently large t0, inequalities (13.5.2) hold. Hence, (13.5.4),
(13.5.5) is nonoscillatory. Similarly, (13.5.4), (13.5.6) is also nonoscillatory.

Remark 13.2 Let us note that all solutions of (13.5.4) without impulses are oscilla-
tory [84].

Next, we will obtain some additional nonoscillation conditions. Denote

b(t)=
m∑

k=1

∏

t0≤τj<t

Aj

Bj

∏

gk(t)≤τj<t
A−1
j a+

k (t).

Theorem 13.5 Suppose
∏
t0≤τj<t Bj /Aj ≤ 1. If for t > t0 there exists a positive

solution of the nonimpulsive ordinary differential equation ẍ(t)+b(t)x(t)= 0, then
for t > t0 there exists a positive solution of (13.2.1), (13.2.2).

Proof Suppose u is a solution of the Riccati inequality

u̇(t)+ u2(t)+ b(t)≤ 0, t ≥ t0.

Then u is also a solution of inequality (13.4.3). Therefore (13.2.1), (13.2.2) has a
positive solution for t > t0. �
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Corollary 13.5 Suppose for some t0 ≥ 0

lim sup
t→∞

∏

t0≤τj<t

Bj

Aj
≤ 1, lim sup

t→∞
Aj ≥ 1, (13.5.7)

and

lim sup
t→∞

[
t2

m∑

k=1

∏

t0≤τj<t

Aj

Bj
a+
k (t)

]
≤ 1

4
. (13.5.8)

Then (13.2.1), (13.2.2) is nonoscillatory.

Example 13.2 Consider the delay differential equation

ẍ(t)+ α

tβ
x
(
g(t)

)= 0 (13.5.9)

with the impulsive conditions

x
(
j+)= (j + 1)k

jk
x(j), ẋ(j)= ẋ(j), j = 1,2, · · · ; k > 0, (13.5.10)

or

x
(
j+)= x(j), ẋ

(
j+)= jk

(j + 1)k
ẋ(j). (13.5.11)

Here conditions (13.5.7) hold and
∏
t0≤τj<t Aj/Bj ≤ Mtk , where M =

(1 + 1
t0
)k → 1 as t0 → ∞. Hence the left-hand side of (13.5.8) is less than or equal

to αM t2+k
tβ

. Therefore, if β = 2 + k and α < 1
4 or β > 2 + k, then (13.5.9), (13.5.10)

and (13.5.9), (13.5.11) are nonoscillatory.

Now we proceed to oscillation.

Theorem 13.6 Suppose ak(t)≥ 0 and there existM > 0, δ > 0 and t1 ≥ 0 such that

sup
t≥t1

∏

t1≤τj≤t

Bj

Aj
≤M, t − gk(t)≤ δ. (13.5.12)

If for some k, k = 1,2, · · · ,m we have
∫ ∞ ∏

t1≤τj≤t

Aj

Bj

∏

gk(t)≤τj<t
A−1
j ak(t)dt = ∞ and

∫ ∞ ∏

t1≤τj≤t

Bj

Aj
dt = ∞, (13.5.13)

then all solutions of (13.2.1), (13.2.2) are oscillatory.

Proof Suppose (13.2.1), (13.2.2) has a positive solution. Then, for some t0 ≥ 0,
inequality (13.3.3) has a solution u(t). This function is nonincreasing and there-
fore u(t) ≤ u(t0) and either there exists a finite limit of u(t) as t → ∞ or we
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have limt→∞ u(t) = −∞. We will see that the latter case is impossible. Inequal-
ity (13.3.3) implies u̇(t)+∏t0≤τj<t Bj /Aju

2(t)≤ 0. Then

− 1

u(t)
+ 1

u(t0)
+
∫ t

t0

∏

t0≤τj<s

Bj

Aj
ds ≤ 0,

and therefore limt→∞ u(t) is a finite number.
Further, from inequality (13.3.3) we have

u̇(t)+
∏

t0≤τj<t

Aj

Bj

∏

gk(t)≤τj<t
A−1
j ak(t) exp

{−δMu(t0)
}≤ 0.

Hence

u(t)− u(t0)+ exp
{−δMu(t0)

}∫ t

t0

∏

t0≤τj≤s

Aj

Bj

∏

gk(t)≤τj<s
A−1
j ak(s)ds ≤ 0,

which contradicts the first condition in (13.5.13). �

Corollary 13.6 Suppose that ak(t) ≥ 0, condition (13.5.12) holds and there exist
A > 0 and τ > 0 such that Aj ≤ A, τj+1 − τj ≥ τ . If for some k, k = 1,2, · · · ,m
we have

∫ ∞ ∏

τj≤t

Aj

Bj
ak(t)dt = ∞ and

∫ ∞ ∏

τj≤t

Bj

Aj
dt = ∞,

then all solutions of (13.2.1), (13.2.2) are oscillatory.

Proof The inequality
∫ ∞ ∏

τj≤t

Aj

Bj

∏

gk(t)≤τj<t
A−1
j ak(t)dt ≥A−([ δ

τ
]+1)

∫ ∞ ∏

τj≤t

Aj

Bj
ak(t)dt = ∞

implies the statement of the corollary. �

Corollary 13.7 Suppose that a(t)≥ 0,

sup
t≥0

∏

τj≤t

Bj

Aj
≤M,

∫ ∞ ∏

τj≤t

Aj

Bj
a(t)dt = ∞ and

∫ ∞ ∏

τj≤t

Bj

Aj
dt = ∞.

Then all solutions of ordinary differential equation (13.5.3), (13.2.2) are oscillatory.

Example 13.3 Consider the delay differential equation

ẍ(t)+ 1

4t2
x(t − δ)= 0 (13.5.14)

with the impulsive conditions

x
(
j+)= j + 1

j
x(j), ẋ

(
j+)= ẋ(j), j = 1,2, · · · (13.5.15)
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or

x
(
j+)= x(j), ẋ

(
j+)= j

j + 1
ẋ(j). (13.5.16)

Then all solutions of (13.5.14), (13.5.15) and (13.5.14), (13.5.16) are oscillatory.
In fact,
∫ ∞

t0

∏

t0≤τj<t

Aj

Bj

∏

t−δ≤τj<t
A−1
j a(t)dt ≥

(
1 − 1

t0 + 1

)[δ]+1 ∫ ∞

t0

t
1

4t2
dt = ∞

and
∫ ∞

t0

∏

t0≤τj<t

Bj

Aj
dt ≥

∫ ∞

t0

1

t + 1
dt = ∞.

Remark 13.3 For an ordinary differential equation (the case δ = 0) with impulsive
conditions (13.5.16), this result was obtained in [341] in a different way. It can
also be obtained using [32, Theorem 2]. Equation (13.5.14) without impulses is
nonoscillatory for all δ ≥ 0 [43, 341].

Simpler and more interesting results will be obtained under the assumption
Aj = Bj , which means that the impulsive conditions are

x
(
τ+
j

)=Ajx(τj ), ẋ
(
τ+
j

)=Aj ẋ(τj ), (13.5.17)

and the jumps of the function and the derivative are matched. In this case, the Riccati
inequality (13.3.3) is

u̇(t)+ u2(t)+
m∑

k=1

∏

gk(t)≤τj<t
A−1
j ak(t) exp

{
−
∫ t

gk(t)

u(s)ds

}
≤ 0. (13.5.18)

Consider the delay differential equation without impulses

ẍ(t)+
m∑

k=1

∏

gk(t)≤τj<t
A−1
j ak(t)x

(
gk(t)

)= 0. (13.5.19)

Theorem 13.7 Suppose ak(t)≥ 0. Then (13.2.1), (13.5.17) is oscillatory (nonoscil-
latory) if and only if (13.5.19) is oscillatory (nonoscillatory).

Proof Theorem 13.1 implies that nonoscillation of (13.2.1), (13.5.17) is equivalent
to the existence of a nonnegative solution of inequality (13.5.18), which is equiva-
lent to nonoscillation of nonimpulsive equation (13.5.19) by Theorem 7.1. �

Theorem 13.7 and oscillation results obtained in Chap. 7 for nonimpulsive equa-
tions imply the following theorems.
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Theorem 13.8 If for some t1 ≥ 0

sup
t≥t1

m∑

k=1

∏

gk(t)≤τj<t
A−1
j a+

k (t)

√
t3gk(t) lngk(t)

ln t
≤ 1/4, t ≥ t1,

then (13.2.1), (13.5.17) is nonoscillatory.

Theorem 13.9 Suppose that ak(t)≥ 0 and there exists δ > 0 such that t−gk(t) < δ.
Then (13.2.1), (13.5.17) is oscillatory (nonoscillatory) if and only if the nonimpul-
sive ordinary differential equation

ẍ(t)+
m∑

k=1

∏

gk(t)≤τj<t
A−1
j ak(t)x(t)= 0

is oscillatory (nonoscillatory).

Theorem 13.10 Suppose that ak(t)≥ 0 and for some ck , 0< ck < 1, the nonimpul-
sive ordinary differential equation

ẍ(t)+
m∑

k=1

∏

gk(t)≤τj<t
A−1
j ak(t)ck

gk(t)

t
x(t)= 0

is oscillatory. Then (13.2.1), (13.5.17) is also oscillatory.

13.6 Impulsive Equations with Damping Terms

Now let us proceed to the delay equation of the second order with concentrated
delays and the damping terms

ÿ(t)+
m∑

k=1

pk(t)ẏ
(
hk(t)

)+
l∑

k=1

ak(t)y
(
gk(t)

)= 0, t ≥ t0, (13.6.1)

x(t)= ϕ(t), t < t0, ẋ(t)= ξ(t), t < t0, (13.6.2)

and the impulsive conditions

ẏ
(
τ+
j

)=Aj ẏ(τj ), y
(
τ+
j

)= Bj (τj ), (13.6.3)

under the following assumptions:

(b1) pk, ak are Lebesgue measurable and locally essentially bounded functions on
[t0,∞).

(b2) hk, gk : [t0,∞)→R are Lebesgue measurable functions, gk(t)≤ t , hj (t)≤ t ,
limt→∞ gk(t)= ∞, limt→∞ hj (t)= ∞, k = 1, · · · ,m, j = 1, · · · , l.

(b3) ϕ : (−∞, t0) → R, ξ : (−∞, t0) → R are Borel measurable bounded func-
tions.
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Lemma 13.2 Suppose Aj �= 0, Bj �= 0 and x is a solution of the nonimpulsive
equation

ẍ(t)+
m∑

k=1

bk(t)ẋ
(
hk(t)

)+
l∑

k=1

∫ t

t0

x(s)dsRk(t, s)= 0, (13.6.4)

where

bk(t)= pk(t)
∏

hk(t)≤τj<t
A−1
j ,

Rk(t, s)= ak(t)

[
∏

t0≤τj<gk(t)
Bj

∏

t0≤τj<t
A−1
j x(t0)+

∏

gk(t)≤τj<t
A−1
j

×
∑

t0≤τr<gk(t)

max{i|τi<gk(t)}∏

j=r

Bj

Aj

(
χ(τr+1,∞)(s)− χ(τr ,∞)(s)

)
]

(13.6.5)

and χ(a,b) is the characteristic function of the open segment (a, b). Then

y(t)=
∏

t0≤τj<t
Bj

(
x(t0)+

∫ t

t0

∏

t0≤τj<s

Aj

Bj
ẋ(s)ds

)
(13.6.6)

is a solution of impulsive equation (13.6.1), (13.6.3).

Proof It is easy to see that the function y defined in (13.6.6) satisfies impulsive
conditions (13.6.3) and also

ẏ(t)=
∏

t0≤τj<t
Aj ẋ(t), ÿ(t)=

∏

t0≤τj<t
Aj ẍ(t). (13.6.7)

After substituting (13.6.6), (13.6.7) into (13.6.1), we have

∏

t0≤τj<t
Aj ẍ(t)+

m∑

k=1

pk(t)
∏

t0≤τj<hk(t)
Aj ẋ

(
hk(t)

)

+
l∑

k=1

ak(t)
∏

t0≤τj<gk(t)
Bj

(
x(t0)+

∫ gk(t)

t0

∏

t0≤τj<s

Aj

Bj
ẋ(s)ds

)
= 0.

Multiplication of the equality above by
∏
t0≤τj<t A

−1
j gives

ẍ(t)+
m∑

k=1

pk(t)
∏

hk(t)≤τj<t
A−1
j ẋ
(
hk(t)

)+
l∑

k=1

ak(t)

( ∏

t0≤τj<gk(t)
Bj

∏

t0≤τj<t
A−1
j x(t0)

+
∫ gk(t)

t0

∏

s≤τj<t
A−1
j

∏

s≤τj<gk(t)
Bj ẋ(s)ds

)
= 0.
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We have
∫ gk(t)

t0

∏

s≤τj<t
A−1
j

∏

s≤τj<gk(t)
Bj ẋ(s)ds

=
∏

gk(t)≤τj<t
A−1
j

∫ gk(t)

t0

∏

s≤τj≤gk(t)

Bj

Aj
ẋ(s)ds.

This integral on the right-hand side can be evaluated as

∫ gk(t)

t0

∏

s≤τj≤gk(t)

Bj

Aj
ẋ(s)ds =

∑

t0≤τr<gk(t)

max{i|τi<gk(t)}∏

j=r

Bj

Aj

(
x(τr+1)− x(τr )

)
.

Thus y defined by (13.6.6) is a solution of (13.6.1), (13.6.3). �

Theorem 13.11 Suppose (b1)–(b3) are satisfied, 0 < Aj ≤ Bj and the nonim-
pulsive equation (13.6.4), (13.6.2) has a nonoscillatory solution. Then (13.6.1),
(13.6.2), (13.6.3) also has a nonoscillatory solution.

Proof Let x(t) be a positive solution of (13.6.4) (the negative case is treated sim-
ilarly). Then, in (13.6.6) with t0 = τ0, τnk being the greatest impulse point preced-
ing t , we have

∏

t0≤τj<t
B−1
j y(t)

= x(t0)+ A0

B0

(
x(τ1)− x(τ0)

)+ A0A1

B0B1

(
x(τ2)− x(τ1)

)

+ · · · +
∏

t0≤τj<t

Aj

Bj

(
x(t)− x(τnk )

)

= x(τ0)

(
1 − A0

B0

)
+ A0

B0
x(τ1)

(
1 − A1

B1

)
+ A0A1

B0B1
x(τ2)

(
1 − A2

B2

)

+ · · · +
∏

τ1≤τj+1<t

AjBjx(τnk )

(
1 − Ank

Bnk

)
+

∏

τ0≤τj<t

Aj

Bj
x(t) > 0,

if x(t) is positive for t ≥ t0. So y(t) > 0 for t ≥ t0. �

Remark 13.4 If Aj = Bj , then the relation (13.6.6) becomes

y(t)=
∏

t0≤τj<t
Bjx(t), Rk(t, s)= ak(s)

∏

gk(t)≤τj<t
B−1
j χ(gk(t),∞)(s),

i.e., (13.6.4) has the form

ẍ(t)+
m∑

k=1

bk(t)ẋ
(
hk(t)

)+
l∑

k=1

rk(t)x
(
gk(t)

)= 0,
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where bk are defined by (13.6.5),

rk(t)= ak(t)
∏

gk(t)≤τj<t
B−1
j = ak(t)

∏

gk(t)≤τj<t
A−1
j .

13.7 Discussion and Open Problems

The first paper on oscillation of impulsive delay differential equations [169] was
published in 1989, and its results were included in monographs [167, 249]. In re-
cent years, impulsive delay differential equations have attracted attention of many
mathematicians, and numerous papers have been published on this class of equa-
tions. Most of the publications are devoted to oscillation of first-order differential
equations; see, for example, [33, 40, 126, 347, 353, 359]. There are only a few pa-
pers on higher-order impulsive differential equations. We mention here publications
on oscillation of second-order impulsive ordinary [32, 341] and delay differential
equations [326]. Let us note that the main results of this chapter were published in
[44, 54].

Finally, let us present some open problems and topics for research and discus-
sion.

1. Establish explicit nonoscillation conditions for the second-order impulsive dif-
ferential equation with a distributed delay (13.6.4), (13.6.2). Apply the results
obtained to deduce nonoscillation conditions for (13.6.1), (13.6.2), (13.6.3).

2. Applying Remark 13.4, obtain explicit nonoscillation conditions for initial value
problem (13.6.1), (13.6.2), (13.6.3) when Aj = Bj .

3. Consider (13.2.1) with impulsive conditions more general than (13.2.2),

x
(
τ+
j

)=
j∑

l=1

Ajlx(τl)+
∫ t

t0

Kj(s)x(s)ds, j = 1,2, · · · , (13.7.1)

ẋ
(
τ+
j

)=
j∑

l=1

Bjlx(τl)+
∫ t

t0

Mj(s)x(s)ds, j = 1,2, · · · . (13.7.2)

4. Deduce sufficient conditions under which any nonoscillatory solution of (13.2.1),
(13.2.2) tends to zero.

5. Consider (13.2.1), (13.2.2) with positive and negative coefficients ak(t).



Chapter 14
Linearized Oscillation Theory for Nonlinear
Delay Impulsive Equations

14.1 Introduction

Nonlinear delay differential equations arise as models of population dynam-
ics, economics, mechanics and technology; see examples in the monographs
[154, 167, 192], where the evolution of a system depends not only on its present
state but also on its history. Impulses provide an adequate description of sharp sys-
tem changes when the time of the change is negligible when compared to the pro-
cess dynamics. In equations of population dynamics and immunology, impulses can
describe short-time harvesting, hunting, vaccination [295] or removal of infected
species [157].

We consider the nonlinear differential equation

ẋ(t)+
m∑

k=1

rk(t)fk
(
x
(
hk(t)

))= 0, t �= τj , (14.1.1)

with the nonlinear impulsive conditions

x
(
τ+
j

)= Ij
(
x(τj )

)
, j = 1,2, · · · . (14.1.2)

For this equation, the linearized oscillation theory is developed in Sect. 14.3.
Sections 14.4 and 14.4.3 contain applications. Using linearized results, explicit os-
cillation and nonoscillation conditions are obtained for impulsive models of pop-
ulation dynamics. In Sect. 14.4, results on nonoscillation and oscillation and nu-
merical simulations for impulsive logistic equations are presented. Section 14.4.3
investigates oscillation properties of a generalized Lasota-Wazewska equation. Fi-
nally, Sect. 14.5 involves some discussion and open problems.

14.2 Preliminaries

Let us assume that the parameters of (14.1.1), (14.1.2) satisfy the following condi-
tions:

R.P. Agarwal et al., Nonoscillation Theory of Functional Differential Equations
with Applications, DOI 10.1007/978-1-4614-3455-9_14,
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(a1) rk(t) ≥ 0, k = 1, · · · ,m are Lebesgue measurable locally essentially bounded
functions.

(a2) hk : [0,∞)→ R, k = 1, · · · ,m are Lebesgue measurable functions, hk(t)≤ t ,
limt→∞ hk(t)= ∞.

(a3) fk :R → R, k = 1, · · · ,m are continuous functions, xfk(x) > 0, x �= 0.
(a4) 0 = τ0 < τ1 < τ2 < · · · are fixed points, limj→∞ τj = ∞.
(a5) Ij are continuous functions satisfying xIj (x) > 0, x �= 0, j ∈ N.

Together with (14.1.1), (14.1.2), we consider for each t0 ≥ 0 the initial value
problem

ẋ(t)+
m∑

k=1

rk(t)fk
(
x
(
hk(t)

))= 0, t ≥ t0, t �= τj , (14.2.1)

x
(
τ+
j

)= Ij
(
x(τj )

)
, τj > t0, j = 1,2, · · · , (14.2.2)

x(t)= ϕ(t), t < t0, x(t0)= x0. (14.2.3)

We also assume that the following hypothesis holds:

(a6) ϕ : (−∞, t0)→R is a Borel measurable bounded function.

Definition 14.1 A function x : R → R piecewise absolutely continuous in each
interval [t0, b] is called a solution of problem (14.2.1), (14.2.2), (14.2.3) if it satisfies
(14.2.1) for almost all t ∈ [t0,∞), t �= τj , equalities (14.2.2) at t = τj and conditions
(14.2.3) for t ≤ t0.

Equation (14.1.1), (14.1.2) has a nonoscillatory solution if it has either an even-
tually positive or an eventually negative solution. Otherwise all solutions of (14.1.1),
(14.1.2) are oscillatory.

We will also consider the linear equation

ẋ(t)+
m∑

k=1

rk(t)x
(
hk(t)

)= 0, t �= τj , (14.2.4)

x
(
τ+
j

)= bjx(τj ), j = 1,2, · · · . (14.2.5)

Theorems 12.2 and 12.6 can be reformulated in the following way.

Lemma 14.1 Suppose (a1), (a2) and (a4) hold and bj > 0, j ∈N. Then the follow-
ing hypotheses are equivalent:

1) Equation (14.2.4), (14.2.5) has a nonoscillatory solution.
2) There exists t1 ≥ 0 such that the inequality

u(t)≥
m∑

k=1

rk(t) exp

{∫ t

hk(t)

u(s) ds

} ∏

hk(t)≤τj<t
b−1
j , t ≥ t1, (14.2.6)

has a nonnegative locally integrable solution u. Here the product is assumed to
be equal to one if the number of factors is equal to zero.
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3) The nonimpulsive equation

ẋ(t)+
m∑

k=1

rk(t)
∏

hk(t)≤τj<t
b−1
j x
(
hk(t)

)= 0 (14.2.7)

has a nonoscillatory solution.

14.3 Oscillation and Nonoscillation

It is well known that it is easier to establish oscillation properties of differential
inequalities than of the corresponding differential equations. In view of this, we
need the following generalization of Theorem 12.2, which involves a differential
inequality and also an inequality for impulses.

Lemma 14.2 Suppose (a1), (a2) and (a4) hold and bj > 0, j = 1,2, · · · . Then the
following hypotheses are equivalent:

1) The impulsive differential inequality

ẋ(t)+
m∑

k=1

rk(t)x
(
hk(t)

)≤ 0, t �= τj , (14.3.1)

x
(
τ+
j

)≤ bjx(τj ), j = 1,2, · · · (14.3.2)

has an eventually positive solution with a locally essentially bounded derivative.
2) There exists t1 ≥ 0 such that inequality (14.2.6) has a nonnegative locally inte-

grable solution u.
3) Equation (14.2.4), (14.2.5) has a nonoscillatory solution.
4) Nonimpulsive equation (14.2.7) has a nonoscillatory solution.

Proof Since the implication 3)⇒ 1) is obvious, in view of Lemma 14.1 it is enough
to prove that 1) implies 2). Let x(t) be a positive solution of inequalities (14.3.1),
(14.3.2) for t ≥ t2. Then there exist positive constants cj , 0 < cj ≤ bj , such that
x(τ+

j )= cjx(τj ) and t1 ≥ t2 such that hk(t)≥ t2 for t ≥ t1. Let us define

u(t)= − d

dt
ln

{
x(t)

x(t1)

∏

t1<τj≤t
c−1
j

}
; (14.3.3)

i.e.,

x(t)= x(t1) exp

{
−
∫ t

t1

u(s) ds

} ∏

t1≤τj<t
cj , t ≥ t2. (14.3.4)

After substituting (14.3.4) into (14.3.1), we have
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−u(t) exp

{
−
∫ t

t1

u(s) ds

} ∏

t1≤τj<t
cj

+
m∑

k=1

rk(t) exp

{
−
∫ hk(t)

t1

u(s) ds

} ∏

t1≤τj<hk(t)
cj ≤ 0,

and hence

exp

{
−
∫ t

t1

u(s) ds

} ∏

t1≤τj<t
cj

[
u(t)

−
m∑

k=1

rk(t) exp

{∫ t

hk(t)

u(s) ds

} ∏

hk(t)≤τj<t
c−1
j

]
≥ 0.

Since the first factor is positive and 0< cj ≤ bj , the inequality

u(t)≥
m∑

k=1

rk(t) exp

{∫ t

hk(t)

u(s) ds

} ∏

hk(t)≤τj<t
c−1
j

≥
m∑

k=1

rk(t) exp

{∫ t

hk(t)

u(s) ds

} ∏

hk(t)≤τj<t
b−1
j

is valid, which completes the proof. �

Lemma 14.1 immediately implies the following result, which claims the equiv-
alence of the oscillation properties for various combinations of equations and in-
equalities in the differential equation and the impulsive conditions.

Lemma 14.3 Suppose (a1), (a2) and (a4) hold and bj > 0, j ∈N. Then the follow-
ing pairs of equations (inequalities) have (or have no) eventually positive solutions
at the same time: (14.2.4) and (14.3.2), (14.2.4) and (14.2.5), (14.3.1) and (14.2.5),
and (14.3.1) and (14.3.2).

Many results in oscillation theory employ the fact that for certain differential
equations any nonoscillatory solution tends to zero. Below we prove a similar prop-
erty for nonlinear impulsive equations under some additional restrictions.

Lemma 14.4 Suppose that there exists k such that
∫ ∞

t0

rk(t)= ∞, lim inf
x→∞ fk(x) > 0, (14.3.5)

for x sufficiently large,

∣∣Ij (x)
∣∣≤ cj |x|, cj ≥ 1,

∞∑

j=1

(cj − 1) <∞, (14.3.6)
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and (a1)–(a5) hold. Let x be an eventually positive solution of (14.1.1), (14.1.2).
Then limt→∞ x(t)= 0.

Proof Let x be an eventually positive solution of (14.1.1), (14.1.2); i.e., x(hk(t)) > 0
for t > t1. Therefore x is decreasing between impulses.

By (14.3.6), solution x is bounded as

0< x(t)≤ x(t0)

∞∏

j=1

cj =Mx(t0), where M =
∞∏

j=1

cj <∞,

for any t ≥ t0 ≥ t1, since
∏∞
j=1 cj converges whenever

lim
n→∞ ln

(
n∏

j=1

cj

)
=

n∑

j=1

ln cj ≤
n∑

j=1

(cj − 1) <∞.

Suppose now that for some sequence tk → ∞ we have limk→∞ x(tk)= 0. Since x
is positive and decreases between impulses, for some subsequence {τk} ⊂ {τj } we
have limk→∞ x(τk)= 0. Let us fix a small number ε > 0. Then there exists k0 such
that x(τk0) <

ε
M

. Thus, for any t > τk0 , we have

0< x(t) <
∞∏

j=1

cjx(τk0) <M
ε

M
= ε.

Hence limt→∞ x(t)= 0.
This means that either limt→∞ x(t) = 0 or x(t) ≥m > 0 (in the latter case, the

limit, unlike the nonimpulsive equation, does not necessarily exist). The second
equality in (14.3.5) implies that for some k there exists L > 0 such that fk(x) ≥ L

for x ≥m. Let us assume x(t)≥m> 0. After integrating both sides of (14.1.1), we
have

∫ ∞

t1

ẋ(t) dt +
m∑

k=1

∫ ∞

t1

rk(t)fk
(
x
(
hk(t)

))
dt = 0. (14.3.7)

Let τk be the first impulsive point not less than t1; the first term in (14.3.7) satisfies
the inequality (below we use the fact that x(τj+1)≤ x(τ+

j ) for any j )

∣∣∣∣
∫ ∞

t1

ẋ(t) dt

∣∣∣∣≤
∫ ∞

t1

∣∣ẋ(t)
∣∣dt = x(t1)− x(τk)+

∞∑

i=k

[
x
(
τ+
i

)− x(τi+1)
]

≤ x(t1)− x(τk)+
∞∑

i=k

[
cix(τi)− x(τi+1)

]

≤ x(t1)+
∞∑

i=k
(ci − 1)x(τi)+ sup

t>t1

x(t)

≤ x(t1)+Mx(t1)

∞∑

i=k
(ci − 1)+Mx(t1) <∞.
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Thus the first term in (14.3.7) is finite, while the second term is infinite since
f (x(hk(t))) ≥ L > 0 for t > t2, where t2 is a number such that all hk(t) > t1 for
t > t2 and (14.3.5) is satisfied. The contradiction proves this lemma. �

Remark 14.1 If we have lim supx→−∞ fk(x) < 0 in (14.3.5) rather than
lim infx→∞ fk(x) > 0, then any eventually negative solution of (14.1.1), (14.1.2)
converges to zero.

Example 14.1 If in Lemma 14.4 we omit the last condition in (14.3.6), then the
solution, generally speaking, does not tend to zero. For instance, the equation

ẋ(t)+ x(t)= 0, t �= n,

x
(
n+)= ex(n), n= 1,2, · · · ,

has a nonoscillatory solution x(t)= e−{t}, where {t} is the fractional part of t , which
does not tend to zero.

Remark 14.2 A special case of Lemma 14.4 was obtained in [347] under the fol-
lowing conditions: |Ij (x)|> 2 − cj , fk(x)≡ x and rk, hk are continuous.

Let us proceed to linearization results. The following theorem reduces the study
of the oscillation properties of a nonlinear impulsive equation to the investigation of
an associated linear equation.

Theorem 14.1 Let (a1)–(a5), (14.3.5) and (14.3.6) hold and there exist δ > 0,
ak > 0, dj > 0, k = 1, · · · ,m, j ∈ N such that

lim
x→0

fk(x)

x
= ak (14.3.8)

and |Ij (x)| ≤ dj |x| for |x|< δ. If for some ε, 0< ε < ak , all solutions of the impul-
sive equation

ẋ(t)+
m∑

k=1

(ak − ε)rk(t)x
(
hk(t)

)= 0, t �= τj , (14.3.9)

x
(
τ+
j

)= djx(τj ), j = 1,2, · · · , (14.3.10)

are oscillatory, then all solutions of (14.1.1), (14.1.2) are also oscillatory.

Proof Let us assume that there exists an eventually positive solution of (14.1.1),
(14.1.2), which is x(t) > 0, t ≥ t1. Then there exists t2 ≥ t1 such that hk(t) > t1,
t ≥ t2. By Lemma 14.4, we have limt→∞ x(t)= 0. Therefore, by (14.3.8), for any
ε > 0 there exists t3 such that f (x(hk(t))) > (ak − ε)x(hk(t)) for all t ≥ t3.
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Since limt→∞ x(t)= 0 and |Ij (x)| ≤ dj |x| for |x|< δ, there exists t4 ≥ t3 such
that |x(t)| < δ for t > t4 and x(τ+

j ) = Ij (x(τj )) ≤ djx(τj ), τj > t4. Thus x is a
solution of the impulsive inequality

ẋ(t)+
m∑

k=1

(ak − εk)rk(t)x
(
hk(t)

)≤ 0, t �= τj ,

x
(
τ+
j

)≤ djx(τj ), j = 1,2, · · · .
Consequently, by Lemma 14.2 impulsive equation (14.3.9), (14.3.10) has a nonoscil-
latory solution, which leads to a contradiction.

If x(t) < 0 for t ≥ t1, then we denote y(t)= −x(t), gk(y)= −fk(−y), ψj(y)=
−Ij (−y). Then y(t) is an eventually positive solution of the equation

ẏ(t)+
m∑

k=1

akrk(t)gk
(
y
(
hk(t)

))= 0, t �= τj , (14.3.11)

y
(
τ+
j

)=ψ
(
y(τj )

)
, j = 1,2, · · · , (14.3.12)

where all the parameters of (14.3.11), (14.3.12) satisfy all the assumptions of the
theorem. Then, similar to the case x(t) > 0, we obtain that (14.3.9), (14.3.10) (where
x is changed by y) has a nonoscillatory solution, which completes the proof. �

Corollary 14.1 If (a1)–(a5), (14.3.5) and (14.3.8) hold, |Ij (x)| ≤ |x| and for some
ε, 0 < ε < ak , all solutions of nonimpulsive equation (14.3.9) are oscillatory, then
all solutions of (14.1.1), (14.1.2) are also oscillatory.

Corollary 14.2 If (a1)–(a5), (14.3.5) and (14.3.8) hold,

lim
x→0

( |Ij (x)|
|x| − dj

)
= 0 uniformly in j (14.3.13)

and for some ε > 0, δ > 0, ε < ak , all solutions of (14.3.9) with the impulsive con-
ditions

x
(
τ+
j

)= (dj + δ)x(τj ) (14.3.14)

are oscillatory, then all solutions of (14.1.1), (14.1.2) are also oscillatory.

Generally, it is not necessary to assume the existence of the limit limx→0
fk(x)
x

.
In the following theorems, we suppose only that the lower bound of this ratio is
positive or the upper bound is finite.

Theorem 14.2 Let (a1)–(a5) hold and there exist ak > 0 and dj > 0 such that
∣∣fk(x)

∣∣≥ ak|x|,
∣∣Ij (x)

∣∣≤ dj |x|.
If all solutions of the impulsive equation

ẋ(t)+
m∑

k=1

akrk(t)x
(
hk(t)

)= 0, (14.3.15)
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x
(
τ+
j

)= djx(τj ), j = 1,2, · · · , (14.3.16)

are oscillatory, then all solutions of (14.1.1), (14.1.2) are also oscillatory.

Proof Let x(t) > 0, t ≥ t1, hk(t) ≥ t2, t ≥ t2. Then fk(x(hk(t)+)) ≥ akx(hk(t)),
Ij (x(τ

+
j ))≤ djx(τj ). Thus x is a positive solution of the inequalities

ẋ(t)+
m∑

k=1

akrk(t)x
(
hk(t)

)≤ 0, x
(
τ+
j

)≤ djx(τj ), j = 1,2, · · · .

By Lemma 14.2, there exists a nonoscillatory solution of (14.3.15), (14.3.16). The
contradiction proves the theorem in the case x(t) > 0. The case x(t) < 0, t ≥ t1, is
treated as in the proof of Theorem 14.1. �

Corollary 14.3 Let (a1)–(a5) hold. If |fk(x)| ≥ ak|x|, |Ij (x)| ≤ |x| and all solu-
tions of (14.3.15) without impulses are oscillatory, then all solutions of (14.1.1),
(14.1.2) are also oscillatory.

Theorem 14.3 Suppose that (a1)–(a5) hold and there exist Mk > 0, dj > 0, k =
1, · · · ,m, j ∈ N such that fk(x) ≤Mkx, Ij (x) ≥ djx for any x > 0. If in addition
there exists a nonoscillatory solution of the linear delay impulsive equation

ẋ(t)+
m∑

k=1

Mkrk(t)x
(
hk(t)

)= 0, t �= τj , (14.3.17)

x
(
τ+
j

)= djx(τj ), j = 1,2, · · · , (14.3.18)

then there exists a nonoscillatory (eventually positive) solution of (14.1.1), (14.1.2).

Proof By Lemma 14.1, there exist t1 and w0(t)≥ 0, t ≥ t1, w0(t)= 0, t < t1, such
that

w0(t)≥
m∑

k=1

rk(t)Mk exp

{∫ t

hk(t)

w0(s) ds

} ∏

hk(t)≤τj<t
d−1
j , t ≥ t1. (14.3.19)

Let us define for any locally essentially bounded function u(t)≥ 0 and any integer
l > j (where τj is the first impulse point satisfying τj ≥ t1) the function

xu(t)= Il

(
· · · Ij+1

(
Ij

(
exp

{
−
∫ τj

t1

u(s) ds

})
exp

{
−
∫ τj+1

τj

u(s) ds

})
· · ·
)

× exp

{
−
∫ t

τl

u(s) ds

}
, (14.3.20)

where τj−1 < t1 ≤ τj < τj+1 < · · · < τl < t ≤ τl+1, which is the solution of the
impulsive problem

ẋu(t)+ u(t)xu(t)= 0, t ≥ t1,

x(t1)= 1, xu
(
τ+
j

)= Ij
(
xu(τj )

)
.

(14.3.21)
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We have

xu
(
hk(t)

)= Iik

(
· · · Ij+1

(
Ij

(
exp

{
−
∫ τj

t1

u(s) ds

})
exp

{
−
∫ τj+1

τj

u(s) ds

})
· · ·
)

× exp

{
−
∫ hk(t)

τik

u(s) ds

}
,

where τj−1 < t1 ≤ τj < τj+1 < · · ·< τik ≤ hk(t) < τik+1. Then

xu(t)≥ dl · · ·dik+1 exp

{
−
∫ τl

τl−1

u(s) ds

}
· · · exp

{
−
∫ τik+1

τik

u(s) ds

}

× Iik

(
· · · Ij+1

(
Ij

(
exp

{
−
∫ τj

t1

u(s) ds

})
exp

{
−
∫ τj+1

τj

u(s) ds

})
· · ·
)

× exp

{
−
∫ t

τl

u(s) ds

}

= dl · · ·dik+1 exp

{
−
∫ t

τik

u(s) ds

}

× Iik

(
· · · Ij+1

(
Ij

(
exp

{
−
∫ τj

t1

u(s) ds

})
exp

{
−
∫ τj+1

τj

u(s) ds

})
· · ·
)

≥ exp

{
−
∫ t

hk(t)

u(s) ds

}
xu
(
hk(t)

) ∏

hk(t)≤τj<t
dj .

Let us fix b > t1 and define the operator T : L∞[t1, b] → L∞[t1, b] in the space of
all functions essentially bounded on [t1, b]:

(T u)(t)=
m∑

k=1

rk(t)fk
(
xu
(
hk(t)

)) 1

xu(t)
. (14.3.22)

For any function u ∈ L∞[t1, b] satisfying 0 ≤ u≤w0, we have

0 ≤ (T u)(t)≤
m∑

k=1

rk(t)Mk

xu(hk(t))

xu(t)
.

The estimate above of xu(t), (14.3.19) and (14.3.22) yield for each u, 0 ≤ u≤w0,

0 ≤ (T u)(t)≤
m∑

k=1

rk(t)Mk

xu(hk(t))

xu(t)

≤
m∑

k=1

rk(t)Mk exp

{∫ t

hk(t)

u(s) ds

} ∏

hk(t)≤τj<t
d−1
j

≤
m∑

k=1

rk(t)Mk exp

{∫ t

hk(t)

w0(s) ds

} ∏

hk(t)≤τj<t
d−1
j ≤w0;

i.e., 0 ≤ T u≤w0.
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We will also demonstrate that T : L∞[t1, b] → L∞[t1, b] is a compact operator.
Denote

(H1u)(t)= xu(t), (H2u)(t)= 1

xu(t)
,

where xu is the solution of impulsive problem (14.3.21). By Theorem A.6, opera-
tor H1 is a compact operator in space L∞[t1, b]. We will now prove that H2 is a
bounded continuous operator in this space. It is sufficient to consider the case with
one impulsive point t1 < τ < b since the general case is considered similarly by
induction. By the assumption of the theorem, I1(x) > d1x for x > 0.

We have

xu(t)= exp

{
−
∫ t

t1

u(s) ds

}
χ[t1,τ1](t)

+ I

(
exp

{
−
∫ τ1

t1

u(s) ds

})
exp

{
−
∫ t

τ1

u(s) ds

}
χ[τ1,b](t)

≥ exp

{
−
∫ t

t1

u(s) ds

}
+ d1 exp

{
−
∫ τ

t1

u(s) ds

}
exp

{
−
∫ t

τ

u(s) ds

}

≥ max{1, d1} exp

{
−
∫ t

t1

u(s) ds

}
,

where χI is the characteristic function of the interval I .
Denote

Su0 = {u ∈ L∞[t1, b] | ‖u‖L∞ ≤ u0
}
.

Then, for any u ∈ Su0 , we have
∥∥∥∥

1

xu

∥∥∥∥≤ 1

max{1, d1}e
u0(b−t1).

Hence the operator H2 is a bounded operator in the space L∞[t1, b].
Suppose now that ‖un − u‖L∞ → 0 as n→ ∞, ‖un‖L∞ ≤ u0. Then

‖H2un −H2u‖L∞ =
∥∥∥∥

1

xun
− 1

xu

∥∥∥∥
L∞

= ‖xun − xu‖
‖xun‖‖xu‖

≤ 1

max{1, d}e
2u0(b−t1)‖xun − xu‖.

The operator H1 is compact and hence is continuous in the space L∞[t1, b]. Then
‖xun − xu‖ → 0 and therefore ‖H2un − H2u‖ → 0. This means that operator H2
is a continuous operator. By Lemma A.3, operator T : L∞[t1, b] → L∞[t1, b] is a
compact operator.

Schauder’s Fixed-Point Theorem (Theorem A.15) implies that there exists u ∈
L∞[t1, b] satisfying 0 ≤ u ≤ w0 such that u = T u. Since u = T u implies (see
(14.3.21) and (14.3.22))

uxu = −ẋu =
m∑

k=1

rk(t)fk
(
xu
(
hk(t)

))
,
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the function xu(t) that is defined by (14.3.20) for t ≥ t1 and vanishes for t < t1 is an
eventually positive solution of (14.1.1), (14.1.2), which completes the proof. �

Corollary 14.4 Suppose (a1)–(a5) hold and fk(x)≤ x, Ij (x)≥ x for any x > 0. If
in addition there exists a nonoscillatory solution of (14.2.4) without impulses, then
there exists a nonoscillatory (eventually positive) solution of (14.1.1), (14.1.2).

Theorem 14.4 Suppose that (a1)–(a5) hold, there exist Mk,dj > 0, k = 1, · · · ,m,
j ∈ N such that fk(x) ≥ Mkx and Ij (x) ≤ djx for any x < 0. If in addi-
tion there exists a nonoscillatory solution of the linear delay impulsive equation
(14.3.17), (14.3.18), then there exists a nonoscillatory (eventually negative) solu-
tion of (14.1.1), (14.1.2).

Corollary 14.5 Suppose that (a1)–(a5) hold, fk(x) ≥ x and Ij (x) ≤ x for any
x < 0. If in addition there exists a nonoscillatory solution of (14.2.4), then there
exists a nonoscillatory (eventually negative) solution of (14.1.1), (14.1.2).

In the case where there are no impulses (Ij (x)= x), Theorems 14.1–14.4 yield
the results of Chapter 10 for equations with concentrated delays.

14.4 Applications to Equations of Mathematical Biology

As an application, impulsive models for some equations of mathematical biology
can be studied on the basis of the linearized theory that was developed in the pre-
vious section. Impulsive models provide an adequate description of sharp changes
in the system, such as the removal of infected species, short-time harvesting and
vaccination.

14.4.1 Logistic Equation: Theoretical Results

The results of Sect. 14.3 can be applied to the logistic equation

Ṅ(t)=N(t)

m∑

k=1

rk(t)

(
1 − N(hk(t))

K

)
(14.4.1)

with certain impulsive conditions, where rk , hk satisfy conditions (a1) and (a2),
K > 0. There exists a unique solution of (14.4.1) with the initial condition

N(t)=ψ(t)≥ 0, t < t0, N(t0)= y0 > 0. (14.4.2)

In [50], impulses of the type

N
(
τ+
j

)−K = bj
(
N(τj )−K

)
, (14.4.3)

were considered, where the initial function ψ satisfies (a6).
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Similar to the nonimpulsive case, the solution of (14.4.1)–(14.4.3) is positive if
all bj > 0.

Definition 14.2 A positive solution N of (14.4.1)–(14.4.3) is said to be oscilla-
tory about K if there exists a sequence tn, tn → ∞ such that N(tn) − K = 0,
n= 1,2, · · · ; N is said to be nonoscillatory about K if there exists t0 ≥ 0 such that
|N(t)−K|> 0 for t ≥ t0. A solution N is said to be eventually positive (eventually
negative) about K if N −K is eventually positive (eventually negative).

Theorem 14.5 Suppose that the hypotheses (a1), (a2), (a4) and the first equality
in (14.3.5) hold, 0 < bj ≤ 1 and for some sufficiently small ε > 0 and δ > 0 all
solutions of the equation

ẋ(t)+ (1 − ε)

m∑

k=1

rk(t)x
(
hk(t)

)= 0, t ≥ t0 (14.4.4)

with the impulsive conditions

x
(
τ+
j

)= (bj + δ)x(τj ) (14.4.5)

are oscillatory. Then all solutions of (14.4.1), (14.4.3) are oscillatory about K .

Proof After the substitution

N(t)=Kex(t), (14.4.6)

impulsive equation (14.4.1), (14.4.3) is transformed into impulsive equation
(14.1.1), (14.1.2) with

fk(x)= f (x)= ex − 1, Ij (x)= ln
(
1 − bj + bj e

x
)
.

Note that oscillation (or nonoscillation) of N about K is equivalent to oscillation
(nonoscillation) of x.

We will now apply Theorem 14.1. Let us note that (14.3.6) holds with ck = 1,
and (14.3.8) is satisfied with ak = 1. We have

lim
x→0

Ij (x)

x
= bj ,

so there exists δ > 0 such that for |x|< ε, where ε is small enough,
∣∣∣∣
Ij (x)

x

∣∣∣∣≤ bj + δ.

All the conditions of Theorem 14.1, with ak = 1, dj = bj + δ, are satisfied. Then
all solutions of (14.4.4), (14.4.5) are oscillatory about zero. Hence all solutions of
(14.4.1), (14.4.3) are oscillatory about K . �

Corollary 14.6 Suppose that the hypotheses (a1), (a2), (a4) and the first equality
in (14.3.5) hold and

lim inf
t→∞

m∑

k=1

rk(t)
∏

hk(t)≤τj≤t
b−1
j

(
t − hk(t)

)
>

1

e
. (14.4.7)

Then all solutions of (14.4.1), (14.4.3) are oscillatory about K .
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Proof Inequality (14.4.7) implies that for some ε > 0, δ > 0 we have

lim inf
t→∞

m∑

k=1

(1 − ε)rk(t)
∏

hk(t)≤τj≤t
(bj + δ)−1(t − hk(t)

)
>

1

e
.

Lemma 2.3 yields that all solutions of the equation

ẋ(t)+
m∑

k=1

(1 − ε)rk(t)
∏

hk(t)≤τj≤t
(bj + δ)−1x

(
hk(t)

)= 0 (14.4.8)

are oscillatory. Then, by Corollary 12.3 and Theorem 14.5, all solutions of (14.4.1),
(14.4.3) are oscillatory about K , which completes the proof. �

In principle, the same scheme as in Theorem 14.5 is applicable to the case bj ≥ 1,
where the solutions x < 0 are considered. However, unlike equations without im-
pulses for certain rk ≥ 0, bj ≥ 1 and initial conditions, there exists τi such that
N(τi) > 0, while N(τ+

i ) < 0 (i.e., the solution obtained becomes negative). For the
logistic equation, this means extinction of the population, while impulsive perturba-
tions can be treated as short-time harvesting. To avoid the possibility of extinction
in a finite time, we impose an additional constraint:

∞∏

j=1

bj ≤M <∞. (14.4.9)

Condition (14.4.9) does not provide that any solution of (14.4.1), (14.4.3) sat-
isfy N(t) > 0; however, under (14.4.9) there exists such a solution. For exam-
ple, any solution with a nonpositive initial function and an initial value satisfying
(1 − 1/M)K < N(0)≤K (assuming M > 1) is positive. In the following, we will
consider only such solutions.

Theorem 14.6 Suppose that (a1), (a2), (a4) and (14.4.9) hold, bj ≥ 1 and there
exists a nonoscillatory solution of the linear delay impulsive equation

ẋ(t)+
m∑

k=1

rk(t)x
(
hk(t)

)= 0, (14.4.10)

x
(
τ+
j

)= bjx(τj ). (14.4.11)

Then there exists a solution of impulsive equation (14.4.1), (14.4.3) nonoscillatory
about K .

Proof Again, after the substitution as in (14.4.6), equation (14.4.1), (14.4.3) is trans-
formed into impulsive equation (14.1.1), (14.1.2), with

fk(x)= f (x)= ex − 1, Ij (x)= ln
(
1 − bj + bj e

x
)
.

Let us apply Theorem 14.4. We have f (x) ≥ x for x < 0. We also notice that for
x < 0, bj ≥ 1,

Ij (x)= ln
(
1 − bj + bj e

x
)≤ bjx. (14.4.12)
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In order to justify (14.4.12), it is enough to demonstrate that

bj
(
ex − 1

)≤ ebj x − 1,

or u(x)= bj e
x − bj − ebj x − 1 ≤ 0 for x < 0. Obviously u(0)= 0 and

u′(x)= bj e
x − bj e

bj x = bj e
x
(
1 − e(bj−1)x)> 0

for x < 0, bj ≥ 1. Hence u(x)≤ 0 for x < 0 and therefore (14.4.12) is satisfied.
All the conditions of Theorem 14.4 with Mk = 1, dj = bj hold. Then (14.1.1),

(14.1.2) has a nonoscillatory solution. Hence (14.4.1), (14.4.3) has a solution
nonoscillatory about K , which completes the proof. �

Corollary 14.7 Suppose (a1), (a2), (a4) and (14.4.9) hold, bj ≥ 1 and there exists
a nonoscillatory solution of (14.4.10) without impulses. Then there exists a solution
of (14.4.1), (14.4.3) nonoscillatory about K .

Corollary 14.8 Suppose (a1), (a2), (a4) and (14.4.9) hold, bj ≥ 1 and there exists
μ> 0, t0 ≥ 0 such that

m∑

k=1

rk(t)
∏

hk(t)≤τj≤t
b−1
j eμ[t−hk(t)] ≤ μ, t ≥ t0.

Then there exists a solution of (14.4.1), (14.4.3) nonoscillatory about K .

Proof The statement of the corollary follows from Theorems 14.1 and 2.6. �

If instead of impulsive conditions (14.4.3) impulses of the exponential type

N
(
τ+
j

)=K

(
N(τj )

K

)bj
, bj > 0, (14.4.13)

are imposed on (14.4.1), then after the substitution (14.4.6) we obtain linear im-
pulses (14.2.5).

Thus Theorems 14.1, 14.3 and 14.4 imply the following results.

Theorem 14.7 Suppose that the hypotheses (a1), (a2) and (a4) hold.

1) If the equality (14.3.5) holds, bj ≤ 1 and for every sufficiently small ε > 0, δ > 0,
all solutions of (14.4.4), (14.4.5) are oscillatory. Then all solutions of (14.4.1),
(14.4.13) are oscillatory about K .

2) If bj ≥ 1 and there exists a nonoscillatory solution of linear delay impulsive
equation (14.4.10), (14.4.11), then there exists a solution of impulsive logistic
equation (14.4.1), (14.4.13) nonoscillatory about K .
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Fig. 14.1 The solutions of (14.4.14), (14.4.15), with the zero initial function h=K = 1, b= 0.5,
a = 0.5 (the left graph) and a = 0.15 (the right graph). The initial conditions are N(0)= 0.5 and
N(0)= 1.5, respectively. We use the logarithmic scale in N

14.4.2 Logistic Equation: Numerical Simulations

Here we present some numerical simulations to illustrate the results of the previ-
ous subsection. Let impulsive conditions be of type (14.4.3). Consider the logistic
equation with one constant delay

Ṅ(t)= aN(t)

(
1 − N(t − h)

K

)
(14.4.14)

and the impulsive conditions

N
(
j+)− 1 = b

(
N(j)− 1

)
, j = 1,2, · · · . (14.4.15)

Figure 14.1 presents the solutions of (14.4.14), (14.4.15) with the delay h= 1, the
equilibrium state is K = 1, b = 0.5, and the distance between the impulses is also
equal to one, with the zero initial function. Corollary 14.6 gives explicit sufficient
conditions for all solutions of (14.4.14), (14.4.15) to oscillate, where the impulsive
coefficient is constant bj = b and the impulses are equispaced, here we assume
τj+1 − τj = 1.

The sufficient condition is

ahb−[h] > 1

e
, (14.4.16)

where [x] is the greatest integer not exceeding x.
The left graph in Fig. 14.1 presents two solutions oscillatory about K = 1 with

a = 0.5 and the initial conditions N(0) = 0.5 and N(0) = 1.5, respectively. The
right graph is for a = 0.15.
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Fig. 14.2 The critical values
of h, a for all solutions of
(14.4.14), (14.4.15) to be
oscillatory (theoretical curve)
and the numerically
computed value of a for
which the solution of
(14.4.14) with the zero initial
function and N(0)= 0.5
begins to oscillate about
K = 1. Here K = 1, b= 0.5.
We use the logarithmic scale
in N

Figure 14.2 presents the critical values of h, a for all solutions to be oscillatory
(theoretical curve) and the numerically computed value of a for which the solution
of the equation with the zero initial function and N(0) = 0.5 begins to oscillate
about K = 1.

Now consider the case b > 1, N(0) < 1. Impulsive conditions (14.4.15) cannot
satisfy constraint (14.4.9). Let us study numerically the values of a > 0, b > 1 for
which the introduction of impulsive conditions will not lead to negative solutions
with N < 0, which correspond to the extinction of the population in a finite time. In
numerical simulations, we set N(0)= 0.5 with the zero initial function. The results
are presented in Fig. 14.3.

14.4.3 Generalized Lasota-Wazewska Equation

Consider now an impulsive model for the generalized Lasota-Wazewska equation
that describes the survival of red blood cells,

Ṅ(t)= −μN(t)+ pe−γN(h(t)), t ≥ 0, (14.4.17)

where μ,p,γ > 0 and for h(t) condition (a2) holds; for details see [192] and
Chap. 10.

We consider only those solutions of (14.4.17) that correspond to the initial con-
ditions satisfying (14.4.2). Then (14.4.17), (14.4.2) has a unique solution that is
positive for all t ≥ t0.

The equilibrium N∗ of (14.4.17) is positive and satisfies the equation

N∗ = p

μ
e−γN∗

.

Consider the impulsive conditions

N
(
τ+
j

)−N∗ = bj
(
N(τj )−N∗). (14.4.18)
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Fig. 14.3 The values of
a, b > 1 such that the solution
is nonnegative (N > 0) are
under the curve. Here h= 1

After the change of variables

N(t)=N∗ + 1

γ
x(t),

impulsive equation (14.4.17), (14.4.18) takes the form

ẋ(t)+μx(t)+μγN∗[1 − e−x(h(t))
]= 0, (14.4.19)

x
(
τ+
j

)= bjx(τj ). (14.4.20)

Equation (14.4.19) has the form (14.1.1), where

n= 2, r1(t)= μ, r2(t)= μγN∗, h1(t)= t, h2(t)= h(t),

f1(x)= x, f2(x)= 1 − e−x,
and impulsive conditions (14.4.20) are linear. All solutions of (14.4.17) are oscilla-
tory about N∗ if and only if all solutions of (14.4.19) are oscillatory about zero.

Functions f1 and f2 satisfy conditions (a3), (14.3.8), a1 = a2 = 1 and fi(x) ≤
x, x ≥ 0, fi(x) ≥ x, x < 0, i = 1,2. As a corollary of Theorem 14.1 and either
Theorem 14.3 or 14.4, we obtain the following results.

Theorem 14.8 Suppose 0< bj ≤ 1, and there exists ε > 0 such that all solutions of
the linear equation

ẋ(t)+ (1 − ε)μx(t)+ (1 − ε)μγN∗x
(
h(t)

)= 0 (14.4.21)

with impulsive conditions (14.4.20) are oscillatory. Then all solutions of (14.4.17),
(14.4.18) are oscillatory about N∗.

Corollary 14.9 Suppose 0< bj ≤ 1,

lim sup
t→∞

(
t − h(t)

)
<∞,

lim inf
t→∞ μγN∗

∫ t

h(t)

exp
{
μ
(
s − h(s)

)} ∏

h(s)≤τj<s
b−1
j ds >

1

e
.

(14.4.22)
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Then all solutions of (14.4.17), (14.4.18) are oscillatory about N∗.

Proof After the substitution x(t)= y(t)e−(1−ε)μt , (14.4.21) has the form

ẏ(t)+ (1 − ε)μγN∗ exp
{
(1 − ε)μ

(
t − h(t)

)}
y
(
h(t)

)= 0. (14.4.23)

Inequalities (14.4.22) imply that for some ε > 0

lim inf
t→∞ (1 − ε)μγN∗

∫ t

h(t)

exp
{
μ(1 − ε)

(
s − h(s)

)} ∏

h(s)≤τj<s
b−1
j ds >

1

e
.

Lemma 2.2 yields that all solutions of (14.4.23), (14.4.20) and therefore of
(14.4.21), (14.4.20) are oscillatory. �

Theorem 14.9 Suppose bj ≥ 1, and there exists a nonoscillatory solution of the
linear equation

ẋ(t)+μx(t)+μγN∗x
(
h(t)

)= 0.

Then there exists a solution of (14.4.17), (14.4.18) nonoscillatory about N∗.

Corollary 14.10 Suppose bj ≥ 1, and

lim sup
t→∞

μγN�

∫ t

h(t)

exp
{
μ
(
s − h(s)

)}
ds <

1

e
.

Then there exists a solution of (14.4.17), (14.4.18) nonoscillatory about N∗.

Proofs of Theorem 14.9 and Corollary 14.10 are similar to the proofs of Theo-
rem 14.8 and Corollary 14.9 and apply Theorem 2.7.

14.5 Discussion and Open Problems

Usually investigation of nonlinear delay differential equations is more complicated
than for linear equations. However, in certain cases it is possible to deduce proper-
ties of a nonlinear equation from an associated linear equation. The purpose of the
linearized oscillation theory is to study oscillation of the associated linear equation
rather than the original nonlinear equation. Such a theory is very well developed
for autonomous nonlinear delay differential equations and some of their generaliza-
tions (see monographs [154, 192] and references therein). For both nonlinear nonau-
tonomous impulsive and nonimpulsive delay differential equations, most qualitative
results were obtained without reducing them to linear equations [17, 237, 248, 262,
269, 276, 315, 343].

Only a few works deal with the linearized theory of nonimpulsive equations (see
[55, 192, 225, 243, 318]), and to the best of our knowledge there are only a few
recent publications [149] on the linearized theory of impulsive delay differential
equations. Compared to [149] and most other publications, this chapter involves
more general or additional results in the following sense:
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1. Coefficients rk and delays are not assumed to be continuous.
2. In most of our results, we do not suppose that the impulses satisfy∏

1≤k≤∞ bk <∞ or some equivalent condition.
3. We apply the linearization results to impulsive equations of mathematical biol-

ogy such as the delay logistic equation and the generalized Lasota-Wazewska
equation, which describes the survival of red blood cells.

4. Usually differential inequalities are applied for comparison of oscillation prop-
erties, and impulses are assumed to be the same. In the present chapter, we also
consider inequalities for the linear impulsive conditions.

The main results of this chapter were published in [57]. The paper [11] contains
a survey on oscillation and nonoscillation for linear and nonlinear impulsive delay
differential equations.

Finally, let us outline some open problems and topics for research and discus-
sion.

1. Deduce nonoscillation conditions for (14.1.1) with nonlocal impulsive conditions

x
(
τ+
j

)= Ij
(
x(·)), (14.5.1)

where x(·) is considered for t ∈ [t0, τj ]. In particular, the impulsive conditions

x
(
τ+
j

)= x(τj )+
∫ τj

t0

Ij
(
x(s)

)
drj (s), j = 1,2, · · · , (14.5.2)

can be imposed, where rj are functions of bounded variation and Ij satisfy (a5).
2. Can linearized results be applied to other impulsive equations, such as gen-

eralized and multiplicative delay logistic impulsive equations, the Nicholson
blowflies equation with variable (most generally distributed) delay and impulses,
the Mackey-Glass impulsive equation and others?

