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Preface

We organized this CIME Course with the aim to bring together a group of top
leaders on the fields of calculus of variations and nonlinear partial differential
equations. The list of speakers and the titles of lectures have been the following:

- Luigi Ambrosio, Transport equation and Cauchy problem for non-smooth
vector fields.

- Luis A. Caffarelli, Homogenization methods for non divergence equations.
- Michael Crandall, The infinity-Laplace equation and elements of the cal-

culus of variations in L-infinity.
- Gianni Dal Maso, Rate-independent evolution problems in elasto-plasticity:

a variational approach.
- Lawrence C. Evans, Weak KAM theory and partial differential equations.
- Nicola Fusco, Geometrical aspects of symmetrization.

In the original list of invited speakers the name of Pierre Louis Lions was
also included, but he, at the very last moment, could not participate.

The Course, just looking at the number of participants (more than 140, one
of the largest in the history of the CIME courses), was a great success; most of
them were young researchers, some others were well known mathematicians,
experts in the field. The high level of the Course is clearly proved by the
quality of notes that the speakers presented for this Springer Lecture Notes.

We also invited Elvira Mascolo, the CIME scientific secretary, to write in
the present book an overview of the history of CIME (which she presented at
Cetraro) with special emphasis in calculus of variations and partial differential
equations.

Most of the speakers are among the world leaders in the field of viscos-
ity solutions of partial differential equations, in particular nonlinear pde’s of
implicit type. Our choice has not been random; in fact we and other mathe-
maticians have recently pointed out a theory of almost everywhere solutions
of pde’s of implicit type, which is an approach to solve nonlinear systems of
pde’s. Thus this Course has been an opportunity to bring together experts of
viscosity solutions and to see some recent developments in the field.



VI Preface

We briefly describe here the articles presented in this Lecture Notes.
Starting from the lecture by Luigi Ambrosio, where the author studies

the well-posedness of the Cauchy problem for the homogeneous conservative
continuity equation

d

dt
µt + Dx · (bµt) = 0 , (t, x) ∈ I × Rd

and for the transport equation

d

dt
wt + b · ∇wt = ct ,

where b(t, x) = bt(x) is a given time-dependent vector field in Rd. The inter-
esting case is when bt(·) is not necessarily Lipschitz and has, for instance, a
Sobolev or BV regularity. Vector fields with this “low” regularity show up, for
instance, in several PDE’s describing the motion of fluids, and in the theory
of conservation laws.

The lecture of Luis Caffarelli gave rise to a joint paper with Luis Silvestre;
we quote from their introduction:

“When we look at a differential equation in a very irregular media (com-
posite material, mixed solutions, etc.) from very close, we may see a very
complicated problem. However, if we look from far away we may not see the
details and the problem may look simpler. The study of this effect in partial
differential equations is known as homogenization. The effect of the inhomo-
geneities oscillating at small scales is often not a simple average and may
be hard to predict: a geodesic in an irregular medium will try to avoid the
bad areas, the roughness of a surface may affect in nontrivial way the shapes
of drops laying on it, etc... The purpose of these notes is to discuss three
problems in homogenization and their interplay.

In the first problem, we consider the homogenization of a free boundary
problem. We study the shape of a drop lying on a rough surface. We discuss
in what case the homogenization limit converges to a perfectly round drop.
It is taken mostly from the joint work with Antoine Mellet (see the precise
references in the article by Caffarelli and Silvestre in this lecture notes). The
second problem concerns the construction of plane like solutions to the mini-
mal surface equation in periodic media. This is related to homogenization of
minimal surfaces. The details can be found in the joint paper with Rafael de
la Llave. The third problem concerns existence of homogenization limits for
solutions to fully nonlinear equations in ergodic random media. It is mainly
based on the joint paper with Panagiotis Souganidis and Lihe Wang.

We will try to point out the main techniques and the common aspects.
The focus has been set to the basic ideas. The main purpose is to make this
advanced topics as readable as possible.”

Michael Crandall presents in his lecture an outline of the theory of the
archetypal L∞ variational problem in the calculus of variations. Namely, given
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an open U ⊂ Rn and b ∈ C(∂U), find u ∈ C(U) which agrees with the
boundary function b on ∂U and minimizes

F∞(u,U) := ‖|Du|‖ L∞(U)

among all such functions. Here |Du| is the Euclidean length of the gradient Du
of u. He is also interested in the “Lipschitz constant” functional as well: if K
is any subset of Rn and u : K → R, its least Lipschitz constant is denoted by

Lip (u,K) := inf {L ∈ R : |u (x)− u (y)| ≤ L |x− y| , ∀x, y ∈ K} .

One has F∞(u,U) = Lip (u,U) if U is convex, but equality does not hold in
general.

The author shows that a function which is absolutely minimizing for Lip
is also absolutely minimizing for F∞ and conversely. It turns out that the
absolutely minimizing functions for Lip and F∞ are precisely the viscosity
solutions of the famous partial differential equation

∆∞u =
n∑

i,j=1

uxi
uxj

uxixj
= 0 .

The operator ∆∞ is called the “∞-Laplacian” and “viscosity solutions” of
the above equation are said to be ∞−harmonic.

In his lecture Lawrence C. Evans introduces some new PDE methods de-
veloped over the past 6 years in so-called “weak KAM theory”, a subject
pioneered by J. Mather and A. Fathi. Succinctly put, the goal of this subject
is the employing of dynamical systems, variational and PDE methods to find
“integrable structures” within general Hamiltonian dynamics. Main references
(see the precise references in the article by Evans in this lecture notes) are
Fathi’s forthcoming book and an article by Evans and Gomes.

Nicola Fusco in his lecture presented in this book considers two model
functionals: the perimeter of a set E in Rn and the Dirichlet integral of a
scalar function u. It is well known that on replacing E or u by its Steiner
symmetral or its spherical symmetrization, respectively, both these quantities
decrease. This fact is classical when E is a smooth open set and u is a C1

function. On approximating a set of finite perimeter with smooth open sets
or a Sobolev function by C1 functions, these inequalities can be extended by
lower semicontinuity to the general setting. However, an approximation argu-
ment gives no information about the equality case. Thus, if one is interested
in understanding when equality occurs, one has to carry on a deeper analy-
sis, based on fine properties of sets of finite perimeter and Sobolev functions.
Briefly, this is the subject of Fusco’s lecture.

Finally, as an appendix to this CIME Lecture Notes, as we said Elvira
Mascolo, the CIME scientific secretary, wrote an interesting overview of the
history of CIME having in mind in particular calculus of variations and PDES.



VIII Preface

We are pleased to express our appreciation to the speakers for their excel-
lent lectures and to the participants for contributing to the success of the Sum-
mer School. We had at Cetraro an interesting, rich, nice, friendly atmosphere,
created by the speakers, the participants and by the CIME organizers; also
for this reason we like to thank the Scientific Committee of CIME, and in
particular Pietro Zecca (CIME Director) and Elvira Mascolo (CIME Secre-
tary). We also thank Carla Dionisi, Irene Benedetti and Francesco Mugelli,
who took care of the day to day organization with great efficiency.

Bernard Dacorogna and Paolo Marcellini
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1 Introduction

In these lectures we study the well-posedness of the Cauchy problem for the
homogeneous conservative continuity equation

(PDE)
d

dt
µt + Dx · (bµt) = 0 (t, x) ∈ I × Rd

and for the transport equation

d

dt
wt + b · ∇wt = ct.

Here b(t, x) = bt(x) is a given time-dependent vector field in Rd: we are
interested to the case when bt(·) is not necessarily Lipschitz and has, for
instance, a Sobolev or BV regularity. Vector fields with this “low” regularity
show up, for instance, in several PDE’s describing the motion of fluids, and
in the theory of conservation laws.

We are also particularly interested to the well posedness of the system of
ordinary differential equations

(ODE)
{

γ̇(t) = bt(γ(t))
γ(0) = x.

In some situations one might hope for a “generic” uniqueness of the so-
lutions of ODE, i.e. for “almost every” initial datum x. An even weaker re-
quirement is the research of a “selection principle”, i.e. a strategy to select
for Ld-almost every x a solution X(·, x) in such a way that this selection is
stable w.r.t. smooth approximations of b.

In other words, we would like to know that, whenever we approximate b by
smooth vector fields bh, the classical trajectories Xh associated to bh satisfy

lim
h→∞

Xh(·, x) = X(·, x) in C([0, T ]; Rd), for Ld-a.e. x.
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The following simple example provides an illustration of the kind of phe-
nomena that can occur.

Example 1.1. Let us consider the autonomous ODE{
γ̇(t) =

√|γ(t)|
γ(0) = x0.

Then, solutions of the ODE are not unique for x0 = −c2 < 0. Indeed, they
reach the origin in time 2c, where can stay for an arbitrary time T , then
continuing as x(t) = 1

4 (t−T − 2c)2. Let us consider for instance the Lipschitz
approximation (that could easily be made smooth) of b(γ) =

√|γ| by

bε(γ) :=

⎧⎪⎨⎪⎩
√|γ| if −∞ < γ ≤ −ε2;
ε if −ε2 ≤ γ ≤ λε − ε2√

γ − λε + 2ε2 if λε − ε2 ≤ γ < +∞,

with λε − ε2 > 0. Then, solutions of the approximating ODE’s starting from
−c2 reach the value −ε2 in time tε = 2(c − ε) and then they continue with
constant speed ε until they reach λε − ε2, in time Tε = λε/ε. Then, they
continue as λε − 2ε2 + 1

4 (t− tε − Tε)2.
Choosing λε = εT , with T > 0, by this approximation we select the

solutions that don’t move, when at the origin, exactly for a time T .
Other approximations, as for instance bε(γ) =

√
ε + |γ|, select the solu-

tions that move immediately away from the singularity at γ = 0. Among all
possibilities, this family of solutions x(t, x0) is singled out by the property that
x(t, ·)#L1 is absolutely continuous with respect to L1, so no concentration of
trajectories occurs at the origin. To see this fact, notice that we can integrate
in time the identity

0 = x(t, ·)#L1({0}) = L1 ({x0 : x(t, x0) = 0}}
and use Fubini’s theorem to obtain

0 =
∫

L1({t : x(t, x0) = 0}) dx0.

Hence, for L1-a.e. x0, x(·, x0) does not stay at 0 for a strictly positive set of
times.

We will see that there is a close link between (PDE) and (ODE), first
investigated in a nonsmooth setting by Di Perna and Lions in [53].

Let us now make some basic technical remarks on the continuity equation
and the transport equation:

Remark 1.1 (Regularity in space of bt and µt). (1) Since the continuity equa-
tion (PDE) is in divergence form, it makes sense without any regularity re-
quirement on bt and/or µt, provided
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I

∫
A

|bt| d|µt| dt < +∞ ∀A ⊂⊂ Rd. (1.1)

However, when we consider possibly singular measures µt, we must take care
of the fact that the product btµt is sensitive to modifications of bt in Ld-
negligible sets. In the Sobolev or BV case we will consider only measures
µt = wtL

d, so everything is well posed.
(2) On the other hand, due to the fact that the distribution bt · ∇w is

defined by

〈bt · ∇w,ϕ〉 := −
∫

I

∫
w〈bt,∇ϕ〉dxdt−

∫
I

〈Dx · bt, wtϕt〉 dt ϕ ∈ C∞
c (I ×Rd)

(a definition consistent with the case when wt is smooth) the transport equa-
tion makes sense only if we assume that Dx · bt = div btL

d for L1-a.e. t ∈ I.
See also [28], [31] for recent results on the transport equation when b satisfies
a one-sided Lipschitz condition.

Next, we consider the problem of the time continuity of t �→ µt and t �→ wt.

Remark 1.2 (Regularity in time of µt). For any test function ϕ ∈ C∞
c (Rd),

condition (7.11) gives

d

dt

∫
Rd

ϕdµt =
∫

Rd

bt · ∇ϕdµt ∈ L1(I)

and therefore the map t �→ 〈µt, ϕ〉, for given ϕ, has a unique uniformly contin-
uous representative in I. By a simple density argument we can find a unique
representative µ̃t independent of ϕ, such that t �→ 〈µ̃t, ϕ〉 is uniformly contin-
uous in I for any ϕ ∈ C∞

c (Rd). We will always work with this representative,
so that µt will be well defined for all t and even at the endpoints of I.

An analogous remark applies for solutions of the transport equation.

There are some other important links between the two equations:
(1) The transport equation reduces to the continuity equation in the case

when ct = −wtdiv bt.
(2) Formally, one can estabilish a duality between the two equations via

the (formal) identity

d

dt

∫
wt dµt =

∫
d

dt
wt dµt +

∫
d

dt
µtwt

=
∫

(−bt · ∇wt + c) dµt +
∫

bt · ∇wt dµt =
∫

c dµt.

This duality method is a classical tool to prove uniqueness in a sufficiently
smooth setting (but see also [28], [31]).

(3) Finally, if we denote by Y (t, s, x) the solution of the ODE at time t,
starting from x at the initial times s, i.e.
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d

dt
Y (t, s, x) = bt(Y (t, s, x)), Y (s, s, x) = x,

then Y (t, ·, ·) are themselves solutions of the transport equation: to see this,
it suffices to differentiate the semigroup identity

Y (t, s,Y (s, l, x)) = Y (t, l, x)

w.r.t. s to obtain, after the change of variables y = Y (s, l, x), the equation

d

ds
Y (t, s, y) + bs(y) · ∇Y (t, s, y) = 0.

This property is used in a essential way in [53] to characterize the flow Y
and to prove its stability properties. The approach developed here, based on
[7], is based on a careful analysis of the measures transported by the flow, and
ultimately on the homogeneous continuity equation only.

Acknowledgement. I wish to thank Gianluca Crippa and Alessio Figalli
for their careful reading of a preliminary version of this manuscript.

2 Transport Equation and Continuity Equation
within the Cauchy-Lipschitz Framework

In this section we recall the classical representation formulas for solutions of
the continuity or transport equation in the case when

b ∈ L1
(
[0, T ];W 1,∞(Rd; Rd)

)
.

Under this assumption it is well known that solutions X(t, ·) of the ODE are
unique and stable. A quantitative information can be obtained by differenti-
ation:

d

dt
|X(t, x)−X(t, y)|2 = 2〈bt(X(t, x))− bt(X(t, y)),X(t, x)−X(t, y)〉

≤ 2Lip (bt)|X(t, x)−X(t, y)|2

(here Lip (f) denotes the least Lipschitz constant of f), so that Gronwall
lemma immediately gives

Lip (X(t, ·)) ≤ exp
(∫ t

0

Lip (bs) ds

)
. (2.1)

Turning to the continuity equation, uniqueness of measure-valued solutions
can be proved by the duality method. Or, following the techniques devel-
oped in these lectures, it can be proved in a more general setting for positive
measure-valued solutions (via the superposition principle) and for signed solu-
tions µt = wtL

d (via the theory of renormalized solutions). So in this section
we focus only on the existence and the representation issues.
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The representation formula is indeed very simple:

Proposition 2.1. For any initial datum µ̄ the solution of the continuity equa-
tion is given by

µt := X(t, ·)#µ̄, i.e.
∫

Rd

ϕdµt =
∫

Rd

ϕ(X(t, x)) dµ̄(x). (2.2)

Proof. Notice first that we need only to check the distributional identity d
dtµt+

Dx · (btµt) = 0 on test functions of the form ψ(t)ϕ(x), so that∫
R

ψ′(t)〈µt, ϕ〉 dt +
∫

R

ψ(t)
∫

Rd

〈bt,∇ϕ〉 dµt dt = 0.

This means that we have to check that t �→ 〈µt, ϕ〉 belongs to W 1,1(0, T ) for
any ϕ ∈ C∞

c (Rd) and that its distributional derivative is
∫

Rd〈bt,∇ϕ〉 dµt.
We show first that this map is absolutely continuous, and in particular
W 1,1(0, T ); then one needs only to compute the pointwise derivative. For
every choice of finitely many, say n, pairwise disjoint intervals (ai, bi) ⊂ [0, T ]
we have

n∑
i=1

|ϕ(X(bi, x))− ϕ(X(ai, x))| ≤ ‖∇ϕ‖∞
∫
∪i(ai,bi)

|Ẋ(t, x)| dt

≤ ‖∇ϕ‖∞
∫
∪i(ai,bi)

sup |bt| dt

and therefore an integration with respect to µ̄ gives
n∑

i=1

|〈µbi
− µai

, ϕ〉| ≤ ‖∇ϕ‖∞
∫
∪i(ai,bi)

sup |bt| dt.

The absolute continuity of the integral shows that the right hand side can be
made small when

∑
i(bi − ai) is small. This proves the absolute continuity.

For any x the identity Ẋ(t, x) = bt(X(t, x)) is fulfilled for L1-a.e. t ∈ [0, T ].
Then, by Fubini’s theorem, we know also that for L1-a.e. t ∈ [0, T ] the previous
identity holds for µ̄-a.e. x, and therefore

d

dt
〈µt, ϕ〉 =

d

dt

∫
Rd

ϕ(X(t, x)) dµ̄(x)

=
∫

Rd

〈∇ϕ(X(t, x)), bt(X(t, x))〉 dµ̄(x)

= 〈btµt,∇ϕ〉
for L1-a.e. t ∈ [0, T ].

In the case when µ̄ = ρLd we can say something more, proving that the
measures µt = X(t, ·)#µ̄ are absolutely continuous w.r.t. Ld and computing
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explicitely their density. Let us start by recalling the classical area formula: if
f : Rd → Rd is a (locally) Lipschitz map, then∫

A

g|Jf | dx =
∫

Rd

∑
x∈A∩f−1(y)

g(x) dy

for any Borel set A ⊂ Rd, where Jf = det∇f (recall that, by Rademacher
theorem, Lipschitz functions are differentiable Ld-a.e.). Assuming in addition
that f is 1-1 and onto and that |Jf | > 0 Ld-a.e. on A we can set A = f−1(B)
and g = ρ/|Jf | to obtain∫

f−1(B)

ρ dx =
∫

B

ρ

|Jf | ◦ f−1 dy.

In other words, we have got a formula for the push-forward:

f#(ρLd) =
ρ

|Jf | ◦ f−1Ld. (2.3)

In our case f(x) = X(t, x) is surely 1-1, onto and Lipschitz. It remains to
show that |JX(t, ·)| does not vanish: in fact, one can show that JX > 0 and

exp
[
−
∫ t

0

‖[div bs]−‖∞ ds

]
≤ JX(t, x) ≤ exp

[∫ t

0

‖[div bs]+‖∞ ds

]
(2.4)

for Ld-a.e. x, thanks to the following fact, whose proof is left as an exercise.

Exercise 2.1. If b is smooth, we have

d

dt
JX(t, x) = div bt(X(t, x))JX(t, x).

Hint: use the ODE d
dt∇X = ∇bt(X)∇X.

The previous exercise gives that, in the smooth case, JX(·, x) solves a
linear ODE with the initial condition JX(0, x) = 1, whence the estimates on
JX follow. In the general case the upper estimate on JX still holds by a
smoothing argument, thanks to the lower semicontinuity of

Φ(v) :=

{
‖Jv‖∞ if Jv ≥ 0 Ld-a.e.
+∞ otherwise

with respect to the w∗-topology of W 1,∞(Rd; Rd). This is indeed the supre-
mum of the family of Φ

1/p
p , where Φp are the polyconvex (and therefore lower

semicontinuous) functionals

Φp(v) :=
∫

Bp

|χ(Jv)|p dx.
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Here χ(t), equal to ∞ on (−∞, 0) and equal to t on [0,+∞), is l.s.c. and
convex. The lower estimate can be obtained by applying the upper one in a
time reversed situation.

Now we turn to the representation of solutions of the transport equation:

Proposition 2.2. If w ∈ L1
loc

(
[0, T ]× Rd

)
solves

d

dt
wt + b · ∇w = c ∈ L1

loc

(
[0, T ]× Rd

)
then, for Ld-a.e. x, we have

wt(X(t, x)) = w0(x) +
∫ t

0

cs(X(s, x)) ds ∀t ∈ [0, T ].

The (formal) proof is based on the simple observation that

d

dt
wt ◦X(t, x) =

d

dt
wt(X(t, x)) +

d

dt
X(t, x) · ∇wt(X(t, x))

=
d

dt
wt(X(t, x)) + bt(X(t, x)) · ∇wt(X(t, x))

= ct(X(t, x)).

In particular, as X(t, x) = Y (t, 0, x) = [Y (0, t, ·)]−1(x), we get

wt(y) = w0(Y (0, t, y)) +
∫ t

0

cs(Y (s, t, y)) ds.

We conclude this presentation of the classical theory pointing out two
simple local variants of the assumption b ∈ L1

(
[0, T ];W 1,∞(Rd; Rd)

)
made

throughout this section.

Remark 2.1 (First local variant). The theory outlined above still works under
the assumptions

b ∈ L1
(
[0, T ];W 1,∞

loc (Rd; Rd)
)

,
|b|

1 + |x| ∈ L1
(
[0, T ];L∞(Rd)

)
.

Indeed, due to the growth condition on b, we still have pointwise uniqueness of
the ODE and a uniform local control on the growth of |X(t, x)|, therefore we
need only to consider a local Lipschitz condition w.r.t. x, integrable w.r.t. t.

The next variant will be used in the proof of the superposition principle.

Remark 2.2 (Second local variant). Still keeping the L1(W 1,∞
loc ) assumption,

and assuming µt ≥ 0, the second growth condition on |b| can be replaced by
a global, but more intrinsic, condition:
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0

∫
Rd

|bt|
1 + |x| dµt dt < +∞. (2.5)

Under this assumption one can show that for µ̄-a.e. x the maximal solution
X(·, x) of the ODE starting from x is defined up to t = T and still the
representation µt = X(t, ·)#µ̄ holds for t ∈ [0, T ].

3 ODE Uniqueness versus PDE Uniqueness

In this section we illustrate some quite general principles, whose application
may depend on specific assumptions on b, relating the uniqueness of the ODE
to the uniqueness of the PDE. The viewpoint adopted in this section is very
close in spirit to Young’s theory [85] of generalized surfaces and controls (a
theory with remarkable applications also non-linear PDE’s [52, 78] and Cal-
culus of Variations [19]) and has also some connection with Brenier’s weak
solutions of incompressible Euler equations [24], with Kantorovich’s viewpoint
in the theory of optimal transportation [57, 76] and with Mather’s theory
[71, 72, 18]: in order to study existence, uniqueness and stability with respect
to perturbations of the data of solutions to the ODE, we consider suitable
measures in the space of continuous maps, allowing for superposition of tra-
jectories. Then, in some special situations we are able to show that this super-
position actually does not occur, but still this “probabilistic” interpretation is
very useful to understand the underlying techniques and to give an intrinsic
characterization of the flow.

The first very general criterion is the following.

Theorem 3.1. Let A ⊂ Rd be a Borel set. The following two properties are
equivalent:

(a) Solutions of the ODE are unique for any x ∈ A.
(b) Nonnegative measure-valued solutions of the PDE are unique for any µ̄

concentrated in A, i.e. such that µ̄(Rd \A) = 0.

Proof. It is clear that (b) implies (a), just choosing µ̄ = δx and noticing that
two different solutions X(t), X̃(t) of the ODE induce two different solutions
of the PDE, namely δX(t) and δX̃(t).

The converse implication is less obvious and requires the superposition
principle that we are going to describe below, and that provides the represen-
tation ∫

Rd

ϕdµt =
∫

Rd

(∫
ΓT

ϕ(γ(t)) dηx(γ)
)

dµ0(x),

with ηx probability measures concentrated on the absolutely continuous inte-
gral solutions of the ODE starting from x. Therefore, when these are unique,
the measures ηx are unique (and are Dirac masses), so that the solutions of
the PDE are unique.
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We will use the shorter notation ΓT for the space C
(
[0, T ]; Rd

)
and denote

by et : ΓT → Rd the evaluation maps γ �→ γ(t), t ∈ [0, T ].

Definition 3.1 (Superposition Solutions). Let η ∈ M+(Rd × ΓT ) be a
measure concentrated on the set of pairs (x, γ) such that γ is an absolutely
continuous integral solution of the ODE with γ(0) = x. We define

〈µη
t , ϕ〉 :=

∫
Rd×ΓT

ϕ(et(γ)) dη(x, γ) ∀ϕ ∈ Cb(Rd).

By a standard approximation argument the identity defining µη
t holds for

any Borel function ϕ such that γ �→ ϕ(et(γ)) is η-integrable (or equivalently
any µη

t -integrable function ϕ).
Under the (local) integrability condition∫ T

0

∫
Rd×ΓT

χBR
(et)|bt(et)| dη dt < +∞ ∀R > 0 (3.1)

it is not hard to see that µη
t solves the PDE with the initial condition µ̄ :=

(πRd)#η: indeed, let us check first that t �→ 〈µη
t , ϕ〉 is absolutely continuous for

any ϕ ∈ C∞
c (Rd). For every choice of finitely many pairwise disjoint intervals

(ai, bi) ⊂ [0, T ] we have

n∑
i=1

|ϕ(γ(bi))− ϕ(γ(ai))| ≤ Lip (ϕ)
∫
∪i(ai,bi)

χBR
(|et(γ)|)bt(et(γ))| dt

for η-a.e. (x, γ), with R such that suppϕ ⊂ BR. Therefore an integration with
respect to η gives

n∑
i=1

|〈µη
bi

, ϕ〉 − 〈µη
ai

, ϕ〉| ≤ Lip (ϕ)
∫
∪i(ai,bi)

∫
Rd×ΓT

χBR
(et)|bt(et)| dη dt.

The absolute continuity of the integral shows that the right hand side can be
made small when

∑
i(bi − ai) is small. This proves the absolute continuity.

It remains to evaluate the time derivative of t �→ 〈µη
t , ϕ〉: we know that for

η-a.e. (x, γ) the identity γ̇(t) = bt(γ(t)) is fulfilled for L1-a.e. t ∈ [0, T ]. Then,
by Fubini’s theorem, we know also that for L1-a.e. t ∈ [0, T ] the previous
identity holds for η-a.e. (x, γ), and therefore

d

dt
〈µη

t , ϕ〉 =
d

dt

∫
Rd×ΓT

ϕ(et(γ)) dη

=
∫

Rd×ΓT

〈∇ϕ(et(γ)), bt(et(γ))〉 dη = 〈btµt,∇ϕ〉 L1-a.e. in [0, T ].

Remark 3.1. Actually the formula defining µη
t does not contain x, and so it

involves only the projection of η on ΓT . Therefore one could also consider
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measures σ in ΓT , concentrated on the set of solutions of the ODE (for an
arbitrary initial point x). These two viewpoints are basically equivalent: given
η one can build σ just by projection on ΓT , and given σ one can consider
the conditional probability measures ηx concentrated on the solutions of the
ODE starting from x induced by the random variable γ �→ γ(0) in ΓT , the
law µ̄ (i.e. the push forward) of the same random variable and recover η as
follows:∫

Rd×ΓT

ϕ(x, γ) dη(x, γ) :=
∫

Rd

(∫
ΓT

ϕ(x, γ) dηx(γ)
)

dµ̄(x). (3.2)

Our viewpoint has been chosen just for technical convenience, to avoid the
use, wherever this is possible, of the conditional probability theorem.

By restricting η to suitable subsets of Rd×ΓT , several manipulations with
superposition solutions of the continuity equation are possible and useful, and
these are not immediate to see just at the level of general solutions of the
continuity equation. This is why the following result is interesting.

Theorem 3.2 (Superposition Principle). Let µt ∈ M+(Rd) solve PDE
and assume that ∫ T

0

∫
Rd

|b|t(x)
1 + |x| dµt dt < +∞.

Then µt is a superposition solution, i.e. there exists η ∈ M+(Rd × ΓT ) such
that µt = µη

t for any t ∈ [0, T ].

In the proof we use the narrow convergence of positive measures, i.e. the
convergence with respect to the duality with continuous and bounded func-
tions, and the easy implication in Prokhorov compactness theorem: any tight
and bounded family F in M+(X) is (sequentially) relatively compact w.r.t.
the narrow convergence. Remember that tightness means:

for any ε > 0 there exists K ⊂ X compact s.t. µ(X \K) < ε ∀µ ∈ F.

A necessary and sufficient condition for tightness is the existence of a
coercive functional Ψ : X → [0,∞] such that

∫
Ψ dµ ≤ 1 for any µ ∈ F.

Proof. Step 1 (smoothing). [58] We mollify µt w.r.t. the space variable with
a kernel ρ having finite first moment M and support equal to the whole of Rd

(a Gaussian, for instance), obtaining smooth and strictly positive functions
µε

t . We also choose a function ψ : Rd → [0,+∞) such that ψ(x) → +∞ as
|x| → +∞ and ∫

Rd

ψ(x)µ0 ∗ ρε(x) dx ≤ 1 ∀ε ∈ (0, 1)

and a convex nondecreasing function Θ : R+ → R having a more than linear
growth at infinity such that
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0

∫
Rd

Θ(|bt|(x))
1 + |x| dµtdt < +∞

(the existence of Θ is ensured by Dunford-Pettis theorem). Defining

µε
t := µt ∗ ρε, bε

t :=
(btµt) ∗ ρε

µε
t

,

it is immediate that
d

dt
µε

t + Dx · (bε
tµ

ε
t ) =

d

dt
µt ∗ ρε + Dx · (btµt) ∗ ρε = 0

and that bε ∈ L1
(
[0, T ];W 1,∞

loc (Rd; Rd)
)
. Therefore Remark 2.2 can be ap-

plied and the representation µε
t = Xε(t, ·)#µε

0 still holds. Then, we define

ηε := (x,Xε(·, x))# µε
0,

so that ∫
Rd

ϕdµ
ηε
t =

∫
Rd×ΓT

ϕ(γ(t)) dηε (3.3)

=
∫

Rd

ϕ(Xε(t, x)) dµε
0(x) =

∫
Rd

ϕdµε
t .

Step 2 (Tightness). We will be using the inequality

((1 + |x|)c) ∗ ρε ≤ (1 + |x|)c ∗ ρε + εc ∗ ρ̃ε (3.4)

for c nonnegative measure and ρ̃(y) = |y|ρ(y), and

Θ(|bε
t (x)|)µε

t (x) ≤ (Θ(|bt|)µt) ∗ ρε(x). (3.5)

The proof of the first one is elementary, while the proof of the second one
follows by applying Jensen’s inequality with the convex l.s.c. function (z, t) �→
Θ(|z|/t)t (set to +∞ if t < 0, or t = 0 and z �= 0, and to 0 if z = t = 0) and
with the measure ρε(x− ·)Ld.

Let us introduce the functional

Ψ(x, γ) := ψ(x) +
∫ T

0

Θ(|γ̇|)
1 + |γ| dt,

set to +∞ on ΓT \AC([0, T ]; Rd).
Using Ascoli-Arzelá theorem, it is not hard to show that Ψ is coercive (it

suffices to show that max |γ| is bounded on the sublevels {Ψ ≤ t}). Since∫
Rd×ΓT

∫ T

0

Θ(|γ̇|)
1 + |γ| dt dηε(x, γ) =

∫ T

0

∫
Rd

Θ(|bε
t |)

1 + |x| dµε
t dt

(3.4),(3.5)

≤ (1 + εM)
∫ T

0

∫
Rd

Θ(|bt|(x))
1 + |x| dµtdt
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and ∫
Rd×ΓT

ψ(x) dηε(x, γ) =
∫

Rd

ψ(x) dµε
0 ≤ 1

we obtain that
∫

Ψ dηε is uniformly bounded for ε ∈ (0, 1), and therefore
Prokhorov compactness theorem tells us that the family ηε is narrowly se-
quentially relatively compact as ε ↓ 0. If η is any limit point we can pass to
the limit in (3.3) to obtain that µt = µη

t .
Step 3 (η is Concentrated on Solutions of the ODE). It suffices to
show that ∫

Rd×ΓT

∣∣∣γ(t)− x− ∫ t

0
bs(γ(s)) ds

∣∣∣
1 + max

[0,T ]
|γ| dη = 0 (3.6)

for any t ∈ [0, T ]. The technical difficulty is that this test function, due to the
lack of regularity of b, is not continuous. To this aim, we prove first that

∫
Rd×ΓT

∣∣∣γ(t)− x− ∫ t

0
cs(γ(s)) ds

∣∣∣
1 + max

[0,T ]
|γ| dη ≤

∫ T

0

∫
Rd

|bs − cs|
1 + |x| dµsds (3.7)

for any continuous function c with compact support. Then, choosing a se-
quence (cn) converging to b in L1(ν; Rd), with∫

ϕ(s, x) dν(s, x) :=
∫ T

0

∫
Rd

ϕ(s, x)
1 + |x| dµs(x) ds

and noticing that∫
Rd×ΓT

∫ T

0

|bs(γ(s))− cn
s (γ(s))|

1 + |γ(s)| dsdη =
∫ T

0

∫
Rd

|bs − cn
s |

1 + |x| dµsds → 0,

we can pass to the limit in (3.7) with c = cn to obtain (3.6).
It remains to show (3.7). This is a limiting argument based on the fact

that (3.6) holds for bε, ηε:

∫
Rd×ΓT

∣∣∣γ(t)− x− ∫ t

0
cs(γ(s)) ds

∣∣∣
1 + max

[0,T ]
|γ| dηε

=
∫

Rd

∣∣∣Xε(t, x)− x− ∫ t

0
cs(Xε(s, x)) ds

∣∣∣
1 + max

[0,T ]
|Xε(·, x)| dµε

0(x)

=
∫

Rd

∣∣∣∫ t

0
bε

s(X
ε(s, x))− cs(Xε(s, x)) ds

∣∣∣
1 + max

[0,T ]
|Xε(·, x)| dµε

0(x) ≤
∫ t

0

∫
Rd

|bε
s − cs|

1 + |x| dµε
sds
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≤
∫ t

0

∫
Rd

|bε
s − cε

s|
1 + |x| dµε

sds +
∫ t

0

∫
Rd

|cε
s − cs|

1 + |x| dµε
sds

≤
∫ t

0

∫
Rd

|bs − cs|
1 + |x| dµsds +

∫ t

0

∫
Rd

|cε
s − cs|

1 + |x| dµε
sds.

In the last inequalities we added and subtracted cε
t := (ctµt) ∗ ρε/µε

t . Since
cε

t → ct uniformly as ε ↓ 0 thanks to the uniform continuity of c, passing to
the limit in the chain of inequalities above we obtain (3.7).

The applicability of Theorem 3.1 is strongly limited by the fact that, on
one hand, pointwise uniqueness properties for the ODE are known only in
very special situations, for instance when there is a Lipschitz or a one-sided
Lipschitz (or log-Lipschitz, Osgood...) condition on b. On the other hand,
also uniqueness for general measure-valued solutions is known only in special
situations. It turns out that in many cases uniqueness of the PDE can only
be proved in smaller classes L of solutions, and it is natural to think that this
should reflect into a weaker uniqueness condition at the level of the ODE.

We will see indeed that there is uniqueness in the “selection sense”. In
order to illustrate this concept, in the following we consider a convex class Lb

of measure-valued solutions µt ∈ M+(Rd) of the continuity equation relative
to b, satifying the following monotonicity property:

0 ≤ µ′
t ≤ µt ∈ Lb =⇒ µ′

t ∈ Lb (3.8)

whenever µ′
t still solves the continuity equation relative to b, and the integra-

bility condition ∫ T

0

∫
Rd

|bt(x)|
1 + |x| dµt(x)dt < +∞.

The typical application will be with absolutely continuous measures µt =
wtL

d, whose densities satisfy some quantitative and possibly time-depending
bound (e.g. L∞(L1) ∩ L∞(L∞)).

Definition 3.2 (Lb-Lagrangian Flows). Given the class Lb, we say that
X(t, x) is a Lb-Lagrangian flow starting from µ̄ ∈M+(Rd) (at time 0) if the
following two properties hold:

(a)X(·, x) is absolutely continuous solution in [0, T ] and satisfies

X(t, x) = x +
∫ t

0

bs(X(s, x)) ds ∀t ∈ [0, T ]

for µ̄-a.e. x;
(b) µt := X(t, ·)#µ̄ ∈ Lb.

Heuristically Lb-Lagrangian flows can be thought as suitable selections
of the solutions of the ODE (possibly non unique), made in such a way to
produce a density in Lb, see Example 1.1 for an illustration of this concept.
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We will show that the Lb-Lagrangian flow starting from µ̄ is unique, mod-
ulo µ̄-negligible sets, whenever a comparison principle for the PDE holds, in
the class Lb (i.e. the inequality between two solutions at t = 0 is preserved at
later times).

Before stating and proving the uniqueness theorem for Lb-Lagrangian
flows, we state two elementary but useful results. The first one is a simple
exercise:

Exercise 3.1. Let σ ∈ M+(ΓT ) and let D ⊂ [0, T ] be a dense set. Show that
σ is a Dirac mass in ΓT iff its projections (e(t))#σ, t ∈ D, are Dirac masses
in Rd.

The second one is concerned with a family of measures ηx:

Lemma 3.1. Let ηx be a measurable family of positive finite measures in ΓT

with the following property: for any t ∈ [0, T ] and any pair of disjoint Borel
sets E, E′ ⊂ Rd we have

ηx ({γ : γ(t) ∈ E}) ηx ({γ : γ(t) ∈ E′}) = 0 µ̄-a.e. in Rd. (3.9)

Then ηx is a Dirac mass for µ̄-a.e. x.

Proof. Taking into account Exercise 3.1, for a fixed t ∈ (0, T ] it suffices to
check that the measures λx := γ(t)#ηx are Dirac masses for µ̄-a.e. x. Then
(3.9) gives λx(E)λx(E′) = 0 µ̄-a.e. for any pair of disjoint Borel sets E, E′ ⊂
Rd. Let δ > 0 and let us consider a partition of Rd in countably many Borel
sets Ri having a diameter less then δ. Then, as λx(Ri)λx(Rj) = 0 µ-a.e.
whenever i �= j, we have a corresponding decomposition of µ̄-almost all of Rd

in Borel sets Ai such that suppλx ⊂ Ri for any x ∈ Ai (just take {λx(Ri) > 0}
and subtract from him all other sets {λx(Rj) > 0}, j �= i). Since δ is arbitrary
the statement is proved.

Theorem 3.3 (Uniqueness of Lb-Lagrangian Flows). Assume that the
PDE fulfils the comparison principle in Lb. Then the Lb-Lagrangian flow
starting from µ̄ is unique, i.e. two different selections X1(t, x) and X2(t, x)
of solutions of the ODE inducing solutions of the the continuity equation in
Lb satisfy

X1(·, x) = X2(·, x) in ΓT , for µ̄-a.e. x.

Proof. If the statement were false we could produce a measure η not con-
centrated on a graph inducing a solution µη

t ∈ Lb of the PDE. This is not
possible, thanks to the next result. The measure η can be built as follows:

η :=
1
2
(η1 + η2) =

1
2

[(x,X1(·, x))#µ̄ + (x,X2(·, x))#µ̄] .

Since Lb is convex we still have µη
t = 1

2 (µη1

t + µη2

t ) ∈ Lb.
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Remark 3.2. In the same vein, one can also show that

X1(·, x) = X2(·, x) in ΓT for µ̄1 ∧ µ̄2-a.e. x

whenever X1, X2 are Lb-Lagrangian flows starting respectively from µ̄1

and µ̄2.

We used the following basic result, having some analogy with Kantorovich’s
and Mather’s theories.

Theorem 3.4. Assume that the PDE fulfils the comparison principle in Lb.
Let η ∈ M+(Rd × ΓT ) be concentrated on the pairs (x, γ) with γ absolutely
continuous solution of the ODE, and assume that µη

t ∈ Lb. Then η is con-
centrated on a graph, i.e. there exists a function x �→ X(·, x) ∈ ΓT such that

η =
(
x,X(·, x)

)
#

µ̄, with µ̄ := (πRd)#η = µη
0 .

Proof. We use the representation (3.2) of η, given by the disintegration the-
orem, the criterion stated in Lemma 3.1 and argue by contradiction. If the
thesis is false then ηx is not a Dirac mass in a set of µ̄ positive measure and
we can find t ∈ (0, T ], disjoint Borel sets E, E′ ⊂ Rd and a Borel set C with
µ̄(C) > 0 such that

ηx ({γ : γ(t) ∈ E}) ηx ({γ : γ(t) ∈ E′}) > 0 ∀x ∈ C.

Possibly passing to a smaller set having still strictly positive µ̄ measure
we can assume that

0 < ηx({γ : γ(t) ∈ E}) ≤Mηx({γ : γ(t) ∈ E′}) ∀x ∈ C (3.10)

for some constant M . We define measures η1, η2 whose disintegrations η1
x,

η2
x are given by

η1
x := χC(x)ηx {γ : γ(t) ∈ E}, η2

x := MχC(x)ηx {γ : γ(t) ∈ E′}
and denote by µi

t the (superposition) solutions of the continuity equation
induced by ηi. Then

µ1
0 = ηx({γ : γ(t) ∈ E})µ̄ C, µ2

0 = Mηx({γ : γ(t) ∈ E′})µ̄ C,

so that (3.10) yields µ1
0 ≤ µ2

0. On the other hand, µ1
t is orthogonal to µ2

t :
precisely, denoting by ηtx the image of ηx under the map γ �→ γ(t), we have

µ1
t =

∫
C

ηtx E dµ(x) ⊥M

∫
C

ηtx E′ dµ(x) = µ2
t .

Notice also that µi
t ≤ µt and so the monotonicity assumption (3.8) on Lb gives

µi
t ∈ Lb. This contradicts the assumption on the validity of the comparison

principle in Lb.

Now we come to the existence of Lb-Lagrangian flows.
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Theorem 3.5 (Existence of Lb-Lagrangian Flows). Assume that the
PDE fulfils the comparison principle in Lb and that for some µ̄ ∈ M+(Rd)
there exists a solution µt ∈ Lb with µ0 = µ̄. Then there exists a (unique)
Lb-Lagrangian flow starting from µ̄.

Proof. By the superposition principle we can represent µt as (et)#η for some
η ∈ M+(Rd × ΓT ) concentrated on pairs (x, γ) solutions of the ODE. Then,
Theorem 3.4 tells us that η is concentrated on a graph, i.e. there exists a
function x �→X(·, x) ∈ ΓT such that(

x,X(·, x)
)
#

µ̄ = η.

Pushing both sides via et we obtain

X(t, ·)#µ̄ = (et)#η = µt ∈ Lb,

and therefore X is a Lb-Lagrangian flow.

Finally, let us discuss the stability issue. This is particularly relevant, as
we will see, in connection with the applications to PDE’s.

Definition 3.3 (Convergence of Velocity Fields). We define the conver-
gence of bh to b in a indirect way, defining rather a convergence of L

bh to Lb:
we require that

bhµh
t ⇀ bµt in (0, T )× Rd and µt ∈ Lb

whenever µh
t ∈ L

bh and µh
t → µt narrowly for all t ∈ [0, T ].

For instance, in the typical case when L is bounded and closed, w.r.t the
weak∗ topology, in L∞(L1) ∩ L∞(L∞), and

Lc := L ∩
{

w :
d

dt
w + Dx · (cw) = 0

}
the implication is fulfilled whenever bh → b strongly in L1

loc.
The natural convergence for the stability theorem is convergence in mea-

sure. Let us recall that a Y -valued sequence (vh) is said to converge in µ̄-
measure to v if

lim
h→∞

µ̄ ({dY (vh, v) > δ}) = 0 ∀δ > 0.

This is equivalent to the L1 convergence to 0 of the R+-valued maps 1 ∧
dY (vh, v).

Recall also that convergence µ̄-a.e. implies convergence in measure, and
that the converse implication is true passing to a suitable subsequence.
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Theorem 3.6 (Stability of L-Lagrangian Flows). Assume that

(i) L
bh converge to Lb;

(ii) Xh are L
bh-flows relative to bh starting from µ̄ ∈M+(Rd) and X is the

Lb-flow relative to b starting from µ̄;
(iii) setting µh

t := Xh(t, ·)#µ̄, we have

µh
t → µt narrowly as h →∞ for all t ∈ [0, T ] (3.11)

lim sup
h→∞

∫ T

0

∫
Rd

Θ(|bh
t |)

1 + |x| dµh
t dt ≤

∫ T

0

∫
Rd

Θ(|bt|)
1 + |x| dµtdt < +∞ (3.12)

for some strictly convex function Θ : R+ → R having a more than linear
growth at infinity;

(iv) the PDE fulfils the comparison principle in Lb.

Then µt = X(t, ·)#µ̄ and x �→Xh(·, x) converge to x �→X(·, x) in µ̄-measure,
i.e.

lim
h→∞

∫
Rd

1 ∧ sup
[0,T ]

|Xh(·, x)−X(·, x)| dµ̄(x) = 0.

Proof. Following the same strategy used in the proof of the superposition
principle, we push µ̄ onto the graph of the map x �→ Xh(·, x), i.e.

ηh :=
(
x,Xh(·, x)

)
#

µ̄

and we obtain, using (3.12) and the same argument used in Step 2 of the proof
of the superposition principle, that ηh is tight in M+(Rd × ΓT ).

Let now η be any limit point of ηh. Using the same argument used in
Step 3 of the proof of the superposition principle and (3.12) we obtain that
η is concentrated on pairs (x, γ) with γ absolutely continuous solution of the
ODE relative to b starting from x. Indeed, this argument was using only the
property

lim
h→∞

∫ T

0

∫
Rd

|bh
t − ct|

1 + |x| dµh
t dt =

∫ T

0

∫
Rd

|bt − ct|
1 + |x| dµt dt

for any continuous function c with compact support in (0, T ) × Rd, and this
property is ensured by Lemma 3.3 below.

Let µt := (et)#η and notice that µh
t = (et)#ηh, hence µh

t → µt narrowly
for any t ∈ [0, T ]. As µh

t ∈ L
bh , assumption (i) gives that µt ∈ Lb and

assumption (iv) together with Theorem 3.4 imply that η is concentrated on
the graph of the map x �→ X(·, x), where X is the unique Lb-Lagrangian
flow. We have thus obtained that(

x,Xh(·, x)
)
#

µ̄ ⇀
(
x,X(·, x)

)
#

µ̄.

By applying the following general principle we conclude.
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Lemma 3.2 (Narrow Convergence and Convergence in Measure). Let

vh, v : X → Y be Borel maps and let µ̄ ∈ M+(X). Then vh → v in µ̄-measure
iff

(x, vh(x))#µ̄ converges to (x, v(x))#µ̄ narrowly in M+(X × Y ).

Proof. If vh → v in µ̄-measure then ϕ(x, vh(x)) converges in L1(µ̄) to
ϕ(x, v(x)), and we immediately obtain the convergence of the push-forward
measures. Conversely, let δ > 0 and, for any ε > 0, let w ∈ Cb(X;Y ) be such
that µ̄({v �= w}) ≤ ε. We define

ϕ(x, y) := 1 ∧ dY (y, w(x))
δ

∈ Cb(X × Y )

and notice that

µ̄ ({v �= w}) +
∫

X×Y

ϕd(x, vh(x))#µ̄ ≥ µ̄({dY (v, vh) > δ}),
∫

X×Y

ϕd(x, v(x))#µ̄ ≤ µ̄({w �= v}).

