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To Felix Browder, a mentor and close friend,
who taught me to enjoy PDEs through the
eyes of a functional analyst



Preface

This book has its roots in a course I taught for many years at the University of
Paris. It is intended for students who have a good background in real analysis (as
expounded, for instance, in the textbooks of G. B. Folland [2], A. W. Knapp [1],
and H. L. Royden [1]). I conceived a program mixing elements from two distinct
“worlds”: functional analysis (FA) and partial differential equations (PDEs). The first
part deals with abstract results in FA and operator theory. The second part concerns
the study of spaces of functions (of one or more real variables) having specific
differentiability properties: the celebrated Sobolev spaces, which lie at the heart of
the modern theory of PDEs. I show how the abstract results from FA can be applied
to solve PDEs. The Sobolev spaces occur in a wide range of questions, in both pure
and applied mathematics. They appear in linear and nonlinear PDEs that arise, for
example, in differential geometry, harmonic analysis, engineering, mechanics, and
physics. They belong to the toolbox of any graduate student in analysis.

Unfortunately, FA and PDEs are often taught in separate courses, even though
they are intimately connected. Many questions tackled in FA originated in PDEs (for
a historical perspective, see, e.g., J. Dieudonné [1] and H. Brezis—F. Browder [1]).
There is an abundance of books (even voluminous treatises) devoted to FA. There
are also numerous textbooks dealing with PDEs. However, a synthetic presentation
intended for graduate students is rare. and I have tried to fill this gap. Students who
are often fascinated by the most abstract constructions in mathematics are usually
attracted by the elegance of FA. On the other hand, they are repelled by the never-
ending PDE formulas with their countless subscripts. I have attempted to present
a “smooth” transition from FA to PDEs by analyzing first the simple case of one-
dimensional PDEs (i.e., ODEs—ordinary differential equations), which looks much
more manageable to the beginner. In this approach, I expound techniques that are
possibly too sophisticated for ODEs, but which later become the cornerstones of
the PDE theory. This layout makes it much easier for students to tackle elaborate
higher-dimensional PDEs afterward.

A previous version of this book, originally published in 1983 in French and fol-
lowed by numerous translations, became very popular worldwide, and was adopted
as a textbook in many European universities. A deficiency of the French text was the

vii



viii Preface

lack of exercises. The present book contains a wealth of problems. I plan to add even
more in future editions. I have also outlined some recent developments, especially
in the direction of nonlinear PDEs.

Brief user’s guide

1. Statements or paragraphs preceded by the bullet symbol e are extremely impor-
tant, and it is essential to grasp them well in order to understand what comes
afterward.

2. Results marked by the star symbol » can be skipped by the beginner; they are of
interest only to advanced readers.

3. In each chapter I have labeled propositions, theorems, and corollaries in a con-
tinuous manner (e.g., Proposition 3.6 is followed by Theorem 3.7, Corollary 3.8,
etc.). Only the remarks and the lemmas are numbered separately.

4. In order to simplify the presentation I assume that all vector spaces are over
R. Most of the results remain valid for vector spaces over C. I have added in
Chapter 11 a short section describing similarities and differences.

5. Many chapters are followed by numerous exercises. Partial solutions are pre-
sented at the end of the book. More elaborate problems are proposed in a separate
section called “Problems” followed by “Partial Solutions of the Problems.” The
problems usually require knowledge of material coming from various chapters.
I have indicated at the beginning of each problem which chapters are involved.
Some exercises and problems expound results stated without details or without
proofs in the body of the chapter.
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Chapter 1

The Hahn-Banach Theorems. Introduction to
the Theory of Conjugate Convex Functions

1.1 The Analytic Form of the Hahn—Banach Theorem: Extension
of Linear Functionals

Let E be a vector space over R. We recall that a functional is a function defined
on E, or on some subspace of E, with values in R. The main result of this section
concerns the extension of a linear functional defined on a linear subspace of E by a
linear functional defined on all of E.

Theorem 1.1 (Helly, Hahn—Banach analytic form). Let p : E — R be a function
satisfying'

QY p(Ax) = Ap(x) Vx € E and VA >0,

2 p(x+y) <px)+ply) Vx,yekE.

Let G C E be a linear subspace and let g : G — R be a linear functional such that
3) g(x) < p(x) VxeG.

Under these assumptions, there exists a linear functional f defined on all of E that
extends g, i.e., g(x) = f(x) Vx € G, and such that

4) fx) < pkx) VxeE.

The proof of Theorem 1.1 depends on Zorn’s lemma, which is a celebrated and
very useful property of ordered sets. Before stating Zorn’s lemma we must clarify
some notions. Let P be a set with a (partial) order relation <. We say that a subset
Q C P is totally ordered if for any pair (a, b) in Q eithera < b or b < a (or both!).
Let O C P be asubset of P; we say that ¢ € P is an upper bound for Q ifa < c for
every a € Q. We say that m € P is a maximal element of P if there is no element

I A function p satisfying (1) and (2) is sometimes called a Minkowski functional.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 1
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2 1 The Hahn—-Banach Theorems. Introduction to the Theory of Conjugate Convex Functions

x € P such that m < x, except for x = m. Note that a maximal element of P need
not be an upper bound for P.

We say that P is inductive if every totally ordered subset Q in P has an upper
bound.

e Lemma 1.1 (Zorn). Every nonempty ordered set that is inductive has a maximal
element.

Zorn’s lemma follows from the axiom of choice, but we shall not discuss its
derivation here; see, e.g., J. Dugundji [1], N. Dunford—-J. T. Schwartz [1] (Volume 1,
Theorem 1.2.7), E. Hewitt—K. Stromberg [1], S. Lang [1], and A. Knapp [1].

Remark 1. Zorn’s lemma has many important applications in analysis. It is a basic
tool in proving some seemingly innocent existence statements such as “every vector
space has a basis” (see Exercise 1.5) and “on any vector space there are nontrivial
linear functionals.” Most analysts do not know how to prove Zorn’s lemma; but it is
quite essential for an analyst to understand the statement of Zorn’s lemma and to be
able to use it properly!

Proof of Lemma 1.2. Consider the set

D(h) is a linear subspace of E,
P=3h:D(h) CE— R|hislinear, G C D(h),
h extends g, and h(x) < p(x) Vx € D(h)

On P we define the order relation
(h1 < hy) & (D(hy) C D(hy) and hy extends hyp) .

It is clear that P is nonempty, since g € P. We claim that P is inductive. Indeed, let
Q C P be a totally ordered subset; we write Q as Q = (h;);c; and we set

D(h) = U D(h;), h(x)=h;(x) ifx € D(h;) for somei.

iel

It is easy to see that the definition of & makes sense, that 4 € P, and that 4 is
an upper bound for Q. We may therefore apply Zorn’s lemma, and so we have a
maximal element f in P. We claim that D(f) = E, which completes the proof of
Theorem 1.1.

Suppose, by contradiction, that D(f) # E.Letxg ¢ D(f);set D(h) = D(f) +
Rxg, and for every x € D(f), set h(x + txg) = f(x) + ta (t € R), where the
constant & € R will be chosen in such a way that 7 € P. We must ensure that

fx)+ta < p(x+txg) Vxe D(f) and VreR.

In view of (1) it suffices to check that
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f@) +a=<px+x) VxeD(f),
f(&x)—a < plx—x) VxeD(f).

In other words, we must find some « satisfying

sup {f() —p(y—x0)} <a < inf {p(x+x9) — f(x)}.
yeD(f) xeD(f)

Such an « exists, since
FO) = p(y —x0) = plx+x)— flx) VxeD(f), VyeD(f)
indeed, it follows from (2) that
F)+ f(y) = plx+y) < plx +x0) + p(y — x0).

We conclude that f < k; but this is impossible, since f is maximal and & # f.

We now describe some simple applications of Theorem 1.1 to the case in which
E is a normed vector space (n.v.s.) with norm || ||.

Notation. We denote by E* the dual space of E, that is, the space of all continuous
linear functionals on E; the (dual) norm on E* is defined by

) 17l = sup 1f@)]= sup f(x).
x€7 ))(CE%

When there is no confusion we shall also write || f|| instead of || f|| g*.

Given f € E* and x € E we shall often write (f, x) instead of f(x); we say that
(, ) is the scalar product for the duality E*, E.

It is well known that E* is a Banach space, i.e., E* is complete (even if E is not);
this follows from the fact that R is complete.

e Corollary 1.2. Let G C E be a linear subspace. If g : G — R is a continuous
linear functional, then there exists f € E* that extends g and such that

[ fllex = sup |g(0) = llgliG=-
xeG
lxlI<1
Proof. Use Theorem 1.1 with p(x) = ||gllg*|lx]l.

e Corollary 1.3. For every xo € E there exists fy € E* such that

L foll = llxoll and ( fo, x0) = Ilxoll*.

Proof. Use Corollary 1.2with G = Rxgand g(tx) = t||xol|%, sothat ||g[lg+ = [lxo].

Remark 2. The element fy given by Corollary 1.3 is in general not unique (try
to construct an example or see Exercise 1.2). However, if E* is strictly con-
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vex>—for example if E is a Hilbert space (see Chapter 5) or if E = L”(2) with
1 < p < oo (see Chapter 4)—then fj is unique. In general, we set, for every xg € E,

Fo) = { fo € E* 11 foll = ol and (fo. x0) = xol?}

The (multivalued) map xg — F(xg) is called the duality map from E into E*; some
of its properties are described in Exercises 1.1, 1.2, and 3.28 and Problem 13.

e Corollary 1.4. For every x € E we have

(6) llxll = sup [(f, x)| = max |(f, x}|.
feE* f€E
i<t =1

Proof. We may always assume that x # 0. It is clear that

sup [(f, x) < [lx]|.

fEE*
i<t
On the other hand, we know from Corollary 1.3 that there is some fy € E* such
that || foll = Ilx|l and (fo,x) = lIx||*. Set fi = fo/llx|l, so that || fi| = 1 and
(fi,x) = llx].

Remark 3. Formula (5)—which is a definition—should not be confused with formula
(6), which is a statement. In general, the “sup” in (5) is not achieved; see, e.g.,
Exercise 1.3. However, the “sup” in (5) is achieved if E is a reflexive Banach space
(see Chapter 3); a deep result due to R. C. James asserts the converse: if E is a Banach
space such that for every f € E* the sup in (5) is achieved, then E is reflexive; see,
e.g., J. Diestel [1, Chapter 1] or R. Holmes [1].

1.2 The Geometric Forms of the Hahn-Banach Theorem:
Separation of Convex Sets

We start with some preliminary facts about hyperplanes. In the following, E denotes
an n.v.s.

Definition. An affine hyperplane is a subset H of E of the form
H={xeFE; f(x)=uqa},

where f is a linear functional® that does not vanish identically and & € R is a given
constant. We write H = [ f = «] and say that f = « is the equation of H.

2 A normed space is said to be strictly convex if ||tx + (1 — t)y|| < 1,Vt € (0, 1), Vx, y with
lx|l = llyll = 1 and x # y; see Exercise 1.26.

3 We do not assume that f is continuous (in every infinite-dimensional normed space there exist
discontinuous linear functionals; see Exercise 1.5).
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Proposition 1.5. The hyperplane H = [ f = «] is closed if and only if f is contin-
uous.

Proof. 1tis clear that if f is continuous then H is closed. Conversely, let us assume
that H is closed. The complement H¢ of H is open and nonempty (since f does not
vanish identically). Let xo € H¢, so that f(xg) # «, for example, f(x9) < «.

Fix r > 0 such that B(xg, r) C H¢, where

B(xo,r) ={x € E; |lx —xoll <r}.
We claim that
@) f(x) <a Vx e B(xg,r).

Indeed, suppose by contradiction that f(x;) > « for some x; € B(xp,r). The
segment
{xt = =Dxo+1x1;1 €0, 1]}

is contained in B(xp, r) and thus f(x;) # «, V¢ € [0, 1]; on the other hand, f(x;) =

o forsomet € [0, 1], namely r = f(if )~ a contradiction, and thus (7) is proved.

X1
)—f(xo0)’
It follows from (7) that
fxo+rz) <a VYze B(@O,1).
Consequently, f is continuous and || f|| < %(oc — f(x0)).

Definition. Let A and B be two subsets of E. We say that the hyperplane H = [f =
o] separates A and B if

’f(x)fot VxeA and f(x)>« VxeB.‘

We say that H strictly separates A and B if there exists some ¢ > 0 such that

[f()<a—e ¥xeAand f(x) >a+e VxeB.|

Geometrically, the separation means that A lies in one of the half-spaces deter-
mined by H, and B lies in the other; see Figure 1.
Finally, we recall that a subset A C E is convex if

tx+(1—t)yeA Vx,yecA, Vze[o,l].\

e Theorem 1.6 (Hahn-Banach, first geometric form). Let A C E and B C E be
two nonempty convex subsets such that AN B = (). Assume that one of them is open.
Then there exists a closed hyperplane that separates A and B.

The proof of Theorem 1.6 relies on the following two lemmas.

Lemma 1.2. Let C C E be an open convex set with O € C. For every x € E set
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H

Fig. 1

(®) p(x) =infla > 0; 0 'x € C}
(p is called the gauge of C or the Minkowski functional of C).
Then p satisfies (1), (2), and the following properties:
® there is a constant M such that 0 < p(x) < M||x|| Vx € E,
(10) C={x€eE;pkx) <l}.
Proof of Lemma 1.2. It is obvious that (1) holds.
Proof of (9). Let r > 0 be such that B(0, r) C C; we clearly have

1
p(x) = —lxll Vx e E.
r

Proof of (10). First, suppose that x € C; since C is open, it follows that (1+¢)x € C
for ¢ > 0 small enough and therefore p(x) < % < 1. Conversely, if p(x) < 1

there exists & € (0, 1) such thata™'x € C, and thus x = a(¢™'x) + (1 — )0 € C.

Proof of (2). Letx, y € E andlete > 0.Using (1) and (10) we obtain that —*— € C

p(x)+e
and m e C. Thus p()’c))cﬂ + [(71()—7)1); e C for all t € [0, 1]. Choosing the value
t = ——LWF e find that ——=1> e C. Using (1) and (10) once more, we

— p)+p(y)+2e° p(x)+p(y)+2
areled to p(x +y) < p(x) + p(y) + 2¢, Ve > 0.
Lemma 1.3. Let C C E be a nonempty open convex set and let xo € E withxg ¢ C.
Then there exists f € E* such that f(x) < f(xo) Vx € C. In particular, the
hyperplane [ f = f(xo)] separates {xo} and C.

Proof of Lemma 1.3. After a translation we may always assume that 0 € C. We
may thus introduce the gauge p of C (see Lemma 1.2). Consider the linear subspace
G = Rxg and the linear functional g : G — R defined by
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gtxg) =t, telR.
It is clear that
g(x) = pkx) VxeG

(consider the two cases t > 0 and ¢t < 0). It follows from Theorem 1.1 that there
exists a linear functional f on E that extends g and satisfies

fx) < px) VxeE.
In particular, we have f(x9) = 1 and that f is continuous by (9). We deduce from
(10) that f(x) < 1 forevery x € C.

Proof of Theorem 1.6. Set C = A — B, so that C is convex (check!), C is open (since
C = U),GB(A —v)),and 0 ¢ C (because AN B = ). By Lemma 1.3 there is some
f € E* such that

f(x) <0 VYzeC,

that is,
f(x) < f(y) Vxe A, VyeB.

Fix a constant « satisfying

sup f(x) <o < inf f(y).
yeEB

xeA
Clearly, the hyperplane [ f = «] separates A and B.

e Theorem 1.7 (Hahn-Banach, second geometric form). Ler A C E and B C E
be two nonempty convex subsets such that A N\ B = (). Assume that A is closed and
B is compact. Then there exists a closed hyperplane that strictly separates A and B.

Proof. Set C = A — B, so that C is convex, closed (check!), and 0 ¢ C. Hence,
there is some r > 0 such that B(0,r) N C = (. By Theorem 1.6 there is a closed
hyperplane that separates B(0, r) and C. Therefore, there is some f € E*, f £ 0,
such that

fx—y)< f(@rz) VxeA, VyeB, VzeB(@]l).

It follows that f(x —y) < —r|f Vx € A,Vy € B. Letting e = 3r| f|| > 0, we
obtain
fx)+e<f(y)—e VxeA, VyeB.

Choosing o such that

supf(x)+e& <a < inf f(y) —e,
YEB

xeA
we see that the hyperplane [ f = o] strictly separates A and B.

Remark 4. Assume that A C E and B C E are two nonempty convex sets such that
AN B = (. If we make no further assumption, it is in general impossible to separate
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A and B by a closed hyperplane. One can even construct such an example in which
A and B are both closed (see Exercise 1.14). However, if E is finite-dimensional one
can always separate any two nonempty convex sets A and B such that AN B = ¢J
(no further assumption is required!); see Exercise 1.9.

We conclude this section with a very useful fact:

e Corollary 1.8. Let F C E be a linear subspace such that F # E. Then there
exists some f € E*, f # 0, such that

(f,xy=0 VxeF.

Proof. Let xo € E with xo ¢ F. Using Theorem 1.7 with A = F and B = {xo}, we
find a closed hyperplane [ f = «] that strictly separates F' and {xo}. Thus, we have

(fix) <a < {f,x0) VxeF.
It follows that (f, x) =0 Vx € F, since A(f, x) < « for every A € R.

e Remark 5. Corollary 1.8 is used very often in proving that a linear subspace F C E
is dense. It suffices to show that every continuous linear functional on E that vanishes
on F must vanish everywhere on E.

1.3 The Bidual E**. Orthogonality Relations

Let E be an n.v.s. and let E* be the dual space with norm

I flles = sup [(f, x)].

xeE
lxlI=<1
The bidual E** is the dual of E* with norm
&g = sup (&, )| (§€E™).
e€E*
=<t

There is a canonical injection J : E — E** defined as follows: given x € E, the
map f +— (f, x) is a continuous linear functional on E*; thus it is an element of
E**, which we denote by Jx.* We have

(Jx, flemp~=(f.x)p~.E Vx€E, VfekE"

It is clear that J is linear and that J is an isometry, that is, ||J x| g» = || x| g; indeed,
we have

4 J should not be confused with the duality map F : E — E* defined in Remark 2.
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[Jxllg= = sup [{(Jx, f)l = sup [(f, x)]=Ix]
feE* feE*
/=1 f1=1
(by Corollary 1.4).

It may happen that J is not surjective from E onto E** (see Chapters 3 and 4).
However, it is convenient to identify E with a subspace of E** using J. If J turns
out to be surjective then one says that E is reflexive, and E** is identified with E
(see Chapter 3).

Notation. If M C E is a linear subspace we set

(MY =(f B (fx)=0 VxeM)|

If N C E* is a linear subspace we set

(N =lxeE:(fix)=0 VfeN)]

Note that—by definition—N~ is a subset of E rather than E**. It is clear that M+
(resp. N1) is a closed linear subspace of E* (resp. E). We say that M+ (resp. N+)
is the space orthogonal to M (resp. N).

Proposition 1.9. Let M C E be a linear subspace. Then

oy =]

Let N C E* be a linear subspace. Then
(NHE o N.

Proof. 1t is clear that M C (M™+)', and since (M1)" is closed we have M C
(M1)*+. Conversely, let us show that (M+)1 c M. Suppose by contradiction that
there is some xg € (M+)"' such that xo ¢ M. By Theorem 1.7 there is a closed
hyperplane that strictly separates {xo} and M. Thus, there are some f € E* and
some « € R such that

(fix) <a < {(f,xo) VxeM.

Since M is a linear space it follows that (f,x) =0 Vx € M and also (f, xo) > O.
Therefore f € M~ and consequently (f, xo) = 0, a contradiction.
It is also clear that N C (N1)+ and thus N ¢ (N1)L.

Remark 6. It may happen that (N Ll s strictly bigger than N (see Exercise 1.16).
It is, however, instructive to “try” to prove that (N-) = N and see where the
argument breaks down. Suppose fo € E* is such that fy € (N L and fo ¢ N.
Applying Hahn-Banach in E*, we may strictly separate { fo} and N. Thus, there is
some & € E* such that (£, fy) > 0. But we cannot derive a contradiction, since
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£ ¢ N-+—unless we happen to know (by chance!) that £ € E, or more precisely
that & = Jxo for some xo € E. In particular, if E is reflexive, it is indeed true that
(NH)L = N.Inthe general case one can show that (N )L coincides with the closure
of N in the weak* topology o (E*, E) (see Chapter 3).

1.4 A Quick Introduction to the Theory of Conjugate Convex
Functions

We start with some basic facts about lower semicontinuous functions and convex
functions. In this section we consider functions ¢ defined on a set E with values in
(—o00, 400], so that ¢ can take the value 400 (but —oo is excluded). We denote by
D(¢) the domain of ¢, that is,

| D(p) = {x € E; p(x) < +00}.|

Notation. The epigraph of ¢ is the set?
epip = {[x, 2] € E xR; ¢(x) <A}
We assume now that E is a topological space. We recall the following.

Definition. A function ¢ : E — (—o00, +00] is said to be lower semicontinuous
(I.s.c.) if for every A € R the set

[p <Al={x € E; p(x) <1}
is closed.

Here are some well-known elementary facts about l.s.c. functions (see, e.g.,
G. Choquet, [1], J. Dixmier [1], J. R. Munkres [1], H. L. Royden [1]):

1. If p is L.s.c., then epi ¢ is closed in £ x R; and conversely.
2. Ifpisls.c., then forevery x € E and for every ¢ > 0 there is some neighborhood
V of x such that

p(y) Zex)—¢e VyeV;
and conversely.

In particular, if ¢ is L.s.c., then for every sequence (x,) in E such that x, — x,
we have

liminfo(x,) > @(x)
n—>oo

and conversely if E is a metric space.
3. If ¢ and ¢ are l.s.c., then @1 + ¢ is 1.s.c.

5 We insist on the fact that R = (—o0, 00), so that A does not take the value co.
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4. If (¢i)ies 1s a family of 1.s.c. functions then their superior envelope is also Ls.c.,
that is, the function ¢ defined by

@(x) = sup ¢; (x)

iel

is L.s.c.
5. If E is compact and ¢ is L.s.c., then inf g ¢ is achieved.

(If E is a compact metric space one can argue with minimizing sequences. For a
general topological compact space consider the sets [¢p < A] for appropriate values
of 1.)

We now assume that E is a vector space. Recall the following definition.

Definition. A function ¢ : E — (—00, +00] is said to be convex if

otx + (1 —1t)y) <tpx)+ A —-01e(y) Vx,ye E, Vte(0,1).

We shall use some elementary properties of convex functions:

1. If ¢ is a convex function, then epi ¢ is a convex set in E x R; and conversely.

2. If ¢ is a convex function, then for every A € R the set [¢p < A] is convex; but the

converse is not true.

If @1 and ¢, are convex, then ¢; + ¢; is convex.

4. If (¢i)ier 1s a family of convex functions, then the superior envelope, sup; ¢;, is
convex.

hed

We assume hereinafter that E is an n.v.s.

Definition. Let ¢ : E — (—o00, +00] be a function such that ¢ # 400 (i.e.,
D(¢) # ). We define the conjugate function ¢* : E* — (—o0, +00] to be®

9" (f) = sup{{f. x) —p()} (f € EM.

xeE

Note that ¢* is convex and l.s.c. on E*. Indeed, for each fixed x € E the function
f = {f, x) — @(x) is convex and continuous (and thus l.s.c.) on E*. It follows that
the superior envelope of these functions (as x runs through E) is convex and l.s.c.

Remark 7. Clearly we have the inequality
(11 (fix) <o) +¢"(f) VxeE, VfekE,

which is sometimes called Young’s inequality. Of course, this fact is obvious with our
definition of ¢*! The classical form of Young’s inequality (see the proof of Theorem
4.6 in Chapter 4) asserts that

6 * is sometimes called the Legendre transform of ¢.
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R
H
A=epig
e o [x%, Ml =B
X E
Fig. 2
1 1
(12) ab < —a” + —b" Ya,b =0
p p

1

with1 < p < coand %—i— > = 1. Inequality (12) becomes a special case of (11) with

E=E*=Rand ¢(t) = %ml’, @*(s) = #|s|p, (see Exercise 1.18, question (h)).

S|

Proposition 1.10. Assume that ¢ : E — (—00, +00] is convex L.s.c. and ¢ # +00.
Then ¢* # 400, and in particular, ¢ is bounded below by an affine continuous
function.

Proof. Let xo € D(¢) and let Ly < ¢(xp). We apply Theorem 1.7 (Hahn—Banach,
second geometric form) in the space E x R with A = epig and B = {[x0, Aol}-
So, there exists a closed hyperplane H = [® = «] in E x R that strictly separates
A and B; see Figure 2. Note that the function x € E +— ®([x, 0]) is a continuous
linear functional on E, and thus ®([x,0]) = (f, x) for some f € E*. Letting
k = ®([0, 1]), we have

O([x,\]) =(fox)+kr V[x,A]€e E xR.
Writing that ® > o on A and ® < « on B, we obtain
(f,x)+ k) >a, V[x,A]€epigp,

and
(f, x0) + kAo < a.

In particular, we have
(13) (fyx)+ko(x) >a Vxe D(p)

and thus
(fs x0) + ko(xo) > a > (f, x0) + kho.

It follows that £ > 0. By (13) we have
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1 o
——fix}—ex) <—— VxeD(p
k k
and therefore (p*(—%f) < +00.

If we iterate the operation %, we obtain a function ¢** defined on E**. Instead, we
choose to restrict ¢** to E, that is, we define

™ (x) = fsull;ﬁf,x} —¢"(f)} (x€kE).

e Theorem 1.11 (Fenchel-Moreau). Assume that ¢ : E — (—00, 400] is convex,
L.s.c., and ¢ #£ 400. Then ¢** = ¢.

Proof. We proceed in two steps:
Step 1: We assume in addition that ¢ > 0 and we claim that ¢** = ¢.

First, it is obvious that ™ < ¢, since (f, x) — ¢*(f) < ¢(x) Vx € E and
Vf € E*. In order to prove that p** = ¢ we argue by contradiction, and we assume
that **(xg) < @(xo) for some xg € E. We could possibly have ¢(xg) = 400, but
©*™*(x0) is always finite. We apply Theorem 1.7 (Hahn—-Banach, second geometric
form) in the space E x R with A = epi¢ and B = [xg, ¢**(x0)]. So, there exist, as
in the proof of Proposition 1.10, f € E*, k € R, and « € R such that

(14) (fox)+kr>a V[x,A] €epigp,
(15) (f, x0) + ko™ (x0) < a.

It follows that k > 0 (fix some x € D(p) and let A — +o00 in (14)). [Here we cannot
assert, as in the proof of Proposition 1.10, that k > 0; we could possibly have k = 0,
which would correspond to a “vertical” hyperplane H in E x R.]

Let ¢ > 0; since ¢ > 0, we have by (14),

(fix)+ (k+e)px) =a Vxe D).

(p*_ff_a.
k+ ¢ k+¢

It follows from the definition of ¢**(xg) that

- FooN o FN] S o
¢ (x0)2<_k+s’x°> w( k+8>2< k+s’x°>+k+e'

Thus we have

Therefore

(fix0) + (k+&)¢™ (x0) = a Ve >0,

which contradicts (15).
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Step 2: The general case.
Fix some fo € D(¢*) (D(¢*) # @ by Proposition 1.10) and define
o(x) = p(x) = (fo. x) + ¢*(fo),

so that g is convex L.s.c., ¢ # +00, and ¢ > 0. We know from Step 1 that (p)*™* = .
Let us now compute (¢)* and (¢)**. We have

@) () =" (f + fo) — " (fo)

and

@)™ (x) = ™ (x) — (fo, x) + ¢*(fo).

Writing that (p)*™* = @, we obtain p** = ¢.
Let us examine some examples.

Example 1. Consider ¢(x) = ||x||. It is easy to check that

0 ifffl =<1,

v (f):{+oo il > 1

It follows that
@™ (x) = sup (f, x).
€E*
i<
Writing the equality

¢ =9,

we obtain again part of Corollary 1.4.

Example 2. Given a nonempty set K C E, we set

0 ifx e K,

Ik = {+oo ifx ¢ K.

The function I is called the indicator function of K (and should not be confused
with the characteristic function, xg, of K, which is 1 on K and 0 outside K). Note
that /g is a convex function iff K is a convex set, and Ik is l.s.c. iff K is closed. The
conjugate function (/g )* is called the supporting function of K.

Itiseasy tosee thatif K = M isalinear subspace then (/p7)* = I,,1 and (Ip)*™* =
I(p1yr. Assuming that M is a closed linear space and writing that (Iy)** = Iy, we
obtain (M1)1 = M. In some sense, Theorem 1.11 can be viewed as a counterpart
of Proposition 1.9.
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We conclude this chapter with another useful property of conjugate functions.

* Theorem 1.12 (Fenchel-Rockafellar). Ler ¢, V : E — (—00, +00] be two con-
vex functions. Assume that there is some xo € D(¢) N D () such that ¢ is continuous
at xo. Then

Inf{p(x) + ¥ (0)} = fsull;{ﬂp*(—f) =¥ (N
= thrggg{ﬂp*(—f) ¥ (Nl = —}Iéiél*{cp*(—f) + ¥ (N}
The proof of Theorem 1.12 relies on the following lemma.

Lemma 1.4. Let C C E be a convex set, then Int C is convex.” If, in addition,
Int C # @, then

C =IntC.
For the proof of Lemma 1.4, see, e.g., Exercise 1.7.
Proof of Theorem 1.12. Set
a = inf {p(x) + ¥ (x)},
xek
b= sup {—¢"(—f) —¥*(N)}.

feEE*
It is clear that b < a. If a = —o0, the conclusion of Theorem 1.12 is obvious. Thus
we may assume hereinafter that a € R. Let C = epi ¢, so that Int C # ¢ (since ¢ is
continuous at xp). We apply Theorem 1.6 (Hahn—Banach, first geometric form) with
A =IntC and
B={[x,A\le ExXR; A<a—1vx)}.

Then A and B are nonempty convex sets. Moreover, AN B = (J;indeed, if [x, A] € A,
then A > ¢(x), and on the other hand, ¢(x) > a — ¥ (x) (by definition of a), so that
[x,A] ¢ B.

Hence there exists a closed hyperplane H that separates A and B. It follows that
H also separates A and B. But we know from Lemma 1.4 that A = C. Therefore,
there exist f € E*, k € R, and @ € R such that the hyperplane H = [® = «] in
E x R separates C and B, where

O(x,A]) =(f,x)+kr V[x,A]€ E xR.
Thus we have

(16) (fix)+kr>a V[x,A]leC,
a7 (fix)+kX <o V[x,A]€B.

7 As usual, Int C denotes the interior of C.
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Choosing x = xq and letting A — +o00 in (16), we see that k > 0. We claim that
(18) k> 0.

Assume by contradiction that k = 0j it follows that || /|| # 0 (since ® s 0). By (16)
and (17) we have

(f,x) za Vx e D(p),
(fix) =a VxeD®H).

But B(xp, €0) C D(gp) for some gy > 0 (small enough), and thus
(f,x0+e0z) >a Vze B(@,1),

which implies that ( f, xo) > « + &ol| f||. On the other hand, we have (f, xo) < «,
since xg € D(y); therefore we obtain | f|| = 0, which is a contradiction and
completes the proof of (18).

From (16) and (17) we obtain

and

so that

() (£

On the other hand, from the definition of b, we have

olf)e f) =
cerer(f) v (7)

Example 3. Let K be a nonempty convex set. We claim that for every xo € E we
have

We conclude that

(19) dist(xo. K) = inf v — xoll = max {(. xo) — [x(/)).
<k ||]}€||£*]

Indeed, we have
inf [[x — xo|| = inf {p(x) + ¥ (x)},
xek xeE

with ¢(x) = ||x — x| and ¥ (x) = Ik (x). Applying Theorem 1.12, we obtain (19).
In the special case that K = M is a linear subspace, we obtain the relation
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dist(xg, M) = inf ||x — xo|| = max (f, xo).
xeM feM+

Ifli=1

Remark 8. Relation (19) may provide us with some useful information in the case
that infycx ||x — xo|| is not achieved (see, e.g., Exercise 1.17). The theory of min-
imal surfaces provides an interesting setting in which the primal problem (i.e.,
inf,yep{ep(x) + ¥(x)}) need not have a solution, while the dual problem (i.e.,
max rep-{—¢@* (= f) — ¥*(f)}) has a solution; see I. Ekeland-R. Temam [1].

Example 4. Let ¢ : E — R be convex and continuous and let M C E be a linear
subspace. Then we have

o — min O F).
xlng(x) f?j}ﬂ‘p )

It suffices to apply Theorem 1.12 with ¢ = Ij;.

Comments on Chapter 1

1. Generalizations and variants of the Hahn-Banach theorems.

The first geometric form of the Hahn—-Banach theorem (Theorem 1.6) is still valid in
general topological vector spaces. The second geometric form (Theorem 1.7) holds in
locally convex spaces—such spaces play an important role, for example, in the theory
of distributions (see, e.g., L. Schwartz [1] and F. Treves [1]). Interested readers may
consult, e.g., N. Bourbaki [1], J. Kelley-I. Namioka [1], G. Choquet [2] (Volume 2),
A. Taylor-D. Lay [1], and A. Knapp [2].

2. Applications of the Hahn-Banach theorems.
The Hahn—Banach theorems have a wide and diversified range of applications. Here
are two examples:

(a) The Krein—Milman theorem.

The second geometric form of the Hahn—Banach theorem is a basic ingredient in
the proof of the Krein—Milman theorem. Before stating this result we need some
definitions. Let £ be an n.v.s. and let A be a subset of E. The convex hull of A,
denoted by conv A, is the smallest convex set containing A. Clearly, conv A consists
of all finite convex combinations of elements in A, i.e.,

convA = Ztiai; I finite, a; € A Vi, t; > 0 Vi, and Zt,- =1;:.

iel iel

The closed convex hull of A, denoted by convA, is the closure of conv A. Given a
convex set K C E we say that a point x € K is extremal if x cannot be written
as a convex combination of two points xg, x; € K, i.e., x # (1 — t)xo + tx1 with
t € (0, 1), and xo # x1.
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e Theorem 1.13 (Krein—Milman). Let K C E be a compact convex set. Then K
coincides with the closed convex hull of its extremal points.

The Krein—-Milman theorem has itself numerous applications and extensions (such
as Choquet’s integral representation theorem, Bochner’s theorem, Bernstein’s theo-
rem, etc.). On this vast subject, see, e.g., N. Bourbaki [1], G. Choquet [2] (Volume 2),
R.Phelps [1], C. Dellacherie-P. A. Meyer [1] (Chapter 10), N. Dunford-J. T. Schwartz
[1] (Volume 1), W. Rudin [1], R. Larsen [1], J. Kelley-I. Namioka [1], R. Edwards
[1]. An interesting application to PDEs, due to Y. Pinchover, is presented in S. Agmon
[2]. For a proof of the Krein—Milman theorem, see Problem 1.

(b) In the theory of partial differential equations.

Let us mention, for example, that the existence of a fundamental solution for a gen-
eral differential operator P (D) with constant coefficients (the Malgrange—Ehrenpreis
theorem) relies on the analytic form of Hahn—-Banach; see, e.g., L. Hormander [1],
[2], K. Yosida [1], W. Rudin [1], F. Treves [2], M. Reed-B. Simon [1] (Volume 2).
In the same spirit, let us mention also the proof of the existence of the Green’s
function for the Laplacian by the method of P. Lax; see P. Lax [1] (Section 9.5)
and P. Garabedian [1]. The proof of the existence of a solution u € L% () for the
equation divu = f in Q@ C RY, given any f € LV (), relies on Hahn-Banach
(see J. Bourgain—H. Brezis [1], [2]). Surprisingly, the u obtained via Hahn—Banach
depends nonlinearly on f. In fact, there exists no bounded linear operator from LV
into L*° giving u in terms of f. This shows that the use of Zorn’s lemma (and the
underlying axiom of choice) in the proof of Hahn—Banach can be delicate and may
destroy the linear character of the problem. Sometimes there is no way to circumvent
this obstruction.

3. Convex functions.

Convex analysis and duality principles are topics which have considerably expanded
and have become increasingly popular in recent years; see, e.g., J. J. Moreau [1],
R. T. Rockafellar [1], [2], I. Ekeland—R. Temam [1], I. Ekeland-T. Turnbull [1],
F. Clarke [1], J. P. Aubin-I. Ekeland [1], J. B. Hiriart—Urutty—C. Lemaréchal [1].
Among the applications let us mention the following:

(a) Game theory, economics, optimization, convex programming; see J. P. Aubin [1],
[21, [3],J. P. Aubin—I. Ekeland [1], S. Karlin [1], A. Balakrishnan [1], V. Barbu—
I. Precupanu [1], J. Franklin [1], J. Stoer—C. Witzgall [1].

(b) Mechanics; see J. J. Moreau [2], P. Germain [1], [2], G. Duvaut-J. L. Lions
[1], R. Temam—G. Strang [1] and the comments by P. Germain following this
paper, H. D. Bui [1] and the numerous references therein. Note also the use
of (nonconvex) duality by J. F. Toland [1], [2], [3] (for the study of rotating
chains), by A. Damlamian [1] (for a problem arising in plasma physics), and by
G. Auchmuty [1].

(c) The theory of monotone operators and nonlinear semigroups; see H. Brezis [1],
F. Browder [1], V. Barbu [1], and R. Phelps [2].

(d) Variational problems involving periodic solutions of Hamiltonian systems and
nonlinear vibrating strings; see the recent works of F. Clarke, 1. Ekeland,
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J. M. Lasry, H. Brezis, J. M. Coron, L. Nirenberg (we refer, e.g., to F. Clarke—
I. Ekeland [1], H. Brezis—J. M. Coron-L. Nirenberg [ 1], H. Brezis [2], J. P. Aubin—
I. Ekeland [1], I. Ekeland [1], and their bibliographies).

(e) The theory of large deviations in probability; see, e.g., R. Azencott et al. [1],
D. W. Stroock [1].

(f) The theory of partial differential equations and complex analysis; see L. Hor-
mander [3].

4. Extensions of bounded linear operators.

Let E and F be two Banach spaces and let G C E be a closed subspace. Let
S : G — F be a bounded linear operator. One may ask whether it is possible to
extend S by a bounded linear operator 7 : E — F. Note that Corollary 1.2 settles
this question only when F' = R. In general, the answer is negative (even if E and F
are reflexive spaces; see Exercise 1.27), except in some special cases; for example,
the following:

(a) If dim F < oo. One may choose a basis in F' and apply Corollary 1.2 to each
component of S.

(b) If G admits a topological complement (see Section 2.4). This is true in particular
if dim G < oo or codim G < oo or if E is a Hilbert space.

One may also ask the question whether there is an extension T with the same norm,
ie, 1Tz Fy = ISllzG, F)- The answer is yes only in some exceptional cases; see
L. Nachbin [1], J. Kelley [1], and Exercise 5.15.

Exercises for Chapter 1

Properties of the duality map.
Let E be an n.v.s. The duality map F is defined for every x € E by

F(x)={f € E*; |Ifll = llx] and (£, x) = [|x|1*}.
1. Prove that
F(x)={f € E* |IfIl < x| and (f, x) = [x]|*}

and deduce that F'(x) is nonempty, closed, and convex.
2. Prove that if E* is strictly convex, then F (x) contains a single point.
3. Prove that

* 1 2 1 2
F(X)={f€E; Ellyll —Ellxll =(fiy—x) VyGE}~

4. Deduce that
(Fx) = F(y), x—y)>0 Vx,y€E,
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and more precisely that
(f—g, x—y)>0 Vx,yeE, VfeF(x), VgeF().
Show that, in fact,

(f =g x=»=dlxll=IyD)* ¥x,y€E, VfeF(x), VYgeF(y).

5. Assume again that E* is strictly convex and let x, y € E be such that
(F(x) — F(y), x —y) =0.

Show that Fx = Fy.

Let E be a vector space of dimension n and let (¢;)1<j<, be a basis of E. Given
x € E,writex = Y}, x;je; withx; € R; given f € E*, set f; = (f, e;).

1. Consider on E the norm

n
xlh =) Il
i=1

(a) Compute explicitly, in terms of the f;’s, the dual norm || f||g+ of f € E*.
(b) Determine explicitly the set F'(x) (duality map) for every x € E.

2. Same questions but where E is provided with the norm

IXlloo = max [x;|.
1<i<n
3. Same questions but where E is provided with the norm

n 172
xllz = (Z |xl-|2) :
i=1

and more generally with the norm
n 1/p
lxllp = (Z Ixz'l”) , where p € (1, 00).
i=1

[1.3]|Let E = {u € C([0, 1]; R); u(0) = 0} with its usual norm

ull = max |u(t)|.
lull = ma fu0)]

Consider the linear functional
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1
fueEm— f(u):/ u(t)dt.
0

1. Show that f € E* and compute || f || g+.
2. Can one find some u € E such that |lu|| = 1 and f(u) = || fllg+?

Consider the space E = ¢ (sequences tending to zero) with its usual norm
(see Section 11.3). For every element u = (u1, ua, u3, ...) in E define

o]

n=1

1. Check that f is a continuous linear functional on E and compute || f || g*-
2. Can one find some u € E such that |lu|| = 1 and f(u) = || fllg+?

Let E be an infinite-dimensional n.v.s.

1. Prove (using Zorn’s lemma) that there exists an algebraic basis (e;);c; in E such
that ||e;|| = 1Vi € I.
Recall that an algebraic basis (or Hamel basis) is a subset (¢;);-; in E such that
every x € E may be written uniquely as

x = inei with J C I, J finite.
ieJ
2. Construct a linear functional f : E — R that is not continuous.

3. Assuming in addition that E is a Banach space, prove that I is not countable.
[Hint: Use Baire category theorem (Theorem 2.1).]

Let E be an n.v.s. and let H C E be a hyperplane. Let V C E be an affine
subspace containing H.

1. Prove that either V. = H or V = E.
2. Deduce that H is either closed or dense in E.

Let E be an n.v.s. and let C C E be convex.

1. Prove that C and Int C are convex.
2. Givenx € C_and y € IntC, show thattx + (1 —¢)y e IntC Vr € (0, 1).
3. Deduce that C = Int C whenever Int C # .

Let E be an n.v.s. with norm || ||. Let C C E be an open convex set such that
0 € C. Let p denote the gauge of C (see Lemma 1.2).

1. Assuming C is symmetric (i.e., —C = C) and C is bounded, prove that p is a
norm which is equivalent to || ||.
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2. Let E = C([0, 1]; R) with its usual norm

ull = max |u(t)|.
lull = max fu0)]

1
C:{ueE;/ |u(t)|2dt<l}.
0

Check that C is convex and symmetric and that 0 € C. Is C bounded in E?

Compute the gauge p of C and show that p is a norm on E. Is p equivalent to
112

Let

1.9 | Hahn—Banach in finite-dimensional spaces.

Let E be a finite-dimensional normed space. Let C C E be a nonempty convex
setsuch that 0 ¢ C. We claim that there always exists some hyperplane that separates
C and {0}.

[Note that every hyperplane is closed (why?). The main point in this exercise is
that no additional assumption on C is required.]

1. Let (x,)n>1 be a countable subset of C that is dense in C (why does it exist?).
For every n let

n n
C, =conv{xy, x2,...,x,} = {x :Zt,-xi; t; > 0Viand Zti =1:.
i=1

i=1

Check that C,, is compact and that Uflil C, isdensein C.
2. Prove that there is some f;,, € E* such that

[ full = 1and (fy,x) =0 Vx € Cy.
3. Deduce that there is some f € E* such that
[fll=1and(f,x) >0 VxeC.

Conclude.
4. Let A, B C E be nonempty disjoint convex sets. Prove that there exists some
hyperplane H that separates A and B.

Let E be an n.v.s. and let I be any set of indices. Fix a subset (x;);c; in E and
a subset (¢;);es in R. Show that the following properties are equivalent:
(A) There exists some f € E* such that (f, x;) =«; Vi el.

There exists a constant M > 0 such that for each finite subset
(B) J C I and for every choice of real numbers (5;);cs, we have

| Biei| < M| Y Bixil.
ieJ ieJ
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Note that in the proof of (B) = (A) one may find some f € E* with || f||gx < M.
[Hint: Try first to define f on the linear space spanned by the (x;);¢;.]

Let E be an n.v.s. and let M > 0. Fix n elements (f1)1<i<» in E* and n real
numbers (o;)1<i<n. Prove that the following properties are equivalent:

A 0 3Jx. € E such that
A) =8> Xe such tha

lxell <M +eand (fi,x.) =a; Yi=1,2,...,n.

(B) ]iﬂiai SMHiﬂifi V1. Ba..... Pu € R.
i=1 i=1

[Hint: For the proof of (B) = (A) consider first the case in which the f;’s are
linearly independent and imitate the proof of Lemma 3.3.]
Compare Exercises 1.10, 1.11 and Lemma 3.3.

Let E be a vector space. Fix n linear functionals (f;)1<i<, on E and n real
numbers (o;)1<;<n. Prove that the following properties are equivalent:

(A) There exists some x € E such that fi(x) =«; Vi=1,2,...,n.

For any choice of real numbers B, B2, ..., B, such that
Y Bifi =0, onealsohas Y !_, Bia; = 0.

Let E = R" and let

P={xeR", x;,>0 Vi=1,2,...,n}.

(B)

Let M be a linear subspace of E such that M N P = {0}. Prove that there is some
hyperplane H in E such that

M C Hand HN P = {0}

[Hint: Show first that M NInt P # ¢.]
Let E = ¢! (see Section 11.3) and consider the two sets

X ={x=@nn>1 € E; x2p=0Vn > 1}

and

1
Y = {y = (yn)nzl €E; yyu = 2_ny2n—l Vn > 1} .

1. Check that X and Y are closed linear spaces and that X + Y = E.
2. Let ¢ € E be defined by
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-1 =0 Vn > 1,
o = 2L" Vn > 1.
Check thatc ¢ X + Y.
3. Set Z = X — c and check that Y N Z = . Does there exist a closed hyperplane
in E that separates Y and Z?

Compare with Theorem 1.7 and Exercise 1.9.
4. Same questions in £ = ¢”,1 < p < 00, and in E = ¢y.

Let E be an n.v.s. and let C C E be a convex set such that 0 € C. Set

A) C'={feE": (fix)=1 VxeCl},
(B) C*={x€eE; (ffx)<1 VfeC

1. Prove that C** = C.
2. What is C* if C is a linear space?

Let E = ¢!, so that E* = £ (see Section 11.3). Consider N = ¢y as a closed
subspace of E*.
Determine

Nt={xeE; (f,x)=0 VfeN}
and
Nt ={feE* (f,x)=0 Vxe Nt}

Check that Nt £ N.

Let £ be an n.v.s. and let f € E* with f # 0. Let M be the hyperplane
[f =0l

1. Determine M.

2. Prove that for every x € E, dist(x, M) = infyep [|x — yll = 'ﬂml)'.
[Find a direct method or use Example 3 in Section 1.4.]

3. Assume now that £ = {u € C([0, 1]; R); u(0) = 0} and that

1
(f,u):/ u(t)dt, ucekE.
0

Prove that dist(u, M) = | [} u(1)dt| Vu € E.
Show that inf, ¢/ || — v|| is never achieved for any u € E\M.

Check that the functions ¢ : R — (—o00, +00] defined below are convex
L.s.c. and determine the conjugate functions ¢*. Draw their graphs and mark their
epigraphs.
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(a) o(x) =ax + b, where a, b € R.
(b) px) =e".
0 if x| < 1,
c =
© PO=1 if x| > 1.
0 ifx =0,
(d) px) = )
400 if x # 0.
—logx ifx >0,
c X) =
© PO =01 ifx <0.
—(1—xH)'/2 if [x] < 1,
f =
® Y= if x| > 1.
1.2 :
_ [ if x| < 1,
® PO=V01 it s
1
(h) ox) = —|x|?, where 1 < p < oo.
p
6y @(x) = xT = max{x, 0}.
Lyp ifx >0, where 1 +
. x if x >0, where 1 < p < +00,
x)=137
® #0) [+oo if x <O.
& @) —%xp ifx >0,where0 < p <1,
X) =
v 400 ifx <O.
1
M px) = ;[(IXI -y, where 1 < p < oco.

Let E be an n.v.s.

1. Let o, ¥ : E — (—00, +00] be two functions such that ¢ < . Prove that
,l//,* S w*.

2. Let F : R — (—00, +00] be a convex l.s.c. function such that F(0) = 0 and
F(t) >0Vt € R. Set p(x) = F(||x])).
Prove that ¢ is convex l.s.c. and that o*(f) = F*(||fI) Vf € E*.

Let E = ¢7 with 1 < p < oo (see Section 11.3). Check that the functions
¢ : E — (—00, 400] defined below are convex l.s.c. and determine ¢*. For x =

(X1, %2, ..., Xn,...) set
+ 2 . 2
(a) (p(x) — szicl> k|Xk| if Z/til k|Xk| < 400,
00 otherwise.
+o0

®) o) = lult

k=2

(Check that ¢(x) < oo forevery x € E.)
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+00 [}
| x| if ¥ |xg| < 400,
© ()= ,; ,;
+00 otherwise.

mu:t E = E* = R? and let
C = {[x1,x2]; x1 =0, x > 0}.
On E define the function

oy = | VIR e G
400 ifx ¢ C.
Prove that ¢ is convex l.s.c. on E.
. Determine ¢*.
3. Consider the set D = {[x1, x2]; x; = 0} and the function ¥ = Ip. Compute the
value of the expressions

N =

inf {p(x) + ¥ (x)} and sup {—g*(—f) —¥*(f)}.
xeE fGE*
4. Compare with the conclusion of Theorem 1.12 and explain the difference.

Let E be an n.v.s. and let A C E be a closed nonempty set. Let

¢(x) = dist(x, A) = inf ||x —a]|.
acA

1. Check that |p(x) — (V)| < |lx — y|| Vx,y € E.

2. Assuming that A is convex, prove that ¢ is convex.

3. Conversely, assuming that ¢ is convex, prove that A is convex.

4. Prove that ¢* = (I4)* + Ip,. for every A not necessarily convex.

Inf-convolution.

Let E be an n.v.s. Given two functions ¢, ¥ : E — (—00, +0¢], one defines the
inf-convolution of ¢ and i as follows: for every x € E, let

(V) (x) = inf {p(x — y) + ¥ ()}
yeE

Note the following:

(i) (¢Vy)(x) may take the values £oo0,
() (eVY)(x) < +ooiff x € D(p) + D(¥).

1. Assuming that D(¢*) N D(y¥*) # @, prove that (p V) does not take the value
—o0 and that
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(pVY) =" +y*.
2. Assuming that D(¢) N D(Y¥) # @, prove that
(¢ +¥)" < (¢*Vy™)on E™.

3. Assume that ¢ and v are convex and there exists xg € D(¢) N D(y) such that ¢
is continuous at xg. Prove that

(¢ +¥)" = (¢"Vy*) on E*.

4. Assume that ¢ and ¢ are convex and l.s.c., and that D(p) N D(¥) # . Prove
that

@ VY = (p+¥)onE.

Given a function ¢ : E — (—00, +00], set

epist = {[x,A] € E X R; ¢(x) < A}.

9}

. Check that ¢ is convex iff epist ¢ is a convex subset of £ x R.
6. Let g, ¥ : E — (—00, +00] be functions such that D(¢*) N D(y*) # @. Prove
that

epist(pVyr) = (epist @) + (epist ).

7. Deduce that if ¢, Y : E — (—00, +00] are convex functions such that D(¢*) N
D) # @, then (p V) is a convex function.

Regularization by inf-convolution.

Let E be ann.v.s. and let ¢ : E — (—00, +00] be a convex l.s.c. function such
that ¢ #% +o00. Our aim is to construct a sequence of functions (¢,) such that we
have the following:

(i) Foreveryn, ¢, : E — (—00, +00) is convex and continuous.
(i) For every x, the sequence (¢, (x)), is nondecreasing and converges to ¢ (x).

For this purpose, let
@n(x) = Inf {n|lx — yll + ()}
yeE

1. Prove that there is some N, large enough, such that for n > N, ¢, (x) is finite for
all x € E. From now on, one chooses n > N.
2. Prove that ¢, is convex (see Exercise 1.23) and that

lon(x1) — @p(x2)| < nllxy —x2ll Vx1,x2 € E.

3. Determine (¢,)*.
4. Check that ¢, (x) < ¢(x) Vx € E,Vn.Prove that for every x € E, the sequence
(¢n(x)), is nondecreasing.
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5. Given x € D(¢), choose y, € E such that

1
on(x) < nllx = yull +0(n) < on(x) + ;

Prove that lim,_, » ¥, = x and deduce that lim,,_, oo ¢, (x) = @(x).
6. For x ¢ D(p), prove that lim,_, oc ¢, (x) = +00.
[Hint: Argue by contradiction.]

A semiscalar product.

Let E be an n.v.s.
1. Letp : E — (—00, 400) be convex. Given x, y € E, consider the function
p(x +1y) — @(x)

W)= =", 1>0.

Check that & is nondecreasing on (0, +00) and deduce that

limA(t) = infh(r) exists in [—00, +00).
110 >0
Define the semiscalar product [x, y] by

[t y] = inf =[x + 1]1? — [xIP]
’ t>02¢ '

2. Prove that [[x, y]| < x[lllyll Vx,y € E.
3. Prove that

[x,kx+uy]=k||x||2+u[x,y] Vx,ye E, VieR, Vu>0

and
[Ax, uyl = Aulx,y] Vx,ye E, Yr>0, VYu=>0.

4. Prove that for every x € E, the function y +— [x, y] is convex. Prove that the
function G(x, y) = —[x, y]isl.s.c.on E x E.
5. Prove that

s = ma R Vx,y e E,
[x, y] feFéc)<f y) Vx,y

where F denotes the duality map (see Remark 2 following Corollary 1.3 and
Exercise 1.1).

[Hint: Set o = [x, y] and apply Theorem 1.12 to the functions ¢ and ¥ defined
as follows:

<>—1||+||2 1|| I, zeE
(pZ—zx Z 2x , Z s

and
—ta whenz =tyandt > 0,

Y(z) =

+00 otherwise.]
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6. Determine explicitly [x, y], where E = R" with the norm ||x[|,, 1 < p < o0
(see Section 11.3).

[Hint: Use the results of Exercise 1.2.]

Strictly convex norms and functions.
Let E be an n.v.s. One says that the norm || || is strictly convex (or that the space
E is strictly convex) if
ltx + (1 =)yl <1, Vx,ye Ewithx #y, |[x]|=|yl=1, Vre,1).
One says that a function ¢ : E — (—00, 400] is strictly convex if

pitx+ (1 —=1y) <tp(x)+ (A —-1t)e(y) Vx,ye Ewithx #y, Vte(,]1).

1. Prove that the norm || || is strictly convex iff the function ¢(x) = ||x||? is strictly
convex.
2. Same question with ¢(x) = [|x]|? and 1 < p < oo.

Let E and F be two Banach spaces and let G C E be a closed subspace.
Let T : G — F be a continuous linear map. Thg aim is to show that sometimes, T
cannot be extended by a continuous linear map 7 : E — F'. For this purpose, let E
be a Banach space and let G C E be a closed subspace that admits no complement
(see Remark 8 in Chapter 2). Let F' = G and T = I (the identity map). Prove that
T cannot be extended.

[Hint: Argue by contradiction.]

Compare with the conclusion of Corollary 1.2.



Chapter 2

The Uniform Boundedness Principle and the
Closed Graph Theorem

2.1 The Baire Category Theorem

The following classical result plays an essential role in the proofs of Chapter 2.

o Theorem 2.1 (Baire). Let X be a complete metric space and let (X,),>1 be a
sequence of closed subsets in X. Assume that

IntX, =0 foreveryn > 1.

Then
o0
Int (U X,,) = 0.
n=1

Remark 1. The Baire category theorem is often used in the following form. Let X
be a nonempty complete metric space. Let (X,),>1 be a sequence of closed subsets
such that

X, =X.

(@

I
-

n

Then there exists some nq such that Int X, # @.

