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Preface

This book is essentially two books in one. Namely, it is an introduction to
two large areas of mathematics—complexr analysis and differential equations—
and the material is naturally divided into two parts. This includes holomorphic
functions, analytic functions, ordinary differential equations, Fourier series, and
partial differential equations. Moreover, half of the book consists of approxi-
mately 200 worked-out problems plus 200 exercises of variable level of difficulty.
The worked-out problems fill the gap between the theory and the exercises.

To a considerable extent, the parts of complex analysis and differential equa-
tions can be read independently. In the second part, some special emphasis is
given to the applications of complex analysis to differential equations. On the
other hand, the material is still developed with sufficient detail in order that the
book contains an ample introduction to differential equations, and not strictly
related to complex analysis.

The text is tailored to any course giving a first introduction to complex anal-
ysis or to differential equations, assuming as prerequisite only a basic knowledge
of linear algebra and of differential and integral calculus. But it can also be used
for independent study. In particular, the book contains a large number of ex-
amples illustrating the new concepts and results. Moreover, the worked-out
problems, carefully prepared for each part of the theory, make this the ideal
book for independent study, allowing the student to actually see how the theory
applies, before solving the exercises.

Lisbon, Portugal Luis Barreira and Claudia Valls
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1

Basic Notions

In this chapter we introduce the set of complex numbers, as well as some basic
notions. In particular, we describe the operations of addition and multiplication,
as well as the powers and roots of complex numbers. We also introduce various
complex functions that are natural extensions of corresponding functions in the
real case, such as the exponential, the cosine, the sine, and the logarithm.

1.1 Complex Numbers

We first introduce the set of complex numbers as the set of pairs of real numbers
equipped with operations of addition and multiplication.

Definition 1.1

The set C of complex numbers is the set R? of pairs of real numbers equipped
with the operations

(a,b) + (¢,d)=(a+¢,b+d) (1.1)
and
(a,b) - (¢,d) = (ac — bd, ad + bc) (1.2)
for each (a,b), (c,d) € R.
L. Barreira, C. Valls, Complex Analysis and Differential Equations, 3

Springer Undergraduate Mathematics Series,
DOI 10.1007/978-1-4471-4008-5_1, (© Springer-Verlag London 2012
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One can easily verify that the operations of addition and multiplication
in (1.1) and (1.2) are commutative, that is,

(a,b) + (¢,d) = (¢,d) + (a,b)
and
(a,b) - (c,d) = (c,d) - (a,b)
for every (a,b), (c,d) € R2.

Example 1.2
For example, we have
(5,4) 4+ (3,2) = (8,6)
and
(2,1)-(=1,6)=(2-(-=1)—1-6,2-6+1-(—1)) = (=8,11).
For simplicity of notation, we always write
(a,0) =a,

thus identifying the pair (a,0) € R? with the real number a (see Figure 1.1).
We define the imaginary unit by

(0,1) =1

(see Figure 1.1).

Proposition 1.3

We have i? = —1 and a + ib = (a,b) for every a,b € R.

Proof
Indeed,
i* =(0,1)-(0,1) = (~=1,0) = —1,

and
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Figure 1.1 Real number a and imaginary unit ¢

which yields the desired statement.

We thus have
C={a+ib:a,beR}.

Now we introduce some basic notions.

(0,b) = ib a+1b

\

(a,0) =a

Figure 1.2 Real part and imaginary part
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Definition 1.4

Given z = a+ib € C, the real number a is called the real part of z and the real
number b is called the imaginary part of z (see Figure 1.2). We also write

a=Rez and b=Imz.

Example 1.5
If z=2+143, then Rez=2 and Imz = 3.
Two complex numbers z1, zo € C are equal if and only if

Rezi =Rezy and Imz; =Imzs.

Definition 1.6
Given z € C in the form
z=rcosf+irsind, (1.3)

with 7 > 0 and 0 € R, the number r is called the modulus of z and the number 6
is called an argument of z (see Figure 1.3). We also write

r=|z| and 6f=argz.

rcos@ + irsin@ = ret

\

Figure 1.3 Modulus, argument and polar form
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We emphasize that the number 6 in (1.3) is not unique. Indeed, if identity
(1.3) holds, then

z=rcos(f + 2km) + irsin(f0 4+ 2kw) for k € Z.

One can easily establish the following result.

Proposition 1.7
If z=a+1ibe C, then

2| = Va2 + b? (1.4)

and
tan=t(b/a) if a >0,
/2 ifa=0and b>0,
argz = (1.5)
tan~1(b/a) + 7 ifa<O0,
—r/2 ifa=0and b <0,

where tan~! is the inverse of the tangent with values in the interval (—m/2,7/2).

It follows from (1.4) that

[Rez| <|z| and [Imz|<]|z|. (1.6)

Example 1.8
If z=2+i2v/3, then

|2| =122 422.3=V16 =4,

and using the first branch in (1.5), we obtain
2v/3
argz = tan~! Tf =tan" '3 = g

The following result is a simple consequence of Definition 1.6.

Proposition 1.9

Two complex numbers z,w € C are equal if and only if |z| = |w| and

argz —argw = 2kw  for some k € Z.
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1.2 Polar Form

It is often useful to write a complex number in the form (1.3) or also in the
following alternative form.

Definition 1.10
Given z € C in the form z =rcosf +irsinf, with » > 0 and 6 € R, we write

z=re = |z|etare =,

We say that z = a + ib is the Cartesian form of z and that z =re? is the
polar form of z.

Example 1.11
If z=1+14, then
|z2l=v2 and argz=tan '1=mn/4.

Hence, the polar form of z is V2eim/4,

Now we describe the product and the quotient of complex numbers in terms
of the polar form.

Proposition 1.12

If 21 = 7€ and 2o = rye?, then

2120 = rroe’ 91 702) (1.7)
and
EL_Tei0i=02) gy 22 # 0.
22 T2
Proof

For the product, by (1.3) we have

2129 = (11 cos by + ir1 sin by ) (ra cosOs + irg sinby),



1.2 Polar Form 9

and thus,

2129 =71172(c0s 01 + isin b )(cos Oz + isinb)
= r172(cos 01 cos by — sin by sin )
+ iry1ra(cosdq sinfy + sin 61 cos 0)
=ryrycos(01 + 02) + irqresin(fy + 602)
= pyrgetitha), (1.8)
For the quotient, we note that if w = pe’® is a complex number satisfying
wze = z1, then it follows from (1.8) that

a+92) 61

W2y = prgei( = rlei
By Proposition 1.9, we obtain
pro=r1 and a+0y—0;=2kn

for some k € Z. Therefore,

Z1

2Ly = peie = [Lei@a—0r+2km) _ TL i(0:-01)
Z9 T ro
for z9 # 0, which yields the desired statement. a

Now we consider the powers and the roots of complex numbers, also ex-
pressed in terms of the polar form. For the powers, the following result is an
immediate consequence of (1.7).

Proposition 1.13

If z=re"? and k €N, then z# = rFeikd,

The roots of complex numbers require some extra care.

Proposition 1.14

If z=re" and k € N, then the complex numbers w such that w* = z are given
by

w=rt/keiOF2mD/k 01 k—1. (1.9)
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Proof

If w = pe’® satisfies w* = 2, then it follows from Proposition 1.13 that

wk _ pkezka _ 7”619.

By Proposition 1.9, we obtain p* =1 and ka — 6 = 27 for some j € Z. There-

fore,
w= pewz — rl/k€1(9+2ﬂj)/k’

and the distinct values of e*(?+279)/k are obtained for j € {0,1,...,k—1}. O

We note that the roots in (1.9) of the complex number z are uniformly

distributed on the circle of radius /¥ centered at the origin.

Example 1.15

For k =5 the roots of 1 are

w:11/5ei(0+2ﬁj)/5:ei27rj/5, j:O,1,273,4

(see Figure 1.4).
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Figure 1.4 Roots of 1 for k=5
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1.3 Conjugate

Now we introduce the notion of the conjugate of a complex number.

Definition 1.16

Given z = a + ib € C, the complex number Z = a — ib is called the conjugate of
z (see Figure 1.5).

b z

\

—ib

|

Figure 1.5 Z is the conjugate of z

Clearly, Z = z. Moreover, if z = re®, then

Z=rcosf +irsinf
=rcosf —irsinf

= rcos(—0) + irsin(—6) =re"¥.

Proposition 1.17

For every z € C, we have 2z = |2|2.
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Proof
Given a complex number z = re??, we have
2Z=relre™ =2l = |22
This yields the desired identity. (Il
Proposition 1.18
For every z,w € C, we have
z+w=Z+w and Zw=ZwW

Proof

Let z=a+ b and w = ¢+ id, with a,b, c,d € R. Taking conjugates, we obtain
Z=a—1tb and wW=c—id.

Therefore,
Z+w=(a+c)—i(b+d) (1.10)

(see Figure 1.6). On the other hand,
z4+w=(a+c)+i(b+d),

and thus,
z+w=(a+c)—i(b+d). (1.11)

The identity z+ w =%+ W now follows readily from (1.10) and (1.11).
Moreover, if z =re'? and w = pe’®, then

i(0+a
2w = rpet0+a)

and thus,

zw = rpe0F0) = pe=i0 pe—ia — z75,

This completes the proof of the proposition. O
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Z+w

zZ4+w

Figure 1.6 Points z, w, z + w and their conjugates

Example 1.19

Let us consider the polynomial
n
z)= Z apz”
k=0
for some real numbers a; € R. We have ay = ay, for each k, and thus,
n - n .
TR e S
k=0 k=0
= Z arz" =p(z
In particular, if p(z) =0 for some z € C, then

p(z) = p(z) =0 =0.

This implies that the nonreal roots of p occur in pairs of conjugates.

We also use the notion of conjugate to establish the following result.
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Proposition 1.20

For every z,w € C, we have:
1. |2| >0, and |2| =0 if and only if z =0;
2. Jow| =2 - Jul;
3. |z +w| < |z| + |w].

Proof

The first property follows immediately from (1.4). For the second property, we
note that

|zw|? = 2wZW = 2wZW
= 22w = |2|*|w|? (1.12)
for every z,w € C. Finally, for the third property, we observe that
2+ w|* = (2 + w)(zF w)
=(z+w)(z+w)
=2Z + 2W + Wz + ww
= |2|* + |w]* + 2Re(2w).

It follows from (1.6) and (1.12) that

Re(zw) < [zw| = |z] - [w] = |2] - [w],
and hence,
|2+ wl* < |2 + [w]? + 2|2 - fw|
= (J2] + lw)”.
This completes the proof of the proposition. |

1.4 Complex Functions

In this section we consider complex-valued functions of a complex variable.
Given a set {2 C C, a function f: {2 — C can be written in the form

flz+iy) =u(z,y) + wv(x,y),
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with u(z,y),v(z,y) € R for each z + iy € £2. In fact, since the set of complex
numbers C is identified with R?, we obtain functions u,v: 2 — R.

Definition 1.21

The function v is called the real part of f and the function v is called the
imaginary part of f.

Example 1.22
For f(z) =22, we have

fla+iy) = (x+iy)® =a2® —y? +i2ay,
and hence,

u(z,y) =2* —y? and v(x,y)=2zy.

Example 1.23
For f(z) =23, we have

fa+iy) = (@ +iy)* =a® = 3ay® +i(3a%y — o),
and hence,

uw(z,y)=2° —3zy® and ov(x,y)=32%y —y°.

Now we introduce various complex functions.

Definition 1.24

We define the ezponential of the complex number z =z + iy by

e® =e"(cosy +isiny).

Example 1.25

For each z =1z 4 i0 € R, we have
e” =e”(cos0+isin0) = e”(1+i0) =e".

Hence, the exponential of a real number x coincides with the exponential of x
when this is seen as a complex number.
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Example 1.26

For z =im, we have
e'™ = e =Y (cosm +isinm) = 1(—1+i0) = —1.

We also describe several properties of the exponential.

Proposition 1.27

For every z,w € C and k € Z, we have:
1. e#tW =¢%e® and 1/e* =e™%;

2. € =eZ;

3. (e*)F =€k

4. ez+i2k7r — eZ.
Proof

Given z =z + iy and w =2’ + iy, we have

7 . !’
et — p(a+a)+ily+y)

="t [cos(y +y') +isin(y +y')]

=e%e” [(cosycosy’ —sinysiny’) +i(sinycosy’ + siny cosy)]
= e%e® (cosy + isiny)(cosy’ +isiny’)

= e%(cosy + isiny)e” (cosy’ +isiny’)

=€ e .

In particular,

and thus 1/e* = e~ *. This establishes the first property. For the second, we
note that

e* = e®cosy +ie*siny
=e”cosy — ie” siny = e”(cosy — isiny)
T—1Yy z

=e”[cos(—y) + isin(—y)] =e =e”.
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The third property follows from the first one by induction, and for the fourth

we note that

€z+127rk — em+z(y+2k7‘r)

= e” [cos(y + 2km) + isin(y + 2k)]
=e"(cosy + isiny) =e”.

This completes the proof of the proposition.

Now we consider the trigonometric functions.

Definition 1.28

The cosine and the sine of z € C are defined respectively by

e’LZ _|_e—7,Z
cosz=———
and
) eiz _ e*iz
sinz = -
24
Example 1.29
For z=2 +10 € R, we have
elm _|_ e—zm
cosz = ———
1 . .
= §(cosx +isinz + cosx — isinz) = cosx
and
6im _ efir
sinz = -
24
= ?(cosx +isinz — cosx + isinz) = sinz.
i

Hence, the cosine and the sine of a real number x coincide respectively with

the cosine and the sine of & when this is seen as a complex number.
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Example 1.30

For z =iy, we have
e Y +eY
2
In particular, the cosine is not a bounded function in C, in contrast to what

happens in R. One can show in a similar manner that the sine is also unbounded
in C.

cos(iy) =

Example 1.31
Let us solve the equation cosz =1, that is,

eZZ _|_ e—'LZ
2

=1.
For w = e**, we have 1/w =e~%* and thus,

1
w+ — =2,
w

that is, w? — 2w+ 1 = 0. This yields w = 1, which is the same as ¢?* = 1. Writing
z=ux + 1y, with z,y € R, we obtain

eiz — ei(m+iy) — e—y+ix
=e¢ Ycosx +ie Ysinx,
and it follows from e* =1 + 40 that

e Ycoszr=1 and e Ysinz=0.

Since e~¥ # 0, we obtain sin z = 0. Together with the identity cos? z4sin?z = 1,
this yields cosx = +1. But since e™¥ > 0, it follows from e ¥Ycosz =1 that
cosx =1, and hence, e”¥ = 1. Therefore, x = 2kw, with k € Z, and y =0. The
solution of the equation cosz =1 is thus z = 2knw, with k € Z.

The following result is an immediate consequence of Proposition 1.27.

Proposition 1.32

For every z € C and k € Z, we have

cos(z +2km)=cosz and sin(z+ 2kw) =sinz.
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We also introduce the logarithm of a complex number.

Definition 1.33

We define the (principal value of the) logarithm of z € C\ {0} by
logz =log|z| + iarg z, (1.13)
taking argz € (—m, 7.

It follows from

elogz — elog|z|+zargz
— elog|z|ezargz
iargz

= |z]e" 8% =2 (1.14)

that the (principal value of the) logarithm is a (right) inverse of the exponential.

Example 1.34

For each z = —x 4 i0 with x > 0, we have
log(—z) =log|—z| + iarg(—x) =logx + i.
For z =14, we have

T T .
logi=logli| +i—= =logl +i= =i—.
ogi og|z|+12 og +22 i3

Example 1.35
For each z =2 + 4y with > 0, by (1.5) we have

argz = tan~!

)

SRS

where tan~! is the inverse of the tangent with values in the interval (—m/2,7/2),
so that argz € (—m,m). Therefore,

logz =log|z| +iargz

1 y
— 21 2 2 itan~1 2
Zog(m +y)—|—z an o



20 1. Basic Notions

and the functions
_1 2 2 -1y
u(z,y) = 5 log(z* +y*) and wv(z,y)=tan
x
are respectively the real and imaginary parts of log z.

One can use the logarithm to define powers with a complex exponent.

Definition 1.36
Given z € C\ {0} and w € C, we define

2 =evlo8?, (1.15)

where log z is the principal value of the logarithm.

We note that 20 = e%1°82 =1 for every z € C\ {0}.

Example 1.37
We have

21 = ¢1982 — ¢oslog 2 + isinlog 2.
Since logi = im/2, we have

it = ezlogz — ez(zfr/2) 677r/2'

Example 1.38
We have

(71)21' _ e2ilog(71) _ eZi(log 14im) 67271'.

Incidentally, we note that

while
[(_1)1‘]2 _ (euog(q))? _ (ei(log1+i7r))2 _ (efw)Q -

This shows that, in general, the numbers (2*1)*2 and z***2 do not coincide.
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1.5 Solved Problems and Exercises

Problem 1.1
Compute (2+3i) 4+ (5 —4) and (2 + 44)(3 — 7).

Solution
We have
24+3i)+(B5—-9)=02+5)+B—-1)i=7+2i

and

(244i)(3—i)=(2-3—4-(-1)) + (2- (1) +4-3)i =10+ 104.

Problem 1.2

Find the real and imaginary parts of (2+1)/(3 — ).

Solution

Multiplying the numerator and the denominator of (24 )/(3 —4) by the con-

jugate of 3 — ¢, we obtain

240 _(2+)(3+i) _5+5i _1 1.

3—i (3-i)(B+i) 10 2 2"
Therefore,
247 1 247 1
—2 and I — =
Reg— =5 and Imgmm =7

(see Figure 1.7).

Problem 1.3
Find the modulus and the argument of i%/(2 + ).

Solution

Since
i3 —i(2—i)  —1—2i

2+i  (2+4)(2—4) 5
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12 2+14)/(3—1i)

1/2

Figure 1.7 Real part and imaginary part of (2+414)/(3 — i)

we have
| 1+22_ 5 1
2+i| V52 52 V52 /5
and, by (1.5),
arg;_m=7T+tan_1T§5:7r+tan_12,

where tan™! is the inverse of the tangent with values in the interval (—m /2,7 /2).

Problem 1.4

Write the complex number z = /2 — v/2i in polar form and compute 2°.

Solution

We have |z| =v/2+2=2 and

—V2
argz =tan ' —= =tan ' (—1) = —

V2

, and by Proposition 1.13, we obtain

7
T
Hence, z = 2e~7/4

25 — 25e—i57r/4 — 326—2'571'/4.

Problem 1.5

Find the cube roots of —4.
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Solution

Let z = —4. Since |z| = 4 and arg z = 7, we have z = 4¢'™, and hence, by Propo-
sition 1.14, the cube roots of —4 are

More precisely,

w;j = \ii/zlei(ﬂ+27rj)/3 _ ﬂ@iﬂ(1+2j)/3,
1+14v3 .
:+—Z\/_ wy=—v4 and wy=

Wo

(see Figure 1.8).

Problem 1.6

\:75 )

s
e

~.,

j=0,1,2.

\3/5

.
~,
.

.
Ptiad

\

Figure 1.8 Cube roots of —4

Compute log(—3) and log(2 + 2i).

Solution

Let z = —3. We have |z| =3 and arg z = 7. Therefore, by (1.13),

log(—3) =log 3+ im.

1—1iv3
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Now let z =2+ 2i. We have

2] =22+ 22=V8=2V2

and
argz = tan” ' ; =tan"'1= %
Therefore,
log z =log(2Vv/2) + z% = glogQ + zg
Problem 1.7

Compute (2i)* and (—1)%.

Solution

Since 2i = 2¢"™/2 we have

log(2i) = log 2 + zg

and thus, by (1.15),
(20)21 = ¢2ilos(20)
— eQi(log2+iTr/2)

— 622 log 26—71'

= e "[cos(2log2) + isin(2log2)].

On the other hand, since —1 = 1¢'™, we have
log(—1) =log 1+ im =im,

and hence,

(_1)i _ eilog(fl) _ ei(iﬂ') —e 7.

Problem 1.8

Use the Cartesian form of z to verify that 27z = |2|?.
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Solution
We write z = a + ib, with a,b € R. Then Z = a — ib, and hence,
2Z = (a +ib)(a — ib)
= (a®+b*) +i(a(—b) + ba)

=a 4+ b* =z

Problem 1.9

Determine the set of points z € C such that 2|z| < |z —4].

Solution

Since |z| and |z — 4| are nonnegative, the condition 2|z| < |z — 4| is equivalent
to 4|2|? < |z — 4]?. Writing 2z = x + iy, with x,y € R, we obtain

4]z = 4(2® + 97
and
|z =4 = (x —4)* +y* =2® — 8z + 16 + ¢

Therefore, the condition 4|z|? < |z — 4|? is equivalent to
4(2? +y%) <2® — 8z +16 + ¢,

which yields

32% + 8z + 3y* < 16. (1.16)
Since
4\? 16
322 + 8z =3 i
r” + 3T <z+3> 3

condition (1.16) is equivalent to

L 2+ 2 64
x - —_.
3) TV =79

Therefore, the set of points z € C such that 2|z| < |z — 4| is the closed disk of
radius 8/3 centered at —4/3 (see Figure 1.9).
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Figure 1.9 Closed disk of radius 8/3 centered at —4/3

Problem 1.10

Determine the set of points z € C such that |z| = 22.

Solution

For z = |z|e’®, the condition |z| = 22 is equivalent to |z| = |z|?e*. Clearly,
2z =0 is a solution. For z # 0 we obtain the equivalent condition 1= |z]e?*®,
which by Proposition 1.9 yields |z| = 1 and 2a = 2k with k € Z, that is, « = kn
with k € Z. Hence,

2=z =10 =1 or z=|z]e" =1 =—1.

Therefore, the set of points z € C such that |z| = 2% is {~1,0,1}.

Problem 1.11

Verify that the function 22 — z is not one-to-one and find whether it is onto.

Solution

The equation

22— z=2(2—1)=0
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2

has the solutions z =0 and z =1, and hence, the function z* — z is not one-to-

one. On the other hand, since the equation z? — z = w has the solution

1
z:§(1+\/1+4w),

where /1 + 4w is any square root of 14 4w, the function 22 — z is onto.

Problem 1.12

Solve the equation cosz = 2.

Solution
Let w = ¢**. We have

0=cosz—2

_ l(eiz +67iz) -9

2

1 1 w? —4dw+1
= — _— —2:7.

2(w+w> 2w

Since e* never vanishes, the equation cos z = 2 is equivalent to w? —4w+1 =0,
which has the solutions

4+ /16 -4 4—+/16—-4
wlz%:2+\/§ and w2:+:2—\/§.
We thus consider the equations
€* =243 and ¢*=2-3. (1.17)

Writing z = 2 + iy, with x,y € R, we obtain e’* = e~¥e. By Proposition 1.9,
the condition

e Vel =24+ 4/3
yields e™¥ =2+ V3 and x = 27k with k € Z. Similarly, the condition
e Ve =2 /3

yields e™¥ =2 — /3 and x = 27k with k € Z. Hence, the equations in (1.17)
have respectively the solutions

z =2k —ilog(2 + V/3)
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and
z=2nk —ilog(2 — V3),
with k € Z.

Problem 1.13

Solve the equation cos z = sin z.

Solution
Let w = ¢**. We have

0=cosz—sinz

:ﬁ(wﬁ—i—i—w?—&-l)
1

9o 141
=17
which has the solutions
wy =e™* and  wo = /4,

Therefore, we must solve the equations
e =™/t and e =e/4, (1.18)

Writing z = x + 4y, with 2,y € R, we obtain e = e Ye!*, and the equations
in (1.18) have respectively the solutions

5
z:£+27rk and zzf—k?wk, with k € Z.

These can be written together in the form z =7 /4 + 7k, with k € Z.
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Problem 1.14

Show that if ¢ # —1, then

Re log(l + eig) =log

0
2cos —|.
0052’

Solution

Since
log(l + ew) = log’1 + ei9| +iarg(1 + eie),
we have

Relog(1+¢') =log|1 + €|

=log|1 4 cosf + isinb)|

=log \/(1 + cos6)? +sin® 6
=logVv2+ 2cosh.

It then follows from the identity

COSQ_ 1+ cos@
2| =V 2

that
) 1 0
Relog (1 +¢") =1log <2\/ %) =log

Problem 1.15

0
2¢os —
cos 5

For z = x + iy, with x,y € R, show that

|cos z|% + |sin z|> = cosh? y + sinh? y.
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Solution
We have
62’2 +ef7,'z eirefy +67iazey
cosz = =
2 2
L, , P
= 5(6 CcCosT + e cos:z:) + 5(6 sy —e smx)
=cosxcoshy —isinzsinhy
and
eiz _ efiz eixefy _ e*izey
sinz = - = -
24 2
1, . . (A
== (e Ysinx + e sm:c) — 5(6 Ycosx — e cosx)
=sinx coshy + icosxsinhy.
Therefore,
|cos z|? + [sin z|*> = cos® 2 cosh? y + sin® zsinh?
+ sin? 2 cosh? y + cos? zsinh? y
= cosh?y + sinh? y.
Problem 1.16
Show that
|z —w*> < (14]2]*) (1+ |wf*) for z,weC.
Solution

By Proposition 1.20, we have
|z —w| <z] + |-w| = [2] + |w],
and hence,
|2 = w]? < (2] + fwl)® = |2 + 202 - ] + [w]?.

On the other hand,

0< (1= 2] [w])* = 1=2[z] - [w] + |22 w]?, (1.19)
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and thus,
22| fw] <1+ [z[*fw]”.
It then follows from (1.19) that
|2 —wl? <[z + 1+ 2w + Jw]?
=22+ 1+ (J2* + 1) |w]?

= (1 + |z|2) (1 + |w|2)

Problem 1.17

Verify that the identity log(zw) = log z + logw is not always satisfied.

Solution
Let z =r1e%t and w = rye?®2, with 71,72 > 0 and 61,0 € (—7, 7). We have
logz=logr; +i0; and logw =logry + ifs,
and thus,
log z + logw =logry + logrs + (61 + 62)
=log(rir2) +i(61 + 6s).
On the other hand, since zw = 717" (?11%2) (see (1.7)), we also have
log(zw) =log(rire) + (61 + 02 — 2km),
where k € Z is the unique integer such that
01+ 0y — 2km € (—m, 7).
In particular, when 6; + 65 does not belong to the interval (—m, | we have
log(zw) # log z + log w.
For example, if z =w = —1, then

log(zw) =logl =0 and logz+ logw =2log(—1) = 2ir.

Problem 1.18

Find all complex numbers z € C such that loglog z is purely imaginary.
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Solution

For z # 0 we have
logz =log|z| + iarg z,

with argz € (—m,w]. Hence, for logz # 0 we obtain

loglog z = log|log z| + i arglog z

=log/(log|z|)2 + (arg 2)2 + iarglog z,

with arglogz € (—m,7]. This implies that loglogz is purely imaginary if and
only if

Reloglogz = %log[(log |2])? + (arg 2)?] =0,
which is equivalent to
(log|2])? + (arg 2)* = 1,
with z # 0. Taking o € R such that
log|z| =cosa and argz=sinc,
we obtain |z| =%, and thus,

iargz __ _cosa isina __ e

z=|zle €% =e

We note that z # 0 and that

log 2| = v/(log 2])? + (arg 2)> = 1 £0.

EXERCISES

1.1. Find:
(a) the real part of the imaginary part of z;
(b) the imaginary part of the real part of z.
1.2. Compute the modulus and the argument of:
(a) 3 +1;
(b) (541i6)(1 —17);
(0) (1+iv3)/(1—iv3);
(d) (5+1i4)/(2—1i2)2.
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1.3.

1.4.
1.5.

1.6.

1.7.
1.8.
1.9.
1.10.
1.11.

1.12.

1.13.

1.14.

1.15.

Find the Cartesian and polar forms of:

(a) (1—14)%

(b) (5+i4)/(2 —i);

(c) ©° 4420

(d) cosi;

(e) sinh(2i).

Compute the conjugate of 5(2+1i3)3/(2 +1).
Find the square roots of:

(a) i
(b) 1—i;
(c) 2412

Verify that:

(a) the cube roots of i are (v/3+14)/2, (—v/3+1)/2 and —i;
(b) the 4th roots of i are eim/8  ei57/8 oi9T/8 and ei3T/8.
(c) a bth root of 1 is

Find all complex numbers z € C such that (22)? = 1.
Verify that 1+ e?2* = 2™ cosz for every z € R.
Compute loglogi.

Find whether loglog z can be computed for every z # 0.
Find all solutions of the equation:

(a) (z+1)?=(z-1)%

(b) 222 +iz+4=0;

(c) 2423 +22+2=0.

Solve the equation:

(a) e*=3;

(b) coshz=1;

(c) e =1.

Solve the equation:

(a) coszsinz=0;

(b) sinz 4 cosz =1,

(¢c) sinz =sin(2z).

Determine the set of points (x,%) € R? such that:
(a) z+iy=|z+iyl;

(b) 2z +dy| < |z +dy — 1.

Determine the set of points z € C such that:

(a) z4+z=|2—-2|;

(b) 22 —z=1;
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1.16.

1.17.
1.18.

1.19.

1.20.

1.21.

1.22.

1.23.

1.24.

(¢) 2 |o| ==
() 32/ < [z—2|

Determine the set:

(a) {z€C:|z]*=2%};

(b) {z€C:2z71 =4z}

Determine the set {zw: z,w € C}.

Compute the real and imaginary parts of the function:
(a) f(z)=(z+1)%

(b) £(z) = 22(z - 3);

(¢) F(2)=2/(z— 1)

(d) f(z)=%/(zz - 1).

Find whether the function is one-to-one:

(a) 2z;

e”;

224 Z;
Ccos z;

22 — COS Z.

o~ o~
o Ao O
S N S N

ind whether the function is onto:

O
&

Q

\.N

b) 23.

ind whether the function is bijective (one-to-one and onto):
a) 24—z

b) e*.

dentify each statement as true or false.

a) cos®z+sin?z =1 for every z € C.

b) Re(iz) =Im(z) for every z€ CNR.

c¢) The function e* is bounded.

d) The function cosz — sin z is bounded.

S R O

—_—

e) coscosz is always real.

how that:

Re(iz) = —Imz and Im(iz) = Re z;
cos(iz) = cosh z;

~—~ N

a

=

A

aa
N N e N N

w0

| 2.

=

—~

-~

N

S~—

Il

~

w

@

=]

=

j\z

—
@D

2]
g
=

=+
=
Q

=+

cos(z + w) = cos zcosw — sin zsinw;

sin(z + w) = sin z cos w + cos z sin w;

cos(2z) = cos? z — sin? z;

111

(
in

— —
o T o
NN

2z) = 2sinz cos z;
x +iy) = coshysinx + icoszsinhy.

@D
w0

sin

—_~ T~
jol
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1.25.

1.26.
1.27.

1.28.

1.29.

1.30.
1.31.
1.32.

1.33.

1.34.

Verify that:

(a) Rel(1+2)/(1—2)] = (1 - |#2)/]s — 1%
(b) sin[—ilog(iz + V1 — 22)] = 2.

Show that |2!| < e™ for every z € C\ {0}.
Show that

2] < [Rez| + [Tmz| < v/2|2.
Verify that

|z —wl + |z + w* =2(|2]* + [w|*) for z,weC.
Show that

|[2| = Jw|| < |z+w| for every z,w € C.

Find whether the inequality |z — w| < |z + w| is always satisfied.

Show that if 2" =1and 2#1, then 1 +2z4---+2""1 =0.
Given z € R\ {2k7: k € Z} and n € N, show that

sin(2z) + sin(4x) + - - - + sin(2nz) = sin(nx)sin[(n + 1)x]

sinx
and

cos(22) + cos(d) + -+ + cos(2na) = Sne) cosl(n F D]

sinx

Hint: compute e*?* + 4% 4 ... 4 277,

Find whether the function is bounded or unbounded:
(a) F(z) ==+l

(b) F(2) = |+l — |2 — i

Compute the limit of:

(a) |1+ i/n|™ when n — oo;

(b) |cos(2+ 3i/n)|™ when n — co.
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Holomorphic Functions

In this chapter we introduce the notion of a differentiable function, or of a holo-
morphic function. It turns out that differentiability is characterized by a pair
of (partial differential) equations—the Cauchy-Riemann equations. We also in-
troduce the notion of the integral along a path and we study its relation to the
notion of a holomorphic function. Finally, we introduce the index of a closed
path, we obtain Cauchy’s integral formula for a holomorphic function, and we
discuss the relation between integrals and homotopy.

2.1 Limits and Continuity

Let f: £2— C be a complex-valued function in a set {2 C C. We first introduce
the notion of limit.

Definition 2.1
We say that the limit of f at a point zy € {2 exists, and that it is given by
w € C if for each € > 0 there exists § > 0 such that

|f(2) —w| <& whenever |z — z| <.

L. Barreira, C. Valls, Complex Analysis and Differential Equations, 37
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In this case we write

ZIEEO f(z)=w.

Now we introduce the notion of continuity.

Definition 2.2

We say that f is continuous at a point zg € £2 if

lim f(z) = f(z0).

zZ—r 20

Otherwise, the function f is said to be discontinuous at zy. We also say that
f is continuous in §2 if it is continuous at all points of (2.

Example 2.3
For the function f(z)=|z|, we have
|£(2) = f(20)] = Izl = |2o] | < ]2 = 20].

This implies that |f(z) — f(20)| < é whenever |z — z9| < §, and hence, the func-
tion f is continuous in C.

Example 2.4
For the function f(z)= 22, we have
]f(z) - f(20)| = |(Z —20)(z+ zo)|
= |z — 20| |2 — 20 + 20|
<z = z0/(|z — 20| + 2|20])
< (0 +2|20])

whenever |z — 29| < J. Since 6(d + 2|z9|) — 0 when 6 — 0, the function f is
continuous in C.

Example 2.5

Now we show that the function f(z) =logz is discontinuous at all points z =
—x + 10 with > 0. For w € C in the second quadrant, we have

logw =log|w| + i argw
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with argw € [7/2,7]. On the other hand, for w € C in the third quadrant
and outside the half-line R™, the same formula holds, but now with argw €
(=, —m/2]. Letting w — z in the second and third quadrants, we obtain re-
spectively

logw — logx + i
and
logw — logx — 4.

Since the right-hand sides are different, the logarithm has no limit at points
of R™. Therefore, the function f is discontinuous at all points of R™. On the
other hand, one can show that it is continuous in C\ R, (see Exercise 2.25).

2.2 Differentiability

Now we consider a function f: {2 — C in an open set {2 C C, that is, in an open
set 2 C R?.

Definition 2.6
We say that f is differentiable at a point zg € {2 if the limit
zZ—20 zZ— 20

exists. In this case, the number f/(zp) is called the derivative of f at zg.

We also introduce the notion of a holomorphic function.

Definition 2.7

When f is differentiable at all points of {2 we say that f is holomorphic in 2.

Example 2.8

We show that the function f(z)= 2?2 is holomorphic in C. Indeed,

2_ .2 _
im 22— i (z—20)(z + 20)

z—z0 2 — 20 2—20 zZ— 29

= lim (z + z9) = 22,
Z— 20
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and thus (z?)" = 2z. One can show by induction that

(Zn)/ — nzn—l

for every n € N (with the convention that 0° = 1).

Example 2.9
Now we consider the function f(z) =Z. Given h =re?, we have
fz+h)—f(z) Z+h-%
h B h
h ‘
=5 = e 2, (2.1)
Since e~%" varies with 6, one cannot take the limit in (2.1) when r — 0. Hence,

the function f is differentiable at no point.

Example 2.10

For the function f(z) =|z|?, given h = re’® we have

f(z+h)—f(z) (z+h)(Z+h)—2Z

h N h

_ zh+7zh+hh

N h

= % +Z+h

zre” —i0
= g tztre
re
=z2e 20 p 74 e 5 20720 7 (2.2)

when r — 0. For 2 # 0, since the limit in (2.2) varies with 6, the function f is
not differentiable at z. On the other hand,

[ -0 P
z—0 oz oz

when z — 0. Therefore, f is only differentiable at the origin, and f’(0) =0.

The following properties are obtained as in R, and thus their proofs are
omitted.
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Proposition 2.11

Given holomorphic functions f,g: 2 — C, we have:
L (f+g)=f+d}
2. (fg)'=Ffg+fg"
3. (f/9) =(f'g— fg')/g* at all points where g # 0.

Proposition 2.12

Given holomorphic functions f: 2 — C and g: 2’ — C, with g(£2') C 2, we
have

(fog) =(fog)d.

Now we show that any differentiable function is continuous.

Proposition 2.13

If f is differentiable at zy, then f is continuous at zj.

Proof
For z # 2y, we have
1) - fe) = LB oy
and thus,
Tim f(z) = Jim [£() = f(z0)] + f(z0)
= lim J&) = fz) lim (z — z0) + f(20)
Z—r20 z — ZO Z— 20

= f'(20) - 0+ f(20) = f(20)-

This yields the desired property. (]

We also describe a necessary condition for the differentiability of a function
f: 82— C at a given point. We always write

[z +iy) = u(z,y) + iv(z,y),

where u and v are real-valued functions.
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Theorem 2.14 (Cauchy-Riemann equations)

If f is differentiable at zy = zg + iyp, then

ou Ov ou v
o and —=-2 2.3
or 0Oy an dy ox (2:3)
at (zo,yo). Moreover, the derivative of f at zg is given by
ou v
f'(20) = %(xovyo)JrZ%(Io,yo)- (2.4)

Proof
Writing f/(z9) = a + ib, we obtain
F'(20)(2 = 20) = (a +1ib) [(x — x0) +i(y — yo)]
= [a(x — z0) — b(y — yo)] +i[b(zx — x0) +ialy — yo)]
= C(LL‘ —Zo,Y — y0)7

where

and hence,
f(2) = f(20) — f/(Zo)(Z —20) = (U(337y)7“(337y)) - (U(fﬂoayo)av(ﬂﬂmyo))
= C(x — 20,y — ¥o)-
For z # zg, we have

f(2) = f(z0) = '(20) (2 —20) _ f(2) = f(20) = f'(20)(2 —20) 2—20

|z — 0] z— 20 |z — 20|

— (PRI ) 22
and since
2=z | _ |z — zo] _1
lz—20l| [z—20]
we obtain

f(z) = f(z0) = f'(20)(2 — 20)

—0
|z — 2o
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when z — zy. Since
|z — 20| = || (z — w0,y — wo)|,
this is the same as

(u(z,y),v(x,y)) — (u(@o, T0),v(z0,y0)) — C(z — T0,y — Yo)

—0
(x — 20,y — vo)|l

when (z,y) — (z0,y0). It thus follows from the notion of differentiability in R?
that the function F': £2 — R? given by

F(z,y)= (u(m,y),v(m,y)) (2.5)

is differentiable at (xg, o), with derivative

%(330,?!0) 2—’;(9307110))

S—Z(xo,yo) g—Z(xovyo)

:c:(g ‘ab)_

This shows that the identities in (2.3) are satisfied. O

DF(xg,y0) = <

The equations in (2.3) are called the Cauchy—Riemann equations.

Example 2.15
Let

flz+iy) = u(z,y) +iv(z,y)

be a holomorphic function in C with u(z,y) = 22 — zy — y?. By Theorem 2.14,
the Cauchy—Riemann equations are satisfied. Since
ou
— =2x—y,
oz Y

it follows from the first equation in (2.3) that

Therefore,

v(a,y) =22y — -+ C(x)
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for some function C'. Taking derivatives, we obtain
Ov
—=—x—2 d ——=-2y—C'(2).
x—2y an 9 Y (z)

Hence,
—r—2y=-2y—C'(z),

and C’(z) = . We conclude that C(x) = 2?/2+ ¢ for some constant ¢ € R, and
hence,
2 2
v(z,y) = % + 2zy — % +ec.
We thus have

. 22 2
f(:r—i—zy)—(x2—xy—y2)+z(?+2xy—%+c>.

Rearranging the terms, we obtain

fle+iy) = [(2° —y?) +i2zy| + {—xzﬁ-i(x; — %)] +ic

:z2—|—%[(x2—y2) +i2xy} +ic
:z2+222+ic: 1+£ 2% +ic.
2 2

In particular, f'(z) = (2 +1i)z.

Example 2.16

We show that a holomorphic function f = +iv cannot have u(z,y) = 22 + 3>
as its real part. Otherwise, by the first Cauchy-Riemann equation, we would
have

ou 5 ov
e PR
Ox oy’
and thus, v(x,y) = 2zy + C(x) for some function C. But then
ou ov ,
%—23; and 6—x—2y+0(x),

and by the second Cauchy—Riemann equation we would also have

2y=—(2y+C'(z)).
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Therefore, C’(x) = —4y, but this identity cannot hold for every x,y € R. For
example, taking derivatives with respect to y we would obtain 0 = —4, which
is impossible.

As an illustration of the former concepts, in the remainder of this section
we shall describe conditions for a holomorphic function to be constant.

Given a set A C C, we denote by A the closure of A. This is the smallest
closed subset of C = R? containing A. It is also the set of points a € C such
that

{zeC:lz—al<r}nA#0

for every r > 0. In spite of the notation, the notion of closure should not be
confused with the notion of the conjugate of a complex number. Now we recall
the notion of a connected set.

Definition 2.17

A set 2 C C is said to be disconnected if there exist nonempty sets A, B C C
such that

N=AUB and ANB=ANB=40.

A set 2 C C is said to be connected if it is not disconnected.

Finally, we introduce the notion of a connected component.

Definition 2.18

Given (2 C C, we say that a connected set A C {2 is a connected component
of (2 if any connected set B C {2 containing A is equal to A.

We note that if a set 2 C C is connected, then it is its own unique connected
component.

Now we show that in any connected open set, a holomorphic function with
zero derivative is constant.

Proposition 2.19

If f is a holomorphic function in a connected open set 2 and f’ =0 in {2, then
f is constant in (2.
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Proof
By (2.4), we have

Together with the Cauchy—Riemann equations, this yields
Ou Ou Ov  Ov
dr Oy 0oz Oy
Now let us consider points = + iy and z + 4y’ in {2 such that the line segment

between them is contained in (2. By the Mean value theorem, we obtain

u(z,y) — u(z,y) = g—Zu, Iy —y) =0,

where z is some point between y and 3’. Analogously,
v
v(zy) —vla,y) =5 (5 w)y —y) =0,

where w is some point between y and 3. This shows that

flz+iy) = flz+iy). (2.6)

One can show in a similar manner that if x + iy’ and 2’ 4 iy’ are points in {2
such that the line segment between them is contained in {2, then

fle+iy') = f(a’" +iy). (2.7)

Now we consider an open rectangle R C 2 with horizontal and vertical sides.
Given z + 1y, 2’ + iy’ € R, the point x + 73/ is also in R, as well as the vertical
segment between x + ¢y and x +1y’, and the horizontal segment between x + iy’
and z’ + iy’ (each of these segments can be a single point). It follows from (2.6)
and (2.7) that

fla+iy) = fz+iy') = f(a' +iy).
This shows that f is constant in R. Finally, we consider sequences Rg =

(Rp)nen of open rectangles in 2, with horizontal and vertical sides, such that
Ry =R and R, N R, 1 # 0 for each n € N. We also consider the set

Ur=JJ Rn.
Rprn=1

Clearly, Ug is open (since it is a union of open sets), and f is constant in Ug,
. . . . . o0
since it is constant in each union (J,_; Ry.
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We show that Ug = £2. On the contrary, let us assume that 2\ Ug # (). We
note that

since otherwise Up N 2 = Uy, and hence,
Q:URU(‘Q\UR)7
with
UrN(2\Ur)=(UrN2)\Ur=10
and
UrN2\Ugr=UrN(2\Ug) =10

(since Ug is open); that is, £2 would be disconnected. Let us then take z €
(Ur N 2)\ Ugr and a rectangle S C 2 with horizontal and vertical sides such
that z € S. Then SN Uk # () and thus, S is an element of some sequence Rg.
This implies that S C Ur and hence z € Ur, which yields a contradiction.
Therefore, Ug = §2 and f is constant in (2. ]

We also describe some applications of Proposition 2.19.

Example 2.20

We show that for a holomorphic function f = u+4v in a connected open set, if
u is constant or v is constant, then f is also constant. Indeed, if u is constant,
then

ou ov
Lo
fle+iy)=o- +ig

ou .0Ou

oz oy 0

and it follows from Proposition 2.19 that f is constant. Similarly, if v is con-
stant, then

ou . Ov

/ . _ 7" bl

[z +iy) O —Hax

_Ov  0v

787y+2%:0’

and again it follows from Proposition 2.19 that f is constant.
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Example 2.21

Now we show that for a holomorphic function f = wu + v in a connected open
set, if |f| is constant, then f is constant. We first note that by hypothesis
|f|? = u? + v? is also constant. If the constant is zero, then u =v =0 and
hence, f =wu + v =0. Now we assume that |f|? = ¢ for some constant ¢ # 0.
Then u? 4+ v? = ¢, and taking derivatives with respect to x and y, we obtain

ou ov
and
ou ov

Using the Cauchy—Riemann equations, one can rewrite these two identities in

the matrix form
u v 2—“
z = U. 2
() (—) : o

Since the determinant of the 2 x 2 matrix in (2.8) is —(u? + v?) = —c #0, the
unique solution is

ou_ov_
oxr Oz
and thus,
du .Ov
! ) g ) — —
flx+iy) = o +Z€)x 0.

It follows again from Proposition 2.19 that f is constant.

2.3 Differentiability Condition

The following example shows that for a function f to be differentiable at a
given point it is not sufficient that the Cauchy—Riemann equations are satisfied
at that point.

Example 2.22

We show that the function f(z+iy) = +/|zy| is not differentiable at the origin.
Given

h=re? =rcosf+irsind,



2.3 Differentiability Condition 49

we have

f(h)— f(0) |(r cosd)(rsinf)]
0

rett

_ 7y/|cosfsin0)|

B ret
= /|cosfsinfle .

Since the last expression depends on 6, one cannot take the limit when r — 0.
Therefore, f is not differentiable at the origin. On the other hand, we have

ou o u(x,0) —u(0,0)
3x(0’0)_a{1§b z—0 =0
and
ou . u(0,y) —u(0,0)
as well as
ov ov

since v = 0. Hence, the Cauchy—Riemann equations are satisfied at the origin.

Now we give a necessary and sufficient condition for the differentiability of
a function f in some open set.

Theorem 2.23

Let u,v: 2 — C be C' functions in an open set 2 C C. Then the function
f =u+ v is holomorphic in {2 if and only if the Cauchy—Riemann equations
are satisfied at all points of 2.

Proof

By Theorem 2.14, if f is holomorphic in {2, then the Cauchy—Riemann equa-
tions are satisfied at all points of (2.
Now we assume that the Cauchy—Riemann equations are satisfied in 2.

This implies that
ou ou
ov ov |
55 5 b a
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at every point of (2, for some constants a and b possibly depending on the
point. On the other hand, since u and v are of class C'!, the function F = (u,v)
in (2.5) is differentiable in (2. It follows from the proof of Theorem 2.14 that
f is differentiable at zg, with

f'(20) = a+ib,
if and only if F' is differentiable at (xq,yo), with

g—g(fo,yo) g_;j(x()?y()) a —b
DF(xo,y0) = o v =1, )
a5 (20,%0) 5y (0, Y0) a

This shows that the function f is differentiable at all points of f2. O

Example 2.24

Let us consider the function f(z)=e*. We have
u(z,y) =e"cosy and v(x,y)=e"siny,

and both functions are of class C! in the open set R? = C. Since

ou v,
— =e"cosy, — =e¢e"cosy,
ox 4 y Y
and
ou e . ov o -
— = —¢e"siny, —— = —€e"siny,
By 4 or 4

the CauchyRiemann equations are satisfied in R?. By Theorem 2.23, we con-
clude that the function f is differentiable in C. Moreover, it follows from (2.4)
that
f(z)= Ou 4iZl e cosy +ie” siny = e*
dr = Ox ’
that is, (e*)’ =e*.

Example 2.25

For the cosine and sine functions, we have respectively

eiz + e—iz )’ Z'eiz _ Z'e—iz

(cosz) = ( . .
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and

. o
. , elz —e 1z Zelz+ze 1z
(sinz)' = - = -

eiz _|_67iz
= ——— = CO0S Z.
2

Example 2.26

Now we find all points at which the function
[l +iy) =y +izy
is differentiable. We first note that

u(z,y) =v(z,y) =2y
is of class C' in R?. On the other hand, the Cauchy-Riemann equations

Ou  Ov ou  Ov

a—a—y and 3_y__8_g;’

take the form

y=x and xz=—y.

The unique solution is z =y = 0. By Theorem 2.14, we conclude that the
function f is differentiable at no point of C\ {0}. But since {0} is not an open
set, one cannot apply Theorem 2.23 to decide whether f is differentiable at
the origin. Instead, we have to use the definition of derivative, that is, we must
verify whether the limit

o fErw) -0 o zy(+i)
(z,y)—(0,0) z+1y—0 (z,9)—(0,0) T+ 1y

exists. It follows from (1.6) that

2| - Jy|v2
|z + dy|

xy(1+14)
T +1y

< <V2lz +iy| =0

when (x,y) — (0,0), and hence, f is differentiable at the origin, with f/(0) = 0.

Example 2.27

Let us consider the function logz. It follows from (1.14) that

(e#2) = 1.
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Hence, if logz is differentiable at z, then it follows from the formula for the
derivative of a composition in Proposition 2.12 that

8% (log 2)' = 1.

Therefore,
1 1
r_ _
(logz) = gz~ 5

Now we show that logz is differentiable (at least) in the open set RT x R.
For this we recall the formula

1
logz = 3 log(z® +y*) +itan™! g
T

obtained in Example 1.35 for > 0. We note that the functions

1
u(z,y) = 3 log(:zc2 +y2) and v(z,y) =tan"! Yy
x
are of class C* in R* x R. Since
ou  x ov 1z
Or  22+y? Oy 1+ (y/x)?  a?+y?
and
ou y ov —y/x? oy
oy a2 +y?’ or 1+ (y/x)2  22+4y?’

it follows from Theorem 2.23 that the function log z is holomorphic in R* x R.

2.4 Paths and Integrals

In order to define the integral of a complex function, we first introduce the
notion of a path.

Definition 2.28

A continuous function 7: [a,b] — 2 C C is called a path in §2, and its image
v([a,b]) is called a curve in 2 (see Figure 2.1).

We note that the same curve can be the image of several paths.
Now we define two operations. The first is the inverse of a path.
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7(b)
(a)
V(a)

Figure 2.1 Paths and curves
Definition 2.29
Given a path v: [a,b] = 2, we define the path —v: [a,b] — 2 by

(=@ =~(a+b—1)
for each t € [a,b] (see Figure 2.2).
7(b)
(=7)(a)
~
e
(a)
(=)(0)

Figure 2.2 Paths v and —v

The second operation is the sum of paths.

Definition 2.30

Given paths 71 : [a1,b1] = 2 and 2 [ag,bs] — §2 such that 1 (b1) = 72(az), we
define the path 1 +v2: [a1,b1 + b2 — as] = 2 by

Y1 (t) ifte [al, bﬂ,

Y1+ 72)(t) =
(1 2)() {Vg(t—bl-i-ag) ifte[b1,b1+b2_a2]
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(see Figure 2.3).

Y1(b1) = 72(az)

" 72 Y2 (b2)

71(ar)

Figure 2.3 Path v + 72

We also consider the notions of a regular path and a piecewise regular path.

Definition 2.31

A path v: [a,b] — 2 is said to be regular if it is of class C' and ~/(t) # 0
for every t € [a,b], taking the right-sided derivative at a and the left-sided
derivative at b.

More precisely, the path ~: [a,b] — {2 is regular if there exists a path
a: (e,d) — 2 of class C! in some open interval (c,d) containing [a,b] such
that a(t) =~(t) and &' (¢) # 0 for every t € [a, b].

Definition 2.32

A path v: [a,b] — 2 is said to be piecewise regular if there exists a partition of
[a,b] into a finite number of subintervals [a;,b;] (intersecting at most at their
endpoints) such that each path «;: [a;,b;] = 2 defined by ~;(t) = ~(¢t) for
t € [a;,b;] is regular, taking the right-sided derivative at a; and the left-sided
derivative at b;.

We have the following result.
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Proposition 2.33

If the path v: [a,b] — C is piecewise regular, then

b
L, ::/ |7/ ()] dt < oc. (2.9)

Proof

Since v is piecewise regular, the function ¢ — |y/(¢)| is continuous in each in-
terval [a;,b;] in Definition 2.32. Therefore, it is Riemann-integrable in each of
these intervals, and thus also in their union, which is equal to [a, b]. |

The number L, is called the length of the path ~.

Example 2.34

Let 7: [0,1] — C be the path given by v(¢t) =t(1+1i) (see Figure 2.4). We have

L'Y:»/O |7’(t)|dt=/0 1 +i|dt = V2.

141

Y

Figure 2.4 The path v in Example 2.34
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Example 2.35
Let v: [0,27] — C be the path given by ~(t) = re’ (see Figure 2.5). We have

27 27 )
LV:/ |7’(t)|dt:/ Iric| dt
0 0

27
= / rdt=2nr,
0

"] = |cost + isint| = Vieos?t + sin?t =1.

since |i] =1 and

Figure 2.5 The path v in Example 2.35
Now we introduce the notion of the integral along a path.

Definition 2.36

Let f: £2 — C be a continuous function and let 7: [a,b] — 2 be a piecewise
regular path. We define the integral of f along v by

L f= / @ d
b b

— [ Relrae)y O] de-+i [ Tl (o)] dr
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We also write

We note that under the hypotheses of Definition 2.36, the functions

t=Re[f(y(1)Y' ()] and ¢ TIm[f(v(t)~'(t)]

are Riemann-integrable in [a,b], and thus the integral f,y f is well defined.

Example 2.37

We compute the integral fﬁ/ Re zdz along the paths v1,7v2: [0,1] = C given by

() =t(1+4) and o(t) =t*(1+1).

