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Foreword

This book contains an expanded and smoothed version of lecture notes delivered
by the authors at the Advanced School on Numerical Solutions of Partial Differ-
ential Equations: New Trends and Applications, which took place at the Centre
de Recerca Matemàtica (CRM) in Bellaterra (Barcelona) from November 15th to
22nd, 2007.

The book has three parts. The first part, by Silvia Bertoluzza and Silvia
Falletta, is devoted to the use of wavelets to derive some new approaches in the
numerical solution of PDEs, showing in particular how the possibility of writ-
ing equivalent norms for the scale of Besov spaces allows to write down some new
methods. The second part, by Giovanni Russo, provides an overview of the modern

vation and balance laws, with emphasis in giving a unified view of such schemes by
identifying the essential aspects of their construction. In the last part Chi-Wang
Shu gives a general introduction to the discontinuous Galerkin methods for solving
some classes of PDEs, discussing cell entropy inequalities, nonlinear stability and
error estimates.

The school that originated these notes was born with the objective of pro-
viding an opportunity for PhD students, recent PhD doctorates and researchers
in general in fields of applied mathematics and engineering to catch up with im-
portant developments in the fields and/or to get in touch with state-of-the-art
numerical techniques that are not covered in usual courses at graduate level.

We are indebted to the Centre de Recerca Matemàtica and its staff for host-
ing the advanced school and express our gratitude to José A. Carrillo (Institució
Catalana de Recerca i Estudis Avançats – Universitat Autònoma de Barcelona),
Rosa Donat (Universitat de Valéncia), Carlos Parés (Universidad de Málaga) and
Yolanda Vidal (Universitat Politècnica de Catalunya) for the mathematical organ-
isation of the course and for making it such a pleasant experience.

finite-volume and finite-difference shock-capturing schemes for systems of conser-



Part I

Wavelets and Partial
Differential Equations

Silvia Bertoluzza and Silvia Falletta



Introduction

Wavelet bases were introduced in the late 1980s as a tool for signal and image pro-
cessing. Among the applications considered at the beginning we recall applications
in the analysis of seismic signals, the numerous applications in image processing
– image compression, edge-detection, denoising, applications in statistics, as well
as in physics. Their effectiveness in many of the mentioned fields is nowadays well
established: as an example, wavelets are actually used by the US Federal Bureau
of Investigation (or FBI) in their fingerprint database, and they are one of the
ingredients of the new MPEG media compression standard. Quite soon it became
clear that such bases allowed to represent objects (signals, images, turbulent fields)
with singularities of complex structure with a low number of degrees of freedom,
a property that is particularly promising when thinking of an application to the
numerical solution of partial differential equations: many PDEs have in fact solu-
tions which present singularities, and the ability to represent such a solution with
as little as possible degrees of freedom is essential in order to be able to implement
effective solvers for such problems. The first attempts to use such bases in this
framework go back to the late 1980s and early 1990s, when the first simple adap-
tive wavelet methods [32] appeared. In those years the problems to be faced were
basic ones. The computation of integrals of products of derivatives of wavelets –
objects which are naturally encountered in the variational approach to the nu-
merical solution of PDEs – was an open problem (solved later by Dahmen and
Michelli in [25]). Moreover, wavelets were defined on R and on R

n. Already solving
a simple boundary value problem on (0, 1) (the first construction of wavelets on
the interval [20] was published in 1993) posed a challenge.

Many steps forward have been made since those pioneering works. In par-
ticular thinking in terms of wavelets gave birth to some new approaches in the
numerical solution of PDEs. The aim of this course is to show some of these new
ideas. In particular we want to show how one key property of wavelets (the pos-
sibility of writing equivalent norms for the scale of Besov spaces) allows to write
down some new methods.



Chapter 1

What is a Wavelet?

Let us start by explaining what we mean by wavelets. There are in the literature
many definitions of wavelets and wavelet bases, going from the more strict ones
(a wavelet is the dilated and translated version of a mother wavelet satisfying a
suitable set of properties) to more and more general definitions. The aim of this
chapter is to review the classical definition of wavelets for R and then point out
which of its properties can be retained when replacing R with a generic domain Ω.

1.1 Multiresolution Analysis

We start by introducing the general concept of multiresolution analysis in the
univariate case.

Definition 1.1. A Multiresolution Analysis (MRA) of L2(R) is a sequence {Vj}j∈Z

of closed subspaces of L2(R) verifying:

i) the subspaces are nested: Vj ⊂ Vj+1 for all j ∈ Z;

ii) the union of the spaces is dense in L2(R) and the intersection is null:⋃
j∈Z

Vj = L2(R),
⋂
j∈Z

Vj = {0}; (1.1)

iii) there exists a scaling function ϕ ∈ V0 such that {ϕ(· − k), k ∈ Z} is a Riesz’s
basis for V0.

We recall that a set {ek} is a Riesz basis for its linear span in L2(R) if and only
if the functions ek are linearly independent and the following norm equivalence
holds, ∥∥∥∑

k

ckek

∥∥∥2

L2(R)
�
∑

k

|ck|2.
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Here and in the following we use the notation A � B to signify that there exist
positive constants c and C, independent of any relevant parameter, such that
cB ≤ A ≤ CB. Analogously we will use the notation A � B (resp. A � B),
meaning that A ≤ CB (resp. A ≥ cB).

It is not difficult to check that the above properties imply that the set

{ϕj,k = 2j/2ϕ(2j · −k), k ∈ Z}
is a Riesz’s basis for Vj , yielding a norm equivalence between the L2-norm of a
function in Vj and the �2-norm of the sequence of its coefficients with constants
independent of j.

The inclusion V0 ⊂ V1 implies that the scaling function ϕ can be expanded
in terms of the basis of V1 through the following refinement equation

ϕ(x) =
∑
k∈Z

hkϕ(2x − k) (1.2)

with {hk}k∈Z ∈ �2(Z). The function ϕ is then said to be a refinable function and
the coefficients hk are called refinement coefficients.

Since Vj ⊂ Vj+1 it is not difficult to realize that an approximation fj+1 of a
function f at level j +1 “contains” more information on f than the approximation
fj at level j. As an example, we can consider fj = Pjf , where Pj : L2(R) → Vj

denotes the L2(R)-orthogonal projection onto Vj . Remark that Pj+1Pj = Pj (a
direct consequence of the nestedness of the spaces Vj). Moreover, we have that
PjPj+1 = Pj : fj+1 contains in this case all information needed to retrieve fj .
The idea is now to encode somehow the “loss of information” that we have when
projecting fj+1 onto Vj . This is done by introducing the complement wavelet space
Wj . In order to do that, we consider a more general framework, in which Pj is
not necessarily the orthogonal projection and which yields the construction of a
biorthogonal multiresolution analysis, as specified in the following section.

The Biorthogonal MRA

To be more general, let us start by choosing a sequence of uniformly bounded
(not necessarily orthogonal) projectors Pj : L2(R) → Vj verifying the following
properties:

PjPj+1 = Pj , (1.3)

Pj(f(· − k2−j))(x) = Pjf(x − k2−j), (1.4)

Pj+1f((2·))(x) = Pjf(2x). (1.5)

Remark again that the inclusion Vj ⊂ Vj+1 guarantees that Pj+1Pj = Pj . On
the contrary, property (1.3) is not verified by general non-orthogonal projectors
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and expresses the fact that the approximation Pjf can be derived from Pj+1f .
Equations (1.4) and (1.5) require that the projector Pj respects the translation
and dilation invariance properties (i) and (ii) of the MRA.

Since {ϕ0,k} is a Riesz’s basis for V0 we have that for f ∈ L2(R)

P0f =
∑

k

αk(f)ϕ0,k

with αk : L2(R) → R linear and continuous. By the Riesz’s Representation Theo-
rem, for each k, there exists an element ϕ̃0,k ∈ L2(R) such that

αk(f) = 〈f, ϕ̃0,k〉,

where we denote by 〈·, ·〉 the L2-scalar product. We have the following lemma:

Lemma 1.2. The set {ϕ̃0,k, k ∈ Z} forms a Riesz’s basis for the space Ṽ0 =
P ∗0 (L2(R)) (where P ∗0 denotes the adjoint of P0). Moreover we have

ϕ̃0,k(x) = ϕ̃0,0(x − k). (1.6)

Proof. We start by remarking that since ϕ0,n ∈ V0, we have that

ϕ0,n = P0ϕ0,n =
∑

k

〈ϕ0,n, ϕ̃0,k〉ϕ0,k,

and this implies
〈ϕ̃0,n, ϕ0,k〉 = δn,k. (1.7)

Remark that (1.7) implies that the functions ϕ̃0,k are linearly independent. By
definition, since {ϕ0,k} is a Riesz’s basis for V0 there exist constants A and B such
that

A
(∑

k

|αk|2
)1/2

≤
∥∥∥∑

k

αkϕ0,k

∥∥∥
L2(R)

≤ B
(∑

k

|αk|2
)1/2

.

We have∥∥∥∑
k

ξkϕ̃0,k

∥∥∥
L2(R)

= sup
f∈L2(R)

〈f,
∑

k ξkϕ̃0,k〉
‖f‖L2(R)

= sup
f∈L2(R)

∑
k αk(f)ξk

‖f‖L2(R)

� sup
f∈L2(R)

(
∑

k |αk(f)|2)1/2(
∑

k |ξk|2)1/2

‖f‖L2(R)

� sup
f∈L2(R)

‖P0f‖L2(R)(
∑

k |ξk|2)1/2

‖f‖L2(R)
�
(∑

k

|ξk|2
)1/2

. (1.8)



8 Chapter 1. What is a Wavelet?

Now we can write, using (1.7),∑
k

|ξk|2 =
〈∑

k

ξkϕ0,k,
∑

k

ξkϕ̃0,k

〉
(1.9)

≤
∥∥∥∑

k

ξkϕ0,k

∥∥∥
L2(R)

‖
∑

k

ξkϕ̃0,k‖L2(R)

≤ B
(∑

k

|ξk|2
)1/2∥∥∥∑

k

ξkϕ̃0,k

∥∥∥
L2(R)

. (1.10)

The bound (
∑

k |ξk|2)1/2 � ‖∑k ξkϕ̃0,k‖L2(R) follows by dividing both sides by
(
∑

k |ξk|2)1/2. The set {ϕ̃0,k} is then indeed a Riesz basis for its linear span.

We now need to prove that P ∗0 (L2(R)) = span < ϕ̃0,k|k ∈ Z >. Let f ∈
L2(R). We have

〈f, P ∗0 ϕ̃0,n〉 = 〈ϕ̃0,n, P0f〉 =
〈
ϕ̃0,n,

∑
k

〈f, ϕ̃0,k〉ϕ0,k

〉
=
∑

k

〈f, ϕ̃0,k〉〈ϕ̃0,n, ϕ0,k〉 =
∑

k

〈f, ϕ̃0,k〉δn,k = 〈f, ϕ̃0,n〉.

The arbitrariness of f implies that

P ∗0 ϕ̃0,n = ϕ̃0,n,

and thus span < ϕ̃0,k|k ∈ Z >⊂ P ∗0 (L2(R)). On the other hand, for all f ∈ L2(R)
we have that P ∗0 P ∗0 f = P ∗0 f and therefore f ∈ P ∗0 (L2(R)) implies that f = P ∗0 f .
Then, for f ∈ P ∗0 (L2(R)) and g ∈ L2(R) we can write

〈f, g〉 = 〈(P ∗0 f), g〉 = 〈f, P0g〉 =
〈
f,
∑

k

〈g, ϕ̃0,k〉ϕ0,k

〉
=
〈
g,
∑

k

〈f, ϕ0,k〉ϕ̃0,k

〉
.

Hence, thanks to the arbitrariness of g,

f =
∑

k

〈f, ϕ0,k〉ϕ̃0,k,

which proves the reverse inclusion. In order to prove (1.6) we observe that

P0(f(· + n))(x) =
∑

k

〈f(· + n), ϕ̃0,k〉ϕ(x − k) =
∑

k

〈f(·), ϕ̃0,k(· − n)〉ϕ(x − k),

P0f(x + n) =
∑

k

〈f(·), ϕ̃0,k〉ϕ(x − k + n).

Thanks to (1.4) we have that∑
k

〈f(·), ϕ̃0,k(· − n)〉ϕ(x − k) =
∑

k

〈f(·), ϕ̃0,k〉ϕ(x − k + n),
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and, since {ϕ0,k} is a Riesz’s basis for V0, implying that the coefficients (and in
particular the coefficient of ϕ0,0 = ϕ(x)) are uniquely determined, this implies, for
all f ∈ L2(R),

〈f, ϕ̃0,0(· − n)〉 = 〈f, ϕ̃0,n〉,
that is, by the arbitrariness of f , ϕ̃0,n = ϕ̃0,0(· − n). �

Thanks to property (1.5) it is not difficult to prove the following lemma:

Lemma 1.3. We have

Pjf =
∑

k

〈ϕ̃j,k, f〉ϕj,k, with ϕj,k(x) = 2j/2ϕ(2jx − k). (1.11)

Moreover the set {ϕ̃j,k, k ∈ Z} forms a Riesz’s basis for the subspace Ṽj =
P ∗j (L2(R)) (where P ∗j denotes the adjoint of Pj).

Property (1.3) implies that the sequence Ṽj is increasing, as stated by the
following proposition:

Proposition 1.4. The sequence Ṽj satisfies Ṽj ⊂ Ṽj+1.

Proof. Property (1.3) implies that P ∗j+1P
∗
j f = P ∗j f . Now we have f ∈ Ṽj implies

f = P ∗j f = P ∗j+1P
∗
j f ∈ Ṽj+1. �

Corollary 1.5. The function ϕ̃ = ϕ̃0,0 is refinable.

The above reasoning requires to choose a priori a sequence Pj , j ∈ Z, of
(oblique) projectors onto the subspaces Vj . A trivial choice is to define Pj as the
L2(R)-orthogonal projector. It is easy to see that all the required properties are
satisfied by such a choice. In this case, since the L2(R)-orthogonal projector is
self adjoint, we have Ṽj = Vj , and the biorthogonal function ϕ̃ belongs itself to
V0. Clearly, in the case that {ϕ0,k, k ∈ Z} is an orthonormal basis for V0 (as in
the Haar basis case of forthcoming Example I) we have that ϕ̃ = ϕ. Another
possibility would be to choose Pj to be the Lagrangian interpolation operator
(as we will do for the Schauder basis in forthcoming Example IV). However this
choice does not fit in our framework. In fact the interpolation is not well defined in
L2(R). Moreover, depending on the characteristics of the spaces Vj , the existence
of a uniquely defined Lagrangian interpolant of a given smooth function f is not
automatically satisfied. Many other choices are possible in theory but quite difficult
to construct in practice. The solution is then to go the other way round, and start
by constructing the function ϕ̃. We then introduce the following definition:

Definition 1.6. A refinable function

ϕ̃ =
∑

k

h̃kϕ̃(2 · −k) ∈ L2(R) (1.12)

is dual to ϕ if
〈ϕ(· − k), ϕ̃(· − l)〉 = δk,l k, l ∈ Z.
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Assuming that we have a refinable function ϕ̃ dual to ϕ, we can define the
projector Pj as

Pjf =
∑
k∈Z

〈f, ϕ̃j,k〉ϕj,k.

Pj is a indeed projector: it is not difficult to check that f ∈ Vj ⇒ Pjf = f .

Remark 1.7. As it happened for the projector Pj , the dual refinable function ϕ̃
is not uniquely determined, once ϕ is given. Different projectors correspond to
different dual functions. It is worth noting that P.G. Lemarié ([31]) proved that if
ϕ is compactly supported, then there exists a dual function ϕ̃ ∈ L2(R) which is
itself compactly supported.

The dual of Pj

P ∗j f =
∑
k∈Z

〈f, ϕj,k〉ϕ̃j,k

is also an oblique projector onto the space Im(P ∗j ) = Ṽj , where

Ṽj = span < ϕ̃j,k|k ∈ Z > .

It is not difficult to see that since ϕ̃ is refinable then the Ṽj ’s are nested. This
implies that for j < l we have that P ∗l P ∗j = P ∗j and PjPl = Pj .

Remark that there is a third approach that yields an equivalent structure.
In fact, let the sequence Vj be given, and assume that we have a sequence Ṽj of
spaces such that the following inf-sup conditions hold uniformly in j:

inf
vj∈Vj

sup
wj∈Ṽj

〈vj , wj〉
‖vj‖L2(R)‖wj‖L2(R)

� 1, inf
wj∈Ṽj

sup
vj∈Vj

〈vj , wj〉
‖vj‖L2(R)‖wj‖L2(R)

� 1.

(1.13)
Then we can define a bounded projector Pj : L2(R) → Vj as Pjv = vj , vj being
the unique element of Vj such that

〈vj , wj〉 = 〈v, wj〉 ∀wj ∈ Ṽj .

It is not difficult to see that if the sequence Ṽj is a multiresolution analysis
(that is, if it satisfies the requirements of Definition 1.1), then the projector Pj

satisfies properties (1.3), (1.4) and (1.5).

Remark 1.8. The uniform boundedness of the projector Pj and of its adjoint P̃j

actually implies the validity of the two inf-sup conditions (1.13). We can see this
by using the Fortin trick with Pj and P̃j as Fortin’s projectors ([13]).
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Wavelets

It is now straightforward to define a space Wj which complements Vj in Vj+1 as

Wj = Qj(L2(R)), Qj = Pj+1 − Pj .

Remark that Q2
j = Qj, that is Qj is indeed a projector on Wj . Wj can also be

defined as the kernel of Pj in Vj+1. We now need to construct a suitable basis for
Wj . In order to do so, we introduce two sets of coefficients:

gk = (−1)kh̃1−k, g̃k = (−1)kh1−k, k ∈ Z

and we introduce a pair of dual wavelets

ψ(x) =
∑

k

gkϕ(2x − k), ψ̃(x) =
∑

k

g̃kϕ̃(2x − k).

Clearly ψ ∈ V1 and ψ̃ ∈ Ṽ1. The following theorem holds ([19]):

Theorem 1.9. The wavelet functions ψ and ψ̃ satisfy

〈ψ, ψ̃(· − k)〉 = δ0,k

and
〈ψ, ϕ̃(· − k)〉 = 〈ψ̃, ϕ(· − k)〉 = 0.

The projection operator Qj can be expanded into

Qjf =
∑

k

〈f, ψ̃j,k〉ψj,k ,

and the functions ψj,k constitute a Riesz’s basis of Wj.

In summary we have a multiscale decomposition of Vj as

Vj = V0 ⊕ W0 ⊕ · · · ⊕ Wj−1,

and for any function f , Pjf in Vj can be expressed as

Pjf =
∑

k

cj,kϕj,k =
∑

k

c0,kϕ0,k +
j−1∑
m=0

∑
k

dm,kψm,k, (1.14)

with dm,k = 〈f, ψ̃m,k〉 and cm,k = 〈f, ϕ̃m,k〉. The approximation Pjf is then
decomposed as a coarse approximation at scale 0 plus a sequence of fluctua-
tions at intermediate scales 2−m, m = 0, . . . , j − 1. Both {ϕj,k, k ∈ Z} and
{ϕ0,k, k ∈ Z}⋃0≤m<j{ψm,k, k ∈ Z} are bases for Vj and (1.14) expresses a change
of basis. Thanks to the density property (1.1) for j → +∞, Pjf converges to f in
L2(R). Then, taking the limit for j → +∞ in (1.14) we obtain

f =
∑

k

c0,kϕ0,k +
+∞∑
m=0

∑
k

dm,kψm,k.

We will see in the following that, under quite mild assumptions, the convergence
is unconditional.
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The Fast Wavelet Transform

The idea now is that, since all the information on Pjf is encoded in the coefficients
cj,k(f), we must be able to compute the coefficients cj−1,k(f) and dj−1,k(f) directly
from the coefficients cj,k(f). Given fj =

∑
k cj,kϕj,k ∈ Vj , we want to compute

directly the coefficients of its approximation at the coarser scale

Pj−1fj =
∑

k

cj−1,kϕj−1,k.

We can do it thanks to the refinement equation, which gives us a “fine to coarse”
discrete projection algorithm:

cj−1,k = 2(j−1)/2〈fj , ϕ̃(2j−1 · −k)〉 = 2(j−1)/2
〈
fj ,
∑

n

h̃nϕ̃(2j · −2k − n)
〉

=
1√
2

∑
n

h̃ncj,2k+n.

On the other hand, given the projection Pj−1fj =
∑

k cj−1,kϕj−1,k we are able to
express it in terms of basis functions at the finer scale,

Pj−1fj = 2(j−1)/2
∑

k

cj−1,kϕ(2j−1 · −k)

= 2(j−1)/2
∑

k

cj−1,k

∑
n

hnϕ(2j · −2k − n)

=
1√
2

∑
k

[∑
n

hk−2ncj−1,n

]
ϕj,k.

Analogously we have

Qj−1f =
1√
2

∑
k

[∑
n

gk−2ndj−1,n

]
ϕj,k.

Since Pjf = Pj−1f + Qj−1f we immediately get

Pjf =
∑

k

1√
2

[∑
n

hk−2ncj−1,n +
∑

n

gk−2ndj−1,n

]
ϕj,k.

Decomposition and reconstruction algorithm

In summary, the one level decomposition algorithm reads

cj,k =
1√
2

∑
k

h̃k−2ncj+1,k, dj,k =
1√
2

∑
k

g̃k−2ncj+1,k
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while its inverse, the one level reconstruction algorithm can be written as

cj+1,k =
1√
2

[∑
n

hk−2ncj,n +
∑

n

gk−2ndj,n

]
.

Once the one level decomposition algorithm is given, giving the coefficient vectors
(cj,k)k and (dj,k)k in terms of the coefficient vector (cj+1,k)k, we can iterate it to
obtain (cj−1,k)k and (dj−1,k)k and so on until we get all the coefficients for the
decomposition (1.14).

1.1.1 Example I: The Haar Basis

Let us consider the space Vj of piecewise constant functions with uniform mesh
size h = 2−j :

Vj = {w ∈ L2(R) such that w|Ij,k
is constant},

where we denote by Ij,k the dyadic interval Ij,k := (k2−j, (k + 1)2−j). An or-
thonormal basis for Vj is given by the family

ϕj,k := 2j/2ϕ(2j · −k) with ϕ = χ|(0,1).

Denoting by Pj : L2(R) → Vj the L2(R)-orthogonal projection onto Vj , clearly we
have

Pjf =
∑

k

cj,k(f)ϕj,k, cj,k(f) = 〈f, ϕj,k〉.

The space Wj is the orthogonal complement of Vj in Vj+1:

Vj+1 = Wj ⊕ Vj , Wj⊥Vj ,

and the L2(R)-orthogonal projection Qj := Pj+1 − Pj onto Wj verifies

Qjf |Ij+1,2k
Pj+1f |Ij+1,2k

− (Pj+1f |Ij+1,2k
+ Pj+1f |Ij+1,2k+1 )/2

= Pj+1f |Ij+1,2k
/2 − Pj+1f |Ij+1,2k+1/2, (1.15)

Qjf |Ij+1,2k+1 = Pj+1f |Ij+1,2k+1 − (Pj+1f |Ij+1,2k
+ Pj+1f |Ij+1,2k+1)/2

= −Pj+1f |Ij+1,2k
/2 + Pj+1f |Ij+1,2k+1/2. (1.16)

It is also not difficult to realize that we can expand Qjf as

Qjf =
∑

k

dj,k(f)ψj,k, with ψj,k = 2j/2ψ(2j · −k)

where
ψ := χ(0,1/2) − χ(1/2,1).

Since the functions ψj,k at fixed j are an orthonormal system, they do con-
stitute an orthonormal basis for Wj . We have then

dj,k(f) = 〈f, ψj,k〉.
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Figure 1.1: The scaling and wavelet functions ϕ and ψ generating the Haar basis.

1.1.2 Example II: B-Splines

We consider the space of splines of order N + 1:

Vj = {f ∈ L2 ∩ CN−1 : f |Ij,k
∈ P

N}.

We construct a basis for Vj by defining the B-spline BN of degree N recursively
by

B0 := χ[0,1],

BN := B0 ∗ BN−1 = (∗)N+1χ[0,1],

where ∗ denotes the convolution product. The function BN is supported in the
interval [0, N + 1], it is refinable and the corresponding scaling coefficients are
defined by

hk =

⎧⎪⎨⎪⎩2−N

(
N + 1

k

)
, 0 ≤ k ≤ N + 1,

0, otherwise.

The integer translates of the function ϕ = BN form a Riesz’s basis for Vj . For
N given it is possible to construct a whole class of compactly supported refinable
functions dual to BN . In particular for any given R̃ the dual function ϕ̃ can be
chosen of regularity R̃. Figures 1.3 and 1.5 show the functions ϕ, ϕ̃, ψ and ψ̃ for
N = 1, R̃ = 0 and N = 3, R̃ = 1 respectively.

1.1.3 Example III: Daubechies’s Wavelets

Another important example of multiresolution analysis is given by Daubechies’s
orthonormal compactly supported wavelets. This is a class of MRA’s such that the
functions ϕ and ψ are both compactly supported and they generate by translations
and dilations orthonormal bases for the spaces Vj and Wj . The projectors Pj are
in this case L2-orthogonal projectors. In this case the scaling function and the



1.1. Multiresolution Analysis 15

dual function coincide and we have Ṽj = Vj . The MRA {Vj} can be chosen in
such a way that ϕ and ψ have regularity R (with R arbitrary fixed number), the
support of both ϕ and ψ increasing linearly with R. In the Daubechies wavelet
construction the function ϕ is not explicitly given, but rather retrieved as the
solution of the refinement equation (1.2) for which the coefficients hk are given. It
is beyond the scope of this course to give details about such a construction. We
refer the interested reader to [28].
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Figure 1.2: The scaling and wavelet functions ϕ and ψ generating a Daubechies’
orthonormal wavelet basis.

1.1.4 Example IV: The Schauder Basis

It is interesting to consider for one minute an example that falls outside of the
framework here described. Let us consider the space of continuous piecewise linear
functions on a uniform mesh with meshsize 2−j ,

Vj = {w ∈ C0(R) : w is linear on Ij,k, k ∈ Z}.
We can easily construct a basis for Vj out of the dilated and translated of the “hat
function”:

Vj = span{ϕj,k, k ∈ Z}, with ϕj,k := 2j/2ϕ(2j · −k),

ϕ(x) = max{0, 1 − |x|}.
This basis is a Riesz basis: f ∈ Vj ∩ L2(R) implies∥∥∥∑

k

cj,kϕj,k

∥∥∥2

L2(R)
�
∑

k

|cj,k(f)|2.

Remark that the hat function ϕ is the B-spline of order 1. The multiresolution
analysis Vj itself falls then in the framework described in Section 1.1.2 and there
exist a class of dual multiresolution analyses and of associated wavelets (in Figure
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1.3 we see one of the possible dual functions). We want however to consider here
a different, more straightforward, approach. We observe that fj ∈ Vj is uniquely
determined by its point values at the mesh points k2−j. Assuming that f is suffi-
ciently regular we can consider consider the interpolant fj = Pjf , with Pj denoting
the Lagrange interpolation operator: Pj : C0(R) → Vj is defined by

Pjf(k2−j) = f(k2−j).

It is not difficult to realize that

fj = Pjf =
∑

k

cj,k(f)ϕj,k, cj,k(f) = 2−j/2f(2−jk).

Remark that Pj is a “projector” (f ∈ Vj implies Pjf = f) but not an
L2(R)-bounded projector (it is not even well defined in L2). Clearly we cannot
find an L2-function ϕ̃ allowing to write Pj in the form (1.11). However, if we allow
ourselves to take ϕ̃ to be the Dirac’s delta in the origin (ϕ̃ = δx=0) we see that
the basic structure of the whole construction is preserved. Once again Vj ⊂ Vj+1

and Pjf can be derived from Pj+1f by interpolation,

2j/2cj,k(f) = f(k2−j) = f(2k2−(j+1)) = 2(j+1)/2cj+1,2k(f).

Also in this case we can compute the details that we loose when going from Pj+1f
to Pjf as Qjf , with Qj := Pj+1 − Pj .

Here the details Qjf at level j are not oscillating. Instead they vanish at the
mesh points at level j. In fact Pjf(k2−j) = f(k2−j) = Pj+1f(k2−j) implies

Qjf(k2−j) = 0.

We can then expand Qjf as

Qjf =
∑

dj,k(f)ψj,k, with ψj,k = 2j/2ψ(2 · −k),

where

ψ(x) = ϕ(2x − 1).

This time, the “wavelets” ψj,k are then simply those nodal functions at level
2j+2 associated to nodes that belong to the fine but not to the coarse grid.
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Figure 1.3: Scaling and wavelet functions ϕ and ψ for decomposition (top) and
the duals ϕ̃ and ψ̃ for reconstruction (bottom) corresponding to the biorthogonal
basis B2.2.

1.2 Beyond L2(R)

What we just built for the space L2(R) is a complex structure consisting in:

a) two coupled multiresolution analyses Vj and Ṽj ;

b) two sequences of adjont projectors Pj : L2(R) → Vj and P̃j = P ∗j : L2(R) →
Ṽj , both verifying a commutativity property of the form (1.3);

c) two dual refinable functions ϕ and ϕ̃ (the scaling functions) which, by con-
traction and dilation generate bases for the Vj ’s and the Ṽj ’s respectively,
and that allow to write the two projectors Pj and P ∗j in the form (1.11);

d) a sequence of complement spaces Wj (and it is easy to build a second sequence
W̃j of spaces complementing Ṽj in Ṽj+1);

e) two functions ψ and ψ̃ which, by contraction and dilation generate bases for
the Wj ’s and the W̃j ’s;

f) a fast change of basis algorithm, allowing to go back and forth from the
coefficients of a given function in Vj with respect to the nodal basis {ϕj,k, k ∈
Z} to the coefficients of the same function with respect to the hierarchical
wavelet basis {ϕ0,k, k ∈ Z}⋃j−1

m=0{ψm,k, k ∈ Z}.
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Figure 1.4: Example of a biorthogonal wavelet basis. Scaling and wavelet func-
tions ϕ and ψ for decomposition (top) and the duals ϕ̃ and ψ̃ for reconstruction
(bottom) corresponding to the basis B2.4. Remark that the scaling function for
decomposition is the same as for the basis B2.2. In both cases Vj is the space of
piecewise linears.

In view of the use of wavelets for the solution of PDEs, we would like to
have a similar structure for more general domains, also in dimension greater than
one. Actually, wavelets for L2(Rn) are quite easily built by tensor product and
we have basically the same structure as in dimension 1 (see, e.g., [16]). If, on
the other hand, we want to build wavelets defined on general, possibly bounded,
domains, it is clear that we have to somehow loosen the definition. In particular it
is clear that for bounded domains we cannot ask for the translation and dilation
invariance properties of the spaces Vj and the bases cannot possibly be constructed
by contracting and translating a single function ϕ.

Let us then see which elements and properties of the above structure can
be maintained when replacing the domain R with a general domain Ω ⊆ R

n. As
we did for R, we will start with a nested sequence {Vj}j≥0, Vj ⊂ Vj+1, of closed
subspaces of L2(Ω), corresponding to discretizations with mesh-size 2−j. We will
still assume that the union of the Vj ’s is dense in L2(Ω):

L2(Ω) =
⋃
j

Vj . (1.17)
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Figure 1.5: Example of a biorthogonal wavelet basis. Scaling and wavelet func-
tions ϕ and ψ for decomposition (top) and the duals ϕ̃ and ψ̃ for reconstruction
(bottom).

We will also assume that we have a Riesz’s basis for Vj of the form {ϕμ, μ ∈ Kj}
such that

Vj = span{ϕμ, μ ∈ Kj}, Kj ⊆ {(j, k), k ∈ Z
n},

where Kj will denote a suitable set of multi-indexes (for Ω = R the index set Kj

will take the form Kj = {(j, k), k ∈ Z}). Clearly, as already observed, it will not
be possible to assume the existence of a single function ϕ such that all the basis
functions ϕμ are obtained by dilating and translating ϕ. However remark that a
great number of MRA’s in bounded domains is built starting from an MRA for
L2(Rn) with scaling function ϕ compactly supported. In such a case, all the basis
functions of the original MRA for L2(Rn) whose support is strictly embedded in
Ω are retained as basis functions for the Vj on Ω.

We now want to build a wavelet basis. To this aim we will need to introduce
either a sequence of bounded projectors Pj : L2(Ω) → Vj satisfying PjPj+1 = Pj

(note that Vj = Pj(L2(Ω)) and that Vj ⊂ Vj+1 implies Pj+1Pj = Pj) or, equiv-
alently, a nested sequence of dual spaces Ṽj satisfying the two inf-sup conditions
mentioned in Section 1.1. Remark that, as it happens in the L2(R) case, choos-
ing Pj is equivalent to choosing Ṽj . The existence of a biorthogonal Riesz’s basis
{ϕ̃μ, μ ∈ Kj} such that

Ṽj = P ∗j (L2(Ω)) = span{ϕ̃μ, μ ∈ Kj},
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and such that

Pjf =
∑

μ∈Kj

〈f, ϕ̃μ〉ϕμ, P ∗j f =
∑

μ∈Kj

〈f, ϕμ〉ϕ̃μ

is easily deduced as in the L2(R) case (again, it will not generally be possible to
obtain the basis functions ϕ̃μ by dilations and translation of a single function ϕ̃).

As we did for R we can then introduce the difference spaces

Wj = Qj(L2(Ω)), Qj = Pj+1 − Pj .

We will next have to construct a basis for Wj . This is in general a quite technical
task, heavily depending on the particular characteristics of the spaces Vj and Ṽj .
It’s worth mentioning that, once again, if the MRA for Ω is built starting from an
MRA for L2(Rn) with compactly supported scaling function ϕ and if the wavelets
themselves are compactly supported, then the basis for Wj will include all those
wavelet functions on R whose support, as well as the support of the corresponding
dual, are included in Ω. It is well beyond the scope of this book to go into the details
of one or another construction of the basis for Wj . In any case, independently of
the particular approach used, we will end up with a Riesz basis for Wj of the form
{ψλ, λ ∈ Λj} such that

Wj = span{ψλ, λ ∈ Λj},
where Λj is again a suitable multi-index set with

#(Λj) + #(Kj) = #(Kj+1).

At the same time we will end up with a Riesz basis for the dual spaces W̃j =
(P ∗j+1 − P ∗j )(L2(Ω)):

W̃j = span{ψ̃λ, λ ∈ Λj}.
The two bases can be chosen in such a way that they satisfy a biorthogonality
relation

〈ψμ, ψ̃μ′〉 = δμ,μ′ , μ, μ ∈ Λj,

so that the projection operator Qj can be expanded as

Qjf =
∑

λ∈Λj

〈f, ψ̃λ〉ψλ.

Moreover it is not difficult to check that we have an orthogonality relation across
scales:

λ ∈ Λj , λ′ ∈ Λj′ , j �= j′ ⇒ 〈ψμ, ψ̃μ′〉 = 0, μ ∈ Kj′ , j′ ≤ j ⇒ 〈ψλ, ϕ̃μ〉 = 0.

In summary we have a multiscale decomposition of Vj as

Vj = V0 ⊕ W0 ⊕ · · · ⊕ Wj−1,
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and any function fj in Vj can be expressed as

fj =
∑

μ∈Kj

cμϕμ =
∑

μ∈K0

cμϕμ +
j−1∑
m=0

∑
λ∈Λm

dλψλ, (1.18)

with dλ = 〈f, ψ̃λ〉 and cμ = 〈f, ϕ̃μ〉. For any f ∈ L2(Ω) we can then write

Pjf =
∑

μ∈Kj

cμϕμ =
∑

μ∈K0

cμϕμ +
j−1∑
m=0

∑
λ∈Λm

dλψλ

with dλ = 〈f, ψ̃λ〉 and cμ = 〈f, ϕ̃μ〉. Since the density property (1.17) implies that

lim
j→+∞

‖f − Pjf‖L2(Ω) = 0,

taking the limit as j goes to +∞ and using the density of ∪Vj in L2(Ω) allows us
to write

f =
∑

μ∈K0

cμϕμ +
∑
j≥0

∑
λ∈Λj

〈f, ψ̃λ〉ψλ. (1.19)

Remark 1.10. A general strategy to build bases with the required characteristics
for ]0, 1[n out of the bases for R

n has been proposed in several papers [20],[1]. To
actually build wavelet bases for general bounded domains, several strategies have
been followed. Following the same strategy as for the construction of wavelet bases
for cubes, wavelet frames (all the properties mentioned here hold but, for each j
the elements set {ψλ, λ ∈ Λj} is not linearly independent) for L2(Ω) (Ω Lips-
chitz domain) can be constructed according to [17]. The most popular approach
nowadays is domain decomposition: the domain Ω is split as the disjoint union
of tensorial subdomains Ω� and a wavelet basis for Ω is constructed by suitably
assembling wavelet bases for the Ω�’s [14],[26],[21]. The construction is quite tech-
nical, since it is not trivial to retain in the assembling procedure the properties of
the wavelets. Alternatively we can think of building wavelets for general domains
directly, without starting from a construction on R. This is for instance the case
of finite element wavelets (see, e.g., [27]).



Chapter 2

The Fundamental Property of
Wavelets

In the previous chapter we saw in some detail what a couple of biorthogonal
multiresolution analyses is, and how this structure allows to build a wavelet basis.
However we did not yet introduce the one property that makes of wavelets the
powerful tool that they are and that probably is their fundamental characteristics:
the simultaneous good localization in both space and frequency.

Simplifying the Notation

We put ourselves in the framework described in Section 1.2. Let us start by in-
troducing a notation that will allow us to write the wavelet expansion in a more
compact form. We start by setting

Λ−1 = K0, and for λ ∈ Λ−1, ψλ = ϕλ.

The expansion (1.19) can be rewritten as

f =
+∞∑

j=−1

∑
λ∈Λj

〈f, ψ̃λ〉ψλ.

We will see in the next section that, under quite mild assumptions on ϕ, ϕ̃, ψ and
ψ̃, the convergence in the expansion (1.19) is unconditional. This will allow us to
use an even more compact notation:

f =
∑
λ∈Λ

〈f, ψ̃λ〉ψλ, Λ =
+∞⋃

j=−1

Λj . (2.1)

Such formalism will also be valid for the case Ω = R, where we will have

Λj = Kj = {(j, k), k ∈ Z}.
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For λ = (j, k) we will have

ϕλ = ϕj,k = 2j/2ϕ(2jx − k), ϕ̃λ = ϕ̃j,k = 2j/2ϕ̃(2jx − k),

ψλ = ψj,k = 2j/2ψ(2jx − k), ψ̃λ = ψ̃j,k = 2j/2ψ̃(2jx − k).

Remark that, for λ ∈ Λ−1, the functions ψλ = ϕλ have a different behaviour
from the actual wavelets, that is the functions ψλ, λ ∈ Λj for j ≥ 0. This observa-
tion leads us to introduce a second compact notation, which will be useful in the
cases where we need to exploit such difference:

f =
∑

μ∈K0

〈f, ϕ̃μ〉ϕμ +
∑

λ∈Λ0

〈f, ψ̃λ〉ψλ, Λ0 =
+∞⋃
j=0

Λj .

2.1 The case Ω = R: The Frequency Domain Point of
View vs. The Space Domain Point of View

As we saw in the previous chapter, in the classical construction of wavelet bases
for L2(R) [33], all basis functions ϕλ, λ ∈ Kj and ψλ, λ ∈ Λj with j ≥ 0, as
well as their duals ϕ̃λ and ψ̃λ, are constructed by translation and dilation of a
single scaling function ϕ and a single mother wavelet ψ (resp. ϕ̃ and ψ̃). Clearly,
the properties of the function ψ will transfer to the functions ψλ and will imply
properties of the corresponding wavelet basis.