3. If impulsive points are prescribed, can we impose impulses satisfying (a5) such
that

• all solutions are oscillatory;
• there exists a nonoscillatory solution; and
• all solutions with the zero initial function and a positive initial value are

nonoscillatory.

4. For impulsive nonlinear equations, deduce sufficient conditions when all posi-
tive solutions nonoscillatory about the unique positive equilibrium tend to the
equilibrium.

5. Consider the linearized oscillation theory for nonlinear impulsive differential
equations with a distributed delay, integrodifferential equations, mixed type
equations and equations of neutral type.

6. Apply the results of this chapter to equations of mathematical biology with non-
linear impulsive conditions.



Chapter 15
Maximum Principles and Nonoscillation
Intervals

15.1 Introduction

In the previous chapters, as well as in monographs on nonoscillation of functional
differential equations, nonoscillation was interpreted as existence of eventually pos-
itive solutions of functional differential equations on a semiaxis. In this chapter, we
try to understand the essence of nonoscillation in a more general context. Actually
nonoscillation plays a very important role in the theory of linear n-th-order ordi-
nary differential equations. The study of many classical questions on the qualitative
theory of these equations, such as existence and uniqueness of solutions of the inter-
polation boundary value problems, positivity or a corresponding regular behavior of
their Green’s functions, maximum principles, variation problems and stability, was
connected with and even essentially based on the notion of nonoscillation intervals
of corresponding linear ordinary differential equations. Below (see, for example,
(15.2.21)) we explain why the notion of a nonoscillation interval, defined as an in-
terval where nontrivial solutions of a homogeneous equation do not have n zeros,
did not exist for a long time for delay differential equations.

In this and the next two chapters we try to create a concept of nonoscillation for
functional differential equations that will be an analogue of nonoscillation theory
for ordinary differential equations. We start with a definition of homogeneous equa-
tions of first order in such a form that they preserve one-dimensional fundamental
systems. This leads us to an important conclusion: every first-order homogeneous
functional differential equation on a nonoscillation interval is equivalent to a corre-
sponding first-order ordinary differential equation. This explains why properties of
nonoscillation functional differential equations are analogous to those of ordinary
differential equations. On this basis, we discover many correlations between differ-
ent properties of functional differential equations known for ordinary differential
equations.

In this chapter, we present maximum principles and study nonoscillation intervals
for first-order Volterra functional differential equations. The concept of nonoscilla-
tion developed in this chapter consists of two parts. The first part is to discover a
nonoscillation interval for functional differential equations. It can be noted that al-
though there is a difference between the definition of nonoscillation in the previous
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chapters (existence of an eventually positive solution on a semiaxis) and in this one
(nontrivial solutions do not have zeros on a finite or infinite interval), almost all tests
of nonoscillation coincide. The second part is to find various corollaries and applica-
tions of nonoscillation results in maximum principles, boundary value problems and
stability. In several cases, we prove equivalence of nonoscillation and corresponding
maximum principles. This second part is the main one in this chapter.

15.2 Preliminaries

Let us start with several examples demonstrating the difference between properties
of first-order ordinary and delay differential equations.

Consider the first-order linear ordinary differential equation

x′(t)+ p(t)x(t)= f (t), t ∈ [0,ω], (15.2.1)

with integrable coefficients p and f . Its general solution can be represented by the
classical formula

x(t)=
∫ t

0
e−
∫ t
s p(ξ)dξ f (s)ds + ce−

∫ t
0 p(ξ)dξ . (15.2.2)

Example 15.1 It is clear from formula (15.2.2) that every solution of the homoge-
neous ordinary differential equation

x′(t)+ p(t)x(t)= 0, t ∈ [0,ω], (15.2.3)

is of the form

x(t)= x(0)e−
∫ t

0 p(s)ds, t ∈ [0,ω], (15.2.4)

and it is positive if x(0) > 0 and is negative if x(0) < 0. For the delay equation

x′(t)+ x(0)= 0, t ∈ [0,ω], (15.2.5)

the solution

x(t)= x(0)(1 − t), t ∈ [0,ω], (15.2.6)

changes its sign at the point t = 1.

Example 15.2 The one-point problem (15.2.1), (15.2.7), where

x(ω)= 0, (15.2.7)

has a unique solution for each positive real number ω. Actually, substituting equality
(15.2.7) into (15.2.2), we obtain

0 = x(ω)=
∫ ω

0
e−
∫ ω
s p(ξ)dξ f (s)ds + ce−

∫ ω
0 p(ξ)dξ (15.2.8)

and

c= −e
∫ ω

0 p(ξ)dξ

∫ ω

0
e−
∫ ω
s p(ξ)dξ f (s)ds. (15.2.9)
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For delay equations, a one-point problem does not necessarily have a unique solu-
tion. Actually, consider the equation

x′(t)+ x(0)= f (t), t ∈ [0,ω]. (15.2.10)

Integrating it, we obtain the formula

x(t)=
∫ t

0
f (s)ds − x(0)t + x(0), (15.2.11)

representing a general solution of (15.2.10). Setting t = ω, we get

x(ω)=
∫ ω

0
f (s)ds − x(0)ω+ x(0), (15.2.12)

and using the condition (15.2.7),

0 =
∫ ω

0
f (s)ds − x(0)ω+ x(0). (15.2.13)

If ω= 1, then problem (15.2.10), (15.2.7) has a solution if and only if
∫ 1

0 f (s)ds =
0, and this solution is not unique.

Example 15.3 Consider the equation

x′(t)+ p(t)x
([t])= 0, t ∈ [0,∞), (15.2.14)

where [t] is the integer part of t . If p(t)≥ 0 and
∫ t+1
t

p(s)ds > 1, then all nontrivial
solutions of this equation oscillate in contrast with solutions of ordinary differential
equation (15.2.3). The amplitudes of oscillating solutions tend to infinity if p(t)≥ 0
and

∫ t+1
t

p(s)ds > 2 in contrast with the solutions of (15.2.3), which all tend to
zero.

Example 15.4 The general solution of (15.2.1) can be written in the form

x(t)=
∫ t

0
e−
∫ t
s p(ξ)dξ f (s)ds + x(0)e−

∫ t
0 p(ξ)dξ . (15.2.15)

Formula (15.2.15) allows us to compare solutions (applicability of Chaplygin’s the-
orem on the differential inequality): if the absolutely continuous function v satisfies
the inequalities

v′(t)+ p(t)v(t)≥ f (t), t ∈ [0,ω], v(0)≥ x(0), (15.2.16)

then v(t) ≥ x(t) for t ∈ [0,ω]. For a delay equation, this is not true. For example,
solution (15.2.6) of (15.2.5) for positive x(0) becomes negative for t > 1 and is
consequently less than the trivial solution of (15.2.5).

Note that for ω < 1 nontrivial solutions of homogeneous equation (15.2.5) do not
have zeros, the solution of problem (15.2.5), (15.2.3) has the representation

x(t)=
∫ ω

0

(
t − 1

1 −ω
+ χ(t, s)

)
f (s)ds, (15.2.17)
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where

χ(t, s)=
{

1, s ≤ t,

0, t < s,
(15.2.18)

and consequently this problem has a unique solution for each integrable f and Chap-
lygin’s theorem about differential inequality is applicable.

These examples lead us to the idea that intervals [0,ω], where nontrivial solutions
of homogeneous equations do not have zeros, may play an important role in the
qualitative theory of linear functional differential equations since on these intervals
delay differential equations preserve the basic properties of ordinary differential
equations. We call such [0,ω] nonoscillation intervals.

The theory of delay differential equations began with the equation

x′(t)+
n∑

i=1

pi(t)x
(
t − τi(t)

)= 0, t ∈ [0,ω], (15.2.19)

where

x(s)= ϕ(s) for s < 0, (15.2.20)

and ϕ is a corresponding continuous function, which is called an initial function.
Note that we have to add the equality (15.2.20) to (15.2.19) in order to define what
must be put instead of x(t−τi(t)) when t−τi(t) < 0. This equation was considered
in [289] as a homogeneous equation. If we want to study (15.2.19) for all possible
continuous initial functions ϕ, the space of solutions becomes infinite-dimensional
and there is no nonoscillation interval in this case. Actually, let us consider, for
example, the equation

x′(t)+ x(t − 1)= 0, t ∈ [0,1], (15.2.21)

with all possible continuous initial functions in (15.2.20). It is clear that the solution
x is determined by the initial function ϕ and a corresponding choice of ϕ allows
us to get solutions x having more than any fixed number of zeros on [0,1]. For
example, the function x(t)= sin πn

2 t is a solution of (15.2.21) if we choose ϕ(t)=
πn
2 cos(πn2 (t + 1)). In the case of odd n, the solution is a continuously extended

initial function ϕ.
Various examples of this sort led researchers to the opinion that the nonoscillation

interval for delay equations does not exist. That is why in the classical monographs
[3, 7, 9, 154, 192, 248, 289] on delay differential equations, the notion of nonoscil-
lation is defined as existence of an eventually positive solution (i.e., existence of an
initial function ϕ such that the solution obtained as its continuous extension is even-
tually positive) on the semiaxis [0,∞) and not in the sense of the definition that we
use in this chapter.

In the paper [20], the tradition of considering a solution of delay equation
(15.2.19) as a continuously extended initial function ϕ(t) was avoided and a ho-
mogeneous object was defined as (15.2.19) with the initial function

x(ξ)= 0 for ξ < 0. (15.2.22)
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Equation (15.2.19), (15.2.22) exactly corresponds to a homogeneous equation in
the theory of ordinary differential equations: the space of its solutions becomes one-
dimensional, and the formula for representation of the general solution of the equa-
tion

x′(t)+
n∑

i=1

pi(t)x
(
t − τi(t)

)= f (t), t ∈ [0,ω], (15.2.23)

with the initial function (15.2.22) is

x(t)=
∫ t

0
C(t, s)f (s)ds +C(t,0)x(0), (15.2.24)

where C(t, s) as a function of t for each fixed s is a solution of the equation

x′(t)+
n∑

i=1

pi(t)x
(
t − τi(t)

)= 0, t ∈ [s,ω], (15.2.25)

x(ξ)= 0 for ξ < s, (15.2.26)

satisfying the condition C(s, s) = 1. C(t, s) is called the Cauchy function of
(15.2.23). Solution representation formula (15.2.24) generalizes the formula of the
general solution

x(t)=
∫ t

0
e−
∫ t
s p(ξ)dξ f (s)ds + x(0)e−

∫ t
0 p(ξ)dξ (15.2.27)

of the ordinary differential equation

x′(t)+ p(t)x(t)= f (t), t ∈ [0,ω]. (15.2.28)

It is clear that in the case of ordinary differential equation (15.2.28) we have

C(t, s)= e−
∫ t
s p(ξ)dξ .

Azbelev’s definition of the homogeneous equation allows us to study maximum
principles and to construct a theory of boundary value problems for delay differen-
tial equations and functional differential equations.

In this chapter, we consider the boundary value problem

(Mx)(t)≡ x′(t)+ (Bx)(t)= f (t), t ∈ [0,ω], (15.2.29)

lx = c, (15.2.30)

where B : C[0,ω] → L1[0,ω] or B : C[0,ω] → L∞[0,ω] is a linear continuous
Volterra operator, C[0,ω] is the space of continuous functions, L1[0,ω] is the space
of integrable functions and L∞[0,ω] is the space of essentially bounded functions
defined on [0,ω], and l :D[0,ω] → R is a linear bounded functional defined on the
space of absolutely continuous functions D[0,ω].

Note that the operator B can be, for example, of the forms

(Bx)(t)=
n∑

i=1

pi(t)x
(
t − τi(t)

)
, t ∈ [0,ω], (15.2.31)
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where

x(ξ)= 0, t /∈ [0,ω], (15.2.32)

or

(Bx)(t)=
∫ ω

0
k(t, s)x(s)ds, t ∈ [0,ω]. (15.2.33)

All linear combinations and superpositions of these operators are also allowed.
Delay and integrodifferential equations are important particular cases of

(15.2.29). Equations with integral operators were studied, for example, in [96–98].
These equations are used in viscoelasticity [148, 165]. Note that equations in this
operator form become a very important instrument in the study of systems of or-
dinary or functional differential equations [5, 125], when a functional differential
equation for one component of the solution vector is constructed. This equation will
be of the form (15.2.29). Note also that an analysis of neutral equations can be re-
duced to one of (15.2.29) (see [110, 138]) which is another important application
of (15.2.29) in the operator form. This approach is based on the study of the inner
superposition operator [146, 147].

In almost all assertions, we assume that B is a Volterra operator. We define
Volterra operators according to Tikhonov’s definition.

Definition 15.1 An operator B is called Volterra if any two functions x1 and x2 co-
inciding on an interval [0, a] have equal images on [0, a]; i.e., (Bx1)(t)= (Bx2)(t)

for t ∈ [0, a] and for each 0< a ≤ ω.

In the case of Volterra operator B defined by (15.2.31), we assume that τi(t)≥ 0,
and in the case of the integral Volterra operator (15.2.33), we set t instead of ω in
the upper limit of the integral.

Let us now discuss the functional l : D[0,ω] → R in boundary condition
(15.2.30). It seems to be important to consider a boundary condition in such a gen-
eral form. Let us consider a model that is described by a one-point value problem,
where x(t1)= c is a result of taking measurements. A possible difficulty that occurs
in some real systems is noise in the system, that does not allow us to rely on the result
of only one measurement taken at a moment t = t1. Usually in such cases several
measurements x(t1), x(t2), · · · , x(tm) are taken, and then their averaged value

α1x(t1)+ α2x(t2)+ · · · + αmx(tm)= c

is used. The conditions with integrals can describe, for example, the law of conser-
vation of energy. The general form of the functional l :D[0,ω] →R is known,

lx ≡ θx(0)+
∫ ω

0
φ(s)x′(s)ds, (15.2.34)

where θ ∈R, φ ∈ L∞[0,ω].
Maximum principles present one of the classical parts of the qualitative theory

of ordinary and partial differential equations [309]. This chapter is devoted to maxi-
mum principles for first-order functional differential equations. In the mathematical
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literature, there are several definitions of maximum principles. We mean results of
the following three types.

1. Maximum inequalities principle: The inequalities

(My)(t)≥ (Mx)(t), t ∈ [0,ω], ly ≥ lx (15.2.35)

imply y(t)≥ x(t) for t ∈ [0,ω].
More generally, we can formulate this principle as follows: solutions of in-

equalities are greater than or less than the solution of the equation. In the case
where the homogeneous problem Mx = 0, lx = 0, has only the trivial solution,
problem (15.2.29), (15.2.30) has a unique solution, which can be written in the
form

x(t)=
∫ ω

0
G(t, s)f (s)ds +X(t), (15.2.36)

where X(t) is a solution of the homogeneous equation (Mx)(t) = 0, t ∈ [0,ω]
satisfying the boundary condition lx = c. The kernelG(t, s) is called the Green’s
function. On the basis of this representation, the comparison results were first
formulated in the form of positivity or negativity of the corresponding Green’s
functions in [20].

Note also that the maximum inequality principle allows us to make conclu-
sions of the following form: there is no negative minimum of the solutions of the
nonhomogeneous boundary value problem Mx(t)= f (t), t ∈ [0,ω], lx = 0, in
the case of nonnegative f .

2. Maximum principle as boundedness of solutions: There exists a positive con-
stant N such that |x| ≤ N(‖f ‖ + |c|), where ‖f ‖ is the norm in the spaces
L∞[0,ω] or L1[0,ω], respectively.

This is actually a problem of continuous dependence of solutions on the right-
hand side f and the boundary condition c. The formula of the integral represen-
tation of the solution reduces the maximum boundedness principle to the fact
that any boundary value problem has a unique solution.

If we consider (15.2.29) on the semiaxis [0,∞) (i.e., ω= ∞), then the prob-
lem of exponential stability on the basis of the Bohl-Perron theorem can be re-
duced to the maximum boundedness principle for the Cauchy problem [29]

(Mx)(t)≡ x′(t)+ (Bx)(t)= f (t), t ∈ [0,∞), x(0)= c. (15.2.37)

The analogues of the classical Bohl-Perron theorem claim that for a wide class
of linear functional differential equations (for example, for equations with a
bounded memory) boundedness of solutions for every |f | ≤ 1 implies expo-
nential stability (i.e., solutions of the homogeneous equation (Mx)(t) = 0,
t ∈ [0,∞) tend to zero as exponents e−αt when t → ∞, where α is a corre-
sponding positive number). Application of the maximum boundedness principle
to studying exponential stability was proposed in [22–24, 29]. The idea to use
left and right (for example, the so-called Azbelev W -transform) regularizations
with the Green’s operators of the corresponding model equations, satisfying the
maximum inequalities principle, in order to obtain the maximum boundedness
principle, was implemented for stability investigation in the papers [31, 61–63,
121, 139, 178].
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3. Maximum boundaries principle: For the solutions of the homogeneous equa-
tion

(Mx)(t)≡ x′(t)+ (Bx)(t)= 0, t ∈ [0,ω], (15.2.38)

at least one of the inequalities x(0) ≤ x(t) ≤ x(ω) or x(ω) ≤ x(t) ≤ x(0) is
fulfilled.

This means that the maximum and the minimum values of the solution can
only be attained at the points 0 or ω.

If the operator B is positive (negative) and the solution x is positive, then this
solution decreases (increases) and the maximum boundaries principle is true. This
demonstrates that in many cases nonoscillation defined in such a way implies the
maximum boundaries principle. In order to estimate the nonoscillation interval, we
can use the maximum inequalities principle: if we know that this principle is true
and find out the absolutely continuous positive function z such that (Mz)(t)≤ 0 for
t ∈ [0,ω], then every nontrivial solution x of the homogeneous equation (15.2.38) is
either positive or negative for t ∈ [0,ω]. The maximum principle in the form of the-
orems on inequalities, which are based on the definition of nonoscillation introduced
in this chapter, plays the central role in this area.

15.3 Maximum Principles in the Case of Positive Volterra
Operator (−B)

Let us consider boundary value problems described by the scalar equation

(Mx)(t)≡ x′(t)+ (Bx)(t)= f (t), t ∈ [0,ω], (15.3.1)

and one of the following boundary conditions:

x(0)= c, (15.3.2)

x(ω)= c, (15.3.3)

lx ≡ θx(0)+
∫ ω

0
φ(s)x′(s)ds = c. (15.3.4)

Let us assume below that the operator B : C[0,ω] → L1[0,ω] admits the rep-
resentation B = B+ − B−, where B+ : C[0,ω] → L1[0,ω] and B− : C[0,ω] →
L1[0,ω] are positive operators.

It is known that every u-bounded operator B : C[0,ω] → L1[0,ω] (see Defini-
tion A.6) can be presented in the form (see Theorem A.11)

(Bx)(t)=
∫ t

0
x(s)dsb(t, s), t ∈ [0,ω], (15.3.5)

and, consequently, the equation

(Mx)(t)≡ x′(t)+
∫ t

0
x(s)dsb(t, s)= f (t), t ∈ [0,ω], (15.3.6)
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is a form of the representation of (15.3.1). Here the function b(·, s) : [0,ω] → R is
measurable for s ∈ [0,ω], b(t, ·) : [0,ω] → R has a bounded variation for almost all
t ∈ [0,ω] and Vars∈[0,t] b(t, s) is integrable. It is clear that in this case the operator
B : C[0,ω] → L1[0,ω] admits the representation B = B+ −B−.

The general solution of (15.3.1) with Volterra operator B can be represented in
the form

x(t)=
∫ t

0
C(t, s)f (s)ds +C(t,0)x(0), (15.3.7)

where C(t, s) is called the Cauchy function of (15.3.1). Note that for (15.3.6) C(t, s)
as a function of t for each s is a solution of the equation

(Msx)(t)≡ x′(t)+
∫ t

s

x(s)dsb(t, s)= 0, t ∈ [s,ω], (15.3.8)

satisfying the condition C(s, s)= 1.

Theorem 15.1 If (−B) : C[0,ω] → L1[0,ω] is a positive Volterra operator, then
C(t, s) > 0 for 0 ≤ s ≤ t ≤ ω and solutions of the homogeneous equation Mx = 0
do not decrease.

Proof The proof follows from the inequality

C′
t (t, s)= −

∫ t

s

C(t, ξ)dξ b(t, ξ)≥ 0, t ∈ [s,ω]. (15.3.9)

�

The proof of the following corollary is based on the Fredholm alternative for
functional differential equations.

Lemma 15.1 [29] Boundary value problem (15.3.1), (15.3.10) has a unique solu-
tion for each f ∈ L1[0,ω], c ∈ R if and only if the homogeneous problem Mx = 0,
lx = 0, has only the trivial solution.

Corollary 15.1 If (−B) : C[0,ω] → L1[0,ω] is a positive Volterra operator and l :
C[0,ω] → R is a positive nonzero functional, then boundary value problem (15.3.1)
with the condition

lx = c (15.3.10)

has a unique solution for each f ∈ L1[0,ω], c ∈ R.

Proof If we suppose that a nontrivial solution x of this homogeneous problem ex-
ists, then the assumption on positivity of the functional l : C[0,ω] → R leads us to
the inequality lx > 0. This contradicts the existence of the nontrivial solution x of
the homogeneous problem Mx = 0, lx = 0. �

Note that it is not assumed in the following assertions that the interval [0,ω] is
short enough.
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Let us write boundary condition (15.3.10) in the form lx = x(ω)−mx, where
m : C[0,ω] → R is a linear bounded functional, and consider the boundary value
problem

(Mx)(t)= f (t), t ∈ [0,ω], x(ω)−mx = c. (15.3.11)

Corollary 15.2 If (−B) : C[0,ω] → L1[0,ω] is a positive Volterra operator and
‖m‖ < 1, then boundary value problem (15.3.11) has a unique solution for each
f ∈ L1[0,ω], c ∈ R.

Proof The statement of the corollary follows from the fact that solutions of the
homogeneous equation (Mx)(t)= 0 do not decrease. �

Consider the problem

(Mx)(t)= f (t), t ∈ [0,ω],
2k∑

j−1

αjx(tj )= c, 0 ≤ t1 < t2 < · · ·< t2k ≤ ω.

(15.3.12)

Corollary 15.3 If (−B) : C[0,ω] → L1[0,ω] is a positive Volterra operator, 0 ≤
−α2j−1 ≤ α2j , j = 1, · · · , k, and there exists i such that −α2i−1 < α2i , then bound-
ary value problem (15.3.12) has a unique solution for each f ∈ L1[0,ω], c ∈R.

Proof The statement of the corollary follows from the fact that solutions of the
homogeneous equation (Mx)(t)= 0 do not decrease and t1 < t2 < · · ·< t2k . �

Remark 15.1 The periodic boundary value problem

x′(t)= f (t), t ∈ [0,ω], x(0)− x(ω)= c, (15.3.13)

demonstrates that the condition ‖m‖ < 1 in Corollary 15.2 and the condition on
existence of such i that −α2i−1 < α2i cannot be improved.

More advanced results can be obtained on the basis of upper and lower functions
estimating the solutions of the initial value problem

x′(t)− p(t)x
(
h(t)

)= 0, t ∈ [0,ω], (15.3.14)

x(ξ)= 0 for ξ < 0, (15.3.15)

x(0)= 1. (15.3.16)

Lemma 15.2 Let p ≥ 0 and the number k satisfy the inequality
∫ t

h(t)

p(s)χ
(
h(s)

)
ds ≤ e

k
(1 − lnk), (15.3.17)

where

χ(t)=
{

1, t ≥ 0,

0, t < 0.
(15.3.18)
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Then the solution of (15.3.14)–(15.3.16) satisfies the inequality

v(t)≤ x(t)≤ u(t), (15.3.19)

where

v(t)= exp

{
k

e

∫ t

0
p(s)χ

(
h(s)

)
ds

}
, (15.3.20)

u(t)= exp

{∫ t

0
p(s)χ

(
h(s)

)
ds

}
. (15.3.21)

Proof The proof follows from the positivity of the Cauchy function C(t, s) for 0 ≤
s ≤ t ≤ ω and the inequalities Mv ≤ 0 and Mu ≥ 0. For example, substituting v
defined in (15.3.20) into the differential operation

(Mx)(t)≡ x′(t)− p(t)x
(
h(t)

)
,

we obtain

exp

{
k

e

∫ t

0
p(s)χ

(
h(s)

)
ds

}
k

e
p(t)χ

(
h(t)

)

− p(t)χ
(
h(t)

)
exp

{
k

e

∫ h(t)

0
p(s)χ

(
h(s)

)
ds

}

= p(t)χ
(
h(t)

)
exp

{
k

e

∫ t

0
p(s)χ

(
h(s)

)
ds

}

×
[
k

e
− exp

{
−k
e

∫ t

h(t)

p(s)χ
(
h(s)

)
ds

}]
.

The inequality (Mv)(t)≤ 0 is equivalent to

k

e
≤ exp

{
−k
e

∫ t

h(t)

p(s)χ
(
h(s)

)
ds

}
,

or

ln
k

e
≤ −k

e

∫ t

h(t)

p(s)χ
(
h(s)

)
ds,

which can be rewritten as (15.3.17). �

Let us write the functional l : C[0,ω] → R in the form l = l+ − l−, where l+ :
C[0,ω] → R, l− : C[0,ω] → R are positive linear functionals.

Theorem 15.2 If p(t) ≥ 0, h(t) ≤ t and l+v > l−u, where v and u are defined
by the formulas (15.3.20) and (15.3.21), respectively, then boundary value problem
(15.3.14), (15.3.10) has a unique solution for each f ∈ L1[0,ω], c ∈R.

Proof Existence of a nontrivial solution x of the homogeneous problem Mx = 0,
lx = 0, contradicts the fact that lx = l+x − l−x ≥ l+v − l−u > 0. �
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15.4 Nonoscillation and Positivity of Green’s Functions for
Positive Volterra Operator B

Let us consider boundary value problems described by the scalar equation

(Mx)(t)≡ x′(t)+ (Bx)(t)= f (t), t ∈ [0,ω], (15.4.1)

and one of the following boundary conditions:

x(0)= c, (15.4.2)

x(ω)= c, (15.4.3)

lx ≡ θx(0)+
∫ ω

0
φ(s)x′(s)ds = c. (15.4.4)

Let us obtain the Green’s function and the solution representation for boundary
value problem (15.4.1), (15.4.3). When we set t = ω in the formula (15.3.7), we
obtain

x(ω)=
∫ ω

0
C(ω, s)f (s)ds +C(ω,0)x(0),

and then, using the boundary condition (15.4.3), in the case C(ω,0) �= 0 we can
express x(0)= (c− ∫ ω0 C(ω, s)f (s)ds)/C(ω,0) and

x(ω)=
∫ ω

0

{
C(t, s)− C(ω, s)

C(ω,0)
C(t,0)

}
f (s)ds + c

C(ω,0)
C(t,0), (15.4.5)

where C(t, s)= 0 if t < s.
Using Lemma 15.1, the fact that the space of solutions of the first-order equation

Mx = 0 is one-dimensional and that x(t) = C(t,0) is its solution, we obtain the
following assertion.

Lemma 15.3 If a nontrivial solution x of the homogeneous equation Mx = 0 does
not have zero at the point t = ω, then the boundary value problem (15.4.1), (15.4.3)
has a unique solution, which has the representation (15.4.5), and its Green’s func-
tion is of the form

G(t, s)= C(t, s)− C(ω, s)

C(ω,0)
C(t,0), (15.4.6)

where C(t, s)= 0 if t < s.

Let us define the operator N : C[0,ω] → C[0,ω] by the formula

(Nx)(t)=
∫ ω

t

(Bx)(s)ds (15.4.7)

and assume that the operator B : C[0,ω] → L1[0,ω] admits representation (15.3.5).
Introduce the operator Bs : C[s,ω] →R as

(Bsy)(t)=
∫ t

s

y(ξ)dξ b(t, ξ).
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We will denote

Be
∫ t
s u(ξ)dξ =

∫ t

0
e
∫ t
s u(ξ)dξ dsb(t, s).

Let us formulate the known result of G.G. Islamov [210, 211] (see Theo-
rem A.12) in a convenient form.

Lemma 15.4 Suppose that there exists a nonnegative continuous function v such
that ψ(t)≡ v(t)− ∫ ω

t
(Bv)(s)ds, where B is a Volterra operator and ψ(t) > 0 for

t ∈ [0,ω). Then the spectral radius ρ(N) of the operator N : C[0,ω] → C[0,ω] is
less than one.

Proof To prove the statement of the lemma, we have only to note that the operator
B : C[0,ω] → L1[0,ω] is a Volterra one and to apply Theorem A.12. �

Definition 15.2 Let us say that problem (15.4.1), (15.4.4) satisfies the condition Θ
if

∫ ω
s
φ(ξ)C′

ξ (ξ, s)dξ + φ(s)

θ + ∫ ω0 φ(s)C′
s(s,0)ds

< 0. (15.4.8)

Remark 15.2 It will be demonstrated in Sects. 15.7 and 15.9 that for a wide class of
generalized periodic boundary value problems the condition Θ is fulfilled. Here let
us discuss only problems with a general form of boundary condition. Let us assume
that θ > 0 and φ(s) <−ε < 0. Then it will be demonstrated that on nonoscillation
interval C(t, s) > 0 and consequently in the case of the positive operator B the
derivative satisfies the inequality C′

t (t, s) ≤ 0 for 0 ≤ s ≤ t ≤ ω. It is obvious that
the denominator is positive. The numerator will be negative if the interval [0,ω] is
small enough.

For (15.4.1), we propose the following statement on eight equivalences.

Theorem 15.3 Let B : C[0,ω] → L1[0,ω] be a positive Volterra operator. Then
the following seven hypotheses are equivalent:

1) There exists a nonnegative absolutely continuous function v such that

v(ω)−
∫ ω

t

(Mv)(s)ds > 0, t ∈ [0,ω). (15.4.9)

2) The spectral radius of the operator N : C[0,ω] → C[0,ω] is less than one.
3) Problem (15.4.1), (15.4.3) has a unique solution, and its Green’s functionG(t, s)

is negative for 0 ≤ t < s ≤ ω and nonpositive for 0 ≤ s ≤ t ≤ ω.
4) A nontrivial solution of the homogeneous equation (Mx)(t) = 0, t ∈ [0,ω] has

no zeros on [0,ω].
5) The Cauchy function C(t, s) of (15.4.1) is positive for 0 ≤ s ≤ t ≤ ω.
6) There exists a positive continuous function v such that v(t) > Nv(t), t ∈ [0,ω).
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7) There exists a positive essentially bounded function u such that

Be
∫ t
s u(ξ)dξ (t)≤ u(t), t ∈ [0,ω]. (15.4.10)

If in addition the condition Θ is fulfilled, then the following assertion is in-
cluded in the list of equivalences:

8) Problem (15.4.1), (15.4.4) has a unique solution, and its Green’s function P(t, s)
is positive for t, s ∈ [0,ω].

Proof 1) ⇒ 6) The function v satisfies the equation v = Nv + ψ , where ψ(t) =
v(ω)− ∫ ω

t
(Mv)(s)ds, t ∈ [0,ω], and inequality (15.4.9) implies that ψ(t) > 0 for

t ∈ [0,ω).
The implication 6)⇒ 2) follows from Lemma A.2.
2) ⇒ 3) The equation x = Nx + g, where g = − ∫ ω

t
f (s)ds, is equivalent to

problem (15.4.1), (15.4.3) for t ∈ [0,ω]. The condition that the spectral radius of
the operator N be less than one implies that this problem has a unique solution. Its
solution can be represented in the form

x(t)= g(t)+
∫ ω

0

{
G(t, s)−G0(t, s)

}
f (s)ds, (15.4.11)

where G0(t, s) is the Green’s function of the boundary value problem

x′(t)= f (t), t ∈ [0,ω], x(ω)= 0. (15.4.12)

We can obtain that G0(t, s) = −1 for 0 ≤ t < s ≤ ω and G0(t, s) = 0 for 0 ≤ s ≤
t ≤ ω. If f ≤ 0, then 0 ≤ g(t) ≤ x(t) for t ∈ [0,ω]. Now it follows from equality
(15.4.11) that G(t, s)≤G0(t, s) for t, s ∈ [0,ω].

3)⇒ 1) The function v(t)= − ∫ ω0 G(t, s)ds satisfies condition 1).
5)⇒ 4) This assertion follows from the fact that C(t,0) is a nontrivial solution

of equation Mx = 0.
In order to prove 4)⇒ 1), we substitute v(t)= C(t,0) into condition 1).
1)⇒ 5) The function v(t) satisfies the inequalities

v(ω)−
∫ ω

t

[
v′(s1)+

∫ s1

s

x(ξ)dξ b(s1, ξ)

]
ds1 > 0 (15.4.13)

for each s. This means that the spectral radius of the operators

(Nsx)(t)=
∫ ω

t

(Bx)(ξ)dξ, t ∈ [s,ω], (15.4.14)

is less than one for each s ∈ [0,ω) according to implications 1)⇒ 6)⇒ 2). Each
function C(·, s) for a fixed s is a solution of (15.3.8). The assumption C(t, s0)= 0
contradicts the fact that the spectral radius of Ns0 is less than one.

In order to prove the assertion 4)⇒ 7), we set u(t)= − d
dt

lnC(t,0).

7)⇒ 4) The operator (Fy)(t)= (Be
∫ t
· y(s)ds)(t) is monotone, and

0 ≤ F0 ≤ Fu≤ u.

There exists a solution y of the equation y = Fy such that 0 ≤ y ≤ u. Thus

C(t,0)= e−
∫ t

0 y(s)ds

is a positive solution of the homogeneous equation Mx = 0.
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Let us prove 5)⇒ 8). It can be demonstrated that in the case

θ +
∫ ω

0
φ(s)C′

s(s,0)ds �= 0

the solution of boundary value problem (15.4.1), (15.4.4) can be presented in the
form

x(t)=
∫ ω

0
P(t, s)f (s)ds + c

θ + ∫ ω0 φ(s)C′
s(s,0)ds

. (15.4.15)

Here the Green’s function of problem (15.4.1), (15.4.4) has the representation

P(t, s)= C(t, s)−
∫ ω
s
φ(ξ)C′

ξ (ξ, s)dξ + φ(s)

θ + ∫ ω0 φ(s)C′
s(s,0)ds

C(t,0), (15.4.16)

where C(t, s)= 0 if t < s. If C(t, s) is positive for 0 ≤ s ≤ t ≤ ω and the condition
Θ is fulfilled, then P(t, s) > 0 for t, s ∈ [0,ω].

8)⇒ 4) If P(t, s) > 0 for t, s ∈ [0,ω], then the solution x(t) = C(t,0) should
be positive for t ∈ [0,ω]. If not, C(t0,0) = 0 for a corresponding t0, and then
P(t0, s)= 0 for s > t0 and we get a contradiction, which completes the proof. �

If we substitute v = 1 in assertion 6), then the following corollary is obtained.

Corollary 15.4 Let B : C[0,ω] → L1[0,ω] be a positive Volterra operator and
∫ ω

0
(B1)(s)ds < 1, t ∈ [0,ω]. (15.4.17)

Then assertions 1)–7) are fulfilled. If in addition the condition Θ is satisfied, then
assertion 8) is also fulfilled.

Example 15.5 The equation

x′(t)+ x(0)= 0, t ∈ [0,1], (15.4.18)

has a solution x(t) = 1 − t vanishing at the point ω = 1, which demonstrates that
the inequality in Corollary 15.4 is sharp.

Remark 15.3 Positivity of the operator B is essential for nonpositivity of Green’s
function G(t, s) of problem (15.4.1), (15.4.3), as the following example [178]
demonstrates.

Consider the equation

x′(t)− x(0)= f (t), t ∈ [0,ω], (15.4.19)

with the boundary condition (15.4.3). All nontrivial solutions of the homogeneous
equation

x′(t)− x(0)= 0
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are proportional to x(t)= 1 + t ; i.e., they are either positive or negative. According
to formula (15.4.6), the Green’s function of the problem (15.4.19), (15.4.3) can be
constructed as

G(t, s)=

⎧
⎪⎨

⎪⎩

− 1+t
1+ω , t < s,

1 − 1+t
1+ω , t > s > 0,

0, t > s = 0.

(15.4.20)

We see that the Green’s function G(t, s) changes its sign in each rectangle
(t, s) ∈ [0,ω] × [0,ω]. This is impossible for ordinary differential equations, where
G(t, s) < 0 for t < s and G(t, s)= 0 for t > s.

We can say even more, using for (15.3.6) the so-called generalized semigroup
equality (see [328, p. 11])

C(ω,0)= C(ω, s)C(s,0)−
∫ ω

s

C(ω, ξ)

[∫ s

0
C(η,0)dηb(ξ, η)

]
dξ. (15.4.21)

Consider now the formula of Green’s function (15.4.6) for problem (15.3.6),
(15.4.3). It is clear that G(·, s) is right continuous at the point t = s. If we set t = s

in (15.4.6), the following equality is obtained:

G(s, s)= 1 − C(ω, s)

C(ω,0)
C(s,0)= C(ω,0)−C(s,0)C(ω, s)

C(ω,0)
. (15.4.22)

If b(t, ·) does not increase for t ∈ [0,ω], then according to (15.4.21) we get
C(ω,0) ≥ C(ω, s)C(s,0) and, according to equality (15.4.22), G(s, s) ≥ 0 for
s ∈ (0,ω); moreover, G(s, s) > 0 if

∫ ω
s

[∫ s0 dηb(ξ, η)]dξ < 0.
Thus, we have proven the following result.

Theorem 15.4 If p(t)≤ 0 and mes{t ∈ [0,ω]|p(t) < 0, 0 ≤ h(t) < t}> 0, then the
Green’s function of the problem

x′(t)+ p(t)x
(
h(t)

)= f (t), t ∈ [0,ω], x(ω)= 0, (15.4.23)

changes its sign in the square (t, s) ∈ (0,ω)× (0,ω).

Remark 15.4 Let us consider the following hypothesis:

5∗) The Cauchy function C(t, s) of (15.4.1) is positive for 0< s ≤ t ≤ ω.

Assertions 5) and 5∗) seem almost the same. The difference is only in the non-
strong inequality 0 ≤ s ≤ t ≤ ω in assertion 5). However, Theorem 15.3 will not
be true if instead of assertion 5) we set 5∗) since 5∗) does not imply assertion 4)
on nonoscillation of a nontrivial solution on the interval [0,ω], as the following
example demonstrates.

Example 15.6 Consider the equation

x′(t)+ x(0)= f (t), t ∈ [0,ω]. (15.4.24)
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Its Cauchy function is C(t, s)= 1> 0 for 0< s ≤ t ≤ ω. The nontrivial solution of
the homogeneous equation

x′(t)+ x(0)= 0, t ∈ [0,ω], (15.4.25)

is x(t)= C(t,0)= 1 − t , which changes its sign at the point t = 1.

Remark 15.5 It is essential that the operator B be a Volterra operator. For equa-
tions with non-Volterra operators, assertion 5) does not follow from hypothesis 4).
Consider the initial value problem for the equation

x′(t)+ x(ω)= f (t), t ∈ [0,ω].
The function x(t)= ω+ 1 − t is the positive solution of the homogeneous equation

x′(t)+ x(ω)= 0, t ∈ [0,ω].
We can construct the Cauchy function C(t, s) as

C(t, s)= − 1

1 +ω
+ γ (t, s),

where

γ (t, s)=
{

1, 0 ≤ s ≤ t ≤ ω,

0, 0 ≤ t < s ≤ ω.

The function C(t, s) changes its sign in the domain (t, s) ∈ [0,ω] × [0,ω] for
each ω.

Theorem 15.5 Let B be a positive operator and [0,ω] be a nonoscillation interval
of the equation

x′(t)+ (Bx)(t)= 0, t ∈ [0,ω]. (15.4.26)

Then its solution x and the Cauchy function C(t, s) satisfy the inequalities

−∣∣x(0)∣∣ exp

{∫ t

0
−(B1)(s)ds

}
≤ x(t)≤ ∣∣x(0)∣∣ exp

{
−
∫ t

0
(B1)(s)ds

}
, 0 ≤ t ≤ ω,

(15.4.27)

exp

{
−e
∫ t

s

(Bs1)(ξ)dξ

}
≤ C(t, s)≤ exp

{
−
∫ t

s

(Bs1)(ξ)dξ

}
, 0 ≤ s ≤ t ≤ ω.

(15.4.28)

Proof The proof follows from the equivalence of nonoscillation and positivity
of the Cauchy function C(t, s) and the inequalities Msvs(t) ≤ 0, (Mu)(t) ≥ 0,
Msus(t)≥ 0, where

vs(t)= exp

{
−e
∫ t

s

(Bs1)(s)ds

}
,

u(t)= exp

{
−
∫ t

0
(B1)(s)ds

}
, (15.4.29)

us(t)= exp

{
−
∫ t

s

(Bs1)(s)ds

}
. �
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15.5 Nonoscillation on the Semiaxis

The most interesting case is when the behavior of solutions of functional differential
equations is similar to the behavior of first-order ordinary differential equations on
the semiaxis. It can be demonstrated that in this case various results on the maximum
boundedness principle on the semiaxis and the exponential stability are obtained.

Consider the equation

(Mx)(t)≡ x′(t)+ (Bx)(t)= f (t), t ∈ [0,∞), (15.5.1)

where B : C[0,∞) → L∞[0,∞) is a Volterra operator, C[0,∞) is the space of
continuous functions and L∞[0,∞) is the space of essentially bounded functions
defined on [0,∞), f ∈ L∞[0,∞). Assume that the operator B admits the represen-
tation in the form of the Stieltjes integral

(Bx)(t)=
∫ t

0
x(s)dsb(t, s), t ∈ [0,∞), (15.5.2)

and, consequently, the equation

(Mx)(t)≡ x′(t)+
∫ t

0
x(s)dsb(t, s)= f (t), t ∈ [0,∞), (15.5.3)

is a form of the representation of (15.5.1). Here the function b(·, s) : [0,ω] → R is
measurable for s ∈ [0,ω], b(t, ·) : [0,ω] → R has a bounded variation for almost all
t ∈ [0,ω] and Vars∈[0,t] b(t, s) is essentially bounded for every ω > 0.

Theorem 15.3 can be extended to this equation on the semiaxis.

Theorem 15.6 Let B : C[0,∞)→ L∞[0,∞) be a positive Volterra operator. Then
the following hypotheses are equivalent:

1) There exists a function v positive absolutely continuous on each interval [0,ω]
with essentially bounded derivative v′ such that

(Mv)(t)≤ 0, t ∈ [0,∞). (15.5.4)

2) For each ω ∈ (0,∞), the spectral radius of the operator N defined by the for-
mula

(Nx)(t)=
∫ ω

t

{∫ s

0
x(ξ)dξ b(s, ξ)

}
ds (15.5.5)

is less than one.
3) For each ω ∈ (0,∞), the problem

x′(t)+
∫ t

0
x(s)dsb(t, s)= f (t), t ∈ [0,ω], (15.5.6)

x(ω)= 0, (15.5.7)

has a unique solution, and its Green’s function G(t, s) is negative for 0 ≤ t <

s ≤ ω and nonpositive for 0 ≤ s ≤ t ≤ ω.
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4) A nontrivial solution of the homogeneous equation (Mx)(t)= 0, t ∈ [0,∞), has
no zeros on [0,∞).

5) The Cauchy function C(t, s) of (15.5.1) is positive for 0 ≤ s ≤ t <∞.
6) There exists a positive continuous function v such that v(t) > Nv(t), t ∈ [0,∞).
7) There exists a positive essentially bounded function u such that

Be
∫ t
s u(ξ)dξ (t)≤ u(t), t ∈ [0,∞). (15.5.8)

If in addition the condition Θ is fulfilled for each ω ∈ (0,∞), then the following
assertion is included in the list of equivalences:

8) For each ω ∈ (0,∞), the problem (15.4.1), (15.4.4) has a unique solution and
its Green’s function P(t, s) is positive for t, s ∈ [0,ω].

Proof We repeat the proof of Theorem 15.3 according to the scheme 1)⇒ 6) ⇒
2)⇒ 3), 5)⇒ 4)⇒ 1)⇒ 5). Only one implication, 3)⇒ 1), cannot be used. In-
stead we can prove the implication 3)⇒ 4). Actually, according to Lemma 15.1, it
follows from the fact that the problem (15.5.6), (15.5.7) has a unique solution for
every ω > 0 if the homogeneous problem (15.5.9), (15.5.7), where

x′(t)+
∫ t

0
x(s)dsb(t, s)= 0, t ∈ [0,ω], (15.5.9)

has only the trivial solution for every ω. This means that nontrivial solutions of
homogeneous equation (15.5.9) do not have zeros on [0,∞), which completes the
proof. �

Remark 15.6 Note that for the delay differential equation

x′(t)+ p(t)x
(
t − τ(t)

)= 0, t ∈ [0,∞), (15.5.10)

the inequality in assertion 7) is of the form

p(t)e
∫ t
t−τ (t) u(s)ds(t)≤ u(t), t ∈ [0,∞), (15.5.11)

and the equivalence of existence of nonoscillatory solution and inequality (15.5.4)
is the well-known result (see [154, p. 29]).

15.6 Positivity Tests for Green’s Functions Through Choice
of v(t)

Corollary 15.4 actually claims the general principle that if the interval [0,ω] is small
enough, then the behavior of solutions is similar to the behavior of solutions of or-
dinary differential equations; i.e., nontrivial solutions do not have zeros, and the
Cauchy function C(t, s) and the Green’s function of the problem with boundary
condition at ω preserve their signs. Note that Theorem 15.3 gives several possibil-
ities (hypotheses 1), 6) and 7)) to obtain explicit conditions for the properties of
Cauchy and Green’s functions mentioned in this theorem.
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In Corollary 15.4, assertion 6) was used. Choosing various functions v and u
in assertions 1) and 7), respectively, we obtain results of another type, and their
principle can be formulated as follows: if the delay τ is small enough, then the
properties of solutions of the delay equation

x′(t)+ p(t)x
(
t − τ(t)

)= f (t), t ∈ [0,∞), (15.6.1)

x(ξ)= 0 for ξ < 0, (15.6.2)

are similar to the properties of the ordinary differential equation

x′(t)+ p(t)x(t)= f (t), t ∈ [0,∞). (15.6.3)

Consider the equation

(Mx)(t)≡ x′(t)+ (Bx)(t)= f (t), t ∈ [0,∞), (15.6.4)

where B : C[0,∞)→ L∞[0,∞) is a positive Volterra operator.

Definition 15.3 Let us determine the functionH : [0,∞)→ [0,∞) as the maximal
possible value for which the equality y1(s) = y2(s) for s ∈ [H(t),∞) implies the
equality (By1)(s) = (By2)(s) for s ∈ [t,∞) for each of the two continuous func-
tions y1 and y2 : [0,∞)→ (−∞,∞).

It is clear that the function H describes the “size” of the memory of the opera-
tor B . If we set v = exp{−e ∫ t0 (B1)(s)ds} in assertion 1) of Theorem 15.6, then the
following result is obtained.

Theorem 15.7 Let B : C[0,∞)→ L∞[0,∞) be a positive linear Volterra operator
and

∫ t

H(t)

(B1)(s)ds ≤ 1

e
, t ∈ (0,∞). (15.6.5)

Then nontrivial solutions of the homogeneous equation Mx = 0 have no zeros for
t ∈ [0,∞), C(t, s) > 0 for 0 ≤ s ≤ t <∞, and if in addition the condition Θ is ful-
filled, then problem (15.4.1), (15.4.4) has a unique solution and its Green’s function
P(t, s) is positive for t, s ∈ [0,ω] and any ω ∈ (0,∞).

Consider the particular case of (15.6.4)

(Mx)(t)≡ x′(t)+
m∑

k=1

pk(t)x
(
hk(t)

)= f (t), t ∈ [0,∞), (15.6.6)

where x(s)= 0 for s < 0. Assume that hk(t)≤ t, pk(t)≥ 0 for t ∈ [0,∞).
For (15.6.6), the function H(t) in Definition 15.3 can be determined as follows:

H(t)= min1≤k≤m hk(t), and inequality (15.6.5) has the form
∫ t

H(t)

m∑

k=1

pk(s)ds ≤ 1

e
, t ∈ (0,∞). (15.6.7)
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Remark 15.7 For the equation

x′(t)+ px(t − τ)= 0, t ∈ [0,∞),

where p and τ are positive constants, an opposite inequality pτ > 1
e

implies os-
cillation of all solutions, see, for example, [154]. This demonstrates that inequality
(15.6.7) is sharp.

Consider the equation

(Mx)(t)≡ x′(t)+
∞∑

k=1

pk(t)x(t − kτ)= f (t), t ∈ [0,∞), (15.6.8)

where x(s)= 0 if s < 0.

Theorem 15.8 Suppose that there exists β such that

β <
1

e
, p1 ≥ βp2, p1 ≥ β2p3, · · · , p1 ≥ βk−1pk, · · · , (15.6.9)

and

p1τ + β ≤ 1

e
(15.6.10)

is satisfied for (15.6.8). Then nontrivial solutions of the homogeneous equation
Mx = 0 have no zeros for t ∈ [0,∞), C(t, s) > 0 for 0 ≤ s ≤ t < ∞, and if
in addition the condition Θ is fulfilled, then the problem (15.6.8), (15.4.4) has a
unique solution and its Green’s function P(t, s) is positive for t, s ∈ [0,ω] and each
ω ∈ (0,∞).

Proof Let us substitute v(t)= e−αt into hypothesis 1) of Theorem 15.3. We obtain
the inequality

(Mv)(t)≡ e−αt
{

−α +
∞∑

k=1

pk(t)e
αkτ

}
≤ 0, t ∈ [0,∞).

Using the condition (15.6.9), we can see that this inequality is satisfied if

p1

1 − βeατ
≤ αe−ατ . (15.6.11)

The function g(α)= αe−ατ on the right-hand side of this inequality is maximal at
α = 1

τ
. If we substitute this value of α into inequality (15.6.11), the inequality

p1τ

1 − βe
≤ 1

e
(15.6.12)

is obtained and (15.6.10) is satisfied. �
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Let us consider the equation

(Mx)(t)≡ x′(t)+
∫ t−τ

0
K(t, s)x(s)= f (t), t ∈ [0,∞), (15.6.13)

where K(t, s) is a positive continuous function satisfying the inequality

K(t, s)≤ be−γ (t−s), 0 ≤ s ≤ t <∞, γ, b > 0. (15.6.14)

Theorem 15.9 Let inequalities (15.6.14) and

b ≤ γ 2

4
e
γ
2 τ (15.6.15)

be satisfied. Then nontrivial solutions of the homogeneous equationMx = 0 have no
zeros for t ∈ [0,∞), C(t, s) > 0 for 0 ≤ s ≤ t <∞, and if in addition the condition
Θ is fulfilled, then problem (15.6.13), (15.4.4) has a unique solution and its Green’s
function P(t, s) is positive for t, s ∈ [0,ω].

Proof Substituting v(t)= e−αt , where γ > α, into hypothesis 1) of Theorem 15.6,
we obtain

(
Me−αt

)
(t)≤ −α+ b

γ − α
e−(γ−α)τ , 0 ≤ t <∞. (15.6.16)

The right-hand side of (15.6.16) is nonpositive if

be−(γ−α)τ ≤ α(γ − α). (15.6.17)

Choosing α = γ /2, we obtain that inequality (15.6.15) implies nonpositivity of
(Me−αt )(t) for 0 ≤ t <∞. �

Remark 15.8 If K(t, s) = be−γ (t−s) for 0 ≤ s ≤ t <∞, γ, b > 0 and τ = 0, then
the inequality (15.6.15) becomes

b ≤ γ 2

4
, (15.6.18)

which is a necessary and sufficient condition for nonoscillation of the solutions of
(15.6.13) [132].

15.7 The Generalized Periodic Problem for Positive Volterra
Operator B

Consider the generalized periodic problem

(Mx)(t)≡ x′(t)+ (Bx)(t)= f (t), t ∈ [0,ω], (15.7.1)

x(0)− βx(ω)= c. (15.7.2)
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From the formula (15.4.8) representing the Green’s function in the case of the
general functional l :D[0,ω] → R in the boundary condition we get the following
representation for the Green’s function of problem (15.7.1), (15.7.2):

P(t, s)= C(t, s)+ βC(ω, s)

1 − βC(ω,0)
C(t,0). (15.7.3)

The nontrivial solution x(t)= C(t,0) of the equation

x′(t)+ (Bx)(t)= 0, t ∈ [0,ω], (15.7.4)

does not increase on a nonoscillation interval in the case of the positive operator
B : C[0,ω] → L1[0,ω]. It is clear that the condition Θ (see Definition 15.2) on
a nonoscillation interval is fulfilled if β < 1, and in the case β = 1 (the periodic
problem) this condition is fulfilled if B is a nonzero operator.

Remark 15.9 It is essential that the operator B be a Volterra operator. For equations
with non-Volterra operators, hypothesis 8) of Theorem 15.3 on positivity of the
Green’s function of the periodic problem (noted in the case β = 1) does not follow
from assertion 4). Consider the periodic problem for the equation

x′(t)+ x(ω)= f (t), t ∈ [0,ω].
The function x(t)= ω+ 1 − t is the positive solution of the homogeneous equation

x′(t)+ x(ω)= 0, t ∈ [0,ω].
We can construct the Green’s function of the periodic problem as

P(t, s)= 1 − t

ω
+ γ (t, s),

where

γ (t, s)=
{

1, 0 ≤ s ≤ t ≤ ω,

0, 0 ≤ t < s ≤ ω.

The Green’s function P(t, s) is positive in the domain (t, s) ∈ [0,ω] × [0,ω] if and
only if ω < 1.

Now, using Theorem 15.5, we can check when the condition Θ is fulfilled in the
case β > 1.

Theorem 15.10 Let B : C[0,ω] → L1[0,ω] be a positive Volterra operator, [0,ω]
be a nonoscillation interval of (15.7.4), and

β < exp

{∫ ω

0
(B1)(s)ds

}
. (15.7.5)

Then the generalized periodic problem (15.7.1), (15.7.2) has a unique solution and
its Green’s function P(t, s) is positive for t, s ∈ [0,ω].
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Remark 15.10 Inequality (15.7.5) cannot be improved, as the following example
demonstrates. Consider the generalized periodic boundary value problem (15.7.2)
for the ordinary differential equation

x′(t)+ p(t)x(t)= f (t), t ∈ [0,ω]. (15.7.6)

It is clear that for this equation

C(t, s)= exp

{
−
∫ t

s

p(ξ)dξ

}
≥ 0 and C(ω,0)= exp

{
−
∫ ω

0
p(ξ)dξ

}
.

According to formula (15.7.3), the inequality 1−βC(ω,0) > 0 is necessary and suf-
ficient for positivity of the Green’s function P(t, s) of the problem (15.7.6), (15.7.2).
In this case, the condition 1 − βC(ω,0)= 1 − β exp{− ∫ ω0 p(ξ)dξ}> 0 is satisfied
if and only if

β < exp

{∫ ω

0
p(s)ds

}
. (15.7.7)

Note that inequality (15.7.7) is a particular case of the inequality (15.7.5) for
(Bx)(t)= p(t)x(t).

15.8 Regular Behavior of the Green’s Function to a One-Point
Boundary Value Problem

Consider the one-point problem

(Mx)(t)≡ x′(t)+ (Bx)(t)= f (t), t ∈ [0,ω], (15.8.1)

x(a)= c, (15.8.2)

where a is a fixed point such that 0< a < ω.

Definition 15.4 We say that the Green’s function of problem (15.8.1), (15.8.2) be-
haves regularly if

G(t, s)≤ 0 for 0< t < a, 0< s < ω, and G(t, s)≥ 0 for a < t < ω, 0< s < ω.
(15.8.3)

Theorem 15.11 Let B : C[0,ω] → L1[0,ω] be a positive Volterra operator and
[0,ω] be a nonoscillation interval of the equation Mx = 0. Then the Green’s func-
tion of problem (15.8.1), (15.8.2) behaves regularly.

Theorem 15.11 follows from Theorem 17.11, proven further in Chap. 17.

Theorem 15.12 Let B : C[0,ω] → L1[0,ω] be a positive Volterra operator and at
least one of the inequalities

∫ ω

0
(B1)(s)ds < 1, t ∈ [0,ω], (15.8.4)
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or ∫ t

H(t)

(B1)(s)ds ≤ 1

e
, t ∈ (0,ω], (15.8.5)

be satisfied, where the function H is defined in Definition 15.3. Then the Green’s
function of problem (15.8.1), (15.8.2) behaves regularly.

Proof The proof follows from Theorems 15.3, 15.7 and 15.11 and Corollary 15.4. �

Consider the equation

(Mx)(t)≡ x′(t)+
m∑

k=1

pk(t)x
(
hk(t)

)= f (t), t ∈ [0,ω], (15.8.6)

where x(s)= 0 for s < 0 and hk(t)≤ t for t ∈ [0,ω], k = 1, · · · ,m.

Corollary 15.5 Let pk ≥ 0 for k = 1, · · · ,m, and at least one of the inequalities
∫ ω

0

m∑

k=1

pk(t)dt < 1, t ∈ [0,ω], (15.8.7)

or
∫ t

h(t)

m∑

k=1

pk(s)ds ≤ 1

e
, t ∈ (0,ω], (15.8.8)

be satisfied, where the function h(t)= min{hk(t), k = 1, · · · ,m}. Then the Green’s
function of problem (15.8.6), (15.8.2) behaves regularly.

Proof The proof follows from Theorem 15.12. �

15.9 Positivity of Green’s Functions for Equations Including
Difference of Positive Operators

In this section, we consider the equation

(Mx)(t)≡ x′(t)− (Ax)(t)+ (Bx)(t)= f (t), t ∈ [0,∞), (15.9.1)

where B : C[0,∞)→ L∞[0,∞) and A : C[0,∞)→ L∞[0,∞) are positive linear
continuous Volterra operators, with the general boundary condition

lx ≡ θx(0)+
∫ ω

0
φ(s)x′(s)ds = c. (15.9.2)

The equation

x′(t)+
m∑

k=1

pk(t)x
(
hk(t)

)= f (t), t ∈ [0,∞), (15.9.3)

with x(s) = 0 for s < 0 and hk(t) ≤ t for t ∈ [0,∞), where the coefficients pk(t)
can change their signs, is a particular case of (15.9.1).
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Theorem 15.13 If B andA are positive Volterra operators and the Cauchy function
C+(t, s) of the equation

x′(t)+ (Bx)(t)= f (t), t ∈ [0,∞), (15.9.4)

is positive for 0 ≤ s ≤ t <∞, then:

1) The Cauchy function C(t, s) of (15.9.1) satisfies the inequality C(t, s) ≥
C+(t, s) > 0 for 0 ≤ s ≤ t <∞.

