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Lisboa, Portugal

Claudia Valls
Departamento de Matemática
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Copyright c© IST Press 2010, Instituto Superior Técnico
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Preface

This book is essentially two books in one. Namely, it is an introduction to

two large areas of mathematics—complex analysis and differential equations—

and the material is naturally divided into two parts. This includes holomorphic

functions, analytic functions, ordinary differential equations, Fourier series, and

partial differential equations. Moreover, half of the book consists of approxi-

mately 200 worked-out problems plus 200 exercises of variable level of difficulty.

The worked-out problems fill the gap between the theory and the exercises.

To a considerable extent, the parts of complex analysis and differential equa-

tions can be read independently. In the second part, some special emphasis is

given to the applications of complex analysis to differential equations. On the

other hand, the material is still developed with sufficient detail in order that the

book contains an ample introduction to differential equations, and not strictly

related to complex analysis.

The text is tailored to any course giving a first introduction to complex anal-

ysis or to differential equations, assuming as prerequisite only a basic knowledge

of linear algebra and of differential and integral calculus. But it can also be used

for independent study. In particular, the book contains a large number of ex-

amples illustrating the new concepts and results. Moreover, the worked-out

problems, carefully prepared for each part of the theory, make this the ideal

book for independent study, allowing the student to actually see how the theory

applies, before solving the exercises.

Luis Barreira and Claudia VallsLisbon, Portugal
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Part I
Complex Analysis



1
Basic Notions

In this chapter we introduce the set of complex numbers, as well as some basic

notions. In particular, we describe the operations of addition and multiplication,

as well as the powers and roots of complex numbers. We also introduce various

complex functions that are natural extensions of corresponding functions in the

real case, such as the exponential, the cosine, the sine, and the logarithm.

1.1 Complex Numbers

We first introduce the set of complex numbers as the set of pairs of real numbers

equipped with operations of addition and multiplication.

Definition 1.1

The set C of complex numbers is the set R2 of pairs of real numbers equipped

with the operations

(a, b) + (c, d) = (a+ c, b+ d) (1.1)

and

(a, b) · (c, d) = (ac− bd, ad+ bc) (1.2)

for each (a, b), (c, d) ∈R
2.

L. Barreira, C. Valls, Complex Analysis and Differential Equations,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-1-4471-4008-5 1, c© Springer-Verlag London 2012
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One can easily verify that the operations of addition and multiplication

in (1.1) and (1.2) are commutative, that is,

(a, b) + (c, d) = (c, d) + (a, b)

and

(a, b) · (c, d) = (c, d) · (a, b)

for every (a, b), (c, d) ∈R
2.

Example 1.2

For example, we have

(5,4) + (3,2) = (8,6)

and

(2,1) · (−1,6) =
(
2 · (−1)− 1 · 6,2 · 6 + 1 · (−1)

)
= (−8,11).

For simplicity of notation, we always write

(a,0) = a,

thus identifying the pair (a,0) ∈ R
2 with the real number a (see Figure 1.1).

We define the imaginary unit by

(0,1) = i

(see Figure 1.1).

Proposition 1.3

We have i2 =−1 and a+ ib= (a, b) for every a, b ∈R.

Proof

Indeed,

i2 = (0,1) · (0,1) = (−1,0) =−1,

and

a+ ib= (a,0) + (0,1) · (b,0)

= (a,0) + (0, b) = (a, b),
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Figure 1.1 Real number a and imaginary unit i

which yields the desired statement. �

We thus have

C= {a+ ib : a, b ∈R}.

Now we introduce some basic notions.

Figure 1.2 Real part and imaginary part
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Definition 1.4

Given z = a+ ib ∈C, the real number a is called the real part of z and the real

number b is called the imaginary part of z (see Figure 1.2). We also write

a=Rez and b= Imz.

Example 1.5

If z = 2+ i3, then Rez = 2 and Imz = 3.

Two complex numbers z1, z2 ∈C are equal if and only if

Re z1 =Re z2 and Imz1 = Imz2.

Definition 1.6

Given z ∈C in the form

z = r cosθ+ ir sinθ, (1.3)

with r ≥ 0 and θ ∈R, the number r is called the modulus of z and the number θ

is called an argument of z (see Figure 1.3). We also write

r = |z| and θ = arg z.

Figure 1.3 Modulus, argument and polar form
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We emphasize that the number θ in (1.3) is not unique. Indeed, if identity

(1.3) holds, then

z = r cos(θ+ 2kπ) + ir sin(θ+ 2kπ) for k ∈ Z.

One can easily establish the following result.

Proposition 1.7

If z = a+ ib ∈C, then

|z|=
√
a2 + b2 (1.4)

and

arg z =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tan−1(b/a) if a > 0,

π/2 if a= 0 and b > 0,

tan−1(b/a) + π if a < 0,

−π/2 if a= 0 and b < 0,

(1.5)

where tan−1 is the inverse of the tangent with values in the interval (−π/2, π/2).

It follows from (1.4) that

|Rez| ≤ |z| and |Imz| ≤ |z|. (1.6)

Example 1.8

If z = 2+ i2
√
3, then

|z|=
√
22 + 22 · 3 =

√
16 = 4,

and using the first branch in (1.5), we obtain

arg z = tan−1 2
√
3

2
= tan−1

√
3 =

π

3
.

The following result is a simple consequence of Definition 1.6.

Proposition 1.9

Two complex numbers z,w ∈C are equal if and only if |z|= |w| and

arg z − argw = 2kπ for some k ∈ Z.
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1.2 Polar Form

It is often useful to write a complex number in the form (1.3) or also in the

following alternative form.

Definition 1.10

Given z ∈C in the form z = r cosθ+ ir sinθ, with r ≥ 0 and θ ∈R, we write

z = reiθ = |z|eiarg z.

We say that z = a+ ib is the Cartesian form of z and that z = reiθ is the

polar form of z.

Example 1.11

If z = 1+ i, then

|z|=
√
2 and arg z = tan−1 1 = π/4.

Hence, the polar form of z is
√
2eiπ/4.

Now we describe the product and the quotient of complex numbers in terms

of the polar form.

Proposition 1.12

If z1 = r1e
iθ1 and z2 = r2e

iθ2 , then

z1z2 = r1r2e
i(θ1+θ2) (1.7)

and

z1
z2

=
r1
r2

ei(θ1−θ2) for z2 �= 0.

Proof

For the product, by (1.3) we have

z1z2 = (r1 cosθ1 + ir1 sinθ1)(r2 cosθ2 + ir2 sinθ2),
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and thus,

z1z2 = r1r2(cosθ1 + i sinθ1)(cosθ2 + i sinθ2)

= r1r2(cosθ1 cosθ2 − sinθ1 sinθ2)

+ ir1r2(cosθ1 sinθ2 + sinθ1 cosθ2)

= r1r2 cos(θ1 + θ2) + ir1r2 sin(θ1 + θ2)

= r1r2e
i(θ1+θ2). (1.8)

For the quotient, we note that if w = ρeiα is a complex number satisfying

wz2 = z1, then it follows from (1.8) that

wz2 = ρr2e
i(α+θ2) = r1e

iθ1 .

By Proposition 1.9, we obtain

ρr2 = r1 and α+ θ2 − θ1 = 2kπ

for some k ∈ Z. Therefore,

z1
z2

=w = ρeiα =
r1
r2

ei(θ2−θ1+2kπ) =
r1
r2

ei(θ2−θ1)

for z2 �= 0, which yields the desired statement. �

Now we consider the powers and the roots of complex numbers, also ex-

pressed in terms of the polar form. For the powers, the following result is an

immediate consequence of (1.7).

Proposition 1.13

If z = reiθ and k ∈N, then zk = rkeikθ.

The roots of complex numbers require some extra care.

Proposition 1.14

If z = reiθ and k ∈N, then the complex numbers w such that wk = z are given

by

w = r1/kei(θ+2πj)/k, j = 0,1, . . . , k− 1. (1.9)
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Proof

If w = ρeiα satisfies wk = z, then it follows from Proposition 1.13 that

wk = ρkeikα = reiθ.

By Proposition 1.9, we obtain ρk = r and kα− θ = 2πj for some j ∈ Z. There-

fore,

w = ρeiα = r1/kei(θ+2πj)/k,

and the distinct values of ei(θ+2πj)/k are obtained for j ∈ {0,1, . . . , k− 1}. �

We note that the roots in (1.9) of the complex number z are uniformly

distributed on the circle of radius r1/k centered at the origin.

Example 1.15

For k = 5 the roots of 1 are

w = 11/5ei(0+2πj)/5 = ei2πj/5, j = 0,1,2,3,4

(see Figure 1.4).

Figure 1.4 Roots of 1 for k = 5
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1.3 Conjugate

Now we introduce the notion of the conjugate of a complex number.

Definition 1.16

Given z = a+ ib ∈C, the complex number z = a− ib is called the conjugate of

z (see Figure 1.5).

Figure 1.5 z is the conjugate of z

Clearly, z = z. Moreover, if z = reiθ, then

z = r cosθ+ ir sinθ

= r cosθ− ir sinθ

= r cos(−θ) + ir sin(−θ) = re−iθ.

Proposition 1.17

For every z ∈C, we have zz = |z|2.
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Proof

Given a complex number z = reiθ, we have

zz = reiθre−iθ = r2ei0 = |z|2.

This yields the desired identity. �

Proposition 1.18

For every z,w ∈C, we have

z +w = z +w and zw = z w.

Proof

Let z = a+ ib and w = c+ id, with a, b, c, d ∈R. Taking conjugates, we obtain

z = a− ib and w = c− id.

Therefore,

z +w = (a+ c)− i(b+ d) (1.10)

(see Figure 1.6). On the other hand,

z +w = (a+ c) + i(b+ d),

and thus,

z +w = (a+ c)− i(b+ d). (1.11)

The identity z +w = z +w now follows readily from (1.10) and (1.11).

Moreover, if z = reiθ and w = ρeiα, then

zw = rρei(θ+α),

and thus,

zw = rρe−i(θ+α) = re−iθρe−iα = z w.

This completes the proof of the proposition. �
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Figure 1.6 Points z, w, z +w and their conjugates

Example 1.19

Let us consider the polynomial

p(z) =

n∑

k=0

akz
k

for some real numbers ak ∈R. We have ak = ak for each k, and thus,

p(z) =

n∑

k=0

akzk =

n∑

k=0

akzk

=

n∑

k=0

akz
k = p(z).

In particular, if p(z) = 0 for some z ∈C, then

p(z) = p(z) = 0 = 0.

This implies that the nonreal roots of p occur in pairs of conjugates.

We also use the notion of conjugate to establish the following result.
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Proposition 1.20

For every z,w ∈C, we have:

1. |z| ≥ 0, and |z|= 0 if and only if z = 0;

2. |zw|= |z| · |w|;
3. |z +w| ≤ |z|+ |w|.

Proof

The first property follows immediately from (1.4). For the second property, we

note that

|zw|2 = zwzw = zwzw

= zzww = |z|2|w|2 (1.12)

for every z,w ∈C. Finally, for the third property, we observe that

|z +w|2 = (z +w)(z +w)

= (z +w)(z +w)

= zz + zw+wz +ww

= |z|2 + |w|2 + 2Re(zw).

It follows from (1.6) and (1.12) that

Re(zw)≤ |zw|= |z| · |w|= |z| · |w|,

and hence,

|z +w|2 ≤ |z|2 + |w|2 + 2|z| · |w|

=
(
|z|+ |w|

)2
.

This completes the proof of the proposition. �

1.4 Complex Functions

In this section we consider complex-valued functions of a complex variable.

Given a set Ω ⊂C, a function f : Ω →C can be written in the form

f(x+ iy) = u(x, y) + iv(x, y),
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with u(x, y), v(x, y) ∈ R for each x+ iy ∈ Ω. In fact, since the set of complex

numbers C is identified with R
2, we obtain functions u, v : Ω →R.

Definition 1.21

The function u is called the real part of f and the function v is called the

imaginary part of f .

Example 1.22

For f(z) = z2, we have

f(x+ iy) = (x+ iy)2 = x2 − y2 + i2xy,

and hence,

u(x, y) = x2 − y2 and v(x, y) = 2xy.

Example 1.23

For f(z) = z3, we have

f(x+ iy) = (x+ iy)3 = x3 − 3xy2 + i
(
3x2y− y3

)
,

and hence,

u(x, y) = x3 − 3xy2 and v(x, y) = 3x2y− y3.

Now we introduce various complex functions.

Definition 1.24

We define the exponential of the complex number z = x+ iy by

ez = ex(cosy+ i siny).

Example 1.25

For each z = x+ i0 ∈R, we have

ez = ex(cos 0 + i sin0) = ex(1 + i0) = ex.

Hence, the exponential of a real number x coincides with the exponential of x

when this is seen as a complex number.
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Example 1.26

For z = iπ, we have

eiπ = e0+iπ = e0(cosπ+ i sinπ) = 1(−1 + i0) =−1.

We also describe several properties of the exponential.

Proposition 1.27

For every z,w ∈C and k ∈ Z, we have:

1. ez+w = ezew and 1/ez = e−z ;

2. ez = ez ;

3. (ez)k = ekz ;

4. ez+i2kπ = ez .

Proof

Given z = x+ iy and w = x′ + iy′, we have

ez+w = e(x+x′)+i(y+y′)

= ex+x′[
cos(y+ y′) + i sin(y+ y′)

]

= exex
′[
(cosy cosy′ − siny siny′) + i(siny cosy′ + siny′ cosy)

]

= exex
′
(cosy+ i siny)(cosy′ + i siny′)

= ex(cosy+ i siny)ex
′
(cosy′ + i siny′)

= ezew.

In particular,

eze−z = ez−z = e0 = 1,

and thus 1/ez = e−z . This establishes the first property. For the second, we

note that

ez = ex cosy+ iex siny

= ex cosy− iex siny = ex(cosy− i siny)

= ex
[
cos(−y) + i sin(−y)

]
= ex−iy = ez.
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The third property follows from the first one by induction, and for the fourth

we note that

ez+i2πk = ex+i(y+2kπ)

= ex
[
cos(y+ 2kπ) + i sin(y+ 2kπ)

]

= ex(cosy+ i siny) = ez.

This completes the proof of the proposition. �

Now we consider the trigonometric functions.

Definition 1.28

The cosine and the sine of z ∈C are defined respectively by

cosz =
eiz + e−iz

2

and

sinz =
eiz − e−iz

2i
.

Example 1.29

For z = x+ i0 ∈R, we have

cosz =
eix + e−ix

2

=
1

2
(cosx+ i sinx+ cosx− i sinx) = cosx

and

sinz =
eix − e−ix

2i

=
1

2i
(cosx+ i sinx− cosx+ i sinx) = sinx.

Hence, the cosine and the sine of a real number x coincide respectively with

the cosine and the sine of x when this is seen as a complex number.
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Example 1.30

For z = iy, we have

cos(iy) =
e−y + ey

2
.

In particular, the cosine is not a bounded function in C, in contrast to what

happens in R. One can show in a similar manner that the sine is also unbounded

in C.

Example 1.31

Let us solve the equation cosz = 1, that is,

eiz + e−iz

2
= 1.

For w = eiz , we have 1/w = e−iz , and thus,

w+
1

w
= 2,

that is, w2−2w+1= 0. This yields w = 1, which is the same as eiz = 1. Writing

z = x+ iy, with x, y ∈R, we obtain

eiz = ei(x+iy) = e−y+ix

= e−y cosx+ ie−y sinx,

and it follows from eiz = 1+ i0 that

e−y cosx= 1 and e−y sinx= 0.

Since e−y �= 0, we obtain sinx= 0. Together with the identity cos2 x+sin2 x= 1,

this yields cosx = ±1. But since e−y > 0, it follows from e−y cosx = 1 that

cosx= 1, and hence, e−y = 1. Therefore, x= 2kπ, with k ∈ Z, and y = 0. The

solution of the equation cosz = 1 is thus z = 2kπ, with k ∈ Z.

The following result is an immediate consequence of Proposition 1.27.

Proposition 1.32

For every z ∈C and k ∈ Z, we have

cos(z + 2kπ) = cosz and sin(z + 2kπ) = sin z.
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We also introduce the logarithm of a complex number.

Definition 1.33

We define the (principal value of the) logarithm of z ∈C \ {0} by

log z = log |z|+ iarg z, (1.13)

taking arg z ∈ (−π,π].

It follows from

elog z = elog |z|+iarg z

= elog |z|eiarg z

= |z|eiarg z = z (1.14)

that the (principal value of the) logarithm is a (right) inverse of the exponential.

Example 1.34

For each z =−x+ i0 with x > 0, we have

log(−x) = log|−x|+ iarg(−x) = logx+ iπ.

For z = i, we have

log i= log |i|+ i
π

2
= log 1 + i

π

2
= i

π

2
.

Example 1.35

For each z = x+ iy with x > 0, by (1.5) we have

arg z = tan−1 y

x
,

where tan−1 is the inverse of the tangent with values in the interval (−π/2, π/2),

so that arg z ∈ (−π,π). Therefore,

log z = log |z|+ iarg z

=
1

2
log
(
x2 + y2

)
+ i tan−1 y

x
,
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and the functions

u(x, y) =
1

2
log
(
x2 + y2

)
and v(x, y) = tan−1 y

x

are respectively the real and imaginary parts of log z.

One can use the logarithm to define powers with a complex exponent.

Definition 1.36

Given z ∈C \ {0} and w ∈C, we define

zw = ew log z, (1.15)

where log z is the principal value of the logarithm.

We note that z0 = e0 log z = 1 for every z ∈C \ {0}.

Example 1.37

We have

2i = ei log 2 = cos log 2 + i sin log 2.

Since log i= iπ/2, we have

ii = ei log i = ei(iπ/2) = e−π/2.

Example 1.38

We have

(−1)2i = e2i log(−1) = e2i(log 1+iπ) = e−2π.

Incidentally, we note that

[
(−1)2

]i
= 1i = ei log 1 = e0 = 1,

while
[
(−1)i

]2
=
(
ei log(−1)

)2
=
(
ei(log 1+iπ)

)2
=
(
e−π
)2

= e−2π.

This shows that, in general, the numbers (zw1)w2 and zw1w2 do not coincide.
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1.5 Solved Problems and Exercises

Problem 1.1

Compute (2 + 3i) + (5− i) and (2 + 4i)(3− i).

Solution

We have

(2 + 3i) + (5− i) = (2 + 5) + (3− 1)i= 7+ 2i

and

(2 + 4i)(3− i) =
(
2 · 3− 4 · (−1)

)
+
(
2 · (−1) + 4 · 3

)
i= 10+ 10i.

Problem 1.2

Find the real and imaginary parts of (2 + i)/(3− i).

Solution

Multiplying the numerator and the denominator of (2 + i)/(3− i) by the con-

jugate of 3− i, we obtain

2 + i

3− i
=

(2+ i)(3 + i)

(3− i)(3 + i)
=

5+ 5i

10
=

1

2
+

1

2
i.

Therefore,

Re
2 + i

3− i
=

1

2
and Im

2+ i

3− i
=

1

2

(see Figure 1.7).

Problem 1.3

Find the modulus and the argument of i3/(2 + i).

Solution

Since

i3

2 + i
=

−i(2− i)

(2 + i)(2− i)
=

−1− 2i

5
,
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Figure 1.7 Real part and imaginary part of (2 + i)/(3− i)

we have
∣
∣
∣
∣

i3

2 + i

∣
∣
∣
∣=

√
1

52
+

22

52
=

√
5

52
=

1√
5
,

and, by (1.5),

arg
i3

2 + i
= π+ tan−1 −2/5

−1/5
= π+ tan−1 2,

where tan−1 is the inverse of the tangent with values in the interval (−π/2, π/2).

Problem 1.4

Write the complex number z =
√
2−

√
2i in polar form and compute z5.

Solution

We have |z|=
√
2 + 2 = 2 and

arg z = tan−1 −
√
2√
2

= tan−1(−1) =−π

4
.

Hence, z = 2e−iπ/4, and by Proposition 1.13, we obtain

z5 = 25e−i5π/4 = 32e−i5π/4.

Problem 1.5

Find the cube roots of −4.
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Solution

Let z =−4. Since |z|= 4 and arg z = π, we have z = 4eiπ , and hence, by Propo-

sition 1.14, the cube roots of −4 are

wj =
3
√
4ei(π+2πj)/3 =

3
√
4eiπ(1+2j)/3, j = 0,1,2.

More precisely,

w0 =
1+ i

√
3

3
√
2

, w1 =− 3
√
4 and w2 =

1− i
√
3

3
√
2

(see Figure 1.8).

Figure 1.8 Cube roots of −4

Problem 1.6

Compute log(−3) and log(2 + 2i).

Solution

Let z =−3. We have |z|= 3 and arg z = π. Therefore, by (1.13),

log(−3) = log 3 + iπ.
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Now let z = 2+ 2i. We have

|z|=
√
22 + 22 =

√
8 = 2

√
2

and

arg z = tan−1 2

2
= tan−1 1 =

π

4
.

Therefore,

log z = log(2
√
2) + i

π

4
=

3

2
log 2 + i

π

4
.

Problem 1.7

Compute (2i)2i and (−1)i.

Solution

Since 2i= 2eiπ/2, we have

log(2i) = log 2 + i
π

2
,

and thus, by (1.15),

(2i)2i = e2i log(2i)

= e2i(log 2+iπ/2)

= ei2 log 2e−π

= e−π
[
cos(2 log 2) + i sin(2 log 2)

]
.

On the other hand, since −1 = 1eiπ , we have

log(−1) = log 1 + iπ = iπ,

and hence,

(−1)i = ei log(−1) = ei(iπ) = e−π.

Problem 1.8

Use the Cartesian form of z to verify that zz = |z|2.
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Solution

We write z = a+ ib, with a, b ∈R. Then z = a− ib, and hence,

zz = (a+ ib)(a− ib)

=
(
a2 + b2

)
+ i
(
a(−b) + ba

)

= a2 + b2 = |z|2.

Problem 1.9

Determine the set of points z ∈C such that 2|z| ≤ |z − 4|.

Solution

Since |z| and |z − 4| are nonnegative, the condition 2|z| ≤ |z − 4| is equivalent
to 4|z|2 ≤ |z − 4|2. Writing z = x+ iy, with x, y ∈R, we obtain

4|z|2 = 4
(
x2 + y2

)

and

|z − 4|2 = (x− 4)2 + y2 = x2 − 8x+ 16+ y2.

Therefore, the condition 4|z|2 ≤ |z − 4|2 is equivalent to

4
(
x2 + y2

)
≤ x2 − 8x+ 16+ y2,

which yields

3x2 + 8x+ 3y2 ≤ 16. (1.16)

Since

3x2 + 8x= 3

(
x+

4

3

)2

− 16

3
,

condition (1.16) is equivalent to

(
x+

4

3

)2

+ y2 ≤ 64

9
.

Therefore, the set of points z ∈ C such that 2|z| ≤ |z − 4| is the closed disk of

radius 8/3 centered at −4/3 (see Figure 1.9).
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Figure 1.9 Closed disk of radius 8/3 centered at −4/3

Problem 1.10

Determine the set of points z ∈C such that |z|= z2.

Solution

For z = |z|eiα, the condition |z| = z2 is equivalent to |z| = |z|2e2iα. Clearly,
z = 0 is a solution. For z �= 0 we obtain the equivalent condition 1 = |z|e2iα,
which by Proposition 1.9 yields |z|= 1 and 2α= 2kπ with k ∈ Z, that is, α= kπ

with k ∈ Z. Hence,

z = |z|eiα = 1ei0 = 1 or z = |z|eiα = 1eiπ =−1.

Therefore, the set of points z ∈C such that |z|= z2 is {−1,0,1}.

Problem 1.11

Verify that the function z2 − z is not one-to-one and find whether it is onto.

Solution

The equation

z2 − z = z(z − 1) = 0
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has the solutions z = 0 and z = 1, and hence, the function z2 − z is not one-to-

one. On the other hand, since the equation z2 − z =w has the solution

z =
1

2
(1 +

√
1 + 4w),

where
√
1 + 4w is any square root of 1 + 4w, the function z2 − z is onto.

Problem 1.12

Solve the equation cosz = 2.

Solution

Let w = eiz . We have

0 = cosz − 2

=
1

2

(
eiz + e−iz

)
− 2

=
1

2

(
w+

1

w

)
− 2 =

w2 − 4w+ 1

2w
.

Since eiz never vanishes, the equation cosz = 2 is equivalent to w2−4w+1= 0,

which has the solutions

w1 =
4+

√
16− 4

2
= 2+

√
3 and w2 =

4−
√
16− 4

2
= 2−

√
3.

We thus consider the equations

eiz = 2+
√
3 and eiz = 2−

√
3. (1.17)

Writing z = x+ iy, with x, y ∈ R, we obtain eiz = e−yeix. By Proposition 1.9,

the condition

e−yeix = 2+
√
3

yields e−y = 2+
√
3 and x= 2πk with k ∈ Z. Similarly, the condition

e−yeix = 2−
√
3

yields e−y = 2 −
√
3 and x = 2πk with k ∈ Z. Hence, the equations in (1.17)

have respectively the solutions

z = 2πk− i log(2 +
√
3)
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and

z = 2πk− i log(2−
√
3),

with k ∈ Z.

Problem 1.13

Solve the equation cosz = sinz.

Solution

Let w = eiz . We have

0 = cosz − sin z

=
1

2

(
eiz + e−iz

)
− 1

2i

(
eiz − e−iz

)

=
1

2

(
w+

1

w

)
− 1

2i

(
w− 1

w

)

=
1

2iw

(
iw2 + i−w2 + 1

)

=
1

2iw

(
(i− 1)w2 + (i+ 1)

)
.

Thus, we obtain the equation

w2 =− i+ 1

i− 1
= i,

which has the solutions

w1 = eiπ/4 and w2 = ei5π/4.

Therefore, we must solve the equations

eiz = eiπ/4 and eiz = ei5π/4. (1.18)

Writing z = x + iy, with x, y ∈ R, we obtain eiz = e−yeix, and the equations

in (1.18) have respectively the solutions

z =
π

4
+ 2πk and z =

5π

4
+ 2πk, with k ∈ Z.

These can be written together in the form z = π/4 + πk, with k ∈ Z.
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Problem 1.14

Show that if eiθ �=−1, then

Re log
(
1 + eiθ

)
= log

∣
∣
∣
∣2cos

θ

2

∣
∣
∣
∣.

Solution

Since

log
(
1 + eiθ

)
= log

∣
∣1 + eiθ

∣
∣+ iarg

(
1 + eiθ

)
,

we have

Re log
(
1 + eiθ

)
= log

∣
∣1 + eiθ

∣
∣

= log |1 + cosθ+ i sinθ|

= log

√
(1 + cosθ)2 + sin2 θ

= log
√
2 + 2cosθ.

It then follows from the identity

∣
∣
∣
∣cos

θ

2

∣
∣
∣
∣=

√
1 + cosθ

2

that

Re log
(
1 + eiθ

)
= log

(
2

√
1 + cosθ

2

)
= log

∣
∣
∣
∣2cos

θ

2

∣
∣
∣
∣.

Problem 1.15

For z = x+ iy, with x, y ∈R, show that

|cosz|2 + |sinz|2 = cosh2 y+ sinh2 y.
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Solution

We have

cosz =
eiz + e−iz

2
=

eixe−y + e−ixey

2

=
1

2

(
e−y cosx+ ey cosx

)
+

i

2

(
e−y sinx− ey sinx

)

= cosx coshy− i sinx sinhy

and

sin z =
eiz − e−iz

2i
=

eixe−y − e−ixey

2i

=
1

2

(
e−y sinx+ ey sinx

)
− i

2

(
e−y cosx− ey cosx

)

= sinx coshy+ i cosx sinhy.

Therefore,

|cosz|2 + |sinz|2 = cos2 x cosh2 y+ sin2 x sinh2 y

+ sin2 x cosh2 y+ cos2 x sinh2 y

= cosh2 y+ sinh2 y.

Problem 1.16

Show that

|z −w|2 ≤
(
1 + |z|2

)(
1 + |w|2

)
for z,w ∈C.

Solution

By Proposition 1.20, we have

|z −w| ≤ |z|+ |−w|= |z|+ |w|,

and hence,

|z −w|2 ≤
(
|z|+ |w|

)2
= |z|2 + 2|z| · |w|+ |w|2.

On the other hand,

0≤
(
1− |z| · |w|

)2
= 1− 2|z| · |w|+ |z|2|w|2, (1.19)
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and thus,

2|z| · |w| ≤ 1 + |z|2|w|2.

It then follows from (1.19) that

|z −w|2 ≤ |z|2 + 1+ |z|2|w|2 + |w|2

= |z|2 + 1+
(
|z|2 + 1

)
|w|2

=
(
1 + |z|2

)(
1 + |w|2

)
.

Problem 1.17

Verify that the identity log(zw) = log z + logw is not always satisfied.

Solution

Let z = r1e
iθ1 and w = r2e

iθ2 , with r1, r2 > 0 and θ1, θ2 ∈ (−π,π]. We have

log z = log r1 + iθ1 and logw = log r2 + iθ2,

and thus,

log z + logw = log r1 + log r2 + i(θ1 + θ2)

= log(r1r2) + i(θ1 + θ2).

On the other hand, since zw = r1r2e
i(θ1+θ2) (see (1.7)), we also have

log(zw) = log(r1r2) + i(θ1 + θ2 − 2kπ),

where k ∈ Z is the unique integer such that

θ1 + θ2 − 2kπ ∈ (−π,π].

In particular, when θ1 + θ2 does not belong to the interval (−π,π] we have

log(zw) �= log z + logw.

For example, if z =w =−1, then

log(zw) = log 1 = 0 and log z + logw = 2 log(−1) = 2iπ.

Problem 1.18

Find all complex numbers z ∈C such that log log z is purely imaginary.
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Solution

For z �= 0 we have

log z = log |z|+ iarg z,

with arg z ∈ (−π,π]. Hence, for log z �= 0 we obtain

log log z = log|log z|+ iarg log z

= log
√
(log |z|)2 + (arg z)2 + iarg log z,

with arg log z ∈ (−π,π]. This implies that log log z is purely imaginary if and

only if

Re log log z =
1

2
log
[
(log |z|)2 + (arg z)2

]
= 0,

which is equivalent to

(log |z|)2 + (arg z)2 = 1,

with z �= 0. Taking α ∈R such that

log |z|= cosα and arg z = sinα,

we obtain |z|= ecosα, and thus,

z = |z|eiarg z = ecosαei sinα = ee
iα

.

We note that z �= 0 and that

|log z|=
√
(log |z|)2 + (arg z)2 = 1 �= 0.

EXERCISES

1.1. Find:

(a) the real part of the imaginary part of z;

(b) the imaginary part of the real part of z.

1.2. Compute the modulus and the argument of:

(a) i3 + 1;

(b) (5 + i6)(1− i7);

(c) (1 + i
√
3)/(1− i

√
3);

(d) (5 + i4)/(2− i2)2.
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1.3. Find the Cartesian and polar forms of:

(a) (1− i)3;

(b) (5 + i4)/(2− i);

(c) i5 + i20;

(d) cos i;

(e) sinh(2i).

1.4. Compute the conjugate of 5(2 + i3)3/(2 + i).

1.5. Find the square roots of:

(a) i;

(b) 1− i;

(c) 2 + i2.

1.6. Verify that:

(a) the cube roots of i are (
√
3 + i)/2, (−

√
3 + i)/2 and −i;

(b) the 4th roots of i are eiπ/8, ei5π/8, ei9π/8 and ei13π/8;

(c) a 5th root of 1 is

√
5− 1

4
+ i

√
5 +

√
5

8
.

1.7. Find all complex numbers z ∈C such that (z2)2 = 1.

1.8. Verify that 1 + ei2x = 2eix cosx for every x ∈R.

1.9. Compute log log i.

1.10. Find whether log log z can be computed for every z �= 0.

1.11. Find all solutions of the equation:

(a) (z + 1)2 = (z − 1)2;

(b) 2z2 + iz + 4= 0;

(c) z4 + z3 + z2 + z = 0.

1.12. Solve the equation:

(a) ez = 3;

(b) coshz = i;

(c) ee
z

= 1.

1.13. Solve the equation:

(a) cosz sinz = 0;

(b) sinz + cosz = 1;

(c) sinz = sin(2z).

1.14. Determine the set of points (x, y) ∈R
2 such that:

(a) x+ iy = |x+ iy|;
(b) 2|x+ iy| ≤ |x+ iy− 1|.

1.15. Determine the set of points z ∈C such that:

(a) z + z = |z − z|;
(b) z2 − z = 1;
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(c) z − |z|= z;

(d) 3|z| ≤ |z − 2|.
1.16. Determine the set:

(a) {z ∈C : |z|2 = z2};
(b) {z ∈C : z−1 = 4z}.

1.17. Determine the set {zw : z,w ∈C}.
1.18. Compute the real and imaginary parts of the function:

(a) f(z) = (z + 1)2;

(b) f(z) = z2(z − 3);

(c) f(z) = z/(z − 1);

(d) f(z) = z/(zz − 1).

1.19. Find whether the function is one-to-one:

(a) 2z;

(b) ez ;

(c) z2 + z;

(d) cosz;

(e) z2 − cosz.

1.20. Find whether the function is onto:

(a) ez ;

(b) z3.

1.21. Find whether the function is bijective (one-to-one and onto):

(a) z4 − z;

(b) ez .

1.22. Identify each statement as true or false.

(a) cos2 z + sin2 z = 1 for every z ∈C.

(b) Re(iz) = Im(z) for every z ∈C∩R.

(c) The function ez is bounded.

(d) The function cosz − sinz is bounded.

(e) cos cosz is always real.

1.23. Show that:

(a) Re(iz) =− Imz and Im(iz) = Re z;

(b) cos(iz) = coshz;

(c) sin(iz) = i sinhz;

(d) sinz = sin z;

(e) cosz = cosz.

1.24. Show that:

(a) cos(z +w) = cosz cosw− sinz sinw;

(b) sin(z +w) = sinz cosw+ cosz sinw;

(c) cos(2z) = cos2 z − sin2 z;

(d) sin(2z) = 2sinz cosz;

(e) sin(x+ iy) = coshy sinx+ i cosx sinhy.
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1.25. Verify that:

(a) Re[(1 + z)/(1− z)] = (1− |z|2)/|z − 1|2;
(b) sin[−i log(iz +

√
1− z2)] = z.

1.26. Show that |zi|< eπ for every z ∈C \ {0}.
1.27. Show that

|z| ≤ |Rez|+ |Imz| ≤
√
2|z|.

1.28. Verify that

|z −w|2 + |z +w|2 = 2
(
|z|2 + |w|2

)
for z,w ∈C.

1.29. Show that

∣
∣|z| − |w|

∣
∣≤ |z +w| for every z,w ∈C.

1.30. Find whether the inequality |z −w| ≤ |z +w| is always satisfied.
1.31. Show that if zn = 1 and z �= 1, then 1 + z + · · ·+ zn−1 = 0.

1.32. Given x ∈R \ {2kπ : k ∈ Z} and n ∈N, show that

sin(2x) + sin(4x) + · · ·+ sin(2nx) =
sin(nx) sin[(n+ 1)x]

sinx

and

cos(2x) + cos(4x) + · · ·+ cos(2nx) =
sin(nx) cos[(n+ 1)x]

sinx
.

Hint: compute ei2x + ei4x + · · ·+ ei2nx.

1.33. Find whether the function is bounded or unbounded:

(a) f(z) = |z + i|2;
(b) f(z) = |z + i|2 − |z − i|2.

1.34. Compute the limit of:

(a) |1 + i/n|n when n→∞;

(b) |cos(2 + 3i/n)|n when n→∞.



2
Holomorphic Functions

In this chapter we introduce the notion of a differentiable function, or of a holo-

morphic function. It turns out that differentiability is characterized by a pair

of (partial differential) equations—the Cauchy–Riemann equations. We also in-

troduce the notion of the integral along a path and we study its relation to the

notion of a holomorphic function. Finally, we introduce the index of a closed

path, we obtain Cauchy’s integral formula for a holomorphic function, and we

discuss the relation between integrals and homotopy.

2.1 Limits and Continuity

Let f : Ω →C be a complex-valued function in a set Ω ⊂C. We first introduce

the notion of limit.

Definition 2.1

We say that the limit of f at a point z0 ∈ Ω exists, and that it is given by

w ∈C if for each ε > 0 there exists δ > 0 such that

∣
∣f(z)−w

∣
∣< ε whenever |z − z0|< δ.

L. Barreira, C. Valls, Complex Analysis and Differential Equations,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-1-4471-4008-5 2, c© Springer-Verlag London 2012
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In this case we write

lim
z→z0

f(z) =w.

Now we introduce the notion of continuity.

Definition 2.2

We say that f is continuous at a point z0 ∈Ω if

lim
z→z0

f(z) = f(z0).

Otherwise, the function f is said to be discontinuous at z0. We also say that

f is continuous in Ω if it is continuous at all points of Ω.

Example 2.3

For the function f(z) = |z|, we have
∣
∣f(z)− f(z0)

∣
∣=
∣
∣|z| − |z0|

∣
∣≤ |z − z0|.

This implies that |f(z)− f(z0)|< δ whenever |z− z0|< δ, and hence, the func-

tion f is continuous in C.

Example 2.4

For the function f(z) = z2, we have
∣
∣f(z)− f(z0)

∣
∣=
∣
∣(z − z0)(z + z0)

∣
∣

= |z − z0| · |z − z0 + 2z0|

≤ |z − z0|
(
|z − z0|+ 2|z0|

)

< δ(δ + 2|z0|)

whenever |z − z0| < δ. Since δ(δ + 2|z0|) → 0 when δ → 0, the function f is

continuous in C.

Example 2.5

Now we show that the function f(z) = log z is discontinuous at all points z =

−x+ i0 with x > 0. For w ∈C in the second quadrant, we have

logw = log |w|+ iargw



2.2 Differentiability 39

with argw ∈ [π/2, π]. On the other hand, for w ∈ C in the third quadrant

and outside the half-line R
−, the same formula holds, but now with argw ∈

(−π,−π/2]. Letting w → z in the second and third quadrants, we obtain re-

spectively

logw→ logx+ iπ

and

logw→ logx− iπ.

Since the right-hand sides are different, the logarithm has no limit at points

of R−. Therefore, the function f is discontinuous at all points of R−. On the

other hand, one can show that it is continuous in C \R−
0 (see Exercise 2.25).

2.2 Differentiability

Now we consider a function f : Ω →C in an open set Ω ⊂C, that is, in an open

set Ω ⊂R
2.

Definition 2.6

We say that f is differentiable at a point z0 ∈Ω if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists. In this case, the number f ′(z0) is called the derivative of f at z0.

We also introduce the notion of a holomorphic function.

Definition 2.7

When f is differentiable at all points of Ω we say that f is holomorphic in Ω.

Example 2.8

We show that the function f(z) = z2 is holomorphic in C. Indeed,

lim
z→z0

z2 − z20
z − z0

= lim
z→z0

(z − z0)(z + z0)

z − z0

= lim
z→z0

(z + z0) = 2z0,
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and thus (z2)′ = 2z. One can show by induction that

(
zn
)′
= nzn−1

for every n ∈N (with the convention that 00 = 1).

Example 2.9

Now we consider the function f(z) = z. Given h= reiθ, we have

f(z + h)− f(z)

h
=

z + h− z

h

=
h

h
= e−2iθ. (2.1)

Since e−2iθ varies with θ, one cannot take the limit in (2.1) when r→ 0. Hence,

the function f is differentiable at no point.

Example 2.10

For the function f(z) = |z|2, given h= reiθ we have

f(z + h)− f(z)

h
=

(z + h)(z + h)− zz

h

=
zh+ zh+ hh

h

=
zh

h
+ z + h

=
zre−iθ

reiθ
+ z + re−iθ

= ze−2iθ + z + re−iθ → ze−2iθ + z (2.2)

when r→ 0. For z �= 0, since the limit in (2.2) varies with θ, the function f is

not differentiable at z. On the other hand,

f(z)− f(0)

z − 0
=

|z|2
z

=
zz

z
= z → 0

when z → 0. Therefore, f is only differentiable at the origin, and f ′(0) = 0.

The following properties are obtained as in R, and thus their proofs are

omitted.
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Proposition 2.11

Given holomorphic functions f, g : Ω →C, we have:

1. (f + g)′ = f ′ + g′;

2. (fg)′ = f ′g+ fg′;

3. (f/g)′ = (f ′g− fg′)/g2 at all points where g �= 0.

Proposition 2.12

Given holomorphic functions f : Ω → C and g : Ω′ → C, with g(Ω′) ⊂ Ω, we

have

(f ◦ g)′ = (f ′ ◦ g)g′.

Now we show that any differentiable function is continuous.

Proposition 2.13

If f is differentiable at z0, then f is continuous at z0.

Proof

For z �= z0, we have

f(z)− f(z0) =
f(z)− f(z0)

z − z0
(z − z0),

and thus,

lim
z→z0

f(z) = lim
z→z0

[
f(z)− f(z0)

]
+ f(z0)

= lim
z→z0

f(z)− f(z0)

z − z0
lim
z→z0

(z − z0) + f(z0)

= f ′(z0) · 0 + f(z0) = f(z0).

This yields the desired property. �

We also describe a necessary condition for the differentiability of a function

f : Ω →C at a given point. We always write

f(x+ iy) = u(x, y) + iv(x, y),

where u and v are real-valued functions.
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Theorem 2.14 (Cauchy–Riemann equations)

If f is differentiable at z0 = x0 + iy0, then

∂u

∂x
=

∂v

∂y
and

∂u

∂y
=−∂v

∂x
(2.3)

at (x0, y0). Moreover, the derivative of f at z0 is given by

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0). (2.4)

Proof

Writing f ′(z0) = a+ ib, we obtain

f ′(z0)(z − z0) = (a+ ib)
[
(x− x0) + i(y− y0)

]

=
[
a(x− x0)− b(y− y0)

]
+ i
[
b(x− x0) + ia(y− y0)

]

=C(x− x0, y− y0),

where

C =

(
a −b

b a

)
,

and hence,

f(z)− f(z0)− f ′(z0)(z − z0) =
(
u(x, y), v(x, y)

)
−
(
u(x0, y0), v(x0, y0)

)

−C(x− x0, y− y0).

For z �= z0, we have

f(z)− f(z0)− f ′(z0)(z − z0)

|z − z0|
=

f(z)− f(z0)− f ′(z0)(z − z0)

z − z0
· z − z0
|z − z0|

=

(
f(z)− f(z0)

z − z0
− f ′(z0)

)
z − z0
|z − z0|

,

and since
∣
∣
∣
∣
z − z0
|z − z0|

∣
∣
∣
∣=

|z − z0|
|z − z0|

= 1,

we obtain

f(z)− f(z0)− f ′(z0)(z − z0)

|z − z0|
→ 0
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when z → z0. Since

|z − z0|= ‖(x− x0, y− y0)‖,

this is the same as

(u(x, y), v(x, y))− (u(x0, x0), v(x0, y0))−C(x− x0, y− y0)

‖(x− x0, y− y0)‖
→ 0

when (x, y)→ (x0, y0). It thus follows from the notion of differentiability in R
2

that the function F : Ω →R
2 given by

F (x, y) =
(
u(x, y), v(x, y)

)
(2.5)

is differentiable at (x0, y0), with derivative

DF (x0, y0) =

(∂u
∂x (x0, y0)

∂u
∂y (x0, y0)

∂v
∂x (x0, y0)

∂v
∂y (x0, y0)

)

=C =

(
a −b

b a

)
.

This shows that the identities in (2.3) are satisfied. �

The equations in (2.3) are called the Cauchy–Riemann equations.

Example 2.15

Let

f(x+ iy) = u(x, y) + iv(x, y)

be a holomorphic function in C with u(x, y) = x2 − xy− y2. By Theorem 2.14,

the Cauchy–Riemann equations are satisfied. Since

∂u

∂x
= 2x− y,

it follows from the first equation in (2.3) that

∂v

∂y
= 2x− y.

Therefore,

v(x, y) = 2xy− y2

2
+C(x)
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for some function C. Taking derivatives, we obtain

∂u

∂y
=−x− 2y and − ∂v

∂x
=−2y−C ′(x).

Hence,

−x− 2y =−2y−C ′(x),

and C ′(x) = x. We conclude that C(x) = x2/2+ c for some constant c ∈R, and

hence,

v(x, y) =
x2

2
+ 2xy− y2

2
+ c.

We thus have

f(x+ iy) =
(
x2 − xy− y2

)
+ i

(
x2

2
+ 2xy− y2

2
+ c

)
.

Rearranging the terms, we obtain

f(x+ iy) =
[(
x2 − y2

)
+ i2xy

]
+

[
−xy+ i

(
x2

2
− y2

2

)]
+ ic

= z2 +
i

2

[(
x2 − y2

)
+ i2xy

]
+ ic

= z2 +
i

2
z2 + ic=

(
1 +

i

2

)
z2 + ic.

In particular, f ′(z) = (2 + i)z.

Example 2.16

We show that a holomorphic function f = u+ iv cannot have u(x, y) = x2 + y2

as its real part. Otherwise, by the first Cauchy–Riemann equation, we would

have

∂u

∂x
= 2x=

∂v

∂y
,

and thus, v(x, y) = 2xy+C(x) for some function C. But then

∂u

∂x
= 2y and

∂v

∂x
= 2y+C ′(x),

and by the second Cauchy–Riemann equation we would also have

2y =−
(
2y+C ′(x)

)
.
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Therefore, C ′(x) = −4y, but this identity cannot hold for every x, y ∈ R. For

example, taking derivatives with respect to y we would obtain 0 =−4, which

is impossible.

As an illustration of the former concepts, in the remainder of this section

we shall describe conditions for a holomorphic function to be constant.

Given a set A⊂ C, we denote by A the closure of A. This is the smallest

closed subset of C = R2 containing A. It is also the set of points a ∈ C such

that

{
z ∈C : |z − a|< r

}
∩A �= ∅

for every r > 0. In spite of the notation, the notion of closure should not be

confused with the notion of the conjugate of a complex number. Now we recall

the notion of a connected set.

Definition 2.17

A set Ω ⊂ C is said to be disconnected if there exist nonempty sets A,B ⊂ C

such that

Ω =A∪B and A∩B =A∩B = ∅.

A set Ω ⊂C is said to be connected if it is not disconnected.

Finally, we introduce the notion of a connected component.

Definition 2.18

Given Ω ⊂ C, we say that a connected set A ⊂ Ω is a connected component

of Ω if any connected set B ⊂Ω containing A is equal to A.

We note that if a set Ω ⊂C is connected, then it is its own unique connected

component.

Now we show that in any connected open set, a holomorphic function with

zero derivative is constant.

Proposition 2.19

If f is a holomorphic function in a connected open set Ω and f ′ = 0 in Ω, then

f is constant in Ω.



46 2. Holomorphic Functions

Proof

By (2.4), we have

f ′(x+ iy) =
∂u

∂x
+ i

∂v

∂x
= 0.

Together with the Cauchy–Riemann equations, this yields

∂u

∂x
=

∂u

∂y
=

∂v

∂x
=

∂v

∂y
= 0.

Now let us consider points x+ iy and x+ iy′ in Ω such that the line segment

between them is contained in Ω. By the Mean value theorem, we obtain

u(x, y)− u(x, y′) =
∂u

∂y
(x, z)(y− y′) = 0,

where z is some point between y and y′. Analogously,

v(x, y)− v(x, y′) =
∂v

∂y
(x,w)(y− y′) = 0,

where w is some point between y and y′. This shows that

f(x+ iy) = f(x+ iy′). (2.6)

One can show in a similar manner that if x+ iy′ and x′ + iy′ are points in Ω

such that the line segment between them is contained in Ω, then

f(x+ iy′) = f(x′ + iy′). (2.7)

Now we consider an open rectangle R⊂Ω with horizontal and vertical sides.

Given x+ iy, x′ + iy′ ∈R, the point x+ iy′ is also in R, as well as the vertical

segment between x+ iy and x+ iy′, and the horizontal segment between x+ iy′

and x′+ iy′ (each of these segments can be a single point). It follows from (2.6)

and (2.7) that

f(x+ iy) = f(x+ iy′) = f(x′ + iy′).

This shows that f is constant in R. Finally, we consider sequences RR =

(Rn)n∈N of open rectangles in Ω, with horizontal and vertical sides, such that

R1 =R and Rn ∩Rn+1 �= ∅ for each n ∈N. We also consider the set

UR =
⋃

RR

∞⋃

n=1

Rn.

Clearly, UR is open (since it is a union of open sets), and f is constant in UR,

since it is constant in each union
⋃∞

n=1Rn.
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We show that UR =Ω. On the contrary, let us assume that Ω \UR �= ∅. We

note that

(UR ∩Ω) \UR �= ∅,

since otherwise UR ∩Ω = UR, and hence,

Ω = UR ∪ (Ω \UR),

with

UR ∩ (Ω \UR) = (UR ∩Ω) \UR = ∅

and

UR ∩Ω \UR = UR ∩ (Ω \UR) = ∅

(since UR is open); that is, Ω would be disconnected. Let us then take z ∈
(UR ∩Ω) \ UR and a rectangle S ⊂ Ω with horizontal and vertical sides such

that z ∈ S. Then S ∩ UR �= ∅ and thus, S is an element of some sequence RR.

This implies that S ⊂ UR and hence z ∈ UR, which yields a contradiction.

Therefore, UR =Ω and f is constant in Ω. �

We also describe some applications of Proposition 2.19.

Example 2.20

We show that for a holomorphic function f = u+ iv in a connected open set, if

u is constant or v is constant, then f is also constant. Indeed, if u is constant,

then

f ′(x+ iy) =
∂u

∂x
+ i

∂v

∂x

=
∂u

∂x
− i

∂u

∂y
= 0,

and it follows from Proposition 2.19 that f is constant. Similarly, if v is con-

stant, then

f ′(x+ iy) =
∂u

∂x
+ i

∂v

∂x

=
∂v

∂y
+ i

∂v

∂x
= 0,

and again it follows from Proposition 2.19 that f is constant.
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Example 2.21

Now we show that for a holomorphic function f = u+ iv in a connected open

set, if |f | is constant, then f is constant. We first note that by hypothesis

|f |2 = u2 + v2 is also constant. If the constant is zero, then u = v = 0 and

hence, f = u+ iv = 0. Now we assume that |f |2 = c for some constant c �= 0.

Then u2 + v2 = c, and taking derivatives with respect to x and y, we obtain

2u
∂u

∂x
+ 2v

∂v

∂x
= 0

and

2u
∂u

∂y
+ 2v

∂v

∂y
= 0.

Using the Cauchy–Riemann equations, one can rewrite these two identities in

the matrix form
(
u v

v −u

)(∂u
∂x
∂v
∂x

)

= 0. (2.8)

Since the determinant of the 2× 2 matrix in (2.8) is −(u2 + v2) =−c �= 0, the

unique solution is

∂u

∂x
=

∂v

∂x
= 0,

and thus,

f ′(x+ iy) =
∂u

∂x
+ i

∂v

∂x
= 0.

It follows again from Proposition 2.19 that f is constant.

2.3 Differentiability Condition

The following example shows that for a function f to be differentiable at a

given point it is not sufficient that the Cauchy–Riemann equations are satisfied

at that point.

Example 2.22

We show that the function f(x+ iy) =
√
|xy| is not differentiable at the origin.

Given

h= reiθ = r cosθ+ ir sinθ,
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we have

f(h)− f(0)

h− 0
=

√
|(r cosθ)(r sinθ)|

reiθ

=
r
√

|cosθ sinθ|
reiθ

=
√
|cosθ sinθ|e−iθ.

Since the last expression depends on θ, one cannot take the limit when r→ 0.

Therefore, f is not differentiable at the origin. On the other hand, we have

∂u

∂x
(0,0) = lim

x→0

u(x,0)− u(0,0)

x− 0
= 0

and

∂u

∂y
(0,0) = lim

y→0

u(0, y)− u(0,0)

y− 0
= 0,

as well as

∂v

∂x
(0,0) =

∂v

∂y
(0,0) = 0,

since v = 0. Hence, the Cauchy–Riemann equations are satisfied at the origin.

Now we give a necessary and sufficient condition for the differentiability of

a function f in some open set.

Theorem 2.23

Let u, v : Ω → C be C1 functions in an open set Ω ⊂ C. Then the function

f = u+ iv is holomorphic in Ω if and only if the Cauchy–Riemann equations

are satisfied at all points of Ω.

Proof

By Theorem 2.14, if f is holomorphic in Ω, then the Cauchy–Riemann equa-

tions are satisfied at all points of Ω.

Now we assume that the Cauchy–Riemann equations are satisfied in Ω.

This implies that
(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

=

(
a −b

b a

)
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at every point of Ω, for some constants a and b possibly depending on the

point. On the other hand, since u and v are of class C1, the function F = (u, v)

in (2.5) is differentiable in Ω. It follows from the proof of Theorem 2.14 that

f is differentiable at z0, with

f ′(z0) = a+ ib,

if and only if F is differentiable at (x0, y0), with

DF (x0, y0) =

(
∂u
∂x (x0, y0)

∂u
∂y (x0, y0)

∂v
∂x (x0, y0)

∂v
∂y (x0, y0)

)

=

(
a −b

b a

)
.

This shows that the function f is differentiable at all points of Ω. �

Example 2.24

Let us consider the function f(z) = ez . We have

u(x, y) = ex cosy and v(x, y) = ex siny,

and both functions are of class C1 in the open set R2 =C. Since

∂u

∂x
= ex cosy,

∂v

∂y
= ex cosy,

and

∂u

∂y
=−ex siny, −∂v

∂x
=−ex siny,

the Cauchy–Riemann equations are satisfied in R
2. By Theorem 2.23, we con-

clude that the function f is differentiable in C. Moreover, it follows from (2.4)

that

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= ex cosy+ iex siny = ez,

that is, (ez)′ = ez .

Example 2.25

For the cosine and sine functions, we have respectively

(cosz)′ =

(
eiz + e−iz

2

)′
=

ieiz − ie−iz

2

=−eiz − e−iz

2i
=− sin z
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and

(sinz)′ =

(
eiz − e−iz

2i

)′
=

ieiz + ie−iz

2i

=
eiz + e−iz

2
= cosz.

Example 2.26

Now we find all points at which the function

f(x+ iy) = xy+ ixy

is differentiable. We first note that

u(x, y) = v(x, y) = xy

is of class C1 in R
2. On the other hand, the Cauchy–Riemann equations

∂u

∂x
=

∂v

∂y
and

∂u

∂y
=−∂v

∂x
,

take the form

y = x and x=−y.

The unique solution is x = y = 0. By Theorem 2.14, we conclude that the

function f is differentiable at no point of C \ {0}. But since {0} is not an open

set, one cannot apply Theorem 2.23 to decide whether f is differentiable at

the origin. Instead, we have to use the definition of derivative, that is, we must

verify whether the limit

lim
(x,y)→(0,0)

f(x+ iy)− f(0)

x+ iy− 0
= lim

(x,y)→(0,0)

xy(1 + i)

x+ iy

exists. It follows from (1.6) that

∣
∣
∣
∣
xy(1 + i)

x+ iy

∣
∣
∣
∣≤

|x| · |y|
√
2

|x+ iy| ≤
√
2|x+ iy| → 0

when (x, y)→ (0,0), and hence, f is differentiable at the origin, with f ′(0) = 0.

Example 2.27

Let us consider the function log z. It follows from (1.14) that

(
elog z

)′
= 1.
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Hence, if log z is differentiable at z, then it follows from the formula for the

derivative of a composition in Proposition 2.12 that

elog z(log z)′ = 1.

Therefore,

(log z)′ =
1

elog z
=

1

z
.

Now we show that log z is differentiable (at least) in the open set R+ ×R.

For this we recall the formula

log z =
1

2
log
(
x2 + y2

)
+ i tan−1 y

x

obtained in Example 1.35 for x > 0. We note that the functions

u(x, y) =
1

2
log
(
x2 + y2

)
and v(x, y) = tan−1 y

x

are of class C1 in R
+ ×R. Since

∂u

∂x
=

x

x2 + y2
,

∂v

∂y
=

1/x

1 + (y/x)2
=

x

x2 + y2
,

and

∂u

∂y
=

y

x2 + y2
, −∂v

∂x
=− −y/x2

1 + (y/x)2
=

y

x2 + y2
,

it follows from Theorem 2.23 that the function log z is holomorphic in R
+ ×R.

2.4 Paths and Integrals

In order to define the integral of a complex function, we first introduce the

notion of a path.

Definition 2.28

A continuous function γ : [a, b]→ Ω ⊂ C is called a path in Ω, and its image

γ([a, b]) is called a curve in Ω (see Figure 2.1).

We note that the same curve can be the image of several paths.

Now we define two operations. The first is the inverse of a path.
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Figure 2.1 Paths and curves

Definition 2.29

Given a path γ : [a, b]→Ω, we define the path −γ : [a, b]→Ω by

(−γ)(t) = γ(a+ b− t)

for each t ∈ [a, b] (see Figure 2.2).

Figure 2.2 Paths γ and −γ

The second operation is the sum of paths.

Definition 2.30

Given paths γ1 : [a1, b1]→Ω and γ2 : [a2, b2]→Ω such that γ1(b1) = γ2(a2), we

define the path γ1 + γ2 : [a1, b1 + b2 − a2]→Ω by

(γ1 + γ2)(t) =

{
γ1(t) if t ∈ [a1, b1],

γ2(t− b1 + a2) if t ∈ [b1, b1 + b2 − a2]
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(see Figure 2.3).

Figure 2.3 Path γ1 + γ2

We also consider the notions of a regular path and a piecewise regular path.

Definition 2.31

A path γ : [a, b] → Ω is said to be regular if it is of class C1 and γ′(t) �= 0

for every t ∈ [a, b], taking the right-sided derivative at a and the left-sided

derivative at b.

More precisely, the path γ : [a, b] → Ω is regular if there exists a path

α : (c, d) → Ω of class C1 in some open interval (c, d) containing [a, b] such

that α(t) = γ(t) and α′(t) �= 0 for every t ∈ [a, b].

Definition 2.32

A path γ : [a, b]→Ω is said to be piecewise regular if there exists a partition of

[a, b] into a finite number of subintervals [aj , bj ] (intersecting at most at their

endpoints) such that each path γj : [aj , bj ] → Ω defined by γj(t) = γ(t) for

t ∈ [aj , bj ] is regular, taking the right-sided derivative at aj and the left-sided

derivative at bj .

We have the following result.
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Proposition 2.33

If the path γ : [a, b]→C is piecewise regular, then

Lγ :=

∫ b

a

∣
∣γ′(t)

∣
∣dt <∞. (2.9)

Proof

Since γ is piecewise regular, the function t �→ |γ′(t)| is continuous in each in-

terval [aj , bj ] in Definition 2.32. Therefore, it is Riemann-integrable in each of

these intervals, and thus also in their union, which is equal to [a, b]. �

The number Lγ is called the length of the path γ.

Example 2.34

Let γ : [0,1]→C be the path given by γ(t) = t(1+ i) (see Figure 2.4). We have

Lγ =

∫ 1

0

∣
∣γ′(t)

∣
∣dt=

∫ 1

0

|1 + i|dt=
√
2.

Figure 2.4 The path γ in Example 2.34
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Example 2.35

Let γ : [0,2π]→C be the path given by γ(t) = reit (see Figure 2.5). We have

Lγ =

∫ 2π

0

∣
∣γ′(t)

∣
∣dt=

∫ 2π

0

∣
∣rieit

∣
∣dt

=

∫ 2π

0

r dt= 2πr,

since |i|= 1 and

∣
∣eit
∣
∣= |cos t+ i sin t|=

√
cos2 t+ sin2 t= 1.

Figure 2.5 The path γ in Example 2.35

Now we introduce the notion of the integral along a path.

Definition 2.36

Let f : Ω → C be a continuous function and let γ : [a, b] → Ω be a piecewise

regular path. We define the integral of f along γ by

∫

γ

f =

∫ b

a

f(γ(t))γ′(t)dt

=

∫ b

a

Re
[
f(γ(t))γ′(t)

]
dt+ i

∫ b

a

Im
[
f(γ(t))γ′(t)

]
dt.
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We also write

∫

γ

f =

∫

γ

f(z)dz.

We note that under the hypotheses of Definition 2.36, the functions

t �→Re
[
f(γ(t))γ′(t)

]
and t �→ Im

[
f(γ(t))γ′(t)

]

are Riemann-integrable in [a, b], and thus the integral
∫
γ
f is well defined.

Example 2.37

We compute the integral
∫
γ
Re z dz along the paths γ1, γ2 : [0,1]→C given by

γ1(t) = t(1 + i) and γ2(t) = t2(1 + i).

We have

∫

γ1

Rez dz =

∫ 1

0

Re
[
t(1 + i)

]
·
[
t(1 + i)

]′
dt

=

∫ 1

0

t · (1 + i)dt

=
t2

2
(1 + i)

∣
∣
∣
t=1

t=0
=

1+ i

2

and

∫

γ2

Re z dz =

∫ 1

0

Re
[
t2(1 + i)

]
·
[
t2(1 + i)

]′
dt

=

∫ 1

0

t2 · 2t(1 + i)dt

=

∫ 1

0

2t3(1 + i)dt

=
t4

2
(1 + i)

∣
∣
∣
t=1

t=0
=

1+ i

2
.
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Example 2.38

Now we compute the integral
∫
γ
Imz dz along the path γ : [0, π]→ C given by

γ(t) = eit. We have Imγ(t) = sin t, and hence,

∫

γ

Imz dz =

∫ π

0

sin t · ieit dt

=

∫ π

0

eit − e−it

2i
ieit dt

=

∫ π

0

1

2

(
e2it − 1

)
dt=

(
1

4i
e2it − 1

2
t

)∣∣
∣
∣

t=π

t=0

=
1

4i

(
e2πi − 1

)
− 1

2
(π− 0) = 0− π

2
=−π

2
.

The integral has the following properties.

Proposition 2.39

If f, g : Ω →C are continuous functions and γ : [a, b]→Ω is a piecewise regular

path, then:

1. for any c, d ∈C, we have

∫

γ

(cf + dg) = c

∫

γ

f + d

∫

γ

g;

2.
∫

−γ

f =−
∫

γ

f ;

3. for any piecewise regular path α : [p, q]→Ω with α(p) = γ(b), we have

∫

γ+α

f =

∫

γ

f +

∫

α

f.

Proof

For the second property, we note that

(−γ)′(t) =−γ′(a+ b− t),
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and thus,

∫

−γ

f =

∫ b

a

f
(
(−γ)(t)

)
(−γ)′(t)dt

=

∫ b

a

−f
(
γ(a+ b− t)

)
γ′(a+ b− t)dt.

Making the change of variables a+ b− t= s, we finally obtain

∫

−γ

f =

∫ a

b

f(γ(s))γ′(s)ds

=−
∫ b

a

f(γ(s))γ′(s)ds

=−
∫

γ

f.

The remaining properties follow immediately from the definitions. �

We also describe two additional properties. For the first one we need the

notion of equivalent paths.

Definition 2.40

Two paths γ1 : [a1, b1]→C and γ2 : [a2, b2]→C are said to be equivalent if there

exists a differentiable function φ : [a2, b2]→ [a1, b1] with φ′ > 0, φ(a2) = a1, and

φ(b2) = b1, such that γ2 = γ1 ◦ φ.

We can now formulate the following result.

Proposition 2.41

If f : Ω → C is a continuous function, and γ1 and γ2 are equivalent piecewise

regular paths in Ω, then

∫

γ1

f =

∫

γ2

f.
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Proof

We have

∫

γ2

f =

∫ b2

a2

f(γ2(t))γ
′
2(t)dt

=

∫ b2

a2

f
(
(γ1 ◦ φ)(t)

)
γ′
1(φ(t))φ

′(t)dt.

Making the change of variables s= φ(t), we obtain

∫

γ2

f =

∫ b1

a1

f(γ1(s))γ
′
1(s)ds=

∫

γ1

f,

which yields the desired identity. �

Finally, we obtain an upper bound for the modulus of the integral.

Proposition 2.42

If f : Ω → C is a continuous function and γ : [a, b]→ Ω is a piecewise regular

path, then

∣
∣
∣
∣

∫

γ

f

∣
∣
∣
∣≤
∫ b

a

∣
∣f(γ(t))γ′(t)

∣
∣dt

≤ Lγ sup
{∣∣f(γ(t))

∣
∣ : t ∈ [a, b]

}
.

Proof

Writing
∫
γ
f = reiθ, we obtain

∣
∣
∣
∣

∫

γ

f

∣
∣
∣
∣= r =

∫

γ

e−iθf

=

∫ b

a

e−iθf(γ(t))γ′(t)dt

=

∫ b

a

Re
[
e−iθf(γ(t))γ′(t)

]
dt+ i

∫ b

a

Im
[
e−iθf(γ(t))γ′(t)

]
dt.
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Since |
∫
γ
f | is a real number, it follows from (1.6) that

∣
∣
∣
∣

∫

γ

f

∣
∣
∣
∣=
∫ b

a

Re
[
e−iθf(γ(t))γ′(t)

]
dt

≤
∫ b

a

∣
∣e−iθf(γ(t))γ′(t)

∣
∣dt.

Moreover, since |e−iθ|= 1, we obtain

∣
∣
∣
∣

∫

γ

f

∣
∣
∣
∣≤
∫ b

a

∣
∣f(γ(t))γ′(t)

∣
∣dt

≤
∫ b

a

∣
∣γ′(t)

∣
∣dt · sup

{∣∣f(γ(t))
∣
∣ : t ∈ [a, b]

}

= Lγ sup
{∣∣f(γ(t))

∣
∣ : t ∈ [a, b]

}
.

This yields the desired inequalities. �

Example 2.43

Let us consider the integral
∫

γ

z(z − 1)dz

along the path γ : [0, π]→C given by γ(t) = 2eit. We have

Lγ =

∫ π

0

∣
∣2ieit

∣
∣dt= 2π.

By Proposition 2.42, since |γ(t)|= 2 for every t ∈ [0, π], we obtain

∣
∣
∣
∣

∫

γ

f

∣
∣
∣
∣≤ Lγ sup

{
|z(z − 1)| : z ∈ γ

(
[0, π]

)}

≤ 2π sup
{∣∣z2
∣
∣+ |z| : z ∈ γ

(
[0, π]

)}

= 2π(4 + 2) = 12π.

