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Preface

One of the findings of the 1988 Report by the Panel on Future Directions in Control
Theory, chaired by Wendell H. Fleming, was:

Many fundamental theoretical issues, such as control of nonlinear multivariable systems, or
control of nonlinear partial differential equations, are not yet understood.

Nowadays, more than 20 years later, we believe we can say that a lot of fundamental
issues concerning the latter topic have definitely been understood, thanks to the
efforts of many researchers who produced a large body of results and techniques.
And yet, this process has led to an enormous amount of open questions that will
need to be addressed by new generations of scientists. Surveying the most important
advances of the last two decades and outlining future research directions were the
main motivations that led us to organize the CIME Course on Control of Partial
Differential Equations that took place in Cetraro (CS, Italy), July 19–23, 2010.
We hope this volume, which is one of the outcomes of that event, will provide an
ultimate formative step for those who attended the course, and will represent an
authoritative reference for those who were unable to do so.

The course consisted of five series of lectures, which are now the source of the
chapters of this monograph. Specifically, the following topics were covered:

• Stabilization of evolution equations (by Fatiha Alabau-Boussouira): these lec-
tures discussed recent advances, as well as classical methods, for the stabilization
of wave-like equations. Special attention was paid to nonlinear problems,
memory-damping, and indirect stabilization of coupled PDEs. All the problems
were treated by a unified methodology based on energy estimates. It was
shown how the introduction of optimal-weight convexity methods leads to
easy computable upper energy decay estimates, and how these results can be
completed by lower energy estimates for several examples.

• Control of the Liouville equation (by Roger Brockett): these equations describe
the evolution of an initial density of points that move according to a given
differential equation, and may depend on a control which can be chosen in
order to satisfy some prescribed goals. This framework also allows to overcome
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vi Preface

limitations of the classical theory: for example, the expense required to imple-
ment control laws. Several results (e.g., on ensemble control: controlling, with a
single control, a finite but often large number of copies of a given system) as well
as open problems were presented.

• Control in fluid mechanics (by Olivier Glass): the lectures treated various issues
related to the controllability of two well-known equations in fluid mechanics,
namely the Euler equation for perfect incompressible fluids in both Eulerian and
Lagrangian coordinates, and the one-dimensional isentropic Euler equation for
compressible fluids in the framework of entropy solutions. Special emphasis was
put on the aspects of the theory that are connected with the nonlinear nature of
the problem: linearization around an equilibrium gives here no information on
the controllability of the nonlinear system.

• Carleman estimates for elliptic and parabolic equations, with application to
control (by Jérôme Le Rousseau): these are weighted energy estimates for
solutions of partial differential equations with weights of exponential type. The
lectures derived Carleman estimates for elliptic and parabolic operators using
several methods: a microlocal approach where the main tool is the Gårding
inequality, and a more computational direct approach. It was also shown how
Carleman estimates can be used to provide unique continuation properties, as
well as approximate and null controllability results.

• Control and numerics for the wave equation (by Enrique Zuazua): these lectures
provided a self-contained presentation of the theory that has been developed
recently for the numerical analysis of the controllability properties of wave prop-
agation phenomena. The methodology adopted the so-called discrete approach,
which consists in analyzing whether the semidiscrete or fully discrete dynamics
arising when discretizing the wave equation by means of the most classical
scheme of numerical analysis share the property of being controllable, uniformly
with respect to the mesh-size parameters, and the corresponding controls con-
verge to the continuous ones as the mesh size tends to zero. All the results were
illustrated by means of several numerical experiments.

Besides the above lectures, there were three seminars, given by Karine Beauchard
(Some controllability results for the 2D Kolmogorov equation), Sylvain Ervedoza
(Regularity of HUM controls for conservative systems and convergence rates for
discrete controls), and Lionel Rosier (Control of some dispersive equations for
water waves). There were also four communications given by Ido Bright (Periodic
optimization suffices for infinite horizon planar optimal control), Khai Tien Nguyen
(The regularity of the minimum time function via nonsmooth analysis and geometric
measure theory), Camille Laurent (On stabilization and control for the critical
Klein-Gordon equation on a 3-D compact manifold), and Vincent Perrollaz (Exact
controllability of entropic solutions of scalar conservation laws with three controls).
Seminars and communications are not reproduced in these notes.

One important point, contained in the 1988 Report we mentioned above, is that
advances in the control field are made through a combination of mathematics,
modeling, computation, and experimentation. Hoping the reader will find the present
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exposition in accord with such a basic principle, we wish to thank the lecturers
and authors who designed their contributions in a detailed-yet-focussed form, for
helping us realize this project. Overall, we are very grateful to all the 57 participants
in the CIME course, for their enthusiasm that created a friendly and stimulating
atmosphere in Cetraro. Finally, special gratitude is due to the GDRE CONEDP, for
providing the essential support that allowed us to receive and accept a large number
of applications, and to the C.I.M.E. Foundation, for making this event possible and
for its very helpful assistance before and all along the lectures.

Rome and Paris Piermarco Cannarsa
Jean-Michel Coron
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Chapter 1
On Some Recent Advances on Stabilization
for Hyperbolic Equations

Fatiha Alabau-Boussouira

In memory of my father Abdallah Boussouira.

Abstract The purpose of these Notes is to present some recent advances on
stabilization for wave-like equations together with some well-known methods of
stabilization. This course will give several references on the subject but do not pre-
tend to exhaustivity. The spirit of these Notes is more that of a research monograph.
We aim to give a simplified overview of some aspects of stabilization, on the point
of view of energy methods, and insist on some of the methodological approaches
developed recently. We will focus on nonlinear stabilization, memory-damping and
indirect stabilization of coupled PDE’s and present recent methods and results.
Energy methods have the advantage to handle and deal with physical quantities
and properties of the models under consideration. For nonlinear stabilization, our
purpose is to present the optimal-weight convexity method introduced in (Alabau-
Boussouira, Appl. Math. Optim. 51(1):61–105, 2005; Alabau-Boussouira, J. Differ.
Equat. 248:1473–1517, 2010) which provides a whole methodology to establish
easy computable energy decay rates which are optimal or quasi-optimal, and
works for finite as well as infinite dimensions and allow to treat, in a unified
way different PDE’s, as well as different types of dampings: localized, boundary.
Another important feature is that the upper estimates can be completed by lower
energy estimates for several examples, and these lower estimates can be compared
to the upper ones. Optimality is proved in finite dimensions and in particular
for one-dimensional semi-discretized wave-like PDE’s. These results are obtained
through energy comparison principles (Alabau-Boussouira, J. Differ. Equat. 248:
1473–1517, 2010), which are, to our knowledge, new. This methodology can
be extended to the infinite dimensional setting thanks to still energy comparison
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principles supplemented by interpolation techniques. The optimal-weight convexity
method is presented with two approaches: a direct and an indirect one. The first
approach is based on the multiplier method and requires the assumptions of the
multiplier method on the zone of localization of the feedback. The second one
is based on an indirect argument, namely that the solutions of the corresponding
undamped systems satisfy an observability inequality, the observation zone cor-
responding to the damped zone for the damped system. The advantage is that,
this observability inequality holds under the sharper optimal Geometric Control
Condition of Bardos et al. (SIAM J. Contr. Optim. 30:1024–1065, 1992). The
optimal-weight convexity method also extends to the case memory-damping, for
which the damping effects are nonlocal, and leads to nonautonomous evolution
equations. We will only state the results in this latter case. Indirect stabilization
of coupled systems have received a lot of attention recently. This subject concerns
stabilization questions for coupled PDE’s with a reduced number of feedbacks. In
practice, it is often not possible to control all the components of the vector state,
either because of technological limitations or cost reasons. From the mathematical
point of view, this means that some equations of the coupled system are not directly
stabilized. This generates mathematical difficulties, which requires to introduce
new tools to study such questions. In particular, it is important to understand how
stabilization may be transferred from the damped equations to the undamped ones.
We present several recent results of polynomial decay for smooth initial data.
These results are based on energy methods, a nondifferential integral inequality
introduced in (Alabau, Compt. Rendus Acad. Sci. Paris I 328:1015–1020, 1999)
[see also (Alabau-Boussouira, SIAM J. Contr. Optim. 41(2):511–541, 2002; Alabau
et al. J. Evol. Equat. 2:127–150, 2002)] and coercivity properties due to the coupling
operators.

Several parts of the material presented here are extracted from published articles,
in particular from the author.

1.1 Introduction

Let us start with some motivations of the material presented in these Notes. An
important issue in engineering for material sciences is the stabilization of flexible
structures such as beams, plates, or mechanical structures such as antennas of
satellites. Oscillations or vibrations of elastic, or visco-elastic materials or structures
are described by reversible PDE’s. In general, for such applications, it is important
to reduce vibrations by implementing feedback laws within the system. These
feedbacks are built in such a way to stabilize the system, that is to reduce the
oscillations of the solutions as time increases. A common way to measure this decay
is to consider the natural energy associated to the system. One of the purposes of
this course is to study the asymptotic behavior of the energy of the solutions of
the stabilized systems i.e. determine whether convergence toward equilibrium states
as times goes to infinity holds, determine its speed of convergence if necessary or
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study how many feedback controls are required in case of coupled systems. We will
introduce some basic definitions of stabilization for PDE’s and present some recent
advances on this subject.

For further motivation, let us quote Dafermos [46] who considered the strong
stabilization of nonlinearly locally damped wave equations. He has written in 1978
about the approach which consists in using the information that dissipative systems
exhibits Lyapunov functional—indeed their energy—which is constant on the
!-limit sets, to prove strong stabilization results, the following text:

Another advantage of this approach is that it is so simplistic that it requires only quite weak
assumptions on the dissipative mechanism. The corresponding drawback is that the deduced
information is also weak, never yielding, for example, decay rates of solutions.

Hence understanding to what extent and generality on the feedbacks and more
precisely on

• Their growth
• The geometric properties of the domains on which they are active
• Their autonomous or non autonomous characters

and on the systems themselves: either in finite dimensions or infinite dimensions,
for general classes of PDE’s . . . one can give sharp—even optimal—energy decay
rates is a strong mathematical motivation. It has inspired a wide research on these
questions and the sections on nonlinear stabilization presented in these Notes.
A lot of seminal and deep results due to several authors have been derived since
the early seventy’s. We shall recall a part of them in the course of the sections.
Stabilization of ordinary differential equations goes back to the pioneering works
of Lyapunov and Lasalle. The important property is that trajectories decay along
Lyapunov functions. If trajectories are relatively compact in appropriate spaces
and the system is autonomous, then one can prove that trajectories converge to
equilibrium asymptotically. However, the construction of Lyapunov functions is not
easy in general. A somehow natural and physical Lyapunov function is the energy
associated to the solutions of the system, which decays as time increases, due to
the feedback action. The purpose of these Notes is to show how energy methods
associated to some other tools such as convexity, differential and nondifferential
integral inequalities, and comparison principles are powerful for obtaining optimal
or quasi-optimal energy decay rates, linked with physical properties of dissipative
systems. In this analysis, an essential question is that of optimality. Deriving decay
rates is not sufficient, it is essential to know if these decay rates are optimal. We will
show how to prove optimality for finite dimensional dissipative systems and how to
relate techniques in finite and infinite dimensions.

There are still several hard and important open questions in the domain of
stabilization. We indicate some of them at the end of these Notes. We hope that
they will inspire young researchers.

In Sect. 1.1, we give a short description of Dafermos’result and Lasalle principle
for strong stabilization. Linear stabilization together with the multiplier method for
localized damping and the compactness–uniqueness method as in Zuazua [105] (see
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also [91]) for linear stabilization of semilinear waves are presented in Sect. 1.2.
We present in Sect. 1.3, the optimal-weight convexity method for general nonlinear
dampings for ODE’s, that is for finite dimensions, together with nonlinear Gronwall
inequalities and a key comparison Lemma for proving optimality. Section 1.4
recalls well-known results for polynomial stabilization for PDE’s, that is for
infinite dimensions. We present the optimal-weight convexity method for PDE’s
and further extensions and applications in Sect. 1.5. Section 1.6 is devoted first to
memory-stabilization for polynomial kernels and then to memory-stabilization for
general decaying kernels extending the optimal-convexity method to nonfrictional
dampings. We consider indirect stabilization of coupled PDE’s in Sect. 1.7. We
present briefly a general approach based on an integral inequality which is not
of differential nature, but relies on the underlying semigroup property. We give
then examples of applications to some coupled systems of PDE’s. We conclude in
Sect. 1.8 by a list of some open problems in stabilization.

Let us now present shortly some of the problems which will be considered
through some significant examples.

1.1.1 On Nonlinear and Memory Stabilization

We consider a range of classes of examples for which, the optimal-weight convexity
method provides in a unified sharp—even optimal in the finite dimensional case—
easily computable energy decay rates for arbitrary feedback growth close to the
origin.

Consider first the case of a nonlinearly damped oscillator, which models the
displacement of a mass subjected to the action of spring. The displacement u of
the mass is described by the scalar equation

Example 1.1.1.
u00.t/C ku.t/C f .u/C �.u0/ D 0 ; (1.1)

where k > 0 is a physical parameter, u0 and u00 denote respectively the velocity and
the acceleration, f includes some eventual nonlinear phenomenon, whereas �.u0/
is the nonlinear damping. We assume that f and � are smooth functions and for the
sake of simplicity that

sf .s/ � 0 8 s 2 R :

we define

F.u/ D
u

s
0

f .s/ ds

Multiplying (1.1) by u0, we easily derive that

E 0.t/ D �u0�.u0/ (1.2)
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where the energyE of the solution u is defined by

E.t/ D
�1
2

ju0.t/j2 C kju.t/j2 C F.u.t/
�
: (1.3)

Thus, if the damping function satisfies

s�.s/ � 0 8 s 2 R ; (1.4)

then the energy is decaying as time increases. The relation (1.2) is called a
dissipation relation.

Example 1.1.2. Let us now consider the case of a vibrating membrane fixed on the
boundary. Then the evolution of the displacement of a point x of the membrane at
time t is described by the wave equation

8̂
ˆ̂<
ˆ̂̂
:

ut t ��u C �.:; ut / D 0 in .0;1/ �˝;
u D 0 on .0;1/ � � ;
.u; ut /.0/ D .u0; u1/ on ˝;

(1.5)

where ˝ is a bounded domain of R
N with sufficiently smooth boundary � . We

assume that � is a smooth function satisfying (1.4). We define the energy of a
solution by

E.t/ D 1

2
s̋
�
ju0j2 C jruj2/ dx

�
(1.6)

Formally multiplying the first equation of (1.5) by ut , integrating over ˝ and using
Green’s formula, we obtain for strong solutions the relation

E 0.t/ D � s̋ u0�.u0/ dx � 0 ;

so that the energy of solutions is dissipated through the nonlinear damping term
�.u0/ in (1.5).

Example 1.1.3. Assume now that the damping occurs only through a part of the
boundary �1 of the membrane, then one has to consider

8̂
<̂
ˆ̂:

ut t ��u D 0

u D 0 in Œ0;1/ � �1
@u
@�

C �.:/u C �.:; ut / D 0 in Œ0;1/ � �0
.u; ut /.0; :/ D .u0; u1/ in ˝ ;

(1.7)

where f�0; �1g is a partition of � and where � is a nonnegative function. The natural
energy is



6 F. Alabau-Boussouira

E.t/ D 1

2

� s̋ jut .t/j2 C jru.t/j2 dx C s
�0

�juj2 d��

The dissipation relation (for strong solutions) is:

E 0.t/ D � s
�0

ut �.:; ut / dx � 0 ; t � 0 :

The above three examples can be written under the abstract form

u00 C Au C f .u/C Bu0 D 0 ; (1.8)

in which u stands for the unknown, and takes values in R for the oscillator example,
whereas it takes values in suitable subsets of the Sobolev spaceH1.˝/ in the second
and third examples.

Example 1.1.4. Finally as a last model example, let us consider the case of linear
memory type stabilization. In this latter case, the damping is no longer frictional as
for the three above models but is nonlocal in time. A model example is given by

8
<
:

ut t ��u C k ��u D 0

u D 0 in Œ0;1/ � �
.u; ut /.0; :/ D .u0; u1/ in ˝ ;

(1.9)

where

.k � v/.t/ D
t

s
0

k.t � s/v.s/ ds :

and the kernel k is positive, and decaying at infinity. In this case, the natural
energy is

Eu.t/ D 1

2
kut .t/k2L2.˝/ dx C 1

2

�
1�

t

s
0

k.s/ ds
�
kru.t/k2

L2.˝/

C1

2

t

s
0

k.t � s/kru.t/ � ru.s/k2
L2.˝/

ds

and the dissipation relation is:

E 0
u.t/ D �1

2
k.t/kru.t/k2

L2.˝/
C 1

2

t

s
0

k0.t � s/kru.s/� ru.t/k2
L2.˝/

ds � 0

A common feature to the previous four model examples, is that one can associate
a natural energy to each of them, and that this energy is dissipated as time increases,
due to the damping action, indeed the properties used by Dafermos for his strong
stabilization result. We shall stress the common mathematical features between
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these examples and in particular between finite and infinite dimensional systems
in the framework of nonlinear stabilization and linear stabilization of memory type
and give a unified methodology for these different systems. In particular, we shall
see that under minimal hypotheses on the feedbacks and using the optimal-weight
convexity method [17], introduced in 2005 and simplified in [8], we can in a unified
way give sharp, optimal or quasi-optimal energy decay rates for the four above
classes of examples (see [10] for the last example).

1.1.2 On Indirect Stabilization for Coupled Systems

Stabilization of coupled systems by a reduced number of stabilizers, that is indirect
stabilization have also received recently a lot of attention for parabolic equations
and hyperbolic equations.

As an example, consider the following coupled wave system:

�
ut t ��u C a.x/ut C ˛v D 0

vt t ��v C ˛u D 0
in .0;1/�˝; u D 0 D v on .0;1/�@˝ :

where ˛ is a constant coupling parameter and a � 0 in ˝ and a � a� > 0 on a
nonempty subset ! of˝ . Here, the first equation is damped through a linear locally
distributed feedback. One can remark that no feedback is applied to the second
equation. Hence this second equation is conservative when ˛ D 0. One can define
the total energy of a solution as

E.t/ D 1

2
s̋
�
jut j2 C jruj2 C jvt j2 C jrvj2 C 2˛uv

�
dx

One can also show that the energy of strong solutions is dissipated, that is

E 0.t/ D � s̋ a.x/jut j2 dx

Is this dissipation which involves only the first component of the unknown sufficient
to stabilize the full system and if so at which rate? Is it possible to study more general
coupled systems of hyperbolic equations? We shall also consider these questions in
this Notes.

Systems as above are said to be:

• Strongly stable if E.t/ ! 0 as t ! 1.
• Polynomially stable if E.t/ � C t�ˇ for all t > 0 and sufficiently smooth initial

data.
• (Uniformly) exponentially stable if E.t/ � Ce�˛tE.0/ for all t � 0 and some

constants ˛ > 0 and C � 0, independent of u0; u1.
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This course will focus on some of the above issues, such as geometrical aspects,
nonlinear damping, indirect damping for coupled systems and memory damping.

1.2 Notation

We denote by j � j the usual Euclidean norm in R
N . Let ˝ be an open bounded

domain of RN . We denote by j˝j its Lebesgue measure.
We will use both notations @

@xi
or @i to denote the partial derivative with respect

to xi .
We denote by ru the gradient of u with respect to the space variables.
For a multi-integer ˛ D .˛1; : : : ; ˛N / 2 N

N , we denote by j˛j D PN
iD1 ˛i and

@˛v D @j˛j

@
˛1
1 :::@

˛N
N

. Moreover, we will also use the notation @2ij u for @i@j u.

The time derivative of u will be denoted by ut or u0.
In this text we will only consider real-valued functions. We denote the norm on

L2.˝/ by k � k.
We denote by L1.˝/ D the class of all (essentially) bounded measurable

functions in ˝ .
For m 2 N

?, we denote by Hm.˝/ the Sobolev space defined by Hm.˝/ D
fv 2 L2.˝/ ; @˛u 2 L2.˝/8 j˛j � mg, where the derivatives are taken in the sense
of distributions on ˝ .

Moreover, we do not distinguish between the norms of vector valued and scalar
functions, e.g. theL2 norm of the gradient of u is still denoted by kruk while kr2uk
stands for .

Pn
i;jD1 k@i @j uk2/1=2.

1.3 Strong Stabilization

Abstract One important property of dissipative systems is that trajectories decay
along a Lyapunov function which is in that case the energy. If trajectories are
relatively compact in appropriate spaces and the system is autonomous, then one can
prove that trajectories converge to equilibria asymptotically. Dafermos and Lasalle
used this property to study convergence of solutions toward equilibrium and to prove
strong stabilization. The purpose of this section is to recall these important results.

Definition 1.3.1. Let T .t/t�0 be a continuous semigroup on a BanachX . We recall
that the !-limit set of z0 in X , denoted by !.z0/, is defined by

!.z0/ D fz 2 X ; 9.tn/n 2 Œ0;1/ such that tn �! 1; z D lim
n!1T .tn/z0g :

We recall the following basic result on !-limit sets.
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Proposition 1.3.2. Let .T .t//t�0 be a continuous semigroup on a Banach space X
and z0 2 X be given such that the orbit �.z0/ 	 [t�0T .t/z0 is relatively compact
in X . Then

d.T .t/z0; !.z0// �! 0 t �! 1 ;

and the !-limit set of z0 is a non-empty compact, connected subset of X and it is
invariant under the action of the semigroup.

Remark 1.3.3. A proof is given in [46] (see also [60]).

1.3.1 Dafermos’ Strong Stabilization Result

We present in this section Dafermos’ strong stabilization result and Lasalle
principle.

Let ˝ be a bounded open connected subset of R
N with a smooth boundary

denoted by � and ! be an open subset of ˝ of positive measure.
We set H D L2.˝/ and V D H1

0 .˝/ in all what follows. We consider the
following second order equation:

8<
:

ut t ��u C a.:/g.ut / D 0 ; t > 0 ; x 2 ˝
u D 0 ; t > 0 ; x 2 � ;
u.0/.:/ D u0.:/ ; u0.:/ D u1.:/ ; x 2 ˝ ;

(1.10)

where a is a smooth function and satisfies a.x/ � 0; x 2 ˝ , a > 0 in a nonempty
subset ! of ˝; g is assumed to be continuously differentiable, strictly monotone
with g.0/ D 0 and g0 bounded on R (for simplicity).

We recall the following existence proof.

Theorem 1.3.4. Let .u0; u1/ 2 V � H , the problem (1.10) has a unique solution
u 2 C .Œ0;C1/IV / � C 1.Œ0;C1/IH/.
Moreover, for all .u0; u1/ 2 H2.˝/ \ H1

0 .˝/ � V , the solution is in
L1.Œ0;C1/IH2.˝/\H1

0 .˝//\W 1;1.Œ0;C1/IV /\W 2;1.Œ0;C1/IH/ and its
energy defined by:

E.t/ D 1

2

�
ju0.t/j2H C jru.t/j2H

�
;

satisfies the following dissipation relation:

E 0.t/ D � s̋ a.x/ut .t/.x/g.ut .t/.x// dx � 0 : (1.11)

The proof is based on semigroup theory. We define the unbounded operator
A.u; p/ D .p;�u � ag.p// with domain D.A/ D .H2.˝/ \ H1

0 .˝// � H1
0 .˝/

in the energy space V � H equipped with the natural product norm. Then �A is
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a maximal monotone operator and generates a continuous semigroup .T .t//t�0 on
V �H .

We note that the above system has a unique stationary solution, that is a unique
equilibrium state, given by u 	 0.

Theorem 1.3.5 (Dafermos [46]). Let .u0; u1/ 2 V �H , then

E.t/ �! 0 ; t �! 1 : (1.12)

The proof of this result is based on the Lasalle invariance principle [67, 68] and
on the dissipation properties of the energy of first order, that is the energy of .ut ; ut t /
for smoother initial data.

Proposition 1.3.6 (Lasalle invariance principle). Let .T .t//t�0 be a continuous
semigroup on a Banach space X such that the orbit �.z0/ 	 [t�0T .t/z0 of a point
z0 2 X is relatively compact in X . Assume that V W X 7! R is continuous and is
a Lyapunov function for .T .t//t�0, that is V.T .t/z/ � V.z/ for all z 2 X and all
t � 0. Then V is constant on the !-limit set of z0.

Proof. Since .T .t// satisfies the semigroup property, V is a Lyapunov function,
and the orbit of z0 is relatively compact in X , we deduce that t 7! V.T .t/z0/
is a non-increasing bounded function. Hence there exists V1 2 X such that
V1 D limt!1 V.T .t/z0/. Let z 2 !.z0/ be given. Then there exists .tn/n ! 1,
such that z D limn!1 T .tn/z0. Since V is continuous on X , we have V.z/ D
limn!1 V.T .tn/z0/ D V1. Hence V is constant on the !-limit set of z0. �
Proof (of Theorem 1.3.5). Let .u0; u1/ 2 .H2.˝/\H1

0 .˝//�H1
0 .˝/. We denote by

.T .t//t�0 the continuous semigroup generated by the unbounded A defined above
and .u; v/ D T .t/.u0; u1/. Differentiating the first equation of (1.10) with respect to
time, we obtain

vt t D �v � a.x/g0.v/vt (1.13)

Defining

E1.t/ D 1

2

�
jvt .t/j2H C jrv.t/j2H ;

�
;

we derive from (1.13) that

E 0
1.t/ D � s̋ a.x/g0.v/v2t dx � 0 :

Hence, the sets fv.t; :/; t � 0g and fvt .t; :/; t � 0g are bounded respectively in
H1
0 .˝/ and L2.˝/. Thus, due to Rellich theorem the set fv.t; :/; t � 0g is relatively

compact in L2.˝/. Using the first equation in (1.10) and the hypotheses on a and g,
we deduce that the set f�u.t; :/; t � 0g is bounded in L2.˝/. Therefore, the set
fu.t; :/; t � 0g is relatively compact in H1

0 .˝/.
On the other hand, thanks to (1.11), E is a Lyapunov function for T .t/ which

is continuous on V � H . Using Lasalle’s invariance principle (Proposition 1.3.6),
we deduce that E is constant on !.u0; u1/. Let .z0; z1/ 2 !.u0; u1/ be given and
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set .z; q/.t/ D T .t/.z0; z1/. Since E is constant on !.u0; u1/ and thanks to the
dissipation relation written for .z; q/, we deduce that

s̋ a.x/qg.q/ dx D 0 ;

so that thanks to our assumptions on a and g, we have a.x/g.q.t; x// 	 0 in ˝ .
Hence .z; q/ satisfies

8
ˆ̂̂
<̂
ˆ̂̂
:̂

ztt ��z D 0 t > 0 ; x 2 ˝
z D 0; t > 0 ; x 2 � ;
z.0/.:/ D z0.:/ ; zt .:/ D z1.:/ 2 ˝ ;

zt D 0 on fy 2 ˝ ; a.y/ ¤ 0g :

Thanks to the fact that a > 0 on an open subset of ˝ and to a well-known unique
continuation result for wave equation, we deduce that z D zt 	 0, so that .z0; z1/ D
.0; 0/. Hence !.u0; u1/ D f0g. SinceH2.˝/\H1

0 .˝/�H1
0 .˝/ is dense in V �H

and thanks to the dissipation relation, we conclude that the result holds true for
initial data in V �H . �

Remark 1.3.7. Dafermos’ result has been extended to the case where g is assumed
to be a maximal monotone graph in Haraux [59]. A presentation of Lasalle invari-
ance principle can also be found in [65] for the case of linearly boundary damped
wave equation. Many authors have contributed to strong and weak stabilization of
PDE’s, we refer to the reader to the above papers to find more references on this
subject.

1.4 Linear Stabilization

Abstract The purpose of this section is to consider the case of linear stabilization
of the wave equation by a locally distributed feedback. We recall the geometrical
conditions on the damping region both from the multiplier and geometric optics
conditions. We then present the piecewise multiplier method by Zuazua (Comm.
Part. Differ. Equat. 15:205–235, 1990) for the case of one or several observation
points and Liu (SIAM J. Contr. Optim. 35:1574–1590, 1997) with a point of view
which will prepare the nonlinear stabilization case. In particular, we stress the
fact that the multiplier method allows to identify a dominant energy, namely the
kinetic energy. The exponential decay of the energy, provided that the damping
region satisfies the piecewise multiplier condition, is proved thanks to a linear
Gronwall inequality. We conclude this section by the extension of this result on the
semilinear wave equation by the compactness–uniqueness method (Zuazua, Comm.
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Part. Differ. Equat. 15:205–235, 1990; Rauch and Taylor, Indiana Univ. Math. J.
24:79–86, 1974).

1.4.1 Introduction

Most of the results below have been derived and extended to other PDE’s by
many authors. We refer the reader to Lions [76] for a wide view on the subject of
control theory for PDE’s and in particular on exact controllability and observability
questions; many of the enclosed results have been used for stabilization, in particular
the multiplier method. Boundary stabilization for wave-like equations, together with
a presentation of the multiplier method is given in Komornik [65]. Moreover a
recent book by Tucsnak and Weiss [99] considers many aspects of observability
and control questions for operators semigroup. We also refer the reader to two
recent excellent books by Coron [45] for stabilization of nonlinear control systems,
and in particular of 2 � D Euler equations and by Dáger and Zuazua [49] for
control questions on one-dimensional flexible multi-structures (see also [100] for
stabilization results for one-dimensional networks). For stabilization questions and
in particular the construction of feedbacks through the algebraic Riccati approach,
together with well-documented PDE’s examples, we refer the reader to the book by
Lasiecka and Triggiani [73]. For a dynamical system approach, the interested reader
will find many important results in Haraux [58, 60]. All these books are also a large
source of references.

We now consider the case of a linearly locally damped wave-equation

8
<
:

utt ��u C a.x/ut D 0 in .0;1/ �˝;
u D 0 on ˙ D .0;1/ � �
.u; ut /.0/ D .u0; u1/ on ˝;

(1.14)

in a bounded domain˝ 
 R
N with a smooth boundary� , a � 0 almost everywhere

in ˝ . We define the energy as before. For strong solutions, it satisfies the following
dissipation relation:

E 0.t/ D � s̋ a.x/jut .t; x/j2 dx � 0 : (1.15)

1.4.2 Geometrical Aspects

The property of finite speed of propagation holds for the wave equation. It means
that, if the initial conditions u0; u1 have compact support, then the support of u.t; �/
evolves in time at a finite speed. Thus, if the support of the set on which the damping
is active is such that some rays issued do not meet it, one can build solutions of the
damped wave equation whose energy concentrates close to these rays, so that the
energy is not decaying uniformly as time increases. This explains why, for the wave
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equation, the geometry of˝ , in particular its size and localization, plays an essential
role in all the issues related to control and stabilization.

We denote the support region in which the feedback is active by !. It is taken
as a subset of ˝ of positive Lebesgue measure. More precisely, a is assumed to be
continuous on ˝ and such that

a � 0 on ˝ and a � a0 on ! ; (1.16)

for some constant a0 > 0. In this case, the feedback is said to be distributed.
Moreover, it is said to be globally distributed if ! D ˝ and locally distributed
if ˝ n ! has positive Lebesgue measure.

The multiplier method and the method of geometric optics based on microlocal
analysis are the two main methods which have been developed and used to study
first exponential energy decay rates for hyperbolic reversible damped equations,
and then extended to treat nonlinear dampings, source terms . . . The method of
geometric optics gives the sharpest geometrical results. The seminal work of Bardos
et al. [27], gives geodesics sufficient conditions on the region of active control for
exact controllability, and consequently of stabilization to hold. These conditions
say that each ray of geometric optics should meet the control region. Burq and
Gérard [36] showed that these results hold under weaker regularity assumptions on
the domain and coefficients of the operators (see also [35, 38, 39]). These geodesics
conditions are not explicit, in general, but they allow to get decay estimates of the
energy under very general hypotheses.

The multiplier method is an explicit method. It is based on energy estimates and
Gronwall inequalities. The cases of boundary control and stabilization is considered
in the fundamental contributions of several authors, as Ho [42, 62], Lions [76],
Lasiecka–Triggiani, Komornik–Zuazua [64], and many others. Zuazua [105] gives
an explicit geometric condition on ! for a semilinear wave equation subject to
a damping locally distributed on !, namely it should contain an "-neighborhood
of the whole boundary of ˝ . His result is presented in Sects. 2.3 of 1.2. Using
the observability estimates obtained by Fu et al. [54] combined with Zuazua’s
results [105], Zuazua’s exponential stabilization result extend to the geometric case
for which ! contains only a "-neighborhood of the part of the boundary which is
not visible from a given point x0 of RN , which symbolizes an observator placed
at this location. Such a condition excludes the case of a damping coefficient which
vanishes at both poles of a sphere. Liu [78] piecewise multiplier method generalizes
Zuazua’s result (see also [84]). It allows several observation points and thus to relax
the geometric assumptions as we will see below.

Another important tool is based on sharp trace regularity results, established by
Lasiecka and Triggiani [72, 73]. This method which allows to estimate boundary
terms in energy estimates. There also exist intermediate results between the
geodesics conditions of Bardos–Lebeau–Rauch and the multiplier method, obtained
by Miller [86] using differentiable escape functions. We do not address in these
Notes observability estimates and exact controllability results for wave-like equa-
tions. For such questions, we recall that the method of Carleman estimates is also



14 F. Alabau-Boussouira

one of the major tool for such results. Results using Carleman estimates have been
recently derived by Tebou [97].

Let us now explicit Zuazua’s and K. Liu’s extension. Zuazua’s multiplier
geometric condition can be described as follows. If a subset O of ˝ is given, one
can define an "-neighbourhood of O in ˝ as the subset of points of ˝ which are
at distance at most " of O . Zuazua proved that if the set ! is such that there exists
a point x0 2 R

n—an observation point—for which ! contains an "-neighbourhood
of � .x0/ D fx 2 @˝ ; .x � x0/ � �.x/ � 0g, then the energy decays exponentially.
In this note, we refer to this condition as (MGC).

If a vanishes for instance in a neighbourhood of the two poles of a ball ˝ in
R
n, one cannot find an observation point x0 such that (MGC) holds. Liu [78] (see

also [84]) introduced a piecewise multiplier method which allows to choose several
observation points, and therefore to handle the above case. Let us denote by xj 2
R
N , j D 1; : : : ; J , these distinct observation points. Introduce disjoint lipschitzian

domains˝j of ˝ , j D 1; : : : ; J , and define

�j .x
j / D fx 2 @˝j ; .x � xj / � �j .x/ � 0g

Here �j stands for the unit outward normal vector to the boundary of ˝j . Then the
piecewise multiplier geometrical condition for ! is :

.PWMGC/
n
! � N"

�
[J
jD1 �j .xj /[ �

˝n [J
jD1 ˝j

��

It will be denoted by (PWMGC) condition in the sequel.
With this method, one can handle the situation in which a vanishes in a

neighbourhood of the two poles of a ball in R
n as follows. One chooses two subsets

˝1 and˝2 containing, respectively, the two regions where a vanishes and apply the
piecewise multiplier method with J D 2 and with the appropriate choices of two
observation points and ".

Let us now present in a few words, the principles of the multiplier method. It
consists of integrating by parts expressions of the form

T

s
t

s
O

�
ut t ��u C a.x/ut

�
M u dx dt D 0 0 � t � T ;

where u stands for a (strong) solution of (1.14), with an appropriate choice of M u.
Multipliers have generally the form

M u D �
m.x/ � ru C c u

�
 .x/ ;

where m depends on the observation points and  is a cut-off function. Other
multipliers of the formM u D ��1.ˇu/, where ˇ is a cut-off function and��1 is the
inverse of the Laplacian operator with homogeneous Dirichlet boundary conditions,
have also been used in the literature (see [44]).
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Theorem 1.4.1. Assume that the geometric conditions (MGC) or (PWMGC) holds.
Let .u0; u1/ 2 V �H be given and denote by u a solution of (1.14) andE its energy.
Then E satisfies an estimate of the form

T

s
t

E.s/ ds � C1E.t/C C2
T

s
t

�
s̋ a.x/jut j2 C s

!

jut j2
�
ds t � 0 : (1.17)

where Ci , i D 1; 2 denote generic positive constants.

Proof. We will prove that the energy of solutions satisfies an estimate of the form
(1.17) using the piecewise multiplier method. We proceed as in [84]. We set just for
commodity

�.x; s/ D a.x/s x 2 ˝ ; s 2 R : (1.18)

Let .u0; u1/ 2 H2.˝/ \ H1
0 .˝/ � H1

0 .˝/. Let "0 < "1 < "2 < " and define for
i D 0; 1; 2:

Qi D N"i

h
[j �j .xj / [ .˝n [j ˝j /

i
(1.19)

Since .˝jnQ1/ \ Q0 D ;, we can construct a function  j 2 C 1
0 .RN / which

satisfies
0 �  j � 1 ;  j D 1 on ˝jnQ1 ; j D 0 onQ0 : (1.20)

We define the C 1 vector field on˝:

h.x/ D
(
 j .x/mj .x/ if x 2 ˝j

0 if x 2 ˝n [j ˝j ;

and the multiplier h � ru. Proceeding as in [84], we consider the expression

T

s
S

s̋
j

h.x/ � ru.u00 ��u C �.x; u0// dx dt D 0 :

For the sake of concision, we will omit the dx dt in the following integrals. This
gives, after appropriate integration by parts

T

s
S

s
�j

�
@�j uh � ru C 1

2
.h � �/.u02 � jruj2

�
D
h

s̋
j

u0h � ru
iT
S

C
T

s
S

s̋
j

�1
2

divh .u02 � jruj2/C
X
i;k

@hk

@xi

@u

@xi

@u

@xk
C �.x; u0/h � ru

�
: (1.21)

Thanks to the choice of  j , only the boundary term on .�jn�j .xj // \ � is
nonvanishing in the left hand side of (1.21). But on this part of the boundary u D 0,
so that u0 D 0 and ru D @�u � D @�j u �j . Hence, the left hand side of (1.21)
reduces to
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1

2

T

s
S

s
.�j n�j .xj //\�

.@�j u/2 j .mj � �j / � 0 : (1.22)

Therefore, since  j D 0 on Q0 and thanks to the above inequality used in (1.21),
we deduce that

h
s̋
j

u0h � ru
iT
S

C
T

s
S

s
˝j nQ0

�1
2
divh .u02 � jruj2/ (1.23)

C
X
i;k

@hk

@xi

@u

@xi

@u

@xk
C �.x; u0/h � ru

�
� 0 :

Using  j D 1 on˝j nQ1 and summing the resulting inequalities on j , we obtain

h
s̋ u0h � ru

iT
S

C
T

s
S

s
˝nQ1

1

2
.N u02 C .2 �N/jruj2/C

T

s
S

s̋ �.x; u0/h � ru (1.24)

� �
X
j

T

s
S

h
s

˝j\Q1

1

2
div. jmj / .u

02 � jruj2/C
X
i;k

@hk

@xi

@u

@xi

@u

@xk

i

� C
T

s
S

s
˝\Q1

.u02 C jruj2/ ;

where C is a positive constant which depends only on  j and mj . We now use the
second multiplier u.N � 1/=2 and therefore evaluate the term

N � 1
2

T

s
S

s̋ u.u00 ��u C �.x; u0// D 0 :

Hence, one has

N � 1
2

Œs̋ uu0	TS C N � 1

2

T

s
S

s̋ jruj2 � u02 C u�.x; u0/ D 0 : (1.25)

We set M.u/ D h � ru C N�1
2

u. Adding (1.25) to (1.24), we obtain

T

s
S

E dt � C
T

s
S

s
˝\Q1

jruj2 C u02 � Œs̋ M.u/u0	TS (1.26)

�
T

s
S

s̋ M.u/�.x; u0/ :

We estimate the terms on the right hand side of (1.26) as follows. First, since E is
nonincreasing, we deduce that
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jŒs̋ M.u/u0	TS j � CE.S/ : (1.27)

We estimate the last term of (1.26) as follows

j
T

s
S

s̋ M.u/�.x; u0/j � C

ı

T

s
S

s̋ j�.x; u0/j2 C ı
T

s
S

E dt 8ı > 0 : (1.28)

The difficulty is now to estimate the first term on the right hand side of (1.26). We
just follow here the usual technique for the wave equation as developed in [84]. We
give the steps for the sake of the completeness. Since RN nQ2\Q1 D ;, there exists
a function 
 2 C 1

0 .RN / such that

0 � 
 � 1 ; 
 D 1 on Q1 ; 
 D 0 on RNnQ2 : (1.29)

Multiplying the first equation of (1.14) by 
u and integrating the resulting equation
on ŒS; T 	 �˝ , we obtain after several integration by parts:

T

s
S

s̋ 
jruj2 D
T

s
S

s̋ 
ju0j2 C 1

2
�
u2 (1.30)

�
h

s̋ 
uu0
iT
S

�
T

s
S

s̋ 
u�.x; u0/ :

Hence, we have

T

s
S

s
˝\Q1

jruj2 � C
T

s
S

s
˝\Q2

ju0j2 C u2 C j�.x; u0/j2 C CE.S/ : (1.31)

Since RNn! \Q2 D ;, there exists a function ˇ 2 C 1
0 .RN / such that

0 � ˇ � 1 ; ˇ D 1 onQ2 ; ˇ D 0 on RNn! : (1.32)

We fix t and consider the solution z of the following elliptic problem:

�z D ˇ.x/u ; x 2 ˝ ; (1.33)

z D 0 on � : (1.34)

Hence, z and z0 satisfy the following estimates:

jzjL2.˝/ � C jujL2.˝/ ; (1.35)

jz0j2
L2.˝/

� C s̋ ˇju0j2 : (1.36)
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Multiplying the first equation of (1.14) by z and integrating the resulting equation
on ŒS; T 	 �˝ , we obtain after integration by parts:

T

s
S

s̋ ˇu2 D
h

s̋ zu0
iT
S

C
T

s
S

s̋ �z0u0 C z�.x; u0/ : (1.37)

Hence, using the estimates (1.35) and (1.36) in the above relation, we have

T

s
S

s
˝\Q2

juj2 � C

�

T

s
S

s
!

ju0j2 C C

�

T

s
S

s̋ j�.x; u0/j2 C �
T

s
S

E

CCE.S/ 8 � > 0 : (1.38)

We now use the estimates (1.27), (1.28), (1.31) and (1.38) in (1.26). This gives

T

s
S

E � CE.S/C Cı
T

s
S

E C C

ı

T

s
S

h
s
!

ju0j2 C s̋ j�.x; u0/j2
i

8 ı > 0 : (1.39)

Choosing ı sufficiently small, we obtain finally

T

s
S

E � CE.S/C C
T

s
S

h
s
!

ju0j2 C s̋ j�.x; u0/j2
i
: (1.40)

Hence, we proved that E satisfies an estimate of the form (1.17). �

Once this estimate is proved, one can use the dissipation relation to prove that
the energy satisfies integral inequalities of Gronwall type. This is easy in the linear
case and is the subject of the next section.

1.4.3 Exponential Decay for Linear Feedbacks

Exponential decay will be deduced from (1.17) using the following linear Gronwall
inequality (see also [56]):

Theorem 1.4.2 (Komornik [65], Theorem 8.1). Let E W Œ0;1/ 7! Œ0;1/ be a
non-increasing function satisfying, for some constant T > 0, the linear Gronwall
inequality

1
s
t

E.s/ ds � TE.t/ ; 8 t � 0 : (1.41)

Then, E satisfies
E.t/ � E.0/e1�t=T ; t � 0 : (1.42)

Proof. Define



1 On Some Recent Advances on Stabilization for Hyperbolic Equations 19

f .t/ D
1
s
t

E.s/ ds ; t � 0 :

Thanks to (1.41), f satisfies

Tf 0.t/C f .t/ � 0 ; 8t � 0 ;

so that

f .t/et=T � f .0/ D
1
s
0

E.s/ ds � TE.0/ :

Hence, we have 1
s
t

E.s/ ds � TE.0/e�t=T ; t � 0 :

Since E is a nonnegative and nonincreasing function

TE.t/ �
t

s
t�T

E.s/ ds �
1
s

t�T
E.s/ ds � TE.0/e�.t�T /=T ;

so that (1.42) is proved. �

Remark 1.4.3. One can remark that for t � T , E.t/ � E.0/e1�t=T .

We can establish:

Theorem 1.4.4. Assume the hypotheses of Theorem 1.4.1. Let .u0; u1/ 2 V �H be
given and denote by u a solution of (1.14) and E its energy. Then E satisfies

E.t/ � C E.0/e�� t 8 t � 0 (1.43)

Proof. Using the dissipation relation (1.15), one has

T

s
t

s̋ ajut j2 dx ds �
T

s
t

�E 0.s/ ds � E.t/ ; 0 � t � T :

On the other hand, thanks to assumption (1.16) on the coefficient a, we have

T

s
t

s
!

u2t dx ds � 1

a0

T

s
t

s̋ ajut j2 dx ds � 1

a0
E.t/ ; 0 � t � T :

By the above inequalities and (1.17),E satisfies

T

s
t

E.s/ ds � cE.t/ ; 8 0 � t � T : (1.44)
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Thanks to Theorem 1.4.2, E decays exponentially at infinity. Extension to initial
data only in the energy space is easy by using density of .H2.˝/\H1

0 .˝//�H1
0 .˝/

in the energy space and on the dissipativity property. �

Remark 1.4.5. An alternative method is to introduce a modified (or perturbed)
energyE" which is equivalent to the natural one for small values of the parameter "
as in Komornik and Zuazua [64]. Then one shows that this modified energy satisfies
a differential inequality so that it decays exponentially at infinity. The exponential
decay of the natural energy follows then at once. In this case, the modified energy
is indeed a strict Lyapunov function for the PDE. The natural energy cannot be
in general such a strict Lyapunov function due to the finite speed of propagation
(consider initial data which have compact support compactly embedded in ˝n!).
There are also very interesting approaches using the frequency domain approach, or
spectral analysis such as developed by Liu [78], Liu and Zheng [79].

In the sequel, we concentrate on the integral inequality method. This method has
been generalized in several directions and we present in this course some results
concerning extensions to

• Nonlinear feedback
• Indirect or single feedback for coupled system
• Memory type feedbacks

1.4.4 The Compactness–Uniqueness Method

We shall present in this part, the compactness–uniqueness method as in
Zuazua [105] (see [91] for the first introduction of compactness arguments), to
prove exponential decay of the energy for solutions of linearly locally damped
semilinear wave equations. This method is used for extension of the previous
results to the semilinear wave equation, that is

8
<
:

ut t ��u C f .u/C a.x/ut D 0 in .0;1/ �˝ ;

u D 0 on .0;1/ � �
.u; ut /.0/ D .u0; u1/ on ˝;

(1.45)

in a bounded connected domain ˝ 
 R
N with a smooth boundary � and where

a 2 L1.˝/ satisfies (1.16) with a0 > 0. We assume that f 2 C 1.R/ satisfies

f .s/s � 0 8 s 2 R : (1.46)

together with the growth condition

(
9 M > 0 ; and p > 1 such that .N � 2/p � N

jf .x/ � f .y/j � M
�
1C jxjp�1 C jyjp�1�jx � yj ; 8 x ; y 2 R

(1.47)
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Under these conditions, the above problem is well-posed in the energy space
H1
0 .˝/ � L2.˝/. We define the energy of solutions by

E.t/ D 1

2
s̋
�
ju0.t/j2 C jru.t/j2

�
dx C s̋ F.u/ dx ; (1.48)

where

F.s/ D
s

s
0

f .y/ dy : (1.49)

For strong solutions, the energy satisfies the following dissipation relation:

E 0.t/ D � s̋ a.x/jut .t; x/j2 dx � 0 : (1.50)

For the sake of concision, we shall present Zuazua’s result in the superlinear case
(see [105] for the globally Lipschitz case), that is when f satisfies in addition

9ı > 0 ; such that f .s/s � .2C ı/F.s/ 8 s 2 R : (1.51)

For an arbitrary point x0 2 R
N , we set m.x/ D x � x0 and define

� .x0/ D fx 2 � ;m.x/ � �.x/ > 0g ; (1.52)

where � is the unit outward normal at � .

Theorem 1.4.6 (Zuazua [105], Theorem 2.1). Assume that a 2 L1.˝/ satisfies
(1.16) with a0 > 0, where ! is a neighbourbood of � . Assume moreover that f 2
C 1.R/ satisfies (1.46)–(1.47) and (1.51). Then there exists � > 0 and C > 0 such
that for any initial data .u0; u1/ 2 H1

0 .˝/ �L2.˝/, the energy satisfies

E.t/ � CE.0/e�� t 8 t � 0 : (1.53)

Proof. Let T > 0 be fixed sufficiently large. Let ˛ 2 R be a positive constant that
will be suitably chosen later on. We use the multiplier M u D .x � x0/ � ru C ˛u
and evaluate by integration by parts the left hand side of

T

s
0

s̋ .ut t ��u C f .u/C aut /Mu dx dt D 0

This gives

h
s̋ .utM u C ˛au2=2/

iT
0

C .N=2� ˛/
T

s
0

s̋ u2t C .1C ˛ �N=2/
T

s
0

s̋ jruj2

C˛
T

s
0

s̋ uf .u/�N
T

s
0

s̋ F.u/C
T

s
0

s̋ autm � ru
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D
T

s
0

1=2 s
�

m � �j@u

@�
j2 �

T

s
0

1=2 s
� .x0/

m � �j@u

@�
j2

Thanks to (1.51), there exists ˛ 2 ..N � 2/=2 ;N=2/ if N > 1 and ˛ 2 .0; 1=2/ if
N D 1 such that

f .s/s � N C �

˛
F.s/ 8 s 2 R :

for a certain � > 0. Using this property together with some standard estimates, we
obtain

T

s
0

E.t/ dt � C
� T

s
0

s
� .x0/

m � �j@u

@�
j2 C

T

s
0

s̋ ajut j2 C j
h

s̋ .utM u C ˛au2=2/
iT
0

j
�

(1.54)

Let e! be a neighbourhood of � .x0/ compactly included in !. Then there exists
a vector field h 2 .W 1;1.˝//N such that h D � on � .x0/, h � � � 0 a.e. on
� and h D 0 in ˝ne! (see [76] for a proof). Moreover there exists a function
� 2 W 1;1.˝/, such that 0 � � � 1 a.e. in ˝ , � D 1 a.e. in e!., � D 0 a.e. in ˝n!,
and jr�j2=� 2 L1.!/ (see [76] for a proof). Using successively the multipliers
h � ru and � u, one can control the L2 norm in L2.Œ0; T 	�� .x0// of the trace of the
normal derivative of u and the L2 norm in L2.Œ0; T 	 �˝/ of jruj. Combining this
with (1.54), we have

T

s
0

E.t/ dt � C
� T

s
0

s
˝

.ajut j2 C u2/C j
h

s
˝

.utMu C ˛au2=2/
iT
0

j C j
h

s
˝

� u.ut C au=2/
iT
0

j

Cj
h

s
˝

ut h � ru
iT
0

j
�

� C1E.T /C C
T

s
0

s
˝

ajut j2 C u2

Since E is nonincreasing, we can bound below the left hand side by TE.T /. Hence
for T sufficiently large, we deduce that

E.T / � C0.ı/
� T

s
0

s̋ .ajut j2 C u2/
�

(1.55)

where the above constant C0.ı/ depends on f only through the constant ı > 0 of
assumption (1.51).

The last term on the right hand side involves theL2 norm of the solution. Using a
contradiction argument based on compactness arguments, we will see that this term
can be absorbed by the first term on the right hand side, that is we will prove that
there exists a positive constant C such that

T

s
0

s̋ u2 � C
T

s
0

s̋ ajut j2 (1.56)
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for all solutions. This result is proved in Zuazua [105]. Argue by contradiction that
(1.56) does not hold. Then, one can build a sequence .un/n of nonvanishing solutions
of (1.45) such that setting �n D jjunjjL2..0;T /�˝/ and vn D un=�n, vn is solution of

�
.vn/t t ��vn C fn.vn/C a.x/.vn/t D 0 in .0;1/ �˝;
vn D 0 on .0;1/� � (1.57)

where

fn.s/ D 1

�n
f .�n s/ 8 s 2 R ;8 n 2 N : (1.58)

Then we can remark that the functions fn satisfies an hypothesis similar to (1.51)
where F is replaced by Fn the primitive of fn which vanishes at 0, and with the
same constant ı than in (1.51). Moreover vn satisfies

jjvnjjL2..0;T /�˝/ D 1 ; (1.59)

and
T

s
0

s̋ aj.vn/t j2 �! 0 (1.60)

Remarking now that vn satisfies an equation similar to (1.45) with f replaced by
fn, the energy of vn satisfies the estimate (1.55) with a constant C0 which still
only depends on ı. Thus, from (1.55) applied to the sequences vn and its energy,
we deduce that .vn/n is bounded in H1..0; T / � ˝/. Hence, we can extract a
subsequence, still denoted by .vn/n such that

8̂
<̂
ˆ̂:

vn �! v weakly in H1..0; T / �˝/
vn �! v strongly in L2..0; T / �˝/
vn �! v a.e. in .0; T / �˝

(1.61)

Moreover, thanks to (1.59)–(1.60), we have

jjvjjL2..0;T /�˝/ D 1 ; (1.62)

and
vt D 0 a.e. in .0; T / � fx 2 ˝; a.x/ > 0g : (1.63)

We prove by contradiction that the sequence .�n/n is bounded. So assume that, up
to subsequence, �n �! 1. Using (1.51), we remark that

F.s/ � min.F.1/; F.�1//jsj2Cı 8 jsj � 1 :

On the other hand, thanks to (1.55) written for vn and its energy and thanks to
the definition of energy, we deduce that the sequence .Fn.vn//n is bounded in
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L1..0; T / �˝/ by a constant C2 > 0. Using these two properties, we obtain

�ın

T

s
0

s
fjvnj���1

n g
jvnj2Cı C

T

s
0

s
fjvnj���1

n g
F.�nvn/ � C2

This implies that
T

s
0

s̋ jvnj2Cı �! 0

which contradicts (1.62). Hence .�n/n is bounded, so that up to a subsequence we
can assume that either that �n �! � > 0 or �n �! 0.

Let us first assume that �n �! � > 0. Since .vn/n is bounded in
L1..0; T /IH1

0 .˝// \ W 1;1..0; T /IL2.˝//, it is relatively compact in
L1..0; T /IH1�".˝// for every " 2 .0; 1/. Since .N � 2/p � N , we deduce that
the sequence .fn.vn//n converges strongly to q D f .� v/=� in L1..0; T /ILr.˝//
for every r � 1. Then, one can pass to the limit in (1.57), and deduce that v satisfies

�
vtt ��v C q.t; x/v D 0 in .0; T / �˝;
v D 0 on .0; T / � �

We set w D vt . Then w satisfies

wtt ��w C f 0.�v/w D 0 : (1.64)

and w 	 0 a.e. in .0; T / � !.
Let us now assume that �n �! 0. In this case, w D vt satisfies (1.64) with

q.t; x/ D f 0.0/. Moreover w 	 0 a.e. in .0; T / � !.
Hence for both cases, w 2 L2..0; T / �˝/ satisfies an equation of the form

wt t ��w C b.t; x/w D 0 : (1.65)

where b � 0 a.e. in ˝ and b 2 L1.0; T; LN .˝// and w 	 0 a.e. in .0; T / � !.
Applying a unique continuation of Ruiz [94], we deduce that if T � diameter of ˝ ,
then w 	 0 in .0; T / �˝ . Thus v D v.x/ 2 H1

0 .˝/ and solves an elliptic equation
of the form

��v C q.t; x/v D 0 in ˝ ;8 t � 0

where q � 0. Thus v 	 0 which contradicts (1.62). Hence we prove that (1.56)
holds for all solutions. Using this in (1.55). We deduce that

E.T / � C1
T

s
0

s̋ ajut j2 D C1.E.0/�E.T // ;

so that
E.T / � �E.0/
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where

� D C1

C1 C 1
2 .0; 1/ :

This together with the semigroup property implies that

E.t/ � CE.0/e�� t 8t � 0 ;

with C D 1C 1=C1 and � D 1
T

ln.C /. �

Remark 1.4.7. In his paper Zuazua’s result is presented in a larger manner, so
that if a unique continuation result is available for the linear wave equation with
nonnegative and time and space dependent potential essentially bounded, then his
compactness–uniqueness method can be used to derive an exponential decay of the
semilinear wave equation. Indeed unique continuation and even more observability
estimates, have been obtained in this latter case by Fu et al. in [54] (see also the
references therein). Hence Zuazua’s result presented above also holds when ! is a
neighbourhood in ˝ of the set � .x0/.

1.5 Nonlinear Stabilization in Finite Dimensions

Abstract We present here the optimal-weight convexity method, introduced in the
infinite dimensional case in (Alabau-Boussouira, Appl. Math. Optim. 51(1):61–
105, 2005), adapted to the finite dimensional case in (Alabau-Boussouira, J.
Differ. Equat. 248:1473–1517, 2010) with optimality results in this latter case.
Hence, we consider in this section the case of nonlinear stabilization for ordinary
differential equations. The aim is to give a complete characterization (optimal) of
the energy decay rates for general damping functions with applications to the semi-
discretization of PDE’s. We will give general tools based on nonlinear Gronwall
inequalities, convexity properties and a key comparison lemma (Alabau-Boussouira,
J. Differ. Equat. 248:1473–1517, 2010) to establish this characterization. This
approach is based on the convexity properties close to 0 of a functionH linked to the
feedback [see (Alabau-Boussouira, Appl. Math. Optim. 51(1):61–105, 2005)] and
on a new criteria to classify the feedbacks’ behavior based on the behavior at 0 of a
functionH introduced for the first time, as far as we know, in (Alabau-Boussouira,
J. Differ. Equat. 248:1473–1517, 2010) . We combine these new mathematical tools
to establish optimal upper energy decay rates and energy comparison principles.
These tools will also be used in the infinite dimensional case combined with the
multiplier method to handle geometrical aspects (see Sect. 1.5).

1.5.1 Nonlinear Gronwall Inequalities

We have already seen in Sect. 1.2 how a linear Gronwall inequality lead to
exponential decay of solution of linearly damped wave equations. For nonlinear
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feedbacks, nonlinear Gronwall inequalities will be useful. The main difficulty is
to identify a suitable weight function for proving weighted nonlinear Gronwall
inequalities, the weight being known only in the peculiar case of polynomially
growing feedbacks close to the origin (see below and Sect. 1.4). Let us first recall
the following polynomial nonlinear Gronwall inequality (see also the references
in [65]).

Theorem 1.5.1 (Komornik [65], Theorem 9.1). Let E W Œ0;1/ 7! Œ0;1/ be
a non-increasing function satisfying, for some constants r > 0 and T > 0, the
nonlinear Gronwall inequality

1
s
t

ErC1.s/ ds � TEr.0/E.t/ ; 8 t � 0 : (1.66)

Then, E satisfies

E.t/ � E.0/
� T C r t

T C r T

��1=r
(1.67)

Proof. The result clearly holds for the case E.0/ D 0. Assume that E.0/ ¤ 0.
Replacing E by E=E.0/, we can assume without loss of generality that E.0/ D 1.
We define a function F W Œ0;1/ 7! Œ0;1/ by

F.t/ D
1
s
t

ErC1.s/ ds :

Differentiating F and using (1.66), we have

�F 0 � T �r�1F rC1 a.e. on .0;1/

Set TC D supft � 0;E.t/ > 0g. Then, using the inequality

F.0/ � TE.0/rC1 ;

we deduce that

F.s/ � T .rC1/=r .T C rs/�1=r 8 s 2 Œ0; TC/ : (1.68)

Moreover, since F 	 0 on ŒTC;1/, this last inequality holds for every s � 0.
Thanks to the fact that E is nonnegative and nonincreasing, we have

F.s/ �
TC.rC1/s

s
s

ErC1 dt � .T C rs/ErC1.T C .r C 1/s/

Using (1.68) in this last inequality and setting t D T C .r C 1/s, we obtain (1.67).
�
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The weight function in the above nonlinear Gronwall type inequality is given by
w.E/where w.s/ D sr for s � 0. To study energy decay rates for general feedbacks,
and not only linear or polynomial growing feedbacks, one needs to prove more
general nonlinear Gronwall inequalities, which generalizes the case of polynomial
growing feedbacks. To state the results, we need to introduce some notation. Let
� > 0 and T0 > 0 be fixed given real numbers and L be a strictly increasing
function from Œ0;C1/ on Œ0; �/, with L.0/ D 0 and lim

y!C1L.y/ D �. We define

as in Alabau-Boussouira [17, 18] and for any r 2 .0; �/, a function Kr from .0; r	

on Œ0;C1/ as follows

Kr.�/ D
r

s
�

dy

yL�1.y/
; (1.69)

and  r which is a strictly increasing onto function defined from Œ 1
L�1.r/

;C1/ on

Œ 1
L�1.r/

;C1/ by:

 r.z/ D z CKr.L.
1

z
// � z ; 8 z � 1

L�1.r/
; (1.70)

so that lims!1  �1
r .s/ D 1. Then we prove the following result.

Theorem 1.5.2 (Alabau-Boussouira [17]). We assume that E is a nonincreasing,
absolutely continuous function from Œ0;C1/ on Œ0;C1/, satisfying 0 < E.0/ < �
and the inequality

T

s
S

E.t/L�1.E.t// dt � T0E.S/ ; 8 0 � S � T : (1.71)

Then E satisfies the following estimate:

E.t/ � L
� 1

 �1
r . t

T0
/

�
; 8 t � T0

L�1.r/
; (1.72)

where r is any real such that

1

T0

C1
s
0

E.�/L�1.E.�// d� � r � � :

Thus, we have lim
t!C1E.t/ D 0, the decay rate being given by the estimate (1.72).

Proof. We define a function k and a functionM by

k.t/ D
C1
s
t

M.E.�// d� ; 8 t � 0 ; (1.73)
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whereM is given by

M.y/ D yL�1.y/ ; 8 y � 0 : (1.74)

Then, thanks to (1.71), we have

k.t/ � T0E.t/ ; 8 t � 0 : (1.75)

Moreover, since L�1 is a strictly nonnegative function,M is an increasing nonneg-
ative function. Thus, differentiating (1.73), and using (1.75), we deduce that

�k0.s/ D M.E.s// � M
�k.s/
T0

�
; 8 s � 0 ;

Integrating this last inequality between 0 and t and making the change of variable

y D k.t/

T0

in the above integral, we obtain

B

s
k.t/
T0

dy

M.y/
� t

T0
; 8 t � 0 ;

where B is defined by

0 < B D 1

T0

C1
s
0

E.�/L�1.E.�// d� � E.0/ < � :

Since M is positive on .0; �	, we deduce that for all r 2 ŒB; �	, we have

r

s
k.t/
T0

dy

M.y/
� t

T0
; 8 t � 0 ; (1.76)

Thanks to the definition of Kr and since L�1 is strictly increasing on Œ0; �/, we
deduce that for all r 2 ŒB; �/ and all � 2 .0; r	, we have

1

L�1.r/

�
ln r � ln �

�
� Kr.�/ ; 8 0 < � � r :

Hence, lim
�!0C

Kr.�/ D C1 holds. Thus, Kr is a strictly decreasing function from

.0; r	 onto Œ0;C1/. This, together with (1.76), give the estimate
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k.t/ � T0K
�1
r .

t

T0
/ ; 8 t � 0 :

In particular, since M is increasing and nonnegative on Œ0; �/, whereas E is
nonincreasing, we deduce that

�M
�
E.t C �/

�
�

tC�
s
t

M.E.�// d� � k.t/ � T0K
�1
r .

t

T0
/ ; 8 t � 0 ;8 � > 0 :

(1.77)
Hence, we have the following estimate

E.t/ � M�1
�

min
�2.0;t 	.T0�t .�//

�
; 8 t > 0 ; (1.78)

where we set

�t .�/ D 1

�
K�1
r

�
t � �
T0

�
; 8 � 2 .0; t 	 : (1.79)

Let now t > 0 be fixed for the moment. Thus, �? is a critical point of �t , if and only
if it satisfies the relation:

K�1
r

�
t � �?
T0

�
C �?

T0K 0
r

�
K�1
r . t��?

T0
/
� D 0 :

Hence, using the definition of M and of  r , �? is a critical point of �t , if and only
if it satisfies

 r

��?
T0

�
D t

T0
;

Noticing that  r is strictly increasing and onto from Œ
1

L�1.r/
;C1/ on

Œ
1

L�1.r/
;C1/, we deduce that for all t � T0

1
L�1.r/

, �t has a unique critical

point �.t/ at which it attains a minimum. This point �.t/ is given by:

�.t/ D T0 
�1
r .

t

T0
/ : (1.80)

Moreover, thanks to the definition of �.t/, we remark that

M�1.T0�.�.t// D K�1
r

� t � �.t/
T0

�
D L

� T0
�.t/

�
:

Thus, using these identities in (1.78), together with (1.80), we obtain (1.72).
Remarking now that,  �1

r .�/ ! C1 as � ! C1 and since L is continuous at
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0 with L.0/ D 0, we deduce that lim
t!C1L

� 1

 �1
r . t

T0
/

�
D 0. So that the upper bound

in (1.72) goes to 0 as time goes to 1. �
The function L above will be chosen later on in an optimal way using convexity

arguments. We recall some definitions and introduce some notation for convex
functions. We recall that if � is a proper convex function from R on R [ fC1g,
then its convex conjugate �? is defined as:

�?.y/ D sup
x2R

fxy � �.x/g :

Most of the properties given below, are established in [17] but in a somehow
different context. We prefer therefore to reformulate the requested results for clarity
in the next proposition, which proof is left to the reader.

Theorem 1.5.3. LetH be a given strictly convex C 1 function from Œ0; r20 	 to R such
that H.0/ D H 0.0/ D 0, where r0 > 0 is sufficiently small. We define

bH.x/ D
�
H.x/ , if x 2 Œ0; r20 	 ;
C1 , if x 2 R � Œ0; r20 	 ;

(1.81)

and

L.y/ D
8
<
:
bH?.y/

y
, if y 2 .0;C1/ ;

0 , if y D 0 ;

(1.82)

where bH? stands for the convex conjugate function of bH . We also define a function
H on .0; r20 	 by

H.x/ D H.x/

xH 0.x/
: (1.83)

Then the following properties hold:

• L is the strictly increasing continuous onto function from Œ0;C1/ on Œ0; r20 /
given by:

L.y/ D

8̂
<̂
ˆ̂:

.H 0/�1.y/� H..H 0/�1.y//
y

, if y 2 Œ0;H 0.r20 /	 ;

r20 � H.r20 /

y
, if y 2 ŒH 0.r20 /;C1/ :

(1.84)

• L is differentiable on .0;H 0.r20 // and

L0.v/ D H..H 0/�1.v//
v2

; v 2 .0;H 0.r20 // (1.85)
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• L satisfies also

L.v/ D .H 0/�1.v/
�
1 �H

�
.H 0/�1.v/

��
; (1.86)

and in particular
L.H 0.r20 // � r20 : (1.87)

• H.x/ 2 Œ0; 1	 for all x 2 Œ0; r20 	
• Moreover all the above results are still valid in the case r0 D 1 replacing the

closed right intervals by open right intervals of extremity C1. In particular
replacingH 0.r20 / by 1.

Remark: The assumptions on H can be relaxed. In particular, the above
definitions still make sense if H is only assumed to be convex in a neighborhood of
0, to vanish at 0 and to be nonnegative in a neighborhood of 0. But in this latter case,
no explicit decay rates will be found. We prefer here to give sufficient conditions
which lead to explicit and simple optimal energy decay rates under still very general
assumptions on the feedbacks. Depending on the behavior of the functionH at the
origin, we can establish a simple explicit upper estimate of the energy decay rates.
We refer to [8] for more results.

Theorem 1.5.4 (Alabau-Boussouira [8]). Let H be a given strictly convex C 1

function from Œ0; r20 	 to R such that H.0/ D H 0.0/ D 0, where r0 > 0 is
sufficiently small. We define bH by (1.81), L by (1.82) and H by (1.83). Let E
be a given nonincreasing, absolutely continuous, nonnegative real function defined
on Œ0;C1/, T0 > 0 be a fixed real number and ˇ > 0 a given real number such
that E satisfies the nonlinear Gronwall inequality

T

s
S

E.t/L�1.
E.t/

2ˇ
/ dt � T0E.S/ ; 8 0 � S � T : (1.88)

under the condition

0 <
E.0/

2L.H 0.r20 //
� ˇ ; (1.89)

Then, if lim supx!0C H.x/ < 1, E decays at infinity as follows:

E.t/ � 2ˇ.H 0/�1
�DT0
t

�
; (1.90)

for t sufficiently large and whereD is a positive constant which does not depend on
E.0/. Otherwise, we have the following general decay rate

E.t/ � 2ˇL
� 1

 �1
r . t

T0
/

�
; 8 t � T0

H 0.r20 /
; (1.91)
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where

 r.x/ D 1

H 0.r20 /
C

H 0.r20 /s
1
x

1

v2
�
1 �H

�
.H 0/�1.v/

�� dv ; x � 1

H 0.r20 /
: (1.92)

Finally all the above results are still valid in the case r0 D C1 removing the
condition (1.89) and replacing respectively H 0.r20 / by 1 and 1=H 0.r20 / by 0 in
(1.92).

Proof. We set

bE.t/ D E.t/

2ˇ
:

Using (1.88), bE satisfies (1.71). Then, since E is nonincreasing, and thanks to
Proposition 1.5.3 applied to bE, we deduce that

bE.t/ � bE.0/ � L.H 0.r20 // D r20 � H.r20 /

H 0.r20 /
< r20 : (1.93)

We set � D r20 and define L as in Proposition 1.5.3. Then, L is a strictly increasing
onto function from Œ0;C1/ on Œ0; �/. We define B by

0 < B D 1

T0

C1
s
0

bE.�/L�1.bE.�// d� � bE.0/ < � : (1.94)

We also set r D L.H 0.r20 //. Then, thanks to (1.93) and (1.94), r 2 ŒB; �/. Thus, bE
satisfies the hypotheses of Theorem 1.5.2 with r and B defined as above, so that the
following estimate holds

bE.t/ � L
� 1

 �1
r . t

T0
/

�
; 8 t � T0

H 0.r20 /
; (1.95)

where  r is defined in (1.70) and Kr is defined by (1.69). Making the change of
variable v D L�1.y/ in (1.69) and using the formulas (1.85) and (1.86), we obtain

x �  r.x/ D x CKr.L.
1

x
// D x C

H 0.r20 /s
1
x

H

�
.H 0/�1.v/

�

v2
�
1 �H

�
.H 0/�1.v/

�� dv

D 1

H 0.r20 /
C

H 0.r20 /s
1
x

1

v2
�
1 �H

�
.H 0/�1.v/

�� dv ; x � 1

H 0.r20 /

(1.96)

We deduce easily estimate (1.91) in the general case.



1 On Some Recent Advances on Stabilization for Hyperbolic Equations 33

We now assume that lim supx!0C H.x/ < 1. Thus, there exists 0 < 2"0 <

1 � lim supx!0C H.x/ and there exists ı > 0 such that

1

1 �H.x/
<
1

"0
; 8 x 2 .0; ı	 :

Using this upper bound with x D .H 0/�1.v/ in (1.96), we deduce that

 r.x/ � 1

H 0.r20 /
C 1

"0

H 0.ı/

s
1
x

1

v2
dv C

H 0.r20 /s
H 0.ı/

1

v2
�
1 �H

�
.H 0/�1.v/

�� dv :

� Dx ; for x sufficiently large ; (1.97)

where D is a positive constant which depends on r0 and ı. Since  r is strictly
increasing, we deduce that

1

 �1
r . t

T0
/

� DT0

t
; for t sufficiently large :

Thanks to the definition of bE, estimate (1.95), formula (1.86) and since L is
an increasing function and H is a nonnegative function, we obtain the desired
estimate (1.90). �
Remark 1.5.5. Note also that for general types of dampings, the required weight
function L�1 is not defined on all R

C. This is not surprising in view of this
degree of generality. This makes the exposition more technical. A clear exposition
of the optimal results and previous results in the literature in the linear and
polynomial cases is given in [65]. Convexity properties for general feedbacks have
been first introduced in the context of damped hyperbolic PDE’s by Lasiecka and
Tataru [70], who used an ODE approach rather than integral inequalities. Liu
and Zuazua [80] and Martinez [85], and Eller Lagnese and Nicaise for Maxwell
equations used convexity properties in different ways. A more general nonlinear
Gronwall inequality than stated above is proved in [17] (see also [18]).

1.5.2 A Comparison Lemma

The following result will be determinant for optimality results and energy compari-
son principles as introduced in [7, 8].

Theorem 1.5.6 (Alabau-Boussouira [8]). Let H be a given strictly convex C 1

function from Œ0; r20 	 to R such that H.0/ D H 0.0/ D 0, where r0 > 0 is sufficiently
small and define H as in (1.83). Let z be the solution of the ordinary differential
equation:

z0.t/C � H.z.t// D 0 ; z.0/ D z0 t � 0 ; (1.98)
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where z0 > 0 and � > 0 are given. Then z.t/ is defined for every t � 0 and decays
to 0 at infinity. Moreover assume that either

0 < lim inf
x!0

H.x/ � lim sup
x!0

H.x/ < 1 ; (1.99)

or that there exists � > 0 such that

0 < lim inf
x!0

�H.�x/
�x

z1s
x

1

H.y/
dy
�
; and lim sup

x!0

H.x/ < 1 ; (1.100)

for a certain z1 2 .0; z0	 (arbitrary). Then there exists T1 > 0 such that for allR > 0
there exists a constant C > 0 such that

.H 0/�1
�R
t

�
� C2 z.t/ ; 8 t � T1 : (1.101)

Remark 1.5.7. This lemma allows us to compare time-pointwise estimates to
energy types estimates. The upper estimates obtained by the optimal-weight con-
vexity method are time-pointwise estimates, whereas the lower estimates derived
by an energy comparison principle are in an energy formulation. To get optimality
results, it is essential to be able to compare these two kind of estimates. The above
comparison Lemma is the key to perform this comparison. It will also be useful to
get lower estimates for infinite dimensional systems which can be compared to the
upper estimates.

The proof of this result relies on the two next propositions. Their proofs is given
in Alabau-Boussouira [8].

Proposition 1.5.8. Let H be a given strictly convex C 1 function from Œ0; r20 	 to R

such that H.0/ D H 0.0/ D 0, where r0 > 0 is sufficiently small and define H as
in (1.83). Then if �C D lim supx!0 H.x/ < 1, there exist �C 2 .�C; 1/ and ı > 0
such that, the function

x 7! x�1=�CH.x/ is increasing on .0; ı	 : (1.102)

Proposition 1.5.9. Let H be a given strictly convex C 1 function from Œ0; r20 	 to R

such that H.0/ D H 0.0/ D 0, where r0 > 0 is sufficiently small and define H as
in (1.83). We define the application � by

�.x/ D H.x/

x

z0s
x

1

H.y/
dy ; x 2 .0; z0	 ; (1.103)

where z0 > 0 is an arbitrary real number. Then if

lim inf
x!0

H.x/ > 0 ; (1.104)
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there exists ı > 0 and �� > 0 such that � satisfies the following estimate

�� � �.x/ ; x 2 .0; ı	 : (1.105)

Proof (of Theorem 1.5.6). Thanks to (1.98), z satisfies

t D 1

�

z.0/

s
z.t/

1

H.y/
dy (1.106)

Moreover, thanks to our hypotheses on H , z is a positive, decreasing function from
Œ0;1/ onto .0; z.0/	. In particular z decays to 0 as t goes to 1. Thanks to (1.98),
we have the relation

�.z.t// D � t
H.z.t//

.z.t//
; 8 t � 0 : (1.107)

Since, z decays to 0 as t goes to 1, for all ı > 0, there exists T1 > 0 such that
0 < z.t/ � ı for all t � T1.

Assume first that (1.99) holds: Then (1.105) of Proposition 1.5.9 holds for a
certain sufficiently small ı > 0. Combining this with the above property of z, we
deduce that

�� 1

� t
� H.z.t//

.z.t//
; 8 t � T1 : (1.108)

Thanks to the last inequality of (1.99), there exists �C > 0 such that (1.102) holds.
We choose a constant C such that

C2 � max.1;
�� R
��

� �C
1��C / (1.109)

Thanks to Proposition 1.5.8 and to C � 1, and using (1.108), we obtain

�� 1

� t
� H.z.t//

.z.t//
� H.C2z.t//

.C 2z.t//
C 2.1�1=�C/ ; 8 t � T1 :

Thanks to our choice of C in (1.109), and to the convexity of H , we obtain

R � t
H.C 2z.t//

.C 2z.t//
� t H 0.C 2z.t// ; 8 t � T1 :

Since H 0 is an increasing function, we have

�
H 0��1�R

t

�
� C2z.t/ ; 8 t � T1 :

Thus our claim is proved in the case where (1.99) holds.
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Assume now that (1.100) holds: Then there exists � > 0, �0 > 0 and ı > 0

such that

�0 <
�H.�x/

�x

z.0/

s
x

1

H.y/
dy
�
; 8 x 2 .0; ı	 : (1.110)

Since, z decays to 0 as t goes to 1, there exists as before, T1 > 0 such that 0 <
z.t/ � ı for all t � T1. Combining this with the above inequality and using the
relation (1.106), we deduce that

�0

� t
� H.�z.t//

�z.t/
; 8 t � T1 : (1.111)

Thanks to the last inequality of (1.100), there exists �C > 0 such that (1.102) holds.
We choose a constant C such that

C2 � max
�
�;�

�R�
�0

� �C
1��C

�
(1.112)

thanks to Proposition 1.5.8 and since C � �, we have

�C2

�

�.1��C/=�C �0

� t
� H.C2z.t//

.C 2z.t//
; 8 t � T1 :

Thanks to our choice of C in (1.112), and to the convexity of H , we obtain the
desired estimate (1.101) as before. �

1.5.3 Energy Decay Rates Characterization: The Scalar Case

We consider the scalar case:

u00 C � u C f .u/C �.u0/ D 0 : (1.113)

where � > 0 and u is a scalar unknown. We set

F.s/ D
s

s
0

f .�/ d� ; (1.114)

and assume that

9 Q� > 0 such that 0 � F.s/ � Q�sf .s/ ; 8 s 2 R : (1.115)

We define the energy of a solution u as:

E.t/ D 1

2

�
ju0.t/j2 C � ju.t/j2

�
C F.u/ : (1.116)
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Thanks to our assumption (1.115), the energy is nonnegative on the maximal interval
of existence of solutions. We assume that the feedback satisfies the assumption

.HS1/

8
ˆ̂̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂:

� 2 C .R/ ; is monotone increasing ; �.0/ D 0 ;

9 a strictly increasing odd function g such that

c jsj � j�.s/j � C jsj ; 8jsj � 1 ;

c g.jsj/ � j�.s/j � C g�1.jsj/ ; 8 jsj � 1 ;

9r0 > 0 such that g 2 C 1.Œ0; r0	/; g.0/ D g0.0/ D 0 ;

where g�1 denotes the inverse function of g and where c ; C are positive constants.

Remark 1.5.10. The assumption of linear growth at infinity is made for the sake
of simplicity. It can be removed using Dafermos’ strong stabilization [46] (see
Sect. 1.1).

Define v as the solution of the ordinary differential equation:

v0.t/C g.v.t// D 0 ; v.0/ D p
2E.0/; t � 0 : (1.117)

Note that this ODE is also considered in [101] in the case of a one-dimensional
nonlinearly boundary damped wave equation, for which the authors can establish
some comparison properties for peculiar initial data and for certain sequences of
time going to infinity. The characterization below is new and more general. Note
also that the characterization below is known in the case of polynomial feedbacks
and is due to Haraux [60]. In the general case, we prove

Theorem 1.5.11 (Alabau-Boussouira [8]). Assume that f is a continuous and
locally Lipschitz function on R which satisfies (1.115), and that � D g satisfies
.HS1/. We define a functionH by

H.x/ D p
x g.

p
x/ ; x 2 Œ0; r20 	 (1.118)

and assume that H is strictly convex on Œ0; r20 	. We also define bH by (1.81), L by
(1.82) andH by (1.83). Let .u0; u1/ 2 R

2, satisfying 0 < ju1j C ju0j be given, u be
the solution of the Cauchy problem (1.113) corresponding to this initial data, and
E be its energy. Assume that either

0 < lim inf
x!0

H.x/ � lim sup
x!0

H.x/ < 1 ;

or that there exists � > 0 such that

0 < lim inf
x!0

�H.�x/
�x

z1s
x

1

H.y/
dy
�
; and lim sup

x!0

H.x/ < 1 ;
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for a certain z1 2 .0; z0	 (arbitrary). Then the energy of solution of satisfies the
estimate

E.t/ D O.v2.t// D O
�
.H 0/�1.

1

t
/
�
; uniformly for large time

Remark 1.5.12. We refer to [8] for more general results.

For the sake of clearness, the proof of this theorem is divided in three lemmas. The
first Lemma below establishes an energy comparison principle and allows us to give
a lower estimate of the energy of the solutions.

Lemma 1.5.13 (An energy comparison principle). (Alabau-Boussouira [8])
Assume that f is a continuous and locally Lipschitz function on R which
satisfies (1.115), and that � D g satisfies .HS1/. Moreover assume that H is
increasing and H.0/ D 0. Let u be a solution of (1.113) and E be its energy. Then
the following lower estimate holds

1

2
v2.t/ � E.t/ ; 8 t � 0 ; (1.119)

where v is the solution of (1.117).