We have
1 i
/ Rezdz:/ Re[t(1+4)] - [t(1+4)] dt
Y1 0
1
_/ t-(1+4)dt
0
2 N
—5(14’2) :O— 9
and

= [ 283(144)dt
t =1 14
=—(1+1 = .
5 (1+1) . >
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Example 2.38

Now we compute the integral fw Im zdz along the path ~: [0,7] — C given by
v(t) = ett. We have Im~(t) = sint, and hence,

T
/Imzdz:/ sint - ie't dt
v 0

T it _ it
et —e ",
:/ ————ie'dt
0 27

7r1 24t (1 24t l)t_ﬂ
= —(e=1)dt=| —e"" — =t
| g nya= (g5
1, om 1 T
74—1,( 1)72(7r—0)f0 5= "5

The integral has the following properties.

Proposition 2.39

If f,g: £2— C are continuous functions and 7: [a,b] — §2 is a piecewise regular
path, then:
1. for any c¢,d € C, we have

A@f+@n=glf+dlg
2 [ =]

3. for any piecewise regular path a: [p,q] — 2 with a(p) =~(b), we have
[ o=[r+]r
Yt ¥ a

Proof

For the second property, we note that

(=)' (t) == (a+b—1),
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and thus,
b
| 1= [ 1oy
— @
b
= / —f(vla+b—1t))y (a+b—t)dt.
Making the change of variables a + b —t = s, we finally obtain

[ =] sewm s

b
_ / F(1()Y'(5) ds

:_lf

The remaining properties follow immediately from the definitions. ([l

We also describe two additional properties. For the first one we need the

notion of equivalent paths.

Definition 2.40

Two paths v1 : [a1,b1] = C and s : [ag, by] — C are said to be equivalent if there
exists a differentiable function ¢: [ag,ba] — [a1,b1] with ¢’ > 0, ¢(as) = a1, and
@(ba) = by, such that v =1 0 ¢.

We can now formulate the following result.

Proposition 2.41

If f: £2— C is a continuous function, and -y; and v, are equivalent piecewise

[=1

regular paths in (2, then
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Proof

We have
b
/ f= / Fra ()72 (t) dt
ba
:/ F((r108) )1 (6(1)¢' (¢) dt.

Making the change of variables s = ¢(t), we obtain

AJZAT”“”%®@:lf’

which yields the desired identity. O
Finally, we obtain an upper bound for the modulus of the integral.

Proposition 2.42

If f: 2 — C is a continuous function and v: [a,b] — {2 is a piecewise regular
path, then

/f‘ = /ab|f(7(t))v’(t)|dt

< L,Ysup{’f('y(t))’ te [a,b]}.

Proof

Writing fv f=re?, we obtain

fl=r=[es
f=r=]

b
:/e*%w@wVMt

b b
= [ Rele )y O] de-+i [ Tmle? fo0) (0)]

a
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Since |f7 f] is a real number, it follows from (1.6) that

/j ‘ = / "Rele~ () (1) de

b
< / e F (4 (£)) ()| dt.

Moreover, since |e~®| =1, we obtain

/J \ = / | @) d

b
S/ |/ (t)| dt - sup{| f(y(t))| : t € [a,b] }
— Lysup{|[f(1(0)] £ € [a8]}.

This yields the desired inequalities. |

Example 2.43

Let us consider the integral

[{2(2— 1)dz

along the path «: [0,7] — C given by 7(t) = 2¢%*. We have
L, :/ |2ie™| dt = 2.
0

By Proposition 2.42, since |y(t)| =2 for every t € [0, ], we obtain

/f‘ < Lvsup{|z(z— :z E'y([O,ﬂ])}
< 2msup{|2?] + || 2 (0, 7))
—or(4+2) =127.

On the other hand,
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2.5 Primitives

The concept of primitive is useful for the computation of integrals. Let us
consider a function f: {2 — C in an open set 2 C C.

Definition 2.44

A function F': {2 — C is said to be a primitive of f in the set {2 if F' is holo-
morphic in 2 and F' = f in £2.

We first show that in connected open sets all primitives differ by a constant.

Proposition 2.45

If F" and G are primitives of f in some connected open set 2 C C, then F — G
is constant in 2.

Proof
We have
(F-G)Y=F -G =f-f=0

in (2. Hence, it follows from Proposition 2.19 that F' — G is constant in (2. [
Primitives can be used to compute integrals as follows.

Proposition 2.46

If F' is a primitive of a continuous function f: 2 — C in an open set 2 C C
and v: [a,b] — {2 is a piecewise regular path, then

/ f = Fy(b)) - F(y(a)).

Proof

For j=1,...,n, let [a;,b;], with by = as, by =as, ..., by—1 = ay, be the subin-
tervals of [a,b] where « is regular. We note that the function

te= f(y(t)Y (t)
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is continuous in each interval [a;, b;]. Therefore,

/ f:i szi S (t) e
:i/ubj "(y( dt—Z/ (Fov)(

This yields the desired identity. O

Example 2.47

We consider the integral fy(z?’ + 1) dz along the path ~: [0,7] — C given by

y(t) = e®. Since
4 /
(5o

the function F(z) =2%/4 + z is a primitive of 2% + 1 in C. Therefore,

/ (° + 1) dz = F(y(n)) — F(+(0))

(1))

We also consider paths with the same initial and final points.

Definition 2.48
A path «v: [a,b] — C is said to be closed if v(a) =~(b) (see Figure 2.6).

The following property is an immediate consequence of Proposition 2.46.

Proposition 2.49

If f: £2— C is a continuous function having a primitive in the open set 2 C C
and v: [a,b] — {2 is a closed piecewise regular path, then

szo.
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Figure 2.6 A closed path

Now we show that any holomorphic function has primitives. We recall that
a set £2 C C is said to be conver if

tz+(1—t)we R

for every z,w € £2 and ¢ € [0, 1].

Theorem 2.50

If f: £2 — C is a holomorphic function in a convex open set {2 C C, then f has
a primitive in (2.

More generally, we have the following result.

Theorem 2.51

If f: 2— C is a continuous function in a convex open set 2 C C and there
exists p € £2 such that f is holomorphic in 2\ {p}, then f has a primitive in £2.

Proof

Take a € £2. For each z € §2, we consider the path v, : [0,1] — 2 given by
v:(t)=a+t(z—a) (2.10)

(we recall that (2 is convex). We also consider the function F': 2 — C defined
by

F(2) :/ /. (2.11)
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Lemma 2.52
We have

F(z+h)fF(z):/f, (2.12)

where the path a: [0,1] — C is given by a(t) = z + th.

Proof of the lemma

Let A be the triangle whose boundary 0A is the image of the closed path
Yz + a+ (—v.+1n). We note that identity (2.12) is equivalent to

IR AT RR AR

:F(z)+/f—F(z+h):O. (2.13)

z+h

Yoth Ay

Yz

Figure 2.7 Triangles Ay, Ay, Az and Ay

We first assume that p ¢ A. We divide the triangle A into 4 triangles, say
Ay, Ao, As and Ay, by adding line segments between the midpoints of the
sides of A (see Figure 2.7). Then

SR IN
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in view of the fact that the integrals along common sides of the triangles A;
cancel out, since they have opposite signs. We note that there exists ¢ such that

|c|
/ f ‘ > T
9A;
since otherwise we would have

4 4 |C|
;/Mf'<;Z=|c.

One can repeat the argument with this triangle 4; in order to obtain a sequence
of triangles A(n) C A(n — 1) such that A(n) is one of the 4 triangles obtained
from dividing A(n — 1), and

/ f ‘ > lel (2.14)
dA(n) 4r

On the other hand, since f is holomorphic in A, for each point zy € A, given
€ >0 we have

|F(2) = f(20) = ['(20) (2 = 20)| < e[z = 20|
whenever |z — 2| is sufficiently small. Since the perimeter of A(n) is
Loam)y =2""Loa,

where Ly is the perimeter of A, we obtain

/a oy ) = 10) = 1) = 20)] | S Ly =47 LBy (219

for any sufficiently large n. Moreover, since the function —f(zq) — f'(20)(z — 20)
has the primitive —f(20)z — f'(20)(z — 20)?/2, we have

/ [—f(20) = f'(20)(z — 20)] dz =0,
oA,
and it follows from (2.14) and (2.15) that

|c\§4”/ f'gngA.
OA(n)

Letting € — 0 we conclude that

c=[ [f=0,
24

which establishes (2.13).
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Now we assume that p € A. We note that it is sufficient to consider the
case when p is a vertex. Otherwise, being p1, p2,ps the vertices of A, one can
consider the three triangles determined by p;,p;,p with ¢ # j. When p belongs
to a side of A, one of these triangles reduces to a line segment (see Figure 2.8).

D2

P 2
Figure 2.8 Case when p belongs to a side of A
When p = p3 is a vertex of A, it is sufficient to consider triangles determined
by points ¢; and go in the sides containing p (see Figure 2.9). Indeed, by the

previous argument, the triangles A, and As respectively with vertices p1, ps, ¢1
and p1,q1,q2 have zero integral, that is,

/aAlf: aAgf:O.

Now let A’ be the triangle determined by ¢, go and p. Letting ¢; — p and
g2 — p, we conclude that

/ f‘gLaA/sup{|f(z)|:z€A’}—>O,
oA
since Lya, — 0. This completes the proof of the lemma. O

We are now ready to show that F' is a primitive of f. It follows from

RCLS /O fhdi= f(2)h
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D2

q1

P ¢ - p3=Dp

Figure 2.9 Case when p is a vertex of A

together with Lemma 2.52 that

w —f(2) = /a[f(C) — f(»)] .

Since f is continuous, given ¢ > 0, we have

[F(O) = f2)] <e

whenever |¢ — z| is sufficiently small. Therefore,

F(z+h)—F(z 1
PEED=PE )| < ol [ 110 - 1)) ac
h W[ 1Ja
< eL,
<t =¢
|h
whenever |h| is sufficiently small (since ¢ — z| < |h]). Letting € — 0 we thus
obtain F'(z) = f(z), and F is a primitive of f in 2. O
Example 2.53

For the path ~, in (2.10) we have v.(t) = z — a, and by (2.11) a primitive of f
is given by

F(z)z/o fla+t(z—a))(z—a)dt. (2.16)



2.6 Index of a Closed Path 69

In particular, when 0 € {2, taking a =0 we obtain

F(z) :z/o f(tz)dt. (2.17)

Example 2.54
We have
sin z . sinz —sin0
lim = lim
z—0 z z2—0 z — 0
= (sinz)'| o
=cos0=

Hence, the function

) (sinz)/z if 2 #£0,
f(z)_{l if 2=0

is continuous in C and holomorphic in C\ {0}. It thus follows from Theorem 2.51
that f has a primitive in C. Moreover, by (2.17), a primitive is given by

F(z):z/olwdtz/olwdt.

tz

The following result is an immediate consequence of Theorem 2.51 and
Proposition 2.49.

Theorem 2.55 (Cauchy’s theorem)

If f: 2 — C is a continuous function in a convex open set {2 C C and there
exists p € {2 such that f is holomorphic in 2\ {p}, then

fo-

for any closed piecewise regular path v in (2.

2.6 Index of a Closed Path

Now we introduce the notion of the index of a closed path.
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Definition 2.56

Given a closed piecewise regular path v: [a,b] — C, we define the indezx of a
point z € C\ v([a,b]) with respect to v by

Ind, () ! / dw
.

2w ), w—z

Example 2.57

Let 7: [0,27] — C be the path given by () = a + re'. Then

1 2 s it
Ind. (a) / iy
0

= omi reit
1 27
2w Jo

The following result specifies the values that the index can take.

Theorem 2.58

Let 7: [a,b] — C be a closed piecewise regular path and let 2 =C\ v([a,b]).
Then:
1. Ind,(2z) € Z for each z € {2;
2. the function z — Ind,(z) is constant in each connected component of {2;
3. Ind,(2) =0 for each z in the unbounded connected component of f2.

Proof
We define a function ¢: [a,b] — C by

cor-en{ [ 52-0)

1g) = os) ()
V) =)=

in each subinterval [a;,b;] of [a,b] where v is regular. Then

( ¢(s) )' _ 9(8)(0(s) = 2) = (s)9(5)
V() — 2 (v(s) = 2)?

We have

207
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and for each j there exists c; € C such that

for every s € [a;,b;]. But since v and ¢ are continuous functions, we conclude
that there exists ¢ € C such that

that is,
V(s) —=
o(s) = ——.
O ==
Letting s = b, since =y is a closed path, we obtain
¥(b) — 2
Y(a) — 2
that is,

co-en{ [ 5120
1

= exp(2milnd, (z)) = 1. (2.18)
We note that
M =1 o aelZ,

since €™ = cos(2ma) +isin(27wa). It then follows from (2.18) that Ind, (z) € Z.
For the second property, we first note that

ﬁ/y(cizc—lu)dc‘
o Rt

T o
|z = wl

L'Y
= o S”p{ G0 - 200 —w)

Ind,(z) — Ind, (w)| =

te [a,b]}. (2.19)
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For w sufficiently close to z, we have

[y(t) —w| > |y(t) — 2| — |z — wl,

and thus,

for every z € C\ v([a,b]), where
A=inf{|y(t) — z| : t € [a,b]} > 0.
Hence, it follows from (2.19) that

L |z — w]
_ < v = =1
[Ind, (2) — Ind, (w)| < 3w AA— o))’

and letting w — z we obtain

lim Ind,(w) =Ind,(2). (2.20)

w—z

Since the index takes only integer values, it follows from the continuity in (2.20)

that the function z — Ind,(z) is constant in each connected component of {2

(we note that since {2 is open, each connected component of {2 is an open set).
For the last property, we note that

i [ s

FR L
< gl i 2y < el

i sup{7'(#) : € [a, b]}
= 2 e = supr () £ € [0, B}

Ind, (z)| =

(2.21)

since

[7(8) = 2| > 2] = |2(1)]

whenever |z| is sufficiently large. In particular, it follows from (2.21) that
[Ind,(z)| <1 for any sufficiently large |z|. Since the index takes only integer
values, we obtain Ind,(z)=0. It follows again from the continuity in (2.20)
that the index is zero in the unbounded connected component of (2. O
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Example 2.59

For each n € N, let v: [0,27n] — C be the path given by v(¢) = a+re®, looping
n times around the point a in the positive direction. Then

2mn /
Ind, (a) = — / ) g
0

T omi v(t) —a
1 2nn . : it
= — me_ dt =n.
2mi J rett

It follows from Theorem 2.58 that

Ind. (2) n if |z—al<r,
nd,(z) =
! 0 if|z—a|>r.

2.7 Cauchy’s Integral Formula

Now we establish Cauchy’s integral formula for a holomorphic function. In
particular, it guarantees that any holomorphic function is uniquely determined
by its values along closed paths.

Theorem 2.60

If f: £ — C is a holomorphic function in a convex open set {2 C C and
v: [a,b] = £2 is a closed piecewise regular path, then

f(2)Ind,(2) = %/ i(i”l dw (2.22)
for every z € 2\ v([a,b]).

Proof

Let us consider the function g: {2 — C defined by

o) = {(f(w) —fE)/(w—2) ifweQ\{z},
J'(2) if w= 2.
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Clearly, g is continuous in {2 and holomorphic in 2\ {z}. It then follows from
Theorem 2.55 that
0= / g
.

RSP

w—z
= [ g [
S W= 2 S W—2
:L%dw — f(2)2miInd, (2).
This yields the desired identity. O

Example 2.61

Let f: C— C be a holomorphic function in C and let 7: [0,27] — C be the
path given by v(¢t) = z +re'’. Then Ind,(z) = 1, and by Theorem 2.60 we have

1) =5 [ aw

1 [°" f(z4re?) .
_ L [T g
2mi J, rett

1 27

- it
=5/, f(z+re )dt.

2.8 Integrals and Homotopy of Paths

In this section we show that the integral of a holomorphic function does not
change with homotopies of the path. We first recall the notion of homotopy.

Definition 2.62

Two closed paths 1,72 [a,b] — §2 are said to be homotopic in {2 if there exists
a continuous function H: [a,b] x [0,1] — §2 such that (see Figure 2.10):

1. H(t,0) =~1(t) and H(t,1) =~5(¢) for every t € [a,];

2. H(a,s)= H(b,s) for every s € [0,1].
Then the function H is called a homotopy between v, and .
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Ya(a) = v2(b)

Figure 2.10 Homotopy of paths

We then have the following result.

Theorem 2.63

If f: 2 — C is a holomorphic function in an open set 2 C C, and ~; and 5
are closed piecewise regular paths that are homotopic in (2, then

Alf_L2f. (2.23)

Proof

Let H be a homotopy between the paths «; and 5. We note that H is uniformly
continuous (since it is defined in a compact set). Hence, there exists n € N such
that

|H(t,s)—H(',s')| <r
for every (t,s),(t',s’) € [a,b] x [0,1] with

2(b— 2
[t—t'| < 2b—a) and |s—s'|<=. (2.24)
n n
Now we consider the points
j k
pjka(a+](ba)a>? jak:07"'7na
n n
and the closed polygons P; ) defined by the points

Diks Pj+l,ks Pj+1k+1 and  Djri1,
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in this order. It follows from (2.24) that these four points are contained in the
ball B, (pj,i) of radius r centered at p; x, and since any ball is a convex set, we
also have P; ;, C B, (pj k). It then follows from Theorem 2.55 that

/ f=0, (2.25)
OP;j i

where 0P, j, is the path along the boundary of P;
Now we consider the closed polygons ) defined by the points

Dok, D1,k cevy Pn—1k and Pn. k>

in this order, as well as the paths «;: [j/n,(j +1)/n] = C and §;: [0,1] = C
given respectively by «;(t) =~1(t) and

Bi(t) =pjt1,0 +t(pj0 — Pj+1,0)-

Since a; + 3; is a closed path in the ball B, (p; o), it follows again from Theo-
rem 2.55 that

%_f/jf !

for 7 =0,...,n — 1. Therefore,

/%f:g/a]f:g/_ﬁjfZ aQoﬁ (2.26)

One can show in a similar manner that

/ f= I (2.27)
Y2 0Qn

On the other hand, it follows from (2.25) that

n—1
Z/ﬁp f=0. (2.28)
j=0"9Fik

We note that the path 0P; j includes the line segment from p;i1 k t0 Pjt+1 k+1,
in this direction, while OPj;  includes the same segment but in the opposite
direction, and thus the corresponding terms cancel out in the sum in (2.28).
Moreover, 0P, , includes the line segment from pg 41 to po , in this direction,
while OF,,_1  includes the same segment but in the opposite direction. In fact,
since each path t+— H(t,s) is closed, we have p, g+1 = po k+1 and pn k = Do.k-
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Therefore,

n—1

=X S he !

| i
OQr+1 0Qk

for k=0,1,...,n — 1. Identity (2.23) now follows readily from (2.26) and
(2.27). O

that is,

The following result is an immediate consequence of Theorem 2.63.

Theorem 2.64

If f: £2— C is a holomorphic function in an open set {2 C C, and ~ is a closed
piecewise regular path that is homotopic to a constant path in {2, then

Lf_o.

We also show that the index does not change with homotopies of the path.

Proposition 2.65

Let v and 72 be closed piecewise regular paths that are homotopic in §2. Then
for each z € C\ {2, we have

Ind,, (2) =Ind,, (2). (2.29)
Proof
Let us take z € C\ 2. We note that the function
1
T=5m w2

is holomorphic in C\ {z}, and thus in particular in {2. Since

/ f=2milnd,,(2)

for j = 1,2, identity (2.29) follows readily from Theorem 2.63. O
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2.9 Harmonic Conjugate Functions

In this section we discuss the concept of harmonic conjugate functions. We recall
that a function u: 2 — C with second derivatives in some open set {2 C C is
said to be harmonic in 2 if Au =0, where the Laplacian Au is defined by

%u  O%*u

Definition 2.66

Two harmonic functions w,v: 2 — C in the open set 2 C C are said to be
harmonic conjugate functions in (2 if u and v satisfy the Cauchy—Riemann
equations in 2.

If the function f = wu 4+ 4v is holomorphic in an open set 2 C C, then the
Cauchy—Riemann equations are satisfied, and

Au=Av=0 1in ?

(see Problem 2.24). In fact, one can show that Au= Av =0 even without
assuming a priori that u and v are of class C? (see Exercise 4.36). Therefore,
the real and imaginary parts of a holomorphic function are harmonic conjugate
functions.

We show that any harmonic function of class C? in a simply connected open
set has a harmonic conjugate. We first recall the notions of a path connected
set and a simply connected set.

Definition 2.67

A set 2 C C is said to be path connected if for each z,w € {2 there exists a path
v: [a,b] = 2 with y(a) = z and v(b) = w.

In particular, a path connected set is necessarily connected.

Definition 2.68

A set 2 C C is said to be simply connected if it is path connected and any
closed path v: [a,b] — 2 is homotopic to a constant path in (2.

We then have the following result.
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Proposition 2.69

Let u: £2— C be a function of class C? in a simply connected open set {2 C C.
If Au =0, then there exists a function v: £2 — C of class C? with Av =0 such
that v and v are harmonic conjugate functions. Moreover, the function v is
unique up to a constant.

Proof

Since {2 is simply connected and u is of class C?, it follows from Green’s theorem
that if a is a closed path in (2 without intersections, then

ou ou 0 (0Ou 0 ou
[ayagein= [ (5:(5) a5 (o)) v

(2.30)
= / Audxdy =0,
U

where U is the open set whose boundary is the image of a. This shows that
given p € {2, one can define a function v: {2 — C by the line integral

ou ou
v(x,y)= | —=dx+ — dy, 2.31
(z,y) L 9y 5 W (2.31)

where v: [a,b] — {2 is any path between p and (x,y). Now we show that the
Cauchy-Riemann equations are satisfied. It follows from (2.30) that

v(x + h, y)—v(w Y)

31}

IR

where the path v, : [0,1] — R? is given by
(t) = (z +th,y).

Since

ou ou L du
——dr+ —dy —/ ——(x +th,y)hdt,
/% oy Oz 0 ax( )

and the function —0u/dx is continuous, we obtain

ov . b Ou ou
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One can show in a similar manner that

ov ou
a_y(muy) - a_x(x7y)7

and hence, the Cauchy—Riemann equations are satisfied in §2. Moreover, v is
of class C? and thus Av = 0.

It remains to show that v is unique up to a constant. By Theorem 2.23, the
function f =wu + iv is holomorphic in £2. If w is another function of class C?
with Aw = 0 such that f = w4+ iw is holomorphic in {2, then

u+iv— (u+iw) =i(v—w)

is also holomorphic in (2. Since {2 is connected (because it is simply connected)
and (v —w) has constant real part, it follows from Example 2.20 that v —w is
constant. |

The following result can be established in a similar manner.

Proposition 2.70

Let v: £2— C be a function of class C? in a simply connected open set £2 C C.
If Av =0, then there exists a function u: £2 — C of class C? with Au =0 such
that v and v are harmonic conjugate functions. Moreover, the function w is
unique up to a constant.

Proof

Since {2 is simply connected and v is of class C?, given p € {2, one can define
a function u: £2 — C by the line integral

ov ov
5 0y or

where v: [a,b] — £2 is any path between p and (z,y). We can now proceed in
a similar manner to that in the proof of Proposition 2.69 to show that the
Cauchy—Riemann equations are satisfied. O

We also give some examples.
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Example 2.71

We consider the function f =wu + iv with real part u(x,y) =22 — zy — y? as in

Example 2.15. Since u is of class C? and

?u  O%u

in the simply connected open set {2 = C, by Proposition 2.69 there exists a
function v of class C? such that f =wu + 4v is holomorphic in C. By (2.31), one
can take

ou ou
S
5 Oy or
— [+ 2m)do+ o - g)dy,
.
with the path v: [0,1] — C given by (t) = (tx,ty). We then obtain

1
v(z,y) = /O [(tz + 2ty)x + (2tx — ty)y] dt

Loo, 2 2 Lo o =
= §t$ +tyx+t$y—§ty
t=0
2 2
z Y
=— 422y — —.
2+:cy 5

Example 2.72

Now we consider the function u(z,y) = 22 +y? as in Example 2.16. Since u is of
class C? and Au = 4 # 0, the function u is not the real part of any holomorphic
function in an open set 2 C C.

Example 2.73

Let us consider the function u(z,y) = ax? + by, with a,b € R. Since u is of
class C? and Au = 2a, in order that u is the real part of a holomorphic function
in some open set we must have a = 0. Moreover, it follows from Proposition 2.69
that if @ = 0, then there exists a function v of class C? in R? such that

fle+iy) =ulz,y) +iv(x,y) = by + iv(x,y)

is holomorphic in C. One can use the Cauchy-Riemann equations to deter-
mine v. Indeed, it follows from the equation du/dx = dv/dy that dv/dy =0,
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and hence v does not depend on y. Moreover,

v Ou b
or 9y
and thus v(z,y) = —bx + ¢ for some constant ¢ € R.

2.10 Solved Problems and Exercises

Problem 2.1

Verify that the function f(z) =22 — z is continuous in C.

Solution
Writing
f(z+iy) = u(z,y) + iv(z,y), (2.32)
with z,y € R, we obtain
u(z,y)=2>—y?* —x and ov(z,y) =22y —y.

Since v and v are continuous in R?, the function f is continuous in C.

Problem 2.2

Use the Cauchy—Riemann equations to show that the function f(z) =e® + z is
holomorphic in C.

Solution
One can write the function f in the form (2.32), with
u(z,y) =e"cosy+x and v(z,y)=e"siny+y.

The Cauchy—Riemann equations

ou_ v
ox Oy

ou v

and a—y——a

(2.33)

take the form

e’cosy+1=e"cosy+1 and —e”siny=—e"siny,
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and thus they are satisfied in R?. Since u and v are functions of class C! in the
open set R?, it follows from Theorem 2.23 that f is holomorphic in C.

Problem 2.3
Show that
(z”)/ =nz"! (2.34)

for every n € N and 2z € C (with the convention that 0°=1).
Solution
Let f,(z) =2z". For n=1 we have

fi(z0) = lim

Z—=20 Z — 20

which establishes (2.34). For n > 1, it follows from the identity

2" =z = (2 — 20) E zz"lk

that

Z’rL
fi(z0) = lim — = lim sz nlh =t

zZ—20 Z — 20 Z—r20

Problem 2.4

Use the definition of derivative to verify that |z| is not differentiable at z = 0.

Solution
Writing z = |z|e??, we obtain

E N —

z2—0 z |zl

Since e~% depends on 6, one cannot take the limit when z — 0, and hence f
is not differentiable at the origin.
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Problem 2.5

Find all points z € C at which the function |z| is differentiable.

Solution

We have |z + iy| = u(z,y) + iv(z,y), where
u(z,y) =+v2?2+y?> and v(zr,y)=0.

The Cauchy-Riemann equations in (2.33) are thus

z =0 and y

S N —
/$2 + y2 /$2 + y2
We note that these have no solutions (z =y =0 is not a solution, since one

cannot divide by zero). Hence, by Theorem 2.14, the function |z| has no points
of differentiability.

Problem 2.6

Find all points of differentiability of the function f(x + iy) = zy + iy.

Solution

We write the function f in the form (2.32), with u(z,y) = zy and v(x,y) =y.
The Cauchy—Riemann equations in (2.33) are thus y = 1 and x = 0. Hence, by
Theorem 2.14, the function f is not differentiable at any point of C\ {i}. Since
the set {i} is not open, in order to determine whether f is differentiable at 4
we must use the definition of derivative, that is, we have to verify whether

flatiy) = f) _ zy+iy—i
T4y —1 T+iy—1

has a limit when x + iy — 4. Since

zy+iy—i aly—1)+x+ily—1)

x+iy—i x+ily—1)
S
T+l 1)
and
_1 Sy —1
b | Bl
x+i(y—1) |z +i(y —1)|

when x + iy — i, we conclude that f is differentiable at i, with f’'(i) = 1.
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Problem 2.7

Find all constants a,b € R such that the function
f(x +iy) = ax® + 2xy + by* + i(y2 - xQ)

is holomorphic in C.

Solution

We first note that taking z = x + iy, we have 22 = 22 — % + i2zy, and thus,
—iz% = 2xy + i(y2 — 3:2).
Therefore,
f(2) = ax® +by* —iz>.

Since the function —iz? is holomorphic in C, it is sufficient to find constants
a,b € R such that the function

f(2) +i2? = ax® + by +1i0

is holomorphic in C. By Theorem 2.23, this happens if and only if the Cauchy—
Riemann equations in (2.33) are satisfied in R?, that is, if and only if

2ax=0 and 2by=0

for every z,y € R. Therefore, a =b=0.

Problem 2.8

Find whether there exists a € R such that the function
f(x +iy) = ax® + 2xy + i(gc2 —y? - 2xy)

is holomorphic in C.

Solution

By Theorem 2.23, the function f is holomorphic in C if and only if the Cauchy—
Riemann equations are satisfied in R2. In this case they take the form

200 4+2y=—-2y — 2z and 2z=-—(2z—2y),
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or equivalently
(a+Dzx=-2y and 2z=y. (2.35)

We then obtain (a+ 1)z = —4z, and thus a = —5. Hence, the equations in (2.35)
reduce to the identity 2z = y, which does not hold for every x and y. Therefore,
there exists no a € R such that the function f is holomorphic in C.

Problem 2.9

Let f =wu+ iv be a holomorphic function in C with real part
u(z,y) = 22 — 3zy — 212

Compute explicitly f(z) and f'(z).

Solution

Since f is holomorphic in C, the Cauchy-Riemann equations in (2.33) are
satisfied in R?. It follows from

ou

— =4x -3
ox . Y
and the first equation in (2.33) that
ov
— =4x — 3y.
y v y
Therefore,
3 2
v(a,y) = day — -+ C(a)
for some differentiable function C. We then obtain
0 1o}
a—Z:—3x—4y and —a—;=—4y—0’(3:),

and it follows from the second equation in (2.33) that C’(x) = 3z. Therefore,

2
C(z)= 3%+C for some ¢ € R,

and

3y?  3x?
U(m,y):élxy—%—&—T—i—c.
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Hence,

2 2
f(x+iy)(2z23xy2y2)+i<4xy312/+3;+c>

=2(2* — y* + 2izy) + 52(1‘2 —y? + 2izy) +ic
3 3
=222+ 52'22 +ic= <2+ 51)22 + 1c,

and thus f'(2) = (4+ 3i)z.

Problem 2.10

Find whether there exists a holomorphic function in C with real part 2% —y2 +y.

Solution

We note that the function u(x,y) = 2% —y* +y is of class C? in the simply con-
nected open set R2. Since Au =0, by Proposition 2.69 there exists a harmonic
conjugate function, that is, a function v such that f = wu + v is holomorphic
in C. In other words, there exists a holomorphic function in C with real part u.

Problem 2.11

Find whether there exists a holomorphic function f in C with real part z —y+1,
and if so determine such a function.

Solution

In order to show that there exists such a function f it is sufficient to observe
that u(z,u) =x —y+ 1 is of class C? in the simply connected open set R? and
that Au = 0. Indeed, by Proposition 2.69, this implies that « has a harmonic
conjugate function.

Now we determine a holomorphic function

[z +iy) = u(z,y) +iv(z,y)

with u(z,y) =z —y + 1. The Cauchy-Riemann equations must be satisfied
in R2. Tt follows from Qu/dx = 1 and the first equation in (2.33) that dv/dy = 1.
Hence,

v(z,y) =y +C(x)
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for some differentiable function C'. We then obtain

ou o,
@——1 and —%——O (l'),

and hence C'(z) = 1. Therefore, C(x) =z + ¢ for some constant ¢ € R, and
v(z,y)=y+x+ec.
We conclude that
flet+iy)=(x—y+1)+i(ly+2+c)
= (z +iy) +i(x +iy) + 1 +ic
=(14+1)z+1+ic.

Problem 2.12

Find all values of a,b € R for which the function u(z,y) = az? + xy + by? is
the real part of a holomorphic function in C, and determine explicitly all such
functions.

Solution

We write f(x+iy) = u(x,y) +iv(x,y). In order that f is holomorphic in C the
Cauchy-Riemann equations must be satisfied in R?. It follows from

0w +

— =2azx

Ox Y
and the first equation in (2.33) that

0

8_; =2ax +y.

Hence,
y?
v(z,y) =2azy + 5 + C(x)

for some differentiable function C'. We obtain
0 0
3_Z =x+2by and — a—z = —2ay — C'(z),
and thus, b= —a and C’(z) = —z. Therefore, C(z) = —2%/2 + ¢ for some con-
stant ¢ € R, and
v 22

v(x,y) = 2axy + 5 E—i—c.
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We conclude that

2 2
f(x+iy):(ax2+xy—ay2)+i<2amy+%—%+0>

= a(x2 —y? 4+ 22'3:3/) — %(m2 -2+ Qixy) +ic

= (a—%)zQ—i—ic,

with a,c € R.

Problem 2.13

Show that if f,g: 2 — C are holomorphic functions in an open set 2 C C, then

(f+9)=f+g and (f9)'=Ffg+fg.

Solution

Since f and g are holomorphic in 2, the derivatives

f(Z) — f(Zo) and g/(zo) — lim g(Z) - g(ZO)

z2—20 Z— 20 220 Z— 20

are well defined for each zy € §2. Therefore,

f(2) +9(2) = f(20) — 9(20)

(f + g)’(zo) - zli—>nzlo Z— 20
= lim () = f(=0) + lim 9(2) — g(#0)
2—20 Z—Z0 z—20 z — 2o
= f"(20) + ¢’ (20)
and
(£9)'(0) = lim ! <Z>9<z>z—_ J;izo>g<zo>
= lim (f(z) = f(20))9(20) + f(2)(9(2) — g(20))
z—2o 2 — 2

_ im B = SG0))g(z0) o S(2)(9(2) — 9(20))

z—20 Z—2p z—20 Z— 29
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i F = 1C0)

z—20 zZ—2p

f'(20)9(20) + f(20)9' (20)-

9(z0) + lim f(2)- lim 9(2) — g(z0)

z—20 zZ— 29

Problem 2.14

Show that if f and g are holomorphic functions in C with f(z9) = g(20) =0
and ¢'(z0) #0, then

i 1) _ f(z0)

=20 9(2)  ¢'(20)

Solution
We have
i 4@ _ iy f) = f(20)
=z g(2) 2=z g(2) — g(20)
— lim (f(2) = f(20))/(z = 20)
2=z (9(2) — 9(20))/ (2 — 20)
_ f'(20)
9'(20)
Problem 2.15

Compute the length of the path «: [0,1] — C given by ~(t) = e cost (see Fig-
ure 2.11).

\ |

Figure 2.11 Curve defined by the path v in Problem 2.15
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Solution

The length of a piecewise regular path v: [a,b] — C is given by (2.9). We then
have

1
L,= / |ie” cost — e sint| dt
0

1
:/ le"| - [icost — sint| dt
0

1
:/ 1dt=1.
0

Problem 2.16

Compute the integral

along the path «: [0,1] — C given by ~(t) = e'.

Solution
We have
1
[ =2de= [ G -3m)roa.
0% 0
and hence,
1
/(22 — 2) dz z/ (62“ — e_it)ie“ dt
v 0
1 .
:i/ (¥ —1)at
0
Logie . =t 3i 1
p— —_ —_ t _ — J— _
(36 z) . 36 1 3
Problem 2.17

For each n € Z, compute the integral

[{ cos(nz)dz

along the path v: [0,1] = C given by v(t) =e

it
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Solution

Let f,(z) = cos(nz). If n =0, then Fy(z) =z is a primitive of fo(z) =1, and
thus,
t=1

t=0

LE@MLMZEM@)

If n #0, then F,(z) =sin(nz)/n is a primitive of f,, and thus,

=1 1

= —sin(ny(t))

t t=1
t=0 n

t=0

/nww:mww>

_l : T _l : 0
—TLSIH(TLG ) nsm(ne)

Problem 2.18

Compute the integral fﬂ/ zdz, where v: [a,b] — C is a path looping once along
the boundary of the square defined by the condition |z| + |y| <3 (see Fig-
ure 2.12), in the positive direction.

Y

Figure 2.12 Square defined by the condition |z|+ |y| <3
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Solution

We note that the function f(z) = z is holomorphic in C, and that the boundary
of the square defined by the condition |z| + |y| < 3 is homotopic to the circle

of radius 3 centered at 0. It thus follows from Theorem 2.63 that

/zdz:/zdz,
o «

where the path a: [0,1] — C is given by a(t) = 3¢2™%. Hence,

1
/zdz:/ 3e2™ 6 rie®™ dt
o 0

1
= 18mi / et ¢
0
9 471
=3 (e 1)=0

Problem 2.19

For each n € N, show that
2
2
/ (2cost)*™ dt = 27r( n> .
0 n

Solution

Let us consider the integral

1 1 2n
I/<z+) dz,
y 7 z

where the path v: [0,27] — C is given by ~(t) = e’*. We have
1 X /21 on—k
k(,—1)\2n—
I:/;Z(k>z (z ) dz
77 k=0

n
2
_ ( ") /221@727171 dz.
k
k=0 v

/zpdz: omi if p=—1,
b 0 lprZ\{_l}v

Since

(2.36)

(2.37)
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the only nonzero term in (2.37) occurs when 2k — 2n — 1 = —1, that is, k =n,
and we obtain
2n 1 .(2n
I= 27 dz=2mi . (2.38)
n)J, n
On the other hand,
2 ) ) o 2
I= / e (e +e ™) et dt = z/ (2cost)®™ dt. (2.39)
0 0

Comparing (2.38) and (2.39), we obtain identity (2.36).

Problem 2.20

For the path «: [0,7] — C given by ~(t) = e, show that

/e—dz
v 2

< me. (2.40)

Solution

The length of v is given by

va/ |7’(t)|dt:/ lie| dt =,
0 0

and thus, by Proposition 2.42,

/e—dz §Lﬂ,sup{ — :zE’y([O,ﬂ])}
v z z
19 e o 2.41
=TS it . .
wou{ st <lo} 240
Since |y(t)] =1 and
|€’y(t)| — |ecost+isint| —_ |€costeisint| _ ecost <e

for each t € [0, 7], inequality (2.40) follows readily from (2.41).

Problem 2.21

Find all functions u: R? — R of class C! such that

flx+iy) = u(z,y) +iu(r,y) (2.42)

is a holomorphic function in C.
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Solution

By Theorem 2.23, in order that f is holomorphic in C, the Cauchy—Riemann
equations in (2.33) must be satisfied in R? with u = v, that is,

u_ou L ou_ ou
or Oy oy Oz’
In particular, we have
u__ou ou_ ou
or Oz oy Oy’
and thus,
ou Ou
" 2.4
oxr Oy 0 (2:43)

Since the open set R? is connected, it follows from (2.43) that u is constant.
Therefore, the holomorphic functions in C of the form (2.42) are the constant
functions a + ia, with a € R.

Problem 2.22

Show that if f and f are holomorphic functions in C, then f is constant in C.

Solution

Writing the function f in the form (2.32), we obtain

f(x + Zy) = U(.’E,y) + Z’U(l',y) = U(.’E,y) - Z’U(l',y)

Since f and f are holomorphic in C, in addition to the Cauchy-Riemann equa-
tions in (2.33) for the function f, the Cauchy—Riemann equations for f = u—iv
are also satisfied, that is,

%:72—: and Z—Z:% (2.44)
It follows from (2.33) and (2.44) that
Ov v ov Ov
8_y:_8_y and 97 9%
and hence,
v _0v_ (2.45)

dx oy
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Since the open set R? is connected, it follows from (2.45) that v is constant.
It then follows from Example 2.20 that f is constant.

Problem 2.23

For the function u: R? — R given by u(x,y) = e*siny:
1. find a function v such that f(z + iy) = u(z,y) + iv(z,y) is holomorphic
in C and f(0) = —;
2. compute the integral fv( f(2)/z) dz, where  is the circle of radius 4 centered
at the origin, looping three times in the negative direction.

Solution

1. In order that f is holomorphic in C, the Cauchy—Riemann equations must
be satisfied in R2, and thus,

ewsiny:% and e"”cosy:—@. (2.46)

y ox
It follows from the first equation that
v(z,y) =—e®cosy + C(x)
for some differentiable function C. Thus, it follows from the second equation
in (2.46) that e”cosy = e®cosy — C'(z), and hence, C(z) = ¢ for some
constant ¢ € R. We then obtain
f(z+iy) =e"siny +i(—e” cosy + ¢) = —ie” +ic,

and it follows from f(0) = —i that ¢ =0. Hence, f(z) = —ie*.
2. By Cauchy’s integral formula in (2.22), since Ind, (0) = —3, we obtain

/ @ dz = 2mi f(0) Ind, (0) = 273 - (—i) - (—3) = 6.

Problem 2.24

Let f =w+ v be a holomorphic function in an open set {2 C C. Show that if u
and v are of class C2, then

Au=Av=0 in £2.
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Solution

Since f is holomorphic in 2, the Cauchy—Riemann equations are satisfied in (2.
Taking derivatives in these equations with respect to = and y we obtain respec-

tively
0w 0% 0%u 0%v
0x?2  Oxdy and Oxdy Ox?’ (2:47)
and
u 0% 0%u 0%v
=270 and 2227 2.4
oyoxr  Oy? a Oy? Oyox (2.48)

On the other hand, since u and v are of class C?, we have

*u  0%u q v 0%
oxdy  Oydx an oxdy  Oydx’

Thus, combining the first equation in (2.47) with the second in (2.48), we obtain

0?u  *u
Ay = @ + 8—y2 =0.
Analogously, combining the second equation in (2.47) with the first in (2.48),
we obtain
0?v 0%
Av=—+ — =0.
VT 9a2 + oy? 0
Problem 2.25

Let f =wu+1iv be a holomorphic function in an open set {2 C C. Show that if u
and v are of class C?, then A(uv) =0 in £2.

Solution
We obtain
0?(uwv)  0*(uv)
A(uv) = 9 + R
P ouoe | e Puouon o
- Ox? Oroxr 0z  Oy? Oy oy  Oy2
:(Au)v—&—uAv—i—Qa—u@ +28u@ (2.49)

ox 8z “oydy
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On the other hand, by Problem 2.24, we have Au = Av =0 in (2. Together
with the Cauchy—Riemann equations, this implies that

Ou Qv ou v

ov ou ou Ov
2ay(ay) 2 oyay "

Problem 2.26

Let f =wu+4v be a holomorphic function in an open set {2 C C. Show that if u
and v are of class C2, then A(u? +v?) >0 in £2.

Solution

By Problem 2.24, we have Au= Av =0 in {2. Setting v = v in (2.49), we then
obtain

L) s (20) 4 (20) o0\, (o0’
2A(u +U)_UAU+(8:E> + ay +vAv + - + 3y
(Y (Y (20 (20 s
-\ oz Oy Ox oy) —
Problem 2.27

Let f be a holomorphic function in some open set {2 C C such that
|f(z) =1 <1 forze (2.50)

Show that

for any closed piecewise regular path v in (2.

Solution

It follows from (2.50) that f never vanishes in 2. Therefore, the function
g: 2 — C given by g(z) =log f(z) is well defined. It also follows from (2.50)
that the image of f does not intersect the half-line Ry C C, and thus g is
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holomorphic in {2. We then have

and g is a primitive of f’/f. Since the path = is closed, it follows from Propo-
sition 2.49 that

Problem 2.28

Show that

1 2m 2 _ .2
[ do=1

— 0 R.
27 Jy  R?—2Rrcos+r?  USTS

Solution
We have
R+re?  (R+re")(R—re )
R—rei® (R —rei®) (R —re=i9)
_ R? —r?2 4+ 2irRsinf
" R2—2rRcosf+1r2’
Therefore,
i /277 R2 _ 42 / R + 7“610 ”
2 Jo R? —27’Rcost9—|—r2 R —reif

1 R+re
<7r 0 R—r619d0>

i R+z d>,
2mi |, 2(R—2)

where the path 7: [0,27] — C is given by () = re?®. Moreover,
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1/ R+=z 1 < >

— | ————dz =

2mi ), 2(R— 2) 2mi

_ 1 /_ L/

T 2mi o2 2 4+ R-

1 2

=14 — dz.

+2 /R—z z

On the other hand, since the function f(z) =2/(R — z) is holomorphic for
|z| < R, it follows from Cauchy’s theorem (Theorem 2.55) that

2
/ dz=0,
s R—z

and hence,

1 [ R% — 2 1 2
— dd =Re( 1+ — dz | =1.
27r/0 R? —2rRcosf + r? e( +271'2'/71%—2 Z)

Problem 2.29

Verify that the function f(z) = (z+ 1)logz is continuous at z = —1.

Solution
Since f(—1) =0, in order to verify that f is continuous at z = —1, one must
show that
lim f(z)= (2.51)
z——1

We first observe that since

logz =log|z| + iarg z,

with argz € (—m, 7], we have

llog 2| = v/(log2[)2 + (arg 2)2 < /(log|2])2 + 72.



2.10 Solved Problems and Exercises 101

Hence,

[logz| <1+ =2

for |z| < e, and thus,
[£(2)] =z +1]- [log 2| <[z + 1|1+ 72 =0

when z — —1 (we note that when we let z — —1, one can always assume that
|z| < e, since |—1| < e). This shows that (2.51) holds, and the function f is
continuous at z = —1.

Problem 2.30

Find all continuous functions f: C — C such that f(z2)2 =1 for z € C.

Solution

It follows from f(z)? =1 that f(z) =1 or f(z) = —1, for each z € C. We show
that f takes only one of these values. Otherwise, there would exist z1, 20 € C
with f(z1) =1 and f(z2) = —1, but by the continuity of f there would also
exist a point z in the line segment between z; and 25 with f(2) # 1 and f(z) #
—1. But this contradicts the fact that f can only take the values 1 and —1.
Therefore, either f =1 or f=—1.

Problem 2.31

Compute the integral

00 (i (42
/ sin(t )dt.
O t

Solution

Given r, R > 0, with 7 < R, we consider the path v =~ 4+ v3 4+ 3 4+ 74, where

y1: [ R]—C s given by 71 (t) =
v2: [0,7/2] = C is given by o(t) = Re®,

y3: [r,R]—C is given by y3(t) =i(r + R —t),
v4:[0,7/2] = C s given by y4(t) = e!(7/2=1)
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A
iR
RER | V2
ir \{1
> -
T Y1 R

Figure 2.13 Pathy=v1+v+73+M

(see Figure 2.13). We also consider the function f(z) =e?*" /2. It follows from
Cauchy’s theorem (Theorem 2.55) that

o=fasfae ][]
RE] Y4
R _it? /2 it
:/ = dt+z/ el (Re)? gt
r 0
R 7i(r+th)2 ™/2 o i(m/2—1)12
+/ e—dt+z‘/ R
r t 0
R _it? w/2 ) it
:/ et dt+z’/ eH(Be™)? gy
r 0
R —it2 w/2 B
7/ et dtfi/ e’ gt (2.52)
r 0

On the other hand,
/2 ) /2 )
Z/ ei(Re”)2 dt’ < / ’ei(Re”)2 ’ dt
0 0
/2
:/ 67R2 sin(2t) dt
0

w/4
_ 2/ efRQ sin(2¢) g4
0

Now we consider the function

h(t) =sin(2t) — 4t/m.
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Since
B (t) = —4sin(2t) <0 for t € (0,m/4),
the derivative
B (t) =2cos(2t) —4/7

is strictly decreasing in [0,7/4]. Hence, since h'(0) >0 and h/(7/4) <0, there
exists a unique s € (0,7/4) such that h is increasing in [0, s] and decreasing
in [s,7/4]. Since h(0) = h(n/4) =0, we conclude that h(t) >0 for ¢ € [0,7/4].

Therefore,
/2 s w/4 5 .
Z/ ez(Re ) dt' < 2/ 67R sin(2t) dt
0 0

w/4
S 2/ e—4R2t/7r dt
0

m —R2>

when R — +o00. It then follows from (2.52) that

R _it? w/2 ) it R —it? w/2 B
oz/ﬁe (ﬁ+z/‘ dmffdri/ € ﬁfi/‘ elre™)? gy
0 rot 0
zt2 7it2 w/2 P
a/ dtfi/ e dt
0

12 /2 it
= 2i/ smi ) dt — z/ eire™) g
r 0

when R — 400, and thus,
5 Z 1 7T/2 eit
/ sin(t) g —/ e’ gt (2.53)
r 0

Since the function e’ is continuous, given ¢ > 0, there exists r» > 0 such that
|eiz2 — 1| < € for every z € C with |z| <r. Therefore,

/2 it /2 it
/ Gre ™ gy T / (e — 1)t
0 2 0

/2 )
i(re't)? 6_71-
</0 le Ldt <=,
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and it follows from (2.53) that

[o o t2
/ sin( )dt—i

1

/2 ( it)2 ™
w(re dt _
t 4 /0 ¢ 2

1 /2 s it 2 ET
i(re')* <
< /0 le 1fde <~

=2

for any sufficiently small r. Letting » — 0 and then € — 0, we conclude that

oo . 2
/ sin(t )dt: E

EXERCISES

2.1. Compute the limit, if it exists:
z
lim —;
(a) lim =
(b) lim(Imz — Rez);
z—1
(¢) lim 2°.
z—3
2.2. Verify that the functions Rez, Im z and |z| are continuous in C.

2.3. Find whether the function f(z) = z + cosz is continuous in C.
2.4. Determine the set of points z € C where the function is continuous:

(a) z|z];
o {7 e
if 2=0;

(¢) (z+1)logz.
2.5. Verify that the function f(z)= (1 —logz)logz is not continuous.
2.6. Determine the set of points z € C where the function is differentiable:
(a) Rez-Imz;
(b) Rez+Imz;
(c) 22—zl
() [2](z—1).
2.7. Determine the set of points z € C where the function is differentiable:
(a) e®cosy — ie” siny;
(b) =%y +izy;
(c) a(y—1)+iz*(y - 1).
2.8. Compute (loglogz)" and indicate its domain.
2.9. Let f be a holomorphic function in C with real part zy — z? +y% — 1
such that f(0) = —1. Find f(2) explicitly and compute the second
derivative f”(z).
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2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.
2.18.

Find the constants a,b € R for which the function u is the real part
of a holomorphic function in C:
(8) ulw,y) = az + by;
(b) ulz.y) = az? — bay:
) ulw,y) = aa? — by? + wy;
) u(z,y) = ax? + 3zy — by*;
(e) u(z,y) = ax?+ cosxcosy + by>.
For the values of a,b € R obtained in Exercise 2.10, find a holomor-
phic function f in C with real part u.
Find whether there exists a € R such that the function

f(x+iy) = ax® + 2xy+i(ac2 —y? - 2xy)

is holomorphic in C.
Find all constants a,b € R such that the function

f(z 4+ iy) = az® + 2zy + by? +Z’(y2 — xQ)

is holomorphic in C.
For each a,b,c € C, compute the integral

/(a22 + bz + c) dz,
.

where the path v: [0,1] — C is given by ~(t) =it.

Compute the integral fﬁ/ (322 4 3) dz along a path v: [a,b] — C with

v(a) =3 and y(b) =2+ .

Compute the integral:

(a) f,y 2z dz along the path ~: [0,1] — C given by ~(t) = 2¢%;

(b) fv(ez/z) dz along the path v: [0,2] — C given by ~(t) = €27,

Find a primitive of the function y + e* cosy — i(z — e*siny) in C.

Identify each statement as true or false.

(a) The function f: C — C given by f(2) = (]z|?> — 2)7 is differen-
tiable at z =0.

(b) There exists a closed regular path - such that f,y sinzdz # 0.

(c) f,y e” dz = 0 for some closed path v whose image is the boundary
of a square.

(d) There exists a holomorphic function f in C\ {0} such that
f'(z)=1/z in C\ {0}.

(e) If f is holomorphic in C and has real part 4xy + 2¢* siny, then
f(z) = —2i(e* + 22).

(f) The largest open ball centered at the origin where the function
2% + z is one-to-one has radius 1.
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(g) For the path «: [0,27] — C given by v(t) = 2¢%, we have

cos z
/ dz
y 2

< 2me.

2.19. Compute the derivative
d
— / (527: + 322) dz
ds J,
it

for each s € R, where the path «: [0,1] — C is given by v(t) = e™.
2.20. Compute the derivative
d s(z+1)
— / ¢ dz
ds ), =z

for each s € R, where the path v: [0,1] — C is given by v(t) =e
2.21. Compute the index Ind,(—1) for the path v: [0,2] — C given by

2mit

()= [1+t2-1t)]e™

(see Figure 2.14).

Figure 2.14 Path ~ in Exercise 2.21

2.22. Find all functions u: R? = R of class C! such that f=u+iu? is a
holomorphic function in C.
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2.23. Find all holomorphic functions in C whose real part is twice the
imaginary part.
2.24. For a function

f(rew) =a(r,0) +ib(r,0),
show that the Cauchy—Riemann equations are equivalent to

aail@

Oa 1 ob 1@
or rob

and o= 90

2.25. Show that the function log z is holomorphic in the open set C\ Ry .
Hint: use Exercise 2.24.

2.26. Find all points where the function is differentiable:
(a) log(z— 1);
(b) (z—1)log(z —1).

2.27. Show that

<Te

/e—dz
y 2
for the path v: [0,7] — C given by ~(¢) = e®.
2.28. For a path v: [0,1] — C satisfying |y(¢)| < 1 for every t € [0, 1], show
that

Zﬂnz"_ldz:/w(ligzz)z.

n=1

2.29. Given a function f(z +iy) = u(z,y) + iv(z,y), since

Z+Z Z2—Z
T = and y=——,
21

one can define

z2+z z—Z .
5 +1 % >:f(a:+zy). (2.54)

ﬁ%®=f(

Show that f satisfies the Cauchy—Riemann equations at (zg,yo) if
and only if

0
8—2(330 + iy, o — iyo) = 0.

2.30. For the function g in (2.54), show that if

% o _,
8z 0z

in some connected open set {2 C C, then f is constant in (2.
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2.31.