On the other hand,

∫

γ

f =

∫ π

0

[
γ(t)2 − γ(t)

]
γ′(t)dt

=

(
γ(t)3

3
− γ(t)2

2

)∣∣
∣
∣

t=π

t=0

=−16

3
.
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2.5 Primitives

The concept of primitive is useful for the computation of integrals. Let us

consider a function f : Ω →C in an open set Ω ⊂C.

Definition 2.44

A function F : Ω → C is said to be a primitive of f in the set Ω if F is holo-

morphic in Ω and F ′ = f in Ω.

We first show that in connected open sets all primitives differ by a constant.

Proposition 2.45

If F and G are primitives of f in some connected open set Ω ⊂C, then F −G

is constant in Ω.

Proof

We have

(F −G)′ = F ′ −G′ = f − f = 0

in Ω. Hence, it follows from Proposition 2.19 that F −G is constant in Ω. �

Primitives can be used to compute integrals as follows.

Proposition 2.46

If F is a primitive of a continuous function f : Ω → C in an open set Ω ⊂ C

and γ : [a, b]→Ω is a piecewise regular path, then

∫

γ

f = F (γ(b))− F (γ(a)).

Proof

For j = 1, . . . , n, let [aj , bj ], with b1 = a2, b2 = a3, . . . , bn−1 = an, be the subin-

tervals of [a, b] where γ is regular. We note that the function

t �→ f(γ(t))γ′(t)
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is continuous in each interval [aj , bj ]. Therefore,

∫

γ

f =

n∑

j=1

∫

γj

f =

n∑

j=1

∫ bj

aj

f(γ(t))γ′(t)dt

=
n∑

j=1

∫ bj

aj

F ′(γ(t))γ′(t)dt=
n∑

j=1

∫ bj

aj

(F ◦ γ)′(t)dt

=

n∑

j=1

[
F (γ(bj))− F (γ(aj))

]
= F (γ(b))− F (γ(a)).

This yields the desired identity. �

Example 2.47

We consider the integral
∫
γ
(z3 + 1)dz along the path γ : [0, π]→ C given by

γ(t) = eit. Since
(
z4

4
+ z

)′
= z3 + 1,

the function F (z) = z4/4 + z is a primitive of z3 + 1 in C. Therefore,
∫

γ

(
z3 + 1

)
dz = F (γ(π))− F (γ(0))

=

(
1

4
− 1

)
−
(
1

4
+ 1

)
=−2.

We also consider paths with the same initial and final points.

Definition 2.48

A path γ : [a, b]→C is said to be closed if γ(a) = γ(b) (see Figure 2.6).

The following property is an immediate consequence of Proposition 2.46.

Proposition 2.49

If f : Ω →C is a continuous function having a primitive in the open set Ω ⊂C

and γ : [a, b]→Ω is a closed piecewise regular path, then
∫

γ

f = 0.
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Figure 2.6 A closed path

Now we show that any holomorphic function has primitives. We recall that

a set Ω ⊂C is said to be convex if

tz + (1− t)w ∈Ω

for every z,w ∈Ω and t ∈ [0,1].

Theorem 2.50

If f : Ω →C is a holomorphic function in a convex open set Ω ⊂C, then f has

a primitive in Ω.

More generally, we have the following result.

Theorem 2.51

If f : Ω → C is a continuous function in a convex open set Ω ⊂ C and there

exists p ∈Ω such that f is holomorphic in Ω \{p}, then f has a primitive in Ω.

Proof

Take a ∈Ω. For each z ∈Ω, we consider the path γz : [0,1]→Ω given by

γz(t) = a+ t(z − a) (2.10)

(we recall that Ω is convex). We also consider the function F : Ω →C defined

by

F (z) =

∫

γz

f. (2.11)
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Lemma 2.52

We have

F (z + h)− F (z) =

∫

α

f, (2.12)

where the path α : [0,1]→C is given by α(t) = z + th.

Proof of the lemma

Let Δ be the triangle whose boundary ∂Δ is the image of the closed path

γz + α+ (−γz+h). We note that identity (2.12) is equivalent to
∫

∂Δ

f =

∫

γz

f +

∫

α

f −
∫

γz+h

f

= F (z) +

∫

α

f − F (z + h) = 0. (2.13)

Figure 2.7 Triangles Δ1, Δ2, Δ3 and Δ4

We first assume that p �∈Δ. We divide the triangle Δ into 4 triangles, say

Δ1, Δ2, Δ3 and Δ4, by adding line segments between the midpoints of the

sides of Δ (see Figure 2.7). Then

c :=

∫

∂Δ

f =

4∑

i=1

∫

∂Δi

f,
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in view of the fact that the integrals along common sides of the triangles Δi

cancel out, since they have opposite signs. We note that there exists i such that

∣
∣
∣
∣

∫

∂Δi

f

∣
∣
∣
∣≥

|c|
4
,

since otherwise we would have
∣
∣
∣
∣
∣

4∑

i=1

∫

∂Δi

f

∣
∣
∣
∣
∣
<

4∑

i=1

|c|
4

= |c|.

One can repeat the argument with this triangle Δi in order to obtain a sequence

of triangles Δ(n)⊂Δ(n− 1) such that Δ(n) is one of the 4 triangles obtained

from dividing Δ(n− 1), and

∣
∣
∣
∣

∫

∂Δ(n)

f

∣
∣
∣
∣≥

|c|
4n

. (2.14)

On the other hand, since f is holomorphic in Δ, for each point z0 ∈Δ, given

ε > 0 we have
∣
∣f(z)− f(z0)− f ′(z0)(z − z0)

∣
∣< ε|z − z0|

whenever |z − z0| is sufficiently small. Since the perimeter of Δ(n) is

L∂Δ(n) = 2−nL∂Δ,

where L∂Δ is the perimeter of ∂Δ, we obtain
∣
∣
∣
∣

∫

∂Δ(n)

[
f(z)− f(z0)− f ′(z0)(z − z0)

]
dz

∣
∣
∣
∣≤ εL2

∂Δ(n) = ε4−nL2
∂Δ (2.15)

for any sufficiently large n. Moreover, since the function −f(z0)−f ′(z0)(z−z0)

has the primitive −f(z0)z − f ′(z0)(z − z0)
2/2, we have

∫

∂Δn

[
−f(z0)− f ′(z0)(z − z0)

]
dz = 0,

and it follows from (2.14) and (2.15) that

|c| ≤ 4n
∣
∣
∣
∣

∫

∂Δ(n)

f

∣
∣
∣
∣≤ εL2

∂Δ.

Letting ε→ 0 we conclude that

c=

∫

∂Δ

f = 0,

which establishes (2.13).
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Now we assume that p ∈ Δ. We note that it is sufficient to consider the

case when p is a vertex. Otherwise, being p1, p2, p3 the vertices of Δ, one can

consider the three triangles determined by pi, pj , p with i �= j. When p belongs

to a side of Δ, one of these triangles reduces to a line segment (see Figure 2.8).

Figure 2.8 Case when p belongs to a side of Δ

When p= p3 is a vertex of Δ, it is sufficient to consider triangles determined

by points q1 and q2 in the sides containing p (see Figure 2.9). Indeed, by the

previous argument, the triangles Δ1 and Δ2 respectively with vertices p1, p2, q1
and p1, q1, q2 have zero integral, that is,

∫

∂Δ1

f =

∫

∂Δ2

f = 0.

Now let Δ′ be the triangle determined by q1, q2 and p. Letting q1 → p and

q2 → p, we conclude that

∣
∣
∣
∣

∫

∂Δ′
f

∣
∣
∣
∣≤ L∂Δ′ sup

{∣∣f(z)
∣
∣ : z ∈Δ′}→ 0,

since L∂Δ′ → 0. This completes the proof of the lemma.

We are now ready to show that F is a primitive of f . It follows from

∫

α

f(z)dζ =

∫ 1

0

f(z)hdt= f(z)h
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Figure 2.9 Case when p is a vertex of Δ

together with Lemma 2.52 that

F (z + h)− F (z)

h
− f(z) =

1

h

∫

α

[
f(ζ)− f(z)

]
dζ.

Since f is continuous, given ε > 0, we have

∣
∣f(ζ)− f(z)

∣
∣< ε

whenever |ζ − z| is sufficiently small. Therefore,

∣
∣
∣
∣
F (z + h)− F (z)

h
− f(z)

∣
∣
∣
∣≤

1

|h|

∣
∣
∣
∣

∫

α

[
f(ζ)− f(z)

]
dζ

∣
∣
∣
∣

≤ εLα

|h| = ε

whenever |h| is sufficiently small (since |ζ − z| ≤ |h|). Letting ε → 0 we thus

obtain F ′(z) = f(z), and F is a primitive of f in Ω.

Example 2.53

For the path γz in (2.10) we have γ′
z(t) = z− a, and by (2.11) a primitive of f

is given by

F (z) =

∫ 1

0

f
(
a+ t(z − a)

)
(z − a)dt. (2.16)
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In particular, when 0 ∈Ω, taking a= 0 we obtain

F (z) = z

∫ 1

0

f(tz)dt. (2.17)

Example 2.54

We have

lim
z→0

sinz

z
= lim

z→0

sin z − sin0

z − 0

= (sinz)′
∣
∣
z=0

= cos0 = 1.

Hence, the function

f(z) =

{
(sinz)/z if z �= 0,

1 if z = 0

is continuous in C and holomorphic in C\{0}. It thus follows from Theorem 2.51

that f has a primitive in C. Moreover, by (2.17), a primitive is given by

F (z) = z

∫ 1

0

sin(tz)

tz
dt=

∫ 1

0

sin(tz)

t
dt.

The following result is an immediate consequence of Theorem 2.51 and

Proposition 2.49.

Theorem 2.55 (Cauchy’s theorem)

If f : Ω → C is a continuous function in a convex open set Ω ⊂ C and there

exists p ∈Ω such that f is holomorphic in Ω \ {p}, then
∫

γ

f = 0

for any closed piecewise regular path γ in Ω.

2.6 Index of a Closed Path

Now we introduce the notion of the index of a closed path.
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Definition 2.56

Given a closed piecewise regular path γ : [a, b]→ C, we define the index of a

point z ∈C \ γ([a, b]) with respect to γ by

Indγ(z) =
1

2πi

∫

γ

dw

w− z
.

Example 2.57

Let γ : [0,2π]→C be the path given by γ(t) = a+ reit. Then

Indγ(a) =
1

2πi

∫ 2π

0

rieit

reit
dt

=
1

2πi

∫ 2π

0

i dt= 1.

The following result specifies the values that the index can take.

Theorem 2.58

Let γ : [a, b]→ C be a closed piecewise regular path and let Ω = C \ γ([a, b]).
Then:

1. Indγ(z) ∈ Z for each z ∈Ω;

2. the function z �→ Indγ(z) is constant in each connected component of Ω;

3. Indγ(z) = 0 for each z in the unbounded connected component of Ω.

Proof

We define a function φ : [a, b]→C by

φ(s) = exp

(∫ s

a

γ′(t)

γ(t)− z
dt

)
.

We have

φ′(s) = φ(s)
γ′(s)

γ(s)− z

in each subinterval [aj , bj ] of [a, b] where γ is regular. Then

(
φ(s)

γ(s)− z

)′
=

φ′(s)(γ(s)− z)− γ′(s)φ(s)

(γ(s)− z)2
= 0,
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and for each j there exists cj ∈C such that

φ(s)

γ(s)− z
= cj

for every s ∈ [aj , bj ]. But since γ and φ are continuous functions, we conclude

that there exists c ∈C such that

φ(s)

γ(s)− z
= c

for every s ∈ [a, b]. In particular,

φ(s)

γ(s)− z
=

φ(a)

γ(a)− z
=

1

γ(a)− z
,

that is,

φ(s) =
γ(s)− z

γ(a)− z
.

Letting s= b, since γ is a closed path, we obtain

φ(b) =
γ(b)− z

γ(a)− z
= 1,

that is,

φ(b) = exp

(∫ b

a

γ′(t)

γ(t)− z
dt

)

= exp
(
2πi Indγ(z)

)
= 1. (2.18)

We note that

e2πiα = 1 ⇔ α ∈ Z,

since e2πiα = cos(2πα)+i sin(2πα). It then follows from (2.18) that Indγ(z) ∈ Z.

For the second property, we first note that

∣
∣Indγ(z)− Indγ(w)

∣
∣=
∣
∣
∣
∣
1

2πi

∫

γ

(
1

ζ − z
− 1

ζ −w

)
dζ

∣
∣
∣
∣

=
1

2π

∣
∣
∣
∣

∫

γ

z −w

(ζ − z)(ζ −w)
dζ

∣
∣
∣
∣

≤ Lγ

2π
sup

{
|z −w|

|(γ(t)− z)(γ(t)−w)| : t ∈ [a, b]

}
. (2.19)
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For w sufficiently close to z, we have

∣
∣γ(t)−w

∣
∣≥
∣
∣γ(t)− z

∣
∣− |z −w|,

and thus,

1

|(γ(t)− z)(γ(t)−w)| ≤
1

|γ(t)− z|(|γ(t)− z| − |z −w|)

≤ 1

A(A− |z −w|)

for every z ∈C \ γ([a, b]), where

A= inf
{∣∣γ(t)− z

∣
∣ : t ∈ [a, b]

}
> 0.

Hence, it follows from (2.19) that

∣
∣Indγ(z)− Indγ(w)

∣
∣≤ Lγ

2π

|z −w|
A(A− |z −w|) ,

and letting w→ z we obtain

lim
w→z

Indγ(w) = Indγ(z). (2.20)

Since the index takes only integer values, it follows from the continuity in (2.20)

that the function z �→ Indγ(z) is constant in each connected component of Ω

(we note that since Ω is open, each connected component of Ω is an open set).

For the last property, we note that

∣
∣Indγ(z)

∣
∣=
∣
∣
∣
∣
1

2πi

∫ b

a

γ′(t)

γ(t)− z
dt

∣
∣
∣
∣

≤ 1

2π
Lγ sup

{
|γ′(t)|

|γ(t)− z| : t ∈ [a, b]

}

≤ 1

2π
Lγ

sup{γ′(t) : t ∈ [a, b]}
|z| − sup{γ(t) : t ∈ [a, b]} , (2.21)

since
∣
∣γ(t)− z

∣
∣≥ |z| −

∣
∣γ(t)

∣
∣

whenever |z| is sufficiently large. In particular, it follows from (2.21) that

|Indγ(z)|< 1 for any sufficiently large |z|. Since the index takes only integer

values, we obtain Indγ(z) = 0. It follows again from the continuity in (2.20)

that the index is zero in the unbounded connected component of Ω. �
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Example 2.59

For each n ∈N, let γ : [0,2πn]→C be the path given by γ(t) = a+ reit, looping

n times around the point a in the positive direction. Then

Indγ(a) =
1

2πi

∫ 2πn

0

γ′(t)

γ(t)− a
dt

=
1

2πi

∫ 2πn

0

rieit

reit
dt= n.

It follows from Theorem 2.58 that

Indγ(z) =

{
n if |z − a|< r,

0 if |z − a|> r.

2.7 Cauchy’s Integral Formula

Now we establish Cauchy’s integral formula for a holomorphic function. In

particular, it guarantees that any holomorphic function is uniquely determined

by its values along closed paths.

Theorem 2.60

If f : Ω → C is a holomorphic function in a convex open set Ω ⊂ C and

γ : [a, b]→Ω is a closed piecewise regular path, then

f(z) Indγ(z) =
1

2πi

∫

γ

f(w)

w− z
dw (2.22)

for every z ∈Ω \ γ([a, b]).

Proof

Let us consider the function g : Ω →C defined by

g(w) =

{
(f(w)− f(z))/(w− z) if w ∈Ω \ {z},
f ′(z) if w = z.
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Clearly, g is continuous in Ω and holomorphic in Ω \ {z}. It then follows from

Theorem 2.55 that

0 =

∫

γ

g

=

∫

γ

f(w)− f(z)

w− z
dw

=

∫

γ

f(w)

w− z
dw− f(z)

∫

γ

dw

w− z

=

∫

γ

f(w)

w− z
dw− f(z)2πi Indγ(z).

This yields the desired identity. �

Example 2.61

Let f : C → C be a holomorphic function in C and let γ : [0,2π]→ C be the

path given by γ(t) = z+ reit. Then Indγ(z) = 1, and by Theorem 2.60 we have

f(z) =
1

2πi

∫

γ

f(w)

w− z
dw

=
1

2πi

∫ 2π

0

f(z + reit)

reit
rieit dt

=
1

2π

∫ 2π

0

f
(
z + reit

)
dt.

2.8 Integrals and Homotopy of Paths

In this section we show that the integral of a holomorphic function does not

change with homotopies of the path. We first recall the notion of homotopy.

Definition 2.62

Two closed paths γ1, γ2 : [a, b]→Ω are said to be homotopic in Ω if there exists

a continuous function H : [a, b]× [0,1]→Ω such that (see Figure 2.10):

1. H(t,0) = γ1(t) and H(t,1) = γ2(t) for every t ∈ [a, b];

2. H(a, s) =H(b, s) for every s ∈ [0,1].

Then the function H is called a homotopy between γ1 and γ2.
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Figure 2.10 Homotopy of paths

We then have the following result.

Theorem 2.63

If f : Ω → C is a holomorphic function in an open set Ω ⊂ C, and γ1 and γ2
are closed piecewise regular paths that are homotopic in Ω, then

∫

γ1

f =

∫

γ2

f. (2.23)

Proof

LetH be a homotopy between the paths γ1 and γ2. We note thatH is uniformly

continuous (since it is defined in a compact set). Hence, there exists n ∈N such

that
∣
∣H(t, s)−H(t′, s′)

∣
∣< r

for every (t, s), (t′, s′) ∈ [a, b]× [0,1] with

|t− t′|< 2(b− a)

n
and |s− s′|< 2

n
. (2.24)

Now we consider the points

pj,k =H

(
a+

j

n
(b− a),

k

n

)
, j, k = 0, . . . , n,

and the closed polygons Pj,k defined by the points

pj,k, pj+1,k, pj+1,k+1 and pj,k+1,
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in this order. It follows from (2.24) that these four points are contained in the

ball Br(pj,k) of radius r centered at pj,k, and since any ball is a convex set, we

also have Pj,k ⊂Br(pj,k). It then follows from Theorem 2.55 that

∫

∂Pj,k

f = 0, (2.25)

where ∂Pj,k is the path along the boundary of Pj,k.

Now we consider the closed polygons Qk defined by the points

p0,k, p1,k, . . . , pn−1,k and pn,k,

in this order, as well as the paths αj : [j/n, (j + 1)/n]→ C and βj : [0,1]→ C

given respectively by αj(t) = γ1(t) and

βj(t) = pj+1,0 + t(pj,0 − pj+1,0).

Since αj + βj is a closed path in the ball Br(pj,0), it follows again from Theo-

rem 2.55 that
∫

γj

f =−
∫

βj

f =

∫

−βj

f

for j = 0, . . . , n− 1. Therefore,

∫

γ1

f =

n−1∑

j=0

∫

αj

f =

n−1∑

j=0

∫

−βj

f =

∫

∂Q0

f. (2.26)

One can show in a similar manner that
∫

γ2

f =

∫

∂Qn

f. (2.27)

On the other hand, it follows from (2.25) that

n−1∑

j=0

∫

∂Pj,k

f = 0. (2.28)

We note that the path ∂Pj,k includes the line segment from pj+1,k to pj+1,k+1,

in this direction, while ∂Pj+1,k includes the same segment but in the opposite

direction, and thus the corresponding terms cancel out in the sum in (2.28).

Moreover, ∂P0,k includes the line segment from p0,k+1 to p0,k, in this direction,

while ∂Pn−1,k includes the same segment but in the opposite direction. In fact,

since each path t �→H(t, s) is closed, we have pn,k+1 = p0,k+1 and pn,k = p0,k.
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Therefore,

0 =

n−1∑

j=0

∫

∂Pj,k

f =

∫

∂Qk

f −
∫

∂Qk+1

f,

that is,
∫

∂Qk+1

f =

∫

∂Qk

f,

for k = 0,1, . . . , n − 1. Identity (2.23) now follows readily from (2.26) and

(2.27). �

The following result is an immediate consequence of Theorem 2.63.

Theorem 2.64

If f : Ω →C is a holomorphic function in an open set Ω ⊂C, and γ is a closed

piecewise regular path that is homotopic to a constant path in Ω, then
∫

γ

f = 0.

We also show that the index does not change with homotopies of the path.

Proposition 2.65

Let γ1 and γ2 be closed piecewise regular paths that are homotopic in Ω. Then

for each z ∈C \Ω, we have

Indγ1(z) = Indγ2(z). (2.29)

Proof

Let us take z ∈C \Ω. We note that the function

f(w) =
1

2πi
· 1

w− z

is holomorphic in C \ {z}, and thus in particular in Ω. Since
∫

γj

f = 2πi Indγj (z)

for j = 1,2, identity (2.29) follows readily from Theorem 2.63. �
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2.9 Harmonic Conjugate Functions

In this section we discuss the concept of harmonic conjugate functions. We recall

that a function u : Ω → C with second derivatives in some open set Ω ⊂ C is

said to be harmonic in Ω if Δu= 0, where the Laplacian Δu is defined by

Δu=
∂2u

∂x2
+

∂2u

∂y2
.

Definition 2.66

Two harmonic functions u, v : Ω → C in the open set Ω ⊂ C are said to be

harmonic conjugate functions in Ω if u and v satisfy the Cauchy–Riemann

equations in Ω.

If the function f = u+ iv is holomorphic in an open set Ω ⊂ C, then the

Cauchy–Riemann equations are satisfied, and

Δu=Δv = 0 in Ω

(see Problem 2.24). In fact, one can show that Δu = Δv = 0 even without

assuming a priori that u and v are of class C2 (see Exercise 4.36). Therefore,

the real and imaginary parts of a holomorphic function are harmonic conjugate

functions.

We show that any harmonic function of class C2 in a simply connected open

set has a harmonic conjugate. We first recall the notions of a path connected

set and a simply connected set.

Definition 2.67

A set Ω ⊂C is said to be path connected if for each z,w ∈Ω there exists a path

γ : [a, b]→Ω with γ(a) = z and γ(b) =w.

In particular, a path connected set is necessarily connected.

Definition 2.68

A set Ω ⊂ C is said to be simply connected if it is path connected and any

closed path γ : [a, b]→Ω is homotopic to a constant path in Ω.

We then have the following result.
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Proposition 2.69

Let u : Ω →C be a function of class C2 in a simply connected open set Ω ⊂C.

If Δu= 0, then there exists a function v : Ω →C of class C2 with Δv = 0 such

that u and v are harmonic conjugate functions. Moreover, the function v is

unique up to a constant.

Proof

Since Ω is simply connected and u is of class C2, it follows from Green’s theorem

that if α is a closed path in Ω without intersections, then

∫

α

−∂u

∂y
dx+

∂u

∂x
dy =

∫

U

(
∂

∂x

(
∂u

∂x

)
− ∂

∂y

(
−∂u

∂x

))
dxdy

=

∫

U

Δudxdy = 0,

(2.30)

where U is the open set whose boundary is the image of α. This shows that

given p ∈Ω, one can define a function v : Ω →C by the line integral

v(x, y) =

∫

γ

−∂u

∂y
dx+

∂u

∂x
dy, (2.31)

where γ : [a, b]→ Ω is any path between p and (x, y). Now we show that the

Cauchy–Riemann equations are satisfied. It follows from (2.30) that

∂v

∂x
(x, y) = lim

h→0

v(x+ h, y)− v(x, y)

h

= lim
h→0

1

h

∫

γh

−∂u

∂y
dx+

∂u

∂x
dy,

where the path γh : [0,1]→R
2 is given by

γh(t) = (x+ th, y).

Since
∫

γh

−∂u

∂y
dx+

∂u

∂x
dy =

∫ 1

0

−∂u

∂x
(x+ th, y)hdt,

and the function −∂u/∂x is continuous, we obtain

∂v

∂x
(x, y) = lim

h→0

∫ 1

0

−∂u

∂x
(x+ th, y)dt=−∂u

∂x
(x, y).
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One can show in a similar manner that

∂v

∂y
(x, y) =

∂u

∂x
(x, y),

and hence, the Cauchy–Riemann equations are satisfied in Ω. Moreover, v is

of class C2 and thus Δv = 0.

It remains to show that v is unique up to a constant. By Theorem 2.23, the

function f = u+ iv is holomorphic in Ω. If w is another function of class C2

with Δw = 0 such that f = u+ iw is holomorphic in Ω, then

u+ iv− (u+ iw) = i(v−w)

is also holomorphic in Ω. Since Ω is connected (because it is simply connected)

and i(v−w) has constant real part, it follows from Example 2.20 that v−w is

constant. �

The following result can be established in a similar manner.

Proposition 2.70

Let v : Ω →C be a function of class C2 in a simply connected open set Ω ⊂C.

If Δv = 0, then there exists a function u : Ω →C of class C2 with Δu= 0 such

that u and v are harmonic conjugate functions. Moreover, the function u is

unique up to a constant.

Proof

Since Ω is simply connected and v is of class C2, given p ∈Ω, one can define

a function u : Ω →C by the line integral

u(x, y) =

∫

γ

∂v

∂y
dx− ∂v

∂x
dy,

where γ : [a, b]→Ω is any path between p and (x, y). We can now proceed in

a similar manner to that in the proof of Proposition 2.69 to show that the

Cauchy–Riemann equations are satisfied. �

We also give some examples.
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Example 2.71

We consider the function f = u+ iv with real part u(x, y) = x2 − xy− y2 as in

Example 2.15. Since u is of class C2 and

Δu=
∂2u

∂x2
+

∂2u

∂y2
= 2− 2 = 0

in the simply connected open set Ω = C, by Proposition 2.69 there exists a

function v of class C2 such that f = u+ iv is holomorphic in C. By (2.31), one

can take

v(x, y) =

∫

γ

−∂u

∂y
dx+

∂u

∂x
dy

=

∫

γ

(x+ 2y)dx+ (2x− y)dy,

with the path γ : [0,1]→C given by γ(t) = (tx, ty). We then obtain

v(x, y) =

∫ 1

0

[
(tx+ 2ty)x+ (2tx− ty)y

]
dt

=

(
1

2
t2x2 + t2yx+ t2xy− 1

2
t2y2
)∣∣
∣
∣

t=1

t=0

=
x2

2
+ 2xy− y2

2
.

Example 2.72

Now we consider the function u(x, y) = x2+y2 as in Example 2.16. Since u is of

class C2 and Δu= 4 �= 0, the function u is not the real part of any holomorphic

function in an open set Ω ⊂C.

Example 2.73

Let us consider the function u(x, y) = ax2 + by, with a, b ∈ R. Since u is of

class C2 and Δu= 2a, in order that u is the real part of a holomorphic function

in some open set we must have a= 0. Moreover, it follows from Proposition 2.69

that if a= 0, then there exists a function v of class C2 in R
2 such that

f(x+ iy) = u(x, y) + iv(x, y) = by+ iv(x, y)

is holomorphic in C. One can use the Cauchy–Riemann equations to deter-

mine v. Indeed, it follows from the equation ∂u/∂x= ∂v/∂y that ∂v/∂y = 0,
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and hence v does not depend on y. Moreover,

∂v

∂x
=−∂u

∂y
=−b,

and thus v(x, y) =−bx+ c for some constant c ∈R.

2.10 Solved Problems and Exercises

Problem 2.1

Verify that the function f(z) = z2 − z is continuous in C.

Solution

Writing

f(x+ iy) = u(x, y) + iv(x, y), (2.32)

with x, y ∈R, we obtain

u(x, y) = x2 − y2 − x and v(x, y) = 2xy− y.

Since u and v are continuous in R
2, the function f is continuous in C.

Problem 2.2

Use the Cauchy–Riemann equations to show that the function f(z) = ez + z is

holomorphic in C.

Solution

One can write the function f in the form (2.32), with

u(x, y) = ex cosy+ x and v(x, y) = ex siny+ y.

The Cauchy–Riemann equations

∂u

∂x
=

∂v

∂y
and

∂u

∂y
=−∂v

∂x
(2.33)

take the form

ex cosy+ 1= ex cosy+ 1 and − ex siny =−ex siny,
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and thus they are satisfied in R
2. Since u and v are functions of class C1 in the

open set R2, it follows from Theorem 2.23 that f is holomorphic in C.

Problem 2.3

Show that

(
zn
)′
= nzn−1 (2.34)

for every n ∈N and z ∈C (with the convention that 00 = 1).

Solution

Let fn(z) = zn. For n= 1 we have

f ′
1(z0) = lim

z→z0

z − z0
z − z0

= 1,

which establishes (2.34). For n > 1, it follows from the identity

zn − zn0 = (z − z0)

n−1∑

k=0

zkzn−1−k
0

that

f ′
n(z0) = lim

z→z0

zn − zn0
z − z0

= lim
z→z0

n−1∑

k=0

zkzn−1−k
0 = nzn−1

0 .

Problem 2.4

Use the definition of derivative to verify that |z| is not differentiable at z = 0.

Solution

Writing z = |z|eiθ, we obtain

|z| − |0|
z − 0

=
|z|
z

=
|z|

|z|eiθ = e−iθ.

Since e−iθ depends on θ, one cannot take the limit when z → 0, and hence f

is not differentiable at the origin.
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Problem 2.5

Find all points z ∈C at which the function |z| is differentiable.

Solution

We have |x+ iy|= u(x, y) + iv(x, y), where

u(x, y) =
√
x2 + y2 and v(x, y) = 0.

The Cauchy–Riemann equations in (2.33) are thus

x
√
x2 + y2

= 0 and
y

√
x2 + y2

= 0.

We note that these have no solutions (x = y = 0 is not a solution, since one

cannot divide by zero). Hence, by Theorem 2.14, the function |z| has no points

of differentiability.

Problem 2.6

Find all points of differentiability of the function f(x+ iy) = xy+ iy.

Solution

We write the function f in the form (2.32), with u(x, y) = xy and v(x, y) = y.

The Cauchy–Riemann equations in (2.33) are thus y = 1 and x= 0. Hence, by

Theorem 2.14, the function f is not differentiable at any point of C \ {i}. Since
the set {i} is not open, in order to determine whether f is differentiable at i

we must use the definition of derivative, that is, we have to verify whether

f(x+ iy)− f(i)

x+ iy− i
=

xy+ iy− i

x+ iy− i

has a limit when x+ iy→ i. Since

xy+ iy− i

x+ iy− i
=

x(y− 1) + x+ i(y− 1)

x+ i(y− 1)

=
x(y− 1)

x+ i(y− 1)
+ 1

and ∣
∣
∣
∣

x(y− 1)

x+ i(y− 1)

∣
∣
∣
∣=

|x| · |y− 1|
|x+ i(y− 1)| ≤ |x| → 0

when x+ iy→ i, we conclude that f is differentiable at i, with f ′(i) = 1.
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Problem 2.7

Find all constants a, b ∈R such that the function

f(x+ iy) = ax2 + 2xy+ by2 + i
(
y2 − x2

)

is holomorphic in C.

Solution

We first note that taking z = x+ iy, we have z2 = x2 − y2 + i2xy, and thus,

−iz2 = 2xy+ i
(
y2 − x2

)
.

Therefore,

f(z) = ax2 + by2 − iz2.

Since the function −iz2 is holomorphic in C, it is sufficient to find constants

a, b ∈R such that the function

f(z) + iz2 = ax2 + by2 + i0

is holomorphic in C. By Theorem 2.23, this happens if and only if the Cauchy–

Riemann equations in (2.33) are satisfied in R
2, that is, if and only if

2ax= 0 and 2by = 0

for every x, y ∈R. Therefore, a= b= 0.

Problem 2.8

Find whether there exists a ∈R such that the function

f(x+ iy) = ax2 + 2xy+ i
(
x2 − y2 − 2xy

)

is holomorphic in C.

Solution

By Theorem 2.23, the function f is holomorphic in C if and only if the Cauchy–

Riemann equations are satisfied in R
2. In this case they take the form

2ax+ 2y =−2y− 2x and 2x=−(2x− 2y),



86 2. Holomorphic Functions

or equivalently

(a+ 1)x=−2y and 2x= y. (2.35)

We then obtain (a+1)x=−4x, and thus a=−5. Hence, the equations in (2.35)

reduce to the identity 2x= y, which does not hold for every x and y. Therefore,

there exists no a ∈R such that the function f is holomorphic in C.

Problem 2.9

Let f = u+ iv be a holomorphic function in C with real part

u(x, y) = 2x2 − 3xy− 2y2.

Compute explicitly f(z) and f ′(z).

Solution

Since f is holomorphic in C, the Cauchy–Riemann equations in (2.33) are

satisfied in R
2. It follows from

∂u

∂x
= 4x− 3y

and the first equation in (2.33) that

∂v

∂y
= 4x− 3y.

Therefore,

v(x, y) = 4xy− 3y2

2
+C(x)

for some differentiable function C. We then obtain

∂u

∂y
=−3x− 4y and − ∂v

∂x
=−4y−C ′(x),

and it follows from the second equation in (2.33) that C ′(x) = 3x. Therefore,

C(x) =
3x2

2
+ c for some c ∈R,

and

v(x, y) = 4xy− 3y2

2
+

3x2

2
+ c.
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Hence,

f(x+ iy) =
(
2x2 − 3xy− 2y2

)
+ i

(
4xy− 3y2

2
+

3x2

2
+ c

)

= 2
(
x2 − y2 + 2ixy

)
+

3

2
i
(
x2 − y2 + 2ixy

)
+ ic

= 2z2 +
3

2
iz2 + ic=

(
2 +

3

2
i

)
z2 + ic,

and thus f ′(z) = (4 + 3i)z.

Problem 2.10

Find whether there exists a holomorphic function in C with real part x2−y2+y.

Solution

We note that the function u(x, y) = x2−y2+y is of class C2 in the simply con-

nected open set R2. Since Δu= 0, by Proposition 2.69 there exists a harmonic

conjugate function, that is, a function v such that f = u+ iv is holomorphic

in C. In other words, there exists a holomorphic function in C with real part u.

Problem 2.11

Find whether there exists a holomorphic function f in C with real part x−y+1,

and if so determine such a function.

Solution

In order to show that there exists such a function f it is sufficient to observe

that u(x,u) = x− y+1 is of class C2 in the simply connected open set R2 and

that Δu= 0. Indeed, by Proposition 2.69, this implies that u has a harmonic

conjugate function.

Now we determine a holomorphic function

f(x+ iy) = u(x, y) + iv(x, y)

with u(x, y) = x − y + 1. The Cauchy–Riemann equations must be satisfied

in R
2. It follows from ∂u/∂x= 1 and the first equation in (2.33) that ∂v/∂y = 1.

Hence,

v(x, y) = y+C(x)
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for some differentiable function C. We then obtain

∂u

∂y
=−1 and − ∂v

∂x
=−C ′(x),

and hence C ′(x) = 1. Therefore, C(x) = x+ c for some constant c ∈R, and

v(x, y) = y+ x+ c.

We conclude that

f(x+ iy) = (x− y+ 1) + i(y+ x+ c)

= (x+ iy) + i(x+ iy) + 1+ ic

= (1+ i)z + 1+ ic.

Problem 2.12

Find all values of a, b ∈ R for which the function u(x, y) = ax2 + xy + by2 is

the real part of a holomorphic function in C, and determine explicitly all such

functions.

Solution

We write f(x+ iy) = u(x, y)+ iv(x, y). In order that f is holomorphic in C the

Cauchy–Riemann equations must be satisfied in R
2. It follows from

∂u

∂x
= 2ax+ y

and the first equation in (2.33) that

∂v

∂y
= 2ax+ y.

Hence,

v(x, y) = 2axy+
y2

2
+C(x)

for some differentiable function C. We obtain

∂u

∂y
= x+ 2by and − ∂v

∂x
=−2ay−C ′(x),

and thus, b=−a and C ′(x) =−x. Therefore, C(x) =−x2/2 + c for some con-

stant c ∈R, and

v(x, y) = 2axy+
y2

2
− x2

2
+ c.
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We conclude that

f(x+ iy) =
(
ax2 + xy− ay2

)
+ i

(
2axy+

y2

2
− x2

2
+ c

)

= a
(
x2 − y2 + 2ixy

)
− i

2

(
x2 − y2 + 2ixy

)
+ ic

=

(
a− i

2

)
z2 + ic,

with a, c ∈R.

Problem 2.13

Show that if f, g : Ω →C are holomorphic functions in an open set Ω ⊂C, then

(f + g)′ = f ′ + g′ and (fg)′ = f ′g+ fg′.

Solution

Since f and g are holomorphic in Ω, the derivatives

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
and g′(z0) = lim

z→z0

g(z)− g(z0)

z − z0

are well defined for each z0 ∈Ω. Therefore,

(f + g)′(z0) = lim
z→z0

f(z) + g(z)− f(z0)− g(z0)

z − z0

= lim
z→z0

f(z)− f(z0)

z − z0
+ lim

z→z0

g(z)− g(z0)

z − z0

= f ′(z0) + g′(z0)

and

(fg)′(z0) = lim
z→z0

f(z)g(z)− f(z0)g(z0)

z − z0

= lim
z→z0

(f(z)− f(z0))g(z0) + f(z)(g(z)− g(z0))

z − z0

= lim
z→z0

(f(z)− f(z0))g(z0)

z − z0
+ lim

z→z0

f(z)(g(z)− g(z0))

z − z0
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= lim
z→z0

f(z)− f(z0)

z − z0
g(z0) + lim

z→z0
f(z) · lim

z→z0

g(z)− g(z0)

z − z0

= f ′(z0)g(z0) + f(z0)g
′(z0).

Problem 2.14

Show that if f and g are holomorphic functions in C with f(z0) = g(z0) = 0

and g′(z0) �= 0, then

lim
z→z0

f(z)

g(z)
=

f ′(z0)

g′(z0)
.

Solution

We have

lim
z→z0

f(z)

g(z)
= lim

z→z0

f(z)− f(z0)

g(z)− g(z0)

= lim
z→z0

(f(z)− f(z0))/(z − z0)

(g(z)− g(z0))/(z − z0)

=
f ′(z0)

g′(z0)
.

Problem 2.15

Compute the length of the path γ : [0,1]→C given by γ(t) = eit cos t (see Fig-

ure 2.11).

Figure 2.11 Curve defined by the path γ in Problem 2.15
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Solution

The length of a piecewise regular path γ : [a, b]→C is given by (2.9). We then

have

Lγ =

∫ 1

0

∣
∣ieit cos t− eit sin t

∣
∣dt

=

∫ 1

0

∣
∣eit
∣
∣ · |i cos t− sin t|dt

=

∫ 1

0

1dt= 1.

Problem 2.16

Compute the integral
∫

γ

(
z2 − z

)
dz

along the path γ : [0,1]→C given by γ(t) = eit.

Solution

We have
∫

γ

(
z2 − z

)
dz =

∫ 1

0

(
γ(t)2 − γ(t)

)
γ′(t)dt,

and hence,

∫

γ

(
z2 − z

)
dz =

∫ 1

0

(
e2it − e−it

)
ieit dt

= i

∫ 1

0

(
e3it − 1

)
dt

=

(
1

3
e3it − it

)∣∣
∣
∣

t=1

t=0

=
1

3
e3i − i− 1

3
.

Problem 2.17

For each n ∈ Z, compute the integral
∫

γ

cos(nz)dz

along the path γ : [0,1]→C given by γ(t) = eπit.
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Solution

Let fn(z) = cos(nz). If n = 0, then F0(z) = z is a primitive of f0(z) = 1, and

thus,
∫

γ

f0(z)dz =

∫

γ

1dz = F0(γ(t))
∣
∣
∣
t=1

t=0

= eπit
∣
∣
∣
t=1

t=0
= eπi − 1 =−2.

If n �= 0, then Fn(z) = sin(nz)/n is a primitive of fn, and thus,
∫

γ

fn(z)dz = Fn(γ(t))
∣
∣
∣
t=1

t=0
=

1

n
sin
(
nγ(t)

)∣∣
∣
t=1

t=0

=
1

n
sin
(
neπi

)
− 1

n
sin
(
ne0
)

=
1

n
sin(−n)− 1

n
sinn=− 2

n
sinn.

Problem 2.18

Compute the integral
∫
γ
z dz, where γ : [a, b]→C is a path looping once along

the boundary of the square defined by the condition |x| + |y| ≤ 3 (see Fig-

ure 2.12), in the positive direction.

Figure 2.12 Square defined by the condition |x|+ |y| ≤ 3
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Solution

We note that the function f(z) = z is holomorphic in C, and that the boundary

of the square defined by the condition |x|+ |y| ≤ 3 is homotopic to the circle

of radius 3 centered at 0. It thus follows from Theorem 2.63 that
∫

γ

z dz =

∫

α

z dz,

where the path α : [0,1]→C is given by α(t) = 3e2πit. Hence,

∫

γ

z dz =

∫ 1

0

3e2πit6πie2πit dt

= 18πi

∫ 1

0

e4πit dt

=
9

2

(
e4πi − 1

)
= 0.

Problem 2.19

For each n ∈N, show that

∫ 2π

0

(2 cos t)2n dt= 2π

(
2n

n

)
. (2.36)

Solution

Let us consider the integral

I =

∫

γ

1

z

(
z +

1

z

)2n

dz,

where the path γ : [0,2π]→C is given by γ(t) = eit. We have

I =

∫

γ

1

z

2n∑

k=0

(
2n

k

)
zk
(
z−1
)2n−k

dz

=

n∑

k=0

(
2n

k

)∫

γ

z2k−2n−1 dz. (2.37)

Since
∫

γ

zp dz =

{
2πi if p=−1,

0 if p ∈ Z \ {−1},
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the only nonzero term in (2.37) occurs when 2k− 2n− 1 =−1, that is, k = n,

and we obtain

I =

(
2n

n

)∫

γ

z−1 dz = 2πi

(
2n

n

)
. (2.38)

On the other hand,

I =

∫ 2π

0

e−it
(
eit + e−it

)2n
ieit dt= i

∫ 2π

0

(2 cos t)2n dt. (2.39)

Comparing (2.38) and (2.39), we obtain identity (2.36).

Problem 2.20

For the path γ : [0, π]→C given by γ(t) = eit, show that
∣
∣
∣
∣

∫

γ

ez

z
dz

∣
∣
∣
∣≤ πe. (2.40)

Solution

The length of γ is given by

Lγ =

∫ π

0

∣
∣γ′(t)

∣
∣dt=

∫ π

0

∣
∣ieit
∣
∣dt= π,

and thus, by Proposition 2.42,
∣
∣
∣
∣

∫

γ

ez

z
dz

∣
∣
∣
∣≤ Lγ sup

{∣∣
∣
∣
ez

z

∣
∣
∣
∣ : z ∈ γ

(
[0, π]

)
}

= π sup

{
|eγ(t)|
|γ(t)| : t ∈ [0, π]

}
. (2.41)

Since |γ(t)|= 1 and
∣
∣eγ(t)

∣
∣=
∣
∣ecos t+i sin t

∣
∣=
∣
∣ecos tei sin t

∣
∣= ecos t ≤ e

for each t ∈ [0, π], inequality (2.40) follows readily from (2.41).

Problem 2.21

Find all functions u : R2 →R of class C1 such that

f(x+ iy) = u(x, y) + iu(x, y) (2.42)

is a holomorphic function in C.
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Solution

By Theorem 2.23, in order that f is holomorphic in C, the Cauchy–Riemann

equations in (2.33) must be satisfied in R
2 with u= v, that is,

∂u

∂x
=

∂u

∂y
and

∂u

∂y
=−∂u

∂x
.

In particular, we have

∂u

∂x
=−∂u

∂x
and

∂u

∂y
=−∂u

∂y
,

and thus,

∂u

∂x
=

∂u

∂y
= 0. (2.43)

Since the open set R2 is connected, it follows from (2.43) that u is constant.

Therefore, the holomorphic functions in C of the form (2.42) are the constant

functions a+ ia, with a ∈R.

Problem 2.22

Show that if f and f are holomorphic functions in C, then f is constant in C.

Solution

Writing the function f in the form (2.32), we obtain

f(x+ iy) = u(x, y) + iv(x, y) = u(x, y)− iv(x, y).

Since f and f are holomorphic in C, in addition to the Cauchy–Riemann equa-

tions in (2.33) for the function f , the Cauchy–Riemann equations for f = u− iv

are also satisfied, that is,

∂u

∂x
=−∂v

∂y
and

∂u

∂y
=

∂v

∂x
. (2.44)

It follows from (2.33) and (2.44) that

∂v

∂y
=−∂v

∂y
and − ∂v

∂x
=

∂v

∂x
,

and hence,

∂v

∂x
=

∂v

∂y
= 0. (2.45)
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Since the open set R
2 is connected, it follows from (2.45) that v is constant.

It then follows from Example 2.20 that f is constant.

Problem 2.23

For the function u : R2 →R given by u(x, y) = ex siny:

1. find a function v such that f(x + iy) = u(x, y) + iv(x, y) is holomorphic

in C and f(0) =−i;

2. compute the integral
∫
γ
(f(z)/z)dz, where γ is the circle of radius 4 centered

at the origin, looping three times in the negative direction.

Solution

1. In order that f is holomorphic in C, the Cauchy–Riemann equations must

be satisfied in R
2, and thus,

ex siny =
∂v

∂y
and ex cosy =−∂v

∂x
. (2.46)

It follows from the first equation that

v(x, y) =−ex cosy+C(x)

for some differentiable function C. Thus, it follows from the second equation

in (2.46) that ex cosy = ex cosy − C ′(x), and hence, C(x) = c for some

constant c ∈R. We then obtain

f(x+ iy) = ex siny+ i
(
−ex cosy+ c

)
=−iez + ic,

and it follows from f(0) =−i that c= 0. Hence, f(z) =−iez .

2. By Cauchy’s integral formula in (2.22), since Indγ(0) =−3, we obtain

∫

γ

f(z)

z
dz = 2πif(0) Indγ(0) = 2πi · (−i) · (−3) =−6π.

Problem 2.24

Let f = u+ iv be a holomorphic function in an open set Ω ⊂C. Show that if u

and v are of class C2, then

Δu=Δv = 0 in Ω.
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Solution

Since f is holomorphic in Ω, the Cauchy–Riemann equations are satisfied in Ω.

Taking derivatives in these equations with respect to x and y we obtain respec-

tively

∂2u

∂x2
=

∂2v

∂x∂y
and

∂2u

∂x∂y
=−∂2v

∂x2
, (2.47)

and

∂2u

∂y∂x
=

∂2v

∂y2
and

∂2u

∂y2
=− ∂2v

∂y∂x
. (2.48)

On the other hand, since u and v are of class C2, we have

∂2u

∂x∂y
=

∂2u

∂y∂x
and

∂2v

∂x∂y
=

∂2v

∂y∂x
.

Thus, combining the first equation in (2.47) with the second in (2.48), we obtain

Δu=
∂2u

∂x2
+

∂2u

∂y2
= 0.

Analogously, combining the second equation in (2.47) with the first in (2.48),

we obtain

Δv =
∂2v

∂x2
+

∂2v

∂y2
= 0.

Problem 2.25

Let f = u+ iv be a holomorphic function in an open set Ω ⊂C. Show that if u

and v are of class C2, then Δ(uv) = 0 in Ω.

Solution

We obtain

Δ(uv) =
∂2(uv)

∂x2
+

∂2(uv)

∂y2

=
∂2u

∂x2
v+ 2

∂u

∂x

∂v

∂x
+ u

∂2v

∂x2
+

∂2u

∂y2
v+ 2

∂u

∂y

∂v

∂y
+ u

∂2v

∂y2

= (Δu)v+ uΔv+ 2
∂u

∂x

∂v

∂x
+ 2

∂u

∂y

∂v

∂y
. (2.49)
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On the other hand, by Problem 2.24, we have Δu = Δv = 0 in Ω. Together

with the Cauchy–Riemann equations, this implies that

Δ(uv) = 2
∂u

∂x

∂v

∂x
+ 2

∂u

∂y

∂v

∂y

= 2
∂v

∂y

(
−∂u

∂y

)
+ 2

∂u

∂y

∂v

∂y
= 0.

Problem 2.26

Let f = u+ iv be a holomorphic function in an open set Ω ⊂C. Show that if u

and v are of class C2, then Δ(u2 + v2)≥ 0 in Ω.

Solution

By Problem 2.24, we have Δu=Δv = 0 in Ω. Setting u= v in (2.49), we then

obtain

1

2
Δ
(
u2 + v2

)
= uΔu+

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+ vΔv+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

=

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

≥ 0.

Problem 2.27

Let f be a holomorphic function in some open set Ω ⊂C such that

∣
∣f(z)− 1

∣
∣< 1 for z ∈Ω. (2.50)

Show that
∫

γ

f ′(z)

f(z)
dz = 0

for any closed piecewise regular path γ in Ω.

Solution

It follows from (2.50) that f never vanishes in Ω. Therefore, the function

g : Ω → C given by g(z) = log f(z) is well defined. It also follows from (2.50)

that the image of f does not intersect the half-line R
−
0 ⊂ C, and thus g is
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holomorphic in Ω. We then have

g′(z) =
f ′(z)

f(z)
,

and g is a primitive of f ′/f . Since the path γ is closed, it follows from Propo-

sition 2.49 that

∫

γ

f ′(z)

f(z)
dz =

∫

γ

g′(z)dz = 0.

Problem 2.28

Show that

1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cosθ+ r2
dθ = 1, 0< r <R.

Solution

We have

R+ reiθ

R− reiθ
=

(R+ reiθ)(R− re−iθ)

(R− reiθ)(R− re−iθ)

=
R2 − r2 + 2irR sinθ

R2 − 2rR cosθ+ r2
.

Therefore,

1

2π

∫ 2π

0

R2 − r2

R2 − 2rR cosθ+ r2
dθ =

1

2π

∫ 2π

0

Re

(
R+ reiθ

R− reiθ

)
dθ

=Re

(
1

2π

∫ 2π

0

R+ reiθ

R− reiθ
dθ

)

=Re

(
1

2πi

∫

γ

R+ z

z(R− z)
dz

)
,

where the path γ : [0,2π]→C is given by γ(θ) = reiθ. Moreover,
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1

2πi

∫

γ

R+ z

z(R− z)
dz =

1

2πi

∫

γ

(
1

z
+

2

R− z

)
dz

=
1

2πi

∫

γ

1

z
dz +

1

2πi

∫

γ

2

R− z
dz

= 1+
1

2πi

∫

γ

2

R− z
dz.

On the other hand, since the function f(z) = 2/(R − z) is holomorphic for

|z|<R, it follows from Cauchy’s theorem (Theorem 2.55) that

∫

γ

2

R− z
dz = 0,

and hence,

1

2π

∫ 2π

0

R2 − r2

R2 − 2rR cosθ+ r2
dθ =Re

(
1 +

1

2πi

∫

γ

2

R− z
dz

)
= 1.

Problem 2.29

Verify that the function f(z) = (z + 1) log z is continuous at z =−1.

Solution

Since f(−1) = 0, in order to verify that f is continuous at z = −1, one must

show that

lim
z→−1

f(z) = 0. (2.51)

We first observe that since

log z = log |z|+ iarg z,

with arg z ∈ (−π,π], we have

|log z|=
√
(log |z|)2 + (arg z)2 ≤

√
(log |z|)2 + π2.
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Hence,

|log z| ≤
√
1 + π2

for |z|< e, and thus,

∣
∣f(z)

∣
∣= |z + 1| · |log z| ≤ |z + 1|

√
1 + π2 → 0

when z →−1 (we note that when we let z →−1, one can always assume that

|z| < e, since |−1| < e). This shows that (2.51) holds, and the function f is

continuous at z =−1.

Problem 2.30

Find all continuous functions f : C→C such that f(z)2 = 1 for z ∈C.

Solution

It follows from f(z)2 = 1 that f(z) = 1 or f(z) =−1, for each z ∈C. We show

that f takes only one of these values. Otherwise, there would exist z1, z2 ∈ C

with f(z1) = 1 and f(z2) = −1, but by the continuity of f there would also

exist a point z in the line segment between z1 and z2 with f(z) �= 1 and f(z) �=
−1. But this contradicts the fact that f can only take the values 1 and −1.

Therefore, either f = 1 or f =−1.

Problem 2.31

Compute the integral
∫ ∞

0

sin(t2)

t
dt.

Solution

Given r,R > 0, with r < R, we consider the path γ = γ1 + γ2 + γ3 + γ4, where

γ1 : [r,R]→C is given by γ1(t) = t,

γ2 : [0, π/2]→C is given by γ2(t) =Reit,

γ3 : [r,R]→C is given by γ3(t) = i(r+R− t),

γ4 : [0, π/2]→C is given by γ4(t) = ei(π/2−t)
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Figure 2.13 Path γ = γ1 + γ2 + γ3 + γ4

(see Figure 2.13). We also consider the function f(z) = eiz
2

/z. It follows from

Cauchy’s theorem (Theorem 2.55) that

0 =

∫

γ1

f +

∫

γ2

f +

∫

γ3

f +

∫

γ4

f

=

∫ R

r

eit
2

t
dt+ i

∫ π/2

0

ei(Reit)2 dt

+

∫ R

r

e−i(r+R−t)2

t
dt+ i

∫ π/2

0

ei[re
i(π/2−t)]2 dt

=

∫ R

r

eit
2

t
dt+ i

∫ π/2

0

ei(Reit)2 dt

−
∫ R

r

e−it2

t
dt− i

∫ π/2

0

ei(re
it)2 dt. (2.52)

On the other hand,

∣
∣
∣
∣i
∫ π/2

0

ei(Reit)2 dt

∣
∣
∣
∣≤
∫ π/2

0

∣
∣ei(Reit)2

∣
∣dt

=

∫ π/2

0

e−R2 sin(2t) dt

= 2

∫ π/4

0

e−R2 sin(2t) dt.

Now we consider the function

h(t) = sin(2t)− 4t/π.
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Since

h′′(t) =−4 sin(2t)< 0 for t ∈ (0, π/4),

the derivative

h′(t) = 2cos(2t)− 4/π

is strictly decreasing in [0, π/4]. Hence, since h′(0)> 0 and h′(π/4)< 0, there

exists a unique s ∈ (0, π/4) such that h is increasing in [0, s] and decreasing

in [s,π/4]. Since h(0) = h(π/4) = 0, we conclude that h(t)≥ 0 for t ∈ [0, π/4].

Therefore,

∣
∣
∣
∣i
∫ π/2

0

ei(Reit)2 dt

∣
∣
∣
∣≤ 2

∫ π/4

0

e−R2 sin(2t) dt

≤ 2

∫ π/4

0

e−4R2t/π dt

=
π

2R2

(
1− e−R2)

→ 0

when R→+∞. It then follows from (2.52) that

0 =

∫ R

r

eit
2

t
dt+ i

∫ π/2

0

ei(Reit)2 dt−
∫ R

r

e−it2

t
dt− i

∫ π/2

0

ei(re
it)2 dt

→
∫ ∞

r

eit
2 − e−it2

t
dt− i

∫ π/2

0

ei(re
it)2 dt

= 2i

∫ ∞

r

sin(t2)

t
dt− i

∫ π/2

0

ei(re
it)2 dt

when R→+∞, and thus,

∫ ∞

r

sin(t2)

t
dt=

1

2

∫ π/2

0

ei(re
it)2 dt. (2.53)

Since the function eiz
2

is continuous, given ε > 0, there exists r > 0 such that

|eiz2 − 1|< ε for every z ∈C with |z| ≤ r. Therefore,

∣
∣
∣
∣

∫ π/2

0

ei(re
it)2 dt− π

2

∣
∣
∣
∣=
∣
∣
∣
∣

∫ π/2

0

(
ei(re

it)2 − 1
)
dt

∣
∣
∣
∣

≤
∫ π/2

0

∣
∣ei(re

it)2 − 1
∣
∣dt≤ επ

2
,
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and it follows from (2.53) that

∣
∣
∣
∣

∫ ∞

r

sin(t2)

t
dt− π

4

∣
∣
∣
∣=

1

2

∣
∣
∣
∣

∫ π/2

0

ei(re
it)2 dt− π

2

∣
∣
∣
∣

≤ 1

2

∫ π/2

0

∣
∣ei(re

it)2 − 1
∣
∣dt≤ επ

4

for any sufficiently small r. Letting r→ 0 and then ε→ 0, we conclude that

∫ ∞

0

sin(t2)

t
dt=

π

4
.

EXERCISES

2.1. Compute the limit, if it exists:

(a) lim
z→0

z

z
;

(b) lim
z→i

(Imz −Rez);

(c) lim
z→3

zz .

2.2. Verify that the functions Re z, Imz and |z| are continuous in C.

2.3. Find whether the function f(z) = z + cosz is continuous in C.

2.4. Determine the set of points z ∈C where the function is continuous:

(a) x|z|;

(b)

{
z3/|z|2 if z �= 0,

0 if z = 0;

(c) (z + 1) log z.

2.5. Verify that the function f(z) = (1− log z) log z is not continuous.

2.6. Determine the set of points z ∈C where the function is differentiable:

(a) Rez · Imz;

(b) Rez + Imz;

(c) z2 − |z|2;
(d) |z|(z − 1).

2.7. Determine the set of points z ∈C where the function is differentiable:

(a) ex cosy− iex siny;

(b) x2y+ ixy;

(c) x(y− 1) + ix2(y− 1).

2.8. Compute (log log z)′ and indicate its domain.

2.9. Let f be a holomorphic function in C with real part xy−x2+ y2−1

such that f(0) = −1. Find f(z) explicitly and compute the second

derivative f ′′(z).
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2.10. Find the constants a, b ∈R for which the function u is the real part

of a holomorphic function in C:

(a) u(x, y) = ax+ by;

(b) u(x, y) = ax2 − bxy;

(c) u(x, y) = ax2 − by2 + xy;

(d) u(x, y) = ax2 + 3xy− by4;

(e) u(x, y) = ax2 + cosx cosy+ by2.

2.11. For the values of a, b ∈R obtained in Exercise 2.10, find a holomor-

phic function f in C with real part u.

2.12. Find whether there exists a ∈R such that the function

f(x+ iy) = ax2 + 2xy+ i
(
x2 − y2 − 2xy

)

is holomorphic in C.

2.13. Find all constants a, b ∈R such that the function

f(x+ iy) = ax2 + 2xy+ by2 + i
(
y2 − x2

)

is holomorphic in C.

2.14. For each a, b, c ∈C, compute the integral

∫

γ

(
az2 + bz + c

)
dz,

where the path γ : [0,1]→C is given by γ(t) = it.

2.15. Compute the integral
∫
γ
(3z2 +3)dz along a path γ : [a, b]→C with

γ(a) = 3 and γ(b) = 2+ i.

2.16. Compute the integral:

(a)
∫
γ
zz2 dz along the path γ : [0,1]→C given by γ(t) = 2eit;

(b)
∫
γ
(ez/z)dz along the path γ : [0,2]→C given by γ(t) = e2πit.

2.17. Find a primitive of the function y+ ex cosy− i(x− ex siny) in C.

2.18. Identify each statement as true or false.

(a) The function f : C→ C given by f(z) = (|z|2 − 2)z is differen-

tiable at z = 0.

(b) There exists a closed regular path γ such that
∫
γ
sinz dz �= 0.

(c)
∫
γ
ez dz = 0 for some closed path γ whose image is the boundary

of a square.

(d) There exists a holomorphic function f in C \ {0} such that

f ′(z) = 1/z in C \ {0}.
(e) If f is holomorphic in C and has real part 4xy + 2ex siny, then

f(z) =−2i(ez + z2).

(f) The largest open ball centered at the origin where the function

z2 + z is one-to-one has radius 1.
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(g) For the path γ : [0,2π]→C given by γ(t) = 2eit, we have

∣
∣
∣
∣

∫

γ

cosz

z
dz

∣
∣
∣
∣< 2πe.

2.19. Compute the derivative

d

ds

∫

γ

(
s2z + sz2

)
dz

for each s ∈R, where the path γ : [0,1]→C is given by γ(t) = eπit.

2.20. Compute the derivative

d

ds

∫

γ

es(z+1)

z
dz

for each s ∈R, where the path γ : [0,1]→C is given by γ(t) = e2πit.

2.21. Compute the index Indγ(−1) for the path γ : [0,2]→C given by

γ(t) =
[
1 + t(2− t)

]
e2πit

(see Figure 2.14).

Figure 2.14 Path γ in Exercise 2.21

2.22. Find all functions u : R2 →R of class C1 such that f = u+ iu2 is a

holomorphic function in C.
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2.23. Find all holomorphic functions in C whose real part is twice the

imaginary part.

2.24. For a function

f
(
reiθ
)
= a(r, θ) + ib(r, θ),

show that the Cauchy–Riemann equations are equivalent to

∂a

∂r
=

1

r

∂b

∂θ
and

∂b

∂r
=−1

r

∂a

∂θ
.

2.25. Show that the function log z is holomorphic in the open set C \R−
0 .

Hint: use Exercise 2.24.

2.26. Find all points where the function is differentiable:

(a) log(z − 1);

(b) (z − 1) log(z − 1).

2.27. Show that
∣
∣
∣
∣

∫

γ

ez

z
dz

∣
∣
∣
∣< πe

for the path γ : [0, π]→C given by γ(t) = eit.

2.28. For a path γ : [0,1]→C satisfying |γ(t)|< 1 for every t ∈ [0,1], show

that
∞∑

n=1

∫

γ

nzn−1 dz =

∫

γ

dz

(1− z)2
.

2.29. Given a function f(x+ iy) = u(x, y) + iv(x, y), since

x=
z + z

2
and y =

z − z

2i
,

one can define

g(z, z) = f

(
z + z

2
+ i

z − z

2i

)
= f(x+ iy). (2.54)

Show that f satisfies the Cauchy–Riemann equations at (x0, y0) if

and only if

∂g

∂z
(x0 + iy0, x0 − iy0) = 0.

2.30. For the function g in (2.54), show that if

∂g

∂z
=

∂g

∂z
= 0

in some connected open set Ω ⊂C, then f is constant in Ω.
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2.31. Show that the integral
∫
γ
f(z)f ′(z)dz is purely imaginary for any

closed piecewise regular path γ, and any function f of class C1 in

an open set containing the image of γ.

2.32. Show that if f : C→C is a bounded continuous function, then

lim
r→∞

∫

γr

f(z)

z2
dz = 0 and lim

r→0

∫

γr

f(z)

z
dz = 2πif(0),

where the path γr : [0,2π]→C is given by γr(t) = reit.

2.33. Let f : C→C be a holomorphic function in C.

(a) For the path γ : [0,2π]→C given by γ(t) = z + reit, show that

∣
∣f(z)

∣
∣≤ 1

2π

∫ 2π

0

∣
∣f
(
z + reit

)∣∣dt.

(b) Show that if the function f has a maximum in the closed ball

{w ∈C : |w− z| ≤ r}, then it occurs at the boundary.



3
Sequences and Series

This chapter gives an introduction to the study of sequences and series, both of

complex and real numbers. We note that the convergence of sequences and series

of complex numbers can always be reduced to the convergence of sequences and

series of real numbers. We also consider the uniform convergence of functions,

and we show that in the presence of uniform convergence both limits and series

commute with the integral.

3.1 Sequences

Let (zn)n = (zn)n∈N be a sequence of complex numbers. We first introduce the

notion of a convergent sequence.

Definition 3.1

A sequence (zn)n is said to be convergent if there exists z ∈C such that

|zn − z| → 0 when n→∞. In this case, the number z is called the limit of

the sequence (zn)n, and we write

lim
n→∞

zn = z.

Otherwise, the sequence (zn)n is said to be divergent.
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We also introduce the notion of a Cauchy sequence.

Definition 3.2

We say that (zn)n is a Cauchy sequence if given ε > 0, there exists p ∈N such

that

|zn − zm|< ε for every n,m> p.

Now we show that the two notions are equivalent.

Proposition 3.3

A sequence (zn)n of complex numbers is convergent if and only if it is a Cauchy

sequence.

Proof

If the sequence (zn)n is convergent and has limit z, then given ε > 0, there

exists p ∈N such that |zn − z|< ε for every n > p. Therefore,

|zn − zm| ≤ |zn − z|+ |zm − z|< 2ε

for every n,m> p, and (zn)n is a Cauchy sequence.

Now we assume that (zn)n is a Cauchy sequence. Let us write zn = xn+ iyn,

with xn, yn ∈R for each n ∈N. Since

|zn − zm|2 = (xn − xm)2 + (yn − ym)2,

we obtain

|xn − xm| ≤ |zn − zm| and |yn − ym| ≤ |zn − zm|,

and hence, the sequences (xn)n and (yn)n of real numbers are also Cauchy

sequences. Therefore, they are convergent (we recall that in R the Cauchy

sequences are exactly the convergent sequences). Now let

x= lim
n→∞

xn and y = lim
n→∞

yn.

Taking z = x+ iy, we obtain

|zn − z|2 = (xn − x)2 + (yn − y)2 → 0

when n→∞. This shows that the sequence (zn)n is convergent and that its

limit is z. �
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We also show that a sequence is convergent if and only if its real and imag-

inary parts are convergent.

Proposition 3.4

If zn = xn+ iyn, with xn, yn ∈R for each n ∈N, then (zn)n is convergent if and

only if (xn)n and (yn)n are convergent. In this case, we have

lim
n→∞

zn = lim
n→∞

xn + i lim
n→∞

yn. (3.1)

Proof

Given z = x+ iy, we have

|zn − z|2 = (xn − x)2 + (yn − y)2.

Therefore, zn → z if and only if

xn → x and yn → y.

This yields the desired property. �

Example 3.5

For the sequence

zn =
1+ in

n+ 1
,

we have

lim
n→∞

zn = lim
n→∞

(
1

n+ 1
+ i

n

n+ 1

)

= lim
n→∞

1

n+ 1
+ i lim

n→∞

n

n+ 1
= i.

3.2 Series of Complex Numbers

Now we consider series
∑∞

n=0 zn of complex numbers zn ∈C.
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Definition 3.6

A series
∑∞

n=0 zn of complex numbers is said to be convergent if the sequence of

partial sums
(∑m

n=1 zn
)
m is convergent, in which case the limit of the sequence

is called the sum of the series. Otherwise, the series is said to be divergent.

Example 3.7

Let us consider the series
∑∞

n=0 z
n. We have

m∑

n=0

zn =
1− zm+1

1− z
,

since it is the sum of the geometric progression zn. If |z| < 1, then |zm+1| =
|z|m+1 → 0 when m→∞, and thus,

m∑

n=0

zn → 1

1− z

when m→∞. Hence, the series
∑∞

n=0 z
n is convergent for |z|< 1, and

∞∑

n=0

zn =
1

1− z
.

Sometimes, the following property allows to establish in a simple manner

the divergence of a series.