We will then make some assumptions on ϕ and ψ as well as on their duals ϕ̃
and ψ̃. The first assumption deals with space localization. In view of an application
to the numerical solution of PDEs we make such an assumption in quite a strong
form: we ask that there exists an L > 0 and an L̃ > 0 such that

supp ϕ ⊆ [−L, L] =⇒ supp ϕλ ⊆ [(k − L)/2j, (k + L)/2j], (2.2)
supp ϕ̃ ⊆ [−L̃, L̃] =⇒ supp ϕ̃λ ⊆ [(k − L̃)/2j , (k + L̃)/2j], (2.3)
supp ψ ⊆ [−L, L] =⇒ supp ψλ ⊆ [(k − L)/2j, (k + L)/2j], (2.4)
supp ψ̃ ⊆ [−L̃, L̃] =⇒ supp ψ̃λ ⊆ [(k − L̃)/2j, (k + L̃)/2j ], (2.5)

that is, both the wavelet ψλ (λ = (j, k)) and its dual ψ̃λ will be supported around
the point xλ = k/2j, and the size of their support will be of the order of 2−j.

Now let us consider the Fourier transform of ψ. Since ψ is compactly sup-
ported, by Heisenberg’s indetermination principle, its Fourier transform ψ̂ cannot
be itself compactly supported. However we assume that it is localized in some
weaker sense around the frequency 1. More precisely we assume that the following
properties hold: there exist an integer M > 0 and an integer R > 0, with M > R,
such that for n = 0, . . . , M and for s such that 0 ≤ s ≤ R one has

a)
dnψ̂

dξn
(0) = 0, and b)

∫
R

(1 + |ξ|2)s|ψ̂(ξ)|2 dξ � 1. (2.6)
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Analogously, for ψ̃ we assume that there exist an integer M̃ > 0 and an integer
R̃ > 0 such that for n = 0, . . . , M̃ and for r such that 0 ≤ s ≤ R̃ one has

a)
dn ˆ̃

ψ

dξn
(0) = 0, and b)

∫
R

(1 + |ξ|2)s| ˆ̃ψ(ξ)|2 dξ � 1. (2.7)

The frequency localisation property (2.6) can be rephrased directly in terms
of the function ψ, rather than in terms of its Fourier transform: in fact (2.6) is
equivalent to∫

R

xnψ(x) dx = 0, n = 0, . . . , M, and ‖ψ‖Hs(R) � 1, 0 ≤ s ≤ R, (2.8)

which, by a simple scaling argument implies∫
R

xnψλ(x) dx = 0, n = 0, . . . , M, and ‖ψλ‖Hs(R) � 2js, 0 ≤ s ≤ R.

(2.9)
Analogously, we can write, for ψ̃λ∫

R

xnψ̃λ(x) dx = 0, n = 0, . . . , M̃ , and ‖ψ̃λ‖Hs(R) � 2js, 0 ≤ s ≤ R̃.

(2.10)
In the following we will also require the functions ϕ and ϕ̃ to have some

frequency localization property or, equivalently, some smoothness. More precisely
we will ask that for all s and s̃ such that, respectively, 0 ≤ s ≤ R and 0 ≤ s̃ ≤ R̃,
we have that

a)
∫

R

(1 + |ξ|2)s|ϕ̂(ξ)|2 dξ � 1, and b)
∫

R

(1 + |ξ|2)s̃| ˆ̃ϕ(ξ)|2 dξ � 1,

(2.11)
or, equivalently, that

a) ϕ ∈ HR(R), and b) ϕ̃ ∈ HR̃(R). (2.12)

Remark 2.1. Heisenberg’s uncertainty principle states that a function
cannot be arbitrarily well localized both in space and frequency. More precisely,
introducing the position uncertainty Δxλ and the momentum uncertainty Δξλ

defined by

Δxλ :=
(∫

(x − xλ)2|ψλ(x)|2 dx

)1/2

,

Δξλ :=
(∫

(ξ − ξλ)2|ψ̂λ(ξ)|2 dξ

)1/2

with xλ = xj,k = k/2j and ξλ = ξj,k ∼ 2j defined by ξλ =
∫

R
ξ|ψ̂λ(ξ)|2 dξ, one

necessarily has Δxλ · Δξλ ≥ 1. In our case Δxλ · Δξλ � 1, that is wavelets are
simultaneously localised in space and frequency nearly as well as possible.
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The frequency localization property of wavelets (2.6) and (2.8) can be
rephrased in yet a third way as a local polynomial reproduction property.

Lemma 2.2. Let (2.2), (2.3), (2.4) and (2.5) hold. Then (2.7a) holds if and only
if for all polynomials p of degree d ≤ M̃ we have

p =
∑

k

〈p, ϕ̃j,k〉ϕj,k. (2.13)

Analogously (2.6a) holds if and only if for all polynomials p of degree d ≤ M we
have

p =
∑

k

〈p, ϕj,k〉ϕ̃j,k. (2.14)

Remark that the expressions on the right-hand side of both (2.13) and (2.14)
are well defined pointwise thanks to assumptions (2.2), (2.3), (2.4) and (2.5).

Proof. Let us prove that (2.6a) implies (2.13) (the reverse being straightforward).
Let p be a polynomial of degree lower or equal than M̃ , and let I =]a, b[⊂ R

be any bounded interval. Let Îj =]a − (L + L̃)/2j , a − (L + L̃)/2j[. Consider the
L2(R)-function p̃ coinciding with p in Îj and vanishing in L2(R) \ Îj . It is not
difficult to realize that, for m ≥ j, if (m, k) is such that suppψm,k ∩ I �= ∅, then
supp ψ̃m,k ⊆ ¯̂

Ij ; analogously if suppϕj,k ∩ I �= ∅, then supp ϕ̃j,k ⊆ ¯̂
Ij .

The density property (1.1) implies that for all ε > 0 there exists an m > j
such that

‖p̃− Pm(p̃)‖L2(I) ≤ ‖p̃ − Pm(p̃)‖L2(R) ≤ ε.

We can now write, setting rm = p̃ − Pm(p̃),

p|I = p̃|I = Pm(p̃)|I + rm|I = Pj(p̃) +
m−1∑
�=j

Q�(p̃)|I + rm|I .

Now, the definition of p̃ implies that if λ ∈ Λ� with � ≥ j, then suppψλ ∩ I �= ∅.
Then p̃ = p on supp ψ̃λ and therefore by (2.10) we have that 〈p̃, ψ̃λ〉 = 0, which
implies Q�p̃|I = 0 for all � > j. This yields

p|I = Pj(p̃)I + rm|I .
The definition of p̃ also implies that, for μ ∈ Kj, if suppϕμ ∩ I �= ∅, then p̃ = p
on supp ϕ̃μ and then

p|I = Pj(p̃)|I + rm|I =
∑

k

〈p, ϕ̃j,k〉ϕj,k|I + rm|I ,

from which we deduce

‖p −
∑

k

〈p, ϕ̃j,k〉ϕj,k‖L2(I) ≤ ε.
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Thanks to the arbitrariness of ε and of the interval I and since, due to the local
support of ϕ̃ the sum on the right-hand side of (2.13) is locally a finite sum, we
can write

p =
∑

k

〈p, ϕ̃j,k〉ϕj,k.

Analogously, for all polynomials of degree less or equal than M we can write

p =
∑

k

〈p, ϕj,k〉ϕ̃j,k. �

Remark 2.3. By abuse of notation we write (2.13) and (2.14) in the form

Pj(p) = p, P̃j(p) = p.

Before going on in seeing what the space-frequency localisation properties of
the basis function ψ (and consequently of the wavelets ψλ’s) imply, let us consider
functions with a stronger frequency localisation. Let us then drop the assumption
that ψ is compactly supported and assume instead that its Fourier transform
verifies

supp(ψ̂) ⊂ [−2,−1] ∪ [1, 2], and that supp(f̂) ⊂ [−1, 1] ∀f ∈ V0.

Since one can easily check that for λ = (j, k), j ≥ 0, supp(ψ̂) ⊂ [−2j+1,−2j] ∪
[2j, 2j+1], observing that on supp(ψ̂λ) we have |ξ| � 2j and that, for λ ∈ Λj and
μ ∈ Λm with m �= j, the measure of supp(ψ̂λ) ∩ supp(ψ̂μ) is 0, one immediately
obtains the following equivalence: letting f =

∑
λ fλψλ,

‖f‖2
Hs(R) =

∫
R

(1 + |ξ|2)s|f̂(ξ)|2 dξ �
∑

j

22js
∥∥∥ ∑

λ∈Λj

fλψ̂λ

∥∥∥2

L2(R)
(2.15)

(remark that for j = −1 we have 22js = 2−2s � 1, the constant in the equivalence
depending on s). By taking the inverse Fourier transform on the right-hand side
we immediately see that

‖f‖2
Hs(R) �

∑
j

22js
∥∥∥ ∑

λ∈Λj

fλψλ

∥∥∥2

L2(R)
.

If {ψλ, λ ∈ Λj} is a Riesz basis for Wj , (2.15) implies then

‖f‖2
Hs(R) �

∑
j≥−1

22js
∑

λ∈Λj

|fλ|2. (2.16)

If we only consider partial sums, we easily derive direct and inverse inequal-
ities, namely: ∥∥∥ J∑

j=−1

∑
λ∈Λj

fλψλ

∥∥∥
Hs(R)

� 2Js
∥∥∥ J∑

j=−1

∑
λ∈Λj

fλψλ

∥∥∥
L2(R)

, (2.17)
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and ∥∥∥ ∞∑
j=J+1

∑
λ∈Λj

fλψλ

∥∥∥
L2(R)

� 2−Js
∥∥∥ ∞∑

j=J+1

∑
λ∈Λj

fλψλ

∥∥∥
Hs(R)

. (2.18)

Properties (2.17) and (2.18) – which, as we saw, are easily proven if ψ̂ is
compactly supported, continue to hold, though their proof is less evident, in the
case of ψ compactly supported, provided (2.6) and (2.8) hold. The same is true
for property (2.16). More precisely we can prove the following inequalities:

Theorem 2.4. For s with 0 ≤ s ≤ M̃ + 1, f ∈ Hs(R) implies

‖f − Pjf‖L2(R) � 2−sj |f |Hs(R). (2.19)

Analogously, for 0 ≤ s ≤ M + 1, f ∈ Hs(R) implies

‖f − P̃jf‖L2(R) � 2−sj |f |Hs(R). (2.20)

Proof. By the polynomial reproduction property (2.13) we have that Pj(p) = p

(in the L2
loc(R) sense) for any polynomial p of degree less or equal than M̃ . We

split R as the union of dyadic intervals R =
⋃

Ij,k. Let pj,k be polynomials to be
chosen in the following. We have

‖f − Pjf‖L2(Ij,k) = ‖f − pj,k + Pj(pj,k) − Pjf‖L2(Ij,k)

≤ ‖f − pj,k‖L2(Ij,k) + ‖Pj(f − pj,k)‖L2(Ij,k).

Letting Ĩj,k =](k − (L + L̃))2−j , (k + 1 + (L + L̃))2−j [ it is not difficult to verify
that, thanks to the space localization assumptions on ϕ and ϕ̃, we have the bound

‖Pj(f − pj,k)‖L2(Ij,k) ≤ ‖f − pj,k‖L2(Ĩj,k).

We can then choose pj,k to be the best degree M̃ polynomial approximation of f

on Ĩj,k. This implies (see [15]) ‖f − pj,k‖L2(Ij,k) ≤ 2−sj |f |Hs(Ĩj,k). Squaring and
summing up over all k ∈ Z we obtain (2.19). The bound (2.20) is proven by the
same argument. �

Applying the above theorem to g = f − Pjf and observing that g − Pjg = g
we immediately obtain the bound

‖(I − Pj)f‖L2(R) � 2−js‖(I − Pj)f‖Hs(R). (2.21)

Theorem 2.5 (Inverse Inequality). For all f ∈ Vj and for all r with 0 ≤ r ≤ R it
holds that

‖f‖Hr(R) � 2jr‖f‖L2(R). (2.22)

Analogously for all f ∈ Ṽj and for all r with 0 ≤ r ≤ R̃ we have

‖f‖Hr(R) � 2jr‖f‖L2(R). (2.23)



2.1. Frequency Domain Point of View vs. Space Domain Point of View 29

Proof. We prove the result for r integer, the general case follows by standard space
interpolation techniques. We have f =

∑
cj,kϕj,k. Now ϕj,k = 2j/2ϕ(2j · −k) ⇒

ϕ
(m)
j,k = 2jm2j/2ϕ(m)(2j · −k). For m ≤ r we can write

‖f (m)‖L2(R) =
∥∥∥∑ cj,kϕ

(m)
j,k

∥∥∥
L2(R)

= 2jm
∥∥∥∑ cj,kϕ(m)(· − k)

∥∥∥
L2(R)

.

We need then to show that∥∥∥∑ cj,kϕ(m)(· − k)
∥∥∥

L2(R)
� ‖f‖L2(R)(∼ ‖cj,·‖�2). (2.24)

We use the compactness of supp ϕ(m):∥∥∥∑ cj,kϕ(m)(· − k)
∥∥∥2

L2(R)
=
∑∥∥∥∑ cj,kϕ(m)(· − k)

∥∥∥2

L2(I0,n)
. (2.25)

Only a fixed finite number of terms contributes to the L2(I0,n)-norm. We can then
use the equivalence of all norms in finite dimension and obtain∥∥∥∑ cj,kϕ(m)(· − k)

∥∥∥2

L2(I0,n)
� sup

k∈{n+1−L,·,n+L}
|cj,k|2 ‖ϕ(m)‖2

L2(I0,n)

�
n+L∑

k=n+1−L

|cj,k|2, (2.26)

which implies (2.24). �
All functions in Wj and W̃j verify both direct and inverse inequality

f ∈ Wj ⇒ ‖f‖Hr(R) � 2jr‖f‖L2(R), r ∈ [0, R],

f ∈ W̃j ⇒ ‖f‖Hr(R) � 2jr‖f‖L2(R), r ∈ [0, R̃].

By a duality argument it is not difficult to prove that similar inequalities
hold for negative values of s. More precisely, for f ∈ Wj and s ∈ [0, R̃] we have,
using the identity Q̃j = P̃j+1(I − Pj) and the direct inequality (2.20),

‖f‖H−s(R) = sup
g∈Hs(R)

〈f, g〉
‖g‖Hs(R)

= sup
g∈Hs(R)

〈f, Q̃jg〉
‖g‖Hs(R)

� sup
g∈Hs(R)

‖f‖L2(R)‖(I − P̃j)g‖L2(R)

‖g‖Hs(R)
� 2−js‖f‖L2(R).

Conversely we can write

‖f‖L2(R) = sup
g∈L2(R)

〈f, Q̃jg〉
‖g‖L2(R)

�
‖f‖H−s(R)‖Q̃jg‖Hs(R)

‖g‖L2(R)
� 2js‖f‖H−s(R).
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In summary we have

f ∈ Wj ⇒ ‖f‖Hs(R) � 2js‖f‖Ls(R), s ∈ [−R̃, R], (2.27)

f ∈ W̃j ⇒ ‖f‖Hs(R) � 2js‖f‖Ls(R), s ∈ [−R, R̃]. (2.28)

Remark 2.6. Note that an inequality of the form (2.22) is satisfied by all functions
whose Fourier transform is supported in the interval [−2J , 2J ], while an inequality
of the form (2.21) is verified by all functions whose Fourier transform is supported
in (−∞,−2J ] ∪ [2J ,∞). Such inequalities are inherently bound to the frequency
localisation of the functions considered, or, to put it in a different way, to their
more or less oscillatory behaviour. Saying that a function is “low frequency” means
that such function does not oscillate too much. This translates in an inverse type
inequality. On the other hand, saying that a function is “high frequency” means
that it is purely oscillating, that is that it is locally orthogonal to polynomials
(where the meaning of “locally” is related to the frequency) and this translates in
a direct inequality. In many applications the two relations (2.21) and (2.22) can
actually replace the information on the localisation of the Fourier transform. In
particular this will be the case when we deal with functions defined on a bounded
set Ω, for which the concept of Fourier transform does not make sense. Many of
the things that can be proven for the case Ω = R by using Fourier transform
techniques, can be proven in an analogous way for bounded Ω by suitably using
inequalities of the form (2.21) and (2.22).

A consequence of the validity of properties (2.27) and (2.28) is the possibility
of characterizing, through the wavelet coefficients, the regularity of a function. We
first observe that, since all the functions ψ̃λ have a certain regularity, namely ψ̃λ ∈
HR̃(R), the Fourier development (2.1) makes sense (at least formally), provided f
has enough regularity for 〈f, ψ̃λ〉 to make sense, at least as a duality product, that
is provided f ∈ (HR̃(R))′. In addition, using (2.27) and (2.28) it is not difficult to
prove that the following inf-sup conditions hold uniformly in j for all s ∈ [−R̃, R]:

inf
w∈Wj

sup
w̃∈W̃j

〈w, w̃〉
‖w‖Hs(R)‖w̃‖H−s(R)

� 1, inf
w̃∈W̃j

sup
w∈Wj

〈w, w̃〉
‖w‖Hs(R)‖w̃‖H−s(R)

� 1;

in fact, as in Remark 1.8, two inf-sup conditions with respect to the L2(R)-norm
are deduced from the L2(R)-boundedness of Qj and Q̃j and then (2.27) and (2.28)
are used. This implies that Qj and Q̃j can be extended to operators acting on H−R̃

and H−R, respectively.
The properties of wavelets imply that given any function f ∈ H−R̃(R), by

looking at behaviour of the L2(R)-norm of Qjf as j goes to infinity and, more in
detail, by looking at the absolute values of the wavelet coefficients 〈f, ψ̃λ〉, it is
possible to establish whether or not a function belongs to certain function spaces,
and it is possible to write an equivalent norm for such function spaces in terms of
the wavelet coefficients. More precisely we have the following theorem (see [33, 22]).
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Theorem 2.7. Let assumptions (2.2), (2.3), (2.4), (2.5), (2.6), (2.7) and (2.11)
hold. Let f ∈ H−R̃ and let s ∈] − R̃, R[. Then f ∈ Hs(R) if and only if

‖f‖2
s =

∑
μ∈K0

|〈f, ϕ̃μ〉|2 +
∑
j≥0

∑
λ∈Λj

22js|〈f, ψ̃λ〉|2 < +∞. (2.29)

Moreover ‖ · ‖s is an equivalent norm for Hs(R).

Proof. Thanks to the fact that the functions ϕμ, μ ∈ K0 and ψλ, λ ∈ Λj constitute
Riesz’s bases for V0 and Wj respectively, equation (2.29) is equivalent to

‖P0f‖2
L2(R) +

∑
j≥0

22js‖Qjf‖2
L2(R) < +∞. (2.30)

We will at first show that if (2.30) holds, then
∑

j Qjf ∈ Hs(R). We start by
observing that a scalar product for Hs(R) is defined by 〈(1−Δ)s/2·, (1−Δ)s/2·〉 =
〈(1 − Δ)s/2+ε·, (1 − Δ)s/2−ε·〉. This allows us to write∥∥∥∑

j

Qjf
∥∥∥2

Hs(R)
≤ 2

∑
j

∑
k>j

‖Qjf‖Hs+2ε(R)‖Qkf‖Hs−2ε(R) +
∑

j

‖Qjf‖2
Hs(R).

Thanks to the inverse inequalities we can then bound∥∥∥∑
j

Qjf
∥∥∥2

Hs(R)
≤ 2

∑
j

∑
k>j

22js‖Qjf‖L2(R)22ks‖Qkf‖L2(R)2−2ε|j−k|

+
∑

j

22js‖Qjf‖2
L2(R).

The second sum is finite by assumption and the first sum can be bound by recalling
that the convolution product is a bounded operator from �1 × �2 to �2.

Let now f ∈ Hs(R). We have, for N arbitrary,

[
‖P0f‖2

L2(R) +
N∑

j=1

22js‖Qjf‖2
L2(R)

]2
= 〈f, P̃0P0f +

∑
j

22sjQ̃jQjf〉2 (2.31)

� ‖f‖2
Hs(R)‖P̃0P0f +

N∑
j=1

22sjQ̃jQjf‖2
H−s(R).

Using the first part of the theorem we get

∥∥∥P̃0P0f +
N∑

j=1

22sjQ̃jQjf
∥∥∥2

H−s(R)
� ‖P̃0P0f‖2

L2(R) +
N∑

j=1

2−2sj24sj‖Q̃jQjf‖2
L2(R).
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Dividing both sides of equation (2.31) by ‖P0f‖2
L2(R) +

∑N
j=1 22sj‖Qjf‖2

L2(R) we
obtain

‖P0f‖2
L2(R) +

N∑
j=1

22sj‖Qjf‖2
L2(R) � ‖f‖Hs(R).

The arbitrariness of N yields the thesis. �

For s = 0 we immediately obtain the following corollary.

Corollary 2.8. If the assumptions of Theorem 2.29 hold, then {ψλ, λ ∈ Λ} is a
Riesz basis for L2(R).

A more general result actually holds. In fact, letting Bs,p
q (R) := Bs

q(Lp(R))
denote the Besov space of smoothness order s with summability in Lp and third
index q (see, e.g., [37]) we have the following theorem ([33, 22]).

Theorem 2.9. Let the assumptions of Theorem 2.29 hold. Let f ∈ H−R̃ and let
s ∈] − R̃, R[, 0 < p, q < +∞. Then f ∈ Bs,p

q (R) if and only if

‖f‖q
s,p,q =

( ∑
μ∈K0

|〈f, ϕ̃μ〉|p
)q/p

+
∑

j

( ∑
λ∈Λj

2pjs2p(1/2−1/p)j |〈f, ψ̃λ〉|p
)q/p

< +∞.

(2.32)
Moreover ‖·‖s,p,q is an equivalent norm for Bs,p

q (R). An analogous result, in which
the �p- (resp. �q-) norms are replaced by the �∞-norm, holds for either p = +∞
or q = +∞ or both.

2.2 The General Case: Ω Domain of R
d

Let us now consider the general case of Ω being a (possibly bounded) Lipschitz
domain of R

d. The property of space localization can be easily stated also for
wavelet bases on general domains.

Localisation in space. For each λ ∈ Λj we have that

diam(suppϕλ) � 2−j, and diam(supp ϕ̃λ) � 2−j, (2.33)

diam(suppψλ) � 2−j, and diam(supp ψ̃λ) � 2−j, (2.34)

and for all k = (k1, k2, . . . , kd) ∈ Z
d there are at most K (resp. K̃) values of λ ∈ Λj

such that
supp ψλ ∩ �j,k �= ∅ (resp. supp ψ̃λ ∩ �j,k ) (2.35)

(where �j,k denotes the cube of centre k/2j and side 2−j). This last requirement
is equivalent to asking that the basis functions at j fixed are uniformly distributed
over the domain of definition. It avoids, for instance, that they accumulate some-
where.
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Clearly, the concept of frequency in the classical sense and the definition of
Fourier transform do not make sense in such framework. Still, we can ask that the
basis functions have the same property as the basis functions for L2(R) in terms of
oscillations. We will then assume that they satisfy an analogous relation to (2.9).
More precisely, using x ∈ Ω and α ∈ N

d the notation xα = (x1, · · · , xd)(α1,··· ,αd) =
xα1

1 + · · · + xαd

d , we assume that the basis functions ψλ verify, with α ∈ N
d,

‖ψλ‖Hs(Ω) � 2js, 0 ≤ s ≤ R, and
∑

i

αi ≤ M ⇒
∫

Ω

xαψλ(x) dx = 0. (2.36)

A similar relation is required to hold for the dual basis:

‖ψ̃λ‖Hs(Ω) � 2js, 0 ≤ s ≤ R̃, and
∑

i

αi ≤ M̃ ⇒
∫

Ω

xαψ̃λ(x) dx = 0. (2.37)

Using an argument similar to the one that allowed us to obtain (2.13) and
(2.14) we obtain that (2.36) and (2.37) together with the property of space local-
ization yield that for all polynomials p of degree less or equal than M̃ (resp. less
or equal that M) we have

p =
∑

μ∈Kj

〈p, ϕ̃μ〉ϕμ (resp. p =
∑

μ∈Kj

〈p, ϕμ〉ϕ̃μ). (2.38)

Exactly as in the case Ω = R this property allows us to prove that a direct
type inequality holds.

Theorem 2.10 (Direct Inequality). Assume that (2.33), (2.34), (2.35), (2.36) and
(2.37) hold. For all s, 0 < s ≤ M̃ + 1, f ∈ Hs(Ω) implies

‖f − Pjf‖L2(Ω) � 2−js‖f‖Hs(Ω). (2.39)

Analogously for all s, 0 < s ≤ M + 1, f ∈ Hs(Ω) implies

‖f − P̃jf‖L2(Ω) � 2−js‖f‖Hs(Ω). (2.40)

With a proof which is quite similar to the one of the analogous result on R

it is also not difficult to prove that an inverse inequality holds. More precisely we
have the following theorem.

Theorem 2.11 (Inverse Inequality). Assume that (2.33), (2.34), (2.35), (2.36) and
(2.37) hold. For r with 0 < r ≤ R it holds that for all f ∈ Vj

‖f‖Hr(Ω) � 2jr‖f‖L2(Ω). (2.41)

Analogously, for r with 0 < r ≤ R̃ it holds that for all f ∈ Ṽj

‖f‖Hr(Ω) � 2jr‖f‖L2(Ω). (2.42)
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Analogously to what happens for R also here we can prove a norm equivalence
for Hs(Ω) in terms of a suitable weighted �2-norm of the sequence of wavelet
coefficients. More precisely the following theorem, which is proven similarly to
Theorem 2.9, holds ([22]).

Theorem 2.12. Assume that (2.33), (2.34), (2.35), (2.36), (2.37), (2.41) and (2.42)
hold. Let f ∈ (HR̃(Ω))′ and let −R̃ < s < R. Let

‖f‖2
s =

∑
μ∈K0

|〈f, ϕ̃μ〉|2 +
∑

j

∑
λ∈Λj

22js|〈f, ψ̃λ〉|2. (2.43)

Then, for s ≥ 0, ‖f‖s is an equivalent norm for the space Hs(Ω) and f ∈ Hs(Ω)
if and only if ‖f‖s is finite; for negative s, ‖f‖s is an equivalent norm for the
space (H−s(Ω))′ and f ∈ (H−s(Ω))′ if and only if ‖f‖s is finite.

An analogous result holds for the dual multiresolution analysis, which allows
us to characterize Hs(Ω), s ≥ 0 and (H−s(Ω))′, s < 0, for −R < s < R̃.

Remark 2.13. All the wavelets mentioned until now (with the exception of the
Schauder basis) satisfy the assumptions of Theorem 2.12 for suitable values of M ,
M̃ , R, R̃.

Thanks to these norm equivalences we can then evaluate the Sobolev norms
for spaces with negative and/or fractionary indexes by using simple operations,
namely the evaluation of L2(Ω)-scalar products and the evaluation of an (infinite)
sum. Moreover, it is easy to realize that the norm ‖ · ‖s is an hilbertian norm,
induced by the scalar product

(f, g)s =
∑

j

22js
∑

λ∈Λj

〈f, ψ̃λ〉〈f, ψ̃λ〉. (2.44)

As a consequence, equation (2.44) provides us with an equivalent scalar product
for the Sobolev spaces Hs(Ω), s ≥ 0 and, for s < 0, for the dual space (H−s(Ω))′,
which, for negative or fractionary values of s, is more easily evaluated than the
original one.

Also in this case a charachterization result for Besov spaces holds, as stated
by the following theorem (see once again [22]).

Theorem 2.14. Let all the assumptions of Theorem 2.12 hold. Let f ∈ H−R̃ and
let s ∈] − R̃, R[, 0 < p, q < +∞. Then f ∈ Bs,p

q (Ω) if and only if

‖f‖q
s,p,q =

( ∑
μ∈K0

|〈f, ϕ̃μ〉|p
)q/p

+
∑

j

( ∑
λ∈Λj

2pjs2p(d/2−d/p)j|〈f, ψ̃λ〉|p
)q/p

< +∞.

(2.45)
Moreover the ‖ · ‖s,p,q is an equivalent norm for Bs,p

q (Ω). An analogous result,
in which the �p- (resp. �q-) norms are replaced by the �∞-norm, holds for either
p = +∞ or q = +∞ or both.
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A norm equivalence resulting from the above theorem which will be of interest
is the case in which the expression on the left-hand side of (2.45) is the �τ -norm of
the sequence of wavelet coefficients. This happens provided s, p and q are related
by the relation

p = q = τ, s = d/τ − d/2. (2.46)

If we consider the space Bs,τ
τ we have the equivalent norm

‖f‖Bs,τ
τ (Ω) � ‖f‖s,τ,τ =

(∑
λ∈Λ

|〈f, ψ̃λ〉|τ
)1/τ

. (2.47)

In the following we will see that the Besov spaces Bs,τ
τ play a key role in the

analysis on nonlinear approximation in L2(Ω).

2.3 The Issue of Boundary Conditions

When aiming at using wavelet bases for the numerical solution of PDEs, one has
to take into account the issue of boundary conditions. If, for instance, in the
equation considered, essential boundary conditions (for example u = g) need to
be imposed on a portion Γe of the boundary Γ = ∂Ω of the domain Ω of definition
of the problem, we want that the basis functions ψλ, λ ∈ Λ, satisfy themselves the
corresponding homogeneous boundary conditions on Γe (that is, in the example
mentioned above, ψλ = 0 on Γe). Depending on the projectors Pj , the dual wavelets
ψ̃λ however will not need to satisfy the same homogeneous boundary conditions,
though this might be the case (if for instance the projector Pj is chosen to be the
L2(Ω)-orthogonal projector). Depending on whether the ψλ and the ψ̃λ satisfy or
not some homogeneous boundary conditions, the same boundary conditions will
be incorporated in the spaces that we will be able to characterize through such
functions. It is not the aim of this book to go into details but only to give an
idea on the kind of results that hold. To fix the ideas let us then consider the
case of Γe = Γ and of Dirichlet boundary condition of order zero, namely u = 0
on Γ and let us concentrate on the characterization of Sobolev spaces. If, for all
λ ∈ Λ, ψλ = 0 on Γ, then (2.43) will hold provided f belongs to the Hs(Ω) closure
of Hs(Ω) ∩ H1

0 (Ω), that we will denote Hs
0(Ω). If all the ψ̃λ’s satisfy ψ̃λ = 0,

we cannot hope to characterize (through scalar products with such functions) the
space (Hs(Ω))′, but only the space (Hs

0(Ω))′. In particular, provided for all λ ∈ Λ
ψ̃λ = 0 on Γ, for s = −1 we will have a characterization of the form

‖f‖2
H−1(Ω) �

(∑
j

2−2j
∑

λ∈Λj

|〈f, ψ̃λ〉|2
)1/2

. (2.48)

Then, again, an equivalent H−1(Ω) scalar product can be defined as

(f, g)−1 =
∑

j

2−2j
∑

λ∈Λj

〈f, ψ̃λ〉〈f, ψ̃λ〉. (2.49)
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Clearly, if for all λ ∈ Λ the ψλ’s satisfy an homogeneous boundary condition,
we can expect a direct inequality of the form (2.39) to hold only if we assume that
the function f to approximate satisfies itself the same homogeneous boundary
conditions.



Chapter 3

Wavelets for Partial Differential
Equations

The property of wavelet characterization of Sobolev and Besov spaces that we saw
in the previous section is quite a powerful tool. In the next sections we will see how
we can take advantage of such a property in the design of new efficient methods
for the solution of PDEs. Let us assume from now on that we have a couple of
multiresolution analyses Vj and Ṽj satisfying all space and frequency localization
assumptions of Section 2.2.

3.1 Wavelet Preconditioning

The first example of application of wavelets to the numerical solution of PDEs
is the construction of optimal preconditioners for elliptic partial differential and
pseudo differential equations [30, 23].

We consider the following framework: let V be an Hilbert space and let
A : V → V ′ be a (pseudo) differential operator. Let a : V × V → R be the
corresponding bilinear form:

a(u, v) := 〈Au, v〉.
We consider the following abstract problem.

Problem 3.1. Given f ∈ V ′, find u ∈ V solution to

Au = f.

We consider here the variational formulation: find u ∈ V s.t.

a(u, v) = 〈f, v〉, ∀ v ∈ V. (3.1)
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We make the following assumptions:

• a is continuous : for all u, v ∈ V

|a(u, v)| � ‖u‖V ‖v‖V . (3.2)

• a is coercive: for all v ∈ V

a(v, v) � ‖v‖2
V . (3.3)

Many examples exist of problems that fall in such a framework: we can men-
tion the Laplace equation with Dirichlet B.C.: the equations describing linear elas-
ticity in different frameworks, the Helmholtz equation, different types of integral
equations (single-layer potential, double-layer potential), and many others.

Let now Uh ⊂ V be a closed subspace of V . The Galerkin method for solving
Problem 3.1 is defined as follows: find uh ∈ Uh s.t.

a(uh, vh) = 〈f, vh〉, ∀ vh ∈ Uh. (3.4)

It is well known that an error estimate can be written down in terms of the
best approximation error for the continuous solution u. Under the above assump-
tions Cea’s lemma states in fact that

‖u − uh‖V � inf
vh∈Vh

‖u − vh‖V .

If V = Hs(Ω) with s ∈] − R̃, R[, we can take Uh = Vj for some j > 0.
Combining Cea’s Lemma with the direct estimate (2.39) we immediately obtain
that, if the continuous solution u to problem (3.1) verifies u ∈ Hs+t(Ω) with
s + t ≤ M̃ + 1, then the error verifies

‖u − uh‖Hs(Ω) � 2−jt‖u‖Hs+t(Ω).

In order to practically compute the approximate solution uh we can proceed
as usual: choose a basis for the approximation space, express the approximate
solution uh and the test function vh as a linear combination of the basis functions,
and reduce the equation (3.4) to a linear system. In our case we have two available
bases for Uh = Vj , so we get two equivalent linear systems

a) Ac = f, and b) Rd = g, (3.5)

the approximate solution uh being

uh =
∑

μ∈Kj

cμϕμ =
∑

λ∈Λh

dλψλ, Λh =
j−1⋃

m=−1

Λm.
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In particular we will have two different stiffness matrices

S = (sμ,μ′), sμ,μ′ = a(ϕμ′ , ϕμ), and R = (rλ,λ′ ), rλ,λ′ = a(ψλ′ , ψλ).

A problem that is encountered in the numerical solution of (pseudo) differential
equations is that the condition number of the stiffness matrices A and R is usually
quite high. Recall that the number of iterations needed for solving numerically a
linear system grows with such a condition number. Let us recall the definition of
condition number.

Definition 3.2. Let A be an invertible matrix. The condition number of A is defined
as

κ(A) = ‖A‖2 · ‖A−1‖2.

A remedy to ill conditioning of A is given by preconditioning [35]. Given A
with cond(A) � 1 the idea is to find P such that

κ(PA) � 1; (3.6)

then solve
PAx = Pf. (3.7)

Remark that if the matrix A is symmetric one would like to be able to exploit
this in the choice of the solution method for the linear system (3.7). On the other
hand, the matrix PA is generally non-symmetric (even when both A and P have
this property). The remedy is to resort to the so called split preconditioning: given
A with cond(A) � 1, find E such that

κ(ET AE) � 1. (3.8)

We can then apply our favorite solver to the (symmetric, if A is symmetric) linear
system

ET AEy = ET f, (3.9)

and then retrieve x as x = Ey.

Remark 3.3. If P is a symmetric positive definite matrix such that (3.6) holds,
and if E is such that

ET E = P, (3.10)

then E satisfies (3.8). Though in this case a matrix E satisfying (3.10) always
exists, its actual computation might be quite expensive. In such a case it is possible
to implement the conjugate gradient method for the linear system (3.9) in such a
way that only the multiplication by P is needed ([36]). As we will see this is not
the case of the wavelet preconditioner, where E is directly available.

We start by considering the stiffness matrix R with respect to the wavelet
basis and we consider a symmetric diagonal preconditioner. This is equivalent to
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rescaling the basis functions ψλ. More precisely let for λ ∈ Λj, ωλ = 2js and set
ψ̌λ = ω−1

λ ψλ. The coefficients with respect to the new basis are ǔλ = ωλuλ:

u =
∑

λ∈Λh

uλψλ =
∑

λ∈Λh

ωλuλω−1
λ ψλ =

∑
λ∈Λh

ǔλψ̌λ.

Letting D be a diagonal matrix with diagonal entries Dλ,λ = ωλ, the stiffness
matrix w.r.t. the new basis becomes then

Ř = D−1RD−1.

We have the following theorem ([30, 23]):

Theorem 3.4. Uniformly in j

κ(Ř) = κ(D−1RD−1) � 1.

Proof. We start by observing that the norm equivalences of the previous section
can be rewritten as∥∥∥∑

λ

fλψλ

∥∥∥
Hs(Ω)

� ‖(ωλfλ)λ‖�2 ,
∥∥∥∑

λ

gλψ̃λ

∥∥∥
H−s(Ω)

� ‖(ω−1
λ gλ)λ‖�2,

(Remark that gλ = 〈g, ψλ〉). We observe that:

1. since g ∈ H−s(Ω), the right-hand side g = (gλ)λ = (〈g, ψλ〉)λ verifies

‖D−1g‖�2 � ‖g‖H−s(Ω);

2. since u ∈ Hs(Ω), the unknown coefficient vector u = (uλ)λ = (〈u, ψ̃λ〉)λ

satisfies
‖Du‖�2 � ‖u‖Hs(Ω).

In order to prove the theorem we need to bound ‖Ř‖ and ‖Ř−1‖. Now we have
(with v =

∑
λ xλψ̌λ, w =

∑
λ yλψ̌λ)

‖Ř‖ = sup
x

sup
y

yT Řx

‖x‖�2‖y‖�2
= sup

v∈Vj

sup
w∈Vj

a(v, w)
‖v‖Hs(Ω)‖w‖Hs(Ω)

� 1. (3.11)

We now observe that setting y = Ř−1x, the function u =
∑

λ yλψ̌λ is the
Galerkin projection onto Vj of the solution u to the equation

a(u, v) = 〈v, f〉, ∀v ∈ Vj

with f =
∑

λ xλψ̌λ, and, thanks to the properties of a we have the bound

‖y‖�2 � ‖u‖Hs(Ω) � ‖f‖H−s(Ω) � ‖x‖�2 .

This implies ‖Ř−1‖ � 1. Combining this with (3.11) we get the thesis. �
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Remark 3.5. Remark that when measuring with the Euclidean norm the vectors
appearing in the linear system Řǔ = g, we are actually measuring the correspond-
ing functions in the norm of the functional spaces where they naturally belong.

Theorem 3.4 states that if we express the stiffness matrix using the wavelet
basis, we have an optimal diagonal preconditioner. However working directly with
the wavelet basis has several drawbacks, namely that the matrix R is less sparse
and more difficult and expensive to compute than the stiffness matrix A with
respect to the scaling function basis. It is however possible to write down the
preconditioned wavelet method in terms of this last matrix. We recall in fact that
we have a (fast) algorithm (the fast wavelet transform) allowing us to compute
the wavelet coefficients from the nodal coefficients of any function in Vj . Let us
then denote by F the linear transformation corresponding to such algorithm. The
following identity holds:

R = F−T AF−1.

We immediately obtain a preconditioner for A:

κ(D−1F−T AF−1D−1) � 1

uniformly in j.
This is the form that should be used in the implementation. Remark that

the matrix D−1F−T AF−1D−1 is never assembled. Its action on a given vector is
rather computed by applying sequentially the matrices D−1, F−1, A, F−T and
D−1. The total number of operations is kept low thanks to different facts:

• the matrix A is sparse and then computing its action on a vector is cheap;

• the action of both F−1 and its transpose on any given vector can be computed
by means of the inverse fast wavelet transform (which is also a fast algorithm).

The cost of applying the preconditioner basically reduces to the cost of running
the fast wavelet transform algorithm.