Proof. Set O, = X, so that O, is open and dense in X for every n > 1. Our aim is
to prove that G = (), O, is dense in X. Let @ be a nonempty open set in X; we
shall prove that o N G # .
As usual, set
Bx,r)y={yeX; diy,x) <r}.

Pick any xg € w and ro > 0 such that
B(xp, rp) C w.

Then, choose x| € B(xg, rg) N O1 and r; > 0 such that

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 31
DOI 10.1007/978-0-387-70914-7 2, © Springer Science+Business Media, LLC 2011
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{B(Xl, r1) C B(xp, ro) N Oy,

o
0<r1<2,

which is always possible since O; is open and dense. By induction one constructs
two sequences (x,) and (7;,) such that

B(xp11,7ny1) C B(xy, 70) N Opy1, V¥n >0,
0<rpy1 < 3.

It follows that (x,) is a Cauchy sequence; let x,, — £.
Since x,4p € B(xy, 1) for every n > 0 and for every p > 0, we obtain at the
limit (as p — ©0),
L e B(x,,ry), VYn=>0.

In particular, £ € o N G.

2.2 The Uniform Boundedness Principle

Notation. Let E and F be two n.v.s. We denote by L(E, F) the space of continuous
(= bounded) linear operators from E into F equipped with the norm

T|. = sup ||Tx].
I HJ(E,F) Xeg

lxlI=<1
As usual, one writes .Z(E) instead of Z(E, E).

e Theorem 2.2 (Banach-Steinhaus, uniform boundedness principle). Ler E and
F be two Banach spaces and let (T;)icj be a family (not necessarily countable) of
continuous linear operators from E into F. Assume that

D sup || Tix|]| <oo Vx € E.
iel
Then
2) sup | 7; | 2E,F) =
iel ’

In other words, there exists a constant ¢ such that
IT;x|| <clx|| VxeE, Viel.

Remark 2. The conclusion of Theorem 2.2 is quite remarkable and surprising. From
pointwise estimates one derives a global (uniform) estimate.

Proof. For every n > 1, let

Xp={xeE; Viel, |Tix|l <n},
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so that X, is closed, and by (1) we have

(@

X, =E.

I
-

n

It follows from the Baire category theorem that Int(X,,,) # ¥ for some ng > 1. Pick
xo € E and r > 0 such that B(xg, r) C X,,. We have

ITi(xo +r2) <no Viel, VzeB(Q,]l).

This leads to

which implies (2).

Remark 3. Recall that in general, a pointwise limit of continuous maps need not be
continuous. The linearity assumption plays an essential role in Theorem 2.2. Note,
however, that in the setting of Theorem 2.2 it does not follow that || T,, — T'|| (g, F)
— 0.

Here are a few direct consequences of the uniform boundedness principle.

Corollary 2.3. Let E and F be two Banach spaces. Let (T,,) be a sequence of con-
tinuous linear operators from E into F such that for every x € E, T,x converges
(as n — o0) to a limit denoted by T x. Then we have

(a) sup, || T, ||$<E,F) < 09,

(b) T € L(E, F),
© |7

. py S iminf, oo IThll.2(E, F)-

Proof. (a) follows directly from Theorem 2.2, and thus there exists a constant ¢
such that
x|l <cllxl| Vn, VxeeE.

At the limit we find
ITx|| <cllxl| Vxe€E.

Since T is clearly linear, we obtain (b).
Finally, we have

IToxll < I Tullze, pllxll Vx € E,

and (c) follows directly.
e Corollary 2.4. Let G be a Banach space and let B be a subset of G. Assume that

(3)  forevery f € G* the set f(B) = {{f, x); x € B} is bounded (in R).
Then

4) B is bounded.
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Proof. We shall use Theorem 2.2 with E = G*, F = R, and I = B. For every
b € B, set
Tpy(f) =(f.b), fe€E=G",

so that by (3),

sup |Tp(f)] <oo Vf eE.
beB

It follows from Theorem 2.2 that there exists a constant ¢ such that
(f.b) <clfl VfeG* VbeB.
Therefore we find (using Corollary 1.4) that
bl <c VbeB.

Remark 4. Corollary 2.4 says that in order to prove that a set B is bounded it suffices
to “look™ at B through the bounded linear functionals. This is a familiar procedure
in finite-dimensional spaces, where the linear functionals are the components with
respect to some basis. In some sense, Corollary 2.4 replaces, in infinite-dimensional
spaces, the use of components. Sometimes, one expresses the conclusion of Corollary
2.4 by saying that “weakly bounded” <= “strongly bounded” (see Chapter 3).

Next we have a statement dual to Corollary 2.4:

Corollary 2.5. Let G be a Banach space and let B* be a subset of G*. Assume that
(5)  forevery x € G the set (B*, x) = {{f, x); f € B*} is bounded (in R).
Then
(6) B* is bounded.
Proof. Use Theorem 2.2 with E = G, F = R, and I = B*. For every b € B* set
Tp(x) =(b,x) (x e G =E).
We find that there exists a constant ¢ such that
[{(b, x)| <c|x| VbeB* Vxeg.
We conclude (from the definition of a dual norm) that

bl <c Vb e B

2.3 The Open Mapping Theorem and the Closed Graph Theorem

Here are two basic results due to Banach.
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e Theorem 2.6 (open mapping theorem). Let E and F be two Banach spaces and
let T be a continuous linear operator from E into F that is surjective (= onto). Then
there exists a constant ¢ > 0 such that

) T(Be(0,1)) D Br(0,0).

Remark 5. Property (7) implies that the image under T of any open set in E is an
open setin F' (which justifies the name given to this theorem!). Indeed, let us suppose
U is open in E and let us prove that 7 (U) is open. Fix any point yo € T(U), so
that yo = Txo for some xo € U. Let r > 0 be such that B(xg,r) C U, i.e.,
xo + B(0,r) C U. It follows that

yo+ T(B(,r)) C TWU).
Using (7) we obtain
T(B(,r)) D B(,rc)

and therefore
B(yg,rc¢) C T(U).

Some important consequences of Theorem 2.6 are the following.

e Corollary 2.7. Let E and F be two Banach spaces and let T be a continuous linear
operator from E into F that is bijective, i.e., injective (= one-to-one) and surjective.
Then T~V is also continuous (from F into E).

Proof of Corollary 2.77. Property (7) and the assumption that 7 is injective imply that
if x € E is chosen so that ||Tx| < c, then | x| < 1. By homogeneity, we find that

1
[xll < —ITx]| VxeFE
C

and therefore T~! is continuous.

Corollary 2.8. Let E be a vector space provided with two norms, || |1 and | |2
Assume that E is a Banach space for both norms and that there exists a constant
C > 0 such that

lxll2 < Clixlli Vx € E.

Then the two norms are equivalent, i.e., there is a constant ¢ > 0 such that
Ixllh < cllxll2 Vx € E.
Proof of Corollary 2.8. Apply Corollary 2.7 with
E=(E. | l), F=(E, | l2), and T = I.

Proof of Theorem 2.6. We split the argument into two steps:

Step 1. Assume that 7 is a linear surjective operator from E onto F. Then there
exists a constant ¢ > 0 such that
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() T(B(0, 1)) D B(0, 2c).

Proof. Set X, = nT(B(0, 1)). Since T is surjective, we have U,‘iil X, = F,and by
the Baire category theorem there exists some ng such that Int(X,,,) # 4. It follows

that
Int [T (B(0, 1))] # @.

Pick ¢ > 0 and yy € F such that

©) B(yo.4c) € T(B(0, D).
In particular, yg € 7 (B(0, 1)), and by symmetry,

(10) —y0 € T(B(0, 1)).

Adding (9) and (10) leads to

B(0,4c) C T(B(0,1)) + T(B(0, 1)).

On the other hand, since T (B(0, 1)) is convex, we have

T(B(0, 1)) + T(B(0, 1)) =2T(B(0, 1)),

and (8) follows.

Step 2. Assume 7 is a continuous linear operator from E into F that satisfies (8).
Then we have

(11) T(B(0,1)) D B(0, c).
Proof. Choose any y € F with ||y|| < c. The aim is to find some x € E such that
x| <1 and Tx=y.
By (8) we know that
(12) Ve >0 dz € E with |z]| < %and ly —Tz| < e.
Choosing ¢ = ¢/2, we find some z; € E such that
Jaill <5 and lly—Taill < 5.

2

By the same construction applied to y — T'z; (instead of y) with ¢ = ¢/4 we find
some zp € E such that

1 c
lz2ll < 1 and [(y = Tz1) — Tz2ll < T

Proceeding similarly, by induction we obtain a sequence (z,,) such that
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1 c
llzall < > and ||y —T(zi+z2+4+- 4zl < o vn.

It follows that the sequence x,, = z1 + z2 + - - - + 2z, is a Cauchy sequence. Let
xp — x with, clearly, ||x|| < 1 and y = Tx (since T is continuous).

o Theorem 2.9 (closed graph theorem). Let E and F be two Banach spaces. Let T
be a linear operator from E into F. Assume that the graph of T, G(T), is closed in
E x F.Then T is continuous.

Remark 6. The converse is obviously true, since the graph of any continuous map
(linear or not) is closed.

Proof of Theorem 2.9. Consider, on E, the two norms
lxllt = llxllg + ITxllF and |ix|2 = |xllg

(the norm || ||; is called the graph norm).

It is easy to check, using the assumption that G(T') is closed, that E is a Banach
space for the norm || ||1. On the other hand, E is also a Banach space for the norm
Il lzand ] |l2 < || ll1. Itfollows from Corollary 2.8 that the two norms are equivalent
and thus there exists a constant ¢ > 0 such that ||x||; < c||x]|2. We conclude that
ITxlF <clixlE.

* 2.4 Complementary Subspaces. Right and Left Invertibility of
Linear Operators

We start with some geometric properties of closed subspaces in a Banach space that
follow from the open mapping theorem.

* Theorem 2.10. Let E be a Banach space. Assume that G and L are two closed
linear subspaces such that G + L is closed. Then there exists a constant C > 0 such
that

every z € G + L admits a decomposition of the form

13) .
z=x+ywithx € G,y € L, |lx|| < Cliz|| and ||y|| < Cllz|l.

Proof. Consider the product space G x L with its norm

e, Y1 = llxll + 1yl

and the space G + L provided with the norm of E.

The mapping T : G x L — G + L defined by T'[x, y] = x + y is continuous,
linear, and surjective. By the open mapping theorem there exists a constant ¢ > 0
such that every z € G + L with ||z]| < ¢ can be written as z = x + y with x € G,
y € L,and ||x]| + ||y]l < 1. By homogeneity every z € G + L can be written as
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z=x+y withx e G,yeL,and x| + Iyl < (1/0)llz].

* Corollary 2.11. Under the same assumptions as in Theorem 2.10, there exists a
constant C such that

(14) dist(x, G N L) < C{dist(x, G) + dist(x, L)} V¥x € E.
Proof. Given x € E and ¢ > 0, there exista € G and b € L such that
Ix — all <dist(x, G) + ¢, [lx —b| <dist(x, L) +&.
Property (13) applied to z = a — b says that there exist a’ € G and b’ € L such that
a—b=d+Vb, |ld| <Cla-b|, V| <Clla-b].
It follows that a — @’ € G N L and

dist(x, GNL) < [x —(a—a)|l < |lx —al + |ld]|
<lx—all+Clla=>b|l <llx —all+C(x —all + llx —bl)
< (14 C)dist(x, G) +dist(x, L) + (1 + 20)e.

Finally, we obtain (14) by letting ¢ — 0.

Remark 7. The converse of Corollary 2.11 is also true: If G and L are two closed
linear subspaces such that (14) holds, then G + L is closed (see Exercise 2.16).

Definition. Let G C E be a closed subspace of a Banach space E. A subspace
L C E is said to be a topological complement or simply a complement of G if

(i) L is closed,
(i) GNL={0}and G+ L =E.

We shall also say that G and L are complementary subspaces of E. If this holds,
then every z € E may be uniquely written as z = x + y withx € Gand y € L.
It follows from Theorem 2.10 that the projection operators z +— x and z +— y
are continuous linear operators. (That property could also serve as a definition of
complementary subspaces.)

Examples

1. Every finite-dimensional subspace G admits a complement. Indeed, let eq,
e, ...,e, be a basis of G. Every x € G may be written as x = Z?:l xie;.
Set ¢; (x) = x;. Using Hahn—Banach (analytic form)—or more precisely Corol-
lary 1.2—each ¢; can be extended by a continuous linear functional ¢; defined
on E. Itis easy to check that L =N}_, ((Z,')’] (0) is a complement of G.

2. Every closed subspace G of finite codimension admits a complement. It suffices
to choose any finite-dimensional space L suchthat GNL ={0}and G+ L = E
(L is closed since it is finite-dimensional).
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Here is a typical example of this kind of situation. Let N C E* be a subspace of
dimension p. Then

G={x€E; (f,x)=0 VfeN}=N"*

is closed and of codimension p. Indeed, let fi, f2, ..., fp be a basis of N. Then
there exist ey, ez, ..., ep € E such that

(fi,ej)=20;j Vi,j=1,2,...,p.
[Consider the map @ : E — R? defined by

(15) (D(-x):((flv-x)v(fz’x)""v(fp?x>)

and note that ® is surjective; otherwise, there would exist—by Hahn—Banach
(second geometric form)—some o = (a1, @2, ..., ap) # 0 such that

p
o-d(x) =<Zoe,-fi,x>=0 Vx e E,
i=1

which is absurd].

It is easy to check that the vectors (e;)1<; <) are linearly independent and that the
space generated by the ¢;’s is a complement of G. Another proof of the fact that
the codimension of N equals the dimension of N is presented in Chapter 11
(Proposition 11.11).

3. In a Hilbert space every closed subspace admits a complement (see Section 5.2).

Remark 8. It is important to know that some closed subspaces (even in reflexive
Banach spaces) have no complement. In fact, a remarkable result of J. Lindenstrauss
and L. Tzafriri [1] asserts that in every Banach space that is not isomorphic to a
Hilbert space, there exist closed subspaces without any complement.

Definition. Let T € L(E, F). A right inverse of T is an operator S € L(F, E) such
that T oS = Ir. A left inverse of T is an operator S € L(F, E) suchthat SoT = If.

Our next results provide necessary and sufficient conditions for the existence of
such inverses.

* Theorem 2.12. Assume that T € L(E, F) is surjective. The following properties
are equivalent:

(1) T admits a right inverse.
(ii) N(T) = T~'(0) admits a complement in E.

Proof.
(i) = (ii). Let S be a right inverse of T'. It is easy to see (please check) that
R(S) = S(F) is a complement of N(T) in E.
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(i) = (). Let L be a complement of N(T'). Let P be the (continuous) projection
operator from E onto L. Given f € F, we denote by x any solution of the equation
Tx = f.Set Sf = Px and note that S is independent of the choice of x. It is easy
to check that S € L(F, E) andthat T o S = IF.

Remark 9. In view of Remark 8 and Theorem 2.12, it is easy to construct surjective
operators T without a right inverse. Indeed, let G C E be a closed subspace without
complement, let ¥ = E/G, and let T be the canonical projection from E onto F
(for the definition and properties of the quotient space, see Section 11.2).

* Theorem 2.13. Assume that T € L(E, F) is injective. The following properties
are equivalent:

(1) T admits a left inverse.
(i) R(T) = T(E) is closed and admits a complement in F.

Proof.

(i) = (ii). It is easy to check that R(T) is closed and that N (S) is a complement
of R(T) [write f =TSf + (f —TSf)]-

(i) = (i). Let P be a continuous projection operator from F onto R(T). Let
f € F;since Pf € R(T), there exists a unique x € E such that Tx = Pf. Set
Sf = x.Itis clear that S o T = Ig; moreover, S is continuous by Corollary 2.7.

* 2.5 Orthogonality Revisited

There are some simple formulas giving the orthogonal expression of a sum or of an
intersection.

Proposition 2.14. Let G and L be two closed subspaces in E. Then

(16) GnL=G"+LY,

A7) Gttt =G+0t

Proof of (16). Tt is clear that G N L C (G+ + L1)*; indeed, if x € G N L and
f € Gt + L then (f,x) = 0. Conversely, we have Gt c Gt + Lt and thus
(Gt + LY+ ¢ G = G (note that if Ny C N, then N- C Nib); similarly
(G+ + L+)* ¢ L. Therefore (G+ + LYt c GNL.

Proof of (17). Use the same argument as for the proof of (16).
Corollary 2.15. Let G and L be two closed subspaces in E. Then

(18) (GNL)Y* >GL+LL,
(19) (GtNLHt =G+ L.
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Proof. Use Propositions 1.9 and 2.14.
Here is a deeper result.

* Theorem 2.16. Let G and L be two closed subspaces in a Banach space E. The
following properties are equivalent:

(@) G+ Lisclosed in E,

(b) G+ + L+ is closed in E*,
() G+L=(GtnLHt
(d)Gt+L+=(GnL)*.

Proof. (a) <= (c) follows from (19). (d) = (b) is obvious.
We are left with the implications (a) = (d) and (b) = (a).

(a) = (d). In view of (18) it suffices to prove that (G N L)+ ¢ G+ + L+. Given
f € (GNL)*, consider the functional ¢ : G+ L — R defined as follows. For every
x€ G+ Lwritex =a+bwitha e Gandb € L. Set

p(x) = (f. a).

Clearly, ¢ is independent of the decomposition of x, and ¢ is linear. On the other
hand, by Theorem 2.10 we may choose a decomposition of x in such a way that
lall < Cllx]l, and thus

lp(x)| < Cllx|| Vx e G+ L.

Extend ¢ by a continuous linear functional ¢ defined on all of E (see Corollary 1.2).
So, we have

f=(-@+¢ with f—FeGt and ¢gelL'
(b) = (a). We know by Corollary 2.11 that there exists a constant C such that
(20) dist(f, Gt N LY) < C{dist(f, G1) + dist(f, LY)} Vf € E*.
On the other hand, we have

(1) dist(f, G*) = sup (f,x) Vf € E*

XE
lxl=<1
[Use Theorem 1.12 with ¢(x) = Ip,(x) — (f, x) and ¥ (x) = Ig(x), where
Bp={x € E; |x| <1}]

Similarly, we have
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(22) dist( f, LY = sup (f,x) VfeE*
xeL
[l <1
and also (by (17))
(23) dist(f, G+ N LY = dist(f, (G + L)) = sup (f,x) VfeE™
xeG+L
lxl<1
Combining (20), (21), (22), and (23) we obtain
(24) sup (f,x) <C{ sup (f,x)+ sup (f,x); VfeE"
xeG+L xeG xXeL
Ixli<t llxli<1 lxli<1
It follows from (24) that
- 1
25) B+ G D EBﬁ

Indeed, suppose by contradiction that there existed some xg € G + L with ||xg| <
1/C and xo ¢ Bg + Br. Then there would be a closed hyperplane in E strictly
separating {xo} and Bg + By. Thus, there would exist some fy € E* and some
o € R such that

(fo,x) <a < (fo,x0) Vx € Bg+ Br.

Therefore, we would have

sup (fo, x) + sup (fo,x) <o < (fo, x0),
xeG xelL
llxl=<1 lxl=1

which contradicts (24), and (25) is proved.

Finally, consider the space X = G x L with the norm

Il Lx, y1 I = max{[|lx ||, [lyll}

and the space Y = G + L with the norm of E. The map 7 : X — Y defined by
T ([x, y]) = x 4+ y is linear and continuous. From (25) we know that

[ 1
T(Bx) D —By.
(Bx) c By

Using Step 2 from the proof of Theorem 2.6 (open mapping theorem) we con-
clude that

1
T(B —By.
(X)DZC Y

It follows that T is surjective from X onto Y,ie.,G+ L =G + L.



2.6 An Introduction to Unbounded Linear Operators. Definition of the Adjoint 43

2.6 An Introduction to Unbounded Linear Operators. Definition
of the Adjoint

Definition. Let £ and F be two Banach spaces. An unbounded linear operator
from E into F is a linear map A : D(A) C E — F defined on a linear subspace
D(A) C E with values in F. The set D(A) is called the domain of A.
One says that A is bounded (or continuous) if D(A) = E and if there is a constant
¢ > 0 such that
lAull < cllull Vu € E.

The norm of a bounded operator is defined by

[ Aull
flael

||AH$(E,F) = uig

Remark 10. It may of course happen that an unbounded linear operator turns out to
be bounded. This terminology is slightly inconsistent, but it is commonly used and
does not lead to any confusion.

Here are some important definitions and further notation:

’ Graph of A = G(A) = {[u, Au]; u € D(A)} C E X F,

] Range of A = R(A) = {Au; u € D(A)} C F,

] Kernel of A = N(A) = {u € D(A); Au =0} C E\

A map A is said to be closed if G(A) isclosedin E X F.

e Remark 11. In order to prove that an operator A is closed, one proceeds in general
as follows. Take a sequence (u;) in D(A) such that u,, — u in E and Au, — f in
F. Then check two facts:

(@) u € D(A),
(b) f = Au.

Note that it does not suffice to consider sequences (u,) such that u,, — 0 in E
and Au,, — f in F (and to prove that f = 0).

Remark 12. If A is closed, then N (A) is closed; however, R(A) need not be closed.

Remark 13. Inpractice, most unbounded operators are closed and are densely defined,
i.e., D(A) is dense in E.

Definition of the adjoint A*. Let A : D(A) C E — F be an unbounded linear
operator that is densely defined. We shall introduce an unbounded operator A* :
D(A*) C F* — E™* as follows. First, one defines its domain:

D(A*) = {v € F*; 3c > O such that |{v, Au)| < c|lu|| Yu € D(A)}.
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It is clear that D(A*) is a linear subspace of F*. We shall now define A*v. Given
v € D(A™), consider the map g : D(A) — R defined by

g(u) = (v, Au) Vu € D(A).
We have
lg)| < cllull VYu € D(A).

By Hahn—Banach (analytic form; see Theorem 1.1) there exists a linear map f :
E — R that extends g and such that

[f@)| <clull YuekE.

It follows that f € E*. Note that the extension of g is unique, since D(A) is dense
in E.
Set
A*v = f.

The unbounded linear operator A*: D(A*) C F* — E* is called the adjoint of
A. In brief, the fundamental relation between A and A* is given by

(v, Au)p Fr = (A*v, u)g«. g Yu € D(A), Yve D(A™Y).

Remark 14. It is not necessary to invoke Hahn—-Banach to extend g. It suffices to
use the classical extension by continuity, which applies since D(A) is dense, g is
uniformly continuous on D(A), and R is complete (see, e.g., H. L. Royden [1]
(Proposition 11 in Chapter 7) or J. Dugundji [1] (Theorem 5.2 in Chapter XIV).

* Remark 15. It may happen that D(A*) is not dense in F* (even if A is closed);
but this is a rather pathological situation (see Exercise 2.22). It is always true that if
A is closed then D(A*) is dense in F™* for the weak* topology o (F*, F) defined in
Chapter 3 (see Problem 9). In particular, if F' is reflexive, then D(A*) is dense in F*
for the usual (norm) topology (see Theorem 3.24).

Remark 16. If A is a bounded operator then A* is also a bounded operator (from F*
into E*) and, moreover,

*
HA ”.i”(F*,E*) = ”AHz(E,F)'

Indeed, it is clear that D(A*) = F*. From the basic relation, we have
[{A*v, u)| < [|A]l llull llv]] Yu € E, YveF~,

which implies that ||[A*v|| < ||A] |lv|| and thus ||[A*|| < ||A]|.
We also have

I(v, Au)| < [IA*]| llull vl VYu € E, VveF",
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which implies (by Corollary 1.4) that ||Aul|| < ||A*|| |#] and thus [|A]| < ||A*]|.

Proposition 2.17. Let A : D(A) C E — F be a densely defined unbounded linear
operator. Then A* is closed, i.e., G(A*) is closed in F* x E*.

Proof. Let v, € D(A*) be such that v;, — vin F* and A*v, — f in E*. One has
to check that (a) v € D(A*) and (b) A*v = f.
We have
(v, Au) = (A*v,, u) Yu € D(A).

At the limit we obtain
(v, Au) = (f,u) Yu € D(A).

Therefore v € D(A*) (since [(v, Au)| < || f] llu|| Yu € D(A)) and A*v = f.

The graphs of A and A* are related by a very simple orthogonality relation:
Consider the isomorphism 7 : F* x E* — E* x F* defined by

I([v, fD) =[=f. v].

Let A: D(A) C E — F be a densely defined unbounded linear operator. Then

I[G(A*)] = G(A)™ .

Indeed, let [v, f] € F* x E*, then
[v, f1€ G(A") < (f.u) = (v, Au) Vu € D(A)
<— —(f,u)+ (v, Au) =0 Yu € D(A)
— [—f.v] € G(A)*L.

Here are some standard orthogonality relations between ranges and kernels:

Corollary 2.18. Let A : D(A) C E — F be an unbounded linear operator that is
densely defined and closed. Then

(i) N(A) = R(AM™,
(i) N(A*) = R(A)*,
(iii) N(A)* D R(A%),
(iv) N(A"T =R(A).

Proof. Note that (iii) and (iv) follow directly from (i) and (ii) combined with Propo-
sition 1.9. There is a simple and direct proof of (i) and (ii) (see Exercise 2.18).
However, it is instructive to relate these facts to Proposition 2.14 by the following
device. Consider the space X = E x F , so that X* = E* x F*, and the subspaces
of X
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G=G(A) and L=E x {0}.

It is very easy to check that

(26) N(A) x {0} =GNL,
(27) ExRA =G+L,

(28) {0} x N(A*) = Gt nL*,
(29) R(A*) x F* =Gt + L.

Proof of (1). By (29) we have

R(AHT x {0} = (G +LYHt =G NL (by(16))
= N(A) x {0} (by (26)).

Proof of (ii). By (27) we have

0} x RO =G+ L)t =G6nLt (by17)
= {0} x N(4™) (by (28)).

Remark 17. It may happen, even if A is a bounded linear operator, that N (A)+ #
R(A*) (see Exercise 2.23). However, it is always true that N(A)* is the closure
of R(A*) for the weak* topology o (E*, E) (see Problem 9). In particular, if E is
reflexive then N(A)L = R(A%).

* 2.7 A Characterization of Operators with Closed Range.
A Characterization of Surjective Operators

The main result concerning operators with closed range is the following.

* Theorem 2.19. Let A : D(A) C E — F be an unbounded linear operator that is
densely defined and closed. The following properties are equivalent:

(i) R(A) is closed,
(ii) R(A™) is closed,
(iii) R(A) = N(A")*,
(iv) R(A*) = N(A)L.

Proof. With the same notation as in the proof of Corollary 2.18, we have

(i) & G + Lisclosedin X (see (27)),

(i) & Gt + Lt isclosed in X* (see (29)),
(ili) & G+ L = (Gt N L)L (see (27) and (28)),
(iv) & (GN L)t =Gt + L+ (see (26) and (29)).

The conclusion then follows from Theorem 2.16.
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Remark 18. Let A : D(A) C E — F be a closed unbounded linear operator. Then
R(A) is closed if and only if there exists a constant C such that

dist(u, N(A)) < CllAull Vu € D(A);

see Exercise 2.14.

The next result provides a useful characterization of surjective operators.

* Theorem 2.20. Let A : D(A) C E — F be an unbounded linear operator that is
densely defined and closed. The following properties are equivalent:

(a) A is surjective, i.e., R(A) = F,
(b) there is a constant C such that

vl < CllA*v|| Vv e D(AY),
(c) N(A*) = {0} and R(A*) is closed.

Remark 19. The implication (b) = (a) is sometimes useful in practice to establish
that an operator A is surjective. One proceeds as follows. Assuming that v satisfies
A*v = f, one tries to prove that |[v]| < C| f|| (with C independent of f). This
is called the method of a priori estimates. One is not concerned with the question
whether the equation A*v = f admits a solution; one assumes that v is a priori given
and one tries to estimate its norm.

Proof.
(a) = (b). Set
B* = {v e D(A"); |A*v|| < 1}.

By homogeneity it suffices to prove that B* is bounded. For this purpose—in view
of Corollary 2.5 (uniform boundedness principle)—we have only to show that given
any fo € F the set (B*, fp) is bounded (in R). Since A is surjective, there is some
uo € D(A) such that Aug = fy. For every v € B* we have

(v, fo) = (v, Aug) = (A™v, uo)

and thus [(v, fo)| < [luoll-

(b) = (¢). Suppose f, = A*v, — f. Using (b) with v, — v,, we see that (v,) is
Cauchy, so that v, — v. Since A* is closed (by Proposition 2.17), we conclude that
A*v = f.

(¢) = (a). Since R(A™*) is closed, we infer from Theorem 2.19 that R(A) =
N(A»+ = F.

There is a “dual” statement.

* Theorem 2.21. Let A : D(A) C F be anunbounded linear operator that is densely
defined and closed. The following properties are equivalent:
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(a) A* is surjective, i.e., R(A*) = E*,
(b) there is a constant C such that

lull < CllAull Yu € D(A),
(¢) N(A) = {0} and R(A) is closed.
Proof. 1t is similar to the proof of Theorem 2.20 and we shall leave it as an exercise.

Remark 20. If one assumes that either dim E < oo or that dim F < oo, then the
following are equivalent:

A surjective & A* injective,

A” surjective < A injective,

which s indeed a classical result for linear operators in finite-dimensional spaces. The
reason that these equivalences hold is that R(A) and R(A*) are finite-dimensional
(and thus closed).

In the general case one has only the implications

A surjective = A* injective,
A* surjective = A injective.

The converses fail, as may be seen from the following simple example. Let E =
F = (2; for every x € €2 write x = (x,),>1 and set Ax = (%xn)pl. It is easy to
see that A is a bounded operator and that A* = A; A* (resp. A) is injective but A
(resp. A*) is not surjective; R(A) (resp. R(A*)) is dense and not closed.

Comments on Chapter 2

1. One may write down explicitly some simple closed subspaces without complement.
For example ¢y is a closed subspace of £°° without complement; see, e.g., C. DeVito
[1] (the notation co and £°° is explained in Section 11.3). There are other examples
in W. Rudin [1] (a subspace of LY, G. Kéthe [1], and B. Beauzamy [1] (a subspace
of £P, p # 2).

2. Most of the results in Chapter 2 extend to Fréchet spaces (locally convex spaces
that are metrizable and complete). There are many possible extensions; see, e.g.,
H. Schaefer [1], J. Horvath [1], R. Edwards [1], F. Treves [1], [3], G. Kothe [1].
These extensions are motivated by the theory of distributions (see L. Schwartz [1]),
in which many important spaces are not Banach spaces. For the applications to the
theory of partial differential equations the reader may consult L. Hormander [1] or
F. Treves [1], [2], [3].

3. There are various extensions of the results of Section 2.5 in T. Kato [1].
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Exercises for Chapter 2

Continuity of convex functions.

Let E be a Banach space and let ¢ : E — (—00, +00] be a convex L.s.c. function.
Assume xg € IntD(¢).

1. Prove that there exist two constants R > 0 and M such that
o(x) <M Vx € E with ||x — xgo|]| < R.
[Hint: Given an appropriate p > 0, consider the sets
Fp={x€E; |lx—xoll <pande(x) <n}]
2. Prove that Vr < R, 3L > 0 such that

lo(x1) —@(x2)| < Lllx1 — x2|l Vx1,x2 € E with |lx; —xoll <7, i=1,2.

; _ 2M—¢(x0)]
More precisely, one may choose L = ===~ .

Let E be a vector space and let p : E — R be a function with the following
three properties:

(i) px+y) < px)+pQy) Vx,y € E,
(ii) for each fixed x € E the function A — p(Ax) is continuous from R into R,
(iii) whenever a sequence (y,) in E satisfies p(y,) — 0, then p(Ly,) — O forevery
A eR.

Assume that (x,) is a sequence in E such that p(x,) — 0 and (&) is a bounded
sequence in R. Prove that p(0) = 0 and that p(c,x,) — O.
[Hint: Given ¢ > 0 consider the sets

Fo={reR; |plxi)| <e, Vk=n}]

Deduce that if (x,) is a sequence in E such that p(x, — x) — 0 for some x € E,
and (&) is a sequence in R such that ¢, — «, then p(o,x,) — p(ax).

Let E and F be two Banach spaces and let (7},) be a sequence in L(E, F).
Assume that for every x € E, T,,x converges as n — oo to a limit denoted by T'x.
Show that if x, — x in E, then T,,x,, — Tx in F.

Let E and F be two Banach spaces and leta : E x F — R be a bilinear form
satisfying:

(i) for each fixed x € E, the map y > a(x, y) is continuous;
(ii) for each fixed y € F, the map x — a(x, y) is continuous.

Prove that there exists a constant C > 0 such that

la(x, )| < Clix|[ Iyl Vx € E, VyekF.
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[Hint: Introduce a linear operator 7' : E — F* and prove that 7" is bounded with
the help of Corollary 2.5.]

Let E be a Banach space and let ¢, be a sequence of positive numbers such
that lim &, = 0. Further, let (f;;) be a sequence in E* satisfying the property

dr >0, VxeFE with|x| <r, AC(x) € R such that
(fu, x) < €nllfull + C(x) Vn.

Prove that ( f;,) is bounded.
[Hint: Introduce g, = f,/(1 + &l ful).]

Locally bounded nonlinear monotone operators.
Let E be Banach space and let D(A) be any subset in E. A (nonlinear) map
A : D(A) C E — E* is said to be monotone if it satisfies

(Ax — Ay, x —y)>0 Vx,y e D(A).
1. Let xg € IntD(A). Prove that there exist two constants R > 0 and C such that
|[Ax|| < C Vx € D(A) with ||x — xo|| < R.

[Hint: Argue by contradiction and construct a sequence (x,) in D(A) such that
X, = xo and ||Ax,|| = oo. Choose r > 0 such that B(xg,r) C D(A). Use the
monotonicity of A at x,, and at (xo + x) with ||x|| < r. Apply Exercise 2.5.]

2. Prove the same conclusion for a point xg € Int[conv D(A)].

3. Extend the conclusion of question 1 to the case of A multivalued, i.e., for every
x € D(A), Ax is anonempty subset of E*; the monotonicity is defined as follows:

(f—8x—=y)=z0 Vx,yeD(A), VfeAx, VgeAy.

Let o = (ay,) be a given sequence of real numbers and let 1 < p < co. Assume
that > | ||xn| < oo for every element x = (x;,) in £7 (the space £7 is defined in
Section 11.3).

Prove that o € ¢7'.

Let E be a Banach space and let T : E — E™* be a linear operator satisfying
(Tx,x)>0 VxekE.

Prove that T is a bounded operator.
[Two methods are possible: (i) Use Exercise 2.6 or (ii) Apply the closed graph
theorem.]

Let E be a Banach space and let T : E — E™* be a linear operator satisfying

(Tx,y)=(Ty,x) Vx,y€eE.
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Prove that T is a bounded operator.
Let E and F be two Banach spaces and let T € L(E, F) be surjective.

1. Let M be any subset of E. Prove that T (M) is closed in F iff M + N (T) is closed
in E.

2. Deduce that if M is a closed vector space in E and dim N(T') < oo, then T (M)
is closed.

Let E be a Banach space, F = ¢ andlet T € L(E, F) be surjective. Prove
that there exists S € L(F, E) such that T o § = I, i.e., S has aright inverse of 7.

[Hint: Do not apply Theorem 2.12; try to define S explicitly using the canonical
basis of £1.]

Let E and F be two Banach spaces with norms || ||g and || ||r. Let T €
L(E, F) be such that R(T) is closed and dim N(T) < oo. Let | | denote another
norm on E that is weaker than || || g, i.e., |x| < M||x||[g Vx € E.

Prove that there exists a constant C such that

Ixlle = CUTx|F +|x) Vxe€E.
[Hint: Argue by contradiction.]
Let E and F be two Banach spaces. Prove that the set
Q ={T € L(E, F); T admits a left inverse}

isopenin L(E, F).
[Hint: Prove first that the set

O ={T € L(E, F); T is bijective}
isopenin L(E, F).]

Let E and F be two Banach spaces

1. Let T € L(E, F). Prove that R(T) is closed iff there exists a constant C such
that
dist(x, N(T)) < C||Tx| Vx €E.

[Hint: Use the quotient space E/N (T); see Section 11.2.]
2. Let A: D(A) C E — F be a closed unbounded operator.
Prove that R(A) is closed iff there exists a constant C such that

dist(u, N(A)) < C||Au|| Yu € D(A).

[Hint: Consider the operator T : Ey — F, where Eyg = D(A) with the graph
normand T = A.]
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Let Ey, E», and F be three Banach spaces. Let 7| € L(Ei, F) and let
T» € L(E,, F) be such that

R(T1) NR(T2) = {0} and R(T1)+ R(T2) = F.

Prove that R(T;) and R(T>») are closed.
[Hint: Apply Exercise 2.10to the map 7 : E; x E, — F defined by

T(x1,x2) = Tix1 + Taxz.]

Let E be a Banach space. Let G and L be two closed subspaces of E. Assume
that there exists a constant C such that

dist(x, G N L) < Cdist(x, L), Vx e G.

Prove that G + L is closed.

Let E = C([0, 1]) with its usual norm. Consider the operator A : D(A) C
E — E defined by

d
D(A) = C'([0,1]) and Au:uf:d_‘;.

1. Check that D(A) = E.
2. Is A closed?
3. Consider the operator B : D(B) C E — E defined by

d
D(B) = C*([0,1]) and Bu:u/zd_’:,

Is B closed?

Let E and F be two Banach spaces and let A : D(A) C E — F be adensely
defined unbounded operator.
1. Prove that N(A*) = R(A)+ and N(A) C R(A*)L.
2. Assuming that A is also closed prove that N (A) = R(A*)*.
[Try to find direct arguments and do not rely on the proof of Corollary 2.18. For

question 2 argue by contradiction: suppose there is some u € R(A*)" such that
[u, 0] ¢ G(A) and apply Hahn—-Banach.]

Let E be a Banach space and let A : D(A) C E — E* be a densely defined
unbounded operator.

1. Assume that there exists a constant C such that
(1) (Au,u) > —C||Au|*> Vu € D(A).

Prove that N(A) C N(A).
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2. Conversely, assume that N(A) C N(A*). Also, assume that A is closed and R(A)
is closed. Prove that there exists a constant C such that (1) holds.

Let E and F be two Banach spaces. Let T € L(E, F) andlet A : D(A) C
E — F be an unbounded operator that is densely defined and closed. Consider the
operator B : D(B) C E — F defined by

D(B)=D(A), B=A+T.

1. Prove that B is closed.
2. Prove that D(B*) = D(A*) and B* = A* + T*.

Let E be an infinite-dimensional Banach space. Fix an elementa € E,a # 0,
and a discontinuous linear functional f : E — R (such functionals exist; see
Exercise 1.5). Consider the operator A : E — E defined by

D(A)=E, Ax=x-— f(x)a.

Determine N (A) and R(A).

Is A closed?

Determine A* (define D(A*) carefully).

Determine N(A*) and R(A*).

Compare N (A) with R(A*)* as well as N (A*) with R(A)*.
Compare with the results of Exercise 2.18.

SRR

The purpose of this exercise is to construct an unbounded operator A : D(A) C

E — E that is densely defined, closed, and such that D(A*) # E*.
Let E = ¢!, so that E* = ¢°°. Consider the operator A : D(A) C E — E
defined by

D(A) = {u = (uy) € £'; (nuy) € zl} and Au = (nuy).

1. Check that A is densely defined and closed.
2. Determine D(A*), A*, and D(A*).

Let E = ¢!, so that E* = £°°. Consider the operator T € L(E, E) defined by

1
Tu = <—un> for every u = (u,),~1 in 0.
n n>1 B

Determine N(T), N(T)L, T*, R(T*), and R(T™).
Compare with Corollary 2.18.



54 2 The Uniform Boundedness Principle and the Closed Graph Theorem

Let E, F, and G be three Banach spaces. Let A : D(A) C E — Fbea
densely defined unbounded operator. Let T € L(F, G) and consider the operator
B :D(B) C E — G definedby D(B) =D(A)and B=T o A.

1. Determine B*.
2. Prove (by an example) that B need not be closed even if A is closed.

Let E, F, and G be three Banach spaces.
1. LetT € L(E, F)and S € L(F, G). Prove that

(SoT) =T*oS".

2. Assumethat T € L(E, F)isbijective. Prove that 7* is bijective and that (7*) ! =
(T=hH.

Let E and F be two Banach spaces and let T € L(E,F). Lety : F —
(—00, +00] be a convex function. Assume that there exists some element in R(T)
where v is finite and continuous.

Set

p(x) =¥ (Tx), x€kE.
Prove that for every f € F*

¢ (T*f)= inf ) Y*(f —g) = min ) v - ).

geN(T* geEN(T*

Le E, F be two Banach spaces and let T € L(E, F). Assume that R(T') has
finite codimension, i.e., there exists a finite-dimensional subspace X of F such that
X+ R(T)=Fand X N R(T) = {0}.

Prove that R(T) is closed.



Chapter 3

Weak Topologies. Reflexive Spaces. Separable
Spaces. Uniform Convexity

3.1 The Coarsest Topology for Which a Collection of Maps
Becomes Continuous

We begin this chapter by recalling a well-known concept in topology. Suppose X is
a set (without any structure) and (Y;);¢; is a collection of topological spaces. We are
given a collection of maps (¢;);cy such that for every i € I, ¢; maps X into ¥; and
we consider the following:

Problem 1. Construct a topology on X that makes all the maps (¢;);ec; continuous.
If possible, find a topology .7 that is the most economical in the sense that it has the
fewest open sets.

Note that if we equip X with the discrete topology (i.e., every subset of X is
open), then every map ¢; is continuous; of course, this topology is far from being
the “cheapest”; in fact, it is the most expensive one! As we shall see, there is always
a (unique) “cheapest” topology .7 on X for which every map ¢; is continuous. It is
called the coarsest or weakest topology (or sometimes the initial topology) associated
to the collection (@;)icy.

If w; C Y; is any open set, then goi_l (w;) is necessarily an open set in .7 . As w;
runs through the family of open sets of ¥; and i runs through / we obtain a family
of subsets of X, each of which must be open in the topology .7 . Let us denote this
family by (Uj)aea . Of course, this family need not be a topology. Therefore, we are
led to the following:

Problem 2. Given a set X and a family (U,),cp of subsets in X, construct the
cheapest topology .7 on X in which U, is open for all & € A.

In other words, we must find the cheapest family .% of subsets of X that is stable'
by Nfinite and Ugrbigrary and with the property that U, € & for every A € A. The
construction goes as follows. First,consider finite intersections of sets in (Uj)jea,
i.e.,Myer Uy where I' C A is finite. In this way we obtain a new family, called ®, of

! Meaning that a finite intersection of sets in .# and an arbitrary union of sets in .# both belong
to Z.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 55
DOI 10.1007/978-0-387-70914-7 3, © Springer Science+Business Media, LLC 2011
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subsets of X which includes (Uj),ca and which is stable under Ngpite. However, it
need not be stable under Ugpitrary. Therefore, we consider next the family . obtained
by forming arbitrary unions of elements from &. It is clear that % is stable under
Uarbitrary- It is not clear whether Z is stable under Ngpjee; but indeed we have the
following result:

Lemma 3.1. The family .% is stable under Npite.

The proof of Lemma 3.1—a delightful exercise in set theory—is left to the reader;
see e.g., G. Folland [2]. It is now obvious that the above construction gives the
cheapest topology with the required property.

Remark 1. One cannot reverse the order of operations in the construction of % . It
would have been equally natural to start with Uybitrary and then to take Nfnite. The
outcome is a family that is stable under Nfinite; but it is not stable under Uypitrary-
One would have to consider once more Uybiiary and the process then stabilizes.

To summarize this discussion we find that the open sets of the topology 7 are
obtained by considering first Nfinite Of sets of the form ¢, ! (w;) and then Ugppigrary - It
follows that for every x € X, we obtain a basis of neighborhoods of x for the topology
Z by considering sets of the form Ngpite ®; l(Vi), where V; is a neighborhood of
@i (x) in Y;. Recall that in a topological space, a basis of neighborhoods of a point
x is a family of neighborhoods of x, such that every neighborhood of x contains a
neighborhood from the basis.

In what follows we equip X with the topology 7 that is the weakest topology
associated to the collection (¢; ); <. Here are two simple properties of the topology 7.

o Proposition 3.1. Let (x,,) be a sequence in X. Then x, — x (in 7) if and only if
@i (xp) = @i (x) foreveryi € I.

Proof. If x,, — x, then ¢; (x,;) — ¢;(x) for each i, since each ¢; is continuous for
. Conversely, let U be a neighborhood of x. From the preceding discussion, we
may always assume that U has the form U = ﬂiejgplf] (V;) with J C [ finite. For
each i € J there is some integer N; such that ¢; (x;,) € V; forn > N;. It follows that
x, € Uforn > N = max;cyN;.

e Proposition 3.2. Let Z be a topological space and let  be a map from Z into X.
Then  is continuous if and only if ¢; o V¥ is continuous from Z into Y; for every
iel

Proof. If v is continuous then ¢; o ¥ is also continuous for every i € I. Conversely,
we have to prove that 1//—1 (U) is open (in Z) for every open set U (in X). But we
know that U has the form U = Uqitrary Nfinite ¢; ! (wi), where w; is open in Y;.
Therefore

y'Wy= U0 YTl enl= U N0 (gioy) T (@),
arbitrary finite arbitrary finite

which is open in Z since every map ¢; o ¥ is continuous.
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3.2 Definition and Elementary Properties of the Weak Topology
o(E, E®)

Let E be a Banach space and let f € E*. We denote by ¢ : E — R the linear
functional ¢ r(x) = (f, x). As f runs through E* we obtain a collection (¢s) reg+
of maps from E into R. We now ignore the usual topology on E (associated to || ||)
and define a new topology on the set E as follows:

Definition. The weak topology o (E, E*) on E is the coarsest topology associated
to the collection (@) reg+ (in the sense of Section 3.1 with X = E, Y; = R, for
eachi,and I = E*).

Note that every map ¢ is continuous for the usual topology and therefore the
weak topology is weaker than the usual topology.

Proposition 3.3. The weak topology o (E, E*) is Hausdorff.

Proof. Given x1, xp € E with x; # x we have to find two open sets O and Oy
for the weak topology o (E, E*) such that x| € Oy, x2 € Oz, and O; N O, = (.
By Hahn—Banach (second geometric form) there exists a closed hyperplane strictly
separating {x;} and {x,}. Thus, there exist some f € E* and some « € R such that

(f,x1) <a < (f,x2).
Set
O1={x € E; (f.x) <o} = ¢} (—00,0)),
02 ={x € Es{fix) > a} = g5 (@, +00)) .
Clearly, O and O, are open for o (E, E*) and they satisfy the required properties.

e Proposition 3.4. Let xg € E; given ¢ > 0 and a finite set { f1, f2, ..., fr}in E*
consider

V=V, fo,.... fr; &) ={x € E; [{fi,x—xo)| <e Vi=1,2,...,k}.

Then V is a neighborhood of xq for the topology o (E, E*). Moreover, we obtain a
basis of neighborhoods of x( for o (E, E*) by varying ¢, k, and the f;’s in E*.

Proof. Clearly V = nN;_, go}i]((ai —¢,a; +¢)), with a; = (fi, xg), is open for the
topology o (E, E*) and contains xq. Conversely, let U be a neighborhood of x¢ for
o (E, E*).From the discussion in Section 3.1 we know that there exists an open set W
containing xo, W C U, of the form W = ﬂﬁnite(p;il (wi), where w; is a neighborhood
(in R) of a; = (fi, xo). Hence there exists ¢ > 0 such that (a; — ¢, a; + ¢) C w; for
every i. It follows that xo e V. C W C U.

Notation. If a sequence (x,) in E converges to x in the weak topology o (E, E*)
we shall write



58 3 Weak Topologies. Reflexive Spaces. Separable Spaces. Uniform Convexity

Xp — X.

To avoid any confusion we shall sometimes say, “x, — x weakly in o (E, E*).”
In order to be totally clear we shall sometimes emphasize strong convergence by
saying, “x, — x strongly,” meaning that ||x, — x|| — O.

e Proposition 3.5. Let (x;,) be a sequence in E. Then

(@) [xn — x weakly ino (E, E*)] < [{f, xx) = (f.x) Vf € E*].
(i) If x, — x strongly, then x, — x weakly in o (E, E™).
(i) If x, — x weakly in o (E, E*), then (||x, 1) is bounded and || x|| < liminf ||x,|.
@iv) Ifx, = xweaklyino (E, E*)andif f, — f stronglyin E* (i.e., | fu— fllgx —
0), then (fn, xn) = ([, x).

Proof.

(1) follows from Proposition 3.1 and the definition of the weak topology o (E, E™*).

(i) follows from (i), since |(f, x,) — (f, x)| < | Il lx, — x]|; it is also clear from
the fact that the weak topology is weaker than the strong topology.

(iii) follows from the uniform boundedness principle (see Corollary 2.4), since for

every f € E* theset ({f, x,)), is bounded. Passing to the limit in the inequality

[ xadl < AN xall,

we obtain
[{f, )] < [1f I liminf ||x;, |,

which implies (by Corollary 1.4) that

lxll = sup [(f,x)] <liminf ||x,]|.
<t

(iv) follows from the inequality

[ s Xn) = (F, ) < If—= o ) [ =20 < M fu=f I X IS, X0 =),
combined with (i) and (iii).

e Proposition 3.6. When E is finite-dimensional, the weak topology o (E, E*) and
the usual topology are the same. In particular, a sequence (x,) converges weakly if
and only if it converges strongly.

Proof. Since the weak topology has always fewer open sets than the strong topology,
it suffices to check that every strongly open set is weakly open. Let xo € E and let
U be a neighborhood of x( in the strong topology. We have to find a neighborhood
V of x¢ in the weak topology o (E, E*) such that V C U. In other words, we have
to find fi, f2,..., fr in E* and & > O such that

V={xeE; [{fi,x—x0) <e Vi=1,2,...,k}CU.
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Fix r > 0 such that B(xg,r) C U. Pick a basis e, e3, ..., e in E such that
lle;ll =1, Vi.Every x € E admits a decomposition x = ZLI x;e;i, and the maps
X > x; are continuous linear functionals on E denoted by f;. We have

k
e — xoll < D I(firx —x0)| < ke
i=1

for every x € V. Choosing ¢ = r/k, we obtain V C U.

Remark 2. Open (resp. closed) sets in the weak topology o (E, E*) are always open
(resp. closed) in the strong topology. In any infinite-dimensional space the weak
topology 1is strictly coarser than the strong topology; i.e., there exist open (resp.
closed) sets in the strong topology that are not open (resp. closed) in the weak
topology. Here are two examples:

Example 1. The unit sphere S = {x € E; |x|| = 1}, with E infinite-dimensional, is
never closed in the weak topology o (E, E*). More precisely, we have

) EG(E,E*

) = Bg,
where EO(E’E*) denotes the closure of S in the topology o (E, E*) and Bg (already
defined in Chapter 2) denotes the closed unit ball in E,

Bp ={x € E; |x|l = 1}.

First let us check that every xo € E with ||xg|| < 1 belongs to §G(E’E*). Indeed,
let V be a neighborhood of x¢ in o (E, E*). We have to prove that V N S # (. In
view of Proposition 3.4 we may always assume that V has the form

V={xekE; |(fi,x—xo)l<e Vi=1,2,...,k}
with e > 0 and f1, f2,..., fxr € E*.Fix yg € E, yo # 0, such that
(fi,yo) =0 Vi=1,2,...,k.

[Such a yq exists; otherwise, the map ¢ : E — RK defined by ¢(x) =
({(fi» x)1<i<k would be injective and ¢ would be an isomorphism from E onto
¢(E), and thus dim E < k, which contradicts the assumption that E is infinite-
dimensional.]? The function g(t) = ||xo+tyo|l is continuous on [0, co) with g(0) < 1
and lim;—, o, g(#) = +00. Hence there exists some #y > O such that | xo+zfoyo| = 1.
It follows that xg + foyp € V N S, and thus we have established that

Sc By cS”EE,

2 The geometric interpretation of this construction is the following. When E is infinite-dimensional,
every neighborhood V of xp in the topology o (E, E*) contains a line passing through xo, even a
“huge” affine space passing through xp.
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In order to complete the proof of (1) it suffices to know that B is closed in the
topology o (E, E*). But we have

Be= () (xeE; [(f,x)] <1},
fEE*
IflI=1

which is an intersection of weakly closed sets.

Example 2. The unit ball U = {x € E; ||x|| < 1}, with E infinite-dimensional, is
never open in the weak topology o (E, E*). Suppose, by contradiction, that U is
weakly open. Then its complement U¢ = {x € E; ||x|| > 1} is weakly closed. It
follows that S = Br N U° is also weakly closed; this contradicts Example 1.

* Remark 3. In infinite-dimensional spaces the weak topology is never metrizable,
i.e., there is no metric (and a fortiori no norm) on E that induces on E the weak
topology o (E, E*); see Exercise 3.8. However, as we shall see later (Theorem 3.29),
if E* is separable one can define a norm on E that induces on bounded sets of E the
weak topology o (E, E™).

* Remark 4. Usually, in infinite-dimensional spaces, there exist sequences that con-
verge weakly and do not converge strongly. For example, if E* is separable or if E
is reflexive one can construct a sequence (x,) in E such that ||x,|| = 1 and x, — 0
weakly (see Exercise 3.22). However, there are infinite-dimensional spaces with the
property that every weakly convergent sequence is strongly convergent. For exam-
ple, £! has that unusual property (see Problem 8). Such spaces are quite “rare” and
somewhat “pathological.” This strange fact does not contradict Remark 2, which as-
serts that in infinite-dimensional spaces, the weak topology and the strong topology
are always distinct: the weak topology is strictly coarser than the strong topology.
Keep in mind that two metric (or metrizable) spaces with the same convergent se-
quences have identical topologies; however, if two topological spaces have the same
convergent sequences they need not have identical topologies.

3.3 Weak Topology, Convex Sets, and Linear Operators

Every weakly closed set is strongly closed and the converse is false in infinite-
dimensional spaces (see Remark 2). However, it is very useful to know that for
convex sets, weakly closed = strongly closed:

e Theorem 3.7. Let C be a convex subset of E. Then C is closed in the weak topology
o (E, E*) if and only if it is closed in the strong topology.

Proof. Assume that C is closed in the strong topology and let us prove that C is
closed in the weak topology. We shall check that the complement C of C is open in
the weak topology. To this end, let xg ¢ C. By Hahn—Banach there exists a closed
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hyperplane strictly separating {xo} and C. Thus, there exist some f € E* and some
o € R such that
(fixo) <a<{(f,y) VyeC.
Set
V={xekE: (fx)<ak

sothatxg € V,VNC =@ (i.e., V C C°) and V is open in the weak topology.

Corollary 3.8 (Mazur). Assume (x,) converges weakly to x. Then there exists a
sequence (y,) made up of convex combinations of the x,’s that converges strongly
to x.

Proof. LetC = conv(Uj:f)=1 {xp}) denote the convex hull of the x;,’s. Since x belongs

to the weak closure of U;’j’:l {xp} it belongs a fortiori to the weak closure of C. By
Theorem 3.7, x € C, the strong closure of C, and the conclusion follows.

Remark 5. There are some variants of Corollary 3.8 (see Exercises 3.4 and 5.24).
Also, note that the proof of Theorem 3.7 shows that every closed convex set C
coincides with the intersection of all the closed half-spaces containing C.

e Corollary 3.9. Assume that ¢ : E — (—00+ 0] is convex and 1.s.c. in the strong
topology. Then ¢ is 1.s.c. in the weak topology o (E, E*).

Proof. For every A € R the set
A={x e E; p(x) <A}

is convex and strongly closed. By Theorem 3.7 it is weakly closed and thus ¢ is
weakly l.s.c.

e Remark 6. It may be rather difficult in practice to prove that a function is l.s.c. in
the weak topology. Corollary 3.9 is often used as follows:

¢ convex and strongly continuous = ¢ weakly L.s.c.

For example, the function ¢(x) = ||x|| is convex and strongly continuous; thus it is
weakly l.s.c. In particular, if x, — x weakly, it follows that ||x|| < liminf ||x, | (see
also Proposition 3.5).

Theorem 3.10. Let E and F be two Banach spaces and let T be a linear operator
from E into F. Assume that T is continuous in the strong topologies. Then T is
continuous from E weak o (E, E*) into F weak o (F, F*) and conversely.