2.32.

2.33.

Show that the integral fﬁ/ f(2)f'(2)dz is purely imaginary for any
closed piecewise regular path v, and any function f of class C! in
an open set containing the image of ~.

Show that if f: C — C is a bounded continuous function, then

lim /%%dzzo and lim[yr@dz:%m’f@),

r—00 r—0
where the path «,.: [0,27] — C is given by 7,.(t) = re'.
Let f: C — C be a holomorphic function in C.
(a) For the path «: [0,27] — C given by () = z + re’’, show that

2m
|f(2)] < %/0 |f(z+re™)|dt.

(b) Show that if the function f has a maximum in the closed ball
{weC:|w—z| <r}, then it occurs at the boundary.
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Sequences and Series

This chapter gives an introduction to the study of sequences and series, both of
complex and real numbers. We note that the convergence of sequences and series
of complex numbers can always be reduced to the convergence of sequences and
series of real numbers. We also consider the uniform convergence of functions,
and we show that in the presence of uniform convergence both limits and series
commute with the integral.

3.1 Sequences

Let (2n)n = (2n)nen be a sequence of complex numbers. We first introduce the
notion of a convergent sequence.

Definition 3.1

A sequence (zy), is sald to be convergent if there exists z € C such that
|z, — 2| = 0 when n — oo. In this case, the number z is called the limit of
the sequence (z,)n, and we write

lim z, = z.
n—oo

Otherwise, the sequence (zy), is said to be divergent.
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We also introduce the notion of a Cauchy sequence.

Definition 3.2

We say that (z,,), is a Cauchy sequence if given € > 0, there exists p € N such
that

|2, — zm| <e for every m,m > p.

Now we show that the two notions are equivalent.

Proposition 3.3

A sequence (zy, ), of complex numbers is convergent if and only if it is a Cauchy
sequence.

Proof

If the sequence (z,), is convergent and has limit z, then given € > 0, there
exists p € N such that |z, — z| < € for every n > p. Therefore,

|20 — 2m| <lzn — 2| + |2m — 2| < 2¢

for every n,m > p, and (z,), is a Cauchy sequence.
Now we assume that (z,), is a Cauchy sequence. Let us write z,, = ©,, + iy,
with x,,y, € R for each n € N. Since

|Zn - Zm‘z = (In - xm)2 + (yn - ym)Qa

we obtain
|xn_xm|§|zn_zm| a'nd |yn_ym|§|zn_zm|7

and hence, the sequences (z,), and (yn), of real numbers are also Cauchy
sequences. Therefore, they are convergent (we recall that in R the Cauchy
sequences are exactly the convergent sequences). Now let

r= lim z, and y= lim y,.
n—oo n—oo
Taking z = = + iy, we obtain

‘Zn_Z‘QZ(zn_mV_"(yn_y)2—>0

when n — oo. This shows that the sequence (z,), is convergent and that its
limit is z. g
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We also show that a sequence is convergent if and only if its real and imag-

inary parts are convergent.

Proposition 3.4

If z,, = ©p, + iyn, with z,,, ¥, € R for each n € N| then (z,),, is convergent if and

only if (), and (yn), are convergent. In this case, we have

lim 2z, = lim x, +17 lim y,.
n—oo n—oo n— oo

Proof
Given z = x + 1y, we have

‘Zn - 2‘2 = (frn - 15)2 + (yn - y)Q-

Therefore, z, — z if and only if
T, — 2z and Yy, =Y.

This yields the desired property.

Example 3.5

For the sequence

_1+in
T n+1

Zn

we have

. . 1 . n
lim z, = lim +1
n— 00 n—oo\ 1+ 1 n+1

+¢ lim

3.2 Series of Complex Numbers

Now we consider series Y.~ z, of complex numbers z, € C.

(3.1)
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Definition 3.6

A series Y7 z, of complex numbers is said to be convergent if the sequence of
partial sums (Z:ln:l zn)m is convergent, in which case the limit of the sequence
is called the sum of the series. Otherwise, the series is said to be divergent.

Example 3.7
Let us consider the series Y - 2". We have
m+1

since it is the sum of the geometric progression z". If |z| < 1, then |z
|z|™*1 — 0 when m — oo, and thus,

m+1| —

when m — co. Hence, the series Y~ 2" is convergent for |z| <1, and

o
> "=
n=0

Sometimes, the following property allows to establish in a simple manner
the divergence of a series.

Proposition 3.8

If the series ZZOZO zn is convergent, then z, — 0 when n — co.

Proof
We have

m m—1

= Z Zn — Z Zn,- (3.2)
n=0 n=0

Since both 327" 2, and .7 z,, converge to Y.°° 2, when m — 00, it follows
from (3.2) that z,, — 0 when m — oco. O
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Example 3.9

By Proposition 3.8, the series > ° 2™ is divergent for |z| > 1, since in this
case

|2 =12" >1,

and thus the sequence 2™ does not converge to zero.

Now we introduce the notion of an absolutely convergent series.

Definition 3.10

A series Yz, is said to be absolutely convergent if the series of the moduli
>0 o |2l is convergent.

We show that absolutely convergent series are convergent.

Proposition 3.11

If the series Zf;o zn, is absolutely convergent, then it is also convergent, and

0o e}
)IEAEED BEN!
n=0 n=0

Proof
For p > q, we have
p q p p
DI SR oIt ) i
n=0 n=0 n=q+1 n=q+1
p q
=2l =2 Il
n=0 n=0

P q
>zl = lzal|- (3.3)
n=0 n=0

By Proposition 3.3, since the sequence Y b _ |z, is convergent it is a Cauchy se-
quence. Thus, it follows from (3.3) that >-F _ z, is also a Cauchy sequence, and
again by Proposition 3.3 it is convergent. This shows that the series ZZOZO Zn
is convergent.
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Moreover,

p
>
n=0

P
<) el
n=0

for each p € N, and hence,

P
lim E Zn
pA)OO

oo
>
n=0

n=0

p
= lim g Zn
p—ro0

n=0

p

Spli_g)loz |2n| = Z E

n=0 n=0

This completes the proof of the proposition.

Example 3.12

Let us consider the series >~ ((—1/2)™. We have

o0 o0 m
(-1/2)" =277 = lim Y 27"

1 —2-(m+D)
= lim

=2.

m— o0 1 — 2_1

T1_21

Therefore, 0 ,(—1/2)™ is absolutely convergent, and by Proposition 3.11 it

is also convergent. In fact, we have

S (127 = tim 3 (-172)"
n=0 n=0

lim

1—(-1/2™ 1
i T (~1/2)

2

=3

We also show that a series is convergent if and only if the corresponding

series of real and imaginary parts are convergent. We consider a series ZZOZO Zn

of complex numbers, and for each n > 0 we write z,, = x,, +1y,, with z,,,y, € R.
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Proposition 3.13

. o0 . . . . o0 o0
The series )" 2y is convergent if and only if the series >~ (2, and Y~ yn
are convergent. In this case, we have

Zzn:an—i—iZyn. (3.4)
n=0 n=0 n=0

Proof
We have

m m m
E znzg xn—l—ig Yn -
n=0 n=0 n=0

Therefore, by Proposition 3.4, the series > -, z, is convergent if and only if
the series > ° (x, and Y.y, are convergent. Identity (3.4) follows readily
from (3.1). O

Proposition 3.13 tells us that in order to study the convergence of series of
complex numbers it is sufficient to consider series of real numbers.

3.3 Series of Real Numbers

In this section we consider series >~ @, of real numbers z,, € R.

Example 3.14

Let us consider the series

— 1
Zn(n—i—l)'

n=1
Since
111
nn+1) n n+1’
we have

1 1
— =11
Zn(n+1) m+1

n=1
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when m — co. Therefore,
— 1
Sk
—n(n+1)
More generally, we have the following result.

Proposition 3.15

If x, = a, — apt1, where (a,), is a convergent sequence, then

Z(an — Gpy1) =ap — lim ay. (3.5)
n— 00
n=0

Proof
We have

> (an = ang1) = (ao — a1) + (a1 — a2) + -+ + (A — A1)

n=0

=ag — Am+1-

Letting m — oo yields the desired result. (|

Series such as that in (3.5) are usually called telescopic series.

Example 3.16

We show that the series

o

1
ne
n=1

is convergent for o > 1 and divergent for v < 1. For o > 1 it is sufficient to note

that
—a—i—l
s e

For o <1 it is sufficient to consider o =1 since for any o <1 and n € N, we
have

=00 1

r=1

1

>
ne —

Sl
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For o« =1 we obtain
=1 /°° dx =00
Z — =logx = 00.
—n z=1

Now we consider series of nonnegative numbers and we describe some tests
for convergence and divergence.

Proposition 3.17

The series Y.~ j @y, with , >0, is convergent if and only if the sequence of
partial sums (Z?Zl zn)m is bounded from above.

Proof

It is sufficient to note that a nondecreasing sequence is convergent if and only
if it is bounded from above. O

Proposition 3.17 has the following immediate consequence.

Proposition 3.18

Let us assume that 0 < x,, <y, for every n > 0.
1. If 3°0°  yn is convergent, then > ° , is convergent.
2. If 3°0° @y is divergent, then Y ° v, is divergent.

As a corollary of Proposition 3.18 we obtain the following result.

Proposition 3.19

If 2, y, > 0 for every n >0, and ,,/y, — @ >0 when n — oo, then > >~ z,

is convergent if and only if ZZOZO Yn i convergent.

Proof

Since &, /yn, — « >0 when n — oo, there exists p € N such that

a
—<—<2a
2 yn
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for every n > p. Hence,
2
Tn <2ay, and y,< Eaﬁn

for every n > p. The desired property now follows readily from Proposi-
tion 3.18. ]

We also illustrate how to use this convergence test.

Example 3.20

We consider the series

Since

e L

n"+2 n® n’4+2
when n — oo, it follows from Proposition 3.19 that the series in (3.6) is con-
vergent if and only if the series Y >, 1/n® is convergent. But we know from
Example 3.16 that the latter is convergent, and thus the series in (3.6) is also
convergent.

The following is another convergence test.

Proposition 3.21

For a series > " x,, with z,, > 0:
1. if there exists o < 1 such that x,11/2, < « for any sufficiently large n,
then Y °  x, is convergent;
2. if 2,41/, > 1 for any sufficiently large n, then Y~ z,, is divergent.

Proof

Under the assumption in the first property, there exists ng € N such that
Tpt1 < axy,  for n >ng.
By induction, we obtain

Tn <" Mg, for n>ng.
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Therefore,
m m
1— anz—n0+1 T
n—no _ o
anSZa Tng =~ o Tne P 7~ (3.7)
n=ng n=ng

when m — oo, and the series > 7z, is convergent.

Under the assumption in the second property, we have x,,41 > x,, > 0 for
any sufficiently large n. This implies that the sequence x,, cannot converge to

zero, and thus the series > °  z,, is divergent.

As a corollary of Proposition 3.21 we obtain the following result.

Proposition 3.22 (Ratio test)

O

For the series ZZOZO Zp, with z, >0, let us assume that z,1/z, — a when

n— 00.
1. If a <1, then ) ° ja, is convergent.
2. If a>1, then Y °  x, is divergent.

Example 3.23
We consider the series Y>> n/5". We have

n+l n n+1 5" n+l 1 1
Bl Bn T 5l B 5

when n — oo. It follows from Proposition 3.22 that the series is convergent.

Example 3.24
Now let us consider the series
>
n!’
n=1
We have
entl en entin!

—-0<1

e
(n+1)! " n! er(n+1)! n+l

when n — oo. It follows from Proposition 3.22 that the series is convergent.

The following is still another convergence test.
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Proposition 3.25

For the series > °  z,,, with z,, > 0:
1. if there exists oo < 1 such that {/z,, < «a for any sufficiently large n, then
> oo o Ty is convergent;
2. if {/z,, > 1 for infinitely many values of n, then Y ° jx,, is divergent.

Proof

Under the assumption in the first property, there exists an integer ng € N such
that x, < a™ for every n > ng. Proceeding as in (3.7), we conclude that the
series > ° (@, is convergent.

Under the assumption in the second property, we have x,, > 1 for infinitely
many values of n. Hence, the sequence z,, cannot converge to zero, and the
series Y7 @, is divergent. O

In order to formulate a corollary of Proposition 3.25, we recall that the
upper limit of a sequence (zy,), of real numbers is defined by

limsupz, = lim sup{z,, : m>n}.
n—00 n—00

Proposition 3.26 (Root test)

For the series > ° |z, with z,, > 0:
1. if limsup,,_, ., /@, <1, then > °  x, is convergent;
2. if limsup,,_, o ¢/Zn > 1, then > 7z, is divergent.

Proof

For the first property, since

B :=limsup Yz, <1,

n— oo

given € > 0 with 8+ ¢ < 1, there exists p € N such that
Yr, <B+e<1 forevery n>p.

Now we can apply the first property in Proposition 3.25 to conclude that
Yoo o Ty is convergent.

For the second property, we note that {/z, > 1 for infinitely many values
of n. Thus, we can apply the second property in Proposition 3.25 to conclude
that Y x, is divergent. O
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Example 3.27

Let us consider the series

i 3:”" (3.8)

n=1

We have

L3+n V3+n
n

= —-0<1
nn

when n — oo, since /3 4+ n — 1. Indeed,
log(3
log V3 Tn=868+1
n

and thus /3 +n — 1. It follows from Proposition 3.26 that the series in (3.8)
is convergent.

Example 3.28

We note that for a series ZZOZO T, with x,, >0, if

limsup /z, =1, (3.9)

n—oo

then the series can be convergent or divergent. For example, (3.9) holds when
z, =1/n and the series >~ ; 1/n is divergent. On the other hand, (3.9) also
holds when z, = 1/n? and the series > .., 1/n? is convergent (see Exam-
ple 3.16).

Finally, we consider series whose terms are alternately positive and negative.

Proposition 3.29 (Leibniz's test)

If z, \,0 when n — oo, then the series > ° (—1)"z, is convergent.

Proof

Let us consider the sequence

S = Z(—l)"mn.

n=1
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Since x,, \,0 when n — co, we have
Som+2 — Som = Tamt2 — Tam+1 <0

and

Som+3 — Som+41 = —Tom43 + Tamy2 > 0.

Hence, the sequences (Sap)m and (S2ma1)m are, respectively, decreasing and
increasing. Moreover,

Som+1 = S2m — Tam+1 < Sam (3.10)
for every m € N. Therefore,
51 < lim 52m+1 < lim ng < 52.
m—0o0 m—0o0

The first and third inequalities follow from the monotonicity of the sequences
(S2m)m and (S2m+1)m- Since x, \0 when n — oo, it also follows from (3.10)
that
lim ng — lim ng+1 = lim To2m+1 = 0.
m— o0 m—0o0 m— 00

Since all sublimits of the sequence (S, )., are equal, we conclude that the series
S (=1)"z, is convergent. O

n=0

3.4 Uniform Convergence

In this section we study the notion of uniform convergence. Let (f,), be a
sequence of functions f,: 2 — C in aset 2 CC.

Definition 3.30

We say that the sequence (f,), is uniformly convergent on (2 if:
1. the limit

f(z) = Tim fo(z)

exists for every z € (2;
2. given € > 0, there exists p € N such that

|[fu(2) = f(2)| <€ (3.11)

for every n > p and z € §2.



3.4 Uniform Convergence 123

Example 3.31

Now we consider the functions f,(z) = (z + n)/n. Clearly, f,(z) — 1 when
n — oo, for every z € C. On the other hand,

|fn(z) - 1‘ =|z/n|<e

for |z| < en, but not for z € C (for any n). Therefore, the convergence is not
uniform on C.

Example 3.32

Let us consider the functions f,(z) = ,_, 2*. By Example 3.7, we have

lim fo(2) = —

n— 00 1—2

for |z| < 1. We show that the convergence is uniform on
2={zeC:lz|<r}

for every r < 1. Indeed,

o0

>

k=n+1

o0 m
< E r* = lim E rk
77L—>00k

k=n+1 =n+1

’ 1

- n)|-

T,nJrl(]_ _ 7/rnfn) TnJrl
= li = —0
mgnoo 1—r 1—r

when n — oo.

The limit of a uniformly convergent sequence of continuous functions is also
a continuous function.

Theorem 3.33

Let (fn)n be a sequence of continuous functions converging uniformly on f2.
Then the limit function f is continuous in {2.
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Proof

Given € > 0, there exists p € N such that (3.11) holds for every n > p and z € (2.
Therefore,

‘f(z) - f(ZO)’ < ‘f(z) - fp(z)’ + |fp(z) - fp(Zo)’ + ‘fp(zo) - f(Zo)‘
<2e+[fp(2) = fol20)|
for every z,zp € £2. Since f, is continuous, we obtain
[7) = f(a0)| <3¢

whenever |z — zg| is sufficiently small. Since ¢ is arbitrary, we conclude that

lim f(z) = f(20)

Z—20

for every zy € §2, and the function f is continuous in f2. O

The following statement shows that in the presence of uniform convergence
the limit commutes with the integral.

Proposition 3.34

Let (fn)n be a sequence of continuous functions converging uniformly on {2 to
a function f. If : [a,b] — §2 is a piecewise regular path, then

i [ 1= [

Proof
We have
An—lszwﬁﬁ‘
< Lysup{[fn (7(t)) — fF(v(1))] : ¢ € [a,0] }
< L sup{|fu(z) — F(2)] :2€ 2} 0
when n — co. This yields the desired identity. O

Now we consider the notion of uniform convergence for a series of functions.
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Definition 3.35

We say that the series of functions Y > | f, is uniformly convergent on 2 if
the sequence of partial sums Y., f,, converges uniformly on {2 when m — oco.

The following is a test for the uniform convergence of series of functions.

Theorem 3.36 (Weierstrass' test)

Given functions f,: 2 — C for n € N, if there exist constants a,, > 0 such that
>o2 | an is convergent and

|fu(z)| <an formeN, z€,

then the series Y~ | f, is uniformly convergent on 2.

Proof

We first observe that

an(z)—an(z) < Z |fn(z)|§ Z an (3.12)

n=q+1 n=q+1

for each z € 2 and p > ¢. Since Y~ a, is convergent, it follows from (3.12)
that Y7 _, f,.(2) is a Cauchy sequence, and thus the limit

f(z) = an(z)

exists for each z € £2. Letting p — oo in (3.12), we obtain

‘f(z)—an(z) <Y an
n=1 n=q+1

Hence, given € > 0, there exists ¢ € N such that

o0 oo

< Y an< D an<e

n=m+1 n=q+1

‘f(Z) e

for every m > p. This shows that the convergence is uniform. |
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Example 3.37

Let us consider the functions f,,: 2 — C in the set 2={z € C:|z| < 1}, given
by

fu(z) = z"/n2.

We have | f,(2)| <1/n? for z € 2, and by Example 3.16 the series Y -, 1/n?
is convergent. It then follows from Theorem 3.36 that the series Y -, f,, is
uniformly convergent on f2.

We also show that in the presence of uniform convergence a series commutes
with the integral.

Proposition 3.38

If f=5"77, fn is a series of continuous functions converging uniformly on 2,
then f is continuous in 2. Moreover,

[r=5 )5

for any piecewise regular path  in (2.

Proof

We consider the sequence of continuous functions

n

Since g, converges uniformly to f on (2, it follows from Theorem 3.33 that f is
continuous in §2. Moreover, by Proposition 3.34, we have

lim [ g,= / f- (3.13)
On the other hand,
[o$
ol k=177

and thus,

lim /gn=Z:/f;~C (3.14)
n—oo ~ b1 ~

Comparing (3.13) and (3.14), we obtain the desired identity. O
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We conclude this section with a result concerning the differentiation of a
series term by term.

Proposition 3.39

Given functions f,: 2 — C of class C' in an open set {2 C C, if the series
Soo2 | fn is convergent in 2 and the series > -, f/ is uniformly convergent
on {2, then

(Z fn> = f, in
n=1 n=1

Proof

Let
f=Y fo and g=> fi.
n=1 n=1

By Proposition 3.38, the function g is continuous. Now we take z € 2 and
h € C such that the line segment between z and z + h is contained in (2.
We also consider the path 7y: [0,1] = C given by 7,(t) = z + th. Again by
Proposition 3.38, we have

L%/
Th n=1"7h

= [falz+h) = ful2)] = f(z+ h) = f(2). (3.15)

fn

lim l/ g=9(2). (3.16)

It follows from

that

o)~ [ o < T sun{lote) — ot + o) e 0.1

=sup{|g(z) — g(z +th)| : t € [0,1]}.
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Since g¢ is continuous, we obtain (3.16). It then follows from (3.15) that
1'(2) = g(2) for every z € £2. This establishes the identity in the theorem. O

3.5 Solved Problems and Exercises

Problem 3.1

Verify that the sequence z, = (1/2 —i/3)™ is convergent.

Solution
Since
1 1 1 13
771: -+ -—=—x1,
2 3 4 9 6
we have
1 4" V13"
=5 -5 = (%) —0
2 3 6

when n — co. Hence, the sequence z,, converges to 0.

Problem 3.2

Verify that if the sequence z, is convergent, then |z,| is also convergent.

Solution
Let
z= lim z,.
n— o0
We have

||zn\—|z|| <l|zn—2|—0

when n — 0o, and thus, the sequence |z,| converges to |z|.

Problem 3.3

Verify that the series Y ° | cos(1/n) is divergent.
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Solution

In order that a series Y - | z,,, with z, € C, is convergent it is necessary that
zn, — 0 when n — oo (see Proposition 3.8). In the present case, we have

zn =cos(1/n) =1 when n — oo,

and hence, the series Y | cos(1/n) is divergent.

Problem 3.4

Find whether the series > . (—1)"/n? is absolutely convergent.

Solution

We have

o0

>

n=1

(=D"

0o
Z .
PR
n
n=1

and it follows from Example 3.16 that the series > ° | 1/n? is convergent.
Alternatively, note that the function 1/z? is decreasing, and hence (see
Figure 3.1)

Y

1 2 3 4

Figure 3.1 Graph of the function 1/22
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oo @1
E / — dcc = lim — dx
a—+o0o X

1

= lim —-—
a——+oo €T

1m.@1>1<+m. (3.17)

=1 a—-+oo a

Thus, the series > oo, (—1)"/n? is absolutely convergent.

Problem 3.5

Find whether the series

i n?cos(1/n) (3.18)

4
= n +1

is convergent.

Solution

Since

n? 1

nt+1

n?cos(1/n)
nt+1

it follows from Propositions 3.11 and 3.18 together with (3.17) that the series

in (3.18) is convergent.

Problem 3.6
Show that the series
= n+3
1
7;1 44+ n3 (3.19)

is convergent.

Solution

Since

n+3 1 n*+3n> 1+3/n o
44n3 " n2  44n3  1+4/n3

when n — oo, by Proposition 3.19 the series in (3.19) is convergent if and only
if >°>° , 1/n? is convergent. It then follows from Example 3.16 or from (3.17)
that the series in (3.19) is convergent.
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Problem 3.7

Show that the series

i cos(n) (3.20)

:1n3—n+1

is absolutely convergent.

Solution

We have cos(nm) = (—1)". Since

1

: _
nd nd-—n+1

(-n™ | 1 n3
nd—n+1

when n — oo, by Proposition 3.19 the series in (3.20) is absolutely convergent
if and only if >°>7 | 1/n? is convergent. By Example 3.16, the series Y -, 1/n?
is convergent.

Alternatively, since the function 1/23 is decreasing, proceeding as in (3.17)
we obtain

oo

Zl</+w1d 1<+
— —dr = 00.
nd— J; 2

n=2

Thus, the series in (3.20) is absolutely convergent.

Problem 3.8

Find whether the series > 7 ,1/(nlogn) is convergent.

Solution

For x > 1 we have

I 1
L\ szl o
xzlogx (zlogx)?

and thus, the function 1/(zlogx) is decreasing. Therefore,

= 1 teo
E > dx
— nlogn 9 zlogz
= lim loglogx =400
a—+oo r=2

(see Figure 3.2), and the series Y 2 ,1/(nlogn) is divergent.
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\

e

1 2 3 4 5

Figure 3.2 Graph of the function 1/(zlogx)

Problem 3.9

Use the root test in Proposition 3.26 to show that the series > > (4" +1)/n"

is convergent.

Solution

We have

NS T
n

nn
when n — oo, since /4™ + 1 — 4 when n — oo. Indeed,
log(4™ +1
log /4" +1= log(4” + 1)
n

_ nlog4+log(1+1/4")
n

—-0<1

— log4

(3.21)

when n — oo, and thus /4™ + 1 — 4 when n — oco. By the root test, it follows

from (3.21) that the series > > (4™ +1)/n™ is convergent.

Problem 3.10

Verify that if z, = x,, +1y,, with z,,y, € R, is a convergent sequence, then the

sequence Ty, is also convergent.
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Solution

Since z, is convergent, by Proposition 3.4 the sequences x, and y, are also
convergent. Let

r= lim z, and y= lim y,
n— oo n—oo

be their limits. Moreover, any convergent sequence of real numbers is bounded,
and hence there exists M > 0 such that

|xn| <M and |y,| <M
for every n € N. We then obtain

|xnyn - $y| = ‘(xn - x)yn +x(yn - y)‘

<Mz, —z|+|z| |yn —y| =0

when n — oo, and thus, the sequence .y, converges to zy.

Problem 3.11

Verify that the series

i<1 - #)n (3.22)

is convergent.

Solution
Since
4o (—1)n = 3 if n is even,
5 if n is odd,
we have
4— (1)
1-— (=1) <1- §
n n

It then follows from

lim <1+f) —e® (3.23)
n
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that

2

(R ()
= (1—%)n—>e—3<1

when n — co. By the root test (see Proposition 3.26), the series in (3.22) is
convergent.

Problem 3.12

Given z,,y, € R for n € N, find whether the identity

L) o0 00
Z Tn Z Yn = Z TnYn (324)
n=1 n=1 n=1

is always satisfied.

Solution

For example, if z,, =y, = 1/n, then

00 oo 1
anyn: ZF < 400,
n=1 n=1
but
oo o) o) 1
an:Zynizfiﬁﬁ)O.
n=1 n=1 n=1 n

This shows that identity (3.24) is not always satisfied.

Problem 3.13

Find the sums of the series

= 1 — 1
Zn(n—l—?) and ;n(n—i—ii)'

n=1
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Solution
Since
11 1
nn+2) 2n 2(n+2)’
we have
Z Lt v ot 3
—~ n+2 2022 2(m+1) 2m+2) "4
when m — co. Hence,
SR
—inn+2) 4
For the second series, since
1 1 1
(n+3) 3n 3(n+3)
we have
3 DRSNS S S S ! 1
nzln( +3) 3 32 3-3 3(m+1) 3(m+2) 3(m+3)
_)11
18

when m — oco. Hence,

Problem 3.14

Knowing that

compute the sum of the series

oo

n=1
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Solution
We have
n+l=nn+1-1)+1=nn—-1)+n+1,
and hence,
n?+1 1 1 1
W =2 =1 Tl
for n > 2. Therefore,
> n?+1 > n?+1
Do 2
n=1 n=2
= 1 1 1
-2 -
f;((n_z)! T n!)
=24+e+e—1+e—2=3e—1.
Problem 3.15
Compute
i 4n+3
47)
n=1
Solution
Let us consider the sequence
S.—% 4”1:3
m=1
We have
3 1
_Sn = Sn Sn
4 4
= Am+3 < dm+3
o Z qm gm+1
m=1 m=1
n 4m+ 3 n+1
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1 1-1/4""1 4n+3
4 1-1/4 gntT

Hence,

3 7 1
°8, = — 4 =
gt
when n — oo, and thus,
. 4n+3 4(7 1> 25
Z = lim S, = -4+ =) =—
ot 4 n—o0 3\4 3 9

Problem 3.16

Find the sums of the series

Z a™cos(bn) and Z a" sin(bn) (3.25)
n=0

n=0

for each a € (—1,1).

Solution

We first note that
la" cos(bn)| < |a|® and |a”sin(bn)| < |a|™. (3.26)
Since the series Y |a|™ is convergent for a € (—1,1) (compare with Exam-

ple 3.7), it follows from (3.26) that the two series in (3.25) are also convergent.
Now we define

Sp = Z a™cos(bm) and T, = Z a™ sin(bm).
m=0

m=0
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We have

n

Sy +1iT, = Z a” [cos(bm) + isin(bm)]

m=0
n n
— a ezbm: Z(aezb)m
m=0 m=0
1 — (ae®)ntt 1
T 1 et - 1 — aet® (3.27)
when n — co. Moreover,
1 1

1—ae® (1 —acosb) —iasinb
(1 —acosb) +iasinb
(1 —acosh)? + a2sin®b

_ l—acosb+iasinb
"~ 1—2acosb+ a2

Since
Z_;)a cos(bn) :nh_{lgo Sn, and Z_;)a sin(bn) :nh_{réo T,

it follows from (3.27) that

i a" cos(bn) = _l-acosb
o " 1—2acosb+ a?

and

ia” sin(bn) = _ asinb
v 1—2acosb+a?’

Problem 3.17

Show that the series

oo

1

n®

(3.28)

n=1

is absolutely convergent for Rez > 1.
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Solution

Writing z = x + 1y, with x,y € R, we have

ac—i—iy‘ (x+iy)logn’ — logn __ n®
- - b

[n*] = ™| = e

and thus, the series in (3.28) is absolutely convergent if and only if >~ 7, 1/n”
is convergent. Proceeding as in (3.17), we obtain

/+°° 1 1
< —ds-—<—|—oo7
nﬂﬂ 1

and thus, the series in (3.28) is absolutely convergent.

Problem 3.18

Verify that the sequence of functions f,(z) = 2z""!/n3 converges uniformly on
the set 2={z€C:|z| <1}.

Solution

For |z| <1, we have

—0

<1
n3 T ps

| fu(2)

when n — oco. Hence,
1
sup{‘fn(z)‘ 1zeN} < E—H)

when n — oo, and thus the sequence f,, converges uniformly to 0 on f2.

Problem 3.19

nz

Show that the sequence of functions f,(z) =e "* converges uniformly on the

set 2={z€C:Rez>5}.

Solution

Writing z =z + iy, with 2,y € R, we have f,,(2) = e "* "% For Rez =x > b,
we obtain

|fn(z)| —e ™ < 5
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when n — co. Hence,
sup{|fn(2)]| :2€ R} <" =0

when n — oo, and thus the sequence f,, converges uniformly to 0 on f2.

Problem 3.20

Verify that for each r < 1 the sequence of functions f,,(z) =Y ,_, 2%k converges
uniformly to 1/(1 — 22) on the set 2, ={2€C: |z| <r}.

Solution

For |z] < 1, we have

n 1— Z2(n+1) 1

k
fn(z):Z(Zz) = 1_22 - 1—2’2

k=0

when n — oo. Moreover, given r < 1, for each z € (2, we have

1 oo oo
_ 2k 2k
)= 3 < 31

k=n+1 k=n-+1
< Z r?k = lim Z r2k

k=n+1 e k=n+1

r2(n+1)(1 r2(m7n)) r2(n+1)
7mlg>noc 1—1r2 T 12 -0
when n — oco. Hence,
T2(n+1)

when n — 0o, and thus the sequence f,, converges uniformly to 1/(1 — 2?) on
the set (2., for each r < 1.

Problem 3.21

Find whether the sequence of functions f,, in Problem 3.20 converges uniformly
on the set {z € C: |z| <1}.
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Solution

If |z] =1, then |22¥| = |2|?) =1, and thus the sequence f,, does not converge.
Hence, it also does not converge uniformly on the set {z € C:|z| <1}.

Problem 3.22

Show that if the series Zflo:l T, with x, >0, is convergent, then the series

i log(1+ ) (3.29)

is also convergent.

Solution

Let us consider the function f: Rf — R defined by f(z) = —log(1 +z). Since

>0

!/
=1—
Fla) =1
for x >0 and f(0) =0, we have f(x) >0 for > 0. Hence,
0<log(l4+x,) <z, (3.30)

for each n € N. Since the series Y~ x,, is convergent, it follows from Propo-
sition 3.18 and (3.30) that the series in (3.29) is also convergent.

Problem 3.23

Show that if the series Y.~ | z,, with 2z, € C\ {—1}, is absolutely convergent,
then the series Y~ | 2z, /(1 + 2,) is also absolutely convergent.

Solution

Since the series 220:1 zpn is convergent, we have z, — 0 when n — oco. In par-
ticular, there exists p € N such that

|zn| <1/2 for n>p.

Since |1+ z,| > 1 — |2,|, we then obtain

L nlo<9 <
2T | S L T S bl <o
n=p n=p n=p
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and the series >~ | 2, /(1 + z,) is absolutely convergent.

Problem 3.24

Show that if f: R — R is a differentiable function with f(0) =0 and |f'(z)| <1
for every x € R, then the series

if(%) (3.31)

n=1

is absolutely convergent for each x € R.

Solution

Since f(0) =0, we have

/(52 =1 o= s

for some point x,, between 0 and z/n?. Hence,

1(5)]< 17l

and thus, the series in (3.31) is absolutely convergent for each x € R.

4

=~ )
Tl2

X

n2

Problem 3.25
Consider the functions f,,: R — R given by
1 —TLZfL'Q
fulz)= €

for each n € N. Show that the sequence f,, converges uniformly to zero, and
that the sequence f}, converges to zero but not uniformly.

Solution

Since
1
n

for every n € N, z € R,

| fu(@)] <

the sequence f, converges uniformly to zero. On the other hand, we have

2nx

2,20
enaz

f'lll(x) -
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and hence,

lim f/(x)=0 forz€eR;

n—oo

that is, the sequence of functions f] converges to zero at every point. Nev-
ertheless, we also have |f!(+1/n)| = 2/e, and thus the sequence f/ does not
converge uniformly to zero.

Problem 3.26

Compute the derivative (37, zzn/n)l for |z| < 1.

Solution

Since 22" /n| < |z|?", the series >~ | 2*™/n is convergent for |z| < 1. Moreover,
by Problem 3.20, the series of derivatives

s 2n\ / >
z _
S(5) 2y
n
= n=1
oo
= 2222%
k=0

is uniformly convergent on the set {z € C: |z| < r}, for each r < 1. It then
follows from Proposition 3.39 and Problem 3.20 that

<z—>z<—>

_ 2k _ 2z

in each set {z € C:|z| < r}, and thus for |z| < 1.

Problem 3.27

Show that if the series 2211 Ty, with x,, > 0, is convergent, then the series

i ni\ﬁ (3.32)

is convergent for each a > 0.
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Solution
Since
0< (2 —y)* =a® — 22y + 7,
we have
2 .2

ry< 1Y

for every z,y € R. Therefore,
1 /x 1 1 1

n
w F_MWSE(“JFW)’

npb

and hence,
1 [z, 1< I 1
— <= "+ = —_ 3.33
;na\/n_2;w+2;n2a+l (3.33)

By hypothesis, the series Zzozl xy, is convergent. On the other hand, by Exam-
ple 3.16, since a > 0, the last series in (3.33) is also convergent. It then follows
from (3.33) that the series in (3.32) is convergent.

Problem 3.28

Use identity (3.23) to show that e*¥ = e%e¥ for every x,y € R.

Solution

It follows from (3.23) that

e"e¥ = lim [(1+§) (1+g> }
n—00 n n
T+ zy\"
y+_g) .
n n

= lim <1+

n—oo

On the other hand, given ¢ > 0, there exists p € N such that |zy|/n < e for
every n > p. Therefore,

e’e¥ < lim <1+x_—i—y + |x_22/>
n

n—oo n

< lim <1+7x+y+5> = emtute,
n
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and, analogously,

e’e? > lim (1 +
n— o0

vty "
n n2

r4+y—e\"
> lim <1+L> — erty—e,
n—o00 n

Hence,

e"TYTE < ePe¥ < e"TYTE,

Letting € — 0, we conclude that e*+Y = e%¢V.

EXERCISES

3.1. Verify that the sequence is convergent:
(a) 1/(n—1);
(b) (n+1)/(n—i);
(c) e /n?;
(d) sin(1/n?)cos(1/n?).
3.2. Verify that the sequence e is divergent.
3.3. Compute the limit of the sequence, if it exists:

(a) @"/(n+1);
(b) (4+in)/(n+1);
(¢) cosh(in)/n;
(d) i+t —qm,
3.4. Find whether the series is convergent or divergent:
(a) 22020 1/(n” +2);
(b) 3oty 27mn?
(€) Yonti(n+1)/3%
(d) Yooty 1/(nd/n);
(e) Sonton/Vn®+n?+1;
(f) Xoto(vn+1—/n);
(8) Yoazo 6" /nk;
(h) >0 n3"/e™;
(i) o0 n!/(n®+4m).

3.5. Verify that series Y 2 n!/6™ is divergent.
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3.6. Find whether the series is convergent or divergent:
(a) o2 (=1)"/(n? + cosn);
(b) >=0°  [cos(n + 1) — cosnl;
(c) 2=y cos(1/n)sin(1/n);
(d) 5=y cos[(n +1)/(n —1)]sin(1/n?).
3.7. Find whether the series is convergent or divergent:
(a) >non/logn;
(b) 325 1/(logn + nlogn);
(€) Xnti(n—logn)/(n+logn)?;
(d) 35,1/ lognl.

3.8. Verify that the series 300, 1/(ny/nlog®n) is convergent.
3.9. Find whether the series is absolutely convergent:

(@) >nm (=1 /n;
(b) >ooii(=i)"/n?;
(€) e (B)"HH/(n® +1).
3.10. Compute the sum of the series:
CYRD DM
(b) 3oL, 57,
(€) XnZ11/(n? +4n).
3.11. Compute the sum of the series:
(a) >oZo(an® +bn+c)/(n+ 1)k

(b) >0 y(an® +bn+c)/(n+2)L
3.12. Find a € R such that the series

n+1

> a
Zn—klx
n=1

is convergent for x = —5 and divergent for z = 5.
3.13. Verify that the series

i(“ 5—2(—1)”>”

is divergent.
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3.14.

3.15.

3.16.

3.17.

3.18.

3.19.
3.20.

3.21.

Find whether the series

2

3 (1 + 7(_1)1: — 2>n

n=1

is convergent.
Show that the series

ni:l % Sin<(_nlz)n)

is absolutely convergent for each a > —1.

Show that if the series > o, |2,]?, with z, € C, is convergent, then
>0, 23 is also convergent.

Find all complex numbers z € C for which the series

=30

is absolutely convergent.

Show that
n
lim <l—|— i) =e”.
n—o00 n

Hint: compute the modulus and the argument of (1 + z/n)™.
Use Exercise 3.18 to show that e*T% = e?e®.

Compute

. z iz\"
lim (1+—+ —
n— 00 n n
Let Y0 | fn be a series of continuous functions in a set K C RP.
(a) Show that if there exist constants a, >0 such that >~ a, is
convergent and |f,,(z)| < a,, for every n € N and z € K, then the
series Y~ fn is uniformly convergent on K.
(b) Show that if the series > ° | f, is uniformly convergent on K,
then > 7, f, is continuous in K.
(c) Show that if the functions f,, are of class C! in an open set K,
with > | f,, convergent in K and Y ., f uniformly conver-
gent in K, then

(30) -2 w
n=1 n=1
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3.22. Show that the sequence of functions is uniformly convergent:

(a) fau(z)=2%" for |z| < 1/3;
(b) fu(z)=23/(n? +2?) for |z < 1.

3.23. Find whether the sequence of functions is uniformly convergent:
(a) fu(z)=2"for |z| < 1;

(b) fn(z) =nz™ for |z| < 1/2.

3.24. Show that the series is uniformly convergent:

(a) Y07 e for Rez > 3;

(b) >0 nz" for |z| < 1/3.
3.25. Verify that (32°0, 2") = 32°7  nz""! for |2| < 1.
3.26. Compute:

/
(a) (3op2,22"T) for |2 < 1;
oo n 4

(b) (o ,2"/(n—1)) for |z| <1.

3.27. Verify that for each r <1 the series Y.~ p,z", with p, € {—1,1}
for each n € N, is uniformly convergent on the set {z € C: |z| <r}.

3.28. Find whether the identity is always satisfied:

o0 (o] 2
(a‘) Zn:l Z'?L = (Zn:l Zn) )
(b) Yooilznl = [20%1 2nl-

3.29. Let f: [1,400) = RT be a decreasing function that is integrable in
each bounded interval. Show that the series Y - | f(n) is convergent
if and only if [ f(z)dx < +o0.

3.30. Verify that if x,,y, € R for n € N, then

2 wayn <> (25 + )

n=1 n=1

whenever the two series are convergent.

3.31. Verify that if z,,y, € R for n € N, then

4 wpyn (2f +y2) < (xh + 622y2 +yn)

n=1 n=1

whenever the two series are convergent.

3.32. Use Exercises 3.30 and 3.31 to show that if x,,y, € R for n € N,

then

n=1 n=1

whenever the two series are convergent.
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Analytic Functions

In this chapter we introduce the notion of an analytic function as a func-
tion that can be represented by power series. In particular, we show that the
analytic functions are exactly the holomorphic functions. We also study the
notion of a singularity with the help of power series with positive and nega-
tive powers—the Laurent series. Finally, we show how to compute integrals
of a class of functions with singularities—the meromorphic functions—and
we describe applications to the computation of improper integrals in the real
line.

4.1 Power Series

We consider the series

o0

> enlz—a)", (4.1)
n=0
where 2,a,c, € C for each n € NU {0}, with the convention that 0° = 1. We
call it a power series centered at a.
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Definition 4.1

The number

R=1/limsup ¥/|c,]|

n—00

is called the radius of convergence of the power series in (4.1).

We note that R can also take the value +oo.

Example 4.2

The radius of convergence of the power series Y (z — i)™ /5™ is

R=1/limsup {/1/5™ =5.
n—roo

Example 4.3

The radius of convergence of the power series > > (z —1)"/n is
R=1/limsup ¥/1/n=1,
n—oo

since {¥/1/n=1/3/n— 1 when n — oco.

Sometimes it is possible to compute the radius of convergence as follows.

Proposition 4.4
We have

R= lim

n— oo

Cn+1

whenever the limit exists.

Proof

Let p be the limit on the right-hand side of (4.2), assuming that it exists. Given
€ >0, there exists p € N such that

(1/p =&)len| < lental < (1/p+€)lenl
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for every n > p. Hence,
(1/p— )" lep] < leal < (L p+)" ey,
and thus also
(1p =)' < §fleal < (1/p+ €)'y 17,
for every n > p. Letting n — oo, we obtain

1/p—e<limsup {/|cn| <1/p+e.
n—oo

Since € is arbitrary, we conclude that R = p. |

Example 4.5
The radius of convergence of the power series Y - 2"3" /(4™ +n) is

3 Aty

R=lim o g
1 4 "
_ Ly A DAY 4
3n—oo  14n/4n 3
Example 4.6
The radius of convergence of the power series Y~ 2" /n! is
1)!
R= lim (n+1) = lim (n+1) =400
n—oo n! n—oo

In order to compute R using the formula

R=1/limsup y/1/n!,

n— oo
we observe that
nl=n(n-1)---2-1>2""1 n>2

nl=nn-1)---3.-2.1>3""2 n>3,

nl=nn—-1)-k(k—1)---2-1>k" k1 n>k

Therefore,

Unl > VEn—k+1 o |



152 4. Analytic Functions

when n — oo. Since k is arbitrary, we conclude that /n! — 400 when n — co.
We finally obtain
R=1/limsup (1/ W) = lim V/n!=4oc.

n—00 n—00

Example 4.7

The radius of convergence of the power series Y | [2+ (—=1)"](z — 4)™ is

R=1/limsup {/2+ (-1)»=1.

n—o0

In this case the limit in (4.2) does not exist, and thus, one cannot use Propo-
sition 4.4 to compute the radius of convergence. Indeed,

cny1 2—(=1)" J1/3 ifniseven,
cn 2+ (=1)" 3 ifnisodd.

The following result discusses the convergence of power series. We denote
the open ball of radius r > 0 centered at a € C by

By(a)={z€C:|z—a|<r}

(see Figure 4.1), and its closure by

Figure 4.1 Open ball B,.(a)

By (a)={z€C:|z—a|] <r}.

We continue to denote by R the radius of convergence.
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Theorem 4.8

The power series in (4.1) is:
1. absolutely convergent for z € Bgr(a);
2. divergent for z € Br(a);
3. uniformly convergent on B,(a) for each r < R, that is, given r < R and
€ > 0, there exists p € N such that

oo m
Z en(z—a)* — ch(z —a)"|<e
n=0 n=0

for every m >p and z € B,(a).

Proof

Given z € By.(a), we have

o0 o0
Z|cn(z — a)”| < Z len|r™.
n=0 n=0

On the other hand, given € > 0, there exists p € N such that

\"/|c"\<%+€

for every n > p. Therefore,
Slentz—ay <3 (L 4e) (4.3)
n=p a n=p R

If r < R, then, taking ¢ sufficiently small, we have

1
(E +€)’I‘<1,

and it follows from (4.3) that the power series in (4.1) is absolutely convergent.
This establishes the first property.

For the second property, we note that given £ > 0, there exists a sequence
of natural numbers k,, /oo when n — oo such that

. 1
k"\/ |Ckn| > E — €.
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Therefore, if |z — a|] > R, then, taking ¢ sufficiently small, we have

n ]‘
ek, (2 — a)k"|1/k > (E - 6) |z —al| > 1.

This implies that the series in (4.1) is divergent.
Finally, proceeding as in the first property, if p= (1/R+¢)r < 1, then

S fenzmarl < 3 o=

n=m

for every m > p. This shows that the convergence is uniform. O

Example 4.9

Let us consider the power series Y-, 2" /n. Its radius of convergence is
R=1/limsup ¥/1/n=1.
n—oo

Therefore, the series is absolutely convergent for |z| < 1, divergent for |z| > 1,

and uniformly convergent on each ball B,.(0) with r < 1.

For points with |z| = 1 one can have convergence or divergence. For example,
for z =1 the series is divergent while for z = —1 it is convergent. We are not
going to describe any general method to study what happens at the boundary
of the domain of convergence of a power series.

Now we introduce the notion of an analytic function.

Definition 4.10

A function f: 2 — C is said to be analytic in an open set 2 C C if for each
ball B,(a) C {2 there exists a power series

o0
Z en(z—a)”
n=0

converging to f(z) for each z € B,(a).
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Example 4.11
The function f(z) =1/(z — 1) is analytic in C\ {1}. Indeed, given a € C\ {1},

one can write

1 1
z—1 z—a—(1-a)
1 1
S a—-1 1—-(z—a)/(1—a)
1 < (z—a\"
_a—lnz_:o(l—a>
N (z=a)"
"L o

whenever |(z —a)/(1 —a)| <1, that is, for |z —a| < |1 —a.

We show that analytic functions are of class C**°, and thus, in particular,
they are holomorphic.

Theorem 4.12

If the function f: 2 — C is analytic in {2, then f is of class C*° in (2 and all
its derivatives f*) are also analytic in 2, with

o0

fB =3 (nﬁi!k),cn(z —a)"F (4.4)
n==k :

for each k € N and z € B,(a) C £2. Moreover,

f®(a)
R

Cp = kENU{O}. (4.5)

Proof

We note that it is sufficient to establish (4.4) for k£ = 1. Indeed, for k > 1
identity (4.4) then follows by induction. Moreover, setting z = a in (4.4), we
obtain

|

f(k)(a) = (k fk)'ck = k!Ck,
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which establishes (4.5). Finally, since

|
limsup { Lcn =limsup {/n(n—1)---(n—k+1)|c,|
=limsup {/|cn|,
n— oo

the radius of convergence of the power series in (4.4) coincides with the radius
of convergence of the power series of f in (4.1).
Let us then establish (4.4) for kK = 1. We consider the function

g(z) = chn(z —a)" L.
n=1
For w =z + h, we have

(CECRPEED S (CELLECED A

Note that the first term of the series (for n =1) is zero. On the other hand,
one can use induction to show that

(w—a)"—(z—a)" =

h

for n > 2. Indeed, for n =2 we have

(w—a)?—(z—a)?
h

(w—2z)(w+ z—2a)
h

—2(z—a)=

—2(z—a)=h.

Moreover, assuming that (4.6) holds for a given n, we obtain

b e Coa 1)z ap
_(w=afw=a)" = (z=a)"|+ (z = a)"(w = 2) n
- . —(n+1)(z—a)
— (w _a)((w _a)n}: (Z _a)n _n(z_a)n—l)
+(w—an(z—a)" T+ (z—a)"— (n+1)(z —a)"
=(w—a)h i E(w—a)" * 1z —a)*!
k=1
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—th‘ a) DR )R L p(w—a—z4a)(z—a)" !

_ th(w _ a)(n+1)7k71(z _ a)kfl’

which establishes identity (4.6) with n replaced by n + 1. Given z,w € B,(a),
it follows from (4.6) that

‘f(w)—f(Z)

- —g(2) <Z|Cn|.’(w—a)n—(z—a)n e —ayn?

n=2 h

e’} n—1
<Y 1Bl lenl D klw —al"TF |z —af
n=2 k=1

0 n—1
<IRLY lealr™™2 >k
n=2 k=1

ad nn—1) ,_
= 0 Y e M e, (@7
n=2
Since

o -1 .
lim sup \cﬂ% =limsup {/|cy|
n—oo

n—oo

and B,.(a) C 2, we have
r < 1/limsup V/|cy|
n—oo
=1/limsup ¥/ (n—1)/2.

n—oo

Hence, by Theorem 4.8 the last series in (4.7) is convergent. Letting h — 0 we
finally obtain

flz+h) - f(2)

/ 1 _
7'(2) = Jim LT 9(2).
This yields the desired identity. O

In particular, Theorem 4.12 shows that all analytic functions are holomor-
phic. Now we show that all holomorphic functions are analytic.
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Theorem 4.13

If f: 2 — C is a holomorphic function in an open set {2 C C, then f is analytic
in £2.

Proof

Given a € 2 and r > 0 such that B,(a) C {2, we consider the restriction of
f to the ball B,.(a), which is a convex open set. We also consider the path
vs: [0,27] = C given by

7s(t) = a+ se™,

for s < r. By Theorem 2.60, for each z € Bs(a) we have

):ﬁ[h%dw, (4.8)

since Ind,,(2) = 1. On the other hand, given z € Bs(a) and w € C with
|w — a|] = s, we have

1 1
w—z w—a—(z—a)

1 1
w—a.l—(z—a)/(w—a)

z—a
_Z ,anJrl’

since |z — a| < |w — a| = s. It then follows from (4.8) and Proposition 3.38 that
(1 f(w)
= — | ——2—d —a)" 4.
f(2) 'nz::() (27”- /% (w —a)n+1 w) (z—a) (4.9)

for each z € B,(a). By Theorem 2.63, the numbers

1
Cn = 5 7f(w)n+1 dw
2mi /), (w—a)
are independent of s. Therefore, letting s — r we conclude that identity (4.9)

holds for every z € B,.(a), and thus f is analytic in (2. a

We give some examples.
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Example 4.14

Using the formula for the coefficients in (4.5), we obtain, for example:

oo

1
e* = Z 52"7 z€C;
n=0
(o ] 1 .
log(lfz):zfﬁz . el < 1
=l (4.10)
sinz = i 7(_1)n ntl e G,
Tlonrnt 0 5T
n=0
- (_1)77, 2n
cosz = Z z zeC.
' )
— (2n)!

In fact, the formulas in (4.10) for e*, sinz and cos z are the usual definitions of
these functions (even in R).

Example 4.15

Using the series for the sine function in (4.10), we obtain

. [ee] 1 n
%:ZLW (4.11)
z — (2n+1)!

for z # 0. Since analytic functions (such as the series on the right-hand side
of (4.11)) are differentiable, they are also continuous, and thus,

. osinz = (=D,
| = — 0" =1
250 2 ; 2n + 1) ’

since 0° = 1. Analogously, using the series for the cosine function in (4.10), we

obtain
s2—1 o= (-1)"
cosz _ Z (=1 42n—2
22 (2n)!
n=1
for z # 0, and hence,
cosz —1 1
im—————=——.
z—0 2’2 2

It follows from Theorems 4.12 and 4.13 that holomorphic functions are C'*°.
We also have the following corollary.
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Theorem 4.16

A function f is holomorphic in an open set {2 C C if and only if it is analytic
in 2.

Comparing (4.5) with (4.9), we obtain the following result.

Theorem 4.17 (Cauchy'’s integral formula for the derivatives)

Let f be a holomorphic function in an open set 2 C C. If B,.(z) C {2 and = is
a closed piecewise regular path in B,(z) \ {z}, then

f(k)(z)Indﬂ,(z):%/(wi(%dw, keNuU{0}. (4.12)

We give two applications of Cauchy’s integral formula for the first derivative.

Theorem 4.18 (Liouville's theorem)

If a holomorphic function f: C — C is bounded, then it is constant.

Proof

For each z € C and r > 0, we consider the path v: [0,27] — C given by ~(t) =
z+re'. Then Ind,(z) =1 and it follows from (4.12) with k=1 that

f'(z)= i/Ayf(7w>2alw

2mi )., (w—2)

Therefore, by Proposition 2.42,

<1L,Ysup{|J|c£Zi(f)2)|:t€[0,27r]}

= %sup{|f('y(t))| :te[0,2n]}. (4.13)

On the other hand, since f is bounded, there exists L > 0 such that

sup {| f(v(t))| : t € [0,27]} < L.
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It then follows from (4.13) that

|f'(z)| <£—>0

r
when r — 0o, and f’(z) =0 for every z € C. By Proposition 2.19, we conclude
that f is constant. O

Now we establish the Fundamental theorem of algebra, as a consequence of
Theorem 4.18.

Theorem 4.19 (Fundamental theorem of algebra)

Any nonconstant polynomial P(z) with coefficients in C has zeros in C.