Remark 1.5.14. The above lower estimate does not require the hypotheses on the
behavior of H in a neighbourhood of 0.

Proof. Thanks to the dissipation relation (1.122), and to our assumptions on g, we
have

�E 0.t/ � u0.t/g.u0.t// D H
�
.u0/2

�
; 8 t � 0 :

Hence, thanks to (1.117), we have

�v2

2
�E

�0
.t/ D H

�
.u0/2

� �H
�
.v.t//2

� � H.2E.t// �H
�
.v.t//2

�
; 8 t � 0 ;

and
v2.0/ D 2E.0/ :

Since H is strictly increasing on R, we deduce easily by comparison principles for
ODE’s that (1.119) holds. �

Lemma 1.5.15. Assume that f is a continuous and locally Lipschitz function on R

which satisfies (1.115), and that � satisfies .HS1/. We assume that H defined by
(1.118) is strictly convex on Œ0; r20 	. We also define bH by (1.81), L by (1.82) andH

by (1.83). Let .u0; u1/ 2 R
2, satisfying 0 < ju1j C ju0j be given, u be the solution of

the Cauchy problem (1.113) corresponding to this initial data, and E be its energy.
Assume that lim supx!0C H.x/ < 1, then E decays at infinity as

E.t/ � 2ˇ.H 0/�1.
D

t
/ (1.120)
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for t sufficiently large, where ˇ D ˇ. Q�; �; r0; E.0// D ˇE.0/ is an explicit constant
(see [8] for the explicit expression).

Proof. Set

� D min
�
1;

1

2 Q�
�
: (1.121)

E 0.t/ D �u0.t/ �.u0.t// � 0 : (1.122)

Thanks to this dissipation, we can note that the solutions of (1.113) are defined for
all t � 0. We set

w.s/ D L�1.
s

2ˇ
/ 8 s 2 Œ0; 2ˇr20 / : (1.123)

Then, w is a nonnegative C 1 and strictly increasing function defined from Œ0; r20 /

onto Œ0;C1/whereL is given by (1.84) and where ˇ D ˇE.0/ is an explicit constant
depending (see [8]). We multiply (1.113) by w.E.t//u.t/ and integrate the resulting
equation on ŒS; T 	. Since E is nonincreasing, w is nondecreasing and thanks to our
assumption (1.115) on f , this gives

�
T

s
S

Ew.E/ dt �
T

s
S

w.E/ju0j2 dt � 1

2

T

s
S

w.E/�.u0/u

C1

2

T

s
S

w0.E/E 0u0u dt � 1

2

h
w.E/u0u

iT
S

�
T

s
S

w.E/ju0j2 dt C 1

4��

T

s
S

w.E/j�.u0/j2 dt

C��

4

T

s
S

w.E/juj2 dt C 1p
�
E.S/w.E.S// ; 8 0 � S � T :

where � is defined by (1.121). Thus, we have

T

s
S

Ew.E/ dt � 2

�

T

s
S

w.E/ju0j2 dt C 1

2��2

T

s
S

w.E/j�.u0/j2 dt (1.124)

C 2p
��
E.S/w.E.S// ; 8 0 � S � T :

We first assume that r0 < 1. We proceed as in [17]. We first remark that thanks to
.HS1/, we have (up to the positive constants c and C , which may change)

(
c jsj � j�.s/j � C jsj ; 8jsj � r0 ;

c g.jsj/ � j�.s/j � C g�1.jsj/ ; 8 jsj � r0 ;
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Step 1: Estimate of the linear kinetic energy
For ju0j � r0, we have

H.ju0j2/ D ju0jg.ju0j/ � 1

c
u0�.u0/ :

This, together with Young’s inequality imply

w.E/ju0j2 � bH?
�
w.E/

�CH.ju0j2/ � bH?
�
w.E/

�C 1

c
u0�.u0/ ; for ju0j � r0 :

On the other hand, we have

w.E/ju0j2 � 1

c
w.E/u0�.u0/ ; for ju0j � r0 :

Combining the above two inequalities and the dissipation relation, we obtain

T

s
S

w.E/ju0j2 dt �
T

s
S

bH?
�
w.E/

�
dtC 1

c

	
1C w.E.S//



E.S/ ; 8 0 � S � T :

(1.125)
Step 2: Estimate of the nonlinear kinetic energy
For ju0j � r0, we have, thanks to Young’s inequality

w.E/
j�.u0/j2
C 2

� bH?
�
w.E/

�CH
�ˇ̌
ˇ�.u

0/
C

ˇ̌
ˇ
2�

� bH?
�
w.E/

�C 1

C
u0�.u0/ ; for ju0j � r0 :

On the other hand, we have

w.E/j�.u0/j2 � Cw.E/u0�.u0/ ; for ju0j � r0 :

Combining the above two inequalities and the dissipation relations, as above, we
have

T

s
S

w.E/j�.u0/j2 dt � C2
T

s
S

bH?
�
w.E/

�
dt (1.126)

CC 	1C w.E.S//


E.S/ ; 8 0 � S � T :

Using (1.125)–(1.126) in (1.124), we obtain the estimate

T

s
S

Ew.E/ dt � ˇ
T

s
S

bH?
�
w.E/

�
dt C

�
2p
��

C 2

�c
C C

2��

�
(1.127)

	
1C w.E.S//



E.S/ ; 8 0 � S � T ;
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where ˇ can be easily computed. Moreover, one can check that

E.0/

2ˇ
� L.H 0.r20 // D r20 .1 �H.r

2
0 // ;

so that

w.E.S// � L�1.
E.0/

2ˇ
/ � H 0.r20 / ; 8 0 � S : (1.128)

Thanks to the definition of our weight function w, we have

ˇbH?
�
w.E/

� D Ew.E/

2
:

Using this last relation in (1.127), together with (1.128), we deduce that

T

s
S

EL�1.
E

2ˇ
/ dt � T0 E.S/ ; 8 0 � S � T ; (1.129)

where T0 D T0. Q�; �; r0/ is an explicit constant which can easily be computed
(see [8] for the explicit expression). We conclude the proof by applying
Theorem 1.5.4 in the case r0 < 1. The proof for r0 D 1 can be found in [8].

�

Lemma 1.5.16. Assume the hypotheses of Theorem 1.5.11. Then, we have

E.t/ � C2v
2.t/ for t sufficiently large ; (1.130)

where C2 is a positive constant.

Proof. For both cases (1.99) or (1.100), the assumption lim supx!0 H.x/ < 1

holds, so that we can apply Lemma 1.5.15. Thus, (1.90) holds for t � T2 for a
sufficiently large T2. On the other hand, setting z.t/ D v2.t/ for all t � 0, then
z satisfies the ODE (1.117) with � D 2 and z0 D 2E.0/. Since we assume that
either (1.99) or (1.100) holds, we can apply Lemma 1.5.6. Thus the upper estimate
of (1.130) is proved with C2 D 2ˇC 2. �

Proof (of Theorem 1.5.11). Thanks to Lemma 1.5.13, Lemma 1.5.15 and
Lemma 1.5.16, we have

1

2
v2.t/ � E.t/ � 2ˇ.H 0/�1.

D

t
/ � C2v

2.t/ for t sufficiently large ;

which gives the desired result. �

Remark 1.5.17. The lower estimate in Lemma 1.5.13 [8] establishes an energy
comparison principle between the solution of the second order nonlinear oscillator
type equation (1.113) and the first order nonlinear differential equation (1.117). The
inequality (1.130) states that the energy of the nonlinear oscillator is bounded below
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by the energy of the first order ODE (1.117). The notion of this energy principle is
new, as far as we know. It consists in comparing the dissipation of energies for these
two ODE’s.

1.5.4 The Vectorial Case and Semi-discretized PDE’s

The extension of the former results to a vectorial case is motivated by discretization
of hyperbolic dissipative systems. The proofs of the results given below are given
in [8]. Let us consider a frictional dissipative wave equation in the one-dimensional
space domain .0; 1/.

8
ˆ̂<
ˆ̂:

ut t .t; x/ � uxx.t; x/C f .x; u.t; x//C �.x; ut .t; x// D 0 ; 0 < t; 0 < x < 1 ;

u.t; x/ D 0 ; for x D 0; x D 1; 0 < t ;

u.0; x/ D u0.x/ ; ut .0; x/ D u1.x/ ; 0 < x < 1 :

(1.131)

We assume that this system is dissipative, thus � is monotone nondecreasing with
respect to the second variable and �.:; 0/ D 0. A semi-discretization of the above
equation in space, with for instance a uniform mesh xi D i h for i D 0; : : : ; nC 1

with a parameter of discretization h D 1=.nC1/, gives the finite dimensional system

8̂
<̂
ˆ̂:

u00
i � uiC1 C ui�1 � 2ui

h2
C fi .ui /C �i .u

0
i / D 0 ; 0 < t; i D 1; : : : ; n ;

u0.t/ D unC1.t/ D 0 ; 0 < t ;

ui .0/ D ui;0 ; u0
i .0/ D ui;1 ; i D 1; : : : ; n ;

(1.132)

where ui is a function of t which stands for an approximation of the solution u at
point xi and where fi .s/ D f .xi ; s/ and �i .s/ D �.xi ; s/ for all s 2 R. Thanks
to our assumption that the system (1.131) is dissipative, we check easily that its
discretized version (1.132) is also dissipative. Several questions raise. In the case of
linear dissipation, the energy of the above semi-discretized wave equation decays
exponentially. Zuazua [96] proved that the above discretization does not lead to
uniform decay rates with respect to the parameter h of discretization. Hence, the
exponential decay rate of the discretized energy is not uniform with respect to
h. These results are strongly related to observability estimates for the undamped
equation, which are not uniform with respect to h. This goes back to the pioneering
work of Glowinski Li and Lions [55] (see also [63]). This phenomenon is due to high
frequency numerical spurious oscillations. Tebou and Zuazua [96] (see the review
by Zuazua in [107]) proved that if one adds a suitable numerical viscosity which
vanishes as the discretization parameter goes to 0, then the corresponding energy
of the solution of the new scheme decays exponentially uniformly with respect to
h. Recently, adapted numerical schemes have been proposed by Zuazua–Ervedoza
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[52], Münch–Pazoto [87] (see also the references therein). The semi-discretization
of the nonlinear dissipative case has not been considered as far as we know. A first
step is to obtain sharp, if possible optimal, upper energy decay rates for fixed
discretization parameters. Hence, our motivation is to extend the optimal energy
decay rates for nonlinear dissipation to the discretized system. The system (1.132)
can be written in the abstract finite dimensional form given by

u00 C Au C f .u/C �.u0/ D 0 : (1.133)

where the unknown u 2 R
n, f and �i are defined as above and where the matrix A

is given by

A D h�2

0
BB@

2 �1 0 : : : 0

�1 2 �1 : : : 0
: : : : : : : : : : : : : : :

0 : : : 0 �1 2

1
CCA

Remark 1.5.18. A similar formulation holds for other hyperbolic equations, such as
Petrowsky equation for instance (see [8]).

We denote respectively by h ; i and j � j the euclidian scalar product and norm in
R
n. We also denote by v D .v1; : : : ; vn/ vectors in R

n. Let A be a real symmetric
definite positive matrix of order n. Thus, there exists ˛0 > 0 such that

jA1=2
j2 � ˛0j
j2 ;8 
 2 R
n : (1.134)

We assume that the feedback has the form:

� W v D .v1; : : : ; vn/ 2 R
n 7! �

g1.v1/; : : : ; gn.vn/
�
:

We also assume that f is a vectorial function of the form:

f .u/ D .f1.u1/; : : : ; fn.un// ; 8 u D .u1; : : : ; un/ 2 R
n :

We define the energy of a solution of (1.133) by

E.t/ D 1

2

�ju0.t/j2 C jA1=2u.t/j2�C F.u/ : (1.135)

where

F.u/ D
nX
iD1

Fi .ui / ;

with

Fi .ui / D
uis
0

fi .�/ d� :

We assume that the semilinearity satisfies

9 Q� > 0 such that 0 � F.
/ � Q�h
 ; f .
/i ; 8 
 2 R
n : (1.136)
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Theorem 1.5.19 (Alabau-Boussouira [8]). Assume that f is continuous and
locally Lipschitz on R

n and satisfies (1.136). Assume also that the functions gi
satisfy

.HOV1/

8
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
:̂

gi 2 C .R/ and is monotone increasing

s gi .s/ � 0 ; 8 s 2 R ;8 i D 1; : : : ; n

9 a strictly increasing odd function g such that

cjsj � jgi .s/j � C jsj ; 8jsj � 1 ; s 2 R ;

cg.jsj/ � jgi .s/j � k1 g.jsj/ ; 8 s 2 R ;8 i D 1; : : : ; n ;

jg.s/j � k2g
�1.jsj/ ; 8 jsj � 1 ; s 2 R ;8 i D 1; : : : ; n ;

9 r0 > 0 such that g 2 C 1.Œ0; r0	/ ; g.0/ D g0.0/ D 0 ;

where g�1 denotes the inverse function of g and where ki are positive constants for
i D 1; 2. Moreover, we assume that the function defined by (1.118) is strictly convex
on Œ0; r20 	 and we defineH by (1.83). Assume that either

0 < lim inf
x!0

H.x/ � lim sup
x!0

H.x/ < 1 ;

or that there exists � > 0 such that

0 < lim inf
x!0

�H.�x/
�x

z1s
x

1

H.y/
dy
�
; and lim sup

x!0

H.x/ < 1 ;

for a certain z1 2 .0; z0	 (arbitrary). Let u be a solution of (1.133), and E be its
energy defined by (1.135). Then the energy of solution of satisfies

E.t/ D O.v2.t// D O
�
.H 0/�1.

D

t
/
�

uniformly with respect to t ; (1.137)

whereD is a positive constant and where v is the solution of the ordinary differential
equation:

v0.t/C nk1 g.v.t// D 0 ; v.0/ D
p
2E.0/; t � 0 : (1.138)

From the above theorem, we deduce easily the following corollary.

Theorem 1.5.20. Assume that the vectorial functions defined by fi .:/ D f .xi ; :/

and gi .:/ D �.xi ; :/ for i D 1; : : : n satisfy the hypotheses of Theorem 1.5.19,
where the points xi , i D 1; : : : ; n denotes the discretization points. Furthermore,
we assume that g involved in .HOV1/ is such that (1.99) holds or that there exists
� > 0 and z1 2 .0; E.0/	 such that (1.100) holds, then the energy of the solutions
of (1.132) satisfy (1.137). Hence, the energy decay rate given in Theorem 1.5.19 is
optimal for the semi-discretized system (1.132).

Remark 1.5.21. The decay rate given in the above theorem depends on n and thus
on the discretization parameter h.
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1.5.5 Examples of Feedbacks and Optimality

Theorem 1.5.22. Let u be a solution of (1.113) and E be its energy. Then we have
the following results.

Example 1: let g be given by g.x/ D xp where p > 1 on .0; r0	.
Then

E.t/ D O
�
t

�2
p�1

�
; (1.139)

uniformly for t sufficiently large and for all .u0; u1/ in R
2.

Example 2: let g be given by g.x/ D xp.ln. 1
x
//q where p > 1 and q > 1 on

.0; r0	.
Then

E.t/ D O
�
t�2=.p�1/.ln.t//�2q=.p�1/

�
(1.140)

uniformly for large t .

Example 3: let g be given by g.x/ D e
� 1

x2 on .0; r0	.
Then

E.t/ D O
�
.ln.t//�1

�
;

uniformly for large t .
Example 4: let g be given by g.x/ D e�.ln. 1x //p ; 1 < p < 2 ; x 2 Œ0; r0	.
Then

E.t/ D O
�
e�2.ln.t//1=p�

uniformly for large t .
Example 5: let g be given by g.x/ D x.ln. 1

x
//�p on .0; r0	, where p > 0.

Then
E.t/ � C ˇE.0/e

�2. p t
DT0

/1=.pC1/

t�1=.pC1/ (1.141)

for t sufficiently large. Optimality cannot be asserted for this latter example.

Proof. For Examples 1 up 5, H satisfies the hypotheses of convexity of Theo-
rem 1.5.11. For examples 1 and 2, H has a finite limit in 0, which is in .0; 1/
so that the first alternative of Theorem 1.5.11 is satisfied. Applying this theorem we
obtain the announced characterization of the asymptotic behavior of the energy at
infinity for these two examples. For Examples 3 and 4, H tends to 0 at 0. One
can prove that the second alternative of Theorem 1.5.11 is satisfied. Applying this
theorem we obtain the announced characterization of the asymptotic behavior of
the energy at infinity for these two examples. For Example 5, now H tends to 1
at 0. We have no characterization of the asymptotic behavior but still a sharp upper
estimate given by (1.91). �

Remark 1.5.23. Let us comment Example 5 for which optimality cannot be
asserted. Indeed if one considers that f 	 0 and � is linear in (1.113), then
we can give easily examples of parameters such that there exist two branches of
solutions with a different asymptotic behavior (see [8] for more details). If H
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tends to 1 at 0, g is close to a linear function close to the origin, which gives some
hints that this case is close to what happens in the linear situation. If the feedback is
not close to linear growth around the origin, then our characterization tells that all
solutions (except the vanishing one) have the same asymptotic behavior at infinity.

1.6 Polynomial Feedbacks in Infinite Dimensions

Abstract The purpose of this section is to present the first results obtained
chronogically for specific nonlinear feedbacks, that is the case of polynomial
feedbacks. Many authors have obtained results in this direction: Lagnese [66]
(J. Differ. Equat. 50:163–182, 1983), Haraux (Systèmes Dynamiques Dissipatifs
et Applications, Masson, Paris, Milan, Barcelone, 1991), Zuazua [106] (SIAM
J. Contr. Optim. 28:265–268, 1989), Komornik (Exact Controllability and Stabi-
lization. The Multiplier Method, Wiley, Masson, Paris, 1994), Nakao [89] (Math.
Ann. 305:403–417, 1996), Conrad and Rao (Asymptot. Anal. 7:159–177, 1993)
and the references therein. These results concern localized and boundary damped
wave-like equations and use either the method of perturbed energy combined
with nonlinear differential inequalities or polynomial Gronwall inequalities for the
natural energy together with the multiplier method. We shall present the approach
based on polynomial Gronwall inequalities combined with the multiplier method.
In this context, we will as for the linear feedback case, separate the different
steps: identification of dominant energies and treatment of the nonlinearity of the
feedbacks.

For the sake of clarity of exposition, we will only consider the case of a polynomially
locally damped wave-equation, that is

8
<
:

ut t ��u C �.:; ut / D 0 in .0;1/ �˝;
u D 0 on ˙ D .0;1/ � �
.u; ut /.0/ D .u0; u1/ on ˝ ;

(1.142)

where in the sequel g will be assume to have a polynomial growth close to the
origin. We set H D L2.˝/ and V D H1

0 .˝/. We consider feedbacks � satisfying

.HF /

8̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
:

� 2 C .˝ � R/ and is monotone increasing with respect to the

second variable and 9 a 2 C .˝/ ; a � 0 on˝ such that

a.x/jvj � j�.x; v/j � C a.x/jvj ; 8x 2 ˝ ; if jvj � 1 ;

a.x/g.jvj/ � j�.x; v/j � C a.x/g�1.jvj/ ; 8x 2 ˝ ; if jvj � 1 ;

a.x/ � a� > 0 ; 8 x 2 ! ;

where g�1 denotes the inverse function of g and where C is a positive constant.
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We recall the following classical existence and regularity result (see e.g. [58, 69]
for the proof) using the theory of maximal nonlinear monotone operator:

Theorem 1.6.1. Assume hypothesis .HF /. Then for all .u0; u1/ 2 V � H , the
problem (1.142) has a unique solution u 2 C .Œ0;C1/IV / � C 1.Œ0;C1/IH/.
Moreover, for all .u0; u1/ 2 D.A/ � V , the solution of is in L1.Œ0;C1/ID.A// �
W 1;1.Œ0;C1/IV / �W 2;1.Œ0;C1/IH/ and its energy defined by:

E.t/ D 1

2

�
ju0.t/j2H C jru.t/j2H

�
; (1.143)

satisfies the following dissipation relation:

E 0.t/ D � s̋ u0.t/.x/�.x; u0.t/.x/ dx � 0 : (1.144)

Using the multipliers E.p�1/=2Ku where Ku stands for the different multipliers
used for the linear case in Sect. 1.2, one can prove in a similar way to the linear case

Theorem 1.6.2. We assume that .HF / holds with g.s/ D jsjp�1s with p > 1

for s close to 0 (polynomial case). We also assume that ! satisfies the geometric
conditions (MGC) or (PWMGC). Let .u0; u1/ 2 V �H be given and denote by u a
solution of (1.142) and E its energy defined as in (1.143). Then, E satisfies

T

s
t

E.s/E.p�1/=2.s/ ds � ı1E
.pC1/=2.t/C ı2

T

s
t

E.p�1/=2.s/ s̋ j�.:; ut /j2

Cı3
T

s
t

E.p�1/=2.s/ s
!

jut j2 ds 80 � t � T: (1.145)

where ıi , i D 1; : : : ; 3 are positive constants.

Theorem 1.6.3. We make the assumptions of Theorem 1.6.2. Let .u0; u1/ 2 V �H
be given and denote by u a solution of (1.142) andE its energy defined as in (1.143).
Then E satisfies

T

s
S

E.pC1/=2.s/ ds � T0E.S/ 8 0 � S � T : (1.146)

Proof. We set ˝t D fx 2 ˝ ; jut j � 1g and !t D fx 2 ! ; jut j � 1g. Thanks to
.HF /, we have

j�.:; ut /j2 � C
�
ut �.:; ut /

�2=.pC1/
on the set x 2 ˝t :

In a similar way, we have

jut j2 � C
�
ut �.:; ut /

�2=.pC1/
on the set x 2 !t :
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Hence we have

T

s
S

E.p�1/=2 s̋
t

j�.:; ut /j2 � C
T

s
S

E.p�1/=2.�E 0/2=.pC1/ dt

and
T

s
S

E.p�1/=2 s
!t

jut j2 � C
T

s
S

E.p�1/=2.�E 0/2=.pC1/ dt

Using Young’s inequality, we have for any " > 0

T

s
S

E.p�1/=2
�

s̋
t

j�.:; ut /j2 C s
!t

jut j2
�

� "
T

s
S

E.pC1/=2

CC"E.S/ 8 0 � S � T :

On the other hand, thanks to .HF /, we have

T

s
S

E.p�1/=2� s
˝n˝t

j�.:; ut /j2 C s
!n!t

jut j2
�

� C E.S/ 8 0 � S � T :

Combining these different estimates, we obtain (1.146). �

Remark 1.6.4. The idea of splitting the set ˝ in two subsets, one with velocities
close to zero and its complementary goes back to an original idea of Zuazua.

Theorem 1.6.5. We make the assumptions of Theorem 1.6.2. Let .u0; u1/ 2 V �H
be given and denote by u a solution of (1.142) andE its energy defined as in (1.143).
Then E satisfies

E.t/ � C.E.0// t
�2
p�1 ; (1.147)

for t sufficiently large and for all .u0; u1/ in H1
0 .˝/ � L2.˝/.

Proof. IfE.0/ D 0 then the result holds easily. Assume now thatE.0/ ¤ 0. Thanks
to (1.146) and using Theorem 9.1 [65], that is Theorem 1.5.1 in the present Notes,
with r D .p � 1/=2, we conclude. �

1.7 The Optimal-Weight Convexity Method

1.7.1 Introduction and Scope

Abstract The main purpose of this section is to present the optimal-weight con-
vexity method based on the construction of an optimal-weight function for general
Gronwall inequalities, determined as an unknown of an explicit equation, thanks to
convexity properties of a suitable feedback-dependent function H . We introduced
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the method in (Alabau-Boussouira, Appl. Math. Optim. 51(1): 61–105, 2005) for
the infinite dimensional case and in (Alabau-Boussouira, J. Differ. Equat. 248:
1473–1517, 2010) for its version in the finite dimensional case, already presented
in Sect. 1.3, and its simplification. The extension of this method to nonfrictional
dampings such as linear memory-damping with general decaying kernels, is pre-
sented in [10]. This approach is build through several new results: optimal decay
of solutions of general Gronwall inequalities, feedback classification through a
new function H (introduced in (Alabau-Boussouira, J. Differ. Equat. 248: 1473–
1517, 2010)), constructive and simplified decay rates, comparison arguments. This
approach provides a whole and complete methodology to establish easy explicit
computable general optimal and quasi-optimal energy decay rates with applications
in finite and infinite dimensions settings, for localized, boundary and memory-
dampings, as well as for many PDE’s [see (Alabau-Boussouira, Appl. Math. Optim.
51(1): 61–105, 2005; Alabau-Boussouira, J. Differ. Equat. 248: 1473–1517, 2010)
for various examples (see also [16])].

Convexity properties were already used by several authors for wave-like equations
in case of frictional dampings. Energy decay rates for feedbacks with general growth
were first considered, as far as we know, by Lasiecka and Tataru [70] in 1993. In
this seminal paper, the authors consider the case of a semilinear wave equation
subjected to nonlinear frictional damping and used some convexity properties
to give upper energy decay rates by means of a nonlinear differential ordinary
differential equation with a nonlinearity given as the solution of several successive
implicit relations. Explicit computable decay estimates were given for the case of
linear or polynomial feedbacks as applications. A similar approach was given by
Liu and Zuazua in [80] including in addition feedbacks with nonlinear growth at
infinity. The authors used sharper properties of convex functions and in particular
their convex conjugates. Simple explicit and easily computable formula for upper
energy decay estimates for general feedbacks is given in Martinez in [84, 85]. His
method also involves convexity properties but in a different way than in [17,70,80].
It does not always give, at least in one shoot, the expected optimal energy decay rates
as for instance the polynomial, polynomial-logarithmic or close to exponential as
shown in [17]. Indeed his upper estimates are sharp in the case of very fast decaying
feedbacks at the origin. Upper estimates thanks to convexity properties and the use
of integral inequalities have been derived for Maxwell equations by Eller Lagnese
and Nicaise [51]. Other results have been derived later on in [43] (see also [98] and
references therein).

Our purpose here is to give a method which provides, in one shoot, easy
computable energy decay rates which are optimal or quasi-optimal, and works for
finite as well as infinite dimensions and allow to treat different PDE’s, and different
types of dampings: localized, boundary and of memory-type. Another important
aspect is also to present these results in a unified way, so that thanks to additional
geometric hypotheses in the infinite dimensional case, the same hypotheses on
the feedback than in the corresponding finite dimensional case, lead to the same
sharp upper estimates. It can also been extended in a nontrivial way to linear
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memory-damping, which involves nonlocal damping operators (see [10]). Another
feature is the one concerned with optimality of the energy decay rates. In Sect. 1.3,
we already use this method and prove optimality of our estimates. In [17], we use
the method of Martinez and Vancostenoble [101] to give examples of optimality of
our estimates in infinite dimensions.

In general, in infinite dimensions, the optimality problem is largely open. The
difficulty is to obtain lower estimates. Indeed, we will see that in the PDE case,
the energy lower estimate obtained in Sect. 1.3 are no longer available under the
same general form. Haraux [57] derives, as far as we know, the first result in this
direction. He proves a “weak” lower energy estimate, obtained through a “weak”
lower velocity estimate for a one-dimensional wave equation, locally polynomially
damped with very smooth solutions and using a 1-D interpolation result. We
show in Sect. 1.5.5, how to prove “strong” lower energy estimates and “weak”
lower velocity estimates for less regular solutions, multi-dimensional domains—
in particular domains of annulus type, boundary as well as localized dampings
and general feedback growths. These results are obtained combining interpolation
theory together with a comparison Lemma established for the first time, as far
as we know, in [8] (see Lemma 1.5.6 in Sect. 1.3). Thus, we can still derive
lower energy estimates, but which are not equivalent as time goes to infinity to
our sharp upper estimates. Also the required smoothness of solutions for general
multidimensional domains is an open question. Vancostenoble and Martinez [101]
(see also [102]) consider optimality estimates for decaying feedbacks at the origin
for a one-dimensional (or in an annulus in R

3 for radial solutions) nonlinearly
boundary damped wave equation for specific initial data, namely with zero velocity
in ˝ . Their proof is based on an explicit formula of the energy at specific times
through a sequence. We also mention Carpio [40], who takes another strategy based
on differential inequalities and Lyapunov approach to track the sharp dependence
with respect to initial data of the constant involved in upper estimates in case of
polynomial feedbacks. She also proves optimality of the constant with respect to
the initial data in the upper estimates in some situations.

Let us present the main lines of the optimal-weight convexity method. It is based
on the following steps:

• Step I: Dominant kinetic energy estimates
Use multipliers of the form K.u/w.E/ to prove that the energy satisfies an

estimate of the form

T

s
S

w.E.t/E.t/ dt � ı1E.S/w.E.S//C ı2w.E/
T

s
S

s
O2

j�.:; ut /j2 (1.148)

Cı3w.E/
T

s
S

s
!

jut j2 8 0 � S � T

where the ıi > 0 are constants for i D 1; : : : 3 and where
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1. K stands for various multipliers which may depend on u, ru, and
.��/�1.ˇu/, ˇ being a cut-off function. These multipliers introduced by
several authors are by now well-known.

2. w at this stage is a smooth, nonnegative and nondecaying weight function.
3. O2 D ˝ in case of locally distributed feedbacks and O2 D @˝ in case of

boundary feedbacks, whereas ! stands for the subdomain of ˝ (respectively
@˝) where the feedback is effective in case of locally distributed (resp.
boundary) feedbacks.

• Step II: Determination of optimal weight function
The optimal weight function w.:/ D L�1.:=2ˇ/, which has been introduced

for the first time by Alabau-Boussouira [17], is determined implicitly thanks to
convexity properties of a functionH , directly expressed in terms of the feedback
close to the origin. Due to our choices of H , and of this optimal choice of
the weight function w, we prove that E satisfies the same general nonlinear
Gronwall inequality of Sect. 1.3.1 presented in the context of finite dimensional
stabilization, that is

T

s
S

E.t/L�1.E.t/=2ˇ/ dt � T0E.S/ ; 8 0 � S � T :

Remark 1.7.1. Note that some authors use our above strategy, but replace the
optimal-weight function L�1.:=2ˇ/ by a weaker one as follows. We define L by

L.y/ D bH?.y/ for y > 0 ;L.0/ D 0 :

It is easy to check that
L.y/ � L1.y/

where
L1.:/ D .H 0/�1.:/

In particular, applying our convexity method, the weight-function w becomes

w1.:/ D L�1
1 ."0 :/ D H 0."0 :/

where "0 D 1=2ˇ. Then, they follow all the methodology of the optimal-
weight convexity method, that of Sect. 1.5.3 below, replacing w by w1 and follow
our results on generalized nonlinear Gronwall weighted integral inequalities
as introduced originally in [17]. The resulting estimates are weaker and the
methodology is not original.

• Step III: Optimal decay rates for solutions of nonlinear Gronwall inequalities
Applying the results of Sect. 1.3.1, we deduce thatE satisfies the semi-explicit

estimate:

E.t/ � 2ˇL
� 1

 �1
r . t

T0
/

�
; 8 t � T0

L�1.r/
;
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where r is any real such that

1

T0

C1
s
0

E.�/L�1.E.�/=2ˇ/ d� � r � � :

• Step IV: Simplification of decay rates and energy comparison principle
We then use our simplification method introduced in [8] to prove a sharp upper

simple, explicit and easily computable estimate, that is

1. Use the new function H defined in [8] which behavior at the origin measures
in some way the behavior of the feedback close to the origin.

2. If lim supx!0C H.x/ < 1, we apply our results of Sect. 1.3.1 for stabilization
in finite dimensions and prove that E decays at infinity as follows:

E.t/ � 2ˇ.H 0/�1
�DT0
t

�
;

for t sufficiently large and whereD is a positive constant which does not depend
on E.0/.

3. Under further hypotheses on the behavior of H close to 0, we give an upper
energy estimate based on the energy comparison principle introduced in our
paper [8], that is

E.t/ � C2v
2.t/ for t sufficiently large ;

where C2 is a positive constant and v is the solution of the ordinary differential
equation

v0.t/C g.v.t// D 0 ; v.0/ D p
2E.0/; t � 0 :

We will complete the above strategy by a methodology to derive lower energy
estimates (see Sect. 5.7).

1.7.2 Dominant Kinetic Energy Estimates

This part already exists in the linear stabilization problem, even though it is not
presented under this form in general. It becomes important to distinguish this step
to understand where and how convexity properties are useful. Let ˝ be a bounded
open subset of RN with a smooth boundary denoted by � and ! be an open subset
of ˝ of positive measure. We assume that the feedback � satisfies .HF / with now
a general function g.

Theorem 1.7.2. Assume that .HF / holds where ! satisfies the geometric condi-
tions (MGC) or (PWMGC). We respectively defineH , bH , and L by (1.118), (1.81)
and (1.82). Let .u0; u1/ 2 V � H be given and denote by u a solution of (1.142)
and E its energy defined as in (1.6). We assume that E.0/ > 0. Then for any
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nonnegative, nondecaying C 1 function w defined on Œ0; E.0/	, E satisfies

T

s
t

E.s/w.E.s// ds � ı1E.t/w.E.t//C ı2
T

s
t

w.E.s// s̋ j�.:; ut /j2

Cı3
T

s
t

w.E.s// s
!

jut j2 ds8 0 � t � T : (1.149)

where ıi , i D 1; : : : ; 3 are positive constants.

Remark 1.7.3. The above estimate shows that the nonlinear kinetic energy and the
localized linear kinetic energy dominates the behavior of the total energy. A similar
estimate holds for the boundary damping case (see [8, 17]). This estimate holds
also for other equations such as Petrowsky equation, coupled systems such as
Timoshenko beams . . . For the sake of presentation and clearness we do not include
these results here. They can be found in [8,17] in an abstract form with several PDE
examples of applications.

Proof. Let w be a nonnegative, nondecaying C 1 function defined on Œ0; E.0/	. The
proof follows that of the linear stabilization in Sect. 1.2, except that one has to
choose multipliers of the form w.E/Ku. Let .u0; u1/ 2 H2.˝/\H1

0 .˝/�H1
0 .˝/.

Let "0 < "1 < "2 < " and define for i D 0; 1; 2 the subsets Qi as in (1.19) and the
functions  j 2 C 1

0 .R
N / which satisfies (1.20). We also define h as the C 1 vector

field on ˝:

h.x/ D
(
 j .x/mj .x/ if x 2 ˝j

0 if x 2 ˝n [j ˝j ;

and consider the multiplier w.E/M u whereM u D h�ruCu.N�1/=2. We consider
the expression

T

s
S

s̋
j

w.E/M u .u00 ��u C �.x; u0// dx dt D 0 :

This gives, after appropriate integration by parts and proceeding as in Sect. 1.2

T

s
S

Ew.E/ dt � C
T

s
S

w.E/ s
˝\Q1

u02 C jruj2 � Œw.E/ s̋ M.u/u0	TS (1.150)

C
T

s
S

E 0w0.E/ s̋ M.u/u0 �
T

s
S

w.E/ s̋ M.u/�.x; u0/ :

We need to estimate the terms on the right hand side of (1.150). Due to the weight
w.E/ which depends only on time there is an additional term

T

s
S

E 0w0.E/ s̋ M.u/u0
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which can be easily bounded above by

j
T

s
S

E 0w0.E/ s̋ M.u/u0j � c
T

s
S

.�E 0/w0.E/E dt

� CE.S/w.E.S// 8 0 � S � T :

In a similar way, we have

jŒw.E/ s̋ M.u/u0	TS j � CE.S/w.E.S// 8 0 � S � T :

As for the linear case, the only difficulty is to estimate the first term on the right hand
side of (1.150). The proof follows that of the linear case up to the multiplicative
additional weight w.E/ which depends only on time. One can show that additional
terms due to integration by parts can be bounded above. More precisely, we proceed
as follows. We define 
 2 C 1

0 .RN / as in (1.29). Multiplying the first equation
of (1.142) by w.E/
u and integrating the resulting equation on ŒS; T 	 � ˝ , we
obtain after some integration by parts:

T

s
S

w.E/ s̋ 
jruj2 D
T

s
S

w.E/ s̋ 
ju0j2 C 1

2
�
u2 C

T

s
S

E 0w0.E/ s̋ 
uu0

�
h
w.E/ s̋ 
uu0

iT
S

�
T

s
S

w.E/ s̋ 
u�.x; u0/ : (1.151)

Hence, we have

T

s
S

w.E/ s
˝\Q1

jruj2 � C
T

s
S

w.E/ s
˝\Q2

ju0j2 C u2 C j�.x; u0/j2

CCE.S/w.E.S// : (1.152)

We define ˇ 2 C 1
0 .RN / such that (1.32) holds. We fix t and consider the solution

z of the elliptic problem (1.33) and (1.34). Multiplying the first equation of (1.142)
by w.E/z and integrating the resulting equation on ŒS; T 	 �˝ ,

T

s
S

w.E/ s
˝\Q2

juj2 � C

�

T

s
S

w.E/ s
!

ju0j2 C C

�

T

s
S

w.E/ s̋ j�.x; u0/j2

C�
T

s
S

Ew.E/C CE.S/w.E.S// 8 � > 0: (1.153)

We use the above estimates and proceed in a similar way than for the linear case,
this gives
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T

s
S

Ew.E/ � CE.S/w.E.S//C Cı
T

s
S

Ew.E/ (1.154)

CC

ı

T

s
S

w.E/
h

s
!

ju0j2 C s̋ j�.x; u0/j2
i

8 ı > 0 :

Choosing ı sufficiently small, we obtain finally

T

s
S

Ef .E/ � CE.S/w.E.S//C C
T

s
S

w.E/
h

s
!

ju0j2 C s̋ j�.x; u0/j2
i
: (1.155)

Hence, we proved that E satisfies an estimate of the form (1.149). �

1.7.3 Weight Function As an Optimal Unknown

In general, the usual ways used to prove energy decay rates are either to prove that a
perturbed energy, equivalent to the original one, is a Lyapunov function satisfying a
nonlinear differential inequality or to prove that the original energy directly satisfies
a nonlinear Gronwall inequality. In this latter case (also in the former one), a crucial
point to be sure to loose no information on the speed of decay of the energy is to find
mathematical arguments to build an optimal weight. This is an important novelty of
our work in [17] and later on, of its simplification in [8]. This work is based on an
approach for which, using convexity arguments and in particular Young’s inequality,
we determine the optimal weight w as the solution of an implicit relation, that is

ˇbH?.w.E.t/// D 1

2
E.t/w.E.t// 8 t � 0 :

to establish that the energyE satisfies a suitable nonlinear Gronwall inequality. The
above implicit relation has a unique solution which involves the inverse function of
L defined by (1.82).

Theorem 1.7.4. Assume that ! satisfies the geometric conditions (MGC) or
(PWMGC). We respectively define H , bH , and L by (1.118), (1.81), (1.82). Let
.u0; u1/ 2 V �H be given and denote by u a solution of (1.142) and E its energy
defined as in (1.6). We assume that E.0/ > 0 and define ˇ > 0 as the explicit
constant depending on E.0/, j!j, j˝j defined in (1.170). We define w as in (1.123),
then E satisfies

T

s
S

E.s/w.E.s// ds � T0E.S/ 8 0 � S � T : (1.156)

Proof. We set "0 D g.r0/. Assuming that r0 is small enough, we can assume that
0 < "0 < 1.
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From .HF /, we can easily deduce that � satisfies the following inequalities:

c1a.x/jvj � j�.x; v/j � c2a.x/jvj ; 8 x 2 ˝ ;8 "0 � jvj ; (1.157)

and

c1a.x/g.jvj/ � j�.x; v/j � c2a.x/g
�1.jvj/ ; 8 x 2 ˝ ;8 jvj � "0 : (1.158)

for certain positive constants c1; c2. We set for all fixed t � 0, ˝t
1 D fx 2˝ ;

ju0.t; x/j � "0g. We also set

cg D 1

c2jjajj1 : (1.159)

Thus, by definition of cg and thanks to (1.158), we have:

c2gj�.x; u0.t/.x//j2 � r20 ; 8x 2 ˝t
1 :

Using Jensen’s inequality, we have

H
� 1

j˝t
1j

s
˝t
1

c2g j�.x; u0.t/.x//j2 dx
�

� 1

j˝t
1j

s
˝t
1

H.c2g j�.x; u0.t/.x//j2/ dx

� 1

j˝t
1j

s
˝t
1

cg j�.x; u0.t/.x/jg.cgj�.x; u0.t/.x///jdx :

(1.160)

Using (1.158) and the fact that H is increasing, we deduce that

T

s
S

w.E.t// s
˝t
1

j�.x; u0/j2 dx dt �
T

s
S

j˝t
1j
c2g

w.E.t//H�1 (1.161)

� 1

j˝t
1j

s
˝t
1

cgu0�.x; u0/ dx
�
dt

Since bH is a convex and proper function, we can apply Young’s inequality (see
[93, 103]), so that

T

s
S

w.E.t// s
˝t
1

j�.x; u0/j2 dx dt � j˝j
c2g

T

s
S

bH?.w.E.t/// dt (1.162)

C 1

cg
E.S/ ; 8 0 � S � T :

On ˝n˝t
1, we have ju0.t/j � "0. Hence, thanks to (1.157), we have
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j�.x; u0/j2 � 1

cg
u0�.x; u0/ ; 8 x 2 ˝n˝t

1 : (1.163)

This implies

T

s
S

w.E.t// s
˝n˝t

1

j�.x; u0/j2 dx dt � 1

cg

T

s
S

.�E 0.t//w.E.t// dt : (1.164)

We now turn to the localized kinetic energy, that is we want to estimate the term
s T
S w.E.t// s! ju0.t/j2 dx dt . We set as in [17]

r21 D H�1.c1a� cgH.r20 // ; (1.165)

and
"1 D min .r0; g.r1// : (1.166)

One can remark that "1 � "0. We define, for fixed t � 0, the set !t1 D fx 2
! ; ju0.t/.x/j � "1g. Thanks to (1.158), our choice of "1 and to Jensen’s inequality,
we obtain

H
� 1

j!t1j
s
!t1

ju0.t/.x/j2 dx
�

� 1

j!t1j
s
!t1

H.ju0.t/.x/j2/ dx

� 1

j!t1j
s
!t1

u0.t/.x/g.u0.t/.x// dx

� 1

j!t1jc1a�
s
!t1

u0.t/.x/�.x; u0.t/.x// dx :

Using once again Young’s inequality, we derive

T

s
S

w.E.t// s
!t1

ju0.t/.x/j2 dx dt � j!j
T

s
S

bH?.w.E.t/// dt

C 1

c1a�
E.S/; 80 � S � T: (1.167)

On !n!t1, we have ju0.t/j � "1. For ju0.t/j � "0, (1.157) holds. We can easily check
that using (1.158), similar inequalities holds for "1 � ju0.t/j � "0. This implies

T

s
S

w.E.t// s
!n!t1

ju0j2 dx dt � 1

c1a�

T

s
S

.�E 0.t//w.E.t// dt : (1.168)

Inserting now (1.162), (1.164), (1.167) and (1.168) in (1.149), we obtain
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T

s
S

w.E.t//E.t/ dt � ı1 E.S/f .E.S//C
�
ı2

cg
C ı3

c1a�

�
E.S/

C
�
ı2

cg
C ı3

Qc1a�

�
T

s
S

.�E 0.t//w.E.t//

C
 
ı2

j˝j
c2g

C ı3j!j
!

T

s
S

bH?.w.E.t/// dt : (1.169)

We recall that L, defined by (1.82) is a strictly increasing function from Œ0;C1/

onto Œ0; r20 /. We choose a real number ˇ D ˇE.0/ > 0 as follows:

ˇ D max

�
ı3 j!j C ı2 j˝j

c2g
;

E.0/

2L.H 0.r20 //

�
(1.170)

Now, we choose the weight function w as announced, that is:

w.s/ D L�1
�
s

2ˇ

�
8 s 2 Œ0; 2ˇr20 / : (1.171)

Then w is a strictly increasing function from Œ0; 2ˇr20 / onto Œ0;C1/. Moreover, by
construction, w satisfies the relation:

ˇbH?.w.s// D 1

2
sw.s/ 8 s 2 Œ0; 2ˇr20 / :

Since E is nonincreasing, we have

E.t/ � E.0/ < E.0/
r20

L.H 0.r20 //
� 2 ˇr20 8 t � 0 :

Hence, one has in particular:

ˇbH?.w.E.t/// D 1

2
E.t/w.E.t// 8 t � 0 : (1.172)

With this choice of ˇ and w, the last term on the right hand side of (1.169) is bounded
above by

1

2

T

s
S

E.t/.w.E.t/// dt : (1.173)

On the other hand, we recall that �E 0 is nonnegative on Œ0;C1/, E is non-
negative and nonincreasing on Œ0;C1/ whereas w is nonnegative and increasing
on Œ0; 2ˇr20 /. Thus, the third term on the right hand side of (1.169) is bounded
above by
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�
ı2

cg
C ı3

Qc1a�

�
T

s
S

.�E 0.t//w.E.t// �
�
ı2

cg
C ı3

Qc1a�

�
E.S/L�1

�
E.S/

2ˇ

�
:

(1.174)
We insert the estimates (1.173) and (1.174) in (1.169). This gives

T

s
S

E.t/L�1
�
E.t/

2ˇ

�
dt � 2

�
ı1 C ı2

cg
C ı3

Qc1a�

�
E.S/L�1

�
E.S/

2ˇ

�

C2
�
ı2

cg
C ı3

c1a�

�
E.S/ :

Hence, the energy E satisfies the estimate

s T
S E.t/L�1

�
E.t/

2ˇ

�
dt � T0 E.S/ 8 0 � S � T ; (1.175)

where T0 is independent of E.0/ and, with our choice of ˇ is given by

T0 D 2
� ı2
cg

C ı3

c1a�
C .ı1 C ı2

cg
C ı3

Qc1a�
/H 0.r20 /

�
(1.176)

Thus, the functions g, H , E and ˇ satisfy the hypotheses of Theorem 1.5.4.
Applying the conclusions of this theorem, we deduce that E satisfies the desired
estimate, which concludes the proof. �

1.7.4 Simplification of the Energy Decay Rates

Corollary 1.7.5. Assume the hypotheses of Theorem 1.7.4. We defineH by (1.118)
and assume that H is strictly convex on Œ0; r20 	. We also define bH by (1.81), L by
(1.82) andH by (1.83). Let .u0; u1/ 2 V �H be given and denote by u a solution
of (1.142) andE its energy defined as in (1.6). Assume that lim supx!0 H.x/ < 1,
then E satisfies

E.t/ � 2ˇ.H 0/�1
�DT0
t

�
;

for t sufficiently large and whereD is a positive constant which does not depend on
E.0/ and ˇ is given in (1.170). Moreover, assume that either

0 < lim inf
x!0

H.x/ � lim sup
x!0

H.x/ < 1 ;

or that there exists � > 0 such that
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0 < lim inf
x!0

�H.�x/
�x

z1s
x

1

H.y/
dy
�
; and lim sup

x!0

H.x/ < 1 ;

for a certain z1 2 .0; z0	 (arbitrary). Then the energy of solution of satisfies the
estimate

E.t/ � C.E.0//v2.t/ for sufficiently large t ;

where v is the solution of the ordinary differential equation

v0.t/C g.v.t// D 0 ; v.0/ D p
2E.0/; t � 0 :

Remark 1.7.6. Without the additional above assumptions on H , we have the gen-
eral energy decay rate provided in (1.91). In the PDE case, we cannot derive a lower
estimate saying that E is bounded below by a constant time the energy of v in the
above ordinary differential equation, as in Lemma 1.5.13 of Sect. 1.3. We will see in
Sect. 1.5.5 that we can establish lower weaker energy estimates using interpolation.

1.7.5 Generalization to Optic Geometric Conditions:
The Indirect Optimal-Weight Convexity Method

We recalled in Sect. 1.2 two methods giving geometrical conditions on the set !
on which the feedback is active, for exponential stabilization to hold in case of
linear stabilization. These geometric conditions are still required in the nonlinear
stabilization case. The results we presented in the above sections of Sect. 1.5 require
the multiplier geometric conditions, which are known to be nonoptimal. We show
in Alabau-Boussouira and Ammari [9] (see also the important work by Daoulatli
et al. [50]) that it is possible to combine the optimal-weight convexity method
with the quasi-optimal optic geometric conditions of Bardos et al. [27] and of
Lebeau [74] on the set !. We now present this generalization of the results on
nonlinear stabilization—presented in the above section of this section—to the optic
geometric conditions of Bardos et al. [27] and of Lebeau [74]. This generalization
is partly based on the approach introduced by Haraux in [61] for linear stabilization
for the case of bounded linear stabilization operators and extended by Ammari and
Tucsnak [24] (see also [25]) for the case of linear unbounded stabilization operators.
It consists in deriving stabilization for an observability estimate for the undamped
equation.

Let us consider the following abstract second order equation

(
Rw.t/C Aw.t/C a.:/�.:; Pw/ D 0 ; t 2 .0;1/ ; x 2 ˝
w.0/ D w0 ; Pw.0/ D w1 :

(1.177)

where˝ is a bounded open set in R
N , with a boundary � of class C 2,X D L2.˝/,

with its usual scalar product denoted by h�; �iX and the associated norm j � jX and
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where A W D.A/ 
 X ! X is a densely defined self-adjoint linear operator
satisfying

hAu; uiX � ˛juj2X 8u 2 D.A/ (1.178)

for some ˛ > 0. We also set V D D.A1=2/ and jujV D jA1=2ujX . We make the
following assumptions on the feedback � and on a:

Assumption (A1): � 2 C .˝ � RIR/ is a continuous monotone nondecreasing
function with respect to the second variable on ˝ such that �.:; 0/ D 0 on ˝
and there exists a continuous strictly increasing odd function g 2 C .Œ�1; 1	IR/,
differentiable in a neighbourhood of 0 and satisfying g.0/ D g0.0/ D 0, with

(
c1g.jvj/ � j�.:; v/j � c2g

�1.jvj/ ; jvj � 1 ; a.e. on ˝ ;

c1jvj � j�.:; v/j � c2jvj ; jvj � 1 ; a.e. on ˝ ;
(1.179)

where ci > 0 for i D 1; 2. Moreover a 2 C .˝/, with a � 0 on˝ and

9 a� > 0 such that a � a� on ! : (1.180)

The energy of solutions is defined by

Ew.t/ D 1

2

�
j Pwj2X C jwj2V

�
(1.181)

We recall that the energy of mild solutions of (1.177) satisfies the dissipation
relation

T

s
0

ha.:/�.:; Pw/ ; PwiX D Ew.0/� Ew.T / (1.182)

One important question is at which rate the energy of solutions of the damped
equation (1.177) goes to 0 as time goes to 1. We already give above a direct method
to derive sharp energy decay rates for system (1.177) provided that the set ! satisfies
the hypotheses of the piecewise multiplier method [78] (see also [105]). Here we are
interested to extend these results to the Geometric Control Condition of Bardos et
al. [27]. For this, we will use an indirect method based on an observability inequality
for the linear undamped system

( R�.t/C A�.t/ D 0 ; t 2 .0; T / ; x 2 ˝
�.0/ D �0 ; P�.0/ D �1 :

(1.183)

We define the energy of a solution � of (1.183) by

E�.t/ D 1

2

�
j P�j2X C j�j2V

�
(1.184)

Then we prove.
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Theorem 1.7.7 (Alabau-Boussouira–Ammari [6]). Assume that � and a satisfy
the assumption .A1/ and that there exists r0 > 0 sufficiently small so that the
functionH defined by (1.118) is strictly convex on Œ0; r20 	 with H.0/ D H 0.0/ D 0.
We also define bH by (1.81), L by (1.82) andH by (1.83). Assume also either that

0 < lim inf
x!0C

H.x/ (1.185)

or

lim
x!0C

H 0.x/
H.x/

D 0 (1.186)

Moreover let T > 0 be such that there exists cT > 0 the following observability
inequality is satisfied for the linear damped conservative system (1.183)

cT E�.0/ �
T

s
0

jpa P�j2X dt ; 8.�0; �1/ 2 V �X : (1.187)

Then, the energy of the solution of (1.177) satisfies

Ew.t/ � 2ˇL
� 1

 �1
r . t�T

T0
/

�
; for t sufficiently large; (1.188)

where L
�

1

 �1
r . t�TT0

/

�
! 0 as t ! 1 ; where ˇ is a positive constant which

depends on Ew.0/, cT , and T , and where  r is defined in (1.92). If in addition,
lim supx!0 H.x/ < 1, then E satisfies

E.t/ � 2ˇ.H 0/�1
� DT0
t � T

�
; (1.189)

for t sufficiently large and whereD is a positive constant which does not depend on
E.0/ and ˇ depends on Ew.0/, cT , and T .

The proof of this result is given in [6] (see also [9] for an announcement of these
results). A key point of the proof is to use the optimal-weight convexity method to
prove that the energy satisfies nonlinear discrete inequalities, that is

Theorem 1.7.8 (Alabau-Boussouira–Ammari [6]). Under the above hypotheses
and setting bEw D Ew=ˇ, we have

bE..k C 1/T / � bE.kT /
�
1 � �TL

�1.bE.kT //
�
; 8 k 2 N : (1.190)

for a certain �T depending on the observability constant, and the time T .

The proof of our main result relies on a result important in itself, since it allows to
compare discrete energy inequalities to continuous ones, that is
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Theorem 1.7.9 (Alabau-Boussouira–Ammari [6]). Assume that the above
assumption holds and let T > 0 and �T > 0 be given. Let ı > 0 be such that
the function defined by x 7! x � �TM.x/ is strictly increasing on Œ0; ı	. Assume
that bE is a nonnegative, nonincreasing function defined on Œ0;1/ with bE.0/ < ı

and satisfying (1.190). Then bE satisfies the upper estimate

bE.t/ � TL
� 1

 �1
r .

.t�T /�T
T

/

�
; for t sufficiently large;

If moreover lim supx!0C H.x/ < 1, then we have the simplified decay rate

bE.t/ � T .H 0/�1
�

DT

�T .t � T /

�
;

for t sufficiently large and where D is a positive constant independent of bE.0/ and
of T .

1.7.5.1 Examples of Application

We first consider the geometrical situation considered by Lebeau [27, 74]. More
precisely, .˝; g/ is assumed to be a C 1 Riemannian compact and connex manifold,
with a boundary of class 1, whereas �A is the Laplacian on ˝ for the metrics g,
and a 2 C 1.˝I Œ0;1//, and where � and a satisfies assumptions .A1/. Thanks to
Theorem 0 in [74] and to [27], and applying Theorem 1.7.7, we deduce the following
result

Corollary 1.7.10. Assume that � and a satisfy the assumption .A1/ and that there
exists r0 > 0 sufficiently small so that the function H defined by (1.118) is strictly
convex on Œ0; r20 	. Assume also either that (1.185) or (1.186) holds. Assume moreover
that the geodesics of˝ have no contact of infinite order with � and that there exists
a time T� > 0 such that every generalized geodesics of ˝ of length larger than
T� meets w. Then, the energy of the solution satiof (1.177) satisfies (1.188). If in
addition, lim supx!0 H.x/ < 1, then E satisfies (1.189).

Remark 1.7.11. Other examples are given in [6]. The above results hold true in
particular for the wave equation. We generalize the above results to the case of
arbitrary nonlinear boundary dampings (see [9]). We can apply our simplification
for energy decay rates and give example of applications to several feedback growth
(see Sect. 5.6). Under additional hypotheses, we can also compare the above decay
rate to the energy decay rate of an ODE as in Sect. 1.5.4.

1.7.6 Examples of Feedbacks and Sharp Upper Estimates

We will now illustrate through five examples of feedback growth the sharp upper
energy estimates that Theorem 1.7.5 gives. For the examples below, g is only given
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close to 0. One can notice that the upper estimates are similar to that of the finite
dimensional case.

Theorem 1.7.12. Let .u0; u1/ 2 V � H be given and denote by u a solution
of (1.142) andE its energy defined as in (1.6). We assume thatE.0/ > 0 and define
ˇ > 0 as the explicit constant depending onE.0/, j!j, j˝j defined in (1.170). Then,
we have

Example 1: let g be given by g.x/ D xp where p > 1 on .0; r0	.
Then

E.t/ � CˇE.0/ t
�2
p�1 ; (1.191)

for t sufficiently large and for all .u0; u1/ in H1
0 .˝/ �L2.˝/.

Example 2: let g be given by g.x/ D xp.ln. 1
x
//q where p > 1 and q > 1 on

.0; r0	.
Then

E.t/ � CˇE.0/ t
�2=.p�1/.ln.t//�2q=.p�1/ (1.192)

for t sufficiently large and for all .u0; u1/ in H1
0 .˝/ �L2.˝/.

Example 3: let g be given by g.x/ D e
� 1

x2 on .0; r0	.
Then

E.t/ � CˇE.0/.ln.t//
�1 ;

for t sufficiently large and for all .u0; u1/ in H1
0 .˝/ �L2.˝/.

Example 4: let g be given by g.x/ D e�.ln. 1x //p ; 1 < p < 2 ; x 2 Œ0; r0	.
Then

E.t/ � CˇE.0/e
�2.ln.t//1=p

for t sufficiently large and for all .u0; u1/ in H1
0 .˝/ �L2.˝/.

Example 5: let g be given by g.x/ D x.ln. 1
x
//�p where p > 0.

Then
E.t/ � CˇE.0/e

�2. p t
DT0

/1=.pC1/

t�1=.pC1/ (1.193)

for t sufficiently large and for all .u0; u1/ in H1
0 .˝/ � L2.˝/.

Remark 1.7.13. We can notice that the above upper estimates are similar to that
of Theorem 1.5.22 in the finite dimensional case, but we cannot derive the lower
estimates as for the ODE case. Also, the upper comparison with Kv2 where v is the
solution of the ODE (1.117) still holds true in the PDE case under the hypotheses
.H2/ on H , as in the finite dimensional case (see Sect. 1.3).

We can give many other examples of feedback growth. These five examples were
chosen thanks to their distinct behavior close to the origin.

The reader can also find in [8] various examples of applications to other PDE’s
than the wave equation, namely Petrowsky equations, Timoshenko beams . . .

Remark 1.7.14. The results presented in Sect. 1.5.5 extend to the nonlinear bound-
ary damped equations (see [9]).
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The above results also generalize to nonlinearly damped semilinear wave
equations (see [8] for a result in this direction).

1.7.7 Lower Energy Estimates

We saw in the previous sections how optimality can be proved in the finite
dimensional case. The situation is different in the infinite dimensional framework.
The difficulty is to obtain lower energy estimates. Moreover, even when lower
energy estimates are known, these estimates are not of the same order than the upper
ones, so that optimality is still a largely open question. The purpose of this section is
to give some lower energy estimates recently derived in [7,8]. As far as we know, in
the infinite dimensional setting, very few lower estimates are available. Haraux [57]
in 1995 considered the 1-D wave, globally damped wave equation with a nonlinear
feedback with polynomial growth such as xp close to the origin. He proved a weak
lower velocity estimate in uniform norm, from which he deduced the following
weak lower energy estimate

lim sup
t!1

.t3=.p�1/E.t// > 0 :

For initial data in W 2;1.0; 1/ � W 1;1.0; 1/. The proof requires the smoothness
of the solutions. This regularity is proved using a clever Lyapunov function. It
does not give a direct estimate of the energy. Also the proof does not work for
the boundary damped one-dimensional wave equation neither for systems nor for
multidimensional examples. It is important to note that Haraux’ method requires
both the dissipation relation and an upper energy estimate. So, if one thinks to
generalization to multi-dimensional domains, the region on which the feedback
is effective will have to satisfy the Geometric Control Condition, whereas the
methodology, we shall present, introduced in Alabau-Boussouira [7, 8] is only
based on the dissipation relation and interpolation properties. In particular, our
method does not require the Geometric Control Condition, nor an upper energy
estimate. Concerning optimality results, such results have been obtained for the
one-dimensional wave equation with boundary feedbacks and specific initial data by
Vancostenoble [102] and Martinez–Vancostenoble [101] using the explicit form of
the solution through D’Alembert’s formula. They consider the nonlinearly boundary
damped wave equation in ˝ D .0; 1/ as follows

8
ˆ̂̂
<̂
ˆ̂̂
:̂

ut t � uxx D 0 on .0;C1/ �˝ ;

u D 0 on .0;C1/ � f0g ;
ux C � �.ut / D 0 on .0;C1/ � f1g ;
u.0; :/ D u0.:/ ; ut .0; :/ D u1.:/ on ˝ ;

For this equation, one has the following important optimality result.
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Theorem 1.7.15 (Vancostenoble and Martinez [101]). Assume that g is a strictly
increasing and odd C 1 function on R such that g.0/ D g0.0/ D 0. Assume that
� is a continuous nondecreasing function on R such that � D or � D g�1 in a
neighbourhood of 0. Then for all initial data of the form .u0; u1/.x/ D .2A0x; 0/,
with A0 ¤ 0, the solution of the above boundary damped wave equation satisfies

9 n0 2 N ;8 n � n0 ;E.2n/ D 1

2
V 2.2tn/

where .tn/n�n0 is a real positive increasing sequence such that tn � n as n ! 1,
and where V W Œ0;1/ 7! Œ0;1/ is the solution of the differential equation, we have
seen before, that is

V 0 C g.V / D 0 ; V .0/ D 2
p
E.2n0/=2 :

Vancostenoble and Martinez have also shown that explicit lower bounds for certain
sequences of time can be obtained. In particular, assuming for instance the above
hypotheses and that j�.s/j � jg.s/j in a neighbourhood of 0 and that the function
s 7! s.. 1

2
g�1/0.s/�1/ is increasing in a neighbourhood of 0, then for all initial data

of the above form, the solution u of the 1 �D wave equation satisfies

9 n0 ; n1 2 N ;8 n � n0 ;E.2n/ � 1

2

h
.g0/�1

� 1

2.nC n1/

�i2

They give other examples of lower bounds, extend the results to radial solutions in
annulus type domains. The starting point of their method is to use the D’Alembert
formula to write the solution of the wave equation

ut t � uxx D 0 ; t > 0 ; x 2 .0; 1/ ;
that is

u.t; x/ D f .t C x/ � f .t � x/ ; t > 0; x 2 .0; 1/ :
and to write the conditions that f must satisfy so that the boundary and initial
conditions hold. Introducing An such that E.2n/ D 2A2n, they prove some nice
properties on the asymptotic behavior of the sequence An for initial data of the
specific form given before. We apply their results in [17] to derive the optimality of
our general estimates for some examples of dampings.

Theorem 1.7.16 (Alabau-Boussouira [17]). There exist initial data of the form
.u0.x/; u1.x// D .2A0 x; 0/ for all x 2 ˝ , such that the upper energy estimates of
the corresponding solution are optimal for Examples 1 to 4 of Sect. 5.6. Optimality
cannot be asserted for Example 5.

Hence optimality results have been only obtained for peculiar cases. The question
is open in the general case. As we already said, this is due to two difficulties:
obtaining lower energy estimates and sharpening these lower estimates so that they
are of the same order than the upper ones. Even if one restricts his or her objectives
to the first difficulty, in the infinite dimensional setting very few lower estimates
are available. We shall present several results which allow us to generalize lower
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energy estimates to general dampings, less regular solutions, boundary damping
cases, multi-dimensional situations, other PDE’s such as Petrowsky equations or
systems such as Timoshenko beams.

Let us start by a simple example which connects the infinite dimensional case to
the finite one and allows us to give a first small improvement of Haraux’ result by a
more direct and simpler argument. We consider the equation

8
ˆ̂<
ˆ̂:

@2t u.t; x/� @2xu.t; x/C C�.@tu.t; x// D 0 ; 0 < t; 0 < x < 1 ;

u.t; x/ D 0 ; for x D 0; x D 1; 0 < t ;

u.0; x/ D u0.x/ ; @tu.0; x/ D u1.x/ ; 0 < x < 1 :

(1.194)

The energy of a solution is defined as usual and is denoted by E . We assume that
� is a smooth, odd and nondecreasing function on R, with linear growth at infinity
and such that

�.s/ D jsjp�1s ; 8 jsj � 1 :

where p > 1.

Theorem 1.7.17 (Alabau-Boussouira [8]). Assume the above hypotheses on �.
Assume moreover that .u0; u1/ 2 W 2;1.˝/ � W 1;1.˝/. Then there exists a
constant C > 0, which depends only on p, E.0/ and the norm of ut in
L1.Œ0;1/IW 1;1.˝// such that

E.t/ � C.t C 1/�3=.p�1/ ; 8 t � 0

This result can be generalized. We will start by weakening the smoothness assump-
tions on the solutions. Let us consider

8̂
<̂
ˆ̂:

ut t .t; x/ � uxx.t; x/C a.x/g.ut .t; x// D 0 ; 0 < t ; x 2 ˝ ;

u.t; c/ D u.t; d / D 0 ; for 0 < t ;

u.0; x/ D u0.x/ ; ut .0; x/ D u1.x/ ; x 2 ˝ ;

where ˝ D .c; d / 
 R, with �1 < c < d < 1, a 2 L1.˝/ and a � 0 a.e. on
˝ with a > 0 on an open subset ! of ˝ . The energy of a solution is defined by

E.t/ D 1

2
s̋ .u2t C u2x/ dx :

Well-posedness holds for initial data in the energy space H D H1
0 .˝/ �

L2.˝/, i.e. for all .u0; u1/ 2 H , the above equation has a unique solution u in
C .RCIH1

0 .˝//\C 1.RCIL2.˝//. Moreover if .u0; u1/ is in .H1
0 .˝/\H2.˝//�

H1
0 .˝/ then the solution is smoother and the energy of order 1 defined as

E1.t/ D 1

2
s̋ .u2t t C u2xt / dx
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is well-defined, and nonincreasing. In this latter case, the natural energy E satisfies
the dissipation relation

�E 0.t/ D s̋ a.x/ut .t; x/g.ut .t; x// dx t � 0 :

Assume that g satisfies

.H1/

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂̂
:

g W R 7! R is assumed to be an odd, increasing

continuously differentiable function

g has a linear growth at infinity ;

sg.s/ > 0 8 s 2 R
? ;

g.0/ D g0.0/ D 0 :

and further that

.H2/

8
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

9r0 > 0 such that the functionH W Œ0; r20 	 7! R defined by

H.x/ D p
xg.

p
x/ ; is strictly convex on Œ0; r20 	 ;

and either 0 < lim infx!0 .x/ � lim supx!0 .x/ < 1 ;

or there exists � > 0 such that

0 < lim infx!0

�
H.�x/

�x
s z1
x

1
H.y/

dy
�
;

and lim supx!0 .x/ < 1 ; for some z1 2 .0; z0	 :

Theorem 1.7.18 (Alabau-Boussouira [4]). Assume that .u0; u1/ 2 .H1
0 .˝/ \

H2.˝// � H1
0 .˝/ and that g satisfies .H1/. We assume that .H2/ holds. Then

the energy satisfies the lower estimate

C.E1.0//
��
H 0��1� 1

t � T0

��2 � E.t/ ; 8 t � T1 C T0 ;

where C.E1.0// depends explicitly on E1.0/.

Remark 1.7.19. A weaker lower estimate has first been derived in [7].

Proof. We prove that

u2t .t; x/ � C.E1.0//
p
E.t/ 8 t � 0 ; 8 x 2 ˝:

Thanks to the dissipation relation and defining eH.x/ D H.x/=x, we have

�E 0.t/ D s̋ a.x/u2t eH.u2t .t; x// dx :

Moreover, using Dafermos’ strong stabilization result that is that limt!1E.t/ D 0,
we deduce that there exists T0 � 0 such that u2t varies in an interval in which eH is
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increasing. We thus have

eH �jut .t; :/j2
� � eH.C.E1.0//

p
E.t// ; t � T0 ; in ˝ :

Using this inequality together with the dissipation relation we deduce that

K
�
C.E1.0//

p
E.t/

� � ˛a .t � T0/ ; 8 t � T0 :

where ˛a > 0 is an explicit constant depending on a and where

K.�/ D
p
E.T0/s
�

1

H.y/
dy ; � 2 .0; C.E1.0//

p
E.T0/	 ;

Since K is nonincreasing, we deduce that

� 1

C.E1.0/
K�1�c .t � T0/

��2 � E.t/ ; 8 t � T0 ;

for a certain constant c > 0. We then use the key comparison Lemma 1.5.6 of
Sect. 3.3 [8] we already used in the finite dimensional case. We use this Lemma
with

z.t � T0/ D K�1�c .t � T0/
�

to obtain the announced lower estimate and conclude the proof. �

Remark 1.7.20. The lower bound has the form

C.E1.0//
��
H 0��1� 1

t � T0
��2

So if g.s/ D jsjp�1s in a neighbourhood of 0, then H.x/ D x.pC1/=2, so that the
resulting lower bound is

E.t/ � C.E1.0//.t � T0/�4=.p�1/ ;

which is strictly weaker than the lower bound we stated before for polynomial
dampings and smoother solutions.

Let us now state the general result for the 1 �D locally damped wave equation for
general dampings and more regular solutions. We recall the regularity result proved
by Haraux [57]. If .u0; u1/ 2 W 2;1.˝/ � W 1;1.˝/, the solution of the 1 � D

locally damped wave equation is such that

ut 2 L1.Œ0;1/IW 1;1.˝// :

Haraux’ proof is stated for functions g with power-like growth but it can easily be
checked that Haraux’ proofs for regularity are still valid for general dampings g.
Thanks to this regularity result, we prove
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Theorem 1.7.21 (Alabau-Boussouira [8]). Assume the above hypotheses on g

and H . Assume that .u0; u1/ 2 W 2;1.˝/ � W 1;1.˝/ and E.0/ > 0. Then, the
energy satisfies the lower estimate

C1

��
H 0��1. 1

t � T0
/
�3=2 � E.t/ ; sufficiently large t ;

where C1 > 0 depends on jjutxjjL1.Œ0;1/�˝/.

Remark 1.7.22. In the peculiar case g.s/ D jsjp�1s close to the origin, H.x/ D
x.pC1/=2, so that the resulting lower estimate we get is

E.t/ � C1.t � T0/
�3=.p�1/ ; for sufficiently large t :

We can remark that this estimate is strictly better than the one obtained for strong
solutions. In the above two cases, there is a gap between the lower and upper
estimate so that contrarily to what happens to the finite dimensional case, we cannot
deduce optimality.

We now consider the boundary damping case. On one side, Vancostenoble and
Martinez’ proof relies on the fact that they can use the D’Alembert formula, since
they considered 1 � D boundary damped wave equation. On the other hand, the
regularity proof of Haraux does not work for the 1 � D boundary wave equation,
nor on systems or Petrowsky equations for instance, so that one has to find other
ways to establish lower estimates and in particular as before for strong solutions.
Let us show that the methodology we introduced before still works for the 1 � D

boundary damped wave equation. For this we consider
8
ˆ̂<
ˆ̂:

ut t .t; x/ � uxx.t; x/ D 0 ; 0 < t ; x 2 ˝ ;

ux.t; d /C �u.t; d /C g.ut .t; d // D 0

u.0; x/ D u0.x/ ; ut .0; x/ D u1.x/ ; x 2 ˝ :

(1.195)

where ˝ D .c; d / 
 R, with �1 < c < d < 1, � � 0 and where we consider
one of the following boundary conditions at x D c

either u.t; c/ D 0 ; for 0 < t ; (1.196)

or
ux.t; c/C lu.t; c/ D 0 ; (1.197)

where l � 0. The energy of a solution is defined by

E.t/ D 1

2

�
s̋ .u2t C u2x/ dx C �u2.t; d /C lu2.t; c/

�
: (1.198)

We set V D fv 2 H1.˝/ ; v.c/ D 0g if the first boundary condition holds, and
V D H1.˝/ if the second one holds.
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Theorem 1.7.23 (Alabau-Boussouira [7]). Assume that .u0; u1/ 2 .V \H3.˝//�
V \H2.˝// and also satisfies the following compatibility conditions:

8
ˆ̂̂̂
<
ˆ̂̂̂
:

u0xx.c/ D 0 if (1.196) holds ;

u0x.c/C lu0.c/ D 0 ; u1x.c/C lu1.c/ D 0 if (1.197) holds

u0x.d/C �u0.d/C g.u1.d// D 0 ;

u1x.d/C �u1.d/C g0.u1.d//u0xx.d/ D 0 ; :

(1.199)

Moreover assume that g and H satisfies the above assumptions. We set eH.x/ D
H.x/=x. Then the energy satisfies the lower estimate

C1

��eH 0��1�1
t

��2 � E.t/ ; sufficiently large t ; (1.200)

where C1 depends on E1.0/.

The proof relies on some regularity properties, an elementary interpolation property
and on the key comparison Lemma. All the above results for 1�D locally as well as
boundary have been generalized to radial solutions of the wave equation in annulus
type domains in dimension 2 and 3. We would like to generalize these results to
more general domains and PDE’s.

Let us start with a lower estimate for a fourth order space PDE, that is Petrowsky
equation. We first consider Petrowsky equation in a bounded open subset ˝ of RN

with a boundary of class C 4 denoted by � , whereN D 2 orN D 3. We assume that
! is an open subset of˝ of positive measure. We consider the following Petrowsky
equation with nonlinear damping

8̂
ˆ̂̂
<
ˆ̂̂
:̂

@t tu C�2u C a.:/g.ut / D 0 in .0;1/ �˝

u D 0 D @u

@�
on ˙ D � � R;

.u; @tu/.0/ D .u0; u1/ on ˝;

where a 2 L1.˝/ and a � 0 a.e. on˝ with a > 0 on an open subset ! of ˝ . The
energy of a solution is defined by

E.t/ D 1

2
.s̋ jut j2 C j�uj2/ dx :

We set V D H2
0 .˝/, H D L2.˝/ and Au D �2u for u 2 D.A/, where D.A/ is

defined by D.A/ D H4.˝/ \ H2
0 .˝/. Well-posedness in the energy space H D

H2
0 .˝/�H holds thanks to the results on maximal monotone operators. Moreover

if the initial data are smoother, that is .u0; u1/ 2 H4.˝/ \H2
0 .˝/ �H2

0 .˝/, then
the solutions are smoother and the energy of order 1, that is
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E1.t/ D 1

2
.s̋ jut t j2 C j�ut j2/ dx ;

is nonincreasing. Assume that the following unique continuation property holds:
The subset ! is such all weak solutions of

8<
:
@t tu C�2u D 0 in .0;1/�˝
u D 0 D @u

@�
on ˙ D � � R;

with
ut 	 0 on !

satisfy

u 	 0 in Œ0;1/ �˝ :

Applying Dafermos’ technique, we deduce that under the above unique continu-
ation property, strong stabilization holds, that is

lim
t�!1E.t/ D 0 :

We can establish a lower bound of the energy using comparison principles seen
before and in particular the key Lemma. Let us define for any r real in .N; qN /,
where qN D 1 if N D 2, whereas qN D 6 if N D 3:

�r D 1

1C 2=N � 2=r
:

We recall the following Gagliardo–Nirenberg inequality (see [34])

jjvjjL1.˝/ � Cr jjvjj1��r
L2.˝/

jjvjj�r
W 1;r .˝/

8 v 2 W 1;r .˝/

Theorem 1.7.24. Assume that either that the above unique continuation property
holds or that strong stabilization holds. Assume moreover that g satisfies .H1/ and
H satisfies .H2/. Let .u0; u1/ be in .H4.˝/ \ H2

0 .˝// � H2
0 .˝/. Let r be any

real in .N; qN / and �r be defined as above. Then the energy E satisfies the lower
estimate

� 1

�pC�p

��
H 0��1� 1

t � T0
��1=.1��r / � E.t/ ; 8 t � T1 C T0 :

where T0 � 0.

The proof is based as before on the dissipation relation, interpolation estimates
(Gagliardo–Nirenberg) and the key comparison Lemma 1.5.6 we used before.
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We proved lower energy estimates for the 1 � D either locally or boundary
damped wave equation. These results can be extended to radial solutions in annulus
type domains. What can be said on the wave equations in general domains in R

N ?
Indeed, the situation is more difficult to handle. We can state a formal result based
on an assumption of regularity and a priori estimate of the velocity in a suitable
functional space. This result is the natural generalization of the lower estimates
we proved in the 1 � D case. It can be formulated as follows. We consider the
nonlinearly damped wave equation

8
ˆ̂<
ˆ̂:

@t tu ��u C a.x/g.ut / D 0 in ˝ � R;

u D 0 on ˙ D � � R;

.u; @tu/.0/ D .u0; u1/ on ˝;

(1.201)

where ˝ is a bounded domain of R
N with sufficiently smooth boundary � . We

define the energy of solutions by

E.t/ D 1

2
s̋ .jut j2 C jruj2/ dx :

We recall that this problem is well-posed in the energy spaceH1
0 .˝/�L2.˝/. In all

the sequel, we define H by (1.118) extending the definition over Œ0;1/. We prove
the following formal result.

Theorem 1.7.25 (Alabau-Boussouira [7]). We assume that g satisfies (H1) and
that H satisfies .H2/. We moreover assume that ˝ and g are such that there
exist solutions u of (1.201) such that ut 2 L1.Œ0;1/IW 1;1.˝//. Then the energy
satisfies the lower estimate

C1

��
H 0��1. 1

t � T0
/
�.NC2/=2 � E.t/ ; 8 t � T1 ; (1.202)

where C1 > 0 and T1 depend on jjrut jjL1.Œ0;1/�˝/.

The proof of this result requires the following interpolation result. We give a
proof of this result in [8]. (see also Sect. 1.43 in [83] for interpolation between
Hölder functions and functions in L1.U /).

Theorem 1.7.26 (Alabau-Boussouira [8]). Let U be a bounded open set in R
N ,

with N � 1. Then there exists a constant C� > 0 such that

jjvjj.NC2/
L1.U / � C1 jjvjj2

L2.U /
jjrvjjNL1.U / ; 8 v 2 W 1;1.U /\H1

0 .U / : (1.203)

Proof (of Theorem 1.7.25). Thanks to the dissipation relation and defining eH as

eH.x/ D H.x/

x
; x > 0 ; eH.0/ D 0 ; (1.204)
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we have
�E 0.t/ � ˇaeH.jjut jj2L1.˝//E.t/ ; t � 0 ; (1.205)

where ˇa D 2jjajjL1.˝/.
On the other hand, thanks to the regularity results for ut , we can apply

Theorem 1.7.26 to v D ut , U D ˝ and N . Therefore, we have

jjut jj2L1.˝/ � �E2=.NC2/.t/ ; t � 0 :

where
� D �

�jjrut jjL1.Œ0;1/�˝/
�

is a constant which depends on the norm of jjrut jjL1.Œ0;1/�˝/.
On the other hand, thanks to our hypotheses on g and a, we can apply

Theorem 1.3.5 (due to Dafermos, see Proposition 2.3 in [46]), saying that
limt!1E.t/ D 0. Hence, there exists T0 � 0 such that

E.t/ � �r20
�

�.NC2/=2
; 8 t � T0 :

Thanks to our hypotheses, eH is increasing on Œ0; r20 	, we obtain

�E 0.s/ � ˇaE.s/eH
�
�.E.s//2=.NC2/� ; s � T0 : (1.206)

Thus, integrating with respect to s between T0 and t , we deduce that

Km.� .E.t//
2=.NC2// � 2

.N C 2/
ˇa.t � T0/ : (1.207)

whereKm is defined by

Km.�/ D
�E2=.NC2/.T0/s

�

1

H.y/
dy ; � 2 .0; �E2=.NC2/.T0/	 ; (1.208)

We set z0 D �E2=.NC2/.0/, � D 2
.NC2/ ˇa and we denote by z the solution of (1.98),

whereH replaces eH . We set Qz.t/ D z.t � T0/ for t � T0. Then, we have

Qz.t/ D K�1
m

�
� .t � T0/

� D K�1
m

� 2ˇa

.N C 2/
.t � T0/

�
; 8 t � T0 :

Thus, thanks to (1.207), we have

�
1

�
Qz.t/

�.NC2/=2
� E.t/ ; 8 t � T0 :
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We now use our comparison Lemma 1.5.6 to conclude. Applying this lemma to H
for R D 1, we deduce that there exists C� > 0 depending on � , (and in addition of
� if the second alternative of the present theorem holds), such that

�
H 0��1. 1

t � T0 / � C� Qz.t/ ; 8 t � T1 C T0 :

for a sufficiently large T1. The desired estimate then easily follows. �

Remark 1.7.27. Smoothness properties of the solutions of the multi-dimensional
wave equations in general domains is an open question since the sixties Lions and
Strauss [77]. In particular, the required above smoothness on the velocity is an open
question for general multi-dimensional domains. In 1�D the required regularity is
assured by Haraux’ smoothness property for sufficiently smooth initial data.

We would like to further extend the above methodology to systems of coupled
equations such as Timoshenko beams for instance. Haraux’ regularity proof can-
not be extended to this case, but we have already seen that it still may be
possible to derive lower estimates for less regular solutions, that is for strong
solutions.

We consider the following Timoshenko system:

�
�1't t � k.'x C  /x D 0 t > 0 ; 0 < x < L ;

�2 tt � b xx C k.'x C  /C a.x/g. t / D 0 t > 0 ; 0 < x < L ;

where a 2 L1.˝/ and a � 0 a.e. on ˝ D .0; L/ with a > 0 on an open subset
! of ˝ . In this latter case ad assuming that g and H satisfy respectively .H1/ and
.H2/, we can prove a similar result that the one for the 1 � D wave equation for
strong solutions, that is

C.E1.0//
��
H 0��1� 1

t � T0

��2 � E.t/

where E1.0/ is the energy of first order. We refer to [4] for the detailed result.
Weak velocity lower estimates. Haraux’ lower estimates [57] relies on an indirect

argument, which is a weak lower estimate on the velocity, for very regular solutions
of the one dimensional locally damped wave equation, that is

lim sup
t!1

.t1=.p�1/jjut jjL1.Œ0;1/�˝// > 0 :

from which he deduces the above weak lower energy estimate.
We can generalize this weak lower velocity estimate to general dampings and

other PDE’s such as Petrowsky equation. Let us state the result.