Taking into account the narrow convergence of the push-forward we obtain
that

lim sup
h→∞

µ̄({dY (v, vh) > δ}) ≤ 2µ̄({w �= v}) ≤ 2ε

and since ε is arbitrary the proof is achieved.

Lemma 3.3. Let A ⊂ Rm be an open set, and let σh ∈ M+(A) be narrowly
converging to σ ∈ M+(A). Let fh ∈ L1(A, σh, Rk), f ∈ L1(A, σ, Rk) and
assume that

(i) fhσh weakly converge, in the duality with Cc(A; Rk), to fσ;
(ii) lim sup

h→∞

∫
A

Θ(|fh|) dσh ≤ ∫
A

Θ(|f |) dσ < +∞ for some strictly convex

function Θ : R+ → R having a more than linear growth at infinity.

Then
∫

A
|fh − c| dσh → ∫

A
|f − c| dσ for any c ∈ Cb(A; Rk).

Proof. We consider the measures νh := (x,fh(x))#σh in A × Rk and we as-
sume, possibly extracting a subsequence, that νh ⇀ ν, with ν ∈M+(A×Rk),
in the duality with Cc(A×Rk). Using condition (ii), the narrow convergence
of σh and a truncation argument it is easy to see that the convergence actually
occurs for any continuous test function ψ(x, y) satisfying

lim
|y|→∞

supx |ψ(x, y)|
Θ(|y|) = 0.

Furthermore, for nonnegative continuous functions ψ, we have also
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A×Rk

ψ dν ≤ lim inf
h→∞

∫
A×Rk

ψ dνh. (3.13)

Then, choosing test functions ψ = ψ(x) ∈ Cb(A), the convergence of σh to σ
gives ∫

A×Rk

ψ dν =
∫

A

ψ dσ

and therefore, according to the disintegration theorem, we can represent ν as∫
A×Rk

ψ(x, y) dν(x, y) =
∫

A

(∫
Rk

ψ(x, y) dνx(y)
)

dσ(x) (3.14)

for a suitable Borel family of probability measures νx in Rk. Next, we can use
ψ(x)yj as test functions and assumption (i), to obtain

lim
h→∞

∫
A

fh
j ψ dµh = lim

h→∞

∫
A×Rk

ψ(x)yj dνh =
∫

A

ψ(x)
(∫

Rk

yj dνx(y)
)

dσ(x).

As ψ and j are arbitrary, this means that the first moment νx, i.e.
∫

y dνx, is
equal to f(x) for σ-a.e. x.

On the other hand, choosing ψ(y) = Θ(|y|) as test function in (3.13),
assumption (ii) gives∫

A

∫
Rk Θ(|y|) dνx(y) dσ(x) ≤ lim infh→∞

∫
A×Rk Θ(|y|) dνh =

= lim suph→∞
∫

A
Θ(|fh|) dσh =

=
∫

A
Θ(|f |) dσ,

hence
∫

Θ(|y|) dνx = f(x) = Θ
(∣∣∫ y dνx

∣∣) for σ-a.e. x. As Θ is strictly
convex, this can happen only if νx = δf(x) for σ-a.e. x.

Finally, taking into account the representation (3.14) of ν with νx = δf(x),
the convergence statement can be achieved just choosing the test function
ψ(x, y) = |y − c(x)|.

4 Vector Fields with a Sobolev Spatial Regularity

Here we discuss the well-posedness of the continuity or transport equations
assuming the bt(·) has a Sobolev regularity, following [53]. Then, the general
theory previously developed provides existence, uniqueness and stability of
the L-Lagrangian flow, with L := L∞(L1) ∩ L∞(L∞). We denote by I ⊂ R

an open interval.

Definition 4.1 (Renormalized Solutions). Let b ∈ L1
loc

(
I;L1

loc(R
d; Rd)

)
be such that D · bt = div btL

d for L1-a.e. t ∈ I, with

div bt ∈ L1
loc

(
I;L1

loc(R
d)
)
.
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Let w ∈ L∞
loc

(
I;L∞

loc(R
d)
)

and assume that

c :=
d

dt
w + b · ∇w ∈ L1

loc(I × Rd). (4.1)

Then, we say that w is a renormalized solution of (4.1) if

d

dt
β(w) + b · ∇β(w) = cβ′(w) ∀β ∈ C1(R).

Equivalently, recalling the definition of the distribution b · ∇w, the defini-
tion could be given in a conservative form, writing

d

dt
β(w) + Dx · (bβ(w)) = cβ′(w) + div btβ(w).

Notice also that the concept makes sense, choosing properly the class of
“test” functions β, also for w that do not satisfy (4.1), or are not even locally
integrable. This is particularly relevant in connection with DiPerna-Lions’s
existence theorem for Boltzmann equation , or with the case when w is the
characteristic of an unbounded vector field b.

This concept is also reminiscent of Kruzkhov’s concept of entropy solution
for a scalar conservation law

d

dt
u + Dx · (f(u)) = 0 u : (0,+∞)× Rd → R.

In this case only a distributional one-sided inequality is required:

d

dt
η(u) + Dx · (q(u)) ≤ 0

for any convex entropy-entropy flux pair (η, q) (i.e. η is convex and η′f ′ = q′).

Remark 4.1 (Time Continuity). Using the fact that both t �→ wt and t �→
β(wt) have a uniformly continuous representative (w.r.t. the w∗ −L∞

loc topol-
ogy), we obtain that, for any renormalized solution w, t �→ wt has a unique
representative which is continuous w.r.t. the L1

loc topology. The proof follows
by a classical weak-strong convergence argument:

fn ⇀ f, β(fn) ⇀ β(f) =⇒ fn → f

provided β is strictly convex. In the case of scalar conservation laws there are
analogous results [82], [73].

Using the concept of renormalized solution we can prove a comparison
principle in the following natural class L:

L :=
{
w ∈ L∞ (

[0, T ];L1(Rd)
) ∩ L∞ (

[0, T ];L∞(Rd)
)

: (4.2)

w ∈ C
(
[0, T ];w∗ − L∞(Rd)

)}
.
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Theorem 4.1 (Comparison Principle). Assume that

|b|
1 + |x| ∈ L1

(
[0, T ];L∞(Rd)

)
+ L1

(
[0, T ];L1(Rd)

)
, (4.3)

that D · bt = div btL
d for L1-a.e. t ∈ [0, T ], and that

[div bt]− ∈ L1
loc

(
[0, T )× Rd

)
. (4.4)

Setting bt ≡ 0 for t < 0, assume in addition that any solution of (4.1) in
(−∞, T ) × Rd is renormalized. Then the comparison principle for the conti-
nuity equation holds in the class L.

Proof. By the linearity of the equation, it suffices to show that w ∈ L and
w0 ≤ 0 implies wt ≤ 0 for any t ∈ [0, T ]. We extend first the PDE to negative
times, setting wt = w0. Then, fix a cut-off function ϕ ∈ C∞

c (Rd) with suppϕ ⊂
B2(0) and ϕ ≡ 1 on B1(0), and the renormalization functions

βε(t) :=
√

ε2 + (t+)2 − ε ∈ C1(R).

Notice that

βε(t) ↑ t+ as ε ↓ 0, tβ′
ε(t)− βε(t) ∈ [0, ε]. (4.5)

We know that

d

dt
βε(wt) + Dx · (bβε(wt)) = div bt(βε(wt)− wtβ

′
ε(wt))

in the sense of distributions in (−∞, T )×Rd. Plugging ϕR(·) := ϕ(·/R), with
R ≥ 1, into the PDE we obtain

d

dt

∫
Rd

ϕRβε(wt) dx=
∫

Rd

βε(wt)〈bt,∇ϕR〉 dx+x

∫
Rd

ϕRdiv bt(βε(wt)−wtβ
′
ε(wt)) dx.

Splitting b as b1 + b2, with

b1

1 + |x| ∈ L1
(
[0, T ];L∞(Rd)

)
and

b2

1 + |x| ∈ L1
(
[0, T ];L1(Rd)

)
and using the inequality

1
R

χ{R≤|x|≤2R} ≤ 3
1 + |x|χ{R≤|x|}

we can estimate the first integral in the right hand side with

3‖∇ϕ‖∞‖ b1t

1 + |x| ‖∞
∫
{|x|≥R}

|wt| dx + 3‖∇ϕ‖∞‖wt‖∞
∫
{|x|≥R}

|b1t|
1 + |x| dx.
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The second integral can be estimated with

ε

∫
Rd

ϕR[div bt]− dx,

Passing to the limit first as ε ↓ 0 and then as R → +∞ and using the
integrability assumptions on b and w we get

d

dt

∫
Rd

w+
t dx ≤ 0

in the distribution sense in R. Since the function vanishes for negative times,
this suffices to conclude using Gronwall lemma.

Remark 4.2. It would be nice to have a completely non-linear comparison
principle between renormalized solutions, as in the Kruzkhov theory. Here,
on the other hand, we rather used the fact that the difference of the two
solutions is renormalized.

In any case, Di Perna and Lions proved that all distributional solutions
are renormalized when there is a Sobolev regularity with respect to the spatial
variables.

Theorem 4.2. Let b ∈ L1
loc

(
I;W 1,1

loc (Rd; Rd)
)

and let w ∈ L∞
loc(I × Rd) be a

distributional solution of (4.1). Then w is a renormalized solution.

Proof. We mollify with respect to the spatial variables and we set

rε := (b · ∇w) ∗ ρε − b · (∇(w ∗ ρε)), wε := w ∗ ρε

to obtain
d

dt
wε + b · ∇wε = c ∗ ρε − rε.

By the smoothness of wε w.r.t. x, the PDE above tells us that d
dtw

ε
t ∈ L1

loc,
therefore wε ∈ W 1,1

loc (I × Rd) and we can apply the standard chain rule in
Sobolev spaces, getting

d

dt
β(wε) + b · ∇β(wε) = β′(wε)c ∗ ρε − β′(wε)rε.

When we let ε ↓ 0 the convergence in the distribution sense of all terms in
the identity above is trivial, with the exception of the last one. To ensure its
convergence to zero, it seems necessary to show that rε → 0 strongly in L1

loc

(remember that β′(wε) is locally equibounded w.r.t. ε). This is indeed the
case, and it is exactly here that the Sobolev regularity plays a role.

Proposition 4.1 (Strong convergence of commutators). If w ∈ L∞
loc

(I × Rd) and b ∈ L1
loc

(
I;W 1,1

loc (Rd; Rd)
)

we have

L1
loc- lim

ε↓0
(b · ∇w) ∗ ρε − b · (∇(w ∗ ρε)) = 0.
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Proof. Playing with the definitions of b · ∇w and convolution product of a
distribution and a smooth function, one proves first the identity

rε(t, x) =
∫

Rd

w(t, x− εy)
(bt(x− εy)− bt(x)) · ∇ρ(y)

ε
dy − (wdiv bt) ∗ ρε(x).

(4.6)
Introducing the commutators in the (easier) conservative form

Rε := (Dx · (bw)) ∗ ρε −Dx · (bwε)

(here we set again wε := w ∗ ρε) it suffices to show that Rε = Lε − wεdiv bt,
where

Lε(t, x) :=
∫

Rd

w(t, z)(bt(x)− bt(z)) · ∇ρε(z − x) dz.

Indeed, for any test function ϕ, we have that 〈Rε, ϕ〉 is given by

−
∫

I

∫
wb · ∇ρε ∗ ϕdydt−

∫
I

∫
ϕb · ∇ρε ∗ wdxdt−

∫
I

∫
wεϕdiv btdt

= −
∫

I

∫ ∫
wt(y)bt(y) · ∇ρε(y − x)ϕ(x) dxdydt

−
∫

I

∫ ∫
bt(x)∇ρε(x− y)wt(y)ϕ(x)dydxdt−

∫
I

∫
wεϕdiv bt dxdt

=
∫

I

∫
Lεϕdxdt−

∫
I

∫
wεdiv bt dxdt

(in the last equality we used the fact that ∇ρ is odd).
Then, one uses the strong convergence of translations in Lp and the strong

convergence of the difference quotients (a property that characterizes func-
tions in Sobolev spaces)

u(x + εz)− u(x)
ε

→ ∇u(x)z strongly in L1
loc, for u ∈ W 1,1

loc

to obtain that rε strongly converge in L1
loc(I × Rd) to

−w(t, x)
∫

Rd

〈∇bt(x)y,∇ρ(y)〉 dy − w(t, x)div bt(x).

The elementary identity ∫
Rd

yi
∂ρ

∂yj
dy = −δij

then shows that the limit is 0 (this can also be derived by the fact that, in
any case, the limit of rε in the distribution sense should be 0).
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In this context, given µ̄ = ρLd with ρ ∈ L1 ∩ L∞, the L-Lagrangian flow
starting from µ̄ (at time 0) is defined by the following two properties:

(a) X(·, x) is absolutely continuous in [0, T ] and satisfies

X(t, x) = x +
∫ t

0

bs(X(s, x)) ds ∀t ∈ [0, T ]

for µ̄-a.e. x;
(b) X(t, ·)#µ̄ ≤ CLd for all t ∈ [0, T ], with C independent of t.

Summing up what we obtained so far, the general theory provides us with
the following existence and uniqueness result.

Theorem 4.3 (Existence and Uniqueness of L-Lagrangian Flows).

Let b ∈ L1
(
[0, T ];W 1,1

loc (Rd; Rd)
)

be satisfying

(i)
|b|

1 + |x| ∈ L1
(
[0, T ];L1(Rd)

)
+ L1

(
[0, T ];L∞(Rd)

)
;

(ii) [div bt]− ∈ L1
(
[0, T ];L∞(Rd)

)
.

Then the L-Lagrangian flow relative to b exists and is unique.

Proof. By the previous results, the comparison principle holds for the continu-
ity equation relative to b. Therefore the general theory previously developed
applies, and Theorem 3.3 provides uniqueness of the L-Lagrangian flow.

As for the existence, still the general theory (Theorem 3.5) tells us that
it can be achieved provided we are able to solve, within L, the continuity
equation

d

dt
w + Dx · (bw) = 0 (4.7)

for any nonnegative initial datum w0 ∈ L1 ∩L∞. The existence of these solu-
tions can be immediately achieved by a smoothing argument: we approximate
b in L1

loc by smooth bh with a uniform bound in L1(L∞) for [div bh
t ]−. This

bound, in turn, provides a uniform lower bound on JXh and finally a uniform
upper bound on wh

t = (w0/JXh
t ) ◦ (Xh

t )−1, solving

d

dt
wh + Dx · (bhwh) = 0.

Therefore, any weak limit of wh solves (4.7).

Notice also that, choosing for instance a Gaussian, we obtain that the L-
Lagrangian flow is well defined up to Ld-negligible sets (and independent of
µ̄ � Ld, thanks to Remark 3.2).

It is interesting to compare our characterization of Lagrangian flows with
the one given in [53]. Heuristically, while the Di Perna-Lions one is based
on the semigroup of transformations x �→ X(t, x), our one is based on the
properties of the map x �→ X(·, x).



Transport Equation and Cauchy Problem for Non-Smooth Vector Fields 25

Remark 4.3. The definition of the flow in [53] is based on the following three
properties:

(a)
∂Y

∂t
(t, s, x) = b (t,Y (t, s, x)) and Y (s, s, x) = x in the distribution sense

in (0, T )× Rd;
(b) the image λt of Ld under Y (t, s, ·) satisfies

1
C

Ld ≤ λt ≤ CLd for some constant C > 0;

(c) for all s, s′, t ∈ [0, T ] we have

Y (t, s,Y (s, s′, x)) = Y (t, s′, x) for Ld-a.e. x.

Then, Y (t, s, x) corresponds, in our notation, to the flow Xs(t, x) starting
at time s (well defined even for t < s if one has two-sided L∞ bounds on the
divergence).

In our setting condition (c) can be recovered as a consequence with the
following argument: assume to fix the ideas that s′ ≤ s ≤ T and define

X̃(t, x) :=

{
Xs′

(t, x) if t ∈ [s′, s];

Xs
(
t,Xs′

(s, x)
)

if t ∈ [s, T ].

It is immediate to check that X̃(·, x) is an integral solution of the ODE in
[s′, T ] for Ld-a.e. x and that X̃(t, ·)#µ̄ is bounded by C2Ld. Then, The-
orem 4.3 (with s′ as initial time) gives X̃(·, x) = X(·, s′, x) in [s′, T ] for
Ld-a.e. x, whence (c) follows.

Moreover, the stability Theorem 3.6 can be read in this context as follows.
We state it for simplicity only in the case of equi-bounded vectorfields (see [9]
for more general results).

Theorem 4.4 (Stability). Let bh, b ∈ L1
(
[0, T ];W 1,1

loc (Rd; Rd)
)
, let Xh,

X be the L-Lagrangian flows relative to bh, b, let µ̄ = ρLd ∈ M+(Rd) and
assume that

(i) bh → b in L1
loc

(
(0, T )× Rd

)
;

(ii) |bh| ≤ C for some constant C independent of h;
(iii) [div bh

t ]− is bounded in L1
(
[0, T ];L∞(Rd)

)
.

Then,

lim
h→∞

∫
Rd

max
[0,T ]

|Xh(·, x)−X(·, x)| ∧ ρ(x) dx = 0.

Proof. It is not restrictive, by an approximation argument, to assume that
ρ has a compact support. Under this assumption, (i) and (iii) ensure that
µh

t ≤ MχBR
Ld for some constants M and R independent of h and t. Denoting
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by µt the weak limit of µh
t , choosing Θ(z) = |z|2 in (iii) of Theorem 3.6, we

have to check that

lim
h→∞

∫ T

0

∫
Rd

|bh|2
1 + |x| dµh

t dt =
∫ T

0

∫
Rd

|b|2
1 + |x| dµtdt. (4.8)

Let ε > 0 and let B ⊂ (0, T )× BR be an open set given by Egorov theorem,
such that bh → b uniformly on [0, T ]×BR \B and Ld+1(B) < ε. Let also b̃ε

be such that |b̃ε| ≤ C and b̃ε = b on [0, T ]×BR \B. We write∫ T

0

∫
Rd

|bh|2
1+|x| dµh

t dt− ∫ T

0

∫
Rd

|˜bε|2
1+|x| dµh

t dt =

=
∫
[0,T ]×BR\B

|bh|2−|˜bε|2
1+|x| dµh

t dt +
∫

B
|bh|2−|˜b|2

1+|x| dµh
t dt,

so that

lim sup
h→∞

∣∣∣∣∣
∫ T

0

∫
Rd

|bh|2
1 + |x| dµh

t dt−
∫ T

0

∫
Rd

|b̃ε|2
1 + |x| dµtdt

∣∣∣∣∣ ≤ 2C2Mε.

As ε is arbitrary and

lim
ε→0

∫ T

0

∫
Rd

|b̃ε|2
1 + |x| dµtdt =

∫ T

0

∫
Rd

|b|2
1 + |x| dµtdt

this proves that (4.8) is fulfilled.

Finally, we conclude this section with the illustration of some recent results
[64], [13], [14] that seem to be more specific of the Sobolev case, concerned with
the “differentiability” w.r.t. to x of the flow X(t, x). These results provide a
sort of bridge with the standard Cauchy-Lipschitz calculus:

Theorem 4.5. There exist Borel maps Lt : Rd → Md×d satisfying

lim
h→0

X(t, x + h)−X(t, x)− Lt(x)h
|h| = 0 locally in measure

for any t ∈ [0, T ]. If, in addition, we assume that∫ T

0

∫
BR

|∇bt| ln(2 + |∇bt|) dxdt < +∞ ∀R > 0

then the flow has the following “local” Lipschitz property: for any ε > 0 there
exists a Borel set A with µ̄(Rd \ A) < ε such that X(t, ·)|A is Lipschitz for
any t ∈ [0, T ].

According to this result, L can be thought as a (very) weak derivative of
the flow X. It is still not clear whether the local Lipschitz property holds in
the W 1,1

loc case, or in the BVloc case discussed in the next section.
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5 Vector Fields with a BV Spatial Regularity

In this section we prove the renormalization Theorem 4.2 under the weaker
assumption of a BV dependence w.r.t. the spatial variables, but still assuming
that

D · bt � Ld for L1-a.e. t ∈ (0, T ). (5.1)

Theorem 5.1. Let b ∈ L1
loc

(
(0, T );BVloc(Rd; Rd)

)
be satisfying (5.1). Then

any distributional solution w ∈ L∞
loc

(
(0, T )× Rd

)
of

d

dt
w + Dx · (bw) = c ∈ L1

loc

(
(0, T )× Rd

)
is a renormalized solution.

We try to give reasonably detailed proof of this result, referring to the
original paper [7] for minor details. Before doing that we set up some nota-
tion, denoting by Dbt = Dabt + Dsbt = ∇btL

d + Dsbt the Radon–Nikodym
decomposition of Dbt in absolutely continuous and singular part w.r.t. Ld.
We also introduce the measures |Db| and |Dsb| by integration w.r.t. the time
variable, i.e. ∫

ϕ(t, x) d|Db| :=
∫ T

0

∫
Rd

ϕ(t, x) d|Dbt| dt,

∫
ϕ(t, x) d|Dsb| :=

∫ T

0

∫
Rd

ϕ(t, x) d|Dsbt| dt.

We shall also assume, by the locality of the arguments involved, that ‖w‖∞ ≤ 1.
We are going to find two estimates on the commutators, quite sensitive to

the choice of the convolution kernel, and then combine them in a (pointwise)
kernel optimization argument.
Step 1 (Anisotropic Estimate). Let us start from the expression

rε(t, x) =
∫

Rd

w(t, x− εy)
(bt(x− εy)− bt(x)) · ∇ρ(y)

ε
dy − (wdiv bt) ∗ ρε(x)

(5.2)

of the commutators (b · ∇w) ∗ ρε − b · (∇(w ∗ ρε)): since bt /∈W 1,1 we cannot
use anymore the strong convergence of the difference quotients. However, for
any function u ∈ BVloc and any z ∈ Rd with |z| < ε we have a classical L1

estimate on the difference quotients∫
K

|u(x + z)− u(x)| dx ≤ |Dzu|(Kε) for any K ⊂ Rd compact,

where Du = (D1u, . . . , Ddu) stands for the distributional derivative of u,
Dzu = 〈Du, z〉 =

∑
i ziDiu denotes the component along z of Du and Kε is
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the open ε-neighbourhood of K. Its proof follows from an elementary smooth-
ing and lower semicontinuity argument.

We notice that, setting Dbt = Mt|Dbt|, we have

Dz〈bt,∇ρ(z)〉 = 〈Mt(·)z,∇ρ(z)〉|Db| ∀z ∈ Rd

and therefore the L1 estimate on difference quotients gives the anisotropic
estimate

lim sup
ε↓0

∫
K

|rε| dx ≤
∫

K

∫
Rd

|〈Mt(x)z,∇ρ(z)〉| dzd|Db|(t, x) + d|Dab|(K)

(5.3)
for any compact set K ⊂ (0, T )× Rd.
Step 2 (Isotropic Estimate). On the other hand, a different estimate of
the commutators that reduces to the standard one when b(t, ·) ∈ W 1,1

loc can
be achieved as follows. Let us start from the case d = 1: if µ is a Rm-valued
measure in R with locally finite variation, then by Jensen’s inequality the
functions

µ̂ε(t) :=
µ([t, t + ε])

ε
= µ ∗ χ[−ε,0]

ε
(t), t ∈ R

satisfy ∫
K

|µ̂ε| dt ≤ |µ|(Kε) for any compact set K ⊂ R, (5.4)

where Kε is again the open ε neighbourhood of K. A density argument based
on (5.4) then shows that µ̂ε converge in L1

loc(R) to the density of µ with
respect to L1 whenever µ � L1. If u ∈ BVloc and ε > 0 we know that

u(x + ε)− u(x)
ε

=
Du([x, x + ε])

ε
=

Dau([x, x + ε])
ε

+
Dsu([x, x + ε])

ε

for L1-a.e. x (the exceptional set possibly depends on ε). In this way we have
canonically split the difference quotient of u as the sum of two functions, one
strongly converging to ∇u in L1

loc, and the other one having an L1 norm on
any compact set K asymptotically smaller than |Dsu|(K).

If we fix the direction z of the difference quotient, the slicing theory of BV
functions gives that this decomposition can be carried on also in d dimensions,
showing that the difference quotients

bt(x + εz)− bt(x)
ε

can be canonically split into two parts, the first one strongly converging in
L1

loc(R
d) to ∇bt(x)z, and the second one having an L1 norm on K asymptot-

ically smaller than |〈Dsbt, z〉|(K). Then, repeating the DiPerna–Lions argu-
ment and taking into account the error induced by the presence of the second
part of the difference quotients, we get the isotropic estimate
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lim sup
ε↓0

∫
K

|rε| dx ≤
(∫

K

∫
Rd

|z||∇ρ(z)| dz

)
d|Dsb|(t, x) (5.5)

for any compact set K ⊂ (0, T )× Rd.
Step 3 (Reduction to a Pointwise Optimization Problem). Roughly
speaking, the isotropic estimate is useful in the regions where the absolutely
continuous part is the dominant one, so that |Dsb|(K) << |Dab|(K), while the
anisotropic one turns out to be useful in the regions where the dominant part
is the singular one, i.e. |Dab|(K) << |Dsb|(K). Since the two measures are
mutually singular, for a typical small ball K only one of these two situations
occurs. Let us see how the two estimates can be combined: coming back to
the smoothing scheme, we have

d

dt
β(wε) + b · ∇β(wε)− β′(wε)c ∗ ρε = β′(wε)rε. (5.6)

Let L be the supremum of |β′| on [−1, 1]. Then, since K is an arbitrary
compact set, (5.5) tells us that any limit measure ν of |β′(wε)rε|Ld as ε ↓ 0
satisfies

ν ≤ LI(ρ)|Dsb| with I(ρ) :=
∫

Rd

|z||∇ρ(z)| dz.

and, in particular, is singular with respect to Ld. On the other hand, the
estimate (5.3) tells also us that

ν ≤ L

∫
Rd

|〈M·(·)z,∇ρ(z)〉| dz|Db|+ d|Dab|(K).

The second estimate and the singularity of ν with respect to Ld give

ν ≤ L

∫
Rd

|〈M·(·)z,∇ρ(z)〉| dz|Dsb|. (5.7)

Notice that in this way we got rid of the potentially dangerous term I(ρ): in
fact, we are going to choose very anisotropic kernels ρ on which I(ρ) can be
arbitrarily large. The measure ν can of course depend on the choice of ρ, but
(5.6) tells us that the “defect” measure

σ :=
d

dt
β(wt) + b · ∇β(wt)− ctβ

′(wt),

clearly independent of ρ, satisfies |σ| ≤ ν. Eventually we obtain

|σ| ≤ LΛ(M·(·), ρ)|Dsb| with Λ(N, ρ) :=
∫

Rd

|〈Nz,∇ρ(z)〉| dz. (5.8)

For (x, t) fixed, we are thus led to the minimum problem

G(N) := inf
{

Λ(N, ρ) : ρ ∈ C∞
c (B1), ρ ≥ 0,

∫
Rd

ρ = 1
}

(5.9)
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with N = Mt(x). Indeed, notice that (5.8) gives

|σ| ≤ L inf
ρ∈D

Λ(M·(·), ρ)|Dsb|

for any countable set D of kernels ρ, and the continuity of ρ �→ Λ(N, ρ) w.r.t.
the W 1,1(B1) norm and the separability of W 1,1(B1) give

|σ| ≤ LG(M·(·))|Dsb|. (5.10)

Notice now that the assumption that D · bt � Ld for L1-a.e. t ∈ (0, T ) gives

trace Mt(x)|Dsbt| = 0 for L1-a.e. t ∈ (0, T ).

Hence, recalling the definition of |Dsb|, the trace of Mt(x) vanishes for |Dsb|-
a.e. (t, x). Applying the following lemma, a courtesy of Alberti, and using
(5.10) we obtain that σ = 0, thus concluding the proof.

Lemma 5.1 (Alberti). For any d × d matrix N the infimum in (5.9) is
|trace N |.
Proof. We have to build kernels ρ in such a way that the field Nz is as much
tangential as possible to the level sets of ρ. Notice first that the lower bound
follows immediately by the identity∫

Rd

〈Nz,∇ρ(z)〉 dz =
∫

Rd

−ρ(z)div Nz + div (ρ(z)Nz) dz = −trace N.

Hence, we have to show only the upper bound. Again, by the identity

〈Nz,∇ρ(z)〉 = div (Nzρ(z))− trace Nρ(z)

it suffices to show that for any T > 0 there exists ρ such that∫
Rd

|div (Nzρ(z))| dz ≤ 2
T

. (5.11)

The heuristic idea is (again...) to build ρ as the superposition of elementary
probability measures associated to the curves etNx, 0 ≤ t ≤ T , on which
the divergence operator can be easily estimated. Given a smooth convolution
kernel θ with compact support, it turns out that the function

ρ(z) :=
1
T

∫ T

0

θ(e−tNz)e−t trace N dt (5.12)

has the required properties (here etNx =
∑

i tiN ix/i! is the solution of the
ODE γ̇ = Nγ with the initial condition γ(0) = x). Indeed, it is immediate to
check that ρ is smooth and compactly supported. To estimate the divergence
of Nzρ(z), we notice that ρ =

∫
θ(x)µx dx, where µx are the probability
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1-dimensional measures concentrated on the image of the curves t �→ etNx
defined by

µx := (e·Nx)#(
1
T

L1 [0, T ]).

Indeed, for any ϕ ∈ C∞
c (Rd) we have∫

Rd

θ(x)〈µx, ϕ〉 dx =
1
T

∫ T

0

∫
Rd

θ(x)ϕ(etNx) dxdt

=
1
T

∫ T

0

∫
Rd

θ(e−tNy)e−t traceN ϕ(y) dydt

=
∫

Rd

ρ(y)ϕ(y) dy.

By the linearity of the divergence operator, it suffices to check that

|Dz · (Nzµx)|(Rd) ≤ 2
T

∀x ∈ Rd.

But this is elementary, since∫
Rd

〈Nz,∇ϕ(z)〉 dµx(z) =
1
T

∫ T

0

〈NetNx,∇ϕ(etNx)〉 dt =
ϕ(eTNx)− ϕ(x)

T

for any ϕ ∈ C∞
c (Rd), so that TDz · (Nzµx) = δx − δeT N x.

The original argument in [7] was slightly different and used, instead of
Lemma 5.1, a much deeper result, still due to Alberti, saying that for a BVloc

function u : Rd → Rm the matrix M(x) in the polar decomposition Du =
M |Du| has rank 1 for |Dsu|-a.e. x, i.e. there exist unit vectors ξ(x) ∈ Rd and
η(x) ∈ Rm such that M(x)z = η(x)〈z, ξ(x)〉. In this case the asymptotically
optimal kernels are much easier to build, by mollifying in the ξ direction much
faster than in all other ones. This is precisely what Bouchut and Lions did in
some particular cases (respectively “Hamiltonian” vector fields and piecewise
Sobolev ones).

As in the Sobolev case we can now obtain from the general theory given in
Section 3 existence and uniqueness of L-Lagrangian flows, with L = L∞(L1)∩
L∞(L∞): we just replace in the statement of Theorem 4.3 the assumption
b ∈ L1

(
[0, T ];W 1,1

loc (Rd; Rd)
)

with b ∈ L1
(
[0, T ];BVloc(Rd; Rd)

)
, assuming as

usual that D · bt � Ld for L1-a.e. t ∈ [0, T ].
Analogously, with the same replacements in Theorem 4.4 (for b and bh)

we obtain stability of L-Lagrangian flows.

6 Applications

6.1. A System of Conservation Laws. Let us consider the Cauchy problem
(studied in one space dimension by Keyfitz–Kranzer in [63])
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d

dt
u +

d∑
i=1

∂

∂xi
(f i(|u|)u) = 0, u : Rd × (0,+∞) → Rk (6.1)

with the initial condition u(·, 0) = ū. Here f : R → Rd is a C1 function.
In a recent paper [32] Bressan showed that the problem can be ill-posed for

L∞ initial data and he conjectured that it could be well posed for BV initial
data, suggesting to extend to this case the classical method of characteristics.
In [8] we proved that this procedure can really be implemented, thanks to the
results in [7], for initial data ū such that ρ̄ := |ū| ∈ BV ∩L∞, with 1/|ū| ∈ L∞.
Later on, in a joint work with Bouchut and De Lellis [10], we proved that the
lower bound on ρ̄ is not necessary and, moreover, we proved that the solution
built in [8] is unique in a suitable class of admissible functions: those whose
modulus ρ satisfies the scalar PDE

d

dt
ρ +

d∑
i=1

∂

∂xi
(f i(ρ)ρ) = 0 (6.2)

in the Kruzhkov sense (i.e. η(ρ)t + Dx · (q(ρ)) ≤ 0 for any convex entropy-
entropy flux pair (η, q), here (sf)′(s)η′(s) = q′(s)), with the initial condition
ρ(0, ·) = ρ̄.

Notice that the regularity theory for this class of solutions gives that ρ ∈
L∞ ∩ BVloc

(
[0,+∞)× Rd

)
, due to the BV regularity and the boundedness

of |ū|. Furthermore the maximum principle gives 0 < 1/ρ ≤ 1/|ū| ∈ L∞.
In order to obtain the (or, better, a) solution u we can formally decouple

the system, writing

u = θρ, ū = θ̄ρ̄, |θ| = |θ̄| = 1,

thus reducing the problem to the system (decoupled, if one neglects the con-
straint |θ| = 1) of transport equations

θt +
d∑

i=1

∂

∂xi
(f i(ρ)θ) = 0 (6.3)

with the initial condition θ(0, ·) = θ̄.
A formal solution of the system, satisfying also the constraint |θ| = 1, is

given by
θ(t, x) := θ̄

(
[X(t, ·)]−1(x)

)
,

where X(t, ·) is the flow associated to f(ρ). Notice that the non-autonomous
vector field f(ρ) is bounded and of class BVloc, but the theory illustrated
in these lectures is not immediately applicable because its divergence is not
absolutely continuous with respect to Ld+1. In this case, however, a simple
argument still allows the use of the theory, representing f(ρ) as a part of the
autonomous vector field b := (ρ, ρf(ρ)) in R+ × Rd. This new vector field is
still BVloc and bounded, and it is divergence-free due to (6.2).
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At this point, it is not hard to see that the reparameterization of the flow
(t(s),x(s)) associated to b(

ṫ(s), ẋ(s)
)

= (ρ(t(s),x(s)),f(ρ(t(s),x(s)))ρ(t(s),x(s)))

defined by x̃(t) = x(t(s)−1(t)) (and here we use the assumption ρ > 0) defines
a flow for the vector field f(ρ) we were originally interested to.

In this way we get a kind of formal, or pointwise, solution of the system
(6.2), that could indeed be very far from being a distributional solution.

But here comes into play the stability theorem, showing that all formal
computations above can be justified just assuming first (ρ,f(ρ)) smooth, and
then by approximation (see [8] for details).
6.2. Lagrangian Solutions of Semi-Geostrophic Equations. The semi-
geostrophic equations are a simplifies model of the atmosphere/ocean flows
[45], described by the system of transport equations

(SGE)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d

dt
∂2p + u · ∇∂2p = −u2 + ∂1p

d

dt
∂1p + u · ∇∂1p = −u1 − ∂2p

d

dt
∂3p + u · ∇∂3p = 0.

Here u, the velocity, is a divergence-free field, p is the pressure and ρ :=
−∂3p represents the density of the fluid. We consider the problem in [0, T ]×Ω,
with Ω bounded and convex. Initial conditions are given on the pressure and
a no-flux condition through ∂Ω is imposed for all times.

Introducing the modified pressure Pt(x) := pt(x)+(x2
1 +x2

2)/2, (SGE) can
be written in a more compact form as

d

dt
∇P + u · ∇2P = J(∇P − x) with J :=

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠ . (6.4)

Existence (and uniqueness) of solutions are still open for this problem.
In [20] and [46], existence results have been obtained in the so-called dual
coordinates, where we replace the physical variable x by X = ∇Pt(x). Under
this change of variables, and assuming Pt to be convex, the system becomes

d

dt
αt + Dx · (U tαt) = 0 with U t(X) := J (X −∇P ∗

t (X)) (6.5)

with αt := (∇Pt)#(LΩ) (here we denote by LΩ the restriction of Ld to Ω).
Indeed, for any test function ϕ we can use the fact that u is divergence-free
to obtain:
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d

dt

∫
Rd

ϕdαt =
∫

Rd

∇ϕ(∇Pt) · d

dt
∇Pt dx

=
∫

Rd

∇ϕ(∇Pt) · J(∇Pt − x) dx +
∫

Rd

∇ϕ(∇Pt)∇2Pt · u dx

=
∫

Rd

∇ϕ · J(X −∇P ∗
t ) dαt +

∫
Rd

∇(ϕ ◦ ∇Pt) · u dx

=
∫

Rd

∇ϕ ·U t dαt.

Existence of a solution to (6.5) can be obtained by a suitable time dis-
cretization scheme. Now the question is: can we go back to the original phys-
ical variables ? An important step forward has been achieved by Cullen and
Feldman in [47], with the concept of Lagrangian solution of (SGE).

Taking into account that the vector field U t(X) = J(X − ∇P ∗
t (X)) is

BV , bounded and divergence-free, there is a well defined, stable and measure
preserving flow X(t,X) = Xt(X) relative to U . This flow can be carried back
to the physical space with the transformation

Ft(x) := ∇P ∗
t ◦Xt ◦ ∇P0(x),

thus defining maps Ft preserving Ld
Ω .

Using the stability theorem can also show that Zt(x) := ∇Pt(Ft(x)) solve,
in the distributions sense, the Lagrangian form of (6.4), i.e.

d

dt
Zt(x) = J(Zt − Ft) (6.6)

This provides us with a sort of weak solution of (6.4), and it is still an
open problem how the Eulerian form could be recovered (see Section 7).

7 Open Problems, Bibliographical Notes, and References

Section 2. The material contained in this section is classical. Good references
are [56], Chapter 8 of [12], [29] and [53]. For the proof of the area formula, see
for instance [1], [55], [60].

The proof of the second local variant, under the stronger assumption∫ T

0

∫
Rd |bt| dµtdt < +∞, is given in Proposition 8.1.8 of [12]. The same proof

works under the weaker assumption (2.5).
Section 3. Many ideas of this section, and in particular the idea of looking

at measures in the space of continuous maps to characterize the flow and prove
its stability, are borrowed from [7], dealing with BV vector fields. Later on,
the arguments have been put in a more general form, independent of the
specific class of vector fields under consideration, in [9]. Here we present a
more refined version of [9].
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The idea of a probabilistic representation is of course classical, and ap-
pears in many contexts (particularly for equations of diffusion type); to my
knowledge the first reference in the context of conservation laws and fluid
mechanics is [24], where a similar approach is proposed for the incompressible
Euler equation (see also [25], [26], [27]): in this case the compact (but nei-
ther metrizable, nor separable) space X [0,T ], with X ⊂ Rd compact, has been
considered.

This approach is by now a familiar one also in optimal transport theory,
where transport maps and transference plans can be thought in a natural
way as measures in the space of minimizing geodesics [76], and in the so
called irrigation problems, a nice variant of the optimal transport problem
[22]. See also [18] for a similar approach within Mather’s theory. The Lecture
Notes [84] (see also the Appendix of [69]) contain, among several other things,
a comprehensive treatment of the topic of measures in the space of action-
minimizing curves, including at the same time the optimal transport and the
dynamical systems case (this unified treatment was inspired by [21]). Another
related reference is [50].

The superposition principle is proved, under the weaker assumption∫ T

0

∫
Rd |bt|p dµtdt < +∞ for some p > 1, in Theorem 8.2.1 of [12], see also [70]

for the extension to the case p = 1 and to the non-homogeneous continuity
equation. Very closely related results, relative to the representation of a vector
field as the superposition of “elementary” vector fields associated to curves,
appear in [77], [18].

In [16] an interesting variant of the stability Theorems 3.6 and 4.4 is dis-
cussed, peculiar of the case when the limit vector field b is a sufficiently regular
gradient. In this case it has been proved in [16] that narrow convergence of
µh

t to µt for all t ∈ [0, T ] and the energy estimate

lim sup
h→∞

∫ T

0

∫
Rd

|bh
t |2 dµh

t dt ≤
∫ T

0

∫
Rd

|bt|2 dµtdt < +∞

are sufficient to obtain the stability property. This is due to the fact that, given
µt, gradient vector fields minimize

∫ T

0

∫ |ct|2 dµt among all velocity fields ct

for which the continuity equation d
dtµt + Dx · (ctµt) = 0 holds (see Chapter 8

of [12] for a general proof of this fact, and for references to earlier works of
Otto, Benamou-Brenier).

The convergence result in [16] can be used to answer positively a question
raised in [59], concerning the convergence of the implicit Euler scheme

uk+1 ∈ Argmin
[

1
2h

∫
Ω

|u− uk|2 +
∫

Ω

F (∇u) dx

]
(here Ω, Ω′ are bounded open in Rd and u : Ω → Ω′) in the case when F (∇u)
depends only, in a convex way, only on the determinant of ∇u. It turns out
that, representing as in [59] uk as the composition of k optimal transport
maps, u[t/h] converge as h ↓ 0 to the solution ut of
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d

dt
ut = div (∇F (∇ut)) ,

built in [59] by purely differential methods (coupling a nonlinear diffusion
equation for the measures βt := (ut)#(LΩ) in Ω′ to a transport equation for
u−1

t ). Existence of solutions (via differential or variational methods) for wider
classes of energy densities F is a largely open problem.

Section 4. The definition of renormalized solution and the strong conver-
gence of commutators are entirely borrowed from [53]. See also [54] for the rel-
evance of this concept in connection with the existence theory for Boltzmann
equation. The proof of the comparison principle assuming only an L1(L1

loc)
bound (instead of an L1(L∞) one, as in [53], [7]) on the divergence was sug-
gested to me by G.Savaré. The differentiability properties of the flow have
been found in [64]: later on, this differentiability property has been character-
ized and compared with the more classical approximate differentiability [60]
in [14], while [13] contains the proof of the stronger “local” Lipschitz proper-
ties. Theorem 4.5 summarizes all these results. The paper [44] contains also
more explicit Lipschitz estimates and an independent proof of the compact-
ness of flows. See also [37] for a proof, using radial convolution kernels, of the
renormalization property for vector fields satisfying Dib

j + Djb
i ∈ L1

loc.
Both methods, the one illustrated in these notes and the DiPerna–Lions

one, are based on abstract compactness arguments and do not provide a rate
of convergence in the stability theorem. It would be interesting to find an
explicit rate of convergence (in mean with respect to x) of the trajectories.
This problem is open even for autonomous, bounded and Sobolev (but not
Lipschitz) vector fields.

No general existence result for Sobolev (or even BV ) vector fields seems to
be known in the infinite-dimensional case: the only reference we are aware of
is [23]. Also the investigation of non-Euclidean geometries, e.g. Carnot groups
and horizontal vector fields, could provide interesting results.

Finally, notice that the theory has a natural invariance, namely if X is a
flow relative to b, then X is a flow relative to b̃ whenever {b̃ �= b} is L1+d-
negligible in (0, T )×Rd. So a natural question is whether the uniqueness “in
the selection sense” might be enforced by choosing a canonical representative b̃
in the equivalence class of b: in other words we may think that, for a suitable
choice of b̃, the ODE γ̇(t) = b̃t(γ(t)) has a unique absolutely continuous
solution starting from x for Ld-a.e. x.
Section 5. Here we followed closely [7]. The main idea of this section, i.e. the
adaptation of the convolution kernel to the local behaviour of the vector field,
has been used at various level of generality in [30], [66], [41] (see also [38], [39]
for related results independent of this technique), until the general result [7].

The optimal regularity condition on b ensuring the renormalization prop-
erty, and therefore the validity of the comparison principle in Lb, is still not
known. New results, both in the Sobolev and in the BV framework, are pre-
sented in [11], [64], [65].
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In [15] we investigate in particular the possibility to prove the renormaliza-
tion property for nearly incompressible BVloc∩L∞ fields b: they are defined by
the property that there exists a positive function ρ, with ln ρ ∈ L∞, such that
the space-time field (ρ, ρb) is divergence free. As in the case of the Keyfitz-
Kranzer system, the existence a function ρ with this property seems to be a
natural replacement of the condition Dx · b ∈ L∞ (and is actually implied by
it); as explained in [10], a proof of the renormalization property in this context
would lead to a proof of a conjecture, due to Bressan, on the compactness of
flows associated to a sequence of vector fields bounded in BVt,x.
Section 6. In connection with the Keyfitz–Kranzer system there are sev-
eral open questions: in particular one would like to obtain uniqueness (and
stability) of the solution in more general classes of admissible functions (par-
tial results in this direction are given in [10]). A strictly related problem is
the convergence of the vanishing viscosity method to the solution built in
[8]. Also, very little about the regularity of solutions is presently known: we
know [49] that BV estimates do not hold and, besides, that the contruction
in [8] seems not applicable to more general systems of triangular type, see the
counterexample in [43].

In connection with the semi-geostrophic problem, the main problem is the
existence of solutions in the physical variables, i.e. in the Eulerian form. A
formal argument suggests that, given Pt, the velocity u should be defined by

∂t∇P ∗
t (∇Pt(x)) +∇2P ∗

t (∇Pt(x))J
(∇Pt(x)− x

)
.

On the other hand, the a-priori regularity on ∇Pt (ensured by the convexity
of Pt) is a BV regularity, and it is still not clear how this formula could
be rigorously justified. In this connection, an important intermediate step
could be the proof of the W 1,1 regularity of the maps ∇Pt (see also [33], [34],
[35], [36], [80], [81] for the regularity theory of optimal transport maps under
regularity assumptions on the initial and final densities).
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1 Introduction

When we look at a differential equation in a very irregular media (composite
material, mixed solutions, etc.) from very close, we may see a very compli-
cated problem. However, if we look from far away we may not see the details
and the problem may look simpler. The study of this effect in partial differen-
tial equations is known as homogenization. The effect of the inhomogeneities
oscillating at small scales is often not a simple average and may be hard to
predict: a geodesic in an irregular medium will try to avoid the bad areas, the
roughness of a surface may affect in nontrivial way the shapes of drops laying
on it, etc. . .

The purpose of these notes is to discuss three problems in homogenization
and their interplay.

In the first problem, we consider the homogenization of a free boundary
problem. We study the shape of a drop lying on a rough surface. We discuss
in what case the homogenization limit converges to a perfectly round drop. It
is taken mostly from the joint work with Antoine Mellet [5].

The second problem concerns the construction of plane like solutions to the
minimal surface equation in periodic media. This is related to homogenization
of minimal surfaces. The details can be found in the joint paper with Rafael
de la Llave [2].

The third problem concerns existence of homogenization limits for solu-
tions to fully nonlinear equations in ergodic random media. It is mainly based
on the joint paper with Panagiotis Souganidis and Lihe Wang [7].

We will try to point out the main techniques and the common aspects.
The focus has been set to the basic ideas. The main purpose is to make this
advanced topics as readable as possible. In every case, the original papers are
referenced.
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2 Homogenization of a Free Boundary Problem:
Capillary Drops

The shape of a drop lying on a surface tries to minimize its energy for a given
volume. The energy has a term proportional to the capillary area A between
the water and the air, another term related to the contact area W between the
drop and the surface, and a third term related to the gravitational potential
energy.