Proof

We proceed by contradiction. If P(z) had no zeros in C, then f(z) =1/P(z)
would be a holomorphic function in C. Now we write

P(z)=2"+an 12" "+ +arz+ag
for some ag,a1,...,a,-1 € C and n € N. Letting r = |z|, we obtain
|P(2)| = |2]" = |an—12""" + -+ a1z + ag|
>r" — (|an_1|7“"_1 + -+ |ax|r + |aol)
> "= Jap—1] — -+ — |a1| —|ao|) = 400

when 7 — oo. This shows that the function f is bounded. It then follows from
Theorem 4.18 that f is constant, which yields a contradiction (because P is
not constant). Hence, P must have zeros in C. g

Finally, as an application of Theorem 4.16, we show that the uniform limit
of a sequence of holomorphic functions is still a holomorphic function.

Theorem 4.20

Let (fn)n be a sequence of holomorphic functions converging uniformly on an
open set {2 C C. Then the limit function f is holomorphic in 2.
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Proof

Given a € (2, let us take r > 0 such that B,(a) C 2. Since each function f, is
holomorphic, it follows from Theorem 2.55 that

=

for any closed piecewise regular path « in the ball B,(a). By Proposition 3.34,
we obtain

/ f=lim [ f,=0.

v o0y

Proceeding as in the proof of Theorem 2.51, one can show that in the ball
By (a) the function f has the primitive F' in (2.16); that is, f is the derivative
of a holomorphic function in B,.(a). Since holomorphic functions are analytic,

f is the derivative of an analytic function, and hence it is also analytic. Finally,
since analytic functions are holomorphic, we conclude that f is holomorphic. [J

4.2 Zeros

We show in this section that the zeros of a nonzero analytic function are iso-
lated.

Theorem 4.21

Let f: £2— C be a nonzero analytic function in a connected open set {2 C C.
Then {z € 2: f(z) =0} is a set of isolated points.

Proof
Let us assume that the set
A={ze€Q: ™ (2) =0 for me NU{0}}

is nonempty. Given z € AN §2, there exists a sequence (z,), in A converging
to z. By Theorem 4.12, the function f is C°° in 2, and thus,

FM(z) = Tim fU(z) = 0

for every m € NU {0}. This shows that z € A, that is,

ANN=A. (4.14)
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On the other hand, given a € A, let us take r > 0 such that B,.(a) C {2. Since
f is analytic, we have

> £(
f=%""1

This shows that B,.(a) C A, and hence the set A is open. Therefore, if A # (2,
then A and 2\ A are nonempty sets with

n

) (g
n!( )(z—a)"zo, z € B(a).

N=AU(2\A4),
such that
AN\A)=(AN2)\(AnA) =2
(by (4.14)) and
ANNR\A=2

(since A is open). But this is impossible, since (2 is connected. Hence, A = @.
Given a € 2 with f(a) =0, let us take r > 0 such that B,(a) C £2. Since
f is analytic, we have

f(z)=> ealz—a)", z€B.(a) (4.15)
n=0

for some constants ¢,, € C. Moreover, since A = &, there exists n € NU{0} such
that ¢, #0 in (4.15). Let m be the smallest integer with this property. Then

o0

)= enlz—a)" = (2= a)"y(z)
for z € By(a), where
g(z) = Z cn(z—a)"™m.

Since g is analytic, by Theorem 4.12 it is also continuous. Hence, since g(a) =
cm # 0, there exists s < r such that g(z) # 0 for every z € By(a). Therefore, the
function f does not vanish in Bs(a) \ {a}, and the zero a is isolated. O

Example 4.22

The set of zeros of the function f(z)=sin(z/7) is Z.
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Example 4.23

Let us show that if f,g: C — C are analytic functions and f =g in R, then
f =g in C. It is sufficient to note that the analytic function f — g has zeros
that are not isolated, and thus f —g=0 in C.

4.3 Laurent Series and Singularities

In this section we consider functions that are not necessarily holomorphic. We
first introduce the notion of an isolated singularity.

Definition 4.24

When a function f is holomorphic in B,(a) \ {a} for some r > 0, but is not
holomorphic in B,(a), the point a is called an isolated singularity of f.

We give some examples.

Example 4.25

The function f(z) =1/z has an isolated singularity at z =0.

Example 4.26

The function f(z) = (sinz)/z has an isolated singularity at z = 0. However, the
function

(2) = (sinz)/z if 2 #£0,
R B if 2 =0,

which can be represented by the power series
sinz 1 (=" 5nia - (="
== = " 4.16
p z;(znﬂ)!z ;(2n+1)!z (4.16)

for z # 0, is holomorphic. Indeed, for z =0 the last series in (4.16) takes the
value 1 (recall that z° = 1), and thus it coincides with g.
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Example 4.27

The function

has an isolated singularity at z = 3.

Example 4.28

The function f(z) =1/sin(1/z) is not defined at the points z =0 and z =
1/(km) for k € Z\ {0}. Indeed, the denominator sin(1/z) is not defined at z =
0. Moreover, for z =1/(kw), we have sin(1/z) = sin(kw) = 0, and hence the
function f is also not defined at these points. On the other hand, z; — 0 when
k — 00, and thus, z =0 is not an isolated singularity of f.

Figure 4.2 Ring {z€C:r <|z—a| < R}

Again, if a is an isolated singularity of f, then there exists r > 0 such that f
is holomorphic in B,.(a)\ {a}. In this case, and more generally for holomorphic
functions in a ring (see Figure 4.2), one can show that f is given by a power
series with positive and negative powers.

Theorem 4.29 (Laurent series)

If f is a holomorphic function in the ring

A={z€eC:r<|z—a| <R}, (4.17)
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then there exist unique constants ¢, € C for n € Z such that

f2)=) en(z—a)", z€A. (4.18)

neEZ

Before proving the theorem, we note that property (4.18) means that for
each z € A the sequence

fm(2) = Z cn(z —a)"

n=—m

converges to f(z) when m — oo, that is, we have

f(z)= lim fn(2).

V2

Figure 4.3 Paths v, and v,

Proof of Theorem 4.29
Given p1,p2 € (r, R) with p; < pa, we define paths v1,72: [0,27] — C by
() =a+pet, j=1,2

(see Figure 4.3). For each z € A such that p; < |z — a| < pa2, we consider the
function g: A — C given by

o= J @) = 1)/ (w=2) if weA\{z},
g( ) {f/(z) if w=z.



4.3 Laurent Series and Singularities 167

Since f is holomorphic, by Theorem 4.13 the function ¢ is given by a power
series in each ring B, (a) \ {z} C A\ {z}. But since g is continuous in A, it is
given by the same power series in the ball B,.(a) (since all power series are
continuous functions). By Theorem 4.12, we conclude that g is holomorphic
in A. It then follows from Theorem 2.63 that

[o=[a
Y1 72

JRCES Py CECPY

We have Ind., (2) =0 and Ind,, (z) = 1. Therefore,

) g, [ S0

W=z V2

that is,

dw —27if(z),

and we obtain

where

and

Now we observe that

and

n—1

:_Z% for |w — a| = py
— (z—aqa)

By Theorem 4.8 and Proposition 3.38, one can integrate these series term by

term to obtain

z) = ch(z —a)"
n=0
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with
cn:% 5 %dw, neNU{0},
and
fa(z) = i dp(z—a)™",
n=1
with
dn:%[h f(w)(w—a)" tdw, neN. (4.19)

Taking c¢_,, = d,, for n € NU {0}, we conclude that

f(2)=F2)+ f2(2) =D enlz — )"

nez

It remains to establish the uniqueness of the constants c¢,. Let us assume
that

=an(z—a)”, z€A (4.20)
nez

for some other constants b, € C for n € Z. It follows from (4.18) and (4.20)
that

D en—ba)(z=a)" = (bon—cn)(z—a)"™ (4.21)
n=0 n=1

Now we define a function h: C — C by

oo

h(z)= Z(C” —bp)(z—a)"

n=0

for |z —a| < R, and by

Z n)(z—a)™"

for |z —a| > r. It follows from (4.21) that h is well defined, and hence it is
holomorphic in C. Moreover, since the second series in (4.21) has no term of
order zero, we have h(z) — 0 when |z| — co. This shows that h is bounded, and
hence, it follows from Theorem 4.18 that h is constant. We thus obtain h =0,
since h(z) — 0 when |z| — oco. It then follows from (4.21) that

cp—b,=0 forn>0,
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and
b_p—c_,=0 forn>1.

This establishes the uniqueness of the constants in (4.18). |

The series in (4.18) is called a Laurent series.

Example 4.30

Let us consider the function

fe)= =

22—z 2(z-1)

which is holomorphic in C\ {0,1}. In the ring {z € C: 0 < |z| < 1}, we have

1 1 1
f(z)_zQ—z__zl—z
:_lizn: i _m (4.22)
Zn:O m=—1

while in the ring {z€C:1< |z| <oo}={2€C:|z| > 1},

- A5 5

m=—0oo

By the uniqueness of the coefficients ¢, in Theorem 4.29, these are necessarily
the Laurent series of the function f in each of the rings.

Setting r =0 in Theorem 4.29, we conclude that a holomorphic function in
the ring
{zeC:0<|z—al<r}

(such as any function with an isolated singularity at a, for some r > 0) has
a (unique) representation as a Laurent series. We use this property in the
following definition.

Definition 4.31

When a is an isolated singularity of f and the numbers ¢, for n € Z are the
coefficients of the Laurent series in (4.18), we say that:



170 4. Analytic Functions

1. a is a remowvable singularity if ¢, =0 for every n < 0;

2. a is a pole of order m € N if c_,,, # 0 and ¢,, =0 for every n < —m;

3. a is an essential singularity if ¢, # 0 for infinitely many negative values
of n.

Example 4.32

It follows from Example 4.26 that z =0 is a removable singularity of the func-
tion (sinz)/z.

Example 4.33

For the function
1

’
-z

f2)= =

z

it follows from (4.22) that z =0 is a pole of order 1. We also have

1 1 1
f(z):z(z—l) :z—ll—i—(z—l)
) I CENVIEE SN (I ER )
n=0 n=0

and thus z =1 is a pole of order 1.

More generally, one can show that if

(Z _ al)nl (Z _ ak)nk
(Z — bl)ml . (Z — bl)7"l ’

fz) = (4.23)

with k + [ different numbers a;,b; € C, and with k + [ exponents n;,m; € N,
then each point z =b; is a pole of order m; (see Example 4.37).

Example 4.34

The function f(z) = e'/# has an essential singularity at z = 0. Indeed,
V=N (= 4.24
¢ Z n! (z) (4.24)

n=0

for z# 0, and the Laurent series has infinitely many negative powers.
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Now we give criteria for an isolated singularity to be a removable singularity
or to be a pole.

Proposition 4.35

Let a be an isolated singularity of f.
1. If

lim(z —a)f(z) =0, (4.25)

z—a

then a is a removable singularity.
2. If there exists m € N such that

lim(z —a)™ f(z) #0, (4.26)

z—a

then a is a pole of order m.

Proof

We first assume that condition (4.25) holds. By (4.19), given n < 0, we have

2m/f (z—a)"dz,

where the path ~v: [0,27] — C is given by () = a + re®, for any sufficiently
small r. It then follows from Proposition 2.42 that

len] < s—; sup{|f(z)(z — a)*"71| 1z € 7([0,2#])}.
Now we observe that by (4.25), given € > 0, there exists r > 0 such that
|(z—a)f(z)] <& whenever |z —a|<r.
Hence,

len| < rssup{|(2 - a)_”_2| :z€7([0,27]) }

=er " l<e

for any sufficiently small r < 1, because n < 0. Since ¢ is arbitrary, we conclude
that ¢, =0 for n <0, and a is a removable singularity.
Now we assume that condition (4.26) holds. Then
lim (z — a)™ ! f(2) =0,

z—a
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and it follows from the former property that a is a removable singularity of the
function g(z) = (# —a)™ f(z). By Theorem 4.29, there exist unique constants
¢n € C for n € NU {0} such that

oo

9(2) =Y en(z—a)", (4.27)

n=0

for z € B,.(a) \ {a} and some r > 0. Thus,

for z € B.(a) \ {a}. On the other hand, by (4.26), we have

lim g(z) = lim (z — a)™ f(2) #0.

z—a z—a

Since power series define continuous functions, it follows from (4.27) that

co= lig}lg(z) #0,

z

and thus, a is a pole of order m. O

We also give some examples.

Example 4.36

The function
1

G+12(-2)

has isolated singularities at the points —1, 0 and 2. Since

fl)y=el* +

lim(z — 2)f(z) = lim ((z—2)61/z+ ! ) _1 #0,

z—2 z—2 (Z + 1)2 a §

it follows from Proposition 4.35 that 2 is a pole of order 1. Analogously, since
z——1 z——1 z—2

lim (z41)2f(2) = lim ((z—i— 1)2et/% + L) = —% £0,

it follows from Proposition 4.35 that —1 is a pole of order 2. Moreover, since
the function
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is holomorphic in some open ball centered at the origin, by Theorem 4.29 there
exist unique constants ¢, € C for n € NU{0} such that

%)
9(z) = Z cn2",
n=0

for z € B,(0) and some r > 0. It then follows from (4.24) that

for z € B,.(0) \ {0}, and thus, 0 is an essential singularity.

Example 4.37

Let us consider the function f defined by (4.23), where the k + [ numbers a;,
b; € C are distinct. Since

lim (= — ;)™ f(2) =

z—b;

it follows from Proposition 4.35 that z =b; is a pole of order m;.

Example 4.38
Now we assume that a is an isolated singularity of f such that
M, :==sup{|f(2)|: 2 € B;(a) \ {a}} <+o0
for some r > 0 (and thus for any sufficiently small 7). We then have
sup{|(z— a)f(z)‘ :2€ Bp(a)\ {a}} < Mr—0
when r — 0, because the function r — M, is nondecreasing. Hence,

lim(z —a)f(z)=0,

z—a

and it follows from Proposition 4.35 that a is a removable singularity.

Example 4.39

Let us assume that a is an isolated singularity of f and that the limit

w= lim f(2)

z—a
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exists. Given € > 0, there exists r > 0 such that
|f(2) —w| <e whenever |z —a| <r.

In particular,
[f(2)] < [£(2) —w|+ |w] <&+ [w]

whenever z € B, (a), and it follows from Example 4.38 that a is a removable
singularity.
Furthermore, the function

w ifz=a

) f(2) ifz€ By(a)\{a},
9(z) =

is holomorphic. Indeed, by Theorem 4.29, there exist unique constants ¢, € C
for n € NU {0} such that

f(z)= Z en(z—a)", (4.28)

for z € By(a)\ {a} and some r > 0. Since the power series on the right-hand
side of (4.28) defines an holomorphic function and

o o0
Z enl(z — a)"|zza = ;l_rg Z cn(z —a)"
n=0 n=0

= lim f(2)

=w=g(a),

we conclude that
o0
9(2)=> calz—a)"
n=0

for z € B,(a), and thus the function ¢ is holomorphic.

4.4 Residues

In order to compute in a somewhat expedited manner many integrals of non-
holomorphic functions along closed paths, we introduce the notion of the residue
at an isolated singularity.
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Definition 4.40

Let a be an isolated singularity of f. The number

Res(foo) =55 [ £

where the path ~: [0,27] — C is given by () = a + re® for any sufficiently
small r, is called the residue of f at a.

It follows from Theorem 2.63 that the residue is well defined. Moreover, it
can be computed as follows.

Proposition 4.41

If a is an isolated singularity of f, then Res(f,a) = c_1, where c_; is the
coefficient of the term of degree —1 in the Laurent series in (4.18).

Proof

In a similar manner to that in the proof of Theorem 4.8, one can show that the
Laurent series in (4.18) converges uniformly on the set

{zeC:p1<|z—a| <o},

for each pi,p2 > 0 such that p; < ps < R (see (4.17)). It then follows from
Proposition 3.38 that

Res(f,a):%/ /chz—a

T nez

2m /yz—a

neZ

where the path v: [0,27] — C is given by ¥(t) = a + pe'’, with p € (p1,p2) (we
note that by Theorem 2.63, the integrals are independent of p). For n # —1 we
have

2=~ (2m)

/(z—a)"dZZ M =0. (4.29)

n+1

z=7(0)
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Therefore,
Res(f,a) = /
c_1 riett
=— dt =
2mi /0 reit b
which yields the desired identity. (Il
Example 4.42

Let us compute the residue of the function

z z

) ==~ ohe0

at the pole z =1i. We have

@) ===

Il
7N
=
+

N
| ~
~

RSN ST S G CE e
2t 2 z—1 4 41 81 8
1 41 1

—5(3—2) +E+§(Z—l)+

Therefore, z =1 is a pole of order 1 and Res(f,i) =1/2.

More generally, we have the following result.

Proposition 4.43

If a is a pole of order m for a function f, then

Res(f, a)  lim % [z — a)m ()] ™.

2—a (m — )
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Proof
Writing
f(z) = Z Cn(z — a)”,

we obtain

(Z - a)mf(z) =C_m + C_m+1(z — a) + .- ,
and thus,

m—1

[(z=a)™ ()] ™ = (m =1y +---.
This yields the desired result. 0
Example 4.44

For the function f in Example 4.42, we have

Res(f,i) = lim[(z — ) ()]

Example 4.45

For the function f(z) = e'/#, we have already obtained the Laurent series
in (4.24). It then follows from Proposition 4.41 that Res(f,0) = 1.

4.5 Meromorphic Functions

Now we introduce the notion of a meromorphic function.

Definition 4.46

A function f is said to be meromorphic in an open set {2 C C if there exists
A C 2 such that:

1. f is holomorphic in 2\ A;

2. f has a pole at each point of A;

3. A has no limit points in (2.
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Holomorphic functions are a particular case of meromorphic functions (they
correspond to taking A = & in Definition 4.46).

Example 4.47

It follows from Example 4.33 that the function f(z) =1/(2% — 2) has only the
isolated singularities z =0 and z = 1, which are poles. Hence, f is a meromor-
phic function.

More generally, one can show that if f(z) = P(z)/Q(%) for some polynomials
P and @, then f is meromorphic.

The following result allows one to compute in a somewhat expedited manner
the integral of a meromorphic function along a closed path.

Theorem 4.48 (Residue theorem)

If f is a meromorphic function in a simply connected open set {2 C C and 7 is
a closed piecewise regular path in 2\ A, where A C {2 is the set of the poles
of f, then

L / £ =" Res(f,a)Ind, (a).

21
acA

Proof

Let us consider the set
B={a€c A:Ind,(a) #0}.

We recall that Ind,(a) =0 for any point a in the unbounded connected com-
ponent U of the complement of the curve defined by ~. Hence, B is contained
in the compact set C\ U C (2. This implies that B is finite. Otherwise, there
would exist a sequence (a, ), of distinct points in B. Being bounded, this se-
quence would have a limit point in C\ U, and thus also in (2. But then this
would be a limit point of A in {2, which does not exist, since the function f is
meromorphic.

Now let P, be the sum of the negative powers of the Laurent series of f in
the ring

R={zeC:0<|z—a|<r},
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for some sufficiently small r such that R C £2\ A. Then the function

g:f_ZPa

a€B

has a removable singularity at each point of B. Since {2 is simply connected, it
follows from Theorem 2.64 that

ofon )

Now we proceed as in (4.29), for the path ~y. Integrating P, term by term, by

> / P,. (4.30)

a€BYY

Proposition 4.41 we obtain

1 1 Res(f,a)
_ Pa [ pa— — ' T dz= s Ind .
2ri /., 2772'/7 2—q 2= Res(f,a)Indy(a)

It then follows from (4.30) that

L/f:ZRes(f,a)Indw(a)

211
a€B

— Z Res(f,a)Ind,(a),

acA

which yields the desired identity. ]

Example 4.49

Let us consider the function f(z)= z/(1 + 22), and let 7: [0,27] — C be the
path given by 7(t) =i + €. By Example 4.42, we have Res(f,i) = 1/2. Since
Ind,(¢) =1 and Ind,(—¢) =0, we then obtain

/ f =2mi[Res(f,i)Ind, (i) + Res(f,—i)Ind, (—i)] = mi.

Example 4.50

Let us consider the integral

/°° dx
o l+a?
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1

Since a primitive of 1/(1 + x?) is tan~! x, we have

* dx . ¢ dx
2:hm —
o l+z a—=oo Jo 14z
T

= aan;o (tan™"a — tan™"0) = >

Now we show how the integral can be computed using the Residue theorem.
Let us consider the path v =+, + 2 with v;: [-R,R] = C and 7,: [0,7] = C
given respectively by

m(t)=t and 7o(t) = Re”

(see Figure 4.4). For R > 1 we have Ind, (i) =1 and Ind,(—%) = 0. Therefore,
if f(z)=1/(1+ 2?), then since

]

Figure 4.4 Path v=~1 + 2

. .21 . 1 1
Reslh )= =~
we obtain
1
/f =2miRes(f,7)Ind, (i) = 2m'? =. (4.31)
i
8!

On the other hand,

sz/if(t)dl‘—k/wf:Q/ORf(t)dt—s—/wf.

1
/mf’ Svasup{m:zE'yQ([O,w])}

Since
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(see Proposition 2.42), and

’22+1|2|22|71:|z|2—1

/7
2
when R — oco. Therefore,

/vf:2/ORf(t)dt+/wf—>2/ooof(t)dt

when R — oco. It then follows from (4.31) that

/°° dv w
0 1+$2_2

for |z] > 1, we obtain

<7R

R2_1—>0

Example 4.51

Let us compute the integral

0o -
s x
dx.
0 X

Given r, R > 0 with » < R, we consider the path

Y=+ 72 + Y3+ V4,

where v;: [r,R] = C, y2: [0,7] = C, v3: [-R,—r] — C and ~4: [0,7] — C are
given by
n(t)=t, yw(t)=Re", ys(t)=t and (t)=re'""

(see Figure 4.5). By Theorem 4.48, for the function

iz

f(z) =

T2z

we have f7 f = 0. Moreover,
R _ix —r iz
L f e
y v va s 2T _R 2ix

R _ix —ix R _:
e — € Smmx
= _— = . 4_ 2
/r 2ix - /r T & (4.52)
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A
Y2
V4
R 43 -7 r w R

Figure 4.5 Pathy=v1+v2+73+M

Now we observe that by Proposition 2.42,

‘/ f‘ / ’f Re” Rze”’dt
2

/2 )
7/ —Rsint dt = / efRsmt dt
2 0 0
w/2
/ e BT qp =
0

<

1— e R/2

0
I —

when R — +oo, since sint > 2t/ for ¢t € [0,7/2] (in order to obtain this in-
equality, it is sufficient to compare the graphs of sint and 2¢/7). Moreover

since z = 0 is a removable singularity of (¢** —1)/z, we have

iz __

1z -1
‘/ ¢ dz Sm"sup{ ‘:z|<1}
Y4
for r < 1, and thus,
. iz ] 1
iy [ =t [ (St )
=0+ lim %
r—=0 [, 2iz
™  i(m—t)
—lim- [ S gt=-T.
=0 Jy 2irei(m—1) 2

Hence, letting R — +o0 and r» — 0 in (4.32), we obtain

r

sinx

dr=— lim

— lim
R—o0

r—>0/f_

xT
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Incidentally, we note that

r

0 2nn+m/2
x|
n—1 2nn+mw/4

> _— .
_z:: 27Tn+71'/2 =t

sinx
dr = +00.

T

Indeed,

sinx sinx

r

T

4.6 Solved Problems and Exercises

Problem 4.1

Compute the radius of convergence of the power series

Z(z +1i)"/5" and Z(z +1i/2)"2" /n?.

Solution

The radius of convergence of the first series is given by

1/limsup {/1/5™ =5.

n—oo

Alternatively, note that

5 gntl
when n — oo, and by Proposition 4.4 the radius of convergence is 5.
The radius of convergence of the second series is given by

1/limsup /2" /n? =1/2.
n—oo

Alternatively, note that

2n - nt! _ntl 1
n?2 (n+1)2  2n 2

when n — 0o, and by Proposition 4.4 the radius of convergence is 1/2.
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Problem 4.2

Compute the radius of convergence of the power series Y [3 — (—1)"]"2".

Solution

The radius of convergence is given by

1/limsup {/[3 — (=1)"]" = 1/limsup[3 — (-1)"] = 1/4.

n— oo n— oo

We note that the sequence

B—(=D""
[3 _ (_1)n+1]n+1

Ay =

takes the values
or oom 1
- 4n+1 - 22(n+1) - 2n+2

Qnp

for n even, and

qn B 2271 B

= 2n+1 - 2n+1

an n—1

for n odd, and hence it does not converge. Therefore, in this case, it is impossible
to find the radius of convergence by computing the limit of the sequence a,.

Problem 4.3

Find a power series with radius of convergence equal to zero.

Solution

For example, the power series Y - n™z™ has radius of convergence

1/limsup ¥/n™ =1/limsupn = 0.

n— oo n—oo

Problem 4.4

Show that the function f(z) = (z —sinz)/z has a removable singularity at
z=0.
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Solution
We have
sinz = i ﬂz%*l zeC (4.33)
(2n+1)! ’ ’
n=0
and hence, for z # 0,
z—sinz 1 23 25 1 22
T—§<Z—Z+E—E@+"') = it W3

Since the power series in (4.33) has radius of convergence +o0o, the same hap-
pens with the last series in (4.34). Moreover, by Theorem 4.12, a power series
defines a holomorphic function, and thus also a continuous function, in the
interior of its domain of convergence. Hence, in order to compute the limit of
the series 1/6 — 22/120 + - -- when z — 0 it is sufficient to take z = 0. That is,

z—sinz 1 22 1
lim >0~ 2~ =220
250 28 6 120 | "6

and it follows from Proposition 4.35 that z =0 is a removable singularity of f.

Problem 4.5

Verify that if f: 2 — C is a holomorphic function in an open set {2 C C, and
1'(20) # 0 for some point zg € £2, then the function

zZ— 20

9 = T = )

has a removable singularity at z = zg.

Solution
Since
_ 1
9= FE = Fea /G —2)
we have
lim g(z) = —— £0,
220 f'(20)

and it follows from Proposition 4.35 that z = zy is a removable singularity of g.
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Problem 4.6

For the path ~: [0,47] — C given by ~(t) = €', compute the integral

dz

/ az® 4 bsin(z*) + csin? 2
4
. z

for each a,b,c € C.

Solution

We have

8 . 4 a4 4 . 4
/az +b51n(z4)+051n Zdz:/ {az +bsm( )+C<smz> ]dz.
Y z . 24 z

Clearly, the function az* is holomorphic. Moreover, both functions sin(z%)/z*
and ((sinz)/z)* have a removable singularity at z = 0, since

sin(z?) sinz\*
lim I =1 and lim( ):1

z—0 yA z—0 z

(see Proposition 4.35). Therefore, by Cauchy’s theorem (Theorem 2.55), we

have
8 (A . 4
az® + bsin(z csin” z
/ + ( 7 )+ dz=0.
z
¥

Problem 4.7
Find the power series of the function z?sinz centered at z =7 up to the term
of order 3.
Solution
Since

e’i(27ﬂ") _ e*’i(Z*ﬂ") —elx + etz

sin(z —m) = = = —sin g,
( ) 2i 2

it follows from (4.33) that

> n+1
2n-+1
SII'IZ = — Sln E Z — T .
2n + 1)! )
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Therefore,

2?sinz = (z — w4 m)%sinz

=(z—m)?sinz + 27m(z — 7)sinz + 72 sin 2
=(z—-m)?[-(z—m)+-]
+2n(z—m)[—(z—m)+ -]

+ 72 ,(Z,W)Jr@fm

2

:—7r2(z—77)—27r(z—77)2+7r (z—m)3 4

Problem 4.8

Find and classify all isolated singularities of the function cos(1/z).

Solution

The function cos(1/z) is holomorphic in C\ {0}, and thus it has only the
isolated singularity z = 0. Since

oo

_ (_1)" 2n
COSZ—T;) (2n)' z

for z € C, we obtain

B o) (_1)n 1 2n
cos(l/z)—"z::O @n)! <;> (4.35)

for z # 0. Since the Laurent series in (4.35) has infinitely many negative powers,
z =0 is an essential singularity.

Problem 4.9

Find and classify all isolated singularities of the function f(z)=e*/sinz.

Solution

The function f has isolated singularities at the points where sin z =0, that is,
at the points z = k7w with k € Z. By Problem 2.14, for each k € Z we have
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. e . z—km
lim (z — kn)— = ek lim -
z—km sin z z—km SInz
_ Jkm s _ km
=e"" lim = e""cos(km) # 0.

z—km COS 2

Therefore, by Proposition 4.35, z =k is a pole of order 1 for each k € Z.

Problem 4.10

Find and classify all isolated singularities of the function

. z(z+1) RVE
&= =pe-n e

Solution

The function f has isolated singularities at z =1 and z =3 (since at these
points the denominator of the first fraction vanishes), and also at z =0 (since
e!/?* is not defined at this point). The isolated singularity z=1 is a pole of
order 1, since

lim(z — 1) f(z) = lim 2z +1)

1
i —_1Nel/z = =
z—1 z—1 (273)2 +il~>ni(z 1)6 2 #0’

while z =3 is a pole of order 2, since

lim(z — 3)2f(z) = lim 72(2 +1)

z—3 z—3 z—1

+ lim (2 — 3)%e}* =6 #0
z—3

(see Proposition 4.35). Moreover, since the function

B z(z+1)
95 = e )

is holomorphic in some open ball centered at the origin, by Theorem 4.29 there
exist unique constants ¢, € C for n € NU {0} such that

%)
9(z) = Z cn2",
n=0

for z € B,(0) and some r > 0. It then follows from (4.24) that

10=-% (%) + e
n=0 n=0

and thus, 0 is an essential singularity.
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Problem 4.11

For the function f(z)=2/(z? — 16), compute the residue Res(f,4).

Solution
Since
z
&=
we have
li D) = ——— L
lim (=~ )f(:) = —— = 5 #0,

and it follows from Proposition 4.35 that z =4 is a pole of order 1. Moreover,
by Proposition 4.43, we have Res(f,4) =1/2.

Problem 4.12

Compute the residue Res((sin z)/21%,0).

Solution

It follows from (4.33) that

sinz - (=D" 599
»100 Z (2n + 1)]Z

n=0

for z# 0. We note that this is the Laurent series of f. Since the residue is the
coefficient of the term of order —1 (see Proposition 4.41), we obtain

Res((sinz)/2'%,0) = (—1)*? /99! = —1/99!.

Problem 4.13

Let g and h be holomorphic functions. Show that the residue of the function

_9(2)

at a pole zg of order 1, with g(z9) #0, h(z9) =0, and h'(zp) # 0, is given by
(

9(20)
b (zo0)

Res(f, ZO) =
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Solution

Since zq is a pole of order 1, by Proposition 4.43 we have

Res(f,z0) = lim (z — 20) f(2)

. 9(2)

z=z0 (h(z) — h(20))/(z — 20)
_ 9(20)

h/(Z()) ’

Problem 4.14

Find whether the function f(z) = (z +1)/(z — 2) is analytic in some open set.

Solution

Given a € C\ {2}, we have
z+1 z+1
z2—2 z—a—(2—a)

_z—&—l. 1
T a—-2 1-(2—a)/(2—a)

24l (z—a\"
a—22<2—a>

n=0

whenever |z — a| < |2 — a|. Hence,

o (z—a)"
> a)"tl = (z—a)"
Z 2— n+1 —(a+1) Z 2 _q)ntl
n=0 n=0

a+1 3 "
T a-2 72 (2—a)”+1(27a) ’
n=1
and the last power series has radius of convergence

R=1/limsup {/[3/(2 —a)"*t'|=]2—al.
n—oo
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We note that R coincides with the distance from a to the isolated singularity 2.
This shows that in each ball B(a,r) C C\ {2} the function f can be represented
by a power series centered at a, and thus f is analytic in C\ {2}.

Problem 4.15

Find the Laurent series of the function f(z)=z/(2? — 1) in the ring

N={zeC:0<|z+1]<2}.

Solution

The function f is holomorphic in C\ {—1,1}. For z € {2, we have

z z
2-1 (z-1)(z+1)
1 z
T 241 zt1-2
z 1

T2+l 1-(z41)/2
and hence,

o0

n=0

oo

:—Zzin(z+1)”+z:%(z+1)"*l

n=0 n=0

:72%2—“(#&) + > gtz +1)

n=-—1

1 [ 1 1 .
:z+1+z<gm‘z—n><z“>

n=0

1 =1 N
:z+1722"+1(z+1) '
n=0

This is the Laurent series of f in the ring 2.
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Problem 4.16

Consider the function
z
)= —"o.
) 22 4 sin® 2
Classify the isolated singularity of f at the origin and find the terms of order
—1 and —2 of the Laurent series of f centered at z =0.

Solution
Since
lim sinz 1,
z—0 Zz
we have
2
li =lim ———
21_% 2f(2) Zli)% 22 1 gind 2 (436)
) .
=lim— =140,

2=0 14 2((sinz)/z)3

and it follows from Proposition 4.35 that z =0 is a pole of order 1. Hence, the
term of order —2 of the Laurent series is zero. The term of order —1 is 1/z,
since the coefficient is the residue Res(f,0), which in this case is given by the
limit in (4.36).

Problem 4.17

For the path «: [0,27] — C given by () = 5e®*, compute the integral
62
———dz.
L (z+2)(z-3)"°

Solution

The function

z

e
16 =5
has poles of order 1 at the points —2 and 3, with residues
. e? e 2
Res(f,~2) = lim (z+2)f(z) = ——|  =-"
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and

e e3

Res(f,3) = lim (=~ 3)/(2) = | =%
z=3

Moreover,
Ind,(—2) =Ind,(3) = 1.

It then follows from the Residue theorem (Theorem 4.48) that
/ f=2mi[Res(f,—2) + Res(f,-3)]
8!

gL 2wl et
5 5 5

Problem 4.18

Use the Residue theorem (Theorem 4.48) to compute the integrals fa f and
J f of the function

3
1=,

for the paths a, 3: [0,27] — C given by a(t) =1+ €' and B(t) = 3e~ % (see
Figure 4.6).

Figure 4.6 Paths a and
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Solution
The function f has poles of order 1 at the points 1 and —1, with residues

(z—1)(z+3) lim z+3

Res(f,1) = lim (z—1)(z+1) =P =2
and
Res(f,—1) = lim l%zﬂfﬂlif -
Since Ind, (1) =1 and Ind,(—1) =0, it follows from the Residue theorem that

/ f=2mi[Res(f,1)Inds(1) + Res(f, —1) Indo(—1)] = 4mi.

Similarly, since Indg(1) = Indg(—1) = —1, it follows again from the Residue
theorem that

/ f=—2mi[Res(f,1) + Res(f,—1)] = —2mi.
]

Problem 4.19

For the function

1
f(z):m,

compute the integral f7 f(2)dz, where +y is a path looping once along the bound-
ary of the square

Q={z+iyeC:lz|+ |y <2} (4.37)

(see Figure 4.7), in the positive direction.

Solution

The isolated singularities of f are the zeros of the polynomial (22 —5)? — 16.
We have

(2-5)°=16=0 © 22-5=4 or 2*—5=-4,

and thus, z==+3 or z = +1. Being distinct, these four points are poles of f of
order 1. Only the poles 1 and —1 are in the interior of the square @), and thus,

Ind,(1) =Ind,(-1)=-1 and Ind,(3)=1Ind,(—3)=0.
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\

Figure 4.7 Square @ (4.37)

It then follows from the Residue theorem that

/ f(2)dz =2mi[Res(f,—1)Ind,(—1) + Res(f,1) Ind,(1)]

= —2mi[Res(f,—1) + Res(f,1)]. (4.38)
Since
f(:)= :
(=3 (z+3)(z—-1)(z+1)’
we have
Res(f, ~1) = lim (= + 1)7(z) = ¢
and
Res(f,1) = lim (=~ 1)/(z) = .

Substituting in (4.38), we finally obtain

1 1
[yf(z)dz:—%rz(E - E) =0.
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Problem 4.20

Compute the integral
2m
1
| gt
o 3+2cost

Solution

We have

2 1 27 jett
37 2cost 0T - o A= d 4.39
/() 3+ 2cost /0 ieZt(3+eZt+e—zt) /;f(Z) 2, ( )

where

1 1

T i2(B+z2+1/2) i(2+32+1)

f(2)

with the path 7: [0,27] — C given by ~(¢) = €. The function f has poles at
the zeros of the polynomial 22 4+ 3z + 1, that is, at

21=(=3+V5)/2 and 2z, =(-3-V5)/2.

Since |z1] <1 and |22 > 1, we have Ind,(2z1) =1 and Ind,(z2) = 0. By the
Residue theorem, we thus obtain

2
/ f(z)dz =2mi Z Res(f,z;)Ind,(z;) = 2miRes(f, z1).
8l j=1
Since

Res(f,z1) = lim (z —2z1)f(2) = =) e
it follows from (4.39) that

27 1
1/(34+2cost)dt =27i——= = —.
| )it =i = =

Problem 4.21

Compute the integral

1+ 24

/0 T (4.40)



4.6 Solved Problems and Exercises 197

Solution

Take R > 1. We consider the path v =71 + 72, where v;: [-R,R] — C and
v2: [0,7] = C are given respectively by

()=t and 7o(t) = Re"

(see Figure 4.8). We also consider the function

A
Y2
%) 21
) )
>
—R Y1 R
) )
z3 24

Figure 4.8 Path vy=v; + >

_ 1
142

f(2)
which has the poles
a=1410)/V2,  z=(-1+49)/V2,
23:(*1*1')/\/5’ Z4:(1*i)/\/§7
all of them of order 1. Since R > 1, we have
Ind,(z1) =Ind,(22) =1 and Ind,(z3)=1Ind,(24) =0.
Moreover,

_ 1 1
el = I oG-l —m) | 4V

and
1 1—1
Res(f,z2) = li = .
o) = e =) =) av2
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It then follows from the Residue theorem that

4
/ f=2mi» Res(f,z)Ind,(z;)
y

j=1

™

=2mi[Res(f,21) + Res(f, 22)] = —= (4.41)

5
Now we use (4.41) to compute the integral in (4.40). We have

Lf:/_Zf(x)dx—k/wf:Q/oRf(x)dx—l— K

Since

1
[/zf‘ §L,Y25up{|z4_’_1:z€’y2([0,7r])}

1
:’]‘(’_Z%Sllp{|R4647_|_1 1t e [077T]}

(see Proposition 2.42), and

|R4€4it+1| Z |R4e4it’ —1:R4—1,

/
Y2
when R — +o0. Hence,

/Vf:2/0Rf(x)dx+[mf—>2/000f(x)dm

when R — 400, and thus,

we obtain

§7TRR4_

1%0

/Omf(x)dx:%Lf.

It then follows from (4.41) that

/Oooﬁdx:/ooof(x)dwzéfyf:;ﬁ.
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Problem 4.22

Compute the integral
> 1
———dx.
|,

Solution

We consider the path v =7 4+ 2 in Figure 4.8, and the function

1

f(Z):m,

which has poles of order 2 at the points 4 and —i. Indeed,

1 1
I = G IE ~ Gt
We have
Indy(i)=1 and Ind,(—i)=0,
and also
. 1 ' 2 1
Res(f.é) = <<z+z‘>2) iy ey | b

It then follows from the Residue theorem that

/fz?m’Res(f,i) = g
8

On the other hand,

[ e —)

TR
<t
Sm-1p

—0

when R — 400. Hence,

g/wf/if(w)dwfwf

:2/0Rf(x)dx+[mf—>2/oooﬁdm
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when R — 400, and thus,

Problem 4.23

Compute the integral

oo
/ cosx2 d.
o 1+
Solution

Take R > 1. Again we consider the path v =71 + 7 in Figure 4.8. We also
consider the function

622

f(z) = 1+ 22
which has poles of order 1 at the points ¢ and —i. Since R > 1, we have

Ind,(:)=1 and Ind,(—¢)=0.

Moreover,
N e . e” 1
Res(f,i) =lim(z —i) 37 = im == =55
It then follows from the Residue theorem that
/f = 2miRes(f,i) = —. (4.42)
e
.

On the other hand,

/vf—/if(m)dx—i—/wf. (4.43)
/ORf(x)dx/ORl_e;;xde,

/_ORf(x)dx: —/Rof(—x)dx

R R e~

Since

and



4.6 Solved Problems and Exercises 201

it follows from (4.43) that
R iz —ix
e’ +e
f= / ———5—dr+ / f
/7 o 1+a? o

R
COST
= 2/ —d.23+/ I (4.44)
o 1+ z? V2

Moreover,

eiz
[ 7= e[

—Imz
:szup{m :zE'yg([O,ﬂ'])}.

:zE’yg([O,W])}

Since e~ ™2 <1 for Imz > 0, and
|22 +1] > |22 —1=2)* -1,

we obtain

TR
V2

Letting R — +o00, it follows from (4.44) and (4.45) that

* cosx
=2 ——dx.
/Yf /0 1122

By (4.42), we finally obtain

Problem 4.24

For each a € (0,1), compute the integral

+o0o ax
/ ¢ —dx
Lo 1H4e€*
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Solution

Take R > 0. We consider the path v =1 + v2 + 3 + 74, where

y1: [-R,R] = C is given by 7 (t) =t,

v2:[0,27] = C s given by y2(t) = R+ it,

v3: [-R,R] — C is given by v3(t) = —t + 27,
v4: [0,27] = C s given by y4(t) = R+1i(27 — t)

(see Figure 4.9). We also consider the function

V4

- [
|

—-R Y1 R

Figure 4.9 Path y=v+v%+73+ 7

eaz

f(Z):@’

which has poles at the points (2n + 1)mi for n € Z. We note that

1 if n=0,
Ind, ((2n+ 1)) =
0 ifn#0.
Moreover,
eaz
R SN .
es(f,im) Zi)r?ﬂ(z im) T+ o
. Z—im
=€% lim
z—im 1 —|— e*
=" lim — = —e™,

z—im e*
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It then follows from the Residue theorem that
/ f=2miRes(f,in) = —2mie"™. (4.46)
~
On the other hand,
R at
/ f:/ eitdt
Y1 -R I+e
and
/ fm /R ea(—t+i2m) ”
s _R 1 + e—t+i2ﬂ'
) R e—at ] R oot
= —627”“/ —dt= —627”“/ — dt. (4.47)
_R1+€7t _R1+€t

We also have

e
<L,s
IR

ea(R—i—it)
1+ efi+it

:2672([0,277])}

= 27 sup {

:te[O,Qﬂ}
R

2me®

—0
“ell -1

when R — 400, and analogously,

e®
<L.,s
IR

< ettt
—eR -1

:z674([0,27r])}

—0

when R — +o00. It then follows from (4.46) and (4.47) that
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when R — 4o00. We finally obtain

+oo eat 271'2’6“”
t dt == 2mia
oo 1+e 1—e
_ 211 - T
ema —e=mia  sin(ma)’
Problem 4.25
For each a > 0, show that
* logzx T
——dr=—1 . 4.48
/0 22 + a? . 2a 08 ( )

Solution

Take r, R > 0 such that r < a < R. We consider the path v =1 + 72 +v3 + 74,
where

m:[r,R—C is given by v (t) =1,

v2: [0,71] = C is given by 2(t) = Re't,
v3: [-R,—r] = C is given by y3(¢) =t,

v4: [0,7] = C is given by y4(t) = re'(7=9)

(see Figure 4.5). We also consider the function

log z
&=

which has poles of order 1 at ai and —ai. Since

Ind,(ai)=1 and Indy(—ai)=0,

as well as
log 2z
R N . oy
es(f ) = i (=~ ai) () = Jim, 20
_log(ai) 1 T
= 20 2ai\ 8T )

it follows from the Residue theorem that

/f(z)dz:Qm'Res(f,ai):z(loga—i—ig). (4.49)
N a
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On the other hand,

log R+ it
(Reit)2 + a2
logR+m
R2 _ g2

:te[o,w]}

/ f‘<L’Y28up{‘
Y2

<7R —0

when R — 400. Moreover,

I
/f‘gwww
Y4

a2 — 12

when r — 0. Taking limits when R — +o00 and r — 0, it follows from (4.49)
that

T T
—<loga+z—)=/ f+/ f+/ f+/ f
a 2 v -
R
logx logx /
= dx
o0
1
[ e,
Lo Tt a
For x < 0 we have logx =log|z| + im, and thus,
™ K *° log|z| o [° 1
E(loga—i—za):/_Oox2+a2dx+z7r/_oomdx

> logx o (° 1

Taking the real part, we finally obtain identity (4.48).

Problem 4.26

Verify that if f: {2 — C is a nonvanishing holomorphic function, then the func-
tion g(z) =1/f(2) is holomorphic in (2.

Solution

We need to show that ¢ has derivatives at all points of {2. We first note that
9(2) —g(z0) _1/f(z) = 1/f(20)
zZ— 20 zZ— 20
__ f2) = f(2)
(z = 20) f(2) f(20)
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Moreover, since the function f is continuous (because it is holomorphic), we

have

T T )

Finally, since

f(z0) = lim J2) = f(Zo),
zZ—20 zZ— 20
we obtain
i 9 —9(0) _ o flz0) — £(2)
z— 20 Z— 20 z2=20 (Z - ZO)f(Z)f(ZO)
R (€0 b (C NSRS S
z—20 Z— 20 zZ—20 f(Z)f(ZO)
_ f'(20)
f(20)*

Therefore, the function g is holomorphic in 2 and ¢’ = —f'/f?.

Problem 4.27

Show that if f: C — C is an analytic function and |f(™(0)| < 2" for every
n € NU {0}, then |f(2)| < e?*! for z € C.

Solution

Since f is analytic in C, by Theorem 4.12 (see (4.4) and (4.5)), we have

Fm(0)

n!

f(z)=> cnz", withe, = : (4.51)
n=0

for each z € C. Moreover, since

(n) on
|Cn| < w < —,
n! n!
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it follows from (4.51) that

Problem 4.28

Show that if the function f is holomorphic in an open set 2 C C, then the
function

9(z) = f(2)

is holomorphic in the open set 2/ ={Z: z € 2}.

Solution
Writing z =z + iy and f = u + iv, we obtain
gz +iy) = f(z —iy)

u(@, —y) — (e, ~y)

u(z,y) +iv(z,y),

where

u(z,y) =u(z,—y) and o(z,y) = —v(z, —y).
Since f is holomorphic in 2, the functions u and v, and thus also the functions
u and v are of class C1. Their partial derivatives are given by
), =T,y
or - ox y—Y)s ay - 8y y—Y)s
and
v Ov ov  Ov
On the other hand, it follows from the Cauchy—Riemann equations (for f) that
ou v ou  Ov

- = 4.52
or 0Oy and dy ox (4.52)
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in (2'. Since (2’ is an open set, and the functions % and T are of class C?, it
follows from Theorem 2.23 and (4.52) that the function ¢ is holomorphic in £2’.

Problem 4.29

Let f be a holomorphic function in an open set 2 C C, with f'(2) # 0 at some
point 2z € £2. Show that for the path «: [0,27] — C given by y(t) = 2o + re®,
we have

271 1
F'(z0) / 7 — )

for any sufficiently small r > 0.

Solution
By Problem 4.5, the function

Z— 20

9 = T = )

has a removable singularity at z = zg, and

I o) = 3t

Hence, the function z — 1/(f(2) — f(20)) has a pole of order 1 at z = 2z, with
residue 1/ f/(2p). It then follows from the Residue theorem that

£0.

1 2mi
dz =2mi———Ind,(2) = T

1
/7 f(2) = f(20) f'(z0) f'(20)

for any sufficiently small r > 0.

Problem 4.30

Compute the radius of convergence of the power series

and verify that
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Solution

By Proposition 4.4, the radius of convergence is given by

T Gt D o Dl on+l

nioo | pl22n " (4 1)12200 0 | T n5o oo

In particular, in view of Theorem 4.16, the function f is holomorphic in C.
Since power series can be differentiated term by term in the interior of their
domain of convergence (see Theorem 4.12), we obtain

, e —1)* pz2n—1
f (Z):Z ((n')>2 " 92n—1

n=1

and

22n—1 ’

,, (=)™ n(2n—1)22nD
n=1

for z € C. Therefore,

2f"(2) + f'(2) + 2f(2)

= (=1 n(2n—1)z2!
(nh)2 92n—1

(]

1

3
Il

n ,2n+1

(_1)n ann—l i(_l) >
(

(n!)2 " T92n-1 + nl)2  22n

+
M8

=0

Il
—

()" n@a-D+n ()" 1N 4
. < (nI)Q 2277.—1 + ((’I’L— 1)])2 22n—2>

3
Il

M

—1)nt 2n? 1
(-1) < n + )Zin —0.

1((n—1)!)2 © p292n—1 ' 92n-2

n

Problem 4.31

Find a holomorphic function in C whose set of zeros is {2n:n € Z} \ {0}.

Solution

Let us consider the function

_Jsin(mz/2)/z if 2 #£0,
Jie)= {w/z if 2=0.
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It follows from (4.33) that

sin(rz/2) 1= (=) (72 et
z __Z(Zn—kl)!(?)

Zn:O

for z # 0, with radius of convergence +o0o. Hence, the last series defines a
holomorphic function g in C. Since g(0) = 7/2, we conclude that f =g, and
thus f is holomorphic in C.

Now we solve the equation

61'71'2/2 _ e*iwz/2

si 2)=— =
in(rz/2) 57 ,
that is, €'%/2 = ¢="#/2_which is equivalent to e'™*
with z,y € R, we obtain

= 1. Writing z = x + 1y,

6171’2 — 677Ty61ﬂ—m — 17

and hence y =0 and =z = 2k with k € Z. The solutions of the equation
sin(mz/2) =0 are thus z = 2k with k € Z, and the zeros of f are z = 2k with
ke Z\ {0}, since f(0) =7/2#0 and f(z) =sin(rz/2)/z for z #0.

Problem 4.32

Show that if a holomorphic function f: C — C vanishes at all points of the
form 7+ 4ir with r € Q, then f=0.

Solution

By Theorem 4.21, the zeros of a nonzero holomorphic function are isolated.
Since the set {r +ir:r € Q} has points that are not isolated (in fact, it has no
isolated points), we conclude that f =0 in C.

Problem 4.33

Show that if f: C — C is a holomorphic function satisfying
()] < log(1+ |2]) (4.53)

for every z € C, then f is constant.
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Solution

Given z € C, let v: [0,27] — C be the path defined by ~(t) = z + re®. Since
Ind,(z) =1, it follows from Cauchy’s integral formula for the first derivative
(see Theorem 4.17) that

Therefore,

[t

RIS TG0
< 5Ly p{|7<t)_z|2.t€[0,2 ]}. (4.54)

On the other hand, by (4.53), we have
|f(v(1)] <log (1+ |z +re’|) <log (1+[z|+7).
Since L. =277 and
V(1) = 2" = [rett|* =12,
it then follows from (4.54) that

’f’(z)‘ < log(1+ |z| +7) 0

r

when r — 4o00. Hence, f'(z) =0 for every z € C, and thus f is constant.

Problem 4.34

Show that if a holomorphic function f in C has the periods 1 and 4, then it is
constant.

Solution

Since f has the periods 1 and 4, it is sufficient to know its values in the compact
set

K={a+ib:a,be[0,1]}.
Indeed,
f((@+n)+i(b+m)) = f(a+ib)
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for every a,b € [0,1] and n,m € Z. In particular,

sup{|f(z)| : € C} =sup{|f(z)|: 2 € K}. (4.55)

On the other hand, since f is holomorphic, the function z — | f(z)| is continu-
ous, and thus its supremum in K is finite. It then follows from (4.55) that f is
bounded, and we conclude from Liouville’s theorem (Theorem 4.18) that the
function f is constant.

Problem 4.35

Let f: £2— C be a meromorphic function in an open set 2 C C, and let
v: [a,b] = 2 be a closed piecewise regular path without intersections, loop-
ing once in the positive direction, such that f has neither zeros nor poles in

~([a,b]). Show that
/
RNV
2mi )y f

where Z and P are respectively the number of zeros and the number of poles
of f in the interior of 7y, counted with their multiplicities.

Solution

If z =2y is a zero of f of multiplicity n, then

f(2) = (z = 20)"9(2),

where ¢ is a holomorphic function in some open ball centered at zy such that
9(z0) #0. On the other hand, if z = zy is a pole of f of order n, then

f(2)=9(2)/(z = 20)",

where g is a holomorphic function in some open ball centered at zy. In the first

case, we have

and thus,

= + . (4.56)
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In the second case, we have

1y - 9Bz = 20)" —n(z = 20)""1g(2)
f (Z) - (Z _ Zo)2n
g(z)  ng(2)

(z—20)" (2 —z)" T’

and thus,

e g
E e Ok (4.57)

We conclude that f/f is a meromorphic function whose poles are exactly the

zeros and the poles of f. It then follows from the Residue theorem that

A?Qﬂ

where p; and ¢; are respectively the zeros and the poles of f in the interior

z’ 7 P’ 7
ZRes<f,pj) +ZRes(f,qj>1, (4.58)
Jj=1 j=1

of 7, counted with their multiplicities, and where Z’ and P’ are respectively
the number of zeros and the number of poles of f, also in the interior of 7,
but now counted without their multiplicities. If p; has multiplicity n;, then it
follows from (4.56) that

7o) =)
Res| =,p; | = Res ,p; | =n;.
(f j z—p; P J

Moreover, if ¢; has multiplicity m;, then it follows from (4.57) that

7o) =re(-gn)
Res| —,q; | =Res| ————,¢q; | = —m;.
(f j g Y J

We also have

z' P’
an:Z and ij:P.
j=1 J=1

It then follows from (4.58) that

r SR
/ I :2m'<znj - ij) =2mi(Z — P).
v f =1 j=1



214 4. Analytic Functions

Problem 4.36

Let f and g be holomorphic functions in a simply connected open set {2 C C.
Show that if

[£(2)] > |9(2) = f(2)] (4.59)

for every z € y([a,b]), where ~: [a,b] — 2 is a closed piecewise regular path
without intersections, then f and g have the same number of zeros in the
interior of 7, counted with their multiplicities.