Theorem 1.7.28 (Alabau-Boussouira [7]). We assume that˝ and g are such that
there exist solutions u of the above multi-dimensional wave equation, such that
ut 2 L1.Œ0;1/IW 1;1.˝//. We also assume that g and H satisfy respectively
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.H1/ and .H2/. Then the velocity ut satisfies the following weak lower estimate.

�
lim sup
t!1

1

.H 0/�1
�
D0
t

� jjut jj2L1.˝/ � 1 ; ;

The proof of this result relies on the following technical Lemma.

Lemma 1.7.29 (Alabau-Boussouira [7]). We assume that g and H satisfies
respectively .H1/ and .H2/. We set � D 1 if the first alternative of .H2/ holds,
otherwise � > 0 is the constant involved in the second alternative of .H2/. Assume
that E W Œ0;1/ 7! .0;1/ is in W 1;1

loc.Œ0;1/ and satisfies the two inequalities

�E 0.t/ � ˇaeH
�jjut jj2L1.˝/

�
E.t/ ;8 t � T� ; (1.209)

where ˇa > 0 and T� � 0 are given constants, and

E.t/ � ˇE.0/

�
H 0
��1�D

t

�
; for t sufficiently large : (1.210)

Define the solution z of the ordinary differential equation:

z0.t/CH.� z.t// D 0 ; z.0/ D z0 > 0 ; (1.211)

where z0 is given. Then we have

lim sup
t!1

� eH �jjut .t/jj2L1.˝/

�

eH.� z.t//

�
� �

ˇa
> 0 : (1.212)

Remark 1.7.30. In the one-dimensional case and for polynomial feedback close to
the origin, that is for g.s/ D jsjp�1s for s close to 0, one recovers Haraux’s weak
lower velocity estimate

lim sup
t!1

.t1=.p�1/jjut .t/jjL1.˝// > 0 :

On the other hand, using then the interpolation estimate given in Theorem 1.7.26
for v D ut , U D ˝ and N D 1, we have

jjut .t/jjL1.˝/ � CE1=3.t/

Inserting this last estimate in the previous one, we obtain

lim sup
t!1

.t3=.p�1/E.t// > 0 ;

so that we recover Haraux’ result, that is a weak lower energy estimate through the
above indirect argument, as a peculiar case. We also extend these weak velocity
lower estimates to Petrowsky equations in [4].
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The above lower estimates depend on the dimension. Let us now give an example
of extension of the one-dimensional case to radial solutions in annulus domains
in the three-dimensional space. We assume that the space dimension is N D 3

and we consider ˝ D B.0;R2/nB.0;R1/ in R
N . For the sake of simplicity, we

assume that a 	 1. We consider (1.201). Well-posedness in the energy space
H1
0 .˝/ � L2.˝/ holds. For initial data that depend only on the radial component,

we can apply our previous results. Let u0.:/ D u0.r/ and u1.:/ D u1.r/ in ˝ where
.u0; u1/ 2 .H1

0 .R1;R2/\H2.R1;R2//�H1
0 .R1;R2/. Then the solution u of (1.201)

depends only on r . Its energy with respect to spherical coordinates is given by

Eu.t/ D 1

2

� R2s
R1

2�

s
0

�

s
0

�
u2t C ˇ̌1

r
@r .r u/

ˇ̌2�
r2 sin.�/ dr d� d�

�
: (1.213)

We make the change of unknown

v.t; r/ D ru.t; r/ ; t > 0; r 2 .R1;R2/ : (1.214)

Then, v satisfies the equation

8
ˆ̂<
ˆ̂:

vt t � vrr C rg.
vt
r
/ D 0 ; 0 < t ; r 2 .R1;R2/ ;

v.t; R1/ D v.t; R2/ D 0 ; for 0 < t ;

v.0; r/ D ru0.r/ ; vt .0; r/ D ru1.r/ ; r 2 .R1;R2/ :
(1.215)

Moreover we have

Eu.t/ D 4�E.t/ DW 4�
R2s
R1

1

2

�
v2t C v2r

�
dr : (1.216)

We prove the following result.

Theorem 1.7.31 (Alabau-Boussouira [7]). Let u0.:/ D v0.r/ and u1.:/ D v1.r/
in ˝ where .v0; v1/ 2 W 2;1.R1;R2/ �W 1;1.R1;R2/. Assume also that g and H
satisfy respectively .H1/ and .H2/. Then the energy satisfies the lower estimate

4�

�2

��
H 0��1. 1

t � T0 /
�3=2 � Eu.t/ ; 8 t � T1 C T0 ; (1.217)

where � depends on a smoother norm of the initial data.

Proof. Thanks to the regularity of the initial data, we can apply Haraux’ Proposition
2.3 in [57] stating that is if .u0; u1/ 2 W 2;1..R1;R2// �W 1;1..R1;R2//, then the
solution of (1.201) is such that ut is in L1.Œ0;1/IW 1;1..R1;R2// and is bounded
above in this space by a quantity involving only the initial data in a smoother space
than the energy space. Thanks to these results, we can apply Theorem 1.7.25, which
concludes the proof. �
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Remark 1.7.32. This result is to be compared with the corresponding three
dimensional one in Theorem 1.7.25 for which the resulting estimate is weaker,
since the exponent 3=2 on the left hand side of (1.217) has to be replaced by 2. The
previous results hold true for a damping term of the form a.jxj/g.ut / in (1.201),
where j � j stands for the euclidian norm in R

N , and where a 2 L1.R1;R2/,
a � 0 on .R1;R2/ and a is nonvanishing on a subset of .R1;R2/. We give in [7]
results for less regular (indeed strong) solutions. For the boundary stabilization,
one cannot assert the a priori regularity and a priori estimates of the velocity in
L1.Œ0;1/IW 1;1.˝/ even in the one-dimensional situation. Nevertheless it is
still possible to derive lower energy estimates (see [7]) as the result presented
in Theorem 1.7.23 for the one-dimensional boundary wave equation (1.194) and
further extensions to radial cases in two and three dimensional annulus type domains
in [7].

Let us now illustrate these results with concrete feedback examples to conclude this
section.

Theorem 1.7.33 (Alabau-Boussouira [7]). We consider (1.201). We make the
hypotheses of Theorem 1.7.31, then the energy of solutions with initial data in
W 2;1.˝/ �W 1;1.˝/ satisfies, for t sufficiently large, the estimates

8̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂̂̂
ˆ̂̂
ˆ̂:

C1.E.0/; E1.0//t
�3=.p�1/ � E.t/ � C2.E.0//t

�2=.p�1/

for g.x/ D xp ; x 2 Œ0; r0	 ; p > 1 ;

C1.E.0/; E1.0//.ln.t //�3=2 � E.t/ � C2.E.0//.ln.t //�1

for g.x/ D e�1=x2 ; x 2 Œ0; r0	 ;

C1.E.0/; E1.0//t
�3=.p�1/.ln.t //�3q=.p�1/ � E.t/ � C2.E.0//t

�2=.p�1/.ln.t //�2q=.p�1/ ;

for g.x/ D xp.ln. 1
x
//q ; p > 1 ; q > 1 ; x 2 Œ0; r0	 ;

C1.E.0/; E1.0//e
�3.ln.t//1=p � E.t/ � C2.E.0//e

�2.ln.t//1=p ;

for g.x/ D e�.ln. 1x //
p
; 1 < p < 2 ; x 2 Œ0; r0	 ;

Remark 1.7.34. Contrarily to the ODE case, we cannot deduce optimality from the
above lower estimates. We refer the reader to Martinez and Vancostenoble [101]
and to Vancostenoble [102] for an optimality result in case of a one-dimensional
boundary damped wave equation and for initial data with zero velocity.

1.8 Memory Stabilization

Abstract The purpose of this section is to present energy decay results for memory-
damped wave-like equations. These equations model viscoelastic materials which
keep traces of their deformations. The damping operator is nonlocal and involves



1 On Some Recent Advances on Stabilization for Hyperbolic Equations 79

the convolution in time between a time-dependent kernel and the action of the
infinitesimal generator of the undamped system on the unknown state. We shall
first consider the case of exponentially and polynomially decaying kernels. We then
extend the results to the case of general decaying kernels, using the optimal-weight
convexity method and prove in particular that the energy decays as fast as the kernel.

1.8.1 Introduction and Motivations

Many applications in the stabilization of mechanical structures involve viscoelastic
materials, that is materials that keep memory of their deformations. Various models
(see [53, 75, 92]) exist for describing their behavior. These models involve damping
phenomena which is no longer of local—i.e. frictional—nature, but is now nonlocal
in time and involves a convolution with respect to time with a decaying kernel, also
called relaxation function.

We will consider here a simple model example, which is the viscoelastic
membrane equation

8̂
<̂
ˆ̂:

ut t ��u C k ��u D 0

u D 0 in Œ0;1/ � �
.u; ut /.0; :/ D .u0; u1/ in ˝ ;

(1.218)

in a bounded open domain˝ 
 R
N with smooth boundary � (see, e.g. [30, 47, 48,

53, 75, 88, 92]) and where � is defined by

.k � v/.t/ D
t

s
0

f .t � s/v.s/ ds :

and the kernel k is a positive, nonincreasing differentiable function which decays at
infinity. We refer to [11] for models with singular kernels and to [13] for an example
of combined boundary memory and frictional dampings. We refer to [14, 90] for
well-posedness of (1.218) in the energy space H1

0 .˝/ � L2.˝/ and regularity of
its solutions for smoother initial data. In particular, for initial data in .H2.˝/ \
H1
0 .˝// � H1

0 .˝/, solutions of (1.218) are strong solutions. For this system, the
natural energy is defined by

Eu.t/ D 1

2
kut .t/k2L2.˝/ dx C 1

2

�
1�

t

s
0

k.s/ ds
�
kru.t/k2

L2.˝/
(1.219)

C1

2

t

s
0

k.t � s/kru.t/ � ru.s/k2
L2.˝/

ds

The term k ��u is a damping term. Indeed, one can show that the energy of strong
solutions satisfies the dissipation relation (see [14, 88] for a proof):



80 F. Alabau-Boussouira

E 0
u.t/ D �1

2
k.t/kru.t/k2 (1.220)

C1

2

t

s
0

k0.t � s/kru.s/� ru.t/k2 ds � 0

The main purpose is to obtain decay estimates for (1.218) and also for more
general abstract equation of the same nature under minimal assumptions on the
kernel k. Another important aspect is to “guarantee” in some way, that our decay
estimates are optimal or quasi-optimal. This will be done through comparison with
the behavior of the kernel at infinity. A lot of results in the literature do not allow to
recover the “optimal” polynomial decay for polynomially decaying kernels. Thus,
optimality and introduction of appropriate mathematical tools to obtain satisfactory
results in this direction are of important concerns. Also, when aiming to optimality,
identifying physical properties of the model and their use from a mathematical point
of view become essential.

1.8.2 Exponential and Polynomial Decaying Kernels

We shall assume that k W Œ0;1/ ! Œ0;1/ is a locally absolutely continuous
function satisfying the assumptions

Assumptions (M1): 1. k W Œ0;1/ ! Œ0;1/ is a locally absolutely continuous
function such that

1
s
0

k.t/ dt < 1 ; k.0/ > 0 k0.t/ � 0 for a.e. t � 0 :

2. There exist p 2 .2;1	 and k0 > 0 such that

k0.t/ � �k0k1C 1
p .t/ for a.e. t � 0 :

where we set 1
p

D 0 whenever p D 1. We prove the following result.

Theorem 1.8.1 (Alabau–Cannarsa–Sforza [14]). Assume first that hypothesis
.M1/ holds with p D 1. Then, for all initial data .u0; u1/ 2 H1

0 .˝/ � L2.˝/,
the energy Eu.t/ of the mild solution u of (1.218) decays as

Eu.t/ � Eu.0/ exp .1 � C t/ 8t � 0 :

Assume that hypothesis .M1/ holds with p 2 .2;1/. Then for all initial data
.u0; u1/ 2 H1

0 .˝/ � L2.˝/, the energy Eu.t/ of the mild solution u of (1.218)
decays as
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Eu.t/ � Eu.0/

�
C.1C p/

t C pC

�p
8t � 0 :

where C is a positive constant.

Remark 1.8.2. We prove the above result for general abstract hyperbolic evolution
equations and in the presence of source terms in [14]. This result is known in the
case of the wave equation, but with different techniques, the main point here is in
the proof which is new as far as the proof of a weighted dominant memory energy
and the use of weighted nonlinear polynomial Gronwall inequalities are concerned.
This is important for the further generalization to other types of growth of the kernel
with a conjectured optimal energy decay rate which is the one of the kernel which
will be presented below.

Proof. We will give only an overview of the proof. It is based on the choice of
appropriate multipliers and on the linear (resp. polynomial) Gronwall inequalities of
Sect. 1.2 (resp. 3) for exponentially (resp. polynomially) decaying kernels k. Given
a solution u of (1.218), we define the memory energy of u as

Ekm
u .t/ D

t

s
0

k.t � s/kru.s/ � ru.t/k2 ds t � 0 : (1.221)

The first part, based on multipliers M u of the form M u D Er.s/.c1.ˇ � u/.s/ C
c2.s/u/ where c1 is a suitable constant, whereas c2 may be chosen dependent on k,
allows us to prove that the memory energy is dominant. More precisely, we prove
that for any S0 > 0, there exists constants CS0 > 0 and ı4 D ı4.S0/ > 0 such that
for any T � S � S0, the solutions u of (1.218) satisfy

T

s
S

Er
u.t/Eu.t/ dt � CS0E

r
u .S/Eu.S/C ı4

T

s
S

Er
u.t/

� t

s
0

k.t � s/jjru.t/ � ru.s/jj2 ds
�
dt ; (1.222)

where ı4; CS0 are positive constants and r > 0 is arbitrary and will be chosen later
on. We assume p 2 .2;1/ Using then this estimate with successively r D 2=p

and then r D 1=p combined with an argument of Cavalcanti and Oquendo [41],
we prove that Eu satisfies the polynomial Gronwall inequality (1.66) of Theorem
9.1 [65], that is Theorem 1.5.1 in the present Notes, with r D 2=p first and then
with r D 1=p. �

1.8.3 General Decaying Kernels and Optimality

Considering the former results and the existing literature on the subject, a natural
question which raises is: what can be said for general decaying kernels? In
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particular, does it hold true that the energy decays at least as fast as the kernel,
as time goes to infinity? It is still possible to prove that the memory energy
dominates the behavior of the total energy with a general time-dependent weight
function. The difficulty, a real one, is to prove that the energy satisfies a nonlinear
Gronwall inequality for an appropriate choice of the time-dependent weight func-
tion. Cavalcanti and Oquendo’s argument no longer applies for general decaying
kernel. Indeed, we will be able to answer these questions using the optimal-weight
convexity method [17] and in particular its simplification in [8]. Nevertheless, one
has to introduce new tools to prove these results. We will consider a more general
PDE. Let X be a real Hilbert space X be, with scalar product h�; �i and norm k � k,
We consider the second order integro-differential equation

u00.t/C Au.t/ �
t

s
0

k.t � s/Au.s/ ds D 0 ; t 2 .0;1/ ; (1.223)

where A W D.A/ 
 X ! X is a densely defined self-adjoint linear operator
satisfying

hAx; xi � !kxk2 8x 2 D.A/ (1.224)

for some ! > 0. We recall that, for any nonincreasing locally absolutely continuous
function k W Œ0;1/ ! .0;1/ satisfying

1
s
0

k.t/ dt < 1 ; (1.225)

(1.223), complemented with the initial conditions

(
u.0/ D u0 2 D.A1=2/
u0.0/ D u1 2 X ; (1.226)

has a unique mild solution u 2 C 1.Œ0; T 	IX/ \ C .Œ0; T 	ID.A1=2/, see [90] (see
also [14]). We now consider kernels satisfying a general condition of the form

k0.t/ � ���k.t// for a.e. t � 0 (1.227)

which includes the polynomial case and many other interesting cases. We make the
following assumptions on the function �, which we do below.

Assumption (M2): � is a nonnegative measurable function on Œ0; k0	, for some
k0 > 0, strictly increasing and of class C 1 on Œ0; k1	, for some k1 2 .0; k0	, such
that

�.0/ D �0.0/ D 0 (1.228)

9 �0 > 0 such that � � �0 on Œk1; k0	 (1.229)



1 On Some Recent Advances on Stabilization for Hyperbolic Equations 83

k0s
0

dx

�.x/
D 1 (1.230)

k0s
0

x

�.x/
dx < 1 (1.231)

Remark 1.8.3. Condition (1.231), together with (1.227) and the change of variable
x D k.t/, yields (1.225) which ensures in turn that (1.223)–(1.226) is well-posed.
This implies a natural restriction on the growth of the memory damping: k cannot
decay too slowly at infinity or, equivalently, � cannot be too flat at the origin. Note
that this type of restriction does not hold for the frictionally damped wave equation.
We note that our approach could be useful in situations that look even more general
than (1.227), such as

k0.t/ � �
.t/ ��k.t// for a.e. t � 0 : (1.232)

Indeed, if k is strictly decreasing—hence, invertible—one can define e�.x/ D
.
 ı k�1/.x/�.x/ and then check if e� satisfies .M2/. Also � does not need to
be explicitly known. Our result applies to the wave equation, Petrovsky system,
anisotropic elasticity and other models.

Let us define the energy of a given solution u of (1.223) on Œ0;1/ by

Eu.t/ WD 1

2
ku0.t/k2 C 1

2

�
1 �

t

s
0

k.s/ ds
�
kA1=2u.t/k2 (1.233)

C1

2

t

s
0

k.t � s/kA1=2u.s/� A1=2u.t/k2 ds t � 0 :

In the above expression, we define the memory-energy of u by

Em
u .t/ D

t

s
0

k.t � s/kA1=2u.s/� A1=2u.t/k2 ds t � 0 : (1.234)

We prove the following result.

Theorem 1.8.4 (Alabau–Cannarsa [10]). Assume that the convolution kernel k is
a locally absolutely nonnegative continuous function such that (1.227) holds for a
given function � satisfying hypothesis .M2/. Assume, moreover, that � is strictly
convex on an interval of the form .0; ı	 and

lim inf
x!0C

.x/ >
1

2
; (1.235)

where

.x/ D �.x/=x

�0.x/
; x 2 .0; ı	 : (1.236)
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Let u be a solution of (1.223) with initial data in D.A1=2/ �X . Then

Eu.t/ � �.Eu.0// �1.t/ ; 8 t � T1 ; (1.237)

where T1 > 0 is an explicit universal constant, �.Eu.0// is a constant which
depends on the initial data, and �1 is a function which decays to 0 as t ! 1.

For kernel which are not close to the exponential decaying case, we prove a stronger
result.

Theorem 1.8.5 (Alabau–Cannarsa [10]). Assume the hypotheses of Theorem
1.8.4 and suppose moreover that

lim sup
x!0C

.x/ < 1 and k0.t/ D ��.k.t// for a.e. t � 0 :

Then
Eu.t/ � �.Eu.0//k.t/ ; 8 t � T1 (1.238)

where T1 > 0 and �.Eu.0// are as above.

Proof. The proof is based on the optimal-weight convexity method [8, 17] and a
pseudo-iterative process to build optimal-weights for suitable nonlinear Gronwall
inequalities to handle the nonautonomous system. �
Remark 1.8.6. The function �1 can be precised but one cannot assert that the energy
decays at least as fast as the kernel if lim supx!0C .x/ D 1. This case is analogous
to the frictional nonlinear damped wave equation for feedbacks close to a linear
behavior.

Theorem 1.8.5 is, to our knowledge, the first result which provides for general
kernels, a comparison criteria between the energy and the kernel asymptotically.
This was known only for kernels decaying polynomially at infinity. The question
of optimality is completely open as far as we know. This theorem contains the
polynomial case as a peculiar case and other general examples of kernels with for
instance polynomial-logarithmic decay at infinity (see [10] for examples). Its proof
strongly relies on the optimal-weight convexity method but requires additional ideas
to handle the nonautonomous character of the problem.

1.9 Indirect Stabilization for Coupled Systems

Abstract We give in this section an introduction to indirect stabilization of coupled
systems. For such type of stabilization, only some equations or components of the
vector state are directly damped, the other ones being undamped. One then hopes
that the coupling effects will be sufficient so that the full system is damped. Many
questions arise for such analysis. How the interactions between the involve diffusion
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operators, the damping operators and the coupling operators may influence the
indirect stabilization phenomena? If stabilization holds, is it possible to determine
in which sense? We shall present in this section three model examples: one with
boundary damping and coercive coupling, one with distributed damping and coer-
cive coupling, and one with locally distributed damping and noncoercive damping.
The results are based on an integral inequality (Alabau, Compt. Rendus Acad. Sci.
Paris I 328: 1015–1020, 1999) which is not of differential nature contrarily to the
approach of the previous sections, and on suitable crossed multipliers, which are not
geometric multipliers but are adapted to the coupling.

1.9.1 Introduction and Motivations

More and more phenomena in mechanics, physics and biology are modelized by
coupled systems. For engineering or biological constraints, an important issue is to
stabilize such coupled systems by a reduced number of feedbacks. This is called
indirect damping. This notion has been introduced by Russell [95] in 1993.

As an example, we consider the following coupled wave system:

�
ut t ��u C ut C ˛v D 0

vt t ��v C ˛u D 0
in .0;1/�˝ ; u D 0 D v on .0;1/� @˝ :

(1.239)
where ˛ is a coupling parameter, which may be constant or not. Here, the first
equation is damped through a linear distributed feedback, while no feedback is
applied to the second equation. This second equation is conservative when ˛ D 0.
The question is to determine if the full coupled system is stabilized for nonzero
values of the coupling parameter ˛ thanks to the stabilization of the first equation
only. Note that this question has already received attention in the finite dimensional
case. For stabilization or control of coupled ODE’s, one has an algebraic criteria,
named Kalman rank condition. The situation is much more involved in the case of
coupled PDE’s. One can first show that the above system fails to be exponentially
stable (see [20] for a proof). Hence if stabilization holds, it cannot be uniform since
the system is linear. Is it stable in a weaker sense? What can be said for other types
of PDE’s, in case of boundary damping . . . ?

More generally, we study the stability of abstract system

�
u00 CA1u C Bu0 C ˛P v D 0

v00 C A2v C ˛P?u D 0 ;
(1.240)

where A1;A2 and B are self-adjoint positive linear operators in a Hilbert space H
with norm j � j. Moreover, B is assumed to be a bounded or unbounded operator in
H . It can be coercive or not, modelling the case of globally or locally supported
feedbacks. The coupling operator P is supposed to be a bounded operator, not
necessarily coercive on H . So, this formulation includes systems with internal
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damping supported in the whole domain˝ such as (1.239), or localized and bound-
ary dampings. It also includes the case of localized couplings. The reader is referred
to Alabau-Boussouira [21, 23] for related results concerning boundary stabilization
problems and to Beyrath [31, 32] (see also [104]) for localized indirect dampings.
Extensions to boundary and localized dampings together with noncoercive coupling
operators are given in Alabau-Boussouira and Léautaud [2]. System (1.240) fails
to be exponentially stable, at least when H is infinite dimensional and A1 has a
compact resolvent as in (1.239) even in the case of P D Id . A common feature
of these systems is that they possess an energy which is dissipated, but only some
of the components are directly dissipated. From the point of view of applications,
one hopes that this partial dissipative action will be compensated by the coupling
effects, so that the full system is stabilized. If so, one also wants to determine which
type of stabilization occurs: uniform or not, exponential or of weaker type. Since
the fact that some components of the vector state are not directly damped has to
be counterbalanced by the coupling effects, the answer to the above questions will
depend on the different assumptions on the given data of the system. It will depend
of the involved operatorsA1, A2 and in particular if they allow a good transmission
of the information from the damped equation to the undamped one, the strength
of the damping operator B in the sense that it may be coercive or not, bounded or
unbounded corresponding to the case of globally or not distributed dampings and to
locally distributed or boundary dampings. It will depend also on the properties of
the coupling operator P , and in particular if it is coercive or partially coercive, this
corresponding respectively to the case of globally distributed positive (or negative)
couplings and to the case of locally distributed couplings. An interesting aspect is
the one which allows us to identify classes of such systems which can be analyzed
with common tools to be found, even if the technicity of the proofs may vary under
the different assumptions. Due to the property that the coupling action is compact
in the energy space, these systems cannot be uniformly stable as shown in Cannarsa
and Komornik [20]. We will see that for such classes of coupled systems, one can
prove under different hypotheses that polynomial stabilization holds for sufficiently
smooth initial data. One important ingredient for proving such stability properties
is to show that the energy of the system satisfies an integral inequality, which is
not of differential nature and relies on the underlying semigroup property. This
nondifferential integral inequality [23] (see also [20, 21]) is interesting in itself and
leads to polynomial decay. The technical aspects and properties of transmission of
the information from the damped to the undamped equations have to be understood
in particular by determining suitable coupling multipliers to prove that the energy
of the full system satisfies such nondifferential integral inequalities. This is where
the proofs vary under the different assumptions on A1;A2; B; P .

We shortly present below some of the results on concrete examples for indirect
stabilization in case of boundary damping, then globally distributed damping, with
coercive coupling and then the case of noncoercive couplings. We refer the reader
to the indicated references for the general abstract results.
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1.9.2 A Nondifferential Integral Inequality

Let A be the infinitesimal generator of a continuous semi-group exp.tA/ on an
Hilbert space H , and D.A/ its domain. For U 0 in H we set in all the sequel
U.t/ D exp.tA/U 0.

Theorem 1.9.1 (Alabau [23]). Assume that there exists a functional E defined on
C.Œ0;C1/;H / such that for every U 0 in H , E.exp.:A// is a non-increasing,
locally absolutely continuous function from Œ0;C1/ on Œ0;C1/. Assume moreover
that there exist an integer k 2 N

? and nonnegative constants cp for p D 0; : : : k

such that

T

s
S

E.U.t// dt �
kX

pD0
cpE.U

.p/.S// 8 0 � S � T ;8 U 0 2 D.Ak/ : (1.241)

Then the following inequalities hold for every U 0 in D.Akn/, where n is any
positive integer:

T

s
S

E.U.�//
.� � S/n�1

.n � 1/Š
d� � c

knX
pD0

E.U .p/.S// ; (1.242)

8 0 � S � T ;8 U 0 2 D.Akn/ ;

and

E.U.t// � c

knX
pD0

E.U .p/.0//t�n 8t > 0 ;8 U 0 2 D.Akn/ ;

where c is a constant which depends on n.

Proof. We first prove (1.242) by induction on n. For n D 1, it reduces to the
hypothesis (1.241). Assume now that (1.242) holds for n. and let U 0 be given in
D.Ak.nC1//. Then we have

T

s
S

T

s
t

E.U.�//
.� � t/n�1

.n � 1/Š
d� dt � c

knX
pD0

T

s
S

E.U .p/.t// dt

8 0 � S � T ;8U 0 2 D.Akn/:

Since U 0 is in D.Ak.nC1// we deduce that U .p/.0/ D ApU 0 is in D.Ak/ for p 2
f0; : : : kng. Hence we can apply the assumption (1.241) to the initial data U .p/.0/.
This together with Fubini’s Theorem applied on the left hand side of the above
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inequality give (1.242) for nC 1. Using the property that E.U.t// is non increasing
in (1.242) we easily obtain the last desired inequality. �

Remark 1.9.2. This generalized integral inequality is a key point for the obtention
of polynomial decay rates for smooth solutions of coupled equations when only one
of the equation is stabilized. One can remark that this inequality is not of differential
nature as the nonlinear Gronwall inequalities proved in Sect. 1.3. Note that this
inequality has been later used by several authors for other polynomial stabilization
results. Theorem 1.9.1 has been first announced in [23] and its proof given in [21]
(see also [20]).

1.9.3 The Case of Coercive Couplings

1.9.3.1 Coupled Boundary Damped Wave Equations

We consider the following system

8
ˆ̂̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂:

ut t ��u C ˛v D 0 in .0;1/ �˝ ;

vt t ��v C ˛u D 0 in .0;1/ �˝ ;

u D v D 0 on ˙0 D .0;1/ � �0 ;
@u

@�
C au C `ut D 0; v D 0 on ˙1 D .0;1/ � �1 ;

.u; ut /.0/ D .u0; u1/; .v; vt /.0/ D .v0; v1/ on ˝ ;

(1.243)

where
a D .N � 1/m � �=2R2 ; l D m � �=R : (1.244)

For the sake of clearness we will assume that a ¤ 0 or meas .�0/ > 0, where the
measure stands for the Lebesgue measure. We set H D L2.˝/ and V1 D H1

�0
.˝/

equipped respectively with the L2 scalar product and the scalar product .u; z/V1 D
s˝ ru � rz C s�1 auz and the corresponding norms. Moreover we set V2 D H1

0 .˝/

equipped with the scalar product .u; z/V2 D s˝ ru � rz and the associated norm.
We define the duality mappingsA1 and A2. Moreover we define a continuous linear
operator B from V1 to V 0

1 by

< Bu ; z >V 0
1 ;V1

D s
�1

` u z d� :

We also set P D P? D IdH . Then the system (1.243) can be rewritten under the
form (1.240) with the above notation. The energy of a solution U D .u; v;w; z/ D
.u; v; ut ; vt / is then given by

E.U.t// D 1

2
.jjujj2V1 C jjvjj2V2 C jjut jj2H C jjvt jj2H /C ˛.u; v/H : (1.245)



1 On Some Recent Advances on Stabilization for Hyperbolic Equations 89

We now turn back to the weakly coupled system (1.243). We set V D V1 � V2.
This space is equipped with the usual scalar product ..u; v/; .Qu; Qv//V D .u; Qu/V1 C
.v; Qv/V2 and the corresponding norm jj jjV , where .u; v/ 2 V and .Qu; Qv/ 2 V . We
have V 
 H � H 
 V 0 with continuous, dense and compact injections. We also
define a linear continuous operator A˛ from V on V 0 by

A˛.u; v/ D .A1u C ˛P v; A2v C ˛P?u/ ; .u; v/ 2 V :
Moreover, we consider on V the continuous bilinear form

..u; v/; .Qu; Qv//˛ D ..u; v/; .Qu; Qv//V C ˛.P v; Qu/H C ˛.P ?u; Qv/H ; .u; v/ ; .Qu; Qv/ 2 V :

Proposition 1.9.3. There exists ˛0 > 0, such that for all 0 � j˛j < ˛0 , there exist
constants c1.˛/ > 0 and c2.˛/ > 0 such that,

c1.˛/jj.u; v/jjV � ..u; v/; .u; v//1=2˛ � c2.˛/jj.u; v/jjV 8 .u; v/ 2 V :

Hence, for all 0 � j˛j < ˛0, the application

.u; v/ 2 V 7! jj.u; v/jj˛ D ..u; v/; .u; v//1=2˛

defines a norm on V which is equivalent to the norm jj jjV . Moreover, for all 0 �
j˛j < ˛0, A˛ is the duality mapping from V on V 0 when V is equipped with the
scalar product . ; /˛ .

We set H D V �H2 equipped with the scalar product

.U; QU /H D ..u; v/; .Qu; Qv//˛ C ..w; z/; . Qw; Qz//H�H ;

and the corresponding norm

jjU jjH D .jj.u; v/jj2˛ C jj.w; z/jj2H�H/1=2 ;

where U D ..u; v/; .w; z// 2 H . We also define the unbounded linear operator A
on H by

A˛U D .�w;�z; A˛.u; v/C .Bw; 0// ;

D.A˛/ D fU D ..u; v/; .w; z// 2 V � V ; A˛.u; v/C .Bw; 0/ 2 H �H g :

One can easily prove that

U D ..u; v/; .w; z// 2 D.A˛/ ” .u;w/ 2 D.A1/ ; .v; z/ 2 D.A2/ :

We can now reformulate the system (1.243) as the abstract first order equation
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(
U 0 C A˛U D 0 ;

U.0/ D U 0 2 H :
(1.246)

Well-posedness thanks to semigroup theory can easily be proved for this abstract
equation. Indeed, one can show that A˛ generates a continuous semigroup of
contractions on H .

Theorem 1.9.4 (Alabau [21, 23]). There exists ˛1 2 .0; ˛0	, such that for all 0 <
j˛j < ˛1, the solution U.t/ D exp.�A˛t/U

0 of (1.243) satisfies

E.U.t// � c

tn

2nX
pD0

E.U .p/.0// 8 t > 0; 8 U 0 2 D.A 2n
˛ / :

Moreover strong stability holds in the energy space H D V1 � V2 �H2.

To prove this Theorem, we first prove the following result [21], which proof is
technical and obtained through multiplier techniques and using estimates due to
the coercivity properties of the coupling operator.

Theorem 1.9.5. There exists ˛1 2 .0; ˛0	, such that for all 0 < j˛j < ˛1, the
solution U.t/ D exp.�A˛t/U

0 of (1.243) satisfies

T

s
S

E.U.t// dt �
2X

pD0
cpE.U

.p/.S// 8 0 � S � T ;8 U 0 2 D.A 2
˛ / : (1.247)

We then apply the above nondifferential integral inequality [23], that is Theo-
rem 1.9.1 [23] in the present Notes.

Remark 1.9.6. The above results have been stated in a more general abstract form
in [21] together with applications on wave–wave, wave-Petrowsky equations and
various concrete examples.

1.9.3.2 Coupled Internally Damped Wave Equations

Let us study the problem

�
ut t ��u C ˇut C �u � �v D 0

vt t ��v C �v � �u D 0
in ˝ � .0;C1/ (1.248)

with boundary conditions

u.�; t/ D 0 D v.�; t/ on � 8t > 0 (1.249)

and initial conditions
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�
u.x; 0/ D u0.x/ ; u0.x; 0/ D u1.x/
v.x; 0/ D v0.x/ ; v0.x; 0/ D v1.x/

x 2 ˝ : (1.250)

The above model can be used to describe the evolution of a system consisting of two
elastic membranes subject to an elastic force that attracts one membrane to the other
with coefficient � > 0. The term ˇut , ˇ > 0, is a stabilizer of the first membrane.
We set

H D L2.˝/ ; B D ˇI ; ˛ D ��
and let A be given by

D.A/ D H2.˝/\H1
0 .˝/ ; Au D ��u C �u 8u 2 D.A/ :

One can prove that (see [20])

D.A n/ D D.A
nC1
2 / �D.An

2 / �D.AnC1
2 / �D.An

2 /

where

D.A
m
2 / D

n
u 2 Hm.˝/ W u D �u D � � � D �Œm�1

2 	u D 0 on �
o

form D 1; 2; : : : . For this system, we prove (see [20] for the proof)

Theorem 1.9.7 (Alabau–Cannarsa–Komornik [20]). Let us denote by .u; v/ a
solution of system (1.248). If

u0; v0 2 H2.˝/\H1
0 .˝/ ; u1; v1 2 H1

0 .˝/;

then

s̋
�
jut j2 C jruj2 C jvt j2 C jrvj2

�
dx

� c

t

�
ku0k22;˝ C ku1k21;˝ C kv0k22;˝ C kv1k21;˝

�
8t > 0 :

Moreover if

u0; v0 2 HnC1.˝/ and u1; v1 2 Hn.˝/

are such that

u0 D � � � D �Œn2 	u0 D 0 D v0 D � � � D �Œn2 	v0 on �;

u1 D � � � D �Œn�1
2 	u1 D v1 D � � � D �Œn�1

2 	v1 D 0 on �;

then
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s̋
�
jut j2 C jruj2 C jvt j2 C jrvj2

�
dx

� cn

tn

�
ku0k2nC1;˝ C ku1k2n;˝ C kv0k2nC1;˝ C kv1k2n;˝

�
8t > 0 :

This result can be generalized to (1.240) assuming an additional compatibility
condition between the operatorsA1 andA2 as follows. We define the total energy of
the system by

E.U / D 1

2

�
jA1=21 uj2 C ju0j2

�
C 1

2

�
jA1=22 vj2 C jv0j2

�
C ˛hu; vi :

We will denote the energy either byE.U.t// or byE.t/ when there is no ambiguity.
Strong solutions of (1.240) satisfy the dissipation relation

E 0.t/ D �jB1=2u0.t/j2

We make the following assumptions:

• For i D 1; 2, Ai W D.Ai/ 
 H ! H is a densely defined closed linear operator
such that

Ai D A�
i ; hAix; xi � !i jxj2 8x 2 D.Ai/ (1.251)

for some !i > 0.
• B is a bounded linear operator onH such that

B D B� ; hBx; xi � ˇjxj2 8x 2 H (1.252)

for some ˇ > 0.
• ˛ is a real number such that

0 < j˛j < p
!1!2 : (1.253)

We assume further that there is a compatibility condition between the two operators
A1 and A2, i.e. we assume there exists an integer j � 2 such that

jA1uj � cjAj=22 uj 8u 2 D.Aj=22 / : (1.254)

Then we prove the following result.

Theorem 1.9.8 (Alabau–Cannarsa–Komornik [20]). We assume the above
hypotheses. Let U0 be in D.A nj / for some integer n � 1, then there exists a
constant cn > 0 such that the solution U satisfies

E.U.t// � cn

tn

njX
kD0

E.U .k/.0// 8t > 0 :
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For every U0 2 H we have

E.U.t// ! 0 as t ! 1:

We give just a very brief sketch of the proof and refer the reader to [20] for the
complete proof.

Proof. The proof is based on a finite iteration scheme and suitable coupling
multipliers for proving that the full energy of the system satisfies an estimate of
the form

T

s
0

E.U.t//dt � c

jX
kD0

E.U .k/.0// 8T � 0 ;

where j is as above. This estimate also relies on the coercivity of the coupling
operator and on the compatibility condition (1.254) between the operators. Once
this estimate is proved. Then we apply Theorem 1.9.1 [23] and we conclude. �

1.9.3.3 The Case of Noncoercive Couplings

We now consider the example of two coupled wave equations with a localized
coupling, that is

8
ˆ̂<
ˆ̂:

u00
1 ��u1 C pu2 C bu0

1 D 0 in .0;1/�˝;
u00
2 ��u2 C pu1 D 0 in .0;1/�˝;

u1 D u2 D 0 on .0;1/ � �;
uj .0; �/ D u0j .�/ ; u0

j .0; �/ D u1j .�/; j D 1; 2 in ˝;

The damping function b and the coupling function p are two bounded real valued
functions on˝ , satisfying

8
<
:
0 � b � bC and 0 � p � pC on ˝;
b � b� > 0 on !b;
p � p� > 0 on !p;

(1.255)

for !b and !p two non-empty open subsets of ˝ . So here, the damping as well as
the coupling are localized. The previous results use the coercitivity of the coupling
in a crucial way. What can be said about stability in this situation and under which
geometric conditions when the coupling operator is no longer coercive, but only
partially coercive? We suppose that !b and !p satisfy the piecewise multiplier
condition and that b; p 2 W q;1.˝/.

Theorem 1.9.9 (Alabau-Boussouira–Léautaud [2]). Assume the above hypothe-
ses. For p sufficiently small, we have
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E.U.t// � c

tn

nX
iD0

E.U .i/.0// 8t > 0;

U 0 D .u01; u
0
2; u

1
1; u

1
2/ 2 .HnC1 \H1

0 /
2 � .Hn \H1

0 /
2;

where Hn D .D.A
nC1
2 //2 � .D.An

2 //2 
 H

Remark 1.9.10. In particular, in the one-dimensional case, the above result holds
true for subdomains !b and !p that are disjoint arbitrary non empty open sets
in ˝ . In higher dimensions, the fact that the two sets should satisfy the piecewise
multiplier geometric condition imply that they necessarily intersect. The best
geometric condition is obtained by selecting opposite observer positions for !b and
!p . We generalize recently this result in [1, 5] to subsets !b and !p satisfying the
Geometric Control Condition of Bardos et al. [27], so that the above polynomial
decay is still valid for coupling and damping regions which do not intersect in multi-
dimensional domains. This result also holds true for general abstract systems of the
form (1.240) with A1 D A2 and for which B is bounded or unbounded and for
partially coercive coupling operators P . The controllability of coupled systems by
a reduced number of controls have been addressed in [1, 5, 19, 22].

The proof of this result and its abstract version is based on proving that
the full energy satisfies a nondifferential integral inequality and to apply
Theorem 1.9.1 [23]. The difficulty is to determine suitable coupling multipliers to
overcome the lack of coercitivity of the coupling operator. This requires geometric
hypotheses on the localization region of the coupling.

Remark 1.9.11. All the above results have been stated in a more general abstract
form in [20, 21] together with applications on wave–wave, wave-Petrowsky equa-
tions and various concrete examples. Extensions to the case of hybrid boundary
conditions, corresponding to operators A1 and A2 that do not satisfy the compat-
ibility condition (1.254), have been obtained by Alabau, Cannarsa and Guglielmi
in [3]. This allows to treat cases of coupled wave equations for which one is
subjected to homogeneous Dirichlet conditions whereas the second one is subjected
to homogeneous Robin type boundary condition. Also using interpolation theory,
we prove polynomial decay estimates for initial data which are only in the domain
of the underlying generator [3] (see also [28]).

1.10 Bibliographical Comments

The above results have also been studied later on from functional analysis point
of view by Batkai, Engel, Prüss and Schnaubelt [28] using resolvent and spectral
criteria for polynomial stability of abstract semigroups. More precise results linking
resolvent estimates and stability properties in the case of nonuniform stability have
been later on obtained by Batty and Duyckaerts [29] and Borichev and Tomilov [33].
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Resolvent estimates and their link to stability properties in the framework of control
theory have been earlier developed, in a different context—that is for geometric
purposes and not for indirect stabilization of coupled systems—in the works of
Lebeau [74] and Burq [37]. The first results on polynomial stability for indirect
stabilization of coupled systems on a general abstract point of view have been
obtained by Alabau et al. [20, 21, 23]. The use of resolvent estimates in the context
of indirect stabilization came later on with the work of Batkai et al. [28].

Another approach have been introduced by Bader and Ammar Khodja [26] for
one-dimensional wave systems, using a factorization method to first order operators,
and deriving spectral properties on the essential spectrum.

Liu [79] and later on by Liu and Rao [81], Loreti and Rao [82] have used spectral
conditions for peculiar abstract systems and in general for coupled equations only
of the same nature (wave–wave for instance), so that a dispersion relation for the
eigenvalues of the coupled system can be derived. Also these last results are given
for internal stabilization only. From the above limitations, Z. Liu-Rao and Loreti-
Rao’s results are less powerful in generality than the ones given Alabau [21, 23]
and by Alabau, Cannarsa and Komornik [20]. Moreover results through energy type
estimates and integral inequalities can be generalized to include nonlinear indirect
dampings as shown in [15]. On the other side spectral methods are very precise
for the obtention of optimal decay rates provided that one can determine in an
optimal way at which speed the eigenvalues approach the imaginary axis for high
frequencies. A similar remark holds when one uses the resolvent estimates approach
and in particular [33]. Optimality for the PDE evolution system can be deduced if
and only if optimality of the required resolvent estimates is proved.

1.11 Open Problems

Abstract We indicate below some open problems on the subject of these Notes,
that is on nonlinear stabilization and its numerical aspects, on memory-stabilization
and on indirect stabilization for coupled systems.

Concerning nonlinear stabilization, the question of optimality in infinite dimensions
of the sharp upper energy estimates is largely open. How much is optimality linked
to the regularity of solutions? We prove a lower energy estimate for solutions of the
multi-dimensional wave equation for general domains provided that the velocity is
sufficiently smooth and a priori bounded in spaces such as L1.Œ0;1/IW 1;r .˝//

with some r > N where N stands for the spatial dimension for arbitrary domains.
Is it possible to establish the velocity regularity and a priori estimates in such spaces
with some r > N and for arbitrary domains? Is the decay rate depending on initial
data and in this case is it possible to identify which properties of the initial data
are determinant for the optimal energy decay rates? Many other questions exist in
this direction. In particular, is it possible to extend our lower energy estimates in
Sect. 1.5?
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The semi-discretization of nonlinearly damped wave-like equations lead to
nonlinearly damped finite dimensional systems. Is it possible to build numerical
schemes so that the optimal discretized energy rate does not depend on the
discretization parameter. Such an approach has been performed in the linear
stabilization case by Tebou and Zuazua [96]. Can their results be extended to the
nonlinear damping case?

Many problems are still open for memory stabilization such as a deep under-
standing for localized memory-damped equations. The non autonomous character
of the damping makes Lasalle principle fails to hold at least by direct arguments. Is it
possible to somehow find a way to compare the loss of energy produced by frictional
and memory dissipations? As far as we know the question of the optimality of our
estimates presented in Sect. 1.6 is completely open.

Concerning indirect stabilization of coupled systems, still many very interesting
questions have to be answered. We just indicate some of them. Is it possible to
extend our stabilization results to large values of the parameter, to other types of
couplings such as first order couplings (an example is given in [15]) but also to
couplings that may change sign in the domain? What happens for the general case of
coupled hyperbolic equations with different speeds of propagation? Is it possible to
prove optimality of the decay rates? Does there exist examples of indirectly coupled
systems for which the decay rates are weaker than polynomial? We can still exhibit
examples of indirectly coupled systems which are not solved by the above results. So
there are still a large number of open and challenging questions on coupled complex
systems. We hope these Notes will give some insight on this subject and those of
the other sections.
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87 (Birkhäuser, Basel, 1993)
91. J. Rauch, M. Taylor, Exponential Decay of Solutions to Hyperbolic Equations in Bounded

Domains. Indiana Univ. Math. J. 24, 79–86 (1974)
92. M. Renardy, W.J. Hrusa, J.A. Nohel, in Mathematical Problems in Viscoelasticity. Pitman

Monographs in Pure and Applied Mathematics, vol 35 (Longman Scientific and Technical,
Harlow, 1988)

93. R.T. Rockafellar, in Convex Analysis (Princeton University Press, Princeton, 1970)
94. A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential.

J. Math. Pures Appl. 71, 455–467 (1992)
95. D.L. Russell, A general framework for the study of indirect damping mechanisms in elastic

systems. J. Math. Anal. Appl. 173, 339–358 (1993)
96. L.R. Tebou, E. Zuazua, Uniform exponential long time decay for the space semi-discretization

of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95,
563–598 (2003)

97. L.R. Tebou, A Carleman estimates based approach for the stabilization of some locally
damped semilinear hyperbolic equations. ESAIM Contr. Optim. Calc. Var. 14, 561–574
(2008)

98. G. Todorova, B. Yordanov, The energy decay problem for wave equation with nonlinear
dissipative terms in R

n. Indiana Univ. Math. J. 56, 389–416 (2007)
99. M. Tucsnak, G. Weiss, in Observation and Control for Operator Semigroups. Birkhäuser
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Chapter 2
Notes on the Control of the Liouville Equation

Roger Brockett

Abstract In these notes we motive the study of Liouville equations having
control terms using examples from problem areas as diverse as atomic physics
(NMR), biological motion control and minimum attention control. On one hand,
the Liouville model is interpreted as applying to multiple trials involving a single
system and on the other, as applying to the control of many identical copies
of a single system; e.g., control of a flock. We illustrate the important role the
Liouville formulation has in distinguishing between open loop and feedback control.
Mathematical results involving controllability and optimization are discussed along
with a theorem establishing the controllability of multiple moments associated with
linear models. The methods used succeed by relating the behavior of the solutions
of the Liouville equation to the behavior of the underlying ordinary differential
equation, the related stochastic differential equation, and the consideration of the
related moment equations.

2.1 Introduction

In these notes we describe a number of problems in automatic control related to the
Liouville equation and various approximations of it. Some of these problems can
be cast either in terms of designing a single feedback controller which effectively
controls a particular system over repeated trials corresponding to different initial
conditions or, alternatively, using a broadcast signal to simultaneously control many
copies of a particular system. Sometimes these different points of view lead to
problems that are identical from the mathematical point of view. In many cases a
certain continuum limit can be formulated, either by considering an infinity of trials
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or an infinity of copies. In this situation we are often led to problems involving the
control of an associated Liouville equation.

The use of feedback as part of a regulatory mechanism is a standard idea in
engineering, biology, and even economics. This stands in contrast to the many other
uses of feedback in communication, adaptive sensing, learning algorithms and, more
typically in engineering, tracking problems where it is used to improve the speed and
accuracy of the response of servomechanisms. Its main virtue is that it is a single
mechanism capable of dealing with a great variety of disturbances.

Before introducing the controlled Liouville equation and some mathematical
problems that go along with it, we will discuss some additional motivation.

2.2 Some Limitations on Optimal Control Theory

An optimal control problem, as usually formulated, assumes that one has exact
knowledge of the equations of evolution. The problem is posed as that of finding
a control that transfers the state of the system from a given initial condition to a
final one, or possibly a manifold of final states, while minimizing some performance
measure. This formulation fits well a number of real-world problems, such as finding
the minimum fuel trajectory for getting a payload from the earth to Mars. On the
other hand it is less useful as a tool for designing feedback compensators for tracking
servomechanisms, a typical problem in robotics, and other path following problems.
In these situations there is no fixed initial state and no fixed final state. We do not
know what the initial condition will be at a particular time; it is as if the system
needs to be ready for a wide variety of challenges.

The development of the various least squares methods for linear systems has
led to tools that address more directly the issues raised by such tracking problems.
By exploiting the linear structure and by assuming that the desired end state is the
point 0, least squares theory produces a feedback control rule that is simultaneously
optimal for all initial conditions. Of course the fact that the control can be expressed
in feedback form is the key to the invariance with respect to initial conditions.
However, the assumptions include the fact that there is a fixed desired steady state
and this is a strong limitation.

Moreover, and here we are beginning to discuss a second major point, there are a
great many applications in which the payoff for implementing a linear relationship
between sensed signals and control variables does not justify the cost of the
equipment needed to achieve it. For example, in high volume consumer goods, such
as dish washers and clothes dryers, it is inexpensive to sense the temperature of
the water or air but the benefits associated with implementing a linear relationship
between the temperature of the mixed water and the flow from the hot and cold
water lines do not justify the cost. Acceptable performance is obtainable using
on-off control which can be implemented much more cheaply. Even in the case
of audio equipment, where there is a significant payoff for building systems that
are very close to linear, the benefits of linearity are confined to finite range of
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amplitudes and a subset of frequencies. Standard optimal control theory provides
no mechanisms to incorporate implementation costs. This is a major reason why
we can not consider the usual optimal control formulation, even when robustness is
taken into account, to be completely satisfactory.

Finally, we might ask why optimal control theory has not been more useful in
understanding the control mechanisms found in biology. The questions there range
from understanding control of the operation of an individual cell to the motor control
of the complete organism. In particular, given that evolution has had as long as it
has to optimize the neuroanatomy and the muscle/skeletal structures, why is that we
don’t find optimal control theory to be more effective in explaining these structures?

2.3 Measuring Implementation Cost

The expense required to implement a control policy in an industrial setting where
each control signal is generated by a box requiring both a capital investment
and continuing maintenance cost, can be accounted in a straightforward way.
Unfortunately, such costs are strongly dependent of the technology being used.
We wish to focus instead on measures which are intrinsic in the sense that they might
apply, at least to some degree, to a range of situations including both those found in
engineering and those found in biology. Some considerations that are relevant here
have been discussed in our paper [1] which we now paraphrase.

Our point of view is that the easiest control law to implement is a constant input.
Anything else requires some attention. The more frequently the control changes,
the more effort it takes to implement it. Because the control law will depend on the
state x and the time t , it can be argued that the cost of implementation is linked
to the rate at which the control changes with changing values of x and t . This
rate of change may also affect the effort required to compute the desired control or
some suitable approximation to it. In any case, solutions that require less frequent
adjustments as x and t change are to be preferred over those that require more
frequent adjustments. From the point of view of an animal controlling its body, or a
systems engineer allocating the cpu cycles of a computer controlling a machine
tool, control laws with small values of k@u=@tk and k@u=@xk require less frequent
updating and will be more robust with respect to small changes in the data. These
considerations suggest that a suitable quantification of what is meant by “attention”
might include a measure of the size of the partial derivatives, @u=@x and @u=@x. For
example, the numerical measure of the attention of a given control law might be
might be a weighted Sobolev norm of u.t; x/.

This reasoning suggests a class of optimization problems associated with select-
ing the architecture of a control system. The general structure of the optimization
problem will involve minimizing functionals of the form

�a D s̋ �

�
x; t;

@u

@x
;
@u

@t

�
dxdt
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subject to constraints on u such as will insure that the performance is adequate
for the task. We can think of � as an attention functional and use it as a guide
to suggest which control laws might be more or less expensive to implement. To
this we may add the observation that although textbooks on control often discuss
the difference between open-loop and closed-loop control, the distinction is either
vague or applicable only in highly restrictive situations. In many cases, e.g., fixed
end-point linear-quadratic optimal control on finite time intervals, it is unclear what
might be meant by a closed-loop solution. This makes it difficult for researchers
in other fields to discuss the distinction in a precise way. At an intuitive level,
it seems that biological motor control involves not only “pure” open-loop control but
also a gradation of modalities spanning a range between open-loop and closed-loop
operation. Intuitively, one thinks that large values of k@u=@xk indicate closed-loop
control and that large values of k@u=@tk indicate open-loop control. By modifying
the attention functional we can change the ratio of the penalty put on the closed-loop
k@u=@xk terms relative to the penalty put on the open-loop k@u=@tk terms. In this
way we create a continuum and arrive at a characterization which makes possible a
quantitative study of the trade-offs between open-loop and closed-loop control.

Example 2.3.1. To give some indication about where these ideas can lead it may
be helpful to have an example. Consider the scalar control problem Px D u with the
distribution of initial conditions given by a density �0.x/. Our goal is to minimize

� D
1
s
0

s
R

�.t; x/ax2dxdt C s
R

�
@u

@x

�2
dx

where �.t; x/ denotes the density at time t . To avoid complication, we constrain u
to be a function of x alone. The calculations leading to a characterization of u now
follow.

We rewrite the equation of motion as dx=u Ddt . Using this we see that if
s 1
0 x2dt is finite then

1
s
0

x2dt D
x.0/

s
0

�x2
u.x/

dx and
1
s
0

u2dt D
x.0/

s
0

�u.x/dx

Thus
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and the functional to be minimized can be written as

� D s
R

�0.x/

�
x

s
0

a
w2

u.w/
dw

�
dx C s

R

�
@u

@x

�2
dx

If �0 is a delta function this expression can be further simplified. Let �.0; x/ be a
delta function centered at x0 > 0. In this case the term involving �0 can be simplified
giving
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Fig. 2.1 The graph of the optimal gain function for x > 0
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The indicated partial derivative is actually a total derivative and so an application of
the Euler–Lagrange operator gives

d2u

dx2
C a

x2

u2
D 0

Because the solution should remain at zero when reaching zero, it is necessary
that u.0/ D 0. Because the support of the density will be confined to the interval
Œ0; x0	, and because we are minimizing the square of du=dx, the optimal u will
have du=dx D 0 at x D x0. A numerical solution of these equations corresponding
to a D 1 and x0 D 1 is shown in Fig. 2.1.

This control law is nearly linear near 0 and approaches saturation as x

approaches 1, reflecting the fact that we are putting a penalty on the derivative.

2.4 Ensemble Control

There are several areas of work that have been called “ensemble control” but
generally this term applies to problems involving a large number of more or less
identical subsystems which are being manipulated by a single source of command
signals. (See [2–4].)
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A finite number of copies of a system, controlled by an t-dependent function
of time can be investigated both as an approximation to the Liouville equation
and as something of interest in its own right. Such collections are of interest as
models for flocks, swarms, and ensembles of various kinds. Their study gives rise
a number of interesting questions, centering around the topics of controllability and
stabilizability, but also the control of various averages.

Special aspects of the replicated systems include the degeneracy that will occur
when two or more elemental systems are in the same state. In addition, a direct
application of Lie algebraic controllability conditions, while in principle quite
routine, can be tedious because of the large number of subsystems.

Example 2.4.1. Consider k copies of the scalar system Px D �x3 C u and note that
the lie bracket of two power law vector fields is given by

Œxm
@

@x
; xn

@

@x
	 D .n �m/xmCn�1 @

@x

Thus the Lie algebra generated by the drift vector field and the control vector field
is infinite dimensional and contains all polynomial vector fields. To investigate the
controllability of k copies of the scalar system we need to look at the distribution
generated by bracketing

Œ
X

x3i
@

@xi
;
X @

@xi
	 D �3

X
x2i

@

@xi

In this case the Lie algebra contains all the vector fields of the form

L
j
i D

X
xj

@

@xi
I j D 0; 1; 2; : : : ; k

The distribution generated by these vector fields at the point x1 Dp1; x2 Dp2; : : : ;

xk D pk is the range space of the Vandermonde matrix

V D

2
6666664

1 p1 p
2
1 � � � pk�1

1

1 p2 p
2
2 � � � pk�1

2

1 p3 p
2
3 � � � pk�1

3

� � � � � � � � � � � � � � �
1 pk p

2
k � � � pk�1

k

3
7777775

Because the Vandermonde matrix is nonsingular if and only if the pi are distinct,
we see that this distribution spans R

k at all points corresponding to unrepeated
values of the pi .

Any given ordering of the xi , for example x1 < x2 < � � � < xk , defines a
connected, open subset of Rk in which the Vandermonde matrix does not vanish.
Each of the n � 1 co-dimension one planar subsets of the boundary is an integral
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manifold for both the control vector field and the drift and so these can not
be crossed. Natural questions then arise about the reachable set in such a cone.
In particular, can any point in the cone be reached from any other point in it,
independent of the value of k?

Example 2.4.2. Consider a system consisting of a pair of identical second order
systems with nonlinear restoring forces.

Rx C x C x2 D uI Ry C y C y2 D u

Clearly the set f.x; y; Px; Py/ j x D y I Px D Pyg is an invariant set. We may ask if
there are other invariant sets and, if not, can we drive an arbitrary initial state to this
invariant set. Rewriting the system as

d

dt

2
664

x

Px
y

Py

3
775 D

2
664

Px
�x � x2

Py
�y � y2

3
775C

2
664

0

1

0

1

3
775 u

we see that in addition to the vector fields defined by f and g the Lie algebra
contains

Œf; g	 D

2
664

1

0

1

0

3
775 I Œf; Œf; g		 D

2
664

0

�1 � 2x

0

�1 � 2y

3
775 I Œf; Œf; Œf; g			 D

2
664

�1 � 2x
0

�1 � 2y

0

3
775

Thus the distribution associated with the vector fields in the Lie algebra generated
by drift and the control vector field spans a four-dimensional space at all points
except those on the co-dimension one hyperplane defined by x D y.

Our language will be to call the overall system “the system” and to refer to the
individual subsystems as being “the elemental systems”. Examples of what we have
in mind can be found in the literature the on the following topics:

A. Classical thermodynamics deals with the control of ensembles, usually modeled
as collections of identical particles. Viewed as a control problem, the conversion
of heat into work concerns the control of various averages such as temperature
and pressure (the intensive variables) using heat flow and adjustable volume.
Here the elemental systems consist, for example, of gas molecules; the over
all system would be described by a combination of intensive and extensive
variables. One might take the controls to be heat flow and volume. Formulated
as a control problem, a possible goal is to extract as much mechanical work
as possible given constraints on the path. In elementary thermodynamics the
system is described in terms of the thermodynamic “state”. It is typical to
assume that the controls are applied in such a way as to keep the system in
thermodynamic equilibrium; which is to say, all paths are adiabatic.
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B. Quantum control of ensembles of identical, weakly interacting, particles. This
arises in the model used in many discussions of nuclear magnetic resonance
(NMR) problems. The control is an electromagnetic field consisting of short
bursts, or pulses, consisting of different frequencies of controlled duration.
The goal is usually to manipulate the orientation of a collection of quantum
mechanical spins, say those of the hydrogen ions coming from water molecules,
such that the majority of the elemental systems align in a particular nonequilib-
rium configuration.

C. Quantum control of a parameterized family of nearly identical systems using a
common control. Here again, a well studied model comes from NMR. Because
of slight variations in the magnetic field the resonant frequencies of the
individual hydrogen ions differ over the ensemble. Because of this, the control
has a different effect on the various elemental systems. Consequently, even if
the elemental systems were to start from the same state it requires great care to
steer the largest possible fraction of them to a desired end state.

D. Control of flocks: It is of interest to understand the extent to which a leader can
shape and stabilize the motion of the elemental systems comprising a flock using
a broadcast signal. A natural constraint would be to ask that any feedback signal
be based on a symmetric function of the states of the elemental systems, for
example on the average velocity of the elemental systems.

These applications have in common the goal of controlling a (large) number
of weakly interacting individual systems with a single, or perhaps small number,
of control inputs. In some quantum mechanical applications the Liouville–von
Neumann density equation is appropriate to describe the situation; in other situations
the Fokker–Planck equation, or even many copies of a finite state model may serve
better.

2.5 The Liouville Equation

Given an ordinary differential equation, Px.t/ D f .x.t// defined on a manifold X ,
and having the property that there exists a unique solution through each point, there
is an associated partial differential equation which describes the evolution of an
initial density of points. Let �.0; �/ be the initial density, thought of as a probability
density for x.0/. As such it is nonnegative and normalized

s
X

�.0; x/ dx D 1

Let  be a smooth function  W X ! R
C having compact support. The expected

value of  at some future time is

E .x.t// D s
X

 .x/�.t; x/ dx
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The time derivative of this expression can be expressed in two ways. It is expressible
in terms of @�=@t but also in terms of h@ =@x; f .x/i�.t; x/. These possibilities are
the basis for the expression

s
X

 .x/
@�

@t
dx D s

X

h@ =@x; f .x/i�.t; x/ dx

Integrating the right-hand side by parts we have

s
X

 .x/
@�

@t
dx D � s

X

 .x/h@=@x; f .x/�.t; x/i dx

Because  is arbitrary this implies, subject to mild additional assumptions, that

@�.t; x/

@t
D �

�
@

@x
; f .x/�.t; x/

�

We can think of this as a Cauchy problem to be solved, subject to an initial condition
�.0; x/ D �0.x/. It describes how the density evolves in time under the flow defined
by the given deterministic equation. It is easy to verify that if �.t; x/ is nonnegative
and satisfies this equation then

d

dt
s
Rn

�.t; x/dx D 0

The solution of the Liouville equation can be expressed in terms of the general
solution of Px D f .x; t/. If the solution of Px D f .x; t/ is such that the initial value
x0 goes to �.t; x0/ at time t then the solution of the Liouville equation is

�.t; x/ D �0.�
�1.t; x//=detJ�.x/

where ��1 denotes the result of solving x D �.t; x0/ for x0 and J is the Jacobian of
this map; its determinant is necessarily positive. Thus the properties of the Liouville
equation reflect quite closely the properties of the underlying ordinary differential
equation. The example that follows uses a special case of the fact that det@f=@x is
the exponential of an integral of the trace of a Jacobian.

Example 2.5.1. Using the fact that the solution of Px D AxCf .t/ can be written as

x.t/ D eAtx.0/C
t

s
0

eA.t��/f .�/ d�

For the corresponding Liouville equation and initial density �0 the solution is

�.t; x/ D 1

etrAt
�0

�
e�At

�
x �

t

s
0

eA.t��/f .�/ d�
��
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If we have a control present, as in Px D f .x; u/, the Liouville equation keeps
this same form but because the control is now operated on by the partial derivative
operator, feedback controls and open loop controls lead to different solutions.

Example 2.5.2. Consider the scalar equation Px D u I x.0/ D 1. If we let
u.t; x/ D �x then of course x D e�t and u.t/ D �e�t . We get the same solution
if we set u.t; x/ D �e�t . On the other hand, if we have an initial density �0 the
solution of the Liouville equation corresponding u.t/ D �e�t is

�.t; x/ D �0.x � et /

whereas the solution corresponding to u.x/ D �x is

�.t; x/ D et�0.e
�t x/

2.6 Comparison with the Fokker Planck Equation

We have suggested that one interpretation of the Liouville equation is that it provides
a description of the evolution of a probability density under the deterministic flow
defined by Px D f .x; u/. Of course there is also an evolution equation for the density
associated with stochastic equations containing Wiener processes, such as those of
the Itô form

dx D f .x; u/dt C
X

gi .x/dwi

The effect of the gidwi terms is to introduce a diffusion, something completely
absent in the model provided by the Liouville equation. For the scalar equation
dx D axdt C cdw the Fokker–Planck equation is

@�.t; x/

@t
D �@ax�

@x
C 1

2
c2
@2�.t; x/

@x2

If the initial density is Gaussian, �0.x/D
�
1=
p
2�s.0/

�
e.x�Nx.0//2=2s.0/ then the

solution of this equation remains Gaussian for all time

�.t; x/ D 1p
2�s.t/

e.x�Nx/2=2s.t/

where Nx is eat Nx.0/ and s.t/ is the solution of the variance equation given s.0/

Ps D 2as C c2
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This can be compared with the solution of the Liouville equation corresponding to
c D 0 which, for the same initial condition, is

�.t; x/ D 1p
2�te2at

e.x�Nx/2=2eat

2.7 Sample Problems Involving the Liouville Equation

In the case where

Px.t/ D f .x/C
X

ui .t/gi .x.t//

the Liouville equation is

@�.t; x/

@t
D �

�
@

@x
; f .x/�.t; x/

�
�
X�

@

@x
; ui .t; x/gi .x/�.t; x/

�

When solving a standard control problem modeled as Px D f .x; u/ one seeks a
control u defined on the interval of interest. Often u will be found through the use
of variational principles and may be found as a function of t or as a function of the
optimal trajectory x. Whether u is expressed as a function of t alone or as some
combination of t and x is regarded as being of secondary importance. However,
the situation is quite different for the Liouville equation because now f .x; u/ is
acted on by the partial derivatives with respect to x. The value of �.t; x/ depends
on whether u is expressed as an open loop function (u D u.t/ or as a closed loop
function (u D u.t; x/.

We now briefly describe a number of problems which can be phrased in terms
of the Liouville equation even though they fall outside the usual theory of optimal
control.

Problem 2.7.1. The regulator in a box: Just as one of the basic examples in
quantum mechanics is the charged particle in a square well potential, we can
consider control problems where the domain of interest is limited for technological
reasons to a sharply defined interval. Suppose that there exist limitations such that
values of x and u that lie outside a certain range are of no interest. We seek a
control that has good performance and is easy to implement. Building on our earlier
example, we consider the scalar control problem Px D u with the distribution of
initial conditions given by a density �0.x/ which is uniform on Œ�1; 1	 and zero
outside that interval. Find u as a function of x such as to minimize

� D
1
s
0

1

s
�1
�.t; x/ax2dxdt C s

R

�
@u

@x

�2
dx
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Problem 2.7.2. Maximizing the Domain of Attraction: Consider the system Px D
f .x; u/ with f .0; 0/ D 0 having the property that the solution .x; u/ D .0; 0/ is
unstable. It is often of interest to determine u so as to make the null solution of
Px D f .x; u.x// asymptotically stable and to make its domain of attraction as large
as possible. We can formulate this in terms of a controlled Liouville equation in the
following way. For the equation

@�.t; x/

@t
D �

�
@

@x
; f .x; u/�.t; x/

�

Find u as a function of x so as to minimize

� D
1
s
0

s
Rn

tanh.kkxk/�.t; x/ dxdt

Notice that for large positive values of k this assigns zero cost to trajectories that go
to zero as t goes to infinity.

Problem 2.7.3. Trajectory Confinement: In most models concerned with dis-
cretized control signals, asymptotic stability is not possible. In [5] we discussed the
possibility of confinement to a region about the target value. This can be restated as
requiring that the support of the density should be limited to some neighborhood of
the target. If the target is x D 0 we might also reformulate the problem in terms of
minimizing a measure such as

� D s
X

x2�.T; x/ dx

Problem 2.7.4. Enhancing Controllability: As we have seen, identical linear sys-
tems are not ensemble controllable in any reasonable sense. Yet with nonlinear
feedback they can become so. We can ask about the nonlinearities that make the
linear system ensemble controllable. Of course we need the Lie algebra generated
by Ax C bg.x/; b to have enough independent components so as to achieve
controllability. Moreover, we would like ŒAx; b.g � b/	 to be “strongly independent”
in some sense, probably involving an average over the domain of interest. As noted
in the example above, replicated systems are not controllable along the walls of the
cone defined by the planes characterizing equality of components, but in the interior
they can be.

Problem 2.7.5. Restricted Range Feedback: In our paper [5] we discussed the
possibility of controlling a linear system with outputs that are generated by a finite
state machine. The idea was to model the feedback controller as a Markov process
and to adjust the transition rates of the Markov process in such a way as to achieve
control. This can be contrasted with the older idea of pulse-width modulated control,
commonly used in less sophisticated control systems, which operates in an on-off
mode, with the switching times synchronized with a clock.
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2.8 Controllability

Suppose that Px D f .x; u/ and that there is a density of initial conditions for x with
support of �0 being the set X0. Suppose, further, that we would like to find u.t; x/
so as to steer � from its initial value to �1.x/ whose support is X1. For example, if,
in fact, we have a regulator problem thenX1 could be a small set containing 0. If we
have a cost function involving u we could arrive at a problem of the form

@�.t; x/

@t
D �

�
@

@x
; f .x; u/�.t; x/

�
I �.0; x/ D �0I Supp �.T; x/ 2 X1

� D
T

s
0

s
X

L.u.x//�.t; x/dxdt

with the goal of minimizing �.
In other situations the final density might be completely specified or it might be

that certain linear functionals of it are to satisfy some inequalities. It might happen
that L depends on x as well as u, etc. Some concrete examples appear elsewhere in
these notes.

LetX be an oriented differentiable manifold with a fixed, nondegenerate, volume
form dv. Let � W X ! X be a diffeomorphism. If �dv is a nonnegative measure on
X and if � is orientation preserving, then � acts on densities according to

�.�/ 7! �.��1.�//=det J�

where J� is the Jacobian of �. In this sense DiffO.X/, the set of orientation
preserving diffeomorphisms, generates an orbit through a given �.

If the manifold is compact and we restricted discussion to strictly positive
densities then this action is transitive, see Moser [6] and Dacorogna and Moser
[7]. If the densities are only assumed to be nonnegative the situation is much more
complicated.

A natural question to ask is then, given two nonnegative densities, �0 and �1, each
of which integrates to one, does there exist a control vector u.t; x/ defined on Œ0; T 	
that steers �0 to �1? From the point of view that the Liouville equation defines an
evolution equation onL1.Rn/, It might be expected that in considering this question
the Lie algebra generated by the first order linear operators

L D
�

�
�
@

@x
; f .x/�.t; x/

�
;

�
@

@x
; ui .t; x/gi .x/�.t; x/

�

LA

should play a role. However, because the bracket

��
@

@x
; ui .t; x/gi .x/�.t; x/

�
;

�
@

@x
; uj .t; x/gj .x/�.t; x/

��
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involves the partial derivatives of u.x/, and deeper brackets involve successively
higher partial derivatives, this line of attack leads to complications.

Of course the set of operators of the form

L D
�
@

@x
; ui .t; x/gi .x/

�

as u varies over the set of C 1 functions of x is an infinite dimensional set. We
could reformulate the problem in this way. Let  i.x/ 2 C 1.Rn/ be a basis for
some subset of C 1 and consider vector fields of the form

Lj D
�
@

@x
;
X

 j .x/gi .x/

�

This is to be compared with the controllability of the system

Px D f .x/C
X

uigi .x/

for which the relevant Lie algebra is

L D ff; g1; g2; : : : ; gmgLA
In our paper [8] we studied the problem of controllability of the density

equation associated with linear systems. More recently Agrachev and Caponigro [9]
published a study phrased in terms of controlling diffeomorphisms, not restricted to
linear systems.

2.9 Optimization with Implementation Costs

Not surprisingly, the addition of an implementation term usually complicates the
mathematics required to solve a trajectory optimization problem.

Example 2.9.1. Consider the problem of minimizing the quantity

� D
1
s
0

x2 C u2dt

while steering the solution of Px D �x C u from x.0/ D 10 to x.1/ D 0. Of course
a variational argument implies immediately that

Rx � 2x D 0
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and together with the boundary conditions on x this determines the optimal
trajectory. But another way to solve this problem is to find a solution of the Riccati
equation

Pk D 2k � 1C k2

on the interval Œ0; 1	 and to make the substitution u D v�kx. It then follows that the
original trajectory optimization problem is equivalent to a modified one for which
the evolution equation is

Px D .�1 � k/x C v I � D
1

s
0

v2 dt

and the performance measure is

� D
1

s
0

v2 dt

The optimal v is then expressible in terms of the controllability Gramian W

associated with the new system. Matters being so, optimizing v leads to an
expression for u. In more detail,

v.t/ D es t
0 .�1�k.�//d�p H) u D �k.t/x.t/C v.t/

This solution has both open loop, and closed loop terms. Their relative size depends
on which solution of the Riccati equation is chosen. The above construction works
for any solution of the Riccati equation and includes the possibility that we choose
an equilibrium solution. This choice could be made with the goal of minimizing
some functional of the form

� D
1

s
0

L. Pk; Pv/ dt

such as

� D
1

s
0

.@u=@t/2 dt

Example 2.9.2. As an example of a problem in this setting that is solvable in special
cases, consider

Px D f .x/C g.x/u

For this system

@�.t; x/

@t
D �

�
@

@x
; .f .x/C g.x/u/�.t; x/

�
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with a given initial probability density �0.x/. Suppose we consider a trajectory term

�p D
1
s
0

s
Rn

.xT Lx C uT u/�.t; x/dxdt

and an implementation penalty that favors a linear control.

�i D
1
s
0

s
Rn

����
@u

@x
x � u.x/

����
2

�.t; x/ dxdt

It is obvious that in the special case where f .x/ D Ax and g.x/ D b the optimal
solution is

u D �BTKx

whereK satisfiesATKCKA�LCKBBTKD 0. More interesting is the suggestion
that if kf .x/ � Axk and kg.x/ � bk are not too large in the region of interest then
we can use the known solution as the initial guess in a successive approximation
scheme.

In the context of this example there are three distinct aspects of the linear case are
worth noting. i) The pure trajectory optimization is solvable in feedback form, ii) the
implementation term adds no additional cost at precisely at the optimal feedback
control, and iii) the form of the initial distribution is irrelevant. Generalizing the
problem in such a way as to take away any of these will yield more interesting
solutions.

2.10 Controlling the Variance

We now turn our attention to questions involving the simultaneous use of open loop
and closed loop terms to shape the first and second moments of the density. This can
be thought of as part of the larger problem of controlling the Liouville equation. For
linear stochastic systems this amounts to controlling the mean and the variance and
represents a compromise between controlling one individual trajectory associated
with Px D f .x; u/ and controlling the entire density. It is, perhaps, the simplest
set of problems illustrating how the parametrization of the control as a sum of an
open loop part plus a closed loop part can provide additional controllability beyond
what is available using open loop control alone. For simplicity, we suppose that the
uncontrolled system is linear and time invariant; the extension to the time varying
case presents little additional difficulty.

Consider the stochastic system

dx D Axdt CBudt CGdw
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Let Nx and ˙ denote the corresponding mean and variance so that with the control
law u.t/ D K.t/x.t/C u0.t/ we have

d

dt
Nx D .ACBK/ Nx CBu0

Ṗ D .AC BK.t/˙ C˙.AC BK.t//T CQ

with QDGGT . We now investigate the set of reachable values for Nx and ˙ ,
consideringK and u0 to be controls.

In thinking about controlling the variance, it is helpful to keep in mind that the
set of positive semidefinite matrices is both a cone and an additive semigroup and
that any vector field of the form F.˙/ D A˙ C ˙AT maps this cone into itself.
Moreover, the general linear group acts transitively on the set of positive definite
matrices in accordance with the group action

.T;Q/ 7! TQT T

Of course there is a large literature devoted to the steady state solution of the
variance equation, going back to Wiener’s work on filtering and continuing with
the celebrated linear-quadratic-Gaussian theory developed in the context of modern
control theory . Much of this work is devoted to questions about how to minimize
the variance through the choice of constant K . Here we are interested in treating
K.t/ as a control and focusing on the transient behavior.

Remark 2.10.1. As motivation consider the following type of problem. Suppose
that an athlete has an objective such as placing the ball with a tennis serve or gaining
a certain height as a pole vaulter. The penalty for missing the objective may be
highly nonlinear and the number of tries limited. Thus the best policy typically
involves a tradeoff between controlling the mean and controlling the variance. If the
only uncertainty enters through the initial state, the problem can be phrased in the
terms described above.

The feedback gainsK enter the variance equation multiplicatively and hence this
is an example of what has come to be called bilinear control. The presence of the
bias termQ and the constraint imposed by the fact that the variance is automatically
positive semidefinite sets this problem apart from much of the literature. In the
appendix we give some results on the general bilinear problem but here we focus
on the variance equation itself. We will make use of the idea that when studying
controllability for systems with a drift term, if the drift vector field generates a
periodic motion then the effect of moving backwards along the drift vector field can
be achieved by letting the system flow along the drift vector field for something
less than a full period. This idea was used by Jurdjevic and Sussmann [10] in
the context of control on Lie groups and later, without the Lie group hypothesis,
in [11].
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Lemma 2.10.2. Let A be a real n-by-n matrix and let B be n-by-m. If A;B is
a controllable pair in the sense that the rank of ŒB;AB; : : : ; An�1B	 is n then,
consideringK as a time varying control, the system

Ṗ D .AC BK.t/˙ C˙.AC BK.t//T CQI ˙.0/ � 0

has the property that the reachable set from any˙.0/ > 0 has nonempty interior in
the space of symmetric positive definite matrices.

Proof. Step 1: Clearly the Lie algebra generated by the matrices A and BK for
all possible constant K , contains A and every matrix whose range space
is contained in the range space of B . It also contains all matrices of the
form ABK � BKA. However, the range space of BKA is contained in
the range space ofB and so we see that the Lie algebra in question contains
all matrices of the form ABK . It also contains all matrices whose range
space is AB as well as those whose range space is contained in the range
space of B . Continuing with ŒA;ABK	 D A2BK � ABKA, etc. we see
the Lie algebra contains all matrices whose range space is contained in
the sum of the ranges of B;AB; : : : ; AnB which is the entire Lie algebra of
n-by-n matrices.

Step 2: In the case whereQ D 0 andK is piecewise constant on Œ0; t 	 we have

˙.t/ D M˙.0/MT

where

M D e.ACBKr/tr e.ACKr�1/tr�1 � � � eACBK1/t1

Thus with QD 0 the given equation is controllable on the space of
symmetric matrices with rank and a signature matching that of ˙.0/,
provided that the matrix equation PX D .ACBK/X.t/ is controllable on the
space of nonsingular matrices. In particular, it is controllable on the space
of symmetric, positive definite matrices.

Step 3: The effect of Q is simply to offset the solution in accordance with the
variation of constants formula

˙.t/ D ˚.t; 0/˙.0/˚T .t; 0/C
t

s
0

˚.t; �/Q˚T .t; �/d�

and thus even with Q¤ 0 the reachable set retains the property of contain-
ing an open set. �

Remark 2.10.3. Theorem 1 of [12] provides a complete characterization of the Lie
algebra generated by A and bcT , under the assumption that .A; b; c/ is controllable
and observable. In particular, it is established there that if the trace of AC ˛bcT is
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nonzero for some ˛ and if cT .I.sC˛/�A/�1B is not equal to cT .�I.sC˛/�A/�1b
for any ˛ then the Lie algebra generated by A and bcT is the set of all of n-by-n
matrices. Observe that in the present situation we can chooseK such that the trace of
BK is nonzero and by virtue of the controllability assumption we can select a rank
one matrix K such that BK D bcT meets these requirements. We give a general
result later (Theorem 2.10.6) but perhaps a concrete example will be helpful at this
point.

Example 2.10.4. Consider the two-by-two variance equation associated with

"
dx1

dx2

#
D u

"
0 1

0 0

#"
x1

x2

#
dt C

"
0

1

#
u C

"
0

dw

#

If we let u D k1x1 C k2x2 the corresponding variance equation is

d

dt

"
�11 �12

�21 �22

#
D
"
0 1

k1 k2

#"
�11 �12

�21 �22

#
C
"
�11 �12

�21 �22

#"
0 k1

1 k2

#
C
"
0 0

0 1

#

We want to show that this equation is controllable on ˙ > 0.