Proposition 3.8

If the series
∑∞

n=0 zn is convergent, then zn → 0 when n→∞.

Proof

We have

zm =

m∑

n=0

zn −
m−1∑

n=0

zn. (3.2)

Since both
∑m

n=0 zn and
∑m−1

n=0 zn converge to
∑∞

n=0 zn whenm→∞, it follows

from (3.2) that zm → 0 when m→∞. �
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Example 3.9

By Proposition 3.8, the series
∑∞

n=0 z
n is divergent for |z| ≥ 1, since in this

case
∣
∣zn
∣
∣= |z|n ≥ 1,

and thus the sequence zn does not converge to zero.

Now we introduce the notion of an absolutely convergent series.

Definition 3.10

A series
∑∞

n=0 zn is said to be absolutely convergent if the series of the moduli∑∞
n=0 |zn| is convergent.

We show that absolutely convergent series are convergent.

Proposition 3.11

If the series
∑∞

n=0 zn is absolutely convergent, then it is also convergent, and

∣
∣
∣
∣
∣

∞∑

n=0

zn

∣
∣
∣
∣
∣
≤

∞∑

n=0

|zn|.

Proof

For p≥ q, we have
∣
∣
∣
∣
∣

p∑

n=0

zn −
q∑

n=0

zn

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

p∑

n=q+1

zn

∣
∣
∣
∣
∣
≤

p∑

n=q+1

|zn|

=

p∑

n=0

|zn| −
q∑

n=0

|zn|

=

∣
∣
∣
∣
∣

p∑

n=0

|zn| −
q∑

n=0

|zn|
∣
∣
∣
∣
∣
. (3.3)

By Proposition 3.3, since the sequence
∑p

n=0 |zn| is convergent it is a Cauchy se-

quence. Thus, it follows from (3.3) that
∑p

n=0 zn is also a Cauchy sequence, and

again by Proposition 3.3 it is convergent. This shows that the series
∑∞

n=0 zn
is convergent.
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Moreover,

∣
∣
∣
∣
∣

p∑

n=0

zn

∣
∣
∣
∣
∣
≤

p∑

n=0

|zn|

for each p ∈N, and hence,

∣
∣
∣
∣
∣

∞∑

n=0

zn

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
lim
p→∞

p∑

n=0

zn

∣
∣
∣
∣
∣

= lim
p→∞

∣
∣
∣
∣
∣

p∑

n=0

zn

∣
∣
∣
∣
∣

≤ lim
p→∞

p∑

n=0

|zn|=
∞∑

n=0

|zn|.

This completes the proof of the proposition. �

Example 3.12

Let us consider the series
∑∞

n=0(−1/2)n. We have

∞∑

n=0

∣
∣(−1/2)n

∣
∣=

∞∑

n=0

2−n = lim
m→∞

m∑

n=0

2−n

= lim
m→∞

1− 2−(m+1)

1− 2−1
=

1

1− 2−1
= 2.

Therefore,
∑∞

n=0(−1/2)n is absolutely convergent, and by Proposition 3.11 it

is also convergent. In fact, we have

∞∑

n=0

(−1/2)n = lim
m→∞

m∑

n=0

(−1/2)n

= lim
m→∞

1− (−1/2)m

1− (−1/2)
=

1

3/2
=

2

3
.

We also show that a series is convergent if and only if the corresponding

series of real and imaginary parts are convergent. We consider a series
∑∞

n=0 zn
of complex numbers, and for each n≥ 0 we write zn = xn+ iyn, with xn, yn ∈R.
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Proposition 3.13

The series
∑∞

n=0 zn is convergent if and only if the series
∑∞

n=0 xn and
∑∞

n=0 yn
are convergent. In this case, we have

∞∑

n=0

zn =

∞∑

n=0

xn + i

∞∑

n=0

yn. (3.4)

Proof

We have
m∑

n=0

zn =

m∑

n=0

xn + i

m∑

n=0

yn.

Therefore, by Proposition 3.4, the series
∑∞

n=0 zn is convergent if and only if

the series
∑∞

n=0 xn and
∑∞

n=0 yn are convergent. Identity (3.4) follows readily

from (3.1). �

Proposition 3.13 tells us that in order to study the convergence of series of

complex numbers it is sufficient to consider series of real numbers.

3.3 Series of Real Numbers

In this section we consider series
∑∞

n=0 xn of real numbers xn ∈R.

Example 3.14

Let us consider the series
∞∑

n=1

1

n(n+ 1)
.

Since

1

n(n+ 1)
=

1

n
− 1

n+ 1
,

we have
m∑

n=1

1

n(n+ 1)
= 1− 1

m+ 1
→ 1
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when m→∞. Therefore,

∞∑

n=1

1

n(n+ 1)
= 1.

More generally, we have the following result.

Proposition 3.15

If xn = an − an+1, where (an)n is a convergent sequence, then

∞∑

n=0

(an − an+1) = a0 − lim
n→∞

an. (3.5)

Proof

We have

m∑

n=0

(an − an+1) = (a0 − a1) + (a1 − a2) + · · ·+ (am − am+1)

= a0 − am+1.

Letting m→∞ yields the desired result. �

Series such as that in (3.5) are usually called telescopic series.

Example 3.16

We show that the series
∞∑

n=1

1

nα

is convergent for α > 1 and divergent for α≤ 1. For α> 1 it is sufficient to note

that
∞∑

n=2

1

nα
≤
∫ ∞

1

dx

xα
=

x−α+1

−α+ 1

∣
∣
∣
∣

x=∞

x=1

=
1

α− 1
.

For α ≤ 1 it is sufficient to consider α = 1 since for any α ≤ 1 and n ∈ N, we

have

1

nα
≥ 1

n
.
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For α= 1 we obtain

∞∑

n=1

1

n
≥
∫ ∞

1

dx

x
= logx

∣
∣
∣
x=∞

x=1
=∞.

Now we consider series of nonnegative numbers and we describe some tests

for convergence and divergence.

Proposition 3.17

The series
∑∞

n=0 xn, with xn ≥ 0, is convergent if and only if the sequence of

partial sums
(∑m

n=1 zn
)
m is bounded from above.

Proof

It is sufficient to note that a nondecreasing sequence is convergent if and only

if it is bounded from above. �

Proposition 3.17 has the following immediate consequence.

Proposition 3.18

Let us assume that 0≤ xn ≤ yn for every n≥ 0.

1. If
∑∞

n=0 yn is convergent, then
∑∞

n=0 xn is convergent.

2. If
∑∞

n=0 xn is divergent, then
∑∞

n=0 yn is divergent.

As a corollary of Proposition 3.18 we obtain the following result.

Proposition 3.19

If xn, yn ≥ 0 for every n≥ 0, and xn/yn → α > 0 when n→∞, then
∑∞

n=0 xn

is convergent if and only if
∑∞

n=0 yn is convergent.

Proof

Since xn/yn → α> 0 when n→∞, there exists p ∈N such that

α

2
<

xn

yn
< 2α
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for every n > p. Hence,

xn < 2αyn and yn <
2

α
xn

for every n > p. The desired property now follows readily from Proposi-

tion 3.18. �

We also illustrate how to use this convergence test.

Example 3.20

We consider the series
∞∑

n=1

n2

n7 + 2
. (3.6)

Since

n2

n7 + 2
:
1

n5
=

n7

n7 + 2
→ 1

when n→∞, it follows from Proposition 3.19 that the series in (3.6) is con-

vergent if and only if the series
∑∞

n=1 1/n
5 is convergent. But we know from

Example 3.16 that the latter is convergent, and thus the series in (3.6) is also

convergent.

The following is another convergence test.

Proposition 3.21

For a series
∑∞

n=0 xn, with xn > 0:

1. if there exists α < 1 such that xn+1/xn ≤ α for any sufficiently large n,

then
∑∞

n=0 xn is convergent;

2. if xn+1/xn ≥ 1 for any sufficiently large n, then
∑∞

n=0 xn is divergent.

Proof

Under the assumption in the first property, there exists n0 ∈N such that

xn+1 ≤ αxn for n≥ n0.

By induction, we obtain

xn ≤ αn−n0xn0 for n≥ n0.
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Therefore,

m∑

n=n0

xn ≤
m∑

n=n0

αn−n0xn0 =
1− αm−n0+1

1− α
xn0 →

xn0

1− α
(3.7)

when m→∞, and the series
∑∞

n=0 xn is convergent.

Under the assumption in the second property, we have xn+1 ≥ xn > 0 for

any sufficiently large n. This implies that the sequence xn cannot converge to

zero, and thus the series
∑∞

n=0 xn is divergent. �

As a corollary of Proposition 3.21 we obtain the following result.

Proposition 3.22 (Ratio test)

For the series
∑∞

n=0 xn, with xn > 0, let us assume that xn+1/xn → α when

n→∞.

1. If α< 1, then
∑∞

n=0 xn is convergent.

2. If α> 1, then
∑∞

n=0 xn is divergent.

Example 3.23

We consider the series
∑∞

n=1 n/5
n. We have

n+ 1

5n+1
:
n

5n
=

n+ 1

n
· 5n

5n+1
=

n+ 1

5n
→ 1

5
< 1

when n→∞. It follows from Proposition 3.22 that the series is convergent.

Example 3.24

Now let us consider the series
∞∑

n=1

en

n!
.

We have

en+1

(n+ 1)!
:
en

n!
=

en+1n!

en(n+ 1)!
=

e

n+ 1
→ 0< 1

when n→∞. It follows from Proposition 3.22 that the series is convergent.

The following is still another convergence test.
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Proposition 3.25

For the series
∑∞

n=0 xn, with xn ≥ 0:

1. if there exists α < 1 such that n
√
xn < α for any sufficiently large n, then∑∞

n=0 xn is convergent;

2. if n
√
xn ≥ 1 for infinitely many values of n, then

∑∞
n=0 xn is divergent.

Proof

Under the assumption in the first property, there exists an integer n0 ∈N such

that xn < αn for every n ≥ n0. Proceeding as in (3.7), we conclude that the

series
∑∞

n=0 xn is convergent.

Under the assumption in the second property, we have xn ≥ 1 for infinitely

many values of n. Hence, the sequence xn cannot converge to zero, and the

series
∑∞

n=0 xn is divergent. �

In order to formulate a corollary of Proposition 3.25, we recall that the

upper limit of a sequence (xn)n of real numbers is defined by

limsup
n→∞

xn = lim
n→∞

sup{xm :m≥ n}.

Proposition 3.26 (Root test)

For the series
∑∞

n=0 xn, with xn ≥ 0:

1. if limsupn→∞ n
√
xn < 1, then

∑∞
n=0 xn is convergent;

2. if limsupn→∞ n
√
xn > 1, then

∑∞
n=0 xn is divergent.

Proof

For the first property, since

β := limsup
n→∞

n
√
xn < 1,

given ε > 0 with β + ε < 1, there exists p ∈N such that

n
√
xn < β + ε < 1 for every n > p.

Now we can apply the first property in Proposition 3.25 to conclude that∑∞
n=0 xn is convergent.

For the second property, we note that n
√
xn > 1 for infinitely many values

of n. Thus, we can apply the second property in Proposition 3.25 to conclude

that
∑∞

n=0 xn is divergent. �
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Example 3.27

Let us consider the series
∞∑

n=1

3 + n

nn
. (3.8)

We have

n

√
3 + n

nn
=

n
√
3 + n

n
→ 0< 1

when n→∞, since n
√
3 + n→ 1. Indeed,

log n
√
3 + n=

log(3 + n)

n
→ 0,

and thus n
√
3 + n→ 1. It follows from Proposition 3.26 that the series in (3.8)

is convergent.

Example 3.28

We note that for a series
∑∞

n=0 xn, with xn ≥ 0, if

limsup
n→∞

n
√
xn = 1, (3.9)

then the series can be convergent or divergent. For example, (3.9) holds when

xn = 1/n and the series
∑∞

n=1 1/n is divergent. On the other hand, (3.9) also

holds when xn = 1/n2 and the series
∑∞

n=1 1/n
2 is convergent (see Exam-

ple 3.16).

Finally, we consider series whose terms are alternately positive and negative.

Proposition 3.29 (Leibniz’s test)

If xn ↘ 0 when n→∞, then the series
∑∞

n=0(−1)nxn is convergent.

Proof

Let us consider the sequence

Sm =
m∑

n=1

(−1)nxn.
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Since xn ↘ 0 when n→∞, we have

S2m+2 − S2m = x2m+2 − x2m+1 < 0

and

S2m+3 − S2m+1 =−x2m+3 + x2m+2 > 0.

Hence, the sequences (S2m)m and (S2m+1)m are, respectively, decreasing and

increasing. Moreover,

S2m+1 = S2m − x2m+1 < S2m (3.10)

for every m ∈N. Therefore,

S1 < lim
m→∞

S2m+1 ≤ lim
m→∞

S2m < S2.

The first and third inequalities follow from the monotonicity of the sequences

(S2m)m and (S2m+1)m. Since xn ↘ 0 when n→∞, it also follows from (3.10)

that

lim
m→∞

S2m − lim
m→∞

S2m+1 = lim
m→∞

x2m+1 = 0.

Since all sublimits of the sequence (Sm)m are equal, we conclude that the series∑∞
n=0(−1)nxn is convergent. �

3.4 Uniform Convergence

In this section we study the notion of uniform convergence. Let (fn)n be a

sequence of functions fn : Ω →C in a set Ω ⊂C.

Definition 3.30

We say that the sequence (fn)n is uniformly convergent on Ω if:

1. the limit

f(z) = lim
n→∞

fn(z)

exists for every z ∈Ω;

2. given ε > 0, there exists p ∈N such that

∣
∣fn(z)− f(z)

∣
∣< ε (3.11)

for every n≥ p and z ∈Ω.
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Example 3.31

Now we consider the functions fn(z) = (z + n)/n. Clearly, fn(z) → 1 when

n→∞, for every z ∈C. On the other hand,

∣
∣fn(z)− 1

∣
∣= |z/n|< ε

for |z| < εn, but not for z ∈ C (for any n). Therefore, the convergence is not

uniform on C.

Example 3.32

Let us consider the functions fn(z) =
∑n

k=0 z
k. By Example 3.7, we have

lim
n→∞

fn(z) =
1

1− z

for |z|< 1. We show that the convergence is uniform on

Ω =
{
z ∈C : |z|< r

}

for every r < 1. Indeed,

∣
∣
∣
∣

1

1− z
− fn(z)

∣
∣
∣
∣=

∣
∣
∣
∣
∣

∞∑

k=n+1

zk

∣
∣
∣
∣
∣

≤
∞∑

k=n+1

rk = lim
m→∞

m∑

k=n+1

rk

= lim
m→∞

rn+1(1− rm−n)

1− r
=

rn+1

1− r
→ 0

when n→∞.

The limit of a uniformly convergent sequence of continuous functions is also

a continuous function.

Theorem 3.33

Let (fn)n be a sequence of continuous functions converging uniformly on Ω.

Then the limit function f is continuous in Ω.
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Proof

Given ε > 0, there exists p ∈N such that (3.11) holds for every n≥ p and z ∈Ω.

Therefore,
∣
∣f(z)− f(z0)

∣
∣≤
∣
∣f(z)− fp(z)

∣
∣+
∣
∣fp(z)− fp(z0)

∣
∣+
∣
∣fp(z0)− f(z0)

∣
∣

< 2ε+
∣
∣fp(z)− fp(z0)

∣
∣

for every z, z0 ∈Ω. Since fp is continuous, we obtain

∣
∣f(z)− f(z0)

∣
∣< 3ε

whenever |z − z0| is sufficiently small. Since ε is arbitrary, we conclude that

lim
z→z0

f(z) = f(z0)

for every z0 ∈Ω, and the function f is continuous in Ω. �

The following statement shows that in the presence of uniform convergence

the limit commutes with the integral.

Proposition 3.34

Let (fn)n be a sequence of continuous functions converging uniformly on Ω to

a function f . If γ : [a, b]→Ω is a piecewise regular path, then

lim
n→∞

∫

γ

fn =

∫

γ

f.

Proof

We have
∣
∣
∣
∣

∫

γ

fn −
∫

γ

f

∣
∣
∣
∣=
∣
∣
∣
∣

∫

γ

(fn − f)

∣
∣
∣
∣

≤ Lγ sup
{∣∣fn

(
γ(t)
)
− f
(
γ(t)
)∣∣ : t ∈ [a, b]

}

≤ Lγ sup
{∣∣fn(z)− f(z)

∣
∣ : z ∈Ω

}
→ 0

when n→∞. This yields the desired identity. �

Now we consider the notion of uniform convergence for a series of functions.
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Definition 3.35

We say that the series of functions
∑∞

n=1 fn is uniformly convergent on Ω if

the sequence of partial sums
∑m

n=1 fn converges uniformly on Ω when m→∞.

The following is a test for the uniform convergence of series of functions.

Theorem 3.36 (Weierstrass’ test)

Given functions fn : Ω →C for n ∈N, if there exist constants an > 0 such that∑∞
n=1 an is convergent and

∣
∣fn(z)

∣
∣≤ an for n ∈N, z ∈Ω,

then the series
∑∞

n=1 fn is uniformly convergent on Ω.

Proof

We first observe that

∣
∣
∣
∣
∣

p∑

n=1

fn(z)−
q∑

n=1

fn(z)

∣
∣
∣
∣
∣
≤

p∑

n=q+1

∣
∣fn(z)

∣
∣≤

∞∑

n=q+1

an (3.12)

for each z ∈Ω and p > q. Since
∑∞

n=1 an is convergent, it follows from (3.12)

that
∑p

n=1 fn(z) is a Cauchy sequence, and thus the limit

f(z) =

∞∑

n=1

fn(z)

exists for each z ∈Ω. Letting p→∞ in (3.12), we obtain

∣
∣
∣
∣
∣
f(z)−

q∑

n=1

fn(z)

∣
∣
∣
∣
∣
≤

∞∑

n=q+1

an.

Hence, given ε > 0, there exists q ∈N such that

∣
∣
∣
∣
∣
f(z)−

m∑

n=1

fn(z)

∣
∣
∣
∣
∣
≤

∞∑

n=m+1

an ≤
∞∑

n=q+1

an < ε

for every m≥ p. This shows that the convergence is uniform. �
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Example 3.37

Let us consider the functions fn : Ω →C in the set Ω = {z ∈C : |z|< 1}, given
by

fn(z) = zn/n2.

We have |fn(z)| ≤ 1/n2 for z ∈Ω, and by Example 3.16 the series
∑∞

n=1 1/n
2

is convergent. It then follows from Theorem 3.36 that the series
∑∞

n=1 fn is

uniformly convergent on Ω.

We also show that in the presence of uniform convergence a series commutes

with the integral.

Proposition 3.38

If f =
∑∞

n=1 fn is a series of continuous functions converging uniformly on Ω,

then f is continuous in Ω. Moreover,
∫

γ

f =
∞∑

n=1

∫

γ

fn

for any piecewise regular path γ in Ω.

Proof

We consider the sequence of continuous functions

gn =

n∑

k=1

fk.

Since gn converges uniformly to f on Ω, it follows from Theorem 3.33 that f is

continuous in Ω. Moreover, by Proposition 3.34, we have

lim
n→∞

∫

γ

gn =

∫

γ

f. (3.13)

On the other hand,
∫

γ

gn =

n∑

k=1

∫

γ

fk,

and thus,

lim
n→∞

∫

γ

gn =

∞∑

k=1

∫

γ

fk. (3.14)

Comparing (3.13) and (3.14), we obtain the desired identity. �
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We conclude this section with a result concerning the differentiation of a

series term by term.

Proposition 3.39

Given functions fn : Ω → C of class C1 in an open set Ω ⊂ C, if the series∑∞
n=1 fn is convergent in Ω and the series

∑∞
n=1 f

′
n is uniformly convergent

on Ω, then
( ∞∑

n=1

fn

)′

=

∞∑

n=1

f ′
n in Ω.

Proof

Let

f =

∞∑

n=1

fn and g =

∞∑

n=1

f ′
n.

By Proposition 3.38, the function g is continuous. Now we take z ∈ Ω and

h ∈ C such that the line segment between z and z + h is contained in Ω.

We also consider the path γh : [0,1] → C given by γh(t) = z + th. Again by

Proposition 3.38, we have

∫

γh

g =
∞∑

n=1

∫

γh

f ′
n

=

∞∑

n=1

[
fn(z + h)− fn(z)

]
= f(z + h)− f(z). (3.15)

We want to show that

lim
h→0

1

h

∫

γh

g = g(z). (3.16)

It follows from

g(z)− 1

h

∫

γh

g =
1

h

∫

γh

[
g(z)− g(w)

]
dw

that
∣
∣
∣
∣g(z)−

1

h

∫

γh

g

∣
∣
∣
∣≤

Lγh

|h| sup
{∣∣g(z)− g(z + th)

∣
∣ : t ∈ [0,1]

}

= sup
{∣∣g(z)− g(z + th)

∣
∣ : t ∈ [0,1]

}
.
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Since g is continuous, we obtain (3.16). It then follows from (3.15) that

f ′(z) = g(z) for every z ∈Ω. This establishes the identity in the theorem. �

3.5 Solved Problems and Exercises

Problem 3.1

Verify that the sequence zn = (1/2− i/3)n is convergent.

Solution

Since
∣
∣
∣
∣
1

2
− i

3

∣
∣
∣
∣=

√
1

4
+

1

9
=

√
13

6
< 1,

we have

|zn|=
∣
∣
∣
∣
1

2
− i

3

∣
∣
∣
∣

n

=

(√
13

6

)n

→ 0

when n→∞. Hence, the sequence zn converges to 0.

Problem 3.2

Verify that if the sequence zn is convergent, then |zn| is also convergent.

Solution

Let

z = lim
n→∞

zn.

We have
∣
∣|zn| − |z|

∣
∣≤ |zn − z| → 0

when n→∞, and thus, the sequence |zn| converges to |z|.

Problem 3.3

Verify that the series
∑∞

n=1 cos(1/n) is divergent.
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Solution

In order that a series
∑∞

n=1 zn, with zn ∈C, is convergent it is necessary that

zn → 0 when n→∞ (see Proposition 3.8). In the present case, we have

zn = cos(1/n)→ 1 when n→∞,

and hence, the series
∑∞

n=1 cos(1/n) is divergent.

Problem 3.4

Find whether the series
∑∞

n=1(−1)n/n2 is absolutely convergent.

Solution

We have

∞∑

n=1

∣
∣
∣
∣
(−1)n

n2

∣
∣
∣
∣=

∞∑

n=1

1

n2
,

and it follows from Example 3.16 that the series
∑∞

n=1 1/n
2 is convergent.

Alternatively, note that the function 1/x2 is decreasing, and hence (see

Figure 3.1)

Figure 3.1 Graph of the function 1/x2
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∞∑

n=2

1

n2
≤
∫ +∞

1

1

x2
dx= lim

a→+∞

∫ a

1

1

x2
dx

= lim
a→+∞

− 1

x

∣
∣
∣
∣

x=a

x=1

= lim
a→+∞

(
1− 1

a

)
= 1<+∞. (3.17)

Thus, the series
∑∞

n=1(−1)n/n2 is absolutely convergent.

Problem 3.5

Find whether the series
∞∑

n=1

n2 cos(1/n)

n4 + 1
(3.18)

is convergent.

Solution

Since
∣
∣
∣
∣
n2 cos(1/n)

n4 + 1

∣
∣
∣
∣<

n2

n4 + 1
<

1

n2
,

it follows from Propositions 3.11 and 3.18 together with (3.17) that the series

in (3.18) is convergent.

Problem 3.6

Show that the series
∞∑

n=1

n+ 3

4+ n3
(3.19)

is convergent.

Solution

Since

n+ 3

4+ n3
:
1

n2
=

n3 + 3n2

4 + n3
=

1+ 3/n

1 + 4/n3
→ 1

when n→∞, by Proposition 3.19 the series in (3.19) is convergent if and only

if
∑∞

n=1 1/n
2 is convergent. It then follows from Example 3.16 or from (3.17)

that the series in (3.19) is convergent.
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Problem 3.7

Show that the series
∞∑

n=1

cos(nπ)

n3 − n+ 1
(3.20)

is absolutely convergent.

Solution

We have cos(nπ) = (−1)n. Since

∣
∣
∣
∣

(−1)n

n3 − n+ 1

∣
∣
∣
∣ :

1

n3
=

n3

n3 − n+ 1
→ 1

when n→∞, by Proposition 3.19 the series in (3.20) is absolutely convergent

if and only if
∑∞

n=1 1/n
3 is convergent. By Example 3.16, the series

∑∞
n=1 1/n

3

is convergent.

Alternatively, since the function 1/x3 is decreasing, proceeding as in (3.17)

we obtain
∞∑

n=2

1

n3
≤
∫ +∞

1

1

x3
dx=

1

2
<+∞.

Thus, the series in (3.20) is absolutely convergent.

Problem 3.8

Find whether the series
∑∞

n=2 1/(n logn) is convergent.

Solution

For x > 1 we have
(

1

x logx

)′
=− logx+ 1

(x logx)2
< 0,

and thus, the function 1/(x logx) is decreasing. Therefore,

∞∑

n=2

1

n logn
≥
∫ +∞

2

1

x logx
dx

= lim
a→+∞

log logx
∣
∣
∣
x=a

x=2
=+∞

(see Figure 3.2), and the series
∑∞

n=2 1/(n logn) is divergent.
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Figure 3.2 Graph of the function 1/(x logx)

Problem 3.9

Use the root test in Proposition 3.26 to show that the series
∑∞

n=1(4
n +1)/nn

is convergent.

Solution

We have

n

√
4n + 1

nn
=

n
√
4n + 1

n
→ 0< 1 (3.21)

when n→∞, since n
√
4n + 1→ 4 when n→∞. Indeed,

log n
√
4n + 1=

log(4n + 1)

n

=
n log 4 + log(1 + 1/4n)

n
→ log 4

when n→∞, and thus n
√
4n + 1→ 4 when n→∞. By the root test, it follows

from (3.21) that the series
∑∞

n=1(4
n + 1)/nn is convergent.

Problem 3.10

Verify that if zn = xn+ iyn, with xn, yn ∈R, is a convergent sequence, then the

sequence xnyn is also convergent.
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Solution

Since zn is convergent, by Proposition 3.4 the sequences xn and yn are also

convergent. Let

x= lim
n→∞

xn and y = lim
n→∞

yn

be their limits. Moreover, any convergent sequence of real numbers is bounded,

and hence there exists M > 0 such that

|xn| ≤M and |yn| ≤M

for every n ∈N. We then obtain

|xnyn − xy|=
∣
∣(xn − x)yn + x(yn − y)

∣
∣

≤M |xn − x|+ |x| · |yn − y| → 0

when n→∞, and thus, the sequence xnyn converges to xy.

Problem 3.11

Verify that the series

∞∑

n=1

(
1− 4− (−1)n

n

)n2

(3.22)

is convergent.

Solution

Since

4− (−1)n =

{
3 if n is even,

5 if n is odd,

we have

1− 4− (−1)n

n
≤ 1− 3

n
.

It then follows from

lim
n→∞

(
1 +

x

n

)n

= ex (3.23)
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that

n

√(
1− 4− (−1)n

n

)n2

≤ n

√(
1− 3

n

)n2

=

(
1− 3

n

)n

→ e−3 < 1

when n → ∞. By the root test (see Proposition 3.26), the series in (3.22) is

convergent.

Problem 3.12

Given xn, yn ∈R for n ∈N, find whether the identity

∞∑

n=1

xn

∞∑

n=1

yn =

∞∑

n=1

xnyn (3.24)

is always satisfied.

Solution

For example, if xn = yn = 1/n, then

∞∑

n=1

xnyn =

∞∑

n=1

1

n2
<+∞,

but

∞∑

n=1

xn =

∞∑

n=1

yn =

∞∑

n=1

1

n
=+∞.

This shows that identity (3.24) is not always satisfied.

Problem 3.13

Find the sums of the series

∞∑

n=1

1

n(n+ 2)
and

∞∑

n=1

1

n(n+ 3)
.
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Solution

Since

1

n(n+ 2)
=

1

2n
− 1

2(n+ 2)
,

we have

m∑

n=1

1

n(n+ 2)
=

1

2
+

1

2 · 2 − 1

2(m+ 1)
− 1

2(m+ 2)
→ 3

4

when m→∞. Hence,

∞∑

n=1

1

n(n+ 2)
=

3

4
.

For the second series, since

1

n(n+ 3)
=

1

3n
− 1

3(n+ 3)
,

we have

m∑

n=1

1

n(n+ 3)
=

1

3
+

1

3 · 2 +
1

3 · 3 − 1

3(m+ 1)
− 1

3(m+ 2)
− 1

3(m+ 3)

→ 11

18

when m→∞. Hence,

∞∑

n=1

1

n(n+ 3)
=

11

18
.

Problem 3.14

Knowing that

∞∑

n=0

1

n!
= e,

compute the sum of the series

∞∑

n=1

n2 + 1

n!
.
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Solution

We have

n2 + 1= n(n+ 1− 1) + 1 = n(n− 1) + n+ 1,

and hence,

n2 + 1

n!
=

1

(n− 2)!
+

1

(n− 1)!
+

1

n!

for n≥ 2. Therefore,

∞∑

n=1

n2 + 1

n!
= 2 +

∞∑

n=2

n2 + 1

2

= 2+

∞∑

n=2

(
1

(n− 2)!
+

1

(n− 1)!
+

1

n!

)

= 2+ e+ e− 1 + e− 2 = 3e− 1.

Problem 3.15

Compute

∞∑

n=1

4n+ 3

4n
.

Solution

Let us consider the sequence

Sn =

n∑

m=1

4m+ 3

4m
.

We have

3

4
Sn = Sn − 1

4
Sn

=
n∑

m=1

4m+ 3

4m
−

n∑

m=1

4m+ 3

4m+1

=
n∑

m=1

4m+ 3

4m
−

n+1∑

m=2

4m− 1

4m
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=
7

4
+

n∑

m=2

4m+ 3

4m
−

n∑

m=2

4m− 1

4m
− 4n+ 3

4n+1

=
7

4
+

n∑

m=2

1

4m−1
− 4n+ 3

4n+1

=
7

4
+

1

4
· 1− 1/4n−1

1− 1/4
− 4n+ 3

4n+1
.

Hence,

3

4
Sn → 7

4
+

1

3

when n→∞, and thus,

∞∑

n=1

4n+ 3

4n
= lim

n→∞
Sn =

4

3

(
7

4
+

1

3

)
=

25

9
.

Problem 3.16

Find the sums of the series

∞∑

n=0

an cos(bn) and

∞∑

n=0

an sin(bn) (3.25)

for each a ∈ (−1,1).

Solution

We first note that

∣
∣an cos(bn)

∣
∣≤ |a|n and

∣
∣an sin(bn)

∣
∣≤ |a|n. (3.26)

Since the series
∑∞

n=0 |a|n is convergent for a ∈ (−1,1) (compare with Exam-

ple 3.7), it follows from (3.26) that the two series in (3.25) are also convergent.

Now we define

Sn =

n∑

m=0

am cos(bm) and Tn =

n∑

m=0

am sin(bm).
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We have

Sn + iTn =

n∑

m=0

am
[
cos(bm) + i sin(bm)

]

=

n∑

m=0

ameibm =

n∑

m=0

(
aeib
)m

=
1− (aeib)n+1

1− aeib
→ 1

1− aeib
(3.27)

when n→∞. Moreover,

1

1− aeib
=

1

(1− a cos b)− ia sin b

=
(1− a cos b) + ia sin b

(1− a cos b)2 + a2 sin2 b

=
1− a cos b+ ia sin b

1− 2a cos b+ a2
.

Since

∞∑

n=0

an cos(bn) = lim
n→∞

Sn and

∞∑

n=0

an sin(bn) = lim
n→∞

Tn,

it follows from (3.27) that

∞∑

n=0

an cos(bn) =
1− a cos b

1− 2a cos b+ a2

and

∞∑

n=0

an sin(bn) =
a sin b

1− 2a cos b+ a2
.

Problem 3.17

Show that the series

∞∑

n=1

1

nz
(3.28)

is absolutely convergent for Rez > 1.
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Solution

Writing z = x+ iy, with x, y ∈R, we have

∣
∣nz
∣
∣=
∣
∣nx+iy

∣
∣=
∣
∣e(x+iy) logn

∣
∣= ex logn = nx,

and thus, the series in (3.28) is absolutely convergent if and only if
∑∞

n=1 1/n
x

is convergent. Proceeding as in (3.17), we obtain

∞∑

n=2

1

nx
≤
∫ +∞

1

1

sx
ds=

1

x− 1
<+∞,

and thus, the series in (3.28) is absolutely convergent.

Problem 3.18

Verify that the sequence of functions fn(z) = zn+1/n3 converges uniformly on

the set Ω = {z ∈C : |z|< 1}.

Solution

For |z|< 1, we have

∣
∣fn(z)

∣
∣≤ |z|

n3
<

1

n3
→ 0

when n→∞. Hence,

sup
{∣∣fn(z)

∣
∣ : z ∈Ω

}
≤ 1

n3
→ 0

when n→∞, and thus the sequence fn converges uniformly to 0 on Ω.

Problem 3.19

Show that the sequence of functions fn(z) = e−nz converges uniformly on the

set Ω = {z ∈C : Re z > 5}.

Solution

Writing z = x+ iy, with x, y ∈R, we have fn(z) = e−nx−niy. For Re z = x > 5,

we obtain
∣
∣fn(z)

∣
∣= e−nx < e−5n → 0
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when n→∞. Hence,

sup
{∣∣fn(z)

∣
∣ : z ∈Ω

}
≤ e−5n → 0

when n→∞, and thus the sequence fn converges uniformly to 0 on Ω.

Problem 3.20

Verify that for each r < 1 the sequence of functions fn(z) =
∑n

k=0 z
2k converges

uniformly to 1/(1− z2) on the set Ωr = {z ∈C : |z|< r}.

Solution

For |z|< 1, we have

fn(z) =

n∑

k=0

(
z2
)k

=
1− z2(n+1)

1− z2
→ 1

1− z2

when n→∞. Moreover, given r < 1, for each z ∈Ωr we have

∣
∣
∣
∣

1

1− z2
− fn(z)

∣
∣
∣
∣=

∣
∣
∣
∣
∣

∞∑

k=n+1

z2k

∣
∣
∣
∣
∣
≤

∞∑

k=n+1

∣
∣z2k
∣
∣

≤
∞∑

k=n+1

r2k = lim
m→∞

m∑

k=n+1

r2k

= lim
m→∞

r2(n+1)(1− r2(m−n))

1− r2
=

r2(n+1)

1− r2
→ 0

when n→∞. Hence,

sup

{∣∣
∣
∣fn(z)−

1

1− z2

∣
∣
∣
∣ : z ∈Ωr

}
≤ r2(n+1)

1− r2
→ 0

when n→∞, and thus the sequence fn converges uniformly to 1/(1− z2) on

the set Ωr, for each r < 1.

Problem 3.21

Find whether the sequence of functions fn in Problem 3.20 converges uniformly

on the set {z ∈C : |z| ≤ 1}.
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Solution

If |z|= 1, then |z2k|= |z|2k = 1, and thus the sequence fn does not converge.

Hence, it also does not converge uniformly on the set {z ∈C : |z| ≤ 1}.

Problem 3.22

Show that if the series
∑∞

n=1 xn, with xn ≥ 0, is convergent, then the series

∞∑

n=1

log(1 + xn) (3.29)

is also convergent.

Solution

Let us consider the function f : R+
0 →R defined by f(x) = x− log(1+x). Since

f ′(x) = 1− 1

1 + x
> 0

for x > 0 and f(0) = 0, we have f(x)≥ 0 for x≥ 0. Hence,

0≤ log(1 + xn)≤ xn (3.30)

for each n ∈N. Since the series
∑∞

n=1 xn is convergent, it follows from Propo-

sition 3.18 and (3.30) that the series in (3.29) is also convergent.

Problem 3.23

Show that if the series
∑∞

n=1 zn, with zn ∈C \ {−1}, is absolutely convergent,

then the series
∑∞

n=1 zn/(1 + zn) is also absolutely convergent.

Solution

Since the series
∑∞

n=1 zn is convergent, we have zn → 0 when n→∞. In par-

ticular, there exists p ∈N such that

|zn| ≤ 1/2 for n≥ p.

Since |1 + zn| ≥ 1− |zn|, we then obtain

∞∑

n=p

∣
∣
∣
∣

zn
1 + zn

∣
∣
∣
∣≤

∞∑

n=p

|zn|
1− |zn|

≤ 2

∞∑

n=p

|zn|<+∞,
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and the series
∑∞

n=1 zn/(1 + zn) is absolutely convergent.

Problem 3.24

Show that if f : R→R is a differentiable function with f(0) = 0 and |f ′(x)| ≤ 1

for every x ∈R, then the series

∞∑

n=1

f

(
x

n2

)
(3.31)

is absolutely convergent for each x ∈R.

Solution

Since f(0) = 0, we have

f

(
x

n2

)
= f

(
x

n2

)
− f(0) = f ′(xn)

x

n2

for some point xn between 0 and x/n2. Hence,
∣
∣
∣
∣f
(

x

n2

)∣∣
∣
∣≤
∣
∣f ′(xn)

∣
∣ ·
∣
∣
∣
∣
x

n2

∣
∣
∣
∣≤

|x|
n2

,

and thus, the series in (3.31) is absolutely convergent for each x ∈R.

Problem 3.25

Consider the functions fn : R→R given by

fn(x) =
1

n
e−n2x2

for each n ∈ N. Show that the sequence fn converges uniformly to zero, and

that the sequence f ′
n converges to zero but not uniformly.

Solution

Since
∣
∣fn(x)

∣
∣≤ 1

n
for every n ∈N, x ∈R,

the sequence fn converges uniformly to zero. On the other hand, we have

f ′
n(x) =− 2nx

en2x2 ,
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and hence,

lim
n→∞

f ′
n(x) = 0 for x ∈R;

that is, the sequence of functions f ′
n converges to zero at every point. Nev-

ertheless, we also have |f ′
n(±1/n)| = 2/e, and thus the sequence f ′

n does not

converge uniformly to zero.

Problem 3.26

Compute the derivative
(∑∞

n=1 z
2n/n

)′
for |z|< 1.

Solution

Since |z2n/n| ≤ |z|2n, the series
∑∞

n=1 z
2n/n is convergent for |z|< 1. Moreover,

by Problem 3.20, the series of derivatives

∞∑

n=1

(
z2n

n

)′
= 2

∞∑

n=1

z2n−1

= 2z

∞∑

k=0

z2k

is uniformly convergent on the set {z ∈ C : |z| < r}, for each r < 1. It then

follows from Proposition 3.39 and Problem 3.20 that

( ∞∑

n=1

z2n

n

)′

=

∞∑

n=1

(
z2n

n

)′

= 2z

∞∑

k=0

z2k =
2z

1− z2

in each set {z ∈C : |z|< r}, and thus for |z|< 1.

Problem 3.27

Show that if the series
∑∞

n=1 xn, with xn > 0, is convergent, then the series

∞∑

n=1

1

na

√
xn

n
(3.32)

is convergent for each a > 0.
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Solution

Since

0≤ (x− y)2 = x2 − 2xy+ y2,

we have

xy ≤ x2 + y2

2

for every x, y ∈R. Therefore,

1

np

√
xn

n
=
√
xn

1

na+1/2
≤ 1

2

(
xn +

1

n2a+1

)
,

and hence,

∞∑

n=1

1

na

√
xn

n
≤ 1

2

∞∑

n=1

xn +
1

2

∞∑

n=1

1

n2a+1
. (3.33)

By hypothesis, the series
∑∞

n=1 xn is convergent. On the other hand, by Exam-

ple 3.16, since a > 0, the last series in (3.33) is also convergent. It then follows

from (3.33) that the series in (3.32) is convergent.

Problem 3.28

Use identity (3.23) to show that ex+y = exey for every x, y ∈R.

Solution

It follows from (3.23) that

exey = lim
n→∞

[(
1 +

x

n

)n(
1 +

y

n

)n]

= lim
n→∞

(
1 +

x+ y

n
+

xy

n2

)n

.

On the other hand, given ε > 0, there exists p ∈ N such that |xy|/n < ε for

every n > p. Therefore,

exey ≤ lim
n→∞

(
1 +

x+ y

n
+

|xy|
n2

)n

≤ lim
n→∞

(
1 +

x+ y+ ε

n

)n

= ex+y+ε,
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and, analogously,

exey ≥ lim
n→∞

(
1 +

x+ y

n
− |xy|

n2

)n

≥ lim
n→∞

(
1 +

x+ y− ε

n

)n

= ex+y−ε.

Hence,

ex+y−ε ≤ exey ≤ ex+y+ε.

Letting ε→ 0, we conclude that ex+y = exey .

EXERCISES

3.1. Verify that the sequence is convergent:

(a) 1/(n− i);

(b) (n+ i)/(n− i);

(c) e3ni/n2;

(d) sin(1/n2) cos(1/n2).

3.2. Verify that the sequence ein is divergent.

3.3. Compute the limit of the sequence, if it exists:

(a) in/(n+ 1);

(b) (4 + in)/(n+ 1);

(c) cosh(in)/n;

(d) in+1 − in.

3.4. Find whether the series is convergent or divergent:

(a)
∑∞

n=0 1/(n
5 + 2);

(b)
∑∞

n=1 2
−nn2;

(c)
∑∞

n=1(n+ 1)/3n;

(d)
∑∞

n=1 1/(n
3
√
n);

(e)
∑∞

n=0 n/
√
n6 + n2 + 1;

(f)
∑∞

n=0(
√
n+ 1−

√
n);

(g)
∑∞

n=0 6
n/n!;

(h)
∑∞

n=0 n3
n/en;

(i)
∑∞

n=0 n!/(n
3 + 4n).

3.5. Verify that series
∑∞

n=1 n!/6
n is divergent.
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3.6. Find whether the series is convergent or divergent:

(a)
∑∞

n=1(−1)n/(n2 + cosn);

(b)
∑∞

n=1[cos(n+ 1)− cosn];

(c)
∑∞

n=1 cos(1/n) sin(1/n);

(d)
∑∞

n=1 cos[(n+ 1)/(n− 1)] sin(1/n2).

3.7. Find whether the series is convergent or divergent:

(a)
∑∞

n=2 n/ logn;

(b)
∑∞

n=2 1/(logn+ n logn);

(c)
∑∞

n=1(n− logn)/(n+ logn)2;

(d)
∑∞

n=2 1/ logn!.

3.8. Verify that the series
∑∞

n=2 1/(n
√
n log3 n) is convergent.

3.9. Find whether the series is absolutely convergent:

(a)
∑∞

n=1(−1)n/n;

(b)
∑∞

n=1(−i)n/n2;

(c)
∑∞

n=1(3i)
n+1/(n3 + 1).

3.10. Compute the sum of the series:

(a)
∑∞

n=1 4
−n;

(b)
∑∞

n=1 5
−(2n+1);

(c)
∑∞

n=1 1/(n
2 + 4n).

3.11. Compute the sum of the series:

(a)
∑∞

n=0(an
2 + bn+ c)/(n+ 1)!;

(b)
∑∞

n=0(an
2 + bn+ c)/(n+ 2)!.

3.12. Find a ∈R such that the series

∞∑

n=1

an+1

n+ 1
xn

is convergent for x=−5 and divergent for x= 5.

3.13. Verify that the series

∞∑

n=1

(
1 +

5− 2(−1)n

n

)n2

is divergent.
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3.14. Find whether the series

∞∑

n=1

(
1 +

(−1)n − 2

n

)n2

is convergent.

3.15. Show that the series

∞∑

n=1

1

na
sin

(
(−1)n

n2

)

is absolutely convergent for each a >−1.

3.16. Show that if the series
∑∞

n=1 |zn|2, with zn ∈C, is convergent, then∑∞
n=1 z

3
n is also convergent.

3.17. Find all complex numbers z ∈C for which the series

∞∑

n=30

(
z

z + 1

)n

is absolutely convergent.

3.18. Show that

lim
n→∞

(
1 +

z

n

)n

= ez.

Hint: compute the modulus and the argument of (1 + z/n)n.

3.19. Use Exercise 3.18 to show that ez+w = ezew.

3.20. Compute

lim
n→∞

(
1 +

z

n
+

iz

n2

)n

.

3.21. Let
∑∞

n=1 fn be a series of continuous functions in a set K ⊂R
p.

(a) Show that if there exist constants an > 0 such that
∑∞

n=1 an is

convergent and |fn(x)| ≤ an for every n ∈N and x ∈K, then the

series
∑∞

n=1 fn is uniformly convergent on K.

(b) Show that if the series
∑∞

n=1 fn is uniformly convergent on K,

then
∑∞

n=1 fn is continuous in K.

(c) Show that if the functions fn are of class C1 in an open set K,

with
∑∞

n=1 fn convergent in K and
∑∞

n=1 f
′
n uniformly conver-

gent in K, then

( ∞∑

n=1

fn

)′

=
∞∑

n=1

f ′
n in K.
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3.22. Show that the sequence of functions is uniformly convergent:

(a) fn(z) = z2n for |z|< 1/3;

(b) fn(z) = z3/(n2 + z2) for |z|< 1.

3.23. Find whether the sequence of functions is uniformly convergent:

(a) fn(z) = zn for |z|< 1;

(b) fn(z) = nzn for |z|< 1/2.

3.24. Show that the series is uniformly convergent:

(a)
∑∞

n=1 e
−inz for Re z > 3;

(b)
∑∞

n=1 nz
n for |z|< 1/3.

3.25. Verify that
(∑∞

n=1 z
n
)′
=
∑∞

n=1 nz
n−1 for |z|< 1.

3.26. Compute:

(a)
(∑∞

n=1 z
2n+1

)′
for |z|< 1;

(b)
(∑∞

n=2 z
n/(n− 1)

)′
for |z|< 1.

3.27. Verify that for each r < 1 the series
∑∞

n=0 pnz
n, with pn ∈ {−1,1}

for each n ∈N, is uniformly convergent on the set {z ∈C : |z|< r}.
3.28. Find whether the identity is always satisfied:

(a)
∑∞

n=1 z
2
n =
(∑∞

n=1 zn
)2
;

(b)
∑∞

n=1 |zn|=
∣
∣∑∞

n=1 zn
∣
∣.

3.29. Let f : [1,+∞)→ R
+ be a decreasing function that is integrable in

each bounded interval. Show that the series
∑∞

n=1 f(n) is convergent

if and only if
∫∞
1

f(x)dx <+∞.

3.30. Verify that if xn, yn ∈R for n ∈N, then

2

∞∑

n=1

xnyn ≤
∞∑

n=1

(
x2
n + y2n

)

whenever the two series are convergent.

3.31. Verify that if xn, yn ∈R for n ∈N, then

4

∞∑

n=1

xnyn
(
x2
n + y2n

)
≤

∞∑

n=1

(
x4
n + 6x2

ny
2
n + y4n

)

whenever the two series are convergent.

3.32. Use Exercises 3.30 and 3.31 to show that if xn, yn ∈ R for n ∈ N,

then
∞∑

n=1

xnyn
(
x2
n + y2n

)
≤

∞∑

n=1

(
x4
n + y4n

)

whenever the two series are convergent.



4
Analytic Functions

In this chapter we introduce the notion of an analytic function as a func-

tion that can be represented by power series. In particular, we show that the

analytic functions are exactly the holomorphic functions. We also study the

notion of a singularity with the help of power series with positive and nega-

tive powers—the Laurent series. Finally, we show how to compute integrals

of a class of functions with singularities—the meromorphic functions—and

we describe applications to the computation of improper integrals in the real

line.

4.1 Power Series

We consider the series
∞∑

n=0

cn(z − a)n, (4.1)

where z, a, cn ∈ C for each n ∈ N ∪ {0}, with the convention that 00 = 1. We

call it a power series centered at a.
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Definition 4.1

The number

R= 1/ limsup
n→∞

n
√
|cn|

is called the radius of convergence of the power series in (4.1).

We note that R can also take the value +∞.

Example 4.2

The radius of convergence of the power series
∑∞

n=0(z − i)n/5n is

R= 1/ limsup
n→∞

n
√

1/5n = 5.

Example 4.3

The radius of convergence of the power series
∑∞

n=1(z − 1)n/n is

R= 1/ limsup
n→∞

n
√

1/n= 1,

since n
√

1/n= 1/ n
√
n→ 1 when n→∞.

Sometimes it is possible to compute the radius of convergence as follows.

Proposition 4.4

We have

R= lim
n→∞

∣
∣
∣
∣
cn

cn+1

∣
∣
∣
∣ (4.2)

whenever the limit exists.

Proof

Let ρ be the limit on the right-hand side of (4.2), assuming that it exists. Given

ε > 0, there exists p ∈N such that

(1/ρ− ε)|cn| ≤ |cn+1| ≤ (1/ρ+ ε)|cn|
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for every n≥ p. Hence,

(1/ρ− ε)n−p|cp| ≤ |cn| ≤ (1/ρ+ ε)n−p|cp|,

and thus also

(1/ρ− ε)1−p/n ≤ n
√

|cn| ≤ (1/ρ+ ε)1−p/n|cp|1/n,

for every n≥ p. Letting n→∞, we obtain

1/ρ− ε≤ limsup
n→∞

n
√
|cn| ≤ 1/ρ+ ε.

Since ε is arbitrary, we conclude that R= ρ. �

Example 4.5

The radius of convergence of the power series
∑∞

n=0 z
n3n/(4n + n) is

R= lim
n→∞

3n

4n + n
· 4

n+1 + n+ 1

3n+1

=
1

3
lim

n→∞

4 + (n+ 1)/4n

1 + n/4n
=

4

3
.

Example 4.6

The radius of convergence of the power series
∑∞

n=0 z
n/n! is

R= lim
n→∞

(n+ 1)!

n!
= lim

n→∞
(n+ 1) =+∞.

In order to compute R using the formula

R= 1/ limsup
n→∞

n
√

1/n!,

we observe that

n! = n(n− 1) · · ·2 · 1≥ 2n−1, n≥ 2,

n! = n(n− 1) · · ·3 · 2 · 1≥ 3n−2, n≥ 3,

· · ·

n! = n(n− 1) · · ·k(k− 1) · · ·2 · 1≥ kn−k+1, n≥ k.

Therefore,

n
√
n!≥ n

√
kn−k+1 → k
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when n→∞. Since k is arbitrary, we conclude that n
√
n!→+∞ when n→∞.

We finally obtain

R= 1/ limsup
n→∞

(
1/

n
√
n!
)
= lim

n→∞
n
√
n! = +∞.

Example 4.7

The radius of convergence of the power series
∑∞

n=1[2 + (−1)n](z − 4)n is

R= 1/ limsup
n→∞

n
√

2 + (−1)n = 1.

In this case the limit in (4.2) does not exist, and thus, one cannot use Propo-

sition 4.4 to compute the radius of convergence. Indeed,

cn+1

cn
=

2− (−1)n

2 + (−1)n
=

{
1/3 if n is even,

3 if n is odd.

The following result discusses the convergence of power series. We denote

the open ball of radius r > 0 centered at a ∈C by

Br(a) =
{
z ∈C : |z − a|< r

}

(see Figure 4.1), and its closure by

Figure 4.1 Open ball Br(a)

Br(a) =
{
z ∈C : |z − a| ≤ r

}
.

We continue to denote by R the radius of convergence.
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Theorem 4.8

The power series in (4.1) is:

1. absolutely convergent for z ∈BR(a);

2. divergent for z �∈BR(a);

3. uniformly convergent on Br(a) for each r < R, that is, given r < R and

ε > 0, there exists p ∈N such that

∣
∣
∣
∣
∣

∞∑

n=0

cn(z − a)n −
m∑

n=0

cn(z − a)n

∣
∣
∣
∣
∣
< ε

for every m> p and z ∈Br(a).

Proof

Given z ∈Br(a), we have

∞∑

n=0

∣
∣cn(z − a)n

∣
∣≤

∞∑

n=0

|cn|rn.

On the other hand, given ε > 0, there exists p ∈N such that

n
√
|cn|<

1

R
+ ε

for every n≥ p. Therefore,

∞∑

n=p

∣
∣cn(z − a)n

∣
∣≤

∞∑

n=p

(
1

R
+ ε

)n

rn. (4.3)

If r < R, then, taking ε sufficiently small, we have

(
1

R
+ ε

)
r < 1,

and it follows from (4.3) that the power series in (4.1) is absolutely convergent.

This establishes the first property.

For the second property, we note that given ε > 0, there exists a sequence

of natural numbers kn ↗∞ when n→∞ such that

kn
√
|ckn |>

1

R
− ε.
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Therefore, if |z − a|>R, then, taking ε sufficiently small, we have

∣
∣ckn(z − a)kn

∣
∣1/kn

>

(
1

R
− ε

)
|z − a|> 1.

This implies that the series in (4.1) is divergent.

Finally, proceeding as in the first property, if ρ= (1/R+ ε)r < 1, then

∞∑

n=m

∣
∣cn(z − a)n

∣
∣≤

∞∑

n=m

ρn =
ρm

1− ρ

for every m≥ p. This shows that the convergence is uniform. �

Example 4.9

Let us consider the power series
∑∞

n=1 z
n/n. Its radius of convergence is

R= 1/ limsup
n→∞

n
√

1/n= 1.

Therefore, the series is absolutely convergent for |z|< 1, divergent for |z|> 1,

and uniformly convergent on each ball Br(0) with r < 1.

For points with |z|= 1 one can have convergence or divergence. For example,

for z = 1 the series is divergent while for z =−1 it is convergent. We are not

going to describe any general method to study what happens at the boundary

of the domain of convergence of a power series.

Now we introduce the notion of an analytic function.

Definition 4.10

A function f : Ω → C is said to be analytic in an open set Ω ⊂ C if for each

ball Br(a)⊂Ω there exists a power series

∞∑

n=0

cn(z − a)n

converging to f(z) for each z ∈Br(a).
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Example 4.11

The function f(z) = 1/(z− 1) is analytic in C \ {1}. Indeed, given a ∈C \ {1},
one can write

1

z − 1
=

1

z − a− (1− a)

=
1

a− 1
· 1

1− (z − a)/(1− a)

=
1

a− 1

∞∑

n=0

(
z − a

1− a

)n

=

∞∑

n=0

− (z − a)n

(1− a)n+1

whenever |(z − a)/(1− a)|< 1, that is, for |z − a|< |1− a|.

We show that analytic functions are of class C∞, and thus, in particular,

they are holomorphic.

Theorem 4.12

If the function f : Ω → C is analytic in Ω, then f is of class C∞ in Ω and all

its derivatives f (k) are also analytic in Ω, with

f (k)(z) =
∞∑

n=k

n!

(n− k)!
cn(z − a)n−k (4.4)

for each k ∈N and z ∈Br(a)⊂Ω. Moreover,

ck =
f (k)(a)

k!
, k ∈N∪ {0}. (4.5)

Proof

We note that it is sufficient to establish (4.4) for k = 1. Indeed, for k > 1

identity (4.4) then follows by induction. Moreover, setting z = a in (4.4), we

obtain

f (k)(a) =
k!

(k− k)!
ck = k!ck,
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which establishes (4.5). Finally, since

limsup
n→∞

n

√∣
∣
∣
∣

n!

(n− k)!
cn

∣
∣
∣
∣= limsup

n→∞
n
√
n(n− 1) · · · (n− k+ 1)|cn|

= limsup
n→∞

n
√
|cn|,

the radius of convergence of the power series in (4.4) coincides with the radius

of convergence of the power series of f in (4.1).

Let us then establish (4.4) for k = 1. We consider the function

g(z) =

∞∑

n=1

ncn(z − a)n−1.

For w = z + h, we have

f(w)− f(z)

h
− g(z) =

∞∑

n=1

cn

(
(w− a)n − (z − a)n

h
− n(z − a)n−1

)
.

Note that the first term of the series (for n = 1) is zero. On the other hand,

one can use induction to show that

(w− a)n − (z − a)n

h
− n(z − a)n−1 = h

n−1∑

k=1

k(w− a)n−k−1(z − a)k−1 (4.6)

for n≥ 2. Indeed, for n= 2 we have

(w− a)2 − (z − a)2

h
− 2(z − a) =

(w− z)(w+ z − 2a)

h
− 2(z − a) = h.

Moreover, assuming that (4.6) holds for a given n, we obtain

(w− a)n+1 − (z − a)n+1

h
− (n+ 1)(z − a)n

=
(w− a)[(w− a)n − (z − a)n] + (z − a)n(w− z)

h
− (n+ 1)(z − a)n

= (w− a)

(
(w− a)n − (z − a)n

h
− n(z − a)n−1

)

+ (w− a)n(z − a)n−1 + (z − a)n − (n+ 1)(z − a)n

= (w− a)h

n−1∑

k=1

k(w− a)n−k−1(z − a)k−1

+ n(w− a)(z − a)n−1 − n(z − a)n
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= h

n−1∑

k=1

k(w− a)(n+1)−k−1(z − a)k−1 + n(w− a− z + a)(z − a)n−1

= h

n∑

k=1

k(w− a)(n+1)−k−1(z − a)k−1,

which establishes identity (4.6) with n replaced by n+ 1. Given z,w ∈Br(a),

it follows from (4.6) that

∣
∣
∣
∣
f(w)− f(z)

h
− g(z)

∣
∣
∣
∣≤

∞∑

n=2

|cn| ·
∣
∣
∣
∣
(w− a)n − (z − a)n

h
− n(z − a)n−1

∣
∣
∣
∣

≤
∞∑

n=2

|h| · |cn|
n−1∑

k=1

k|w− a|n−k−1|z − a|k−1

≤ |h|
∞∑

n=2

|cn|rn−2
n−1∑

k=1

k

= |h|
∞∑

n=2

|cn|
n(n− 1)

2
rn−2. (4.7)

Since

limsup
n→∞

n

√

|cn|
n(n− 1)

2
= limsup

n→∞
n
√

|cn|

and Br(a)⊂Ω, we have

r < 1/limsup
n→∞

n
√

|cn|

= 1/limsup
n→∞

n
√

|cn|n(n− 1)/2.

Hence, by Theorem 4.8 the last series in (4.7) is convergent. Letting h→ 0 we

finally obtain

f ′(z) = lim
h→0

f(z + h)− f(z)

h
= g(z).

This yields the desired identity. �

In particular, Theorem 4.12 shows that all analytic functions are holomor-

phic. Now we show that all holomorphic functions are analytic.
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Theorem 4.13

If f : Ω →C is a holomorphic function in an open set Ω ⊂C, then f is analytic

in Ω.

Proof

Given a ∈ Ω and r > 0 such that Br(a) ⊂ Ω, we consider the restriction of

f to the ball Br(a), which is a convex open set. We also consider the path

γs : [0,2π]→C given by

γs(t) = a+ seit,

for s < r. By Theorem 2.60, for each z ∈Bs(a) we have

f(z) =
1

2πi

∫

γs

f(w)

w− z
dw, (4.8)

since Indγs(z) = 1. On the other hand, given z ∈ Bs(a) and w ∈ C with

|w− a|= s, we have

1

w− z
=

1

w− a− (z − a)

=
1

w− a
· 1

1− (z − a)/(w− a)

=

∞∑

n=0

(z − a)n

(w− a)n+1
,

since |z− a|< |w− a|= s. It then follows from (4.8) and Proposition 3.38 that

f(z) =

∞∑

n=0

(
1

2πi

∫

γs

f(w)

(w− a)n+1
dw

)
(z − a)n (4.9)

for each z ∈Bs(a). By Theorem 2.63, the numbers

cn =
1

2πi

∫

γs

f(w)

(w− a)n+1
dw

are independent of s. Therefore, letting s→ r we conclude that identity (4.9)

holds for every z ∈Br(a), and thus f is analytic in Ω. �

We give some examples.
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Example 4.14

Using the formula for the coefficients in (4.5), we obtain, for example:

ez =

∞∑

n=0

1

n!
zn, z ∈C;

log(1− z) =

∞∑

n=1

− 1

n
zn, |z|< 1;

sinz =

∞∑

n=0

(−1)n

(2n+ 1)!
z2n+1, z ∈C;

cosz =

∞∑

n=0

(−1)n

(2n)!
z2n, z ∈C.

(4.10)

In fact, the formulas in (4.10) for ez , sin z and cosz are the usual definitions of

these functions (even in R).

Example 4.15

Using the series for the sine function in (4.10), we obtain

sin z

z
=

∞∑

n=0

(−1)n

(2n+ 1)!
z2n (4.11)

for z �= 0. Since analytic functions (such as the series on the right-hand side

of (4.11)) are differentiable, they are also continuous, and thus,

lim
z→0

sin z

z
=

∞∑

n=0

(−1)n

(2n+ 1)!
02n = 1,

since 00 = 1. Analogously, using the series for the cosine function in (4.10), we

obtain

cosz − 1

z2
=

∞∑

n=1

(−1)n

(2n)!
z2n−2

for z �= 0, and hence,

lim
z→0

cosz − 1

z2
=−1

2
.

It follows from Theorems 4.12 and 4.13 that holomorphic functions are C∞.

We also have the following corollary.
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Theorem 4.16

A function f is holomorphic in an open set Ω ⊂ C if and only if it is analytic

in Ω.

Comparing (4.5) with (4.9), we obtain the following result.

Theorem 4.17 (Cauchy’s integral formula for the derivatives)

Let f be a holomorphic function in an open set Ω ⊂ C. If Br(z)⊂Ω and γ is

a closed piecewise regular path in Br(z) \ {z}, then

f (k)(z) Indγ(z) =
k!

2πi

∫

γ

f(w)

(w− z)k+1
dw, k ∈N∪ {0}. (4.12)

We give two applications of Cauchy’s integral formula for the first derivative.

Theorem 4.18 (Liouville’s theorem)

If a holomorphic function f : C→C is bounded, then it is constant.

Proof

For each z ∈C and r > 0, we consider the path γ : [0,2π]→C given by γ(t) =

z + reit. Then Indγ(z) = 1 and it follows from (4.12) with k = 1 that

f ′(z) =
1

2πi

∫

γ

f(w)

(w− z)2
dw.

Therefore, by Proposition 2.42,

∣
∣f ′(z)

∣
∣=

1

2π

∣
∣
∣
∣

∫

γ

f(w)

(w− z)2
dw

∣
∣
∣
∣

≤ 1

2π
Lγ sup

{
|f(γ(t))|
|reit|2 : t ∈ [0,2π]

}

=
1

r
sup
{∣∣f(γ(t))

∣
∣ : t ∈ [0,2π]

}
. (4.13)

On the other hand, since f is bounded, there exists L> 0 such that

sup
{∣∣f(γ(t))

∣
∣ : t ∈ [0,2π]

}
≤ L.
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It then follows from (4.13) that

∣
∣f ′(z)

∣
∣≤ L

r
→ 0

when r→∞, and f ′(z) = 0 for every z ∈C. By Proposition 2.19, we conclude

that f is constant. �

Now we establish the Fundamental theorem of algebra, as a consequence of

Theorem 4.18.

Theorem 4.19 (Fundamental theorem of algebra)

Any nonconstant polynomial P (z) with coefficients in C has zeros in C.

Proof

We proceed by contradiction. If P (z) had no zeros in C, then f(z) = 1/P (z)

would be a holomorphic function in C. Now we write

P (z) = zn + an−1z
n−1 + · · ·+ a1z + a0

for some a0, a1, . . . , an−1 ∈C and n ∈N. Letting r = |z|, we obtain

∣
∣P (z)

∣
∣≥ |z|n −

∣
∣an−1z

n−1 + · · ·+ a1z + a0
∣
∣

≥ rn −
(
|an−1|rn−1 + · · ·+ |a1|r+ |a0|

)

≥ rn−1
(
r− |an−1| − · · · − |a1| − |a0|

)
→+∞

when r→∞. This shows that the function f is bounded. It then follows from

Theorem 4.18 that f is constant, which yields a contradiction (because P is

not constant). Hence, P must have zeros in C. �

Finally, as an application of Theorem 4.16, we show that the uniform limit

of a sequence of holomorphic functions is still a holomorphic function.

Theorem 4.20

Let (fn)n be a sequence of holomorphic functions converging uniformly on an

open set Ω ⊂C. Then the limit function f is holomorphic in Ω.
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Proof

Given a ∈Ω, let us take r > 0 such that Br(a)⊂Ω. Since each function fn is

holomorphic, it follows from Theorem 2.55 that
∫

γ

fn = 0

for any closed piecewise regular path γ in the ball Br(a). By Proposition 3.34,

we obtain
∫

γ

f = lim
n→∞

∫

γ

fn = 0.

Proceeding as in the proof of Theorem 2.51, one can show that in the ball

Br(a) the function f has the primitive F in (2.16); that is, f is the derivative

of a holomorphic function in Br(a). Since holomorphic functions are analytic,

f is the derivative of an analytic function, and hence it is also analytic. Finally,

since analytic functions are holomorphic, we conclude that f is holomorphic. �

4.2 Zeros

We show in this section that the zeros of a nonzero analytic function are iso-

lated.

Theorem 4.21

Let f : Ω → C be a nonzero analytic function in a connected open set Ω ⊂ C.

Then {z ∈Ω : f(z) = 0} is a set of isolated points.

Proof

Let us assume that the set

A=
{
z ∈Ω : f (m)(z) = 0 for m ∈N∪ {0}

}

is nonempty. Given z ∈ A ∩Ω, there exists a sequence (zn)n in A converging

to z. By Theorem 4.12, the function f is C∞ in Ω, and thus,

f (m)(z) = lim
n→∞

f (m)(zn) = 0

for every m ∈N∪ {0}. This shows that z ∈A, that is,

A∩Ω =A. (4.14)
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On the other hand, given a ∈A, let us take r > 0 such that Br(a)⊂Ω. Since

f is analytic, we have

f(z) =
∞∑

n=0

f (n)(a)

n!
(z − a)n = 0, z ∈Br(a).

This shows that Br(a)⊂A, and hence the set A is open. Therefore, if A �=Ω,

then A and Ω \A are nonempty sets with

Ω =A∪ (Ω \A),

such that

A∩ (Ω \A) = (A∩Ω) \ (A∩A) =∅

(by (4.14)) and

A∩Ω \A=∅

(since A is open). But this is impossible, since Ω is connected. Hence, A=∅.

Given a ∈ Ω with f(a) = 0, let us take r > 0 such that Br(a) ⊂ Ω. Since

f is analytic, we have

f(z) =

∞∑

n=0

cn(z − a)n, z ∈Br(a) (4.15)

for some constants cn ∈C. Moreover, since A=∅, there exists n ∈N∪{0} such

that cn �= 0 in (4.15). Let m be the smallest integer with this property. Then

f(z) =

∞∑

n=m

cn(z − a)n = (z − a)mg(z)

for z ∈Br(a), where

g(z) =

∞∑

n=m

cn(z − a)n−m.