Solution

It follows from (4.59) that f and g do not vanish on the set y([a,b]). Hence,
this set contains neither poles nor zeros of the function

_9(2)
P& =70y
It also follows from (4.59) that
9(2)
rEptia

for z € y([a,b]), and thus,
|[F(y(t)) = 1| <1 for t€ [a,b].

Hence, the closed piecewise regular path F o+ is contained in the disk of radius 1
centered at 1. In particular, 0 is not in its interior. Therefore,

1
/ —dw=0.
Fo’yw

On the other hand, it follows from Problem 4.35 that

1 PR (y(t F’
0:/ —dw:/ Fo) >)w’(t)dt:/ Cly.—z-p
Fovy w a F(’Y(t)) y F(Z)
where Z and P are respectively the number of zeros and the number of poles

of F in the interior of 7, counted with their multiplicities. These are respectively
the zeros of g and f, also counted with their multiplicities.

Problem 4.37

Find the number of roots of the equation 2> + 3z + 1 =0 in the interior of the
circle |z| =2, counted with their multiplicities.
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Solution

Let f(z) =3z and g(z) = 2% 4+ 32 + 1. We have
|9(2) = ()| < |’ + 1 < [32] = [ f(2)]

for |z| = 1. Since f has a single zero in the interior of |z| =1, it follows from
Problem 4.36 that g also has a single zero in the interior of |z| = 1. On the
other hand, if f(z) = 23, then

l9(2) = f(2)| =132+ 1| <3Jz]| +1=T< 8=z

for |z| = 2. Since f has three zeros in the interior of |z| = 2, counted with their
multiplicities, it follows from Problem 4.36 that g also has three zeros in the
interior of |z| =2, again counted with their multiplicities. Two of them are in
the ring 1 < |z| < 2, since there are no zeros with |z| = 1.

EXERCISES

4.1. Write the function f as a power series centered at zero, indicating
the radius of convergence:
(a) fz)=2/(1+2%);
(b) £() = (+1)/(z — 1)
(¢) f(z)=sinzcosz.
4.2. Write the function f as a power series, indicating the radius of con-
vergence:
(a) f(z)=1/z at a=3;
(b) f(z)=2/[(z=1)(z=3)] at a =2;
(c) f(z)=2%at a=1.
4.3. Compute the radius of convergence of the power series:
(8) Y2, 2"/ (n?)"
(b) S22, nans
(€) Xntoz™" /1227 (n)?].
4.4. Compute the radius of convergence of the power series of the func-
tion:
(a) 2%2/(2®2 4+ 22+ 1) centered at z =3 +i;
(b) 1/(cosz+ 1) centered at z = 1.
4.5. Compute explicitly the function

o0

DB (=12 for |2 < 1/4.

n=1
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4.6.
4.7.

4.8.
4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

Find a power series with radius of convergence V2.
Verify that the power series

o0 oo
Z cpz"  and Z (n2 + 1)cnz”+1
n=0

n=0

have the same radius of convergence.

Write the function (sin z)/(z —m) as a power series centered at z = .
For the function z/sinz, find the Laurent series centered at z =0
up to the term of order 4.

Find the term of order 4 of the power series of the function

cos zlog(1+ 2)
1-=2

centered at z =0.
Let u: R? — R be the function u(z,y) =e Ycosz +y(z — 1).
(a) Find v such that f(z + iy) = u(x,y) + iv(x,y) is holomorphic
in C and satisfies f(0)=1.
(b) Compute [ f(2)/(z —i)*dz along the path v: [0,47] — C given
by y(t) = 2¢™.
Find and classify all isolated singularities of the function f, and
compute the radius of convergence of its power series centered at
the point a:
(a) f(z)=1/(z"+1), a=1;
(b) f(z)=22/(z" —2-2), a=0;
(c) f(2)=e*/(2—2), a=0.
Classify the isolated singularity at the origin for the function:
(a) (e*+1)/(e* —1);
(b) zsin(1/z);
(c) cos(1/z) —1/cosz;
(d) (sinz)/22.
For the function
(o) = sinz — 25—|— 23/6
z
compute lim,_ f(z) and verify that the origin is a removable sin-
gularity.
Find the limit of the function when z — 0:
(a) log(1 - 2)/2
(b) (e —1)/z
(0) (¢¥ — e %)z

)
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4.16.

4.17.

4.18.

4.19.
4.20.

4.21.

4.22.

4.23.

Find and classify all isolated singularities of the function:
(a) ik + cos LY.
(z—2)2(z+1) 2z )’
1
b
(b) 22 -1

AN V] CE)
(c) e +e .

Consider the function f(z)=z/(e* —1)2.
(a) Find and classify all isolated singularities of f.

+ zel/(43),

(b) Compute the integral of f along the circle |z| =2 looping once
in the positive direction.

Consider the function f(z) = z/(2% + sin®2).

(a) Classify the isolated singularity z =0 of f.

(b) Find the terms of order —1 and —2 of the Laurent series of f at
z=0.

Compute the residue Res(e*/2%,0).

Find the Laurent series of the function:

(a) (cosz)/z for |z| > 0O;

(b) z/(2%2—1) for 0 < |z + 1| < 2;

(¢) (sinz)/z2 +1/(3 — 22) for 0 < |z| < 3 and for |z| > 3.

Compute the integral:

(a) inodz, with : [0,27] — C given by ~(t) = 4¢*;

(b) / m dz, with 7: [0,27] — C given by (t) = 6e’*;

(c) / sin 2 dz, with v: [0,27] — C given by 7(t) = 3e™;
23
~

h .
(d) / 51211 i dz, with ~: [0,27] — C given by ~(t) = 2¢".
22 —
~

zt

For the path 7: [0,47] — C given by (t) = e'*, compute the integral

dz

/a23+b22+02—|—d
¥

23

for each a,b,c,d € C.

Let u: R? — R be the function u(z,y) = e siny.

(a) Find v: R? — R such that f = u + iv is holomorphic in C and
satisfies f(0) = —i.

(b) Find explicitly the function f.
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(c) Compute the integral
/ Lz).dz
42T
along the path ~: [0,67] — C given by ~(t) = 2e~%.
4.24. Let u: R? = R be the function u(z,y) =e Ycosz +y(z — 1).
(a) Find v: R? — R such that f=wu+ iv is holomorphic in C and
satisfies f(0)=1.
(b) Find explicitly the function f.
(¢) Compute the integral
/ N
- (z—1)2
along the path «: [0,47] — C given by v(t) = 3e.
4.25. Identify each statement as true or false.
(a) If f is a holomorphic function in C and | f(z)| <1 for every z € C,
then f is a polynomial.
(b) There exists an analytic function in some open set {2 C C that
is not holomorphic in 2.
(c) The derivative of > 7 ¢, (2 —a)™ has the same radius of con-
vergence as this power series.
(d) All zeros of an analytic function are isolated.
(e) Two holomorphic functions f,g: C — C are equal if f(z) = g(2)
for every z € R.
(f) The function z/(e* — 1) +e'/*=%) has no essential singularities.
(g) The function e¢"’” has a pole.
(h) The residue of the function z/(e* — 1) +e'/*=%) at z=101is 0.
(i) The function z/sinz can be written as a power series in the ring
0< |zl <.
(j) The boundary of the set {z € C: > 77 (1+1/z)" is convergent }
is a straight line.
4.26. If v is a closed path in C\ {1,2} without intersections, find all pos-
sible values for the integral
1
L (z—1)(z—2) dz.
4.27. Let f be a function with a pole of order m at zy, and let g be a

function with a pole of order n at zy. Show that fg has a pole of
order m+n at z = zg.
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4.28. Use the Residue theorem to compute the integral:

2m 1
dt;
(&) /0 3+cost

2m
2t
(b)/ _cos(2t)
o ©—4cost

4.29. Given a > 0, use identity (4.50) to show that

/°° 1 d TI'

——dr=—.
0 2+ a? 2a
4.30. For a > 1, show that:

1 [?" cost
(a) / _CO% g1 2.
0

2 a + cost a2 —1
1 2 : 2t

(b) —/ P dt—a— a2 1.
27 Jo a-+cost

4.31. Compute the integral:

o0 1
(a) / g
o0 1
) [ i
o0 1
© [ e

o0 xQ
(d) / T3 o1 %

o 1
(e) /O m dx for a > 0.

4.32. For a,b> 0, show that

/OO 1 do — ™
o (224+a?)(@2+b2) " 2ab(a+b)

4.33. Compute the integral:

* sinz
W [ T

cosx
b ——d
(b) /0 (122
4.34. For a > 0, show that

< logxw T
————dr=—(1 —-1).
/o (@ +a2)? " 4a? (loga —1)
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4.35.

4.36.

4.37.

4.38.

4.39.

Show that if f,g: {2 — C are holomorphic functions in a connected
open set 2 C C, and fg =0, then at least one of the functions f and
g is zero in 2.

Show that if f =wu 4 v is a holomorphic function in an open set
2 CC, then Au=Av=0in f2.

Hint: show that u and v are of class C?.

Show that if f is a holomorphic function in C, and there exists a
polynomial p such that

|£(2)] <log(1+ |p(2)])

for every z € C, then f is constant.
Show that if f is a holomorphic function in C, and there exist ¢ > 0
and n € N such that

|f(z)| < c(l + \z|”)

for every z € C, then f is a polynomial of degree at most n.
Show that if f is a holomorphic function in some open set containing
the closed ball B,.(zg), and

M =sup {|f(2)| : 2 € B,(20) } < +o0,
then

M
!f(")(zo)’ < nr—n for n e N.
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Differential Equations



]
Ordinary Differential Equations

In this chapter we introduce the basic notions of the theory of ordinary differ-
ential equations. Besides establishing the existence and uniqueness of solutions,
we study the class of linear differential equations with constant coefficients, as
well as their perturbations. In particular, we show how to solve linear differ-
ential equations by computing exponentials of matrices, and we establish the
Variation of parameters formula for the perturbations of these equations.

5.1 Basic Notions
In this chapter we consider ordinary differential equations of the form

¥ = f(t,z), (5.1)

where f: D — R" is a continuous function in some open set D C R x R™. We
first introduce the notion of a solution.

Definition 5.1

We say that a function z: (a,b) — R™ of class C! is a solution of the differential
equation (5.1) if (see Figure 5.1):
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Springer Undergraduate Mathematics Series,
DOI 10.1007/978-1-4471-4008-5_5, (© Springer-Verlag London 2012


http://dx.doi.org/10.1007/978-1-4471-4008-5_5

224 5. Ordinary Differential Equations

to t
Figure 5.1 A solution of the equation o’ = f(¢,x)

(a) (t,z(t)) € D for each t € (a,b);
(b) /(t) = f(t,x(t)) for each t € (a,b).

Example 5.2

Let us consider the equation =’ =z in R. We note that x(¢) is a solution if and
only if

(e*t:c(t))/ =—e ta(t) e ta(t)
=e '(—z(t)+2'(t)) =0.

In order to simplify the notation, it is common to avoid writing explicitly the
dependence of the solutions on ¢, thus writing instead

(e_ta:)/ =—etr ety
=e '(—z+a')=0.
This shows that there exists k € R such that e~‘z(t) =k, that is,
z(t)=ke', teR. (5.2)

The solutions of the equation z’ =z are thus the functions in (5.2).

Example 5.3
We consider again the equation 2’ = x in R, and we describe an alternative
method to find its solutions. Namely, if 2(¢) is a nonvanishing solution, then

/

T l
:17:1 & (loglz|) =1,
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and hence,
log|z(t)| =t+c
for some constant ¢ € R. We thus obtain
‘x(t)| =e%", teR.

Since x(t) does not vanish and is continuous (since it is of class C1), it is always
positive or always negative. Hence,

z(t)=ke', teR

with k& # 0, since by varying ¢ € R the function e¢ takes all values of RT. By
direct substitution in the equation, one can verify that the zero function is also
a solution.

Example 5.4

Let us consider the equation (z,y) = (y,—z) in R?, which can be written in
the form

If (x(t),y(t)) is a solution, then

(z® + y2)/ =2z’ + 2yy’

=2zy + 2y(—x) =0.
Therefore, there exists » > 0 such that
z(t)? +y(t)* =12
Writing
x(t)=rcosf(t) and y(t)=rsind(t),
since =’ =y, we obtain
2/ (t) = —rsinf(t)-0'(t) =rsinf(t)

(we note that since x is differentiable, the function § must also be differentiable).
Therefore, 6'(t) = —1 and there exists ¢ € R such that 0(t) = —t 4+ ¢. We thus
obtain

(z(t),y(t)) = (rcos(—t +¢),rsin(-t +¢)), teR.
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Example 5.5

Now we consider the equation
' =2tx+t (5.3)

in R. One can write
x’ _y
2z +1
for the solutions x not taking the value —1/2. It follows from (5.4) that there
exists ¢ € R such that

(5.4)

1 1,
51og]2x(t) +1] = s+

that is,
|22(t) + 1| = e +2.

Proceeding as in Example 5.3, we then obtain

1
x(t)=—§+ket2, teR

with k& € R. These are the solutions of equation (5.3).

5.2 Existence and Uniqueness of Solutions

In the same way as it is important to know that a polynomial has roots even if
one is not able to compute them, it is also important to know when a differential
equation has solutions even if one is not able to compute them.

We have the following result concerning the existence and uniqueness of
solutions of a differential equation.

Theorem 5.6

If f: D — R" is a function of class C'! in some open set D C R x R”, then for
each (to,xo) € D there exists a unique solution of the equation a’ = f(¢,z) with
z(to) = zo in some open interval containing ¢g.

More generally, one can consider functions f that are not necessarily of
class C*.
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Definition 5.7

A function f: D — R™ is said to be locally Lipschitz in (the variable) x if, for
each compact set K C D, there exists L > 0 such that

Hf(t,$) - f(tay)H < LHx - yH

for every (t,x), (t,y) € K.

Using the Mean value theorem, one can show that all functions of class C!
are locally Lipschitz in z. But there are many other functions that are locally
Lipschitz.

Example 5.8
For each x,y € R, we have
||z = lyl| < |z —yl.

This shows that the function f(¢,z) = |z| is locally Lipschitz in z, with L =1.

We also give an example of a function that is not locally Lipschitz.

Example 5.9
For the function f: R? — R given by f(t,7) = \/|x|, we have

1
z,t) — f(t,0)] = /|z| = ——|z — 0|.
| f(x,t) = f(t,0)] || \/HI |

Since 1/4/|z| = 400 when z — 0, the function f is not locally Lipschitz in x
in any open set D C R x R intersecting the line R x {0}.

The following result includes Theorem 5.6 as a particular case.

Theorem 5.10 (Picard-Lindelof theorem)

If the function f: D — R" is continuous and locally Lipschitz in x in some open
set D C R x R™, then for each (to,20) € D there exists a unique solution of the
equation o’ = f(t,z) with z(tg) = 2o in some open interval containing ¢.
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Proof

We first observe that there exists a solution of the problem

{Z‘/ = f(t7x)v

z(to) = o 55)

if and only if there exists a continuous function z: (a,b) — R™ in some open
interval containing tg such that

z(t) =x0 + / f(s,x(s)) ds (5.6)

to
for every t € (a,b). Indeed, it follows from (5.5) that

t t

x(t) = x(to) + / f(s,x(s)) ds =xg + / f(s,x(s)) ds,
to to
and the function x is continuous (since it is of class C''). On the other hand,
if  is a continuous function satisfying (5.6), then the function s+ f(s,z(s))
is also continuous, since it is a composition of continuous functions. Therefore,
t j;tg f(s,2(s))ds is of class C'!. Taking derivatives with respect to t in (5.6),
we then obtain

'(t) = f(t,=(t))
for every ¢t € (a,b). It also follows from (5.6) that z(ty) = 0.

Take a < to < b and > 0 such that [a,b] X Bg(z) C D, where
Bg(xo) = {y € R™: ly — xo| < B}

Now let X be the family of continuous functions z: (a,b) — R™ such that
|lz(t) — zol] < B for every t € (a,b). We also consider the transformation 7'
defined by

(Tz)(t) = 2o +/t f(s,z(s)) ds

for each x € X. We note that Tz is a continuous function, and that

/U@w@»w

to

Wﬂmm—xﬂs‘

<t —tolM < (b—a)M,
where

M =sup{||f(t,z)||: t € [a,b], z € Ba(zo)}.
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Since the function (¢,z) — || f(¢,)|| is continuous and the set [a, b] x Bg(x¢) is
compact, it follows from Weierstrass’ theorem that M is finite. Moreover, for
b — a sufficiently small, we have (b —a)M < S, and thus T'(X) C X.

We also note that

|(@x)(t) - (Tw)(t ”<H/ s.2(s)) — F(s.9(s))] ds

\ [ 2t =t

<(b—a)Lllz =yl

for every z,y € X, where

[ = ylloc = sup{|[x(t) —y(#)|| : t € (a,b)}.
Therefore,
[Tz = Tyl < (b—a)L]|z = yllo- (5.7)
Now we consider the sequence
Ty =TTy =T"x9, mEeEN,

where g € X denotes the constant function equal to xy. The sequence is well
defined, since T'(X) C X. We note that if necessary one can rechoose a and b
so that ¢=(b—a)L < 1. Then

p—1 [ee)
2p = Zqlloo €D Nlwjsr = @jlloe < D _||T9(T) = Thao]|
Jj=q Jj=q

q
< ZCJHTOUO = Zofloo = —HTﬂfo — @ol|oo

for every p > q. For each t € (a,b), we have

4
pr(t) - xq(t)” < flzp — 2glloo < E”Tﬂ:o = 20|l 00> (5.8)

and thus, (xm,(t))m is a Cauchy sequence in R™. Therefore, the sequence is
convergent and one can define

z(t)= lim 2,(t).

m—r o0
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Letting p — oo in (5.8), we obtain
)~ a(8)] < S0 — 20 o (59)
Now we show that z € X and that it satisfies (5.6). We have
Jo(e) = o]l = Jim o 6) = 0] < 5.
Moreover, for each ¢,s € (a,b),
|z(t) —z(s)|| < ||2(t) — 2m@)]| + |2m () = 2m(s)]| + ||zm(s) — 2(s)||. (5.10)
Given € > 0, it follows from (5.9) that there exists p € N such that
me(t) — a:(t)H <e
for every t € (a,b) and m > p. Taking m = p, it follows from (5.10) that
Hx(t)—x(s)“ <25+||xp(t)—xp(s)”. (5.11)
On the other hand, since z, is continuous, there exists 6 > 0 such that
|lzp(t) —zp(s)|| <& whenever |t —s| <§,
and thus, it follows from (5.11) that
|lz(t) — 2(s)|| <3c  whenever [t — s| <.

This shows that x is continuous, and hence x € X . In order to show that x also
satisfies (5.6), we note that

z(t)= lim z,(t) = mlgnOO (:ro + /t f(s,2m(s)) ds), (5.12)

m—r o0 t
0

and

/t [f(s,2m(s)) = f(s,2(5))] ds

to

<[ tllents st as

<(b—a)L||zm — |l =0

when m — co. It then follows from (5.12) that z satisfies (5.6).
It remains to show that the solution x is unique. Let us assume that y € X is
also a solution. In view of the identities Tx = x and Ty =y, it follows from (5.7)

that
|2 = Ylloo = 1T7 = Tylloo <cllz = Ylloo-

But since ¢ < 1, we must have ||z — y||oc =0, and thus z =y. O
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Example 5.11

Let us consider the equation 2’ = |z|. By Example 5.8 and the Picard-Lindel6f
theorem (Theorem 5.10), for each (tg,z¢) € R? there exists a unique solution
of the equation with x(ty) = o in some open interval containing ¢g.

Clearly, x(t) =0 is a solution. On the other hand, when z > 0 we obtain
the equation z’ = x, which by Example 5.3 has the solutions

z(t) =ke', teR,

now with k>0 (so that z(t) is positive). When z < 0 we obtain the equation
2/ = —x whose solutions satisfy

(etx)/ =e'z+e'd’ =e'(z+2') =0,

and hence,
r(t)=ke ", teR,
with k& < 0. We thus obtain the solutions

ket with k>0,
2(t) =10, (5.13)
ket with k<0.

One can easily verify that for each (tg, () € R? there exists exactly one solution
with 2(t9) = 2. On the other hand, by Theorem 5.10, all these solutions are
unique. Therefore, each solution of the equation 2’ = |z| takes one of the forms
in (5.13).

The following example shows that for functions f(¢,z) that are not locally
Lipschitz the solutions may not be unique.

Example 5.12

Let us consider the continuous function f(¢,2) = 1/|z| in Example 5.9. One can
easily verify that both z(¢) =0 and

t2/4 ift>0
w(py={ 0/t 120
0 ift<o0

are solutions of the equation z’ = +/|z| with z(0) =0.
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We also show that each solution given by Theorem 5.10 can be extended to
a maximal interval in a unique manner.

Theorem 5.13

If the function f: D — R"™ is continuous and locally Lipschitz in z in some
open set D C R x R™, then for each (fg,x¢) € D there exists a unique solution
¢: (a,b) = R™ of problem (5.5) such that, for any solution z: I, — R" of the
same problem, we have I, C (a,b) and z(t) = ¢(t) for every ¢ € I,..

Proof

We note that J =J, I, is an open interval, since the union of any family of
open intervals containing ty is still an open interval (containing ¢¢). Now we
define a function ¢: J — R™ as follows. For each ¢ € I, let us take ¢(t) = x(t).
We show that the function ¢ is well defined, that is, ¢(t) does not depend on
the function z. Let : I, — R" and y: I, — R™ be solutions of problem (5.5).
Let also I be the largest open interval containing ¢, where x =y. We want
to show that I = I, N I,. Otherwise, the interval I would have an endpoint s
that is not an endpoint of I, N I,. Since  and y are continuous in the interval
I, N1, we have
p:=limz(t) = %1_1& y(t).

t—s

Moreover, by Theorem 5.10 with the pair (¢o, zo) replaced by (s,p), there would
exist an open interval

(s—a,s+a)CI,NI, wherez=y.

But since (s —a,s+ ) \ I # 0, this contradicts the fact that I is the largest
interval containing to where x =y. Therefore, I =1, NI, and x =y in I, N 1,,.
Clearly, the function ¢: J — R"™ is a solution of problem (5.5). This yields the
desired result. (]

By Theorem 5.13, one can introduce the notion of maximal interval (of
existence) of a solution as follows.

Definition 5.14

Under the assumptions of Theorem 5.13, the maximal interval (of existence)
of a solution x: T — R™ of the equation 2’ = f(t, ) is the largest open interval
where there exists a solution coinciding with x in I.
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Example 5.15

By Example 5.2, the solutions of the equation 2’ = a are given by (5.2). All
solutions have maximal interval R, since they are defined for all ¢ € R.

Example 5.16

By Example 5.11, the solutions of the equation z’ = |x| are given by (5.13). All
solutions have maximal interval R, since they are defined for all ¢ € R.

Example 5.17

Let us consider the equation 2’ = 22. Besides the solution z(¢) = 0, which has
maximal interval R, the nonvanishing solutions are obtained writing

/ 1 !
T-1 e (—) —1.
x x
L i o a0 !
. _—tac (4 = —
z(t) t+c’

for some constant ¢ € R. The maximal interval is thus (—oo, —c) or (—c¢,+00),
depending on whether the initial time ¢y is contained in the first or second

Therefore,

(5.14)

intervals. For example, the solution of the equation 2z’ = 22 with z(2) =3 is
obtained substituting ¢ =2 in (5.14): we obtain
1

7
z(2) 2+c Ty

and thus,
1 3
t = —
W=7 " 7o

for t € (—00,7/3), since 2 € (—o0,7/3).

5.3 Linear Equations: Scalar Case
In this section we consider the particular case of equations in R of the form
' =a(t)r +b(t), (5.15)

where a,b: R — R are continuous functions. The solutions are obtained as fol-
lows.
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Theorem 5.18

For each (tg, 7o) € R?, the (unique) solution of equation (5.15) with z(tg) = x¢
is given by

t LI
.T(t) _ efto a(s) dsxo _|_/ eju a(s) dsb(u) du

to

for ¢t € R (and thus has maximal interval R).

Proof

We first note that the function f(¢,z) = a(t)x + b(t) is continuous and locally
Lipschitz in x. To verify that it is locally Lipschitz, we write

|f(t,z) = f(t, )] =la(t)] - [z —yl.

Since the function (¢,x) + |a(t)| is continuous, it has a maximum in each com-
pact set, and hence f is locally Lipschitz in z. By the Picard-Lindel6f theorem
(Theorem 5.10), for each (tg,z¢) € R? there exists a unique solution of equa-

tion (5.15) with z(tp) = x¢ in some open interval containing t.

Now we note that if z(¢) is a solution with z(ty) = z¢, then

"t "t
(x(t)e_JtO a(s) ds)/ —e th a(s)ds [x/(t) o a(t)l'(t)]
= Ji ) oy,

Integrating over t, we obtain
't d K o d
x(t)e_Jto ale)ds _ gy = / e i ) *b(u) du
to

and

¢ Lo
x(t)ze'f‘f) a(s)dsx0+/ ejua(s)dsb(u)du.

to
Since the integrands are continuous, the solution z(t) is defined for every t € R,
and thus has maximal interval R. O

Example 5.19

It follows from Theorem 5.18 with b(t) = 0 that the (unique) solution of the
equation z’ = a(t)z with x(tg) = ¢ is given by

x(t) = elio 4) %2y forteR. (5.16)
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Example 5.20

Let us consider the equation z’ = zcost. The solution with z(0) =2 is given
by (5.16), that is,

x(t) = elocossdsg _ gesint o, 4 R

Example 5.21

Now we consider the equation
' =3z +t

with the condition z(1) =0. By Theorem 5.18, the solution is given by

¢
z(t) =2tV 4 / =5 ds
1

s 1\ [
- _ 3(t—s)( 2 -
‘ <3 + 9) s=1
_ ot 4 g,y
=37 97"
for t € R.
Example 5.22

Finally, we consider the equation

, t

=——2x+t
t2+13[’dr

X

with the condition x(0) =1. We note that the functions

a(t) = and b(t)=t

s=t 241
s=t0> o t% + 1,

t2+1

are continuous. By Theorem 5.18, since

exp (/t: a(s) ds) = eXp(% log(s® +1)
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the solution is given by
[t2+1 bl
t) =1/ 5——x(0 ———sd
z(t) 02+1x()+/0 32—1—18 s
t
s
= t2+1+\/t2+1/ ———ds
0o Vs2+1

5=t
=VEF1+VE2+1Vs2 +1 i

=VE+14+824+1-VE2+1=t>+1

for t € R.

5.4 Linear Equations: General Case

Now we consider equations in R™ of the form
¥ = Az +b(t), (5.17)

where A is an n X n matrix with real entries and b: R — R™ is a continuous
function. On purpose, we do not consider the more general case of equations
in R™ of the form

o' = A(t)z +b(t),

where A(t) is an n x n matrix varying continuously with ¢. In spite of their
importance, these equations fall outside the scope of the book.

We start our study with the particular case when b(¢) = 0, that is, with the
equation

x' = Aw, (5.18)

where A is an n X n matrix with real entries. Since the function f(¢,2) = Az
is of class C*, it is also continuous and locally Lipschitz in .

Example 5.23

Let us consider the equation

/

(§> B (—01 (1)) (ﬁ) (5.19)
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which can be written in the form
=y,
y = —x.
By Example 5.4, its solutions are
xz(t)\  (rcos(—t+c)
y(t))  \rsin(—t+c))’
with 7 >0 and ¢ € [0,27). We note that
x(t)\ _ [ rcosccost+rsincsint
y(t))  \—rcosesint +rsinccost
cost . sint
=rcosc . +rsinc .
—sint cost

Therefore, the set of solutions of equation (5.19) is a linear space of dimension 2,

generated by the vectors
cost sint
. and .
—sint cost

In order to solve equation (5.18) for an arbitrary matrix A, we introduce
the notion of the exponential of a matrix.

Definition 5.24

We define the exponential of a square matrix A by
|
A_ k
et=> A% (5.20)
k=0
with the convention that A° is the identity matrix Id.

We show that the series converges.

Proposition 5.25

The series in (5.20) is convergent, that is, there exists an n x n matrix B such

that
m
>
k=0

| —

'Ak%B

o

entry by entry when m — co.
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Proof

Let

A
4] =sup 1221,
2 el

with the norm in R™ given by

" 1/2
u(acl,...,mnm:(zxf) .
=1

We note that

||AkH < HAHk (5.21)
Indeed,
Ak
HAkstup” ||
A(AF-T
_ o AT
z#£0, AF—1g£0 |||
L (lA(A’f*m),nAk-w)
o0, A1gzo\ AR || [z
A Ak-1
< oup 148l 145
v#0 [yl a0 [
= || All- |45,

and inequality (5.21) follows by induction. Therefore,

L1 1
k|| _ k
DA = 2wl
k=0 k=0
=1
SZHHAH’C:e“A“ < 0. (5.22)
k=0
Now we observe that if the entries of an n x n matrix B are b;;, for 7,5 =1,...,n,
and eq,...,e, is the standard basis of R", then
| Bel
1Bl > == = || Bey|
lle;l

. 1/2
= (Z b%) > |bij.
=1



5.4 Linear Equations: General Case 239

It thus follows from (5.22) that the series > .-, |a§5)|/k!, where agf) are the

entries of AF, is convergent for i,j = 1,...,n. This shows that the series
> neo AR /K! is convergent entry by entry. O
Example 5.26

Let 0 be the n x n matrix with all entries equal to zero. Since 0¥ = 0 for each
k € N, we obtain

Example 5.27

We have

1
1d k
e = i Id" =
k=0 k=0

(o9}

1

In Section 5.5 we describe a method to compute the exponential of a ma-
trix A. Here, we show how the exponential can be used to solve equations (5.18)
and (5.17). We start with an auxiliary result.

Proposition 5.28

(eAt) = Ae?t for every t € R, with the derivative computed entry by entry.

Proof

By Proposition 5.25, the exponential

1

At k Ak

e —E _k!t A
k=0

is well defined for every ¢t € R. Hence, each entry of e is a power series in t
with radius of convergence +oo. Since power series can be differentiated term
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by term in the interior of their domain of convergence, we obtain

Aty/ Lo k1 4k
(M) =3 Lkl
k=1
S|
—A tkflAkfl
2 G
k=1
_AeAt
This yields the desired result. (]

Example 5.29

We show that there exists no 2 x 2 matrix A with

At [cost et
© ( 0 1>'
At (1 1
¢ |t—o_(0 1)’

but by Example 5.26, we always have e4? = ¢% =1d.

Otherwise, we would have

Example 5.30

Let us find a 2 x 2 matrix A such that
At €2t tth
=1y )
Taking derivatives with respect to ¢, we obtain

an’_ [2e* et 2te? (2 1
() iz =" 22 )~ \o 2/

On the other hand, it follows from Proposition 5.28 that

(Y] g = A,y = A = ATd= 2.

)

Now we obtain all solutions of equation (5.17).

Hence,
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Theorem 5.31 (Variation of parameters formula)
For each (t,zo) € R x R", the (unique) solution of the equation =’ = Ax + b(t)
with z(tg) = z¢ is given by
¢
z(t) = et gy + / A=) (s) ds (5.23)
to

for t € R (and thus has maximal interval R).

Proof

It is sufficient to verify that the function z(¢) defined by (5.23) satisfies

0

x(to) = eAOxo =e xog=Idzg =9

and

t
2/ (t) = AeAt ) o 4 / Aer=)p(s) ds + eAEDb(t)
to

t
=A (eA(t_tO)xo + / A9 (s) ds) +€b(t)

to

= Ax(t) + b(1).

Since the integrands are continuous, the function z(¢) is defined for t e R. O

The solutions of the equation ' = Az can be obtained as a particular case
of Theorem 5.31.

Proposition 5.32

For each (tg,x0) € R x R™, the (unique) solution of the equation z’ = Az with
x(tg) = xp is given by

z(t) = eAlt=t0) g0

for t € R (and thus has maximal interval R). Moreover, the set of solutions of
the equation ' = Az is a linear space of dimension n.

Proof

The first statement follows from Theorem 5.31 by setting b(¢) = 0. For the sec-
ond statement, we note that any linear combination of solutions of the equation
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' = Az is still a solution of this equation. Therefore, the set of solutions is a

A(t—to

linear space, generated by the columns of the matrix e ). Since

A(t—to) _ 0_
e 0 |t=t0 =e’ =1d,

these columns are linearly independent, because they are linearly independent
for a particular value of ¢. Hence, the space of the solutions has dimension n. [J

Example 5.33

Let us consider the equation

/:2
v =ty (5.24)
y =2y +t.

By Example 5.30, for the matrix
2 1
4=(6 )
At e2t tth
=1y e )
Hence, the solutions of equation (5.24) are given by
z(t)\ (2t (t—tg)e2tTt)\ (a(ty)
yt)) \ 0 e2(t=to) y(to)
t 2(t—s) (t _ ) 2(t—s) 0
e s)e
ARSI IWE
For example, when ty = 0, after some computations we obtain
(m(t)) (€' 2(0) + te*'y(0) N fot(t —5)e2t=9)sds
y(t)) e?ty(0) fot e2(t=s) g ds
e?'x(0) + te?'y(0) + (1 +t — e + te?)
B e?y(0) — L(1+2t — e?) .

we have

Example 5.34
Now we show that

eAlt=s) — At As (5.25)
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for every t,s € R. Given v € R™, we consider the functions
z(t)=ey and y(t) = eMe 5.

We note that

z(s) =ePv=TIdv =0
and
y(s) = eAe 450,
Moreover,
o' (t) = AeA)y = Ax(t)
and

Y (t) = AeMte= 45y = Ay(t).
Hence, if we show that
eAse=4s =1d, (5.26)
then it follows from the uniqueness of the solutions of the equation z’ = Ax

that x(¢t) = y(t) for every ¢t € R, that is,

€A(t_s)1} — €At€_ASU
for every t,s € R and v € R™, which establishes (5.25). In order to show that
identity (5.26) holds, we first note that

d _ _ _
y (eAse As) :AeAse As _eAsAe As.
S

We also have

A@AS:A<Z %SkAk>
k=0
— 1 k Ak As
= (DAl Ja=etoa,
k=0

since AA* = A* A for each k. Therefore,

d
T (eASefAS) =0.
Finally, since

eAse_As|s:0 =ele 0 =1d*=1d,

we conclude that identity (5.26) holds for every s € R.
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In particular, it follows from (5.25) that

eAteAs — eAseAt

for every t,s € R.

5.5 Computing Exponentials of Matrices

In this section we describe a method to compute the exponential of a matrix.
We first recall an important result from linear algebra.

Theorem 5.35 (Complex Jordan form)
For each n x n matrix A there exists an invertible n x n matrix S with entries
in C such that
Ry 0
S1AS = , (5.27)
0 Ry,

where each block R; is an n; x n; matrix, for some n; <n, of the form

A1 0

Rj = - ’
1
0 by

where each complex number A; is an eigenvalue of A.

We give several examples.

Example 5.36

When n; =1 we obtain the 1 x 1 matrix R; = [A;]. In this case there are no 1s
above the main diagonal.

Example 5.37

We recall that if an n x n matrix A has distinct eigenvalues pq, ..., i, then
it can be diagonalized, that is, there exists an invertible n x n matrix S (with
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entries in C) such that

H1 0
S1AS =
0 Ln
Example 5.38
Let us consider the matrix
0 -2
() 29

The eigenvalues of A are iv/2 and —iv/2. For example, taking the eigenvectors
(v/2,—i) and (v/2,4) associated respectively to iv/2 and —iy/2, we consider the
matrix

S= <\_/f ‘f) . (5.29)
Since
St = ﬁ (z _\}/;> , (5.30)
we obtain
S1AS = (“f _ﬁ@) . (5.31)

This is the complex Jordan form of the matrix A.

Example 5.39
For a 3 x 3 matrix A with all eigenvalues equal to A, the complex Jordan form
is one of the matrices
A0 0 A1 0 A1 0
0 X 0], 0 X O and 0 X 1]. (5.32)
0 0 A 0 0 A 0 0 X

We note that if
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then
A1 0 A0 O
S7'1o XN 0]S=10 X 1
0 0 X\ 0 0 X

This explains why we did not include the last matrix in (5.32).

When A has a single block R; in its complex Jordan from, one can easily
compute the exponential e*. More precisely, let A be the n x n matrix given by

A1 0
A= o . (5.33)
1
0 A
We write
A=)Xd+ N,

where N is the n X n matrix given by

0 1 0
N =

1

0 0

One can easily verify that N™ =0.

Proposition 5.40

For the n x n matrix A in (5.33), we have

t2 tnfl

At At 2 n—1

= Id+tN+ =N oo ——— N .34
e e < HEN 4+ o N7+ +(n—1)! ) (5.34)

for each t € R.
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Proof

Let B(t) be the matrix on the right-hand side of (5.34). Taking derivatives
with respect to ¢, we obtain

tn—l
B'#)=XeM(1d+tN+--- 4+ ——— N1
(t) e < + + +(n—1)!

tn72
_|_€)\t N+tN2++ Nn71
(n—2)!

n—1
= \eM Id+tN+...+t7Nn—1
(n—1)!

tnfl
+ M N+tN? 4+ 4+ ———N"
(n—1)!

tnfl
— N At I N 7]\]77,71
(A+N)e <d—|—t + +(n_1)! >,

since N™ = 0. Therefore,
B'(t) = AB(t).

Since B(0) =1Id, we conclude that for each v € R™ the function z(t) = B(t)v
is the solution of the equation z’ = Az with z(0) =v. But this solution is also

given by eA*v. Hence, B(t)v = ev for every v € R, that is, B(t) = e“*. O
Example 5.41
For the matrix
2 1
Aa=1lo 2 1],
0 0
we have A =2Id+ N, with
01 0 0 0 1
N=|0 0 1|, N?=|0 0 0| and N3=0.
0 0 0 0 0 O

Hence, by Proposition 5.40,
2t t62t lt262t

t2
et = 2t (Id +tN + 5N> =10 €% (e
0 0 et
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For example, the solution of the equation 2’ = Az with x(0) = (3,0, 1) is given

by
3€2t + %t2 €2t

3
zt)=e|0]| = te?!
1

th

Now we consider arbitrary matrices.

Proposition 5.42

If A is a square matrix with the complex Jordan form in (5.27), then

efirt 0

eAt _ Se(SflAS)ts—l -9 S—l
for each t € R.

Proof

(5.35)

Let us consider the change of variables y = S~ 'z. If z = z(t) is a solution of

the equation x’ = Az, then the function y = y(t) = S~z (t) satisfies

y' =81 =9 Ax =51 ASy.
Hence, y' = By, where B = S~!AS. Therefore,

y(t) = ePly(0) = 5 49)1y(0).
On the other hand, since x(0) = Sy(0), we also have

y(t) =S a(t) = S~tez(0) = SLeAt Sy(0).
Comparing (5.36) and (5.37), we conclude that
e(STHAS) _ g1 At g

This establishes the first identity in (5.35).

(5.36)

(5.37)
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Moreover, since S~ AS is the complex Jordan form, we obtain

Ry 0
e(5T1AS)E _ exp ¢
0 Ry
. Ry 0\"
1
— Z —qm
m=0 0 Ry,
— 1 m R;n 0
> ,
m= 0 R
and thus,
2m=o it " BT’ 0
e(S’lAS)t _ .
0 Yoo it " BY
eftrt 0
0 eftxt
This completes the proof of the proposition. |
Example 5.43
Let us consider the matrix
5 1 0
A=10 5 0
0 0 3

Since

51), 0 1 et tedt
6(05) :e5t (Id+t<0 O)):(O e5t ,

it follows from Proposition 5.42 that

(5 1)t e’ teft 0
eAt:<€05 0): 0 et 0
0 e3t



250 5. Ordinary Differential Equations

Example 5.44

Now we consider the matrix A in (5.28). It follows from (5.29), (5.30) and (5.31)
that

4\/§t
At SLAS)E a1 e’ 0 —1
At = gelsT A8t g S( . e—mt>5 .

Using the formulas
eiV2t + e—iV2t

cos(\/it):f and  sin(v/2t)

em/it _ e—l\/it
21 ’

we then obtain

.1 V2 2\ [eiV2 0 i =2
v (—i i ) ( 0 eiﬁt> (z \/5)
(VI eV 3 (VA i) ()
(VE - VI (2B (VR e VR 2

_( cos(v2t)  — QSin(\/it)>
~ \sin(v2t)/v2 cos(v/2t) '

5.6 Solved Problems and Exercises

Problem 5.1

Verify that te! is a solution of the equation x” — 22’ + 2 =0.

Solution
Let x(t) = tet. We have
2 =e' +te! and 2" =2 +te'.
Hence,
" =2 4z =2et +te! — 2t — 2te’ +tet =0,

and thus, x is a solution of the equation.

Problem 5.2

Find all solutions of the equation z” = 0.
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Solution

Writing 2"/ =y, we obtain y’ = 2’/ = 0. Thus, y(t) = a for some a € R, that
is, '/ = a. Writing z = 2/, we obtain 2z’ =z = a. Thus, 2(t) = at + b for some
b e R, that is, 2/(t) = at + b. Finally, integrating on both sides we obtain

2(t) =5t +bt+c. withabeeR,

or equivalently
x(t)=kt> + bt +¢, with k,b,c€R.

In particular, all solutions have maximal interval R.

Problem 5.3

Find all solutions of the equation z’ = 3.
Solution

For a nonvanishing solution x, one can write
1 i
x 1
—=1 & ([—— | =1
x3 212 ’

1 1
= —2t+C & x(t)==+ )
207 0=+

for some constant ¢ € R. In order that a solution x is well defined, it is necessary
that —2t+c¢ > 0, which is the same as t € (—o0, ¢/2). The nonvanishing solutions

and thus,

are thus
1 1

with ¢ € R. Both have maximal interval (—oo,¢/2). By direct substitution in
the equation one can verify that the zero function is also a solution, thus with
maximal interval R.

Problem 5.4

Find all solutions of the equation z’ + telz = 0.
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Solution
For a nonvanishing solution x, one can write
!/

%:ftet & (log|x\)/:ftet,

and thus,
log|m(t)| =e'(l—-t)+c « ‘x(t)| — eet(lft)ﬂ’

for some constant ¢ € R. We note that = must be continuous (since by definition
the solutions of a differential equation are of class C'). Hence, it is always
positive or always negative. Therefore,

z(t) =ke! Y for t R, (5.38)

with k # 0, since by varying ¢ € R the function e® takes all values of R*. By
direct substitution in the equation, one can verify that the zero function is also
a solution. In conclusion, the solutions are given by (5.38) with k£ € R, and all
have maximal interval R.

Problem 5.5

Find the solution of the equation

'+ (tsint)xr =0 with z(0) =1. (5.39)

Solution

For a nonvanishing solution x, one can write

z/ .
— = —tsint.
x

Integrating over t, we obtain
log|z(t)| =tcost —sint+c < |a(t)]=elostmsintte

for some constant ¢ € R. Proceeding in a similar manner to that in Problem 5.4,
we conclude that

z(t) = keteost=sint - for t € R, (5.40)

with k£ # 0. By direct substitution in the equation, one can verify that the zero
function is also a solution. Therefore, the solutions are given by (5.40) with
k € R, and all have maximal interval R. For (0) =1, we obtain 1 = ke® = k,
and thus, the solution of problem (5.39) is z(t) = efc*st=sint for t € R.
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Problem 5.6

Find all solutions of the equation =’ = —|x|.

Solution

For each x,y € R, we have
|l2] = |yl| < |z -yl (5.41)

(see Figure 5.2), and thus, the continuous function f(¢,a) = —|z| is locally
Lipschitz in . It follows from the Picard—Lindel6f theorem (Theorem 5.10) that
for each (tg,z0) € R? there exists a unique solution of the equation 2’ = —|z|
with z(tg) =z in some open interval containing tg.

Y

Figure 5.2 Graph of the function —|z|

Clearly, x(t) =0 is a solution. When x > 0 we obtain the equation 2’ = —xz,
which has the solutions

z(t)=ke ", teR,

with k& > 0 (so that x(t) is positive). Finally, when z < 0 we obtain the equation
7’ = x, which has the solutions

z(t)=ke', teR,

with k < 0 (so that x(¢) is negative). In conclusion, the solutions of the equation



254 5. Ordinary Differential Equations

ket with k>0,

ket with k <0,

and all have maximal interval R.

Problem 5.7
Verify that the function f: R? = R defined by
J(t,@) = ta+ |t +al

is locally Lipschitz in z.

Solution
For each t,z,y € R, it follows from (5.41) that
|f(t,2) = ft,y)| = [to + |t +z[ —ty — [t + ]|
<te —ty| + ||t +z[ [t + ]|
<tz —yl+[t+z—(t+y)|
= (|t|+1) |z —yl. (5.42)

Now let K C R? be a compact set (that is, a closed bounded set). Since K is
bounded, there exists M = M (K) > 0 such that |t| < M for every (¢,z) € K. It
then follows from (5.42) that

‘f(t,l‘) _f(tvy)’ < (M+1)|x_y|

for each (t,z), (t,y) € K. This shows that f is locally Lipschitz in x.

Problem 5.8

Find all solutions of the equation

zx' = (x')Q. (5.43)
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Solution

We note that x(¢) =0 is a solution. For the nonvanishing solutions, equation
(5.43) can be written in the form

d <SC/> :L'".Z'—(x/)Q
—(=)="—7F>"2=0.
dt \ x

We then obtain

!
T
— =a for some a € R.
T

Since
/

/ X
(log|z(t)|) = — =
we conclude that
log|z(t)| =at +b

for some a,b € R. This is equivalent to z(t) = ke®, with a € R and k € R\ {0}.
Therefore, the solutions of equation (5.43) are z(t) = ke, with a,k € R, and
all have maximal interval R.

Problem 5.9
Letting z = ty, solve the equation

, t+x
T =—

P (5.44)

as explicitly as possible.

Solution

Since
m,_t—l—x 14/t
t—z 1—z/t’

letting « = ty (that is, z(t) = ty(t)) we obtain

1+
ytty =2,
L-y
or equivalently
1+y 1+y°
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Writing this equation in the form

1—y 1

r_ =
1+y2y t’

and integrating on both sides with respect to ¢, we obtain
-1 1 2
tan y—ilog(l—i-y):logw—&—c

for some constant ¢ € R. This shows that each solution of equation (5.44) sat-

isfies
¢ 1 t)?
tan~* (?) -3 log(l + xi_Q)) =log|t| +¢

for some c € R.

Problem 5.10

Letting y = 2#, solve the equation

Solution
Letting y = z#, we obtain
t
/_ 4 3 ’_ 4 3 _£ .
Y T T 2% + 3

2zt 2
t + ty+

Therefore,
(1) = 2ty + 12y = 2ty — 2ty + 4> = 4¢3,
and hence,
yt)=t"+c
for some constant ¢ € R, which yields
z(t) = /12 + c/t2.

Each solution z(t) is defined when ¢? + ¢/t* > 0 (and not t* + ¢/t? > 0, so that
x(t) is of class C1). Hence, t* > —c, and the maximal interval of each solution
is RT or R~ for ¢ >0, and is (—oo, —+/|c|) or ({/]c|, +00) for ¢ < 0.
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Problem 5.11

Find the solution of the equation &’ = 2z + t with x(1) = 3.

Solution

By Theorem 5.18, the solution is given by

t
m(t)zefladsi’)—i-/ elu2dsydy,
1

t
=3e2(t-1) —|—/ 2=, dy
1

=3e2(t-1 _ iez(t*“)(l + 2u) uj
1t 15 4y
=1 2771°¢

for t € R.

Problem 5.12

Given a € R, compute the exponential e for the matrix
a 1
A= .

Solution

We have
where

Since N% =0, for each k > 0 we have
AF = (ald + N)*
=a"1d* + ka* 1AM IN
= aFId + ka" 1 N.



258 5. Ordinary Differential Equations

Therefore, by (5.20), we obtain
eAt _ i lAktk
B = k!
=0

=1 =1
=Y —(at)1ld+Y ——(at)" "N
27 2 G

=e(Id +tN)

0 1
__ _at
o (Id+t(0 O))
B eat teat
- 0 eat :

Problem 5.13

Find the solution of the equation

/
—2
{x 2ty (5.45)

y'=2y+1

with z(0) = y(0) = 0.

Solution

Equation (5.45) can be written in the form

x! x 0 2 1
(y,)-A(y)+(1>, WhereA—(O 2).
By Problem 5.12, we have
621: tth
RN

Hence, it follows from the Variation of parameters formula (Theorem 5.31) that
the solution of equation (5.45) with x(0) =y(0) =0 is given by
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G0y = ()« [ ()
)

:(1+1t62t_162t 16%_1)

4 2 47727 2

for t e R.

Problem 5.14

Find all solutions of the equation

' =3z +y,
y' =3y—t

in terms of the initial condition (x(0),y(0)) = (zo,¥o)-

Solution

We write the equation in the matrix form

!
x x 0 3 1
() =4G) (B e a= ()
By Problem 5.12, we have
At e3t te?)t
“T\o )

Therefore, by the Variation of parameters formula (Theorem 5.31), the solu-

tions are given by
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for t € R. Taking ty =0, we obtain

3t 3t t e3(t—s) t—s e3(t—s)
) () () (t-9 0y,
y(t) 0 e Yo 0 0 e3(t=s) -5
<e3txo +tedtyy — fot s(t — s)edt=) ds)

e3tyy — fg 5e3(t=9) ds

[ ePrao +tePtyo — (€ (3t — 2) + 3t +2) /27
N e3tyo — (e3t =3t —1)/9

for t € R.

Problem 5.15

Diagonalize the matrix

Solution
It follows from
det(A—Ad)=X2+3=0

that the eigenvalues of A are iv/3 and —iv/3. For example, taking the eigen-
vectors (i\/g,l) and (—iv/3,1) associated respectively to iv/3 and —iv/3, we
consider the matrix

(7 1)

whose columns are these eigenvectors. Then

o)

and the diagonal matrix

5%45(”g 0)

0 —iVv3

is the complex Jordan form of A.



5.6 Solved Problems and Exercises 261

Problem 5.16

Find the complex Jordan form of the matrix

A= G 3) (5.46)

and compute e4t.

Solution
It follows from
det(A—Nd) =X -2\ —-3=0

that the eigenvalues of A are 3 and —1. For example, taking the eigenvectors
(3,1) and (—1,1) associated respectively to 3 and —1, we consider the matrix

s=(3 )

Then

and the matrix

e (30
J=S5 AS—(O _1>

is the (real and) complex Jordan form of A. Hence,

3t
—1 A J & 0
S7le tSzet=<0 e‘t>’

and it follows from Proposition 5.42 that

1 B
At :eSJS t:SeJtS 1

(3 1\ (e 0N1(1 1
“\1 1 0 et)4\-1 3
1 /33t 4 et 3e3t — 3¢t
= 1 ( e3t _ o=t 3t 43¢t ) (5-47)

e
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Problem 5.17

Find the solution of the equation

o = (f 3) ¢ with 2(0) = (;) .

Solution

By Proposition 5.32, the solution is given by
() =m0 ()
y(t) y(0) 2)’
where A is the matrix in (5.46). It then follows from (5.47) that
z(t)\ 1 (3e*+et 3e—3e7t\ /1
y(t)) A\ et —et g3t ) \2
_1/9¢* —5e!
© 4\3e3t 5et
for t e R.

Problem 5.18

Compute e“* for the matrix

S O O =
o U O O

Solution

We note that A is in block form, that is,

(A0
=0 )

where
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Hence,

et 0
eAt:< ) eA2t>' (5.48)

By Proposition 5.40, for the block A; we have

At _ e(—Al)(—t)

0 1
— (D=1 _
e (Id+( t) <0 0))
(1 =t _ ettt —tett
0 1 0 et )’

On the other hand, the eigenvalues of A, are 5i and —5i. For example, taking

€

the eigenvectors (—i¢,1) and (4,1) associated respectively to 5i and —5i, we
consider the matrix

Then

Celig o (BP0
J=5 A25—<0 —5¢>

is the complex Jordan form of Ay, and by Proposition 5.42 we obtain

€A2t _ SBJt571

(=i i\ (¥ 0 \1[i 1
"\ )\ o edit)2\-i 1

1 65it +675it 71'652'15 +i675it
7

2 \ie® — e
- (nl e,

—5it 65it + 675it

It follows from (5.48) that

€4t 7t€4t 0
0 et 0
0 0 cos(5t)  sin(5t)
0 0 —sin(5t)  cos(5t)

oAt —
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Problem 5.19
For the matrix
21 0 0
0 4 0 O
A= 0 0 5 -1
0 0 0 5

and the vector z = (0,0,1,2), compute

lim sup 1 logHeAtxH.
t—4oc0 t

Solution

We have

At _ et 0
Tl o0 efet)

2 1 5 —1
A1—<0 4) and A2—<0 5)

For the first block, we consider the eigenvectors (1,0) and (1,2), and the matrix

()
S}

and it follows from Proposition 5.42 that
2t
ettt =g <60 e(‘)“> st
(1 1\ [e* 0 1 -1/2
~\0 2/\0 ef)\0 1/2

_ (e% Gt )2 2t /2) .

0 ett

where

We then obtain
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For the second block, we have

Therefore,
et eM/2—e2/2 0 0
AL _ 0 et (2 0
0 0 eSt —tedt
0 0 0 edt
and

limsgop % logHeAtxH = lzltriligop % logH (0, 0,e%,2(1 — t)eSt) ||

t—+
1
= limsup — log(em\/ 1+4(1—1t)?) =5.

t—+o0

Problem 5.20

Find all solutions of the equation

2 +22" +1=0. (5.49)

Solution

Taking x’ =y, one can write the equation in the matrix form

(-+)
A= <_01 _12> .