Write the equations in component form

P�11 D 2�12

P�12 D k1�11 C k2�12 C �22

P�22 D 2k1�12 C 2k2�22 C 1

Positive definiteness can be characterized by �11 > 0 and �11�22 > �212. Observe
that given .u1; u2/, the simultaneous equations

�
u
v

�
D u

�
�11 �12
2�12 2�22

� �
k1
k2

�
dt C

�
�22
0

�

can be solved for .k1; k2/ in the set ˙ > 0 and if we make the corresponding
replacements we have

P�11 D 2�12

P�12 D u

P�22 D v

Now the first two of these equations depend on u alone; R�11 D 2u and �12 D P�11=2.
It is clear, for example from the classical treatment of the time-optimal control of
Rx D u, the point .�11.0/; �12.0// can be steered to any point in the half-plane �11 > 0
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Fig. 2.2 Showing possible
trajectories respecting
�11 > 0 in the .�11; �12)-plane

without leaving that half-plane. Suppose we select some u that accomplishes this
transfer in T units of time (Fig. 2.2). Define h by

�212.T /

�11.T /
� �212.0/

�11.0/
D h=T

Finally choose v to be the time derivative of

�22.t/ D �22.0/C �212.0/

�11.0//
C t

T

�
�212.t/

�11.t/
� �212.0/

�11.0//

�

More generally, consider the variance equation associated with an nth order
system with scalar control. Let ei denote the standard basis vectors in R

n dx D
.AC enk

T /xdt C endw. If we partition the variance in terms of blocks compatible
with en and its complement we have

d

dt

"
˙11 ˙12

˙T
12 �22

#
D
"
S 0

kT kn

#"
˙11 ˙12

˙T
12 �22

#
C
"
˙11 ˙12

˙T
12 �22

#"
ST k

0 kn

#
C
"
0 0

0 1

#

Using a linear transformation and a suitable offset for k we can arrange matters
so that A and enkT take the form

A D

2
66666664

0 1 0 � � � 0

0 0 1 � � � 0

0 0 0 � � � 0

� � � � � � � � � � � � � � �
0 0 0 � � � 1

0 0 0 � � � 0

3
77777775

I enk
T D

2
66666664

0 0 0 � � � 0

0 0 0 � � � 0

0 0 0 � � � 0

� � � � � � � � � � � � � � �
0 0 0 � � � 0

k1 k2 k3 � � � kn

3
77777775

Observe that if ˙ is positive definite then the equation

u D ˙k C b
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can be solved for k and that in terms of u the variance equation can be written as

Ṗ
11 D S˙12 C˙11S

T

Ṗ
12 D S˙12 C u

P�22 D u

This is a more general formulation of the example. In this notation the problem is
that of showing that for

Ṗ D A˙ C˙AT C enu
T C ueTn

it is possible to steer ˙ from˙0 > 0 to ˙1 > 0.
The proof of the following theorem shows that this is possible for a general

controllable linear system.

Theorem 2.10.5. Let (A;B/ be a controllable pair and let ˙ satisfy

Ṗ D .AC BK.t//˙ C˙ .ACBK.t//T CQI ˙.0/ > 0I Q � 0

ConsideringK to be a control, any ˙1 > 0 can be reached from any ˙.0/ > 0.

Proof. Clearly the variance equation is linear and the operator mapping real
symmetric matrices into real symmetric matrices defined by

L.˙/ D .AC BK/˙ C˙.AC BK/T

has eigenvalues which are all possible pairs of the form �i C�j where �i and �j
are eigenvalues of ACBK . Thus if there exists a K such that the eigenvalues of
.ACBK/ are integer multiples of �

p�1 then expL is periodic and Theorem A1 of
the appendix applies, provided that e.ACBK0C/t is periodic for some choice ofK0 �
Theorem 2.10.6. Assume that .A;B/ is a controllable pair. The system of
equations

Px.t/ D .AC BK.t//x C Bu.t/

Ṗ .t/ D .AC BK.t//˙.t/C˙.t/.ACBK.t//T

is controllable in the sense that given any two pairs .x0;˙0/ and .x1;˙1/ with
˙0 D ˙T

0 > 0 and ˙1 D ˙T
1 > 0 and given any time T > 0 there exists a control

.u; K/ defined on Œ0; T 	 steering the system from .x0;˙0/ to .x1;˙1/.

Proof. Select K in accordance with Theorem 1 so as to steer ˙ to the desired state.
Having selected K , select u by standard controllability arguments to steer x.
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Going beyond controllability, there are a variety of optimization questions that
arise this context. The most basic are the extensions of the problem considered in
the previous section involving the minimization of

� D
T

s
0

L.u0; k; Pk/ dt

while using the control law u D u0 C kx to force the solution of Px D f .x; u/ to
move from x.0/ D x0 to x.T / D x1. Extending this idea to a stochastic setting,
we can, for example, consider controlling the mean and variance equation as in
Theorem 2.10.6, while minimizing

� D
T

s
0

L.u0;K; PK/ dt �

2.11 Ensembles, Symmetric Functions and Thermodynamics

This section is adapted from our paper [2]. It can be seen as taking the idea of
simultaneous control of the mean and variance in a new direction.

Let u be a m-dimensional vector, let xi for i D 1; 2; : : : ; k be a n-dimensional
vector, and let y be a p-dimensional vector. Consider a system consisting of k copies
of a first order model, each with the same input

Pxi D f .xi ; u/I i D 1; 2; : : : ; k

We limit our attention to outputs of the form

y D c.x1; x2; : : : ; xk/

with c being a symmetric function in the sense that for any permutation of the
index set f1; 2; : : : ; kg ! f�.1/; �.2/; : : : ; �.k/g we have c.x1; x2; : : : ; xk/ D
c.x�.1/; x�.2/; : : : ; x�.k//. If the system is stochastic we replace this model with a
family of Itô equations of the form

dxi D f .xi ; u/dt C g.xi ; u/dwi I i D 1; 2; : : : k

with the Wiener processes w1;w2; : : : ;wk being independent.
Of course there are significant limitations that arise in the control of such systems

because u acts on each system in the same way and y is constrained to be a
symmetric function. In particular, linear systems of this type are never controllable
or observable if k > 1.

If the elemental systems are linear then the overall system obtained by applying
feedback u D P

Cxi is described by
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2
664

Px1
Px2
� � �
Pxk

3
775 D

2
664

AC BC BC � � � BC

BC AC BC � � � BC

� � � � � � � � � � � �
BC BC � � � AC BC

3
775

2
664

x1
x2

� � �
xk

3
775

The matrix on the left is similar to a block triangular matrix with n � 1 diagonal
blocks of the formACBC and hence can not be controllable. A similar limitations
apply to stochastic models of the form

dxi D Axidt C Budt CGdwi I dy D C.x1 C x2 C � � � C xk/dt C d�

We discuss these in Theorem 2.11.1 after giving a few additional definitions. In a
probabilistic setting it is meaningful to discuss statistical properties such as the mean
and variance. In the case of many copies of a given system we can consider various
averages taken over the ensemble. Of course the sample statistics, as opposed
to the statistics themselves, are random variables. In the present situation, with
x1; x2; : : : ; xk being described by identical probability laws, we have an interest
in a particular type of sampling leading to what can be termed ensemble sample-
statistics. This refers to averages over the variables x1; x2; : : : xk . For example, we
refer to the random variable

a.t/ D x1.t/C x2.t/C � � � C xk.t/

k

as the ensemble sample-mean.
We say that a homogeneous function �.x1; x2; : : : xk/ is centered if the sum of

its partial derivatives vanishes, i.e.,

kX
iD1

@�

@xi
D

kX
iD1

2
664

@�=@xi1

@�=@xi2
� � �

@�=@xin

3
775 D 0

Theorem 2.11.1. Consider the linear stochastic ensemble

dxi D Axidt C Budt CGdwi I i D 1; 2; : : : ; k

The application of feedback in the form u D ˛.x/ does not change the evolution
equation of any centered homogeneous function of x1; x2; : : : xk .

Proof. Let � be homogeneous and centered. Applying the Itô rule to � we see that

d�.x/ D
X

hr�;Axjdt CBudt CGdwj i C 1

2

X�
@2�

@xij
; GGT

�

Clearly under the given hypothesis the effect of u disappears. �
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Corollary. The ensemble sample variance

˙esv D 1

n

X�
xi � 1

n
.x1 C x2 C � � � C xk/

��
xi � 1

n
.x1 C x2 C � � � C xk/

�T

associated with the system

dxi D Axidt C Budt CGdwi I i D 1; 2; : : : k

is not altered by feedback of the form u D �.x/.

Proof. It is easy to see that each term in the sum defining ˙esv is homogenous and
centered and therefore the sum is as well.

These results show that it is necessary to go beyond linear theory if we are to find
any benefit from the use of control in the ensemble setting. The following theorem
applies to multiplicative control. �
Theorem 2.11.2. Consider the ensemble

dxi D Axi C uBxidt CGdwi I i D 1; 2; : : : ; k

y D 1

n
.xT1 Lx1 C xT2 Lx2 C � � � C xTk Lxk/

with L D LT > 0. If there exists a symmetric matrix Q such that QB C BTQ is
negative definite and the eigenvalues of Q all have the same sign, then there exists
ˇ > 0 such that for any real c between 0 and ˇ there is a feedback control law
u D �.y/ which stabilizes the trace of the variance of the sample variance at c.

Proof. The variance of the sample variance, i.e.

˙esv D
X�

xi � 1

n
.x1 C x2 C � � � C xk/

��
xi � 1

n
.x1 C x2 C � � � C xk/

�T

satisfies the equation

Ṗ
esv D .AC uB/˙esv C˙esv.AC uB/T CGGT

LetQBCBTQ D R < 0. ThenQ.ACuB/C.ACuB/TQ is negative definite for
suitable choice of u. Thus we see that for a semi-infinite range of u the eigenvalues
of A C uB have negative real parts. In fact, Q.A C uB/ C .A C uB/TQ can be
made more negative definite than �˛I for any ˛ and so the eigenvalues of AC uB
can be placed to the left of any vertical line in the complex plane. This means that a
steady state variance exists and satisfies

0 D .AC uB/˙esv C˙esv.AC uB/T CGGT
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Over the range of u for which the system is stable let ly�1
ACuB.GG/ denote the

solution of this equation. Clearly tr.ly�1
ACuB.GG// goes to zero as the eigenvalues of

AC uB go to minus infinity and so, as u varies tr˙esv sweeps out a range of values
of the form .0; c/ as required. We can let the feedback control law be a constant,
independent of y. �

The control of heat engines and provides a good example of ensemble control.
The mathematical description consists of a family of identical scalar linear systems
with multiplicative control driven by independent Brownian motion terms.

dxi D .u1 � u2/xi .t/dt C u3dwi I i D 1; 2; : : : ; k

y D
kX
iD1

x2i

In this case the ensemble equations are supplemented by two auxiliary equations
which complete the description and serve to distinguish u1 from u2. These are

PxkC1 D u1

PxkC2 D u1y

The physical interpretation is as follows. The x’s represent (one dimensional)
velocities of individual particles in the ensemble. The controls represent the time
rate of change of the volume occupied by the gas .u1/, the type of contact the gas
has with the available heat sources .u2/, and the selection of a heat source with a
particular temperature .u3/. Further details will emerge from the discussion. If we
had the services of a Maxwell demon we could observe each of the xi individually
but in reality only certain ensemble averages are observable. Likewise, if we had
access to a demon we could generate individual controls for each of the state
variables but in reality we can only apply controls which influence all elements
of the ensemble in the same way. In the context of the elementary thermodynamics
of gases, we are able to change the volume of the gas by moving a piston and to alter
the internal energy of the gas by adding or removing heat. Such actions translate into
choices of u1; u2; u3 in the above model. The objective of the control action might
be, for example, to cause the development of a given quantity of work over a period
Œ0; P 	. Here work corresponds to the integral

w D
P

s
0

u1.t/y.t/dt

The relevant summary of the behavior of the population is, in this case, provided by
the ensemble sample variance. From the equations for x1; x2; : : : ; xk we see that the
ensemble sample variance satisfies the stochastic differential equation

d�esv D 2.u1 � u2/�esvdt C u3
1

n

X
dwi C u23dt
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Because we have assumed that the wi are independent the sum appearing here may
be replaced by dw=

p
k without changing the statistical properties of the solution.

That is, we may as well adopt the model

d�esv D 2.u1 � u2/�esvdt C u3
1p
k
dw C u23dt

This stochastic differential equation represents a sample statistic obtained from k

samples. If we are dealing with a mole of gas then k  6 � 1023! If we assume
that the Brownian motion term is insignificant we are led to the set of deterministic
equations

d

dt
�esv.t/ D 2.u1 � u2/�esv.t/C u23

PxkC1 D u1

PxkC2 D u1y

as a reduced model for the stochastic ensemble.
For the sake of simplicity we rename the variables .�esv; xkC1; xkC2/ as

.x1; x2; x3/. The control terms enter these equations in such a way as to define
three vector fields as brought out by the notation

2
4

Px1
Px2
Px3

3
5 D u1

2
4
2x1

1

2x1

3
5 � u2

2
4
2x1

0

0

3
5C u23

2
4
1

0

0

3
5

subject to the constraint that u2 should be nonnegative. The three vector fields
appearing here are

A D 2x1
@

@x1
C @

@x2
C 2x1

@

@x3
I B D �2x1 @

@x1
I C D @

@x1

Together with the pair

D D x1
@

@x3
I E D @

@x3

they obey the commutation relations

ŒA;B	 D 4DI ŒA; C 	 D �2C � 2EI ŒB; C 	 D �2C
ŒA;D	 D �ŒB;D	 D 2DI ŒA;E	 D 0

and these five vector fields define a basis for a Lie algebra. This algebra is a solvable
subalgebra of the algebra corresponding to the three dimensional affine group. One



2 Notes on the Control of the Liouville Equation 127

might say that it is the Lie algebra of the Carnot cycle. Constraining u2.t/ to be
nonnegative, this system generates admissible flows.

Appendix

We collect here a few results on the bilinear controllability putting in a larger context
the result of Sect. 2.10 on the control of the mean and variance. There is a large
literature on this subject and we only touch a few points. References [10–15] are
relevant.

As is well known, if the off-diagonal elements of A.t/ are nonnegative for all t
then the solutions of the system Px.t/ D A.t/x.t/ leave the positive orthant invariant.
Thus if b is a vector with nonnegative entries and Px.t/ D .A.t/CU.t//x.t/C b.t/

with U diagonal but otherwise unconstrained, and A.t/ is nonnegative off the
diagonal then the positive orthant is an invariant set. This can be seen as a being
a consequence of the direction of the vector field along the boundary of the positive
orthant. In a similar way, if a symmetric matrix X satisfies PX DA.t/X.t/ C
X.t/AT .t/ C B.t/ with B.t/ D BT .t/ nonnegative definite then the cone of
nonnegative definite matrices is an invariant set.

Thus, in the case of the scalar system PxD .aC k/xC b with b >0 the set
fxjx > 0g is positively invariant and x cannot leave the positive half-line. It is
controllable there in the sense that any point in fxjx > 0g can be steered in positive
time to any other point in the set. In higher dimensions the situation is more
complicated. For example, if b1 and b2 are positive then solutions of the system

d

dt

�
x1
x2

�
D
�
aC k1 1

1 b C k2

� �
x1
x2

�
C
�
b1
b2

�

can never leave the first orthant regardless of the choice of .k1; k2/ but if b ¤ 0 the
system

d

dt

�
x1
x2

�
D
�

0 a C k

�a � k 0

� �
x1
x2

�
C
�
b1
b2

�

can be steered from any initial state in R
2 to any final state.

In studying the controllability of an n-dimensional system

Px D .AC BK.t/C /x.t/

it is natural to appeal to Lie algebraic methods. In [12] it is shown that if .A; b; c/ is
a minimal triple in the sense that Œb; Ab; : : : ; An�1b/	 and ŒcI cAI � � � cAn�1	 are both
of rank n then the Lie algebra generated by A and bc is either gl.n/; sl.n/; sp.n=2/
or sp.n=2/˚I , and is gl.n/ unless g.s/ D c.I s�A/�1b has a reflection symmetry
in the form g.s C �/ D g.�s � �/ for some real number � and trA D cb D 0.
Adapting that result to the present situation, we see that the Lie algebra generated
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by A and matrices of the form BEijC is gl.n/ unless CB D 0, trA D 0, and
C.Is � A� �I /�1B D C.�I s � AC �I /�1B for some real number � . However,
because the system has an irreversible drift term Px D Ax the Lie algebra does not
tell the whole story.

Theorem A1. Let A;B;C be constant matrices with A;B/ being controllable and
.A; C / being observable. Consider the system evolving in the space of n-by-n
nonsingular matrices with positive determinant.

PX D .AC BKC/X

with B;K;C being n-bym, m-by-p and p-by-n, respectively. Assume that the
solution of PX D .A C BKC/X I X.0/ D I is periodic for some K D K0.�/.
Then given any pair of nonsingular matrices with positive determinant there exists
a K that steers one to the other provided that CB and trA are not both zero and
C.Is � A/�1B does not have the reflection symmetry described above.

Proof. First of all the system is controllable in the sense that it is possible to reach
an open set of nonsingular matrices because A and the possible values of BKC
generate the entire Lie algebra gl.n/. Second, as is well known, form early work
on controllability on Lie groups, if PX D .A C BKC/X has a periodic solution
with X nonsingular periodic and we have local controllability then we have global
controllability. �

Remark A1. Let A be n-by-n and b be 1-by-n. Observe that

M.t/ D exp

�
At bt

0 0

�
D
"
eAt es t

0 eA.t��/d�b

0 1

#

If eAt is periodic with period T then its eigenvalues lie on the imaginary axis. If none
are zero then A is invertible and

es T
0 eA.T��/d�b D A�1.I � e�AT /b D 0

Thus M is periodic. If 0 is in the spectrum of A then the explicit form of the
integration is not available. However, if b lies in the range space of A then we can
write b as Av so that

es t
0 eA.t��/d�b D es t

0 eA.t��/d�Av D .I � e�AT /b D 0

and M is periodic. When restricted to evolution equations on R
n the conditions for

controllability simplify because sp.n=2/ acts transitively on R
n.

Theorem A2. Let A;B;C be constant matrices with A;B/ being controllable and
.A; C / being observable. Consider the system evolving in R

n

Px D .AC BKC/x C b
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with B;K;C being n-bym, m-by-p and p-by-n, respectively. Assume that the
solution of PX D .A C BKC/X I X.0/ D I is periodic for some K D K0.�/.
Then the system is controllable in the sense that any pair x0 ¤ 0 and x1 ¤ 0 can be
joined by a solution of the given equation.
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Chapter 3
Some Questions of Control in Fluid Mechanics

Olivier Glass

Abstract The goal of these lecture notes is to present some techniques of non-
linear control of PDEs, in the context of fluid mechanics. We will consider the
problem of controllability of two different models, namely the Euler equation for
perfect incompressible fluids, and the one-dimensional isentropic Euler equation
for compressible fluids. The standard techniques used to deal with the Cauchy
problem for these two models are of rather different nature, despite the fact that the
models are close. As we will see, this difference will also appear when constructing
solutions of the controllability problem; however a common technique (or point
of view) will be used in both cases. This technique, introduced by J.-M. Coron as
the return method, is a way to exploit the nonlinearity of the equation for control
purposes. Hence we will see its application in two rather different types of PDEs.

The plan of these notes is the following. In a first part, we recall in a very
basic way some types of questions that can be raised in PDE control (in a non-
exhaustive way). In a second part, we expose results concerning the controllability
of the incompressible Euler equation. In a third part, we show how the techniques
used to prove the controllability of the incompressible Euler equation can be used to
prove some other controllability properties for this equation, namely the so-called
Lagrangian controllability. In a fourth and last part, we consider the controllability
of the isentropic Euler equation.
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3.1 Introduction

In this first section, we give a short and elementary presentation of some questions
in control theory as a general introduction before getting to some specific control
problems in fluid mechanics.

3.1.1 Control Systems

We start with the definition of the basic object studied in control theory.

Definition 3.1.1. A control system is an evolution equation (an ODE or a PDE)
depending on a parameter u, that we will write in a formal way as follows:

Py D f .t; y; u/; (CS)

where t 2 Œ0; T 	 is the time and:

• y W Œ0; T 	 ! Y is the unknown, called the state of the system.
• u W Œ0; T 	 ! U is the parameter called the control, that one can choose as a

function of the time.

Of course, above, Py stand for the time derivative of y.
The two standard examples that we have in mind with this definition are the
following:

• The state y.t/ belongs to R
n (or to some finite-dimensional manifold), the control

u.t/ to R
m (or again to some other finite-dimensional manifold), and (CS) is an

ODE.
• Both the state y.t/ and the control u.t/ belong to some functional spaces, and

(CS) is a PDE (so f is typically a differential operator acting on y).

The general question accompanying this definition is the following: how can one
use the control to make the system fulfill some purpose that has been prescribed
in advance? Before giving precise mathematical definitions corresponding to this
general problem, let us give some examples of control systems.

3.1.2 Examples

To fix the ideas, we give examples of control systems both of finite and infinite
dimensional type. In these lecture notes, we will be more interested in infinite-
dimensional systems governed by PDEs.

1. Finite dimensional linear autonomous control systems. Here (CS) is as follows:

Py D Ay C Bu;
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where the state y 2 Y D R
n, the control u 2 U D R

m, and A 2 R
n�n and

B 2 R
n�m are fixed matrices.

2. Driftless control-affine systems. Here:

Py D
mX
iD1

uifi .y/;

where the state y 2 R
n, the control u 2 R

m, and f1, . . . , fm are smooth vector
fields on R

n.

Let us now give some examples of infinite-dimensional control systems,
connected to fluid mechanics. There are different classical ways to consider the
action of a control on a distributed system governed by a PDE.

3. Internal control of a PDE: the Navier–Stokes case. Consider ˝ a smooth
bounded domain in R

n, and a nonempty open set ! 
 ˝ , see Fig. 3.1.
Here we consider an evolution PDE on ˝ , e.g. the incompressible Navier–

Stokes equations, the control acting as a source term located in !:

8
<
:
@t v C .v � r/v ��v C rp D 1!u in Œ0; T 	 �˝;
div v D 0 in Œ0; T 	 �˝;
v D 0 on Œ0; T 	 � @˝:

Above, v W ˝ ! R
n is the velocity field, p W ˝ ! R is the pressure field.

As well-known this equation describes the evolution of the velocity field of an
incompressible, viscous fluid. Note that p is not a real unknown of the equation;
as a matter of fact, the whole system could be reformulated without it. Here:

• The state is the velocity field v for instance taken in L2.˝IRn/ (or a subspace
in L2.˝IRn/ in order to take div v D 0 and the boundary conditions into
account).

• The control is the localized force u D u.t; x/, which we compel to be
supported in !, belonging for instance in L2.!IRn/.

4. Boundary control of the Navier–Stokes equation. Consider ˝ 
 R
n a smooth

bounded domain, and a non empty open part of the boundary ˙ 
 @˝ , see
Fig. 3.2.

W
w

Fig. 3.1 Internal control
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W S

Fig. 3.2 Boundary control

Consider the Navier–Stokes equations, the control acting as a boundary condition
located in ˙ :

8
<
:
@tv C .v � r/v � ��v C rp D 0 in Œ0; T 	 �˝;
div v D 0 in Œ0; T 	 �˝;
v D 1˙.x/u.t; x/ on Œ0; T 	 � @˝; :

Here:

• The state is the velocity field v, for instance in L2.˝IRn/.
• The control is the localized boundary term u D u.t; x/.

5. Control by lower modes. One may also consider finite-dimensional control in the
context of PDEs, for instance:

8
<
:
@tv C .v � r/v ��v C rp D Pm

iD1 ui .t/ei .x/ in Œ0; T 	 �˝;
div v D 0 in Œ0; T 	 �˝;
v D 0 on Œ0; T 	 � @˝;

where:

• The state is again the velocity field v.
• The control is .u1; : : : ; um/ 2 R

m.

6. Many other possibilities. Let us underline that there are many other natural
possibilities: u appearing in the coefficients, through an internal/a boundary
operator, . . .

3.1.3 Examples of Control Problems

As explained above, the goal of control theory is to understand how one can use the
control function in order to influence the dynamics of the system in a prescribed way.
This general problem can take different forms and yields different mathematical
problems. We list several of these questions below.
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Fig. 3.3 Exact controllability

1. Optimal control. One looks for a control that minimizes some cost function, e.g.

J.u/ D ky.T I u/� yk2 C kuk2;

where y is some target and y.T I u/ is the state reached by the system at time T ,
starting from y0 and with control u. The problem is to determine if such a control
exists, is unique, and to try to characterize it.

2. Exact controllability. The question is the following: given two times T0 < T1,
and y0, y1 two possible states of the system, does there exist u W ŒT0; T1	 ! U
such that

yjtDT0 D y0; Py D f .y; u/ H) y.T1/ D y1‹

In other words, is it possible to find, for each y0 and y1, a control which drives
the system from the initial state y0 to the target y1? (Fig. 3.3).

Remark 3.1.2. For autonomous systems, this notion depends on T1 � T0 rather
than on both T0 and T1.

3. Approximate controllability. The problem of approximate controllability is a
relaxed version of the exact controllability. Instead of requiring that the state
of the system reaches the target exactly, one may wonder if, at least, one can
get arbitrarily close to the target. Mathematically speaking, this can be written as
follows.
Given T0 < T1, y0 and y1 two possible states of the system and " > 0, does there
exist u W Œ0; T 	 ! U such that

yjtD0 D yT0 ; Py D f .y; u/ H) ky.T1/ � y1k � "‹

Needless to say, the problem highly depends on the choice of the norm.
4. Null controllability. We suppose that Y is a vector space. Given T0 < T1, y0 an

initial state of the system, does there exist u W Œ0; T 	 ! U such that

yjtDT0 D y0; Py D f .y; u/ H) y.T1/ D 0‹

Typically: can one use the control to put the fluid to rest?
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Fig. 3.4 Controllability to trajectories

5. Controllability to trajectories. Given T0 < T1, y0 2 Y and y W ŒT0; T1	 ! Y
a given trajectory of the system (corresponding to a control u W ŒT0; T1	 ! U ),
does there exist u W ŒT0; T1	 ! U such that (See Fig. 3.4)

yjtDT0 D y0; Py D f .y; u/ H) y.T1/ D y.T1/‹

Remark 3.1.3. The notions of zero-controllability and controllability to trajec-
tories are particularly important for (irreversible) systems having a regularizing
effect, since in that case, one cannot hope the exact controllability to hold. For
instance, consider the internal control of the heat equation (or the Navier–Stokes
equation with suitable assumptions), it can be proved that, whatever the choice
of the control, the final state of the system is smooth when restricted to a part of
˝ at a positive distance from !.

Let us underline that many other types of controllability can be considered. . .

Now let us discuss another problem that one consider for a control system. To
simplify the discussion, let us consider autonomous control systems:

Py D f .y; u/:

We would like to ensure some robustness of the control. Indeed, the control which
are considered in the above controllability problems are “open-loop”, that is,
depend on t , y0 and y1. But if the system deviates from its planned trajectory, the
control may no longer be adapted to the situation. A way to find a control which
is more robust to perturbations (which can come from noise, imprecisions of the
model, etc.) is to look for a control in “closed-loop” form, that is, depending on
the state y.t/ at time t , rather than on the memory of y0. An important control
problem connected to this discussion is the following.

6. Asymptotic stabilization. Given an equilibrium state .ye; ue/ of the system (that
is, a point such that f .ye; ue/ D 0), can one find a state feedback function u D
u.y/, such that ue D u.ye/ and that the so-called closed-loop system:

Py D f .y; u.y//; (CLS)

is (globally) asymptotically stable at the point ye , i.e.:
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• For all " > 0, there exists � > 0 such that all solution starting from y0 2
B.ye; �/ are global and satisfy that for all t � 0; y.t/ 2 B.ye; "/,

• Any maximal solution is global in time and satisfies y.t/ ! ye as t ! C1?

Remark 3.1.4. The properties as described above, in both controllability and
stabilization contexts, are called global. One can consider their local versions
as follows. The local exact controllability near y� allows to drive any y0 to any
y1 in some neighborhood of y�. The local zero controllability allows to drive any
small y0 to 0. The local controllability to trajectories allows to drive any initial
y0 sufficiently close to y.T0/ to y.T1/. The local asymptotic stabilization makes
the closed-loop system merely locally asymptotically stable at ye .

3.2 Controllability of the Euler Equation

In this section, we consider the problem of exact boundary controllability of the
Euler equation for incompressible inviscid fluids. We begin by describing more
precisely the control system under view.

3.2.1 The Control Problem

We consider a smooth bounded domain ˝ 
 R
n, n D 2 or 3. For a positive

time T > 0, we consider the Euler equation for perfect incompressible fluids in
Œ0; T 	 �˝: �

@tv C .v:r/v C rp D 0 in Œ0; T 	 �˝;
div v D 0 in Œ0; T 	 �˝: (3.1)

Here, v W Œ0; T 	 �˝ ! R
2 (or R3) is the velocity field, p W Œ0; T 	 �˝ ! R is the

pressure field. This equation describes the evolution of a homogeneous, incompress-
ible and inviscid fluid. As is classical, the first equation stands for the conservation of
momentum, and the second equation is the incompressibility constraint. Of course,
the system needs boundary conditions to be determined. In general, to close the
system, one adds the usual impermeability condition on the boundary:

v:n D 0 on Œ0; T 	 � @˝; (3.2)

with n the unit outward normal on @˝ . In other words, the fluid cannot cross the
boundary (but it can slip on it).

As noticed before in the context of the Navier–Stokes equation, in incompressible
fluid mechanics, the pressure is not a real unknown of the system, which can be
reformulated in terms of v only. A way to look at the pressure is to consider it as a
Lagrange multiplier associated to the incompressibility constraint.
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This closed system (3.1)–(3.2) has been studied for a very long time. And it
is known that the system in 2-D (respectively 3D), is well-posed globally (resp.
locally) in time: see for instance the classical references: Lichtenstein [65], Wolibner
[85], Yudovich [86], Kato [56], Ebin–Marsden [39], etc. The main condition is that
the state space where v.t; �/ is taken should be a Hölder or a Sobolev space which is
continuously embedded in the Lipschitz space.

Now, we would like to understand the properties of this equation under the
influence of a boundary control, see Fig. 3.2. To make a precise statement, we
consider a nonempty open part ˙ of the boundary @˝ . Instead of imposing the
impermeability condition (3.2) everywhere on @˝ , we consider the possibility
of choosing non-homogeneous boundary conditions on the “control zone” ˙ as
follows:

• On @˝ n˙ , the fluid does not cross the boundary, so

v:n D 0 on Œ0; T 	 � .@˝ n˙/; (3.3)

• On˙ , we suppose that one can choose the boundary conditions, that is, use them
as a control.

The non-homogeneous boundary value problem for the Euler system is not com-
pletely standard; for instance it is not sufficient to prescribe the normal velocity
on ˙ to determine the system. There are several possibilities to make the system
determined. The most usual notion of non-homogeneous boundary conditions for
the 2-D Euler equation is due to Yudovich [87] and consists in prescribing:

• The normal velocity on ˙ , that is,

v.t; x/:n.x/ on Œ0; T 	 �˙; (3.4)

• The entering vorticity, that is, the vorticity (i.e. the curl of the velocity field)
at points of ˙ where the velocity field points inside ˝ . In other words, one
prescribes

curl v.t; x/ on˙�
T WD f.t; x/ 2 Œ0; T 	 �˙ = v.t; x/:n.x/ < 0g : (3.5)

(Recall that n is the outward unit normal on @˝ .)

Yudovich proves that under suitable assumptions on˙ and the boundary data, there
exists a unique solution to the initial-boundary value problem. Let us underline
that this result concerns quite regular solutions, not the solution of the celebrated
reference [86] concerning the homogeneous case. In particular, this regularity is
useful to prove uniqueness.

Concerning the 3D equation, Kazhikov [58] proved that one can prescribe as a
natural boundary condition for the Euler equation:
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• The normal velocity on ˙ .
• The tangential part of entering vorticity

curl v.t; x/ ^ n on ˙�
T WD f.t; x/ 2 Œ0; T 	 �˙ = v.t; x/:n.x/ < 0g :

This difference with regards to the bidimensional case can be explained as follows.
In 3-D, the vorticity is a divergence-free vector field, while in 2-D it is merely a
scalar field. Due to the divergence-free condition of the vorticity, it is enough to
prescribe the tangential part of curl v in order to recover this vector field completely.

In both cases the form of the boundary data seems rather involved, but as we will
see later, we will express the controllability problem in a way that circumvents this
difficulty.

Now, for what concerns the state of the system, the natural space will consist in
smooth enough vector fields, satisfying the incompressibility condition div .v/ D 0

and the constraint (3.3) on the wall. Since the regularity is not a real issue here (as
long as the state v belongs to a Hölder or a Sobolev space contained in the Lipschitz
space), we will consider velocities in C1.˝IRn/. The arguments could be adapted
to less regular spaces.

The controllability problem becomes the following one: given a time T > 0, and
two states v0, v1 in C1.˝IRn/ satisfying the compatibility conditions

div .v0/ D div .v1/ D 0 in ˝; (3.6)

v0:n D v1:n D 0 on @˝; (3.7)

can one find a boundary control such that the corresponding solution v starting from
v0 satisfies

vjtDT D v1‹ (3.8)

But as we saw, the form of the boundary control is a difficulty in itself. To overcome
this difficulty, we reformulate the controllability problem as follows: given a time
T > 0, and two states v0, v1 in C1.˝IRn/ satisfying the compatibility conditions
(3.6)–(3.7), can one find a solution v 2 C1.Œ0; T 	 � ˝IRn/ of (3.1) starting from
v0, satisfying the constraint (3.3) and such that (3.8) holds?

This formulation can be found in many other contexts of PDE controllability
problems. Let us underline that there is no real difference between the two
formulations. Should one be able to construct a solution v satisfying the constraint
(3.3), it suffices to take the appropriate trace of v on the boundary to get the control.

Note that the same reformulation works for the approximate controllability
problem as well. The standard way to formulate the approximate controllability
for the norm k � k is the following question: given T > 0, v0, v1 in C1.˝IRn/
satisfying (3.6)–(3.7) and " > 0, does there exist a boundary control such that the
corresponding solution v starting from v0 satisfies

kvjtDT � v1k < "‹ (3.9)

And the way we will look to it is to ask if there exists a solution v starting from v0,
satisfying (3.3) and (3.9).
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3.2.2 Controllability Results

The first result concerning the controllability of the Euler equation is the following,
see [25].

Theorem 3.2.1 (Coron). The 2-dimensional Euler equation is exactly controllable
in arbitrary time if and only if ˙ meets all the connected components of the
boundary. In other words, under this condition, for all T > 0, for all v0; v1 2
C1.˝IR2/ satisfying (3.6)–(3.7), there exists v 2 C1.Œ0; T 	�˝IR2/, solution of
(3.1), (3.3) and satisfying

vjtD0 D v0 and vjtDT D v1 in ˝:

Note that this result is global, and that when the controllability holds, it holds for all
time T . The fact that the controllability holds for all time is far from being true for all
PDE controllability problems. For instance, it is well-known that the controllability
of the wave equation can hold only for a sufficiently large time, due to the finite
speed of propagation.

The controllability of the Euler equation was afterwards established in the 3-D
case, see [44].

Theorem 3.2.2 (G.). The previous result also holds in 3-D.

An interesting fact concerning the 3-D case is that it is not known whether the
regular (uncontrolled) solutions of the 3-D Euler equation are global in time or not.
As a matter of fact, a possible blow-up is suspected. But here, the result states that, if
˙ meets all the connected components of @˝ , then one can use the control to make
the solution “live” during any time interval Œ0; T 	, and even, should one choose
v1 D 0, make the solution global in time. Hence the boundary control is strong
enough to prevent a possible blow-up.

That the condition on˙ is necessary to get the exact controllability is not difficult
to prove. Indeed, two different conservations prove that if ˙ does not meet all the
connected components of the boundary, then the controllability does not hold. Let
us first discuss them in the 2-D case:

• First, Kelvin’s law states that the circulation of velocity around a Jordan curve is
constant as the curve follows the flow. Now, suppose that a certain connected
component of the boundary, let us say � , does not meet ˙ . It follows that,
whatever the solution v, this connected component is left (globally) invariant
by the flow of v. Hence the circulation of velocity along this component is a
conserved quantity, no matter the choice of the control. Hence it suffices to
choose v0 and v1 having different circulations along � to prove that the exact
controllability does not hold.

• In 2D, the vorticity ! WD curl v is constant along the flow of v. And again an
uncontrolled component of @˝ is preserved by the flow. So it suffices to choose
v0 and v1 having vorticity distributions on � that cannot be driven one to another
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by a smooth deformation to prove that the exact controllability does not hold.
Note that this invariant is different from the previous one. One can easily con-
struct velocity fields having the same first invariant and not the same second one.

These obstructions are in fact also valid in 3-D. For the first invariant, one considers
a curve � on an uncontrolled connected component of @˝ , a velocity field v0
with non trivial circulation along � , and v1 D 0. For what concerns the second
obstruction, the vorticity does no longer follow the flow of the velocity in 3-D, but
however the support of the vorticity does. Hence it suffices to choose v0 such that
Supp.curl v0/meets an uncontrolled connected component of @˝ and v1 D 0 to see
that the exact controllability does not hold.

Now, one could wonder what happens when ˙ does not meet all the connected
components of the boundary. The exact controllability does not hold, but can one
at least hope to get some approximate controllability? Here is a positive answer in
dimension 2, see [25].

Theorem 3.2.3 (Coron). If ˙ is non empty (but does not meet all the connected
components of the boundary), the system is approximately controllable for the norm
Lp.˝/, p < 1. Not for p D 1.

The same conserved quantity as previously (the velocity circulation along uncon-
trolled connected components of @˝) shows that the result is false in general if
p D C1. Hence this result cannot be improved. But one could wonder whether
this is the only obstruction. The following answer is given in [45].

Theorem 3.2.4 (G.). If v0 and v1 have the same velocity circulation on the uncon-
trolled components of the boundary, then the approximate controllability occurs in
W 1;p.˝/, p < 1. Not for p D 1.

Here, the second conserved quantity (the distribution of vorticity along uncontrolled
connected components of @˝ , up to regular deformations) shows that the result is
false in general if p D C1. It is natural to ask again whether this is the only
obstruction to a better approximate controllability. This is also proven in [45].

Theorem 3.2.5 (G.). If v0 and v1 have the same velocity circulation on the uncon-
trolled components of the boundary, and moreover there exist smooth deformations
on these components sending the vorticity distributions of v0 on the ones of v1, then
the approximate controllability occurs in W 2;p.˝/, p < 1. Not for p D 1.

One can show that the case p D 1 is not true by considerations on the derivatives
of the vorticity. However, we are not able to describe the invariant properly. So the
following open problem remains.

Open problem 1 What happens next (e.g. for W 3;p.˝/) is open.

For what concerns the 3-D case, we are not able to extend the above results. The
main problem is a possibility of blow-up. It is not clear how to get rid of possible
“germs of explosion” near the uncontrolled components of the boundary. This lefts
us with the following.
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Open problem 2 The question of approximate controllability of the 3-D Euler
equation in Lp.˝/ (when ˙ does not meet all the connected components of the
boundary), is still open.

3.2.3 Proof of the Exact Controllability

In this paragraph, we try to explain the main ideas of the proof of Theorem 3.2.1.
We will first consider the simpler case when ˝ is simply connected, and then we
will describe what is needed to extend the result to general bidimensional domains.
We will also give a few ideas about Theorem 3.2.2.

3.2.3.1 Introduction

We are considering the controllability problem for a nonlinear PDE. Let us explain
how this is often dealt with.

Standard approach to nonlinear PDE controllability problems

The most standard method to establish the controllability of a nonlinear PDE is the
following:

1. Linearize the equation.
2. Prove a controllability result on the linearized equation.
3. Deduce a controllability result on the nonlinear system by a fixed point or an

inverse mapping theorem.

Now to prove the controllability of the linearized equation, there is a standard
approach by duality (D. Russell [76], J.-L. Lions [66]). This consists in proving
an observability inequality on the (homogeneous) dual system. Roughly speaking,
one has to prove the surjectivity of the control 7! final state map, and the argument
is somewhat close to the standard

A surjective ” 9c > 0; 8u; kA�uk � ckuk:
But this is not (by far) the end of the story. Indeed, in general these observability
inequalities (which measure the solution everywhere in terms of this solution
measured in the control zone only) are very difficult to prove. Also, this is not the
only way to establish controllability, even in the linear case. But this gives a good
start: we have to prove some inequality, so the problem seems more standard than
to find a control driving the solution from one place to another.

However, this method can have at least two drawbacks:

• Frequently, this merely leads to local results, unless the nonlinearity is nice (see
e.g. Zuazua [88]).
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• In many physical cases, and in particular for what concerns the Euler equation,
the linearized equation is not (unconditionally) controllable.

Let us indeed consider the linearized Euler equation around 0:

�
@tv.t; x/C rp.t; x/ D 0 in Œ0; T 	 �˝;
div v.t; x/ D 0 in Œ0; T 	 �˝: (3.10)

As noticed by J.-L. Lions [67], this equation is not controllable, because solutions
of (3.10) satisfy

vjtDT � vjtD0 is the gradient of a harmonic function:

The return method

A method designed by J.-M. Coron to tackle this kind of situation is the return
method. This method was introduced in the context of finite-dimensional control
systems, see [23]. The idea is the following:

find a particular solution y of the (nonlinear) system (with control), such that
y.0/ D y.T / D 0 and such that the linearized system around y is controllable.

One may then hope to find a solution of the nonlinear controllability problem close
to y (Fig. 3.5).

In general, it is not easy to construct such a solution of the nonlinear system. But
it turns out that in many different physical situations, this method have proved very
useful. It can be seen as a way to exploit the nonlinearity of the system. We refer to
[29] for examples and references on that subject.

Fig. 3.5 The return method
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3.2.3.2 The Solution y

In this part, we explain the construction of the function y used to prove Theo-
rem 3.2.1. The vast majority of the arguments here come from [25]; a slight part
of the construction that we show is a little bit different from the one of [25] and uses
arguments from [45]. First, in an informal manner, we explain how we are led to
look for particular properties for y.

The choice of y: what should it do?

Let ! WD curl .v/ the vorticity (either a scalar in 2D or a vector in 3D). It satisfies

@t! C .v � r/! D 0 .2D case/; (3.11)

or

@t! C .v � r/! D .!:r/v .3D case/: (3.12)

We call ˚ the flow of v, that is, the solution of the ODE associated to v:

@t˚.t; s; x/ D v.t; ˚.t; s; x// and ˚.t; t; x/ D x: (3.13)

Hence, in the 2D case, the vorticity follows the flow of v, that is to say, it is constant
along flow lines:

!.t; ˚.t; 0; x// D !.0; x/:

This is no longer true for what concerns the 3D case, but, at least, the support of
the vorticity follows the flow in that case. A consequence of this is the following. If
one wants to steer a state v0 such that curl .v0/ does not vanish anywhere on ˝ , to
v1 D 0, then even if kv0k � 1, one should expect the following property to hold:

the flow of y makes every point of ˝ leave the domain. (3.14)

Indeed, we will look for a solution v close to y; but v must satisfy such a property,
because if it does not, there remains inside ˝ at time T , points where the vorticity
is inherited directly from curl .v0/, which contradicts v.T / D 0.

The choice of y: what can it do?

But on another side, the question is: how can we construct a solution of the nonlinear
system (with control)? In general, we have not so many particular solutions of a
nonlinear system at our disposal. But for what concerns the Euler equations, a very
classical form of particular solutions is known for a very long time. These are the
potential flows:

y.t; x/ D rx�;
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where
�x�.t; x/ D 0 for all .t; x/ 2 Œ0; T 	 �˝:

These are solutions of the Euler equation: taking

p D ��t � jr� j2
2

;

it is elementary to check that y satisfies (3.1) (and it is remarkable that the
dependence in time is in some sense arbitrary). The boundary condition (3.3)
translates into

@n�.t; x/ D 0 for all .t; x/ 2 Œ0; T 	 � .@˝ n˙/:

Main proposition

As one may expect, the solution y that one constructs is at the intersection of the
two above constraints. An important part of the proof is devoted to showing the
following existence result.

Proposition 3.2.6 (Coron). There exists � 2 C1.Œ0; T 	 � ˝IR/, compactly
supported in time in .0; T /, such that

�x�.t; x/ D 0 in Œ0; T 	 �˝; @n�.t; x/ D 0 on Œ0; T 	 � .@˝ n˙/; (3.15)

and such that the flow of r� makes all the points in ˝ leave the domain.

Remark 3.2.7. The flow of r� is not very well-defined, because r� is not
everywhere tangent on the boundary, and hence the flow is not “internal” to ˝ .
It follows that the flow ˚.t; s; x/ solution to:

@t˚.t; s; x/ D y.t; ˚.t; s; x// and ˚.t; t; x/ D x;

is not defined for all time .t; s/. An elementary way to define this flow properly is
to extend � into a function of C1.Œ0; T 	IC1

c .R
n// (which of course is no longer

harmonic outside ˝). This allows to define a flow globally and make the statement
mathematically accurate.

Idea of the construction of y

For the rest of Paragraph 3.2.3.2, we explain the steps to prove Proposition 3.2.6.
As we will see, it is the consequence of the following one:

Proposition 3.2.8. Given a curve � 2 Ck.Œ0; 1	I˝ [ ˙/, there exists � 2
Ck.Œ0; 1	 �˝IR/ satisfying (3.15) such that the flow ˚ of r� satisfies:
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˚.t; 0; �.0// D �.t/:

The same holds for � 2 Ck.Œ0; 1	I @˝/.
Idea of the proof of Proposition 3.2.6 assuming Proposition 3.2.8. This is mainly a
matter of compactness of ˝. For each x in ˝, one can find a curve � in ˝ driving
x outside of ˝. To make this statement rigorous, extend a little bit ˝ across ˙ , to
obtain a new smooth domain Q̋ . Hence one can find a corresponding harmonic flow

r� (depending on x), defined on Œ0; 1	 � Q̋ .
Now, by continuity of the flow, together with x, a small neighborhood of x in ˝

is sent outside ˝ by this flow, say Vx. By compactness of ˝ , we can find a finite
number of points x1; : : : xn such that ˝ D Vx1 [ � � � [ Vxn . Call r�1, . . . r�n the
corresponding flows (Fig. 3.6).

Now, let us notice that the time T is not an issue here. If one is able to find
a function � 2 C1.Œ0; QT 	 � ˝IR/, harmonic in x, satisfying the homogeneous
Neumann boundary condition on @˝ n˙ for all t 2 Œ0; QT 	 and whose flow satisfies
(3.14), then it is just a matter of time-rescaling to prove Proposition 3.2.6.

Now since we do not care about the size of the time interval, the function � is
obtained by gluing in time several flows of this type. Precisely, we construct � as
follows:

• �.t; x/ WD �1.t; x/ during Œ0; 1	.
• Then �.t; x/ WD ��1.2 � t; x/ during Œ1; 2	. In this way, we know that the

corresponding˚ satisfies ˚.2; 0; x/ D x for all x 2 ˝ .
• And then we iterate: we set �.t; x/ WD �3.t C 2; x/ during Œ2; 3	, and then
�.t; x/ WD ��3.4 � t; x/ during Œ3; 4	, etc.

It is then not difficult to see that the � that we have constructed is convenient. �

Following a curve

Now we have to establish Proposition 3.2.8. A somewhat close statement was
noticed independently by T. Kato in another context. In [57], Kato proves that

Fig. 3.6 The flow of �
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without control, the trajectories of the flow of solutions of the Euler equation are
C1 with respect to time; with non-homogeneous boundary conditions, he notices
that this is no longer true.

A way to prove Proposition 3.2.8 is to establish the following lemma.

Lemma 3.2.9. For x 2 ˝, one has the following:

n
r�.x/; � 2 C1.˝IR/ satisfying (3.15)

o
D
�
R
n for x 2 ˝ [˙;

Tx@˝ for x 2 @˝ n˙:

Proof of Proposition 3.2.8 assuming Lemma 3.2.9. We suppose that Lemma 3.2.9 is
established. Then for each t 2 Œ0; 1	, one can find a finite number of functions �1,
. . . , �N , satisfying (3.15), such that

Spanfr�1.�.t//; : : : ;r�N .�.t//g D R
n .or T�.t/@˝/: (3.16)

Using the continuity in time of the curve � , the continuity in space of these
functions r�i and the openness of the condition (3.16), we see that we still have
Spanfr�1.�.s//; : : : ;r�N .�.s//g D R

n or T�.s/@˝ for s in a small neighborhood
Ut of t . In particular, for each t , in such a neighborhood Ut we are able to describe
P�.s/ as follows:

8s 2 Ut ; P�.s/ D PN
iD1 �i .s/r�i .�.s//;

DW r�t .s; �.s//;

for suitable functions �i .s/.
Now we use the compactness of Œ0; 1	, and extract a finite subcover of Œ0; 1	 by

Ut1 , . . . , Utn . Then one can construct �.t; x/ with the form

�.t; x/ D
NX
iD1

�i .t/�
ti .t; x/:

where �1; : : : ; �n is a partition of unity adapted to this covering of Œ0; 1	. Then one
can check easily that this � is convenient. �

The possible directions of r�.x/

Now it remains to prove Lemma 3.2.9. In 2D, this can be proved by using Runge’s
theorem (of approximation of holomorphic functions by rational functions). Indeed,
as is very classical, complex analysis is very useful to construct such flows in
dimension 2 because, setting Vf WD .Re f;�Imf /, we have:

f satisfies the Cauchy–Riemann equations ” curl Vf D div Vf D 0:
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Fig. 3.7 Use of Runge’s theorem

Of course, in a simply connected domain, there is no difference between a curl-free
vector field and a gradient field. There are now two cases.

1. Let us first consider the case x 2 ˝ [ ˙ . The idea is the following: define the
holomorphic function ' as follows: in some neighborhood of @˝ n ˙ in the
complex plane, '.z/ D 0, and in some neighborhood of x (disjoint from
the latter), '.z/ D c where c is an arbitrary complex constant, see Fig. 3.7.
Now approximate ' by a rational function f whose only pole belongs to
the unbounded component of C n ˝ . (Recall that ˙ meets all the connected
components of @˝; hence we do not need more than one pole.)

The resulting rational function is in particular holomorphic in a neighborhood
of ˝, and even in a neighborhood of the complement of the unbounded
component of C n ˝ . And since the only pole is in the unbounded component
of C n˝ , one can see that Vf is a gradient field. But it is not quite satisfactory
yet, because this vector field V.f / D r� does not satisfy @n� D 0 on @˝ n˙
exactly, but merely @n� D O."/, where " is the approximation parameter, in any
Ck norm.
But it suffices to subtract a solution of a Neumann problem to get @n� D 0 on
@˝ n ˙ exactly. To that purpose, choose g on the boundary such that g D @n�

on @˝ n˙ , s@˝ g D 0 and kgkCk.˙/ D O.kgkCk.@˝n˙// on ˙ . Then solve

� D 0 in ˝; @n D g on @˝:

Using standard elliptic estimates, we deduce that the size of  (in Ck;˛.˝/ norm
for instance) is also of order ", so � �  is convenient.

2. If x 2 @˝ n ˙ , the situation is more difficult. Of course, we can no longer
approximate 0 near @˝ n ˙ and c near x at the same time. Instead, we
approximate the following function introduced for a 2 ˝:
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Fig. 3.8 The boundary case

Ra.z/ WD N.a/

�
1

z � a
� 1

z � Oa
�
; as a ! x; (3.17)

where a belongs to˝ and Oa is as in Fig. 3.8, symmetrically disposed with respect
to Tx@˝ . Moreover, N.a/ D O.d.x; a// is a normalization factor intended to
get that Ra.x/ is of order 1, while on fz 2 @˝ = d.x; z/ � c > 0g, one has
Ra.z/ ! 0 uniformly as a ! x. One can interpret Ra.z/ as a dipolar expansion.

Now we consider a sufficiently close to x (in a way that x � a is not orthogonal
to Tx@˝), and introduce a neighborhood V of @˝ which does not contain a
nor Oa, see again Fig. 3.8. Again we apply Runge’s theorem to approximate Ra
on V , with a pole in the unbounded component of C n ˝ . This results in a
rational function f , which itself yields a vector field Vf . Again, this vector field
is a gradient in ˝ , but it does not necessarily satisfy @n� D 0. Therefore, as
previously, we have to subtract a function  defined as above. Then the result
follows from asymptotic developments as a ! x, which allow to prove that the
error between V.Ra/ and r is small as a ! x. �

3.2.3.3 Using the Function y

Now let us explain how we can use the function y constructed above to establish
Theorem 3.2.1.

Local zero-controllability, rough idea

We first consider the case where v0 is small enough (in some fixed, sufficiently
strong norm), and v1 D 0. The general case will be deduced from this particular
one. Let us also suppose that ˝ is simply connected; we will come back to the
additional difficulty of a non-trivial topology of the domain later.
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In the following construction, we will put aside the regularity/compatibility
conditions issues in a first time. Given a small v0, we try to construct a solution
of the following system:

8
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂̂
ˆ̂̂
:

curl .v/ D ! in Œ0; T 	 �˝;
div .v/ D 0 in Œ0; T 	 �˝;
v:n D y:n on Œ0; T 	 � @˝;
@t! C .v:r/! D 0 in Œ0; T 	 �˝;
!jtD0 D !0 D curl .v0/ in ˝;
! D 0 on f.t; x/ 2 Œ0; T 	 �˙ = r�:n < 0g:

(3.18)

Mainly, this is exactly (3.1) rewritten in vorticity form. This is very classical in
fluid mechanics (and by the way this allows to get rid of the pressure): the vorticity
follows a transport equation depending on the velocity field, and the velocity field
can be recovered from the vorticity by using the div /curl elliptic system. The
important fact here concerns the boundary conditions (that is, the control); in this
form, Yudovich’s boundary conditions become more natural. The normal velocity
is directly inherited from y, and the entering vorticity is 0; this clearly involves
compatibility conditions issues on ˙ and at t D 0, but this gives the main idea.

Hence we assume that by some procedure we managed to find a solution
of (3.18). If there were no regularity issues due to the non-homogeneous boundary
conditions, it would mainly be a matter of finding a fixed point of some operator
defined as follows. First, one maps ! to v by the elliptic div -curl system. Then, to v
a new vorticity, say Q!, by the transport system. Using the smallness of v0 this would
yield a fixed point of the operator.

Let us now explain why such a solution would drive the state of the system from
v0 at t D 0 to 0 at time T , provided that v0 is sufficiently small.

• The main principle—this is the core of the application of the return method to the
Euler equation—is the following. The vorticity is transported by the flow of the
velocity; hence its value !.t; x/ comes either from the initial datum !0 (if in
the flow of v the point x does not come from ˙), either from ˙ and in that case
it is 0 (since the entering vorticity is null). It follows that if kv0k � 1 (for a norm
stronger than Lipschitz), then the vorticity of the solution will also be small for
all times. Hence the solution is close to the one obtained with no vorticity, that is
to say with the solution associated to v.0; �/ D 0.

• But this solution corresponding to v.0; �/ D 0 is precisely y.
• Consequently, for kv0k small enough, v stays close to y for all time. Therefore,

using a Gronwall argument and (3.14), one can show that the flow of v makes all
points in ˝ at t D 0 leave the domain.

• It follows that all points at time T in ˝ come from ˙ in the flow of v. Hence,
since the vorticity follows the velocity flow and since the entering vorticity is
null, we deduce that !.T / D 0.
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Fig. 3.9 The smooth process

• Now v.T /:n D y.T /:n D 0. Since curl .v.T // D div .v.T // D 0 and since
˝ is simply connected, we can affirm that v.T / D 0. (Not when ˝ is multiply
connected, as we will see later.)

How to make the construction smooth

Now, of course, we would like to do this in a smooth manner. Indeed putting the
entering vorticity to 0 makes it unlikely to construct a regular solution. The main
idea is the following. We have to elaborate a new fixed point strategy. Let us be given
a velocity vector field v in Œ0; T 	 � ˝ , starting from v0 and close to y (remember
that v0 is small, so these two conditions are compatible). Then the construction is as
follows:

• Extend the velocity field v to a velocity field Qv defined on R
2 and compactly

supported in x.
• Transport the initial vorticity !0 (also extended on R

2 with compact support) by
Qv, and a finite number of times, transform the vorticity by

!.tC; x/ D '.x/!.t�; x/; (3.19)

where ' is a cutoff function such that ' D 1 on ˝, see Fig. 3.9. Here we use
the particular form of y: its flow brings points of ˝ outside of the domain “one
piece after another” (recall the covering of˝ by Vx1 , . . . , Vxn in the construction
of y). Hence the idea is to put the vorticity to zero on these “pieces” Vxi of ˝ ,
one after another, when the flow makes them go out of ˝.

• Then one associates a new velocity field in ˝ by the div /curl elliptic system in
˝ , where the normal velocity on the boundary has to be close to y and compatible
with v0:n at t D 0.

Then one shows that:

• This operator has a fixed point when v0 is small enough.
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• This fixed point is regular. Of course we introduce discontinuities in time by
the above process when applying a cutoff function between tC and t� in (3.19).
However, these discontinuities are only with respect to the variable t , and take
place outside of ˝. It follows that inside ˝ , the solution is smooth. . . .

Passage to the global controllability

The natural question now is: what if v1 6D 0 and v0 is not small? The main point is
to use the time-scale invariance of the equation: for � > 0,

v.t; x/ is a solution of the equation defined in Œ0; T 	 �˝
” v�.t; x/ WD �v.�t; x/ is a solution of the equation

defined in Œ0; T=�	 �˝: (3.20)

The pressure associated to v� is

p�.t; x/ D �2p.t; x/ in Œ0; T=�	 �˝:

It is remarkable that the Euler equation has this particular scale invariance, which
concerns the time variable only and not the space one.

Now, the idea is the following:

• Using this scale invariance, we see that bringing v0 to 0 in time T is equivalent
to bringing �v0 to 0 in time T=�.

• We know how to bring any v0 such that kv0k � " to 0 in time T . Hence we know
how to bring any v0 with larger norm in smaller time (take � large). In particular,
we can bring a large initial condition very fast to 0. . . and then stay at 0 till the
planned time of controllability.

• For what concerns v1 6D 0, use the reversibility of the equation, which
corresponds to � D �1 in (3.20). If a solution v.t; x/ goes from v0 to 0 in time
T , then �v.T � t; x/ is again a solution, going this time from 0 to �v0. Hence to
go from v0 to v1, apply the following recipe: bring v0 to 0 in time T=2, and then
0 to v1 in time T=2.

Multiply connected domains

Above we treated the case where˝ is simply connected. But in multiply connected
domains,

curl .v.T // D 0 in ˝;
div .v.T // D 0 in ˝;
v:n D 0 on @˝;

9
=
; 6) v.T / D 0; (3.21)
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Fig. 3.10 Harmonic tangent
field in the annulus

because there is a non-trivial finite-dimensional vector space of harmonic tangent
vector fields (representing the first tangential de Rham cohomology space of the
domain), that is, of solutions of the above system homogeneous div /curl elliptic
system. Precisely, if @˝ has gC 1 connected components (recall that we are still in
dimension 2), then the dimension of this space is g (Fig. 3.10).

Hence applying the strategy above, we can bring the vorticity of the solution to 0,
but not the velocity field. We only know that v.T / is a harmonic tangent vector field.
Hence we have in fact controllability up to a finite dimensional space; but it turns
out that solving this “finite-dimensional” problem has the same level of difficulty
than bringing “the other directions to zero”. (Even, as we will see, in 3D, this part
is by far the most difficult part.)

Now, the space of harmonic tangent field is characterized by the g velocity
circulations around the g inner boundary components (for instance), which we call
�1, . . . , �g . Instead of (3.21), we have then

curl .v.T // D 0 in ˝;
div .v.T // D 0 in ˝;

v:n D 0 on @˝;
s
�i

v.T /:� d� D 0 for i D 1; : : : ; g;

9
>>>>=
>>>>;

) v.T / D 0: (3.22)

Hence our goal is to bring these g velocity circulations to zero. To do so, the idea
consists in making some vorticity pass across the domain (from one component
of R2 n ˝ to another, typically from an inner component to the outer one) as in
Fig. 3.11.

The rough idea is the following. We want to bring the velocity circulation around
some �i to 0. But by Kelvin’s circulation theorem, this circulation is constant, when
the curve follows the flow. If we make some vorticity cross the domain, by Stokes
theorem the difference between the velocity circulation around �i at time 0 (plain
line in Fig. 3.11) and the one at time T (dotted line in Fig. 3.11), will be given by
the total flux of the vorticity across Œ0; T 	��i . Hence by using this principle we can
fix the circulation around �i .
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Fig. 3.11 Modifying the velocity circulation by making vorticity cross the domain

Of course, to do this properly, we have to construct another reference solution
y making points going from an inner component to the outer one, and to construct
the solution close to this new y. This uses the principles showed above, we omit the
details.

3.2.3.4 What About 3D?

Here we only give a few ideas about the 3D case.
There are four main differences for what concerns dimension 3.

1. Construction of y. We have no longer access to the complex variable arguments
to describe the potential flows. We will see however that there are similar tools
that we can use in dimension 3.

2. Transport of the vorticity. In dimension 3, the vorticity is no longer transported
by the flow but is affected by a “stretching” term:

@t! C .v:r!/ D .!:r/v: (3.23)

However using (3.23), one can prove easily that the support of the vorticity is
transported by the velocity flow. This property suffices to our purpose, when
following the ideas above.

3. Blow up. The solution could blow up. Indeed, it is still unknown whether regular
solutions of the 3D Euler equation, which exist locally in time, are global in time
or can blow up in finite time. But mainly, as we follow the lines of the proof
described above, we see that the main part of the work is done with initial states
v0 satisfying kv0k � ". Even if it is not know that the solutions of the 3D Euler
equation remain regular for all time, we know that they have a time of existence
at least of 1=kv0k. Hence we can work with solution which will not be singular
before the final time T .
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After the time-rescaling procedure, this means that we act sufficiently fast to
avoid the blow up, and bring the solution to 0 exactly for some small time.

4. Topology. This is by far the most difficult issue. Of course, the topology of regular
open sets in 3D is different and more complex that in 2D.

Let us say a few words about the new ingredients needed for the 3D case.

Construction of y

We cannot use the complex variable argument here, but in 3-D, there exist Runge-
type theorems of approximations of harmonic functions by harmonic functions
defined on a larger set. For instance, the following result of Walsh can be used (see
e.g. [43, 82]).

Theorem 3.2.10 (Walsh (1929)). Let K a compact set in R
n such that Rn n K is

connected. Then for each function u harmonic in an open set containingK , for each
" > 0, there exists a harmonic polynomial v such that

ku � vk1 � ":

This can replace the use of Runge’s theorem in the above steps. For what
concerns (3.17), we can replace the functions z 7! 1

z�a by the fundamental solution
of the Laplacian in R

3, and one can make the same type of dipolar developments.
The projection of the direction of a � x on T�.t/@˝ will give the direction of the
resulting r� up to small errors. See [44] for more details.

The difficulty coming from the topology

Of course, the topology of smooth bounded open of R
3 is by far more complex

that in the 2D case. Note in particular that in 3D, multiply connected domains can
have a connected boundary, and simply connected domains can have several bound-
ary components. The difficulty concerns as before multiply connected domains
(whether @˝ is connected or not.)

In dimension 3, to get rid of tangential harmonic vector fields, one uses vortex
filaments (or regularization of vortex filaments), that has to cross the domain, as
described in Fig. 3.12.

We recall that given a Jordan curve J , a vortex filament located at J is the
distribution of vorticity given by

! D ˛ıJ .x/�.x/;

where ıJ is the linear measure on J , � the unit tangent on J , and ˛ is a real
parameter. This distribution is naturally divergence-free and is an important object
in three-dimensional fluid mechanics. Of course, to get a smooth solution, one has
to mollify it at some stage.
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Fig. 3.12 Making vortex filaments cross the domain

One can check that the “change of velocity circulation” around the curve
represented in dotted lines in Fig. 3.12, is given by the intensity of the vortex
filament. The main part consists in finding y whose flow makes the vortex filament
cross the domain, using the previous tools. We refer again to [44] for more details.

3.2.4 References

An important majority of the arguments described above come from the seminal
work of Coron [25] (see also [24]). Extensions of this work concerning the
controllability of the Euler equation can be found in [44, 45].

For what concerns the connected problem of asymptotic stabilization by the
boundary control, we refer to Coron [26, 27] and to [46].

A general reference concerning this problem and the use of the return method is
Coron’s book [29].

Let us finally give some other references for what concerns the Navier–Stokes
equations, which is closely related to Euler equation (let us underline that this
bibliography is far from being complete). For Navier–Stokes, due to the regularizing
effect of the equation, one would like to show the controllability to trajectories.
Several results on this direction:

• Fursikov–Imanuvilov [41], Imanuvilov [55], Fernandez-Cara–Guerrero–
Imanuvilov–Puel [40], have obtained results of local controllability to trajec-
tories.

• Coron [28], Coron–Fursikov [30], Chapouly [18]: obtained global approximate
controllability, with Navier boundary conditions. (These results rely on the
controllability of the Euler equation!).

However the global controllability to zero for the Navier–Stokes equation with
Dirichlet boundary conditions leaves us the following problem.

Open problem 3 The problem of global controllability to trajectories of the
Navier–Stokes equations with v D 0 on @˝ n˙ is still open.
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Let us finally give some references concerning the controllability of the Navier–
Stokes equation by means of low modes: Agrachev–Sarychev [1, 2] and Shirikyan
[80]. A related technique was used recently by Nersesian [72] for the compressible
Euler equation.

3.3 Approximate Lagrangian Controllability
of the Euler Equation

In this section, we describe how the techniques developed in Sect. 3.2, can be used
to fulfill other purposes for the fluid, namely, to control the displacement of the fluid
during the time interval Œ0; T 	 rather than its velocity field at final time T .

3.3.1 The Question of Lagrangian Controllability

3.3.1.1 Controlling the Displacement of a Fluid

Again we consider a smooth bounded domain ˝ 
 R
2 (we consider only n D 2

here), and˙ a nonempty open set of @˝ and the control system

8
<
:
@tv C .v:r/v C rp D 0 in Œ0; T 	 �˝;
div v D 0 in Œ0; T 	 �˝;
v:n D 0 on Œ0; T 	 � Œ@˝ n˙	:

(3.24)

As previously the control is the boundary data on˙ , e.g.

�
v.t; x/:n.x/ on Œ0; T 	 �˙;
curl v.t; x/ on˙�

T WD f.t; x/ 2 Œ0; T 	 �˙ = v.t; x/:n.x/ < 0g : (3.25)

But here, we will be interested in another type of controllability, which is natural
for equations from fluid mechanics: is possible to drive a zone of fluid from a given
place to another by using the control? This question is based on a suggestion by
J.-P. Puel. The first study on the subject is due to Horsin [54] where the Burgers
equation is considered. One can think for instance to a polluted zone in the fluid,
which we would like to transfer to a zone where it can be treated (Fig. 3.13).

First definition

Now before giving the precise definition of the problem under view, let us make a
few remarks to motivate it:
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Fig. 3.13 Controlling the displacement of a fluid zone

• First, it is natural, in order to control the fluid zone during the whole displacement
to ask that it remains inside the domain ˝ during the whole time interval. This
is not straightforward, since the condition v:n D 0 is not imposed on the whole
boundary.

• In the sequel, we will consider only fluid zones given by the interior (inside ˝)
of smooth (C1) Jordan curves. This seems a natural class of domains; of course
generalizations could be considered.

• Due to the incompressibility of the fluid, the starting zone and the target zone
must have the same area, if one wants to be able to drive one to another by the
flow of the velocity field.

• We have also to require that there is no topological obstruction to move a zone to
the other one. In other words, one should be able to deform continuously a curve
on the other one. Hence we will suppose that the two curves are homotopic in˝ .

Definition 3.3.1. We will say that the system satisfies the exact Lagrangian
controllability property, if given two smooth Jordan curves �0, �1 in ˝ , homotopic
in ˝ and surrounding the same area, a time T > 0 and an initial datum v0, there
exists a control such that the flow given by the velocity field drives �0 to �1, by
staying inside the domain.

An objection. But one can see that the exact Lagrangian controllability does not hold
in general. As way to see this is the following. Denote˚ v.t; s; x/ the flow associated
to the velocity field v; see (3.13). Now we observe the following.

• Let us suppose that !0 WD curl v0 D 0. In that case if the flow ˚ v.t; 0; x/

maintains �0 inside the domain, then for all t we have that in the neighborhood
of ˚ v.t; 0; �0/.

!.t; �/ D curl v.t; �/ D 0;

since, due to (3.11), the vorticity satisfies !.t; ˚ v.t; 0; x// D !0.x/.
• Since curl v D div v D 0, locally around the points of �0, v is the gradient of a

harmonic function; v is therefore real-analytic in a neighborhood˚ v.t; 0; �0/.
• Hence if �0 is real-analytic, its real-analyticity is propagated over time.
• Now if �1 is smooth but non real-analytic, we see that we cannot drive �0 to �1 by

keeping the curve inside ˝ . Hence the exact Lagrangian controllability cannot
hold.
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Approximate Lagrangian controllability

Since the exact Lagrangian controllability does not hold, this leads us, as for the
controllability in the usual sense, to soften the question and wonder if it is possible,
at least, to drive the initial fluid zone arbitrarily close to the target.

This motivates the following definition.

Definition 3.3.2. We will say that the system satisfies the property of approximate
Lagrangian controllability in Ck , if given two smooth Jordan curves �0, �1 in ˝ ,
homotopic in ˝ and surrounding the same area, a time T > 0, an initial datum v0
and a real number " > 0, we can find a control such that the flow of the velocity field
maintains �0 inside ˝ for all time t 2 Œ0; T 	 and satisfies, up to reparameterization
of the curves:

k˚ v.T; 0; �0/� �1kCk � ":

Here, .t; x/ 7! ˚ v.t; 0; x/ is again the flow of the vector field v. One parameterizes
Jordan curves by the circle S1.

Main result

The main result that we describe in this section is the following. It can be found in
[48].

Theorem 3.3.3 (G.-Horsin). Provided that ˙ 6D ;, the approximate Lagrangian
controllability holds in all Ck .

In other words, consider two smooth Jordan curves �0, �1 in ˝ , homotopic in ˝
and surrounding the same area. Let k 2 N. We consider v0 2 C1.˝IR2/ satisfying

div .v0/ D 0 in ˝ and v0:n D 0 on Œ0; T 	 � .@˝ n˙/:

For any T > 0, " > 0, there exists a solution v of the Euler equation in C1.Œ0; T 	�
˝IR2/ with

v:n D 0 on Œ0; T 	 � .@˝ n˙/ and vjtD0 D v0 in ˝;

and whose flow satisfies

8t 2 Œ0; T 	; ˚ v.t; 0; �0/ 
 ˝;

and up to reparameterization

k�1 �˚ v.T; 0; �0/kCk � ":
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3.3.1.2 A Connected Result: Vortex Patches

We now discuss a closely related problem. Indeed, it turns out that the techniques
used to prove Theorem 3.3.3 can be used to answer the following question: is it
possible to control the shape of vortex patches?

Let us first explain what vortex patches are. The starting point is the following,
see [86].

Theorem 3.3.4 (Yudovich (1963)). For any v0 2C0.˝IR2/ such that div .v0/ D 0

in ˝ , v0:n D 0 on @˝ and curl v0 2 L1, there exists a unique (weak) global
solution of the Euler equation starting from v0 and satisfying v:n D 0 on the
boundary.

A particular case of initial data with vorticity in L1.˝IR/ is the one of vortex
patches.

Definition 3.3.5. A vortex patch is a solution of the Euler equation whose initial
datum is the characteristic function of the interior of a smooth Jordan curve (at least
C1;˛).

An important result in the theory of vortex patches is the following, see [19, 20].

Theorem 3.3.6 ([19]). In R
2, the regularity of the boundary of the vortex patch is

propagated globally in time.

There are many other references on the subject of vortex patches, see also for
instance: Bertozzi–Constantin [10], Danchin [33], Depauw [34], Dutrifoy [38],
Gamblin and Saint-Raymond [42], Serfati [78], Sueur [81],. . .

Hence one can wonder whether it is possible, in the framework of the control
system (3.24)–(3.25), to control the shape of a vortex patch, that is, to control the
evolution of its boundary. Let us underline that this problem is different from the
one considered above, because in the context of vortex patches, the solutions are not
regular, while in Theorem 3.3.3 the solutions are smooth.

A result that one can prove is the following.

Theorem 3.3.7 (G.-Horsin). Consider two smooth Jordan curves �0, �1 in ˝ ,
homotopic in ˝ and surrounding the same area. Suppose also that the control zone
˙ is in the exterior of these curves. Let v0 2 L ip.˝IR2/ with v0:n 2 C1.@˝/ a
vortex patch initial condition corresponding to �0, i.e. such that

curl .v0/ D 1Int.�0/ in ˝; div .v0/ D 0 in ˝; v0:n D 0 on @˝ n˙:

Then for any T > 0, any k 2 N, any " > 0, there exists u 2 L1.Œ0; T 	I L ip.˝//

a solution of the Euler equation such that

curl v D 0 on Œ0; T 	 �˙;
v:n D 0 on Œ0; T 	 � .@˝ n˙/ and vjtD0 D v0 in ˝;
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that ˚ v.T; 0; �0/ does not leave the domain and that, up to reparameterization, one
has

k�1 �˚ v.T; 0; �0/kCk � ":

Note that in the above result, we impose the entering vorticity to be zero. The reason
for this is that we want the vortex patch to stay a vortex patch; hence we do not want
to add vorticity inside the domain.

Remark 3.3.8. Let us focus on the regularity of the velocity field:

• As long as the patch stays regular, one has v.t; �/ 2 L ip.˝/ (see for instance
[20]).

• Without the regularity of the patch, the velocity field v.t; �/ is merely log-
Lipschitz:

jv.t; x/ � v.t; y/j . jx � yj max.1;� log.jx � yj/:

This estimate is a central argument in [85, 86].
Hence we obtain a result on the shape of the patch in Ck, despite the fact that the

velocity field is Lipschitz only. This is connected to the fact that this velocity field
is in fact more regular in several “good directions”, see the references above.

3.3.2 Ideas of Proof

Let us now give a few ideas of the proofs of Theorems 3.3.3 and 3.3.7.

3.3.2.1 The Main Proposition

We exploit the same idea to use potential flows and complex analysis as in Sect. 3.2.
If we follow the ideas of Sect. 3.2, we would like to find a potential flow which
makes the fluid approximately go from one zone to another. In particular, this will
answer to the problem in the particular case where v0 D 0.

Precisely, the core of the proof is to show the following proposition.

Proposition 3.3.9. Consider two smooth Jordan curves �0, �1 in ˝ , homotopic
in ˝ and surrounding the same area. For any k 2 N, " > 0, there exists
� 2 C1

0 .Œ0; 1	IC1.˝IR// such that

�x�.t; �/ D 0 in ˝; for all t 2 Œ0; 1	;
@�

@n
D 0 on Œ0; 1	 � .@˝ n˙/;

whose flow satisfies
8t 2 Œ0; 1	; ˚r� .t; 0; �0/ 
 ˝;
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and, up to reparameterization of the curves,

k�1 �˚r� .1; 0; �0/kCk � ":

In other words, there exists a potential flow driving �0 to �1 (approximately in Ck)
and fulfilling the boundary condition on @˝ n˙ . The time interval here is fixed to
be Œ0; 1	; one can change the parameterization in time to transform it into any Œ0; T 	.

A large part of the proof consists in establishing this proposition. This is proven
in two steps:

• Part 1: Find a solenoidal (divergence-free) vector field driving �0 to �1.
• Part 2: Approximate (at each time) the above vector field on the curve (or to be

more precise, its normal part), by the gradient of a harmonic function defined on
˝ and satisfying the constraint on @˝ n˙ .

3.3.2.2 Part 1: Finding a Solenoidal Vector Field Driving Exactly �0 to �1

In this paragraph, we consider the problem of driving �0 to �1 (exactly), by
a divergence-free vector field. Of course, this constraint on the vector field is
significantly weaker than the constraint to be a potential flow. In return, one
can obtain an exact result. In more precise form, one can prove the following
proposition. We denote by Int.�/ the interior of a Jordan curve � in the sense of
Jordan’s theorem, that is, the (unique) bounded component of R2n� . We also denote
by jAj the Lebesgue measure of a measurable subset A 
 R

2.

Proposition 3.3.10. Consider �0 and �1 two smooth (C1) Jordan curves which are
homotopic in ˝ and satisfy

jInt.�0/j D jInt.�1/j: (3.26)

Then there exists v 2 C1
0 ..0; 1/�˝IR2/ such that

div v D 0 in .0; 1/ �˝;

˚ v.1; 0; �0/ D �1:

Note that, even without the divergence constraint, the result is not trivial (but it is
known for a long time in that case). Indeed, the two Jordan curves being homotopic
means that one can find a continuous function � W Œ0; 1	 � S

1 ! ˝ such that
� .0; �/ D �0 and � .1; �/ D �1. But it does not say that the deformation is regular,
nor the fact that for t 2 .0; 1/, � .t; �/ is still a Jordan curve. . .

Ideas of proof of Proposition 3.3.10

As a matter of fact, the case where Int.�0/ and Int.�1/ do not intersect can be treated
rather simply. An idea in this case would be for instance to draw a “pipe” between
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the two domains, and to “blow” the first domain into the second one, through the
pipe.

But this is less clear if the two domains intersect. In that case, one has in particular
to be sure that the deformation of �0 does not self-intersect. And one should keep in
mind that we have the constraint that the fluid zone under view should stay inside
˝: there could be very few room left inside ˝ (in particular, it may be impossible
to separate the two zones in order to apply the strategy described above) Now we
reason as follows.

1. A way to treat the general case is to get in the opposite case where the two zones
intersect:

Int.�0/ \ Int.�1/ 6D ;: (3.27)

To prove that one can reduce the study to the case described by (3.27), it is
enough to find a solenoidal vector field v driving some point of �0 inside Int.�1/
(while letting some other point outside), and to consider ˚ v.1; 0; �0/ as a new
initial curve. Note that one cannot have �0 
 Int.�1/ due to (3.26).

Constructing such a vector field is not difficult. Indeed, we have much
flexibility to construct a solenoidal vector field: any vector field of the form

v.t; x/ D r? .t; x/ D .�@x2 ; @x1 /; (3.28)

is automatically solenoidal. Hence a possible procedure is the following:

• Draw a smooth curve C in ˝ from some point of �0 to some point inside
Int.�1/.

• Introduce the velocity vector PC on the graph .t;C .t// of the curve.
• Extend this field on Œ0; 1	 � ˝ with the form (3.28); using a cutoff function

(applied to  ) if necessary to ensure that this field is compactly supported
in ˝ .

One can check that this procedure allows to construct v as claimed.
Let us add, that, using a small translation if necessary, we can moreover suppose
that �0 and �1 intersect transversally. Of course, a translation is obtained by the
flow of a solenoidal vector field, and again we can make the corresponding vector
field compactly supported in ˝ . And by a small translation of �0, one can make
the curves transverse (by using the parametric form of Thom’s transversality
Theorem for instance).

2. We are now in the situation described by Fig. 3.14. As a matter fact, things can
be way messier, but let us give the idea of the proof when˝ is simply connected,
so that @˝ is connected and no connected components of @˝ can be enclosed by
�0 and �1. The goal is to deform �0 on �1 in an area-preserving way.

Now to make the construction, as described above, we first define the vector
field on the curve itself as it evolves through time, and then to extend it on
the whole Œ0; T 	�˝ . We work only inside the symmetric difference of the two
interiors (colored on Fig. 3.14) to deform one curve to another (see the arrows in
Fig. 3.14). The goal is, on each component of this symmetric difference, to find
a vector field which drives the segment of �0 to the one of �1. This can be done
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Fig. 3.14 Deforming one curve on another

Fig. 3.15 Construction of a vector field on Sk

inside Int.�0/ (zones on the left and on the right in Fig. 3.14) or inside Int.�1/
(zones on the top and on the bottom in Fig. 3.14). To do so, there are several
steps:

• Denote Sk the components of the symmetric differences. Each Sk is circum-
scribed by a segment of �0 that we denote �k0 and a segment of �1 that we
denote �k1 . We aim at constructing a vector field driving the interval �k0 of �0
on the interval �k1 of �1.

• A way to do this (inspired from [24]) is to consider r� where � is the
harmonic extension of a function g equal to 0 (respectively 1) on the interval
�k0 (resp. on the interval �k1 ) and “regularized near the intersections” �k0 \ �k1 .
The regularization near the intersections consists in introducing near the two
intersection points a small curve joining �k0 and �k1 so that the resulting domain
D is smooth (see Fig. 3.15), and considering g going smoothly from 0 to 1
on these small curves. We extend � in a harmonic way in D, and then the
extension of the vector field to the whole domain Sk can be done by using
local coordinates near the two intersection points (which is made easy due to
the transversality of �0 and �1).

• Next we normalize the vector fields in order that the corresponding flow,
satisfies in each Sk and for all t 2 Œ0; 1	:
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Area.�k0 ; ˚.t; 0; �
k
0 // D t Area.�k0 ; �

k
1 /; (3.29)

where Area.�k0 ; ˚.t; 0; �
k
0 // denote the area enclosed between �k0 and

˚.t; 0; �k0 /.
• Then we have to glue these vector fields defined in each Sk together, in a way

that it is smooth at the points of �0 \ �1. Again, we can use local coordinates
to make an explicit construction here.

• Then, thanks to (3.29), the vector field restricted to f.t; ˚.t; 0; �0//g can be
extended to a global solenoidal vector field.

3.3.2.3 Part 2: Approximating the Flow of the Reference Vector Field
by a Potential Flow

Now that we have a reference vector field driving �0 to �1, we have to explain how
we can approximate its flow on �0 by the action of a potential flow. This is given by
the following proposition.