3.2 Nonlinear Wavelet Methods for the Solution
of PDEs

Perhaps the most significant contribution coming from the wavelet framework to
the problem of numerically solving partial differential equations is the one related
to the field of nonlinear approximation. Adaptive methods have an important place
in the effort to efficiently tackle real life problems, and wavelets and the related
concept of nonlinear wavelet approximation ([29]) brought a new point of view in
this area that had also an impact on more classical methods (see, e.g., [34]).
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3.2.1 Nonlinear vs. Linear Wavelet Approximation

Let us consider the problem of approximating a given function f ∈ L2(Ω), Ω ⊆ R
d

a domain in R
d, with N degrees of freedom (that is with a function which we can

identify with N scalar coefficients). We distinguish between two approaches:
The first approach is the usual linear approximation: a space Vh of dimension

N is fixed a priori and the approximation fh is the L2(Ω)-projection of f on Vh

(example: finite elements on a uniform grid with mesh size h related to N , in which
case in dimension d the mesh size and the number of degrees of freedom verify
h ∼ N−1/d).

It is well known that the behaviour of the linear approximation error is
generally linked to the Sobolev regularity of f . In particular we cannot hope for a
high rate of convergence if f has poor smoothness. Several remedies are available
in this last case, like for instance adaptive approximation by performing a mesh
refinement around the singularities of f . We have then the nonlinear approximation
approach: a class of spaces X is chosen a priori. We then choose a space VN (f) of
dimension N in X well suited to f . The approximation fh is finally computed as
an L2-“projection” of f onto VN (f) (example: finite elements with N free nodes).
In other words, we look for an approximation to f in the nonlinear space

ΣN =
⋃

VN∈X

VN .

Three questions are of interest:

• What is the relation between the performance of nonlinear approximation
and some kind of smoothness of the function to be approximated?

• How do we compute the nonlinear approximation of a given function f?

• How do we compute the nonlinear approximation of an unknown function u
(solution of a PDE)?

In order to give answers to these three questions when we put ourselves in the
framework of wavelet approximation let us see how the two approaches translate
in such framework.

Linear Wavelet Approximation

Let the space Vh (h = 2−j) be defined as Vh = Vj . The best L2-approximation of
f in Vh is its L2-orthogonal projection Πhf . As far as the approximation error is
concerned f ∈ Hs(Ω) implies (h ∼ 2−j ∼ N−1/d)

‖f − Πhf‖L2(Ω) ≤ ‖f − Pjf‖L2(Ω) � hs‖f‖Hs(Ω).
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Nonlinear Wavelet Approximation

The idea is to look for an approximation to f in the nonlinear space

ΣN =
{
u =

∑
λ

uλψλ : #{λ : uλ �= 0} ≤ N
}
.

In order to construct an approximation to f in ΣN define a nonlinear projection
([29]).

Definition 3.6. Let f =
∑

λ fλψλ. The nonlinear projector PN : L2 → ΣN is de-
fined as

PNf :=
N∑

n=1

fλnψλn

where
|fλ1 | ≥ |fλ2 | ≥ |fλ3 | ≥ . . . |fλn | ≥ |fλn+1 | ≥ . . .

is a decreasing reordering of the wavelet coefficients.

By abuse of notation we will also denote by PN : �2 → �2 the operator
mapping the sequence of coefficients of a function f to the sequence of coefficients
of PNf .

Remark 3.7. If the wavelet basis is orthonormal ‖f‖L2(Ω) = ‖(fλ)‖�2 , then PNf
is the best N -term approximation (the norm of the error is the �2-norm of the
sequence of discarded coefficients). In any case, since ‖f‖L2(Ω) � ‖(fλ)‖�2 , we
have that PNf is the best approximation in an L2-equivalent norm.

Let us now see which properties of f guarantee that

‖f − PNf‖L2(Ω) � hr ∼ N−r/d.

We have the following theorem ([29], see also [16]).

Theorem 3.8. f ∈ Bs,q
q (Ω) with s > 0 and q : d/q = d/2 + s implies

‖f − PNf‖L2(Ω) � ‖f‖Bs,q
q (Ω)N

−s/d.

Proof. Recall the characterization of the Besov norm in terms of the wavelet co-
efficients: with the choice q : d/q = d/2 + s we have that∥∥∥∑

λ

fλψλ

∥∥∥
Bs,q

q (Ω)
� ‖(fλ)λ‖�q .

Let us consider the decreasing reordering of the coefficients:

|fλ1 | ≥ |fλ2 | ≥ |fλ3 | ≥ . . . |fλn | ≥ |fλn+1 | ≥ . . . .
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We can easily see that

n|fλn |q ≤
∑
k≤n

|fλk
|q ≤

∑
λ

|fλ|q ≤ ‖f‖q
Bs,q

q (Ω)
,

that is
|fλn | ≤ n−1/q‖f‖Bs,q

q (Ω).

Now we can write

‖f − PNf‖L2(Ω) =
∥∥∥ ∑

n>N

fλnψλn

∥∥∥
L2(Ω)

�
(∑

n>N

|fλn |2
)1/2

� ‖f‖Bs,q
q (Ω)

( ∑
n>N

n−2/q

)1/2

� ‖f‖Bs,q
q (Ω)N

−1/q+1/2.
�

Remark 3.9. Remark that, for q < 2, the space Bs,q
q (Ω) ⊃ Hs(Ω). In particular

there exists a wide class of functions which are not in Hs(Ω) but that belong to
Bs,q

q (Ω). For such functions, nonlinear approximation will be of order hs, while
linear approximation will go to the order of approximation allowed by the (lower)
Sobolev regularity.

Nonlinear Approximation in Hs

If we want to approximate f in Hs(Ω), rather than in L2(Ω), the idea is to rescale
the basis functions so that f =

∑
f̌λψ̌λ with ‖f‖Hs(Ω) = ‖(f̌λ)λ‖�2 . Remark that

for q : d/q = d/2 + r
‖f‖Bs+r,q

q (Ω) � ‖(f̌λ)λ‖�q .

We then apply the same procedure to the sequence (f̌λ)λ. In particular we
define this time the nonlinear projector as

Definition 3.10. Let f =
∑

λ f̌λψ̌λ. The nonlinear projector PN : Hs(Ω) → ΣN is
defined as

PNf :=
N∑

n=1

f̌λn ψ̌λn

where
|f̌λ1 | ≥ |f̌λ2 | ≥ |f̌λ3 | ≥ . . . |f̌λn | ≥ |f̌λn+1 | ≥ . . .

is a decreasing reordering of the wavelet coefficients.

We have the following theorem, whose proof is identical to the proof of The-
orem 3.8

Theorem 3.11. f ∈ Bs+r,q
q implies

‖f − PNf‖Hs(Ω) � ‖f‖Bs+r,q
q (Ω)N

−r/d.
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3.2.2 Nonlinear Solution of PDEs

Depending on different factors, like the regularity of the data and of the domain
Ω, the solution of a differential problem may be smooth, or it may present some
singularity. In the last case, the fact that using some adaptive technique – in which
the approximating space is tailored to the function u itself – is necessary in order
to get a good approximation rate is well accepted. The considerations in the above
section allow to rigorously formalize such fact and provide, in the wavelet context,
a simple and efficient strategy for adaptively approximating u, if this was given.
However, in the partial differential equations framework the function that one
needs to approximate is not known. Standard adaptive methods are based on an
iterative procedure:

• given an approximation space, compute an approximation to the solution of
the problem within the given space;

• looking at the computed approximation, design a new approximation space
(using, for instance, some kind of error estimator);

• iterate until the computed solution is satisfactory.

Nonlinear wavelet solution of PDEs is based on a different approach. To fix
the ideas let us consider a simple example, namely the reaction-diffusion equation:
given f find u such that

−Δu + u = f in Ω, Ω ⊆ R
d. (3.12)

The idea is to first re-write the problem as an “infinite-dimensional discrete”
problem as follows: letting u =

∑
λ ǔλψ̌λ be the unknown solution (u = (uλ)λ ∈ �2

being the corresponding infinite unknown vector), test the equation against the
infinite set of test functions vh = ψ̌μ. The PDE becomes

Řu = f

where Ř = (rλ,μ) is the bi-infinite stiffness matrix and f = {fμ} the bi-infinite
right-hand side vector, with

rλ,μ = a(ψ̌μ, ψ̌λ) =
∫

Ω

(∇ψ̌μ · ∇ψ̌λ + ψ̌μψ̌λ), fλ = 〈f, ψ̌λ〉.

For such a bi-infinite linear system we can formally write down an iterative solution
scheme. To fix the ideas let us consider a simple Richardson scheme:

The Richardson Scheme for the Continuous Problem

• initial guess u0 = 0

• un −→ un+1
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– compute rn
λ = fλ − (Řun)λ

– un+1 = un + θrn

• iterate until error ≤ tolerance.

It is well known that the behavior of the above scheme is related to the
behavior of the operator I − θŘ. In this regard we have the following lemma
([18]).

Lemma 3.12. There exist two constants q̃ and θ0, such that for all θ with 0 < θ ≤ θ0

and for all q with q̃ < q ≤ 2,

‖I − θŘ‖L(�q,�q) ≤ ρ < 1. (3.13)

Thanks to such a lemma (which is closely related to the preconditioning
results described in the previous section) it is not difficult to prove that there
exists a θ0 such that the Richardson scheme for the continuous problem converges
provided θ < θ0.

The Nonlinear Richardson Scheme

The idea is to modify the above scheme by forcing the functions un =
∑

λ ǔλψ̌λ

to be in the nonlinear space ΣN . This reduces to forcing the iterates un to have at
most N nonzero entries. In order to do so we plug into the scheme the nonlinear
projector PN of Definition 3.10 as follows:

• initial guess u0 = 0

• un −→ un+1

– compute rn
λ = fλ − (Řun)λ

– un+1 = PN (un + θrn) (un+1 =
∑

λ un+1
λ ψλ ∈ ΣN )

• iterate until error ≤ tolerance.

By construction the result of this procedure will belong to ΣN . This scheme
is however not yet computable since it involves operations on infinite matrices and
vectors. We will give an idea on how this issue can be dealt with in Section 3.5.

Theorem 3.13. If u ∈ Bs+t,q
q (Ω) with q̃ < q ≤ 2, t = d/q − d/2, then there exists

a θ0 s.t. for 0 < θ ≤ θ0 it holds:

• stability: we have

‖un‖�2 � ‖f‖�2 + ‖u0‖�2 , ∀n ∈ N.
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• approximation error estimate: for en = un − u it holds:

‖en‖�2 ≤ ρn‖e0‖�2 +
C

1 − ρ
N−t/d,

where C is a constant depending only on the initial data.

Proof. Stability. We have, using the �2-boundedness of PN as well as (3.13),

‖un‖�2 = ‖PN (un−1 + θ(g − Řun−1))‖�2 ≤ ‖(1 − θŘ)un−1 + θg‖�2

≤ ‖θg‖�2 + ρ‖un−1‖�2.

Iterating this bound for n decreasing to 0 we obtain

‖un‖�2 ≤
(

n−1∑
i=0

ρi

)
‖θg‖�2 + ρn‖u0‖�2 ,

which gives us the stability bound. In the same way we can prove that

‖un‖�q � ‖f‖�q + ‖u0‖�q , ∀n ∈ N. (3.14)

Convergence. We write down an error equation

en+1 = en − θŘen + εn,

with
εn = PN (un + θ(f − Řun)) − (un + θ(f − Řun)).

We take the �2-norm, and, using (3.13) once again,

‖en+1‖�2 ≤ ρ‖en‖�2 + ‖εn‖�2 ≤
n∑

i=0

ρn−i‖εi‖�2 + ρn+1‖e0‖�2

≤
(

max
0≤k≤n

‖εk‖�2

) n∑
k=1

ρk + ρn+1‖e0‖�2 .

Let us bound εn. Using (3.14) we have

‖εn‖�2 ≤ N−t/d‖un +θ(f −Řun)‖�q ≤ N−t/d‖(I−θŘ)un +θf‖�q � N−t/d. �

3.3 Wavelet Stabilisation of Unstable Problems

As we saw in the previous chapter, wavelet bases give us a way of practically real-
izing equivalent scalar products for Sobolev spaces of negative and/or fractionary
index. This is the key ingredient of wavelet stabilisation.
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To fix the ideas, let us consider a simple model problem, the Stokes equation,
though in general the ideas that we are going to present can be easily generalised
to a wide class of differential equations (provided a wavelet basis for the domain of
definition of the problem can be constructed). Given f ∈ (H−1(Ω))d (Ω bounded
domain of R

d, d = 2, 3) find u : Ω −→ R
d and p : Ω −→ R such that{ −Δu + ∇p = f,

∇ · u = 0,
(3.15)

u = 0, on ∂Ω,

∫
Ω

p = 0. (3.16)

or, in variational formulation,

Problem 3.14 (Stokes Problem). Find u ∈ U = (H1
0 (Ω))d and p ∈ Q = L2

0(Ω)
such that for all v ∈ U and q ∈ Q one has∫

Ω

(∇u · ∇v − p∇ · v) =
∫

Ω

f · v, (3.17)∫
Ω

∇ · uq = 0, (3.18)

where L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω q = 0} ⊂ L2(Ω) denotes the space of L2-functions

with zero mean value. It is well known that the bilinear form a : (U × Q) × (U ×
Q) −→ R,

a(u, p; v, q) =
∫

Ω

∇u · ∇v −
∫

Ω

∇ · vp +
∫

Ω

∇ · uq, (3.19)

corresponding to such a problem is not coercive. Existence and uniqueness of the
solution of such a problem are ensured by the inf-sup condition

inf
q∈Q

sup
v∈U

∫
Ω
∇ · vq

‖v‖H1(Ω)‖q‖L2(Ω)
≥ α > 0. (3.20)

As a consequence, in solving such a problem, an arbitrary choice of the discreti-
sation spaces for the velocity u and for the pressure p can lead to an unstable
discrete problem. In order to have stable discretisations, the velocity and pressure
approximation spaces Uh and Qh need to be coupled in such a way that they
satisfy a discrete inf-sup condition [13]:

inf
qh∈Qh

sup
vh∈Uh

∫
Ω ∇ · vhqh

‖vh‖H1(Ω)‖qh‖L2(Ω)
≥ α1 > 0, (3.21)

with α1 independent of the discretisation step h. Many pairs of discretization
spaces are available satisfying such a property. However, for several different rea-
sons, it might be desirable to be able to design methods based on discretization
spaces that do not satisfy it. Stabilised methods are a class of method that, through
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different means, give the possibility of effectively avoiding the instabilities deriving
from the lack of validity of the inf-sup condition.

The idea of the wavelet stabilised method [3] is to introduce the following
equivalent formulation of the Stokes problem.

Problem 3.15 (Regularized Stokes problem). Find u ∈ (H1
0 (Ω))d and p ∈ L2

0(Ω)
such that for all v ∈ (H1

0 (Ω))d and q ∈ L2
0(Ω) we have∫

Ω

(∇u · ∇v − p∇ · v) =
∫
Ω

f · v, (3.22)∫
Ω

∇ · uq + γ(−Δu + ∇p,∇q)−1 = γ(f,∇q)−1, (3.23)

where γ > 0 is a mesh-independent constant to be chosen and where (·, ·)−1 :
(H−1(Ω))d × (H−1(Ω))d −→ R is the equivalent scalar product for the space
(H−1(Ω))d defined according to (2.49). It is easy to check that the bilinear form
astab : ((H1

0 (Ω))d × L2
0(Ω))2 −→ R which is defined by

astab(u, p; v, q) =
∫

Ω

∇u · ∇v −
∫

Ω

p∇ · v +
∫

Ω

∇ · uq + γ(−Δu + ∇p,∇q)−1,

and which corresponds to such a formulation, is continuous. Moreover it is possible
to prove that it is coercive for suitable choices of the constant γ. More precisely
the following lemma holds [2].

Lemma 3.16. There exists a constant γ0 (depending on the domain Ω) such that
if γ satisfies 0 < γ < γ0, then the bilinear form astab is coercive.

Proof. We have

astab(u, p; u, p) ≥ |u|2H1(Ω) + γ‖∇p‖2
H−1(Ω) − γ‖Δu‖H−1(Ω)‖∇p‖H−1(Ω).

We now observe that, using the Poincaré inequality, we can write, for κ > 0,

‖Δu‖H−1(Ω)‖∇p‖H−1(Ω) ≤ C|u|H1(Ω)‖∇p‖H−1(Ω) � Cκ

2
|u|2H1(Ω)+

C

2κ
‖∇p‖2

H−1(Ω).

This yields

astab(u, p; u, p) ≥
(
1 − 1

2
γCκ

)
|u|2H1(Ω) + γ

(
1 − C

2κ

)
‖∇p‖2

H−1(Ω).

By choosing κ = C and γ0 = 2/C2 (so that for γ < γ0 we have (1 − 1
2γCκ) > 0)

we obtain that
astab(u, p; u, p) � |u|2H1(Ω) + γ‖∇p‖2

H−1(Ω)

(the constant in the inequality depending on γ). We now observe that, since the
Stokes operator is boundedly invertible, we can write

‖u‖2
H1(Ω)+‖p‖2

L2(Ω) � ‖−Δu+∇p‖2
H−1(Ω)+‖∇·u‖2

L2(Ω) � |u|2H1(Ω)+‖∇p‖2
H−1(Ω),

which allows us to conclude. �
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Given any finite-dimensional subspaces Uh ⊂ (H1
0 (Ω))d and Qh ⊂ L2

0(Ω) we
consider the following discrete problem.

Problem 3.17 (Discrete Stabilised Problem). Find uh ∈ Uh and ph ∈ Qh such
that for all vh ∈ Uh and qh ∈ Qh we have∫

Ω

(∇uh · ∇vh − ph∇ · vh) =
∫
Ω f · vh, (3.24)∫

Ω

∇ · uhqh + γ(−Δuh + ∇ph,∇qh)−1 = γ(f,∇qh)−1. (3.25)

Using the standard theory for the Galerkin discretisation of coercive opera-
tors ([15]) we immediately obtain the following error estimate.

Proposition 3.18. Let (u, p) be the solution of problem (3.17) and (uh, ph) the
solution of problem (3.24) Then the following error estimate holds:

‖u−uh‖H1(Ω)+‖p−ph‖L2(Ω) � ( inf
vh∈Uh

‖u−vh‖H1(Ω)+ inf
qh∈Qh

‖p−qh‖L2(Ω)). (3.26)

The use of the stabilised formulation gives then rise to an optimal discretisa-
tion of the Stokes problem, for which the choice of the approximation spaces is not
subject to limitations on the coupling of the discretisations for velocity and pres-
sure. Remark that the stabilized problem falls in the framework considered in the
previous sections. We can then apply for its solution all the techniques described
therein.

Many problems share the same characteristics as the Stokes problem, and
can therefore benefit from an analogous approach. An abstract result can be
found in [2] and [5]. This has been applied in the domain decomposition frame-
work (see [9], [6]), as well as to the Lagrange multiplier formulation of Dirichlet
problems [7]. The use of wavelets to realize negative and/or fractionary scalar
products has also been applied in the framework of the Least Squares method
(see [12],[24]). An analogous technique, based on the wavelet evaluation of a −1/2
scalar product, has also been applied to convection-diffusion problems with dom-
inating convection [8].

3.4 A-Posteriori Error Estimates

The norm equivalence for the Sobolev spaces with negative index can be exploited
also for designing a posteriori error estimators for the numerical solution of partial
differential equations. Again, to fix the ideas, let us consider the reaction-diffusion
equation (3.12). Assume that we have somehow computed an approximation uh

to the solution u, with uh in some finite-dimensional approximation space. The
method used to obtain such an approximation plays no essential role in the fol-
lowing considerations (though some simplifications can take place if the numerical
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solution is obtained using the Galerkin method with the same wavelet basis func-
tions used to characterize the (H1(Ω))′ norm in the following). It is well known
that the reaction-diffusion operator −Δ+1 is an isomorphism between H1(Ω) and
its dual (H1(Ω))′. Then we can bound

‖u − uh‖H1(Ω) � ‖(1 − Δ)(u − uh)‖(H1(Ω))′ = ‖f + (Δ − 1)uh‖(H1(Ω))′ .

Once again, the norm equivalence in terms of wavelet coefficients provides us a
practical way of computing the (equivalent) (H1(Ω))′ norm on the right-hand side
(which is otherwise usually replaced by some weighted L2(Ω)-norm). By using
wavelet bases we can in fact replace the (H1(Ω))′-norm by its equivalent in terms
of wavelet coefficients, obtaining the bound

‖u − uh‖2
H1(Ω) �

∑
j

∑
λ∈Λj

2−2j|〈f + (Δ − 1)uh, ψ̃λ〉|2. (3.27)

The term eλ = |〈f + Δuh, ψ̃λ〉| plays then the role of an error indicator, that
for λ = (j, k) gives an information on the error at position k/2j and frequency
∼ 2j . Remark that the sum on the right-hand side of (3.27) is infinite. In order for
the above error indicator to be applicable one will have to find a way of truncating
it to a finite sum while still keeping the validity of an estimate of the form (3.27).
This can be done by an argument similar to the one described in the next section.

3.5 Operations on Infinite Matrices and Vectors

For most of the applications considered we ended up with methods that implied the
computation of either an infinite sum or of an infinite matrix/vector multiplication
involving

• matrices A expressing a differential operator with good properties (continu-
ity, coercivity, . . . );

• vectors �u of wavelet coefficients of a discrete function.

This is the case of both the computation of the equivalent scalar product (·, ·)−1

appearing in Section 3.3 and of the infinite matrix/vector multiplication appearing
in Section 3.2. These matrices and vectors are not directly maniable. However,
thanks to the properties of wavelets it is in general possible to replace the infinite
sum by a finite one without substantially changing the resulting method.

For the sake of simplicity let us concentrate on the case of Ω a bounded do-
main, so that for any fixed level j the cardinality of Λj is finite. To fix the ideas, let
us consider the equivalent scalar product (·, ·)−1 in Section 3.3. Heuristically, the
argument that we have in mind is that if a discrete function satisfies an inverse
inequality (∼ it is “low frequency”), then the levels in the infinite sum correspond-
ing to “high frequency” components will be negligible and then the infinite sum
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in (2.49) can be truncated. Just for this example we would like to show how this
heuristics can be made rigorous. The aim is to replace the scalar product

(F, G)−1 =
∑

j

∑
λ∈Λj

2−2j〈F, ψ̃λ〉〈G, ψ̃λ〉

in (3.22) with a computable bilinear form of the form

(F, G)−1,J =
∑
j≤J

∑
λ∈Λj

2−2j〈F, ψ̃λ〉〈G, ψ̃λ〉,

while retaining the properties (coercivity on the discrete space of the stabilized
operator) of the resulting discrete method.

Since the aim of adding the stabilisation term to the original equation is to
obtain control on the pressure ph through a coercivity argument, and since the
velocity is controlled through coercivity already for the original bilinear form a,
the fundamental property of (·, ·)−1 that we want to keep, in this case, is that for
arbitrary elements qh ∈ Qh one has

(∇qh,∇qh)−1,J =
∑
j≤J

∑
λ∈Λj

2−2j|〈∇qh, ψ̃λ〉|2 � ‖∇ph‖H−1(Ω). (3.28)

We will have to replace the heuristical concept qh is “low frequency” by a
suitable inverse inequality: more precisely we will assume that ∇Qh ⊂ Ht(Ω) for
some t with −1 < t, and that for all qh ∈ Qh

‖∇qh‖t � h−t−1‖∇qh‖−1.

Under this assumption it is actually possible to prove that there exists a
J = J(h) depending on the mesh-size parameter h such that (3.28) holds. The
proof is simple and gives an idea of how this kind of argument works in general.
For any given J > 0 we can write

‖∇qh‖2
H−1(Ω) �

∑
j≤J

∑
λ∈Λj

2−2j|〈∇qh, ψ̃λ〉|2 +
∑
j>J

∑
λ∈Λj

2−2j|〈∇qh, ψ̃λ〉|2.

Let us analyse the last term:∑
j>J

∑
λ∈Λj

2−2j |〈∇qh, ψ̃λ〉|2 � 2−2(t+1)J
∑
j>J

∑
λ∈Λj

22tj |〈∇qh, ψ̃λ〉|2

� 2−2(t+1)J‖∇qh‖2
Ht(Ω)

� 2−2(t+1)Jh−2(t+1)‖∇qh‖2
H−1(Ω).

Then we can write

‖∇qh‖2
H−1(Ω) ≤

∑
j≤J

∑
λ

2−2j |〈∇qh, ψ̃λ〉|2 + C′2−2(t+1)Jh−2(t+1)‖∇qh‖2
H−1(Ω)
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whence

(1 − C′2−2(t+1)Jh−2(t+1))‖∇qh‖2
H−1(Ω) �

∑
j≤J

∑
λ

2−2j |〈∇qh, ψ̃λ〉|2

which, provided J is chosen in such a way that (1 − C′2−2(t+1)Jh−2(t+1)) ≤ 1/2,
yields

‖∇qh‖2
H−1(Ω) �

∑
j≤J

∑
λ

2−2j|〈∇qh, ψ̃λ〉|2.

It is not difficult to show that Lemma 3.16 still holds if we replace (·, ·)−1 by
(·, ·)−1,J in the definition of the stabilized method (3.22), (3.23). In doing so, we
obtain a computable method with the same characteristics. In particular continuity
and coercivity of the stabilized bilinear form will still hold, yielding optimal error
estimates.

An analogous result holds for the evaluation of the infinite matrix/vector
multiplication A�̌u that is found in the nonlinear Richardson scheme of Chapter 3.2.
Taking advantage of the fact that, by construction, �̌u is the linear combination of a
finite number of wavelets and that, thanks to the localisation property of wavelets,
the infinite matrix A can be sparsified (by retaining, per line, only a finite number
of entries which are, in absolute value, greater than a suitable tolerance ε) one
can compute the products A�̌u in a finite number of operations within a given
tolerance [18].
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Part II

High-Order Shock-Capturing
Schemes for Balance Laws

Giovanni Russo



Chapter 1

Introduction

The purpose of these lecture notes is to provide an overview of the modern finite-
volume and finite-difference shock-capturing schemes for systems of conservation
and balance laws.

An emphasis is put in trying to give a unified view of such schemes, by
identifying the essential aspects in their construction, namely conservation form,
numerical flux function, nonlinear reconstruction, for the space discretization, and
high-order accuracy and stability for time discretization.

Also, we shall attempt to present some of the various forms in which the
equations can be discretized, by comparing method-of-lines approach for unstag-
gered finite-difference and finite-volume with time discretizations more entangled
with space discretizations.

After a brief introduction on hyperbolic systems of conservation laws, we
describe some classical numerical scheme in conservation form. The mathemat-
ical theory of quasilinear hyperbolic systems of conservation laws is used as a
guideline in the construction and development of shock-capturing schemes, that
imports from it relevant concepts such as conservation form, entropy inequality,
propagation along the characteristics, and so on.

The next section is devoted to the construction of high-order shock-capturing
finite-volume schemes. The schemes are obtained in a semidiscrete form, by per-
forming first space discretization, and then time discretization. The key role of
the numerical flux function and nonlinear (essentially) non-oscillatory reconstruc-
tion will be emphasized. As an alternative to finite-volume discretization, high-
order finite-difference schemes can be constructed, and the relative merits of finite-
volume and finite-difference methods will be discussed.

The third part of the notes concerns the treatment of systems of balance laws.
For standard problems, in which the source term is not stiff, the extension of the
finite-difference or finite-volume schemes to systems with source is straightforward.
There are, however, two cases in which such an extension requires a more detailed
investigation.
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One case concerns the systems with stiff source, where time discretization
has to be chosen with care, in order to construct an efficient scheme. As we shall
see, Runge-Kutta Implicit-Explicit schemes (IMEX) are often a good choice for
hyperbolic systems with stiff source. We shall describe IMEX RK-finite-difference
schemes obtained by a method of lines approach.

1.1 Hyperbolic Systems

Let us consider a system of equations of the form

∂u

∂t
+

∂f(u)
∂x

= 0, (1.1)

where u(x, t) ∈ R
mc is the unknown vector field, and f : R

mc → R
mc is assumed to

be a smooth function. The system is hyperbolic in the sense that for any u ∈ R
mc ,

the Jacobian matrix A = ∇uf(u) has real eigenvalues and its eigenvectors span
R

mc .
Such a system is linear if the Jacobian matrix does not depend on u, otherwise

it is called quasilinear.
Linear hyperbolic systems are much easier to study. For these systems, the

initial value problem is well posed, and the solution maintains the regularity of
the initial data for any time. Such systems can be diagonalized, and therefore they
can be reduced to mc linear scalar equations.

The situation is much different with quasilinear systems. For them the initial
value problem is well posed locally in time. In general, the solution loses the
regularity of the initial data after finite time. Even in the case of the single scalar
equation, i.e., mc = 1, the strong solution ceases to exist, and it is necessary to
consider weak solutions. For smooth initial data, these have the general appearance
of piecewise smooth functions, which contain jump discontinuities [36].

If we denote by xΣ the position of the discontinuity and by VΣ its velocity,
then the jump conditions across Σ read

−VΣ [[u]] + [[f ]] = 0, (1.2)

where for any quantity h(x), [[h]] = h(x+
Σ) − h(x−Σ) denotes the jump across the

discontinuity interface Σ.
As an example, Figure 1.1 shows the solution of Burgers equation, for which

mc = 1 and f = u2/2, with the initial condition

u(x, 0) = 1 +
1
2

sin(πx), (1.3)

x ∈ [−1, 1], and periodic boundary conditions. A discontinuity forms at time
t = 2/π ≈ 0.6366. The figure shows the initial condition, and the solution at times
t = 0.5 and t = 0.8. In the latter case, the parametric solution constructed by
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the characteristics is multi-valued. A single-valued solution is restored by fitting
a shock discontinuity at a position that maintains conservation. An excellent in-
troduction to the subject of linear and nonlinear waves is the classical book by
Whitham [64].

Figure 1.1: Burgers equation at different times (t = 0, 0.5, 0.8).

Piecewise smooth solutions that satisfy the jump conditions are not unique
(see, for example, [38], Section 3.5).

An entropy condition is used to guarantee uniqueness of the solution, at
least in the scalar case. It states that for any convex function η(u) there exists an
entropy flux ψ(u) such that the pair [η, ψ] satisfies (see Section 1.6)

∂η

∂t
+

∂ψ(u)
∂x

≤ 0 (1.4)

for any weak solution of the equation, and the equal sign holds for smooth solu-
tions.

In the scalar case the entropy condition ensures that the weak solution is the
unique viscosity solution, i.e., it is obtained as the limit

lim
ε→0

uε(x, t),

where uε satisfies the equation

∂uε

∂t
+

∂f(uε)
∂x

= ε
∂2uε

∂x2
.
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For the relation between entropy condition and viscosity solutions in the case of
systems see, for example, [36], or [16].

The mathematical theory of hyperbolic systems of conservation laws is used
as a guideline for the construction of schemes for the numerical approximation of
conservation laws. Consider, for example, the conservation property. Integrating
Equation (1.1) over an interval [a, b] one has

d

dt

∫ b

a

u(x, t) dx = f(u(a, t)) − f(u(b, t)).

If u(a, t) = u(b, t) (for example if the boundary conditions are periodic), then the
quantity

∫ b

a
u(x, t) is conserved in time. Such a conservation property is directly

related to the jump condition (1.2).
It is important that a similar conservation property is maintained at a discrete

level in a shock-capturing scheme, otherwise the scheme will not provide the correct
propagation speed for the discontinuities.

1.2 Simple Three-Point Schemes

In this section we review some of the basic three-point stencil schemes used for
the numerical solution of the scalar advection equation

∂u

∂t
+ c

∂u

∂x
= 0. (1.5)

Standard centered difference in space and forward Euler in time gives a numerical
scheme that converges only under the restriction Δt = O(Δx2), which is not
natural for hyperbolic problems. One can show that using three-level Runge-Kutta
time discretization coupled with centered difference leads to a scheme which is
stable for cΔt < KΔx, where K is a constant that depends on the scheme. On
the other hand, it is possible to combine space and time discretization, and obtain
one-level schemes (in time) which are stable. The upwind scheme uses a first-order
approximation of the space derivative. Upwinding time discretization is obtained
by discretizing the space derivatives as follows:

∂u

∂x

∣∣∣∣
xj

≈

⎧⎪⎨⎪⎩
uj − uj−1

Δx
if c ≥ 0,

uj+1 − uj

Δx
if c < 0.

First-order upwinding is obtained by explicit Euler and first-order upwind space
discretization1 :

un+1
j − un

j

Δt
+ c

un
j − un

j−1

Δx
= 0 if c ≥ 0,

1For the moment we do not specify the range of the cell index j, which depends also on the
boundary conditions and on the order of accuracy of the method.
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un+1
j − un

j

Δt
+ c

un
j+1 − un

j

Δx
= 0 if c < 0.

The scheme can be written in a compact form as

un+1
j = un

j − μ(c+(un
j − un

j−1) + c−(un
j+1 − un

j )), (1.6)

where μ = Δt/Δx is the mesh ratio, and for all x ∈ R, x+ ≡ max(x, 0), x− ≡
min(x, 0). Let us assume for the sake of argument that c > 0, and let us study the
consistency of the upwind scheme, by applying the discrete operator to the exact
solution of the equation

LΔu(x, t) ≡ u(x, t + Δt) − u(x, t)
Δt

+ c
u(x, t) − u(x − Δx, t)

Δx
. (1.7)

Let k ≡ Δt, h ≡ Δx. By using Taylor expansion of u(x, t) in t and x, one has

u(x, t + k) − u(x, t)
k

=
∂u

∂t
(x, t) +

k

2
∂2u

∂t2
(x, t + τ),

u(x, t) − u(x − h, t)
h

=
∂u

∂x
(x, t) − h

2
∂2u

∂x2
(x − ξ, t),

with τ ∈ [0, k], ξ ∈ [0, h]. Inserting this expansion into the discrete operator one
has

LΔu(x, t) =
∂u

∂t
+ c

∂u

∂x
+

k

2
∂2u

∂t2
(x, t + τ) − ch

2
∂2u

∂x2
(x − ξ, t) .

If u satisfies the equation, then ut + cux = 0, and the consistency error is given by

d(x, t) =
k

2
∂2u

∂t2
(x, t + τ) − ch

2
∂2u

∂x2
(x − ξ, t) = O(k, h) .

A scheme is said to be consistent if d(x, t) → 0 as k → 0, h → 0. In this case the
scheme is consistent to the first order in k and h, since d(x, t) is an infinitesimal
of first order in Δt and Δx.

The stability of the scheme can be checked in various ways. Since the equation
and the method are linear, Fourier analysis can be used. Here we assume periodic
boundary conditions. We look for a solution of the form

un
j = ρneijξ, (1.8)

where i =
√−1 denotes the imaginary unit. Assume c > 0. Then we have

un+1
j = un

j − k

h
c(un

j − un
j−1) ,

substituting (1.8) in the above expression one computes the amplification factor

ρ = 1 − k

h
c(1 − eiξ)

= 1 − λ(1 − cos ξ) − iλ sin ξ ,
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where λ ≡ kc/h. Performing the calculations one has

|ρ|2 = 1 − 2λ(1 − λ)(1 − cos ξ) .

Because 1− cos ξ ≥ 0 and λ > 0, it is |ρ|2 < 1 if 1− λ > 0, and therefore if λ < 1.

Figure 1.2: Geometrical interpretation of the CFL condition for the scalar equa-
tion.

The geometric interpretation of this condition

0 < λ < 1, i.e., 0 <
ck

h
< 1 ,

is expressed as follows: the characteristics that passes through point (xj , tn+1),
when drawn backward in time, intercepts the line t = tn at a point between xj−1

and xj (see Figure 1.2). As we shall see, this stability condition is a particular case
of a more general necessary condition known as CFL condition.

Another simple three-point scheme is Lax-Friedrichs scheme (LxF)

un+1
j =

1
2
(un

j+1 + un
j−1) −

ck

2h
(un

j+1 − un
j−1) , (1.9)

which is similar to the explicit Euler + central difference, except that (un
j+1 +

un
j−1)/2 replaces un

j . Let us check the consistency of the scheme. The discrete
operator corresponding to LxF is

LΔu(x, t) =
1
k

[
u(x, t + k) − 1

2
(u(x − h, t) + u(x + h, t))

]
+

c

2h
(u(x + h, t) − u(x − h, t)) .

It is easy to check that

LΔu(x, t) = ut + cux +
1
2
k

(
utt − h2

k2
uxx

)
+ O(h2, k2) . (1.10)

Therefore if we assume that h → 0, k → 0, k/h = μ = constant, then, if u is a
solution of the wave equation ut + cux = 0, it follows that

LΔu =
1
2
k

(
utt − h2

k2
uxx

)
+ O(h2, k2) .
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Therefore the scheme is first-order consistent in h and k. Let us compare upwind
and Lax-Friedrichs scheme. Using the property

utt = c2uxx ,

one has

• upwind LΔu =
1
2
(kc2 − ch)uxx =

1
2
ch

(
ck

h
− 1

)
uxx + O(h2),

• LxF LΔu =
1
2
(kc2 − h2

k
)uxx =

1
2

h

k
h

(
c2k2

h2
− 1

)
uxx + O(h2).

Let λ ≡ ch/k. Then, neglecting second-order terms, we can write

LΔupu =
1
2
ch(λ − 1)uxx,

LΔLxF u =
1
2
ch

λ2 − 1
λ

uxx =
1 + λ

λ
LΔupu.

From this expression we see that upwind scheme has in general a smaller dis-
cretization error. Furthermore, if λ → 0, LΔup = O(h) uniformly, while for fixed
h, LΔLxF may be unbounded. Therefore, for a fixed grid size in x, it is not possible
to choose arbitrarily small time steps for the LxF scheme.

Stability of LxF scheme can be checked by the usual Fourier technique. One
has (see (1.9))

ρ =
1
2
(eiξ + e−iξ) − λ

eiξ − e−iξ

2
= cos ξ − λi sin ξ .

Therefore
|ρ|2 = cos2 ξ + λ2 sin2 ξ = 1 + (λ2 − 1) sin2 ξ .

It is
max

ξ
|ρ| = max(1, |λ|) ,

and therefore if λ ≤ 1, no Fourier mode is amplified, and if |λ| > 1, there are
Fourier modes that grow in time. We conclude that a necessary and sufficient
condition for the linear stability of LxF scheme is |λ| ≤ 1.

Remark 1.1. Upwind and Lax-Friedrichs schemes are both first-order accurate in
space and time, and have the same stability restriction, but upwind has a lower
discretization error, therefore it is more accurate. This larger accuracy, however, is
counterbalanced by the greater complexity of the scheme. In the case of the single
scalar equation, upwinding requires to check for the sign of c. As we shall see, for
systems upwinding-based schemes are more complex to apply then central-based
schemes, such as LxF.
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Second-order accuracy in space and time: the Lax-Wendroff scheme. A simple
second-order scheme can be obtained by expanding the solution in time using a
Taylor expansion:

u(x, t + k) = u + kut +
1
2
k2utt + O(k3) ,

where we omit the argument of the functions if it is (x, t). Making use of the
equation ut = −cux, one has

u(x, t + k) = u − kcux +
1
2
k2c2uxx + O(k3) .