By Proposition 5.32, the solutions of equation (5.50) are given by

(i) == Gia) o)

where
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t=to) ' Since

for t € R. Now we compute the exponential e(
det(A — AId) = A? + 2\ + 1,

the matrix A has only the eigenvalue —1. Moreover, one can easily verify that
there exists no basis formed by eigenvectors, and thus one must consider the
root space. An eigenvector is (1, —1), and, for example, the vector (0, 1) satisfies
(A —XId)(0,1) = (1,—1). Taking

10
=(400)

we then obtain

J=S8"1AS

GG DG D)0 )

Therefore, by Proposition 5.42,

eA(t—to) _ SeJ(t—to)S—l

(1 0\ (et (t—tg)e~ )\ /1 0
-1 1 0 e~ (t=to) 1 1

— o (t—t0) 14+t—1tg t—to
—t+to 1—t+to)

For example, taking tg =0, it follows from (5.51) that the solutions of equa-
tion (5.50) are given by

(a:(t)) ot (1 +t ot ) (w(O))
y(t) —t 1-1t) \y(0)
for ¢t € R. The solutions of equation (5.49) are given by the first component,
that is,
z(t) = e~ (1+1)z(0) + e~ "ty(0)
=e 'z(0) + e "t[z(0) + 2(0)].

Problem 5.21

Find whether there exists a matrix A such that

t 2t
At e et —1
= . 5.52
€ (—1—|—cost 1 ) ( )
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Solution

We show that there exists no matrix A satisfying (5.52). Otherwise, taking
derivatives with respect to ¢, we would have
B <1 2)
—o 0 0

A/ B et 262t
() iz = (—sint 0 )

On the other hand, by Proposition 5.28, we have (e4*)’|,—o = A, and hence, we

should have
1 2
A= .

Since this matrix has eigenvalues 1 and 0, there would exist an invertible matrix

S such that
1 (10
STHAS = (0 0)

eAt _ Ses_lAStSfl =9 <eot (1)> S*l.

and hence,

In particular, the entries of e4* would be linear combinations of the functions
e and 1, and thus, it is impossible to obtain the entries e?* — 1 and —1 + cost
in (5.52). Therefore, there exists no matrix A satisfying (5.52).

Problem 5.22

Verify that the identity

o(A+B)t _ At Bt

is not always satisfied for every t € R.

Solution

Let

0 1 0 0
A_<O 0) and B—(O 1).
a1t g (1 O
e —(0 1 and e”'= 0 o)

We have
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Hence,

1 tet
At B
etet:(o et>'

On the other hand, the matrix

0 1
w0

has eigenvalues 0 and 1. Taking

we then obtain

0 1
and thus,
o(A+B)t _ SeS‘l(AJrB)StSfl
(1 1\ (1 0)/1 -1
~\0 1J\0 e)\0 1
1 et—1 1 tet
(0 )6 @)
Problem 5.23

Verify that the equation z” + x = ¥/t has solutions.

Solution

Let y =2’ and z = (z,y). Since 2/ = (2’,y’), the equation can be written in the
matrix form

2= Az+ f(t), where A= <_01 (1)> and f(t) = (?t>

Now we consider the continuous function F(t,z) = Az + f(t). For 21, 29 € R?,
we have

|F(t,21) — F(t,22)|| = ||Az1 — Az + f(t) — f(1)]|
= [[AGz1 = z2)| < 141l - [l22 = 22,
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where

A
4] = sup 1421
=20 2|l

and thus, the function F' is locally Lipschitz in z. It then follows from the
Picard-Lindeléf theorem (Theorem 5.10) that for each (tg,z0) € R x R? there
exists a unique solution of the equation with z(tg) = zo in some open interval
containing tqg. Moreover, since

2(to) = (x(to), y(to)) = (z(to), 2’ (t0)),

for each tg, zo,yo € R there exists a unique solution of the equation =" +z = Jt
with x(tg) = 2o and 2’(t9) = yo in some open interval containing ¢.

Problem 5.24
Verify that the problem
¥’ =2+/|z| with z(0)=0 (5.53)

has more than one solution.

Solution

A solution of problem (5.53) is x(t) = 0. To obtain another solution we con-
sider separately the cases = >0 and z < 0. For x > 0 we obtain the equation
x’ =24/, that is,

and thus,
z(t)=t+c for some ceR.

Taking t = 0, since £(0) = 0, we obtain ¢ = 0, and hence x(t) = t2. On the other
hand, for x < 0 we obtain the equation ' = 24/—=x, that is,

/

(V=2)' =5 ==L,

and thus,

—z(t)=—t+d for some d € R.
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Taking ¢ = 0, since z(0) = 0, we obtain d = 0, and hence, z(t) = —t2. Therefore,
one can consider, for example, the function

2 ift>0,
z(t)=140 if t=0,
—t2 ift<0,

that is, z(t) = t|t|. We note that = is of class C*. Indeed, outside the origin we
have

, 2t if t>0,
' (t) =
=2t if t<0,
and at the origin,
2/(0) = lim a®) —2(0) _ ot
t—0 t t—0 t

Hence, 2/ (t) = 2|t|, which is a continuous function, and z(t) is of class Ct. We
thus have the solutions z(t) =0 and z(t) = t|¢|.

Problem 5.25

Verify that if a matrix A has at least one eigenvalue in RT, then the equation
' = Az has at least one solution not converging to zero when t — +o0.

Solution

We recall that for each v € R™ the function ¢ — e*v is a solution of the equa-
tion ' = Az (see Proposition 5.32). Now let v € R™ \ {0} be an eigenvector
associated to an eigenvalue A € R*t. We have Av = \v, and thus, A¥v = A\*v for
each k € N. Therefore,

o0 o0

1 ) 1
x(t) = ety = Z EtkAkv = Z Etk)\kv =eMo.
k=0 k=0

Since A € Rt, the solution z(t) does not converge to zero when t — +o0.
) g

Problem 5.26

Find all power series z(t) =Y " jc,t", with ¢ € R, that are a solution of the
equation " 4+ x =0.
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Solution

By Theorem 4.12, the power series can be differentiated term by term in the
interior of its domain of convergence to obtain

oo
"(t) = Z ne,t" !
n=1

and
(o]
2 (t) = Z n(n—1)c,t" 2
n=2
We thus have
() +z(t) = Z [(n+2)(n+1)cnqo + ¢y t"
n=0

This series is the zero function if and only if
(n+2)(n+1)cpeo+c, =0

for every n € NU{0}. Hence,
Cn

(n+2)(n+1)’

Cny2 = —

that is, given cg,c; € R, we have

—1)"¢
Con = Ele and  copq1 =

(2n)!

(—1)”01
(2n+1)!

for each n € N. Therefore,

%) %) %)

— Z Cntn — Z ant2n + Z 02n+1t2n+1
CO Cl

=co Z t2n +e Z 2n+1

=cgcost + ¢y sint.

Problem 5.27

Verify that if z(¢) and y(t) are solutions respectively of the equations ' = Ax
and y' = —A*y, then

(z(t),y(t)) = (x(0),y(0)), teR, (5.54)

where (-,-) is the standard inner product in R™.
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Solution

We have

%@c(t},y(t» = hm [<:E t+h),yt+n)) —{z(t),yt))]

= hm [<m t+h)—x(t),y(t+h)) + (z(t),y(t + h) — y(t))]
_MM,W@ +m<x(t>, M>
= (@' (t),y(t)) + (=(t),y'(t)).
Therefore,
D (a(0), (1) = (Ax(0).y(0) + (1), ~Ay(1))
= (Ax(t),y(t)) — (Ax(t),y(t)) =0,

which yields identity (5.54).

Problem 5.28
Given an n X n matrix A, we assume that the function ¢: R™ — RS’ given by
q(x) :/ ||e tx” dt
0

is well defined. Show that ¢ is a polynomial of degree 2 without terms of degree
0 or 1, and that the function F(s) = g(e“*z) has derivative F’(s) = —|le4*z||2.

Solution

We note that

o0
:/ x*(eAt)*eAtxdt:x*Cx7 (5.55)
0

where C is the n x n matrix given by

C’z/ (eAt)*eAtdt
0
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(with the matrices integrated entry by entry). It follows from (5.55) that ¢ is
a polynomial of degree 2 without terms of degree 0 or 1. Moreover, it follows
from (5.25) that

e 2 e 2
q(eAsx) :/ HeAteAst dt :/ HeA(H'S)xH dt.
0 0
Making the change of variables t + s = 7, we obtain

F(s) :q(eAsx) :/ HeATxﬂsz,

and hence, F'(s) = —|le4*z|%.

Problem 5.29

Verify that the equation @’ = |z| + 1 has no periodic solutions.

Solution

Let = = x(t) be a solution. Since |z(t)| + 1> 0, we have 2/(t) > 0 for every ¢
(in the maximal interval of z). Hence, each solution is strictly increasing, and
thus it cannot be periodic.

Problem 5.30

Show that all solutions of the equation

' =ycosw,
y = —xcosw,
are bounded.

Solution
If (x,y) = (x(t),y(t)) is a solution, then
(«® + yQ)/ =2z’ + 2y
=2z(ycosz) + 2y(—zcosx) =0.
Therefore, there exists > 0 such that

a(t)? +y(t)* =r
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for every ¢ (in the maximal interval of the solution). This shows that the image
of each solution is either contained in a circle or is the origin, and thus, in
particular, it is bounded. In fact, one can show that the image of each solution
is either a circle or is the origin.

Problem 5.31

Show that all solutions of the equation

=y —ux,
y’z—x—y3

are bounded for ¢ > 0.

Solution
If (z,y) = (x(t),y(t)) is a solution, then
(z® + y2)/ =2z’ + 2yy
=2z(y —z) +2y(—z — v°)
=222 -2yt <.

This shows that the function ¢+ x(t)? + y(t)? > 0 is not increasing, and thus,
it is bounded for ¢ > 0. Since

z(t)] < V()2 +y)? and [y(t)] < Va(t)? +y(1)2,

the components z(t) and y(t) are also bounded for ¢ > 0.

Problem 5.32

Write the equation

[

in polar coordinates (r,0).

Solution
We have

r=rcosf and y=rsind,
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and
tan~!(y/x) if x>0,
2 if x=0and y >0,
r=+z24+y? and 0= ™/ s ey
tan~t(y/x) + 7 if x <0,
—7/2 if x=0and y <0,

where tan™! is the inverse of the tangent with values in (—/2,7/2). Therefore,

o 2zx’ + 2yy'’ _ xx' +yy’

NGRS

and

1+ (y/x)r 14y?/a?

Y2y yz-a'y
- z2+y2 - 2 :

g W) e-ay)/a?

It follows from (5.56) that

o 9Ty —ary

0
T
and
2 2
,_ar” +ay”
9 —T—CL

and thus, in polar coordinates the equation takes the form
r' =0,
0 =a.

EXERCISES

5.1. Find all solutions of the equation:
(a) o’ = —tux;
(b) 2’ — (tsint)x = 0;
(©) &/ =/(1+1)+1%
(d) 2’ =—cost + .
5.2. Find all solutions of the equation 2’ =1/x.
5.3. Find an equation having et as solution.
5.4. Find an equation having 1/(1+t) as solution.
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9.5.

5.6.

5.7.

5.8.

9.9.

5.10.

5.11.

5.12.

Show that if x: (a,b) — R™ is a solution of the equation 2’ = f(z),
then for each ¢ € R the function y: (a + ¢,b+ ¢) = R™ defined by
y(t) =x(t — ¢) is also a solution of the equation.

For the equation a’ = f(z), show that if cost is a solution, then
—sint is also a solution.
For the equation x” = f(z), show that if 1/(1+t) is a solution, then
1/(1—1t) is also a solution.
Find a solution of the equation:

_11> x with z(0) = (é);

(a) 2 = (é
(b) o' = (3
(c) o' = <§

i) 2 with (1) = (
3) 2 with 2(4) = <

0
1

0
0

Find all solutions of the equation
o — 30 o4 t
~\0 4 —t)’
Use the Variation of parameters formula to find the solution of the
9 0 . AN
0> T+ <1) with z(0) = (1>,
4 0 . 0
0> T+ (t) with z(0) = (5>,
, (401 et ) (0
(c)x-(o 4zt 0 with z(0) = 1)

Consider the equation

equation:

(a) o' = °
S\l
, (0

o) o= ()

)
).

' =2z +y,
Yy =—x+a.

(a) For a =0, find all solutions of the equation.
(b) For a =1, find the solution of the equation with z(0) = y(0) = 0.
Compute the complex Jordan form of the matrix:

(a) G ;)
o (5 3):
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5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

2 10
(¢) |0 5 4
0 0 3
Find the solution of the equation " + 2’ + 2 =0 with 2(0) =0 and
2'(0) = 3.
Compute e“? for the matrix:
0 1 0 0
-1 0 0 O
A=l o 2 1
0 0 0 2
21 00
01 00
(b) A= 0 0 3 1}f
0 0 0 3
21 0 0
0 3 0 0
©@A=1g 0 4 1|
0 0 0 4
1 4 0 O
-4 1 0 0
A —
(d) 0 0 2 0
1 2

0 0

For each matrix A in Exercise 5.14, find all bounded solutions of the
equation z’ = Azx.

For each matrix A in Exercise 5.14, find all solutions of the equation
2’ = Az that are bounded for ¢ > 0.

Find whether there exists a matrix A such that

At eSt tth
=1y )
Verify that the function f is locally Lipschitz in x:
(a) f(t,z)=a%
(b) f(t,x) = z|z].

Show that the equation z’ — z = /¢ has solutions.
Verify that the equation z’ = 2,/x has more than one solution with

x(0)=0.
Identify each statement as true or false.
(a) The equation 2’ = —x3 has solutions with maximal interval RT.

(b) The equation 2’ =1 + 22 has nonconstant periodic solutions.
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(c) The equation 2’ =1 + 22 has decreasing solutions.
(d) There exists a matrix A such that

t —t
At (& (&
Al = ( . )

5.22. Show that all solutions of the equation (z’,y") = (ye®, —ze®) are

bounded.
5.23. Show that all solutions of the equation

(«'y) = (y—2*,—z — %)

are bounded for ¢ > 0.
5.24. Write the equation

x' = ay + bx + 22,
y' = —ax + by

in polar coordinates (r,6).
5.25. Find all nonconstant periodic solutions of the equation

r=r(r—1)(r—2),
0 =1.

5.26. For a square matrix A, show that A™e4 =e4A™ for every m € N.
5.27. Verify that if A and B are n X n matrices, then

(A+B)*= A%+ AB + BA + B*.
5.28. Find whether the identity
(A+B)*=A?4+2AB+ B?

between n X n matrices is always satisfied.
5.29. Defining the cosine of a square matrix A by

¢iA 4 =i
coOSA=—71—
2 b

compute

COS

o O O
S O =
o = O
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5.30.

5.31.

5.32.

5.33.

5.34.

5.35.
5.36.

5.37.

Compute
1

limsupflog;HeAta:H7

t—+oo
where

2 1

A(O 2) and :U(g)

Compute

limsup%10g||x(t)||

t——+oo

for each nonvanishing solution z(t) of the equation =’ 4 4x = 0.
Verify that

d At (2 4
%dete =0 forA—(10 _2).

(1 1m2\" (1 0
n,h_>néo<0 1) _(0 1)’

with the limit computed entry by entry.
Verify that

Verify that

2

limlll/nn701
nsoon \0 1 ~\0 0/’

Show that dete?* = ¢! 4. Hint: use Proposition 5.42.
Use Exercise 5.35 to show that

% (det eAt) |t:0 =trA.

Find a necessary and sufficient condition in terms of a square ma-

trix A in order that:
(a) all solutions of the equation ' = Az are bounded;

(b) all solutions of the equation z’ = Az converge to zero when

t — +400.
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Solving Differential Equations

In this chapter we present several methods for finding solutions of certain classes
of differential equations. Namely, we consider exact equations, equations that
can be reduced to exact, and scalar equations of order greater than 1. We also
consider equations that can be solved using the Laplace transform. We note that
these are only some methods among many others in the theory. On purpose,
we do not consider methods adapted to very particular classes of differential
equations.

6.1 Exact Equations

In this section we consider equations in R of the form
M(t,z) + N(t,z)z’ =0, (6.1)

where M and N are continuous functions with N # 0.

Definition 6.1

The differential equation (6.1) is said to be ezact in an open set S C R? if there
exists a differentiable function @: S — R such that

0P 0P
E(t,x) =M(t,x) and a(tw) =N(t,x) (6.2)

for every (t,z) € S.

L. Barreira, C. Valls, Complex Analysis and Differential Equations, 281
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http://dx.doi.org/10.1007/978-1-4471-4008-5_6

282 6. Solving Differential Equations

Example 6.2
Let us consider the equation
—4t + (5a* 4+ 3)2’ =0. (6.3)

We look for a differentiable function @ such that

oP oP
_— = —4 - = 4 .
5 t and o 5z +3
It follows from the first equation that

O(t,x) = —2t> + C(x)

for some differentiable function C, and hence,

P
g_a: =C'(z) =5z + 3.
Thus, one can take C(z) = z2° + 3z, and
O(t, ) = —2t> + 25 + 3. (6.4)

In particular, equation (6.3) is exact.

The importance of exact equations stems from the following property.

Proposition 6.3

If equation (6.1) is exact, then each of its solutions xz(t) satisfies
D(t,x(t)) =c (6.5)

for some constant ¢ € R.

Proof

Since equation (6.1) is exact, taking derivatives of @(¢,z(t)) with respect to ¢,
we obtain

d o o ,
E¢5(7f,gc(t)) = E(tx(t)) + 8—m(t,x(t))x (t)

=M (t,z(t)) + N(t,z(t))2'(t) =0.

This shows that (6.5) holds for some constant ¢ € R. O
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Example 6.4
By Proposition 6.3, it follows from (6.4) that each solution of equation (6.3) is
given implicitly by

—2t> + 2(1)° + 3x(t) = ¢

for some constant ¢ € R.

Now we describe a necessary and sufficient condition for the exactness of
equation (6.1) in an open rectangle.

Theorem 6.5

Let M and N be functions of class C! in an open rectangle S = (a,b) x (c,d).
Then equation (6.1) is exact in S if and only if

oM ON

Proof

If equation (6.1) is exact, then there exists a differentiable function @ satisfy-
ing (6.2) in S. Since M and N are of class C!, the function @ is of class C2.

Therefore,
oM _ 0 (00 _ 0 (00) _oN
oxr  Ox\ot) ot\ox) ot

in S, which establishes property (6.6).
Now we assume that property (6.6) holds. Integrating over ¢, we obtain
toM

[ () ds =N (t.2) = N(to,). (6.7)

Let us also consider the function
t

@(t,m):/ N(to,y)dy+ | M(s,x)ds.
zo

to
We have
X 0y = M(t,),
and it follows from (6.7) that
@ L oM
a—(t7$)=N(t0,LL’)+ a—(s,ac)ds:N(t,gc).

oxr

to 81

This shows that equation (6.1) is exact in S. O
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We give some examples.

Example 6.6
Let us consider the equation
3z +sint + (3t 4 2¢%") 2’ = 0. (6.8)
Since
M(t,x) =3z +sint and N(t,z)=3t+ 2>,
we have
86—]\5 =3 and 88—];7 =3.

Hence, by Theorem 6.5, equation (6.8) is exact in R?, and there exists a differ-
entiable function @ such that

0P 19,/
Ez?ﬂ:—i—sint and %2315—1—262’.

It follows from the first equation that
&(t,x) = 3at — cost + C(x)

for some differentiable function C. Thus,

0P , 9
_— = = 2 z
e 3t+ C'(x) =3t + 2e*7,

which yields C’(z) = 2¢%*. Hence, one can take C(z) = e2* and
&(t,x) = 3wt — cost + €7,

By Proposition 6.3, each solution of equation (6.8) satisfies @(t,x(t)) = ¢ for
some constant ¢ € R.

Example 6.7

Now we consider the equation

,g(t)

 f@)

which is called a separable equation. It can be written in the form

M(t,xz)+ N(t,z)z' =0,
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where
M(t,x)=g(t) and N(t,z)=—f(z).
Since
oM  ON _0
ox ot
the equation is exact and there exists a differentiable function @ such that
0P 0P
— =g(t d —=- .
o =ot) and = —f()

Indeed, one can take

6.2 Equations Reducible to Exact

In this section we consider equations that are not exact, and we try to find
a function u(t,x) such that equation (6.1) becomes exact when multiplied by
this function.

Definition 6.8

We say that equation (6.1) is reducible to exact in an open rectangle S =
(a,b) x (¢,d) if there exists a differentiable function pu: S — R such that the
equation

wu(t,x)M(t,z) + pu(t,x)N(t,x)z’ =0 (6.9)

is exact and has the same solutions as equation (6.1). In this case, the function u
is called an integrating factor of equation (6.1).

By Theorem 6.5, when the functions M, N and u are of class C!, equa-
tion (6.9) is exact in S if and only if
(uM) _ O(uN)

= -1
ox ot (6.10)

in S. But since this is a partial differential equation (because it contains deriva-
tives with respect to more than one variable), we shall only consider particular
cases.
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Proposition 6.9

Equation (6.10) has a nonzero solution of the form:
1. w(t,z) =p(t) if

1 /OM ON
= == - = A1
N < ox ot ) (6.11)
does not depend on x, in which case p satisfies the equation
1 /0M ON
=== - =i 12
I N( 5 B )u, (6.12)

2. plt,x) = (o) if
1 /oM ON
M\ Oz ot

does not depend on ¢, in which case yu satisfies the equation

y__1(0M ON
= M\ Ox ot H-

Proof
When p(t, ) = u(t), it follows from (6.10) that
oM ON

/
T N+ =
Py —H +M8t’

,_ 1 (0M _ON
F=N\oz ot )"

Since p and p/ do not depend on z, this equation has nonzero solutions if and
only if the expression in (6.11) does not depend on z. The second property can
be obtained in an analogous manner. O

that is,

Example 6.10

Let us consider the equation
z’e" — dze ' sint + (2ze™" +4e”* cost)z’ = 0. (6.13)
We have

M(t,x) = 2% " —4ze *sint and N(t,z)=2ze " +4e % cost.
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In particular,

Lfom oy _,
N\ Oz ot )

does not depend on z, and by Proposition 6.9 there exists an integrating factor
of the form u(t). Namely, since equation (6.12) takes the form p' = 2, a nonzero
solution is u(t) = e2*. Multiplying (6.13) by e?!, we obtain the exact equation

(2%’ — dasint) + (2ze’ + 4cost)z’ = 0.
It follows from
%—f =g2e! — 4xsint
that
&(t,x) = 2%e’ + dacost + C(x)

for some differentiable function C'. Therefore,

b
e 2ze' +4cost + C'(x) = 2ze’ + 4cost,
T

and we obtain C’(x) = 0. Hence, one can take C(z) =0, and each solution x(t)
of equation (6.13) satisfies

o(t,z(t)) =z(t)%e" +4z(t) cost =c

for some constant ¢ € R.

6.3 Scalar Equations of Order Greater than 1

In this section we consider equations in R of the form
2™ a2 4o apa” + a2 + apx =0, (6.14)

with ag,a1y...,0p—1 € R.

Example 6.11

Let us consider the equation z”/ + 2 = 0. Taking y = 2/, one can write it in the

()= 0 0)

matrix form
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which thus has the solutions

(ﬂﬂ) _ (O §) =t (x(to)> .

y(t) y(to)

Nevertheless, we will show in this section that equations of the form (6.14) can
be solved using an alternative method that is frequently more practical.

We first write equation (6.14) in another form. We introduce the notation
Dx=x".
For example,
D*x=D(z')=2".
Equation (6.14) can then be written in the form
(D" +ap_1D" '+ +asD*+a;D+ag)z=0.
Now we consider the characteristic polynomial
p(A) ="+ A A"V a A+ ag )+ ag.

It follows from the Fundamental theorem of algebra (Theorem 4.19) that there
exist constants Aq,...,Ay € C and mq,...,my € N such that

PAA) = (A= A)™ (A= A2)™ - (A= An)™Y, (6.15)

with mq +---+my =n.

Proposition 6.12

Given constants A1,..., Ay € C and my,...,my € N satisfying (6.15), equation
(6.14) is equivalent to

(D= A1)™ (D = Xp)™2 (D — Ax)™¥a = 0. (6.16)

Proof

It is sufficient to note that

A=—a1)- A =an)=> (1)) Y ay---a;, A"

j=0 1< <ij
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and

(D—a)--(D—an)=> (-1 Y aj-a; D"

j=0 i1 < <1

For example, for n =2 we have

(A—a)(A—b) =A% — (a+b)A -+ ab,

and
(D —a)(D —b)z= (D —a)(z' — bx)

=2" — br — azx’ + abx

=2" —(a+b)z' + abx

=(D*—(a+b)D +ab)z, (6.17)
that is,

(D —a)(D—b)=D?*—(a+b)D +ab. (6.18)

This yields the desired result. O

It is thus sufficient to consider equations (6.14) that are already written in
the form (6.16). We first consider two particular types of equations.

Proposition 6.13

Given A € R and m € N, the solutions of the equation
(D—-XN)"z=0 (6.19)

are given by
x(t) = eptteM =coeM 4 4 et e (6.20)

for t € R, with cq,...,cm—1 € R.

Proof

We use induction on m. For m =1 the equation takes the form

(D-XNzx=2"—Xz=0,
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and thus it has the solutions x(t) = coe* with ¢y € R. Now we assume that the
result holds for a particular m. Since

(D - Ny =(D-\)"(D~-\zx=0,
we have
(D—XNz= coe™ + crteM + -+ et LM,
with cg,...,¢n_1 € R. Therefore,
(e_M’x)/ = e M(Dz — \x)
—e MD - Nz

=Co —|— Clt —|— ce + Cm_ltmil,

and hence,
—At C1 2 Cm—1 m—1
e Mx(t)=c+cot+ —t*+---+ —t
2 m
for some constant ¢ € R. This shows that the result holds for m + 1, and the
solution x(t) is given by (6.20). O
Example 6.14

Let us consider the equation
2" — 8z + 16z =0. (6.21)
The characteristic polynomial is
A —8A+16=(\—4)%
and by Proposition 6.13 the solutions of equation (6.21) are given by
z(t) = ae* + bte®  for t €R,

with a,b € R.

Example 6.15

Now we consider the equation

(D —a)(D —b)z=0 (6.22)
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for some a,b € R with a #b. By (6.18), we have
(D—a)(D—-b)=(D-b)(D—a). (6.23)

We observe that:
1. it (D —b)z =0, then it follows from (6.22) that

(D—a)(D—-b)x=(D—-a)0=0,

and z is a solution of equation (6.22);
2. if (D — a)z =0, then it follows from (6.23) that

(D—a)(D—-bx=(D—-b)(D—a)z=(D—-0)0=0,

and z is also a solution of equation (6.22).
Moreover, one can easily verify that any linear combination of solutions of
equation (6.22) is still a solution of this equation. Hence,

z(t) = cre + cpel (6.24)

is a solution for each c1,cy € R, since ci1e® and cye are respectively the solu-
tions of the equations (D —a)z =0 and (D —b)z =0.

Now we show that there are no other solutions. We write equation (6.22)
in the form

2" —(a+b)z' +abx =0
(see (6.17)), which is the same as

<ch) <—(z»b a—li—b) (5) (6.25)

By Proposition 5.32, the linear space of the solutions of equation (6.25) has
dimension 2. Hence, the linear space of the solutions of equation (6.22) has at
most dimension 2, since it is obtained from the first component of the solutions
of equation (6.25). But since the functions in (6.24) already generate a space
of dimension 2, we conclude that there are no other solutions.

Now we consider a second type of equations.

Proposition 6.16

Given A =a + b with b# 0 and m € N, the solutions of the equation

(D—=X)"(D—-X\)"z=0 (6.26)
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are given by

H

cktkeat cos(bt) + dyt* e sin(bt)]
k=0

for t e R, with cg,dg,...,Cm_1,dm_1 €R.

Proof

It follows from the proof of Proposition 6.13, that the complex-valued solutions
of equation (6.19), also for A € C, are given by

m—1
t)= Z athe
k=0

for t € R, with ag,...,amnm—1 € C. Similarly, the complex-valued solutions of the
equation
(D-=XN"z=0
are given by
m—1
z(t) = bthert
k=0

for t € R, with by, ...,bm,—1 € C. Moreover, identity (6.17) also holds for a,b € C,
that is,

(D—a)(D—-b)=(D—->b)(D—a)

for every a,b € C. This implies that

(D—=X)™D—-X\)"=(D-X"(D-\)"
On the other hand, proceeding as in the proof of Proposition 5.32, one can
show that the linear subspace of C" = R?" formed by the C"-valued solutions
of the equation =’ = Az has real dimension 2n. One can then proceed as in
Example 6.15 to show that the complex-valued solutions of equation (6.26) are
given by
m—1 .
(aktke/\t + bktke)\t)
k=0
for t € R, with ag, by, ...,0m—_1,bm—1 € C. Taking

2a, =ci —tdp, and  2b, = cp + idy,
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for k=0,...,m — 1, we obtain
1 m— 1
5 cp — ’Ldk tk (a+zb)t (Ck + idk)tke(a—zb)t]
k:O
m—1

[cktke“t cos(bt) + djtFe sin(bt)].
0

=
i

This yields the desired result. ]

Example 6.17
Let us consider the equation
2" +52=0. (6.27)
The characteristic polynomial is
M 45=A—iVE)(A+iV5),
and by Proposition 6.16 the solutions of equation (6.27) are given by
z(t) = acos(V/5t) + bsin(v5t) for t R,

with a,b € R.

Example 6.18

Now we consider the equation
(D +2)(D —3i)*(D + 3i)?z =0. (6.28)
In an analogous manner to that in Example 6.15, we consider separately the
equations
(D+2)z=0
and
(D —3i)*(D + 3i)*x = 0.

2t

These have spaces of solutions generated respectively by the functions e™** and

cos(3t), tcos(3t), sin(3t) and ¢sin(3t).
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In a similar manner to that in Example 6.15, one can show that equation (6.28)
gives rise to an equation 2’ = Az in R®, which thus has a space of solutions of
dimension 5. Since the functions obtained previously already generate a space
of dimension 5, the solutions of equation (6.28) are given by

x(t) = cre™ " 4 co cos(3t) + c3t cos(3t) 4 ¢y sin(3t) + cstsin(3t)

for t € R, with ¢y, ca,c3,c4,c5 €R.

We also consider the nonhomogeneous case, that is, we consider equations
of the form

2™ a2 4 aga” 4 ara’ + agx = h(t),

with ag,aq,...,a,_1 € R, for some nonzero function h.

Example 6.19

Let us consider the equation
2+ 22 —x =t (6.29)

One can write it in the form

' =y,
Y =x—2y+t,

() =0 500

It then follows from the Variation of parameters formula (Theorem 5.31) that

()10 ) 19 ()

However, one can also obtain the solutions of equation (6.29) using an al-
ternative method, which is more automatic. We first write equation (6.29) in
the form

or equivalently,

(D*+2D 1)z =t. (6.30)
Since D?t =0, we obtain

D*(D*+2D — 1)z =0,
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that is,
D*(D+1-vV2)(D+1+V2)z=0.

(6.31)

We note that all solutions of equation (6.29) are solutions of this equation. Pro-
ceeding as in Example 6.18, one can show that the solutions of equation (6.31)

are given by

x(t)=a+bt+ ce TV L qe(Z1-VRE for ¢ € R,

with a,b,c,d € R. However, not all of these functions are necessarily solutions

of equation (6.29). Substituting z(¢) in (6.30), we obtain

(D*+2D — 1)z = (D*+2D —1)(a+bt) =t,

since ce(-1HVDt 4 de(=1=VDt ig 4 solution of the equation (D2 42D — 1)z = 0.

We also have
(D*+2D —1)(a+bt)=2b—a—bt=t,
and thus —b=1 and 2b — a =0, that is,

a=-2 and b=-1.
Therefore, the solutions of equation (6.30) are given by
x(t)=—-2—t+ ce "1V | ge(-1-VDE o LR,

with ¢,d € R.

Example 6.20

Now we consider the equation
2’ —2x = e’ cos(2t),
that is,
(D — 2)x = €' cos(2t).
Any solution of equation (6.33) satisfies
(D—-1-2i)(D—-142i)(D—2)x=0.
Moreover, the solutions of this last equation are given by

z(t) = ae® + be' cos(2t) + ce'sin(2t) for t € R,

(6.32)

(6.33)
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with a,b,c € R. Substituting z(¢) in (6.33), we obtain
(D —2)(be' cos(2t) 4 ce' sin(2t)) = e’ cos(2t),
that is,
be' cos(2t) — 2be’ sin(2t) + ce’ sin(2t) + 2ce’ cos(2t) = e’ cos(2t).
Therefore,

b+2c=1 and —2b+c¢=0,
and hence b =1/5 and ¢ =2/5. We conclude that the solutions of equa-
tion (6.32) are given by

1 2
z(t) = ae®® + get cos(2t) + get sin(2t) for teR,

with a € R.

6.4 Laplace Transform

In this section we describe another method for finding the solutions of a class
of differential equations in R. The method is based on the Laplace transform,
and we consider equations of the form

2™ ta, 2™V o pagr” + ara’ 4 agr = f(t), (6.34)

with ag,a1,...,a,_1 €R, for some nonzero function f in R = [0, +00).
We first introduce the notion of Laplace transform. To this effect, we con-
sider the family F of all functions f: Rj — R such that:
1. f has at most finitely many discontinuities;
2. f has left-sided and right-sided limits at all points of Rg‘.

Definition 6.21

Given a function f € F, we define the Laplace transform F of f by

F(z)= /OO e f(t)dt (6.35)

0

for each z € C such that the integral is well defined. We also write F' = Lf.
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The improper integral in (6.35) is defined by

t/we_”f@ﬁﬁ: lim Re—”f@)ﬁ, (6.36)
0

R—o0 Jg

whenever the limit exists. We observe that since f has at most finitely many
discontinuities, for each R > 0 and z € C the function ¢ — e~ ** f(t) is Riemann-
integrable in the interval [0, R], and hence, each integral on the right-hand side
of (6.36) is well defined.

We note that

L(af4+bg)=aLf +bLg (6.37)

for every a,b € R, in the set where both Laplace transforms Lf and Lg are
defined. One can also consider functions f =wu +dv: Rf — C, and define

Lf=_Lu+iLv.

Then identity (6.37) holds for every a,b € C.

Example 6.22

For f =1 we have

oo R
(Lf)(z)z/ e ¥ dt = lim e % dt

0 R—o0 Jg
4y t=R _
) e tz ) 1—e Rz
= lim = lim ——,
R—oo —2Z =0 R— o0 z

and thus, (Lf)(z) =1/z for Rez > 0.

Example 6.23
For
0 iftelo,1],
t =
I {1 ift>1,
we have

o) R
(LA)(z)= / e ¥ dt= lim e dt
1

R—o0 Jq
_tz |t=R — —
) tz ) e % —e Rz
= lim = lim ,
R—oo0 —2Z =1 R—o00 z

and thus, (Lf)(z) =e */z for Rez > 0.
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Example 6.24

For f(t) =e" with a € C, we have

R
(Lf)(z)= lim e et dt
R—o0 Jg
eR(afz) -1
= lim
R—o0 a—=z

and thus, (Lf)(z) =1/(z —a) for Rez > Rea.

)

Example 6.25
For f(t) =cos(at) and g(t) =sin(at) with a € R, we have
(Lf)(z)= / e "% cos(at) dt
0
and

(Lg)(z) = /0Oo e~ sin(at) dt.

It follows from Example 6.24 that

e . 1
e—tzemt dt — .
0 zZ—1a

e—tze—zat dt =

and

S~

zZ+1a

for Rez > 0. Therefore,

:/ ? cos(at) dt
'Lat —iat
:/ +e et re
1 1 z
=_ 6.38
2(z—za+z—|—za> 22 4+ a? (6.38)
and
:/ ?sin(at) dt
7iat
_ / ey
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1 1 1 a
_— - - 6.39
2i<z—ia z—i—ia) 22 +a?’ (6.39)

also for Rez > 0.

The following result gives conditions for the existence of the Laplace trans-
form. Given ¢ > 0, we denote by F. the family of functions f € F for which
there exists D > 0 such that

|f(t)| < De, t>o0.

Theorem 6.26

If f € F., then the Laplace transform of f is defined and is holomorphic for
Rez > ¢, with

(Lf)(2) = — /0 et f (1) dt. (6.40)

Proof

For Rez > c¢ and R > r, we have

R R
/|e*”f(t)]dt§/ e tRez pect gt

_ t=R
et(c Rez)

c—Rez |,_,

eR(C—RC z) _ er(c—Rc z) Der(c—Rcz)

=D

%
c—Rez Rez—c¢

when R — +o00. Therefore, fOT” e f(t)dt is a Cauchy sequence whenever
rn /' 400, and thus, the Laplace transform of f is defined for Rez > c.

In order to show that F'= Lf is holomorphic, we consider the sequence of
functions

Fo(z) = / " ettt at.

0
We have
R -Gl =| [T s
Det(c—z) t=o0 Den(c—z)
<T=—| ==

)
2 z—c
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and thus, (F),), is uniformly convergent to F' on the set {z € C:Rez > a},
for each a > ¢. Now we show that each function F), is holomorphic. We first
observe that there exists C' > 1 such that

le™* =1+ 2| <|2* (e "% + |2| + C) (6.41)
for every z € C. Indeed, it follows from

LoeF=—142z 1
lim ———=—
z—0 Z2 2

that there exists C' > 1 such that
le™ =1+ 2] <Clz]* < |2*(e7 "% + |2| + C)
for |z| <1. On the other hand, for |z| > 1, we have
le™" —1+z| <e R+ 2|+ 1< [z (e % + |2 4+ O).

Given € > 0, it follows from (6.41) that

e M1
— t‘ < |h|e? (e~ BeMt 4 |nt| + C)

< |h|t? (e + et + C)
for |h| < e. Hence,

_ n n —th __
‘Fn(Z—Fh})L Fn(z)+/0 Ze—t2f<t)dt‘:/0 (%+t>€_tzf(t)dt‘

< |h| /n e +et+C)|e ™ f(t)]dt
’ (6.42)

for |h| < e. Letting h — 0 we obtain

Fl(z)=— /On te” " f(t)dt,

and in particular the function F,, is holomorphic. It then follows from Theo-
rem 4.20 that F' is holomorphic for Rez > a, for each a > ¢, and hence, also for
Re z > ¢. Moreover, letting n — oo and then h — 0 in (6.42), since ¢ is arbitrary,
we obtain identity (6.40) for Rez > c. O

Now we show that under sufficiently general conditions, it is possible to
recover the function originating a given Laplace transform. In other words,
there exists the inverse of the Laplace transform.
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Theorem 6.27

If f €T, is of class C*, then for each t € Rt we have

f(t)= lim L/ e"*(Lf)(2)dz, (6.43)

R—o0 271

where the path yg: [-R, R] — C is given by yr(y) =« + iy for any x > c.

More generally, we have the following result.

Theorem 6.28

Given f € F, and t € RT, if there exist C,d > 0 such that
F(w) = F(8)] < Clu—1] (6.44)

for u € (t — §,t + ) NIRRT, then identity (6.43) holds.

Proof

For each = > ¢, we have

(LA tin) = [ e ) du
Since f € F., we also have
|e(t7“)(z+iy)f(u)| < =W Dt = petele—2)u,
Hence,

R 0 ]
/ / ‘e(t_“)($+’y)f(u)‘ dudy < oo
-rJo

for each x > ¢ and R > 0. By Fubini’s theorem, we then obtain
R ) R oo )
/ @ (L) (z + iy) dy = / / =@+ £ () du dy
-RrJo

-R
0o R )
:em/ e_“””f(u)/ el(t_“)ydydu
0

-R
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e8] ei(t—u)R _ e—i(t—u)R
=el” / e " f(u) - du
0 i(t—u)

_ etw Ooe—uw u Sin[(t_u)R] ”
=2 /0 fw)————du.  (645)

Now we establish an auxiliary result, which is of independent interest.
A function h: I — R in a bounded or unbounded interval I C R is called abso-
lutely Riemann-integrable (in I) if h is Riemann-integrable in I and [, |h| < co.
We note that in bounded intervals any Riemann-integrable function is also
absolutely Riemann-integrable.

Lemma 6.29 (Riemann—Lebesgue lemma)

If h: I — R is an absolutely Riemann-integrable function in an interval I, then

lim [ h(u)cos(tu)du= lim [ h(u)sin(tu)du = 0. (6.46)

t—+oo I t—+oo I

Proof of the lemma

We only consider the sine function, since the argument for the cosine is entirely
analogous. We first assume that h is a step function in a bounded interval,
that is,

N
h=>_cixi,
=1

for some constants c¢; € R, where the intervals I; form a partition of the inter-

val I, and where
1 ifuel;,
le(u): . ’
0 ifugl;.

Setting I; = [a;,b;], we obtain

N b
/h(u) sin(tu) du = ch/ sin(tu) du
I j=1 7
N
_ ch cos(ta;) ; cos(tb;) -0 (6.47)
j=1

when t — +00. Now let h be an absolutely Riemann-integrable function in a
bounded interval I. Given § > 0, there exists a step function g: I — R such
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that

/|h—g|<(5.
I

/[h(u) — g(u)] sin(tw) du

I

We have

< +

/ h(u)sin(tu) du

I

/ g(u) sin(tu) du

1

< [n=ai+| [ stw)sinten)

Since g is a step function, it follows from (6.47) that

lim [ g(u)sin(tu)du=0,

t——+oo I
and thus,
/h(u) sin(tu) du| < 29
I
for any is sufficiently large t. Since § is arbitrary, we conclude that
t_lgnoo f h(u)sin(tu) du = 0. (6.48)

Now we assume that I is unbounded. Since h is absolutely Riemann-
integrable, given 0 > 0, there exists a bounded interval J C I such that

fI\J |h] < 8. Therefore,
+f
nJ

+4.

<

/ h(u) sin(tu) du

I

/ h(u)sin(tu) du
J

<

/J h(u)sin(tu) du

On the other hand, it follows from (6.48) with I replaced by J that

lim h(u)sin(tu) du =0,

t——+o0 J

and since ¢ is arbitrary, we conclude that identity (6.48) holds. O

Now we divide the last integral in (6.45) into three integrals, namely over
the intervals [0, — 4], [t —d,t+ 6] and [t + 6, +00). We observe that the function
e " f(u)

o)==
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is absolutely Riemann-integrable in [0,¢ — d] and [t + J,+00), because it is
continuous and

De(cfx)u
t—ul -

[A(u)] <
Moreover, since
sin[(t — u)R] =sin(tR) cos(uR) — cos(tR) sin(uR),

it follows from (6.46) that
t—4& o

lim h(u)sin[(t — u)R] du= lim h(u)sin[(t —u)R] du=0. (6.49)
R—o0 J R—oo Jiits

On the other hand, by (6.44), we have
e fu) =™ f(t)| < e[ f(u) = F(O) + [e7" — e | £ (1)]
< T C Y — t] + 2T f(8)] - u -t

< (C+alfO)])u—1
for each w € (t — 0,t +0), with ¢ — > 0. Writing K = C + z|f(t)|, we obtain

sin[(t — u)R)
t—u

t4-6
/t [e™" fu) — e~ £ (1)

du‘
—4
t+o
§K/ ‘sin[(t—u)R”dquKd.
t—5

Hence, making the change of variables v = (¢t — u)R yields

R ginw

dv

/t ) sin[(t — )R] du— e~ £ (1) /

s —§R U

<2K6.

By Example 4.51, we have

and thus,

/t+6 h(u)sin[(t —u)R] du— e " f(t)m| < 3K§ (6.50)
t—5
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for any sufficiently large R. On the other hand, given 6 > 0, it follows from
(6.45) and (6.49) that

R ‘ t+6
‘/ et TTW (L) (2 + iy) dy — 2€!* / h(u) sin[(t — u)R] du
—R t—9
t—4& )
=2¢ /0 h(u)sin[(t — u)R] du + /t+6 h(u)sin[(t — u)R] du| <&

for any sufficiently large R. By (6.50), we obtain
R .
’ / @ (L) (2 + iy) dy — 27 f(t)‘ <5+ 6Kde',
-R

again for any sufficiently large R. Letting R — +o00 and then § — 0, we conclude
that

/°° ) (L) (x + iy) dy = 27 f (1),

—o0
which is equivalent to

R

lim [ "W F(yr(y))vR(y) dy = 2mif (D).
R—o0 —R
This yields the desired statement. O

Sometimes it is possible to use the Residue theorem to recover a function f
from its Laplace transform. We establish a particular result which is sufficient
for the applications to differential equations of the form (6.34).

Theorem 6.30

Given a function f € F, of class C', we assume that:
1. Lf is meromorphic and has a finite number of poles;
2. there exist constants K,b, R > 0 such that

’(Lf)(z)‘ gK/|z|b for |z| > R.
Then, for each t € RT, we have

f(#)=> Res(Gy,p), (6.51)

pEA

where Gi(z) =e'*(Lf)(z), and where A is the set of poles of Lf.
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Proof

By Theorem 6.27, there exists the inverse of the Laplace transform. It is thus
sufficient to show that if g: Rar — R is the function given by the right-hand
side of (6.51), then Lg= Lf for Rez > c.

Given a > ¢, let vt and v, be closed piecewise regular paths looping once
in the positive direction respectively on the boundaries of the sets

B,.(0)Nn{z€C:Rez>a}
and

B,.(0)n{ze€C:Rez<a}

(see Figure 6.1). By Theorem 4.48, for any sufficiently large r, we have

.

A

", BN

Y
Y

7

Figure 6.1 Paths v, and ~

1
t)= g Res(Gy,p) = 5 /7 e F(w) dw,
2!

peEA

r

where F'= Lf. On the other hand, by Proposition 3.34, for Re z > a we have

(Lg)(2) :7hm/ / e F(w) dw dt

271 R—o0

= — 1m/ / et W =2) qt dw
271 R—o0
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R('w z) _
=— lim / w
271 R—oo o Cw—2z
1 F(
=—— (w) dw,
211 N W2

since

|€R(wfz)| — eR(RcwfI{cz) < eR(achz) =0

when R — +o00. It then follows from Theorem 2.60 that

(Lg)(= (/ F_Zd —I—/;r%dw)%—F(z)

:_L/ de+p(z)7 (6.52)

21 w—z
-

where the path ,.: [0,27] — C is given by ~,(§) = re®. Indeed, the integrals
along the segments of 7,~ and ~," in the straight line Rez = a cancel out. On

the other hand,
/ F(w) dw‘ < 2nrK 0
T

W=z b(r —|z])
when r — +o00, and thus, it follows from (6.52) that Lg = Lf for Rez > a.
Letting a — ¢ we obtain the desired result. (I
Example 6.31
Let
F(z)= 1

(z—=2)(z—4)(z—5)

be the Laplace transform of a function f of class C'. By Theorem 6.30, we
have

3
= ZReS(Gt,p)
p=1

etz

(=42 -5)

v (2-2)(z=5) [,y (2=2)(z—4) ],

1 1 1
_ 662t _ §e4t+§€5t.

Now we start studying the relation between the Laplace transform and
differential equations of the form (6.34).
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Proposition 6.32

If f/ € F,, then

L(f)(z)=z(Lf)(z) — f(0F), Rez>c. (6.53)

Proof

Since f’ € F., we have

+ t u u
|f(t)|§‘f(0 )+/O f(u)d

<|507)|+ [ Deran
0
= 1709+ 2 =1 < (7)1 + 2 e

and thus f € F.. We then obtain

. —Rz . ——
= g (7S R) = f(07)) 42 Jim TS (1) db
—F(0%) + (L))
for Re z > c. This yields the desired identity. O

Example 6.33

Now we consider the second derivative. If f” € F., then one can use Proposi-
tion 6.32 twice to obtain

L(f")(2) = 22(Lf)(2) = 2f (0F) = f'(0F), Rez>ec. (6.54)
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Indeed, taking g = f/ we obtain
L(f")(2)=L(g')(2) = zL(g)(2) — g(0")
=2L(f')(2) = £'(07)
LD - £(09)] - 1/(07)
=2*(Lf)(z) — zf(07) — f'(0T).

Example 6.34

Let us consider the equation
2" — 6z’ + 8z =™

with the conditions z(0) =0 and z'(0) = 0. It follows from (6.53) and (6.54)
that if X = Lz, then

and

Therefore,
L(2" — 62’ +8z)(z) = 2°X(2) — 62X (2) + 8X (2)
= (2* =62+ 8)X(2).

By Example 6.24, we have

and hence,

 (2—5)(22 —62+38)
1
(2—=2)(z—4)(2—5)’

Since the solution z(t) is of class C?, it follows from Example 6.31 that

1 1 1
z(t) = Ee2t — §e4t + §e5t.
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Alternatively, one could note that

1 1 1 1 1 1
X = — —_ = —
=527 27-1%3:-5
1 1
:L -2t 4t
(66 ¢ +3e )(z)

We also describe some additional properties that are useful in computing
the Laplace transform.

Proposition 6.35

If f € JF., then:
1. for the function g(t) = e f(t), with a € R, we have

(Lg)(z) = (Lf)(z —a), Rez>a+g
2. for the function g(¢) = —¢f(t), we have

(Lg)(2) = (Lf)'(2), Rez>c.

Proof

In the first property, we have g € F,4. and
L)) = [ e et sar
0
o0
= [ et ey d= (L) ),
0

The second property follows immediately from (6.40). |

Example 6.36

For f(t) =e3 and g(t) = —te3', we have

(L)) =0 = (5) =g

z —

For f(t) =sint and g(t) = —tsint, we have

(L9 = ') = (- )’:_( 2

2241 22 41)2°
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Example 6.37
For f(t) = cos(7t) and g(t) = e cos(7t), we have
z—5

Lg)(2) = (Lf)(z =) = ———>

(L)) = (LN =9) = g
Example 6.38
Now we consider the equation

z" +x = cost (6.55)

with the conditions z(0) =0 and 2’(0) = 1. Taking X = Lz, we obtain
L(z")(z) = 2°X(2) — zz(0) — 2/(0) = 2> X (2) — 1
and
L(z"+2)(2) = (2 +1)X(z) — L.
It follows from (6.55) that

(+1)X(z2) 1= ——,

and hence,

1 z
X =
i N N e

1 1/ 1\ L
_,22——%-1_§<Z2——|-1> _L<smt+ itsmt)(z).

Thus, the solution of the problem is

. 1, .
z(t) =sint + itsmt.

6.5 Solved Problems and Exercises

Problem 6.1
Find a differentiable function ¢ = (¢, x) such that

b, . ob
iy 3x“+ (t+1)e* and e 6t
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Solution

It follows from the second equation that
&(t,x) = 32t + O(t)

for some differentiable function C. Hence,

aa—f =322 4+ C'(t) =32 + (t + 1)e',

and we obtain
C'(t)=(t+1)e".

Thus, one can take C(t) =te', and hence, @(t,x) = 3z%t + te’.

Problem 6.2

Find the solution of the equation
2’ = (14 27) cost

with (0) =0.

Solution

We write the equation in the form

/

14 22

= cost.

Since (tan~!x)’ =a’/(1 + 2?), integrating on both sides we obtain
tan~!z(t) =sint + ¢
for some constant ¢ € R. Thus, the solutions of the equation are given by
x(t) =tan(sint +c¢) forteR,

with ¢ € R. Taking ¢t =0, we obtain z(0) = tanc = 0. Hence, ¢ =0, and the
solution of the problem is z(¢) = tansint for ¢ € R.
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Problem 6.3
Verify that if

@@@zé}@@—épwm%

where f and ¢ are continuous functions, and x(t) is a solution of the equation
¥ = g(t)/ f(z), then

d
E@(t@(t)) =0.

Solution

Using the chain rule, we obtain

L (t,2(t)) = g(t) — F(x(t)2' (1)

dt
=g(t) = f(2(t))g(t)/ f (2(1)) =0,

since z(t) is a solution of the equation &’ = g(t)/f(x).

Problem 6.4

Find all solutions of the equation

-2t + (2° +22)2’ = 0. (6.56)

Solution
By Theorem 6.5, since the functions —2t and z3 + 2z are of class C*!, and

0 o, .
—(—2t) = — (2> +22) =0
5z 2= (v +22) =0,
the equation is exact. Hence, there exists a differentiable function ¢ = &(t,x)
such that
0P 0P
a0 =—-2¢t and o =% + 22,
By the first equation, we have &(t,z) = —t% + C(x) for some differentiable
function C, and thus,

0P , 3
. C'(zx)=a" 42z
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Hence, one can take C(z) =z*/4 + 22, and
2o L4, 2
d(t,x)=—t —|—Zx + z=.
Therefore, by Proposition 6.3, each solution of equation (6.56) satisfies
2, L4 o
-+ -2 "+ =c
4
for some constant ¢ € R. Letting 22 =y, we obtain
y2+4y74(t2+0) =0,

which yields

—44 /16 + 16(£2 + ¢)
y:

5 =-242¢/1+c+t2.

Since y = 22, one must take the + sign, and thus,
x(t) zj:\/—2+2\/1+c+t2.

Each solution is defined whenever

l+c+t2>0 and V14c+t2>1,

and thus, when t? > —c. Hence, the maximal interval is R for ¢ > 0, it is R*
or R~ for ¢ =0, and, finally, it is (—oo, —v/—c¢) or (v/—c¢,+0) for ¢ < 0.

Problem 6.5

Verify that the equation
=2tz + (2" +22%)2' =0 (6.57)

is reducible to exact and find an integrating factor.

Solution
Let
M(t,z) =2tz and N(t,z)=a2"+ 223

Since
oM ON

=-2t—0=-2t#0
oz ot 70,
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the equation is not exact. However, by Proposition 6.9, since

1 (OM ONY 1

M\ o9z ot) =
does not depend on ¢, there exists an integrating factor p = u(z). It satisfies
the equation

1 fOM ON
MI:_M((()I N &)“’ (6.58)
that is, p' = —(1/x)p. Since
T4 1
] £ __Z-
(log |l) =T

we obtain
log|u(x)| = — log |z + ¢

for some constant ¢ € R. Hence, a solution of equation (6.58) is for exam-
ple p(x) =1/ (this corresponds to taking ¢ = 0). Multiplying equation (6.57)
by u(x), we obtain the exact equation

—2t + (:c3 + 2x2)x’ =0.