2) If in addition the inequality
∫ ω
s
φ(ξ){C+(ξ, s)}′ξ dξ + φ(s)

θ + ∫ ω0 φ(s){C+(s,0)}′sds
< 0 (15.9.5)

and at least one of the conditions
a) (B1)(t) > (A1)(t), c ≥ 0,
or
b) B1)(t)≥ (A1)(t), c > 0,
is fulfilled, then the Green’s function G(t, s) of the boundary value problem
(15.9.1), (15.9.2) is positive for t, s ∈ (0,ω) and satisfies the inequalityG(t, s)≥
G+(t, s), where G+(t, s) is the Green’s function of problem (15.9.4), (15.9.2).

Proof The Cauchy problem (Mx)(t)= f (t), x(0)= 0, t ∈ [0,ω], is equivalent to
the integral equation

x(t)=
∫ t

0
C+(t, s)(Ax)(s)ds + ϕ(t), t ∈ [0,ω],

where ϕ(t)= ∫ t0 C+(t, s)f (s)ds. The spectral radius of the operatorK : C[0,ω] →
C[0,ω] defined by the equality

(Kx)(t)=
∫ t

0
C+(t, s)(Ax)(s)ds, t ∈ [0,ω],

equals zero. It implies that x(t) = (I − K)−1ϕ(t) = ((I + K + K2 + · · ·)ϕ)(t).
If f ≥ 0, then ϕ ≥ 0 and x ≥ 0. Moreover, x(t) = ∫ t

0 C(t, s)f (s)ds ≥∫ t
0 C

+(t, s)f (s)ds for each nonnegative f . It implies that C(t, s) ≥ C+(t, s) > 0
for 0 ≤ s ≤ t ≤ ω. From the fact that A and B are Volterra operators, it follows that
C(t, s)≥ C+(t, s) > 0 for 0 ≤ s ≤ t <∞.

Let us prove assertion 2). If condition (15.9.5) is fulfilled, then equivalence of
the positivity of C+(t, s) and G+(t, s) was proven in Theorem 15.3. It is clear now
that the operator N : C[0,ω] → C[0,ω] defined by the formula

(Nx)(t)=
∫ ω

0
G+(t, s)(Ax)(s)ds, t ∈ [0,ω], (15.9.6)

is positive. The solution x of problem (15.9.1), (15.9.2) satisfies the inequality

x(t)= (Nx)(t)+
∫ ω

0
G+(t, s)f (s)ds + c

θ + ∫ ω0 φ(s){C+(s,0)}′sds
, t ∈ [0,ω].

(15.9.7)
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If f ≥ 0, then each of the conditions a) or b) implies by Lemma A.2 that the spectral
radius of the operator N : C[0,ω] → C[0,ω] is less than one. Let us define ϕ as

ϕ(t)=
∫ ω

0
G+(t, s)f (s)ds + c

θ + ∫ ω0 φ(s){C+(s,0)}′sds
.

The solution x can be represented as x(t) = (I − N)−1ϕ(t) = ϕ(t) + (Nϕ)(t) +
(N2ϕ)(t)+ · · · . It is clear that x(t)≥ ϕ(t) and G(t, s)≥G+(t, s). This completes
the proof of assertion 2). �

Remark 15.11 Inequality (15.9.5) seems very difficult to check. We demonstrated
in Remark 15.2 that in the case θ > 0 and φ(s) <−ε < 0 this inequality is fulfilled
if the interval [0,ω] is small enough.

Theorem 15.14 Let A,B : C[0,∞)→ L∞[0,∞) be positive linear Volterra oper-
ators and

∫ t

H(t)

(B1)(s)ds ≤ 1

e
, t ∈ (0,∞), (15.9.8)

where the function H(t) is defined in Definition 15.3. Then conditions 1) and 2) of
Theorem 15.13 are fulfilled.

Consider the particular case of (15.9.1)

(Mx)(t)≡ x′(t)+
m∑

k=1

pk(t)x
(
hk(t)

)= f (t), t ∈ [0,∞), (15.9.9)

where x(s)= 0 for s < 0. Assume that hk(t)≤ t for t ∈ [0,∞).
Let us denote p+

k (t) = max{pk(t),0}, p−
k (t) = max{−pk(t),0}. It is clear that

pk(t)= p+
k (t)− p−

k (t). Equation (15.9.4) in this case can be written in the form

x′(t)+
m∑

k=1

p+
k (t)x

(
hk(t)

)= f (t), t ∈ [0,∞). (15.9.10)

Conditions a) (B1)(t) > (A1)(t), c ≥ 0 or b) (B1)(t)≥ (A1)(t), c > 0, in this case
get the following forms:

a)
m∑

k=1

pk(t)χ
(
hk(t)

)
> 0, c ≥ 0, t ∈ (0,∞),

b)
m∑

k=1

pk(t)χ
(
hk(t)

)≥ 0, c > 0, t ∈ (0,∞).

(15.9.11)

The function H(t) in Definition 15.3 can be determined as follows: H(t) =
min1≤k≤m hk(t), and inequality (15.9.8) for (15.9.9) has the form

∫ t

H(t)

m∑

k=1

p+
k (s)ds ≤ 1

e
, t ∈ (0,∞). (15.9.12)
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Corollary 15.6 Let inequality (15.9.12) be satisfied. Then:

1) The Cauchy function C(t, s) of (15.9.9) satisfies the inequality C(t, s) ≥
C+(t, s) > 0 for 0 ≤ s ≤ t <∞.

2) If in addition inequality (15.9.5) and at least one of the conditions a) or b) of
(15.9.11) are fulfilled, then the Green’s function G(t, s) of the boundary value
problem (15.9.9), (15.9.2) is positive for t, s ∈ (0,ω) and satisfies the inequality
G(t, s)≥G+(t, s), where G+(t, s) is the Green’s function of problem (15.9.10),
(15.9.2).

Consider the delay equation

(Mx)(t)≡ x′(t)+
∞∑

k=1

pk(t)x(t − kτ)= f (t), t ∈ [0,∞), (15.9.13)

where x(s)= 0 if s < 0.
The restriction that the delay t −H(t) be small can be replaced by the conditions

on the rate of decrease for the coefficients.

Theorem 15.15 Suppose that there exists β such that

β <
1

e
, p+

1 ≥ βp+
2 , p

+
1 ≥ β2p+

3 , · · · , p+
1 ≥ βk−1p+

k , · · · (15.9.14)

and

p+
1 τ + β ≤ 1

e
(15.9.15)

is satisfied for (15.9.13). Then:

1) C(t, s) > 0 for 0 ≤ s ≤ t <∞.
2) If in addition inequality (15.9.5) and at least one of the conditions

a)
∞∑

k=1

pk(t)χ
(
hk(t)

)
> 0, c ≥ 0, t ∈ (0,∞),

b)
∞∑

k=1

pk(t)χ
(
hk(t)

)≥ 0, c > 0, t ∈ (0,∞),

(15.9.16)

is fulfilled, then the Green’s function G(t, s) of the boundary value prob-
lem (15.9.13), (15.9.2) is positive for t, s ∈ (0,ω) and satisfies the inequality
G(t, s)≥G+(t, s), where G+(t, s) is the Green’s function of problem (15.9.17),
(15.9.2), where

x′(t)+
∞∑

k=1

p+
k (t)x(t − kτ)= f (t), t ∈ [0,∞). (15.9.17)

Proof The proof follows from Theorems 15.8 and 15.14. �
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Let us consider the integrodifferential equation

(Mx)(t)≡ x′(t)+
∫ t−τ

0
K(t, s)x(s)ds = f (t), t ∈ [0,∞), (15.9.18)

whereK(t, s) is an essentially bounded function. Let us writeK(t, s)=K+(t, s)−
K−(t, s), where K+(t, s) and K−(t, s) are nonnegative functions.

Theorem 15.16 Let the inequalities

K+(t, s)≤ be−γ (t−s), 0 ≤ s ≤ t <∞, γ, b > 0, (15.9.19)

and

b ≤ γ 2

4
e
γ
2 τ (15.9.20)

be satisfied. Then:

1) C(t, s) > 0 for 0 ≤ s ≤ t <∞.
2) If in addition inequality (15.9.5) and

∫ t−τ

0
K(t, s)ds ≥ 0, c > 0, t ∈ (0,∞), (15.9.21)

are fulfilled, then the Green’s function G(t, s) of boundary value problem
(15.9.18), (15.9.2) is positive for t, s ∈ (0,ω) and satisfies the inequality
G(t, s)≥G+(t, s). Here G+(t, s) is the Green’s function of problem (15.9.22),
(15.9.2), where

x′(t)+
∫ t−τ

0
K+(t, s)x(s)ds = f (t), t ∈ [0,∞). (15.9.22)

Remark 15.12 Note that inequality (15.9.20) cannot be improved (see Remark 15.8).

15.10 Positivity of the Cauchy and Green’s Functions

Let us write positive linear continuous Volterra operators A : C[0,∞)→ L∞[0,∞)

and B : C[0,∞) → L∞[0,∞) in (15.9.1) in the form of the Stieltjes integrals
(Ax)(t) = ∫ t0 x(s)dsa(t, s) and (Bx)(t) = ∫ t0 x(s)dsb(t, s), respectively, and con-
sider the class of auxiliary equations

(Msx)(t)≡ x′(t)− (Asx)(t)+ (Bsx)(t)= f (t), t ∈ [s,∞), (15.10.1)

where the operators Bs : C[s,∞)→ L∞[s,∞) and As : C[s,∞)→ L∞[s,∞) are
defined as

(Asx)(t)=
∫ t

s

x(ξ)dξ a(t, ξ) and (Bsx)(t)=
∫ t

s

x(ξ)dξ b(t, ξ), t ∈ [0,∞).

(15.10.2)
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Theorem 15.17 The following three hypotheses are equivalent:

1) For each s ∈ [0,∞), there exists a positive function vs ∈D[s,ω] for every ω ∈
(0,∞), v′

s ∈ L∞[0,∞) such that (Msvs)(t)≤ 0 for t ∈ [s,∞).
2) The Cauchy function C(t, s) of (15.9.1) satisfies the inequality C(t, s) > 0 for

0 ≤ s ≤ t <∞.
3) There exists a function us ∈ L∞[s,∞) such that

us(t)≥ −As exp
∫ t

ξ

us(η)dη+Bs exp
∫ t

ξ

us(η)dη, t ∈ [s,∞), (15.10.3)

where

As exp
∫ t

ξ

us(η)dη=
∫ t

s

e
∫ t
ξ us (η)dηdξ a(t, ξ) (15.10.4)

and

Bs exp
∫ t

ξ

us(η)dη=
∫ t

s

e
∫ t
ξ us (η)dηdξ b(t, ξ).

Proof 1)⇒ 2) Let us suppose that C(t0, s0)= 0, while C(t, s) > 0 for s < s0, 0 ≤
s < t < t0.

Let us set Vs(t) = vs(t)
vs (s)

. Obviously Vs(s) = 1, Vs(t) > 0 for t ≥ s, and
(MsVs)(t) ≤ 0 for t ∈ [s,∞). Using the solution representation formula for
(15.10.1), we obtain

Vs0(t0)=
∫ t0

s0

C(t, ξ)ψ(ξ)dξ +C(t0, s0), (15.10.5)

where ψ(t) ≡ (Ms0Vs0)(t) ≤ 0 for t ≥ s0. Equality (15.10.5) implies Vs0(t0) ≤
C(t0, s0). From the positivity of Vs0(t0), we get the contradiction to our assump-
tion that C(t0, s0)= 0.

We set vs(t)= C(t, s) and vs(t)= exp(− ∫ t
s
us(ξ)dξ) in order to prove 2)⇒ 1)

and 3)⇒ 1), respectively.
In order to prove 2)⇒ 3), we set us(t)= − d

dt
lnC(t, s). In this case, C(t, s)=

exp(− ∫ t
s
us(ξ)dξ). Substituting x(t) = C(t, s) into (15.10.1), we obtain by carry-

ing the exponent out of the brackets

− exp

{
−
∫ t

s

us(η)dη

}[
us(t)+As exp

∫ t

ξ

us(η)dη−Bs exp
∫ t

ξ

us(η)dη

]
= 0,

(15.10.6)

t ∈ [s,∞). This proves inequality (15.10.3) and completes the proof. �

Consider now the delay differential equation

x′(t)− a(t)x
(
g(t)

)+ b(t)x
(
h(t)

)= f (t), t ∈ [0,∞), (15.10.7)

where

x(ξ)= 0 for ξ < 0, (15.10.8)

and a, b,f ∈ L∞[0,∞) as a particular case of (15.9.1).
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For (15.10.7), Theorem 15.17 takes the following form.

Theorem 15.18 Let a(t) ≥ 0, b(t) ≥ 0. Then the following three hypotheses are
equivalent:

1) For each s ∈ [0,∞), there exists a positive function vs ∈D[s,ω] for every ω ∈
(0,∞), v′

s ∈ L∞[0,∞) such that

Mvs(t)≡ v′
s(t)− a(t)χs

(
g(t)

)
vs
(
g(t)

)+ b(t)χs
(
h(t)

)
vs
(
h(t)

)

≤ 0, t ∈ [s,∞), (15.10.9)

where the function χ(t) is defined by the formula

χs(t)=
{

1, t ≥ s,

0, t < s.
(15.10.10)

2) The Cauchy function C(t, s) of (15.10.7) satisfies the inequality C(t, s) > 0 for
0 ≤ s ≤ t <∞.

3) For each s ∈ [0,∞), there exists a function us ∈ L∞[s,∞) such that

us(t)+ a(t)χs
(
g(t)

)
exp

{∫ t

g(t)

us(η)dη

}

− b(t)χs
(
h(t)

)
exp

{∫ t

h(t)

us(η)dη

}
≥ 0, (15.10.11)

t ∈ [s,∞).

When we set us = 0 for every s in assertion 3) of Theorem 15.18, the following
result is obtained.

Corollary 15.7 Let h(t) ≤ g(t) and 0 ≤ b(t) ≤ a(t) for t ∈ [0,∞). Then the
Cauchy function C(t, s) of (15.10.7) satisfies the inequality C(t, s) > 0 for 0 ≤ s ≤
t <∞.

Remark 15.13 Note that in hypothesis 3) nonnegativity of the function us is not
assumed.

Remark 15.14 The possibility should be noted that the Cauchy function C(t, s) of
(15.10.7) can be positive although the Cauchy function C+(t, s) of the equation

x′(t)+ b(t)x
(
h(t)

)= f (t), t ∈ [0,∞),
(15.10.12)

x(ξ)= 0 for ξ < 0,

can change its sign.

Example 15.7 Although solutions of the equation

x′(t)+ 10x(t − 2)= 0, t ∈ [0,∞),
(15.10.13)

x(ξ)= 0 for ξ < 0,
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oscillate and consequently, according to Theorem 15.3, its Cauchy functionC+(t, s)
changes sign, all nontrivial solutions of the equation

x′(t)+ 10x(t − 2)− 11x(t − 1)= 0, t ∈ [0,∞),
(15.10.14)

x(ξ)= 0 for ξ < 0,

nonoscillate and its Cauchy function C(t, s) is positive.

Theorem 15.19 Let h(t)≤ g(t) and 0 ≤ b(t)≤ a(t) for t ∈ [0,∞). Then:

1) For each s ∈ [0,∞), the derivative C′
t (t, s) of the Cauchy function C(t, s) of

(15.10.7) satisfies the inequality C′
t (t, s)≥ 0 for 0 ≤ s ≤ t <∞.

2) The boundary value problem

x′(t)− a(t)x
(
g(t)

)+ b(t)x
(
h(t)

)= f (t), t ∈ [0,ω], lx = c, (15.10.15)

where l : C[0,ω] → R is a positive nonzero functional, has a unique solution for
each f ∈ L∞[0,ω] c ∈ R.

3) The boundary value problem

x′(t)− a(t)x
(
g(t)

)+ b(t)x
(
h(t)

)= f (t), t ∈ [0,ω], lx ≡ x(ω)−mx = c,

(15.10.16)

where the norm of the functional m : C[0,ω] →R is less than one, has a unique
solution for each f ∈ L∞[0,ω], c ∈ R.

4) The boundary value problem

x′(t)− a(t)x
(
g(t)

)+ b(t)x
(
h(t)

)= f (t), t ∈ [0,ω],
2k∑

j−1

αjx(tj )= c, 0 ≤ t1 < t2 < · · ·< t2k ≤ ω,

where 0 ≤ −α2j−1 ≤ α2j , j = 1, · · · , k, and there exists i such that −α2i−1 <

α2i , has a unique solution for each f ∈ L∞[0,ω] c ∈ R.

Proof For each fixed s ∈ [0,∞), the Cauchy function C(t, s) as a function of t is a
solution of the equation

x′(t)− a(t)x
(
g(t)

)+ b(t)x
(
h(t)

)= 0, t ∈ [s,∞),
(15.10.17)

x(ξ)= 0 for ξ < s,

satisfying the initial condition C(s, s) = 1. The conditions h(t) ≤ g(t) and 0 ≤
b(t)≤ a(t) for t ∈ [0,∞) imply

C′
t (t, s)= a(t)C

(
g(t), s

)− b(t)C
(
h(t), s

)≥ 0, t ∈ [s,∞). (15.10.18)

Proofs of assertions 2)–4) follow from the fact that every nontrivial solution is
proportional to C(t,0). �

Let us define the sets

I 1
s = {t | g(t)≥ s, h(t)≥ s

}
, I 2

s = {t | g(t)≥ s, h(t) < s
}
, (15.10.19)
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I 3
s = {t | g(t) < s, h(t)≥ s

}
, I 4

s = {t | g(t) < s, h(t) < s}, (15.10.20)

where t ∈ [s,∞). It is clear that I 1
s ∪ I 2

s ∪ I 3
s ∪ I 4

s = [s,∞).

Theorem 15.20 Let h(t) ≤ g(t) and a(t) ≥ 0, b(t) ≥ 0 for t ∈ [0,∞). Then hy-
potheses 1) and 2) below are equivalent, and each of them implies assertions 3)
and 4). If we assume in addition that a(t) ≤ b(t) and the functions h and g are
nondecreasing for t ∈ [0,∞), then assertions 1)–4) are equivalent.

1) There exists a positive function v ∈D[0,ω] for every ω ∈ (0,∞), v′ ∈ L∞[0,∞)

such that v′(t)≤ 0 for t ∈ [0,∞) and

v′(t)− a(t)v
(
g(t)

)+ b(t)v
(
h(t)

)≤ 0, t ∈ I 1
0 . (15.10.21)

2) There exists a nonnegative function u ∈ L∞[0,∞) such that

u(t)+ a(t) exp

{∫ t

g(t)

u(η)dη

}
− b(t) exp

{∫ t

h(t)

u(η)dη

}
≥ 0, t ∈ I 1

0 .

(15.10.22)

3) The Cauchy function C(t, s) of (15.10.7) satisfies the inequality C(t, s) > 0 for
0 ≤ s ≤ t <∞.

4) The homogeneous equation (15.10.7), (15.10.8) (f ≡ 0) has a positive solution
x(t) > 0 for t ∈ [0,∞).

Proof In order to prove 1)⇒ 2) we set u(t)= − d
dt

ln v(t)
v(0) .

In this case, v(t) = exp{− ∫ t0 u(ξ)dξ}. Substituting this v into (15.10.21), we
obtain by carrying the exponent out of the brackets

− exp

{
−
∫ t

0
u(η)dη

}{
u(t)+ a(t) exp

∫ t

g(t)

u(η)dη− b(t) exp
∫ t

h(t)

u(η)dη

}

≤ 0, (15.10.23)

where t ∈ I 1
0 . This proves inequality (15.10.22).

Setting v(t)= exp{− ∫ t0 u(ξ)dξ}, we prove 2)⇒ 1).
Let us prove the implication 1)⇒ 3). It is sufficient to demonstrate that assertion

1) of the theorem implies hypothesis 1) of Theorem 15.18, and then the equivalence
obtained in Theorem 15.18 will complete the proof.

From the condition h(t)≤ g(t), we get I 1
s ∪I 2

s ∪I 4
s = [s,∞) for each s ∈ [0,∞).

Let us set vs(t) = v(t) for t ≥ s and vs(t) = 0 for t < s, where 0≤ s < ∞. The
condition v′(t)≤ 0 for t ∈ [0,∞) implies the inequality

v′
s(t)− a(t)χs

(
g(t)

)
vs
(
g(t)

)+ b(t)χs
(
h(t)

)
vs
(
h(t)

)≤ 0 (15.10.24)

for t ∈ I 4
s . The inequalities v′(t)≤ 0, a(t)≥ 0 and h(t)≤ g(t) for t ∈ [0,∞) imply

the inequality (15.10.24) for t ∈ I 2
s . Inequality (15.10.21) implies the inequality

(15.10.24) for t ∈ I 1
s . Thus

v′
s(t)− a(t)χs

(
g(t)

)
vs
(
g(t)

)+ b(t)χs
(
h(t)

)
vs
(
h(t)

)≤ 0 (15.10.25)

for t ∈ [s,∞), 0 ≤ s <∞.
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The reference to Theorem 15.18 completes the proof of the implication 1)⇒ 3).
The implication 3) ⇒ 4) is evident since the function C(t,0) is a solution of

(15.10.7), (15.10.8) (for f ≡ 0).
In order to prove the implication 4)⇒ 1), we note that in this case every set I js

can be only a finite or infinite interval for j = 1, · · · ,4 and set

v(t)=
{
α, t ∈ I 2

0 ∪ I 4
0 ,

C(t,0), t ∈ I 1
0 ,

(15.10.26)

where the constant α is chosen such that the function v : [0,∞)→ [0,∞) is con-
tinuous. The inequality v′(t)≤ 0 can be proven by repeating the same trick as in the
proof of Theorem 3.2 in Chap. 3, which completes the proof. �

Remark 15.15 The condition h(t) ≤ g(t) is essential, as the following example
demonstrates.

Example 15.8 Consider the equation

x′(t)+ x(t − 1)− x(t − 3)= 0, t ∈ [0,∞),
(15.10.27)

x(ξ)= 0 for ξ < 0.

The function v(t)≡ 1 for t ∈ [0,∞) satisfies condition 1) of Theorem 15.20 but the
Cauchy function C(t, s) < 0 for t ∈ (s + 1, s + 2).

Note that the results of Chap. 3 on eventually nonoscillating solutions and even-
tually positive Cauchy functions could not be directly applied for the maximum
inequalities principle. Theorem 15.20 allows us to adopt methods of Chap. 3 and
to obtain Corollaries 15.8 and 15.9 on nonoscillation and positivity of the Cauchy
function and the Green’s function.

Corollary 15.8 Assume that h(t)≤ g(t), a(t)≥ 0, b(t)≥ 0 for t ∈ [0,∞) and there
exists λ, 0< λ< 1, such that the inequalities

b(t)≥ λa(t), t ∈ [0,∞), (15.10.28)

sup
t∈[0,∞)

∫ g(t)

h(t)

[
b(ξ)− λa(ξ)

]
dξ <

1

e
ln

1

λ
, (15.10.29)

sup
t∈[0,∞)

∫ t

h(t)

[
b(ξ)− λa(ξ)

]
dξ <

1

e
, (15.10.30)

are satisfied. Then C(t, s) > 0 for 0 ≤ s ≤ t < ∞, and the nontrivial solution of
homogeneous equation (15.10.7), (15.10.8) (for f ≡ 0) is positive for 0 ≤ t <∞.
If in addition βC(ω,0) < 1, then the Green’s function G(t, s) of the generalized
periodic problem (15.10.7), (15.7.2) is positive for t, s ∈ [0,ω].

Proof Actually the justification of positivity of the Cauchy function repeats the
proof of Theorem 3.5 in Chap. 3.
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Let us prove first that the positive function u= e{b− λa} satisfies the inequality

u(t)≥ [b(t)− λa(t)
]

exp

{∫ t

h(t)

u(s)ds

}
, t ∈ I 1

0 . (15.10.31)

When we substitute this function u into the inequality, we get

e
[
b(t)− λa(t)

]≥ [b(t)− λa(t)
]

exp

{∫ t

h(t)

e
{
b(ξ)− λa(ξ)

}
dξ

}

and

1 ≥
{∫ t

h(t)

e
{
b(ξ)− λa(ξ)

}
dξ

}
.

Inequality (15.10.30) implies that this function u satisfies inequality (15.10.31).
Inequality (15.10.31) can be rewritten in the form

u(t)≥ b(t) exp

{∫ t

h(t)

u(ξ)dξ

}
− a(t) exp

{∫ t

g(t)

u(ξ)dξ

}

+ a(t)

[
exp

{∫ t

g(t)

u(ξ)dξ

}
− λ exp

{∫ t

h(t)

u(ξ)dξ

}]
, t ∈ I 1

0 .

(15.10.32)

Inequality (15.10.29) implies that the function u= e{b−λa} satisfies the inequality
∫ g(t)

h(t)

u(ξ)dξ < ln
1

λ
. (15.10.33)

Using inequality (15.10.33), we can estimate the second term on the right-hand side
of inequality (15.10.32) as

exp

{∫ t

g(t)

u(ξ)dξ

}
− λ exp

{∫ t

h(t)

u(ξ)dξ

}

= exp

{∫ t

g(t)

u(ξ)dξ

}[
1 − λ exp

{∫ g(t)

h(t)

u(ξ)dξ

}]

≥ exp

{∫ t

g(t)

u(ξ)dξ

}[
1 − λ

1

λ

]
= 0.

Thus

exp

{∫ t

g(t)

u(ξ)dξ

}
− λ exp

{∫ t

h(t)

u(ξ)dξ

}
≥ 0, t ∈ I 1

0 .

Next, inequality (15.10.32) can be rewritten in the form

u(t)≥ b(t) exp

{∫ t

h(t)

u(ξ)dξ

}
− a(t) exp

{∫ t

g(t)

u(ξ)dξ

}
, t ∈ I 1

0 .

The implication 2)⇒ 3) of Theorem (15.20) implies the positivity of the Cauchy
function C(t, s).

Positivity of the Green’s function of the generalized periodic problem (15.10.7),
(15.7.2) follows from the representation of the Green’s function (15.7.3). �
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Corollary 15.9 Assume that h(t)≤ g(t), a(t)≥ 0, b(t)≥ 0 for t ∈ [0,∞), and the
inequalities

b(t)≥ 1

e
a(t), t ∈ [0,∞), (15.10.34)

and

sup
t∈[0,∞)

∫ t

h(t)

[
b(ξ)− 1

e
a(ξ)

]
dξ <

1

e
, (15.10.35)

are fulfilled. Then C(t, s) > 0 for 0 ≤ s ≤ t <∞ and the nontrivial solution of the
homogeneous equation (15.10.7) (for f ≡ 0), (15.10.8) is positive for 0 ≤ t <∞.
If in addition βC(ω,0) < 1, then the Green’s function G(t, s) of the generalized
periodic problem (15.10.7), (15.7.2) is positive for t, s ∈ [0,ω].

Proof To prove Corollary 15.9, it is enough to set λ= 1
e

in Corollary 15.8. �

Remark 15.16 It was demonstrated in [81] that the coefficient 1
e

of a(t) in
(15.10.34) and (15.10.35) is sharp.

The following theorem deals with the case h(t)≥ g(t), which was not considered
in Chap. 3. Let us denote

τ(t)= t − h(t), σ (t)= t − g(t), τ∗ = inf
t∈[0,∞)

τ (t), σ ∗ = sup
t∈[0,∞)

σ (t).

Theorem 15.21 Let h(t)≥ g(t), b(t)≥ a(t)≥ 0 for t ∈ [0,∞) and the inequalities
∫ t

h(t)

[
b(ξ)− a(ξ)

]
dξ ≤ 1

e
, t ∈ [0,∞), (15.10.36)

sup
s∈[0,∞)

∫ s+σ ∗

s+τ∗
b(ξ)dξ ≤ 1

e
, (15.10.37)

be satisfied. Then C(t, s) > 0 for 0 ≤ s ≤ t <∞, and the nontrivial solution of the
homogeneous equation (15.10.7), (15.10.8) (for f ≡ 0) is positive for 0 ≤ t <∞.
If in addition βC(ω,0) < 1, then the Green’s function G(t, s) of the generalized
periodic problem (15.10.7), (15.7.2) is positive for t, s ∈ [0,ω].

Proof Let us set

vs(t)= exp

{
−e
∫ t

s

[
b(ξ)χs

(
h(ξ)

)− a(ξ)χs
(
g(ξ)

)]
dξ

}
, t ∈ [s,∞), (15.10.38)

in hypothesis 1) of Theorem 15.18. Then

Mvs(t)= −e[b(t)χs
(
h(t)

)− a(t)χs
(
g(t)

)]

× exp

{
−e
∫ t

s

[
b(ξ)χs

(
h(ξ)

)− a(ξ)χs
(
g(ξ)

)]
dξ

}
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+ b(t)χs
(
h(t)

)
exp

{
−e
∫ h(t)

s

[
b(ξ)χs

(
h(ξ)

)− a(ξ)χs
(
g(ξ)

)]
dξ

}

− a(t)χs
(
g(t)

)
exp

{
−e
∫ g(t)

s

[
b(ξ)χs

(
h(ξ)

)− a(ξ)χs
(
g(ξ)

)]
dξ

}

= exp

{
−e
∫ t

s

[
b(ξ)χs

(
h(ξ)

)− a(ξ)χs
(
g(ξ)

)]
dξ

}

×
[
−e[b(t)χs

(
h(t)

)− a(t)χs
(
g(t)

)]

+ b(t)χs
(
h(t)

)
exp

{
e

∫ t

h(t)

[
b(ξ)χs

(
h(ξ)

)− a(ξ)χs
(
g(ξ)

)]
dξ

}

− a(t)χs
(
g(t)

)
exp

{
e

∫ t

g(t)

[
b(ξ)χs

(
h(ξ)

)− a(ξ)χs
(
g(ξ)

)]
dξ

}]
.

(15.10.39)

It is clear that I 1
s ∪ I 3

s ∪ I 4
s = [s,∞). Obviously the inequality Mvs(t) ≤ 0 is

satisfied for t ∈ I 4
s . The inequality (15.10.36) implies that the inequalityMvs(t)≤ 0

is satisfied for t ∈ I 1
s .

In order to obtain the inequality Mvs(t)≤ 0 for t ∈ I 3
s from formula (15.10.39),

we have to get the inequality

− eb(t)χs
(
h(t)

)+ b(t)χs
(
h(t)

)
exp

{
e

∫ t

h(t)

[
b(ξ)χs

(
h(ξ)

)]
dξ

}

= b(t)χs
(
h(t)

)[−e+ exp

{
e

∫ t

h(t)

[
b(ξ)χs

(
h(ξ)

)]
dξ

}]
≤ 0, (15.10.40)

which is fulfilled if
∫ t

h(t)

b(ξ)χs
(
h(ξ)

)
dξ ≤ 1

e
, t ∈ I 3

s . (15.10.41)

Inequality (15.10.41) follows from the definition of I 3
s that t ≤ s+σ ∗ for t ∈ I 3

s and
from the inequality h(ξ) ≤ ξ − τ∗ that χs(h(ξ)) = 0 for ξ ∈ [s, s + τ∗). It is clear
now that inequality (15.10.37) implies (15.10.41) for any s.

Positivity of the Green’s function of generalized periodic problem (15.10.7),
(15.7.2) follows from the representation of the Green’s function (15.7.3). This com-
pletes the proof of the theorem. �

Consider now the autonomous delay differential equation

x′(t)− ax(t − σ)+ bx(t − τ)= f (t), t ∈ [0,∞) (15.10.42)

(i.e., we set a(t)≡ a, b(t)≡ b, h(t)≡ t − τ , g(t)≡ t − σ in (15.10.7)), where the
initial function is determined by (15.10.8).

For the autonomous equation (15.10.42), we need only one function v0 instead of
an infinite number of functions vs , s ∈ [0,∞) in condition 1) and only one function
u0 instead of us , s ∈ [0,∞) in condition 3) of Theorem 15.18.



376 15 Maximum Principles and Nonoscillation Intervals

Theorem 15.22 Let a > 0, b > 0. Then the following three hypotheses are equiva-
lent:

1) There exists a positive function v ∈D∞[0,∞) such that

v′(t)− aχ0(t − σ)v(t − σ)+ bχ0(t − τ)v(t − τ)≤ 0, t ∈ [0,∞), (15.10.43)

where the function χ(t) is defined by formula (15.10.10).
2) The Cauchy function C(t, s) of (15.10.42) satisfies the inequality C(t, s) > 0 for

0 ≤ s ≤ t <∞.
3) There exists a function u ∈ L∞[0,∞) such that

u(t)+ aχ0(t − σ) exp

{∫ t

t−σ
u(η)dη

}

− bχ0(t − τ) exp

{∫ t

t−τ
u(η)dη

}
≥ 0 (15.10.44)

for t ∈ [0,∞).

If in addition βC(ω,0) < 1, then the following assertion is equivalent to hypothe-
ses 1)–3):

4) The Green’s function G(t, s) of the generalized periodic problem (15.10.7),
(15.7.2) is positive for t, s ∈ [0,ω].

Proof For autonomous equation (15.10.42), we can set vs(t)= v(t − s) in assertion
1) and us(t)= u(t − s) in hypothesis 3) of Theorem 15.18. The reference to Theo-
rem 15.18 completes the proof of the equivalence of assertions 1)–3). Positivity of
the Green’s function of the generalized periodic problem (15.10.7), (15.7.2) follows
from the representation of the Green’s function (15.7.3). �

The following statement for (15.10.42) follows from Corollary 15.9 and Theo-
rem 15.21.

Theorem 15.23 Let a > 0, b > 0, and one of the conditions a) or b) be fulfilled:

a) τ > σ , b ≥ 1
e
a and (b− 1

e
a)τ < 1

e
.

b) τ < σ , b ≥ a, (b− a)τ ≤ 1
e

and b(σ − τ)≤ 1
e
.

Then the Cauchy function C(t, s) > 0 for 0 ≤ s ≤ t <∞ and the nontrivial so-
lution of the homogeneous equation (15.10.42), (15.10.8) (for f ≡ 0) is positive for
0 ≤ t < ∞. If in addition βC(ω,0) < 1, then the Green’s function G(t, s) of the
generalized periodic problem (15.10.42), (15.7.2) is positive for t, s ∈ [0,ω].

15.11 Equations with an Oscillating Coefficient

Consider the delay equation

x′(t)+ p(t)x
(
h(t)

)= f (t), t ∈ [0,∞), (15.11.1)
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x(ξ)= 0, ξ < 0, (15.11.2)

with oscillating coefficient p(t) changing its sign at the points

tk (k = 1,2,3, · · · , t0 = 0).

Theorem 15.24 Let one of the following two conditions a) or b) be satisfied:

a) The coefficient p(t) satisfies the condition p(t)≥ 0 for (t2k, t2k+1) and p(t)≤ 0
for (t2k+1, t2k+2) for k = 0,1,2, · · · , and

∫ t2k+1

t2k

p(t)dt < 1, k = 0,1,2, · · · , (15.11.3)

and the deviating argument h(t) satisfies the condition t2k−1 ≤ h(t) for t ∈
[t2k, t2k+1].

b) The coefficient p(t) satisfies the condition p(t)≤ 0 for (t2k, t2k+1) and p(t)≥ 0
for (t2k+1, t2k+2) for k = 0,1,2, · · · , and

∫ t2k+2

t2k+1

p(t)dt < 1, k = 0,1,2, · · · , (15.11.4)

and the deviating argument h(t) satisfies the condition: t2k ≤ h(t) for t ∈
[t2k+1, t2k+2].
Then C(t, s) > 0 for 0 ≤ s ≤ t <∞.

Proof We use the fact that x(t) = C(t, s) for each fixed s as a function of t is a
solution of the equation

x′(t)+ p(t)x
(
h(t)

)= 0, t ∈ [s,∞), (15.11.5)

x(ξ)= 0, ξ < s. (15.11.6)

Let us prove that condition a) implies C(t, s) > 0 for 0 ≤ s ≤ t <∞. Let us denote
p(t)= p+(t)− p−(t), where p+(t)≥ 0, p−(t)≥ 0, and consider the equation

x′(t)+ p+(t)x
(
h(t)

)= 0, t ∈ [s,∞). (15.11.7)

It is clear that the solution x(t) = C(t, s) is equal to the constants on each of the
intervals [t2k+1, t2k+2], k = 0,1,2, · · · . The inequality (15.11.3) implies according
to Corollary (15.4.1) positivity of x(t)= C(t, s) for [t2k, t2k+1], k = 0,1,2, · · · .

Similarly it can be proven that condition b) implies C(t, s) > 0 for 0 ≤ s ≤
t <∞. �

Inequalities (15.11.3) and (15.11.4) are unimprovable, as the following examples
demonstrate.

Example 15.9 Consider the equation

x′(t)+ x
([t])= 0, t ∈ [0,∞), (15.11.8)
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where [t] is the integer part of t . The solution of this equation is

x(t)= C(t,0)=
{

1 − t, 0 ≤ t < 1,

0, 1 ≤ t.
(15.11.9)

Example 15.10 Consider the equation

x′(t)+ p(t)x
([t])= 0, t ∈ [0,∞), (15.11.10)

where

p(t)=
{
b(t), 2k ≤ t ≤ 2k+ 1,

−a(t), 2k + 1< t < 2k+ 2,
(15.11.11)

a(t)≥ 0, b(t) > 1 + ε, ε > 0. The solution x(t)= C(t,0) changes its sign in every
interval [2k,2k+ 1], k = 0,1,2, · · · .

The following example demonstrates that even positivity of the solution of a
homogeneous equation with an oscillating coefficient on a corresponding interval
does not imply positivity of its Cauchy function.

Example 15.11 Consider the equation

x′(t)+ p(t)x
(
h(t)

)= f (t), t ∈
[

0,
7

2

]
, (15.11.12)

where x(ξ)= 0 for ξ < 0,

h(t)=
{
t − 1, 0 ≤ t ≤ 2,

1, 2< t ≤ 7
2 ,

p(t)=
{−1, 0 ≤ t ≤ 2,

1, 2< t ≤ 7
2 .

The solution of the homogeneous equation

x′(t)+ p(t)x
(
h(t)

)= 0, t ∈
[

0,
7

2

]
, (15.11.13)

where x(ξ)= 0 for ξ < 0, is

x(t)=

⎧
⎪⎨

⎪⎩

1, t ∈ [0,1],
t, t ∈ (1,2],
4 − t, t ∈ (2, 7

2 ],
(15.11.14)

and it is positive for t ∈ [0, 7
2 ].

The Cauchy function C(t, s) for each fixed s can be obtained as a solution of the
equation

x′(t)+ p(t)x
(
h(t)

)= 0, t ∈
[
s,

7

2

]
, (15.11.15)
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where x(ξ)= 0 for ξ < s. Considering the cases when 1
2 < s < 1, we get

C(t, s)=

⎧
⎪⎨

⎪⎩

1, t ∈ [s, s + 1],
t − s, t ∈ (s + 1,2],
4 − s − t, t ∈ (2, 7

2 ].
(15.11.16)

We see that C(t, s) changes its sign for t ∈ (2, 7
2 ].

We can conclude that C(t, s) changes its sign also using another approach. Con-
sider the initial problem

x′(t)+ p(t)x
(
h(t)

)= f (t), t ∈
[

0,
7

2

]
, x(0)= 0, (15.11.17)

where

f (t)=

⎧
⎪⎨

⎪⎩

0, t ∈ [0, 1
2 ),

1, t ∈ [ 1
2 ,1],

0, t ∈ (1, 7
2 ].

(15.11.18)

The solution of problem (15.11.17) in this case is

x(t)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, t ∈ [0, 1
2 ],

t − 1
2 , t ∈ ( 1

2 ,1],
1, t ∈ (1, 3

2 ],
1
2 [1 + (t − 3

2 )
2], t ∈ [ 3

2 ,2),
1
2 (

13
4 − t), t ∈ [2, 7

2 ].

(15.11.19)

It is clear that x(t) < 0 for 13
4 < t <

7
2 . We obtain that for the nonnegative right-hand

side of (15.11.18), the solution x changes its sign. This also proves that the Cauchy
function C(t, s) changes its sign.

The following assertion is the maximum boundaries principle for equations with
oscillating coefficients.

Theorem 15.25 Let the condition a) (b)) of Theorem 15.24 be fulfilled. Then the
absolute value of every solution x of the homogeneous equation

x′(t)+ p(t)x
(
h(t)

)= 0, t ∈ [0,∞), (15.11.20)

where x(ξ) = 0 for ξ < 0, has its maxima only at the points t2k (t2k+1) and its
minima only at the points t2k+1 (t2k), k = 0,1,2, · · · .

Proof According to Theorem 15.24, solutions of the homogeneous equation
(15.11.20) do not change their signs, which implies that |x(t)| does not increase
when p(t)≥ 0 and does not decrease when p(t)≤ 0. �

The maximum principle obtained in Theorem 15.25 implies various results on
the existence of unique solutions of boundary value problems for (15.11.1).
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Theorem 15.26 Let condition a) of Theorem 15.24 be satisfied. Then the following
assertions are valid:

1) If l : C[0,ω] → R is a linear nonzero positive functional, then the boundary
value problem (15.11.1), (15.11.2), (15.11.21), where

lx = c, (15.11.21)

has a unique solution for each f ∈ L[0,ω], c ∈ R.
2) Boundary value problem (15.11.1), (15.11.2), (15.11.22), where

lx ≡
n∑

k=1

{
x(t2k)−mkx

}= c, (15.11.22)

and the norm of every linear functional mk : C[t2k−1, t2k] → R is less than one,
has a unique solution for each f ∈ L1[0,ω], c ∈ R.

3) The boundary value problem (15.11.1), (15.11.2), (15.11.23),
n∑

k=0

αkx(s2k)=
n∑

k=0

βkx(s2k+1)+ c, (15.11.23)

where the inequalities t2k ≤ s2k < s2k+1 ≤ t2k+1 and αk ≥ βk ≥ 0 are satisfied
for k = 0,1,2, · · · , n and there exists j such that αj > βj , has a unique solution
for each f ∈ L[0,ω], c ∈R.

4) The boundary value problem (15.11.1), (15.11.2), (15.11.24), where
n∑

j=1

{∫ t2j

t2j−1

α(t)x(t)dt

}
= c, 0 = t0 ≤ t1 < t2 < · · ·< t2n−1 < t2n ≤ ω,

(15.11.24)

in the case where α(t)≥ 0 for t ∈ [sj , t2j ], α(t)≤ 0 for t ∈ [t2j−1, sj ], t1 < s1 <
t2, · · · , t2n−1 < sn < t2n,

∫ t2j
t2j−1

α(t)dt ≥ 0, j = 1, · · · , k, and there exists j such

that
∫ t2j
t2j−1

α(t)dt > 0, has a unique solution for each f ∈ L[0,ω], c ∈ R.

Example 15.12 The periodic problem for the equation

x′(t)= 0, t ∈ [0,ω], (15.11.25)

has the nontrivial solution x(t)≡ 1, t ∈ [0,ω]. This demonstrates that the condition
about existence of j such that αj > βj is essential.

The location of the points sk in assertion 3) is essential. If instead of the inequality
t2k ≤ s2k < s2k+1 ≤ t2k+1 we assume that t2k ≤ s2k < s2k+1 ≤ t2k+2, then the result
on the unique solvability is not true, as the following example demonstrates.

Example 15.13 Consider the homogeneous problem

x′(t)+ p(t)x(0)= 0, 2x

(
1

2

)
= x(1), t ∈ [0,1], (15.11.26)
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where

p(t)=
{

1, 0 ≤ t < 1
2 ,

−1, 1
2 ≤ t ≤ 1.

(15.11.27)

This problem has the nontrivial solution

x(t)=
{

1 − t, 0 ≤ t < 1
2 ,

t, 1
2 ≤ t ≤ 1.

(15.11.28)

Let us obtain sufficient conditions of the exponential stability (see Defini-
tion B.17) based on the positivity of the Cauchy function.

Consider (15.11.1) with an oscillating coefficient p(t), changing its sign at the
points tk (k = 1,2,3, · · ·), where t0 = 0. Let us assume that there exist positive
numbers c1 and c2 such that c1 < tk+1 − tk < c2 for every k.

Theorem 15.27 Let the following conditions hold:

a) The coefficient p(t) satisfies the inequalities p(t) ≥ 0 for (t2k, t2k+1), p(t) ≤ 0
for (t2k+1, t2k+2) and

∫ t2k+1
t2k

p(t)dt < 1 for k = 0,1,2, · · · .
b) The deviating argument h(t) satisfies the inequalities tk−1 ≤ h(t) for t ∈

[tk, tk+1], h(t)≤ t2k−1 for t ∈ [t2k−1, t2k].
c) There exists a number γ such that

γk+1 ≡ exp

[
−
∫ t2k+1

t2k

p(t)χ
(
h(t), t2k

)
dt

]

+
∫ t2k+2

t2k+1

∣∣p(t)
∣∣dt ≤ γ < 1, k = 0,1,2, · · · , (15.11.29)

where

χ(t, s)=
{

1, t ≥ s,

0, t < s.
(15.11.30)

Then (15.11.1) is exponentially stable.

Proof According to Theorem 15.24, conditions a) and b) imply positivity of the
Cauchy function C(t, s) of (15.11.1), (15.11.2) for 0 ≤ s ≤ t <∞. The function

u(t)=

⎧
⎪⎪⎨

⎪⎪⎩

γ0 · · ·γk−1 exp[− ∫ t
t2k
p(t)χ(h(s), t2k)ds], t2k−2 ≤ t < t2k−1,

γ0 · · ·γk−1 exp[− ∫ t2k+1
t2k

p(s)χ(h(s), t2k)ds]
+ ∫ t

t2k+1
|p(s)|ds, t2k−1 ≤ t < t2k,

(15.11.31)

k = 1,2, · · · , where γ0 = 1, satisfies the inequality (Mu)(t) ≥ 0. The positivity of
C(t, s) implies that u(t)≥ x(t) for t ∈ [0,∞), where the function x is a solution of
the initial problem (Mx)(t)= 0, t ∈ [0,∞), x(0)= 1. �
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Remark 15.17 The inequality

exp

[
−
∫ t2k+1

t2k

p(t)χ
(
h(t), t2k

)
dt

]
+
∫ t2k+2

t2k+1

∣∣p(t)
∣∣dt < 1, k = 0,1,2, · · · ,

(15.11.32)

cannot be set instead of condition c), as the following example demonstrates.

Example 15.14 Consider (15.11.20), where h(t)≡ t ,

p(t)=
{

1
t2
, 2k ≤ t < 2k+ 1,

0, 2k+ 1 ≤ t < 2k + 2,
k = 1,2, · · · . (15.11.33)

Its nontrivial solutions tend to constants when t → ∞. Note that condition c) avoids
the possibility that limk→∞

∫ t2k+1
t2k

p(t)χ(h(t), t2k)dt = 0.

Theorem 15.28 Suppose that conditions a) and b) of Theorem 15.27 are fulfilled,
the deviating argument h(t) satisfies the inequality t − h(t)≤ τ for t ∈ [0,∞) and
there exists a number γ such that

exp

[
−
∫ t2k+1

t2k

p(t)χ
(
h(t), t2k

)
dt

]

×
{

1 + exp

[∫ t2k+1

t2k+1−τ
p(ξ)dξ

]∫ t2k+2

t2k+1

∣∣p(t)
∣∣dt
}

≤ γ < 1 (15.11.34)

for k = 0,1,2, · · · . Then (15.11.1) is exponentially stable.

Example 15.15 Assume that h(t) ≥ 0, t2k−1 ≤ h(t) for t ∈ [t2k, t2k+1], p(t + 2)=
p(t), where

p(t)=
{

ln(1 + t), 0 ≤ t ≤ 1,

−μ, 1< t < 2.
(15.11.35)

If 0<μ< 4−e
4 , then (15.11.1) with this coefficient p(t) is exponentially stable.

Consider now the generalized periodic problem

x′(t)+ p(t)x
(
h(t)

)= f (t), t ∈ [0,ω], (15.11.36)

x(ξ)= 0, ξ < 0, (15.11.37)

x(0)= βx(ω), (15.11.38)

with oscillating coefficient p(t) changing its sign at the points tk , where k =
1,2,3, · · · ,2m− 1, of the interval [0,ω]. Denote t0 = 0 and t2m = ω.

Theorem 15.29 Let p(t) ≥ 0 for t ∈ [0, t1] and p(t) ≤ 0 for t ∈ (t1,ω], h(t) ≤ t1
for t ∈ [t1,ω], C(t, s) > 0 for 0 ≤ s ≤ t ≤ ω, and the inequality
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{
1 − exp

[∫ t1

t1−τ∗
p(ξ)χ0

(
h(ξ)

)
dξ

]∫ ω

t1

p(ξ)dξ

}

× exp

{
−
∫ t1

0
p(ξ)χ0

(
h(ξ)

)
dξ

}
<

1

β
, (15.11.39)

where τ ∗ = ess supt∈[0,ω]{t − h(t)}, be fulfilled. Then C(ω,0) < 1
β

and the Green’s
function G(t, s) of the generalized periodic problem (15.11.36), (15.11.38) is posi-
tive for t, s ∈ [0,ω].

Proof Using the conditions C(t, s) > 0 for 0 ≤ s ≤ t ≤ ω and p(t) ≥ 0 for
t ∈ [0, t1], we obtain according to Theorem 15.5 that C(t,0) ≤ exp{− ∫ t0 p(ξ) ×
χ0(h(ξ))dξ} for t ∈ [0, t1]. Using the fact that C(t,0) decreases for t ∈ [0, t1] and
the condition h(t)≤ t1 for t ∈ [t1,ω], we obtain

C(t,0)≤ exp

{
−
∫ t1

0
p(ξ)χ0

(
h(ξ)

)
dξ

}

− exp

[
−
∫ t1−τ∗

0
p(ξ)χ0

(
h(ξ)

)
dξ

]∫ ω

t1

p(ξ)dξ. (15.11.40)

Inequality (15.11.39) implies that C(ω,0) < 1
β

. Now the representation

G(t, s)= C(t, s)+ βC(ω, s)

1 − βC(ω,0)
C(t,0), (15.11.41)

where C(t, s) = 0 for t < s, implies the positivity of the Green’s function of the
generalized periodic problem (15.11.36), (15.11.38). �

Theorem 15.30 Let the following conditions hold:

a) The coefficient p(t) satisfies the inequalities p(t) ≥ 0 for (t2k, t2k+1), p(t) ≤ 0
for (t2k+1, t2k+2) and

∫ t2k+1
t2k

p(t)dt < 1 for k = 0,1,2, · · · ,m− 1.
b) The deviating argument h(t) satisfies the inequalities tk−1 ≤ h(t) for t ∈

[tk, tk+1], h(t)≤ t2k−1 for t ∈ [t2k−1, t2k].
c) The inequality γ1 · · ·γm < 1

β
is satisfied, where γk are defined by (15.11.29).

Then the Green’s functionG(t, s) of the generalized periodic problem (15.11.36),
(15.11.38) is positive for t, s ∈ [0,ω].

Proof According to Theorem 15.24, conditions a) and b) imply the positivity of
the Cauchy function C(t, s) for 0 ≤ s ≤ t ≤ ω. Now it is clear that the func-
tion u(t) defined by formula (15.11.31) satisfies the inequality u(t) ≥ C(t,0) for
t ∈ [0,ω]. Condition c) implies the inequality C(ω,0) < 1

β
and consequently the

unique solvability of problem (15.11.36), (15.11.38). The Green’s function of prob-
lem (15.11.36), (15.11.38) has representation (15.11.41), where C(t, s) = 0 for
t < s. The inequalities C(t, s) > 0 for 0 ≤ s ≤ t ≤ ω and C(ω,0) < 1

β
imply that

G(t, s) > 0 for t, s ∈ [0,ω]. �
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15.12 Positivity of the Cauchy Function and Exponential
Stability

The aim of this section is to demonstrate how results on nonoscillation can be
adopted to study exponential stability of functional differential equations.

Let us consider the equation

x′(t)− (A1x)(t)− (A2x)(t)+ (Bx)(t)= f (t), t ∈ [0,∞), (15.12.1)

where the linear operators A1,A2,B are defined by the equalities

(A1x)(t)=
∫ t

0
x(s)dsA1(t, s),

(A2x)(t)=
∫ t

0
x(s)dsA2(t, s),

(Bx)(t)=
∫ t

0
x(s)dsB(t, s),

with the functions A1(t, s), A2(t, s) and B(t, s) satisfying the conditions that
A1(·, s), A2(·, s) and B(·, s) : [0,ω] → R are measurable for s ∈ [0,ω], A1(t, ·),
A2(t, ·) and B(t, ·) : [0,ω] → R have a bounded variation for almost all t ∈ [0,ω]
and Varts=0A1(t, s), Varts=0A2(t, s) and Varts=0B(t, s) are essentially bounded for
every positive ω. It is clear that A1, A2, B are bounded Volterra operators on each
finite interval [0,ω], and let us assume that the operators A1 and B are positive,
f ∈ L∞[0,∞).

Let us define the operator M : D[0,∞) → L∞[0,∞), where D[0,∞) is the
space of functions absolutely continuous on each interval [0,ω] such that their
derivative x′ ∈ L∞[0,∞), by the formula

(Mx)(t)≡ x′(t)− (A1x)(t)− (A2x)(t)+ (Bx)(t), t ∈ [0,∞). (15.12.2)

In order to formulate several convenient exponential stability tests for (15.12.1),
we introduce the following definitions.

By Theorem A.11, the operator A2 : C[0,∞)→ L∞[0,∞) has the representa-
tion

(A2x)(t)=
∫ t

0
x(s)dsA2(t, s),

whereA2(t, s)=A+
2 (t, s)−A−

2 (t, s), and for each t ∈ [0,∞) the functionsA+
2 (t, ·)

and A−
2 (t, ·) are nondecreasing.

Consider the auxiliary equations

(M0x)(t)≡ x′(t)− (A1x)(t)+ (Bx)(t)= f (t), t ∈ [0,∞), (15.12.3)

and
(
M+x

)
(t)≡ x′(t)− (A1x)(t)−

(|A2|x
)
(t)+ (Bx)(t)= f (t), t ∈ [0,∞),

(15.12.4)
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where the operator |A2| is defined by the formula

(|A2|x
)
(t)=

∫ t

0
x(s)ds

(
A+

2 (t, s)+A−
2 (t, s)

)
, t ∈ [0,∞). (15.12.5)

In the following theorem, we use weighted spaces, see Definition A.3.

Theorem 15.31 Assume that the Cauchy function C0(t, s) of (15.12.3) is positive
for 0 ≤ s ≤ t < ∞, A1 and B are positive operators, for some λ > 0 we have
A1,A2,B : Cλ[0,∞) → Lλ∞[0,∞) and there exist positive ε and nonnegative t0
such that the following inequality is satisfied:

(A11)(t)+ (|A2|1
)
(t)+ ε ≤ (B1)(t), t ∈ [t0,∞). (15.12.6)

Then (15.12.1) is exponentially stable and its Cauchy function C(t, s) satisfies the
inequality

lim
t→∞

∫ t

0

∣∣C(t, s)
∣∣ds ≤ 1

ε
. (15.12.7)

Proof Without loss of generality, we consider the case t0 = 0. Inequality (15.12.6)
implies that the function v(t) ≡ 1

ε
satisfies the inequality f+(t) ≡ (M+ 1

ε
)(t) ≥ 1

for t ∈ [0,∞). Equation (15.12.4) is equivalent to the integral equation

x(t)= (Kx)(t)+ψ(t), t ∈ [0,ω], (15.12.8)

where the operator K is defined by the equality

(Kx)(t)=
∫ t

0
C0(t, s)

(|A2|x
)
(s)ds (15.12.9)

and

ψ(t)=
∫ t

0
C0(t, s)f (s)ds +C0(t,0)γ, (15.12.10)

where γ = x(0). Positivity of the Cauchy function C0(t, s) of (15.12.3) implies
that the operator K is positive. Nonnegativity of the function f+, positivity of the
Cauchy function C0(t, s) and the equality γ = v(0) = 1

ε
imply positivity of the

function ψ .
By Lemma A.2, if there exists a positive continuous function v such that v −

Kv > 0, whereK is a positive operator, then the spectral radius ρ(K) of the operator
K is less than one. We have demonstrated that all conditions of this theorem are
fulfilled, and now we obtain that ρ(K) < 1. This implies the positivity of the Cauchy
function C(t, s) of (15.12.4), and consequently the fact that for each |f (t)| ≤ 1,
where t ∈ [0,∞), the solution x of (15.12.4) satisfies the inequality − 1

ε
≤ x(t)≤ 1

ε
for t ∈ [0,∞).

According to Theorem A.13, the spectral radius of the operator K1 : C[0,∞)→
C[0,∞) defined by the formula

(K1x)(t)=
∫ t

0
C0(t, s)(A2x)(s)ds (15.12.11)
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is less than one. Equation (15.12.1) is equivalent to the integral equation

x(t)= (K1x)(t)+ψ(t), t ∈ [0,∞), (15.12.12)

where the function ψ is defined by the equality (15.12.10). If we set f = f+, then
for solutions x of (15.12.12) and y of (15.12.8) we get the inequality |x(t)| ≤ y(t),
t ∈ [0,∞). This proves inequality (15.12.7).

From solution representation formula (15.3.7), it is now clear that for each
bounded f a solution x of (15.12.1) is bounded. Hence, by Theorem B.20, (15.12.1)
is exponentially stable. �

Now we propose several explicit tests of the exponential stability obtained for
the equation

x′(t)− a1(t)x
(
g1(t)

)− a2(t)x
(
g2(t)

)+ b(t)x
(
h(t)

)= f (t), t ∈ [0,∞),

(15.12.13)

where

x(ξ)= 0 for ξ < 0, (15.12.14)

on the basis of the results of Section 15.10 on positivity of the Cauchy function
C(t, s).

Let us assume that t − g1(t), t − g2(t), t − h(t) are bounded (in this case
the operator M defined by formula (15.12.2) satisfies the δ-condition) and denote
τ(t)= t − h(t), σ1(t)= t − g1(t), τ∗ = inft∈[0,∞) τ (t), σ ∗ = supt∈[0,∞) σ1(t).