Proof. In view of Proposition 3.2 it suffices to check that for every f € F* the map
x +— (f, Tx)iscontinuous from E weak o (E, E*) into R. Butthe map x — (f, T'x)
is a continuous linear functional on E. Therefore, it is also continuous in the weak
topology o (E, E™).
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Conversely, suppose that T is continuous from E weak into F weak. Then G(T')
isclosed in E x F equipped with the product topology o (E, E*) x o (F, F*), which
is clearly the same as o (E x F, (E x F)*). It follows that G(T) is strongly closed
(any weakly closed set is strongly closed). We conclude with the help of the closed
graph theorem (Theorem 2.9) that T is continuous from E strong into F strong.

Remark 7. The argument above shows more: that if a linear operator T is continuous
from E strong into F' weak then T is continuous from E strong into F strong. As
a consequence, for linear operators, the following continuity properties are all the
same: S — S, W — W, S — W (S = strong, W = weak). On the other hand,
very few linear operators are continuous W — §; this happens if and only if T is
continuous § — S and, moreover, dim R(T) < oo (see Exercise 6.7).

Also, note that in general, nonlinear maps that are continuous from E strong into
F strong are not continuous from E weak into F weak (see, e.g., Exercise 4.20).
This is a major source of difficulties in nonlinear problems.

3.4 The Weak* Topology o (E*, E)

So far, we have two topologies on E*:

(a) the usual (strong) topology associated to the norm of E*,
(b) the weak topology o (E*, E**), obtained by performing on E* the construction
of Section 3.3.

We are now going to define a third topology on E* called the weak* topology and
denoted by o (E*, E) (the % is here to remind us that this topology is defined only on
dual spaces). For every x € E consider the linear functional ¢, : E* — R defined
by f +— ¢ (f) = (f, x). As x runs through E we obtain a collection (¢, )yecg of
maps from E* into R.

Definition. The weak* topology,o (E*, E),is the coarsest topology on E* associated
to the collection (¢y)xeg (in the sense of Section 3.1 with X = E*, Y; = R, for all
i,and I = E).

Since E C E**, itis clear that the topology o (E*, E) is coarser than the topology
o (E*, E*™);i.e., the topology o (E*, E) has fewer open sets (resp. closed sets) than
the topology o (E*, E*), which in turn has fewer open sets (resp. closed sets) than
the strong topology.

Remark 8. The reader probably wonders why there is such hysteria over weak topolo-
gies! The reason is the following: a coarser topology has more compact sets. For
example, the closed unit ball Bg~ in E*, which is never compact in the strong topol-
ogy (unless dim E < oo; see Theorem 6.5), is always compact in the weak* topology
(see Theorem 3.16). Knowing the basic role of compact sets—for example, in exis-
tence mechanisms such as minimization—it is easy to understand the importance of
the weak™ topology.



3.4 The Weak* Topology o (E*, E) 63

Proposition 3.11. The weak* topology is Hausdorff.

Proof. Given fi, f» € E* with f| # f, there exists some x € E such that (f1, x) #
(f2, x) (this does not use Hahn—Banach, but just the fact that f; # f,). Assume for
example that ( f1, x) < (f2, x) and choose « such that

(fi,x) <a < (fo,x).
Set
O1={f €ES (f,x) <a} =9, (—o0, @),
02 ={f € E*; (f,x) > a} = ¢, ((a, +00)).

Then O and O; are open sets in o (E*, E) such that fi € Oy, f € O, and
01N 0y =40.

Proposition 3.12. Let fo € E*; given a finite set {x1, x3,...,x;} in E and ¢ > 0,
consider

V=V(x1,xz,...,xk;£)={feE*;|(f—f0,x,-)|<£ Vi=1,2,...,k}.

Then V is a neighborhood of fy for the topology o (E*, E). Moreover, we obtain a
basis of neighborhoods of fy for o (E*, E) by varying ¢, k, and the x;’s in E.

Proof. Same as the proof of Proposition 3.4.

Notation. If a sequence (f,) in E* converges to f in the weak* topology we shall
write

fo > f.

To avoid any confusion we shall sometimes emphasize “f; X f in o (E*, E),
“fp = fino(E*, E*), and “f, — f strongly.”

e Proposition 3.13. Let ( f;,) be a sequence in E*. Then
M) [fy = fino(E* E) & [(fo,x) = (fx), ¥x € E].
(1) If fu — f strongly, then f,, — f ino(E*, E™).

If fn — fino(E*, E™), then fy =~ f ino(E*, E).
(iii) If fn A fino(E*, E) then (|| fu)) is bounded and | f|| < liminf || f,||.
av) If f» X fino(E*, E) and if x, — x strongly in E, then {f,, x,) — {f, x).
Proof. Copy the proof of Proposition 3.5.

Remark 9. Assume f, A fin o(E*, E) (or even f, — f in o(E*, E*)) and
X, — x in o (E, E*). One cannot conclude, in general, that ( f,,, x,) — (f, x) (itis
very easy to construct an example in Hilbert spaces).
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Remark 10. When E is a finite-dimensional space the three topologies (strong,
weak, weak*) on E* coincide. Indeed, the canonical injection J : E — E™** (see
Section 1.3) is surjective (since dim E = dim E**) and therefore o (E*, E) =
o (E*, E™).

* Proposition 3.14. Let ¢ : E* — R be a linear functional that is continuous for
the weak™ topology. Then there exists some xo € E such that

o(f)=(f.x0) VfeE"
The proof relies on the following useful algebraic lemma:

Lemma 3.2. Let X be a vector space and let ¢, o1, @2, ..., o be (k + 1) linear
functionals on X such that

2 [pi(v) =0 Vi=1,2,..., k] = [¢() =0].
Then there exist constants A1, A2, ..., Ak € R such that ¢ = Zf:] Aii.

Proof of Lemma 3.2. Consider the map F : X — R¥*! defined by

Fu) =[o@), 1), p2(u), ..., or(w)].

It follows from assumption (2) that a = [1, 0,0, ..., 0] does not belong to R(F).
Thus, one can strictly separate {a} and R(F) by some hyperplane in R¥*1; i.e., there
exist constants A, A1, A2, ..., A and « such that

k
A<a<io(u)+ Z)Liq)i(u) Yu € X.
i=1
It follows that .
ro(u) + Zkitpi(u) =0 YueX

i=1

and also A < 0 (so that A # 0).

Proof of Proposition 3.14. Since ¢ is continuous for the weak* topology, there exists
a neighborhood V of 0 for o (E*, E) such that

lp(Hl <1 VfeV.
We may always assume that
V={feES|(fixi)l<e Vi=1,2,...,k}
with x; € E and ¢ > 0. In particular,

[(f,xi;)=0 Vi=1,2,...,k]l = [e(f) =0l
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It follows from Lemma 3.2 that

k k
o(f) = Z)»i(f, Xi) = <f, Z)»ixi> VfeE”.
i=1 i=1

* Corollary 3.15. Assume that H is a hyperplane in E* that is closed in o (E*, E).
Then H has the form
H={f€E" (f x) =0}

for some xg € E, xo # 0, and some a € R.

Proof. H may be written as

H={f€E" o(f) =a},

where ¢ is a linear functional on E*, ¢ # 0. Let fy ¢ H and let V be a neighborhood
of fp for the topology o (E*, E) such that V. C H. We may assume that

V=A{feE|(f—fo.x)l<e Vi=1,2 .. k.

Since V is convex we find that either

3) o(f)<a VfeV
or
3" o(f)>a VfeV.

Assuming, for example, that (3) holds, we obtain

p(@) <a—o(fo) VgeW=V—fo

and since —W = W we are led to

“) lp(@)] < la —¢(fo)l VYgeW.

It follows from (4) that ¢ is continuous at O for the topology o (E*, E) (since W is
a neighborhood of 0). Applying Proposition 3.14, we conclude that there is some
xo € E such that

p(f)=(f.x0) VfeE"

Remark 11. Assume that the canonical injection J : E — E™ is not surjective.
Then the topology o (E*, E) is strictly coarser than the topology o (E*, E**). For
example, let £ € E** with £ ¢ J(E). Then the set

H={feE" ¢ f)=0}

isclosed in o (E*, E**) but—in view of Corollary 3.15—itis notclosed in o (E*, E).
We also learn from this example that convex sets that are closed in the strong topology
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need not be closed in the weak* topology. There are two types of closed convex sets
in E*:
(a) the convex sets that are strongly closed (= closed in the topology o (E*, E**) by

Theorem 3.7),
(b) the convex sets that are closed in o (E*, E).

e Theorem 3.16 (Banach-Alaoglu—Bourbaki). The closed unit ball
Bp«={f €E IIfl =1}
is compact in the weak* topology o (E*, E).

Remark 12. The compactness of Bg is the most essential property of the weak*
topology; see also Remark 8.

Proof. Consider the Cartesian product ¥ = R, which consists of all maps from
E into R; we denote elements of ¥ by w = (wy)yeg With w, € R. The space
Y is equipped with the standard product topology (see, e.g., H. L. Royden [1],
J.R. Munkres [1], A. Knapp [1], or J. Dixmier [1]), i.e., the coarsest topology on Y as-
sociated to the collection of maps w + w; (as x runs through E), which is, of course,
the same as the topology of pointwise convergence (see, e.g., J. R. Munkres [1]).
In what follows E* is systematically equipped with the weak* topology o (E*, E).
Since E* consists of special maps from E into R (i.e., continuous linear maps),
we may consider E* as a subset of Y. More precisely, let ® : E* — Y be the
canonical injection from E* into Y, so that ®(f) = (wy)recg With w, = (f, x).
Clearly, ® is continuous from E* into Y (use Proposition 3.2 and note that for
every fixed x € E the map f € E* — (®(f))y = (f, x) is continuous). The
inverse map ®~! is also continuous from ®(E*) equipped with the ¥ topology)
into E*: indeed, using Proposition 3.2 once more, it suffices to check that for ev-
ery fixed x € E the map w +— (Q_I(a)), x) is continuous on ®(E*), which is
obvious since (<I>_1(a)),x) = w, (note that o = ®(f) for some f € E* and
(@~ Hw), x) = (f, x) = wy). In other words, ® is a homeomorphism from E* onto
@ (E™). On the other hand, it is clear that ®(Bg+) = K, where K is defined by

K:{a)EY

In order to complete the proof of Theorem 3.16 it suffices to check that K is a compact
subset of Y. Write K as K = K| N K», where

|C()x| S ||'x||1 wx+y = wx + a)y
and wyy = Aoy YVAER, Vx,y e E|’

Ki={weY; |og < x|l Vx e E}
and
K2={a)€Y;wxﬂ:a)x—i—a)yanda)xx:ka)x Vi e R, Vx,yeE}.

The set K1 may also be written as a product of compact intervals
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Ky = [Tt=lxl, +lxl1.

xeE

Let us recall that (arbitrary) products of compact spaces are compact—a deep theo-
rem due to Tychonoff; see, e.g., H. L. Royden [1], G. B. Folland [2], J. R. Munkres
[1], A. Knapp [1], or J. Dixmier [1]. Therefore K; is compact. On the other hand,
K> is closed in Y; indeed, for each fixed . € R, x, y € E the sets

Axy={w €Y, wr1y —wx —wy =0},
B x = {weY; wpy — Aoy =0},

are closed in Y (since the maps w — wy4y — wy — wy and  — w;x — Awy are
continuous on Y) and we may write K as

Ky = [ N Ax,y] N [ﬂBM].

x,yeE xeE
reR

Finally, K is compact since it is the intersection of a compact set (K1) and a closed
set (K>7).

3.5 Reflexive Spaces

Definition. Let E be a Banach spaceandlet J : E — E™* be the canonical injection
from E into E** (see Section 1.3). The space E is said to be reflexive if J is surjective,
ie, J(E) = E™.

When E is reflexive, E** is usually identified with E.

Remark 13. Many important spaces in analysis are reflexive. Clearly, finite-dimen-
sional spaces are reflexive (since dim £ = dim E* = dim E**). As we shall see in
Chapter 4 (see also Chapter 11), L? (and £7) spaces are reflexive for 1 < p < co.In
Chapter 5 we shall see that Hilbert spaces are reflexive. However, equally important
spaces in analysis are not reflexive; for example:

o L'and L™ (and £', £>°) are not reflexive (see Chapters 4 and 11);
* C(K), the space of continuous functions on an infinite compact metric space K,
is not reflexive (see Exercise 3.25).

* Remark 14. 1t is essential to use J in the above definition. R. C. James [1] has
constructed a striking example of a nonreflexive space with the property that there
exists a surjective isometry from E onto E**.

Our next result describes a basic property of reflexive spaces:

e Theorem 3.17 (Kakutani). Let E be a Banach space. Then E is reflexive if and
only if
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Bp={x € E; |x|l =1}
is compact in the weak topology o (E, E™).

Proof. Assume first that E is reflexive, so that J(Bg) = Bg~. We already know
(by Theorem 3.16) that B« is compact in the topology o (E**, E*). Therefore, it
suffices to check that J~! is continuous from E** equipped with o (E**, E*) with
values in E equipped with o (E, E*). In view of Proposition 3.2, we have only to
prove that for every fixed f € E* the map £ — (f, J~'£) is continuous on E**
equipped with o (E**, E*). But (f, J7lE) = (&, f), and the map & — (&, f) is
indeed continuous on E** for the topology o (E**, E*). Hence we have proved that
BE is compact in o (E, E™).

The converse is more delicate and relies on the following two lemmas:

Lemma 3.3 (Helly). Let E be a Banach space. Let fi, fa, ..., fx be given in E*
and let y1, 2, . .., Yr be given in R. The following properties are equivalent:

(i) Ve > 0 Ix, € E such that ||x¢|| < 1 and
|<ﬁ7x€>_yi|<8 Vi=1,2,...,k,

(i) | 55, Bivil < 1502, Bifill YB1 Bos- Br € R
Proof. (1) = (ii). Fix B1, B2, ..., Brin R and let S = Zle | Bi|. It follows from (i)

that . .
D Bilfixe) =Y Bivi
i=1 i=1

<eS

and therefore

<

[xell +&S < +&S.

k
> Bifi

i=1

k
Y Bifi

i=1

k
Y Bivi
i=1

Since this holds for every ¢ > 0, we obtain (ii).

(i) = (). Set y = (y1, 92, ..., ») € RF and consider the map ¢ : E — R
defined by

p(x) = ((fr. %), ..., (i, X))

Property (i) says precisely that y € ¢(Bg). Suppose, by contradiction, that (i)
fails, so that y ¢ ¢(Bg). Hence {y} and ¢(Bfr) may be strictly separated in R* by
some hyperplane; i.e., there exists some 8 = (81, B2, ..., Br) € RF and some o € R
such that

B-ox)<a<pB-y VxeBg.
It follows that

k k
<Z,8ifl~,x> <a <Y By VxeBr,

i=1 i=1
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and therefore

k
Sa< Zﬁi)/i,
i=1

k
> Bif;
i=1

which contradicts (ii).

Lemma 3.4 (Goldstine). Let E be any Banach space. Then J(BEg) is dense in Bpx
with respect to the topology o (E**, E*), and consequently J(E) is dense in E** in
the topology o (E**, E*).

Proof. Let& € Bgs and let V be a neighborhood of € for the topology o (E**, E*).
We must prove that V N J(BEg) # @. As usual, we may assume that V is of the form

V={neE™ |n—§& fil<e Vi=12,... k}

for some given elements f|, f>, ..., fx in E* and some ¢ > 0. We have to find some
x € Bg suchthat J(x) € V,ie.,

(fi.x)—(&, fiYl<e Vi=1,2,... k.

Set y; = (&, fi). In view of Lemma 3.3 it suffices to check that

k k
Y Bivi| < |D_Bifi
i=1 i=1

=

)

which is clear since Y°X_ By = (s, B f,-) and ||£]| < 1.

Remark 15. Note that J(BEg) is closed in Bp= in the strong topology. Indeed, if
& = J(x,) — & we see that (x,) is a Cauchy sequence in B (since J is an
isometry) and therefore x,, — x, so that & = Jx. It follows that J(BEg) is not dense
in B+ in the strong topology, unless J(Bg) = Bgx, i.e., E is reflexive.

Remark 16. See Problem 9 for an alternative proof of Lemma 3.4 (based on a variant
of Hahn—Banach in E**).

Proof of Theorem 3.17, concluded. The canonical injection J : E — E™* is always
continuous from o (E, E*) into o (E**, E*), since for every fixed f € E* the map
x = (Jx, fy = (f, x) is continuous with respect to o (E, E*). Assuming that Bg
is compact in the topology o (E, E*), we deduce that J(Bg) is compact—and thus
closed—in E** with respect to the topology o (E**, E*). On the other hand, by
Lemma 3.4, J(BEg) is dense in B+ for the same topology. It follows that J(Bg) =
Bps and thus J(E) = E**.

In connection with the compactness properties of reflexive spaces we also have
the following two results:

o Theorem 3.18. Assume that E is a reflexive Banach space and let (x,) be a bounded
sequence in E. Then there exists a subsequence (x,,) that converges in the weak
topology o (E, E*).
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The converse is also true, namely the following.

* Theorem 3.19 (Eberlein—smulian). Assume that E is a Banach space such
that every bounded sequence in E admits a weakly convergent subsequence (in
o(E, E*)). Then E is reflexive.

The proof of Theorem 3.18 requires a little excursion through separable spaces
and will be given in Section 3.6. The proof of Theorem 3.19 is rather delicate and
is omitted; see, e.g., R. Holmes [1], K. Yosida [1], N. Dunford-J. T. Schwartz [1],
J. Diestel [2], or Problem 10.

Remark 17. In order to clarify the connection between Theorems 3.17,3.18, and 3.19
it is useful to recall the following facts:

(1) If X is a metric space, then
[X is compact] < [every sequence in X admits a convergent subsequence].

(ii) There exist compact topological spaces X and some sequences in X without any
convergent subsequence. A typical example is X = Bpg+, which is compact in
the topology o (E*, E); when E = £ it is easy to construct a sequence in X
without any convergent subsequence (see Exercise 3.18).

(iii) If X is a topological space with the property that every sequence admits a
convergent subsequence, then X need not be compact.

Here are some further properties of reflexive spaces.

e Proposition 3.20. Assume that E is a reflexive Banach space and let M C E be a
closed linear subspace of E. Then M is reflexive.

Proof. The space M—equipped with the norm of E—has a priori two distinct weak
topologies:

(a) the topology induced by o (E, E*),
(b) its own weak topology o (M, M™).

In fact, these two topologies are the same (since, by Hahn—Banach, every continu-
ous linear functional on M is the restriction to M of a continuous linear functional on
E). In view of Theorem 3.17, we have to check that B), is compact in the topology
o (M, M*) or equivalently in the topology o (E, E*). However, Bg is compact in
the topology o (E, E*) and M is closed in the topology o (E, E*) (by Theorem 3.7).
Therefore By is compact in the topology o (E, E*).

Corollary 3.21. A Banach space E is reflexive if and only if its dual space E* is
reflexive.

Proof. E reflexive = E™ reflexive. The idea of the proof is simple, since, roughly
speaking, we have that E** = E = E** = E*. More precisely, let J be the
canonical isomorphism from E into E**. Let ¢ € E** be given. The map x
(p, Jx) is a continuous linear functional on E. Call it f € E*, so that
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(p, Jx) = (f,x) VxeL.

But we also have
(o, Jx)={Jx, f) Vx€E.

Since J is surjective, we infer that

(0. 6) = (&, f) VE€E™,

which means precisely that the canonical injection from E* into E*** is surjective.

E* reflexive = E reflexive. From the step above we already know that E** is
reflexive. Since J (E) is a closed subspace of E** in the strong topology, we conclude
(by Proposition 3.20) that J (E) is reflexive. Therefore, E is reflexive.’

e Corollary 3.22. Let E be a reflexive Banach space. Let K C E be a bounded,
closed, and convex subset of E. Then K is compact in the topology o (E, E*).

Proof. K is closed for the topology o (E, E*) (by Theorem 3.7). On the other hand,
there exists a constant m such that K C mBg, and m Bg is compactin o (E, E*) (by
Theorem 3.17).

e Corollary 3.23. Let E be a reflexive Banach space and let A C E be a nonempty,
closed, convex subset of E. Let ¢ : A — (—00, +00] be a convex 1.s.c. function such
that ¢ # 400 and

®)) lirrf{ ¢(x) = 400 (no assumption if A is bounded).
Xe€

llx =00

Then ¢ achieves its minimum on A, i.e., there exists some xo € A such that
¢ (x0) = ming.
Proof. Fix any a € A such that ¢(a) < 400 and consider the set
A={x €A o) < p@).

Then A is closed, convex, and bounded (by (5)) and thus it is compact in the topology
o (E, E*) (by Corollary 3.22). On the other hand, ¢ is also l.s.c. in the topology
o(E, E*) (by Corollary 3.9). It follows that ¢ achieves its minimum on A (see
property 5 following the definition of 1.s.c. in Chapter 1), i.e., there exists xg € A
such that

p(x0) < p(x) Vx € A.

Ifx e A\A, we have p(xg) < ¢(a) < ¢(x); therefore

p(x0) < ¢(x) Vx e A.

3 Itis clear that if E and F are Banach spaces, and T is a linear surjective isometry from E onto F,
then E is reflexive iff F is reflexive. Of course, there is no contradiction with Remark 14!
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Remark 18. Corollary 3.23 is the main reason why reflexive spaces and convex func-
tions are so important in many problems occurring in the calculus of variations and
in optimization.

Theorem 3.24. Let E and F be two reflexive Banach spaces. Let A : D(A) C E —
F be an unbounded linear operator that is densely defined and closed. Then D(A*)
is dense in F*. Thus A™ is well defined (A** : D(A*) C E*™ — F*) and it may
also be viewed as an unbounded operator from E into F. Then we have

A = A.

Proof.

1. D(A*) is dense in F*. Let ¢ be a continuous linear functional on F* that
vanishes on D(A*). In view of Corollary 1.8 it suffices to prove that ¢ = 0 on F*.
Since F is reflexive, ¢ € F and we have

(6) (w, ) =0 Yw € D(A*).

If ¢ # 0O then [0, ¢] ¢ G(A) in E x F. Thus, one may strictly separate [0, ¢] and
G(A) by a closed hyperplane in E x F; i.e., there exist some [ f, v] € E* x F* and
some o € R such that

(fou)+ (v, Au) <a < (v,9) Yu € D(A).

It follows that
(fyu)+ (v, Au) =0 VYu e D(A)

and

(v,9) #0.

Thus v € D(A*), and we are led to a contradiction by choosing w = v in (6).
2. A** = A. We recall (see Section 2.6) that
I[G(A")] = G(A)*

and
I[G(A™)] = G(A")*.

It follows that
G(A™) = G(AT = G(A),

since A is closed.

3.6 Separable Spaces

Definition. We say that a metric space E is separable if there exists a subset D C E
that is countable and dense.
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Many important spaces in analysis are separable. Clearly, finite-dimensional
spaces are separable. As we shall see in Chapter 4 (see also Chapter 11), L? (and £7)
spaces are separable for 1 < p < oo. Also C(K), the space of continuous functions
on a compact metric space K, is separable (see Problem 24). However, L* and £*°
are not separable (see Chapters 4 and 11).

Proposition 3.25. Let E be a separable metric space and let F C E be any subset.
Then F is also separable.

Proof. Let (u;) be acountable dense subset of E. Let (7;,) be any sequence of positive
numbers such that r,,, — 0. Choose any point a,, , € B(u,, rm) N F whenever this
set is nonempty. The set (an, ) is countable and dense in F.

Theorem 3.26. Let E be a Banach space such that E* is separable. Then E is
separable.

Remark 19. The converse is not true. As we shall see in Chapter 4, £ = Ll is
separable but its dual space E* = L is not separable.

Proof. Let (fn)n>1 be countable and dense in E*. Since

| full = sup (fu,x),

xeE
Ixl<1
we can find some x,, € E such that

el = 1 and (fo, x0) = 517l
Letus denote by L the vector space over QQ generated by the (x,,),>1;1.€., Lo consists
of all finite linear combinations with coefficients in Q of the elements (x,);>1.
We claim that L is countable. Indeed, for every integer n, let A, be the vector
space over Q generated by the (xx)1<k<n. Clearly, A, is countable and, moreover,
Ly = Unzl Ay,

Let L denote the vector space over R generated by the (x,),>1. Of course, Lo is a
dense subset of L. We claim that L is a dense subspace of E—and this will conclude
the proof (Lo will be a dense countable subset of E). Let f € E* be a continuous
linear functional that vanishes on L; in view of Corollary 1.8 we have to prove that
f = 0. Given any ¢ > 0, there is some integer N such that || f — fx|| < &. We have

1

§||fN|| = (N xn)=(fn— foxn) <€
(since (f, xny) = 0). It follows that | f|| < |f — fvll + Il fall < 3e. Thus f = 0.
Corollary 3.27. Let E be a Banach space. Then

LE reflexive and separable] < [E* reflexive and separable).



74 3 Weak Topologies. Reflexive Spaces. Separable Spaces. Uniform Convexity
Proof. We already know (Corollary 3.21 and Theorem 3.26) that
[E* reflexive and separable] = [E reflexive and separable].

Conversely, if E is reflexive and separable, so is E** = J(E); thus E* is reflexive
and separable.

Separability properties are closely related to the metrizability of the weak topolo-
gies. Let us recall that a topological space X is said to be metrizable if there is a
metric on X that induces the topology of X.

Theorem 3.28. Let E be a separable Banach space. Then B+ is metrizable in the
weak* topology o (E*, E).
Conversely, if Bgs is metrizable in o (E*, E), then E is separable.

There is a “dual” statement.

Theorem 3.29. Let E be a Banach space such that E* is separable. Then Bg is
metrizable in the weak topology o (E, E™).
Conversely, if BE is metrizable in o (E, E*), then E* is separable.

Proof of Theorem 3.28. Let (x,),>1 be a dense countable subset of Bg. For every
f € E* set

=1
LF1= 2 5l xml:

n=1

Clearly, [ ]is a norm on E* and [f] < || f|l. Let d(f, g) = [f — g] be the
corresponding metric. We shall prove that the topology induced by d on Bgx is the
same as the topology o (E*, E) restricted to Bgx.

(a) Let fo € Bg~ and let V be a neighborhood of fp for o (E*, E). We have to find
some r > 0 such that

U=1{f e B d(f fo)<r}CV.
As usual, we may assume that V has the form
V=A{feBe: (f—fo.yi)l<e Vi=12...k

with e > O and yq, y2, ..., ¥k € E. Without loss of generality we may assume that
lyill < 1foreveryi =1, 2,...,k. Forevery i there is some integer n; such that

lyi —xn,ll < €/4

(since the set (x,),>1 is dense in Bg).
Choose r > 0 small enough that

My <g/2 Vi=1,2,...,k.

We claim that for such r, U C V. Indeed, if d(f, fo) < r, we have
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1 .
ﬁ|<f—fo,xn,.)| <r Vi=12,...k
and therefore, Vi = 1,2, ..., k,
e €
I(f = fo. yill = I(f = Jfo, yi = xn;) + (f — fo, xn;)| < >ty

It follows that f € V.

(b) Let fo € Bg+. Given r > 0, we have to find some neighborhood V of f; for
o (E*, E) such that

V CcU={f € Bg+; d(f, fo) <r}.
We shall choose V to be
V=A{f€Bg; (f— fo,xi)| <e Vi=1,2,...k}

with & and k to be determined in such a way that V C U. For f € V we have

k o0

1 1
df, fo) =D 5o = forxa)l + 3 5o F = fo x|
n=1 n=k+1

=1 1
n=k+1

Thus, it suffices to take ¢ = 5 and k large enough that 2,(%1 <3

*xConversely, suppose Bgx is metrizable in o (E*, E) and let us prove that E is
separable. Set
U, ={f € Bg; d(f,0) < 1/n}

and let V,, be a neighborhood of 0 in o (E*, E) such that V;, C U,,. We may assume
that V,, has the form

Vi ={f € Bp=; [{f, x)| <& Vx e d,)

with g, > 0 and ®,, is a finite subset of E. Set

so that D is countable.

We claim that the vector space generated by D is dense in £ (which implies that
E is separable). Indeed, suppose f € E* is such that (f, x) =0 Vx € D. It follows
that f € V,, Vn and therefore f € U, Vn,sothat f =0.

Proof of Theorem 3.29. The proof of the implication
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[E* separable] = [Bp is metrizable in o (E, E*)]

is exactly the same as above—just change the roles of E and E*. The proof of the
converse is more delicate (find where the proof above breaks down); we refer to
N. Dunford-J. T. Schwartz [1] or Exercise 3.24.

Remark 20. One should emphasize again (see Remark 3) that in infinite-dimensional
spaces the weak topology o (E, E*) (resp. weak* topology o (E*, E)) on all of E
(resp. E™) is not metrizable; see Exercise 3.8. In particular, the topology induced by
the norm [ ] on all of E* does not coincide with the weak* topology.

Corollary 3.30. Let E be a separable Banach space and let (f,) be a bounded
sequence in E*. Then there exists a subsequence (fy,) that converges in the weak*
topology o (E*, E).

Proof. Without loss of generality we may assume that || f,,|| < 1 forall n. The set Bg»
is compact and metrizable for the topology o (E*, E) (by Theorems 3.16 and 3.28).
The conclusion follows.

We may now return to the proof of Theorem 3.18:

Proof of Theorem 3.18. Let M be the vector space generated by the x,’s and let
M = M. Clearly, M is separable (see the proof of Theorem 3.26). Moreover, M
is reflexive (by Proposition 3.20). It follows that By is compact and metrizable in
the weak topology o (M, M*), since M* is separable (we use here Corollary 3.27
and Theorem 3.29). We may thus find a subsequence (x,,) that converges weakly
o(M, M*), and hence (x,,) converges also weakly o (E, E*) (as in the proof of
Proposition 3.20).

3.7 Uniformly Convex Spaces

Definition. A Banach space is said to be uniformly convex if
Ve > 0 36 > 0 such that

_l’_
[x.y e E,llx| <1, [yl < Tand x — y|| > ] = [H%H <1 —5].

The uniform convexity is a geometric property of the unit ball: if we slide a rule
of length ¢ > 0 in the unit ball, then its midpoint must stay within a ball of radius
(1 — §8) for some § > 0. In particular, the unit sphere must be “round” and cannot
include any line segment.

Example 1. Let E = R?. The norm ||x|» = [|x1 12 + |x2|2]1/2 is uniformly convex,
while the norm ||x||; = |x{| + |x2| and the norm ||x|cc = max(|xy]|, |x2|) are not
uniformly convex. This can be easily seen by staring at the unit balls, as shown in
Figure 3.
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Example 2. As we shall see in Chapters 4 and 5, the L? spaces are uniformly convex
for 1 < p < oo and Hilbert spaces are also uniformly convex.

e Theorem 3.31 (Milman-Pettis). Every uniformly convex Banach space is reflex-
ive.

Remark 21. Uniform convexity is a geometric property of the norm; an equivalent
norm need not be uniformly convex. On the other hand, reflexivity is a topological
property: a reflexive space remains reflexive for an equivalent norm. It is a striking
feature of Theorem 3.31 that a geometric property implies a topological property.
Uniform convexity is often used as a tool to prove reflexivity; but it is not the ul-
timate tool—there are some weird reflexive spaces that admit no uniformly convex
equivalent norm!

Proof. Let & € E* with ||£]] = 1. We have to show that & € J(Bg). Since J(BE)
is closed in E** in the strong topology, it suffices to prove that

@) Ve >0 dx € Bg suchthat [|§ — J(x)|| <e.

Fix ¢ > 0 and let § > O be the modulus of uniform convexity. Choose some f € E*
such that || f|| = 1 and

®) (. f)>1-(0/2)

(which is possible, since ||£|| = 1). Set

V={neE™ |n-§ f)l <d/2},

so that V is a neighborhood of & in the topology o (E**, E*). Since J (BE) is dense
in Bg+ with respect to o (E**, E*) (Lemma 3.4), we know that V N J(Bg) # @ and
thus there is some x € Bg such that J(x) € V. We claim that this x satisfies (7).
Suppose, by contradiction, that ||§ — Jx|| > ¢,i.e,& € (Jx+eBg~») = W.The
set W is also a neighborhood of & in the topology o (E**, E*) (since Bg» is closed in
o (E*™, E*)). Using Lemma 3.4 once more, we know that VYW N J(Bg) # ¢, i.e.,
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there exists some y € Bg such that J(y) € V N W. Writing that J(x), J(y) € V,
we obtain

I(f,x) = (&, f)l <8/2

and

I(fsy) = (& )l < 8/2.

Adding these inequalities leads to
26, /) <{(fix+y)+o=<lx+yl+3.
Combining with (8), we obtain

x+y

v

It follows (by uniform convexity) that | x — y|| < ¢&; this is absurd, since J(y) € W
G.e., ||x —y| > &).

We conclude with a useful property of uniformly convex spaces.

Proposition 3.32. Assume that E is a uniformly convex Banach space. Let (x,) be a
sequence in E such that x, — x weakly o (E, E*) and

lim sup ||x, || < ||x]|.

Then x, — x strongly.

Proof. We may always assume that x # 0 (otherwise the conclusion is obvious). Set
dn = max (ol 61D, yn = 2y on, and y = [l =,
so that A,, — ||x|| and y, — y weakly o (E, E*). It follows that
Iyl < liminf [[(y, + y)/2]

(see Proposition 3.5(iii)). On the other hand, ||y|| = 1 and ||y,|| < 1, so that in fact,
l(yn + ¥)/2|| = 1. We deduce from the uniform convexity that ||y, — y|| — 0 and
thus x,, — x strongly.

Comments on Chapter 3

1. The topologies o (E, E*), o (E*, E), etc., are locally convex topologies. As such,
they enjoy all the properties of locally convex spaces; for example, Hahn—Banach
(geometric form), Krein—Milman, etc., still hold; see, e.g., N. Bourbaki [1], A. Knapp
[2], and also Problem 9.
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2. Here is another remarkable property of the weak* topology that is worth mention-
ing.
» Theorem 3.33 (Banach-Dieudonné—Krein-Smulian). Let E be a Banach space

and let C C E* be convex. Assume that for every integer n the set C N (nBg+) is
closed for the topology o (E*, E). Then C is closed for the topology o (E*, E).

The proof may be found in, e.g., N. Bourbaki [1], R. Larsen [1], R. Holmes [1],
N. Dunford-J. T. Schwartz [1], H. Schaefer[1], and})roblem 11. The above references
also include much material related to the Eberlein—Smulian theorem (Theorem 3.19).

3. The theory of vector spaces in duality—which extends the duality (E, E*)—was
very popular in the late forties and early fifties, especially in connection with the
theory of distributions. One says that two vector spaces X and Y are in duality if
there is a bilinear form (, ) on X x Y that separates points (i.e., Vx # 0 3y such that
(x,y) # 0and Yy # 0 3x such that (x, y) # 0). Many topologies may be defined
on X (or Y) such as the weak topology o (X, Y), Mackey’s topology 7(X, Y), and
the strong topology B(X, Y). These topologies are of interest in spaces that are
not Banach spaces, such as the spaces used in the theory of distributions. On this
subject the reader may consult, e.g., N. Bourbaki [1], H. Schaefer [1], G. Kéthe [1],
F. Treves [1], J. Kelley—I. Namioka [1], R. Edwards [1], J. Horvith [1], etc.

4. The properties of separability, reflexivity, and uniform convexity are also related
to the differentiability properties of the function x +— ||x| (see, e.g., J. Diestel [1],
B. Beauzamy [1], and Problem 13). The existence of equivalent norms with nice
geometric properties has been extensively studied. For example, how does one know
whether a Banach space admits an equivalent uniformly convex norm? how use-
ful is this information? (such spaces are called superreflexive; see, e.g., J. Diestel
[1] or B. Beauzamy [1]). The geometry of Banach spaces has flourished since the
early sixties and has become an active field associated with the names A. Dvoret-
7Ky, A. Grothendieck, R. C. James, J. Lindenstrauss, V. Milman, L. Tzafriri (and
their group in Israel), A. Pelczynski, P. Enflo, L. Schwartz (and his group including
G. Pisier, B. Maurey, B. Beauzamy), W. B. Johnson, H. P. Rosenthal, J. Bourgain,
D. Preiss, M. Talagrand, T. Gowers, and many others. On this subject the reader
may consult the books of B. Beauzamy [1], J. Diestel [1], [2], J. Lindenstrauss—
L. Tzafriri [2], L. Schwartz [2], R. Deville-G. Godefroy-V. Zizler [1], Y. Benyamini
and J. Lindenstrauss [1], F. Albiac and N. Kalton [1], A. Pietsch [1], etc.

Exercises for Chapter 3

Let E be a Banach space and let A C E be a subset that is compact in the weak
topology o (E, E*). Prove that A is bounded.

Let E be a Banach space and let (x,) be a sequence such that x, — x in the
weak topology o (E, E*). Set
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1
crn=;(x1 +x2+ 4 xp).

Prove that 0, — x in the weak topology o (E, E*).

Let E be a Banach space. Let A C E be a convex subset. Prove that the closure
of A in the strong topology and that in the weak topology o (E, E*) are the same.

Let E be a Banach space and let (x,) be a sequence in E such that x,

the weak topology o (E, E*).

1. Prove that there exists a sequence (y,) in E such that

o0
(a) Y € conv (U{xi}> Vn
i=n
and
(b) Yo — X strongly.
2. Prove that there exists a sequence (z,) in E such that
n
(@) Zp, € conv (U{x,-}) Vn
i=1

and

(®) Zn — X strongly.

— x in

Let E be a Banach space and let K C E be a subset of E that is compact in the
strong topology. Let (x,) be a sequence in K such that x, — x weakly o (E, E™).

Prove that x,, — x strongly.
[Hint: Argue by contradiction.]

Let X be a topological space and let E be a Banach space. Letu,v : X — E
be two continuous maps from X with values in E equipped with the weak topology

o(E, E*).

1. Prove that the map x +— u(x) + v(x) is continuous from X into E equipped

with o (E, E*).

2. Leta : X — R be a continuous function. Prove that the map x — a(x)u(x) is

continuous from X into E equipped with o (E, E*).

Let E be a Banach space and let A C E be a subset that is closed in the weak
topology o (E, E*). Let B C E be a subset that is compact in the weak topology

o(E, E®).
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1. Prove that A + B isclosed in o (E, E™*).
2. Assume, in addition, that A and B are convex, nonempty, and disjoint. Prove that
there exists a closed hyperplane strictly separating A and B.

Let E be an infinite-dimensional Banach space. Our purpose is to show that £
equipped with the weak topology is not metrizable. Suppose, by contradiction, that
there is a metric d(x, y) on E that induces on E the same topology as o (E, E*).

1. For every integer k > 1 let V} denote a neighborhood of 0 in the topology
o (E, E*), such that

1
ch{er; d(x,0)<z}.

Prove that there exists a sequence ( f;;) in E* such that every g € E* is a (finite)
linear combination of the f;,’s.
[Hint: Use Lemma 3.2.]

2. Deduce that E* is finite-dimensional.

[Hint: Use the Baire category theorem as in Exercise 1.5.]

Conclude.

4. Prove by a similar method that E* equipped with the weak* topology o (E*, E)
is not metrizable.

w

Let E be a Banach space; let M C E be a linear subspace, and let fy € E™*.
Prove that there exists some gg € M~ such that

inf || fo—gll = llfo — goll-
geM-+

Two methods are suggested:

1. Use Theorem 1.12.
2. Use the weak* topology o (E*, E).

Let E and F be two Banach spaces. Let T € Z(E, F), so that T* €
ZL(F*, E*). Prove that T* is continuous from F* equipped with o (F*, F) into
E* equipped with o (E*, E).

Let E be a Banach space and let A : E — E™* be a monotone map defined on
D(A) = E; see Exercise 2.6. Assume that for every x, y € E the map

teR— (A(x +1ty), y)

is continuous at t = 0. Prove that A is continuous from E strong into E* equipped
with o (E*, E).

Let E be a Banach space and let xo € E. Let ¢ : E — (—00, +00] be a
convex L.s.c. function with ¢ #£ +o0.
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1. Show that the following properties are equivalent:

(A) 3R,3IM < +oosuchthat o(x) < M, Vx € E with ||[x — xo] <R,

(B) l‘im* {*(f) = (fs x0)} = +o0.
feE

I fll—o0

2. Assuming (A) or (B) prove that
inf {o*(f) — (f, x0)} is achieved.
feE*

[Hint: Use the weak* topology o (E*, E) or Theorem 1.12.]
What is the value of this inf?

Let E be a Banach space. Let (x,) be a sequence in E and let x € E. Set

K, = conv (U{xi}).

i=n
1. Prove that if x, — x weakly o (E, E*), then

() Kn = {x).
n=1

2. Assume that E is reflexive. Prove that if (x,) is bounded and if ﬂ;’f’zl K, = {x},
then x,, — x weakly o (E, E™*).

3. Assume that E is finite-dimensional and (o=, K, = {x}. Prove that x,, — x.
[Note that we do not assume here that (x,) is bounded.]

4. In ¢7,1 < p < oo (see Chapter 11), construct a sequence (x,) such that
M= Kx = {x}, and (x,) is not bounded.
[I owe the results of questions 3 and 4 to Guy Amram and Daniel Baffet.]

Let E be a reflexive Banach space and let I be a set of indices. Consider a
collection (f;)jes in E* and a collection («;);cs in R. Let M > 0.
Show that the following properties are equivalent:

A) There exists some x € E with ||x|| < M such that (f;, x) = «;
foreveryi e I.

®) One has | Y ;.; Bicil < M| Y, Bi fill for every collection (8;);cy
in R with J C I, J finite.

Compare with Exercises 1.10, 1.11 and Lemma 3.3.
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Center of mass of a measure on a convex set.

Let E be areflexive Banach space and let K C E be bounded, closed, and convex.
In the following K is equipped with o (E, E*), so that K is compact. Let F = C(K)
with its usual norm. Fix some u € F* with ||i|| = 1 and assume that © > 0 in the
sense that
(u,uy >0 YueC(K), u=>0onKk.

Prove that there exists a unique element xo € K such that

(D (. fik) =(f.x0) VfeE".

[Hint: Find first some xo € E satisfying (1), and then prove that xo € K with the
help of Hahn—-Banach.]

Let E be a Banach space.

1. Let (f,) be a sequence in (E*) such that for every x € E, {f,, x) converges to
a limit. Prove that there exists some f € E* such that f, N fino(E*, E).

2. Assume here that E is reflexive. Let (x;) be a sequence in E such that for every
f € E*, (f, xn) converges to a limit. Prove that there exists some x € E such
that x,, — x ino (E, E*).

3. Construct an example in a nonreflexive space E where the conclusion of 2 fails.
[Hint: Take £ = ¢¢ (see Section 11.3) and x,, = (1,1, ..., (1), 0,0,...).]

n

1. Let (x™) be a sequence in £ with 1 < p < co. Assuming x” — x in o (£, E”,)
prove that:

(a) (x™) is bounded in £7,

(b) x7' — % for every i, where x" = (x},x},...,x", ...) and x =
(X1, X0, ooy Xiy o).

2. Conversely, suppose (x") is a sequence in £7 with 1 < p < oco. Assume that (a)
and (b) hold (for some limit denoted by x;). Prove that x € £ and that x" — x
ino(LP,L7).

For every integer n > 1 let

" =(0,0,..., 1,0,...).
o)

n

1. Prove that " — 0 in £” weakly o (£7, K”/) with 1 < p < oo.
n—o0

2. Prove that there is no subsequence (¢”*) that converges in £! with respect to
o(LL, ).

3. Construct an example of a Banach space E and a sequence (f;,) in E* such
that || f4|l = 1 Vn and such that (f,) has no subsequence that converges in
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o (E*, E). Is there a contradiction with the compactness of Bg~ in the topology
o(E*, E)?
[Hint: Take E = £°°.]

LetE:K”andF:ﬁqwithl <p<oandl <g <oo.Leta:R - R
be a continuous function such that

la(t)| < C|t|P? Vit e R.

Given
x=(x1,%x2,...,%,...) €Ll

set
Ax = (a(xl), a(xz),...,a(x;p),. )

1. Prove that Ax € ¢9 and that the map x +—> Ax is continuous from £7 (strong)
into £9 (strong).

2. Prove that if (x™) is a sequence in ¢” such that x” — x in o (£?, Et”,) then
Ax" — Axino (€9, ¢9).

3. Deduce that A is continuous from Bg equipped with o (E, E*) into F equipped
with o (F, F*).

Let E be a Banach space.

1. Prove that there exist a compact topological space K and an isometry from E
into C(K) equipped with its usual norm.
[Hint: Take K = B+ equipped with o (E*, E).]

2. Assuming that E is separable, prove that there exists an isometry from E into
£%°.

Let E be a separable Banach space and let (f;) be a bounded sequence
in E*. Prove directly—without using the metrizability of E*—that there exists a
subsequence ( f,,k) that converges in o (E*, E).

[Hint: Use a diagonal process.]

Let E be an infinite-dimensional Banach space satisfying one of the following
assumptions:

(a) E™ is separable,
(b) E is reflexive.

Prove that there exists a sequence (x;) in E such that

lx,l =1 Vn and x, — 0weakly o(E, E™).

The proof of Theorem 2.16 becomes much easier if E is reflexive. Find, in
particular, a simple proof of (b) = (a).
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The purpose of this exercise is to sketch part of the proof of Theorem 3.29,
i.e., if E is a Banach space such that Bg is metrizable with respect to o (E, E*), then
E* is separable. Let d (x, y) be a metric on Bg that induces on B the same topology
aso(E, E*). Set

1
U, = {x € Bg; d(x,0) < —}.
n

Let V,, be a neighborhood of 0 for o (E, E*) such that V,, C U,. We may assume
that V,, has the form

Vi={xeE |[(fix)l<en VfePD,)

with g, > 0 and ®,, C E* is some finite subset. Let D = Uf,i] @, and let F denote
the vector space generated by D. We claim that F is dense in E* with respect to the
strong topology. Suppose, by contradiction, that F £ E*.

1. Prove that there exist some & € E** and some fp € E* such that

(&, fo)>1, (&5, f)=0 VfeF, and [§]=1
2. Let

2

Prove that there is some integer ng > 1 such that V,,, C W.
3. Prove that there exists x; € Bg such that

1
W= {x € Be; [(fo, x)| < —}-

(foxt) =& ) < eny VS € Dy,
1
(o x1) = (& foll < 5.

4. Deduce that x; € V,, and that {fy, x1) >
5. Conclude.

1
3

Let K be a compact metric space that is not finite. Prove that C(K) is not
reflexive.

[Hint: Let (a,) be a sequence in K such that a, — a and a, # a Vn. Consider
the linear functional f(u) = ZZOI 1 zlnu(an), u € C(K), and proceed as in Exercises
1.3 and 1.4.]

Let F be a separable Banach space and let (a,) be a dense subset of Bf.
Consider the linear operator T : £! — F defined by

o0
Tx =Zx,-a,- with x = (x1,x2, ..., Xy, ...) el

i=1

1. Prove that T is bounded and surjective.
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In what follows we assume, in addition, that F is infinite-dimensional and that
F* is separable.

2. Prove that T has no right inverse.

[Hint: Use the results of Exercise 3.22 and Problem 8.]
3. Deduce that N(7T') has no complement in oL
4. Determine E*.

Let E be a separable Banach space with norm || ||. The dual norm on E* is
also denoted by || ||. The purpose of this exercise is to construct an equivalent norm
on E that is strictly convex and whose dual norm is also strictly convex.

Let (a,) C Bg be a dense subset of Bg with respect to the strong topology. Let
(bn) C Bg» be acountable subset of Bg~ that is dense in Bg~ for the weak* topology
o (E*, E). Why does such a set exist?

Given f € E*, set

1/2
||f||1—{||f|| +Z—|fan ] :

1. Prove that || ||; is a norm equivalent to || ||.
2. Prove that || ||; is strictly convex.
[Hint: Use Exercise 1.26.]

Given x € E, set

1/2
Ixll2 = { Ix113 +Z—| {bn. x)| } :

where ||lx[[1 = supy gy, <1 {f, x).
3. Prove that || ||2 is a strictly convex norm that is equivalent to || ||.
4. Prove that the dual norm of || || is also strictly convex.

[Hint: Use the result of Exercise 1.23, question 3.]
5. Find another approach based on the results of Problem 4.

Let E be a uniformly convex Banach space. Let F denote the (multivalued)
duality map from E into E*, see Remark 2 following Corollary 1.3 and also Exer-
cise 1.1.

Prove that for every f € E* there exists a unique x € E such that f € Fx.

Let E be a uniformly convex Banach space.
1. Prove that VM > 0, Ve > 0, 36 > 0 such that

2

x+y I 5 1. 5
< - Z —

) ‘ _2||X|| +2||y||

Vx,y€ E with x| <M, [yl <M and |x—y|>e.
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[Hint: Argue by contradiction.]
2. Same question when || ||2 is replaced by || ||” with 1 < p < oo.

Let E be a Banach space with norm || ||. Assume that there exists on E an
equivalent norm, denoted by | |, that is uniformly convex.

Prove that given any k > 1, there exists a uniformly convex norm ||| ||| on E such
that
Ixll < lllxlll < kllxll  Vx € E.
[Hint: Set [||x[|?> = ||lx||® + «|x|* with @ > 0 small enough and use Exercise
3.29.]

Example: £ = R".
Let E be a uniformly convex Banach space.

1. Prove that .
Ve >0, Vae (0, 5) , 38 > 0 such that

ltx+ (A =)yl <1-46
Viela,1—a], Vx,y€E with|x[| <1yl <land|x—yl=>e.
Hint: ff o < 7 < § write tx + (1 — )y = 1(y +2).]

2. Deduce that E is strictly convex.

Projection on a closed convex set in a uniformly convex Banach space.
Let E be a uniformly convex Banach space and C C E a nonempty closed convex
set.

1. Prove that for every x € E,
inf X —
ye ” Y||

is achieved by some unique point in C, denoted by Pcx.
2. Prove that every minimizing sequence (y,) in C converges strongly to Pcx.
Prove that the map x +— Pcx is continuous from E strong into E strong.
4. More precisely, prove that Pc is uniformly continuous on bounded subsets of E.
[Hint: Use Exercise 3.29.]

et

Lety : E — (—00, +00] be a convex l.s.c. function, ¢ # +o00.
5. Prove that for every x € E and every integer n > 1,

: 2
ylg}fg{nllx M +<p(y)}

is achieved at some unique point, denoted by y,.
6. Prove that y, —— Pcx, where C = D(p).
n—oo




Chapter 4
L? Spaces

Let (2, M, u) denote a measure space, i.e., Q is a set and

(i) Misao-algebrain Q,i.e., M is a collection of subsets of €2 such that:

(a) e M,
b)) Ae M= A e M,
(©) UyZ, Ap € M whenever A, € M Vn,

(ii) w is a measure,ie., u : M — [0, oo] satisfies
(a) u@) =0,
o o0
) m ( U An> = |J u(Ay) whenever (A,) is a disjoint

n=1 n=1
countable family of members of M.
The members of M are called the measurable sets. Sometimes we shall
write |A| instead of (A). We shall also assume—even though this is not
essential—that

(iii) K is o-finite, i.e., there exists a countable family (£2,) in M such that Q =
Ui €2, and u(£2,) < 00 Vn.

The sets E € M with the property that w(E) = 0 are called the null sets. We
say that a property holds a.e. (or for almost all x € €2) if it holds everywhere on 2
except on a null set.

We assume that the reader is familiar with the notions of measurable functions
and integrable functions [ : Q@ — R; see, e.g., H. L. Royden [1], G. B. Folland [2],
A.Knapp[1],D.L.Cohn[1],A.Friedman [3], W. Rudin [2], P. Halmos [1], E. Hewitt—
K. Stromberg [1], R. Wheeden—A. Zygmund [1], J. Neveu [1], P. Malliavin [1],
A.J. Weir [1], A. Kolmogorov-S. Fomin [1], I. Fonseca—G. Leoni [1]. We denote by
LY (Q, ), or simply L' () (or just L), the space of integrable functions from £
into R.

We shall often write [ f instead of [, f d, and we shall also use the notation

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 89
DOI 10.1007/978-0-387-70914-7 4, © Springer Science+Business Media, LLC 2011
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Al = 11F1h =/Q|f|du=/|f|-

As usual, we identify two functions that coincide a.e. We recall the following basic
facts.

4.1 Some Results about Integration That Everyone Must Know

e Theorem 4.1 (monotone convergence theorem, Beppo Levi). Let (f;,) be a se-
quence of functions in L' that satisfy

@A<fHhL =< Zfu<fot1 =< - aeonq,
(b) sup, [ fn < oo.

Then f,(x) converges a.e. on 2 to a finite limit, which we denote by f(x), the
function f belongs to L' and | f, — fll1 — O.

o Theorem 4.2 (dominated convergence theorem, Lebesgue). Ler (f,) be a se-
quence of functions in L' that satisfy

(@) fu(x) = f(x)ae. onQ,
(b) there is a function g € L' such that for all n, | f,(x)| < g(x) a.e. on .

Then f € LY and || f, — fll1 — O.
Lemma 4.1 (Fatou’s lemma). Let ( f,,) be a sequence of functions in L' that satisfy

(a) foralln, f, =0 ae.
(b) sup, [ fn < oo.

For almost all x € Q we set f(x) = liminf,_,  f;(x) < 4+00. Then f € L' and

/filinlgiogf/fn-

A basic example is the case in which @ = RV, M consists of the Lebesgue
measurable sets, and y is the Lebesgue measure on RV .

Notation. We denote by C.(RV) the space of all continuous functions on RY with
compact support, i.e.,

C.RY)={f e CRY); f(x) =0 Vx e RV\K, where K is compact}.
Theorem 4.3 (density). The space C.(RY) is dense in L'(RN); i.e.,
VfeL'(RY) Ve >0 3f; € C.(RY) such that || f — fil < e.

Let (21, My, n1) and (22, M3 , u2) be two measure spaces that are o -finite.
One can define in a standard way the structure of measure space (€2, M , i) on the
Cartesian product Q = Q1 x Q.
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Theorem 4.4 (Tonelli). Let F(x,y) : Q1 X Q — R be a measurable function
satisfying

(a)/ |F(x,y)|lduy < oo forae. x € Q
Q)
and
©) [ dimn [ 1P < .
Q1 Q>

Then F € LY(2] x Q).

Theorem 4.5 (Fubini). Assume that F € L'(Q) x Q). Then for ae. x € Qj,
F(x,y) € Ly(Q) and [, F(x,y)dus € Ly(Q). Similarly, for ae. y € Q,
F(x,y) € Ly(Q1) and [ F(x,y)dui € Ly(Q).

Moreover, one has

f dm/ F(x,y)duz=/ duz/ F(x, y)du =// F(x,y)duidus.
Q) 193] 193] Qi QI xQ

4.2 Definition and Elementary Properties of L? Spaces

Definition. Let p € Rwith 1 < p < oo; we set
LP(Q) = {f . Q — R; f is measurable and | f|? € LI(Q)}
with
1/p
Il =111y = [[Q If(X)Ipd,u] .

We shall check later on that || ||, is a norm.

Definition. We set

f is measurable and there is a constant C
LOO(Q)z{f:SZ—>R }

such that | f(x)| < C a.e.on Q

with
I fllLe = | fllo = inf{C; |f(x)| < C a.e. on Q}.

The following remark implies that || ||« iS @ norm:

Remark 1. If f € L then we have

[fG)] =< fllo ae.ong.

Indeed, there exists a sequence C, such that C, — || |l and for each n, | f(x)| <
C, a.e. on Q. Therefore |f(x)| < C, for all x € Q\E,, with |E,| = 0. We set
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E =U}2  Ey, sothat |[E| = 0and
|f(x)| <Cy Vn, VxeQ\E;

it follows that | f(x)| < | flleo VX € Q\E.