Problem 6.6
Solve the equation

z" — 62"+ 9z =0. (6.59)

Solution

Since A2 — 6\ + 9 = (A — 3)2, equation (6.59) can be written in the form (D —
3)2z = 0. By Proposition 6.13, the solutions of equation (6.59) are given by

z(t) = c1e3 + cote® for t € R,

with ¢q1,c0 € R.

Problem 6.7

Solve the equation
2" + 22 =0. (6.60)
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Solution
We write the equation in the form
(D?+2)z = (D —iV2)(D +iv2)z =0.
By Proposition 6.16, the solutions of equation (6.60) are given by
x(t) = c1 cos(V2t) + cosin(v/2t)  for t € R,

with ¢1,co € R.

Problem 6.8
Solve the equation

(D+1)(D*+1)z=0. (6.61)

Solution

We first consider separately the equations

(D+1)z=0 and (D*+1)z=0,

t and by cost and
sint. Proceeding as in Example 6.18, we find that the space of solutions of
equation (6.61) is generated by these three functions, and thus the solutions
are given by

which have spaces of solutions generated respectively by e~

2(t) =cre ' +cycost +ezsint  for t € R,

with ¢1,c2,c3 €R.

Problem 6.9
Solve the equation

o +4x =€’ (6.62)

Solution

We write equation (6.62) in the form

(D +4)z=¢". (6.63)
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Since
(D —1)e' = De! — €' =0,
it follows from (6.63) that
(D—-1)(D*+4)z =0,

that is,
(D —1)(D —2i)(D + 2i)x = 0.

In an analogous manner to that in Problem 6.8, the solutions of this equation
are given by

x(t) = cre’ + cacos(2t) + c3sin(2t) for t € R,

with ¢, c2,c3 € R. However, not all of these functions are necessarily solutions
of equation (6.62). Substituting z(t) in (6.62), we obtain

(D2 + 4)x = (D2 + 4) (clet) =e!,
since cg cos(2t) + c3sin(2t) is a solution of the equation (D? + 4)z = 0. Hence,
(D2 + 4) (clet) =ciet +4cet = ¢,

and thus, 5¢; = 1, that is, ¢ = 1/5. Therefore, the solutions of equation (6.62)
are given by

1
z(t) = get + cpcos(2t) + c3sin(2t)  for t € R,

with cg,c3 € R.

Problem 6.10
Solve the equation

a2 — 9z = cost. (6.64)

Solution

We write equation (6.64) in the form (D? — 9)x = cost, that is,

(D —3)(D + 3)x = cost. (6.65)
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Now we observe that
(D —i)(D +1i)cost = (D*+1) cost = —cost + cost = 0,
and thus, it follows from (6.65) that
(D—49)(D+4)(D-3)(D+3)z=0.

Proceeding as in Problem 6.8, we find that the solutions of this equation are
given by

z(t) = 13 + cpe 3 4 egcost + eqsint  for t €R,
with ¢1, 2, ¢3,c4 € R. Substituting x(t) in (6.64), we obtain
(D* = 9)z = (D* - 9)(cscost + cysint),

3t is a solution of the equation (D? —9)z = 0. Hence,

since ¢1€3t + cqe”
(D2 — 9) (cscost + cysint) = —10c3 cost — 10cy sint = cost,

and thus, c¢3 = —1/10 and ¢4 = 0. Therefore, the solutions of equation (6.64)
are given by

1
z(t) = c1e + cpe " — T cost forteR,

with ¢1,c0 € R.

Problem 6.11

Find all nonconstant periodic solutions of the equation

" — 52" +6=0. (6.66)

Solution

We write the equation in the form (D? — 5D)x = —6. Since D(—6) =0, we
obtain

D(D?-5D)z =0,

or equivalently, D?(D — 5)x = 0. The solutions of this equation are given by

z(t)=c1 + cat + c3e®  for t € R,
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with ¢1, g, c3 € R. Substituting x(t) in (6.66), we obtain
(D2 — 5D)x = 25¢3e%" — Bey — 25¢5e5t = —5ey = —6,

and thus, co = 6/5. Therefore, the solutions of equation (6.66) are given by
6 5t
z(t)=c1+ 57&—1—036 for t e R,

with c¢1,c3 € R. In particular, all periodic solutions are constant.

Problem 6.12
Consider the equation
(D—1)(D*— 1)z =h(t). (6.67)

1. Find all solutions for h(t) =0.
2. Find all solutions for h(t) =e~* such that z(0) =z’(0) = 0.
3. Find all solutions for h(t) =0 such that z(t) = x(—t) for every t € R.

Solution
1. We have
(D-1)(D? -1)z= (D - 1)*(D+ 1)z,
and thus, the solutions of equation (6.67) for h(t) =0 are given by
x(t) = ae’ +bte' +cet for t R, (6.68)

with a,b,c € R.
2. Applying D + 1 to the equation

(D-1)?*D+1)z=c"" (6.69)
yields
(D-1)2*D+1)*x=0,
which has the solutions
z(t) = ae' +bte' +ce P +dte™t for t €R,
with a,b,¢,d € R. Substituting z(t) in (6.69), we obtain

(D—1)*(D+1)(dte™") =€,
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that is, 4de~* = e~'. Hence, d = 1/4. Moreover, since z(0) = 2'(0) =0, we
must have

1
a+c=0 and a—i—b—c—l—Z:O.

We thus obtain b = —2a — 1/4 and ¢ = —a, and the solutions of equa-
tion (6.67) for h(t) =e" are given by

1 1
z(t) = ae’ — (2(1 + Z)tet —ae '+ Zte_t for t e R,

with a € R.
3. By (6.68), the condition x(t) = z(—t) is equivalent to

ae’ +bte' +ce t =ae ! —btet + cel,
which yields
(a—c)e' +bte! —bte ™" + (c —a)e™" =0.
Hence, a = ¢ and b= 0. The desired solutions are thus
z(t)=a(e +e77)

for t € R, with a € R.

Problem 6.13

Consider the equation
(D?+1)(D + 1)z = h(t). (6.70)

1. Find all solutions for h(t) =0.
2. Find all solutions for h(t) =0 having a limit when ¢t — +o0.
3. Find all solutions for h(t) =t such that z'(0) = 0.

Solution

1. The roots of the polynomial (A\? 4+ 1)(A+ 1) are i, —i and —1, and thus,
the solutions of equation (6.70) for h(t) =0 are given by

x(t) =acost + bsint +ce” ' fort €R, (6.71)

with a,b,c € R.
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2. Since the component ce™* in (6.71) has a limit when ¢ — +oo, in order to
determine whether z(t) has a limit when ¢ — 400, it remains to study the
component acost+ bsint. Since this is a nonconstant periodic function for
a# 0 or b# 0, we must take a = b= 0. Hence, the solutions of the equation
for h(t) = 0 having a limit when ¢ — 400 are the functions ce™*, with ¢ € R.

3. Applying D? to equation (6.70) for h(t) =t, we obtain

D*(D*+1)(D+ 1)z =0,
which has the solutions
x(t) =acost +bsint +ce " +dt+e forteR,

with a,b,c,d,e € R. Substituting z(¢) in equation (6.70) for h(t) =t, we
obtain

(D*+1)(D+1)(dt +e) = (D* +1)(d+dt +e)
—dt+ (d+e)=t
and thus, d=1 and e = —1. Hence,
z(t)=acost +bsint +ce '+t —1 forteR,
with a,b,c € R. Since
7'(t) = —asint + bcost — ce " + 1,

we have 2/(0) =b— ¢+ 1, and hence, ¢ =b+ 1. The desired solutions are
thus
z(t)=acost+bsint+ (b+1)e "+t —1 forteR,

with a,b € R.

Problem 6.14

Find the Laplace transform of the function

f(t) = cos(3t) + €' sin(4t).

Solution
Let f1(t) = cos(3t) and fa(t) =sin(4¢). It follows from (6.38) and (6.39) that

4

(Lfl)(/Z):Z2L and  (Lf2)(:) = 57

+9
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for Rez > 0. Hence, for the function f3(t) = e’sin(4t), we have
(Lf3)(2) :/ e '%el sin(4t) dt
0

z/ etV gin(4t) dt
0

4

=(LR)GE-1 =y

for Rez > 1. We then obtain

(Lf)(2) = (LAi)(2) + (Lfs3)(2)
z 4
R Y T;

for Rez > 1.

Problem 6.15

For each a,b € R, find the Laplace transform of the function

f(t) =te " + e cos? (bt).

Solution

Let f1(t) =e~t. By Example 6.24, we have (Lf1)(z) =1/(2+1) for Rez > —1.
Hence, for the function fo(t) =te !, it follows from Proposition 6.35 that

(Lf2)(2) = =(Lf1) (2) = (z+1)2

for Rez > —1. On the other hand, since

1+ cos(2bt)

2 —
cos”(bt) = 5 )

by Example 6.22 and (6.38), for the function f3(t) = cos?(bt) we have

1 z

(Bfs)(z) =32 + s

for Rez > 0. Hence, for the function f(t) = e cos?(bt), it follows from Propo-
sition 6.35 that
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(Lfa)(z) = (Lfs)(z —a)
1 zZ—a

2(z —a) + 2[(z — a)? + 4b?]

for Rez > a. We then obtain

(Lf)(2) = (Lf2)(2) + (Lfa)(2)
1 1 z—a
(z4+1)2 * 2(z—a) + 2[(z — a)? + 4b?]

for Rez > max{—1,a}.

Problem 6.16

Find the Laplace transform of the function

f(t):{t if t €10,1],

e?t ift>1.

Solution

We have

(LA)(z)= /1 te " dt + /00 e*et= qt

0 1

t t=1 1 1 R
=——e + —/ e % dt + lim et gt
z t=0 zJo R— o0 1
e 1 t=1 e(2—2)t |I=R
=— - = e '* + lim
z z t=0 R—oo 2—2z |,
e ? 1 e(2fz)R — 2%
=— — (e %=1 lim ——— —
z 22 (e )+ e z2—2 ’
and thus,
e ? 1 627z
L =— — (e =1)—
LHE) === S =1) -

for Rez > 2.
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Problem 6.17
Find the function f of class C'* whose Laplace transform is

1

)

Solution

We note that the function F' is meromorphic and has a finite number of poles.
Moreover, given R > 4, for each |z| > R we have

|2(z = 2)(z + 4)| > |2|(|z| — 2) (2] — 4)
> |2[(R—2)(R —4),

and thus,
1
(R—2)(R—4)[2|

|F(z)| <
By Theorem 6.30, we obtain

f(t) = Z ReS(Gtvp)a

peEA

where G(z) = e'*F(z), and where A is the set of poles of F'. Therefore,

f(t) =Res(Gy,0) + Res(Gy,2) + Res(Gy, —4)

B etz N etz N etz
(2-2)(z+4) o 2z+4)|,_, 2(z2-2)|,__,
_ L oo 4t

s T2 Tt

Problem 6.18

Use the Laplace transform to find the solution of the equation

2" — 5z’ +6z=e" with 2(0) =2'(0) =0. (6.72)

Solution

Letting X = Lx, we obtain
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and

Hence,

L(z" — 52’ + 62)(2) = 22X (2) — 52X (2) + 6X (2)
= (22 =52+ 6)X(2).

By Example 6.24, it follows from (6.72) that

(2 = 5246)X(2) =

z—1’
that is,

1 1
X(z)= (z—1)(22 =5z +6) - (z—1)(z—2)(2—3)°

Proceeding as in Problem 6.17, we then obtain

Alternatively, note that

1 1 +1 1
-2 2z-3

X(z) = z—1 =z
1 1
=L iet—e2t—|—563t)(z),

DN =

and thus again

1 1
z(t) = Eet —e?t §e3t.

Problem 6.19

Use the Laplace transform to find the solution of the equation

z” —x=sint with 2(0) =0 and 2/(0) = 1. (6.73)
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Solution
Letting X = Lx, we obtain
L(a")(2) = 22X (2) — z2(0) — 2/(0) = 22X (2) — 1,
and hence,
L(" —x)(z) = (* = 1)X(2) - 1
By (6.39), we have

L(sint)(z) = = ir T
and thus, it follows from (6.73) that
(2-1)X(z) - 1= %
22 +1
Hence,
X(z)= 221— 1t (22 + 1)1(22 -1)
1 1 1 1 1 1

z—l'z+1+z—1.z+1.z—i'z—|—i'

Proceeding as in Problem 6.17, we then obtain

etz etz
t p—
x() z+1 Z:1+z—1 R
N etz N etz
(z+D)(z—0)(z+10)|,_, (-—1(=—-i)(z+19)|,__,
N etz N etz
z+D)(z—=1)(2+19)|,_, E-1E+1D(z—19)|,__,
_3 P T | et — et
VA VE S WY
3, 3 _, sint
—3° Ty 2
Problem 6.20

Given continuous functions f,g: Rf — R, we define their convolution by

(f +g)(t /f ot —u)d
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Show that if
|f()],]9(t)] <ce™, teRg (6.74)

for some constants a,c > 0, then

L(f #g)(z) = (L)(=)(Lg)(2), Rez>a.

Solution

We have

(LF)(2)(Lg)(z) = / T et () e / et g(s) ds

:/ i / T e k02 (1) g(s) dt ds
0 0

for Rez > a. Letting t + s = 7, we obtain

(Lf)(= // e TFf(t)g(T —t)drdt.

By Fubini’s theorem, since the functions f and ¢ are continuous and sat-
isfy (6.74), one can interchange the order of integration in the last integral
(for Rez > a). Therefore,

(L) //—”f o(r —t)dtdr
:/0 e_”(/o f(t)g(7—t)dt> dr

/0 T e (f o g)(r) dr
L+ g)(2).

Problem 6.21

Verify that the function 1/t? does not have a Laplace transform.

Solution

For f(t) =1/t? we have

2

L= [ et g
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whenever the integral is well defined. Moreover,

eft Rez

2

and thus,

& 1 1
1 t 1t

for Rez > 0. Hence, the integral [~ e~'*/t>dt is well defined for Rez > 0. On
the other hand, for x € R we have

! 1 b
/ e_t””t—2 dtzmin{l,e_””}/ t—zdt:—i—oo7
0 0

and thus, the integral fol e~ /t2 dt is not defined for Rez > ¢, for any c. This
shows that the Laplace transform of 1/¢? does not exist.

EXERCISES

6.1. Find all solutions of the equation:
(a) 2" +a2' —x=0;
(b) 2O — a2’ =0.
6.2. Solve the equation:
(a) 2" — 22’ + =0 with 2(0) =0 and z'(0) = 2;
(b) 3 —2’ =0 with 2(0) = 2’(0) =0 and 2”(0) = 3.
6.3. Find all solutions of the equation:
(a) (D+1)(D—2)x=¢e
(b) (D?+ 1)z = cost;
(c) (D*+4)z=t;
(d) (D*+2D + 1)z = 2t + cost;
(e) (D?+2D?)x = cost.
6.4. Solve the equation:
(a) 2" + x = cost with x(0) = 2'(0)
(b) 2" —4x =t with (0) =1 and 2/(0) =2;
(c) 2" — 2 =tet with 2(0) = 2/(0) = 0;
(d) 2"+ 2 =et —sint with 2(0) = 2/(
6.5. Consider the equation

o -
=
Il
—_

(3t°2% +t) + (¢ + 1) a2’ = 0.
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6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

6.14.

N o~

b) Find an integrating factor.
c) Find as explicitly as possible the solution with z(0) = 1.

—

a) Verify that it is not exact.
1

olve the equation:

a) cosz — tsinza’ =0;

b) x+ z2' =0;

¢) 1—2tsinz —t?cosza’ =0 with z(2) = 7/6;
)

)

—~ —~

T~

d) (2 — )z’ =2cos(4t) with z(0) = 0;
(1 — )z’ =sin(2t) with x(0) = 0;

@

f) 2tza’ =t + 2% with 2(1) = 1;
) 22?2’ =12 + 1 with (1) = 1.

how that the equation

Ula/—\/—\

z® +trlogz + (12 +tzlogt)a’ =0

has an integrating factor of the form pu(tz).

Find all solutions of the equation z” — 2z’ + x = 0 satisfying the

condition z(0) 4+ z(1) = 0.

Find all bounded solutions of the equation:

(a) 2™ + 2’ =0;

(b) 2" —2' —x=0.

Consider the equation (D? +4)(D + 2)x = h(t).

(a) Find all solutions for A(t) =0.

(b) Find all solutions for h(t) =1 such that z’(0) = 4.

(¢) Find all bounded solutions for h(t) =

Find all solutions of the equation "/ — 2’ — 62 = 0 that are bounded

for t > 0.

Identify each statement as true or false.

(a) The equation z” 4+ 2’ =0 has nonconstant periodic solutions.

(b) The equation ' = 6tv/22 has more than one solution with
2(0)=0.

Find whether the equation z'”’x = 2”2’ has solutions for which " /x

is bounded. Hint: note that (z/z) = (2"'x — 2"2") /2>.

Consider the equation

o' =p(t)a® +q(t)z +r(t),

where p,q and r are continuous functions with p # 0.
(a) Verity that if 2(¢) is a solution, then the function y(¢) = p(t)z(t)
satisfies the equation

¥ =y +Qt)y+ R(t),
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where
_ P'(t) _
QO =a(t)+ L amd R =plo)r(e).
(b) Verify that the function z(t) = e~Y () where Y (¢) is a primitive
of y(t), satisfies the equation
2" — Q)2 + R(t)z =

6.15. Find the Laplace transform of the function:

( t2 t

(b) 2 cost

(c) t*sint;

(d) ¢t + e tcost

(e) etsin’t;

(f) te?tsin(3t);

(g) cos (3t) sin(2t);

(h) cos®t.
6.16. Find the function with Laplace transform:

( ) Z/(Z - 1)7

(b) (z+1)/(° = 1);

(€) (322 —1)/(* + 1)*;

(d) (322 +1)/[*(=* +1)7].
6.17. Find the Laplace transform of the solution of the equation

2" + 32"+ =cost with z(0) =0, 2/(0)=1.
6.18. Given f € J,. and n € N, show that
(LM (z) = (—1)"/ t"e " f(t)dt, Rez>c.
0

6.19. Under the assumptions of Problem 6.20, show that:

(@) frg=gxf.

(b) fx(g+h)=Frg+fxh.

(c) (fxg)xh=fx (g*h)
6.20. For the function g(t fo s)ds, show that

(Lf)(=)
(Lg)(2) = :
z

6.21. Show that if f is a T-periodic function, then

T
LHE) = T | e r @
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6.22.

6.23.

6.24.

6.25.

6.26.

6.27.

6.28.

Show that if g(t) = f(t) cosh(at), then

[(Lf)(z—a) + (Lf)(z +a)].

DN | =

(Lg)(z) =
Use the Laplace transform to find a function f such that
t
f(t)+/ f(s)ds=1.
0
Find all constant solutions of the equation
2 =x(r—1)(z—2).
Verify that the equation ' = z(x — 1)(z — 2) has bounded solutions

that are not constant.
Verify that if (x,y) = (x(t),y(t)) is a solution of the equation

z' =y,
y =a®+u,

%(%y(tf _ %x(t)3 - %x(tf) 0,

Given a function H: R? — R of class C*, verify that if

then

(z,y) = (x(t), (1))

is a solution of the equation

{m/ =0H /9y, (6.75)

y =—0H/0x,
then

EH(JJ(t), y(t)) =0.

=z,
y=-y—1,

find a function H(x,y) satisfying (6.75).

For the equation
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6.29.

6.30.

6.31.

For the equation
' =% —22%y,
Y = —2xy + 2y,

find a function H(z,y) satisfying (6.75).
Verify that the image of each solution of the equation

r_
r =Y,
Yy =—x
is a circle or a point.

Verify that the image of each solution of the equation

' =y,
y =z

is a branch of a hyperbola, a ray, or a point.
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Fourier Series

In this chapter we introduce the notion of Fourier series of a given function.
In particular, we study the convergence as well as the uniform convergence
of Fourier series. We also show how to expand a sufficiently regular function
as a series of cosines and as a series of sines. As a by-product of the theory,
we obtain several identities expressing m and other numbers as series of real

numbers.

7.1 An Example

As a motivation for the study of Fourier series, we consider the heat equation

ou 0%u

e 1

ot " ox?’ (7.1)
for t >0 and z € [0,1], with s, > 0. This equation models the evolution of
the temperature u(t,z) at time ¢ and at each point x of a bar of length . We
assume that

u(t,0) =wu(t,l)=0, t>0. (7.2)
L. Barreira, C. Valls, Complex Analysis and Differential Equations, 333
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This means that the endpoints of the bar are kept permanently at zero tem-
perature. We first look for solutions of the form

u(t,z) =T ()X (x).

This is the first step of the method of separation of variables.

Proposition 7.1

If TX does not vanish, then there exists A € R such that

T'=—MeT and X" +AX =0. (7.3)

Proof

Substituting u(¢,z) =T(t) X (x) in (7.1), we obtain

T'X=xrTX",
and thus,
TI XI/
WX (74)

since T'X does not vanish. We note that the left-hand side of (7.4) does not
depend on z and that the right-hand side does not depend on t. Hence, there
exists a constant A € R such that

T/ X//
—_— — = —)\
kT X
for every ¢t and z. This yields the desired identities. (]

The solutions of the first equation in (7.3) are given by
T(t) = ce™ M, (7.5)
with ¢# 0 (so that T'# 0). On the other hand, it follows from (7.2) that
THX0)=T#)X(1)=0 fort>0,

which in view of (7.5) is equivalent to
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Hence, it remains to solve the problem

X" +AX=0, X(0)=X()=0. (7.6)

Proposition 7.2
Problem (7.6) has nonzero solutions if and only if A = n?72/I? for some n € N,

in which case

X(z)= bsin(?), with b # 0. (7.7)

Proof

We consider three cases.
1. When A =0, we have X" =0, and thus,

X(z)=a+ bz, (7.8)

with a,b € R. It follows from X (0) =0 that a =0. Thus, X(I) =bl =0,
which yields =0 and X (z) =0.
2. When A < 0, the solutions of the equation

X" 42X = (D24 \)X = (D — /\) (D + VN X =0
are given by
X(x) = aeVNT L pemVIXT, (7.9)
with a,b € R. Tt follows from X (0) =0 that a +b=0. Hence,

X (1) =a(eVPl - VI —g, (7.10)

Since /|All > 0, we have VIS 1 and e VI < 1. Thus, it follows
from (7.10) that a =0, which yields b=0 and X (x)=0.
3. When A > 0, the solutions of the equation

X"+AX=(D*+N)X=0
are given by
X () = acos(Vx) + bsin(VAz), (7.11)

with a,b € R. It follows from X(0) =0 that a = 0. Hence, X(I) =
bsin(v/Al) = 0. Therefore, b= 0 (which would give X = 0), or

sin(vVAl) = 0. (7.12)
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It follows from (7.12) that v/Xl = nr for some n € N (we recall that A > 0),
that is,

We thus obtain the solutions in (7.7).
This completes the proof of the proposition. O

Combining (7.5) and (7.7), we obtain the solutions of the heat equation (7.1)
given by

u(t,x) = Cne_”Q"'z"‘t/l? sin(%ﬂ) , (7.13)

with n € N and ¢,, € R. We note that all of them satisfy condition (7.2).
The solutions of the heat equation have the following property.

Proposition 7.3

If u; and us are solutions of equation (7.1), then ¢yu; + caus is also a solution of
equation (7.1) for each ¢y, co € R. Moreover, if u; and usg satisfy condition (7.2),
then cyuy + coug also satisfies condition (7.2) for each ¢p,c5 €R.

Proof
We have
0 0
a(clul + cous) =1 % + 62%
82’(1,1 + 821@
=Clh—— + Ck——
M 2 2N 02
32
= mﬁ(clul + cous),
which establishes the first property. The second property is immediate. (]

The following is an immediate consequence of (7.13) and Proposition 7.3.
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Proposition 7.4

For each N € N and ¢y,...,cy € R, the function

N
2_2 2 nmwx
t — » —n mikt/1% )
u(t,x) Zc e s1n<—l ) (7.14)
n=1
is a solution of equation (7.1) satisfying condition (7.2).
Now we make the additional assumption that
u(0,z) = f(x), x€]l0,1], (7.15)

for a given function f: [0,!] — R. For the solution in (7.14), it follows from
(7.15) that

w(0, ) :écnsm(?> = f(2), (7.16)

and thus, we would like to find constants ¢, such that the second identity
in (7.16) holds. For example, for

flx)= sin<ﬂl—x> + 2sin<37rTx),

1 ifn=1,
h=42 ifn=2,

0 otherwise,

one can take

and thus, the solution in (7.14) takes the form
U(t7 {17) = e_ﬂzmt/lz Sln(%ﬂj) + 26_9‘”2’“/12 Sln(gﬂ—Tx> .

Unfortunately, in general (that is, for an arbitrary function f), it is not possible
to find constants ¢, such that identity (7.16) holds. However, we verify in the
following sections that it is possible to find constants c, for a large class of
functions f, provided that one can take N = oo, that is, provided that one can
consider solutions given by series of the form

oo
““’x)::jzjcne_”Q”%“”2sn1(f?;E>.
n=1
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In particular, we will have to discuss the convergence of the series

(0, ) —Yicnsmclﬂ). (7.17)

7.2 Fourier Series

In this section we discuss the convergence of the series in (7.17). To this effect,
we first introduce a class of functions in the interval [—I,1].

Definition 7.5

Let D; be the family of functions f: [—I,!] — R such that:
1. f has at most finitely many discontinuities;
2. f has left-sided and right-sided limits at all points of [, {];
3. for each interval (a,b) C [—1,I] where the function f is continuous, the
(continuous) function g: [a,b] — R defined by

fla®) ifz=a,
g(x) =1 f(z) ifxe(a,b), (7.18)
F7) ifz=b

has left-sided and right-sided (finite) derivatives at all points of [a, b].

Now we define the Fourier coefficients.

Definition 7.6

Given a function f € D, we define its Fourier coefficients by

1/
Cln:j/ f(a:)cos(?)dx, neNU{0}
-l
and

1 l
bn=7/ f(x)sin(nlﬂ>dx, neN.
-1

We note that each function f € D; is Riemann-integrable, and thus, the
coefficients a,, and b,, are well defined.
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Definition 7.7

We define the Fourier series of a function f € D; by

=+ () ()]

whenever it converges.
The following result establishes the convergence of Fourier series.

Theorem 7.8

For each function f € D;, we have

fE)+ fa7)

F(z)= T for z € (—1,1), (7.19)
and
i -
F(z) = W for x € {~1,1}. (7.20)
Proof
The partial sums
Sp(z) = % + l [ak. cos(lmlr ) + by, bln(k7;z>:| (7.21)
k=1

satisfy

o rwa
L )l )
;/lf(y);COS(W) dy,
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where

n

kﬁ(y—f)) iy
cos[ —=—= ] =Re etk (y—2)/1
D) e

einm xz)/1
—”)/ im(y—2)/1
1 — eim(y—x)/1

( 7.7'r(y z)/(20) _ z(n+1/2)7‘r(y—z)/l>

e—im(y—z)/(2l) _ gin(y—=)/(21)

wr(y xz)/(21) _ez(n+1/2)7r(y z)/l
( “gisin(nly — )/ (2D) )

L sin((n +1/2)m(y — )/(20)
2 sin(m(y —x)/(20))

Letting

Dn(y) =

3

sin((n+ 1/2)7y/(21))
sin(my/(21))

/f —x)dy

=3 / -+ ), (0)dy, (7.22)
where the function g: R — R is given by
g(x) = f(z —2kl) (7.23)

when = — 2kl € [—1,]) for some k € Z. On the other hand, if f =1, then a, =
b, =0 for every n € N, and it follows from (7.21) and (7.22) that

one can then write

1 l
—1

Therefore,

S - L) H00) l/( ) - LEDE) 5

=3 [ o0 - o) Datw)ay

l
+ %/0 (g(y+x) _g(er))Dn(y) dy. (7.24)
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Now we use the Riemann-Lebesgue lemma (Lemma 6.29) to show that the
integrals in (7.24) converge to zero when n — co. For each y € [-1,0), we have

_gly+x)—g(a”) sin((n+1/2)my/(20))
y sin(my/(21))/y

We note that the function x: [—1,]] = R* given by

() = sin(my/(20))/y if y #0,
7/(20) if =0

(9(y+z)—g(z7))Dn(y)

is continuous. On the other hand, since f € Dy, the function ¢: [-,0] = R
given by
Wly) = (9y +2) —g(z™))/y ify#0,
g'(x7) ify=0
has at most finitely many discontinuities, and has left-sided and right-sided
limits at all points of [—[,0]. Hence, ¢ is Riemann-integrable in [—1,0] (it is
also absolutely Riemann-integrable, since the interval is bounded). The same
happens with the function h = /x, and thus, it follows from Lemma 6.29 that

/_ (o(y+2)=9(a7) Du o)y

_ /Ol h(y) sin(—(n + ;{2)”11) dy

0 0
/lh(y)sin(73> cos<n;y) dy+[l h(y) cos(Z?) Sin<n;y> dy—0

when n — co. One can show in an analogous manner that
!
lim [ (g(y+2)—g(z"))Dn(y)dy =0.

n— oo 0

It then follows from (7.24) that

g9(x") +g(x”)

Sp(x) = 5

(7.25)

when n — oco. Identity (7.19) follows immediately from (7.25), since g = f in
(=1,1). For z € {—1,1}, we note that

g(7) =g(=17) =f(I7) and g(I") =g(=1") = F(=1").
This establishes identity (7.20). O
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The following property is an immediate consequence of Theorem 7.8.

Proposition 7.9

If a function f € D; is continuous at a point z € (—1,1), then F(z) = f(x).

Now we give some examples.

Example 7.10

Let us consider the function

f(x):{o if —1<2<0,

2 fo<z<1.

Clearly, f € Dy. Taking [ =1, we have

1
= dr =2
ap [1 f(z)dx
and
1 1
L= do =2 da =0
a /_1 f(z) cos(nmz) dx /0 cos(nmx) dx

for n € N. We also have
1 1
by = / f(z)sin(nmz)de = 2/ sin(nma) da
—1 0

= %(1 — cos(nm)) = w

for n € N. Hence, the Fourier series of f is

Flz)=1+ Z W;_W sin((2m — 1)7z).

m=1

On the other hand, by Theorem 7.8, we have

Flz) = f(z) ifxe(-1,0)U(0,1),
1 ifare{-1,0,1}.

In particular, taking x = 1/2, we obtain

>, 4(—1)m"1 4 4 4
2=1+Z(2( i D .
m=1

— m—l)ﬂ_ T 3w bmw
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that is,

Example 7.11

Now we consider the function f:[—1,1] =R given by f(x)=|z|. Clearly,
f € Dy. Taking | =1, we have

1
aoz/ |z|de =1
—1

1 1
apn, = / |z| cos(nma) dax = 2/ x cos(nmz) dr
-1 0

and

1

—9 (x sin(nmz) N COS(nﬂ'a:)) o=

nmw (nm)?

=0
cos(nm) —1 _(=1)"—1
7

1
bn:/ |z| sin(nmz)de =0

for n € N. Hence, the Fourier series of f is

+ Z @m—1)? cos((?m —1)mx). (7.26)

m= 1

l\3|>—~

By Theorem 7.8, we have F(x) = |z| for every x € [—1,1]. In particular, taking
z =0, we obtain

that is,
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Example 7.12

Let us consider the function

f(x):{—m if —2<2<0,

1 ifo<z<2.

Clearly, f € Ds. Taking | =2, we have

1 2
ap 2[2f($) €z

2
an, = %/_2f(x)cos<n2ﬂ) dz
0

1 nwx 1 [? nwx
= —= zcos| — | dz + = cos| — | dx
2/, 2 2 Jo 2

and

() ma())
- gl - HC

for n € N. We also have

1 [? . [ nmx
bn:§/_2f(x)sm(7) dx
0

——1/ T sin nre dx—i—l/Qsin nre dxr
2/, 2 2 Jo 2

=0
1 1 "
=—(1+cos(nm)) = +(=D
nmw nm
for n € N. Therefore,
0 if n is even,
p =
—4/(n?7?) if n is odd,

and
0 if n is odd,
b, — { ifniso

2/(nm) if n is even.
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Hence, the Fourier series of f is

= —4 2m — 1)mx =1
F(x):1+zl(2m1)27r2ms(( 2) )—FZ%Sln(mwaj).

m=1

By Theorem 7.8, we have

3/2 ifx=-2o0rz=2,
—x if —2<2x <0,
1/2 itz=0,

1 ifo<z<2.

We also give a condition for the uniform convergence of a Fourier series.

Theorem 7.13

If f: [-1,]] = R is the restriction to the interval [—I,1] of a 2l-periodic function
g: R = R of class C', then the Fourier series of f converges uniformly to f
on [—1,1].

More generally, we have the following result.

Theorem 7.14

Let f: [-I,]] = R be a continuous function with f(—l) = f(I). If there exist
points —l =xg < x1 < -+ < &, = such that the restriction of f to (z;,z;y1)
has an extension of class C! to some open interval containing [z;,x;41], for
1=0,...,m — 1, then the Fourier series of f converges uniformly to f on the
interval [—1,1].

Proof

We note that f € D;, and we use the same notation as in the proof of Theo-
rem 7.8. Given € > 0 and x € [, (], we define a function h,: [-1,I]\ [-¢,¢] = R
by

gy +z)—g(x)

heW) = = Sty @)
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with ¢ as in (7.23). Writing k,, = (n + 1/2)7/(2l), we have

/ gy + ) — g()] Daly) dy

-l

- / N ha(y) sin(kny) dy

-1

ha (y) cos(kny)
kr

Yy=—¢ —e h/ kn
+/ b (y) cos(kny) ZOS( Y gy 0 (7.27)

y=—1 =l
when n — oo, uniformly in x on the interval (—I,—¢). One can also establish
an analogous result in the interval (£,1). On the other hand, it follows from the
hypotheses on f that there exists C' > 0 such that

|9y +2) —g(z)| <Cly| for y € [—e,e].

Hence,

\ [ lotv+) - ) Datw dy' < [l sy <¥E e

_. Jsin(my/ )] Y=

for any sufficiently small €, independently of z and n, since

Y 2l

lim ————— = —.
y50 sin(ry/(20)) 7
Given § > 0, let us take € > 0 such that 81Ce/m < §. By (7.27) and the analogous
result in the interval (g,1), there exists p € N such that
a=| [ o) —g@)] Dt s <
[_lvl]\[_‘E:a]
for n > p. It then follows from (7.28) that

’/zl [9(y+ ) — g(2)] Du(y) dy‘ < ‘/ [9(y +2) — g(2)] Dn(y) dy‘ +a <2,

also for n > p. Finally, since f(—I)= f(l) and

for every x € [—1,1], it follows from (7.24) that the convergence in (7.25) is
uniform on the interval [—I,1]. O
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Example 7.15

It follows from Theorem 7.14 that the Fourier series in (7.26) converges uni-
formly to |z| on the interval [—1,1].

7.3 Uniqueness and Orthogonality

In this section we establish some additional properties of Fourier series. In par-
ticular, we show that the Fourier coefficients uniquely determine the function
defining them.

We start with an auxiliary result.

Theorem 7.16

Given a function f € Dy, if all of its Fourier coefficients are zero, that is, if
an,=0 forn>0 and b,=0 forn>1, (7.29)

then f=0.

Proof

If f is not identically zero, then there exist 2o € (—1,1) and &, > 0 such that
|f(as)| >e forx €J:=(xg—0,z9+9).

Without loss of generality, we always assume that f has a single sign in J. Now
we consider the functions g, : [—I,I] = R given by

gn(x) = (1 + cos(—ﬂ(x ; xo)) - cos(?))n

for n € N. One can show that each g, is a linear combination of the functions

1, cos(m;m) sin<m;m>, m e N.

It then follows from (7.29) that
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On the other hand, g, (z) > 1 for z € J, and
|gn(@)| <1 for g J. (7.30)

Moreover, in the interval K = [xg — 6/2, 2z + §/2] we have

. r) 7o\ \"
Tlg}f{gn(x) =gn(zo£6/2) = (1+COS<21) _COS<T)) — 00

when n — oo, since cos(mwd/2l) > cos(mwd/l). Now we observe that

‘/ Z)gn(z)dz| <
=L\

On the other hand,
>| [ r@anto) o
K

> d¢ gcig}“(gn(:c) — 400

/yf )| da < +o0.

) gn () dx

when n — oo (because f has a single sign in J). Therefore,

z/_lf(a:)gn(:v)dx%—&—oo

when n — oo. This contradiction shows that f =0. ]

Theorem 7.16 implies that the Fourier coefficients uniquely determine the
function defining them.

Theorem 7.17

Given functions f,g € Dy, if f and g have the same Fourier coefficients, then

f=g9
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Proof

We note that all Fourier coefficients of f — g are zero. Indeed,

o [(0) = o) eos (T ) o

/f sm( )d —%/_llg(m)sin<$)dx:o

for n > 1. It then follows from Theorem 7.16 that f —g=0. ]

Now we briefly consider a different point of view about Fourier series. We
introduce an inner product in D; by

l
i [ f@s@ds

for each f,g € D;. It is easy to verify that this is indeed an inner product:
1. the functions f+— (f,g) and g— (f, g) are linear;
2. (f,fy>0,and (f, f) =0 if and only if f=0;
3. (f,9) =19, f)-

In particular, the Fourier series of a function f € D; can be written in the form

i (fyun) cos(Tx) —&—(]ﬂvn>sin<nliac)7

n=1

nwT . [(nmx
un:cos<T) and vn:mn(T).

Moreover, the norm of a function f € D; is defined by

1l = (. )12 = (/f dw)

Now we recall the notion of orthogonality.

l\')|*—‘

where
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Definition 7.18

Two functions f,g € D; are said to be orthogonal if (f,g) = 0.

Proposition 7.19

The functions
1
\/57

have norm 1 and are pairwise orthogonal.

Un, Up, NEN (7.31)

Proof

For each n,m € NU {0}, we have the identities
nmwa mrz\ 1 (n—m)mz 1 (n+m)rz
COS(T) COS(T) = 5 COS(f) + 5 COS(f s
. (nmx . (mrz) 1 (n—m)rx 1 (n+m)rz
sm(T> SID(T> =5 cos(f> —5 cos<f , (7.32)
cos| T ) sin [ T = 1 sin 4(71 +m)m 21 sin —(n —m)ma
l 1) 2 ! 2 ! '

Hence, integrating over x yields

1
/ cos(@) cos(@) dx =0,
—1

l
/ cos<nlﬂ) sin(@) dr=0
—1

for every n,m € NU {0} with n # m. This shows that the functions in (7.31)
are pairwise orthogonal. Moreover,

2 l
1 1

2 Zdp=1.
z/_l2 .

|
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It also follows from (7.32) with n =m € N that

cog2 [ T —l—l—lcos 2nmx
1) 2 2 l

and
sin2 [ T —l—lcos 2nmx
1) 2 2 1)
Therefore,
2 l
1 1 1
—| == der=1,
|l - /3
1 [
H%HQZ—/ cos2(@)d
lLJ_ l
N )
21 A4nrw l —
and
1
a2 =5 / sm2(@>d
N l
<x 1 ,(2n7rx)>m_l
=|—=—-—s:sin =1.
2l dnm l R
This completes the proof of the proposition. O

Theorem 7.16 can now be reformulated as follows.

Theorem 7.20
If f € D; is orthogonal to all functions in (7.31), then f=0.

We conclude this section with a discussion about the norm of a function.

Theorem 7.21 (Bessel's inequality)

For each f € D, we have

2 o0 !
ag 2 2 1 2
— < — . .
5 +n§:1(an +b2) < z /_lf(x) dx (7.33)
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Proof

We consider the sequence of partial sums

~ Lo () ()]

:<f,%>7+§:[ (fyun) cos( ﬁ) —|—<f,vn>sin<?)} (7.34)

It follows easily from Proposition 7.19 that
2 (2) - 2
1Smll* = 5 Z a? +b2) (7.35)

Now we show that f —.S,, is orthogonal to the functions

Indeed, if g is any of these functions, then by Proposition 7.19 and (7.34), we
obtain

(f = Sm,9) =(f.9) = (Sm,9)
=(f,9) = (f,9)=0.
It then follows from (7.35) that
1£1I2 = (f = S + Sy f = S+ Spn)
=1f = Swll* +2{f = S Sm) + [|Sml®
=|f — Smll* + IISmII2

=1f = Sml®+ 3+ _(an +07)
n=1
a .\ 2)
> 2:: a2 +0?%). (7.36)
Finally, letting m — 400 in (7.36), we obtain inequality (7.33). O

In fact, Bessel’s inequality is an identity. Here we consider only a particular
class of functions.
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Theorem 7.22 (Parseval's formula)

Let f: [=I,1] = R be a continuous function with f(—1) = f(I). If there exist
points —l =xg < x1 < -+ < Xy, = [ such that the restriction of f to (z;,z;y1)
has an extension of class C'! to some open interval containing [x;,z;41], for
1=0,.. — 1, then

1 oo
%/_lf(:vfda;:;) +3 (a2 +12). (7.37)

n=1

Proof

By Theorem 7.14, the Fourier series of f converges uniformly to f on the
interval [—1,[]; that is, if S,, are the partial sums in (7.34), then

lim sup |f(z)— Sm(ac)| =0.

M0 pe[—1,1]

On the other hand,

! 2
£ =Sl =7 [ [F@) = S(a)" do

<2 sup (|f(x)- Sm(x)’2>
zE[—lvl]

=2( swp |f() ~ Sn(a)])

ze[—1,0]

and it follows from (7.35) and (7.36) that

2 m
a
LFIZ = 1S 1 = 111 = 5 = > (an +57)
n=1
=lf = Smll*—0
when m — co. This establishes identity (7.37). O

7.4 Even and Odd Functions

In this section we consider the particular classes of even functions and odd
functions.
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Definition 7.23

A function f: [-I,]] = R is said to be even if
f(=z)=f(z) forevery x € [-11],

and it is said to be odd if

f(=x)=—f(z) forevery z€[-1,]l].

Example 7.24

The functions 1 and cos(nma /1) are even, while the function sin(nwz/1) is odd,

for each n € N.

Example 7.25

The function f(z) = |z| is even.

Example 7.26
The function f(x) =23 + 3z is odd.

We show that Fourier series of even functions are series of cosines, and that

Fourier series of odd functions are series of sines.

Proposition 7.27

For a function f € D;:
1. if f is even, then b, =0 for every n € N;
2. if f is odd, then a, =0 for every n € NU{0}.

Proof
We have

1 [ . [(nmx
:7/lf($)sm<T) dx

</f Sm( )‘”/f Sm( )dx) (7.39)
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Now we assume that f is even. Making the change of variables y = —z, we

obtain
[aa(E)on- f om( )
- /0 f(y)sin(@ﬁy.

Hence, it follows from (7.38) that b,, = 0. The second property can be obtained
in a similar manner. O

Example 7.28

Let us consider the odd function f(z) ==z in the interval [—[,l]. By Proposi-
tion 7.27, we have a,, =0 for n € NU{0}. Moreover,

x=l
(- cos nr + —l sin nre — 2 —
a nmw l n2m? l N

for n € N. Hence, it follows from Theorem 7.8 that

> net1 2l . (nmz
=Y (-1) “msm(l > (7.39)
n=1

rx=—1

for each = € (—1,1).

7.5 Series of Cosines and Series of Sines

Now we consider a function f: [0,{] — R satisfying the same conditions as the
functions in D; but with —! replaced by 0 in the interval [—I,]. More precisely,
we assume that:

1. f has at most finitely many discontinuities;

2. f has left-sided and right-sided limits at all points of [0,];

3. for each open interval (a,b) C [0,l] where f is continuous, the function
g: [a,b] = R defined by (7.18) has left-sided and right-sided (finite) deriva-
tives at all points of [a, D].

The following result shows that it is always possible to write f as a series of
cosines and as a series of sines.
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Theorem 7.29

The functions

_W ¥ nre _ S, sin[ 7T
G(z)= 3 +n¥1ancos< 7 ) and H(x) an&n( i ), (7.40)

n=1
where
1

an = %/0 f(a:)cos<mlm> dx, neNU{0}, (7.41)

and
9
by = 7/0 f(z) sin(@) dx, neN, (7.42)

satisfy

G(z)=H(x) = w for x € (0,1),
and

G(z)=f(z) and H(z)=0 for x€{0,l}.
Proof

We consider the functions g,h: [—I,1] — R given by

()= flz) ifo<z<l,
T\ ) i —1<z <o,

and
f(z) if0<ax <,
h(z)=<0 if x =0,
—f(—z) if —i<z<0.
One can easily verify that g is even and that h is odd. Moreover, it follows

from the properties of the function f that g,h € D;. By Proposition 7.27, the
Fourier series of g is then the function G in (7.40), where

_ %(/jg(x) cos<”lﬂ) dz + /Ol /(@) cos(@> dx).
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Since g is even, making the change of variables y = —z, we obtain

0 0
/ g(a:)cos(Tllﬂ> dx = —/ f(=y) cos<—#> dy
-1 !
!
nm
— [ stwreos("7 )
0
and thus a,, is given by (7.41).

It also follows from Proposition 7.27 that the Fourier series of h is the
function H in (7.40), where

_ %(/j h(z) sm<"lﬂ> dz + /Ol /() sm<"lﬂ) d:c).

Since h is odd, making the change of variables y = —x, we conclude that b,, is
given by (7.42). The remaining properties follow easily from Theorem 7.8. [

Definition 7.30

The series in (7.40) are called respectively the series of cosines and the series
of sines of the function f.

We give some examples.

Example 7.31

Let us consider the function f: [0,7] = R given by f(z) = 1. It follows
from (7.42) that

T 2
bo == | sin(nz)de=—(1—(~1)"
- /0 sin(nz) dx mr( (=)™
for n € N. Therefore,
ST Al 1 1
1= Z by sin(nx) = — (smm + = sin(3z) + —sin(5z) + - - ) (7.43)
= m 3 )

for each = € (0,7). We note that this identity does not hold for x =0 or x =7
(this also follows from Theorem 7.29). Taking x =7 /4 in (7.43), we obtain
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that is,
LS B
2V2 3.5 7 9 11
On the other hand, taking x =7/3 in (7.43), we obtain
4 3 1 1 3 1 3
Y (CINE SV I S C
T\ 2 3 5 2 7T 2
that is,
GRS U S NS SO
%3 5 7 11 13 17 ‘
Example 7.32

Now we consider the function f:[0,1] = R given by f(z) = x. It follows

from (7.41) that
1
ag = 2/ zdr=1
0

1
ap, = 2/ xcos(nmz)dr =2
0

and

(—1)" —1
(n)?

for n € N. We also have

! 2(-1)"
bn:2/ zsin(nrx) dr = — (=1
0

nm

for n € N. Therefore,

r==+ Z ﬁ cos((2m — 1)7x)

m=1

DN | =

and

n

sin(nmx)

oo
2(=1)
=
n=1
for each = € (0,1). For example, taking x =1/4 in the first series, we obtain

1 1 4/1 1 1 1 1+
4 2 w2\y2 32 2 52 2 ’
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that is,

7.6 Integration and Differentiation Term by
Term

In this section we show that Fourier series can be integrated and differentiated
term by term. In other words, the integral and the derivative of a given function
(in some appropriate class) can be computed by taking respectively integrals
and derivatives term by term in its Fourier series.

We start with integration.

Theorem 7.33

Let f: [=l,]] = R be a function having at most finitely many discontinuities,
and with left-sided and right-sided limits at all points of [, ]. For each interval
[a,b] C [—1,]], we have

/abf(:zr)dx %(b—a) +§:1[ansin<mlm) bncos<mlm)]

Proof

Let us consider the continuous function g: [—1,I] = R given by

so)= [ (- )a

(we note that f is Riemann-integrable). One can easily verify that g € D;.
Moreover, g(—1) =0 and

9(1):/_1(]”(1/)—%) dyZ/_llf(y)dy—aol:O.

By Theorem 7.8, we then have

o0

Ap nmx . (nmx
g(x) = 3 + nz::l {An COS(T> + B, sm(T)}
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for every x € [—1,l], where A,, and B,, are the Fourier coefficients of the func-
tion g. For each n € N, we have

1/
Anzj/ g(x)cos(Tllﬂ) dx
-1

1 . (mrx) o=l
= —g(x)sin -

nm

r=—1

1
- % g (f(x) - %) sin(aﬁblﬂ) dx = _nl;rn/l (7.45)

and
!
B, = % g(x)sin<@> dz
1
=l
1 nmw
= —n—g(x) COS<T> .
[ (@)= 2 cos (T = (7.46)
— x)— — — ) do=—. .
nm J_; 2 l nm/l
Therefore,
Z an sin(nwa/l) — by, cos(nmzx /1)
— nr/l ’
that is,
(:U + l) Ay X apsin(nmz/l) — by, cos(nmx/l)
— A4
/ Ut > * Z nw/l » (747)
for every z € [—1,1]. Since
b b a
/ f(y)dy=/lf(y)dy—/lf(y)dy,
identity (7.44) now follows immediately from (7.47). O

We note that one does not assume in Theorem 7.33 that f € D;.
Now we consider the differentiation of Fourier series.

Theorem 7.34

If f:[-1,]] = R is the restriction to the interval [—[,] of a 2l-periodic func-
tion g: R — R of class C' such that ¢’ has left-sided and right-sided (finite)
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derivatives at all points, then
ron = [nnr nwx nt . (nmx
fi(x)= Z {Tbn COS(T) — T an mn(T)}

for every x € (—1,1).

More generally, we have the following result.

Theorem 7.35

If f: [-1,1] = R is the restriction to the interval [—[,{] of a function g: R - R
of class C! such that ¢’ has left-sided and right-sided (finite) derivatives at all
points, then

f'@)=3 +§jl K”l—”bn + (—1)%) cos,(@) - ?ansin<$)] (7.48)

for every x € (—1,1), where c= [f(I) — f(=1)]/I.

Proof

Since ¢’ is continuous and its restriction to [—I,!] is in D;, we have

f/(x) = % + ni_o:l {an COS(”[E) + Bn Sin(¢>:|

for every x € (—1,1), where «,, and f,, are the Fourier coefficients of the func-
tion ¢’. We note that

1t _fO=f=D
ao—j/ilf(x)dx—f—c,

and thus,
f(x) — % = Z [an cos(nlﬂ) + Bn Sin(nlﬂ>} (7.49)
n=1

for every z € (—1,1). Now we consider the function h: [—I,1] = R given by

)= [ (1) -§ ) dy= 1) - 50 - o+,

-
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By (7.45) and (7.46), the Fourier coefficients of h satisfy

where
1 l
Ayg= 7/ h(z)dx
]
Hence,
nl nl l
an——ﬂ— and bn:a_+( 1)t ¢ ,
nw ™ nmw
that is,
ap = ?bn +(-1)"% and pS,= —?an,
for each n € N. Identity (7.48) now follows readily from (7.49). O

7.7 Solved Problems and Exercises
Problem 7.1
Find the Fourier series of the function

0 if —1<z<0,

fz) = { (7.50)

2 if0<z<1.

Solution

Clearly, f € D;. We have

aoz/_llf(x)dx=/012dx:2,
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and

1 1
an = / f(x)cos(nmz) dx = 2/ cos(nmz)dr =0
-1 0

for n € N. We also have

by, = /11 f(@)sin(nmzx)de = 2/01 sin(nmz) dx

nm nm

_(_1\n 4 it . ad
:i(l_COS(WT))ZZM: /(nm) if nis odd,
0 if n is even

for n € N. The Fourier series of f is then

Flz)=1+4) W;—W sin((2m — 1)mz). (7.51)

m=1

Problem 7.2

For the function f in Problem 7.1, find explicitly the values of the Fourier series
at each point of the interval [—1,1].

Solution

By Theorem 7.8, the Fourier series in (7.51) takes the values

[+ f=7)

F(z)= 5 for z € (—1,1),
and
1+ -
F(z)= % for x € {—1,1}.
Therefore,
if —-1,0)U (0,1
ply_ {I@) fre-L0U0), .
1 if xe{-1,0,1}.
Problem 7.3
Use Problem 7.2 to show that
m 1 1 1
—=1l—4+ =4 7.53
4 3 + 5 7 * ( )
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and

1
UL cio (7.54)

Solution

Taking  =1/2 in (7.51), it follows from (7.52) that

2=1+ i (mel)ﬂsin<(2m2_l)7>

m=1

This yields identity (7.53). On the other hand, taking x = 1/4 in (7.51), it
follows from (7.52) that

2:1+m§:1 (me e sin((Qm; UW)

I 1 4
N ™2 3m/2 V2 TmV2
which yields identity (7.54).

+...’

Problem 7.4

Find the Fourier series of the function g: [—1,1] — R given by

o) = / "y i) dy,

with f as in (7.50).

Solution

It follows from (7.50) that

(7.55)

0 if —1<z<0,
g(x) =

2?2 if0<ax<l.

Clearly, g € D;1. The Fourier coefficients of the function g are then

! 1
aoz/o xde=§
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and

1
an = / x? cos(nmx) de
0

_ 2nmzcos(nra) + (n®m?x? — 2) sin(nrw) w=1 _2(=1)n
- (nﬂ')3 ac:O— (’[’},7]')2
for n € N. We also have
1
by, = / z?sin(nmz) do
0
_ 2nmxsin(nrx) — (n?n?2® — 2) cos(nmx) v=t
(n7)? @=0
C@=-nPrH) (-1 -2 [ (n*n®—4)/(nm)® if nis odd,
(nm)3 —1/(nm) if n is even

for n € N. Therefore, the Fourier series of g is

G(x) = ! + i A=L" cos(nmz)

6 = (nm)?