Energy = σA− σβW + Γ Gravitational Energy

For the time being, we will neglect the effect of gravity (Γ = 0) and
consider σ = 1.

Drop
Area: A

wet surface: W

Volume: V The shape minimizes
Energy := A − βW + Grav.
for given volume V

Fig. 1. A drop lying on a plane surface

The surface of the drop that is not in contact with the floor will have a
constant mean curvature. We can see this perturbing its shape in a way that
we preserve volume. If we add a bit of volume around a point and we subtract
the same amount around another point, we obtain another admissible shape
and so the corresponding area must increase. This implies that the mean
curvature at both points must coincide.

�
�
�
�
�
�
�
�

a volume preserving perturbation

Fig. 2. Suitable perturbations show that the free surface has a constant mean
curvature

The parameter β is a real number between −1 and 1 that depends on
the surface and is the relative adhesion coefficient between the fluid and the
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surface. Its effect on the shape of the drop is to prescribe the contact angle at
the free boundary: cos γ = β.

γ
cos γ = β

Fig. 3. The contact angle depends on β

A value β > 0 will cause the shape of the drop to expand trying to span a
larger wet surface. When β < 0 (hydrophobic surface) on the other hand, the
wet surface will tend to shrink. In the limit case β = 1 the wet surface would
try to cover the whole plane, whereas for β = −1, the optimal shape would
be a sphere that does not touch the floor at all.

β > 0 β = 0 β < 0

Fig. 4. Different shapes depending on the value of β

Under these conditions, it can be shown that there is a minimizer for the
energy, and the shape of the corresponding drop is given by a sphere cap. The
case we are interested however is when the drop rests on an irregular surface.
Namely, we will consider a variable β(x), oscillating fast and bounded so that
|β(x)| ≤ λ < 1. To capture the effect of a very oscillating adhesion coefficient,
we fix a periodic function β and consider β(x/ε) for a small ε. The energy is
then given by

Jε = A−
∫

wet surface

β
(x

ε

)
dx (1)

Our purpose is to study the existence and regularity for a given ε > 0 of
a shape that minimizes the energy. And we want to understand the way it
behaves as ε → 0. We will see that the absolute minimizers of Jε converge
uniformly to a spherical cap that corresponds to the minimizer of

J0 = A− 〈β〉W
where 〈β〉 =

∫
� β dx is the average of β.
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However, the same conclusion cannot be taken for other critical points of
Jε. In general, the shapes of drops will not achieve an absolute minimizer.
Any local minimum of Jε would be a stable shape for a drop. The limits of
these other solutions behave in a way that is harder to predict and many
interesting phenomena can be observed. The most spectacular effect is the
hysteresis: the contact angle depends on how the drop was formed. If the
drop was formed by advancing the liquid, the final contact angle is greater
than 〈β〉. If the equilibrium was achieved by receding the liquid (like in a
process of evaporation), the angle obtained is less than 〈β〉.

The existence of a minimizer for each ε can be done in a very classical way
in the framework of sets of finite perimeter. We will study some regularity
properties of the minimizers. First we will show that the surface of the drop
separates volume in a more or less balanced way. Secondly, we will see that
the boundary of the contact set has a finite n − 1 Hausdorff measure. Then
we will use those estimates together with a stability result to show that the
minimizers of Jε converge to spherical caps as ε → 0. To conclude this part,
we will discuss the phenomena of Hysteresis.

2.1 Existence of a Minimizer

In order to prove existence, we have to work in the framework of boundaries
of sets of finite perimeter.

Roughly, a set of finite perimeter Ω is the limit of polyhedra, Ωk, of finite
area, i.e.

|Ω∆Ωk| → 0

and Area(∂Ωk) ≤ C for all k.
Sets of finite perimeter are defined up to sets of measure zero. We normalize

E so that

0 <
∣∣Ē ∩Br(x)

∣∣ < |Br(x)| for all x ∈ E and r > 0

There is a well established theory for such sets. The classical reference is
[13].

We will consider a set E ⊂ Rn × [0,+∞) that represents the shape of the
drop. We denote (x, z) an arbitrary point with x ∈ Rn and z ∈ [0,+∞). Our
energy functional reads

Jε(E) = Area(∂E ∩ {z > 0})−
∫

z=0

β
(x

ε

)
χE dx (2)

(In the following, we will omit the ε in Jε unless it is necessary to stress it
out).

The theory of finite perimeter set provides the necessary compactness re-
sults to show existence of a minimizer, as long as we restrict E to be a subset
of a bounded set ΓRT := {|x| < R, z < T}. Of course, we must take R and
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T large enough so that we can fit at least one set E of volume V inside. To
obtain an unrestricted minimizer of (2), we must prove that for R and T
large enough, there is one corresponding minimizer ERT that does not touch
the boundary of ΓRT . Since β is periodic, it is enough to show that ERT re-
mains bounded independently of R and T . If the diameter of ERT is less than
R/2, we can translate it an integer multiple of ε inside of ΓRT to obtain an
unrestricted minimizer. The detailed proof can be found in [5]

2.2 Positive Density Lemmas

The first regularity results we obtain for minimizers are related to the nonde-
generate way the surface of the drop separates volume. All the proofs of these
lemmas follow the same idea. An ordinary differential equation is constructed
that exploits the nonlinearity of the isoperimetric inequality.

But before, we will make a few simple observations. Let E be a minimizer
for a volume V0, and let A be its free perimeter (A = Area(∂E ∩ {z > 0})).
Above every point on the wet surface E ∩ {z = 0}, there must be a point in
the free surface: ∂E. Then

A ≥
∫

z=0

χE dx ≥ 1
λ

∣∣∣∣∫
z=0

β
(x

ε

)
dx

∣∣∣∣
And therefore

(1− λ)A ≤ J(E)

From the isoperimetric inequality we have A ≥ wn+1V
n

n+1
0 . Since a sphere

B with volume V0 that does not touch the floor {z = 0} is an admissible set,
we also have:

(1− λ)A ≤ J(E) ≤ J(B) = wn+1V
n

n+1
0

And thus we have both estimates:

c0V
n

n+1
0 ≤ A ≤ C1V

n
n+1

0

Now we want to compare the minimum energy for two different volumes.

min
volume=V0

J ≤ min
volume=V0+δ

J ≤ min
volume=V0

J + C1V
− 1

n+1
0 δ (3)

The first inequality can be obtained simply taking the minimizer for
volume = V0 + δ and chopping a piece at the top of volume δ. Thus we
obtain an admissible set of volume V0 for which the energy J decreased.

For the second inequality, we consider the set E with volume V0 that
minimizes J and take a vertical dilation Et = {(x, t) : (x, (1 + t)−1z) ∈ E}.
Then for t = δ/V0, Et is an admissible set of volume V0 + δ. The contact
surface did not change, so its only difference in the energy is given by the free
surface. Let A be the free perimeter of E, then the perimeter of Et is less than
(1 + t)A, so their respective energies differ at most by tA. Then
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min
volume=V0+δ

J − min
volume=V0

J ≤ tA

≤ δ

V0
c1V

n
n+1

0

≤ c1V
− 1

n+1
0 δ

The first lemma we want to prove is actually a classical result in minimal
surfaces adapted to this case. We will come back to this lemma again when
we study plane like minimal surfaces in periodic media in the second part of
these notes.

Before starting with the lemmas it is worth to point out an elementary
fact of calculus that will come handy. If we have a nonnegative function u such
that u′ ≥ cu

n+1
n then u is a nondecreasing function that can stay equal to zero

for any amount of time. But if t0 = sup{t : u(t) = 0}, then u(t) ≥ c(t − t0)n

for any t > t0.

Lemma 2.1. Let (x0, z0) ∈ ∂E with z0 > 0. There exists a universal constant
c such that for all r < z0 we have

|Br(x0, z0) ∩ E| ≥ crn+1

|Br(x0, z0) \ E| ≥ crn+1

Proof. We define

U1(r) = |Br(x0, z0) \ E| S1(r) = Area(∂Br(x0, z0) \ E)

U2(r) = |Br(x0, z0) ∩ E| S2(r) = Area(∂Br(x0, z0) ∩ E)

A(r) = Area(Br ∩ ∂E)

U1

U2

S2

S1

A

By estimating J(E ∪ Br) and J(E \ Br) and using (3), we can compare
S1 and S2 to A.

J(E ∪Br) ≥ min
volume=V0+U1

J ≥ J(E)

J(E) + S1 −A ≥ J(E)

S1 −A ≥ 0
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We also know by the isoperimetrical inequality that U
n

n+1
1 ≤ C(A + S1).

If we combine this with the above inequality we obtain

U
n

n+1
1 ≤ CS1

But now we observe that S1(r) = U ′
1(r), so we obtain the ODE: U ′

1(r) ≥
cU

n
n+1
1 . Moreover, we know U1(0) = 0 and U1(r) > 0 for any r > 0. This

implies the result of the lemma.
For U2, a similar argument is done using the other inequality in (3).

With almost the same proof, we can also obtain a similar lemma for (x0, z0)
in the boundary of the wet surface E ∩ {z = 0}.
Lemma 2.2. Given x0 ∈ Rn, let Γrt = {(x, z) : |x− x0| ≤ r ∧ 0 ≤ z ≤ t}.

There exist two universal constants c0, c1 > 0 such that for any minimizer
E of J with volume V0 such that

{(x, t) : |x− x0| ≤ r0} ⊂ E (resp. ⊂ CE)
∃z ∈ (0, t) such that (x, z) ∈ ∂E

then
|CE ∩ Γrt| ≥ c0r

n+1 (resp. |E ∩ Γrt| ≥ c0r
n+1)

for all r < r0 (resp. for all r < r0 such that |E ∩ Γrt| ≤ c1V0).

Remark. When we say {(x, t) : |x− x0| ≤ r} ⊂ E, we actually mean that
the trace of E on {(x, t) : |x− x0| ≤ r} is constant 1. Sets of finite perimeter
have a well defined trace in L1.

{(x, t) : |x− x0| ≤ r}

Ec ∩ Γrt

x0
r

t
or

{(x, t) : |x− x0| ≤ r}
E ∩ Γrt

t

x0
r

Fig. 5. Lemma 2.2

Proof. We proceed in a similar fashion as in the proof of Lemma 2.1. Let

U(r) = |Γrt \ E|
S(r) = Area(∂Γrt \ E)

A(r) = Area(Γrt ∩ ∂E)

W (r) = Area({z = 0} ∩ Γrt \ E) =
∫

z=0∧|x−x0|<r

(1− χE) dx
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w(r) =
∫

z=0∧|x−x0|<r

β
(x

ε

)
(1− χE) dx

δ
A

Γr

2r
W

U

S

Since above any point in the wet surface, there is a point in ∂E ∩ Γrt,
W ≤ A. Therefore, also |w| ≤ λA.

By comparing J(E) with J(E ∪ Γrt), we get

J(E) ≤ J(E ∪ Γr)

J(E) ≤ J(E) + S(r)−A(r) + w(r)

0 ≤ S(r)−A(r) + w(r)

0 ≤ S(r)− (1− λ)A(r)

By the isoperimetric inequality we know that

U
n

n+1 ≤ c(A + S + W )

Combining the above inequalities we obtain:

U
n

n+1 ≤ C S(r)

And we observe that S(r) = U ′(r) to obtain the nonlinear ODE: U ′(r) ≥
cU

n
n+1 . Moreover, U(0) = 0 and U(r) > 0 for any r > 0, then U(r) > crn+1.
This proves the first case of the lemma. The other case follows almost in

the same way but exchanging E and CE. Since in that case we have to use
the other inequality in (3), we must use that |R ∩ Γrt| ≤ c1V0 to control the
extra term.

Corollary 2.1. If (x0, 0) ∈ ∂E, then∣∣E ∩B+
r (x0, 0)

∣∣ ≥ c rn+1∣∣CE ∩B+
r (x0, 0)

∣∣ ≥ c rn+1

for every r such that |E ∩B+
r (x0, 0)| ≤ c1V0.

Proof. The set B+
r/2(x0, 0) \ {z < δ0r/2} is either completely contained in E

or CE, or the set B+
r/2(x0, 0) \ {z < δ0r/2} ∩ ∂E is not empty.
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Either there is a point of ∂E here
or this region.is completely contained
in either E or Ec

In the first case, we apply Lemma 2.2 to obtain that both∣∣B+
r (x0, 0) ∩ E

∣∣ ≥ crn+1∣∣B+
r (x0, 0) \ E

∣∣ ≥ crn+1

In the second case, there is a (x0, z0) ∈ B+
r/2(x0, 0) \ {z < δ0r/2} ∩ ∂E,

then we use 2.1 for a ball centered at (x0, z0) with radius r/4 to obtain also∣∣B+
r (x0, 0) ∩ E

∣∣ ≥ crn+1∣∣B+
r (x0, 0) \ E

∣∣ ≥ crn+1

Corollary 2.2. If (x0, 0) ∈ ∂E, then

Area(∂E ∩B+
r (x0, 0)) ≥ c rn

for every r such that |E ∩B+
r (x0, 0)| ≤ c1V0.

Proof. This is a consequence of Corollary 2.1 combined with the isoperimetric
inequality.

2.3 Measure of the Free Boundary

Our goal now is to show that the boundary of the wet surface ∂(E ∩{z = 0})
in Rn has a finite n − 1 Hausdorff measure. We will do it by estimating the
area of the drop close to it.

Now we will estimate the area of the drop that is close to the floor, and
then we will obtain an estimate on the n − 1 Hausdorff measure of the free
boundary by a covering argument using the previous lemma.

Lemma 2.3. There exists a constant C such that

Area(∂E ∩ {0 < z < t}) ≤ CV
n−1
n+1 t

Proof. We will cut from E all the points for which z < t and lower it to touch
the floor again. We call F the set that we obtain (i.e. F = {(x, z) : (x, z + t) ∈
E}).
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E
F

t

Since E is bounded, |F | ≤ |E| − Ct, and thanks to (3) we have J(E) ≤
J(F ) + Ct. Moreover

J(E)−J(F ) = Area(∂E∩{0 < z < t})−
∫

z=0

β
(x

ε

)
(χE(x, 0)−χF (x, 0)) dx

Et

Over each point where E differs at level
z = 0 and z = t, there must be a piece of ∂E.

But if x belongs to the difference between E ∩ {z = 0} and E ∩ {z = t},
then there must be a z ∈ (0, t) such that (x, z) ∈ ∂E. Therefore∫

z=0

|χE(x, 0)− χF (x, 0)| dx ≤ Area(∂E ∩ {0 < z < t})

Thus we obtain

min(1, 1− λ)Area(∂E ∩ {0 < z < t}) ≤ CV
n−1
n+1 t

which concludes the proof.

We are now ready to establish the n − 1 Hausdorff estimate on the free
boundary.

Theorem 2.1. The contact line ∂(E ∩ {z = 0}) in Rn has finite n− 1 Haus-
dorff measure and

Hn−1
n+1 (∂(E ∩ {z = 0})) ≤ CV

n−1
n+1

Proof. We consider a covering of ∂(E ∩ {z = 0}) with balls of radius r and
finite overlapping.

From Lemma 2.2, in each ball there is at least crn

area. But by Lemma 2.3, the total area does not
exceed CV

n−1
n+1 r. Thus, the number of balls cannot

exceed CV
n−1
n+1 r−(n−1). Which proves the result.
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2.4 Limit as ε → 0

The n− 1 Hausdorff estimate of the free boundary will help us prove that the
minimizers E converge uniformly to a spherical cap as ε → 0.

Let 〈β〉 be the average of β in the unit cube: 〈β〉 =
∫
�

Q1
β dx and

J0(E) = Area(∂E ∩ {z > 0}) + 〈β〉Area(E ∩ {z = 0}) (4)

As it was mentioned before, the minimizer of J0 from all the sets with a
given volume V is a spherical cap B+

ρ such that
∣∣B+

ρ

∣∣ = V and the cosine of
its contact angle is 〈β〉.

Let us check how different J(E) and J0(E) are. Their only difference is in
the term related to the wet surface. Recall that β

(
x
ε

)
is periodic in cubes of

size ε. For every such cube that is completely contained inside the wet surface
of E it is the same to integrate β

(
x
ε

)
or to integrate the average of β. The

difference of J(E) and J0(E) is then given only by the cells that intersect the
boundary of (E ∩ {z = 0}).

But according the the n− 1 Hausdorff estimate of the free boundary, the
number of such cells cannot exceed CV

n−1
n+1 ε1−n. Since the volume of each cell

is εn we deduce:
|J0(E)− J(E)| ≤ CλV

n−1
n+1 ε

The same conclusion can be taken for B+
ρ :∣∣J0(B+

ρ )− J(B+
ρ )

∣∣ ≤ CλV
n−1
n+1 ε

And noticing that J(E) ≤ J(B+
ρ ) and J0(B+

ρ ) ≤ J0(E) we obtain∣∣J0(E)− J0(B+
ρ )

∣∣ ≤ CλV
n−1
n+1 ε

The convergence of E to B+
ρ is then a consequence of the following stability

theorem whose proof we omit.

Fig. 6. In the inner cubes, it is the same to integrate β(x/ε) or its average. The dif-
ference between J0 and J is concentrated in the cells that intersect the free boundary
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Theorem 2.2. Let E ⊂ BR × [0, R) such that J0(E) ≤ J0(B+
ρ ) + δ. Then

there exists a universal α > 0 and a constant C (depending on R) such that∣∣E�B+
ρ

∣∣ ≤ Cδα

Since E is bounded, this stability theorem tells us that
∣∣E�B+

ρ

∣∣ becomes
smaller and smaller as ε → 0. To obtain uniform convergence we have to use
the regularity properties of E. By Lemma 2.1 or 2.2, if there was one point of
∂E far from ∂B+

ρ , then there would be a fixed amount of volume of E�B+
ρ

around it, arriving to a contradiction. We state the theorem:

Theorem 2.3. Given any η > 0, for ε small enough

B+
(1−η)ρ ⊂ E ⊂ B+

(1+η)ρ

2.5 Hysteresis

Although when we consider absolute minimizers of Jε there are no surprises
in the homogenization limit, in reality this behavior is almost never observed.
When a drop is formed, its shape does not necessarily achieve an absolute
minimum of the energy, but it stabilizes in any local minimum of Jε. That is
why to fully understand the possible shapes of drops lying on a rough surface,
we must study the limits as ε → 0 of all the critical points of Jε.

Let us see a simplified equation in 1 dimension. Let u be the solution of
the following free boundary problem:

u

γ

tan γ = β

u ≥ 0 in [0, 1]

u(0) = 0

u(1) = 1

u′′(x) = 0 if u(x) > 0

du

dx+
= β

(x

ε

)
for x ∈ ∂{u > 0}

This problem comes from minimizing the functional

J(u) =
∫ 1

0

|u′|2 + β
(x

ε

)2

χu>0 dx

If β is constant, it is clear that there is only one solution, because only
one line from (1, 1) hits the x axis with an angle γ = arctan β. However, if β
oscillates, there must be several solutions that correspond to several critical
points of Jε. There will be a solution hitting the x axis at the point x0 as long
as 1

1−x0
= β

(
x0
ε

)
. For a small ε this may happen at many points, as we can

see in Figure 7.
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several posible slopes

Absolute minimizer

Minimal solution

Maximal solution

1
1−x0

β(x/ε)

Fig. 7. Different solutions for a nonconstant β

Moreover, the set of possible slopes for the solutions gets more and more
dense in the interval [minβ,max β] as ε gets small. As ε → 0, we can get a
sequence of solutions converging to a segment with any slope in that interval.

This example shows that the situation is not so simple. When we go back
to our problem of the drop in more than one dimension, the expected possible
slopes as ε → 0 must be in the interval [arccos maxβ, arccos min β]. Exactly
what they are depends on the particular geometry of the problem. If for
example β depends only on one variable, let us say x1, then when the free
boundary aligns with the direction of x1 we would expect to obtain a whole
range of admissible slopes as in the 1D case. Let us sketch a proof in this
case that there is a sequence of critical points of the functional that do not
converge to a sphere cap as ε → 0. We will construct a couple of barriers, and
then find solutions that stay below them.

Suppose that β depends on only one variable and it is not constant. As
we have shown in the previous section, the absolute minimizers converge to
a sphere cap B+

ρ as ε → 0. Let S(x1) be a function that touches B+
ρ at one

end point x1 = −R, but has a steeper slope at that point. Let us choose this
slope S′(−R) = tanα such that cos α < max β, we can do this from the extra
room that we have since β is not constant. Now let us continue S(x1) from
that point first with a constant curvature larger than the curvature of B+

ρ ,
and then continued as linear. Since S starts off with a steeper slope than B+

ρ ,
we can make S so that S > B+

ρ for x1 > −R. Now we translate S a tiny bit
in the direction of x1 to obtain S1 so that S1 ≤ B+

ρ only in the set where S1

has a positive curvature that is larger than the one of B+
ρ . We construct a

similar function S2 in the other side of B+
ρ . See Figure 8.
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S1

S

S2

γ α

Fig. 8. Barrier functions

We will see that we can find a sequence of solutions for ε→ 0 that remains
under S1 and S2. For suitable choices of ε, cos α < β(−R) and also cos α <
β(R). For such ε, we minimize the energy Jε constrained to remain below S1

and S2. In other words, we minimize Jε from all the sets E subsets of

D = {(x1, x
′) : −R ≤ x1 ≤ R ∧ z ≤ S1(x1) ∧ z ≤ S2(x1)}

If E is the constrained minimizer, it will be a critical point (unconstrained)
of Jε as long as it does not touch the graphs of S1 or S2. Since only a tiny
bit of B+

ρ is outside of D, Jε(E) will not differ from J(B+
ρ ) much when ε is

small. We can then apply the stability result of section 2.4 to deduce that
∂E remains in a neighborhood of ∂B+

ρ . The curvature of ∂E will be constant
where it is a free surface, and no larger than that value where it touches the
boundary of D. Since ∂E is close to ∂B+

ρ everywhere, the curvature of the
free part of ∂E cannot be very different from the curvature of ∂B+

ρ . Therefore
E cannot touch S1 or S2 in the part where these barriers are curved. The part
where these barriers are straight is too far away from B+

ρ , so E cannot reach
that part either. It is only left to check the boundary x1 = ±R and z = 0.
But the contact angle of S1 is smaller than arccos β(x1) at those points, and
then E cannot reach those points either. Thus, E must be a free minimizer.
Since we can do this for ε arbitrarily small, when ε → 0 we obtain limits of
the homogenization problem that cannot be the sphere cap B+

ρ because they
are trapped in a narrower strip {−R + δ ≤ x1 ≤ R + δ}.

The absolute minimizer.

Another stable solution.

Fig. 9. Different drops can be formed on irregular surfaces
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Other geometries may produce different variations. It is hard to predict
what can be expected.

We may ask at this point what is then the shape that we will observe in
a real physical drop. The answer is that it depends on how it was formed.
If the equilibrium was reached after an expansion, then we can expect to see
the largest possible contact angle. If on the other hand, the equilibrium was
obtained after for example evaporation, then we can expect to see the least
possible contact angle.

An interesting case is the drop lying on an inclined surface. If we consider
gravity, there is no absolute minimizer for the energy, because we can slide
down the drop all the way down and make the energy tend to −∞. However,
we see drops sitting on inclined surfaces all the time. The reason is that they
stabilize in critical points for the energy. On the side that points down, we
can see a larger contact angle than the one in the other side. This effect would
not be possible in a ideal perfectly smooth surface.

2.6 References

The equations of capillarity can be found in [12]. The case of constant β is
studied in [G].

The proof of Theorem 2.2, as well as the existence of a minimizer for each
ε and a comprehensive development of the topic can be found in [5].

Lemma 2.2 is not as in [5]. There a different approach is taken that also
leads to Corollaries 2.1 and 2.2. This modification was suggested by several
people.

The phenomena of Hysteresis, and in particular the case of the drop on an
inclined surface is discussed in [6]. Previous references for hysteresis are [17],
[16] and [15].

Related methods are used for the problem of flame propagation in periodic
media [3], [4].

3 The Construction of Plane Like Solutions to Periodic
Minimal Surface Equations

The second homogenization problem that we would like to discuss is related
to minimal surfaces in a periodic medium.

In two dimensions, minimal surfaces are just geodesics. Suppose we are
given a differential of length a(x,ν) in R2, and given two points x, y we want
to find the curve joining them with the minimum possible length. In other
words, we want to minimize

d(x, y) = inf L(γ) =
∫

γ

a(z,σ) ds

among all curves γ joining x to y.
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Here s is the usual differential of length and σ the unit tangent vector. We
consider a function a(x, σ) that is strictly positive (0 < λ ≤ a(x, σ) ≤ Λ) and,
to avoid the formation of Young measures (that is: oscillatory zig-zags) when
trying to construct geodesics, it must satisfy

|v|a
(

x,
v

|v|
)

is a strictly convex cone.

We assume that a is periodic in unit cubes. By that we mean that a is
invariant under integer translations, i.e. a(x + h, σ) = a(x, σ) for any vector
h with integer coordinates. Let us also assume that a is smooth although
this property is not needed. Due to the periodicity, at large distances d(x, y)
becomes almost translation invariant, since for any vector z there is a vector
z̃ with integer coordinates such that |z − z̃| ≤

√
n

2 and

|d(x + z, y + z)− d(x, y)| = |d(x + z, y + z)− d(x + z̃, y + z̃)|
≤ √nΛ

Another way of saying the same thing is to look at the geodesics from very
far away, that is to rescale the medium by a very small ε,

aε(x,σ) = a
(x

ε
,σ

)
.

The distance becomes almost translation invariant

|dε(x, y)− dε(x + z, y + z)| ≤ ε
√

nΛ

and as ε goes to zero we obtain an effective norm ‖x‖ = limε→0 dε(x, 0).

x

y

y + z
y + z̃

x + z
x + z̃

Fig. 10. The distance is almost translation invariant

The question we are interested to study is the following: given any line

L = {λσ, λ ∈ R}
Can we construct a global geodesic S that stays at a finite distance from L?
That is S remains trapped in a strip, around L whose width depends only on
λ,Λ.
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A

B

Fig. 11. Line like geodesic

The answer is yes in 2D (Morse) and no in 3D (Hevlund). An inspec-
tion of Hevlund counterexample shows that, unlike classical homogenization,
where diffusion processes tend to average the medium, geodesics try to beat
the medium by choosing specific paths, and leaving bad areas untouched.

In the 80’s Moser suggested that in Rn, unlike geodesics, minimal hyper-
surfaces should be forced to average the medium, and given any plane π, it
should be possible to construct plane like minimal surfaces for the periodic
medium.

More precisely given a differential of area form, we would like to consider
surfaces S that locally minimize

Fig. 12. Hevlund Counterexample: It costs one to travel inside narrow pipes, a
large K outside. Then, the best strategy is to jump only once from pipe to pipe,
i.e., the effective norm is ‖x‖ = |x| + |y| + |z|

A∗(S) =
∫

S

a(x, ν) dA

where dA is the usual differential of area, ν the normal vector to A, and a, as
before satisfies,
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i. 0 < λ ≤ a(x, ν) ≤ Λ
ii. |v|a(x, v/|v|) is a strictly convex cone.
iii. a is periodic in x.

These conditions for a, translate in the following properties of A∗.

i. λArea(S) ≤ A∗(S) ≤ ΛArea(S).
ii. A∗(S) = A∗(τzS), for any translation τz with integer coordinates.

By a local minimizer of A∗, we mean a surface S such that if another
surface S1 coincides with S everywhere but in a bounded set B, then A∗(S ∩
B) ≤ A∗(S1 ∩B).

Fig. 13. Plane-like minimal surface in a periodic medium (for instance a medium
with a periodic Riemman metric)

The main theorem is the following:

Theorem 3.1. There exists a universal constant M(λ,Λ, n) such that: for
any unit vector ν0 there exists an A∗ local area minimizer S contained in the
strip πM = {x : |〈x, ν0〉| < M}.

A first attempt to construct such local area minimizer is to look at surfaces
that are obtained by adding a periodic perturbation to the plane π = {x :
〈x, ν0〉 = 0}. This will be possible if π has a rational slope, or equivalently
that π can be generated by a set of n − 1 vectors e1, . . . , en−1 with integer
coordinates. The advantage of this case is that a translation in the direction
of each ej fixes π as well as the metric, so we can expect that we can find
a local A∗ minimizer that is also fixed by the same set of translations. If we
can prove Theorem 3.1 in this context and the constant M does not depend
on the vectors e1, . . . , en−1 but only on λ, Λ and dimension, then the general
case (irrational slope) follows by a limiting process.

We will work in the framework of boundaries of sets of locally finite peri-
meter.

A set of locally finite perimeter Ω is a set such that for any ball B, B ∩Ω
has a finite perimeter (as in the first part of these notes, see [13]) For such sets,
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differential of area of ∂Ω, and unit normal vectors are well defined, under our
hypothesis A∗ makes sense and is lower semicontinuous under convergence in
measure for sets.

Main Steps of the Proof

We will consider the family of sets D such that Ω ∈ D if Ω is a set of
locally finite perimeter, τej

(Ω) = Ω for every j (where τej
(Ω) := Ω + ej), and

π−
M = {x : 〈x, ν0〉 ≥ −M} ⊂ Ω ⊂ π+

M = {x : 〈x, ν0〉 ≤ M}
And within D, we will consider those sets Ω0 that are local A∗-minimizers

among sets Ω ∈ D. Since we are in the context of periodic perturbations of a
plane, a local A∗-minimizer is simply a minimizer of A∗ of the portion of ∂Ω
inside the fundamental cube given by all the points of the form λ1e1 + · · ·+
λn−1en−1 + λnν0 where λj ∈ [0, 1] for j = 1, . . . , n− 1 and λn ∈ [−M,M ].

Of course, such an Ω0 is not a free local minimizer since whenever ∂Ω0

touches the boundary of π− or π+ we are not free to perturb it outwards.
Our objective is to show that if M is large enough S0 = ∂Ω0 does not see

this restriction. In other words, Ω0 would be a local A∗-minimizer not only
among the sets in D but also among all sets of locally finite perimeter.

The main ingredients are:

a) A positive density property
b) An area estimate for ∂Ω

�
�
�

�
�
�

��������

������

����
M

Ω

Fig. 14. Restricted Minimizer

c) Minimizers are ordered

Lemma 3.1 (Positive density). There are two universal constants c0, C1

> 0 such that a minimizer ∂Ω0 of A∗ satisfies

c0r
n ≤ |Ω0 ∩Br(x0)|

|Br| ≤ C1r
n

for any x0 ∈ ∂Ω0.
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Proof. This lemma is actually the same as Lemma 2.1 in a slightly different
context. The only difference is that instead of (3), we must use now that ∂Ω0

is a minimal surface. We include the proof here for completeness.
We define

U1(r) = |Br(x0, z0) \Ω0| S1(r) = Area(∂Br(x0, z0) \Ω0)

U2(r) = |Br(x0, z0) ∩Ω0| S2(r) = Area(∂Br(x0, z0) ∩Ω0)

A(r) = Area(Br ∩ ∂Ω0)

U1

U2

S2

S1

A

Since ∂Ω0 is a minimal surface,

A(r) ≤ 1
λ

A∗(Br ∩ ∂Ω0) ≤ 1
λ

A∗(∂Br(x0, z0) \Ω0) ≤ Λ

λ
S1(r)

Similarly A(r) ≤ Λ
λ S2(r).

We also know by the isoperimetrical inequality that U
n

n+1
1 ≤ C(A + S1).

If we combine this with the above inequality we obtain

U
n

n+1
1 ≤ CS1

But now we observe that S1(r) = U ′
1(r), so we obtain the ODE: U ′

1(r) ≥
cU

n
n+1
1 . Moreover, we know U1(0) = 0 and U1(r) > 0 for any r > 0. This

implies the result of the lemma.
In the same way, we obtain the result for U2.

Lemma 3.2. There are two universal constants c0, C1 > 0 such that a mini-
mizer ∂Ω0 of A∗ satisfies

c0R
n−1 ≤ Hn−1(∂Ω0 ∩BR) ≤ C1R

n−1

for large values of R.

Proof. Notice that the set Ω1 = {x : 〈x, ν〉 < 0} is an admissible set in
D. Then A∗(∂Ω0 ∩ fundamental cube) ≤ A∗(∂Ω1 ∩ fundamental cube). Be-
sides, Area(∂Ω1∩fundamental cube) ≤ Area(∂Ω0∩fundamental cube). Thus,
Area(∂Ω0 ∩BR) and Area(∂Ω1 ∩BR) are comparable when R is large.
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This would be the same as the result of the lemma if it was true that
the area of the boundary of a set of finite perimeter coincides with its n − 1
Hausdorff measure. Unfortunately, that is not always true. In general we can
say that the n− 1 Hausdorff measure is only greater or equal to the area. But
in this case we can compare them thanks to Lemma 3.1. If we take a finite
overlapping covering with balls of radius r centered at ∂Ω0 ∩BR, by Lemma
3.1 plus the isoperimetric inequality, the surface of ∂Ω0 inside each ball cannot
be less than c0r

n−1. Then, there cannot be more than CRn−1/rn−1 such balls,
and the Hausdorff estimate follows.

Lemma 3.3. Minimizers are ordered, that is if Ω0 and Ω1 are minimizers,
then so are Ω0 ∪Ω1 and Ω0 ∩Ω1.

Proof. ∂Ω0 ∪ ∂Ω1 = ∂(Ω0 ∪ Ω1) ∪ ∂(Ω0 ∩ Ω1) and thus if we add the areas
(A∗) inside the fundamental cube of ∂Ω0 and ∂Ω1, it is the same as adding
the corresponding ones for ∂(Ω0 ∩Ω1) and ∂(Ω0 ∪Ω1). But since Ω0 and Ω1

are A∗ area minimizers, necessarily all those areas are the same and then both
Ω0 ∪Ω1 and Ω0 ∩Ω1 must be minimizers too.

Using Lemma 3.3, we can construct the smallest minimizer Ω in D by
taking the intersection of all minimizers in D. We point out the similarity
with Perron’s method.

Ω recuperates an important property, the Birkhoff property: If τz is an
integer translation with 〈z, ν0〉 ≤ 0 (resp. ≥ 0) then

τz(Ω) ⊂ Ω (resp. ⊃ Ω)

Indeed τz(Ω) ∩Ω and τz(Ω) ∪Ω are minimizers respectively for τz(πM ) and
πM , while Ω and τz(Ω) are the actual smallest minimizers.

�
�
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�

��

An integer translation

Ω

Fig. 15. Birkhoff Property. Integer translations send τz(Ω) inside Ω or Ω inside
τz(Ω) depending on whether 〈z, ν0〉 ≤ 0 or 〈z, ν0〉 ≥ 0

Lemma 3.2 tells us that for large balls BR(0), the number N of disjoint
unit cubes intersecting ∂Ω0 must be of order N ∼ C1R

n−1 independently
of M . Since the strip πM ∩ BR has roughly MRn−1 cubes, many cubes in
πM ∩BR must be contained in Ω0 or CΩ0.
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Combining the above properties we see the following:

i) There are many clean cubes that do not intersect ∂Ω, and thus they are
contained in either Ω or its complement. Moreover, there are many such
cubes that are not too close to the boundary of πM .

ii) Any integer translation τz(Q) of a cube Q ⊂ Ω with 〈z, ν0〉 ≤ 0 is contained
in Ω. Conversely for a cube Q ⊂ CΩ, if 〈z, ν0〉 ≥ 0 then τz(Q) ⊂ CΩ.
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cube completely

Ω outside Ω

Fig. 16. If one cube is outside of Ω, then any cube whose center is above the dotted
line is outside of Ω

From i), we can find a clean cube Q that is not too close to the boundary
of πM . If this cube Q is contained in Ω and M is large, then the union of all
the translations τz(Q) for z with integer coordinates and 〈z, ν0〉 ≤ 0 covers a
strip around the bottom of πM (see Figure 16 upside down). But then we have
a thick clean strip, which means that we could translate Ω a unit distance
down and still have a local minimizer, which would contradict the fact that
Ω is the minimum of them.

Therefore, we must be able to find a clean cube contained in CΩ. Arguing
as above, this implies that there is a complete clean strip around the top of
πM (like in Figure 16). Thus, we are free to perturb upwards. Moreover, we
can lift the whole set Ω by an integer amount and obtain another minimizer
that does not touch the boundary of πM , and then Ω is a free minimizer.

In this way we prove the theorem when π has a rational slope. Since M
depends only on λ, Λ and dimension, we approximate a general π by planes
with rational slopes and prove the theorem by taking the limit of the respective
minimizers (or a subsequence of them).

3.1 References

The content of this part is based on the joint paper with Rafael de la Llave [2].
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The problem had been proposed by Moser in another C.I.M.E. course
[M1] (See also [M2], [18]). The interest of constructing line like geodesics was
related to foliating the torus with them or at least laminate it.

4 Existence of Homogenization Limits for Fully
Nonlinear Equations

Let us start the third part of these notes with a review on the definitions of
fully nonlinear elliptic equations.

A second order fully nonlinear equation is given by an expression of the
form

F (D2u,Du, u, x) = 0 (5)

for a general nonlinear function F : Rn×n×Rn×R×Rn → R. For simplicity,
we will consider equations that do not depend on Du or u. So they have the
form

F (D2u, x) = 0 (6)

The equation (6) is said to be elliptic when F (M +N,x) ≥ F (M,x) every
time N is a positive definite matrix. Moreover, (6) is said to be uniformly
elliptic when we have λ |N | ≤ F (M +N,x)−F (M,x) ≤ Λ |N | for two positive
constants 0 < λ ≤ Λ and where |N | denotes the norm of the matrix N . The
simplest example of a uniformly elliptic equation is the laplacian, for which
F (M,x) = tr M .

Existence, uniqueness and regularity theory for uniformly elliptic equations
is a well developed subjet. It is studied in the framework of viscosity solutions
that is a concept that was first introduced by Crandall and Lions for Hamilton
Jacobi equations. We will consider only uniformly elliptic equations thoughout
this section.

A continuous function u is said to be a viscosity subsolution of (6) in an
open set Ω, and we write F (D2u, x) ≥ 0, when each time a second order
polynomial P touches u from above at a point x0 ∈ Ω (i.e. P (x0) = u(x0)
and P (x) > u(x) for x in a neighborhood of x0), then F (D2P (x0), x0) ≥ 0.
Respectively, u is a supersolution (F (D2u, x) ≤ 0) if every time P touches u
from below at x0 then F (D2P (x0), x0) ≤ 0. For the general theory of viscosity
solutions see [8] or [1].

In the same way as for subharmonic and superharmonic functions, sub- and
supersolutions of uniformly elliptic equations satisfy the comparison principle:
if u and v are respectively a sub- and supersolution of an equation like (6)
and u ≤ v on the boundary of a bounded domain Ω, then also u ≤ v in the
interior of Ω.

Suppose now that we have a family of uniformly elliptic equations (with the
same λ and Λ) that do not depend on x (are translation invariant): Fj(D2u) =
0 for j = 1, . . . , k. Let us suppose that at every point in space we choose one of
these equations with some probability. To fix ideas, let us divide Rn into unit
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cubes with integer corners and in each cube we pick one of these equations
at random with some given probability. The equation that we obtain for the
whole space will change on each cube, it will not look homogeneous, it will
not be translation invariant, and it will strongly depend on the random choice
at every cube. However if we look at the equation from far away, somehow
the differences from point to point should average out and we should obtain
a translation invariant equation.

From close, we see black and white squares From far, we just see gray

In each white square we have F2(D2u) = 0
In each black square we have F1(D2u) = 0

Fig. 17. A chessboard like configuration

Let (S, µ) be the probability space of all the possible configuration. For
each ω ∈ S we have an x-dependent equation

F (D2u, x,w) = 0

What we would expect is that if we consider solutions uε
ω of the equation

(with same given boundary values)

F (D2uε
ω,

x

ε
, w) = 0 (7)

with probability 1, they would converge to solutions u0 of a translation in-
variant (constant coefficients) equation

F (D2u0) = 0

thus, in this limiting process that corresponds to looking at the medium from
far away, the differences from point to point should dissapear. An moreover,
it should lead to the same uniform equation for almost all ω.

Our purpose is to prove the existence of this limiting equation.
The appropriate setting for the idea of mixed media that from far away

looks homogeneous is ergodic theory. Out assumptions are:
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1. For each ω in the probability space S, µ we have a uniformly elliptic equa-
tion

F (D2u, x, ω) = 0

defined in all Rn.
2. Translating the equation in any direction z with integer coordinates is the

same as shifting the configuration ω, i.e.

F (M,x− z, ω) = F (M,x, τz(ω))

and we ask this transformation ω �→ τz(ω) to preserve probability.
3. Ergodicity assumption: For any set S ⊂ S of positive measure, the union

of all the integer translations of S covers almost all S

µ

( ⋃
z∈Zn

τz(S)

)
= 1

Under these conditions, we obtain the following theorem:

Theorem 4.1. There exists an homogenization limit equation

F̃ (D2u0) = 0

to which solutions of the problem (7) converge almost surely.

4.1 Main Ideas of the Proof

When we have a translation invariant equation F (D2u) = 0, if u is a solution
of such equation, that means that for each point x, the matrix D2u(x) lies
on the zero level set {M ∈ Rn×n : F (M) = 0}. We can describe the equation
completely if we are able to classify all quadratic polynomials P as solutions,
subsolutions or supersolutions, because that would tell us for what matrices
M , F (M) is equal, greater or less than zero.

Let us choose a polynomial P0 in a large cube QR and let us compare
P0 + t |x|2 with the solution of

F (D2u, x, ω) = 0 in QR

u = P0 + t |x|2 in ∂QR

If t is very large, P0 + t |x|2 will be a subsolution of the equation and thus
P0 + t |x|2 ≤ u in QR. Equally, if λ is very negative then P0 + t |x|2 ≥ u in
QR. For some intermediate values of t, P0 + t |x|2 and u cross each other, so
for these values it is not so clear at this point if P0 + t |x|2 is going to be a
sub or supersolution of the homogenization limit equation.
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Let us forget about the term t |x|2 for a moment. Given a quadratic poly-
nomial P =

∑
ij Mijxixj , we want to solve the equation

F (D2uε,
x

ε
, w) = 0 in Q1

uε = P on ∂Q1

(8)

for a unit cube Q1. Subsolutions of our homogenized equations are those poly-
nomials for which uε tends to lie above P as ε → 0. Similarly, supersolutions
are those for which uε tends to be below P . If the polynomial P is borderline
between these two behaviors, then it would be a solution of the homogeniza-
tion limit equation.

It is important to notice that we can either think of the problem at scale ε
in a unit cube (with uε) or we can keep unit scale and consider a large cube.
To look at the equation (8) for ε → 0 is equivalent to keep the same scale
and consider larger cubes. Indeed, if we consider u(x) = 1

ε2 uε(εx), then for
R = ε−1, we have

F (D2u, x,w) = 0 in QR

u = P in ∂QR

(9)

For a cube QR of side R. It is convenient to choose R to be integer, in order
to fit an integer number of whole unit cubes in QR. Now instead of taking
ε → 0, we can take R → +∞. We will be switching between these two points
of view constantly.

Let v be the solution of the corresponding obstacle problem. The function
v is the least supersolution of the equation (9) such that v ≥ P :

F (D2v, x, w) ≤ 0 in QR

v = P in ∂QR

v ≥ P in QR

F (D2v, x, w) = 0 in the set {v > P}

(10)

v

u

P

Fig. 18. The polynomial P , the free solution u and the least supersolution above
the polynomial v
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We also call vε = ε2v(x/ε), the solution of the obstacle problem at scale ε.
Let ρ be the measure of the contact set {v = P} in QR:

ρ(QR) = |{v = P}|

The value of ρ controls the difference between u and v. A small value of
ρ means that v touches P at very few points, and thus it is almost a free
solution. The idea is that if ρ remains small compared to |QR| as R → +∞,
then P would be a subsolution of the homogenized equation. A large value of
ρ means that v touches P in many points. If ρ

|QR| → 1 as R →∞, that would
mean that P is a supersolution. Moreover, we will show that every time ρ

|QR|
converges to a positive value, then uε → P .

The first thing we must prove is that ρ
|QR| indeed converges to some value

as R → +∞ (or ε→ 0). Notice that ρ
|QR| is the measure of the contact set at

scale ε: |{vε = P}|.
In this problem, what plays the role of the Birkhoff property is a subad-

ditivity condition for ρ, as the following lemma says.

Lemma 4.1. If a cube Q is the disjoint union of a sequence of cubes Qj, then

ρ(Q) ≤
∑

j

ρ(Qj)

Proof. Let v be the solution of the obstacle problem in the cube Q that
coincides with P on ∂Q. Let vj be the corresponding ones for the cubes Qj .
Since v ≥ P in Q, v ≥ vj on ∂Qj . Then by comparison principle v ≥ vj in Qj .
Therefore the contact set {x ∈ Q : v(x) = P (x)} is contained in the union of
the contact sets {x ∈ Qj : vj(x) = P (x)}, and the lemma follows.

This subadditivity condition plus the ergodicity condition and

ρ(QR(x− z), ω) = ρ(QR(x), τz(ω)

Q1 = Q2 ∪Q3

P

Q2

vQ2
vQ1

Q1

Q

vQ

Fig. 19. Pay attention to the contact sets: ρ is subadditive
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are the conditions for a subadditive ergodic theorem (which can be found in
[9]) that says that as R go to infinity ρ(QR(x0)

|QR(x0)| converges to a constant h0 with
probability 1. We will characterize polynomials P as sub- or supersolutions
according to whether h0 = 0 or h0 > 0.

Lemma 4.2. If h0 = 0, then

lim inf
ε→0

uε ≥ P

Proof. Using the Alexandrov-Backelman-Pucci inequality (See for example
[1]), we can obtain a precise estimate of vε − uε depending on ρ:

sup
QR

vε − uε ≤ CRρ1/n

where C is a universal constant.

v

u

P

Fig. 20. If the contact set if small, then u and v are close

If h0 = 0, as ε goes to zero we have:

uε(x) ≥ vε (x)− Cερ1/n

≥ vε (x)− C

(
ρ

|QR|
)1/n

≥ P − o(1)

Then, as ε → 0, uε tends to be above P , and we finish the proof of the lemma.

The last lemma suggests that P is a subsolution of the homogenization
limit equation if h0 = 0. Now we will consider the case h0 > 0. In order to
show that in that case uε tends to be below P , we have to use that vε separates
from P by a universal quadratic speed depending only on the ellipticity of the
equation.
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Quadratic upper bound

P

v

Fig. 21. Quadratic separation

The quadratic separation from the contact set is a general characteristic
of the obstacle problem. What it means is that if vε(x0) = P (x0), then

vε(x)− P (x) ≤ C |x− x0|2

for a constant C depending only on λ, Λ and dimension.
The quadratic separation in this problem plays the role of the positive

density in the previous ones.

Lemma 4.3. If h0 > 0, then

lim sup
ε→0

uε ≤ P

Proof. We will show that the contact set {vε = P} spreads all over the unit
cube. Then, using the quadratic separation we show that vε → P as ε → 0.