Discretizing the space derivatives by central differences and neglecting terms of
O(k3 + kh2) one has

un+1
j = un

j − λ

2
(un

j+1 − un
j−1) +

1
2
λ2(un

j+1 − 2un
j + un

j−1). (1.11)

It is easy to check that the consistency error is

LΔLW u(x, t) = ut + cux +
1
2
k(utt − c2uxx) +

ch2

6
uxxx +

k2

6
uttt + O(h2k) ,

therefore, if ut + cux = 0, then

LΔLW u(x, t) =
ch2

6
uxxx +

k2

6
uttt + O(h2k) ,

showing that the scheme is actually second-order accurate.
About the stability, Fourier analysis gives

ρ = 1 − λ
eiξ − e−iξ

2
+ λ2(cos ξ − 1)

= 1 − iλ sin ξ + λ2(cos ξ − 1)

|ρ|2 = 1 − λ2(1 − λ2)(1 − cos ξ)2 , ,

and therefore
|ρ|2 ≤ 1 ∀ξ ∈ [0, 2π] ⇔ |λ| ≤ 1 .

In Section 3.2 we shall make use of a different concept of stability, more suited for
nonlinear equations.

1.3 Conservation Form, Jump Conditions and
Conservative Schemes

Let us consider the system (1.1) that we rewrite here

ut + f(u)x = 0 . (1.12)
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If f(u) is nonlinear, then discontinuities may develop in finite time. For a smooth
solution, the system is equivalent to

ut + A(u)ux = 0 , (1.13)

where A(u) = df/du is the Jacobian matrix. However, when discontinuities de-
velop, the two forms are no longer equivalent.

A jump discontinuity, once formed, moves with a speed VΣ given by the jump
conditions (1.2).

If we want that such a conservation property persists also at a discrete
level, yielding the correct propagation speed of discontinuities, then the numerical
scheme has to take a special form (conservative scheme). We distinguish between
semidiscrete and fully discrete conservative schemes. They can be interpreted as
an approximation of the conservation equation in integral form.

The general approach to construct semidiscrete schemes is obtained as fol-
lows. Let us divide space into J cells Ij ≡ [xj−1/2, xj+1/2] centered at xj , j =
1, . . . , J (see Figure 1.3). Let us integrate Equation (1.12) in cell Ij , and divide by
Δx. Then we obtain:

dūj

dt
+

1
Δx

[f(u(xj+1/2, t)) − f(u(xj−1/2, t))] = 0 , (1.14)

where
ūj(t) ≡ 1

Δx

∫ xj+1/2

xj−1/2

u(x, t) dx

denotes the cell average.

j-1/2x x j+1/2

tn+1

tn

Figure 1.3: Integration over a cell in space-time and definition of finite-volume,
fully discrete schemes.

Equation (1.14) suggests to look for numerical schemes of the form

dūj

dt
= − 1

Δx
[Fj+1/2 − Fj−1/2] , (1.15)

where Fj+1/2 is the numerical flux at the right edge of the cell j.
In order to convert (1.14) into a numerical scheme, one needs to relate point-

wise values of u(x, t) with cell averages. In this way Fj+1/2 will be some function
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of ūj and ūj+1 (and possibly of other cell averages, in more complex schemes). In
the simplest case one has

Fj+1/2 = F (ūj , ūj+1) .

Scheme (1.15), with some choice of the numerical flux function F (·, ·), is in semidis-
crete form. Time discretization can be used to solve the system of ODE’s (1.15).
This approach allows a great flexibility in the choice of the numerical flux func-
tion and time integration. This approach of performing first space and then time
discretization is called method of lines. It is the probably the preferred choice for
developing very high-order, general purpose schemes.

Fully discrete schemes are obtained either by discretizing the semidiscrete
scheme in time (method of lines) or directly by integrating Equation (1.12) in a
cell in space and time (see Figure 1.3). Integration over the cell gives

ūn+1
j = ūn

j − 1
Δx

∫ tn+1

tn

[f(u(xj+1/2, t)) − f(u(xj−1/2, t))] dt.

A numerical scheme inspired by this form of the equation takes the form

ūn+1
j = ūn

j − Δt

Δx
(Fn

j+1/2 − Fn
j−1/2) , (1.16)

where now the numerical flux Fn
j+1/2 is an approximation of the time average of

f along the edge of the cell average in the two adjacent cells. In the simplest case
one has

Fn
j+1/2 = F (ūn

j , ūn
j+1) . (1.17)

The schemes we have seen (upwind, LxF and LW) belong to this category. For
example, the upwind scheme applied to the scalar case of equation (1.12), assuming
c(u) = df/du > 0, takes the form

ūn+1
j = ūn

j − Δt

Δx
(f(ūn

j ) − f(ūn
j−1)) ,

therefore Fup
j+1/2 = f(ūn

j ).
The Lax-Friedrichs scheme takes the form

ūn+1
j =

1
2
(ūn

j+1 + ūn
j−1) −

Δt

2Δx
(f(ūn

j+1) − f(ūn
j−1)) .

This can be written as

ūn+1
j = ūn

j − Δt

Δx
[Fn

j+1/2 − Fn
j−1/2] ,

with

Fn
j+1/2 = FLxF

j+1/2 =
1
2
(f(ūn

j+1) + f(ūn
j )) − Δx

2Δt
(ūn

j+1 − ūn
j ) . (1.18)
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The Lax-Wendroff scheme can also be written in this form. In fact, the Lax-
Wendroff scheme is based on Taylor expansion, therefore

u(x, t + k) = t + kut +
1
2
k2utt + O(k3)

= u − kf(u)x − 1
2
k2f(u)tx + O(k3)

= u − k

[
f(u) +

1
2
k(Aut)

]
x

+ O(k3)

= u − k

[
f(u) − 1

2
kAf(u)x

]
x

+ O(k3) .

Neglecting O(k3) terms, this expression suggests the following conservative
scheme:

ūn+1
j = ūn

j − Δt

Δx

[
FLW

j+1/2 − FLW
j−1/2

]
,

with
FLW

j+1/2 =
1
2
(f(ūn

j ) + f(ūn
j+1)) −

Δt

2Δx
Aj+1/2(f(ūj+1) − f(ūj)) ,

where the Jacobian matrix Aj+1/2 is the matrix A(u) computed in (ūj + ūj+1)/2.

Remark 1.2. The Lax-Wendroff scheme requires the calculation of the Jacobian
matrix. Second-order explicit schemes that do not require the calculation of A are
the Richtmyer two-step Lax-Wendroff method (RLW)

u
n+1/2
j+1/2 =

1
2
(un

j + un
j+1) −

Δt

Δx
(f(un

j+1) − f(un
j )),

un+1
j = un

j − Δt

Δx
(f(un+1/2

j+1/2 ) − f(un+1/2
j−1/2 )) ,

and the MacCormack, method (MC)

u∗j = un
j − Δt

Δx
(f(un

j+1) − f(un
j )),

un+1
j =

1
2
(un

j + u∗j) −
Δt

2Δx
(f(u∗j ) − f(u∗j−1)) .

Note that all these methods (LW, RLW, MC) are second-order accurate in space
and time, and the amplification factor is the same, namely

ρ = 1 − λ2(1 − cos ξ) − iλ sin ξ ,

therefore they are linearly stable if |λmax| ≤ 1, where

λmax = max
j

c(un
j )

Δt

Δx
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1.4 Consistency and Convergence

For a conservative scheme to be consistent, one requires that

LΔu → 0 as h, k → 0, h/k fixed .

The condition
F (v, v) = f(v) ∀v ∈ R

mc , (1.19)

together with some regularity assumption on F (for example that F is Lipschitz
continuous in both arguments) ensures consistency of the scheme (1.16)–(1.17). In
fact one has

LΔu(x, t) =
u(x, t + k) − u(x, t)

k
+

F (u(x, t), u(x + h, t)) − F (u(x − h, t), u(x, t))
h

.

Using Taylor expansion, and assuming differentiability of F , one has

LΔu(x, t) = ut +
(

∂F

∂u1
+

∂F

∂u2

)
ux + O(h, k) ,

where by ∂F/∂u1, ∂F/∂u2 we denote the derivatives with respect to the first
and second argument, respectively, and the functions are computed at u(x, t).
Condition (1.19) and differentiability imply

∂F

∂u1
+

∂F

∂u2
=

∂f

∂u
,

and therefore LΔu(x, t) = O(h, k) for smooth solutions of the conservation law
(1.12).

A more useful concept of stability, that can be applied also to the nonlinear
case, is the L1-stability. We shall discuss it in Section 3.2.

1.5 Conservation Properties

Let us assume periodic boundary conditions at the edge of the interval [a, b].
Integrating the conservation law over a period, one has

d

dt

∫ b

a

u(x, t)dx = 0 ,

since u(a, t) = u(b, t).
We assume that the interval is divided into J cells of size Δx = (b − a)/J .
If a conservative scheme is used, then such a property is maintained at a

discrete level. In fact, from

un+1
j = un

j − Δt

Δx

[
Fj+1/2 − Fj−1/2

]
,
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one has, summing over all the J cells,

J∑
j=1

un+1
j =

J∑
j=1

un
j − Δt

Δx

[
FJ+1/2 − FJ−1/2+FJ−1/2−FJ−3/2+· · ·+F3/2 − F1/2

]

=
J∑

j=1

un
j ,

since all the intermediate terms cancel, and FJ+1/2 = F1/2 because of periodicity
(FJ+1/2 = F (uJ , uJ+1) = F (u0, u1) = F1/2, since u0 = uJ , and uJ+1 = u1).

Consistency also suggests that a conservative scheme gives the correct speed
of propagation for discontinuities. A more mathematical justification for the use
of conservative schemes is given by the Lax-Wendroff theorem, which states that
if a discrete solution converges to a function u(x, t), then this function is a weak
solution of the conservation law [37].

1.6 Entropy Condition

It is well known that weak solutions to conservation laws are not unique, even in
the case of the scalar equation.

Uniqueness, however, can be restored if an additional condition is imposed.
This additional condition is called entropy condition.

What is a mathematical entropy? An entropy function can be defined both for
the scalar equation and for systems of conservation laws. It is a convex function
of the unknown field u that satisfies an additional conservation law for smooth
solutions. A convex function η(u) is an entropy associated to Equation (1.12) if
there exists a function ψ(u), called entropy flux, such that, for all smooth solutions
of the conservation equation (1.12), the following equation is satisfied:

η(u)t + ψ(u)x = 0 . (1.20)

When does a system admit an entropy? For smooth solutions the above equation
can be written as

η′(u)ut + ψ′(u)ux = 0 .

Compatibility of this equation with the balance equation (1.12) for u,

ut + f ′(u)ux = 0 ,

requires that
ψ′(u) = η′(u)f ′(u) . (1.21)

This is in fact the condition that is used to construct the entropy flux. Now, for a
scalar equation it is easy to satisfy this condition since given an arbitrary convex
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function η(u), then ψ(u) is a primitive of η′(u)f ′(u). For a 2 × 2 system, (1.21)
constitutes a set of two equations (one for each component of u) in two unknown
functions. Therefore it is conceivable to expect that, in general, such a system
admits solutions. In this respect, 2 × 2 system are very special, and in fact there
are general theorems that hold for a generic hyperbolic 2 × 2 system, but not for
a generic hyperbolic m × m system. In the latter case, in fact, one has a set of
mc partial differential equations for only two unknown functions, η and ψ, and
therefore in general the existence of an entropy function is not guaranteed.

We remark that most systems of conservation laws that come from physics
admit an entropy function. Gas dynamics, for example, is a system of three equa-
tions and admits a mathematical entropy that is related to the physical entropy
of the gas.

What does the existence of an entropy function guarantee? Existence of a
convex entropy is a very important property of a hyperbolic system of conservation
laws, since if a system possesses a convex entropy then it is symmetrizable, i.e.,
there exists an invertible transformation of field variables such that in the new
variables the system is symmetric. An account of the theory can be found in
the classical paper by Friedrichs and Lax [19] and in the book by Courant and
Friedrichs [15].

Vanishing Viscosity

One method to restore the uniqueness of the solution for a scalar equation or for
a system of conservation laws is to consider the weak solution of the system which
is a limit of a sequence of solutions to the regularized equation, as the regularizing
parameter vanishes. Consider the equation

∂uε

∂t
+

∂f(uε)
∂x

= ε
∂2u

∂x2
x ∈ Ω, t ∈ [0, T ],

u(x, 0) = u0(x) x ∈ Ω .

(1.22)

For any ε > 0, the initial value problem Equation (1.22) has a regular unique
solution uε(x, t). It is possible to show that u = limε→0 uε is a weak solution of
the original equation (1.12). Such a solution, whose uniqueness is a consequence of
the properties of problem (1.22), is called the viscosity solution of Equation (1.12).
It is possible to show that across a discontinuity, the entropy-entropy flux satisfies
the inequality

−V [[η]] + [[ψ]] ≤ 0 , (1.23)

while in the smooth regions equation (1.20) is satisfied. Both conditions can be
summarized by one inequality, called entropy inequality:

η(u)t + ψ(u)x ≤ 0 . (1.24)
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The above expression has to be interpreted in the weak sense, i.e.,∫ T

0

∫ b

a

(η(u)φt + ψ(u)φx)dx dt +
∫ b

a

η(u0(x))φ(x, 0)dx ≥ 0 , (1.25)

where φ(x, t) is an arbitrary regular test function that vanishes at x = a and x = b
and at t = T . A weak solution satisfying the entropy inequality (1.24) is called an
entropy solution of the conservation law (1.1).

From what we said above, if a function u is a viscosity solution then it is
an entropy solution. Is the converse true? This depends on the uniqueness of the
entropy solution. It can be proved that uniqueness holds in the case of the scalar
equation, while for arbitrary systems the question is still open. For most systems
of physical relevance that admit an entropy, uniqueness of the entropy solution
can be proved.

A more detailed treatment of this subject can be found, for example, in the
book by Godlewski and Raviart [21] or in the book by Dafermos [16].

1.7 Discrete Entropy Condition

Some numerical schemes possesses a discrete entropy-entropy flux pair which helps
to select the correct entropy solution, as the grid is refined.

Discrete entropy conditions can be written as

η(un+1
j ) ≤ η(un

j ) − Δt

Δx

[
Ψ(un

j , un
j+1) − Ψ(un

j−1, u
n
j )
]

, (1.26)

where Ψ(u, v) is a suitable numerical entropy flux, consistent with the flux function
ψ, i.e.,

Ψ(u, u) = ψ(u) .

We recall that the Lax-Wendroff theorem ensures that if a numerical solu-
tion of a conservative scheme applied to a scalar conservation law converges to a
function u(x, t), then the function is a weak solution of the equation. If the scheme
possesses a discrete entropy inequality, then one is guaranteed that the function
u(x, t) is the entropic solution of the equation.

1.8 Dissipation, Dispersion, and the Modified Equation

We have seen that, when the stability condition is satisfied, the amplitude of
the Fourier modes decay for Lax-Friedrichs, upwind, and Lax-Wendroff schemes.
However, the decay rate for the various schemes is very different. In fact, while
1 − |ρ| = O(h2) for both Lax-Friedrichs and first-order upwind scheme, giving a
decay which is locally second order in h (or in Δt) and globally first order, in the
case of the Lax-Wendroff scheme one has 1 − |ρ| = O(h4), which gives a decay
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which is locally fourth order and globally third order in h, in spite of the fact that
the scheme is second-order accurate. We may say that, while decay is a primary
effect of LxF and upwind schemes (the decay is of the same order of the scheme),
it seems to be a very weak effect in the case of the Lax-Wendroff scheme (the
decay is of higher order than the scheme).

As we shall see, a different effect will be the dominant one of LW scheme.
This behavior, and the qualitative behavior of these numerical schemes can be
better understood with the use of the so called modified equation associated to the
numerical scheme.

Let us consider, for example, the Lax-Friedrichs scheme. The discretization
error is given by Equation (1.10). This means that if we apply it to a function u
satisfying the equation

ut + cux =
1
2
k

(
h2

k2
uxx − utt

)
, (1.27)

we would have
LΔLxF u = O(h2, k2) .

To the same order of accuracy, the function u satisfies the equation

ut + cux = νLF uxx (1.28)

with

νLF =
1
2
k

(
h2

k2
− c2

)
=

c h

2
1 − λ2

λ
. (1.29)

This means that the numerical solution of the Lax-Friedrichs scheme applied to
the single equation ut + cux = 0 approximates, to a higher degree of accuracy,
the solution of Equation (1.28). Such an equation is called the modified equation
associated to the LxF scheme, and has the structure of a convection-diffusion
equation.

The behavior of the scheme applied to the advection equation ut + cux = 0
can be qualitatively described by this equation. In particular we observe that

νLF ≥ 0 ⇔ |λ| ≤ 1 ,

therefore, the stability condition for the Lax-Friedrichs scheme corresponds to the
well-posedness of the initial value problem for the modified equation. For such an
equation, a bell-shaped profile becomes broader as it moves, and discontinuities
will be smoothed away, as shown in Figure 1.4. Similar things can be said about
the upwind scheme (assuming, for example, df/du > 0). In this case one has (see
section 1.2 on truncation error)

LΔupu = ut + c ux + c h(λ − 1)uxx + O(h2, k2) ,
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and therefore the numerical solution obtained by applying the upwind scheme to
the scalar equation ut + c ux = 0 approximates, to second-order accuracy, the
solution of the equation

ut + c ux = c h(1 − λ)uxx,

which is again a convection-diffusion equation with diffusion coefficient

νup = c h(1 − λ).

Both schemes (LxF and upwind) are dissipative, the diffusion coefficient (nu-
merical viscosity) is of first order in h (because the scheme is first-order accurate),
and vanishes for λ = 1, since in this case the characteristics pass exactly through
the grid points, and the propagation of the signal is exact. This can be obtained
only when a scheme is applied to a linear equation, but it has to be kept in mind
even when dealing with systems: for fully discrete schemes, best performance (in
terms of accuracy and efficiency) is obtained for values of λ close to the maximum
value compatible with stability.

The choice of the time step. If the equation is nonlinear, condition |λ| ≤ 1 has
to be applied to all cells, and becomes

max
j

|c(uj)| Δt

Δx
≤ 1 .

This condition, in practice, dictates the choice of the time step. Let λ̃ be a constant
close to the stability limit (e.g., take λ̃ = 0.95 for the LxF scheme) then the time
step Δt will be chosen as

Δt = λ̃
Δx

maxj |c(uj)| . (1.30)

Using the maximum time step compatible with stability will improve accuracy,
since the O(h) term of the discretization error will be as small as possible, and
efficiency, since fewer steps will be required to reach the final time T .

For problems for which maxj |c(uj)| changes a lot with time, it is extremely
important to use an optimal time step according to a relation such as (1.30). The
parameter λ̃ appearing in (1.30) is often called Courant number.

We remark that νup < νLF , and that νLF → ∞ as λ → 0, which means that
for a fixed space grid the discretization error is unbounded for arbitrarily small
values of the time step.

1.9 Second-Order Methods and Dispersion

Let us consider the Lax-Wendroff scheme. The consistency error is given by

LΔu = LΔu + O(h2k) ,
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Figure 1.4: Dissipative first-order schemes applied to the linear equation. Top:
smooth initial condition. Bottom discontinuous solution. The propagation speed
is c = 1, and the final time is T = 0.6. The number of cells in the calculation is
J = 150. The solution at the final time represent, in increasing order of dissipation,
the exact, the upwind and the LxF solutions. The Courant number λ = 0.75 has
been used.
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with

LΔu ≡ ut + c ux +
1
2
k(utt − c2uxx) +

1
6
(k2uttt + c h2uxxx) , (1.31)

therefore, if we choose u to satisfy

LΔu = 0 , (1.32)

then LΔu = O(h2k). Equation (1.31,1.32) is a modified equation of the Lax-
Wendroff scheme. However, its form is not convenient because of the high-order
derivative in time. To the same degree of approximation, we can deduce a simpler
equation as follows. From Equations (1.31)–(1.32) one has

ut = −c ux − 1
2
k(utt − c2uxx) + O(k2) .

Differentiating in time gives

utt = c2uxx − 1
2
k(uttt + c3uxxx) + O(k2) ,

uttt = −c3uxxx + O(k) .

From these relations it follows that

uttt + c3uxxx = O(k) ,

and therefore
utt − c2uxx = O(k2) .

Making use of these relations in to (1.31) one has

ut + cux − 1
6
(k2c3 − c h2)uxxx = O(k3) ,

therefore, neglecting high-order terms, we obtain the modified equation for the
Lax-Wendroff scheme,

ut + c ux = μLW uxxx , (1.33)

with

μLW ≡ c h2

6
(λ2 − 1) .

This equation is said to have a dispersive character, since small perturbations
travel with speed that depends in the frequency. Let us look for an elementary
traveling wave solution of the form

u(x, t) = ρ exp(i(κ x − ω t)),
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where i is the imaginary unit and κ is the wave number. This is a solution of (1.33)
if

−i ω + i c κ = −iμLWκ3 ,

that is if
ω = c κ + μLW κ3 .

The ratio ω/κ is called phase velocity, and the derivative vg(κ) = ∂ω/∂κ is called
group velocity, and represents the propagation speed of a wave packet centered
at wave number κ. The consequence of this dispersive behavior is that an initial
profile does not travel unperturbed, since its Fourier components will move at
different speeds.

While the LW method is more accurate than first-order schemes, as is shown
in the upper part of in Figure 1.5, the dispersive behavior becomes dramatic in
the case of an initial discontinuity, and oscillations will appear in the profile, as it
is shown in the lower part of the same figure.
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Figure 1.5: Dispersive behavior of the second-order Lax-Wendroff scheme. Top:
smooth initial condition. Bottom: discontinuous solution. The propagation speed
is c = 1, and the final time is T = 0.6. J = 100 has been used. The CFL number
is cΔt/Δx = 0.75. At the final time the exact and the LW solutions are reported.
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Upwind Scheme for Systems

For the scalar conservation law

ut + c ux = 0 ,

first-order upwind is written as

un+1
j = un

j − c+
Δt

Δx
(un

j − un
j−1) − c−

Δt

Δx
(un

j+1 − un
j ) ,

where
c+ = max(c, 0) , c− = min(c, 0) .

For a linear system one has:

∂u

∂t
+ A

∂u

∂x
= 0 , A ∈ R

mc×mc , u ∈ R
mc , (2.1)

and it is not clear where to apply right or left difference.
Upwind schemes for a linear system can be constructed by diagonalizing the

system. Let Q be the matrix formed by the mc independent right eigenvectors of
A and Λ the diagonal matrix containing the corresponding eigenvalues. Then one
has

AQ = Q Λ . (2.2)

The diagonalization is always possible if we assume that the system is hyperbolic.
Let us express the vector field u as a linear combination of eigenvectors of A:

u = Qv, v ∈ R
mc . (2.3)

Then, substituting into (2.1) one has

∂v

∂t
+ Λ

∂v

∂x
= 0 . (2.4)
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This means that the equations decouple, and one can apply the upwind scheme
to each scalar equation of system (2.4),

vn+1
j = vn

j − Δt

Δx

[
Λ+(vn

j − vn
j−1) + Λ−(vn

j+1 − vn
j )
]

, (2.5)

where
Λ+ = diag ((λ1)+, . . . , (λmc)+)

Λ− = diag ((λ1)−, . . . , (λmc)−) ,

and λj , j = 1, . . . , mc denotes the eigenvalues of A.
Using transformation (2.3) to go back to the original variable u one has the

upwind scheme for u in the form

un+1
j = un

j − Δt

Δx

[
A+(un

j − un
j−1) + A−(un

j+1 − un
j )
]

,

with
A+ = QΛ+Q−1 , A− = QΛ−Q−1 .

What is the restriction on the time step? The restriction is that for all eigenvalues
λ�, condition

|λ�| Δt

Δx
≤ 1, � = 1, . . . , mc,

has to be satisfied. This condition can be written in the form

ρ(A)
Δt

Δx
≤ 1 ,

where
ρ(A) ≡ max

1≤j≤mc

|λj(A)|

denotes the spectral radius of matrix A, i.e., the maximal eigenvalue of the matrix
(in absolute value).

The geometric interpretation of the stability condition is the following. For
each eigenvalue λl one uses left or right difference on the characteristic variable
according to whether λl > 0 or λl < 0. The characteristic emanating back from
point (xj , tn+1) will intercept the line t = tn at a point which lies between xj−1

and xj (if λl > 0) or between xj and xj+1 (if λl < 0) (see Figure 2.1).
This condition is a particular case of a more general stability condition for

systems, known as CFL condition, which states that a necessary condition for
stability is that the analytical domain of dependence of a given grid point has to
be contained by the numerical domain of dependence. Using the same argument of
the diagonalization, one can show that a stability condition for the Lax-Friedrichs
and the Lax-Wendroff scheme is also

ρ(A)
Δt

Δx
≤ 1 .
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Figure 2.1: Numerical (bullets) and analytical (squares) domain of dependence
and geometrical interpretation of the CFL condition.

2.1 The Riemann Problem

How can one generalize upwind schemes to nonlinear conservation laws? A pop-
ular method, that can be considered the ancestor of many modern schemes for
the numerical approximation of conservative laws, is the Godunov method. This
method is based on the solution of the Riemann problem.

A Riemann problem is an initial value problem for which the initial data is
piecewise constant:

∂u

∂t
+

∂f

∂x
= 0,

u(x, 0) =
{

ul, x < 0,
ur, x > 0 .

For the scalar equation the Riemann problem can be explicitly solved. For
example, in the case f(u) = 1

2u2 we can have the two cases illustrated in Figure 2.2.
The solution of the Riemann problem is known for several hyperbolic systems

of conservation laws with great relevance in the applications, as is the case of gas
dynamics (see, for example, [39]). The solution to the Riemann problem centered
at the origin is a similarity solution that depends on x/t (see Figure 2.3) u =
u(x/t; ul, ur). In many cases, however, its solution is not available analytically, or it
is quite expensive to compute. In such cases one uses either approximate Riemann
solvers, or schemes that do not require the solution to the Riemann problem. For
the moment we shall assume that we know the solution of the Riemann problem.

2.2 Godunov Scheme

Let us assume that at time tn we know an approximation of the cell average, {ūn
j },

and that the solution is a piecewise constant function:

u(x, tn) �
∑

j

ūn
j χj(x) , (2.6)
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Figure 2.2: Riemann problem: diverging characteristics and rarefaction fan (left),
converging characteristics and shock wave (right).

-u

shocks,

expansion fan

contacts,

+
u

Figure 2.3: Schematic representation of the Riemann fan originating from
(x = 0, t = 0).

where

χj(x) =

{
1 x ∈ [xj−1/2, xj+1/2],
0 otherwise .

For short later times the field vector u(x, t) will be the solution of several Riemann
problems, centered in xj+1/2.

Let us integrate the conservation law in the cell Ij×[tn, tn+1] (see Figure 1.3).
Then one has:

ūn+1
j = ūn

j − 1
Δx

∫ tn+1

tn

[
f(u(xj+1/2, t)) − f(u(xj−1/2, t))

]
dt . (2.7)

Now if the Riemann fan does not interact (which is obtained if the time step Δt
satisfies a suitable CFL condition), then the function u(xj+1/2, t) can be obtained
from the solution of the Riemann problem with states uj and uj+1 across the
interface:

u(xj+1/2, t) = u∗(0; ūj , ūj+1) =: u∗(ūj , ūj+1) .
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This quantity does not depend on time, and therefore Equation (2.7) becomes

ūn+1
j = ūn

j − Δt

Δx
[f(u∗(ūj, ūj+1)) − f(u∗(ūj−1, ūj))] . (2.8)

If the function u(x, tn) is really a piecewise constant function, then Equation (2.8)
gives the correct average of the solution at time tn+1. In order to proceed from
time tn+1 to time tn+2 applying the same technique, one has to approximate
the solution at time tn+1 as a piecewise constant function. It is essentially this
projection that introduces the approximation.

When applied to a linear system, the Godunov scheme reduces to first-order
upwind. To see this, let us consider an interface, let us say at xj+1/2, and let us
write

[[ū]]j+1/2 = ūj+1 − ūj =
∑

k

α
(j+1/2)
k rk ,

where rk are the right eigenvectors of matrix A that defines the linear flux:

f(u) = Au.

Then the solution of the Riemann problem can be written as

u∗(ūj, ūj+1) = ūj +
∑

λk<0

α
(j+1/2)
k rk

= ūj+1 −
∑

λk>0

α
(j+1/2)
k rk ,

since the contribution to the jump with λk < 0 will propagate to the left, and the
contribution with λk > 0 will propagate to the right.

Substituting this expression into (2.8) one has

ūn+1
j = ūn

j − Δt

Δx

[
A

(
ūj +

∑
λk<0

α
(j+1/2)
k rk

)
− A

(
ūj +

∑
λk>0

α
(j−1/2)
k rk

)]

= ūn
j − Δt

Δx

[∑
λk<0

α
(j+1/2)
k λkrk +

∑
λk>0

α
(j−1/2)
k λkrk

]
.

Multiplying by Q−1, and considering that Q−1rk = ek, one has

vn+1
j = vn

j − Δt

Δx

[∑
λk<0

λk(v(k)
j+1 − v

(k)
j )ek +

∑
λk>0

λk(v(k)
j − v

(k)
j−1)ek

]
,

where ūn
j = Q vn

j , vj being characteristic variables, α
(j+1/2)
k = v

(k)
j+1 − v

(k)
j , and ek

is the k-th column of the mc ×mc identity matrix. This relation can be written as

vn+1
j = vn

j − Δt

Δx
(Λ−(vj+1 − vj) + Λ+(vj − vj−1)) ,



88 Chapter 2. Upwind Scheme for Systems

which is the same as Equation (2.5).
The Godunov scheme is therefore first-order accurate in space and time.
The Godunov scheme satisfies a discrete entropy inequality (assuming the

original system satisfies an entropy inequality), namely

η(ūn+1
j ) ≤ η(ūn

j ) − k

h
[Ψ(ūj, ūj+1) − Ψ(ūj−1, ūj)] , (2.9)

with Ψ(ūj, ūj+1) = ψ(u∗(ūj , ūj+1)).
In order to prove this, let us start from the entropy inequality of the original

system:
∂η

∂t
+

∂ψ

∂x
≤ 0 .

Let us integrate this over cell Ij × [tn, tn+1]:

〈η((u))〉n+1
j ≤ 〈η((u))〉nj − 1

h

[∫ tn+1

tn

ψ(u(xj+1/2, t))dt −
∫ tn+1

tn

ψ(u(xj−1/2, t))dt

]
= η(ūn

j ) − 1
h

∫ tn+1

tn

[ψ(u∗(ūj , ūj+1)) − ψ(u∗(ūj−1, ūj))] dt

= η(ūn
j ) − k

h
[ψ(u∗(ūj , ūj+1)) − ψ(u∗(ūj−1, ūj))] .

where
〈η(u)〉kj ≡ 1

h

∫
Ij

η(u(x, tk)) dx.

Here we made use of the fact that u(x, tn) is constant in all Ij , therefore 〈η(u)〉nj =
η(ūn

j ). Now, because the function η is convex (by definition of entropy), one has
that η(ūj) ≤ 〈η(u)〉j (Jensen’s inequality) and therefore

η(ūn+1
j ) = η

(
1
h

∫
Ij

u(x, tn+1)dx

)
≤ 1

h

∫
Ij

η(u(x, tn+1))dx.

From these two inequalities the discrete entropy inequality (2.9) follows. In
addition to the entropy condition, the Godunov method, when applied to a scalar
equation, has several nice properties. In particular, it is a monotone scheme (see
discussion later).

The Godunov method is based on the solution of the Riemann problem, which
makes it expensive to use in many circumstances. Several approximate Riemann
solvers have been developed, that make Godunov methods more efficient. The
most popular is the one derived by Phil Roe [53]. Another approximate Riemann
solver has been proposed by Harten, Lax and Van Leer [26]. We shall not describe
exact or approximate Riemann solvers. See, for example, the books by LeVeque
[38, 39].



Chapter 3

The Numerical Flux Function

3.1 Higher-Order Extensions of the Godunov Method

They can be obtained by several techniques. One is to use a more accurate re-
construction of the function from cell averages, such as, for example, a piecewise
linear function, and then solve the generalized Riemann problem (see Figure 3.1)

Figure 3.1: Piecewise smooth reconstruction, generalized Riemann problem and
high-order extension of the Godunov method.

This approach has been used, for example, by Van Leer.
A second alternative is to use a semidiscrete scheme of the form

dūj

dt
= −

F (u−j+1/2, u
+
j+1/2) − F (u−j−1/2, u

+
j−1/2)

Δx
, (3.1)

where F (u−, u+) can be, for example, the flux function defining a Godunov scheme
F (u−, u+) = f(u∗(u−, u+)), or some other numerical flux function, and the values
u+

j+1/2, u−j+1/2 are obtained by a suitable reconstruction from cell averages. Be-
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cause of the relevance of this aspect, a section will be devoted to the reconstruction
later. Now we shall concentrate on the properties of the numerical flux function.

3.2 The Scalar Equation and Monotone Fluxes

When dealing with nonlinear problems, linear stability is usually not enough to
ensure that a numerical solution converges to a function (and therefore to a weak
solution of the conservation law). The upwind scheme

un+1
j = un

j − λ(un
j − un

j−1)

is stable in the L1-norm, as it is easy to check for the scalar equation, provided
0 ≤ λ ≤ 1. The same can be said about the Lax-Friedrichs scheme, while the
Lax-Wendroff scheme, on the contrary, is not stable in the L1-norm, since the
coefficients that appear in the three-point formula are not all positive (the L1-
stability is strictly related to the positivity of the coefficients, as we shall see).

To prove that, under the assumption that CFL condition is satisfied, i.e.,
that

∣∣f ′(u) Δt
Δx

∣∣ < 1, the Lax-Friedrichs scheme is L1-stable for the equation

ut + f(u)x = 0 ,

one can act as follows: let us assume periodic boundary conditions, and let un
j , vn

j

be two numerical solutions.

un+1
j =

1
2
(un

j+1 + un
j−1) −

Δt

2Δx
(f(un

j+1) − f(un
j−1)) ,

vn+1
j =

1
2
(vn

j+1 + vn
j−1) −

Δt

2Δx
(f(vn

j+1) − f(vn
j−1)) .

Let us take the difference:

un+1
j − vn+1

j =
1
2
(un

j+1 − vn
j+1) −

Δt

2Δx
(f(un

j+1) − f(vn
j+1))

+
1
2
(un

j−1 − vn
j−1) +

Δt

2Δx
(f(un

j−1) − f(vn
j−1)) .

By Lagrange’s theorem of the mean, one has

f(un
j ) − f(vn

j ) = f ′(ξj)(un
j − vn

j ) ,

where ξj is between un
j and vn

j . Using this relation, one has

un+1
j − vn+1

j =
1
2
(1 − λj+1)(un

j+1 − vn
j+1) +

1
2
(1 + λj−1)(un

j−1 − vn
j−1) ,

where
λj ≡ Δt

Δx
f ′(ξj) .
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Summing the absolute values of both sides, one has:

‖un+1 − vn+1‖L1 =
J∑

j=1

|un+1
j − vn+1

j |

=
1
2

J∑
j=1

|(1 − λj+1)(un
j+1 − vn

j+1) + (1 + λj−1)(un
j−1 − vn

j−1)|

≤ 1
2

J∑
j=1

(|1 − λj+1| |un
j+1 − vn

j+1| + |1 + λj−1| |un
j−1 − vn

j−1|
)

=
1
2

J∑
j=1

(1 − λj+1)|un
j+1 − vn

j+1| + (1 + λj−1)|un
j−1 − vn

j−1|

(since |λj | < 1)

=
1
2

J∑
j=1

(1 − λj)|un
j − vn

j | + (1 + λj)|un
j − vn

j )|

(because of periodicity)

=
1
2

J∑
j=1

|un
j − vn

j | = ‖un
j − vn

j ‖L1 .

A similar proof can be given of the upwind scheme, under the hypothesis

0 <
Δt

Δx
f ′(u) < 1 .

What is the meaning of this L1-contraction property?
When studying the stability properties of some numerical method, one usu-

ally checks whether, for the numerical solution, the same stability properties of
the analytical solution hold. Now, for an entropic solution of a scalar conservation
law, of the form

∂u

∂t
+

∂f

∂x
= 0 ,

satisfying
∂η

∂t
+

∂ψ

∂x
≤ 0 ,

for each entropy-entropy flux (η, ψ), with convex η(u), the following properties
hold:

1. Monotonicity preservation. Consider the equation ut + f(u)x = 0 on the
whole real line, suppose that the initial profile u(x, 0) = u0(x) is monotone,
and assume that

lim
x→±∞u0(x) = u±∞
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is bounded. Then TV (u0) = |u+∞ − u−∞|.
Any non-monotone profile with the same asymptotic values would have

a larger total variation.

As a corollary of the TVD property of weak solutions of the scalar
equation, one has that the solution u(x, t) preserves monotonicity, i.e., if the
initial profile is monotone, then u(·, t) will be monotone.

2. TVD (Total Variation Diminishing) property.

TV (u(·, t2)) ≤ TV (u(·, t1)) ∀t2 ≥ t1,

where for all v ∈ L1(a, b), TV (v) denotes the total variation.

We recall that the total variation of a function of a real variable is
defined as

TV (u) ≡ sup
ξ

∑
N
j=1|v(ξj−1) − v(ξj)|

where the sup is taken over all possible subdivisions {ξ0, ξ1, . . . , ξN} of [a, b].

The total variation of a function is a measure of its oscillatory behavior.
TVD means that the total amount of oscillations decreases in time. The
interval [a, b] may be periodic or the whole real line.

3. L1-contraction. Any weak solution of a scalar conservation satisfies

‖u(·, t2)‖1 ≤ ‖u(·, t1)‖, ∀t2 ≥ t1

and, more generally, given two solutions u, v, with initial condition u0 and
v0, such that u0 − v0 has compact support, one has that ‖u(·, t)− v(·, t)‖1 is
a non-increasing function of time.

4. Monotonicity.
Any pair of weak solutions u(x, t), v(x, t) with

v0(x) ≥ u0(x) ∀x,

satisfies
v(x, t) ≥ u(x, t) ∀x, t.

In constructing numerical schemes for conservation laws one tries to preserve some
of such properties. In particular, a numerical scheme for scalar conservation law
is said

1. Monotonicity preserving if

u0
j ≥ u0

j+1 ∀j ⇒ un
j ≥ un

j+1 ∀n, j ,

u0
j ≤ u0

j+1 ∀j ⇒ un
j ≤ un

j+1 ∀n, j .

Just as in the continuous case, TVD implies monotonicity preservation, there-
fore, if a scheme is TVD, it is also monotonicity preserving.
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2. TVD if TV (un+1) ≤ TV (un).

In the discrete case, one has TV (un) =
∑

j |un
j+1 −un

j |. (We assume periodic
boundary conditions. Minor modifications are necessary with other boundary
conditions).

3. L1-contractive if
‖un+1 − vn+1‖1 ≤ ‖un − vn‖1 .

First-order upwind and Lax-Friedrichs schemes have this property, as we have
proved.

L1-contraction implies TVD. In fact, given un = {un
j }, define vn = {vn

j }
as vn

j = un
j−1. Then, if a scheme is L1-contracting,

TV (un+1) =
∑

j

|un+1
j − un+1

j−1 | =
∑

j

|un+1
j − vn+1

j |

≤
∑

j

|un
j − vn

j | =
∑

j

|un
j − un

j−1| = TV (un) .

4. Monotone if the discrete analogue of the monotone property holds, i.e., if

vn
j ≥ un

j ⇒ vn+1
j ≥ un+1

j .

A very simple sufficient condition to prove monotonicity is the following. Let
a method be defined by an iteration function H :

un+1
j = Hj(un) .

Then, if for all j, Hj(u) is a non-decreasing function of all arguments, then
it is clear that

vn
j ≥ un

j ⇒ Hj(vn) ≥ Hj(un) ,

and therefore the scheme is monotone.

It can be proved that a monotone method is also L1-contracting (and
therefore TVD).

It is easy to prove that the Lax-Friedrichs method is monotone.

Although condition ∂Hi/∂uj ≥ 0 for all i, j is easy to verify, monotone
schemes suffer a serious restriction: it can be proved that a monotone method
is at most first-order accurate. For this reason one usually looks for TVD
scheme which are not monotone, and that can be higher-order accurate.