Theorem 15.32 Assume that a1(t) ≥ 0, t − h(t) ≤ δ, t − g1(t) ≤ δ, t − g2(t) ≤ δ

for t ∈ [0,∞), there exists a positive ε such that b(t) ≥ a1(t)+ |a2(t)| + ε and at
least one of the following conditions a) or b) is fulfilled:

a) h(t)≥ g1(t) for t ∈ [0,∞),
∫ t

h(t)

[
b(ξ)− a1(ξ)

]
dξ ≤ 1

e
, t ∈ [0,∞), (15.12.15)

sup
s∈[0,∞)

∫ s+σ ∗

s+τ∗
b(ξ)dξ ≤ 1

e
. (15.12.16)

b) h(t)≤ g1(t) for t ∈ [0,∞),

sup
t∈[0,∞)

∫ t

h(t)

{
b(ξ)− 1

e
a1(ξ)

}
dξ <

1

e
. (15.12.17)

Then (15.12.13) is exponentially stable, and its Cauchy function C(t, s) satisfies
the exponential estimate and the inequality

lim
t→∞

∫ t

0

∣∣C(t, s)
∣∣ds ≤ 1

ε
. (15.12.18)
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Proof The proof follows from Corollary 15.9 and Theorems 15.21 and 15.31. �

Consider now the autonomous delay differential equation

x′(t)− a1x(t − σ1)− a2x(t − σ2)+ bx(t − τ)= f (t), t ∈ [0,∞), (15.12.19)

with the initial condition (15.12.14).

Theorem 15.33 Let a1 > 0 and one of the following conditions a) or b) be fulfilled:

a) τ < σ1, (b− a1)τ ≤ 1
e

and b(σ1 − τ)≤ 1
e
.

b) τ > σ1, (b− 1
e
a1)τ <

1
e
.

Then:

1) Equation (15.12.19) is exponentially stable and its Cauchy function C(t, s) sat-
isfies the exponential estimate if b− a1 − |a2|> 0.

2) If in addition we assume that a2 > 0, then (15.12.19) is exponentially stable
and its Cauchy function C(t, s) satisfies the exponential estimate if and only if
b− a1 − a2 > 0.

3) ε = b − a1 − |a2| > 0, the Cauchy function C(t, s) of (15.12.19) satisfies in-
equality (15.12.18), and if a2 > 0, then

lim
t→∞

∫ t

0

∣∣C(t, s)
∣∣ds = 1

ε
. (15.12.20)

Proof Assertion 1), sufficiency in assertion 2), and inequality (15.12.18) follow
from Theorems 15.23 and 15.32.

Necessity in assertion 2). The function x(t) ≡ 1 is a solution of (15.12.19),
where

f (t)=
{
ε[a1(1 − χ(t − σ1)+ a2(1 − χ(t − σ2)− b(1 − τ)χ(t − τ))], 0 ≤ t ≤ t0,

ε, t0 < t,

where t0 = max{σ1, σ2, τ }.
By the solution representation formula, we can write

1 =
∫ t0

0
C(t, s)f (s)ds + ε

∫ t

t0

C(t, s)ds +C(t,0), (15.12.21)

and using the conditions that the solution of the homogeneous equation (f ≡ 0)
corresponding to (15.12.19) tends to zero when t → ∞ and the Cauchy function
C(t, s) of (15.12.19) satisfies the exponential estimate, we obtain

1 = ε lim
t→∞

∫ t

t0

C(t, s)ds. (15.12.22)

The Cauchy function C(t, s) of (15.12.19) is positive for 0 ≤ s ≤ t <∞ [178]. Thus
the formula (15.12.22) implies ε > 0.

To finish the proof of Theorem 15.33, we note that equality (15.12.20) follows
from (15.12.22). �
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15.13 General Boundary Value Problems

In this section, we will consider the cases of positive and negative Volterra operators,
as well as non-Volterra operators.

Let us consider the boundary value problem

(Mx)(t)≡ x′(t)+ (Bx)(t)= f (t), t ∈ [0,ω], (15.13.1)

lx ≡ θx(0)+
∫ ω

0
φ(s)x′(s)ds = c, (15.13.2)

where B : C[0,ω] → L∞[0,ω] is a linear continuous operator (C[0,ω] and
L∞[0,ω] are the spaces of continuous and measurable essentially bounded func-
tions [0,ω] → R, respectively), θ ∈ R and φ ∈ L∞[0,ω]. It should be noted that
formula (15.13.2) defines the general form of a functional l :D[0,ω] → R, where
D[0,ω] is the space of absolutely continuous functions x : [0,ω] →R. In this case,
the operator B can be represented in the form [216]

(Bx)(t)=
∫ ω

0
x(s)dsb(t, s), t ∈ [0,ω].

The ideas of the proof of Theorem 15.3 can be extended to the non-Volterra
equation (15.13.1). Let us formulate several results obtained due to this extension.
Note that similar assertions by a similar method were also obtained in the mono-
graph [197]. The difference is that in our approach a general form of the functional
l : D[0,ω] → R is used. This allows us to consider conditions more general than
the general periodic conditions (for example, conditions with integrals, which are
important in the case where a boundary condition describes preservation of energy).

Let us define the operator N : C[0,ω] → C[0,ω] by the formula

(Nx)(t)= −
∫ ω

0
G0(t, s)(Bx)(s)ds, t ∈ [0,ω], (15.13.3)

where G0(t, s) is the Green’s function of the equation

x′(t)= f (t), t ∈ [0,ω], (15.13.4)

with the boundary condition (15.13.2), and the operator K : L∞[0,ω] → L∞[0,ω]
by the formula

(Kz)(t)= −(BWz)(t), t ∈ [0,ω], (15.13.5)

where

(Wz)(t)=
∫ ω

0
G0(t, s)z(s)ds, t ∈ [0,ω]. (15.13.6)

Using the idea of reducing boundary value problem (15.13.1), (15.13.2) to in-
tegral equations x(t) = (Nx)(t)+ ϕ(t), t ∈ [0,ω] in the space C[0,ω] and to the
equation z(t)= (Kz)(t)+ψ(t), t ∈ [0,ω] in the space L∞[0,ω] with the positive
operators N : C[0,ω] → C[0,ω] and K : L∞[0,ω] → L∞[0,ω], respectively, we
obtain the following result.
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Theorem 15.34 Assume that θ �= 0, G0(t, s) preserves its sign and the operator
N : C[0,ω] → C[0,ω] is positive. Then the following hypotheses are equivalent:

1) There exists an absolutely continuous positive function v such that

ψ(t)≡ v(0)+ 1

θ

∫ ω

0
φ(s)v′(s)ds +

∫ ω

0
G0(t, s)(Mv)(s)ds ≥ 0, t ∈ [0,ω],

(15.13.7)

and the set of zeros of ψ is not more than countable and ψ(s) > 0 if mes{t ∈
[0,ω] : b(t, s+) �= b(t, s−)}> 0.

2) Problem (15.13.1), (15.13.2) has a unique solution and its Green’s function
G(t, s) satisfies the inequalities G(t, s) > 0 if G0(t, s) > 0 for t, s ∈ (0,ω) and
G(t, s) < 0 if G0(t, s) < 0 for t, s ∈ (0,ω).

3) There exists a positive function u ∈ C[0,ω] such that ϕ(t)≡ u(t)− (Nu)(t)≥ 0
for t ∈ [0,ω] and the set of zeros of ϕ is not more than countable and ϕ(s) > 0
if mes{t ∈ [0,ω] : b(t, s+) �= b(t, s−)}> 0.

4) The spectral radius of the operator N : C[0,ω] → C[0,ω] is less than one.
5) The spectral radius of the operator K : L∞[0,ω] → L∞[0,ω] is less than one.

Remark 15.18 In order to obtain sufficient conditions of sign constancy of the
Green’s function G(t, s), we usually assume that

v(0)+ 1

θ

∫ ω

0
φ(s)v′(s)ds > 0, t ∈ [0,ω], (15.13.8)

and

ε(t)≡
∫ ω

0
G0(t, s)(Mv)(s)ds ≥ 0, t ∈ [0,ω]. (15.13.9)

It is clear that ε(t)≥ 0 in the case (Mv)(t)≥ 0 andG0(t, s)≥ 0 for t, s ∈ [0,ω] and
in the case (Mv)(t)≤ 0 and G0(t, s)≤ 0 for t, s ∈ [0,ω].

Various corollaries can be obtained on the basis of assertions 4) and 5). Let us
formulate some of them.

Theorem 15.35 Let B be a positive operator, φ(s) > θ > 0 for s ∈ [0,ω] and the
inequality

ess sup
t∈[0,ω]

B

[
−t + 1

θ

∫ ω

0
φ(s)ds

]
(t) < 1 (15.13.10)

be fulfilled. Then the Green’s function G(t, s) of problem (15.13.1), (15.13.2) is
negative for t, s ∈ (0,ω), and for each nonnegative f the unique solution of this
problem satisfies the inequalities x(t) ≤ 0, t ∈ [0,ω] for c ≤ 0 and x(t) < 0, t ∈
[0,ω] for c < 0.

Remark 15.19 It is clear that the inequality
(∫ ω

0
φ(s)ds

)
ess sup

t∈[0,ω]
B1(t) < θ, t ∈ [0,ω], (15.13.11)

implies inequality (15.13.10).
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Remark 15.20 Note that inequality (15.13.10) can be better than (15.13.11). If, for
example, the operator B is of the form (Bx)(t)≡ p(t)x(h(t)), where 0 ≤ h(t)≤ ω,
then we have

ess sup
t∈[0,ω]

p(t)

[
1

θ

∫ ω

0
φ(s)ds − h(t)

]
< 1. (15.13.12)

In the particular case (Bx)(t) ≡ p(t)x(ω), we obtain the following condition for
negativity of Green’s function:

−
[

1

θ

∫ ω

0
φ(s)ds −ω

]
ess sup

t∈[0,ω]
p(t) < 1. (15.13.13)

Theorem 15.36 Let (−B) be a positive operator, φ(s)
θ

≤ 0 for s ∈ [0,ω], and the
inequality

ess sup
t∈[0,ω]

−B
[
t − 1

θ

∫ ω

0
φ(s)ds

]
(t) < 1 (15.13.14)

be fulfilled. Then the Green’s function G(t, s) of problem (15.13.1), (15.13.2) is
positive for t, s ∈ (0,ω), and for each nonnegative f the unique solution of this
problem satisfies the inequalities x(t) ≥ 0, t ∈ [0,ω] for c

θ
≥ 0 and x(t) > 0, t ∈

[0,ω] for c
θ
> 0.

Remark 15.21 Note that the inequality
[
ω− 1

θ

∫ ω

0
φ(s)ds

]
ess sup

t∈[0,ω]
−(B1)(t) < 1 (15.13.15)

implies the inequality (15.13.14).

Remark 15.22 Note that inequality (15.13.14) can be better than (15.13.15). If, for
example, the operator B is of the form (Bx)(t)≡ p(t)x(h(t)), where 0 ≤ h(t)≤ ω,
then we get

ess sup
t∈[0,ω]

−p(t)
[

1

θ

∫ ω

0
φ(s)ds − h(t)

]
< 1. (15.13.16)

In the particular case (Bx)(t) ≡ p(t)x(0), we obtain the following condition for
positivity of Green’s function:

∣∣∣∣
1

θ

∫ ω

0
φ(s)ds

∣∣∣∣ ess sup
t∈[0,ω]

−p(t) < 1. (15.13.17)

Consider now (15.13.1) with the boundary condition

ςx(0)+
∫ ω

0
η(s)x(s)ds = c. (15.13.18)
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Theorem 15.37 Let the operator −B be positive and the inequalities η(s) ≤ 0 for
s ∈ [0,ω], − ∫ ω0 η(ξ)dξ < ς and

ess sup
t∈[0,ω]

−B
[
t − 1

ς + ∫ ω0 η(ξ)dξ
∫ ω

0

∫ ω

s

η(ξ)dξds

]
(t) < 1 (15.13.19)

be satisfied. Then the Green’s function G(t, s) of the problem (15.13.1), (15.13.18)
is positive for t, s ∈ (0,ω) and for each nonnegative f the unique solution of this
problem satisfies the inequalities x(t) ≥ 0, t ∈ [0,ω] for c ≥ 0 and x(t) > 0, t ∈
[0,ω] for c > 0.

Remark 15.23 The inequality
[
ω− 1

ς + ∫ ω0 η(ξ)dξ
∫ ω

0

∫ ω

s

η(ξ)dξds

]
ess sup

t∈[0,ω]
−(B1)(t) < 1 (15.13.20)

implies inequality (15.13.19).

Now consider (15.13.1) with the boundary condition

λx(0)−μx(ω)= c. (15.13.21)

Theorem 15.38 Let the operator −B be positive and the inequalities 0 < μ < λ

and

−λ
∫ ω

0
(B1)(s)ds < λ−μ (15.13.22)

be satisfied. Then the Green’s function G(t, s) of problem (15.13.1), (15.13.21) is
positive for t, s ∈ (0,ω) and for each nonnegative f the unique solution of this
problem satisfies the inequalities x(t) ≥ 0, t ∈ [0,ω] for c ≥ 0 and x(t) > 0, t ∈
[0,ω] for c > 0.

Remark 15.24 This assertion coincides with the corresponding statement in Re-
mark 2.5 in the monograph [197].

Theorem 15.39 Let the operator B be positive and the inequalities 0< λ<μ and

μ

∫ ω

0
(B1)(s)ds < μ− λ (15.13.23)

be satisfied. Then the Green’s function G(t, s) of problem (15.13.1), (15.13.21) is
negative for t, s ∈ (0,ω) and for each nonnegative f the unique solution of this
problem satisfies the inequalities x(t) ≤ 0, t ∈ [0,ω] for c ≥ 0 and x(t) < 0, t ∈
[0,ω] for c > 0.

15.14 Discussion and Open Problems

For the first time, results on the comparison of solutions of delay differential equa-
tions and corresponding inequalities (theorems on differential inequalities) for the
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Cauchy problem were obtained in the classical book by A.D. Myshkis [289] without
any connection with the integral representation of solutions and their nonoscillation
properties that can be explained by the definition of the homogeneous equation he
used. Describing delay differential equations

x′(t)+
n∑

i=1

pi(t)x(t − τi)= 0, τi > 0, t ∈ [0,ω], (15.14.1)

we have to define what should be substituted instead of x(t − τi) when t − τi < 0.
This means that we have to add the equality

x(s)= ϕ(s) for s < 0 (15.14.2)

to (15.14.1), where ϕ is a corresponding continuous function, in the description of
the delay equation.

The important step in the nonoscillation study for delay differential equations
was made in the paper [20], where a homogeneous object was first defined as
(15.14.1) with the zero initial function

x(ξ)= 0 for ξ < 0. (15.14.3)

The delay equation

x′(t)+
n∑

i=1

pi(t)x
(
t − τi(t)

)= 0, t ∈ [0,ω], (15.14.4)

where τi(t)≥ 0 for all t ≥ 0, i = 1, · · · , n, with the initial function (15.14.3), was de-
fined as a homogeneous object. The space of its solutions becomes one-dimensional.
This allows us to define the nonoscillation interval as an interval where a nontrivial
solution of (15.14.4) has no zeros. Equation (15.14.4), (15.14.3) can be handled as a
homogeneous equation in the theory of ordinary differential equations. The formula
for representation of the general solution of the equation

(Mx)(t)≡ x′(t)+
n∑

i=1

pi(t)x
(
t − τi(t)

)= f (t), t ∈ [0,ω], (15.14.5)

with the initial function (15.14.3), was first obtained in the early 1970s (see, for
example, [20]) in the form

x(t)=
∫ t

0
C(t, s)f (s)ds +C(t,0)x(0), (15.14.6)

where C(t, s) as a function of t for each fixed s is a solution of the equation

x′(t)+
n∑

i=1

pi(t)x
(
t − τi(t)

)= 0, t ∈ [s,ω], (15.14.7)

x(ξ)= 0 for ξ < s, (15.14.8)

satisfying the condition C(s, s) = 1. C(t, s) is called the Cauchy function of
(15.14.5). Formula (15.14.6) reduces theorems on the differential inequality for the
Cauchy problem to positivity of the Cauchy function C(t, s).
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The idea to construct an approximate integration method for solving differen-
tial equations on the basis of comparison of solutions of equations and inequali-
ties appeared first in the works of the famous Russian mathematician S.A. Chap-
lygin [89]. Publications on this problem were started by another famous Russian
mathematician, N.N. Luzin [278]. Later this idea was developed by the mathemati-
cians N.V. Azbelev, I.T. Kiguradze, V. Lakshmikantham and their groups (see, for
example, [29, 223, 250]).

The first use of sign properties of Green’s functions in the integral representa-
tions of solutions to boundary value problems for functional differential equations
was proposed by N.V. Azbelev [20]. His definition of the homogeneous equation
allows us to study maximum principles and to construct a theory of boundary value
problems for delay differential equations and functional differential equations as a
natural generalization of corresponding results for ordinary differential equations.
For first-order functional differential equations, various assertions on positivity of
Green’s functions of the initial value problem, periodic problem and some other
problems were obtained in the works [4, 81, 178, 197].

The connection between nonoscillation on the interval [0,ω] and differential in-
equalities for several boundary value problems was first proven in [111], where
equivalence for (15.14.5) of the following facts in the case where pi ≥ 0 and τi ≥ 0
was obtained:

1) [0,ω] is the nonoscillation interval of (15.14.4), (15.14.3).
2) The Cauchy function C(t, s) of (15.14.5), (15.14.3) is positive for 0 ≤ s ≤ t ≤ ω.
3) Problem (15.14.5), (15.14.3), (15.14.9), where

x(ω)= 0, (15.14.9)

has a unique solution, and its Green’s function G(t, s) is negative for 0 ≤ t <

s ≤ ω and nonpositive for 0 ≤ s ≤ t ≤ ω.
4) There exists a nonnegative absolutely continuous function v such that

v′(t)+
n∑

i=1

pi(t)v
(
t − τi(t)

)≤ 0 for t ∈ [0,ω], v(ω) > 0. (15.14.10)

The implication 4)⇒ 1) is an analogue for the first-order functional differential
equations of the classical de La Vallee Poussin theorem on the differential inequality
obtained in [102] for ordinary second-order equations. The assertions 1)⇒ 2) and
1)⇒ 3) are analogues of the corresponding results connecting nonoscillation and
positivity of Green’s functions for n-th-order ordinary differential equations [256,
333].

The theorem on equivalences was generalized on impulsive equations with im-
pulses at fixed points in [126], with impulses at variable points in [129] and to
equations with state-dependent delays in [130].



394 15 Maximum Principles and Nonoscillation Intervals

The fact that (15.14.5) is a delay equation allows us to obtain a corresponding
result on equivalence of these facts on the semiaxis. For example, the choice of
v(t)= exp{−e ∫ t0

∑n
i=1 pi(s)ds} in assertion 4) leads to the inequality
∫ t

H(t)

n∑

k=1

pk(s)ds ≤ 1

e
, t ∈ (0,∞), (15.14.11)

where H(t)= min1=1,···,n{t − τi(t)}, which guarantees nonoscillation in the sense
that a nontrivial solution does not have a zero on the semiaxis (0,∞). Inequality
(15.14.11) coincides with a classical nonoscillation test (in the sense of existence
of an eventually positive solution) obtained in several monographs on the theory of
delay differential equations (see, for example, [192]).

In the paper [178], the result on equivalences became a theorem on eight equiv-
alences. One additional equivalent assertion for the equation

x′(t)+ p(t)x
(
t − τ(t)

)= 0, t ∈ [0,∞), (15.14.12)

is the following:

5) There exists a positive essentially bounded function u such that

p(t)e
∫ t
t−τ (t) u(s)ds(t)≤ u(t), t ∈ [0,∞). (15.14.13)

Equivalence of the existence of an eventually positive solution and inequality
(15.14.13) is the well-known result (see [154, p. 29]). Note that a corresponding
development of this result on the basis of the ideas offered in [251] is presented in
the recent paper [108].

In the paper [178], results on equivalences were extended to the equation

x′(t)+ (Bx)(t)= f (t), t ∈ [0,ω], (15.14.14)

where B : C[0,ω] → L1[0,ω] or B : C[0,ω] → L∞[0,ω] is a linear continuous
positive Volterra operator, C[0,ω] is the space of continuous functions, L1[0,ω] is
the space of integrable functions and L∞[0,ω] is the space of essentially bounded
functions defined on [0,ω]. It should be stressed that an equation in this operator
form becomes a very important instrument in the study of neutral equations [110,
138] and systems of ordinary or functional differential equations [5]. In the next
chapter, we construct an equation for one of the components of the solution vector,
and this equation has the form of (15.14.14).

The fact that the Cauchy function C(t, s) as a function of t for a fixed s sat-
isfies (15.14.7), (15.14.8) is a basis for various results on maximum principles for
functional differential equations. The results about maximum boundaries principles
and their corollaries for (15.14.14) are obtained in Sect. 15.3 of this chapter. They
are based on the papers [121, 122]. In contrast with the well-known results of the
monograph [197], a smallness of ‖B‖ is not assumed. Results for the equation of
the form

x′(t)− (Ax)(t)+ (Bx)(t)= f (t), t ∈ [0,ω], (15.14.15)

where A,B : C[0,ω] → L1[0,ω] or C[0,ω] → L∞[0,ω] are linear continuous
positive Volterra operators, are based on results of the paper [121]. A generalization
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of these results for the neutral equations was presented in the paper [138]. A partic-
ular case of this equation is the delay differential equation

x′(t)− a(t)x
(
g(t)

)+ b(t)x
(
h(t)

)= f (t), t ∈ [0,∞), (15.14.16)

where

x(ξ)= 0 for ξ < 0. (15.14.17)

Our results on nonoscillation and positivity of the corresponding Green’s functions
do not rely on the fact that the coefficient b is small. It is even demonstrated that all
solutions of the equation

x′(t)+ b(t)x
(
h(t)

)= 0, t ∈ [0,∞), (15.14.18)

can be oscillating, but all solutions of (15.14.16), where f ≡ 0, can nonoscillate,
and the Cauchy function of (15.14.16) can be positive for 0 ≤ s ≤ t < ∞. In the
case h(t) ≤ g(t), the main condition obtained in this chapter as well as in Chap. 3
claims that the difference |be− a| has to be small enough. There were no results of
this sort in the case h(t) ≥ g(t). In Sect. 15.10, on the basis of [121] we obtained
that the smallness of |b − a| and |h− g| implies nonoscillation of (15.14.16) and
positivity of its Cauchy function C(t, s).

Let us now discuss the boundary conditions. In the well-known monograph
[197], the generalized periodic condition

νx(0)+μx(ω)= c (15.14.19)

was considered. We study the boundary condition in the form

lx = c, (15.14.20)

where l : D[0,ω] → R is a linear bounded functional defined on the space of
absolutely continuous functions D[0,ω]. The general form of this functional l :
D[0,ω] → R is

lx ≡ θx(0)+
∫ ω

0
φ(s)x′(s)ds, (15.14.21)

where θ ∈ R, φ ∈ L∞[0,ω]. Condition (15.14.19) can be obtained as a particular
case of (15.14.20) if we set φ(t) ≡ μ, θ = ν + μ in (15.14.21). It seems to be
important to consider general boundary condition (15.14.21) since conditions with
integrals can describe, for example, the laws of conservation of energy.

Concerning results of Sect. 15.8 based on [26, 121], we note that there are no
other results on the sign of the Green’s function of the one-point boundary value
problem

x′(t)+ (Bx)(t)= f (t), t ∈ [0,ω], x(θ)= 0, (15.14.22)

in the case 0< θ < ω.
Let us describe several possible schemes in the study of the exponential sta-

bility. First of all, we reduce differential equation (15.12.1) to equivalent integral
equation (15.12.8) using the left regularization. Then we get the fact that the inte-
gral equation has a unique solution in the space C[0,∞). In order to make it, we
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estimate the norm or the spectral radius of the operator K : C[0,∞)→ C[0,∞).
These estimates are based on the positivity of the Cauchy function C0(t, s) of corre-
sponding model equation (15.12.3); i.e., on the maximum inequalities principle for
the model equation. As a result of the fact that ‖K‖ < 1 or ρ(K) < 1, we obtain
the unique solvability, which together with solution representation formula (15.3.7)
implies the maximum boundedness principle. On the other hand, analogues of the
Bohl-Perron theorem reduce the exponential stability to the maximum boundedness
principle (see [29, p. 95]), and thus we get the exponential stability of the given
equation (15.12.1). The right regularization (the so-called Azbelev W -transform)
presents another possibility for reducing differential equation (15.12.1) to the in-
tegral equation z =Ωz + f , where the operator Ω : L∞[0,∞)→ L∞[0,∞) can
be defined, for example, as Ω = A2C0, where (C0z)(t) = ∫ t0 C0(t, s)z(s)ds. If the
Cauchy function C0(t, s) of the model equation (15.12.3) satisfies the exponential
estimate and the norm of the operator Ω : L∞[0,∞)→ L∞[0,∞) is less than one,
then the maximum boundedness principle is true for (15.12.1). The foundations of
this approach to studying stability were obtained by N.V. Azbelev and his followers
in the series of papers [22–24, 39] and in the book [29], and then were formulated in
a complete form in the book [30]. Possibilities of this approach were demonstrated
in the paper [178]. New results based on this approach were obtained in the recent
papers [61–63, 121], for this approach see also the papers [19, 25, 308, 333].

It should be stressed that this approach is based on the positivity of the Cauchy
functions of corresponding model equations. Problems of stability of the zero solu-
tion of a wide class of nonlinear equations can be reduced to the maximum bounded-
ness principle and the exponential stability of its linear approximations [61]. Some
applications can be found in [4, 61].

The results on the exponential stability of first-order delay equations of
Sect. 15.11 are based on corresponding results of the paper [121] and present corol-
laries of nonoscillation and positivity of the Cauchy function. For an illustration of
their possibilities in stabilization, let us consider the equation

x′(t)+ bx(t − τ)= 0, t ∈ [0,∞), (15.14.23)

where b and τ are constants such that bτ > π
2 . It is known that all its nontrivial

solutions oscillate and the amplitudes tend to infinity when t → ∞. Consider now
the equation

x′(t)− ax(t − σ)+ bx(t − τ)= f (t), t ∈ [0,∞). (15.14.24)

If a > 0, τ < σ , 0< (b − a)τ ≤ 1
e

and b(σ − τ) ≤ 1
e
, then (15.14.24) is exponen-

tially stable. This demonstrates that stabilization of (15.14.24) can be achieved by
adding the control u in the form u(t)= ax(t − σ) in the equation

x′(t)+ bx(t − τ)= f (t)+ u(t), t ∈ [0,∞). (15.14.25)

This result can be extended to (15.14.16) with a variable coefficient and delays. It is
essential in applications that the time to apply the control u using previous states of
the process be more than the delay in (15.14.18), i.e., h(t)≥ g(t) (in (15.14.24) we
have σ > τ ). There are no other results in this case. Thus the smallness of |b − a|
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and |h− g| and the dominance of the positive term such that a positive number ε
exists such that b > a + ε implies stability of (15.14.16).

The maximum principles for the equation

x′(t)+ p(t)x
(
h(t)

)= 0, t ∈ [0,∞), (15.14.26)

with oscillating coefficient p(t), for example, such that p(t)≥ 0 for (t2k, t2k+1) and
p(t)≤ 0 for (t2k+1, t2k+2) for k = 0,1,2, · · · , were first studied in [123]. The con-
dition on the deviating argument t2k−1 ≤ h(t) for t ∈ [t2k, t2k+1] and the inequality

∫ t2k+1

t2k

p(t)dt < 1, k = 0,1,2, · · · , (15.14.27)

imply nonoscillation of the solution and positivity of the Cauchy function C(t, s)
for 0 ≤ s ≤ t < ∞ for (15.14.26). This nonoscillation result is the first one that
assumes that the integral of the coefficient p(t) is small on each of the intervals of
positivity separately and does not assume that the integral of the positive part p+(t)
(defined as usual by the equalities p(t) = p+(t) − p−(t), p+(t) ≥ 0, p−(t) ≥ 0)
on the semiaxis converges or is of the form

∫ ∞
p+(t)dt < 1. (15.14.28)

Results on the exponential stability of (15.14.26) are based on its nonoscillation and
positivity of the Cauchy function. Note that the approach developed in Sect. 15.12
assumes the dominance of the positive term and does not work here. There are al-
most no results about stability of equations with an oscillating coefficient p(t). In
the paper [194], various necessary and sufficient conditions of stability and asymp-
totic stability of the equation

x′(t)+ p(t)x(t − τ)= 0, t ∈ [0,∞), τ = const, (15.14.29)

with an oscillating coefficient p(t) were obtained in the case where p(t)→ 0 for
t → ∞. In the results on the exponential stability of Sect. 15.11 based on the paper
[123], this case was not considered.

In Sect. 15.13, the boundary value problem

x′(t)+ (Bx)(t)= f (t), t ∈ [0,ω], lx = c, (15.14.30)

with a non-Volterra operator B : C[0,ω] → L∞[0,ω] was considered.
Here l : D[0,ω] → R is a linear bounded functional defined on the space of

absolutely continuous functions D[0,ω]. The general form of this functional l is
defined by the formula (15.14.21). The general form of this functional l :D[0,ω] →
R allows us to describe the known scheme of regularization [178, 197, 198] in a
general form and to see the types of problems where this scheme can be applied.

Finally, let us formulate several open problems.

1. Theorem 15.5 claims that the Green’s function of the problem

x′(t)+ p(t)x
(
h(t)

)= f (t), t ∈ [0,ω], x(ω)= 0, (15.14.31)
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changes its sign in the square (t, s) ∈ (0,ω)× (0,ω) if p(t) ≤ 0 and mes{t ∈
[0,ω]| p(t) < 0, 0 ≤ h(t) ≤ t}> 0. Is it possible to obtain a result on nonposi-
tivity of the Green’s function for the problem

x′(t)+ b(t)x
(
h(t)

)− a(t)x
(
g(t)

)= f (t), t ∈ [0,ω], x(ω)= 0, (15.14.32)

in the case b(t)≥ a(t) or for the problem with the more general equation

x′(t)+ (Bx)(t)− (Ax)(t)= f (t), t ∈ [0,ω], x(ω)= 0, (15.14.33)

in the case of a dominant operator B?
2. In Sect. 15.10, various coefficient tests of nonoscillation and positivity of the

Cauchy function C(t, s)were obtained. The problem is to obtain a corresponding
coefficient test in the case where the operators A and B are of different forms;
for example, where one of the operators A and B is an integral operator and the
second is a deviating argument operator

(Ax)(t)=
∫ t

0
k(t, s)x(s)ds, (Bx)(t)= b(t)x

(
h(t)

)
, t ∈ [0,∞), (15.14.34)

where

x(ξ)= 0 for ξ < 0. (15.14.35)

3. In Sect. 15.11, (15.14.26) with an oscillating coefficient p(t) was studied. In
addition, obtain an exponential estimate for the Cauchy function of this equation;
i.e., deduce conditions where there exist positive constants α and N such that
|C(t, s)| ≤Ne−α(t−s) for 0 ≤ s ≤ t <∞.

4. Almost all results on the maximum principles were obtained in the case of
Volterra operators A and B . Can the maximum boundaries principle be extended
to the case of non-Volterra operators?

5. Is it possible to obtain results on sign properties of the Green’s function for the
problem

x′(t)+ b(t)x
(
h(t)

)= f (t), t ∈ [0,ω], x(a)= 0, 0< a < ω,

without the assumption that h(t)≤ t for t ∈ [0,ω]?



Chapter 16
Systems of Functional Differential Equations
on Finite Intervals

16.1 Introduction

Consider the system of functional differential equations

(Mix)(t)≡ x′
i (t)+

n∑

j=1

(Bij xj )(t)= fi(t), t ∈ [0,ω], i = 1, · · · , n, (16.1.1)

where x = col(x1, · · · , xn), Bij : C[0,ω] → L1[0,ω] or Bij : C[0,ω] → L∞[0,ω],
i, j = 1, · · · , n, are linear continuous operators and C[0,ω], L1[0,ω], L∞[0,ω] are
the spaces of continuous, integrable and essentially bounded functions
y : [0,ω] →R, respectively.

Let l : C[0,ω] → R
n be a linear bounded functional. If the homogeneous bound-

ary value problem (Mix)(t)= 0, t ∈ [0,ω], i = 1, · · · , n, lx = 0 has only the trivial
solution, then the boundary value problem

(Mix)(t)= fi(t), t ∈ [0,ω], i = 1, · · · , n, lx = α (16.1.2)

has for each f = col(f1, · · · , fn), where fi ∈ L1[0,ω], i = 1, · · · , n, and α ∈ R
n,

a unique solution, which has the representation [29]

x(t)=
∫ ω

0
G(t, s)f (s)ds +X(t)α, t ∈ [0,ω], (16.1.3)

where the n× n matrix G(t, s) is called the Green’s matrix of problem (16.1.2) and
X(t) is the n×n fundamental matrix of the system (Mix)(t)= 0, i = 1, · · · , n, such
that lX = I (I is the identity n× n matrix). It is clear from solution representation
(16.1.3) that the matrices G(t, s) and X(t) determine all properties of solutions.

If the conditions

(Mix)(t)≥ (Miy)(t), t ∈ [0,ω], i = 1, · · · , n, lx = ly, (16.1.4)

imply

xi(t)≥ yi(t), t ∈ [0,ω], i = 1, · · · , n, (16.1.5)

this property is a basis of the monotone methods in approximate integration [250].
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As a particular case of system (16.1.1), let us consider the delay system

x′
i (t)+

n∑

j=1

pij (t)xj
(
hij (t)

)= fi(t), i = 1, · · · , n, t ∈ [0,ω], (16.1.6)

x(ξ)= 0 for ξ < 0, (16.1.7)

where pij are integrable or essentially bounded functions and hij are measurable
functions such that hij (t)≤ t for i, j = 1, · · · , n, t ∈ [0,ω].

Wazewski’s classical theorem claims [332] that the condition

pij ≤ 0 for j �= i, i, j = 1, · · · , n (16.1.8)

is necessary and sufficient for the property (16.1.4) ⇒ (16.1.5) for the Cauchy prob-
lem for the system of ordinary differential equations

x′
i (t)+

n∑

j=1

pij (t)xj (t)= fi(t), i = 1, · · · , n, t ∈ [0,ω]. (16.1.9)

Solution representation formula (16.1.3) yields that implication (16.1.4) ⇒ (16.1.5)
is true if all entries of the matrices G(t, s) and X(t) are nonnegative.

We focus our attention on the problem of comparison for only one of the compo-
nents of the solution vector. Let ki be either 1 or 2. In this chapter, we consider the
property that the conditions

(−1)ki
[
(Mix)(t)− (Miy)(t)

]≥ 0, t ∈ [0,ω], lx = ly, i = 1, · · · , n (16.1.10)

imply that for a fixed component xr of the solution vector the inequality xr(t) ≥
yr(t), t ∈ [0,ω], is satisfied. This property is weaker than the implication (16.1.4)
⇒ (16.1.5) and, as will be obtained below, leads to essentially weaker limitations on
the given system. From solution representation formula (16.1.3), it follows that this
property is reduced to sign constancy of all entries in the r-th row of the Green’s
matrix only.

The main idea of our approach is to construct a corresponding scalar functional
differential equation of the first order,

x′
r (t)+ (Bxr)(t)= f ∗(t), t ∈ [0,ω], (16.1.11)

for the r-th component of a solution vector, where B : C[0,ω] → L1[0,ω] is a
linear continuous operator, f ∗ ∈ L1[0,ω]. It should be stressed that we get this
quite complicated functional differential equation for the description of behavior of
the component xr even in the case of systems of ordinary differential equations.
This circumstance explains why we had to consider a scalar equation in such a
form in Chap. 15. Equations of the form (16.1.11) are constructed in Sects. 16.3
and 16.4. Then the technique of analysis of the first-order scalar functional dif-
ferential equations, developed in Chap. 15, is used. On this basis, in Sect. 16.3
we obtain necessary and sufficient conditions for nonpositivity or nonnegativity
of entries in the n-th row of the Cauchy and the Green’s matrices in the form
of theorems on differential inequalities. Simple coefficient tests of the sign con-
stancy for the n-th row of the Cauchy and the Green’s matrices are proposed in
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Sects. 16.3 and 16.4. In Sect. 16.3, the results of this type for the Cauchy problem
(i.e., lx ≡ col(x1(0), · · · , xn(0))) and Volterra operators Bij : C[0,ω] → L1[0,ω]
are obtained. In this case, the operator B : C[0,ω] → L1[0,ω] in (16.1.11) is a
Volterra operator. In Sects. 16.4 and 16.5, we consider other boundary conditions
that imply that the operator B : C[0,ω] → L1[0,ω] is not a Volterra one even
in the case where all Bij : C[0,ω] → L1[0,ω], i, j = 1, · · · , n, are Volterra op-
erators. It requires a special technique to work with (16.1.11) when the operator
B : C[0,ω] → L1[0,ω] is not Volterra. It should be emphasized that in many of our
results the interval [0,ω] is not assumed to be short.

In this chapter, we consider the boundary value problems with boundary condi-
tions of the form

lixi = 0, i = 1, · · · , n, (16.1.12)

where li : C[0,b] → R, i = 1, · · · , n are linear bounded functionals. Note that each
of the types of boundary conditions

xi(0)= 0, i = 1, · · · , n, (16.1.13)

xi(ω)= 0, i = 1, · · · , n, (16.1.14)

xi(0)= 0, xj (ω)= 0, i = 1, · · · , k, j = k+ 1, · · · , n, (16.1.15)

xi(0)= βxi(ω), i = 1, · · · , n (16.1.16)

is a particular case of condition (16.1.12).

16.2 Nonnegativity and Nonpositivity of Green’s Matrices

In this section, we consider the system

(Mix)(t)≡ x′
i (t)+

n∑

j=1

(Bij xj )(t)= fi(t), i = 1, · · · , n, t ∈ [0,ω], (16.2.1)

with boundary conditions of the form

lixi = 0, i = 1, · · · , n, (16.2.2)

where Bij : C[0,ω] → L∞[0,ω] are linear continuous operators and li : C[0,ω] →
R are linear bounded functionals, i, j = 1, · · · , n.

Theorem 16.1 Let the following conditions be fulfilled:

1) The Green’s functions gi(t, s) (i = 1, · · · , n) of n scalar boundary value prob-
lems for the diagonal equations

(mix)(t)≡ x′
i (t)+ (Biixi)(t)= fi(t), t ∈ [0,ω], lixi = 0, (16.2.3)

exist, preserve their signs for t, s ∈ (0,ω) and are such that
∫ ω

0

∣∣gi(t, s)
∣∣ϕ(s)ds > 0, t ∈ [0,ω], (16.2.4)

for each positive measurable essentially bounded function ϕ.
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2) The nondiagonal operators Bij (i, j = 1, · · · , n, j �= i) are positive or negative
such that the operator R : C[0,ω] → C[0,ω] defined by the formula

(Rx)(t)= col

(
−
∫ ω

0
gi(t, s)

n∑

j=1, j �=i
(Bij xj )(s)ds

)n

i=1

, t ∈ [0,ω], (16.2.5)

is positive.

Then the following assertions a), b) and c) are equivalent:

a) There exists a vector function v ∈ C[0,ω] with positive absolutely continuous
components vi : [0,ω] → [0,∞) such that livi = 0 and

∫ ω

0
gi(t, s)(Miv)(s)ds > 0, t ∈ [0,ω], i = 1, · · · , n. (16.2.6)

b) The spectral radius of the operator R : C[0,ω] → C[0,ω] is less than one.
c) Boundary value problem (16.2.1), (16.2.2) has a unique solution for every right-

hand side f = col(f1, · · · , fn) such that fi ∈ L∞[0,ω], i = 1, · · · , n and the
entries of its Green’s matrix preserve their sign and satisfy the inequalities

gi(t, s)Gij (t, s)≥ 0, t, s ∈ [0,ω], i, j = 1, · · · , n, (16.2.7)
∣∣Gii(t, s)

∣∣≥ ∣∣gi(t, s)
∣∣, t, s ∈ [0,ω], i = 1, · · · , n. (16.2.8)

Proof a)⇒ b) The proof of this implication is based on Lemma A.2.
The function v satisfies the boundary value problem

(Mix)(t)= ϕi(t), lixi = 0, i = 1, · · · , n, t ∈ [0,ω], (16.2.9)

where ϕi(t) = (Miv)(t), t ∈ [0,ω]. It is clear that the function v also satisfies the
integral equation x(t)− (Rx)(t)=ψ(t), t ∈ [0,ω], where

ψ(t)= col

(∫ ω

0
gi(t, s)ϕi(s)ds

)n

i=1
, t ∈ [0,ω]. (16.2.10)

The condition a) implies that all components ψi(t), i = 1, · · · , n of the vector ψ(t)
are positive for t ∈ [0,ω]. The reference to Lemma A.2 completes the proof.

b)⇒ c) If the spectral radius of the operator R : C[0,ω] → C[0,ω] is less than
one, then the sequence {xm} of vectors xm = (xm1 , · · · , xmn ), where xm = Rxm−1 +
ψ , x0 = ψ , ψ ∈ C[0,ω], converges to the solution of the equation x = Rx + ψ ,
which is equivalent to boundary value problem (16.2.1), (16.2.2). This means that
boundary value problem (16.2.1), (16.2.2) has a unique solution, while for ψ with
nonnegative components ψi , i = 1, · · · , n we obtain xi ≥ψi ≥ 0, i = 1, · · · , n.

If fi preserves its sign for i = 1, · · · , n and is such that
∫ ω

0
gi(t, s)fi(s)ds ≥ 0, t ∈ [0,ω], (16.2.11)

then

ψi(t)=
∫ ω

0
gi(t, s)fi(s)ds ≥ 0, t ∈ [0,ω], (16.2.12)
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and consequently xi(t) ≥ ψi(t), i = 1, · · · , n. The inequality (16.2.7) has been
proven.

In order to prove inequality (16.2.8), we set fj = 0 for j �= i, j = 1, · · · , n. In
this case, we obtain

xi(t)−ψi(t)=
∫ ω

0

[
Gii(t, s)− gi(t, s)

]
fi(s)ds, t ∈ [0,ω], i = 1, · · · , n.

(16.2.13)

The inequality xi(t)≥ψi(t) implies inequality (16.2.8).
c) ⇒ a) In order to prove this implication we can set v(t) = ∫ ω0 G(t, s)Ξds,

where Ξ = col(e1, · · · , en) and ei equals 1 or −1 so that eigi(t, s) ≥ 0, t, s ∈
[0,ω]. �

Remark 16.1 Condition 1) of Theorem 16.1 is fulfilled for generalized periodic
problem (16.2.1), (16.1.16) and is not fulfilled for problems consisting of (16.2.1)
with conditions (16.1.13), (16.1.14) and (16.1.15). For these conditions, the follow-
ing result is valid.

Theorem 16.2 Let the following conditions be fulfilled:

1) Green’s functions gi(t, s) (i = 1, · · · , n) of n scalar boundary value problems for
diagonal equations

(mixi)(t)≡ x′
i (t)+ (Biixi)(t)= fi(t), t ∈ [0,ω], lixi = ci, (16.2.14)

exist and preserve their signs.
2) The nondiagonal operators Bij (i, j = 1, · · · , n, j �= i) are positive or negative

such that the operator R : C[0,ω] → C[0,ω] defined by formula (16.2.5) is pos-
itive.

Then the assertions a) and b) are equivalent and each of them implies c).

a) There exists a vector function v ∈ C[0,ω] with positive absolutely continuous
components vi : [0,ω] → [0,∞) such that the solution wi of the problem

(miwi)(t)≡w′
i (t)+ (Biiwi)(t)= (Miv)(t), t ∈ [0,ω], liwi = livi, (16.2.15)

is positive for t ∈ [0,ω] for every l = 1, · · · , n.
b) The spectral radius of the operator R : C[0,ω] → C[0,ω] is less than one.
c) Boundary value problem (16.2.1), (16.2.2) has a unique solution for every right-

hand side f = col(f1, · · · , fn) such that fi ∈ L∞[0,ω], i = 1, · · · , n, and the
entries of its Green’s matrix preserve sign and satisfy the inequalities

gi(t, s)Gij (t, s)≥ 0, t, s ∈ [0,ω], i, j = 1, · · · , n, (16.2.16)
∣∣Gii(t, s)

∣∣≥ ∣∣gi(t, s)
∣∣, t, s ∈ [0,ω], i = 1, · · · , n. (16.2.17)

Proof a)⇒ b) It is clear that the vector function v also satisfies the integral equation
x(t)−(Rx)(t)=w(t), t ∈ [0,ω], where the vector functionw satisfies the boundary
value problem (mix)(t)= ϕi(t), lixi = livi , i = 1, · · · , n, t ∈ [0,ω], where ϕi(t)=
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(Miv)(t), t ∈ [0,ω]. Condition a) implies that all components wi(t), i = 1, · · · , n of
the vector w(t) are positive for t ∈ [0,ω]. The reference to Lemma A.2 completes
the proof.

b)⇒ a) Let us set fi(t)≡ 1 or fi(t)≡ −1 for t ∈ [0,ω], depending on the sign
of gi(t, s), and ci , where i = 1, · · · , n, such that the solution w of the problem

(mix)(t)= fi(t), lixi = ci, i = 1, · · · , n, t ∈ [0,ω], (16.2.18)

is positive for t ∈ [0,ω]. The spectral radius of the operator R : C[0,ω] → C[0,ω]
is less than one. Then the sequence {xm} of vectors xm = (xm1 , · · · , xmn ), where xm =
Rxm−1 + w, x0 = w, converges to the solution v of the equation x = Rx + w,
which is equivalent to boundary value problem (16.2.1), (16.2.2), where lixi = ci ,
i = 1, · · · , n. This solution v is positive and satisfies all conditions of a).

The proof of the implication b)⇒ c) is similar to the proof of the same implica-
tion in Theorem 16.1. �

Corollary 16.1 Let all Bij (i, j = 1, · · · , n) be Volterra operators, nondiagonal op-
erators Bij (i, j = 1, · · · , n, i �= j ) be negative and the Cauchy functions ci(t, s) of
the diagonal equations (mix)(t) ≡ x′

i (t) + (Biixi)(t) = fi(t), t ∈ [0,∞) be pos-
itive for 0 ≤ s ≤ t < ∞. Then Cij (t, s) ≥ 0, Cii(t, s) > 0 for 0 ≤ s ≤ t < ∞,
i, j = 1, · · · , n.

Proof On every finite interval [0,ω], the spectral radius of the compact Volterra op-
erator R defined by (16.2.5), where gi(t, s)= ci(t, s), is zero. The conditions of the
corollary imply Cij (t, s)≥ 0, Cii(t, s) > 0 for 0 ≤ s ≤ t ≤ ω, i, j = 1, · · · , n. Now,
using the fact that all Bij (i, j = 1, · · · , n) are Volterra operators, we can extend
these inequalities to the semiaxis [0,∞). �

In the following theorem, we use weighted spaces; see Definition A.3.

Theorem 16.3 Let Bij : C[0,∞)→ L∞[0,∞) be Volterra linear bounded opera-
tors, i, j = 1, · · · , n, and the following conditions be fulfilled:

1) For some λ > 0 we have Bij : Cλ[0,∞)→ Lλ∞[0,∞).
2) The Cauchy functions ci(t, s) (i = 1, · · · , n) of n scalar diagonal equations

(mixi)(t)≡ x′
i (t)+ (Biixi)(t)= fi(t), t ∈ [0,∞), (16.2.19)

are positive for 0 ≤ s ≤ t <∞.
3) The nondiagonal operators Bij (i, j = 1, · · · , n, j �= i) are negative.
4) There exist a constant vector z= col(z1, · · · , zn) and a number ε > 0 such that

n∑

j=1

(Bij zj )(t)≥ ε > 0, t ∈ [0,∞). (16.2.20)

Then the following assertions are true:

a) Boundary value problems (16.2.1), (16.1.16) with βi ≤ 1 (i = 1, · · · , n) have
a unique solution for every right-hand side f = col(f1, · · · , fn) such that fi ∈
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L∞[0,∞), i = 1, · · · , n and entries of their Green’s matrices satisfy the inequal-
itiesGij (t, s)≥ 0 (i, j = 1, · · · , n), whileGii(t, s)≥ gi(t, s) > 0 for t, s ∈ [0,ω]
and every ω > 0.

b) For every bounded right-hand side f = col(f1, · · · , fn), the solution x =
col(x1, · · · , xn) is bounded on the semiaxis [0,∞).

c) The Cauchy matrix C(t, s) satisfies the exponential estimate; i.e., there exist pos-
itive α and N such that

0 ≤ Cij (t, s)≤Ne−α(t−s), 0 ≤ s ≤ t <∞, i, j = 1, · · · , n. (16.2.21)

d) In the case where ε ≥ 1 in (16.2.20), the inequalities

0 ≤
∫ t

0

n∑

j=1

Cij (t, s)ds ≤ zi, 0 ≤ t <∞, i = 1, · · · , n (16.2.22)

0 ≤
∫ ω

0

n∑

j=1

Gij (t, s)ds ≤ zi, 0 ≤ t < ω, i = 1, · · · , n (16.2.23)

are valid, and in the case where the constant n × n-matrix Y(t) = {yij }i,j=1
satisfies

n∑

j=1

(Bij yjk)(t)≥ δik, t ∈ [0,∞), i = 1, · · · , n, (16.2.24)

where δik = 1, i = j , δik = 0, i �= j , the following inequalities hold:

0 ≤
∫ t

0
Cij (t, s)ds ≤ yij , 0< t <∞, i, j = 1, · · · , n, (16.2.25)

0 ≤
∫ ω

0
Gij (t, s)ds ≤ yij , 0< t ≤ ω, i, j = 1, · · · , n. (16.2.26)

Proof Conditions 3) and 4) imply that the operatorsBii are nonzero for i = 1, · · · , n.
According to assertion 8 of Theorem 15.3, Green’s functions gi(t, s) of the gener-
alized periodic problems

(mixi)(t)≡ x′
i (t)+ (Biixi)(t)= fi(t), t ∈ [0,ω], xi(0)= βixi(ω), (16.2.27)

where i = 1, · · · , n, are positive for t, s ∈ [0,ω].
The constant vector v = col(z1, · · · , zn) satisfies assertion a) of Theorem 16.1

and, according to assertion c) of the same theorem, we obtain assertion a) of The-
orem 16.3. Thus the entries of the Green’s matrix of problem (16.2.1), (16.1.16),
where βi ≤ 1 for i = 1, · · · , n, satisfy the inequalities Gij (t, s) ≥ 0, Gii(t, s) >
gi(t, s) > 0 for t, s ∈ [0,ω] for every positive ω.

From the conditions 2) and 3), according to Corollary 16.1, we have Cij (t, s)≥ 0
and Cii(t, s) > 0 for 0 ≤ s ≤ t <∞, i = 1, · · · , n.

Vector function z= col(z1, · · · , zn) satisfies the system

(Mix)(t)= fi(t), t ∈ [0,∞), i = 1, · · · , n,
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where fi(t) =∑n
j=1(Bij zj )(t), i = 1, · · · , n and the initial condition xi(0) = zi ,

i = 1, · · · , n. The solution representation formula

x(t)=
∫ t

0
C(t, s)f (s)ds +C(t,0)x(0),

where f = col(f1, · · · , fn), in this case leads us to the equality

z=
∫ t

0
C(t, s)f (s)ds +C(t,0)z.

By condition 4), all components fi of the right-hand side f = col(f1, · · · , fn) are
positive. Nonnegativity of all entries Cij (t, s), i, j = 1, · · · , n in this case implies
that

∫ t

0
C(t, s)f (s)ds ≤ z, C(t,0)z≤ z, t ∈ [0,∞),

and for every vector function φ = col(φ1, · · · , φn) such that |φ| ≤ f , we also get
boundedness of solutions on the semiaxis. Thus, for every bounded right-hand
side, the solution is bounded on the semiaxis, which by the Bohl-Perron theorem
(Theorem B.20) implies the exponential estimate (16.2.21). Positivity of the ma-
trices C(t, s) and G(t, s) implies inequalities (16.2.22), (16.2.23), (16.2.25) and
(16.2.26). �

For the delay system

x′
i (t)+

n∑

j=1

pij (t)xj
(
hij (t)

)= fi(t), i = 1, · · · , n, t ∈ [0,∞), (16.2.28)

xi(ξ)= 0 for ξ < 0, i = 1, · · · , n, (16.2.29)

which is a particular case of (16.2.1), we propose the following result that can be
obtained as a corollary of Theorem 16.3 if we also use a small trick described in the
proof of Theorem 16.7 below.

Theorem 16.4 Let t − hij (t)≤ δ, pij ≤ 0, i �= j, i, j = 1, · · · , n,
∫ t

hii (t)

pij (s)ds ≤ 1

e
, i = 1, · · · , n, t ∈ (0,∞), (16.2.30)

and there exist a constant vector z= col(z1, · · · , zn) and a number ε > 0 such that
n∑

j=1

pij (t)zj ≥ ε > 0, t ∈ [0,∞). (16.2.31)

Then assertions a), b) and c) of Theorem 16.3 are true, and in the case of additional
assumption 0 ≤ t − hij (t) assertion d) is also true.

Note that results on the exponential stability of systems obtained in [87, 207]
follow from this theorem.
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Let us define the constant vector z= col(z1, · · · , zn) as

z= P−1E, (16.2.32)

where P is the n× n matrices P = {pij }ni,j=1, E = col(1, · · · ,1) and n× n-matrix
Y(t)= {yij }ni,j=1 as

Y = P−1. (16.2.33)

For systems with constant coefficients pij we propose the following result.

Theorem 16.5 Let 0 ≤ t − hij (t) ≤ δ, pij ≤ 0, i �= j , i, j = 1, · · · , n,
pii(t − hii(t))≤ 1

e
for i = 1, · · · , n, t ∈ (0,∞).

Then the assertions a), b) and c) are equivalent and each of them implies d):

a) All components zi (i = 1, · · · , n) of the vector z defined by equality (16.2.32) are
positive.

b) For every bounded right-hand side f = col(f1, · · · , fn), the solution x =
col(x1, · · · , xn) is bounded on the semiaxis [0,∞).

c) The Cauchy matrix C(t, s) satisfies the exponential estimate; i.e., there exist pos-
itive α and N such that

0 ≤ Cij (t, s)≤Ne−α(t−s), 0 ≤ s ≤ t <∞, i, j = 1, · · · , n. (16.2.34)

d) Boundary value problems (16.1.16) with βi ≤ 1 (i = 1, · · · , n) have a unique so-
lution for every right-hand side f = col(f1, · · · , fn) such that fi ∈ L∞[0,∞),
i = 1, · · · , n, and entries of their Green’s matrices satisfy the inequalities
Gij (t, s)≥ 0 (i, j = 1, · · · , n), while Gii(t, s)≥ gi(t, s) > 0 for t, s ∈ [0,ω] and
every ω > 0.

Corollary 16.2 Let all coefficients pij be constants, the conditions of Theorem 16.5
be satisfied and all components zi (i = 1, · · · , n) of the vector z = col(z1, · · · , zn)
defined by equality (16.2.32) be positive. Then

lim
t→∞

∫ t

0

n∑

j=1

Cij (t, s)ds = zi, 0 ≤ s ≤ t <∞, (16.2.35)

lim
t→∞

∫ t

0
Cij (t, s)ds = yij , 0< t <∞, i, j = 1, · · · , n, (16.2.36)

and the Green’s matrix of periodic problem (16.2.28), (16.2.37), where

xi(0)= xi(ω), i = 1, · · · , n, (16.2.37)

satisfies
∫ ω

0

n∑

j=1

Gij (t, s)ds = zi, 0 ≤ t ≤ ω, i = 1, · · · , n (16.2.38)

∫ ω

0
Gij (t, s)ds = yij , 0 ≤ t ≤ ω, i, j = 1, · · · , n. (16.2.39)
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16.3 Positivity of the n-th Row of the Cauchy Matrix

In this section, we consider the equation

(Mix)(t)≡ x′
i (t)+

n∑

j=1

(Bij xj )(t)= fi(t), t ∈ [0,ω], i = 1, · · · , n, (16.3.1)

where Bij : C[0,ω] → L∞[0,ω] are linear bounded Volterra operators for i, j =
1, · · · , n. Its general solution has the representation

x(t)=
∫ t

0
C(t, s)f (s)ds +C(t,0)x(0),

where C(t, s) is the Cauchy matrix,

f (t)= col
(
f1(t), · · · , fn(t)

)
, x(t)= col

(
x1(t), · · · , xn(t)

)
.

Together with (16.3.1), consider the auxiliary system of the order n− 1

x′
i (t)+

n−1∑

j=1

(Bij xj )(t)= fi(t), t ∈ [0,ω], i = 1, · · · , n− 1, (16.3.2)

and denote by K(t, s) = {Kij (t, s)}i,j=1,···,n−1 its Cauchy matrix. Denote by
G(t, s) = {Gij (t, s)}i,j=1,···,n and P(t, s) = {Pij (t, s)}i,j=1,···,n the Green’s matri-
ces of the problems consisting of (16.3.1) and one of the boundary conditions

xi(0)= 0, i = 1, · · · , n− 1, xn(ω)= 0, (16.3.3)

or

xi(0)= 0, i = 1, · · · , n− 1, xn(0)= xn(ω), (16.3.4)

respectively.
Let us start with the following statement explaining how the scalar functional

differential equation for one of the components of the solution vector can be con-
structed.

Lemma 16.1 The component xn of the solution vector for the problem (16.3.1)
satisfies the scalar functional differential equation

(Mxn)(t)≡ x′
n(t)+ (Bxn)(t)= f ∗(t), t ∈ [0,ω], (16.3.5)

where

(Bxn)(t)≡ −
n−1∑

i=1

Bni

[∫ t

0

n−1∑

j=1

Kij (ξ, s)(Bjnxn)(s)ds

]
(t)+ (Bnnxn)(t), t ∈ [0,ω],

(16.3.6)

and
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f ∗(t)= fn(t)−
n−1∑

i=1

Bni

[∫ t

0

n−1∑

j=1

Kij (ξ, s)fj (s)ds

]
(t)

−
n−1∑

i=1

Bni

[
n−1∑

j=1

Kij (ξ,0)xj (0)

]
(t). (16.3.7)

Proof Using the Cauchy matrixK(t, s)= {Kij (t, s)}i,j=1,···,n−1 of system (16.3.2),
we obtain

xi(t)= −
∫ t

0

n−1∑

j=1

Kij (t, s)(Bjnxn)(s)ds +
∫ t

0

n−1∑

j=1

Kij (t, s)fj (s)ds

+
n−1∑

j=1

Kij (t,0)xj (0) (16.3.8)

for each i. Substitution of these representations into the n-th equation of system
(16.3.1) leads to (16.3.5), where the operator B and the function f ∗ are described
by formulas (16.3.6) and (16.3.7), respectively. �

Theorem 16.6 Let all entries of the (n − 1) × (n − 1) Cauchy matrix K(t, s) of
system (16.3.2) be nonnegative, Bnn be a positive operator and each of the operators
Bjn and Bnj is the either positive or negative, while the product −BnjBjn is the
positive operator for j = 1, · · · , n− 1.