Notation. Let 1 < p < 0o; we denote by p’ the conjugate exponent,

11
—+==1
p P

e Theorem 4.6 (Holder’s inequality). Assume that f € LP and g € L?" with
1 < p <oo.Then fg € L' and

ey /Ifgl = 1A Ny liglp-

Proof. The conclusion is obvious if p = 1 or p = oo; therefore we assume that
1 < p < 0o. We recall Young’s inequality:'

1 1
2) ab < —a? + —/bp Ya >0, Vb=>0.
P P

Inequality (2) is a straightforward consequence of the concavity of the function
log on (0, 00):

1 1 1 1 /
log (—ap + —/bp) > —log a” + — log b =log ab.
p p p p

We have . |
U@MQNS;U@W@GﬂgMWaaer

It follows that fg € L! and

Lyow Ly oy
® [1se1= <1+ Nl
Replacing f by Af (A > 0) in (3), yields
TR P
) /Ifgl < 7||f||,,+k—p/||g o
Choosing 2 = [|f],"llg] Z// P (so as to minimize the right-hand side in (4)), we

obtain (1).

! Tt is sometimes convenient to use the form ab < ea? + Cgbp/ with C, = ¢~ 1/(P—D,
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Remark 2. Itis useful to keep in mind the following extension of Holder’s inequality:

Assume that f1, f2, ..., fr are functions such that
) . o1 1 1 1
fielVi, 1<i<kwith—=—+4—+4.-- 4+ —<1.
p P1 P2 Pk

Then the product f = fi f2--- fi belongs to L? and

1Al < Wftlp 2l s - N fell -

In particular, if f € LPNLY withl < p < g < oo,then f € L" forallr,p <r <gq,
and the following “interpolation inequality” holds:
11—«

_ 1
1l < 1FN 1 Where;:%—i— S 0sast;

see Exercise 4.4.
Theorem 4.7. L? is a vector space and || |, is a norm for any p, 1 < p < ooc.

Proof. The cases p = 1 and p = oo are clear. Therefore we assume 1 < p < oo
and let f, g € LP. We have

|f () + g = (1Lf ) +1g)DP = 2P(1f ()17 + 1g(x)]P).

Consequently, f + g € LP. On the other hand,
||f+g||Z=/|f+g|p’1|f+gI 5/|f+g|”’1|f|+f|f+glp’1|gl-

But|f +g|P~! e L?, and by Holder’s inequality we obtain

-1
If+glp < If+ells Uflp+ lglp),
Le, IS +gllp = 1Sl + lIglp-
e Theorem 4.8 (Fischer-Riesz). L? is a Banach space for any p, 1 < p < oo.

Proof. We distinguish the cases p = oo and 1 < p < oo.

Case 1: p = oo. Let (f;,;) be a Cauchy sequence is L*°. Given an integer k > 1
there is an integer Ny such that || f;, — fulloo < 1 for m,n > Ni. Hence there is a
null set E; such that

Vx € Q\Ey, Vm,n > Ng.

x| =

®) | fn (X) = fu(X)| <

Then we let E = | J « Ex—so that E is a null set—and we see that for all x € Q\E,
the sequence f, (x) is Cauchy (in R). Thus f,(x) — f(x) forall x € Q\E. Passing
to the limit in (5) as m — oo we obtain
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forallx € Q\E, Vn > N.

& =

Lf ) = fu(x)| <

We conclude that f € L and || f — fulloo < % Vn > Ng; therefore f, — f
in L,

Case2:1 < p < oo. Let (f;,) be a Cauchy sequence in L”. In order to conclude,
it suffices to show that a subsequence converges in L?.
We extract a subsequence ( fy,, ) such that

1
| fripr — Suillp < ok Vk > 1.

[One proceeds as follows: choose ny such that || fi, — fullp < % Vm,n > ny;
then choose ny > ny such that || f, — fullp < 2% Vm,n > ny etc.] We claim that

fn, converges in L?. In order to simplify the notation we write f; instead of f;,,, so
that we have

1
6) I ferr = fillp < 5 k= 1.
Let
n
gn(@) =Y | fer1(¥) — fix)],
k=1
so that
lgallp < 1.

As a consequence of the monotone convergence theorem, g, (x) tends to a finite limit,
say g(x), a.e. on €2, with g € L?. On the other hand, for m > n > 2 we have

[ fin () = fu O] < N fn () = frn—1 O+ -+ fur1 (X)) = fu(X)] < g(x) —gn—1(x).

It follows that a.e. on 2, f,(x) is Cauchy and converges to a finite limit, say f(x).
We have a.e. on 2,

) |f () = fa(¥)] < g(x)  forn =2,

and in particular f € LP. Finally, we conclude by dominated convergence that
Il fu — fllp = 0O,since | fr(x) — f(x)|” — Oae.andalso | f, — f|P < gP € L.

Theorem 4.9. Let (f,) be a sequence in L and let f € L? be such that || f, — f1l
— 0.
Then, there exist a subsequence (fy,) and a function h € L? such that

@) fn,(x) > f(x)ae.onQ,
() | fu, (¥)| < h(x) Vk, a.e. on Q.

Proof. The conclusion is obvious when p = oco. Thus we assume 1 < p < o0. Since
(f») is a Cauchy sequence we may go back to the proof of Theorem 4.8 and consider
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a subsequence ( f;;, )—denoted by ( fi)—satisfying (6), such that fi(x) tends a.e. to
a limit> f*(x) with f* € LP. Moreover, by (7), we have | f*(x) — fi(x)| < g(x)
Vk, a.e. on 2 with g € LP. By dominated convergence we know that f; — f* in
L? and thus f = f* a.e. In addition, we also have | f; (x)| < | f*(x)| + g(x), and
the conclusion follows.

4.3 Reflexivity. Separability. Dual of L?

We shall consider separately the following three cases:

A) 1< p<oo,
B) p=1,
(©) p=o0.

A. Study of L? () for 1 < p < oo.
This case is the most “favorable”: L? is reflexive, separable, and the dual of L”
isLP.

e Theorem 4.10. L7 is reflexive for any p, 1 < p < oo.

The proof consists of three steps:
Step 1 (Clarkson’s first inequality). Let 2 < p < co. We claim that

P _
+Hf2g
P

f+g
(®) H 2

P
= E(Ilflli +llglp) Vf.gelLP.
p

Proof of (8). Clearly, it suffices to show that

p p

a—>b
2

a+b
2

1
= §(|a|p +1b|?) Va,beR.

First we note that
ol +BP < (@ + pHP? Vo, >0

(by homogeneity, assume 8 = 1 and observe that the function
(2 + 1P —xP -1

increases on [0, 00)). Choosing o = |C%b| and 8 = |%|, we obtain

» 2\ P/2 2 »\P?
s( ) =<—+—> < 5 (al”+[b1")

2 2
2 A priori one should distinguish f and f*: by assumption f, — f in L”, and on the other hand,
[ (x) = f*(x) ae.

a+bl?

2

a+b

+a—b
2

2

2+ a—>b
2
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(the last inequality follows from the convexity of the function x + |x|?/? since
p=2).

Step 2: L? is uniformly convex, and thus reflexive for 2 < p < oo. Indeed, let
e >0andlet f,g e L with || fll, <1, |Igll, < 1,and | f — gll, > &. We deduce
from (8) that

e\P
<1- (—)
» 2

and thus ||%I|p <1—-6withd =1-1[1-— (%)1’]1/1’ > 0. Therefore, L? is
uniformly convex and thus reflexive by Theorem 3.31.

f+eg|”
2

Step 3: L? is reflexive for 1 < p < 2.

Proof. Let1 < p < oco. Consider the operator 7 : L? — (L”")" defined as follows:
Letu € L? be fixed; the mapping f € L? + [ uf isacontinuous linear functional

on L” and thus it defines an element, say Tu, in (LP/)* such that

(Tu,f):/uf VfelL”.
We claim that
©) ITull gy = lull, VueLP.
Indeed, by Holder’s inequality, we have

(Tu, ) < Ml ISy VfeL”

and therefore ||Tu||(Lp/)* < lull p.
On the other hand, set

fo(x) = u@)|P2ux)  (fo(x) = 0if u(x) = 0).

Clearly we have

/ -1
fo e L7, W folly = w2 and (Tu, fo) = lull3;
thus

(Tu, fo)
(10) 1Tl e > STy,

Il foll pr

Hence, we have shown that T is an isometry from L? into (Lp/)*, which implies that
T (L?) is a closed subspace of (L? )" (because L7 is a Banach space).
Assume now 1 < p < 2. Since L?" is reflexive (by Step 2), it follows that (L?")"
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is also reflexive (Corollary 3.21). We conclude, by Proposition 3.20, that 7' (L?) is
reflexive, and as a consequence, L? is also reflexive.

Remark 3. In fact, L? is also uniformly convex for 1 < p < 2.This s a consequence
of Clarkson’s second inequality, which holds for 1 < p < 2:

I _
+Hf2g
4

f+ 1 1 1/(p—1)
” s < <§|}f||§+§||gﬂi> VigelLr

P
p

This inequality is trickier to prove than Clarkson’s first inequality (see, e.g., Prob-
lem 20 or E. Hewitt—K. Stromberg [1]). Clearly, it implies that L? is uniformly convex
when 1 < p < 2; for another approach, see also C. Morawetz [1] (Exercise 4.12) or
J. Diestel [1].

o Theorem 4.11 (Riesz representation theorem). Let 1 < p < o0 and let ¢ €
(LP)*. Then there exists a unique function u € LP such that

<¢,f>=/uf VfeLr,

Moreover,

lul, =M@l Loy

Remark 4. Theorem 4.11 is very important. It says that every continuous linear func-
tional on L? with 1 < p < oo can be represented “concretely” as an integral. The
mapping ¢ +— u, which is a linear surjective isometry, allows us to identify the
“abstract” space (L?)* with L? .

In what follows, we shall systematically make the identification

(L") = L”.

Proof. We consider the operator T : LP — (LP)* defined by (Tu, f) = [uf

Vu € LP',Vf € LP. The argument used in the proof of Theorem 4.10 (Step 3)
shows that /
||Tu||(Lp)* = ||Ll||p/ Yue L.

We claim that T is surjective. Indeed, let E = T(LI’/). Since E is a closed subspace,
it suffices to prove that E is dense in (L?)*. Let h € (LP)** satisfy (h, Tu) = 0
Yu € LP . Since L” is reflexive, h € L?, and satisfies f uh =0Vu € LP'. Choosing
u = |h|P~2h, we see that h = 0.

Theorem 4.12. The space C.(RN) is dense in L (RN) for any p, 1 < p < oo.
Before proving Theorem 4.12, we introduce some notation.

Notation. The truncation operation T,, : R — R is defined by
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if |r| <n,

r
T,r = { nr .
" 0 if || > n.

|r
Given a set E C Q, we define the characteristic function® xg to be

1 ifx € E,

X) =
XEG) =00 ifr e Q\E.
Proof. First, we claim that given f € LP”(R") and ¢ > 0 there exist a function
g € L°(RY) and a compact set K in R such that g = 0 outside K and

(1) If =gl <e

Indeed, let x, be the characteristic function of B(0, n) and let f;, = x,7,f. By
dominated convergence we see that || f, — fll, — O and thus we may choose
g = fn with n large enough. Next, given § > 0 there exists (by Theorem 4.3) a
function g1 € C, (RN such that

g —gillt <.

We may always assume that || g1 ||co < ||€llco; Otherwise, we replace g| by T, g1 with
n = || gllco- Finally, we have

1 1—(1 _
lg —g1ll, < llg — g1l,’” llg — g1llos /7 < 872 lIgllon)' = V/P.

We conclude by choosing § > 0 small enough that
8P 2gllec) VP <.

Definition. The measure space 2 is called separable if there is a countable family
(E,) of members of M such that the o-algebra generated by (E,) coincides with
M (i.e., M is the smallest o -algebra containing all the E,’s).

Example. The measure space Q = RY is separable. Indeed, we may choose for (E,)
any countable family of open sets such that every open set in RV can be written as a
union of E,’s. More generally, if 2 is a separable metric space and M consists of
the Borel sets (i.e., M is the o -algebra generated by the open sets in £2), then 2 is a
separable measure space.

Theorem 4.13. Assume that Q2 is a separable measure space. Then LP () is sepa-
rable for any p, 1 < p < 0.

We shall consider only the case @ = RY, since the general case is somewhat
tricky. Note that as a consequence, L”(S2) is also separable for any measurable
set @ C RV, Indeed, there is a canonical isometry from L?(2) into L?(R"N) (the

3 Not to be confused with the indicator function I introduced in Chapter 1.
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extension by 0 outside €2); therefore L”(£2) may be identified with a subspace of
LP(RM) and hence L? () is separable (by Proposition 3.25).

Proof of Theorem 4.13 when Q@ = RY. Let R denote the countable family of sets
in RN of the form R = ]_[,Icvzl(ak, by) with ag, b, € Q. Let £ denote the vector
space over Q generated by the functions (xg) geRr, that is, £ consists of finite linear
combinations with rational coefficients of functions yg, so that £ is countable.

We claim that £ is dense in L?(RY). Indeed, given f € L?(RY) and ¢ > 0,
there exists some f; € C.(RV) such that || f — fillp < €. Let R € R be any cube
containing supp f1 (the support of f1). Given § > 0 it is easy to construct a function
f» € £ such that || fi — f2llc < & and f> vanishes outside R: it suffices to split
R into small cubes of R where the oscillation (i.e., sup —inf) of fj is less than §.
Therefore we have || fi — f2llp < [Ifi — f2llool RIYP < §|R|Y/P. We conclude that
| f — f2llp < 2e, provided § > 0 is chosen so that SIRIVP < &.

B. Study of L1().
We start with a description of the dual space of L!().

e Theorem 4.14 (Riesz representation theorem). Let ¢ € (L')*. Then there exists
a unique function u € L™ such that

<¢,f>=/uf vfelLl.

Moreover,
lulloo = @Il L1y

e Remark 5. Theorem 4.14 asserts that every continuous linear functional on L' can
be represented “concretely” as an integral. The mapping ¢ +— u, which is a linear
surjective isometry, allows us to identify the “abstract” space (L')* with L. In what
follows, we shall systematically make the identification

(LY = L™,

Proof. Let (2,) be a sequence of measurable sets in €2 such that Q2 = Ufﬁl 2, and
|$2,] <00 Vn.Set x, = xq,-
The uniqueness of u is obvious. Indeed, suppose u € L™ satisfies

/uf:O vVfelLl

Choosing f = x, signu (throughout this book, we use the convention that sign 0 =
0), we see that u = 0 a.e. on 2, and thus # = 0 a.e. on Q2.
We now prove the existence of u. First, we construct a function 6 € L3(Q)
such that
0(x)>¢,>0 VxeQ,.
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It is clear that such a function 6 exists. Indeed, we define 6 to be «; on 21, ay
on 2o\, ..., ®, on 2,\2,_1, etc., and we adjust the constants ¢, > 0 in such a
way that 6 € L.

The mapping f € L%(Q) — (¢, 6f) is a continuous linear functional on L% ().
By Theorem 4.11 (applied with p = 2) there exists a function v € L?(£2) such that

(12) (#,0f) =/vf Vf e LX)

Set u(x) = v(x)/0(x). Clearly, u is well defined since 6 > 0 on £2; moreover, u is
measurable and uy, € L%(2). We claim that « has all the required properties. We
have

13) (D, xn8) =/uxng Vg € L¥(Q) Vn.

Indeed, it suffices to choose f = x,g/6 in (12) (note that f € L2(2) since f is
bounded on 2, and f = 0 outside $2,).
Next, we claim that u € L°°(€2) and that

(14) lulloo < @l (z1)e
Fix any constant C > ||¢||(L1)* and set
A={x e Qulx)| > C}.

Let us verify that A is a null set. Indeed, by choosing g = x4 sign u in (13) we obtain

/ lul < ll@llz1)|A N2,
ANy,
and therefore

CIAN Q| < 1§ll11y A N Qyl.

It follows that |[A N 2,| = 0 Vn, and thus A is a null set. This concludes the proof
of (14).
Finally, we claim that

(15) @mpi/m Vh e L1(Q).

Indeed, it suffices to choose g = T,,h (truncation of /) in (13) and to observe that
snTuh — hin LY().

In order to complete the proof of Theorem 4.14 it remains only to check that
lulloo = Nl (L1)+- We have, by (15),

g, )| < llullsollilly YA € L'(S),
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and therefore |||l (1)« < [[u]lco. We conclude with the help of (14).

e Remark 6. The space L'(S2) is never reflexive except in the trivial case where
consists of a finite number of atoms—and then L' () is finite-dimensional. Indeed
suppose, by contradiction, that L' () is reflexive and consider two cases:

(i) Ve > 0 dw C Q2 measurable with 0 < pu(w) < e.
(ii) 3¢ > O such that u(w) > ¢ for every measurable set w C 2 with u(w) > 0.

In Case (i) there is a decreasing sequence (wy,) of measurable sets such that
w(w,) > 0 Vn and u(w,) — 0 [choose first any sequence (a),/{) such that 0 <
w(w;) < 1/2 and then set w, = | J52, @) 1.

Let x» = Xo, and define u, = xu/lxnll1. Since [lu,ll1 = 1 there is a
subsequence—still denoted by u,—and some u € L' such that u,, — u in the
weak topology o (L', L>) (by Theorem 3.18), i.e.,

(16) /untﬁ—) /u¢ Vo € L™,

On the other hand, for fixed j, and n > j we have f u,x; = 1. At the limit, as
n — 0o, we obtain [ ux; = 1V. Finally, we note (by dominated convergence) that
Jux; — 0as j - oo—a contradiction.

In Case (ii) the space €2 is purely atomic and consists of a countable union of
distinct atoms (a,) (unless there is only a finite number of atoms!). In that case
L'(Q) is isomorphic to £! and it suffices to prove that £! is not reflexive. Consider
the canonical basis:

e, =(0,0,...,1,0,0...).
(n)
Assuming ¢! is reflexive, there exist a subsequence (e;, ) and some x € ¢! such that
en, — x in the weak topology o (Ll L), i.e.,

(9. en) — (@, x) Vo el™.
k—o00

Choosing
p=¢;=(0,0,...,1,1,1,...)
)]

we find that (¢;, x) = 1 Vj. On the other hand {¢;,x) — 0 as j — oo (since
x € £Y—a contradiction.

C. Study of L*°.
We already know (Theorem 4.14) that L>® = (L')*. Being a dual space, L>®
enjoys some nice properties. In particular, we have the following:

(i) The closed unit ball By~ is compact in the weak* topology o (L>°, L) (by
Theorem 3.16).

(i) If Q is a measurable subset in RY and (f;) is a bounded sequence in L>°(£2),
there exists a subsequence ( f,;,) and some f € L®(L2) such that f;,, — f in
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the weak* topology o (L, L) (this is a consequence of Corollary 3.30 and
Theorem 4.13).

However L°° () is not reflexive, except in the trivial case where € consists of
a finite number of atoms; otherwise L!(£2) would be reflexive (by Corollary 3.21)
and we know that L' is not reflexive (Remark 6). As a consequence, it follows that
the dual space (L>°)* of L> contains L' (since L>® = (L")*) and (L*)* is strictly
bigger than L. In other words, there are continuous linear functionals ¢ on L
which cannot be represented as

(¢,f)=/uf Vf e L®andsomeu € L.

In fact, let us describe a “concrete” example of such a functional. Let ¢y : C.(RY) —
R be defined by
$o(f) = f(0) for f € Cc(RY).

Clearly ¢y is a continuous linear functional on C.(R") for the || || norm. By Hahn—
Banach, we may extend ¢g into a continuous linear functional ¢ on L®@RN) and
we have

(17) (@, f) = f(0) YfeC@®R).

Let us verify that there exists no function u € L' (RV) such that

(18) @, f) = /uf Vf e L®®RY).

Assume, by contradiction, that such a function u exists. We deduce from (17) and
(18) that

/uf =0 VfeC.(RY)and f(0)=0.

Applying Corollary 4.24 (with Q@ = R\ {0}) we see that u = 0 a.e. on RV\{0} and
thus u = 0 a.e. on RY. We conclude (by (18)) that

(@, f)=0 VfeL®RY),

which contradicts (17).

* Remark 7. The dual space of L> does not coincide with L' but we may still ask
the question: what does (L°°)* look like? For this purpose it is convenient to view
L>®(R2; C) as a commutative C*-algebra (see, e.g., W. Rudin [1]). By Gelfand’s
theorem L*°(2; C) is isomorphic and isometric to the space C (K ; C) of continuous
complex-valued functions on some compact topological space K (K is the spectrum
of the algebra L°°; K is not metrizable except when €2 consists of a finite number
of atoms). Therefore (L°°(€2; C))* may be identified with the space of complex-
valued Radon measures on K and L*°(€2; R)* may be identified with the space of
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real-valued Radon measures on K; for more details, see Comment 3 at the end of
this chapter, W. Rudin [1] and K. Yosida [1] (p. 118).

Remark 8. The space L°°(S2) is not separable except when 2 consists of a finite
number of atoms. In order to prove this fact it is convenient to use the following.

Lemma 4.2. Let E be a Banach space. Assume that there exists a family (O;)icr
such that

(1) foreach i € I, O; is a nonempty open subset of E,
(i) O:iNO;=0ifi #j,
(iii) I is uncountable.
Then E is not separable.

Proof of Lemma 4.2. Suppose, by contradiction, that E is separable. Let (u,),eN
denote a dense countable setin E. For each i € I, the set O; N (u)nen 7 ¥ and we
may choose n(i) such that u, ;) € O;. The mapping i +— n(i) is injective; indeed,
if n(i) = n(j), then u,i) = uyy) € 0; N O and thus i = j. Therefore, I is
countable—a contradiction.

We now establish that L°°(2) is not separable. We claim that there is an un-
countable family (w;);c; of measurable sets in €2 which are all distinct, that is, the
symmetric difference w; A w; has positive measure for i # j. We then conclude by
applying Lemma 4.2 to the family (O;);¢; defined by

O0i ={f € L®(Q); If — Xelloc < 1/2}

(note that || X, — Xu' lloo = 1 if w and &’ are distinct). The existence of an uncountable
family (w;) is clear when €2 is an open set in RV since we may consider all the balls
B(xg, r) with xg € Q and r > 0 small enough.

When Q is a general measure space we split €2 into its atomic part €2, and its
nonatomic (= diffuse) part €24; then we distinguish two cases:

(i) 24 is not a null set.
(i) g4 is a null set.

In Case (i), then for each real number 7, 0 < t < w(f2y), there is a measurable
set w with u(w) = t; see, e.g., P. Halmos [1], A. J. Weir [1], or J. Neveu [1]. In this
way, we obtain an uncountable family of distinct measurable sets.

In Case (ii) Q2 consists of a countable union of distinct atoms (a,) (unless €2
consists of a finite number of atoms). For any collection of integers, A C N, we define
wa = U, ep an- Clearly, (wa) is an uncountable family of distinct measurable sets.

The following table summarizes the main properties of the space L” (£2) when 2
is a measurable subset of RV :

Reflexive|Separable Dual space
LP with1 < p < oo| YES YES LV
L' NO YES L™
L® NO NO  [Strictly bigger than L'
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4.4 Convolution and regularization

We first define the convolution product of a function f € L'(R") with a function
g € LP(RM).

e Theorem 4.15 (Young). Let f € L'(RN) and let g € LP(RN) with 1 < p < .
Then for a.e. x € RN the function y — f(x — y)g(y) is integrable on RN and we
define

(fre)x) = / f&x—y)gdy.
RN

In addition f g € LP(RY) and

’ Ifxglp <Ifllglp-

Proof. The conclusion is obvious when p = 0o. We consider two cases:

O p=1,
(i) 1 < p < oo.

Case (i): p =1.Set F(x,y) = f(x — y)g(y).
For a.e. y € RV we have

/ |F(x, y)ldx = Ig(y)l/ [f(x = ldx =1gWI 1 fll1 < o0
RN RN

and, moreover,

/ dy/ |F(x, yldx = gl [1fllh < oo.
RN RN

We deduce from Tonelli’s theorem (Theorem 4.4) that F € L' (RN x RN). Applying
Fubini’s theorem (Theorem 4.5), we see that

/ |F(x,y)|ldy <ooforae.x € RN
RN

and, moreover,

[yax [ reody= [ av [ 1FGoiax =i

This is precisely the conclusion of Theorem 4.15 when p = 1.
Case (ii): 1 < p < oo. By Case (i) we know that for a.e. fixed x € RY the
function y — | f(x — y)| |g(y)|” is integrable on R", that is,

Ifx = »IYP1g(n] € LYRY).

Since | f(x, »)|'/P € Lgl (RV), we deduce from Holder’s inequality that
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1F = Pel =1 fx = IP1f e = 0IVPlg()] € LyRY)

and

, 1/p
/ G = llgldy < 1177 (/ G =yl |g<y>|f’dy) ,
RN RN
that is, )
I *@IP < [£I77 1% 1817 ).
We conclude, by Case (i), that f x g € LP(RY) and

L7 xgly < 1£177 1l

that is,
IF*gllp < NfNiligllp-

Notation. Given a function f on RV we set f x) = f(—x).

Proposition 4.16. Let f € L'(RY), g € LP(RN) and h € L (RN). Then we have

/(f*g)h=/ o(f *h).
RN RN

Proof. The function F(x, y) = f(x — y)g(y)h(x) belongs to L' (RN x RY) since

flh(X)lde If(x = I [g)Idy < o0

by Theorem 4.15 and Holder’s inequality. Therefore we have

/(f*g)(x)h(x)dx =/dx/F(x,y)dy=/dy/F(x,y)dx

= f gO(f x ) (»)dy.

Support and convolution. The notion of support of a function f is standard: supp f
is the complement of the biggest open set on which f vanishes; in other words supp f
is the closure of the set {x; f(x) # 0}. This notion is not adequate when dealing with
equivalence classes, such as the space L”. We need a definition which is intrinsic,
that is, supp f1 and supp f> should be the same (or differ by a null set) if f1 = f; a.e.
The reader will easily admit that the usual notion does not make sense for f = xq
on R. In the following proposition we introduce the appropriate notion.

Proposition 4.17 (and definition of the support). Let f : RN — R be any function.
Consider the family (w;)ier of all open sets on RN such that for eachi € I, f =0
a.e. on w;. Set w = J;¢; wi.

Then f =0a.e. on w.
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By definition, supp f is the complement of w in RV .

Remark 9.

(a) Assume f; = f> a.e. on RV; clearly we have supp f; = supp f>. Hence we may
talk about supp f for a function f € LP—without saying what representative
we pick in the equivalence class.

(b) If f is a continuous function on R¥ it is easy to check that the new definition of
supp f coincides with the usual definition.

Proof of Proposition 4.17. Since the set I need not be countable it is not clear that
f = 0 ae. on w. However we may recover the countable case as follows. There is
a countable family (0O,) of open sets in R such that every open set on R" is the
union of some O,,’s. Write w; = (U, c4, On and @ = J,;cp On Where B = ;A
Since f = 0 a.e. on every set O, with n € B, we conclude that f = 0 a.e. on w.

e Proposition 4.18. Let f € L'(RY) and g € LP(RN) with 1 < p < oo. Then

’ supp(f * ) C supp f + suppg. ‘

Proof. Fix x € R such that the function y — f(x — y)g(y) is integrable (see
Theorem 4.15). We have

(f % g)(x) = / Flx = gOdy = / £ = »g(dy.

(x—supp f)Nsupp g

If x ¢ supp f +supp g, then (x —supp f) Nsupp g = P andso (f xg)(x) = 0. Thus

(f *g)(x) =0 a.e. on (supp f + supp g)°.

In particular,

(fxg)(x) =0 a.e.on Int[(supp f + supp g)°]

and therefore
supp(f * g) C supp f + suppg.

e Remark 10. If both f and g have compact support, then f x g also has compact
support. However, f x g need not have compact support if only one of them has
compact support.

Definition. Let © C R be open and let | < p < oo. We say that a function
f:Q — Rbelongsto L}, (Q)if fxx € LP(Q) for every compact set K contained
in Q.

Note that if f € L? (), then f € Ll ().

loc loc

Proposition 4.19. Let f € C.(RY) and g € L. (RN). Then (f * g)(x) is well

loc

defined for every x € RV, and, moreover, (f x g) € C(RV).



4.4 Convolution and regularization 107

Proof. Note that for every x € RN the function y — f(x — y)g(y) is integrable on
RN and therefore (f * g)(x) is defined for every x € RV.

Let x, — x and let K be a fixed compact set in R" such that (x, —supp f) C K
Vn. Therefore, we have f(x, — y) = 0Vn, Vy ¢ K. We deduce from the uniform
continuity of f that

|f(tn —y) — f(x —y)| < eaxx(y) Vn, VyeRN

with g, — 0. We conclude that
[(f *8)(xn) — (f *x@)(X)| < & [K lg(¥)ldy —> 0.

Notation. Let @ C RY be an open set.
C(L2) is the space of continuous functions on 2.

Ck(Q) is the space of functions k times continuously differentiable on © (k > 1 is
an integer).

C®(Q) = Nk CK(Q).

C+(R2) is the space of continuous functions on €2 with compact support in €2, i.e.,
which vanish outside some compact set K C .

CkQ) = ck(Q) N C.(Q).

CX(Q) = C™(Q) N Ce(Q),
(some authors write D(£2) or C§°(£2) instead of CZ°(2)).

If f € C'(Q), its gradient is defined by
0 a 0

3)61’ 3XQ’“.’ 8)61\/

If fe Ck(Q) and o = (a1, o2, ..., apy) is a multi-index of length || = o1 + a2 +
--- 4+ ap, less than k, we write
0%l 9*2 o*N

DY f — ..
f ax‘fl 8x§‘2 8xff/"

I

e Proposition 4.20. Let f € CK(RV)(k > 1) and let g € L} (RN). Then f x g €
CK®RN) and

DY(fxg)=(D*f)*xg Vo with|a| <k.

In particular, if f € C°(RV) and g € L1 (RN), then f » g € C®(RN).

loc

Proof. By induction it suffices to consider the case k = 1. Given x € RY we claim
that f x g is differentiable at x and that

V(fxg)x) = (V[f)*g).
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Let h € RN with |k| < 1. We have, for all y € RV,

Ifx+h—=y)=fx=y)=h-Vfx -yl

1
= ‘/O (h-Vfx+sh—y)—h-Vfx—ylds| <lhle(h])

with £(|h|) — 0 as |h| — 0 (since V f is uniformly continuous on RV).
Let K be a fixed compact set in RY large enough that x + B(0, 1) —supp f C K.
We have

fx+h—y)—fx—y)—h-Vf(x—y)=0 Vy¢ K, VheB@01)
and therefore
|f(x+h=y) = f(x=y)—h-V f(x=y)| < |hle(|h)xk (y) ¥y € RN, ¥h € B(0, 1).

We conclude that for 2 € B(0, 1),

I(fx@)x+h) = (f*g)x) —h-(Vfxg)x)] = IhIS(IhI)/K lg(Wldy.

It follows that f * g is differentiable at x and V(f * g)(x) = (V f) *x g(x).

Mollifiers

Definition. A sequence of mollifiers (pn)n>1 is any sequence of functions on RN
such that

pn € CPRY), suppp, C B(O, 1/n), /pn =1,p, >0onR",

In what follows we shall systematically use the notation (p,) to denote a sequence
of mollifiers.

It is easy to generate a sequence of mollifiers starting with a single function
p € C,S’O(]RN) such that suppp C B(0, 1), p > 0 on RY, and p does not vanish
identically—for example the function

- e/FP=D ) < 1,
X) =
P 0 if x| > 1.

We obtain a sequence of mollifiers by letting p, (x) = C n" p(nx) with C = 1/ [ p.

Proposition 4.21. Assume f € C(RN). Then (o, * f) —> f uniformly on compact
sets of RV e
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Proof.* Let K C RY be a fixed compact set. Given ¢ > 0 there exists § > 0
(depending on K and ¢) such that

lfx—y)— f(x)|<e VxeK, VyeB(@,§H).

We have, for x € RY,
(on*x Hx) — fx) = /[f(x =)= f)]on()dy
= [ e = F@leady.
B(0,1/n)
Forn > 1/5 and x € K we obtain
on * 1)) — £ sa/pn .

e Theorem 4.22. Assume f € LP(RN) with 1 < p < oco. Then (p, x f) —> f in
n—oo
LP(RN).

Proof. Given & > 0, we fix a function f; € C.(RY) such that || f — f| I, < e (see
Theorem 4.12). By Proposition 4.21 we know that (p, * fi) — f1 uniformly on
every compact set of RY. On the other hand, we have (by Proposition 4.18) that

supp(pn * f1) C B(0,1/n) 4 supp fi C B(0, 1) + supp f1,
which is a fixed compact set. It follows that
lCon * f1) — fillp —> 0.
n—oo
Finally, we write

(on* ) = f =1pn*(f = fOI+[(on* f1) = fil + [f1 = f]

and thus
lCon * £) — fllp <21 — fillp + 1Gon * f1) — fillp

(by Theorem 4.15).
We conclude that

lim sup||(op * f) = fllp =26 Ve >0
n—oo

and therefore lim, . || (on * f) — fll, = 0.

e Corollary 4.23. Let @ C RY be an open set. Then CX(R2) is dense in LP (2) for
any 1 < p < oo.

4 The technique of regularization by convolution was originally introduced by Leray and Friedrichs.
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Proof. Given f € LP(S2) we set

N DACY if x € Q,
Feo = {o if x e RM\Q,

sothat f € LP(RV),
Let (K,) be a sequence of compact sets in RV such that

o0
(JK.=9Q anddist(K,, Q) > 2/n Vn.

n=1

[We may choose, for example, K, = {x € RY: |x| < n and dist(x, Q) > 2/n}.]
Set gn = xk, f and f, = pn * gn, so that

supp fn C B(0,1/n)+ K, C Q.
It follows that f, € C2°(£2). On the other hand, we have
” Jn = f”LP(Q) = ” Jn = f”Lp(RN)
< [[Con % gn) = on % D Lo@ny + |00 % 1) = Fl o@ew
= Hgn - fHLI’(RN) + ||(:0n * f) - fl'LP(RN)-

Finally, we note that || gn—f H LrRN) 0 by dominated convergence and “ (pn *
H=Fl. @~ = 0 by Theorem 4.22. We conclude that || f, — fllzr@) — 0.

Corollary 4.24. Let @ C RY be an open set and let u € LIIOC(Q) be such that

/uf =0 VfeCX®Q).

Thenu =0 a.e.on 2.

Proof. Let g € L (R") be a function such that supp g is a compact set contained
in Q. Set g, = p, * g, so that g, € C°(Q2) provided n is large enough. Therefore
we have

(19) /ugn —0 va

Since g, — g in LYRM) (by Theorem 4.22) there is a subsequence—still de-
noted by g,—such that g, — g a.e. on RV (see Theorem 4.9). Moreover, we have
llgnll Lo ryy < llgll 00Ny Passing to the limit in (19) (by dominated convergence),
we obtain

(20) fug =0.
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Let K be a compact set contained in 2. We choose as function g the function

sign u on K,
0 on RM\K.

We deduce from (20) that f x lu] = 0andthusu = 0 a.e.on K. Since this holds for
any compact K C €2, we conclude that u = 0 a.e. on Q.

4.5 Criterion for Strong Compactness in L?

It is important to be able to decide whether a family of functions in L?(£2) has
compact closure in L7 (£2) (for the strong topology). We recall that the Ascoli—Arzela
theorem answers the same question in C (K ), the space of continuous functions over
a compact metric space K with values in R.

e Theorem 4.25 (Ascoli-Arzela). Let K be a compact metric space and let H be a
bounded subset of C (K ). Assume that H is uniformly equicontinuous, that is,

(21) Ve > 036 > Osuchthatd(x1,x2) <8=|f(x1) — f(x2)| <& VfeH.

Then the closure of H in C(K) is compact.

For the proof of the Ascoli—Arzela theorem, see, e.g., W. Rudin [1], [2], A. Knapp
[1], J. Dixmier [1], A. Friedman [3], G. Choquet [1], K. Yosida [1], H. L. Royden
[1], J. R. Munkres [1], G. B. Folland [2], etc.

Notation (shift of function). We set (7, f)(x) = f(x + h),x e RN, h e RV,

The following theorem and its corollary are “L?-versions” of the Ascoli-Arzela
theorem.

e Theorem 4.26 (Kolmogorov—M. Riesz—Fréchet). Let F be a bounded set in
LP(RN) with 1 < p < co. Assume that®

(22) Ig‘imoﬂthf — fllp =0 uniformlyin f € F,

ie., Ve > 038 > 0 such that ||ty f — fll, < eVf € F,Vh € RN with |h| <.
Then the closure of F|q in LP(2) is compact for any measurable set Q C RN
with finite measure.

[Here F|q denotes the restrictions to €2 of the functions in F.]

The proof consists of four steps:
Step 1: We claim that

(23) [(on * f) = fllLpqyy <& VYfeF, Vn>1/s.

5 Assumption (22) should be compared with (21). It is an “integral” equicontinuity assumption.
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Indeed, we have

pn * )(X) — F()] < / & =) = F@lon()dy

1/p
< [ / 1 —y) - f(X)Ippn(y)dy}

by Holder’s inequality.
Thus we obtain

/|(Pn * f)(x) = f(x)|Pdx < //If(x —¥) = fIPpa(y)dx dy
:f ,On(y)dy/ [f(x —y)— f()|Pdx < €”,
B(0,1/n)

provided 1/n < 4.

Step 2: We claim that
(24) H/’" *f”LOO(RN) = Gy ”fHLP(]RN) VieF
and

[(on * F)(x1) = (on * [H(x2)] = Call fllplx1 — x2]

(25)
VfeF, Vxi,xeRV,

where C,, depends only on .
Inequality (24) follows from Holder’s inequality with C;, = || x|l ,r. On the other
hand, we have V(p, *x f) = (Vp,) » f and therefore

IVGon * Pllpcewnyy < IVonllpe @y 1 Lo @y -
Thus we obtain (25) with C;, = ||V o, ||Lp/(RN).

Step 3: Givene > 0and Q C RY of finite measure, there is a bounded measurable
subset w of 2 such that

(26) lfllerw <€ YfeF.

Indeed, we write

”f”LP(Q\w) = ”f — (on* f) ”LP(]RN) + ”pn * f”LP(Q\w)'

In view of (24) it suffices to choose w such that |Q2\w| is small enough.

Step 4: Conclusion. Since LP (S2) is complete, it suffices (see, e.g., A. Knapp [1]
or J. R. Munkres [1], Section 7.3) to show that F|q is fotally bounded, i.e., given
any ¢ > 0 there is a finite covering of F|q by balls of radius ¢. Given ¢ > 0 we fix
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a bounded measurable set w such that (26) holds. Also we fix n > 1/§. The family
H = (pp x F) |5 satisfies all the assumptions of the Ascoli-Arzela theorem (by Step
2). Therefore H has compact closure in C(w); consequently 7 also has compact
closure in L? (w). Hence we may cover H by a finite number of balls of radius ¢ in
L? (w), say,

H | JB(gi. o) with g; € LP ().

l

Consider the functions g; : 2 — R defined by

_ )& on w,
8 = 0 on Q\w,

and the balls B(g;, 3¢) in LP(2).
We claim that they cover F|q. Indeed, given f € F there is some i such that
[Gonx 1) = 8ill Loy <&
Since
s =/ |£17 +/ If = &il”
Q\w w
we have, by (26),

|f— & HL/’(Q) <e+|f-si HLl’(a))
<&+ ||f_ (p"*f)“LP(RN) + ”(pn*f) _gi“LP(w) < 3e.

We conclude that F|o has compact closure in L7 (£2).

Remark 11. When trying to establish that a family F in L (£2) has compact closure
in L?(R2), with 2 bounded, it is usually convenient to extend the functions to all of
RY, then apply Theorem 4.26 and consider the restrictions to .

Remark 12. Under the assumptions of Theorem 4.26 we cannot conclude in general
that F itself has compact closure in L” (RM) (construct an example, or see Exercise
4.33). An additional assumption is required; we describe it next:

Corollary 4.27. Let F be a bounded set in LP (RN) with 1 < p < oco. Assume (22)
and also

Ve > 0 3Q c RY, bounded, measurable such that

27
Il fllereng) <& YfelF.

Then F has compact closure in LP (RNY,

Proof. Given ¢ > 0 we fix @ € RY bounded measurable such that (27) holds. By
Theorem 4.26 we know that | has compact closure in L”(£2). Hence we may cover
Fo with a finite number of balls of radius ¢ in L? (), say
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Fia € | B(gi.e) withg; € LP(Q).

1

Set
i (x) = &i(x) in ,
ikt = 0 on RN\ Q.
It is clear that F is covered by the balls B(g;, 2¢) in LP (RY).

Remark 13. The converse of Corollary 4.27 is also true (see Exercise 4.34). Therefore
we have a complete characterization of compact sets in L? (RY).

We conclude with a useful application of Theorem 4.26:
Corollary 4.28. Let G be a fixed function in L' (RN) and let
F=Gx*B,
where B is a bounded set in LP(RN) with 1 < p < oo. Then Fiq has compact
closure in LP(R2) for any measurable set Q with finite measure.
Proof. Clearly F is bounded in L” (RY). On the other hand, if we write f = G * u
with u € B we have

ltnf — fllp = 1(@G — G) xullp, < ClltnG — G,

and we conclude with the help of the following lemma:

Lemma4.3. Let G € LIRN) with 1 < ¢ < oo.
Then
li G—-Gl|,=0.
ﬁym ll4

Proof. Given & > 0, there exists (by Theorem 4.12) a function G| € C.(RV) such
that |G — Gilly < &.
We write

oG — Gllg = ltnG — tGillg + lltnG1 — Gillg + 1G1 — Gllg
<2+ |tnG1 — Gillg-
Since limj, 0 l|t,G1 — G1llg = 0 we see that
limsup|7,G — G|y <2¢ Ve > 0.

h—0

Comments on Chapter 4

1. Egorov’s theorem.
Some basic results of integration theory have been recalled in Section 4.1. One useful
result that has not been mentioned is the following.
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* Theorem 4.29 (Egorov). Assume that 2 is a measure space with finite measure.
Let (f,) be a sequence of measurable functions on 2 such that

fu(x) = f(x) a.e. on Q2 (with | f(x)| < oo a.e.).

ThenYe > 0 3A C Q measurable such that |2\A| < € and f, — f uniformly
on A.

For a proof, see Exercise 4.14, P. Halmos [1], G. B. Folland [2], E. Hewitt—
K. Stromberg [1], R. Wheeden—A. Zygmund [1], K. Yosida [1], A. Friedman [3],
etc.

2. Weakly compact sets in L1.

Since L' is not reflexive, bounded sets of L' do not play an important role with
respect to the weak topology o (L', L®). The following result provides a useful
characterization of weakly compact sets of L.

* Theorem 4.30 (Dunford—Pettis). Let F be a bounded set in L' (). Then F has
compact closure in the weak topology o (L', L°) if and only if F is equi-integrable,
that is,

Ve >0 35 >0 such that

@) / |fl <& YA C Q, measurable with |A| <8, VYfelF
A
and
Ve > 0 dw C 2, measurable with |w| < oo such that
(b)

/ Ifl<e VfedfF.
Q\w

For a proof and discussion of Theorem 4.30 see Problem 23 or N. Dunford—
J. T. Schwartz [1], B. Beauzamy [1], J. Diestel [2], I. Fonseca—G. Leoni [1], and
also J. Neveu [1], C. Dellacherie-P. A. Meyer [1] for the probabilistic aspects; see
also Exercise 4.36.

3. Radon measures.

As we have just pointed out, bounded sets of L! enjoy no compactness properties.
To overcome this lack of compactness it is sometimes very useful o embed L' into
a large space: the space of Radon measures.

Assume, for example, that 2 is a bounded open set of RY with the Lebesgue
measure. Consider the space E = C(Q) with its norm |u| = sup, g lu(x)|. Its
dual space, denoted by M (), is called the space of Radon measures on Q. The
weak* topology on M () is sometimes called the “vague” topology.

We shall identify L' (2) with a subspace of M (). For this purpose we introduce
the mapping L'(£2) — M () defined as follows. Given f € L'(), the mapping
ueCQ)r— f o Jfu dx is a continuous linear functional on C (2), which we denote
Tf, so that
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(Tf,M)E*,E=/fudx Yu e E.
Q

Clearly T is linear, and, moreover, T is an isometry, since

||Tf||M(§) = sug /qu = |Ifll1 (see Exercise 4.26).
ue

lull <1

Using T we may identify L'() with a subspace of M (). Since M(Q) is the
dual space of the separable space C(£2), it has some compactness properties in the
weak* topology. In particular, if ( f,,) is a bounded sequence in L' (), there exist a

subsequence ( fy,) and a Radon measure | such that f,, A W in the weak* topology
o(E*, E), that is,

/ foott = ( u) Vu € C(Q).
Q

For example, a sequence in L' can converge to a Dirac measure with respect to
the weak* topology. Some futher properties of Radon measures are discussed in
Problem 24.

The terminology “measure” is justified by the following result, which connects
the above definition with the standard notion of measures in the set-theoretic sense:

Theorem 4.31 (Riesz representation theorem). Let u be a Radon measure on Q.
Then there is a unique signed Borel measure v on 2 (that is, a measure defined on
Borel sets of Q) such that

(w, u) :/ udv Yu € C(Q).

Q

It is often convenient to replace the space E = C () by the subspace

Eo = {f € C(Q); f = 0 on the boundary of Q}.

The dual of Eg is denoted by M (£2) (as opposed to M(R)). The Riesz repre-
sentation theorem remains valid with the additional condition that |v|(boundary of
Q) =0.

On this vast and classical subject, see, e.g., H. L. Royden [1], W. Rudin [2],
G. B. Folland [2], A. Knapp [1], P. Malliavin [1], P. Halmos [1], I. Fonseca—
G. Leoni [1].

4. The Bochner integral of vector-valued functions.

Let 2 be a measure space and let E be a Banach space. The space L? (R2; E) consists
of all functions f defined on 2 with values into E that are measurable in some
appropriate sense and such that fQ | f)IPdu < oo (with the usual modification
when p = 00). Most of the properties described in Sections 4.2 and 4.3 still hold
under some additional assumptions on E. For example, if E is reflexiveand 1 < p <
00, then LP(2; E) is reflexive and its dual space is LP/(SZ; E™*). For more details,
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see K. Yosida [1], D. L. Cohn [1], E. Hille [1], B. Beauzamy [1], L. Schwartz [3].
The space L?(2; E) is very useful in the study of evolution equations when €2 is an
interval in R (see Chapter 10).

5. Interpolation theory.
The most striking result, which began interpolation theory, is the following.

Theorem 4.32 (Schur, M. Riesz, Thorin). Assume that Q2 is a measure space with
|| < oo, and that T : LYQ) — LY(Q) is a bounded linear operator with norm

My =Tzt ony-

Assume, in addition, that T : L*°(2) — L*°(2) is a bounded linear operator
with norm

Moo = Tl gz, 1%)-

Then T is a bounded operator from LP () into LP (2) forall 1 < p < oo, and its
norm M), satisfies

1/pasl/p
M, < M""MLP.

Interpolation theory was originally discovered by I. Schur, M. Riesz, G. O. Thorin,
J. Marcinkiewicz, and A. Zygmund. Decisive contributions have been made by a
number of authors including J.-L. Lions, J. Peetre, A. P. Calderon, E. Stein, and
E. Gagliardo. It has become a useful tool in harmonic analysis (see, e.g., E. Stein—
G. Weiss [1], E. Stein [1], C. Sadosky [1]) and in partial differential equations
(see, e.g., J.-L. Lions—E. Magenes [1]). On these questions see also G. B. Folland
[2], N. Dunford-J. T. Schwartz [1] (Volume 1 p. 520), J. Bergh-J. Lofstrom [1],
M. Reed-B. Simon [1], (Volume 2, p. 27) and Problem 22.

6. Young’s inequality.
The following is an extension of Theorem 4.15.

Theorem 4.33 (Young). Assume f € LP(RN) and g € LYRN) with 1 < p < oo,

l<g<ooand;=+1+1-1=0.

Then f xg € L"(RY) and || f * glly < [ fllplgllg-

For a proof see, e.g., Exercise 4.30.

7. The notion of convolution—extended to distributions (see L. Schwartz [1] or
A. Knapp [2])—plays a fundamental role in the theory of partial differential equa-
tions. For example, the equation P(D)u = f in RN where P(D) is any differential
operator with constant coefficients, has a solution of the form u = E » f, where E
is the fundamental solution of P (D) (theorem of Malgrange—Ehrenpreis; see also
Comment 2b in Chapter 1). In particular, the equation Ax = f in R? has a solution
of the form u = E * f, where E(x) = —(4x|x|)~L.
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Exercises for Chapter 4

Except where otherwise stated, 2 denotes a o -finite measure space.

Let(x > 0 and 8 > 0. Set

Feo = {1+ x} 7 {1+ log x]1f) ", x e RY.

Under what conditions does f belong to L” (RN)?

Assume 2] < ocandletl < p < g < oo. Prove that LY(Q2) C LP(2) with
continuous injection. More precisely, show that

1

Ifllp = |Q|;_$||f”q Vf e L.

[Hint: Use Holder’s inequality.]

1. Let f, g € LP(Q2) with 1 < p < oo. Prove that
h(x) = max {f(x), g(x)} € LP(Q).

2. Let (f,) and (g,) be two sequences in LP(€2) with 1 < p < oo such that
fan— finLP(2) and g, — g in LP(2). Set h,, = max{ f,, g»} and prove that
h, — hin LP(Q).

3. Let (f,) be a sequence in L?(€2) with 1 < p < oo and let (g,) be a bounded
sequence in L*°(2). Assume f, — f in L”(Q2) and g, — g a.e. Prove that
Jngn — fgin LP().

1. Let fi, f2, ..., fx be k functions such that f; € LPi(2) Vi with 1 < p; < 00

k
fo =]]fiw.
i=1

Prove that f € LP(2) with % = Zf-‘zl % and that

k
Il < [ TIA -

i=1

[Hint: Start with £ = 2 and proceed by induction.]
2. Deduce thatif f € LP(Q)NLI(Q) with]1 < p <ocoand 1 < g < o0, then
f € L"(2) for every r between p and ¢g. More precisely, write
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1 l—«a .
-=—+—— witha €[0,1]
r

and prove that

L£1L = DIl
Let1§p<ooand1§q§oo.

1. Prove that L1(Q2) N L>®(K) is a dense subset of L” ().
2. Prove that the set

{feLP@NLIQ); [Iflly <1}

is closed in L7 (£2).
3. Let (f;,) be a sequence in LP(2) N L9(L2) and let f € LP(£2). Assume that

Jo— fin LP(Q) and || fully < C.

Prove that f € L"(2) and that f, — f in L"(2) for every r between p and
q,r #q.

Assume |R2] < o0.

1. Let f € L®(R2). Prove that lim,_, o0 || fll, = | f [l co-
2. Let f € Ni<p<coL?(82) and assume that there is a constant C such that

Ifllp,=C V1<p<oo.

Prove that f € L*°(Q).
3. Construct an example of a function f € Nj<p<coL?(2) such that f ¢ L*°(Q)
with = (0, 1).

Let 1 < g < p < oo. Let a(x) be a measurable function on 2. Assume that
au € L9(R2) for every function u € L?(S2).
Prove that a € L"(2) with

rq
r=43pP—4
q if p = o0.

if p < o0,

[Hint: Use the closed graph theorem.]
Let X C L'(R) be a closed vector space in L' (). Assume that

xc | L.

l<g<oo
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1. Prove that there exists some p > 1 such that X C L? ().

[Hint: For every integer n > 1 consider the set

X, = [f e XN L+ Q.

_n}.]

2. Prove that there is a constant C such that

Ifl, <Cllflh VfeX.

Jensen’s inequality.

Assume |Q2| < oco.Letj : R — (—o00, +00] beaconvex l.s.c. function, j # +o0.
Let f € L'(Q) be such that f(x) € D(j) a.e. and j(f) € L' (). Prove that

J (.
(IQI / ) 1@l /
Convex integrands.

Assume |[2| < co.Let]l < p < ooandletj : R — Rbeaconvex and continuous
function. Consider the function J : L?(2) — (—00, +00] defined by

/ ju(x))dx if j(u) e LY(Q),
Q
+o00 if j(u) ¢ LY(Q).

Ju) =

1. Prove that J is convex.
2. Prove that J is l.s.c.

[Hint: Start with the case j > 0 and use Fatou’s lemma.]
3. Prove that the conjugate function J* : L? (2) — (—o0, +00] is given by

J*(f) = Joi*(fGndx i j*(f) € L'<),
400

if j*(f) ¢ L'(S).
[Hint: When 1 < p < oo consider J,,(u) = J (u) + % f |u|? and determine J.]
4. Let dj (resp. 0J) denote the subdifferential of j (resp. J) (see Problem 2). Let
u € LP(Q2) and let f € L? (2); prove that

fedJu) < f(x) € dju(x)) ae.on?S.

The spaces L*(2) with0 < o < 1.

LetO <o < 1. Set

LY(Q) = {u :Q — R; uis measurable and |u|* € LI(Q)}
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1/
[y = (f |u|°‘) .

1. Check that L“ is a vector space but that [ ], is not a norm. More precisely,
prove that if u, v € L*(2), u > 0 a.e. and v > 0 a.e., then

and

[u+vly = [uly + [V

2. Prove that
[u+vly <[mls + V]S VYu,vel(Q).
L? is uniformly convex for 1 < p < 2 (by the method of C. Morawetz).

1. Let 1 < p < oo. Prove that there is a constant C (depending only on p) such
that

‘ b\’
la = b|? < C(jal” + [b]")' (IaI‘”JrIbI‘”—2 anr ) Va,b e R,

where s = p/2.
2. Deduce that L?(2) is uniformly convex for 1 < p < 2.

[Hint: Use question 1 and Holder’s inequality.]

1. Check that
lla + bl — lal — |bl| <2|b| Va,beR.

2. Let (f,) be a sequence in L' () such that

1) fulx) = f(x)ae,
(ii) (fy)is bounded in L'(Q)i.e., [|fuli <M Vn.

Prove that f € L' () and that

Jim [ 050-15- 0= [ 111

[Hint: Use question 1 witha = f, — f and b = f, and consider the sequence
on = |lful = 1fu = FI=1£1]]
3. Let (f;;) be a sequence in LY() and let f be a function in LY() such that

1) fulx) > f(x)ae.,
@) Il fulli = I

Prove that || f;, — fll1 = 0.

The theorems of Egorov and Vitali.
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Assume [Q2| < oo. Let (f;) be a sequence of measurable functions such that
fn — fae. (with|f| < ocoa.e.).

1. Let @ > 0O be fixed. Prove that

meas[| f, — f| > a|]] — O.
n—oo

2. More precisely, let
Su(@) = [Jllfe = £1> al.

k>n
Prove that |S,, ()] — O.
n—oo
3. (Egorov). Prove that

Vé >0 3JA C 2 measurable such that
|A| < é and f, — f uniformly on Q\A.

[Hint: Given an integer m > 1, prove with the help of question 2 that there
exists X, C €2, measurable, such that |X,,| < §/2" and there exists an integer
N, such that

|ﬂu%¢ﬁﬂ<% VK= Ny, Vx € 2\En.]

4. (Vitali). Let (f,,) be a sequence in L? (2) with 1 < p < co. Assume that
(i) Ve > 0 36 > 0 such that fA |ful? <& Vnand VA C Q measurable with
|A| < 6.
@) f, — fae.

Prove that f € L?(R2) and that f;, — f in L?(2).

4.15|Let @ = (0, 1).

1. Consider the sequence ( f;,) of functions defined by f;,(x) = ne™"*. Prove that

i f.— Oae.

(ii) f, is bounded in L' ().
(iii) f, - 0in L'(S) strongly.
(iv) f. # 0 weakly o (L', L®).

More precisely, there is no subsequence that converges weakly o (L', L>).

2. Let1 < p < oo and consider the sequence (g,) of functions defined by g, (x) =
n!'/Pe="% Prove that

(1) gn —> Oae.

(ii) (gy) is bounded in L?(L2).
(iii) g, - 0in LP(2) strongly.
(iv) gn — O weakly o (L?, L?").
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Let 1 < p < oo. Let (f;,) be a sequence in L”(£2) such that

(i) fu is bounded in L7 ().
(il) fu — f ae.on Q.