Nevertheless, the notion of monotone schemes, and in particular of monotone
numerical flux, is a very important concept in the derivation of high-order schemes.
A monotone flux is a flux associated to a monotone method.
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Let us consider a numerical flux of the form

Fj+1/2 = F (uj , uj+1).

We show that if a suitable CFL condition is satisfied and if F is non-decreasing
in the first argument and non-increasing in the second argument (symbolically
F (↑, ↓)), then the corresponding scheme is monotone.

It is in fact

Hj(u) = uj − k

h
(F (uj , uj+1) − F (uj−1, uj)) ,

∂Hj

∂uj
= 1 − k

h

(
∂F

∂u(1)
(uj, uj+1) − ∂F

∂u(2)
(uj−1, uj)

)
, (3.2)

∂Hj

∂uj+1
= −k

h

∂F

∂u(2)
(uj , uj+1) ≥ 0,

∂Hj

∂uj−1
=

k

h

∂F

∂u(1)
(uj , uj+1) ≥ 0,

∂Hj

∂ul
= 0 , l �= j − 1, j, j + 1 .

Positivity for (3.2) has to be checked separately.

For example, both upwind and Lax-Friedrichs flux satisfy condition F (↑, ↓).
For the first scheme, condition ∂Hj/∂uj ≥ 0 coincides with the CFL condition,
while for the Lax-Friedrichs scheme ∂Hj/∂uj = 0, and the other two conditions
correspond to the CFL condition. Other popular numerical flux functions that
satisfy the F (↑, ↓) condition are:

i) Godunov flux:

F (u, v) =

{
minu≤ξ≤v f(ξ) if u ≤ v,

maxu≤ξ≤v f(ξ) if u > v .
(3.3)

ii) Engquist-Osher flux [18]:

F (u, v) =
∫ u

0

max(f ′(ξ), 0) dξ +
∫ u

0

min(f ′(ξ), 0) dξ + f(0) .

iii) Local Lax-Friedrichs flux (also called Rusanov flux):

F (u, v) =
1
2
(f(u) + f(v) + α(u − v)) ,

where α = maxw |f ′(w)|, the maximum being taken over the relevant range
of u.
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Several other numerical flux functions can be obtained by approximate Rie-
mann solvers, such as the Roe solver [53] of the HLL solver [26]. For an account
of several approximate solvers and numerical flux functions see, for example, the
book by LeVeque [39].

Remark 3.1. The flux functions are listed in increasing order of dissipativity. Al-
though all fluxes can be used to construct a first-order monotone scheme, not all
fluxes give the some numerical results. Godunov flux will provide shaper disconti-
nuities than Local Lax-Friedrichs.

Remark 3.2. Local Lax-Friedrichs differ froms Lax-Friedrichs flux by the fact that
the amount of dissipation is different for each cell interface, and is taken to be the
minimum possible compatible with stability. LLxF is much less dissipative than
standard LxF.

Remark 3.3. Monotone fluxes are very important as essential building blocks in
the construction of high-order finite-volume methods. As we shall see, the non-
oscillatory properties of a scheme depend on the numerical flux and on the non-
oscillatory reconstruction.

Remark 3.4. All these concepts have been for the scalar equation. They will be
used as guidelines in the development of numerical schemes that will be used for
systems as well.



Chapter 4

Nonlinear Reconstruction and
High-Order Schemes

4.1 High-Order Finite-Volume Schemes

General structure of high-order finite-volume schemes. In a finite-volume scheme,
the basic unknown is the cell average ūj .

We have seen that the solution u(x, t) satisfies the equation

d < u >j

dt
+

f(u(xj+1/2, t)) − f(u(xj−1/2, t))
h

= 0 ,

where < u >j≡ 1
h

∫
Ij

u(x, t) dt.
First-order (in space) semidiscrete schemes can be obtained using Fj+1/2 =

F (ūj, ūj+1) in place of f(u(xj+1/2, t)):

dūj

dt
= −F (ūj, ūj+1) − F (ūj−1, ūj)

h
.

A scheme based on this formula, however, is restricted to first-order accuracy.
Higher-order schemes are obtained by using a piecewise polynomial recon-

struction in each cell, and evaluating the numerical flux on the two sides of the
interface (see Figure 4.1):

dūj

dt
= −

F (u−j+1/2, u
+
j+1/2) − F (u−j−1/2, u

+
j−1/2)

h
.

A second-order scheme is obtained by a piecewise linear reconstruction. This is
obtained as follows.

Given {un
j }, compute a piecewise linear reconstruction

L(x) =
∑

j

Lj(x)χj(x)
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Figure 4.1: Function reconstruction at cell edges.

with Lj = ūj +u′j(x−xj). The quantity u′j is a suitable (first-order) approximation
of the space derivative of the profile u(x) at xj .

The numerical approximation of the first derivative is a very important point,
since the accuracy and TVD properties of the scheme depend on it. If, for exam-
ple, one uses standard central difference, then the reconstructed piecewise linear
function will have spurious extrema, and its total variation will be larger that the
total variation of the discrete data.

In order to prevent the formation of spurious extrema, the derivative has to
be reconstructed by a suitable limiter. The simplest one is the so called minmod
limiter, defined as

MinMod(a, b) =

⎧⎪⎨⎪⎩
a if |a| ≤ |b| and ab > 0,

b if |a| > |b| and ab > 0,

0 if ab ≤ 0 .

(4.1)

The effect of the MinMod limiter is illustrated in Figure 4.2. The minmod limiter

Figure 4.2: Slope reconstruction using the MinMod limiter.

is very robust, but has the drawback of degrading the accuracy of the scheme to
first-order near local extrema.
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More accurate limiter strategies are described, for example, in [38].
Once the profile is reconstructed, then the function at the edge of the cell is

given by

u−j+1/2 = Lj(xj+1/2),

u+
j+1/2 = Lj+1(xj+1/2).

4.2 Essentially Non-Oscillatory Reconstruction (ENO)

High-order reconstruction has the purpose of providing higher accuracy in space.
This step is a crucial one in the development of shock-capturing schemes, since
naive reconstructions may introduce spurious oscillations in the profile. In this
and in the next section we shall describe with some detail two of the major tech-
niques commonly used to prevent formation of (large) spurious oscillations, still
guaranteeing high-order accuracy in smooth regions. First we start with the ENO
reconstruction.

The goal is the following. Let us assume there is a smooth function u(x), and
we know only its cell averages {ūj}. Then we want to construct in each cell j a
polynomial pj of a given degree m − 1 (i.e., pj ∈ ∏m−1)

pj(x) = u(x) + O(Δxm) . (4.2)

In particular, we shall be interested in evaluating this polynomial at cell bound-
aries:

u−j+1/2 = pj(xj+1/2) ,

u+
j−1/2 = pj(xj−1/2) .

Such a polynomial is constructed as follows. Take m adjacent cells, that include
cell j. Let these cells be denoted by j − r, j − r + 1, . . . , j + s with r + s + 1 = m,
r, s ≥ 0. Then impose that

< pj >l=< u >l=
1
h

∫ xl+1/2

xl−1/2

u(x) dx, l = j − r, . . . , j + s. (4.3)

These m independent conditions uniquely determine a polynomial of degree m−1.
Let us show that indeed this polynomial satisfies condition (4.2). This is easily
shown by defining

U(x) ≡
∫ x

a

u(x̃) dx̃ ,

a primitive of u(x). The left bound a is not relevant. We choose it so that a =
xja−1/2. At the right edge of cell i one has:

U(xi+1/2) = Δx

i∑
j=ja

ūj .
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Let Pj(x) ∈ ∏m, and let Pj(xi+1/2) = U(xi+1/2), i = j − r − 1, . . . , j + s. These
m + 1 conditions uniquely determine Pj ∈ ∏m. Furthermore, from interpolation
theory, one has

P (x) = U(x) + O(Δxm+1) ,

and therefore

p(x) = P ′(x) = U ′(x) + O(Δxm) = u(x) + (Δxm) .

The polynomial p(x) therefore satisfies (4.2) and (4.3).
There are m such polynomials. For example, for a polynomial of degree 2

one can choose cells j − 2, j − 1, j or j − 1, j, j + 1, or j, j + 1, j + 2. Which one
should one choose for the reconstruction? This is exactly where ENO comes into
play. First, observe that for a given stencil, the polynomial P (x) can be computed
using the divided difference of the function U(x):

U [xi−1/2, xi+1/2] =
U(xi+1/2) − U(xi−1/2)

xi+1/2 − xi−1/2
= ūi ,

therefore first- and higher-order divided differences of U can be computed by
{ūj}, without using function U explicitly. Likewise, computation of p(x) can be
performed using divided differences that make use only of {ūj}. The main purpose
of the primitive function U(x) is to find the proper stencil.

The idea of ENO construction is the following. Take cell j, and construct a
linear function between point (xj−1/2, U(xj−1/2)) and (xj+1/2, U(xj+1/2)). Let us
call it P1(x). Then add one point, either to the left obtaining

R(x) = P1(x) + U [xj−3/2, xj−1/2, xj+1/2](x − xj−1/2)(x − xj+1/2),

or on the right, obtaining

R(x) = P1(x) + U [xj−1/2, xj+1/2, xj+3/2](x − xj−1/2)(x − xj+1/2),

Then chose the one which is less oscillatory, i.e., the one with the smallest second
derivative. Therefore, extend your stencil by:

r → r + 1 if |U [xj−3/2, xj−1/2, xj+1/2]| < |U [xj−1/2, xj+1/2, xj+3/2]| ,
or

s → s + 1 if |U [xj−3/2, xj−1/2, xj+1/2]| > |U [xj−1/2, xj+1/2, xj+3/2]| .
Then one can repeat the procedure by adding one more point to the stencil,
either to the left or to the right, comparing the size of the next divided difference.
Suppose for example that the function has a discontinuity across a cell boundary
(see Figure 4.3). The reconstruction in the upper part of the figure is obtained
by using, in each cell i, the parabola obtained by matching the cell averages in



4.2. Essentially Non-Oscillatory Reconstruction (ENO) 101

Figure 4.3: Piecewise parabolic reconstruction of a piecewise smooth profile. Up-
per: central reconstruction in each cell; lower: ENO reconstruction.

cells i − 1, i, and i + 1, while the one in the lower part is obtained by ENO. The
procedure chooses, for example, stencil based on cells i, i +1 and i+ 2 for the cell
just on the right of the discontinuity (see Figure 4.3)

The net effect of this procedure will be to choose a stencil that uses the
smooth part of the function in the reconstruction.

Remark 4.1. For a given degree m − 1, there are m possible stencils. For each
of them there are two sets of coefficients, {cri}, {c̃ri} that compute u−j+1/2 and
u+

j−1/2 as a linear combination of cell averages on the stencil. These coefficients
can be computed once and used later. Once the stencil is chosen (i.e., r is defined)
by the ENO procedure, then one knows which set of coefficients cri one has to
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use. The expressions for u−j+1/2 and u+
j−1/2 for each choice of the stencil are of the

form

u−j+1/2 =
m−1∑
i=0

cr iūj−r+i ,

u+
j−1/2 =

m−1∑
i=0

c̃r iūj−r+i .

Remark 4.2. In the choice of the stencil it is better to prefer more centered stencil
(r ≈ s) for comparable values of the divided difference, since the interpolation
error is lower. This effect can be taken into account by a bias in the choice of the
stencil toward centered stencils.

Remark 4.3. For each fixed stencil, one obtains a different scheme. If one performs
a linear stability analysis of such schemes, one will see that some of them are
unstable. However, this is not in general a problem. Even if the ENO procedure
occasionally chooses a linearly unstable scheme, the choice is usually temporary,
and lasts for one or few time steps, preventing the linearly unstable mode to
amplify substantially.

Remark 4.4. Piecewise polynomial reconstruction is a convenient choice because
the polynomials can be easily reconstructed by the Newton procedure. How-
ever, other functions could be used as a basis for the piecewise (essentially) non-
oscillatory reconstruction. Marquina showed that the use of hyperbolas in the
reconstruction produces a less oscillatory profile than the use of parabolas [43].
Furthermore, hyperbolic reconstructions have also the advantage of reducing dis-
sipation when local Lax-Friedrichs flux is used.

4.3 Weighted ENO Reconstruction (WENO)

In the ENO reconstruction one chooses a stencil with m nodes to construct a
polynomial of degree m − 1, in order to reach an accuracy of O(hm) in the cell.
However, the total number of points involved is 2m − 1. With all these points, a
much more accurate reconstruction is possible. Suppose, for the sake of argument,
that m = 3, and that we use a parabola to reconstruct the function u(x) in cell j.
Let qk denote the parabola obtained by matching the cell average in cells k − 1,
k, k + 1, i.e., qk(x) is obtained by imposing

< qk >l= ūl , l = k − 1, k, k + 1 .

Then for our polynomial pj ∈ ∏2 we can use either qj−1, qj , or qj+1. Each choice
would give us third-order accuracy. We could also choose a convex combination of
qk,

pj = wj
−1qj−1 + wj

0qj + wj
1qj+1 ,
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with wj
−1 + wj

0 + wj
1 = 1, wj

l ≥ 0, l = −1, 0, 1. Every such convex combination
would provide at least third-order accuracy.

We can choose the weights according to the following requirements:

i) in the region of regularity of u(x) the values of the weights are chosen in such
a way to have a reconstruction of the function at some particular point with
higher order of accuracy. Typically we need high-order accuracy at points
xj + h

2 and xj − h
2 . With two more degrees of freedom it is possible to obtain

fifth-order accuracy at point xj+1/2 (instead of third-order).

We shall denote by C+
−1, C+

0 , C+
1 the constants that provide high-order

accuracy at point xj+1/2:

pj(xj+1/2) =
1∑

k=−1

C+
k qj+k(xj+1/2) = u(xj+1/2) + O(h5) ,

and C−k , k = −1, 0, 1 the corresponding constants for high-order reconstruc-
tion at point xj−1/2.

pj(xj−1/2) =
1∑

k=−1

C−k qj+k(xj−1/2) = u(xj−1/2) + O(h5) .

The values of these constants can be computed, and are given by

C+
1 = C−−1 =

3
10

, C+
0 = C−0 =

3
5

, C+
−1 = C−1 =

1
10

.

ii) In the region near a discontinuity, one should make use only of the values of
the cell averages that belong to the regular part of the profile.
Let us consider the example in Figure 4.4.

Figure 4.4: Discontinuous profile and weight selection in WENO scheme.

Suppose that the function u(x) has a discontinuity in x̂ ∈ Ij+1. Then in order to
reconstruct the function in cell j one would like to make use only of qj−1, i.e., the
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weights should be
wj
−1 ∼ 1 , wj

0 ∼ 0 , wj
1 ∼ 0 .

This is obtained by making the weights depend on the regularity of the function
in the corresponding cell. In usual WENO scheme this is obtained by setting

αj
k =

Ck

(βj
k + ε)2

, k = −1, 0, 1 ,

and

wj
k =

αj
k∑

� αj
�

.

Here βk are the so-called smoothness indicators, and are used to measure the
smoothness or, more precisely, the roughness of the function, by measuring some
weighted norm of the function and its derivatives. Typically,

βj
k =

2∑
l=1

∫ xj+1/2

xj−1/2

h2l−1

(
dlqj+k(x)

dxl

)2

dx, k = −1, 0, 1 .

The integration can be carried out explicitly, obtaining

β−1 =
13
12

(ūj−2 − 2ūj−1 + ūj)2 +
1
4
(ūj−2 − 4ūj−1 + 3ūj)2,

β0 =
13
12

(ūj−1 − 2ūj + ūj+1)2 +
1
4
(ūj−1 − ūj+1)2,

β1 =
13
12

(ūj − 2ūj+1 + ūj+2)2 +
1
4
(3ūj − 4ūj+1 + ūj+2)2.

With three parabolas one obtains a reconstruction that gives up to fifth-order
accuracy in a smooth region, and that degrades to third-order near discontinuities.

A detailed account of ENO and WENO reconstruction as well as of finite-
volume and finite-difference schemes can be found in Chapter 4 of [56], written by
C.W. Shu for the CIME course “Advanced Numerical Approximation of Nonlin-
ear Hyperbolic Equations”, held in Cetraro in 1997. These Lecture Notes contain
also a nice overview of different approaches to the numerical solution of hyper-
bolic systems written by E. Tadmor. Most of the material written by Shu can be
downloaded from the web as ICASE Report No.97-65.

4.4 Conservative Finite-Difference Schemes

In a finite-difference scheme the basic unknown is the pointwise value of the func-
tion, rather than its cell average. Osher and Shu [58] observed that it is possible
to write a finite-difference scheme in conservative form as follows. Let us consider
a system

∂u

∂t
+

∂f

∂x
= 0 .
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Let us write
∂f

∂x
(u(x)) =

f̂(u(x + h
2 )) − f̂(u(x − h

2 ))
h

.

The relation between f and f̂ is the following. Let us consider the sliding cell
average operator:

ū(x) =
1
h

∫ x+h
2

x−h
2

u(ξ) dξ .

Differentiating with respect to x one has:

∂ū

∂x
=

1
h

(u(x +
h

2
) − u(x − h

2
)) .

Therefore the relation between f and f̂ is the same that exists between ū(x) and
u(x), namely, function f is the cell average of the function f̂ . This also suggests a
way to compute the flux function. The technique that is used to compute pointwise
values of u(x) at the edge of the cell from cell averages of u can be used to compute
f̂(u(xj+1/2)) from f(u(xj)). This means that in the finite-difference method it is
the flux function which is computed at xj and then reconstructed at xj+1/2. But
the reconstruction at xj+1/2 may be discontinuous. Which value should one use?
A general answer to this question can be given if one considers flux functions that
can be splitted as

f(u) = f+(u) + f−(u) , (4.4)

with the condition (for scalar fluxes) that

df+(u)
du

≥ 0 ,
df−(u)

du
≤ 0 . (4.5)

There is a close analogy between flux splitting and numerical flux functions.
In fact, if a flux can be splitted as Equation (4.4), with property (4.5), then

F (a, b) = f+(a) + f−(b)

will define a monotone consistent flux.
This is the case, for example, of the local Lax-Friedrichs flux.
A finite-difference scheme therefore takes the following form:

duj

dt
= − 1

h
[F̂j+1/2 − F̂j−1/2],

F̂j+1/2 = f̂+(u−j+1/2) + f̂−(u+
j+1/2);

f̂+(u−j+1/2) is obtained as follows:

• compute f+(ul) and interpret it as cell average of f̂+,
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• perform pointwise reconstruction of f̂+ in cell j, and evaluate it in xj+1/2;

f̂−(u+
j+1/2) is obtained as follows:

• compute f−(ul), interpret as cell average of f̂−,

• perform pointwise reconstruction of f̂− in cell j+1, and evaluate it in xj+1/2.

Remark 4.5. We used uniform meshes. Finite-volume methods can be used on
arbitrary non-uniform meshes. Finite-difference can be used only on uniform (or
smoothly varying) mesh. This makes finite-volume more flexible in several dimen-
sions. They can even be constructed on unstructured grids.

Remark 4.6. For finite-volume methods applied to systems, better results are usu-
ally obtained if one uses characteristic variables rather than conservative variables
in the reconstruction step. See, e.g., [14], or [50] for an example in the context of
central schemes.

Remark 4.7. There is some difference in the sharpness of the resolution of the
numerical results, according to the numerical flux one uses. Godunov flux gives
much sharper results on linear discontinuities. The difference, however, becomes
less relevant with the increase of the order of accuracy.

Remark 4.8 (Boundary conditions). A general treatment of boundary conditions
for hyperbolic systems is beyond the scope of the present lecture notes. A general
technique to impose simple boundary conditions consists in extending the compu-
tational domain with a given number of “ghost” cells, in which data is assigned
at tn. If one solves a system of m equations, in each ghost cell one has to assign
m quantities. However, all the quantities that are assigned at the ghost cells are
not independent: on the two boundaries a total of m independent quantities can
be assigned, while the other m have to be compatible with the evolution equation.
The characteristic condition (number of independent assigned conditions must be
equal to the number of characteristic entering the domain at the boundary) has
to be satisfied at a discrete level. A description of boundary conditions for a gen-
eral hyperbolic system can be found, for example, in the book of Godlewski and
Raviart, [21].

4.5 Time Integration: Runge-Kutta Methods

Once the system of PDE’s has been reduced to a system of ODE’s, it may be solved
numerically by some standard ODE solver, such as, for example, Runge-Kutta.

Let us consider an initial value problem for a system of ordinary differential
equations. {

y′ = g(y),
y(t0) = y0.
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Apply to the initial value problem above an explicit Runge-Kutta scheme with ν
stages:

yn+1 = yn + Δt

ν∑
i=1

biK
(i).

The K(i) are called Runge-Kutta fluxes and are defined by

K(i) = g(y(i)) with y(1) = yn, i = 1, . . . , ν

where the y(i) will be called intermediate values, and, for an explicit scheme, are
given by

y(i) = yn + Δt

i−1∑
l=1

ai,lK
(l), i = 1, . . . , ν − 1.

The matrix A = (ai,l), and the vector b define uniquely the RK scheme. With the
present notation, A is a ν × ν lower triangular matrix, with zero elements on the
diagonal.

Implicit schemes are usually not used when source terms are not present,
because hyperbolic systems are in general not stiff. The treatment of systems with
stiff source will be given in Section 6.

4.6 SSP Schemes

When constructing numerical schemes for conservation laws, one has to take great
care in order to avoid spurious numerical oscillations arising near discontinuities
of the solution. This is avoided by a suitable choice of space discretization and
time discretization.

Solution of scalar conservation equations, and equations with a dissipative
source have some norm that decreases in time. It would be desirable that such
property is maintained at a discrete level by the numerical method. If Un rep-
resents a vector of solution values (for example obtained from a method of lines
approach in solving (1.1) we recall the following [61]

Definition. A sequence {Un} is said to be strongly stable in a given norm || · ||
provided that ||Un+1|| ≤ ||Un|| for all n ≥ 0.

The most commonly used norms are the TV -norm and the infinity norm. A
numerical scheme that maintains strong stability at discrete level is called Strong
Stability Preserving (SSP).

Here we review some basic facts about RK-SSP schemes. First, it has been
shown [23] under fairly general conditions that high-order SSP schemes are neces-
sarily explicit. Second, observe that a generic explicit RK scheme can be written
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as

U (0) = Un,

U (i) =
i−1∑
k=0

(αikU (k) + ΔtβikL(U (k))), i = 1, . . . , ν, (4.6)

Un+1 = U (ν),

where αik ≥ 0 and αik = 0 only if βik = 0. This representation of RK schemes
(which is not unique) can be converted to a standard Butcher form in a straightfor-
ward manner. Observe that for consistency, one has

∑i−1
k=0 αik = 1. It follows that

if the scheme can be written in the form (4.6) with non-negative coefficients βik,
then it is a convex combination of Forward Euler steps, with step sizes (βik/αik)Δt.
A consequence of this is that if Forward Euler is SSP for Δt ≤ Δt∗, then the RK
scheme is also SSP for Δt ≤ cΔt∗, with c = minik(αik/βik) [57, 23].

The constant c is a measure of the efficiency of the SSP-RK scheme, therefore
for the applications it is important to have c as large as possible. For a detailed
description of optimal SSP schemes and their properties see [61].

Some example of explicit SSP RK schemes are given in the appendix.

4.7 Extension to More Dimensions

Both finite-volume and finite-difference methods can be extended to more space
dimensions, although high-order methods are considerably more expensive. As a
general remark, finite-difference schemes become more efficient than finite-volume
schemes in 2D, because the reconstructions can be performed direction-by-direc-
tion, while in 1D finite-volume are slightly faster, because one has to reconstruct
only u(x) from ū(x) rather then two fluxes, f+(u) and f−(u). The treatment of
systems in more dimensions goes beyond the scope of the present lecture notes.
An extensive discussion of such schemes can be found, for example, in the lecture
notes by Shu [56].
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Central Schemes

Shock-capturing finite-volume and finite-difference schemes that have been de-
scribed in the previous chapters require the use of a numerical flux function, which
is necessary to define the flux across the cell edges. In the Godunov representa-
tion of the solution, in fact the function u(x, tn) is piecewise smooth (in general,
piecewise polynomial), with discontinuities at cell boundaries.

An alternative approach to construct high-order shock-capturing schemes is
offered by the so-called central schemes , which are naturally (but not necessarily)
constructed by making use of a staggered mesh.

As we shall see, central schemes have the attractive feature of not requiring
the solution of the (exact or approximate) Riemann problem. For this reason, they
are relatively simple to use on a large variety of systems. One drawback is that
they are usually more dissipative than upwind-based schemes of the same order,
but in general less dissipative than the corresponding non-staggered finite-volume
scheme that makes use of the local Lax-Friedrichs flux.

Introducing some characteristic information in central schemes may improve
their properties. More specifically, we shall see that using characteristic variables
in the reconstruction will reduce spurious numerical oscillations considerably.

From the pioneering works of Nessyahu and Tadmor in [45] and Sanders and
Weiser [55] an extensive literature on central schemes has developed. These central
schemes are obtained integrating the conservation law in space and time on control
volumes which are staggered with respect to the cells on which the cell averages
are based. In this fashion, the discontinuities in the pointwise solution produced
by the reconstruction algorithm are located at the center of the staggered control
volumes. As a consequence, the solution is smooth at the edges of the control
volumes, thus enabling a simple construction of the numerical fluxes.

High-order central schemes can be constructed by performing a reconstruc-
tion of the field from cell averages, and using this reconstruction for computing
the staggered cell average, the pointwise value of the function from cell averages,
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and the space derivative of the flux function. High-order reconstructions can be
obtained using ENO [8] or WENO [40] technique applied to central schemes.

Here we shall present a general technique to construct high-order shock-
capturing central schemes on staggered grid, called Central Runge Kutta (CRK)
[50]. The new approach replaces the previous high-order central schemes based on
dense output for the computation of the integral of the flux along cell edges [8, 40].

Non-staggered central schemes have been developed [33], which have strong
resemblance with non-staggered finite-volume schemes which make use of local
Lax-Friedrichs numerical flux function.

Ideas from central and from upwind schemes can be combined, in order to
obtain schemes which are less dissipative than purely central schemes, and easier
to use than purely updind schems. Semidiscrete central-upwind schemes for con-
servation laws and for Hamilton-Jacobi equations have been derived, for example,
in [34]. The approach is based on a careful estimation of the lowest and highest
characteristic speeds, so only a small amount of characteristic information is used.
This idea was first used by Harten, Lax and van Leer [26].

A review on central schemes can be found, for example, in [63], in which
several other approaches, including spectral methods, are presented for the solu-
tion of conservation laws, and in [54] (second chapter), in which staggered central
schemes with WENO reconstruction in two space dimensions are presented. The
treatment of the stiff source terms in the context of central schemes is also pre-
sented. In the same book (Chapter 3) one can find description of ENO and WENO
reconstruction on unstructured grids.

5.1 Nessyahu-Tadmor Second-Order Scheme

We consider the system of equations

ut + fx(u) = 0, (5.1)

with u ∈ R
m, f : R

m → R
m continuously differentiable. We suppose that the

Jacobian of f , A(u) = f ′(u) has real eigenvalues and a complete set of eigenvectors.
A key point in both upwind and central schemes is the reconstruction step.

From the cell averages {ūn}, it is necessary to reconstruct the initial data un(x).
This information is needed to evaluate the right-hand side of (3.1). Typically,
starting from un(x), one computes a piecewise polynomial function of the form:

un(x) = R(x; {ūn}) =
∑

j

P d
j (x)χIj (x), (5.2)

where P d
j (x) is a polynomial of degree d, and χIj is the characteristic function of

interval Ij .
In central schemes based on staggered grids, the conservation law is integrated

on the staggered control volume: V n
j+1/2 = [xj , xj+1] × [tn, tn + Δt]. Integrating
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(5.1) in space and time on V n
j+1/2 and dividing by h, one finds:

ūn+1
j+1/2 = ūn

j+1/2 −
1
h

∫ Δt

0

[f(u(xj+1, t
n + τ)) − f(u(xj , t

n + τ)) dτ ] . (5.3)

The first term on the right-hand side ūn
j+1/2 is evaluated integrating exactly the

reconstruction on [xj , xj+1]:

ūn
j+1/2 =

1
h

∫ xj+1

xj

un(x) =
1
h

∫ xj+1/2

xj

Pj(x) dx +
1
h

∫ xj+1

xj+1/2

Pj+1(x) dx. (5.4)

Since u is smooth at xj and xj+1, if the time step is small enough, the integral in
time of the fluxes can be accurately evaluated through quadrature. The values of
u at the nodes of the quadrature formula are predicted integrating the system of
ODE’s

du

dt

∣∣∣∣
xj

= − fx(u)|xj
,

using again the smoothness of u at xj .
An example is the second-order Nessyahu-Tadmor scheme, which is charac-

terized by a piecewise linear reconstruction, while the fluxes are integrated with
the midpoint rule, and the value of u at the midpoint is predicted with Taylor ex-
pansion. The scheme has a predictor corrector structure, and it can be described
in three steps:

• Reconstruction from cell averages, to yield the staggered cell averages
ūn

j+1/2, and the approximate slopes u′j

u
n+1/2
j =

1
2
(ūn

j + ūn
j+1) −

1
8
(u′j+1 − u′j)h.

• Predictor step. Evaluate:

u
n+1/2
j = ūn

j − Δt

2
f ′j .

• Corrector step. Compute the new cell averages:

ūn+1
j+1/2 = ūn

j+1/2 − λ
[
f(un+1/2

j+1 ) − f(un+1/2
j )

]
.

A first-order approximation of the space derivatives f ′j ≈ ∂f/∂x(ūn
j ), u′j ≈

∂u/∂x(xj), can be computed by using a suitable slope limiter, such as MinMod
or UNO (Uniformly Non Oscillatory) [25].

Higher-order schemes require the reconstruction of pointwise values of the
solution from cell averages, in addition to staggered cell averages, and of space
derivatives of the flux.
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5.2 Description of CRK Schemes

In Central Runge Kutta schemes, the conservation law is integrated on the interval
Ij+1/2 = [xj , xj+1] (see Fig.5.1). We obtain the exact equation:

dū

dt

∣∣∣∣
j+1/2

= − 1
h

[f(u(xj+1, t)) − f(u(xj , t))] . (5.5)

j-1/2x x j+1/2
tn

tn+1

x j x j+1

tn+2

Figure 5.1: Integration over a staggered cell, and construction of central schemes.

Next, this equation is discretized in time with a Runge-Kutta scheme. Thus
the updated solution will be given by:

ūn+1
j+1/2 = ūn

j+1/2 − λ

ν∑
i=1

biK
(i)
j+1/2, (5.6)

with
K

(i)
j+1/2 = f(u(i)

j+1) − f(u(i)
j ) with u

(1)
j = un(xj). (5.7)

To evaluate the intermediate states, u(i)
j , we exploit the fact that the reconstruction

un(x) is smooth except for jumps at the cell edges, xj±1/2. Thus, u(xj , t) remains
smooth for t ∈ [tn, tn+Δt], if Δt is small enough. As in all central schemes based on
staggered grids, we can therefore evaluate the intermediate states u

(i)
j integrating

the conservation law (5.1) in its differential form, namely: ut = −fx(u). Thus:

u
(i)
j = u

(1)
j + Δt

i−1∑
l=1

ai,lK̂
(l)
j , i = 2, . . . , ν, (5.8)
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with the Runge-Kutta fluxes:

K̂
(l)
j = −∂f(u(l))

∂x

∣∣∣∣
j

and u
(1)
j = un(xj) l = 2, . . . , ν. (5.9)

There are other ways to compute the Runge-Kutta fluxes for the computation of
the intermediate values, other than the one exposed here. In particular, one could
write

∂f(u)
∂x

= A(u)
∂u

∂x

and use the recontruction for the field u to compute an approximation of ∂u/∂x.
This approach avoids the reconstruction of the flux f , but requires the computation
of the Jacobian matrix A.

At this stage, we have completed the time discretization of the scheme. Note
that the scheme is in conservation form for the numerical solution, while the stage
values are computed by a non-conservative scheme.

We now need to specify the space discretization, which is obtained with
reconstruction techniques. The reconstruction must yield the following quantities:

• Starting from the cell averages {ūn
j }, compute the staggered cell averages,

{ūn
j+1/2}, appearing in (5.6), as defined in (5.4).

• Starting from the cell averages {ūn
j }, compute the point values, {un

j =

un(xj)}, which are needed to compute the start-up values u
(1)
j in (5.8).

• Starting from the intermediate values {u(i)
j }, compute the derivative of the

fluxes {fx(u(i))|j}. These quantities form the Runge-Kutta fluxes in (5.9).

Note that we can use different interpolation algorithms for each quantity we need
to reconstruct. According to our numerical evidence (see also [52]) the key step is
the reconstruction of {ūn

j+1/2}.
The algorithm for CRK schemes can be conveniently written as a three-step

method, as follows:

1. Reconstruction step: From the cell averages {ūn
j }, compute the reconstruc-

tion un(x). Use this to evaluate u
(1)
j = un(xj) and ūn

j+1/2.

2. Predictor step (stage values): Compute the intermediate states u
(i)
j :

For i = 2, . . . , ν:

• compute f(u(i)
j ) ∀j;

• apply a suitable non-oscillatory interpolation to yield K̂
(i)
j =−fx(u(i))j ;

• compute u
(i)
j = u

(1)
j + Δt

∑i−1
l=1 ai,lK̂

(l)
j .
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3. Corrector step (numerical solution): Assemble the fluxes K
(i)
j+1/2 defined

above, and update the cell averages on the staggered grid:

ūn+1
j+1/2 = ūn

j+1/2 − λ
ν∑

i=1

biK
(i)
j+1/2.

Note that the computation of K̂ν
j is not required. This improves the efficiency of

the scheme, because it requires one less interpolation per time step, with respect
to previous high-order Central WENO schemes [40]. We end this section by giving
all details needed to code the CRK schemes we will test in the next sections.

5.3 A Second-Order Scheme: CRK2

The second-order scheme we propose has Nessyahu-Tadmor piecewise linear re-
construction:

un(x) =
∑

j

(
ūn

j + u′j(x − xj)
)
χIj (x),

where u′j is an approximate slope, computed for instance with the MinMod limiter.
Time integration is given by Heun’s scheme. Therefore the scheme is:

ūn
j+1/2 =

1
2
(ūn

j + ūn
j+1) +

1
8
(u′j − u′j+1),

u
(1)
j = ūn

j − Δtfx(ūn
j )

ūn+1
j+1/2 = ūn

j+1/2 −
λ

2
(f(ūn

j+1) + f(u(1)
j+1) − f(ūn

j ) − f(u(1)
j )),

where, for instance,

fx(ūn
j ) =

1
h

MinMod(f(ūn
j+1) − f(ūn

j ), f(ūn
j ) − f(ūn

j−1)).

It is easy to prove that this scheme coincides with the Nessyahu-Tadmor scheme in
the case of linear advection. Moreover, following the same steps appearing in [45],
it is easy to prove that the CRK2 scheme is TVD, under a stricter CFL condition,
provided that suitable limiters are used to compute both u′j and fx(u)|j . Note that
if the Modified Euler rule is used for time integration instead of the TVD Heun
scheme, the CRK2 scheme coincides with Nessyahu-Tadmor scheme.

5.4 Higher-Order Schemes: CRK3, CRK4, CRK5

In this section, we describe a third-, fourth- and fifth-order scheme (respectively:
CRK3, CRK4, and CRK5). All these schemes are built with Central WENO re-
constructions. In the following, we review the main steps of the reconstruction, in
order to allow the coding of the schemes we are proposing.
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We start describing how ūn
j+1/2 is computed. Then we will sketch how point

values and flux derivatives are constructed.
In all three cases, the reconstruction from cell averages is a nonlinear convex

combination of three interpolating polynomials. On the interval Ij :

un(x)|Ij
= Rj(x) = w−1

j pj−1(x) + w0
j pj(x) + w+1

j pj+1(x), (5.10)

where the wk
j are the nonlinear weights, which satisfy

∑
k wk

j = 1.
For the third-order scheme, [41], pj−1 and pj+1 are two linear functions, while

pj is a parabola, namely:

pj−1(x) = ūn
j +

1
h

(ūn
j − ūn

j−1)(x − xj),

pj+1(x) = ūn
j +

1
h

(ūn
j+1 − ūn

j )(x − xj),

pj(x) = ūn
j − 1

12
(ūn

j+1 − 2ūn
j + ūn

j−1) +
1
2h

(ūn
j+1 − ūn

j−1)(x − xj)

+
1
h2

(ūn
j+1 − 2ūn

j + ūn
j−1)(x − xj)2.

For the fourth- and fifth-order schemes, all polynomials pj+k(x), k = −1, 0, +1
are parabolas. The coefficients of the parabola pj+k are given by the following
interpolation requirements:

1
h

∫ xj+k+(l+ 1
2 )h

xj+k+(l− 1
2 )h

pj+k(x) dx = ūj+k+l, l = −1, 0, +1.

In all schemes considered here the reconstruction un(x) is piecewise parabolic.
Note that the reconstruction is conservative, since:

1
h

∫ xj+k−1/2

xj+k+1/2

Rj(x) dx = ūj+k, k = −1, 0, +1.

The weights wk
j are determined in order to:

• maximize accuracy in smooth regions

• prevent the onset of spurious oscillations.

Following [28], we define the weights with the following formulas:

wk
j =

αk
j∑1

l=−1 αl
j

=⇒
1∑

l=−1

wk
j = 1, (5.11)

where:

αk
j =

Ck(
ε + βk

j

)2 . (5.12)
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Scheme C−1 C0 C+1 Accuracy

Reconstruction of ūn
j+1/2

CRK3 1/4 1/2 1/4 h3

CRK4 3/16 5/8 3/16 h5

CRK5 3/16 5/8 3/16 h5

Reconstruction of un(xj)

CRK3 1/4 1/2 1/4 h3

CRK4 3/16 5/8 3/16 h4

CRK5 -9/80 49/40 -9/80 h5

Reconstruction of fx(u(x, .)|xj

CRK3 1/4 1/2 1/4 h2

CRK4 1/6 1/3 1/6 h4

CRK5 1/6 1/3 1/6 h4

Table 5.1: Accuracy constants.

The Ck’s are called accuracy constants. They are determined in order to maximize
accuracy in smooth regions, and they depend on the particular quantity being
reconstructed, see Table 5.1. More details will be given below.

The parameter ε prevents a vanishing denominator. It is ε = 10−4 for the
third-order scheme, while ε = 10−6 for the fourth- and fifth-order schemes.

Finally, βk
j , k = −1, 0, 1 are the smoothness indicators. βk

j is a measure of the
regularity of the polynomial pj+k on the interval Ij . It is defined (see Section 4.3
and reference [28]), as a rescaled measure of the H2 seminorm of the polynomial
on Ij :

βk
j =

2∑
l=1

∫ xj+1/2

xj−1/2

h2l−1

(
dlpk+j

dxl

)2

dx, k = −1, 0, 1. (5.13)

Thus βk
j = O(h2) on smooth regions, while βk

j = O(1) if the data in the stencil of
pk+j contain a jump discontinuity. As a consequence of the normalization factor,
wk

j = Ck + O(hs), if the stencil Sj+k on which pj+k is defined contains smooth
data (s = 1 for the third-order reconstruction, while s = 2 in the fourth- and
fifth-order reconstructions).