Proposition 3.3.11. Let �0 a smooth (C1) Jordan curve; let X 2 C0.Œ0; 1	IC1
.˝// a smooth solenoidal vector field, with X:n D 0 on Œ0; 1	 � @˝ . Then for all
k 2 N and " > 0 there exists � 2 C1.Œ0; 1	 �˝IR/ such that

�x�.t; �/ D 0 in ˝; for all t 2 Œ0; 1	;
@�

@n
D 0 on Œ0; 1	 � .@˝ n˙/;

and whose flow satisfies

8t 2 Œ0; 1	; ˚r� .t; 0; �0/ 
 ˝;

and, up to reparameterization,

k˚X.t; 0; �0/ �˚r� .t; 0; �0/kCk � "; 8t 2 Œ0; 1	:

Ideas of proof for Part 2

The proof follows three successive steps of growing generality, namely:

• We first treat the case when all the data, that is, both �0 and X are real-analytic
(in the x-variable for the latter).

• Then we relax the assumption by assuming only X to be real-analytic (while �0
is merely C1).

• And finally we relax the assumption by assuming only C1 smoothness of the
data.

Again, for simplicity, we assume that ˝ is simply connected (but this is not as
crucial as for the controllability in the usual sense.)
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First step: when the data are real-analytic:

�0 2 C!.S1IR2/andX 2 C0.Œ0; 1	IC!.˝//:

Let �.t/ WD ˚X.t; 0; �0/. For any t , this is a real-analytic curve. The main
principle is the following. If we want the action of the potential flow r�
on �0 to generate exactly �.t/ (up to reparameterization), we only have to
mimic the normal part of X on �.t/ (the tangential part is “absorbed by the
reparameterization”.)
Hence it is natural to consider for each time the solution of the following elliptic
problem: 8

ˆ̂̂
<
ˆ̂̂
:

�x .t; �/ D 0 in Int.�.t//;
@ 

@n
.t; �/ D X.t; �/:n.�/ on �.t/;

s
�.t/

 .t; �/ d� D 0:

This is the only harmonic function defined in Int.�.t// which has exactly the
“correct” normal part on �.t/. Unfortunately, this function cannot be extended
as a harmonic function on ˝ in general, nor a fortiori in a way that satisfies
@n D 0 on Œ0; 1	 � .@˝ n˙/.
But here is the place where the real-analyticity plays a crucial role: as �.t/ and
X:n on �.t/ are analytic, we can extend the solution  across the boundary �.t/
(this is a classical Cauchy–Kowalewsky-style result, see for instance [71]).
Moreover, using the continuity in time ofX and � with values inC! (see e.g. [59]
for more details on the topology of C!), we see that the size of the neighborhood
of �.t/ where this solution can be extended can be estimated from below.
Now this vector field is still not globally defined on ˝ , but we can use Runge’s
theorem in a similar way as in Sect. 3.2. Proceeding in the same way, we can
obtain approximations defined on ˝, and which satisfy

r Q .t; �/:n D 0 on @˝ n˙: (3.30)

As previously, (3.30) is not obtained exactly in a first time, but one can remove
the solution of a suitable Neumann problem to get this relation exactly.
Finally, we obtain the function � as:

�.t; x/ D
nX

kD1
�i .t/ Q .ti ; �/;

with �i a certain partition of unity of Œ0; 1	. (We use that Runge’s approximation
obtained at time t , is still an acceptable approximation in some neighborhood
of t , so that by compactness of Œ0; 1	 we can consider only a finite number of
Q .ti ; �/.)
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The rest of the proof consists in explaining why the cost of changing X by r�
is small: this is mainly a Gronwall’s lemma and the use of reparameterization
to compensate the discrepancy of the tangential components of the vector fields.
By this process, by choosing a sufficiently small parameter in Runge’s theorem,
and using the fact that the size of the neighborhood of �.t/ on which  can be
extended is uniform, one can also obtain estimates of kr�kCk on ˚r� .t; 0; �0/
in terms of kr .t/kCk on �.t/ only.

Second step: when only the vector field is real analytic:

X 2 C0.Œ0; 1	IC!.˝// but �0 2 C1.S1IR2/:

The idea is of course to use the previous step. We can approach �0 by real analytic
curves, from the outside. This comes from a general result by H. Whitney [84],
or in a simpler way in our case:
• We consider C0 the complement of Int.�0/ in the Riemann sphere. By

Riemann’s conformal mapping theorem, there exists ' a conformal transfor-
mation from C0 to BC.0; 1/.

• Then, since such a conformal transformation is regular up to the boundary
when �0 is regular (say,C1) (this is Kellogg–Warschawski’s theorem, see e.g.
[74]), the curve '.S.0; 1� �// is an appropriate approximation as � ! 0C.

• Next, we apply the process of Part 1 on the �-approximation ��0 of �0. We
obtain a function �� . Call ��.t/ WD ˚r�� .t; 0; ��0 /.

• The central point is to show that, on ��.t/, we have uniform estimates on r��
as � ! 0C.

• Due to the construction in the Step 1, we have only to prove uniform estimates
on the r �.t/ constructed on ��.t/ as � ! 0C.

• This is obtained by noting that the constants in elliptic estimates in Int.��.t//
are bounded independently from �. Indeed, ��.t/ converges to �.t/ for
the C1 topology. It follows that we have uniform estimates on � inside
Int.��.t//, in all the Ck-norms in terms of X , �0 and k only. In particular,
these estimates do not blow up as � ! 0C.

• We are then able to conclude by Gronwall’s lemma, because ˚r�� .t; 0; �0/ is
precisely included in Int.��.t// since �0 is in the inside of ��0 .

Third step: when both data are merely C1:

�0 2 C1.S1IR2/andX 2 C0.Œ0; 1	IC1.˝//:

Again this is a consequence of the previous step. We use Whitney’s ana-
lytic approximation theorem [83]: X can be approached arbitrarily for the
C0.Œ0; 1	IC1.˝//-topology by Xn 2 C0.Œ0; 1	IC!.˝//.
Hence we construct by the step above potential flows corresponding to Xn.
Then we can prove by using the previous step and Gronwall’s lemma that for
n sufficiently large, we have a good approximation of the flow on �0.
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3.3.2.4 How to Deduce the Results from the Main Proposition

The idea uses here the same argument of time-scale invariance of the Euler
equation.

1. As before, we first consider the case when kv0kCkC1;˛ � 1. In that case,
proceeding as previously, one can construct a solution of the Euler equation,
starting from v0, such that the normal velocity on the boundary is mainly r� (if
fact we have to take v0:n into account), and such that kv.t; �/kCkC1;˛ is of the same
order as v0kCkC1;˛ . To make the construction, one can use an analogous fixed
point scheme as in Sect. 3.2, using an extension operator (but here we do not need
the cutoff functions). Then standard perturbation arguments show that one has

k˚ v.T; 0; �0/ � �1kCk � k˚ v.T; 0; �0/�˚r� .T; 0; �0/kCk
Ck˚r� .T; 0; �0/� �1kCk . kv0kCkC1;˛ C ":

2. Then one uses again the time scale invariance of the equation as follows. We cut
the time interval in two parts: for � > 0 small, there are two phases, namely,
during the time intervals Œ0; T ��	 and ŒT ��; T 	, such as described in Fig. 3.16.
The control is performed as follows:

• In a first time, during the time interval Œ0; T � �	, we “do nothing”, that is
we mainly wait. In fact, we have to take v0:n into account, and to preserve
the regularity of the solution. But we have no other purpose during this time
interval than to wait the second phase and to let the size of the solution v stay
of the same order as v0. This can be done by introducing the same type of
fixed point scheme as previously. We can drive the normal part of the velocity
on ˙ to 0 during this phase.

• At the very end of the time interval, that is, during ŒT � �; T 	, we act fast
and violently to drive Q�0 WD ˚.T � �; 0; �0/ to �1. The control is given by
the normal part of 1

�
r�.t�TC�; �/ for what concerns the normal velocity. The

part of the control concerning the vorticity is used just in order not to ruin the
regularity and that the size of the vorticity stays of the same order as !0.

g̃0 := F(T−ν,0,g0)

Evolution ”without control”

t = 0 t = T−ν t = T

Control given by ∇q
time-scaled, where q is such that

F∇q (1, 0, g̃0) = g1

Fig. 3.16 The two phases of the control
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3. Now let v be the resulting solution in Œ0; T 	 � ˝ . If we change back the time
scale to get back the dynamics of the time interval ŒT � �; T 	 to the time interval
Œ0; 1	, the evolution is driven by the Euler equation, with:

• As boundary condition (on the normal trace) the same as r� .
• As initial condition �u.T � �; �/, which is clearly small as � ! 0C.

Hence as in Sect. 3.2, we are in the same situation as if the initial datum was
small! And we can show that the solution that we constructed on Œ0; T 	 satisfies:

k˚ v.T; 0; �0/� �1kCk . � C ":

This allows to prove Theorem 3.3.3.

The case of vortex patches

Let us now say a few words concerning the proof of Theorem 3.3.7. The construction
is similar, but we can no longer use

k�u.T � �; �/kCkC1;˛ . �;

because v is Lipschitz only! But we use instead arguments due to:

• Depauw [34], which has studied vortex patches in a domain, and showed that the
regularity propagates as in Chemin’s theorem; hence the “first phase” Œ0; T � �	

can be done in the same way.
• Bertozzi–Constantin [10], who tackled the problem of the regularity of vortex

patches by using the integro-differential equation satisfied by their boundary � :

d

dt
�.t; s/ D � 1

2�

2�

s
0

log jx � �.�/j �.�/ d�

C here, terms due to the presence of @˝ and of the control:

Using this approach, we can see that, despite the fact that the flow is merely
Lipschitz, it propagates the regularity of the boundary of the patch. And including
the terms due to the boundary and to the control is not a real issue, since these
terms are regular.

3.3.3 Comments

The main reference concerning this section is [48], where the technical details are
written. This lets several problems open, though.
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What about 3D?

Several problems appear when considering the dimension 3:

• How to deform (in a smooth, volume-preserving way) a domain to another one?
• How to prevent the solution from potentially blowing up?
• The others parts of the proof do not depend on the dimension. . .

Results in that direction are partial:

Proposition 3.3.12 (G.-Horsin, in progress). If B1 and B2 are two smooth open
sets in ˝ , diffeomorphic to a ball, with same volume, at positive distance from
@˝ and disjoint, then one can smoothly deform B1 to B2 inside ˝ in a volume-
preserving manner.

This yields to

Corollary 3.3.13 (G.-Horsin, in progress). Let B1 and B2 as previously, and S1,
S2 their boundary. Let k 2 N. We consider v0 2 C1.˝IR3/ satisfying

div .v0/ D 0 in ˝ and v0:n D 0 on Œ0; T 	 � .@˝ n˙/:

For any " > 0, there exists T > 0 and a solution v of the Euler equation in
C1.Œ0; T 	 �˝IR3/ with

v:n D 0 on Œ0; T 	 � .@˝ n˙/ and vjtD0 D v0 in ˝;

and whose flow satisfies

8t 2 Œ0; T 	; ˚ v.t; 0; B1/ 
 ˝;

and up to reparameterization

kS2 �˚ v.T; 0; S1/kCk � ":

The fact that the result is valid for short control times comes as a way to avoid
blow-up.

Open problems

Other open problems can be raised in this field:

• More complex domains. What can be said if the fluid zone to be displaced is no
longer a Jordan domain, or about more general situations in 3D?

• Numerics. Can we find an efficient algorithm to compute the control?
• Navier–Stokes equations. Can we obtain a similar result for incompressible

Navier–Stokes equations?
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�
@tv C .v:r/v ��v C rp D 0 in Œ0; T 	 �˝;
div v D 0 in Œ0; T 	 �˝:

This question can be raised both in the cases of Dirichlet’s boundary conditions
and with Navier’s (for which one could try to use the techniques of Coron [28]
and Chapouly [18]).

• Stabilization. Can we find a feedback control:

control(t) D f .�.t/; v.t//;

stabilizing a fluid zone at a fixed place?

3.4 Controllability of the 1D Isentropic (Compressible) Euler
Equation

In this last section, we consider a different model, namely the 1D isentropic com-
pressible Euler equation. Despite the fact that this equation, like the incompressible
Euler equation, models an inviscid fluid evolving under the influence of pressure,
the mathematical properties of the two equations are rather different. However, for
what concerns the controllability of this equation, the basic principle of using the
return method is common, even if it takes different forms.

3.4.1 Introduction

The models that we consider here are the following. There are two versions
of the one-dimensional isentropic Euler equations: in Eulerian coordinates or in
Lagrangian coordinates (that is, when following the flow). These equations read:

• In Eulerian coordinates:
(
@t�C @x.m/ D 0;

@t .m/C @x.
m2

�
C ���/ D 0:

(EI)

• In Lagrangian coordinates (the equation is also known as the p-system):

�
@t � � @xv D 0;

@tv C @x.��
�� / D 0:

(P)

Above, the various notations are:

• t 2 R
C is the time, x 2 R is the position.

• � D �.t; x/ � 0 is the density of the fluid.
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• m.t; x/ is the momentum (v.t; x/ D m.t;x/

�.t;x/
is the velocity of the fluid).

• � WD 1=� is the specific volume.
• The pressure law is p.�/ D ��� D ���� , � 2 .1; 3	, � > 0.

As is well-know, these two equations stand respectively for the conservation of mass
and momentum in the fluid.

The controllability problem

What we consider in this chapter is the study of the above equations from the point
of view of controllability. The equation will be posed on a bounded domain of the
real line, say Œ0; 1	; hence .t; x/ belongs to Œ0; T 	 � Œ0; 1	.

The state of the system will be the couple of both unknowns, that is:

Case (EI): u D .�;m/; Case (P): u D .�; v/: (3.31)

The control will be the “boundary data”, which is a very delicate matter for this type
of equations (see for instance [4, 5, 37]). As before, in order to avoid dealing with
this issue, we will not look for the control itself, but rather for the solution itself.
Hence we will not focus on this aspect.

Finally the controllability problem is the following: given u0 D .�0;m0/ (or
u0 D .�0; v0/) and u1 D .�1;m1/ (or u1 D .�1; v1/), can we find a solution of the
system driving u0 at initial time to u1 at time T ? For which T ?

Class of solutions

Both (EI) and (P) are classical examples of hyperbolic systems of conservation laws:

ut C f .u/x D 0;

where u W RC � R ! R
n and f W Rn ! R

n (see the next section for more details
on this class of equations).

Hyperbolic systems of conservation laws are known to develop singularities in
finite time. This is due to the mechanism of formation of shocks, which are easy to
see for instance for what concerns the Burgers equation (for which n D 1):

ut C .u2/x D 0:

One can use the method of characteristics to show that u is constant along
the characteristics associated to u (that is, u.t; ˚u.t; 0; x// D u.0; x/). As a
consequence, these characteristics are straight lines. For many u0, the straight lines
can cross. These leads to shock waves appearing in the solution, such as described
in Fig. 3.17.
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Fig. 3.17 Formation of shock

When considering control problems associated to equations such as (EI) or
(P), a possibility is to consider regular solutions (say C1), whose existence for a
relevant interval of time is ensured by the smallness of the data. See for instance the
references given in Sect. 3.4.4 for such studies.

But from both mathematical and physical viewpoints, one should also consider
the case of discontinuous weak solutions in which shock waves may appear, which
are to be understood in the sense of distributions (his makes sense for u 2 L1
for instance). But a classical issue for what concerns weak solutions containing
discontinuities, is that in general in this context uniqueness is lost. Hence it is
natural to consider weak solutions which satisfy additional requirements, aimed
at selecting among all weak solutions, the physically relevant one. These will be
called entropy conditions. Here we will consider a special class of entropy solutions.
These solutions will be of bounded variation in the variable x uniformly in t , that
is will belong to L1.0; T IBV.R//. Moreover these solutions will be of small total
variation (mainly) and will avoid vacuum; as we will see they are constructed by
a particular technique known as the wave front tracking algorithm. We discuss this
more precisely in the next section.

Let us underline that it is very important to specify which class of solutions are
considered (regular solutions or weak entropy solutions), because the properties
of the equation in the two contexts are really different. For instance, the system is
reversible in the case of C1 solutions, not in the context of weak entropy solutions.
As the reader knows (or guesses), this is not a detail when it comes to controllability
questions.

3.4.2 Basic Facts on Systems of Conservation Laws

In this section, we recall some basic facts about (one-dimensional) systems of
conservation laws and a particular way to construct solutions of these systems
known as the wave front tracking algorithm. The reader familiar with this is
encouraged to skip the section; the one who would like to know more precisely the
theory (and to see the proofs) is referred to Bressan [13], Dafermos [32], Holden
and Risebro [52] or LeFloch [61].



174 O. Glass

3.4.2.1 Systems of Conservations Laws

Equations (EI) and (P) are PDEs of a particular class, known as systems of
conservation laws. Here, we consider only one-dimensional problems, and these
are written as follows

ut C f .u/x D 0; f W ˝ 
 R
n ! R

n; (3.32)

where f is a smooth flux function (let us say, of class C2 to fix the ideas) satisfying
the following strict hyperbolicity condition:

for all u 2 ˝; A.u/ WD df .u/ has n real distinct eigenvalues �1.u/ < � � � < �n.u/:

These scalar functions �1; : : : ; �n W ˝ ! R are the characteristic speeds of the
system. Denote by ri .u/, i D 1 : : : n, some corresponding eigenvectors.

The theory concerning such systems is simplified when the characteristic fields
.�i ; ri / satisfy a condition called the genuine non-linearity the sense of Lax [60]:

r�i :ri 6D 0 for all u in ˝:

When this condition is satisfied—in particular this is the case for what concerns (EI)
and (P)—, we normalize the vector fields ri so that

r�i :ri D 1 in ˝: (3.33)

For what concerns the two systems that we consider above, by standard computa-
tions one can show that (EI) and (P) satisfy the strict hyperbolicity condition (away
from the vacuum � D 0) and that both characteristic fields are genuinely nonlinear.
The characteristic speeds are as follows:

• Case (EI): u D .�;m/ 2 R
C � R:

�1 D m

�
� p

���
��1
2 and �2 D m

�
C p

���
��1
2 ;

• Case (P): u D .�; v/ 2 R
C � R:

�1 D �
p
������1 and �2 D

p
������1:

One can see immediately an important difference between the two cases: for what
concerns (P), the characteristic speeds have a constant sign, while this is not the case
for (EI). This is very important for our problem, since the sign of the characteristic
speed indicates the direction in which the solution propagates; and in particular the
way the boundary control propagates inside the domain.
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Entropy solutions

Now, as we indicated above, we will consider weak solutions which may contain
discontinuities. Since in general uniqueness does not hold in this context, it is natural
to introduce entropy solutions, which are weak solutions which fulfill additional
admissibility conditions, aimed at selecting among the set of weak solutions, the
physically acceptable one. A way to introduce the entropy criterion is the following.

One defines an entropy/entropy flux couple as a couple of functions .�; q/ W ˝ !
R
2 such that

8u 2 ˝; D�.u/:Df .u/ D Dq.u/:

Then one defines an entropy solution: as a (weak) solution of (3.32) such that for
any entropy couple .�; q/ with � convex, one has:

�.u/t C q.u/x � 0; (3.34)

in the sense of measures. Of course, if the solution u is regular, then (3.34) takes
place as an equality, by the chain rule. This is no longer necessarily true for
discontinuous solutions.

A way to justify the conditions (3.34) is the following. One can show that the
solutions obtained by vanishing viscosity, i.e. as limits of solutions of the system
where a small viscosity term has been added:

u"t C .f .u"//x � "u"xx D 0;

are entropy solutions. This explains the physical meaning of entropy solutions: in
some sense, entropy solutions are solutions from which viscosity has disappeared,
except for what concerns the selection of admissible discontinuities. We will see
later another formulation of this selection at the level of a single discontinuity.

A celebrated result concerning hyperbolic systems of conservation laws with
genuinely nonlinear fields is due to Glimm [50]. In this paper is shown the existence
of global in time entropy solutions for such systems with the assumption that the
initial data is of small total variation. The resulting entropy solution is then of small
total variation uniformly in time.

There is now a huge literature on the subject, and it is virtually impossible to refer
to all the works of the field in this course; see for instance the books [13, 32, 52, 61,
79] and references therein. Let us however underline that the situation is now well
understood in the context of solutions with small total variation in the general case
(not limited to the genuine nonlinearity assumption) for what concerns existence as
well as uniqueness, stability issues, etc. See in particular Bianchini–Bressan [11].

Riemann problem

Now let us explain a way to construct solutions of (3.32). We will restrict ourselves
to the case when n D 2 (“2 � 2 systems”) and when both the fields are genuinely
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nonlinear. This is sufficient to treat (EI) and (P). The wave front tracking method
uses as an elementary brick the solutions of the so-called Riemann problem, which
consists in finding self-similar solutions u D u.x=t/ to

�
ut C .f .u//x D 0

ujR� D ul and ujRC D ur ;
(3.35)

where ul and ur are constants of˝ . The fact that, given such initial data, one should
look for self-similar solutions of (3.32) is due to the scale invariance of the equation
under the change of variables .t; x/ 7! .�t; �x/.

Of course, solutions of (3.35) are very particular cases of solutions of (3.32);
however we will see that more general solutions can be constructed by “gluing
together” pieces of solutions obtained as solutions to the Riemann problem.

Now in the particular case under view (the genuine nonlinearity is essential here),
the Riemann problem can be solved by introducing Lax’s wave curves. These are
curves inside ˝ which consist of all points ur 2 ˝ that can be connected to a fixed
ul by particular solutions of (3.35), which are shock waves or rarefaction waves,
which we now describe.

Elementary waves

Let us now describe these elementary waves:

• Shock waves are admissible discontinuous solutions joining ul and ur , as in
Fig. 3.18. More precisely, a shock is a simple discontinuity between the states
ul and ur (on the left and the right, respectively), traveling at speed s satisfying
Rankine–Hugoniot relations:

Œf .u/	 D sŒu	 (jump condition); (3.36)

and Lax’s inequalities:

�i.ur / < s < �i .ul / and �i�1.ul / < s < �iC1.ur /: (3.37)

Lax’s inequalities are associated to each characteristic family (i D 1; : : : ; n), and
each shock satisfies exactly one of them. As a consequence, there is a family of
shocks associated to each characteristic family (i D 1; : : : ; n).
In (3.36), the brackets denote the jump of the quantity across the discontinuity:
Œf .u/	 WD f .ur / � f .ul / and Œu	 WD ur � ul .
The Rankine–Hugoniot relation (3.36) ensures that this is a solution in the
sense of distributions, Lax’s inequalities (3.37) (associated to each characteristic
family) give the entropy criterion.
One can show that, for each i 2 f1; : : : ; ng, there is a curve S�i , passing through
ul and tangent to ri .ul / at ul , corresponding to the points ur that fulfill (3.36).
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Fig. 3.18 A shock wave

Fig. 3.19 A rarefaction wave

Only half of this curve satisfies (3.37). It is elementary to see that, as ur tends to
ul along the i -th shock curve, one has s ! �i .ul /.

• Rarefaction waves are regular (self-similar) solutions joining ul to ur , as
described in Fig. 3.19. They are obtained with the help integral curves of ri as
follows. We introduce the orbits of the vector fields ri

�
d
d�
Ri .�/ D ri .Ri .�//;

Ri .0/ D ul :
(3.38)

Now, for � � 0, if ur D Ri.�; ul /, then one can construct the following function:

u.t; x/ D
8<
:

ul if x
t
< �i .ul /;

Ri .�/.ul / if x
t

D �i .Ri .�/.ul //;
ur if x

t
> �i .ur /:

(3.39)

Using (3.33) one sees that this gives a solution of (3.32).
Again, for each i 2 f1; : : : ; ng, there is a curve, passing through ul and tangent
to ri .ul / at ul , corresponding to the orbit of the vector field ri . But only half of
this curve satisfies that the characteristic speed progresses across the wave (so
that Fig. 3.19 is valid). Due to (3.33), this corresponds indeed to � � 0.

Lax’s wave curves

Now wave curves are constructed as follows. Given ul , we associate:

• The curves of i -shocks (or to be more precise, the half curves of i -shocks), given
by all states ur which can be connected by ul through a shock of the i -th family.

• The curves of i -rarefactions (or again, the half curves of i -rarefactions), given by
all states ur which can be connected by ul through a rarefaction waves of the i -th
family.
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Fig. 3.20 Lax’s curves for (EI) in .�;m/ coordinates

• Lax’s curves, which we will denote by ˚i , obtained by gluing together these two
half curves Si and Ri .

One can show that Lax’s curves are regular, because the i -shock curves and the
i -rarefaction curves have a second-order tangency at ul (with suitable parameteri-
zation). Figure 3.20 gives an example in the case of system (EI). The main point
is that when ur belongs to the i -th curve associated to ul , that is to say, when
ur D ˚i.�; ul /, then there is an elementary wave joining ul on the left to ur on
the right and giving an entropy solution to the Riemann problem.

In Fig. 3.20, we have also represented the critical curves defined as the locus
where one of the characteristic speeds vanishes.

Remark 3.4.1. The curves that we describe above are right shock, rarefaction or
wave curves, because they describe the states that can be connected on the right to
some fixed left state ul . We could define in the same way left shock, rarefaction or
wave curves describing the states that can be connected on the left to some fixed
right state ur .

These curves allow to solve the Riemann problem (at least, when ul and ur
are sufficiently close one to another, which is sufficient to our purpose, since
we will consider small BV solutions). Indeed, Lax [60] proved that one can
solve (at least locally) the Riemann problem by first following the 1-curve then
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Fig. 3.21 Resolution of the Riemann problem

the 2-curve. In other words, one can connect any ur sufficiently close to ul by,
first, a shock/rarefaction of the first family and, then, a shock/rarefaction of the
second family, as in Fig. 3.21. Another way to express this result is to see that
.�1; &2/ 7! ˚2.�2; ˚1.�1; ul // is locally onto near .0; 0/; this is a consequence
of the inverse mapping theorem. Moreover one can estimate .�1; �2/ in terms of
˚2.�2; ˚1.�1; ul // � ul and vice versa, with constants independent of ul , that is :

c.j�1j C j�2j/ � j˚2.�2; ˚1.�1; ul //� ul j � .j�1j C j�2j/: (3.40)

Riemann invariants

Let us finally introduce the Riemann invariants. We will say that wi W ˝ ! R is a
i -Riemann invariant when we have

ri :rwi D 0 in ˝: (3.41)

It is elementary to determine for (EI) and (P) new coordinates given by a 1-Riemann
invariant and a 2-Riemann invariant:

• Case (EI):

w1.u/ D m

�
C 2

p
��

� � 1
�
��1
2 and w2.u/ D m

�
� 2

p
��

� � 1 �
��1
2 ;

• Case (P):

w1.u/ D v C 2
p
��

� � 1 �
� ��1

2 and w2.u/ D v � 2
p
��

� � 1 �
� ��1

2 :
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Fig. 3.22 Lax’s curves in
.w1;w2/ coordinates

It is particularly interesting to parameterize the wave curves by these Riemann
invariants, because in these coordinates, naturally, rarefaction curves become half
straight lines, see Fig. 3.22.

Front-tracking algorithm

Now let us discuss a particular way to construct entropy solutions to systems of
conservation laws, known as the wave-front tracking algorithm. This algorithm was
introduced by Dafermos [31] in the scalar case (n D 1), and extended by Di Perna
[36] for 2 � 2 systems, and then extended by Bressan [12], Risebro [75], Ancona–
Marson [9], G.-LeFloch [49], etc.

Let us underline that there are other ways to construct entropy solutions of
systems of conservation laws, such as Glimm’s random choice method [50], the
vanishing viscosity approach [11], etc.

The basic principle is as follows:

– Construct a suitable sequence of piecewise constant functions over a polygonal
subdivision of RC � R. These approximations are called front-tracking approxi-
mations.

– Prove estimates in L1
t .BVx/ for the approximations.

– Extract by compactness a converging subsequence. Then prove that the limit is
an entropy solution.

To fulfill this purpose, an algorithm is the following (we more or less follow Di
Perna [36], who considers 2 � 2 genuinely nonlinear systems):

• Let � > 0 (which will go to 0C).
• Approximate the initial condition on R by piecewise constant functions: u�0 ! u0

in L1loc as � ! 0C.
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Fig. 3.23 A front-tracking algorithm, phase 1

• At each discontinuity of u�0 , let us say x0:

– Solve the corresponding Riemann problem (where the discontinuity is placed
at x0 rather than 0).

– Replace rarefaction waves by rarefaction fans. These are piecewise constant
functions according to the variable x�x0

t
, approximating the solution given

by (3.39) (recentered to .t0; x0/ instead of .0; 0/). To be more precise, let us
consider as in Fig. 3.23 a rarefaction wave at x D 0, separating um and ur ,
let us say ur D Ri.�; um/, � > 0. Then introduce states u1 WD um, u2, . . . ,
uk D ur in a way that ujC1 D Ri.sj ; uj / with 0 < sj � � (and let us say,
all sj but sk�1 are equal to �). Then the rarefaction fan is given by (for .t; x/
close to .0; x0/):

u�.t; x/ D
8
<
:

um if x�x0
t
< �i.um/;

ujC1 if �i .uj / � x�x0
t
< �i .ujC1/; for j � k � 1;

ur if x�x0
t

� �i.ur /:
(3.42)

At this stage, we can hence construct front-tracking approximations for small
times, by extending the discontinuities along straight lines, see Fig. 3.23. We have
to explain how to extend them for all t � 0, precisely, to explain how we define the
approximation after two such discontinuities meet. All discontinuities (representing
a shock or approximating a rarefaction) are called fronts. We call an interaction
point a point where to fronts meet.

• To extend the approximation across an interaction point, iterate the procedure
without splitting again rarefactions (this is specific to 2 � 2 system). In other
words, when two fronts meet, we solve the Riemann problem between the
leftmost and the rightmost states, and for what concerns the rarefaction waves,
we cut them into pieces as previously if there was no rarefaction front of the
same family among the incoming fronts, or we approximate it by a single front
otherwise. See Fig. 3.24.

One can show than this algorithm defines a piecewise constant function for all
t � 0, with a finite number of fronts and discrete interaction points. (As matter of
fact, to prove this, one uses estimates that are described below.)
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x

t

Fig. 3.24 A front-tracking algorithm, phase 2

Estimates for front tracking approximations

Now to complete the program, one has to prove estimates on front-tracking
approximations, in order to get compactness and to be able to pass to the limit.
(Actually, one already needs estimates to prove the above claim of well-defined
approximations.)

A central argument is due to Glimm [50], and allows to obtain a bound on the
total variation of the approximations, uniformly in time.

Consider the approximation u� obtained by the above process, defined on R
C�R.

First, it is easy to see that the total variation of u� does not change except at
interaction times. Hence one has only to analyze what happens at the interaction
points. To that purpose, a first step is to decide a way to measure the size of a front
in a front-tracking approximation. We will call �i the strength of a front, the real
number such that ur D ˚i.�i ; ul / (so that �i > 0 for rarefactions, �i < 0 for
shocks). The value j�i j measures the size of the discontinuity (remember (3.40));
the sign of �i encodes the nature of the wave.

Now, at an interaction point where a i -wave meets a j -wave, one proves that,
whether i D j or i 6D j , one has the following relations between the strengths of
the incoming waves, and the strengths of the outgoing ones (Fig. 3.25):

� 00
i D �i C � 0

i C O.1/j�i� 0
j j: (3.43)

Estimates (3.43) are known as Glimm’s interaction estimates.
In other words, what (3.43) proves is that:

• If i 6D j , the strength of the i - and j -outgoing waves are almost the same as the
i - and j -incoming ones, up to a quadratic error.
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Fig. 3.25 Analysis of an interaction

• If i D j , the strength of the outgoing wave of family i D j is almost the sum of
the strengths of the incoming waves (up to a quadratic error), and the strength of
the outgoing wave in the other family is of quadratic order.

Now consider the functionals

V.�/ D
X

˛ front at time t

j�˛j I Q.�/ D
X
˛;ˇ

approaching fronts

j�˛j:j�ˇj;

By approaching fronts, we mean fronts of different families where the leftmost front
is of a faster family (that is, having a higher index), or fronts of the same family
(provided that one of the two at least is a shock).

An important feature of the functional V is that, due to (3.40), there exists
C1; C2 > 0 such that on a front-tracking approximation u� , one has

C1T V.u
�.�// � V.�/ � C2T V.u

�.�//:

Using the above interaction estimates, we see that, at an interaction time,

X
˛ outgoing fronts

after interaction at time t

j�˛j �
X

˛ incoming fronts
interacting at time t

j�˛j C O.1/ŒQ.t�/ �Q.tC/	:

It follows that for some C > 0, if T V.u0/ is small enough, then the functional,

V.t/C CQ.t/;

known as Glimm’s functional, is non-increasing over time.
From this we obtain a bound inL1.BV / of the sequence. Now one uses the finite

speed of propagation: the slope of the fronts is bounded. This gives a L ip.L1loc/

bound.

Passage to the limit

Hence, with the help of these two bounds and of Helly’s theorem, one obtains the
compactness of the front-tracking sequence in L1loc .
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Finally, one proves that a limit point of this sequence is indeed an entropy
solution. To do so, given an entropy couple .�; q/with � convex, we have to estimate

T

s
0

s
R

'.t; x/.�.u�/t C q.u�/x/; (3.44)

for ' 2 C1
c ..0; T / � R/ with ' � 0. We only need to see the contributions of the

fronts in the integral (3.44). More precisely, by Stokes’ theorem, one can transform
this integral into:

T

s
0

X
˛ front at time t

'.t; ˛.t//
n

P̨ .t/	�.u�.˛.t/C// � �.u�.˛.t/�//


� 	
q.u�.˛.t/C//� q.u�.˛.t/�//


o
dt;

where ˛.t/ denotes the position of the front ˛ at time t , and P̨ .t/ is speed. Then the
analysis is as follows:

• Shock fronts give a negative contribution (this comes from the admissibility of
shocks—they satisfy the entropy inequality).

• Rarefaction fronts are not exact entropy solutions. Hence each rarefaction front
gives a contribution to (3.44). One can see that this contribution is of order O.�2/;
this is due to the fact that they are of strength at most �, and travel to the correct
velocity up to an error of size �. Since using the bound on the total variation, the
total strength of rarefaction fronts is at most O.1/T V.u0/, the total contribution
of rarefaction fronts in (3.44) is at most O.1/T V.u0/�. . .

That the equation is satisfied in the sense of distributions corresponds to the
particular case .�.u/; q.u// D .u; f .u//. This completes our description of the
existence theory by the front-tracking algorithm.

A remark

For the isentropic Euler system (in Eulerian or Lagrangian coordinates), existence
theory of entropy solutions has been shown for much more general solutions
[68, 69]:

Theorem 3.4.2 (Lions, Perthame, Souganidis, Tadmor). Let .�0; v0/ 2 L1.R/,
�0 � 0. Then for all � > 1, there exists a global entropy solution of (EI) with initial
data .�0; v0/.
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3.4.3 The Controllability Problem

The problem

Let us now be more precise on the controllability problem that we consider. As
explained above, we will not focus on finding the control on the boundary, but rather
the solution itself; this allows to avoid the difficulties of the initial-boundary value
problem. Next, in order to be able to use the front-tracking method, we will consider
states with small total variation.

Hence the problem becomes the following: given u0 an initial state (remember
that the state is given by (3.31)) and u1 a target, both supposed to have a small total
variation, is it possible to find an entropy solution u, defined on Œ0; T 	 � Œ0; 1	 and
driving u0 to u1, for some time T > 0? Note that one does not necessarily expect
the controllability here to hold for any time T > 0. This is mainly a consequence of
the finite speed of propagation of the equation.

But as we will see, the main problem here is the final state u1. This is due to the
fact that a nonlinear effect of genuinely nonlinear systems, known as the decay of
positive waves (see [13]), probably prevents all u1 to be reachable. On another side,
describing exactly the set of u1 that can be attained starting from u0 seems out of
reach for the moment. What we can prove is that, under sufficient conditions, u1 can
be reached (for some time T ) starting from u0.

Results

Precisely, here is what one can prove, see [47]. We begin with the Eulerian case.

Theorem 3.4.3 (G.). There exists c > 0 depending on � such that the following
holds. Consider u0 and u1 two states in R

C��R. Set �1 WD �1.u1/ and �2 WD �2.u1/.
There exist "1 D "1.u0/ > 0, "2 D "2.u1/ > 0, and T D T .u0; u1/ > 0, such that,
for any u0; u1 2 BV.Œ0; 1	/ satisfying:

ku0 � u0k � "1 and T V.u0/ � "1;

ku1 � u1k � "2 and T V.u1/ � "2;

and 8x; y 2 Œ0; 1	 such that x < y,

8̂
<̂
ˆ̂:

w2.u1.x// � w2.u1.y//

x � y � cmax
��2 � �1
1 � y ;

�1

x
;

��1
1 � y

�
;

w1.u1.x// � w1.u1.y//

x � y � cmax
��2 � �1

x
;

��2
1 � y

;
�2

x

�
;

(3.45)

there is an entropy solution u of (EI) in Œ0; T 	 � Œ0; 1	 such that
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ujtD0 D u0 and ujtDT D u1:

The statement concerning the Lagrangian system is the following.

Theorem 3.4.4 (G.). Consider u0 and u1 two states in R
C� � R. There exists c D

c.�; u1/ > 0 such that the following holds. Set �1 WD �1.u1/ and �2 WD �1.u2/.
There exist "1 D "1.u0/ > 0, "2 D "2.u1/ > 0, and T D T .u0; u1/ > 0, such that,
for any u0; u1 2 BV.Œ0; 1	/ satisfying:

ku0 � u0k � "1 and T V.u0/ � "1;

ku1 � u1k � "2 and T V.u1/ � "2;

and 8x; y 2 Œ0; 1	 such that x < y,

8
ˆ̂<
ˆ̂:

w2.u1.x// � w2.u1.y//

x � y � c
�2 � �1

1 � y ;

w1.u1.x// � w1.u1.y//

x � y � c
�2 � �1

x
;

(3.46)

there is an entropy solution u of (P) in Œ0; T 	 � Œ0; 1	 such that

ujtD0 D u0 and ujtDT D u1:

In other words, for both systems, we consider u0 and u1 that have small total vari-
ation, more precisely which are close in the sense of the BV norm to two constant
states u0 and u1. Provided that u1 satisfy these “semi-Lipschitz” inequalities (3.45)
or (3.46) (written in the coordinates given by the Riemann invariants), where the
constant depends on u1 and can degenerate on the boundary, then one can drive u0
to u1.

The semi-Lipschitz inequalities

Let us comment a little bit these semi-Lipschitz inequalities that we require on
the final state. These are close to Oleinik’s inequality, which is valid for entropy
solutions of uniformly convex scalar conservation laws. This inequality states that
if f W R ! R is such that f 00 � c > 0, then the entropy solutions of

ut C .f .u//x D 0;

satisfy

8t > 0; 8x < y; u.t; y/� u.t; x/

y � x
� 1

ct
:
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rarefaction wave

shock

shock

Fig. 3.26 A trajectory
violating (3.45) or (3.46)

(See for instance [32]). The Oleinik inequality describes the spreading of rarefaction
waves: shock waves yield a negative left hand side, while rarefaction waves given
by formula (3.39) naturally spread and satisfy an inequality of this type.

Now, for what concerns the trajectories of systems (EI) or (P), the Oleinik-type
conditions on the Riemann invariants are not satisfied in general. (See however
Bressan–Colombo [15].)

In particular, it is not difficult to construct solutions of (EI) or (P) which violate
this condition: the meeting of two shocks of the same family can generate a
rarefaction wave in the other family, in contradiction with these inequalities, if the
time T considered is very close after the interaction time, as in Fig. 3.26. But as we
explained earlier, these are sufficient conditions for the final state to be reachable.

3.4.4 Some References

Before giving ideas of the proof, let us give several references concerning the control
of systems of conservation laws.

Classical solutions

As we explained earlier, the theory for the control of systems of conservation laws
highly depends on whether you consider classical solutions (let us say, of class C1),
or entropy solutions (with discontinuities). Concerning the former, a very important
result is the following [63].

Theorem 3.4.5 (Li–Rao (2003)). Consider

@tu C A.u/ux D F.u/;
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such that A.u/ has n distinct real eigenvalues �1.u/ < � � � < �k.u/ � �c < 0 and
0 � c < �kC1.u/ < � � � < �n.u/ and F.0/ D 0. Then there exists " > 0 such
that for all �; 2 C1.Œ0; 1	/ such that k�kC1 C k kC1 < ", there exists a solution
u 2 C1.Œ0; T 	 � Œ0; 1	/ such that

ujtD0 D �; and ujtDT D  :

Note that in this context of classical solutions, Theorem 3.4.5 is an extremely
general result. Not only this theorem considers general systems (not limited to
n D 2 or to genuinely nonlinear fields), but it even considers the case where A
is not the jacobian of some f (non-conservative systems) and a right-hand side
(balance laws). Nothing so general is known in the context of entropy solutions.
Note however that the condition of strict separation of the characteristic speeds from
0 is not required in Theorems 3.4.3 and 3.4.4.

Since the above result, many other developments and generalizations have
appeared. For this, we refer in particular the recent book by Li Ta-Tsien [64] and
references therein.

Entropy solutions

In this context, one does not expect to have a result with such a wide range as
Theorem 3.4.5. In fact, new phenomena appear, proving that such a general result is
not true in general. Let us list several results in the field:

• Ancona and Marson [7]: For the scalar equation ut C .f .u//x D 0 with f 00 �
c > 0, they give a complete description of the attainable set starting from 0.

• Horsin [53] has studied the controllability problem for the Burgers equation ut C
.u2=2/x D 0 with general u0 2 BV using Coron’s return method.

• Bressan and Coclite [14]: For systems with genuinely nonlinear fields and
satisfying �1.�/ < � � � < �k.�/ � �c < 0 and 0 < c � �kC1.�/ < � � � < �n.�/, for
any constant state !, one can find u such that

u.t; �/ ! ! as t ! C1:

• Ancona and Coclite [6]: Temple systems satisfying �1.u/ < � � � < �k.u/ �
�c<0 and 0 < c � �kC1.u/ < � � � < �n.u/, are controllable in L1 provided the
final state satisfies the Oleinik-type condition.

• Bressan and Coclite [14]: For a class of systems containing Di Perna’s system
[35]: (

@t�C @x.�u/ D 0;

@tu C @x

�
u2

2
C K2

��1 �
��1
�

D 0;
(3.47)

there are initial conditions ' 2 BV.Œ0; 1	/ of arbitrary small total variation such
that any entropy solution u remaining of small total variation satisfies:

for any t; u.t; �/ is not constant.
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This is particularly striking, when comparing to Theorem 3.4.5: in the C1

framework, any small C1 data can be driven to a constant in finite time.
• Ancona–Marson [8]: In this paper, they consider the asymptotic stabilization by

controlling one side only.
• Perrollaz [73]: In this paper, the author considers the controllability of scalar

conservation laws with an additional control on the left hand side:

ut C f .u/x D v.t/;

and proves that this control can help in a very important way. This follows a study
by Chapouly [17] in the C1 framework.

3.4.5 Sketch of Proof

The proof relies again on the return method: the idea is to connect u0 and u1 via a
solution which goes far away from u0 and u1. It is worth noticing that we will not
use a linearization technique here; this is due to the low level of regularity.

The proof also uses a central difference between Euler system and DiPerna’s
one (3.47): for the Euler system, the interaction of two shocks of the same family
generate a rarefaction wave in the other family. For DiPerna’s system, it generates
a shock. And this is central in Bressan and Coclite’s negative result cited above.

The proof is split in three steps:

• Drive u0 to a constant state.
• Drive the previous state to any constant state.
• Drive a constant state to u1 or, in other words, find a solution from some constant

state to u1.

In the sequel, the argument is performed at the level of front-tracking approxima-
tions, which we almost consider as genuine solutions.

3.4.5.1 Driving u0 to a Constant State

A first idea

In the Eulerian case, an idea is the following: to make a (very) strong 2-shock enter
the domain through the left side.

More precisely, one considers a state Ul such that the Riemann problem .Ul ; u0/
is solved by a 2-shock. One computes easily that the set of Ul D .�l ;ml/ that can
be connected from the left to u0 by a 2-shock can be parameterized by �l as follows:

Œ�0;C1/ 3 �l 7! .�l ;ml/ with
ml

�l
D m0

�0
C
s
�
1

�l�0

�
�

l � �0�
�l � �0 .�l � �0/: (3.48)
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The corresponding shock speed is given by:

s D m0

�0
C
s
�
�l

�0

�
�

l � �0�
�l � �0 ; (3.49)

and the 1-characteristic speed on the left (that is, at Ul ) is:

�1.�l ;ml/ D m0

�0
C
s
�
�l

�0

�
�

l � �0�
�l � �0 .1 � �0

�l
/� p

���
��1
2

l : (3.50)

It follows that one can choose Ul so that:

s � 2 and �1.Ul/ � 2:

Now, one constructs a solution on the whole real line R with initial condition:

8
<
:
Ul on .�1; 0/;

u0 on Œ0; 1	;
u0 on .1;C1/:

(3.51)

Several authors (Alber [3], Schochet [77], Corli and Sablé-Tougeron [22], Chern
[21], Lewicka–Trivisa [62], Bressan–Colombo [16],. . . ) have studied the existence
of BV solutions in the neighborhood of a strong shock, under Majda’s stability
condition [70]:

i. s is not an eigenvalue of A.u˙/;
ii. frj .uC/ = �j .uC/ > sg [ fuC � u�g [ frj .u�/ = �j .u�/ < sg

is a basis of R2;

which is satisfied for any shock here. According to these studies, one can construct
a global in time solution on R associated to the initial condition (3.51). As we will
see, restricting this solution to Œ0; T 	 � Œ0; 1	 will give a solution steering u0 to a
constant state (in the Eulerian case).

Let us give more details about the way to construct a solution “near a strong
shock”. Schochet proved in this context that the Riemann problem is solvable in a
neighborhood of the strong shock and gave interaction estimates on the interactions
� C � ! � 0 C � 0, where � represented the large shock. That is, the interaction
of the large shock with a small wave yields again a large shock (whose strength
has been a little bit modified, but which stays strong) plus small waves. Moreover
we have estimates on the strengths of the outgoing waves in terms of the incoming
ones, replacing (3.43) which is valid for the interaction of small waves. Let us say
the strong shock is of the family j and interacts with a small wave of the family k,
then we have:

� 0
i D O.1/j�kj for i 6D j and � 0

j D �j C O.1/j�kj: (3.52)
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Fig. 3.27 The use of a (very) strong shock

As opposed to Glimm’s estimates (3.43), estimates (3.52) are linear with respect to
the strength of incoming small waves; but this is compensated by the fact that there
is only one strong shock in our solution. Using this tool, one can construct a global
solution with the initial condition described above (because a standard wave crosses
the strong shock at most once).

Now on the left of the 2-strong shock, all characteristic speeds (whether of the
first or the second family) are positive and bounded away from 0, hence fronts leave
the domain, see Fig. 3.27.

Remark 3.4.6. In this context of the perturbation of a large shock, we call the shock
with large amplitude a strong (or large) shock. By contrast, we call the other waves
weak.

Drawbacks of the previous construction:

– A first problem is that even for a small perturbation of a constant, the solution
constructed above is huge. One would like a control reasonably small when the
perturbation is small.

– The previous strategy fails in the case of the p-system, for which �1 is always
negative. One could have the impression that in a first time, the strong 2-
shock “filters” the 2-waves from the initial datum, so that even in this case the
above strategy allows to reach a constant state. But it should be noted that the
interactions of 1-fronts do generate new 2-waves, see Fig. 3.28. . .

A better strategy

This leads us to invent another strategy. The starting point is the following. If
above the 2-strong shock and within the first characteristic family, there were only
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1 rarefaction
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Fig. 3.28 A strong shock in the Lagrangian case

2 strong shock

1 rarefaction

2 shock

Fig. 3.29 Situation with only 1-rarefaction waves above the 2-strong shock

1-rarefaction waves, then the problem would be solved, because there would
be no interaction above the strong shock. Let us explain why. The situation is
described in Fig. 3.29. Rarefaction fronts of the first family above the strong shock
will not interact, since their behavior consists in going away one from another
(this is due to genuine nonlinearity). But since the 2-waves have been absorbed
by the strong 2-shock, there are no interaction at all above the 2-strong shock.
Hence fronts travel without crossing above the 2-strong shock, and eventually
leave the domain provided that the 2-strong shock has been chosen in a way that
avoids null characteristic speeds on its left. This is made possible by the above
formulas concerning the strong shock, for both the Eulerian and the Lagrangian
system.

Consequently, one would like to understand how to prevent 1-shock waves to
emerge from the 2-strong shock. There are two situations that can make a 1-shock
enter the domain above the 2-strong shock:

• The meeting of the strong shock with a 1-shock.
• The meeting of the strong shock with a 2-rarefaction front.

See Fig. 3.30.
The main idea is the following. One can prove that it is possible to construct

additional small 2-shocks that—provided that they arrive from the left at the right
interaction time with the right intensity—kill the outgoing shock in the manner
described in Fig. 3.31. This is possible thanks to the fact that normally, the
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Fig. 3.30 The two situations generating a 1-shock above the strong shock
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Fig. 3.31 Additional 2-shocks killing the emerging 1-shock wave

interaction of two shocks of the same family generate a rarefaction in the other
family. Hence we use a cancellation effect. Indeed the interaction of the large shock
with the incoming 1-shock or 2-rarefaction wave normally generates a 1-rarefaction
wave, while the interaction of the large shock with the additional 2-shock normally
generates a 1-shock. This is where we use the central difference with respect to
DiPerna’s model.

Together with this construction, we have an estimate on the size of these 2-shocks
in terms of the incoming 1-shock or 2-rarefaction (as long as the strong shock is
strong. . . ). The proof of the existence of these two shocks and the corresponding
estimates is obtained by the inverse mapping theorem and a precised version of
(3.52).

An important problem remains: how to construct an approximation in which
these 2-shocks come at the right time and with the right strength?

The construction

The idea in order to construct such an approximation is the following. First we
construct the solution under the strong 2-shock, taking the additional 2-shocks
described above in to account, as in Fig. 3.32. In other words, we imagine that we
have succeeded to send our additional 2-shocks exactly as we wish. Then taking this
information into account (the additional 2-shocks influence the strong one), we can
construct the front-tracking approximation under the strong 2-shock.

In a second time, we construct the approximations beyond the strong 2-shock. To
that purpose, we have to extend:

• The 1-rarefaction waves forward in time.
• The 2-shocks backward in time.
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Fig. 3.32 First part of the construction
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Fig. 3.33 Second part of the
construction

We construct this approximation by using 1�x as the time variable. This is classical
for what concerns C1 solutions. But this raises more difficulties when it comes
to entropy weak solutions. Indeed, the direction of time is very important in the
selection of admissible discontinuities. Now, once we consider 1 � x as the time
(that is, after “rotating” the figure), we are led to an initial-boundary value problem,
with a moving boundary (the strong 2-shock constructed in the previous step), see
Fig. 3.33. We have to describe how we complete the approximation.

The idea is to extend the front-tracking approximation by expanding the fronts
emerging from the moving left boundary, that is, from the strong 2-shock; see
Fig. 3.33. These fronts are either 1-rarefaction fronts of 2-shocks. Then we have
to solve the “interactions” that we meet in this situation. Let us see how we can
“treat” these interactions. There are two possible types of interactions. Either the
two incoming fronts are of the same family, or they are of opposite family.

But there are no interactions of fronts of the same family because:

• Rarefaction fronts go forward in time, and hence do not meet because of the
genuine nonlinearity (they spread).
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Fig. 3.35 The approximation

• Shocks go backward in time, and hence do not meet thanks to Lax’s inequalities
(in the usual direction of time they tend to run one into another).

And this is fortunate, because it is not clear how we could have solved these
interactions in a way that would result in an entropy solution in the limit.

For what concerns interactions of front of opposite families, it is not difficult to
see that this can be solved as in Lax’s Theorem. In other words, one can extend
the approximation above the interaction of a 2-shock going backward in time and a
1-rarefaction front going forward in time, as fronts of the same nature, see Fig. 3.34.
In the same way, we can obtain Glimm-type estimates (the strength of the waves is
conserved across the interaction up to a quadratic error).

Finally we get an approximation as described in Fig. 3.35.

After this construction, it remains then to proveL1
t .BVx/ estimates by adapting

Glimm’s functionals to the situation, and then to use arguments comparable to the
ones used for the Cauchy problem. The main idea for this is to consider functionals
measuring the strength of the waves along curves which are not time slices. One
can compare the total strength of the waves “under the strong shock” with their
initial total strength, and then compare the total strength above the strong shock to
the total strength under it. Using the above interaction estimates allows to bound the
total variation of the solution uniformly in time.
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constant states inside a zone

3.4.5.2 Travelling Between Constant States

This step is actually very elementary. There are three different zones in the case of
(EI):

D1 WD fu ; 0 < �1 < �2g;
D2 WD fu ; �1 < 0 < �2g;
D3 WD fu ; �1 < �2 < 0g:

In the case of equation (P), the situation is even simpler since there is only one zone,
that is D2.

Now, inside each zone, one can move along (right or left) wave curves, using
simple waves, such as described in Fig. 3.36. This corresponds to simple waves
(shock or rarefaction), that we make cross the domain one after another, from the
left or from the right, according to the sign of the speed of the wave. This works
inside each Di , because inside each zone the zero characteristic speed is not met.

In the case of equation (EI), it remains to explain how to move from a zone
to another. A way to do this is to use strong shocks as in Fig. 3.37. Recall also
formulas (3.48)–(3.50) in the first approach to treat the initial condition.

3.4.5.3 Driving a Constant State to u1

Let us finally explain how one can reach u1 from some constant state.
The construction consists in starting from u1 and to build approximation of a

solution by a backward in time front-tracking algorithm. For the usual front-tracking
algorithm, the standard elementary brick is the Riemann problem. But the equivalent
in the backward setting (in a way that will yield an entropy solution in the usual
sense of time) is not clear.
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Fig. 3.38 A case with non existence for the backward Riemann problem
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Fig. 3.39 Construction of two solutions of the backward Riemann problem

A backward Riemann problem?

The Riemann problem for negative times is ill-posed. There are two reasons for that.
First, existence is not granted in general: typically, a rarefaction wave as in Fig. 3.38
cannot be extended backward in a way that respects entropy criterions.

But even when one has existence, in general one does not have uniqueness.
A simple example using wave curves is presented in Figs. 3.39 and 3.40.

The difficulty with the well-posedness of the backward Riemann problem is the
raison d’être of the semi-Lipschitz inequalities (3.45)–(3.46).
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Fig. 3.41 Additional strong shocks

The construction

Let us now describe the construction. A first idea is again to construct a solution
which includes strong shocks (backward in time), see Fig. 3.41. The fact that
we can use one or two strong shocks depends on the sign of the characteristic
speeds in the case (EI) (and this explains the complex form of the semi-Lipschitz
inequalities (3.45) in this case by the way).

The presence of these strong shocks will help for both the question of non-
existence for the backward Riemann problem (together of course with (3.45) and
(3.46)) and for the following important issue. Another problem can indeed be posed
by characteristic speeds which can be close to 0. Let us recall indeed that we have
no assumption of separation of the characteristic speeds from 0 in Theorem 3.4.3.
Of course, fronts having a velocity close to zero do not leave the domain; hence they
make it impossible to reach a constant state. But we can manage to have non-zero
characteristic speeds “under the strong shocks” constructed above, which excludes
this difficulty.

Now, let us begin the construction of the backward front-tracking algorithm:

1. Final state approximation. Using the assumptions on u1, we find particular
piecewise constant approximations of u1. These approximations are selected
in order that at each discontinuity point, we can “approximately” solve the
backward Riemann problem as in Fig. 3.42 using:

• Either “shock fans”, that is a succession of small shocks focusing at the same
point.
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Fig. 3.42 Approximation of the final state

• Either single rarefaction fronts with small amplitude, with this additional
constraint that the distance between two successive rarefaction fronts of the
same family is estimated from below.

• Either the (strong) shocks from the boundary.

That this is actually possible is a consequence of (3.45) and (3.46). Let us
describe this a little bit. A simple approximation of u1 consists in constructing
piecewise constant functions having only horizontal or vertical jumps in Riemann
coordinates (that is, where w2 or w1 remains constant, respectively). But in fact,
the negative jumps (for which wi decreases) would not yield a backward Riemann
problem easily solvable in terms of simple waves (see Fig. 3.22), because even
in Riemann coordinates, shock curves are not straight lines.

Instead, one constructs an approximation of u1 having the following features.
There are two possible jumps:

• Either a positive jump in wi (with the other Riemann invariant wj constant)
of size at most � (the approximation parameter), which gives naturally
a rarefaction front, since rarefaction curves are straight lines in Riemann
coordinates.

• Either a negative jump in wi , and in that case we approximate a horizon-
tal/vertical segment by a succession of small shocks in the family j 6D i .
Consequently in that case, wj for j 6D i is not constant across the discontinu-
ity. However a succession of small shocks gives an accurate approximation of
a horizontal/vertical negative jump in Riemann coordinates.

Using (3.45) and (3.46), we can moreover make sure that the successive positive
jumps in wi are distant one from another of at least C�.

2. Extending the backward front-tracking approximations. We extend the resulting
fronts till two of these fronts meet at a backward interaction point. The backward
interactions are treated as follows. Whether the two incoming fronts are of the
same family or not is very important here.
Interactions inside a family. This depends on the nature of the fronts that are
meeting:

• Shock/shock interactions: such interactions do not occur inside a characteris-
tic family, as a consequence of Lax’s inequalities.
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• Rarefaction front/shock interactions: these do not occur either as a conse-
quence of Lax’s inequalities and estimates on the sizes of the rarefaction
fronts, which stay small, hence with a speed close to the characteristic speed.

• Rarefaction/rarefaction interactions: these are likely to happen. These must be
avoided, because if we allow many rarefaction fronts to merge, this will result
in an non-entropic solution in the limit. As we will see later, the additional
strong shock that we let enter the domain will be useful to kill the rarefaction
fronts before this can happen.

Interactions of fronts of different families. There are two types of these interactions,
depending on whether a strong shock is involved or not. We call weak waves the
fronts that are not one of the strong shocks

• Weak waves: if the two incoming fronts are weak, one can “solve” the interac-
tions, just as in Lax’s Theorem, see Fig. 3.43.

• Strong shock/weak shock interaction: again, one can extend the solution by a
strong shock and a weak shock, satisfying Schochet’s interaction estimates, see
Fig. 3.44.

• Strong shock/weak rarefaction interaction: we solve the backward interaction
in terms of two incoming shocks of the same family (one strong, one weak),
see Fig. 3.45. In other terms, we use the opportunity of this meeting to kill the
rarefaction fronts which are the main obstacle to get an entropy solution in the
limit. Let us underline that we choose to do this, since there is no uniqueness in
the backward Riemann problem.
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Fig. 3.43 A backward
interaction between weak
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Fig. 3.45 A backward
interaction between a strong
shock and a weak rarefaction
of opposite family
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Focusing of rarefaction waves

Now that we have given the main construction, we have to check that indeed this
prevents rarefaction/rarefaction interactions to occur.

The main point is to estimate the distance between consecutive rarefaction fronts
of the same family in order to prove that before possibly meeting, they must:

• Either leave the domain.
• Either be killed by the meeting of a strong shock of the opposite family.

For that, one has to estimate the (backward-in time) focusing of rarefaction waves.
This is done by using Glimm and Lax’s estimates [51] on the spreading of
rarefaction waves (forward-in-time).

Let us say a few words of this. We measure the distance between two successive
1-rarefaction fronts C1 and C2 “in the direction” of the second characteristic family,
see Fig. 3.46. Supposing that there has been no merging of rarefaction fronts yet, the
strength of these rarefaction fronts are of order �.

Now, roughly speaking: there are two “sources” in the difference of speed
between C1 and C2:

• The strength of these fronts C1 and C2 themselves, of order O.�/. More precisely
if �1 and �2 are the strengths of the fronts (measured through w1), this adds
approximately 1

2
@�1
@w1
Œ�1 C �2	C O.�2/ to PC1 � PC2.

• The fronts of the second family that cross the two curves. When these fronts are
between C1 and C2, they add an error between PC1 and PC2. The corresponding
“additional deviation” is of order O.1/jC2.t/ � C1.t/j. Indeed, the fronts of the
other family “do not stay long” between C1 and C2, see again Fig. 3.46.

Using the construction of the approximations of u1 and Oleinik-type semi-Lipschitz
conditions on u1, we can give a lower bound on C1.T /� C2.T / in terms of �. Then
one is able by using a Gronwall argument to estimate C1.t/� C2.t/ from below for
t � T . If the constants in these semi-Lipschitz assumptions on u1 are small enough,

Fig. 3.46 Non crossing of characteristics
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1 weak shock

0

t

1

2 strong shock

2 weak shock

2 rarefaction

1 strong shock

Fig. 3.47 The approximation
of the backward problem

we are thus capable to affirm that the backward rarefaction fronts do not meet before
either leaving the domain, or meeting a strong shock of the opposite family, in which
case one kills rarefaction fronts.

Conclusion

Taking into account that backward rarefaction fronts do not merge, we get an
approximation as described in Fig. 3.47.

The rest of the proof consists in establishing estimates in L1
t .BVx/ for these

approximations, as in the standard case. The main difference with the usual method
is that one considers modified Glimm functionals V and Q to take into account the
strong shocks and the construction, and that the estimates go backward in time (but
are not of different nature).

Hence again, we can obtain the compactness of the sequence of approximations,
and hence one can obtain a limit point of this sequence. It remains to prove that it is
an entropy solution. The main point is that, since the rarefaction fronts never merge,
they are always of order O.�/. Hence we can be sure as for the usual front-tracking
algorithm to obtain an entropy solution in the limit, and this ends the proof.

3.4.6 Comments

There is a huge gap between what is known in the framework of C1 solutions
and what is known for entropy solutions. For instance, the controllability of the
full compressible Euler equation, with the equation of energy is a completely open
problem.
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Open problem 4 What can be said on the controllability of the 1D full compress-
ible Euler equation:

8
<̂
:̂

@t�C @x.�u/ D 0;

@t .�u/C @x.�u22C ��/ D 0;

@t .
�u2

2
C ��

��1 /C @x.
�u3

2
C ���u

��1 / D 0;

where � is the temperature, by means of boundary controls? More generally, can we
widen the class of systems of conservation laws where one can prove the reachability
of constant states?

As we underlined earlier, the situation is necessarily more complex in the context
of entropy solutions than in the class of classical ones: in the case of C1 solutions,
both Euler and Di Perna’s systems are locally controllable. . .

Acknowledgements The author is very thankful to Professors P. Cannarsa and J.-M. Coron, as
well as to the CIME staff, for organizing this wonderful summer school in Cetraro.
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65. L. Lichtenstein, Über einige existenzprobleme der hydrodynamic. Math. Z. 28(1), 387–415
(1928)
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Chapter 4
Carleman Estimates and Some Applications
to Control Theory

Jérôme Le Rousseau

Abstract We prove Carleman estimates for elliptic and parabolic operators, using
several methods: a microlocal approach where the main tool is the Gårding inequal-
ity and a more computational direct approach. Carleman estimates are proven
locally and we describe how they can be patched together to form a global estimate.
We expose how they can be used to provide unique continuation properties, as well
as approximate and null controllability results.

4.1 Introduction

Carleman estimates are weighted energy estimates for the solutions of partial
differential equations (PDEs). The weights are of exponential types. First introduced
for the quantification of unique continuation, going back to the early work of
T. Carleman himself [3], in recent years the field of applications of Carleman
estimates has gone beyond this original domain: now they are also used in the study
of inverse problems and control theory for PDEs. Here, we shall mainly survey the
application to control theory in the case of parabolic equations, for which Carleman
estimates have now become an essential technique.

These notes originate in part from an expository article by G. Lebeau and the
author [12], where the fundamental ideas and mechanisms of Carleman estimates
for elliptic and parabolic operators are presented through a microlocal point of view.
Here, we also show those ideas but we also put a large emphasis on the exposition
of the method A. Fursikov and O. Yu. Imanuvilov [5] for the derivation of such Car-
leman estimates. One of our goals is to compare the two approaches, distinguishing
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advantages and disadvantages, and to make connections between the two. In fact the
Fursikov–Imanuvilov method has been widely used in the recent years in particular
because of the simplicity of the argumentation. It however hides some of the
positivity mechanisms that are at the heart of the derivation of Carleman estimates.

In Sect. 4.2 we start by presenting basic facts on differential operators with a large
parameter, with an extension to pseudo-differential operators. The framework is that
of semi-classical analysis. The key aspects will be the formulae for the composition
and adjoint of such operators and the Gårding inequality.

We next consider second-order elliptic operators on a bounded domain and give
proofs of:

• Carleman estimates away from the boundary (Sect. 4.3).
• Carleman estimates in the neighborhood of the boundary (Sect. 4.5).
• How to patch such estimates together to form a global estimate on the whole

open set (Sect. 4.6).

For each case (away from the boundary or at the boundary) we present different
proof strategies, microlocal techniques or a direct computational method, and we
aim to pin down the nature of the positivity arguments they contain.

One of our goals is also to insist on the fact that the types of Carleman estimates
we study here, that is, estimates with the loss of a half derivative, are of local nature.
We believe that this simple observation is sometimes missed, which can lead to
complications in proofs.

In Sect. 4.4 we exploit the local estimates of Sect. 4.3 to show how Carleman
estimates are meaningful tools for questions such as unique continuation.

For the application to the controllability of parabolic equation we choose here
to follow the approach of [5]. We thus pursue our analysis of Carleman estimates
for parabolic operators in Sect. 4.7. Here also, we present different point of views
for the proofs, and we insist again on the local nature of the estimates: they are
proven away from the boundary and at the boundary, and as in the elliptic case, they
can be patched together to form a global estimate. In Sect. 4.8 we use the parabolic
estimates to prove:

• The approximate controllability of the heat equation through a unique continua-
tion argument.

• The null-controllability of the heat equation by proving an observability inequal-
ity that follows from a global parabolic Carleman estimate.

Finally we gather some technical points in the appendix.

4.2 Differential and Pseudo-Differential Operators
with a Large Parameter

If p.x; 
/ is a polynomial in 
 of order less than or equal to m, with x; 
 2 R
n, and

p.x; 
/ D P
j˛j�m a˛.x/
˛ , we set
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p.x;D/u D P
j˛j�m

a˛.x/D
˛u; with D D @

i
:

Here ˛ D .˛1; : : : ; ˛n/ is a multi-index:


˛ D 

˛1
1 � � � 
˛nn ; D˛ D D˛1

x1
� � �D˛n

xn
:

We observe that

p.x;D/u.x/ D .2�/�n s
Rn

eihx;
ip.x; 
/Ou.
/ d
; (4.1)

where Ou is the Fourier transform of u.
The polynomial function p.x; 
/ is called the symbol of P.x;D/ and classically

pm.x; 
/ D P
j˛jDm a˛.x/
˛ is its principal symbol. For example the symbol of

�� is j
j2. Observe that the symbol of ��C �2V , is j
j2C �2V , while its principal
symbol is simply j
j2. For � large, we would want the contribution of �2V to be
taken into account in the principal symbol, i.e., we may want to give the same
“strength” to 
, a derivation, as to � . For this reason, we introduce the following
classes of symbols.

Definition 4.2.1. Let � 2 R with � � �0 > 0. We set �2 D j.�; 
/j2 D �2 C j
j2.
Let a.x; 
; �/ 2 C 1.Rn�R

n�R
C/, be such that for all multi-indices ˛; ˇ we have

j@˛x@ˇ
 a.x; 
; �/j � C˛;ˇ�
m�jˇj; x 2 R

n; 
 2 R
n; � � �0:

We write a 2 S.�m/.
For a2S.�m/ we call principal symbol the equivalence class of a in S.�m/=

S.�m�1/.

Lemma 4.2.2. Let m 2 R and aj 2 S.�m�j / with j 2 N. Then, there exists
a 2 S.�m/ such that

8N 2 N; a � P
j<N

aj 2 S.�m�N /:

We write a � P
j aj . The symbol a is unique up to S.��1/, in the sense that the

difference of two such symbols is in S.��N / for all N 2 N.

We usually identify a0 with the principal symbol of a.
With these symbol classes we can define pseudo-differential operators ( DOs).

Definition 4.2.3. If a 2 S.�m/, we set

Op.a/u.x/ WD .2�/�n s
Rn

eihx;
ia.x; 
; �/Ou.
/ d
:
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We denote by �.�m/ the set of these  DOs. For A 2 �.�m/, �.A/ will denote its
principal symbol.

We have Op.a/ W S .Rn/ ! S .Rn/ continuously and Op.a/ can be uniquely
extended to S 0.Rn/. Then Op.a/ W S 0.Rn/ ! S 0.Rn/ continuously.

We now introduce Sobolev spaces and Sobolev norms which are adapted to the
scaling (large) parameter � . The natural norm on L2.Rn/ will be written as kuk20 WD
.s ju.x/j2 dx/ 12 . Let s 2 R; we then set

kuks WD ksuk0; withs WD Op.�s/ and H s.Rn/ WD fu 2 S 0.Rn/I kuks <1g:

The space H s.Rn/ is algebraically equal to the classical Sobolev space Hs.Rn/.
For a fixed value of � , the norm k:ks is equivalent to the classical Sobolev norm that
we write k:kHs . However, these norms are not uniformly equivalent as � goes to 1.
In fact we only have

kuks � kukHs ; if s � 0; and kukHs � Ckuks ; if s � 0:

For s � 0 note that we have

kuks � �skuk0 C kukHs :

The spaces H s and H �s are in duality, i.e. H �s D .H s/0 in the sense of
distributional duality with L2 D H 0 as a pivot space.

The following continuity result holds.

Theorem 4.2.4. If a.x; 
; �/ 2 S.�m/ and s 2 R, we then have Op.a/ W H s !
H s�m continuously, uniformly in � .

We shall compose DOs in the sequel. Such compositions yield a calculus at the
level of operator symbols.

Theorem 4.2.5 (Symbol calculus). Let a 2 S.�m/ and b 2 S.�m0
/. Then Op.a/ ı

Op.b/ D Op.c/ for a certain c 2 S.�mCm0
/ that admits the following asymptotic

expansion

c.x; 
; �/ D .a ] b/.x; 
; �/ � P
˛

1

i j˛j˛Š
@˛
 a.x; 
; �/ @

˛
xb.x; 
; �/;

where ˛Š D ˛1Š � � �˛nŠ. The first term in the expansion, the principal symbol, is
ab; the second term is 1

i

P
j @
j a.x; 
; �/ @xj b.x; 
; �/. It follows that the principal

symbol of the commutator ŒOp.a/;Op.b/	 is

�.ŒOp.a/;Op.b/	/ D 1

i
fa; bg 2 S.�mCm0�1/:

The symbol of the adjoint operator can be obtained as follows.



4 Carleman Estimates and Some Applications to Control Theory 211

Theorem 4.2.6. Let a 2 S.�m/. Then Op.a/� D Op.b/ for a certain b 2 S.�m/

that admits the following asymptotic expansion

b.x; 
; �/ � P
˛

1

i j˛j˛Š
@˛
 @

˛
xa.x; 
; �/:

The principal symbol of b is simply a.

The following Gårding inequality is the important result we shall be interested in
here.

Theorem 4.2.7 (Gårding inequality). Let K be a compact set of R
n. If

a.x; 
; �/ 2 S.�m/, with principal part am, if there exists C > 0 such that

Ream.x; 
; �/ � C�m; x 2 K; 
 2 R
n; � � �0;

then for 0 < C 0 < C and �1 > 0 sufficiently large we have

Re.Op.a/u; u/ � C 0kuk2m=2; u 2 C 1
c .K/; � � �1:

The positivity of the principal symbol of a thus implies a certain positivity for
the operator Op.a/. The value of �1 depends on C , C 0 and a finite number of
constants C˛;ˇ associated to the symbol a.x; 
; �/ (see Definition 4.2.1). A proof
of the Gårding inequality is provided in the appendix. It is also a consequence of the
following so-called sharp Gårding inequality (see [8] for a proof).

Theorem 4.2.8 (Sharp Gårding inequality). If a.x; 
; �/ 2 S.�m/, with principal
part am, is such that

Ream.x; 
; �/ � 0; x 2 R
n; 
 2 R

n; � � �0;

then there exist C > 0 and �1 > 0 such that

Re.Op.a/u; u/ � �Ckuk2m�1
2
; u 2 S .Rn/; � � �1:

For references on  DOs the reader can consult [1, 6, 8, 18, 19].

4.3 Local Carleman Estimates for Elliptic Operators

We shall prove a local Carleman estimates for a second-order elliptic operator. To
simplify notation we consider the Laplace operator A D �� D D � D but the
method we expose extends to more general second-order elliptic operators with a
principal part of the form

P
i;j @j .aij .x/@i / with aij 2 C 1.Rn;R/, 1 � i; j � n

and
P

i;j aij .x/
i 
j � C j
j2, with C > 0, for all x; 
 2 R
n. In particular, we
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note that the Carleman estimates we prove below are insensitive1 to changes in the
operator by zero- or first-order terms.

Let '.x/ be a real-valued function. We define the following conjugated operator
A' D e�'Ae��' to be considered as a differential operator with large parameter �
as introduced in Sect. 4.2. We have

A' D �� � j�' 0j2 C h�' 0;ri C hr; �' 0i
D D �D � j�' 0j2 C i

�h�' 0;Di C hD; �' 0i�

D D �D � j�' 0j2 C 2ih�' 0;Di C ��':

Its full symbol is given by j
j2 � j�' 0j2 C 2ih�' 0; 
i C ��'. Its principal symbol is
given by

a' D �.A'/ D j
j2 � j�' 0j2 C 2ih�' 0; 
i D P
j

.
j C i�' 0
xj
/2;

i.e., we have “replaced” 
j by 
j C i�' 0
xj

. In fact we note that the symbol of
e�'Dj e

��' is 
j C i�' 0
xj

. We define the following symmetric operators

A2 D .A' C A�
'/=2 D D �D � j�' 0j2;

A1 D .A' � A�
'/=.2i/ D h�' 0;Di C hD; �' 0i;

with respective principal symbols

a2 D j
j2 � j�' 0j2 2 S.�2/; a1 D 2h
; �' 0i 2 �S.�/:

We have a' D a2 C ia1 and A' D A2 C iA1.
We choose ' that satisfies the following assumption.

Assumption 4.3.1 (L. Hörmander [7, 9]) Let V be a bounded open set in R
n. We

say that the weight function ' 2 C 1.Rn;R/ satisfies the sub-ellipticity assumption
in V if j' 0j > 0 in V and

8.x; 
/ 2 V � R
n; a'.x; 
/ D 0 ) fa2; a1g.x; 
/ � C > 0:

Assumption 4.3.1 can be fulfilled as stated in the following lemma whose proof
can be found in the appendix.

Lemma 4.3.2 (L. Hörmander [7, 9]). Let V be a bounded open set in R
n and

 2 C 1.Rn;R/ be such that j 0j > 0 in V . Then ' D e� fulfills Assumption 4.3.1
in V for the parameter � > 0 sufficiently large.

1In the sense that only constants are affected. In Theorem 4.3.4 below the constants C and �1
change but not the form of the estimate.
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The proof of the Carleman estimate will make use of the Gårding inequality. In
preparation, we have the following result proven in the appendix that follows from
Assumption 4.3.1.

Lemma 4.3.3. Let � > 0 and � D �.a22 C a21/C �fa2; a1g. Then, for all .x; 
/ 2
V � R

n, we have �.x; 
/ � C�4, with C > 0, for � sufficiently large.

We may now prove the following Carleman estimate.

Theorem 4.3.4. Let V be a bounded open set in R
n and let ' satisfy Assump-

tion 4.3.1 in V ; then, there exist �1 � �0 and C > 0 such that

�3ke�'uk20 C �ke�'rxuk20 � Cke�'Auk20; (4.2)

for u 2 C 1
c .V / and � � �1.

Remark 4.3.5. Assumption 4.3.1 appears here as a sufficient condition to obtain
such a Carleman estimate. This condition is however necessary (see [7] or [12]).

Proof. We set v D e�'u. Then, Au D f is equivalent to A'v D g D e�'f or rather
A2v C iA1v D g. Observing that .Ajw1;w2/ D .w1; Ajw2/ for w1;w2 2 C 1

c .Rn/

we then obtain

kgk20 D kA1vk20 C kA2vk20 C 2Re.A2v; iA1v/ D
��
A21 CA22 C i ŒA2; A1	

�
v; v
�
:

(4.3)
We choose � > 0 as given in Lemma 4.3.3. Then, for � such that ��1� � 1 we
have

��1 � ��.A21 C A22/C i� ŒA2; A1	
�

„ ƒ‚ …
principal symbol D �.a21Ca22/C�fa2;a1g

v; v
�

� kgk20:

The Gårding inequality and Lemma 4.3.3 then yield, for � and � large,

��1kvk22 � Ckgk20: (4.4)

and we obtain �3ke�'uk20 C �krx.e
�'u/k20 � Cke�'f k20. We write rx.e

�'u/ D
�e�'.rx'/u C e�'rxu, which yields

�ke�'rxuk20 � C�3ke�'uk20 C C�krx.e
�'u/k20;

since jrx'j � C . This concludes the proof. �

Remark 4.3.6. With a density argument the result of Theorem 4.3.4 can be extended
to functions u 2 H2

0 .V /. However, here, we do not treat the case of functions in
H1
0 .V / \ H2.V /. For such a result one needs a local Carleman estimate at the

boundary of the open set V as proven in [15, Proposition 2 page 351]. We provide
this argument below.
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Moreover, a global estimate in V for a function u in H1
0 .V / \ H2.V / requires

an observation term in the r.h.s. of the Carleman estimate. We shall provide such
details below.

4.3.1 The Method of A. Fursikov and O. Yu. Imanuvilov

In the proof of Theorem 4.3.4 we have used Assumption 4.3.1. We give comple-
mentary roles to the square terms in (4.3), kA1uk20 and kA2uk20, and to the action of
the commutator i.ŒA2; A1	u; u/. As the square terms approach zero, the commutator
term comes into effect and yields positivity. A. Fursikov and O. Yu. Imanuvilov [5]
have introduced a modification of the proof that allows one to only consider a term
equivalent to the commutator term without using the two square terms.

4.3.1.1 Analysis of the Method

We use the notation of the proof of Theorem 4.3.4, and write

kg C ���'vk20 D kA2vk20 C kA1vk20 C .i ŒA2; A1	v; v/C 2Re.A2v; ���'v/;

for 0 < � < 2, where A1 D A1 � i���' and we obtain

kg C ���'vk20 D kA2vk20 C kA1vk20 C Re.Rv; v/;

where � D �.R/ D .fa2; a1g C 2�a2��'/. We have the following lemma, which
proof can be found in the appendix.

Lemma 4.3.7. If ' D e� , then for � > 0 sufficiently large, there exists C� > 0

such that

� D fa2; a1g C 2��a2�' � C���
2; x 2 V ; 
 2 R

n:

With the Gårding inequality we then conclude that Re.Rv; v/ � C 0�kvk21, for 0 <
C 0 < C� and � taken sufficiently large. We thus obtain

�3kvk20 C �krvk20 � Ckg C ���'vk20

The Carleman estimate follows without using the square terms kA2vk20 and
kA1vk20. In fact we write

kg C ���'vk20 � 2kgk20 C 2�2�2k�'vk20;

and the second term in the r.h.s. can be “absorbed” by �3kvk20 for � sufficiently large.
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Remark 4.3.8. The Fursikov–Imanuvilov method, at the symbol level, is a matter
of adding a term of the form 2��a2�' to the symbol of the commutator i ŒA2; A1	.
As the sign of a2�' is not fixed, a precise choice of the value of � is crucial.

4.3.1.2 An Alternative Derivation

We shall now compare the microlocal approach we developed above with the
“direct”-computational method that A. Fursikov and O. Yu. Imanuvilov follow
in their original work [5]. This approach is used very often by authors. Its has
some disadvantages and advantages. On the one hand, the computations that are
performed hide the positivity argument that we have presented above. They also
hide the sufficient sub-ellipticity condition on the weight function. One the other
hand, it is based on integrations by parts; this allows to address coefficients with
limited regularity, say as low as W 1;1, in the principal part of the operator as done
by L. Hörmander in [7].

The direct computation permits also to easily track the dependency on the second
large parameter � which can be useful in some applications. Note however that a
modification of the  DO calculus of Sect. 4.2 also yields the explicit dependency
on the second large parameter [11].

Theorem 4.3.9. Let V be a bounded open set in R
n and let ' D e� with j 0j �

C > 0 in V ; then, there exist �1 � �0, �1 > 0, and C > 0 such that

�3�4ke�'' 3
2 uk20 C ��2ke�'' 1

2 rxuk20 � Cke�'P uk20; (4.5)

for u 2 C 1
c .V / and � � �1, � � �1.

As mentioned above we preserve the dependency on the second large parameter �
here.