1. Prove that f,, — f weakly G(LP,NLP/).
[Hint: First show that if f, — f weakly o (L7, LP/) and f, — f a.e., then
f = f a.e. (use Exercise 3.4).]

2. Same conclusion if assumption (ii) is replaced by

i) Ifn = fllh = 0.

3. Assume now (i), (ii), and |2| < oo. Prove that || f, — fll; — 0O for every g with
1<qg<np.
[Hint: Introduce the truncated functions T f;, or alternatively use Egorov’s the-
orem. |

Brezis—Lieb’s lemma.

Letl < p < o0.

1. Prove that there is a constant C (depending on p) such that
[la+ 617 = lal” = b7 | < C (lal”~"bl + lal I"™")  Va,b e R,

2. Let (f,) be a bounded sequence in L”(£2) such that f, — f a.e. on Q. Prove
that f € L?(2) and that

iim [ {117 =16 = 17} = [ 1517
Q Q

n—oo

[Hint: Use question 1 witha = f,, — f and b = f. Note that by Exercise 4.16,
| fo — f] = O weakly in L? and | f,, — f|P~' — 0 weakly in L? .]
3. Deduce that if (f;,) is a sequence in L? (2) satisfying

1) fux) = f(x) ae.,
G 1 fullp = 11N p,

then [ fy, — £, — 0.
4. Find an alternative method for question 3.

Rademacher’s functions.

Letl < p <ooandlet f € LﬁC(R).Assumethatfis T -periodic,i.e., f(x+T) =
f(x) ae.x e R.
Set

_ 1 T
f:?/o fn)d.

Consider the sequence (u,) in L? (0, 1) defined by
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up,(x) = f(nx), xe€(0,1).

1. Prove that u,, — f in L7(0, 1) with respect to the topology o (L”, L"),
2. Determine limy, oo lty — fllp-
3. Examine the following examples:

(1) u,(x) =sinnx,

(1) up(x) = f(nx) where f is 1-periodic and

o forx € (0, 1/2),

FOO=0 8 forxe o),

The functions of example (ii) are called Rademacher’s functions.

1. Let (f,) be asequence in LP(2) with 1 < p < oo and let f € LP(R2). Assume
that

(i) f. — f weakly o(LP, L"),
Q) 1 fullp = 1f1p-

Prove that f, — f strongly in L?(2).
2. Construct a sequence (f;) in LI(O, 1), fu = 0, such that:

() f, — f weakly o (L', L®),
G I1fullt = 0 f0,
i) 1 fa — fllt = 0.

Compare with the results of Exercise 4.13 and with Proposition 3.32.

Assume|§2| <oo.Letl <p<oocandl <g < oco.
Leta : R — R be a continuous function such that

la(t)| < C{|t|”/7 + 1} Vit eR.
Consider the (nonlinear) map A : L?(Q2) — L7(2) defined by
(Au)(x) = a(u(x)), x € Q.

1. Prove that A is continuous from L” (£2) strong into L7 (£2) strong.

2. Take 2 = (0, 1) and assume that for every sequence (u,) such that u, — u
weakly o (L7, Lp/) then Au, — Au weakly o (LY, Lq/).
Prove that a is an affine function.

[Hint: Use Rademacher’s functions; see Exercise 4.18.]

Given a function ug : R — R, set u,,(x) = uo(x + n).

1. Assume ug € LP(R) with 1 < p < oo. Prove that u,, — 0 in L?(R) with
respect to the weak topology o (L, L?").
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2. Assume ug € L°°(R) and that ug(x) — 0 as |x| — oo in the following weak
sense:

for every § > 0 the set [|ug| > 48] has finite measure.

Prove that u,, 2 0in L% (R) weak* o (L>®, L").

3. Take uo = X(0,1)-
Prove that there exists no subsequence (u,,, ) that convergesin L I(R) with respect
too (L', L™®).

1. Let (f,) be asequence in LP(2) with 1 < p < oo and let f € LP(2).
Show that the following properties are equivalent:
(A) fu— fino(LP, L"),
I fullp =C
B) and
[ fa = [g f VE C Q, E measurable and | E| < oo.
2. If p=1and |2| < oo prove that (A) < (B).
3. Assume p = 1 and |2| = oo. Prove that (A) = (B).
Construct an example showing that in general, (B) = (A).
[Hint: Use Exercise 4.21, question 3.]
4. Let (f,,) be a sequence in LY(Q) and let fe LY(Q) with |2| = co. Assume that

(@ f, >0 Vrnand f > 0a.e.on L,

®) o fo— Jofs
(©) [gfo— [pf VE C R, E measurable and | E| < oc.

Prove that f, — f in L'(Q) weakly o (L', L®).
[Hint: Show that fF fo — fF fYF C R, F measurable and | F| < c0.]

Let f : @ — R be a measurable function and let | < p < oco. The purpose
of this exercise is to show that the set

C={uel?(Q); ux=f ae]}

is closed in L? (£2) with respect to the topology o (L7, LY.

1. Assume first that | < p < oo. Prove that C is convex and closed in the strong
L? topology. Deduce that C is closed in o (L?, L?").
2. Taking p = oo, prove that

up > Vo € LY(Q)
C= ueL"o(Q)‘/ v ff(p v
with fo e L'(Q) and ¢ >0 ae.

[Hint: Assume first that f € L°(2); in the general case introduce the sets
oy =[|f] <nll]
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3. Deduce that when p = oo, C is closed in o (L™, L1).
4. Let f1, f» € L°°(R) with f; < f, a.e. Prove that the set

C={uel™Q); fi<u<fr ael
is compact in L>°(£2) with respect to the topology o (L*°, L1).

Letu € L®(RYN). Let (p,) be a sequence of mollifiers. Let (¢,) be a sequence
in L®(R") such that

lCalloo <1 Vn and ¢, — ¢ ae.on RV,

Set
Vp = pp x (Gpu) and v = lu.

1. Prove that v, — vin L®(RN) weak* o (L, L).
2. Prove that fB |vp, — v| — O for every ball B.

Regularization of functions in L*°(S2).
Let © c RY be open.

1. Letu € L°°(£2). Prove that there exists a sequence (u,) in C2°(£2) such that

(@ llunlloo < lulleo Vn,
(b) u, — u a.e.on £,

(©) 1y > uin L®(Q) weak* o (L>®, L1).
2. If u > 0 a.e. on 2, show that one can also take
(d) up, >0on Q2 Vn.
3. Deduce that CZ°(€2) is dense in L°°(2) with respect to the topology o (L*°, LY.

Let @ ¢ RY be open and let f € LIIOC(Q).
1. Prove that f € L'(Q) iff

A=Sup{/f¢; p e Ce(2), llollo = 1} < 0.

If f € L'() show that A = || f]|1.
2. Prove that f+ e L1(Q) iff

B=Sup{/f<p;<pecc($2), lollo <1 and¢20}<oo.

If f+ e LY(Q) show that B = || f ;.
3. Same questions when C.(2) is replaced by C2°(£2).



4.5 Exercises for Chapter 4 127

4. Deduce that
Uﬂp =0 Vpe C?(Q)} = [f=0 ael]

and
[/fgozo V<pecg>°(sz),<pzo]=>[fzo ael.

Let @ ¢ R" be open. Letu, v € LIIOC(Q) with u # 0 a.e. on a set of positive
measure. Assume that

|}0€C§°(Q)and/u<p>0}:[/v<p20].

Prove that there exists a constant A > 0 such that v = Au.

[4.28|Let p € L'(RY) with [ p = 1. Set p, (x) = n¥ p(nx). Let f € LP(RV) with

1 < p < oo. Prove that p, » f — f in LP(RV).

Let K C RY be a compact subset. Prove that there exists a sequence of

functions (u,) in C2°(R") such that

(@ 0<u, <lonRV,

(b) up, =1on K,

(c) suppu, C K + B(0, 1/n),

(d) |D%u,(x)| < Cen'®! vx € R¥, ¥V multi-index o (where C,, depends only on o
and not on n).

[Hint: Let x,, be the characteristic function of K + B(0, 1/2n); take u,, = 02, * Xn-]

Young’s inequality.

Let1§p500,1§q§oobesuchthat%+ > 1.

1
q
Set%:%+$—1,sothatl§r§oo.
Let f € LP(RY) and g € LI(RV).
1. Prove that fora.e. x € R, the function y — f(x —y) g(y) is integrable on RY |

[Hint: Seta = p/q’, B = q/p’ and write

£ G = gl = £ = NI (1£ 6 = 11" ]

2. Set
(fxe)x) = f flx—y)eg(ydy.
RN

Prove that f » g € L"(RM) and that || f * gll, < I fllllgll,-
3. Assume here that % + ql = 1. Prove that

fxge CRYYNL®RY)
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and, moreover, if | < p < oo then (f x g)(x) — O as |x| — oo.

[4.31]Let f € LP(RY) with 1 < p < oo. For every r > 0 set

1.

2.

frx) = f(dy, x e RV,

|B(x, r)| B(x,r)

Prove that f, € L?(RY) N C(RY) and that f,(x) — 0 as |x| — oo (r being
fixed).
Prove that f, — fin LP(RV) asr — 0.

[Hint: Write f, = ¢, » f for some appropriate ¢;.]

1.

2.

Let f,g € L'(RV) and let h € LP(RN) with 1 < p < oc. Show that f x g =
gxfand (fxg)xh = fx(gxh).
Let f € L'(RY). Assume that f 9 =0 Vo € CSO(RN). Prove that f =0
a.e. on RY. Same question for f € LIIOC(RN).
Let a € L'(RY) be a fixed function. Consider the operator 7}, : L*(RN) —
L%(RV) defined by

T,(u) =axu.

Check that 7; is bounded and that (|7l zz2) < llallf1gn). Compute T o T},
and prove that T, 0T, = TpoT, Va,b € LY(RN). Determine (T,)*, T, o (T,,)*
and (T,)* o T,. Under what condition on a is (T,)* = T,?

Fix a function ¢ € C.(R), ¢ # 0, and consider the family of functions

F=Jten),
n=1

where ¢, (x) = ¢(x +n),x € R.

1.

2.

Assume 1 < p < oo. Prove that Ve > 0 3§ > 0 such that
lznf — fllp <& Vf € Fand Vh € R with |A| < 6.

Prove that F does not have compact closure in L?” (R).

Let1 < p < ooandlet F C LP(RY) be a compact subset of L?(RY).

1.
2.

3.

Prove that F is bounded in L? (RV).
Prove that Ve > 0 3§ > 0 such that

lenf — fll, <& VfeFandVh e RN with |h| < 8.

Prove that Ve > 0 3Q c RY bounded, open, such that
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”fHLP(IRN\Q) <& VfeF.

Compare with Corollary 4.27.

Fix a function G € LP(RN) with 1 < p < oo and let F = G BB, where B
is a bounded set in L1 (RM).

Prove that F|q has compact closure in L?(€2) for any measurable set Q& C RN
with finite measure. Compare with Corollary 4.28.

Equi-integrable families.

A subset F C L'(Q) is said to be equi-integrable if it satisfies the following
properties:®

(a) F is bounded in Ll(Q),
b) Ve>0 38>0 suchthat [, |f] <e
VfeF, VE CS,E measurableand |E| < 6,

© Ve >0 3Fw C Q2 measurable with |w| < 0o
c
such that fsz\w|f| <e VYfelF.

Let (£2,,) be a nondecreasing sequence of measurable sets in Q with |2,| <
0o Vn and such that @ =, Q.
1. Prove that F is equi-integrable iff

(d) lim sup / |fl=0
1700 pe FJNIfI>1]

and

(e) lim sup/ |fl=0.
n—o0o rerJava,

2. Prove that if F C L'(Q) is compact, then F is equi-integrable. Is the converse
true?

Fix a function f € L'(R) such that

+00

+00
f(@®)dt =0 and / f@®)dt > 0,
—00 0
and let u,(x) = nf(nx) forx € I = (—1, +1).
1. Prove that
lim /un(x)go(x)dx =0 VpeC(-1,+1).
n—>0oo 1

6 One can show that (a) follows from (b) and (c) if the measure space 2 is diffuse (i.e., 2 has no
atoms). Consider for example = RV with the Lebesgue measure.
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Check that the sequence (u,,) is bounded in L!(I). Show that no subsequence
of (u,) is equi-integrable.

. Prove that there exists no function u € L'(/) such that

klim /unk(x)(p(x)dx = /u(x)(p(x)dx VYo € L),

along some subsequence (i, ).
Compare with the Dunford—Pettis theorem (see question A3 in Problem 23).

. Prove that there exists a subsequence (u,,) such that u,, (x) — 0 a.e. on I as

k — oo.

[Hint: Compute f[n_1/2<|x|<1] |un (x)|dx and apply Theorem 4.9.]

Set I = (0, 1) and consider the sequence (i, ) of functions in L L(I) defined by

N =

w

uy(x) = j=0
0 otherwise.

. Check that | supp u, | = % and |ju,| = 1.
. Prove that

lim up(x)px)dx = /(p(x)dx Yo € C([0, 1]).
I I

n——+00

[Hint: Start with the case ¢ € C'([0, 1]).]

Show that no subsequence of (u,) is equi-integrable.
Prove that there exists no function u € L'(I) such that

klim /unk(x)(p(x)dx = /u(x)(p(x)dx Yo € L*(),

along some subsequence (i, ).
[Hint: Use a further subsequence () such that ), | supp Uy | < 1]

Prove that there exists a subsequence (u,,) such that u,, (x) — 0 a.e. on I as
k — oo.



Chapter 5
Hilbert Spaces

5.1 Definitions and Elementary Properties. Projection onto a
Closed Convex Set

Definition. Let H be a vector space. A scalar product (u, v) is a bilinear form on
H x H with values in R (i.e., amap from H x H to R that is linear in both variables)
such that

(u,v) =(v,u) Vu,ve H (symmetry),
(u,u) >0 Yu e H (positive),
(u,u) #0 Yu #0 (definite).

Let us recall that a scalar product satisfies the Cauchy—Schwarz inequality
I, v)| < (u, ) ?(, 0)"? VYu,v e H.

[It is sometimes useful to keep in mind that the proof of the Cauchy—Schwarz in-
equality does not require the assumption (u, u) # 0 Yu # 0.] It follows from the
Cauchy—Schwarz inequality that the quantity

u| = (u, u)'/?

is a norm—we shall often denote by | | (instead of || ||) norms arising from scalar
products. Indeed, we have

4+ v* = @+ v, u+v) = [ul + (@, v) + @, u) + [v]* < Jul® +2lu] [v] +[v]%,

and thus |u + v| < |u| + |v|.
Let us recall the classical parallelogram law:

M) bl e L ) vaben
= —(la a,be H.
2 2 2
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Definition. A Hilbert space is a vector space H equipped with a scalar product such
that H is complete for the norm | |.

In what follows, H will always denote a Hilbert space.

Basic example. L2(2) equipped with the scalar product
(u,v) = / u(x)v(x)du
Q

is a Hilbert space. In particular, £2 is a Hilbert space. The Sobolev space H ' studied
in Chapters 8 and 9 is another example of a Hilbert space; it is “modeled” on L% ().

e Proposition 5.1. H is uniformly convex, and thus it is reflexive.

Proof. Lete > 0andu, v € H satisfy |u| < 1, |v] < 1, and |u — v| > €. In view of
the parallelogram law we have

2 2

utv <1—%andthus

2

82 1/2
<l—8with8:l—(l—Z> > 0.

e Theorem 5.2 (projection onto a closed convex set). Let K C H be a nonempty
closed convex set. Then for every f € H there exists a unique element u € K such
that

@) |f —ul = min|f — v| = dist(f, K).
vek

Moreover, u is characterized by the property

3) uek and (f —u,v—u) <0 Vvek.

Notation. The above element u is called the projection of f onto K and is denoted by

Inequality (3) says that the scalar product of the vector u_} with any vector uv (v e
K)is <0, i.e., the angle 6 determined by these two vectors is > 77/2; see Figure 4.

Proof. (a) Existence. We shall present two different proofs:

1. The function ¢(v) = | f — v]| is convex, continuous and limy|— e (V) = +00.
It follows from Corollary 3.23 that ¢ achieves its minimum on K since H is
reflexive.

2. The second proof does not rely on the theory of reflexive and uniformly convex
spaces. It is a direct argument. Let (v,) be a minimizing sequence for (2), i.e.,
v, € K and

dy =|f —vy| >d=inf |f —v|.
vek

We claim that (v,) is a Cauchy sequence. Indeed, the parallelogram law applied
witha = f —v, and b = f — v, leads to
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Fig. 4

2

2
Un + Ui

Un — Um

2

1
= 5 (d; +dp).

‘f_ 2

But Wr% € K and thus | f — ”"JFT”'"| > d. It follows that

Un_vm2
2

1 .
< 5(d,% +d%) —d*and Jim oy — vn| =0,
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Therefore the sequence (v, ) converges to some limit u € K withd = | f — u].

(b) Equivalence of (2) and (3).
Assume that u € K satisfies (2) and let w € K. We have

v=>_0-tu+tweK Vtelll1]
and thus
If —ul < |f = [d=dDu+rtw]| = [(f —u) —t(w—u)|.
Therefore

If —ul® < |f —ul® = 2(f —u, w—u) +t*|w — ul?,

which implies that 2(f — u,w —u) < tlw —ul> V¢ € (0,1]. Ast — 0 we

obtain (3).
Conversely, assume that u satisfies (3). Then we have

w—fP=lo—fP=2(f—uv—u)—lu—v><0 Vvek;

which implies (2).
(¢) Uniqueness.
Assume that 11 and u» satisfy (3). We have

@) (f —u,v—u;) <0 Vvek,
(®)) (f —uz,v—uz) <0 Vvek.
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Choosing v = us in (4) and v = u in (5) and adding the corresponding inequalities,
we obtain |u; — u2|2 <0.

Remark 1. It is not surprising to find that a minimization problem is connected with
a system of inequalities. Let us recall a well-known example. Suppose F : R — R
is a differentiable function and suppose u € [0, 1] is a point where F achieves its
minimum on [0, 1]. Then either u € (0, 1) and F'(u) = 0,0oru = 0 and F'(u) <O,
oru = 1 and F'(u) = 1. These three cases are summarized by saying that u € [0, 1]
and F'(u)(v —u) <0 Vv € [0, 1]; see also Exercise 5.10.

Remark 2. Let K C E be a nonempty closed convex set in a uniformly convex
Banach space E. Then for every f € E there exists a unique element # € E such
that

| f —ull =min | f — v| = dist(f, K);
vekK
see Exercise 3.32.

Proposition 5.3. Let K C H be a nonempty closed convex set. Then Pk does not
increase distance, i.e.,

[Pk fi — Pk 2l < 1fi— f2l VYfi, € H.
Proof. Setu| = Pg f1 and up = Pk f>. We have

(6) (fi—u,v—u) <0 Yvek
(7) (fr —uz,v—u3) <0 VYvek.

Choosing v = u3 in (6) and v = u in (5) and adding the corresponding inequalities,
we obtain
luy —us* < (fi — foour — u2).

It follows that |u; — uz| < |f1 — f2|.

Corollary 5.4. Assume that M C H is a closed linear subspace. Let f € H. Then
u = Py f is characterized by

(8) lueM and (f—u,v)=0 YveM.|

Moreover, Py is a linear operator, called the orthogonal projection.
Proof. By (3) we have
(f—u,v—u) <0 YveM

and thus
(f —u,tv—u)<0 YveM, VteR.

It follows that (8) holds.
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Conversely, if u satisfies (8) we have
(f—u,v—u)=0 VYveM.

It is obvious that Py, is linear.

5.2 The Dual Space of a Hilbert Space

It is very easy, in a Hilbert space, to write down continuous linear functionals. Pick
any f € H; then the map u +— (f, u) is a continuous linear functional on H. It
is a remarkable fact that all continuous linear functionals on H are obtained in this
fashion:

e Theorem 5.5 (Riesz—Fréchet representation theorem). Given any ¢ € H* there
exists a unique f € H such that

(p,u) =(f,u) Yu e H.

Moreover,

Lf1 = el

Proof. Once more we shall present two proofs:

1. The first one is almost identical to the proof of Theorem 4.11. Consider the map
T : H — H* defined as follows: given any f € H,the mapu +— (f,u)isa
continuous linear functional on H . It defines an element of H*, which we denote
by T f, so that

(Tf,u)=(f,u) YueH.

It is clear that | T f| g = | f]. Thus T is a linear isometry from H onto T (H),
a closed subspace of H*. In order to conclude, it suffices to show that T (H) is
dense in H*. Assume that % is a continuous linear functional on H* that vanishes
on T (H). Since H is reflexive, h belongs to H and satisfies (T f, h) =0V f € H.
It follows that (f, h) =0V f € H and thus h = 0.

2. The second proof is a more direct argument that avoids any use of reflexivity. Let
M = ¢~ 1({0}), so that M is a closed subspace of H. We may always assume that
M # H (otherwise ¢ = 0 and the conclusion of Theorem 5.5 is obvious—just
take f = 0). We claim that there exists some element g € H such that

|gl=1and (g,v) =0 Vv e M (and thus g ¢ M).
Indeed, let go € H with gg ¢ M. Let g1 = Py go. Then

g =1(g0o—g1/lgo — &1

satisfies the required properties.
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Given any u € H, set

vV=1u—\g withkz((p’u>.

(@, 8)

Note that v is well defined, since (¢, g) # 0, and, moreover, v € M, since (¢, v) = 0.
It follows that (g, v) = 0, i.e.,

(o, u) = (@, g)(g,u) YuecH,

which concludes the proof with f = (¢, g)g.

o Remark 3. H and H*: to identify or not to identify? The triplet V. c H c V*.

Theorem 5.5 asserts that there is a canonical isometry from H onto H*. It is
therefore “legitimate” to identify H and H*. We shall often do so but not always.
Here is a typical situation—which arises in many applications—where one should be
cautious with identifications. Assume that H is a Hilbert space with a scalar product
(, ) and a corresponding norm | |. Assume that V' C H is a linear subspace that is
dense in H. Assume that V has its own norm || || and that V is a Banach space with
I |I. Assume that the injection V. C H is continuous, i.e.,

lv] < C|lv]| YvelV.

[For example, H = L?(0, 1)and V = LP(0, 1) with p > 2 or V = C([0, 1]).]
There is a canonical map T : H* — V™ that is simply the restriction to V of
continuous linear functionals ¢ on H, i.e.,

(T, vyy«,v = (@, V)H* H.
It is easy to see that 7" has the following properties:

@ ITellvx < Clolur Vo € H,
(i) T is injective,
(iii) R(T) is dense in V* if V is reflexive.!

Identifying H* with H and using T as a canonical embedding from H* into V*,
one usually writes

) VCH~H*CV*

]

where all the injections are continuous and dense (provided V is reflexive). One says
that H is the pivot space. Note that the scalar products (, )y« v and (, ) coincide
whenever both make sense, i.e.,

(fivyysy =(fiv) YfeH, YvelV.

! However, T is not surjective in general.
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The situation becomes more delicate if V turns out to be a Hilbert space with its
own scalar product ((, )) associated to the norm || ||. We could, of course, identify
V and V* with the help of ((, )). However, (9) becomes absurd. This shows that one
cannot identify simultaneously V and H with their dual spaces: one has to make a
choice. The common habit is to identify H* with H, to write (9), and not to identify
V* with V [naturally, there is still an isometry from V onto V*, but it is not viewed
as the identity map]. Here is a very instructive example.

Let
)
H =€2 = {M = (un)nzl; Zui < OO}

n=1

equipped with the scalar product (u, v) = Y ;2| UnVp.

Let
o0
V = {u = (Un)n>1; anu% < oo}
n=1

equipped with the scalar product ((u, v)) = Y .2, n2u,vp.
Clearly V C H with continuous injection and V is dense in H. Here we identify
H* with H, while V* is identified with the space

o
1
V* = = N e 2
{f (fn)nzl 5 anfn <OO},
n=1
which is bigger than H. The scalar product (, )y+ v is given by
oo
(frvdvey =Y favn,
n=1
and the Riesz—Fréchet isomorphism 7' : V — V* is given by
u= (un)nzl = Tu = (nzun)nzl‘

Remark 4. Tt is easy to prove that Hilbert spaces are reflexive without invoking the
theory of uniformly convex spaces. It suffices to use twice the Riesz—Fréchet iso-
morphism (from H onto H* and then from H* onto H**).

Remark 5. Assume that H is a Hilbert space identified with its dual space H*. Let
M be a subspace of H. We have already defined M (in Section 1.3) as a subspace
of H*. We may now consider it as a subspace of H, namely

Mt*={ueH;u,v)=0 Yve M)

Clearly we have MNM~+ = {0}. Moreover, if M is closed we also have M+M+ = H.
Indeed, every f € H may be written as

f=Puf)+(f—Puf)
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and f — Py f € M~+; more precisely, f — Py f = Py f.

It follows that in a Hilbert space every closed subspace has a complement (in the
sense of Section 2.4).

5.3 The Theorems of Stampacchia and Lax-Milgram
Definition. A bilinear forma : H x H — R is said to be
(i) continuous if there is a constant C such that
la(u,v)| < Clullv] VYu,v e H;
(i1) coercive if there is a constant o > 0 such that
a(v,v) > ot|v|2 Yv e H.

Theorem 5.6 (Stampacchia). Assume that a(u, v) is a continuous coercive bilinear
formon H. Let K C H be a nonempty closed and convex subset. Then, given any
@ € H*, there exists a unique element u € K such that

(10) a(u,v—u) > (p,v—u) VveKk.

Moreover, if a is symmetric, then u is characterized by the property

an uekK and %a(u, u) — (o, u) = {)1;1[1(1 {%a(v, v) — (@, v)} .

The proof of Theorem 5.6 relies on the following very classical result.

e Theorem 5.7 (Banach fixed-point theorem—the contraction mapping princi-
ple). Let X be a nonempty complete metric space and let S : X — X be a strict
contraction, i.e.,

d(Svy, Svy) <kd(i,v2) Yvi, vy e Xwithk < 1.
Then S has a unique fixed point, u = Su.

For a proof see, e.g., T. M. Apostol [1], G. Choquet [1], A. Friedman [3].

Proof of Theorem 5.6. From the Riesz—Fréchet representation theorem (Theorem 5.5)
we know that there exists a unique f € H such that

(p,v) =(f,v) YveH.

On the other hand, if we fix u € H, the map v +— a(u, v) is a continuous linear
functional on H. Using once more the Riesz—Fréchet representation theorem we find
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some unique element in H, denoted by Au, such that a(u, v) = (Au,v) Yv € H.
Clearly A is a linear operator from H into H satisfying

(12) |Au| < Clu| VYu e H,
(13) (Au,u) > aul*> Vu € H.
Problem (10) amounts to finding some u € K such that
(14) (Au,v—u) > (f,v—u) VveKk.
Let p > 0 be a constant (to be determined later). Note that (14) is equivalent to
(15) (of —pAu+u—u,v—u) <0 Vvek,

i.e.,
u= Pg(pf — pAu+u).

Foreveryv € K, set Sv = Px(pf —pAv+v). We claim thatif p > 0 is properly
chosen then S is a strict contraction. Indeed, since Px does not increase distance (see
Proposition 5.3) we have

[Sv; — Svz| < [(v1 — v2) — p(Av) — Avy)]
and thus

1Sv1 — Sva? = [v1 — v2]* = 2p(Av) — Ava, v — v2) + p?|Av) — Ava?
< lvi — 2’ (1 = 2pa + p*C?).

Choosing p > 0insuch away thatk* = 1 —2pa+p>C? < 1(i.e.,0 < p < 2a/C?)
we find that S has a unique fixed point.”

Assume now that the form a(u, v) is also symmetric. Then a(u, v) defines a new
scalar product on H; the corresponding norm a(u, u)'/? is equivalent to the original
norm |u|. It follows that H is also a Hilbert space for this new scalar product. Using
the Riesz—Fréchet theorem we may now represent the functional ¢ through the new
scalar product, i.e., there exists some unique element g € H such that

(p,v) =a(g,v) VveH.
Problem (10) amounts to finding some u € K such that
(16) a(g—u,v—u) <0 Vvek.

The solution of (16) is an old friend: u is simply the projection onto K of g for the
new scalar product a. We also know (by Theorem 5.2) that u is the unique element
K that achieves

2 If one has to compute the fixed point numerically, it pays to choose p = &/ C? in order to minimize
k and to accelerate the convergence of the iterates of S.
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mina(g — v, g — v)l/z.
vek

This amounts to minimizing on K the function

vi>a(@—v,g—v) =a(v,v)—2a(g,v)+alg, g =a(,v)—2e,v)+a(g, g,

or equivalently the function
1
V= za(v, v) — (@, v).
Remark 6. It is easy to check that if a(u, v) is a bilinear form with the property
a(v,v) >0 Yve H

then the function v — a(v, v) is convex.

e Corollary 5.8 (Lax-Milgram). Assume that a(u, v) is a continuous coercive bi-
linear form on H. Then, given any ¢ € H*, there exists a unique element u € H
such that

amn a(u,v) = (p,v) YveH.

Moreover, if a is symmetric, then u is characterized by the property

(18) ueH and %a(u,u)—(go,u) =£1éi1{11{%a(v, v) — (@, v)}.

Proof. Use Theorem 5.6 with K = H and argue as in the proof of Corollary 5.4.

Remark 7. The Lax—Milgram theorem is a very simple and efficient tool for solving
linear elliptic partial differential equations (see Chapters 8 and 9). It is interesting
to note the connection between equation (17) and the minimization problem (18).
When such questions arise in mechanics or in physics they often have a natural
interpretation: least action principle, minimization of the energy, etc. In the language
of the calculus of variations one says that (17) is the Euler equation associated with
the minimization problem (18). Roughly speaking, (17) says that “F’(u) = 0,” where
F is the function F (v) = %a(v, v) — (@, V).

Remark 8. There is a direct and elementary argument proving that (17) has a unique
solution. Indeed, this amounts to showing that

VfeH 3Jue H unique suchthat Au = f,

i.e., A is bijective from H onto H. This is a trivial consequence of the following
facts:

(a) A is injective (since A is coercive),
(b) R(A) is closed, since «|v| < |Av| Yv € H (a consequence of the coerciveness),
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(c) R(A) is dense; indeed, suppose v € H satisfies
(Au,v) =0 Yu€eH,

then v = 0.

5.4 Hilbert Sums. Orthonormal Bases

Definition. Let (E,),> be a sequence of closed subspaces of H. One says that H
is the Hilbert sum of the E,’s and one writes H = @, E,, if

(a) the spaces E, are mutually orthogonal, i.e.,

(u,v)=0 VYuek,, VYveE, m#n,

(b) the linear space spanned by | o | E, is dense in H 3

o Theorem 5.9. Assume that H is the Hilbert sum of the E,,’s. Givenu € H, set
up, = Pg,u
and

n
S, = Z Up.
k=1

Then we have

19) Iim S, =u
n—0oo
and
oo
(20) Z |uk|2 = |u|2 (Bessel—Parseval’s identity).
k=1

It is convenient to use the following lemma.

Lemma 5.1. Assume that (vy,) is any sequence in H such that

(21 (Um,vn) =0 Vm #n,
o

(22) > Il < oo.
k=1

Set

3 The linear space spanned by the E,’s is understood in the algebraic sense, i.e., finite linear
combinations of elements belonging to the spaces (Ej,).
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Then
S= lim S, exists
n—oo
and, moreover,

o]

(23) NEE

k=1

Proof of Lemma 5.1. Note that for m > n we have

m
1S = Sul> = Y lwel.

k=n+1
It follows that S,, is a Cauchy sequence and thus S = lim,,_, o, S, exists. On the other

hand, we have
n

1Sa> = el

k=1
As n — oo we obtain (23).

Proof of Theorem 5.9. Since u, = Pg,u, we have (by (8))
(24) (u—u,,v)=0 VvekE,

and in particular,
2
(u, un) = |unl”.

Adding these equalities, we find that

n
. S) =Y lug]*.
k=1

But we also have
n
(25) D ol = 1841,
k=1

and thus we obtain
@, Sp) =S

It follows that |S,,| < |u| and therefore Y 7_; |ux|> < |ul?.

Hence, we may apply Lemma 5.1 and conclude that § = lim,— o S, exists. Let
us identify S even without assumption (b). Let F be the linear space spanned by the
E,’s. We claim that



5.4 Hilbert Sums. Orthonormal Bases 143
(26) S = Pgu.
Indeed, we have
(u—S,,v)=0 Yve E,, m=<n
(Gust write u — S, = (u — uyy) — Zk#m ur). As n — oo we obtain
(u—S,v)=0 YvekE,, Vm
and thus
u—S,v)=0 VveeF,

which implies that B
(u—S,v)=0 VveF.

On the other hand_, S, € F Vn, and at the limit S € F. This proves (26). Of course,
if (b) holds, then F = H and thus S = u. Passing to the limit as n — o0 in (25) we
obtain (20).

Definition. A sequence (e,),>1 in H is said to be an orthonormal basis of H (or
a Hilbert basis* or simply a basis when there is no confusion)’ if it satisfies the
following properties:

(i) lex| = 1Vn and (e, e,) = 0Vm # n,
(ii) the linear space spanned by the ¢,’s is dense in H.

e Corollary 5.10. Let (e;,) be an orthonormal basis. Then for every u € H, we have

o n
U= Z(u, er)er, iLe,u= lim Z(u, er)ex
k=1 T

and
o
2 2
ul? =" I, en).
k=1
Conversely, given any sequence (a,) € €2, the series Z,til ey converges to some
element u € H such that (u, ex) = o Vk and |u|? = Z,fozl oz,%.

Proof. Note that H is the Hilbert sum of the spaces E, = Re, and that Pg,u =
(u, ep)ey,. Use Theorem 5.9 and Lemma 5.1.

Remark 9. In general, the series Y_ uy in Theorem 5.9 and the series > (u, ex)eg in
Corollary 5.10 are not absolutely convergent, i.e., it may happen that > ;- | |ux| = oo
or that Y po | |(u, ex)| = o0.

e Theorem 5.11. Every separable Hilbert space has an orthonormal basis.

4 Not to be confused with an algebraic (= Hamel) basis, which is a family (e;);e; in H such that
every u € H can be uniquely written as a finite linear combination of the e;’s (see Exercise 1.5).

3 Some authors say that (e,) is a complete orthonormal system.
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Proof. Let (v,) be a countable dense subset of H. Let F; denote the linear space
spanned by {vy, vy, .. ., vg}. The sequence (Fy) is a nondecreasing sequence of finite-
dimensional spaces such that U,fi 1 Fr is dense in H. Pick any unit vector e; in Fj.
If F» # F there is some vector e; in F> such that {e;, e;} is an orthonormal basis
of F». Repeating the same construction, one obtains an orthonormal basis of H.

Remark 10. Theorem 5.11 combined with Corollary 5.10 shows that all separable
Hilbert spaces are isomorphic and isometric with the space ¢2. Despite this seemingly
spectacular result it is still very important to consider other Hilbert spaces such as
L2(2) (or the Sobolev space H 1(Q), etc.). The reason is that many nice linear (or
nonlinear) operators may look dreadful when they are written in a basis.

Remark 11. If H is a nonseparable Hilbert space—a rather unusual situation—one
may still prove (with the help of Zorn’s lemma) the existence of an uncountable or-
thonormal basis (e;);<y; see, e.g., W. Rudin [2], A. E. Taylor-D. C. Lay [1], G. B. Fol-
land [2], G. Choquet [1].

Comments on Chapter 5

1. Characterization of Hilbert spaces.

It is sometimes useful to know whether a given norm || || on a vector space E
is a Hilbert norm, i.e., whether there exists a scalar product (, ) on E such that
lull = (u, u)1/2 Yu € E. Various criteria are known:

(a) Theorem 5.12 (Fréchet-von Neumann-Jordan). Assume that the norm || ||
satisfies the parallelogram law (1). Then | || is a Hilbert norm.
For a proof see K. Yosida [1] or Exercise 5.1.

(b) Theorem 5.13 (Kakutani [1]). Assume that E is a normed space with dim E >
3. Assume that every subspace F of dimension 2 has a projection operator of
norm 1 (i.e., there exists a bounded linear projection operator P : E — F such
that Pu=u¥u € F and |P|| < 1).% Then || || is a Hilbert norm.

(c) Theorem 5.14 (de Figueiredo—Karlovitz [1]). Let E be a normed space with
dim E > 3. Consider the radial projection on the unit ball, i.e.,

u ifllull =1,
u =
wf/llull if el > 1.

Assume’ that

6 Let us point out that every subspace of dimension 1 has always a projection operator of norm 1.
(Use Hahn—Banach.)

7 One can show that in an arbitrary normed space, T satisfies
|1 Tu —Tv|| <2 |lu—v|| Vu,veE

and the constant 2 cannot be improved; see Exercise 5.6.
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| Tu — Tv|| < |lu—v| Yu,veeE.
Then || || is a Hilbert norm.
Finally, let us recall a result that has already been mentioned (Remark 2.8).

(d) Theorem 5.15 (Lindenstrauss—Tzafriri [1]). Assume that E is a Banach space
such that every closed subspace has a complement.® Then E is Hilbertizable,
i.e., there exists an equivalent Hilbert norm.

2. Variational inequalities.

Stampacchia’s theorem is the starting point of the theory of variational inequalities
(see, e.g., D. Kinderlehrer—G. Stampacchia [1]), which has numerous applications
in mechanics and in physics (see, e.g., G. Duvaut-J. L. Lions [1]), in free boundary
value problems (see, e.g., C. Baiocchi—A. Capelo [1] and A. Friedman [4]), in op-
timal control (see, e.g., J.-L. Lions [2] and V. Barbu [2]), in stochastic control (see
A. Bensoussan-J.-L. Lions [1]).

3. Nonlinear equations associated with monotone operators.
The theorems of Stampacchia and Lax—Milgram extend to some classes of nonlinear
operators. Let us mention the following, for example.

Theorem 5.16 (Minty—-Browder). Let E be a reflexive Banach space. Let A : E —
E* be a continuous nonlinear map such that

(Avi — Avg, v —2) >0 Vv, n € E, v # vy,

and
(Av, v)

im
lvl—oo  [lv]|

Then for every f € E* there exists a unique solution u € E of the equation Au = f.

The interested reader will find in F. Browder [1] and J.-L. Lions [3] a proof of
Theorem 5.16 as well as many extensions and applications; see also Problem 31.

4. Special orthonormal bases. Fourier series. Wavelets.

In Chapter 6 we shall present a very powerful technique for constructing orthonor-
mal bases, namely by taking the eigenvectors of a compact self-adjoint operator. In
practice one very often uses special bases of L?(£2) that consist of eigenfunctions of
differential operators (see Sections 8.6 and 9.8). The orthonormal basis on LZ(O, )
defined by

en(x) =/2/wsinnx,n>1, or e,(x)=+/2/mcosnx,n >0,

is quite beloved, since it leads to Fourier series and harmonic analysis, a major field
in its own right; see, e.g., J. M. Ash [1], H. Dym-H. P. McKean [1], Y. Katznelson
[1], C. S. Rees—S. M. Shah—C. V. Stanojevic [1].

8 It is equivalent to say that every closed subspace has a bounded projection operator P. Note that
here—in contrast to Theorem 5.13—we do not assume that || P|| < 1.
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Here is a question that puzzled analysts for decades. Givenu € L?(0, ), consider
its Fourier series S;,, = ZZ: 1(u, ex)er. One knows (see Corollary 5.10) that S, — u
in L2(0, 7). It follows that a subsequence S,, — u a.e.on (0, w) (see Theorem 4.9).
But can one say that the full sequence S, — u a.e. on (0, 7)? The answer is given
by the following very deep result:

Theorem 5.17 (Carleson [1]). Ifu € LZ(O, ) then S, — u a.e.

Other classical bases of L2(0, 1) or L2(R) are associated with the names of Bessel,
Legendre, Hermite, Laguerre, Chebyshev, Jacobi, etc. We refer the interested reader to
R. Courant-D. Hilbert [1], Volume 1, and R. Dautray-J.-L. Lions [1], Chapter VIII,
see also the comments at the end of Chapter 8 (spectral properties of the Sturm—
Liouville operator). Recently, there has also been much interest in the Haar and the
Walsh bases of L2(0, 1), which consist of step functions; see, e.g., Exercises 5.31,
5.32, G. Alexits [1], H. F. Harmuth [1].

The theory of wavelets provides a very important and beautiful new type of bases.
It is a powerful tool in decomposing functions, signals, speech, images, etc. The
interested reader may consult the recent books of Y. Meyer [1], [2], [3], R. Coifman
and Y. Meyer [1], 1. Daubechies [1], G. David [1], C. K. Chui [1], M. B. Ruskai et
al. [1], J. J. Benedetto-M. W. Frazier [1], G. Kaiser [1], J. P. Kahane—P. G. Lemarié-
Rieusset [1], S. Mallat [1], G. Bachman-L. Narici—E. Beckenstein [1], T. F. Chan—
J. Shen [1], P. Wojtaszczyk [1], E. Hernandez—G. Weiss [1], and their references.

5. Schauder bases in Banach spaces.

Let E be a Banach space. A sequence (e;),>1 is said to be a Schauder basis if for
every u € E there exists a unique sequence (¢, ),>1 in R such that u = Z,fil ek
(i.e., u = limy_00 ) j_; kex). Such bases play an important role in the geometry
of Banach spaces (see, e.g., B. Beauzamy [1], J. Lindenstrauss—L. Tzafriri [2], J. Di-
estel [2], R. C. James [2]). All classical (separable) Banach spaces used in analysis
have a Schauder basis (see, e.g., I. Singer [1]). This fact led Banach to conjecture
that every separable Banach space has a basis. After a few decades of unavailing
efforts a counterexample was discovered by P. Enflo [1]. One can even construct
closed subspaces of £” (with 1 < p < oo, p # 2) without a Schauder basis (see
J. Lindenstrauss—L. Tzafriri [2]). A. Szankowski [1] has found another surprising
example: .Z(H) (with its usual norm) has no Schauder basis when H is an infinite-
dimensional separable Hilbert space. In Chapter 6 we shall see that a related problem
for compact operators also has a negative answer.

Exercises for Chapter 5

In what follows, H will always denote a Hilbert space equipped with the scalar
product (, ) and the corresponding norm | |.

The parallelogram law.
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Suppose E is a vector space equipped withanorm || | satisfying the parallelogram
law, i.e.,
la +bII> + lla = bII* = 2(lall* + 16I1*)  Va,b € E.

Our purpose is to show that the quantity defined by
1 2 2 2
(u,v) = E(Ilu +ull® = flull® —llvllI*) u,veeE,

is a scalar product such that (u, u) = ||u 2.

1. Check that
(u,v) = (v,u), (—u,v) = —(u, v) and (u, 2v) = 2(u,v) Vu,v € E.

2. Prove that
(u+v,w)=w,w)+ (v,w) Vu,v,w e E.

[Hint: Use the parallelogram law successively with (i) ¢ = u, b = v; (ii)) a =
u+w,b=v+w,and(ii)a=u+v+w,b =w.]

3. Prove that (Au, v) = A(u,v) VA € R, Yu,v € E.
[Hint: Consider first the case A € N, then A € Q, and finally A € R.]

4. Conclude.

L? is not a Hilbert space for p # 2.

Let 2 be a measure space and assume that there exists a measurable set A C Q
such that 0 < |A| < |2].
Prove that the || ||, norm does not satisfy the parallelogram law forany 1 < p <

o, p # 2.
[Hint: Use functions with disjoint supports.]

Let (u#,) be a sequence in H and let (z,) be a sequence in (0, co) such that

(tnl/tn — Uy, Uy — Mm) < 0 Vm, n.

1. Assume that the sequence (#,) is nondecreasing (possibly unbounded). Prove
that the sequence (u,) converges.
[Hint: Show that the sequence (|u,|) is nonincreasing.]

2. Assume that the sequence (#,) is nonincreasing. Prove that the following alter-
native holds:

(i) either |u,| — oo,
(ii) or (u,) converges.

Ift, — t > 0, prove that (u,) converges, and if #,, — 0, prove that both cases
(i) and (ii) may occur.

Let K C H be a nonempty closed convex set. Let f € H and letu = Pk f.
Prove that
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v—ul* <lv—fI*—|u—fI* VveKk.

Deduce that
lv—u| <lv—f| VYveKk.

Give a geometric interpretation.

1. Let (K,) be a nonincreasing sequence of closed convex sets in H such that
Np K, # 9.
Prove that for every f € H the sequence u, = Pk, f converges (strongly) to a
limit and identify the limit.

2. Let (K,) be a nondecreasing sequence of nonempty closed convex sets in H.

Prove that for every f € H the sequence u, = Pk, f converges (strongly) to a
limit and identify the limit.

Let ¢ : H — R be a continuous function that is bounded from below. Prove that
the sequence «;,, = infk, ¢ converges and identify the limit.

The radial projection onto the unit ball.
Let E be a vector space equipped with the norm || ||.
Set
u if fJull = 1,

u = .
ufllull i flufl > 1.

1. Prove that ||Tu — Tv| <2|lu —v| Yu,v € E.

2. Show that in general, the constant 2 cannot be improved.
[Hint: Take E = R? with the norm ||u|| = |u1| + |u2].]

3. What happens if || || is a Hilbert norm?

Projection onto a convex cone.
Let K C H be a convex cone with vertex at 0, i.e.,

0eK and Au+puveK VA, u>0, VuveKk;

assume in addition that K is closed.
Given f € H, prove that u = Pk f is characterized by the following properties:

uek, (f—u,v) <0 VYveK and (f—u,u)=0.

Let 2 be a measure space and let 2 : Q — [0, +00) be a measurable function.
Let
K ={uecLl?*Q); |ux)|<h(x)ae. onS}.

Check that K is a nonempty closed convex set in H = L?(2). Determine Pk .

Let A C H and B C H be two nonempty closed convex set suchthat ANB =
and B is bounded.
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Set
C=A-B.

1. Show that C is closed and convex.

2. Setu = Pc0and write u = aog— b for some ap € A and by € B (this is possible
since u € C).
Prove that |ag — bg| = dist(A, B) = infyca pep la — b|.
Determine P4bg and Pgag.

3. Suppose a; € A and by € B is another pair such that |a; — b1| = dist(A, B).
Prove that u = a; — b;.
Draw some pictures where the pair [ag, bg] is unique (resp. nonunique).

4. Find a simple proof of the Hahn—Banach theorem, second geometric form, in
the case of a Hilbert space.

Let F : H — R be a convex function of class C!. Let K C H be convex and
let u € H. Show that the following properties are equivalent:

(i) Fu) < F(v) YveKk,
(i) (F'(u),v—u)>0 VYveKk.

Example: F(v) = |v — f|> with f € H given.

Let M C H be a closed linear subspace that is not reduced to {0}. Let
feH, f¢M*

1. Prove that
m = ;2{4(1‘, u)
lu[=1
is uniquely achieved.

2. Let ¢1,¢92,93 € H be given and let E denote the linear space spanned by
{01, ¥2, @3}. Determine m in the following cases:

(i) M=E,
(i) M = E*L.

3. Examine the case in which H = L?(0, 1), ¢1(t) =1, ¢2(t) = 1%, and @3(t) = £°.

Completion of a pre-Hilbert space.

Let E be a vector space equipped with the scalar product (, ). One does not
assume that E is complete for the norm |u| = (u, u) 1/2 (E is said to be a pre-Hilbert
space).

Recall that the dual space E*, equipped with the dual norm || f|| g+, is complete.
Let T : E — E* be the map defined by

(Tu,v)g«~g = (u,v) VYu,vekE.

Check that T is a linear isometry. Is T' surjective?
Our purpose is to show that R(T) is dense in E* and that || || g~ is a Hilbert norm.
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1. Transfer to R(T) the scalar product of E and extend it to R(T). The resulting
scalar product is denoted by ((f, g)) with f, g € R(T).
Check that the corresponding norm (( f, f )/2 coincides on R(T) with || f|| £+
Prove that

(fvy=Wf,Tv)) YveE, VfeR(T).

2. Prove that R(T) = E™.
[Hint: Given f € E™, transfer f to a linear functional on R(7T') and use the
Riesz—Fréchet representation theorem in R(7').]
Deduce that E* is a Hilbert space for the norm || || g+.

3. Conclude that the completion of E can be identified with E*. (For the definition
of the completion see, e.g., A. Friedman [3].)

Let E be a vector space equipped with the norm || ||g. The dual norm is
denoted by || || g+. Recall that the (multivalued) duality map is defined by

Fu)={f € E* IIflle = lullg and (£, u) = ul%}.

1. Assume that F satisfies the following property:
Fu)+ Fw) C Flu+v) Vu,vekE.

Prove that the norm || || g arises from a scalar product.
[Hint: Use Exercise 5.1.]
2. Conversely, if the norm || ||g arises from a scalar product, what can one say
about F'?
[Hint: Use Exercise 5.12 and 1.1.]

Leta : H x H — R be a bilinear continuous form such that
a(v,v) >0 YveH.

Prove that the function v — F(v) = a(v, v) is convex, of class C ! and determine
its differential.

Let G C H be alinear subspace of a Hilbert space H; G is equipped with the
norm of H. Let F be a Banach space. Let S : G — F be a bounded linear operator.

Prove that there exists a bounded linear operator 7 : H — F that extends S and
such that

H T ”z(H,F) = ” S”.ﬁf(G,F)'

The triplet V. C H C V*.

Let H be a Hilbert space equipped with the scalar product (, ) and the corre-
sponding norm | |. Let V C H be a linear subspace that is dense in V. Assume that
V has its own norm || || and that V is a Banach space for || ||. Assume also that the
injection V. C H is continuous, i.e., [v| < C|v|| Yv € V. Consider the operator
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T : H — V* defined by
(Tu,v)y»v = m,v) Yue H, VYveV.

Prove that ||Tul|y~ < Clu| Vu € H.

Prove that T is injective.

Prove that R(T) is dense in V* if V is reflexive.

Given f € V*, prove that f € R(T) iff there is a constant @ > 0 such that
I(f,v)vs vl = alv|Vve V.

el NS

Let M, N C H be two closed linear subspaces.
Assume that (u, v) = 0Vu € M, Vv € N. Prove that M + N is closed.

Let E be a Banach space and let H be a Hilbert space. Let T € Z(E, H).
Show that the following properties are equivalent:

(i) T admits a left inverse,
(ii) there exists a constant C such that ||u|| < C|Tu|VYu € E.

Let (u#,) be a sequence in H such that u, — wu weakly. Assume that
lim sup |u,| < |u|. Prove that u, — u strongly without relying on Proposition 3.32.

Assume that S € .Z(H) satisfies (Su,u) > 0Vu € H.

1. Prove that N(S) = R(S)" .
2. Prove that I 4 ¢S is bijective for every ¢ > 0.
3. Prove that

lim (I +18)"'f = Py f VfeH.
t——+00
[Hint: Two methods are possible:

(a) Consider the cases f € N(S) and f € R(S).
(b) Use weak convergence.]

Iterates of linear contractions. The ergodic theorem of Kakutani—Yosida.
Let T € Z(H) be such that ||T|| < 1. Given f € H and given an integer
n>1,set

on(f) = %(er Tf+T*f+---+T"'f)

I+T\"
/Ln(f)=<T) i

Our purpose is to show that
lim 0, (f) = lm p,(f) = Pna-1)f-
n—oo n—oo

1. Check that N(I —T) = R(I — T)*.
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2. Assumethat f € R(I—T).Prove thatthere exists a constant C such that |o;, (f)| <
C/nVn > 1.
3. Deduce that for every f € H, one has

lim 0,(f) = Pya-1) f-
n—oo

1
4, Set § = 5([ + T). Prove that

(1) lu — Sul> +|Sul® < |ul®> VYueH.

Deduce that
Z|S‘ — St <u? YueH

and that
|ue]

Jn+1

5. Assume that f € R(I — T). Prove that there exists a constant C such that

ln ()l < C//nV¥n > 1.
6. Deduce that for every f € H, one has

|S"(u — Su)| < Yue H Vn>1.

lim w,(f) = Pna-1)f-
n— 00

Let C C H be a nonempty closed convex set and let T : C — C be a
nonlinear contraction, i.e.,

[Tu —Tv| <|lu—v| Vu,veC.
1. Let (u,) be a sequence in C such that
u, — u weakly and (u, — Tu,) — f strongly.

Prove thatu — Tu = f.
[Hint: Start with the case C = H and use the inequality (u —Tu) —(v—Tv), u —
v) > 0Vu,v.]
2. Deduce that if C is bounded and 7' (C) C C, then T has a fixed point.
[Hint: Consider Ty = (1—¢)Tu+ea witha € C being fixedande > 0, ¢ — 0.]

Zarantonello’s inequality.

Let T : H — H be a (nonlinear) contraction. Assume that o1, o3, ..., a, € R
are such that ; > 0 Vi and Z?:l o; = 1. Assume that uq, uo, ..., u, € H and set

n
g = E oiUj.
i=1
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Prove that

n
To — ZaiTu,-
i=1

[Hint: Write

2 n

1
< E ,Zlaiaj[Wi —Ltj|2 —|Tu; — Tuj|21|.
ij=

2 n
= Z ajoj(To —Tu;, To —Tuj)
i,j=1

n
To — ZaiTu,-
i=1

and use the identity (a, b) = (|a|* + |b> — |a — b[?).]
What can one deduce when T is anisometry (i.e., |Tu—Tv| = |[u—v|Vu,v € H)?

The Banach—Saks property.

1. Assume that (u,) is a sequence in H such that u,, — 0 weakly. Construct by
induction a subsequence (un,.) such that u,, = u; and

Vk>2andVj=1,2,...,k—1.

1=

|(unj’unk)| <

Deduce that the sequence (o)) defined by o, = % Zle up; converges strongly
to0as p — oo.
[Hint: Estimate |o,,|2.]

2. Assume that (u,) is a bounded sequence in H. Prove that there exists a subse-
quence (up;) such that the sequence o), = % 5.’: | Un; converges strongly to a
limit as p — oo.

Compare with Corollary 3.8 and Exercise 3.4.

Variations on Opial’s lemma.

Let K C H be a nonempty closed convex set. Let (u,,) be a sequence in H such
that for each v € K the sequence (|u;,, — v|) is nonincreasing.

1. Check that the sequence (dist(u,, K)) is nonincreasing.

2. Prove that the sequence (Pgu,) converges strongly to a limit, denoted by .
[Hint: Use Exercise 5.4.]

3. Assume here that the sequence (u,,) satisfies the property

P) Whenever a subsequence (u,,) converges weakly

to some limitu € H,thenu € K.

Prove that u,, — ¢ weakly.

4. Assume here that | J, _yA(K — K) = H. Prove that there exists some u € H such
that u,, — u weakly and Pxu = £.

5. Assume here that Int K 7 (). Prove that there exists some u € H suchthatu, — u
strongly.
[Hint: Consider first the case that K is the unit ball and then the general case.]
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6. Set 0, = %(ul + uy + --- 4+ up) and assume that the sequence (o,) satisfies
property (P). Prove that o,, — ¢ weakly.

Assume that (e,,) is an orthonormal basis of H.

1. Check that e, — 0 weakly.

Let (a,) be a bounded sequence in R and set u,, = % Z?:] a;e;.
2. Prove that |u,| — 0.
3. Prove that \/n u,, — 0 weakly.

Let D C H be asubset such that the linear space spanned by D is dense in H.
Let (En)n>1 be a sequence of closed subspaces in H that are mutually orthogonal.

Assume that
o0

> |Peul* = [ul* Yu e D.
n=1

Prove that H is the Hilbert sum of the E,,’s.

Assume that H is separable.

1. Let V C H be a linear subspace that is dense in H. Prove that V contains an
orthonormal basis of H.

2. Let (e;)n>1 be an orthonormal sequence in H, i.e., (¢;, ) = §;;. Prove that there
exists an orthonormal basis of H that contains Ui’;l {en}.

A lemma of Grothendieck.

Let 2 be ameasure space with | 2| < co. Let E be aclosed subspace of L? (£2) with
1 < p < o0o. Assume that E C L*°(€2). Our purpose is to prove that dim E < 0.

1. Prove that there exists a constant C such that

lulloo < Cllull, Vu € E.

[Hint: Use Corollary 2.8.]
2. Prove that there exists a constant M such that

lulloo < Mllull2 Vu € E.