The accuracy constants Ck are the solution of an interpolation problem. Sup-
pose u(x) is a given smooth function, with cell averages {ūj}. If the reconstruction
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is computed to evaluate the staggered cell average ūj+1/2, then we require:

1
h

∫ xj+1/2

xj

Rj(x) dx =
1
h

∫ xj+1/2

xj

u(x) dx + O(hs),

where s = 3, for the third-order scheme, while s = 5 for CRK4 and CRK5.
For the interpolation of point values, we use a different set of constants. In

this case, the constants are determined to yield:

Rj(xj) = u(xj) + O(hs),

where s = 3, s = 4 and s = 5 for CRK3, CRK4 and CRK5, respectively. For the
third- and fourth-order scheme, any symmetric combination of constants, adding
up to 1 will do. For simplicity, we use the same constants dictated by the evaluation
of ūn

j+1/2, as listed in Table 5.1.
Finally, for flux derivatives, the polynomials pj+k are determined by the

following interpolation requirements:

pj+k(xj+k+l) = f(u(xj+k+l)), l = −1, 0, 1,

for the fourth- and fifth-order schemes. For the third-order scheme the interpola-
tion requirements are:

pj+1(xj+l) = f(u(xj+l)), pj−1(xj−l) = f(u(xj−l)), l = 0, 1,

pj(xj+l) = f(u(xj+l)), l = −1, 0, 1.

The accuracy constants for the reconstruction of flux derivatives satisfy:

∂xRj |xj
= ∂xf(u(x))|xj

+ O(hs),

where s = 4 for the fourth- and fifth-order schemes, while s = 2 for the third-order
schemes. The resulting constants are given in Table 5.1.

Particular care is needed in the reconstruction of point values for the fifth-
order CRK5 scheme. In this case in fact two accuracy constants for the reconstruc-
tion of point values are negative (see Table 5.1), and a straightforward application
of the algorithm with the nonlinear weights yields a scheme that can become
unstable, especially in the presence of interactions between discontinuities.

To avoid this problem, Shu and co-workers proposed a splitting into positive
and negative weights. We refer to [60] and [50] for more details.

The time integration is carried out with the Runge-Kutta schemes listed in
Table 5.2. RK3 is the third-order TVD Runge-Kutta scheme appearing in [59].
RK4 is the standard fourth-order Runge-Kutta scheme.

Linear stability analysis can be performed to establish the maximum CFL
number allowed for each scheme. This information will be then used for the com-
putation of the time step. The results of the analysis for the various schemes are
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Coefficients of Runge-Kutta schemes

Scheme Lower triangular part of A b

RK2 1 1/2 1/2

RK3
1

1/4 1/4
1/6 1/6 2/3

RK4

1/2

0 1/2

0 0 1

1/6 1/3 1/3 1/6

RK5

1/2

3/16 1/16

0 0 1/2

0 −3/16 6/16 9/16

1/7 4/7 6/7 −12/7 8/7

7

90
0

32

90

12

90

32

90

7

90

Table 5.2: Coefficients of Runge-Kutta schemes.

the following. Let ρ(ξ) be the amplification factor of the scheme applied ti the
linear advection equation. Then, for λ ≤ λ0, ρ(ξ) ≤ 1 for all wave numbers ξ:

CRK2 : λ0 =
1
2

= 0.5

CRK3 : λ0 =
3
7
� 0.42

CRK4 : λ0 =
12
25

= 0.48

CRK5 : λ0 =
60
149

� 0.40.

(5.14)

5.5 Numerical Tests

All CRK schemes perform well with Burgers’ equation, providing sharp shock
resolution. Central schemes are somehow less effective than upwind schemes in
treating linear discontinuities, because of their intrinsic dissipation. Nevertheless,
reasonably good results may be obtained even for such problems, as is illustrated
in the following test on contact discontinuities.
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In the test chosen, we consider the linear advection equation ut + ux = 0,
with initial condition:

u(x, t = 0) =

{
cos(π

2 x) −1 ≤ x ≤ 0,

sin(πx) 0 < x ≤ 1,

on [−1, 1] with periodic boundary conditions. The solution restricted to [−1, 1]
contains a contact discontinuity and an angular point, induced by the boundary
conditions. The results are shown in Figure 5.2 at T = 5.5, i.e., after quite a long
integration time, for λ = 0.9λ0, with λ0 given in (5.14).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

CRK2
CRK3
CRK4
CRK5

Figure 5.2: Linear advection equation λ = 0.9λ0. Solution given by CRK2, CRK3,
CRK4, and CRK5 for N = 80.

5.6 Systems of Equations

CRK schemes can be applied to systems of equations. In the simplest form, the
reconstruction can be performed componentwise, on the conservative variables. As
we shall see, less oscillatory results are obtained by using characteristic variables
in the reconstruction.
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The one-dimensional Euler equations for an ideal gas consist of three conser-
vation laws. The vector of unknowns is u = (ρ, ρv, E)T , where ρ is the density, v is
the velocity and E is the total energy per unit volume, given by E = 1

2ρv2+ρe, with
e the internal energy, linked to the pressure p by the equation of state p = p(ρ, e).
For a polytropic gas p = ρe(γ − 1), with γ = cp/cv. The value γ = 7/5, valid
for a diatomic gas such as air, has been used in the numerical tests. The flux is
f(u) = (ρv, ρv2 + p, v(E + p)).

5.7 Componentwise Application

The simplest approach to the integration of systems of conservation laws with
CRK schemes is to apply the schemes component by component to each equation
of system (5.1). A Global Smoothness Indicator can be obtained [40] as

βj
k =

1
mc

mc∑
r=1

1
||ūr||22

(
2∑

l=1

∫
Ij

h2l−1

(
dlpj+k,r

dxl

)2

dx

)
(5.15)

for k = −1, 0, 1. Here r denotes the r-th component of the solution and of the
vector-valued interpolating polynomial, and mc denotes the number of equations
of the hyperbolic system. Comparing with (5.13), we see that the Global Smooth-
ness Indicator is just a weighted average of the Smoothness Indicators given by
each component. The weights in the average are chosen in order to obtain a di-
mensionless quantity. This ensures that the indicators are invariant with respect
to units of measure.

The first test we show is by Shu and Osher [59]. It describes the interaction
of an acoustic wave with a shock. The solution has a rich structure, which is better
resolved by a high-accuracy scheme. The initial condition is u = uL for x ≤ 0.1, and
u = uR for x > 0.1. The computational domain is [0, 1], with free-flow boundary
conditions. The left (L) and right (R) states are given by:⎛⎝ ρ

v
p

⎞⎠
L

=

⎛⎝ 3.857143
2.629369
10.3333

⎞⎠ ,

⎛⎝ ρ
v
p

⎞⎠
R

=

⎛⎝ 1 + 0.2 sin(50x)
0
1

⎞⎠ .

The reciprocal of the maximum characteristic speed for this flow is c � 0.219.
Thus we used the mesh ratio λ = 0.2λ0, where the appropriate value of λ0 can
be found, as usual, in (5.14). The solution is plotted at T = 0.18. The results are
shown in Figure 5.3. The solid line is the reference solution, obtained with CRK4
and 1600 grid points. The dotted line is the numerical solution, computed using
400 grid points.

The figure clearly shows that there is a noticeable increase in resolution,
using high-order schemes. Although the difference between the numerical solutions
obtained with CRK2 and CRK3 is very small, there is a very strong improvement
with the fourth-order scheme. In fact, the structure behind the strong shock is not
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Figure 5.3: Shock-acoustic interaction λ ≡ Δt/Δx = 0.2λ0. Solution given by
CRK2, CRK3, CRK4, and CRK5 for N = 400.

resolved by the low-order schemes. Instead, its complexity is well represented by
the fourth- and the fifth-order scheme, with no need of a very fine mesh.

Next, we consider a Riemann problem due to Lax [35]. Here the initial con-
dition is u = uL for x ≤ 0.5, and u = uR for x > 0.5. The computational domain
is [0, 1], with free-flow boundary conditions. The left (L) and right (R) states are
given by:

uL =

⎛⎝ 0.445
0.311
8.928

⎞⎠ , uR =

⎛⎝ 0.5
0.

1.4275

⎞⎠ .

The inverse of the maximum eigenvalue for this flow is approximately c = 0.21. As
mesh ratio, we thus pick λ = 0.2λ0, where λ0 is, as usual, the mesh ratio obtained
with linear stability analysis, see (5.14). This means that the Courant number is
very close to the critical one.

The results are shown in Figure 5.4, where a detail in the density peak is
shown. The whole solution can be seen for instance in [40] or [52]. The detail we

CRK5
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Figure 5.4: Lax’ Riemann problem λ = 0.2λ0. Solution given by CRK2, CRK3,
CRK4, and CRK5 for N = 200 (dotted line), N = 400 (dashed line) and N = 800
(dash-dotted line).

show is a zoom on the region containing spurious oscillations The discontinuities
appearing on the left and on the right of the density peak are respectively a
contact and a shock wave. The solution is shown, for all schemes studied here, for
N = 200 (dotted line), N = 400 (dashed line) and N = 800 (dash-dotted line).
The high-order schemes clearly exhibit small amplitude spurious oscillations in
this test problem. These oscillations are clearly of ENO type, in the sense that
their amplitude decreases as the grid is refined. It can also be noted that the shock
is, as expected, better resolved than the contact wave, and the resolution of the
contact improves with the order of accuracy.
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5.8 Projection Along Characteristic Directions

While the results shown in Figure 5.3 are quite satisfactory, the numerical solu-
tions shown at the bottom of Figure 5.4 can be improved. The componentwise
application of CRK schemes seems to be inadequate whenever discontinuities are
separated by regions of almost constant states. The result will be improved by
using characteristic variables in order to perform the reconstruction. It can be
shown that it is enough to use characteristic variables for the computation of the
staggered cell average ūn

j+1/2 from cell averages, because this is where the upwind
information of the characteristic variables is mostly needed.

The interested reader may consult, for example, [50] or [51] for an example
of efficient implementation of the characteristic reconstruction.
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Figure 5.5: Lax’ Riemann problem λ = 0.2λ0. Solution given by CRK4 (left)
and and CRK5 (right) for N = 200 (dotted line), N = 400 (dashed line) and
N = 800 (dash-dotted line). The interpolation is computed with projection along
characteristic directions.



Chapter 6

Systems with Stiff Source

The development of efficient numerical schemes for such systems is challenging,
since in many applications the relaxation time varies from values of order 1 to
very small values if compared to the time scale determined by the characteristic
speeds of the system. In this second case the hyperbolic system with relaxation is
said to be stiff, and typically its solutions are well approximated by solutions of a
suitably reduced set of conservation laws called equilibrium system [13].

Usually it is extremely difficult, if not impossible, to split the problem into
separate regimes and to use different solvers in the stiff and non-stiff regions. Thus
one has to use the original relaxation system in the whole computational domain.

Splitting methods have been widely used for such problems. They are attrac-
tive because of their simplicity and robustness. Strang splitting provides second-
order accuracy if each step is at least second-order accurate [62]. This property is
maintained under fairly mild assumptions even for stiff problems [27]. However,
Strang splitting applied to hyperbolic systems with relaxation reduces to first-
order accuracy when the problem becomes stiff. The reason is that the kernel of
the relaxation operator is non-trivial, which corresponds to a singular matrix in
the linear case, and therefore the assumptions in [27] are not satisfied.

Furthermore with a splitting strategy it is difficult to obtain higher-order ac-
curacy even in non-stiff regimes (high-order splitting schemes can be constructed,
see [17], but they are seldom used because of stability problems).

Recently developed Runge-Kutta schemes overcome these difficulties, provid-
ing basically the same advantages of the splitting schemes, without the drawback
of the order restriction [12, 29, 65].

A general methodology that can be used for the treatment of hyperbolic
systems of balance laws with stiff source is obtained by making use of Implicit-
Explicit (IMEX) Runge-Kutta schemes. The hyperbolic part, which is in general
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non-stiff1 can be treated by the explicit part of the scheme, while the stiff source
is treated by the implicit part.

In order to guarantee TVD property in time for the hyperbolic part, total
variation diminishing Runge-Kutta schemes (also called Strongly Stability Pre-
serving (SSP) schemes) have been developed (see Section 4.6 and [22, 23, 61]).
In this section we shall mainly restrict to the case of hyperbolic systems with
stiff relaxation. For such systems, suitable schemes are obtained by coupling SSP
schemes for the hyperbolic part, with L-stable schemes for the relaxation.

Some applications to systems with stiff relaxation will be presented.

6.1 Systems of Balance Laws

Many physical systems are described by a system of balance laws of the form

∂u

∂t
+

∂f(u)
∂x

=
1
ε
g(u) , (6.1)

where we have written explicitly a factor 1/ε in front of the source term, to express
that such a source may be stiff. Hyperbolic systems with a source can be treated
by both finite-volume and finite-difference methods.

Finite-volume. Integrating Equation (6.1) in space in cell Ij and dividing by Δx
one has

dūj

dt
= −Fj+1/2 − Fj−1/2

h
+

1
ε
g(u)j , (6.2)

where g(u)j denotes the j-th cell average of the source.
In order to convert this expression into a numerical scheme, one has to ap-

proximate the right-hand side with a function of the cell averages {ū(t)}j , which
are the basic unknowns of the problem.

The right-hand side of Equation (6.2) contains the average of the source
term g(u) instead of the source term evaluated at the average of u, g(ū). The two
quantities agree within second-order accuracy

g(u)j = g(ūj) + O(Δx2).

This approximation can be used to construct schemes up to second order.
First-order (in space) semidiscrete schemes can be obtained using the numer-

ical flux function F (ūj, ūj+1) in place of f(u(xj+1/2, t)),

dūj

dt
= −F (ūj, ūj+1) − F (ūj−1, ūj)

Δx
+

1
ε
g(ūj). (6.3)

1If one is interested in resolving all the waves or if the wave speeds are of the same order of
magnitude, then the hyperbolic part is not stiff, in the sense that the CFL stability condition is in
agreement with accuracy requirements. If fast waves carry a negligible signal, then the problem
becomes stiff, since the CFL restriction on the time step is due to the fast waves, while accuracy
requires to resolve much slower time scales, typical of the evolution of the slow waves. We shall
not treat such a case here.
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Second-order schemes are obtained by using a piecewise linear reconstruction
in each cell, and evaluating the numerical flux on the two sides of the interface:

dū

dt
= −

F (u−j+1/2, u
+
j+1/2) − F (u−j−1/2, u

+
j−1/2)

Δx
+

1
ε
g(ūj).

The quantities at cell edges are computed by piecewise linear reconstruction. For
example,

u−j+1/2 = ūj +
Δx

2
u′j,

where the slope u′j is a first-order approximation of the space derivative of u(x, t),
and can be computed by suitable slope limiters (see, for example, [38] for a dis-
cussion on TVD slope limiters.)

For schemes of order higher than second, a suitable quadrature formula is
required to approximate g(u)j . For example, for third- and fourth-order schemes,
one can use Simpson’s rule

g(u)j ≈ 1
6
(g(u+

j−1/2) + 4g(uj) + g(u−j+1/2)),

where the pointwise values u+
j−1/2, uj , u−j+1/2 are obtained from the reconstruction.

For a general problem, this has the effect that the source term couples the
cell averages of different cells, thus making almost impractical the use of finite-
volume methods for high-order schemes applied to stiff sources, where the source
is treated implicitly.

Note, however, that in many relevant cases of hyperbolic systems with re-
laxation the implicit step, thanks to the conservation properties of the system,
can be explicitly solved, and finite-volume methods can be successfully used, even
in the high-order case. We mention here all relaxation approximation of Jin-Xin
type [30], some simple discrete velocity models, such as Carlemann and Broadwell
models [20, 10], monatomic gas in Extended Thermodynamics [44], semiconductor
models [1, 2], and shallow water equations [29].

Finite-difference. A finite-difference method applied to (6.1) becomes

duj

dt
= − F̂j+1/2 − F̂j−1/2

h
+

1
ε
g(uj) , (6.4)

where the source term is computed pointwise and no strange integration is needed.
Both systems (6.2) and (6.4) consist of two terms on the right-hand side. They have
the structure of a system of J ×mc ordinary differential equations. If the stability
restriction the time step due to the presence of these two terms are comparable
(when using an explicit scheme), then the source is not stiff, and one can use a
standard explicit ODE solver (for example a TVD Runge-Kutta scheme). If, on
the other hand, the stability restriction on Δt imposed by the presence of g(uj)/ε
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are much more severe (for example because g(uj)/ε represents a relaxation with
a small relaxation time), then it is better to use a time discretization which is
explicit in the hyperbolic part and implicit in the source term (IMEX).

Here we use a method of lines approach, and we write system (6.4) in vector
form as

dU

dt
= H(U) +

1
ε
G(U) (6.5)

where U ∈ R
Jmc , J being the number of space cells, and mc being the number

of components of the function u(x, t). For finite-difference schemes, the function
G(U) is diagonal (mc = 1) or block diagonal (mc > 1), and therefore the implicit
step involving only function G requires the solution of a relatively small (mc×mc)
system.

6.2 IMEX Runge-Kutta Schemes

An IMEX Runge-Kutta scheme consists of applying an implicit discretization to
the source terms and an explicit one to the non-stiff term. When applied to system
(6.5) it takes the form

U (i) = Un + Δt

i−1∑
j=1

ãijH(U (j)) + Δt

i∑
j=1

aij
1
ε
G(U (j)), (6.6)

Un+1 = Un + Δt

ν∑
i=1

b̃iH(U (i)) + Δt

ν∑
i=1

bi
1
ε
G(U (i)). (6.7)

The matrices Ã = (ãij), ãij = 0 for j ≥ i and A = (aij) are ν × ν matrices such
that the resulting scheme is explicit in H , and implicit in G. An IMEX Runge-
Kutta scheme is characterized by these two matrices and the coefficient vectors
b̃ = (b̃1, . . . , b̃ν)T , b = (b1, . . . , bν)T .

The implicit scheme is diagonally implicit (DIRK), i.e., aij = 0, for j > i
[24]. This will simplify the solution of the algebraic equations associated to the
implicit step, and it will guarantee that the function H will appear explicitly in
the scheme (a fully implicit scheme will couple the evaluation of the function H
at different stages.)

IMEX Runge-Kutta schemes can be represented by a double tableau in the
usual Butcher notation,

c̃ Ã

b̃T

c A

wT

where the coefficients c̃ and c used for the treatment of non-autonomous systems
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are given by the usual relation

c̃i =
i−1∑
j=1

ãij , ci =
i∑

j=1

aij . (6.8)

Order Conditions

The general technique to derive order conditions for Runge-Kutta schemes is based
on the Taylor expansion of the exact and numerical solution.

In particular, conditions for schemes of order p are obtained by imposing that
the solution of system (6.1) at time t = t0 + Δt, with a given initial condition at
time t0, agrees with the numerical solution obtained by one step of a Runge-Kutta
scheme with the same initial condition, up to order Δtp.

Here we report the order conditions for IMEX Runge-Kutta schemes up to
order p = 3, which is already considered high-order for PDE problems.

We apply scheme (6.6)–(6.7) to system (6.1), with ε = 1. We assume that
the coefficients c̃i, ci, ãij , aij satisfy conditions (6.8). Then the order conditions
are the following.

First-order.
ν∑

i=1

b̃i = 1,

ν∑
i=1

bi = 1. (6.9)

Second-order. ∑
i

b̃ic̃i = 1/2,
∑

i

bici = 1/2, (6.10)∑
i

b̃ici = 1/2,
∑

i

bic̃i = 1/2. (6.11)

Third-order.∑
ij

b̃iãij c̃j = 1/6,
∑

i

b̃ic̃ic̃i = 1/3,
∑
ij

biaijcj = 1/6,
∑

i

bicici = 1/3,

(6.12)

∑
ij

b̃iãijcj = 1/6,
∑
ij

b̃iaij c̃j = 1/6,
∑
ij

b̃iaijcj = 1/6,

∑
ij

biãijcj = 1/6,
∑
ij

biaij c̃j = 1/6,
∑
ij

biãij c̃j = 1/6,

∑
i

b̃icici = 1/3,
∑

i

b̃ic̃ici = 1/3,
∑

i

bic̃ic̃i = 1/3,∑
i

bic̃ici = 1/3.

(6.13)
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IMEX-RK Number of coupling conditions

order General case b̃i = bi c̃ = c c̃ = c and b̃i = bi

1 0 0 0 0

2 2 0 0 0

3 12 3 2 0

4 56 21 12 2

5 252 110 54 15

6 1128 528 218 78

Table 6.1: Number of coupling conditions in IMEX Runge-Kutta schemes.

Conditions (6.9), (6.10), (6.12) are the standard order conditions for the two
tableau, each of them taken separately. Conditions (6.11) and (6.13) are new con-
ditions that arise because of the coupling of the two schemes.

The order conditions will simplify a lot if c̃ = c. For this reason only such
schemes are considered in [5]. In particular, we observe that, if the two tableau
differ only for the value of the matrices A, i.e., if c̃i = ci and b̃i = bi, then
the standard order conditions for the two schemes are enough to ensure that the
combined scheme is third order. Note, however, that this is true only for schemes
up to third order.

Higher-order conditions can be derived as well using a generalization of
Butcher 1-trees to 2-trees, see [31]. However the number of coupling conditions
increase dramatically with the order of the schemes. The relation between cou-
pling conditions and accuracy of the schemes is reported in Table 6.1.

6.3 Hyperbolic Systems with Relaxation

In this section we give sufficient conditions for asymptotic preserving and asymp-
totic accuracy properties of IMEX schemes. This properties are strongly related
to L-stability of the implicit part of the scheme.

6.3.1 Zero Relaxation Limit

Consider a simple 2 × 2 system:

vt + wx = 0
wt + vx = (bv − w)/ε.

(6.14)
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Formally, as ε → 0, the second equation implies w = bv. Substituting this relation
in the first equation one obtains a closed equation for v,

vt + bvx = 0, (6.15)

In order to show that the solution to Equation (6.15) is the limit of the solution
of system (6.14), one has to impose that |b| < 1, which corresponds to imposing
the so-called subcharacteristic condition.

This condition can be easily understood using the following argument. Let us
consider Equation (6.14), and let us look for a solution in terms of Fourier modes:

v(x, t) = v̂(t) exp(ιkx), w(x, t) = ŵ(t) exp(ιkx).

The equations for the Fourier modes are

v̂t = −ιkŵ,

ŵt = −ιkv̂ +
1
ε
(bv̂ − ŵ).

Introducing the vector U = (v̂, ŵ)T , the system can be written in the form

dU

dt
= AU, with A =

(
0 −ιk

−ιk + b/ε −1/ε

)
.

Such a system will have unstable modes if there is an eigenvalue λ with positive
real part. The characteristic equation for the matrix A takes the form

λ + ιkb + ε(λ2 + k2) = 0.

If ε = 0, one has λ = −ιkb, corresponding to undamped oscillations. For small
values of ε one can write

λ = −ιkb − ε(λ2 + k2)

= −ιkb − ε(1 − b2)k2 + O(ε2),

therefore, neglecting higher-order terms, the real part of λ is positive if |b| > 1. A
similar expansion in ε can be performed directly at the level of the system (6.14),
by using the so called Chapman-Enskog expansion [11]. In the case of Equation
(6.14), the Chapman-Enskog expansion can be easily obtained by observing that,
from the second equation, one has w = bv + O(ε). More precisely, using this
observation and the equations (6.14), one has

w = bv − ε(wt + vx)

= bv − ε(bvt + vx) + O(ε2)

= bv − ε(−bwx + vx) + O(ε2)

= bv − ε(1 − b2)vx + O(ε2).
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Substituting this last relation in the first equation, one has

vt + bvx = ε(1 − b2)vxx + O(ε2).

Neglecting terms of higher order in ε one obtains a convection-diffusion equation
with viscosity coefficient ν = ε(1− b2). Well-posedness of the initial value problem
requires that ν ≥ 0, i.e., |b| ≤ 1.

More generally, let us consider here one-dimensional hyperbolic systems with
relaxation of the form (6.1). The operator g : R

N → R
N is called a relaxation

operator, and consequently (6.1) defines a relaxation system, if there exists a
constant n × m matrix Q with rank(Q) = n < m such that

Qg(u) = 0 ∀ u ∈ R
m. (6.16)

This gives n independent conserved quantities u = Qu. Moreover we assume that
equation g(u) = 0 can be uniquely solved in terms of ũ, i.e.,

u = E(ũ) such that g(E(ũ)) = 0. (6.17)

The image of E represents the manifold of local equilibria of the relaxation oper-
ator g.

Using (6.16) in (6.1) we obtain a system of n conservation laws which is
satisfied by every solution of (6.1),

∂t(Qu) + ∂x(Qf(u)) = 0. (6.18)

For vanishingly small values of the relaxation parameter ε from (6.1) we
get g(u) = 0 which by (6.17) implies u = E(ũ). In this case system (6.1) is well
approximated by the equilibrium system [13]

∂tũ + ∂xf̃(ũ) = 0, (6.19)

where f̃(ũ) = Qf(E(ũ)).
System (6.19) is the formal limit of system (6.4) as ε → 0. The solution u(x, t)

of the system will be the limit of Qu, with u solution of system (6.4), provided
a suitable condition on the characteristic velocities of systems (6.4) and (6.19) is
satisfied (the so-called subcharacteristic condition, see [64, 13].)

6.3.2 Asymptotic Properties of IMEX Schemes

We start with the following

Definition. We say that an IMEX scheme for system (6.1) in the form (6.6)–(6.7) is
asymptotic preserving (AP) if in the limit ε → 0 the scheme becomes a consistent
discretization of the limit equation (6.19).
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Note that this definition does not imply that the scheme preserves the order
of accuracy in t in the stiff limit ε → 0. In the latter case the scheme is said
asymptotically accurate.

In order to give sufficient conditions for the AP and asymptotically accurate
property, we make use of the following simple

Lemma 6.1. If all diagonal elements of the triangular coefficient matrix A that
characterize the DIRK scheme are nonzero, then

lim
ε→0

g(u(i)) = 0. (6.20)

Proof. In the limit ε → 0 from (6.6) we have

i∑
j=1

aijg(uj) = 0, i = 1, . . . , ν.

Since the matrix A is non-singular, this implies g(ui) = 0, i = 1, . . . , ν. �
In order to apply the previous lemma, the vectors of c and c̃ cannot be

equal. In fact c̃1 = 0 whereas c1 �= 0. Note that if c1 = 0 but aii �= 0 for i > 1,
then we still have limε→0 g(u(i)) = 0 for i > 1 but limε→0 g(u(1)) �= 0 in general.
The corresponding scheme may be inaccurate if the initial condition is not “well
prepared” (g(u0) �= 0). In this case the scheme is not able to treat the so-called
“initial layer” problem, and degradation of accuracy in the stiff limit is expected
(see, for example, [12, 47, 46].) On the other hand, if the initial condition is “well
prepared” (g(u(0)) = 0), then relation (6.20), i = 1, . . . , ν, holds even if a11 = c1 =
0. In practice, if one uses a scheme that does not handle well an initial layer, then
one should take small time steps at the beginning of the computation, during a
short transient time. The automatic reduction of the time step during the transient
should be taken into account by a good time-step control for ODE solvers (see,
for example, in [24]).

Next we can state the following

Theorem 6.2. If detA �= 0 in the limit ε → 0, the IMEX scheme (6.6)–(6.7)
applied to system (6.1) becomes the explicit RK scheme characterized by (Ã, w̃, c̃)
applied to the limit equation (6.19).

For the proof see [49]. Clearly one may claim that if the implicit part of
the IMEX scheme is A-stable or L-stable, the previous theorem is satisfied. Note
however that this is true only if the tableau of the implicit integrator does not
contain any column of zeros that makes it reducible to a simpler A-stable or L-
stable form. Some remarks are in order.

Remarks.

i) There is a close analogy between hyperbolic systems with stiff relaxation
and differential algebraic equations (DAE) [4]. The limit system as ε → 0 is
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the analog of an index 1 DAE, in which the algebraic equation is explicitly
solved in terms of the differential variable. In the context of DAE, the initial
condition that we called “well prepared” is called “consistent”.

ii) This result does not guarantee the accuracy of the solution for the m − n
non-conserved quantities (sometimes refereed as the algebraic variable, by the
analogy with differential algebraic systems). In fact, since the very last step
in the scheme is not a projection toward the local equilibrium, a final layer
effect occurs. The use of stiffly accurate schemes (i.e., schemes for which aνj =
bj , j = 1, . . . , ν) in the implicit step may serve as a remedy to this problem. In
order to obtain a uniformly accurate scheme even for the algebraic variable,
more order conditions have to be imposed on the implicit scheme, which
matches the numerical solution and the exact solution at various order in an
expansion in the stiffness parameter in ε. A detailed analysis of this problem
for IMEX Runge-Kutta schemes is reported in [9].

iii) The theorem guarantees that in the stiff limit the numerical scheme becomes
the explicit RK scheme applied to the equilibrium system, and therefore the
order of accuracy of the limiting scheme is greater than or equal to the order
of accuracy of the original IMEX scheme (for the differential variables.)

6.4 Numerical Tests

We present some simple test cases that illustrate the behavior of the FD-WENO-
RK-IMEX schemes. All computations have been performed by finite-difference
WENO schemes with local Lax-Friedrichs flux and conservative variables. Of
course the sharpness of the resolution of the numerical results can be improved
using a less dissipative flux.

Most results are obtained with N = 200 grid points. The reference solution
is computed on a much finer grid.

6.4.1 Broadwell Model

It is a simple model of the Boltzmann equation of gas dynamics [10, 12, 42].
The kinetic model is characterized by a hyperbolic system with relaxation of

the form (6.1) with

u = (ρ, m, z), F (U) = (m, z, m), g(u) =
(

0, 0,
1
2
(ρ2 + m2 − 2ρz)

)
.

Here ε represents the mean free path of particles. The only conserved quantities
are the density ρ and the momentum m.

In the fluid-dynamic limit ε → 0 we have

z = zE ≡ ρ2 + m2

2ρ
, (6.21)
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and the Broadwell system is well approximated by the reduced system (6.19) with

u = (ρ, ρv), G(u) =
(

ρv,
1
2
(ρ + ρv2)

)
, v =

m

ρ
,

which represents the corresponding Euler equations of fluid dynamics.
Here we only test the shock-capturing properties of the schemes. Accuracy

tests are reported in [49].
In particular, we consider non-smooth solutions characterized by the follow-

ing two Riemann problems [12]:

ρl = 2, ml = 1, zl = 1, x < 0.2,

ρr = 1, mr = 0.13962, zr = 1, x > 0.2,
(6.22)

ρl = 1, ml = 0, zl = 1, x < 0,

ρr = 0.2, mr = 0, zr = 1, x > 0.
(6.23)

For brevity we report the numerical results obtained with the second-order IMEX-
SSP2(2,2,2) and third-order IMEX-SSP3(4,3,3) schemes that we will refer to as
IMEX-SSP2-WENO and IMEX-SSP3-WENO, respectively. The results are shown
in Figures 6.1 and 6.2 for a Courant number Δt/Δx = 0.5. Both schemes, as
expected, give an accurate description of the solution in all different regimes also
using coarse meshes that do not resolve the small scales. In particular the shock
formation in the fluid limit is well captured without spurious oscillations. We refer
to [12, 29, 42, 46, 3] for a comparison of the present results with previous ones.

6.4.2 Shallow Water

First we consider a simple model of shallow water flow:

∂th + ∂x(hv) = 0,

∂t(hv) + ∂x(hv2 +
1
2
h2) =

h

ε
(
h

2
− v),

(6.24)

where h is the water height with respect to the bottom, hv the flux, and the
units are chosen so that the gravitational acceleration is g = 1. The source term
is not realistic, and has been chosen for the purpose of checking the behavior of
the schemes in the stiff regime. A similar model has been used as a test case by
Shi-Jin [29].

The zero relaxation limit of the present model is given by the inviscid Burgers
equation for h, while the velocity is algebraically related to h by v = h/2. In this
limit this model is equivalent to the one used by Shi-Jin. The initial data we have
considered is [29]

h = 1 + 0.2 sin(8πx), hv =
h2

2
, (6.25)
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Figure 6.1: Numerical solution of the Broadwell equations with initial data
(6.22) for ρ(◦), m(∗) and z(+) at time t = 0.5. Left column IMEX-SSP2-
WENO scheme, right column IMEX-SSP3-WENO scheme. From top to bottom,
ε = 1.0, 0.02, 10−8.
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Figure 6.2: Numerical solution of the Broadwell equations with initial data (6.23)
for ρ(◦), m(∗) and z(+) at time t = 0.25 for ε = 10−8. Left IMEX-SSP2-WENO
scheme, right IMEX-SSP3-WENO scheme.

with x ∈ [0, 1]. The solution at t = 0.5 in the stiff regime ε = 10−8 using periodic
boundary conditions is given in Figure 6.3. For IMEX-SSP2-WENO the dissipative
effect due to the use of the Lax-Friedrichs flux is very pronounced. As expected,
this effect becomes less relevant with the increase of the order of accuracy. We
refer to [29] for a comparison with the present results.
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Figure 6.3: Numerical solution of the shallow water model with initial data (6.25)
for h(◦) and hv(∗) at time t = 0.5 for ε = 10−8. Left IMEX-SSP2-WENO scheme,
right IMEX-SSP3-WENO scheme.

6.4.3 Traffic Flows

In [6] a new macroscopic model of vehicular traffic has been presented. The model
consists of a continuity equation for the density ρ of vehicles together with an
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additional velocity equation that describes the mass flux variations due to the
road conditions in front of the driver. The model can be written in conservative
form as follows:

∂tρ + ∂x(ρv) = 0,

∂t(ρw) + ∂x(vρw) = A
ρ

T
(V (ρ) − v),

(6.26)

where w = v + P (ρ) with P (ρ) a given function describing the anticipation of
road conditions in front of the drivers and V (ρ) describing the dependence of the
velocity with respect to the density for an equilibrium situation. The parameter
T is the relaxation time and A > 0 is a positive constant.

If the relaxation time goes to zero, under the subcharacteristic condition

−P ′(ρ) ≤ V ′(ρ) ≤ 0, ρ > 0,

we obtain the Lighthill-Whitham [64] model

∂tρ + ∂x(ρV (ρ)) = 0. (6.27)

A typical choice for the function P (ρ) is given by

P (ρ) =

⎧⎪⎪⎨⎪⎪⎩
cv

γ

(
ρ

ρm

)γ

γ > 0,

cv ln
(

ρ

ρm

)
γ = 0,

where ρm is a given maximal density and cv a constant with dimension of velocity.
In our numerical results we assume A = 1 and an equilibrium velocity V (ρ) fitting
to experimental data [7]

V (ρ) = vm

π/2 + arctan
(
αρ/ρm−β

ρ/ρm−1

)
π/2 + arctan (αβ)

,

with α = 11, β = 0.22 and vm a maximal speed. We consider γ = 0 and, in
order to fulfill the subcharacteristic condition, assume cv = 2. All quantities are
normalized so that vm = 1 and ρm = 1. We consider a Riemann problem centered
at x = 0 with left and right states

ρL = 0.05, vL = 0.05, ρR = 0.05, vR = 0.5. (6.28)

The solution at t = 1 for T = 0.2 is given in Figure 6.4. The figure shows the
development of the density of the vehicles. Both schemes give very similar results.
Again, in the second-order scheme the shock is smeared out if compared to the
third-order case. See [7] for more numerical results.
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Figure 6.4: Numerical solution of the traffic model with initial data (6.28) for
ρ(◦) and ρv(∗) at time t = 1 for ε = 0.2. Left IMEX-SSP2-WENO scheme, right
IMEX-SSP3-WENO scheme.



Appendix: Butcher Tableau of IMEX-RK

0 0 0
1 1 0

1/2 1/2

γ γ 0
1 − γ 1 − 2γ γ

1/2 1/2
γ = 1 − 1√

2

Table A.1: Tableau for the explicit (left) implicit (right) IMEX-SSP2(2,2,2) L-
stable scheme.

0 0 0 0
0 0 0 0
1 0 1 0

0 1/2 1/2

1/2 1/2 0 0
0 −1/2 1/2 0
1 0 1/2 1/2

0 1/2 1/2

Table A.2: Tableau for the explicit (left) implicit (right) IMEX-SSP2(3,2,2) stiffly
accurate scheme.

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

Table A.3: Tableau for the explicit (left) implicit (right) IMEX-SSP2(3,3,2) stiffly
accurate scheme.

0 0 0 0
1 1 0 0

1/2 1/4 1/4 0

1/6 1/6 2/3

γ γ 0 0
1 − γ 1 − 2γ γ 0
1/2 1/2 − γ 0 γ

1/6 1/6 2/3

γ = 1 − 1√
2

Table A.4: Tableau for the explicit (left) implicit (right) IMEX-SSP3(3,3,2) L-
stable scheme.
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0 0 0 0 0
0 0 0 0 0
1 0 1 0 0

1/2 0 1/4 1/4 0

0 1/6 1/6 2/3

α α 0 0 0
0 −α α 0 0
1 0 1 − α α 0

1/2 β η 1/2 − β − η − α α

0 1/6 1/6 2/3

α = 0.24169426078821, β = 0.06042356519705 η = 0.12915286960590

Table A.5: Tableau for the explicit (left) implicit (right) IMEX-SSP3(4,3,3) L-
stable scheme.
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Part III

Discontinuous Galerkin
Methods: General Approach

and Stability
Chi-Wang Shu



Preface

In these lecture notes, we will give a general introduction to the discontinuous
Galerkin (DG) methods for solving time-dependent, convection-dominated par-
tial differential equations (PDEs), including the hyperbolic conservation laws,
convection-diffusion equations, and PDEs containing higher-order spatial deriva-
tives such as the KdV equations and other nonlinear dispersive wave equations. We
will discuss cell entropy inequalities, nonlinear stability, and error estimates. The
important ingredient of the design of DG schemes, namely the adequate choice of
numerical fluxes, will be explained in detail. Issues related to the implementation
of the DG method will also be addressed.



Chapter 1

Introduction

Discontinuous Galerkin (DG) methods are a class of finite-element methods us-
ing completely discontinuous basis functions, which are usually chosen as piece-
wise polynomials. Since the basis functions can be completely discontinuous, these
methods have the flexibility which is not shared by typical finite-element meth-
ods, such as the allowance of arbitrary triangulation with hanging nodes, complete
freedom in changing the polynomial degrees in each element independent of that
in the neighbors (p adaptivity), and extremely local data structure (elements only
communicate with immediate neighbors regardless of the order of accuracy of the
scheme) and the resulting embarrassingly high parallel efficiency (usually more
than 99% for a fixed mesh, and more than 80% for a dynamic load balancing with
adaptive meshes which change often during time evolution), see, e.g. [5]. A very
good example to illustrate the capability of the discontinuous Galerkin method in
h-p adaptivity, efficiency in parallel dynamic load balancing, and excellent resolu-
tion properties is the successful simulation of the Rayleigh-Taylor flow instabilities
in [38].

The first discontinuous Galerkin method was introduced in 1973 by Reed
and Hill [37], in the framework of neutron transport, i.e., a time-independent
linear hyperbolic equation. A major development of the DG method is carried
out by Cockburn et al. in a series of papers [14, 13, 12, 10, 15], in which they
have established a framework to easily solve nonlinear time-dependent problems,
such as the Euler equations of gas dynamics, using explicit, nonlinearly stable
high-order Runge-Kutta time discretizations [44] and DG discretization in space
with exact or approximate Riemann solvers as interface fluxes and total variation
bounded (TVB) nonlinear limiters [41] to achieve non-oscillatory properties for
strong shocks.

The DG method has found rapid applications in such diverse areas as
aeroacoustics, electro-magnetism, gas dynamics, granular flows, magneto-
hydrodynamics, meteorology, modeling of shallow water, oceanography, oil re-
covery simulation, semiconductor device simulation, transport of contaminant in
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porous media, turbomachinery, turbulent flows, viscoelastic flows and weather fore-
casting, among many others. For more details, we refer to the survey paper [11],
and other papers in that Springer volume, which contains the conference proceed-
ings of the First International Symposium on Discontinuous Galerkin Methods
held at Newport, Rhode Island in 1999. The lecture notes [8] is a good reference
for many details, as well as the extensive review paper [17]. More recently, there
are two special issues devoted to the discontinuous Galerkin method [18, 19], which
contain many interesting papers in the development of the method in all aspects
including algorithm design, analysis, implementation and applications.