Proof. Above we wrote the conjugated operator A' as A' D A2 C iA1 with

A2 D D2 � j�' 0j2; A1 D �
�h' 0;Di C hD;' 0i� D 2�h' 0;Di � i��':

Following [5] (which corresponds to what is done in Sect. 4.3.1.1) we write

A2v C iA1v D g D g C ���';

with iA1 D 2�h' 0;ri C �.� C 1/�'. The choice made in [5] is � D 1. We then
write

kgk2
0

D kA2vk20 C kA1vk20 C 2Re.A2v; iA1v/: (4.6)

We focus on the computation of Re.A2v; iA1v/ which we write as a sum of 4 terms
Iij , 1 � i � 2, 1 � j � 2, where Iij is the inner product of the i th term in the
expression of A2v and the j th term in the expression of iA1v above.
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Term I11. With two integrations by parts we have

I11 D 2�Re
�rv;r.h' 0;riv/

� D 2�Res ' 00.rv;rv/ dx C � s h' 0;rjrvj2i dx
D 2�Res ' 00.rv;rv/ dx � � s .�'/jrvj2 dx:

Term I12. With an integration by parts we have

I12 D �.�C 1/Re
� ��v; .�'/v

�

D �.�C 1/ s .�'/jrvj2 dx C �.�C 1/ s hr�';rviv dx:

Term I21. With an integration by parts we have

I21 D �2�3Re
�j' 0j2v; h' 0;rvi� D ��3 s j' 0j2h' 0;rjvj2i dx

D �3 s r�j' 0j2r'�jvj2 dx:

Term I22. We find directly I22 D ��3.�C 1/ s j' 0j2.�'/jvj2 dx.
Collecting the different terms together we find

Re.A2v; iA1v/ D s �3˛0jvj2 dx;Cs �˛1jrvj2 dx CX;

with ˛0 D �r.j' 0j2r'/ � .�C 1/j' 0j2.�'/�, ˛1 D ��', and

X D 2�Re s ' 00.rv;rv/ dx C �.�C 1/ s hr�';rviv dx:

Using the form of the weight function ' we have the following lemma (see
Sect. A.5 for a proof).

Lemma 4.3.10. For � sufficiently large we have ˛0 � C�4'3 and ˛1 � C�2':

Note that ' 00
jk D �

�2 0
j  

0
k C � 00

jk

�
'. For the remainder term it follows that

X � Y D 2�Re s �' 00.rv;rv/ dx C �.�C 1/ s hr�';rviv dx:

Noting that j'.k/j � C�k' we then obtain with the Young inequality

jY j � �
C�� C "��2

� s 'jrvj2 dx C C"��
4 s 'jvj2 dx;

for " as small as needed. For " small, � and � sufficiently large we thus obtain

Re.A2v; iA1v/ � C�3�4 s '3jvj2 dx C C��2 s 'jrvj2 dx:

We conclude the proof as in Sect. 4.3.1.1. �
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Remark 4.3.11. In this “computation” oriented proof the key argument lays in
Lemma 4.3.10 that assesses the positivity of the coefficients of the leading terms.
As mentioned above, the argumentation of this lemma appears disconnected from
the necessary and sufficient sub-ellipticity condition of Assumption 4.3.1. In fact
the derivation we just performed hides the connection between the weight function
' and the Fourier variable 
. These two are closely related at the characteristic set
of the conjugated operator A' , i.e., the set where a' D 0. This precisely where A'
fails to be elliptic and where the difficulty arises. Some details on this aspect are
given in [12].

In the present section we have proven Carleman estimates for smooth compactly
supported functions. We avoided complications that arise when taking boundary
conditions into account. We postpone such refinements until Sect. 4.5. With the
estimates we have at hand we can already prove results in relation with the
original motivation for the introduction of Carleman estimates: unique continuation
properties.

4.4 Unique Continuation

Let ˝ be a bounded open set in R
n. In a neighborhood V of a point x0 2 ˝ , we

take a function f such that rf ¤ 0 in V . Let a.x; 
/ be a second-order polynomial
in 
 that satisfies a.x; 
/ � C j
j2 with C > 0. We define the differential operator
A D a.x; @=i/.

We consider u 2 H2.V / solution of Au D g.u/, where g is such that jg.y/j �
C jyj, y 2 R. We assume that u D 0 in fx 2 V I f .x/ � f .x0/g. We aim to show
that the function u vanishes in a neighborhood of x0.

We pick a function  whose gradient does not vanish near V and that satisfies
hrf .x0/;r .x0/i > 0 and is such that f �  reaches a strict local minimum
at x0 as one moves along the level set fx 2 V I  .x/ D  .x0/g. For instance,
we may choose  .x/ D f .x/ � cjx � x0j2. We then set ' D e� accord-
ing to Lemma 4.3.2. In the neighborhood V (or possibly in a smaller neigh-
borhood of x0) the geometrical situation we have just described is illustrated
in Fig. 4.1.

We call W the region fx 2 V I f .x/ � f .x0/g (region beneath ff .x/ D f .x0/g
in Fig. 4.1). We choose V 0 and V 00 neighborhoods of x0 such that V 00 b V 0 b V

and we pick a function � 2 C 1
c .V 0/ such that � D 1 in V 00. We set v D �u and

then v 2 H2
0 .V /. Observe that the Carleman estimate of Theorem 4.3.4 applies to v

by Remark 4.3.6. We have

Av D A.�u/ D � Au C ŒA; �	u;
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Fig. 4.1 Local geometry for the unique continuation problem. The striped region contains the
support of ŒA; �	u

where the commutator is a first-order differential operator. We thus obtain

�3ke�'�uk20 C �ke�'rx. �u/k20 � C
�
ke�'�g.u/k20 C ke�'ŒA; �	uk20

�

� C 0 �ke�'�uk20 C ke�'ŒA; �	uk20
�
; � � �1:

Choosing � sufficiently large, say � � �2, we may ignore the first term in the r.h.s.
of the previous estimate. We then write

�3ke�'uk2L2.V 00/ C �ke�'rxuk2L2.V 00/ � �3ke�'�uk20 C �ke�'rx. �u/k20
� Cke�'ŒA; �	uk2L2.S/;

where S WD V 0 n .V 00 [ W /, since the support of ŒA; �	u is confined in the region
where � varies and u does not vanish (see the striped region in Fig. 4.1).

For all " 2 R, we set V" D fx 2 V I '.x/ � '.x0/� "g. There exists " > 0 such
that S b V". We then choose a ball B0 with center x0 such that B0 
 V 00 n V" and
obtain

e� infB0 'kukH1.B0/
� Ce� supS 'kukH1.S/; 0 < h < h2:

Since infB0 ' > supS ', letting � go to C1, we obtain u D 0 in B0. We have thus
proven the following local unique-continuation result.

Proposition 4.4.1. Let g be such that jg.y/j � C jyj, x0 2 ˝ and u 2 H2
loc.˝/

satisfying Au D g.u/ and u D 0 in fxI f .x/ � f .x0/g, in a neighborhood V of x0.
The function f is defined in V and such that jrf j ¤ 0 in a neighborhood of x0.
Then u vanishes in a neighborhood of x0.
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With a connectedness argument we then prove the following theorem.

Theorem 4.4.2 (A. Calderón theorem). Let g be such that jg.y/j � C jyj. Let ˝
be a connected open set in R

n and let ! b ˝ , with ! ¤ ;. If u 2 H2.˝/ satisfies
Au D g.u/ in ˝ and u.x/ D 0 in !, then u vanishes in ˝ .

4.5 Local Carleman Estimates at the Boundary
for Elliptic Operators

We are now interested in deriving Carleman estimates for solutions of equations
of the type Au D ��u D f on a bounded open subset ˝ of Rn with prescribed
boundary conditions. For simplicity we shall treat homogeneous Dirichlet boundary
conditions here: uj@˝ D 0. Other types of boundary conditions can be more difficult
to tackle: inhomogeneous boundary conditions, Neumann type conditions, etc.

Here we are simply interested in proving a local estimate. We thus place
ourselves in a neighborhood of a point x0 of @˝ . We denote by n and d� the
outward pointing unit normal vector and the Lebesgue measure on @˝ respectively.
The approach of A. Fursikov and O. Yu. Imanuvilov is quite direct to extend to the
boundary case. We treat this case first (Fig. 4.2).

Theorem 4.5.1. Let V be an open subset of ˝ with x0 2 V . Let ' D e� with
j 0j � C > 0 in V and @n j@˝\V < 0; then, there exist �1 � �0, �1 > 0, and
C > 0 such that

�3�4ke�'' 3
2 uk20 C ��2ke�'' 1

2 rxuk20 � Cke�'Auk20; (4.7)

for u 2 C 1.˝/ with supp.u/ 
 V and uj@˝\V D 0, and � � �1, � � �1.

Proof. We use the notation of the proof of Theorem 4.3.9. Computing the different
terms, as uj@˝ D 0, we note that only I11 is affected with the integration by parts

Fig. 4.2 Local geometry for
an estimate at the boundary
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yielding boundary terms. In fact we have

I11 D 2�Re
�rv;r.h' 0;riv/

� � 2�Re s
@˝

.@nv/h' 0;riv d�

D 2� s ' 00.rv;rv/ dx C � s h' 0;rjrvj2i dx � 2�Re s
@˝

.@nv/h' 0;rivd�

D 2� s ' 00.rv;rv/ dx � � s .�'/jrvj2 dx
� 2�Re s

@˝

.@nv/h' 0;riv d� C � s
@˝

.@n'/jrvj2 d�:

As uj@˝ D 0 then jruj D j@nuj and h' 0;riv D .@n'/@nv at the boundary. We thus
find

I11 D 2� s ' 00.rv;rv/ dx � � s .�'/jrvj2 dx � � s
@˝

@n'j@nvj2 d�:

With the condition imposed on the weight function at the boundary we see that the
additional term is non-negative as @n' D �'@n . The rest of the proof can be
carried out as in the proof of Theorem 4.3.9. �

We shall now use microlocal arguments to prove Carleman estimates at the
boundary. As in Sect. 4.3, with such an approach we can truly characterize the
required conditions on the weight function. She shall closely follow the original
proof given by G. Lebeau and L. Robbiano [15].

In a sufficiently small neighborhoodV 
 R
n of x0, we place ourselves in normal

geodesic coordinates x D .x0; xn/. For convenience, we shall take the neighborhood
V of the form Vx0

0
� .0; "/, where Vx0

0
is a sufficiently small neighborhood of x0

0. In
such coordinate system, the principal part of the operator �� takes the following
form [8, Appendix C.5]: D2

xn
C r.x;Dx0/, with r.x; 
 0/ a second-order polynomial

in 
 0 that satisfies

r.x; 
 0/ 2 R; and C1j
 0j2 � r.x; 
 0/ � C2j
 0j2; x 2 V; 
 0 2 R
n�1: (4.8)

The boundary is now given by @˝ D fxn D 0g.
An important fact to note is that the condition in Assumption 4.3.1 is independent

of the coordinate system we use [7, Sect. 8.1, page 186].
We need to introduce tangential  DOs and some of their calculus properties.

Definition 4.5.2. Let � � �0 > 0 and �2
T

D j.�; 
 0/j2 D �2Cj
 0j2. Let a.x; 
 0; �/ 2
C 1.Rn � R

n�1 � R
C/ be such that for all multi-indices ˛; ˇ we have

j@˛x@ˇ
0a.x; 

0; �/j � C˛;ˇ�

m�jˇj
T

; x 2 R
n; 
 0 2 R

n�1; � � �0:

We write a 2 S.�m
T
/.
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We then define classes of operators

Definition 4.5.3. If a 2 S.�m
T
/, we set

Op.a/u.x/ WD .2�/1�n s eihx0;
0ia.x; 
 0; �/Ou.
 0; xn/ d
 0;

where, here, Ou is the Fourier transform of u in the x0 directions. We denote by�.�m
T
/

the set of these tangential  DOs.

The calculus of these operators is similar to those in the whole space.

Proposition 4.5.4 (Symbol calculus). Let a 2 S.�m
T
/ and b 2 S.�m

0

T
/. Then

Op.a/ ı Op.b/ D Op.c/ for a certain c 2 S.�mCm0

T
/ that admits the following

asymptotic expansion

c.x; 
; �/ D .a ] b/.x; 
; �/ � P
˛

1

i j˛j˛Š
@˛
0a.x; 


0; �/ @˛x0b.x; 

0; �/;

We introduce, for u D u.x0/,

kukH s
T

D kOp
�
.1C �2 C j
 0j2/ s2 �uk

L2.Rn�1/

and set H s
T
.Rn�1/ WD fu 2 S 0.Rn�1/I kukH s

T

< 1g. We have the following
regularity result.

Proposition 4.5.5. If a.x; 
 0; �/ 2 S.�m
T
/ and s 2 R, we then have

Op.a/ W L2.RC;H s
T
.Rn�1// ! L2.RC;H s�m

T
.Rn�1// continuously;

uniformly in � .

Theorem 4.5.6. Let ' satisfy Assumption 4.3.1 in V and @n'j@˝\V < 0; then, there
exist �1 � �0 and C > 0 such that

�3ke�'uk20 C �ke�'rxuk20 � Cke�'Auk20; (4.9)

for u 2 C 1.˝/ with supp.u/ 
 V , uj@˝\V D 0, and � � �1.

Proof. Introducing A2 and A1 as in Sect. 4.3 we find

A2 D D2
xn

C OA2; A1 D �
�
Dxn'

0
xn

C ' 0
xn
Dxn

�C 2 OA1;

with respective principal symbols

a2 D 
2n C Oa2; Oa2 D r.x; 
 0/� r.x; �' 0
x0/ � �

�' 0
xn

�2 2 S.�2
T
/;

a1 D 2�
n'
0
xn

C 2 Oa1; Oa1 D Qr.x; 
 0; �' 0
x0/ 2 �S.�T/
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where Qr.x; :; :/ is the symmetric bilinear form associated with the real quadratic
form r.x; 
 0/.

We note that

.w1; A2w2/ D .A2w1;w2/

� i
� �

w1jxnD0C ;Dxnw2jxnD0C

�
0

C �
Dxnw1jxnD0C ;w2jxnD0C

�
0

�
;

.w1; A1w2/ D .A1w1;w2/ � 2i ��' 0
xn

w1jxnD0C ;w2jxnD0C

�
0
;

for w1 and w2 smooth, where .:; :/0 is the L2 hermitian inner-product in fxn D 0g,
and we thus obtain

kgk2 D kA1vk2 C kA2vk2 C i.ŒA2; A1	v; v/C B.v/;

with

B.v/ D �
A1vjxnD0C ;DxnvjxnD0C

�
0

C �
.DxnA1 � 2�' 0

xn
A2/vjxnD0C ; vjxnD0C

�
0
;

(4.10)
which, as vjxnD0C D 0, reduces to

B.v/ D 2
�
' 0
xn
DxnvjxnD0C ;DxnvjxnD0C

�
0

� 0; as ' 0
xn

jxnD0C D �@n'jxnD0C > 0:

(4.11)
We observe that we have i ŒA2; A1	 D QH0D

2
xn

C QH1Dxn C QH2, where QHj 2 ��.�j
T
/,

j D 0; 1; 2. We then note thatD2
xn

�A2 2 �.�2
T
/ andDxn � 1

2�'0
xn
A1 2 �.�T/. We

thus find

i ŒA2; A1	 D �
H0A2 C ��1H1A1 CH2

�
; Hj 2 ��.�j

T
/; j D 0; 1; 2:

We have the following lemma, which proof is given below.

Lemma 4.5.7. For � and � sufficiently large, there exists C > 0 such that

�S.�2
T
/ 3 � D �

� Oa21 C .�' 0
xn
/2 Oa2

�2
�3�2

T

C �.H2/ � C��2
T
:

Applying the Gårding inequality in the tangential directions we thus obtain, for �
sufficiently large,

kgk2 � kA1vk2 C kA2vk2 C Re .H0A2v; v/C Re
�
��1H1A1v; v

�

C C�kvk2
L2.RC;H 1

T
/
� Re��1 �. OA21 C .�' 0

xn
/2 OA2/v; Gv

�
; (4.12)

where G 2 �.�0
T
/ and �.G/ D �

Oa21C.�'0
xn
/2 Oa2

�2�2
T

2 S.�0
T
/.
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We first see that we have
ˇ̌
ˇ .H0A2v; v/

ˇ̌
ˇ � C�� 1

2 kA2vk2 C C 0�
1
2 kvk2

L2.RC;H 1
T
/
; (4.13)

ˇ̌
ˇ ���1H1A1v; v

� ˇ̌ˇ � C�� 1
2 kA1vk2 C C 0�

1
2 kvk2

L2.RC;H 1
T
/
: (4.14)

From the form of A1 we deduce the following lemma.

Lemma 4.5.8. We have �
1
2 kDxnvk � C�� 1

2 kA1vk C C�
1
2 kvkL2.RC;H 1

T
/.

Next since

OA1 D 1

2

�
A1 � �ŒDxn ; '

0
xn
	
�

� �' 0
xn
Dxn; (4.15)

we compute

OA21 C .�' 0
xn
/2 OA2 D

OA1
2

�
A1 � �ŒDxn ; '

0
xn
	
� � OA1�' 0

xn
Dxn C .�' 0

xn
/2.A2 �D2

xn
/:

Using (4.15) a second time we have

OA21 C .�' 0
xn
/2 OA2 D

OA1
2

�
A1 � �ŒDxn ; '

0
xn
	
�

C
�
�' 0

xn
Dxn � 1

2
.A1 � �ŒDxn ; '

0
xn
	/
�
�' 0

xn
Dxn C .�' 0

xn
/2.A2 �D2

xn
/;

which reads

OA21 C .�' 0
xn
/2 OA2 2 .�' 0

xn
/2A2 � 1

2
Dxn�'

0
xn
A1

C ��.�1
T
/A1 C �2�.�0

T
/Dxn C �2�.�1

T
/: (4.16)

We note that

��1 ˇ̌�.�' 0
xn
/2A2v; Gv

�ˇ̌ � �� 1
2 CkA2vk2 C �

1
2 Ckvk2

L2.RC;H 1
T
/
;

and

��1Re
�1
2
Dxn�'

0
xn
A1v; Gv

�
D 1

2
Re

�
' 0
xn
A1v;DxnGv

�

� Re
�' 0

xn

2i
A1vjxnD0C ; GvjxnD0C

�
0
;
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by integration by parts. The last term vanishes as vjxnD0C D 0. We thus obtain

ˇ̌
ˇ��1Re

�
. OA21 C .�' 0

xn
/2 OA2/v; Gv

� ˇ̌
ˇ

� C
�
�� 1

2 kA1vk2 C �� 1
2 kA2vk2 C �

1
2 kDxnvk2 C �

1
2 kvk2

L2.RC;H 1
T
/

�
: (4.17)

By choosing � sufficiently large, from (4.12), (4.13), (4.14) and (4.17), and
Lemma 4.5.8, we obtain

kP'vk2 � C�
�
kvk2

L2.RC;H 1
T
/
C kDxnvk2

�
� C�

�
�2kvk2 C krvk2

�
:

This permits to conclude as in the proof of Theorem 4.3.4. �

Proof of Lemma 4.5.7. Observe that a2 and a1 are both homogeneous of degree 2 in
.�; 
 0/. As a consequence, Oh2 D ��1��2

T
�.H2/ 2 S.�0

T
/ is homogeneous of degree

0 in .�; 
 0/. The same holds for

OR D �

� Oa21 C .�' 0
xn
/2 Oa2

�2
�4�4

T

:

We thus work in the compact set C D f�2Cj
 0j2 D 1g and prove that O� D ORC Oh2 �
C > 0. Note that O� can be continuously extended to � D 0 on C .

Assume that OR D 0 then choose 
n D �Oa1=.�' 0
xn
/. This implies a1 D 0 and

a2 D 0. Assumption 4.3.1 then yields �.H2/ > 0 because of the form of fa2; a1g
we have exhibited. We thus have

OR D 0 ) Oh2 > 0:

Hence, we are back to the situation described at the end of the proof of Lemma 4.3.3
in Sect. A.3, which yields the conclusion. �

Remark 4.5.9. In Remark 4.3.5 we saw that Assumption 4.3.1 is in fact necessary.
One can moreover prove that the condition @n'j@˝ � 0 is necessary when
considering estimates at the boundary.

4.6 From Local to Global Inequalities: Patching Estimates
Together

Carleman estimates are local by nature. The previous sections have illustrated how
they can be obtained by focusing around a region of interest. They are then applied
to functions with support restricted to that region. It can however be useful in
some applications to obtain a global estimate, that is, an estimate for functions
defined in an open set ˝ of R

n where the equation Au D f is satisfied with u
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fulfilling some boundary conditions. We present here how such global estimates can
be achieved from the previous results. We shall consider homogeneous Dirichlet
boundary conditions to exploit the results of Sect. 4.5. In fact one of the important
aspects of Carleman estimates is the possibility to stitch them together to handle
functions defined on a bigger domain.

As opposed to the local estimates we derived above, global estimates are
characterized by an observation region ! 
 ˝ . The necessity of this new feature is
quite easy to point out. Let us assume the existence of a smooth weight function '
such that we have

�3ke�'uk2L2.˝/ C �ke�'uk2L2.˝/ � Cke�'Auk2L2.˝/; (4.18)

for u 2 C 1.˝/, such that uj@˝ D 0, and � large. By Remark 4.3.5 we necessarily
have j' 0j � C > 0 on ˝ . Hence ' reaches its maximum on @˝ , say at
x0 2 @˝ . There its tangential derivative vanishes and thus j' 0.x0/j D j@n'.x0/j.
By Remark 4.5.9 we necessarily have @n'j@˝ � 0. Hence, @n'.x0/ < 0. This
contradicts the fact that '.x0/ D max˝ '. We thus conclude that (4.18) cannot
hold. As we shall see in Theorem 4.6.3 below, this can be repaired by adding an
observation term

�3ke�'uk2L2.!/
in the r.h.s. of the estimate, where ! is an open subset of ˝ .

To patch local estimates together to form a global estimate, we choose a global
weight function that can be used to derive each of the local estimates of Sects. 4.3
and 4.5 by satisfying the following requirements.

Assumption 4.6.1 Let !0 b ! b ˝ . The weight function ' satisfies

'j@˝ D Cst; @n'j@˝ < 0; j' 0.x/j ¤ 0; x 2 ˝ n !0;
a2 D 0 and a1 D 0 ) fa2; a1g > 0; x 2 ˝ n !0:

Such conditions can be fulfilled by taking ' of the form

'.x/ D e� .x/; with j 0.x/j ¤ 0; x 2 ˝ n !0; and

 j@˝ D 0; @n j@˝ < 0;  .x/ > 0; x 2 ˝;

and by taking the positive parameter � sufficiently large. For the construction of
such a function we refer to [5, Lemma 1.1]. The construction makes use of Morse
functions and the associated approximation theorem [2].

Remark 4.6.2. Here, the global weight function we choose is used to prove the
local estimates. This is standard. In some situations, such global weight function
may not exist. This is for instance the case of Carleman estimates for operators
with principal part r.c.x/r/ where c has jumps across several interfaces. Local
estimates may be proved and can still be stitched together. Yet, the resulting global
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weight function may not be locally equal to the weight function used for the proof
of the local estimates. We refer to [13] for more details.

Theorem 4.6.3 (Global Carleman estimate). Let ' be a function that satisfies
Assumption 4.6.1. Then there exist �1 > 0 and C � 0 such that

�3ke�'uk2L2.˝/ C �ke�'uk2L2.˝/ � C
�
ke�'Auk2L2.˝/ C �3ke�'uk2L2.!/

�
;

for u 2 C 1.˝/, such that uj@˝ D 0, and � � �1.

Proof. Let !1 be such that !0 b !1 b !. For all x 2 ˝ n !1, there exist an open
subset Vx of˝ , with x 2 Vx 
 ˝ n!0 for which the local Carleman estimate, in the
interior or at the boundary, holds with the weight function ', for smooth functions
with support in the compactKx D Vx.

From the covering of ˝ n !1 by the open sets Vx , x 2 ˝ n !1 we can extract a
finite covering .Vi /i2I , such that for all i 2 I the Carleman estimate in Vi holds
for � � �i > 0, C D Ci > 0 and supp.u/ 
 Ki D Vi .

Let .�i /i2I be a partition of unity subordinated to the covering Vi , i 2 I ,
[10, 21], i.e., �i 2 C 1.˝/,

supp. �i / 
 Ki D Vi ; 0 � �i � 1; i 2 I ; and
P
i2I

�i D 1 in ˝ n !1:

Note that we have supp. �i / \ !0 D ;. For all i 2 I , we set ui D �iu. Then for
each ui we have a local Carleman estimate. We now observe that we have

Aui D A. �iu/ D �iAu C ŒA; �i 	u;

where the commutator is a first-order differential operator. For all i 2 I , we thus
obtain

ke�'Auik2L2.˝/ � Cke�'Auk2L2.˝/ C Cke�'uk2L2.˝/ C Cke�' r uk2L2.˝/: (4.19)

We note that we have

�3ke�' uk2L2.˝/ C �ke�' r uk2L2.˝/ � C
P
i2I

�
�3ke�' uik2L2.˝/ C �ke�' ruik2L2.˝/

�

C C�3ke�' uk2L2.!1/ C C�ke�'ruk2L2.!1/;

From the local Carleman estimates and (4.19) we then obtain

�3ke�' uk2L2.˝/ C �ke�' r uk2L2.˝/ � C
�
ke�'Auk2L2.˝/ C ke�'uk2L2.˝/

C ke�' r uk2L2.˝/ C �3ke�' uk2L2.!1/
C �ke�'ruk2L2.!1/

�
:
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For � sufficiently large we have

�3ke�' uk2L2.˝/ C �ke�' r uk2L2.˝/ � C
�
ke�'Auk2L2.˝/ C �3ke�' uk2L2.!1/
C �ke�' r uk2L2.!1/

�
:

We now aim to remove the last term in the r.h.s. of the previous estimation. Let
� 2 C 1

c .!/, 0 � � � 1, be such that � D 1 in a neighborhood of !1. If Au D f ,
after multiplication by e2�'�u, and integration over˝ , we obtain

�Re s̋ e2�'�u�u dx D Re s̋ e2�'�uf dx (4.20)

The r.h.s. can be estimated as
ˇ̌
ˇRe s̋ e2�'�uf dx

ˇ̌
ˇ � Cke�'f k2L2.˝/ C Cke�'uk2L2.!/:

For the l.h.s. of (4.20), with integration by parts in x, we have

�Re s̋ e2�'�u�u dx D s̋ e2�'�jruj2 dx C Re s̋ r.e2�'�/uru dx

� ke�'ruk2L2.!1/ � 1

2
s̋ �.e2�'�/juj2 dx;

� ke�'ruk2L2.!1/ � C�2ke�'uk2L2.!/:

The previous estimates and (4.20) then yield

�ke�'ruk2L2.!1/ � Cke�'Auk2L2.˝/ C C�3ke�'uk2L2.!/:

The proof is complete. �

If we patch together the estimates with two large parameters of Theorems 4.3.9
and 4.5.1 we obtain the following result (note that with the approach used in the
proofs of those theorems such an estimate can be obtained globally in the first place
as is done in [5]).

Theorem 4.6.4 (Global Carleman estimate). Let !0 b ! 
 ˝ . Let  be a
function that satisfies j 0j � C > 0 in V n !0,  j@˝ D Cst, and @n j@˝\V < 0.
Let ' D e� . Then there exist �1 > 0, �1 > 0, and C � 0 such that

�3�4k' 3
2 e�'uk2L2.˝/ C ��2k' 1

2 e�'uk2L2.˝/
� C

�
ke�'Auk2L2.˝/ C �3�4k' 3

2 e�'uk2L2.!/
�
;

for u 2 C 1.˝/, such that uj@˝ D 0, � � �1 and � � �1.
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4.7 Estimates for Parabolic Operators

To prove Carleman estimates for parabolic operators, say P D @t � �, we can
proceed with similar approaches as for elliptic operators.

As in the previous sections˝ is a bounded open set in R
n. We setQD .0; T /�˝ .

We start by proving local (in space) estimates, away from the boundary @˝ .

4.7.1 Local Estimate Away from the Boundary

We set �.t/ D .t.T � t//�1. For a negative weight function '.x/ we define
P' D e��'Pe���' . This type of conjugation with a exponential weight that exhibits
a singular behavior at t D 0 and t D T was first introduced in [5]. Note in particular
the e��' vanishes very rapidly at these times.

We set here �2 D .��/2 C j
j2. The function �� will play the role of the large
parameter here. We shall obtain �� large below by imposing �=T 2 large.

From the definition of � , and observing that � 0.t/ D �.T � 2t/�2.t/ and that
� 00 D 2�2 C 2.T � 2t/2�3, we have

4

T 2
� �; j� 0j � CT �2; j� 00j � CT 2�3: (4.21)

We have

P' D @t � �'.x/� 0.t/ �� � j��' 0j2 C h��' 0;rxi C hrx; ��'
0i:

We define the following symmetric operators

P2 D .P' C P �
' /=2; P1 D .P' � P �

' /=.2i/;

which gives

P2 D ��'.x/� 0.t/CD2 � j��' 0j2„ ƒ‚ …
DA2

; P1 D Dt C ��
�h' 0;Di C hD;' 0i�„ ƒ‚ …

DA1

;

with respective symbols

Qp2 D ��'.x/� 0.t/C j
j2 � j��' 0j2; Qp1 D � C 2��h' 0; 
i � i���':

For the principal symbols we have

p2D��'.x/� 0.t/Ca2; a2Dj
j2�j��' 0j2; p1D� C a1; a1 D 2��h' 0; 
i:

Note that p2; a2 2 S.�2/ and p2 � a2 2 T ��1S.�2/.
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Assumption 4.7.1 The weight function ' 2 C 1.Rn;R/ satisfies ' < 0, j' 0j > 0

in V and

8.x; 
/ 2 V � R
n; a2.x; 
/ D 0 ) fa2; a1g.x; 
/ � C > 0:

Such a weight function can be obtained in the form ' D e� � e�K with j 0j �
C > 0, k k1 < K and � sufficiently large (see e.g. [12]). The proof is in fact very
close to that of Lemma 4.3.2.

Remark 4.7.2. Note that the condition we invoke is stronger than its counterpart
in the elliptic case, Assumption 4.3.1. However, this condition is necessary and
sufficient for the Carleman estimate to hold. We refer to [12] for the details.

Lemma 4.7.3. There exists C > 0 and �1 such that

� D �p22 � ��@tp2 C ��fp2; a1g � C�4;

for � � �1T , uniformly in t 2 Œ0; T 	.
Proof. The proof of Lemma 4.3.3 gives �a D �a22 C ��fa2; a1g � C�4 for �
sufficiently large, uniformly in �� & �=T 2, hence uniformly in t 2 Œ0; T 	.

Now observe that p22 � a22 2 .T ��1 C T 2��2/S.�4/. We also have

@tp2 D ��'.x/� 00 � 2�� 0j�' 0j2;

which gives ��@tp2 2 �T ��1 C T 2��2�S.�4/ by (4.21). Finally we write

fp2; a1g D fa2; a1g C fp2 � a2; a1g„ ƒ‚ …
2T ��1S.�3/

:

In fine, we find � � �a 2 .T ��1 C T 2��2/S.�4/. We thus conclude by choosing
�=T sufficiently large. �

Theorem 4.7.4. Let K be a compact set of ˝ and V be an open subset of ˝ that
is a neighborhood of K . Let ' be a weight function that satisfies Assumption 4.7.1
in V . Then there exist C > 0 and �1 > 0 such that

�3k� 3
2 e��'uk2L2.Q/ C �k� 1

2 e��'rxuk2L2.Q/ C ��1k�� 1
2 e��'@tuk2L2.Q/

C ��1 P
1�j;k�n

k�� 1
2 e��'@2jkuk2

L2.Q/
� Cke��'P uk2L2.Q/;

for u 2 C 1.Œ0; T 	�˝/, with u.t/ 2 C 1
c .K/ for all t 2 Œ0; T 	, and � � �1.TCT 2/.

The elegant and short proof we provide here, with a positivity argument uniform in
time, is due to G. Lebeau [14]. It can be found in [12].
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Proof. We introduce v D e��'u. We observe that v, along with all its time
derivatives, vanishes at time t D 0 and t D T , since ' � �C < 0 in K . We
have P'v D e��'P u D g and we write, similarly to (4.3),

kgk2L2.Q/ D kP1vk2L2.Q/ C kP2vk2L2.Q/ C i.ŒP2; P1	v; v/L2.Q/;

which yields,

kgk2L2.Q/ � ��1���1.�P 2
2 C i��ŒP2; P1	/v; v

�
L2.Q/

;

for � > 0 and 0 < �.��/�1 < 1. We note that �P2
2 C i��ŒP2; P1	 has for principal

symbol�p22 ���@tp2C��fp2; a1g. For � large, that is �� large, Lemma 4.7.3 with
�T �1 large, and the Gårding inequality (uniform in t) yield a constant C > 0 such
that

Ckgk2L2.Q/ � ��1 T

s
0

��1kvk22dt

� �3k� 3
2 vk20 C �k� 1

2 rxvk20 C ��1 P
1�j;k�n

k�� 1
2 @2jkvk2

0
:

We conclude as in the proof of Theorem 4.3.4. �

4.7.2 Alternative Derivation

Similarly to what we did in Sect. 4.3 in the elliptic case we can provide an alternative
proof of the Carleman estimate, simply based on integration by parts.

Let Q be such that j Q 0j � C > 0. We set  D Q CK0 with K0 D mk Q k1 and
m > 1. We then introduce

� D e� ; ' D e� � e� < 0;

with  D 2mk Q k1 (see [4]). We then have

' 0 D � 0�; j'j � C�2: (4.22)

We recall that we have

1 � CT 2�; j� 0j � CT �2; j� 00j � CT 2�3: (4.23)

Theorem 4.7.5. Let K be a compact set of ˝ and V an open subset of ˝ that is a
neighborhood of K . There exist C > 0, �1 > 0, �1 > 0 such that
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�3�4k.��/ 32 e��'uk2L2.Q/C��2k.��/
1
2 e��'rxuk2L2.Q/C��1k.��/� 1

2 e��'@tuk2L2.Q/
C��1 P

1�j;k�n
k.��/� 1

2 e��'@2jkuk2
L2.Q/

� Cke��'P uk2L2.Q/;

for u 2 C 1.Œ0; T 	 � ˝/, with u.t/ 2 C 1
c .K/ for all t 2 Œ0; T 	, and � � �1 and

� � �1.T C T 2/.

Proof. Above we wrote the conjugated operator P' as P' D P2 C iP1 with

P2 D D2
x � j��' 0j2 � �'.x/� 0.t/;

P1 D ��
�h' 0;Dxi C hDx; '

0i�CDt D 2��h' 0;Dxi � i���' CDt :

Following [5] (which corresponds to what is done in Sect. 4.3.1.1) we write

P2v C iP 1v D g D g C ����';

with iP 1 D 2��h' 0;rxi C �.�C 1/��' C @t . The choice made in [5] is � D 1.
We then write

kgk2
L2.Q/

D kP2vk2L2.Q/ C kP 1vk2L2.Q/ C 2Re.P2v; iP 1v/L2.Q/: (4.24)

We focus on the computation of Re.P2v; iP 1v/ which we write as a sum of 4 terms
Iij , 1 � i � 3, 1 � j � 3, where Iij is the inner product of the i th term in the
expression of P2v and the j th term in the expression of iP 1v above. The term Ii;j ,
1 � i; j � 2, can be recovered from the proof of Theorem 4.3.9:

I11 D 2�Re

“

Q

�' 00.rxv;rxv/ dtdx � �
“

Q

�.�x'/jrxvj2 dtdx;

I12 D �.�C 1/

“

Q

�.�x'/jrxvj2 dtdx C �.�C 1/

“

Q

�hrx�x';rxviv dtdx;

I21 D �3
“

Q

�3rx.j' 0j2rx'/jvj2 dtdx;

I22 D ��3.�C 1/

“

Q

�3j' 0j2.�x'/jvj2 dtdx:

and moreover
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I11 C I12 C I21 C I22 �C�3�4
“

Q

.��/3jvj2 dtdxCC��2
“

Q

��jrxvj2 dtdxCY;

(4.25)

for � sufficiently large, and

Y D 2��Re

“

Q

�� 00.rxv;rxv/ dtdx C �.�C 1/

“

Q

�hrx�';rxviv dtdx:

We have, for " > 0,

jY j � C

“

Q

.��� C "���2/�jrxvj2 dtdx C C"�T
4�3

“

Q

�3�jvj2 dtdx (4.26)

We now compute the additional terms.

Term I13. By integration by parts in x and t we simply find (using the Dirichlet
boundary condition):

I13 D Re

“

Q

D2
xv@tv dtdx D 1

2

“

Q

@t jDxvj2 dtdx D 0:

Term I23. We have

I23 D �1
2

“

Q

j��' 0j2@t jvj2 dtdx D
“

Q

�� 0j�' 0j2jvj2 dtdx;

which gives

jI23j � �2�2T

“

Q

�3�jvj2 dtdx: (4.27)

Term I33. Similarly we have

I33 D �1
2

“

Q

�'� 0@t jvj2 dtdx D 1

2

“

Q

�'� 00jvj2 dtdx;

and we have

jI33j � C�T 2
“

Q

�2�3jvj2 dtdx: (4.28)
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Term I31.

I31 D ��2
“

Q

'� 0�h' 0;rx jvj2i dtdx D �2
“

Q

� 0�rx.'rx'/jvj2 dtdx;

and we have

jI31j � C�2T �2
“

Q

�3�3jvj2 dtdx: (4.29)

Term I32. Finally I32 D ��2.�C 1/
’
Q
'� 0��'jvj2 dtdx, which gives

jI32j � C�2T �2
“

Q

�3�3jvj2 dtdx: (4.30)

With inequality (4.25) and estimates (4.26)–(4.30), for � , �=T and �=T 2

sufficiently large we obtain

CRe.P2v; iP 1v/ � �3�4
“

Q

.��/3jvj2 dtdx C ��2
“

Q

��jrxvj2 dtdx:

To incorporate the additional terms involving higher order derivatives we observe
that

��1k.��/� 1
2 @tvk2L2.Q/ � C��1T 2kP 1vk2L2.Q/ C C��2k.��/ 12 rxvk2L2.Q/

C C��4
“

Q

�„ƒ‚…
�T 4�3

�jvj2 dtdx:

As � � CT 2 we obtain

Ckgk2 � �3�4k.��/ 32 vk2L2.Q/ C ��2k.��/ 12 rxvk2L2.Q/ C ��1k.��/� 1
2 @tvk2L2.Q/:

An additional term with second-order derivatives in space can be integrated
similarly with the term P2v (using elliptic estimates). We conclude as in
Sect. 4.3.1.1. �

4.7.3 Local Carleman Estimates at the Boundary

Here, we work in the vicinity of the boundary @˝ with homogeneous Dirichlet
boundary condition. Microlocal arguments can be used to obtain a local estimate at
the boundary for a parabolic operator. Such a proof can be found in [12, 13]; the
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ideas of the proof are similar to the proof of Theorem 4.5.6. However, the positivity
argument used in the proof (with the Gårding inequality) implies the time direction.
This requires much more elaborate  DO calculus techniques than those we have
presented here. We thus refer to the references given above and simply state the
result. A nice result would be the derivation of the parabolic estimate at the boundary
following the G. Lebeau’s idea of the proof of Theorem 4.7.4, that is, a positivity
argument uniform in time.

Theorem 4.7.6. Let x0 2 @˝ and K be a compact set of ˝, x0 2 K , and V
an open subset of ˝ that is a neighborhood of K in ˝ , with K and V chosen
sufficiently small. Let ' satisfy Assumption 4.7.1 in V and @n'j@˝\V < 0; then,
there exist �1 � �0 and C > 0 such that

�3k� 3
2 e��'uk2L2.Q/ C �k� 1

2 e��'rxuk2L2.Q/ C ��1k�� 1
2 e��'@tuk2L2.Q/

C ��1 P
1�j;k�n

k�� 1
2 e��'@2jkuk2

L2.Q/
� Cke��'P uk2L2.Q/;

for u 2 C 1.Œ0; T 	 � ˝/, with supp.u.t// 
 K for all t 2 Œ0; T 	, and
uj.0;T /�.@˝\V / D 0, and � � �1.T C T 2/.

For the second more explicit method we have presented here, an inspection of
the proof of Theorem 4.7.5 shows that we can obtain a similar form of estimate at
the boundary.

We choose x0 2 @˝ ,K a compact set of˝, x0 2 K , and an neighborhood ofK ,
V , open subset of ˝ . Let Q 2 C 1.V / be such that j Q 0j � C > 0. As in Sect. 4.7
we set  D Q CK0 with K0 D mk Q k1 andm > 1. We then introduce

� D e� ; ' D e� � e� < 0;

with  D 2mk Q k1.

Theorem 4.7.7. If @n j@˝\V < 0, there exist �1 � �0, �1 > 0, and C > 0 such
that

�3�4k.��/ 32 e��'uk2L2.Q/C��2k.��/
1
2 e��'rxuk2L2.Q/C��1k.��/� 1

2 e��'@tuk2L2.Q/
C��1 P

1�j;k�n
k.��/� 1

2 e��'@2jkuk2
L2.Q/

� Cke��'P uk2L2.Q/;

for u 2 C 1.Œ0; T 	�˝/, with u.t/ 2 C 1
c .K/ for all t 2 Œ0; T 	, uj.0;T /�.@˝\V / D 0,

and � � �1 and � � �1.T C T 2/.
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4.7.4 Global Estimates for Parabolic Operators

As in Sect. 4.6 the local estimates we prove above can be patched together. We
choose a global weight function that satisfies the following requirements.

Assumption 4.7.8 Let !0 b ! b ˝ . The weight function '.x/ satisfies

'j@˝ D Cst; @n'j@˝ < 0; j' 0.x/j ¤ 0; x 2 ˝ n !0;
a2 D 0 ) fa2; a1g > 0; x 2 ˝ n !0:

Theorem 4.7.9 (Global Carleman estimate—parabolic case). Let ' be a func-
tion that satisfies Assumption 4.7.8. Then there exist �1 > 0 and C � 0 such that

�3k� 3
2 e��'uk2L2.Q/ C �k� 1

2 e��'rxuk2L2.Q/
C ��1k�� 1

2 e��'@tuk2L2.Q/ C ��1 P
1�j;k�n

k�� 1
2 e��'@2jkuk2

L2.Q/

� C
�
ke��'P uk2L2.Q/ C �3k� 3

2 e��'uk2L2..0;T /�!/
�
;

for u 2 C 1.Œ0; T 	 �˝/, such that uj.0;T /�@˝ D 0, and � � �1.T C T 2/.

Similarly we have the following result.

Theorem 4.7.10 (Global Carleman estimate—parabolic case). Let !0 b ! 

˝ . Let  be a function that satisfies j Q 0j � C > 0 in V n !0, Q j@˝ D Cst, and
@n Q j@˝\V < 0. Set  D Q CK0 with K0 D mk Q k1 andm > 1 and

� D e� ; ' D e� � e� < 0;

with  D 2mk Q k1
Then there exist �1 > 0, �1 > 0, and C � 0 such that

�3�4k.��/ 32 e��'uk2L2.Q/ C ��2k.��/ 12 e��'rxuk2L2.Q/
C ��1k.��/� 1

2 e��'@tuk2L2.Q/ C ��1 P
1�j;k�n

k.��/� 1
2 e��'@2jkuk2

L2.Q/

� C
�
ke��'P uk2L2.Q/ C �3�4k.��/ 32 e��'uk2L2..0;T /�!/

�
;

for u 2 C 1.Œ0; T 	 �˝/, such that uj.0;T /�@˝ D 0, � � �1, and � � �1.T C T 2/.
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As already explain in Sect. 4.6, the construction of the global weight function
we invoke here makes use of Morse functions and the associated approximation
theorem.

4.8 Controllability Results for Parabolic Equations

We denote by S.t/ the heat semigroup for homogeneous Dirichlet boundary
conditions that is S.t/y0 D y.t/ solution to

.@t ��/y D 0; in Q D .0; T / �˝; yj.0;T /�@˝ D 0; yjtD0 D y0:

By the Hille–Yoshida theorem, �� generates a C0-semigroup. This semigroup is in
fact analytic. We refer to [17] for all these notions.

Let ! 
 ˝ . We introduce the following operator:

Lt W L2..0; t/ �˝/ ! L2.˝/

f 7!
t

s
0

S.t � s/1!f .s/ ds:

The solution to

.@t ��/y D 1!f; in Q D .0; T / �˝; yj.0;T /�@˝ D 0; yjtD0 D y0;

(4.31)

is then of the form
y.t/ D S.t/y0 C Ltf:

Definition 4.8.1. We say that system (4.31) is approximately controllable at time
T if for any y0, yT 2 L2.˝/, and " > 0, there exists f 2 L2.Q/ such that

kyT � y.T /kL2.˝/ � ":

Note that this is equivalent to having the range of LT , R.LT /, dense in L2.˝/.

Definition 4.8.2. We say that system (4.31) is null-controllable at time T if for any
y0 2 L2.˝/, there exists f 2 L2.Q/ such that

y.T / D 0:

In other words the range of LT , R.LT /, contains all the natural trajectories at
time T :

8y0 2 L2; S.T /y0 2 R.LT /:
Hence this is often referred to the controllability to the trajectories.
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4.8.1 Unique Continuation and Applications to Approximate
Controllability

Here we shall prove the approximate controllability of the heat equation in the case
of a control function only acting in !.

Theorem 4.8.3. The range of LT , R.LT /, is dense in L2.˝/.

Proof. The density of R.LT / means

�
8f 2 L2..0; T / �˝/; .LT .f /; v/L2.˝/ D 0

�
) v D 0:

Observe that

.LT .f /; v/L2.˝/ D
T

s
0

.S.T � s/1!f .s/; v/ds D
T

s
0

.f .s/; 1!S.T � s/v/ds;

as S.t/ is selfadjoint. The density of R.LT / can now be written as

S.t/v D 0 in L2..0; T / � !/ ) v D 0:

As q.t/ D S.t/v is solution to

.@t ��/q D 0; in Q D .0; T / �˝; qj.0;T /�@˝ D 0; qjtD0 D v;

This follows from the unique continuation result of Proposition 4.8.4 below. �

Proposition 4.8.4. Let g be such that jg.y/j � C jyj. Let ˝ be an connected open
set in R

n and let ! 
 ˝ , with ! ¤ ;. If q 2 L2.0; T;H1
0 .˝// satisfies .@t ��/q D

g.q/ in .0; T / �˝ and q.t; x/ D 0 in .0; T / � !, then q vanishes in .0; T / �˝ .

This result follows from the local Carleman estimates we have obtained in Sect. 4.7.
The proof is similar to what is done in Sect. 4.4 in the elliptic case.

4.8.2 Null Controllability for the Heat Equation

Here we shall prove the null controllability of the heat equation.

Theorem 4.8.5. Let ! 
 ˝ . The heat equation is null controllable for a control
function acting in .0; T / � !.

This result was proven by G. Lebeau and L. Robbiano in [15] and A. Fursikov
and O. Yu. Imanuvilov in [5]. The two approaches they developed are different and
complementary. For a synthetic presentation of the Lebeau–Robbiano method we
refer to [12]. Here we follow the second approach, using that a global parabolic
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Carleman estimate directly implies an observability estimate, which, in turn, yields
the null controllability.

Remark 4.8.6. There are still not well understood discrepancies between these two
approaches: The Fursikov–Imanuvilov methods allows one to treat time-dependent
coefficients. The Lebeau–Robbiano method yields a fine knowledge of the cost of
the control for the lower eigenmodes of the elliptic operator and an asymptotic
estimation of the control cost at short time T (see e.g. [16, 20]).

The following result is central in the proof the null controllability of the heat
equation.

Proposition 4.8.7. The heat equation is null controllable at time T if and only if
there exists C0 D C0.T / such that

kS.T /qk2L2.˝/ � C0k1!S.t/qk2L2..0;T /�˝/: (4.32)

Inequality (4.32) is referred to as an observability inequality. The constant C0 is
observability constant.

Proof. The proof relies on the following property for bounded operators in Hilbert
spaces. Let X , Y , Z be three Hilbert spaces, A 2 L .X;Z/, and B 2 L .Y;Z/.
Then

R.A/ 
 R.B/ , 9C > 0; 8q 2 Z; kA�qkX � CkB�qkY :
Here X D L2.˝/, Y D L2..0; T / �˝/ and Z D L2.˝/. We take A D S.T /

and B D LT . Recall that S.T /� D S.T /. We find

L�
T W L2.˝/ ! L2..0; T / �˝/;

q 7! 1!S.T � t/q:

The null controllability is thus equivalent to having: there exists C > 0 such that

kS.T /qk2L2.˝/ � Ck1!S.T � t/qk2L2..0;T /�˝/
D Ck1!S.t/qk2L2..0;T /�˝/: �

We shall now prove such an observability inequality to conclude to the null
controllability of the heat equation. Let u.t/ D S.t/q, that is u is solution to

@tu ��u D 0; in Q D .0; T / �˝; uj.0;T /�@˝ D 0; ujtD0 D q:

From the global Carleman inequality of Theorems 4.7.9 or 4.7.10 we have

�3ke��'� 3
2 uk2L2.Q/ . �3ke��'� 3

2 uk2L2..0;T /�!/;

for � D �1.T C T 2/.
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In particular we have

3T=4

s
T=4

e
2�� inf

˝
'
�3ku.t/k2L2.˝/ dt .

T

s
0

e
2�� sup

˝

'
�3ku.t/k2L2.!/ dt:

As � D �1.T C T 2/ and �.t/ D .t.T � t//�1, and sup˝ ' � �C < 0, we check
that we have the following inequalities

Lemma 4.8.8. We have

e
2�� inf

˝
'
�3 & T �6e�C

�
1C1=T

�
; t 2 ŒT=4; 3T=4	;

e
2�� sup

˝

'
�3 . T �6; t 2 .0; T /:

It thus follows that we have

e�C
�
1C1=T

� 3T=4

s
T=4

ku.t/k2L2.˝/ dt .
T

s
0

ku.t/k2L2.!/ dt:

The natural parabolic energy decays gives

1

2
T ku.T /k2L2.˝/ �

3T=4

s
T=4

ku.t/k2L2.˝/ dt:

Hence we obtain

ku.T /kL2.˝/ . eC
�
1C1=T

�
kukL2..0;T /�!/:

From Proposition 4.8.7 we obtain the null controllability result of Theorem 4.8.5.

Appendix: Proofs of Intermediate Results

A.1 Proof of the Gårding Inequality

The symbol a.x; 
; �/ is of the form a.x; 
; �/ D am.x; 
; �/C am�1.x; 
; �/, with
am�1 2 S.�m�1/. For � sufficiently large, say � > �1, the full symbol a.x; 
; �/
satisfies

Rea.x; 
; �/ � C 00�m; x 2 K; 
 2 R
n; � � �1;

withC 0 < C 00 < C . LetU be a neighborhood ofK such that the previous inequality
holds for .x; 
/ 2 U � R

n with the constant C 00 replaced by C 000 that satisfies
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C 0 < C 000 < C 00 < C . Let �.x/ 2 C 1
c .U / be such that 0 � � � 1 and � D 1 in

a neighborhood of K . We then set Qa.x; 
; �/ D �.x/a.x; 
; �/ C C 000.1 � �/.x/�m

that satisfies

Qa 2 S.�m/ and Re Qa.x; 
; h/ � C 000�m; x 2 R
n; 
 2 R

n; � � �1: (4.33)

We note that .Op. Qa/u; u/ D .Op.a/u; u/ if supp.u/ 
 K . Without any loss of
generality we may thus consider that the symbol a satisfies (4.33) in the remaining
of the proof.

We then choose L > 0 such that C 0 < L < C 000 and we set

b.x; 
; �/ WD �
Rea.x; 
; �/ � L�m

� 1
2 2 S.�m=2/; and B D Op.b/:

The  DO symbolic calculus gives B� ı B D ReOp.a/ � Lm C R, with R 2
�.�m�1/, where ReOp.a/ actually means .Op.a/C Op.a/�/=2. We then have

Re.Op.a/u; u/ D .ReOp.a/u; u/ � L.mu; u/� .Ru; u/

� Lkm=2uk20 � L0kuk2.m�1/=2
� s

Rn

�m.L �L0=�/jOuj2d
:

We conclude the proof by taking � sufficiently large.

Alternative proof using the Sharp Gårding inequality (Theorem 4.2.8)

We have ˛.x; 
; �/ D a.x; 
; �/ � C 000�m such that Re.˛/ � 0. Then
Re.Op.˛/u; u/ � �C0kuk2m�1

2
, and hence

Re.Op.a/u; u/ � C 000kuk2m
2

� C0kuk2m�1
2
:

The conclusion thus follows as above. �

A.2 Example of Functions Fulfilling the Sub-ellipticity
Condition: Proof of Lemma 4.3.2

We shall actually prove the following stronger lemma here.

Lemma 4.8.9. Let V be a bounded open set in R
n and  2 C 1.Rn;R/ such that

j 0j > 0 in V . Then for � > 0 sufficiently large, ' D e� satisfies j' 0j � C > 0 in
V and
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8.x; 
/ 2 V � R
n; a2.x; 
/ D 0 ) fa2; a1g.x; 
/ � C > 0: (4.34)

Proof. The computation of the Poisson bracket

fa2; a1g D P
j

@
j a2@xj a1 � @xj a2@
j a1

gives

fa2; a1g D 4
P

1�j;k�n
�' 00

j;k.
j 
k C �2' 0
j '

0
k/ D 4.�' 00.
; 
/C �3' 00.' 0; ' 0//:

Here we have ' D e� , and thus ' 0 D �' 0 and ' 00
jk D �' 00

jk C �2' 0
j 

0
k ,

j; k D 1; : : : ; n, which yields

fa2; a1g D 4.��'/3
�
� j 0j4 C  00. 0;  0/C  00..��'/�1
; .��'/�1
/

C ��1.�'/�2h 0; 
i2„ ƒ‚ …
�0

�
:

When a2 D 0 we have j
j D ��'j 0j. We then note that

j 00..��'/�1
; .��'/�1
/j � C j 0j2; j 00. 0;  0/j � C j 0j2:

We deduce
fa2; a1g � 4.��'/3

�
� j 0j4 � C j 0j2� :

We then see that for � sufficiently large we have fa2; a1g � C� > 0, since j 0j �
C > 0. �

A.3 Proof of Lemma 4.3.3

We note that � is homogeneous of degree 4 in .�; 
/. As � can be continuously
extended to � D 0, we shall thus prove that � � C on the compact set C D
f.x; �; 
/I x 2 V ; � D j.�; 
/j D 1g.

In a more general framework, consider two continuous functions, f and g,
defined in a compact set K , and assume that f � 0 and f .y/ D 0 ) g.y/ �
L > 0. We set h� D �f C g.

For all y 2 K , either f .y/ D 0 and thus h�.y/ > L, or f .y/ > 0 and thus
there exists �y > 0 such that h�y .y/ > 0. This inequality holds locally in an open
neighborhoodVy of y. From the covering of K by the open sets Vy , we select a finite
covering Vy1 ; : : : ; Vyn and set � D max1�j�n �j . We then obtain h� � C > 0. We
simply apply this result to � on C . �
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A.4 Proof of Lemma 4.3.7

We saw in Sect. A.2 that

fa2; a1g D 4.��'/3
�
� j 0j4 C  00. 0;  0/C  00..��'/�1
; .��'/�1
/

C ��1.�'/�2h 0; 
i2�:

We observe that a2�' D �j
j2 � .� j 0j�'/2� ��2j 0j2' C �.� /'
�
, which yields

� D .��'/3
�
4 00..��'/�1
; .��'/�1
/C 2�.� j 0j2 C� /

ˇ̌
ˇ̌ 


��'

ˇ̌
ˇ̌
2

C 4��1.�'/�2h 0; 
i2 C .4 � 2�/� j 0j4 C 4 00. 0;  0/

� 2�j 0j2� 
�
;

which, as 0 < � < 2, we can make larger than C���2, with C� > 0 by taking �
sufficiently large. �

A.5 Proof of Lemma 4.3.10

With ' D e� we find

˛0 D r��3'3j 0j2r � � .�C 1/�2'2j 0j2��2j 0j2' C �.� /'
�

D .2 � �/�4j 0j4'3 C �3'3
�r.j 0j2r / � .�C 1/j 0j2� �:

as j 0j � C > 0 and 2� � > 0 we obtain ˛0 � C�4'3 for � sufficiently large. We
also find ˛1 D �

�
�2j 0j2'C�.� /'� and we obtain ˛1 � C�2' for � sufficiently

large. �
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Chapter 5
The Wave Equation: Control and Numerics

Sylvain Ervedoza and Enrique Zuazua

Abstract In these Notes we make a self-contained presentation of the theory
that has been developed recently for the numerical analysis of the controllability
properties of wave propagation phenomena and, in particular, for the constant
coefficient wave equation. We develop the so-called discrete approach. In other
words, we analyze to which extent the semidiscrete or fully discrete dynamics
arising when discretizing the wave equation by means of the most classical scheme
of numerical analysis, shear the property of being controllable, uniformly with
respect to the mesh-size parameters and if the corresponding controls converge to
the continuous ones as the mesh-size tends to zero. We focus mainly on finite-
difference approximation schemes for the one-dimensional constant coefficient
wave equation. Using the well known equivalence of the control problem with the
observation one, we analyze carefully the second one, which consists in determining
the total energy of solutions out of partial measurements. We show how spectral
analysis and the theory of non-harmonic Fourier series allows, first, to show that
high frequency wave packets may behave in a pathological manner and, second,
to design efficient filtering mechanisms. We also develop the multiplier approach
that allows to provide energy identities relating the total energy of solutions and
the energy concentrated on the boundary. These observability properties obtained
after filtering, by duality, allow to build controls that, normally, do not control the
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full dynamics of the system but rather guarantee a relaxed controllability property.
Despite of this they converge to the continuous ones. We also present a minor variant
of the classical Hilbert Uniqueness Method allowing to build smooth controls for
smooth data. This result plays a key role in the proof of the convergence rates of the
discrete controls towards the continuous ones. These results are illustrated by means
of several numerical experiments.

5.1 Introduction

In these notes, we make a survey presentation of the work done in the last years
on the problems of controllability and observability of waves from a numerical
analysis viewpoint. In particular, we explain that, even for numerical schemes that
converge in the classical sense of numerical analysis, one cannot expect them to
automatically be well behaved for observation and control purposes. This paper is
essentially an updated version of [114], in which we collect most of the more recent
developments.

Problems of control and observation of waves arise in many different contexts
and for various models but, to be more precise and better present the milestones
of the theory that has been developed so far, we will focus our analysis on the
wave equation, and mainly in the 1-dimensional setting where several methods can
be used to get rather explicit and complete results. We shall mainly focus on the
finite difference method on a regular grid. Some of these results can be extended
to several space dimensions but, still, a lot remains to be done to deal with general
variable coefficient wave equations and with schemes on non-uniform grids in one
and several space dimensions.

Controllability refers to the possibility of driving the system under consideration
(here, the wave equation) to a prescribed final state at a given final time using a
control function. Of course, this question is interesting when the control function
does not act everywhere but is rather located in some part of the domain or on its
boundary through suitable actuators.

On the other hand, observability refers to the possibility of measuring the whole
energy of the solutions of the free trajectories (i.e., without control) through partial
measurements. Again, one easily understands that such a property is interesting and
non-trivial only when the measurements are not complete and done on the whole
domain where waves propagate, but they are rather localized in part of the domain
or on its boundary through suitable sensors.

It turns out that these two properties are equivalent and dual one from another.
This is the basis of the so-called Hilbert Uniqueness Method [68, 69] introduced
by J.-L. Lions, that we shall recall more precisely in Sect. 5.2, first in a finite
dimensional setting and then for abstract conservative systems such as the wave
equation.

In particular, on the basis of the Hilbert Uniqueness Method (HUM) one can also
build algorithms to compute the optimal control, the one of minimal norm, in a sense
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to be made precise (see details in Sect. 5.2). We shall in particular explain how, using
the observability property, one can slightly modify HUM with a weight function in
time, vanishing for the initial and final time, so that the control obtained minimizing
this functional preserves the regularity properties of the data to be controlled, see
Sect. 5.2.3 and [35]. Curiously enough, these results, inspired in [24] where the
regularity of the control for the wave equation is analyzed through microlocal
analysis, are very recent. The abstract version of these results was proved in [35]
using a simplified proof without requiring microlocal analysis tools. Note however
that the results in [24], which are specific to the wave equation, are stronger than
the ones in [35] since they yield also a very precise dyadic decomposition of the
controls.

In the context of wave propagation phenomena, observability and controllability
properties are very much related to the propagation of rays, that, for the constant
coefficient wave equation, are straight space-time lines traveling at velocity one
and bouncing on the boundary according to the Descartes–Snell law of Geometric
Optics (see Sect. 5.3.4 and [6, 14]). In view of the finite velocity of propagation of
rays, as we shall explain, one needs the observation/control time to be large enough
to allow all the characteristics to meet the observation/control region and ensure the
observability/controllability properties to hold.

In 1-d, these properties of propagation and reflection are the essence of the
method of characteristics leading to D’Alembert’s formula. That is why our
presentation of the observability/controllability of waves focuses mainly in the 1-d
setting, see Sect. 5.3.

As we said above, HUM characterizes the optimal control through a minimiza-
tion process of a quadratic coercive functional for the solutions of the adjoint
wave equation. This allows characterizing the controls through the corresponding
Euler–Lagrange equations or Optimality System and building efficient algorithms
for computing them. This is the so called continuous approach in which one first
derives a complete characterization of the controls for the continuous wave model
to later use numerical analysis tools to approximate them. There are of course
different ways of implementing this continuous approach for the construction of
numerical approximations of the controls. The first article devoted to this issue is,
probably [5]. Recently, the continuous approach to numerical control was developed
differently by Cindae et al. [20]. They adapted at the numerical level the well-
known iterative algorithm by D. Russell [96] in which the property of controllability
is obtained from the stabilization one by an iterated back and forth application
of the dissipative semigroup. We also refer to the recent works of D. Auroux et
J. Blum [3] that have developed a similar approach in the context of the control
of nonlinear viscous conservation laws. As we shall further explain in [32], the
methods in [20] lead to very similar algorithms to those one would get by applying
numerical approximations in the conjugate gradient algorithm associated to the
continuous minimization problem that HUM leads to. While in [20] the back and
forth iteration is done always on the dissipative system, when following HUM one
alternates between the state equation and the adjoint one in dual functional settings.
Both approaches lead to similar convergence rates but the HUM one is more flexible
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since it can be adapted to a large class of problems, including those in which the
control operator is unbounded as it happens often in practice and in particular for
the boundary control of the wave equation.

But, very often in practice, one frequently applies the more direct, so called,
discrete approach which consists on, first, discretizing the equation using a conver-
gent numerical approximation scheme, to later compute a control for this numerical
approximation. The model obtained after numerical discretization being a finite
dimensional time continuous or discrete system, the computation of its control can
be performed using standard existing finite-dimensional methods and software. But
this natural approach often fails. In particular, in the context of the wave equation
under consideration, as we shall see below, for some initial data, this approach
yields discrete controls that are not even bounded as the mesh-size goes to zero,
see Theorem 5.4.7.

Note that this point of view was systematically developed by R. Glowinski, J. L.
Lions and coworkers (see [43,44]) to build numerical approximation algorithms. In
their works they developed and implemented conjugate gradient descent algorithms
combined with Finite Element Methods for approximating the wave equations. They
observed the bad conditioning of the corresponding discrete problems and indicated
the need of filtering the high frequencies. This was done in particular using two-grid
filtering techniques (see R. Glowinski [40]) and motivated a substantial part of the
work that we present in this article.

Part of this paper is devoted to develop a thorough study of this divergence or
blow up phenomenon for the space finite-difference semidiscrete 1-d wave equation
as a model example since other classical schemes, such as the ones given by finite
element methods, exhibit the same behavior.

Our approach is based on the analysis of the observability property of these
finite-dimensional systems that approximate the 1-d wave equation. In particular,
as we shall see, even when the convergence of the numerical method in the classical
sense of numerical analysis is guaranteed, the discrete systems are not uniformly
observable with respect to the space discretization parameter, see Theorem 5.4.2.
As a consequence, by duality, there are initial data for which the sequence of
corresponding discrete controls diverge (Theorem 5.4.7). In other words, the
stability in what concerns the solvability of the initial-boundary value problem is
not sufficient to guarantee the stability with respect to the observability property.

The lack of uniform observability can be explained and understood by looking to
the propagation properties of the solutions of the numerical approximation schemes.
In Sect. 5.4.3, we will explain that the numerical schemes generate spurious
solutions traveling with the so called group velocity which, for high frequency
numerical solutions, is of the order of the mesh-size parameter [72,101,104]. To be
more precise, the high-frequencies involved in these wave packets are of the order of
1=h, h being the space mesh-size. Asymptotically, as h tends to zero, they weakly
converge to zero, thus being compatible with the convergence of the numerical
scheme in the classical sense of numerical analysis, while being an obstruction
for the observability property to hold uniformly with respect to the mesh size
parameter h. This is so since the time that these wave packets need to get into the
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observation region is of the order of 1=h. Actually, for T > 0 fixed, the observability
constant for the semidiscrete problems is of the order of exp.C=h/, see [77].

Our analysis of the lack of uniform observability for the discrete waves also
indicates the path to avoid these divergence and blow up phenomena to occur.
A careful analysis of the velocity of propagation of numerical waves shows
that low frequency components propagate with a uniform velocity, a fact that is
compatible with uniform observability properties. Here, by low-frequencies we refer
to those covering a fixed percentage of the spectrum of the corresponding discrete
dynamics, independent of the mesh-size. These “low” frequencies end up filling
all the frequency range as the discretization parameter goes to zero. This shows
how, through filtering, i.e. focusing on the low-frequency components, one can
prove uniform observability results and still, by letting h tend to zero, recover the
full dynamics of the continuous model. The need of filtering the high-frequency
components to focus on the low-frequency ones was already observed in the papers
by R. Glowinski, J.-L. Lions & all [40, 43, 44]. Among the different ways of doing
that, in this paper we shall present Fourier filtering techniques [53], Tychonoff
regularization methods and bi-grid techniques [2, 82, 83].

In Sect. 5.5 we show how these ideas yield observability properties that hold
uniformly with respect to the discretization parameters within the subspace of
filtered solutions. We will also briefly present the results in [111] and in [27] in
the multi-dimensional setting.

These uniform observability properties lead to controllability results with uni-
formly bounded controls. However, the controls one obtains in this manner do not
control the full state but only suitable low-frequency projections of the numerical
solutions. We shall then show how to prove the convergence of the discrete controls
towards the continuous ones and to derive convergence rates. The procedure we
describe is general and can be adapted to various situations, i.e. different models
and numerical approximation schemes.

Note that, to the best of our knowledge, this is the first time that convergence rates
are proved for numerical approximation methods of the HUM control. This requires,
in particular, a systematic method to build controls preserving the regularity of the
data to be controlled. This is done by a suitable weighted version of the HUM-
method, see Theorem 5.2.12 and [35].

The paper is organized as follows. Section 5.2 recalls the basic facts on
the Hilbert Uniqueness Method. It also includes the main results of [35] on
the regularity of controls for smooth data. In Sect. 5.3 we present the main
observability/controllability results for the constant coefficient one-dimensional
(1-d) wave equation, and briefly comment on the works [6, 14] in the multi-
dimensional setting, using microlocal analysis techniques. The main results on the
lack of observability/controllability of finite difference semidiscretizations are then
presented in Sect. 5.4. In Sect. 5.5, we discuss several methods for curing high-
frequency pathologies and getting weak observability estimates. In Sect. 5.6 we
describe how these observability results can be used to develop numerical methods
to obtain discrete controls that converge towards the continuous ones, with explicit
convergence rates whenever the data to be controlled are smoother. In Sect. 5.7 we
discuss several other related issues and present a list of interesting open problems.
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Notations

In all these notes, we shall use several different notations:

• In an abstract setting, x is the state, solution of the controlled equation, A is the
operator that prescribes the dynamics, B is the control operator, v is a generic
control and ' is the solution of the adjoint equation.

• When considering the wave equation, the state is denoted by y and the adjoint
state by u.

• Several controls shall appear. The notation v is used to denote a generic control
function. Vhum refers to the control given by the Hilbert Uniqueness Method and
V to the control given by the method in [35], which will be explained hereafter
in Sect. 5.2.1.

• Indexes h will refer to the space mesh size and all the above notations will be
denoted with indexes h when denoting quantities related to the semidiscrete
system. Furthermore, all vectorial quantities depending on h are noted in bold
characters.

5.2 Control and Observation of Finite-Dimensional
and Abstract Systems

5.2.1 Control of Finite-Dimensional Systems

Numerical approximation schemes and, more precisely, those that are semidiscrete
(discrete in space and continuous in time) yield finite-dimensional systems of
Ordinary Differential Equations (ODEs).

There is by now an extensive literature on the control of finite-dimensional
systems, and the problem is well understood for linear ones (see [66, 98]). In this
section we recall the basics ingredients of the theory and we present it in a manner
well suited to be extended to the PDE setting and to the limit process from finite to
infinite dimensions that numerical analysis requires (see [36, 78] for more details).
Indeed, the problem of convergence of controls as the mesh size in the numerical
approximation tends to zero is very closely related to passing to the limit as the
dimension of finite-dimensional systems tends to infinity. The latter topic is widely
open and this article aims at describing some of its key aspects.

Consider the finite-dimensional system of dimension N :

x0 D Ax C Bv; 0 � t � T I x.0/ D x0; (5.1)

where xDx.t/2R
N is the N -dimensional state and v D v.t/2R

M is the
M -dimensional control, with M �N .
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Here A is an N � N matrix with constant real coefficients and B is an N �M
matrix. The matrix A determines the dynamics of the system and B models the way
M controls act on it.

In practice, it is desirable to control the N components of the system with a low
number of controls, and the best would be to do it by a single one, in which case
M D 1.

System (5.1) is said to be controllable in time T when every initial datum
x0 2R

N can be driven to any final datum xT in R
N in time T . In other words,

we ask if for any .x0; xT / 2 .RN /2, there exists a control function v W Œ0; T 	 ! R
M

so that the solution x of (5.1) satisfies

x.T / D xT : (5.2)

Since we are in a linear finite dimensional setting, it is easy to check that system
(5.1) is controllable in time T > 0 if and only if it is null-controllable in time T > 0,
i.e. if for any x0 2 R

N , there exists a control function v W Œ0; T 	 ! R
M so that the

solution x of (5.1) satisfies

x.T / D 0: (5.3)

In the following we shall focus on the null-controllability and we shall refer to it
simply as controllability.

There is a necessary and sufficient condition for controllability which is purely
algebraic in nature. It is the so-called Kalman condition: System (5.1) is controllable
in some time T > 0 if and only if

rankŒB;AB; : : : ; AN�1B	 D N: (5.4)

There is a direct proof of this result which uses the representation of solutions of
(5.1) by means of the variations of constants formula. However, the methods we
shall develop along this article rely more on the dual (but completely equivalent!)
problem of observability of the adjoint system that we discuss now.

Consider the adjoint system

� ' 0 D A�'; 0 � t � T I '.T / D 'T : (5.5)

Multiplying (5.1) by ' and integrating it on .0; T /, one immediately gets that for
all 'T 2 R

N ,

hx.T /; 'T iRN D
TZ

0

hv; B�'iRM dt C hx0; '.0/iRN : (5.6)
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Hence v is a control function for (5.1) if and only if for all 'T 2 R
N ,

0 D
TZ

0

hv; B�'iRM dt C hx0; '.0/iRN : (5.7)

This characterization of the controls for (5.1) is the heart of the duality methods
we shall use in all these notes, the so-called Hilbert Uniqueness Method (HUM),
introduced by J. L. Lions in [68,69] and that has tremendously influenced the recent
development of the field of PDE control and related topics.

Theorem 5.2.1. System (5.1) is controllable in time T if and only if the adjoint sys-
tem (5.5) is observable in time T , i.e., if there exists a constant Cobs DCobs.T />0

such that, for every solution ' of (5.5) with initial data 'T it holds:

j'.0/j2
RN

� C2
obs

TZ

0

jB�'j2
RM
dt: (5.8)

Both properties hold in all time T if and only if the Kalman rank condition (5.4) is
satisfied.

Remark 5.2.2. The equivalence between the controllability of the state equation
and the observability of the adjoint one is one of the most classical ingredi-
ents of the controllability theory of finite-dimensional systems (see, for instance,
Theorem 1.10.2 in [57]). In general, observability refers to the possibility of
recovering the full solution by means of some partial measurements or observations.
In the present context, i.e. in (5.8), one is allowed to measure the outputB�' during
the time interval .0; T / and wishes to recover complete information on the initial
datum '.0/. Since in finite-dimensions all norms are equivalent, and the ODEs
under consideration are well-posed in the forward and backward sense of time,
observing the value of the solution of the adjoint state equation '.0/ at t D 0 as
in (5.8) is equivalent to observing its datum 'T at time t D T or both of them.

Proof. We proceed in several steps.

Step 1. Construction of controls as minimizers of a quadratic functional. The
proof we present here provides a constructive method for building controls from the
observability inequality (5.8). Indeed, assume (5.8) holds and consider the quadratic
functional J W RN ! R:

J.'T / D 1

2

TZ

0

jB�'.t/j2
RM
dt C hx0; '.0/iRN : (5.9)

If ˚T is a minimizer for J , since DJ.˚T / D 0, then the control
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Vhum D B�˚; (5.10)

where ˚ is the solution of (5.5) with initial datum ˚T at time t D T satisfies (5.7).
Hence the corresponding solution x of (5.1) satisfies the control requirement
x.T /D 0.

Thus, to build the control it is sufficient to minimize the functional J . For,
we apply the direct method of the calculus of variations. The functional J being
continuous, quadratic, and nonnegative, since we are in finite space dimensions, it
is sufficient to prove its coercivity, which holds if and only if (5.8) holds.

Step 2. Equivalence between the observability inequality (5.8) and the Kalman
condition.

Since we are in finite-dimensions and all norms are equivalent, (5.8) is equivalent
to the following uniqueness or unique continuation property: Does the fact thatB�'
vanish for all 0 � t � T imply that ' 	 0?

Taking into account that solutions ' are analytic in time, B�' vanishes for all
t 2 .0; T / if and only if all the derivatives of B�' of any order at time t D T vanish.
Since 'D e�A�.t�T /'T this is equivalent to B�ŒA�	k'T 	 0 for all k� 0. But,
according to the Cayley–Hamilton theorem, this holds if and only if it is satisfied
for all kD 0; : : : ; N � 1. Therefore B�'	 0 is equivalent to 'T 2 \k2f0;N�1g
Ker.B�ŒA�	k 	/. Hence (5.8) holds if and only if \k2f0;:::;N�1gKer.B�ŒA�	k 	/D f0g,
which is obviously equivalent to (5.4).

Step 3. Lack of controllability when unique continuation fails. If the observabil-
ity estimate (5.8) does not hold, there exists a non-trivial O'T ¤ 0 so thatB� O'.t/ D 0

for all t 2 .0; T /. We claim that the initial data x0 D O'.0/ cannot be steered to
xT D 0. Otherwise, for some control function v, one would have from (5.7) that

0 D
TZ

0

hv; B� O'iRM C hx0; O'.0/iRN ;

which would imply j O'.0/j2 D 0 and then contradict the fact that O'T ¤ 0. �

Remark 5.2.3. The problem of observability can be formulated as that of determin-
ing uniquely the adjoint state everywhere in terms of partial measurements. The
property of observability of the adjoint system (5.5) is equivalent to the inequality
(5.8) because of the linear character of the system. In the context of infinite-
dimensional systems or PDE this issue is sensitive to the norms under consideration.

Remark 5.2.4. It is important to note that in this finite-dimensional context, the
value of time T plays no role in what concerns the property of controllability. In
particular, whether a system is controllable (or its adjoint observable) is independent
of the time T of control. Note that the situation is totally different for the wave
equation. There, due to the finite velocity of propagation, the time needed to
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control/observe waves from the boundary needs to be large enough, of the order of
the size of the ratio between the size of the domain and the velocity of propagation.

In fact, the main task to be undertaken to pass to the limit in numerical
approximations of control problems for wave equations as the mesh size tends to
zero is to explain why, even though at the finite-dimensional level the control time
T is irrelevant, it may play a key role for PDEs.

Note however that, even at the level of finite-dimensional systems, the problem
of how the size of controls depends on the control time T and in particular how they
behave as T ! 0 is an interesting issue, see [97].

Remark 5.2.5. Using (5.7) with ' D ˚ given by the minimization of the functional
J in (5.9), one easily checks that any control for (5.1)–(5.3) satisfies

TZ

0

hv; VhumiRM dt D
TZ

0

hv; B�˚iRM dt D �hx0; ˚.0/iRN

D
TZ

0

jB�˚ j2
RM
dt D

TZ

0

jVhumj2
RM
dt:

This immediately yields that the HUM control Vhum is the one of minimal
L2.0; T IRM/-norm.

The proof of Theorem 5.2.1 also yields the following important result:

Corollary 5.2.6. Given T > 0, we assume that (5.8) holds.
Then for any x0 2 R

N , there is only one control function satisfying (5.3) that can
be written as B�' for ' solution of (5.5). This is the so-called HUM control Vhum

constructed in (5.9)–(5.10).

Proof. Such a control should satisfy (5.7), hence '.T / should be a critical point of
J defined in (5.9). But J is strictly convex because of (5.8) and therefore has only
one critical point. �

Again, this has an important consequence:

Corollary 5.2.7. Given T > 0, we assume that (5.8) holds.
Then the map constructed in Theorem 5.2.1

Vhum W x0 2 R
N 7! Vhum 2 L2.0; T IRM/; (5.11)

where Vhum is the control computed in (5.10), is linear.

Proof. Given any pairs x01 , x02 , obviously, by linearity, the solution x of (5.1)
with initial data .x01 C �x02/ and control function Vhum.x

0
1/ C �Vhum.x

0
2/ satisfies

x.T /D 0. Moreover, using Corollary (5.2.6), one easily deduces that Vhum.x
0
1 C

�x02/ coincides with Vhum.x
0
1/C �Vhum.x

0
2/. �
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The norm of this map can even be characterized:

Theorem 5.2.8. Given T > 0, we assume that (5.8) holds, the norm of the control
map Vhum W RN ! L2.0; T IRM/ coincides with Cobs, the observability constant
in (5.8).

Proof. The proof of the controllability in Theorem 5.2.1 yields explicit bounds on
the controls Vhum in (5.10) in terms of the observability constant in (5.8). Indeed,
plugging ' D ˚ in (5.7), the control VHum given by (5.10) can be seen to satisfy

kVhumkL2.0;T IRM / � Cobsjx0jRN ; (5.12)

Cobs being the same constant as in (5.8). Therefore, kVhumkL..RN /2IL2.0;T IRM // �
Cobs.

We shall now prove the reverse inequality. Take O' non-trivial such that it saturates
(5.8), and set x0 D � O'.0/. Then, using (5.7) with ' D O', any control v for x0 should
satisfy

j O'.0/j2
RN

D jx0j2
RN

D
TZ

0

hv; B� O'iRM dt � kvkL2.0;T IRM / kB� O'kL2.0;T IRM / :

Using that O' is non-trivial and saturates (5.8), we find out that the control function
Vhum.� O'.0// should be of norm at least Cobsj O'.0/j, hence the result. �

Remark 5.2.9. Step 3 of the proof of Theorem 5.2.1 and the proof of Theorem 5.2.8
rely on the same idea, that data that are difficult to observe correspond to the ones
that are the most difficult ones to control.

5.2.2 Controllability and Observability for Abstract
Conservative Systems

In this section, let X be a Hilbert space endowed with the norm k�kX and let
TD .Tt /t2R be a strongly continuous group on X , with generator A W D.A/ 

X !X .

We further assume that A is a skew-adjoint operator A� D �A.
For convenience, we also assume that A is invertible with continuous inverse

in X . This can be done without loss of generality by translating the semigroup if
necessary using ˇ 2 R and replacing A by A � iˇI .

Define then the Hilbert space X1 D D.A/ of elements of X such that
kAxkX <1, endowed with the norm k�k1 D kA�kX . Also define X�1 as the
completion of X with respect to the norm k�k�1 D ��A�1���

X
.
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Let us then consider the control system

x0 D Ax C Bv; t � 0; x.0/ D x0 2 X; (5.13)

where B 2 L.U ; X�1/, U is an Hilbert space which describes the possible actions
of the control, and v 2 L2loc.Œ0;1/I U / is a control function.

We assume that the operator B is admissible in the sense of [102, Def. 4.2.1]:

Definition 5.2.10. The operatorB 2 L.U ; X�1/ is said to be an admissible control
operator for T if for some � > 0, the operator R� defined on L2.0; T I U / by

R�v D
�Z

0

T��sBv.s/ ds

satisfies Ran R� 
 X , where Ran˚� denotes the range of the map ˚� .
When B is an admissible control operator for T, system (5.13) is called

admissible.

Note that, obviously, if B is a bounded operator, that is if B 2 L.U ; X/, then B is
admissible for T. But there are non-trivial examples as, for instance, the boundary
control of the wave equation with Dirichlet boundary conditions, in which B is
unbounded but admissible, see [68]. In such cases, the admissibility property is then
a consequence of a suitable hidden regularity result for the solutions of the adjoint
system.

To be more precise, the admissibility of B for T is equivalent to the existence of
a time T > 0 and a constantKT > 0 such that any solution of

' 0 D A'; t 2 .0; T /; '.T / D 'T (5.14)

satisfies

TZ

0

kB�'.t/k2U dt � KT

��'T ��2
X
: (5.15)

In this section we will always assume that B is an admissible control operator
for T. Then, for every x0 2 X and v 2 L2loc.Œ0;1/I U /, (5.13) has a unique mild
solution x which belongs to C.Œ0;1/IX/ (see [102, Proposition 4.2.5]).