If Bni for i = 1, · · · , n− 1 are negative operators, then the following five asser-
tions are equivalent:

1) There exists an absolutely continuous vector function v such that v′ ∈ L∞[0,ω],
vn(t) > 0, vi(0) ≤ 0 for i = 1, · · · , n − 1, (Miv)(t) ≤ 0 for i = 1, · · · , n and
vn(ω)−

∫ ω
t
(Mnv)(s)ds > 0 for t ∈ [0,ω).

2) Cnn(t, s) > 0, Cnj (t, s)≥ 0 for j = 1, · · · , n− 1, 0 ≤ s ≤ t ≤ ω.
3) The boundary value problem (16.3.1), (16.3.3) has a unique solution, and its

Green’s matrix satisfies the inequalities Gnj (t, s) ≤ 0 for j = 1, · · · , n, t, s ∈
[0,ω] and Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω.

4) If in addition B defined by equality (16.3.6) is a nonzero operator, then the
boundary value problem (16.3.1), (16.3.4) has a unique solution and its Green’s
matrix satisfies the inequalities Pnj (t, s)≥ 0 for j = 1, · · · , n and Pnn(t, s) > 0
for t, s ∈ [0,ω].

5) The n-th component of the solution vector x of the homogeneous system
Mix = 0, i = 1, · · · , n such that xi(0)≥ 0, i = 1, · · · , n−1, xn(0) > 0 is positive
for t ∈ [0,ω].
If Bni for i = 1, · · · , n− 1 are positive operators, then the following five asser-

tions are equivalent:

1∗) There exists an absolutely continuous vector function v such that v′ ∈
L∞[0,ω], vn(t) > 0, vi(0) ≥ 0, (Miv)(t) ≥ 0 for i = 1, · · · , n − 1,
(Mnv)(t)≤ 0 and vn(ω)−

∫ ω
t
(Mnv)(s)ds > 0 for t ∈ [0,ω).
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2∗) Cnn(t, s) > 0, Cnj (t, s)≤ 0 for j = 1, · · · , n− 1, 0 ≤ s ≤ t ≤ ω.
3∗) The boundary value problem (16.3.1), (16.3.3) has a unique solution and its

Green’s matrix satisfies the inequalities Gnj (t, s) ≥ 0 for j = 1, · · · , n − 1,
Gnn(t, s)≤ 0 for t, s ∈ [0,ω] and Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω.

4∗) If in addition B defined by equality (16.3.6) is a nonzero operator, then the
boundary value problem (16.3.1), (16.3.4) has a unique solution and its Green’s
matrix satisfies the inequalities Pnj (t, s)≤ 0 for j = 1, · · · , n, Pnn(t, s) > 0 for
t, s ∈ [0,ω].

5∗) The n-th component of the solution vector x of the homogeneous system
Mix = 0, i = 1, · · · , n such that xi(0)≤ 0, i = 1, · · · , n− 1, xn(0) > 0 is posi-
tive for t ∈ [0,ω].

Proof Let us start with the implications 1)⇒ 2) and 1∗)⇒ 2∗). By Lemma 16.1,
the component xn of the solution vector of system (16.3.1) satisfies (16.3.5). From
the positivity of the operator −BnjBjn, it follows that B is a positive operator. Each
of the conditions 1) and 1∗) implies that (Mvn)(t) ≤ 0, where the operator M is
defined by (16.3.5), for t ∈ [0,ω]. By Theorem 15.3, the Cauchy function R(t, s) of
the equation Mvn = 0 is positive for 0 ≤ s ≤ t ≤ ω, t ∈ [0,ω].

From the solution representation formula and Lemma 16.1, it follows that

xn(t)=
∫ t

0

n∑

j=1

Cnj (t, s)fj (s)ds =
∫ t

0
R(t, s)f ∗(s)ds, t ∈ [0,ω]. (16.3.9)

If Bnj is a negative operator for each j = 1, · · · , n− 1 and fi ≥ 0 for i = 1, · · · , n,
then f ∗ ≥ 0. If Bnj is a positive operator for each j = 1, · · · , n− 1, and fi ≤ 0 for
i = 1, · · · , n, then f ∗ ≥ 0. The positivity of R(t, s) implies that xn is nonnegative
and consequently Cnj (t, s)≥ 0 for 0 ≤ s ≤ t ≤ ω and j = 1, · · · , n.

If we set fj = 0 and xj (0)= 0 for j = 1, · · · , n− 1, then

xn(t)=
∫ t

0
Cnn(t, s)fn(s)ds =

∫ t

0
R(t, s)fn(s)ds, t ∈ [0,ω], (16.3.10)

and it is evident that Cnn(t, s) = R(t, s), which implies that Cnn(t, s) > 0 for 0 ≤
s ≤ t ≤ ω.

Let us prove the implication 1) ⇒ 3). By Lemma 16.1, the component xn of
the solution vector for system (16.3.1) satisfies (16.3.5). From the positivity of the
operator −BnjBjn, it follows that B is a positive operator. Condition 1) implies that
(Mvn)(t)≤ 0 for t ∈ [0,ω]. By Theorem 15.3, the Green’s function GM(t, s) of the
scalar boundary value problem

(Mxn)(t)≡ x′
n(t)+ (Bxn)(t)= f ∗(t), t ∈ [0,ω], xn(ω)= 0 (16.3.11)

exists and satisfies the inequalitiesGM(t, s) < 0 for 0 ≤ t ≤ s ≤ ω andGM(t, s)≤ 0
for 0 ≤ s ≤ t ≤ ω. Lemma 16.1, the representations of solutions of boundary value
problem (16.3.1), (16.3.3) and scalar one-point problem (16.3.11) imply the equality

xn(t)=
∫ t

0

n∑

j=1

Gnj (t, s)fj (s)ds =
∫ t

0
GM(t, s)f

∗(s)ds, t ∈ [0,ω]. (16.3.12)
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If Bnj is a negative operator for each j = 1, · · · , n− 1 and fi ≥ 0 for i = 1, · · · , n,
then f ∗ ≥ 0. The nonpositivity of GM(t, s) implies that xn is nonnegative and con-
sequently Gnj (t, s)≤ 0 for t, s ∈ [0,ω] and j = 1, · · · , n.

If we set fj = 0 and xj (0)= 0 for j = 1, · · · , n− 1, then

xn(t)=
∫ ω

0
Gnn(t, s)fn(s)ds =

∫ ω

0
GM(t, s)f (s)ds, t ∈ [0,ω], (16.3.13)

and it is obvious that Gnn(t, s) = GM(t, s), which implies that Gnn(t, s) < 0 for
0 ≤ t < s ≤ ω.

The proofs of the implications 1∗)⇒ 3∗), 1)⇒ 4) and 1∗)⇒ 4∗) are similar.
In order to prove 3)⇒ 1), we set v(t)= y(t), where y is a solution of the bound-

ary value problem

(Mix)(t)= −1, i = 1, · · · , n, t ∈ [0,ω], (16.3.14)

xi(0)= 0, i = 1, · · · , n− 1, xn(ω)= 0. (16.3.15)

In this case, vi(0)= 0, i = 1, · · · , n− 1 and

vn(t)= −
∫ ω

0

n∑

j=1

Gnj (t, s)ds > 0, t ∈ [0,ω). (16.3.16)

In order to prove 3∗)⇒ 1∗), we set v(t) = y(t), where y is the solution of the
boundary value problem consisting of the equations

(Mix)(t)= 1, i = 1, · · · , n− 1, (Mnx)(t)= −1, t ∈ [0,ω] (16.3.17)

and boundary conditions (16.3.15).
In order to prove the implications 2) ⇒ 1) and 2∗) ⇒ 1∗), we set vi(t) =

Cin(t,0) for i = 1, · · · , n, t ∈ [0,ω].
4)⇒ 2) The entry Pnn(t, s) coincides with the Green’s function Q(t, s) of the

periodic problem for scalar equation (16.3.5), which has the representation

Q(t, s)=R(t, s)+ R(t,0)R(ω, s)

1 −R(ω,0)
, (16.3.18)

where R(t, s) is the Cauchy function of (16.3.5) and R(t, s) = 0 if 0 ≤ t < s ≤ ω.
Thus the positivity of the Green’s matrix of problem (16.3.4) implies the positivity
of Q(t, s) and by Theorem 15.3 also the positivity of R(t, s) for 0 ≤ s ≤ t ≤ ω.
If fi(t) ≥ 0 for t ∈ [0,ω], i = 1, · · · , n, then f ∗ defined by formula (16.3.7) sat-
isfies the inequality f ∗(t) ≥ 0 for t ∈ [0,ω]. It follows from formula (16.3.9) that
Cnj (t, s) ≥ 0. If we set fj = 0 and xj (0) = 0 for j = 1, · · · , n − 1, then we get
equality (16.3.10) and consequently Cnn(t, s)=R(t, s) > 0 for 0 ≤ s ≤ t ≤ ω.

4∗)⇒ 2∗) can be proven similarly.
5)⇒ 1) and 5∗)⇒ 1∗) are justified as follows. Consider the solution vector of

the problem Mix = 0, i = 1, · · · , n, xi(0) = 0, i = 1, · · · , n − 1, xn(0) = γ , with
γ > 0. By assertion 5), the component xn(t) > 0 for t ∈ [0,ω]. Now we can set
vn(t)= xn(t), vi(0)= 0, i = 1, · · · , n− 1.
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In order to prove 2) ⇒ 5) and 2∗) ⇒ 5∗), consider the homogeneous system
Mix = 0, i = 1, · · · , n. By Lemma 16.1, the component xn satisfies (16.3.5), where
the operator B is defined by formula (16.3.6) and

f ∗(t)= −
n−1∑

i=1

Bni

(
n−1∑

j=1

Kij (ξ,0)xj (0)

)
(t)

for this homogeneous system. From the formula (16.3.10), it is clear that the Cauchy
function R(t, s) of the scalar first-order equation (16.3.5) coincides with the entry
Cnn(t, s) of the Cauchy matrix C(t, s) of system (16.3.1). The general solution of
(16.3.5) can be written as

x(t)=
∫ t

0
Cnn(t, s)f

∗(s)ds +Cnn(t,0)xn(0).

From the properties of the Cauchy matrix, it follows that the vector

col
{
C1n(t,0), · · · ,Cnn(t,0)

}

is a solution of the initial problem Mix = 0, i = 1, · · · , n, xi(0)= 0, i = 1, · · · , n−
1, xn(0) = 1. The conditions xi(0) ≥ 0 and the negativity of the operators Bni for
i = 1, · · · , n− 1 in assertion 5) (the conditions xi(0)≤ 0 and positivity of the oper-
ators Bni for i = 1, · · · , n− 1, in assertion 5∗)) imply that f ∗(t)≥ 0 for t ∈ [0,ω].
Positivity of Cnn(t, s) now implies that xn(t)≥ Cnn(t,0)xn(0) > 0. �

Remark 16.2 Assertions 1) ⇒ 5) and 1∗) ⇒ 5∗) are analogues for the n-th com-
ponent of the solution vector of the n-th-order functional differential systems
of the classical de La Vallee Poussin theorem on the differential inequality ob-
tained in [102] for ordinary second-order differential equations. Assertions 5)⇒ 2),
5∗)⇒ 2∗), 5)⇒ 3) and 5∗)⇒ 3∗) are analogues of the corresponding assertions
connecting nonoscillation and positivity of Green’s functions for the n-th-order or-
dinary differential equations [256].

Let us consider the delay differential system

x′
i (t)+

n∑

j=1

pij (t)xj
(
t − τij (t)

)= fi(t), i = 1, · · · , n, t ∈ [0,∞), (16.3.19)

where the delay τij ≥ 0 for i, j = 1, · · · , n as a particular case of system (16.3.1).
Let us introduce the following notation:

p∗
ij = ess suppij (t), pij∗ = ess infpij (t), τ

∗
ij = ess sup τij (t),

τij∗ = ess inf τij (t), p
+
ij (t)= max

{
0,pij (t)

}
.

Theorem 16.7 Let the following conditions be fulfilled:

1) pij ≤ 0 for i �= j, i, j = 1, · · · , n− 1.
2) pjn ≥ 0, pnj ≤ 0 for j = 1, · · · , n− 1, pnn ≥ 0.
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3) τ ∗
ii (p

+
ii )

∗ ≤ 1
e

for i = 1, · · · , n− 1.
4) There exists a positive α such that τ ∗

iiα ≤ 1
e

for i = 1, · · · , n and

pnn(t)e
ατnn(t) −

n−1∑

j=1

pnj (t)e
ατnj (t) ≤ α

≤ min
1≤i≤n−1

{
−pin(t)eατin(t) +

n−1∑

j=1

pij (t)e
ατij (t)

}
, t ∈ [0,∞). (16.3.20)

Then the entries of the n-th row of the Cauchy matrix of system (16.3.19) satisfy
the inequalities Cnn(t, s) > 0, Cnj (t, s)≥ 0 for j = 1, · · · , n− 1, 0 ≤ s ≤ t <∞.

Proof By Corollary 16.1, all the entries of the (n− 1)× (n− 1) Cauchy matrix of
the system

x′
i (t)+

n−1∑

j=1

pij (t)xj
(
t − τij (t)

)= fi(t), i = 1, · · · , n− 1, t ∈ [0,∞)

of the order n− 1 are nonnegative. Let us extend the coefficients pij and τij to the
interval [−τ ∗,0), where τ ∗ = maxi,j=1,···,n τ ∗

ij , as pij (t)= 0 for i �= j and pii = α,
τij = 0, i, j = 1, · · · , n, and consider system (16.3.19) also on [−τ ∗,∞). Let us
set vi(t) = −e−αt for i = 1, · · · , n − 1 and vn(t) = e−αt in condition 1) of Theo-
rem 16.6. We obtain that this condition is fulfilled if α satisfies the following system
of inequalities:

α ≤ −pin(t)eατin(t) +
n−1∑

j=1

pij (t)e
ατnj (t), i = 1, · · · , n− 1, t ∈ [−τ ∗,∞),

(16.3.21)

pnn(t)e
ατnn(t) −

n−1∑

j=1

pnj (t)e
ατnj (t) ≤ α, t ∈ [−τ ∗,∞). (16.3.22)

Now, by virtue of Theorem 16.6, all the entries of the n-th row of the Cauchy
matrix satisfy the inequalities Cnj (t, s) ≥ 0 for j = 1, · · · , n− 1 and Cnn(t, s) > 0
for −τ ∗ ≤ s ≤ t < ∞. The Cauchy matrices of system (16.3.19) on the interval
[0,∞) and on the interval [−τ ∗,∞) clearly coincide in the triangle 0 ≤ s ≤ t <∞,
which completes the proof. �

For the ordinary differential system

x′
i (t)+

n∑

j=1

pij (t)xj (t)= fi(t), i = 1, · · · , n, t ∈ [0,∞), (16.3.23)

Theorem 16.7 implies the following result.

Theorem 16.8 Let the following conditions be fulfilled:

1) pij ≤ 0 for i �= j , i, j = 1, · · · , n− 1.
2) pjn ≥ 0, pnj ≤ 0 for j = 1, · · · , n− 1, pnn ≥ 0.
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3) There exists a positive α such that

pnn(t)−
n−1∑

j=1

pnj (t)≤ α ≤ min
1≤i≤n−1

{
−pin(t)+

n−1∑

j=1

pij (t)

}
, t ∈ [0,∞).

(16.3.24)

Then the entries of the n-th row of the Cauchy matrix of system (16.3.23) satisfy
the inequalities Cnn(t, s) > 0, Cnj (t, s)≥ 0 for j = 1, · · · , n− 1, 0 ≤ s ≤ t <∞.

Consider now the ordinary differential system of the second order

x′
1(t)+ p11(t)x1(t)+ p12(t)x2(t)= f1(t),

x′
2(t)+ p21(t)x1(t)+ p22(t)x2(t)= f2(t),

t ∈ [0,∞). (16.3.25)

Theorem 16.9 Let the following conditions be fulfilled:

1) p11 ≥ 0, p12 ≥ 0, p21 ≤ 0, p22 ≥ 0.
2) There exists a positive α such that

p22(t)− p21(t)≤ α ≤ p11(t)− p12(t), t ∈ [0,∞). (16.3.26)

Then the entries of the second row of the Cauchy matrix of system (16.3.25)
satisfy the inequalities C21(t, s)≥ 0, C22(t, s) > 0 for 0 ≤ s ≤ t <∞.

Remark 16.3 If coefficients pij are constants, then the second condition in Theo-
rem 16.9 is as follows:

p22 − p21 ≤ p11 − p12, p11 − p12 > 0. (16.3.27)

Remark 16.4 Let us demonstrate that condition (16.3.27) (and consequently in-
equality (16.3.26)) is the best possible in the corresponding case. It is known that
for each fixed s the 2 × 2 matrix C(t, s) is the fundamental matrix X(t) of system
(16.3.25) satisfying the condition C(s, s)= I , where I is the 2 × 2 identity matrix.
Theorem 16.9 claims that entries in the second row of the fundamental matrix are
nonnegative. The characteristic equation of the system

x′
1(t)+ p11x1(t)+ p12x2(t)= 0,

x′
2(t)+ p21x1(t)+ p22x2(t)= 0,

t ∈ [0,∞), (16.3.28)

with constant coefficients is

λ2 + (p11 + p22)λ+ p11p22 − p12p21 = 0, (16.3.29)

and its roots are real if and only if

(p11 − p22)
2 ≥ −4p12p21. (16.3.30)

Instead of inequalities (16.3.27) let us consider

p22 − p21 ≤ p11 − p12 + ε,p11 − p12 + ε > 0, (16.3.31)

where ε is any positive constant. We can set p11 = p22, and then the first inequality
has the form p12 − p21 ≤ ε. If p12p21 < 0, then inequality (16.3.30) is not satisfied
and consequently each entry of the fundamental and the Cauchy matrices oscillates.
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Let us prove the following assertions, giving an efficient test for nonnegativity of
the entries in the n-th row of the Cauchy matrix in the case where the coefficients
|pnj | are small enough for j = 1, · · · , n.

Theorem 16.10 Let the following conditions be fulfilled:

1) pij ≤ 0 for i �= j, i, j = 1, · · · , n− 1.
2) pjn ≥ 0, pnj ≤ 0 for j = 1, · · · , n− 1, pnn ≥ 0.
3) τnn = const> 0, τij = 0 for others.
4) The following inequalities are fulfilled:

pnn(t)τnn exp

{
τnn

n−1∑

j=1

|pnj |∗
}

≤ 1

e
, t ∈ [0,∞), (16.3.32)

1

τnn
+
n−1∑

j=1

|pnj |∗ ≤ min
1≤i≤n−1

{
−pin(t)+

n−1∑

j=1

pij (t)

}
, t ∈ [0,∞). (16.3.33)

Then the entries of the n-th row of the Cauchy matrix of system (16.3.19) satisfy
the inequalities Cnn(t, s) > 0, Cnj (t, s)≥ 0 for j = 1, · · · , n− 1, 0 ≤ s ≤ t <∞.

Proof Consider the left-hand side

pnn(t)e
ατnn(t) −

n−1∑

j=1

pnj (t)e
ατnj (t) ≤ α, t ∈ [0,∞), (16.3.34)

of inequality (16.3.20). Using condition 3), we obtain that the inequality

pnn(t)≤
[
α −

n−1∑

j=1

|pnj |∗
]
e−ατnn , [0,∞), (16.3.35)

implies inequality (16.3.34). The right-hand side in inequality (16.3.35) attains its
maximum for α = 1

τnn
+∑n−1

j=1 |pnj |∗. Substituting this α into (16.3.35) and the right
part of (16.3.20), we obtain inequalities (16.3.32) and (16.3.33). �

Remark 16.5 It should be noted that (16.3.32) is the best possible in the following
sense. If pnj = 0, j = 1, · · · , n− 1, pnn = const> 0, then (16.3.32) has the form

pnnτnn ≤ 1

e
, t ∈ [0,∞), (16.3.36)

Cnn(t, s)= cn(t, s), where cn(t, s) is the Cauchy function of the diagonal equation

x′
n(t)+ pnnx(t − τnn)= 0, t ∈ [0,∞). (16.3.37)

The opposite inequality pnnτnn > 1
e

implies oscillation of all solutions [192] and,
by Theorem 15.3, cn(t, s) changes its sign. Now it is clear that we cannot substitute

pnn(t)τnn exp

{
τnn

n−1∑

j=1

|pnj |∗
}

≤ 1 + ε

e
, t ∈ [0,∞), (16.3.38)

where ε is any positive number, instead of inequality (16.3.32).
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Let us consider the second-order scalar differential equation

(Ny)(t)≡ y′′(t)+ p11(t)y
′(t − τ11(t)

)+ p12(t)y
(
t − τ12(t)

)= f1(t), (16.3.39)

t ∈ [0,∞), where y(θ) = y′(θ) = 0 for θ < 0, and the corresponding differential
system of the second order

x′
1(t)+ p11(t)x1

(
t − τ11(t)

)+ p12(t)x2
(
t − τ12(t)

)= f1(t),

x′
2(t)− x1(t)= 0,

(16.3.40)

t ∈ [0,∞), where x1(θ)= x2(θ)= 0 for θ < 0.
It should be noted that the entry C21(t, s) of the Cauchy matrix of system

(16.3.40) coincides with the Cauchy function W(t, s) of the scalar second-order
equation (16.3.39) and C11(t, s)=W ′

t (t, s). If the function y(t) is a solution of the
Cauchy problem (Ny)(t)= 0, t ∈ [0,∞), y(0)= 1, y′(0)= 0, thenC22(t,0)= y(t)

and C12(t,0)= y′(t).

Theorem 16.11 Assume that p12 ≥ 0, p∗
11τ

∗
11 ≤ 1

e
and there exists a positive num-

ber α such that ατ ∗
11 ≤ 1

e
and

α2 + p12(t)e
ατ12(t) ≤ αp11(t)e

ατ11(t), t ∈ [0,∞). (16.3.41)

Then the entries of the second row of the Cauchy matrix of system (16.3.40)
satisfy the inequalities C21(t, s)≥ 0, C22(t, s) > 0 for 0 ≤ s ≤ t <∞.

Proof In order to prove the theorem, we set v1(t)= −αe−αt , v2(t)= e−αt in asser-
tion 1) of Theorem 16.6. �

Theorem 16.12 Assume that p12 ≥ 0, p∗
11τ

∗
11 ≤ 1

e
, τ11 ≥ τ12 and

4p12(t)≤ p2
11∗, t ∈ [0,∞). (16.3.42)

Then the entries of the second row of the Cauchy matrix of system (16.3.40)
satisfy the inequalities C21(t, s)≥ 0, C22(t, s) > 0 for 0 ≤ s ≤ t <∞.

Proof In order to prove the theorem, we set α = p11∗
2 in Theorem 16.11. �

Remark 16.6 Inequality (16.3.42) is the best possible in the following sense. Let us
consider the system with constant coefficients

x′
1(t)+ p11x1(t)+ p12x2(t)= f1(t),

x′
2(t)− x1(t)= 0,

(16.3.43)

t ∈ [0,∞). The characteristic equation for this system has real roots if and only if
the inequality 4p12 ≤ p2

11 is fulfilled.
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16.4 Positivity of the Fixed n-th Row of Green’s Matrices

Consider the boundary value problem

(Mix)(t)≡ x′
i (t)+

n∑

j=1

(Bij xj )(t)= fi(t), t ∈ [0,ω], i = 1, · · · , n, (16.4.1)

lixi = ci, i = 1, · · · , n, (16.4.2)

where Bij : C[0,ω] → L1[0,ω] are linear bounded operators for i, j = 1, · · · , n and
li : C[0,ω] → R, i = 1, · · · , n are linear boundary functionals.

Together with problem (16.4.1), (16.4.2), let us consider the auxiliary problem
consisting of the system

(mix)(t)≡ x′
i (t)+

n−1∑

j=1

(Bij xj )(t)= fi(t), t ∈ [0,ω], i = 1, · · · , n− 1, (16.4.3)

of the order n− 1 and the boundary conditions

lixi = ci, i = 1, · · · , n− 1. (16.4.4)

Let us assume that this auxiliary boundary value problem has a unique solution
for every vector col{f1, · · · , fn−1} with essentially bounded components fi and ev-
ery constant vector col{c1, · · · , cn−1} and denote byK(t, s)= {Kij (t, s)}i,j=1,···,n−1
Green’s matrix of problem (16.4.3), (16.4.4) and by G(t, s) = {Gij (t, s)}i,j=1,···,n
Green’s matrix of problem (16.4.1), (16.4.2).

Lemma 16.2 Let problem (16.4.3), (16.4.4) have a unique solution for each vec-
tor f = col{f1, · · · , fn} with essentially bounded components fi and each constant
vector c = col{c1, · · · , cn}. Then the component xn of the solution vector of system
(16.4.1) satisfies the scalar functional differential equation

x′
n(t)+ (Bxn)(t)= f ∗(t), t ∈ [0,ω], (16.4.5)

where the operator B : C[0,ω] → L1[0,ω] and the function f ∗ ∈ L1[0,ω] are de-
fined by the equalities

(Bxn)(t)≡ −
n−1∑

i=1

Bni

{∫ ω

0

n−1∑

j=1

Kij (·, s)(Bjnxn)(s)ds
}
(t)

+ (Bnnxn)(t), t ∈ [0,ω], (16.4.6)

f ∗(t)= fn(t)−
n−1∑

i=1

Bni

{∫ ω

0

n−1∑

j=1

Kij (·, s)fj (s)ds
}
(t)−

n−1∑

i=1

(Bniui)(t), (16.4.7)

where u= col{u1, · · · , un−1} is the solution of the system

(mix)(t)= 0, t ∈ [0,ω], i = 1, · · · , n− 1, (16.4.8)

satisfying condition (16.4.4).
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Proof Using Green’s matrix K(t, s) = {Kij (t, s)}n−1
i,j=1 of problem (16.4.3),

(16.4.4), we obtain

xi(t)= −
∫ ω

0

n−1∑

j=1

Kij (t, s)(Bjnxn)(s)ds +
∫ ω

0

n−1∑

j=1

Kij (t, s)fj (s)ds + ui(t)

(16.4.9)

for every i ∈ {1, · · · , n−1}. Substitution of these representations in the n-th equation
of the system (16.4.1) leads to (16.4.5), where the operator B and the function f ∗
are described by the formulas (16.4.6) and (16.4.7), respectively. �

Consider the boundary value problem

(Mix)(t)≡ x′
i (t)+

n∑

j=1

(Bij xj )(t)= fi(t), t ∈ [0,ω], i = 1, · · · , n, (16.4.10)

lixi = ci, i = 1, · · · , n− 1, xn(ω)= cn, (16.4.11)

where Bij : C[0,ω] → L1[0,ω] are linear continuous operators for i, j = 1, · · · , n.
Let us present an auxiliary assertion [115]. Consider scalar equation (16.4.5) and

the integral operator N : C[0,ω] → C[0,ω] defined by the equality

(Nx)(t)=
∫ ω

t

{∫ ω

0
x(ξ)dξ b(s, ξ)

}
ds.

Lemma 16.3 Let the operator B : C[0,ω] → L1[0,ω] be a positive operator ad-
mitting the representation

(Bx)(t)=
∫ ω

0
x(s)dsb(t, s), t ∈ [0,ω].

Then the following assertions are equivalent:

1) There exists a nonnegative absolutely continuous function v such that the set of
zeros of ψ , where

ψ(t)= v(t)−
∫ ω

t

∫ ω

0
v(ξ) dξ b(s, ξ) ds,

is not more than countable and ψ(s) > 0 if mes{t ∈ [0,ω] : b(t, s+) �=
b(t, s−)}> 0.

2) The spectral radius of the operator N : C[0,ω] → C[0,ω] is less than one.
3) The boundary value problem, which consists of (16.4.5) and boundary condition
xn(ω) = 0, has a unique solution, and its Green’s function is nonpositive for
t, s ∈ [0,ω], while G(t, s) < 0 for 0< t < s < ω.

Theorem 16.13 Let problem (16.4.3), (16.4.4) have a unique solution for every
vector col{f1, · · · , fn−1} with essentially bounded components fi and every con-
stant vector col{c1, · · · , cn−1}, all entries of its (n − 1) × (n − 1) Green’s matrix
K(t, s) be nonnegative and the operators Bin, −Bni and Bnn be positive operators
for i = 1, · · · , n− 1. Then the following two assertions are equivalent:
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1) There exists an absolutely continuous vector function v such that vn(t) > 0,
(Miv)(t) ≤ 0, for t ∈ [0,ω], i = 1, · · · , n, and the solution of the homogeneous
equation (miu)(t) = 0 for t ∈ [0,ω], i = 1, · · · , n− 1 satisfying the conditions
liui = livi , i = 1, · · · , n− 1 is nonpositive.

2) Boundary value problem (16.4.1), (16.4.2) has a unique solution for every inte-
grable f = col(f1, · · · , fn) and c= col(c1, · · · , cn) ∈R

n, and entries of the n-th
row of its Green’s matrix satisfy the inequalities: Gnj (t, s)≤ 0 for j = 1, · · · , n,
t, s ∈ [0,ω], while Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω.

Proof Let us now prove the implication 1)⇒ 2) of the theorem. By Lemma 16.2,
the component xn of the solution vector of problem (16.4.1), (16.4.2) satisfies
(16.4.5). Condition 1) by Lemma 16.3 implies that the Green’s function GN(t, s)
of the boundary value problem

x′
n(t)+ (Bxn)(t)= f ∗(t), t ∈ [0,ω], x(ω)= 0 (16.4.12)

exists and satisfies the inequalities GN(t, s) ≤ 0 for t, s ∈ [0,ω] and GN(t, s) < 0
for 0 ≤ t < s ≤ ω. Lemma 16.2, the representations of solutions of boundary value
problem (16.4.1), (16.4.2) and scalar one-point problem (16.4.12) imply the equality

xn(t)=
∫ ω

0

n∑

j=1

Gnj (t, s)fj (s)ds =
∫ ω

0
GN(t, s)f

∗(s)ds, t ∈ [0,ω]. (16.4.13)

If Bnj is a negative operator for every j = 1, · · · , n− 1 and fi ≤ 0 for i = 1, · · · , n,
then f ∗ ≤ 0. The nonpositivity of GN(t, s) implies that xn is nonnegative and con-
sequently Gnj (t, s)≤ 0 for t, s ∈ [0,ω] and j = 1, · · · , n.

If we set fj = 0 for j = 1, · · · , n− 1 and lj xj = 0 for j = 1, · · · , n, then

xn(t)=
∫ ω

0
Gnn(t, s)fn(s)ds =

∫ ω

0
GN(t, s)fn(s)ds, t ∈ [0,ω], (16.4.14)

and it is clear that Gnn(t, s) = GN(t, s). It is known from Lemma 16.3 that
GN(t, s) < 0 for 0 ≤ t < s ≤ ω, which implies that Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω.

In order to prove 2)⇒ 1), let us define vi (i = 1, · · · , n) as

vi(t)=wi(t), i = 1, · · · , n− 1, vn(t)=wn(t)+ 1, t ∈ [0,ω], (16.4.15)

where wi (i = 1, · · · , n) is a solution to the problem

w′
i (t)+

n∑

j=1

(Bijwj )(t)= −(Bin1)(t), i = 1, · · · , n, t ∈ [0,ω],

liwi = 0, i = 1, · · · , n− 1, wn(ω)= 0.

(16.4.16)

Evidently the functions vi (i = 1, · · · , n) satisfy the homogeneous system

v′
i (t)+

n∑

j=1

(Bij vj )(t)= 0, i = 1, · · · , n, t ∈ [0,ω], (16.4.17)

and vn(t) > 0 for t ∈ [0,ω]. �
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Theorem 16.14 Let problem (16.4.3), (16.4.4) have a unique solution, all entries
of its (n− 1)× (n− 1) Green’s matrix K(t, s) be nonpositive and Bnn,−Bin and
−Bni be positive operators for i = 1, · · · , n− 1. Then the following two assertions
are equivalent:

1∗) There exists an absolutely continuous vector function v such that vn(t) > 0,
(Mnv)(t) ≤ 0, (Miv)(t) ≥ 0 for t ∈ [0,ω], i = 1, · · · , n − 1 and the solution
of the homogeneous equation (miu)(t) = 0 for t ∈ [0,ω], i = 1, · · · , n − 1,
satisfying the conditions liui = livi , i = 1, · · · , n− 1, is nonnegative.

2∗) The boundary value problem (16.4.1), (16.4.2) has a unique solution for every
integrable f = col(f1, · · · , fn) and c = col(c1, · · · , cn) ∈ R

n, and the entries
of the n-th row of its Green’s matrix satisfy the inequalities Gnj (t, s) ≥ 0 for
j = 1, · · · , n− 1, Gnn(t, s) ≤ 0 for t, s ∈ [0,ω] and Gnn(t, s) < 0 for 0 ≤ t <

s ≤ ω.

The proof of this theorem is similar to the proof of Theorem 16.13.

16.5 Nonpositivity Conditions for the n-th Row of Green’s
Matrices

In this section, we present sufficient nonpositivity conditions for the entries of the n-
th row of Green’s matrices for a system of ordinary and delay differential equations.

First we consider the system of ordinary differential equations

x′
i (t)+

n∑

j=1

pij (t)xj (t)= fi(t), i = 1, · · · , n, t ∈ [0,ω], (16.5.1)

with the boundary conditions

xi(0)= xi(ω)+ ci, i = 1, · · · , n− 1, xn(ω)= cn. (16.5.2)

Theorem 16.15 Let the following conditions be fulfilled:

1) pij ≤ 0 for i �= j, i, j = 1, · · · , n− 1.
2) pjn ≥ 0, pnj ≤ 0 for j = 1, · · · , n− 1, pnn ≥ 0.
3) There exists a positive number α such that

pnn(t)−
n−1∑

j=1

pnj (t)≤ α ≤ min
1≤i≤n−1

{
−pin(t)+

n−1∑

j=1

pij (t)

}
, t ∈ [0,ω].

(16.5.3)

Then problem (16.5.1), (16.5.2) has a unique solution for every integrable vector
function f = col( f1, f2, · · · , fn) and c = col(c1, c2, · · · , cn) ∈ R

n, and the entries
of the n-th row of Green’s matrix of boundary value problem (16.5.1), (16.5.2) sat-
isfy the inequalitiesGnj (t, s)≤ 0 for j = 1, · · · , n for t, s ∈ [0,ω] andGnn(t, s) < 0
for 0 ≤ t < s ≤ ω.
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Proof Condition 1) and the inequality

0< α ≤ min
1≤i≤n−1

{
−pin(t)+

n−1∑

j=1

pij (t)

}
, t ∈ [0,ω], (16.5.4)

imply, according to Theorems 16.1 and 16.2, the nonnegativity of all entries of
Green’s matrix K(t, s) of the boundary value problem

x′
i (t)+

n−1∑

j=1

pij (t)xj (t)= fi(t), i = 1, · · · , n− 1, t ∈ [0,ω], (16.5.5)

xi(0)= xi(ω)+ ci, i = 1, · · · , n− 1. (16.5.6)

Let us set vi(t)= −e−αt for i = 1, · · · , n− 1 and vn(t)= e−αt in condition 1) of
Theorem 16.13. We obtain that this condition is fulfilled if α satisfies

α ≤ −pin(t)+
n−1∑

j=1

pij (t), i = 1, · · · , n− 1, t ∈ [0,ω], (16.5.7)

pnn(t)−
n−1∑

j=1

pnj (t)≤ α, t ∈ [0,ω]. (16.5.8)

Now, by Theorem 16.13, all entries of the n-th row of Green’s matrix satisfy the
inequalities Gnj (t, s) ≤ 0 for j = 1, · · · , n − 1 and, using Lemma 16.3, we can
conclude that Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω. �

Consider now the ordinary differential system of the second order

x′
1(t)+ p11(t)x1(t)+ p12(t)x2(t)= f1(t),

x′
2(t)+ p21(t)x1(t)+ p22(t)x2(t)= f2(t),

t ∈ [0,ω], (16.5.9)

with the conditions

x1(0)= x1(ω)+ c1, x2(ω)= c2. (16.5.10)

From Theorem 16.15, as a particular case for n = 2, we obtain the following
result.

Theorem 16.16 Let the following two conditions be fulfilled:

1) p11 ≥ 0, p12 ≥ 0, p21 ≤ 0, p22 ≥ 0.
2) There exists a positive α such that

p22(t)− p21(t)≤ α ≤ p11(t)− p12(t), t ∈ [0,ω]. (16.5.11)

Then problem (16.5.9), (16.5.10) has a unique solution for every integrable f =
col(f1, f2) and c = {c1, c2} ∈ R

2, and the entries of the second row of Green’s
matrix of problem (16.5.9), (16.5.10) satisfy the inequalities G2i (t, s) ≤ 0 for i =
1,2, t, s ∈ [0,ω] and G22(t, s) < 0 for 0 ≤ t < s < ω.
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Remark 16.7 If coefficients pij are constants, the second condition in Theo-
rem 16.16 is as follows:

p22 − p21 ≤ p11 − p12, p11 − p12 > 0. (16.5.12)

Remark 16.8 Let us demonstrate that inequality (16.5.12) is the best possible in the
corresponding case and the condition

p22 − p21 ≤ p11 − p12 + ε, p11 − p12 + ε > 0 (16.5.13)

cannot be set instead of (16.5.12). The characteristic equation of the system

x′
1(t)+ p11x1(t)+ p12x2(t)= 0,

x′
2(t)+ p21x1(t)+ p22x2(t)= 0,

t ∈ [0,ω], (16.5.14)

with constant coefficients is as follows:

λ2 + (p11 + p22)λ+ p11p22 − p12p21 = 0. (16.5.15)

If we set p11 = p22 = 0, p21 < 0, p12 > 0, p12 − p21 < ε, then the roots are λ1 =
i
√−p12p21, λ2 = −i√−p12p21, and the problem

x′
1(t)+ p12x2(t)= 0,

x′
2(t)+ p21x1(t)= 0,

t ∈ [0,ω], (16.5.16)

x1(0)= x1(ω), x2(ω)= 0, (16.5.17)

has a nontrivial solution for ω= 2π√−p12p21
.

Let us consider the system of delay differential equations

x′
i (t)+

n∑

j=1

pij (t)xj
(
t − τij (t)

)= fi(t), i = 1, · · · , n, t ∈ [0,ω], (16.5.18)

xi(ξ)= 0 for ξ < 0, i = 1, · · · , n (16.5.19)

with the boundary conditions

xi(0)= xi(ω)+ ci, i = 1, · · · , n− 1, xn(ω)= cn. (16.5.20)

Theorem 16.17 Let the following conditions be fulfilled:

1) pij ≤ 0 for i �= j, i, j = 1, · · · , n− 1.
2) pjn ≥ 0, pnj ≤ 0 for j = 1, · · · , n− 1, pnn ≥ 0.
3) τii = 0 for i = 1, · · · , n− 1.
4) There exists a positive number α such that for t ∈ [0,ω] we have

pnn(t)e
ατnn(t) −

n−1∑

j=1

pnj (t)e
ατnj (t) ≤ α

≤ min
1≤i≤n−1

{
−pin(t)eατin(t) + pii(t)+

n−1∑

j=1,i �=j
pij (t)e

ατij (t)

}
. (16.5.21)
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Then problem (16.5.18), (16.5.20) has a unique solution for every integrable f =
col(f1, · · · , fn) and c= {c1, · · · , cn} ∈ R

n and the entries of the n-th row of Green’s
matrix of problem (16.5.18), (16.5.20) satisfy the inequalitiesGnj (t, s)≤ 0 for t, s ∈
[0,ω], j = 1, · · · , n and Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω.

Proof By Theorems 16.1 and 16.2, all the entries of (n−1)×(n−1)Green’s matrix
K(t, s) of the problem, consisting of the system

x′
i (t)+

n−1∑

j=1

pij (t)xj
(
t − τij (t)

)= fi(t), i = 1, · · · , n− 1, t ∈ [0,ω], (16.5.22)

and the boundary conditions xi(0)= xi(ω)+ ci , i = 1, · · · , n− 1, are nonnegative.
Let us set vi(t)= −e−αt for i = 1, · · · , n− 1 and vn(t)= e−αt in condition 1) of

Theorem 16.13. We obtain that this condition is fulfilled if α satisfies the following
system of inequalities:

α ≤ −pin(t)eατin(t) + pii(t)+
n−1∑

j=1,i �=j
pij (t)e

ατij (t), i = 1, · · · , n− 1, t ∈ [0,ω],
(16.5.23)

pnn(t)e
ατnn(t) −

n−1∑

j=1

pnj (t)e
ατnj (t) ≤ α, t ∈ [0,ω]. (16.5.24)

Now, by virtue of Theorem 16.13, all entries of the n-th row of Green’s matrix of
problem (16.5.18), (16.5.20) satisfy the inequalities Gnj (t, s) ≤ 0 for t, s ∈ [0,ω],
j = 1, · · · , n and Gnn(t, s) < 0 for 0 ≤ t < s ≤ ω. �

Remark 16.9 It was explained in Sect. 16.4 that in the case of the ordinary system
(τij = 0, i, j = 1, · · · , n) with constant coefficients pij , inequality (16.5.21) is the
best possible in the corresponding case.

Let us consider the second-order scalar differential equation

y′′(t)+ p11(t)y
′(t)+ p12(t)y

(
t − τ12(t)

)= f1(t), t ∈ [0,ω], (16.5.25)

where y(ξ)= y′(ξ)= 0 for ξ < 0, with the boundary conditions

y′(0)= y′(ω)+ c1, y(ω)= c2, (16.5.26)

and the corresponding differential system of the second order

x′
1(t)+ p11(t)x1(t)+ p12(t)x2

(
t − τ12(t)

)= f1(t),

x′
2(t)− x1(t)= 0,

t ∈ [0,ω], (16.5.27)

where x1(ξ)= x2(ξ)= 0 for ξ < 0, with the boundary conditions

x1(0)= x1(ω)+ c1, x2(ω)= c2. (16.5.28)

It should be noted that the entry G21(t, s) of Green’s matrix of system (16.5.27),
(16.5.28) coincides with Green’s function W(t, s) of the problem (16.5.25),
(16.5.26) for the scalar second-order equation and C11(t, s)=W ′

t (t, s).
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Theorem 16.18 Assume that p12 ≥ 0 and there exists α > 0 such that

α2 + p12(t)e
ατ12(t) ≤ αp11(t), t ∈ [0,ω]. (16.5.29)

Then problem (16.5.27), (16.5.28) has a unique solution for every integrable f =
col( f1, f2) and c = col(c1, c2) ∈ R

2, and the entries of the second row of Green’s
matrix of this problem satisfy the inequalities G2j (t, s) ≤ 0, j = 1,2, t, s ∈ (0,ω),
G22(t, s) < 0 for 0 ≤ t < s < ω.

Proof In order to prove the theorem, we set v1(t)= −αe−αt , v2(t)= e−αt in asser-
tion 1) of Theorem 16.13. �

Remark 16.10 Inequality (16.5.29) is the best possible in the following sense. Let
us add ε to the right-hand side. We obtain the inequality

α2 + p12(t)e
ατ12(t) ≤ αp11(t)+ ε, t ∈ [0,ω], (16.5.30)

and the statement of Theorem 16.18 is not true. Let us set the coefficients as con-
stants p11 = 0 and 0< p12 < ε. It is clear that inequality (16.5.30) is fulfilled if we
set α small enough. Consider the homogeneous boundary value problem

x′
1(t)+ p12x2(t)= 0, x′

2(t)− x1(t)= 0, t ∈ [0,ω],
x1(0)= x1(ω), x2(ω)= 0.

(16.5.31)

The components x1, x2 of the solution vector are periodic, and for ω = 2π√
p12

the
boundary value problem (16.5.31) has a nontrivial solution.

Let us prove the following result, which gives an efficient test for nonpositivity
of the entries of the n-th row of Green’s matrix in the case where the coefficients
|pnj | are small enough for j = 1, · · · , n− 1.

Theorem 16.19 Let the following conditions be fulfilled:

1) pij ≤ 0 for i �= j , i, j = 1, · · · , n− 1.
2) pjn ≥ 0, pnj ≤ 0, pnn ≥ 0 for j = 1, · · · , n− 1.
3) τnn = const, τij = 0 for other i, j .
4) The following inequalities are fulfilled:

pnn(t)τnn exp

{
τnn

n−1∑

j=1

|pnj |∗
}

≤ 1

e
, t ∈ [0,ω], (16.5.32)

1

τnn
+
n−1∑

j=1

|pnj |∗ ≤ min
1≤i≤n−1

{
−pin(t)+

n−1∑

j=1

pij (t)

}
, t ∈ [0,ω]. (16.5.33)

Then problem (16.5.18), (16.5.20) has a unique solution for every integrable vec-
tor function f = col(f1, f2, · · · , fn) and constant c= (c1, c2, · · · , cn) ∈ R

n, and the
entries of the n-th row of its Green’s matrix satisfy the inequalities Gnj (t, s)≤ 0 for
j = 1, · · · , n and Gnn(t, s) < 0 for 0 ≤ t < s < ω.
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Proof Let us set vi(t)= −e−αt for i = 1, · · · , n−1 and vn(t)= e−αt in condition 1)
of Theorem 16.14,

pnn(t)e
ατnn −

n−1∑

j=1

pnj (t)≤ α ≤ min
1≤i≤n−1

{
−pin(t)+

n−1∑

j=1

pij (t)

}
, t ∈ [0,ω].

(16.5.34)

On the left-hand side, we have the inequality

pnn(t)e
ατnn −

n−1∑

j=1

pnj (t)≤ α, t ∈ [0,ω], (16.5.35)

which is fulfilled when

pnn(t)≤
[
α −

n−1∑

j=1

|pnj |∗
]
e−ατnn, t ∈ [0,ω]. (16.5.36)

The right-hand side in inequality (16.5.36) attains its maximum for α = 1
τnn

+
∑n−1

j=1 |pnj |∗. Substituting this α into (16.5.36) and the right-hand side of (16.5.34),
we obtain inequalities (16.5.32) and (16.5.33). �

Remark 16.11 It can be stressed that we do not require smallness of the interval
[0,ω] in Theorems 16.17–16.19.

Remark 16.12 It can be noted that inequality (16.5.32) is the best possible in the
following sense. If pnj = 0 for j = 1, · · · , n − 1, pnn = const > 0, then system
(16.5.18) and inequality (16.5.32) become of the forms

x′
i (t)= fi(t), i = 1, · · · , n− 1, x′

n(t)+ pnnxn(t − τnn)= fn(t), t ∈ [0,ω],
(16.5.37)

pnnτnn ≤ 1

e
, t ∈ [0,ω], (16.5.38)

respectively. The opposite of the inequality in (16.5.38), pnnτnn > 1
e
, implies oscil-

lation of all solutions of the equation

x′
n(t)+ pnnx(t − τnn)= 0, ∈ [0,ω]. (16.5.39)

This implies that the homogeneous problem

x′
i (t)= 0, i = 1, · · · , n− 1, x′

n(t)+ pnnxn(t − τnn)= 0, t ∈ [0,ω], (16.5.40)

xi(0)= xi(ω), i = 1, · · · , n− 1, xn(ω)= 0 (16.5.41)

has nontrivial solutions for corresponding ω. Evidently, we cannot substitute

pnn(t)τnn exp

{
τnn

n−1∑

j=1

|pnj |∗
}

≤ 1 + ε

e
, t ∈ [0,ω], (16.5.42)

where ε is any positive number, instead of inequality (16.5.32).
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16.6 Discussion and Open Problems

In this chapter, we considered boundary value problems for the system of functional
differential equations

(Mix)(t)≡ x′
i (t)+

n∑

j=1

(Bij xj )(t)= fi(t), t ∈ [0,ω], i = 1, · · · , n, lx = α,

(16.6.1)

where x = col(x1, · · · , xn), Bij : C[0,ω] → L1[0,ω] or Bij : C[0,ω] → L∞[0,ω],
i, j = 1, · · · , n, are linear continuous operators, C[0,ω], L1[0,ω] and L∞[0,ω]
are the spaces of continuous, integrable and essentially bounded functions y :
[0,ω] → R, respectively, and l : C[0,ω] →R

n is a linear bounded functional.
The property that the conditions

(Mix)(t)≥ (Miy)(t), t ∈ [0,ω], i = 1, · · · , n, lx = ly, (16.6.2)

imply,

xi(t)≥ yi(t), t ∈ [0,ω], i = 1, · · · , n, (16.6.3)

is a basis for the monotone technique [250].
S.A. Chaplygin was the first to note the importance of this property and pro-

posed an approximate integration method on this basis [325]. A series of papers,
starting with the paper by N.N. Luzin [278], considered various aspects of Chap-
lygin’s approximate method. The well-known monograph by V. Lakshmikantham
and S. Leela [250] was one of the most important contributions in this area. The
book by M.A. Krasnosel’skii and others [233] was devoted to approximate meth-
ods for operator equations. These ideas have been developed in various publications
on the monotone technique for the approximate solution of boundary value prob-
lems for systems of functional differential equations. The works by N.V. Azbelev,
V.P. Maksimov and L.F. Rakhmatullina [28] and I. Kiguradze and B. Puza [219,
222, 223] determine the modern level of this topic for functional differential equa-
tions.

Wazewski’s classical theorem claims [332] that the condition

pij ≤ 0 for j �= i, i, j = 1, · · · , n (16.6.4)

is necessary and sufficient for the property (16.6.2) ⇒ (16.6.3) for the Cauchy prob-
lem for the system of ordinary differential equations

x′
i (t)+

n∑

j=1

pij (t)xj (t)= fi(t), i = 1, · · · , n, t ∈ [0,ω]. (16.6.5)

It would seem that the condition (16.6.4) or its analogues for various functional
differential equations and boundary value problems sets a natural bound on the use
of monotone methods. An attempt to overcome this limitation was made in the paper
[113], where the idea to compare only one component of the solution vector was first



16.6 Discussion and Open Problems 427

formulated. Let ki be either 1 or 2. The paper [113] considered the conditions under
which the inequalities

(−1)ki
[
(Mix)(t)− (Miy)(t)

]≥ 0, t ∈ [0,ω], lx = ly, i = 1, · · · , n (16.6.6)

yield that for a corresponding fixed component xr of the solution vector the relation

xr(t)≥ yr(t), t ∈ [0,ω] (16.6.7)

is satisfied. This property is weaker than the implication (16.6.2) ⇒ (16.6.3) and, as
we see, leads to essentially weaker restrictions on the given system.

By solution representation formula (16.1.3), the property that (16.6.2) implies
(16.6.3) is valid if all the entries of the matrices G(t, s) and X(t) are nonnegative
and the implication (16.6.6) ⇒ (16.6.7) is reduced to the property that all entries
of the r-th row only of the Green’s matrix preserve their sign. The results on sign
preservation for the entries in the r-th row of the Green’s matrices were obtained in
the papers [5, 113, 115].

The application of results on positivity of entries of the r-th row in the study of
stability can be outlined as one of the most important open problems. The second
one is application of these results to the study of nonlinear boundary value problems.

The main results of this chapter are based on the idea of constructing a scalar
functional differential equation for one of the components of a solution vector. Quite
a different idea, to reduce scalar integrodifferential equations (in a general case they
can also be vector equations)

x′(t)+ p(t)x
(
h(t)

)+
∫ t

0
K(t, s)x(s)ds = 0, t ∈ [0,∞), (16.6.8)

to systems of ordinary or functional differential equations and then to analyze these
systems, was presented in the papers [2, 6, 131, 133, 134, 136]. Results on stability
and bifurcation were obtained there on the basis of this idea. Note that such an
approach allows us to understand what are autonomous and periodic equations in the
case of (16.6.8) and to get results on the exponential stability of integrodifferential
equations even in cases where the corresponding equation

x′(t)+ p(t)x
(
h(t)

)= 0, t ∈ [0,∞)

is exponentially unstable. For a wide class of kernelsK(t, s), the system of ordinary
or functional differential equations is finite-dimensional. In the case of more gen-
eral kernels K(t, s), this system is infinite-dimensional. One of the first systematic
studies on the theory of infinite systems of ordinary differential equations

x′
i (t)+

∞∑

j=1

pij (t)x(t)= fi(t), i = 1,2,3, · · · , t ∈ [0,ω] (16.6.9)

can be found in the papers by K.P. Persidskii [298, 299], where existence and
uniqueness results for the Cauchy problem were obtained and various examples
demonstrating principal differences of finite and infinite systems were presented.
Theorems on existence, uniqueness and convergence for the infinite systems were
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discussed in the well-known monograph by R. Bellman [38, pp. 204–216]. Impor-
tant developments in the area of countable systems were presented in the book [313].
An approach to infinite-dimensional systems on the basis of the general theory of
functional differential equations was started in [266, 267]. In [135, 137], the ex-
tension of results about positivity of a Green’s matrix and exponential stability, ob-
tained in Sect. 16.2 of this chapter, on infinite-dimensional systems is presented.

Finally, we outline some open problems.

1. Obtain theorems on differential inequalities for nonlinear systems based on sign
constancy of the entries in the r-th row of Green’s matrices and consequently of
the property (16.6.6) ⇒ (16.6.7).

2. Construct an analogue of the approximate integration monotone technique for
nonlinear systems based on the property (16.6.6) ⇒ (16.6.7).

3. Obtain assertions on maximum principles for a corresponding component xr of
the solution vector. Based on these results, deduce existence and uniqueness tests
for linear and nonlinear boundary value problems.

4. Obtain stability results for systems based on positivity of entries in a correspond-
ing line of the Cauchy matrix.



Chapter 17
Nonoscillation Intervals for n-th-Order
Equations

17.1 Introduction

In this chapter, we consider the n-th-order functional differential equation

(Mx)(t)≡ x(n)(t)+
n−1∑

j=0

(
Bjx

(j)
)
(t)= f (t), t ∈ [0,ω], (17.1.1)

where Bj : C[0,ω] → L∞[0,ω], j = 0, · · · , n− 1 are linear continuous operators,
C[0,ω] is the space of continuous functions and L∞[0,ω] is the space of measur-
able essentially bounded functions x : [0,ω] → R. The case where Bj : C[0,ω] →
L1[0,ω], j = 0, · · · , n − 1, where L1[0,ω] is the space of integrable functions
x : [0,ω] →R

1, can be considered similarly. Operator Bj can be of the forms

(Bjx)(t)=
m∑

i=1

pi(t)x
(
hi(t)

)
, t ∈ [0,ω], (17.1.2)

x(ξ)= 0 for ξ /∈ [0,ω], (17.1.3)

or

(Bjx)(t)=
∫ ω

0
K(t, s)x(s)ds, t ∈ [0,ω], (17.1.4)

and their linear combinations and superpositions also can be considered.
Let us start with the n-th-order ordinary differential equation

(£x)(t)≡ x(n)(t)+
n−1∑

i=0

pi(t)x
(i)(t)= f (t), t ∈ [0,ω], (17.1.5)

with essentially bounded coefficients pi and f . This equation will be considered
with the interpolation boundary conditions

x(i)(tj )= cij , (17.1.6)
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where

0 ≤ t1 < t2 < · · ·< tm ≤ ω, i = 0, · · · , kj − 1, j = 1, · · · ,m, k1 + · · · + km = n.

(17.1.7)

Problem (17.1.5), (17.1.6) is called a de La Vallee Poussin problem. If the homo-
geneous problem

(£x)(t)≡ x(n)(t)+
n−1∑

i=0

pi(t)x
(i)(t)= 0, t ∈ [0,ω], (17.1.8)

x(i)(tj )= 0, (17.1.9)

0 ≤ t1 < t2 < · · ·< tm ≤ ω, i = 0, · · · , kj − 1, j = 1, · · · ,m, k1 + · · · + km = n

(17.1.10)

has only the trivial solution, then the solution of (17.1.5), (17.1.6) has the represen-
tation

x(t)=
∫ ω

0
G(t, s)f (s)ds +X(t), (17.1.11)

where X(t) is a solution of homogeneous equation (17.1.8) satisfying the condition
(17.1.6) and G(t, s) is called the Green’s function of the boundary value problem
(17.1.5), (17.1.6).

In order to explain the main goal of this chapter, let us present two definitions.

Definition 17.1 [0,ω] is a nonoscillation interval of the equation £x = 0 if every
nontrivial solution does not have more than n − 1 zeros on this interval counting
each zero according to its multiplicity.

Definition 17.2 The Green’s function of de La Vallee Poussin problem (17.1.5),
(17.1.6) behaves regularly if G(t, s)(t − t1)

k1 · · · (t − tm)
km ≥ 0 for t, s ∈ [0,ω].

In this chapter, we generalize the following well-known result for ordinary dif-
ferential equations to functional differential equations.

Theorem A [93, 256] If [0,ω] is a nonoscillation interval of (17.1.8), then all
Green’s functions of de La Vallee Poussin problem (17.1.5), (17.1.6) behave reg-
ularly.

17.2 Homogeneous Functional Differential Equations of the
n-th Order

The modern theory of n-th-order differential equations with a delayed argument was
started by A.D. Myshkis in the beginning of the 1950s with the equation

x′′(t)+ q(t)x′(t − θ(t)
)+ p(t)x

(
t − τ(t)

)= f (t), t ∈ [0,∞), (17.2.1)
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x(ξ)= ϕ(ξ), x′( ξ)=ψ(ξ) for ξ < 0, (17.2.2)

where f , p, q , τ , θ , ϕ and ψ are continuous functions, τ ≥ 0 and θ ≥ 0.
A natural question arises: which object will operate as a homogeneous equation

in the case of this delay equation?
In the first publications, a homogeneous delay equation was introduced in the

following form:

x′′(t)+ q(t)x′(t − θ(t)
)+ p(t)x

(
t − τ(t)

)= 0, t ∈ [0,∞), (17.2.3)

x(ξ)= ϕ(ξ), x′(ξ)= ϕ′(ξ) for ξ ≤ 0. (17.2.4)

If ϕ in (17.2.4) is a fixed, twice differentiable function, only the Cauchy problem
can be considered and a notion of the fundamental system cannot be introduced.

If (17.2.3), (17.2.4) is considered for all possible twice differentiable functions ϕ,
then the space of its solutions is infinite-dimensional. As a result, a solution can have
any number n of zeros on a finite interval. For example,

x′′(t)+ x(t − 2π)= 0, t ∈ [0,π]
has the solutions x = sinnt if we choose ϕ(ξ) = n2 sinnξ . Examples of this sort
led mathematicians to the conclusion that for differential equations with a delayed
argument a nonoscillation interval does not exist. That is why in the classical books
on the oscillation theory of delay equations, nonoscillation was considered only as
the existence of an eventually positive solution on the semiaxis [192, 248] and not
on a finite interval. There were no analogues of the integral representation (17.1.11)
and a notion of Wronskian for such an equation. In this sense, such an equation does
not act as the homogeneous equation in the theory of ODEs.