We want to show that if we split the unit cube in m smaller cubes of
equal size, for any value of m, then for ε small enough there is a piece of the
contact set in each small cube. We know that the measure of the contact set
|{x ∈ Q1 : vε(x) = P (x)}| converges to h0 > 0. The unit cube Q1 is split into
m smaller cubes. Let Q be any of these cubes, we have vε ≥ P on ∂Q, so vε is a
supersolution of the corresponding obstacle problem in Q and |{x∈Q:vε=P (x)}|

|Q|
cannot converge to any value larger than h0 as ε → 0. If in some cube the
contact set is empty {x ∈ Q : vε(x) = P (x)} = ∅, then, since the whole
contact set covers a proportion h0 of the measure of the unit cube, there
must be one of the smaller cubes where the contact set covers more than h0

times the measure of this cube (at least for a sequence εk → 0). And that is a
contradiction, which means that the contact set {vε = P}must spread all over.

But if {vε = P} spreads all over the unit cube, then vε converges
to P uniformly due to the universal quadratic separation. Since vε ≥ uε,
lim supε→0 uε ≤ P .

So, now we have a way to classify every polynomial as subsolution to
the homogenization limit equation (F̃ (D2P ) ≥ 0) if h0 = 0 or supersolution
(F̃ (D2P ) ≤ 0) if h0 > 0. There is still a little bit of ambiguity because a
polynomial could be both things at a time (if it is precisely a solution). That
is easily solved by considering P0 + t |x|2 for small values of t. We say that P0
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{v = P}

Fig. 22. Each small cube must contain about the same amount of contact set when
ε << 1

is a sub or supersolution if we can check it for P0 + t |x|2 for arbitrarily small
values of t.

In this way we are able to completely characterize the zero level set of F̃ .
Moreover, if we want to construct the complete function F̃ , then we have

to identify all its level sets, not only the zero level set. To do that we just
consider the problem:

F (D2uε,
x

ε
, w)− t = 0

to describe the level set F̃ (M) = t. And we recover F̃ completely.
Now, based on our construction of F̃ , it is easy to show that for any

boundary data, problem (7) will converge with probability 1 to a function u0

that satisfies comparison with polynomials in the right way to be a viscosity
solution of F̃ (D2u0) = 0. We finish with the theorem:

Theorem 4.2. Let uε be the solutions to

F (D2uε,
x

ε
, w) = 0 in Ω

uε = g in ∂Ω

(11)

for a domain Ω and a continuous function g on ∂Ω. Then as ε → 0, almost
surely uε converge uniformly to a function u that solves

F̃ (D2u) = 0 in Ω

u = g in ∂Ω
(12)

Proof. Due to the uniform ellipticity of F , the functions uε are uniformly
continuous, and therefore by Arzela-Ascoli there is a subsequence uεk that
converges uniformly to a continuous function u.

Let us suppose that a quadratic polynomial P touches u from above at a
point x0. Then we can lower P a little bit by subtracting a small constant δ1
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such that P (x0) < u(x0) and P (x) > u(x) for x in the boundary of a small
cube Qδ2(x0) centered at x0.

Since uεk converge to u uniformly, the same property holds for them.
Namely, for large enough k

P (x0) ≤ uεk(x0)− δ1

P (x) > uεk(x) for x ∈ ∂Qδ2(x0)

Let wk be the solutions to

F (D2wk,
x

ε
, w) = 0 in Qδ2(x0)

wk = P in ∂Qδ2(x0)
(13)

By comparison principle, wk ≤ uεk , then wk(x0) ≤ P (x0)− δ1 for large k.
So, we can apply Lemma 4.3 to obtain that the value of h0 corresponding to
P cannot be positive. Then F̃ (D2P ) ≥ 0.

In a similar way, we can show that if a quadratic polynomial touches u
from below then it must be a supersolution of F̃ .

Therefore u must be a viscosity solution of (12). Since (12) has a unique
solution, all the convergent subsequences of uε must converge to the same
limit. Thus the whole sequence uε converges uniformly to u.

4.2 References

This part in homogenization is based on the joint work with Panagiotis
Souganidis and Lihe Wang [7], where actually a more complete theorem is
proved. The fact that equations that depend on ∇u are considered in that
paper adds some extra complications.

Some of the ideas have their roots in the work of Dal Maso and Modica
([9] and [10]) for the variational case.

Periodic homogenization for second order elliptic equations was considered
in [11].
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A Visit with the ∞-Laplace Equation

Michael G. Crandall∗

Department of Mathematics, University of California, Santa Barbara,
Santa Barbara, CA 93106, USA
crandall@math.ucsb.edu

Introduction

In these notes we present an outline of the theory of the archetypal L∞ vari-
ational problem in the calculus of variations. Namely, given an open U ⊂ IRn

and b ∈ C(∂U), find u ∈ C(U) which agrees with the boundary function b on
∂U and minimizes

F∞(u,U) := ‖|Du|‖L∞(U) (0.1)

among all such functions. Here |Du| is the Euclidean length of the gradient
Du of u. We will also be interested in the “Lipschitz constant” functional as
well. If K is any subset of IRn and u : K → IR, its least Lipschitz constant is
denoted by

Lip(u,K) := inf {L ∈ IR : |u(x)− u(y)| ≤ L|x− y| ∀ x, y ∈ K} . (0.2)

Of course, inf ∅ = +∞. Likewise, if any definition such as (0.1) is applied to a
function for which it does not clearly make sense, then we take the right-hand
side to be +∞. One has F∞(u,U) = Lip(u,U) if U is convex, but equality
does not hold in general.

Example 2.1 and Exercise 2.1 below show that there may be many mini-
mizers of F∞(·, U) or Lip(·, U) in the class of functions agreeing with a given
boundary function b on ∂U. While this sort of nonuniqueness can only take
place if the functional involved is not strictly convex, it is more significant
here that the functionals are “not local.” Let us explain what we mean in
contrast with the Dirichlet functional

F2(u,U) :=
1
2

∫
U

|Du|2 dx. (0.3)

This functional has the property that if u minimizes it in the class of functions
satisfying u|∂U = b and V ⊂ U, then u minimizes F2(·, V ) among functions
∗ Supported in part by NSF Grant DMS-0400674.
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which agree with u on ∂V, properly interpreted. This is what we mean by
“local” here. Exercise 2.1 establishes that both Lip and F∞ are not local, as
you can also do with a moment’s thought.

This lack of locality can be rectified by a notion which directly builds in
locality. Given a general nonnegative functional F(u, V ) which makes sense
for each open subset V of the domain U of u, one says that u : U → IR is
absolutely minimizing2 for F on U provided that

F(u, V ) ≤ F(v, V ) for every v :V → IR such that u = v on ∂U.

whenever V is compactly contained in the domain of u. Of course, we need
to supplement this idea with some more precision, depending on F , but we
won’t worry about that here. Clearly, if u is absolutely minimizing for F on
U, then it is absolutely minimizing for F on open subsets of U. The absolutely
minimizing notion decouples the considerations from the boundary condition;
it defines a class of functions without regard to behavior at the boundary of
U. We might then consider the problem: find u : U → IR such that

u is absolutely minimizing for F on U and u = b on ∂U. (0.4)

It is not quite clear that a solution of this problem minimizes F among func-
tions which agree with b on ∂U. Indeed, it is not true for F = F∞,Lip,F2 if
U is unbounded (Exercise 2.1). The notion also does not require the existence
of a function u satisfying the boundary condition for which F(u,U) < ∞.

The theory of absolutely minimizing functions and the problem (0.4) for
the functional Lip is quicker and slicker than that for F∞, and we present this
first, ignoring F∞ for a while. However, it is shown in Section 6 that a function
which is absolutely minimizing for Lip is also absolutely minimizing for F∞
and conversely. It turns out that the absolutely minimizing functions for Lip
and F∞ are precisely the viscosity solutions of the famous partial differential
equation

∆∞u =
n∑

i,j=1

uxi
uxj

uxixj
= 0. (0.5)

The operator ∆∞ is called the “∞-Laplacian” and solutions of (0.5) are said
to be∞-harmonic. The reason for this nomenclature is given in Section 8. The
notion of a “viscosity solution” is given in Definition 2.4 and again in Section
8, together with more information about them than is in the main text.

An all-important class if ∞-harmonic functions (equivalently, absolutely
minimizing functions for F = F∞ or F = Lip) is the class of cone functions:

C(x) = a|x− z|, (0.6)

where a ∈ IR and z ∈ IRn. It turns out that the ∞-harmonic functions
are precisely those that have a comparison property with respect to cone
2 The author prefers the more descriptive term “locally minimizing,” but c’est la

vie.
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functions. All the basic theory of ∞-harmonic functions can be derived by
comparison with cones. This is explained and exploited in Sections 2–7.

The table of contents gives an impression of how these notes are organized,
and we will not belabor that here, except for some comments. Likewise, the
reader will have noticed a lack of references in this introduction. We will give
only two, including the research/expository article [8]. These notes are closely
related to [8]. However, [8] treats the situation in which | · | is a general norm
on IRn rather than the Euclidean norm. There is perhaps a cost in elegance
in this generality, and we welcome the opportunity to write the story of the
Euclidean case by itself. In particular, at the time of this writing, it is not
quite settled whether or not the absolutely minimizing property is equivalent
to a partial differential equation in the case of a general norm. It has, however,
been shown that this is true for, for example, the l∞ and l1 norms on IRn,
which was unknown at the writing of [8]. There is a rather complete set of
references in [8], along with comments, up to the time it was written. We rely
partly on [8] in this regard.

In Section 8 we give an informal outline of the nearly 40 year long saga of
the theory of the ∞-Laplace equation. This section is intended to be readable
immediately after this introduction; it corresponds to a talk the author gave
at a conference in honor of G. Aronsson, the initiator of the theory, in 2004.
Selected references are given in Section 8. In addition, in Section 9, we attempt
to give a feeling for the many generalizations and the scope of recent activity
in this active area, going well beyond the basic case we study here in some
detail, including sufficient references and pointers to provide the interested
reader entree into whatever part of the evolving landscape suits their interests.

What is new in the current article, relative to [8], besides many details of
the organization and presentation and Sections 8, 9? Quite a number of things,
of which we point out the direct derivation of the ∞-Laplace equation in the
viscosity sense from comparison with cones in Section 2.2 (a refinement of an
original argument in [8]), the gradient flow curves in Section 6, the outline of
a new uniqueness proof in Section 5, a new result in Section 7, a variety of
items near the end of Section 4 and a little proof we’d like to share in Section
7.2. In addition, the current text is supplemented by exercises. Most of them
fall in the range from straightforward to very easy and of some of them are
solved in the main text of [8]. Whether or not the reader attempts them, they
should be read.

Regarding our exposition, we build in some redundancy to ease the flow
of reading. In particular, Section 8 is largely accessible now, after this intro-
duction.

In the lectures to which these notes correspond, the author spent consid-
erable time on a recent result of O. Savin [49]. Savin proved that ∞-harmonic
functions are C1 if n = 2. This was a big event. Whether or not this is true if
n > 2, and the author would bet that it is, remains the most prominent open
problem in the area. The author had hoped to include an exposition of Savin’s
results here, but did not in the end do so, due to lack of time. In any case,
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any such exposition would have been very close to the original article. If it
is proved that ∞-harmonic functions are C1 in general, this article will need
substantial revision; however, most of the theory is about ∞-subharmonic
functions, which are not C1, so it is unlikely the material herein will be ren-
dered obsolete. In any case, we’d best get on with it!

1 Notation

In these notes, U, V,W are always open subsets of IRn. The closure of U is U
and its boundary is ∂U. The statement V � U means that V is a compact
subset of U.

If x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ IRn, then

|x| :=
⎛⎝ n∑

j=1

x2
j

⎞⎠1/2

and 〈x, y〉 := x1y1 + · · ·+ xnyn.

The notation A := B means that A is defined to be B. If K ⊂ IRn and
x ∈ IRn, then

dist (x,K) := inf
y∈K

|x− y|.

If xj ∈ IRn, j = 1, 2, . . . , then

xj → y means y ∈ IRn and lim
j→∞

xj = y.

The space of continuous real valued functions on a topological space K is
denoted by C(K). The notation “u ∈ Ck” indicates that u is a real-valued
function on a subset of IRn and it is k-times continuously differentiable. L∞(U)
is the standard space of essentially bounded Lebesgue measurable function
with the usual norm,

‖v‖L∞(U) = inf {M ∈ IR : |v(x)| ≤ M a.e in U} .

We also use pointwise differentiability and twice differentiability. For ex-
ample, if w : U → IR and y ∈ U, then w is twice differentiable at y if there
exist p ∈ IRn and a real symmetric n× n matrix such that

w(x) = w(y) + 〈p, x− y〉+
1
2
〈X(x− y), x− y〉+ o(|x− y|2). (1.1)

In this event, we write Du(y) = p and D2u(y) = X.

Exercise 1.1. Show that (1.1) can hold for at most one pair p,X. If (1.1)
holds and y is a local maximum point for w, then p = 0 and X ≤ 0 (in the
usual ordering of symmetric matrices: X ≤ 0 iff 〈Xζ, ζ〉 ≤ 0 for ζ ∈ IRn).
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Balls are denoted as follows:

Br(x) := {y ∈ IRn : |y − x| < r} , Br(x) := {y ∈ IRn : |y − x| ≤ r} ,

If w, z ⊂ IRn, then

[w, z] := {w + t(z − w) : 0 ≤ t ≤ 1}
is the line segment from w to z. Similarly, (w, z) := {w + t(z − w) : 0 < t < 1}
and so on.

2 The Lipschitz Extension/Variational Problem

Let b ∈ C(∂U). We begin by considering the problem: find u such that{
u ∈ C(U), u = b on ∂U and

Lip(u,U) = min
{
Lip(v, U) : v ∈ C(U), v = b on ∂U

} (2.1)

The notation “b” for the boundary data above is intended as a mnemonic.
It is clear that if u ∈ C(U), then Lip(u, ∂U) ≤ Lip(u, U) = Lip(u,U). Thus,
if Lip(b, ∂U) = ∞, any continuous extension of b into U is a solution of
(2.1). Moreover, if Lip(b, ∂U) < ∞ and u ∈ C(U) agrees with b on ∂U, then
Lip(u,U) = Lip(b, ∂U) guarantees that u solves (2.1).

Assuming that Lip(b, ∂U) < ∞, it is easy to see that (2.1) has a maximal
and a minimal solution which in fact satisfy Lip(u,U) = Lip(b, ∂U). Indeed,
if Lip(u,U) = Lip(b, ∂U), z, y ∈ ∂U, x ∈ U and L = Lip(b, ∂U), then u must
satisfy

b(z)− L|x− z| = u(z)− L|x− z| ≤ u(x) and
u(x) ≤ u(y) + L|x− y| = b(y) + L|x− y|.

This implies

sup
z∈∂U

(b(z)− L|x− z|) ≤ u(x) ≤ inf
y∈∂U

(b(y) + L|x− y|). (2.2)

Denote the left-hand side of (2.2) by MW∗(b)(x) and the right hand side of
(2.2) by MW ∗(b)(x). The notation is in honor of McShane and Whitney, see
Section 8. Since infs and sups over functions with a given Lipschitz constant
possess the same Lipschitz constant, Lip(MW∗(b), IRn),Lip(MW ∗(b), IRn) ≤
L = Lip(b, ∂U). It is also obvious that MW ∗(b) = MW∗(b) = b on ∂U. Thus
MW ∗(b) (MW∗(b)) provides a maximal (respectively, minimal) solution of
(2.1). SinceMW ∗(b),MW∗(b) have the same Lipschitz constant as b, they are
regarding as solving the “Lipschitz extension problem,” in that they extend
b to IRn while preserving the Lipschitz constant. “Extension” has different
overtones than does “variational.”

There is no reason for these extremal solutions to coincide, and it is rare
that they do. The example below shows this, no matter how nice U might be.
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Example 2.1. Let U =
{
x ∈ IR2 : |x| < 1

}
be the unit disc in IR2 and b ∈

C(∂U). Arrange that −1 ≤ b ≤ 1; this can be done with arbitrarily large
L = Lip(b, ∂U). Then, via (2.2), MW∗(b)(0) < MW ∗(b)(0) provided that
there is a δ > 0 for which

b(z)− L|z|+ δ = b(z)− L + δ

< b(y) + L|y| = b(y) + L for |y| = |z| = 1.

Since −1 ≤ b ≤ 1, this is satisfied if L > 1, for then

δ − 2L ≤ −1− 1 = −2 ≤ b(y)− b(z)

with δ = (L− 1).

A primary difference between the functional Lip and more standard inte-
gral functionals is that Lip is not “local,” as explained in the introduction.
The next exercise shows this.

Exercise 2.1. Let n = 1, U = (−1, 0)∪ (0, 1) and b(−1) = b(0) = 0, b(1) = 1.
Find MW ∗(b) and MW∗(b). Conclude that the functional Lip is not local.
Modify this example to show that even if U is bounded, then it is not neces-
sarily true that MW ∗(b) ≤ max∂U b in U, nor does b ≤ b̃ necessarily imply
that MW ∗(b) ≤MW ∗(b̃) in U (for example).

We recall the localized version of the idea that u “minimizes the functional
Lip.”

Definition 2.1. Let u : U → IR. Then is an absolute minimizer for the func-
tional Lip on U provided that u ∈ C(U) and

Lip(u, V ) ≤ Lip(v, V ) whenever V � U, v ∈ C(V ) and u = v on ∂V.
(2.3)

We will use various ways to refer to this notion, saying, equivalently, that
“u is an absolute minimizer for Lip on U,” or “u is absolutely minimizing for
Lip on U,” or “u is absolutely minimizing Lipschitz” or merely writing

u ∈ AML(U).

The notion is evidently local in the sense that if u ∈ AML(U) and V ⊂ U,
then u ∈ AML(V ).

Exercise 2.2. With the notation of Exercise 2.1, determine all the continuous
functions on IR and all the continuous functions on [−1, 1] which agree with b
on ∂U and which are absolute minimizers for Lip on IR\∂U and U, respectively.
More generally, show that if I is an interval and u ∈ C(I) is an absolute
minimizer for Lip on I, then u is linear.



A Visit with the ∞-Laplace Equation 81

Note that the notion of an absolute minimizer does not involve boundary
conditions; it is a property of functions defined on open sets. We recast the
problem (2.1) and in terms of this notion. This results in: find u with the
properties

u ∈ C(U) ∩AML(U) such that u = b on ∂U. (2.4)

It is not clear that (2.4) has any solutions, whether or not Lip(b, ∂U) =∞.
Nor is it clear that a solution is unique if it exists. Your solution of Exercise
2.2 shows that solutions are not unique in general. We will see in Section 5
that solutions exist very generally and are unique if U is bounded.

Theorem 2.1. The following are equivalent conditions on a function u ∈
C(U).

(a)u ∈ AML(U).
(b) If w = u or w = −u, then for every a ∈ IR, V � U and z �∈ V

w(x)− a|x− z| ≤ max
y∈∂V

(w(y)− a|y − z|) for x ∈ V. (2.5)

(c) If w = u or w = −u and ϕ ∈ C2(U) and w − ϕ has a local maximum at
x̂ ∈ U, then

∆∞ϕ(x̂) :=
n∑

i,j=1

ϕxi
(x̂)ϕxj

(x̂)ϕxixj
(x̂) ≥ 0. (2.6)

Definition 2.2. If a∈ IR and z ∈ IRn, we call the function C(x)= a|x − z|
a cone function. The slope of C is a and its vertex is z. The half-line
{z + t(x− z), t ≥ 0} is the ray of C through x.

Definition 2.3. A function w ∈ C(U) with the property (2.5) is said to enjoy
comparison with cones from above in U . If −w enjoys comparison with cones
from above, equivalently

w(x)− C(x) ≥ max
y∈∂V

(w(y)− C(y)) for x ∈ V

for V � U and cone functions C whose vertices are not in V, w is said to enjoy
comparison with cones from below. If w enjoys comparison with cones from
above and from below, then it enjoys comparison with cones. Thus, condition
(b) of Theorem 2.1 is that “u enjoys comparion with cones.”

Definition 2.4. The differential operator given by

∆∞ϕ :=
n∑

i,j=1

ϕxi
ϕxj

ϕxixj
=

〈
D2ϕDϕ,Dϕ

〉
(2.7)

on smooth functions ϕ is called the “∞-Laplacian. Here Dϕ = (ϕx1 , . . . , ϕxn
)

is the gradient of ϕ and D2ϕ =
(
ϕxixj

)
is the Hessian matrix of second
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derivatives of ϕ. A function w ∈ C(U) such that (2.6) holds for every ϕ in
C2(U) and local maximum x̂ of w − ϕ is said to be a viscosity subsolution
of ∆∞w = 0; equivalently, it is a viscosity solution of ∆∞w ≥ 0 or w is ∞-
subharmonic. If −w is a ∞-subharmonic, equivalently, at any local minimum
x̂ ∈ U of w − ϕ where ϕ ∈ C2, one has

∆∞ϕ(x̂) ≤ 0,

then w is ∞-superharmonic. If w is both ∞-subharmonic and ∞- superhar-
monic, then it is ∞-harmonic and we write ∆∞w = 0.

Important Notice: Hereafter the modifier “viscosity” will be of-
ten be dropped, as was already done in defining, for example, “∞ - sub-
harmonic”.

The viscosity notions are the right ones here, and are taken as primary. One
does not, in general, compute the expression “∆∞w” and evaluate it, as in
∆∞w(x), to determine whether or not u is ∞-harmonic. Instead, one checks
the conditions of the definition above, or some equivalent, as in Theorem 2.1.
However, the expression ∆∞w(x) does have a pointwise meaning if w is twice
differentiable at x, that is,

w(z) = w(x) + 〈p, z − x〉+
1
2
〈X(z − x), z − x〉+ o(|z − x|2) (2.8)

for some p ∈ IRn and real symmetric n× n matrix X. Then

∆∞w(x) =
〈
D2w(x)Dw(x), Dw(x)

〉
= 〈Xp, p〉 .

Noting, for example, that if (2.8) holds, ϕ ∈ C2, and w − ϕ has a maximum
at x, then p = Dϕ(x) and X ≤ D2ϕ(x) (see Exercise 1.1), we find that

∆∞w(x) = 〈Xp, p〉 = 〈XDϕ(x), Dϕ(x)〉 ≤ 〈
D2ϕ(x)Dϕ(x), Dϕ(x)

〉
.

It follows that if w ∈ C2, then ∆∞w ≥ 0 in the pointwise sense implies
∆∞w ≥ 0 in the viscosity sense. Similarly, if (2.8) holds, then for ε > 0

z �→ w(z)−
(

w(x) + 〈p, z − x〉+
1
2
〈(X + εI)(z − x), z − x〉

)
has a maximum at z = x, so if w is a viscosity solution of ∆∞w ≥ 0, we
must have 〈(X + εI)p, p〉 ≥ 0. Letting ε ↓ 0, we find ∆∞w(x) ≥ 0. Thus the
viscosity notions are entirely consistent with the pointwise notion at points of
twice differentiability.

Remark 2.1. In Exercises 2.6, 2.7 below you will show that the function defined
on IR2 by u(x, y) = x4/3 − y4/3 is ∞-harmonic on IR2. As it is not twice
differentiable on the coordinate axes, this cannot be checked via pointwise
computation of ∆∞u. The viscosity notions, which we are taking as primary
here, give a precise meaning to the claim that ∆∞u = 0.

We break out the proof of Theorem 2.1 in several simple parts.
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2.1 Absolutely Minimizing Lipschitz iff Comparison With Cones

We begin with a useful triviality. If g : [a, b] ⊂ IR → IR, then

Lip(g, [a, b])| = |g(b)− g(a)|
|b− a| =⇒

g(a + t(b− a)) = g(a) + t(g(b)− g(a)) for 0 ≤ t ≤ 1.

(2.9)

This has the following obvious consequence: If u : [w, z] ⊂ IRn → IR, then

|u(z)− u(w)|
|z − w| = Lip(u, [w, z]) =⇒

u(w + t(z − w)) = u(w) + t(u(z)− u(w)) for 0 ≤ t ≤ 1.

(2.10)

Assume now that u ∈ C(U) enjoys comparison with cones (Definition
(2.3)). Note that the comparison with cones from above is equivalent to the
condition (2.11) (a) below. Likewise, comparison with cones from below may
be restated as (2.11) (b). If a, c ∈ IR and z /∈ V, then

(a) u(x) ≤ c + a|x− z| for all x ∈ V if it holds for x ∈ ∂V,

(b) c + a|x− z| ≤ u(x) for all x ∈ V if it holds for x ∈ ∂V.
(2.11)

We show that, for any x ∈ V,

Lip(u, ∂(V \ {x})) = Lip(u, ∂V ∪ {x}) = Lip(u, ∂V ). (2.12)

To see this we need only check that if y ∈ ∂V, then

u(y)− Lip(u, ∂V )|x− y| ≤ u(x) ≤ u(y) + Lip(u, ∂V )|x− y|. (2.13)

As each of the above inequalities holds for x ∈ ∂V and u enjoys comparison
with cones, the inequalities indeed hold if x ∈ V. Let x, y ∈ V. Using (2.12)
twice,

Lip(u, ∂V ) = Lip(u, ∂(V \ {x})) = Lip(u, ∂(V \ {x, y})).
Since x, y ∈ ∂(V \ {x, y}), we have |u(x) − u(y)| ≤ Lip(u, ∂V )|x − y|, and
hence u ∈ AML(U).

Let C(x) = a|x − z| be a cone function. Notice that Lip(C, [w, y]) = |a|
whenever w, y are distinct points on the same ray of C. Thus Lip(C, V ) = |a|
for any nonempty open set V and Lip(C, ∂V ) = |a| if V is bounded, nonempty
and does not contain the vertex z of C.

Suppose now that u ∈ AML(U). Assume that V � U, z /∈ V and set

W = {x ∈ V : u(x)− a|x− z| > max
w∈∂V

(u(w)− a|w − z|)}. (2.14)

We want to show that W is empty. If it is not empty, then it is open and

u(x) = a|x− z|+ max
w∈∂V

(u(w)− a|w − z|) =:C(x) for x ∈ ∂W. (2.15)
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Therefore u = C on ∂W and Lip(u,W ) = Lip(C, ∂W ) = |a| since u is ab-
solutely minimizing. Now if x0 ∈ W, the ray of C through x0, t �→ z+t(x0−z),
t ≥ 0, contains a segment in W containing x0 which meets ∂W at its end-
points. Since t �→ C(z + t(x0− z)) = at|x0− z| is linear on this segment, with
slope a|x0 − z|, while t �→ u(z + t(x0 − z)) also has |a||x0 − z| as a Lipschitz
constant and the same values at the endpoints of the segment; therefore it is
the same function ((2.10)). Thus

u(z + t(x0 − z)) = C(z + t(x0 − z))

on the segment, which contains x0, whence u(x0) = C(x0), a contradiction to
x0 ∈W. Thus W is empty.

Remark 2.2. In showing that comparison with cones implies AML, we only
used comparison with cones with nonnegative slopes from above, and com-
parison with cones with nonpositive slopes from below.

Exercise 2.3. Let u ∈ C(U) be absolutely minimizing for F∞, that is, when-
ever V � U, v ∈ C(V ) and u = v on ∂V, then F∞(u, V ) ≤ F∞(v, V ). Show
that u enjoys comparison with cones. Hint: the proof above needs only minor
tweaking.

2.2 Comparison With Cones Implies ∞-Harmonic

You may prefer other proofs, but the one below is direct; it does not use
contradiction. First we use comparison with cones from above, which implies
that, using the form (2.11) (a) of this condition,

u(x) ≤ u(y) + max
{w:|w−y|=r}

(
u(w)− u(y)

r

)
|x− y| (2.16)

for x ∈ Br(y)� U. The inequality (2.16) holds as asserted because it trivially
holds for x ∈ ∂(Br(y) \ {y}).

Rewrite (2.16) as

u(x)− u(y) ≤ max
{w:|w−y|=r}

(u(w)− u(x))
|x− y|

r − |x− y| (2.17)

for x ∈ Br(y) � U. If u is twice differentiable at x, namely, if there is a
p ∈ IRn and a symmetric n× n matrix X such that

u(z) =u(x) + 〈p, z − x〉+
1
2
〈X(z − x), z − x〉+ o

(|z − x|2) ,

so that p := Du(x), X := D2u(x),
(2.18)

we will show that

∆∞u(x) =
〈
D2u(x)Du(x), Du(x)

〉
= 〈Xp, p〉 ≥ 0. (2.19)
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That is, comparison with cones from above implies ∆∞u ≥ 0 at points of
twice differentiability.

We are going to plug (2.18) into (2.17) with two choices of z. First, on the
left of (2.17), we choose z = y = x − λp where p is from (2.18), and expand
u(x) − u(y) according to (2.18). Next, let wr,λ be a value of w for which
the maximum on the right of (2.17) is attained and expand u(wr,λ) − u(x)
according to (2.18). This yields, after dividing by λ > 0,

|p|2 + λ
1
2
〈Xp, p〉+ o(λ)

≤
(
〈p, wr,λ − x〉+

1
2
〈X(wr,λ − x), wr,λ − x〉+ o((r + λ)2)

) |p|
r − λ|p|

(2.20)

Sending λ ↓ 0 yields

|p|2 ≤
(〈

p,
wr − x

r

〉
+

1
2

〈
X

(
wr − x

r

)
, wr − x

〉)
|p|+ |p|o(r)

≤ |p|2 +
1
2

〈
X

(
wr − x

r

)
, wr − x

〉
|p|+ |p|o(r),

(2.21)

where wr is a any limit point of the wr,λ as λ ↓ 0 and therefore wr ∈ ∂Br(x) -
so (wr − x)/r is a unit vector. Since the second term inside the parentheses
on the right of the first inequality above has size r and (wr − x)/r is a unit
vector, it follows from the first inequality that (wr − x)/r → p/|p| as r ↓ 0.
(We are assuming that p �= 0, as we may.) Then the inequality of the extremes
in (2.21), after dividing by r and letting r ↓ 0, yields 0 ≤ 〈Xp, p〉 , as desired.

The above proof contains a bit more information than 0 ≤ 〈Xp, p〉 if
p = Du(x) = 0. In this case, choosing y so that |x− y| = r/2, we have

u(x)− u(y) = O(r2)

and then (2.17) yields

O(r2) ≤ 1
2

〈
X

(
wr,y − x

r

)
, wr,y − x

〉
+ o(r)

where (wr,y − y)/r is a unit vector. Dividing by r, sending r ↓ 0 and using
compactness, any limit point of (wr,y − x)/r as r ↓ 0 is a unit vector q for
which 0 ≤ 〈Xq, q〉 . In particular, if Du(x) = 0, then

D2u(x) has a nonnegative eigenvalue. (2.22)

This set up is a bit more awkward than is necessary for the results obtained
so far. It is set up this way to make the next remark easy. If x is a local
maximum point of u− ϕ for some smooth ϕ, then

ϕ(x)− ϕ(y) ≤ u(x)− u(y) and u(w)− u(x) ≤ ϕ(w)− ϕ(x)
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for y, w near x. That is, we may replace u by ϕ in (2.17). By what was just
shown, it follows that ∆∞ϕ(x) ≥ 0. That is, by definition, u is a viscosity
solution of ∆∞u ≥ 0 if it satisfies comparison with cones from above. We
record this again: if u enjoys comparison with cones from above, then

ϕ ∈ C2, u− ϕ has a local max at x =⇒ ∆∞ϕ(x) ≥ 0. (2.23)

In addition, if Dϕ(x) = 0, then

D2ϕ(x) has a nonnegative eigenvalue. (2.24)

Similarly, if u enjoys comparison with cones from below, then

ϕ ∈ C2, u− ϕ has a local min at x =⇒ ∆∞ϕ(x) ≤ 0. (2.25)

In addition, if Dϕ(x) = 0, then

D2ϕ(x) has a nonpositive eigenvalue. (2.26)

These results follow directly from what was already shown because −u enjoys
comparison with cones from above. See Section 3.

2.3 ∞-Harmonic Implies Comparison with Cones

Suppose that ∆∞u ≥ 0 on the bounded set U. Computing the ∞-Laplacian
on a radial function x �→ G(|x|) yields

∆∞G(|x|) = G′′(|x|)G′(|x|)2

if x �= 0 and from this we find that

∆∞(a|x− z| − γ|x− z|2) = −2γ(a− 2γ|x− z|)2 < 0

for all x ∈ U, x �= z, if γ > 0 is small enough. But then if ∆∞u ≥ 0,
u(x)− (a|x− z|−γ|x− z|2) cannot have a local maximum in V � U different
from z, by the very definition of a viscosity solution of ∆∞u ≥ 0. Thus if
z �∈ V � U and x ∈ V, we have

u(x)− (a|x− z| − γ|x− z|2) ≤ max
w∈∂V

(u(w)− (a|w − z| − γ|w − z|2)).

Now let γ ↓ 0. The full assertions now follow from Section 3.

2.4 Exercises and Examples

Below we explore with curves. A C1 unit speed curve γ : I → U on some open
interval I = (t−, t+) will be called “maximal” in U if the following holds: (i)
if t+ < ∞, then limt↑t+ γ(t) =: γ(t+) ∈ ∂U (the limit exists, since γ is unit
speed) and (ii) If −∞ < t−, then γ(t−) ∈ ∂U. We also consider the variant
where I = [0, t+), with the obvious modification.
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Exercise 2.4. Let u ∈ C2(U) and Du(x0) �= 0. Let γ : I → U, where I is an
open interval in IR, be such that Du(γ(t)) �= 0. Assume that

γ̇(t) =
Du(γ(t))
|Du(γ(t))| for t ∈ I. (2.27)

Show that

d

dt
u(γ(t)) = |Du(γ(t))| and

d

dt
|Du(γ(t))|2 =

2
|Du(γ(t))|∆∞u(γ(t)). (2.28)

Conclude that u is ∞-harmonic iff for every x0 ∈ U with Du(x0) �= 0, there
is a maximal unit speed curve γ : I → U with the following properties: 0 ∈ I,
γ(0) = x0, |Du(γ(t))| is constant, and u(γ(t)) = u(x0) + t|Du(x0)|.
Exercise 2.5. Show that cone functions are ∞-harmonic on the complement
of their vertices and that linear functions are ∞-harmonic. Show that x �→ |x|
is ∞-subharmonic on IRn.

Exercise 2.6. Show that in n = 2 and u(x, y) = x4/3 − y4/3, then for each
(x0, y0) �= (0, 0), there is a unit speed C1 curve γ : (−∞,∞) → IR2 such that
(2.27) holds, γ(0) = (x0, y0), and |Du(γ(t))| ≥ |Du(x0, y0)|.
Exercise 2.7. Let u ∈ C1(U) and suppose that for each x0 ∈ U with
Du(x0) �= 0 there is a maximal unit speed C1 curve γ : [0, t+) → U with
γ(0) = x0 such that 〈Du(γ(t)), γ̇(t)〉 ≥ |Du(x0)|. Show that u enjoys compar-
ison with cones from above (and so it is ∞-subharmonic). Formulate a similar
condition which guarantees that u enjoys comparison with cones from below
in U and conclude that the u of Exercise 2.6 is ∞-harmonic. Hints: Suppose
V � U and C(x) = a|x − z| is a cone function with z /∈ V. Assuming that
u−C ≤ c on ∂V, the issue is to show that u−C ≤ c in V. If not, there exists
x0 ∈ V such that

u(x0)− C(x0) = max
V

(u− C) > c. (2.29)

Start the curve γ at x0 and note Du(x0) = DC(x0), so 〈Du(γ(t)), γ̇(t)〉 ≥ |a|.
Show that u(γ(t))−C(γ(t)) is nondecreasing, and conclude that (2.29) cannot
hold.

Exercise 2.8. Show that if u ∈ C1(U) and satisfies the eikonal equation
|Du| = 1, then u is ∞-harmonic. Note that this class of functions is not C2 in
general, an example being the distance to an interval on the complement of
the interval. Hint: There are a number of ways to do this. For example, one
involves showing that maxBr(y) u = u(y)+r and looking ahead to Lemma 4.1,
and another (closely related) involves showing that any curve γ(t) satisfying
(2.27) is a line on which Du is constant.
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Exercise 2.9. Let n = 2, u(x) = x1, v(x) = |x|.
(a) Construct an example of a bounded set U ⊂ IR2 \ {0} such that u < v

on ∂U except at two points, and u = v holds on the line segment joining
these two points (there is no “strong comparison theorem” for∞-harmonic
functions).

(b) Show that the function

w(x) =

{
u(x) = x1 for x1 > 0, x2 > 0,

v(x) = |x| for x1 > 0, x2 ≤ 0,

is ∞-harmonic in {x1 > 0} (“unique continuation” does not hold for ∞-
harmonic functions). There are a number of ways to do this, including
using Exercise 2.8.

Exercise 2.10. The point of (a) of this exercise is to give a proof that if
C(x) = a|x−z| is a cone function, then C ∈ AML(IRn\{z}), which generalizes
to the case in which |·| is any norm on IRn, and, moreover, if b in (2.4) is C|∂U ,
then the only solution of (2.1) is C, provided that U is bounded. However, so
we don’t have to talk too much, assume that | · | is the Euclidean norm here.

(a) Show that C ∈ AML(IRn \ {z}) without using calculus. Hint: Review
Section 2.1. Similarly, show that linear functions are in AML(IRn).

(b) Let u be a solution of (2.4) where U is bounded, b = C|∂U and z /∈ U. Show
that for ε > 0 the set V := {x ∈ U : u(x) > C(x) + ε} is empty. Hint: If it
is not, then u− C = ε on ∂V. Continue to conclude that u = C on U.

(c) Show that if b(x) = 〈p, x〉 on ∂U in (2.4) and U is bounded, then u(x) =
〈x, p〉 is the unique solution of (2.4) and it is the maximal ∞-subharmonic
function with the property u = b on ∂U.

Remark 2.3. The only comparisons used by Savin in [49] are those of Exercise
2.10.

3 From ∞-Subharmonic to ∞-Superharmonic

We put these short remarks in a section of their own, so that they stand
out. The theory we are discussing splits naturally into two halves. Owing to
our biases, we present results about ∞-subharmonic functions directly; this is
the first half. Then, if u is ∞-superharmonic, the second half is obtained by
applying the result for ∞-subharmonic functions to −u. In contrast to, say,
the Laplace equation ∆u = 0, where one might prove the mean value property
without splitting it into halves, we do not have this kind of option. The reason
lies in the very notion of a viscosity solution (even if this theory applies very
well to the Laplace equation). The u, −u game we can play here is a reflection
of the definitions or, if you prefer, the fact that ∆∞(−u) = −∆∞u if u is
smooth.
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This is true of the other properties we use. For example, u enjoys compar-
ison with cones from above iff −u enjoys comparison with cones from below,
and so on.

In this spirit, it is notable that we have not split the “absolutely mini-
mizing” notions into halves, and we will not. However, this can be done. See
Section 4 of [8], where further equivalences are given beyond what is discussed
in these notes.

The main message is that we often present results or proofs only in the ∞-
subharmonic case and assume that then the reader knows the corresponding
result or proof in the ∞-superharmonic case, and therefore the ∞-harmonic
case.

4 More Calculus of ∞-Subharmonic Functions

While we have been assuming that our functions are continuous so far, we
will show below that upper-semicontinous functions which enjoy comparison
with cones from above are necessarily locally Lipschitz continuous. Thus there
is no generality lost in working with continuous functions at the outset (we
could have used upper-semicontinuous functions earlier).

The basic calculus type results that we derive about∞-subharmonic func-
tions below are all consequences of the particular case (2.16) of comparison
with cones from above. We have already seen an example of this in Section
2.2. This inequality is equivalent to comparison with cones from above or ∞-
subharmonicity by what has already been shown; we also review this in the
following proposition. We regard (2.16) as the ∞-subharmonic analogue of
the mean value property of ordinary subharmonic functions which estimates
the value of such a function at the center of a ball by its average over the ball
or the bounding sphere.

The first assertion of the next proposition is that the sphere in (2.16)
can be replaced by the ball. The other assertions comprise, together with
their consequences in Lemma 4.3, the rest of the most basic facts about ∞-
subharmonic functions.

Lemma 4.1. Let u : U → IR be upper-semicontinuous.

(a)Assume that

u(x) ≤ u(y) + max
{w:|w−y|≤r}

(
u(w)− u(y)

r

)
|x− y|. (4.1)

for y ∈ U, r > 0, and x ∈ Br(y) ⊂ U. Then

max
{w:|w−y|≤r}

u(w) = max
{w:|w−y|=r}

u(w); (4.2)

in particular, (2.16) holds.
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(b) If u satisfies the conditions of (a), then u is locally Lipschitz continuous
in U.

(c) If u satisfies the conditions of (a), then u is ∞-subharmonic and enjoys
comparison with cones from above.

(d) If u satisfies the conditions of (a), then the quantity

S+(y, r) := max
{w:|w−y|≤r}

(
u(w)− u(y)

r

)
= max

{w:|w−y|=r}

(
u(w)− u(y)

r

)
(4.3)

is nonnegative and nondecreasing in r, 0 < r < dist (y, ∂U). Moreover,

if |w − y| = r and S+(y, r) =
u(w)− u(y)

r
, then

S+(y, r) ≤ S+(w, s) for 0 < s < dist (y, ∂U)− r.
(4.4)

(e) u satisfies the conditions of (a) if and only if for every y ∈ U

r �→ max
Br(y)

u (4.5)

is convex on 0 ≤ r < dist (y, ∂U).

Proof. Assume that y ∈ U, (4.1) holds, Br(y) ⊂ U, |x − y| < r and u(x) =
maxBr(y) u. Then we may replace u(w) by u(x) in (4.1) to conclude that

u(x)(1− |x− y|/r) ≤ u(y)(1− |x− y|/r),

which implies that u(x) ≤ u(y). Since also u(x) ≥ u(y), we conclude that
u(x) = u(y). Since this is true for all y such that x ∈ Br(y) � U and u(x) =
maxBr(y) u, it is true if BR(x) ⊂ U, u(x) = maxBR(x) u and |y − x| < R/2.
Thus if u has a local maximum point, it is constant in a ball around that
point. We record this: if BR(x) � U ,

u satisfies (4.1) and u(x) = max
BR(x)

u, then u is constant on BR/2(x) . (4.6)

This guarantees that if u assumes its maximum value at any point of a con-
nected open set, then it is constant in that set, and hence that the maximum
of u over any closed ball is attained in the boundary. There is no difference
between (4.1) and (2.16) and (a) is proved.

We turn to (b). Assume, to begin, that u ≤ 0. Then, as u(w) ≤ 0 in (4.1),
the u(w) on the right can be dropped. Thus we have, written three equivalent
ways,

(a) u(x) ≤
(

1− |x− y|
r

)
u(y);

(b) − u(y) ≤ −u(x)
(

r

r − |x− y|
)

;

(c) u(x)− u(y) ≤ −|x− y|
r

u(y).

(4.7)
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Either of (4.7) (a) or (b) is a Harnack inequality; (b) is displayed just
because you might prefer the nonnegative function −u, which is lower-
semicontinuous and enjoys comparison with cones from below, to u. If u(x) �= 0,
either estimates the ratio u(y)/u(x) by quantities not depending on u. Taking
the limit inferior as y → x on the right of (4.7)(a), we find that u is lower-
semicontinuous as well as upper-semicontinuous, so it is continuous. If also
Br(x) � U, we may interchange x and y in (4.7) (c) and conclude, from the
two relations, that

|u(x)− u(y)| ≤ −min(u(x), u(y))
|x− y|

r − |x− y| .

As u is locally bounded, being continuous, we conclude that it is also lo-
cally Lipschitz continuous. If u ≤ 0 does not hold and x, y ∈ Br(z) , where
B2r(z)⊂U, replace u by u − maxB2r(z) u. We thus learn that u is Lipschitz
continuous in Br(z) if B2r(z) ⊂ U.

We turn to (c). The assumptions of (a) imply that if |x− y| = s ≤ r, then

u(x)− u(y)
s

≤ max
{w:|w−y|=r}

(
u(w)− u(y)

r

)
.

The monotonicity of S+(r, y) in r follows upon maximizing the left-hand side
with respect to x, |x− y| = s. The quantity S+(y, r) is nonnegative by what
was already shown - u attains its maximum over a ball on the boundary.

To prove (d), let the assumptions of (4.4) hold: r < dist (y, ∂U) and

|w − y| = r, u(w) = max
Br(y)

u. (4.8)

Let 0 < s < dist (y, ∂U) and for 0 ≤ t ≤ 1 put yt := y + t(w − y). By our
assumptions,

u(yt)− u(y) ≤
(

u(w)− u(y)
r

)
|yt − y| = t(u(w)− u(y));

equivalently,
u(w)− u(y)
|w − y| ≤ u(w)− u(yt)

|w − yt|
which implies, using the choice of w and monotonicity of S+, that

S+(y, r) =
u(w)− u(y)
|w − y| ≤ u(w)− u(yt)

|w − yt| ≤ S+(yt, s)

for s ≥ |w − yt| = (1 − t)|w − y|. Letting t ↑ 1 and using the continuity of
S+(x, s) in x, this yields

S+(y, r) ≤ S+(w, s).
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We turn to (e). If

M(r) := max
|w−y|≤r

u(w) is convex on 0 ≤ r < dist (y, ∂U) (4.9)

we note that then M(0) = u(y) and so

M(s)−M(0)
s

≤ M(r)−M(0)
r

for 0 < s ≤ r (4.10)

says that

u(x) ≤ u(y) + max
{w:|w−y|≤r}

(
u(w)− u(y)

r

)
s

for |x− y| ≤ s, and (4.1) holds.
To prove the converse, recall that if (4.1) holds, then so does (2.16). By

the the proof of Section 2.2, u is ∞-subharmonic. By Section 2.3, u enjoys
comparison with cones from above. Therefore we have the following variant
of (2.16):

u(x) ≤
(

max
|w−y|≤r

u(w)
) |x− y| − s

r − s
+

(
max

|w−y|≤s
u(w)

)
r − |x− y|

r − s
(4.11)

for 0 ≤ s ≤ |x− y| ≤ r. The inequality is obvious for |x− y| = s, r, so it holds
as asserted. Taking the maximum of u(x) over Bτ (y), where s ≤ τ ≤ r yields

max
|w−y|≤τ

u(w) ≤
(

max
|w−y|≤r

u(w)
)

τ − s

r − s
+

(
max

|w−y|≤s
u(w)

)
r − τ

r − s
, (4.12)

which says that
r �→ max

|w−y|≤r
u(w) is convex. (4.13)

We now know that (2.16) guarantees that u is locally Lipschitz continuous.
To use this fact and the estimate implicit in (2.16) efficiently, we introduce
the local Lipschitz constant L(v, x) of a function v at a point x.

Definition 4.1. Let v : U → IR and x ∈ U. Then

L(v, x) := lim
r↓0

Lip(v,Br(x)) = inf
0<r<dist (x,∂U)

Lip(v,Br(x)). (4.14)

Of course, L(u, x) =∞ is quite possible.

Lemma 4.2. Let v : U → IR.