Since g is analytic, by Theorem 4.12 it is also continuous. Hence, since g(a) =

cm �= 0, there exists s≤ r such that g(z) �= 0 for every z ∈Bs(a). Therefore, the

function f does not vanish in Bs(a) \ {a}, and the zero a is isolated. �

Example 4.22

The set of zeros of the function f(z) = sin(z/π) is Z.
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Example 4.23

Let us show that if f, g : C → C are analytic functions and f = g in R, then

f = g in C. It is sufficient to note that the analytic function f − g has zeros

that are not isolated, and thus f − g = 0 in C.

4.3 Laurent Series and Singularities

In this section we consider functions that are not necessarily holomorphic. We

first introduce the notion of an isolated singularity.

Definition 4.24

When a function f is holomorphic in Br(a) \ {a} for some r > 0, but is not

holomorphic in Br(a), the point a is called an isolated singularity of f .

We give some examples.

Example 4.25

The function f(z) = 1/z has an isolated singularity at z = 0.

Example 4.26

The function f(z) = (sin z)/z has an isolated singularity at z = 0. However, the

function

g(z) =

{
(sin z)/z if z �= 0,

1 if z = 0,

which can be represented by the power series

sinz

z
=

1

z

∞∑

n=0

(−1)n

(2n+ 1)!
z2n+1 =

∞∑

n=0

(−1)n

(2n+ 1)!
z2n (4.16)

for z �= 0, is holomorphic. Indeed, for z = 0 the last series in (4.16) takes the

value 1 (recall that z0 = 1), and thus it coincides with g.
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Example 4.27

The function

f(z) =

{
z if z �= 3,

2 if z = 3

has an isolated singularity at z = 3.

Example 4.28

The function f(z) = 1/ sin(1/z) is not defined at the points z = 0 and z =

1/(kπ) for k ∈ Z \ {0}. Indeed, the denominator sin(1/z) is not defined at z =

0. Moreover, for z = 1/(kπ), we have sin(1/z) = sin(kπ) = 0, and hence the

function f is also not defined at these points. On the other hand, zk → 0 when

k→∞, and thus, z = 0 is not an isolated singularity of f .

Figure 4.2 Ring {z ∈C : r < |z − a|<R}

Again, if a is an isolated singularity of f , then there exists r > 0 such that f

is holomorphic in Br(a) \ {a}. In this case, and more generally for holomorphic

functions in a ring (see Figure 4.2), one can show that f is given by a power

series with positive and negative powers.

Theorem 4.29 (Laurent series)

If f is a holomorphic function in the ring

A=
{
z ∈C : r < |z − a|<R

}
, (4.17)
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then there exist unique constants cn ∈C for n ∈ Z such that

f(z) =
∑

n∈Z

cn(z − a)n, z ∈A. (4.18)

Before proving the theorem, we note that property (4.18) means that for

each z ∈A the sequence

fm(z) =

m∑

n=−m

cn(z − a)n

converges to f(z) when m→∞, that is, we have

f(z) = lim
m→∞

fm(z).

Figure 4.3 Paths γ1 and γ2

Proof of Theorem 4.29

Given ρ1, ρ2 ∈ (r,R) with ρ1 < ρ2, we define paths γ1, γ2 : [0,2π]→C by

γj(t) = a+ ρje
it, j = 1,2

(see Figure 4.3). For each z ∈ A such that ρ1 < |z − a| < ρ2, we consider the

function g : A→C given by

g(w) =

{(
f(w)− f(z)

)
/(w− z) if w ∈A \ {z},

f ′(z) if w = z.
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Since f is holomorphic, by Theorem 4.13 the function g is given by a power

series in each ring Br(a) \ {z} ⊂ A \ {z}. But since g is continuous in A, it is

given by the same power series in the ball Br(a) (since all power series are

continuous functions). By Theorem 4.12, we conclude that g is holomorphic

in A. It then follows from Theorem 2.63 that

∫

γ1

g =

∫

γ2

g,

that is,
∫

γ1

f(w)− f(z)

w− z
dw =

∫

γ2

f(w)− f(z)

w− z
dw.

We have Indγ1(z) = 0 and Indγ2(z) = 1. Therefore,

∫

γ1

f(w)

w− z
dw =

∫

γ2

f(w)

w− z
dw− 2πif(z),

and we obtain

f(z) = f1(z) + f2(z),

where

f1(z) =
1

2πi

∫

γ2

f(w)

w− z
dw

and

f2(z) =− 1

2πi

∫

γ1

f(w)

w− z
dw.

Now we observe that

1

w− z
=

∞∑

n=0

(z − a)n

(w− a)n+1
for |w− a|= ρ2,

and

1

w− z
=−

∞∑

n=1

(w− a)n−1

(z − a)n
for |w− a|= ρ1.

By Theorem 4.8 and Proposition 3.38, one can integrate these series term by

term to obtain

f1(z) =
∞∑

n=0

cn(z − a)n,
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with

cn =
1

2πi

∫

γ2

f(w)

(w− a)n+1
dw, n ∈N∪ {0},

and

f2(z) =

∞∑

n=1

dn(z − a)−n,

with

dn =
1

2πi

∫

γ1

f(w)(w− a)n−1 dw, n ∈N. (4.19)

Taking c−n = dn for n ∈N∪ {0}, we conclude that

f(z) = f1(z) + f2(z) =
∑

n∈Z

cn(z − a)n.

It remains to establish the uniqueness of the constants cn. Let us assume

that

f(z) =
∑

n∈Z

bn(z − a)n, z ∈A (4.20)

for some other constants bn ∈ C for n ∈ Z. It follows from (4.18) and (4.20)

that
∞∑

n=0

(cn − bn)(z − a)n =
∞∑

n=1

(b−n − c−n)(z − a)−n. (4.21)

Now we define a function h : C→C by

h(z) =

∞∑

n=0

(cn − bn)(z − a)n

for |z − a|<R, and by

h(z) =

∞∑

n=1

(b−n − c−n)(z − a)−n

for |z − a| > r. It follows from (4.21) that h is well defined, and hence it is

holomorphic in C. Moreover, since the second series in (4.21) has no term of

order zero, we have h(z)→ 0 when |z| →∞. This shows that h is bounded, and

hence, it follows from Theorem 4.18 that h is constant. We thus obtain h= 0,

since h(z)→ 0 when |z| →∞. It then follows from (4.21) that

cn − bn = 0 for n≥ 0,
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and

b−n − c−n = 0 for n≥ 1.

This establishes the uniqueness of the constants in (4.18).

The series in (4.18) is called a Laurent series.

Example 4.30

Let us consider the function

f(z) =
1

z2 − z
=

1

z(z − 1)
,

which is holomorphic in C \ {0,1}. In the ring {z ∈C : 0< |z|< 1}, we have

f(z) =
1

z2 − z
=−1

z

1

1− z

=−1

z

∞∑

n=0

zn =

∞∑

m=−1

−zm, (4.22)

while in the ring {z ∈C : 1< |z|<∞}= {z ∈C : |z|> 1},

f(z) =
1

z
· 1/z

1− 1/z
=

1

z2

∞∑

n=0

(
1

z

)n

=

−2∑

m=−∞
z−m.

By the uniqueness of the coefficients cn in Theorem 4.29, these are necessarily

the Laurent series of the function f in each of the rings.

Setting r = 0 in Theorem 4.29, we conclude that a holomorphic function in

the ring
{
z ∈C : 0< |z − a|< r

}

(such as any function with an isolated singularity at a, for some r > 0) has

a (unique) representation as a Laurent series. We use this property in the

following definition.

Definition 4.31

When a is an isolated singularity of f and the numbers cn for n ∈ Z are the

coefficients of the Laurent series in (4.18), we say that:
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1. a is a removable singularity if cn = 0 for every n < 0;

2. a is a pole of order m ∈N if c−m �= 0 and cn = 0 for every n <−m;

3. a is an essential singularity if cn �= 0 for infinitely many negative values

of n.

Example 4.32

It follows from Example 4.26 that z = 0 is a removable singularity of the func-

tion (sin z)/z.

Example 4.33

For the function

f(z) =
1

z2 − z
,

it follows from (4.22) that z = 0 is a pole of order 1. We also have

f(z) =
1

z(z − 1)
=

1

z − 1

1

1 + (z − 1)

=
1

z − 1

∞∑

n=0

[
−(z − 1)

]n
=

∞∑

n=0

(−1)n(z − 1)n−1,

and thus z = 1 is a pole of order 1.

More generally, one can show that if

f(z) =
(z − a1)

n1 · · · (z − ak)
nk

(z − b1)m1 · · · (z − bl)ml
, (4.23)

with k + l different numbers aj , bj ∈ C, and with k + l exponents nj ,mj ∈ N,

then each point z = bj is a pole of order mj (see Example 4.37).

Example 4.34

The function f(z) = e1/z has an essential singularity at z = 0. Indeed,

e1/z =

∞∑

n=0

1

n!

(
1

z

)n

(4.24)

for z �= 0, and the Laurent series has infinitely many negative powers.
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Now we give criteria for an isolated singularity to be a removable singularity

or to be a pole.

Proposition 4.35

Let a be an isolated singularity of f .

1. If

lim
z→a

(z − a)f(z) = 0, (4.25)

then a is a removable singularity.

2. If there exists m ∈N such that

lim
z→a

(z − a)mf(z) �= 0, (4.26)

then a is a pole of order m.

Proof

We first assume that condition (4.25) holds. By (4.19), given n < 0, we have

cn =
1

2πi

∫

γ

f(z)(z − a)−n−1 dz,

where the path γ : [0,2π]→ C is given by γ(t) = a+ reit, for any sufficiently

small r. It then follows from Proposition 2.42 that

|cn| ≤
Lγ

2π
sup
{∣∣f(z)(z − a)−n−1

∣
∣ : z ∈ γ

(
[0,2π]

)}
.

Now we observe that by (4.25), given ε > 0, there exists r > 0 such that

∣
∣(z − a)f(z)

∣
∣< ε whenever |z − a| ≤ r.

Hence,

|cn| ≤ rε sup
{∣∣(z − a)−n−2

∣
∣ : z ∈ γ

(
[0,2π]

)}

= εr−n−1 ≤ ε

for any sufficiently small r ≤ 1, because n < 0. Since ε is arbitrary, we conclude

that cn = 0 for n < 0, and a is a removable singularity.

Now we assume that condition (4.26) holds. Then

lim
z→a

(z − a)m+1f(z) = 0,
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and it follows from the former property that a is a removable singularity of the

function g(z) = (z − a)mf(z). By Theorem 4.29, there exist unique constants

cn ∈C for n ∈N∪ {0} such that

g(z) =

∞∑

n=0

cn(z − a)n, (4.27)

for z ∈Br(a) \ {a} and some r > 0. Thus,

f(z) =
g(z)

(z − a)m
=

∞∑

m=0

cn(z − a)n−m

for z ∈Br(a) \ {a}. On the other hand, by (4.26), we have

lim
z→a

g(z) = lim
z→a

(z − a)mf(z) �= 0.

Since power series define continuous functions, it follows from (4.27) that

c0 = lim
z→a

g(z) �= 0,

and thus, a is a pole of order m. �

We also give some examples.

Example 4.36

The function

f(z) = e1/z +
1

(z + 1)2(z − 2)

has isolated singularities at the points −1, 0 and 2. Since

lim
z→2

(z − 2)f(z) = lim
z→2

(
(z − 2)e1/z +

1

(z + 1)2

)
=

1

9
�= 0,

it follows from Proposition 4.35 that 2 is a pole of order 1. Analogously, since

lim
z→−1

(z + 1)2f(z) = lim
z→−1

(
(z + 1)2e1/z +

1

z − 2

)
=−1

3
�= 0,

it follows from Proposition 4.35 that −1 is a pole of order 2. Moreover, since

the function

g(z) =
1

(z + 1)2(z − 2)
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is holomorphic in some open ball centered at the origin, by Theorem 4.29 there

exist unique constants cn ∈C for n ∈N∪ {0} such that

g(z) =

∞∑

n=0

cnz
n,

for z ∈Br(0) and some r > 0. It then follows from (4.24) that

f(z) =

∞∑

n=0

1

n!

(
1

z

)n

+

∞∑

n=0

cnz
n

for z ∈Br(0) \ {0}, and thus, 0 is an essential singularity.

Example 4.37

Let us consider the function f defined by (4.23), where the k + l numbers aj ,

bj ∈C are distinct. Since

lim
z→bj

(z − bj)
mjf(z) =

∏k
p=1(z − ap)

np

∏
q �=j(z − bq)mq

�= 0,

it follows from Proposition 4.35 that z = bj is a pole of order mj .

Example 4.38

Now we assume that a is an isolated singularity of f such that

Mr := sup
{∣∣f(z)

∣
∣ : z ∈Br(a) \ {a}

}
<+∞

for some r > 0 (and thus for any sufficiently small r). We then have

sup
{∣∣(z − a)f(z)

∣
∣ : z ∈Br(a) \ {a}

}
≤Mrr→ 0

when r→ 0, because the function r �→Mr is nondecreasing. Hence,

lim
z→a

(z − a)f(z) = 0,

and it follows from Proposition 4.35 that a is a removable singularity.

Example 4.39

Let us assume that a is an isolated singularity of f and that the limit

w = lim
z→a

f(z)
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exists. Given ε > 0, there exists r > 0 such that

∣
∣f(z)−w

∣
∣< ε whenever |z − a|< r.

In particular,
∣
∣f(z)

∣
∣≤
∣
∣f(z)−w

∣
∣+ |w|< ε+ |w|

whenever z ∈ Br(a), and it follows from Example 4.38 that a is a removable

singularity.

Furthermore, the function

g(z) =

{
f(z) if z ∈Br(a) \ {a},
w if z = a

is holomorphic. Indeed, by Theorem 4.29, there exist unique constants cn ∈ C

for n ∈N∪ {0} such that

f(z) =

∞∑

n=0

cn(z − a)n, (4.28)

for z ∈ Br(a) \ {a} and some r > 0. Since the power series on the right-hand

side of (4.28) defines an holomorphic function and

∞∑

n=0

cn(z − a)n
∣
∣
z=a

= lim
z→a

∞∑

n=0

cn(z − a)n

= lim
z→a

f(z)

=w = g(a),

we conclude that

g(z) =

∞∑

n=0

cn(z − a)n

for z ∈Br(a), and thus the function g is holomorphic.

4.4 Residues

In order to compute in a somewhat expedited manner many integrals of non-

holomorphic functions along closed paths, we introduce the notion of the residue

at an isolated singularity.
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Definition 4.40

Let a be an isolated singularity of f . The number

Res(f, a) =
1

2πi

∫

γ

f,

where the path γ : [0,2π] → C is given by γ(t) = a + reit for any sufficiently

small r, is called the residue of f at a.

It follows from Theorem 2.63 that the residue is well defined. Moreover, it

can be computed as follows.

Proposition 4.41

If a is an isolated singularity of f , then Res(f, a) = c−1, where c−1 is the

coefficient of the term of degree −1 in the Laurent series in (4.18).

Proof

In a similar manner to that in the proof of Theorem 4.8, one can show that the

Laurent series in (4.18) converges uniformly on the set

{
z ∈C : ρ1 ≤ |z − a| ≤ ρ2

}
,

for each ρ1, ρ2 > 0 such that ρ1 ≤ ρ2 < R (see (4.17)). It then follows from

Proposition 3.38 that

Res(f, a) =
1

2πi

∫

γ

f =
1

2πi

∫

γ

∑

n∈Z

cn(z − a)n dz

=
1

2πi

∑

n∈Z

cn

∫

γ

(z − a)n dz,

where the path γ : [0,2π]→C is given by γ(t) = a+ ρeit, with ρ ∈ (ρ1, ρ2) (we

note that by Theorem 2.63, the integrals are independent of ρ). For n �=−1 we

have

∫

γ

(z − a)n dz =
(z − a)n+1

n+ 1

∣
∣
∣
∣

z=γ(2π)

z=γ(0)

= 0. (4.29)
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Therefore,

Res(f, a) =
c−1

2πi

∫

γ

dz

z − a

=
c−1

2πi

∫ 2π

0

rieit

reit
dt= c−1,

which yields the desired identity. �

Example 4.42

Let us compute the residue of the function

f(z) =
z

1 + z2
=

z

(z − i)(z + i)

at the pole z = i. We have

f(z) =
z

z − i

1

z + i
=

z − i+ i

z − i

1

2i+ z − i

=

(
1 +

i

z − i

)
1

2i
· 1

1 + (z − i)/(2i)

=

(
1 +

i

z − i

)
1

2i

(
1− z − i

2i
− (z − i)2

4
+ · · ·

)

=
1

2i
+

1

2
· 1

z − i
+

z − i

4
− 1

4i
− (z − i)2

8i
− z − i

8
+ · · ·

=
1

2
(z − i)−1 +

1

4i
+

1

8
(z − i) + · · · .

Therefore, z = i is a pole of order 1 and Res(f, i) = 1/2.

More generally, we have the following result.

Proposition 4.43

If a is a pole of order m for a function f , then

Res(f, a) = lim
z→a

1

(m− 1)!

[
(z − a)mf(z)

](m−1)
.
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Proof

Writing

f(z) =

∞∑

n=−m

cn(z − a)n,

we obtain

(z − a)mf(z) = c−m + c−m+1(z − a) + · · · ,

and thus,

[
(z − a)mf(z)

](m−1)
= (m− 1)!c−1 + · · · .

This yields the desired result. �

Example 4.44

For the function f in Example 4.42, we have

Res(f, i) = lim
z→i

[
(z − i)f(z)

]

= lim
z→i

z

z + i
=

i

2i
=

1

2
.

Example 4.45

For the function f(z) = e1/z , we have already obtained the Laurent series

in (4.24). It then follows from Proposition 4.41 that Res(f,0) = 1.

4.5 Meromorphic Functions

Now we introduce the notion of a meromorphic function.

Definition 4.46

A function f is said to be meromorphic in an open set Ω ⊂ C if there exists

A⊂Ω such that:

1. f is holomorphic in Ω \A;

2. f has a pole at each point of A;

3. A has no limit points in Ω.
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Holomorphic functions are a particular case of meromorphic functions (they

correspond to taking A=∅ in Definition 4.46).

Example 4.47

It follows from Example 4.33 that the function f(z) = 1/(z2 − z) has only the

isolated singularities z = 0 and z = 1, which are poles. Hence, f is a meromor-

phic function.

More generally, one can show that if f(z) = P (z)/Q(z) for some polynomials

P and Q, then f is meromorphic.

The following result allows one to compute in a somewhat expedited manner

the integral of a meromorphic function along a closed path.

Theorem 4.48 (Residue theorem)

If f is a meromorphic function in a simply connected open set Ω ⊂C and γ is

a closed piecewise regular path in Ω \A, where A⊂Ω is the set of the poles

of f , then

1

2πi

∫

γ

f =
∑

a∈A

Res(f, a) Indγ(a).

Proof

Let us consider the set

B =
{
a ∈A : Indγ(a) �= 0

}
.

We recall that Indγ(a) = 0 for any point a in the unbounded connected com-

ponent U of the complement of the curve defined by γ. Hence, B is contained

in the compact set C \ U ⊂Ω. This implies that B is finite. Otherwise, there

would exist a sequence (an)n of distinct points in B. Being bounded, this se-

quence would have a limit point in C \ U , and thus also in Ω. But then this

would be a limit point of A in Ω, which does not exist, since the function f is

meromorphic.

Now let Pa be the sum of the negative powers of the Laurent series of f in

the ring

R=
{
z ∈C : 0< |z − a|< r

}
,
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for some sufficiently small r such that R⊂Ω \A. Then the function

g = f −
∑

a∈B

Pa

has a removable singularity at each point of B. Since Ω is simply connected, it

follows from Theorem 2.64 that

0 =

∫

γ

g =

∫

γ

f −
∑

a∈B

∫

γ

Pa. (4.30)

Now we proceed as in (4.29), for the path γ. Integrating Pa term by term, by

Proposition 4.41 we obtain

1

2πi

∫

γ

Pa =
1

2πi

∫

γ

Res(f, a)

z − a
dz =Res(f, a) Indγ(a).

It then follows from (4.30) that

1

2πi

∫

γ

f =
∑

a∈B

Res(f, a) Indγ(a)

=
∑

a∈A

Res(f, a) Indγ(a),

which yields the desired identity. �

Example 4.49

Let us consider the function f(z) = z/(1 + z2), and let γ : [0,2π]→ C be the

path given by γ(t) = i+ eit. By Example 4.42, we have Res(f, i) = 1/2. Since

Indγ(i) = 1 and Indγ(−i) = 0, we then obtain

∫

γ

f = 2πi
[
Res(f, i) Indγ(i) +Res(f,−i) Indγ(−i)

]
= πi.

Example 4.50

Let us consider the integral
∫ ∞

0

dx

1 + x2
.
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Since a primitive of 1/(1 + x2) is tan−1 x, we have

∫ ∞

0

dx

1 + x2
= lim

a→∞

∫ a

0

dx

1 + x2

= lim
a→∞

(
tan−1 a− tan−1 0

)
=

π

2
.

Now we show how the integral can be computed using the Residue theorem.

Let us consider the path γ = γ1 + γ2 with γ1 : [−R,R]→ C and γ2 : [0, π]→ C

given respectively by

γ1(t) = t and γ2(t) =Reit

(see Figure 4.4). For R > 1 we have Indγ(i) = 1 and Indγ(−i) = 0. Therefore,

if f(z) = 1/(1 + z2), then since

Figure 4.4 Path γ = γ1 + γ2

Res(f, i) = lim
z→i

z − i

1 + z2
= lim

z→i

1

z + i
=

1

2i
,

we obtain
∫

γ

f = 2πiRes(f, i) Indγ(i) = 2πi
1

2i
= π. (4.31)

On the other hand,

∫

γ

f =

∫ R

−R

f(t)dt+

∫

γ2

f = 2

∫ R

0

f(t)dt+

∫

γ2

f.

Since
∣
∣
∣
∣

∫

γ2

f

∣
∣
∣
∣≤ Lγ2 sup

{
1

|z2 + 1| : z ∈ γ2
(
[0, π]

)
}
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(see Proposition 2.42), and

∣
∣z2 + 1

∣
∣≥
∣
∣z2
∣
∣− 1 = |z|2 − 1

for |z|> 1, we obtain
∣
∣
∣
∣

∫

γ2

f

∣
∣
∣
∣≤ πR

1

R2 − 1
→ 0

when R→∞. Therefore,

∫

γ

f = 2

∫ R

0

f(t)dt+

∫

γ2

f → 2

∫ ∞

0

f(t)dt

when R→∞. It then follows from (4.31) that

∫ ∞

0

dx

1 + x2
=

π

2
.

Example 4.51

Let us compute the integral
∫ ∞

0

sinx

x
dx.

Given r,R > 0 with r < R, we consider the path

γ = γ1 + γ2 + γ3 + γ4,

where γ1 : [r,R]→ C, γ2 : [0, π]→ C, γ3 : [−R,−r]→ C and γ4 : [0, π]→ C are

given by

γ1(t) = t, γ2(t) =Reit, γ3(t) = t and γ4(t) = rei(π−t)

(see Figure 4.5). By Theorem 4.48, for the function

f(z) =
eiz

2iz

we have
∫
γ
f = 0. Moreover,

∫

γ

f −
∫

γ2

f −
∫

γ4

f =

∫ R

r

eix

2ix
dx+

∫ −r

−R

eix

2ix
dx

=

∫ R

r

eix − e−ix

2ix
dx=

∫ R

r

sinx

x
dx. (4.32)
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Figure 4.5 Path γ = γ1 + γ2 + γ3 + γ4

Now we observe that by Proposition 2.42,

∣
∣
∣
∣

∫

γ2

f

∣
∣
∣
∣≤
∫ π

0

∣
∣f
(
Reit
)
Rieit

∣
∣dt

=
1

2

∫ π

0

e−R sin t dt=

∫ π/2

0

e−R sin t dt

≤
∫ π/2

0

e−Rt/π dt=
1− πe−R/2

R
→ 0

when R → +∞, since sin t ≥ 2t/π for t ∈ [0, π/2] (in order to obtain this in-

equality, it is sufficient to compare the graphs of sin t and 2t/π). Moreover,

since z = 0 is a removable singularity of (eiz − 1)/z, we have

∣
∣
∣
∣

∫

γ4

eiz − 1

z
dz

∣
∣
∣
∣≤ πr sup

{∣∣
∣
∣
eiz − 1

z

∣
∣
∣
∣ : |z|< 1

}

for r < 1, and thus,

lim
r→0

∫

γ4

f = lim
r→0

∫

γ4

(
eiz − 1

2iz
+

1

2iz

)
dz

= 0+ lim
r→0

∫

γ4

dz

2iz

= lim
r→0

−
∫ π

0

riei(π−t)

2irei(π−t)
dt=−π

2
.

Hence, letting R→+∞ and r→ 0 in (4.32), we obtain

∫ ∞

0

sinx

x
dx=− lim

R→∞

∫

γ2

f − lim
r→0

∫

γ

f =
π

2
.
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Incidentally, we note that

∫ ∞

0

∣
∣
∣
∣
sinx

x

∣
∣
∣
∣dx=+∞.

Indeed,

∫ ∞

0

∣
∣
∣
∣
sinx

x

∣
∣
∣
∣dx≥

∞∑

n=1

∫ 2πn+π/2

2πn+π/4

∣
∣
∣
∣
sinx

x

∣
∣
∣
∣dx

≥
∞∑

n=1

π

4
√
2

1

2πn+ π/2
=+∞.

4.6 Solved Problems and Exercises

Problem 4.1

Compute the radius of convergence of the power series

∞∑

n=1

(z + i)n/5n and

∞∑

n=1

(z + i/2)n2n/n2.

Solution

The radius of convergence of the first series is given by

1/ limsup
n→∞

n
√

1/5n = 5.

Alternatively, note that

1

5n
:

1

5n+1
= 5→ 5

when n→∞, and by Proposition 4.4 the radius of convergence is 5.

The radius of convergence of the second series is given by

1/ limsup
n→∞

n
√
2n/n2 = 1/2.

Alternatively, note that

2n

n2
:

2n+1

(n+ 1)2
=

n+ 1

2n
→ 1

2

when n→∞, and by Proposition 4.4 the radius of convergence is 1/2.
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Problem 4.2

Compute the radius of convergence of the power series
∑∞

n=1[3− (−1)n]nzn.

Solution

The radius of convergence is given by

1/ limsup
n→∞

n

√[
3− (−1)n

]n
= 1/ limsup

n→∞

[
3− (−1)n

]
= 1/4.

We note that the sequence

an =
[3− (−1)n]n

[3− (−1)n+1]n+1

takes the values

an =
2n

4n+1
=

2n

22(n+1)
=

1

2n+2

for n even, and

an =
4n

2n+1
=

22n

2n+1
= 2n−1

for n odd, and hence it does not converge. Therefore, in this case, it is impossible

to find the radius of convergence by computing the limit of the sequence an.

Problem 4.3

Find a power series with radius of convergence equal to zero.

Solution

For example, the power series
∑∞

n=1 n
nzn has radius of convergence

1/ limsup
n→∞

n
√
nn = 1/ limsup

n→∞
n= 0.

Problem 4.4

Show that the function f(z) = (z − sin z)/z3 has a removable singularity at

z = 0.
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Solution

We have

sinz =

∞∑

n=0

(−1)n

(2n+ 1)!
z2n+1, z ∈C, (4.33)

and hence, for z �= 0,

z − sinz

z3
=

1

z3

(
z − z +

z3

6
− z5

120
+ · · ·

)
=

1

6
− z2

120
+ · · · . (4.34)

Since the power series in (4.33) has radius of convergence +∞, the same hap-

pens with the last series in (4.34). Moreover, by Theorem 4.12, a power series

defines a holomorphic function, and thus also a continuous function, in the

interior of its domain of convergence. Hence, in order to compute the limit of

the series 1/6− z2/120 + · · · when z → 0 it is sufficient to take z = 0. That is,

lim
z→0

z − sinz

z3
=

1

6
− z2

120
+ · · ·

∣
∣
∣
∣
z=0

=
1

6
�= 0,

and it follows from Proposition 4.35 that z = 0 is a removable singularity of f .

Problem 4.5

Verify that if f : Ω → C is a holomorphic function in an open set Ω ⊂ C, and

f ′(z0) �= 0 for some point z0 ∈Ω, then the function

g(z) =
z − z0

f(z)− f(z0)

has a removable singularity at z = z0.

Solution

Since

g(z) =
1

(f(z)− f(z0))/(z − z0)
,

we have

lim
z→z0

g(z) =
1

f ′(z0)
�= 0,

and it follows from Proposition 4.35 that z = z0 is a removable singularity of g.
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Problem 4.6

For the path γ : [0,4π]→C given by γ(t) = eit, compute the integral

∫

γ

az8 + b sin(z4) + c sin4 z

z4
dz

for each a, b, c ∈C.

Solution

We have

∫

γ

az8 + b sin(z4) + c sin4 z

z4
dz =

∫

γ

[
az4 + b

sin(z4)

z4
+ c

(
sinz

z

)4]
dz.

Clearly, the function az4 is holomorphic. Moreover, both functions sin(z4)/z4

and ((sinz)/z)4 have a removable singularity at z = 0, since

lim
z→0

sin(z4)

z4
= 1 and lim

z→0

(
sinz

z

)4

= 1

(see Proposition 4.35). Therefore, by Cauchy’s theorem (Theorem 2.55), we

have
∫

γ

az8 + b sin(z4) + c sin4 z

z4
dz = 0.

Problem 4.7

Find the power series of the function z2 sinz centered at z = π up to the term

of order 3.

Solution

Since

sin(z − π) =
ei(z−π) − e−i(z−π)

2i
=

−eiz + e−iz

2i
=− sin z,

it follows from (4.33) that

sinz =− sin(z − π) =
∞∑

n=0

(−1)n+1

(2n+ 1)!
(z − π)2n+1.
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Therefore,

z2 sinz = (z − π+ π)2 sinz

= (z − π)2 sinz + 2π(z − π) sin z + π2 sinz

= (z − π)2
[
−(z − π) + · · ·

]

+ 2π(z − π)
[
−(z − π) + · · ·

]

+ π2

[
−(z − π) +

(z − π)3

6
− · · ·

]

=−π2(z − π)− 2π(z − π)2 +
π2 − 6

6
(z − π)3 + · · · .

Problem 4.8

Find and classify all isolated singularities of the function cos(1/z).

Solution

The function cos(1/z) is holomorphic in C \ {0}, and thus it has only the

isolated singularity z = 0. Since

cosz =

∞∑

n=0

(−1)n

(2n)!
z2n

for z ∈C, we obtain

cos(1/z) =

∞∑

n=0

(−1)n

(2n)!

(
1

z

)2n

(4.35)

for z �= 0. Since the Laurent series in (4.35) has infinitely many negative powers,

z = 0 is an essential singularity.

Problem 4.9

Find and classify all isolated singularities of the function f(z) = ez/ sinz.

Solution

The function f has isolated singularities at the points where sinz = 0, that is,

at the points z = kπ with k ∈ Z. By Problem 2.14, for each k ∈ Z we have
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lim
z→kπ

(z − kπ)
ez

sinz
= ekπ lim

z→kπ

z − kπ

sinz

= ekπ lim
z→kπ

1

cosz
= ekπcos(kπ) �= 0.

Therefore, by Proposition 4.35, z = kπ is a pole of order 1 for each k ∈ Z.

Problem 4.10

Find and classify all isolated singularities of the function

f(z) =
z(z + 1)

(z − 3)2(z − 1)
+ e1/z

2

.

Solution

The function f has isolated singularities at z = 1 and z = 3 (since at these

points the denominator of the first fraction vanishes), and also at z = 0 (since

e1/z
2

is not defined at this point). The isolated singularity z = 1 is a pole of

order 1, since

lim
z→1

(z − 1)f(z) = lim
z→1

z(z + 1)

(z − 3)2
+ lim

z→1
(z − 1)e1/z =

1

2
�= 0,

while z = 3 is a pole of order 2, since

lim
z→3

(z − 3)2f(z) = lim
z→3

z(z + 1)

z − 1
+ lim

z→3
(z − 3)2e1/z = 6 �= 0

(see Proposition 4.35). Moreover, since the function

g(z) =
z(z + 1)

(z − 3)2(z − 1)

is holomorphic in some open ball centered at the origin, by Theorem 4.29 there

exist unique constants cn ∈C for n ∈N∪ {0} such that

g(z) =

∞∑

n=0

cnz
n,

for z ∈Br(0) and some r > 0. It then follows from (4.24) that

f(z) =

∞∑

n=0

1

n!

(
1

z2

)n

+

∞∑

n=0

cnz
n,

and thus, 0 is an essential singularity.
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Problem 4.11

For the function f(z) = z/(z2 − 16), compute the residue Res(f,4).

Solution

Since

f(z) =
z

(z − 4)(z + 4)
,

we have

lim
z→4

(z − 4)f(z) =
z

z + 4
=

1

2
�= 0,

and it follows from Proposition 4.35 that z = 4 is a pole of order 1. Moreover,

by Proposition 4.43, we have Res(f,4) = 1/2.

Problem 4.12

Compute the residue Res((sin z)/z100,0).

Solution

It follows from (4.33) that

sinz

z100
=

∞∑

n=0

(−1)n

(2n+ 1)!
z2n−99

for z �= 0. We note that this is the Laurent series of f . Since the residue is the

coefficient of the term of order −1 (see Proposition 4.41), we obtain

Res
(
(sinz)/z100,0

)
= (−1)49/99! =−1/99!.

Problem 4.13

Let g and h be holomorphic functions. Show that the residue of the function

f(z) =
g(z)

h(z)

at a pole z0 of order 1, with g(z0) �= 0, h(z0) = 0, and h′(z0) �= 0, is given by

Res(f, z0) =
g(z0)

h′(z0)
.
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Solution

Since z0 is a pole of order 1, by Proposition 4.43 we have

Res(f, z0) = lim
z→z0

(z − z0)f(z)

= lim
z→z0

g(z)

(h(z)− h(z0))/(z − z0)

=
g(z0)

h′(z0)
.

Problem 4.14

Find whether the function f(z) = (z + 1)/(z − 2) is analytic in some open set.

Solution

Given a ∈C \ {2}, we have

z + 1

z − 2
=

z + 1

z − a− (2− a)

=
z + 1

a− 2
· 1

1− (z − a)/(2− a)

=
z + 1

a− 2

∞∑

n=0

(
z − a

2− a

)n

whenever |z − a|< |2− a|. Hence,

f(z) =−(z − a+ a+ 1)

∞∑

n=0

(z − a)n

(2− a)n+1

=−
∞∑

n=0

(z − a)n+1

(2− a)n+1
− (a+ 1)

∞∑

n=0

(z − a)n

(2− a)n+1

=
a+ 1

a− 2
−

∞∑

n=1

3

(2− a)n+1
(z − a)n,

and the last power series has radius of convergence

R= 1/ limsup
n→∞

n

√∣
∣3/(2− a)n+1

∣
∣= |2− a|.
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We note that R coincides with the distance from a to the isolated singularity 2.

This shows that in each ball B(a, r)⊂C\{2} the function f can be represented

by a power series centered at a, and thus f is analytic in C \ {2}.

Problem 4.15

Find the Laurent series of the function f(z) = z/(z2 − 1) in the ring

Ω =
{
z ∈C : 0< |z + 1|< 2

}
.

Solution

The function f is holomorphic in C \ {−1,1}. For z ∈Ω, we have

z

z2 − 1
=

z

(z − 1)(z + 1)

=
1

z + 1
· z

z + 1− 2

=− z

z + 1
· 1

1− (z + 1)/2
,

and hence,

f(z) =−z + 1− 1

z + 1

∞∑

n=0

1

2n
(z + 1)n

=−
∞∑

n=0

1

2n
(z + 1)n +

∞∑

n=0

1

2n
(z + 1)n−1

=−
∞∑

n=0

1

2n
(z + 1)n +

∞∑

n=−1

1

2n+1
(z + 1)n

=
1

z + 1
+

∞∑

n=0

(
1

2n+1
− 1

2n

)
(z + 1)n

=
1

z + 1
−

∞∑

n=0

1

2n+1
(z + 1)n.

This is the Laurent series of f in the ring Ω.
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Problem 4.16

Consider the function

f(z) =
z

z2 + sin3 z
.

Classify the isolated singularity of f at the origin and find the terms of order

−1 and −2 of the Laurent series of f centered at z = 0.

Solution

Since

lim
z→0

sinz

z
= 1,

we have

lim
z→0

zf(z) = lim
z→0

z2

z2 + sin3 z

= lim
z→0

1

1 + z((sin z)/z)3
= 1 �= 0,

(4.36)

and it follows from Proposition 4.35 that z = 0 is a pole of order 1. Hence, the

term of order −2 of the Laurent series is zero. The term of order −1 is 1/z,

since the coefficient is the residue Res(f,0), which in this case is given by the

limit in (4.36).

Problem 4.17

For the path γ : [0,2π]→C given by γ(t) = 5eit, compute the integral

∫

γ

ez

(z + 2)(z − 3)
dz.

Solution

The function

f(z) =
ez

(z + 2)(z − 3)

has poles of order 1 at the points −2 and 3, with residues

Res(f,−2) = lim
z→−2

(z + 2)f(z) =
ez

z − 3

∣
∣
∣
∣
z=−2

=−e−2

5
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and

Res(f,3) = lim
z→3

(z − 3)f(z) =
ez

z + 2

∣
∣
∣
∣
z=3

=
e3

5
.

Moreover,

Indγ(−2) = Indγ(3) = 1.

It then follows from the Residue theorem (Theorem 4.48) that

∫

γ

f = 2πi
[
Res(f,−2) +Res(f,−3)

]

= 2πi

(
−e−2

5
+

e3

5

)
=

2πi(e3 − e−2)

5
.

Problem 4.18

Use the Residue theorem (Theorem 4.48) to compute the integrals
∫
α
f and∫

β
f of the function

f(z) =
z + 3

z2 − 1
,

for the paths α,β : [0,2π] → C given by α(t) = 1 + eit and β(t) = 3e−it (see

Figure 4.6).

Figure 4.6 Paths α and β
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Solution

The function f has poles of order 1 at the points 1 and −1, with residues

Res(f,1) = lim
z→1

(z − 1)(z + 3)

(z − 1)(z + 1)
= lim

z→1

z + 3

z + 1
= 2

and

Res(f,−1) = lim
z→−1

(z + 1)(z + 3)

(z − 1)(z + 1)
= lim

z→−1

z + 3

z − 1
=−1.

Since Indα(1) = 1 and Indα(−1) = 0, it follows from the Residue theorem that

∫

α

f = 2πi
[
Res(f,1) Indα(1) +Res(f,−1) Indα(−1)

]
= 4πi.

Similarly, since Indβ(1) = Indβ(−1) = −1, it follows again from the Residue

theorem that
∫

β

f =−2πi
[
Res(f,1) +Res(f,−1)

]
=−2πi.

Problem 4.19

For the function

f(z) =
1

(z2 − 5)2 − 16
,

compute the integral
∫
γ
f(z)dz, where γ is a path looping once along the bound-

ary of the square

Q=
{
x+ iy ∈C : |x|+ |y| ≤ 2

}
(4.37)

(see Figure 4.7), in the positive direction.

Solution

The isolated singularities of f are the zeros of the polynomial (z2 − 5)2 − 16.

We have

(
z2 − 5

)2 − 16 = 0 ⇔ z2 − 5 = 4 or z2 − 5 =−4,

and thus, z =±3 or z =±1. Being distinct, these four points are poles of f of

order 1. Only the poles 1 and −1 are in the interior of the square Q, and thus,

Indγ(1) = Indγ(−1) =−1 and Indγ(3) = Indγ(−3) = 0.
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Figure 4.7 Square Q (4.37)

It then follows from the Residue theorem that

∫

γ

f(z)dz = 2πi
[
Res(f,−1) Indγ(−1) +Res(f,1) Indγ(1)

]

=−2πi
[
Res(f,−1) +Res(f,1)

]
. (4.38)

Since

f(z) =
1

(z − 3)(z + 3)(z − 1)(z + 1)
,

we have

Res(f,−1) = lim
z→−1

(z + 1)f(z) =
1

16

and

Res(f,1) = lim
z→1

(z − 1)f(z) =− 1

16
.

Substituting in (4.38), we finally obtain

∫

γ

f(z)dz =−2πi

(
1

16
− 1

16

)
= 0.
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Problem 4.20

Compute the integral
∫ 2π

0

1

3 + 2cos t
dt.

Solution

We have

∫ 2π

0

1

3 + 2cos t
dt=

∫ 2π

0

ieit

ieit(3 + eit + e−it)
dt=

∫

γ

f(z)dz, (4.39)

where

f(z) =
1

iz(3 + z + 1/z)
=

1

i(z2 + 3z + 1)
,

with the path γ : [0,2π]→ C given by γ(t) = eit. The function f has poles at

the zeros of the polynomial z2 + 3z + 1, that is, at

z1 = (−3 +
√
5)/2 and z2 = (−3−

√
5)/2.

Since |z1| < 1 and |z2| > 1, we have Indγ(z1) = 1 and Indγ(z2) = 0. By the

Residue theorem, we thus obtain

∫

γ

f(z)dz = 2πi

2∑

j=1

Res(f, zj) Indγ(zj) = 2πiRes(f, z1).

Since

Res(f, z1) = lim
z→z1

(z − z1)f(z) =
1

i(z1 − z2)
=

1

i
√
5
,

it follows from (4.39) that

∫ 2π

0

1/(3 + 2cos t)dt= 2πi
1

i
√
5
=

2π√
5
.

Problem 4.21

Compute the integral
∫ ∞

0

1

1 + x4
dx. (4.40)
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Solution

Take R > 1. We consider the path γ = γ1 + γ2, where γ1 : [−R,R] → C and

γ2 : [0, π]→C are given respectively by

γ1(t) = t and γ2(t) =Reit

(see Figure 4.8). We also consider the function

Figure 4.8 Path γ = γ1 + γ2

f(z) =
1

1 + z4
,

which has the poles

z1 = (1+ i)/
√
2, z2 = (−1 + i)/

√
2,

z3 = (−1− i)/
√
2, z4 = (1− i)/

√
2,

all of them of order 1. Since R> 1, we have

Indγ(z1) = Indγ(z2) = 1 and Indγ(z3) = Indγ(z4) = 0.

Moreover,

Res(f, z1) = lim
z→z1

1

(z − z2)(z − z3)(z − z4)
=

−1− i

4
√
2

and

Res(f, z2) = lim
z→z2

1

(z − z1)(z − z3)(z − z4)
=

1− i

4
√
2
.
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It then follows from the Residue theorem that

∫

γ

f = 2πi

4∑

j=1

Res(f, zj) Indγ(zj)

= 2πi
[
Res(f, z1) +Res(f, z2)

]
=

π√
2
. (4.41)

Now we use (4.41) to compute the integral in (4.40). We have

∫

γ

f =

∫ R

−R

f(x)dx+

∫

γ2

f = 2

∫ R

0

f(x)dx+

∫

γ2

f.

Since

∣
∣
∣
∣

∫

γ2

f

∣
∣
∣
∣≤ Lγ2 sup

{
1

|z4 + 1| : z ∈ γ2
(
[0, π]

)
}

= πR sup

{
1

|R4e4it + 1| : t ∈ [0, π]

}

(see Proposition 2.42), and

∣
∣R4e4it + 1

∣
∣≥
∣
∣R4e4it

∣
∣− 1 =R4 − 1,

we obtain
∣
∣
∣
∣

∫

γ2

f

∣
∣
∣
∣≤ πR

1

R4 − 1
→ 0

when R→+∞. Hence,

∫

γ

f = 2

∫ R

0

f(x)dx+

∫

γ2

f → 2

∫ ∞

0

f(x)dx

when R→+∞, and thus,

∫ ∞

0

f(x)dx=
1

2

∫

γ

f.

It then follows from (4.41) that

∫ ∞

0

1

1 + x4
dx=

∫ ∞

0

f(x)dx=
1

2

∫

γ

f =
π

2
√
2
.
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Problem 4.22

Compute the integral
∫ ∞

0

1

(x2 + 1)2
dx.

Solution

We consider the path γ = γ1 + γ2 in Figure 4.8, and the function

f(z) =
1

(z2 + 1)2
,

which has poles of order 2 at the points i and −i. Indeed,

f(z) =
1

[(z − i)(z + i)]2
=

1

(z − i)2(z + i)2
.

We have

Indγ(i) = 1 and Indγ(−i) = 0,

and also

Res(f, i) =

(
1

(z + i)2

)′∣∣
∣
∣
z=i

=− 2

(z + i)3

∣
∣
∣
∣
z=i

=
1

4i
.

It then follows from the Residue theorem that
∫

γ

f = 2πiRes(f, i) =
π

2
.

On the other hand,

∣
∣
∣
∣

∫

γ2

f

∣
∣
∣
∣≤ πR sup

{
1

|(z2 + 1)2| : z ∈ γ2
(
[0, π]

)
}

≤ πR

(R2 − 1)2
→ 0

when R→+∞. Hence,

π

2
=

∫

γ

f =

∫ R

−R

f(x)dx+

∫

γ2

f

= 2

∫ R

0

f(x)dx+

∫

γ2

f → 2

∫ ∞

0

1

(x2 + 1)2
dx



200 4. Analytic Functions

when R→+∞, and thus,
∫ ∞

0

1

(x2 + 1)2
dx=

π

4
.

Problem 4.23

Compute the integral
∫ ∞

0

cosx

1 + x2
dx.

Solution

Take R > 1. Again we consider the path γ = γ1 + γ2 in Figure 4.8. We also

consider the function

f(z) =
eiz

1 + z2
,

which has poles of order 1 at the points i and −i. Since R> 1, we have

Indγ(i) = 1 and Indγ(−i) = 0.

Moreover,

Res(f, i) = lim
z→i

(z − i)
eiz

1 + z2
= lim

z→i

eiz

z + i
=

1

2ei
.

It then follows from the Residue theorem that
∫

γ

f = 2πiRes(f, i) =
π

e
. (4.42)

On the other hand,
∫

γ

f =

∫ R

−R

f(x)dx+

∫

γ2

f. (4.43)

Since
∫ R

0

f(x)dx=

∫ R

0

eix

1 + x2
dx,

and
∫ 0

−R

f(x)dx=−
∫ 0

R

f(−x)dx

=

∫ R

0

f(−x)dx=

∫ R

0

e−ix

1 + x2
dx,
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it follows from (4.43) that

∫

γ

f =

∫ R

0

eix + e−ix

1 + x2
dx+

∫

γ2

f

= 2

∫ R

0

cosx

1 + x2
dx+

∫

γ2

f. (4.44)

Moreover,

∣
∣
∣
∣

∫

γ2

f

∣
∣
∣
∣≤ Lγ2 sup

{∣∣
∣
∣

eiz

1 + z2

∣
∣
∣
∣ : z ∈ γ2

(
[0, π]

)
}

= πR sup

{
e− Imz

|z2 + 1| : z ∈ γ2
(
[0, π]

)
}
.

Since e− Imz ≤ 1 for Imz ≥ 0, and

∣
∣z2 + 1

∣
∣≥
∣
∣z2
∣
∣− 1 = |z|2 − 1,

we obtain
∣
∣
∣
∣

∫

γ2

f

∣
∣
∣
∣≤

πR

R2 − 1
. (4.45)

Letting R→+∞, it follows from (4.44) and (4.45) that

∫

γ

f = 2

∫ ∞

0

cosx

1 + x2
dx.

By (4.42), we finally obtain

∫ ∞

0

cosx

1 + x2
dx=

1

2

∫

γ

f =
π

2e
.

Problem 4.24

For each a ∈ (0,1), compute the integral

∫ +∞

−∞

eax

1 + ex
dx.
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Solution

Take R> 0. We consider the path γ = γ1 + γ2 + γ3 + γ4, where

γ1 : [−R,R]→C is given by γ1(t) = t,

γ2 : [0,2π]→C is given by γ2(t) =R+ it,

γ3 : [−R,R]→C is given by γ3(t) =−t+ i2π,

γ4 : [0,2π]→C is given by γ4(t) =R+ i(2π− t)

(see Figure 4.9). We also consider the function

Figure 4.9 Path γ = γ1 + γ2 + γ3 + γ4

f(z) =
eaz

1 + ez
,

which has poles at the points (2n+ 1)πi for n ∈ Z. We note that

Indγ
(
(2n+ 1)πi

)
=

{
1 if n= 0,

0 if n �= 0.

Moreover,

Res(f, iπ) = lim
z→iπ

(z − iπ)
eaz

1 + ez

= eaπi lim
z→iπ

z − iπ

1 + ez

= eaπi lim
z→iπ

1

ez
=−eaπi.
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It then follows from the Residue theorem that

∫

γ

f = 2πiRes(f, iπ) =−2πieaπi. (4.46)

On the other hand,

∫

γ1

f =

∫ R

−R

eat

1 + et
dt

and

∫

γ3

f =−
∫ R

−R

ea(−t+i2π)

1 + e−t+i2π
dt

=−e2πia
∫ R

−R

e−at

1 + e−t
dt=−e2πia

∫ R

−R

eat

1 + et
dt. (4.47)

We also have

∣
∣
∣
∣

∫

γ2

f

∣
∣
∣
∣≤ Lγ2 sup

{∣∣
∣
∣

eaz

1 + ez

∣
∣
∣
∣ : z ∈ γ2

(
[0,2π]

)
}

= 2π sup

{∣∣
∣
∣
ea(R+it)

1 + eR+it

∣
∣
∣
∣ : t ∈ [0,2π]

}

≤ 2πeaR

eR − 1
→ 0

when R→+∞, and analogously,

∣
∣
∣
∣

∫

γ4

f

∣
∣
∣
∣≤ Lγ4 sup

{∣∣
∣
∣

eaz

1 + ez

∣
∣
∣
∣ : z ∈ γ4

(
[0,2π]

)
}

≤ 2πeaR

eR − 1
→ 0

when R→+∞. It then follows from (4.46) and (4.47) that

−2πieaπi =

∫

γ

f =

4∑

j=1

∫

γj

f

=
(
1− e2πia

)∫ R

−R

eat

1 + et
dt+

∫

γ2

f +

∫

γ4

f

→
(
1− e2πia

)∫ +∞

−∞

eat

1 + et
dt
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when R→+∞. We finally obtain

∫ +∞

−∞

eat

1 + et
dt=− 2πieaπi

1− e2πia

=
2πi

eπia − e−πia
=

π

sin(πa)
.

Problem 4.25

For each a > 0, show that

∫ ∞

0

logx

x2 + a2
dx=

π

2a
loga. (4.48)

Solution

Take r,R > 0 such that r < a <R. We consider the path γ = γ1 + γ2 + γ3 + γ4,

where

γ1 : [r,R]→C is given by γ1(t) = t,

γ2 : [0, π]→C is given by γ2(t) =Reit,

γ3 : [−R,−r]→C is given by γ3(t) = t,

γ4 : [0, π]→C is given by γ4(t) = rei(π−t)

(see Figure 4.5). We also consider the function

f(z) =
log z

z2 + a2
,

which has poles of order 1 at ai and −ai. Since

Indγ(ai) = 1 and Indγ(−ai) = 0,

as well as

Res(f, ai) = lim
z→ai

(z − ai)f(z) = lim
z→ai

log z

z + ai

=
log(ai)

2ai
=

1

2ai

(
loga+ i

π

2

)
,

it follows from the Residue theorem that
∫

γ

f(z)dz = 2πiRes(f, ai) =
π

a

(
loga+ i

π

2

)
. (4.49)
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On the other hand,
∣
∣
∣
∣

∫

γ2

f

∣
∣
∣
∣≤ Lγ2 sup

{∣∣
∣
∣

logR+ it

(Reit)2 + a2

∣
∣
∣
∣ : t ∈ [0, π]

}

≤ πR
logR+ π

R2 − a2
→ 0

when R→+∞. Moreover,
∣
∣
∣
∣

∫

γ4

f

∣
∣
∣
∣≤ πr

log r+ π

a2 − r2
→ 0

when r → 0. Taking limits when R → +∞ and r → 0, it follows from (4.49)

that

π

a

(
loga+ i

π

2

)
=

∫

γ1

f +

∫

γ2

f +

∫

γ3

f +

∫

γ4

f

=

∫ R

r

logx

x2 + a2
dx+

∫

γ2

f +

∫ −r

−R

logx

x2 + a2
dx+

∫

γ4

f

→
∫ ∞

−∞

logx

x2 + a2
dx.

For x < 0 we have logx= log |x|+ iπ, and thus,

π

a

(
loga+ i

π

2

)
=

∫ ∞

−∞

log |x|
x2 + a2

dx+ iπ

∫ 0

−∞

1

x2 + a2
dx

= 2

∫ ∞

0

logx

x2 + a2
dx+ iπ

∫ 0

−∞

1

x2 + a2
dx. (4.50)

Taking the real part, we finally obtain identity (4.48).

Problem 4.26

Verify that if f : Ω →C is a nonvanishing holomorphic function, then the func-

tion g(z) = 1/f(z) is holomorphic in Ω.

Solution

We need to show that g has derivatives at all points of Ω. We first note that

g(z)− g(z0)

z − z0
=

1/f(z)− 1/f(z0)

z − z0

=
f(z0)− f(z)

(z − z0)f(z)f(z0)
.
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Moreover, since the function f is continuous (because it is holomorphic), we

have

lim
z→z0

1

f(z)
=

1

f(z0)
.

Finally, since

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
,

we obtain

lim
z→z0

g(z)− g(z0)

z − z0
= lim

z→z0

f(z0)− f(z)

(z − z0)f(z)f(z0)

= lim
z→z0

f(z0)− f(z)

z − z0
· lim
z→z0

1

f(z)f(z0)

=− f ′(z0)

f(z0)2
.

Therefore, the function g is holomorphic in Ω and g′ =−f ′/f2.

Problem 4.27

Show that if f : C → C is an analytic function and |f (n)(0)| ≤ 2n for every

n ∈N∪ {0}, then |f(z)| ≤ e2|z| for z ∈C.

Solution

Since f is analytic in C, by Theorem 4.12 (see (4.4) and (4.5)), we have

f(z) =

∞∑

n=0

cnz
n, with cn =

f (n)(0)

n!
, (4.51)

for each z ∈C. Moreover, since

|cn| ≤
|f (n)(0)|

n!
≤ 2n

n!
,
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it follows from (4.51) that

∣
∣f(z)

∣
∣≤

∞∑

n=0

|cn||z|n

≤
∞∑

n=0

2n

n!
|z|n

=
∞∑

n=0

(2|z|)n
n!

= e2|z|.

Problem 4.28

Show that if the function f is holomorphic in an open set Ω ⊂ C, then the

function

g(z) = f(z)

is holomorphic in the open set Ω′ = {z : z ∈Ω}.

Solution

Writing z = x+ iy and f = u+ iv, we obtain

g(x+ iy) = f(x− iy)

= u(x,−y)− iv(x,−y)

= u(x, y) + iv(x, y),

where

u(x, y) = u(x,−y) and v(x, y) =−v(x,−y).

Since f is holomorphic in Ω, the functions u and v, and thus also the functions

u and v are of class C1. Their partial derivatives are given by

∂u

∂x
=

∂u

∂x
(x,−y),

∂u

∂y
=−∂u

∂y
(x,−y),

and

∂v

∂x
=−∂v

∂x
(x,−y),

∂v

∂y
=

∂v

∂y
(x,−y).

On the other hand, it follows from the Cauchy–Riemann equations (for f ) that

∂u

∂x
=

∂v

∂y
and

∂u

∂y
=−∂v

∂x
(4.52)



208 4. Analytic Functions

in Ω′. Since Ω′ is an open set, and the functions u and v are of class C1, it

follows from Theorem 2.23 and (4.52) that the function g is holomorphic in Ω′.

Problem 4.29

Let f be a holomorphic function in an open set Ω ⊂C, with f ′(z0) �= 0 at some

point z0 ∈Ω. Show that for the path γ : [0,2π]→ C given by γ(t) = z0 + reit,

we have

2πi

f ′(z0)
=

∫

γ

1

f(z)− f(z0)
dz

for any sufficiently small r > 0.

Solution

By Problem 4.5, the function

g(z) =
z − z0

f(z)− f(z0)

has a removable singularity at z = z0, and

lim
z→z0

g(z) =
1

f ′(z0)
�= 0.

Hence, the function z �→ 1/(f(z)− f(z0)) has a pole of order 1 at z = z0, with

residue 1/f ′(z0). It then follows from the Residue theorem that

∫

γ

1

f(z)− f(z0)
dz = 2πi

1

f ′(z0)
Indγ(z0) =

2πi

f ′(z0)

for any sufficiently small r > 0.

Problem 4.30

Compute the radius of convergence of the power series

f(z) =

∞∑

n=0

(−1)n

(n!)2
· (z

2)n

22n
,

and verify that

zf ′′(z) + f ′(z) + zf(z) = 0.
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Solution

By Proposition 4.4, the radius of convergence is given by

lim
n→∞

∣
∣
∣
∣
(−1)n

n!22n
:

(−1)n+1

(n+ 1)!22(n+1)

∣
∣
∣
∣= lim

n→∞

n+ 1

4
=+∞.

In particular, in view of Theorem 4.16, the function f is holomorphic in C.

Since power series can be differentiated term by term in the interior of their

domain of convergence (see Theorem 4.12), we obtain

f ′(z) =
∞∑

n=1

(−1)n

(n!)2
· nz

2n−1

22n−1

and

f ′′(z) =

∞∑

n=1

(−1)n

(n!)2
· n(2n− 1)z2(n−1)

22n−1
,

for z ∈C. Therefore,

zf ′′(z) + f ′(z) + zf(z)

=

∞∑

n=1

(−1)n

(n!)2
· n(2n− 1)z2n−1

22n−1

+

∞∑

n=1

(−1)n

(n!)2
· nz

2n−1

22n−1
+

∞∑

n=0

(−1)n

(n!)2
z2n+1

22n

=

∞∑

n=1

(
(−1)n

(n!)2
· n(2n− 1) + n

22n−1
+

(−1)n−1

((n− 1)!)2
· 1

22n−2

)
z2n−1

=
∞∑

n=1

(−1)n−1

((n− 1)!)2

(
− 2n2

n222n−1
+

1

22n−2

)
z2n−1 = 0.

Problem 4.31

Find a holomorphic function in C whose set of zeros is {2n : n ∈ Z} \ {0}.

Solution

Let us consider the function

f(z) =

{
sin(πz/2)/z if z �= 0,

π/2 if z = 0.
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It follows from (4.33) that

sin(πz/2)

z
=

1

z

∞∑

n=0

(−1)n

(2n+ 1)!

(
πz

2

)2n+1

=
π

2

∞∑

n=0

(−1)n

(2n+ 1)!

(
πz

2

)2n

for z �= 0, with radius of convergence +∞. Hence, the last series defines a

holomorphic function g in C. Since g(0) = π/2, we conclude that f = g, and

thus f is holomorphic in C.

Now we solve the equation

sin(πz/2) =
eiπz/2 − e−iπz/2

2i
= 0,

that is, eiπz/2 = e−iπz/2, which is equivalent to eiπz = 1. Writing z = x + iy,

with x, y ∈R, we obtain

eiπz = e−πyeiπx = 1,

and hence y = 0 and x = 2k with k ∈ Z. The solutions of the equation

sin(πz/2) = 0 are thus z = 2k with k ∈ Z, and the zeros of f are z = 2k with

k ∈ Z \ {0}, since f(0) = π/2 �= 0 and f(z) = sin(πz/2)/z for z �= 0.

Problem 4.32

Show that if a holomorphic function f : C → C vanishes at all points of the

form r+ ir with r ∈Q, then f = 0.

Solution

By Theorem 4.21, the zeros of a nonzero holomorphic function are isolated.

Since the set {r+ ir : r ∈Q} has points that are not isolated (in fact, it has no

isolated points), we conclude that f = 0 in C.

Problem 4.33

Show that if f : C→C is a holomorphic function satisfying

∣
∣f(z)

∣
∣≤ log

(
1 + |z|

)
(4.53)

for every z ∈C, then f is constant.
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Solution

Given z ∈ C, let γ : [0,2π]→ C be the path defined by γ(t) = z + reit. Since

Indγ(z) = 1, it follows from Cauchy’s integral formula for the first derivative

(see Theorem 4.17) that

f ′(z) =
1

2πi

∫

γ

f(w)

(w− z)2
dw.

Therefore,

∣
∣f ′(z)

∣
∣=

1

2π

∣
∣
∣
∣

∫

γ

f(w)

(w− z)2
dw

∣
∣
∣
∣

≤ 1

2π
Lγ sup

{
|f(γ(t))|
|γ(t)− z|2 : t ∈ [0,2π]

}
. (4.54)

On the other hand, by (4.53), we have

∣
∣f(γ(t))

∣
∣≤ log

(
1 +
∣
∣z + reit

∣
∣)≤ log

(
1 + |z|+ r

)
.

Since Lγ = 2πr and

∣
∣γ(t)− z

∣
∣2 =

∣
∣reit

∣
∣2 = r2,

it then follows from (4.54) that

∣
∣f ′(z)

∣
∣≤ log(1 + |z|+ r)

r
→ 0

when r→+∞. Hence, f ′(z) = 0 for every z ∈C, and thus f is constant.

Problem 4.34

Show that if a holomorphic function f in C has the periods 1 and i, then it is

constant.

Solution

Since f has the periods 1 and i, it is sufficient to know its values in the compact

set

K =
{
a+ ib : a, b ∈ [0,1]

}
.

Indeed,

f
(
(a+ n) + i(b+m)

)
= f(a+ ib)
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for every a, b ∈ [0,1] and n,m ∈ Z. In particular,

sup
{∣∣f(z)

∣
∣ : z ∈C

}
= sup

{∣∣f(z)
∣
∣ : z ∈K

}
. (4.55)

On the other hand, since f is holomorphic, the function z �→ |f(z)| is continu-
ous, and thus its supremum in K is finite. It then follows from (4.55) that f is

bounded, and we conclude from Liouville’s theorem (Theorem 4.18) that the

function f is constant.

Problem 4.35

Let f : Ω → C be a meromorphic function in an open set Ω ⊂ C, and let

γ : [a, b] → Ω be a closed piecewise regular path without intersections, loop-

ing once in the positive direction, such that f has neither zeros nor poles in

γ([a, b]). Show that

1

2πi

∫

γ

f ′

f
= Z − P,

where Z and P are respectively the number of zeros and the number of poles

of f in the interior of γ, counted with their multiplicities.

Solution

If z = z0 is a zero of f of multiplicity n, then

f(z) = (z − z0)
ng(z),

where g is a holomorphic function in some open ball centered at z0 such that

g(z0) �= 0. On the other hand, if z = z0 is a pole of f of order n, then

f(z) = g(z)/(z − z0)
n,

where g is a holomorphic function in some open ball centered at z0. In the first

case, we have

f ′(z) = n(z − z0)
n−1g(z) + (z − z0)

ng′(z),

and thus,

f ′(z)

f(z)
=

n

z − z0
+

g′(z)

g(z)
. (4.56)
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In the second case, we have

f ′(z) =
g′(z)(z − z0)

n − n(z − z0)
n−1g(z)

(z − z0)2n

=
g′(z)

(z − z0)n
− ng(z)

(z − z0)n+1
,

and thus,

f ′(z)

f(z)
=− n

z − z0
+

g′(z)

g(z)
. (4.57)

We conclude that f ′/f is a meromorphic function whose poles are exactly the

zeros and the poles of f . It then follows from the Residue theorem that

∫

γ

f ′

f
= 2πi

[
Z′
∑

j=1

Res

(
f ′

f
, pj

)
+

P ′
∑

j=1

Res

(
f ′

f
, qj

)]

, (4.58)

where pj and qj are respectively the zeros and the poles of f in the interior

of γ, counted with their multiplicities, and where Z ′ and P ′ are respectively

the number of zeros and the number of poles of f , also in the interior of γ,

but now counted without their multiplicities. If pj has multiplicity nj , then it

follows from (4.56) that

Res

(
f ′

f
, pj

)
=Res

(
nj

z − pj
, pj

)
= nj .

Moreover, if qj has multiplicity mj , then it follows from (4.57) that

Res

(
f ′

f
, qj

)
=Res

(
− mj

z − qj
, qj

)
=−mj .

We also have

Z′
∑

j=1

nj = Z and
P ′
∑

j=1

mj = P.

It then follows from (4.58) that

∫

γ

f ′

f
= 2πi

(
Z′
∑

j=1

nj −
P ′
∑

j=1

mj

)

= 2πi(Z − P ).
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Problem 4.36

Let f and g be holomorphic functions in a simply connected open set Ω ⊂ C.

Show that if
∣
∣f(z)

∣
∣>
∣
∣g(z)− f(z)

∣
∣ (4.59)

for every z ∈ γ([a, b]), where γ : [a, b] → Ω is a closed piecewise regular path

without intersections, then f and g have the same number of zeros in the

interior of γ, counted with their multiplicities.

Solution

It follows from (4.59) that f and g do not vanish on the set γ([a, b]). Hence,

this set contains neither poles nor zeros of the function

F (z) =
g(z)

f(z)
.

It also follows from (4.59) that
∣
∣
∣
∣
g(z)

f(z)
− 1

∣
∣
∣
∣< 1

for z ∈ γ([a, b]), and thus,

∣
∣F (γ(t))− 1

∣
∣< 1 for t ∈ [a, b].

Hence, the closed piecewise regular path F ◦γ is contained in the disk of radius 1

centered at 1. In particular, 0 is not in its interior. Therefore,
∫

F◦γ

1

w
dw = 0.

On the other hand, it follows from Problem 4.35 that

0 =

∫

F◦γ

1

w
dw =

∫ b

a

F ′(γ(t))

F (γ(t))
γ′(t)dt=

∫

γ

F ′(z)

F (z)
dz = Z − P,

where Z and P are respectively the number of zeros and the number of poles

of F in the interior of γ, counted with their multiplicities. These are respectively

the zeros of g and f , also counted with their multiplicities.