N.V. Azbelev in [20] did not follow the tradition of considering a solution of
delay equation (17.2.1) as a continuous extension of initial function ϕ(t) and defined
a homogeneous object as (17.2.3) with the zero initial functions

x(ξ)= 0, x′(ξ)= 0 for ξ < 0. (17.2.5)

As will be demonstrated below, (17.2.3), (17.2.5) is an analogue of the homoge-
neous equation for (17.2.1) in the theory of ODEs: the space of its solutions be-
comes two-dimensional, the formula for representation of the general solution of
(17.2.1) is

x(t)=
∫ t

0
C(t, s)f (s)ds + x1(t)x(0)+ x2(t)x

′(0),

where x1, x2 are two solutions of the homogeneous equation such that x1(0) = 1,
x′

1(0)= 0, x2(0)= 0, x′
2(0)= 1, and C(t, s) (as a function of t for each fixed s) is a

solution of the equation

x′′(t)+ q(t)x′(t − θ(t)
)+ p(t)x

(
t − τ(t)

)= 0, t ∈ [s,∞),

x(ξ)= 0, x′( ξ)= 0 for ξ < s,

satisfying the conditions C(s, s)= 0, C
′
t (s, s)= 1. The behavior of the fundamen-

tal system x1, x2 of solutions of (17.2.3), (17.2.5) determines the existence and
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uniqueness of solutions and essentially also the stability and the sign properties of
Green’s functions for boundary value problems for delay differential equations and
functional differential equations, which are their natural generalization.

Note that the equation

x′′(t)+ q(t)x
(
t − θ(t)

)+ p(t)x
(
t − τ(t)

)= g(t), t ∈ [0,∞),
(17.2.6)

x(ξ)= 0, x′(ξ)= 0 for ξ < 0,

where g(t)= f (t)− q(t)ψ(t − θ(t))σ (t − θ(t))−p(t)ϕ(t − τ(t))σ (t − τ(t)), t ∈
[0,∞), σ(t)= 1, t < 0, σ(t)= 0, 0 ≤ t , is equivalent to (17.2.1), (17.2.2).

It is clear now that “traditional” homogeneous equation (17.2.3), (17.2.4) is non-
homogeneous with a special right-hand side according to Azbelev’s definition of
the homogeneous equation. Properties of homogeneous equation (17.2.3), (17.2.5)
allow us to analyze the behavior of solutions for nonhomogeneous delay equation
(17.2.1), (17.2.2).

The space of solutions of the homogeneous equation

(Mx)(t)≡ x(n)(t)+
n−1∑

j=0

(
Bjx

(j)
)
(t)= 0, t ∈ [0,ω], (17.2.7)

in the case of Volterra operators Bj , j = 0, · · · , n− 1, is n-dimensional. If homo-
geneous problem (17.2.7), (17.1.9) has only the trivial solution, then the solution of
(17.1.1), (17.1.6) has the representation

x(t)=
∫ ω

0
G(t, s)f (s)ds +X(t), (17.2.8)

where X(t) is a solution of the homogeneous equation (17.2.7) satisfying condi-
tions (17.1.6), and the kernel G(t, s) of this integral representation is called Green’s
function of problem (17.1.1), (17.1.6), see [28].

17.3 Wronskian of the Fundamental System

Consider the one-point problem

(Mx)(t)≡ x(n)(t)+
n−1∑

j=0

(
Bjx

(j)
)
(t)

= f (t), x(i−1)(μ)= ci, i = 1, · · · , n, t ∈ [0,ω]. (17.3.1)

This problem has a unique solution for each f ∈ L∞[0,ω] and ci ∈ R (i =
1, · · · , n) if and only if the homogeneous problem

(Mx)(t)≡ x(n)(t)+
n−1∑

j=0

(
Bjx

(j)
)
(t)= 0, x(i−1)(μ)= 0, i = 1, · · · , n, t ∈ [0,ω]

(17.3.2)
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has only a trivial solution and, consequently, the Wronskian

W(t)=
∣∣∣∣∣∣

x1(t) · · · xn(t)

· · ·
x
(n−1)
1 (t) · · · x(n−1)

n (t)

∣∣∣∣∣∣
≡ ∣∣x1(t), · · · , xn−1(t), xn(t)

∣∣, (17.3.3)

of the fundamental system x1(t), · · · , xn−1(t), xn(t) of the homogeneous equation
(Mx)(t)= 0, t ∈ [0,ω] does not have a zero at the point t = μ.

Let us assume that W(0) �= 0 and define the ordinary differential operation

(£x)(t)≡ 1

W(t)

∣∣x1(t), · · · , xn(t), x(t)
∣∣, t ∈ [0,ω], (17.3.4)

where W(t) is the Wronskian of the fundamental system x1(t), · · · , xn−1(t), xn(t)

of the equation (Mx)(t)= 0, t ∈ [0,ω]. We have actually proven the following fact.

Lemma 17.1 The following three assertions are equivalent:

1) The Wronskian W(t) �= 0 for t ∈ [0,ω].
2) The boundary value problem (17.3.1) has a unique solution for each f ∈
L∞[0,ω], ci ∈R (i = 1, · · · , n) and μ ∈ [0,ω].

3) There exists an ordinary differential equation of n-th order (£x)(t) = 0, t ∈
[0,ω] with essentially bounded coefficients, which is equivalent to the homo-
geneous equation (Mx)(t)= 0, t ∈ [0,ω] in the sense that every solution of one
of them is also a solution of the other one.

Note that for the second-order equation (n= 2) the conditionW(t) �= 0 is equiva-
lent to Sturm’s separation theorem (between two adjacent zeros of a given nontrivial
solution there is one and only one zero of each solution that is linearly independent
of the given one).

Sufficiency of W(t) �= 0 can be easily proven from the contrary. Let x1 and x2 be
two solutions such that x1(α)= x1(β)= 0 but x2(t) > 0 for t ∈ [α,β]. Consider the
function

y(t)= x1(t)

x2(t)
.

It is clear that y(α) = y(β) = 0. According to Rolle’s theorem, there is a point θ
such that y′(θ)= 0, where α < θ < β . This is in contradiction with the fact that

y′(t)=
{
x1(t)

x2(t)

}′
= x′

1(t)x2(t)− x1(t)x
′
2(t)

[x2(t)]2
= W(t)

[x2(t)]2
�= 0.

Example 17.1 Consider the equation

x′′(t)− 2x(0)= 0, t ∈ [0,ω]. (17.3.5)

Its fundamental system is x1(t)= (t − 1)2, x2(t)= t , and the Wronskian is W(t)=
1 − t2, W(1)= 0. The problem

x′′(t)− 2x(0)= 0, t ∈ [0,ω], x(1)= 0, x′(1)= 1 (17.3.6)

has no solution. Sturm’s separation theorem is not valid: there exists the positive
solution x2(t)= t and solutions with two zeros for each ω > 1.
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17.4 Nonoscillation of Functional Differential Equations

In this section, we obtain sufficient conditions under which [0,ω] is the nonoscilla-
tion interval of functional differential equation (17.2.7).

Let x1, · · · , xn be a fundamental system of homogeneous equation (17.2.7). As-
sume that W(0) �= 0. Define a normal chain of the Wronskians according to [282],

W1(t)= x1(t), Wi(t)=
∣∣∣∣∣∣

x1(t) · · · xi(t)

· · ·
x
(i−1)
1 (t) · · · x(i−1)

i (t)

∣∣∣∣∣∣
, i = 2, · · · , n, (17.4.1)

where the solutions x1, · · · , xn satisfy the initial conditions such that

Wn(0)=

∣∣∣∣∣∣∣∣

0 · · · 0 1
0 · · · 1 0
· · · · · · · · ·
1 · · · 0 0

∣∣∣∣∣∣∣∣
. (17.4.2)

It is clear thatWn(t) is the WronskianW(t) of (17.2.7). The existence of the equiva-
lent ordinary differential equation £x = 0 (see Lemma 17.1) allows us to generalize
the result of G. Mammana [282] (in the reduction of N.V. Azbelev) for functional
differential equation (17.2.7).

Theorem 17.1 [0,ω) is a nonoscillation interval of (17.2.7) if and only ifW(0) �= 0
and each one of the elements of the normal chain of the Wronskians Wi(t) (i =
1, · · · , n) does not have a zero in the interval (0,ω).

All elements of the normal chain of the Wronskians are continuous. This implies
the following qualitative property of functional differential equation (17.2.7).

Corollary 17.1 If W(0) �= 0, then there exists a nonoscillation interval of (17.2.7).

The condition W(0) �= 0 is essential, as the following example demonstrates.

Example 17.2 Consider the equation x′′(t)− 2x(1)= 0. Its solutions have the form
x(t) = at2 − bt + b, where a and b are constants. We can choose, for example,
x1(t)= t2 as one of its solutions. It is clear that x1(0)= x′

1(0)= 0 and there is no
nonoscillation interval [0,ω] of this equation. Note that in this equation W(0)= 0.

In the case of Volterra operators Bj (j = 0, · · · , n− 1), we have W(0) �= 0.

Corollary 17.2 If all Bj (j = 0, · · · , n−1) are Volterra operators, then there exists
a nonoscillation interval of (17.2.7).

The following Azbelev’s result is known, see, for example [100, 101].
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Lemma 17.2 IfW(t) �= 0 and the boundary value problem (17.2.7), (17.4.3), where

x(i)(0)= 0, x(j)(μ)= 0, i = 0, · · · , k − 1, j = 0, · · · , n− k − 1 (17.4.3)

for every 1 ≤ k ≤ n− 1 and μ ∈ (0,ω] has only the trivial solution, then the Wron-
skians Wn−k(t) do not have a zero for t ∈ (0,ω], 1 ≤ k ≤ n− 1.

Proof The proof follows from the fact that the equality Wn−k(μ) = 0 for a corre-
sponding μ ∈ (0,ω] implies that the system

n−k∑

i=1

Cix
(r)
i (μ)= 0, r = 0, · · · , n− k − 1 (17.4.4)

has nontrivial solutions with respect to Ci . In this case, x(t) =∑n−k
i=1 Cixi(t) is a

nontrivial solution of (17.2.7) satisfying condition (17.4.3). �

Let us denote byWk,n−k(t, s)Green’s functions of the problem (17.4.5), (17.4.3),
where

x(n)(t)= z(t), t ∈ [0,ω]. (17.4.5)

The solution of problem (17.4.5), (17.4.3) has the representation

x(t)=
∫ ω

0
Wk,n−k(t, s)z(s)ds, t ∈ [0,ω]. (17.4.6)

After substituting it into the equation

(Mx)(t)≡ x(n)(t)+
n−1∑

j=0

(
Bjx

(j)
)
(t)= f (t), t ∈ [0,ω], (17.4.7)

we obtain the equation

z(t)= −
n−1∑

j=0

(
Bj

∫ ω

0

∂jWk,n−k(ξ, s)
∂ξj

z(s)ds

)
(t)+ f (t) (17.4.8)

for the function z ∈ L∞[0,ω].
If the inequality

ess sup
t∈[0,ω]

n−1∑

j=0

‖Bj‖
∫ ω

0

∣∣∣∣
∂jWk,n−k(t, s)

∂tj

∣∣∣∣ds < 1 (17.4.9)

is fulfilled, then Wn−k(t) �= 0 for t ∈ (0,ω].
The argument above leads to the following result.

Theorem 17.2 If the Wronskian W(t) does not have a zero for t ∈ [0,ω] and in-
equality (17.4.9) is fulfilled for every k = 1, · · · , n−1, then [0,ω] is a nonoscillation
interval of the equation

(Mx)(t)≡ x(n)(t)+
n−1∑

j=0

(
Bjx

(j)
)
(t)= 0, t ∈ [0,ω]. (17.4.10)
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Remark 17.1 Estimates of Green’s functions Wk,n−k(t, s) of the boundary value
problems (17.4.5), (17.4.3) were obtained in the paper [37], and estimates of the

derivatives ∂jWk,n−k(t,s)
∂tj

in the thesis [101]. Note that the same idea (known as Az-
belev’s W -transform) can be used also for the one-point boundary value problem
(17.4.7), (17.4.11), where

x(j)(μ)= 0, j = 0, · · · , n− 1. (17.4.11)

Green’s functionW0,n(t, s) of the auxiliary problem (17.4.5), (17.4.11) has the form

W0,n(t, s)= κ
1(t, s)W 1

0n(t, s)+κ
2(t, s)W 2

0n(t, s), (17.4.12)

∂i

∂t i
W0,n(t, s)= κ

1(t, s)
∂i

∂t i
W 1

0n(t, s)+κ
2(t, s)

∂i

∂t i
W 2

0n(t, s), (17.4.13)

where

W 1
0,n(t, s)=

{
(t−s)n−1

(n−1)! , 0 ≤ s ≤ t ≤ ω,

0, 0 ≤ t < s ≤ ω,
(17.4.14)

∂i

∂t i
W 1

0,n(t, s)=
{
(t−s)n−i−1

(n−i−1)! , 0 ≤ s ≤ t ≤ ω,

0, 0 ≤ t < s ≤ ω,
(17.4.15)

W 2
0,n(t, s)=

{
0, 0 ≤ s ≤ t ≤ ω,

− (t−s)n−1

(n−1)! , 0 ≤ t < s ≤ ω,
(17.4.16)

∂i

∂t i
W 2

0,n(t, s)=
{

0, 0 ≤ s ≤ t ≤ ω,

− (t−s)n−i−1

(n−i−1)! , 0 ≤ t < s ≤ ω,
(17.4.17)

κ
1(t, s)=

{
1, μ≤ s ≤ t ≤ ω,

0, otherwise,
(17.4.18)

κ
2(t, s)=

{
1, 0 ≤ s ≤ t ≤ μ,

0, otherwise.
(17.4.19)

Theorem 17.3 If

ess sup
t∈[0,ω]

n−1∑

j=0

‖Bj‖ ωn−j

(n− j)! < 1, (17.4.20)

then W(t) �= 0 for t ∈ [0,ω].

Proof By inequality (17.4.20), there exists a unique solution of problem (17.4.7),
(17.4.11) and, according to Lemma 17.1, this inequality also implies the inequality
W(t) �= 0 for t ∈ [0,ω]. �

Various necessary and sufficient conditions of nonvanishing Wronskians in the
case of Volterra operators Bi (i = 1, · · · , n) were obtained also in [241].
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Consider, for example, the delay equation

x(n)(t)+
n−1∑

j=0

pi(t)x
(j)
(
t − τj (t)

)= 0, τj (t)≥ 0, t ∈ [0,∞), (17.4.21)

x(j)(ξ)= 0, ξ < 0, j = 0, · · · , n− 1. (17.4.22)

Denote τ ∗
i = supt∈[0,∞) τi(t), |pi |∗ = sup |pi(t)|.

The following result was obtained in [241].

Theorem 17.4 Assume that there exists a positive α such that

αn −
n−1∑

j=0

αj exp
{
ατ ∗

j

}|pj |∗ ≥ 0, t ∈ [0,∞). (17.4.23)

Then the Wronskian of the fundamental system of (17.4.21) satisfies the inequality
W(t) �= 0 for t ∈ [0,∞).

To prove Theorem 17.4, we set v(t)= e−αt into condition 3) of Theorem 17.10
in the next section.

For the equation

x(n)(t)+ p0(t)x
(
t − τ0(t)

)= 0, τ0(t)≥ 0, t ∈ [0,∞), (17.4.24)

x(ξ)= 0, ξ < 0, (17.4.25)

the special choice of α leads us to the following assertion, which was obtained in
[241].

Theorem 17.5 If

τ ∗
0

n

√
|p0(t)| ≤

n

e
, t ∈ [0,∞), (17.4.26)

then the Wronskian of the fundamental system of equation (17.4.24) with initial
function (17.4.25) satisfies the inequality W(t) �= 0 for t ∈ [0,∞).

17.5 Nonoscillation and Regular Behavior of Green’s Functions

The results of two previous sections are based on the equivalence of the homoge-
neous functional differential

(Mx)(t)≡ x(n)(t)+
n−1∑

j=0

(
Bjx

(j)
)
(t)= 0, t ∈ [0,ω], (17.5.1)

and the ordinary differential equation

(£x)(t)= 0, t ∈ [0,ω], (17.5.2)
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where the differential operation £ is defined by formula (17.3.4). In this section, we
obtain the equivalence of the nonhomogeneous functional differential equation

(Mx)(t)≡ x(n)(t)+
n−1∑

j=0

(
Bjx

(j)
)
(t)= f (t), t ∈ [0,ω], (17.5.3)

and the ordinary differential equations

(£x)(t)= (Pf )(t), t ∈ [0,ω]. (17.5.4)

In order to describe the structure of the operator P : L∞[0,ω] → L∞[0,ω], we will
use the boundary value problems

(Mx)(t)= f (t), x(i−1)(μ)= 0, i = 1, · · · , n, t ∈ [0,ω] (17.5.5)

for every μ ∈ (0,ω] and the operators Hμ : L∞[0,ω] → L∞[0,ω] defined by the
equality

(Hμf )(t)≡ −
n−1∑

j=0

(
Bj

∫ ω

0

∂j

∂ξj
Gμ(ξ, s)f (s)ds

)
(t), t ∈ [0,ω], (17.5.6)

where ∂j

∂ξj
Gμ(ξ, s) (j = 0, · · · , n− 1) are Green’s function and its derivatives in ξ

for the one-point problem (17.5.5). Note that the operators Bj act on the functions

yj (ξ)=
∫ ω

0

∂j

∂ξj
Gμ(ξ, s)f (s)ds, ξ ∈ [0,ω], (17.5.7)

as on functions of the variable ξ .
Results on the regular behavior of Green’s functions are based on the follow-

ing statement, which reduces the problem of positivity of the operator P to sign
constancy of Green’s functions and their derivatives of one-point boundary value
problems (17.5.5) for every μ ∈ (0,ω].

Theorem 17.6 Let W(t) �= 0 for t ∈ [0,ω]. Then any solution of functional differ-
ential equation (17.5.3) also satisfies ordinary differential equation (17.5.4), where
the differential operation £ is defined by formula (17.3.4), and the bounded linear
operator P : L∞[0,ω] → L∞[0,ω] is positive if the operators Hμ : L∞[0,ω] →
L∞[0,ω] are positive for every μ ∈ (0,ω].

Proof It follows from Lemma 17.1 that the condition W(t) �= 0 for t ∈ [0,ω] im-
plies the existence of a unique solution of boundary value problem (17.5.5) for each
f ∈ L∞[0,ω] and μ ∈ (0,ω]. Denote its solution by gμ(t). The general solution of
(17.5.3) can be presented in the form

x(t)=
n∑

i=1

Cixi(t)+ gμ(t), t ∈ [0,ω]. (17.5.8)

When we substitute this representation into the differential operation £ defined by
formula (17.3.4), we get
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(£x)(t)= 1

W(t)

∣∣∣∣∣x1(t), · · · , xn(t),
n∑

i=1

Cixi(t)+ gμ(t)

∣∣∣∣∣

= 1

W(t)

∣∣x1(t), · · · , xn(t), gμ(t)
∣∣, (17.5.9)

whereW(t) is the Wronskian of the fundamental system x1(t), · · · , xn−1(t), xn(t) of
(17.5.1). This means that the solution x of functional differential equation (17.5.3)
satisfies ordinary differential equation (17.5.4), where the operator P : L∞[0,ω] →
L∞[0,ω] is defined by the equality

(Pf )(t)= 1

W(t)

∣∣∣∣x1(t), · · · , xn(t),
∫ ω

0
Gμ(t, s)f (s)ds

∣∣∣∣, (17.5.10)

where Gμ(t, s) is Green’s function of problem (17.5.5). Using the boundary condi-
tions in one-point boundary problem (17.5.5), we obtain for t = μ the equality

(Pf )(t)= ∂n

∂tn

∫ ω

0
Gμ(t, s)f (s)ds

= f (t)−
n−1∑

j=0

(
Bj

∫ ω

0

∂j

∂ξj
Gμ(ξ, s)f (s)ds

)
(t), (17.5.11)

which completes the proof. �

Let us now formulate an obvious result that presents an extension of Theorem A
of Sect. 17.1 to functional differential equations.

Lemma 17.3 Let the operator P : L∞[0,ω] → L∞[0,ω] defined by formula
(17.5.11) be positive for every μ ∈ (0,ω] and [0,ω] be a nonoscillation interval
of (17.5.1). Then all Green’s functions of de La Vallee Poussin problems (17.5.1),
(17.1.6) behave regularly.

Let us define the operators Kμ : L∞[0,ω] → L∞[0,ω] for every μ ∈ (0,ω] by
the equality

(Kμz)(t)= −
n−1∑

j=0

(
Bj

∫ ω

0

∂j

∂ξj
W0,n(ξ, s)z(s)ds

)
(t), t ∈ [0,ω], (17.5.12)

where ∂j

∂ξj
W0,n(ξ, s), j = 0, · · · , n− 1 are the Green’s function and its derivatives

in ξ for the one-point problem

x(n)(t)= z(t), t ∈ [0,ω], (17.5.13)

x(j)(μ)= 0, j = 0, · · · , n− 1. (17.5.14)

Note that the functions ∂j

∂ξj
W0,n(ξ, s) (j = 0, · · · , n − 1) are defined by formulas

(17.4.12)–(17.4.19).
The following result allows us to verify the conditions of Theorem 17.6.



440 17 Nonoscillation Intervals for n-th-Order Equations

Lemma 17.4 For every j = 0, · · · , n− 1, let either Bi be a zero operator or (−Bj )
be positive and the derivative ∂j

∂ξj
W0,n(ξ, s) of the Green’s function be nonnegative

or Bj be positive and the derivative ∂j

∂ξj
W0,n(ξ, s) be nonpositive and the spectral

radii ρ(Kμ) of the operators Kμ : L∞[0,ω] → L∞[0,ω] be less than one for every
μ ∈ (0,ω]. Then the operator P : L∞[0,ω] → L∞[0,ω] is positive.

Proof The solution of problem (17.5.13), (17.5.14) can be presented in the form

x(t)=
∫ ω

0
W0,n(t, s)z(s)ds, t ∈ [0,ω]. (17.5.15)

When we substitute this representation into (17.5.3), we obtain

z(t)= (Kμz)(t)+ f (t), t ∈ [0,ω]. (17.5.16)

From positivity of Kμ : L∞[0,ω] → L∞[0,ω] and the inequality ρ(Kμ) < 1 for
every μ ∈ (0,ω], we obtain that problem (17.5.5) has a unique solution for every μ
and z≥ 0 for every f ≥ 0. For the solution x of problem (17.5.5) and its derivatives
x(j), we have the representation

x(j)(t)=
∫ ω

0

∂j

∂tj
W0,n(t, s)z(s)ds, t ∈ [0,ω], (17.5.17)

and consequently

signt∈[0,ω] x(j)(t) · sign(t,s)∈(0,ω)×(0,ω)
∂j

∂tj
W0,n(t, s) > 0 for t, s ∈ (0,ω).

We mean here that signt∈[0,ω] x(j)(t) > 0 if there exists a point t0 ∈ (0,ω) such that
x(j)(t0) > 0 and signt∈[0,ω] x(j)(t) < 0 if there exists a point t0 ∈ (0,ω) such that
x(j)(t0) < 0. Similarly, we understand the inequalities

sign(t,s)∈(0,ω)×(0,ω)
∂j

∂tj
W0,n(t, s) > 0

and

sign(t,s)∈(0,ω)×(0,ω)
∂j

∂tj
W0,n(t, s) < 0

for (t, s) ∈ (0,ω)× (0,ω). Now we can conclude that

sign(t,s)∈(0,ω)×(0,ω)
∂j

∂tj
W0,n(t, s) · sign(t,s)∈(0,ω)×(0,ω)

∂j

∂tj
Gμ(ξ, s) > 0

for (t, s) ∈ (0,ω) × (0,ω). Now it is clear that the operators Hμ : L∞[0,ω] →
L∞[0,ω] are positive for every μ ∈ (0,ω].

The inequality W(t) �= 0 for t ∈ [0,ω] follows from the existence of a unique
solution of problem (17.5.5) for every μ and Lemma 17.1. Now we have proven
that all the conditions of Theorem 17.6 are fulfilled and consequently, according to
it, the operator P is positive. This completes the proof. �
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Theorem 17.7 Let either n be even and the operators (−Bj ) be positive for every
even j and be zero operators for every odd j or n be odd and the operators (−Bj )
be positive for every odd j and be zero operators for every even j and the spectral
radii ρ(Kμ) of the operators Kμ : L∞[0,ω] → L∞[0,ω] be less than one for every
μ ∈ (0,ω]. Then the operator P : L∞[0,ω] → L∞[0,ω] is positive.

Proof In order to prove this theorem, we have only to note that the case of non-

negativity of ∂i

∂t i
W 1

0,n(t, s) and ∂i

∂t i
W 2

0,n(t, s) allows us to obtain positivity of the
operators Kμ : L∞[0,ω] → L∞[0,ω]. The statement of the theorem now follows
from Lemma 17.4. �

Corollary 17.3 Let either n be even and the operators (−Bj ) be positive for every
even j and be zero operators for every odd j or n be odd and the operators (−Bj )
be positive for every odd j and be zero operators for every even j and

ess sup
t∈[0,ω]

n−1∑

j=0

‖Bj‖ ωn−j

(n− j)! < 1. (17.5.18)

Then the operator P : L∞[0,ω] → L∞[0,ω] is positive.

Proof Inequality (17.5.18) implies that the norms and the spectral radii of the oper-
ators Kμ : L∞[0,ω] → L∞[0,ω] for every μ ∈ (0,ω] are less than one. Reference
to Theorem 17.7 completes the proof. �

In the case where all Bj are Volterra operators, the solution x(t) of problem
(17.5.5) on [0,μ] does not depend on values of x(t) on the interval (μ,ω]. This
allows us to consider the boundary value problems

(Mx)(t)≡ x(n)(t)+
n−1∑

j=0

(
B
μ
j x

(j)
)
(t)= f (t), t ∈ [0,μ],

x(i−1)(μ)= 0, i = 1, · · · , n, (17.5.19)

instead of (17.5.5), where the operators Bμj : C[0,μ] → L∞[0,μ] are such that

(B
μ
j y)(t) = (Bjy)(t) for t ∈ [0,μ]. For every μ ∈ (0,ω], define the operators

Hμ : L∞[0,μ] → L∞[0,μ] and Kμ : L∞[0,μ] → L∞[0,μ] by the equalities

(Hμz)(t)≡ −
n−1∑

j=0

(
B
μ
j

∫ μ

0

∂j

∂ξj
Gμ(ξ, s)z(s)ds

)
(t), t ∈ [0,μ], (17.5.20)

and

(Kμz)(t)≡ −
n−1∑

j=0

(
B
μ
j

∫ μ

0

∂j

∂ξj
W0,n(ξ, s)z(s)ds

)
(t), t ∈ [0,μ], (17.5.21)

respectively.
Similarly to Theorems 17.6 and 17.7, we obtain the following results.
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Theorem 17.8 Let Bj be Volterra operators and W(t) �= 0 for t ∈ [0,ω]. Then
solutions of functional differential equation (17.5.3) also satisfy the ordinary dif-
ferential equation (17.5.4), where the differential operation £ is defined by formula
(17.3.4) and the bounded linear operator P : L∞[0,ω] → L∞[0,ω] is positive if
the operators Hμ : L∞[0,μ] → L∞[0,μ] are positive for every μ ∈ (0,ω].

Theorem 17.9 Let (−1)n−j−1Bj be positive Volterra operators and the spectral
radii ρ(Kμ) of the operators Kμ : L∞[0,μ] → L∞[0,μ] be less than one for every
μ ∈ (0,ω]. Then the operator P : L∞[0,ω] → L∞[0,ω] is positive.

The following result was obtained in [241].

Theorem 17.10 Let Bj be Volterra operators and (−1)n−j+1Bj be positive opera-
tors for j = 0, · · · , n− 1. Then the following four assertions are equivalent:

1) The boundary value problem (17.5.19) is uniquely solvable and its Green’s func-

tion satisfies the inequalities ∂j

∂tj
Gμ(t, s)(−1)n−j ≥ 0 for (t, s) ∈ [0,μ] × [0,μ]

and ∂
∂tj
Gμ(t, s)(−1)n−j > 0 for 0 ≤ t < s ≤ μ, j = 0, · · · , n− 1.

2) W(t) �= 0 for t ∈ [0,ω].
3) There exists a function v with absolutely continuous derivatives v(i) (i =

0,1, · · · , n− 1) such that (−1)iv(i)(t) > 0, i = 0, · · · , n− 1, (−1)n(Mv)(t)≥ 0,
t ∈ [0,ω), (−1)iv(i)(ω)≥ 0, i = 0, · · · , n− 1,

∑n−1
i=0 |v(i)(ω)|> 0.

4) Let x be a solution of the homogeneous equation (Mx)(t) = 0 such that
(−1)j x(j)(ω) ≥ 0, j = 0, · · · , n − 1. Then, from the inequality∑n−1

j=0 |x(j)(ω)| > 0, it follows that (−1)j x(j)(t) > 0, t ∈ [0,ω), and if

x(j)(ω)= 0, j = 0, · · · , n− 1, then x(t)≡ 0, t ∈ [0,ω].

The following result is an analogue of Theorem A for functional differential
equations.

Theorem 17.11 Assume that [0,ω] is a nonoscillation interval for (17.5.1) and at
least one of the following three conditions 1)–3) is fulfilled:

1) n is even and the operators (−Bj ) are positive for every even j and are zero
operators for every odd j .

2) n is odd and the operators (−Bj ) are positive for every odd j and are zero
operators for every even j .

3) (−1)n−j+1Bj are positive Volterra operators for j = 0, · · · , n− 1.

Then Green’s functions of the de La Vallee Poussin problems (17.5.3), (17.5.22),
where

x(i)(tj )= 0, (17.5.22)

0 ≤ t1 < t2 < · · ·< tm ≤ ω, i = 0, · · · , kj − 1, j = 1, · · · ,m, k1 + · · · + km = n,

(17.5.23)

behave regularly; i.e., G(t, s)(t − t1)
k1 · · · (t − tm)

km ≥ 0 for t, s ∈ [0,ω].
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Proof The fact that [0,ω] is a nonoscillation interval means also that the Wronskian
W(t) �= 0 for t ∈ [0,ω] since the opposite assumptionW(μ)= 0 forμ ∈ [0,ω] leads
us to the existence of a nontrivial solution with zero of multiplicity n at the point μ.
The fact that W(t) �= 0 for t ∈ [0,ω] and each of the conditions 1)–3) according to
Theorems 17.7 and 17.9 implies the positivity of the operator P and the reference
to Theorem A completes the proof. �

The following statement allows us to obtain nonoscillation without estimates
of Green’s functions Wk,n−k(t, s) of problems (17.4.5), (17.4.3) and its derivatives
∂jWk,n−k(·,s)

∂tj
.

Theorem 17.12 Let the Wronskian satisfy W(t) �= 0 for t ∈ [0,ω], the operator P :
L∞[0,ω] → L∞[0,ω] be positive and there exist positive functions v1, · · · , vn−1

with absolutely continuous derivatives v(i)j (i = 0,1, · · · , n − 1, j = 1, · · · , n − 1)
such that the conditions 1) and 2) are fulfilled:

1) The system of n − 1 Wronskians wk(t) = |vk(t), · · · , vn−1(t)| satisfies the in-
equalities wk(t) > 0 for t ∈ [0,ω), k = 1, · · · , n− 1.

2) For every k, the system of n− k− 1 Wronskians

wkl(t)= |vk(t), · · · , vl−1, vl+1(t), · · · , vn−1(t)|
satisfies the inequalities wkl(t) > 0 for t ∈ [0,ω), k < l ≤ n− 1.

Then the differential inequalities

(−1)n−i (Mvi)(t)≥ 0 for t ∈ [0,ω], i = 1, · · · , n− 1, (17.5.24)

imply nonoscillation of solutions of (17.5.1) on [0,ω].

Proof The proof is based on the result of Theorem 4.1 in the paper [256] for ordi-
nary differential equation (17.1.8). �

Lemma 17.5 Let there exist positive functions v1, · · · , vn−1 with absolutely contin-
uous derivatives v(i)j (i = 0,1, · · · , n− 1, j = 1, · · · , n− 1) such that conditions 1)
and 2) of Theorem 17.12 are fulfilled. Then the differential inequalities

(−1)n−i (£vi)(t)≥ 0 for t ∈ [0,ω], i = 1, · · · , n− 1, (17.5.25)

imply nonoscillation of solutions of (17.1.8) on [0,ω].

The inequality W(t) �= 0 for t ∈ [0,ω], according to Lemma 17.1, implies that
there exists an ordinary differential equation of the n-th order (£x)(t)= 0, t ∈ [0,ω],
where £ is defined by formula (17.3.4), which is equivalent to homogeneous equa-
tion (17.5.1) in the sense that every solution of one of them is also a solution of the
other one.

The positivity of the operator P : L∞[0,ω] → L∞[0,ω] implies that differential
inequalities (17.5.25) follow from differential inequalities (17.5.24). According to
Lemma 17.5, the interval [0,ω] is a nonoscillation one of the equation (£x)(t)= 0.
According to Lemma 17.1, [0,ω] is a nonoscillation interval of (17.5.1).
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Remark 17.2 Note that in the case of the third-order equation (i.e., in equation
(17.5.1) we have n= 3) conditions 1), 2) and (17.5.24) have the following form:

v1 > 0, v2 > 0,
∣∣v1(t), v2(t)

∣∣> 0, (Mv1)(t)≥ 0, (Mv2)(t)≤ 0 for t ∈ [0,ω).
(17.5.26)

Remark 17.3 There are several standard collections of the functions v1, · · · , vn−1

satisfying conditions 1) and 2) of Theorem 17.12. For example, use of the collection

vi(t)= (t + ε)i(ω− t)n−i , i = 1, · · · , n− 1, ε > 0 (17.5.27)

leads us to the following form of inequalities (17.5.24):

(−1)n−i−1

n!
n−1∑

k=0

(
Bkv

(k)
i

)
(t)≤ 1, i = 1, · · · , n− 1, t ∈ (0,ω). (17.5.28)

We obtain a new nonoscillation test for functional differential equations.

Theorem 17.13 Let the Wronskian W(t) �= 0 for t ∈ [0,ω], the operator
P : L∞[0,ω] → L∞[0,ω] be positive and inequalities (17.5.28) with functions vi (i =
1, · · · , n− 1) defined by (17.5.27) be fulfilled. Then [0,ω) is a nonoscillation inter-
val of (17.5.1).

Two other possible collections of the functions vi (i = 1, · · · , n− 1) are

vi(t)= (t + ε)βi , i = 1, · · · , n− 1, β1 < β2 < · · ·< βn−1, ε > 0 (17.5.29)

and

vi(t)= eβi t , i = 1, · · · , n− 1, β1 < β2 < · · ·< βn−1. (17.5.30)

17.6 Tests for Differential Equations with Deviating Arguments

Let us formulate our results for the delay differential equation

x(n)(t)+ p(t)x
(
t − τ(t)

)= f (t), t ∈ [0,ω], (17.6.1)

x(ξ)= 0, ξ /∈ [0,ω]. (17.6.2)

Theorem 17.14 Let (−1)n+1p ≥ 0 and at least one of the following three condi-
tions 1), 2) or 3) be fulfilled:

1) τ ≥ 0 and

ω∫

0

∣∣p(t)
∣∣dt ≤ (n− 1)!

ωn−1
. (17.6.3)
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2) n is even and

ess sup
t∈[0,ω]

∣∣p(t)
∣∣<

n!
ωn
. (17.6.4)

3) τ ≥ 0,

ess sup
t∈[0,ω]

τ(t) n

√
ess sup

t∈[0,ω]

∣∣p(t)
∣∣≤ n

e
(17.6.5)

and
ω∫

0

∣∣p(t)
∣∣dt ≤ nn(n− 1)!

(n− 1)n−1ωn−1
. (17.6.6)

Then problem (17.6.1), (17.5.22) is uniquely solvable for every f ∈ L∞[0,ω]
and its Green’s functions behave regularly; i.e., G(t, s)(t − t1)

k1 · · · (t − tm)
km ≥ 0

for t, s ∈ [0,ω].

Proof In the case of condition 1), we have to write one-point problem (17.6.1),
(17.5.19) in the equivalent form

x(t)= −
∫ ω

0
W0n(t, s)p(s)x

(
s − τ(s)

)
ds +

∫ ω

0
W0n(t, s)f (s)ds, t ∈ [0,ω],

(17.6.7)

x(ξ)= 0, ξ < 0,

where W0n(t, s) is Green’s function of the problem

x(n)(t)= f (t), t ∈ [0,ω], x(i−1)(μ)= 0, i = 1, · · · , n, (17.6.8)

defined by formula (17.4.12). The operator Rμ : C[0,μ] → C[0,μ] defined by the
equality

(Rμx)(t)= −
∫ μ

0
W0n(t, s)p(s)x

(
s − τ(s)

)
ds, t ∈ [0,μ], (17.6.9)

x(ξ)= 0, ξ < 0,

is positive. It is clear from formula (17.4.16) that

∣∣W0n(t, s)
∣∣≤ ωn−1

(n− 1)! , t, s ∈ [0,ω]. (17.6.10)

Inequality (17.6.3) implies that the spectral radius of every operator Rμ is less
than one for every μ ∈ (0,ω]. The operator P : L∞[0,ω] → L∞[0,ω] defined in
(17.5.4) is positive. Inequality (17.6.3) also implies nonoscillation of equation

x(n)(t)+ p(t)x
(
t − τ(t)

)= 0, t ∈ [0,ω], (17.6.11)

x(ξ)= 0, ξ /∈ [0,ω], (17.6.12)

on [0,ω]. The reference to Theorem 17.11 completes the proof of Theorem 17.14
in case 1).



446 17 Nonoscillation Intervals for n-th-Order Equations

Let us assume now that condition 2) is fulfilled. Inequality (17.6.4), according to
Theorem 17.3, implies that W(t) �= 0 for t ∈ [0,ω]. Theorem 17.1 and Lemma 17.2
reduce nonoscillation of the interval [0,ω] to the unique solvability of the problems
(17.6.1), (17.4.3) for every k and μ ∈ (0,ω], which is equivalent to the integral
equation

x(t)= −
∫ ω

0
Wk,n−k(t, s)p(s)x

(
s − τ(s)

)
ds

+
∫ ω

0
Wk,n−k(t, s)f (s)ds, t ∈ [0,ω], (17.6.13)

x(ξ)= 0, ξ /∈ [0,ω]. (17.6.14)

This integral equation has a unique solution if

max
t∈[0,ω]

∫ ω

0

∣∣Wk,n−k(t, s)p(s)
∣∣ds < 1, t ∈ [0,ω], (17.6.15)

for every k and μ ∈ (0,ω]. Inequality (17.6.15) follows from (17.6.4) and the equal-
ity

max
t∈[0,ω]

∫ ω

0

∣∣Wk,n−k(t, s)
∣∣ds = tk|μ− t |n−k

n! , t ∈ [0,ω]. (17.6.16)

Thus condition 2) implies positivity of the operator P : L∞[0,ω] → L∞[0,ω]
and nonoscillation of (17.6.11), (17.6.12) on the interval [0,ω]. The existence of
a unique solution and regular behavior of Green’s functions of de La Vallee Poussin
problems (17.6.1), (17.5.22) follows now from Theorem 17.11.

Let us assume now that condition 3) of the theorem is fulfilled. Inequality (17.6.5)
implies that W(t) �= 0 for t ∈ [0,ω] and together with the sign of the coefficient
p positivity of the operator P : L∞[0,ω] → L∞[0,ω]. Every problem (17.6.1),
(17.4.3) is uniquely solvable if the spectral radii of the operators Rμ : C[0,μ] →
C[0,μ] defined by the equality

(Rμx)(t)=
∫ μ

0

∣∣Wk,n−k(t, s)p(s)
∣∣x
(
s − τ(s)

)
ds, t ∈ [0,ω], (17.6.17)

x(ξ)= 0, ξ < 0, (17.6.18)

are less than one for every μ ∈ (0,ω]. Using the estimate

∣∣Wk,n−k(t, s)
∣∣≤ (n− 1)n−1

nn(n− 1)! , t ∈ [0,ω], (17.6.19)

we obtain that inequality (17.6.6) guarantees nonoscillation of (17.6.11), (17.6.18)
on the interval [0,ω]. Reference to Theorem 17.11 completes the proof. �

Remark 17.4 An essentiality of the condition (−1)n+1p ≥ 0 for nonpositivity of
Green’s function G(t, s) of the problem

x′(t)+ p(t)x
(
t − τ(t)

)= f (t), t ∈ [0,ω], x(ω)= 0, (17.6.20)
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demonstrates the example of the boundary value problem

x′(t)− x(0)= f (t), t ∈ [0,ω], x(ω)= 0, (17.6.21)

for which the Green’s function is

G(t, s)=

⎧
⎪⎨

⎪⎩

− 1+t
1+ω , 0< t < s,

ω−t
1+ω , t > s > 0,

0, t > s = 0.

(17.6.22)

We see that Green’s function G(t, s) changes its sign in the rectangle (t, s) ∈
[0,ω] × [0,ω] for each positive ω. Note that this case is impossible for ordinary
differential equations, where G(t, s) < 0 for t < s and G(t, s)= 0 for t > s.

Remark 17.5 It was proven in Theorem 15.4 that the condition (−1)n+1p ≥ 0 in
the case of n = 1 is essential for sign constancy of Green’s function. Actually, if
p(t)≤ 0 and mes{t ∈ [0,ω] : p(t) < 0, 0 ≤ h(t)≤ t}> 0, then the Green’s function
of the problem

x′(t)+ p(t)x
(
h(t)

)= f (t), t ∈ [0,ω], x(ω)= 0,

changes its sign in the square (t, s) ∈ (0,ω)× (0,ω).

The case of the opposite sign of the coefficient p is considered in the following
statement.

Theorem 17.15 Let n be even, n≥ 4, p ≥ 0, t1 = 0, tm = ω and the inequality

ess sup
t∈[0,ω]

p(t) <
8(n− 2)!
ωn

(17.6.23)

be fulfilled. Then problem (17.6.1), (17.5.22) has a unique solution for every f ∈
L∞[0,ω] and its Green’s functions behave regularly; i.e., G(t, s)(t − t1)

k1 · · · (t −
tm)

km ≥ 0 for t, s ∈ [0,ω].

Proof Consider the auxiliary problem

x′′(t)= ϕ(t), x(0)= 0, x(ω)= 0. (17.6.24)

Denote its Green’s function by g(t, s). The solution of (17.6.24) has the representa-
tion

x(t)=
∫ ω

0
g(t, s)ϕ(s)ds. (17.6.25)

If we set ϕ(t)= x′′(t), we obtain the equality

x(t)=
∫ ω

0
g(t, s)x′′(s)ds. (17.6.26)

Substituting its right-hand side instead of x into (17.6.1), we obtain
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(M0x)(t)≡ x(n)(t)+ p(t)σ
(
t − τ(t)

)∫ ω

0
g
(
t − τ(t), s

)
x′′(s)ds

= f (t), t ∈ [0,ω], (17.6.27)

x(ξ)= 0, ξ /∈ [0,ω], (17.6.28)

where

σ(t − τ(t))=
{

1, t − τ(t) ∈ [0,ω],
0, t − τ(t) /∈ [0,ω]. (17.6.29)

It is clear that Green’s functions of de La Vallee Poussin problems (17.6.1), (17.5.22)
and (17.6.27), (17.5.22) coincide. Let us check the conditions of Theorem 17.11 for
(17.6.27). Condition 1) of Theorem 17.11 is fulfilled for (17.6.27). Let us obtain
the Wronskian W(t) �= 0 for t ∈ [0,ω]. The operator Kμ : L∞[0,ω] → L∞[0,ω]
defined by equality (17.5.12) is

(Kμz)(t)= −p(t)σ (t − τ(t)
) ∫ ω

0
g
(
t − τ(t), s

) ∫ ω

0

∂2

∂s2
W0,n(s, ξ)z(ξ)dξds,

(17.6.30)

t ∈ [0,ω], where W0,n(s, ξ) is defined by (17.4.12). Using the inequalities
∫ ω

0

∂2

∂s2
W0,n(t, ξ)dξ ≤ ωn−2

(n− 2)! , t ∈ [0,ω], (17.6.31)

and

σ(t − τ(t))

∫ ω

0

∣∣g(t − τ(t), s)
∣∣ds ≤ ω2

8
, t ∈ [0,ω], (17.6.32)

we see that (17.6.23) implies that the spectral radii of the operatorsKμ : L∞[0,ω] →
L∞[0,ω] are less than one for every μ ∈ (0,ω]. This means that W(t) �= 0 for
t ∈ [0,ω]. According to Theorem 17.7, the operator P : L∞[0,ω] → L∞[0,ω], in-
troduced in equality (17.5.4), is positive. Now setting vk(t) = (t + ε)k(ω − t)n−k ,
k = 1, · · · , n − 1, we obtain, according to Theorem 17.12, nonoscillation of solu-
tions of (17.6.11), (17.6.12) on the interval [0,ω]. Reference to Theorem 17.11
completes the proof. �

Theorem 17.16 Let n be an odd number, n≥ 3, t1 = 0, tm = ω and the inequality

ess sup
t∈[0,ω]

∣∣p(t)
∣∣<

(n− 1)!
ωn

(17.6.33)

be fulfilled. Then problem (17.6.1), (17.5.22) is uniquely solvable for every f ∈
L∞[0,ω] and its Green’s functions behave regularly; i.e., G(t, s)(t − t1)

k1 · · · (t −
tm)

km ≥ 0 for t, s ∈ [0,ω].

Proof We use the obvious equalities

x(t)= x(0)+
∫ t

0
x′(s)ds = x(ω)−

∫ ω

t

x′(s)ds. (17.6.34)
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Setting this representation into (17.6.1), we obtain the equation

(M0x)(t)≡ x(n)(t)− p−(t)σ
(
t − τ(t)

) ∫ t−τ(t)

0
x′(s)ds

− p+(t)σ
(
t − τ(t)

) ∫ ω

t−τ(t)
x′(s)ds = f (t), t ∈ [0,ω], (17.6.35)

where σ(t − τ(t)) is defined by formula (17.6.29).
The operator Kμ : L∞[0,ω] → L∞[0,ω] defined by equality (17.5.12) is

(Kμz)(t)= p−(t)σ
(
t − τ(t)

) ∫ t−τ(t)

0

{∫ ω

0

∂

∂s
W0n(s, ξ)z(ξ)dξ

}
ds

+ p+(t)σ
(
t − τ(t)

) ∫ ω

t−τ(t)

{∫ ω

0

∂

∂s
W0n(s, ξ)z(ξ)dξ

}
ds, t ∈ [0,ω],

(17.6.36)

where W0,n(s, ξ) is defined by (17.4.14) and (17.4.16) and p(t)= p+(t)− p−(t),
where p+(t)≥ 0, p−(t)≥ 0. This operator Kμ : L∞[0,ω] → L∞[0,ω] is positive
for odd n and every μ ∈ (0,ω], and for its norm we get

‖Kμ‖ ≤ ωn−1

(n− 1)! ess sup
t∈{0,ω]

σ
(
t − τ(t)

){
p−(t)

(
t − τ(t)

)+ p+(t)
(
ω− t + τ(t)

)}
,

(17.6.37)

t ∈ [0,ω]. Now it is clear that inequality (17.6.33) implies ‖Kμ‖< 1. The operator
P : L∞[0,ω] → L∞[0,ω], introduced in equality (17.5.4), is positive, according to
Theorem 17.7.

Setting vk(t) = (t + ε)k(ω − t)n−k in Theorem 17.12, we can obtain nonoscil-
lation of the equation (M0x)(t)= 0 on the interval [0,ω]. Thus conditions of The-
orem 17.11 (in the case of condition 2)) are fulfilled for (17.6.35). Reference to
Theorem 17.11 completes the proof. �

Consider the two-point boundary value problem for the equation with delay

x′′(t)+
n∑

j=1

qj (t)x
′(gj (t)

)+
m∑

i=1

pi(t)x
(
hi(t)

)

= f (t), t ∈ [0,ω], x(0)= 0, x(ω)= 0, (17.6.38)

x(j)(ξ)= 0, ξ < 0, j = 0,1.

Theorem 17.17 Let qj ≥ 0, j = 1, · · · , n and two inequalities

ω

n∑

j=1

qj (t)+ ω2

4

m∑

i=1

p+
i (t)≤ 2 (17.6.39)

and

2ω1

n∑

j=1

qj (t)+ω2
1

m∑

i=1

p−
i (t)≤ 2, ω1 >ω (17.6.40)
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be fulfilled, where pi(t) = p+
i (t) − p−

i (t), i = 1, · · · ,m. Then Green’s function
G(t, s) of problem (17.6.38) is nonpositive in the square (t, s) ∈ (0,ω)× (0,ω).

Proof Consider the equation

x′′(t)+
n∑

j=1

qj (t)x
′(gj (t)

)−
m∑

i=1

p−
i (t)x

(
hi(t)

)= f (t), t ∈ [0,ω]. (17.6.41)

If we set v(t)= (ω1 − t)2 in assertion 3) of Theorem 17.10, then according to this
theorem we obtain nonoscillation of the equation

x′′(t)+
n∑

j=1

qj (t)x
′(gj (t)

)−
m∑

i=1

p−
i (t)x

(
hi(t)

)= 0, t ∈ [0,ω]. (17.6.42)

Theorem 17.11 implies that the Green’s function G−(t, s) of the two-point problem

x′′(t)+
n∑

j=1

qj (t)x
′(gj (t)

)−
m∑

i=1

p−
i (t)x

(
hi(t)

)

= f (t), t ∈ [0,ω], x(0)= 0, x(ω)= 0 (17.6.43)

is nonpositive. It is even negative in 0< t < s < ω. Boundary problem (17.6.38) is
equivalent to the integral equation

x(t)= −
∫ ω

0
G−(t, s)

m∑

i=1

p+
i (s)x

(
hi(s)

)
ds +

∫ ω

0
G−(t, s)f (s)ds, t ∈ [0,ω].

(17.6.44)

The function v(t)= t (ω− t) satisfies the inequality

v′′(t)+
n∑

j=1

qj (t)v
′(gj (t)

)+
m∑

i=1

pi(t)v
(
hi(t)

)≤ 0, t ∈ [0,ω], (17.6.45)

and

v(t)≥ −
∫ ω

0
G−(t, s)

m∑

i=1

p+
i (s)v

(
hi(s)

)
ds, t ∈ [0,ω]. (17.6.46)

The spectral radius of the operator

(Rx)(t)≡ −
∫ ω

0
G−(t, s)

m∑

i=1

p+
i (s)x

(
hi(s)

)
ds, t ∈ [0,ω], (17.6.47)

is less than one according to Theorem A.12. For nonnegative f , we get a non-
positive solution of (17.6.44). It proves that the Green’s function of (17.6.38) is
nonpositive. �

Remark 17.6 The condition qj (t)≥ 0 is essential. The Green’s function of the prob-
lem

x′′(t)− x′(0)= f (t), t ∈ [0,ω], x(0)= 0, x(ω)= 0,

can be constructed, and it changes sign in each square (t, s) ∈ (0,ω)× (0,ω).
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17.7 Discussion and Open Problems

The linear homogeneous n-th-order differential equation

(£x)(t)≡ x(n)(t)+
n−1∑

i=0

pi(t)x
(i)(t)= 0, t ∈ [0,ω], (17.7.1)

is one of the most important objects in the qualitative theory of ordinary differential
equations. The results of the papers [93, 256] were devoted to the de La Vallee
Poussin problem

(£x)(t)≡ x(n)(t)+
n−1∑

i=0

pi(t)x
(i)(t)= f (t), t ∈ [0,ω], (17.7.2)

x(i)(tj )= cij , (17.7.3)

where

0 ≤ t1 < t2 < · · ·< tm ≤ ω, i = 0, · · · , kj − 1, j = 1, · · · ,m, k1 + · · · + km = n.

(17.7.4)

Existence and uniqueness of its solution are reduced to nonoscillation of homoge-
neous equation (17.7.1). The solution of problem (17.7.2), (17.7.3) has the repre-
sentation

x(t)=
∫ ω

0
G(t, s)f (s)ds +X(t), (17.7.5)

where X(t) is a solution of the homogeneous equation (17.7.1) satisfying the condi-
tions (17.7.3), G(t, s) is called the Green’s function of the boundary value problem
(17.7.2), (17.7.3). It should be noted that the kernel G(t, s) for each fixed s, as a
function of the argument t only, satisfies homogeneous equation (17.7.1) on the in-
tervals [0, s) and (s,ω]. Representation (17.7.5) explains why the attention of the
authors of the classical monographs and papers on the theory of ordinary differential
equations [203, 220, 314] was focused on homogeneous equation (17.7.1).

The notion of a nonoscillation interval plays a fundamental role in the theory
of linear ordinary differential equations of the n-th order. The concept and first re-
sults allowing us to estimate nonoscillation intervals of ordinary differential equa-
tions were obtained by G. Mammana [282]. It was demonstrated in the paper by
A.J. Levin [256] that nonoscillation is connected with many very different proper-
ties of linear ordinary differential equations such as the theorems on differential in-
equalities (under corresponding conditions, solutions of differential inequalities are
greater than or less than solutions of equations), exponential stability of solutions,
zones of Lyapunov’s stability, regular behavior of Green’s functions of interpolation
problems, theory of oscillatory kernels [158], the Polia-Mammana representation
[308] of the operator £ as a product of the first-order differential operators with real
coefficients and many others.

Used and developed in the classical monographs [192, 248] on nonoscillation
of delay differential equations, the notion of nonoscillation as existence of eventu-
ally positive or negative solutions does not suit use in this direction. This is why
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we started with introducing homogeneous equations in the second section and the
definition of a nonoscillation interval (see Definition 17.1).

Our goal in this chapter was to propose the concept of nonoscillation intervals for
functional differential equations and to obtain results concerning regular behavior
of Green’s functions of the de La Vallee Poussin problem. We follow the concept
by N.V. Azbelev [20] in the frame of which the notions of homogeneous equations,
fundamental systems and Wronskians were first formulated. Properties of the Wron-
skian W(t) of delay differential equations of the n-th order were studied in [241].
The fact that W(t) �= 0 for t ≥ 0 in the case of second-order differential equation

x′′(t)+
n∑

j=1

qj (t)x
′(gj (t)

)+
m∑

i=1

pi(t)x
(
hi(t)

)= 0, t ∈ [0,∞), (17.7.6)

x(ξ) = 0 for ξ < 0, is equivalent to the Sturm separation theorem (between two
adjacent zeros of a nontrivial solution there is one and only one zero of each other
linear independent nontrivial solution). The first results of nonvanishingW(t) in the
case of the delay differential equation

x′′(t)+
m∑

i=1

pi(t)x
(
hi(t)

)= 0, pi(t)≥ 0, t ∈ [0,∞), (17.7.7)

x(ξ)= 0 for ξ < 0 (17.7.8)

were obtained in [20], where delays were assumed to be small. The maximal delay
size was estimated through coefficients of (17.7.7). The essence of this smallness is
that there is at most one zero of nontrivial solutions on each of the intervals [h(t), t],
where h(t)= mini∈{1,···,m} hi(t). Some extension of this result on neutral delay dif-
ferential equations was obtained in [110]. In [241], it was proven that W(t) �= 0 for
t ≥ 0 for the equation

x′′(t)+ p(t)x
(
h(t)

)= 0, p(t)≥ 0, t ∈ [0,∞), (17.7.9)

x(ξ)= 0 for ξ < 0,

with nondecreasing h(t). In the paper [116], the Sturm separation theorem was ob-
tained for (17.7.7), (17.7.8) with nondecreasing hi (i = 1, · · · ,m) under several as-
sumptions, smallness of the differences |hi −hj | being the main one. It was demon-
strated that in this case oscillation properties of this equation are similar to those for
(17.7.9), (17.7.8). This smallness was estimated through the coefficients of (17.7.7).
The essence of this smallness is that there is no zero of a nontrivial solution together
with a zero of its derivative on the intervals [hi(t), hj (t)] (i, j = 1, · · · ,m). The re-
sults about growth of the WronskianW(t) of (17.7.7), (17.7.8) were obtained in [20,
110, 241]. For ordinary differential equations, a correlation between growth of the
Wronskian and the existence of unbounded solutions was obtained by P. Hartman in
the classical monograph [203] and in the paper by P. Hartman and A. Winter [204].
In the paper [117], the differential inequality for the Wronskian

W ′(t)≥
n∑

i=1

pi(t)C
(
t, hi(t)

)
W
(
hi(t)

)
, t ∈ [0,∞) (17.7.10)
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was obtained. Here C(t, s) is the Cauchy function of (17.7.7). On this basis, results
on the growth of amplitudes of oscillating solutions were obtained. One of the re-
sults, for example, established the conditions of Lyapunov’s stability of this equation
[117]: every solution of (17.7.9), (17.7.8) with nondecreasing coefficients p and h,
where p is positive and bounded, is bounded if and only if

∫ ∞(
t − h(t)

)
dt <∞. (17.7.11)

Results of this sort have solved the known problem of A.D. Myshkis [289], who
proved that there exists an unbounded solution of equation

x′′(t)+ px(t − ε)= 0, t ∈ [0,∞) (17.7.12)

for each couple of positive constants p and ε. The problem of solution unbounded-
ness in the case of nonconstant coefficients was formulated in his book as one to be
solved.

For estimates of the length of nonoscillation intervals for functional differential
equations, results about estimates of Green’s functions and their derivatives for the
auxiliary boundary value problems

x(n)(t)= f (t), t ∈ [0,μ], (17.7.13)

x(i)(0)= 0, x(j)(μ)= 0, i = 0, · · · , k − 1, j = 0, · · · , n− k − 1, (17.7.14)

obtained in [37, 101], can be used. Note that MATLAB allows us to get these esti-
mates, too.

Results about the positivity of Green’s function for impulsive functional differ-
ential equations were obtained in [126–128].

The approach of this chapter is based on the results of the papers [26, 27]. Presen-
tation of the results follows the paper [124]. The main result of this chapter claims
that nonoscillation implies regular behavior of Green’s functions under correspond-
ing additional conditions on the positivity of operators Bj (j = 0, · · · , n− 1).

The basic results about Wronskians and their properties can be found in [118].
Applications to analysis of oscillation and asymptotic properties of corresponding
partial functional differential equations were presented in [119]. The right regular-
ization (known also as Azbelev’sW -transform) reduces boundary value problems to
analysis of corresponding functional operator equations in the space of essentially
bounded functions. This idea works in Sect. 17.5 of this chapter. Of course, this idea
can also be used in the analysis of partial functional differential equations that was
discussed in [120], where results on maximum principles for functional equations
in the space of three variables were obtained. A development of this idea is to use
Green’s function of a corresponding equation of the order n− k in Azbelev’s W -
transform for functional differential equations of the n-th order. As a result, we get
a boundary value problem for k-th-order functional differential equations. This idea
was applied in the papers [112, 114] in the case of n-th-order functional differential
equations with ordinary derivatives and in [82] for hyperbolic equations.
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Finally, let us state some open problems.