(a)L(v, x) is upper-semicontinuous in x ∈ U.
(b) If v is differentiable at y ∈ U, then then L(v, y) ≥ |Dv(y)|.
(c) If y ∈ U and L(v, y) = 0, then v is differentiable at y and Dv(y) = 0.
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(d) Let the line segment [y, z] ⊂ U. Then

|v(y)− v(z)| ≤
(

max
w∈[y,z]

L(v, w)
)
|y − z|.

In consequence, Lip(v,Br(y)) ≤ maxx∈Br(y) L(v, x).
(e) Dv ∈ L∞(U) holds in the sense of distributions if and only if L(v, x) is

bounded on U and then

sup
x∈U

L(v, x) = ‖|Dv|‖L∞(U) and L(v, x) = lim
r↓0
‖|Dv|‖L∞(Br(x)). (4.15)

Proof. To establish (a), note that if xj → x, then Br−|x−xj |
(
xj

) ⊂ Br(x) and
therefore, for large j,

L(u, xj) ≤ Lip(u,Br−|x−xj |
(
xj

)
) ≤ Lip(u,Br(x))

Let j →∞ and then r ↓ 0 to conclude that lim supj→∞ L(u, xj) ≤ L(u, x).
We prove (b) assuming, as we may, that p := Du(y) �= 0, choose x = y+λp

with small λ > 0 to find

Lip(v,Bλ|p|(y)) ≥ |v(y + λp)− v(y)|
|λp| ≥ λ|p|2

λ|p| + o(1) as λ ↓ 0.

so, recalling Dv(y) = p, L(v, y) ≥ |p|.
The example n = 1, v(x) = x2 sin(1/x) and y = 0 shows that, in general,

L(v, y) > |Dv(y)|.
Now assume that L(v, y) = 0. Then for each ε > 0 there exists δ > 0 such

that

|x− y| < δ =⇒ |v(x)− v(y)| ≤ Lip(v,Bδ(y))|x− y| ≤ ε|x− y|,
which proves (c).

We turn to (d). For t ∈ [0, 1), 0 ≤ δ < 1− t and r > δ|z − y|, and

g(t) = |v(y + t(z − y))− v(y)|,
we have

g(t + δ)− g(t)
δ

≤ |v(y + (t + δ)(z − y))− v(y + t(z − y))|
δ

≤ Lip(v,Br(y + t(z − y)))|z − y| for r ≥ δ|z − y|.
Letting δ ↓ 0 yields

lim sup
δ↓0

g(t + δ)− g(t)
δ

≤ Lip(v,Br(y + t(z − y)))|z − y|

and then, letting r ↓ 0,
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lim sup
δ↓0

g(t + δ)− g(t)
δ

≤ L(v, y + t(z − y))|z − y| ≤ max
w∈[y,z]

L(v, w)|z − y|.

This implies, using elementary facts about Dini derivatives (for example), that

g(1)− g(0) = |v(z)− v(y)| ≤ max
w∈[y,z]

L(v, w)|z − y|,

as claimed.
The claim (e) follows easily from (d) if we take as known that Dv ∈ L∞(U)

and ‖|Dv|‖L∞(U) = L if and only if [y, z] ⊂ U implies

|v(z)− v(y)| ≤ L|z − y|
and L is the least such constant.

Definition 4.2. If u is ∞-subharmonic in U and x ∈ U, then

S+(x) := lim
r↓0

S+(x, r) = lim
r↓0

max
{w:|w−x|=r}

(
u(w)− u(x)

r

)
. (4.16)

Similarly, if u is ∞-superharmonic, then

S−(x) := lim
r↓0

S−(x, r) := lim
r↓0

min
{w:|w−x|=r}

(
u(w)− u(x)

r

)
. (4.17)

Remark 4.1. Note the notational peculiarities. S+ is used both with two ar-
guments and with a single argument; no confusion should arise from this once
noted, but the meaning changes with the usage. L has two arguments, and, in
contrast to S+, one of them is the function itself. (We did not want to write
S+(u, x, r) or some variant.) We will want to display the function argument
later, and the identities (4.18), (4.19) below will allow us to use L(u, x) in
place of S+(x), S−(x) when we need to indicate the function involved.

Lemma 4.3. Let u ∈ C(U) be ∞-subharmonic. Then for x ∈ U and
Br(x) � U,

L(u, x) = S+(x). (4.18)

In consequence, if u is ∞-harmonic in U and x ∈ U, then

S−(x) = −S+(x). (4.19)

Moreover, u ∈ C(U) satisfies

L(u, x) ≤ max
{w:|w−x|≤r}

(
u(w)− u(x)

r

)
(4.20)

for Br(x) ⊂ U if and only if u is ∞-subharmonic in U. Finally, at any point
y of differentiability of u,

|Du(y)| = S+(y) = L(u, y). (4.21)
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Proof. First, via Lemma 4.3, we have that maxBr(x) L(u, x) = Lip(u,Br(x)).
Thus

S+(x, r) = max
{w:|w−x|≤r}

(
u(w)− u(x)

r

)
≤ max

{w:|w−x|≤r}
L(u,w).

The upper-semicontinuity of L(u, x) in x (Lemma 4.2 (a)) then implies, upon
taking the limit r ↓ 0, that S+(x) ≤ L(u, x). To obtain the other inequality,
let [w, z] ⊂ U. By the local Lipschitz continuity of u, g(t) := u(w + t(z−w)) is
Lipschitz continuous in t ∈ [0, 1]. Fix t ∈ (0, 1) and observe that the definition
of S+ implies, for small h > 0,

g(t + h)− g(t)
h

=
u(w + (t + h)(z − w))− u(w + t(z − w))

h|z − w| |z − w|.

≤ S+(w + t(z − w), h|z − w|)|z − w|.

The inequality follows from the definition of S+(w+t(z−w), r). Sending h ↓ 0
we find

lim sup
h↓0

g(t + h)− g(t)
h

≤ S+(w + t(z − w))|z − w|

≤
(

sup
y∈[w,z]

S+(y)

)
|z − w|.

Thus

u(z)− u(w) = g(1)− g(0) ≤
(

sup
y∈[w,z]

S+(y)

)
|z − w|.

Interchanging z and w we arrive at

|u(z)− u(w)| ≤
(

sup
y∈[w,z]

S+(y)

)
|z − w|. (4.22)

Using also the monotonicity of S+(x, r) in r (Lemma 4.1), if δ > 0 is small,
we have, via (4.22),

Lip(u,Br

(
x0

)
) ≤ sup

x∈Br(x0)

S+(x) ≤ sup
x∈Br(x0)

S+(x, δ).

Now send r ↓ 0 and then δ ↓ 0 to find, via the continuity of S+(x, δ) for δ > 0,

L(u, x0) ≤ S+(x0, δ) ↓ S+(x0) as δ ↓ 0;

this completes the proof of (4.18).
To establish (4.19), note that L(u, x) = L(−u, x) and that S− for u is just

−S+ for −u and invoke (4.18).
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If u is differentiable at y and |w − y| = r, then

u(w) = u(y) + 〈Du(y), w − y〉+ o(r) =⇒

max
{w:|w−y|=r}

(
u(w)− u(y)

r

)
= |Du(y)|+ o(r)

r
.

Now use (4.18) to conclude that (4.21) holds.
We next show that (4.20) implies (4.1), and thus that u is∞-subharmonic.

Suppose that t → γ(t) is a C1 curve in U. Using (4.20) with γ(t) in place of
x, one easily checks, using the local Lipschitz continuity of t �→ u(γ(t)), that,
almost everywhere,∣∣∣∣ddt

u(γ(t))
∣∣∣∣ ≤ L(u, γ(t))|γ̇(t)|

≤ max
w∈Br(γ(t))

(
u(w)− u(γ(t))

r

)
|γ̇(t)| for r < dist (γ(t), ∂U).

(4.23)

It is convenient to rewrite (4.23) as

±d

dt
u(γ(t))+

|γ̇(t)|
r

u(γ(t))≤
(

max
w∈Br(γ(t))

u(w)
) |γ̇(t)|

r
for r<dist (γ(t), ∂U).

(4.24)

If x ∈ Br(y)� U and γ(t) = y + t(x− y), then dist (γ(t), ∂U) > r− t|x−
y|. Moreover, Br(y) ⊃ Br−t|x−y|(γ(t)) . We use this information in (4.24) to
deduce that

±d

dt
u(γ(t)) +

|x− y|
r − t|x− y|u(γ(t)) ≤

(
max

|w−y|≤r
u(w)

) |x− y|
r − t|x− y| . (4.25)

This simple differential inequality taken with the “+” sign and integrated over
0 ≤ t ≤ 1 yields (4.1).

Note that the generality of the “±” above is superfluous; it corresponds
to reversing the direction of γ.

Exercise 4.1. Perform the integration of (4.25) referred to just above.

Exercise 4.2. Show that the map C(U) � u �→ L(u, x) (x ∈ U is fixed) is
lower-semicontinuous but it is not continuous. Show, however, that the restric-
tion of this mapping to the set of ∞-subharmonic functions u is continuous
and (u, x) �→ L(u, x) is upper-semicontinuous.

Exercise 4.3. If u is ∞-subharmonic in U and u ≤ 0, use (4.20) to conclude
that

|Du(x)| ≤ − u(x)
dist (x, ∂U)

if u is differentiable at x ∈ U.
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Exercise 4.4. Show that (4.20) always holds with equality for cone functions
C(x) = a|x− z| with nonnegative slopes, so C is ∞-subharmonic on IRn and
(4.20) is sharp. Observe that (4.20) fails to hold for cones with negative slopes.

Exercise 4.5. Let u be ∞-subharmonic in U and u ≤ 0. It then follows from
(4.24) that

d

dt
u(γ(t)) +

|γ̇(t)|
dist (γ(t), ∂U)

u(γ(t)) ≤ 0. (4.26)

(i) If γ : [0, 1] → U , conclude that

u(γ(1)) ≤ exp
(
−
∫ 1

0

|γ̇(t)|
dist (γ(t), ∂U)

dt

)
u(γ(0)). (4.27)

(ii) Use (i) to show that if x, y ∈ Br(z) ⊂ BR(z) ⊂ U, then

e
|x−y|
R−r u(x) ≤ u(y). (4.28)

This is another Harnack inequality.
(iii) Let H = {(x1, . . . , xn) : xn > 0} be a half-space, ∆∞u ≥ 0 and u ≤ 0 in

H. Using (4.26), show that xn �→ xnu(x1, . . . , xn) is nonincreasing and
xn �→ u(x1, . . . , xn)/xn is nondecreasing on H. (Here one only needs to
check the sign of a derivative.)

(iv) Let u ≤ 0 be∞-subharmonic in BR(0). Use (4.26) to show that if x ∈ IRn,
then

t �→ u(tx)
R− t|x| is nonincreasing on 0 ≤ t|x| < R.

In particular, if x ∈ BR(0) , then u(x)/(R− |x|) ≤ u(0)/R.

Remark 4.2. See Sections 8 and 9 concerning citations for Exercises 4.3 and
4.5. Clearly, in Exercise 4.5 we are showing how to organize various things in
the literature in an new efficient way.

5 Existence and Uniqueness

We have nothing new to offer regarding existence, and as far as we know
Theorem 3.1 of [8] remains the state of the art in this regard. The result
allows U to be unbounded and a boundary function b which grows at most
linearly.

Theorem 5.1. Let U be an open subset of IRn, 0 ∈ ∂U, and b ∈ C(∂U). Let
A±, B± ∈ IR, A+ ≥ A−, and

A−|x|+ B− ≤ b(x) ≤ A+|x|+ B+ for x ∈ ∂U. (5.1)

Then there exists u ∈ C(U) which is ∞-harmonic in U, satisfies u = b on ∂U
and which further satisfies

A−|x|+ B− ≤ u(x) ≤ A+|x|+ B+ for x ∈ U. (5.2)
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The proof consists of a rather straight-foward application of the Perron
method, using the equivalence between ∞-harmonic and comparison with
cones. In the statement, the assumption 0 ∈ ∂U is made to simplify notation
and interacts with the assumption (5.1). A translation handles the general
case, but this requires naming a point of ∂U. The Perron method runs by
defining h, h : IRn → IR by

h(x)=sup{C(x) : C(x)=a|x− z|+ c, a < A−, c ∈ IR, z ∈ ∂U, C ≤ b on ∂U},
h(x)=inf{C(x) : C(x)=a|x− z|+ c, a > A+, c ∈ IR, z ∈ ∂U, C ≥ b on ∂U}.
and then showing that u below has the desired properties.

u(x) :=sup
{
v(x) :h ≤v≤ h and v enjoys comparison with cones from above

}
.

(5.3)
See [8] for details, or give the proof as an exercise.

Uniqueness has always been a sore spot for the theory, in the sense that it
took a long time for Jensen [36] to give the first, quite tricky, proof and then
another proof, still tricky, but more in line with standard viscosity solution
theory, was given by Barles and Busca [9]. A self-contained presentation of the
proof of [9], which does not require familiarity with viscosity solution theory,
is given in [8].

Here we give the skeleton of a third proof, from [28], in which unbounded
domains are treated for the first time. This time, however, we fully reduce the
result to standard arguments from viscosity solution theory, and we do not
render our discussion self-contained in this regard.

The result, proved first by Jensen and with a second proof by Barles and
Busca, is

Theorem 5.2. Let U be bounded, u, v ∈ C(U), ∆∞u ≥ 0 and ∆∞v ≤ 0 in U.
Then if u ≤ v on ∂U, we have u ≤ v in U.

We just sketch the new proof, as it applies to the case of a bounded domain.
The main point is an approximation result.

Proposition 5.1. Let U be a (possibly unbounded) subset of IRn and u ∈
C(U) be ∞-subharmonic. Let ε > 0,

Uε := {x ∈ U : L(u, x) ≥ ε} and Vε := {x ∈ U : L(u, x) < ε} . (5.4)

Then there is function uε with the properties (a)-(f) below:

(a)uε ∈ C(U) and uε = u on ∂U.
(b) uε = u on Uε.
(c) ε− |Duε| = 0 (in the viscosity sense) on Vε.
(d)L(uε, x) ≥ ε for x ∈ U.
(e) uε is ∞-subharmonic in U.
(f) uε ≤ u and limε↓0 uε = u.
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Remark 5.1. In (c), “viscosity sense” means that at a maximum (minimum)
x̂ of uε − ϕ we have ε − |Dϕ(x̂)| ≤ 0 (ε − |Dϕ(x̂)| ≥ 0). For example, −ε|x|
has this property on IRn, while ε|x| does not. This is consistent with the
conventions of [31].

The assertions (a)-(c) are really a prescription of how to construct uε,
which is then given by a standard formula. The trickiest point is (e), which
we discuss below. Full details are available in [28]; see also Barron and Jensen
[13], Proposition 5.1, where related observations were first made, although
with a different set of details; one does not find Proposition 5.1 in [13], but
there is an embedded proof of (e), different from the one we will sketch. In
fact, these authors show that if u is ∞-harmonic, then the uε above solves
max(−∆∞uε, ε−|Duε|) = 0; this variational inequality played a fundamental
role in [36] (see Section 8). However, they do not consider subsolutions nor
note the approximation property (f) in this case.

We first explain how Proposition 5.1 reduces Theorem 5.2 to a routine
citation of results in [31]. After that, we present our proof of the most subtle
point, (e), of Proposition 5.1; that discussion will also verify (d).

If we can show that

uε(x)− v(x) ≤ max
∂U

(uε − v) for x ∈ U (5.5)

then (f) allows us to replace uε by u and the right and Theorem 5.2 follows
in the limit ε ↓ 0. Thus, using (d), we may assume, without further ado, that

L(u, x) ≥ ε for x ∈ U. (5.6)

Some version of the following, which is the step that allows us to take
advantage of (5.6), is used in all comparison proofs for ∆∞ below, beginning
with the proof of Jensen [36]. This sort of nonlinear change of variables is
a standard tool in comparison theory of viscosity solutions. Let λ > 0 and
supU u < 1

2λ and then define w by

u(x) = G(w(x)) := w(x)− λ

2
w(x)2 and w(x) <

1
λ

. (5.7)

That is, w(x) = (1 − √1− 2λu)/λ. Clearly w → u uniformly as λ ↓ 0. It
therefore suffices to show that

w(x)− v(x) ≤ max
∂U

(w − v) for x ∈ U (5.8)

To this end, one formally computes that

0 ≤∆∞u =
〈
D2uDu,Du

〉
=

〈(
G′′(w)(Dw ⊗Dw) + G′(w)D2w

)
G′(w)Dw,G′(w)Dw

〉
= G′′(w)G′(w)2|Dw|4 + G′(w)3

〈
D2wDw,Dw

〉
,

(5.9)
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which implies, using (5.6), that

∆∞w =
〈
D2wDw,Dw

〉 ≥ −G′′(w)
G′(w)

|Dw|4

= −G′′(w)
G′(w)3

|Du|4 ≥ λ

(1− λw)3
ε4 ≥ κ > 0

(5.10)

for some κ. It is straightforward to check that these computations are valid
in the viscosity sense. It follows immediately from Theorem 3.1 in [31], used
in the standard way, that ∆∞w ≥ κ > 0 and ∆∞v ≤ 0 together imply that
w − v cannot have an interior local maximum, whence (5.8).

We now discuss key elements of the proof of Proposition 5.1. Note that
Vε is open by the upper-semicontinuity of L(u, ·) while Uε = U \ Vε is closed
relative to U.

It is known that any function solving ε− |Duε| = 0 in the viscosity sense
in an open set is ∞-subharmonic in that set. In fact, from the general theory
of viscosity solutions of first order equations, one has the formula

uε(x) = max
{y:|y−z|=r}

(uε(y)− ε|x− y|) for x ∈ Br(z), (5.11)

whenever Br(z) ⊂ Vε, which makes the claim evident (in our context, we could
use that the class of functions enjoying comparison with cones from above is
closed under taking supremums in place of the analogous statement about
viscosity subsolutions). The function uε is produced by a similar standard
formula, with ∂Vε in place of ∂Br(z) and the distance interior to Vε in place
of |x− y| (which is the distance from x to y interior to Br(z)).

In the end, given the tools in hand, the main point one needs to establish
in order to prove (e) is this: assuming that we have constructed uε, then

x ∈ (∂Vε) ∩ U =⇒ L(uε, x) ≤ L(u, x). (5.12)

Since x ∈ Uε ⊃ (∂Vε)∩U, we have L(u, x) ≥ ε, which renders the ε’s appear-
ing in estimates appearing below harmless as regards establishing (5.12).

To establish (5.12), it suffices to show that if [y, z] ⊂ Br(x) � U, then

|uε(z)− uε(y)| ≤ Lip(u,Br(x))|y − z|, (5.13)

for then Lip(uε, Br(x)) ≤ Lip(u,Br(x)).
First note that if any open interval (y, z) ⊂ Vε, then |Duε| ≤ ε a.e. on the

open set Vε implies
|uε(z)− uε(y)| ≤ ε|y − z|. (5.14)

In particular, if [y, z] ⊂ Vε, then (5.13) holds. If [y, z] ∩ Uε is not empty, we
proceed as follows. The set Uε is closed in U, so [y, z]∩Uε is closed and there
exists a least t0 ∈ [0, 1] and a greatest t1 ∈ [0, 1] such that

x0 := y + t0(w − y) ∈ Uε, x1 := y + t1(w − y) ∈ Uε. (5.15)
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Then

|uε(z)− uε(y)| = |uε(z)− uε(x1) + uε(x1)− uε(x0) + uε(x0)− uε(y)|
= |uε(z)− uε(x1) + u(x1)− u(x0) + uε(x0)− uε(y)|
≤ |uε(z)− uε(x1)|+ |u(x1)− u(x0)|+ |uε(x0)− uε(y)|
≤ |uε(z)− uε(x1)|+ Lip(u,Br(x))|x1 − x0|+ |uε(x0)− uε(y)|

(5.16)

Now each interval [y, x0) and (x1, z] is either empty (as is the case, for
example, for [y, x0) if y = x0) or lies entirely in Vε. Using (5.14) twice, with
z = x0 and then with y = x1,

|uε(z)− uε(x1)| ≤ ε|z − x1|, |uε(x0)− uε(y)| ≤ ε|x0 − y|.
Combining this with (5.16), (5.13) follows from

|z − y| = |z − x1|+ |x1 − x0|+ |x0 − y|.
We continue. Let uε be as in the proposition and x ∈ U. According to

Lemma 4.3, if we can show that

L(uε, x) ≤ max
{w:|w−z|≤r}

(
uε(w)− u(x)

r

)
(5.17)

for r < dist (x, ∂U), we are done. If x ∈ Uε, then (5.17) holds. Indeed, then,
using (5.12) if necessary (i.e, if x ∈ ∂Vε), we have

L(uε, x) ≤ L(u, x) ≤ u(wr)− u(x)
r

=
uε(wr)− uε(x)

r
(5.18)

for some wr, |wr − x| = r, which satisfies L(u,wr) ≥ L(u, x) ≥ ε, so wr �∈ Vε

and so u(wr) = uε(wr). Hence (5.17) holds if x ∈ Uε.
To handle the case x ∈ Vε, one first observes that (5.11) implies that if

Br(z) ⊂ Vε then
max

y∈Br(z)
uε(y) = uε(z) + εr, (5.19)

and L(uε, z) = ε. Recalling L(u, x) ≥ ε for x ∈ Uε, between (5.18) and (5.19),
we learn that for every z ∈ U there is an rz > 0 such that

max
w∈Br(z)

uε(w) ≥ uε(z) + εr for 0 ≤ r ≤ rz.

This implies, with a little continuation argument, that

ε ≤ max
{w:|w−z|≤r}

(
uε(w)− uε(x)

r

)
for r < dist (x, ∂U),

and we are done.

Exercise 5.1. Provide the little continuation argument.
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6 The Gradient Flow and the Variational Problem
for ‖|Du|‖L∞

Let us note right away that if u is absolutely minimizing for F∞, then it is
absolutely minimizing for Lip.

Proposition 6.1. Let u ∈ C(U) be absolutely minimizing for F∞, that is,
whenever V � U, v ∈ C(V ) and u = v on ∂V, then F∞(u, V ) ≤ F∞(v, V ).
Then u is absolutely minimizing for Lip (and hence ∞-harmonic).

Proof. One proof was already indicated in Exercise 2.3. Here is another. Let
v ∈ C(V ) and u = v on ∂V. Assume Lip(v, ∂V ) < ∞ and replace v by
MW∗(v|∂V ) so that we may assume that Lip(v, V ) = Lip(v, ∂V ). Then,
by assumption, F∞(u, V ) ≤ F∞(v, V ), which is at most Lip(v, V ). Now use
Exercise 6.1 below.

Exercise 6.1. Show that if u ∈ C(V ) and F∞(u, V ) ≤ Lip(u, ∂V ), then
Lip(u, V ) = Lip(u, ∂V ).

The main result of this section is the tool we will use to prove the converse
to the proposition above.

Proposition 6.2. Let u be∞-subharmonic in U, x ∈ U. Then there is a T > 0
and Lipschitz continuous curve γ : [0, T ) → U with the following properties:

(i) γ(0) = x

(ii) |γ̇(t)| ≤ 1 a.e. on [0, T ).
(iii) L(u, γ(t)) ≥ L(u, x) on [0, T ).
(iv) u(γ(t)) ≥ u(x) + tL(u, x) on [0, T ).
(v) t �→ u(γ(t)) is convex on [0, T ).
(vi) Either T = ∞ or lim

t↑T
γ(t) ∈ ∂U.

(6.1)

The motivation for this result is contained in Exercises 2.4–2.7. We are
able, in the general case, to obtain curves with similar properties to those
discussed in the exercises.

Before proving this result, let us give an application.

Theorem 6.1. Let u ∈ AML(U). Let V � U, v ∈ C(V ) and u = v on ∂V.
Then supV L(u, x) ≤ supV L(v, x). In other words, if u is ∞-harmonic, then
it is absolutely minimizing for F∞.

Proof. Under the assumptions of the theorem, if the conclusion does not hold,
then there exists z ∈ V and δ > 0 such that L(u, z) ≥ L(v, x) + δ for x ∈ V.
Let γ : [0, T ) → V be the curve provided by Proposition 6.2 which starts at z
(regarding V as the U of the proposition). Since u is bounded on V , it follows
from (iv), (vi) of the proposition that T < ∞ and limt↑T γ(t) =: γ(T ) ∈ ∂V.
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By (iii) of the proposition, L(u, γ(t)) ≥ L(u, z) > supV L(v, x) and so, using
(ii), almost everywhere,

d

dt
v(γ(t)) ≤ L(v, γ(t)) < L(u, z).

Integrating over [0, T ] and using (ii) of the proposition again,

v(γ(T ))− v(z) < TL(u, z) ≤ u(γ(T ))− u(z).

Now −u is also ∞-subharmonic and it is related to −v as u was to v, so there
is another curve γ̃(t) : [0, T̃ ) → V with γ̃(T̃ ) ∈ ∂V such that

−v(γ̃(T̃ )) + v(z) < T̃L(u, z) ≤ −u(γ̃(T̃ )) + u(z).

Adding the two inequalities yields

v(γ(T ))− v(γ̃(T̃ )) < u(γ(T ))− u(γ̃(T̃ )),

which contradicts u = v on ∂U.

Proof of Proposition 6.2
The main idea is to build a discrete version of the desired γ by using the

“increasing slope estimate,” Lemma 4.1 (d). We may assume that L(u, x) > 0,
for otherwise we may take γ(t) ≡ x. Fix δ, 0 < δ < dist (x0, ∂U). Form a

sequence
{

xj
δ

}J

j=0
⊂ U is according to x0

δ := x and

|xj+1
δ − xj

δ| = δ, u(xj+1
δ ) = max

Bδ(xj
δ)

u for j = 1, . . . , J − 1. (6.2)

We allow J to be finite or infinite. The value of J is determined by checking,
after the successful determination of some xj , if Bδ(x

j
δ) ⊂ U or not. If so, then

xj+1
δ is determined and j + 1 ≤ J. If not, then J = j, and we stop. Clearly,

J is at least the greatest integer less than dist (x0, ∂U)/δ. According to the
increasing slope estimate (4.4), we then have

S+(xj+1
δ ) ≥ u(xj+1

δ )− u(xj
δ)

δ
= S+(xj

δ, δ) ≥ S+(xj
δ); (6.3)

Thus S+(xj
δ) ≥ S+(x0

δ) = S+(x) for j = 0, 1, . . . J − 1 and (recall x0
δ = x)

u(xj+1
δ )− u(xj

δ) ≥ δS+(x0
δ) =⇒ u(xj

δ)− u(x) ≥ jδS+(x). (6.4)

Form the piecewise linear curve defined by γδ(0) = x and

γδ(t) = xj
δ + (t− jδ)

(
xj+1 − xj

δ

)
on jδ ≤ t ≤ (j + 1)δ, j = 0, . . . , J − 1.
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For j = 0, 1, . . . , J we have, by the construction,

(i) γδ(0) = x

(ii) |γ̇δ(t)| = 1 a.e. on [0, Jδ).
(iii) L(u, γδ(jδ)) ≥ L(u, x).
(iv) u(γδ(jδ)) ≥ u(x) + jδL(u, x).

(6.5)

By construction, δJ ≥ dist (x, ∂U) − δ. By compactness, there is then
a sequence δk ↓ 0 and a γ : [0,dist (x, ∂U)) → U such that γδk

(t) → γ(t)
uniformly on compact subsets of [0,dist (x, ∂U)). Clearly dist (γ(t), ∂U) ≥
dist (x, ∂U) − t. Moreover, if 0 ≤ t < dist (u, ∂U), there exist jk such that
jkδk → t. Passing to the limit in the relations (6.5) with δ = δk and j = jk,
using the upper-semicontinuity of L(u, ·), yields all of the relations of (6.1)
except (v), (vi). To see that (v) holds, note that the piecewise linear function
gk(t) whose value at jδk is u(γδk

(jδk)) is convex by (6.3). Moreover, by the
continuity of u and the uniform convergence of γδk

to γ, gk converges to
u(γ(t)), which is therefore convex.

The property (vi) can now be obtained by the standard continuation argu-
ment of ordinary differential equations. There is a curve γ with the properties
of (6.1) defined on a maximal interval of existence of the form [0, T ). Assume
now that T < ∞ and limt↑T γ(t) =: γ(T ) and γ(T ) /∈ ∂U. The proof concludes
by arguing that then γ was not maximal. Indeed, clearly

lim
t↑T

u(γ(T ))− u(γ(t))
T − t

≤ L(u, γ(T )), (6.6)

so if we use the construction above, starting at γ(T ), to extend γ to a curve
γ̃ : [0, T + dist (γ(T ), ∂U)) → U, we obtain a strict extension of γ with all the
right properties, producing a contradiction. The property (6.6), together with
u(γ̃(t)) ≥ (t− T )L(u, γ(T )) + u(γ(T )) for t ≥ T and the convexity of u(γ̃(t))
on T ≤ t < T + dist (γ(T ), ∂U) is what guarantees that u(γ̃(t)) is convex; it
all glues together right, just as in ode. �

Remark 6.1. All of the conclusions which can be obtained using the curves γ
of Proposition 6.2 can also be obtained using the discrete ingredients from
which they are built, extended “maximally.” See [29], [8]. However, it is con-
siderably more elegant to use curves instead of the discrete versions. Barron
and Jensen first constructed analogous curves in [13]; however, the technical
surroundings in [13] are a bit discouraging from the point of view of extract-
ing this information. In addition, they do not pay attention to the maximality
and there is a oversight in their proof of (v) (we learned to include (v) in the
list of properties from [13]).

Exercise 6.2. Let u ∈ AML(U) ∩ C(U) and U be bounded. Show that
Lip(u,U) = Lip(u, ∂U). Hint: Exercise 6.1.
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Exercise 6.3. Let u, v ∈ C(U) and U be bounded. If u is ∞-harmonic in U
and u = v on ∂U, show that F∞(u,U) ≤ F∞(v, U). That is, u solves the
minimum problem for F∞ with b = u|∂U .

7 Linear on All Scales

7.1 Blow Ups and Blow Downs are Tight on a Line

The information in this section remains the main evidence we have regarding
the primary open problem in the subject: are∞-harmonic functions C1? Savin
has proved that they are in the case n = 2, using the information herein, in
the form of Exercise 7.3, which is a version of Proposition 7.1 (a). His paper
also requires Proposition 7.1 (b), which is original here, in one argument in
which (a) is erroneously cited in support of the argument.

Let ∆∞u ≤ 0 in U, x0 ∈ U and r > 0. Then

vr(x) :=
u(rx + x0)− u(x0)

r
(7.1)

satisfies
Lip(vr, BR(0)) = Lip(u,BrR

(
x0

)
) (7.2)

as is seen by a simple calculation. We are interested in what sort of functions
are subsequential limits as r ↓ 0 and r ↑ ∞ (in which case we need U = IRn).

Proposition 7.1.

(a) Let u be ∞-harmonic on B1

(
x0

)
. Then the set of functions {vr : 0 < r <

1/(2R)} is precompact in C(BR(0)) for each R > 0 and if rj ↓ 0 and
vrj

→ v locally uniformly on IRn, then v(x) = 〈p, x〉 for some p satisfying
|p| = S+(x0).

(b) Let u be ∞-harmonic on IRn and Lip(u, IRn) < ∞. Then the set of func-
tions {vr : r > 0} is precompact in C(IRn) and if Rj ↑ ∞ and vRj

→ v
locally uniformly on IRn, then v(x) = 〈p, x〉 for some p satisfying |p| =
Lip(u, IRn).

Proof. We prove (b), which is new, and relegate (a), which is known, to Ex-
ercise 7.1 below. Let the assumptions of (b) hold. First we notice that

Lip(u, IRn) = lim
R→∞

maxBR
u

R
. (7.3)

Indeed, for every x ∈ IRn,

L(u, x) = S+(x) ≤ max
w∈BR(x)

u(w)− u(x)
R

≤ max
w∈BR+|x|(0)

u(w)
R

− u(x)
R

→ lim
R→∞

maxBR
u

R

(7.4)
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as R →∞. This proves (7.3) with “≤” in place of the equal sign. Letting xR

be a maximum point of u relative to ∂BR(0) , we also have

maxBR
u

R
=

u(xR)− u(0)
R

+
u(0)
R

≤ Lip(u, IRn) +
u(0)
R

→ Lip(u, IRn),

which provides the other side of (7.3).
Now let r = Rj where Rj ↑ ∞. We set x0 = 0 and now denote vj := vRj

.
Clearly Lip(vj , IRn) ≤ Lip(u, IRn). Passing to a subsequence for which vj → v
locally uniformly, we claim that v is linear. Clearly v(0) = 0. As u is ∞-
subharmonic, for R > 0 there is a unit vector xj

R such that

vj(Rxj
R) = max

BR(0)
vj =

maxBRjR
u− u(0)

Rj
.

Passing to a subsequence along which xj
R → x+

R ∈ ∂B1(0) and taking the limit
j →∞ above, we have, via (7.3),

v(Rx+
R) = RLip(u, IRn) ≥ RLip(v, IRn).

As u is also ∞-superharmonic, there is also a unit vector x−
R, such that

v(Rx−
R) = −RLip(u, IRn) ≤ −RLip(v, IRn).

It follows that

2RLip(v, IRn) ≤ 2RLip(u, IRn) = v(x+
R)− v(x−

R) ≤ RLip(v, IRn)|x+
R − x−

R|.
If Lip(u, IRn) = 0, then v ≡ 0 and we are done. If Lip(u, IRn) > 0, then
we deduce that |x+

R − x−
R| = 2, which implies that x+

R = −x−
R, as well as

Lip(v, IRn) = Lip(u, IRn). In particular, the points x+
R, x−

R are unique. By
(2.10), v is linear on each segment [Rx−

R, Rx+
R], and this implies, together

with the uniqueness, that x−
R, x+

R = ω is a unit vector independent of R.
Altogether we have

v(tω) = tLip(v, IRn) = tLip(u, IRn).

The assertion (b) now follows from Section 7.2 below.

Exercise 7.1. Prove, by similar arguments, (a) of the proposition.

Definition 7.1. In the case (a) of Proposition 7.1, if rj ↓ 0 and vrj
→ 〈p, x〉

on IRn, we call p a derivate of u at x0. Similarly, in case (b), one defines
“derivates of u” at ∞.

Exercise 7.2. Show, in case (a) of Proposition 7.1, that if the set of derivates
of u at x0 consists of a single point, then u is differentiable at x0. Conclude
that if S+(x0) > 0, then u is differentiable at x0 if and only if

1 = |ωr| and u(x0 + rωr) = max
Br(x0)

u,

then limr↓0 ωr exists.
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Exercise 7.3. Use (a) of Proposition 7.1 to show that

lim
r↓0

min
|p|=S+(x0)

max
|x|≤r

∣∣∣∣u(x0 + x)− u(x0)− 〈p, x〉
r

∣∣∣∣ = 0.

7.2 Implications of Tight on a Line Segment

Please forgive us the added generality we are about to explain. The costs
aren’t large, and we wanted to share this little proof. It is a straightforward
generalization and extension of a proof learned from [3] in the Euclidean case.
However, the reader may just assume that | · |∗ = | · | and F (x) = x/|x| if
x �= 0 below to restrict to the Euclidean case.

In this section we use the notation |x|, as usual, to denote the norm of
x ∈ IRn. However, the norm need not be the Euclidean norm. However, we do
assume that x → |x| is differentiable at any x �= 0. This is equivalent to the
dual norm, denoted by | · |∗, being strictly convex, where

|x|∗ := max {〈x, y〉 : |y| ≤ 1} (7.5)

and 〈x, y〉 denotes the usual inner-product of x, y ∈ IRn. The duality map F
(from (IRn, | · |) to (IRn, | · |∗)) is defined by{

|F (x)|∗ = 1 and |x| = 〈x, F (x)〉 if x �= 0
F (0) = {y : |y|∗ ≤ 1} .

(7.6)

When x �= 0 there is only one vector with the properties assigned to F (x)
because of the strict convexity of | · |∗; moreover, if x �= 0,

|x + y| = |x|+ 〈y, F (x)〉+ o(y) as y → 0. (7.7)

This follows from the relation

d

dt
|x + ty| = 〈y, F (x + ty)〉 (7.8)

when x + ty �= 0 and continuity of F away from 0.

Lemma 7.1. Let U ⊂ IRn be open and u : U → IR satisfy

|u(x)− u(y)| ≤ |x− y| for x, y ∈ U. (7.9)

Let I be an open interval containing 0, x0 ∈ U, p ∈ IRn, |p| = 1 and x0+tp ∈ U
for t ∈ I. Let

u(x0 + tp) = u(x0) + t for t ∈ I. (7.10)

Then:

(a) u is differentiable at x0 and Du(x0) = F (p).
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(b) If also I = IR, then u is the restriction to U of the affine function

v(x0 + x) = u(x0) + 〈x, F (p)〉
on IRn.

Proof. We may assume that x0 = 0 and u(x0) = 0 without loss of generality.
Let P be “projection” along p;

Px = 〈x, p∗〉 p where p∗ = F (p).

For small x ∈ U and small r ∈ IR, (7.9) and (7.10) yield

(i) 〈x, p∗〉+ r − |(x− Px)− rp| = u(Px + rp)− |(x− Px)− rp| ≤ u(x),
(ii) u(x) ≤ u(Px + rp) + |(x− Px)− rp| = 〈x, p∗〉+ r + |(x− Px)− rp|.

(7.11)

These relations are valid whenever 〈x, p∗〉 ± r ∈ I and x ∈ U. Rearranging
(7.11) yields

r − |(x− Px) + rp| ≤ u(x)− 〈x, p∗〉 ≤ r + |(x− Px) + rp|. (7.12)

We seek to estimate the extreme expressions above. To make the left-most
extreme small, we take r > 0. Then, by differentiability of |·|,

|(x− Px)− rp| − r = r

(
|p− x− Px

r
| − 1

)
= r

(
|p| − 1

r
〈x− Px, p∗〉 − 1

)
+ ro

( |x− Px|
r

)
= ro

( |x− Px|
r

)
.

(7.13)

Here we used |p| = 1 and 〈x− Px, p∗〉 = 〈x, p∗〉 − 〈x, p∗〉 〈p, p∗〉 = 0. We use
(7.13) two ways. First, if r is bounded and bounded away from 0, we have

ro
( |x− Px|

r

)
= o(|x− Px|) = o(|x|) as x→ 0.

To make the right-most extreme of (7.12) small, we take r < 0 and proceed
similarly. Returning to (7.12), this verifies the differentiability of u at 0 and
Du(0) = p. On the other hand, if we may send |r| → ∞, the extremes of
(7.13) tend to 0. Returning to (7.12), this verifies u(x) = 〈x, p∗〉 in U.

Exercise 7.4. Let | · | be the Euclidean norm. Let K be a closed subset of
IRn. Suppose z ∈ IRn \K and

y ∈ K and |w − y| ≤ |w − z| for z ∈ K.

Show that x �→ dist (x,K) is differentiable at each point of [y, w) and compute
its derivative. Give an example where differentiability fails at w.
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Exercise 7.5. Let U = IRn \ ∂U. Let b ∈ C(∂U) and L := Lip(b, ∂U) < ∞.
Show that if x ∈ U and MW∗(b)(x) = MW ∗(b)(x), then both MW∗(b) and
MW∗(b) are differentiable at x. Show that MW∗(b) =MW ∗(b) if and only if
they are both in C1(U) and satisfy the eikonal equation |Du| = L in U. Hint:
For the first part, show that x lies in the line segment [y, z] when y, z ∈ ∂U
and b(y)− L|y − x| = b(z) + L|z − x|.

8 An Impressionistic History Lesson

The style of this section is quite informal; we seek to convey the flow of things,
hopefully with enough clarity, but without distracting precision. It is assumed
that the reader has read the introduction, but not the main text of this article.
We do include some pointers, often parenthetical, to appropriate parts of the
main text.

8.1 The Beginning and Gunnar Aronosson

It all began with Gunnar Aronsson’s paper 1967 paper [3]. The functional
Lip is primary in this paper, but two others are mentioned, including F∞.
Aronsson observed that Lip = F∞ if U is convex, while this is not generally
the case if U is not convex.

The problem of minimizing F = Lip subject to a Dirichlet conditions was
known to have a largest and a smallest solution, given by explicit formulas
(MW∗, MW ∗ of (2.2)), via the works of McShane and Whitney [44], [51].
Aronsson derived, among other things, interesting information about the set
on which these two functions coincide (Exercise 7.5)) and the derivatives of any
solution on this “contact set”. In particular, he established that minimizers
for Lip are unique iff there is a function u ∈ C1(U) ∩ C(U) which satisfies

|Du| ≡ Lip(b, ∂U) in U, u = b on ∂U,

which is then the one and only solution. This is a very special circumstance.
Moreover, in general, the McShane-Whitney extensions have a variety of un-
pleasant properties (Exercise 2.1). The following question naturally arose: is it
possible to find a canonical Lipschitz constant extension of b into U that would
enjoy comparison and stability properties? Furthermore, could this special
extension be unique once the boundary data is fixed? The point of view was
that the problem was an “extension” problem - the problem of extending the
boundary data b into U without increasing the Lipschitz constant, hopefully
in a manner which had these other good properties. Aronsson’s - eventually
successful - proposal in this regard was to introduce the class of absolutely
minimizing functions for Lip, which generalized notions already appearing in
works of his in one dimension ([1], [2]). Aronsson further gave the outlines of
an existence proof not so different from the one sketched in Section 5, but
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using the McShane-Whitney extensions rather than cones. This required the
boundary data to be Lipschitz continuous (in contrast with Theorem 5.1). He
could not, however, prove the uniqueness or stability (Theorem 5.2).

Thinking in terms of F∞ = Lip on convex sets, Aronsson was led to the
now famous pde:

∆∞u =
n∑

i,j=1

uxi
uxj

uxixj
= 0.

He discovered this by heuristic reasoning: first, by standard reasoning, if
1 < p, then

u minimizes Fp(u,U) := ‖|Du|‖Lp(U) dx among functions

satisfying u = b on ∂U iff u = b on ∂U and
1

p− 2
|Du|2∆u + ∆∞u = 0,

provided that Fp(u,U) < ∞.
Letting p → ∞ yields ∆∞u = 0. Moreover, Fp(u,U) → F∞(u,U) if

|Du| ∈ L∞(U).
Aronsson further observed that for u ∈ C2, ∆∞u = 0 amounts to the

constancy of |Du| on the lines of the gradient flow (Section 2.4). He went on
to prove that if u ∈ C2(U), then u is absolutely minimizing for Lip in U iff
∆∞u = 0 in U (Section 2.4).

With the technology of the times, this is about all anyone could have
proved. The gaps between ∆∞u = 0 being the “Euler equation” if u ∈ C2

and his existence proof, which produced a function only known to be Lipschitz
continuous, could not be closed at that time. In particular, Aronsson already
knew that classical solutions of the eikonal equation |Du| = constant, which
might not be C2, are absolutely minimizing. However, he offered no satisfac-
tory way to interpret them as solutions of ∆∞u = 0. Moreover, the question
of uniqueness of the function whose existence Aronsson proved would be un-
settled for 26 years!

Aronsson himself made the gap more evident in the paper [4] in which
he produced examples of U, b for which he could show that the problem had
no C2 solution. This work also contained a penetrating analysis of classical
solutions of the pde. However, all of these results are false in the generality of
viscosity solutions of the equation (see below), which appear as the perfecting
instrument of the theory.

The best known explicit irregular absolutely minimizing function - outside
of the relatively regular solutions of eikonal equations - was exhibited again
by Aronsson, who showed in the 1984 paper [6] that u(x, y) = x4/3 − y4/3 is
absolutely minimizing in R2 for Lip and F∞ (Exercises 2.6, 2.7).

Most of the interesting results for classical solutions in 2 dimensions proved
by Aronsson are falsified by this example. These include: |Du| is constant on
trajectories of the gradient flow, global absolutely minimizing functions are
linear, and Du cannot vanish unless u is locally constant. A rich supply of
other solutions was provided as well.
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8.2 Enter Viscosity Solutions and R. Jensen

Let u ∈ USC(U) (the upper semicontinuous functions on U). Then u is a
viscosity subsolutionof∆∞u = 0(equivalently, a viscosity solutionof∆∞u ≥ 0)
in U if: whenever ϕ ∈ C2(U) and u− ϕ has a local maximum at x̂ ∈ U, then
∆∞ϕ(x̂) ≥ 0.

Let u ∈ LSC(U). Then u is a viscosity supersolution of ∆∞u = 0 (equiv-
alently, a viscosity solution of ∆∞u ≤ 0) in U if whenever ϕ ∈ C2(U) and
u− ϕ has a local minimum at x̂ ∈ U, then ∆∞ϕ(x̂) ≤ 0.

The impetus for this definition arises from the standard maximum prin-
ciple argument at a point x̂ where u − ϕ has a local maximum. Let D2u =(
uxi,xj

)
be the Hessian matrix of the second order partial derivatives of u.

Then

∆∞u =
〈
D2uDu,Du

〉 ≥ 0, Du(x̂) = Dϕ(x̂) and D2u(x̂) ≤ D2ϕ(x̂)

=⇒ 〈
D2ϕ(x̂)Dϕ(x̂), Dϕ(x̂)

〉 ≥ 0.

This puts the derivatives on the “test function” ϕ via the maximum principle,
a device used by L. C. Evans in 1980 in [32].

The theory of viscosity solutions of much more general equations, born in
first order case the 1980’s, and to which Jensen made major contributions,
contained strong results of the form:

Comparison Theorem: Let u,−v ∈ USC(U),
G(x, u,Du,D2u) ≥ 0 and G(x, v,Dv,D2v) ≤ 0 in U

in the viscosity sense, and u ≤ v on ∂U. Then u ≤ v in U.

The developers of these results in the second order case were Jensen, Ishii,
Lions, Souganidis, · · · . They are summarized in [31], which contains a detailed
history. In using [31], note that we are thinking here of G being an increasing
function of the Hessian, D2u, not a decreasing function. Hence solutions of
G ≥ 0 are subsolutions.

Of course, there are structure conditions needed on G in order that the
Comparison Theorem hold in addition to standard maximum principle en-
abling assumptions, and these typically imply that the solutions of G ≥ 0
perturb to a solution of G > 0 or that some change of variables such as
u = g(w) produces a new problem with this property. This had not been not
accomplished in any simple way for ∆∞, except at points where “Du �= 0” un-
til the method explained in Section 5, which gives an approximation procedure
for subsolutions which produces subsolutions with nonvanishing gradients, was
developed. This is coupled with a change of variable such as u = w − λ

2 w2,

under which ∆∞u ≥ 0 implies ∆∞w ≥ λ
1−λw |Dw|4.

Moreover, Hitoshi Ishii introduced the Perron method in the theory of
viscosity solutions, which provides “existence via uniqueness,” that is, roughly
speaking,
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Existence Theorem:When the Comparison Theorem is true and there exist
u, v satisfying its assumptions, continuous on U and satisfying

u = b = v on ∂U
then there exists a (unique) viscosity solution u ∈ C(U) of

0 ≤ G(x, u,Du,D2u) ≤ 0 in U and u = b on ∂U

See Section 4 of [31].
We wrote 0 ≤ G ≤ 0 above to highlight that a viscosity solution of G = 0

is exactly a function which is a viscosity solution of both G ≤ 0 AND G ≥ 0;
there is no other notion of G = 0 in the viscosity sense.
NOTE: hereafter all references to “solutions”, “subsolutions”, ∆∞u ≤ 0, etc,
are meant in the viscosity sense!