Problem 4.37

Find the number of roots of the equation z3 + 3z + 1= 0 in the interior of the

circle |z|= 2, counted with their multiplicities.
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Solution

Let f(z) = 3z and g(z) = z3 + 3z + 1. We have

∣
∣g(z)− f(z)

∣
∣≤ |z|3 + 1< |3z|=

∣
∣f(z)

∣
∣

for |z| = 1. Since f has a single zero in the interior of |z| = 1, it follows from

Problem 4.36 that g also has a single zero in the interior of |z| = 1. On the

other hand, if f(z) = z3, then

∣
∣g(z)− f(z)

∣
∣= |3z + 1| ≤ 3|z|+ 1= 7< 8 = |z|3

for |z|= 2. Since f has three zeros in the interior of |z|= 2, counted with their

multiplicities, it follows from Problem 4.36 that g also has three zeros in the

interior of |z|= 2, again counted with their multiplicities. Two of them are in

the ring 1< |z|< 2, since there are no zeros with |z|= 1.

EXERCISES

4.1. Write the function f as a power series centered at zero, indicating

the radius of convergence:

(a) f(z) = z/(1 + z2);

(b) f(z) = (z + 1)/(z − 1);

(c) f(z) = sinz cosz.

4.2. Write the function f as a power series, indicating the radius of con-

vergence:

(a) f(z) = 1/z at a= 3;

(b) f(z) = z/[(z − 1)(z − 3)] at a= 2;

(c) f(z) = z3 at a= 1.

4.3. Compute the radius of convergence of the power series:

(a)
∑∞

n=1 z
n/(n2)n;

(b)
∑∞

n=1 nz
n!;

(c)
∑∞

n=0 z
2n/[22n(n!)2].

4.4. Compute the radius of convergence of the power series of the func-

tion:

(a) z2/(z2 + 2z + 1) centered at z = 3+ i;

(b) 1/(cosz + 1) centered at z = 1.

4.5. Compute explicitly the function

∞∑

n=1

[
3− (−1)n

]n
zn for |z|< 1/4.
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4.6. Find a power series with radius of convergence
√
2.

4.7. Verify that the power series

∞∑

n=0

cnz
n and

∞∑

n=0

(
n2 + 1

)
cnz

n+1

have the same radius of convergence.

4.8. Write the function (sin z)/(z−π) as a power series centered at z = π.

4.9. For the function z/ sin z, find the Laurent series centered at z = 0

up to the term of order 4.

4.10. Find the term of order 4 of the power series of the function

cosz log(1 + z)

1− z

centered at z = 0.

4.11. Let u : R2 →R be the function u(x, y) = e−y cosx+ y(x− 1).

(a) Find v such that f(x + iy) = u(x, y) + iv(x, y) is holomorphic

in C and satisfies f(0) = 1.

(b) Compute
∫
γ
f(z)/(z− i)2 dz along the path γ : [0,4π]→C given

by γ(t) = 2eit.

4.12. Find and classify all isolated singularities of the function f , and

compute the radius of convergence of its power series centered at

the point a:

(a) f(z) = 1/(z2 + 1), a= 1;

(b) f(z) = z2/(z2 − z − 2), a= 0;

(c) f(z) = e−z2

/(z − 2), a= 0.

4.13. Classify the isolated singularity at the origin for the function:

(a) (ez + 1)/(ez − 1);

(b) z sin(1/z);

(c) cos(1/z)− 1/ cosz;

(d) (sin z)/z2.

4.14. For the function

f(z) =
sinz − z + z3/6

z5
,

compute limz→0 f(z) and verify that the origin is a removable sin-

gularity.

4.15. Find the limit of the function when z → 0:

(a) log(1− z)/z;

(b) (e2z − 1)/z;

(c) (e2z − e−z)/z.
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4.16. Find and classify all isolated singularities of the function:

(a)
z2 + i

(z − 2)2(z + 1)
+ cos

(
1

z

)
;

(b)
1

z2 − 1
+ ze1/(z+3);

(c)
z

(ez − 1)2
+ e1/(z−4).

4.17. Consider the function f(z) = z/(ez − 1)2.

(a) Find and classify all isolated singularities of f .

(b) Compute the integral of f along the circle |z|= 2 looping once

in the positive direction.

4.18. Consider the function f(z) = z/(z2 + sin3 z).

(a) Classify the isolated singularity z = 0 of f .

(b) Find the terms of order −1 and −2 of the Laurent series of f at

z = 0.

4.19. Compute the residue Res(ez/z20,0).

4.20. Find the Laurent series of the function:

(a) (cosz)/z for |z|> 0;

(b) z/(z2 − 1) for 0< |z + 1|< 2;

(c) (sin z)/z2 + 1/(3− z2) for 0< |z|< 3 and for |z|> 3.

4.21. Compute the integral:

(a)

∫

γ

1

z20
dz, with γ : [0,2π]→C given by γ(t) = 4e2it;

(b)

∫

γ

1

(z + 2)(z − 7)
dz, with γ : [0,2π]→C given by γ(t) = 6eit;

(c)

∫

γ

sinz

z3
dz, with γ : [0,2π]→C given by γ(t) = 3eit;

(d)

∫

γ

sinh z

z2 − 1
dz, with γ : [0,2π]→C given by γ(t) = 2eit.

4.22. For the path γ : [0,4π]→C given by γ(t) = eit, compute the integral

∫

γ

az3 + bz2 + cz + d

z3
dz

for each a, b, c, d ∈C.

4.23. Let u : R2 →R be the function u(x, y) = ex siny.

(a) Find v : R2 → R such that f = u+ iv is holomorphic in C and

satisfies f(0) =−i.

(b) Find explicitly the function f .
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(c) Compute the integral

∫

γ

f(z)

z + i
dz

along the path γ : [0,6π]→C given by γ(t) = 2e−it.

4.24. Let u : R2 →R be the function u(x, y) = e−y cosx+ y(x− 1).

(a) Find v : R2 → R such that f = u+ iv is holomorphic in C and

satisfies f(0) = 1.

(b) Find explicitly the function f .

(c) Compute the integral

∫

γ

f(z)

(z − i)2
dz

along the path γ : [0,4π]→C given by γ(t) = 3eit.

4.25. Identify each statement as true or false.

(a) If f is a holomorphic function in C and |f(z)| ≤ 1 for every z ∈C,

then f is a polynomial.

(b) There exists an analytic function in some open set Ω ⊂ C that

is not holomorphic in Ω.

(c) The derivative of
∑∞

n=0 cn(z − a)n has the same radius of con-

vergence as this power series.

(d) All zeros of an analytic function are isolated.

(e) Two holomorphic functions f, g : C→C are equal if f(z) = g(z)

for every z ∈R.

(f) The function z/(ez − 1)+ e1/(z−5) has no essential singularities.

(g) The function ee
1/z

has a pole.

(h) The residue of the function z/(ez − 1) + e1/(z−5) at z = 0 is 0.

(i) The function z/ sin z can be written as a power series in the ring

0< |z|< π.

(j) The boundary of the set
{
z ∈C :

∑∞
n=0(1+1/z)n is convergent

}

is a straight line.

4.26. If γ is a closed path in C \ {1,2} without intersections, find all pos-

sible values for the integral

∫

γ

1

(z − 1)(z − 2)
dz.

4.27. Let f be a function with a pole of order m at z0, and let g be a

function with a pole of order n at z0. Show that fg has a pole of

order m+ n at z = z0.
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4.28. Use the Residue theorem to compute the integral:

(a)

∫ 2π

0

1

3 + cos t
dt;

(b)

∫ 2π

0

cos(2t)

5− 4cos t
dt.

4.29. Given a > 0, use identity (4.50) to show that

∫ ∞

0

1

x2 + a2
dx=

π

2a
.

4.30. For a > 1, show that:

(a)
1

2π

∫ 2π

0

cos t

a+ cos t
dt= 1− a√

a2 − 1
;

(b)
1

2π

∫ 2π

0

sin2 t

a+ cos t
dt= a−

√
a2 − 1.

4.31. Compute the integral:

(a)

∫ ∞

0

1

(x2 + 2)2
dx;

(b)

∫ ∞

0

1

1 + x6
dx;

(c)

∫ ∞

0

1

(1 + x2)(1 + x4)
dx;

(d)

∫ ∞

0

x2

1 + x4
dx;

(e)

∫ ∞

0

1

(x2 + a)2
dx for a > 0.

4.32. For a, b > 0, show that

∫ ∞

0

1

(x2 + a2)(x2 + b2)
dx=

π

2ab(a+ b)
.

4.33. Compute the integral:

(a)

∫ ∞

−∞

sinx

1 + x2
dx;

(b)

∫ ∞

0

cosx

(1 + x2)2
dx.

4.34. For a > 0, show that

∫ ∞

0

logx

(x2 + a2)2
dx=

π

4a3
(loga− 1).
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4.35. Show that if f, g : Ω → C are holomorphic functions in a connected

open set Ω ⊂C, and fg = 0, then at least one of the functions f and

g is zero in Ω.

4.36. Show that if f = u + iv is a holomorphic function in an open set

Ω ⊂C, then Δu=Δv = 0 in Ω.

Hint: show that u and v are of class C2.

4.37. Show that if f is a holomorphic function in C, and there exists a

polynomial p such that

∣
∣f(z)

∣
∣≤ log

(
1 +
∣
∣p(z)

∣
∣)

for every z ∈C, then f is constant.

4.38. Show that if f is a holomorphic function in C, and there exist c > 0

and n ∈N such that

∣
∣f(z)

∣
∣< c

(
1 + |z|n

)

for every z ∈C, then f is a polynomial of degree at most n.

4.39. Show that if f is a holomorphic function in some open set containing

the closed ball Br(z0), and

M = sup
{∣∣f(z)

∣
∣ : z ∈Br(z0)

}
<+∞,

then
∣
∣f (n)(z0)

∣
∣≤ n!M

rn
for n ∈N.



Part II
Differential Equations



5
Ordinary Differential Equations

In this chapter we introduce the basic notions of the theory of ordinary differ-

ential equations. Besides establishing the existence and uniqueness of solutions,

we study the class of linear differential equations with constant coefficients, as

well as their perturbations. In particular, we show how to solve linear differ-

ential equations by computing exponentials of matrices, and we establish the

Variation of parameters formula for the perturbations of these equations.

5.1 Basic Notions

In this chapter we consider ordinary differential equations of the form

x′ = f(t, x), (5.1)

where f : D → R
n is a continuous function in some open set D ⊂ R×R

n. We

first introduce the notion of a solution.

Definition 5.1

We say that a function x : (a, b)→R
n of class C1 is a solution of the differential

equation (5.1) if (see Figure 5.1):

L. Barreira, C. Valls, Complex Analysis and Differential Equations,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-1-4471-4008-5 5, c© Springer-Verlag London 2012
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Figure 5.1 A solution of the equation x′ = f(t, x)

(a) (t, x(t)) ∈D for each t ∈ (a, b);

(b) x′(t) = f(t, x(t)) for each t ∈ (a, b).

Example 5.2

Let us consider the equation x′ = x in R. We note that x(t) is a solution if and

only if

(
e−tx(t)

)′
=−e−tx(t) + e−tx′(t)

= e−t
(
−x(t) + x′(t)

)
= 0.

In order to simplify the notation, it is common to avoid writing explicitly the

dependence of the solutions on t, thus writing instead

(
e−tx

)′
=−e−tx+ e−tx′

= e−t
(
−x+ x′)= 0.

This shows that there exists k ∈R such that e−tx(t) = k, that is,

x(t) = ket, t ∈R. (5.2)

The solutions of the equation x′ = x are thus the functions in (5.2).

Example 5.3

We consider again the equation x′ = x in R, and we describe an alternative

method to find its solutions. Namely, if x(t) is a nonvanishing solution, then

x′

x
= 1 ⇔

(
log |x|

)′
= 1,
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and hence,

log
∣
∣x(t)

∣
∣= t+ c

for some constant c ∈R. We thus obtain

∣
∣x(t)

∣
∣= ecet, t ∈R.

Since x(t) does not vanish and is continuous (since it is of class C1), it is always

positive or always negative. Hence,

x(t) = ket, t ∈R

with k �= 0, since by varying c ∈ R the function ec takes all values of R+. By

direct substitution in the equation, one can verify that the zero function is also

a solution.

Example 5.4

Let us consider the equation (x, y)′ = (y,−x) in R
2, which can be written in

the form
{
x′ = y,

y′ =−x.

If (x(t), y(t)) is a solution, then

(
x2 + y2

)′
= 2xx′ + 2yy′

= 2xy+ 2y(−x) = 0.

Therefore, there exists r ≥ 0 such that

x(t)2 + y(t)2 = r2.

Writing

x(t) = r cosθ(t) and y(t) = r sinθ(t),

since x′ = y, we obtain

x′(t) =−r sinθ(t) · θ′(t) = r sinθ(t)

(we note that since x is differentiable, the function θ must also be differentiable).

Therefore, θ′(t) =−1 and there exists c ∈ R such that θ(t) =−t+ c. We thus

obtain
(
x(t), y(t)

)
=
(
r cos(−t+ c), r sin(−t+ c)

)
, t ∈R.
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Example 5.5

Now we consider the equation

x′ = 2tx+ t (5.3)

in R. One can write

x′

2x+ 1
= t (5.4)

for the solutions x not taking the value −1/2. It follows from (5.4) that there

exists c ∈R such that

1

2
log
∣
∣2x(t) + 1

∣
∣=

1

2
t2 + c,

that is,
∣
∣2x(t) + 1

∣
∣= et

2+2c.

Proceeding as in Example 5.3, we then obtain

x(t) =−1

2
+ ket

2

, t ∈R

with k ∈R. These are the solutions of equation (5.3).

5.2 Existence and Uniqueness of Solutions

In the same way as it is important to know that a polynomial has roots even if

one is not able to compute them, it is also important to know when a differential

equation has solutions even if one is not able to compute them.

We have the following result concerning the existence and uniqueness of

solutions of a differential equation.

Theorem 5.6

If f : D→R
n is a function of class C1 in some open set D ⊂R×R

n, then for

each (t0, x0) ∈D there exists a unique solution of the equation x′ = f(t, x) with

x(t0) = x0 in some open interval containing t0.

More generally, one can consider functions f that are not necessarily of

class C1.
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Definition 5.7

A function f : D→R
n is said to be locally Lipschitz in (the variable) x if, for

each compact set K ⊂D, there exists L> 0 such that

∥
∥f(t, x)− f(t, y)

∥
∥≤ L‖x− y‖

for every (t, x), (t, y) ∈K.

Using the Mean value theorem, one can show that all functions of class C1

are locally Lipschitz in x. But there are many other functions that are locally

Lipschitz.

Example 5.8

For each x, y ∈R, we have

∣
∣|x| − |y|

∣
∣≤ |x− y|.

This shows that the function f(t, x) = |x| is locally Lipschitz in x, with L= 1.

We also give an example of a function that is not locally Lipschitz.

Example 5.9

For the function f : R2 →R given by f(t, x) =
√

|x|, we have

∣
∣f(x, t)− f(t,0)

∣
∣=
√

|x|= 1
√

|x|
|x− 0|.

Since 1/
√
|x| →+∞ when x→ 0, the function f is not locally Lipschitz in x

in any open set D ⊂R×R intersecting the line R× {0}.

The following result includes Theorem 5.6 as a particular case.

Theorem 5.10 (Picard–Lindelöf theorem)

If the function f : D→R
n is continuous and locally Lipschitz in x in some open

set D ⊂R×R
n, then for each (t0, x0) ∈D there exists a unique solution of the

equation x′ = f(t, x) with x(t0) = x0 in some open interval containing t0.
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Proof

We first observe that there exists a solution of the problem

{
x′ = f(t, x),

x(t0) = x0

(5.5)

if and only if there exists a continuous function x : (a, b)→ R
n in some open

interval containing t0 such that

x(t) = x0 +

∫ t

t0

f
(
s,x(s)

)
ds (5.6)

for every t ∈ (a, b). Indeed, it follows from (5.5) that

x(t) = x(t0) +

∫ t

t0

f
(
s,x(s)

)
ds= x0 +

∫ t

t0

f
(
s,x(s)

)
ds,

and the function x is continuous (since it is of class C1). On the other hand,

if x is a continuous function satisfying (5.6), then the function s �→ f(s,x(s))

is also continuous, since it is a composition of continuous functions. Therefore,

t �→
∫ t
t0
f(s,x(s))ds is of class C1. Taking derivatives with respect to t in (5.6),

we then obtain

x′(t) = f
(
t, x(t)

)

for every t ∈ (a, b). It also follows from (5.6) that x(t0) = x0.

Take a < t0 < b and β > 0 such that [a, b]×Bβ(x0)⊂D, where

Bβ(x0) =
{
y ∈R

n : ‖y− x0‖ ≤ β
}
.

Now let X be the family of continuous functions x : (a, b) → R
n such that

‖x(t) − x0‖ ≤ β for every t ∈ (a, b). We also consider the transformation T

defined by

(Tx)(t) = x0 +

∫ t

t0

f
(
s,x(s)

)
ds

for each x ∈X . We note that Tx is a continuous function, and that

∥
∥(Tx)(t)− x0

∥
∥≤
∥
∥
∥
∥

∫ t

t0

f
(
s,x(s)

)
ds

∥
∥
∥
∥

≤ |t− t0|M ≤ (b− a)M,

where

M = sup
{∥∥f(t, x)

∥
∥ : t ∈ [a, b], x ∈Bβ(x0)

}
.
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Since the function (t, x) �→ ‖f(t, x)‖ is continuous and the set [a, b]×Bβ(x0) is

compact, it follows from Weierstrass’ theorem that M is finite. Moreover, for

b− a sufficiently small, we have (b− a)M ≤ β, and thus T (X)⊂X .

We also note that

∥
∥(Tx)(t)− (Ty)(t)

∥
∥≤
∥
∥
∥
∥

∫ t

t0

[
f
(
s,x(s)

)
− f
(
s, y(s)

)]
ds

∥
∥
∥
∥

≤
∣
∣
∣
∣

∫ t

t0

L
∥
∥x(s)− y(s)

∥
∥ds
∣
∣
∣
∣

≤ (b− a)L‖x− y‖∞

for every x, y ∈X , where

‖x− y‖∞ = sup
{∥∥x(t)− y(t)

∥
∥ : t ∈ (a, b)

}
.

Therefore,

‖Tx− Ty‖∞ ≤ (b− a)L‖x− y‖∞. (5.7)

Now we consider the sequence

xm = Txm−1 = Tmx0, m ∈N,

where x0 ∈X denotes the constant function equal to x0. The sequence is well

defined, since T (X)⊂X . We note that if necessary one can rechoose a and b

so that c= (b− a)L< 1. Then

‖xp − xq‖∞ ≤
p−1∑

j=q

‖xj+1 − xj‖∞ ≤
∞∑

j=q

∥
∥T j(Tx0)− T jx0

∥
∥
∞

≤
∞∑

j=q

cj‖Tx0 − x0‖∞ =
cq

1− c
‖Tx0 − x0‖∞

for every p≥ q. For each t ∈ (a, b), we have

∥
∥xp(t)− xq(t)

∥
∥≤ ‖xp − xq‖∞ ≤ cq

1− c
‖Tx0 − x0‖∞, (5.8)

and thus, (xm(t))m is a Cauchy sequence in R
n. Therefore, the sequence is

convergent and one can define

x(t) = lim
m→∞

xm(t).
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Letting p→∞ in (5.8), we obtain

∥
∥x(t)− xq(t)

∥
∥≤ cq

1− c
‖Tx0 − x0‖∞. (5.9)

Now we show that x ∈X and that it satisfies (5.6). We have

∥
∥x(t)− x0

∥
∥= lim

m→∞

∥
∥xm(t)− x0

∥
∥≤ β.

Moreover, for each t, s ∈ (a, b),

∥
∥x(t)− x(s)

∥
∥≤
∥
∥x(t)− xm(t)

∥
∥+
∥
∥xm(t)− xm(s)

∥
∥+
∥
∥xm(s)− x(s)

∥
∥. (5.10)

Given ε > 0, it follows from (5.9) that there exists p ∈N such that

∥
∥xm(t)− x(t)

∥
∥< ε

for every t ∈ (a, b) and m≥ p. Taking m= p, it follows from (5.10) that

∥
∥x(t)− x(s)

∥
∥< 2ε+

∥
∥xp(t)− xp(s)

∥
∥. (5.11)

On the other hand, since xp is continuous, there exists δ > 0 such that

∥
∥xp(t)− xp(s)

∥
∥< ε whenever |t− s|< δ,

and thus, it follows from (5.11) that

∥
∥x(t)− x(s)

∥
∥< 3ε whenever |t− s|< δ.

This shows that x is continuous, and hence x ∈X . In order to show that x also

satisfies (5.6), we note that

x(t) = lim
m→∞

xm(t) = lim
m→∞

(
x0 +

∫ t

t0

f
(
s,xm(s)

)
ds

)
, (5.12)

and
∣
∣
∣
∣

∫ t

t0

[
f
(
s,xm(s)

)
− f
(
s,x(s)

)]
ds

∣
∣
∣
∣≤
∣
∣
∣
∣

∫ t

t0

L
∥
∥xm(s)− x(s)

∥
∥ds
∣
∣
∣
∣

≤ (b− a)L‖xm − x‖∞ → 0

when m→∞. It then follows from (5.12) that x satisfies (5.6).

It remains to show that the solution x is unique. Let us assume that y ∈X is

also a solution. In view of the identities Tx= x and Ty = y, it follows from (5.7)

that

‖x− y‖∞ = ‖Tx− Ty‖∞ ≤ c‖x− y‖∞.

But since c < 1, we must have ‖x− y‖∞ = 0, and thus x= y. �
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Example 5.11

Let us consider the equation x′ = |x|. By Example 5.8 and the Picard–Lindelöf

theorem (Theorem 5.10), for each (t0, x0) ∈ R
2 there exists a unique solution

of the equation with x(t0) = x0 in some open interval containing t0.

Clearly, x(t) = 0 is a solution. On the other hand, when x > 0 we obtain

the equation x′ = x, which by Example 5.3 has the solutions

x(t) = ket, t ∈R,

now with k > 0 (so that x(t) is positive). When x < 0 we obtain the equation

x′ =−x whose solutions satisfy

(
etx
)′
= etx+ etx′ = et

(
x+ x′)= 0,

and hence,

x(t) = ke−t, t ∈R,

with k < 0. We thus obtain the solutions

x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ket with k > 0,

0,

ke−t with k < 0.

(5.13)

One can easily verify that for each (t0, x0) ∈R
2 there exists exactly one solution

with x(t0) = x0. On the other hand, by Theorem 5.10, all these solutions are

unique. Therefore, each solution of the equation x′ = |x| takes one of the forms

in (5.13).

The following example shows that for functions f(t, x) that are not locally

Lipschitz the solutions may not be unique.

Example 5.12

Let us consider the continuous function f(t, x) =
√
|x| in Example 5.9. One can

easily verify that both x(t) = 0 and

x(t) =

{
t2/4 if t≥ 0,

0 if t≤ 0

are solutions of the equation x′ =
√
|x| with x(0) = 0.
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We also show that each solution given by Theorem 5.10 can be extended to

a maximal interval in a unique manner.

Theorem 5.13

If the function f : D → R
n is continuous and locally Lipschitz in x in some

open set D ⊂R×R
n, then for each (t0, x0) ∈D there exists a unique solution

φ : (a, b)→ Rn of problem (5.5) such that, for any solution x : Ix → Rn of the

same problem, we have Ix ⊂ (a, b) and x(t) = φ(t) for every t ∈ Ix.

Proof

We note that J =
⋃

x Ix is an open interval, since the union of any family of

open intervals containing t0 is still an open interval (containing t0). Now we

define a function φ : J →R
n as follows. For each t ∈ Ix, let us take φ(t) = x(t).

We show that the function φ is well defined, that is, φ(t) does not depend on

the function x. Let x : Ix →R
n and y : Iy →R

n be solutions of problem (5.5).

Let also I be the largest open interval containing t0 where x = y. We want

to show that I = Ix ∩ Iy . Otherwise, the interval I would have an endpoint s

that is not an endpoint of Ix ∩ Iy . Since x and y are continuous in the interval

Ix ∩ Iy , we have

p := lim
t→s

x(t) = lim
t→s

y(t).

Moreover, by Theorem 5.10 with the pair (t0, x0) replaced by (s, p), there would

exist an open interval

(s− α, s+ α)⊂ Ix ∩ Iy where x= y.

But since (s− α, s+ α) \ I �= ∅, this contradicts the fact that I is the largest

interval containing t0 where x= y. Therefore, I = Ix ∩ Iy and x= y in Ix ∩ Iy .

Clearly, the function φ : J →R
n is a solution of problem (5.5). This yields the

desired result. �

By Theorem 5.13, one can introduce the notion of maximal interval (of

existence) of a solution as follows.

Definition 5.14

Under the assumptions of Theorem 5.13, the maximal interval (of existence)

of a solution x : I →R
n of the equation x′ = f(t, x) is the largest open interval

where there exists a solution coinciding with x in I .
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Example 5.15

By Example 5.2, the solutions of the equation x′ = x are given by (5.2). All

solutions have maximal interval R, since they are defined for all t ∈R.

Example 5.16

By Example 5.11, the solutions of the equation x′ = |x| are given by (5.13). All

solutions have maximal interval R, since they are defined for all t ∈R.

Example 5.17

Let us consider the equation x′ = x2. Besides the solution x(t) = 0, which has

maximal interval R, the nonvanishing solutions are obtained writing

x′

x2
= 1 ⇔

(
− 1

x

)′
= 1.

Therefore,

− 1

x(t)
= t+ c ⇔ x(t) =− 1

t+ c
, (5.14)

for some constant c ∈R. The maximal interval is thus (−∞,−c) or (−c,+∞),

depending on whether the initial time t0 is contained in the first or second

intervals. For example, the solution of the equation x′ = x2 with x(2) = 3 is

obtained substituting t= 2 in (5.14): we obtain

x(2) =− 1

2 + c
= 3 ⇔ c=−7

3
,

and thus,

x(t) =− 1

t− 7/3
=

3

7− 3t

for t ∈ (−∞,7/3), since 2 ∈ (−∞,7/3).

5.3 Linear Equations: Scalar Case

In this section we consider the particular case of equations in R of the form

x′ = a(t)x+ b(t), (5.15)

where a, b : R→R are continuous functions. The solutions are obtained as fol-

lows.
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Theorem 5.18

For each (t0, x0) ∈R
2, the (unique) solution of equation (5.15) with x(t0) = x0

is given by

x(t) = e
∫ t
t0

a(s)ds
x0 +

∫ t

t0

e
∫ t
u
a(s)dsb(u)du

for t ∈R (and thus has maximal interval R).

Proof

We first note that the function f(t, x) = a(t)x+ b(t) is continuous and locally

Lipschitz in x. To verify that it is locally Lipschitz, we write

∣
∣f(t, x)− f(t, y)

∣
∣= |a(t)| · |x− y|.

Since the function (t, x) �→ |a(t)| is continuous, it has a maximum in each com-

pact set, and hence f is locally Lipschitz in x. By the Picard–Lindelöf theorem

(Theorem 5.10), for each (t0, x0) ∈ R
2 there exists a unique solution of equa-

tion (5.15) with x(t0) = x0 in some open interval containing t0.

Now we note that if x(t) is a solution with x(t0) = x0, then

(
x(t)e

−
∫ t
t0

a(s)ds)′
= e

−
∫ t
t0

a(s)ds[
x′(t)− a(t)x(t)

]

= e
−
∫ t
t0

a(s)ds
b(t).

Integrating over t, we obtain

x(t)e
−
∫ t
t0

a(s)ds − x0 =

∫ t

t0

e
−
∫ u
t0

a(s)ds
b(u)du

and

x(t) = e
∫ t
t0

a(s)ds
x0 +

∫ t

t0

e
∫ t
u
a(s)dsb(u)du.

Since the integrands are continuous, the solution x(t) is defined for every t ∈R,

and thus has maximal interval R. �

Example 5.19

It follows from Theorem 5.18 with b(t) = 0 that the (unique) solution of the

equation x′ = a(t)x with x(t0) = x0 is given by

x(t) = e
∫ t
t0

a(s)ds
x0 for t ∈R. (5.16)
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Example 5.20

Let us consider the equation x′ = x cos t. The solution with x(0) = 2 is given

by (5.16), that is,

x(t) = e
∫ t
0
cos sds2 = 2esin t for t ∈R.

Example 5.21

Now we consider the equation

x′ = 3x+ t

with the condition x(1) = 0. By Theorem 5.18, the solution is given by

x(t) = e3(t−1)0 +

∫ t

1

e3(t−s)sds

=−e3(t−s)

(
s

3
+

1

9

)∣∣
∣
∣

s=t

s=1

=− t

3
− 1

9
+

4

9
e3(t−1)

for t ∈R.

Example 5.22

Finally, we consider the equation

x′ =
t

t2 + 1
x+ t

with the condition x(0) = 1. We note that the functions

a(t) =
t

t2 + 1
and b(t) = t

are continuous. By Theorem 5.18, since

exp

(∫ t

t0

a(s)ds

)
= exp

(
1

2
log
(
s2 + 1

)∣∣
∣
s=t

s=t0

)
=

√
t2 + 1

t20 + 1
,
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the solution is given by

x(t) =

√
t2 + 1

02 + 1
x(0) +

∫ t

0

√
t2 + 1

s2 + 1
sds

=
√

t2 + 1+
√

t2 + 1

∫ t

0

s√
s2 + 1

ds

=
√

t2 + 1+
√

t2 + 1
√

s2 + 1
∣
∣
∣
s=t

s=0

=
√

t2 + 1+ t2 + 1−
√
t2 + 1= t2 + 1

for t ∈R.

5.4 Linear Equations: General Case

Now we consider equations in R
n of the form

x′ =Ax+ b(t), (5.17)

where A is an n× n matrix with real entries and b : R→ R
n is a continuous

function. On purpose, we do not consider the more general case of equations

in R
n of the form

x′ =A(t)x+ b(t),

where A(t) is an n × n matrix varying continuously with t. In spite of their

importance, these equations fall outside the scope of the book.

We start our study with the particular case when b(t) = 0, that is, with the

equation

x′ =Ax, (5.18)

where A is an n× n matrix with real entries. Since the function f(t, x) = Ax

is of class C1, it is also continuous and locally Lipschitz in x.

Example 5.23

Let us consider the equation

(
x

y

)′

=

(
0 1

−1 0

)(
x

y

)
, (5.19)
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which can be written in the form
{
x′ = y,

y′ =−x.

By Example 5.4, its solutions are
(
x(t)

y(t)

)
=

(
r cos(−t+ c)

r sin(−t+ c)

)
,

with r ≥ 0 and c ∈ [0,2π). We note that
(
x(t)

y(t)

)
=

(
r cos c cos t+ r sin c sin t

−r cos c sin t+ r sin c cos t

)

= r cos c

(
cos t

− sin t

)
+ r sin c

(
sin t

cos t

)
.

Therefore, the set of solutions of equation (5.19) is a linear space of dimension 2,

generated by the vectors
(

cos t

− sin t

)
and

(
sin t

cos t

)
.

In order to solve equation (5.18) for an arbitrary matrix A, we introduce

the notion of the exponential of a matrix.

Definition 5.24

We define the exponential of a square matrix A by

eA =

∞∑

k=0

1

k!
Ak, (5.20)

with the convention that A0 is the identity matrix Id.

We show that the series converges.

Proposition 5.25

The series in (5.20) is convergent, that is, there exists an n× n matrix B such

that
m∑

k=0

1

k!
Ak →B

entry by entry when m→∞.
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Proof

Let

‖A‖= sup
x �=0

‖Ax‖
‖x‖ ,

with the norm in R
n given by

∥
∥(x1, . . . , xn)

∥
∥=

(
n∑

i=1

x2
i

)1/2

.

We note that
∥
∥Ak
∥
∥≤ ‖A‖k. (5.21)

Indeed,

∥
∥Ak
∥
∥= sup

x �=0

‖Akx‖
‖x‖

= sup
x �=0, Ak−1x �=0

‖A(Ak−1)x‖
‖x‖

= sup
x �=0, Ak−1x �=0

(
‖A(Ak−1x)‖
‖Ak−1x‖ · ‖A

k−1x‖
‖x‖

)

≤ sup
y �=0

‖Ay‖
‖y‖ · sup

x �=0

‖Ak−1x‖
‖x‖

= ‖A‖ ·
∥
∥Ak−1

∥
∥,

and inequality (5.21) follows by induction. Therefore,

∞∑

k=0

∥
∥
∥
∥
1

k!
Ak

∥
∥
∥
∥=

∞∑

k=0

1

k!

∥
∥Ak
∥
∥

≤
∞∑

k=0

1

k!
‖A‖k = e‖A‖ <∞. (5.22)

Now we observe that if the entries of an n×nmatrix B are bij , for i, j = 1, . . . , n,

and e1, . . . , en is the standard basis of Rn, then

‖B‖ ≥ ‖Bej‖
‖ej‖

= ‖Bej‖

=

(
n∑

i=1

b2ij

)1/2

≥ |bij |.
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It thus follows from (5.22) that the series
∑∞

k=0 |a
(k)
ij |/k!, where a

(k)
ij are the

entries of Ak, is convergent for i, j = 1, . . . , n. This shows that the series
∑∞

k=0A
k/k! is convergent entry by entry. �

Example 5.26

Let 0 be the n× n matrix with all entries equal to zero. Since 0k = 0 for each

k ∈N, we obtain

e0 =

∞∑

k=0

1

k!
0k =

1

0!
00 = Id.

Example 5.27

We have

eId =

∞∑

k=0

1

k!
Idk =

∞∑

k=0

1

k!
Id = eId.

In Section 5.5 we describe a method to compute the exponential of a ma-

trix A. Here, we show how the exponential can be used to solve equations (5.18)

and (5.17). We start with an auxiliary result.

Proposition 5.28

(eAt)′ =AeAt for every t ∈R, with the derivative computed entry by entry.

Proof

By Proposition 5.25, the exponential

eAt =

∞∑

k=0

1

k!
tkAk

is well defined for every t ∈ R. Hence, each entry of eAt is a power series in t

with radius of convergence +∞. Since power series can be differentiated term
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by term in the interior of their domain of convergence, we obtain

(
eAt
)′
=

∞∑

k=1

1

k!
ktk−1Ak

=A

∞∑

k=1

1

(k− 1)!
tk−1Ak−1

=AeAt.

This yields the desired result. �

Example 5.29

We show that there exists no 2× 2 matrix A with

eAt =

(
cos t et

0 1

)
.

Otherwise, we would have

eAt
∣
∣
t=0

=

(
1 1
0 1

)
,

but by Example 5.26, we always have eA0 = e0 = Id.

Example 5.30

Let us find a 2× 2 matrix A such that

eAt =

(
e2t te2t

0 e2t

)
.

Taking derivatives with respect to t, we obtain

(
eAt
)′∣∣

t=0
=

(
2e2t e2t + 2te2t

0 2e2t

)
=

(
2 1

0 2

)
.

On the other hand, it follows from Proposition 5.28 that
(
eAt
)′∣∣

t=0
=AeAt

∣
∣
t=0

=Ae0 =AId =A.

Hence,

A=

(
2 1

0 2

)
.

Now we obtain all solutions of equation (5.17).
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Theorem 5.31 (Variation of parameters formula)

For each (t0, x0) ∈R×R
n, the (unique) solution of the equation x′ =Ax+ b(t)

with x(t0) = x0 is given by

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)b(s)ds (5.23)

for t ∈R (and thus has maximal interval R).

Proof

It is sufficient to verify that the function x(t) defined by (5.23) satisfies

x(t0) = eA0x0 = e0x0 = Idx0 = x0

and

x′(t) =AeA(t−t0)x0 +

∫ t

t0

AeA(t−s)b(s)ds+ eA(t−t)b(t)

=A

(
eA(t−t0)x0 +

∫ t

t0

eA(t−s)b(s)ds

)
+ e0b(t)

=Ax(t) + b(t).

Since the integrands are continuous, the function x(t) is defined for t ∈R. �

The solutions of the equation x′ =Ax can be obtained as a particular case

of Theorem 5.31.

Proposition 5.32

For each (t0, x0) ∈R×R
n, the (unique) solution of the equation x′ =Ax with

x(t0) = x0 is given by

x(t) = eA(t−t0)x0

for t ∈ R (and thus has maximal interval R). Moreover, the set of solutions of

the equation x′ =Ax is a linear space of dimension n.

Proof

The first statement follows from Theorem 5.31 by setting b(t) = 0. For the sec-

ond statement, we note that any linear combination of solutions of the equation



242 5. Ordinary Differential Equations

x′ = Ax is still a solution of this equation. Therefore, the set of solutions is a

linear space, generated by the columns of the matrix eA(t−t0). Since

eA(t−t0)
∣
∣
t=t0

= e0 = Id,

these columns are linearly independent, because they are linearly independent

for a particular value of t. Hence, the space of the solutions has dimension n. �

Example 5.33

Let us consider the equation

{
x′ = 2x+ y,

y′ = 2y+ t.
(5.24)

By Example 5.30, for the matrix

A=

(
2 1

0 2

)

we have

eAt =

(
e2t te2t

0 e2t

)
.

Hence, the solutions of equation (5.24) are given by

(
x(t)

y(t)

)
=

(
e2(t−t0) (t− t0)e

2(t−t0)

0 e2(t−t0)

)(
x(t0)

y(t0)

)

+

∫ t

t0

(
e2(t−s) (t− s)e2(t−s)

0 e2(t−s)

)(
0

s

)
ds.

For example, when t0 = 0, after some computations we obtain

(
x(t)

y(t)

)
=

(
e2tx(0) + te2ty(0)

e2ty(0)

)

+

(∫ t
0
(t− s)e2(t−s)sds
∫ t
0
e2(t−s)sds

)

=

(
e2tx(0) + te2ty(0) + 1

4 (1 + t− e2t + te2t)

e2ty(0)− 1
4 (1 + 2t− e2t)

)

.

Example 5.34

Now we show that

eA(t−s) = eAte−As (5.25)
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for every t, s ∈R. Given v ∈R
n, we consider the functions

x(t) = eA(t−s)v and y(t) = eAte−Asv.

We note that

x(s) = eA0v = Idv = v

and

y(s) = eAse−Asv.

Moreover,

x′(t) =AeA(t−s)v =Ax(t)

and

y′(t) =AeAte−Asv =Ay(t).

Hence, if we show that

eAse−As = Id, (5.26)

then it follows from the uniqueness of the solutions of the equation x′ = Ax

that x(t) = y(t) for every t ∈R, that is,

eA(t−s)v = eAte−Asv

for every t, s ∈ R and v ∈ R
n, which establishes (5.25). In order to show that

identity (5.26) holds, we first note that

d

ds

(
eAse−As

)
=AeAse−As − eAsAe−As.

We also have

AeAs =A

( ∞∑

k=0

1

k!
skAk

)

=

( ∞∑

k=0

1

k!
skAk

)

A= eAsA,

since AAk =AkA for each k. Therefore,

d

ds

(
eAse−As

)
= 0.

Finally, since

eAse−As
∣
∣
s=0

= e0e−0 = Id2 = Id,

we conclude that identity (5.26) holds for every s ∈R.



244 5. Ordinary Differential Equations

In particular, it follows from (5.25) that

eAteAs = eAseAt

for every t, s ∈R.

5.5 Computing Exponentials of Matrices

In this section we describe a method to compute the exponential of a matrix.

We first recall an important result from linear algebra.

Theorem 5.35 (Complex Jordan form)

For each n× n matrix A there exists an invertible n× n matrix S with entries

in C such that

S−1AS =

⎛

⎜
⎝

R1 0
. . .

0 Rk

⎞

⎟
⎠ , (5.27)

where each block Rj is an nj × nj matrix, for some nj ≤ n, of the form

Rj =

⎛

⎜
⎜
⎜
⎜
⎝

λj 1 0
. . .

. . .

. . . 1

0 λj

⎞

⎟
⎟
⎟
⎟
⎠

,

where each complex number λj is an eigenvalue of A.

We give several examples.

Example 5.36

When nj = 1 we obtain the 1× 1 matrix Rj = [λj ]. In this case there are no 1s

above the main diagonal.

Example 5.37

We recall that if an n× n matrix A has distinct eigenvalues μ1, . . . , μn, then

it can be diagonalized, that is, there exists an invertible n× n matrix S (with
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entries in C) such that

S−1AS =

⎛

⎜
⎝

μ1 0
. . .

0 μn

⎞

⎟
⎠ .

Example 5.38

Let us consider the matrix

A=

(
0 −2

1 0

)
. (5.28)

The eigenvalues of A are i
√
2 and −i

√
2. For example, taking the eigenvectors

(
√
2,−i) and (

√
2, i) associated respectively to i

√
2 and −i

√
2, we consider the

matrix

S =

(√
2

√
2

−i i

)
. (5.29)

Since

S−1 =
1

i2
√
2

(
i −

√
2

i
√
2

)
, (5.30)

we obtain

S−1AS =

(
i
√
2 0

0 −i
√
2

)
. (5.31)

This is the complex Jordan form of the matrix A.

Example 5.39

For a 3× 3 matrix A with all eigenvalues equal to λ, the complex Jordan form

is one of the matrices

⎛

⎝
λ 0 0

0 λ 0

0 0 λ

⎞

⎠ ,

⎛

⎝
λ 1 0

0 λ 0

0 0 λ

⎞

⎠ and

⎛

⎝
λ 1 0

0 λ 1

0 0 λ

⎞

⎠ . (5.32)

We note that if

S =

⎛

⎝
0 0 1

0 1 0

1 0 0

⎞

⎠ ,
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then

S−1

⎛

⎝
λ 1 0

0 λ 0

0 0 λ

⎞

⎠S =

⎛

⎝
λ 0 0

0 λ 1

0 0 λ

⎞

⎠ .

This explains why we did not include the last matrix in (5.32).

When A has a single block Rj in its complex Jordan from, one can easily

compute the exponential eAt. More precisely, let A be the n×n matrix given by

A=

⎛

⎜
⎜
⎜
⎜
⎝

λ 1 0
. . .

. . .

. . . 1

0 λ

⎞

⎟
⎟
⎟
⎟
⎠

. (5.33)

We write

A= λId +N,

where N is the n× n matrix given by

N =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0
. . .

. . .

. . . 1

0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

One can easily verify that Nn = 0.

Proposition 5.40

For the n× n matrix A in (5.33), we have

eAt = eλt
(
Id + tN +

t2

2!
N2 + · · ·+ tn−1

(n− 1)!
Nn−1

)
(5.34)

for each t ∈R.
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Proof

Let B(t) be the matrix on the right-hand side of (5.34). Taking derivatives

with respect to t, we obtain

B′(t) = λeλt
(
Id + tN + · · ·+ tn−1

(n− 1)!
Nn−1

)

+ eλt
(
N + tN2 + · · ·+ tn−2

(n− 2)!
Nn−1

)

= λeλt
(
Id + tN + · · ·+ tn−1

(n− 1)!
Nn−1

)

+ eλt
(
N + tN2 + · · ·+ tn−1

(n− 1)!
Nn

)

= (λ+N)eλt
(
Id + tN + · · ·+ tn−1

(n− 1)!
Nn−1

)
,

since Nn = 0. Therefore,

B′(t) =AB(t).

Since B(0) = Id, we conclude that for each v ∈ R
n the function x(t) = B(t)v

is the solution of the equation x′ =Ax with x(0) = v. But this solution is also

given by eAtv. Hence, B(t)v = eAtv for every v ∈R, that is, B(t) = eAt. �

Example 5.41

For the matrix

A=

⎛

⎝
2 1 0

0 2 1

0 0 2

⎞

⎠ ,

we have A= 2Id+N , with

N =

⎛

⎝
0 1 0

0 0 1

0 0 0

⎞

⎠ , N2 =

⎛

⎝
0 0 1

0 0 0

0 0 0

⎞

⎠ and N3 = 0.

Hence, by Proposition 5.40,

eAt = e2t
(
Id + tN +

t2

2
N

)
=

⎛

⎝
e2t te2t 1

2 t
2e2t

0 e2t te2t

0 0 e2t

⎞

⎠ .
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For example, the solution of the equation x′ =Ax with x(0) = (3,0,1) is given

by

x(t) = eAt

⎛

⎝
3

0

1

⎞

⎠=

⎛

⎝
3e2t + 1

2 t
2e2t

te2t

e2t

⎞

⎠ .

Now we consider arbitrary matrices.

Proposition 5.42

If A is a square matrix with the complex Jordan form in (5.27), then

eAt = Se(S
−1AS)tS−1 = S

⎛

⎜
⎝

eR1t 0
. . .

0 eRkt

⎞

⎟
⎠S−1 (5.35)

for each t ∈R.

Proof

Let us consider the change of variables y = S−1x. If x = x(t) is a solution of

the equation x′ =Ax, then the function y = y(t) = S−1x(t) satisfies

y′ = S−1x′ = S−1Ax= S−1ASy.

Hence, y′ =By, where B = S−1AS. Therefore,

y(t) = eBty(0) = e(S
−1AS)ty(0). (5.36)

On the other hand, since x(0) = Sy(0), we also have

y(t) = S−1x(t) = S−1eAtx(0) = S−1eAtSy(0). (5.37)

Comparing (5.36) and (5.37), we conclude that

e(S
−1AS)t = S−1eAtS.

This establishes the first identity in (5.35).
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Moreover, since S−1AS is the complex Jordan form, we obtain

e(S
−1AS)t = exp

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

R1 0
. . .

0 Rk

⎞

⎟
⎠ t

⎫
⎪⎬

⎪⎭

=

∞∑

m=0

1

m!
tm

⎛

⎜
⎝

R1 0
. . .

0 Rk

⎞

⎟
⎠

m

=

∞∑

m=0

1

m!
tm

⎛

⎜
⎝

Rm
1 0

. . .

0 Rm
k

⎞

⎟
⎠ ,

and thus,

e(S
−1AS)t =

⎛

⎜
⎝

∑∞
m=0

1
m! t

mRm
1 0

. . .

0
∑∞

m=0
1
m! t

mRm
k

⎞

⎟
⎠

=

⎛

⎜
⎝

eR1t 0
. . .

0 eRkt

⎞

⎟
⎠ .

This completes the proof of the proposition. �

Example 5.43

Let us consider the matrix

A=

⎛

⎝
5 1 0

0 5 0

0 0 3

⎞

⎠ .

Since

e

(
5 1
0 5

)
t
= e5t

(
Id + t

(
0 1

0 0

))
=

(
e5t te5t

0 e5t

)
,

it follows from Proposition 5.42 that

eAt =

(
e

(
5 1
0 5

)
t

0

0 e3t

)

=

⎛

⎝
e5t te5t 0

0 e5t 0

0 0 e3t

⎞

⎠ .
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Example 5.44

Now we consider the matrix A in (5.28). It follows from (5.29), (5.30) and (5.31)

that

eAt = Se(S
−1AS)tS−1 = S

(
ei

√
2t 0

0 e−i
√
2t

)

S−1.

Using the formulas

cos(
√
2t) =

ei
√
2t + e−i

√
2t

2
and sin(

√
2t) =

ei
√
2t − e−i

√
2t

2i
,

we then obtain

eAt =
1

i2
√
2

(√
2

√
2

−i i

)(
ei

√
2t 0

0 e−i
√
2t

)(
i −

√
2

i
√
2

)

=

(
(ei

√
2t + e−i

√
2t)/2 −(ei

√
2t − e−i

√
2t)/(

√
2i)

(ei
√
2t − e−i

√
2t)/(2

√
2i) (ei

√
2t + e−i

√
2t)/2

)

=

(
cos(

√
2t) −

√
2 sin(

√
2t)

sin(
√
2t)/

√
2 cos(

√
2t)

)
.

5.6 Solved Problems and Exercises

Problem 5.1

Verify that tet is a solution of the equation x′′ − 2x′ + x= 0.

Solution

Let x(t) = tet. We have

x′ = et + tet and x′′ = 2et + tet.

Hence,

x′′ − 2x′ + x= 2et + tet − 2et − 2tet + tet = 0,

and thus, x is a solution of the equation.

Problem 5.2

Find all solutions of the equation x′′′ = 0.
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Solution

Writing x′′ = y, we obtain y′ = x′′′ = 0. Thus, y(t) = a for some a ∈ R, that

is, x′′ = a. Writing z = x′, we obtain z′ = x′′ = a. Thus, z(t) = at+ b for some

b ∈R, that is, x′(t) = at+ b. Finally, integrating on both sides we obtain

x(t) =
a

2
t2 + bt+ c, with a, b, c ∈R,

or equivalently

x(t) = kt2 + bt+ c, with k, b, c ∈R.

In particular, all solutions have maximal interval R.

Problem 5.3

Find all solutions of the equation x′ = x3.

Solution

For a nonvanishing solution x, one can write

x′

x3
= 1 ⇔

(
− 1

2x2

)′
= 1,

and thus,

1

x(t)2
=−2t+ c ⇔ x(t) =± 1√

−2t+ c
,

for some constant c ∈R. In order that a solution x is well defined, it is necessary

that −2t+c > 0, which is the same as t ∈ (−∞, c/2). The nonvanishing solutions

are thus

x(t) =
1√

−2t+ c
and x(t) =− 1√

−2t+ c

with c ∈ R. Both have maximal interval (−∞, c/2). By direct substitution in

the equation one can verify that the zero function is also a solution, thus with

maximal interval R.

Problem 5.4

Find all solutions of the equation x′ + tetx= 0.
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Solution

For a nonvanishing solution x, one can write

x′

x
=−tet ⇔

(
log |x|

)′
=−tet,

and thus,

log
∣
∣x(t)

∣
∣= et(1− t) + c ⇔

∣
∣x(t)

∣
∣= ee

t(1−t)+c,

for some constant c ∈R. We note that x must be continuous (since by definition

the solutions of a differential equation are of class C1). Hence, it is always

positive or always negative. Therefore,

x(t) = kee
t(1−t) for t ∈R, (5.38)

with k �= 0, since by varying c ∈ R the function ec takes all values of R+. By

direct substitution in the equation, one can verify that the zero function is also

a solution. In conclusion, the solutions are given by (5.38) with k ∈R, and all

have maximal interval R.

Problem 5.5

Find the solution of the equation

x′ + (t sin t)x= 0 with x(0) = 1. (5.39)

Solution

For a nonvanishing solution x, one can write

x′

x
=−t sin t.

Integrating over t, we obtain

log
∣
∣x(t)

∣
∣= t cos t− sin t+ c ⇔

∣
∣x(t)

∣
∣= et cos t−sin t+c,

for some constant c ∈R. Proceeding in a similar manner to that in Problem 5.4,

we conclude that

x(t) = ket cos t−sin t for t ∈R, (5.40)

with k �= 0. By direct substitution in the equation, one can verify that the zero

function is also a solution. Therefore, the solutions are given by (5.40) with

k ∈ R, and all have maximal interval R. For x(0) = 1, we obtain 1 = ke0 = k,

and thus, the solution of problem (5.39) is x(t) = et cos t−sin t for t ∈R.
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Problem 5.6

Find all solutions of the equation x′ =−|x|.

Solution

For each x, y ∈R, we have

∣
∣|x| − |y|

∣
∣≤ |x− y| (5.41)

(see Figure 5.2), and thus, the continuous function f(t, x) = −|x| is locally

Lipschitz in x. It follows from the Picard–Lindelöf theorem (Theorem 5.10) that

for each (t0, x0) ∈ R
2 there exists a unique solution of the equation x′ =−|x|

with x(t0) = x0 in some open interval containing t0.

Figure 5.2 Graph of the function −|x|

Clearly, x(t) = 0 is a solution. When x > 0 we obtain the equation x′ =−x,

which has the solutions

x(t) = ke−t, t ∈R,

with k > 0 (so that x(t) is positive). Finally, when x < 0 we obtain the equation

x′ = x, which has the solutions

x(t) = ket, t ∈R,

with k < 0 (so that x(t) is negative). In conclusion, the solutions of the equation
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x′ =−|x| are

x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ke−t with k > 0,

0,

ket with k < 0,

and all have maximal interval R.

Problem 5.7

Verify that the function f : R2 →R defined by

f(t, x) = tx+ |t+ x|

is locally Lipschitz in x.

Solution

For each t, x, y ∈R, it follows from (5.41) that

∣
∣f(t, x)− f(t, y)

∣
∣=
∣
∣tx+ |t+ x| − ty− |t+ y|

∣
∣

≤ |tx− ty|+
∣
∣|t+ x| − |t+ y|

∣
∣

≤ |t||x− y|+
∣
∣t+ x− (t+ y)

∣
∣

=
(
|t|+ 1

)
|x− y|. (5.42)

Now let K ⊂ R
2 be a compact set (that is, a closed bounded set). Since K is

bounded, there exists M =M(K)> 0 such that |t|<M for every (t, x) ∈K. It

then follows from (5.42) that

∣
∣f(t, x)− f(t, y)

∣
∣≤ (M + 1)|x− y|

for each (t, x), (t, y) ∈K. This shows that f is locally Lipschitz in x.

Problem 5.8

Find all solutions of the equation

xx′′ =
(
x′)2. (5.43)
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Solution

We note that x(t) = 0 is a solution. For the nonvanishing solutions, equation

(5.43) can be written in the form

d

dt

(
x′

x

)
=

x′′x− (x′)2

x2
= 0.

We then obtain

x′

x
= a for some a ∈R.

Since

(
log
∣
∣x(t)

∣
∣)′ =

x′

x
= a,

we conclude that

log
∣
∣x(t)

∣
∣= at+ b

for some a, b ∈R. This is equivalent to x(t) = keat, with a ∈R and k ∈R \ {0}.
Therefore, the solutions of equation (5.43) are x(t) = keat, with a, k ∈ R, and

all have maximal interval R.

Problem 5.9

Letting x= ty, solve the equation

x′ =
t+ x

t− x
(5.44)

as explicitly as possible.

Solution

Since

x′ =
t+ x

t− x
=

1+ x/t

1− x/t
,

letting x= ty (that is, x(t) = ty(t)) we obtain

y+ ty′ =
1+ y

1− y
,

or equivalently

ty′ =
1+ y

1− y
− y =

1+ y2

1− y
.
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Writing this equation in the form

1− y

1 + y2
y′ =

1

t
,

and integrating on both sides with respect to t, we obtain

tan−1 y− 1

2
log
(
1 + y2

)
= log |t|+ c

for some constant c ∈R. This shows that each solution of equation (5.44) sat-

isfies

tan−1

(
x(t)

t

)
− 1

2
log

(
1 +

x(t)2

t2

)
= log |t|+ c

for some c ∈R.

Problem 5.10

Letting y = x4, solve the equation

x′ =− x

2t
+

t

x3
.

Solution

Letting y = x4, we obtain

y′ = 4x3x′ = 4x3

(
− x

2t
+

t

x3

)

=−2x4

t
+ 4t=−2

t
y+ 4t.

Therefore,
(
t2y
)′
= 2ty+ t2y′ = 2ty− 2ty+ 4t3 = 4t3,

and hence,

t2y(t) = t4 + c

for some constant c ∈R, which yields

x(t) =± 4
√

t2 + c/t2.

Each solution x(t) is defined when t2 + c/t2 > 0 (and not t2 + c/t2 ≥ 0, so that

x(t) is of class C1). Hence, t4 >−c, and the maximal interval of each solution

is R+ or R− for c≥ 0, and is (−∞,− 4
√

|c|) or ( 4
√

|c|,+∞) for c < 0.
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Problem 5.11

Find the solution of the equation x′ = 2x+ t with x(1) = 3.

Solution

By Theorem 5.18, the solution is given by

x(t) = e
∫ t
1
2ds3 +

∫ t

1

e
∫ t
u
2dsudu

= 3e2(t−1) +

∫ t

1

e2(t−u)udu

= 3e2(t−1) − 1

4
e2(t−u)(1 + 2u)

∣
∣
∣
u=t

u=1

=−1

4
− t

2
+

15

4
e2(t−1)

for t ∈R.

Problem 5.12

Given a ∈R, compute the exponential eAt for the matrix

A=

(
a 1

0 a

)
.

Solution

We have

A=

(
a 0

0 a

)
+

(
0 1

0 0

)
= aId +N,

where

N =

(
0 1

0 0

)
.

Since N2 = 0, for each k ≥ 0 we have

Ak = (aId +N)k

= akIdk + kak−1Idk−1N

= akId + kak−1N.
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Therefore, by (5.20), we obtain

eAt =

∞∑

k=0

1

k!
Aktk

=

∞∑

k=0

1

k!
(at)kId +

∞∑

k=1

1

(k− 1)!
(at)k−1tN

= eat(Id + tN)

= eat
(
Id + t

(
0 1

0 0

))

=

(
eat teat

0 eat

)
.

Problem 5.13

Find the solution of the equation

{
x′ = 2x+ y,

y′ = 2y+ 1
(5.45)

with x(0) = y(0) = 0.

Solution

Equation (5.45) can be written in the form

(
x′

y′

)
=A

(
x

y

)
+

(
0

1

)
, where A=

(
2 1

0 2

)
.

By Problem 5.12, we have

eAt =

(
e2t te2t

0 e2t

)
.

Hence, it follows from the Variation of parameters formula (Theorem 5.31) that

the solution of equation (5.45) with x(0) = y(0) = 0 is given by
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(
x(t)

y(t)

)
= eAt

(
0

0

)
+

∫ t

0

eA(t−s)

(
0

1

)
ds

=

∫ t

0

(
(t− s)e2(t−s)

e2(t−s)

)
ds

=

(
1

4
+

1

2
te2t − 1

4
e2t,

1

2
e2t − 1

2

)

for t ∈R.

Problem 5.14

Find all solutions of the equation

{
x′ = 3x+ y,

y′ = 3y− t

in terms of the initial condition (x(0), y(0)) = (x0, y0).

Solution

We write the equation in the matrix form

(
x

y

)′
=A

(
x

y

)
+

(
0

−t

)
, where A=

(
3 1

0 3

)
.

By Problem 5.12, we have

eAt =

(
e3t te3t

0 e3t

)
.

Therefore, by the Variation of parameters formula (Theorem 5.31), the solu-

tions are given by

(
x(t)

y(t)

)
= eA(t−t0)

(
x(t0)

y(t0)

)
+

∫ t

t0

eA(t−s)

(
0

−s

)
ds
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for t ∈R. Taking t0 = 0, we obtain

(
x(t)

y(t)

)
=

(
e3t te3t

0 e3t

)(
x0

y0

)
+

∫ t

0

(
e3(t−s) (t− s)e3(t−s)

0 e3(t−s)

)(
0

−s

)
ds

=

(
e3tx0 + te3ty0 −

∫ t
0
s(t− s)e3(t−s) ds

e3ty0 −
∫ t
0
se3(t−s) ds

)

=

(
e3tx0 + te3ty0 − (e3t(3t− 2) + 3t+ 2)/27

e3ty0 − (e3t − 3t− 1)/9

)

for t ∈R.

Problem 5.15

Diagonalize the matrix

A=

(
0 −3

1 0

)
.

Solution

It follows from

det(A− λId) = λ2 + 3= 0

that the eigenvalues of A are i
√
3 and −i

√
3. For example, taking the eigen-

vectors (i
√
3,1) and (−i

√
3,1) associated respectively to i

√
3 and −i

√
3, we

consider the matrix

S =

(
i
√
3 −i

√
3

1 1

)
,

whose columns are these eigenvectors. Then

S−1 =
1

2
√
3

(
−i

√
3

i
√
3

)
,

and the diagonal matrix

S−1AS =

(
i
√
3 0

0 −i
√
3

)

is the complex Jordan form of A.
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Problem 5.16

Find the complex Jordan form of the matrix

A=

(
2 3

1 0

)
(5.46)

and compute eAt.

Solution

It follows from

det(A− λId) = λ2 − 2λ− 3 = 0

that the eigenvalues of A are 3 and −1. For example, taking the eigenvectors

(3,1) and (−1,1) associated respectively to 3 and −1, we consider the matrix

S =

(
3 −1

1 1

)
.

Then

S−1 =
1

4

(
1 1

−1 3

)
,

and the matrix

J = S−1AS =

(
3 0

0 −1

)

is the (real and) complex Jordan form of A. Hence,

S−1eAtS = eJt =

(
e3t 0

0 e−t

)
,

and it follows from Proposition 5.42 that

eAt = eSJS−1t = SeJtS−1

=

(
3 −1

1 1

)(
e3t 0

0 e−t

)
1

4

(
1 1

−1 3

)

=
1

4

(
3e3t + e−t 3e3t − 3e−t

e3t − e−t e3t + 3e−t

)
. (5.47)
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Problem 5.17

Find the solution of the equation

x′ =

(
2 3

1 0

)
x with x(0) =

(
1

2

)
.

Solution

By Proposition 5.32, the solution is given by

(
x(t)

y(t)

)
= eAt

(
x(0)

y(0)

)
= eAt

(
1

2

)
,

where A is the matrix in (5.46). It then follows from (5.47) that

(
x(t)

y(t)

)
=

1

4

(
3e3t + e−t 3e3t − 3e−t

e3t − e−t e3t + 3e−t

)(
1

2

)

=
1

4

(
9e3t − 5e−t

3e3t + 5e−t

)

for t ∈R.

Problem 5.18

Compute eAt for the matrix

A=

⎛

⎜
⎜
⎝

4 −1 0 0

0 4 0 0

0 0 0 5

0 0 −5 0

⎞

⎟
⎟
⎠ .

Solution

We note that A is in block form, that is,

A=

(
A1 0

0 A2

)
,

where

A1 =

(
4 −1

0 4

)
and A2 =

(
0 5

−5 0

)
.
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Hence,

eAt =

(
eA1t 0

0 eA2t

)
. (5.48)

By Proposition 5.40, for the block A1 we have

eA1t = e(−A1)(−t)

= e(−4)(−t)

(
Id + (−t)

(
0 1

0 0

))

= e4t
(
1 −t

0 1

)
=

(
e4t −te4t

0 e4t

)
.

On the other hand, the eigenvalues of A2 are 5i and −5i. For example, taking

the eigenvectors (−i,1) and (i,1) associated respectively to 5i and −5i, we

consider the matrix

S =

(
−i i

1 1

)
.

Then

J = S−1A2S =

(
5i 0

0 −5i

)

is the complex Jordan form of A2, and by Proposition 5.42 we obtain

eA2t = SeJtS−1

=

(
−i i

1 1

)(
e5it 0

0 e−5it

)
1

2

(
i 1

−i 1

)

=
1

2

(
e5it + e−5it −ie5it + ie−5it

ie5it − ie−5it e5it + e−5it

)

=

(
cos(5t) sin(5t)

− sin(5t) cos(5t)

)
.

It follows from (5.48) that

eAt =

⎛

⎜
⎜
⎝

e4t −te4t 0 0

0 e4t 0 0

0 0 cos(5t) sin(5t)

0 0 − sin(5t) cos(5t)

⎞

⎟
⎟
⎠ .



264 5. Ordinary Differential Equations

Problem 5.19

For the matrix

A=

⎛

⎜
⎜
⎝

2 1 0 0

0 4 0 0

0 0 5 −1

0 0 0 5

⎞

⎟
⎟
⎠

and the vector x= (0,0,1,2), compute

limsup
t→+∞

1

t
log
∥
∥eAtx

∥
∥.

Solution

We have

eAt =

(
eA1t 0

0 eA2t

)
,

where

A1 =

(
2 1

0 4

)
and A2 =

(
5 −1

0 5

)
.

For the first block, we consider the eigenvectors (1,0) and (1,2), and the matrix

S =

(
1 1

0 2

)
.

We then obtain

S−1

(
2 1

0 4

)
S =

(
2 0

0 4

)
,

and it follows from Proposition 5.42 that

eA1t = S

(
e2t 0

0 e4t

)
S−1

=

(
1 1

0 2

)(
e2t 0

0 e4t

)(
1 −1/2

0 1/2

)

=

(
e2t e4t/2− e−2t/2

0 e4t

)
.
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For the second block, we have

eA2t = e

(−5 1
0 −5

)
(−t)

=

(
e−5(−t) −te−5(−t)

0 e−5(−t)

)

=

(
e5t −te5t

0 e5t

)
.

Therefore,

eAt =

⎛

⎜
⎜
⎝

e2t e4t/2− e−2t/2 0 0

0 e4t 0 0

0 0 e5t −te5t

0 0 0 e5t

⎞

⎟
⎟
⎠

and

limsup
t→+∞

1

t
log
∥
∥eAtx

∥
∥= limsup

t→+∞

1

t
log
∥
∥(0,0, e5t,2(1− t)e5t

)∥∥

= limsup
t→+∞

1

t
log
(
e5t
√
1 + 4(1− t)2

)
= 5.

Problem 5.20

Find all solutions of the equation

x′′ + 2x′ + x= 0. (5.49)

Solution

Taking x′ = y, one can write the equation in the matrix form

(
x

y

)′
=A

(
x

y

)
, (5.50)

where

A=

(
0 1

−1 −2

)
.

By Proposition 5.32, the solutions of equation (5.50) are given by

(
x(t)

y(t)

)
= eA(t−t0)

(
x(t0)

y(t0)

)
(5.51)
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for t ∈R. Now we compute the exponential eA(t−t0). Since

det(A− λId) = λ2 + 2λ+ 1,

the matrix A has only the eigenvalue −1. Moreover, one can easily verify that

there exists no basis formed by eigenvectors, and thus one must consider the

root space. An eigenvector is (1,−1), and, for example, the vector (0,1) satisfies

(A− λId)(0,1) = (1,−1). Taking

S =

(
1 0

−1 1

)
,

we then obtain

J = S−1AS

=

(
1 0

1 1

)(
0 1

−1 −2

)(
1 0

−1 1

)
=

(
−1 1

0 −1

)
.

Therefore, by Proposition 5.42,

eA(t−t0) = SeJ(t−t0)S−1

=

(
1 0

−1 1

)(
e−(t−t0) (t− t0)e

−(t−t0)

0 e−(t−t0)

)(
1 0

1 1

)

= e−(t−t0)

(
1 + t− t0 t− t0
−t+ t0 1− t+ t0

)
.

For example, taking t0 = 0, it follows from (5.51) that the solutions of equa-

tion (5.50) are given by

(
x(t)

y(t)

)
= e−t

(
1 + t t

−t 1− t

)(
x(0)

y(0)

)

for t ∈ R. The solutions of equation (5.49) are given by the first component,

that is,

x(t) = e−t(1 + t)x(0) + e−tty(0)

= e−tx(0) + e−tt
[
x(0) + x′(0)

]
.

Problem 5.21

Find whether there exists a matrix A such that

eAt =

(
et e2t − 1

−1 + cos t 1

)
. (5.52)
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Solution

We show that there exists no matrix A satisfying (5.52). Otherwise, taking

derivatives with respect to t, we would have

(
eAt
)′∣∣

t=0
=

(
et 2e2t

− sin t 0

)∣∣
∣
∣
t=0

=

(
1 2

0 0

)
.