Chapter 2

Time Discretization

In these lecture notes, we will concentrate on the method of lines DG methods,
that is, we do not discretize the time variable. Therefore, we will briefly discuss
the issue of time discretization at the beginning.

For hyperbolic problems or convection-dominated problems such as Navier-
Stokes equations with high Reynolds numbers, we often use a class of high-order
nonlinearly stable Runge-Kutta time discretizations. A distinctive feature of this
class of time discretizations is that they are convex combinations of first-order
forward Euler steps, hence they maintain strong stability properties in any semi-
norm (total variation semi-norm, maximum norm, entropy condition, etc.) of the
forward Euler step. Thus one only needs to prove nonlinear stability for the first-
order forward Euler step, which is relatively easy in many situations (e.g., TVD
schemes, see for example Section 3.2.2 below), and one automatically obtains the
same strong stability property for the higher-order time discretizations in this
class. These methods were first developed in [44] and [42], and later generalized
in [20] and [21]. The most popular scheme in this class is the following third-order
Runge-Kutta method for solving

ut = L(u, t)

where L(u, t) is a spatial discretization operator (it does not need to be, and often
is not, linear!):

u(1) = un + ΔtL(un, tn),

u(2) =
3
4
un +

1
4
u(1) +

1
4
ΔtL(u(1), tn + Δt), (2.1)

un+1 =
1
3
un +

2
3
u(2) +

2
3
ΔtL(u(2), tn +

1
2
Δt).

Schemes in this class which are higher order or are of low storage also exist. For
details, see the survey paper [43] and the review paper [21].
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If the PDEs contain high-order spatial derivatives with coefficients not very
small, then explicit time marching methods such as the Runge-Kutta methods
described above suffer from severe time-step restrictions. It is an important and
active research subject to study efficient time discretization for such situations,
while still maintaining the advantages of the DG methods, such as their local
nature and parallel efficiency. See, e.g. [46] for a study of several time discretization
techniques for such situations. We will not further discuss this important issue
though in these lectures.



Chapter 3

Discontinuous Galerkin Method
for Conservation Laws

The discontinuous Galerkin method was first designed as an effective numerical
method for solving hyperbolic conservation laws, which may have discontinuous
solutions. In this section we will discuss the algorithm formulation, stability anal-
ysis, and error estimates for the discontinuous Galerkin method solving hyperbolic
conservation laws.

3.1 Two-dimensional Steady-State Linear Equations

We now present the details of the original DG method in [37] for the two-dimen-
sional steady-state linear convection equation

aux + buy = f(x, y), 0 ≤ x, y ≤ 1, (3.1)

where a and b are constants. Without loss of generality we assume a > 0, b > 0.
The equation (3.1) is well posed when equipped with the inflow boundary condition

u(x, 0) = g1(x), 0 ≤ x ≤ 1 and u(0, y) = g2(y), 0 ≤ y ≤ 1. (3.2)

For simplicity, we assume a rectangular mesh to cover the computational domain
[0, 1]2, consisting of cells

Ii,j =
{

(x, y) : xi− 1
2
≤ x ≤ xi+ 1

2
, yj− 1

2
≤ y ≤ yj+ 1

2

}
for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny, where

0 = x 1
2

< x 3
2

< · · · < xNx+ 1
2

= 1
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and
0 = y 1

2
< y 3

2
< · · · < yNy+ 1

2
= 1

are discretizations in x and y over [0, 1]. We also denote

Δxi = xi+ 1
2
− xi− 1

2
, 1 ≤ i ≤ Nx; Δyj = yj+ 1

2
− yj− 1

2
, 1 ≤ j ≤ Ny;

and

h = max
(

max
1≤i≤Nx

Δxi, max
1≤j≤Ny

Δyj

)
.

We assume the mesh is regular, namely there is a constant c > 0 independent of
h such that

Δxi ≥ ch, 1 ≤ i ≤ Nx; Δyj ≥ ch, 1 ≤ j ≤ Ny.

We define a finite-element space consisting of piecewise polynomials

V k
h =

{
v : v|Ii,j ∈ P k(Ii,j); 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

}
, (3.3)

where P k(Ii,j) denotes the set of polynomials of degree up to k defined on the cell
Ii,j . Notice that functions in V k

h may be discontinuous across cell interfaces.
The discontinuous Galerkin (DG) method for solving (3.1) is defined as fol-

lows: find the unique function uh ∈ V k
h such that, for all test functions vh ∈ V k

h

and all 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny, we have

−
∫ ∫

Ii,j

(auh(vh)x + buh(vh)y) dxdy + a

∫ y
j+ 1

2

y
j− 1

2

ûh(xi+ 1
2
, y)vh(x−

i+ 1
2
, y)dy

− a

∫ y
j+ 1

2

y
j− 1

2

ûh(xi− 1
2
, y)vh(x+

i− 1
2
, y)dy + b

∫ x
i+1

2

x
i− 1

2

ûh(x, yj+ 1
2
)vh(x, y−

j+ 1
2
)dx (3.4)

− b

∫ x
i+1

2

x
i− 1

2

ûh(x, yj− 1
2
)vh(x, y+

j− 1
2
)dx =

∫ ∫
Ii,j

f vh dxdy.

Here, ûh is the so-called “numerical flux”, which is a single-valued function defined
at the cell interfaces and in general depending on the values of the numerical
solution uh from both sides of the interface, since uh is discontinuous there. For
the simple linear convection PDE (3.1), the numerical flux can be chosen according
to the upwind principle, namely

ûh(xi+ 1
2
, y) = uh(x−

i+ 1
2
, y), ûh(x, yj+ 1

2
) = uh(x, y−

j+ 1
2
).

Notice that, for the boundary cell i = 1, the numerical flux for the left edge is
defined using the given boundary condition

ûh(x 1
2
, y) = g2(y).
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Likewise, for the boundary cell j = 1, the numerical flux for the bottom edge is
defined by

ûh(x, y 1
2
) = g1(x).

We now look at the implementation of the scheme (3.4). If a local basis of P k(Ii,j)
is chosen and denoted as ϕ�

i,j(x, y) for � = 1, 2, . . . , K = (k + 1)(k + 2)/2, we can
express the numerical solution as

uh(x, y) =
K∑

�=1

u�
i,jϕ

�
i,j(x, y), (x, y) ∈ Ii,j ,

and we should solve for the coefficients

ui,j =

⎛⎜⎝ u1
i,j
...

uK
i,j

⎞⎟⎠ ,

which, according to the scheme (3.4), satisfies the linear equation

Ai,jui,j = rhs (3.5)

where Ai,j is a K × K matrix whose (�, m)-th entry is given by

a�,m
i,j = −

∫ ∫
Ii,j

(
aϕm

i,j(x, y)(ϕ�
i,j(x, y))x + bϕm

i,j(x, y)(ϕ�
i,j(x, y))y

)
dxdy (3.6)

+ a

∫ y
j+ 1

2

y
j− 1

2

ϕm
i,j(xi+ 1

2
, y)ϕ�

i,j(xi+ 1
2
, y)dy

+ b

∫ x
i+ 1

2

x
i− 1

2

ϕm
i,j(x, yj+ 1

2
)ϕ�

i,j(x, yj+ 1
2
)dx,

and the �-th entry of the right-hand side vector is given by

rhs� = a

∫ y
j+ 1

2

y
j− 1

2

uh(x−
i− 1

2
, y)ϕ�

i,j(xi− 1
2
, y)dy + b

∫ x
i+ 1

2

x
i− 1

2

uh(x, y−
j− 1

2
)ϕ�

i,j(x, yj− 1
2
)dx

+
∫

Ii,j

f ϕ�
i,j dxdy,

which depends on the information of uh in the left cell Ii−1,j and the bottom cell
Ii,j−1, if they are in the computational domain, or on the boundary condition,
if one or both of these cells are outside the computational domain. It is easy to
verify that the matrix Ai,j in (3.5) with entries given by (3.6) is invertible, hence
the numerical solution uh in the cell Ii,j can be easily obtained by solving the
small linear system (3.5), once the solution at the left and bottom cells Ii−1,j
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and Ii,j−1 are already known, or if one or both of these cells are outside the
computational domain. Therefore, we can obtain the numerical solution uh in the
following ordering: first we obtain it in the cell I1,1, since both its left and bottom
boundaries are equipped with the prescribed boundary conditions (3.2). We then
obtain the solution in the cells I2,1 and I1,2. For I2,1, the numerical solution uh in
its left cell I1,1 is already available, and its bottom boundary is equipped with the
prescribed boundary condition (3.2). Similar argument goes for the cell I1,2. The
next group of cells to be solved are I3,1, I2,2, I1,3. It is clear that we can obtain
the solution uh sequentially in this way for all cells in the computational domain.

Clearly, this method does not involve any large system solvers and is very easy
to implement. In [25], Lesaint and Raviart proved that this method is convergent
with the optimal order of accuracy, namely O(hk+1), in L2-norm, when piecewise
tensor product polynomials of degree k are used as basis functions. Numerical
experiments indicate that the convergence rate is also optimal when the usual
piecewise polynomials of degree k given by (3.3) are used instead.

Notice that, even though the method (3.4) is designed for the steady-state
problem (3.1), it can be easily used on initial-boundary value problems of linear
time-dependent hyperbolic equations: we just need to identify the time variable t
as one of the spatial variables. It is also easily generalizable to higher dimensions.

The method described above can be easily designed and efficiently imple-
mented on arbitrary triangulations. L2-error estimates of O(hk+1/2) where k is
again the polynomial degree and h is the mesh size can be obtained when the so-
lution is sufficiently smooth, for arbitrary meshes, see, e.g., [24]. This estimate is
actually sharp for the most general situation [33], however in many cases the opti-
mal O(hk+1) error bound can be proved [39, 9]. In actual numerical computations,
one almost always observes the optimal O(hk+1) accuracy.

Unfortunately, even though the method (3.4) is easy to implement, accurate,
and efficient, it cannot be easily generalized to linear systems, where the char-
acteristic information comes from different directions, or to nonlinear problems,
where the characteristic wind direction depends on the solution itself.

3.2 One-dimensional Time-dependent

Conservation Laws

The difficulties mentioned at the end of the last subsection can be by-passed
when the DG discretization is only used for the spatial variables, and the time
discretization is achieved by explicit Runge-Kutta methods such as (2.1). This
is the approach of the so-called Runge-Kutta discontinuous Galerkin (RKDG)
method [14, 13, 12, 10, 15].

We start our discussion with the one-dimensional conservation law

ut + f(u)x = 0. (3.7)
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As before, we assume the following mesh to cover the computational domain [0, 1],
consisting of cells Ii = [xi− 1

2
, xi+ 1

2
], for 1 ≤ i ≤ N , where

0 = x 1
2

< x 3
2

< · · · < xN+ 1
2

= 1.

We again denote

Δxi = xi+ 1
2
− xi− 1

2
, 1 ≤ i ≤ N ; h = max

1≤i≤N
Δxi.

We assume the mesh is regular, namely there is a constant c > 0 independent of
h such that

Δxi ≥ ch, 1 ≤ i ≤ N.

We define a finite-element space consisting of piecewise polynomials

V k
h =

{
v : v|Ii ∈ P k(Ii); 1 ≤ i ≤ N

}
, (3.8)

where P k(Ii) denotes the set of polynomials of degree up to k defined on the cell
Ii. The semi-discrete DG method for solving (3.7) is defined as follows: find the
unique function uh = uh(t) ∈ V k

h such that, for all test functions vh ∈ V k
h and all

1 ≤ i ≤ N , we have∫
Ii

(uh)t(vh)dx −
∫

Ii

f(uh)(vh)xdx + f̂i+ 1
2
vh(x−

i+ 1
2
) − f̂i− 1

2
vh(x+

i− 1
2
) = 0. (3.9)

Here, f̂i+ 1
2

is again the numerical flux, which is a single-valued function defined at
the cell interfaces and in general depends on the values of the numerical solution
uh from both sides of the interface

f̂i+ 1
2

= f̂(uh(x−
i+ 1

2
, t), uh(x+

i+ 1
2
, t)).

We use the so-called monotone fluxes from finite-difference and finite-volume
schemes for solving conservation laws, which satisfy the following conditions:

• Consistency: f̂(u, u) = f(u).

• Continuity: f̂(u−, u+) is at least Lipschitz continuous with respect to both
arguments u− and u+.

• Monotonicity: f̂(u−, u+) is a non-decreasing function of its first argument
u− and a non-increasing function of its second argument u+. Symbolically
f̂(↑, ↓).

Well-known monotone fluxes include the Lax-Friedrichs flux

f̂LF (u−, u+) =
1
2
(
f(u−) + f(u+) − α(u+ − u−)

)
, α = max

u
|f ′(u)|;
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the Godunov flux

f̂God(u−, u+) =

{
minu−≤u≤u+ f(u), if u− < u+,

maxu+≤u≤u− f(u), if u− ≥ u+;

and the Engquist-Osher flux

f̂EO =
∫ u−

0

max(f ′(u), 0)du +
∫ u+

0

min(f ′(u), 0)du + f(0).

We refer to, e.g., [26] for more details about monotone fluxes.

3.2.1 Cell Entropy Inequality and L2-Stability

It is well known that weak solutions of (3.7) may not be unique and the unique,
physically relevant weak solution (the so-called entropy solution) satisfies the fol-
lowing entropy inequality

U(u)t + F (u)x ≤ 0 (3.10)

in distribution sense, for any convex entropy U(u) satisfying U ′′(u) ≥ 0 and the
corresponding entropy flux F (u) =

∫ u
U ′(u)f ′(u)du. It will be nice if a numerical

approximation to (3.7) also shares a similar entropy inequality as (3.10). It is
usually quite difficult to prove a discrete entropy inequality for finite-difference
or finite-volume schemes, especially for high-order schemes and when the flux
function f(u) in (3.7) is not convex or concave, see, e.g., [28, 32]. However, it
turns out that it is easy to prove that the DG scheme (3.9) satisfies a cell entropy
inequality [23].

Proposition 3.1. The solution uh to the semi-discrete DG scheme (3.9) satisfies
the following cell entropy inequality

d

dt

∫
Ii

U(uh) dx + F̂i+ 1
2
− F̂i− 1

2
≤ 0 (3.11)

for the square entropy U(u) = u2

2 , for some consistent entropy flux

F̂i+ 1
2

= F̂ (uh(x−
i+ 1

2
, t), uh(x+

i+ 1
2
, t))

satisfying F̂ (u, u) = F (u).

Proof. We introduce a short-hand notation

Bi(uh; vh) =
∫

Ii

(uh)t(vh)dx −
∫

Ii

f(uh)(vh)xdx

+ f̂i+ 1
2
vh(x−

i+ 1
2
) − f̂i− 1

2
vh(x+

i− 1
2
). (3.12)
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If we take vh = uh in the scheme (3.9), we obtain

Bi(uh; uh)=
∫

Ii

(uh)t(uh)dx −
∫

Ii

f(uh)(uh)xdx

+ f̂i+ 1
2
uh(x−

i+ 1
2
) − f̂i− 1

2
uh(x+

i− 1
2
) = 0. (3.13)

If we denote F̃ (u) =
∫ u

f(u)du, then (3.13) becomes

Bi(uh; uh) =
∫

Ii

U(uh)tdx − F̃ (uh(x−
i+ 1

2
))

+ F̃ (uh(x+
i− 1

2
)) + f̂i+ 1

2
uh(x−

i+ 1
2
) − f̂i− 1

2
uh(x+

i− 1
2
) = 0,

or
Bi(uh; uh) =

∫
Ii

U(uh)tdx + F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
= 0, (3.14)

where
F̂i+ 1

2
= −F̃ (uh(x−

i+ 1
2
)) + f̂i+ 1

2
uh(x−

i+ 1
2
), (3.15)

and

Θi− 1
2

= −F̃ (uh(x−
i− 1

2
)) + f̂i− 1

2
uh(x−

i− 1
2
) + F̃ (uh(x+

i− 1
2
)) − f̂i− 1

2
uh(x+

i− 1
2
). (3.16)

It is easy to verify that the numerical entropy flux F̂ defined by (3.15) is consistent
with the entropy flux F (u) =

∫ u
U ′(u)f ′(u)du for U(u) = u2

2 . It is also easy to
verify

Θ = −F̃ (u−h ) + f̂u−h + F̃ (u+
h ) − f̂u+

h = (u+
h − u−h )(F̃ ′(ξ) − f̂) ≥ 0,

where we have dropped the subscript i− 1
2 since all quantities are evaluated there

in Θi− 1
2
. A mean value theorem is applied and ξ is a value between u− and u+,

and we have used the fact F̃ ′(ξ) = f(ξ) and the monotonicity of the flux function
f̂ to obtain the last inequality. This finishes the proof of the cell entropy inequality
(3.11). �

We note that the proof does not depend on the accuracy of the scheme,
namely it holds for the piecewise polynomial space (3.8) with any degree k. Also,
the same proof can be given for the multi-dimensional DG scheme on any trian-
gulation.

The cell entropy inequality trivially implies an L2-stability of the numerical
solution.

Proposition 3.2. For periodic or compactly supported boundary conditions, the so-
lution uh to the semi-discrete DG scheme (3.9) satisfies the following L2-stability

d

dt

∫ 1

0

(uh)2dx ≤ 0, (3.17)
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or
‖uh(·, t)‖ ≤ ‖uh(·, 0)‖. (3.18)

Here and below, an unmarked norm is the usual L2-norm.

Proof. We simply sum up the cell entropy inequality (3.11) over i. The flux terms
telescope and there is no boundary term left because of the periodic or compact
supported boundary condition. (3.17), and hence (3.18), are now immediate. �

Notice that both the cell entropy inequality (3.11) and the L2-stability (3.17)
are valid even when the exact solution of the conservation law (3.7) is discontinu-
ous.

3.2.2 Limiters and Total Variation Stability

For discontinuous solutions, the cell entropy inequality (3.11) and the L2-stability
(3.17), although helpful, are not enough to control spurious numerical oscillations
near discontinuities. In practice, especially for problems containing strong discon-
tinuities, we often need to apply nonlinear limiters to control these oscillations
and to obtain provable total variation stability.

For simplicity, we first consider the forward Euler time discretization of the
semi-discrete DG scheme (3.9). Starting from a preliminary solution un,pre

h ∈ V k
h

at time level n (for the initial condition, u0,pre
h is taken to be the L2-projection of

the analytical initial condition u(·, 0) into V k
h ), we would like to “limit” or ”pre-

process” it to obtain a new function un
h ∈ V k

h before advancing it to the next
time level: find un+1,pre

h ∈ V k
h such that, for all test functions vh ∈ V k

h and all
1 ≤ i ≤ N , we have∫

Ii

un+1,pre
h − un

h

Δt
vhdx −

∫
Ii

f(un
h)(vh)xdx + f̂n

i+ 1
2
vh(x−

i+ 1
2
) − f̂n

i− 1
2
vh(x+

i− 1
2
) = 0,

(3.19)
where Δt = tn+1 − tn is the time step. This limiting procedure to go from un,pre

h

to un
h should satisfy the following two conditions:

• It should not change the cell averages of un,pre
h . That is, the cell averages of

un
h and un,pre

h are the same. This is for the conservation property of the DG
method.

• It should not affect the accuracy of the scheme in smooth regions. That is,
in the smooth regions this limiter does not change the solution, un

h(x) =
un,pre

h (x).

There are many limiters discussed in the literature, and this is still an active
research area, especially for multi-dimensional systems, see, e.g., [60]. We will only
present an example [13] here.
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We denote the cell average of the solution uh as

ūi =
1

Δxi

∫
Ii

uhdx, (3.20)

and we further denote

ũi = uh(x−
i+ 1

2
) − ūi, ˜̃ui = ūi − uh(x+

i− 1
2
). (3.21)

The limiter should not change ūi but it may change ũi and/or ˜̃ui. In particular,
the minmod limiter [13] changes ũi and ˜̃ui into

ũ
(mod)
i = m(ũi, Δ+ūi, Δ−ūi), ˜̃u(mod)

i = m(˜̃ui, Δ+ūi, Δ−ūi), (3.22)

where
Δ+ūi = ūi+1 − ūi, Δ−ūi = ūi − ūi−1,

and the minmod function m is defined by

m(a1, · · · , a�) =

{
s min(|a1|, · · · , |a�|), if s = sign(a1) = · · · sign(a�),
0, otherwise.

(3.23)
The limited function u

(mod)
h is then recovered to maintain the old cell average

(3.20) and the new point values given by (3.22), that is

u
(mod)
h (x−

i+ 1
2
) = ūi + ũ

(mod)
i , u

(mod)
h (x+

i− 1
2
) = ūi − ˜̃u(mod)

i , (3.24)

by the definition (3.21). This recovery is unique for P k polynomials with k ≤ 2.
For k > 2, we have extra freedom in obtaining u

(mod)
h . We could for example choose

u
(mod)
h to be the unique P 2 polynomial satisfying (3.20) and (3.24).

Before discussing the total variation stability of the DG scheme (3.19) with
the pre-processing, we first present a simple lemma due to Harten [22].

Lemma 3.1 (Harten). If a scheme can be written in the form

un+1
i = un

i + Ci+ 1
2
Δ+un

i − Di− 1
2
Δ−un

i (3.25)

with periodic or compactly supported boundary conditions, where Ci+ 1
2

and Di− 1
2

may be nonlinear functions of the grid values un
j for j = i− p, . . . , i + q with some

p, q ≥ 0, satisfying

Ci+ 1
2
≥ 0, Di+ 1

2
≥ 0, Ci+ 1

2
+ Di+ 1

2
≤ 1, ∀i, (3.26)

then the scheme is TVD
TV (un+1) ≤ TV (un),

where the total variation seminorm is defined by

TV (u) =
∑

i

|Δ+ui|.
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Proof. Taking the forward difference operation on (3.25) yields

Δ+un+1
i = Δ+un

i + Ci+ 3
2
Δ+un

i+1 − Ci+ 1
2
Δ+un

i − Di+ 1
2
Δ+un

i + Di− 1
2
Δ−un

i

= (1 − Ci+ 1
2
− Di+ 1

2
)Δ+un

i + Ci+ 3
2
Δ+un

i+1 + Di− 1
2
Δ−un

i .

Thanks to (3.26) and using the periodic or compactly supported boundary condi-
tion, we can take the absolute value on both sides of the above equality and sum
up over i to obtain∑

i

|Δ+un+1
i | ≤

∑
i

(1 − Ci+ 1
2
− Di+ 1

2
)|Δ+un

i |

+
∑

i

Ci+ 1
2
|Δ+un

i | +
∑

i

Di+ 1
2
|Δ+un

i | =
∑

i

|Δ+un
i |.

This finishes the proof. �
We define the “total variation in the means” semi-norm, or TVM, as

TVM(uh) =
∑

i

|Δ+ūi|.

We then have the following stability result.

Proposition 3.3. For periodic or compactly supported boundary conditions, the so-
lution un

h of the DG scheme (3.19), with the “pre-processing” by the limiter, is
total variation diminishing in the means (TVDM), that is

TVM(un+1
h ) ≤ TVM(un

h). (3.27)

Proof. Taking vh = 1 for x ∈ Ii in (3.19) and dividing both sides by Δxi, we
obtain, by noticing (3.24),

ūn+1,pre
i = ūi − λi

(
f̂(ūi + ũi, ūi+1 − ˜̃ui+1) − f̂(ūi−1 + ũi−1, ūi − ˜̃ui)

)
,

where λi = Δt
Δxi

, and all quantities on the right-hand side are at the time level n.
We can write the right hand side of the above equality in the Harten form (3.25)
if we define Ci+ 1

2
and Di− 1

2
as follows

Ci+ 1
2

= −λi
f̂(ūi + ũi, ūi+1 − ˜̃ui+1) − f̂(ūi + ũi, ūi − ˜̃ui)

Δ+ūi
, (3.28)

Di− 1
2

= λi
f̂(ūi + ũi, ūi − ˜̃ui) − f̂(ūi−1 + ũi−1, ūi − ˜̃ui)

Δ−ūi
.

We now need to verify that Ci+ 1
2

and Di− 1
2

defined in (3.28) satisfy (3.26). Indeed,
we can write Ci+ 1

2
as

Ci+ 1
2

= −λif̂2

[
1 −

˜̃ui+1

Δ+ūi
+

˜̃ui

Δ+ūi

]
, (3.29)
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in which f̂2 is defined as

f̂2 =
f̂(ūi + ũi, ūi+1 − ˜̃ui+1) − f̂(ūi + ũi, ūi − ˜̃ui)

(ūi+1 − ˜̃ui+1) − (ūi − ˜̃ui)
,

and hence

0 ≤ −λif̂2 = −λi
f̂(ūi + ũi, ūi+1 − ˜̃ui+1) − f̂(ūi + ũi, ūi − ˜̃ui)

(ūi+1 − ˜̃ui+1) − (ūi − ˜̃ui)
≤ λiL2, (3.30)

where we have used the monotonicity and Lipschitz continuity of f̂ , and L2 is the
Lipschitz constant of f̂ with respect to its second argument. Also, since un

h is the
pre-processed solution by the minmod limiter, ˜̃ui+1 and ˜̃ui are the modified values
defined by (3.22), hence

0 ≤
˜̃ui+1

Δ+ūi
≤ 1, 0 ≤

˜̃ui

Δ+ūi
≤ 1. (3.31)

Therefore, we have, by (3.29), (3.30) and (3.31),

0 ≤ Ci+ 1
2
≤ 2λiL2.

Similarly, we can show that

0 ≤ Di+ 1
2
≤ 2λi+1L1

where L1 is the Lipschitz constant of f̂ with respect to its first argument. This
proves (3.26) if we take the time step so that

λ ≤ 1
2(L1 + L2)

where λ = maxi λi. The TVDM property (3.27) then follows from the Harten
Lemma and the fact that the limiter does not change cell averages, hence
TVM(un+1

h ) = TVM(un+1,pre
h ). �

Even though the previous proposition is proved only for the first-order Euler
forward time discretization, the special TVD (or strong stability preserving, SSP)
Runge-Kutta time discretizations [44, 21] allow us to obtain the same stability
result for the fully discretized RKDG schemes.

Proposition 3.4. Under the same conditions as those in Proposition 3.3, the solu-
tion un

h of the DG scheme (3.19), with the Euler forward time discretization re-
placed by any SSP Runge-Kutta time discretization [21] such as (2.1), is TVDM.

�
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We still need to verify that the limiter (3.22) does not affect accuracy in
smooth regions. If uh is an approximation to a (locally) smooth function u, then
a simple Taylor expansion gives

ũi =
1
2
ux(xi)Δxi + O(h2), ˜̃ui =

1
2
ux(xi)Δxi + O(h2),

while

Δ+ūi =
1
2
ux(xi)(Δxi+Δxi+1)+O(h2), Δ−ūi =

1
2
ux(xi)(Δxi+Δxi−1)+O(h2).

Clearly, when we are in a smooth and monotone region, namely when ux(xi) is
away from zero, the first argument in the minmod function (3.22) is of the same
sign as the second and third arguments and is smaller in magnitude (for a uniform
mesh it is about half of their magnitude), when h is small. Therefore, since the
minmod function (3.23) picks the smallest argument (in magnitude) when all the

arguments are of the same sign, the modified values ũ
(mod)
i and ˜̃u(mod)

i in (3.22)
will take the unmodified values ũi and ˜̃ui, respectively. That is, the limiter does
not affect accuracy in smooth, monotone regions.

On the other hand, the TVD limiter (3.22) does kill accuracy at smooth
extrema. This is demonstrated by numerical results and is a consequence of the
general results about TVD schemes, that they are at most second-order accurate
for smooth but non-monotone solutions [31]. Therefore, in practice we often use a
total variation bounded (TVB) corrected limiter

m̃(a1, · · · , a�) =

{
a1, if |a1| ≤ Mh2,

m(a1, . . . , a�), otherwise,

instead of the original minmod function (3.23), where the TVB parameter M
has to be chosen adequately [13]. The DG scheme would then be total variation
bounded in the means (TVBM) and uniformly high-order accurate for smooth
solutions. We will not discuss more details here and refer the readers to [13].

We would like to remark that the limiters discussed in this subsection were
first used for finite-volume schemes [30]. When discussing limiters, the DG methods
and finite-volume schemes have many similarities.

3.2.3 Error Estimates for Smooth Solutions

If we assume the exact solution of (3.7) is smooth, we can obtain optimal L2-
error estimates. Such error estimates can be obtained for the general nonlinear
conservation law (3.7) and for fully discretized RKDG methods, see [58]. However,
for simplicity we will give here the proof only for the semi-discrete DG scheme and
the linear version of (3.7):

ut + ux = 0, (3.32)

for which the monotone flux is taken as the simple upwind flux f̂(u−, u+) = u−.
Of course the proof is the same for ut + aux = 0 with any constant a.



3.2. One-dimensional Time-dependent Conservation Laws 169

Proposition 3.5. The solution uh of the DG scheme (3.9) for the PDE (3.32) with
a smooth solution u satisfies the error estimate

‖u − uh‖ ≤ Chk+1 (3.33)

where C depends on u and its derivatives but is independent of h.

Proof. The DG scheme (3.9), when using the notation in (3.12), can be written as

Bi(uh; vh) = 0, (3.34)

for all vh ∈ Vh and for all i. It is easy to verify that the exact solution of the PDE
(3.32) also satisfies

Bi(u; vh) = 0, (3.35)

for all vh ∈ Vh and for all i. Subtracting (3.34) from (3.35) and using the linearity
of Bi with respect to its first argument, we obtain the error equation

Bi(u − uh; vh) = 0, (3.36)

for all vh ∈ Vh and for all i.
We now define a special projection P into Vh. For a given smooth function

w, the projection Pw is the unique function in Vh which satisfies, for each i,∫
Ii

(Pw(x) − w(x))vh(x)dx = 0 ∀vh ∈ P k−1(Ii); Pw(x−
i+ 1

2
) = w(xi+ 1

2
).

(3.37)
Standard approximation theory [7] implies, for a smooth function w,

‖Pw(x) − w(x)‖ ≤ Chk+1 (3.38)

where here and below C is a generic constant depending on w and its derivatives
but independent of h (which may not have the same value in different places).
In particular, in (3.38), C = C̃‖w‖Hk+1 where ‖w‖Hk+1 is the standard Sobolev
(k + 1) norm and C̃ is a constant independent of w.

We now take:
vh = Pu − uh (3.39)

in the error equation (3.36), and denote

eh = Pu − uh, εh = u − Pu (3.40)

to obtain
Bi(eh; eh) = −Bi(εh; eh). (3.41)

For the left-hand side of (3.41), we use the cell entropy inequality (see (3.14)) to
obtain

Bi(eh; eh) =
1
2

d

dt

∫
Ii

(eh)2dx + F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
, (3.42)
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where Θi− 1
2
≥ 0. As to the right-hand side of (3.41), we first write out all the

terms

−Bi(εh; eh) = −
∫

Ii

(εh)tehdx +
∫

Ii

εh(eh)xdx− (εh)−
i+ 1

2
(eh)−

i+ 1
2

+ (εh)−
i− 1

2
(eh)+

i+ 1
2
.

Noticing the properties (3.37) of the projection P , we have∫
Ii

εh(eh)xdx = 0

because (eh)x is a polynomial of degree at most k − 1, and

(εh)−
i+ 1

2
= ui+ 1

2
− (Pu)−

i+ 1
2

= 0

for all i. Therefore, the right-hand side of (3.41) becomes

−Bi(εh; eh) = −
∫

Ii

(εh)tehdx ≤ 1
2

(∫
Ii

((εh)t)2dx +
∫

Ii

(eh)2dx

)
. (3.43)

Plugging (3.42) and (3.43) into the equality (3.41), summing up over i, and using
the approximation result (3.38), we obtain

d

dt

∫ 1

0

(eh)2dx ≤
∫ 1

0

(eh)2dx + Ch2k+2.

A Gronwall’s inequality, the fact that the initial error

‖u(·, 0) − uh(·, 0)‖ ≤ Chk+1

(usually the initial condition uh(·, 0) is taken as the L2-projection of the analytical
initial condition u(·, 0)), and the approximation result (3.38) finally give us the
error estimate (3.33). �

3.3 Comments for Multi-dimensional Cases

Even though we have only discussed the two-dimensional steady-state and one-
dimensional time-dependent cases in previous subsections, most of the results also
hold for multi-dimensional cases with arbitrary triangulations. For example, the
semi-discrete DG method for the two-dimensional time-dependent conservation
law

ut + f(u)x + g(u)y = 0 (3.44)

is defined as follows. The computational domain is partitioned into a collection
of cells !i, which in 2D could be rectangles, triangles, etc., and the numerical
solution is a polynomial of degree k in each cell !i. The degree k could change



3.3. Comments for Multi-dimensional Cases 171

with the cell, and there is no continuity requirement of the two polynomials along
an interface of two cells. Thus, instead of only one degree of freedom per cell
as in a finite-volume scheme, namely the cell average of the solution, there are
now K = (k+1)(k+2)

2 degrees of freedom per cell for a DG method using piecewise
k-th degree polynomials in 2D. These K degrees of freedom are chosen as the
coefficients of the polynomial when expanded in a local basis. One could use a
locally orthogonal basis to simplify the computation, but this is not essential.

The DG method is obtained by multiplying (3.44) by a test function v(x, y)
(which is also a polynomial of degree k in the cell), integrating over the cell !j ,
and integrating by parts:

d

dt

∫
	j

u(x, y, t)v(x, y)dxdy−
∫
	j

F (u) ·∇v dxdy +
∫

∂	j

F (u) ·n v ds = 0, (3.45)

where F = (f, g), and n is the outward unit normal of the cell boundary ∂!j .
The line integral in (3.45) is typically discretized by a Gaussian quadrature of
sufficiently high order of accuracy,∫

∂	j

F · n v ds ≈ |∂!j|
q∑

k=1

ωkF (u(Gk, t)) · n v(Gk),

where F (u(Gk, t)) · n is replaced by a numerical flux (approximate or exact Rie-
mann solvers). For scalar equations the numerical flux can be taken as any of the
monotone fluxes discussed in Section 3.2 along the normal direction of the cell
boundary. For example, one could use the simple Lax-Friedrichs flux, which is
given by

F (u(Gk, t))·n ≈ 1
2
[(

F (u−(Gk, t))+F (u+(Gk, t))
) · n−α

(
u+(Gk, t)−u−(Gk, t)

)]
,

where α is taken as an upper bound for the eigenvalues of the Jacobian in the n
direction, and u− and u+ are the values of u inside the cell !j and outside the
cell !j (inside the neighboring cell) at the Gaussian point Gk. v(Gk) is taken as
v−(Gk), namely the value of v inside the cell !j at the Gaussian point Gk. The
volume integral term

∫
	j

F (u) · ∇v dxdy can be computed either by a numerical
quadrature or by a quadrature free implementation [2] for special systems such
as the compressible Euler equations. Notice that if a locally orthogonal basis is
chosen, the time derivative term d

dt

∫
	j

u(x, y, t)v(x, y)dxdy would be explicit and
there is no mass matrix to invert. However, even if the local basis is not orthogonal,
one still only needs to invert a small K×K local mass matrix (by hand) and there
is never a global mass matrix to invert as in a typical finite-element method.

For scalar equations (3.44), the cell entropy inequality described in Propo-
sition 3.1 holds for arbitrary triangulation. The limiter described in Section 3.2.2
can also be defined for arbitrary triangulation, see [10]. Instead of the TVDM
property given in Proposition 3.3, for multi-dimensional cases one can prove the
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maximum norm stability of the limited scheme, see [10]. The optimal error esti-
mate given in Proposition 3.5 can be proved for tensor product meshes and basis
functions, and for certain specific triangulations when the usual piecewise k-th de-
gree polynomial approximation spaces are used [39, 9]. For the most general cases,
an L2-error estimate of half an order lower O(hk+ 1

2 ) can be proved [24], which is
actually sharp [33].

For nonlinear hyperbolic equations including symmetrizable systems, if the
solution of the PDE is smooth, L2-error estimates of O(hk+1/2 + Δt2) where Δt
is the time step can be obtained for the fully discrete Runge-Kutta discontinuous
Galerkin method with second-order Runge-Kutta time discretization. For upwind
fluxes the optimal O(hk+1 + Δt2) error estimate can be obtained. See [58, 59].

As an example of the excellent numerical performance of the RKDG scheme,
we show in Figures 3.1 and 3.2 the solution of the second order (piecewise linear)
and seventh order (piecewise polynomial of degree 6) DG methods for the linear
transport equation

ut + ux = 0, or ut + ux + uy = 0,

on the domain (0, 2π)× (0, T ) or (0, 2π)2 × (0, T ) with the characteristic function
of the interval (π

2 , 3π
2 ) or the square (π

2 , 3π
2 )2 as initial condition and periodic

boundary conditions [17]. Notice that the solution is for a very long time, t = 100π
(50 time periods), with a relatively coarse mesh. We can see that the second-order
scheme smears the fronts, however the seventh-order scheme maintains the shape
of the solution almost as well as the initial condition! The excellent performance
can be achieved by the DG method on multi-dimensional linear systems using
unstructured meshes, hence it is a very good method for solving, e.g. Maxwell
equations of electromagnetism and linearized Euler equations of aeroacoustics.

To demonstrate that the DG method also works well for nonlinear systems,
we show in Figure 3.3 the DG solution of the forward facing step problem by
solving the compressible Euler equations of gas dynamics [15]. We can see that
the roll-ups of the contact line caused by a physical instability are resolved well,
especially by the third-order DG scheme.

In summary, we can say the following about the discontinuous Galerkin meth-
ods for conservation laws:

1. They can be used for arbitrary triangulation, including those with hanging
nodes. Moreover, the degree of the polynomial, hence the order of accuracy,
in each cell can be independently decided. Thus the method is ideally suited
for h-p (mesh size and order of accuracy) refinements and adaptivity.

2. The methods have excellent parallel efficiency. Even with space time adap-
tivity and load balancing the parallel efficiency can still be over 80%, see
[38].

3. They should be the methods of choice if geometry is complicated or if adaptiv-
ity is important, especially for problems with long time evolution of smooth
solutions.
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Figure 3.1: Transport equation: Comparison of the exact and the RKDG solutions
at T = 100π with second order (P 1, left) and seventh order (P 6, right) RKDG
methods. One-dimensional results with 40 cells, exact solution (solid line) and
numerical solution (dashed line and symbols, one point per cell).
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Figure 3.2: Transport equation: Comparison of the exact and the RKDG solutions
at T = 100π with second order (P 1, left) and seventh order (P 6, right) RKDG
methods. Two-dimensional results with 40 × 40 cells.

4. For problems containing strong shocks, the nonlinear limiters are still less
robust than the advanced WENO philosophy. There is a parameter (the
TVB constant) for the user to tune for each problem, see [13, 10, 15]. For
rectangular meshes the limiters work better than for triangular ones. In recent
years, WENO based limiters have been investigated [35, 34, 36].
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Chapter 4

Discontinuous Galerkin Method
for Convection-Diffusion
Equations

In this section we discuss the discontinuous Galerkin method for time-dependent
convection-diffusion equations

ut +
d∑

i=1

fi(u)xi −
d∑

i=1

d∑
j=1

(aij(u)uxj )xi = 0, (4.1)

where (aij(u)) is a symmetric, semi-positive definite matrix. There are several
different formulations of discontinuous Galerkin methods for solving such equa-
tions, e.g., [1, 4, 6, 29, 45], however in this section we will only discuss the local
discontinuous Galerkin (LDG) method [16].

For equations containing higher-order spatial derivatives, such as the convec-
tion-diffusion equation (4.1), discontinuous Galerkin methods cannot be directly
applied. This is because the solution space, which consists of piecewise polynomials
discontinuous at the element interfaces, is not regular enough to handle higher
derivatives. This is a typical “non-conforming” case in finite elements. A naive
and careless application of the discontinuous Galerkin method directly to the heat
equation containing second derivatives could yield a method which behaves nicely
in the computation but is “inconsistent” with the original equation and has O(1)
errors to the exact solution [17, 57].