As mentioned, in 1993 R. Jensen proved, in [36], that

(J1) Absolute minimizers u for F∞ are characterized by ∆∞u = 0.
(J2) The comparison theorem holds for G = ∆∞.

Jensen’s proof of the comparison theorem was remarkable. In order to deal
with the difficulties associated with points where Du = 0, he used approxi-
mations via the “obstacle problems”

max
{
ε− |Du+|,∆∞u+

}
= 0, min

{|Du−| − ε,∆∞u−} = 0!

These he “solved” by approximation with modifications of Fp and then letting
p →∞, although they are amenable to the general theory discussed above. It
is easy enough to show that

u− ≤ u ≤ u+

when ∆∞u = 0 and u = u+ = u− = b on ∂U. Comparison then followed from
an estimate, involving Sobolev inequalities, which established u+−u− ≤ κ(ε)
where κ(0+) = 0.

The first assertion of (J1) was proved directly, via a modification of Aron-
sson’s original proof, while the “conversely” was a consequence of existence
and uniqueness. The relation between “absolutely minimizing” relative to F∞
and relative to Lip had become even more murky. Jensen referred as well to
another “F”, as had Aronsson earlier, namely the Lipschitz constant relative
to the “interior distance” between points:

dist U (x, y) = infimum of the lengths of paths in U joining x and y

and the ordinary Lipschitz constant did not play a role in his work.
Thus, after 26 years, the existence of absolutely minimizing functions as-

suming given boundary values was known (Aronsson and Jensen), and, at
last, the uniqueness (Jensen).

Jensen’s work generated considerable interest in the theory. Among other
contributions was an lovely new uniqueness proof by G. Barles and J. Busca
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in [9]. Roughly speaking, this proof couples some penetrating observations to
the standard machinery of viscosity solutions to reach the same conclusions
as Jensen, but without obstacle problems or integral estimates. This was the
state of the art until the method of Section 5 was deployed.

After existence and uniqueness, one wants to know about regularity.

8.3 Regularity

Aronsson’s example, u(x, y) = x4/3−y4/3, sets limits on what might be true.
The first derivatives of u are Hölder continuous with exponent 1/3; second
derivatives do not exist on the lines x = 0 and y = 0. It is still not known
whether or not every ∞-harmonic function has this regularity.

Modulus of Continuity

The first issue is the question of a modulus of continuity for absolutely
minimizing functions. In Aronsson’s framework, he dealt only with locally
Lipschitz continuous functions. In our Lemma 4.1 we establish the local
Lipschitz continuity of USC∞-harmonic functions via comparison with cones.
Jensen also gave similar arguments to establish related results. See also [19].
As Lipschitz continuous functions are differentiable almost everywhere, so are
∞-harmonic functions.

Harnack and Liouville

Aronsson’s original “derivation” of ∆∞u = 0 as the “Euler equation” corre-
sponding to the property of being absolutely minimizing and Jensen’s exis-
tence and uniqueness proofs closely linked letting p→∞ in the problem

∆pup := |Du|p−4
(|Du|2∆u + (p− 2)∆∞u

)
= 0 in U

and up = b on ∂U with our problem

∆∞u = 0 in U and u = b on ∂U.

With this connection in mind and using estimates learned from the theory of
∆p, P. Lindqvist and J. Manfredi [42] proved that if u ≥ 0 is a variational
solution of ∆∞u ≤ 0 (i.e, a limit of solutions of ∆pup ≤ 0), then one has the
Harnack Inequality

u(x) ≤ e
|x−y|
R−r u(y) for x, y ∈ Br(x0) ⊂ BR(x0) ⊂ U.

They derived this from the elegant Gradient Estimate

|Du(x)| ≤ 1
dist (x, ∂U)

(u(x)− inf
U

u),
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valid at points where Du(x) exists. (Our equation (4.20) is more precise and
the proof is considerably more elementary.) The appropriate Harnack inequal-
ity is closely related to regularity issues for classes of elliptic and parabolic
equations, which is one of the reasons to be interested in it. However, so far,
it has not played a similar role in the theory of ∆∞. In particular, note that
the gradient estimate implied the Harnack inequality in the reasoning of [42];
estimating the gradient came first.

The same authors extended this result, a generalization of an earlier result
of Evans for smooth functions, to all∞-superharmonic functions, ie, solutions
of ∆∞u ≤ 0, in [43], by showing that ALL ∞-superharmonic functions are
variational. This perfected the relationship between ∆p,Fp and ∆∞,F∞. By
the way, the original observation that if solutions of ∆pup = 0 have a limit
up → u as p → ∞, then ∆∞u = 0 is due to Bhattacharya, Di Benedetto
and Manfredi, [24] (1989). This sort of observation is a routine matter in the
viscosity solution theory; there is much else in that paper. One point of concern
is the relationship between the notions of viscosity solutions and solutions in
the sense of distributions for the p-Laplace equation. See Juutinen, Lindqvist
and Manfredi, [39] and Ishii, [35].

Lindqvist and Manfredi also showed that

(LM1) If u(x)− v(x) ≥ min
∂V

(u− v) when ∆∞v = 0, and x ∈ V ⊂⊂ U,

then ∆∞u ≤ 0.

(LM2) If ∆∞u = 0 in IRn and u is bounded below, then u is constant.

Comparison with Cones, Full Born

Subsequently, Crandall, Evans and Gariepy [29] showed that it suffices to take
functions of the form

v(x) = a|x− z|, also known as a “cone function”,

where z �∈ V, in (LM1), and introduced the terminology “comparison with
cones” (Definition 2.2 and Theorem 2.1).

The assumptions of (LM1) with v a cone function as above is called com-
parison with cones from below; the corresponding relation for ∆∞u ≥ 0 is
called comparison with cones from above. When u enjoys both of these, it
enjoys comparison with cones. All the information contained in ∆∞u ≤
0,∆∞u ≤ 0,∆∞u = 0 is contained in the corresponding comparison with
cones property.

Also proved in [29], with a 2-cone argument, was the generalization

∆∞u ≤ 0 and u(x) ≥ a + 〈p, x〉 in IRn =⇒ u(x) = u(0) + 〈p, x〉 .
of (LM2). With this generality, it follows that if ∆∞u ≤ 0, ϕ ∈ C1 and x̂ is a
local minimum of u−ϕ, then u is differentiable at x̂. At last: a result asserting
the existence of a derivative at a particular point.
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More importantly, it had become clear that approximation by ∆p is prob-
ably not the most efficient path to deriving properties of ∞-sub and super
harmonic and ∞-harmonic functions. Of course, comparison with cones had
already been used by Jensen to derive Lipschitz continuity, and was used
contemporaneously with [29] by Bhattacharya [19], etc., but it was now un-
derstood that this approach made use of all the available information.

Recall that in Jensen’s organization, he showed that if ∆∞u = 0 fails,
then u is not absolutely minimizing for F∞; equivalently, if u is absolutely
minimizing, then ∆∞u = 0. Then he used existence/uniqueness in order to
establish the converse: if ∆∞u = 0, then u is absolutely minimizing. In [29]
it was proved directly - without reference to existence or uniqueness - that
comparison with cones, and hence ∆∞u = 0, implies that u is absolutely
minimizing for F∞ (Proposition 6.1).

Blowups are Linear

The next piece of evidence in the regularity mystery was provided by Crandall
and Evans, [30]. Using tools from [29] and some new arguments, all rather
simple.

They proved that if ∆∞u = 0 near x0 and

rj ↓ 0, vj(x) =
u(x0 + rjx)− u(x0)

rj
, v(x) = lim

j→∞
vj(x)

then v(x) = 〈p, x〉 for some p ∈ IRn (Section 7).
Note that since u is Lipschitz in each ball BR(x0) in its domain, each vj

is Lipschitz with the same constant in BR/rj
(0) . Thus any sequence rj ↓ 0

has a subsequence along which the vj converge locally uniformly in IRn. In
consequence, if x0 is a point for which

|zr − x0| = r, u(zr) = max
Br(x0)

u =⇒ lim
r↓0

zr − x0

|zr − x0| exists,

then u is differentiable at x0. However, no one has been able to show that the
maximum points have a limiting direction, except as a consequence of Ovidiu
Savin’s results in [49], in the case n = 2.

Savin’s Theorem

Savin [49] showed that ∞-harmonic functions are C1 if n = 2. Savin does not
work on the “directions” of zr − x0 mentioned above directly. He does start
from a reformulation of the “v(x) = 〈p, x〉” result above (Exercise (7.3)). It
does not appear that Savin’s arguments contain any clear clues about the
case n > 2, as he uses the topology of IR2 very strongly, and the question
of whether ∞-harmonic functions are necessarily C1 in general remains the
most prominent open problem in the area. Moreover, while Savin provides
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a modulus of continuity for Du when u is ∞-harmonic, this modulus is not
explicit. It would be quite interesting to have more information about it. Is
it Hōlder 1/3, as for x4/3 − y4/3? Probably not. Savin shows, in consequence
of his other results, that if u is ∞-harmonic on R2 and globally Lipschitz
continuous, then u is affine. The corresponding question in the case n > 2 is
also open, and it is certainly related to the C1 question.

9 Generalizations, Variations, Recent Developments
and Games

First of all, there is by now a substantial literature concerning optimization
problems with supremum type functionals. Much of this theory was developed
by N. Barron and R. Jensen in collaboration with various coauthors. We refer
the reader to the review article by Barron [10] for an overview up to the time
of its writing, and to Jensen, Barron and Wang [11], [12] for more recent
advances. In particular, [12] is concerned with vector-valued functions u in
the set up we explain below for scalar functions u. However, in the vector
case, existence of minimizers and not absolute minimizers is the focus (unless
n = 1).

We take the following point of view in giving selected references here. If
one goes to MathSciNet, for example, and brings up the review of Jensen’s
paper [36], there will be over 30 reference citations (which is a lot). This will
reveal papers with titles involving homogenization, Γ -limits, eigenvalue prob-
lems, free boundary problems, and so on. None of these topics are mentioned
in this work of limited aims. Likewise, one can bring up a list of the papers
coauthored by Barron and/or Jensen, etc., or any of the authors which popped
up as referencing Jensen [36], and then search the web to find the web sites
of authors of article that interest you, it is a new world. Perhaps it is worth
mentioning that the Institute for Scientific Information’s Web of Science gen-
erally provides a more complete cited reference search (Jensen’s article gets
over 50 citations on the Web of Science).

So we are selective, sticking to variants of the main thrust of this article.

9.1 What is ∆∞ for H(x, u, Du)?

A very natural generalization of the theory of the preceding sections arises by
replacing the functional F∞ by a more general functional

FH
∞(u,U) := ‖H(x, u,Du(x))‖L∞(U) (9.1)

for suitable functions H. We write the generic arguments of H as H(x, r, p). H
should be reasonable, and for us r ∈ IR is real, corresponding to u : U → IR.
The case discussed in these notes is H(x, r, p) = |p|, but we could as well put
H(x, r, p) = |p|2, which has the virtue that H is now smooth, along with being
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convex and quite coercive. It turns out that for part of the theory, it is not
convexity of H which is primary, but instead “quasi-convexity,” which means
that each sublevel set of H is convex:

{p : H(x, r, p) ≤ λ} is convex for each x ∈ U, r, λ ∈ IR. (9.2)

We are going to suppress more technical assumptions on H, such as the nec-
essary regularity, coercivity, and so on, needed to make statements precise in
most of this discussion. The reader should go to the references given for this,
if it is omitted.

The operator corresponding to ∆∞ in this generality is

A(x, r, p,X) = 〈Hx(x, r, p) + Hr(x, r, p)p + XHp(x, r, p),Hp(x, r, p)〉 . (9.3)

By name, we call this the “Aronsson operator” associated with H. It is defined
on arguments (x, r, p,X), where X is a symmetric n × n real matrix. The
notations Hx,Hp stand for the gradients of H in the x and p variables, while
Hr is ∂H/∂r. The Aronsson equation is A[u] := A(x, u,Du,D2u) = 0. In this
form, it is more easily remembered as

A[u] = 〈Hp(x, u(x), Du(x)), Dx(H(x, u(x), Du(x))〉 = 0.

Observe that if H = (1/2)|p|2, then A[u] = ∆∞u, while if H = |p| we would
have instead

A(x, r, p,X) = 〈Xp̂, p̂〉 where p̂ =
p

|p| . (9.4)

There is a viscosity interpretation of equations with singularities such as (9.4),
and at p = 0 this interpretation just leads to our relations (2.24), (2.26). It
was shown by Barron, Jensen and Wang [11] that if u is absolutely minimizing
for FH

∞, then A[u] = 0 in the viscosity sense. The technical conditions under
which these authors established this are more severe than those given in [27],
corresponding to the more transparent proof given in this paper. It remains an
interesting question if one assumption common to [11], [27] can be removed,
namely, is it sufficient to have H ∈ C1 (rather than C2)?

It remained a question as to whether or not A[u] = 0 implied that u
is absolutely minimizing for FH

∞. Y. Yu [53] proved several things in this
direction. First, if H = H(x, p) is convex in p and sufficiently coercive, the
answer is yes. Secondly, he provided an example to show that the answer is no
in general if H is merely quasi-convex, but otherwise nice enough. He takes
n = 1, H(x, p) = (p2−2p)3+V (x) and designs V to create the counterexample.
Likewise, Yu showed that in the case H = H(r, p), the Aronsson equation
does not guarantee absolutely minimizing. Subsequently, Gariepy, Wang and
Yu [34] showed that if H = H(p), that is, H does not depend on x, r, and is
merely quasi-convex, then, indeed, A[u] = 0 implies absolutely minimizing.

Moreover, Yu also showed that there is no uniqueness theorem in the
generality of FH

∞. This is not an issue of smoothness of H. Yu gives the simple
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example of n = 1, U = (0, 2π), H(x, p) = |p|2 + sin2(x) and notes that both
u ≡ 0 and u = sin(x) solve

A[u] = 2ux(2 cos(x) sin(x) + 2uxuxx) = 0, u(0) = u(2π) = 0.

9.2 Generalizing Comparison with Cones

Are there cones in greater generality than in the archetypal case H = |p| and
| · | is any norm on IRn? Note that in this case, if a ≥ 0, we have the cone
functions

a|x− z|∗ = sup
H(p)=a

〈x− z, p〉 ,

where | · |∗ is the dual norm. That is, with this H, absolutely minimizing
for FH

∞ couples with comparison with cones defined via | · |∗ and absolutely
minimizing for Lip where Lipschitz constants are computed with respect to
this dual norm. This is the generality of [8]. In this case, u is absolutely
minimizing for FH

∞ if and only if u and −u enjoy comparison with these cone
functions from above, per [8], and these properties are equivalent to u being
a solution of the Aronnson equation if | · |∗ and | · | are C1 off of the origin,
and in other cases as well.

In the general quasi-convex case in which H(p) is C2 and coercive, Gariepy,
Wang and Yu show that the same formula yields a class of functions Ca

H

(x−z) which has the same properties. One loses some norm-like properties and
the generality of the situation requires a more delicate analysis to show that
comparison with these generalized cones implies that the Aronsson equation
is satisfied. Other arguments given herein do not easily generalize to this case.

The case in which H(x, p) is convex in p, along with other technical as-
sumptions, Yu [53] uses comparison type arguments to show similar results.

The general case H(x, p) is treated as well, in full quasi-convex generality
and with minimum regularity on H, in Champion and De Pascale, [25]. These
authors supply a “comparison with distance functions” equivalence for the
property of being absolutely minimizing with respect to FH

∞. This is a bit
too complex to explain here (while quite readable in [25]), so we content
ourselves by noting that this property is defined by Mc Shane - Whitney type
operators relative to distance within a given set, coupled with appropriate
structures related to the definition of generalized cones just above. There are
other interesting things in this paper.

One key difference between works in this direction and the simpler case
treated in this paper, is that they do not use any evident analogue of the
interplay between the functionals Lip and F∞, which we used to help our
organization.

9.3 The Metric Case

Let us take this case to include abstract metric spaces as well as metrics arising
from differential geometric considerations. In the abstract case, we mention
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primarily Champion and De Pascale [25], Section 5, as this seems to be the
state of the art in this direction. Here the Lipschitz functional is primary,
and the authors show that the associated absolutely minimizing property is
equivalent to a straightforward comparison with distance functions property.
In particular, it makes clear that the fact that the distance functions do not
themselves satisfy a full comparison with distance function property noted in
[8] is not an impediment to the full characterization, properly put. Existence
had previously been treated in Jutinen [38] and Mil’man [45], [46].

For papers which treat various geometrical structures, we mention the the
work Bieske [15], which was the first, as well as [16], [17], [18] and Wang [50].
The paper of Wang, currently available on his website, contains a very nice
introduction to which we refer for a further overview.

9.4 Playing Games

It was recently discovered by Peres, Schramm, Sheffield and Wilson [48] that
the value function for a random turn “tug of war” game, in which the players
take turns according to the outcome of a coin toss, is ∞-harmonic. This strik-
ing emergence of the∞-Laplacian in a completely new arena supports the idea
that this operator is liable to arise in many situations. This framework leads to
many other operators as its ingredients are varied, and one can currently read
about this in a preprint of Barron, Evans and Jensen, [14] (which is available
on Evans’ website as of this writing). Much more is contained in this interest-
ing article, and many variations are derived in several different ways: many
different operators, inhomogeneous equations, time dependent versions, — .

In this context, the results explained herein are quite special, correspond-
ing, say, to merely deriving the basic properties of harmonic functions via
their mean value property, and all sorts of generalizations are treated later by
various theories, not using the mean value property (Poisson equations, more
general elliptic operators, time dependent versions and so on). However, one
should understand the Laplace equation as a starting point, and in this case,
we do not know enough yet about ∞-harmonic functions.

The interesting functional equation

uε(x) =
1
2

(
max
|y|≤ε

uε(x + εy) + max
|z|≤ε

uε(x + εz)
)

appears in the work of [48] (see [14]). This same elegant relation plays a
role in approximation arguments given in Le Gruyer [41] and Oberman [47].
Le Gruyer’s work could also have been mentioned under the “metric space”
heading above, and a preprint is available on arXiv, and Le Gruyer and Archer
[40] is very relevant here as well.

9.5 Miscellany

We want to mention a few further papers and topics. There is the somewhat
speculative offering of Evans and Yu, which ponders, among other things, the
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relation of the question of whether or not ∞-harmonic functions are C1 to
standard pde approaches to this question. Then there are the results of Bhat-
tacharya [20]-[23] on some more refined properties of∞-harmonic functions in
special situations. For example, in [21], the author shows that a nonnegative
∞-harmonic function on a half-space which is continuous on the closure of
the half-space is neccesarily a scalar multiple of the distance to the bound-
ary. This result does not seem to follow in any simple way from the theory
we have presented so far; it makes a more sophisticated use of consequences
of the Harnack inequality, taking it up to the boundary and comparing two
different functions. The results of Exercise 4.5 are very present, however, in
these works.

We could go on, but it is time to stop.
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1 Overview, KAM theory

These notes record and slightly modify my 5 lectures from the CIME confer-
ence on “Calculus of variations and nonlinear partial differential equations”,
held in Cetraro during the week of June 27 - July 2, 2005, organized by
Bernard Dacorogna and Paolo Marcellini. I am proud to brag that this was
the third CIME course I have given during the past ten years, the others at
the meetings on “Viscosity solutions and applications” (Montecatini Terme,
1995) and on “Optimal transportation and applications” (Martina Franca,
2001).

My intention was (and is) to introduce some new PDE methods developed
over the past 6 years in so-called “weak KAM theory”, a subject pioneered by
J. Mather and A. Fathi. Succinctly put, the goal of this subject is the employ-
ing of dynamical systems, variational and PDE methods to find “integrable
structures” within general Hamiltonian dynamics.

My main references for most of these lectures are Fathi’s forthcoming book
[F5] (as well as his sequence of short notes [F1]–[F4]) and my paper [E-G1]
with Diogo Gomes. A nice recent survey is Kaloshin [K]; and see also the
survey paper [E6].

1.1 Classical Theory

I begin with a quick recounting of classical Lagrangian and Hamiltonian dy-
namics, and a brief discussion of the standard KAM theorem. A good ele-
mentary text is Percival and Richards [P-R], and Goldstein [G] is a standard
reference.
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The Lagrangian Viewpoint

Definition. We are given a function L : Rn×Rn → R called the Lagrangian,
L = L(v, x). We regard x ∈ Rn, x = (x1, . . . , xn), as the position variable and
v ∈ Rn, v = (v1, . . . , vn), as the velocity.

Hypotheses. We hereafter assume that
(i) there exist constants 0 < γ ≤ Γ such that

Γ |ξ|2 ≥
n∑

i,j=1

Lvivj
(v, x)ξiξj ≥ γ|ξ|2 (uniform convexity) (1.1)

for all ξ, v, x; and
(ii) the mapping

x �→ L(v, x) is Tn-periodic (periodicity) (1.2)

for all x, where Tn = [0, 1]n denotes the unit cube in Rn, with opposite faces
identified.

Definition. Given a curve x : [0, T ] → R, we define its action to be

AT [x(·)] :=
∫ T

0

L(ẋ(t),x(t)) dt

where · = d
dt .

Theorem 1.1 (Euler–Lagrange Equation). Suppose that x0, xT ∈ Rn are
given, and define the admissible class of curves

A := {y ∈ C2([0, T ]; Rn) | y(0) = x0, y(T ) = xT }.
Suppose x(·) ∈ A and

AT [x(·)] = min
y∈A

AT [y(·)].

Then the curve x(·) solves the Euler–Lagrange equations

(E-L) − d

dt
(DvL(ẋ,x)) + DxL(ẋ,x) = 0 (0 ≤ t ≤ T ).

A Basic Example. The Lagrangian L = |v|2
2 −W (x) is the difference between

the kinetic energy |v|2
2 and the potential energy W (x). In this case the Euler-

Lagrange equations read
ẍ = −DW (x). !"
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The Hamiltonian Viewpoint.

In view of the uniform convexity of v �→ L(v, x), we can uniquely and smoothly
solve the equation

p = DvL(v, x)

for
v = v(p, x).

Definition. We define the Hamiltonian

H(p, x) := p · v(p, x)− L(v(p, x), x). (1.3)

Equivalently,
H(p.x) = max

v∈Rn
(p · v − L(v, x)). (1.4)

Theorem 1.2 (Hamiltonian Dynamics). Suppose x(·) solves the Euler-
Lagrange equations (E-L). Define

p(t) := DvL(x(t), ẋ(t)).

Then the pair (x(·),p(·)) solves Hamilton’s equations

(H)

{
ẋ = DP H(p,x)
ṗ = −DxH(p,x).

Also,
d

dt
H(p,x) = 0;

this is conservation of energy.

Basic Example Again. For the Lagrangian L = |v|2
2 − W (x), the corre-

sponding Hamiltonian is H(p, x) = |p|2
2 + W (x), the sum of the kinetic and

potential energies. The Hamiltonian dynamics (H) then read{
ẋ = p
ṗ = −DW (x);

and the total energy is conserved. !"
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Canonical Changes of Variables, Generating Functions

Let u : Rn × Rn → R, u = u(P, x), be a given smooth function, called a
generating function. Consider the formulas{

p := Dxu(P, x)
X := DP u(P, x).

(1.5)

Assume we can solve (1.5) globally for X,P as smooth functions of x, p, and
vice versa:

X = X(p, x)
P = P(p, x) ⇔ x = x(P,X)

p = p(P,X). (1.6)

We next study the Hamiltonian dynamics in the new variables:

Theorem 1.3 (Change of variables). Let (x(·),p(·)) solve Hamilton’s
equations (H). Define

X(t) := X(p(t),x(t))
P(t) := P(p(t),x(t)).

Then

(K)

{
Ẋ = DP K(P,X)
Ṗ = −DXK(P,X)

for the new Hamiltonian

K(P,X) := H(p(P,X),x(P,X)).

Definition. A transformation Ψ : Rn × Rn → Rn × Rn,

Ψ(p, x) = (P,X)

is called canonical if it preserves the Hamiltonian structure. This means

(DΨ)T J DΨ = J

for

J =
(

0 I
−I 0

)
See any good classical mechanics textbook, such as Goldstein [G], for more ex-
planation. The change of variables (p, x) �→ (P,X) induced by the generating
function u = u(P, x) is canonical.
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Hamilton–Jacobi PDE

Suppose now our generating function u = u(P, x) solves the stationary
Hamilton-Jacobi equation

H(Dxu, x) = H̄(P ), (1.7)

where the right hand side at this point of the exposition just denotes some
function of P alone. Then

K(P,X) = H(p, x) = H(Dxu, x) = H̄(P );

and so (K) becomes {
Ẋ = DH̄(P)
Ṗ = 0.

(1.8)

The point is that these dynamics are trivial. In other words, if we can
canonically change variables (p, x) �→ (P,X) using a generating function u
that solves a PDE of the form (1.7), we can easily solve the dynamics in the
new variables.

Definition. We call the Hamiltonian H integrable if there exists a canonical
mapping

Φ : Rn × Rn → Rn × Rn, Φ(P,X) = (p, x),

such that
(H ◦ Φ)(P,X) =: H̄(P )

is a function only of P .
We call P = (P1, . . . , Pn) the action variables and X = (X1, . . . , Xn) the

angle variables.

1.2 KAM Theory

A key question is whether we can in fact construct a canonical mapping Φ
as above, converting to action-angle variables. This is in general impossible,
since our PDE (1.7) will not usually have a solution u smooth in x and P ; and,
even if it does, it is usually not possible globally to change variables according
to (1.5) and (1.6).

But KAM (Kolmogorov-Arnold-Moser) theory tells us that we can in fact
carry out this procedure for a Hamiltonian that is an appropriate small per-
turbation of a Hamiltonian depending only on p. To be more specific, suppose
our Hamiltonian H has the form

H(p, x) = H0(p) + K0
ε (p, x), (1.9)

where we regard the term K0
ε as a small perturbation to the integrable Hamil-

tonian H0. Assume also that x �→ K0
ε (p, x) is Tn-periodic.
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Generating Functions, Linearization.

We propose to find a generating function having the form

u(P, x) = P · x + v(P, x),

where v is small and periodic in x. Owing to (1.5) we would then change
variable through the implicit formulas⎧⎨⎩p = Dxu = P + Dxv

X = DP u = x + DP v.
(1.10)

We consequently must build v so that

H(Dxu, x) = H̄(P ), (1.11)

the expression on the right to be determined.

Now according to (1.9), (1.10) and (1.11), we want

H0(P + Dxv) + K0
ε (P + Dxv, x) = H̄(P ). (1.12)

We now make the informal assumption that K0
ε , v, and their derivatives are

O(ε) as ε → 0. Then

H0(P ) + DH0(P ) ·Dxv + K0
ε (P, x) = H̄(P ) + O(ε2). (1.13)

Drop O(ε2) term and write

ω(P ) := DH0(P ).

Then
ω(P ) ·Dxv + K0

ε (P, x) = H̄(P )−H0(P ); (1.14)

this is the formal linearization of our nonlinear PDE (1.12).

Fourier series

Next we use Fourier series to try to build a solution v of (1.14). To simplify a
bit, suppose for this section that Tn = [0, 2π]n (and not [0, 1]n). We can then
write

K0
ε (P, x) =

∑
k∈Zn

k̂(P, k)eik·x

for the Fourier coefficients

k̂(P, k) :=
1

(2π)n

∫
Tn

K0
ε (P, x)e−ik·x dx.
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Let us seek a solution of (1.14) having the form

v(P, x) =
∑

k∈Zn

v̂(P, k)eik·x, (1.15)

the Fourier coefficients v̂(P, k) to be selected. Plug (1.15) into (1.14):

i
∑

k∈Zn

(ω(P ) · k)v̂(P, x)eik·x +
∑

k∈Zn

k̂(P, k)eik·x = H̄(P )−H0(P ).

The various terms agree if we define

H̄(P ) := H0(P ) + k̂(P, 0)

and set

v̂(P, x) :=
ik̂(P, k)
ω(P ) · k (k �= 0).

We have therefore derived the approximate solution

v(P, x) = i
∑
k �=0

k̂(P, k)
ω(P ) · k eik·x, (1.16)

assuming both that ω(P ) · k �= 0 for all nonzero k ∈ Zn and that the series
(1.16) converges.

Small divisors

To make rigorous use the foregoing calculations, we need first to ensure that
ω(P ) · k �= 0, with some quantitative control:

Definition. A vector ω ∈ Rn is of type (L, γ) if

|k · ω| ≥ L

|k|γ for all k ∈ Zn, k �= 0, (1.17)

This is a “nonresonance condition”. It turns out that most ω satisfy this
condition for appropriate L, γ. Indeed, if γ > n− 1, then

|{ω ∈ B(0, R) | |k · ω| ≤ L

|k|γ for some k ∈ Zn}| → 0 as L → 0.

Statement of KAM Theorem

We now explicitly put
K0

ε (p, x) = εK0(p, x)

in (1.9), so that
H(p, x) = H0(p) + εK0(p, x),
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and assume

(H1)

⎧⎪⎨⎪⎩
there exists p∗ ∈ Rn such that

ω∗ = DH0(p∗)
is type (L, γ) for some L, γ > 0;

(H2) D2H0(p∗) is invertible;

(H3) H0,K0 are real analytic.

Theorem 1.4 (KAM). Under hypotheses (H1)–(H3), there exists ε0 > 0
such that for each 0 < ε ≤ ε0, there exists P ∗ (close to p∗) and a smooth
mapping

Φ(P ∗, ·) : Rn → Rn × Rn

such that for each x0 ∈ Rn

Φ(P ∗, x0 + tω∗) =: (x(t),p(t))

solves the Hamiltonian dynamics (H).

The idea of the proof is for k = 0, 1, . . . , iteratively to construct Φk, Pk,Hk, εk

so that P0 = p∗,
ω∗ = DH̄k(Pk) for all k;

Hk+1 := Hk ◦ Φk;

and
Hk(p, x) = H̄k(p) + Kk(p, x),

where ‖Kk‖ ≤ εk and the error estimates εk converge to 0 very rapidly. Then

Pk → P ∗, H̄k(Pk) → H̄(P ∗);

and
Φ := lim

k→∞
Φk ◦ Φk−1 ◦ · · · ◦ Φ1

is the required change of variables.
The full details of this procedure are very complicated. See Wayne’s dis-

cussion [W] for much more explanation and for references to the vast literature
on KAM.

Remark. We have {
X(t) = x0 + tω∗

P(t) ≡ P ∗ (1.18)

for
ω∗ = DH̄(P ∗)

But note that, in spite of my notation, Φ is really only defined for P = P ∗.
!"
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2 Weak KAM Theory: Lagrangian Methods

Our goal in this and the subsequent sections is extending the foregoing clas-
sical picture into the large. The resulting, so-called “weak KAM theory” is
a global and nonperturbative theory (but is in truth pretty weak, at least
as compared with the assertions from the previous section). There are two
approaches to these issues: the Lagrangian, dynamical systems methods (dis-
cussed in this section) and the nonlinear PDE methods (explained in the next
section).

The following discussion follows Albert Fathi’s new book [F5], which the
interested reader should consult for full details of the proofs. Related exposi-
tions are Forni–Mather [Fo-M] and Mañé [Mn].

2.1 Minimizing Trajectories

Notation. If x : [0, T ] → Rn and

AT [x(·)] ≤ AT [y(·)]
for all y(0) = x(0), y(T ) = x(t), we call x(·) a minimizer of the action AT [·]
on the time interval [0, T ].

Theorem 2.1 (Velocity Estimate). For each T > 0, there exists a constant
CT such that

max
0≤t≤T

|ẋ(t)| ≤ CT (2.1)

for each minimizer x(·) on [0, T ].

Idea of Proof. This is a fairly standard derivative estimate for solutions of
the Euler–Lagrange equation (E-L). !"

2.2 Lax–Oleinik Semigroup

Definition. Let v ∈ C(Tn) and set

T−
t v(x) := inf{v(x(0)) +

∫ t

0

L(ẋ,x) ds | x(t) = x}

We call the family of nonlinear operators {T−
t }t≥0 the Lax–Oleinik semigroup.

Remark. The infimum above is attained. So in fact there exists a curve x(·)
such that x(t) = x and

T−
t v(x) = v(x(0)) +

∫ t

0

L(ẋ,x) dt. !"
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Theorem 2.2 (Regularization). For each time t > 0 there exists a constant
Ct such that

[T−
t v]Lip ≤ Ct (2.2)

for all v ∈ C(Tn).

Idea of Proof. Exploit the strict convexity of v �→ L(v, x), as in similar
arguments in Chapter 3 on my PDE text [E1]. !"

We record below some properties of the Lax–Oleinik semigroup acting on
the space C(Tn), with max norm ‖ ‖.

Theorem 2.3 (Properties of Lax–Oleinik Semigroup).

(i) T−
t ◦ T−

s = T−
t+s (semigroup property).

(ii) v ≤ v̂ implies T−
t v ≤ T−

t v̂.
(iii) T−

t (v + c) = T−
t v + c.

(iv) ‖T−
t v − T−

t v̂‖ ≤ ‖v − v̂‖ (nonexpansiveness).
(v) For all v ∈ C(Tn), limt→0 T−

t v = v uniformly.
(vi) For all v, t �→ T−

t v is uniformly continuous.

2.3 The Weak KAM Theorem

We begin with an abstract theorem about nonlinear mappings on a Banach
space X:

Theorem 2.4 (Common Fixed Points). Suppose {φt}t≥0 is a semigroup
of nonexpansive mappings of X into itself. Assume also for all t > 0 that
φt(X) is precompact in X and for all x ∈ X that t �→ φt(x) is continuous.

Then there exists a point x∗ such that

φt(x∗) = x∗ for all times t ≥ 0.

Idea of Proof. Fix a time t0 > 0. We will first show that φt0 has a fixed
point.

Let 0 < λ < 1. Then there exists according to the Contraction Mapping
Theorem a unique element xλ satisfying

λφt0(xλ) = xλ.

By hypothesis {φt0(xλ) | 0 < λ < 1} is precompact. So there exist λj → 1 for
which xλj

→ x and
φt0(x) = x.



Weak KAM Theory and Partial Differential Equations 133

Now let xn be fixed point of φ1/2n . Then xn is fixed point also of φk/2n for
k = 1, 2, . . . . Using compactness, we show that xnj

→ x∗ and that φt(x∗) = x∗

for all t ≥ 0. !"

Next is an important result of Albert Fathi [F1]:

Theorem 2.5 (Weak KAM Theorem). There exists a function v− ∈
C(Tn) and a constant c ∈ R such that

T−
t v− + ct = v− for all t ≥ 0. (2.3)

Idea of proof. We apply Theorem 2.4 above. For this, let us write for func-
tions v, v̂ ∈ C(Tn)

v ∼ v̂

if v − v̂ ≡ constant; and define also the equivalence class

[v] := {v̂ | v ∼ v̂}.
Set

X := {[v] | v ∈ C(Tn)}
with the norm

‖[v]‖ := min
a∈R

‖v + a11‖,
where 11 denotes is the constant function identically equal to 1.

We have Tt : X → X, according to property (iii) of Theorem 2.3. Hence
there exists a common fixed point

Tt[v]∗ = [v]∗ (t ≥ 0).

Selecting any representative v− ∈ [v]∗, we see that

Ttv− = v− + c(t)

for some c(t). The semigroup property implies c(t + s) = c(t) + c(s), and
consequently c(t) = ct for some constant c. !"

2.4 Domination

Notation. Let w ∈ C(Tn). We write

w ≺ L + c (“w is dominated by L + c”)

if

w(x(b))− w(x(a)) ≤
∫ b

a

L(ẋ,x)ds + c(b− a) (2.4)

for all times a < b and for all Lipschitz continuous curves x : [a, b] → Rn.
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Remark.

w ≺ L + c if and only if w ≤ ct + T−
t w for all t ≥ 0.

!"

Theorem 2.6 (Domination and PDE).

(i) If w ≺ L + c and the gradient Dw(x) exists at a point x ∈ Tn, then

H(Dw(x), x) ≤ c. (2.5)

(ii) Conversely, if w is Lipschitz continuous and H(Dw, x) ≤ c a.e., then

w ≺ L + c.

Idea of Proof. (i) Select any curve x with x(0) = x, ẋ(0) = v. Then

w(x(t))− w(x)
t

≤ 1
t

∫ t

0

L(ẋ,x) ds + c.

Let t → 0, to discover
v ·Dw ≤ L(v, x) + c;

and therefore

H(Dw(x), x) = max
v

(v ·Dw − L(v, x)) ≤ c.

(ii) If w is smooth, we can compute

w(x(b))− w(x(a)) =
∫ b

a

d

dt
w(x(t)) ds

=
∫ b

a

Dw(x) · ẋ dt

≤
∫ b

a

L(ẋ,x) + H(Dw(x),x) dt

≤
∫ b

a

L(ẋ,x) dt + c(b− a).

See Fathi’s book [F5] for what to do when w is only Lipschitz. !"
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2.5 Flow invariance, characterization of the constant c

Notation. (i) We will hereafter write

T (Tn) := Rn × Tn = {(v, x) | v ∈ Rn, x ∈ Tn}
for the tangent bundle over Tn, and

T ∗(Tn) := Rn × Tn = {(p, x) | p ∈ Rn, x ∈ Tn}
for the cotangent bundle. We work in the tangent bundle for the Lagrangian
viewpoint, and in the cotangent bundle for the Hamiltonian viewpoint.

(ii) Consider this initial-value problem for the Euler-Lagrange equation:{
− d

dt (DvL(ẋ,x)) + DxL(ẋ,x) = 0
x(0) = x, ẋ(0) = v.

(2.6)

We define the flow map {φt}t∈R on T (Tn) by the formula

φt(v, x) := (v(t),x(t)), (2.7)

where v(t) = ẋ(t).

Definition. A probability measure µ on the tangent bundle T (Tn) is flow
invariant if ∫

T (Tn)

Φ(φt(v, x)) dµ =
∫

T (Tn)

Φ(v, x) dµ

for each bounded continuous function Φ.

Following is an elegant interpretation of the constant c from the Weak
KAM Theorem 2.5, in terms of action minimizing flow invariant measures:

Theorem 2.7 (Characterization of c). The constant from Theorem 2.5 is
given by the formula

c = − inf

{∫
T (Tn)

L(v, x) dµ | µ flow invariant, probability measure

}
. (2.8)

Definitions. (i) The action of a flow-invariant measure µ is

A[µ] :=
∫

T (Tn)

L(v, x) dµ.

(ii) We call µ a minimizing (or Mather) measure if

−c = A[µ]. (2.9)
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Idea of Proof. 1. Recall that

T−
t v− = v− + ct and v− ≺ L + c.

Let us write
φs(v, x) = (ẋ(s),x(s))

for (v, x) ∈ T (Tn), and put
π(v, x) := x

for the projection of T (Tn) onto Tn.
Then

v−(πφ1(v, x))− v−(π(v, x)) ≤
∫ 1

0

L(φs(v, x)) ds + c. (2.10)

Integrate with respect to a flow-invariant probability measure µ:

0 =
∫

T (Tn)

v−(πφ1(v, x))− v−(π(v, x)) dµ

≤
∫ 1

0

∫
T (Tn)

L(φs(v, x)) dµds + c

=
∫

T(Tn)

L(v, x) dµ + c.

Therefore

−c ≤
∫

T (Tn)

L(v, x) dµ for all flow-invariant µ.

2. We must now manufacture a measure giving equality above. Fix x ∈ Tn.
Find a curve x : (−∞, 0] → Rn such that x(0) = x, ẋ(0) = v; and for all
times t ≤ 0:

v−(x(0))− v−(x(t)) =
∫ 0

t

L(φs(v, x)) ds− ct.

Define for t ≥ 0 the measure µt by the rule

µt(Φ) =
1
t

∫ 0

−t

Φ(φs(v, x)) ds

for each continuous function Φ. Then

v−(x)− v−(x(−t))
t

=
∫

T (Tn)

Ldµt + c.
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Sending tk → −∞, we deduce that

dµtk
⇀ dµ

weakly as measures, for some flow invariant probability measure µ that
satisfies

−c =
∫

T (Tn)

Ldµ.

!"

2.6 Time-reversal, Mather set

It is sometimes convenient to redo our theory with time reversed, by intro-
ducing the backwards Lax–Oleinik semigroup:

Definition.

T+
t v(s) := sup

{
v(x(t))−

∫ t

0

L(ẋ,x)ds | x(0) = x

}
.

As above, there exists a function v+ ∈ C(Tn) such that

T+
t v+ − ct = v+ for all t ≥ 0

for the same constant c described in Theorem 2.7.

Definition. We define the Mather set.

M̃0 :=
⋃
µ

spt(µ),

the union over all minimizing measures µ as above. The projected Mather set
is

M0 := π(M̃0).

One goal of weak KAM theory is studying the structure of the Mather set (and
the related Aubry set), in terms of the underlying Hamiltonian dynamics. See
Fathi [F5] for much more.

3 Weak KAM Theory: Hamiltonian and PDE Methods

3.1 Hamilton–Jacobi PDE

In this section, we reinterpret the foregoing ideas in terms of the theory of
viscosity solutions of nonlinear PDE:
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Theorem 3.1 (Viscosity Solutions).
(i) We have

H(Dv±, x) = c a.e.

(ii) In fact {
H(Dv−, x) = c

−H(Dv+, x) = −c
(3.1)

in sense of viscosity solutions.

Idea of Proof. 1. There exists a minimizing curve x : (∞, 0] → Rn such that
x(0) = x, ẋ(0) = v, and

v−(x) = v−(x(−t)) +
∫ 0

−t

L(ẋ,x) ds + ct (t ≥ 0).

If v is differentiable at x, then we deduce as before that

v ·Dv−(x) = L(v, x) + c,

and this implies H(Dv−, x) ≥ c. But always H(Dv−, x) ≤ 0.

2. The assertions about v± being viscosity solutions follow as in Chapter
10 of my PDE book [E1]. !"

3.2 Adding P Dependence

Motivated by the discussion in Section 1 about the classical theory of canonical
transformation to action-angle variables, we next explicitly add dependence
on a vector P .

So select P ∈ Rn and define the shifted Lagrangian

L̂(v, x) := L(v, x)− P · v. (3.2)

The corresponding Hamiltonian is

Ĥ(p, x) = max
v

(p · v − L̂(v, x)) = max
v

((p + P ) · v − L(v, x)),

and so
Ĥ(p, x) = H(P + p, x). (3.3)

As above, we find a constant c(P ) and periodic functions v± = v±(P, x) so
that {

H(P + Dv−, x) = Ĥ(Dv−, x) = c(P )
−H(P + Dv+, x) = −Ĥ(Dv+, x) = −c(P )

in the viscosity sense.
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Notation. We write

H̄(P ) := c(P ), u− := P · x + v−, u+ := P · x + v+.

Then {
H(Du−, x) = H̄(P )
−H(Du+, x) = −H̄(P )

(3.4)

in the sense of viscosity solutions.

3.3 Lions–Papanicolaou–Varadhan Theory

A PDE construction of H̄

We next explain an alternative, purely PDE technique, due to Lions -
Papanicolaou - Varadhan [L-P-V], for finding the constant c(P ) as above and
v = v−.

Theorem 3.2 (More on viscosity solutions). For each vector P ∈ Rn,
there exists a unique real number c(P ) for which we can find a viscosity solu-
tion of {

H(P + Dxv, x) = c(P )
v is Tn-periodic.

(3.5)

Remark. In addition v is semiconcave, meaning that D2v ≤ CI for some
constant C. !"

Idea of Proof. 1. Existence. Routine viscosity solution methods assert the
existence of a unique solution vε of

εvε + H(P + Dxvε, x) = 0.

Since H is periodic in x, uniqueness implies vε is also periodic.
It is now not very difficult to derive the uniform estimates

max |Dxvε|, |εvε| ≤ C.

Hence we may extract subsequences for which

vεj → v uniformly, εjv
εj → −c(P ).

It is straightforward to confirm that v is a viscosity solution of H(P +
Dxv, x) = c(P ).

2. Uniqueness of c(P ). Suppose also

H(P + Dxv̂, x) = ĉ(P ).
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We may assume that ĉ(P ) > c(P ) and that v̂ < v, upon adding a constant to
v, if necessary. Then

δv̂ + H(P + Dxv̂, x) > δv + H(P + Dxv, x)

in viscosity sense, if δ > 0 is small. The viscosity solution comparison principle
then implies the contradiction v̂ ≥ v. !"
Notation. In agreement with our previous notation, we write

H̄(P ) := c(P ), u = P · x + v, (3.6)

and call H̄ the effective Hamiltonian. Then

(E) H(Dxu, x) = H̄(P ).

We call (E) the generalized eikonal equation.

Effective Lagrangian

Dual to the effective Hamiltonian is the effective Lagrangian:

L̄(V ) := max
P

(P · V − H̄(P )) (3.7)

for V ∈ Rn.
We sometime write L̄ = H̄∗ to record this Legendre transform. Then

P ∈ ∂L̄(V ) ⇔ V ∈ ∂H̄(P ) ⇔ P · V = L̄(V ) + H̄(P ), (3.8)

∂ denoting the (possibly multivalued) subdifferential of a convex function.

Theorem 3.3 (Characterization of effective Lagrangian). We have the
formula

L̄(V ) = inf

{∫
T (Tn)

L(v, x) dµ | µ flow invariant,
∫

T (Tn)

v dµ = V

}
. (3.9)

Compare this with Theorem 2.7.

Proof. Denote by L̃(V ) the right hand side of (3.9). Then

−H̄(P ) = inf
µ

{∫
T (Tn)

L(v, x)− P · v dµ

}

= inf
µ,V

{∫
T (Tn)

L(v, x) dµ− P · V |
∫

T (Tn)

v dµ = V

}
= inf

V
{L̃(V )− P · V }

= − sup
V
{P · V − L̃(V )}.

So L̃ = H̄∗ = L̄. !"



Weak KAM Theory and Partial Differential Equations 141

Application: Homogenization of Nonlinear PDE

Theorem 3.4 (Homogenization). Suppose g is bounded and uniformly con-
tinous, and uε is the unique bounded, uniformly continuous viscosity solution
of the initial-value problem{

uε
t + H(Duε, x

ε ) = 0 (t > 0)
uε = g (t = 0).

Then uε → u locally uniformly, where u solves the homogenized equation{
ut + H̄(Du) = 0 (t > 0)

u = g (t = 0).

Idea of Proof. Let φ be a smooth function and suppose that u − φ has a
strict maximum at the point (x0, t0). Define the perturbed test function

φε(x, t) := φ(x, t) + εv
(x

ε

)
,

where v is a periodic viscosity solution of

H(P + Dv, x) = H̄(P )

for P = Dφ(x0, t0).