On the other hand, by Proposition 5.28, we have (eAt)′|t=0 =A, and hence, we

should have

A=

(
1 2

0 0

)
.

Since this matrix has eigenvalues 1 and 0, there would exist an invertible matrix

S such that

S−1AS =

(
1 0

0 0

)
,

and hence,

eAt = SeS
−1AStS−1 = S

(
et 0

0 1

)
S−1.

In particular, the entries of eAt would be linear combinations of the functions

et and 1, and thus, it is impossible to obtain the entries e2t − 1 and −1+ cos t

in (5.52). Therefore, there exists no matrix A satisfying (5.52).

Problem 5.22

Verify that the identity

e(A+B)t = eAteBt

is not always satisfied for every t ∈R.

Solution

Let

A=

(
0 1

0 0

)
and B =

(
0 0

0 1

)
.

We have

eAt =

(
1 t

0 1

)
and eBt =

(
1 0

0 et

)
.
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Hence,

eAteBt =

(
1 tet

0 et

)
.

On the other hand, the matrix

A+B =

(
0 1

0 1

)

has eigenvalues 0 and 1. Taking

S =

(
1 1

0 1

)
,

we then obtain

S−1(A+B)S =

(
0 0

0 1

)

and thus,

e(A+B)t = SeS
−1(A+B)StS−1

=

(
1 1

0 1

)(
1 0

0 et

)(
1 −1

0 1

)

=

(
1 et − 1

0 et

)
�=
(
1 tet

0 et

)
.

Problem 5.23

Verify that the equation x′′ + x= 5
√
t has solutions.

Solution

Let y = x′ and z = (x, y). Since z′ = (x′, y′), the equation can be written in the

matrix form

z′ =Az + f(t), where A=

(
0 1

−1 0

)
and f(t) =

(
0
5
√
t

)
.

Now we consider the continuous function F (t, z) = Az + f(t). For z1, z2 ∈ R
2,

we have
∥
∥F (t, z1)− F (t, z2)

∥
∥=
∥
∥Az1 −Az2 + f(t)− f(t)

∥
∥

=
∥
∥A(z1 − z2)

∥
∥≤ ‖A‖ · ‖z1 − z2‖,
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where

‖A‖= sup
z �=0

‖Az‖
‖z‖ ,

and thus, the function F is locally Lipschitz in z. It then follows from the

Picard–Lindelöf theorem (Theorem 5.10) that for each (t0, z0) ∈ R×R
2 there

exists a unique solution of the equation with z(t0) = z0 in some open interval

containing t0. Moreover, since

z(t0) =
(
x(t0), y(t0)

)
=
(
x(t0), x

′(t0)
)
,

for each t0, x0, y0 ∈R there exists a unique solution of the equation x′′+x= 5
√
t

with x(t0) = x0 and x′(t0) = y0 in some open interval containing t0.

Problem 5.24

Verify that the problem

x′ = 2
√
|x| with x(0) = 0 (5.53)

has more than one solution.

Solution

A solution of problem (5.53) is x(t) = 0. To obtain another solution we con-

sider separately the cases x > 0 and x < 0. For x > 0 we obtain the equation

x′ = 2
√
x, that is,

(
√
x)′ =

x′

2
√
x
= 1,

and thus,
√

x(t) = t+ c for some c ∈R.

Taking t= 0, since x(0) = 0, we obtain c= 0, and hence x(t) = t2. On the other

hand, for x < 0 we obtain the equation x′ = 2
√
−x, that is,

(
√
−x)′ =

−x′

2
√
−x

=−1,

and thus,
√

−x(t) =−t+ d for some d ∈R.
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Taking t= 0, since x(0) = 0, we obtain d= 0, and hence, x(t) =−t2. Therefore,

one can consider, for example, the function

x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t2 if t > 0,

0 if t= 0,

−t2 if t < 0,

that is, x(t) = t|t|. We note that x is of class C1. Indeed, outside the origin we

have

x′(t) =

{
2t if t > 0,

−2t if t < 0,

and at the origin,

x′(0) = lim
t→0

x(t)− x(0)

t
= lim

t→0

t|t|
t

= 0.

Hence, x′(t) = 2|t|, which is a continuous function, and x(t) is of class C1. We

thus have the solutions x(t) = 0 and x(t) = t|t|.

Problem 5.25

Verify that if a matrix A has at least one eigenvalue in R
+, then the equation

x′ =Ax has at least one solution not converging to zero when t→+∞.

Solution

We recall that for each v ∈R
n the function t �→ eAtv is a solution of the equa-

tion x′ = Ax (see Proposition 5.32). Now let v ∈ R
n \ {0} be an eigenvector

associated to an eigenvalue λ ∈R
+. We have Av = λv, and thus, Akv = λkv for

each k ∈N. Therefore,

x(t) = eAtv =

∞∑

k=0

1

k!
tkAkv =

∞∑

k=0

1

k!
tkλkv = eλtv.

Since λ ∈R
+, the solution x(t) does not converge to zero when t→+∞.

Problem 5.26

Find all power series x(t) =
∑∞

n=0 cnt
n, with t ∈ R, that are a solution of the

equation x′′ + x= 0.
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Solution

By Theorem 4.12, the power series can be differentiated term by term in the

interior of its domain of convergence to obtain

x′(t) =

∞∑

n=1

ncnt
n−1

and

x′′(t) =

∞∑

n=2

n(n− 1)cnt
n−2.

We thus have

x′′(t) + x(t) =

∞∑

n=0

[
(n+ 2)(n+ 1)cn+2 + cn

]
tn.

This series is the zero function if and only if

(n+ 2)(n+ 1)cn+2 + cn = 0

for every n ∈N∪ {0}. Hence,

cn+2 =− cn
(n+ 2)(n+ 1)

,

that is, given c0, c1 ∈R, we have

c2n =
(−1)nc0
(2n)!

and c2n+1 =
(−1)nc1
(2n+ 1)!

for each n ∈N. Therefore,

x(t) =

∞∑

n=0

cnt
n =

∞∑

n=0

c2nt
2n +

∞∑

n=0

c2n+1t
2n+1

= c0

∞∑

n=0

(−1)nc0
(2n)!

t2n + c1

∞∑

n=0

(−1)nc1
(2n+ 1)!

t2n+1

= c0 cos t+ c1 sin t.

Problem 5.27

Verify that if x(t) and y(t) are solutions respectively of the equations x′ =Ax

and y′ =−A∗y, then
〈
x(t), y(t)

〉
=
〈
x(0), y(0)

〉
, t ∈R, (5.54)

where 〈·, ·〉 is the standard inner product in R
n.
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Solution

We have

d

dt

〈
x(t), y(t)

〉
= lim

h→0

1

h

[〈
x(t+ h), y(t+ h)

〉
−
〈
x(t), y(t)

〉]

= lim
h→0

1

h

[〈
x(t+ h)− x(t), y(t+ h)

〉
+
〈
x(t), y(t+ h)− y(t)

〉]

= lim
h→0

〈
x(t+ h)− x(t)

h
, y(t+ h)

〉
+ lim

h→0

〈
x(t),

y(t+ h)− y(t)

h

〉

=
〈
x′(t), y(t)

〉
+
〈
x(t), y′(t)

〉
.

Therefore,

d

dt

〈
x(t), y(t)

〉
=
〈
Ax(t), y(t)

〉
+
〈
x(t),−A∗y(t)

〉

=
〈
Ax(t), y(t)

〉
−
〈
Ax(t), y(t)

〉
= 0,

which yields identity (5.54).

Problem 5.28

Given an n× n matrix A, we assume that the function q : Rn →R
+
0 given by

q(x) =

∫ ∞

0

∥
∥eAtx

∥
∥2 dt

is well defined. Show that q is a polynomial of degree 2 without terms of degree

0 or 1, and that the function F (s) = q(eAsx) has derivative F ′(s) =−‖eAsx‖2.

Solution

We note that

q(x) =

∫ ∞

0

(
eAtx

)∗
eAtxdt

=

∫ ∞

0

x∗(eAt
)∗
eAtxdt= x∗Cx, (5.55)

where C is the n× n matrix given by

C =

∫ ∞

0

(
eAt
)∗
eAt dt
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(with the matrices integrated entry by entry). It follows from (5.55) that q is

a polynomial of degree 2 without terms of degree 0 or 1. Moreover, it follows

from (5.25) that

q
(
eAsx

)
=

∫ ∞

0

∥
∥eAteAsx

∥
∥2 dt=

∫ ∞

0

∥
∥eA(t+s)x

∥
∥2 dt.

Making the change of variables t+ s= τ , we obtain

F (s) = q
(
eAsx

)
=

∫ ∞

s

∥
∥eAτx

∥
∥2 dτ,

and hence, F ′(s) =−‖eAsx‖2.

Problem 5.29

Verify that the equation x′ = |x|+ 1 has no periodic solutions.

Solution

Let x = x(t) be a solution. Since |x(t)|+ 1 > 0, we have x′(t) > 0 for every t

(in the maximal interval of x). Hence, each solution is strictly increasing, and

thus it cannot be periodic.

Problem 5.30

Show that all solutions of the equation

{
x′ = y cosx,

y′ =−x cosx,

are bounded.

Solution

If (x, y) = (x(t), y(t)) is a solution, then

(
x2 + y2

)′
= 2xx′ + 2yy′

= 2x(y cosx) + 2y(−x cosx) = 0.

Therefore, there exists r ≥ 0 such that

x(t)2 + y(t)2 = r
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for every t (in the maximal interval of the solution). This shows that the image

of each solution is either contained in a circle or is the origin, and thus, in

particular, it is bounded. In fact, one can show that the image of each solution

is either a circle or is the origin.

Problem 5.31

Show that all solutions of the equation
{
x′ = y− x,

y′ =−x− y3

are bounded for t > 0.

Solution

If (x, y) = (x(t), y(t)) is a solution, then

(
x2 + y2

)′
= 2xx′ + 2yy′

= 2x(y− x) + 2y
(
−x− y3

)

=−2x2 − 2y4 ≤ 0.

This shows that the function t �→ x(t)2 + y(t)2 ≥ 0 is not increasing, and thus,

it is bounded for t > 0. Since
∣
∣x(t)

∣
∣≤
√
x(t)2 + y(t)2 and

∣
∣y(t)

∣
∣≤
√

x(t)2 + y(t)2,

the components x(t) and y(t) are also bounded for t > 0.

Problem 5.32

Write the equation
{
x′ =−ay,

y′ = ax
(5.56)

in polar coordinates (r, θ).

Solution

We have

x= r cosθ and y = r sinθ,
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and

r =
√
x2 + y2 and θ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tan−1(y/x) if x > 0,

π/2 if x= 0 and y > 0,

tan−1(y/x) + π if x < 0,

−π/2 if x= 0 and y < 0,

where tan−1 is the inverse of the tangent with values in (−π/2, π/2). Therefore,

r′ =
2xx′ + 2yy′

2
√
x2 + y2

=
xx′ + yy′

r

and

θ′ =
(y/x)′

1 + (y/x)2
=

(y′x− x′y)/x2

1 + y2/x2

=
y′x− x′y

x2 + y2
=

y′x− x′y

r2
.

It follows from (5.56) that

r′ =
axy− axy

r
= 0

and

θ′ =
ax2 + ay2

r2
= a,

and thus, in polar coordinates the equation takes the form

{
r′ = 0,

θ′ = a.

EXERCISES

5.1. Find all solutions of the equation:

(a) x′ =−tx;

(b) x′ − (t sin t)x= 0;

(c) x′ = x/(1 + t) + t2;

(d) x′ =− cos t+ x.

5.2. Find all solutions of the equation x′ = 1/x.

5.3. Find an equation having et
2

as solution.

5.4. Find an equation having 1/(1 + t) as solution.
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5.5. Show that if x : (a, b)→ R
n is a solution of the equation x′ = f(x),

then for each c ∈ R the function y : (a + c, b + c) → R
n defined by

y(t) = x(t− c) is also a solution of the equation.

5.6. For the equation x′ = f(x), show that if cos t is a solution, then

− sin t is also a solution.

5.7. For the equation x′′ = f(x), show that if 1/(1+ t) is a solution, then

1/(1− t) is also a solution.

5.8. Find a solution of the equation:

(a) x′ =

(
1 −1

0 1

)
x with x(0) =

(
1

0

)
;

(b) x′ =

(
2 1

0 4

)
x with x(1) =

(
0

1

)
;

(c) x′ =

(
2 4

7 9

)
x with x(4) =

(
0

0

)
.

5.9. Find all solutions of the equation

x′ =

(
3 0

0 4

)
x+

(
t

−t

)
.

5.10. Use the Variation of parameters formula to find the solution of the

equation:

(a) x′ =

(
0 9

−1 0

)
x+

(
0

1

)
with x(0) =

(
0

1

)
;

(b) x′ =

(
0 4

−1 0

)
x+

(
0

t

)
with x(0) =

(
0

5

)
;

(c) x′ =

(
4 1

0 4

)
x+

(
et

0

)
with x(0) =

(
0

1

)
.

5.11. Consider the equation

{
x′ = 2x+ y,

y′ =−x+ a.

(a) For a= 0, find all solutions of the equation.

(b) For a= 1, find the solution of the equation with x(0) = y(0) = 0.

5.12. Compute the complex Jordan form of the matrix:

(a)

(
2 1

1 2

)
;

(b)

(
4 1

5 3

)
;
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(c)

⎛

⎝
2 1 0

0 5 4

0 0 3

⎞

⎠.

5.13. Find the solution of the equation x′′ + x′ + x= 0 with x(0) = 0 and

x′(0) = 3.

5.14. Compute eAt for the matrix:

(a) A=

⎛

⎜
⎜
⎝

0 1 0 0

−1 0 0 0

0 0 2 1

0 0 0 2

⎞

⎟
⎟
⎠;

(b) A=

⎛

⎜
⎜
⎝

2 1 0 0

0 1 0 0

0 0 3 1

0 0 0 3

⎞

⎟
⎟
⎠;

(c) A=

⎛

⎜
⎜
⎝

2 1 0 0

0 3 0 0

0 0 4 −1

0 0 0 4

⎞

⎟
⎟
⎠;

(d) A=

⎛

⎜
⎜
⎝

1 4 0 0

−4 1 0 0

0 0 2 0

0 0 1 2

⎞

⎟
⎟
⎠.

5.15. For each matrix A in Exercise 5.14, find all bounded solutions of the

equation x′ =Ax.

5.16. For each matrix A in Exercise 5.14, find all solutions of the equation

x′ =Ax that are bounded for t > 0.

5.17. Find whether there exists a matrix A such that

eAt =

(
e3t te2t

0 e3t

)
.

5.18. Verify that the function f is locally Lipschitz in x:

(a) f(t, x) = x2;

(b) f(t, x) = x|x|.
5.19. Show that the equation x′ − x= 3

√
t has solutions.

5.20. Verify that the equation x′ = 2
√
x has more than one solution with

x(0) = 0.

5.21. Identify each statement as true or false.

(a) The equation x′ =−x3 has solutions with maximal interval R+.

(b) The equation x′ = 1+ x2 has nonconstant periodic solutions.
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(c) The equation x′ = 1+ x2 has decreasing solutions.

(d) There exists a matrix A such that

eAt =

(
et e−t

e−t et

)
.

5.22. Show that all solutions of the equation (x′, y′) = (yex,−xex) are

bounded.

5.23. Show that all solutions of the equation

(
x′, y′

)
=
(
y− x3,−x− y3

)

are bounded for t > 0.

5.24. Write the equation

{
x′ = ay+ bx+ x2,

y′ =−ax+ by

in polar coordinates (r, θ).

5.25. Find all nonconstant periodic solutions of the equation

{
r′ = r(r− 1)(r− 2),

θ′ = 1.

5.26. For a square matrix A, show that AmeA = eAAm for every m ∈N.

5.27. Verify that if A and B are n× n matrices, then

(A+B)2 =A2 +AB +BA+B2.

5.28. Find whether the identity

(A+B)2 =A2 + 2AB +B2

between n× n matrices is always satisfied.

5.29. Defining the cosine of a square matrix A by

cosA=
eiA + e−iA

2
,

compute

cos

⎛

⎝
0 1 0

0 0 1

0 0 0

⎞

⎠ .
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5.30. Compute

limsup
t→+∞

1

t
log
∥
∥eAtx

∥
∥,

where

A=

(
2 1

0 2

)
and x=

(
0

3

)
.

5.31. Compute

limsup
t→+∞

1

t
log
∥
∥x(t)

∥
∥

for each nonvanishing solution x(t) of the equation x′′ + 4x= 0.

5.32. Verify that

d

dt
det eAt = 0 for A=

(
2 4

10 −2

)
.

5.33. Verify that

lim
n→∞

(
1 1/n2

0 1

)n

=

(
1 0

0 1

)
,

with the limit computed entry by entry.

5.34. Verify that

lim
n→∞

1

n

(
1 1/n

0 1

)n2

=

(
0 1

0 0

)
.

5.35. Show that deteAt = et trA. Hint: use Proposition 5.42.

5.36. Use Exercise 5.35 to show that

d

dt

(
deteAt

)∣∣
t=0

= trA.

5.37. Find a necessary and sufficient condition in terms of a square ma-

trix A in order that:

(a) all solutions of the equation x′ =Ax are bounded;

(b) all solutions of the equation x′ = Ax converge to zero when

t→+∞.



6
Solving Differential Equations

In this chapter we present several methods for finding solutions of certain classes

of differential equations. Namely, we consider exact equations, equations that

can be reduced to exact, and scalar equations of order greater than 1. We also

consider equations that can be solved using the Laplace transform. We note that

these are only some methods among many others in the theory. On purpose,

we do not consider methods adapted to very particular classes of differential

equations.

6.1 Exact Equations

In this section we consider equations in R of the form

M(t, x) +N(t, x)x′ = 0, (6.1)

where M and N are continuous functions with N �= 0.

Definition 6.1

The differential equation (6.1) is said to be exact in an open set S ⊂R
2 if there

exists a differentiable function Φ : S →R such that

∂Φ

∂t
(t, x) =M(t, x) and

∂Φ

∂x
(t, x) =N(t, x) (6.2)

for every (t, x) ∈ S.
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Example 6.2

Let us consider the equation

−4t+
(
5x4 + 3

)
x′ = 0. (6.3)

We look for a differentiable function Φ such that

∂Φ

∂t
=−4t and

∂Φ

∂x
= 5x4 + 3.

It follows from the first equation that

Φ(t, x) =−2t2 +C(x)

for some differentiable function C, and hence,

∂Φ

∂x
=C ′(x) = 5x4 + 3.

Thus, one can take C(x) = x5 + 3x, and

Φ(t, x) =−2t2 + x5 + 3x. (6.4)

In particular, equation (6.3) is exact.

The importance of exact equations stems from the following property.

Proposition 6.3

If equation (6.1) is exact, then each of its solutions x(t) satisfies

Φ
(
t, x(t)

)
= c (6.5)

for some constant c ∈R.

Proof

Since equation (6.1) is exact, taking derivatives of Φ(t, x(t)) with respect to t,

we obtain

d

dt
Φ
(
t, x(t)

)
=

∂Φ

∂t

(
t, x(t)

)
+

∂Φ

∂x

(
t, x(t)

)
x′(t)

=M
(
t, x(t)

)
+N
(
t, x(t)

)
x′(t) = 0.

This shows that (6.5) holds for some constant c ∈R. �
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Example 6.4

By Proposition 6.3, it follows from (6.4) that each solution of equation (6.3) is

given implicitly by

−2t2 + x(t)5 + 3x(t) = c

for some constant c ∈R.

Now we describe a necessary and sufficient condition for the exactness of

equation (6.1) in an open rectangle.

Theorem 6.5

Let M and N be functions of class C1 in an open rectangle S = (a, b)× (c, d).

Then equation (6.1) is exact in S if and only if

∂M

∂x
=

∂N

∂t
in S. (6.6)

Proof

If equation (6.1) is exact, then there exists a differentiable function Φ satisfy-

ing (6.2) in S. Since M and N are of class C1, the function Φ is of class C2.

Therefore,

∂M

∂x
=

∂

∂x

(
∂Φ

∂t

)
=

∂

∂t

(
∂Φ

∂x

)
=

∂N

∂t

in S, which establishes property (6.6).

Now we assume that property (6.6) holds. Integrating over t, we obtain
∫ t

t0

∂M

∂x
(s,x)ds=N(t, x)−N(t0, x). (6.7)

Let us also consider the function

Φ(t, x) =

∫ x

x0

N(t0, y)dy+

∫ t

t0

M(s,x)ds.

We have
∂Φ

∂t
(t, x) =M(t, x),

and it follows from (6.7) that

∂Φ

∂x
(t, x) =N(t0, x) +

∫ t

t0

∂M

∂x
(s,x)ds=N(t, x).

This shows that equation (6.1) is exact in S. �
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We give some examples.

Example 6.6

Let us consider the equation

3x+ sin t+
(
3t+ 2e2x

)
x′ = 0. (6.8)

Since

M(t, x) = 3x+ sin t and N(t, x) = 3t+ 2e2x,

we have

∂M

∂x
= 3 and

∂N

∂t
= 3.

Hence, by Theorem 6.5, equation (6.8) is exact in R
2, and there exists a differ-

entiable function Φ such that

∂Φ

∂t
= 3x+ sin t and

∂Φ

∂x
= 3t+ 2e2x.

It follows from the first equation that

Φ(t, x) = 3xt− cos t+C(x)

for some differentiable function C. Thus,

∂Φ

∂x
= 3t+C ′(x) = 3t+ 2e2x,

which yields C ′(x) = 2e2x. Hence, one can take C(x) = e2x and

Φ(t, x) = 3xt− cos t+ e2x.

By Proposition 6.3, each solution of equation (6.8) satisfies Φ(t, x(t)) = c for

some constant c ∈R.

Example 6.7

Now we consider the equation

x′ =
g(t)

f(x)
,

which is called a separable equation. It can be written in the form

M(t, x) +N(t, x)x′ = 0,
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where

M(t, x) = g(t) and N(t, x) =−f(x).

Since

∂M

∂x
=

∂N

∂t
= 0,

the equation is exact and there exists a differentiable function Φ such that

∂Φ

∂t
= g(t) and

∂Φ

∂x
=−f(x).

Indeed, one can take

Φ(t, x) =

∫ t

t0

g(s)ds−
∫ x

x0

f(y)dy.

6.2 Equations Reducible to Exact

In this section we consider equations that are not exact, and we try to find

a function μ(t, x) such that equation (6.1) becomes exact when multiplied by

this function.

Definition 6.8

We say that equation (6.1) is reducible to exact in an open rectangle S =

(a, b) × (c, d) if there exists a differentiable function μ : S → R such that the

equation

μ(t, x)M(t, x) + μ(t, x)N(t, x)x′ = 0 (6.9)

is exact and has the same solutions as equation (6.1). In this case, the function μ

is called an integrating factor of equation (6.1).

By Theorem 6.5, when the functions M , N and μ are of class C1, equa-

tion (6.9) is exact in S if and only if

∂(μM)

∂x
=

∂(μN)

∂t
(6.10)

in S. But since this is a partial differential equation (because it contains deriva-

tives with respect to more than one variable), we shall only consider particular

cases.
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Proposition 6.9

Equation (6.10) has a nonzero solution of the form:

1. μ(t, x) = μ(t) if

1

N

(
∂M

∂x
− ∂N

∂t

)
(6.11)

does not depend on x, in which case μ satisfies the equation

μ′ =
1

N

(
∂M

∂x
− ∂N

∂t

)
μ; (6.12)

2. μ(t, x) = μ(x) if

− 1

M

(
∂M

∂x
− ∂N

∂t

)

does not depend on t, in which case μ satisfies the equation

μ′ =− 1

M

(
∂M

∂x
− ∂N

∂t

)
μ.

Proof

When μ(t, x) = μ(t), it follows from (6.10) that

μ
∂M

∂x
= μ′N + μ

∂N

∂t
,

that is,

μ′ =
1

N

(
∂M

∂x
− ∂N

∂t

)
μ.

Since μ and μ′ do not depend on x, this equation has nonzero solutions if and

only if the expression in (6.11) does not depend on x. The second property can

be obtained in an analogous manner. �

Example 6.10

Let us consider the equation

x2e−t − 4xe−2t sin t+
(
2xe−t + 4e−2t cos t

)
x′ = 0. (6.13)

We have

M(t, x) = x2e−t − 4xe−2t sin t and N(t, x) = 2xe−t + 4e−2t cos t.
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In particular,

1

N

(
∂M

∂x
− ∂N

∂t

)
= 2

does not depend on x, and by Proposition 6.9 there exists an integrating factor

of the form μ(t). Namely, since equation (6.12) takes the form μ′ = 2μ, a nonzero

solution is μ(t) = e2t. Multiplying (6.13) by e2t, we obtain the exact equation

(
x2et − 4x sin t

)
+
(
2xet + 4cos t

)
x′ = 0.

It follows from

∂Φ

∂t
= x2et − 4x sin t

that

Φ(t, x) = x2et + 4x cos t+C(x)

for some differentiable function C. Therefore,

∂Φ

∂x
= 2xet + 4cos t+C ′(x) = 2xet + 4cos t,

and we obtain C ′(x) = 0. Hence, one can take C(x) = 0, and each solution x(t)

of equation (6.13) satisfies

Φ
(
t, x(t)

)
= x(t)2et + 4x(t) cos t= c

for some constant c ∈R.

6.3 Scalar Equations of Order Greater than 1

In this section we consider equations in R of the form

x(n) + an−1x
(n−1) + · · ·+ a2x

′′ + a1x
′ + a0x= 0, (6.14)

with a0, a1, . . . , an−1 ∈R.

Example 6.11

Let us consider the equation x′′ + x= 0. Taking y = x′, one can write it in the

matrix form
(
x

y

)′

=

(
0 1

−1 0

)(
x

y

)
,
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which thus has the solutions

(
x(t)

y(t)

)
= e

(
0 1
−1 0

)
(t−t0)

(
x(t0)

y(t0)

)
.

Nevertheless, we will show in this section that equations of the form (6.14) can

be solved using an alternative method that is frequently more practical.

We first write equation (6.14) in another form. We introduce the notation

Dx= x′.

For example,

D2x=D
(
x′)= x′′.

Equation (6.14) can then be written in the form

(
Dn + an−1D

n−1 + · · ·+ a2D
2 + a1D+ a0

)
x= 0.

Now we consider the characteristic polynomial

p(λ) = λn + an−1λ
n−1 + · · ·+ a2λ

2 + a1λ+ a0.

It follows from the Fundamental theorem of algebra (Theorem 4.19) that there

exist constants λ1, . . . , λN ∈C and m1, . . . ,mN ∈N such that

p(λ) = (λ− λ1)
m1(λ− λ2)

m2 · · · (λ− λN )mN , (6.15)

with m1 + · · ·+mN = n.

Proposition 6.12

Given constants λ1, . . . , λN ∈C and m1, . . . ,mN ∈N satisfying (6.15), equation

(6.14) is equivalent to

(D− λ1)
m1(D− λ2)

m2 · · · (D− λN )mNx= 0. (6.16)

Proof

It is sufficient to note that

(λ− a1) · · · (λ− an) =

n∑

j=0

(−1)j
∑

i1<···<ij

ai1 · · ·aijλn−j
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and

(D− a1) · · · (D− an) =

n∑

j=0

(−1)j
∑

i1<···<ij

ai1 · · ·aijDn−j .

For example, for n= 2 we have

(λ− a)(λ− b) = λ2 − (a+ b)λ+ ab,

and

(D− a)(D− b)x= (D− a)
(
x′ − bx

)

= x′′ − bx− ax′ + abx

= x′′ − (a+ b)x′ + abx

=
(
D2 − (a+ b)D+ ab

)
x, (6.17)

that is,

(D− a)(D− b) =D2 − (a+ b)D+ ab. (6.18)

This yields the desired result. �

It is thus sufficient to consider equations (6.14) that are already written in

the form (6.16). We first consider two particular types of equations.

Proposition 6.13

Given λ ∈R and m ∈N, the solutions of the equation

(D− λ)mx= 0 (6.19)

are given by

x(t) =
m−1∑

k=0

ckt
keλt = c0e

λt + · · ·+ cm−1t
m−1eλt (6.20)

for t ∈R, with c0, . . . , cm−1 ∈R.

Proof

We use induction on m. For m= 1 the equation takes the form

(D− λ)x= x′ − λx= 0,
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and thus it has the solutions x(t) = c0e
λt with c0 ∈R. Now we assume that the

result holds for a particular m. Since

(D− λ)m+1x= (D− λ)m(D− λ)x= 0,

we have

(D− λ)x= c0e
λt + c1te

λt + · · ·+ cm−1t
m−1eλt,

with c0, . . . , cm−1 ∈R. Therefore,

(
e−λtx

)′
= e−λt(Dx− λx)

= e−λt(D− λ)x

= c0 + c1t+ · · ·+ cm−1t
m−1,

and hence,

e−λtx(t) = c+ c0t+
c1
2
t2 + · · ·+ cm−1

m
tm−1

for some constant c ∈ R. This shows that the result holds for m+ 1, and the

solution x(t) is given by (6.20). �

Example 6.14

Let us consider the equation

x′′ − 8x′ + 16x= 0. (6.21)

The characteristic polynomial is

λ2 − 8λ+ 16 = (λ− 4)2,

and by Proposition 6.13 the solutions of equation (6.21) are given by

x(t) = ae4t + bte4t for t ∈R,

with a, b ∈R.

Example 6.15

Now we consider the equation

(D− a)(D− b)x= 0 (6.22)
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for some a, b ∈R with a �= b. By (6.18), we have

(D− a)(D− b) = (D− b)(D− a). (6.23)

We observe that:

1. if (D− b)x= 0, then it follows from (6.22) that

(D− a)(D− b)x= (D− a)0 = 0,

and x is a solution of equation (6.22);

2. if (D− a)x= 0, then it follows from (6.23) that

(D− a)(D− b)x= (D− b)(D− a)x= (D− b)0 = 0,

and x is also a solution of equation (6.22).

Moreover, one can easily verify that any linear combination of solutions of

equation (6.22) is still a solution of this equation. Hence,

x(t) = c1e
at + c2e

bt (6.24)

is a solution for each c1, c2 ∈R, since c1e
at and c2e

bt are respectively the solu-

tions of the equations (D− a)x= 0 and (D− b)x= 0.

Now we show that there are no other solutions. We write equation (6.22)

in the form

x′′ − (a+ b)x′ + abx= 0

(see (6.17)), which is the same as

(
x

y

)′

=

(
0 1

−ab a+ b

)(
x

y

)
. (6.25)

By Proposition 5.32, the linear space of the solutions of equation (6.25) has

dimension 2. Hence, the linear space of the solutions of equation (6.22) has at

most dimension 2, since it is obtained from the first component of the solutions

of equation (6.25). But since the functions in (6.24) already generate a space

of dimension 2, we conclude that there are no other solutions.

Now we consider a second type of equations.

Proposition 6.16

Given λ= a+ ib with b �= 0 and m ∈N, the solutions of the equation

(D− λ)m(D− λ)mx= 0 (6.26)
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are given by

x(t) =
m−1∑

k=0

[
ckt

keat cos(bt) + dkt
keat sin(bt)

]

for t ∈R, with c0, d0, . . . , cm−1, dm−1 ∈R.

Proof

It follows from the proof of Proposition 6.13, that the complex-valued solutions

of equation (6.19), also for λ ∈C, are given by

x(t) =

m−1∑

k=0

akt
keλt

for t ∈R, with a0, . . . , am−1 ∈C. Similarly, the complex-valued solutions of the

equation

(D− λ)mx= 0

are given by

x(t) =

m−1∑

k=0

bkt
keλt

for t ∈R, with b0, . . . , bm−1 ∈C. Moreover, identity (6.17) also holds for a, b ∈C,

that is,

(D− a)(D− b) = (D− b)(D− a)

for every a, b ∈C. This implies that

(D− λ)m(D− λ)m = (D− λ)m(D− λ)m.

On the other hand, proceeding as in the proof of Proposition 5.32, one can

show that the linear subspace of Cn =R
2n formed by the C

n-valued solutions

of the equation x′ = Ax has real dimension 2n. One can then proceed as in

Example 6.15 to show that the complex-valued solutions of equation (6.26) are

given by

x(t) =

m−1∑

k=0

(
akt

keλt + bkt
keλt
)

for t ∈R, with a0, b0, . . . , am−1, bm−1 ∈C. Taking

2ak = ck − idk and 2bk = ck + idk
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for k = 0, . . . ,m− 1, we obtain

x(t) =
1

2

m−1∑

k=0

[
(ck − idk)t

ke(a+ib)t + (ck + idk)t
ke(a−ib)t

]

=

m−1∑

k=0

[
ckt

keat cos(bt) + dkt
keat sin(bt)

]
.

This yields the desired result. �

Example 6.17

Let us consider the equation

x′′ + 5x= 0. (6.27)

The characteristic polynomial is

λ2 + 5= (λ− i
√
5)(λ+ i

√
5),

and by Proposition 6.16 the solutions of equation (6.27) are given by

x(t) = a cos(
√
5t) + b sin(

√
5t) for t ∈R,

with a, b ∈R.

Example 6.18

Now we consider the equation

(D+ 2)(D− 3i)2(D+ 3i)2x= 0. (6.28)

In an analogous manner to that in Example 6.15, we consider separately the

equations

(D+ 2)x= 0

and

(D− 3i)2(D+ 3i)2x= 0.

These have spaces of solutions generated respectively by the functions e−2t and

cos(3t), t cos(3t), sin(3t) and t sin(3t).
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In a similar manner to that in Example 6.15, one can show that equation (6.28)

gives rise to an equation x′ =Ax in R
5, which thus has a space of solutions of

dimension 5. Since the functions obtained previously already generate a space

of dimension 5, the solutions of equation (6.28) are given by

x(t) = c1e
−2t + c2 cos(3t) + c3t cos(3t) + c4 sin(3t) + c5t sin(3t)

for t ∈R, with c1, c2, c3, c4, c5 ∈R.

We also consider the nonhomogeneous case, that is, we consider equations

of the form

x(n) + an−1x
(n−1) + · · ·+ a2x

′′ + a1x
′ + a0x= h(t),

with a0, a1, . . . , an−1 ∈R, for some nonzero function h.

Example 6.19

Let us consider the equation

x′′ + 2x′ − x= t. (6.29)

One can write it in the form
{
x′ = y,

y′ = x− 2y+ t,

or equivalently,
(
x

y

)′

=

(
0 1

1 −2

)(
x

y

)
+

(
0

t

)
.

It then follows from the Variation of parameters formula (Theorem 5.31) that

(
x(t)

y(t)

)
= e

(
0 1
1 −2

)
(t−t0)

(
x(t0)

y(t0)

)
+

∫ t

t0

e

(
0 1
1 −2

)
(t−s)

(
0

s

)
ds.

However, one can also obtain the solutions of equation (6.29) using an al-

ternative method, which is more automatic. We first write equation (6.29) in

the form
(
D2 + 2D− 1

)
x= t. (6.30)

Since D2t= 0, we obtain

D2
(
D2 + 2D− 1

)
x= 0,
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that is,

D2(D+ 1−
√
2)(D+ 1+

√
2)x= 0. (6.31)

We note that all solutions of equation (6.29) are solutions of this equation. Pro-

ceeding as in Example 6.18, one can show that the solutions of equation (6.31)

are given by

x(t) = a+ bt+ ce(−1+
√
2)t + de(−1−

√
2)t for t ∈R,

with a, b, c, d ∈ R. However, not all of these functions are necessarily solutions

of equation (6.29). Substituting x(t) in (6.30), we obtain

(
D2 + 2D− 1

)
x=
(
D2 + 2D− 1

)
(a+ bt) = t,

since ce(−1+
√
2)t+ de(−1−

√
2)t is a solution of the equation (D2 +2D− 1)x= 0.

We also have
(
D2 + 2D− 1

)
(a+ bt) = 2b− a− bt= t,

and thus −b= 1 and 2b− a= 0, that is,

a=−2 and b=−1.

Therefore, the solutions of equation (6.30) are given by

x(t) =−2− t+ ce(−1+
√
2)t + de(−1−

√
2)t for t ∈R,

with c, d ∈R.

Example 6.20

Now we consider the equation

x′ − 2x= et cos(2t), (6.32)

that is,

(D− 2)x= et cos(2t). (6.33)

Any solution of equation (6.33) satisfies

(D− 1− 2i)(D− 1 + 2i)(D− 2)x= 0.

Moreover, the solutions of this last equation are given by

x(t) = ae2t + bet cos(2t) + cet sin(2t) for t ∈R,



296 6. Solving Differential Equations

with a, b, c ∈R. Substituting x(t) in (6.33), we obtain

(D− 2)
(
bet cos(2t) + cet sin(2t)

)
= et cos(2t),

that is,

bet cos(2t)− 2bet sin(2t) + cet sin(2t) + 2cet cos(2t) = et cos(2t).

Therefore,

b+ 2c= 1 and − 2b+ c= 0,

and hence b = 1/5 and c = 2/5. We conclude that the solutions of equa-

tion (6.32) are given by

x(t) = ae2t +
1

5
et cos(2t) +

2

5
et sin(2t) for t ∈R,

with a ∈R.

6.4 Laplace Transform

In this section we describe another method for finding the solutions of a class

of differential equations in R. The method is based on the Laplace transform,

and we consider equations of the form

x(n) + an−1x
(n−1) + · · ·+ a2x

′′ + a1x
′ + a0x= f(t), (6.34)

with a0, a1, . . . , an−1 ∈R, for some nonzero function f in R
+
0 = [0,+∞).

We first introduce the notion of Laplace transform. To this effect, we con-

sider the family F of all functions f : R+
0 →R such that:

1. f has at most finitely many discontinuities;

2. f has left-sided and right-sided limits at all points of R+
0 .

Definition 6.21

Given a function f ∈ F, we define the Laplace transform F of f by

F (z) =

∫ ∞

0

e−tzf(t)dt (6.35)

for each z ∈C such that the integral is well defined. We also write F = Lf .
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The improper integral in (6.35) is defined by
∫ ∞

0

e−tzf(t)dt= lim
R→∞

∫ R

0

e−tzf(t)dt, (6.36)

whenever the limit exists. We observe that since f has at most finitely many

discontinuities, for each R> 0 and z ∈C the function t �→ e−tzf(t) is Riemann-

integrable in the interval [0,R], and hence, each integral on the right-hand side

of (6.36) is well defined.

We note that

L(af + bg) = aLf + bLg (6.37)

for every a, b ∈ R, in the set where both Laplace transforms Lf and Lg are

defined. One can also consider functions f = u+ iv : R+
0 →C, and define

Lf = Lu+ iLv.

Then identity (6.37) holds for every a, b ∈C.

Example 6.22

For f = 1 we have

(Lf)(z) =

∫ ∞

0

e−tz dt= lim
R→∞

∫ R

0

e−tz dt

= lim
R→∞

e−tz

−z

∣
∣
∣
∣

t=R

t=0

= lim
R→∞

1− e−Rz

z
,

and thus, (Lf)(z) = 1/z for Rez > 0.

Example 6.23

For

f(t) =

{
0 if t ∈ [0,1],

1 if t > 1,

we have

(Lf)(z) =

∫ ∞

1

e−tz dt= lim
R→∞

∫ R

1

e−tz dt

= lim
R→∞

e−tz

−z

∣
∣
∣
∣

t=R

t=1

= lim
R→∞

e−z − e−Rz

z
,

and thus, (Lf)(z) = e−z/z for Rez > 0.
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Example 6.24

For f(t) = eat with a ∈C, we have

(Lf)(z) = lim
R→∞

∫ R

0

e−tzeat dt

= lim
R→∞

eR(a−z) − 1

a− z
,

and thus, (Lf)(z) = 1/(z − a) for Re z >Rea.

Example 6.25

For f(t) = cos(at) and g(t) = sin(at) with a ∈R, we have

(Lf)(z) =

∫ ∞

0

e−tz cos(at)dt

and

(Lg)(z) =

∫ ∞

0

e−tz sin(at)dt.

It follows from Example 6.24 that

∫ ∞

0

e−tzeiat dt=
1

z − ia

and
∫ ∞

0

e−tze−iat dt=
1

z + ia

for Re z > 0. Therefore,

(Lf)(z) =

∫ ∞

0

e−tz cos(at)dt

=

∫ ∞

0

e−tz e
iat + e−iat

2
dt

=
1

2

(
1

z − ia
+

1

z + ia

)
=

z

z2 + a2
(6.38)

and

(Lg)(z) =

∫ ∞

0

e−tz sin(at)dt

=

∫ ∞

0

e−tz e
iat − e−iat

2i
dt
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=
1

2i

(
1

z − ia
− 1

z + ia

)
=

a

z2 + a2
, (6.39)

also for Re z > 0.

The following result gives conditions for the existence of the Laplace trans-

form. Given c > 0, we denote by Fc the family of functions f ∈ F for which

there exists D> 0 such that

∣
∣f(t)

∣
∣≤Dect, t > 0.

Theorem 6.26

If f ∈ Fc, then the Laplace transform of f is defined and is holomorphic for

Rez > c, with

(Lf)′(z) =−
∫ ∞

0

te−tzf(t)dt. (6.40)

Proof

For Rez > c and R> r, we have

∫ R

r

∣
∣e−tzf(t)

∣
∣dt≤

∫ R

r

e−tRe zDect dt

=D
et(c−Re z)

c−Rez

∣
∣
∣
∣

t=R

t=r

=D
eR(c−Re z) − er(c−Rez)

c−Re z
→ Der(c−Rez)

Rez − c

when R → +∞. Therefore,
∫ rn
0

e−tzf(t)dt is a Cauchy sequence whenever

rn ↗+∞, and thus, the Laplace transform of f is defined for Rez > c.

In order to show that F = Lf is holomorphic, we consider the sequence of

functions

Fn(z) =

∫ n

0

e−tzf(t)dt.

We have

∣
∣Fn(z)− F (z)

∣
∣=
∣
∣
∣
∣

∫ ∞

n

e−tzf(t)dt

∣
∣
∣
∣

≤ Det(c−z)

c− z

∣
∣
∣
∣

t=∞

t=n

=
Den(c−z)

z − c
,
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and thus, (Fn)n is uniformly convergent to F on the set {z ∈ C : Re z > a},
for each a > c. Now we show that each function Fn is holomorphic. We first

observe that there exists C ≥ 1 such that

∣
∣e−z − 1 + z

∣
∣≤ |z|2

(
e−Re z + |z|+C

)
(6.41)

for every z ∈C. Indeed, it follows from

lim
z→0

e−z − 1 + z

z2
=

1

2

that there exists C ≥ 1 such that

∣
∣e−z − 1 + z

∣
∣≤C|z|2 ≤ |z|2

(
e−Re z + |z|+C

)

for |z| ≤ 1. On the other hand, for |z| ≥ 1, we have

∣
∣e−z − 1 + z

∣
∣≤ e−Rez + |z|+ 1≤ |z|2

(
e−Re z + |z|+C

)
.

Given ε > 0, it follows from (6.41) that

∣
∣
∣
∣
e−ht − 1

h
+ t

∣
∣
∣
∣≤ |h|t2

(
e−(Reh)t + |ht|+C

)

≤ |h|t2
(
eεt + εt+C

)

for |h|< ε. Hence,

∣
∣
∣
∣
Fn(z + h)− Fn(z)

h
+

∫ n

0

ze−tzf(t)dt

∣
∣
∣
∣=
∣
∣
∣
∣

∫ n

0

(
e−th − 1

h
+ t

)
e−tzf(t)dt

∣
∣
∣
∣

≤ |h|
∫ n

0

t2
(
eεt + εt+C

)∣∣e−tzf(t)
∣
∣dt

(6.42)

for |h|< ε. Letting h→ 0 we obtain

F ′
n(z) =−

∫ n

0

te−tzf(t)dt,

and in particular the function Fn is holomorphic. It then follows from Theo-

rem 4.20 that F is holomorphic for Rez > a, for each a > c, and hence, also for

Rez > c. Moreover, letting n→∞ and then h→ 0 in (6.42), since ε is arbitrary,

we obtain identity (6.40) for Rez > c. �

Now we show that under sufficiently general conditions, it is possible to

recover the function originating a given Laplace transform. In other words,

there exists the inverse of the Laplace transform.
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Theorem 6.27

If f ∈ Fc is of class C1, then for each t ∈R
+ we have

f(t) = lim
R→∞

1

2πi

∫

γR

etz(Lf)(z)dz, (6.43)

where the path γR : [−R,R]→C is given by γR(y) = x+ iy for any x > c.

More generally, we have the following result.

Theorem 6.28

Given f ∈ Fc and t ∈R
+, if there exist C,δ > 0 such that

∣
∣f(u)− f(t)

∣
∣≤C|u− t| (6.44)

for u ∈ (t− δ, t+ δ)∩R
+, then identity (6.43) holds.

Proof

For each x > c, we have

(Lf)(x+ iy) =

∫ ∞

0

e−u(x+iy)f(u)du.

Since f ∈ Fc, we also have

∣
∣e(t−u)(x+iy)f(u)

∣
∣≤ e(t−u)xDecu =Detxe(c−x)u.

Hence,

∫ R

−R

∫ ∞

0

∣
∣e(t−u)(x+iy)f(u)

∣
∣dudy <∞

for each x > c and R> 0. By Fubini’s theorem, we then obtain

∫ R

−R

et(x+iy)(Lf)(x+ iy)dy =

∫ R

−R

∫ ∞

0

e(t−u)(x+iy)f(u)dudy

= etx
∫ ∞

0

e−uxf(u)

∫ R

−R

ei(t−u)y dy du
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= etx
∫ ∞

0

e−uxf(u)
ei(t−u)R − e−i(t−u)R

i(t− u)
du

= 2etx
∫ ∞

0

e−uxf(u)
sin[(t− u)R]

t− u
du. (6.45)

Now we establish an auxiliary result, which is of independent interest.

A function h : I →R in a bounded or unbounded interval I ⊂R is called abso-

lutely Riemann-integrable (in I) if h is Riemann-integrable in I and
∫
I
|h|<∞.

We note that in bounded intervals any Riemann-integrable function is also

absolutely Riemann-integrable.

Lemma 6.29 (Riemann–Lebesgue lemma)

If h : I →R is an absolutely Riemann-integrable function in an interval I , then

lim
t→+∞

∫

I

h(u) cos(tu)du= lim
t→+∞

∫

I

h(u) sin(tu)du= 0. (6.46)

Proof of the lemma

We only consider the sine function, since the argument for the cosine is entirely

analogous. We first assume that h is a step function in a bounded interval,

that is,

h=

N∑

j=1

cjχIj

for some constants cj ∈R, where the intervals Ij form a partition of the inter-

val I , and where

χIj (u) =

{
1 if u ∈ Ij ,

0 if u �∈ Ij .

Setting Ij = [aj , bj ], we obtain

∫

I

h(u) sin(tu)du=

N∑

j=1

cj

∫ bj

aj

sin(tu)du

=

N∑

j=1

cj
cos(taj)− cos(tbj)

t
→ 0 (6.47)

when t→ +∞. Now let h be an absolutely Riemann-integrable function in a

bounded interval I . Given δ > 0, there exists a step function g : I → R such
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that
∫

I

|h− g|< δ.

We have
∣
∣
∣
∣

∫

I

h(u) sin(tu)du

∣
∣
∣
∣≤
∣
∣
∣
∣

∫

I

[
h(u)− g(u)

]
sin(tu)du

∣
∣
∣
∣+
∣
∣
∣
∣

∫

I

g(u) sin(tu)du

∣
∣
∣
∣

≤
∫

I

|h− g|+
∣
∣
∣
∣

∫

I

g(u) sin(tu)du

∣
∣
∣
∣.

Since g is a step function, it follows from (6.47) that

lim
t→+∞

∫

I

g(u) sin(tu)du= 0,

and thus,
∣
∣
∣
∣

∫

I

h(u) sin(tu)du

∣
∣
∣
∣< 2δ

for any is sufficiently large t. Since δ is arbitrary, we conclude that

lim
t→+∞

∫

I

h(u) sin(tu)du= 0. (6.48)

Now we assume that I is unbounded. Since h is absolutely Riemann-

integrable, given δ > 0, there exists a bounded interval J ⊂ I such that∫
I\J |h|< δ. Therefore,

∣
∣
∣
∣

∫

I

h(u) sin(tu)du

∣
∣
∣
∣≤
∣
∣
∣
∣

∫

J

h(u) sin(tu)du

∣
∣
∣
∣+
∫

I\J
|h|

≤
∣
∣
∣
∣

∫

J

h(u) sin(tu)du

∣
∣
∣
∣+ δ.

On the other hand, it follows from (6.48) with I replaced by J that

lim
t→+∞

∫

J

h(u) sin(tu)du= 0,

and since δ is arbitrary, we conclude that identity (6.48) holds.

Now we divide the last integral in (6.45) into three integrals, namely over

the intervals [0, t−δ], [t−δ, t+δ] and [t+δ,+∞). We observe that the function

h(u) =
e−uxf(u)

t− u
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is absolutely Riemann-integrable in [0, t − δ] and [t + δ,+∞), because it is

continuous and

∣
∣h(u)

∣
∣≤ De(c−x)u

|t− u| .

Moreover, since

sin
[
(t− u)R

]
= sin(tR) cos(uR)− cos(tR) sin(uR),

it follows from (6.46) that

lim
R→∞

∫ t−δ

0

h(u) sin
[
(t− u)R

]
du= lim

R→∞

∫ ∞

t+δ

h(u) sin
[
(t− u)R

]
du= 0. (6.49)

On the other hand, by (6.44), we have

∣
∣e−uxf(u)− e−txf(t)

∣
∣≤ e−ux

∣
∣f(u)− f(t)

∣
∣+
∣
∣e−ux − e−tx

∣
∣ ·
∣
∣f(t)

∣
∣

≤ e(−t+δ)xC|u− t|+ xe(−t+δ)x
∣
∣f(t)

∣
∣ · |u− t|

≤
(
C + x

∣
∣f(t)

∣
∣)|u− t|

for each u ∈ (t− δ, t+ δ), with t− δ ≥ 0. Writing K =C + x|f(t)|, we obtain

∣
∣
∣
∣

∫ t+δ

t−δ

[
e−uxf(u)− e−txf(t)

] sin[(t− u)R]

t− u
du

∣
∣
∣
∣

≤K

∫ t+δ

t−δ

∣
∣sin
[
(t− u)R

]∣∣du≤ 2Kδ.

Hence, making the change of variables v = (t− u)R yields

∣
∣
∣
∣

∫ t+δ

t−δ

h(u) sin
[
(t− u)R

]
du− e−txf(t)

∫ δR

−δR

sinv

v
dv

∣
∣
∣
∣≤ 2Kδ.

By Example 4.51, we have

∫ ∞

−∞

sinx

x
dx= π,

and thus,

∣
∣
∣
∣

∫ t+δ

t−δ

h(u) sin
[
(t− u)R

]
du− e−txf(t)π

∣
∣
∣
∣≤ 3Kδ (6.50)
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for any sufficiently large R. On the other hand, given δ > 0, it follows from

(6.45) and (6.49) that

∣
∣
∣
∣

∫ R

−R

et(x+iy)(Lf)(x+ iy)dy− 2etx
∫ t+δ

t−δ

h(u) sin
[
(t− u)R

]
du

∣
∣
∣
∣

= 2etx
∣
∣
∣
∣

∫ t−δ

0

h(u) sin
[
(t− u)R

]
du+

∫ ∞

t+δ

h(u) sin
[
(t− u)R

]
du

∣
∣
∣
∣< δ

for any sufficiently large R. By (6.50), we obtain

∣
∣
∣
∣

∫ R

−R

et(x+iy)(Lf)(x+ iy)dy− 2πf(t)

∣
∣
∣
∣≤ δ + 6Kδetx,

again for any sufficiently large R. Letting R→+∞ and then δ→ 0, we conclude

that
∫ ∞

−∞
et(x+iy)(Lf)(x+ iy)dy = 2πf(t),

which is equivalent to

lim
R→∞

∫ R

−R

etγR(y)F
(
γR(y)

)
γ′
R(y)dy = 2πif(t).

This yields the desired statement.

Sometimes it is possible to use the Residue theorem to recover a function f

from its Laplace transform. We establish a particular result which is sufficient

for the applications to differential equations of the form (6.34).

Theorem 6.30

Given a function f ∈ Fc of class C1, we assume that:

1. Lf is meromorphic and has a finite number of poles;

2. there exist constants K,b,R > 0 such that

∣
∣(Lf)(z)

∣
∣≤K/|z|b for |z|>R.

Then, for each t ∈R
+, we have

f(t) =
∑

p∈A

Res(Gt, p), (6.51)

where Gt(z) = etz(Lf)(z), and where A is the set of poles of Lf .
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Proof

By Theorem 6.27, there exists the inverse of the Laplace transform. It is thus

sufficient to show that if g : R+
0 → R is the function given by the right-hand

side of (6.51), then Lg = Lf for Rez > c.

Given a > c, let γ+
r and γ−

r be closed piecewise regular paths looping once

in the positive direction respectively on the boundaries of the sets

Br(0)∩ {z ∈C : Re z > a}

and

Br(0)∩ {z ∈C : Re z < a}

(see Figure 6.1). By Theorem 4.48, for any sufficiently large r, we have

Figure 6.1 Paths γ+
r and γ−

r

g(t) =
∑

p∈A

Res(Gt, p) =
1

2πi

∫

γ−
r

etwF (w)dw,

where F = Lf . On the other hand, by Proposition 3.34, for Re z > a we have

(Lg)(z) =
1

2πi
lim

R→∞

∫ R

0

e−tz

∫

γ−
r

etwF (w)dwdt

=
1

2πi
lim

R→∞

∫

γ−
r

F (w)

∫ R

0

et(w−z) dtdw
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=
1

2πi
lim

R→∞

∫

γ−
r

F (w)
eR(w−z) − 1

w− z
dw

=− 1

2πi

∫

γ−
r

F (w)

w− z
dw,

since
∣
∣eR(w−z)

∣
∣= eR(Rew−Re z) ≤ eR(a−Re z) → 0

when R→+∞. It then follows from Theorem 2.60 that

(Lg)(z) =− 1

2πi

(∫

γ−
r

F (w)

w− z
dw+

∫

γ+
r

F (w)

w− z
dw

)
+ F (z)

=− 1

2πi

∫

γr

F (w)

w− z
dw+ F (z), (6.52)

where the path γr : [0,2π]→ C is given by γr(θ) = reiθ. Indeed, the integrals

along the segments of γ−
r and γ+

r in the straight line Rez = a cancel out. On

the other hand,
∣
∣
∣
∣

∫

γr

F (w)

w− z
dw

∣
∣
∣
∣≤

2πrK

rb(r− |z|) → 0

when r → +∞, and thus, it follows from (6.52) that Lg = Lf for Re z > a.

Letting a→ c we obtain the desired result. �

Example 6.31

Let

F (z) =
1

(z − 2)(z − 4)(z − 5)

be the Laplace transform of a function f of class C1. By Theorem 6.30, we

have

f(t) =

3∑

p=1

Res(Gt, p)

=
etz

(z − 4)(z − 5)

∣
∣
∣
∣
z=2

+
etz

(z − 2)(z − 5)

∣
∣
∣
∣
z=4

+
etz

(z − 2)(z − 4)

∣
∣
∣
∣
z=5

=
1

6
e2t − 1

2
e4t +

1

3
e5t.

Now we start studying the relation between the Laplace transform and

differential equations of the form (6.34).
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Proposition 6.32

If f ′ ∈ Fc, then

L
(
f ′)(z) = z(Lf)(z)− f

(
0+
)
, Rez > c. (6.53)

Proof

Since f ′ ∈ Fc, we have

∣
∣f(t)

∣
∣≤
∣
∣
∣
∣f
(
0+
)
+

∫ t

0

f(u)du

∣
∣
∣
∣

≤
∣
∣f
(
0+
)∣∣+

∫ t

0

Decu du

=
∣
∣f
(
0+
)∣∣+

D

c

(
ect − 1

)
≤
(∣
∣f
(
0+
)∣∣+

D

c

)
ect,

and thus f ∈ Fc. We then obtain

L
(
f ′)(z) = lim

R→∞

∫ R

0

e−tzf ′(t)dt

= lim
R→∞

(
e−tzf(t)

∣
∣
∣
t=R

t=0
+ z

∫ R

0

e−tzf(t)dt

)

= lim
R→∞

(
e−Rzf(R)− f

(
0+
))

+ z lim
R→∞

∫ R

0

e−tzf(t)dt

=−f
(
0+
)
+ z(Lf)(z)

for Re z > c. This yields the desired identity. �

Example 6.33

Now we consider the second derivative. If f ′′ ∈ Fc, then one can use Proposi-

tion 6.32 twice to obtain

L
(
f ′′)(z) = z2(Lf)(z)− zf

(
0+
)
− f ′(0+

)
, Rez > c. (6.54)
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Indeed, taking g = f ′ we obtain

L
(
f ′′)(z) = L

(
g′
)
(z) = zL(g)(z)− g

(
0+
)

= zL
(
f ′)(z)− f ′(0+

)

= z
[
z(Lf)(z)− f

(
0+
)]

− f ′(0+
)

= z2(Lf)(z)− zf
(
0+
)
− f ′(0+

)
.

Example 6.34

Let us consider the equation

x′′ − 6x′ + 8x= e5t

with the conditions x(0) = 0 and x′(0) = 0. It follows from (6.53) and (6.54)

that if X = Lx, then

L
(
x′)(z) = zX(z)− x(0) = zX(z),

and

L
(
x′′)(z) = z2X(z)− zx(0)− x′(0) = z2X(z).

Therefore,

L
(
x′′ − 6x′ + 8x

)
(z) = z2X(z)− 6zX(z) + 8X(z)

=
(
z2 − 6z + 8

)
X(z).

By Example 6.24, we have

L
(
e5t
)
(z) =

1

z − 5
,

and hence,

X(z) =
1

(z − 5)(z2 − 6z + 8)

=
1

(z − 2)(z − 4)(z − 5)
.

Since the solution x(t) is of class C1, it follows from Example 6.31 that

x(t) =
1

6
e2t − 1

2
e4t +

1

3
e5t.
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Alternatively, one could note that

X(z) =
1

6

1

z − 2
− 1

2

1

z − 4
+

1

3

1

z − 5

= L

(
1

6
e2t − 1

2
e4t +

1

3
e5t
)
(z).

We also describe some additional properties that are useful in computing

the Laplace transform.

Proposition 6.35

If f ∈ Fc, then:

1. for the function g(t) = eatf(t), with a ∈R, we have

(Lg)(z) = (Lf)(z − a), Rez > a+ c;

2. for the function g(t) =−tf(t), we have

(Lg)(z) = (Lf)′(z), Rez > c.

Proof

In the first property, we have g ∈ Fa+c and

(Lg)(z) =

∫ ∞

0

e−tzeatf(t)dt

=

∫ ∞

0

e−t(z−a)f(t)dt= (Lf)(z − a).

The second property follows immediately from (6.40). �

Example 6.36

For f(t) = e3t and g(t) =−te3t, we have

(Lg)(z) = (Lf)′(z) =

(
1

z − 3

)′
=− 1

(z − 3)2
.

For f(t) = sin t and g(t) =−t sin t, we have

(Lg)(z) = (Lf)′(z) =

(
1

z2 + 1

)′
=− 2z

(z2 + 1)2
.
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Example 6.37

For f(t) = cos(7t) and g(t) = e5t cos(7t), we have

(Lg)(z) = (Lf)(z − 5) =
z − 5

(z − 5)2 + 49
.

Example 6.38

Now we consider the equation

x′′ + x= cos t (6.55)

with the conditions x(0) = 0 and x′(0) = 1. Taking X = Lx, we obtain

L
(
x′′)(z) = z2X(z)− zx(0)− x′(0) = z2X(z)− 1

and

L
(
x′′ + x

)
(z) =

(
z2 + 1

)
X(z)− 1.

It follows from (6.55) that

(
z2 + 1

)
X(z)− 1 =

z

z2 + 1
,

and hence,

X(z) =
1

z2 + 1
+

z

(z2 + 1)2

=
1

z2 + 1
− 1

2

(
1

z2 + 1

)′
= L

(
sin t+

1

2
t sin t

)
(z).

Thus, the solution of the problem is

x(t) = sin t+
1

2
t sin t.

6.5 Solved Problems and Exercises

Problem 6.1

Find a differentiable function Φ= Φ(t, x) such that

∂Φ

∂t
= 3x2 + (t+ 1)et and

∂Φ

∂x
= 6xt.
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Solution

It follows from the second equation that

Φ(t, x) = 3x2t+C(t)

for some differentiable function C. Hence,

∂Φ

∂t
= 3x2 +C ′(t) = 3x2 + (t+ 1)et,

and we obtain

C ′(t) = (t+ 1)et.

Thus, one can take C(t) = tet, and hence, Φ(t, x) = 3x2t+ tet.

Problem 6.2

Find the solution of the equation

x′ =
(
1 + x2

)
cos t

with x(0) = 0.

Solution

We write the equation in the form

x′

1 + x2
= cos t.

Since (tan−1 x)′ = x′/(1 + x2), integrating on both sides we obtain

tan−1 x(t) = sin t+ c

for some constant c ∈R. Thus, the solutions of the equation are given by

x(t) = tan(sin t+ c) for t ∈R,

with c ∈ R. Taking t = 0, we obtain x(0) = tan c = 0. Hence, c = 0, and the

solution of the problem is x(t) = tan sin t for t ∈R.
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Problem 6.3

Verify that if

Φ(t, x) =

∫ t

t0

g(s)ds−
∫ x

x0

f(y)dy,

where f and g are continuous functions, and x(t) is a solution of the equation

x′ = g(t)/f(x), then

d

dt
Φ
(
t, x(t)

)
= 0.

Solution

Using the chain rule, we obtain

d

dt
Φ
(
t, x(t)

)
= g(t)− f

(
x(t)
)
x′(t)

= g(t)− f
(
x(t)
)
g(t)/f

(
x(t)
)
= 0,

since x(t) is a solution of the equation x′ = g(t)/f(x).

Problem 6.4

Find all solutions of the equation

−2t+
(
x3 + 2x

)
x′ = 0. (6.56)

Solution

By Theorem 6.5, since the functions −2t and x3 + 2x are of class C1, and

∂

∂x
(−2t) =

∂

∂t

(
x3 + 2x

)
= 0,

the equation is exact. Hence, there exists a differentiable function Φ= Φ(t, x)

such that

∂Φ

∂t
=−2t and

∂Φ

∂x
= x3 + 2x.

By the first equation, we have Φ(t, x) = −t2 + C(x) for some differentiable

function C, and thus,

∂Φ

∂x
=C ′(x) = x3 + 2x.
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Hence, one can take C(x) = x4/4 + x2, and

Φ(t, x) =−t2 +
1

4
x4 + x2.

Therefore, by Proposition 6.3, each solution of equation (6.56) satisfies

−t2 +
1

4
x4 + x2 = c

for some constant c ∈R. Letting x2 = y, we obtain

y2 + 4y− 4
(
t2 + c

)
= 0,

which yields

y =
−4±

√
16 + 16(t2 + c)

2
=−2± 2

√
1 + c+ t2.

Since y = x2, one must take the + sign, and thus,

x(t) =±
√

−2 + 2
√
1 + c+ t2.

Each solution is defined whenever

1 + c+ t2 > 0 and
√

1 + c+ t2 > 1,

and thus, when t2 > −c. Hence, the maximal interval is R for c > 0, it is R
+

or R− for c= 0, and, finally, it is (−∞,−
√
−c) or (

√
−c,+∞) for c < 0.

Problem 6.5

Verify that the equation

−2tx+
(
x4 + 2x3

)
x′ = 0 (6.57)

is reducible to exact and find an integrating factor.

Solution

Let

M(t, x) =−2tx and N(t, x) = x4 + 2x3.

Since

∂M

∂x
− ∂N

∂t
=−2t− 0 =−2t �= 0,
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the equation is not exact. However, by Proposition 6.9, since

− 1

M

(
∂M

∂x
− ∂N

∂t

)
=

1

x

does not depend on t, there exists an integrating factor μ = μ(x). It satisfies

the equation

μ′ =− 1

M

(
∂M

∂x
− ∂N

∂t

)
μ, (6.58)

that is, μ′ =−(1/x)μ. Since

(
log |μ|

)′
=

μ′

μ
=− 1

x
,

we obtain

log
∣
∣μ(x)

∣
∣=− log |x|+ c

for some constant c ∈ R. Hence, a solution of equation (6.58) is for exam-

ple μ(x) = 1/x (this corresponds to taking c= 0). Multiplying equation (6.57)

by μ(x), we obtain the exact equation

−2t+
(
x3 + 2x2

)
x′ = 0.

Problem 6.6

Solve the equation

x′′ − 6x′ + 9x= 0. (6.59)

Solution

Since λ2 − 6λ+ 9 = (λ− 3)2, equation (6.59) can be written in the form (D−
3)2x= 0. By Proposition 6.13, the solutions of equation (6.59) are given by

x(t) = c1e
3t + c2te

3t for t ∈R,

with c1, c2 ∈R.

Problem 6.7

Solve the equation

x′′ + 2x= 0. (6.60)
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Solution

We write the equation in the form
(
D2 + 2

)
x= (D− i

√
2)(D+ i

√
2)x= 0.

By Proposition 6.16, the solutions of equation (6.60) are given by

x(t) = c1 cos(
√
2t) + c2 sin(

√
2t) for t ∈R,

with c1, c2 ∈R.

Problem 6.8

Solve the equation

(D+ 1)
(
D2 + 1

)
x= 0. (6.61)

Solution

We first consider separately the equations

(D+ 1)x= 0 and
(
D2 + 1

)
x= 0,

which have spaces of solutions generated respectively by e−t and by cos t and

sin t. Proceeding as in Example 6.18, we find that the space of solutions of

equation (6.61) is generated by these three functions, and thus the solutions

are given by

x(t) = c1e
−t + c2 cos t+ c3 sin t for t ∈R,

with c1, c2, c3 ∈R.

Problem 6.9

Solve the equation

x′′ + 4x= et. (6.62)

Solution

We write equation (6.62) in the form

(
D2 + 4

)
x= et. (6.63)
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Since

(D− 1)et =Det − et = 0,

it follows from (6.63) that

(D− 1)
(
D2 + 4

)
x= 0,

that is,

(D− 1)(D− 2i)(D+ 2i)x= 0.