Our purpose is to study the controllability of system (5.13).
System (5.13) is said to be null controllable in time T if for any x0 2 X , there

exists a control function v 2 L2.0; T I U / such that the solution of (5.13) satisfies

x.T / D 0: (5.16)

System (5.13) is said to be null controllable if it is null controllable in some time
T > 0.
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Note that since system (5.13) is linear and time-reversible, an easy argument left
to the reader shows that system (5.13) is null controllable in time T if and only
if it is exactly controllable, i.e. for all x0; xT in X , there exists a control function
v 2 L2.0; T I U / such that the solution x of (5.13) with initial data x0 and control
function v satisfies x.T / D xT . Hence we will focus on the null-controllability
property in the sequel, and we shall refer to it simply as controllability.

Here again, we claim that system (5.13) is controllable in time T if and only if
there exists a constant Cobs such that all solutions ' of the adjoint (5.14) satisfy

k'.0/k2X � C2
obs

TZ

0

kB�'.t/k2U dt: (5.17)

We shall refer the interested reader to [68] for the proof of the fact that the exact
controllability in time T implies the observability (5.17) for the adjoint system
(5.14). This is based on a closed graph theorem.

The other implication is actually proved in Step 1 of the proof of Theorem 5.2.1,
which describes the Hilbert Uniqueness Method. The idea is to find a minimizer of
the functional

J.'T / D 1

2

TZ

0

kB�'.t/k2U dt C hx0; '.0/iX; 'T 2 X: (5.18)

Note that such a minimizer exists and is unique due to the observability prop-
erty (5.17). Then, if ˚T denotes the minimizer of J , since DJ.˚T /D 0, the
function

Vhum D B�˚; (5.19)

where ˚ is the corresponding solution of (5.14) is a control function. Indeed,
it satisfies for all 'T 2 X ,

TZ

0

hVhum;B
�'.t/iU dt C hx0; '.0/iX D 0; (5.20)

which, as in (5.7), characterizes the controls of (5.13).

5.2.3 Smoothness Results for HUM Controls

In this section, we assume that the adjoint system (5.14) satisfies the observability
assumption (5.17) in some time T �. We also assume that the admissibility property
holds.
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We now address the issue of the regularity of the control function Vhum obtained
by minimizing the functional J in (5.18). To be more precise, we analyze whether
this control preserves the smoothness of the initial data to be controlled.

According to a counterexample that we will present later on in Sect. 5.3.3, we will
see that, under the very general assumptions under consideration, no smoothness
of the control computed by the minimization of the functional J in (5.9) can be
expected.

We thus propose an alternate method, based on HUM, which yields a control
of minimal norm in some weighted (in time) L2 space, and for which we prove
that, with no further assumptions, if x0 2X1, then this control function belongs
to H1

0 .0; T I U /. Thus, this result can be readily applied to the most relevant
examples, as it is for instance the case of the wave equation with Dirichlet boundary
control. In particular, this implies that the controlled solution x of (5.13) belongs to
C1.Œ0; T 	; X/ and also, in various situations (see Sect. 5.3.5), to a strict subspace of
X for all time t 2 Œ0; T 	, which will reflect the extra regularity of the initial data to
be controlled. In particular, if BB� maps X1 into X1, then the controlled solution x
will belong to C0.Œ0; T 	IX1/.

Fix T > T � and choose ı > 0 such that T � 2ı � T �. Let � D �.t/ 2 L1.R/
be such that

� W R ! Œ0; 1	; �.t/ D
(
0 if t … .0; T /;
1 if t 2 Œı; T � ı	:

(5.21)

In particular, there exists a positive constant Cobs such that any solution ' of (5.14)
satisfies

k'.0/k2X � C2
obs

TZ

0

�.t/ kB�'.t/k2U dt: (5.22)

Then define the functional J by

J.'T / D 1

2

TZ

0

�.t/ kB�'.t/k2U dt C hx0; '.0/iX; (5.23)

where ' denotes the solution of the adjoint system (5.14) with initial data 'T .
Inequality (5.22) then implies the strict convexity of the functional J and its

coercivity, but with respect to the norm

��'T ��2
obs

D
TZ

0

�.t/ kB�'.t/k2U dt: (5.24)
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Let us now remark that, since we assumed that T is a strongly continuous unitary
group, the three norms

��'T ��
X
; k'.0/kX and

��'T ��
obs

(in view of (5.15)–(5.22))
are equivalent.

We are now in position to state our first result:

Proposition 5.2.11. Let x0 2X . Assume that system (5.13) is admissible and
exactly observable in some time T �. Let T > T � and � 2 L1.R/ as in (5.21).

Then the functional J in (5.23) has a unique minimizer ˚T 2 X on X . Besides,
the function V given by

V.t/ D �.t/B�˚.t/; (5.25)

where ˚.t/ is the solution of (5.14) with initial datum ˚T , is a control function
for system (5.13). This control can also be characterized as the one of minimal
L2.0; T I dt=�I U /-norm among all possible controls for which the solution of
(5.13) satisfies the control requirement (5.16). Besides,

TZ

0

kV.t/k2U
dt

�.t/
D ��˚T

��2
obs

� C2
obs kx0k2X ; (5.26)

where Cobs is the constant in the observability inequality (5.22).
Moreover, this process defines linear maps

Va W
�
X �! X� D X

x0 7! ˚T and V W
8
<
:
X �! L2

�
0; T;

dt

�.t/
I U

�

x0 7! V:

(5.27)

Besides, V is the unique admissible control function that can be written v.t/ D
�.t/B�'.t/ for some ' solution of the adjoint (5.14).

This result is similar to those obtained in the context of HUM (see [68]
and previous paragraphs) and follows the same lines as Step 1 of the proof of
Theorem 5.2.1. Normally the weight � is simply taken to be � 	 1 on Œ0; T 	 while
in the present formulation, the fact that it vanishes at t D 0; T plays a key role.

The main novelty and advantage of using the weight function � is that, with no
further assumption on the control operator B , the control inherits the regularity of
the data to be controlled.

To state our results, it is convenient to introduce, for s 2 RC, some notations: dse
denotes the smallest integer satisfying dse � s, bsc is the largest integer satisfying
bsc � s and fsg D s� bsc. Finally, the space C s denotes the classical Hölder space.

Theorem 5.2.12 ([35]). Assume that the hypotheses of Proposition 5.2.11 are
satisfied.

Let s 2 RC be a nonnegative real number and further assume that � 2 C dse.R/.
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If the initial datum x0 to be controlled belongs to D.As/, then the minimizer ˚T

given by Proposition 5.2.11 and the control function V given by (5.25), respectively,
belong to D.As/ andHs

0 .0; T I U /.
Besides, there exists a positive constant Cs D Cs.�; Cobs;KT / independent of

x0 2 D.As/ such that

��˚T
��2

D.As/
C kV k2Hs

0 .0;T IU / � Cs
��x0��2

D.As/
: (5.28)

In other words, the maps Va and V defined in (5.27) satisfy:

Va W D.As/ �! D.As/; V W D.As/ �! Hs
0 .0; T I U /: (5.29)

In other words, the constructive method we have proposed, strongly inspired by
HUM, naturally reads the regularity of the initial data to be controlled, and provides
smoother controls for smoother initial data. Note however that if one is interested to
the regularity in space of the controlled trajectory, one needs to work slightly more.

Indeed, one of the main consequences of Theorem 5.2.13 is the following
regularity result for the controlled trajectory:

Corollary 5.2.13 ([35]). Under the assumptions of Theorem 5.2.12, if the initial
datum x0 to be controlled belongs to D.As/, then the controlled solution x of (5.13)
with the control function V given by Proposition 5.2.11 belongs to

C s.Œ0; T 	IX/ bsc\
kD0 C

k.Œ0; T 	I Xs�k/; (5.30)

where the spaces .Xj /j2N are defined by induction by

X0 D X; Xj D A�1.Xj�1 C BB�D.Aj //; (5.31)

and the spaces Xs for s � 0 are defined by interpolation by

Xs D ŒXbsc;Xdse	fsg:

The spaces Xj are not explicit in general. However, there are several cases in
which they can be shown to be included in Hilbert spaces of the form D.Aj /, which
in practical applications to PDE are constituted by functions that are smoother than
X with respect to the space variable.

In particular, if BB� maps D.Aj / to itself for all j 2 N, then the spaces Xj can
be shown to coincide with D.Aj / for all j > 0. Of course, this is sharp, since one
cannot expect the controlled solution to be better than C0.Œ0; T 	I D.As// for initial
data x0 2 D.As/.

Proof (Sketch of the proof of Theorem 5.2.12). We focus on the case s D 1, the
others being completely similar.
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Since V.t/ D �.t/B�˚.t/ is a control function, for any 'T 2 X , identity (5.20)
holds. Then, assuming that 'T D A2˚T 2 X , we get

TZ

0

�.t/hB�˚.t/; B�A2˚.t/iU dt C hx0; A2˚.0/iX D 0:

But
TZ

0

�.t/hB�˚.t/; B�A2˚.t/iU dt

D
TZ

0

�.t/hB�˚.t/; B�˚ 00.t/iU dt

D �
Z T

0

�0.t/hB�˚.t/; B�˚ 0.t/i2U dt �
TZ

0

�.t/kB�˚ 0.t/k2U dt (5.32)

and
hx0; A2˚.0/iX D �hAx0;A˚.0/iX:

Therefore, assuming some regularity on ˚T , namely ˚T 2 D.A2/, one can prove

TZ

0

�.t/
��B�˚ 0.t/

��2
U
dtC

TZ

0

�0.t/hB�˚.t/; B�˚ 0.t/iU dtChAx0;A˚.0/iX D 0:

(5.33)
But, since � 2 C1.R/, for any " > 0, (the constantsC below denote various positive
constants which do not depend on " and that may change from line to line)

ˇ̌
ˇ̌
ˇ̌
TZ

0

�0.t/hB�˚.t/; B�˚ 0.t/iU dt

ˇ̌
ˇ̌
ˇ̌ � C

"

TZ

0

kB�˚.t/k2U dt C "

TZ

0

��B�˚ 0.t/
��2

U
dt

� C

"

��˚T
��2
X

C C"
��˚ 0.T /

��2
X

� C

"

��˚T
��2
obs

C C"
��˚ 0.0/

��2
X

� C

"

��˚T
��2
X

C C"

TZ

0

�.t/
��B�˚ 0.t/

��2
U
dt;

where we used the equivalence of the norms
��'T ��

X
, k'.0/kX , kB�'kL2.0;T IU /

and
��'T ��

obs
, the admissibility and observability inequalities (5.15) and (5.22) and

estimate (5.26).
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In particular, taking " > 0 small enough,

ˇ̌
ˇ̌
ˇ̌
TZ

0

�0.t/hB�˚.t/; B�˚ 0.t/iU dt

ˇ̌
ˇ̌
ˇ̌ � C

��x0��2
X

C 1

2

TZ

0

�.t/ kB�˚.t/k2U dt:

(5.34)
It then follows from (5.33) that

1

2

TZ

0

�.t/
��B�˚ 0.t/

��2
U
dt � C

��x0��2
X

C ��Ax0��
X

��A˚T
��
X
: (5.35)

But
��x0��

X
�C ��Ax0��

X
and, applying the observability inequality (5.22) to

A˚.0/, which reads

kA˚.0/k2X � C2
obs

TZ

0

�.t/
��B�˚ 0.t/

��2
U
dt;

we obtain

��A˚T
��2
X

D kA˚.0/k2X � C2
obs

TZ

0

�.t/
��B�˚ 0.t/

��2
U
dt � C

��Ax0��2
X
: (5.36)

Since V 0 D �0B�˚ C �.t/B�˚ 0,

TZ

0

��V 0.t/
��2

U
dt � 2

TZ

0

�0.t/2 kB�˚.t/k2U dt C 2

TZ

0

�.t/2
��B�˚ 0.t/

��2
U
dt:

(5.37)
But

TZ

0

�0.t/2 kB�˚.t/k2U dt � C

TZ

0

kB�˚.t/k2U dt

� C
��˚T

��2
X

� C
��˚T

��2
obs

� C
��x0��2

X
; (5.38)

where we used (5.15), the equivalence of the norms
��˚T

��
X

and k˚.0/kX , (5.22)
and (5.26) in the last estimate.

Then estimate (5.28) follows from estimates (5.36), (5.37) and (5.38).
To make the arguments in the formal proof above rigorous, one should take,

instead of 'T D A2˚T , which is a priori not allowed in (5.7),
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'T� D 1

�2

�
˚.T C �/C ˚.T � �/ � 2˚T

�
;

and then pass to the limit in � ! 0.
As we said, the proof for integers s 2 N can be made following the same lines.

And the general case s � 0 can then be deduced using interpolation results. Details
can be found in [35]. �

Remark 5.2.14. When the operator B is bounded from X to U , the HUM func-
tional J in (5.18), without the time cut-off function �, satisfies the same regularity
results as the one in Theorem 5.2.12 for s D 1. For larger s, and if one furthermore
assumes that BB� 2 L.D.Ak// for all k � s, then Theorem 5.2.12 holds. One
immediately deduces Corollary 5.2.13 as well. Of course, in this case, an easy
induction argument shows that Xk D D.Ak/ for all k � s.

The main difference appearing in the proof when � 	 1 is that, when integrating
by parts, boundary terms appear at t D 0; T . But they can be suitably bounded when
B is bounded. Note that when the cut-off function � is introduced, these boundary
terms vanish and are transformed into time-integrated terms that are bounded by the
weaker admissibility condition.

Remark 5.2.15. Note that such regularity results can be found in [24] for the
wave equation with internal control and a control operator satisfying BB� 2 \k�0
L.D.Ak//. There, the authors propose a thorough study of the operator Va in (5.29)
and give precise estimates on how it acts on each range of frequencies. This is of
course much more precise than the results presented in Theorem 5.2.12.

But the proof of the results in [24] requires the use of very deep technical tools
such as microlocal analysis and Littlewood–Paley decomposition.

Let us also point out the article [64] which illustrates numerically the estimates
obtained in [24] on the operator Va in (5.27).

Also remark however that our approach, though it yields less precise results in the
context of the distributed control wave equation, is much more robust and applies
also for boundary control problems and any linear conservative equations.

5.3 The Constant Coefficient Wave Equation

5.3.1 Problem Formulation: The 1-d Case

Let us first consider the constant coefficient 1-d wave equation:

8
<̂
:̂

ut t � uxx D 0; 0 < x < 1; 0 < t < T;

u.0; t/ D u.1; t/ D 0; 0 < t < T;

u.x; 0/ D u0.x/; ut .x; 0/ D u1.x/; 0 < x < 1:

(5.39)

In (5.39) u D u.x; t/ describes the displacement of a vibrating string occupying
.0; 1/.
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The energy of solutions of (5.39) is conserved in time, i.e.,

E.t/ D 1

2

1Z

0

h
jux.x; t/j2 C jut .x; t/j2

i
dx D E.0/ 80 � t � T: (5.40)

The problem of boundary observability of (5.39) can be formulated as follows:
To give sufficient conditions on T such that there exists Cobs.T / > 0 for which the
following inequality holds for all solutions of (5.39):

E.0/ � Cobs.T /
2

TZ

0

jux.1; t/j2 dt: (5.41)

Inequality (5.41), when it holds, guarantees that the total energy of solutions can
be “observed” from the boundary measurement on the extreme x D 1. The best
constant Cobs.T / in (5.41) is the so-called observability constant.1

Similarly as in the previous section, the observability problem above is equivalent
to the following boundary controllability property: For any

�
y0; y1

� 2 L2.0; 1/ �
H�1.0; 1/ there exists v 2 L2.0; T / such that the solution of the controlled wave
equation

8̂
<
:̂

ytt � yxx D 0; 0 < x < 1; 0 < t < T;

y.0; t/ D 0I y.1; t/ D v.t/; 0 < t < T;

y.x; 0/ D y0.x/; yt .x; 0/ D y1.x/; 0 < x < 1;

(5.42)

satisfies
y.x; T / D yt .x; T / D 0; 0 < x < 1: (5.43)

Note that system (5.39) fits in the abstract setting given in (5.14) with

' D
�

u
ut

�
; A D

�
0 Id

@xx 0

�
;

with X D H1
0 .0; 1/ � L2.0; 1/; D.A/ D H2 \H1

0 .0; 1/ �H1
0 .0; 1/:

(5.44)

Hence the corresponding control system should be given by duality as in Sect. 5.2.
However, in the PDE context, it is classical to identify L2.0; 1/ with its dual.

1Inequality (5.41) is just an example of a variety of similar observability problems: (a) one could
observe the energy concentrated on the extreme x D 0 or in the two extremes x D 0 and 1
simultaneously; (b) the L2.0; T /-norm of ux.1; t / could be replaced by some other norm; (c) one
could also observe the energy concentrated in a subinterval .˛; ˇ/ of .0; 1/, etc.
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Of course, once this identification is done, though X is an Hilbert space, its dual
X� cannot be identified anymore with itself. That explains why the control system
(5.42) is considered with initial data L2.0; 1/ � H�1.0; 1/, which is a natural
candidate forX�. But our presentation in the abstract setting in Sect. 5.2 can still be
done in that case, but that would require the introduction of further notations that
may be confusing.

Thus, we directly address this example showing why controllability of (5.42)
is a consequence of (5.41) by a minimization method which yields the control of
minimal L2.0; T /-norm, similarly as the one developed in the previous section.

Given
�
y0; y1

� 2L2.0; 1/�H�1.0; 1/, a control Vhum 2L2.0; T / can be com-
puted as

Vhum.t/ D Ux.1; t/; (5.45)

whereU is the solution of (5.39) corresponding to initial data .U 0; U 1/2H1
0 .0; 1/�

L2.0; 1/ minimizing the functional

J..u0; u1// D 1

2

TZ

0

jux.1; t/j2dt C
1Z

0

y0u1dx � hy1; u0iH�1�H1
0

(5.46)

in the space H1
0 .0; 1/� L2.0; 1/.

Note that J is convex. The continuity of J inH1
0 .0; 1/�L2.0; 1/ is guaranteed by

the fact that the solutions of (5.39) satisfy ux.1; t/ 2 L2.0; T / (the so-called hidden
regularity property, that holds also for the Dirichlet problem for the wave equation
in several space dimensions; see [60, 68, 69]). More, precisely, for all T > 0 there
exists a constant K.T / > 0 such that, for all solution of (5.39),

TZ

0

h
jux.0; t/j2 C jux.1; t/j2

i
dt � K.T /E.0/: (5.47)

Thus, to prove the existence of a minimizer for J , it is sufficient to prove that it is
coercive. This is guaranteed by the observability inequality (5.41). Also note that
the observability inequality (5.41) also guarantees the strict convexity of J and then
the uniqueness of a minimizer for J .

Let us see that the minimum of J provides the control. The functional J is of
class C1. Consequently, the gradient of J at the minimizer vanishes:

0 D hDJ..U 0; U 1//; .w0;w1/i D
TZ

0

Ux.1; t/wx.1; t/dt

C
1Z

0

y0w1dx � hy1;w0iH�1�H1
0
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for all .w0;w1/ 2 H1
0 .0; 1/�L2.0; 1/, where w stands for the solution of (5.39) with

initial data .w0;w1/. By choosing the control as in (5.45) this identity yields

TZ

0

Vhum.t/wx.1; t/dt C
1Z

0

y0w1dx � hy1;w0iH�1�H1
0

D 0: (5.48)

On the other hand, multiplying in (5.42) by w and integrating by parts, we get

TZ

0

v.t/wx.1; t/dt C
1Z

0

y0w1dx � hy1;w0iH�1�H1
0

�
1Z

0

y.T /wt .T /dx C hyt .T /;w.T /iH�1�H1
0

D 0: (5.49)

Combining these two identities we get
R 1
0
y.T /wt .T /dx � hyt .T /;w.T /iH�1�H1

0

D 0 for all .w0;w1/2H1
0 .0; 1/�L2.0; 1/, which is equivalent to the exact control-

lability condition (5.43).
This argument shows that observability implies controllability. The reverse is

also true. If controllability holds, then, using Banach closed graph Theorem, the
linear map that to all initial data

�
y0; y1

� 2 L2.0; 1/�H�1.0; 1/ of the state (5.42)
associates the control of the minimal L2.0; T /-norm, which can be still denoted by
Vhum in view of Remark 5.2.4, is bounded. Multiplying the state (5.42) with that
control by u, solution of (5.39), and using (5.43), we obtain

TZ

0

Vhum.t/ux.1; t/dt C
1Z

0

y0u1dx � hy1; u0iH�1�H1
0

D 0: (5.50)

Consequently,

ˇ̌
ˇ̌
ˇ̌
1Z

0

Œy0u1 � y1u0	dx

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
TZ

0

Vhum.t/ux.1; t/dt

ˇ̌
ˇ̌
ˇ̌ � kvkL2.0;T /kux.1; t/kL2.0;T /

� Ck.y0; y1/kL2.0;1/�H�1.0;1/kux.1; t/kL2.0;T / (5.51)

for all
�
y0; y1

� 2 L2.0; 1/ �H�1.0; 1/, which implies the observability inequality
(5.41).

Throughout this paper we shall mainly focus on the problem of observability.
However, in view of the equivalence above, all the results we present have
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immediate consequences for controllability. The most important ones will also
be stated. Note, however, that controllability is not the only application of the
observability inequalities, which are also of systematic use in the context of inverse
problems [12, 56, 58, 59]. We shall discuss this issue briefly in open problem # 6 in
Sect. 5.7.2.

Remark 5.3.1. Note that here, we consider the adjoint (5.39) with initial data at time
t D 0, whereas in the previous section, we have considered the adjoint (5.14) with
initial data at time t D T . This can be done because of the time-reversibility of the
wave equation under consideration.

5.3.2 Observability for the 1-d Wave Equation

The following holds.

Proposition 5.3.2. For any T � 2, system (5.39) is observable. In other words, for
any T � 2 there exists Cobs.T / > 0 such that (5.41) holds for any solution of (5.39).
Conversely, if T < 2, (5.39) is not observable, or, equivalently,

inf
u solution of (5.39)

2
4 1

E.0/

TZ

0

j ux.1; t/ j2 dt
3
5 D 0: (5.52)

The proof of observability for T � 2 can be carried out in several ways, including
Fourier series (and generalizations to non-harmonic Fourier series, see [105]),
multipliers (Komornik [60]; Lions [68, 69]), sidewise energy estimates [110],
Carleman inequalities (Zhang [106]), and microlocal2 tools (Bardos, Lebeau, and
Rauch [6]; Burq and Gérard [14]).

Let us explain how it can be proved using Fourier series. Solutions of (5.39) can
be written in the form

u.x; t/ D
X
k�1

�
ak cos.k�t/C bk

k�
sin.k�t/

�
sin.k�x/; (5.53)

u0.x/ D
X
k�1

ak sin.k�x/; u1.x/ D
X
k�1

bk sin.k�x/:

2Microlocal analysis deals, roughly speaking, with the possibility of localizing functions and its
singularities not only in the physical space but also in the frequency domain. Localization in
the frequency domain may be done according to the size of frequencies but also to sectors in
the euclidean space in which they belong to. This allows introducing the notion of microlocal
regularity; see, for instance, [48].
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It follows that

E.0/ D 1

4

X
k�1

	
a2kk

2�2 C b2k


:

On the other hand,

ux.1; t/ D
X
k�1
.�1/k Œk�ak sin.k�t/C bk cos.k�t/	 :

Using the orthogonality properties of sin.k�t/ and cos.k�t/ in L2.0; 2/, it follows
that

2Z

0

jux.1; t/j2 dt D
X
k�1

�
�2k2a2k C b2k

�
:

The two identities above show that the observability inequality holds when T D 2

and therefore for any T > 2 as well. In fact, in this particular case, we even have
the identity

E.0/ D 1

4

2Z

0

jux.1; t/j2 dt: (5.54)

On the other hand, for T < 2 the observability inequality does not hold. Indeed,
suppose that T D 2 � 2ı with ı 2 .0; 2/. Solve

ut t � uxx D 0; .x; t/ 2 .0; 1/� .0; T /; u.0; t/ D u.1; t/ D 0; 0 < t < T;

(5.55)

with data at time t D T=2 D 1 � ı with support in the subinterval .0; ı/. This
solution is such that ux.1; t/ D 0 for 0 < t < T D 2 � 2ı since the segment
x D 1; t 2 .0; T / remains outside the domain of influence of the space segment
t D T=2; x 2 .0; ı/ (see Fig. 5.1).

Note that the observability time (T D 2) is twice the length of the string. This is
due to the fact that an initial disturbance concentrated near x D 1 may propagate to
the left (in the space variable) as t increases and only reach the extreme x D 1 of
the interval after bouncing at the left extreme x D 0 (as described in Fig. 5.1).

As we have seen, in one dimension and with constant coefficients, the observ-
ability inequality is easy to understand. The same results are true for sufficiently
smooth coefficients (BV -regularity suffices). However, when the coefficients are
simply Hölder continuous, these properties may fail, thereby contradicting an initial
intuition (see [19]).
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Fig. 5.1 Wave localized at t D 0 near the endpoint x D 1 that propagates with velocity 1 to the
left, bounces at x D 0, and reaches x D 1 again in a time of the order of 2

5.3.3 Computing the Boundary Control

In this section, we compute explicitly the control function given by HUM. As a
consequence, we will explain in particular that one cannot hope similar regularity
results as the ones in Corollary 5.2.13 when no cut-off function in time is introduced
within the functional J as in (5.23).

Let us consider the 1-d wave (5.42) controlled by the boundary in time T D 4.
The time T D 4 is larger than the critical time of controllability, corresponding to
T � D 2, which is the time needed by the waves to go from x D 1 to x D 0 and
bounce back at x D 0.

The application of the classical Hilbert Uniqueness Method in this case consists
in minimizing the functional J given by (5.46) to obtain a control Vhum from (5.45)
in terms of the minimizer of J .

We now use the fact that, when the control time horizon is T D 4 (actually
it is true for any even integer), the functional J acts diagonally on the Fourier
coefficients of the solutions u of (5.39) and then the minimizer of J can be computed
explicitly.

Using (5.53) for the solutions of (5.39), one easily checks that

1

2

TZ

0

jux.1; t/j2 dt D 1

2

4Z

0

ˇ̌
ˇ̌
ˇ̌

1X
jkjD1

�
ak cos.k�t/C bk

k�
sin.k�t/

�
k�.�1/k

ˇ̌
ˇ̌
ˇ̌
2

dt

D
1X
kD1

�jakj2k2�2 C jbkj2
�
:
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The initial datum to be controlled .y0; y1/ 2 L2.0; 1/�H�1.0; 1/ can be written
in Fourier series as

.y0; y1/ D
1X
kD1

. Oy0k; Oy1k/ sin.k�x/; (5.56)

with

1X
kD1

�
j Oy0kj2 C j Oy1kj2

k2�2

�
< 1:

Thus, for .u0; u1/ as in (5.53),

J..u0; u1// D
1X
kD1

�jakj2k2�2 C jbkj2
�C 1

2

1X
kD1

� Oy0kbk � Oy1kak
�
: (5.57)

Therefore the minimizer .U 0; U 1/ of J can be given as

.U 0; U 1/ D
1X
kD1
.Ak; Bk/ sin.k�x/; with

8
ˆ̂<
ˆ̂:

Ak D Oy1k
4k2�2

;

Bk D � Oy0k
4
;

(5.58)

and the control function Vhum is simply

Vhum.t/ D @xU.1; t/ D 1

4

1X
kD1
.�1/k

� Oy1k
k�

cos.k�t/ � Oyk0 sin.k�t/

�
:

In particular, it is obvious that, for .y0; y1/ 2 H1
0 .0; 1/ � L2.0; 1/, this method

yields .U 0; U 1/ 2 H2 \H1
0 .0; 1/ �H1

0 .0; 1/ and V 2 H1.0; T /.
However,

Vhum.0/ D
p
2

4

1X
kD1

.�1/k Oy1k
k�

:

Therefore, if y0 2 H1
0 .0; 1/, the controlled solution y of (5.41) with that control

function cannot be a strong solution if

1X
kD1
.�1/k Oy1k

k�
¤ 0;

whatever the regularity of the initial datum to be controlled is, because the
compatibility condition y.1; 0/ D V.0/ does not hold.
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Fig. 5.2 The controlled trajectory for the wave equation with initial data .y0.x/; y1.x// D
.0; sin.�x// for the HUM control in time T D 4. A kick is introduced by the control function
at .t; x/ D .0; 1/ and travels in the domain, hence making the solution non-smooth

Of course, such case happens, for instance when the initial datum to be controlled
simply is .y0.x/; y1.x// D .0; sin.�x//. This is illustrated in Fig. 5.2. There, with
the control given by HUM, we see that the controlled solution is singular along the
characteristic line emanating from .t; x/ D .0; 1/.

As this example shows, the regularity of the initial datum does not yield
additional regularity for the controlled wave equation when using the HUM control.

5.3.4 The Multidimensional Wave Equation

In several space dimensions the observability problem for the wave equation is much
more complex and cannot be solved using Fourier series except in some particular
geometries. The velocity of propagation is still one for all solutions but energy
propagates along bicharacteristic rays.

Before going further, let us give the precise definition of bicharacteristic ray.
Consider the wave equation with a scalar, positive, and smooth variable coefficient
a D a.x/:

ut t � div.a.x/ru/ D 0: (5.59)

Bicharacteristic rays s 7! .x.s/; t.s/; 
.s/; �.s// solve the Hamiltonian system

(
x0.s/ D �a.x/
; t 0.s/ D �;


 0.s/ D ra.x/j
j2; � 0.s/ D 0;
(5.60)

on the characteristic set �2 � a.x/j
j2 D 0.
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Fig. 5.3 Ray that propagates inside the domain˝ following straight lines that are reflected on the
boundary according to the laws of Geometric Optics

Rays describe the microlocal propagation of energy. The projections of the
bicharacteristic rays in the .x; t/ variables are the rays of Geometric Optics that
play a fundamental role in the analysis of the observation and control properties
through the Geometric Control Condition (GCC), that will be introduced below.
As time evolves, the rays move in the physical space according to the solutions
of (5.60). Moreover, the direction in the Fourier space .
; �/ in which the energy of
solutions is concentrated as they propagate is given precisely by the projection of
the bicharacteristic ray in the .
; �/ variables. When the coefficient aD a.x/ is
constant, the ray is a straight line and carries the energy outward, which is always
concentrated in the same direction in the Fourier space, as expected. But for variable
coefficients the dynamics is more complex. This Hamiltonian system describes the
dynamics of rays in the interior of the domain where the equation is satisfied. When
rays reach the boundary they are reflected according to the Snell–Descartes laws of
Geometric Optics (Fig. 5.3).3

When the coefficient a D a.x/ varies in space, the dynamics of this system may
be quite complex and can lead to some unexpected behavior [74].

Let us now address the control problem for smooth domains4 in the constant
coefficient case.

Let ˝ be a bounded domain of Rn; n � 1, with boundary @˝ of class C2, let !
be an open and nonempty subset of˝ , and let T > 0. Consider the linear controlled
wave equation in the cylinderQ D ˝ � .0; T /:

8
<̂
:̂

ytt ��y D f 1! in Q;

y D 0 on @˝ � .0; T /
y.x; 0/ D y0.x/; yt .x; 0/ D y1.x/ in ˝:

(5.61)

3Note, however, that tangent rays may be diffractive or even enter the boundary. We refer to [6] for
a deeper discussion of these issues.
4We refer to Grisvard [45] for a discussion of these problems in the context of non-smooth domains.
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In (5.61), 1! is the characteristic function of the set !, y D y.x; t/ is the state, and
f D f .x; t/ is the control variable. Since f is multiplied by 1! the action of the
control is localized in !.

When .y0; y1/2H1
0 .˝/�L2.˝/ and f 2L2.Q/, the system (5.59) has a

unique solution y 2 C �Œ0; T 	IH1
0 .˝/

�\ C1
�
Œ0; T 	IL2.˝/�.

The problem of controllability, generally speaking, is as follows: Given
.y0; y1/ 2 H1

0 .˝/ � L2.˝/, to find f 2 L2.Q/ such that the solution of system
(5.61) satisfies

y.T / 	 yt .T / 	 0: (5.62)

The method of Sect. 5.3, the so-called HUM, shows that the exact controllability
property is equivalent to the following observability inequality:

���u0; u1���2
H1
0 .˝/�L2.˝/ � C

TZ

0

Z

!

u2t dxdt (5.63)

for every solution of the adjoint uncontrolled system

8̂
<
:̂

ut t ��u D 0 in ˝ � .0; T /;
u D 0 on @˝ � .0; T /;
u.x; 0/ D u0.x/; ut .x; 0/ D u1.x/ in ˝:

(5.64)

The main result concerning (5.63) is that the observability inequality holds if and
only if the GCC is satisfied (see, for instance, Bardos, Lebeau, and Rauch [6] and
Burq and Gérard [14]): Roughly speaking, the GCC for .˝; !; T / states that all rays
of Geometric Optics should enter in the domain ! in a time smaller than T .

For instance, when the domain is a ball, the subset of the boundary where the
control is being applied needs to contain a point of each diameter. Otherwise, if a
diameter skips the control region, it may support solutions that are not observed (see
Ralston [87]). In the case of the square domain˝ , observability/controllability fails
if the control is supported on a set which is strictly smaller than two adjacent sides,
as shown in Fig. 5.4.

Several remarks are in order.

Remark 5.3.3. Since we are dealing with solutions of the wave equation, for the
GCC to hold, the control time T has to be sufficiently large due to the finite speed
of propagation, the trivial case !D˝ being the exception. However, the time being
large enough does not suffice, since the control subdomain ! needs to satisfy the
GCC in a finite time. Figure 5.4 provides an example of this fact.

Remark 5.3.4. Most of the literature on the controllability of the wave equation
has been written in the framework of the boundary control problem discussed in
the previous section in the 1-dimensional setting. The control problems formulated
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Fig. 5.4 A geometric configuration in which the GCC is not satisfied, whatever T >0 is. The
domain where waves evolve is a square. The control is located on a subset of three adjacent sides
of the boundary, leaving a small horizontal subsegment uncontrolled. There is a horizontal line
that constitutes a ray that bounces back and forth for all time perpendicularly on two points of the
vertical boundaries where the control does not act

above for (5.59) are usually referred to as internal controllability problems since the
control acts on the subset ! of ˝ . The latter is easier to deal with since it avoids
considering non homogeneous boundary conditions, in which case solutions have
to be defined in the sense of transposition [68, 69] and lie in C0.Œ0; T 	IL2.˝// \
C1.Œ0; T 	IH�1.˝// for boundary controls in L2..0; T / � @˝/.

Note that, if � denotes an open subset of the boundary @˝ , the HUM then
expresses the link between controllability of data in L2.˝/�H�1.˝/with controls
in L2..0; T / � � / with the following observability inequality, of course similar to
(5.41): There exists a constant Cobs such that every solution of the adjoint control
system (5.64) satisfies

���u0; u1���2
H1
0 .˝/�L2.˝/ � C2

obs

TZ

0

Z

�

j@nuj2d�dt (5.65)

for every solution of the adjoint uncontrolled system (5.64).
Let us now discuss what is known about (5.65):

(a) Using multiplier techniques, Ho [47] proved that if one considers subsets of
@˝ of the form � .x0/D ˚

x 2 @˝ W .x � x0/ � n.x/ > 0� for some x0 2R
n

(we denote by n.x/ the outward unit normal to @˝ in x 2 @˝ and by � the
scalar product in R

n) and if T >0 is large enough, the following boundary
observability inequality holds:

���u0; u1���2
H1
0 .˝/�L2.˝/ � C2

obs

TZ

0

Z

� .x0/

j@nuj2 d�dt (5.66)
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for all
�
u0; u1

� 2 H1
0 .˝/ � L2.˝/, which is the observability inequality that is

required to solve the boundary controllability problem.
Later, (5.66) was proved in [68, 69] for any T > T .x0/ D 2 k x � x0 kL1.˝/.
This is the optimal observability time that one may derive by means of this
multiplier (see Osses [84] for other variants).
Proceeding as in [68], one can easily prove that (5.66) implies (5.63) when ! is
a neighborhood of � .x0/ in ˝ , i.e., ! D ˝ \ �, where � is a neighborhood
of � .x0/ in R

n, with T >2kx� x0kL1.˝n!/. In particular, exact controllability
holds when ! is a neighborhood of the boundary of ˝ .

(b) Bardos, Lebeau, and Rauch [6] proved that, in the class of C1 domains, the
observability inequality (5.65) holds if and only if .˝; �; T / satisfies the GCC:
Every ray of Geometric Optics that propagates in ˝ and is reflected on its
boundary @˝ intersects � at a non-diffractive point in time less than T .
This result was proved by means of microlocal analysis. Later the microlocal
approach was simplified by Burq [7] by using the microlocal defect measures
introduced by Gérard [38] in the context of homogenization and kinetic
equations. In [7] the GCC was shown to be sufficient for exact controllability
for domains ˝ of class C3 and equations with C2 coefficients. The result for
variable coefficients is the same: The observability inequality and, thus, the
exact controllability property hold if and only if all rays of Geometric Optics
intersect the control region before the control time. However, it is important to
note that, although in the constant coefficient equation all rays are straight lines,
in the variable coefficient case this is no longer the case, which makes it harder
to gain intuition about the GCC.

5.3.5 Smoothness Properties

Note that the results in Sect. 5.2.3 also apply once observability (5.63) holds.
In particular, adding a cut-off function in time �.t/ as in (5.21) within the functional
J in (5.46) implies gentle regularity results for the corresponding minimizers of J
and the corresponding control functions.

5.3.5.1 Internal Control Operators

Assume that, for some time T �,

���u0; u1���2
H1
0 .˝/�L2.˝/ � C2

obs

T �Z

0

Z

˝

�2!u2t dxdt; (5.67)

for all solutions u of (5.64), where �! D �!.x/ is a non-negative function on ˝
which is localized in !.
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Let T >T �, choose ı >0 such that T � 2ı�T � and fix a function � satisfying
(5.21).

Then the functional J introduced in (5.23) is defined for .u0; u1/ 2 L2.˝/ �
H�1.˝/ by

J..u0; u1// D 1

2

TZ

0

Z

˝

�.t/�2!.x/ju.x; t/j2 dxdt C
Z

˝

y1u0dx

� hy0; u1iH1
0 .˝/�H�1.˝/; (5.68)

where u is the solution of (5.64) with initial data .u0; u1/ 2 L2.˝/ �H�1.˝/.
This functional is not exactly the one corresponding to the abstract presentation

above since we did not identify the energy space H1
0 .˝/ � L2.˝/ with its dual.

We have rather shifted by one derivative the regularity of the adjoint solutions
under consideration so that their initial data lie in L2.˝/ �H�1.˝/. Note that this
functional is more natural when doing PDE because of the classical identification of
L2.˝/ with its dual.

But now, the relevant estimate is, instead of (5.67),

���u0; u1���2
L2.˝/�H�1.˝/

� C2
obs

T �Z

0

Z

˝

�2! juj2dxdt; (5.69)

Let us also emphasize that the two estimates (5.67) and (5.69) are completely
equivalent and can be deduced one from another by differentiating or integrating
the solutions of (5.64) with respect to the time t .

To state our results precisely, we define the operator A as in (5.44). In particular,
D.As/ is the space HsC1.˝/ � Hs.˝/ for s � 0 with compatibility boundary
conditions depending on s � 0. To be more precise, .y0; y1/ 2 D.As/ if and only
.y0; y1/ 2 HsC1.˝/ �Hs.˝/ and satisfies

y0j@˝ D ��y0j@˝ D .��/jy0j@˝ D 0 j 2 f0; : : : ; bs=2C 1=4cg

and

y1j@˝ D ��y1j@˝ D .��/jy1j@˝ D 0 j 2 f0; : : : ; bs=2� �1=4cg:

To simplify the notations in a consistent way, we also introduce D.As/ for
s 2 Œ�1; 0	, which is, for sD �1, D.A�1/DL2.˝/�H�1.˝/, for sD 0, D.A0/ D
X D H1

0 .˝/�L2.˝/ and for s 2 .�1; 0/, D.As/ is the corresponding interpolation
between D.A�1/ and X D D.A0/.

Actually, for explaining these notations, we emphasize that we did not identify
X with its dual. Therefore, we shall introduce the space X� D L2.˝/ �H�1.˝/,
the operator
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A� D
�
0 I

� 0

�
; with D.A�/ D H1

0 .˝/ � L2.˝/:

Of course, with the above notations, for all s � 0, D..A�/s/ D D.As�1/.
Theorem 5.2.12 and its corollaries then imply:

Theorem 5.3.5. Let � be a smooth weight function satisfying (5.21). Let �! be
a cut-off function as above localizing the support of the control. Then, under the
controllability conditions above, given any .y0; y1/ 2 H1

0 .˝/�L2.˝/, there exists
a unique minimizer .U 0; U 1/ of J over L2.˝/ �H�1.˝/. The function

V.x; t/ D �.t/�!.x/U.x; t/ (5.70)

is a control for

8̂
<
:̂

ytt ��y D V�!; in ˝ � .0;1/;

y D 0; on @˝ � .0;1/;

.y.0/; yt .0// D .y0; y1/ 2 H1
0 .˝/ � L2.˝/;

(5.71)

which is characterized as the control function of minimal L2.0; T I dt=�IL2.!//-
norm, defined by

kvk2L2.0;T Idt=�IL2.!// D
TZ

0

Z

!

jv.x; t/j2dx dt
�.t/

:

Furthermore, if the weight function � satisfies � 2 C1.R/, then if .y0; y1/ belongs
to D.As/ for some s 2 RC, .U0; U1/ 2 D..A�/s/ D D.As�1/.

In particular, when �! is smooth and all its normal derivatives vanish at the
boundary, the control function V given by (5.70) belongs to

V 2 Hs.0; T IL2.!// \ bs�1c\
kD0 C

k.Œ0; T 	IHs�k.!//; (5.72)

the controlled solution y of (5.71) belongs to

.y; yt / 2 C s.Œ0; T 	IH1
0 .˝/ � L2.˝// bsc\

kD0 C
k.Œ0; T 	I D.As�k//; (5.73)

and, in particular,

.y; yt / 2 bsc\
kD0C

k.Œ0; T 	IHsC1�k.˝/ �Hs�k.˝//: (5.74)
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Remark that in this case, the time-dependent cut-off function is not needed if �!
is assumed to map D.As/ to D.As/ for all s > 0. Note that this requires not only
that �! 2 Hs.˝/ but also some suitable compatibility conditions on the boundary,
that are satisfied for instance when all the normal derivatives of �! on the boundary
vanish.

For more details, we refer to our work [35].

5.3.5.2 Boundary Control Operators

Let us assume that

���u0; u1���2
H1
0 .˝/�L2.˝/ � C2

obs

T �Z

0

Z

@˝

�2� j@nuj2d�dt (5.75)

for all solutions u of (5.64), where �� D �� .x/ is a function localized on some part
� of the boundary @˝ .

Then the functional J introduced in (5.23) is now defined on H1
0 .˝/ � L2.˝/

and reads as

J..u0; u1// D 1

2

TZ

0

Z

@˝

�.t/�� .x/
2j@nu.x; t/j2 d� dt C

1Z

0

y0.x/ u1.x; 0/ dx

� hy1; u0iH�1.˝/�H1
0 .˝/

; (5.76)

where u is the solution of (5.64).
Note that, here again, we have identified L2.˝/ with its topological dual. This

artificially creates a shift between the spaces X , X�, and also between D.Aj / and
D..A�/j / D D.AjC1/. Besides, this is done in the reverse situation as in the
previous paragraph, i.e.:

• The natural space for the controlled trajectory is X� D L2.˝/ � H�1.˝/ and
therefore the controlled trajectory should lie in the space D..A�/s/ D D.As�1/.

• The natural space for the adjoint equation isX D H1
0 .˝/�L2.˝/ and therefore

the regularity of the trajectory of the adjoint equation should be quantified with
the spaces D.As/.

Then our results imply the following:

Theorem 5.3.6. Assume that �� is compactly supported in � 
 @˝ and that � is
a smooth weight function satisfying (5.21). Also assume (5.75).

Given any .y0; y1/2L2.˝/�H�1.˝/, there exists a unique minimizer
.U 0; U 1/ of J over H1

0 .˝/ �L2.˝/. The function

V.x; t/ D �.t/�� .x/@nU.x; t/j� (5.77)
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is a control function for

8
<̂
:̂

ytt ��y D 0; in ˝ � .0;1/;

y D �� v; on @˝ � .0;1/;

.y.0/; yt .0// D .y0; y1/ 2 H1
0 .˝/ � L2.˝/;

(5.78)

with target .y.T /; yt .T // D .0; 0/.
Besides, V can be characterized as the control function which minimizes the

L2.0; T I dt=�IL2.� //-norm, defined by

kvk2L2.0;T Idt=�IL2.� // D
TZ

0

Z

�

jv.x; t/j2d� dt

�.t/
;

among all possible controls.
Furthermore, if the function �� is smooth, then if .y0; y1/ belongs to

D..A�/s/ D D.As�1/ for some real number s 2 RC, the control function V
given by (5.77) belongs to

V 2 Hs
0 .0; T IL2.� // bsc\

kD0 C
k.Œ0; T 	IHs�k�1=2

0 .� // (5.79)

and .U 0; U 1/ 2 D.As/. In particular, the controlled solution y of (5.78) then
belongs to

.y; yt / 2 C s.Œ0; T 	IL2.˝/ �H�1.˝//
bsc\
kD0 C

k.Œ0; T 	IHs�k.˝/�Hs�1�k.˝//:
(5.80)

5.4 1-d Finite Difference Semidiscretizations

5.4.1 Orientation

In Sect. 5.3 we showed how the observability/controllability problem for the con-
stant coefficient wave equation can be solved by Fourier series expansions. We now
address the problem of the continuous dependence of the observability constant
Cobs.T / in (5.41) with respect to finite difference space semidiscretizations as the
mesh-size parameter h tends to zero. This problem arises naturally in the numerical
implementation of the controllability and observability properties of the continuous
wave equation but is of independent interest in the analysis of discrete models for
vibrations.
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There are several important facts and results that deserve emphasis and that we
shall discuss below:

• The observability constant for the semidiscrete model tends to infinity for any T
as h ! 0. This is related to the fact that the velocity of propagation of solutions
tends to zero as h ! 0 and the wavelength of solutions is of the same order as
the size of the mesh.

• As a consequence of this fact and of the Banach–Steinhaus theorem, there are
initial data for the wave equation for which the controls of the semidiscrete mod-
els diverge. This proves that one cannot simply rely on the classical convergence
(consistency C stability) analysis of the underlying numerical schemes to design
algorithms for computing the controls.

However, as we shall explain in Sect. 5.5, one can establish weaker observability
results that hold uniformly with respect to h > 0. As a consequence, see Sect. 5.6,
we will be able to propose numerical methods for which “weak” discrete controls
converge.

5.4.2 Finite Difference Approximations

Given N 2N we define hD 1=.N C 1/>0. We consider the mesh fxj D jh;

j D 0; : : : ; N C 1g which divides Œ0; 1	 into N C 1 subintervals Ij D Œxj ; xjC1	;
j D 0; : : : ; N .

Consider the following finite difference approximation of the wave (5.39):

8
ˆ̂<
ˆ̂:

u00
j � 1

h2

	
ujC1 C uj�1 � 2uj


 D 0; 0 < t < T; j D 1; : : : ; N;

uj .t/ D 0; j D 0; N C 1; 0 < t < T;

uj .0/ D u0j ; u0
j .0/ D u1j ; j D 1; : : : ; N;

(5.81)

which is a coupled system of N linear differential equations of second order.
In (5.81) the function uj .t/ provides an approximation of u.xj ; t/ for all
j D 1; : : : ; N; u being the solution of the continuous wave (5.39). The conditions
u0 D uNC1 D 0 take account of the homogeneous Dirichlet boundary conditions,
and the second order differentiation with respect to x has been replaced by the
three-point finite difference. Symbol 0 denotes differentiation with respect to the
time t .

We shall use a vector notation to simplify the expressions. In particular, the
column vector

uh.t/ D

0
B@

u1.t/
:::

uN .t/

1
CA (5.82)

will represent the whole set of unknowns of the system. Introducing the matrix
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Ah D 1

h2

0
BBBB@

2 �1 0 0

�1 : : : : : : 0
0
: : :

: : : �1
0 0 �1 2

1
CCCCA
; (5.83)

the system (5.81) reads as follows:

u00
h.t/CAhuh.t/ D 0; 0 < t < T I uh.0/ D u0h; u0

h.0/ D u1h: (5.84)

The solution uh of (5.84) depends also on h, but most often we shall denote it
simply by u.

The energy of the solutions of (5.81) is

Eh.t/ D h

2

NX
jD0

�
j u0

j j2 C
ˇ̌
ˇujC1 � uj

h

ˇ̌
ˇ
2
�
; (5.85)

and it is constant in time. It is also a natural discretization of the continuous
energy (5.40).

The problem of observability of system (5.81) can be formulated as follows:
To find T > 0 and Ch.T / > 0 such that

Eh.0/ � Ch.T /
2

TZ

0

ˇ̌
ˇ̌uN .t/
h

ˇ̌
ˇ̌
2

dt (5.86)

holds for all solutions of (5.81).
Observe that j uN=h j2 is a natural approximation5 of j ux.1; t/ j2 for the solution

of the continuous system (5.39). Indeed ux.1; t/ � ŒuNC1.t/�uN .t/	=h and, taking
into account that uNC1 D 0, it follows that ux.1; t/ � �uN .t/=h.

System (5.81) is finite-dimensional. Therefore, if observability holds for some
T > 0, then it holds for all T > 0, as we have seen in Sect. 5.3.

Note also that the existence of a constant Ch.T / in (5.86) follows from the
equivalence of norms in finite dimensional spaces and the fact that if uh is a solution
of (5.81) that satisfies uN .t/ D uNC1.t/ D 0, then uh D 0. This can be easily seen
on (5.81) using an iteration argument.

We are interested mainly in the uniformity of the constant Ch.T / as h! 0.
If Ch.T / remains bounded as h! 0, we say that system (5.81) is uniformly
observable as h! 0. Taking into account that the observability of the limit system
(5.39) holds only for T � 2, it would be natural to expect T � 2 to be a necessary

5Here and in what follows uN refers to the N th component of the solution u of the semidiscrete
system, which obviously depends also on h.
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condition for the uniform observability of (5.81). This is indeed the case but, as
we shall see, the condition T � 2 is far from being sufficient. In fact, uniform
observability fails for all T >0. In order to explain this fact it is convenient to
analyze the spectrum of (5.81).

Let us consider the eigenvalue problem

� 1

h2

	
wjC1 C wj�1 � 2wj


 D �wj ; j D 1; : : : ; N I w0 D wNC1 D 0:

(5.87)
The spectrum can be computed explicitly in this case (Isaacson and Keller [55]):

�kh D 4

h2
sin2

�
k�h

2

�
; k D 1; : : : ; N; (5.88)

and the corresponding eigenvectors are

wk
h D �

wk1;h; : : : ;w
k
N;h

�T W wkj;h D sin.k�jh/; k; j D 1; : : : ; N: (5.89)

Obviously, �kh !�k D k2�2; as h! 0 for each k� 1; �k D k2�2 being the kth
eigenvalue of the continuous wave (5.39). On the other hand we see that the
eigenvectors wk

h of the discrete system (5.87) coincide with the restriction to the
mesh points of the eigenfunctions wk.x/ D sin.k�x/ of the continuous wave
(5.39).6

According to (5.88) we have
p
�kh D 2

h
sin
�
k�h
2

�
, and therefore, in a first approx-

imation, we have

ˇ̌
ˇ̌
q
�kh � k�

ˇ̌
ˇ̌ � k3�3h2

24
: (5.90)

This indicates that the spectral convergence is uniform only in the range k � h�2=3,
see [91]. Thus, one cannot solve the problem of uniform observability for the
semidiscrete system (5.81) as a consequence of the observability property of the
continuous wave equation and a perturbation argument with respect to h.

5.4.3 Nonuniform Observability

Multiplying (5.87) by j.wjC1 � wj /, one easily obtains (see [53]) the following
identity:

6This is a non generic fact that occurs only for the constant coefficient 1-d problem with uniform
meshes.
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Lemma 5.4.1. For any h > 0 and any eigenvector of (5.87) associated with the
eigenvalue �,

h

NX
jD0

ˇ̌
ˇwjC1 � wj

h

ˇ̌
ˇ
2 D 2

4 � �h2
ˇ̌
ˇwN
h

ˇ̌
ˇ
2

: (5.91)

We now observe that the largest eigenvalue �Nh of (5.87) is such that �Nh h
2 ! 4

as h ! 0 and note the following result on nonuniform observability.

Theorem 5.4.2. For any T > 0,

lim
h!0

inf
uh solution of (5.81)

2
4 1

Eh.0/

0
@

TZ

0

ˇ̌
ˇuN
h

ˇ̌
ˇ
2

dt

1
A
3
5 D 0: (5.92)

Proof (of Theorem 5.4.2). We consider solutions of (5.81) of the form

uh D cos.
q
�Nh t/w

N
h , where �Nh and wN

h are the N th eigenvalue and eigenvector of
(5.87), respectively. We have

Eh.0/ D h

2

NX
jD0

ˇ̌
ˇ̌
ˇ
wNjC1;h � wNj;h

h

ˇ̌
ˇ̌
ˇ
2

(5.93)

and

TZ

0

ˇ̌
ˇuN;h
h

ˇ̌
ˇ
2

dt D
ˇ̌
ˇ̌
ˇ
wNN;h
h

ˇ̌
ˇ̌
ˇ
2 TZ

0

cos2
�q

�Nh t

�
dt: (5.94)

Taking into account that �Nh ! 1 as h ! 0, it follows that

TZ

0

cos2
�q

�Nh t

�
dt ! T=2 as h ! 0: (5.95)

By combining (5.91), (5.93), (5.94) and (5.95), (5.92) follows immediately. �
It is important to note that the solution we have used in the proof of

Theorem 5.4.2 is not the only impediment for the uniform observability inequality
to hold.

Indeed, let us consider the following solution of the semidiscrete system (5.81),
constituted by the last two eigenvectors:

uh D 1q
�Nh

�
exp

�
i

q
�Nh t

�
wN
h � wnN;h

wN�1
N;h

exp

�
i

q
�N�1
h t

�
wN�1
h

�
: (5.96)
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Fig. 5.5 Left: Square roots of the eigenvalues in the continuous and discrete cases (finite difference
semidiscretization). The gaps are clearly independent of k in the continuous case and of order h
for large k in the discrete one. Right: Dispersion diagram for the piecewise linear finite element
space semidiscretization versus the continuous wave equation

This solution is a simple superposition of two monochromatic semidiscrete waves
corresponding to the last two eigenfrequencies of the system. The total energy of this
solution is of the order 1 (because each of both components has been normalized in
the energy norm and the eigenvectors are orthogonal one to each other). However,
the trace of its discrete normal derivative is of the order of h in L2.0; T /. This is due
to two facts:

• First, the trace of the discrete normal derivative of each eigenvector is very small
compared to its total energy.

• Second, and more important, the gap between
q
�Nh and

q
�N�1
h is of the order

of h, as is shown in Fig. 5.5, left. The wave packet (5.96) then has a group velocity
of the order of h.

To be more precise, let us compute juhj2, with uh as in (5.96):

juj;h.t/j2 D 1

�Nh

0
@
ˇ̌
ˇ̌
ˇw

N
j;h � wnN;h

wN�1
N;h

wN�1
j;h

ˇ̌
ˇ̌
ˇ
2

cos2
��q

�Nh �
q
�N�1
h

�
t

2

�

C
ˇ̌
ˇ̌
ˇ

wnN;h
wN�1
N;h

wN�1
j;h C wNj;h

ˇ̌
ˇ̌
ˇ
2

sin2
��q

�Nh �
q
�N�1
h

�
t

2

�1
A :

By Taylor expansion, the difference between the two frequencies
q
�Nh andq

�N�1
h is of the order h, and thus we see that the solution is periodic of period

of the order of 1=h.
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Note that here, from (5.91), explicit computations yield

ˇ̌
ˇ̌uN;h.t/

h

ˇ̌
ˇ̌
2

D
ˇ̌
ˇ̌
ˇ
wNN;h
h

ˇ̌
ˇ̌
ˇ
2
4

�Nh
sin2

��q
�Nh �

q
�N�1
h

�
t

2

�

D
�
1 � �Nh h

2

4

�
sin2

��q
�Nh �

q
�N�1
h

�
t

2

�

D sin2
�
�h

2

�
sin2

��q
�Nh �

q
�N�1
h

�
t

2

�
:

Thus, the integral of the square of the normal derivative of uh between 0 and

T is of order of h4, where the smallness comes from both the fact that
q
�Nh �q

�N�1
h ' h and (5.91).

High frequency wave packets may be used to show that the observability constant
has to blow up at infinite order as h ! 0 (see [75, 76]). To do this it is sufficient
to proceed as above but combining an increasing number of eigenfrequencies.
Actually, Micu in [77] proved that the constant Ch.T / blows up exponentially
by means of a careful analysis of the biorthogonal sequences to the family of

exponentials
˚
exp.i

q
�kht/

�
kD1;:::;N as h ! 0.

All these high-frequency pathologies are in fact very closely related to the notion
of group velocity. We refer to [101, 104] for an in-depth analysis of this notion that
we discuss briefly in the context of this example. Since the eigenvectors wk

h are
sinusoidal functions (see (5.89)) the solutions of the semidiscrete system may be
written as linear combinations of complex exponentials (in space-time):

exp

0
B@˙ik�

0
B@

q
�kh

k�
t � x

1
CA

1
CA :

In view of this, we see that each monochromatic wave propagates at a speed

q
�kh

k�
D 2sin.k�h=2/

k�h
D !.
/




ˇ̌
ˇ̌
f
Dk�hg

D c.
/

ˇ̌
ˇ̌
f
Dk�hg

; (5.97)

with !.
/ D 2sin.
=2/: This is the so-called phase velocity. The velocity of
propagation of monochromatic semidiscrete waves (5.97) turns out to be bounded
above and below by positive constants, independently of h: 0 < 2=� � c.
/ �
1 < 1 for all h > 0; 
 2 Œ0; �	. Note that Œ0; �	 is the relevant range of 
. Indeed,

 D k�h and k D 1; : : : ; N ,Nh D 1�h. This corresponds to frequencies � D 
=h

in .��=h; �=h	 which is natural due to the sampling of the uniform grid.
But wave packets may travel at a different speed because of the cancellation

phenomena we discussed above. The corresponding speed for those semidiscrete
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Fig. 5.6 A discrete wave packet and its propagation. In the horizontal axis we represent the time
variable, varying between 0 and 2, and the vertical one the space variable x ranging from 0 to 1

wave packets is given by the derivative of !.�/ (see [101]). At high frequencies
(k � N ) the derivative of !.
/ at 
 D N�h D �.1 � h/ is of the order of h, the
velocity of propagation of the wave packet.

This is illustrated in Fig. 5.6, where we have chosen a discrete initial datum
concentrated in space around x D 0:5 at t D 0 and in frequency at � ' 0:95=h.
As one can see, this discrete wave propagate at a very small velocity.

The fact that the group velocity is of order h is equivalent7 to the fact that the gap

between
q
�N�1
h and

q
�Nh is of order h.

According to this analysis, the group velocity being bounded below is a
necessary condition for the uniform observability inequality to hold. Moreover, this
is equivalent to a uniform spectral gap condition.

The convergence property of the numerical scheme guarantees only that the
group velocity of numerical waves is the correct one, close to that of the continuous
wave equation, for low-frequency wave packets and this is compatible with the high
frequency pathologies mentioned above.8

7Defining group velocity as the derivative of !, i.e., of the curve in the dispersion diagram
(see Fig. 5.5), is a natural consequence of the classical properties of the superposition of linear
harmonic oscillators with close but not identical phases (see [21]). There is a one-to-one
correspondence between the group velocity and the spectral gap which may be viewed as a discrete
derivative of this diagram. In particular, when the group velocity decreases, the gap between
consecutive eigenvalues also decreases.
8Note that in Fig. 5.5, both for finite differences and elements, the semidiscrete and continuous
curves are tangent at low frequencies. This is in agreement with the convergence property of the
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The careful analysis of this negative example will be useful to design possible
remedies, i.e., to propose weaker observability results that would be uniform with
respect to the discretization parameter h > 0. Actually, all the weak observability
results that we shall propose in Sect. 5.5 (and others, see [36] for extensive
references and examples) are based, in a way or another, on removing the high-
frequency pathologies generated by the numerical scheme under consideration.

As we will see below in the next paragraph, the fact that the observability
inequality (5.86) is not uniform with respect to h > 0 has an important consequence
in controllability: There are some data to be controlled for which the discrete
controls diverge.

Remark 5.4.3. According to Fig. 5.5, both finite-difference and finite element
methods exhibit a frequency on which the group velocity vanishes. This actually
is a generic fact. Indeed, as soon as the discretization method is implemented on a
uniform mesh in a symmetric way, the dispersion diagram is given by a continuous
function of � 2 .��=h; �=h/ that scales as !.�h/=h, for some smooth function
! describing the numerical method under consideration. But this function ! can
actually be defined for � 2R as the output of the discrete laplacian when the
input is exp.i�x/. Doing that, one easily checks that ! is necessarily 2�-periodic.
According to this, if ! is smooth, it necessarily has a critical point in .��; �/.

Therefore, the existence of waves traveling at zero group velocity is generic with
respect to the discretization schemes.

To our knowledge, only the mixed finite element method escapes this patho-
logical fact, but this is so since it corresponds to a non-smooth dispersion relation
!.
/ D 2 tan.
=2/, which is produced by introducing a mass matrix that degener-
ates at frequency of order �=h where the dispersion relation of the discretization of
the laplacian has a critical point. We refer to [17] for a more precise discussion on
that particular numerical scheme.

5.4.4 Blow up of Discrete Controls

This section is devoted to analyze the consequences of the negative results on
observability obtained in Theorem 5.4.2 at the level of the controllability of the
semidiscrete wave (5.98). The finite-dimensional control system reads as follows

8̂
<̂
ˆ̂:

y00
j � 1

h2

	
yjC1 C yj�1 � 2yj


 D 0; 0 < t < T; j D 1; : : : ; N;

y0.0; t/ D 0I yNC1.1; t/ D v.t/; 0 < t < T

yj .0/ D y0j ; y
0
j .0/ D y1j ; j D 1; : : : ; N;

(5.98)

and it is the semidiscrete version of the controlled wave (5.42).

numerical scheme under consideration and with the fact that low-frequency wave packets travel
essentially with the velocity of the continuous model.
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It is easy to see that this semidiscrete system, for all h> 0 and all T >0, is exactly
controllable because the Kalman rank condition is satisfied. More precisely, for any
given T >0, h>0 and initial data .y 0h ; y 1h /; there exists a control vh 2L2.0; T / such
that

yh.T / D y0
h.T / D 0: (5.99)

But, of course, we are interested in the limit process h ! 0. In particular, we
would like to understand whether, when the initial data in (5.98) are “fixed”9 to
be .y0; y1/2L2.0; 1/�H�1.0; 1/, the controls vh of (5.98) converge in L2.0; T /
as h! 0 to the control of the continuous wave (5.42). The negative results on
the observability problem, and the fact that these two problems, observability
and controllability are equivalent, see Sect. 5.2, make us predict that, in fact, the
convergence of the controls may fail. This is what happens in practice, indeed.
In fact for suitable choices of the initial data the controls may diverge as h! 0,
whatever T >0 is.

This negative result shows that the discrete approach to numerical control may
fail. In other words, controlling a numerical approximation of a controllable system
is not necessarily a good way of computing an approximation of the control of the
PDE model. Summarizing, the stability and convergence of the numerical scheme
for solving the initial-boundary value problem do not guarantee its stability at the
level of controllability.

5.4.4.1 Controllability of the Discrete Schemes

In this section, we prove that the discrete systems (5.98) are exactly controllable
for any h>0 and characterize the controls of minimal norm. This actually is
a byproduct of (5.86) and Sect. 5.2.1. We only rewrite it in our setting for the
convenience of the reader.

Theorem 5.4.4. For any T >0 and h>0 system (5.98) is exactly controllable.
More precisely, for any .y 0h ; y 1h /2R

N �R
N , there exists a control Vhum;h 2

L2.0; T / given by HUM such that the solution of (5.98) satisfies (5.99).
Moreover, the control Vhum;h of minimal L2.0; T /-norm can be characterized

through the minimization of the functional

Jh..u 0h ;u
1
h // D 1

2

TZ

0

ˇ̌
ˇ̌uN .t/
h

ˇ̌
ˇ̌
2

dt C h

NX
jD1

y0ju1j � h
NX
jD1

y1j u0j ; (5.100)

9For given initial data .y0; y1/, the initial data for the controlled semidiscrete system (5.98) are
taken to be approximations of .y0; y1/ on the discrete mesh. The convergence of the controls vh in
L2.0; T / is then analyzed for the controls corresponding to these approximate initial data.
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in R
N � R

N , where uh is the solution of the adjoint system (5.81). More precisely,
the control Vhum;h is of the form

Vhum;h.t/ D �UN .t/
h

; (5.101)

where Uh is the solution of the adjoint system (5.81) corresponding to the initial
data .U0

h;U
1
h/ minimizing the functional Jh.

For each h > 0, as explained in Corollary 5.2.7, the control function Vhum;h of
minimal L2.0; T /-norm of system (5.98) is given by a linear map Vh of the initial
data .y 0h ; y

1
h / and can be written as Vhum;h D Vh.y 0h ; y

1
h /.

For convenience, for h > 0 we introduce the norms

��.u 0h ;u 1h /
��2
H1
h�L2h D h

NX
jD0

2
4
 

u0jC1 � u0j
h

!2
C ju1j j2

3
5

and

��.y 0h ; y 1h /
��
L2h�H�1

h
D sup

k.u0h ;u 1h /kH1
h

�L2
h

D1

8
<
:h

NX
jD1

y0ju1j � h
NX
jD1

u0j y
1
j

9
=
; : (5.102)

The first one corresponds to the energy of (5.85) and the second one stands for
the norm of the space in which the solutions of the controlled semidiscrete system
belong to.

In particular, if one extends the discrete functions .u 0h ;u
1
h / to continuous ones

using Fourier extension, denoted by .u0h; u
1
h/, the following norms are equivalent:

��.u 0h ;u 1h /
��2
H1
h�L2h ' ��.u0h; u1h/

��2
H1
0 �L2 :

We thus deduce by duality the equivalence between the norms

��.y 0h ; y 1h /
��
L2h�H�1

h
' ��.y0h; y1h/

��
L2�H�1 (5.103)

As a simple consequence of the equivalence stated in Theorem 5.2.8, we have

kVhkL.L2h�H�1
h ;L2.0;T // D p

2Ch.T /; (5.104)

where Ch.T / is the observability constant in (5.86).
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By Theorems 5.2.8 and 5.4.2, this indicates that the norms of the discrete control
operators blow up when h ! 0:

Proposition 5.4.5. We have

lim
h!0

kVhkL.L2h�H�1
h ; L2.0;T // D C1:

Remark 5.4.6. Identity (5.104) indicates that the norm of the discrete controls map
blows up when h ! 0 at the same rate as Ch.T /. In view of the results presented
in [77], it blows up with an exponential rate.

As a consequence of Proposition 5.4.5 there are continuous data .y0; y1/ 2
L2.0; 1/ � H�1.0; 1/ for which the sequence of discrete controls computed on the
discrete controlled system (5.98) is not even bounded.

To state our results precisely, we must explain how the continuous data .y0; y1/
are approximated by discrete ones .y 0h ; y

1
h /.

For .y0; y1/ 2 L2.0; 1/ �H�1.0; 1/, with Fourier expansion

.y0; y1/ D
1X
kD1

. Oy0k; Oy1k/wk;

we introduce a sequence .Ah/h>0 of discretization operators

Ah W L2.0; 1/ �H�1.0; 1/ ! R
N � R

N ;

.y0; y1/ 7! .y0h; y
1
h/ D Ah.y

0; y1/ D
NX
kD1

. Oy0k; Oy1k/wk: (5.105)

To simplify notations, we will denote similarly by Ah.y
0; y1/ the discrete functions

and their continuous corresponding Fourier extensions.
These operators Ah map continuous data .y0; y1/ to discrete ones by truncating

the Fourier expansion, and describe a natural relevant discretization process for
initial data in L2.0; 1/ �H�1.0; 1/.

For instance, as one can easily check, for any .y0; y1/ 2 L2.0; 1/�H�1.0; 1/,

Ah.y
0; y1/ �!

h!0
.y0; y1/ in L2.0; 1/�H�1.0; 1/: (5.106)

We now prove the following divergence result:

Theorem 5.4.7. There exists an initial datum .y0; y1/ 2 L2.0; 1/�H�1.0; 1/ such
that the sequence .Vh ı Ah.y

0; y1//h>0 is not bounded in L2.0; T /.

Proof. The proof is by contradiction.
Assume that for all .y0; y1/ 2 L2.0; 1/ � H�1.0; 1/, the sequence of discrete

controls .Vh ı Ah.y
0; y1//h>0 is bounded in L2.0; T /.
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Then, applying Banach-Steinhaus Theorem (or the Principle of Uniform Bound-
edness) to the operators .Vh ı Ah/h>0, there is a constant C > 0 such that for all
h > 0 and .y0; y1/ 2 L2.0; 1/ �H�1.0; 1/,

��Vh ı Ah.y
0; y1/

��
L2.0;T /

� C
��.y0; y1/��

L2�H�1 :

Due to the particular form of Ah, this implies that for all

.y 0h ; y
1
h / D

NX
kD1

. Oy0k;h; Oy1k;h/wk
h ;

we have

��Vh.y 0h ; y 1h /
��
L2.0;T /

� C
��.y0h; y1h/

��
L2h�H�1

h
:

But this is in contradiction with Proposition 5.4.5 and the equivalence (5.103), which
proves the result. �
Remark 5.4.8. According to Theorem 5.4.7, not only the global cost of controlla-
bility diverges, but there exist specific initial data such that its cost diverges. This
is a direct consequence of the Principle of Uniform Boundedness. As we indicated
above here we refer to the cost of controlling the sequence of discrete initial data
.y 0h ; y

1
h / built specifically from the initial data .y0; y1/ by truncating Fourier series.

But the approximation Ah of the initial data can be defined differently as well,
and the result will remain true. For instance, we may take discrete averages of the
continuous data over intervals centered on the mesh-points xj D jh. Of course, in
what concerns y1, we have to be particularly careful since the fact that it belongs to
H�1.0; 1/ allows only doing averages against test functions inH1

0 .0; 1/. The use of
these test functions can be avoided by first, taking a smooth approximation of y1 in
H�1.0; 1/ and then taking averages.

Remark 5.4.9. This lack of convergence of the semidiscrete controls Vhum;h towards
the continuous one V can be understood easily. Indeed, as we have shown above, the
semidiscrete system, even in the absence of controls, generates a lot of spurious high
frequency oscillations. The control Vhum;h of the semidiscrete system (5.98) has to
take all these spurious components into account. When doing this it gets further and
further away from the true control V of the continuous wave (5.42), as the numerical
experiments in the following section illustrate.

5.4.5 Numerical Experiments

In this section, we describe some numerical experiments showing both the insta-
bility of the numerical controls for suitable initial data to be controlled. These
simulations were performed by Alejandro Maass Jr. using MATLAB.
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Fig. 5.7 Plot of the continuous control corresponding to the initial data .y0; y1/ in Fig. 5.8
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Fig. 5.8 Plot of the initial datum to be controlled: Left, the position y0. Right, the velocity y1

We consider the wave equation in time T D 4 on the space interval .0; 1/. This
suffices for the boundary control of the continuous wave equation for which the
minimal time is T D 2, see Proposition 5.3.2.

Given an initial datum to be controlled, for instance the one plotted in Fig. 5.8,
we can then compute explicitly the control of the continuous equation.

The control function can then be computed explicitly using Fourier series, see
Sect. 5.3.3. In Fig. 5.7 we present its plot.

The control can also be computed explicitly by using D’Alembert formula. This
also explains the form of the control in Fig. 5.7, right, which looks very much like
the superposition of the initial data to be controlled.
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Fig. 5.9 Divergent evolution of the discrete exact controls when the number N of mesh-points
increases. Left: the number of mesh points is N D 50. Right: N D 150. In both cases, we plot the
control obtained after 500 iterations of the conjugate gradient algorithm for the minimization of Jh

We now consider the finite-difference semidiscrete approximation of the wave
equation by finite-differences. We then compute the exact control of the semidiscrete
system (5.98) for several values of N .

Of course, in practice, we do not deal with the space semidiscrete adjoint
(5.81) but rather with fully discrete approximations. In our experiments we employ
the centered discretization in time with time-step �t D 0:5 h, which, of course,
guarantees the convergence of the scheme.

Following the discrete approach for numerical control, we compute the controls
for the resulting fully discrete system. This is done minimizing the corresponding
time-discrete version of the functional Jh in (5.100) using a conjugate gradient
algorithm. It turns out that the number of iterations needed for convergence is huge.
We stop the conjugate gradient algorithm after 500 iterations. The obtained results
are plot in Fig. 5.9 for N D 50 and N D 150. Increasing the number of iterations
would not change significantly the shape of the obtained controls. Note that they
are very far from the shape of the actual control above. This is a clear evidence
of the divergence of the discrete procedure to compute an effective numerical
approximation of the control by controlling the approximate discrete dynamics.
This is due to the very weak observability of the corresponding discrete system
which makes the coercivity of the correspondingJh functional to be very weak. This
produces two effects. First, the descent algorithms are very slow and, second, the
norm of the minimizers is huge. This is what we see in these numerical experiments.

It is also very surprising that the conjugate gradient method needs so many
iterations whereas it minimizes a functional on a finite-dimensional space of
dimension 2N . Indeed, it is well-known that the conjugate gradient algorithm yields
the exact minimizer afterK iterations, whereK is the size of dimension of the space
we are working in, hence, in our case KD 2N . Then the functional is very ill-
conditioned and the numerical errors cannot be negligible and prevent the conjugate
gradient algorithm from converging in 2N iterations.
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The descent iterative method does converge in 500 iterations when the number
of mesh points is less thanN � 44. But the controls one obtains when doing that are
very similar to those plotted in Fig. 5.9.

5.5 Remedies for High-Frequency Pathologies

In the previous section we have shown that the discrete wave equations are not
uniformly (with respect to the space mesh size h) observable, whatever the time
T > 0 is.

We have mentioned that this is due to high-frequency spurious waves. In this
section, we show that, when employing convenient filtering mechanisms, ruling out
the high frequency components, one can recover uniform observability inequalities.
At this point it is important to observe that the high-frequency pathologies cannot
be avoided by simply taking, for instance, a different approximation of the discrete
normal derivative since the fact that the group velocity vanishes is due to the
numerical approximation scheme itself and, therefore, cannot be compensated by
suitable boundary measurements. One has really to take care of the spurious high
frequency solutions that the numerical scheme generates.

5.5.1 Fourier Filtering

We introduce a Fourier filtering mechanism that consists in eliminating the high
frequency Fourier components and restricting the semidiscrete wave equation under
consideration to the subspace of solutions generated by the Fourier components
corresponding to the eigenvalues � � �h�2 with 0 < � < 4 or with indices 0<j <
ıh�1 with 0 < ı < 1. In this subspace the observability inequality becomes uniform.
Note that these classes of solutions correspond to taking projections of the complete
solutions by cutting off all frequencies with

p
�h�1 < � < 2h�1.

The following classical result due to Ingham in the theory of nonharmonic
Fourier series (see Ingham [54] and Young [105]) is useful for proving the uniform
observability of filtered solutions.

Theorem 5.5.1 (Ingham [56]). Let f�kgk2Z be a sequence of real numbers such
that �kC1 � �k � � > 0 for all k 2 Z: Then for any T > 2�=� there exists a
positive constant C.T; �/ > 0 depending only on T and � such that

1

C.T; �/2

X
k2Z

j ak j2�
TZ

0

ˇ̌
ˇ̌
ˇ
X
k2Z

ake
i�kt

ˇ̌
ˇ̌
ˇ
2

dt � C.T; �/2
X
k2Z

j ak j2 (5.107)

for all sequences of complex numbers fakg 2 `2.
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Remark 5.5.2. Ingham’s inequality can be viewed as a generalization of the orthog-
onality property of trigonometric functions we used to prove the observability of the
1-d wave equation in Sect. 5.3, known as Paserval’s identity.

Ingham’s inequality allows showing that, as soon as the gap condition is satisfied,
there is uniform observability provided the time is large enough.

All these facts confirm that a suitable cutoff or filtering of the spurious numerical
high frequencies may be a cure for these pathologies.

Let us now describe the basic Fourier filtering mechanism in more detail.
We recall that solutions of (5.81) can be developed in Fourier series as follows:

uh.t/ D
NX
kD1

0
B@ak cos

�q
�kht

�
C bkq

�kh

sin

�q
�kht

�
1
CAwk

h;

where ak; bk are the Fourier coefficients of the initial data, i.e., u0h D PN
kD1 akwk

h,
u1h D PN

kD1 bkwk
h:

Given s > 0, we introduce the following classes of solutions of (5.81):

Ch.s/ D

8̂
<
:̂

uh.t/ D
X

�kh�s

0
B@ak cos

�q
�kht

�
C bkq

�kh

sin

�q
�kht

�
1
CAwk

h

9>=
>;
; (5.108)

in which the high frequencies corresponding to the indices j > bı.N C 1/c have
been cut off. As a consequence of Ingham’s inequality and the analysis of the gap
of the spectra of the semidiscrete systems we have the following result.10

Theorem 5.5.3 (see [53]). For any � 2 .0; 4/ there exists T .�/ > 0 such that for
all T > T .�/ there exists C D C.T; �/ > 0 such that

1

C 2
Eh.0/ �

TZ

0

ˇ̌
ˇ̌uN .t/
h

ˇ̌
ˇ̌
2

dt � C2Eh.0/ (5.109)

for every solution uh of (5.81) in the class Ch.�=h
2/ and for all h > 0. Moreover,

the minimal time T .�/ for which (5.109) holds is such that T .�/ ! 2 as � ! 0

and T .�/ ! 1 as � ! 4.

Remark 5.5.4. Theorem 5.5.3 guarantees the uniform observability in each class
Ch.�=h2/ for all 0 < � < 4, provided the time T is larger than T .�/.

10These results may also be obtained using discrete multiplier techniques (see [53] and [32] for an
improved version with a sharp estimate of the time T .ı/).
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The last statement in the theorem shows that when the filtering parameter
� tends to zero, i.e., when the solutions under consideration contain fewer and
fewer frequencies, the time for uniform observability converges to T D 2, which
is the corresponding one for the continuous equation. This is in agreement with
the observation that the group velocity of the low-frequency semidiscrete waves
coincides with the velocity of propagation in the continuous model.

By contrast, when the filtering parameter increases, i.e., when the solutions under
consideration contain more and more frequencies, the time of uniform control tends
to infinity. This is in agreement and explains further the negative result showing
that, in the absence of filtering, there is no finite time T for which the uniform
observability inequality holds.

The proof of Theorem 5.5.3 below provides an explicit estimate on the minimal
observability time in the class Ch.�=h2/: T .�/ D 2=

p
1 � �=4.

Remark 5.5.5. In the context of the numerical computation of the boundary control
for the wave equation the need of an appropriate filtering of the high frequencies
was observed by Glowinski [40] and further investigated numerically by Asch and
Lebeau in [2].

Let us now briefly sketch the proof of Theorem 5.5.3. The easiest one relies
on the explicit representation of the solutions in Ch.�=h

2/ and the application of
Ingham’s theorem. This can be made possible since for all k with �kh � �h�2,q
�kC1
h �

q
�kh � � cos.k�h=2/ � �

p
1 � �=4, as explicit computations yield.

Another proof can be derived using the so-called discrete multiplier identity: for
all solutions uh of (5.81),

TEh.0/CXh.t/
ˇ̌
ˇ
T

0
D 1

2

TZ

0

ˇ̌
ˇ̌uN .t/
h

ˇ̌
ˇ̌
2

dt C h3

4

NX
jD0

TZ

0

ˇ̌
ˇ̌
ˇ
u0
jC1 � u0

j

h

ˇ̌
ˇ̌
ˇ
2

dt; (5.110)

with

Xh.t/ D h

NX
jD1

jh
�ujC1 � uj�1

2h

�
u0
j : (5.111)

Using (5.110) and straightforward bounds on the time boundary term Xh and on
the extra term

h3

4

NX
jD0

TZ

0

ˇ̌
ˇ̌
ˇ
u0
jC1 � u0

j

h

ˇ̌
ˇ̌
ˇ
2

dt; (5.112)

one will be able to prove Theorem 5.5.3 in any time T >2=.1� �=4/, see [53].
However, using more refined estimates on these terms, one can recover the
observability time T .�/ D 2=

p
1 � �=4, see [32].
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Let us also note that the time T .�/D 2=
p
1 � �=4 is sharp. More precisely, when

T <T .�/, there is no uniform observability results in the class Ch.�=h2/ since T .�/
is the time corresponding to the minimum group velocity within the class Ch.�=h2/.
But the proof is technically more involved and is beyond the scope of these notes.
We refer to [72] and [36] for detailed proofs.

5.5.2 A Two-Grid Algorithm

Glowinski and Li in [42] introduced a two-grid algorithm that makes it possible to
compute efficiently the control of the continuous model. The method was further
developed by Glowinski in [40].

The relevance and impact of using two grids can be easily understood in view of
the analysis of the 1-d semidiscrete equation developed in the previous paragraph.