Assume for the rest of the discussion that v is smooth. Then φε is smooth
and uε − φε attains a max at a point (xε, tε) near (x0, t0). Consequently

φε
t + H

(
Dφε,

xε

ε

)
≤ 0.

And then

φt + H
(
Dφ(xε, tε) + Dv

(xε

ε

)
,
xε

ε

)
≈ φt + H̄(Dφ(x0, t0)) ≤ 0.

The reverse inequality similarly holds if u − φ has a strict minimum at the
point (x0, t0).

See my old paper [E2] for what to do when v is not smooth. !"

3.4 More PDE Methods

In this section we apply some variational and nonlinear PDE methods to
study further the structure of the Mather minimizing measures µ and viscosity
solutions u = P · x + v of the eikonal equation (E).

Hereafter µ denotes a Mather minimizing measure in T (Tn). It will be more
convenient to work with Hamiltonian variables, and so we define ν to be the
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pushforward of µ onto the contangent bundle T ∗(Tn) under the change of
variables p = DvL(v, x).

For reference later, we record these properties of ν, inherited from µ:

(A) V =
∫

T∗(Tn)

DpH(v, x) dν

(B) L̄(V ) =
∫

T∗(Tn)

L(DpH(p, x), x) dν

(C)
∫

T∗(Tn)

{H,Φ} dν = 0 for all C1 functions Φ,

where
{H,Φ} := DpH ·DxΦ−DxH ·DP Φ.

is the Poisson bracket. Statement (A) is the definition of V , whereas statement
(C) is a differential form of the flow-invariance, in the Hamiltonian variables.

Notation. We will write
σ = π#ν

for the push-forward of ν onto Tn.

Now select any P ∈ ∂L̄(V ). Then as above construct a viscosity solution
of the generalized eikonal PDE

(E) H(Dxu, x) = H̄(P )

for
u = P · x + v, v periodic.

We now study properties of u in relation to the measures σ and ν, following
the paper [E-G1].

Theorem 3.5 (Regularity Properties).

(i) The function u is differentiable for σ a.-e. point x ∈ Tn.
(ii) We have

p = Dxu ν − a.e. (3.10)

(iii) Furthermore,

H̄(P ) =
∫

T∗(Tn)

H(p, x) dν. (3.11)



Weak KAM Theory and Partial Differential Equations 143

Remark. Compare assertion (ii) with the first of the classical formulas
(1.5) !".

Idea of proof. 1. Since p �→ H(p, x) is uniformly convex, meaning D2
pH ≥ γI

for some positive γ, we have

βε(x) + H(Duε, x) ≤ H̄(P ) + O(ε) (3.12)

for the mollified function uε := ηε ∗ u and

βε(x) =
γ

2

∫
Tn

ηε(x− y)|Du(y)−Duε(x)|2dy

≈ γ

2

∫
�

B(x,ε)

|Du− (Du)x,ε|2dy.

In this formula (Du)x,ε denotes the average of Du over the ball B(x, ε).

2. Uniform convexity also implies

γ

2

∫
T∗(Tn)

|Duε−p|2dν ≤
∫

T∗(Tn)

H(Duε, x)−H(p, x)−DpH(p, x)·(Duε−p) dν.

Now Duε = P + Dvε and∫
T∗(Tn)

DpH ·Dvεdν = 0 by property (C).

So (3.12) implies

γ

2

∫
T∗(Tn)

|Duε−p|2dν ≤
∫

T∗(Tn)

H̄(P )−H(p, x)−DpH(p, x) · (P−p)−βε(x) dν

+O(ε)

≤ H̄(P )−V · P−
∫

T∗(Tn)

H̄(p, x)−DpH(p, x) · p−βε(x) dν

+O(ε)

= L̄(V )−
∫

T∗(Tn)

L(DpH,x)− βε(x) dν + O(ε),

according to (3.8). Consequently∫
T∗(Tn)

|Duε − p|2 dν +
∫

Tn

βε(x) dσ ≤ O(ε). (3.13)

Recall also that u is semiconcave. Therefore (3.13) implies σ-a.e. point is
Lebesgue point of Du, and so Du exists σ-a.e. It then follows from (3.13) that
Duε → Du ν-a.e.
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2. We have
∫

T∗(Tn)
H(p, x) dν =

∫
Tn H(Du, x) dσ = H̄(P ). !"

Remark. In view of (3.10), the flow invariance condition (C) implies∫
Tn

DpH(Du, x) ·Dφ dσ = 0

for all φ ∈ C1(Tn); and so the measure σ is a weak solution of the generalized
transport (or continuity) equation

(T) div(σDpH(Dxu, x)) = 0. !"

3.5 Estimates

Now we illustrate how our two key PDE, the generalized eikonal equation (E)
for u and the generalized transport equation (T) for σ and u, together yield
more information about the smoothness of u.

To simplify the presentation, we take the standard example

H(p, x) =
1
2
|p|2 + W (x)

for this section. Then our eikonal and transport equations become

(E)
1
2
|Du|2 + W (x) = H̄(P )

(T) div(σDu) = 0.

If u is smooth, we could differentiate (E) twice with respect to xk:

n∑
i=1

uxi
uxixkxk

+ uxixk
uxixk

+ Wxkxk
= 0,

sum on k, and then integrate with respect to σ over Tn:∫
Tn

Dxu ·Dx(∆u) dσ +
∫

Tn

|D2
xu|2dσ = −

∫
Tn

∆W dσ.

According to (T) the first term equals zero.
This establishes the formal estimate∫

Tn

|D2
xu|2 dσ ≤ C; (3.14)

and a related rigorous estimate involving difference quotients holds if u is not
smooth: see [E-G1].
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Reworking the proof using appropriate cutoff functions, we can derive as
well the formal bound

|D2
xu|2 ≤ C σ a.e.; (3.15)

and a related rigorous estimate involving difference quotients is valid if u is not
smooth. Again, see [E-G1] for the details. We thereby establish the inequality

|Du(y)−Du(x)| ≤ C|x− y| for x ∈ spt(σ), a.e. y ∈ Tn. (3.16)

In particular, even though Du may be multivalued, we can bound

diam(Du(y)) ≤ C dist(y, spt(σ))

for some constant C. This is a sort of quantitative estimate on how far the
support of σ lies from the “shocks” of the gradient of u.

An application of these estimates is a new proof of Mather’s regularity
theorem for the support of the minimizing measures:

Theorem 3.6 (Mather). The support of µ lies on a Lipschitz graph in
T (Tn), and the support of ν lies on a Lipschitz graph in T ∗(Tn).

Remark. In addition, if u is smooth in x and P , we have the formal bound∫
Tn

|D2
xP u|2 dσ ≤ C. (3.17)

A related rigorous estimate involving difference quotients holds if u is not
smooth. As an application, we show in [E-G1] that if H̄ is twice differentiable
at P , then

|DH̄(P ) · ξ| ≤ C(ξ ·D2H̄(P )ξ)1/2.

for all vectors ξ and some constant C. !"

4 An Alternative Variational/PDE Construction

4.1 A new Variational Formulation

This section follows [E3], to discuss an alternate variational/PDE technique
for discovering the structure of weak KAM theory.
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A Minimax Formula

Our motivation comes from “the calculus of variations in the sup-norm”, as
presented for instance in Barron [B]. We start with the following observation,
due to several authors:

Theorem 4.1 (Minimax Formula for H̄). We have

H̄(P ) = inf
v∈C1(Tn)

max
x∈Tn

H(P + Dv, x). (4.1)

Idea of Proof. Write u = P · x + v, where u is our viscosity solution of (E),
and put û = P · x + v̂, where v̂ is any C1, periodic function. Then convexity
implies

H(Du, x) + DpH(Du, x) · (Dû−Du) ≤ H(Dû, x).

Integrate with respect to σ:

H̄(P ) +
∫

Tn

DpH(Du, x) ·D(v̂ − v) dσ ≤
∫

Tn

H(Dû, x) dσ

≤ max
x

H(P + Dv̂, x).

Therefore (T) implies that

H̄(P ) ≤ inf
v̂

max
x

H(P + Dv̂, x).

Furthermore, if vε := ηε ∗ v, where ηε is a standard mollifier, then

H(P + Dvε, x) ≤ H̄(P ) + O(ε);

and consequently

max
x

H(P + Dvε, x) ≤ H̄(P ) + O(ε). !"

Remark. See Fathi–Siconolfi [F-S1] for the construction of a C1 subsolu-
tion. !"

A New Variational Setting

The minimax formula provided by Theorem 4.1 suggests that we may be able
somehow to approximate the “max” above by an exponential integral with a
large parameter.

To be precise, we fix a large constant k and then introduce the integral
functional

Ik[v] :=
∫

Tn

ekH(P+Dv,x) dx.
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(My paper [E3] cites some relevant references, and see also Marcellini [M1],
[M2] and Mascolo–Migliorini [M-M] for more about such problems with expo-
nential growth.)

Let vk be the unique minimizer among perodic functions, subject to the
normalization that ∫

Tn

vk dx = 0.

As usual, put uk := P · x + vk. The Euler–Lagrange equation then reads

div(ekH(Duk,x)DpH(Duk, x)) = 0. (4.2)

Passing to Limits.

We propose to study the asymptotic limit of the PDE (4.2) as k → ∞. We
will discover that the structure of weak KAM theory appears in the limit.

Notation. It will be convenient to introduce the normalizations

σk :=
ekH(Duk,x)∫

Tn ekH(Duk,x)dx
(4.3)

and

H̄k(P ) :=
1
k

log
(∫

Tn

ekH(Duk,x)dx

)
. (4.4)

Define also
dµk := δ{v=DpH(Duk,x)}σ

k dx.

Passing as necessary to subsequences, we may assume

σkdx ⇀ dσ weakly as measures on Tn,

dµk ⇀ dµ weakly as measures on T (Tn),

uk → u uniformly.

A main question is what PDE (if any) do u and σ satisfy?

Theorem 4.2 (Weak KAM in the Limit).
(i) We have

H̄(P ) = lim
k→∞

H̄k(P ). (4.5)

(ii) The measure µ is a Mather minimizing measure.
(iii) Furthermore {

H(Du, x) ≤ H̄(P ) a.e.
H(Du, x) = H̄(P ) σ-a.e.

(4.6)
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(iv) The measure σ is a weak solution of

div(σDpH(Du, x)) = 0. (4.7)

(v) In addition, u is a viscosity solution of Aronsson’s PDE

−AH [u] := −
n∑

i,j=1

Hpi
Hpj

uxixj
−

n∑
i=1

Hxi
Hpi

= 0. (4.8)

4.2 Application: Nonresonance and Averaging.

We illustrate some uses of the approximation (4.2) by noting first that our
(unique) solution uk := P ·x+vk is smooth in both x and P . We can therefore
legitimately differentiate in both variables, and are encouraged to do so by
the classical formulas (1.5).

Derivatives of H̄k

We can also calculate the first and second derivatives in P of the smooth
approximate effective Hamiltonian H̄k. Indeed, a direct computation (cf. [E3])
establishes the useful formulas

DH̄k(P ) =
∫

Tn

DpH(Duk, x) dσk (4.9)

and

D2H̄k(P ) = k

∫
Tn

(DpH(Duk, x)D2
xP uk−DH̄k(P ))⊗ (DpHD2

xP uk−DH̄) dσk

+
∫

Tn

D2
pH(Duk, x)D2

xP u⊗D2
xP u dσk,

(4.10)

where for notational convenience we write

dσk := σkdx.

Nonresonance

Next, let us assume H̄ is differentiable at P and that V = DH̄(P ) satisfies
the weak nonresonance condition

V ·m �= 0 for all m ∈ Zn, m �= 0. (4.11)

What does this imply about the limits as k →∞ of σk and uk??
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Theorem 4.3 (Nonresonance and Averaging). Suppose (4.11) holds and
also

|D2H̄k(P )| ≤ C

for all large k.
Then

lim
k→∞

∫
Tn

Φ(DP uk)σk dx =
∫

Tn

Φ dX. (4.12)

for all continuous, periodic functions Φ = Φ(X).

Interpretation. As discussed in Section 1, if we could really change to the
action-angle variables X,P according to (1.5) and (1.6), we would obtain the
linear dynamics

X(t) = X0 + tV = X0 + tDH̄(P ).

In view of the nonresonance condition (4.11), it follows then that

lim
T→∞

1
T

∫ T

0

Φ(X(t)) dt =
∫

Tn

Φ(X) dX (4.13)

for all continuous, periodic functions Φ.

Observe next from (4.2) that σk is a solution of the transport equation

div(σkDpH(Duk, x)) = 0. (4.14)

Now a direct calculation shows that if u is a smooth solution of (E), then

σ̂ := det D2
xP u

in fact solves the same transport PDE:

div(σ̂DpH(Du, x)) = 0.

This suggests that maybe we somehow have σk ≈ det D2
xP uk in the asymptotic

limit k →∞. Since ∫
Tn

Φ(DP u)σ̂ dx =
∫

Tn

Φ(X) dX

if the mapping X = DP u(P, x) is one-to-one and onto, we might then hope
that something like (4.12) is valid. !"

Idea of Proof. Recall (4.14) and note also that

w := e2πim·DP uk

= e2πim·(x+DP vk)
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is periodic (even though DP uk = x + DP vk is not). Hence

0 =
∫

Tn

DpH(Duk, x) ·Dxwσk dx

= 2πi

∫
Tn

e2πim·DP uk

m ·DpHD2
xP ukσk dx

= 2πi

∫
Tn

e2πim·DP uk

m ·DH̄k(P )σk dx

+2πi

∫
Tn

e2πim·DP uk

m(DpHDxP uk −DH̄k)σk dx

=: A + B.

Using formula (4.10), we can estimate

|B| ≤ C(
1
k
|D2H̄k(P )|)1/2 = o(1) as k →∞.

Consequently A → 0. Since

m ·DH̄k(P ) → m · V �= 0,

we deduce that ∫
Tn

e2πim·DP uk

σk dx → 0.

This proves (4.12) for all finite trigonometric polynomials Φ, and then, by the
density of such trig polynomials, for all continuous Φ. !"

5 Some Other Viewpoints and Open Questions

This concluding section collects together some comments about other work
on, and extending, weak KAM theory and about possible future progress.

• Geometric properties of the effective Hamiltonian
Concordel in [C1], [C2] initiated the systematic study of the geometric

properties of the effective Hamiltonian H̄, but many questions are still open.
Consider, say, the basic example H(p, x) = |p|2

2 + W (x) and ask how
the geometric properties of the periodic potential W influence the geometric
properties of H̄, and vice versa. For example, if we know that H̄ has a “flat
spot” at its minimum, what does this imply about W?

It would be interesting to have some more careful numerical studies here,
as for instance in Gomes-Oberman [G-O].
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• Nonresonance
Given the importance of nonresonance assumptions for the perturbative

classical KAM theory, it is a critically important task to understand conse-
quences of this condition for weak KAM in the large. Theorem 4.3 is a tiny
step towards understanding this fundamental issue. See also Gomes [G1], [G2]
for some more developments.

• Aubry and Mather sets
See Fathi’s book [F5] for a more detailed discussion of the Mather set

(only mentioned above), the larger Aubry set, and their dynamical systems
interpretations. One fundamental question is just how, and if, Mather sets can
act as global replacements for the classical KAM invariant tori.

• Weak KAM and mass transport
Bernard and Buffoni [B-B1], [B-B2], [B-B3] have rigorously worked out

some of the fascinating interconnections between weak KAM theory and opti-
mal mass transport theory (see Ambrosio [Am] and Villani [V]). Some formal
relationships are sketched in my expository paper [E5].

• Stochastic and quantum analogs
My paper [E4] discusses the prospects of finding some sort of quantum

version of weak KAM, meaning ideally to understand possible connections
with solutions of Schrödinger’s equation in the semiclassical limit h → 0. This
all of course sounds good, but it is currently quite unclear if any nontrivial
such connections really exist.

N. Anantharaman’s interesting paper [An] shows that a natural approx-
imation scheme (independently proposed in [E4]) gives rise to Mather mini-
mizing measures which additionally extremize an entropy functional.

Gomes in [G3] and Iturriaga and Sanchez-Morgado in [I-SM] have dis-
cussed stochastic versions of weak KAM theory, but here too many key ques-
tions are open.

• Nonconvex Hamiltonians
It is, I think, very significant that the theory [L-P-V] of Lions, Papanico-

laou and Varadhan leads to the existence of solutions to the generalized eikonal
equation (E) even if the Hamiltonian H is nonconvex in the momenta p: all
that is really needed is the coercivity condition that lim|p|→∞ H(p, x) = ∞,
uniformly for x ∈ Tn. In this case it remains a major problem to interpret H̄
in terms of dynamics.

Fathi and Siconolfi [F-S2] have made great progress here, constructing
much of the previously discussed theory under the hypothesis that p �→
H(p, x) be geometrically quasiconvex, meaning that for each real number λ
and x ∈ Tn, the sublevel set {p | H(p, x) ≤ λ} is convex.

The case of Hamiltonians which are coercive, but nonconvex and nonqua-
siconvex in p, is completely open.



152 L.C. Evans

• Aronsson’s PDE.
I mention in closing one final mystery: does Aronsson’s PDE (4.8) have

anything whatsoever to do with the Hamiltonian dynamics? This highly de-
generate, highly nonlinear elliptic equation occurs quite naturally from the
variational construction in Section 4, but to my knowledge has no interpre-
tation in terms of dynamical systems. (See Yu [Y] and Fathi–Siconolfi [F-S3]
for more on this strange PDE.)
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1 Sets of finite perimeter

Symmetrization is one of the most powerful mathematical tools with several
applications both in Analysis and Geometry. Probably the most remarkable
application of Steiner symmetrization of sets is the De Giorgi proof (see [14],
[25]) of the isoperimetric property of the sphere, while the spherical sym-
metrization of functions has several applications to PDEs and Calculus of
Variations and to integral inequalities of Poincaré and Sobolev type (see for
instance [23], [24], [19], [20]).

The two model functionals that we shall consider in the sequel are: the
perimeter of a set E in IRn and the Dirichlet integral of a scalar function
u. It is well known that on replacing E or u by its Steiner symmetral or its
spherical symmetrization, respectively, both these quantities decrease. This
fact is classical when E is a smooth open set and u is a C1 function ([22],
[21]). Moreover, on approximating a set of finite perimeter with smooth open
sets or a Sobolev function by C1 functions, these inequalities can be easily
extended by lower semicontinuity to the general setting ([19], [25], [2], [4]).
However, an approximation argument gives no information about the equality
case. Thus, if one is interested in understanding when equality occurs, one has
to carry on a deeper analysis, based on fine properties of sets of finite perimeter
and Sobolev functions.

Let us start by recalling what the Steiner symmetrization of a measurable
set E is. For simplicity, and without loss of generality, in the sequel we shall
always consider the symmetrization of E in the vertical direction. To this aim,
it is convenient to denote the points x in IRn also by (x′, y), where x′ ∈ IRn−1

and y ∈ IR. Thus, given x′ ∈ IRn−1, we shall denote by Ex′ the corresponding
one-dimensional section of E

Ex′ = {y ∈ IR : (x′, y) ∈ E} .

The distribution function µ of E is defined by setting for all x′ ∈ IRn−1
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µ(x′) = L1(Ex′) .

Here and in the sequel we denote by Lk the Lebesgue measure in IRk. Then,
denoting the essential projection of E by π(E)+ = {x′ ∈ IRn−1 : µ(x′) > 0},
the Steiner symmetral of E with respect to the hyperplane {y = 0} is the set

Es = {(x′, y) : x′ ∈ π(E)+, |y| < µ(x′)/2} .

Notice that by Fubini’s theorem we get immediately that µ is a Ln−1-
measurable function in IRn−1, hence Es is a measurable set in IRn and
Ln(E) = Ln(Es). Moreover, it is not hard to see that the diameter of E de-
creases under Steiner symmetrization, i.e., diam(Es) ≤ diam(E), an inequal-
ity which in turn implies ([1, Proposition 2.52]) the well known isodiametric
inequality

Ln(E) ≤ ωn

(
diam(E)

2

)n

,

where ωn denotes the measure of the unit ball in IRn.
Denoting by P (E) the perimeter of a measurable set in IRn, the following

result states that the perimeter too decreases under Steiner symmetrization.

Theorem 1.1. Let E ⊂ IRn be a measurable set. Then,

P (Es) ≤ P (E) . (1.1)

As we said before, inequality (1.1) is classic when E is a smooth set and can
be proved by a simple approximation argument in the general case of a set of
finite perimeter. However, following [9], we shall give here a different proof of
Theorem 1.1, which has the advantage of providing valuable information in
the case when (1.1) reduces to an equality.

Let us now recall the definition of perimeter. If E is a measurable set in
IRn and Ω ⊂ IRn is an open set, we say that E is a set of finite perimeter
in Ω if the distributional derivative of the characteristic function of E, DχE ,
is a vector-valued Radon measure in Ω, with finite total variation |DχE |(Ω).
Thus, denoting by (D1χE , . . . , DnχE) the components of DχE , we have that
for all i = 1, . . . , n and all test functions ϕ ∈ C1

0 (Ω)∫
Ω

χE(x)
∂ϕ

∂xi
(x) dx = −

∫
Ω

ϕ(x) dDiχE(x) . (1.2)

From this formula it follows that the total variation of DχE in Ω can be
expressed as

|DχE |(Ω) = sup
{ n∑

i=1

∫
Ω

ψi(x) dDiχE : ψ ∈ C1
0 (Ω; IRn), ‖ψ‖∞ ≤ 1

}
(1.3)

= sup
{∫

E

divψ(x) dx : ψ ∈ C1
0 (Ω; IRn), ‖ψ‖∞ ≤ 1

}
.
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Notice that, if E is a smooth bounded open set, equation (1.2) reduces to∫
E∩Ω

∂ϕ

∂xi
(x) dx = −

∫
∂E∩Ω

ϕ(x)νE
i (x) dHn−1(x) ,

where νE denotes the inner normal to the boundary of E. Here and in the
sequel Hk, 1 ≤ k ≤ n− 1, stands for the Hausdorff k-dimensional measure in
IRn. Thus, for a smooth set E,

DiχE = νE
i Hn−1 ∂E i = 1, . . . , n ,

|DχE |(Ω) = Hn−1(∂E ∩Ω) .

Last equation suggests to define the perimeter of E in Ω by setting P (E;Ω) =
|DχE |(Ω). More generally, if B ⊂ Ω is any Borel subset of Ω, we set

P (E;B) = |DχE |(B) .

If Ω = IRn, the perimeter of E in IRn will be denoted simply by P (E).
Notice that the last supremum in (1.3) makes sense for any measurable set E.
Indeed, if for some E that supremum is finite, then an application of Riesz’s
theorem on functionals on C0(Ω; IRn) yields that DχE is a Radon measure
and (1.3) holds. Thus, we may set for any measurable set E ⊂ IRn and any
open set Ω

P (E;Ω) = sup
{∫

E

divψ(x) dx : ψ ∈ C1
0 (Ω; IRn), ‖ψ‖∞ ≤ 1

}
. (1.4)

Clearly E a set of finite perimeter according to the definition given above if
and only if the right hand side of (1.4) is finite. Notice also that from (1.4)
it follows that if Eh is a sequence of measurable sets converging locally in
measure to E in Ω, i.e., such that χEh

→ χE in L1
loc(Ω), then

P (E;Ω) ≤ lim inf
h→∞

P (Eh;Ω) . (1.5)

Another immediate consequence of the definition of perimeter is that P (E;Ω)
does not change if we modify E by a set of zero Lebesgue measure. Moreover,
it is straightforward to check that

P (E;Ω \ ∂E) = |DχE |(Ω \ ∂E) = 0 ,

i.e., DχE is concentrated on the topological boundary of E.
Next example shows that in general DχE may be concentrated on a much
smaller set. Let us denote by Br(x) the ball with center x and radius r and
set E = ∪∞

i=1B1/2i(qi), where {qi} a dense sequence in IRn. Then E is an
open set of finite measure such that Ln(∂E) = ∞. However, E is a set of
finite perimeter in IRn. In fact, given ψ ∈ C1

0 (IRn; IRn) with ‖ψ‖∞ ≤ 1, by
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applying the classical divergence theorem to the Lipschitz open sets Ek =
∪k

i=1B1/2i(qi), with k ≥ 1, we have∫
E

divψ dx = lim
k→∞

∫
Ek

divψ dx = − lim
k→∞

∫
∂Ek

〈ψ, νEk〉 dHn−1

≤ lim
k→∞

Hn−1(∂Ek) ≤
∞∑

i=1

nωn

2i(n−1)
<∞ .

To identify the set of points where the measure “perimeter” P (E; ·) is con-
centrated, we may use the Besicovitch derivation theorem (see [1, Theorem
2.22]), which guarantees that if E is a set of finite perimeter in IRn, then for
|DχE |-a.e. point x ∈ supp|DχE | (the support of the total variation of DχE)
there exists the derivative of DχE with respect to |DχE |,

lim
r→0

DχE(Br(x))
|DχE |(Br(x))

= νE(x) , (1.6)

and that
|νE(x)| = 1 . (1.7)

The set of points where (1.6) and (1.7) hold is called the reduced boundary
of E and denoted by ∂∗E. If x ∈ ∂∗E, νE(x) is called the generalized inner
normal to E at x. Since from Besicovitch theorem we have that DχE =
νE |DχE | ∂∗E, formula (1.2) can be written as∫

E

∂ϕ

∂xi
dx = −

∫
∂∗E

ϕνE
i d|DχE | for all ϕ ∈ C1

0 (IRn) and i = 1, . . . , n .

(1.8)
The following theorem ([13] or [1, Theorem 3.59]) describes the structure of
the reduced boundary of a set of finite perimeter.

Theorem 1.2 (De Giorgi). Let E ⊂ IRn be a set of finite perimeter in IRn,
n ≥ 2. Then

(i) ∂∗E =
∞⋃

h=1

Kh ∪N0 ,

where each Kh is a compact subset of a C1 manifold Mh and Hn−1(N0) = 0;

(ii) |DχE | = Hn−1 ∂∗E ;

for Hn−1-a.e. x ∈ Kh, νE(x) is orthogonal to the tangent plane to Mh at x .

From this theorem it is clear that for a set of finite perimeter the reduced
boundary plays the same role of the topological boundary for smooth sets. In
particular, the integration by parts formula (1.8) becomes
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E

∂ϕ

∂xi
dx = −

∫
∂∗E

ϕνE
i dHn−1 for all ϕ ∈ C1

0 (IRn) and i = 1, . . . , n ,

(1.9)
an equation very similar to the one we have when E is a smooth open set.

In the one-dimensional case sets of finite perimeter are completely charac-
terized by the following result (see [1, Proposition 3.52]).

Proposition 1.1. Let E ⊂ IR be a measurable set. Then E has finite perime-
ter in IR if and only if there exist −∞ ≤ a1 < b1 < a2 < · · · < bN−1 < aN <

bN ≤ +∞, such that E is equivalent to
N⋃

i=1

(ai, bi). Moreover, if Ω is an open

set in IR,
P (E;Ω) = #{i : ai ∈ Ω}+ #{i : bi ∈ Ω} .

Notice that from this characterization we have that if E ⊂ IR is a set of finite
perimeter with finite measure, then P (E) ≥ 2. Moreover, P (E) = 2 if and
only if E is equivalent to a bounded interval. Notice also that Proposition 1.1
yields immediately Theorem 1.1 and the characterization of the equality case
in (1.1).

If we translate Theorem 1.2 in the language of Geometric Measure theory,
then assertion (i) says that the reduced boundary ∂∗E of a set of finite perime-
ter E in IRn is a countably Hn−1-rectifiable set (see [1, Definition 2.57]), while
(iii) states that for Hn−1-a.e. x ∈ ∂∗E the approximate tangent plane to ∂∗E
at x (see [1, Section 2.11]) is orthogonal to νE(x). Therefore, from the coarea
formula for rectifiable sets ([1, Remark 2.94]), we get that if g : IRn → [0,+∞]
is a Borel function, then∫

∂∗E

g(x)|νn(x)| dHn−1(x) =
∫

IRn−1
dx′

∫
(∂∗E)x′

g(x′, y) dH0(y) , (1.10)

where H0 denotes the counting measure.
Setting V = {x ∈ ∂E∗ : νE

n (x) = 0} and g(x) = χV (x), from (1.10) we get
that∫

IRn−1
dx′

∫
(∂∗E)x′

χV (x′, y) dH0(y) =
∫

∂∗E

χV (x)|νn(x)| dHn−1(x) = 0 .

Therefore, if E is a set of finite perimeter, then Vx′ = ∅ for Ln−1-a.e. x′ ∈
IRn−1, i.e.,

for Ln−1-a.e. x′ ∈ IRn−1, νE
n (x′, y) �= 0 for all y such that (x′, y) ∈ ∂∗E .

(1.11)
Let Ω be an open subset of IRn and u ∈ L1(Ω). We say that u is a function of
bounded variation (shortly, a BV -function) in Ω, if the distributional deriv-
ative Du is a vector-valued Radon measure in Ω with finite total variation.
Thus, denoting by Diu, i = 1, . . . , n, the components of Du we have that
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Ω

u
∂ϕ

∂xi
dx = −

∫
Ω

ϕdDiu for all ϕ ∈ C1
0 (Ω) . (1.12)

The space of functions of bounded variation in Ω will be denoted by BV (Ω).
Notice that if u ∈ BV (Ω), then, as in (1.3), we have

|Du|(Ω) = sup
{ n∑

i=1

∫
Ω

ψi(x) dDiu : ψ ∈ C1
0 (Ω; IRn), ‖ψ‖∞ ≤ 1

}
= sup

{∫
Ω

udivψ(x) dx : ψ ∈ C1
0 (Ω; IRn), ‖ψ‖∞ ≤ 1

}
.

Moreover, it is clear that if E is a measurable set such that Ln(E ∩Ω) <∞,
then χE ∈ BV (Ω) if and only if E has finite perimeter in Ω.

In the sequel, we shall denote by Dau the absolutely continuous part of
Du with respect to Lebesgue measure Ln. The singular part of Du will be
denoted by Dsu. Moreover, we shall use the symbol ∇u to denote the density
of Dau with respect to Ln. Therefore,

Du = ∇uLn + Dsu .

Notice also that a function u ∈ BV (Ω) belongs to W 1,1(Ω) if and only if Du
is absolutely continuous with respect to Ln, i.e., |Du|(B) = 0 for all Borel
sets B ⊂ Ω such that Ln(B) = 0. In this case, the density of Du with respect
to Ln reduces to the usual weak gradient ∇u of a Sobolev function.

Next result is an essential tool for studying the behavior of Steiner sym-
metrization with respect to perimeter.

Lemma 1.1. Let E a set of finite perimeter in IRn with finite measure. Then
µ ∈ BV (IRn−1) and for any bounded Borel function ϕ : IRn−1 → IR∫

IRn−1
ϕ(x′) dDiµ(x′) =

∫
∂∗E

ϕ(x′)νE
i (x) dHn−1(x), i = 1, . . . , n−1 .

(1.13)
Moreover, for any Borel set B ⊂ IRn−1,

|Dµ|(B) ≤ P (E;B × IR) . (1.14)

Proof. Let us fix ϕ ∈ C1
0 (IRn−1) and a sequence {ψj} of C1

0 (IR) functions,
such that 0 ≤ ψj(y) ≤ 1 for all y ∈ IR and j ∈ IN, with limj→∞ ψj(y) = 1 for
all y. For any i ∈ {1, . . . , n− 1}, from Fubini’s theorem and formula (1.9), we
get immediately∫

IRn−1

∂ϕ

∂xi
(x′)µ(x′) dx′ =

∫
IRn−1

dx′
∫

IR

∂ϕ

∂xi
(x′)χE(x′, y) dy

= lim
j→∞

∫
E

∂ϕ

∂xi
(x′)ψj(y) dx′dy (1.15)

= − lim
j→∞

∫
∂∗E

ϕ(x′)ψj(y)νE
i (x) dHn−1

= −
∫

∂∗E

ϕ(x′)νE
i (x) dHn−1 .
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This proves that the distributional derivatives of µ are real measures with
bounded variation. Therefore, since Ln(E) < ∞, hence µ ∈ L1(IRn−1), we
have that µ ∈ BV (IRn−1) and thus, by applying (1.12) to µ, from (1.15) we
get in particular that (1.13) holds with ϕ ∈ C1

0 (IRn−1). The case of a bounded
Borel function ϕ then follows easily by approximation (see [9, Lemma 3.1]).

Finally, when B is an open set of IRn−1, (1.14) follows immediately from
(1.13) and (ii) of Theorem 1.2. Again, the general case of a Borel set B ⊂
IRn−1, follows by approximation. !"

Next result provides a first estimate of the perimeter of Es. Notice that in
the statement below we have to assume that Es is a set of finite perimeter, a
fact that will be proved later.

Lemma 1.2. Let E be any set of finite perimeter in IRn with finite measure.
If Es is a set of finite perimeter, then

P (Es;B × IR) ≤ P (E;B × IR) + |DnχEs |(B × IR) (1.16)

for every Borel set B ⊂ IRn−1.

Proof. Since µ ∈ BV (IRn−1), by a well known property of BV functions (see
[1, Theorem 3.9], we may find a sequence {µj} of nonnegative functions from
C1

0 (IRn−1) such that µj → µ in L1(IRn−1), µj(x′) → µ(x′) for Ln−1-a.e. x′ in
IRn−1, |Dµj |(IRn−1) → |Dµ|(IRn−1) and |Dµj | → |Dµ| weakly* in the sense
of measures. Then, setting

Es
j = {(x′, y) ∈ IRn−1 × IR : µj(x′) > 0, |y| < µj(x′)/2} ,

we easily get that χEs
j
(x) → χEs(x) in L1(IRn). Fix an open set U ⊂ IRn−1 and

ψ ∈ C1
0 (U × IR, IRn). Then, Fubini’s theorem and a standard differentiation

of integrals yield∫
U×IR

χEs
j
divψ dx =

∫
U

dx′
∫ µj(x

′)/2

−µj(x′)/2

n−1∑
i=1

∂ψi

∂xi
dy +

∫
Ω×IR

χEs
j

∂ψn

∂y
dx

= −1
2

∫
π(suppψ)

n−1∑
i=1

[
ψi

(
x′,

µj(x′)
2

)
−ψi

(
x′,−µj(x′)

2

)]∂µj

∂xi
dx′

+
∫

Ω×IR

χEs
j

∂ψn

∂y
dx ,

where π : IRn → IRn−1 denotes the projection over the first n−1 components.
Thus∫

U×IR

χEs
j
divψ dx ≤

≤
∫

π(suppψ)

√√√√n−1∑
i=1

[
1
2

(
ψi

(
x′,

µj(x′)
2

)
−ψi

(
x′,−µj(x′)

2

))]2

|∇µj | dx′ +

+
∫

U×IR

χEs
j

∂ψn

∂y
dx. (1.17)
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If ‖ψ‖∞ ≤ 1, from (1.17) we get∫
U×IR

χEs
j
divψ dx ≤

∫
π(suppψ)

|∇µj | dx′ +
∫

U×IR

χEs
j

∂ψn

∂y
dx . (1.18)

Since χEs
j
→ χEs in L1(IRn−1) and π(suppψ) is a compact subset of U ,

recalling that |Dµj | → |Dµ| weakly* in the sense of measure and taking the
lim sup in (1.18) as j →∞, we get∫

U×IR

χEsdivψ dx ≤ |Dµ|(π(suppψ)) +
∫

U×IR

χEs

∂ψn

∂y
dx

≤ |Dµ|(U) + |DnχEs |(U × IR) (1.19)
≤ P (E;U × IR) + |DnχEs |(U × IR) ,

where the last inequality follows from (1.14). Inequality (1.19) implies that
(1.16) holds whenever B is an open set, and hence also when B is any Borel
set. !"
Remark 1.1. Notice that the argument used in the proof of Lemma 1.2 above
yields that if E is a bounded set of finite perimeter, then Es is a set of finite
perimeter too. In fact, in this case, by applying (1.18) with U = IRn−1 and
‖ψ‖∞ ≤ 1 we get

∫
IRn

χEs
j
divψ dx ≤

≤
∫

IRn−1
|∇µj | dx′ +

∫
IRn−1

[
ψn(x′, µj(x′)/2)− ψn(x′,−µj(x′)/2)

]
dx′ .

Hence, passing to the limit as j →∞, we get, from (1.14) and the assumption
that E is bounded,∫

IRn

χEsdivψ dx ≤ |Dµ|(IRn−1)+
∫

IRn−1

[
ψn(x′, µ(x′)/2)−ψn(x′,−µ(x′)/2)

]
dx′

≤ P (E) + 2Ln−1(π(E)+) <∞ .

Next result, due to Vol’pert ([26], [1, Theorem 3.108]), states that for Ln−1-
a.e. x′ the section Ex′ is equivalent to a finite union of open intervals whose
endpoints belong to the corresponding section (∂∗E)x′ of the reduced bound-
ary.

Theorem 1.3. Let E be a set of finite perimeter in IRn. Then, for Ln−1-a.e.
x′ ∈ IRn−1,

(i) Ex′ has finite perimeter in IR ;

(ii) ∂∗Ex′ = (∂∗E)x′ ;
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(iii) νE
n (x′, y) �= 0 for all y such that (x′, y) ∈ ∂∗E ;

(iv) χE(x′, ·) coincides L1-a.e. with a function gx′ such that for all y ∈ ∂∗Ex′⎧⎨⎩ lim
z→y+

gx′(z) = 1, lim
z→y−

gx′(z) = 0 if νE
n (x′, y) > 0 ,

lim
z→y+

gx′(z) = 0, lim
z→y−

gx′(z) = 1 if νE
n (x′, y) < 0 .

The meaning of (i) and (ii) is clear. Property (iii) states that the section
(∂∗E)x′ of the reduced boundary contains no vertical parts. As we have ob-
served in (1.11), this is a consequence of the coarea formula (1.10). Finally,
(iv) states that the normal νE(x) at a point x ∈ ∂∗E has a positive vertical
component if and only if Ex′ lies locally above x.

Notice also that from (ii) it follows that (∂∗E)x′ = ∅ for Ln−1-a.e. x′ �∈
π(E)+ and that there exists a Borel set GE ⊂ π(E)+ such that

the conclusions (i)-(iv) of Theorem 1.3 hold for every
x′ ∈ GE , Ln−1(π(E)+ \GE) = 0. (1.20)

Let us now give a useful representation formula for the absolutely continuous
part of the gradient of µ.

Lemma 1.3. Let E ⊂ IRn be a set of finite perimeter with finite measure.
Then, for Ln−1-a.e. x′ ∈ π(E)+,

∂µ

∂xi
(x′) =

∑
y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)| , i = 1, . . . , n− 1 . (1.21)

Proof. Let GE be a Borel set satisfying (1.20) and g any function in
C0(IRn−1). Set ϕ(x′) = g(x′)χGE

(x′). From (1.13) and (1.10), recalling also
(iii) and (ii) of Theorem 1.3, we have∫

GE

g(x′) dDiµ =
∫

∂∗E

g(x′)χGE
(x′)νE

i (x) dHn−1(x) =

=
∫

∂∗E

g(x′)χGE
(x′)

νE
i (x)
|νE

n (x)| |ν
E
n (x)| dHn−1(x)

=
∫

GE

g(x′)
∑

y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)| dx′ .

Thus from this equality we get that

Diµ GE =

( ∑
y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)|

)
Ln−1 GE .

Hence the assertion follows, since by (1.20) Ln−1(π(E)+ \GE) = 0. !"
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Remark 1.2. If Es is a set of finite perimeter, since E and Es have the same
distribution function µ, we may apply Lemma 1.3 thus getting

∂µ

∂xi
(x′) = 2

νEs

i (x′, 1
2µ(x′))

|νEs

n (x′, 1
2µ(x′))| for Ln−1-a.e. x′ ∈ π(E)+ . (1.22)

2 Steiner Symmetrization of Sets of Finite Perimeter

Let us start by proving the following version of Theorem 1.1.

Theorem 1.1 (Local version) Let E ⊂ IRn be a set of finite perimeter,
n ≥ 2. Then Es is also of finite perimeter and for every Borel set B ⊂ IRn−1,

P (Es;B) ≤ P (E;B) . (2.1)

Proof. Let E ⊂ IRn be a set of finite perimeter. If Ln(E) = ∞, by the
isoperimetric inequality (3.6) below, IRn \E has finite measure, hence L1(IR\
Ex′) < ∞ for Ln−1-a.e. x′ ∈ IRn−1, Es = IRn and the assertion follows
trivially.
Thus we may assume that E has finite measure. For the moment, let us assume
also that Es is a set of finite perimeter (we shall prove this fact later). Let
us set G = GE ∩GEs , where GE and GEs are defined as in (1.20). To prove
inequality (2.1) it is enough to assume B ⊂ G or B ⊂ IRn−1 \G.
In the first case, using Theorem 1.2 (ii), Theorem 1.3 (iii), coarea formula
(1.10) and formulas (1.22) and (1.21), we get easily

P (Es;B × IR) =
∫

∂∗Es∩(B×IR)

1
|νEs

n | |ν
Es

n | dHn−1 =
∫

B

∑
y∈∂∗Es

x′

1
|νEs

n (x′, y)| dx′

= 2
∫

B

1
|νEs

n (x′, 1
2µ(x′))| dx′ (2.2)

= 2
∫

B

√√√√1 +
n−1∑
i=1

( |νEs

i (x′, 1
2µ(x′))|

|νEs

n (x′, 1
2µ(x′))|

)2

dx′

=
∫

B

√√√√4 +
n−1∑
i=1

(
∂µ

∂xi
(x′)

)2

dx′

=
∫

B

√√√√4 +
n−1∑
i=1

( ∑
y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)|
)2

dx′ .

Notice that, since E has finite measure, for a.e. x′ ∈ IRn−1, L1(Ex′) < ∞ and
thus P (Ex′) ≥ 2. Hence from the equality above, using the discrete Minkowski
inequality, we get
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P (Es;B × IR) =
∫

B

√√√√4 +
n−1∑
i=1

( ∑
y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)|
)2

dx′ (2.3)

≤
∫

B

√√√√(
#{y : y ∈ ∂∗Ex′}

)2

+
n−1∑
i=1

( ∑
y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)|
)2

dx′

≤
∫

B

∑
y∈∂∗Ex′

√√√√1 +
n−1∑
i=1

(
νE

i (x′, y)
|νE

n (x′, y)|
)2

dx′

=
∫

B

∑
y∈∂∗Ex′

1
|νE

n (x′, y)| dx′ = P (E;B × IR) ,

where the last two equalities, as in (2.2), are a consequence of the coarea
formula and of the assumption B ⊂ GE .
When B ⊂ IRn−1 \ G, we use (1.6), Theorem 1.2 (ii), coarea formula again,
Theorem 1.3 (ii) and the fact that Ln−1(π(E)+ ∩B) = 0, thus getting

|DnχEs |(B × IR) =
∫

∂∗Es∩(B×IR)

|νEs

n |dHn−1 =
∫

B

#{y∈∂∗Es
x′}dx′

=
∫

B\π(E)+
#{y∈∂∗Es

x′}dx′ = 0 ,

where the last equality is a consequence of the fact that Es
x′ = ∅ for all

x′ �∈ π(E)+. Then (2.1) immediately follows from (1.16).
Let us now prove now that Es is a set of finite perimeter. If E is bounded,
this property follows from what we have already observed in Remark 1.1. If
E is not bounded, we may always find a sequence of smooth bounded open
sets Eh such that Ln(E∆Eh) → 0 and P (Eh) → P (E) as h → ∞ (see [1,
Theorem 3.42]). Notice that, by Fubini’s theorem,

Ln(Es∆(Eh)s) =
∫

IRn−1
|L1(Es

x′)− L1((Eh)s
x′)| dx′

=
∫

IRn−1
|L1(Ex′)− L1((Eh)x′)| dx′

≤
∫

IRn−1
|L1(Ex′∆(Eh)x′)| dx′ = Ln(E∆Eh) .

Therefore, from the lower semicontinuity of perimeters with respect to con-
vergence in measure (1.5) and from what we have proved above we get

P (Es) ≤ lim inf
h→∞

P ((Eh)s) ≤ lim
h→∞

P (Eh) = P (E)

and thus Es has finite perimeter. !"
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The result we have just proved was more or less already known in the
literature though with a different proof (see for instance [25]). The interesting
point of the above proof is that it provides almost immediately some non
trivial information about the case when equality holds in (1.1), as shown by
the next result.

Theorem 2.1. Let E be a set of finite perimeter in IRn, with n ≥ 2, such that
equality holds in (1.1). Then, either E is equivalent to IRn or Ln(E) <∞ and
for Ln−1-a.e. x′ ∈ π(E)+

Ex′ is equivalent to a segment (y1(x′), y2(x′)) , (2.4)

(νE
1 , . . . , νE

n−1, ν
E
n )(x′, y1(x′)) = (νE

1 , . . . , νE
n−1,−νE

n )(x′, y2(x′)) . (2.5)

Proof. If Ln(E) = ∞, as we have already observed in the previous proof,
Es = IRn. Then, since P (E) = P (Es) = 0, it follows that also E is equivalent
to IRn.
If Ln(E) <∞, from the assumption P (E) = P (Es) and from inequality (2.1)
it follows that P (Es;B × IR) = P (E;B × IR) for all Borel sets B ⊂ IRn−1.
By applying this equality with B = G, where G is the set introduced in the
proof above, it follows that both inequalities in (2.3) are indeed equalities.
In particular, since the first inequality holds as an equality, we get

#{y : y ∈ ∂∗Ex′} = 2 for Ln−1-a.e. x′ ∈ G .

Hence (2.4) follows, recalling that, by (1.20), Ln−1(π(E)+ \G) = 0.
The fact that also the second inequality in (2.3) is an equality implies that

νE
i (x′, y1(x′))
|νE

n (x′, y1(x′))| =
νE

i (x′, y2(x′))
|νE

n (x′, y2(x′))|

for i = 1, . . . , n− 1 and for Ln−1-a.e. x′ ∈ G .

From this equation, since |νE | = 1, we have that νE
i (x′, y1(x′)) = νE

i (x′, y2(x′))
and |νE

n (x′, y1(x′))| = |νE
n (x′, y2(x′))| for Ln−1-a.e. x′ ∈ G. Then, equality

νE
n (x′, y1(x′)) = −νE

n (x′, y2(x′) is an easy consequence of assertion (iv) of
Theorem 1.3. Hence, (2.5) follows. !"

As we have just seen, Theorem 2.1 states that if E has the same perimeter
of its Steiner symmetral Es, then almost every section of E in the y direction is
a segment and the two normals at the endpoints of the segment are symmetric.
However, this is not enough to conclude that E coincides with Es (up to a
transaltion), as it is clear by looking at the picture below.
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y

x′

E Es

y

x′

E Es

Thus, in order to deduce from the equality P (E) = P (Es) that E and Es

coincide, up to a translation in the y direction, we need to make some as-
sumption on the set E or on Es. To this aim let us start by assuming that,
given an open set U ⊂ IRn−1,

(H1) Hn−1({x ∈ ∂∗Es : νEs

n (x) = 0} ∩ (U × IR)} = 0 ,

i.e., the (reduced) boundary of Es has no flat parts parallel to the y direction.
Notice that this assumption rules out the example shown on the upper part
of the picture. Moreover, as we shall see in a moment, (H1) holds in an open
set U if and only if the distribution function is a W 1,1 function in U . To this
aim, let us recall the following well known result concerning the graph of a
BV function (see, for instance, [18, Ch. 4, Sec. 1.5, Th. 1, and Ch. 4, Sec. 2.4,
Th. 4]).