In an analogous manner to that in Problem 6.8, the solutions of this equation

are given by

x(t) = c1e
t + c2 cos(2t) + c3 sin(2t) for t ∈R,

with c1, c2, c3 ∈R. However, not all of these functions are necessarily solutions

of equation (6.62). Substituting x(t) in (6.62), we obtain

(
D2 + 4

)
x=
(
D2 + 4

)(
c1e

t
)
= et,

since c2 cos(2t) + c3 sin(2t) is a solution of the equation (D2 + 4)x= 0. Hence,

(
D2 + 4

)(
c1e

t
)
= c1e

t + 4c1e
t = et,

and thus, 5c1 = 1, that is, c1 = 1/5. Therefore, the solutions of equation (6.62)

are given by

x(t) =
1

5
et + c2 cos(2t) + c3 sin(2t) for t ∈R,

with c2, c3 ∈R.

Problem 6.10

Solve the equation

x′′ − 9x= cos t. (6.64)

Solution

We write equation (6.64) in the form (D2 − 9)x= cos t, that is,

(D− 3)(D+ 3)x= cos t. (6.65)
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Now we observe that

(D− i)(D+ i) cos t=
(
D2 + 1

)
cos t=− cos t+ cos t= 0,

and thus, it follows from (6.65) that

(D− i)(D+ i)(D− 3)(D+ 3)x= 0.

Proceeding as in Problem 6.8, we find that the solutions of this equation are

given by

x(t) = c1e
3t + c2e

−3t + c3 cos t+ c4 sin t for t ∈R,

with c1, c2, c3, c4 ∈R. Substituting x(t) in (6.64), we obtain

(
D2 − 9

)
x=
(
D2 − 9

)
(c3 cos t+ c4 sin t),

since c1e
3t + c2e

−3t is a solution of the equation (D2 − 9)x= 0. Hence,

(
D2 − 9

)
(c3 cos t+ c4 sin t) =−10c3 cos t− 10c4 sin t= cos t,

and thus, c3 = −1/10 and c4 = 0. Therefore, the solutions of equation (6.64)

are given by

x(t) = c1e
3t + c2e

−3t − 1

10
cos t for t ∈R,

with c1, c2 ∈R.

Problem 6.11

Find all nonconstant periodic solutions of the equation

x′′ − 5x′ + 6= 0. (6.66)

Solution

We write the equation in the form (D2 − 5D)x = −6. Since D(−6) = 0, we

obtain

D
(
D2 − 5D

)
x= 0,

or equivalently, D2(D− 5)x= 0. The solutions of this equation are given by

x(t) = c1 + c2t+ c3e
5t for t ∈R,
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with c1, c2, c3 ∈R. Substituting x(t) in (6.66), we obtain

(
D2 − 5D

)
x= 25c3e

5t − 5c2 − 25c3e
5t =−5c2 =−6,

and thus, c2 = 6/5. Therefore, the solutions of equation (6.66) are given by

x(t) = c1 +
6

5
t+ c3e

5t for t ∈R,

with c1, c3 ∈R. In particular, all periodic solutions are constant.

Problem 6.12

Consider the equation

(D− 1)
(
D2 − 1

)
x= h(t). (6.67)

1. Find all solutions for h(t) = 0.

2. Find all solutions for h(t) = e−t such that x(0) = x′(0) = 0.

3. Find all solutions for h(t) = 0 such that x(t) = x(−t) for every t ∈R.

Solution

1. We have

(D− 1)
(
D2 − 1

)
x= (D− 1)2(D+ 1)x,

and thus, the solutions of equation (6.67) for h(t) = 0 are given by

x(t) = aet + btet + ce−t for t ∈R, (6.68)

with a, b, c ∈R.

2. Applying D+ 1 to the equation

(D− 1)2(D+ 1)x= e−t (6.69)

yields

(D− 1)2(D+ 1)2x= 0,

which has the solutions

x(t) = aet + btet + ce−t + dte−t for t ∈R,

with a, b, c, d ∈R. Substituting x(t) in (6.69), we obtain

(D− 1)2(D+ 1)
(
dte−t

)
= e−t,
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that is, 4de−t = e−t. Hence, d= 1/4. Moreover, since x(0) = x′(0) = 0, we

must have

a+ c= 0 and a+ b− c+
1

4
= 0.

We thus obtain b = −2a − 1/4 and c = −a, and the solutions of equa-

tion (6.67) for h(t) = e−t are given by

x(t) = aet −
(
2a+

1

4

)
tet − ae−t +

1

4
te−t for t ∈R,

with a ∈R.

3. By (6.68), the condition x(t) = x(−t) is equivalent to

aet + btet + ce−t = ae−t − bte−t + cet,

which yields

(a− c)et + btet − bte−t + (c− a)e−t = 0.

Hence, a= c and b= 0. The desired solutions are thus

x(t) = a
(
et + e−t

)

for t ∈R, with a ∈R.

Problem 6.13

Consider the equation

(
D2 + 1

)
(D+ 1)x= h(t). (6.70)

1. Find all solutions for h(t) = 0.

2. Find all solutions for h(t) = 0 having a limit when t→+∞.

3. Find all solutions for h(t) = t such that x′(0) = 0.

Solution

1. The roots of the polynomial (λ2 + 1)(λ+ 1) are i, −i and −1, and thus,

the solutions of equation (6.70) for h(t) = 0 are given by

x(t) = a cos t+ b sin t+ ce−t for t ∈R, (6.71)

with a, b, c ∈R.
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2. Since the component ce−t in (6.71) has a limit when t→+∞, in order to

determine whether x(t) has a limit when t→+∞, it remains to study the

component a cos t+ b sin t. Since this is a nonconstant periodic function for

a �= 0 or b �= 0, we must take a= b= 0. Hence, the solutions of the equation

for h(t) = 0 having a limit when t→+∞ are the functions ce−t, with c ∈R.

3. Applying D2 to equation (6.70) for h(t) = t, we obtain

D2
(
D2 + 1

)
(D+ 1)x= 0,

which has the solutions

x(t) = a cos t+ b sin t+ ce−t + dt+ e for t ∈R,

with a, b, c, d, e ∈ R. Substituting x(t) in equation (6.70) for h(t) = t, we

obtain
(
D2 + 1

)
(D+ 1)(dt+ e) =

(
D2 + 1

)
(d+ dt+ e)

= dt+ (d+ e) = t

and thus, d= 1 and e=−1. Hence,

x(t) = a cos t+ b sin t+ ce−t + t− 1 for t ∈R,

with a, b, c ∈R. Since

x′(t) =−a sin t+ b cos t− ce−t + 1,

we have x′(0) = b− c+ 1, and hence, c= b+ 1. The desired solutions are

thus

x(t) = a cos t+ b sin t+ (b+ 1)e−t + t− 1 for t ∈R,

with a, b ∈R.

Problem 6.14

Find the Laplace transform of the function

f(t) = cos(3t) + et sin(4t).

Solution

Let f1(t) = cos(3t) and f2(t) = sin(4t). It follows from (6.38) and (6.39) that

(Lf1)(z) =
z

z2 + 9
and (Lf2)(z) =

4

z2 + 16
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for Re z > 0. Hence, for the function f3(t) = et sin(4t), we have

(Lf3)(z) =

∫ ∞

0

e−tzet sin(4t)dt

=

∫ ∞

0

e−t(z−1) sin(4t)dt

= (Lf2)(z − 1) =
4

(z − 1)2 + 16

for Re z > 1. We then obtain

(Lf)(z) = (Lf1)(z) + (Lf3)(z)

=
z

z2 + 9
+

4

(z − 1)2 + 16

for Re z > 1.

Problem 6.15

For each a, b ∈R, find the Laplace transform of the function

f(t) = te−t + eat cos2(bt).

Solution

Let f1(t) = e−t. By Example 6.24, we have (Lf1)(z) = 1/(z+1) for Rez >−1.

Hence, for the function f2(t) = te−t, it follows from Proposition 6.35 that

(Lf2)(z) =−(Lf1)
′(z) =

1

(z + 1)2

for Re z >−1. On the other hand, since

cos2(bt) =
1+ cos(2bt)

2
,

by Example 6.22 and (6.38), for the function f3(t) = cos2(bt) we have

(Lf3)(z) =
1

2z
+

z

2(z2 + 4b2)

for Rez > 0. Hence, for the function f4(t) = eat cos2(bt), it follows from Propo-

sition 6.35 that
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(Lf4)(z) = (Lf3)(z − a)

=
1

2(z − a)
+

z − a

2[(z − a)2 + 4b2]

for Re z > a. We then obtain

(Lf)(z) = (Lf2)(z) + (Lf4)(z)

=
1

(z + 1)2
+

1

2(z − a)
+

z − a

2[(z − a)2 + 4b2]

for Re z >max{−1, a}.

Problem 6.16

Find the Laplace transform of the function

f(t) =

{
t if t ∈ [0,1],

e2t if t > 1.

Solution

We have

(Lf)(z) =

∫ 1

0

te−tz dt+

∫ ∞

1

e2te−tz dt

=− t

z
e−tz
∣
∣
∣
t=1

t=0
+

1

z

∫ 1

0

e−tz dt+ lim
R→∞

∫ R

1

e(2−z)t dt

=−e−z

z
− 1

z2
e−tz
∣
∣
∣
t=1

t=0
+ lim

R→∞

e(2−z)t

2− z

∣
∣
∣
∣

t=R

t=1

=−e−z

z
− 1

z2
(
e−z − 1

)
+ lim

R→∞

e(2−z)R − e2−z

z − 2
,

and thus,

(Lf)(z) =−e−z

z
− 1

z2
(
e−z − 1

)
− e2−z

z − 2

for Re z > 2.
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Problem 6.17

Find the function f of class C1 whose Laplace transform is

F (z) =
1

z(z − 2)(z + 4)
.

Solution

We note that the function F is meromorphic and has a finite number of poles.

Moreover, given R> 4, for each |z|>R we have

∣
∣z(z − 2)(z + 4)

∣
∣≥ |z|

(
|z| − 2

)(
|z| − 4

)

> |z|(R− 2)(R− 4),

and thus,

∣
∣F (z)

∣
∣<

1

(R− 2)(R− 4)|z| .

By Theorem 6.30, we obtain

f(t) =
∑

p∈A

Res(Gt, p),

where Gt(z) = etzF (z), and where A is the set of poles of F . Therefore,

f(t) = Res(Gt,0) +Res(Gt,2) +Res(Gt,−4)

=
etz

(z − 2)(z + 4)

∣
∣
∣
∣
z=0

+
etz

z(z + 4)

∣
∣
∣
∣
z=2

+
etz

z(z − 2)

∣
∣
∣
∣
z=−4

=−1

8
+

1

12
e2t +

1

24
e−4t.

Problem 6.18

Use the Laplace transform to find the solution of the equation

x′′ − 5x′ + 6x= et with x(0) = x′(0) = 0. (6.72)

Solution

Letting X = Lx, we obtain

L
(
x′)(z) = zX(z)− x(0) = zX(z)
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and

L
(
x′′)(z) = z2X(z)− zx(0)− x′(0) = z2X(z).

Hence,

L
(
x′′ − 5x′ + 6x

)
(z) = z2X(z)− 5zX(z) + 6X(z)

=
(
z2 − 5z + 6

)
X(z).

By Example 6.24, it follows from (6.72) that

(
z2 − 5z + 6

)
X(z) =

1

z − 1
,

that is,

X(z) =
1

(z − 1)(z2 − 5z + 6)
=

1

(z − 1)(z − 2)(z − 3)
.

Proceeding as in Problem 6.17, we then obtain

x(t) =
etz

(z − 2)(z − 3)

∣
∣
∣
∣
z=1

+
etz

(z − 1)(z − 3)

∣
∣
∣
∣
z=2

+
etz

(z − 1)(z − 2)

∣
∣
∣
∣
z=3

=
1

2
et − e2t +

1

2
e3t.

Alternatively, note that

X(z) =
1

2

1

z − 1
− 1

z − 2
+

1

2

1

z − 3

= L

(
1

2
et − e2t +

1

2
e3t
)
(z),

and thus again

x(t) =
1

2
et − e2t +

1

2
e3t.

Problem 6.19

Use the Laplace transform to find the solution of the equation

x′′ − x= sin t with x(0) = 0 and x′(0) = 1. (6.73)
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Solution

Letting X = Lx, we obtain

L
(
x′′)(z) = z2X(z)− zx(0)− x′(0) = z2X(z)− 1,

and hence,

L
(
x′′ − x

)
(z) =

(
z2 − 1

)
X(z)− 1.

By (6.39), we have

L(sin t)(z) =
1

z2 + 1
,

and thus, it follows from (6.73) that

(
z2 − 1

)
X(z)− 1 =

1

z2 + 1
.

Hence,

X(z) =
1

z2 − 1
+

1

(z2 + 1)(z2 − 1)

=
1

z − 1
· 1

z + 1
+

1

z − 1
· 1

z + 1
· 1

z − i
· 1

z + i
.

Proceeding as in Problem 6.17, we then obtain

x(t) =
etz

z + 1

∣
∣
∣
∣
z=1

+
etz

z − 1

∣
∣
∣
∣
z=−1

+
etz

(z + 1)(z − i)(z + i)

∣
∣
∣
∣
z=1

+
etz

(z − 1)(z − i)(z + i)

∣
∣
∣
∣
z=−1

+
etz

(z + 1)(z − 1)(z + i)

∣
∣
∣
∣
z=i

+
etz

(z − 1)(z + 1)(z − i)

∣
∣
∣
∣
z=−i

=
3

4
et − 3

4
e−t − 1

2

(
eit − e−it

2i

)

=
3

4
et − 3

4
e−t − sin t

2
.

Problem 6.20

Given continuous functions f, g : R+
0 →R, we define their convolution by

(f ∗ g)(t) =
∫ t

0

f(u)g(t− u)du.
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Show that if
∣
∣f(t)

∣
∣,
∣
∣g(t)

∣
∣≤ ceat, t ∈R

+
0 (6.74)

for some constants a, c > 0, then

L(f ∗ g)(z) = (Lf)(z)(Lg)(z), Rez > a.

Solution

We have

(Lf)(z)(Lg)(z) =

∫ ∞

0

e−tzf(t)dt

∫ ∞

0

e−szg(s)ds

=

∫ ∞

0

∫ ∞

0

e−(t+s)zf(t)g(s)dtds

for Re z > a. Letting t+ s= τ , we obtain

(Lf)(z)(Lg)(z) =

∫ ∞

0

∫ ∞

t

e−τzf(t)g(τ − t)dτ dt.

By Fubini’s theorem, since the functions f and g are continuous and sat-

isfy (6.74), one can interchange the order of integration in the last integral

(for Re z > a). Therefore,

(Lf)(z)(Lg)(z) =

∫ ∞

0

∫ τ

0

e−τzf(t)g(τ − t)dtdτ

=

∫ ∞

0

e−τz

(∫ τ

0

f(t)g(τ − t)dt

)
dτ

=

∫ ∞

0

e−τz(f ∗ g)(τ)dτ

= L(f ∗ g)(z).

Problem 6.21

Verify that the function 1/t2 does not have a Laplace transform.

Solution

For f(t) = 1/t2 we have

(Lf)(z) =

∫ ∞

0

e−tz 1

t2
dt
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whenever the integral is well defined. Moreover,

∣
∣
∣
∣e

−tz 1

t2

∣
∣
∣
∣=

e−tRe z

t2
,

and thus,
∫ ∞

1

∣
∣
∣
∣e

−tz 1

t2

∣
∣
∣
∣dt≤

∫ ∞

1

1

t2
dt= 1

for Re z ≥ 0. Hence, the integral
∫∞
1

e−tz/t2 dt is well defined for Re z ≥ 0. On

the other hand, for x ∈R we have

∫ 1

0

e−tx 1

t2
dt≥min

{
1, e−x

}∫ 1

0

1

t2
dt=+∞,

and thus, the integral
∫ 1
0
e−tx/t2 dt is not defined for Rez > c, for any c. This

shows that the Laplace transform of 1/t2 does not exist.

EXERCISES

6.1. Find all solutions of the equation:

(a) x′′ + x′ − x= 0;

(b) x(5) − x′ = 0.

6.2. Solve the equation:

(a) x′′ − 2x′ + x= 0 with x(0) = 0 and x′(0) = 2;

(b) x(3) − x′ = 0 with x(0) = x′(0) = 0 and x′′(0) = 3.

6.3. Find all solutions of the equation:

(a) (D+ 1)(D− 2)x= et;

(b) (D2 + 1)x= cos t;

(c) (D2 + 4)x= t;

(d) (D2 + 2D+ 1)x= 2t+ cos t;

(e) (D3 + 2D2)x= cos t.

6.4. Solve the equation:

(a) x′′ + x= cos t with x(0) = x′(0) = 1;

(b) x′′ − 4x= t with x(0) = 1 and x′(0) = 2;

(c) x′′ − x= tet with x(0) = x′(0) = 0;

(d) x′′ + x= et − sin t with x(0) = x′(0) = 1.

6.5. Consider the equation

(
3t2x2 + t

)
+
(
t3 + 1

)
xx′ = 0.
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(a) Verify that it is not exact.

(b) Find an integrating factor.

(c) Find as explicitly as possible the solution with x(0) = 1.

6.6. Solve the equation:

(a) cosx− t sinxx′ = 0;

(b) x+ xx′ = 0;

(c) 1− 2t sinx− t2 cosxx′ = 0 with x(2) = π/6;

(d) (2− x)x′ = 2cos(4t) with x(0) = 0;

(e) (1− x)x′ = sin(2t) with x(0) = 0;

(f) 2txx′ = t+ x2 with x(1) = 1;

(g) t2x2x′ = t2 + 1 with x(1) = 1.

6.7. Show that the equation

x2 + tx logx+
(
t2 + tx log t

)
x′ = 0

has an integrating factor of the form μ(tx).

6.8. Find all solutions of the equation x′′ − 2x′ + x = 0 satisfying the

condition x(0) + x(1) = 0.

6.9. Find all bounded solutions of the equation:

(a) x(4) + x′ = 0;

(b) x′′ − x′ − x= 0.

6.10. Consider the equation (D2 + 4)(D+ 2)x= h(t).

(a) Find all solutions for h(t) = 0.

(b) Find all solutions for h(t) = 1 such that x′(0) = 4.

(c) Find all bounded solutions for h(t) = 0.

6.11. Find all solutions of the equation x′′ −x′ − 6x= 0 that are bounded

for t > 0.

6.12. Identify each statement as true or false.

(a) The equation x′′ + x′ = 0 has nonconstant periodic solutions.

(b) The equation x′ = 6t
3
√
x2 has more than one solution with

x(0) = 0.

6.13. Find whether the equation x′′′x= x′′x′ has solutions for which x′′/x

is bounded. Hint: note that (x′′/x)′ = (x′′′x− x′′x′)/x2.

6.14. Consider the equation

x′ = p(t)x2 + q(t)x+ r(t),

where p, q and r are continuous functions with p �= 0.

(a) Verify that if x(t) is a solution, then the function y(t) = p(t)x(t)

satisfies the equation

y′ = y2 +Q(t)y+R(t),
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where

Q(t) = q(t) +
p′(t)

p(t)
and R(t) = p(t)r(t).

(b) Verify that the function z(t) = e−Y (t), where Y (t) is a primitive

of y(t), satisfies the equation

z′′ −Q(t)z′ +R(t)z = 0.

6.15. Find the Laplace transform of the function:

(a) t2et;

(b) t2 cos t;

(c) t4 sin t;

(d) t+ e−t cos t;

(e) et sin2 t;

(f) te2t sin(3t);

(g) cos(3t) sin(2t);

(h) cos3 t.

6.16. Find the function with Laplace transform:

(a) z/(z2 − 1);

(b) (z + 1)/(z3 − 1);

(c) (3z2 − 1)/(z2 + 1)3;

(d) (3z2 + 1)/[z2(z2 + 1)2].

6.17. Find the Laplace transform of the solution of the equation

x′′ + 3x′ + x= cos t with x(0) = 0, x′(0) = 1.

6.18. Given f ∈ Fc and n ∈N, show that

(Lf)(n)(z) = (−1)n
∫ ∞

0

tne−tzf(t)dt, Rez > c.

6.19. Under the assumptions of Problem 6.20, show that:

(a) f ∗ g = g ∗ f .
(b) f ∗ (g+ h) = f ∗ g+ f ∗ h.
(c) (f ∗ g) ∗ h= f ∗ (g ∗ h).

6.20. For the function g(t) =
∫ t
0
f(s)ds, show that

(Lg)(z) =
(Lf)(z)

z
.

6.21. Show that if f is a T -periodic function, then

(Lf)(z) =
1

1− e−Tz

∫ T

0

e−tzf(t)dt.
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6.22. Show that if g(t) = f(t) cosh(at), then

(Lg)(z) =
1

2

[
(Lf)(z − a) + (Lf)(z + a)

]
.

6.23. Use the Laplace transform to find a function f such that

f(t) +

∫ t

0

f(s)ds= 1.

6.24. Find all constant solutions of the equation

x′′ = x(x− 1)(x− 2).

6.25. Verify that the equation x′ = x(x− 1)(x− 2) has bounded solutions

that are not constant.

6.26. Verify that if (x, y) = (x(t), y(t)) is a solution of the equation

{
x′ = y,

y′ = x2 + x,

then

d

dt

(
1

2
y(t)2 − 1

3
x(t)3 − 1

2
x(t)2

)
= 0.

6.27. Given a function H : R2 →R of class C1, verify that if

(x, y) = (x(t), y(t))

is a solution of the equation

{
x′ = ∂H/∂y,

y′ =−∂H/∂x,
(6.75)

then

d

dt
H
(
x(t), y(t)

)
= 0.

6.28. For the equation
{
x′ = x,

y′ =−y− 1,

find a function H(x, y) satisfying (6.75).
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6.29. For the equation
{
x′ = x2 − 2x2y,

y′ =−2xy+ 2xy2,

find a function H(x, y) satisfying (6.75).

6.30. Verify that the image of each solution of the equation

{
x′ = y,

y′ =−x

is a circle or a point.

6.31. Verify that the image of each solution of the equation

{
x′ = y,

y′ = x

is a branch of a hyperbola, a ray, or a point.



7
Fourier Series

In this chapter we introduce the notion of Fourier series of a given function.

In particular, we study the convergence as well as the uniform convergence

of Fourier series. We also show how to expand a sufficiently regular function

as a series of cosines and as a series of sines. As a by-product of the theory,

we obtain several identities expressing π and other numbers as series of real

numbers.

7.1 An Example

As a motivation for the study of Fourier series, we consider the heat equation

∂u

∂t
= κ

∂2u

∂x2
, (7.1)

for t ≥ 0 and x ∈ [0, l], with κ, l > 0. This equation models the evolution of

the temperature u(t, x) at time t and at each point x of a bar of length l. We

assume that

u(t,0) = u(t, l) = 0, t≥ 0. (7.2)

L. Barreira, C. Valls, Complex Analysis and Differential Equations,
Springer Undergraduate Mathematics Series,
DOI 10.1007/978-1-4471-4008-5 7, c© Springer-Verlag London 2012

333
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This means that the endpoints of the bar are kept permanently at zero tem-

perature. We first look for solutions of the form

u(t, x) = T (t)X(x).

This is the first step of the method of separation of variables.

Proposition 7.1

If TX does not vanish, then there exists λ ∈R such that

T ′ =−λκT and X ′′ + λX = 0. (7.3)

Proof

Substituting u(t, x) = T (t)X(x) in (7.1), we obtain

T ′X = κTX ′′,

and thus,

T ′

κT
=

X ′′

X
, (7.4)

since TX does not vanish. We note that the left-hand side of (7.4) does not

depend on x and that the right-hand side does not depend on t. Hence, there

exists a constant λ ∈R such that

T ′

κT
=

X ′′

X
=−λ

for every t and x. This yields the desired identities. �

The solutions of the first equation in (7.3) are given by

T (t) = ce−λκt, (7.5)

with c �= 0 (so that T �= 0). On the other hand, it follows from (7.2) that

T (t)X(0) = T (t)X(l) = 0 for t≥ 0,

which in view of (7.5) is equivalent to

X(0) =X(l) = 0.
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Hence, it remains to solve the problem

X ′′ + λX = 0, X(0) =X(l) = 0. (7.6)

Proposition 7.2

Problem (7.6) has nonzero solutions if and only if λ= n2π2/l2 for some n ∈N,

in which case

X(x) = b sin

(
nπx

l

)
, with b �= 0. (7.7)

Proof

We consider three cases.

1. When λ= 0, we have X ′′ = 0, and thus,

X(x) = a+ bx, (7.8)

with a, b ∈ R. It follows from X(0) = 0 that a = 0. Thus, X(l) = bl = 0,

which yields b= 0 and X(x) = 0.

2. When λ < 0, the solutions of the equation

X ′′ + λX =
(
D2 + λ

)
X =

(
D−

√
|λ|
)(
D+

√
|λ|
)
X = 0

are given by

X(x) = ae
√

|λ|x + be−
√

|λ|x, (7.9)

with a, b ∈R. It follows from X(0) = 0 that a+ b= 0. Hence,

X(l) = a
(
e
√

|λ|l − e−
√

|λ|l
)
= 0. (7.10)

Since
√

|λ|l > 0, we have e
√

|λ|l > 1 and e−
√

|λ|l < 1. Thus, it follows

from (7.10) that a= 0, which yields b= 0 and X(x) = 0.

3. When λ > 0, the solutions of the equation

X ′′ + λX =
(
D2 + λ

)
X = 0

are given by

X(x) = a cos(
√
λx) + b sin(

√
λx), (7.11)

with a, b ∈ R. It follows from X(0) = 0 that a = 0. Hence, X(l) =

b sin(
√
λl) = 0. Therefore, b= 0 (which would give X = 0), or

sin(
√
λl) = 0. (7.12)
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It follows from (7.12) that
√
λl= nπ for some n ∈N (we recall that λ > 0),

that is,

λ=
n2π2

l2
, n ∈N.

We thus obtain the solutions in (7.7).

This completes the proof of the proposition. �

Combining (7.5) and (7.7), we obtain the solutions of the heat equation (7.1)

given by

u(t, x) = cne
−n2π2κt/l2 sin

(
nπx

l

)
, (7.13)

with n ∈N and cn ∈R. We note that all of them satisfy condition (7.2).

The solutions of the heat equation have the following property.

Proposition 7.3

If u1 and u2 are solutions of equation (7.1), then c1u1+c2u2 is also a solution of

equation (7.1) for each c1, c2 ∈R. Moreover, if u1 and u2 satisfy condition (7.2),

then c1u1 + c2u2 also satisfies condition (7.2) for each c1, c2 ∈R.

Proof

We have

∂

∂t
(c1u1 + c2u2) = c1

∂u1

∂t
+ c2

∂u2

∂t

= c1κ
∂2u1

∂x2
+ c2κ

∂2u2

∂x2

= κ
∂2

∂x2
(c1u1 + c2u2),

which establishes the first property. The second property is immediate. �

The following is an immediate consequence of (7.13) and Proposition 7.3.
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Proposition 7.4

For each N ∈N and c1, . . . , cN ∈R, the function

u(t, x) =

N∑

n=1

cne
−n2π2κt/l2 sin

(
nπx

l

)
(7.14)

is a solution of equation (7.1) satisfying condition (7.2).

Now we make the additional assumption that

u(0, x) = f(x), x ∈ [0, l], (7.15)

for a given function f : [0, l] → R. For the solution in (7.14), it follows from

(7.15) that

u(0, x) =

N∑

n=1

cn sin

(
nπx

l

)
= f(x), (7.16)

and thus, we would like to find constants cn such that the second identity

in (7.16) holds. For example, for

f(x) = sin

(
πx

l

)
+ 2sin

(
3πx

l

)
,

one can take

cn =

⎧
⎪⎪⎨

⎪⎪⎩

1 if n= 1,

2 if n= 2,

0 otherwise,

and thus, the solution in (7.14) takes the form

u(t, x) = e−π2κt/l2 sin

(
πx

l

)
+ 2e−9π2κt/l2 sin

(
3πx

l

)
.

Unfortunately, in general (that is, for an arbitrary function f ), it is not possible

to find constants cn such that identity (7.16) holds. However, we verify in the

following sections that it is possible to find constants cn for a large class of

functions f , provided that one can take N =∞, that is, provided that one can

consider solutions given by series of the form

u(t, x) =
∞∑

n=1

cne
−n2x2κt/l2 sin

(
nπx

l

)
.
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In particular, we will have to discuss the convergence of the series

u(0, x) =

∞∑

n=1

cn sin

(
nπx

l

)
. (7.17)

7.2 Fourier Series

In this section we discuss the convergence of the series in (7.17). To this effect,

we first introduce a class of functions in the interval [−l, l].

Definition 7.5

Let Dl be the family of functions f : [−l, l]→R such that:

1. f has at most finitely many discontinuities;

2. f has left-sided and right-sided limits at all points of [−l, l];

3. for each interval (a, b) ⊂ [−l, l] where the function f is continuous, the

(continuous) function g : [a, b]→R defined by

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

f(a+) if x= a,

f(x) if x ∈ (a, b),

f(b−) if x= b

(7.18)

has left-sided and right-sided (finite) derivatives at all points of [a, b].

Now we define the Fourier coefficients.

Definition 7.6

Given a function f ∈Dl, we define its Fourier coefficients by

an =
1

l

∫ l

−l

f(x) cos

(
nπx

l

)
dx, n ∈N∪ {0}

and

bn =
1

l

∫ l

−l

f(x) sin

(
nπx

l

)
dx, n ∈N.

We note that each function f ∈ Dl is Riemann-integrable, and thus, the

coefficients an and bn are well defined.
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Definition 7.7

We define the Fourier series of a function f ∈Dl by

F (x) =
a0
2

+

∞∑

n=1

[
an cos

(
nπx

l

)
+ bn sin

(
nπx

l

)]
,

whenever it converges.

The following result establishes the convergence of Fourier series.

Theorem 7.8

For each function f ∈Dl, we have

F (x) =
f(x+) + f(x−)

2
for x ∈ (−l, l), (7.19)

and

F (x) =
f(−l+) + f(l−)

2
for x ∈ {−l, l}. (7.20)

Proof

The partial sums

Sn(x) =
a0
2

+

n∑

k=1

[
ak cos

(
kπx

l

)
+ bk sin

(
kπx

l

)]
(7.21)

satisfy

Sn(x)−
1

2l

∫ l

−l

f(y)dy

=
1

l

∫ l

−l

f(y)

n∑

k=1

(
cos

(
kπy

l

)
cos

(
kπx

l

)
+ sin

(
kπy

l

)
sin

(
kπx

l

))
dy

=
1

l

∫ l

−l

f(y)

n∑

k=1

cos

(
kπ(y− x)

l

)
dy,
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where

n∑

k=1

cos

(
kπ(y− x)

l

)
=Re

n∑

k=1

eikπ(y−x)/l

=Re

(
1− einπ(y−x)/l

1− eiπ(y−x)/l
eiπ(y−x)/l

)

=Re

(
eiπ(y−x)/(2l) − ei(n+1/2)π(y−x)/l

e−iπ(y−x)/(2l) − eiπ(y−x)/(2l)

)

=Re

(
eiπ(y−x)/(2l) − ei(n+1/2)π(y−x)/l

−2i sin(π(y− x)/(2l))

)

=−1

2
+

sin((n+ 1/2)π(y− x)/(2l))

sin(π(y− x)/(2l))
.

Letting

Dn(y) =
sin((n+ 1/2)πy/(2l))

sin(πy/(2l))
,

one can then write

Sn(x) =
1

l

∫ l

−l

f(y)Dn(y− x)dy

=
1

l

∫ l

−l

g(y+ x)Dn(y)dy, (7.22)

where the function g : R→R is given by

g(x) = f(x− 2kl) (7.23)

when x− 2kl ∈ [−l, l) for some k ∈ Z. On the other hand, if f = 1, then an =

bn = 0 for every n ∈N, and it follows from (7.21) and (7.22) that

1 =
1

l

∫ l

−l

Dn(y)dy, n ∈N.

Therefore,

Sn(x)−
g(x+) + g(x−)

2
=

1

l

∫ l

−l

(
g(y+ x)− g(x+) + g(x−)

2

)
Dn(y)dy

=
1

l

∫ 0

−l

(
g(y+ x)− g

(
x−))Dn(y)dy

+
1

l

∫ l

0

(
g(y+ x)− g

(
x+
))
Dn(y)dy. (7.24)
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Now we use the Riemann–Lebesgue lemma (Lemma 6.29) to show that the

integrals in (7.24) converge to zero when n→∞. For each y ∈ [−l,0), we have

(
g(y+ x)− g

(
x−))Dn(y) =

g(y+ x)− g(x−)

y
· sin((n+ 1/2)πy/(2l))

sin(πy/(2l))/y
.

We note that the function χ : [−l, l]→R+ given by

χ(y) =

{
sin(πy/(2l))/y if y �= 0,

π/(2l) if y = 0

is continuous. On the other hand, since f ∈ Dl, the function ψ : [−l,0] → R

given by

ψ(y) =

{
(g(y+ x)− g(x−))/y if y �= 0,

g′(x−) if y = 0

has at most finitely many discontinuities, and has left-sided and right-sided

limits at all points of [−l,0]. Hence, ψ is Riemann-integrable in [−l,0] (it is

also absolutely Riemann-integrable, since the interval is bounded). The same

happens with the function h= ψ/χ, and thus, it follows from Lemma 6.29 that

∫ 0

−l

(
g(y+ x)− g

(
x−))Dn(y)dy

=

∫ 0

−l

h(y) sin

(
(n+ 1/2)πy

2l

)
dy

=

∫ 0

−l

h(y) sin

(
πy

4l

)
cos

(
nπy

2l

)
dy+

∫ 0

−l

h(y) cos

(
πy

4l

)
sin

(
nπy

2l

)
dy→ 0

when n→∞. One can show in an analogous manner that

lim
n→∞

∫ l

0

(
g(y+ x)− g

(
x+
))
Dn(y)dy = 0.

It then follows from (7.24) that

Sn(x)→
g(x+) + g(x−)

2
(7.25)

when n→∞. Identity (7.19) follows immediately from (7.25), since g = f in

(−l, l). For x ∈ {−l, l}, we note that

g
(
l−
)
= g
(
−l−
)
= f
(
l−
)

and g
(
l+
)
= g
(
−l+
)
= f
(
−l+
)
.

This establishes identity (7.20). �
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The following property is an immediate consequence of Theorem 7.8.

Proposition 7.9

If a function f ∈Dl is continuous at a point x ∈ (−l, l), then F (x) = f(x).

Now we give some examples.

Example 7.10

Let us consider the function

f(x) =

{
0 if −1≤ x < 0,

2 if 0≤ x≤ 1.

Clearly, f ∈D1. Taking l= 1, we have

a0 =

∫ 1

−1

f(x)dx= 2

and

an =

∫ 1

−1

f(x) cos(nπx)dx= 2

∫ 1

0

cos(nπx)dx= 0

for n ∈N. We also have

bn =

∫ 1

−1

f(x) sin(nπx)dx= 2

∫ 1

0

sin(nπx)dx

=
2

nπ

(
1− cos(nπ)

)
=

2(1− (−1)n)

nπ

for n ∈N. Hence, the Fourier series of f is

F (x) = 1+

∞∑

m=1

4

(2m− 1)π
sin
(
(2m− 1)πx

)
.

On the other hand, by Theorem 7.8, we have

F (x) =

{
f(x) if x ∈ (−1,0)∪ (0,1),

1 if x ∈ {−1,0,1}.

In particular, taking x= 1/2, we obtain

2 = 1+
∞∑

m=1

4(−1)m−1

(2m− 1)π
= 1+

4

π
− 4

3π
+

4

5π
− · · · ,
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that is,

π

4
=

∞∑

m=1

(−1)m−1

2m− 1
= 1− 1

3
+

1

5
− 1

7
+ · · · .

Example 7.11

Now we consider the function f : [−1,1]→R given by f(x) = |x|. Clearly,

f ∈D1. Taking l= 1, we have

a0 =

∫ 1

−1

|x|dx= 1

and

an =

∫ 1

−1

|x| cos(nπx)dx= 2

∫ 1

0

x cos(nπx)dx

= 2

(
x
sin(nπx)

nπ
+

cos(nπx)

(nπ)2

)∣∣
∣
∣

x=1

x=0

= 2
cos(nπ)− 1

(nπ)2
= 2

(−1)n − 1

(nπ)2

for n ∈N. We also have

bn =

∫ 1

−1

|x| sin(nπx)dx= 0

for n ∈N. Hence, the Fourier series of f is

F (x) =
1

2
+

∞∑

m=1

−4

(2m− 1)2π2
cos
(
(2m− 1)πx

)
. (7.26)

By Theorem 7.8, we have F (x) = |x| for every x ∈ [−1,1]. In particular, taking

x= 0, we obtain

0 =
1

2
− 4

π2

∞∑

m=1

1

(2m− 1)2

=
1

2
− 4

π2

(
1 +

1

32
+

1

52
+ · · ·

)
,

that is,

π2

8
=

∞∑

m=1

1

(2m− 1)2
= 1+

1

32
+

1

52
+ · · · .
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Example 7.12

Let us consider the function

f(x) =

{
−x if −2≤ x < 0,

1 if 0≤ x≤ 2.

Clearly, f ∈D2. Taking l= 2, we have

a0 =
1

2

∫ 2

−2

f(x)dx= 2

and

an =
1

2

∫ 2

−2

f(x) cos

(
nπx

2

)
dx

=−1

2

∫ 0

−2

x cos

(
nπx

2

)
dx+

1

2

∫ 2

0

cos

(
nπx

2

)
dx

=

(
− 2

n2π2
cos

(
nπx

2

)
− x

nπ
sin

(
nπx

2

))∣∣
∣
∣

x=0

x=−2

=
2

(nπ)2
(
cos(nπ)− 1

)
=

2[(−1)n − 1]

(nπ)2

for n ∈N. We also have

bn =
1

2

∫ 2

−2

f(x) sin

(
nπx

2

)
dx

=−1

2

∫ 0

−2

x sin

(
nπx

2

)
dx+

1

2

∫ 2

0

sin

(
nπx

2

)
dx

=

(
x

nπ
cos

(
nπx

2

)
− 2

n2π2
sin

(
nπx

2

))∣∣
∣
∣

x=0

x=−2

− 1

nπ
cos

(
nπx

2

)∣∣
∣
∣

x=2

x=0

=
1

nπ

(
1 + cos(nπ)

)
=

1+ (−1)n

nπ

for n ∈N. Therefore,

an =

{
0 if n is even,

−4/(n2π2) if n is odd,

and

bn =

{
0 if n is odd,

2/(nπ) if n is even.
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Hence, the Fourier series of f is

F (x) = 1+

∞∑

m=1

−4

(2m− 1)2π2
cos

(
(2m− 1)πx

2

)
+

∞∑

m=1

1

mπ
sin(mπx).

By Theorem 7.8, we have

F (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3/2 if x=−2 or x= 2,

−x if −2< x< 0,

1/2 if x= 0,

1 if 0< x< 2.

We also give a condition for the uniform convergence of a Fourier series.

Theorem 7.13

If f : [−l, l]→R is the restriction to the interval [−l, l] of a 2l-periodic function

g : R → R of class C1, then the Fourier series of f converges uniformly to f

on [−l, l].

More generally, we have the following result.

Theorem 7.14

Let f : [−l, l] → R be a continuous function with f(−l) = f(l). If there exist

points −l = x0 < x1 < · · ·< xm = l such that the restriction of f to (xi, xi+1)

has an extension of class C1 to some open interval containing [xi, xi+1], for

i= 0, . . . ,m− 1, then the Fourier series of f converges uniformly to f on the

interval [−l, l].

Proof

We note that f ∈Dl, and we use the same notation as in the proof of Theo-

rem 7.8. Given ε > 0 and x ∈ [−l, l], we define a function hx : [−l, l]\ [−ε, ε]→R

by

hx(y) =
g(y+ x)− g(x)

sin(πy/(2l))
,
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with g as in (7.23). Writing kn = (n+ 1/2)π/(2l), we have

∫ −ε

−l

[
g(y+ x)− g(x)

]
Dn(y)dy

=

∫ −ε

−l

hx(y) sin(kny)dy

=−hx(y) cos(kny)

kn

∣
∣
∣
∣

y=−ε

y=−l

+

∫ −ε

−l

h′
x(y) cos(kny)

kn
dy→ 0 (7.27)

when n→∞, uniformly in x on the interval (−l,−ε). One can also establish

an analogous result in the interval (ε, l). On the other hand, it follows from the

hypotheses on f that there exists C > 0 such that

∣
∣g(y+ x)− g(x)

∣
∣≤C|y| for y ∈ [−ε, ε].

Hence,

∣
∣
∣
∣

∫ ε

−ε

[
g(y+ x)− g(x)

]
Dn(y)dy

∣
∣
∣
∣≤
∫ ε

−ε

C|y|
|sin(πy/(2l))| dy ≤

8lCε

π
(7.28)

for any sufficiently small ε, independently of x and n, since

lim
y→0

y

sin(πy/(2l))
=

2l

π
.

Given δ > 0, let us take ε > 0 such that 8lCε/π < δ. By (7.27) and the analogous

result in the interval (ε, l), there exists p ∈N such that

α :=

∣
∣
∣
∣

∫

[−l,l]\[−ε,ε]

[
g(y+ x)− g(x)

]
Dn(y)dy

∣
∣
∣
∣< δ

for n≥ p. It then follows from (7.28) that

∣
∣
∣
∣

∫ l

−l

[
g(y+ x)− g(x)

]
Dn(y)dy

∣
∣
∣
∣≤
∣
∣
∣
∣

∫ ε

−ε

[
g(y+ x)− g(x)

]
Dn(y)dy

∣
∣
∣
∣+ α < 2δ,

also for n≥ p. Finally, since f(−l) = f(l) and

g
(
x+
)
= g
(
x−)= f(x)

for every x ∈ [−l, l], it follows from (7.24) that the convergence in (7.25) is

uniform on the interval [−l, l]. �
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Example 7.15

It follows from Theorem 7.14 that the Fourier series in (7.26) converges uni-

formly to |x| on the interval [−1,1].

7.3 Uniqueness and Orthogonality

In this section we establish some additional properties of Fourier series. In par-

ticular, we show that the Fourier coefficients uniquely determine the function

defining them.

We start with an auxiliary result.

Theorem 7.16

Given a function f ∈Dl, if all of its Fourier coefficients are zero, that is, if

an = 0 for n≥ 0 and bn = 0 for n≥ 1, (7.29)

then f = 0.

Proof

If f is not identically zero, then there exist x0 ∈ (−l, l) and ε, δ > 0 such that

∣
∣f(x)

∣
∣> ε for x ∈ J := (x0 − δ, x0 + δ).

Without loss of generality, we always assume that f has a single sign in J . Now

we consider the functions gn : [−l, l]→R given by

gn(x) =

(
1 + cos

(
π(x− x0)

l

)
− cos

(
πδ

l

))n

for n ∈N. One can show that each gn is a linear combination of the functions

1, cos

(
mπx

l

)
, sin

(
mπx

l

)
, m ∈N.

It then follows from (7.29) that

1

l

∫ l

−l

f(x)gn(x)dx= 0, n ∈N.
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On the other hand, gn(x)> 1 for x ∈ J , and

∣
∣gn(x)

∣
∣≤ 1 for x �∈ J. (7.30)

Moreover, in the interval K = [x0 − δ/2, x0 + δ/2] we have

inf
x∈K

gn(x) = gn(x0 ± δ/2) =

(
1 + cos

(
πδ

2l

)
− cos

(
πδ

l

))n

→+∞

when n→∞, since cos(πδ/2l)> cos(πδ/l). Now we observe that

0 =

∫ l

−l

f(x)gn(x)dx

=

∫

[−l,l]\J
f(x)gn(x)dx+

∫

J

f(x)gn(x)dx.

By (7.30), we have

∣
∣
∣
∣

∫

[−l,l]\J
f(x)gn(x)dx

∣
∣
∣
∣≤
∫ l

−l

∣
∣f(x)

∣
∣dx <+∞.

On the other hand,

∣
∣
∣
∣

∫

J

f(x)gn(x)dx

∣
∣
∣
∣≥
∣
∣
∣
∣

∫

K

f(x)gn(x)dx

∣
∣
∣
∣

≥ δε inf
x∈K

gn(x)→+∞

when n→∞ (because f has a single sign in J). Therefore,

0 =

∫ l

−l

f(x)gn(x)dx→+∞

when n→∞. This contradiction shows that f = 0. �

Theorem 7.16 implies that the Fourier coefficients uniquely determine the

function defining them.

Theorem 7.17

Given functions f, g ∈Dl, if f and g have the same Fourier coefficients, then

f = g.
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Proof

We note that all Fourier coefficients of f − g are zero. Indeed,

1

l

∫ l

−l

[
f(x)− g(x)

]
cos

(
nπx

l

)
dx

=
1

l

∫ l

−l

f(x) cos

(
nπx

l

)
dx− 1

l

∫ l

−l

g(x) cos

(
nπx

l

)
dx= 0

for n≥ 0, and

1

l

∫ l

−l

[
f(x)− g(x)

]
sin

(
nπx

l

)
dx

=
1

l

∫ l

−l

f(x) sin

(
nπx

l

)
dx− 1

l

∫ l

−l

g(x) sin

(
nπx

l

)
dx= 0

for n≥ 1. It then follows from Theorem 7.16 that f − g = 0. �

Now we briefly consider a different point of view about Fourier series. We

introduce an inner product in Dl by

〈f, g〉= 1

l

∫ l

−l

f(x)g(x)dx

for each f, g ∈Dl. It is easy to verify that this is indeed an inner product:

1. the functions f �→ 〈f, g〉 and g �→ 〈f, g〉 are linear;

2. 〈f, f〉 ≥ 0, and 〈f, f〉= 0 if and only if f = 0;

3. 〈f, g〉= 〈g, f〉.
In particular, the Fourier series of a function f ∈Dl can be written in the form

〈f,1〉1
2
+

∞∑

n=1

〈f,un〉 cos
(
nπx

l

)
+ 〈f, vn〉 sin

(
nπx

l

)
,

where

un = cos

(
nπx

l

)
and vn = sin

(
nπx

l

)
.

Moreover, the norm of a function f ∈Dl is defined by

‖f‖= 〈f, f〉1/2 =
(
1

l

∫ l

−l

f(x)2 dx

)1/2

.

Now we recall the notion of orthogonality.
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Definition 7.18

Two functions f, g ∈Dl are said to be orthogonal if 〈f, g〉= 0.

Proposition 7.19

The functions

1√
2
, un, vn, n ∈N (7.31)

have norm 1 and are pairwise orthogonal.

Proof

For each n,m ∈N∪ {0}, we have the identities

cos

(
nπx

l

)
cos

(
mπx

l

)
=

1

2
cos

(
(n−m)πx

l

)
+

1

2
cos

(
(n+m)πx

l

)
,

sin

(
nπx

l

)
sin

(
mπx

l

)
=

1

2
cos

(
(n−m)πx

l

)
− 1

2
cos

(
(n+m)πx

l

)
,

cos

(
nπx

l

)
sin

(
mπx

l

)
=

1

2
sin

(
(n+m)πx

l

)
− 1

2
sin

(
(n−m)πx

l

)
.

(7.32)

Hence, integrating over x yields

∫ l

−l

cos

(
nπx

l

)
cos

(
mπx

l

)
dx= 0,

∫ l

−l

sin

(
nπx

l

)
sin

(
mπx

l

)
dx= 0,

∫ l

−l

cos

(
nπx

l

)
sin

(
mπx

l

)
dx= 0

for every n,m ∈ N ∪ {0} with n �=m. This shows that the functions in (7.31)

are pairwise orthogonal. Moreover,

∥
∥
∥
∥

1√
2

∥
∥
∥
∥

2

=
1

l

∫ l

−l

1

2
dx= 1.
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It also follows from (7.32) with n=m ∈N that

cos2
(
nπx

l

)
=

1

2
+

1

2
cos

(
2nπx

l

)

and

sin2
(
nπx

l

)
=

1

2
− 1

2
cos

(
2nπx

l

)
.

Therefore,
∥
∥
∥
∥

1√
2

∥
∥
∥
∥

2

=
1

l

∫ l

−l

1

2
dx= 1,

‖un‖2 =
1

l

∫ l

−l

cos2
(
nπx

l

)
dx

=

(
x

2l
+

1

4nπ
sin

(
2nπx

l

))∣∣
∣
∣

x=l

x=−l

= 1,

and

‖vn‖2 =
1

l

∫ l

−l

sin2
(
nπx

l

)
dx

=

(
x

2l
− 1

4nπ
sin

(
2nπx

l

))∣∣
∣
∣

x=l

x=−l

= 1.

This completes the proof of the proposition. �

Theorem 7.16 can now be reformulated as follows.

Theorem 7.20

If f ∈Dl is orthogonal to all functions in (7.31), then f = 0.

We conclude this section with a discussion about the norm of a function.

Theorem 7.21 (Bessel’s inequality)

For each f ∈Dl, we have

a20
2

+
∞∑

n=1

(
a2n + b2n

)
≤ 1

l

∫ l

−l

f(x)2 dx. (7.33)
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Proof

We consider the sequence of partial sums

Sm(x) =
a0
2

+

m∑

n=1

[
an cos

(
nπx

l

)
+ bn sin

(
nπx

l

)]

=

〈
f,

1√
2

〉
1√
2
+

m∑

n=1

[
〈f,un〉 cos

(
nπx

l

)
+ 〈f, vn〉 sin

(
nπx

l

)]
. (7.34)

It follows easily from Proposition 7.19 that

‖Sm‖2 = a20
2

+

m∑

n=1

(
a2n + b2n

)
. (7.35)

Now we show that f − Sm is orthogonal to the functions

1√
2
, un, vn, n≤m.

Indeed, if g is any of these functions, then by Proposition 7.19 and (7.34), we

obtain

〈f − Sm, g〉= 〈f, g〉 − 〈Sm, g〉

= 〈f, g〉 − 〈f, g〉= 0.

It then follows from (7.35) that

‖f‖2 = 〈f − Sm + Sm, f − Sm + Sm〉

= ‖f − Sm‖2 + 2〈f − Sm, Sm〉+ ‖Sm‖2

= ‖f − Sm‖2 + ‖Sm‖2

= ‖f − Sm‖2 + a20
2

+

m∑

n=1

(
a2n + b2n

)

≥ a20
2

+

m∑

n=1

(
a2n + b2n

)
. (7.36)

Finally, letting m→+∞ in (7.36), we obtain inequality (7.33). �

In fact, Bessel’s inequality is an identity. Here we consider only a particular

class of functions.
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Theorem 7.22 (Parseval’s formula)

Let f : [−l, l] → R be a continuous function with f(−l) = f(l). If there exist

points −l = x0 < x1 < · · ·< xm = l such that the restriction of f to (xi, xi+1)

has an extension of class C1 to some open interval containing [xi, xi+1], for

i= 0, . . . ,m− 1, then

1

l

∫ l

−l

f(x)2 dx=
a20
2

+
∞∑

n=1

(
a2n + b2n

)
. (7.37)

Proof

By Theorem 7.14, the Fourier series of f converges uniformly to f on the

interval [−l, l]; that is, if Sm are the partial sums in (7.34), then

lim
m→∞

sup
x∈[−l,l]

∣
∣f(x)− Sm(x)

∣
∣= 0.

On the other hand,

‖f − Sm‖2 = 1

l

∫ l

−l

[
f(x)− Sm(x)

]2
dx

≤ 2 sup
x∈[−l,l]

(∣∣f(x)− Sm(x)
∣
∣2)

= 2
(

sup
x∈[−l,l]

∣
∣f(x)− Sm(x)

∣
∣
)2

,

and it follows from (7.35) and (7.36) that

‖f‖2 − ‖Sm‖2 = ‖f‖2 − a20
2

−
m∑

n=1

(
a2n + b2n

)

= ‖f − Sm‖2 → 0

when m→∞. This establishes identity (7.37). �

7.4 Even and Odd Functions

In this section we consider the particular classes of even functions and odd

functions.
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Definition 7.23

A function f : [−l, l]→R is said to be even if

f(−x) = f(x) for every x ∈ [−l, l],

and it is said to be odd if

f(−x) =−f(x) for every x ∈ [−l, l].

Example 7.24

The functions 1 and cos(nπx/l) are even, while the function sin(nπx/l) is odd,

for each n ∈N.

Example 7.25

The function f(x) = |x| is even.

Example 7.26

The function f(x) = x3 + 3x is odd.

We show that Fourier series of even functions are series of cosines, and that

Fourier series of odd functions are series of sines.

Proposition 7.27

For a function f ∈Dl:

1. if f is even, then bn = 0 for every n ∈N;

2. if f is odd, then an = 0 for every n ∈N∪ {0}.

Proof

We have

bn =
1

l

∫ l

−l

f(x) sin

(
nπx

l

)
dx

=
1

l

(∫ 0

−l

f(x) sin

(
nπx

l

)
dx+

∫ l

0

f(x) sin

(
nπx

l

)
dx

)
. (7.38)
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Now we assume that f is even. Making the change of variables y = −x, we

obtain

∫ 0

−l

f(x) sin

(
nπx

l

)
dx=−

∫ 0

l

f(−y) sin

(
−nπy

l

)
dy

=−
∫ l

0

f(y) sin

(
nπy

l

)
dy.

Hence, it follows from (7.38) that bn = 0. The second property can be obtained

in a similar manner. �

Example 7.28

Let us consider the odd function f(x) = x in the interval [−l, l]. By Proposi-

tion 7.27, we have an = 0 for n ∈N∪ {0}. Moreover,

bn =
1

l

∫ l

−l

x sin

(
nπx

l

)
dx

=

(
− x

nπ
cos

(
nπx

l

)
+

l

n2π2
sin

(
nπx

l

))∣∣
∣
∣

x=l

x=−l

=− 2l

nπ
(−1)n

for n ∈N. Hence, it follows from Theorem 7.8 that

x=

∞∑

n=1

(−1)n+1 2l

nπ
sin

(
nπx

l

)
(7.39)

for each x ∈ (−l, l).

7.5 Series of Cosines and Series of Sines

Now we consider a function f : [0, l]→R satisfying the same conditions as the

functions in Dl but with −l replaced by 0 in the interval [−l, l]. More precisely,

we assume that:

1. f has at most finitely many discontinuities;

2. f has left-sided and right-sided limits at all points of [0, l];

3. for each open interval (a, b) ⊂ [0, l] where f is continuous, the function

g : [a, b]→R defined by (7.18) has left-sided and right-sided (finite) deriva-

tives at all points of [a, b].

The following result shows that it is always possible to write f as a series of

cosines and as a series of sines.
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Theorem 7.29

The functions

G(x) =
a0
2

+

∞∑

n=1

an cos

(
nπx

l

)
and H(x) =

∞∑

n=1

bn sin

(
nπx

l

)
, (7.40)

where

an =
2

l

∫ l

0

f(x) cos

(
nπx

l

)
dx, n ∈N∪ {0}, (7.41)

and

bn =
2

l

∫ l

0

f(x) sin

(
nπx

l

)
dx, n ∈N, (7.42)

satisfy

G(x) =H(x) =
f(x+) + f(x−)

2
for x ∈ (0, l),

and

G(x) = f(x) and H(x) = 0 for x ∈ {0, l}.

Proof

We consider the functions g,h : [−l, l]→R given by

g(x) =

{
f(x) if 0≤ x≤ l,

f(−x) if −l≤ x < 0,

and

h(x) =

⎧
⎪⎪⎨

⎪⎪⎩

f(x) if 0< x≤ l,

0 if x= 0,

−f(−x) if −l≤ x < 0.

One can easily verify that g is even and that h is odd. Moreover, it follows

from the properties of the function f that g,h ∈Dl. By Proposition 7.27, the

Fourier series of g is then the function G in (7.40), where

an =
1

l

∫ l

−l

g(x) cos

(
nπx

l

)
dx

=
1

l

(∫ 0

−l

g(x) cos

(
nπx

l

)
dx+

∫ l

0

f(x) cos

(
nπx

l

)
dx

)
.
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Since g is even, making the change of variables y =−x, we obtain

∫ 0

−l

g(x) cos

(
nπx

l

)
dx=−

∫ 0

l

f(−y) cos

(
−nπy

l

)
dy

=

∫ l

0

f(y) cos

(
nπy

l

)
dy,

and thus an is given by (7.41).

It also follows from Proposition 7.27 that the Fourier series of h is the

function H in (7.40), where

bn =
1

l

∫ l

−l

h(x) sin

(
nπx

l

)
dx

=
1

l

(∫ 0

−l

h(x) sin

(
nπx

l

)
dx+

∫ l

0

f(x) sin

(
nπx

l

)
dx

)
.

Since h is odd, making the change of variables y =−x, we conclude that bn is

given by (7.42). The remaining properties follow easily from Theorem 7.8. �

Definition 7.30

The series in (7.40) are called respectively the series of cosines and the series

of sines of the function f .

We give some examples.

Example 7.31

Let us consider the function f : [0, π] → R given by f(x) = 1. It follows

from (7.42) that

bn =
2

π

∫ π

0

sin(nx)dx=
2

nπ

(
1− (−1)n

)

for n ∈N. Therefore,

1 =
∞∑

n=1

bn sin(nx) =
4

π

(
sinx+

1

3
sin(3x) +

1

5
sin(5x) + · · ·

)
(7.43)

for each x ∈ (0, π). We note that this identity does not hold for x= 0 or x= π

(this also follows from Theorem 7.29). Taking x= π/4 in (7.43), we obtain

1 =
4

π

(
1√
2
+

1

3
· 1√

2
− 1

5
· 1√

2
− 1

7
· 1√

2
+ · · ·

)
,
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that is,

π

2
√
2
= 1+

1

3
− 1

5
− 1

7
+

1

9
+

1

11
− · · · .

On the other hand, taking x= π/3 in (7.43), we obtain

1 =
4

π

(√
3

2
+

1

3
· 0− 1

5
·
√
3

2
+

1

7
·
√
3

2
+ · · ·

)
,

that is,

π

2
√
3
= 1− 1

5
+

1

7
− 1

11
+

1

13
− 1

17
+ · · · .

Example 7.32

Now we consider the function f : [0,1] → R given by f(x) = x. It follows

from (7.41) that

a0 = 2

∫ 1

0

xdx= 1

and

an = 2

∫ 1

0

x cos(nπx)dx= 2
(−1)n − 1

(nπ)2

for n ∈N. We also have

bn = 2

∫ 1

0

x sin(nπx)dx=−2(−1)n

nπ

for n ∈N. Therefore,

x=
1

2
+

∞∑

m=1

−4

(2m− 1)2π2
cos
(
(2m− 1)πx

)

and

x=

∞∑

n=1

−2(−1)n

nπ
sin(nπx)

for each x ∈ (0,1). For example, taking x= 1/4 in the first series, we obtain

1

4
=

1

2
− 4

π2

(
1√
2
− 1

32
· 1√

2
− 1

52
· 1√

2
+ · · ·

)
,
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that is,

π2

8
√
2
= 1− 1

32
− 1

52
+

1

72
+

1

92
− · · · .

7.6 Integration and Differentiation Term by
Term

In this section we show that Fourier series can be integrated and differentiated

term by term. In other words, the integral and the derivative of a given function

(in some appropriate class) can be computed by taking respectively integrals

and derivatives term by term in its Fourier series.

We start with integration.

Theorem 7.33

Let f : [−l, l]→ R be a function having at most finitely many discontinuities,

and with left-sided and right-sided limits at all points of [−l, l]. For each interval

[a, b]⊂ [−l, l], we have

∫ b

a

f(x)dx=
a0
2
(b− a) +

∞∑

n=1

[
an sin

(
nπx

l

)
− bn cos

(
nπx

l

)]∣∣
∣
∣

x=b

x=a

. (7.44)

Proof

Let us consider the continuous function g : [−l, l]→R given by

g(x) =

∫ x

−l

(
f(y)− a0

2

)
dy

(we note that f is Riemann-integrable). One can easily verify that g ∈ Dl.

Moreover, g(−l) = 0 and

g(l) =

∫ l

−l

(
f(y)− a0

2

)
dy =

∫ l

−l

f(y)dy− a0l= 0.

By Theorem 7.8, we then have

g(x) =
A0

2
+

∞∑

n=1

[
An cos

(
nπx

l

)
+Bn sin

(
nπx

l

)]
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for every x ∈ [−l, l], where An and Bn are the Fourier coefficients of the func-

tion g. For each n ∈N, we have

An =
1

l

∫ l

−l

g(x) cos

(
nπx

l

)
dx

=
1

nπ
g(x) sin

(
nπx

l

)∣∣
∣
∣

x=l

x=−l

− 1

nπ

∫ l

−l

(
f(x)− a0

2

)
sin

(
nπx

l

)
dx=− bn

nπ/l
(7.45)

and

Bn =
1

l

∫ l

−l

g(x) sin

(
nπx

l

)
dx

=− 1

nπ
g(x) cos

(
nπx

l

)∣∣
∣
∣

x=l

x=−l

+
1

nπ

∫ l

−l

(
f(x)− a0

2

)
cos

(
nπx

l

)
dx=

an
nπ/l

. (7.46)

Therefore,

g(x) =
A0

2
+

∞∑

n=1

an sin(nπx/l)− bn cos(nπx/l)

nπ/l
,

that is,

∫ x

−l

f(y)dy =
a0(x+ l)

2
+

A0

2
+

∞∑

n=1

an sin(nπx/l)− bn cos(nπx/l)

nπ/l
, (7.47)

for every x ∈ [−l, l]. Since

∫ b

a

f(y)dy =

∫ b

−l

f(y)dy−
∫ a

−l

f(y)dy,

identity (7.44) now follows immediately from (7.47). �

We note that one does not assume in Theorem 7.33 that f ∈Dl.

Now we consider the differentiation of Fourier series.

Theorem 7.34

If f : [−l, l]→ R is the restriction to the interval [−l, l] of a 2l-periodic func-

tion g : R→ R of class C1 such that g′ has left-sided and right-sided (finite)
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derivatives at all points, then

f ′(x) =

∞∑

n=1

[
nπ

l
bn cos

(
nπx

l

)
− nπ

l
an sin

(
nπx

l

)]

for every x ∈ (−l, l).

More generally, we have the following result.

Theorem 7.35

If f : [−l, l]→R is the restriction to the interval [−l, l] of a function g : R→R

of class C1 such that g′ has left-sided and right-sided (finite) derivatives at all

points, then

f ′(x) =
c

2
+

∞∑

n=1

[(
nπ

l
bn + (−1)nc

)
cos

(
nπx

l

)
− nπ

l
an sin

(
nπx

l

)]
(7.48)

for every x ∈ (−l, l), where c= [f(l)− f(−l)]/l.

Proof

Since g′ is continuous and its restriction to [−l, l] is in Dl, we have

f ′(x) =
α0

2
+

∞∑

n=1

[
αn cos

(
nπx

l

)
+ βn sin

(
nπx

l

)]

for every x ∈ (−l, l), where αn and βn are the Fourier coefficients of the func-

tion g′. We note that

α0 =
1

l

∫ l

−l

f ′(x)dx=
f(l)− f(−l)

l
= c,

and thus,

f ′(x)− c

2
=

∞∑

n=1

[
αn cos

(
nπx

l

)
+ βn sin

(
nπx

l

)]
(7.49)

for every x ∈ (−l, l). Now we consider the function h : [−l, l]→R given by

h(x) =

∫ x

−l

(
f ′(y)− c

2

)
dy = f(x)− f(−l)− c

2
(x+ l).
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By (7.45) and (7.46), the Fourier coefficients of h satisfy

An =− βn

nπ/l
and Bn =

αn

nπ/l

for each n ∈N. It then follows from (7.39) that the Fourier series of f is given

by

f(x) = f(−l) +
cl

2
+

A0

2

+

∞∑

n=1

[
−βnl

nπ
cos

(
nπx

l

)
+

(
αnl

nπ
+ (−1)n+1 cl

nπ

)
sin

(
nπx

l

)]
,

where

A0 =
1

l

∫ l

−l

h(x)dx.

Hence,

an =−βnl

nπ
and bn =

αnl

nπ
+ (−1)n+1 cl

nπ
,

that is,

αn =
nπ

l
bn + (−1)nc and βn =−nπ

l
an,

for each n ∈N. Identity (7.48) now follows readily from (7.49). �

7.7 Solved Problems and Exercises

Problem 7.1

Find the Fourier series of the function

f(x) =

{
0 if − 1≤ x < 0,

2 if 0≤ x≤ 1.
(7.50)

Solution

Clearly, f ∈D1. We have

a0 =

∫ 1

−1

f(x)dx=

∫ 1

0

2dx= 2,
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and

an =

∫ 1

−1

f(x) cos(nπx)dx= 2

∫ 1

0

cos(nπx)dx= 0

for n ∈N. We also have

bn =

∫ 1

−1

f(x) sin(nπx)dx= 2

∫ 1

0

sin(nπx)dx

=
2

nπ

(
1− cos(nπ)

)
= 2

1− (−1)n

nπ
=

{
4/(nπ) if n is odd,

0 if n is even

for n ∈N. The Fourier series of f is then

F (x) = 1+

∞∑

m=1

4

(2m− 1)π
sin
(
(2m− 1)πx

)
. (7.51)

Problem 7.2

For the function f in Problem 7.1, find explicitly the values of the Fourier series

at each point of the interval [−1,1].

Solution

By Theorem 7.8, the Fourier series in (7.51) takes the values

F (x) =
f(x+) + f(x−)

2
for x ∈ (−1,1),

and

F (x) =
f(−1+) + f(1−)

2
for x ∈ {−1,1}.

Therefore,

F (x) =

{
f(x) if x ∈ (−1,0)∪ (0,1),

1 if x ∈ {−1,0,1}.
(7.52)

Problem 7.3

Use Problem 7.2 to show that

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · (7.53)
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and

π

2
√
2
= 1+

1

3
− 1

5
− 1

7
+

1

9
+

1

11
− · · · . (7.54)

Solution

Taking x= 1/2 in (7.51), it follows from (7.52) that

2 = 1+

∞∑

m=1

4

(2m− 1)π
sin

(
(2m− 1)π

2

)

= 1+
4

π
− 4

3π
+

4

5π
− · · · .

This yields identity (7.53). On the other hand, taking x = 1/4 in (7.51), it

follows from (7.52) that

2 = 1+

∞∑

m=1

4

(2m− 1)π
sin

(
(2m− 1)π

4

)

= 1+
4

π
√
2
+

4

3π
√
2
− 4

5π
√
2
− 4

7π
√
2
+ · · · ,

which yields identity (7.54).