In (5.88) we have seen that all the eigenvalues of the semidiscrete system satisfy
�� 4=h2. We have also seen that the observability inequality becomes uniform
when one considers solutions involving eigenvectors corresponding to eigenvalues
� � �=h2, with � < 4, see Theorem 5.5.3.

The key idea of this two-grid filtering mechanism consists in using two grids:
one, the computational one in which the discrete wave equations are solved, with
step size h and a coarser one of size 2h. In the fine grid, the eigenvalues satisfy
the sharp upper bound �� 4=h2. And the coarse grid will “select” half of the
eigenvalues, the ones corresponding to �� 2=h2. This indicates that in the fine
grid the solutions obtained in the coarse one would behave very much as filtered
solutions.

To be more precise, let N 2N be an odd number, and still consider the
semidiscrete wave (5.81). We then define the class

Vh D
n
.u0h;u

1
h/ 2 R

N � R
N ; u`2jC1 D u`2j C u`2jC2

2
;

j 2 f0; : : : ; .N � 1/=2g; ` 2 f0; 1g
o
: (5.113)

The idea of Glowinski and Li is then to consider initial data lying in this space,
which can be easily described, as we said, in the physical space.

Formally, the oscillations in the coarse mesh that correspond to the largest
eigenvalues �' 4 sin.�=4/2=h2, in the finer mesh are associated to eigenvalues
in the class of filtered solutions with parameter � D 4 sin.�=4/2 D 2. Formally,
this corresponds to a situation where the observability inequality is uniform for
T > 2=

p
1 � �=4 D 2

p
2.
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The following holds:

Theorem 5.5.6. ForN 2 N an odd integer and T > 2
p
2C2h, for any initial data

.u0h;u
1
h/ 2 Vh, the solution uh of (5.81) satisfies:

Eh.0/ � 2

T � 2
p
2 � 2h

TZ

0

ˇ̌
ˇuN
h

ˇ̌
ˇ
2

dt: (5.114)

Theorem 5.5.6 has been obtained recently in [36] using the multiplier identity
(5.110) and careful estimates on each term in this identity. This approach yields the
most explicit estimate on the observability constant for bi-grid techniques.

This issue has also been studied theoretically in the article [83] using the
multiplier techniques in 1-d (but getting an observation time T >4/, and later in [50]
in 2d using a dyadic decomposition argument. The time has later been improved in
1-d to T >2

p
2 using Ingham techniques in [71], loosing track of the observability

constants.
Theorem 5.5.6 justifies the efficiency of the two-grid algorithm for computing

the control of the continuous wave equation, as we shall derive more explicitly in
Sect. 5.6.

This method was introduced by Glowinski [40] in the context of the full finite
difference (in time) and finite element space discretization in 2D. It was then
further developed in the framework of finite differences by M. Asch and G. Lebeau
in [2], where the Geometric Control Condition for the wave equation in different
geometries was tested numerically.

5.5.3 Tychonoff Regularization

Glowinski, Li, and Lions [43] proposed a Tychonoff regularization technique that
allows one to recover the uniform (with respect to the mesh size) coercivity of the
functional that one must minimize to get the controls in the HUM approach. The
method was tested to be efficient in numerical experiments.

In the context of observability Tychonoff regularization corresponds to relaxing
the boundary observability inequality by adding an extra observation, distributed
everywhere in the domain and at the right scale so that it asymptotically vanishes as
h tends to zero but it is strong enough to capture the energy of the pathological high
frequency components. The corresponding observability inequality is as follows:

Eh.0/ � C.T /2
� TZ

0

ˇ̌
ˇ̌uN .t/
h

ˇ̌
ˇ̌
2

dt C h3
NX
jD0

TZ

0

ˇ̌
ˇ̌
ˇ
u0
jC1 � u0

j

h

ˇ̌
ˇ̌
ˇ
2

dt

�
: (5.115)
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The following holds:

Theorem 5.5.7 ([100]). For any time T >2, there exists a constantC.T / such that,
for all h>0, inequality (5.115) holds for all solutions uh of (5.81). Furthermore,
C.T /2 can be taken to be 2=.T � 2/.

In (5.115) we have the extra term (5.112) that has already been encountered in
the multiplier identity (5.110). By inspection of the solutions of (5.81) in separated
variables it is easy to understand why this added term is a suitable one to reestablish
the uniform observability property. Indeed, consider the solution of the semidiscrete

system uh D exp
�˙i

q
�kht

�
wk
h. The extra term we have added is of the order

of h2�khEh.0/. Obviously this term is negligible as h! 0 for the low-frequency
solutions (for k fixed) but becomes relevant for the high-frequency ones when
�kh � 1=h2. Accordingly, when inequality (5.86) fails, i.e., for the high-frequency
solutions, the extra term in (5.115) reestablishes the uniform character of the
estimate with respect to h. It is important to emphasize that both terms are needed
for (5.115) to hold. Indeed, (5.112) by itself does not suffice since its contribution
vanishes as h ! 0 for the low-frequency solutions.

We do not give the proof of Theorem 5.5.7, which is an easy consequence of the
discrete multiplier identity (5.110)–(5.111).

5.5.4 Space Semidiscretizations of the 2D Wave Equations

In this section we briefly discuss the results in [111] on the space finite difference
semidiscretizations of the 2D wave equation in the square ˝ D .0; �/ � .0; �/

of R2:
8̂
<
:̂

ut t ��u D 0 in Q D ˝ � .0; T /;
u D 0 on @˝ � .0; T /;
u.x; 0/ D u0.x/; ut .x; 0/ D u1.x/ in ˝:

(5.116)

Obviously, the fact that classical finite differences provide divergent results for
1-d problems in what concerns observability and controllability indicates that the
same should be true in two dimensions as well. This is indeed the case. However, the
multidimensional case exhibits some new features and deserves additional analysis,
in particular in what concerns filtering techniques. Given

�
u0; u1

� 2H1
0 .˝/ �

L2.˝/, system (5.116) admits a unique solution u 2C �Œ0; T 	IH1
0 .˝/

� \C1�
Œ0; T 	IL2.˝/�. Moreover, the energy

E.t/ D 1

2

Z

˝

	j ut .x; t/ j2 C j ru.x; t/ j2
 dx (5.117)
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remains constant, i.e.,

E.t/ D E.0/ 80 < t < T: (5.118)

Let � denote a subset of the boundary of ˝ constituted by two consecutive sides,
for instance,

� D f.x1; �/ W x1 2 .0; �/g [ f.�; x2/ W x2 2 .0; �/g : (5.119)

It is well known (see [68, 69]) that for T > 2
p
2� there exists Cobs.T / > 0 such

that

E.0/ � Cobs.T /
2

TZ

0

Z

�

ˇ̌
ˇ̌ @u

@n

ˇ̌
ˇ̌
2

d�dt (5.120)

holds for every finite-energy solution of (5.116).
We can now address the standard five-point finite difference space semidis-

cretization scheme for the 2-d wave equation.
As in one dimension we may perform a complete description of both the

continuous solutions and those of the semidiscrete systems in terms of Fourier
series. One can then deduce the following:

• The semidiscrete system is observable for all time T and mesh size h.
• The observability constant Ch.T / blows up as h tends to 0 because of the

spurious high-frequency numerical solutions.
• The uniform (with respect to h) observability property may be reestablished by a

suitable filtering of the high frequencies.

However, filtering needs to be implemented more carefully in the multi-
dimensional case.

Indeed, the upper bound on the spectrum of the semidiscrete system in two
dimensions is 8=h2 but it is not sufficient to filter by a constant 0<� <8, i.e.,
to consider solutions that do not contain the contribution of the high frequencies
� > � h�2, to guarantee uniform observability.

In fact, one has to filter by means of a constant 0<� <4. This is due to the
existence of solutions corresponding to high-frequency oscillations in one direction
and very slow oscillations in the other. Roughly speaking, one needs to filter
efficiently in both space directions, and this requires taking � < 4 (see [111]).

In order to better understand the necessity of filtering and getting sharp observ-
ability times it is convenient to adopt the approach of [72, 73] based on the use of
discrete Wigner measures. The symbol of the semidiscrete system for solutions of
wavelength h is

�2 � 4 �sin2.
1=2/C sin2.
2=2/
�

(5.121)
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and can be easily obtained as in the von Neumann analysis of the stability of
numerical schemes by taking the Fourier transform of the semidiscrete equation:
the continuous one in time and the discrete one in space.11

Note that in the symbol in (5.121) the parameter h disappears. This is due to the
fact that we are analyzing the propagation of waves of wavelength of the order of h.

The bicharacteristic rays are then defined as follows:

8
ˆ̂̂
<
ˆ̂̂
:

x0
j .s/ D �2sin.
j =2/cos.
j =2/ D �sin.
j /; j D 1; 2;

t 0.s/ D �;


 0
j .s/ D 0; j D 1; 2;

� 0.s/ D 0:

(5.122)

on the characteristic set �2 � 4.sin2.
1=2/C sin2.
2=2/ D 0.
It is interesting to note that the rays are still straight lines, as for the constant

coefficient wave equation, since the coefficients of the equation and the numerical
discretization are both constant. We see, however, that in (5.122) the velocity of
propagation changes with respect to that of the continuous wave equation.

Let us now consider initial data for this Hamiltonian system with the following
particular structure: x0 is any point in the domain˝ , the initial time t0 D 0, and the
initial microlocal direction .��; 
�/ is such that

.��/2 D 4
�
sin2.
�

1 =2/C sin2.
�
2 =2/

�
: (5.123)

Note that the last condition is compatible with the choice 
�
1 D 0 and 
�

2 D�

together with �� D 2. Thus, let us consider the initial microlocal direction 
�
2 D�

and �� D 2. In this case the ray remains constant in time, x.t/D x0, since, according
to the first equation in (5.122), x0

j vanishes both for j D 1 and j D 2. Thus, the
projection of the ray over the space x does not move as time evolves. This ray
never reaches the exterior boundary @˝ where the equation evolves and excludes the
possibility of having a uniform boundary observability property. More precisely, this
construction allows one to show that, as h! 0, there exists a sequence of solutions
of the semidiscrete problem whose energy is concentrated in any finite time interval
0 � t � T as much as one wishes in a neighborhood of the point x0.

This example corresponds to the case of very slow oscillations in the space
variable x1 and very rapid ones in the x2-direction, and it can be ruled out, precisely,
by taking the filtering parameter � < 4. In view of the structure of the Hamiltonian
system, it is clear that one can be more precise when choosing the space of filtered
solutions. Indeed, it is sufficient to exclude by filtering the rays that do not propagate
at all to guarantee the existence of a minimal velocity of propagation (see Fig. 5.10).

11This argument can be easily adapted to the case where the numerical approximation scheme is
discrete in both space and time by taking discrete Fourier transforms in both variables.
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Fig. 5.10 Level set representation of the group velocity as a function of the frequency .h
1; h
2/ 2
.��; �/. In red, the points where the group velocity is 1, which is the velocity of propagation of
continuous waves. In blue, the points where the group velocity is close to zero. When, by means
of a filtering method the blue areas are removed, the velocity of propagation of rays is uniformly
bounded from below

Roughly speaking, this suffices for the observability inequality to hold uniformly in
h for a sufficiently large time [72, 73].

This ray approach makes it possible to conjecture the optimal uniform observ-
ability time depending on the class of filtered solutions under consideration. The
optimal time is the one that all characteristic rays entering in the class of filtered
solutions need to reach the controlled region. This constitutes the discrete version
of the GCC for the continuous wave equation. Moreover, if the filtering is done so
that the wavelength of the solutions under consideration is of an order strictly less
than h, then one recovers the classical observability result for the constant coefficient
continuous wave equation with the optimal observability time.

5.5.5 A More General Result

Here, we describe the most general result available in the literature for uniform
observability of space semidiscrete wave equations.

This concerns the finite-element discretization of (5.59) observed through some
subdomain !. Let us emphasize from the beginning that the results presented in that
section hold under the Geometric Control Condition for .˝; !; T /, whatever the
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dimension is and under very mild assumptions on the finite-element discretization
under consideration.

In the following, to simplify the presentation, we focus on the constant coefficient
wave equation:

8̂
<
:̂

ut t ��u D 0; in ˝ � .0; T /;
u D 0; on @˝ � .0; T /;
u.0/ D u0; ut .0/ D u1; in ˝

(5.124)

observed through �!ut on ! � .0; T /.
The corresponding observability inequality is

��ru0
��2
L2.˝/

C ��u1
��2
L2.˝/

� C2
obs

TZ

0

k�!ut .t/k2L2.˝/ dt: (5.125)

Let us now describe the finite element method we use to discretize (5.124).
Consider .Vh/h>0 a sequence of vector spaces of finite dimension nh that embed

Vh into L2.˝/ using a linear morphism �h W Vh ! L2. For each h > 0, the inner
product h�; �iL2 in L2 induces a structure of Hilbert space for Vh endowed by the
scalar product h�; �ih D h�h�; �h�iL2 . We assume that for each h > 0, the vector
space �h.Vh/ is a subspace of D..��D/

1=2/ D H1
0 .˝/. We thus define the linear

operator A0h W Vh ! Vh by

hA0h�h; hih D hr�h�h;r�h hiL2; 8.�h; h/ 2 V 2
h : (5.126)

The operator A0h defined in (5.126) obviously is self-adjoint and positive definite.
Formally, definition (5.126) implies that

A0h D .r�h/�r�h: (5.127)

This operator A0h corresponds to the finite element discretization of ��D ,
the Laplace operator with Dirichlet boundary conditions. System (5.124) is then
discretized into

u00
h C A0huh D 0; uh.0/ D u0h 2 Vh; u0

h.0/ D u1h 2 Vh: (5.128)

In this context, for all h > 0, the observation operator naturally becomes �!�hu0
h.t/.

We now make precise the assumptions we have, usually, on �h, and which will
be needed in our analysis. For this, we introduce the adjoint of �h from Vh endowed
with the scalar product of hA1=20h �; A1=20h �ih to D.A1=20 / D H1

0 .˝/ endowed with the
scalar product hr�;r�iL2.

One easily checks that ��
h�h D IdVh . Besides, the embedding �h describes the

finite element approximation we have chosen. In particular, the vector space �h.Vh/
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approximates, in the sense given hereafter, the space D.A1=20 / D H1
0 .˝/: There

exist � > 0 and C0 > 0, such that for all h > 0,

( ��r.�h��
h � I /u��

L2.˝/
� C0 krukL2.˝/ ; 8u 2 H1

0 .˝/;��r.�h��
h � I /u��

L2.˝/
� C0h

� k��ukL2.˝/ ; 8u 2 H2 \H1
0 .˝/:

(5.129)

Note that in many applications, estimates (5.129) are satisfied for � D 1. This is in
particular true when discretizing on uniformly regular meshes (see [92]).

We will not discuss convergence results for the numerical approximation
schemes presented here, which are classical under assumption (5.129), and which
can be found for instance in the textbook [92].

In view of the previous results, it is natural to restrict ourselves to filtered initial
data. For all h > 0, since A0h is a self adjoint positive definite matrix, the spectrum
of A0h is given by a sequence of positive eigenvalues

0 < �1h � �2h � � � � � �
nh
h (5.130)

and normalized (in Vh) eigenvectors .wk
h/1�k�nh . For any s, we can now define, for

each h > 0, the filtered space (to be compared with (5.108))

Ch.s/ D

8
<̂
:̂

uh D
X

�kh�s

0
B@ak cos

�q
�kht

�
C bkq

�kh

sin

�q
�kht

�
1
CAwk

h

9
>=
>;
:

We are now in position to state the following results:

Theorem 5.5.8 ([27]). Assume that the maps .�h/h>0 satisfy property (5.129) and
that .!;˝; T / satisfies the Geometric Control Condition, i.e. that system (5.124) is
exactly observable.

Then there exist " > 0, a time T � and a positive constant Cobs such that, for any
h 2 .0; 1/, any solution of (5.128) lying in Ch."=h�/ satisfies

��r�hu0h
��2
L2.˝/

C ���hu1h
��2
L2.˝/

� C2
obs

T �Z

0

���!�hu0
h.t/

��2
L2.˝/

dt: (5.131)

Note in particular that this yields the same results as the one obtained in [90] in
a 1-d framework and generalizes it to any dimension.

The proof of this Theorem combines, essentially, the observability inequality
of the continuous wave equation and sharp estimates on the convergence of the
numerical scheme towards the continuous model. Roughly speaking, one needs to
build the subspace of initial data so that numerical solutions are uniformly close to
the continuous ones so that they inherit the observability properties of the later.
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The interest of this result is that it holds in any space dimension and in a very
general Galerkin approximation setting. To our knowledge, [27] and the companion
paper [29] are the first ones in which this kind of results are presented with such a
degree of generality.

The proof of this statement can be derived using resolvent estimates [16, 79]
(see also [88] for a similar estimate) but this method does not yield sharp estimates
on the observability time. Hence T � in Theorem 5.5.8 may be much larger than the
time for which .!;˝; T / satisfies GCC and the one could expect to be sharp in view
of the analysis of the dispersion diagram of the numerical scheme.

Note also that (5.131) holds within a class of functions that are much more
filtered than in Theorem 5.5.3. The later holds up to the critical scale within
subclasses of the form Ch.�=h2/, � < 4. Whether the result in Theorem 5.5.8 is true
or not in these optimal subclasses is an interesting open problem. Note, in any case,
that Theorem 5.5.8 holds in a much more general setting, where new phenomena
could occur. Even in 1-d, for the finite element method on non-uniform meshes,
whether Theorem 5.5.8 can be improved or not is an open problem.

5.6 Convergence Results

The goal of this section is to describe a general approach to show the convergence
of the discrete controls, obtaining convergence rates, from the observability results
presented in the previous section.

5.6.1 A General Procedure for the Convergence
of the Discrete Controls

In this section, we describe the setting in which we are working, and present the
main ideas.

Let A be a skew-adjoint operator A W D.A/ 
 X ! X with compact resolvent
and dense domain, and B be an admissible control operator B 2 L.U ; X�1/.

We assume that the continuous system (5.13) is controllable in some time T > 0.
Now, we approximate the continuous model (5.13) by a sequence of finite-

dimensional systems

x0
h D Ahxh C Bhvh; t � 0; xh.0/ D x0h 2 Xh; (5.132)

where .Ah; Bh/ is a sequence of finite-dimensional approximations of the operators
.A;B/ respectively, where for each h > 0, Ah is a skew-adjoint operator defined on
a finite dimensional spaceXh embedded intoX , andBh is defined on a vector space
Uh that embeds into the Hilbert space U with values in Xh.
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We consider the embedding �h W Xh ! X , which provides an Hilbert structure
on Xh by k�kh D k�h.�/kX .

To simplify the presentation, we further assume that Bh is simply given by ��
hB ,

where B is the continuous control operator, so that Uh simply coincides with U .
Otherwise, similar ideas can be applied, see for instance Sect. 5.6.2.3.

We also assume that the spaces Xh fill the space X as h ! 0 in a sense that
will be made precise below. Of course, the finite difference or the finite-element
approximation schemes for the wave equation fit into this setting, and a more precise
description can be made in these cases.

We have already seen in Sect. 5.4.4 that, for the finite-difference method, the
discrete controls fulfilling the control requirement xh.T /D 0may blow up as h! 0,
due to the fact that observability properties do not hold uniformly with respect to
the discretization parameter h > 0.

However, we have seen in Sect. 5.5 that weak observability results can be shown
to hold uniformly with respect to the discretization parameter h> 0, provided
suitable filtering mechanisms are implemented. To be more precise, we assume that
there exist a positive constant Cobs and a time T such that, for all h > 0,

��'Th
��2
h

� C2
obs

TZ

0

�.t/ kB�
h'h.t/k2U dt; 8'Th 2 Ch; (5.133)

where Ch is a subspace ofXh, � is a smooth function with values in Œ0; 1	, vanishing
for t … Œ0; T 	 and equals to 1 on some non trivial subset of Œ0; T 	, similarly as in
(5.21), and 'h is the solution of the adjoint system

'0
h D Ah'h; t 2 .0; T /; 'h.T / D 'Th : (5.134)

We now consider the HUM-type functional Jh, defined for 'Th 2 Ch by

Jh.'
T
h / D 1

2

TZ

0

�.t/ kB�
h'h.t/k2U dt C hx0h;'h.0/ih: (5.135)

Using the same arguments as in Theorem 5.2.1 and Corollary 5.2.6, one easily
checks that:

Theorem 5.6.1. Assume that (5.133) holds with constants C and T independent of
h > 0.

Let h > 0 and x0h 2 Xh. Then the functional Jh in (5.135) is continuous, strictly
convex and coercive on Ch and it admits a unique minimizer ˚T

h 2 Ch. Then, setting
Vh D �.t/B�

h ˚h, where ˚h is the solution of (5.134) with initial data ˚T
h , the

solution xh of (5.132) satisfies

8'Th 2 Ch; h'Th ; xh.T /ih D 0; (5.136)

or equivalently xh.T / 2 C?
h .
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Besides, this is the only control Vh 2 L2.0; T I U / such that the corresponding
xh satisfies (5.136) and which is of the form Vh D �B�

h 'h for some 'h solution of
(5.134) with 'h.T / 2 Ch.

Moreover,

1

C 2
obs

��˚T
h

��2
h

�
TZ

0

kVh.t/k2U
dt

�.t/
D

TZ

0

�.t/ kB�
h ˚h.t/k2U dt � C2

obs

��x0h
��2
h
:

(5.137)

The following two questions arise now naturally:

• Convergence. Given x0h that converge (weakly or strongly) to x0 in X as h! 0

(in a sense to be made precise), can we show that the discrete controls Vh

converge to V , the continuous control corresponding to x0 for (5.13)?
• Convergence rates. Can we furthermore give a convergence rate for the conver-

gence of Vh towards V ?

These two questions will be investigated below in this very general setting.
Of course, getting such results requires a more precise knowledge of the numerical
schemes under consideration.

We shall then present a general frame on which, under suitable hypotheses that
should then be carefully verified in each situation, the convergence will be proved
with convergence rates.

5.6.1.1 Convergence

To derive the convergence of the discrete controls Vh given by Theorem 5.6.1,
we need the following hypotheses, that should be verified in each situation:

Hypothesis #1. For 'T 2 \s>0D.As/ and ' be the corresponding solution of
(5.14), there exists a sequence of functions 'Th 2 Ch such that, if 'h denotes the
corresponding solution of (5.134),

�h'h.0/ �!
h!0

'.0/ in X (5.138)

B�
h'h �!

h!0
B�' in L2.0; T I U /: (5.139)

Hypothesis #1 looks like a classical result of convergence of the numerical
methods under consideration. This is indeed the case, except for the fact that the
approximations of 'T are searched within the restricted subspace Ch of Xh. This in
practice requires proving the convergence of suitable projections of the numerical
approximations.
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We also need the following assumption:

Hypothesis #2. For 'Th 2 Xh and 'T 2 X such that

�h'
T
h *
h!0

'T in X and sup
h

kB�
h'h.t/kL2.0;T IU/ < 1; (5.140)

denoting by 'h and ' respectively the solutions of (5.134) and (5.14) with initial
data 'Th and 'T respectively,

�h'h *
h!0

' in L2.0; T IX/ (5.141)

B�
h'h *

h!0
B�' in L2.0; T I U / (5.142)

�h'h.0/ *
h!0

'.0/ in X: (5.143)

The statements in Hypothesis #2 typically hold for classical numerical approxi-
mation schemes.

Under these two main hypotheses we get the following result:

Theorem 5.6.2. Let x0 2 X and x0h 2 Xh be such that �hx0h weakly converges to
x0 in X as h ! 0.

We further assume that Hypotheses #1 and #2 hold true.
Then the discrete controls Vh given by Theorem 5.6.1 weakly converge to V given

by Proposition 5.2.11 in L2.0; T I dt=�I U / as h ! 0.
Moreover, if �hx0h strongly converge to x0, Vh strongly converge to V in the norm

of L2.0; T I dt=�I U / (hence in the L2.0; T I U /-norm as well) as h ! 0.

Proof. The proof of Theorem 5.6.2 is divided into several steps.

Step 1. Extraction of a weakly convergent sequence of controls. From The-
orem 5.6.1, the sequence Vh is bounded in L2.0; T I dt=�I U /. Hence, up to
extraction of a subsequence, the controls Vh weakly converge to some function v
in L2.0; T I dt=�I U /.

Step 2. Any weak accumulation point of Vh is a control function for (5.13).
The Euler–Lagrange equation satisfied by the minimizer ˚T

h of Jh in (5.135) is the
following one:

8'Th 2 Ch;

TZ

0

hVh.t/; B
�
h 'hiU dt C hx0h;'h.0/ih D 0: (5.144)

Let us then take 'T 2 \s>0 D.As/. Using Hypothesis #1, we obtain a sequence
'Th 2 Ch such that the strong convergences (5.139)–(5.138) hold. Further using that

hx0h;'h.0/ih D h�hx0h; �h'h.0/iX;
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and passing to the limit in (5.144), we obtain that for all 'T 2 \s>0 D.As/,

TZ

0

hv.t/; B�'iU dt C hx0; '.0/iX D 0: (5.145)

By density, this also holds true for all 'T 2 X . From (5.20), this implies that v is a
control function for (5.13).

Step 3. Any weak accumulation point v of Vh can be written as v D �B�' for
some ' solution of the adjoint system (5.14). For all h > 0, Vh D �B�

h ˚h, where
˚h is the solution of (5.134) with initial data ˚T

h , and Vh and �h˚T
h are bounded,

respectively, in L2.0; T I dt=�I U / and X , due to (5.137). Thus, up to subsequence,
�h˚

T
h weakly converge in X to some 'T . Thus, from Hypothesis #2, v D �B�',

where ' is the solution of (5.14) corresponding to 'T .

Step 4. Any weak accumulation point of Vh is the control V given by Proposi-
tion 5.2.11. This follows from the uniqueness of the control functions that can be
written �B�' for some ' solution of (5.14) (see Proposition 5.2.11).

Hence there is only one weak accumulation point for the sequence .Vh/, which
coincides with the control V given by Proposition 5.2.11. Therefore, the sequence
.Vh/ weakly converges to V in L2.0; T I dt=�I U / as h ! 0.

Step 5. Strong convergence when �hx0h strongly converges to x0. In view of the
weak convergence property from Step 4, we only need to prove the convergence of
the L2.0; T I dt=�I U /-norms of Vh as h ! 0.

But, from (5.144) applied to ˚T
h (2 Ch),

kVhk2L2.0;T Idt=�IU / D
TZ

0

�.t/ kB�
h ˚h.t/k2U dt D �h�hx0h; �h˚h.0/iX: (5.146)

On the other hand, V D �B�˚ , where˚ is given by Proposition 5.2.11. From (5.20)
applied to 'T D ˚T , we obtain

kV k2L2.0;T Idt=�IU / D
TZ

0

�.t/ kB�˚.t/k2U dt D �hx0; ˚.0/iX: (5.147)

Now, using Step 3 and Hypothesis #2, �h˚T
h weakly converges to some 'T in X

which is such that V D �B�'. From the observability inequality (5.22), ' 	 ˚ ,
the one corresponding to the minimizer of the functional J in (5.23). Hence �h˚T

h

weakly converges in X to ˚T . Applying again Hypothesis #2, �h˚h.0/ weakly
converges to ˚.0/ in X as h ! 0.
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Passing to the limit, h�hx0h; �h˚h.0/iX converges to hx0; ˚.0/iX as h ! 0, and
then passing to the limit in (5.146) and using (5.147), the L2.0; T I dt=�I U /-norms
of Vh converge to the L2.0; T I dt=�I U /-norm of V .

This concludes the proof of the theorem. �

Note that this method of proof is not new (see, for instance, [53]) and it has been
shown to be robust and efficient, whatever the discretization scheme or the weak
observability properties under consideration are.

However, this approach did not seem to be sufficient to get convergence rates for
the discrete controls. The main reason is that it was not known, with this degree of
generality, that smooth initial data to be controlled yield smooth controls. As we
have explained above, this holds true in a broad abstract setting, but only when the
cut-off function in time �.t/ is introduced or when the control operator is bounded,
i.e. B 2 L.U ; X/. Then, using Theorem 5.2.12, we will be in conditions to prove
also convergence rates.

5.6.1.2 Convergence Rates

To prove convergence rates for the discrete controls towards the continuous ones, it
is necessary, as is standard in numerical analysis, to assume some smoothness on the
initial data. One then needs to make sure that the numerical schemes approximating
the PDE model have suitable convergence rates that we will then transfer to the
controls. In the following Hypothesis #3 we require this property to be fulfilled.

Hypothesis #3. There exist s1 > 0 and a constant �1 > 0 such that for all 'T 2
D.As1/, one can find a sequence of functions 'Th 2 Ch such that the corresponding
solutions 'h of (5.134) satisfy, for h > 0,

sup
t2.0;T /

�k�h'h � 'kX
�C kB�.�h'h � '/kL2.0;T IU / � Ch�1

��'T ��
D.As1 /

; (5.148)

where ' is the solution of (5.14) with initial data 'T .
Note that Hypothesis #3 is a stronger version of Hypothesis #1. It always holds

withXh instead of Ch for convergent numerical approximation schemes. As we shall
see, in specific examples, similar results hold within the classes Ch as assumed in
Hypothesis #3.

Also note that when B� is bounded, estimate (5.148) is implied by the
weaker one:

sup
t2.0;T /

k�h'h � 'kX � Ch�1
��'T ��

D.As1 /
: (5.149)
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We also need a similar convergence assumption for the controlled equation:

Hypothesis #4. There exist s2 > 0 and a constant �2 such that for all x0 2
D.As2/ and ˚T 2 D.As2/, setting x0h D ��

hx
0, v D �B�˚ where ˚ is the solution

of (5.14) with initial data ˚T and vh 2 L2.0; T I U /, the corresponding solutions
xh and x of (5.132) and (5.13) respectively satisfy:

k�hxh.T / � x.T /kX � Ch�2
���x0��

D.As2 /
C ��˚T

��
D.As2 /

�
CC kvh � vkL2.0;T I U / :

(5.150)

Note that Hypothesis #4 looks like a classical convergence result for numerical
methods. The fact that the source term is given as �B�˚ is needed to guarantee
that the controlled trajectory x lies in a smooth space, and in particular that this is a
strong solution, see Corollary 5.2.13 and Sect. 5.3.3.

We are now in position to state our main result:

Theorem 5.6.3. Assume that Hypotheses #3 and #4 hold.
Let s D maxfs1; s2g and � D minf�1; �2g.
Then, for any x0 2 D.As/, setting x0h D ��

hx
0, the discrete controls Vh given by

Theorem 5.6.1 converge to the control V given by Proposition 5.2.11 and

kVh � V kL2.0;T Idt=�IU / � Ch�
��x0��

D.As/
: (5.151)

Proof. The proof is divided into several steps.

Step 1. The continuous control is smooth. Let x0 2 D.As/ . From The-
orem 5.2.12, the weighted HUM method yields a control V.t/D �.t/B�˚.t/,
computed by Proposition 5.2.11 where ˚ is the solution of (5.14) corresponding
to the minimizer ˚T of the functional J in (5.23), which is smooth:

��˚T
��

D.As/
� C

��x0��
D.As/

:

Step 2. An approximate control. Since ˚T 2 D.As/, by Hypothesis #3, one can
approximate ˚ by a sequence Q̊

h of solutions of the discrete (5.134) with initial
data Q̊ T

h 2 Ch such that

��B�.�h Q̊
h � ˚/

��
L2.0;T IU /

� Ch�
��˚T

��
D.As/

� Ch�
��x0��

D.As/
:

Hence, setting

Qvh.t/ D �.t/B�
h

Q̊
h.t/; (5.152)

Qvh satisfies

kQvh � V kL2.0;T Idt=�IU / � Ch�
��x0��

D.As/
: (5.153)
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Then, using Hypothesis #4, we get that the solution Qxh of

Qx0
h D Ah Qxh C Bh Qvh; t � 0; Qxh.0/ D x0h;

satisfies

kQxh.T /kh � Ch�
��x0��

D.As/
:

Step 3. An exact discrete control. From Theorem 5.6.1, there exists a control
function Ovh 2 L2.0; T I U / such that the function wh solution of

w0
h D Ahwh CBh Ovh; t � 0; wh.0/ D 0;

satisfies

8'Th 2 Ch; hwh.T /C Qxh.T /;'Th ih D 0:

Besides, from Theorem 5.6.1, this can be done with a control function Ovh 2
L2.0; T I U / that can be written Ovh D �B�

h �h for �h solution of (5.134) with initial
data �Th 2 Ch, and with

kOvhkL2.0;T Idt=�IU / � C k Qxh.T /kh � Ch�
��x0��

D.As/
: (5.154)

Hence Qvh C Ovh is a control for (5.132) (in the sense of (5.136)).

Step 4. Identification of the controls. From the uniqueness of the discrete
controls that can be written as �B�

h'h with 'Th 2 Ch stated in Theorem 5.6.1,
Vh D Qvh C Ovh.

Hence, from (5.153)–(5.154),

kV � VhkL2.0;T Idt=�IU / � kV � QvhkL2.0;T Idt=�IU / C kOvhkL2.0;T Idt=�IU /

� Ch�
��x0��

D.As/
:

This completes the proof of the theorem. �
The approach presented above is very general and can be applied in many

situations. Below, we shall explain how it yields convergence results from the weak
observability results stated in Sect. 5.5.

Remark 5.6.4. We refer to the recent work [20] for approximation results based
on the continuous approach. In that approach the approximate controls are not
built as controls for an approximate discrete dynamics but rather discretizing an
iterative algorithm leading to convergence at the continuous level, but necessarily
to the control of minimal norm. Note also that the method developed in [20] only
converges for initial data to be controlled lying in D.A3=2/ (the proofs in [20] focus
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on the finite element methods for the wave equation, for which this space is the
natural one), but does not a priori converge when the initial data to be controlled
only lie in X . The discrete approach we develop here provides both, convergence
results in the optimal class of initial data and convergence rates for smooth data.

Remark 5.6.5. In a first reading, the fact that the proof of convergence of the
discrete controls does not require the convergence of the controlled equations might
seem surprising. Indeed, Hypotheses #1, #2 and #3 refer only to the adjoint (5.134)–
(5.14) and only Hypothesis #4 directly refers to the convergence of the controlled
equation.

But the convergence properties of the adjoint (5.134) towards the continuous one
(5.14) in Hypotheses #1, #2 and #3 also yield convergence results for the discrete
controlled system (5.132)–(5.13) since their solutions are defined by transposition,
taking scalar products with the solutions of the adjoint system.

5.6.2 Controllability Results

In this section we apply the above procedure for deriving convergence rates for
numerical controls in various relevant examples.

Before going further, let us emphasize that the problem of boundary control, as
the internal control problem above, corresponds to a case in which the energy space
is not identified with its dual, as it is done in the previous paragraph. This fact creates
a shift in the functional spaces below. We made the choice of presenting the abstract
theory in the reflexive case with the identification between X and its dual for the
sake of simplicity.

More precisely, in the case of the boundary controllability of the wave equation,
the adjoint (5.39) lies in X D H1

0 .0; 1/ � L2.0; 1/, whereas the controlled (5.42) is
solved in the space X� D L2.0; 1/�H�1.0; 1/.

Note in particular that the wave semigroup is an isometry in both spaces X and
X�, and thus the only difference with respect to the presentation above is that the
identification between X and its dual is not done.

Hence, Hypotheses #1, #2, #3 should be checked in the energy space H1
0 .0; 1/�

L2.0; 1/, whereas Hypothesis #4, that refers to the convergence of the continuous
controlled equation towards (5.42), should be proved in the space L2.0; 1/ �
H�1.0; 1/.

5.6.2.1 Filtering Methods

Based on Theorem 5.5.3, we can set Ch D Ch.�=h2/with � 2 .0; 4/. Note that, here
Ch.�=h2/ refers to the space in which the trajectories uh, solutions of (5.81), live.
Of course, this can be identified with the set of data such that for some t 2 .0; T /
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(and then for all t 2 .0; T /), .uh.t/;u0
h.t// belongs to the vector space spanned by

the first eigenvectors wk
h corresponding to the eigenvalues �kh � �=h2.

In that case, the control requirement (5.136) for solutions yh of (5.98) becomes:

8uh 2 Ch.�=h
2/; h

NX
jD1

yj .T /u
0
j .T / � h

NX
jD1

y0
j .T /uj .T / D 0; (5.155)

or, equivalently,

�Ch.�=h2/yh.T / D 0; and �Ch.�=h2/y
0
h.T / D 0; (5.156)

where �Ch.�=h2/ denotes the orthogonal projection of L2h.0; 1/ on the vector space
spanned by the eigenfunctions wk

h corresponding to eigenvalues �kh � �=h2.
Fix now � 2 .0; 4/, and T > T .�/ given by Theorem 5.5.3. Introduce ı > 0

such that T > T .�/C 2ı. Let � be a smooth function of time such that

� W R ! Œ0; 1	; �.t/ D
�
1 on Œı; T .�/C ı	;

0 on R n .0; T /: (5.157)

According to the analysis done in the previous section, it is then natural to introduce
the following functional

Jh.uh/ D 1

2

TZ

0

�.t/

ˇ̌
ˇ̌uN .t/
h

ˇ̌
ˇ̌
2

dt C h

NX
jD1

y0j u1j � h

NX
jD1

y1ju0j ; (5.158)

for uh 2 Ch.�=h2/.
Then, similarly as in Theorem 5.4.4, we have:

Theorem 5.6.6. Let � 2 .0; 4/ and T > T .�/ given by Theorem 5.5.3.
For all h > 0 system (5.98) is controllable in the sense of (5.155) (or,

equivalently, (5.156)).
More precisely, for any .y 0h ; y 1h / 2 R

N � R
N ; there exists a control

Vh 2 L2.0; T I dt=�/ such that the solution of (5.98) satisfies (5.155).
Moreover, the control Vh of minimal L2.0; T I dt=�/-norm fulfilling (5.155) can

be characterized through the minimization (over Ch.�=h
2/) of the functional Jh in

(5.158) as

Vh.t/ D ��.t/UN .t/
h

; (5.159)

where Uh is the minimizer of Jh in (5.158) over Ch.�=h2/.

Here, the difference with the situation in Theorem 5.4.4 is that discrete sys-
tems are observable within the space Ch.�=h

2/, uniformly with respect to the
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discretization parameter h > 0. This allows to deduce that the discrete controls
Vh given by Theorem 5.6.6 are bounded.

One should then prove that the Hypotheses #1 and #2 hold in this case, to obtain
a convergence result. In this case, they take the following form:

Lemma 5.6.7 ([32, 53]). Let .u0; u1/ 2 C1
0 .0; 1/

2 and u be the corresponding
solution of (5.39). Then there exists a sequence of functions uh 2 Ch.�=h2/ such
that

�
�huh.0/; �hu0

h.0/
� �!
h!0

.u.0/; u0.0// in H1
0 .0; 1/ �L2.0; 1/ (5.160)

�uN;h
h

�!
h!0

@xu.1; t/ in L2.0; T /; (5.161)

where �h is the continuous extension of the discrete function uh by Fourier series.

In other words, Hypothesis #1 is satisfied in this case. Corresponding to
Hypothesis #2, we have:

Lemma 5.6.8 ([36, 53]). Let .u0h;u
1
h/ be discrete functions and .u0; u1/ 2

H1
0 .0; 1/ �L2.0; 1/ such that

.�hu0h; �hu
1
h/ *

h!0
.u0; u1/ in H1

0 .0; 1/ �L2.0; 1/ (5.162)

and

sup
h

����
uN;h.t/

h

����
L2.0;T /

< 1: (5.163)

Then, denoting by uh and u respectively the solutions of (5.81) and (5.39) with
initial data .u0h;u

1
h/ and .u0; u1/ respectively, we have

.�huh; �hu0
h/ *

h!0
.u; u0/ in L2.0; T IH1

0 .0; 1/� L2.0; 1// (5.164)

�uN;h
h

*
h!0

@xu.1; t/ in L2.0; T / (5.165)

.�hu0h; �hu1h/ *
h!0

.u0; u1/ in H1
0 .0; 1/ � L2.0; 1/: (5.166)

Here, again, �h denotes the continuous extension operator of discrete functions by
Fourier series.

In other words, Hypothesis #2 is satisfied in this case.
Note that, due to the multiplier identity (5.110), one easily checks that (5.163) is

a consequence of (5.162). Indeed, weakly convergent sequences are bounded, and
(5.110) immediately yields an uniform admissibility result for the discrete wave
equation (5.81).

We refer to [32, 36, 53] for the proof of Lemmas 5.6.7–5.6.8.
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Accordingly, based on the convergence result in Theorem 5.6.2, we get

Theorem 5.6.9. Within the setting of Theorem 5.6.6, given .y0; y1/ 2 L2.0; 1/ �
H�1.0; 1/ and a sequence of discrete initial data .y0h; y

1
h/ such that .�hy0h; �hy1h/

weakly converges to .y0; y1/ in L2.0; 1/ � H�1.0; 1/, the discrete controls Vh

provided by Theorem 5.6.6 weakly converge in L2.0; T I dt=�/ to V , the control
provided by Theorem 5.3.6, as h ! 0.

Besides, if the discrete initial data .y0h; y
1
h/ are such that .�hy0h; �hy1h/ strongly

converges to .y0; y1/ in L2.0; 1/�H�1.0; 1/, then the discrete controls Vh strongly
converge to V in L2.0; T I dt=�/ as h ! 0.

It is then natural to address the issue of the convergence rates for the discrete
controls Vh given by Theorem 5.6.6. For this to be done, as we have said, it is
sufficient to derive the order of convergence for the discrete wave equation, and,
more precisely, to check that Hypotheses #3 and #4 hold.

The following result is proved in [32]:

Proposition 5.6.10 ([32]). Let .u0; u1/ 2 H2 \ H1
0 .0; 1/ � H1

0 .0; 1/. Then there
exists a constant C D C.T / independent of .u0; u1/ and a sequence .u0h;u

1
h/ 2

Ch.1=h4=3/ of initial data such that for all h > 0,

��.�hu0h; �hu1h/� .u0; u1/
��
H1
0�L2 � Ch2=3

��.u0; u1/��
H2\H1

0 �H1
0

(5.167)

and the solutions u of (5.39) with initial data .u0; u1/ and uh of (5.81) with initial
data .u0h;u

1
h/ satisfy, for all h > 0,

sup
t2Œ0;T 	

k.�huh.t/; �hu0
h.t// � .u.t/; u0.t//kH1

0 �L2

� Ch2=3
��.u0; u1/��

H2\H1
0 �H1

0
; (5.168)

����
uN;h.�/
h

C ux.1; �/
����
L2.0;T /

� Ch2=3
��.u0; u1/��

H2\H1
0 �H1

0
; h > 0: (5.169)

Moreover,

sup
t2Œ0;T 	

��.�huh.t/; �hu0
h.t//

��
H2\H1

0 �H1
0

� C
��.u0; u1/��

H2\H1
0�H1

0
; (5.170)

����
uN;h.�/
h

����
H1.0;T /

� C
��.u0; u1/��

H2\H1
0�H1

0
; h > 0:

(5.171)

Note that Proposition 5.6.10 is proved by taking the Fourier series decomposition
of the continuous solution u of (5.39) and truncating it at the best order, which turns
out to be �kh ' 1=h4=3. This might be surprising since it introduces powers of the
form h2=3 for the rate of convergence of the numerical scheme. But, actually, this
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strategy is optimal, as explained in [91]. This is due to the fact that

q
�kh � k� D 2

h
sin

�
k�h

2

�
� k� ' �3

24
k3h2;

which is small within the range of k such that k . h�2=3, hence corresponding to
�kh . h�4=3.

Also note that �h denotes the Fourier extension of the discrete solutions. Hence it
is smooth and one can take the H2.0; 1/ norms of these continuous approximations
as required in the statement above.

Finally, let us emphasize that Proposition 5.6.10 is well-known except for what
concerns the convergence of the normal derivatives on the boundary. In particular,
our approach strongly uses the uniform hidden regularity property given by the
multiplier identity (5.110).

Once this is done, we are in position to state the following counterpart of
Hypothesis #4:

Theorem 5.6.11 ([32]). Let .y0; y1/ 2 H1
0 .0; 1/ � L2.0; 1/ and v 2 H1

0 .0; T / and
denote by y the corresponding solution of (5.42).

Consider a sequence of initial data .y0h; y
1
h/ and control functions vh 2 L2.0; T /

and denote by yh the corresponding solution of (5.98). Then there exists a positive
constant C independent of h > 0 such that

k .�hyh.T /; �hy0
h.T // � .y.T /; y0.T // kL2�H�1

� Ch2=3
n
k .y0; y1/ kH1

0 �L2 C k v kH1
0 .0;T /

o

C k .�hy0h; �hy1h/� .y0; y1/ kL2�H�1 CC k vh � v kL2.0;T / : (5.172)

The details of the proof of Theorem 5.6.11 will be given in [32].
This is slightly more subtle than Proposition 5.6.10 at least for two reasons:

• To give a precise definition of the solution of the wave equation with initial
data in L2.0; 1/ � H�1.0; 1/ with a boundary data v 2 L2.0; T /, one needs
to introduce the concept of solutions in the sense of transposition, i.e. based on
the duality with solutions u of equations similar to (5.39) lying in the energy
space H1

0 .0; 1/ � L2.0; 1/, and to use hidden regularity results that show that
ux.1; t/ 2 L2.0; T /, see [68].

• One should then use the explicit convergence results stated in Proposition 5.6.10,
and in particular the one on the normal derivative (5.169).

Then, using Proposition 5.6.10 and Theorems 5.6.11 and 5.6.3, we get:

Theorem 5.6.12. Let .y0; y1/ 2 H1
0 .0; 1/ � L2.0; 1/ and consider a sequence of

discrete initial data .y0h; y
1
h/ such that .�hy0h; �hy1h/ strongly converges to .y0; y1/ in

L2.0; 1/ �H�1.0; 1/.
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Let � 2 .0; 4/ and T > T .�/. Then the controls Vh given by Theorem 5.6.6
strongly converge to V in L2.0; T I dt=�/, where V is the control given by
Theorem 5.3.6 corresponding to .y0; y1/.

Besides, there exists a constant C such that for all h > 0,

k Vh � V kL2.0;T Idt=�/� Ch2=3 k .y0; y1/ kH1
0 �L2

C C k .�hy0h; �hy1h/� .y0; y1/ kL2�H�1 : (5.173)

In particular, choosing .y0h; y
1
h/ such that for some C independent of h > 0,

��.�hy0h; �hy1h/� .y0; y1/
��
L2�H�1 � Ch2=3

��.y0; y1/��
H1
0 �L2 ; (5.174)

one immediately gets

kVh � V kL2.0;T Idt=�/ � Ch2=3
��.y0; y1/��

H1
0 �L2 : (5.175)

To our knowledge, this is the first result on the order of convergence for the
discrete controls obtained in Theorem 5.6.6.

Let us also emphasize that the convergence results stated in (5.174) are satisfied
when taking as discrete initial data the restriction to the mesh points of the
orthogonal projections in L2.0; 1/ or H1

0 .0; 1/ on the vector space spanned by the
functions .wk.x/ D sin.k�x//1�k�N . Of course, other interpolation operators can
be considered for which assumption (5.174) is satisfied.

Remark 5.6.13. The observability results in classes of filtered solutions stated in
Sect. 5.5.4 and obtained in [111] for the semidiscrete finite-difference approxi-
mations of the multi-dimensional wave equation, also yield similar convergence
estimates with proofs that follow line to line those above. We do not write down
the details here for the sake of conciseness.

The results stated in Theorem 5.5.8 [27] do not apply in the context of boundary
controllability, but rather when the control is distributed inside the domain. In that
case one does not need to use transposition methods since solutions are defined
in a classical manner and this can be done by standard energy and semigroup
methods (see Theorem 5.3.5). Consequently, the needed convergence results are
more classical. But still, to our knowledge, a rigorous proof of the fact that
Hypothesis #3 holds in that case is still missing.

Of course, despite of this, Hypotheses #1 and #2 hold and follow from classical
convergence results for the finite element methods, see [4]. Therefore, one can prove
the counterpart of Theorem 5.6.9 in that case, see [27] for details.

5.6.2.2 The Bi-grid Technique

The methods above can also be used to obtain convergence results and convergence
rates for the two-grid filtering technique.
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In this case Ch D Vh, where Vh is given by (5.113). We are then precisely in the
same setting as the one in Sect. 5.6.1.

Based on the observability result stated in Theorem 5.5.6, using Theorem 5.6.1
we obtain:

Theorem 5.6.14. Let T > 2
p
2 and � be as in (5.157) with T .�/ replaced by 2

p
2.

Let .y0h; y
1
h/ be discrete initial data.

Then introduce the functional Jh defined as in (5.158) for uh solution of (5.81)
such that .uh.T /;u0

h.T // 2 Vh. This functional has a unique minimizer Uh solution
of (5.81) with .Uh.T /;U0

h.T // 2 Vh, among the space of solutions uh such that
.uh.T /;u0

h.T // 2 Vh.
Then Vh defined as in (5.159) is a control function for which the solution yh of

(5.98) satisfies

8.u0;Th ;u1;Th / 2 Vh; h

NX
jD1

yj .T /u
1;T
j � h

NX
jD1

y0
j .T /u

0;T
j D 0: (5.176)

Moreover, Vh is the control of minimal L2.0; T I dt=�/ norm for which the
corresponding solution of (5.98) satisfies the control requirement (5.176). It is also
the only control satisfying (5.176) that can be written as in (5.159) for a solution uh
of (5.81) with .uh.T /;u0

h.T // 2 Vh.

Now, using Theorem 5.6.2, Lemma 5.6.8 and an easy variant of Lemma 5.6.7
left to the reader, one can then prove the following:

Theorem 5.6.15 ([36]). Within the setting of Theorem 5.6.14, given .y0; y1/ 2
L2.0; 1/ � H�1.0; 1/ and a sequence of discrete initial data .y0h; y

1
h/ such that

.�hy0h; �hy1h/ weakly converges to .y0; y1/ in L2.0; 1/ � H�1.0; 1/, the discrete
controls Vh provided by Theorem 5.6.14 weakly converge in L2.0; T I dt=�/ to V ,
the control provided by Theorem 5.3.6, as h ! 0.

Besides, if the discrete initial data .y0h; y
1
h/ are such that .�hy0h; �hy1h/ strongly

converge to .y0; y1/ in L2.0; 1/ � H�1.0; 1/, the discrete controls Vh strongly
converge to V in L2.0; T I dt=�/ as h ! 0.

To go further, one should then prove a variant of Proposition 5.6.10 for the
solutions uh of the discrete wave equation (5.81) such that .uh.T /;u0

h.T //2 Vh.
One way of doing that is to take the discrete solutions given by (5.6.10), which
belong to Ch.1=h4=3/ and to add to them high-frequency components so that
.uh.T /;u0

h.T // 2 Vh. Doing this, one can check that the high-frequency compo-
nents that have been added that way are small and do not modify the estimates in
Proposition 5.6.10.

Note that, of course, these approximations will not belong anymore to
Ch.1=h4=3/ but it does not matter for our purpose.

Then, using Theorem 5.6.2, Theorem 5.6.11 and this slightly modified variant
of Proposition 5.6.10 where we further imposed on the discrete data the condition
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.uh.T /;u0
h.T // 2 Vh, one can obtain convergence rates for the convergence of the

discrete controls:

Theorem 5.6.16 ([36]). Let .y0; y1/ 2 H1
0 .0; 1/ � L2.0; 1/ and consider a

sequence of discrete initial data .y0h; y
1
h/ such that .�hy0h; �hy1h/ strongly converges

to .y0; y1/ in L2.0; 1/�H�1.0; 1/.
Let T > 2

p
2. Then the controls Vh given by Theorem 5.6.14 strongly

converge to V in L2.0; T I dt=�/, where V is the control given by Theorem 5.3.6
corresponding to .y0; y1/.

Besides, there exists a constantC such that for all h > 0, estimate (5.173) holds.
In particular, choosing .y0h; y

1
h/ such that for some C independent of h > 0, (5.174)

is satisfied, one immediately gets (5.175).

The proof can be found in [36] but, again, it follows the general theory developed
in Sect. 5.6.1.

5.6.2.3 Tychonoff Regularization

The Tychonoff regularization is of slightly different nature since, in agreement with
Theorem 5.5.7, one has to reinforce the observation operator by adding an extra
observation, distributed everywhere in the discrete grid, so that observability holds
uniformly on the mesh-size parameter for all solutions. In view of this, the applied
control mechanism has to be reinforced as well, adding an extra control distributed
everywhere in the domain. However, this added control will vanish as h ! 0 and the
methods of Sect. 5.6.1 will apply to show the convergence towards the limit control
of the leading term. There are however some minor modifications to be introduced
with respect to the abstract functional setting provided in Sect. 5.6.1 that we describe
below.

Let � be as in (5.157) with T .�/ replaced by 2.
First, we introduce the functional OJh defined for .u0h;u

1
h/ 2 R

N � R
N by:

OJh.u0h;u1h/ D 1

2

TZ

0

�.t/

ˇ̌
ˇ̌uN .t/
h

ˇ̌
ˇ̌
2

dt C h3

4

NX
jD0

TZ

0

�.t/

ˇ̌
ˇ̌
ˇ
u0
jC1 � u0

j

h

ˇ̌
ˇ̌
ˇ
2

dt

C h

NX
jD1

y0j u1j � h

NX
jD1

y1ju0j ; (5.177)

where uh is the solution of the adjoint system (5.81) with initial datum .u0h;u
1
h/.

Using this functional and based on Theorem 5.5.7, we get the following:

Theorem 5.6.17. Set T > 2, and consider an initial datum .y0h; y
1
h/ 2 R

N � R
N .

For each h > 0, the functional OJh in (5.177) has a unique minimizer .U0
h;U

1
h/.

Then, setting
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8
<̂
:̂

Vh.t/ D ��.t/UN .t/
h

Gj;h.t/ D �.t/

2h2

�
U 0
jC1 � 2U 0

j C U 0
j�1

�
; j D 1; : : : ; N;

(5.178)

the solution yh of

8̂
<̂
ˆ̂:

y00
j � 1

h2

	
yjC1 C yj�1 � 2yj


 D h2G0
j;h; 0 < t < T; j D 1; : : : ; N

y0.t/ D 0I yNC1.t/ D Vh.t/; 0 < t < T

yj .0/ D y0j ; y
0
j .0/ D y1j ; j D 1; : : : ; N;

(5.179)

satisfies the control requirement

.yh.T /; y0
h.T // D .0; 0/: (5.180)

Theorem 5.6.17 shows how the Tychonoff regularization modifies the control
problem. It introduces a control everywhere in the domain, that weakly converges
to zero. This is of course compatible with our analysis, which states the existence of
high-frequency spurious solutions which do not propagate and therefore can not be
controlled from the boundary. Therefore, if one wants to satisfy the strong control
requirement (5.180), one needs to introduce a control everywhere in the domain.
But this control can be built in such a way that it vanishes when h ! 0.

Note that Theorem 5.5.7 gives a lot more of information, and in particular the
following one:

Proposition 5.6.18. Under the assumptions of Theorem 5.6.17, there exists a
constant C.T / independent of h > 0 such that

kVhkL2.0;T / C h k�hGhkL2.0;T IH�1.0;1// C h2 k�hGhkL1.0;T IL2.0;1//
� C.T /

��.�hy0h; �hy1h/
��
L2.0;1/�H�1.0;1/

: (5.181)

We now state the following counterparts of Lemmas 5.6.7 and 5.6.8:

Lemma 5.6.19 ([36]). In the setting of Lemma 5.6.7 (with � D 4 so that no filtering
is implemented), we further have

h2�h�hu0
h �!
h!0

0 in L2..0; T / � .0; 1//: (5.182)

Lemma 5.6.20 ([36]). In the setting of Lemma 5.6.8, we further have

h2�h�hu0
h *
h!0

0 in L2..0; T / � .0; 1//: (5.183)
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Based on Proposition 5.6.18, Lemmas 5.6.19–5.6.20 and using the same ideas as
in Theorem 5.6.2, one gets the following:

Theorem 5.6.21 ([36]). Within the setting of Theorem 5.6.17, given
.y0; y1/ 2 L2.0; 1/ � H�1.0; 1/ and a sequence of discrete initial data .y0h; y

1
h/

such that .�hy0h; �hy1h/ weakly converges to .y0; y1/ in L2.0; 1/ � H�1.0; 1/, then
the discrete controls .Vh;Gh/ provided by Theorem 5.6.17 weakly converge in the
following sense:

Vh *
h!0

V; in L2.0; T I dt=�/;
h2�hGh *

h!0
0; in L2..0; T / � .0; 1//; (5.184)

where V is the control provided by Theorem 5.3.6, as h ! 0.
Besides, if the discrete initial data .y0h; y

1
h/ are such that .�hy0h; �hy1h/

strongly converges to .y0; y1/ in L2.0; 1/ � H�1.0; 1/, then the discrete controls
.Vh; h

2�hGh/ strongly converge to .V; 0/ in L2.0; T I dt=�/�L2..0; T /� .0; 1// as
h ! 0.

One can even follow the proof of Theorem 5.6.3 to obtain convergence rates for
the discrete controls. For doing that, inspecting the proof of Theorem 5.6.11, we
need the following for the convergence of the equations of (5.81) to (5.39):

Proposition 5.6.22 ([36]). In the setting of Lemma 5.6.8, we further have

sup
t

��h�h�hu0
h.t/

��
L2.0;1/

� Ch
��.u0; u1/��

H2\H1
0 �H1

0
: (5.185)

The proof of this additional estimate is easy: Basically, it uses that hrh are
uniformly bounded with norm smaller than 2, and then

��h�h�hu0
h

��
L2.0;1/

.
���hu0

h

��
H1
0

.
��.�hu0h; �hu1h/

��
H2\H1

0 �H1
0
:

We also need to be able to give an estimate on the controlled equation,
which is mainly the one in Theorem 5.6.11 except that an internal control in
H�1.0; T IL2.0; 1// has been added. When the distributed source terms are
in L2.0; T IL2.0; 1// convergence results in the energy space are classical and
can be found, for instance, in [4]. One can easily deal with source terms in
H�1.0; T IL2.0; 1// integrating the equations in time, and working in the space
L2.0; 1/ �H�1.0; 1/.

Hence we can derive the following result:

Theorem 5.6.23 ([36]). Within the setting of Theorem 5.6.21, let .y0; y1/ 2
H1
0 .0; 1/ � L2.0; 1/ and consider a sequence of discrete initial data .y0h; y

1
h/ such

that .�hy0h; �hy1h/ strongly converge to .y0; y1/ in L2.0; 1/�H�1.0; 1/.
Let T > 2. Then the controls .Vh; h

2Gh/ given by Theorem 5.6.17 strongly
converge to .V; 0/ in L2.0; T I dt=�/ � L2..0; T / � .0; 1//, where V is the control
given by Theorem 5.3.6 corresponding to .y0; y1/.
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Besides, there exists a constant C such that for all h > 0,

k Vh � V kL2.0;T Idt=�/ C k h2�hGh kL2..0;T /�.0;1//
� Ch2=3 k .y0; y1/ kH1

0 �L2 C k .�hy0h; �hy1h/� .y0; y1/ kL2�H�1 : (5.186)

In particular, if (5.174) is satisfied, we get

kVh � V kL2.0;T Idt=�/ C ��h2�hGh

��
L2..0;T /�.0;1// � Ch2=3

��.y0; y1/��
H1
0 �L2 :

(5.187)

The precise proofs will be given in [36], but here again, they rely on the same
ideas as for Theorem 5.6.3. Indeed it consists in using that the minimizer .U 0; U 1/

of the continuous HUM functional is smooth. Therefore, one can approximate it

with a known error term by a discrete solution . QU0

h;
QU1

h/ of (5.81), which corresponds
to some approximate controls .Qvh; h2 Qgh/ defined by (5.178) with QUh instead of Uh.
One should then correct this error, and this can be done with small controls using
the observability result in Proposition 5.6.18. We finally conclude by the uniqueness
of controls .vh; gh/ that can be written as (5.178) for some solution uh of (5.81).

5.6.3 Numerical Experiments

In this section, our goal is to illustrate the convergence results proven above. We
focus on the study of the filtering method, the others being very similar.

We first consider the case in which the initial datum to be controlled lies in
L2.0; 1/ � H�1.0; 1/: y0.x/ D x2 for x 2 .0; 1=2/, y0.x/ D �.1 � x/2 for
x 2 .1=2; 1/ and y1 	 0 (see Fig. 5.11).

We then represent in Fig. 5.12 the control functions for various choices of N .
Note that here, due to the weight function in time, the explicit expression of the
control that is given through the minimization of the functional J in (5.76) is not
available anymore.

Here, the wave equation is discretized in time, with a CFL condition�t D 0:5h.
The filtering parameter is taken to be � D 1. The function � is chosen such that:
� D 1 for t 2 .0:4; 3:6/. On t 2 .0; 0:4/, �.t/ is a polynomial of order 3 so that
�.0/ D �0.0/ D �.1/ D �0.1/ and �.0:4/ D 1, and we choose it in a similar way in
.3:6; 4/. Of course, � is not C1 smooth but only C1, but this would be enough for
our purpose. With these choices, the time of control T D 4 suffices to control the
fully discrete dynamics.

As one can see, the controls in Fig. 5.12 exhibit some kind of Gibbs phenomenon
close to the discontinuities of the control.

Let us now present similar numerical results, but for an initial datum to be
controlled in H1

0 .0; 1/ � L2.0; 1/. Now, .y0; y1/ are chosen such that: y0 D 0 and
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y1 is the discontinuous triangular function in Fig. 5.13. The analytic expression of
y1 is y1.x/ D �x for x 2 .0; 1=2/ and y1.x/ D 1 � x in .1=2; 1/.

This corresponds to an initial datum to be controlled in H1
0 .0; 1/ � L2.0; 1/.

Therefore, we should expect better convergence properties as before.
We present in Fig. 5.14 the controls computed for that initial data and for several

values of N . One can see that there, the controls in Fig. 5.14 seem to be smoother
than the ones in Fig. 5.12. This is of course consistent with our analysis which states
that:

• The smoothness of the continuous control corresponds to the smoothness of the
initial datum to be controlled.

• The discrete controls converge towards the continuous one.

To conclude our analysis, we illustrate our results on the rate of convergence
of the discrete controls. For that to be done, we take as reference control the one
carefully computed for some large reference system size Nref. Using this accurately
computed control VNref , we compute the norm of VN � VNref for various N � Nref.
The rate of convergence of VN towards VNref should give a realistic estimate of the
convergence rate of the discrete controls towards the continuous one. In log–log
scales, this yields Fig. 5.15.

The linear interpolations of the obtained curves have slope �1:04 when control-
ling .0; y1/ with y1 as in Fig. 5.13 and slope �0:34 when controlling .y0; 0/ with
y0 as in Fig. 5.11.

The fact that, for .0; y1/ with y1 as in Fig. 5.13, the rate is much better than the
expected rate �2=3 predicted by Theorem 5.6.12 comes from the fact that the initial
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Fig. 5.12 Discrete controls computed for the initial datum .y0; 0/ with y0 as in Fig. 5.11, for
different values of N , under the CFL condition �t D 0:5h, in time T D 4 and with a filtering
parameter � D 1. From left to right and top to bottom: N D 50, N D 100, N D 150, N D 200,
N D 250 and N D 300

datum to be controlled .0; y1/, with y1 as in Fig. 5.13, lies not only in H1
0 .0; 1/ �

L2.0; 1/ but in Hs
0 .0; 1/ �Hs�1

0 .0; 1/ for all s < 3=2. This gain of 1=2� derivative
with respect of the energy space explain the faster convergence rate as we shall
explain below.

Similarly, .y0; 0/ with y0 as in Fig. 5.11, lies not only in L2.0; 1/ � H�1.0; 1/
but also in Hs

0 .0; 1/ �Hs�1
0 .0; 1/ for all s < 1=2, thus explaining why the controls

seem to converge with a rate of the order of 1=3.
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In fact, the numerical approximations of the controls converge to that of the limit
system with rates corresponding to the class of regularity of the initial data under
consideration. Actually, following the proofs of [32, 36], if the initial data to be
controlled lye in Hs

0 .0; 1/ �Hs�1
0 .0; 1/ for s 2 .0; 3=2/ (above the value s D 3=2,

more compatibility boundary conditions are required), the convergence rate is of
the order of h2s=3. This is completely consistent with the numerical simulations in
Fig. 5.15 since the theory then predicts a convergence rate of order h1=3 for s D 1=2

and of h for s D 3=2, to be compared with the rates h0:34 and h1:04 found in Fig. 5.15.
For the proof of these more general convergence rates results it suffices, in fact, to
prove the analogs of Theorems 5.6.11–5.6.12 in the spaces of the corresponding
regularity and convergence rates.

5.7 Further Comments and Open Problems

5.7.1 Further Comments

1. Time-discrete and fully discrete approximations. In these notes, we have
addressed the problem of the convergence of the controls for space semidiscrete
approximations of the wave equation as the mesh-size goes to zero. But one can
go further and discretize in time these space semidiscrete approximations to obtain
fully discrete approximation schemes. This time-discretization adds further spurious
high-frequency waves and, consequently, extra difficulties to the fulfillment of the
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Fig. 5.14 Discrete controls computed for the initial datum .0; y1/ with y1 as in Fig. 5.13, for
different values of N , under the CFL condition �t D 0:5 h, in time T D 4 and with a filtering
parameter � D 1. From left to right and top to bottom: N D 50, N D 100, N D 150, N D 200

N D 250 and N D 300

observability inequalities. This is so since the time-discretization process deforms
the spectrum and the dispersion relation of the system.

This added numerical dispersion effect has been studied more precisely in [31]
for abstract conservative systems (see also [107] for a study of a time discrete
and space continuous wave equation) using resolvent type estimates [16, 79, 88].
The interest of the method developed there is that it completely decouples the
effects of the space discretization process from the ones originating from the time
discretization. Again, the main results can be stated as follows: removing high-
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frequency solutions, one can get uniform observability properties, where, here,
uniformity is referred to space and time discretization parameters. Spurious waves
appear at frequencies of the order of 1=.�t/, where �t is the time discretization
parameter [31]. On the other hand, the added filtering that the time-discretization
processes require can be avoided through suitable CFL type conditions on the space
and time discretization parameters. These results are sharp, as it has been shown
explicitly in [107].

However, the results in [31] do not provide any precise estimate on the time
needed to guarantee the uniform observability inequality. This is a drawback of the
method developed in [31], which is based on resolvent estimates.

To overcome this drawback, more recently in [36], we have developed a discrete
transmutation technique, inspired on previous works, in particular by Miller [79,80],
which establishes a connection between solutions of the time continuous systems
and the time-discrete ones. This approach yields explicit estimates on the time
needed to guarantee uniform observability results.

The approach developed in Sect. 5.6.1 also applies in the context of fully discrete
schemes and also yields convergence results for the corresponding discrete controls
with explicit convergence rates based on the existing results on the convergence of
the fully discrete systems towards the continuous one.

2. Other space discretization methods. In these notes, we have mainly consid-
ered the 1-d wave equation discretized using finite differences and we have proved
that their observability and controllability properties fail to be uniform as the mesh-
size parameters tend to zero. This turns out to occur for most numerical methods. In
particular, this is also the case for the finite element method, see [53], among others.

However, there are some schemes that enjoy uniform observability properties,
but they seem to be very rare. This is the case for instance for the mixed finite
element method [17,18,28,41]. For these schemes observability and controllability
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properties are uniform, without any need of filtering, and the discrete controls
converge towards the continuous ones. But this discretization method has an
important drawback: Its CFL type condition for stability has the form �t � h2,
where �t is the time discretization parameter. This is in contrast with the above
methods which only require�t � h.

3. Stabilization and discretization. As already noticed in [96], the theory of
stabilization and observation/control are strongly linked.

This connection has been made even more precise in [46], showing that the
damped wave system

8
<
:

zt t ��z C �!zt D 0 in Q;

z D 0 on ˙;

z.x; 0/ D z0.x/; zt .x; 0/ D z1.x/ in ˝:

(5.188)

is exponentially stable, in the sense that there exist a constant C and a strictly
positive constant � > 0 such that for all initial data .z0; z1/ 2 H1

0 .˝/ � L2.˝/

and for all t � 0,
E.t/ � Ce��tE.0/;

if and only if the wave system (5.64) is observable through !.
This result can be easily extended to an abstract framework, provided the

damping and control operators are bounded.
In the context of stabilization of waves one often considers boundary damping

operators. They turn out to be unbounded perturbations of the conservative semi-
group and, therefore, the equivalence of stabilization of the damped system and the
observation of the conservative one does not apply. We refer to [1] for results in that
direction.

Going back to the problem of stabilization by distributed damping as above,
and in what concerns the numerical approximation issues, our understanding of
the lack of observability for space semidiscrete systems (and fully discrete ones,
see Comment #1 above) suggests that similar pathologies may arise making the
decay properties of the corresponding semidiscrete or fully discrete systems not
to be uniform. That is indeed the case. As a by byproduct of the lack of uniform
observability for (5.64), the apparently most natural discretizations of (5.188) are
not exponentially uniformly stable, see e.g. [81, 90, 99]. Again, this is due to high-
frequency phenomena and spurious solutions coming from the numerical schemes
under consideration. One shall then add a numerical viscosity term everywhere in
the domain to damp out efficiently these spurious waves. This is the idea that has
been developed in [99] for the 1 and 2-d wave equation and then later formalized in
a much more general form in [33, 34].

The possible use of two-grid filtering techniques to ensure uniform decay
properties is an interesting subject that requires further analysis. Of course, one of
the main difficulties is related to the fact that the property of being of two-grid form
is not preserved along the dissipative dynamics.
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4. Other models. Let us also point out that many control results exist for other
type of models, such as Schrödinger equation [67], beam equation [89], where
similar ideas as the one presented above can be applied, even if of course, each
case presents some specificity and should be handled carefully.

The convergence properties of controls for discrete heat equations has also
been developed lately in [8–10, 30, 61, 70]. The later works [8, 9] are based on
Carleman estimates for discrete elliptic operators, which require important technical
developments.

5.7.2 Open Problems

Problem 5.7.1. Semilinear Wave Equations. We have studied the convergence of
the discrete controls for linear wave equations, and we have described the difficulties
encountered because of the spurious high-frequency solutions and how to remedy
them.

Of course, the same questions arise in the context of semilinear wave equations,
even with globally Lipschitz nonlinearities, a case that has been handled for instance
in [113]. Most often the nonlinear problems are addressed by means of a fixed point
argument together with a careful analysis of the control properties of the linearized
system. One of the main difficulties that appears when doing that is to estimate
the dependence of the observability constants on the .t; x/-depending potentials of
the linearized equation. This can be handled using sidewise energy estimates (but
this works only in 1-d), multipliers or Carleman estimates [26, 37, 109, 110], thus
yielding various constraints on the growth of the non-linearity at infinity for the
controllability property to hold. This kind of results guarantees the controllability of
the nonlinear system for all initial data in an uniform time.

But one can relax the control problem, analyzing it locally, for small data. Local
results, together with exponential convergence ones obtained by means of suitable
damping mechanisms, allow showing that, eventually, every initial data can be
controlled to zero but on a time that depends on the size of the initial data and
that may tend to infinity when the norm of the data tend to infinity. Local results
can be proved for nonlinearities growing at infinity in a superlinear manner. When
using energy methods, however, one needs to impose growth conditions at infinity.
More recently, using dispersive estimates (see [24, 25]), the class of nonlinearities
for which this kind of results holds has been extended to cover the range of
nonlinearities that can be handled for the well-posedness of the Cauchy problem in
the energy space by means of Strichartz inequalities. We refer to the survey article
[108] for a discussion of this issue.

The extension of the numerical analysis we have developed and presented in this
article to this semilinear setting is a widely open problem. In [115], the adaptation
of the two-grid technique to globally Lipschitz nonlinearities is presented, together
with some open problems and directions of research.
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There is also plenty to be done to adapt the numerical analysis techniques
presented here to super-critical exponents since the theory of dispersive estimates
for linear discrete waves is also difficult matter in itself. We refer to in [49–51] for
the first results in that direction in the context of Schrödinger equations.

The same problems arise in the context of many other nonlinear PDE, for
instance: semilinear Schrödinger equations [62], KdV equations [95], semilinear
heat equations [26, 112], etc.

Problem 5.7.2. Non-uniform meshes. In applications, one usually deals with non-
uniform meshes for finite element methods. But the Fourier analysis methods we
have developed here can not be applied in that setting. Roughly speaking, the only
existing result in this direction is the one presented in Theorem 5.5.8 ([27]), ensuring
that, when filtering the high frequencies at the scale 1=

p
h, uniform observability

holds. But on uniform meshes, the critical scale is 1=h. An in depth analysis
is needed in order to explain what is the behavior of numerical waves in this
intermediate range for frequencies in between 1=

p
h and 1=h.

The issue is even open in 1-d. For instance, it would worth identifying the class
of quasi-uniform meshes for which the 1=h filtering scale suffices.

In this context, the article [28] is worth mentioning: There, it has been proved
that, for the mixed finite element method in 1-d on non-uniform meshes, uniform
observability properties hold under some mild restrictions on the mesh. This is
based on the very nature of the mixed finite element discretization which allows to
compute explicitly the spectrum of the discrete equations and then to apply Fourier
analysis techniques.

Note that this issue can also be related to the observability properties of the wave
equation with variable coefficients in uniform meshes. For the continuous 1-d wave
equation the assumption on the BV regularity of the coefficients is sharp (see [19]).
Adapting the numerical analysis results presented in this paper to that setting is a
challenging open problem.

Problem 5.7.3. Uniform control of the low frequencies. In [77] it has been
proved that, in 1-d, for initial data having only a finite number of Fourier com-
ponents, the discrete controls are uniformly bounded and converge as h ! 0

towards the control of the wave equation. This result has been proved using moment
problem techniques. The article [77] provides explicit estimates on the bi-orthogonal
functions depending both on the frequency and the mesh-size parameters and in
particular yields uniform estimates in the case in which only a finite number of
frequencies are involved. This analysis is limited by now to 1-d problems. The
extension of this result to multi-dimensional problems, even in the case of the unit
square observed from two consecutive boundaries, is a challenging and interesting
open problem.

Problem 5.7.4. Wigner measures. In [72,73], Macià adapted Wigner measures to
study the propagation of the singularities of waves in a discrete setting on uniform
meshes of the whole space (see Problem 5.7.2). Roughly speaking, to any sequence
of solutions of the discrete wave equation one associates a measure living on the
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space and frequency variables that is constant along the bicharacteristic flow of the
Hamiltonian corresponding to the wave process under consideration. This Wigner
measure has some interesting features. In particular, when considering sequences
that weakly converge to zero in L2, the Wigner measure describes the possible lack
of strong convergence very accurately.

But this theory is still to be developed more completely to handle, for instance,
boundary conditions and non-uniform meshes or to adapt the notion of polarization
introduced in [15] to the discrete setting.

Problem 5.7.5. Numerical methods using randomness. When discretizing one
dimensional hyperbolic systems of conservation laws, one can use the so-called
Glimm’s random choice method.

This idea, originally developed in [39], has even been used to prove existence of
solutions for one dimensional hyperbolic systems.

A natural question then is the following one: Can we use Glimm’s random choice
method to obtain convergent sequences of discrete controls? So far, this issue is
widely open. The only contribution we are aware of is [22], which states that, for
the corresponding discrete 1-d wave equation, with an excellent probability, uniform
observability holds. Here, excellent probability means with a probability greater
than exp.�C.T /.�t=h/2=.�t//, where�t is the time discretization parameter, and
C.T / is a strictly positive constant when T > 2.

But of course, this first result should be further developed, in particular for
conservation laws. Also, one could try to extend Glimm’s idea to higher dimensions
and derive numerical schemes for the 2-d wave equation with some random effects
that could help on the obtention of discrete observability properties.

Problem 5.7.6. Inverse Problems. The literature on inverse problems for hyper-
bolic equations is wide. We refer, for instance, to the works of Bukgheim and
Klibanov [13] and the books [12, 56, 58, 59] (and the references therein) for a
presentation of the state of the art in that field. For what concerns the acoustic wave
equation, we can also refer to the works of [52, 86].

Roughly speaking, the problem is that of determining the properties of a medium
by making boundary measurements on the waves propagating in it.

To illustrate the kind of problems that arise in this field and their intrinsic
complexity let us consider the example of the 1d wave equation in which the velocity
of propagation c is a positive unknown constant:

ut t � c2uxx D 0; 0 < x < 1; 0 < t < T; u.0; t/ D u.1; t/ D 0; 0 < t < T:

(5.189)
One could then consider the problem of determining the velocity c out of boundary
measurements ux.1; t/ for t 2 R.

In this continuous setting, using the time periodicity of solutions with time period
2=c, one could determine the value of c in terms of the periodicity of the boundary
measurement. But, of course, this cannot be applied in the discrete setting since
the discrete versions of (5.189) generate a lot of spurious high-frequency waves that
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travel at any velocity between 0 and c, thus breaking down the periodicity properties
of continuous waves.

Hence, even on that simple example, the convergence of the solutions of the
discrete inverse problems towards those of the continuous one is not so obvious
and very unlikely to hold. Of course, on more intricate examples, the situation will
become even worse. Generally speaking, the problem of solving discrete inverse
problems and passing to the limit as the mesh-size parameter tends to zero is widely
open.

Note that these questions are also of interest for what concerns the so-called
Calderón problem, which consists, in the elliptic setting, on identifying the electrical
conductivity of a medium by the knowledge of the so-called Dirichlet to Neumann
map (or voltage to current map), see [103]. There again, to our knowledge,
convergence issues for numerical approximation schemes have not been analyzed.

Problem 5.7.7. Unique continuation for discrete waves. For the continuous wave
equation in a bounded domain, it is well-known that if the solution vanishes in
some open subset during a certain amount of time (which shall be large enough
and depends on the whole geometry of the set ! where the solution vanishes
and the domain ˝ where the equation holds), then the solution is identically zero
everywhere. For the constant coefficient wave equation this is a consequence of
Holmgren’s uniqueness theorem, see [48].

Such result is not true for the discrete wave equation, as an explicit coun-
terexample by O. Kavian shows (mentioned in [114]): In the unit square, when
discretizing the Laplacian on a uniform grid using the usual 5-points finite-
difference discretization, there exists a concentrated eigenvalue, alternating between
1 and �1 on the diagonal, and taking the null value 0 outside. This corresponds to
the eigenvalue 4=h2, where h is the mesh-size, hence to a very high eigenfunction.
Of course, this makes the discrete version of the unique continuation property above
to be false. However, one could expect this uniqueness property to be true within a
class of filtered solutions. This is indeed the case, as it has been recently proved
in [9].

But the same can be said about the quantitative versions of the uniqueness
theorem above that are by now well known in the continuous setting (see among
others, [63,85,93,94]). These results consist in weak observability estimates for the
continuous wave equation when no geometric condition is fulfilled.

When no geometric condition is fulfilled, such weak observability estimates
for discrete wave equations are so far completely unknown, but we expect this
to be reachable using suitable discrete versions of the Carleman inequalities, the
preliminary results by [9] and the so-called Fourier–Bros–Iagoniltzer transform
[85, 94].

Problem 5.7.8. Waves on networks. Several important applications require the
understanding of the propagation of waves into networks, and their control theo-
retical properties. Even in the continuous setting, this question is intricate since
the propagation of the waves in a network depend strongly on its geometrical and
topological properties. In particular, when the network includes a closed loop, some
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resonant effects may appear. We refer to [23] (and to the references therein) for a
precise description of the state of the art in this field, updated in the recent survey
[116].

Hence, when discretizing these models, understanding the propagation, observa-
tion and control properties of discrete waves propagate into networks, becomes a
complex topic that is widely open. Some preliminary results have been obtained in
[11] on a star shaped network of three strings controlled from the exterior nodes.
But there is still an important gap between the understanding of the observability
properties of the waves on networks in the discrete and continuous frameworks.

Problem 5.7.9. Hybrid parabolic/hyperbolic systems. In these notes we focused
on the classical wave equation and its semidiscrete approximation schemes, but in
many applications the relevant models are much more complex.

A classical example is given by the system of linear thermoelasticity, whose null-
controllability properties have been derived in [65]. This system is composed of one
parabolic type equation coupled with an hyperbolic one. In [65], it is proved that the
system of linear thermoelasticity is null-controllable when the Geometric Control
Condition is satisfied, which of course comes from the hyperbolic nature of the
underlying wave equation.

When discretizing such equations, in view of the results developed above, it is
natural to expect that the discrete controllability properties may fail to be uniform.
But this should be discussed more precisely, because of the coupling with the
parabolic component that may strongly influence the dynamics.
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wave equation. Ann. Sci. École Norm. Sup. (4) 36(4), 525–551 (2003)

26. T. Duyckaerts, X. Zhang, E. Zuazua, On the optimality of the observability inequalities for
parabolic and hyperbolic systems with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire
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sebastien.court@math.univ-toulouse.fr

17. Di Meglio Florent
florent.di meglio@mines-paristech.fr

18. Ervedoza Sylvain
ervedoza@math.univ-toulouse.fr

19. Fahroo Fariba
fariba.fahroo@afosr.af.mil

20. Floridia Giuseppe
floridia@mat.roma2.it

21. Gaggero Mauro
gaggero@diptem.unige.it

22. Galan Ioana Catalina
galan ioana@yahoo.com

23. Garavello Mauro
mauro.garavello@mfn.unipmn.it

24. Guglielmi Roberto
guglielm@mat.uniroma2.it

25. Laurent Camille
camille.laurent@math.u-psud.fr
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