Theorem 2.2. Let U ⊂ IRn−1 be a bounded open set and u ∈ L1(U). Then
the subgraph of U ,

Su = {(x′, y) ∈ U × IR : y < u(x′)} ,
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is a set of finite perimeter in U × IR if and only if u ∈ BV (U). Moreover, in
this case,

P (Su;B × IR) =
∫

B

√
1 + |∇u|2dx′ + |Dsu|(B) (2.6)

for every Borel set B ⊂ U .

Notice that if E is a bounded set of finite perimeter, since µ ∈ BV (IRn−1) by
Lemma 1.1, and

Es = {(x′, y) ∈ IRn−1 × IR : −µ(x′)/2 < y < µ(x′)/2} , (2.7)

from Theorem 2.2 we get immediately that Es is a set of finite perimeter, being
the intersection of the two sets of finite perimeter {(x′, y) : y > −µ(x′)/2}
and {(x′, y) : y < µ(x′)/2}.
Proposition 2.1. Let E be any set of finite perimeter in IRn, n ≥ 2, with
finite measure. Let U be an open subset of IRn−1. Then the following conditions
are equivalent:

(i) Hn−1
({x ∈ ∂∗Es : νEs

n (x) = 0} ∩ (U × IR)
)

= 0 ,
(ii) P (Es;B × IR) = 0 for every Borel set B ⊂ U such that Ln−1(B) = 0 ,
(iii)µ ∈W 1,1(U) .

Proof. Let us assume that (i) holds and fix a Borel set B ⊂ U such that
Ln−1(B) = 0. Using coarea formula (1.10) we get

P (Es;B × IR) = Hn−1(∂∗Es ∩ (B × IR))
= Hn−1({x ∈ ∂∗Es : νEs

n (x) �= 0} ∩ (B × IR))

=
∫

∂∗Es

1
|νEs

n (x)|χ{νEs
n �=0}∩(B×IR)(x)|νEs

n (x)| dHn−1

=
∫

B

dx′
∫

(∂∗Es)x′

χ{νEs
n �=0}(x′, y)
|νEs

n (x′, y)| dH0(y) = 0 ,

hence (ii) follows.
If (ii) holds and B is a null set in U , by applying (1.14) with E replaced by
Es we get |Dµ|(B) = 0. Thus, Dµ is absolutely continuous with respect to
Ln−1, hence µ ∈ W 1,1(U).
Notice that, if E1, E2 are two sets of finite perimeter and B is an open set,
then (see [1, Proposition 3.38]) P (E1∩E2;B) ≤ P (E1;B)+P (E2;B) and, by
approximation, the same inequality holds also when B is a Borel set. There-
fore, recalling (2.7) and (2.6) we get that, if (iii) holds, for any Borel set B
in U

P (Es;B × IR) ≤ 2P (Sµ/2;B × IR) =
∫

B

√
4 + |∇µ|2 dx′ . (2.8)

Set B0 = π(∂∗Es) \GEs , where GEs ⊂ π(E)+ is a Borel set satisfying (1.20)
with E replaced by Es. Since by Theorem 1.3 (∂∗Es)x′ = ∅ for Ln−1-a.e.
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x′ �∈ π(E)+, we have Ln−1(B0) = Ln−1(π(∂∗Es) \ π(E)+) + Ln−1(π(E)+ \
GEs) = 0. Therefore, from (2.8) we get that P (Es; (B0 ∩ U) × IR) = 0,
i.e. Hn−1 ((∂∗Es \ (GEs × IR)) ∩ (U × IR)) = 0. Then, (i) follows since by
definition {x ∈ ∂∗Es : νEs

n (x) = 0} ⊂ ∂∗Es \ (GEs × IR). !"
It may seem strange that assumption (H1) is made on the Steiner symme-

tral Es. Alternatively, we could make a similar assumption on E by requiring
that

(H ′
1) Hn−1({x ∈ ∂∗E : νE

n (x) = 0} ∩ (U × IR)} = 0 .

Actually, it is not difficult to show that (H ′
1) implies (H1), while the converse

is false in general, as one can see by simple examples. In fact, if (H ′
1) holds,

arguing exactly as in the proof of the implication ‘(i)⇒(ii)’ in Proposition 2.1
we get that P (E;B×IR) = 0 for any Borel set B ⊂ U with zero measure. Then
(2.1) implies that the same property holds also for Es and thus, by Proposition
2.1, we get that Es satisfies (H1). Notice also that when P (E) = P (Es),
then by (2.1) we have that P (E;B × IR) = P (Es;B × IR) for any Borel set
B ⊂ IRn−1. Thus one immediately gets that in this case the two conditions
(H1), (H ′

1) are equivalent.
Let us now comment on the example on the lower part of the picture above.

It is clear that in that case things go wrong, in the sense that E and Es are not
equal, because even though the set E is connected in a strict topological sense
it is ‘essentially disconnected’. Therefore, to deal with similar examples one
could device to use a suitable notion of connectedness set up in the context
of sets of finite perimeter (see, for instance, [1, Example 4.18]). However, we
will not follow this path. Instead, we will use the information provided by
Proposition 2.1.

If the distribution function µ is of class W 1,1(U), then forHn−2-a.e. x′ ∈ U
we can define its precise representative µ̃(x′) (see [15] or [27]) as the unique
value such that

lim
r→0

−
∫

Bn−1
r (x′)

|µ(y)− µ̃(x′)| dx′ = 0 , (2.9)

where by Bn−1
r (x′) we have denoted the (n−1)-dimensional ball with centre

x′ and radius r. Then, in order to rule out a situation like the one on the
bottom of the picture above, we make the assumption

(H2) µ̃(x′) > 0 for Hn−2-a.e. x′ ∈ U .

Next result, proved in [9], shows that the two examples in the picture are
indeed the only cases where the equality P (E) = P (Es) does not imply that
the two sets are equal. As for Theorem 1.1, we state the result in a local form.

Theorem 2.3. Let E be a set of finite perimeter IRn, with n ≥ 2, such that

P (Es) = P (E) . (2.10)
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Let us assume that (H1) and (H2) hold in some open set U ⊂ IRn−1. Then,
for every connected open subset Uα of U , E ∩ (Uα × IR) is equivalent to Es ∩
(Uα × IR), up to a translation in the y direction.
In particular, if (H1) and (H2) hold in a connected open set U such that
Ln−1(π(E)+ \ U) = 0, then E is equivalent to Es, up to a translation in the
y direction.

As far as I know, this result was known in the literature only for convex sets,
where it can be proved with a simple argument. In fact, let us assume that E
is an open convex set such that P (E) = P (Es) < ∞. Then, π(E) is also an
open convex set and there exist two functions y1, y2 : π(E) → IR, y1 convex,
and y2 concave, such that

E = {(x′, y) : x′ ∈ π(E), y1(x′) < y < y2(x′)} .

Let us now fix an open set U ⊂⊂ π(E). From assumption (2.10) and from (2.1)
we have that P (Es;U × IR) = P (E;U × IR). Since y1 and y2 are Lipschitz
continuous in U , we can write this equality as

2
∫

U

√
1 +

|∇(y2 − y1)|2
4

dx′ =
∫

U

√
1 + |∇y1|2 dx′ +

∫
U

√
1 + |∇y1|2 dx′ .

From this equality, the strict convexity of the function t �→ √
1 + t2 and the

arbitrariness of U , we get that ∇y2 = −∇y1 in π(E) and thus y2 = −y1 +
const.. This shows that E coincides with Es, up to a translation in y direction.

The proof of Theorem 2.3, for which we refer to [9], uses delicate tools from
Geometric Measure theory. However, in the special case considered below it
can be greatly simplified.

Proof of Theorem 2.3 in a Special Case. Let us assume that E is an
open set, that π(E) is connected and that E is bounded in y direction.
Notice that since E is open, then µ is a lower semicontinuous function and
for any open set U ⊂⊂ π(E) there exists a constant c(U) > 0 such that

µ(x′) ≥ c(U) for all x′ ∈ U . (2.11)

Moreover, since E is bounded in the y direction, the function

x′ ∈ π(E) �→ m(x′) =
∫

Ex′
y dy

is bounded in π(E). Then, the same arguments used in the proofs of Lemmas
1.1 and 1.3 yield that m ∈ BVloc(π(E)) and that for Ln−1-a.e. x′ ∈ π(E),
i = 1, . . . , n− 1,

∂m

∂xi
(x′) =

∑
y∈∂∗Ex′

y νE
i (x′, y)

|νE
n (x′, y)| , (2.12)
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where we have denoted by ∂m/∂xi the absolutely continuous part of the
derivative Dim.

By Proposition 2.1 we have that (H1) implies that the distribution
function µ is a Sobolev function. The same assumption implies also that
m ∈ W 1,1

loc (π(E)). In fact, the argument used to prove (1.14) shows that if
B ⊂ π(E) is a Borel set, then |Dm|(B) ≤ MP (E;B × IR), where M is a
constant such that E ⊂ IRn−1 × (−M,M). Therefore, if Ln−1(B) = 0, from
(2.1) and Proposition 2.1 we have that P (E;B × IR) = P (Es;B × IR) = 0,
hence Dm is absolutely continuous with respect to Ln−1.
Let us now denote, for any x′ ∈ π(E) by b(x′) the baricenter of the section
Ex′ , i.e.,

b(x′) =

∫
Ex′

ydy

µ(x′)
.

From (2.11) and Proposition 2.1 we have that b too belongs to the space
W 1,1

loc (π(E)). Thus, to prove the assertion, since π(E) is a connected open set,
it is enough to show that ∇b ≡ 0, hence b is constant on π(E). To this aim,
let us evaluate the partial derivatives of b, using the representation formulas
(2.12) and (1.21). We have, for any i = 1, . . . , n−1 and for Ln−1-a.e. x′ ∈ π(E),

∂b

∂xi
(x′) =

1
µ(x′)

( ∑
y∈∂∗Ex′

y νE
i (x′, y)

|νE
n (x′, y)| −

∫
Ex′

ydy

µ(x′)

∑
y∈∂∗Ex′

νE
i (x′, y)
|νE

n (x′, y)|

)
. (2.13)

Since for Ln−1-a.e. x′ ∈ π(E) (2.4) and (2.5) hold, the right hand side of
(2.13) is equal to

1
µ(x′)

[(
y2(x′)+y1(x′)

) νE
i (x′, y2(x′))
|νE

n (x′, y2(x′))| −
1
2

y2
2(x′)−y2

1(x′)
y2(x′)−y1(x′)

2νE
i (x′, y2(x′))

|νE
n (x′, y2(x′))|

]
=0.

Hence, the assertion follows. !"

3 The Pòlya–Szegö Inequality

We are going to present the classical Pòlya–Szegö inequality for the spherical
rearrangement of a Sobolev function u and discuss what can be said about
the function u when the equality holds. In order to simplify the exposition,
we shall assume that u is a nonnegative measurable function from IRn, with
compact support. However, most of the results presented here, like Theorem
3.1, still hold with no restrictions on the support or on the sign of u.

Given u, we set, for any t ≥ 0,

µu(t) = Ln({x ∈ IRn : u(x) > t}) .
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The function µu is called the distribution function of u. Clearly µu is a de-
creasing, right-continuous function such that

µu(0)=Ln(suppu), µu(esssup u)=0, µu(t−)=Ln({u ≥ t}) for all t > 0 .
(3.1)

Notice that from the last equality we have that when t > 0

µu is continuous in t iff Ln({u = t}) = 0 .

Let us now introduce the decreasing rearrangement of u, that is the function
u∗ : [0,+∞) → [0,+∞) defined, for any s ≥ 0, by setting

u∗(s) = sup{t ≥ 0 : µu(t) > s} .

Clearly, u∗ is a decreasing, right-continuous function. The following elemen-
tary properties of u∗ are easily checked:

(j) u∗(µu(t)) ≤ t ≤ u∗(µu(t)−) for all 0 ≤ t < esssup u ;
(jj) µu(u∗(s)) ≤ s ≤ µu(u∗(s)−) for all 0 ≤ s < Ln(suppu) ;
(jjj)L1({s : u∗(s) > t} = µu(t) for all t ≥ 0 .

Notice that (jjj) states that the functions u and u∗ are equi-distributed, i.e.,
µu = µu∗ . Let us now define the spherical symmetric rearrangement of u, that
is the function u� : IRn → [0,+∞), such that for all x ∈ IRn

u�(x) = u∗(ωn|x|n) . (3.2)

By definition and by (jjj) we have

Ln({u� > t}) = Ln({u > t}) for all t ≥ 0 ,

i.e., µu = µu� . Thus also u and u� are equi-distributed. As a simple conse-
quence of this equality and Fubini’s theorem we have, for all p ≥ 1,∫

IRn

|u�(x)|p dx =
∫

IRn

|u(x)|p dx ,

and, letting p → +∞, esssup u = esssup u�.
If u is a smooth function, in general its symmetric rearrangement will be

no longer smooth (actually the best we may expect from Theorem 3.1 below
is that u� is Lipschitz continuous). However, the symmetric rearrangement
behaves nicely on Sobolev functions, as shown by the next result.

Theorem 3.1 (Pòlya–Szegö Inequality). Let u ∈ W 1,p(IRn), p ≥ 1, be a
nonnegative function with compact support. Then u� ∈W 1,p(IRn) and∫

IRn

|∇u�(x)|p dx ≤
∫

IRn

|∇u(x)|p dx . (3.3)
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The proof of this result relies upon two main ingredients, the isoperimetric
inequality and the coarea formula for BV functions. Let us start by recalling
the latter.

Let u be a BV (Ω) function. Then, for L1-a.e. t ∈ IR, the set {u > t} has
finite perimeter in Ω. Moreover, for any Borel function g : Ω → [0,+∞], the
following formula holds (see [1, Theorem 3.40]).∫

Ω

g(x) d|Du| =
∫ ∞

−∞
dt

∫
∂∗{u>t}

g(x) dHn−1 . (3.4)

In the special case u ∈W 1,1(Ω), it can be shown that for L1-a.e. t the reduced
boundary ∂∗{u > t} coincides, modulo a set of Hn−1-measure zero, with the
level set {ũ = t}, where ũ denotes the precise representative of u, which is
defined Hn−1-a.e. in Ω as in (2.9). Therefore, if u ∈W 1,1(Ω), (3.4) becomes∫

Ω

g(x)|∇u(x)| dx =
∫ ∞

−∞
dt

∫
{ũ=t}

g(x) dHn−1(x) . (3.5)

The isoperimetric inequality states that if E be a set of finite perimeter, then(
min {Ln(E),Ln(IRn \ E)}

)n−1
n ≤ 1

nω
1/n
n

P (E) . (3.6)

Moreover, the equality holds if and only if E is (equivalent to) a ball.
Next lemma shows that if u is a Sobolev function, then the same is also

true for u�.

Lemma 3.1. Let u be a nonnegative function with compact support from the
space W 1,1(IRn). Then u� belongs to W 1,1(IRn) and∫

IRn

|∇u�| dx ≤
∫

IRn

|∇u| dx . (3.7)

Proof. Let us first prove that for any 0 < a < b, the function u∗ is absolutely
continuous in (a, b) and∫ b

a

|u∗′(s)| ds ≤ 1

nω
1/n
n a

n−1
n

∫
{u∗(b)<u<u∗(a)}

|∇u| dx . (3.8)

To this aim, we start by observing that from the third equality in (3.1) and
from inequality (jj) we have

Ln({x ∈ IRn : u∗(b) < u(x) < u∗(a)}) = µu(u∗(b))− µu(u∗(a)−) ≤ b− a .
(3.9)

Let us denote by ω : [0,∞) → [0,+∞) the modulus of continuity of the
integral of |∇u|, i.e., a continuous function, vanishing at zero and such that
for any set of finite measure E
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E

|∇u| dx ≤ ω(Ln(E)) .

Using the coarea formula (3.5), the isoperimetric inequality (3.6) and (jj)
again, we obtain the following estimate for the integral of |∇u| between two
level sets,∫

{u∗(b)<u<u∗(a)}
|∇u| dx =

∫ u∗(a)

u∗(b)

P ({u > t}) dt

≥ nω1/n
n

∫ u∗(a)

u∗(b)

(
Ln({u > t}

)n−1
n

dt

≥ nω1/n
n [µu(u∗(a)−)]

n−1
n (u∗(a)− u∗(b)) (3.10)

≥ nω1/n
n a

n−1
n (u∗(a)− u∗(b)) .

Let us now take a finite number of pairwise disjoint intervals (ai, bi) ⊂ (a, b),
i = 1, . . . , N . By applying (3.9) and (3.10) to each interval (ai, bi), we get

N∑
i=1

|u∗(bi)− u∗(ai)| ≤ 1

nω
1/n
n a

n−1
n

N∑
i=1

∫
{u∗(bi)<u<u∗(ai)}

|∇u| dx

≤ 1

nω
1/n
n a

n−1
n

ω
( N∑

i=1

(bi − ai)
)

. (3.11)

From this inequality it follows immediately that u is absolutely continuous in
(a, b), since the left hand side is smaller than a given ε > 0 as soon as the sum
of the lengths of the intervals (ai, bi) is sufficiently small. Moreover, by taking
the supremum of the left hand side of (3.11) over all possible partitions of the
interval (a, b), from the first inequality in (3.11) we get immediately (3.8).
Notice that from (3.8) it follows that u� is in W 1,1

loc (IRn\{0}). To prove the
assertion, we fix σ > 1 and estimate the integral of |∇u| in the annuli Ak,σ =
{x ∈ IRn : ω

−1/n
n σk/n < |x| < ω

−1/n
n σ(k+1)/n}, for k ∈ ZZ. Using (3.8) again,

and recalling the definition (3.2), we get, for any k ∈ ZZ,∫
Ak,σ

|∇u�| dx = nωn

∫
Ak,σ

|x|n−1|u∗′(ωn|x|n)| dx

= n2ω2
n

∫ ω−1/n
n σ(k+1)/n

ω
−1/n
n σk/n

r2n−2|u∗′(ωnrn)| dr

= nω1/n
n

∫ σk+1

σk

s
n−1

n |u∗′(s)| ds

≤ σ
n−1

n

∫
{u∗(σk)<u<u∗(σk+1)}

|∇u| dx .

Then the assertion immediately follows by summing up both sides of this
inequality over all k ∈ ZZ and then letting σ → 1+. !"
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Notice that the lemma we have just proved provides the Pólya–Szegö in-
equality for p = 1. However, for the general case p ≥ 1 we present a different
proof which has the advantage of giving better information when the inequal-
ity becomes an equality.

To this aim let us introduce a few quantities that will be useful later. If
u ∈ W 1,1

loc (IRn), we set

D+
u = {x ∈ IRn : ∇u(x) �= 0}, D0

u = IRn \ D+
u .

We can now give a representation formula for the derivative of µu. Notice that
the formula stated in (3.12) uses the fact that the |∇u�| is Hn−1-a.e. constant
on L1-a.e. level set {u� = t}.
Lemma 3.2. Let u ∈ W 1,1(IRn) be a nonnegative function with compact sup-
port. Then, for L1-a.e. t > 0,

µ′
u(t) = −H

n−1({u� = t})
|∇u�||{u�=t}

≤ −
∫
{ũ=t}

1
|∇u| dH

n−1 . (3.12)

Proof. First of all let us evaluate µu(t) using the coarea formula (3.5). We
get, for all t ≥ 0,

µu(t) = Ln
({u > t} ∩ D0

u

)
+ Ln

({u > t} ∩ D+
u

)
= Ln

({u > t} ∩ D0
u

)
+

∫
D+

u

χ{u>t}(x) dx (3.13)

= Ln
({u > t} ∩ D0

u

)
+

∫ +∞

t

ds

∫
{ũ=s}

χD+
u

|∇u| dH
n−1

= Ln
({u > t} ∩ D0

u

)
+

∫ +∞

t

ds

∫
{ũ=s}

1
|∇u| dH

n−1 ,

where the last equality follows by observing that coarea formula (3.5) implies
that Hn−1({ũ = t} ∩ D0

u) = 0 for L1-a.e. t ≥ 0. By applying (3.13) to u�, we
get also that for all t ≥ 0

µu(t) = Ln
({u� > t} ∩ D0

u�

)
+

∫ +∞

t

Hn−1({u� = t})
|∇u�||{u�=t}

(3.14)

Let us now recall a nice property of absolutely continuous functions (see for
instance [10, Lemma 2.4]).
If g is an absolutely continuous function in a bounded open interval I and,
for all t ∈ IR, we set φg(t) = L1({g > t} ∩ D0

g), then φg is a nondecreasing
function such that φ′

g(t) = 0 for L1-a.e. t.
By applying this result with g = u∗ and observing that Ln

({u� > t} ∩ D0
u�

)
=

L1
({u∗ > t} ∩ D0

u∗
)
, for all t > 0, from (3.14) we get immediately the equality

in (3.12). On the other hand, the inequality
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µ′
u(t) ≤ −

∫
{ũ=t}

1
|∇u| dH

n−1

follows immediately from (3.13). !"
We are now ready to prove the Pólya–Szegö inequality (3.3).

Proof of Theorem 3.1. Let us fix a nonnegative function u ∈ W 1,p(IRn)
with compact support and let us assume, without loss of generality, that u
coincides with its precise representative ũ. From Lemma 3.1 we know already
that u� belongs to the space W 1,1(IRn). Thus, using the coarea formula (3.5)
with u replaced by u� and recalling that |∇u�| is constant on the level sets of
u�, we get ∫

IRn

|∇u�|p dx =
∫ +∞

0

dt

∫
{u�=t}

|∇u�|p−1 dHn−1

=
∫ +∞

0

Hn−1({u� = t})|∇u�|p−1
|{u�=t} dt .

From this equation, using twice (3.12), the isoperimetric inequality (3.6),
Hölder’s inequality and coarea formula again, we get∫

IRn

|∇u�|p dx =
∫ +∞

0

[Hn−1({u� = t})]p

[−µ′
u(t)]p−1 dt

≤
∫ +∞

0

[Hn−1({u� = t})]p(∫
{u�=t}

dHn−1

|∇u|
)p−1 dt (3.15)

≤
∫ +∞

0

[Hn−1({u = t})]p(∫
{u=t}

dHn−1

|∇u|
)p−1 dt

≤
∫ +∞

0

dt

∫
{u=t}

|∇u|p−1 dHn−1 =
∫

IRn

|∇u|p dx .

Hence (3.3) follows. !"
Let us now discuss the equality case in (3.3). First, notice that if this is

the case, then all inequalities in (3.15) are in fact equalities. In particular, if
the second inequality in (3.15) holds as an equality, then we can conclude that
the set {u > t} is (equivalent to) a ball for L1-a.e. t ≥ 0. Moreover, if the
equality holds in the third inequality (where we have used Hölder inequality),
the conclusion is that for L1-a.e. t ≥ 0, |∇u| is Hn−1-a.e. constant on the level
set {u = t}.
These are the immediate consequences of the equality case. However, with
some extra work, one can prove the following, more precise, result (see [5] or
[11, Theorem 2.3]).
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Proposition 3.1. Let u ∈ W 1,p(IRn), p ≥ 1, a nonnegative function with
compact support such that∫

IRn

|∇u�|p dx =
∫

IRn

|∇u|p dx . (3.16)

Then there exist a function v, equivalent to u, i.e. such that v(x) = u(x) for
Ln-a.e. x ∈ IRn, and a family of open balls {Ut}t≥0 such that:

(i) {v > t} = Ut for t ∈ [0, esssup u);

(ii) {v = esssup u} =
⋂

0≤t<esssup u

U t, and is a closed ball (possibly a point);

(iii) v is lower semicontinuous in {v < esssup u};
(iv) if v(x) ∈ (0, esssup u) and Ln({u = v(x)}) = 0, then x ∈ ∂Uv(x);

(v) for every t ∈ (0, esssup u) there exists at most one point x ∈ ∂Ut such
that v(x) �= t;

(vi) the coarea formula (3.5) holds with ũ replaced by v;

(vii) for L1-a.e. t ∈ (0, esssup u), |∇v(x)| = |∇u�||{u�=t} for Hn−1-a.e.
x ∈ ∂Ut .

This proposition contains all the information that we can extract from equality
(3.16). However it is not true in general that (3.16) implies that u coincides
with u�, up to a translation in x. This can be easily seen by considering any
spherically symmetric nonnegative function w, such that Ln({w = t0}) > 0
for some t0 ∈ (0, esssup w) and another function u whose graph agrees with
the graph of w where u < t0 and with a slight translated of the graph of
w where u > t0. Then u� = w and (3.16) holds, but u is not spherically
symmetric. What goes wrong in this example is the fact that the gradient of
w (and of u) vanishes in a set of positive measure. Thus, this example suggests
to introduce the following assumption,

(H) Ln({0 < u� < esssup u} ∩ D0
u�) = 0 .

Notice that we are in a situation similar to the one we were in the previous
lecture when dealing with the assumption (H1). In fact, it can be proved (see
for instance [10, Lemma 3.3]) that (H) is implied by the stronger assumption

(H ′) Ln({0 < u < esssup u} ∩ D0
u) = 0 .

Moreover, (H) is equivalent to the absolute continuity in (0,+∞) of the dis-
tribution function µu and the two conditions (H) and (H ′) are equivalent if
(3.16) holds (see [10, Lemma 3.3] again).

The following result was proved for the first time in the Sobolev setting
by Brothers and Ziemer ([5]). It shows that when equality holds in (3.3),
assumption (H) guarantees that u and u� agree.
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Theorem 3.2. Let u ∈ W 1,p(IRn), p > 1, be a nonnegative function with
compact support such that (3.16) and (H) hold. Then u� = u, up to a trans-
lation in x.

Notice that the above result is in general false if p = 1, even in one dimension.
To see this it is enough to take a function which is increasing in the interval
(−∞, a) and decreasing in (a,+∞).
The starting point of the proof of Brothers and Ziemer is to observe, as we have
done before, that the equality (3.1) yields that Ln-a.e. set {u > t} is a ball and
that |∇u| is constant on the corresponding boundary. Then the difficult part
of the proof consists in exploiting assumption (H) to deduce that all these
balls are concentric, i.e. u is spherically symmetric. To prove this, we shall not
follow the original argument contained in ([5]), but a somewhat simpler one
used in [11], which is in turn inspired to an alternative proof of Theorem 3.2
given in [17].
To this aim from now on we shall assume, without loss of generality, that u
agrees with the representative v provided by Proposition 3.1 and that U0 =
{u > 0} is a ball centered at the origin. Then, for all 0 < t < esssup u we
denote by Rt the radius of the ball Ut and set, for all x ∈ U0,

Φ(x) =
(µu(u(x))

ωn

)1/n

. (3.17)

To understand the role of the function Φ, observe that if x ∈ U0 is a point
such that u(x) = t, then µu(u(x)) = Ln(Ut). Therefore, Φ(x) is equal to the
radius of the ball Ut.

The following lemma is a crucial step toward the proof of Theorem 3.2.

Lemma 3.3. Under the assumptions of Theorem 3.2, Φ ∈ W 1,∞(U0) and

|∇Φ(x)| = 1 for Ln-a.e. x ∈ U0 \ {u = esssup u} . (3.18)

Proof. We claim that µu ◦ u ∈ W 1,∞(U0) and that

∇(µu◦u)(x)=−Hn−1({u=u(x)}) ∇u(x)
|∇u||{u=u(x)}

χD+
u
(x) for Ln-a.e. x ∈ U0.

(3.19)
From assumption (H), which is equivalent by (3.16) to (H ′), using (3.13) and
Proposition 3.1 (vii), we get that for all 0 ≤ t ≤ esssup u,

µu(t) = Ln({u = esssup u}) +
∫ +∞

t

Hn−1({u = s})
|∇u||{u=s}

ds .

For ε > 0, we set

µu,ε(t) = Ln({u = esssup u}) +
∫ +∞

t

Hn−1({u = s})
|∇u||{u=s} + ε

ds .
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Clearly, µu,ε(t) ↑ µu(t) for every t ≥ 0 as ε ↓ 0. Moreover, µu,ε is Lipschitz
continuous in [0,+∞), and

µ′
u,ε(t) = −H

n−1({u= t})
|∇u||{u=t} + ε

for L1-a.e. t ≥ 0 ,

whence

|µ′
u,ε(t)− µ′

u(t)| ≤ εHn−1({u= t})
|∇u||{u=t}

(|∇u||{u=t} + ε
) for L1-a.e. t ≥ 0 .

Thus, µ′
u,ε(t) → µ′

u(t) L1-a.e. in [0,+∞) as ε → 0, since |∇u||{u=t} �= 0 for

L1-a.e. t ≥ 0, in as much as
Hn−1({u= t})
|∇u||{u=t}

∈ L1(0,∞). This membership and

the fact that

|µ′
u,ε(t)− µ′

u(t)| ≤ Hn−1({u= t})
|∇u||{u=t}

for L1-a.e. t ≥ 0

entail that µ′
u,ε → µ′

u in L1(0,∞). Hence, µu,ε → µu uniformly in (0,∞).
Consequently, the functions µu,ε◦u converge uniformly to µu◦u. Furthermore,
by the chain rule for Sobolev functions (see e.g. [1, Theorem 3.96]),

∇(µu,ε ◦ u)(x) = µ′
u,ε(u(x))∇u(x) = −Hn−1({u = u(x)}) ∇u(x)

|∇u||{u=u(x)} + ε

for Ln-a.e. x ∈ U0 .

The last expression clearly converges to the right-hand side of (3.19). More-
over, from Theorem 3.1, we have that Hn−1({u = t}) = Hn−1(∂Ut) ≤
nωnRn−1

0 for L1-a.e. t ∈ (0, esssup u). Thus,

|∇(µu,ε ◦ u)(x)| ≤ nωnRn−1
0 for Ln-a.e. x ∈ U0 .

By dominated convergence, ∇(µu,ε ◦ u) converges to the right-hand side of
(3.19) in L1(U0). Hence, the claim follows.
To conclude the proof let us now observe that for all t ∈ (0, esssup u),
µu(u(x)) ≥ µu(t) > 0 for all x ∈ U0 \ U t. Therefore, we can compute the
derivatives of Φ in U0 \ U t by the usual chain rule formula for Sobolev func-
tions, thus getting, from (3.19), that for Ln-a.e. x ∈ U0 \ U t

∇Φ(x) = − 1

nω
1/n
n

(µu(u(x)))
1−n

n Hn−1({u=u(x)}) ∇u(x)
|∇u||{u=u(x)}

χD+
u
(x)

= − ∇u(x)
|∇u||{u=u(x)}

χD+
u
(x). (3.20)

Then, (3.18) follows immediately from Proposition 3.1 (ii). In particular, this
proves that Φ is a W 1,∞ function in the open set U0 \ {u = esssup u} (which
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is the difference of an open ball and a closed one). To conclude the proof it
is enough to observe, that since µu,ε ◦ u ∈ W 1,∞(U0), Φ has a continuous
representative in U0 which is constant on the closed ball {u = esssup u}. !"

Notice that Lemma 3.3 is not telling us that Φ is Lipschitz continuous in
U0. It just says that Φ coincides Ln-a.e. with a Lipschitz continuous function,
with Lipschitz constant less than or equal to one. Therefore, we may only
conclude that there exists a set N0, with Ln(N0) = 0 such that

|Φ(x)− Φ(y)| ≤ |x− y| for all x, y ∈ U0 \N0 . (3.21)

However, this information is enough to achieve the proof of Theorem 3.2.

Proof of Theorem 3.2. From the coarea formula (3.5), recalling (iv), (v)
and (vi) of Proposition 3.1, we get∫ +∞

0

Hn−1(∂Ut ∩N0) dt =
∫

N0

|∇u| dx = 0 .

Therefore, there exists a set I0 ⊂ (0,+∞), with L1(I0) = 0, such that

Hn−1(∂Ut ∩N0) = 0 for all t ∈ (0,+∞) \ I0 .

Let us now fix 0 < s < t < esssup u, with s, t �∈ I0. From Proposition 3.1 (v)
we can find two sequences {xh} ⊂ ∂Us \N0 and {yh} ⊂ ∂Ut \N0 such that

u(xh) = s, u(yh) = t for all h, |xh − yh| → dist(∂Us, ∂Ut) .

Since Φ(xh) = Rs and Φ(yh) = Rt, from (3.21) we get that

|Rs −Rt| ≤ lim
h→+∞

|xh − yh| = dist(∂Us, ∂Ut)

Hence, Us and Ut are concentric balls. From this one can easily conclude that
Us and Ut are indeed concentric for all 0 ≤ s < t ≤ esssup u, thus proving the
assertion. !"
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67/A, 50134 Firenze, Italy
mascolo@math.unifi.it

David Hilbert used to say

every real progress walks hand in hand with the discovery of more
and more rigorous tools and simpler methods which meanwhile make
easier the understanding of previous theories.

Nevertheless Augustus De Morgan used to say:

The mental attitude which stimulate the mathematical invention is
not only a sharp reasoning but rather a deep imagination.

The “progress” Hilbert was talking about is based – in mathematics more
than in other scientific fields – upon teaching and collaboration and the “imag-
ination” De Morgan was referring to, must be stimulated through a progressive
and gradual learning.

Both history and everybody personal experience show that mathematical
learning and its improvement is not just a matter of studying books and
original articles, but rather that of a continuous and effective relationships
with our own teacher(s) and collegues, rising new questions and discussing
together their possible answers.

In the Fifties a group of outstanding Italian mathematicians, all member
of the Scientific Committee of UMI (the Union of Italian Mathematicians)
under the presidency of Enrico Bompiani, decided that it was the moment to
rise the mathematical research in Italy to the level it was before the Second
Worldly War and that it should be done through the organisation of high level
courses. They realized the importance of providing the young researchers with
the possibility of learning the new theories, subjects and themes which were
appearing in those years and of mastering the new techniques and tools.

It was right in those years that the CIME was founded and the first course
was held in Varenna (a charming small city on the Como lake) in 1954. The
subject was on Functional Analysis, which can be considered at that time a
new subject. More precisely:



184 E. Mascolo

Funzionali Analitici ed Anelli Normati
Varenna (Como), June 9–18, 1954

Lectures: L. Amerio (Politecnico Milano), L. Fantapié (Univ. Roma), E.R.
Lorch (Columbia Univ.)
Seminars: M. Cugiani (Univ. Milano), F. Pellegrino (INAM, Roma), G.B.
Rizza (Univ. Genova).

The second was also held in Varenna in the month of August of the same
year. That was on

Quadratura Delle Superficie e Questioni Connesse
Varenna (Como), August 16–25, 1954

Lectures: R. Caccioppoli (Univ. Napoli), L. Cesari, (Univ. Bologna, Purdue
Univ.), Chr.Y. Pauc (Univ. Rennes).
Seminars: A. Finzi (Technion, Haifa), A. Zygmund (Univ. Chicago).

The exceptional personalities were the teachers chosen in that occasion:
Renato Caccioppoli, Lamberto Cesari and Antoni Zygmund. How can we recall
without the suspect of being limited the contributions given for example by
Caccioppoli to the development of the modern Functional Analysis and the
Geometric Theory of Measure.

In the subsequent fifty-one years the CIME organized 163 courses covering
basically every aspect of mathematics, both pure and applied, thus playing a
crucial role in promoting and developing the mathematical research, not only
in Italy. In fact the CIME activities have favoured and promoted personal
contacts among distinguished scientists and young researchers, coming from
all over the world.

The mathematics in last years has known a nearly explosive development
and the organization of courses is an exceptional instrument of formation for
the young investigators and a real support for the most mature ones.

The full immersion, permitted by a common location, is the right preamble
to develop new subjects, to suggest new methods, to learn how to apply old
methods to new problems, to start joint papers.

One main reason for the success of CIME courses was in particular the fact
that they have been all published and the C.I.M.E. Sessions are an essential
mean of diffusion of the mathematical culture.

The texts of lectures and seminars of each Session were all published:

• The volumes of Sessions 1-39 are actually out of print,
• The volumes of Sessions 39-70 are on the Catalogue of Edizioni Cremonese,

Firenze, Italy
• The volumes of Sessions 71-83 are on the Catalogue of Liguori Editore,

Napoli, Italy
• Since 1981 all courses notes are being published by Springer Verlag in a

Subseries (Fondazione C.I.M.E.) of the Lectures Notes in Mathematics
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My aim today is to guide you in a ideal journey through the development
of the Calculus of Variation ad Nonlinear Differential Equation via the CIME
courses held on these topics in the past fifty years of his history.

For the majority of younger people these arguments and techniques are to
be considered as standard; however in these fifty years the developments have
been so fast than the so-called “variational questions” raised by Hilbert at
the beginning of the past century, have blowed up during the entire century
(particularly the second half), in so many and different directions that Hilbert
himself could have never imagined.

Quoting James Serrin we could say that

the relevant field of investigation is nowadays so spread and wide that
only a few years ago would have thought of as unbelivable. . . . . more
new ideas and results appeared from the end of the Second Worldly
War until the present day than from the time of Talete until the year
1945.

The CIME courses on these subjects are all worthy of remark for the high
scientific level of the directors and lectures.

In the following I will give a short presentation of each of them which
allows to appreciate the significant role that the CIME Foundation played in
the last 51 years.

• In 1958 Alessandro Faedo was the Scientific Direction of a session, strictly
related with the variational questions and in particular devoted to the
minima principles and their applications. v

Principio di Minimo e le sue Applicazioni in Analisi Funzionale
Pisa, September 1–10, 1958

Director: S. Faedo (Univ. Pisa).
Lectures: L. Bers (Courant Institute), Ch. B. Morrey Jr. (Univ. Of
California, Berkeley), L. Nirenberg (Courant Institute).
Seminars: S. Agmon (Hebrew Univ. Jerusalem), G. Fichera (Univ. Roma),
G. Stampacchia (Univ. Genova).
Notice the presence as lectures of Charles Jr. Morrey. and Louis Niremberg,
two of the most important among the personalities in the Calculus of
Variations and Partial Differential Equations of past century. The notes
are published on Annali Scuola Normale di Pisa.

• In 1961 Enrico Bompiani was the Scientific Director of a session which can
be considered a first approach to the geometric methods in the Calculus
of Variations.

Geometria del Calcolo delle Variazioni
Saltino (Firenze), August 21–30, 1961

Director: E. Bompiani (Univ. Roma).
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Lectures: H. Busemann (Univ. of Southern Calif., Los Angeles), E.T.
Davies (Univ. Southampton), D. Laugwitz (Technische Hochschule,
Darmstadt).

• In 1964, Guido Stampacchia was the Scientific Director of a very interesting
session, in which we note the relevance not only the lecturers but also of
the young researchers which gave a seminar.

Equazioni Differenziali non Lineari
Varenna (Como), August 30 – September 8, 1964

Director: G. Stampacchia (Univ. Pisa).
Lectures: P. Lax (New York Univ.), J. Leray (Collège De France), J. Moser
(New York Univ.).
Seminars: R. Courant (New York Univ.), E. Degiorgi (Scuola Normale
Superiore, Pisa), J. Friberg (Univ. Lund), J. Necas (CSAV, Praha), I.
Segal (M.I.T.), G. Stampacchia (Univ. Pisa) O. Vejvoda (CSAV, Praha).
Unfortunately there is not the text of the seminar given by Ennio de Giorgi.

• In 1966 Roberto Conti, one of the most important Italian mathematician
and in some sense the father of CIME (he was Scientific Secretary since
1954 to 1974 and the Director of CIME Foundation since 1975 to 1998)
was the Scientific Director of a session dedicated to the applications of the
methods of Calculus of Variation to Control Theory that at that times
was called “modern” Calculus of Variations.

Calculus of Variations, Classical and Modern
Bressanone (Bolzano), June 10–18, 1966

Director: R. Conti (Univ. Firenze).
Lectures: A. Blaquiere (Univ. Paris-Orsay), L. Cesari (Univ. Michigan), E.
Rothe (Univ. Michigan), E. O. Roxin (Univ. Buenos Aires).
Seminars: C. Castaing (Univ. Caen), H. Halkin (Univ. California, La
Jolla), C. Olech (Univ. Krakow).

• In 1972 Enrico Bombieri was the Scientific Director of a session dedicated
to the Geometric measures. The lecturers are one of the most important
in the field: Enrico Giusti, Frederik Almgren and Mario Miranda.

Geometric Measure Theory and Minimal Surfaces Varenna
(Como), August 25 – September 2, 1972

Director: E. Bombieri (Univ. Pisa).
Lectures: W.K. Allard (Princeton Univ.), F.J. Almgren (Princeton Univ.),
E. Bombieri, E. Giusti (Univ. Pisa), M. Miranda (Univ. Ferrara).
Seminars: J. Guckenheimer (Princeton Univ.), D. Kinderlehrer (Univ.
Minnesota), L. Piccinini (SNS, Pisa).

• In 1973 Guido Stampacchia and Gianfranco Capriz were the Scientific
Directors of an important session on the Variational Methods in Mathe-
matical Physics, which at that time were called “new”.
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New Variational Techniques in Mathematical Physics
Bressanone (Bolzano), June 17–26, 1973

Directors: G. Capriz (Univ. Pisa), G. Stampacchia (SNS, Pisa).
Lectures: G. Duvaut (Univ. Paris XIII), J.J. Moreau (Univ. Languedoc,
Montpellier), B. Nayroles (Univ. Poitiers).
Seminars: C. Baiocchi (Univ. Pavia), Ch. Castaing (Univ. Languedoc,
Montpellier), D. Kinderlehrer (Univ. Minnesota), H. Lanchon (Univ. Es-
sex), J.M. Lasry (Univ. Paris-Dauphine), W. Noll (Carnegie Mellon Univ.),
W. Velte (Univ. Wurzburg).

• In 1984 Enrico Giusti was the Scientific Director of a session devoted to
the Harmonic Mapping.

Harmonic Mappings and Minimal Immersions
Montecatini Terme (Pistoia), June 24 – July 3, 1984

Director: E. Giusti (Univ. Firenze).
Lectures: S. Hildebrandt (Univ. Bonn), J. Jost (Univ. Bonn), L. Simon
(Australian Nat. Univ., Canberra).
Seminars: J.H. Sampson (Johns Hopkins Univ.), M. Seppala (Univ.
Helsinki).

• In 1987 Mariano Giaquinta was the Scientific Ddirector of a session in
which different aspects of the Calculus of Variations were presented.

Topics in Calculus of Variations
Montecatini Terme (Pistoia), July 20–28, 1987

Director: M. Giaquinta (Univ. Firenze).
Lectures: L. Caffarelli (IAS, Princeton), A. J. Moser (ETH, Zurich), L.
Nirenberg (Courant Inst.), R. Schoen (Univ. California, San Diego), A.
Tromba (Max-Planck Inst., Bonn).
In this session for the first time Luis Caffarelli was a lecture. It is the begin
of his valuable collaboration with C.I.M.E..

• In 1989 Arrigo Cellina was the Scientific Director of a session devoted
to non convex problems and the methods for studying different subjects.
In particular the non convex functionals of Calculus of Variations were
considered.

Methods of Nonconvex Analysis
Varenna (Como), June 15–23, 1989

Director: A. Cellina (SISSA, Trieste).
Lectures: I. Ekeland (Univ. Paris, Dauphine), P. Marcellini (Univ. Firenze),
A. Marino (Univ. Pisa), C. Olech (PAN, Warszawa), G. Pianigiani (Univ.
Siena), T.R. Rockafellar (Univ. Washington, Seattle), M. Valadier (USTL,
Montpellier).
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• In 1995 Italo Capuzzo Dolcetta and Piere Louis Lions were the Scientific
Directors of a session devoted to the viscosity solution and their applica-
tions in several fields of Partial Differential Equations.

Viscosity Solutions and Applications
Montecatini Terme (Pistoia), June 12–20, 1995

Directors: I. Capuzzo Dolcetta (Univ. Roma, La Sapienza), P.L. Lions
(Univ. Paris Dauphine).
Lectures: M. Bardi (Univ. Padova), M.G. Crandall (Univ. California, Santa
Barbara), L.C. Evans (Univ. California, Berkeley), M.H. Soner (Carnegie
Mellon Univ.), P.E. Souganidis (Univ. Wisconsin).
One of the lecturers was L. C. Evans, which in the subsequent years has
partecipated several times in the CIME activities.

• In 1996 Stefan Hildebrandt and Michael Struwe were Scientific Directors
of a session, devoted to the contributions of the variational methods for
the Ginzburg-Landau equations, the microstructure and phase transitions
and the Plateau Problem.

Calculus of Variations and Geometric Evolution Problems
Cetraro (Cosenza), June 15–22, 1996

Directors: S. Hildebrandt (Univ. Bonn), M. Struwe (ETH, Zurich).
Lectures: F. Bethuel (ENS, Cachan), R. Hamilton (Univ. Califonia, San
Diego), S. Muller (ETH, Zurich), K. Steffen (Univ. Dusseldorf).

• In 2001 Luis Caffarelli with Sandro Salsa were the Scientific Directors of
a session which represents a basic guide on Optimal Transportation, by
considering different point of views and perspectives,

Optimal Transportation and Applications
Martina Franca (Taranto), September 2–8, 2001

Directors: L. Caffarelli (Univ. Texas, Austin), S. Salsa (Politecnico
Milano).
Lectures: L. Caffarelli (Univ. Texas, Austin), G. Buttazzo (Univ. Pisa),
L.C. Evans (Univ. California, Berkeley), Y. Brenier (LAN-UPMC, Paris
VI), C. Villani (Ecole Normale Sup., Lyon).

• Bernard Dacorogna and Paolo Marcellini are the Scientific Directors of
this session, with almost 150 partecipants, the most attended course of
the history of C.I.M.E.. Such wide partecipation is a clear indication that
the Calculus of Variations is still an interesting and alive subject.

Calculus of Variations and NonLinear Partial Differential
Equations

Cetraro (Cosenza), June 27 – July 2, 2005

Directors: Bernard Dacorogna (EPLF, Lausanne) Paolo Marcellini (Univ.
Firenze).
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Lectures L. Ambrosio (SNS Pisa), L.A. Caffarelli (Univ. Texas, Austin), M.
Crandall (Univ. California, Santa Barbara), L.C. Evans (Univ. California,
Berkeley, Usa), G. Dal Maso (SISSA, Trieste), N. Fusco (Univ. Napoli).

In these last years social and human sciences offered to the theory on
Nonlinear PDE a new field to be added to the traditional ones coming from
physics and natural sciences.

Even Hilbert in his famous conference in Paris in 1900, stressed the fruit-
fulness and opportunity of the interactions between reason and experience for
the development of the mathematical theories.

However, nowadays it is a widespread opinion that pure mathematical re-
search is important and absolutely necessary also without direct applications.
Let me conclude by recalling the opinion of Cantor:

The essence of mathematics is freedom and independence....
freedom expressed as driving curiosity of a bright child....
freedom to pursue innocent fascination until it finally touched the
world we all live in.
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