1. Estimate nonoscillation intervals [0,ω] in the case of non-Volterra operators Bj ,
j = 0, · · · , n− 1.

2. Estimate nonoscillation intervals for oscillatory solutions of n-th-order func-
tional differential equations.

3. Prove or disprove the analogue of Rolle’s theorem in the following form:
If [0,ω] is a nonoscillation interval, then under corresponding conditions the

fact that the right-hand side f changes its sign yields that solutions of problems
(17.1.1), (17.1.9), (17.1.10) have at least n+ 1 zeros on [0,ω].



Appendix A
Useful Theorems from Analysis

A.1 Vector Spaces

Denote by R
n the space of all vectors X = [x1, · · · , xn]T , where xk ∈ R, k =

1, · · · , n are real numbers and T is the matrix transposition operation.
By ‖ · ‖ we denote a norm in R

n. In particular,

‖X‖p =
(

n∑

k=1

|xk|p
)1/p

, 1 ≤ p <∞,

‖X‖∞ = max
1≤k≤n

|xk|.

For any n × n matrix A = (aij ), i, j = 1, · · · , n, we define a matrix norm corre-
sponding to the vector norm by the equality

‖A‖ = sup
‖X‖=1

‖AX‖
‖X‖ .

For example,

‖A‖1 = max
1≤j≤n

n∑

i=1

|aij |, ‖A‖∞ = max
1≤i≤n

n∑

j=1

|aij |.

For a chosen norm in R
n, we define the matrix measure

μ(A)= lim
ε→0+

‖I + εA‖ − 1

ε
,

where I is the identity matrix. For example, for the norm ‖ · ‖∞, we have

μ(A)= max
1≤i≤n

{
aii +

∑

j �=i
|aij |

}
.

A vector or matrix A is nonnegative (we will write ≥ 0) if all the entries are
nonnegative numbers. We also use the following definition.
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Definition A.1 Matrix A is an M-matrix if aij ≤ 0, i �= j , A is invertible and the
inverse matrix satisfies A−1 ≥ 0.

For many equivalent definitions and properties of M-matrices, see [83].

A.2 Functional Spaces

For all functional spaces we fix the norm ‖ · ‖ in R
n. Suppose X : [a, b] → R

n or
X : [a,∞)→ R

n is a vector-valued function. By C[a, b], C[a,∞) we denote the
Banach spaces of all vector functions continuous on [a, b] or [a,∞) with the norm

‖X‖C[a,b] = max
a≤t≤b ‖X(t)‖,

‖X‖C[a,∞) = sup
t≥a

‖X(t)‖.

By Lp[a, b], Lp[a,∞), 1 ≤ p <∞, we denote the Banach space of all Lebesgue
integrable vector functions with the norm

‖X‖Lp[a,b] =
(∫ b

a

‖X(s)‖pds
) 1
p

, ‖X‖Lp[a,∞) =
(∫ ∞

a

‖X(s)‖pds
) 1
p

.

If p = 1, we will write L1[a, b] = L[a, b].
By L∞[a, b] and L∞[a,∞) we denote the Banach space of all Lebesgue mea-

surable essentially bounded vector functions on either [a, b] or [a,∞)with the norm

‖X‖L∞[a,b] = ess sup
a≤t≤b

‖X(t)‖,
‖X‖L∞[a,∞) = ess sup

a≤t<∞
‖X(t)‖.

The following theorem is known as the Lebesgue monotone convergence theo-
rem.

Theorem A.1 [150, III.6.16, III.6.17] Let f1, f2, · · · be a scalar pointwise posi-
tive nondecreasing sequence of Lebesgue measurable functions; i.e., 0 ≤ fn(t) ≤
fn+1(t). Then the pointwise limit f (t) = limn→∞ fn(t) is a Lebesgue measurable
function and

lim
n→∞

∫ b

a

fn(t)dt =
∫ b

a

f (t)dt. (A.2.1)

If a sequence {fn} is monotone (increasing or decreasing) and there exists g ∈
L[a, b] such that |fn(t)| ≤ |g(t)|, then there is a pointwise limit f almost every-
where on [a, b] that satisfies f ∈ L[a, b] and (A.2.1) holds.

Together with the Lebesgue measure, we need a notion of the Borel measure.
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Definition A.2 The σ -algebra generated by all open intervals of (a, b) is called the
Borel σ -algebra. The restriction of the Lebesgue measure on the Borel σ -algebra is
called the Borel measure.

The function X : [a, b] → R
n is absolutely continuous if there exists Y ∈ L[a, b]

such that X(t)=X(a)+ ∫ t
a
Y (s)ds. An absolutely continuous function is continu-

ous and differentiable almost everywhere.
A scalar function g : [a, b] →R is a function of bounded variation if

Vart∈[a,b] g(t) := sup
P

n−1∑

i=0

|g(ti+1)− g(ti)|<∞,

where the supremum is taken over the set of all partitions P of the interval [a, b].
If g is differentiable and its derivative is integrable, then its variation satisfies

Vart∈[a,b] g(t)=
∫ b

a

|g′(s)|ds.

For the matrix-valued function R(t)= [rij (t)]ni,j=1, we can define its variation as

Vart∈[a,b]R(t)=
[
Vart∈[a,b] rij (t)

]n
i,j=1.

Lemma A.1 Suppose X = [x1, · · · , xn]T is a function continuous on [a, b] and all
entries of the matrix function R have a bounded variation on [a, b]. Then

∥∥∥∥
∫ b

a

dR(s)X(s)

∥∥∥∥≤ ∥∥Vart∈[a,b]R(t)
∥∥‖X‖C[a,b].

Proof We have
∥∥∥∥
∫ b

a

dsR(s)X(s)

∥∥∥∥

=
∥∥∥∥∥

[∫ b

a

n∑

j=1

xj (s)drij (s)

]n

i=1

∥∥∥∥∥

≤
∥∥∥∥∥

[
n∑

j=1

‖xj‖C[a,b] Vart∈[a,b] rij (t)
]n

i=1

∥∥∥∥∥

≤ ∥∥Vart∈[a,b] R(t)
∥∥‖X‖C[a,b]. �

The scalar function f : [a, b] → R is Borel measurable if for any interval
(c, d)⊂ [a, b] the set g−1(c, d) belongs to the Borel σ -algebra on [a, b].

For a Borel measurable function f : [a, b] → R and a function g : [a, b] → R of
bounded variation, the Lebesgue-Stieltjes integral [202]

∫ b

a

f (s)dg(s)
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can be defined, which coincides with the Lebesgue integral if g(t)≡ t . We have
∫ b

a

|f (s)|dg(s)≤ sup
t∈[a,b]

|f (t)|Vart∈[a,b] g(t).

A.3 Sets in Functional Spaces

In this section, we follow the monograph [192].
A set M of a Banach space B is convex if for every x, y ∈ M and for every

λ ∈ [0,1]
λx + (1 − λ)y ∈M.

We say that a setM of a Banach space B is compact if every sequence ofM contains
a subsequence that converges to an element of M . A set M is relatively compact if
every sequence of M contains a subsequence that converges to an element of B .

A set M of functions continuous on [a, b] is equicontinuous if for every ε > 0
there exists δ > 0 such that for all t1, t2 ∈ [a, b] with |t2 − t1|< δ and for all f ∈M
we have |f (t2)− f (t1)|< ε. A set M is called uniformly bounded if there exists a
positive number K such that |f (t)| ≤K for all t ∈ [a, b] and for all f ∈M .

We can now formulate the Ascoli-Arzela theorem.

Theorem A.2 [150, 215] A set M ⊂ C[a, b] is compact if it is equicontinuous and
uniformly bounded.

We will also apply the following result.

Theorem A.3 [150, IV.6.26] The set M ⊂ L∞[a, b] is compact if and only if for
any ε > 0 the segment [a, b] can be presented as a union of a finite number of
measurable subsets Ei ⊂ [a, b] such that for every Ei , u ∈M and any t, s ∈ Ei we
have

|u(t)− u(s)|< ε.

Definition A.3 If B is a Banach space of vector functions, then by Bλ,λ > 0, we
define the weighted space of all functions y ∈ B such that yλ := yeλt ∈ B . The space
Bλ is a Banach space with the norm ‖y‖Bλ = ‖yλ‖B .

A.4 Linear Operators in Functional Spaces

By r(P ) we denote the spectral radius of the bounded linear operator P in the
Banach space B [215]:

r(P )= lim
n→∞‖Pn‖ 1

n .

Evidently r(P )≤ ‖P ‖.
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Definition A.4 A cone is a closed subset K of a Banach space B such that

a) x0 ∈K implies λx0 ∈K , λ≥ 0,
b) if x1 ∈K,x2 ∈K , then x1 + x2 ∈K , and
c) if x0 ∈K,−x0 ∈K , then x0 = 0.

We write x ≥ y if x − y ∈K . We will say that operator A is a positive operator
if x ≥ y implies Ax ≥Ay.

In all functional spaces used in this monograph, we apply only the cone of the
nonnegative functions K = {x|x(t)≥ 0}.

Lemma A.2 [233, pp. 86, 87] Let the operator R : C[a, b] → C[a, b] be compact
and positive and a vector function v(t) = [v1(t), · · · , vn(t)]T with positive compo-
nents vi(t) > 0 for t ∈ [a, b], i = 1, · · · , n be such that ψ(t)≡ v(t)− (Rv)(t) > 0.
Then the spectral radius r(R) of the operator R : C[a, b] → C[a, b] is less than
one.

In all functional spaces, we consider the integral operator

(V1X)(t)=
∫ b

a

K(t, s)X(s)ds (A.4.1)

and the Volterra integral operator

(V2X)(t)=
∫ t

a

K(t, s)X(s)ds. (A.4.2)

There are many books (for example, [150, 215, 234, 348]) where boundedness
and compactness conditions for integral operators have been obtained. In particular,
we will need the following result.

Theorem A.4 Suppose the kernel K : [a, b] × [a, b] →R
n ×R

n of integral opera-
tors V1, V2 is a measurable function.

1) [150, p. 519, VI.9.53] If 1
p

+ 1
q

= 1,

ess sup
a≤t≤b

∫ b

a

‖K(t, s)‖qds =M <∞,

then any operator V1, V2 is a compact operator in the space Lp[a, b],
1<p <∞, and ‖Vi‖ ≤M1/q , i = 1,2.

2) [29, p. 18] Suppose for almost all t that the function K(t, ·) has at each point s
finite one-sided limits and there exists a scalar function v ∈ L[a, b] such that

‖K(·, s)‖ ≤ v(·)
for each s ∈ [a, b]. Then any operator V1, V2 is a compact operator in the space
L[a, b].
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3) [150, p. 519, VI.9.57] If

ess sup
a≤t,s≤b

‖K(t, s)‖ =M <∞,

then anyone of the operators V1 and V2 is a weakly compact operator in the
space L∞[a, b], ‖Vi‖ ≤ M , i = 1,2 and its square is compact in the space
L∞[a, b].

In fact, [150, p. 519, VI.9.53, remark to Theorem VI.8.10] contains a more gen-
eral result.

Theorem A.5 [150, p. 519, VI.9.57] Let R(t, ·) be a function of bounded variation
for any t , R(·, s) be Lebesgue measurable, essentially bounded and

ess sup
t∈[a,b]

∫ b

a

|dsR(t, s)| ≤M <∞.

Then any of the operators

(T1X)(t)=
∫ b

a

X(s)dsR(t, s), (A.4.3)

(T2X)(t)=
∫ t

a

X(s)dsR(t, s), t ∈ [a, b], (A.4.4)

is a compact operator in the space Lp[a, b], 1 < p < ∞, and a weakly compact
operator in the space L[a, b], and its square is compact in the space L[a, b].

Theorem A.6 If h ∈ L∞[a, b], then the linear integral operator

(Hx)(t)=
{∫ h(t)

a
x(s)ds if h(t) ∈ [a, b],

0 if h(t) /∈ [a, b],
is a compact operator in L∞[a, b].

Proof Let ε > 0 be an arbitrary number. Divide the set h([a, b]) ∩ [a, b] into a
finite number of subsets Fi, i = 1, · · · , n, such that for every τ1, τ2 ∈ Fi we have
|τ1 − τ2|< ε. Denote

Ei = h−1(Fi), i = 1, · · · , n, E0 = {t ∈ [a, b] : h(t) /∈ [a, b]},
S = {x ∈ L∞[a, b] : ‖x‖ = 1

}
, M =HS.

Let us show that M is a compact set in L∞[a, b].
For any set Ei , i = 1, · · · , n, we have

sup
t,s∈Ei

|(Hx)(t)− (Hx)(s)| = sup
t,s∈Ei

∣∣∣∣
∫ h(s)

h(t)

x(τ )dτ

∣∣∣∣≤ sup
t,s∈Ei

|h(t)− h(s)|< ε.

If i = 0, then supt,s∈Ei |h(t)− h(s)| = 0. Theorem A.3 implies that M = HS is a
compact set, and hence H is a compact operator. �
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Theorem A.7 [348, p. 153], [349, 350] Suppose that the linear Volterra integral
operator V2 : Lp[a, b] → Lp[a, b], 1 ≤ p ≤ ∞, is a compact operator for 1 ≤ p ≤
∞ or a weakly compact operator for p = 1 or p = ∞. Then the spectral radius of
this operator is equal to zero and the integral equation x − V2x = f has a unique
solution x ∈ Lp[a, b] for any f ∈ Lp[a, b].

This result has an important generalization.

Definition A.5 Let P be a linear operator in the space H of the functions X :
[a, b] → R

n. We say that P is a Volterra (or causal) operator if for any a < c < b
the equality X(t)= 0, a ≤ t ≤ c, implies (PX)(t)= 0, a ≤ t ≤ c.

Theorem A.8 [97, 310] If P : Lp[a, b] → Lp[a, b], 1 ≤ p ≤ ∞, is a linear
Volterra compact operator for 1 ≤ p ≤ ∞ or a weakly compact operator for p = 1
or p = ∞, then r(P ) = 0 and the operator equation x − Px = f has a unique
solution x ∈ Lp[a, b] for any f ∈ Lp[a, b].

It is easy to see that if r(P ) < 1, then there exists the inverse operator (I −
P)−1 = I + P + P 2 + · · · , where I is the identity operator and (I − P)−1 ≥ 0 if
P ≥ 0.

Theorem A.9 [21] Let V : Lp[a, b] → Lp[a, b], 1 ≤ p ≤ ∞, be a linear Volterra
bounded operator and P : Lp[a, b] → Lp[a, b], 1 ≤ p ≤ ∞, be a linear Volterra
compact operator. Then r(V + P)= r(V ).

Suppose B : [a, b] → R
n ×R

n is a measurable essentially bounded matrix func-
tion and g : [a, b] → R, g(t) ≤ t , is a measurable locally bounded scalar function.
We denote the inner superposition (composition) operator by the equality

(SX)(t)=
{
B(t)X(g(t)), g(t)≥ a,

0, g(t) < a.

Theorem A.10 [29] Suppose that mes{e} = 0 ⇒ mes{g−1(e) ∩ [a, b]} = 0, where
mes is the Lebesgue measure. Then the operator S acts in the space L∞[a, b] and
is bounded with the norm estimation ‖S‖L∞ ≤ ess supa<t<b ‖B(t)‖.

If in addition

sup
e⊂[a,b],mes e>0

mes{g−1(e)}
mes{e} <∞, mes e > 0,

then the operator S acts in the space L[a, b] and is bounded.

Operator S with a delay g(t)≤ t is a linear Volterra operator.

Definition A.6 [233] An operator B is u-bounded if for every nonzero element x
of the cone K there exists β(x)≥ 0 such that Bx ≤ β(x)u.
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Theorem A.11 [216] Every u-bounded operator B : C[a, b] → L[a, b] can be pre-
sented in the form of the Stieltjes integral

(Bx)(t)=
∫ b

a

x(s)dsb(t, s), (A.4.5)

where b(·, s) : [a, b] → R is measurable and the function b(t, ·) : [a, b] → R has a
bounded variation p(t)= Vars∈[a,b] b(t, s), while p is integrable.

Consider the integral operator N : C[a, b] → C[a, b] defined by the equality

(Nx)(t)=
∫ b

a

G(t, s)

[∫ b

a

x(ξ)dξ b(s, ξ)

]
ds. (A.4.6)

Theorem A.12 [210, 211] Assume that G(·, s) is a continuous function for almost
all s, G(t, ·) is a Lebesgue integrable function for all t , G(t, s) ≥ 0, the function
b(t, s) is nondecreasing in s for every t ∈ [a, b], there exists a positive continuous
function v such that ψ(t)≡ v(t)− (Nv)(t)≥ 0 and the set of zeros of ψ is not more
than countable and ψ(s) > 0 if mes{t ∈ [a, b] : b(t, s+) �= b(t, s−)}> 0.

Then the spectral radius r(N) of the operator N : C[a, b] → C[a, b] is less than
one.

Let us formulate Theorem 5.3 of [233, p. 79] in a convenient form.

Theorem A.13 Let a linear operatorA : C[a, b] → C[a, b] be positive and a linear
operator B : C[a, b] → C[a, b] satisfy the inequality −Ax ≤ Bx ≤ Ax for every
nonnegative function x. Then, for the spectral radius, we have r(B)≤ r(A).

A.5 Nonlinear Operators

Let F :D ⊂ B1 → B2 be a nonlinear operator acting from the subset D of the Ba-
nach space B1 to the Banach space B2. We say that F is a continuous operator if for
any x0 ∈D and any sequence {xn} ⊂D the condition xn → x0 implies Fxn → Fx0.
Operator F is bounded if for any bounded setM ⊂D the set F(M) is bounded. Op-
erator F is a compact operator if for any bounded closed set M ⊂D the set F(M)
is compact.

Some well-known facts will be summarized in the following lemma.

Lemma A.3

1. Suppose f (t, x), t ∈ [a, b], x ∈ (−∞,∞) is a scalar continuous function. Then
the operator (Fx)(t)= f (t, x(t)) is a continuous bounded operator in the space
L∞[a, b].

2. Any superposition of a compact continuous operator and a continuous operator
in Banach spaces is a compact continuous operator.
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Theorem A.14 (The Banach contraction principle) Let operator F map D into D,
where D ⊂ B is a closed subset of the Banach space B . If for some 0< λ < 1 and
any x, y ∈D the inequality

‖Fx − Fy‖ ≤ λ‖x − y‖
holds, then the equation x = Fx has a unique solution x ∈D.

Theorem A.15 (Schauder Fixed-Point Theorem) Let the compact continuous oper-
ator F map D into D, where D ⊂ B is a nonempty convex, bounded, closed subset
of the Banach space B .

Then the equation x = Fx has a solution x ∈D.

Many nonlinear compact operators are obtained when investigating various dif-
ferential and functional differential equations. We will give an example for the scalar
impulsive equation

ẋ(t)+ u(t)x(t)= 0, t ∈ [a, b], (A.5.1)

x(a)= x0, x
(
τj

+)= Ij
(
x(τj )

)
, a < τ1 < · · ·< τn = b, (A.5.2)

where u : [a, b] →R is an essentially bounded function and Ij : R → R is a contin-
uous bounded function.

Lemma A.4 Denote Fu = x, where x is the solution of problem (A.5.1), (A.5.2).
Then F : L∞[a, b] → L∞[a, b] is a compact operator.

Proof Let n= 1; i.e., there exists only one impulse point a < τ < b. Then the solu-
tion of (A.5.1), (A.5.2) can be rewritten in the form

x(t) := (Fx)(t)= x0 exp

{
−
∫ t

a

u(s)ds

}
χ[a,τ ](t)

+ x0I

(
exp

{
−
∫ τ

a

u(s)ds

})
exp

{
−
∫ t

τ

u(s)ds

}
χ[τ,b](t),

where χJ is the characteristic function of the interval J .
Since the integral operators

∫ t
a
u(s)ds,

∫ t
τ
u(s)ds and the functional

∫ τ
a
u(s)ds

are compact operators in the space L∞[a, b], Lemma A.3 implies that operator F is
a compact operator in the space L∞[a, b].

The general case can be proven similarly by induction. �

A.6 Gronwall-Bellman and Coppel Inequalities

Lemma A.5 Suppose

u(t)≤ c+
∫ t

a

f (s)u(s) ds,
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where c > 0 and we have scalar nonnegative functions u,f ∈ L∞[a, b]. Then

u(t)≤ ce
∫ t
a f (s)ds .

Lemma A.6 For the solution of the vector ordinary differential equation

ẋ(t)=A(t)x(t),

the inequality
∥∥x(t)

∥∥≤ ∥∥x(t0)
∥∥e
∫ t
t0
μ(A(s))ds

holds, where A(t), t ≥ t0 is a locally essentially bounded vector function and
μ(A(t)) is a matrix measure of the matrix A(t).



Appendix B
Existence and Uniqueness Theorems,
Solution Representations

In this appendix, we present existence and uniqueness conditions for solutions of all
functional differential equations considered in this monograph; in addition, for lin-
ear equations, solution representations are given. Many other existence and solution
representation results can be found in [29, 95, 96, 201].

B.1 Linear Functional Differential Equations

B.1.1 Differential Equations with Several Concentrated Delays

We consider for t ≥ 0 the vector equation

Ẋ(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)= 0, (B.1.1)

where Ak(t) are n× n matrices with entries akij , i, j = 1, · · · , n, k = 1, · · · ,m under
the following conditions:

(a1) Functions akij are Lebesgue measurable and locally essentially bounded.
(a2) Delays hk : [0,∞) → R are Lebesgue measurable functions, hk(t) ≤ t ,

limt→∞ hk(t)= ∞, k = 1, · · · ,m.

Together with (B.1.1), we consider for each t0 ≥ 0 the initial value problem

Ẋ(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)= F(t), t ≥ t0, (B.1.2)

X(t)=Φ(t), t < t0, X(t0)=X0 ∈R
n, (B.1.3)

whereΦ(t)= [ϕ1(t), · · · , ϕn(t)]T and F = [f1(t), · · · , fn(t)]T satisfy the following
hypothesis:

(a3) F : [t0,∞)→ R
n is a Lebesgue measurable locally essentially bounded func-

tion and Φ : (−∞, t0)→R
n is a Borel measurable bounded function.

R.P. Agarwal et al., Nonoscillation Theory of Functional Differential Equations
with Applications, DOI 10.1007/978-1-4614-3455-9,
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Here AT is the transposed matrix.

Definition B.1 Function X : R → R
n, which is locally absolutely continuous on

[t0,∞), is called a solution of problem (B.1.2), (B.1.3) if it satisfies (B.1.2) for
almost all t ∈ [t0,∞) and equalities (B.1.3) for t ≤ t0.

In addition to problem (B.1.2), (B.1.3), where X, F and Φ are column vector
functions, we will consider the problem where F(t), Φ(t) and solution X(t) are
n× n matrix functions.

By 0 we will also denote the zero column vector and the zero matrix.

Definition B.2 The n× n matrix function C(t, s) that satisfies the problem

Ẋ(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)= 0, X(t)= 0, t < s, X(s)= I, (B.1.4)

for each s ≥ 0, is called the fundamental matrix (or the Cauchy matrix) of (B.1.1).
Here I is the identity matrix, and we assume that C(t, s)= 0, 0 ≤ t < s.

Theorem B.1 Let (a1)–(a3) hold. Then there exists a unique solution of problem
(B.1.2), (B.1.3), and it can be represented in the form

X(t)= C(t, t0)X0 +
∫ t

t0

C(t, s)F (s)ds −
m∑

k=1

∫ t

t0

C(t, s)Ak(s)Φ
(
hk(s)

)
ds

(B.1.5)

for t ≥ t0, where Φ(hk(s))= 0, if hk(s) > t0.

Proof In order to demonstrate existence and uniqueness, it is sufficient to prove that
there exists a unique solution of problem (B.1.2), (B.1.3) on the interval [t0, c] for
any c > t0.

Denote

Xh(t)=
{
X(h(t)) if h(t)≥ t0,

0 if h(t) < t0,

and

Φh(t)=
{
Φ(h(t)) if h(t) < t0,

0 if h(t)≥ t0.

Then X(h(t)) = Xh(t)+Φh(t), t ≥ t0, and the problem (B.1.2), (B.1.3) takes the
form

Ẋ(t)+
m∑

k=1

Ak(t)Xhk (t)=G(t), t ≥ t0, X(t0)=X0, (B.1.6)
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where

G(t)= F(t)−
m∑

k=1

Ak(t)Φ
hk (t).

Denote by χ[α,β](t) the characteristic function of the interval [α,β], and assume that
χ[α,β](t)≡ 0 if α > β . Recall that we consider the initial value problem on the finite
interval [t0, c].

Since

X(t)=X(t0)+
∫ t

t0

Ẋ(s)ds,

we have

Xhk (t)= χ[t0,c]
(
hk(t)

)(
X(t0)+

∫ max{hk(t),t0}

t0

Ẋ(s)ds

)
. (B.1.7)

Hence problem (B.1.6) can be rewritten as

Ẋ(t)+
m∑

k=1

χ[t0,c]
(
hk(t)

)
Ak(t)

∫ max{hk(t),t0}

t0

Ẋ(s)ds =R(t),

where

R(t)=G(t)−
m∑

k=1

χ[t0,c]
(
hk(t)

)
Ak(t)X(t0).

This means that problem (B.1.6) has the form

Y(t)=
∫ t

t0

B(t, s)Y (s)ds +R(t), t ≥ t0, (B.1.8)

where

Y(t)= Ẋ(t), B(t, s)= −
m∑

k=1

χ[t0,c]
(
hk(t)

)
χ[t0,max{hk(t),t0}](s)Ak(t).

Consider the linear integral operator

(T Y )(t)=
∫ t

t0

B(t, s)Y (s)ds

in the space L∞[t0, c].
Evidently ess supt,s∈[t0,c] ‖B(t, s)‖<∞. Theorem A.4 implies that T is a weakly

compact integral Volterra operator. By Theorem A.7, its spectral radius is equal to
zero. Thus, by this theorem the integral equation (B.1.8) has a unique solution Y(t)
for t ≥ t0.

Consequently,

X(t)=
{
X(t0)+

∫ t
t0
Y(s)ds, t ≥ t0,

Φ(t), t < t0,

is the unique solution of problem (B.1.2), (B.1.3).
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Next, let us demonstrate that the function

X(t)= C(t, t0)X0 +
∫ t

t0

C(t, s)G(s)ds, (B.1.9)

where C is the fundamental matrix of (B.1.1), is a solution of problem (B.1.6). For
the convenience of the reader, we will writeX(h(t)) instead ofXh(t), assuming that
X(h(t))= 0, if h(t) < t0.

Equality (B.1.9) implies

X
(
hk(t)

)= C
(
hk(t), t0

)
X(t0)+

∫ max{hk(t),t0}

t0

C
(
hk(t), s

)
G(s)ds

= C
(
hk(t), t0

)
X(t0)+

∫ t

t0

C
(
hk(t), s

)
G(s)ds

−
∫ t

max{hk(t),t0}
C
(
hk(t), s

)
G(s)ds

= C
(
hk(t), t0

)
X(t0)+

∫ t

t0

C
(
hk(t), s

)
G(s)ds,

sinceC(t, s)= 0 for t < s. We consider the left-hand side of (B.1.6) ifX is supposed
to have the form (B.1.9). Using the expression above forX(hk(t)) and the definition
of the fundamental function C(t, s), we obtain

Ẋ(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)

= Ċ(t, t0)X(t0)+G(t)+
∫ t

t0

Ċ(t, s)G(s)ds

+
m∑

k=1

Ak(t)

[
C
(
hk(t), t0

)
X(t0)+

∫ t

t0

C
(
hk(t), s

)
G(s)ds

]

=
[
Ċ(t, t0)+

m∑

k=1

Ak(t)C
(
hk(t), t0

)
]
X(t0)

+
∫ t

t0

[
Ċ(t, s)+

m∑

k=1

Ak(t)C
(
hk(t), s

)
]
G(s)ds +G(t)=G(t),

which completes the proof. �

B.1.2 Mixed Equations with an Infinite Number of Delays

Consider the vector equation

Ẋ(t)+
∞∑

k=1

Ak(t)X
(
hk(t)

)+
∫ t

−∞
K(t, s)X(s) ds = 0, (B.1.10)
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where in addition to (a1) and (a2) the following condition holds:

(a4) a(t)=∑∞
k=1 ‖Ak(t)‖ is a locally essentially bounded function, where the se-

ries converges uniformly on any bounded interval [t0, b]; K(t, s) is a measur-
able locally essentially bounded function such that supt≥t0

∫ t0
−∞ ‖K(t, s)‖ds

<∞.

It is evident that (B.1.1) with an infinite number of concentrated delays

Ẋ(t)+
∞∑

k=1

Ak(t)X
(
hk(t)

)= 0

and the integrodifferential equation

Ẋ(t)+
∫ t

−∞
K(t, s)X(s) ds = 0

are partial cases of (B.1.10).
Together with (B.1.10), we consider for each t0 ≥ 0 the initial value problem

Ẋ(t)+
∞∑

k=1

Ak(t)X
(
hk(t)

)+
∫ t

−∞
K(t, s)X(s) ds = F(t), t ≥ t0, (B.1.11)

X(t)=Φ(t), t < t0, X(t0)=X0, (B.1.12)

where for the initial functionΦ(t) and the right-hand side F(t) condition (a3) holds.

Definition B.3 A function X : R → R
n locally absolutely continuous on [t0,∞) is

called a solution of problem (B.1.11), (B.1.12), if it satisfies (B.1.11) for almost all
t ∈ [t0,∞) and equalities (B.1.12) for t ≤ t0.

Definition B.4 For each s ≥ 0, the solution C(t, s) of the problem

Ẋ(t)+
∞∑

k=1

Ak(t)X(hk(t))+
∫ t

−∞
K(t, s)X(s) ds = 0,

X(t)= 0, t < s, X(s)= I,

(B.1.13)

is called the fundamental matrix of (B.1.1).

Theorem B.2 Let (a1)–(a4) hold. Then there exists a unique solution of problem
(B.1.11), (B.1.12), and it can be presented in the form

X(t)= C(t, t0)X0 +
∫ t

t0

C(t, s)F (s)ds −
∞∑

k=1

∫ t

t0

C(t, s)Ak(s)Φ
(
hk(s)

)
ds

−
∫ t

t0

C(t, s)

∫ s

−∞
K(s, τ )Φ(τ)dτds, (B.1.14)

where Φ(ξ)= 0, if ξ > t0.
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Proof We follow the scheme of the proof of Theorem B.1 using the notation of this
proof.

It is sufficient to prove that there exists a unique solution of problem (B.1.11),
(B.1.12) on the interval [t0, c] for any c > t0. This problem, similar to (B.1.6), has
the form

Ẋ(t)+
∞∑

k=1

Ak(t)Xhk (t)+
∫ t

t0

K(t, s)X(s) ds =G(t), t ≥ t0, X(t0)=X0,

(B.1.15)

where

G(t)= F(t)−
∞∑

k=1

Ak(t)Φ
hk (t)−

∫ t0

−∞
K(t, s)Φ(s) ds.

By the equality X(t)=X(t0)+
∫ t
t0
Ẋ(s) ds, we have

∫ t

t0

K(t, s)X(s) ds =
(∫ t

t0

K(t, s) ds

)
X(t0)+

∫ t

t0

K(t, s)

∫ s

t0

Ẋ(τ ) dτ ds

=
(∫ t

t0

K(t, s) ds

)
X(t0)+

∫ t

t0

(∫ t

s

K(t, τ ) dτ

)
Ẋ(s) ds.

Using (B.1.7), problem (B.1.15) can be rewritten as

Ẋ(t)+
∞∑

k=1

χ[t0,c]
(
hk(t)

)
Ak(t)

∫ max{hk(t),t0}

t0

Ẋ(s)ds

+
∫ t

t0

∫ t

s

(
K(t, τ ) dτ

)
Ẋ(s) ds =R(t),

where

R(t)=G(t)−
∞∑

k=1

χ[t0,c]
(
hk(t)

)
Ak(t)X(t0)−

(∫ t

t0

K(t, s) ds

)
X(t0).

Thus, problem (B.1.15) has the form

Y(t)=
∫ t

t0

B(t, s)Y (s)ds +R(t), t ≥ t0, (B.1.16)

where

Y(t)= Ẋ(t),

B(t, s)= −
∞∑

k=1

χ[t0,c]
(
hk(t)

)
χ[t0,max{hk(t),t0}](s)Ak(t)−

∫ t

s

K(t, τ ) dτ.

Consider the linear integral operator

(T Y )(t)=
∫ t

t0

B(t, s)Y (s)ds

in the space of L∞[t0, c].
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Evidently ess supt0≤t,s≤c ‖B(t, s)‖<∞. Theorem A.4 implies that T is a weakly
compact integral Volterra operator in the space L∞[t0, c]. By Theorem A.7, its spec-
tral radius is equal to zero. Thus, by this theorem, integral equation (B.1.16) has a
unique solution Y(t), t ≥ t0.

Consequently,

X(t)=
{
X(t0)+

∫ t
t0
Y(s)ds, t ≥ t0,

Φ(t), t < t0,

is the unique solution of problem (B.1.11), (B.1.12).
Further, let us show that the function

X(t)= C(t, t0)X(t0)+
∫ t

t0

C(t, s)G(s)ds, (B.1.17)

where C is the fundamental matrix of (B.1.10), is a solution of problem (B.1.15).
Equality (B.1.17) implies

X
(
hk(t)

)= C
(
hk(t), t0

)
X(t0)+

∫ max{hk(t),t0}

t0

C
(
hk(t), s

)
G(s)ds

= C
(
hk(t), t0

)
X(t0)+

∫ t

t0

C
(
hk(t), s

)
G(s)ds

−
∫ t

max{hk(t),t0}
C
(
hk(t), s

)
G(s)ds

= C
(
hk(t), t0

)
X(t0)+

∫ t

t0

C
(
hk(t), s

)
G(s)ds.

Since C(τ, s)= 0 for τ < s, we have
∫ s

t0

K(t, τ )C(τ, s) dτ = 0.

Hence
∫ t

t0

K(t, s)

∫ s

t0

C(s, τ )G(τ)dτds =
∫ t

t0

(∫ t

s

K(t, τ )C(τ, s)dτ

)
G(s)ds

=
∫ t

t0

(∫ t

t0

K(t, τ )C(τ, s)dτ

)
G(s)ds.

We consider the left-hand side of (B.1.15) ifX is supposed to have the form (B.1.17).
With the help of the relations above, we have

Ẋ(t)+
∞∑

k=1

Ak(t)X
(
hk(t)

)+
∫ t

t0

K(t, s)X(s)ds

= Ċ(t, t0)X(t0)+G(t)+
∫ t

t0

Ċ(t, s)G(s)ds
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+
∞∑

k=1

Ak(t)

[
C
(
hk(t), t0

)
X(t0)+

∫ t

t0

C
(
hk(t), s

)
G(s)ds

]

+
∫ t

t0

K(t, s)

[
C(s, t0)X(t0)+

∫ s

t0

C(s, τ )G(τ)dτ

]
ds

=
[
Ċ(t, t0)+

∞∑

k=1

Ak(t)C
(
hk(t), t0

)
]
X(t0)+

∫ t

t0

K(t, s)C(s, t0)dsX(t0)

+
∫ t

t0

[
Ċ(t, s)+

∞∑

k=1

Ak(t)C
(
hk(t), s

)
]
G(s)ds +G(t)

+
∫ t

t0

(∫ t

t0

K(t, τ )C(τ, s)dτ

)
G(s)ds

=
[
Ċ(t, t0)+

∞∑

k=1

Ak(t)C
(
hk(t), t0

)+
∫ t

t0

K(t, s)C(s, t0)ds

]
X(t0)

+
∫ t

t0

[
Ċ(t, s)+

∞∑

k=1

Ak(t)C
(
hk(t), s

)+K(t, τ )C(τ, s)dτ

]
G(s)ds +G(t)

=G(t),

which completes the proof. �

B.1.3 Equations with a Distributed Delay

In this section, we consider the vector equation

Ẋ(t)+
∫ t

−∞
dsR(t, s)X(s)= 0 (B.1.18)

for t ≥ t0, where the following conditions are satisfied:

(a5) Any entry rij (t, s) of R(t, s) is a left continuous function of bounded variation
in s for any t , and for each s its variation on the segment [t0, s]

pij (t, s)= Varτ∈[t0,s] rij (t, τ )

is a locally integrable function in t and

sup
t≥t0

∫ t0

−∞
pij (t, s)ds <∞.

(a6) R(t, s) = R(t, t+), t < s, where R(t, t+) = lims→t,t<s R(t, s) and the inte-
grals for left continuous functions are understood as

∫ t

−∞
dsR(t, s)x(s)= lim

ε→0+

∫ t+ε

−∞
dsR(t, s)x(s).
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Equation (B.1.10) is a partial case of (B.1.18) if we denote

R(t, s)=
∞∑

k=1

Ak(t)χ(hk(t),∞)(s)+
∫ s

−∞
K(t, ζ ) dζ.

Together with (B.1.18), we consider for each t0 ≥ 0 the initial value problem

Ẋ(t)+
∫ t

−∞
dsR(t, s)X(s)= F(t), t ≥ t0, (B.1.19)

X(t)=Φ(t), t < t0, X(t0)=X0, (B.1.20)

where Φ(t) and F(t) satisfy the following hypothesis:
(a7) The initial function Φ(t) is a continuous function, and F(t) is a Lebesgue

measurable locally essentially bounded function.

Definition B.5 A function X : R → R
n locally absolutely continuous on [t0,∞) is

called a solution of problem (B.1.19), (B.1.20), if it satisfies (B.1.19) for almost all
t ∈ [t0,∞) and equalities (B.1.20) for t ≤ t0.

Definition B.6 For each s ≥ 0, the solution C(t, s) of the problem

Ẋ(t)+
∫ t

−∞
dsR(t, s)X(s)= 0, X(t)= 0, t < s, X(s)= I, (B.1.21)

is called the fundamental matrix of (B.1.18).

Theorem B.3 Let (a5), (a6) and (a7) hold. Then there exists a unique solution of
problem (B.1.19), (B.1.20), and it can be presented in the form

X(t)= C(t, t0)X0 +
∫ t

t0

C(t, s)F (s)ds −
∫ t

t0

C(t, s) ds

∫ s

−∞
dτR(s, τ )Φ(τ),

(B.1.22)

where Φ(τ)= 0, if τ > t0.

Proof We follow the scheme of the proof of Theorems B.1 and B.2.
It is sufficient to prove that there exists a unique solution of problem (B.1.19),

(B.1.20) on the interval [t0, c] for any c > t0. This problem has the form

Ẋ(t)+
∫ t

t0

dsR(t, s)X(s) ds =G(t), t ≥ t0, X(t0)=X0, (B.1.23)

where

G(t)= F(t)−
∫ t0

−∞
dsR(t, s)Φ(s) ds.

By the equality X(t)=X(t0)+
∫ t
t0
Ẋ(s) ds and simple calculations, we have
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∫ t

t0

dsR(t, s)X(s)=
[
R
(
t, t+

)−R(t, t0)
]
X(t0)+

∫ t

t0

dsR(t, s)

∫ t

t0

Ẋ(τ ) dτ

= [R(t, t+)−R(t, t0)
]
X(t0)+

∫ t

t0

Ẋ(s)

(∫ t

s

dτR(t, τ )

)
ds

= [R(t, t+)−R(t, t0)
]
X(t0)+

∫ t

t0

(
R
(
t, t+

)−R(t, s)
)
Ẋ(s) ds,

so problem (B.1.23) can be rewritten as

Ẋ(t)+
∫ t

t0

[
R
(
t, t+

)−R(t, s)
]
Ẋ(s) ds =R(t),

where

R(t)=G(t)− [R(t, t+)−R(t, t0)
]
X(t0).

Thus, problem (B.1.23) has the form

Y(t)=
∫ t

t0

B(t, s)Y (s)ds +R(t), t ≥ t0, (B.1.24)

where

Y(t)= Ẋ(t), B(t, s)= −R(t, t+)+R(t, s).

Consider the linear integral operator

(T Y )(t)=
∫ t

t0

B(t, s)Y (s)ds

in the vector space L∞[t0, c]. Evidently ess supt0≤t,s≤c ‖B(t, s)‖ < ∞. Theo-
rem A.4 implies that integral Volterra operator T is weakly compact in the space
L∞[t0, c]. By Theorem A.7, its spectral radius is equal to zero, and hence integral
equation (B.1.7) has a unique solution Y(t) for t ≥ t0. Consequently,

X(t)=
{
X(t0)+

∫ t
t0
Y(s)ds, t ≥ t0,

Φ(t), t < t0,

is the unique solution of problem (B.1.19), (B.1.20).
Let us demonstrate that the function

X(t)= C(t, t0)X0 +
∫ t

t0

C(t, s)G(s)ds, (B.1.25)

where C is the fundamental matrix of (B.1.18), is a solution of problem (B.1.23).
Since C(τ, s)= 0 for τ < s, we have

∫ s
t0
dsR(t, τ )C(τ, s)= 0, which implies

∫ t

t0

dsR(t, s)

∫ s

t0

C(s, τ )G(τ)dτ =
∫ t

t0

(∫ t

τ

dsR(t, s)C(s, τ )G(τ)

)
dτ

=
∫ t

t0

(∫ t

t0

dτR(t, τ )C(τ, s)

)
G(s)ds.
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Finally, consider the left-hand side of (B.1.23), where X has form (B.1.25). Ap-
plying the relations above, we obtain

Ẋ(t)+
∫ t

t0

dsR(t, s)X(s)

= Ċ(t, t0)X(t0)+G(t)+
∫ t

t0

Ċ(t, s)G(s)ds

+
∫ t

t0

dsR(t, s)

[
C(s, t0)X(t0)+

∫ s

t0

C(s, τ )G(τ)dτ

]

=
[
Ċ(t, t0)+

∫ t

t0

dsR(t, s)C(s, t0)

]
X(t0)+

∫ t

t0

Ċ(t, s)G(s)ds

+G(t)+
∫ t

t0

(∫ t

t0

dτR(t, τ )C(τ, s)

)
G(s)ds

=
[
Ċ(t, t0)+

∫ t

t0

dsR(t, s)C(s, t0)

]
X(t0)

+
∫ t

t0

[
Ċ(t, s)+

∫ t

t0

dτR(t, τ )C(τ, s)

]
G(s)ds +G(t)=G(t),

which completes the proof. �

B.1.4 Equations of Neutral Type

In this subsection, we consider the vector neutral differential equation

Ẋ(t)−A(t)Ẋ
(
g(t)

)+B(t)X
(
h(t)

)= 0, t ≥ 0 (B.1.26)

under the following conditions:

(a8) A(t),B(t), g(t), h(t) are Lebesgue measurable locally essentially bounded
functions.

(a9) ess supt≥0 ‖A(t)‖ ≤ q < 1.
(a10) g(t)≤ t , mesE = 0 �⇒ mesg−1(E)= 0, where mesE is the Lebesgue mea-

sure of the set E.
(a11) h(t)≤ t , g(t)≤ t , limt→∞ h(t)= ∞, limt→∞ g(t)= ∞.

As in Appendix A, denote by S the composition operator

(Sy)(t)=
{
A(t)y(g(t)), g(t)≥ t0,

0, g(t) < t0.

If supt≥t0 ‖A(t)‖ ≤ q < 1, then by Theorem A.9 the operator S maps the space
L∞[t0, c] onto itself for any c > t0, S is bounded and ‖S‖L∞[t0,c]→L∞[t0,c] ≤ q < 1.
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Together with (B.1.26), we consider for each t0 ≥ 0 the initial value problem

Ẋ(t)−A(t)Ẋ
(
g(t)

)+B(t)X
(
h(t)

)= F(t), t ≥ t0, (B.1.27)

X(t)=Φ(t), Ẋ(t)= Ψ (t), t < t0, X(t0)=X0. (B.1.28)

We also assume that the following hypothesis holds:

(a12) F : [t0,∞) → R
n, where F(t) = [f1(t), · · · , fn(t)]T , is a Lebesgue mea-

surable locally essentially bounded function and Φ,Ψ : (−∞, t0)→ R
n are

Borel measurable bounded functions.

Definition B.7 A function X : R → R
n locally absolutely continuous on [t0,∞) is

called a solution of problem (B.1.27), (B.1.28) if it satisfies (B.1.27) for almost all
t ∈ [t0,∞) and also satisfies (B.1.28).

Definition B.8 For each s ≥ t0, the solution C(t, s) of the problem

Ẋ(t)−A(t)Ẋ(g(t))+B(t)X(h(t))= 0,

X(t)= 0, Ẋ(t)= 0, t < s, X(s)= I,
(B.1.29)

is called the fundamental matrix of (B.1.26).

We assume that C(t, s)= 0, 0 ≤ t < s.

Theorem B.4 Let (a8)–(a12) hold. Then there exists a unique solution of problem
(B.1.27), (B.1.28), and it can be presented in the form

X(t)= C(t, t0)X0 +
∫ t

t0

C(t, s)
[
(I − S)−1F

]
(s)ds

+
∫ t

t0

C(t, s)
[
(I − S)−1G

]
(s)ds, (B.1.30)

where G(t) = A(t)ψ(g(t)) − B(t)Φ(h(t)) and Ψ (g(t)) = 0 for g(t) ≥ t0 and
Φ(h(t))= 0 for h(t)≥ t0.

Proof Let us rewrite problem (B.1.27), (B.1.28) in the form

(I − S)Ẋ(t)+B(t)X
(
h(t)

)= F(t)+G(t), t ≥ t0,

X(t)= Ẋ(t)= 0, t < t0, X(t0)=X0.

Since in the space L∞[t0, c] the norm of operator S is less than one and (I −S)−1 =
I + S + S2 + · · · , problem (B.1.27), (B.1.28) is equivalent to

Ẋ(t)+
∞∑

k=0

Bk(t)X
(
hk(t)

)= [(I − S)−1F
]
(t)+ [(I − S)−1G

]
(t), t ≥ t0,

(B.1.31)

X(t)= Ẋ(t)= 0, t < 0, X(t0)=X0, (B.1.32)

where



B.1 Linear Functional Differential Equations 477

B0(t)= B(t), B(t)=A(t)B
(
g(t)

)
,

Bk(t)=A(t)A
(
g(t)

) · · ·A(gk−1(t)
)
B
(
gk(t)

)
,

h0(t)= h(t), hk(t)= h
(
gk(t)

)
, gk(t)= g

(
g
(· · ·g(t))).

For the solution of (B.1.31), (B.1.33), we have by Theorem B.2 representation
(B.1.30). Equations (B.1.27) and (B.1.31) have the same fundamental matrix. Hence
(B.1.30) is also a solution representation for problem (B.1.27), (B.1.28). �

B.1.5 Higher-Order Scalar Delay Differential Equations

Similar to equations of the first order considered in the previous subsections of this
appendix, we can consider all kinds of vector equations of the n-th order. For sim-
plicity, we will present existence and uniqueness results only for a scalar delay dif-
ferential equation of the n-th order and obtain a solution representation formula for
this equation.

Consider for t ≥ 0 the linear scalar delay differential equation of the n-th order

y(n)(t)+ an−1(t)y
(n−1)(hn−1(t)

)+ · · · + a0(t)y
(
h0(t)

)= 0, (B.1.33)

where for parameters of (B.1.33) and other high-order equations it is assumed that
coefficients ak(t) are Lebesgue measurable locally essentially bounded functions,
and delays hk(t)≤ t satisfy limt→∞ hk(t)= ∞, k = 0, · · · , n− 1.

Together with (B.1.33), consider the initial value problem

y(n)(t)+ an−1(t)y
(n−1)(hn−1(t)

)+ · · · + a0(t)y
(
h0(t)

)= f (t), t ≥ t0, (B.1.34)

y(k)(t)= ϕk(t), t < t0, y
(k)(t0)= yk, k = 0, · · · , n− 1. (B.1.35)

Definition B.9 A function y : R → R with an (n − 1)-th derivative y(n−1) abso-
lutely continuous on each finite interval is called a solution of problem (B.1.34),
(B.1.35) if it satisfies (B.1.34) for almost all t ∈ [t0,∞) and equalities (B.1.35) for
t ≤ t0.

Definition B.10 For each s ≥ 0, the solution Y(t, s) of the problem

y(n)(t)+ an−1(t)y
(n−1)(hn−1(t)

)+ · · · + a0(t)y
(
h0(t)

)= 0, t ≥ s, (B.1.36)

y(k)(t)= 0, t < s, k = 0, · · · , n− 1, (B.1.37)

y(k)(s)= 0, k = 0, · · · , n− 2, y(n−1)(s)= 1, (B.1.38)

is called the fundamental function of (B.1.33).

Further, we will denote by Yk(t, s), k = 0, · · · , n− 1 a solution of (B.1.36) with
the initial conditions

y(j)(t)= 0, t < s, j = 0, · · · , n− 1, y(j)(s)= 0, j �= k,

y(k)(s)= 1, k = 0, · · · , n− 1,

instead of (B.1.37), (B.1.38). It is evident that Yn−1(t, s)= Y(t, s).
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We assume that Y(t, s) = 0 for 0 ≤ t < s and Yk(t, s) = 0 for 0 ≤ t < s, k =
0, · · · , n− 1.

Theorem B.5 There exists a unique solution of problem (B.1.34), (B.1.35), and it
can be presented in the form

y(t)=
n−1∑

k=0

Yk(t, t0)yk +
∫ t

t0

Y(t, s)f (s)ds

−
∫ t

t0

Y(t, s)

n−1∑

k=0

ak(s)ϕk
(
hk(s)

)
ds, (B.1.39)

where ϕk(hk(s))= 0, if hk(s) > t0.

Proof Let us define the vectors

X = [x1, · · · , xn]T , x1 = y, · · · , xn = y(n−1),

F = [0, · · · ,0, f (t)]T , Φ = [ϕ0, · · · , ϕn−1]T , WX0 = [y0, · · · , yn−1]T ,
and n× n matrices

A0(t)=

⎛

⎜⎜⎜⎜⎝

0 −1 0 · · · 0
0 0 −1 · · · 0
· · · · ·
0 0 0 · · · −1
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
, Ak(t)=

⎛

⎜⎜⎜⎜⎝

0 0 0 · · · 0
· · · · ·
0 0 0 · · · 0
· · · · ·
0 · · · ak−1(t) · · · 0

⎞

⎟⎟⎟⎟⎠
, k = 1, · · · , n.

Then problem (B.1.34), (B.1.35) has the form

Ẋ(t)+A0(t)X(t)+
n∑

k=1

Ak(t)X
(
hk−1(t)

)= F(t), t ≥ t0, (B.1.40)

X(t)=Φ(t), t < t0, X(t0)=X0. (B.1.41)

For problem (B.1.40), (B.1.41), all the conditions of Theorem B.1 hold, so this
problem has a unique solution.

Further, let us prove that for this solution representation (B.1.39) holds. Denote

yhk (t)=
{
y(hk(t)) if hk(t)≥ t0,

0 if hk(t) < t0, k = 0, · · · , n− 1

and

ϕ
hk
k (t)=

{
ϕk(hk(t)) if hk(t) < t0,

0 if hk(t)≥ t0.

Then y(hk(t))= yhk (t)+ϕ
hk
k (t) for t ≥ t0 and the problem (B.1.34), (B.1.35) takes

the form

y(n)(t)+
n−1∑

k=0

ak(t)y
(k)
hk
(t)= g(t), y(k)(t0)= yk, k = 0, · · · , n− 1, (B.1.42)
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where

g(t)= f (t)−
n−1∑

k=0

ak(t)ϕ
hk
k (t).

Let us demonstrate that the function

y(t)=
n−1∑

k=0

Yk(t, t0)yk +
∫ t

t0

Y(t, s)g(s)ds (B.1.43)

is a solution of problem (B.1.42), where Y is the fundamental matrix of (B.1.33);
i.e., the solution of problem (B.1.36)–(B.1.38). For the convenience of the reader,
we will write y(hk(t)) instead of yhk (t), assuming that y(hk(t))= 0, if hk(t) < t0.

Equality (B.1.43) implies

y(n)(t)=
n−1∑

k=0

Y
(n)
k (t, t0)yk + g(t)+

∫ t

t0

Y (n)(t, s)g(s)ds,

y(k−1)(t)=
n−1∑

i=0

Y
(k−1)
i (t, t0)yi +

∫ t

t0

Y (k−1)(t, s)g(s)ds, k = 1, · · · , n,

y(k−1)(hk(t)
)=

n−1∑

i=0

Y
(k−1)
i

(
hk(t), t0

)
yi +

∫ t

t0

Y (k−1)(hk(t), s
)
g(s)ds.

Consider the left-hand side of (B.1.42), where y has the form (B.1.43). Then

y(n)(t)+
n−1∑

k=0

ak(t)y
(k)
(
hk(t)

)

=
n−1∑

k=0

Y
(n)
k (t, t0)yk + g(t)+

∫ t

t0

Y (n)(t, s)g(s)ds

+
n−1∑

k=0

ak(t)

[
n−1∑

i=0

Y
(k−1)
i

(
hk(t), t0

)
yi +

∫ t

t0

Y (k−1)(hk(t), s
)
g(s)ds

]

=
n−1∑

k=0

[
Y
(n)
k (t, t0)+

n−1∑

i=0

ai(t)Y
(i)
k

(
hi(t), t0

)
]
yk

+
∫ t

t0

[
Y (n)(t, s)+

n−1∑

k=0

ak(t)Y
(k)
(
hk(t), s

)
]
g(s)ds + g(t)= g(t),

which completes the proof. �
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B.2 Estimations of the Fundamental Matrix

Theorem B.6 Let conditions (a5) and (a6) hold. Then, for the fundamental function
of (B.1.18), the following estimation holds:

‖C(t, s)‖ ≤ exp

{∫ t

s

‖Vars≤τ≤ξ R(ξ, τ )‖dξ
}
. (B.2.1)

Proof Denote X(t)= C(t, t0). We have

Ẋ(t)+
∫ t

−∞
dsR(t, s)X(s)= 0, t ≥ t0,

X(t0)= I, X(t)= 0, t < t0.

Hence

X(t)= I −
∫ t

t0

∫ s

−∞
dτR(s, τ )X(τ)ds = I −

∫ t

t0

∫ s

t0

dτR(s, τ )X(τ)ds.

Then, by Lemma A.1,

‖X(t)‖ ≤ 1 +
∫ t

t0

‖Vart0≤τ≤s R(s, τ )‖ max
t0≤τ≤s

‖X(τ)‖ds.

Denote y(t)= maxt0≤τ≤t ‖X(τ)‖. Hence

y(t)≤ 1 +
∫ t

t0

‖Vart0≤τ≤s R(s, τ )‖y(s)ds.

Thus, by the Gronwall-Bellman inequality (Lemma A.5),

‖C(t, t0)‖ ≤ y(t)≤ exp

{∫ t

t0

‖Vart0≤τ≤s R(s, τ )‖ds
}
.

The general case is proven similarly. �

Corollary B.1 Suppose conditions (a1)–(a3) hold. Then, for the fundamental func-
tion of (B.1.1), the following estimation holds:

‖C(t, s)‖ ≤ exp

{∫ t

s

m∑

k=1

‖Ak(ξ)‖dξ
}
.

Corollary B.2 Suppose conditions (a1)–(a5) hold. Then, for the fundamental func-
tion of (B.1.10), the following estimation holds:

‖X(t, s)‖ ≤ exp

{∫ t

s

( ∞∑

k=1

‖Ak(ξ)‖ +
∫ ξ

s

‖K(ξ, τ )‖dτ
)
dξ

}
.

Now consider (B.1.33), where its coefficients ak(t) are Lebesgue measur-
able locally essentially bounded functions, and the delays hk(t) ≤ t satisfy
limt→∞ hk(t)= ∞, k = 0, · · · , n− 1.
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Lemma B.1 The solution of the initial value problem

y(n)(t)= f (t), y(k)(a)= 0, k = 0, · · · , n− 2, y(n−1)(a)= 1 (B.2.2)

has the form

y(t)= (t − a)n−1

(n− 1)! + 1

(n− 1)!
∫ t

a

(t − τ)n−1f (τ)dτ. (B.2.3)

Proof Differentiating (B.2.3), we obtain

ẏ(t)= (t − a)n−2

(n− 2)! + 1

(n− 2)!
∫ t

a

(t − τ)n−2f (τ)dτ.

Repeating the calculations, we have

y(n−1)(t)= 1 +
∫ t

a

f (τ )dτ.

Hence

y(a)= y′(a)= · · · = y(n−2)(a)= 0, y(n−1)(a)= 1

and y(n)(t)= f (t), which means that (B.2.3) is the unique solution of (B.2.2). �

Theorem B.7 For the fundamental function Y(t, s) of (B.1.33), the following in-
equality holds for t0 ≤ s ≤ t ≤ b:

|Y(t, s)| ≤M exp

{∫ t

s

M

n−1∑

k=0

|ak(τ )|dτ
}
, max

0≤k≤n−1

(b− t0)
k

k! . (B.2.4)

Theorem B.8 Suppose conditions (a8)–(a11) hold. For the fundamental function
of (B.1.26), the inequality

‖C(t, s)‖ ≤ exp

{∫ t

s

[
(I − S̄)−1b

]
(τ )dτ

}
, s ≤ t, (B.2.5)

holds, where a(t)= ‖A(t)‖, b(t)= ‖B(t)‖ and the operator

(S̄x)(t)=
{
a(t)x(g(t)), g(t)≥ s,

0, g(t) < s,

acts in the scalar space L∞[s, c] for any c > s.

Proof For X(t)= C(t, s) we have

(I − S)Ẋ(t)= −B(t)X(h(t)), X(t)= 0, t < s, X(s)= I.

Hence Ẋ(t)= −[(I − S)−1Y ](t), where Y(t)= B(t)X(h(t)), and thus

‖X(t)‖ ≤ 1 +
∫ t

s

∥∥[(I − S)−1Y
]
(τ )
∥∥dτ.
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Since
[
(I − S)−1Y

]
(τ )= B(τ)X

(
h(τ)

)+A(τ)B
(
g(τ)

)
X
(
h
(
g(τ)

))

+A(τ)A
(
g(τ)

)
B
(
g
(
g(τ)

))
X
(
h
(
g
(
g(τ)

)))+ · · · ,
the estimate

∥∥[(I − S)−1Y
]
(τ )
∥∥≤ [b(τ)+ a(τ)b

(
g(τ)

)

+ a(τ)a
(
g(τ)

)
b
(
g
(
g(τ)

))+ · · ·] sup
s≤ξ≤t

‖X(ξ)‖

= [(I − S̄)−1b
]
(τ ) sup

s≤ξ≤τ
‖X(ξ)‖

holds. Denote z(t)= sups≤ξ≤t ‖X(ξ)‖. We have

z(t)≤ 1 +
∫ t

s

[
(I − S̄)−1b

]
(τ )z(τ )dτ.