The idea of local discontinuous Galerkin methods for time-dependent par-
tial differential equations with higher derivatives, such as the convection-diffusion
equation (4.1), is to rewrite the equation into a first-order system, then apply the
discontinuous Galerkin method on the system. A key ingredient for the success of
such methods is the correct design of interface numerical fluxes. These fluxes must
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be designed to guarantee stability and local solvability of all the auxiliary variables
introduced to approximate the derivatives of the solution. The local solvability of
all the auxiliary variables is why the method is called a “local” discontinuous
Galerkin method in [16].

The first local discontinuous Galerkin method was developed by Cockburn
and Shu [16], for the convection-diffusion equation (4.1) containing second deriva-
tives. Their work was motivated by the successful numerical experiments of Bassi
and Rebay [3] for the compressible Navier-Stokes equations.

In the following we will discuss the stability and error estimates for the LDG
method for convection-diffusion equations. We present details only for the one-
dimensional case and will mention briefly the generalization to multi-dimensions
in Section 4.4.

4.1 LDG Scheme Formulation

We consider the one-dimensional convection-diffusion equation

ut + f(u)x = (a(u)ux)x (4.2)

with a(u) ≥ 0. We rewrite this equation as the system

ut + f(u)x = (b(u)q)x, q − B(u)x = 0, (4.3)

where

b(u) =
√

a(u), B(u) =
∫ u

b(u)du. (4.4)

The finite-element space is still given by (3.8). The semi-discrete LDG scheme is
defined as follows. Find uh, qh ∈ V k

h such that, for all test functions vh, ph ∈ V k
h

and all 1 ≤ i ≤ N , we have∫
Ii

(uh)t(vh)dx −
∫

Ii

(f(uh) − b(uh)qh)(vh)xdx

+ (f̂ − b̂q̂)i+ 1
2
(vh)−

i+ 1
2
− (f̂ − b̂q̂)i− 1

2
(vh)+

i− 1
2

= 0, (4.5)∫
Ii

qhphdx +
∫

Ii

B(uh)(ph)xdx − B̂i+ 1
2
(ph)−

i+ 1
2

+ B̂i− 1
2
(ph)+

i− 1
2

= 0.

Here, all the “hat” terms are the numerical fluxes, namely single-valued functions
defined at the cell interfaces which typically depend on the discontinuous numerical
solution from both sides of the interface. We already know from Section 3 that the
convection flux f̂ should be chosen as a monotone flux. However, the upwinding
principle is no longer a valid guiding principle for the design of the diffusion fluxes
b̂, q̂ and B̂. In [16], sufficient conditions for the choices of these diffusion fluxes
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to guarantee the stability of the scheme (4.5) are given. Here, we will discuss a
particularly attractive choice, called “alternating fluxes”, defined as

b̂ =
B(u+

h ) − B(u−h )
u+

h − u−h
, q̂ = q+

h , B̂ = B(u−h ). (4.6)

The important point is that q̂ and B̂ should be chosen from different directions.
Thus, the choice

b̂ =
B(u+

h ) − B(u−h )
u+

h − u−h
, q̂ = q−h , B̂ = B(u+

h )

is also fine.
Notice that, from the second equation in the scheme (4.5), we can solve qh

explicitly and locally (in cell Ii) in terms of uh, by inverting the small mass matrix
inside the cell Ii. This is why the method is referred to as the “local” discontinuous
Galerkin method.

4.2 Stability Analysis

Similar to the case for hyperbolic conservation laws, we have the following “cell
entropy inequality” for the LDG method (4.5).

Proposition 4.1. The solution uh, qh to the semi-discrete LDG scheme (4.5) sat-
isfies the following “cell entropy inequality”

1
2

d

dt

∫
Ii

(uh)2 dx +
∫

Ii

(qh)2dx + F̂i+ 1
2
− F̂i− 1

2
≤ 0 (4.7)

for some consistent entropy flux

F̂i+ 1
2

= F̂ (uh(x−
i+ 1

2
, t), qh(x−

i+ 1
2
, t); uh(x+

i+ 1
2
, t), qh(x+

i+ 1
2
))

satisfying F̂ (u, u) = F (u) − ub(u)q where, as before, F (u) =
∫ u

uf ′(u)du.

Proof. We introduce a short-hand notation

Bi(uh, qh; vh, ph) =
∫

Ii

(uh)t(vh)dx −
∫

Ii

(f(uh) − b(uh)qh)(vh)xdx

+ (f̂ − b̂q̂)i+ 1
2
(vh)−

i+ 1
2
− (f̂ − b̂q̂)i− 1

2
(vh)+

i− 1
2

(4.8)

+
∫

Ii

qhphdx+
∫

Ii

B(uh)(ph)xdx−B̂i+ 1
2
(ph)−

i+ 1
2
+B̂i− 1

2
(ph)+

i− 1
2
.
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If we take vh = uh, ph = qh in the scheme (4.5), we obtain

Bi(uh, qh; uh, qh) =
∫

Ii

(uh)t(uh)dx (4.9)

−
∫

Ii

(f(uh) − b(uh)qh)(uh)xdx

+ (f̂ − b̂q̂)i+ 1
2
(uh)−

i+ 1
2
− (f̂ − b̂q̂)i− 1

2
(uh)+

i− 1
2

(4.10)

+
∫

Ii

(qh)2dx +
∫

Ii

B(uh)(qh)xdx − B̂i+ 1
2
(qh)−

i+ 1
2

+ B̂i− 1
2
(qh)+

i− 1
2

= 0.

If we denote F̃ (u) =
∫ u

f(u)du, then (4.9) becomes

Bi(uh, qh; uh, qh) =
1
2

d

dt

∫
Ii

(uh)2 dx +
∫

Ii

(qh)2dx

+ F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
= 0, (4.11)

where
F̂ = −F̃ (u−h ) + f̂u−h − b̂q+

h u−h (4.12)

and
Θ = −F̃ (u−h ) + f̂u−h + F̃ (u+

h ) − f̂u+
h , (4.13)

where we have used the definition of the numerical fluxes (4.6). Notice that we
have omitted the subindex i− 1

2 in the definitions of F̂ and Θ. It is easy to verify
that the numerical entropy flux F̂ defined by (4.12) is consistent with the entropy
flux F (u)−ub(u)q. As Θ in (4.13) is the same as that in (3.16) for the conservation
law case, we readily have Θ ≥ 0. This finishes the proof of (4.7). �

We again note that the proof does not depend on the accuracy of the scheme,
namely it holds for the piecewise polynomial space (3.8) with any degree k. Also,
the same proof can be given for multi-dimensional LDG schemes on any triangu-
lation.

As before, the cell entropy inequality trivially implies an L2-stability of the
numerical solution.

Proposition 4.2. For periodic or compactly supported boundary conditions, the so-
lution uh, qh to the semi-discrete LDG scheme (4.5) satisfies the following L2-
stability

d

dt

∫ 1

0

(uh)2dx + 2
∫ 1

0

(qh)2dx ≤ 0, (4.14)

or

‖uh(·, t)‖ + 2
∫ t

0

‖qh(·, τ)‖dτ ≤ ‖uh(·, 0)‖. (4.15)

�
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Notice that both the cell entropy inequality (4.7) and the L2-stability (4.14)
are valid regardless of whether the convection-diffusion equation (4.2) is convection-
dominated or diffusion-dominated and regardless of whether the exact solution is
smooth or not. The diffusion coefficient a(u) can be degenerate (equal to zero) in
any part of the domain. The LDG method is particularly attractive for convection-
dominated convection-diffusion equations, when traditional continuous finite-element
methods are less stable.

4.3 Error Estimates

Again, if we assume the exact solution of (4.2) is smooth, we can obtain optimal
L2-error estimates. Such error estimates can be obtained for the general nonlinear
convection-diffusion equation (4.2), see [53]. However, for simplicity we will give
here the proof only for the heat equation:

ut = uxx (4.16)

defined on [0, 1] with periodic boundary conditions.

Proposition 4.3. The solution uh and qh to the semi-discrete DG scheme (4.5) for
the PDE (4.16) with a smooth solution u satisfies the error estimate∫ 1

0

(u(x, t) − uh(x, t))2 dx +
∫ t

0

∫ 1

0

(ux(x, τ) − qh(x, τ))2 dxdτ ≤ Ch2(k+1),

(4.17)
where C depends on u and its derivatives but is independent of h.

Proof. The DG scheme (4.5), when using the notation in (4.8), can be written as

Bi(uh, qh; vh, ph) = 0, (4.18)

for all vh, ph ∈ Vh and for all i. It is easy to verify that the exact solution u and
q = ux of the PDE (4.16) also satisfies

Bi(u, q; vh, ph) = 0, (4.19)

for all vh, ph ∈ Vh and for all i. Subtracting (4.18) from (4.19) and using the
linearity of Bi with respect to its first two arguments, we obtain the error equation

Bi(u − uh, q − qh; vh, ph) = 0, (4.20)

for all vh, ph ∈ Vh and for all i.
Recall the special projection P defined in (3.37). We also define another

special projection Q as follows. For a given smooth function w, the projection Qw
is the unique function in Vh which satisfies, for each i,∫

Ii

(Qw(x) − w(x))vh(x)dx = 0 ∀vh ∈ P k−1(Ii); Qw(x+
i− 1

2
) = w(xi− 1

2
).

(4.21)
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Similar to P , we also have, by standard approximation theory [7], that

‖Qw(x) − w(x)‖ ≤ Chk+1, ∀w ∈ Hk+1(Ω), (4.22)

where C is a constant depending on w and its derivatives but independent of h.
We now take

vh = Pu − uh, ph = Qq − qh (4.23)

in the error equation (4.20), and denote

eh = Pu − uh, ēh = Qq − qh; εh = u − Pu, ε̄h = q − Qq, (4.24)

to obtain
Bi(eh, ēh; eh, ēh) = −Bi(εh, ε̄h; eh, ēh). (4.25)

For the left-hand side of (4.25), we use the cell entropy inequality (see (4.11)) to
obtain

Bi(eh, ēh; eh, ēh) =
1
2

d

dt

∫
Ii

(eh)2dx +
∫

Ii

(ēh)2dx + F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
, (4.26)

where Θi− 1
2
≥ 0 (in fact we can easily verify, from (4.13), that Θi− 1

2
= 0 for the

special case of the heat equation (4.16)). As to the right-hand side of (4.25), we
first write out all the terms

−Bi(εh, ε̄h; eh, ēh) = −
∫

Ii

(εh)tehdx

−
∫

Ii

ε̄h(eh)xdx + (ε̄h)+
i+ 1

2
(eh)−

i+ 1
2
− (ε̄h)+

i− 1
2
(eh)+

i− 1
2

−
∫

Ii

ε̄hēhdx

−
∫

Ii

εh(ēh)xdx + (εh)−
i+ 1

2
(ēh)−

i+ 1
2
− (εh)−

i− 1
2
(ēh)+

i− 1
2
.

Noticing the properties (3.37) and (4.21) of the projections P and Q, we have∫
Ii

ε̄h(eh)xdx = 0,

∫
Ii

εh(ēh)xdx = 0,

because (eh)x and (ēh)x are polynomials of degree at most k − 1, and

(εh)−
i+ 1

2
= ui+ 1

2
− (Pu)−

i+ 1
2

= 0, (ε̄h)+
i+ 1

2
= qi+ 1

2
− (Qq)+

i+ 1
2

= 0,

for all i. Therefore, the right-hand side of (4.25) becomes

−Bi(εh, ε̄h; eh, ēh) = −
∫

Ii

(εh)tehdx −
∫

Ii

ε̄hēhdx (4.27)

≤ 1
2

(∫
Ii

((εh)t)2dx +
∫

Ii

(eh)2dx +
∫

Ii

(ε̄h)2dx +
∫

Ii

(ēh)2dx

)
.
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Plugging (4.26) and (4.27) into the equality (4.25), summing up over i, and using
the approximation results (3.38) and (4.22), we obtain

d

dt

∫ 1

0

(eh)2dx +
∫ 1

0

(ēh)2dx ≤
∫ 1

0

(eh)2dx + Ch2k+2.

A Gronwall’s inequality, the fact that the initial error

‖u(·, 0) − uh(·, 0)‖ ≤ Chk+1

and the approximation results (3.38) and (4.22) finally give us the error estimate
(4.17). �

4.4 Multi-Dimensions

Even though we have only discussed one-dimensional cases in this section, the algo-
rithm and its analysis can be easily generalized to the multi-dimensional equation
(4.1). The stability analysis is the same as for the one-dimensional case in Sec-
tion 4.2. The optimal O(hk+1) error estimates can be obtained on tensor product
meshes and polynomial spaces, along the same line as that in Section 4.3. For
general triangulations and piecewise polynomials of degree k, a sub-optimal error
estimate of O(hk) can be obtained. We will not provide the details here and refer
to [16, 53].



Chapter 5

Discontinuous Galerkin Method
for PDEs Containing
Higher-Order Spatial
Derivatives

We now consider the DG method for solving PDEs containing higher-order spatial
derivatives. Even though there are other possible DG schemes for such PDEs, e.g.
those designed in [6], we will only discuss the local discontinuous Galerkin (LDG)
method in this section.

5.1 LDG Scheme for the KdV Equations

We first consider PDEs containing third spatial derivatives. These are usually
nonlinear dispersive wave equations, for example the following general KdV-type
equations

ut +
d∑

i=1

fi(u)xi +
d∑

i=1

(
r′i(u)

d∑
j=1

gij(ri(u)xi)xj

)
xi

= 0, (5.1)

where fi(u), ri(u) and gij(q) are arbitrary (smooth) nonlinear functions. The one-
dimensional KdV equation

ut + (αu + βu2)x + σuxxx = 0, (5.2)

where α, β and σ are constants, is a special case of the general class (5.1).
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Stable LDG schemes for solving (5.1) were first designed in [55]. We will
concentrate our discussion on the one-dimensional case. For the one-dimensional
generalized KdV-type equations

ut + f(u)x + (r′(u)g(r(u)x)x)x = 0, (5.3)

where f(u), r(u) and g(q) are arbitrary (smooth) nonlinear functions, the LDG
method is based on rewriting it as the following system,

ut + (f(u) + r′(u)p)x = 0, p − g(q)x = 0, q − r(u)x = 0. (5.4)

The finite-element space is still given by (3.8). The semi-discrete LDG scheme is
defined as follows. Find uh, ph, qh ∈ V k

h such that, for all test functions vh, wh, zh ∈
V k

h and all 1 ≤ i ≤ N , we have∫
Ii

(uh)t(vh)dx −
∫

Ii

(f(uh) + r′(uh)ph)(vh)xdx

+ (f̂ + r̂′p̂)i+ 1
2
(vh)−

i+ 1
2
− (f̂ + r̂′p̂)i− 1

2
(vh)+

i− 1
2

= 0, (5.5)∫
Ii

phwhdx +
∫

Ii

g(qh)(wh)xdx − ĝi+ 1
2
(wh)−

i+ 1
2

+ ĝi− 1
2
(wh)+

i− 1
2

= 0,∫
Ii

qhzhdx +
∫

Ii

r(uh)(zh)xdx − r̂i+ 1
2
(zh)−

i+ 1
2

+ r̂i− 1
2
(zh)+

i− 1
2

= 0.

Here again, all the “hat” terms are the numerical fluxes, namely single-valued
functions defined at the cell interfaces which typically depend on the discontinuous
numerical solution from both sides of the interface. We already know from Section
3 that the convection flux f̂ should be chosen as a monotone flux. It is important
to design the other fluxes suitably in order to guarantee stability of the resulting
LDG scheme. In fact, the upwinding principle is still a valid guiding principle here,
since the KdV-type equation (5.3) is a dispersive wave equation for which waves
are propagating with a direction. For example, the simple linear equation

ut + uxxx = 0,

which corresponds to (5.3) with f(u) = 0, r(u) = u and g(q) = q, admits the
following simple wave solution

u(x, t) = sin(x + t),

that is, information propagates from right to left. This motivates the following
choice of numerical fluxes, discovered in [55]:

r̂′ =
r(u+

h ) − r(u−h )
u+

h − u−h
, p̂ = p+

h , ĝ = ĝ(q−h , q+
h ), r̂ = r(u−h ). (5.6)
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Here, −ĝ(q−h , q+
h ) is a monotone flux for −g(q), namely ĝ is a non-increasing func-

tion in the first argument and a non-decreasing function in the second argument.
The important point is again the “alternating fluxes”, namely p̂ and r̂ should come
from opposite sides. Thus

r̂′ =
r(u+

h ) − r(u−h )
u+

h − u−h
, p̂ = p−h , ĝ = ĝ(q−h , q+

h ), r̂ = r(u+
h )

would also work.

Notice that, from the third equation in the scheme (5.5), we can solve qh

explicitly and locally (in cell Ii) in terms of uh, by inverting the small mass matrix
inside the cell Ii. Then, from the second equation in the scheme (5.5), we can
solve ph explicitly and locally (in cell Ii) in terms of qh. Thus only uh is the
global unknown and the auxiliary variables qh and ph can be solved in terms of uh

locally. This is why the method is referred to as the “local” discontinuous Galerkin
method.

5.1.1 Stability Analysis

Similar to the case for hyperbolic conservation laws and convection-diffusion equa-
tions, we have the following “cell entropy inequality” for the LDG method (5.5).

Proposition 5.1. The solution uh to the semi-discrete LDG scheme (5.5) satisfies
the following “cell entropy inequality”

1
2

d

dt

∫
Ii

(uh)2 dx + F̂i+ 1
2
− F̂i− 1

2
≤ 0 (5.7)

for some consistent entropy flux

F̂i+ 1
2

= F̂ (uh(x−
i+ 1

2
, t), ph(x−

i+ 1
2
, t), qh(x−

i+ 1
2
, t); uh(x+

i+ 1
2
, t), ph(x+

i+ 1
2
, t), qh(x+

i+ 1
2
))

satisfying F̂ (u, u) = F (u)+ur′(u)p−G(q) where F (u) =
∫ u

uf ′(u)du and G(q) =∫ q
qg(q)dq.
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Proof. We introduce a short-hand notation

Bi(uh, ph, qh; vh, wh, zh) =
∫

Ii

(uh)t(vh)dx −
∫

Ii

(f(uh) + r′(uh)ph)(vh)xdx

+ (f̂ + r̂′p̂)i+ 1
2
(vh)−

i+ 1
2
− (f̂ + r̂′p̂)i− 1

2
(vh)+

i− 1
2

(5.8)

+
∫

Ii

phwhdx

+
∫

Ii

g(qh)(wh)xdx − ĝi+ 1
2
(wh)−

i+ 1
2

+ ĝi− 1
2
(wh)+

i− 1
2

+
∫

Ii

qhzhdx

+
∫

Ii

r(uh)(zh)xdx − r̂i+ 1
2
(zh)−

i+ 1
2

+ r̂i− 1
2
(zh)+

i− 1
2
.

If we take vh = uh, wh = qh and zh = −ph in the scheme (5.5), we obtain

Bi(uh, ph, qh; uh, qh,−ph) =
∫

Ii

(uh)t(uh)dx

−
∫

Ii

(f(uh) + r′(uh)ph)(uh)xdx

+ (f̂ + r̂′p̂)i+ 1
2
(uh)−

i+ 1
2

(5.9)

− (f̂ + r̂′p̂)i− 1
2
(uh)+

i− 1
2

+
∫

Ii

phqhdx

+
∫

Ii

g(qh)(qh)xdx − ĝi+ 1
2
(qh)−

i+ 1
2

+ ĝi− 1
2
(qh)+

i− 1
2

−
∫

Ii

qhphdx

−
∫

Ii

r(uh)(ph)xdx + r̂i+ 1
2
(ph)−

i+ 1
2
− r̂i− 1

2
(ph)+

i− 1
2

= 0.

If we denote F̃ (u) =
∫ u

f(u)du and G̃(q) =
∫ q

g(q)dq, then (5.9) becomes

Bi(uh, ph, qh; uh, qh,−ph) =
1
2

d

dt

∫
Ii

(uh)2 dx + F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
= 0, (5.10)

where
F̂ = −F̃ (u−h ) + f̂u−h + G̃(q−h ) + r̂′p+

h u−h − ĝq−h , (5.11)
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and

Θ =
(
−F̃ (u−h ) + f̂u−h + F̃ (u+

h ) − f̂u+
h

)
+
(
G̃(q−h ) − ĝq−h − G̃(q+

h ) + ĝq+
h

)
, (5.12)

where we have used the definition of the numerical fluxes (5.6). Notice that we
have omitted the subindex i− 1

2 in the definitions of F̂ and Θ. It is easy to verify
that the numerical entropy flux F̂ defined by (5.11) is consistent with the entropy
flux F (u) + ur′(u)p − G(q). The terms inside the first parenthesis for Θ in (5.12)
are the same as that in (3.16) for the conservation law case; those inside the second
parenthesis are the same as those inside the first parenthesis, if we replace qh by
uh, −G̃ by F̃ , and −ĝ by f̂ (recall that −ĝ is a monotone flux). We therefore
readily have Θ ≥ 0. This finishes the proof of (5.7). �

We observe once more that the proof does not depend on the accuracy of the
scheme, namely it holds for the piecewise polynomial space (3.8) with any degree
k. Also, the same proof can be given for the multi-dimensional LDG scheme solving
(5.1) on any triangulation.

As before, the cell entropy inequality trivially implies an L2-stability of the
numerical solution.

Proposition 5.2. For periodic or compactly supported boundary conditions, the so-
lution uh to the semi-discrete LDG scheme (5.5) satisfies the L2-stability

d

dt

∫ 1

0

(uh)2dx ≤ 0, (5.13)

or
‖uh(·, t)‖ ≤ ‖uh(·, 0)‖. (5.14)

�
Again, both the cell entropy inequality (5.7) and the L2-stability (5.13) are

valid regardless of whether the KdV-type equation (5.3) is convection-dominated
or dispersion-dominated and regardless of whether the exact solution is smooth or
not. The dispersion flux r′(u)g(r(u)x)x can be degenerate (equal to zero) in any
part of the domain. The LDG method is particularly attractive for convection-
dominated convection-dispersion equations, when traditional continuous finite-
element methods may be less stable. In [55], this LDG method is used to study the
dispersion limit of the Burgers equation, for which the third derivative dispersion
term in (5.3) has a small coefficient which tends to zero.

5.1.2 Error Estimates

For error estimates we once again assume the exact solution of (5.3) is smooth.
The error estimates can be obtained for a general class of nonlinear convection-
dispersion equations which is a subclass of (5.3), see [53]. However, for simplicity
we will give here only the proof for the linear equation

ut + ux + uxxx = 0 (5.15)



188 Chapter 5. Discontinuous Galerkin Method for PDEs

defined on [0, 1] with periodic boundary conditions.

Proposition 5.3. The solution uh to the semi-discrete LDG scheme (5.5) for the
PDE (5.15) with a smooth solution u satisfies the following error estimate

‖u − uh‖ ≤ Chk+ 1
2 , (5.16)

where C depends on u and its derivatives but is independent of h.

Proof. The LDG scheme (5.5), when using the notation in (5.8), can be written
as

Bi(uh, ph, qh; vh, wh, zh) = 0, (5.17)

for all vh, wh, zh ∈ Vh and for all i. It is easy to verify that the exact solution u,
q = ux and p = uxx of the PDE (5.15) also satisfies

Bi(u, p, q; vh, wh, zh) = 0, (5.18)

for all vh, wh, zh ∈ Vh and for all i. Subtracting (5.17) from (5.18) and using
the linearity of Bi with respect to its first three arguments, we obtain the error
equation

Bi(u − uh, p − ph, q − qh; vh, wh, zh) = 0, (5.19)

for all vh, wh, zh ∈ Vh and for all i.
Recall the special projection P defined in (3.37). We also denote the standard

L2-projection as R: for a given smooth function w, the projection Rw is the unique
function in Vh which satisfies, for each i,∫

Ii

(Rw(x) − w(x))vh(x)dx = 0 ∀vh ∈ P k(Ii). (5.20)

Similar to P , we also have, by the standard approximation theory [7], that

‖Rw(x) − w(x)‖ +
√

h‖Rw(x) − w(x)‖Γ ≤ Chk+1 (5.21)

for a smooth function w, where C is a constant depending on w and its derivatives
but independent of h, and ‖v‖Γ is the usual L2-norm on the cell interfaces of the
mesh, which for this one-dimensional case is

‖v‖2
Γ =

∑
i

(
(v−

i+ 1
2
)2 + (v+

i− 1
2
)2
)

.

We now take

vh = Pu − uh, wh = Rq − qh, zh = ph − Rp (5.22)

in the error equation (5.19), and denote

eh = Pu − uh, ēh = Rq − qh, (5.23)

¯̄eh = Rp − ph; εh = u − Pu, ε̄h = q − Rq, ¯̄εh = p − Rp,
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to obtain

Bi(eh, ¯̄eh, ēh, ; eh, ēh,−¯̄eh) = −Bi(εh, ¯̄εh, ε̄h; eh, ēh,−¯̄eh). (5.24)

For the left-hand side of (5.24), we use the cell entropy inequality (see (5.10)) to
obtain

Bi(eh, ¯̄eh, ēh, ; eh, ēh,−¯̄eh) =
1
2

d

dt

∫
Ii

(eh)2dx + F̂i+ 1
2
− F̂i− 1

2
+ Θi− 1

2
(5.25)

where we can easily verify, based on the formula (5.12) and for the PDE (5.15),
that

Θi− 1
2

=
1
2

(
(eh)+

i− 1
2
− (eh)−

i− 1
2

)2

+
1
2

(
(ēh)+

i− 1
2
− (ēh)−

i− 1
2

)2

. (5.26)

As to the right-hand side of (5.24), we first write out all the terms

−Bi(εh, ¯̄εh,ε̄h; eh, ēh,−¯̄eh)

= −
∫

Ii

(εh)tehdx

+
∫

Ii

(εh + ¯̄εh)(eh)xdx − (ε−h + ¯̄ε+
h )i+ 1

2
(eh)−

i+ 1
2

+ (ε−h + ¯̄ε+
h )i− 1

2
(eh)+

i− 1
2

−
∫

Ii

¯̄εhēhdx −
∫

Ii

ε̄h(ēh)xdx + (ε̄h)+
i+ 1

2
(ēh)−

i+ 1
2
− (ε̄h)+

i− 1
2
(ēh)+

i− 1
2

+
∫

Ii

ε̄h ¯̄ehdx +
∫

Ii

εh(¯̄eh)xdx − (εh)−
i+ 1

2
(¯̄eh)−

i+ 1
2

+ (εh)−
i− 1

2
(¯̄eh)+

i− 1
2
.

Noticing the properties (3.37) and (5.20) of the projections P and R, we have∫
Ii

(εh + ¯̄εh)(eh)xdx = 0,

∫
Ii

¯̄εhēhdx = 0,

∫
Ii

ε̄h(ēh)xdx = 0,∫
Ii

ε̄h ¯̄ehdx = 0,

∫
Ii

εh(¯̄eh)xdx = 0,

because (eh)x, (ēh)x and (¯̄eh)x are polynomials of degree at most k − 1, and ēh

and ¯̄eh are polynomials of degree at most k. Also,

(εh)−
i+ 1

2
= ui+ 1

2
− (Pu)−

i+ 1
2

= 0

for all i. Therefore, the right-hand side of (5.24) becomes

−Bi(εh,¯̄εh, ε̄h; eh, ēh,−¯̄eh)

= −
∫

Ii

(εh)tehdx − (¯̄εh)+
i+ 1

2
(eh)−

i+ 1
2

+ (¯̄εh)+
i− 1

2
(eh)+

i− 1
2

+ (ε̄h)+
i+ 1

2
(ēh)−

i+ 1
2
− (ε̄h)+

i− 1
2
(ēh)+

i− 1
2
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= −
∫

Ii

(εh)tehdx + Ĥi+ 1
2
− Ĥi− 1

2

+ (¯̄εh)+
i− 1

2

(
(eh)+

i− 1
2
− (eh)−

i− 1
2

)
− (ε̄h)+

i− 1
2

(
(ēh)+

i− 1
2
− (ēh)−

i− 1
2

)
(5.27)

≤ Ĥi+ 1
2
− Ĥi− 1

2
+

1
2

[∫
Ii

((εh)t)2dx +
∫

Ii

(eh)2dx

+
(
(¯̄εh)+

i− 1
2

)2

+
(
(eh)+

i− 1
2
− (eh)−

i− 1
2

)2

+
(
(ε̄h)+

i− 1
2

)2

+
(
(ēh)+

i− 1
2
− (ēh)−

i− 1
2

)2
]

.

Plugging (5.25), (5.26) and (5.27) into the equality (5.24), summing up over i, and
using the approximation results (3.38) and (5.21), we obtain

d

dt

∫ 1

0

(eh)2dx ≤
∫ 1

0

(eh)2dx + Ch2k+1.

A Gronwall’s inequality, the fact that the initial error

‖u(·, 0)− uh(·, 0)‖ ≤ Chk+1,

and the approximation results (3.38) and (5.21) finally give us the error estimate
(5.16). �

We note that the error estimate (5.16) is half an order lower than optimal.
Technically, this is because we are unable to use the special projections as before to
eliminate the interface terms involving ε̄h and ¯̄εh in (5.27). Numerical experiments
in [55] indicate that both the L2- and L∞-errors are of the optimal (k+1)-th order
of accuracy.

5.2 LDG Schemes for Other Higher-Order PDEs

In this subsection we list some of the higher-order PDEs for which stable DG
methods have been designed in the literature. We will concentrate on the discussion
of LDG schemes.

5.2.1 Bi-harmonic Equations

An LDG scheme for solving the time-dependent convection-bi-harmonic equation

ut +
d∑

i=1

fi(u)xi +
d∑

i=1

(ai(uxi)uxixi)xixi = 0, (5.28)
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where fi(u) and ai(q) ≥ 0 are arbitrary functions, was designed in [56]. The nu-
merical fluxes are chosen following the same “alternating fluxes” principle similar
to the second-order convection-diffusion equation (4.1), see (4.6). A cell entropy in-
equality and the L2-stability of the LDG scheme for the nonlinear equation (5.28)
can be proved [56], which do not depend on the smoothness of the solution of
(5.28), the order of accuracy of the scheme, or the triangulation.

5.2.2 Fifth-Order Convection-Dispersion Equations

An LDG scheme for solving the following fifth-order convection-dispersion equa-
tion

ut +
d∑

i=1

fi(u)xi +
d∑

i=1

gi(uxixi)xixixi = 0, (5.29)

where fi(u) and gi(q) are arbitrary functions, was designed in [56]. The numerical
fluxes are chosen following the same upwinding and “alternating fluxes” principle
similar to the third-order KdV-type equations (5.1), see (5.6). A cell entropy in-
equality and the L2-stability of the LDG scheme for the nonlinear equation (5.29)
can be proved [56], which again do not depend on the smoothness of the solution
of (5.29), the order of accuracy of the scheme, or the triangulation.

Stable LDG schemes for similar equations with sixth or higher derivatives
can also be designed along similar lines.

5.2.3 The K(m, n) Equations

LDG methods for solving the K(m, n) equations

ut + (um)x + (un)xxx = 0, (5.30)

where m and n are positive integers, have been designed in [27]. These K(m, n)
equations were introduced by Rosenau and Hyman in [40] to study the so-called
compactons, namely the compactly supported solitary waves solutions. For the
special case of m = n being an odd positive integer, LDG schemes which are
stable in the Lm+1-norm can be designed (see [27]). For other cases, we can also
design LDG schemes based on a linearized stability analysis, which perform well
in numerical simulation for the fully nonlinear equation (5.30).

5.2.4 The KdV-Burgers-Type (KdVB) Equations

LDG methods for solving the KdV-Burgers-type (KdVB) equations

ut + f(u)x − (a(u)ux)x + (r′(u)g(r(u)x)x)x = 0, (5.31)

where f(u), a(u) ≥ 0, r(u) and g(q) are arbitrary functions, have been designed
in [49]. The design of numerical fluxes follows the same lines as that for the
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convection-diffusion equation (4.2) and for the KdV-type equation (5.3). A cell
entropy inequality and the L2-stability of the LDG scheme for the nonlinear equa-
tion (5.31) can be proved [49], which again do not depend on the smoothness of the
solution of (5.31) and the order of accuracy of the scheme. The LDG scheme is used
in [49] to study different regimes when one of the dissipation and the dispersion
mechanisms dominates, and when they have comparable influence on the solution.
An advantage of the LDG scheme designed in [49] is that it is stable regardless of
which mechanism (convection, diffusion, dispersion) actually dominates.

5.2.5 The Fifth-Order KdV-Type Equations

LDG methods for solving the fifth-order KdV-type equations

ut + f(u)x + (r′(u)g(r(u)x)x)x + (s′(u)h(s(u)xx)xx)x = 0, (5.32)

where f(u), r(u), g(q), s(u) and h(p) are arbitrary functions, have been designed
in [49]. The design of numerical fluxes follows the same lines as that for the KdV-
type equation (5.3). A cell entropy inequality and the L2-stability of the LDG
scheme for the nonlinear equation (5.32) can be proved [49], which again do not
depend on the smoothness of the solution of (5.32) and the order of accuracy of the
scheme. The LDG scheme is used in [49] to simulate the solutions of the Kawahara
equation, the generalized Kawahara equation, Ito’s fifth-order KdV equation, and
a fifth-order KdV-type equations with high nonlinearities, which are all special
cases of the equations represented by (5.32).

5.2.6 The Fully Nonlinear K(n, n, n) Equations

LDG methods for solving the fifth-order fully nonlinear K(n, n, n) equations

ut + (un)x + (un)xxx + (un)xxxxx = 0, (5.33)

where n is a positive integer, have been designed in [49]. The design of numerical
fluxes follows the same lines as that for the K(m, n) equations (5.30). For odd
n, stability in the Ln+1-norm of the resulting LDG scheme can be proved for
the nonlinear equation (5.33) [49]. This scheme is used to simulate compacton
propagation in [49].

5.2.7 The Nonlinear Schrödinger (NLS) Equation

In [50], LDG methods are designed for the generalized nonlinear Schrödinger (NLS)
equation

i ut + uxx + i (g(|u|2)u)x + f(|u|2)u = 0, (5.34)

the two-dimensional version

i ut + Δu + f(|u|2)u = 0, (5.35)
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and the coupled nonlinear Schrödinger equation{
i ut + i αux + uxx + β u + κv + f(|u|2, |v|2)u = 0
i vt − i αvx + vxx − β u + κv + g(|u|2, |v|2)v = 0,

(5.36)

where f(q) and g(q) are arbitrary functions and α, β and κ are constants. With
suitable choices of the numerical fluxes, the resulting LDG schemes are proved to
satisfy a cell entropy inequality and L2-stability [50]. The LDG scheme is used
in [50] to simulate the soliton propagation and interaction, and the appearance
of singularities. The easiness of h-p adaptivity of the LDG scheme and rigorous
stability for the fully nonlinear case make it an ideal choice for the simulation of
Schrödinger equations, for which the solutions often have quite localized structures.

5.2.8 The Kadomtsev-Petviashvili (KP) Equations

The two-dimensional Kadomtsev-Petviashvili (KP) equations

(ut + 6uux + uxxx)x + 3σ2uyy = 0, (5.37)

where σ2 = ±1, are generalizations of the one-dimensional KdV equations and are
important models for water waves. Because of the x-derivative for the ut term,
the equation (5.37) is well posed only in a function space with a global constraint,
hence it is very difficult to design an efficient LDG scheme which relies on local
operations. In [51], an LDG scheme for (5.37) is designed by carefully choosing
locally supported bases which satisfy the global constraint needed by the solution
of (5.37). The LDG scheme satisfies a cell entropy inequality and is L2-stable for
the fully nonlinear equation (5.37). Numerical simulations are performed in [51]
for both the KP-I equations (σ2 = −1 in (5.37)) and the KP-II equations (σ2 = 1
in (5.37)). Line solitons and lump-type pulse solutions have been simulated.

5.2.9 The Zakharov-Kuznetsov (ZK) Equation

The two-dimensional Zakharov-Kuznetsov (ZK) equation

ut + (3u2)x + uxxx + uxyy = 0 (5.38)

is another generalization of the one-dimensional KdV equations. An LDG scheme
is designed for (5.38) in [51] which is proved to satisfy a cell entropy inequality
and to be L2-stable. An L2-error estimate is given in [53]. Various nonlinear waves
have been simulated by this scheme in [51].

5.2.10 The Kuramoto-Sivashinsky-type Equations

In [52], an LDG method is developed to solve the Kuramoto-Sivashinsky-type
equations

ut + f(u)x − (a(u)ux)x + (r′(u)g(r(u)x)x)x + (s(ux)uxx)xx = 0, (5.39)
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where f(u), a(u), r(u), g(q) and s(p) ≥ 0 are arbitrary functions. The Kuramoto-
Sivashinsky equation

ut + uux + αuxx + βuxxxx = 0, (5.40)

where α and β ≥ 0 are constants, which is a special case of (5.39), is a canon-
ical evolution equation which has attracted considerable attention over the last
decades. When the coefficients α and β are both positive, its linear terms describe
a balance between long-wave instability and short-wave stability, with the non-
linear term providing a mechanism for energy transfer between wave modes. The
LDG method developed in [52] can be proved to satisfy a cell entropy inequality
and is therefore L2-stable, for the general nonlinear equation (5.39). The LDG
scheme is used in [52] to simulate chaotic solutions of (5.40).

5.2.11 The Ito-Type Coupled KdV Equations

Also in [52], an LDG method is developed to solve the Ito-type coupled KdV
equations

ut + αuux + βvvx + γuxxx = 0,

vt + β(uv)x = 0, (5.41)

where α, β and γ are constants. An L2-stability is proved for the LDG method.
Simulation for the solution of (5.41) in which the result for u behaves like dispersive
wave solution and the result for v behaves like shock wave solution is performed
in [52] using the LDG scheme.

5.2.12 The Camassa-Holm (CH) Equation

An LDG method for solving the Camassa-Holm (CH) equation

ut − uxxt + 2κux + 3uux = 2uxuxx + uuxxx, (5.42)

where κ is a constant, is designed in [54]. Because of the uxxt term, the design
of an LDG method is non-standard. By a careful choice of the numerical fluxes,
the authors obtain an LDG scheme which can be proved to satisfy a cell entropy
inequality and to be L2-stable [54]. A sub-optimal O(hk) error estimate is also
obtained in [54].

5.2.13 The Cahn-Hilliard Equation

LDG methods have been designed for solving the Cahn-Hilliard equation

ut = ∇ ·
(
b(u)∇(−γΔu + Ψ′(u)

))
, (5.43)
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and the Cahn-Hilliard system{
ut = ∇ · (B(u)∇ω),
ω = −γΔu + DΨ(u),

(5.44)

in [47], where {DΨ(u)}l = ∂Ψ(u)
∂ul

and γ is a positive constant. Here b(u) is the non-
negative diffusion mobility and Ψ(u) is the homogeneous free energy density for
the scalar case (5.43). For the system case (5.44), B(u) is the symmetric positive
semi-definite mobility matrix and Ψ(u) is the homogeneous free energy density.
The proof of the energy stability for the LDG scheme is given for the general
nonlinear solutions. Many simulation results are given in [47].

In [48], a class of LDG methods are designed for the more general Allen-
Cahn/Cahn-Hilliard (AC/CH) system in Ω ∈ R

d (d ≤ 3){
ut = ∇ · [b(u, v)∇(Ψu(u, v) − γΔu)],
ρvt = −b(u, v)[Ψv(u, v) − γΔv].

(5.45)

Energy stability of the LDG schemes is again proved. Simulation results are pro-
vided.
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