[Hint: Distinguish the cases 1 < p <2and2 < p < 00.]
3. Deduce that E is a closed subspace of L3(R).

In what follows we assume that dim £ = oo. Let (e,),>1 be an orthonormal
sequence of E (equipped with the L? scalar product).

4. Fix any integer k > 1. Prove that there exists a null set w C €2 such that

1/2

k k
Zaiei(x) <M (Zalz) Vx € Q\w, Yo = (a1,x3,...,0) € Rk,

i=1 i=1
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[Hint: Start with the case o € Q]
5. Deduce that Y"¥_ |e;(x)[> < M? Vx € Q\w.
6. Conclude.

Let (e,)n>1 be an orthonormal sequence in H = L?(0,1).Let p(t) bea given
function in H.

1. Prove that for every ¢ € [0, 1], one has

e e]

1) >

n=1

2 t
< /0 |p(s)2ds.

t
/ p(s)en(s)ds
0

2. Deduce that

x 1 t
) > / ' / p(s)en(s)ds
n=1 0 0

3. Assume now that (e;),>1 is an orthonormal basis of H.
Prove that (1) and (2) become equalities.

4. Conversely, assume that equality holds in (2) and that p(¢) # 0 a.e. Prove that
(en)n>1 is an orthonormal basis.

2 1
dr 5/ pOP = 1ydr.
0

Example: p = 1.

The Haar basis.

Given an integer n > 1, write n = k 4+ 27, where p > 0 and k > 0 are integers
uniquely determined by the condition k < 27 — 1. Consider the function defined on
(0, 1) by

1
2r/2 if k277 <t < (k+ E)2—1’,
_ 1
o) =13 _2r/2  if (k4 P2 <t <k+D277,
0 elsewhere.

Set ¢p = 1 and prove that (¢,,),>0 is an orthonormal basis of L2(0, 1).

The Rademacher system and the Walsh basis.
For_every integer i > 0 consider the function r;(¢) defined on (0, 1) by r;(¢) =
(—1)[21’ 1 (as usual [x] denotes the largest integer < x).

1. Check that (r;);>0 is an orthonormal sequence in L2(0, 1) (called the Rademacher
system).

2. Is (ri)i>0 an orthonormal basis?
[Hint: Consider the function u = ryr;.]

3. Given an integer n > 0, consider its binary representation n = Zf:o ;2" with
a; € {0, 1}.
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Set
¢

wy (1) = Hri+1(f)°”'

i=0

Prove that (w,),>0 is an orthonormal basis of L2(0, 1) (called the Walsh basis).
Note that (r;);>0 is a subset of (wy),>0.



Chapter 6

Compact Operators. Spectral Decomposition of
Self-Adjoint Compact Operators

6.1 Definitions. Elementary Properties. Adjoint

Throughout this chapter, and unless otherwise specified, E and F denote two Banach
spaces.

Definition. A bounded operator T € L(E, F) is said to be compact if T (BEg) has
compact closure in F (in the strong topology).

The set of all compact operators from E into F is denoted by KC(E, F). For
simplicity one writes JC(E) = K(E, E).

Theorem 6.1. The set IC(E, F) is a closed linear subspace of L(E, F) (in the topol-
ogy associated to the norm || | c(g,F))-

Proof. Clearly the sum of two compact operators is a compact operator. Suppose
that (7;,) is a sequence of compact operators and 7 is a bounded operator such that
1T, — Tz, 7y — 0. We claim that T is a compact operator. Since F' is complete
it suffices to check that for every ¢ > 0 there is a finite covering of T (Bg) with
balls of radius ¢ (see, e.g., J. R. Munkres [1], Section 7.3). Fix an integer n such that
T, — Tz, Fy < €/2.Since T, (Bg) has compact closure, there is a finite covering
of T,,(Bg) by balls of radius /2, say T,,(Bg) C UJ;¢;B(fi,€e/2). It follows that

T(Bg) C Ujer B(fis ©).

Definition. An operator T € L(E, F) is said to be of finite rank if the range of T,
R(T), is finite-dimensional.

Clearly, any finite-rank operator is compact and thus we have the following.

Corollary 6.2. Let (T,)) be a sequence of finite-rank operators and let T € L(E, F)
be such that | T, — T |lce. ) = 0. Then T € K(E, F).

* Remark 1. The celebrated “approximation problem” (Banach, Grothendieck) deals

with the converse of Corollary 6.2: given a compact operator T does there always
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exist a sequence (7;,) of finite-rank operators such that |7, — T||z(g,r) — 0? The
question was open for a long time until P. Enflo [1] discovered a counterexample
in 1972. The original construction was quite complicated, and subsequently simpler
examples were found, for example, with F being some closed subspace of ¢ (for
any | < p < 0o, p # 2). The interested reader will find a detailed discussion of
the approximation problem in J. Lindenstrauss—L. Tzafriri [2]. Note that the answer
to the approximation problem is positive in some special cases—for example if F
is a Hilbert space. Indeed, set K = T (Bg). Given ¢ > 0 there is a finite covering
of K with balls of radius ¢, say K C (J;c;B(f;, €). Let G denote the vector space
spanned by the f;’s and set T, = PgT, so that T is of finite rank. We claim that
ITe — Tllze,Fy < 2¢. For every x € Bg there is some i € I such that

(D ITx — fioll <e.
Thus

|PcTx — PG fiyll < e,
that is,
(@) | PcTx — fill <e.

Combining (1) and (2), one obtains
|PcTx —Tx|| <2 Vx € Bg,

that is,
1T — Tz, Fy < 2e.

[More generally, one sees that if F' has a Schauder basis, then the answer to the
approximation problem is positive for every space E and every compact operator
from E into F'.]

In connection with the approximation problem, let us mention a technique that
is very useful in nonlinear analysis to approximate a continuous map (linear or
nonlinear) by nonlinear maps of finite rank. Let X be a topological space, let F
be a Banach space, and let T : X — F be a continuous map such that 7 (X) has
compact closure in F. We claim that for every ¢ > 0 there exists a continuous map
T : X — F of finite rank such that

3) ITe(x) = Tx)|| <& VxeX.

Indeed, since K = T(X) is compact there is a finite covering of K, say K C

Ui B(fi, €/2). Set

> ogi(x) fi

T.x) =L
0 > qi(x)

iel

with g; (x) = max{e — ||Tx — f;|l, 0};



6.2 The Riesz—Fredholm Theory 159

clearly T satisfies (3).

This kind of approximation is very useful, for example, to deduce Schauder’s
fixed-point theorem from Brouwer’s fixed-point theorem (see, e.g., K. Deimling [1],
A. Granas—J. Dugundji [1], J. Franklin [1], and Exercise 6.26). A similar construction,
combined with the Schauder fixed-point theorem, has also been used in a surprising
way by Lomonosov to prove the existence of nontrivial invariant subspaces for a
large class of linear operators (see, e.g., C. Pearcy [1], N. Akhiezer-I. Glazman [1],
A. Granas—J. Dugundji [1], and Problem 42). Another linear result that has a simple
proof based on the Schauder fixed-point theorem is the Krein—Rutman theorem (see
Theorem 6.13 and Problem 41).

Proposition 6.3. Let E, F, and G be three Banach spaces. Let T € L(E, F) and
Sek(F, G)[resp. T € K(E, F)yand S € L(F, G)]. Then So T € K(E, G).

The proof is obvious.
Theorem 6.4 (Schauder). If T € K(E, F), then T* € IC(F*, E*). And conversely.

Proof. We have to show that T*(Bp~) has compact closure in E*. Let (v,) be a
sequence in Bps. We claim that (7*(v,)) has a convergent subsequence. Set K =
T (BE); this is a compact metric space. Consider the set H C C(K) defined by

H={p,:x € K+ (v,,x);n=1,2,...}.

The assumptions of Ascoli-Arzela’s theorem (Theorem 4.25) are satisfied. Thus,
there is a subsequence, denoted by ¢y, , that converges uniformly on K to some
continuous function ¢ € C(K). In particular, we have

sup |(vnk, Tu) — (p(Tu)| —> 0.
ueBg k—o00
Thus
sup |(vny, Tu) = (vn,, Tu)| — 0,
ueBg k,0— 00

ie, 1T vy, — T v, ll g+ k—) 0. Consequently T*v,,, converges in E*.
JHL—00

Conversely, assume T* € JC(F*, E*). We already know, from the first part,
that 7** € KC(E**, F**). In particular, T**(Bg) has compact closure in F**. But
T(Bg) = T*™(BEg) and F is closed in F**. Therefore T (Bg) has compact closure
in F.

Remark 2. Let E and F be two Banach spacesandlet T € K(E, F).If (u,) converges
weakly to u in E, then (Tu,) converges strongly to Tu. The converse is also true if
E is reflexive (see Exercise 6.7).

6.2 The Riesz—Fredholm Theory

We start with some useful preliminary results.
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Lemma 6.1 (Riesz’s lemma). Let E be an n.v.s. and let M C E be a closed linear
space such that M # E. Then

Ve > 0 Ju € E such that ||u|| = 1 and dist(u, M) > 1 — ¢.
Proof. Letv € E with v ¢ M. Since M is closed, then
d = dist(v, M) > 0.
Choose any my € M such that
d < |lv—moll =d/(1 —e).
Then
_v—myg
lv—moll

satisfies the required properties. Indeed, for every m € M, we have

vV —my >1_¢

lu —m| = ——————mH_—————_
lv—moll llv —moll

since mqg + ||[v — mg|lm € M.

Remark 3. If M is finite-dimensional (or more generally if M is reflexive) one can
choose ¢ = 0 in Lemma 6.1. But this is not true in general (see Exercise 1.17).

e Theorem 6.5 (Riesz). Let E be an n.v.s. with Bg compact. Then E is finite-
dimensional.

Proof. Assume, by contradiction, that E is infinite-dimensional. Then there is a
sequence (E,) of finite-dimensional subspaces of E such that E,_; C E, and
E,_1 # E,. By Lemma 6.1 there is a sequence (u,) with u, € E, such that
llun|l = 1 and dist(u,, E,—1) > 1/2. In particular, ||u, — u,| > 1/2 form < n.
Thus (u5,) has no convergent subsequence, which contradicts the assumption that Bg
is compact.

o Theorem 6.6 (Fredholm alternative). Let T € K(E). Then

(@) N(I — T) is finite-dimensional,

(b) R(I — T) is closed, and more precisely R(I — T) = N(I — T*)*,
NI -T)={0} & R(I—-T)=E,

(ddimN({I —-T)=dimN{ —T%).

Remark 4. The Fredholm alternative deals with the solvability of the equation
u— Tu = f.Itsays that

» either for every f € E the equation u — Tu = f has a unique solution,

* orthehomogeneous equation u —Tu = 0 admits n linearly independent solutions,
and in this case, the inhomogeneous equation u — Tu = f is solvable if and only
if f satisfies n orthogonality conditions, i.e.,
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feNU—-T*:

Remark 5. Property (c) is familiar in finite-dimensional spaces. If dim £ < oo, a
linear operator from E into itself is injective (= one-to-one) if and only if it is
surjective (= onto). However, in infinite-dimensional spaces a bounded operator
may be injective without being surjective and conversely, for example the right shift
(resp. the left shift) in £2 (see Remark 6). Therefore, assertion (c) is a remarkable
property of the operators of the form I — T with T € IC(E).

Proof.

(a) Let Ey = N(I —T).Then Bg, C T(Bg) and thus Bg, is compact. By Theorem
6.5, E1 must be finite-dimensional.

(b) Let f, = u,—Tu, — f.Wehavetoshowthat f € R(I—T).Setd, = dist(u,,
N( — T)). Since N(I — T) is finite-dimensional, there exists v, € N(I — T)
such that d,, = ||lu,, — v,||. We have

4) Jun=@n —v) — T (up — vp).

We claim that ||u;, — v, | remains bounded. Suppose not; then there is a subse-
quence such that [lu,, — vy, || = oo. Setw, = (u, — v,)/|lup — v,||. From (4)
we see that w,, — Tw,, — 0. Choosing a further subsequence (still denoted
by w,, for simplicity), we may assume that Tw,, — z. Thus w,, — z and
z € N(I —T), so that dist(wy,,, N(I — T)) — 0. On the other hand,

dist(uy, N(I — T)) _

len — vnll

dist(wy,, N(I — T)) = 1

(since v, € N(I — T)); a contradiction.

Thus ||lu;, — v, || remains bounded, and since T is a compact operator, we may
extract a subsequence such that 7' (u,, — v,,) converges to some limit £. From
(4) it follows that u,, —v,, — f+4{.Lettingg = f+{,wehaveg—Tg = f,
i.e., f € R(I —T). This completes the proof of the fact that the operator (I — T')
has closed range. We may therefore apply Theorem 2.19 and deduce that

R(I-T)=N(I-T*»*, RU-T*»=NU-T)".
(c) We first prove the implication =. Assume, by contradiction, that
Ei=R(I-T)#E.

Then E; is a Banach space and T'(E1) C Ep. Thus Tjg, € K(E1) and E» =
(I — T)(E)) is a closed subspace of E|. Moreover, E; # E| (since (I — T) is
injective). Letting E,, = (I —T)"(E), we obtain a (strictly) decreasing sequence
of closed subspaces. Using Riesz’s lemma we may construct a sequence (u;,)
such that u, € E,, |lu,|| = 1 and dist(u,, E,+1) > 1/2. We have

Tup —Tupw = —Wuy — Tup) + (W — Tup) + (Up — ).
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Note that if n > m, then E, ;1 C E, C E;,4+1 C E,, and therefore
—(up — Tuy) + (U — Tuy) +uy € Epyy.

Itfollows that | Tu,, — Tuy,| > dist(u,,, Ey+1) > 1/2. This is impossible, since
T is a compact operator. Hence we have proved that R(I — T) = E.
Conversely, assume that R(I — T) = E. By Corollary 2.18 we know that N (I —
T*) = R(I — T)+ = {0}. Since T* € K(E*), we may apply the preceding step
to infer that R(/ — T*) = E*. Using Corollary 2.18 once more, we conclude
that N(I — T) = R(I — T*)+ = {0}.

(d) Setd = dimN(I — T) and d* = dim N(I — T*). We will first prove that
d* < d. Suppose not, that d < d*. Since N(I — T) is finite-dimensional, it
admits a complement in E (see Section 2.4, Example 1). Thus there exists a
continuous projection P from E onto N(/ — T). On the other hand, R(I —T) =
N (I — T*)* has finite codimension d* (see Section 2.4, Example 2) and thus it
has a complement (in E), denoted by F, of dimension d*. Since d < d*, there
is a linear map A : N(I — T) — F that is injective and not surjective. Set
S=T+ Ao P.Then S € K(E), since A o P has finite rank.

We claim that N (I — §) = {0}. Indeed, if

O=u—Su=w—Tu) — (Ao Pu),

then
u—Tu=0 and Ao Pu=0,
i.e.,ue€ N(I —T)and Au = 0. Therefore, u = 0.

Applying (c) to the operator S, we obtain that R(/ — S) = E. This is absurd, since
there exists some f € F with f ¢ R(A), and so the equation u — Su = f has no
solution.

Hence we have proved that d* < d. Applying this fact to 7*, we obtain

dim N(I — T**) <dim N(I — T*) <dim N(I — T).

But N(I — T*) D N(I — T) and therefore d = d*.

6.3 The Spectrum of a Compact Operator

Here are some important definitions.

Definition. Let T € L(E).
The resolvent set, denoted by p(T), is defined by

p(T) = {r € R; (T — AI) is bijective from E onto E}.

The spectrum, denoted by o (T), is the complement of the resolvent set, i.e.,
o(T) = R\p(T). A real number A is said to be an eigenvalue of T if
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N(T — A1) # {0);

N(T — AI) is the corresponding eigenspace. The set of all eigenvalues is denoted
by EV(T).!

It is useful to keep in mind that if A € p(T) then (T — A~ e L(E) (see
Corollary 2.7).

Remark 6. 1t is clear that EV(T) C o(T). In general, this inclusion can be strict:2
there may exist some A such that

N(T —AI)={0} and R(T —Al) #E

(such a A belongs to the spectrum but is not an eigenvalue). Consider, for example,
in E = ¢2 the right shift, i.e., Tu = (0, uy,uz,...) withu = (uy,uz,us3,...).
Then 0 € o(T), while 0 ¢ EV(T). In fact, in this case EV(T) = (J, while
o(T) = [—1, +1] (see Exercise 6.18). It may of course happen, in finite- or infinite-
dimensional spaces, that EV(T) = o(T) = (J; consider, for example, a rotation
by 7/2 in R2, or in £2 the operator Tu = (—up, uy, —ua, us, ...). If we work in
vector spaces over C (see Section 11.4) the situation is fotally different; the study of
eigenvalues and spectra is much more interesting in spaces over C. As is well known,
in finite-dimensional spaces over C, EV(T) = o (T) # { (these are the roots of the
characteristic polynomial). In infinite-dimensional spaces over C a nontrivial result
asserts that o (T) is always nonempty (see Section 11.4). However, it may happen
that EV (T) = ) (take for example the right shift in £ = ¢2).

Proposition 6.7. The spectrum o (T) of a bounded operator T is compact and
o(T) C[=ITIl, +ITI1.

Proof. LetA € Rbesuchthat |A| > ||T||. We will show that T'—A[ is bijective, which
implies that o (T) C [—||T|l, +||T||]. Given f € E, the equation Tu — Au = f has
a unique solution, since it may be written as u = A~ (Tu — f) and the contraction
mapping principle (Theorem 5.7) applies.

We now prove that p(T) is open. Let Ag € p(T). Given A € R (close to Ag) and
f € E, we try to solve

(5) Tu —\u = f.
Equation (5) may be written as

Tu —hou = f+ (A — ro)u,
ie.,

(6) u= (T — D) '[f + (= ro)ul.

I Some authors write 0p(T) (= point spectrum) instead of EV (T).
2 Of course, if E is finite-dimensional, then EV(T) = o (T).
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Applying the contraction mapping principle once more, we see that (6) has a solu-
tion if

A= 2oll(T = 20D 7' < 1.
o Theorem 6.8. Let T € K(E) with dim E = oo, then we have:

(@ 0ea(T),
(b) o (T)\{0} = EV(T)\{0},
(c) one of the following cases holds:

* o(T)={0},
o o (T)\{0} is a finite set,
e o (T)\{0} is a sequence converging to 0.

Proof.

(a) Suppose not, that 0 ¢ o (T). Then T is bijective and / = T o T~! is compact.
Thus Bg is compact and dim E < oo (by Theorem 6.5); a contradiction.

(b) Let A € o(T), A # 0. We shall prove that A is an eigenvalue. Suppose not, that
N(T — AI) = {0}. Then by Theorem 6.6(c), we know that R(T — AI) = E and
therefore A € p(T); a contradiction.

For the proof of assertion (c) we shall use the following lemma.

Lemma 6.2. Let T € K(E) and let (A,),>1 be a sequence of distinct real numbers
such that
An — A

and
An € o (T)\{0} Vn.

Then ). = 0.
In other words, all the points of o (T)\{0} are isolated points.

Proof. We know that A, € EV(T); let e, # 0 be such that (T — X, I)e, = 0. Let
E, be the space spanned by {eq, e, ..., e,}. Weclaim that E,, C E, 11, E;, # En+1
for all n. It suffices to check that for all n, the vectors ey, e3, ..., e, are linearly
independent. The proof is by induction on n. Assume that this holds up to n and
suppose that e,+1 = Y :_; a;je;. Then

n n
Ten+1 = Z()li)\,'e,‘ = Zaiknﬁ-lei-
i=1 i=l1

It follows that o;j(A; — Apq1) = O0fori = 1,2,...,n and thus o; = O fori =
1,2,...,n; a contradiction. Hence we have proved that E,, C E,+1, E;, # Ent1
for all n.

Applying Riesz’s lemma (Lemma 6.1), we may construct a sequence (45),>1 such
that u, € E,, ||lu,|l = 1 and dist(u,,, E,—1) > 1/2foralln > 2. For2 <m < n
we have
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Enw-1 CEy CEy1 CE,.
On the other hand, it is clear that (T — A,I)E,, C E,_. Thus we have

If A, - X and A # 0 we have a contradiction, since (7Tu;,) has a convergent
subsequence.

Tu, Tuy
An Am

Up — Uy
n Am

> dist(un, En_1) > 1/2.

H (Tup — Apuy) (Tum — Apum)
X - +

Proof of Theorem 6.8, concluded. For every integer n > 1 the set
o(T)N{r e R;|A| > 1/n}

is either empty or finite (if it had infinitely many distinct points we would have a
subsequence that converged to some A with |A| > 1/n—since o (T) is compact—
and this would contradict Lemma 6.2). Hence if o (T')\ {0} has infinitely many distinct
points we may order them as a sequence tending to 0.

Remark 7. Given any sequence (c;,;) converging to O there is a compact operator T’
such that 6 (T') = (o) U {0}. In 2 it suffices to consider the multiplication operator

T defined by Tu = (ajuy, aoua, ..., uly, ...), Where u = (uy, uz, ..., Uy, ...).
Note that T is compact, since 7 is a limit of finite-rank operators. More precisely, let
Tou = (aquy, aauy, ..., oy, 0,0,...); then |7, — T'|| — 0. In this example, we

also see that 0 may or may not belong to EV (T'). On the other hand, if 0 € EV(T),
the corresponding eigenspace, i.e., N(7T'), may be finite- or infinite-dimensional.

6.4 Spectral Decomposition of Self-Adjoint Compact Operators

In what follows we assume that E = H is a Hilbert space and that T € L(H).
Identifying H* and H, we may view T* as a bounded operator from H into itself.

Definition. A bounded operator T € L(H) is said to be self-adjoint if T* =T, i.e.,

’(Tu, v) = (u,Tv) Vu,ve H.‘

Proposition 6.9. Let T € L(H) be a self-adjoint operator. Set

m = inf (Tu,u) and M = sup (Tu,u).

ue ucH
Ju]=1 Jlul=1

Theno(T) C [m,M],m € 6(T),and M € o (T). Moreover, | T || = max{|m|, |[M|}.
Proof. Let A > M; we will prove that A € p(T). We have

(Tu,u) < Mu|*> Vu € H,
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and therefore
u—Tu,u) > (0 — M)|u|> = «|u|® Yu € H, witha > 0.

Applying Lax—Milgram’s theorem (Corollary 5.8), we deduce that A — T is bijective
and thus A € p(T). Similarly, any A < m belongs to p(T') and therefore o (T") C
[m, M].

We now prove that M € o (T') (the proof that m € o (T) is similar). The bilinear
form a(u, v) = (Mu — Tu, v) is symmetric and satisfies

a(v,v) >0 VveH.
Hence, it satisfies the Cauchy—Schwarz inequality

l/za(v, v)l/2 Yu,v € H,

la(u, v)| < a(u, u)
ie.,
[(Mu — Tu,v)| < (Mu — Tu,uw)'>(Mv—Tv,v)'/> Vu,veH.
It follows that
(7) |\Mu — Tu| < C(Mu — Tu,u)'> Vu e H.

By the definition of M there is a sequence (u,) such that |u,| = 1 and (T'u,, u,) —

M. From (7) we deduce that |Mu, — Tu,| — 0 and thus M € o(T) (since if

M € p(T), thenu, = (MI — T)"'(Mu,, — Tu,) — 0, which is impossible).
Finally, we prove that | T || = u, where u = max{|m|, |M|}. Write Yu,v € H,

(Tw+v),u+v)=Tu,u)+ (Tv,v) +2(Tu,v),
(Tw—v),u—v)=(Tu,u) + (Tv,v) —2(Tu,v).

Thus

4(Tu,v) =T w+v),u+v) —(T(u—v),u —v)

< Mlu+v)*—mlu—v?
and therefore
4(Tu, v)| < u(lu+v* + lu—v*) = 2u(ul* + [v]).

Replacing v by av with « > 0 yields

Ju|? )
4(Tu, v)| <2pu | — +afv|”).

o
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Next we minimize the right-hand side over «, i.e., choose & = |u|/|v|, and then we
obtain
[(Tu,v)| < plullv| Vu,v, sothat |T] < p.

On the other hand, it is clear that [(Tu, u)| < ||T|| |u|?, so that |m| < ||T| and
M| < |IT||, and thus u < ||T|.

Corollary 6.10. Let T € L(H) be a self-adjoint operator such that o (T) = {0}.
Then T = 0.

Our last statement is a fundamental result. It asserts that every compact self-adjoint
operator may be diagonalized in some suitable basis.

e Theorem 6.11. Let H be a separable Hilbert space and let T be a compact self-
adjoint operator. Then there exists a Hilbert basis composed of eigenvectors of T.

Proof. Let (A,),>1 be the sequence of all (distinct) nonzero eigenvalues of 7. Set
rM=0, Ey=N(T), and E,=N(T —x1,1).

Recall that
0<dim Epg<oo and 0 <dimE, < oo.

We claim that H is the Hilbert sum of the E,’s, n = 0,1, 2, ... (in the sense of
Section 5.4):

(i) The spaces (E;),>0 are mutually orthogonal.

Indeed, if u € E,, and v € E,, with m # n, then

Tu=Ayu and Tv=A,v,

so that
(Tu,v) = Ap(u,v) = (u, Tv) = Ay (u, v).

Therefore
(u,v) =0.

(i1) Let F be the vector space spanned by the spaces (E,),>0. We shall prove that
F is dense in H.
Clearly, T(F) C F. It follows that T(FL) c FL;indeed, givenu € F-L we have

(Tu,v) =, Tv)y=0 VveF,

so that Tu € F. The operator T restricted to F is denoted by Tp. This is a self-
adjoint compact operator on F-. We claim that o (Tp) = {0}. Suppose not; suppose
that some A # 0 belongs to o (Tp). Since A € EV (Tp), thereis someu € F-, u # 0,
such that Tou = Au. Therefore, A is one of the eigenvalues of T, say A = A, with
n>1.Thusu € E, C F.Sinceu € FL N F, we deduce that u = 0; a contradiction.

Applying Corollary 6.10, we deduce that Ty = 0, i.e., T vanishes on F . It follows
that F- C N(T). On the other hand, N(T) C F and consequently FL c F.This
implies that F' L = {0}, and so F is dense in H.
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Finally, we choose in each subspace (E,),>0 a Hilbert basis (the existence of such
a basis for Eq follows from Theorem 5.11; for the other E,,’s, n > 1, this is obvious,
since they are finite-dimensional). The union of these bases is clearly a Hilbert basis
for H, composed of eigenvectors of 7.

Remark 8. Let T be a compact self-adjoint operator. From the preceding analysis we
may write any element u € H as

o0
U= Zun with u, € E,.
n=0

Then Tu = Y, Anutn. Given an integer k > 1, set

k
Tiu = Z Anlty.
n=1

Clearly, Ty is a finite-rank operator and

ITe —T|| < sup |Ay] > 0 ask — oo.
n>k+1

Recall that in fact, in a Hilbert space, every compact operator—not necessarily self-
adjoint—is the limit of a sequence of finite-rank operators (see Remark 1).

Comments on Chapter 6

* 1. Fredholm operators.

Theorem 6.6 is the first step toward the theory of Fredholm operators. Given two
Banach spaces E and F, one says that A € L(E, F) is a Fredholm operator (or a
Noether operator)—one writes A € ®(E, F)—if it satisfies:

(i) N(A) is finite-dimensional,

(i) R(A) is closed and has finite codimension.>

The index of A is defined by
ind A = dim N(A) — codim R(A).

For example, A = I — T with T € KC(E) is a Fredholm operator of index zero; this
follows from Theorem 6.6.
The main properties of Fredholm operators are the following:

3Let A € L(E, F) be such that N (A) is finite-dimensional and R(A) has finite codimension (i.e.,
there is a finite-dimensional space G C F such that R(A) + G = F). Then it follows that R(A) is
closed (see Exercise 2.27).
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(a) The class of Fredholm operators @ (E, F) is an open subset of L(E, F) and the
map A — ind A is continuous; thus it is constant on each connected component
of ®(E, F).

(b) Every operator A € ®(E, F) is invertible modulo finite-rank operators, i.e.,
there exists an operator B € L(F, E) such that

(Ao B —If) and (B o A — IE) are finite-rank operators.

Conversely, let A € L(E, F) and assume that there exists B € L(F, E) such
that
AoB—IreK(F) and BoA—Ig € K(E).

Then A € ®(E, F).

) IfAe ®E,F)and T € K(E,F)then A+ T € ®(E, F)andind(A+T) =
indA.

d IfAedE,F)and B € ®(F,G)then Bo A € ®(E,G) andind(B o A) =
ind(A)+ind(B).

On this question, see, e.g., T. Kato [1], M. Schechter [1], S. Lang [1], A. E. Taylor—
D. C. Lay [1], P. Lax [1], L. Hérmander [2] (volume 3), and Problem 38.

* 2. Hilbert-Schmidt operators.

Let H be a separable Hilbert space. A bounded operator T € L(H) is called a
Hilbert—Schmidt operator if there is a Hilbert basis (e,,) in H such that ||T||%_[ S =
Y |Tep)? < 0o. One can prove that this definition is independent of the basis and
that | ||s is a norm. Every Hilbert—Schmidt operator is compact. Hilbert—Schmidt
operators play an important role, in particular because of the following:

Theorem 6.12. Let H = L*(2) and K (x, y) € L*(Q2 x Q). Then the operator

u > (Ku)(x) = /Q K (x. y)u(y)dy

is a Hilbert-Schmidt operator.
Conversely, every Hilbert—Schmidt operator on L*(S2) is of the preceding form
for some unique function K (x, y) € L>( x Q).

On this question, see, e.g., A. Balakrishnan [1], N. Dunford-J. T. Schwartz [1],
Volume 2, and Problem 40.

3. Multiplicity of eigenvalues.

LetT € KC(E) andlet A € o (T)\{0}. One can show that the sequence N (T — A5,
k=1,2,...,isstrictly increasing up to some finite p and then it stays constant (see,
e.g., A. E. Taylor-D. C. Lay [1], E. Kreyszig [1], and Problem 36). This integer p is
called the ascent of (T — AI). The dimension of N (T — A[l) is called by some authors
the geometric multiplicity of A, and the dimension of N((T — AI)?) is called the
algebraic multiplicity of A; they coincide if E is a Hilbert space and T is self-adjoint
(see Problem 36).



170 6 Compact Operators. Spectral Decomposition of Self-Adjoint Compact Operators

4. Spectral analysis.

Let H be a Hilbert space. Let T € L(H) be a self-adjoint operator, possibly not com-
pact. There is a construction called the spectral family of 7 that extends the spectral
decomposition of Section 6.4. It allows one in particular to define a functional cal-
culus, i.e., to give a sense to the quantity f(7) for any continuous function f. It also
extends to unbounded and non-self-adjoint operators, provided one assumes only
that 7' is normal, i.e., TT* = T*T. Spectral analysis is a vast subject, especially in
Banach spaces over C (see Section 11.4), with many applications and ramifications.
For an elementary presentation see, e.g., W. Rudin [1], E. Kreyszig [1], A. Fried-
man [3], and K. Yosida [1]. For a more complete exposition, see, e.g., M. Reed—B. Si-
mon [1], T. Kato [1], R. Dautray-J.-L. Lions [1], Chapters VIII and IX, N. Dunford—
J.T. Schwartz [1], Volume 2, N. Akhiezer-1. Glazman [1], A. E. Taylor-D. C. Lay [1],
J. Weidmann [1], J. B. Conway [1], P. Lax [1], and M. Schechter [2].

5. The min-max principle. The min-max formulas, due to Courant—Fischer, provide
a very useful way of computing the eigenvalues; see, e.g., R. Courant-D. Hilbert [1],
P. Lax [1], and Problem 37 . The monograph of H. Weinberger [2] contains numerous
developments on this subject.

6. The Krein—Rutman theorem.
The following result has useful applications in the study of spectral properties of
second-order elliptic operators (see Chapter 9).

* Theorem 6.13 (Krein—Rutman). Let E be a Banach space and let P be a convex
cone with vertex at 0, i.e., Ax +uy € PVL > 0,Vu > 0,Vx € P,Vy € P.
Assume that P is closed, Int P # @, and P # E. Let T € K(E) be such that
T (P\{0}) C Int P. Then there exist some xo € Int P and some Ay > 0 such that
T xo = Loxo; moreover, L is the unique eigenvalue corresponding to an eigenvector
of Tin P, i.e, Tx = Ax withx € P and x # 0, imply A = Lo and x = mx for
some m > 0. Finally,
Ao = max{[Al; & € o(T)},

and the multiplicity (both geometric and algebraic) of ) equals one.

The proof presented in Problem 41 is due to P. Rabinowitz [2]. Variants of the
above Krein—Rutman theorem may be found, e.g., in H. Schaefer [1], R. Nussbaum
[1], F. E. Bonsall [1], and J. F. Toland [4].

Exercises for Chapter 6

Let E = ¢ with 1 < p < oo (see Section 11.3). Let (A,) be a bounded
sequence in R and consider the operator 7 € L(E) defined by

Tx = (AMX1, A2X2, ooy ApXp,...),

where
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X = (X1,X0, .oy Xpyonn).
Prove that T is a compact operator from E into E iff A,, — 0.

Let E and F be two Banach spaces, and let T € L(E, F).

1. Assume that E is reflexive. Prove that T'(Bg) is closed (strongly).

2. Assume that E is reflexive and that T € K(E, F). Prove that T (Bg) is compact.

3. Let E=F = C([0, 1]) and Tu(t) = fot u(s)ds. Check that T € IC(E). Prove
that T (Bg) is not closed.

Let E and F be two Banach spaces, andlet T € IC(E, F).Assume dim E = oo.
Prove that there exists a sequence (u,,) in E such that ||u,||g = 1 and ||Tu,||r — O.

[Hint: Argue by contradiction.]

Let 1 < p < oo. Check that £7 C cp with continuous injection (for the
definition of £” and cg, see Section 11.3).
Is this injection compact?

[Hint: Use the canonical basis (e,,) of £7.]

Let (A,) be a sequence of positive numbers such that lim,_, 5, A, = +00. Let
V be the space of sequences (u,),>1 such that

o0
X:)\n|u,,|2 < Q.
n=1

The space V is equipped with the scalar product

(@, 0)) =Y dnlhnVn.

n=1
Prove that V is a Hilbert space and that V C £> with compact injection.

Let 1 < g < p < oo. Prove that the canonical injection from L?(0, 1) into
L9(0, 1) is continuous but not compact.

[Hint: Use Rademacher’s functions; see Exercise 4.18.]

Let E and F be two Banach spaces, and let T € L(E, F). Consider the
following properties:

P) For every weakly convergent sequence (u,) in E,
u, — u, then Tu, — Tu strongly in F.
Q) T is continuous from E equipped with the weak topology
o (E, E*) into F equipped with the strong topology.
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1. Prove that
(Q) & T is a finite-rank operator.

2. Prove that T € K(E, F) = (P).
3. Assume that either E = ¢! or F = ¢!. Prove that every operator T € L(E, F)
satisfies (P).

[Hint: Use a result of Problem 8.]
In what follows we assume that E is reflexive.

4. Provethat T € K(E, F) < (P).
. Deduce that every operator T € L(E, £') is compact.
6. Prove that every operator T € L(co, E) is compact.

|91

[Hint: Consider the adjoint operator 7*.]

Let E and F be two Banach spaces, and let T € C(E, F). Assume that R(T)
is closed.

1. Prove that T is a finite-rank operator.
[Hint: Use the open mapping theorem, i.e., Theorem 2.6.]

2. Assume, in addition, that dim N (7') < o0. Prove that dim £ < oo.

Let E and F be two Banach spaces, and let T € L(E, F).

1. Prove that the following three properties are equivalent:*
(A) dim N(T) < oo and R(T) is closed.

There are a finite-rank projection operator P € L(E)
B) and a constant C such that
lulle < CUITullF + | Pullg) Vu € E.

There exist a Banach space G, an operator
© Q € K(E, G), and a constant C such that
lulle = CUITullr +1Qullg) Vu € E.

[Hint: When dim N (T) < oo consider a complement of N (T'); see Section 2.4.]
Compare with Exercise 2.12.

2. Assume that 7 satisfies (A). Prove that (T + §) also satisfies (A) for every S €
K(E, F).

3. Prove that the set of all operators T € L(E, F) satisfying (A) is openin L(E, F).

4. Let Fy be a closed linear subspace of F, and let S € KC(Fp, F).

Prove that (I + S)(Fp) is a closed subspace of F.

‘A projection operator is an operator P such that P?=P.
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Let Q(t) = Zle ait* be a polynomial such that Q(1) # 0. Let E be a
Banach space, and let T € L(E). Assume that Q(T') € K(E).

1. Prove that dim N(I — T) < oo, and that R(/ — T') is closed. More generally,
prove that (I — T)(E)p) is closed for every closed subspace Eg C E.

[Hint: Write Q(1) — Q(¢t) = é(r)(l — t) for some polynomial é and apply
Exercise 6.9.]

2. Provethat N(/ — T)={0} < R(I —T)=E.
3. Provethat dmN(I — T) =dim N(I — T%).

[Hint for questions 2 and 3: Use the same method as in the proof of Theorem 6.6.]

Let K be a compact metric space, and let E = C(K; R) equipped with the
usual norm |u| = max,cg |u(x)].

Let F C E be a closed subspace. Assume that every function u € F is Holder
continuous, i.e.,

VYue F o € (0,1] and 3L  such that
lu(x) —u(y)l < Ld(x,y)* Vx,y€K.

The purpose of this exercise is to show that F is finite-dimensional.

1. Prove that there exist constants y € (0, 1] and C > 0 (both independent of u)
such that

lu(x) —u()| < Clulld(x, )" VYueF, Vx,yek.

[Hint: Apply the Baire category theorem (Theorem 2.1) with
Fy={u € F; Ju(x) —u()| < nd(x, y)'/" Vx,y e K}.]

2. Prove that B is compact and conclude.

A lemma of J.-L. Lions.

Let X, Y, and Z be three Banach spaces withnorms || ||x, || |ly,and || ||z. Assume
that X C Y with compact injection and that ¥ C Z with continuous injection.
Prove that

Ve > 0 3C,; > 0 satisfying |lu|ly < ellullx + Cellullz VYu € X.
[Hint: Argue by contradiction.]
Application. Prove that Ve > 0 3C, > 0 satisfying

max |u| < e max |u'| + Cellu vu € C1([0, 1]).
[071]| | < [0,1]| |+ Cellullp ([0, 1D



174 6 Compact Operators. Spectral Decomposition of Self-Adjoint Compact Operators

Let E and F be two Banach spaces with norms || ||g and || || . Assume that
E is reflexive. Let T € K(E, F). Consider another norm | | on E, which is weaker
than the norm || ||, i.e., |u| < Cllullg VYu € E. Prove that

Ve > 0 3C, > 0 satisfying | Tullr < ¢l|ullg + Celu| Vu € E.
Show that the conclusion may fail when E is not reflexive.
[Hint: Take E = C([0, 1]), F =R, [|u|| = |lullz~ and |u| = [lull.:.]
Let E be a Banach space, and let T € L(E) with ||T|| < 1.
1. Prove that (I — T') is bijective and that
I =1 <1/A=ITD.
2.SetS,=1+T+---+ T" . Prove that

1Sy = =)~ < IT1" /(1 = T ).

Let E be a Banach space and let T € L(E).

1. Let A € R be such that |A| > ||T'||. Prove that
1+ AT = 2D~ < ITI/ (M = 1T ).
2. Let & € p(T). Check that
(T—AD7'T =17(T — 2D,

and prove that
dist(A, o (T)) = 1/||(T -7,

3. Assume that 0 € p(T). Prove that
o(T™hH =1/0(D).
In what follows assume that 1 € p(T); set
U=T+DT-D""'=T =D T+D.

4. Check that 1 € p(U) and give a simple expression for (U — I )~ in terms of T'.
. Provethat T = (U + I)(U — )~ L.
6. Consider the function f(t) = (r + l)/(t — 1), t € R. Prove that

W

o(U) = f(a(T)).

Let E be a Banach space and let T € L(E).



6.4 Exercises for Chapter 6 175

1.

2.

Assume that 72 = I. Prove that o (T) C {—1, +1} and determine (T — A1
for A £ +1.

More generally, assume that there is an integer n > 2 such that 7" = I. Prove
that o (T) C {—1, +1} and determine (T — A1)~ ! for A # +1.

. Assume that there is an integer n > 2 such that 7" = 0. Prove that o (T") = {0}

and determine (T — A7)~ ! for A # 0.

. Assume that there is an integer n > 2 such that ||T"|| < 1. Prove that I — T is

bijective and give an expression for (I — T)~! in terms of (I — T")~! and the
iterates of T'.

Let E = ¢7 with 1 < p < oo and let (1,) be a bounded sequence in R.
Consider the multiplication operator M € L(E) defined by

Mx = (Mx1, Max2, o ooy ApXy,...), Wherex = (x1,x2, ..., X5, ...).

Determine EV (M) and o (M).
Spectral properties of the shifts.

Anelementx € E = ¢2is denoted by x = (x1, x2, ..., Xn,...).

Consider the operators

er =(01x19x2a"'9-xﬂ—17"')7

and

Sex = (X2, X3, X4, ..o, Xp 1, -+ ),

respectively called the right shift and left shift.

~N NN =

. Determine || S, || and || S¢||. Does S, or S; belong to C(E)?

. Prove that EV (S,) = 0.

. Prove that o (S,) = [—1, +1].

. Prove that EV (S;) = (—1, +1). Determine the corresponding eigenspaces.

. Prove that o (Sy) = [—1, +1].

. Determine S} and Sj.

. Prove that for every A € (—1, +1), the spaces R(S, — AI) and R(S; — AI) are

closed. Give an explicit representation of these spaces.

[Hint: Apply Theorems 2.19 and 2.20.]

. Prove that the spaces R(S, £ I) and R(S; &£ I) are dense and that they are not

closed.

Consider the multiplication operator M defined by
Mx = (@1x1, 02X2, ..., 0pXp, ... ),

where (o) is a bounded sequence in R.

. Determine EV (S, o M).
. Assume that o;, — « as n — 00. Prove that
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o (S o M) = [—|al, +]af].

[Hint: Apply Theorem 6.6.]
11. Assume that for every integer n, oy, = a and az,+1 = b witha # b. Determine
o (S, o M).

[Hint: Compute (S, o M)? and apply question 4 of Exercise 6.16.]
Let E be a Banach space and let T € L(E).

1. Prove that o (T*) = o (T).
2. Give examples showing that there is no general inclusion relation between E'V (T)
and EV (T™).

[Hint: Consider the right shift and the left shift.]

[6.20 | Let E = L?(0, 1) with 1 < p < co. Givenu € E, set

Tu(x) = /x u(t)dt.
0

1. Prove that T € IC(E).

2. Determine EV (T) and o (T).

3. Give an explicit formula for (T — AI)~! when A € p(T).

4. Determine T*.

Let V and H be two Banach spaces with norms | || and || respectively,

satisfying
V C H with compact injection.

Let p(u) be aseminorm on V such that p(u)+ |u| is anorm on V that is equivalent
to | I
Set
N={ueV;pu) =0},

and
dist(u, N) = inf |lu — v| foru € V.
veN

1. Prove that N is a finite-dimensional space.
[Hint: Consider the unit ball in N equipped with the norm | |.]

2. Prove that there exists a constant K; > 0 such that

pu) < Kidist(u, N) YueV.

3. Prove that there exists a constant K, > 0 such that
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K> dist(u, N) < p(u) YueV.

[Hint: Argue by contradiction. Assume that there is a sequence (u,) in V such
that dist(u,, N) = 1 for all n and p(u,) — 0.]

Let E be a Banach space, and let T € L(E). Given a polynomial Q(r) =
P _oat* withay € R, let Q(T) = YF_ ax T*.

1. Prove that Q(EV(T)) C EV(Q(T)).
2. Prove that Q(o(T)) C o (Q(T)).
3. Construct an example in E = R? for which the above inclusions are strict.

In what follows we assume that E is a Hilbert space (identified with its dual space
H*)andthat T* =T.

4. Assume here that the polynomial Q has no real root, i.e., Q(t) # 0 V¢ € R.
Prove that Q(T) is bijective.

[Hint: Start with the case that Q is a polynomial of degree 2 and more specifically,
o) =1*+1.]

5. Deduce that for every polynomial Q, we have
@ QEV(T)) = EV(Q(T)),
(i) Q(o(T)) = o (Q(T)).

[Hint: Write Q(1) —A = (t —t;)(t —12) - - - (t — 1) O(t), Where 11, 2, . . . , 1, are
the real roots of Q(¢) — A and @ has no real root.]

Spectral radius.

Let E be a Banach space and let T € L(E). Set
an, =log||IT"|, n=>1.

1. Check that
ai+j§a,~+aj Vl,]Zl

2. Deduce that
lim (a,/n) exists and coincides with inf (a,, /m).
— 400 m>1

[Hint: Fix an integer m > 1. Given any integer n > 1 write n = mq + r, where
g = [;-1is the largest integer < n/m and 0 < r < m. Note thata, < ;-ay +ay.]

3. Conclude that 7(T) = lim,_ || T"||'/" exists and that (T') < ||T||. Construct
an example in E = R? such that #(T) =0 and | T|| = 1.

The number r(T) is called the spectral radius of T.
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4. Prove that o(T) C [—r(T), +r(T)]. Deduce that if o (T) # @, then

max{|A]; A € o(T)} <r(T).

[Hint: Note that if A € o(T), then A" € o (T"); see Exercise 6.22.]
5. Construct an example in E = R3 such that o (T) = {0}, while r(T) = 1.

In what follows we take E = L”(0, 1) with 1 < p < oo. Consider the operator
T € L(E) defined by

t
Tu(t) = / u(s)ds.
0
6. Prove by induction that for n > 2,

1

t
(T"u) (1) = "D /0 (t — )" lu(r)dr.

7. Deduce that | T"| < %

[Hint: Use an inequality for the convolution product.]
8. Prove that the spectral radius of T is 0.

[Hint: Use Stirling’s formula.]
9. Show that o (T") = {0}. Compare with Exercise 6.20.

Assume that T € L(H) is self-adjoint.

1. Prove that the following properties are equivalent:

(i) (Tu,u) >0Vu e H,
(i) o(T) C [0, 00).

[Hint: Apply Proposition 6.9.]
2. Prove that the following properties are equivalent:

Gii) |T]| < 1and (Tu,u) >0Vu € H,
(iv) 0 < (Tu,u) < |u|*Vu € H,

(v) o(T) C[0, 1],

(vi) (Tu,u) > |Tul*Vu € H.

[Hint: To prove that (v) = (vi) apply Proposition 6.9 to (T +¢&1)~! withe > 0.]
3. Prove that the following properties are equivalent:
(vii) (Tu,u) < |Tu|*Vu € H,
(viii) (0,1) C p(T).

[Hint: Introduce U = 2T — 1.]
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Let E be a Banach space, and let K € C(E). Prove that there exist M € L(E),
M € L(E), and finite-rank projections P, P such that

i) Mo(I+K)=1-P

s
~

(i) I +K)yoM=1—P.

[Hint: Let X be a complement of N(/ + K) in E. Then (I 4+ K),x is bijective from
X onto R(I + K). Denote by M its inverse. Let O be a projection from E onto
R(I 4+ K) and set M = M o Q. Show that (i) and (ii) hold.]

From Brouwer to Schauder fixed-point theorems.
In this exercise we assume that the following result is known (for a proof, see,
e.g., K. Deimling [1], A. Granas—J. Dugundji [1], or L. Nirenberg [2]).

Theorem (Brouwer). Let F be a finite-dimensional space, and let Q C F be a
nonempty compact convex set. Let f : Q — Q be a continuous map. Then f has a
fixed point, i.e., there exists p € Q such that f(p) = p.

Our goal is to prove the following.

Theorem (Schauder). Let E be a Banach space, and let C be a nonempty closed
convex setin E. Let F : C — C be a continuous map such that F(C) C K, where
K is a compact subset of C. Then F has a fixed point in K.

1. Given ¢ > 0, consider a finite covering of K, i.e., K C U;c;B(yi, €/2), where
I is finite, and y; € K Vi € I. Define the function g (x) = Zie[ gi (x), where

qi(x) =Y max{e — | Fx — y;, 0}.
iel
Check that ¢ is continuous on C and that g(x) > ¢/2 Vx € C.

2. Set
Ziel qi (x)y;

q(x)

Prove that F, : C — C is continuous and that

Fe(x) = e C.

|Fe(x) — F(x)|| <e, VxeC.

3. Show that F, admits a fixed point x, € C.
[Hint: Let Q = conv (U;¢7{yi}). Check that Fy|o admits a fixed point x, € Q.]

4. Prove that (x,,) converges to a limit x € C for some sequence ¢, — 0. Show
that F(x) = x.



Chapter 7
The Hille-Yosida Theorem

7.1 Definition and Elementary Properties of Maximal Monotone
Operators

Throughout this chapter H denotes a Hilbert space.

Definition. An unbounded linear operator A: D(A) C H — H is said to be mono-
tonel if it satisfies
(Av,v) >0 Yv e D(A).

It is called maximal monotone if, in addition, R(/ + A) = H, i.e.,
Vf e H Jue D(A) suchthatu + Au = f.

Proposition 7.1. Let A be a maximal monotone operator. Then

(@) D(A) is dense in H,

(b) A is a closed operator,

(c) For every A > 0, (I + MLA) is bijective from D(A) onto H, (I + rA) " Visa
bounded operator, and || (I + AA)~! ey < 1.

Proof.

(a) Let f € H be such that (f, v) = 0 Vv € D(A). We claim that f = 0. Indeed,
there exists some vy € D(A) such that vg + Avg = f. We have

0 = (f, vo) = |vol?® + (Avg, vo) > |vo|*.

Thus vg = 0 and hence f = 0.

(b) First, observe that given any f € H, there exists a unique u € D(A) such that
u + Au = f, since if u is another solution, we have

u—u+ Al —u)=0.

! Some authors say that A is accretive or that — A is dissipative.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 181
DOI 10.1007/978-0-387-70914-7 7, © Springer Science+Business Media, LLC 2011
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Taking the scalar product with (¥ — %) and using monotonicity, we see that
u —u = 0. Next, note that |u| < |f], since |u|> + (Au,u) = (f,u) > |ul>.
Therefore the map f — u, denoted by (I + A)~!, is a bounded linear operator
from H into itself and ||(I + A)~! llzcry < 1. We now prove that A is a closed
operator. Let (u,) be a sequence in D(A) such that u,, — u and Au, — f.We
have to check that u € D(A) and that Au = f. Butu, + Au,, — u + f and
thus
wn = I+ A p + Aug) = (I + )7 @+ f).

Henceu = (I + A) " '(u+ f),ie,u e D(A)andu + Au = u + f.

(c) We will prove that if R(I + AoA) = H for some Ay > O then R(I + LA) = H
for every A > Ag/2. Note first—as in part (b)—that for every f € H thereis a
unique u € D(A) such that u + AgAu = f. Moreover, the map f — u, denoted
by (I +10A)~", is a bounded linear operator with || (1 +10A) ™|l £y < 1. We
try to solve the equation

(1 U+ AAu = f with A > 0.

Equation (1) may be written as
Foodu=20p 4 (1=
u u=— ——u
0 X Py
or alternatively
-1 A0 )

If|1— AA—O| < 1,i.e., A > X9/2, we may apply the contraction mapping principle
(Theorem 5.7) and deduce that (2) has a solution.

Conclusion (c) follows easily by induction: since I + A is surjective, I + LA is
surjective for every A > 1/2, and thus for every A > 1/4, etc.

Remark 1. If A is maximal monotone then AA is also maximal monotone for every
A > 0. However, if A and B are maximal monotone operators, then A + B, defined
on D(A) N D(B), need not be maximal monotone.

Definition. Let A be a maximal monotone operator. For every A > 0, set

1
Jo=+21A)"" and A== D)

Jy. is called the resolvent of A, and A, is the Yosida approximation (or regularization)
of A. Keep in mind that ||J; |l 2y < 1.

Proposition 7.2. Let A be a maximal monotone operator. Then

(ay) Ayv = A(Jyv) Yv e HandVX > 0,
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(ap) Azv = J, (Av) Yv € D(A) and VA > 0,

(b) |Av] < |Av| Yv e D(A) and VA > 0,
lim Jv = A4 H

(c) AI—I}}) W= veH,

(d) }in})A;\v = Av Yv € D(A),

(e) (A)v,v) >0 Yv e H and VA > 0,

) [Axv] < (1/A)]v] Yv € H and VA > 0.

Proof.

(a1) can be written as v = (J,v) + AA(J,v), which is just the definition of J; v.
(a2) By (aj) we have
A v+ A(v — Jv) = Av,

i.e.,
Av+ AA(A)v) = Av,

which means that A;v = (I + LA) ! Av.
(b) Follows easily from (ap).
(c) Assume first that v € D(A). Then

lv — Jrv| = A|Asv] < A[Av] by (b)

and thus lim; _¢Jyv = v.

Suppose now that v is a general elementin H. Given any ¢ > 0 there exists some
v1 € D(A) such that [v — v1| < ¢ (since D(A) is dense in H by Proposition
7.1). We have

[wv —v| < [Jyv = Jrvi ] + [Javg — o] + v — v
<2lv —vi| + [Shvr —vi] < 2e + [Jrvg — vp].
Thus

limsup|Jyv —v| <2¢ Ve >0,
r—0

and so
lim |J,v —v| = 0.
r—0

(d) This is a consequence of (a) and (c).
(e) We have

(Ayv, v) = (A, v — J3v) + (A, Jiv) = AA; 0% + (A(Jyv), Jrv),
and thus
3) (Asv,v) = Al A

() This is a consequence of (3) and the Cauchy—Schwarz inequality.
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Remark 2. Proposition 7.2 implies that (A )¢ is a family of bounded operators
that “approximate” the unbounded operator A as A — 0. This approximation will
be used very often. Of course, in general, || A; || zz) “blows up” as A — 0.

7.2 Solution of the Evolution Problem % + Au =0 on [0, +00),
u(0) = uy. Existence and uniqueness
We start with a very classical result:

e Theorem 7.3 (Cauchy, Lipschitz, Picard). Let E be a Banach space and let F
E — E be a Lipschitz map, i.e., there is a constant L such that

|Fu — Fv|| < L|lu — v|| Vu,v e E.

Then given any ug € E, there exists a unique solution u € CL([0, +00); E) of the
problem

du _F 0
E(t) = Fu(t) onl0,400),
u(0) = uop.

“4)

ug is called the initial data.

Proof.
Existence. Solving (4) amounts to finding some u# € C([0, +00); E) satisfying the
integral equation

t
(®)) u(t) = ug +/ F(u(s))ds.
0

Given k > 0, to be fixed later, set

t>0

X = {u € C([0, +00); E): sup e ¥ |u(r)|| < oo} .

It is easy to check that X is a Banach space for the norm

—k
lullx = supe™" flu(®)ll.

t>0

For every u € X, the function ®u defined by

t
(®u)(t) = o + / Fu(s))ds
0

also belongs to X. Moreover, we have
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L
||<I>M—<I’v||XSE||M—U||X Yu,v e X.

Fixing any £ > L, we find that ® has a (unique) fixed point « in X, which is a
solution of (5).
Uniqueness. Let u and u be two solutions of (4) and set

o) = |lu(®) —u@)].

From (5) we deduce that

t
p(t) < L/ o(s)ds Vi >0
0

and consequently ¢ = 0.

The preceding theorem is extremely useful in the study of ordinary differential
equations. However, it is of little use in the study of partial differential equations. Our
next result is a very powerful tool in solving evolution partial differential equations;
see Chapter 10.

e Theorem 7.4 (Hille-Yosida). Let A be a maximal monotone operator. Then, given
any ug € D(A) there exists a unique function®

u € CY([0, +00); H) N C([0, +00); D(A))

satisfying
du
4 Ay =

©) dt+ u=0 onl0,+00),
u(0) = uog.

Moreover,

d
()] < |uo| and ‘d—”t‘a) = |Au(n)| < |Aug| Vi = 0.

Remark 3. The main interest of Theorem 7.4 lies in the fact that we reduce the study
of an “evolution problem” to the study of the “stationary equation” u + Au = f
(assuming we already know that A is monotone, which is easy to check in practice).

Proof. 1t is divided into six steps.