Hence, by the Gronwall-Bellman inequality (Lemma A.5),

z(t)≤ exp

{∫ t

s

[
(I − S̄)−1b

]
(τ )dτ

}
, s ≤ t,

which implies (B.2.5). �

Corollary B.3 Suppose c > t0 is an arbitrary number. If t0 ≤ s ≤ t ≤ c, then

‖C(t, s)‖ ≤ exp

{∫ c

t0

[
(I − S̄)−1b

]
(τ )dτ

}
, (B.2.6)

‖Ct(t, s)‖ ≤ sup
t0≤ξ≤c

[
(I − S̄)−1b

]
(ξ) exp

{∫ c

t0

[
(I − S̄)−1b

]
(τ )dτ

}
. (B.2.7)

Proof Inequality (B.2.6) is evident.
By the proof of Theorem B.8, we have for X(t)= C(t, s)

‖Ẋ(t)‖ ≤ [(I − S̄)−1b
]
(t) sup

s≤ξ≤t
‖X(ξ)‖,

which implies (B.2.7). �

B.3 Nonlinear Delay Differential Equations

We consider for t ≥ 0 the nonlinear scalar differential equation with a distributed
delay

ẋ(t)+
m∑

k=1

rk(t)

∫ t

−∞
fk
(
x(s)

)
dsRk(t, s)= 0, (B.3.1)
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this equation with a nondelay term

ẋ(t)+ b(t)x(t)+
m∑

k=1

rk(t)

∫ t

−∞
fk
(
x(s)

)
dsRk(t, s)= 0, (B.3.2)

and equations with finite delays

ẋ(t)+
m∑

k=1

rk(t)

∫ t

hk(t)

fk
(
x(s)

)
dsRk(t, s)= 0, (B.3.3)

ẋ(t)+ b(t)x(t)+
m∑

k=1

rk(t)

∫ t

hk(t)

fk
(
x(s)

)
dsRk(t, s)= 0, (B.3.4)

for t > t0 ≥ 0.
If we assume that for each t1 there exists s1 = s(t1) ≤ t1 such that Rk(t, s) = 0

for s < s1, t > t1 and limt→∞ s(t)= ∞, then we can introduce the functions

hk(t)= inf
{
s ≤ t |Rk(t, s) �= 0

}
(B.3.5)

and rewrite (B.3.1), (B.3.2) in the form (B.3.3), (B.3.4).
Together with (B.3.1)–(B.3.4), we assume for each t0 ≥ 0 the initial condition

x(t)= ϕ(t), t ≤ t0. (B.3.6)

We consider (B.3.1)–(B.3.4) under the following assumptions:

(a13) rk(t), k = 1, · · · ,m, b(t) are Lebesgue measurable essentially bounded func-
tions on the halfline: |rk(t)| ≤ rk , |b(t)| ≤ b, t ≥ 0.

(a14) hk : [0,∞)→R, k = 1, · · · ,m are Lebesgue measurable functions, hk(t)≤ t ,
limt→∞ hk(t)= ∞.

(a15) Rk(t, ·) are left continuous nondecreasing functions for any t , Rk(·, s) are
locally integrable for any s, either Rk(t, hk(t))= 0 or lims→−∞Rk(t, s)= 0
for any t and Rk(t, t+)=

∫ t
−∞ dsR(t, s)≤ 1.

In (a15), the condition Rk(t, hk(t)) = 0 means that the delay is finite, while
Rk(t, t

+)= 1 and
∫ t
−∞ dsR(t, s)≤ 1 correspond to any delay equation that is “nor-

malized” with the coefficient not exceeding rk(t). Now let us proceed to the initial
function ϕ. This function should satisfy conditions such that the integral on the left-
hand side of (B.3.3) exists almost everywhere. In particular, if Rk(t, ·) are absolutely
continuous for any t (which allows us to write (B.3.3) as an integrodifferential equa-
tion), then ϕ can be chosen as a Lebesgue measurable essentially bounded function.
If Rk(t, ·) are a combination of step functions (which corresponds to an equation
with concentrated delays), then ϕ should be a Borel measurable bounded function.
For any choice of Rk , the integral exists if ϕ is bounded and continuous. Thus, we
assume:

(a16) ϕ : (−∞,0] → R is a bounded continuous function.
(a17) fk : R → R, k = 1, · · · ,m are continuously differentiable and f ′

k are locally
essentially bounded functions.
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For (B.3.1) and (B.3.2), we assume in addition that fk are bounded on any inter-
val (−∞, t0].

Remark B.1 For the existence and uniqueness results, in (a17) we can assume that
the functions fk are locally Lipschitz rather than differentiable: for each [a, b] there
is an Mk > 0 (generally depending on [a, b]) such that |fk(x)− fk(y)|<μk|x− y|
for any x, y ∈ [a, b], k = 1, · · · ,m.

Definition B.11 A function X : (−∞, c] → R
n absolutely continuous on [t0, c] is

called a local solution of problem (B.3.3), (B.3.6) if for some c > t0 it satisfies
(B.3.3) for almost all t ∈ [t0, c] and equalities (B.3.6) for t ≤ t0.

Definition B.12 A functionX :R → R
n locally absolutely continuous on [t0,∞) is

called a global solution of problem (B.3.3), (B.3.6) if it satisfies (B.3.3) for almost
all t ∈ [t0,∞) and equalities (B.3.6) for t ≤ t0.

The same definitions are true for (B.3.1), (B.3.2) and (B.3.4).

Theorem B.9 Suppose (a13)–(a17) hold. Then, for any K > 0 and x(t0)= x0 such
that |x0|<K , there exists a unique local solution of anyone of (B.3.1)–(B.3.4) with
initial condition (B.3.6) satisfying |x(t)| ≤K .

Proof Let us prove the theorem for (B.3.3). For the other equations, the proof is
similar.

Let us fix K > 0. Condition (a17) implies that for some η > 0,μ > 0 and any
|x| ≤K, |y| ≤K we have |fk(x)| ≤ η, |fk(x)−fk(y)| ≤ μ|x−y|. Problem (B.3.3),
(B.3.6) can be rewritten in the form

ẋ(t)+
m∑

k=1

rk(t)

∫ t

max{t0,hk(t)}
fk
(
x(s)

)
dsRk(t, s)= g(t), (B.3.7)

where

g(t)= −
m∑

k=1

rk(t)

∫ t0

min{t0,hk(t)}
fk
(
ϕ(s)

)
dsRk(t, s).

Then (B.3.7) is equivalent to the operator equation

x =Hx, (B.3.8)

where

(Hx)(t)= −
∫ t

t0

m∑

k=1

rk(s)

∫ s

max{t0,hk(s)}
fk
(
x(τ)

)
dτRk(s, τ )ds

+
∫ t

t0

g(s)ds + x0.
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For any b > t0, denote the set Mb = {x ∈ L∞[t0, b] | ‖x‖L∞ ≤K}. Since rk and g
are locally bounded, we have for any x ∈Mb

|(Hx)(t)| ≤ η

∫ b

t0

m∑

k=1

|rk(s)|ds +
∫ b

t0

|g(s)|ds + |x0|.

Since |x0| < K , we have |(Hx)(t)| ≤ K for some b > t0. Let us fix such b and
denote it by b1. Then HMb1 ⊂Mb1 . We also have for x, y ∈Mb1

|(Hx)(t)− (Hy)(t)|

≤
∫ t

t0

m∑

k=1

|rk(s)|
∫ s

max{t0,hk(s)}
∣∣fk
(
x(τ)

)− fk
(
y(τ)

)∣∣dτRk(s, τ )ds,

and for some value b2 < b1, λ ∈ (0,1) and μ= mink μk

‖Hx −Hy‖L∞[t0,b2] ≤ μ

∫ b2

t0

m∑

k=1

|rk(s)|(s − t0)ds‖x − y‖L∞[t0,b2] ≤ λ < 1.

Hence, for the setMb2 ⊂ L∞[t0, b2], all the conditions of the Banach contraction
principle (Theorem A.14) are satisfied. Thus problem (B.3.3), (B.3.6) has a unique
local solution, which completes the proof. �

Next, consider the scalar nonlinear delay differential equation

ẋ(t)+
m∑

k=1

rk(t)fk
(
x
(
hk(t)

))= 0 (B.3.9)

as well as this equation with a nondelay term

ẋ(t)+ b(t)x(t)+
m∑

k=1

rk(t)fk
(
x
(
hk(t)

))= 0. (B.3.10)

Equations (B.3.9) and (B.3.10) can be rewritten in the form (B.3.1) and (B.3.2) if
we denote Rk(t, s) = χ(hk(t),∞)(s), where χI is the characteristic function of the
interval I . This leads to the following corollary of Theorem B.9.

Theorem B.10 Suppose that conditions (a13)–(a17) hold. Then there exists a
unique local solution of both (B.3.9), (B.3.6) and (B.3.10), (B.3.6).

Consider now the scalar nonlinear integrodifferential equations

ẋ(t)+
m∑

j=1

rj (t)

∫ t

−∞
Kj(t, s)fj

(
x(s)

)
ds = 0, (B.3.11)

ẋ(t)+ b(t)x(t)+
m∑

j=1

rj (t)

∫ t

−∞
Kj(t, s)fj

(
x(s)

)
ds = 0, (B.3.12)
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ẋ(t)+
m∑

j=1

rj (t)

∫ t

hj (t)

Kj (t, s)fj
(
x(s)

)
ds = 0, (B.3.13)

ẋ(t)+ b(t)x(t)+
m∑

j=1

rj (t)

∫ t

hj (t)

Kj (t, s)fj
(
x(s)

)
ds = 0, (B.3.14)

where for the kernels Kj(t, s) the following condition holds:

(a18) Kj(t, s)≥ 0 is a Lebesgue integrable function such that supt
∫ t
−∞Kj(t, s)≤

1 for (B.3.11), (B.3.12) and
∫ t
hj (t)

Kj (t, s)ds ≤ 1, j = 1, · · · ,m for (B.3.13),
(B.3.14).

Theorem B.11 Suppose (a13), (a14) and (a16)–(a18) hold. Then there exists a
unique local solution of either (B.3.13) or (B.3.12) with initial condition (B.3.6).

Further, let us study the existence of global solutions for nonlinear equations.

Theorem B.12 Suppose that (a13)–(a17) hold, rk(t)≤ 0 and

fk(x) > 0 for any x > 0 and
fk(x)

x
are bounded for x > 0. (B.3.15)

If the initial function ϕ(t) satisfies

ϕ(t)≥ 0, t ≤ t0, ϕ(t0) > 0, (B.3.16)

then there exists a unique global solution of (B.3.4), (B.3.6) ((B.3.2), (B.3.6)) that
is positive for t ≥ t0.

Proof By Theorem B.9, there exists a unique local solution. This solution is either
global or there exists a t1 such that either

lim inf
t→t−1

x(t)= −∞ (B.3.17)

or

lim sup
t→t−1

x(t)= ∞. (B.3.18)

Let us demonstrate that under (B.3.15), (B.3.16) the solution of (B.3.4) is positive. In
fact, by (B.3.15), as far as x(t) is positive, the derivative is not less than −b(t)x(t).
Since by (B.3.16) x(t0) > 0, the solution of the ordinary differential equation ẋ(t)=
−b(t)x(t) is positive for t > t0 as well as the solution of (B.3.4), which contradicts
(B.3.17).

Now let us prove that (B.3.18) is impossible. By (B.3.15) and (a13), there exist
rk > 0,Mk > 0 such that fk(x) ≤Mkx, |rk(t)| ≤ rk . The solution of (B.3.4) does
not exceed the solution of the equation

ẏ(t)=
m∑

k=1

rkMky, t > t0. (B.3.19)
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Thus x(t) ≤ x(t0)+ e
∑m
k=1 rkMk(t−t0), so there is no point t2 where (B.3.18) can be

valid, which completes the proof. �

Consider now the following equations, which can be rewritten in the form
(B.3.4):

ẋ(t)= −b(t)x(t)+
m∑

k=1

rk(t)fk
(
x
(
hk(t)

))
, t > t0, (B.3.20)

ẋ(t)= −b(t)x(t)+
m∑

j=1

rj (t)

∫ t

hk(t)

Kj (t, s)fk
(
x(s)

)
ds, t > t0, (B.3.21)

ẋ(t)= −b(t)x(t)+
m∑

j=1

rj (t)

∫ t

−∞
Kj(t, s)fk

(
x(s)

)
ds, t > t0. (B.3.22)

Theorem B.13 Suppose that rj (t) ≥ 0,Kj (t, s) ≥ 0, conditions (a13), (a14),
(a16)–(a18) and (B.3.15), (B.3.16) hold.

Then there exists a unique global solution of anyone of (B.3.20)–(B.3.22) with
initial condition (B.3.6) that is positive for t ≥ 0.

As an application of Theorem B.12, consider first the Lasota-Wazewska equation

Ṅ(t)= −μ(t)N(t)+
m∑

k=1

pk(t)

∫ t

hk(t)

e−γkN(s)dsRk(t, s), t ≥ 0, (B.3.23)

where γk > 0, μ(t)≥ 0, pk(t)≥ 0, for μ(t) and pk(t) condition (a13) holds, for hk
condition (a14) holds and for Rk condition (a15) is satisfied, k = 1, · · · ,m.

Corollary B.4 Suppose condition (B.3.16) holds. Then there exists a unique global
solution of (B.3.23), (B.3.6) that is positive for t ≥ t0.

Proof Equation (B.3.23) has the form (B.3.20) for fk(x) = e−γkx . For these func-
tions, all the conditions of Theorem B.12 hold. �

Consider now Nicholson’s blowflies equation with a distributed delay

Ṅ(t)=
m∑

k=1

pk(t)

∫ t

hk(t)

N(s)e−akN(s)dsRk(t, s)− δ(t)N(t), t ≥ 0, (B.3.24)

where δ(t)≥ 0, pk(t)≥ 0, for δ(t) and pk(t) condition (a13) holds, for hk condition
(a14) is satisfied, for Rk condition (a15) is valid and ak > 0, k = 1, · · · ,m.

Corollary B.5 Suppose condition (B.3.16) holds. Then there exists a unique global
solution of (B.3.24), (B.3.6) that is positive for t ≥ t0.
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The proof is similar to the proof of the previous theorem.
Consider two partial cases of (B.3.24):
Nicholson’s blowflies equation with concentrated delays

Ṅ(t)=
m∑

k=1

pk(t)N
(
hk(t)

)
e−akN(hk(t)) − δ(t)N(t), t ≥ 0, (B.3.25)

where δ(t)≥ 0, pk(t)≥ 0, for δ(t) and pk(t) condition (a13) holds, for hk condition
(a14) is satisfied and ak > 0, k = 1, · · · ,m; and Nicholson’s blowflies integrodiffer-
ential equation

Ṅ(t)=
m∑

k=1

pk(t)

∫ t

hk(t)

Tk(t, s)N(s)e
−akN(s)ds − δ(t)N(t), t ≥ 0, (B.3.26)

where δ(t)≥ 0, pk(t)≥ 0, for δ(t) and pk(t) condition (a13) holds, for hk condition
(a14) is satisfied, for Tk condition (a18) is valid and ak > 0, k = 1, · · · ,m.

Corollary B.6 Suppose that condition (B.3.16) holds. Then there exists a unique
global solution of (B.3.25), (B.3.6) that is positive for t ≥ t0.

Corollary B.7 Suppose that condition (B.3.16) holds. Then there exists a unique
global solution of (B.3.26), (B.3.6) that is positive for t ≥ t0.

Consider now the logistic equation with distributed delays

ẋ(t)= x(t)

[
m∑

k=1

rk(t)

(
1 − 1

K

∫ t

hk(t)

x(s)dsRk(t, s)

)]
, t > 0, (B.3.27)

where rk(t) ≥ 0 and rk satisfy (a13), for hk condition (a14) holds, for Rk (a15) is
valid, Rk(t, ·) is a nondecreasing function and K > 0.

The form of (B.3.27) is different from (B.3.4), so we cannot apply Theorem B.12.
Let us prove existence, uniqueness and positivity of the solution for the logistic
equation.

Theorem B.14 Suppose K > 0 and (a13)–(a16) and (B.3.16) hold. Then there ex-
ists a unique global solution of (B.3.27), (B.3.6) that is positive for t ≥ t0.

Proof Existence of a local solution for (B.3.27), (B.3.6) is justified by calculations
similar to the proof of Theorem B.9. Since x(t0) > 0, we can assume that this lo-
cal solution is positive. Suppose that [t0, c), where c may be ∞, is the maximum
interval of existence of such a solution. For any t ∈ [t0, c), we have

x(t)= x(t0) exp

{∫ t

t0

[
m∑

k=1

rk(τ )

(
1 − 1

K

∫ τ

hk(τ)

x(s)dsRk(τ, s)

)]
dτ

}
,

hence the solution x is positive. Thus, for t ∈ [t0, c) we have ẋ(t) ≤∑m
k=1 rkx(t),

and the solution x does not exceed the solution of the ordinary differential equation
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ẏ(t)=∑m
k=1 rky(t) with the same initial value, which is bounded on any bounded

interval [t0, t1]. This implies c= ∞, and therefore (B.3.27) has a global solution. �

The equations

ẋ(t)= x(t)

[
m∑

j=1

rj (t)

(
1 − 1

K
x
(
hj (t)

))
]
, t > 0, (B.3.28)

ẋ(t)= x(t)

[
m∑

j=1

rj (t)

(
1 − 1

K

∫ t

hj (t)

Kj (t, s)x(s)ds

)]
, t > 0, (B.3.29)

generalize the well-known delay logistic equation and the integrodifferential logistic
equation.

Theorem B.15 Suppose that K > 0, rj (t)≥ 0, Kj(t, s)≥ 0 and (a13)–(a16), (a18)
and (B.3.16) hold. Then there exists a unique global solution of (B.3.28), (B.3.6)
((B.3.29), (B.3.6)) that is positive for t ≥ 0.

Consider now two new classes of nonlinear equations with concentrated delays,

ẋ(t)= −b(t)x(t)+
m∑

k=1

rk(t)fk
(
x(t), x

(
h1(t)

)
, · · · , x(hn(t)

))
, t ≥ 0, (B.3.30)

and

ẋ(t)= x(t)

m∑

k=1

gk
(
t, x(t), x

(
h1(t)

)
, · · · , x(hn(t)

))
, t ≥ 0. (B.3.31)

Consider also the following conditions:

(A1) fk : Rn+1 → R, k = 1, · · · ,m, are continuous functions that satisfy the local
Lipschitz condition that for any a, b, 0 ≤ a < b there exist λi such that for
each ui, vi ∈ [a, b]

|fk(u0, u1, · · · , un)− f (v0, v1, · · · , vn)| ≤
n∑

i=0

λi |ui − vi |

and the inequality

fk(u0, u1, · · · , un)≥ 0 for u0 ≥ 0, · · · , un ≥ 0.

(A2) gk : [0,∞)×R
n+1 → R, k = 1, · · · ,m are continuous functions satisfying the

local Lipschitz condition that for any a, b, 0 ≤ a < b there exist λi such that
for each ui, vi ∈ [a, b]

|gk(t, u0, u1, · · · , un)− g(t, v0, v1, · · · , vn)| ≤
n∑

i=0

λi |ui − vi |

and the inequality

gk(t, u0, u1, · · · , un)≤ r(t) for t ≥ 0, u0 ≥ 0, · · · , un ≥ 0

for some locally essentially bounded function r(t)≥ 0.
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We have now the following existence results.

Theorem B.16 Let rk(t)≥ 0 and conditions (a13), (a14), (a16), (A1) and (B.3.16)
hold. Then there exists a unique global solution of (B.3.30), (B.3.6) that is positive
for t ≥ t0.

The proof is similar to the proof of Theorem B.12.

Theorem B.17 Let conditions (A2) and (B.3.16) hold. Then there exists a unique
global solution of (B.3.31), (B.3.6) that is positive for t ≥ t0.

The proof is similar to the proof of Theorem B.14.
For instance, Theorem B.16 can be applied to the generalized Mackey-Glass

equation

ẋ(t)=
m∑

k=1

xαk (hk(t))

1 + xβk (gk(t))
− b(t)x(t), 0< αk ≤ βk + 1, βk > 0.

Theorem B.17 is applicable to the generalized logistic equation

ẋ(t)= x(t)

m∑

k=1

rk(t)
(
1 − x

(
hk(t)

))∣∣1 − x
(
hk(t)

)∣∣αk−1
, αk > 0,

and to the multiplicative delay logistic equation

ẋ(t)= r(t)x(t)

m∏

k=1

(
1 − x

(
hk(t)

))∣∣1 − x
(
hk(t)

)∣∣αk−1
, αk > 0,

m∑

k=1

αk = 1.

B.4 Linear Delay Impulsive Differential Equations

B.4.1 First-Order Impulsive Equations

Some results of this subsection were taken from [15, 16, 42].
We consider the vector delay differential equation

Ẋ(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)= F(t), t ≥ t0, (B.4.1)

with the linear impulsive conditions

X
(
τ+
j

)= BjX(τj )+Dj, j = 1,2, · · · , (B.4.2)

where

Ak(t)=
(
akil(t)

)n
i,l=1, F (t)=

[
f1(t), · · · , fn(t)

]T
,

Bj = (bjil
)n
i,l=1, Dj = [dj1 , · · · , djn

]T
,

under the following assumptions:
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(a19) t0 = τ0 < τ1 < τ2 < · · · are fixed points, limj→∞ τj = ∞, Bj are invertible
matrices;

(a20) akil, fi are locally essentially bounded functions;
(a21) hk : [0,∞)→R are Lebesgue measurable functions, hk(t)≤ t .

Together with (B.4.1), (B.4.2), we will consider for each t0 ≥ 0 the initial condi-
tions

X(ξ)=Φ(ξ), ξ < t0, X(t0)=X0, (B.4.3)

where Φ(t)= [ϕ1(t), · · · , ϕn(t)]T .
We assume that for the initial function Φ the following hypothesis holds:

(a22) Φ : (−∞, t0)→ R
n is a Borel measurable bounded vector function.

Definition B.13 A function X : Rn → R
n absolutely continuous on each interval

(τj , τj+1] is a solution of impulsive problem (B.4.1)–(B.4.3) if (B.4.1) is satisfied
for almost all t ∈ [0,∞) and the equalities (B.4.2), (B.4.3) hold.

Definition B.14 For each s ≥ 0, the solution C(t, s) of the problem

Ẋ(t)+
m∑

k=1

Ak(t)X
(
hk(t)

)= 0, where t ≥ s; X(ξ)= 0, ξ < s, (B.4.4)

X
(
τ+
j

)= BjX(τj ), τj > s, X(s)= I, (B.4.5)

is called the fundamental matrix of problem (B.4.1), (B.4.2).
We assume that C(t, s)= 0 for t < s.

Lemma B.2 Let the hypotheses (a19)–(a21) hold. For the fundamental matrix
of (B.4.1), (B.4.2), the following estimate is valid:

‖C(t, s)‖ ≤
∏

s≤τj<t
‖Bj‖ exp

{∫ t

s

m∑

k=1

‖Ak(ζ )‖dζ
}
.

Proof Let τi−1 < s ≤ τi . Then, for t ∈ [s, τi], the solution X of problem (B.4.4),
(B.4.5) can be presented as

X(t)= I −
∫ t

s

m∑

k=1

Ak(ζ )X
(
hk(ζ )

)
dζ , X(ξ)= 0, ξ < s,

and hence

‖X(t)‖ ≤ 1 +
∫ t

s

m∑

k=1

‖Ak(ζ )‖ sup
ξ∈[s,ζ ]

‖X(ξ)‖dζ . (B.4.6)

Denote y(t) = supζ∈[s,t] ‖X(ζ)‖. Then, for the function y(t), inequality (B.4.6)
yields

y(t)≤ 1 +
∫ t

s

m∑

k=1

‖Ak(ζ )‖y(ζ )dζ
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and the Gronwall-Bellman inequality (Lemma A.5) implies

y(t)≤ exp

{∫ t

s

m∑

k=1

‖Ak(ζ )‖dζ
}
.

Thus, for the solution X of problem (B.4.4), (B.4.5), we have obtained the estimate

‖X(t)‖ ≤ exp

{∫ t

s

m∑

k=1

‖Ak(ζ )‖dζ
}

(B.4.7)

for τi−1 < s, t ≤ τi . Let τi−1 < s < τi < t ≤ τi+1. Then

X(t)=X
(
τ+
i

)−
∫ t

τi

m∑

k=1

Ak(ζ )X
(
hk(ζ )

)
dζ .

Thus inequality (B.4.7) and the impulsive condition X(τ+
i ) = BiX(τi) imply the

estimate

‖X(t)‖ ≤ ‖Bi‖ exp

{∫ τi

s

m∑

k=1

‖Ak(ζ )‖dζ
}

+
∫ t

τi

m∑

k=1

‖Ak(ζ )‖‖X(hk(ζ ))‖dζ .

Again, denoting y(t)= maxζ∈[s,t] ‖X(ζ)‖, we obtain

y(t)≤ ‖Bi‖ exp

{∫ τi

s

m∑

k=1

‖Ak(ζ )‖dζ
}

+
∫ t

τi

m∑

k=1

‖Ak(ζ )‖y(ζ )dζ .

Repeating the previous argument gives

‖X(t)‖ ≤ ‖Bi‖ exp

{∫ τi

s

m∑

k=1

‖Ak(ζ )‖dζ
}

exp

{∫ t

τi

m∑

k=1

‖Ak(ζ )‖dζ
}

= ‖Bi‖ exp

{∫ t

s

m∑

k=1

‖Ak(ζ )‖dζ
}
, t ∈ (τi, τi+1].

Now let τi−1 < s < τi < · · · < τj−1 < t < τj . After considering the solution x of
problem (B.4.4), (B.4.5), X(s)= I in the intervals (τi+1, τi+2], · · · , (τj−1, τj ] and
at the point τ+

j , we obtain the required inequality for ‖C(t, s)‖, which completes
the proof. �

Corollary B.8 For any b > 0, the function C(t, s) is bounded in [t0, b] × [t0, b].
Theorem B.18 Let (a19)–(a22) hold. Then there exists a unique solution of problem
(B.4.1)–(B.4.3). This solution can be presented in the form

X(t)= C(t, t0)X(t0)+
∫ t

t0

C(t, s)F (s)ds

−
m∑

k=1

∫ t

t0

C(t, s)Ak(s)Φ
(
hk(s)

)
ds +

∑

t0≤τj≤t
C(t, τj )Dj , (B.4.8)

where Φ(hk(s))= 0, if hk(s) > t0.
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Proof Note that, by Theorem B.1, on each interval [τj−1, τj ] there exists a unique
solution of initial value problem (B.4.1), (B.4.3) without impulses, and therefore
there exists a unique solution of initial problem (B.4.1)–(B.4.3).

We first establish equality (B.4.8) for Φ = 0, X(t0)= 0, Dj = 0, j = 0,1,2, · · ·.
Let us demonstrate that in this case the solution of initial value problem (B.4.1)–
(B.4.3) has the form

X(t)=
∫ t

t0

C(t, s)F (s)ds. (B.4.9)

By differentiating the equality (B.4.9) in t , we obtain

Ẋ(t)= F(t)+
∫ t

t0

C′
t (t, s)F (s)ds (B.4.10)

since C(t, t)= I . Equalities (B.4.10) and C(t, s)= 0 for t < s imply

X
(
hk(t)

)=
∫ hk(t)

t0

C
(
hk(t), s

)
F(s)ds =

∫ t

t0

C
(
hk(t), s

)
F(s)ds,

which together with equality (B.4.10) proves thatX is a solution of problem (B.4.1),
where X(ξ)= 0 for ξ < t0, X(t0)= 0.

It remains to show that X satisfies impulsive conditions (B.4.2). Let i be a fixed
positive integer and let {tk}∞k=1 ⊂ (τi, τi+1) be a sequence such that tk tends to τi as
k→ ∞. We will prove that the equality

lim
tk→τ+

i

∫ tk

t0

C(tk, s)F (s)ds =
∫ τi

t0

C
(
τ+
i , s

)
F(s)ds (B.4.11)

holds; i.e., that the limit under the integral is possible.
Denote Gk(s) = C(tk, s)F (s), G(s) = S(τ+

i , s)F (s). Evidently
limk→∞Gk(s)=G(s). Besides, Lemma B.2 implies

‖Gk(s)‖ ≤
∏

0≤j<i
‖Bj‖ exp

{∫ τi+1

t0

m∑

k=1

‖Ak(ζ )‖dζ
}

‖F(s)‖,

and therefore the functions Gk(s) are uniformly bounded for s < τi+1.
By the Lebesgue convergence theorem (Theorem A.1), we obtain (B.4.11).

The function C(t, s) satisfies the impulsive condition C(τ+
i , s)= BiC(τi, s). Thus

equality (B.4.11) implies

BiX(τi)= Bi lim
tk→τ+

i

∫ tk

t0

C(tk, s)F (s)ds

=
∫ τi

t0

BiC(τi, s)F (s)ds =
∫ τi

t0

C
(
τ+
i , s

)
F(s)ds =X

(
τ+
i

)
.

Hence X(τ+
i )= BiX(τi).

Let us proceed to the case of arbitrary initial conditions and Dj �= 0. We notice
that the series

∑∞
j=0C(t, τj )Dj converges since for each t > 0 this series contains
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only a finite number of terms with τj ≤ t . By direct calculation, it is possible to
check that the solution of the problem

Ẋ(t)+
m∑

i=1

Ai(t)X(hi(t))= F(t)−
m∑

i=1

Ai(t)Φ(hi(t)),

X(ξ)= 0, ξ < t0, Φ(ζ )= 0, ζ ≥ t0,

(B.4.12)

coincides with the solution of problem (B.4.1), (B.4.3).
The solution x0(t) of the problem (B.4.12), (B.4.2), X(t0)= 0 can be presented

as

X0(t)=
∫ t

t0

C(t, s)F (s)ds −
m∑

i=1

∫ t

t0

C(t, s)Ai(s)Φ
(
hi(s)

)
ds.

Since C(t, s) is the fundamental matrix, we have

C′
t (t, τj )Dj +

m∑

i=1

Ai(t)C
(
hi(t), τj

)
Dj = 0, j = 0,1,2, · · · ,

and hence
∞∑

j=0

C′
t (t, τj )Dj +

∞∑

j=0

m∑

i=1

Ai(t)C
(
hi(t), τj

)
Dj = 0

and X =X0 +∑∞
j=0C(t, τj )Dj satisfies (B.4.12). Let us note that the initial con-

dition and the impulsive conditions are also satisfied, which completes the proof. �

B.4.2 Second-Order Impulsive Equations

We consider the scalar equation

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= 0, t ≥ t0, (B.4.13)

with the impulsive conditions

x
(
τ+
j

)=Ajx(τj ), ẋ
(
τ+
j

)= Bj ẋ(τj ), τj > t0, (B.4.14)

under the following assumptions:

(a23) t0 = τ0 < τ1 < τ2 < · · · are fixed points, lim τj = ∞, Aj �= 0,Bj �= 0;
(a24) ak , k = 1, · · · ,m, are Lebesgue measurable functions that are locally essen-

tially bounded on [t0,∞);
(a25) gk : [t0,∞) → R are Lebesgue measurable functions, gk(t) ≤ t ,

limt→∞ gk(t)= ∞, k = 1, · · · ,m.
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Together with (B.4.13) and (B.4.14), consider for each t0 ≥ 0 the initial value
problem

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= f (t), t ≥ t0, (B.4.15)

x(t)= ϕ(t), t < t0, x(t0)= α0, ẋ(t0)= β0, (B.4.16)

x
(
τ+
j

)=Ajx(τj )+ αj , ẋ
(
τ+
j

)= Bj ẋ(τj )+ βj , τj > t0. (B.4.17)

We also assume that the following hypothesis holds:

(a26) f : [t0,∞)→R is a Lebesgue measurable and locally essential function and
ϕ : (−∞, t0)→R

n is a Borel measurable bounded function.

Definition B.15 A function x :R → R with derivative ẋ that is absolutely continu-
ous on each interval [τj , τj+1) is called a solution of problem (B.4.15)–(B.4.17) if
it satisfies (B.4.15) for almost all t ∈ [t0,∞) and equalities (B.4.17), (B.4.16) hold.

Definition B.16 For each s ≥ t0, denote by X0(t, s) and X(t, s) the solutions of the
problem

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= 0, t ≥ s, x(t)= 0, t < s, (B.4.18)

x
(
τ+
j

)=Ajx(τj ), ẋ
(
τ+
j

)= Bj ẋ(τj ), τj > s, (B.4.19)

with the initial conditions x(s) = 1, ẋ(s) = 0 for X0(t, s) and x(s) = 0, ẋ(s) = 1
for X(t, s).
X(t, s) is called the fundamental function of (B.4.13), (B.4.14).

We assume X(t, s)= 0, t < s.

Lemma B.3 Suppose that (a23)–(a25) hold. Then the fundamental function X(t, s)
of impulsive equation (B.4.13), (B.4.14) and its derivative X′

t (t, s) in t are essen-
tially bounded on any square [t0, b] × [t0, b].

Proof Suppose for simplicity that m= 1, and consider the equation

ẍ(t)+ a(t)x
(
g(t)

)= 0

with impulsive condition (B.4.14). Suppose t0 ≤ s < t ≤ b, and denote x(t) =
X(t, s). Let t0 ≤ τi−1 < s < t < τi < b. Then

ẋ(t)= 1 −
∫ t

s

a(η)x
(
g(η)

)
dη, (B.4.20)

which implies

x(t)= t − s −
∫ t

s

(∫ θ

s

a(η)x
(
g(η)

)
dη

)
dθ
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and

|x(t)| ≤ b− t0 +
∫ b

t0

|a(η)|dη
∫ t

t0

max
t0≤ξ≤θ

|x(ξ)|dθ.

Denote y(t)= maxt0≤ξ≤t |x(ξ)|. Hence

y(t)≤ b− t0 +
∫ b

t0

|a(η)|dη
∫ t

t0

y(θ)dθ.

Applying the Gronwall-Bellman inequality (Lemma A.5), we obtain

|x(t)| ≤ y(t)≤ (b− t0) exp

{
(b− t0)

∫ b

t0

|a(η)|dη
}

:= L1.

By (B.4.20) and the definition of y(t), we also have

|ẋ(t)| ≤ 1 +
∫ b

t0

|a(η)|L1dη :=M1.

Suppose now that t0 ≤ τi−1 < s ≤ τi < t < τi+1 < b. Then

ẋ(t)= ẋ
(
τ+
i

)−
∫ t

τi

a(η)x
(
g(η)

)
dη

= Biẋ(τi)−
∫ t

τi

a(η)x
(
g(η)

)
dη

and

x(t)= x
(
τ+
i

)+
∫ t

τi

[
Biẋ(τi)−

∫ ξ

τi

a(η)x
(
g(η)

)
dη

]
dξ

=Aix(τi)+
∫ t

τi

[
Biẋ(τi)−

∫ ξ

τi

a(η)x
(
g(η)

)
dη

]
dξ.

Hence

|x(t)| ≤AiL1 +BiM1(b− t0)+
∫ b

t0

|a(η)|dη
∫ t

t0

y(θ)dθ,

which implies by the Gronwall-Bellman inequality (Lemma A.5)

|x(t)| ≤ y(t)≤ (AiL1 +BiM1(b− t0)
)

exp

{
(b− t0)

∫ b

t0

|a(η)|dη
}

:= L2.

We also have

|ẋ(t)| ≤ BiM1 +
∫ b

t0

|a(η)|L2 dη :=M2.

Repeating this process, we obtain that X(t, s) and X′
t (t, s) are essentially bounded

on any square [t0, b] × [t0, b]. �
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Lemma B.4 Suppose that the assumptions of Lemma B.3 hold. Then the solution
of impulsive equation (B.4.15)–(B.4.17) with αj = βj = 0, j = 0,1, · · · , and ϕ = 0
can be presented as

x(t)=
∫ t

t0

X(t, s)f (s)ds. (B.4.21)

Proof Differentiating (B.4.21) once leads to the equation

ẋ(t)=
∫ t

t0

X′
t (t, s)f (s) ds, (B.4.22)

while the second differentiation gives the relation

ẍ(t)= f (t)+
∫ t

t0

X′′
t t (t, s)f (s) ds (B.4.23)

since X′
t (s, s) = In, X(s, s) = 0 for each s. Equality (B.4.21) and X(t, s) = 0 for

t ≤ s imply

x
(
gk(t)

)=
∫ max{gk(t),t0}

t0

X
(
gk(t), s

)
f (s) ds =

∫ t

t0

X
(
gk(t), s

)
f (s) ds.

Consequently, by the definition of the fundamental function, we have

ẍ(t)+
m∑

k=1

ak(t)x
(
gk(t)

)= f (t)+
∫ t

t0

X′′
t t (t, s)f (s) ds

+
∫ t

t0

m∑

k=1

ak(t)X
(
gk(t), s

)
f (s) ds = f (t),

and therefore (B.4.21) is a solution of the equation.
Next, let us prove that (B.4.21) also satisfies the impulsive conditions. Let i be

a fixed positive integer and {tj }∞j=1 ⊂ (τi, τi+1) be a sequence tending to τ+
i as

j → ∞. Let us prove the relation

lim
tj→τ+

i

∫ tj

t0

X(tj , s)f (s) ds =
∫ τi

t0

X
(
τ+
i , s

)
f (s) ds. (B.4.24)

By Lemma B.3, the functions under the integral are uniformly bounded, and hence
the Lebesgue convergence theorem implies (B.4.24). Similarly, the equality for the
derivative of X(t, s) in t is obtained:

lim
tj→τ+

i

∫ tj

t0

X′
t (tj , s)f (s) ds =

∫ τi

t0

X′
t

(
τ+
i , s

)
f (s) ds. (B.4.25)

The fundamental function X(t, s) satisfies the impulsive conditions

X
(
τ+
i , s

)=AiX(τi, s), X
′
t

(
τ+
i , s

)= BiX
′
t (τi , s).

By (B.4.24), (B.4.25) and (B.4.22), we obtain for x(t) defined by (B.4.21)
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x
(
τ+
i

)= lim
tj→τ+

i

∫ tj

t0

X(tj , s)f (s) ds =
∫ τi

t0

X
(
τ+
i , s

)
f (s) ds

=
∫ τi

t0

AiX(τi, s)f (s) ds =Aix(τi),

ẋ
(
τ+
i

)= lim
tj→τ+

i

∫ tj

t0

X′
t (tj , s)f (s) ds =

∫ τi

t0

X′
t

(
τ+
i , s

)
f (s) ds

=
∫ τi

t0

BiX
′
t (τi , s)f (s) ds = Biẋ(τi),

and consequently x(t) satisfies the impulsive conditions, which completes the
proof. �

Theorem B.19 Let (a23)–(a26) hold. Then there exists a unique solution of problem
(B.4.15)–(B.4.17), and the solution can be presented in the form

x(t)=X0(t, t0)α0 +X(t, t0)β0 +
∫ t

t0

X(t, s)f (s)ds

−
m∑

k=1

∫ t

t0

X(t, s)ak(s)ϕ
(
gk(s)

)
ds +

∑

t0<τj≤t
X0(t, τj )αj

+
∑

t0<τj≤t
X(t, τj )βj , (B.4.26)

where ϕ(gk(s))= 0, if gk(s) > t0.

Proof By considering the solution of (B.4.15)–(B.4.17) successively on [t0, τ1),
[τ1, τ2), · · · , we obtain that there exists a unique solution of the initial value prob-
lem. We claim that it coincides with (B.4.26).

In fact, the solution of the problem

ẍ(t)+
m∑

k=1

ak(t)x(gk(t))= f (t)−
m∑

k=1

ak(t)ϕ(gk(t)),

x(ζ )= 0, ζ < t0, ϕ(ζ )= 0, ζ ≥ t0,

(B.4.27)

also solves (B.4.15)–(B.4.17), with αj = βj = 0 for every j . Therefore, by
Lemma B.4, the solution of (B.4.27) can be presented as

x0(t)=
∫ t

t0

X(t, s)f (s)ds −
m∑

k=1

∫ t

t0

X(t, s)ak(s)ϕ
(
gk(s)

)
ds.

Let us observe that the functionsX0(t, s) andX(t, s) satisfy homogeneous equation
(B.4.27) (f ≡ 0, ϕ = 0), and therefore their linear combination

x1(t)=X0(t, t0)α0 +X(t, t0)β0 +
∑

t0<τj≤t
X0(t, τj )αj +

∑

t0<τj≤t
X(t, τj )βj

also satisfies the homogeneous equation.
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Thus x(t) = x0(t)+ x1(t) also satisfies (B.4.27). It is easy to check that it also
satisfies impulsive conditions (B.4.17).

Indeed, for example, at τi

x1
(
τ+
i

)=X0
(
τ+
i , t0

)
α0 +X

(
τ+
i , t0

)
β0 +

∑

t0<τj≤τi
X0
(
τ+
i , τj

)
αj

+
∑

t0<τj≤τi
X
(
τ+
i , τj

)
βj

=AiX0(τi − 0, t0)α0 +AiX(τi − 0, t0)β0

+Ai
∑

t0<τj<τi

X0(τi, τj )αj + αi +Ai
∑

t0<τj<τi

X(τi, τj )βj

=Aix1(τi)+ αi

since X0(τi, τi)=X(τi, τi)= 0.
Therefore x(t) = x0(t)+ x1(t) satisfies both (B.4.27) and impulsive conditions

(B.4.17).
Consequently, the function x(t) defined by (B.4.26) is a solution of impulsive

problem (B.4.15)–(B.4.17), which completes the proof. �

B.5 Bohl-Perron Theorems

In this monograph, we apply nonoscillation results to stability investigations of some
classes of linear functional differential equations. Such applications are based on
Bohl-Perron theorems, which we present below following [30]; see also the papers
[22–24] and monographs [99, 200, 239].

Consider the equation

ẋ(t)+ (Hx)(t)= f (t), t ≥ t0, x(t0)= 0, (B.5.1)

where x(t) ∈ R
n, H : C[t0,∞)→ L∞[t0,∞) is a linear Volterra bounded opera-

tor, f ∈ L∞[t0,∞), where C[t0,∞) is the space of continuous functions bounded
on [t0,∞). The solution of (B.5.1) that is a locally absolutely continuous function
satisfying (B.5.1) almost everywhere has the form (see [29, 98])

x(t)=
∫ t

t0

X(t, s)f (s)ds,

where as usual X(t, s) is the fundamental matrix of (B.5.1).

Definition B.17 Equation (B.5.1) is exponentially stable if there exist α > 0 and
K > 0 such that ‖X(t, s)‖ ≤Ke−α(t−s).

Equations (B.1.2), (B.1.10) and (B.1.18) are partial cases of (B.5.1).
We recall the definition of weighted spaces.
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Definition B.18 If B is a Banach space of vector functions, then by Bλ,λ > 0,
we define the weighted space of all functions y ∈ B such that yλ := yeλt ∈ B . The
space Bλ is a Banach space with the norm ‖y‖Bλ = ‖yλ‖B .

For the following theorem, see [29, Theorem 5.3.5].

Theorem B.20 Assume that for any f ∈ L∞[t0,∞) the solution of (B.5.1) sat-
isfies x ∈ C[t0,∞). Suppose also that for some λ > 0 we have H : Cλ[t0,∞) →
Lλ∞[t0,∞), where H : C[t0,∞)→ L∞[t0,∞) is a linear Volterra bounded opera-
tor. Then (B.5.1) is exponentially stable.

If the operator H : C[t0,∞)→ L∞[t0,∞) has the form

(Hx)(t)=
m∑

k=1

Ak(t)x
(
hk(t)

)
, hk(t)≤ t,

then condition H : Cλ[t0,∞)→ Lλ∞[t0,∞) is satisfied for any λ > 0 as far as the
elements aij of the matrices Ak are functions essentially bounded on [t0,∞) and
t − hk(t)≤ δ for some δ > 0.

The following results are corollaries of Theorem B.20.

Theorem B.21 Suppose conditions (a1) and (a2) hold, for some t0 ≥ 0, δ > 0, func-
tions akij are essentially bounded on [t0,∞), t − hk(t) ≤ δ and for any function f
essentially bounded on [t0,∞) the solution of the initial value problem

ẋ(t)+
m∑

k=1

Ak(t)x
(
hk(t)

)= f (t), t > t0, x(t)= 0, t ≤ t0,

is bounded on [t0,∞). Then (B.1.2) is exponentially stable.

Consider now the differential equation with distributed delay (B.1.18).

Theorem B.22 Suppose for (B.1.18) conditions (a5) and (a6) hold and there exists
λ > 0 such that

ess sup
t>−∞

∥∥∥∥
∫ t

−∞
eλ(t−s)dsR(t, s)

∥∥∥∥<∞.

If for some t0 ≥ 0 and any function f essentially bounded on [t0,∞) the solution of
the initial value problem

ẋ(t)+
∫ t

−∞
dsR(t, s)x(s)= f (t), t > t0, x(t)= 0, t ≤ t0,

is bounded on [t0,∞), then (B.1.18) is exponentially stable.

Consider now (B.1.18) with bounded delays

ẋ(t)+
m∑

k=1

∫ t

hk(t)

dsRk(t, s)x(s)= 0. (B.5.2)
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Theorem B.23 Suppose that for (B.5.2) conditions (a2), (a5) and (a6) hold,
t − hk(t) ≤ δ and for any function f essentially bounded on [t0,∞) the solution
of the initial value problem

ẋ(t)+
m∑

k=1

∫ t

hk(t)

dsRk(t, s)x(s)= f (t), t > t0, x(t)= 0, t ≤ t0,

is bounded on [t0,∞). Then (B.5.2) is exponentially stable.
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18. Arino, O., Győri, I., Jawhari, A.: Oscillation criteria in delay equations. J. Differ. Equ. 53,
115–123 (1984)

R.P. Agarwal et al., Nonoscillation Theory of Functional Differential Equations
with Applications, DOI 10.1007/978-1-4614-3455-9,
© Springer Science+Business Media, LLC 2012

503

http://dx.doi.org/10.1007/978-1-4614-3455-9


504 References

19. Azbelev, N.V.: About bounds of applicability of theorem of Tchaplygin about differential
inequalities. Dokl. Acad. Nauk USSR 89, 589–591 (1953) (in Russian)

20. Azbelev, N.V.: The zeros of the solutions of a second order linear differential equation with
retarded argument. Differ. Uravn. 7, 1147–1157 (1971), 1339 (in Russian)

21. Azbelev, N.V., Berezansky, L., Rahmatullina, L.F.: A linear functional-differential equation
of evolution type. Differ. Uravn. 13, 1915–1925 (1977), 2106 (in Russian)

22. Azbelev, N.V., Berezansky, L.M., Simonov, P.M., Chistykov, A.V.: Stability of linear systems
with time-lag. Differ. Equ. 23, 493–500 (1987)

23. Azbelev, N.V., Berezansky, L.M., Simonov, P.M., Chistykov, A.V.: Stability of linear systems
with time-lag. Differ. Equ. 27, 383–388, 1165–1172 (1991)

24. Azbelev, N.V., Berezansky, L.M., Simonov, P.M., Chistykov, A.V.: Stability of linear systems
with time-lag. Differ. Equ. 29, 153–160 (1993)

25. Azbelev, N.V., Domoshnitsky, A.: A de la Vallée-Poussin differential inequality. Differ.
Uravn. 22, 2042–2045, 2203 (1986)

26. Azbelev, N.V., Domoshnitsky, A.: On the question of linear differential inequalities. I. Differ.
Equ. 27, 257–263 (1991)

27. Azbelev, N.V., Domoshnitsky, A.: On the question of linear differential inequalities. II. Dif-
fer. Equ. 27, 641–647 (1991)

28. Azbelev, N.V., Maksimov, V.P., Rakhmatullina, L.F.: Introduction to Theory of Functional-
Differential Equations. Nauka, Moscow (1991) (in Russian)

29. Azbelev, N.V., Maksimov, V.P., Rakhmatullina, L.F.: Introduction to the Theory of Linear
Functional-Differential Equations. Advanced Series in Mathematical Science and Engineer-
ing, vol. 3. World Federation Publishers Company, Atlanta (1995)

30. Azbelev, N.V., Simonov, P.M.: Stability of Differential Equations with Aftereffects. Stability
Control Theory Methods and Applications, vol. 20. Taylor & Francis, London (2003)

31. Bainov, D., Domoshnitsky, A.: Nonnegativity of the Cauchy matrix and exponential stability
of a neutral type system of functional differential equations. Extr. Math. 8, 75–82 (1992)

32. Bainov, D., Domshlak, Y., Simeonov, P.: Sturmian comparison theory for impulsive differ-
ential inequalities and equations. Arch. Math. 67, 35–49 (1996)

33. Bainov, D., Domshlak, Y., Simeonov, P.: On the oscillation properties of first-order impulsive
differential equations with deviating arguments. Isr. J. Math. 98, 167–187 (1997)

34. Bainov, D.D., Mishev, D.P.: Oscillation Theory for Neutral Differential Equations with De-
lay. Adam Hilger, Bristol (1991)

35. Baštinec, J., Berezansky, L., Diblík, J., Šmarda, Z.: On the critical case in oscillation for
differential equations with a single delay and with several delays. Abstr. Appl. Anal. 2010
(2010). Art.ID 417869, 20 pp.

36. Beckenbach, E.F., Bellman, R.: Inequalities. Springer, New York (1965)
37. Beesack, P.R.: On the Green’s function of an n-point boundary value problem. Pac. J. Math.

12, 801–812 (1962)
38. Bellman, R.: Methods of Nonlinear Analysis. Academic Press, New York, London (1973)
39. Berezansky, L.: Development of N.V. Azbelev’s W -method in problems of the stability of

solutions of linear functional-differential equations. Differ. Uravn. 22, 739–750, 914 (1986)
40. Berezansky, L., Braverman, E.: Oscillation of a linear delay impulsive differential equation.

Commun. Appl. Nonlinear Anal. 3, 61–77 (1996)
41. Berezansky, L., Braverman, E.: On non-oscillation of a scalar delay differential equation.

Dyn. Syst. Appl. 6, 567–580 (1997)
42. Berezansky, L., Braverman, E.: Exponential boundedness of solutions for impulsive delay

differential equations. Appl. Math. Lett. 9, 91–95 (1997)
43. Berezansky, L., Braverman, E.: Some oscillation problems for a second order linear delay

differential equation. J. Math. Anal. Appl. 220, 719–740 (1998)
44. Berezansky, L., Braverman, E.: On oscillation of a second order impulsive linear delay dif-

ferential equation. J. Math. Anal. Appl. 233, 276–300 (1999)
45. Berezansky, L., Braverman, E.: Nonoscillation of a second order linear delay differential

equation with a middle term. Funct. Differ. Equ. 6, 233–247 (1999)



References 505

46. Berezansky, L., Braverman, E.: Oscillation of a second-order delay differential equations
with middle term. Appl. Math. Lett. 13, 21–25 (2000)

47. Berezansky, L., Braverman, E.: On oscillation of a multiplicative delay logistic equation.
Proceedings of the Third World Congress of Nonlinear Analysts, Part 2, Catania, 2000. Non-
linear Anal. 47, 1199–1209 (2001)

48. Berezansky, L., Braverman, E.: On oscillation of equations with distributed delay. Z. Anal.
Anwend. 20, 489–504 (2001)

49. Berezansky, L., Braverman, E.: On oscillation of a generalized logistic equation with several
delays. J. Math. Anal. Appl. 253, 389–405 (2001)

50. Berezansky, L., Braverman, E.: On oscillation of an impulsive logistic equation. Dyn. Contin.
Discrete Impuls. Syst., Ser. A Math. Anal. 9, 377–396 (2002)

51. Berezansky, L., Braverman, E.: On oscillation of a differential equation with infinite number
of delays. Z. Anal. Anwend. 21, 803–816 (2002)

52. Berezansky, L., Braverman, E.: Non-oscillation properties of linear neutral differential equa-
tions. Funct. Differ. Equ. 9, 275–288 (2002)

53. Berezansky, L., Braverman, E.: Oscillation properties of a logistic equation with distributed
delay. Nonlinear Anal., Real World Appl. 4, 1–19 (2003)

54. Berezansky, L., Braverman, E.: Oscillation and other properties of linear impulsive and non-
impulsive delay equations. Appl. Math. Lett. 16, 1025–1030 (2003)

55. Berezansky, L., Braverman, E.: Linearized oscillation theory for a nonlinear nonautonomous
delay differential equation. J. Comput. Appl. Math. 151, 119–127 (2003)

56. Berezansky, L., Braverman, E.: Oscillation criteria for linear neutral differential equations.
J. Math. Anal. Appl. 286, 601–617 (2003)

57. Berezansky, L., Braverman, E.: Linearized oscillation theory for a nonlinear delay impulsive
equation. J. Comput. Appl. Math. 161, 477–495 (2003)

58. Berezansky, L., Braverman, E.: Oscillation for equations with positive and negative coeffi-
cients and with distributed delay. I. General results. Electron. J. Differ. Equ. 2003(12) (2003),
21 pp.

59. Berezansky, L., Braverman, E.: Oscillation for equations with positive and negative coeffi-
cients and with distributed delay. II. Applications. Electron. J. Differ. Equ. 2003(47) (2003),
25 pp.

60. Berezansky, L., Braverman, E.: Mackey-Glass equation with variable coefficients. Comput.
Math. Appl. 51, 1–16 (2006)

61. Berezansky, L., Braverman, E.: On stability of some linear and nonlinear delay differential
equations. J. Math. Anal. Appl. 314, 391–411 (2006)

62. Berezansky, L., Braverman, E.: On exponential stability of linear differential equations with
several delays. J. Math. Anal. Appl. 324, 1336–1355 (2006)

63. Berezansky, L., Braverman, E.: Explicit exponential stability conditions for linear differential
equations with several delays. J. Math. Anal. Appl. 332, 246–264 (2007)

64. Berezansky, L., Braverman, E.: Positive solutions for a scalar differential equation with sev-
eral delays. Appl. Math. Lett. 21, 636–640 (2008)

65. Berezansky, L., Braverman, E.: Linearized oscillation theory for a nonlinear equation with a
distributed delay. Math. Comput. Model. 48, 287–304 (2008)

66. Berezansky, L., Braverman, E.: Nonoscillation and exponential stability of delay differential
equations with oscillating coefficients. J. Dyn. Control Syst. 15, 63–82 (2009)

67. Berezansky, L., Braverman, E.: On exponential stability of a linear delay differential equation
with an oscillating coefficient. Appl. Math. Lett. 22, 1833–1837 (2009)

68. Berezansky, L., Braverman, E.: Oscillation of equations with an infinite distributed delay.
Comput. Math. Appl. 60, 2583–2593 (2010)

69. Berezansky, L., Braverman, E.: On nonoscillation of advanced differential equations with
several terms. Abstr. Appl. Anal. 2011 (2011). Art.ID 637142, 14 pp.

70. Berezansky, L., Braverman, E.: On nonoscillation and stability for systems of differential
equations with a distributed delay. Automatica 48, 612–618 (2012) (also No. 4, April 2012)

71. Berezansky, L., Braverman, E., Akça, H.: On oscillation of a linear delay integro-differential
equation. Dyn. Syst. Appl. 8, 219–234 (1999)



506 References

72. Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation and stability of the second
order ordinary differential equations with a damping term. Funct. Differ. Equ. 16, 169–197
(2009)

73. Berezansky, L., Braverman, E., Domoshnitsky, A.: Stability of the second order delay differ-
ential equations with a damping term. Differ. Equ. Dyn. Syst. 16, 185–205 (2008)

74. Berezansky, L., Braverman, E., Domoshnitsky, A.: First order functional differential equa-
tions: nonoscillation and positivity of Green’s functions. Funct. Differ. Equ. 15, 57–94
(2008)

75. Berezansky, L., Braverman, E., Domoshnitsky, A.: On nonoscillation of systems of delay
equations. Funkc. Ekvacioj 54, 275–296 (2011)

76. Berezansky, L., Braverman, E., Pinelas, S.: On nonoscillation of mixed advanced-delay dif-
ferential equations with positive and negative coefficients. Comput. Math. Appl. 58, 766–775
(2009)

77. Berezansky, L., Diblík, J., Šmarda, Z.: Positive solutions of second-order delay differential
equations with a damping term. Comput. Math. Appl. 60, 1332–1342 (2010)

78. Berezansky, L., Domshlak, Y.: Differential equations with several deviating arguments: Stur-
mian comparison method in oscillation theory, I. Electron. J. Differ. Equ. 40, 1–19 (2001)

79. Berezansky, L., Domshlak, Y.: Differential equations to several delays: Sturmian comparison
method in oscillation theory, II. Electron. J. Differ. Equ. 2002(31), 1–18 (2002)

80. Berezansky, L., Larionov, A.: Positivity of the Cauchy matrix of a linear functional-
differential equation. Differ. Equ. 24, 1221–1230 (1988)

81. Berezansky, L., Domshlak, Y., Braverman, E.: On oscillation properties of delay differential
equations with positive and negative coefficients. J. Math. Anal. Appl. 274, 81–101 (2002)

82. Berkowitz, K., Domoshnitsky, A., Maghakyan, A.: About functional differential generaliza-
tion of Burger’s equation. Funct. Differ. Equ. 17, 53–60 (2010)

83. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic
Press, New York (1979)

84. Brands, J.J.A.M., Oscillation theorems for second-order functional differential equations.
J. Math. Anal. Appl. 63, 54–64 (1978)

85. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemi-
ology. Springer, New York (2001)

86. Braverman, E., Kinzebulatov, D.: Nicholson’s blowflies equation with a distributed delay.
Can. Appl. Math. Q. 14, 107–128 (2006)

87. Campbell, S.A.: Delay independent stability for additive neural networks. Differ. Equ. Dyn.
Syst. 9, 115–138 (2001)

88. Candan, T., Dahiya, R.S.: Positive solutions of first-order neutral differential equations. Appl.
Math. Lett. 22, 1266–1270 (2009)

89. Chaplygin, S.A.: Foundations of New Method of Approximate Integration of Differential
Equations, Moscow, 1919 (Collected Works 1), pp. 348–368. GosTechIzdat, Moscow (1948)

90. Chen, M.P., Lalli, B.S., Yu, J.S.: Oscillation and global attractivity in a multiplicative delay
logistic equation. Differ. Equ. Dyn. Syst. 5, 75–83 (1997)

91. Chen, M.P., Yu, J.S., Huang, L.H.: Oscillation of first order neutral differential equations.
J. Math. Anal. Appl. 185, 288–301 (1994)

92. Cheng, S.S., Guan, X.P., Yang, J.: Positive solutions of a nonlinear equation with positive
and negative coefficients. Acta Math. Hung. 86, 169–192 (2000)

93. Chichkin, E.S.: Theorem about differential inequality for multipoint boundary value prob-
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