— [(2m—1)*r2—4
+ E{W SlIl((2m— 1)7’(’.’1)) — B)

Problem 7.5
Use Problem 7.4 to show that
s PR SN SO
12 22 32 42
Solution

! sin(2mmz)|. (7.56)
™

(7.57)

By Theorem 7.8, the Fourier series of the function ¢ in (7.55) has the values

G(x):{g(x) if xe(-1,1),
1/2  if ze{-1,1}.

Thus, taking =0 in (7.56), we obtain

I 2= 1 2 11 1
- = (1l-=4+—=——+... ) =0.
6 Jrngl (nm)2 6 7r2< i g’ >

This yields identity (7.57).
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Problem 7.6

Find the Fourier series of the function f(xz) = — |z| in the interval [—1,1].

Solution
We have

f(x)zx—|x|:{2m if —1<2<0, (7.58)

0 ifo<zx<l1.

Clearly, f € D;. Thus,

1 0
aoz/ (a:—|x|)da:=/ 2xdr =—
-1 —1

and
1 0
Gy = / (x _ |9:|) cos(nmx) d = 2/ x cos(nmx) dx
1 -1

—9 <x sin(nrz) | cos(nmx) )

nm (nm)?

v=0 1 — cos(n)

(nm)?

r=—1

=2

(n7)?

1— (=) [4/(nm)* if nis odd,
0 if n is even

for n € N. We also have

1 O
b, :/ (z — |z|) sin(nwz) do = 2/ xsin(nmz) dz

-1 -1

cos(nmz)  sin(nmz)\|*"0  2(=1)"*!
=2( -2 + =5
nm (nm)? R nmw
for n € N. Therefore, the Fourier series of f is
F(z)=—< —|— Z 4 cos((2m — 1)mz)
(2m —1)2x2

m= 1

n+1

+ Z sin(nmx). (7.59)
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Problem 7.7
Use Problem 7.6 to show that

2—1+1+1+1+ (7.60)
8 32 52 72 ’ ‘

Solution

By Theorem 7.8 and (7.58), the Fourier series of the function z — |z| is given by

Fla) = x—|z| if ze(-1,1),
1 ifxe{-1,1

Thus, taking =0 in (7.59), we obtain

_|_

HM8

(2m —1) (2m — 1)272

4 1

l\DI>—~

l\DI»—~

This yields identity (7.60).

Problem 7.8

Verify that the product of odd functions is an even function.

Solution

Let f,g: [-1,]] = R be odd functions. This means that

f(=2)=—f(z) and g(-z)=—g()

for every x € [—[,1]. Then the function h(x) = f(z)g(x) satisfies

for every x € [—1,1]; that is, h is an even function.
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Problem 7.9

Verify that the Fourier coefficients a,, of an odd function are zero.

Solution

We have

aoz%/_llf(;v)dx:%(/_if(m)dw—i—/olf(x)dx), (7.61)

b f ()
(/f Cos( )d +/f cos< )m) (7.62)

for n € N. Now we assume that f is odd. Making the change of variables y = —z,

/if(x)dx:—/lof(—y)dy
/Olf(y)dy/olf(y)dy,

and it follows from (7.61) that ap = 0. Similarly, again making the change of

and

we obtain

variables y = —x, we obtain

[ (52 s
- f<y>cos<@) dy,

and it follows from (7.62) that a, =0 for n € N.

Problem 7.10

Find the series of cosines of the function z in the interval [0, 1].
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Solution

By Theorem 7.29, the series of cosines of a function f in the interval [0,1] is

_a = nwx
G(z)= 5 T ngzl an, COS<_Z ),
where

!
an:%/of(x)cos<$>dm, neNU{0}.

For f(z) =2 and [ =1, we obtain

1
a0:2/ rdr=1
0

and
1
an, = 2/ x cos(nmz) dx
0

—9 <xsm(n7ﬂﬂ) N COS(mrac))

nmw (nm)?

x=1

(=" -1

x=0 (nﬂ-)

for n € N. Thus, the series of cosines of the function x is

G(z) =

N~

— 4
— Z 1) cos((2m — 1)mx).

m=1

Problem 7.11

Find the series of sines of the function cosz in the interval [0, 7].

Solution

By Theorem 7.29, the series of sines of a function f in the interval [0,1] is

> nwx
H(z)= E bpsin| — |,
(z) 2 sm( i )
where

2 l
bnzj/f(x)sin(g)dx, n €N,
0
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For f(x)=cosz and | =7, we obtain

2 s
by = —/ coszsinzdx =0
0

s

and

2 ™
by, =— / cosz sin(nx) dz
T Jo

_ 2mncosxcos(nr) + sinxsin(nx)

T 1—n2

T 2n(l4(=1)"M)
R

=0

for n > 1. Thus, the series of sines of cosz is

Z o sin(2maz).
m=1 4m 1)m

Problem 7.12

Let f: R — R be a function of class C*. For each n € N, show that the Fourier

coefficient
/ flx cos( )dx

is also given by

Solution

We have

nm ey nm )
= L [4@ysin(om) — F(-1)sin(-nm)] - % / i) o

because sin(nm) = sin(—nn) = 0.
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EXERCISES

7.1

7.2.

7.3.

74.

7.5.
7.6.
7.7.

7.8.

Find the Fourier series of the function:

) 1 if —1<z<0,
2 fo<z<l;

(c¢) e in the interval [—1,1];
(d) €*® in the interval [—m, 7];
e) (1+x)/2 in the interval [—1,1];

|z| in the interval [—3, 3];
(g) x+ |z| in the interval [—2,2].
Write the function

0 if0<z<2,
) =
f@) {1 if2<z<3

as a:

(a) series of sines for 0 < z < 3;

(b) series of cosines for 0 <z < 3.

Find the Fourier series of the even function:

(a) cos(2x) in the interval [—m,7];

(b) 1+ |z| in the interval [—1,1].

Find the Fourier series of the odd function:

(a) x in the interval [—7,7];

(b) x —sinz in the interval [—, 7].

Verify that the sum of even functions is an even function.
Find all even polynomials.

Consider the function f: [—m, 7] — R given by f(z)= 2.
(a) Verify that the Fourier series of f is

2

+ i A= cos(nx).
n=1

n2

(b) Use the Fourier series to show that

2

=1
> =G

(c¢) Find the series of sines of f in [0,7].
Consider the function f: [0,7] — R given by f(x)=z(m — x).
(a) Find the series of sines of f.



372 7. Fourier Series

(b) Use the series to show that
S
—(2n+1)3 32

7.9. Verify that if f: R — R is a function of class C?, then na,, — 0 when
n— o0o.
7.10. Show that

. cos(2nx)
[sinz|=—=— — Z 1

for every z € R.
7.11. For each a € R\ Z, verify that:
(a) the Fourier series of sin(az) in the interval [—7, 7] is

oo
2sin(ax) Z pmsin(nz)
n=1

(b) the Fourier series of cos(ax) in the interval [—m, 7] is

o0
2sin(ax) Z n @ cos(nx)
T — a2—n? )
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Partial Differential Equations

In this chapter we study some classes of partial differential equations, including
the heat equation, the Laplace equation, and the wave equation. In particular,
based on the study of Fourier series, we find solutions for several equations
and several types of boundary conditions. We mainly use the method of sep-
aration of variables. In contrast to what happens in all former chapters, here
not everything is proved since this would require additional techniques. One
notable exception is the proof of existence and uniqueness of solutions for the
heat equation under certain assumptions.

8.1 Heat Equation and Its Modifications

Again we consider the heat equation

Ju 0%u

E = KJ@, (81)
for t >0 and z € [0,!], with x,l > 0. By Proposition 7.4, for each N € N and
c1,...,cny € R, the function

N
_n2p2 2, nmx
U(t7x) = che " Kt/ Sln(T)

n=1
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is a solution of equation (8.1) satisfying the condition

u(t,0) =wu(t,l)=0, t>0. (8.2)
Now we make the additional assumption that

u(0,2) = f(x), x€]0,l], (8.3)

and show that for a certain class of functions f: [0,I] — R there exist constants
¢, such that the function

u(t,z) = Z Ccne” ™R gin <mlrx) (8.4)

n=1

is well defined and is a solution of equation (8.1) satisfying conditions (8.2)
and (8.3).

Proposition 8.1

If f:]0,l] > R is a continuous function with f(0) = f(I) =0, and there exist
points 0 =z < 1 < --+ < &, =1 such that the restriction of f to (z;,z;y1)
has an extension of class C! to some open interval containing [z;,z;41], for
i=0,...,m—1, then the function u(¢,z) in (8.4), with

9 [l
cnzj/f(x)sin(nlﬂ>dx for n e N, (8.5)
0

is well defined and is the unique function with the following properties:
1. w is continuous in R x [0,1];
2. u satisfies equation (8.1) in R™ x (0,1), which in particular includes the
existence of the derivatives Ou/dt and 0?u/dz?;
3. wu satisfies conditions (8.2) and (8.3).
Moreover, the function u is of class C* in Rt x (0,1).

Proof

We first show that the series in (8.4) converges. Letting

) 1
1=7/0 | (z)|da,
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it follows from (8.5) that |¢,| < I for each n € N. Hence, for ¢t > 7 > 0, we have

oo oo
Z |Cn|€7n2ﬂ2l{t/l2 <I Z €7n2ﬂ'2n7’/l2
n=m n=m

oo
<I Z e—’l”\'zKT/lz
n=m

e—7n7r2r€7'/l2

= I]_ — e~ m2kT/1? —0

when m — oo, and the series

oo

Z |C |efn27r2nt/l2
n

n=1

is uniformly convergent on [7,400), for each 7 > 0. By Exercise 3.21, the series

in (8.4) is uniformly convergent on [r,+00) x [0,1], for each 7 > 0, and the

function u is continuous in that set. Hence, u is also continuous in R* x [0,1].
For each p,q € NU {0}, let us consider the series

aerq 2,204 /12 nmx
—n mikt/1%
ol (" n () )
o 2,2 p q
n"mekK nmw 2.2 2
<]J s o —nﬂ'.‘it/l. 86
() () 6

Since the power series Y - | n?’*2™ has radius of convergence R = 1, it follows
from Theorem 4.8 that for each p € N and 7 > 0 the last series in (8.6) is
uniformly convergent on [7,4+00). By Exercise 3.21, it follows by induction
that u is of class C*° in RT x (0,1), with

ot i o P’k pe—nzw%t/l?ﬁ gin [T
ot ozt 12 Ox1 l
for each p,q € NU{0}. In particular,

o n?m2k 2.2, 2 nwT
i E _ -0 —n mikt/l° _: i
ot cn( 2 )e sm( l )

and

AT I Y it
922~ cn| e sin{ —— ),

n=1

which shows that u satisfies equation (8.1) in R x (0,1).
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In order to establish the uniqueness of the solution, we first prove the fol-
lowing result.

Lemma 8.2 (Weak maximum principle)
Let v: RE x [0,1] = R be a continuous function. If v is of class C? in R* x (0,1)
and satisfies equation (8.1) in this set, then for each 7 > 0, we have

v(t,z) <sup{v(s,y): (s,y) € {0} x [0,]] U [0,7] x {0,1}} (8.7)

for (¢t,x) € (0,7) x (0,1).

Proof of the lemma

Otherwise, the maximum of v in [0, 7] X [0,{] would be attained at a point (s,y)
in (0,7) x (0,1) or in {r} x [0,I]. Then v(s,y) > L, where L is the supremum
n (8.7). Given € > 0, let us consider the function

w(t,z) =v(t,z) +e(z —y)2

We note that
sup{w(t,z) : (t,z) € {0} x [0,]]U[0,7] x {0,1}} < L +el* <v(s,y)

for any sufficiently small €. On the other hand, w(s,y) = v(s,y), and hence,
the function w has a maximum greater than or equal to v(s,y) at a point
p € (0,] x (0,1). One can easily verify that if p € (0,s) x (0,1), then

ow 02w
el — e <
5 (p)=0 and 92 (p) <0,

and that if p € {s} x (0,1), then
2
%—l:(p) >0 and 0w

In both cases, we have

ow 0w
E(p) - K@(p) > 0.

On the other hand, we also have

ow 9w ov 0%v
E(p) - “W(p) = E(p) — H@(p) —2e=—-2e<0.

This contradiction yields the desired result.



8.1 Heat Equation and Its Modifications 377

Now let u,v: Rf x [0,1] = R be continuous functions that are of class C'*°
and satisfy equation (8.1) in R x (0,1), together with the conditions

u(t,0) =u(t,l) =v(t,0) =v(t,)) =0, t>0,
and
U(O,Z):U(O,l’):f(l'), Te [Oal]

The function w = u — v is continuous in Ry x [0,]. Moreover, it is of class C*
and satisfies equation (8.1) in RT x (0,/), together with the conditions

w(t,0) =w(t,l)=0, t>0,
and
w(0,2) =0, x€]0,l].
It then follows from Lemma 8.2 that
|w(t,x)| < sup{|w(s,y)| :s=0oryc {O,Z}} =0,

and thus w = 0. This shows that u=v.
We also show that u is continuous at t = 0. By Theorem 7.14, the series

> ) <n7r1')
Z Cp, SIN T
n=1

is uniformly convergent on [0,!] (since the Fourier series of the odd extension
of f to the interval [—[,{] is uniformly convergent). Now let

m
. (nnx
S’m(x) = Z Cn SIH<T>
n=1
be the corresponding sequence of partial sums. Given € > 0, there exists p € N
such that
|Sm(z) — f(z)| <& forx€(0,l], m>p.
We also consider the functions
m 2_2 2 nmwx
S (t,x) = Cne TR gin [ 22

For each m,n > p, the function

v(t,x) = Sy (t,x) — Sp(t,x)
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is of class C™ and satisfies equation (8.1) in RT x (0,1). Moreover,
v(t,0)=v(t,1)=0, t>0,
and
[0(0,2)| = |Sim (0,2) — S, (0, )|
< ]Sm(O,m) - f(x)| + |Sn(0,x) - f(x)| <2
for z € [0,1]. It then follows from Lemma 8.2 that
|Sm (t, @) — Sp(t, )] < 2¢

for every m,n >p, t >0 and « € [0,1]. This shows that the series of continuous
functions in (8.4) is uniformly convergent on Ry x [0,]. By Exercise 3.21, we
conclude that u is continuous in R7 x [0,1].

Finally, it follows from (8.4) that

u(t,0) =u(t,l) =0,

that is, condition (8.2) holds. Moreover,

oo
u(0,2) = Z Cn sin(?) .
n=1

By Theorem 7.29, taking the constants ¢, in (8.5), condition (8.3) is satis-
fied (the assumption f(0) = f(I) =0 guarantees that (8.3) holds for z =0 and

x=1). O
Example 8.3
Let us consider the equation

ou  0%u

for t >0 and z € [0,7]. We also consider the function f: [0,7] — R given by
f(z) =x(m —z). One can easily verify that

Cp=— /Oﬂx(l — z)sin(nx) dz

™

0 if n is even,
8/(n®r) if n is odd
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for n € N. Hence, by Proposition 8.1, the solution of equation (8.8) satisfying
conditions (8.2) and (8.3) is given by

o0
Z tsin(nx).

The following is a modification of the former example.

Example 8.4
Let us consider the heat equation (8.1) together with the conditions
Ju Ju
t,0 t,l)=0, t>0 8.9
0= S =0, 1> (5.9)

and (8.3), for some function f: [0,l] — R satisfying the hypotheses of Proposi-
tion 8.1.

We first obtain solutions of equation (8.1) of the form w(t,z) = T(t) X ().
By Proposition 7.1, there exists A € R such that

T(t)=ce ™' and X" 4+AX =0,
with ¢# 0. On the other hand, it follows from (8.9) that
THOX'(0)=THX'(1)=0, t>0,
which is equivalent to
X'(0)=X'(l)=0.
Hence, we must solve the problem
X"4+2X =0, X'(0)=X'(I)=0.

We consider three cases.
1. When X =0, we have the solutions in (7.8). It follows from X’(0) =0 that
b=0. Hence, X (z) = a with a # 0, which also satisfies X'(I) =0.
2. When X <0, we have the solutions in (7.9). Since

X'(z) = ay/|INeVINT — by /[N e VINZ,

we obtain

X'(0) = av/]\ = b/
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It follows from X'(0) =0 that a = b, and thus,

X'()=a |)\\(e P W):o.

Since eV > 1 and e VM < 1, we have a =b=0 and X (z) =
3. When A >0, we have the solutions in (7.11). Since
X'(x) = —aVAsin(VAz) + bV A cos(VAz),
we obtain X'(0) = bv/A. It follows from X’(0) =0 that b=0, and thus,
X'(I) = —aVAsin(V\l).
Hence, a =0 (which would give X =0), or
sin(Vl) =

Therefore,

and we obtain the solutions
X(z)= acos(@) ,  with a#0.

Now we look for (formal) solutions of the form

ZC efn ™ /{t/lz nmr
e
We note that

2) =§(”Zﬂ)
260 + ch cos< ) (8.10)

n=1

By Theorem 7.29, in order that condition (8.3) is satisfied, we take

}/Olf(x)dx

2 l
cnzj/f(x)cos<$>dm for n e N.
0

and
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By the hypotheses in f, it follows from Theorem 7.14 that the series in (8.10)
are uniformly convergent on [0,[] (since the Fourier series of the even extension
of f to the interval [—[,{] is uniformly convergent). Proceeding as in the proof
of Proposition 8.1, one can show that u is continuous in R™ x [0,1], and that it
is of class C*™° and satisfies equation (8.1) in R x (0,1). One can also show that
u is continuous in R x [0,1] and that it is the unique solution of the problem,
although this would require additional techniques.

Example 8.5
Now we consider the equation
% = % +u, (8.11)
with the conditions
u(t,0) =u(t,m)=0, t>0, (8.12)
and
u(0,z) =sin(2z), € (0,7). (8.13)

It is easy to show that any linear combination of solutions of equation (8.11)
satisfying condition (8.12) is still a solution of this equation and satisfies con-
dition (8.12). Now we look for solutions of the form wu(t,z) = T'(t)X (x). Sub-
stituting u(¢,z) in (8.11), we obtain

T'X =TX" +TX,

and thus,
T/ XI/
—=—+1==-A
T X *

for some constant A € R (whenever T'X # 0). This yields the equations
T'=-XT and X"+ (A+1)X=0.

The solutions of the first equation are given by T'(t) = ce~**, with ¢ # 0 (so that
T #0). The second equation can be written in the form X" + uX =0, with
1= A+ 1. By Proposition 7.2, there exist nonzero solutions X (z) if and only if

nem
W= 2 =n?, thatis, A=n?—1,
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for some n € N (since | = 7). We then look for (formal) solutions of the form
> 2
u(t,x) = Z cnet 7 tsin(nx). (8.14)
n=1

In order that condition (8.13) is satisfied, we take

1 ifn=2,
0 if n#2,

Cn = 2 / sin(2z) sin(nx) dz = {
T Jo

which yields the solution

u(t,z) = e 3 sin(2z).

Example 8.6

We present an alternative argument to obtain a solution of the problem in
Example 8.5. Let us consider the function v = ue™?!, that is,

v(t,z) =u(t,x)e "

Substituting u = ve’ in (8.11), we obtain

ov by el 8%v by el
—e' tve' = —e" Fve
ot 02 ’
or equivalently,
ov 8211.
ot 0x2’

that is, v satisfies the heat equation. On the other hand, it follows from (8.12)
that

v(t,0) =v(t,m)=0, t>0,

and hence, by Proposition 8.1, we obtain the solutions
> 2
v(t,x) = Z cne” " tsin(nx).
n=1

This yields
u(t,r) =v(t,z)e’ = Z cpet=nt sin(nz),

n=1

which is the series already obtained in (8.14).
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8.2 Laplace Equation

Now we consider the Laplace equation

Ou 0 _

Au=2" - 1
=g+ 5 =0 (8.15)

for (z,y) €[0,a] x [0,b]. For example, the real and imaginary parts of a holo-
morphic function satisfy the Laplace equation (see Exercise 4.36).

Example 8.7

Given a function f: [0,b] — R, let us consider the conditions
u(z,0) =u(x,b) =0 (8.16)

and

U(O,y) =0, u(a,y) - f(y) (817)
for (x,y) € (0,a) x (0,b). Substituting u(z,y) = X (2)Y (y) in (8.15), we obtain

X"Y +XY"=0

and hence,

for some constant A € R (whenever XY # 0). This yields the equations
X"—-AX=0 and Y"+)Y =0. (8.18)
On the other hand, it follows from (8.16) and (8.17) that
Y(0)=Y()=0 and X(0)=0.
By Proposition 7.2, the nonzero solutions of the problem
Y+ XY =0, Y(0)=Y()=0
are given by
Y(y) = csin(mbry>, with ¢ #£ 0,
for A =n?n?/b? with n € N. Now we solve the problem

X"-AX =0, X(0)=0.
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Since A =n?m?/b% > 0, we have

X(z)= ceV™ 4 de=VAT  with ¢,d € R.
It follows from X (0) =0 that ¢+ d = 0. Therefore,

X(z)= c(eﬁx - efﬁm) = 2¢sinh(VAz),

and we look for (formal) solutions of the Laplace equation of the form

:ch sinh(?) sin(%). (8.19)
n=1

Taking = = a, we obtain

a,y) = icnsinh<$) sin(n—zy> = f(y),
n=1

cnsinh<mm> /f sm< )dy

for each n € N. Substituting the constants ¢,, in (8.19), we obtain a (formal)
solution of the Laplace equation satisfying conditions (8.16) and (8.17).

and thus,

Example 8.8

Given functions f,g: [0,b] = R, we consider the conditions (8.16) and

u(0,y) = f(y),  wula,y)=g(y) (8.20)

for (x,y) € (0,a) x (0,b). Again, for a solution of the Laplace equation of the
form w(z,y) = X(x)Y (y), we obtain the equations in (8.18), and it follows
from (8.16) that Y'(0) =Y (b) = 0. By Proposition 7.2, the problem

Y"4+AY =0, Y(0)=Y(b)=0

has the nonzero solutions given by
Y(y)= csin(mbry>, with ¢ #0,

for A =n2m?/b? with n € N. Thus, it remains to solve the equation

n?m?

" _
X _b—QX_O.



8.2 Laplace Equation 385

Its solutions are given by
X(x)=cp sinh(?) +d, cosh(?) .

Hence, we look for (formal) solutions of the form

u(z,y) :i {cn sinh<m;x) +dy cosh(rmgx)] sin(mbTy>. (8.21)

n=1

Taking x =0 and x = a, we obtain respectively

u(0,y) = Z dn, sin(n’zy>
n=1

and
= . nmwa nmwa . [nmy
u(a,y) = ngl [cn mnh(T) +d, COSh(T)} sm<T).
Thus,
9 b
Y LAY
and

. nmwa 2 (b . (nmy nma
cnsmh<7> —5/0 g(y)&n(T) dy—d,mosh(T)

for each m € N. Substituting the constants ¢, and d,, in (8.21), we obtain a
(formal) solution of the Laplace equation satisfying conditions (8.16) and (8.20).

Example 8.9

Given functions f: [0,a] = R and g: [0,b] — R, we consider the conditions
u(z,0) =0, u(z,b) = f(x), (8.22)

and

u(0,y)=0,  u(a,y)=g(y), (8.23)
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for (z,y) € (0,a) x (0,b). We note that if v and w are solutions of the Laplace
equation satisfying the conditions

’U(l‘,O)ZO, U(va):f(m)v

U(Ov y) = U(CL, y) =0, (824)
w(z,0) =w(z,b) =0,

w(0,9)=0,  wla,y)=g(y),

then
U=v-+w

is a solution of the Laplace equation and satisfies conditions (8.22) and (8.23).
By Example 8.7, one can take

x,y) = Zc” sin(?) sinh(%)
n=1
= . (mrz) i <mry>
:Zdnsmh — |sin[ —= |,
= b b

with constants ¢,, and d,, such that

cnsinh<mrb> / flx bin<nwx> dx
nmwa 2 b . (nmy
dn, smh< 2 >_b/0 g(y)bln<b> dy;

that is, v and w are solutions of the Laplace equation satisfying the conditions
n (8.24). Then

and

and

u(z,y) =v(z,y) +w(z,y)

i{ (57 s (7)o (57 ) (75

is a solution of the Laplace equation and satisfies conditions (8.22) and (8.23).
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Example 8.10

Given a function f: [0,b] — R such that

b
/ ) dy =0,
0

let us consider the conditions

ou ou
a—y(a:,o) = a—y(%b) =0 (8.25)
and
0 0
0.y =0.  F=(ay)=f() (8.26)

for (z,y) € (0,a) x (0,b). Substituting the function u(z,y) = X (2)Y (y) in equa-
tion (8.15) and in conditions (8.25) and (8.26), we obtain

X"~ AX =0, Y" £ AY =0,
{ and { N (8.27)

X'(0)=0 Y'(0) =Y'(b) =0,

for some constant A € R. It follows from Example 8.4 that
Y(y) = ccos(%) ,  with ¢#0,

for A = n?7?/b? with n € N. It remains to solve the first problem in (8.27).
Since A > 0, we have

X(z)= ceV™ 4 de=VAT  with c,deR,
and it follows from X’(0) =0 that ¢ = d. Therefore,

e\/X"K + e—\/X:t

5 = 2ccosh(V/Az),

X(x)=2c

and we look for (formal) solutions of the form

o Enmal()o(12)

Assuming that the derivative du/0x is well defined and that it can be computed

term by term, we obtain
in_ siny ("7 cos ("7
—b b b )
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Hence, in order that condition (8.26) is satisfied, we must take constants ¢,

such that
nm inh nmwa _Q/bf() [ nmy d
5 Cp Sin A y) cos 5 Y

for each n € N. We note that the constant ¢g is arbitrary.

8.3 Wave Equation

In this section we consider the wave equation

Pu  ,0%u

where ¢ € R\ {0}, for ¢ >0 and z € [0,{], with { > 0. We also consider the
conditions

0, ) = o) (8.29)
for x € (0,1), and
u(t,0) = u(t,)) =0, t>0, (8.30)

for some functions f,g: [0,]] = R.

Example 8.11

Let us assume that f is the restriction to [0,1] of a function of class C? in R,
and that g is the restriction to [0,!] of a function of class C! in R. Letting
r=ux —ct and s =x + ct, we consider the function

v(r,s) =u(t,z).

When u is of class C?, we have

ou_0vor  ovds
dx Ordx 0Osodx
ov  Ov

“or s
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and
Pu_Puor  Puos dor s
dr2  Or20x  Osdrdx Ordsdx  9s2 Oz
& + 2 82’0 + &
or? Orfs  0s?’

One can show in a similar manner that
0%y 0%v 0?
— =PI 9 Y .
ot? or? Ords 052

Hence, equation (8.28) is equivalent to

0%v
ords 0,

and thus, its solutions are given by

U(Ta 5) = p(’f') + q(s),
where p and ¢ are arbitrary functions of class C? (see Problem 8.11). Hence,
u(t,z) =p(xz —ct) + q(x + ct)

are the solutions of equation (8.28). On the other hand, it follows from (8.29)
that

ple) () = (o) and —apl (@) + e’ (x) = 9(a),
that is,
p(e) + () = f(z) and —p(a) +9(a) = - G(z)

for some primitive G of g in the interval [0,[]. Therefore,

o) = 5 (/@) + 2C@) and p(e) = 3 () - 20())
for every x € [0,1]. Moreover, it follows from (8.30) that
p(—ct) +q(ct) =p(l —ct) +q(l+ct)=0, t>0. (8.31)

Therefore,

Q(t) = —p(—t), t>0,

and the functions p and ¢ are determined in the interval [—[,[]. Finally, it
follows from (8.31) that

p(l —ct)=—q(l+ct) =p(—l—ct), t>0,
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and thus, the functions p and ¢ are 2l-periodic. Therefore, they are determined
in R, and we obtain the solution

u(t,z) = %(f(a: ) - %G(m - ct)) + %(f(x Fet)+ %G(a: + ct))

x+ct
UG-+ faren)+ o [ gle)as

Example 8.12

One can also find (formal) solutions of equation (8.28) by the method of sepa-
ration of variables. We first observe that any linear combination of solutions of
equation (8.28) satisfying condition (8.30) is still a solution of this equation and
satisfies condition (8.30). Substituting u(t,z) = T'(¢) X (z) in (8.28), we obtain

"X =*TX"
and thus,

TI/ X//

AT X
for some constant A € R (whenever T'X # 0). We then obtain the equations

-2

T +X*T=0 and X" +AX=0. (8.32)

It follows from (8.30) that

which is equivalent to
X0)=X(1)=0

(although we do not yet know explicitly the function 7', it follows from T'X # 0
that T'(t) # 0 for some t). By Proposition 7.2, the nonzero solutions of the
problem

X" 4AX =0, X(0)=X()=0

are given by
X(z)= asin(?), with a # 0,

for A =n?n?/I? with n € N. The first equation in (8.32) then takes the form

n?n2c?

l2

T + T=0,
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and thus, its solutions are given by

t t
T(t)=ay cos(m;C ) + by, sin(mzc )7

with a,,b, € R. Now we look for (formal) solutions of the form

> nmct . [ nmct . [ nmx
u(t,x) = Z [an COS<T> +b, sm(T)] bln(T>.

n=1

We have

x) = Zansin<¥),

n=1

and assuming that the derivative du/dt is well defined and that it can be
computed term by term, we also have

Therefore, one can then take

2 l
—7/f(x)cos<nlﬂ>dx, neN,
0

and

Example 8.13

Now we use the method of separation of variables to solve the equation

u_otu o

o2 da? ot’
for t >0 and z € [0,7], with condition (8.30) satisfied for ! = 7. Substituting
the function u(t,z) =T (t)X (z) in equation (8.33), we obtain

(8.33)

T'X=TX"+TX +T'X,

and thus,

T// X// T/
ial (R
T x T
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whenever T'X # 0. Therefore, there exists A € R such that

T — T X
T X + ’

and we obtain the equations
T"—T +AXT=0 and X"+ (A+1)X=0.
By Proposition 7.2, we have the nonzero solutions given by
X (x)=bsin(nz), with b#0,
for A=n? — 1 with n € N. It then remains to solve the equation
T" =T + (n* —1)T =0.

Since the roots of the polynomial a? —a+n? — 1 are a = (1 £ /5 — 4n2) /2, we
obtain the solutions
u(t,x) = (alet + bl) sinz
- VAn? —5¢ VAn? —5¢
+ Z {anet/2 cos (nT5> + bet/? sin(%)} sin(nz),
n=2

with a,,,b, € R for each n € N.

8.4 Solved Problems and Exercises

Problem 8.1

Find a solution of the equation

ou  O%*u
5 =~ a2 L2 0, z €10,7],
with the conditions

u(t,0) =u(t,m)=0, t>0,

and

u(0,z) =z, x€(0,m).
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Solution

By Proposition 8.1, the solution is given by

u(t,r) = Z e ™t sin(nx),
n=1
where
2 (T .
Cn = f/ xsin(nx) dx
™ Jo
_2( zcos(nx) N sin(nz) \ [~ 2(—1)"*!
o7 n n?2 —o n
for each n € N. We thus obtain
= 2(_1)n+1 —n?t
to)=y 2L .
u(t, ) ; e sin(nx)
Problem 8.2
Find a solution of the equation
ou 0%u
—=2—, t20 0,1
6t 61‘2’ — 7 € E [ 3 ]7
with the conditions
ou ou
—(,0) = =—(¢,1)=0, t>0
OU1,0)= 91 1) =0, >0,
and
u(0,z) =€, x€(0,1).
Solution

By Example 8.4 with [ =1, we look for (formal) solutions of the form

oo
u(t,z) = Z Cpe 2T cos(nmz).

n=0

Taking t =0, we obtain

o0 2 oo
u(0,z) = Z e cos(nmx) = % + Z e cos(nme).
n=0 n=1
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Hence, by Theorem 7.29, we take

1
coz/ edr=e—1
0

and

1
Cn = 2/ e” cos(nmx) dx
0

2e” . z=1
= T (cos(nmz) 4+ nasin(nwz)) -
2e(=1)" —1]
© 1+4n272

for n € N. We thus obtain the solution

= 2le(—1)" 1] o2 2,
t = —]_ —_— nom .
u(t,r)=e—1+ n; T2 ¢ cos(nmx)

Problem 8.3

Find a solution of the equation
u_ @ + t>0, x €0,
ot og2 0 =D TS

with the conditions
u(t,0) =u(t,m) =0, t>0,
and

u(0,z) =cosz, x€(0,m). (8.34)

Solution
By Example 8.5, we look for (formal) solutions of the form
u(t,x) = Z cpet=nt sin(nx).
n=1

In order that condition (8.34) is satisfied, we take

2 s
c1 = —/ coszsinzdx =0
0

s
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and

2 ™
Cp=— / cosx sin(nx) dx
T Jo

(n?2—1)m

2n(1+(-1)") JO if n is odd,
B 4n/[(n? — 1)7] if n is even

for n > 1. We thus obtain the solution

U(t,.’I}) = Z (471287?1)71_6(1_479” Sll’l(2’I’L.fL')
n=1
Problem 8.4

Find a solution of the equation

ou O%u

52@4—2'&, tZO,xE[O,ﬂ'],

with the conditions
u(t,0) =u(t,m) =0, t>0,
and

u(0,2) =1, z€(0,m).

Solution

Proceeding in a similar manner to that in Example 8.5, we find the (formal)
solutions

oo
u(t,x) = Z et sin(nx).
n=1

Taking t =0, we obtain
u(0,z) = Z e sin(nx) = 1.
n=1

Hence, by Example 7.31, we take

2 n 0, if n is even,
tn=—[l-(-1)"] = .
4/(nm) if nis odd,

nm
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which yields the solution

oo 4 5
_ [2—(2n+1)7]t o;
u(t,z) = ;:0 ot 1)7r6 sin((2n +1)z).

Problem 8.5
Find a solution of the equation

ou 0%u Ou

—=——+—, t>0 0,1 8.35

ot 3x2+8x’ 20, z€[0,1], (8.35)
with the conditions

u(t,0)=u(t,1)=0, t>0, (8.36)

and

u(0,z) = e *?sin(rz), x€(0,1).
Solution

We first look for nonzero solutions of the form w(t,x) = T(¢) X (x). Substituting
u(t,z) in (8.35), we obtain

T'X =TX" +TX,

and hence,
T/ X// _|_ X/
T X
for some constant A € R (whenever T'X # 0). This yields the equations

-

T'=-X and X"+X +XX=0.
The solutions of the first equation are given by
T(t)=ce ™, with ¢#0.

On the other hand, it follows from (8.36) that X (0) = X (1) = 0. Thus, we must
solve the problem

X"+ X'+AX =0, X(0)=X(1)=0.

Since the polynomial v? + v + X has the roots (—1 £ +/1 —4))/2, we consider
three cases.
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1. When A =1/4, we obtain the equation
X"+ X'+ XX =(D+1/2)*X =0,
whose solutions are given by
X (z) =ae "%+ bre "%, witha,beR.

It follows from X (0) = 0 that a = 0. Hence, X (1) = be~/2 = 0, which yields
b=0 and X(z)=0.
2. When A < 1/4, we obtain the equation

1+\/21—ﬁ)<DJr

— 1=
X’I+X/+>\X=<D+ %)X:Q

whose solutions are given by

X(z)= e~ (IHVI=4)z/2 | bef(lf\/1—4x)x/2’

with a,b € R. Tt follows from X (0) =0 that a + b= 0. Hence,

X(1) = a(e_(1+‘/1_4’\)/2 _ e—(1—\/1—4,\)/2)_

Since A < 1/4, we have
e HVIZIN/2 4 o~ (1-VI=1X)/2.

and it follows from X (1) =0 that a =0. Hence, b=0 and X (x)=0.
3. When A > 1/4, we obtain the equation

1+Z\/4)\_1)<D+ 1—1\/4)\—1>X_07

X"+ X' +AX=(D
+X' + (+ 5 5

whose solutions are given by

Var—1 VAl —1
X(z) =ae /? cos<2:c> + be~*/? sin<2x>,

with a,b € R. Tt follows from X (0) =0 that a = 0. Hence,

ATV

X(1)= be—1/2sin( 5

and thus, b =0 (which would give X =0), or

sin(@) =0. (8.37)
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It follows from (8.37) that

Vil -1

1
5 =nm, thatis, A\=n7%+ =,

4’
for n € N. We thus obtain the solutions
X(z) =be "/ ?sin(nmz), neN.

Now we observe that any linear combination of solutions of equation (8.35)
satisfying condition (8.36) is still a solution of this equation and satisfies con-
dition (8.36). We then look for (formal) solutions of the form

o0
= Z cpe” T/t o —/2 sin(nmx).
Taking ¢t =0, we obtain
o0
Z 2sin(nmz) = e~/ ?sin(nnz),

and hence, we must take

1 ifn=1,
Cn =
0 ifn#l.
Therefore, a solution is given by

u(t,x) = e~ (7P A1/ 4t o—/2 sin(mx).

Problem 8.6

Find a solution of the equation

ou  O*u  Ou
a s
il 4(9 , t>0, z€[0,m7],

with the conditions
u(t,0) =u(t,m)=0, t>0,
and

u(0,2) = 5e~**sin(8x), =€ (0,7).
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Solution

Proceeding in a similar manner to that in Problem 8.5, for a solution of the
form u(t,x) =T(t)X(x), we obtain the equations

T =-XT and X" +4X'+)X =0,

for some constant A € R. In this case, the polynomial v? 4 4v + A has the roots
—24+/4 — A. One can easily verify that the problem

X" +4X"+ XX =0 with X(0)=X(7)=0
has nonzero solutions if and only if A =n? + 4 for some n € N, in which case
X (z) = be **sin(nx),

with b# 0. We then look for (formal) solutions of the form

oo
u(t,z) = Z epe™ (D22 i ()

n=1
Taking ¢t =0, we obtain
u(0,z) = Z cne” 2T sin(nx) = 5e 27 sin(8x),
n=1

and thus, we must take
5 if n=38,
Cp =
0 if n#8.

u(t,z) = 5~ %27 5in(8x).

Hence, a solution is given by

Problem 8.7

Find a solution of the equation

0%u  9*u

902 T o (z,y) €[0,a] x [0,], (8.38)

with the conditions

u(z,0) =u(z,b) =0, z€(0,a), (8.39)
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and

w(0,9) =0, wu(a,y)=1, ye(0,b). (8.40)

Solution
Substituting u(z,y) = X ()Y (y) in (8.38), we obtain
X"Y + XY" =0,

and hence,

for some constant A € R. This yields the equations
X"—-AX=0 and Y"+AY =0.
On the other hand, it follows from (8.39) and (8.40) that
Y(0)=Y(()=0 and X(0)=0.
By Proposition 7.2, the problem
Y'4+AY =0, Y0)=Y()=0

has nonzero solutions if and only if A =n2m?/b? for some n € N, in which case

Y (y) =sin <%>
is a solution. Now we solve the problem
X" —AX=0, X(0)=0.
Since A =n?7?/b? > 0, we have
X(z)= ce¥e 4 de“ﬁm7 with ¢,d € R.
Tt follows from X (0) =0 that ¢+ d =0, and thus,
X(x)= c(eﬁx - e*ﬁ‘”> = 2¢sinh(Vz).

We then look for (formal) solutions of equation (8.38) of the form

u(z,y) = ch sinh(%) sin(%). (8.41)
n=1
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Taking x = a, we obtain

u(a,y) = e sinh<7%m) sin(%) =1,
n=1

and thus, we must take constants c¢,, such that

2 b
cnsinh(nb7m> = 5/0 sin(nbwy> dy
2
=2 (1—(=1)"
—(1-=0")
for each n € N. Substituting these constants in (8.41), we obtain the solution
=201 — (=) | nrx\ . [ nmy
= ———————— h —_— —
u(@,y) z:l nmsinh(nra/b) S b )P\ e

n=

- i dy, sinh ( (2n zl)ﬂx) sin((Qn +bl)7ry) 5

n=0

where
. 4
" (2n+ 1)7sinh((2n + 1)7a/b)’

Problem 8.8

Find a solution of equation (8.38), with the conditions

ou ou
a_y(xvo)_ﬁ_y(va)_oa xE(O,a),
and
ou B ou B 5y
%(0,3})—07 am(avy)_cos( b >7 yE(O,b)
Solution

By Example 8.10, since the condition

b
/ cos(h—y) dy=0
O b

is satisfied, we look for (formal) solutions of equation (8.38) of the form
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> ( nw > ( nmwy )
= Z cpcosh| —— | cos| —=
= b b

=co+ Z Cn cosh(n—zm> cos(n%;y) . (8.42)
n=1

Taking (formally) derivatives term by term with respect to x, we obtain

- 5
(a,y) Z &nh(%) Cos(%) :cos($>.

Hence, we must take ¢, =0 for n € N\ {5}, and

b

= br sinh(5ma/b)’

Substituting these constants in (8.42), we obtain the solution

(2,1) = o+ b n( 5 5y
sy =t 5msinh(5ma/b) o8 b )\ )

where the constant cg is arbitrary.

Problem 8.9

Find a solution of the equation

Pu  ,0%u
W:C @, tZO,l’E[O,ﬂ'],
with the conditions

u(t,0) =wu(t,m)=0, t>0,

and

%(O,x) =sinz, € (0,m). (8.43)

u(0,2) = sin(2z), 5

Solution

By Example 8.12 with [ = 7, we look for (formal) solutions of the form

Z an cos(nct) + by, sin(nct) | sin(nz). (8.44)

n=1
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We have

oo
E ap, sin(nx)
n—=

Taking (formally) derivatives in (8.44) term by term with respect to ¢, we obtain

x) = Z ncby, sin(nzx).

n=1

Hence, in order that condition (8.43) is satisfied, we take

2 (7 1 ifn=2,
an:—/ sin(2x) sin(nm)dac:{ s
0

T 0 if n#2,
and
9 /7 /e ifn=1,
bp=— [ sinzsin(nz)dx = /e ifn
e Jo 0 if n#1.

We thus obtain the solution

1
u(t, ) = cos(2ct) sin(2x) + — sin(ct) sin .
c

Problem 8.10

Find a solution of the equation

ou Ou

E = %, t,l’ S R, (845)

satisfying the condition u(0,z) =e* + e~ 7.
Solution

We first look for nonzero solutions of the form wu(t,z) =T'(¢t) X (x). Substituting
u(t,x) in (8.45), we obtain "X =TX’, and thus,

T X
—:—:>\
T X

for some constant A € R (whenever T'X # 0). This yields the equations

=T and X' =)\X,
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whose solutions are given respectively by
T(t)=ce and X(z)=de",
with ¢, d € R. Hence, equation (8.45) has the solutions
A(t+z)

u(t,z) =ae ,

with a € R. Since any linear combination of solutions of equation (8.45) is still
a solution of this equation, one can consider solutions of the form

N
u(t, ) = Z aneAn(Hz)?
n=1

with a,, A\, €R for each n=1,..., N. Taking ¢t =0, we obtain
N
u(0,2) =Y ane T =" e,
n=1

and thus, one can take N > 2 and

1 ifn=12,
ap =
0 ifn>2,

with Ay =1 and Ay = —1. Thus, a solution of the problem is

u(t,r) =" + e~ (t+a)

Problem 8.11

Find all functions u = u(t, ) of class C? satisfying
0%u
— =0. 8.46
Oxot ( )

Solution

We write equation (8.46) in the form

o (ou) _,
ox\ot)
This implies that Ou/0t = f(t), where f is an arbitrary function of class C*

(since u is of class C?). Hence,

u(t,x) =X (z)+T(t), (8.47)
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where X is an arbitrary function of class C?, and where T is a primitive of f
(which thus is also of class C?). Conversely, if u is of the form (8.47), where X
and T are arbitrary functions of class C?, then u is of class C? and

0%u 0 (Ou a.,.,
201~ %(a) =gl W=0.

Thus, the desired functions are those in (8.47), with X and T of class C2.

Problem 8.12

Use the method of separation of variables to solve the equation

Ou 0 O _

et ton s (8.48)

Solution

Substituting the function
u(z,y,z) = X(2)Y(y)Z(2) (8.49)
in equation (8.48), we obtain
X'"YZ+XY"Z+XYZ"=0.

For nonzero solutions, dividing by XY Z, we obtain

and thus,

X// YI/ ZI/
X (7 + 7>~

Since the left-hand side does not depend either on y or on z, and the right-hand
side does not depend on z, there exists A € R such that

XI/ YI/ ZI/
e+ ) =
X <Y+Z>

Therefore,
Y// Z/I

X"+2X=0 d — =\
+ an Y+Z
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Now we write the second equation in the form

Y// ZI/
v oozt

Since the left-hand side does not depend on z and the right-hand side does not
depend on y, there exists u € R such that

Y// Z//
Yy ooz AT

and thus,
Y'+uY =0 and Z"—(\+u)Z=0.
By solving the equations

X"4+AX =0, Y'+uY =0 and Z"—(A\+pu)Z=0, (8.50)

we obtain a solution of equation (8.48) of the form (8.49). Since linear combi-
nation of solutions of equation (8.48) are still solutions of this equation, one
can consider (formal) solutions of the form

U(l"yaz) = chun(:v,y,z), (851)
n=1

where

un (2,y,2) = Xn (€)Y (y) Zn(2)

for some functions X,,, Y;, and Z,, satisfying (8.50).

Problem 8.13

Solve equation (8.48), for t >0 and z,y, z € [0, 7], with the conditions
u(0,y,2) =u(my,2) =0, y,z€(0,m), (8.52)

and

u(z,0,2) =u(x,m,2)=0, z,z¢€(0,m). (8.53)

Solution

Proceeding as in Problem 8.12, we first consider solutions of the form (8.49),
which corresponds to solving the equations in (8.50). Substituting the function
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u(z,y,z) = X(2)Y (y)Z(z) in the conditions (8.52) and (8.53), we obtain
X0)=X(mr)=0 and Y(0)=Y(m)=0.
By Proposition 7.2, the problems
X"+ XX =0 with X(0)= X(7)=0,
and
Y4+ uY =0 with Y(0)=Y(7)=0

have nonzero solutions if and only if

A=n? and p=m?

for some n,m € N. The solutions are given respectively by
X(z)=asin(nz) and Y (y)=bsin(my),
with a,b# 0. The third equation in (8.50) then takes the form
Z" — (n*+m?)Z =0,
and has the solutions

9

Yo g3 e prapes 3
Z(Z):Cnme netm 4 dpme” V" e

with ¢pm, dpm € R for each n,m € N. One can then consider (formal) solutions
of the form (8.51), that is,

)= 3 3 inr)sinm) e T V)

n=1m=1

Problem 8.14

Discuss whether the method of separation of variables can be used to solve the
equation

0%u ou
Solution

We first look for solutions of the form wu(t,z) =T'(¢) X (x). It follows from (8.54)
that

tTX" + TXT'X =0, (8.55)
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and thus, for solutions with T7'X" #£ 0, we have

t X2
_——= —— = —>\
T/ X//
for some constant A # 0. Therefore,
1

t
T = - and X" = XX2.

The solutions of the first equation are given by

1
T(t) = fﬁtQ +a, withaeR.
The second equation has for example the solution X (z) = 1/z% for A = 1/6.
Hence, a family of solutions of equation (8.54) is

— 3¢
u(t,x):a >—, witha€R.
x

On the other hand, in general, a linear combination of solutions of equa-
tion (8.54) is not a solution of this equation. For example, if u is a solution,
then

02 (2u) 0(2u) 0%u ou
9%y ou ou ou

Hence, 2u is also a solution if and only if

ow?) . Ou
ar g =0

which shows that u?, and thus also u, must be independent of ¢. In other words,
we must have u(t,z) = X(z). It then follows from (8.54), or from (8.55), that
tX"” =0, and X(x) =bx + ¢, with b,c € R. In particular, it is impossible to
use linear combinations to generate new solutions from the solutions that are
already known, namely

a — 3t?
22

and bx + c,

with a,b,c € R. In this sense, the method of separation of variables cannot be
used to solve equation (8.54).
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EXERCISES

8.1. Find a solution of the equation:

2P
& ot x2’
with the conditions

t>0, x€/0,1],

u(t,0) =wu(t,1)=0, t>0,
and
u(0,2) =z +sin(rx), z€(0,1);

ou  O%u

with the conditions

t>0, x€l0,2],

u(t,0) =wu(t,2)=0, t>0,
and

u(0,z) =2%, 2€(0,2);

ou  O*u  _Ou
e N Juhad >
(c) 5= a2 2690’ t>0, z€]0,1],

with the conditions
u(t,0) =wu(t,1)=0, t>0,
and

u(0,2) = e"sin(mx), z€(0,1);

%u  O%u
AT

with the conditions

0, (z,y)€l0,1] x[0,2],

u(z,0) =u(z,2) =0, z€(0,1),

and
u(0,9)=0, u(l,y)=9> ye(0,2);
0%u  9%u
(e) w—i_a—yg_ov (Qﬁ,y)E[O,?)]X [054]a
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8.2.
8.3.

8.4.

8.5.

8.6.

with the conditions

ou ou
e = — 4) =
9y (z,0) a9 (x,4)=0, x€(0,3),

and

ou B ou B 3y .
5o =0, ) —cos(). ye o)

0%u  _0%u

Z T _9Z 7 >

with the conditions
u(t,0) =wu(t,1)=0, t>0,

and

au

5 (0,7) =2sin(4rz), z€(0,1).

u(0,z) = sin(rz),
Find a solution of equation (8.45) with u(0,z) = e3* + 4e~2.
Write the Laplacian
02 9?
2 " a2

in polar coordinates (r,6).
Show that the functions u(t, ) = v(x + ct), with v of class C1, satisfy
the equation

ou ou

ot “or
Show that all solutions of the equation

Ju ou
o=
ot Or
are of the form u(t,z) = v(x + ct).
Find all solutions of the equation
0%u u
oxot

of the form u(t,z) =T(t) X (x).
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8.7. Discuss whether the method of separation of variables can be used
to solve the equation:

Ou  ,0u.
(a’) E =4t %7
0%u 0%u

() Fz =45



A

Absolutely convergent series, 113
Analytic function, 154
Argument, 6

B
Bessel’s inequality, 351

C
Cartesian form, 8
Cauchy sequence, 110
Cauchy—-Riemann equations, 42, 43
Cauchy’s
integral formula, 73, 160
theorem, 69
Characteristic polynomial, 288
Closed path, 63
Closure, 45
Complex
function, 14
Jordan form, 244

Index

Convex set, 64

Cosine, 17
Curve, 52
D

Derivative, 39
Differentiable function, 39
Disconnected set, 45
Discontinuous function, 38
Divergent

sequence, 109

series, 112

E
Equation
exact, 281
heat, 333, 373
Laplace, 383
linear, 233, 236
ordinary differential, 223

number. 3 partial differential, 373
Conjugate: 11 reducible to exact, 285
Connected separable, 284
component, 45 wave, 388
set, 45 Equivalent paths, 59
Continuous function, 38 Essential singularity, 170
Convergent Even function, 354
sequence, 109 Exact equation, 281
series, 112 Exponential, 15
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F Limit, 37, 109
Form Linear equation, 233, 236
Cartesian, 8 Liouville’s theorem, 160
polar, 8 Locally Lipschitz function, 227
Formula Logarithm, 19

Cauchy’s integral, 73
Parseval’s, 353
variation of parameters, 241

Fourier

coefficients, 338
series, 339

Function

absolutely Riemann-integrable, 302
analytic, 154
continuous, 38
differentiable, 39
discontinuous, 38
even, 354

harmonic, 78
holomorphic, 39
locally Lipschitz, 227
meromorphic, 177
odd, 354

Fundamental theorem of algebra, 161

H

Harmonic

conjugate functions, 78
function, 78

Heat equation, 333, 373
Holomorphic function, 39
Homotopic paths, 74
Homotopy, 74

I

Imaginary

part, 6, 15
unit, 4

Index, 70

Integral, 56

Integrating factor, 285
Isolated singularity, 164

J

Jordan form, 244

L

Laplace

equation, 383
transform, 296

Laurent series, 165, 169
Leibniz’s test, 121
Length, 55

M

Matrix exponential, 237
Maximal interval, 232
Meromorphic function, 177
Modulus, 6

(o)
Odd function, 354
Ordinary differential equation, 223

P
Parseval’s formula, 353
Partial differential equation, 373
Path, 52
closed, 63
connected set, 78
piecewise regular, 54
regular, 54
Paths
equivalent, 59
homotopic, 74
Picard-Lindel6f theorem, 227
Piecewise regular path, 54
Polar form, 8
Pole, 170
Power series, 149
Primitive, 62
Principal value of the logarithm, 19

R
Radius of convergence, 150
Ratio test, 119
Real part, 6, 15
Regular path, 54
Removable singularity, 170
Residue, 175

theorem, 178
Riemann-Lebesgue lemma, 302
Root test, 120

S
Separable equation, 284
Sequence, 109
Cauchy, 110
convergent, 109
divergent, 109
uniformly convergent, 122
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Series
absolutely convergent, 113
convergent, 112
divergent, 112
Fourier, 339
Laurent, 165, 169
of cosines, 355, 357
of sines, 355, 357
power, 149
uniformly convergent, 125
Set
connected, 45
convex, 64
disconnected, 45
path connected, 78
simply connected, 78
Simply connected set, 78
Sine, 17
Singularity
essential, 170
isolated, 164
removable, 170
Solution, 223
Sum of the series, 112

T
Test
Leibniz’s, 121
ratio, 119
root, 120
Weierstrass’, 125
Theorem
Cauchy’s, 69
Liouville’s, 160
Picard-Lindelof, 227
residue, 178

U
Uniform convergence, 125
Uniformly
convergent sequence, 122
convergent series, 125
Upper limit, 120

Vv

Variation of parameters formula, 241

\)\%

Wave equation, 388

Weak maximum principle, 376
Weierstrass’ test, 125
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