Step 1: Uniqueness. Let u and u be two solutions of (6). We have

<%(u —u), (u —ﬁ)) =—(A(u—u),u—u)<0.

2 The space D(A) is equipped with the graph norm |v| 4+ |Av| or with the equivalent Hilbert norm
(lv]* + |Av[H)1/2,
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But3
4o —aor = (Lww —aw), ue) —a0m
sar “\a ’ :

Thus, the function # — |u(¢) — u(¢)| is nonincreasing on [0, +00). Since |u(0) —
u(0)| = 0, it follows that

lu(t) —u(@)|=0 Vr=>0.

The main idea in order to prove existence is to replace A by A, in (6), to apply
Theorem 7.3 on the approximate problem, and then to pass to the limit as A — 0
using various estimates that are independent of A. So, let u) be the solution of the
problem

d
7 %—FA;\M)» =0 on]0, +00),

u; (0) =uyg € D(A).
Step 2: We have the estimates

®) lup (O] < |uol V=0, Vi=>0,

‘duk

€)) — (O] = [Aupr ()| < [Aug| V1 =0, Vi>0.

They follow directly from the next lemma and the fact that | A ug| < |Auo|.

Lemma 7.1. Ler w € C1([0, +00); H) be a function satisfying

d
(10) d—L;)—i-Axw — 0 0n [0, +00).
Then the functions t +— |w(t)| and t +— ‘ (t)} = |A,w(t)| are nonincreasing on

[0, +00).
Proof. We have

d
(d—l;}, w) + (Ajyw, w) = 0.

By Proposition 7.2(e) we know that (A, w, w) > 0 and thus 1 37 |w|2 < 0, so that
|w(?)| is nonincreasing. On the other hand, since A, is a linear bounded operator,
we deduce (by induction) from (10) that w € C*°([0, +00); H) and also that

ddw+A dw _0
dr \ dt Nar ) =

Applying the preceding fact to d[ , we see that | (t)| is nonincreasing. In fact, at

any order k, the function ‘ (t)‘ is nonincreasing.

3 Keep in mind that if ¢ € C'([0, +00); H), then |¢|> € C'([0, +00); R) and & |g|> = 2(%2, ¢).
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Step 3: We will prove here that for every ¢ > 0, u, (¢) converges, as A — 0, to some
limit, denoted by u(z). Moreover, the convergence is uniform on every bounded
interval [0, T].

For every A, u > 0 we have

duk du
7 —d—tM—I—Alu;L—AMuM=()

and thus

1d
(11) EEWA(I) — uu (O + (Apun (1) = Apu (1), (6) — up (1) = 0.
Dropping ¢ for simplicity, we write

(Apuy, — Apuy,uy —uy)
= (Apuy, — Apuy, uy — Sy, + Sy — Jpuy + Ty, —uy)
(12) = (Ajup — Apuy, MAyuy; — A uy)
+ (A(Shup — Jpuy), Hhauy, — Jyuy)
> (Ajuy — Apuy, AMAyuy, — pAyuy,).

It follows from (9), (11), and (12) that

EE'M —uy|” <200+ w)|Aupl”.

Integrating this inequality, we obtain
(1) = (D1 < 400+ Wt Auol?,
ie.,

13) u3.(1) — up (O] < 23/ (A + ] Augl.

It follows that for every fixed ¢t > 0, u, (¢) is a Cauchy sequence as A — 0 and thus
it converges to a limit, denoted by u(¢). Passing to the limit in (13) as u — 0, we
have

|u; () — u(t)] < 2v/At|Aug).

Therefore, the convergence is uniform in ¢ on every bounded interval [0, 7] and so
u € C([0, +00); H).

Step 4: Assuming, in addition, that ug € D(A?), i.e., ug € D(A) and Aug € D(A),
we prove here that % (t) converges, as .. — 0, to some limit and that the convergence
is uniform on every bounded interval [0, T'].

Set vy, = %, so that ‘%A + A, vy = 0. Following the same argument as in Step 3,

we see that
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1 d 2
(14) 3 Elvx —vul” = (JAsvl + 1AL v DAL L] + ] Ay v
By Lemma 7.1 we have
15) l[Axon (D] < [A02(0)] = |AxAsuol
and similarly
(16) A v (D] < 1A (0)] = |ApApuol.
Finally, since Aug € D(A), we obtain
Ay Asug = J AT Aug = Jy Ty AAug = J? Aug
and thus
A7) |AxAsuol < [A%uol,  |AuAuuol < [A%uo).
Combining (14), (15), (16), and (17), we are led to

1d

57— vul® < 200 4 w1 A%ug).

We conclude, as in Step 3, that v, () = ddit*(t) converges, as A — 0, to some limit
and that the convergence is uniform on every bounded interval [0, T'].
Step 5: Assuming that ug € D(A?) we prove here that u is a solution of (6).
By Steps 3 and 4 we know that for all T < oo,
uy(t) - u(t), asi — 0, uniformly on [0, T],

d
%(r) converges, as A — 0, uniformly on [0, T].

It follows easily that u € CL([0, +00); H) and that ‘2—?(1‘) — ‘é—’;(r), as A — 0,
uniformly on [0, T']. Rewrite (7) as

d
(18) %(t) + A(Jus (1)) = 0,

Note that Jyu) (t) — u(t) as A — 0, since

| (0) —u@)| < [Nhup (@) — Hha(®)| + [ Jhu(t) — u ()]
< un(t) —u@)] + [Jru@) —u(@)| — 0.
Applying the fact that A has a closed graph, we deduce from (18) that u(¢) € D(A)
Vt > 0, and that
M )+ Auty = 0
— u() =0.
dt



7.2 Solution of the Evolution Problem 189

Finally, since u € C 1([0, +00); H), the function  — Au(t) is continuous from
[0, +00) into H and thus u € C([0, +00); D(A)). Hence we have obtained a
solution of (6) satisfying, in addition,

d
lu(®)] < |uol V&t =0 and 'd—?(t) = |Au(t)| < |Aug| vt = 0.

Step 6: We conclude here the proof of the theorem.
We shall use the following lemma.

Lemma 7.2. Let ug € D(A). Then Ve > 0 3y € D(A?) such that lug —ug| < &
and |Aug — Aig| < €. In other words, D(A?) is dense in D(A) (for the graph norm).

Proof of Lemma 7.2. Set uy = Jjug for some appropriate A > 0 to be fixed later. We
have
ug € D(A) and ug+ AAug = ug.

Thus Aug € D(A), ie., g € D(A?). On the other hand, by Proposition 7.2, we
know that

}irr%)”ut() —ug| =0, %irrbUAAuo — Augl =0, and J)Aug= AJyug.
The desired conclusion follows by choosing A > 0 small enough.
We now turn to the proof of Theorem 7.4. Given up € D(A) we construct (using

Lemma 7.2) a sequence (uqy) in D(A?) such that ugp, — uo and Aug, — Auo. By
Step 5 we know that there is a solution u,, of the problem

DU Aur =0 on [0, +00)
(19) dl ul’l - V) I )
Un (0) = UOn-

We have, for all t > 0,

[t (t) — up ()| < luon — uom| —> O,

m,n—00
du, du,,
dr ) — 7(1‘) < |Aug, — Augp| mﬁj)m 0.

Therefore

uy(t) = u(t) uniformly on [0, +00),
du,
dt

d
@) — d—b;(t) uniformly on [0, +00),

with u € C'([0, +00); H). Passing to the limit in (19)—using the fact that A is a
closed operator—we see that u(t) € D(A) and u satisfies (6). From (6) we deduce
thatu € C([0, +00); D(A)).
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Remark 4. Let u;, be the solution of (7):

(a) Assume ug € D(A). We know (by Step 3) that as . — 0, u, (¢) converges, for
every t > 0, to some limit u(¢). One can prove directly that u € C'([0, +00); H)N
C([0, +00); D(A)) and that it satisfies (6).

(b) Assume only that uy € H. One can still prove that as . — 0, u, (¢) converges
for every ¢t > 0, to some limit, denoted by u(¢). But it may happen that this limit u (¢)
doesnotbelongto D(A) V¢ > 0and thatu(¢) is nowhere differentiable on [0, +00).
Hence u(t) is not a “classical” solution of (6). In fact, for such a u¢, problem (6) has
no classical solution. Nevertheless, we may view u(t) as a “generalized” solution of
(6). We shall see in Section 7.4 that this does not happen when A is self-adjoint: in this
case u(t) is a “classical” solution of (6) for every ug € H, even when ug ¢ D(A).

* Remark 5 (Contraction semigroups). For each t > 0 consider the linear map ug €
D(A) — u(t) € D(A), where u(t) is the solution of (6) given by Theorem 7.4. Since
lu(t)] < |ug| and since D(A) is dense in H, we may extend this map by continuity
as a bounded operator from H into itself, denoted by S, (r).* It is easy to check that
S4(¢) satisfies the following properties:

(a) foreacht > 0, S4(t) € L(H) and [|Sa®) gy < 1,
) Sa(ty +12) = Sa(t) o Sa(t2) V1,12 >0,
S400) =1,
(c) lirr(1)|SA(t)uo—u0|=0 Yug € H.
t—
t>0

Such a family {S(¢)};>0 of operators (from H into itself) depending on a parameter
t > 0 and satisfying (a), (b), (c) is called a continuous semigroup of contractions.

A remarkable result due to Hille and Yosida asserts that conversely, given a contin-
uous semigroup of contractions S(¢) on H there exists a unique maximal monotone
operator A such that S(¢) = S4(f) Vr > 0. This establishes a bijective correspon-
dence between maximal monotone operators and continuous semigroups of contrac-
tions. (For a proof see the references quoted in the comments on Chapter 7.)

e Remark 6. Let A be a maximal monotone operator and let A € R. The problem

du
E+Au+)\u:0 0n[0,~|—00),
u(0) = uy,

reduces to problem (6) using the following simple device. Set
v(1) = eMu(r).

Then v satisfies

4 Alternatively one may use Remark 4(b) to define S4 (r) on H directly as being the map uo € H >
u(t) € H.
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dv

dt
v(0) = uyp.

+Av=0 on ][0, +00),

7.3 Regularity

We shall prove here that the solution u of (6) obtained in Theorem 7.4 is more regular
than just C!([0, +00); H) N C([0, +00); D(A)) provided one makes additional
assumptions on the initial data ug. For this purpose we define by induction the space

D(A") = {v € D(AFY); Av e D(A¥ 1)),

where k is any integer, k > 2. It is easily seen that D(A¥) is a Hilbert space for the
scalar product

k
U, V)paty = ) _(Alu, Alv);
j=0
the corresponding norm is

1/2

k
ulpeary = | D 1A7ul?
j=0

Theorem 7.5. Assume ug € D(AF) for some integer k > 2. Then the solution u of
problem (6) obtained in Theorem 7.4 satisfies

u e CHI (0, +00); D(AY)) Vj=0,1,...,k.

Proof. Assume first that k = 2. Consider the Hilbert space H; = D(A) equipped
with the scalar product (#, v) p(a). Itis easy to check that the operator Ay : D(A1) C
H; — Hj defined by

D(A1) = D(A?),
Au=Au foru e D(A)),

is maximal monotone in H;. Applying Theorem 7.4 fo the operator A1 in the space
H/, we see that there exists a function

u € C'([0, +00); Hi) N C([0, +00); D(A1))

such that
du
dt
u(0) = ugp.

+Aju=0 on]l0,+00),

In particular, u satisfies (6); by uniqueness, this u is the solution of (6). It remains
only to check that u € C2([0, +00); H). Since
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Ae L(H,H) and u e C([0,4+00); Hy),

it follows that Au € C1([0, +00); H) and

d du
(20) 4y = A(E)

Applying (6), we see that % e C!([0, +00); H), ie, u € C*([0,+o0); H)
and that

d (du
(21) 7 <E) + A

We now turn to the general case k > 3. We argue by induction on k: assume that
the result holds up to order (k — 1) and let ug € D(A¥). By the preceding analysis we
know that the solution u of (6) belongs to C%([0, +00); H) N CL([0, +00); D(A))
and that u satisfies (21). Letting

du

(E) =0 on]0, +00).

_ du
Cdr’
we have
v e C'([0, +00); H) N C([0, +00); D(A)),
dv
— 4+ Av=0 0, ,
ar + Av on [0, 400)
v(0) = —Auyg.
In other words, v is the solution of (6) corresponding to the initial data vo = —Auy.

Since vy € D(Ak_l), we know, by the induction assumption, that
(22) ve CF17i ([0, +o00); D(AY)) Vj=0,1,...,k—1,
ie.,

u e CKI([0, +00); D(AT))  Vj=0,1,....k—1.
It remains only to check that
(23) u € C([0, +00); D(AY)).

Applying (22) with j = k — 1, we see that

(24) i—f € C([0, +00); D(A*h)).

It follows from (24) and equation (6) that
Au € C([0, +00); D(AF1)),

ie., (23).
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7.4 The Self-Adjoint Case

Let A : D(A) C H — H be an unbounded linear operator with D(A) = H.
Identifying H* with H, we may view A* as an unbounded linear operator in H.

Definition. One says that

o Ais symmetric if (Au, v) = (u, Av) Yu, v € D(A),
* Aisself-adjoint if D(A*) = D(A) and A* = A.

Remark 7. For bounded operators the notions of symmetric and self-adjoint oper-
ators coincide. However, if A is unbounded there is a subtle difference between
symmetric and self-adjoint operators. Clearly, any self-adjoint operator is symmet-
ric. The converse is not true: an operator A is symmetric if and only if A C A*, i.e.,
D(A) C D(A*) and A* = A on D(A). It may happen that A is symmetric and that
D(A) # D(A*). Our next result shows that if A is maximal monotone, then

(A is symmetric) < (A is self-adjoint).

Proposition 7.6. Let A be a maximal monotone symmetric operator. Then A is self-
adjoint.

Proof. Let J = (I + A)~L. We will first prove that Jj is self-adjoint. Since J; €
L(H) it suffices to check that

(25) (Jiu, v) = (u, Jiv) Vu,v e H.
Set uy = Jiu and vi = Jjv, so that

U+ Aup =u,
v; + Avp = v.
Since by assumption, (u1, Avi) = (Aui, vy), it follows that (u1,v) = (u, vy),

ie., (25).
Letu € D(A*) and set f = u + A*u. We have

(f,v) = (u,v+ Av) Vv € D(A),
i.e.,
(f, hiw) = (u,w) Yw € H.
Therefore u = Ji f and thus u € D(A). This proves that D(A*) = D(A) and hence
A is self-adjoint.

Remark 8. One has to be careful that if A is a monotone operator (even a symmetric
monotone operator) then A* need not be monotone. However, one can prove that the
following properties are equivalent:
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A is maximal monotone <= A* is maximal monotone

<= Aisclosed, D(A) is dense, A and A* are monotone.

A more general version of this result appears in Problem 16.

e Theorem 7.7. Let A be a self-adjoint maximal monotone operator. Then for every
uo € H there exists a unique function

u € C([0, +00); H) N CL((0, +00); H) N C((0, +00); D(A))

such that
du
T +Au=0 on(0,4+00),

u(0) = uyg.

Moreover, we have

d 1
u(6)| < luol and ’d—i‘m = [Au(D)] = ~luol V1 >0,

(26) u € CK((0, +00); D(AY)) Vk, £ integers.

Proof.

Uniqueness. Let u and u be two solutions. By the monotonicity of A we see
that ¢(t) = |u(r) — u(t)|? is nonincreasing on (0, +00). On the other hand, ¢ is
continuous on [0, +00) and ¢(0) = 0. Thus ¢ = 0.

Existence. The proof is divided into two steps:

Step 1. Assume first that ug € D(A?) and let u be the solution of (6) given by
Theorem 7.4. We claim that

du

1
27 = ®

< ?|u0| vt > 0.

As in the proof of Proposition 7.6 we have
Ji=J. and A5 =A, Vi>0.
We go back to the approximate problem introduced in the proof of Theorem 7.4:

d
(28) % + Asuty, = 0 on [0, +00), 1.(0) = uop.

Taking the scalar product of (28) with u; and integrating on [0, T'], we obtain

5 Let us emphasize the difference between Theorems 7.4 and 7.7. Here ug € H (instead of ug €
D(A)); the conclusion is that there is a solution of (6), which is smooth away from r = 0. However,
|fi—”l’(t)\ may possibly “blow up” as t — 0.
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1 ) T 1,

(29) Sl (DI + | (Aus, wp)dt = > uol”
2 o 2

Taking the scalar product of (28) with td”'\ and integrating over [0, T'], we obtain

T du;\ 2 T
30) / tdt + / (Akuk(t) (t)) tdt =0.
o | d 0

@
t()
d du;, du,, du,,
— (A =(A,—= A —— 1 =2(A
dt( Ay, U3) ( T ,M;x)-i-( Al dt) ( M = >

since A} = A;. Integrating the second integral in (30) by parts, we are led to

T 1 (Ta
/0 <A)\u)h(l‘) (l‘))l‘dt:zfo E[(A)Lux,ux)]tdt

1 1 [T
=5 (A up (T), up(T)) T — 5/ (Ajuy, uy)dt.
0

But

€29

On the other hand, since the function 7 — |7+ d”* (#)] is nonincreasing (by Lemma 7.1),
we have

(32) f dus g s |4 | 22
0 | dt 2
Combining (29), (30), (31), and (32), we obtain
1
§|MA(T)|2 + T (Apup(T), u; (T)) + T2 (T)‘ |u0|

it follows, in particular, that

dbt)L

(33) — (D = —|u0| VT > 0.

Finally, we pass to the limit in (33) as A — 0. This completes the proof of (27), since

d;} — d“ (see Step 5 in the proof of Theorem 7.4).

Step 2. Assume now that ug € H. Let (ug,) be a sequence in D(A?) such that
uon — ug (recall that D(A?) is dense in D(A) and that D(A) is dense in H; thus
D(A?) is dense in H). Let u,, be the solution of

duy,
7 + Au, =0 on [0, +00),
1, (0) = ugy.

We know (by Theorem 7.4) that
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[t (t) — up ()| < luon — uom| VYm,n, Vt >0,
and (by Step 1) that

d d
”"()—ﬂa) |uon—uom| Vm,n, Vi> 0.

It follows that u, converges uniformly on [0, +00) to some limit u(¢) and that d”” (1)

converges to 4% 97 () uniformly on every interval [§, +00), 8 > 0. The limiting funct1on
u satisfies

u € C([0, +00); H)NC((0, +00); H),

d
u(t) € D(A) Vi>0 and d—L:(t)—FAu(t):O Vi >0

(this uses the fact that A is closed).
We now turn to the proof of (26). We will show by induction on k > 2 that

(34) u € CKJ((0, +00); D(AY)) Vj=0,1,... k.
Assume that (34) holds up to order £ — 1. In particular, we have

35) u € C((0, +00); D(AFN).

In order to prove (34) it suffices (in view of Theorem 7.5) to check that
(36) u € C((0, +00), D(A%)).

Consider the Hilbert space H = D(A*1) and the operator A:DA cH—>H
defined by

D(A) = D(AY),

A=A
It is easily seen that A is maximal monotone and symmetric in H; thus it is self-

adjoint. Applying the first assertion of Theorem 7.7 in the space H to the operator
A, we obtain a unique solution v of the problem

dv
37) I +Av =0 on (0, +00),
v(0) = vo,

given any vy € H . Moreover,
v e C([0, +00); H)NCL((0, +00); H)NC((0, +00); D(A)).

Choosing vg = u(e)(e > 0)—we already know by (35) that vg € H—we conclude
that u € C((e, +00); D(AY)), and this completes the proof of (36).
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Comments on Chapter 7

1. The Hille-Yosida theorem in Banach spaces.

The Hille—Yosida theorem extends to Banach spaces. The precise statement is the
following. Let E be a Banach space and let A : D(A) C E — E be an unbounded
linear operator. One says that A is m-accretive if D(A) = E and for every A > 0,
I 4 LA is bijective from D(A) onto E with ||(I + rA)~! lzey < 1.

Theorem 7.8 (Hille-Yosida). Let A be m-accretive. Then given any ug € D(A)
there exists a unique function

u € C([0, +00); E)NC([0, +00); D(A))

such that
du
T4 A=

(38) 7 +Au=0 on[0,4+00),
u(0) = ug.

Moreover,

du
luN < lluoll and HEO) = |Au@®)|l < |Auoll Vvt = 0.

The map ug +— u(t) extended by continuity to all of E is denoted by Sa(t). It is
a continuous semigroup of contractions on E. Conversely, given any continuous
semigroup of contractions S(t), there exists a unique m-accretive operator A such
that S(t) = Sa(t) YVt > 0.

For the proof, see, e.g., P. Lax [1], A. Pazy [1], J. Goldstein [1], E. Davies [1],
[2], K. Yosida [1], M. Reed-B. Simon [1], Volume 2, H. Tanabe [1], N. Dunford—
J. T. Schwartz [1] Volume 1, M. Schechter [1], A. Friedman [2], R. Dautray-J.-
L. Lions [1], Chapter XVII, A. Balakrishnan [1], T. Kato [1], W. Rudin [1]. These
references present extensive developments on the theory of semigroups.

2. The exponential formula.
There are numerous iteration techniques for solving (38). Let us mention a basic
method.

Theorem 7.9. Assume that A is m-accretive. Then for every ug € D(A) the solution
u of (38) is given by the “exponential formula”

—17"
(39) u(t) = lim |:<I+£A> } uo.
n—400 n

Foraproofsee,e.g., K. Yosida[1] and A. Pazy [1]. Formula (39) corresponds, in the
language of numerical analysis, to the convergence of an implicit time discretization
scheme for (38) (see, e.g., K. W. Morton-D. F. Mayers [1]). More precisely, one
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divides the interval [0, ¢] into n intervals of equal length At = #/n and one solves
inductively the equations

Uj+1 —Uj .
—— 4+ Auiy 1 =0, =0,1,...,n—1,
At j+1 J

starting with ug. In other words, u, is given by

t —n
up, = (I + AtA) tug = (I + —A) ug.
n

Asn — oo (i.e., At — 0) it is “intuitive” that u,, converges to u(z).

3. Theorem 7.7 is a first step toward the theory of analytic semigroups. On this
subject see, e.g., K. Yosida [1], T. Kato [1], M. Reed-B. Simon [1], Volume 2,
A. Friedman [2], A. Pazy [1], and H. Tanabe [1].

4. Inhomogeneous equations. Nonlinear equations.
Consider, in a Banach space E, the problem

du
E(t) + Au(®) = f(t) onl[0,T],
u(0) = ug.

(40)

The following holds.
Theorem 7.10. Assume that A is m-accretive. Then for every ug € D(A) and every
fe CY([0, T1; E) there exists a unique solution u of (40) with

ueCY(0,T]; EYNC(0,T]; D(A)).

Moreover, u is given by the formula

t
(41) u(t) = Sa(t)uo +/ Sa(t —s) f(s)ds,
0

where S (t) is the semigroup introduced in Comment 1.

Note that if one assumes just f € L'((0, T); E), formula (41) still makes sense
and provides a generalized solution of (40). On these questions see, e.g., T. Kato [1],
A. Pazy [1], R. H. Martin [1], H. Tanabe [1].

In physical applications one encounters many “semilinear” equations of the form

du

7 + Au = F(u),

where F is a nonlinear map from E into E. On these questions see, e.g., R. H. Mar-
tin [1], Th. Cazenave—A. Haraux [1], and the comments on Chapter 10.
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Let us also mention that some results of Chapter 7 have nonlinear extensions. It
is useful to consider nonlinear m-accretive operators A : D(A) C E — E. On this
subject, see, e.g., H. Brezis [1] and V. Barbu [1].



Chapter 8

Sobolev Spaces and the Variational Formulation
of Boundary Value Problems in One Dimension

8.1 Motivation

Consider the following problem. Given f € C([a, b]), find a function u satisfying

) —u"+u=f onla,b],
u(a) =ub) =0.
A classical—or strong—solution of (1) is a C 2 function on [a, b] satisfying (1) in
the usual sense. It is well known that (1) can be solved explicitly by a very simple
calculation, but we ignore this feature so as to illustrate the method on this elementary
example.
Multiply (1) by ¢ € C'([a, b]) and integrate by parts; we obtain

b b b
(2) / u’¢’+/ u<p=/ fo Vo eCl(a,bl),p@) =¢b) =0.

Note that (2) makes sense as soon as u € C!([a, b]) (Whereas (1) requires two
derivatives on u); in fact, it suffices to know that u, u’ € L'(a, b), where u’ has a
meaning yet to be made precise. Let us say (provisionally) that a C! function u that
satisfies (2) is a weak solution of (1).

The following program outlines the main steps of the variational approach in the
theory of partial differential equations:

Step A. The notion of weak solution is made precise. This involves Sobolev spaces,
which are our basic tools.

Step B. Existence and uniqueness of a weak solution is established by a variational
method via the Lax—Milgram theorem.

Step C. The weak solution is proved to be of class C? (for example): this is a regularity
result.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 201
DOI 10.1007/978-0-387-70914-7 8, © Springer Science+Business Media, LLC 2011
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Step D. A classical solution is recovered by showing that any weak solution that is
C? is a classical solution.

To carry out Step D is very simple. In fact, suppose that u € C2([a, b)), u(a) =
u(b) = 0, and that u satisfies (2). Integrating (2) by parts we obtain

b
/ (—u" +u—fo=0 VoeC'(a,b), pla)=pb) =0

and therefore ,
/ (—u" +u— o =0 YoeClab).
a

It follows (see Corollary 4.15) that —u” +u = f a.e. on (a, b) and thus everywhere
on [a, b], since u € CZ([a, b)).

8.2 The Sobolev Space W7 (I)

Let I = (a, b) be an open interval, possibly unbounded, and let p € R with 1 <
p < oo.

Definition. The Sobolev space WP (I)! is defined to be

whr(r) = {u € LP(I); 3g € L?(I) such that /uw’ = —/g(p Vo € Cg([)}.
i I

We set

H' (1) = wh2(D). ‘

Foru € WhP(I) we denote 2 ' = g.

Remark 1. In the definition of W7 we call ¢ a test function. We could equally
well have used CZ°(]) as the class of test functions because if ¢ € C Cl (I), then
pn *x @ € C°(I) for n large enough and p, x ¢ — ¢ in C! (see Section 4.4; of
course, ¢ is extended to be 0 outside 7).

Remark 2. Ttis clear thatifu € C'(I)NLP(I)andifu’ € L?(I) (here u’ is the usual
derivative of u) then u € WL-P(I). Moreover, the usual derivative of u coincides with
its derivative in the W17 sense—so that notation is consistent! In particular, if / is
bounded, C'(I) c WhP(I) forall 1 < p < co.

Examples. Let I = (—1, +1). As an exercise show the following:

(i) The function u(x) = |x| belongs to wh-r(I) for everyl < p <ooandu’' =g,
where

LIf there is no confusion we shall write W17 instead of W1-P(I) and H! instead of H'(1).
2 Note that this makes sense: g is well defined a.e. by Corollary 4.24.
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+1 if0<x <1,

) = -1 if —1<x<0O.

More generally, a continuous function on 7 that is piecewise C' on I belongs to
WP () forall1 < p < oco.
(ii) The function g above does not belong to WP (I) forany 1 < p < oco.

* Remark 3. To define W!? one can also use the language of distributions (see
L. Schwartz [1] or A. Knapp [2]). All functions u € L?(I) admit a derivative in the
sense of distributions; this derivative is an element of the huge space of distributions
D'(I). We say that u € WP if this distributional derivative happens to lie in L?,
which is a subspace of D'(I). When I = R and p = 2, Sobolev spaces can also be
defined using the Fourier transform; see, e.g., J. L. Lions—E. Magenes [1], P. Mal-
liavin [1], H. Triebel [1], L. Grafakos [1]. We shall not take this viewpoint here.

Notation. The space W7 is equipped with the norm

lullwrr = llullr + llu'llr

or sometimes, if 1| < p < oo, with the equivalent norm (||u||€,, + ||u’||€,,)1/1’. The
space H'! is equipped with the scalar product

b
u, V)1 = W, v)2+ W, v)2 = / (wv 4+ u'v')
a

and with the associated norm
2 2 4172
Nl g = (el + Il [172)"2.
L L

Proposition 8.1. The space W'? is a Banach space for 1 < p < oo. It is reflexive’
for 1 < p < oo and separable for 1 < p < oco. The space H' is a separable Hilbert
space.

Proof.

(a) Let (u,)be aCauchy sequencein WP then (u,) and (u},) are Cauchy sequences
in L?. It follows that u,, converges to some limit u in L” and u), converges to
some limit g in L”. We have

/unga/ = —/u;w Yo € CCI(I),
1 I

ugo’:—/ggo Vo e CL(r).

and in the limit

1

3 This property is a considerable advantage of W7 In the problems of the calculus of variations,
WP is preferred over C!, which is not reflexive. Existence of minimizers is easily established in
reflexive spaces (see, e.g., Corollary 3.23).
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Thusu € WP, u' = g, and |lu, — ul|y1., — O.

(b) WhPisreflexivefor1 < p < oo.Clearly, the product space E = LP(I)x LP(I)
is reflexive. The operator T : W7 — E defined by Tu = [u, u'] is an isometry
from W7 into E. Since W7 is a Banach space, T (W !:?) is a closed subspace
of E. It follows that T (W !-?) is reflexive (see Proposition 3.20). Consequently
WP is also reflexive.

(c) WIP is separable for 1 < p < oo. Clearly, the product space E = LP(I) x
LP(I) is separable. Thus 7 (W !-?) is also separable (by Proposition 3.25). Con-
sequently W17 is separable.

Remark 4. Tt is convenient to keep in mind the following fact, which we have used
in the proof of Proposition 8.1: let (u,,) be a sequence in W7 such that u,, — u in
L? and (u),) converges to some limit in L?; then u € WP and ||u, — ullwip — 0.
In fact, when 1 < p < oo it suffices to know that u, — u in L? and ||u},||L» stays
bounded to conclude that u € W17 (see Exercise 8.2).

The functions in W7 are roughly speaking the primitives of the L? functions.
More precisely, we have the following:

Theorem 8.2. Let u € WP ) wi_th 1 < p < o0, and I bounded or unbounded;
then there exists a function u € C(I) such that

u=1u aeonl

and

ﬁ(x)—ﬁ(y):/xu’(t)dt Vx,yel.
v

Remark 5. Let us emphasize the content of Theorem 8.2. First, note that if one func-
tion u belongs to W7 then all functions v such that v = u a.e. on I also belong to
WP (this follows directly from the definition of W1-?). Theorem 8.2 asserts that
every function u € W'? admits one (and only one) continuous representative on I,
i.e., there exists a continuous function on I that belongs to the equivalence class of u
(v ~ uif v = ua.e.). When it is useful* we replace u by its continuous representative.
In order to simplify the notation we also write u for its continuous representative.
We finally point out that the property “u has a continuous representative” is not the
same as “u is continuous a.e.”

Remark 6. It follows from Theorem 8.2 that if u € WP and if u’ € C(I) (i.e., u’
admits a continuous representative on /), thenu € C'(I); more precisely, i € C L),
but as mentioned above, we do not distinguish # and u.

In the proof of Theorem 8.2 we shall use the following lemmas:

Lemma 8.1. Let f € L} (1) be such that

loc

4 For example, in order to give a meaning to u(x) for every x € I.



8.2 The Sobolev Space wbr(n) 205
3) / fo/ =0 Ypecl),
I
Then there exists a constant C such that f = C a.e.on I.

Proof. Fix a function ¥ € C.(I) such that fl ¥ = 1. For any function w € C.([)
there exists ¢ € C, Cl (I) such that

e ([

Indeed, the function 7 = w — ( f JWY is continuous, has compact support in /, and
also || ; h = 0. Therefore h has a (unique) primitive with compact support in /. We
deduce from (3) that

/If[w_</lw>w}=0 Yw € Ce(D).
[lr=(]ro)]u=0 wwecaw.

and therefore (by Corollary 4.24) f — (fl f¥)=0ae.onl,ie., f =Cae.onl
with C = [, f.

i.e.,

Lemma 8.2. Let g € L} (I); for yo fixed in I, set

loc

v(x) = /X g)ydt, xel.
y

0
Thenv € C(I) and

vw’:—fgw Vo e CL(D).
I I

Proof. We have

/vgo’ = / |:/x g(t)dt] ¢’ (x)dx
I I'LJyo

Yo Yo b X
= —/ dx/ g(t)(p’(x)dl—i-/ dx/ g’ (x)dt.
a x Yo Yo

By Fubini’s theorem,

Yo 1 b b
/wp’ = —/ g(t)dt/ qo/(x)dx—i—/ g(t)dt/ @' (x)dx
1 a a Yo t

= —/Ig(t)w(t)dt.
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Proof of Theorem 8.2. Fix yp € I and set u(x) = f;; u'(t)dt. By Lemma 8.2 we

have
/W: —/u’<p Vo e CLD).
1 1

Thus f,(u —i)g' =0 Vo ¢ CCI(I). It follows from Lemma 8.1 that u — u = C
a.e. on /. The function i (x) = u(x) + C has the desired properties.

Remark 7. Lemma 8.2 shows that the primitive v of a function g € L? belongs
to W1 provided we also know that v € L”, which is always the case when [ is
bounded.

Proposition 8.3. Let u € L? with 1 < p < oo. The following properties are equiv-
alent:

()uewhp,
(i) there is a constant C such that

o
1

Furthermore, we can take C = ||u'|| Lr (1) in (ii).

<Cligllyyy YoeCiD.

Proof.
(i) = (ii). This is obvious.
(i1) = (i). The linear functional

1
peC.() /Imp’

is defined on a dense subspace of L?' (since p’ < 00) and it is continuous for the
L?" norm. Therefore it extends to a bounded linear functional F defined on all of
LY (applying the Hahn—Banach theorem, or simply extension by continuity). By the
Riesz representation theorems (Theorems 4.11 and 4.14) there exists g € L? such
that

<F,<ﬂ)=/g<ﬂ Yo e L.
1

/Iuw’zflgw Vo € C!

* Remark 8 (absolutely continuous functions and functions of bounded variation).
When p = 1, the implication (i) = (ii) remains true but not the converse. To illustrate
this fact, suppose that / is bounded. The functions u satisfying (i) with p = 1, i.e.,
the functions of W1-1(I), are called the absolutely continuous functions. They are
also characterized by the property

In particular,

and thus u € WP,
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Ve > 0,35 > 0 such that for every finite sequence
(AC) of disjoint intervals (ak, bx) C I such that >_ |bx — ax| < 8,
we have > |u(by) — u(ax)| < e.

On the other hand, the functions u satisfying (ii) with p = 1 are called functions of
bounded variation; these functions can be characterized in many different ways:

(a) they are the difference of two bounded nondecreasing functions (possibly dis-
continuous) on 1,
(b) they are the functions u satisfying the property

there exists a constant C such that

(BV) k=1 .
S lu(tiv1) —u(t)| < Cforalltg <t <--- <t inl,

i=0

(c) they are the functions u € L' (I) that have as distributional derivative a bounded
measure.

Note that functions of bounded variation need not have a continuous repre-
sentative. On this subject see, e.g., E. Hewitt—K. Stromberg [1], A. Kolmogorov—
S. Fomin [1], S. Chae [1], H. Royden [1], G. Folland [2], G. Buttazzo—M. Giaquinta—
S. Hildebrandt [1], W. Rudin [2], R. Wheeden—A. Zygmund [1], and A. Knapp [1].

Proposition 8.4. A function u in L>°(I) belongs to W“°°(I) if and only if there
exists a constant C such that

lu(x) —u(y)| < Clx — y| fora.e x,y € I.
Proof. If u € W-*°(I) we may apply Theorem 8.2 to deduce that
|t (x) —u(y)| < llullzoelx — y| forae x,y € 1.

Conversely, let ¢ € C Cl (I). For h € R, with || small enough, we have

/I[u(x +h) —ul)]ekx)dx = /IM(X)[w(x —h) —e(x)]dx

(these integrals make sense for 4 small, since ¢ is supported in a compact subset of
I). Using the assumption on u we obtain

‘flum[go(x — ) — o(0)ldx| < Clhllll .

Dividing by |h| and letting & — 0, we are led to

o
1

<Clgly Yo eCl.
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We may now apply Proposition 8.3 and conclude that u € W1
The L?-version of Proposition 8.4 reads as follows:

Proposition 8.5. Let u € LP(R) with 1 < p < oo. The following properties are
equivalent:

i) ueWHP(R),
(ii) there exists a constant C such that for all h € R,

lzhu — ullLrwy < Clh|.
Moreover, one can choose C = ||u'|| Lr ) in (ii).
Recall that (tpu)(x) = u(x + h).
Proof.

(i) = (ii). (This implication is also valid when p = 1.) By Theorem 8.2 we have,
for all x and 4 in R,

x+h 1
u(x+h) —ulx) = / u' (Hdt = h/ u' (x + sh)ds.
X 0

Thus X
G+ 1) — u(@)] < |h|/ W (x + sh)lds.
0

Applying Holder’s inequality, we have
1
lu(x +h) —u(x)|? < |h|pf |’ (x + sh)|Pds.
0
It then follows that
1
/ lu(x +h) —u(x)|Pdx < |h|1’/ dx/ |/ (x + sh)|Pds
R R 0

1
< |h|p/ ds/ |u'(x + sh)|Pdx.
0 R

Butfor0O <s <1,

flu'(X+Sh)|”dX=/ ' (»)17dy,
R R

from which (ii) can be deduced.

(ii) = (i). Let ¢ € C1(R). For all 1 € R we have

/R[u(x +h) —u(x)]ex)dx = fRM(X)Rp(x —h) —e(x)ldx.
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Using Holder’s inequality and (ii) one obtains

'fR[u(x+h)—u(x)]<p(X)dx = Clrlllell Ly gy

and thus

‘ /RM(X)[fp(x —h) —e)]dx

Dividing by |k| and letting & — 0, we obtain

'fRugo’

= C”(p”LI)/(R)-

We may apply Proposition 8.3 once more and conclude that u € W17 (R).

S C|h|||(p||Ll)’(R)

209

Certain basic analytic operations have a meaning only for functions defined on
all of R (for example convolution and Fourier transform). It is therefore useful to be
able to extend a function u € W7 (I) to a function i € W17 (R).> The following

result addresses this point.

Theorem 8.6 (extension operator). Let 1 < p < oo. There exists a bounded linear
operator P : WP (I) — WULP(R), called an extension operator, satisfying the

following properties:

() Puj; =u Yu € WhP(I),

i) |PullLe@y < ClullLrgy Yu € WP,
(i) I Pullyrnry < Cllullyrngy Yu € WHPAD),

where C depends only on |1| < 00.%

Proof. Beginning with the case I = (0, co) we show that extension by reflexion

u(x) ifx >0,

u(—x) ifx <0,

(Pu)(x) = u™(x) = {
works. Clearly we have
lu*ller@wy < 2llulle.

Setting

{u’(x) ifx >0,
v(x) = )
—u'(—x) ifx <0,

we easily check that v € L?(R) and

u*(x) —u*(0) = /x v(t)dt VYx € R.
0

5 If u is extended as 0 outside I then the resulting function will not, in general, be in wlp (R) (see

Remark 5 and Section 8.3).
6 One can take C = 4 in (ii)and C =41 + ﬁ) in (iii).
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n
1

I
o= -

Fig. 5

It follows that u* € W7 (R) (see Remark 7) and Il llwrrwy < 2llullwip-

Now consider the case of a bounded interval I; without loss of generality we can
take I = (0, 1). Fix a function n € CI(R), 0 < n < 1, such that

1 ifx <1/4,
nx) = .
0 ifx > 3/4.

See Figure 5.
Given a function f on (0, 1) set

fx) if0<x <1,

f(x)z{o ifx> 1,

We shall need the following lemma.
Lemma 8.3. Let u € WP (I). Then
nii € WhHP(0,00) and (nit) = n'ii + nqu'.

Proof. Let ¢ € C((0, 00)); then

00 1 1
/ nftd:/ nuw/zf ul(np) —n'e)
0 0 0

1 1
=- / u'ng — f un'e  since ng € C((0, 1))
0 0

w ~
= —/ u'n + an)e.
0
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Proof of Theorem 8.6, concluded. Given u € WP (I), write
u=nu+ 1 -—nu.

The function nu is first extended to (0, co) by nit (in view of Lemma 8.3) and
then to R by reflection. In this way we obtain a function v; € W7 (R) that extends
nu and such that

loillLr@y < 2Mulleeay »  Nvillwrewy < Cllullwie

(where C depends on ||1/|| L).

Proceed in the same way with (1 — n)u, that is, first extend (1 — n)u to (—oo, 1)
by 0 on (—o0, 0) and then extend to R by reflection (this time about the point 1, not
0). In this way we obtain a function v» € W1?(R) that extends (1 — )« and satisfies

lvallLr@®y < 2Mlulleeay,  Nv2llwirm) < Cllullwir -
Then Pu = vi + v, satisfies the condition of the theorem.

Certain properties of C! functions remain true for W -7 functions (see for example
Corollaries 8.10 and 8.11). It is convenient to establish these properties by a density
argument based on the following result.

e Theorem 8.7 (density). Let u € WP (I) with 1 < p < oc. Then there exists a
sequence (u,) in CZ°(R) such that u,;; — u in wl-p (D).

Remark 9. In general, there is no sequence (u,) in C°(I) such that u, — u in
wlr (D) (see Section 8.3). This is in contrast to L? spaces: recall that for every
function u € LP(I) there is a sequence (u,) in C2°(I) such that u, — u in LP(I)
(see Corollary 4.23).

Proof. We can always suppose I = R; otherwise, extend u to a function in W17 (R)
by Theorem 8.6. We use the basic techniques of convolution (which makes functions
C®°) and cut-off (which makes their support compact).

(a) Convolution.
We shall need the following lemma.

Lemma 8.4. Let p € L'(R) and v € WHP(R) with 1 < p < oo. Then p x v €
WLP(R) and (p *v) = p x V.

Proof. First, suppose that p has compact support. We already know (Theorem 4.15)
that pxv € LP(R). Letp € C 61 (R); from Propositions 4.16 and 4.20 we have

/(p*v)qo/=/v<ﬁw’>=/v(ﬁw>’=—/v’(ﬁ*w)=—f(p*v/><p,

from which it follows that

pxveWh? and (pxv) =pxv.
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If p does not have compact support introduce a sequence (p,,) from C.(R) such that
Pn — pin LY(R) (see Corollary 4.23). From the above, we get

onxv € WHP(R) and  (py *xv) = ppx 0.

But p, xv — p*vin L?(R) and p, *v" — pxv'in L?(R) (by Theorem 4.15). We
conclude with the help of Remark 4 that

pxveWLP(R) and (pxv) =pxv.

(b) Cut-off.
Fix a function ¢ € C°(R) such that 0 < ¢ < 1 and

£ 1 if|x] <1,
X) =
0 if|x|>2.

Define the sequence
“) L(x)=¢(x/n) forn=1,2,....

It follows easily from the dominated convergence theorem that if a function f belongs
to LP(R) with 1 < p < oo, then ¢, f — f in LP(R).

(c) Conclusion.
Choose a sequence of mollifiers (p, ). We claim that the sequence u,, = &, (o, *u)
converges to « in W17 (R). First, we have ||u, — ull, — 0. In fact, write

up —u = ((on xu) —u) + (Cuu — u)

and thus
lun —ullp < llon *xu —ullp + 1gou — ullp, — 0.

Next, by Lemma 8.4, we have
M;Z = é-y/;(pn *U) + Cn(pp * u/)'

Therefore

A

lluy — u'llp < 016, (on Wl p + 160 (on * ) —ull p

IA

C
;“u”p + llon *u' — u/”p + ”Cnu/ - M/Hp — 0,

where C = ||1¢/]| co-

The next result is an important prototype of a Sobolev inequality (also called a
Sobolev embedding).

e Theorem 8.8. There exists a constant C (depending only on |I| < 00) such that

) lulloory < Cllullwrpgy Y ue WHP(I), ¥ 1<p <oo.
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In other words, WYP(I) C L*®(I) with continuous injection forall 1 < p < oo.
Further, if I is bounded then

(6) the injection Wl”’(l) cCc)is compact forall 1 < p < oo,
@) the injection WI’I(I) C L9(I) is compact forall 1 < g < oo.

Proof. We start by proving (5) for I = R; the general case then follows from this
by the extension theorem (Theorem 8.6). Let v € CCl R); if 1 < p < oo set
G(s) = |s|P~Ls. The function w = G(v) belongs to CC1 (R) and

w' =G () = plvP~ .

Thus, for x € R, we have

Gumx»==/m plu@®1P~1 (t)dt,

—0
and by Holder’s inequality

@I < pllvly ™ 1V,
from which we conclude that
@®) Ivlloo < Cllvllwir Yo € Co(R),
where C is a universal constant (independent of p).’

Argue now by density. Let u € WLP(R); there exists a sequence (u,) C CLI. (R)
such that u,, — u in WLP(R) (by Theorem 8.7). Applying (8), we see that (u,) is a
Cauchy sequence in L°°(R). Thus u,, — u in L>°(R) and we obtain (5).

Proof of (6). Let H be the unit ball in W7 (I) with 1 < p < oco. Foru € H we have

f ' W (t)dt
y

It follows then from the Ascoli-Arzela theorem (Theorem 4.25) that H has a compact
closure in C (7).

lu(x) —u(y)| = < lllplx =y < |x —y|YP" Vx,y el

Proof of (7). Let H be the unit ball in WLI(I). Let P be the extension operator of
Theorem 8.6 and set 7 = P(H), so that H = F|;. We prove that H has a compact
closure in L9(1) (for all 1 < g < oo) by applying Theorem 4.26. Clearly, F is
bounded in W' (R); therefore F is also bounded in L4 (R), since it is bounded both
in L' (R) and in L°°(R). We now check condition (22) of Chapter 4, i.e.,

lim ||t f — fllg =0 uniformly in f € F.
h—0

7 Noting that p'/? < el/¢ vp > 1.



214 8 Sobolev Spaces and the Variational Formulation of Boundary Value Problems in 1D
By Proposition 8.5 we have, for every f € F,

len f = fllpiw) < 1Rl L gy < Cll,
since F is a bounded subset of W11 (R). Thus

e f = Flla@ < @IFILe@)? o f = fllie < Clhl

and consequently
lonf = fllLawy < ClhI'4,

where C is independent of f. The desired conclusion follows since g # oo.

Remark 10. The injection Wb I(I) ¢ C(I) is continuous but it is never compact,
even if I is a bounded interval; the reader should find an argument or see Exercise
8.2. Nevertheless, if (u,) is a bounded sequence in W!1(I) (with I bounded or
unbounded) there exists a subsequence (uy, ) such that u,, (x) converges forallx € [
(this is Helly’s selection theorem; see for example A. Kolmogorov—S. Fomin [1]
and Exercise 8.3). When [ is unbounded and 1 < p < oo, we know that the
injection W-?(I) ¢ L°(I) is continuous; this injection is never compact—again
give an argument or see Exercise 8.4. However, if (u,) is bounded in WP (1) with
1 < p < oo there exist a subsequence (u,,) and some u € WLP(I) such that
U, — u in L*°(J) for every bounded subset J of I.

Remark 11. Let I be a bounded interval, let 1 < p < oo, andlet1 < g < oco. From
Theorem 8.2 and (5) it can be shown easily that the norm

lleelll = lle"llp + Nluellg
is equivalent to the norm of W17 (I).

Remark 12. Let I be an unbounded interval. If u € WP (I), then u € L9(I) for all
q € [p, 0o], since

[ 1wl < e
I
But in general u ¢ L9(I) for g € [1, p) (see Exercise 8.1).

Corollary 8.9. Suppose that I is an unbounded interval and u € WP (I) with
1 < p < oo. Then

) lim u(x) =0.
xel

|x]—00

Proof. From Theorem 8.7 there exists a sequence (u,,) in Ccl, (R) such that u,); — u
in WLP(I). Tt follows from (5) that lun — ullpoory — 0. We deduce (9) from this.
Indeed, given & > 0 we choose n large enough that ||u,, — u|| () < &.For |x|large
enough, u, (x) = 0 (since u, € CC1 (R)) and thus [u(x)| < €.
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Corollary 8.10 (differentiation of a product).® Leru, v e WHP(I) with1 < p <
o0o. Then
uv € WhP (D)

and
(10) wv) =u'v+uv.

Furthermore, the formula for integration by parts holds:

X

(11D /x w'v =ux)vx) —u(y)vy) —/ uv’ Vx, y € I.
y y

Proof. First recall that u € L*° (by Theorem 8.8) and thus uv € L”. To show that
(uv)’ € LP let us begin with the case 1 < p < oo. Let (u,,) and (v,) be sequences in
Cg (R) such that u,;; — u and v,y — vin WLP(I). Thus Upr = uand vy — v
in L*°(I) (again by Theorem 8.8). It follows that u,v,;; — uv in L°°(I) and also
in L?(I). We have

(Unvn)' = vy + uyv, — u'v+uv in LP(I).

Applying once more Remark 4 to the sequence (u,v,), we conclude that uv €
WLP(I) and that (10) holds. Integrating (10), we obtain (11).

We now turn to the case p = o0o; let u, v € WH%°(I). Thus uv € L*®(I) and
u'v 4+ uv’ € L°°(I). It remains to check that

/uvgo/ = —/(u/v+uv/)g0 Yo € CL(I).
1 I

For this, fix a bounded open interval J C [ such that suppe C J. Thus u,v €
wl-p(J) for all p < oo and from the above we know that

/ uvg' = —/(u’v +uv)p,

J J

/uwp’ =— /(u’v +uv)e.
1 I

Corollary 8.11 (differentiation of a composition). Ler G € C(R) be such that’
G(0) =0, and letu € WHP(I) with 1 < p < oo. Then

that is,

GoueWhP(I) and (Gou) = (G ou.

8 Note the contrast of this result with the properties of L? functions: in general, if u, v € L?, the
product uv does not belong to L?. We say that W'-?(I) is a Banach algebra.

9 This restriction is unnecessary when / is bounded (or also if / is unbounded and p = oo). It is
essential if / is unbounded and 1 < p < oo.
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Proof. Let M = |lul|s0. Since G(0) = 0, there exists a constant C such that |G (s)| <
C|s| foralls € [-M, +M]. Thus |G o u| < Clu|; it follows that G ou € LP(I).
Similarly, (G’ o u)u’ € LP(I). It remains to verify that

(12) f(G ou)g = —/(G/ ouw'y Yo e ClI).
1 1

Suppose first that 1 < p < oo. Then there exists a sequence (u,) from C, Cl (R) such
that u,); — u in WP (I) and also in L% (I). Thus (G o up);y — Gouin L(I)
and (G’ o u,,)u;” — (G’ o w)u’ in LP(I). Clearly (by the standard rules for C!
functions) we have

f(G oun)g’ = — /(G/ ouupp Vo € CL(I),
1 1

from which we deduce (12). For the case p = oo proceed in the same manner as in
the proof of Corollary 8.10.

The Sobolev Spaces W7

Definition. Given an integer m > 2 and a real number 1 < p < oo we define by
induction the space

W™P(I) = {u e W' LP(D): u' € W LP(D)).

We also set
H™(I) = W™2(I).

It is easily shown that u € W7 (1) if and only if there exist m functions g1, g2, .. .,
gm € LP(I) such that

/u Dj(p=(—1)j/gj(p Vo e C°(I), Vj=1,2,...,m,
1 1

where D/ ¢ denotes the jth derivative of . Whenu € WP (I) we may thus consider
the successive derivatives of u : u’ = g1, (u’)’ = g2, ..., up to order m. They are
denoted by Du, D?u, ..., D™u. The space W™ P (I) is equipped with the norm

m
laellwnr = llull, + Y I1D%ullp,

a=l1

and the space H™ (1) is equipped with the scalar product

m m
(u, v)gm = (u,v)2 + Z(D“u, D*v)2 = /uv + 2/ D%u D%v.
a=1 Y

a=1 1
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One can show that the norm || ||wm=.r is equivalent to the norm
laelll = llullp + D™ ullp.

More precisely, one proves that for every integer j, 1 < j < m — 1, and for every
& > 0 there exists a constant C (depending on ¢ and |/| < oco) such that

ID/ull, < elD™ull, + Cllull, Yu e W™P(I)
(see, e.g., R. Adams [1], or Exercise 8.6 for the case || < 00).

The reader can extend to the space W7 all the properties shown for wh-r: for
example, if I is bounded, W”-?(I) c C™~'(I) with continuous injection (resp.
compact injection for 1 < p < 00).

8.3 The Space W(} P

Definition. Given 1 < p < oo, denote by W(} "P(I) the closure of Ccl(l ) in
WP (1).10 Set ,
HY() = Wy (D).

The space Wé "P(I) is equipped with the norm of W17 (I), and the space HO1 is
equipped with the scalar product of H!.!!

The space WO1 "7 is a separable Banach space. Moreover, it is reflexive for p > 1.
The space H& is a separable Hilbert space.

Remark 13. When I = R we know that Cg (R) is dense in W!?(R) (see Theorem
8.7) and therefore WOl P(R) = WLP(R).

Remark 14. Using a sequence of mollifiers (p,) it is easy to check the following:

(i) C2°(I) is dense in Wy'” (I).
(i) Ifu € WhP(I) N Co(I) then u € WP (1).

Our next result provides a basic characterization of functions in WO1 P(I).
o Theorem 8.12. Let u € WP (I). Then u € Wé’p(l) ifand only ifu =0on dl.
Remark 15. Theorem 8.12 explains the central role played by the space WO1 "P(I). Dif-

ferential equations (or partial differential equations) are often coupled with boundary
conditions, i.e., the value of u is prescribed on 91.

10'We do not define Wol‘p for p = oo.
1 When there is no confusion we often write Wol”’ and HO1 instead of W(;”’ (I) and HO1 (I).
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Proof. Ifu € W&’p , there exists a sequence (u,) in CC1 (1) such that 4, — u in
WLP(I). Therefore u, — u uniformly on I and as a consequence u = 0 on 91.
Conversely, let u € WP (I) be such that u = 0 on 9/. Fix any function G €
C(R) such that
0 ifjrf <1,

G(t) =
O=1, if |t] > 2,

and
IG(t)| < |t] VYtelR.

Setu, = (1/n)G (nu), so thatu,, € WhP(I) (by Corollary 8.11). On the other hand,
suppun C {x € I; |u(x)| > 1/n},

and thus supp u,, is in a compact subset of I (using the fact that # = 0 on 9/ and
u(x) — Oas |x|] = oo, x € I). Therefore u,, € W(}’p(l) (see Remark 14). Finally,
one easily checks that u,, — u in W7 (I) by the dominated convergence theorem.

Thus u € Wy'” (I).

Remark 16. Let us mention two other characterizations of WO1 P functions:

(i) Letl < p <ocandletu € LP(I). Define u by

_ {u(x) ifxel,
u(x) = .
0 if x € R\I.

Then u € W, (I) if and only if i € WP (R).

(i) Let 1 < p < ooandletu € LP(I). Then u belongs to Wé’p(l) if and only if
there exists a constant C such that

o
1

o Proposition 8.13 (Poincaré’s inequality). Suppose I is a bounded interval. Then
there exists a constant C (depending on |I| < 00) such that

= C”‘/’HLP’(I) Vo € Cg(R)~

1,
(13) lullwipy < Clu'llLeay Yu € Wy'P (1.

1 . . .
In other words, on Wo’p, the quantity |u'|lLr(ry is a norm equivalent to the
WP norm.

Proof. Letu € Wy'P(I) (with I = (a, b)). Since u(a) = 0, we have

/x u'(t)dt

Thus [[ull ey < ||u’||L1(1) and (13) then follows by Holder’s inequality.

lu()| = lux) —ua)| = < llullpr
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Remark 17. If I is bounded, the expression (u’,v");2 = [u’v’ defines a scalar
product on HO1 and the associated norm, i.e., ||u'|| 2, is equivalent to the H ! norm.

Remark 18. Given an integer m > 2 and a real number 1 < p < oo, the space
Wy"P(1) is defined as the closure of C(I) in W™”(I). One shows (see Exer-
cise 8.9) that

Wo' (1) = {u € W™ (1) u=Du=---=D""'u=0 ondl).
It is essential to notice the distinction between
Wg’p(l) ={ueW>”(); u=Du=0 ondl}

and
WP AWy (1) = (ue WHP(I); u=0 ondl}.