Problem 7.4

Find the Fourier series of the function g : [−1,1]→R given by

g(x) =

∫ x

0

yf(y)dy,

with f as in (7.50).

Solution

It follows from (7.50) that

g(x) =

{
0 if − 1≤ x < 0,

x2 if 0≤ x≤ 1.
(7.55)

Clearly, g ∈D1. The Fourier coefficients of the function g are then

a0 =

∫ 1

0

x2 dx=
1

3
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and

an =

∫ 1

0

x2 cos(nπx)dx

=
2nπx cos(nπx) + (n2π2x2 − 2) sin(nπx)

(nπ)3

∣
∣
∣
∣

x=1

x=0

=
2(−1)n

(nπ)2

for n ∈N. We also have

bn =

∫ 1

0

x2 sin(nπx)dx

=
2nπx sin(nπx)− (n2π2x2 − 2) cos(nπx)

(nπ)3

∣
∣
∣
∣

x=1

x=0

=
(2− n2π2)(−1)n − 2

(nπ)3
=

{
(n2π2 − 4)/(nπ)3 if n is odd,

−1/(nπ) if n is even

for n ∈N. Therefore, the Fourier series of g is

G(x) =
1

6
+

∞∑

n=1

2(−1)n

(nπ)2
cos(nπx)

+
∞∑

m=1

[
(2m− 1)2π2 − 4

(2m− 1)3π3
sin
(
(2m− 1)πx

)
− 1

2mπ
sin(2mπx)

]
. (7.56)

Problem 7.5

Use Problem 7.4 to show that

π2

12
= 1− 1

22
+

1

32
− 1

42
+ · · · . (7.57)

Solution

By Theorem 7.8, the Fourier series of the function g in (7.55) has the values

G(x) =

{
g(x) if x ∈ (−1,1),

1/2 if x ∈ {−1,1}.

Thus, taking x= 0 in (7.56), we obtain

1

6
+

∞∑

n=1

2(−1)n

(nπ)2
=

1

6
− 2

π2

(
1− 1

22
+

1

32
− 1

42
+ · · ·

)
= 0.

This yields identity (7.57).
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Problem 7.6

Find the Fourier series of the function f(x) = x− |x| in the interval [−1,1].

Solution

We have

f(x) = x− |x|=
{
2x if − 1≤ x≤ 0,

0 if 0≤ x≤ 1.
(7.58)

Clearly, f ∈D1. Thus,

a0 =

∫ 1

−1

(
x− |x|

)
dx=

∫ 0

−1

2xdx=−1

and

an =

∫ 1

−1

(
x− |x|

)
cos(nπx)dx= 2

∫ 0

−1

x cos(nπx)dx

= 2

(
x
sin(nπx)

nπ
+

cos(nπx)

(nπ)2

)∣∣
∣
∣

x=0

x=−1

= 2
1− cos(nπ)

(nπ)2

= 2
1− (−1)n

(nπ)2
=

{
4/(nπ)2 if n is odd,

0 if n is even

for n ∈N. We also have

bn =

∫ 1

−1

(
x− |x|

)
sin(nπx)dx= 2

∫ 0

−1

x sin(nπx)dx

= 2

(
−x

cos(nπx)

nπ
+

sin(nπx)

(nπ)2

)∣∣
∣
∣

x=0

x=−1

=
2(−1)n+1

nπ

for n ∈N. Therefore, the Fourier series of f is

F (x) =−1

2
+

∞∑

m=1

4

(2m− 1)2π2
cos
(
(2m− 1)πx

)

+
∞∑

n=1

2(−1)n+1

nπ
sin(nπx). (7.59)
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Problem 7.7

Use Problem 7.6 to show that

π2

8
= 1+

1

32
+

1

52
+

1

72
+ · · · . (7.60)

Solution

By Theorem 7.8 and (7.58), the Fourier series of the function x−|x| is given by

F (x) =

{
x− |x| if x ∈ (−1,1),

−1 if x ∈ {−1,1}.

Thus, taking x= 0 in (7.59), we obtain

0 =−1

2
+

∞∑

m=1

4

(2m− 1)2π2

=−1

2
+

4

π2

(
1 +

1

32
+

1

52
+

1

72
+ · · ·

)
.

This yields identity (7.60).

Problem 7.8

Verify that the product of odd functions is an even function.

Solution

Let f, g : [−l, l]→R be odd functions. This means that

f(−x) =−f(x) and g(−x) =−g(x)

for every x ∈ [−l, l]. Then the function h(x) = f(x)g(x) satisfies

h(−x) = f(−x)g(−x)

=
(
−f(x)

)(
−g(x)

)

= f(x)g(x) = h(x)

for every x ∈ [−l, l]; that is, h is an even function.
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Problem 7.9

Verify that the Fourier coefficients an of an odd function are zero.

Solution

We have

a0 =
1

l

∫ l

−l

f(x)dx=
1

l

(∫ 0

−l

f(x)dx+

∫ l

0

f(x)dx

)
, (7.61)

and

an =
1

l

∫ l

−l

f(x) cos

(
nπx

l

)
dx

=
1

l

(∫ 0

−l

f(x) cos

(
nπx

l

)
dx+

∫ l

0

f(x) cos

(
nπx

l

)
dx

)
(7.62)

for n ∈N. Now we assume that f is odd. Making the change of variables y =−x,

we obtain

∫ 0

−l

f(x)dx=−
∫ 0

l

f(−y)dy

=

∫ l

0

f(−y)dy =−
∫ l

0

f(y)dy,

and it follows from (7.61) that a0 = 0. Similarly, again making the change of

variables y =−x, we obtain

∫ 0

−l

f(x) cos

(
nπx

l

)
dx=−

∫ 0

l

f(−y) cos

(
−nπy

l

)
dy

=−
∫ l

0

f(y) cos

(
nπy

l

)
dy,

and it follows from (7.62) that an = 0 for n ∈N.

Problem 7.10

Find the series of cosines of the function x in the interval [0,1].
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Solution

By Theorem 7.29, the series of cosines of a function f in the interval [0, l] is

G(x) =
a0
2

+

∞∑

n=1

an cos

(
nπx

l

)
,

where

an =
2

l

∫ l

0

f(x) cos

(
nπx

l

)
dx, n ∈N∪ {0}.

For f(x) = x and l= 1, we obtain

a0 = 2

∫ 1

0

xdx= 1

and

an = 2

∫ 1

0

x cos(nπx)dx

= 2

(
x
sin(nπx)

nπ
+

cos(nπx)

(nπ)2

)∣∣
∣
∣

x=1

x=0

= 2
(−1)n − 1

(nπ)2

for n ∈N. Thus, the series of cosines of the function x is

G(x) =
1

2
−

∞∑

m=1

4

(2m− 1)2π2
cos
(
(2m− 1)πx

)
.

Problem 7.11

Find the series of sines of the function cosx in the interval [0, π].

Solution

By Theorem 7.29, the series of sines of a function f in the interval [0, l] is

H(x) =

∞∑

n=1

bn sin

(
nπx

l

)
,

where

bn =
2

l

∫ l

0

f(x) sin

(
nπx

l

)
dx, n ∈N.
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For f(x) = cosx and l= π, we obtain

b1 =
2

π

∫ π

0

cosx sinxdx= 0

and

bn =
2

π

∫ π

0

cosx sin(nx)dx

=
2

π

n cosx cos(nx) + sinx sin(nx)

1− n2

∣
∣
∣
∣

x=π

x=0

=
2n(1 + (−1)n)

(n2 − 1)π

for n > 1. Thus, the series of sines of cosx is

H(x) =

∞∑

m=1

8m

(4m2 − 1)π
sin(2mx).

Problem 7.12

Let f : R→R be a function of class C1. For each n ∈N, show that the Fourier

coefficient

an =
1

l

∫ l

−l

f(x) cos

(
nπx

l

)
dx

is also given by

an =− 1

nπ

∫ l

−l

f ′(x) sin

(
nπx

l

)
dx.

Solution

We have

an =
1

l

∫ l

−l

f(x) cos

(
nπx

l

)
dx

=
1

nπ
f(x) sin

(
nπx

l

)∣∣
∣
∣

x=l

x=−l

− 1

nπ

∫ l

−l

f ′(x) sin

(
nπx

l

)
dx

=
1

nπ

[
f(l) sin(nπ)− f(−l) sin(−nπ)

]
− 1

nπ

∫ l

−l

f ′(x) sin

(
nπx

l

)
dx

=− 1

nπ

∫ l

−l

f ′(x) sin

(
nπx

l

)
dx,

because sin(nπ) = sin(−nπ) = 0.
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EXERCISES

7.1. Find the Fourier series of the function:

(a)

{
1 if − 1≤ x < 0,

2 if 0≤ x≤ 1;

(b) sin(x/2) in the interval [−π,π];

(c) ex in the interval [−1,1];

(d) e2x in the interval [−π,π];

(e) (1 + x)/2 in the interval [−1,1];

(f) |x| in the interval [−3,3];

(g) x+ |x| in the interval [−2,2].

7.2. Write the function

f(x) =

{
0 if 0< x≤ 2,

1 if 2< x≤ 3

as a:

(a) series of sines for 0< x< 3;

(b) series of cosines for 0< x< 3.

7.3. Find the Fourier series of the even function:

(a) cos(2x) in the interval [−π,π];

(b) 1 + |x| in the interval [−1,1].

7.4. Find the Fourier series of the odd function:

(a) x in the interval [−π,π];

(b) x− sinx in the interval [−π,π].

7.5. Verify that the sum of even functions is an even function.

7.6. Find all even polynomials.

7.7. Consider the function f : [−π,π]→R given by f(x) = x2.

(a) Verify that the Fourier series of f is

π2

3
+

∞∑

n=1

4(−1)n

n2
cos(nx).

(b) Use the Fourier series to show that

∞∑

n=1

1

n2
=

π2

6
.

(c) Find the series of sines of f in [0, π].

7.8. Consider the function f : [0, π]→R given by f(x) = x(π− x).

(a) Find the series of sines of f .
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(b) Use the series to show that

∞∑

n=0

(−1)n

(2n+ 1)3
=

π3

32
.

7.9. Verify that if f : R→R is a function of class C2, then nan → 0 when

n→∞.

7.10. Show that

|sinx|= 2

π
− 4

π

∞∑

n=1

cos(2nx)

4n2 − 1

for every x ∈R.

7.11. For each a ∈R \Z, verify that:

(a) the Fourier series of sin(ax) in the interval [−π,π] is

2 sin(ax)

π

∞∑

n=1

(−1)n
n sin(nx)

a2 − n2
;

(b) the Fourier series of cos(ax) in the interval [−π,π] is

2 sin(ax)

π

(
1

2a
+

∞∑

n=1

(−1)n
a cos(nx)

a2 − n2

)
.



8
Partial Differential Equations

In this chapter we study some classes of partial differential equations, including

the heat equation, the Laplace equation, and the wave equation. In particular,

based on the study of Fourier series, we find solutions for several equations

and several types of boundary conditions. We mainly use the method of sep-

aration of variables. In contrast to what happens in all former chapters, here

not everything is proved since this would require additional techniques. One

notable exception is the proof of existence and uniqueness of solutions for the

heat equation under certain assumptions.

8.1 Heat Equation and Its Modifications

Again we consider the heat equation

∂u

∂t
= κ

∂2u

∂x2
, (8.1)

for t ≥ 0 and x ∈ [0, l], with κ, l > 0. By Proposition 7.4, for each N ∈ N and

c1, . . . , cN ∈R, the function

u(t, x) =
N∑

n=1

cne
−n2π2κt/l2 sin

(
nπx

l

)

L. Barreira, C. Valls, Complex Analysis and Differential Equations,
Springer Undergraduate Mathematics Series,
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is a solution of equation (8.1) satisfying the condition

u(t,0) = u(t, l) = 0, t≥ 0. (8.2)

Now we make the additional assumption that

u(0, x) = f(x), x ∈ [0, l], (8.3)

and show that for a certain class of functions f : [0, l]→R there exist constants

cn such that the function

u(t, x) =

∞∑

n=1

cne
−n2π2κt/l2 sin

(
nπx

l

)
(8.4)

is well defined and is a solution of equation (8.1) satisfying conditions (8.2)

and (8.3).

Proposition 8.1

If f : [0, l]→ R is a continuous function with f(0) = f(l) = 0, and there exist

points 0 = x0 < x1 < · · · < xm = l such that the restriction of f to (xi, xi+1)

has an extension of class C1 to some open interval containing [xi, xi+1], for

i= 0, . . . ,m− 1, then the function u(t, x) in (8.4), with

cn =
2

l

∫ l

0

f(x) sin

(
nπx

l

)
dx for n ∈N, (8.5)

is well defined and is the unique function with the following properties:

1. u is continuous in R
+
0 × [0, l];

2. u satisfies equation (8.1) in R
+ × (0, l), which in particular includes the

existence of the derivatives ∂u/∂t and ∂2u/∂x2;

3. u satisfies conditions (8.2) and (8.3).

Moreover, the function u is of class C∞ in R
+ × (0, l).

Proof

We first show that the series in (8.4) converges. Letting

I =
2

l

∫ l

0

∣
∣f(x)

∣
∣dx,
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it follows from (8.5) that |cn| ≤ I for each n ∈N. Hence, for t≥ τ > 0, we have

∞∑

n=m

|cn|e−n2π2κt/l2 ≤ I

∞∑

n=m

e−n2π2κτ/l2

≤ I

∞∑

n=m

e−nπ2κτ/l2

= I
e−mπ2κτ/l2

1− e−π2κτ/l2
→ 0

when m→∞, and the series

∞∑

n=1

|cn|e−n2π2κt/l2

is uniformly convergent on [τ,+∞), for each τ > 0. By Exercise 3.21, the series

in (8.4) is uniformly convergent on [τ,+∞) × [0, l], for each τ > 0, and the

function u is continuous in that set. Hence, u is also continuous in R
+ × [0, l].

For each p, q ∈N∪ {0}, let us consider the series

∞∑

n=1

|cn| ·
∣
∣
∣
∣
∂p+q

∂tp∂xq

(
e−n2π2κt/l2 sin

(
nπx

l

))∣∣
∣
∣

≤ I
∞∑

n=1

(
n2π2κ

l2

)p(
nπ

l

)q

e−n2π2κt/l2 . (8.6)

Since the power series
∑∞

n=1 n
2p+qzn has radius of convergence R= 1, it follows

from Theorem 4.8 that for each p ∈ N and τ > 0 the last series in (8.6) is

uniformly convergent on [τ,+∞). By Exercise 3.21, it follows by induction

that u is of class C∞ in R
+ × (0, l), with

∂p+qu

∂tp ∂xq
=

∞∑

n=1

cn

(
−n2π2κ

l2

)p

e−n2π2κt/l2 ∂q

∂xq
sin

(
nπx

l

)

for each p, q ∈N∪ {0}. In particular,

∂u

∂t
=

∞∑

n=1

cn

(
−n2π2κ

l2

)
e−n2π2κt/l2 sin

(
nπx

l

)

and

∂2u

∂x2
=

∞∑

n=1

cn

(
nπ

l

)2

e−n2π2κt/l2 sin

(
nπx

l

)
,

which shows that u satisfies equation (8.1) in R
+ × (0, l).
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In order to establish the uniqueness of the solution, we first prove the fol-

lowing result.

Lemma 8.2 (Weak maximum principle)

Let v : R+
0 × [0, l]→R be a continuous function. If v is of class C2 in R+× (0, l)

and satisfies equation (8.1) in this set, then for each τ > 0, we have

v(t, x)≤ sup
{
v(s, y) : (s, y) ∈ {0} × [0, l]∪ [0, τ ]× {0, l}

}
(8.7)

for (t, x) ∈ (0, τ)× (0, l).

Proof of the lemma

Otherwise, the maximum of v in [0, τ ]× [0, l] would be attained at a point (s, y)

in (0, τ)× (0, l) or in {τ} × [0, l]. Then v(s, y) > L, where L is the supremum

in (8.7). Given ε > 0, let us consider the function

w(t, x) = v(t, x) + ε(x− y)2.

We note that

sup
{
w(t, x) : (t, x) ∈ {0} × [0, l]∪ [0, τ ]× {0, l}

}
≤ L+ εl2 < v(s, y)

for any sufficiently small ε. On the other hand, w(s, y) = v(s, y), and hence,

the function w has a maximum greater than or equal to v(s, y) at a point

p ∈ (0, s]× (0, l). One can easily verify that if p ∈ (0, s)× (0, l), then

∂w

∂t
(p) = 0 and

∂2w

∂x2
(p)≤ 0,

and that if p ∈ {s} × (0, l), then

∂w

∂t
(p)≥ 0 and

∂2w

∂x2
(p)≤ 0.

In both cases, we have

∂w

∂t
(p)− κ

∂2w

∂x2
(p)≥ 0.

On the other hand, we also have

∂w

∂t
(p)− κ

∂2w

∂x2
(p) =

∂v

∂t
(p)− κ

∂2v

∂x2
(p)− 2ε=−2ε < 0.

This contradiction yields the desired result.
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Now let u, v : R+
0 × [0, l]→R be continuous functions that are of class C∞

and satisfy equation (8.1) in R
+ × (0, l), together with the conditions

u(t,0) = u(t, l) = v(t,0) = v(t, l) = 0, t≥ 0,

and

u(0, x) = v(0, x) = f(x), x ∈ [0, l].

The function w = u− v is continuous in R
+
0 × [0, l]. Moreover, it is of class C∞

and satisfies equation (8.1) in R
+ × (0, l), together with the conditions

w(t,0) =w(t, l) = 0, t≥ 0,

and

w(0, x) = 0, x ∈ [0, l].

It then follows from Lemma 8.2 that

∣
∣w(t, x)

∣
∣≤ sup

{∣∣w(s, y)
∣
∣ : s= 0 or y ∈ {0, l}

}
= 0,

and thus w = 0. This shows that u= v.

We also show that u is continuous at t= 0. By Theorem 7.14, the series

∞∑

n=1

cn sin

(
nπx

l

)

is uniformly convergent on [0, l] (since the Fourier series of the odd extension

of f to the interval [−l, l] is uniformly convergent). Now let

Sm(x) =

m∑

n=1

cn sin

(
nπx

l

)

be the corresponding sequence of partial sums. Given ε > 0, there exists p ∈N

such that
∣
∣Sm(x)− f(x)

∣
∣< ε for x ∈ [0, l], m≥ p.

We also consider the functions

Sm(t, x) =
m∑

n=1

cne
−n2π2κt/l2 sin

(
nπx

l

)
.

For each m,n≥ p, the function

v(t, x) = Sm(t, x)− Sn(t, x)



378 8. Partial Differential Equations

is of class C∞ and satisfies equation (8.1) in R
+ × (0, l). Moreover,

v(t,0) = v(t, l) = 0, t≥ 0,

and
∣
∣v(0, x)

∣
∣=
∣
∣Sm(0, x)− Sn(0, x)

∣
∣

≤
∣
∣Sm(0, x)− f(x)

∣
∣+
∣
∣Sn(0, x)− f(x)

∣
∣< 2ε

for x ∈ [0, l]. It then follows from Lemma 8.2 that

∣
∣Sm(t, x)− Sn(t, x)

∣
∣≤ 2ε

for every m,n≥ p, t≥ 0 and x ∈ [0, l]. This shows that the series of continuous

functions in (8.4) is uniformly convergent on R
+
0 × [0, l]. By Exercise 3.21, we

conclude that u is continuous in R
+
0 × [0, l].

Finally, it follows from (8.4) that

u(t,0) = u(t, l) = 0,

that is, condition (8.2) holds. Moreover,

u(0, x) =

∞∑

n=1

cn sin

(
nπx

l

)
.

By Theorem 7.29, taking the constants cn in (8.5), condition (8.3) is satis-

fied (the assumption f(0) = f(l) = 0 guarantees that (8.3) holds for x= 0 and

x= l).

Example 8.3

Let us consider the equation

∂u

∂t
=

∂2u

∂x2
, (8.8)

for t ≥ 0 and x ∈ [0, π]. We also consider the function f : [0, π]→ R given by

f(x) = x(π− x). One can easily verify that

cn =
2

π

∫ π

0

x(1− x) sin(nx)dx

=

{
0 if n is even,

8/(n3π) if n is odd
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for n ∈ N. Hence, by Proposition 8.1, the solution of equation (8.8) satisfying

conditions (8.2) and (8.3) is given by

u(t, x) =

∞∑

n=1

cne
−n2t sin(nx).

The following is a modification of the former example.

Example 8.4

Let us consider the heat equation (8.1) together with the conditions

∂u

∂x
(t,0) =

∂u

∂x
(t, l) = 0, t > 0 (8.9)

and (8.3), for some function f : [0, l]→R satisfying the hypotheses of Proposi-

tion 8.1.

We first obtain solutions of equation (8.1) of the form u(t, x) = T (t)X(x).

By Proposition 7.1, there exists λ ∈R such that

T (t) = ce−λκt and X ′′ + λX = 0,

with c �= 0. On the other hand, it follows from (8.9) that

T (t)X ′(0) = T (t)X ′(l) = 0, t > 0,

which is equivalent to

X ′(0) =X ′(l) = 0.

Hence, we must solve the problem

X ′′ + λX = 0, X ′(0) =X ′(l) = 0.

We consider three cases.

1. When λ= 0, we have the solutions in (7.8). It follows from X ′(0) = 0 that

b= 0. Hence, X(x) = a with a �= 0, which also satisfies X ′(l) = 0.

2. When λ < 0, we have the solutions in (7.9). Since

X ′(x) = a
√
|λ|e

√
|λ|x − b

√
|λ|e−

√
|λ|x,

we obtain

X ′(0) = a
√
|λ| − b

√
|λ|.
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It follows from X ′(0) = 0 that a= b, and thus,

X ′(l) = a
√
|λ|
(
e
√

|λ|l − e−
√

|λ|l
)
= 0.

Since e
√

|λ|l > 1 and e−
√

|λ|l < 1, we have a= b= 0 and X(x) = 0.

3. When λ > 0, we have the solutions in (7.11). Since

X ′(x) =−a
√
λ sin(

√
λx) + b

√
λ cos(

√
λx),

we obtain X ′(0) = b
√
λ. It follows from X ′(0) = 0 that b= 0, and thus,

X ′(l) =−a
√
λ sin(

√
λl).

Hence, a= 0 (which would give X = 0), or

sin(
√
λl) = 0.

Therefore,

λ=
n2π2

l2
, n ∈N,

and we obtain the solutions

X(x) = a cos

(
nπx

l

)
, with a �= 0.

Now we look for (formal) solutions of the form

u(t, x) =
∞∑

n=0

cne
−n2π2κt/l2 cos

(
nπx

l

)
.

We note that

u(0, x) =

∞∑

n=0

cn cos

(
nπx

l

)

=
2c0
2

+

∞∑

n=1

cn cos

(
nπx

l

)
. (8.10)

By Theorem 7.29, in order that condition (8.3) is satisfied, we take

c0 =
1

l

∫ l

0

f(x)dx

and

cn =
2

l

∫ l

0

f(x) cos

(
nπx

l

)
dx for n ∈N.
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By the hypotheses in f , it follows from Theorem 7.14 that the series in (8.10)

are uniformly convergent on [0, l] (since the Fourier series of the even extension

of f to the interval [−l, l] is uniformly convergent). Proceeding as in the proof

of Proposition 8.1, one can show that u is continuous in R
+ × [0, l], and that it

is of class C∞ and satisfies equation (8.1) in R
+× (0, l). One can also show that

u is continuous in R
+
0 × [0, l] and that it is the unique solution of the problem,

although this would require additional techniques.

Example 8.5

Now we consider the equation

∂u

∂t
=

∂2u

∂x2
+ u, (8.11)

with the conditions

u(t,0) = u(t, π) = 0, t > 0, (8.12)

and

u(0, x) = sin(2x), x ∈ (0, π). (8.13)

It is easy to show that any linear combination of solutions of equation (8.11)

satisfying condition (8.12) is still a solution of this equation and satisfies con-

dition (8.12). Now we look for solutions of the form u(t, x) = T (t)X(x). Sub-

stituting u(t, x) in (8.11), we obtain

T ′X = TX ′′ + TX,

and thus,

T ′

T
=

X ′′

X
+ 1=−λ

for some constant λ ∈R (whenever TX �= 0). This yields the equations

T ′ =−λT and X ′′ + (λ+ 1)X = 0.

The solutions of the first equation are given by T (t) = ce−λt, with c �= 0 (so that

T �= 0). The second equation can be written in the form X ′′ + μX = 0, with

μ= λ+1. By Proposition 7.2, there exist nonzero solutions X(x) if and only if

μ=
n2π2

l2
= n2, that is, λ= n2 − 1,
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for some n ∈N (since l= π). We then look for (formal) solutions of the form

u(t, x) =

∞∑

n=1

cne
(1−n2)t sin(nx). (8.14)

In order that condition (8.13) is satisfied, we take

cn =
2

π

∫ π

0

sin(2x) sin(nx)dx=

{
1 if n= 2,

0 if n �= 2,

which yields the solution

u(t, x) = e−3t sin(2x).

Example 8.6

We present an alternative argument to obtain a solution of the problem in

Example 8.5. Let us consider the function v = ue−t, that is,

v(t, x) = u(t, x)e−t.

Substituting u= vet in (8.11), we obtain

∂v

∂t
et + vet =

∂2v

∂x2
et + vet,

or equivalently,

∂v

∂t
=

∂2v

∂x2
;

that is, v satisfies the heat equation. On the other hand, it follows from (8.12)

that

v(t,0) = v(t, π) = 0, t > 0,

and hence, by Proposition 8.1, we obtain the solutions

v(t, x) =

∞∑

n=1

cne
−n2t sin(nx).

This yields

u(t, x) = v(t, x)et =

∞∑

n=1

cne
(1−n2)t sin(nx),

which is the series already obtained in (8.14).
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8.2 Laplace Equation

Now we consider the Laplace equation

Δu=
∂2u

∂x2
+

∂2u

∂y2
= 0, (8.15)

for (x, y) ∈ [0, a]× [0, b]. For example, the real and imaginary parts of a holo-

morphic function satisfy the Laplace equation (see Exercise 4.36).

Example 8.7

Given a function f : [0, b]→R, let us consider the conditions

u(x,0) = u(x, b) = 0 (8.16)

and

u(0, y) = 0, u(a, y) = f(y) (8.17)

for (x, y) ∈ (0, a)× (0, b). Substituting u(x, y) =X(x)Y (y) in (8.15), we obtain

X ′′Y +XY ′′ = 0

and hence,

X ′′

X
=−Y ′′

Y
= λ

for some constant λ ∈R (whenever XY �= 0). This yields the equations

X ′′ − λX = 0 and Y ′′ + λY = 0. (8.18)

On the other hand, it follows from (8.16) and (8.17) that

Y (0) = Y (b) = 0 and X(0) = 0.

By Proposition 7.2, the nonzero solutions of the problem

Y ′′ + λY = 0, Y (0) = Y (l) = 0

are given by

Y (y) = c sin

(
nπy

b

)
, with c �= 0,

for λ= n2π2/b2 with n ∈N. Now we solve the problem

X ′′ − λX = 0, X(0) = 0.



384 8. Partial Differential Equations

Since λ= n2π2/b2 > 0, we have

X(x) = ce
√
λx + de−

√
λx, with c, d ∈R.

It follows from X(0) = 0 that c+ d= 0. Therefore,

X(x) = c
(
e
√
λx − e−

√
λx
)
= 2c sinh(

√
λx),

and we look for (formal) solutions of the Laplace equation of the form

u(x, y) =
∞∑

n=1

cn sinh

(
nπx

b

)
sin

(
nπy

b

)
. (8.19)

Taking x= a, we obtain

u(a, y) =

∞∑

n=1

cn sinh

(
nπa

b

)
sin

(
nπy

b

)
= f(y),

and thus,

cn sinh

(
nπa

b

)
=

2

b

∫ b

0

f(y) sin

(
nπy

b

)
dy

for each n ∈ N. Substituting the constants cn in (8.19), we obtain a (formal)

solution of the Laplace equation satisfying conditions (8.16) and (8.17).

Example 8.8

Given functions f, g : [0, b]→R, we consider the conditions (8.16) and

u(0, y) = f(y), u(a, y) = g(y) (8.20)

for (x, y) ∈ (0, a)× (0, b). Again, for a solution of the Laplace equation of the

form u(x, y) = X(x)Y (y), we obtain the equations in (8.18), and it follows

from (8.16) that Y (0) = Y (b) = 0. By Proposition 7.2, the problem

Y ′′ + λY = 0, Y (0) = Y (b) = 0

has the nonzero solutions given by

Y (y) = c sin

(
nπy

b

)
, with c �= 0,

for λ= n2π2/b2 with n ∈N. Thus, it remains to solve the equation

X ′′ − n2π2

b2
X = 0.



8.2 Laplace Equation 385

Its solutions are given by

X(x) = cn sinh

(
nπx

b

)
+ dn cosh

(
nπx

b

)
.

Hence, we look for (formal) solutions of the form

u(x, y) =

∞∑

n=1

[
cn sinh

(
nπx

b

)
+ dn cosh

(
nπx

b

)]
sin

(
nπy

b

)
. (8.21)

Taking x= 0 and x= a, we obtain respectively

u(0, y) =

∞∑

n=1

dn sin

(
nπy

b

)

and

u(a, y) =

∞∑

n=1

[
cn sinh

(
nπa

b

)
+ dn cosh

(
nπa

b

)]
sin

(
nπy

b

)
.

Thus,

dn =
2

b

∫ b

0

f(y) sin

(
nπy

b

)
dy

and

cn sinh

(
nπa

b

)
=

2

b

∫ b

0

g(y) sin

(
nπy

b

)
dy− dn cosh

(
nπa

b

)

for each n ∈ N. Substituting the constants cn and dn in (8.21), we obtain a

(formal) solution of the Laplace equation satisfying conditions (8.16) and (8.20).

Example 8.9

Given functions f : [0, a]→R and g : [0, b]→R, we consider the conditions

u(x,0) = 0, u(x, b) = f(x), (8.22)

and

u(0, y) = 0, u(a, y) = g(y), (8.23)
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for (x, y) ∈ (0, a)× (0, b). We note that if v and w are solutions of the Laplace

equation satisfying the conditions

v(x,0) = 0, v(x, b) = f(x),

v(0, y) = v(a, y) = 0,

w(x,0) =w(x, b) = 0,

w(0, y) = 0, w(a, y) = g(y),

(8.24)

then

u= v+w

is a solution of the Laplace equation and satisfies conditions (8.22) and (8.23).

By Example 8.7, one can take

v(x, y) =

∞∑

n=1

cn sin

(
nπx

a

)
sinh

(
nπy

a

)

and

w(x, y) =

∞∑

n=1

dn sinh

(
nπx

b

)
sin

(
nπy

b

)
,

with constants cn and dn such that

cn sinh

(
nπb

a

)
=

2

a

∫ a

0

f(x) sin

(
nπx

a

)
dx

and

dn sinh

(
nπa

b

)
=

2

b

∫ b

0

g(y) sin

(
nπy

b

)
dy;

that is, v and w are solutions of the Laplace equation satisfying the conditions

in (8.24). Then

u(x, y) = v(x, y) +w(x, y)

=

∞∑

n=1

[
cn sin

(
nπx

a

)
sinh

(
nπy

a

)
+ dn sinh

(
nπx

b

)
sin

(
nπy

b

)]

is a solution of the Laplace equation and satisfies conditions (8.22) and (8.23).
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Example 8.10

Given a function f : [0, b]→R such that

∫ b

0

f(y)dy = 0,

let us consider the conditions

∂u

∂y
(x,0) =

∂u

∂y
(x, b) = 0 (8.25)

and

∂u

∂x
(0, y) = 0,

∂u

∂x
(a, y) = f(y) (8.26)

for (x, y) ∈ (0, a)× (0, b). Substituting the function u(x, y) =X(x)Y (y) in equa-

tion (8.15) and in conditions (8.25) and (8.26), we obtain

{
X ′′ − λX = 0,

X ′(0) = 0
and

{
Y ′′ + λY = 0,

Y ′(0) = Y ′(b) = 0,
(8.27)

for some constant λ ∈R. It follows from Example 8.4 that

Y (y) = c cos

(
nπy

b

)
, with c �= 0,

for λ = n2π2/b2 with n ∈ N. It remains to solve the first problem in (8.27).

Since λ > 0, we have

X(x) = ce
√
λx + de−

√
λx, with c, d ∈R,

and it follows from X ′(0) = 0 that c= d. Therefore,

X(x) = 2c
e
√
λx + e−

√
λx

2
= 2c cosh(

√
λx),

and we look for (formal) solutions of the form

u(x, y) =

∞∑

n=0

cn cosh

(
nπx

b

)
cos

(
nπy

b

)
.

Assuming that the derivative ∂u/∂x is well defined and that it can be computed

term by term, we obtain

∂u

∂x
(a, y) =

∞∑

n=1

nπ

b
cn sinh

(
nπa

b

)
cos

(
nπy

b

)
.
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Hence, in order that condition (8.26) is satisfied, we must take constants cn
such that

nπ

b
cn sinh

(
nπa

b

)
=

2

b

∫ b

0

f(y) cos

(
nπy

b

)
dy

for each n ∈N. We note that the constant c0 is arbitrary.

8.3 Wave Equation

In this section we consider the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, (8.28)

where c ∈ R \ {0}, for t ≥ 0 and x ∈ [0, l], with l > 0. We also consider the

conditions

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x) (8.29)

for x ∈ (0, l), and

u(t,0) = u(t, l) = 0, t > 0, (8.30)

for some functions f, g : [0, l]→R.

Example 8.11

Let us assume that f is the restriction to [0, l] of a function of class C2 in R,

and that g is the restriction to [0, l] of a function of class C1 in R. Letting

r = x− ct and s= x+ ct, we consider the function

v(r, s) = u(t, x).

When u is of class C2, we have

∂u

∂x
=

∂v

∂r

∂r

∂x
+

∂v

∂s

∂s

∂x

=
∂v

∂r
+

∂v

∂s
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and

∂2u

∂x2
=

∂2v

∂r2
∂r

∂x
+

∂2v

∂s∂r

∂s

∂x
+

∂2v

∂r∂s

∂r

∂x
+

∂2v

∂s2
∂s

∂x

=
∂2v

∂r2
+ 2

∂2v

∂r∂s
+

∂2v

∂s2
.

One can show in a similar manner that

∂2u

∂t2
= c2

∂2v

∂r2
− 2c2

∂2v

∂r∂s
+ c2

∂2v

∂s2
.

Hence, equation (8.28) is equivalent to

∂2v

∂r∂s
= 0,

and thus, its solutions are given by

v(r, s) = p(r) + q(s),

where p and q are arbitrary functions of class C2 (see Problem 8.11). Hence,

u(t, x) = p(x− ct) + q(x+ ct)

are the solutions of equation (8.28). On the other hand, it follows from (8.29)

that

p(x) + q(x) = f(x) and −cp′(x) + cq′(x) = g(x),

that is,

p(x) + q(x) = f(x) and −p(x) + q(x) =
1

c
G(x)

for some primitive G of g in the interval [0, l]. Therefore,

q(x) =
1

2

(
f(x) +

1

c
G(x)

)
and p(x) =

1

2

(
f(x)− 1

c
G(x)

)

for every x ∈ [0, l]. Moreover, it follows from (8.30) that

p(−ct) + q(ct) = p(l− ct) + q(l+ ct) = 0, t≥ 0. (8.31)

Therefore,

q(t) =−p(−t), t≥ 0,

and the functions p and q are determined in the interval [−l, l]. Finally, it

follows from (8.31) that

p(l− ct) =−q(l+ ct) = p(−l− ct), t≥ 0,
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and thus, the functions p and q are 2l-periodic. Therefore, they are determined

in R, and we obtain the solution

u(t, x) =
1

2

(
f(x− ct)− 1

c
G(x− ct)

)
+

1

2

(
f(x+ ct) +

1

c
G(x+ ct)

)

=
1

2

(
f(x− ct) + f(x+ ct)

)
+

1

2c

∫ x+ct

x−ct

g(s)ds.

Example 8.12

One can also find (formal) solutions of equation (8.28) by the method of sepa-

ration of variables. We first observe that any linear combination of solutions of

equation (8.28) satisfying condition (8.30) is still a solution of this equation and

satisfies condition (8.30). Substituting u(t, x) = T (t)X(x) in (8.28), we obtain

T ′′X = c2TX ′′,

and thus,

T ′′

c2T
=

X ′′

X
=−λ

for some constant λ ∈R (whenever TX �= 0). We then obtain the equations

T ′′ + λc2T = 0 and X ′′ + λX = 0. (8.32)

It follows from (8.30) that

T (t)X(0) = T (t)X(l) = 0, t > 0,

which is equivalent to

X(0) =X(l) = 0

(although we do not yet know explicitly the function T , it follows from TX �= 0

that T (t) �= 0 for some t). By Proposition 7.2, the nonzero solutions of the

problem

X ′′ + λX = 0, X(0) =X(l) = 0

are given by

X(x) = a sin

(
nπx

l

)
, with a �= 0,

for λ= n2π2/l2 with n ∈N. The first equation in (8.32) then takes the form

T ′′ +
n2π2c2

l2
T = 0,
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and thus, its solutions are given by

T (t) = an cos

(
nπct

l

)
+ bn sin

(
nπct

l

)
,

with an, bn ∈R. Now we look for (formal) solutions of the form

u(t, x) =

∞∑

n=1

[
an cos

(
nπct

l

)
+ bn sin

(
nπct

l

)]
sin

(
nπx

l

)
.

We have

u(0, x) =

∞∑

n=1

an sin

(
nπx

l

)
,

and assuming that the derivative ∂u/∂t is well defined and that it can be

computed term by term, we also have

∂u

∂t
(0, x) =

∞∑

n=1

nπc

l
bn sin

(
nπx

l

)
.

Therefore, one can then take

an =
2

l

∫ l

0

f(x) cos

(
nπx

l

)
dx, n ∈N,

and

bn =
2

nπc

∫ l

0

g(x) sin

(
nπx

l

)
dx, n ∈N.

Example 8.13

Now we use the method of separation of variables to solve the equation

∂2u

∂t2
=

∂2u

∂x2
+ u+

∂u

∂t
, (8.33)

for t ≥ 0 and x ∈ [0, π], with condition (8.30) satisfied for l = π. Substituting

the function u(t, x) = T (t)X(x) in equation (8.33), we obtain

T ′′X = TX ′′ + TX + T ′X,

and thus,

T ′′

T
=

X ′′

X
+ 1+

T ′

T
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whenever TX �= 0. Therefore, there exists λ ∈R such that

T ′′ − T ′

T
=

X ′′

X
+ 1=−λ,

and we obtain the equations

T ′′ − T ′ + λT = 0 and X ′′ + (λ+ 1)X = 0.

By Proposition 7.2, we have the nonzero solutions given by

X(x) = b sin(nx), with b �= 0,

for λ= n2 − 1 with n ∈N. It then remains to solve the equation

T ′′ − T ′ +
(
n2 − 1

)
T = 0.

Since the roots of the polynomial a2 − a+n2 − 1 are a= (1±
√
5− 4n2)/2, we

obtain the solutions

u(t, x) =
(
a1e

t + b1
)
sinx

+

∞∑

n=2

[
ane

t/2 cos

(√
4n2 − 5 t

2

)
+ bne

t/2 sin

(√
4n2 − 5 t

2

)]
sin(nx),

with an, bn ∈R for each n ∈N.

8.4 Solved Problems and Exercises

Problem 8.1

Find a solution of the equation

∂u

∂t
=

∂2u

∂x2
, t≥ 0, x ∈ [0, π],

with the conditions

u(t,0) = u(t, π) = 0, t > 0,

and

u(0, x) = x, x ∈ (0, π).
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Solution

By Proposition 8.1, the solution is given by

u(t, x) =

∞∑

n=1

cne
−n2t sin(nx),

where

cn =
2

π

∫ π

0

x sin(nx)dx

=
2

π

(
−x cos(nx)

n
+

sin(nx)

n2

)∣∣
∣
∣

x=π

x=0

=
2(−1)n+1

n

for each n ∈N. We thus obtain

u(t, x) =

∞∑

n=1

2(−1)n+1

n
e−n2t sin(nx).

Problem 8.2

Find a solution of the equation

∂u

∂t
= 2

∂2u

∂x2
, t≥ 0, x ∈ [0,1],

with the conditions

∂u

∂x
(t,0) =

∂u

∂x
(t,1) = 0, t > 0,

and

u(0, x) = ex, x ∈ (0,1).

Solution

By Example 8.4 with l= 1, we look for (formal) solutions of the form

u(t, x) =

∞∑

n=0

cne
−2n2π2t cos(nπx).

Taking t= 0, we obtain

u(0, x) =
∞∑

n=0

cn cos(nπx) =
2c0
2

+
∞∑

n=1

cn cos(nπx).
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Hence, by Theorem 7.29, we take

c0 =

∫ 1

0

ex dx= e− 1

and

cn = 2

∫ 1

0

ex cos(nπx)dx

=
2ex

1 + n2π2

(
cos(nπx) + nπ sin(nπx)

)∣∣
∣
x=1

x=0

=
2[e(−1)n − 1]

1 + n2π2

for n ∈N. We thus obtain the solution

u(t, x) = e− 1 +

∞∑

n=1

2[e(−1)n − 1]

1 + n2π2
e−2n2π2t cos(nπx).

Problem 8.3

Find a solution of the equation

∂u

∂t
=

∂2u

∂x2
+ u, t≥ 0, x ∈ [0, π],

with the conditions

u(t,0) = u(t, π) = 0, t > 0,

and

u(0, x) = cosx, x ∈ (0, π). (8.34)

Solution

By Example 8.5, we look for (formal) solutions of the form

u(t, x) =

∞∑

n=1

cne
(1−n2)t sin(nx).

In order that condition (8.34) is satisfied, we take

c1 =
2

π

∫ π

0

cosx sinxdx= 0
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and

cn =
2

π

∫ π

0

cosx sin(nx)dx

=
2n(1 + (−1)n)

(n2 − 1)π
=

{
0 if n is odd,

4n/[(n2 − 1)π] if n is even

for n > 1. We thus obtain the solution

u(t, x) =

∞∑

n=1

8n

(4n2 − 1)π
e(1−4n2)t sin(2nx).

Problem 8.4

Find a solution of the equation

∂u

∂t
=

∂2u

∂x2
+ 2u, t≥ 0, x ∈ [0, π],

with the conditions

u(t,0) = u(t, π) = 0, t > 0,

and

u(0, x) = 1, x ∈ (0, π).

Solution

Proceeding in a similar manner to that in Example 8.5, we find the (formal)

solutions

u(t, x) =
∞∑

n=1

cne
(2−n2)t sin(nx).

Taking t= 0, we obtain

u(0, x) =

∞∑

n=1

cn sin(nx) = 1.

Hence, by Example 7.31, we take

cn =
2

nπ

[
1− (−1)n

]
=

{
0, if n is even,

4/(nπ) if n is odd,
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which yields the solution

u(t, x) =

∞∑

n=0

4

(2n+ 1)π
e[2−(2n+1)2]t sin

(
(2n+ 1)x

)
.

Problem 8.5

Find a solution of the equation

∂u

∂t
=

∂2u

∂x2
+

∂u

∂x
, t≥ 0, x ∈ [0,1], (8.35)

with the conditions

u(t,0) = u(t,1) = 0, t > 0, (8.36)

and

u(0, x) = e−x/2 sin(πx), x ∈ (0,1).

Solution

We first look for nonzero solutions of the form u(t, x) = T (t)X(x). Substituting

u(t, x) in (8.35), we obtain

T ′X = TX ′′ + TX ′,

and hence,

T ′

T
=

X ′′ +X ′

X
=−λ

for some constant λ ∈R (whenever TX �= 0). This yields the equations

T ′ =−λT and X ′′ +X ′ + λX = 0.

The solutions of the first equation are given by

T (t) = ce−λt, with c �= 0.

On the other hand, it follows from (8.36) that X(0) =X(1) = 0. Thus, we must

solve the problem

X ′′ +X ′ + λX = 0, X(0) =X(1) = 0.

Since the polynomial v2 + v + λ has the roots (−1±
√
1− 4λ)/2, we consider

three cases.
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1. When λ= 1/4, we obtain the equation

X ′′ +X ′ + λX = (D+ 1/2)2X = 0,

whose solutions are given by

X(x) = ae−x/2 + bxe−x/2, with a, b ∈R.

It follows from X(0) = 0 that a= 0. Hence, X(1) = be−1/2 = 0, which yields

b= 0 and X(x) = 0.

2. When λ < 1/4, we obtain the equation

X ′′ +X ′ + λX =

(
D+

1+
√
1− 4λ

2

)(
D+

1−
√
1− 4λ

2

)
X = 0,

whose solutions are given by

X(x) = ae−(1+
√
1−4λ)x/2 + be−(1−

√
1−4λ)x/2,

with a, b ∈R. It follows from X(0) = 0 that a+ b= 0. Hence,

X(1) = a
(
e−(1+

√
1−4λ)/2 − e−(1−

√
1−4λ)/2

)
.

Since λ < 1/4, we have

e−(1+
√
1−4λ)/2 �= e−(1−

√
1−4λ)/2,

and it follows from X(1) = 0 that a= 0. Hence, b= 0 and X(x) = 0.

3. When λ > 1/4, we obtain the equation

X ′′ +X ′ + λX =

(
D+

1+ i
√
4λ− 1

2

)(
D+

1− i
√
4λ− 1

2

)
X = 0,

whose solutions are given by

X(x) = ae−x/2 cos

(√
4λ− 1x

2

)
+ be−x/2 sin

(√
4λ− 1x

2

)
,

with a, b ∈R. It follows from X(0) = 0 that a= 0. Hence,

X(1) = be−1/2 sin

(√
4λ− 1

2

)
= 0,

and thus, b= 0 (which would give X = 0), or

sin

(√
4λ− 1

2

)
= 0. (8.37)
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It follows from (8.37) that

√
4λ− 1

2
= nπ, that is, λ= n2π2 +

1

4
,

for n ∈N. We thus obtain the solutions

X(x) = be−x/2 sin(nπx), n ∈N.

Now we observe that any linear combination of solutions of equation (8.35)

satisfying condition (8.36) is still a solution of this equation and satisfies con-

dition (8.36). We then look for (formal) solutions of the form

u(t, x) =
∞∑

n=1

cne
−(n2π2+1/4)te−x/2 sin(nπx).

Taking t= 0, we obtain

u(0, x) =
∞∑

n=1

cne
−x/2 sin(nπx) = e−x/2 sin(nπx),

and hence, we must take

cn =

{
1 if n= 1,

0 if n �= 1.

Therefore, a solution is given by

u(t, x) = e−(π2+1/4)te−x/2 sin(πx).

Problem 8.6

Find a solution of the equation

∂u

∂t
=

∂2u

∂x2
+ 4

∂u

∂x
, t≥ 0, x ∈ [0, π],

with the conditions

u(t,0) = u(t, π) = 0, t > 0,

and

u(0, x) = 5e−2x sin(8x), x ∈ (0, π).
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Solution

Proceeding in a similar manner to that in Problem 8.5, for a solution of the

form u(t, x) = T (t)X(x), we obtain the equations

T ′ =−λT and X ′′ + 4X ′ + λX = 0,

for some constant λ ∈R. In this case, the polynomial v2 +4v+λ has the roots

−2±
√
4− λ. One can easily verify that the problem

X ′′ + 4X ′ + λX = 0 with X(0) =X(π) = 0

has nonzero solutions if and only if λ= n2 + 4 for some n ∈N, in which case

X(x) = be−2x sin(nx),

with b �= 0. We then look for (formal) solutions of the form

u(t, x) =

∞∑

n=1

cne
−(n2+4)t−2x sin(nx).

Taking t= 0, we obtain

u(0, x) =

∞∑

n=1

cne
−2x sin(nx) = 5e−2x sin(8x),

and thus, we must take

cn =

{
5 if n= 8,

0 if n �= 8.

Hence, a solution is given by

u(t, x) = 5e−68t−2x sin(8x).

Problem 8.7

Find a solution of the equation

∂2u

∂x2
+

∂2u

∂y2
= 0, (x, y) ∈ [0, a]× [0, b], (8.38)

with the conditions

u(x,0) = u(x, b) = 0, x ∈ (0, a), (8.39)
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and

u(0, y) = 0, u(a, y) = 1, y ∈ (0, b). (8.40)

Solution

Substituting u(x, y) =X(x)Y (y) in (8.38), we obtain

X ′′Y +XY ′′ = 0,

and hence,

X ′′

X
=−Y ′′

Y
= λ

for some constant λ ∈R. This yields the equations

X ′′ − λX = 0 and Y ′′ + λY = 0.

On the other hand, it follows from (8.39) and (8.40) that

Y (0) = Y (b) = 0 and X(0) = 0.

By Proposition 7.2, the problem

Y ′′ + λY = 0, Y (0) = Y (b) = 0

has nonzero solutions if and only if λ= n2π2/b2 for some n ∈N, in which case

Y (y) = sin

(
nπy

b

)

is a solution. Now we solve the problem

X ′′ − λX = 0, X(0) = 0.

Since λ= n2π2/b2 > 0, we have

X(x) = ce
√
λx + de−

√
λx, with c, d ∈R.

It follows from X(0) = 0 that c+ d= 0, and thus,

X(x) = c
(
e
√
λx − e−

√
λx
)
= 2c sinh(

√
λx).

We then look for (formal) solutions of equation (8.38) of the form

u(x, y) =
∞∑

n=1

cn sinh

(
nπx

b

)
sin

(
nπy

b

)
. (8.41)
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Taking x= a, we obtain

u(a, y) =

∞∑

n=1

cn sinh

(
nπa

b

)
sin

(
nπy

b

)
= 1,

and thus, we must take constants cn such that

cn sinh

(
nπa

b

)
=

2

b

∫ b

0

sin

(
nπy

b

)
dy

=
2

nπ

(
1− (−1)n

)

for each n ∈N. Substituting these constants in (8.41), we obtain the solution

u(x, y) =

∞∑

n=1

2(1− (−1)n)

nπ sinh(nπa/b)
sinh

(
nπx

b

)
sin

(
nπy

b

)

=
∞∑

n=0

dn sinh

(
(2n+ 1)πx

b

)
sin

(
(2n+ 1)πy

b

)
,

where

dn =
4

(2n+ 1)π sinh((2n+ 1)πa/b)
.

Problem 8.8

Find a solution of equation (8.38), with the conditions

∂u

∂y
(x,0) =

∂u

∂y
(x, b) = 0, x ∈ (0, a),

and

∂u

∂x
(0, y) = 0,

∂u

∂x
(a, y) = cos

(
5πy

b

)
, y ∈ (0, b).

Solution

By Example 8.10, since the condition

∫ b

0

cos

(
5πy

b

)
dy = 0

is satisfied, we look for (formal) solutions of equation (8.38) of the form
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u(x, y) =

∞∑

n=0

cn cosh

(
nπx

b

)
cos

(
nπy

b

)

= c0 +

∞∑

n=1

cn cosh

(
nπx

b

)
cos

(
nπy

b

)
. (8.42)

Taking (formally) derivatives term by term with respect to x, we obtain

∂u

∂x
(a, y) =

∞∑

n=1

cnnπ

b
sinh

(
nπa

b

)
cos

(
nπy

b

)
= cos

(
5πy

b

)
.

Hence, we must take cn = 0 for n ∈N \ {5}, and

c5 =
b

5π sinh(5πa/b)
.

Substituting these constants in (8.42), we obtain the solution

u(x, y) = c0 +
b

5π sinh(5πa/b)
cosh

(
5πx

b

)
cos

(
5πy

b

)
,

where the constant c0 is arbitrary.

Problem 8.9

Find a solution of the equation

∂2u

∂t2
= c2

∂2u

∂x2
, t≥ 0, x ∈ [0, π],

with the conditions

u(t,0) = u(t, π) = 0, t > 0,

and

u(0, x) = sin(2x),
∂u

∂t
(0, x) = sinx, x ∈ (0, π). (8.43)

Solution

By Example 8.12 with l= π, we look for (formal) solutions of the form

u(t, x) =
∞∑

n=1

[
an cos(nct) + bn sin(nct)

]
sin(nx). (8.44)



8.4 Solved Problems and Exercises 403

We have

u(0, x) =

∞∑

n=1

an sin(nx).

Taking (formally) derivatives in (8.44) term by term with respect to t, we obtain

∂u

∂t
(0, x) =

∞∑

n=1

ncbn sin(nx).

Hence, in order that condition (8.43) is satisfied, we take

an =
2

π

∫ π

0

sin(2x) sin(nx)dx=

{
1 if n= 2,

0 if n �= 2,

and

bn =
2

πnc

∫ π

0

sinx sin(nx)dx=

{
1/c if n= 1,

0 if n �= 1.

We thus obtain the solution

u(t, x) = cos(2ct) sin(2x) +
1

c
sin(ct) sinx.

Problem 8.10

Find a solution of the equation

∂u

∂t
=

∂u

∂x
, t, x ∈R, (8.45)

satisfying the condition u(0, x) = ex + e−x.

Solution

We first look for nonzero solutions of the form u(t, x) = T (t)X(x). Substituting

u(t, x) in (8.45), we obtain T ′X = TX ′, and thus,

T ′

T
=

X ′

X
= λ

for some constant λ ∈R (whenever TX �= 0). This yields the equations

T ′ = λT and X ′ = λX,
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whose solutions are given respectively by

T (t) = ceλt and X(x) = deλx,

with c, d ∈R. Hence, equation (8.45) has the solutions

u(t, x) = aeλ(t+x),

with a ∈R. Since any linear combination of solutions of equation (8.45) is still

a solution of this equation, one can consider solutions of the form

u(t, x) =
N∑

n=1

ane
λn(t+x),

with an, λn ∈R for each n= 1, . . . ,N . Taking t= 0, we obtain

u(0, x) =

N∑

n=1

ane
λnx = ex + e−x,

and thus, one can take N ≥ 2 and

an =

{
1 if n= 1,2,

0 if n > 2,

with λ1 = 1 and λ2 =−1. Thus, a solution of the problem is

u(t, x) = et+x + e−(t+x).

Problem 8.11

Find all functions u= u(t, x) of class C2 satisfying

∂2u

∂x∂t
= 0. (8.46)

Solution

We write equation (8.46) in the form

∂

∂x

(
∂u

∂t

)
= 0.

This implies that ∂u/∂t = f(t), where f is an arbitrary function of class C1

(since u is of class C2). Hence,

u(t, x) =X(x) + T (t), (8.47)
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where X is an arbitrary function of class C2, and where T is a primitive of f

(which thus is also of class C2). Conversely, if u is of the form (8.47), where X

and T are arbitrary functions of class C2, then u is of class C2 and

∂2u

∂x∂t
=

∂

∂x

(
∂u

∂t

)
=

∂

∂x
T ′(t) = 0.

Thus, the desired functions are those in (8.47), with X and T of class C2.

Problem 8.12

Use the method of separation of variables to solve the equation

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0. (8.48)

Solution

Substituting the function

u(x, y, z) =X(x)Y (y)Z(z) (8.49)

in equation (8.48), we obtain

X ′′Y Z +XY ′′Z +XY Z ′′ = 0.

For nonzero solutions, dividing by XY Z, we obtain

X ′′

X
+

Y ′′

Y
+

Z ′′

Z
= 0,

and thus,

X ′′

X
=−
(
Y ′′

Y
+

Z ′′

Z

)
.

Since the left-hand side does not depend either on y or on z, and the right-hand

side does not depend on x, there exists λ ∈R such that

X ′′

X
=−
(
Y ′′

Y
+

Z ′′

Z

)
=−λ.

Therefore,

X ′′ + λX = 0 and
Y ′′

Y
+

Z ′′

Z
= λ.
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Now we write the second equation in the form

Y ′′

Y
=−Z ′′

Z
+ λ.

Since the left-hand side does not depend on z and the right-hand side does not

depend on y, there exists μ ∈R such that

Y ′′

Y
=−Z ′′

Z
+ λ=−μ,

and thus,

Y ′′ + μY = 0 and Z ′′ − (λ+ μ)Z = 0.

By solving the equations

X ′′ + λX = 0, Y ′′ + μY = 0 and Z ′′ − (λ+ μ)Z = 0, (8.50)

we obtain a solution of equation (8.48) of the form (8.49). Since linear combi-

nation of solutions of equation (8.48) are still solutions of this equation, one

can consider (formal) solutions of the form

u(x, y, z) =

∞∑

n=1

cnun(x, y, z), (8.51)

where

un(x, y, z) =Xn(x)Yn(y)Zn(z)

for some functions Xn, Yn and Zn satisfying (8.50).

Problem 8.13

Solve equation (8.48), for t≥ 0 and x, y, z ∈ [0, π], with the conditions

u(0, y, z) = u(π, y, z) = 0, y, z ∈ (0, π), (8.52)

and

u(x,0, z) = u(x,π, z) = 0, x, z ∈ (0, π). (8.53)

Solution

Proceeding as in Problem 8.12, we first consider solutions of the form (8.49),

which corresponds to solving the equations in (8.50). Substituting the function



8.4 Solved Problems and Exercises 407

u(x, y, z) =X(x)Y (y)Z(z) in the conditions (8.52) and (8.53), we obtain

X(0) =X(π) = 0 and Y (0) = Y (π) = 0.

By Proposition 7.2, the problems

X ′′ + λX = 0 with X(0) =X(π) = 0,

and

Y ′′ + μY = 0 with Y (0) = Y (π) = 0

have nonzero solutions if and only if

λ= n2 and μ=m2

for some n,m ∈N. The solutions are given respectively by

X(x) = a sin(nx) and Y (y) = b sin(my),

with a, b �= 0. The third equation in (8.50) then takes the form

Z ′′ −
(
n2 +m2

)
Z = 0,

and has the solutions

Z(z) = cnme
√
n2+m2z + dnme−

√
n2+m2z,

with cnm, dnm ∈R for each n,m ∈N. One can then consider (formal) solutions

of the form (8.51), that is,

u(x, y, z) =

∞∑

n=1

∞∑

m=1

sin(nx) sin(my)
(
cnme

√
n2+m2z + dnme−

√
n2+m2z

)
.

Problem 8.14

Discuss whether the method of separation of variables can be used to solve the

equation

t
∂2u

∂x2
+ u

∂u

∂t
= 0. (8.54)

Solution

We first look for solutions of the form u(t, x) = T (t)X(x). It follows from (8.54)

that

tTX ′′ + TXT ′X = 0, (8.55)
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and thus, for solutions with TT ′X ′′ �= 0, we have

t

T ′ =−X2

X ′′ =−λ

for some constant λ �= 0. Therefore,

T ′ =− t

λ
and X ′′ =

1

λ
X2.

The solutions of the first equation are given by

T (t) =− 1

2λ
t2 + a, with a ∈R.

The second equation has for example the solution X(x) = 1/x2 for λ = 1/6.

Hence, a family of solutions of equation (8.54) is

u(t, x) =
a− 3t2

x2
, with a ∈R.

On the other hand, in general, a linear combination of solutions of equa-

tion (8.54) is not a solution of this equation. For example, if u is a solution,

then

t
∂2(2u)

∂x2
+ (2u)

∂(2u)

∂t
= 2t

∂2u

∂x2
+ 4u

∂u

∂t

= 2

(
t
∂2u

∂x2
+ u

∂u

∂t

)
+ 2u

∂u

∂t
= 2u

∂u

∂t
.

Hence, 2u is also a solution if and only if

∂(u2)

∂t
= 2u

∂u

∂t
= 0,

which shows that u2, and thus also u, must be independent of t. In other words,

we must have u(t, x) =X(x). It then follows from (8.54), or from (8.55), that

tX ′′ = 0, and X(x) = bx + c, with b, c ∈ R. In particular, it is impossible to

use linear combinations to generate new solutions from the solutions that are

already known, namely

a− 3t2

x2
and bx+ c,

with a, b, c ∈ R. In this sense, the method of separation of variables cannot be

used to solve equation (8.54).
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EXERCISES

8.1. Find a solution of the equation:

(a)
∂u

∂t
=

∂2u

∂x2
, t≥ 0, x ∈ [0,1],

with the conditions

u(t,0) = u(t,1) = 0, t > 0,

and

u(0, x) = x+ sin(πx), x ∈ (0,1);

(b)
∂u

∂t
= 4

∂2u

∂x2
, t≥ 0, x ∈ [0,2],

with the conditions

u(t,0) = u(t,2) = 0, t > 0,

and

u(0, x) = x2, x ∈ (0,2);

(c)
∂u

∂t
=

∂2u

∂x2
− 2

∂u

∂x
, t≥ 0, x ∈ [0,1],

with the conditions

u(t,0) = u(t,1) = 0, t > 0,

and

u(0, x) = ex sin(πx), x ∈ (0,1);

(d)
∂2u

∂x2
+

∂2u

∂y2
= 0, (x, y) ∈ [0,1]× [0,2],

with the conditions

u(x,0) = u(x,2) = 0, x ∈ (0,1),

and

u(0, y) = 0, u(1, y) = y2, y ∈ (0,2);

(e)
∂2u

∂x2
+

∂2u

∂y2
= 0, (x, y) ∈ [0,3]× [0,4],



410 8. Partial Differential Equations

with the conditions

∂u

∂y
(x,0) =

∂u

∂y
(x,4) = 0, x ∈ (0,3),

and

∂u

∂x
(0, y) = 0,

∂u

∂x
(3, y) = cos

(
3πy

4

)
, y ∈ (0,4);

(f)
∂2u

∂t2
= 2

∂2u

∂x2
, t≥ 0, x ∈ [0,1],

with the conditions

u(t,0) = u(t,1) = 0, t > 0,

and

u(0, x) = sin(πx),
∂u

∂t
(0, x) = 2sin(4πx), x ∈ (0,1).

8.2. Find a solution of equation (8.45) with u(0, x) = e3x + 4e−x.

8.3. Write the Laplacian

Δ=
∂2

∂x2
+

∂2

∂y2

in polar coordinates (r, θ).

8.4. Show that the functions u(t, x) = v(x+ct), with v of class C1, satisfy

the equation

∂u

∂t
= c

∂u

∂x
.

8.5. Show that all solutions of the equation

∂u

∂t
= c

∂u

∂x

are of the form u(t, x) = v(x+ ct).

8.6. Find all solutions of the equation

∂2u

∂x∂t
= u

of the form u(t, x) = T (t)X(x).
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8.7. Discuss whether the method of separation of variables can be used

to solve the equation:

(a)
∂u

∂t
= 4t2

∂u

∂x
;

(b)
∂2u

∂t2
= 4x

∂2u

∂x2
.
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A
Absolutely convergent series, 113
Analytic function, 154
Argument, 6

B
Bessel’s inequality, 351

C
Cartesian form, 8
Cauchy sequence, 110
Cauchy–Riemann equations, 42, 43
Cauchy’s

integral formula, 73, 160
theorem, 69

Characteristic polynomial, 288
Closed path, 63
Closure, 45
Complex

function, 14
Jordan form, 244
number, 3

Conjugate, 11
Connected

component, 45
set, 45

Continuous function, 38
Convergent

sequence, 109
series, 112

Convex set, 64
Cosine, 17
Curve, 52

D
Derivative, 39
Differentiable function, 39
Disconnected set, 45
Discontinuous function, 38
Divergent

sequence, 109
series, 112

E
Equation

exact, 281
heat, 333, 373
Laplace, 383
linear, 233, 236
ordinary differential, 223
partial differential, 373
reducible to exact, 285
separable, 284
wave, 388

Equivalent paths, 59
Essential singularity, 170
Even function, 354
Exact equation, 281
Exponential, 15
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F
Form

Cartesian, 8
polar, 8

Formula
Cauchy’s integral, 73
Parseval’s, 353
variation of parameters, 241

Fourier
coefficients, 338
series, 339

Function
absolutely Riemann-integrable, 302
analytic, 154
continuous, 38
differentiable, 39
discontinuous, 38
even, 354
harmonic, 78
holomorphic, 39
locally Lipschitz, 227
meromorphic, 177
odd, 354

Fundamental theorem of algebra, 161

H
Harmonic

conjugate functions, 78
function, 78

Heat equation, 333, 373
Holomorphic function, 39
Homotopic paths, 74
Homotopy, 74

I
Imaginary

part, 6, 15
unit, 4

Index, 70
Integral, 56
Integrating factor, 285
Isolated singularity, 164

J
Jordan form, 244

L
Laplace

equation, 383
transform, 296

Laurent series, 165, 169
Leibniz’s test, 121
Length, 55

Limit, 37, 109
Linear equation, 233, 236
Liouville’s theorem, 160
Locally Lipschitz function, 227
Logarithm, 19

M
Matrix exponential, 237
Maximal interval, 232
Meromorphic function, 177
Modulus, 6

O
Odd function, 354
Ordinary differential equation, 223

P
Parseval’s formula, 353
Partial differential equation, 373
Path, 52

closed, 63
connected set, 78
piecewise regular, 54
regular, 54

Paths
equivalent, 59
homotopic, 74

Picard–Lindelöf theorem, 227
Piecewise regular path, 54
Polar form, 8
Pole, 170
Power series, 149
Primitive, 62
Principal value of the logarithm, 19

R
Radius of convergence, 150
Ratio test, 119
Real part, 6, 15
Regular path, 54
Removable singularity, 170
Residue, 175

theorem, 178
Riemann–Lebesgue lemma, 302
Root test, 120

S
Separable equation, 284
Sequence, 109

Cauchy, 110
convergent, 109
divergent, 109
uniformly convergent, 122



Index 415

Series
absolutely convergent, 113
convergent, 112
divergent, 112
Fourier, 339
Laurent, 165, 169
of cosines, 355, 357
of sines, 355, 357
power, 149
uniformly convergent, 125

Set
connected, 45
convex, 64
disconnected, 45
path connected, 78
simply connected, 78

Simply connected set, 78
Sine, 17
Singularity

essential, 170
isolated, 164
removable, 170

Solution, 223
Sum of the series, 112

T
Test

Leibniz’s, 121
ratio, 119
root, 120
Weierstrass’, 125

Theorem
Cauchy’s, 69
Liouville’s, 160
Picard–Lindelöf, 227
residue, 178

U
Uniform convergence, 125
Uniformly

convergent sequence, 122
convergent series, 125

Upper limit, 120

V
Variation of parameters formula, 241

W
Wave equation, 388
Weak maximum principle, 376
Weierstrass’ test, 125
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