* The Dual Space of Wol Py )

Notation. The dual space of W&’p(l) (1 < p < o0) is denoted by W‘l*f’/(l) and
the dual space of HO1 (1) is denoted by H=Y(D).

Following Remark 3 of Chapter 5, we identify L*> and its dual, but we do not
identify HO1 and its dual. We have the inclusions

Hl cL>cH,

where these injections are continuous and dense (i.e., they have dense ranges).
If 7 is a bounded interval we have

Wy c 1> c Wb forall 1 < p < oo

with continuous injections (and dense injections when 1 < p < 00).
If 1 is unbounded we have only

Wol’p cL?c w1 forall 1 <p<2

with continuous injections (see Remark 12).

The elements of W~1-7" can be represented with the help of functions in L";to
be precise, we have the following

Proposition 8.14. Ler F € W~ (I). Then there exist two functions fy, f1 €
LP? (I) such that

(F,u):/fou—i—/f]u’ VueWol’p(I)
I I

and
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IE Ny 1. = max{ll foll pr. | f1ll pr}-
When I is bounded we can take fo = 0.

Proof. Consider the product space E = LP(I) x LP(I) equipped with the norm
Al = llhollp + A1l where b = [ho, hi].

Themap T : u € Wé’p(l) + [u, u'] € E is an isometry from Wol’p(l) into E. Set
G = T(W,""(I)) equipped with the norm of E and S = T~! : G — W'’ (I). The
map h € G — (F, Sh) is a continuous linear functional on G. By the Hahn—Banach
theorem, it can be extended to a continuous linear functional ® on all of E with

|®||g+ = || F|l. By the Riesz representation theorem we know that there exist two
. /
functions fo, f1 € L? (I) such that

<<1>,h>=/foho+/f1h1 Vh = [ho, 1] € E.
1 1

It is easy to check that || ® || g~ = max{|| foll 7, l| f1llp'}. Also, we have
(D, Tu) = (F,u) = f fou +/f1u’ Yu € Wol’p.
I I

When [ is bounded the space WO1 "7 (I') may be equipped with the norm ||z’ | p (see
Proposition 8.13). We repeat the same argument with £ = LP(I) and T : u €
WP (1) > u’ e LP(I).

Remark 19. The functions fj and f] are not uniquely determined by F.

Remark 20. The element F € W‘l’p/(l ) is usually identified with the distribution
fo— f{ (by definition, the distribution fo — f7 is the linear functional u — [, fou +
J; fiu',on C2()).

Remark 21. The first assertion of Proposition 8.14 also holds for continuous linear
functionals on Wl’p(l < p < 00), i.e., every continuous linear functional F on
WP may be represented as

(F,u):/fou—}—/flu/ Yue whr
1 I
for some functions fy, f1 € LY.

8.4 Some Examples of Boundary Value Problems

Consider the problem

(14)

—u"+u=f onl=(0,1),
w(0) = u(l) = 0,
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where f is a given function (for example in C(/) or more generally in L?(I)).
The boundary condition u(0) = u(l) = 0 is called the (homogeneous) Dirichlet
boundary condition.

Definition. A classical solution of (14) is a function u € C*(I) satisfying (14) in
the usual sense. A weak solution of (14) is a function u € HO1 (I) satisfying

(15) /u’v/—i—/uv:/fv Yo € H(I).
I I I

Let us “put into action” the program outlined in Section 8.1:

Step A. Every classical solution is a weak solution. This is obvious by integration
by parts (as justified in Corollary 8.10).

Step B. Existence and uniqueness of a weak solution. This is the content of the
following result.

e Proposition 8.15. Given any f € L*(I) there exists a unique solution u € HOl to
(15). Furthermore, u is obtained by

min {lf(v/2+v2)—/fv};
ver] 12 J1 I

this is Dirichlet’s principle.

Proof. We apply Lax—Milgram’s theorem (Corollary 5.8) in the Hilbert space H =
H_ (I) with the bilinear form

a(u,v) = /u’v’ + / uv = (u, v) g
I I

and with the linear functional ¢ : v > [ 1 Jv.

Remark 22. Given F € H~'(I) we know from the Riesz—Fréchet representation
theorem (Theorem 5.5) that there exists a unique u € HO1 (I)) such that

W, V) = (Fv)y1 g1 Yo e H}.

The map F > u is the Riesz—Fréchet isomorphism from H ~! onto HO1 . The function
u coincides with the weak solution of (14) in the sense of (15).

Steps C and D. Regularity of weak solutions. Recovery of
classical solutions

First, note that if f € L?and u € HO1 is the weak solution of (14), then u € H 2,
Indeed, we have



222 8 Sobolev Spaces and the Variational Formulation of Boundary Value Problems in 1D

/u’v’:/(f—u)v Yo e CH(D),
1 1

and thus u’ € H' (by definition of H' and since f —u € L?),ie., u € H>.
Furthermore, if we assume that f € C (I), then the weak solution u belongs to
C?(I). Indeed, (')’ € C(I) and thus u’ € C'(I) (see Remark 6). The passage from
a weak solution u € C2(I) to a classical solution has been carried out in Section 8.1.

Remark 23. If f € H*(I), with k an integer > 1, it is easily verified (by induction)
that the solution u of (15) belongs to HM2(1).

The method described above is extremely flexible and can be adapted to a mul-
titude of problems. We indicate several examples frequently encountered. In each
problem it is essential to specify precisely the function space and to find the appro-
priate weak formulation.

Example 1 (inhomogeneous Dirichlet condition). Consider the problem

(16) —u"+u=f onl=(0,1),
M(O) =, M(l) = /37
with «, B € R given and f a given function.

e Proposition 8.16. Given «, B € R and f € L*(I) there exists a unique function
u € H*(I) satisfying (16). Furthermore, u is obtained by

1
min {—/(v’2+v2)—/fv}.
veH' () 2J; i

v(0)=a,v()=p4

If. in addition, f € C(I) thenu € C*(I).

Proof. We give two possible approaches:

Method 1. Fix any smooth function'? u( such that ug(0) = « and ug(l) = B.
Introduce as new unknown i = u — ug. Then # satisfies

—i"+i=f—4u;—uy onl,
i(0) = ii(1) = 0.

We are reduced to the preceding problem for .

Method 2. Consider in the space H L(I) the closed convex set
K ={veH'(I);v(0) =aand v(l) = B).

If u is a classical solution of (16) we have

12 Choose, for example, u( to be affine.
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/u’(v—u)’—i—/u(v—u)=/f(v—u) Yv e K.
1 I I

Then in particular,

(17) /u/(v—u)/+fu(v—u)z/f(v—u) Yv e K.
I I I

We may now invoke Stampacchia’s theorem (Theorem 5.6): there exists a unique
function # € K satisfying (17) and, moreover, u is obtained by

. l /2 2 _/
52111(1{2/1(1) + v7) va}.

To recover a classical solution of (16),setv = u+w in (17) withw € HO1 and obtain

/u’w’—i—/uw:/fw Yw € H.
1 1 1

This implies (as above) that u € H 21 )IffeC (I) the same argument as in the
homogeneous case shows thatu € C 2(D).

* Example 2 (Sturm—Liouville problem). Consider the problem

(18) u(0) =u(l) =0,

{—(pu/)/ +qu=f onl=(0,1),
where p € C!(I),q € C(I), and f € L*(I) are given with
px)>a>0 Vxel

If u is a classical solution of (18) we have

/pu’v’—i—/quv:/fv Vv e Hy(I).
I I 1

We use HO1 (I as our function space and

a(u,v) = [pu’v/—}—/quv
I I

as symmetric continuous bilinear form on H&. If ¢ > 0 on [ this form is coercive
by Poincaré’s inequality (Proposition 8.13). Thus, by Lax—Milgram’s theorem, there
exists a unique u € H(} such that

(19) a(u,v):/fv Vv € Hy(I).
1
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Moreover, u is obtained by

. 1 2 2
min = [ (pv" +qv)— | fug.
veH () 12 )1 I

It is clear from (19) that pu’ € H'; thus (by Corollary 8.10) u’ = (1/p)(pu’) € H'
and hence u € H?. Finally, if f € C(I), then pu’ € C'(I), and so u’ € C'(I),
ie,u e C*(I). Step D carries over and we conclude that u is a classical solution
of (18).

Consider now the more general problem

(20) {_(pu’)’ +ru'+qu=f onl=(01),

u(0) = u(l) = 0.

The assumptions on p, g, and f are the same as above, and r € C(I). If u is a
classical solution of (20) we have

/I.pu/v’—i—/lru/v—}—/lquv:/va Vv € Hy.

We use HOl (1) as our function space and

a(u, v) =/pu’v’+/ru’v+/quv
I I I

as bilinear continuous form. This form is not symmetric. In certain cases it is coercive;
for example,

() ifg > 1 and r? < 4a; B
(i) orif g > 1 and r € C'(I) with r’ < 2; here we use the fact that

1
/rv’v:—E/r/v2 VveHol.

One may then apply the Lax—Milgram theorem, but there is no straightforward asso-
ciated minimization problem. Here is a device that allows us to recover a symmetric
bilinear form. Introduce a primitive R of /p and set { = e~ R. Equation (20) can
be written, after multiplication by ¢, as
—¢pu = eplu + Cru + Lqu =,
or (since {'p + ¢r =0)
—@pu'Y +Squ = ¢f.

Define on H(} the symmetric continuous bilinear form

au,v) =/§pu/v/+f§quv.
I I
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When g > 0, this form is coercive, and so there exists a unique u € H(} such that

a(u,v):/{fv VveHol.
I

Furthermore, u is obtained by

1
min {Ef(épv’2+§qv2)—/§fv}~
veH) (1) 1 1

It is easily verified that u € H? and if f € C(I) then u € C?(I) is a classical
solution of (20).

Example 3 (homogeneous Neumann condition). Consider the problem

1) {—u” +u=f onl=(0,1),
u'0)=u'(1) =0.

o Proposition 8.17. Given f e L*(I) there exists a unique function u € H>(I)
satisfying (21).13 Furthermore, u is obtained by

1
min {—f(v’2+v2)—/fv}.
veH(I) |2 J7 I

If. in addition, f € C(I), thenu € C*(I).

Proof. If u is a classical solution of (21) we have

(22) fu/v/+/uv :ffv Yv e H'(I).
1 1 1

We use H'(I) as our function space: there is no point in working in HO1 as above
since u(0) and u(1) are a priori unknown. We apply the Lax—Milgram theorem with
the bilinear form a(u, v) = [, u'v'+ [, uv and the linear functional ¢ : v — [, fv.
In this way we obtain a unique function u € H (1) satisfying (22). From (22) it
follows, as above, that u € H2(I). Using (22) once more we obtain

(23) f(—u" +u— o+ u' DHvd) —u' (0)v0) =0 Yve H'(I).
1

In (23) begin by choosing v € H(} and obtain —u” + u = f a.e. Returning to (23),
there remains
u' (Du(l) —u’ O (©) =0 Yve H'(I).

Since v(0) and v(1) are arbitrary, we deduce that u’(0) = u’(1) = 0.

13 Note that u € H2(I) = u € C'(1) and thus the condition u’(0) = u’(1) = 0 makes sense. It
would not make sense if we knew only that u € H'.



226 8 Sobolev Spaces and the Variational Formulation of Boundary Value Problems in 1D

Example 4 (inhomogeneous Neumann condition). Consider the problem

24) {—u” +u=f onl=(0,1,

u'(0) = o, u'(1) = B,

with o, B € R given and f a given function.

Proposition 8.18. Given any f € L>(I) and «, B € R there exists a unique function
u € H*(I) satisfying (24). Furthermore, u is obtained by

min y- [ W 4+v)— | fv+av() —Bv(l);.
2.J; I

veH!(I)
If. in addition, f € C(I) thenu € C*(I).
Proof. If u is a classical solution of (24) we have

/u’v’—i—/uv=/fv—otv(0)+;3v(1) vu e H'(I).
I I I

We use H'!(I) as our function space and we apply the Lax—Milgram theorem with
the bilinear form a(u, v) = [, u'v’ + [, uv and the linear functional

Qv /fv —av(0) + pv(1).
I

This linear functional is continuous (by Theorem 8.8). Then proceed as in Example
3 to prove that u € H>(I) and that u’(0) = o, u/(1) = B.

Example 5 (mixed boundary condition). Consider the problem

(25) {—“’ +u=f onl=(01),

u(0) =0, u’(1) = 0.

If u is a classical solution of (25) we have

(26) /u/u’+/uv :/fv vu € H'(I) with v(0) = 0.
I I I
The appropriate space to work in is
H={veHI)):;v0) =0}
equipped with the H' scalar product. The rest is left to the reader as an exercise.
Example 6 (Robin, or “third type,” boundary condition). Consider the problem

—u"+u=f onl=(0,1),

27
W' (0) = ku(0), u(1) =0,
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where k € R is given.'4

If u is a classical solution of (27) we have
/Iu/v’ +/Iuv + ku(0)v(0) = /I fv VYve H'(I)withv(l) = 0.
The appropriate space for applying Lax—Milgram is the Hilbert space
H={ve  H'(I);v(1) =0}

equipped with the H! scalar product. The bilinear form
a(u,v) = /u/v/ + / uv + ku(0)v(0)
1 1

is symmetric and continuous. It is coercive if k > 0.1

Example T (periodic boundary conditions). Consider the problem

(28)

—u"+u=f onl=(0,1),
u(0) = u(l), u'(0) =u'(1).

If u is a classical solution of (28) we have

(29) /u’v’+/uv =/fv Vv e H'(I) withv(0) = v(1).
I I I

The appropriate setting for applying Lax—Milgram is the Hilbert space

H={veH(I);v0) = v(l)}

with the bilinear form a(u,v) = [;u’v' + [, uv. When f € L?(I) we obtain a
solution u € H?(I) of (28). If, in addition, fecC (I) then the solution is classical.

Example 8 (a boundary value problem on R). Consider the problem

(30) {—u +u=7f on R,

ux) — 0 as |x| — oo,

with f givenin L%(R). A classical solution of (30) is a functionu € C%(R) satisfying
(30) in the usual sense. A weak solution of (30) is a function u € H 1 (R) satisfying

14 More generally, one can handle the boundary condition
aou’ (0) + Bou(0) = 0, ayu’(1) + Bru(l) = 0,

with appropriate conditions on the constants «g, fo, @1, and Bi.

5 If k < 0 with |k| small enough the form a(u, v) is still coercive. On the other hand, an explicit
calculation shows that there exist a negative value of k and (smooth) functions f for which (27) has
no solution (see Exercise 8.21).
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/u’v’+/uv=/fv Vv € H'(R).
R R R

We have first to prove that any classical solution u is a weak solution; let us check in
the first place thatu € H 1(R). Choose a sequence (¢,) of cut-off functions as in the
proof of Theorem 8.7. Multiplying (30) by ¢,u and integrating by parts, we obtain

/u/(é‘nu/"}_é}iu)"_/é‘nuzzv/{nfuy
R R R

from which we deduce

(31) fcn(u’2+u2)—/§nfu+ fc” 2,

But
// 2 2 - "
/ < u” with C = ”é‘ ||L°°(R)

n<l|x|<2n

u? — 0asn — oo, since u(x) — 0 as |x| — oo. Inserting the

[aruzt [oted [or

in (31), we see that f Ln (u’2 + u?) remains bounded as n — oo and therefore
u € H' (R).
Assuming that u is a classical solution of (30), we have

/u/v/+/uv=/fv Vv e CL(R).
R R R

By density (and since u € H'(R)) this holds for every v € H!(R). Therefore u is a
weak solution of (30).

To obtain existence and uniqueness of a weak solution it suffices to apply Lax—
Milgram in the Hilbert space H'(R). One easily verifies that the weak solution u
belongs to H?(R) and if furthermore f € C(R) thenu € C?(R). We conclude (using
Corollary 8.9) that given f € L2(R) N C(R), problem (30) has a unique classical
solution (which furthermore belongs to H 2(R)).

and ;12 n<l|x|<2n
inequality

Remark 24. The problem

u(x) - 0 as|x| — oo,

{—u” = f onR,

cannot be attacked by the preceding technique because the bilinear form a(u, v) =
f u'v’ is not coercive in H'(R). In fact, this problem need not have a solution even
if f is smooth with compact support (why?).

Remark 25. On the other hand, the same method applies to the problem
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—u' +u=f on I = (0, +00),
u(0) =0 and u(x) - 0as x - +o0,

with f given in L2(0, +00).

8.5 The Maximum Principle

Here is a very useful property called the maximum principle.

e Theorem 8.19. Let f € L2(I) with I = (0, 1) and let u € H?*(I) be the solution
of the Dirichlet problem

(32) {—u”—i—u:f onl,
u0) =a,u(l) = 8.

Then we have, for every x € 1,16

(33) min{c, B, ir}f f} <u(x) < max{a, B, sup f}.
!

Proof (using Stampacchia’s truncation method). We have

(34) /u’v/—i—/uv:/fv Yo € H(I).
I i I

Fix any function G € C1(R) such that

(i) G is strictly increasing on (0, +00),
(i) G(t) =0fort € (—o0,0].

Set K = max{a, B, sup; f} and suppose that K < co. We shall show thatu < K
on /. The function v = G(u — K) belongs to H! (I) and even to HOI(I), since

u)— K=o0—-—K <0 and u(l)-K=—-K <0.

Plugging v into (34), we obtain

fﬁdm-m+/@my—m=/}Gw—m,
1 1 1
that is,

/ﬁdm—m+/m—Kmm—m:/q—me—m.
1 1

1

16 sup f and inf f refer respectively to the essential sup (possibly +00) and the essential inf of f
(possibly —o0). Recall that ess sup f = inf{C; f(x) < C a.e.} and ess inf f = —ess sup(—f).
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But(f—K) <0and G(u—K) > 0, from whichitfollowsthat (f —K)G(u—K) <0,
and therefore

/(u—K)G(u—K) <0.
1

SincetG(t) > 0 Vt € R, the preceding inequality implies (u —K)G(u—K) = Oa.e.
It follows that u < K a.e., and consequently everywhere on /, since u is continuous.
The lower bound for u is obtained by applying this upper bound to —u.

Remark 26. When f € C(I),thenu € C?(I) and one can establish (33) by a different
method: the classical approach to the maximum principle. Let xo € I be the point
where u attains its maximum on /. If xo = 0 or if xo = 1 the conclusion is obvious.
Otherwise, 0 < xo < 1 and then u'(xg) = 0, u”(x¢9) < 0. From equation (33) it
follows that

u(xo) = f(xo) +u"(x0) < f(x0) <K

and therefore u < K on I.
Here are some immediate consequences of Theorem 8.19.

e Corollary 8.20. Let u be a solution of (34).

1) Ifu=>=0o0nodol andif f >0o0nl, thenu > 0on I.
(i) Ifu =00ndl andif f € L), then |lullpoy < |l fllLoe).
(i) If f =0on I, then ||ullpoy < llullzon.

We have a similar result for the case of Neumann condition.

Proposition 8.21. Let f € L*>(1) with I = (0, 1) and letu € H?*(I) be the solution
of the problem

—u"+u=7f onl,
u'(0)=u'(1) =0.
Then we have, for every x € I,

(35) il}ff <u(x) <sup f.
1

Proof. We have

(36) /u’v’—i—fuv:/fv vv e HY(I).
I I I

Plug v = G(u — K) into (36) with K = sup; f and the same function G as above.
Then proceed just as in the proof of Theorem 8.19.

Remark 27. If f € C(I), then u € C%(I) and we can establish (35) along the same
lines as in Remark 26. Note that if u achieves its maximum on 9/, say at 0, then
u”(0) < 0 (extending u by reflection to the left of 0 and using the fact that u’(0) = 0).
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Remark 28. Let f € L?(R) and let u € H?(R) be the solution of

—u"+u=f onR,
u(x) > 0 as|x| — oo,

discussed in Example 8. Then we have, for all x € R,

inf f <u(x) <supf.
R R

8.6 Eigenfunctions and Spectral Decomposition

The following is a basic result.

e Theorem 8.22. Let p € C'(I) withI = (0, 1) and p > a > OonI; let g € C(I).
Then there exist a sequence (Ay) of real numbers and a Hilbert basis (ey,) of L2(I )
such that e, € C*(I) Vn and

(37) {—(Pe,;)/ +qen = Mye, onl,

e, (0) = e, (1) = 0.
Furthermore, A,, — 400 asn — +00.

One says that the (),) are the eigenvalues of the differential operator Au =
—(pu’)’ + qu with Dirichlet boundary condition and that the (e,,) are the associated
eigenfunctions.

Proof. We can always assume g > 0, for if not, pick any constant C such that
g + C > 0, which amounts to replacing A, by A, + C in (37). For every f € L*(I)
there exists a unique u € H 2(Hn HO1 (I) satisfying

u(0) = u(1) = 0.

Denote by T the operator f > u considered as an operator from L*>(I) into L*(I).!"
We claim that T is self-adjoint and compact. First, the compactness. Because of

(38) we have
/pu/z—i—[quz:/fu
I I I

and thus o;||u’||i2 < I fllz2llul ;2. It follows that ||u|| g1 < C|| fllz2, where C is a
constant depending only on «. This can be written as

ITfllg < Clifl2 YfeL*).

17 We could also envisage 7' as an operator from HO1 into HO1 (see Section 9.8, Remark 28).
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Since the injection of H!(I) into L?(I) is compact (because I is bounded), we

deduce that T is a compact operator from LZ(I ) into LZ(I ). Next, we show that T
is self-adjoint, i.e.,

/1 (Tg = /, f(Tg) Yf.geL*).

Indeed, setting u = Tf and v = Tg, we have

(39) —(pu') +qu=f
and
(40) —(pv") +qv=g.

Multiplying (39) by v and (40) by u and then integrating, we obtain

/pu’v’+/quv=/fv=/gu,
I I I I

which is the desired conclusion.
Finally, we note that

(41) /(Tf)f = /uf = /pu’2 +qu*>0 YfelL*)
1 1 1

and also that N(T') = {0}, since Tf = 0 impliesu = 0 and so f = 0.

Applying Theorem 6.11, we know that L2(I ) admits a Hilbert basis (e,);>1
consisting of eigenvectors of 7' with corresponding eigenvalues (it,),>1. We have
un >0 Vn (u, =0by (41)and u, # 0, since N(T) = {0}). We also know that
Un — 0. Writing that Te,, = u,ey,, we obtain

—(pe,) +qen = e, With dy, = 1/pp,
e, (0) = e, (1) =0.

In addition, we have e, € C2(I), since f = Ane, € C(I) (in fact e, € C®(1) if
p.q € C=()).

Example. If p = 1 and ¢ = 0 we have

en(x) = ﬁsin(nrrx) and A, =n’mln=12,....

Remark 29. For the same differential operator the eigenvalues and the eigenfunctions
vary with the boundary conditions. As an exercise determine the eigenvalues of the
operator Au = —u” with the boundary conditions of Examples 3, 5, 6, and 7.
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Remark 30. The assumption that I is bounded enters in an essential way in show-
ing the compactness of the operator T. When [ is not bounded the conclusion of
Theorem 8.22 is in general false;'® one encounters instead the very interesting phe-
nomenon of continuous spectrum—on this subject, see, e.g., M. Reed—B. Simon [1].
In Exercise 8.38 we determine the eigenvalues and the spectrum of the operator
T:f+ u,whereu ¢ H 2(R) is the solution of problem (30): T is a self-adjoint
bounded operator from L?(R) into itself, but it is not compact.

Comments on Chapter 8

1. Some further inequalities.
Let us mention some very useful inequalities involving the Sobolev norms:

(i) Poincaré-Wirtinger’s inequality.
Let I be a bounded interval. Given u € L2(I), set it = |]T| f ; u (this is the mean
of u on I). We have

lu —itlloo < lu'lh Yu e Wh(I)

(see Problem 47).
(i1) Hardy’s inequality.
Let I = (0, 1) and let u € W,"”(I) with 1 < p < co. Then the function

u(x)

s g

belongs to L”(I) and furthermore,
1,
Ivll, < Cpll'll, Yu e Wy'P (1)

(see Exercise 8.8).

(iii) Interpolation inequalities of Gagliardo—Nirenberg.
Let I be a bounded interval and let | < r < 00,1 < ¢ < p < oo. Then there
exists a constant C such that

42) lully < Cllull=lal,,  Yu e W (D),
where 0 < a < 1 is defined by a(% — % +1) = [ll — % (see Exercise 8.15). In

particular, it follows from inequality (42) that if p < oo (or even if p = oo but
r > 1), then

18 In certain circumstances, with some appropriate assumptions on p and ¢, the conclusion of
Theorem 8.22 still holds on unbounded intervals (see Problem 51).
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43) !Vs > 0 3C, > 0 such that

lullp < ellullyrr + Celuly Yu € WH (D).

One can also establish (43) by adirect “compactness method’; see Exercise 8.5. Other
more general inequalities can be found in L. Nirenberg [1] (see also A. Friedman [2]).
In particular, we call attention to the inequality

1/2 1/2
lllp < Cliull s, Mullg”®  Yu e W2 (D),

+

~ -

).

where p is the harmonic mean of g and r, i.e., % = %(

Q=

2. Hilbert-Schmidt operators.
It can be shown that the operator 7 : f > u that associates to each f in L>(I) the
unique solution u of the problem

—(pu') +qu=f onl=(0,1),
u(©0) = u(l) =0

(assuming p > @ > 0 and ¢ > 0) is a Hilbert—Schmidt operator from L3(I) into
L2(1); see Exercise 8.37.

3. Spectral properties of Sturm-Liouville operators.

Many spectral properties of the Sturm-Liouville operator Au = —(pu’)’ + qu with
Dirichlet condition on a bounded interval I are known. Among these let us mention
that:

(1) Each eigenvalue has multiplicity one: it is then said that each eigenvalue is
simple.

(ii) If the eigenvalues (1,,) are arranged in increasing order, then the eigenfunction
e, (x) corresponding to A, possesses exactly (n — 1) zeros on [; in particular the
first eigenfunction e1(x) has a constant sign on I, and usually one takes e; > 0
onl.

(iii) The quotient A, /n”> converges as n — oo to a positive limit.

Some of these properties are discussed in Exercises 8.33, 8.42 and Problem 49.
The interested reader can also consult Weinberger [1], M. Protter—H. Weinberger [1],
E. Coddington-N. Levinson [1], Ph. Hartman [1], S. Agmon [1], R. Courant—
D. Hilbert [1], Vol. 1, E. Ince [1], Y. Pinchover—J. Rubinstein [1], A. Zettl [1], and
G. Buttazzo—M. Giaquinta—S. Hildebrandt [1].

The celebrated Gelfand-Levitan theory deals with an important “inverse” prob-
lem: what informations on the function g (x) can one retrieve purely from the knowl-
edge of the spectrum of the Sturm-Liouville operator Au = —u” + ¢(x)u? This
question has attracted much attention because of its numerous applications; see, e.g.,
B. Levitan [1] and also Comment 13 in Chapter 9.
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Exercises for Chapter 8

m Consider the function
u(x) = (1+x)7log2 +x*)~!, xeR,

with 0 < a < 1. Check that u € WLP(R) Vp € [1/a, oo] and that u ¢ LI(R)
Vg €[1,1/a).

[8.2]Let I = (0, 1).

1. Assume that (u,) is a bounded sequence in Wl’P(I) with 1 < p < oo.
Show that there exist a subsequence (u,,) and some u in WLP(I) such that
ltn, — ullLe — 0. Moreover, u;, — u’ weakly in LP(I) if 1 < p < oo, and

* . .
Uy, — u'ino (L, LY if p = oo.
2. Construct a bounded sequence (u,) in W1 (I) that admits no subsequence con-

verging in L*°(I).
[Hint: Consider the sequence (u,) defined by

0 if x € [0, 31,
up(x) = yn(x —3) ifx e, 3+,
1 ifxe[s+1 1],

withn > 2.]

Helly’s selection theorem.

Let (u,) be a bounded sequence in wl1, 1). The goal is to prove that there
exists a subsequence (u,, ) such that u,, (x) converges to a limit for every x € [0, 1].

1. Show that we may always assume in addition that
€)) Vn, u, is nondecreasing on [0, 1].

[Hint: Consider the sequences v, (x) = f(;c lu), ()|dt and wy, = vy — uy.]
In what follows we assume that (1) holds.

2. Prove that there exist a subsequence (u,,) and a measurable set £ C [0, 1]
with |E| = 0 such that u,, (x) converges to a limit, denoted by u(x), for every
x e [0,1]\ E.

[Hint: Use the fact that W!! c L' with compact injection.]

3. Show that u is nondecreasing on [0, 1] \ E and deduce that there are a countable
set D C (0, 1) and a nondecreasing function # : (0,1) \ D — R such that
ux+0)=u(x—-0)Vvx € (0,1)\ D and u(x) =u(x) Vx € (0, )\ (DU E).

4. Prove that u,, (x) — u(x) Vx € (0, 1) \ D.
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5. Construct a subsequence from the sequence (u,,) that converges for every x €
[0, 1].

[Hint: Use a diagonal process.]

Fixafunctiongo € C(R), ¢ #0,andsetu,(x) = p(x+n).Let1 < p < o0.

1. Check that (u,) is bounded in wWLP(R).

2. Prove that there exists no subsequence (u,,) converging strongly in L7(R), for
any 1 < g < oo.

3. Show that u,, — 0 weakly in WLP(R)  Vp € (1, 00).

Letp > 1.

1. Prove that Ve > 0 3C = C(e, p) such that
(1) Il < el + Cllullioyy Yu € WP, 1).

[Hint: Use Exercise 6.12 with X = WLP(0,1), Y = L0, 1), and Z =
LY, 1).]

2. Show that (1) fails when p = 1.
[Hint: Take u(x) = x" and let n — 00.]

3. Let 1 < g < oo. Prove that Ve > 0 3C = C(e, g) such that

2) lullzao,1) < elw'llgio1y + Cllullpion Yue WhH, D).

[8.6|Let 7 =(0,1)and p > 1.

1. Check that W2P(I) c C}(T) with compact injection.
2. Deduce that Ve > 0, 3C = C(¢, p) such that

'l ooty + Nulloory < el Loy + Cllullpiy  Yu € WP(D).

3. Let 1 < g < oo. Prove that Ve > 0 3C = C(e, g) such that

Il acry + lulloory < ellu” gy + Cllullpigy  Yu € W),

More generally, let m > 2 be an integer.

4. Show that Ve > 0 3C = C (¢, m, p) such that
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m—1
> D ull oy < | D™ ullocy + Cllullpyy  Yu e W™P(I).
j=0

5. Let 1 < g < oo. Prove that Ve > 0 3C = C(e, ¢q) such that

m—2
1D VullLay+ Y 1Dl oy < el D™ ull iy +Cllull iy Yu € W™'(D).
j=0

Let I = (0, 1). Given a function u defined on I, set

_ u(x) ifxel,
u(x) = .
0 ifxeR,x ¢l

1. Assume that u € Wol’p(l) with 1 < p < oo. Prove that w € WP (R).

2. Conversely, let u € LP(I) with 1 < p < oo be such that w € W7 (R). Show
that u € WP ().

3. Letu € LP(I) with 1 < p < oo. Show that u € Wol’p(l) iff there exists a
constant C such that

‘/ g/
%
R

< Cliglly @ Yo e€CM).

1. Letu € WHP(0, 1) with 1 < p < oo. Show thatif u(0) = O,then@ e LP(0,1)
and
u(x)

X

V4
< 'l Lro,1)-
ro1 pP—1

[Hint: Use Problem 34, part C.]

2. Conversely, assume that u € Wl'p(O, 1) with 1 < p < oo and that @ IS
LP(0, 1). Show that «(0) = 0.

[Hint: Argue by contradiction.]

3. Let u(x) = (1 + |logx|)~". Check that u € W''(0, 1), u(0) = 0, but “&) ¢
L', 1).

4. Assume that u € WhP(0, 1) with 1 < p < oo and u(0) = 0. Fix any function
£ € C®(MR)suchthat {(x) =0 Vx € (—oo,1]and ¢(x) =1 Vx € [2, +0).
Set ¢,(x) = ¢(nx) and u,(x) = ¢ x)u(x),n = 1,2.... Check that u, €
wlP (0, 1) and prove that u,, — u in whr,1)asn — oo.
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[Hint: Consider separately the cases p = 1 and p > 1.]

[8.9]Set 1 =(0,1).

1. Letu € W>P(I) with 1 < p < o0o. Assume that u(0) = u’(0) = 0. Show that
“0) e LP(I) and 2 e LP(I) with

u'(x)

X

u(x)
N2

(D

< Cpllu"lzrr-
Lr(I)

LP (D)
[Hint: Look at Exercise 8.8.]
2. Deduce that v(x) = “& € W!P(I) with v(0) = 0.

3. Let u be as in question 1. Set u, = ¢,u, where ¢, is defined in question 4 of
Exercise 8.8. Check that u,, € WP (I) and u,, — u in W2P(I) as n — 0.

4. More generally, let m > 1 be an integer, and let 1| < p < oco. Assume that
u € X,,, where

X = {u € W"P(I); u(0) = Du(0) = --- = D" 'u(0) = 0}.

Show that “5) € LP(I) and that %} € X.
[Hint: Use induction on m.]

5. Assume that u € X, and prove that

_ DJu(x)

v=———¢€ X, Vjkintegers,j>0,k>1,j+k<m—1.
xm—Jj—k

6. Let u be as in question 4 and ¢, as in question 3. Prove that {,u € W™ ([) and
Lo — uin WP (1), as n — o0.

7. Give a proof of Remark 18 in Chapter 8 when p > 1.

8. Assume now that u € W21(I) with u(0) = u/(0) = 0. Set

x)
o(x) = % ?fx € (0, 1],
0 ifx =0.

Check that v € C([0, 1]). Prove that v € W 1(1).
[Hint: Note that v'(x) = & [¢ u”(t)1d1.]

9. Construct an example of a function u € w21 satisfying u(0) = u’(0) = 0,
but “5 ¢ L1(1) and “2 ¢ L1(D).

[Hint: Use question 3 in Exercise 8.8.]
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10. Letu be as in question 8, and ¢, as in question 3. Check that u,, = ,u € W2 (1),
and that u, — u in Wz*l(l), asn — oQ.

11. Give a proof of Remark 18 in Chapter 8 whenm =2 and p = 1.

12. Generalize questions 8—11 to wm (1) with m > 2.

[The result of question 8, and its generalization to m > 2, are due to Hernan
Castro and Hui Wang.]

Let I =(0,1).Letu € WHP(I) with 1 < p < oo. Our goal is to prove that
u' =0ae.ontheset E = {x € I; u(x) = 0}.

Fix a function G € CL(R, R) such that |G| <1Vt eR,|G'(1)] < CVteR,
for some constant C, and

1 ift >1,
Git)y=13t if 7] <1/2,
-1 ifr <-—1.

Set {
v, (x) = - G(nu(x)).

1. Check that |Jv,||zoc(;y — O as n — oo.
Show that v, € W7 (I) and compute v),.

Deduce that |v),| is bounded by a fixed function in L?(1).

Ll

Prove that v),(x) — f(x) a.e. on I, as n — oo, and identify f.
[Hint: Consider separately the cases x € E and x ¢ E. ]
Deduce that v, — f in LP(I).

s

6. Prove that f = 0 a.e. on I and conclude that v’ = 0 a.e. on E.

[8.11]Let F € C(R, R) and assume that F € C' (R \ {0}) with |F'(1)] < C Vi €
R\ {0}, for some constant C. Let 1< p < oo.

The goal is to prove that for every u € W17(0,1),v = F(u) belongs to
whr(0, 1) and

F'(u(x))u’(x) a.e. on[u(x) # 0],

vi(x) = 0 a.e.on [u(x) =0].

1. Construct a sequence (F,) in C*°(R) such that || F),||o®) < C Vn and
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{Fn — F uniformly on compact subsets of R,

F) — F’' uniformly on compact subsets of R \ {0}.

2. Check that v, = F,(u) € W"P(0, 1) and that v/, = F/ (u)u’.

3. Prove that v, — v = F(u) in C([0, 1]) and that v}, converges in L” (0, 1) to f,
where
F'(u(x))u’(x) ae.on[u(x) # 0],
fx)=
0 a.e.on [u(x) = 0].
[Hint: Apply dominated convergence and Exercise 8.10.]
4. Deduce that v € W?(0, 1) and v/ = f. Show that v, — v in WP (0, 1).

5. Let (ux) be a sequence in W7 (0, 1) such that u; — u in W7 (0, 1). Prove that
F(uy) — F(u)in WhP,

[Hint: Applying Theorem 4.9 and passing to a subsequence (still denoted by uy),
one may assume that u; — u’a.e.on (0, 1) and |u}| < g Vk, for some function
g € LP(0, 1). Set wy = F(uy) and check that w;, — f a.e.on (0, 1), where f is
defined in question 3. Deduce that wy — F(u) in W7 (0, 1). Conclude that the
full original sequence F'(uy) converges to F(u) in whr(, 1).]

6. Application: take F(r) = t* = max{r, 0}. Check that u™ € WP (0, 1) Vu €
wLr(, 1). Compute (u™)'.

[8.12]Let I = (0, 1) and 1 < p < oo. Set

By = {ue WP (D) ullLoay + 14 llLray < 1)
1. Prove that B), is a closed subset of LP(I) when 1 < p < oo; more precisely, B »

is compact in L?(1).

2. Show that By is not a closed subset of L' ().

Let 1 <p<ooandu € WHP(R). Set
1
Dyu(x) = E(u(x +h) —ux),xeR, h>0.

Show that Dyu — u’ in LP(R) as h — 0.
[Hint: Use the fact that CC1 (R) is dense in WP (R).]
Let u € C'((0, 1)). Prove that the following conditions are equivalent:

(@) uewh'o, D,
(b) u’ € L'(0, 1) (where u’ denotes the derivative of u in the usual sense),
(¢) u € BV(0, 1) (for the definition of BV see Remark 8).
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Check that the function u(x) = xsin(1/x),0 < x < 1, with u(0) = O, is
continuous on [0, 1] and that u ¢ W“(O, 1).

Gagliardo—Nirenberg’s inequality (first form).
Let I = (0, 1).

1. Let] <g <oocand 1 < r < oo. Prove that
(1 lull ooty < Cllullyrr gy Nl gty Yu € W (I

for some constant C = C(q, r), where 0 < a < 1 is defined by

1 1 1
o (L)t
q r q

[Hint: Start with the case u(0) = 0 and write G (u(x)) = fox G'(u@))u'(t)dt,
where G (t) = |¢t|* 't and « = % When u(0) # 0, apply the previous inequality
to Cu, where ¢ € Cl([O, 11),¢(0) =0,and ¢(¢t) = 1 fort € [%, 1].]

2. letl<g<p<oocand1 <r < oo.
Prove that

(3) lllocry < ClullGyn gy lull oty Yu € WD)

for some constant C = C(p, ¢, r), where 0 < b < 1 is defined by

1 1 11
4) b(-4+1-—-)=—-——.
q r qg p
[Hint: Write ||u||§p(1) = [} lul9u|P~1 < ||u||§q(,)||u||’,j;‘1 anduse (1) if r > 1.]

3. With the same assumptions as in question 2 show that

(5) lull Ly < C||u’||‘;,(,)||u||lL;f,) Yu € W (1) with /u =0.
I

Let E = L?(0,1) with 1 < p < oo. Consider the unbounded operator
A : D(A) C E — E defined by

D(A) ={ue WhP(0,1),u(0) =0} and Au=u'.

1. Checkthat D(A) is dense in E and that A is closed (i.e., G(A) isclosedin E x E).
2. Determine R(A) and N (A).

3. Compute A*. Check that D(A*) is dense in E* = LY (0,1) when 1 < p < o0,
but D(A*) is not dense in E* = L°°(0, 1) when p = 1.
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4. Same questions for the operator A defined by
D(A) =Wy P(0,1) and Au=u'.

Let H = L%(0, 1) andlet A : D(A) C H — H be the unbounded operator
defined by Au = u”, whose domain D(A) will be made precise below. Determine
A*, D(A*), N(A), and N (A*) in the following cases:

1. D(A) = {u € H*(0, 1); u(0) = u(1) = 0}.

2. D(A) = H%(0, 1).

3. D(A) = {u € H*0, 1); u(0) = u(1) = u’(0) = u’(1) = 0}.
4. D(A) = {u € H*(0, 1); u(0) = u(1)}.

Same questions for the operator Au = u” — xu'.

Check that the mapping u +— u(0) from H 1(0, 1) into R is a continuous linear
functional on H'(0, 1). Deduce that there exists a unique vy € H'(0, 1) such that

1
u(0) :/ (u'vy +uvo) Yu e H'(0,1).
0
Show that vy is the solution of some differential equation with appropriate boundary
conditions. Compute vy explicitly.
[Hint: Consider Example 4 in Section 8.4.]
Let H= L2(O, 1) and consider the function ¢ : H — (—00, +00] defined by

w0 — Lbu? ifue HYO, 1),
LA B ifu e L2(0,1)andu ¢ H'(0, 1).

1. Check that ¢ is convex and l.s.c.
2. Compute ¢*(f) forevery f € H.

[Hint: Show first that ¢*(f) = +o00 if [ f # 0. Assume next that [ f = 0
and set F(x) = [i' f(t)dt. Note that [} fv=— [ Fv'¥v e H'(0,1).]

Set

vV ={veHY0,1); v0)=0}.

1. Given f € L2(0, 1) such that )l—ff(x) e L0, 1), prove that there exists a unique
u € V satisfying

1 1 1
@)) / w (x)v' (x)dx +f Mc{x =/ Md}c YveV.
0 0 X 0 X
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[Hint: Use question 1 in Exercise 8.8.]

. What is the minimization problem associated with (1)?

In what follows we assume that %f(x) e L%(0, 1).

. In (1) choose v(x) = W o> 0, and deduce that

(x +8)2 ’

d [ ux) \|?
dx (x—i—e)

W ACIRTIE))

0 x2 (x+e)?

dx <

1
2 f
0

. Prove that “§) € L2(0, 1), “ € H!(0, 1), and @ e L0, 1).

[Hint: Use once more question 1 in Exercise 8.8 and pass to the limit as ¢ — 0.]

. Deduce that u € H?(0, 1) and that

2

) —u"(x) + 5 = L5 ae on (0, 1),
w0 =u/'0)=0 and u(1)=0.

. Conversely, assume that a function u € H2(O, 1) satisfies &2‘) S L2(0, 1) and (3).
X

Show that (1) holds.

[8.21] Assume that p € C'([0, 1]) with p(x) > @« > 0 Vx € [0,1] and ¢ €
C([0, 1]) withg(x) =0 Vx € [0, 1]. Letvg € CZ([O, 1]) be the unique solution of

)]

—(pvy)' +qvo =0 on [0, 1],
v0(0) = 1, vo(1) = 0.

Set ko = v;,(0).

1.

Check that ko < —at/p(0).

[Hint: Multiply equation (1) by vo and integrate by parts. Use the fact that
1 < lvglli = llvg 2.1

We now investigate the problem

—(pu') +qu = f on (0, 1),

2 ,
' (0) = ku(0), u(1) = 0,

where k € R is fixed and f € L%(0, 1) is given.

. Assume k = ky. Show that

[(2) has a solution u € H>(0, 1)] [ / fvo = 0}
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Is there uniqueness of u?

3. Assume now that k # kg. Prove that for every f € L2(0, 1), problem (2) admits
a unique solution u € H 20, 1).

[Hint: Using Exercise 8.5, find a constant K such that the bilinear form a(u, v) =
fol (pu'v' + quv + Kuv) + p(0)ku(0)v(0) is coercive on H'. Write (2) in the
form u = T(f 4+ Ku) for some appropriate compact operator 7. Then apply
assertion (c) in the Fredholm alternative.]

8.22Set
K={peH"0,1):;p>00n(0,1)and /p € H' (0, 1)}.

1. Construct an example of a function p € H L0, 1) with p > 0on (0, 1) such that
pEK.

2. Given p € H'(0, 1) with p > 0 on (0, 1), set

Prove that p € K <= p € L?, and then /P = .
[Hint: Consider p, = p + ¢.]
3. Show that K is a convex cone with vertex at 0.

4. Prove that the function p € K — ||(\/ﬁ)’||i2 is convex.

Let I = (0, 1) and fix a constant k > 0.

1. Given f e L'(I) prove that there exists a unique u € HOl (1) satisfying

(1) /u’u/+k/uu=/fv Vv € H} ().
1 1 1

2. Show that u € W21(I).

3. Prove that {
lullprry = %||f||u(1)~

[Hint: Fix a function y € C'(R, R) such that y'(r) > 0 Vs € R, y(0) = 0,
y() =41Vt > l,and y(t) = —1Vt < —1. Take v = y(nu) in (1) and let
n — o0.]

4. Assume now that f € L?(I) with 1 < p < oo. Show that there exists a constant
8 > 0 independent of k and p, such that
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1
< .
lullray < KT8/ I flle

[Hint: When 2 < p < oo, take v = y(u) in (1), where y (1) = |¢|P~! sign t.
When 1 < p < 2, use duality.]

5. Prove thatif f € L°°([), then

lullzoory < Cell fllLoory,

and find the best constant Cy.

[Hint: Compute explicitly the solution u of (1) corresponding to f = 1.]

8.24|Let I = (0, ).

1. Prove that for every ¢ > 0 there exists a constant C, such that

lu(D* < ellu'l32,, + Cellulllo,, Yue H'(D.

L) )

[Hint: Use Exercise 8.5 or simply write

1
u?(1) =u2(x)+2/ u(t)u' (t)dt.]

2. Prove that if the constant k > 0 is sufficiently large, then for every f € L%(I)
there exists a unique u € H?([) satisfying

0 {—u” +ku=f on(0,1),

w'(0)=0 and u'(1) =u(l).
What is the weak formulation of problem (1)? What is the associated minimiza-
tion problem?
3. Assume that k is sufficiently large. Let T be the operator T : f +— u, where u is

the solution of (1). Prove that T is a self-adjoint compact operator in L2(I).

4. Deduce that there eiist a sequence (A,) in R with |1,,| — oo and a sequence (u,,)
of functions in C2(T) such that ||, lz2¢ry = 1 and

—u) = Agu, on (0,1),
W (0)=0 and 1 (1) = u,(1).

Prove that A,, — +o00.

5. Let A be the set of all values of A € R for which there exists u # 0 satisfying
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6.

—u" = lu on(0,1),
W)= 0 and u'(1) =u(l).

Determine the positive elements in A. Show that there is exactly one negative
value of A (denoted by Ap) in A.

[Hint: Do not try to compute A explicitly; use instead the intersection of two
graphs.]

What happens in question 2 when k = |A¢|?

Let I = (0,2) and V = H'(I). Consider the bilinear form

8.

2 1 1
a(u,v) = / ' (V' ()dt + (/ u(l)dt) (/ v(t)dt) .
0 0 0

. Check that a(u, v) is a continuous symmetric bilinear form, and that a(u, u) = 0

implies u = 0.

. Prove that a is coercive.

[Hint: Argue by contradiction and assume that there exists a sequence (u,) in
HY(I) such that a(u,, u,) — 0 and llnll g1 = 1. Let (uy,) be a subsequence
such that u,, converges weakly in H!(I) and strongly in L%(I) to alimit u. Show
that u = 0.]

. Deduce that for every f € L?(I) there exists a unique u € H'(I) satisfying

2
(1) a(u,v):/ fv VYveH\().
0

What is the corresponding minimization problem?

. Show that the solution of (1) belongs to H2(I) (and in particular u € cl(D.

Determine the equation and the boundary conditions satisfied by u.

[Hint: It is convenient to set g = ( fol u)x, where x is the characteristic function
of (0, 1).]

. Assume that f € C (I), and let u be the solution of (1). Prove that u belongs to

W2P (1) for every p < co. Show thatu € C*(1) iff [, f = 0.

. Determine explicitly the solution u of (1) when f is a constant.

. Setu = Tf, where u is the solution of (1) and f € L%(I). Check that T is a

self-adjoint compact operator from L?([) into itself.

Study the eigenvalues of 7.

A bounded linear operator S from a Hilbert space H into itself is said to be
nonnegative, written S > 0, if
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(S, /)=0 VfeH.
Set I = (0, 1). Assume that p € cl(n and g € c() satisfy

px)>a>0 and qgx)>a >0 Vx el.

Recall that given f € H = L%(I), there exists a unique solution u € H 2(I) of the
equation

(1) —(pu') +qu=fon I
with the Dirichlet boundary condition
2) u(0) =u(l) =0.

The solution is denoted by up = Sp f, where Sp is viewed as a bounded linear
operator from H into itself. Similarly, there exists a unique solution u € H>(I) of
(1) with the Neumann boundary condition

3) W) =u'(1)=0

This solution is denoted by uy = Sy f, where Sy is also viewed as a bounded linear
operator from H into itself.

1. Show that Sp > 0 and Sy > 0.

2. Recall the minimization principles associated with the Dirichlet and Neumann
conditions. Deduce that

1 /7 \2 2 1 /7 N2 2
4) —/p(uN) +quN—/fuzv < —/p(uD) +quD—/qu.
2 J; 1 2J; 1

[Hint: Use the fact that HO1 C H']
3. Prove that Sy — Sp > 0.
[Hint: Use (4) together with (1) multiplied, respectively, by up and uy.]

Given a real number k& > 0, consider the equation (1) associated to the boundary
condition

5) p(0)u'(0) = ku(0) and u(l1) = 0.

4. Check that problem (1) with (5) admits a unique solution, denoted by u; = Sy f.
What is the corresponding minimization principle?

5. Show that S; > 0.

6. Let ki > ko > 0. Prove that Sg, — Sk, > 0.
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Let I = (—1, +1). Consider the bilinear form defined on HO1 (I) by

a(u,v) = /(u’v/ + uv — Au(0)v),
I
where A € R is fixed.

1. Check that a(u, v) is a continuous bilinear form on HOl ).

2. Prove thatif |A| < /2, the bilinear form a is coercive.
[Hint: Check that [u(0)| < [|u'||;2 Vu € H(}(I).]

3. Deduce that if |A| < +/2, then for every f € L2(I) there exists a unique solution
u € H*(I) N H}(I) of the problem

0 {—u”—}—u—ku(O):f onl,

u(=1) = u(1) = 0.

4. Prove that there exists a unique value A = Xp € R, to be determined explicitly,
such that the problem

) {—u”+u=ku(0) onl,
u(=1) = u(l) =0,

admits a solution u # 0.

[Hint: It is convenient to introduce the unique solution ¢ of the problem

3) {—w”+<p=1 on 1,

(=1 = () =0.
Compute ¢ explicitly.]

5. Prove that if A # Ag, then for every f € L?(I) there exists a unique solution
u € H>(I) N HY(I) of (1).

[Hint: Consider the linear operator S : g + v, where g € L?(I) and v €
HX()N H(} (1) is the unique solution of

—v"+v=g onl,

@ v(=1) = v(1) = 0.

Write (1) in the form u — Au(0)p = Sf.]
6. Analyze completely problem (1) when A = X.

[Hint: Find a simple necessary and sufficient condition on Sf such that problem
(1) admits a solution.]
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Let H = L*(0, 1) equipped with its usual scalar product. Consider the operator
T : H — H defined by

wm A W N

10.

1 X
(TF)(x) :xf f(tdt +/ tf(t)dt, for0<x < 1.
X 0

. Check that T is a bounded operator.

. Prove that T is a compact operator.

. Prove that T is self-adjoint.

. Show that (Tf, f) >0V f € H, and that (Tf, f) = 0 implies f = 0.

. Setu = Tf. Prove that u € H?*(0,1) and compute u”. Check that u(0) =
u'(1) =0.

. Determine the spectrum and the eigenvalues of 7. Examine carefully the case

A=0.

In what follows, set

1
ek(x)zﬁsin[<k+§>nx], k=0,1,2,....

. Check that (eg) is an orthonormal basis of H.

[Hint: Use question 6.]

. Deduce that the sequence (¢y) defined by

1
ék(x)zﬁcos[<k+§>m},k=0,1,2,...,

is also an orthonormal basis of H.
[Hint: Consider ¢ (1 — x).]

Given f € H we denote by (o (f)) the components of f in the basis (ex).

. Compute oy (f) for the following functions:

B _J1 ifx ela, bl
@ f1(x) = Xa.p)(x) = {0 if x ¢ [a, b],

where 0 <a < b < 1.
(b) foalx) =x.
©) f3(x)=x2

Finally, we propose to characterize the functions f € L%(0, 1) that belong
to H! (0, 1), using their components o (f).

Assume f € H'(0, 1). Prove that there exists a constant a € R (depending on
f) such that (kax(f) +a) € £2,ie.,
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e Zlkak(f)-l-aIZ < 00.

k=0

[Hint: Use an integration by parts in the computation of o (f).]

Conversely, assume that [ € L%(0, 1) and that (1) holds for some a € R. Prove

that f € H'(0, 1).

[Hint: Set f = f + <L and Fu(x) = Y020 aw(fex(x). Check that || f1]],2

=z

remains bounded as n — 00.]

Set

4,
5.
6.
7.

1
a(u,v) = / @'V + uv) + () —u0)(w() —v0)) Vu,ve Hl(O, 1).
0

. Check that a is a continuous coercive bilinear form on H'(0, 1).

Deduce that for every f € L?(0, 1), there exists a unique u € H?(0, 1) satisfying

1
(1) a(u,v):/ fv VYve HY(0,1).
0

Check that u satisfies

—u"+u=f on(0,1),
() u'(0) = u(0) —u(l),
W' (1) = u(0) — u(l).

Show that any solution u € H 2(0, 1) of (2) satisfies (1).

Let T: L?(0, 1) — L?(0, 1) be the operator defined by T f = u.
Check that T is self-adjoint and compact.
Show thatif f > 0a.e.on (0,1),thenu =Tf > 0on (0, 1).
Check that (T'f, f),2 >0 Vf e L*,1).
Determine EV (T).

Letk € R, k # 1, and consider the space

V ={ve HY0,1); v0) = kv(1)},

and the bilinear form

1 1 1
a(u,v) = / W'v' + uv) — </ u) (/ v) Yu,veV.
0 0 0
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1. Check that V is a closed subspace of H'(0, 1). In what follows, V is equipped
with the Hilbert structure induced by the H' scalar product.

2. Prove that a is a continuous and coercive bilinear form on V.

[Hint: Show that there exists a constant C such that ||v|z=(,1) < C||v/||Lz(0,1)
Yv e V.]

3. Deduce that for every f € L?(0, 1) there exists a unique solution of the problem
1
(1) ueV and a(u,v):/ fv YveV.
0

4. Show that the solution u of (1) belongs to H 2(0, 1) and satisfies

o " fu—ffu=f on(0,1),
u(0) = ku(1) and u’(1) = ku’(0).

5. Conversely, prove that any function u € H?(0, 1) satisfying (2) is a solution
of (1).

6. Letk, € R, k, # 1 Vn, be a sequence converging to k # 1. Set
Vi = {v e H'(0,1); v(0) = kyv(1).

Given f € L2(0, 1), let u, be the solution of

1
(1) u, €V, and a(un,v)z/ fv YveV,.
0

Prove that u, — u in H'(0, 1) asn — oo, where u is the solution of (1). Deduce
that u, — u in H2(0, 1)

[Hint: Check that the function ™ defined by

k —ky

(n) _
u (x)—u(x)—l—kn_1

u(l)

belongs to V,, and converges to « in H! (0, 1). Show that a(u,, —u"™, u, —u™) =
(kn — K)u'(0) (1t (1) — u™ (1)).]

7. What happens to the sequence (uj) if k,, converges to 1?

8. Consider the operator T : L2(O, 1) — LZ(O, 1) defined by Tf = u, where u is
the solution of (1). Show that T is self-adjoint and compact. Study E'V (T').

Consider the Sturm-Liouville operator Au = —u”+u on (0, 1) with Neumann
boundary condition u’(0) = u'(1) = 0.
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1. Compute the eigenvalues of A and the corresponding eigenfunctions.

2. Given f € L? with fol f =0, let u be the solution of

—u"+u=f on(0,1),
' (0)=u'(1) =0.

Prove that

1
u P )
lull20,1) < ) I f 1201

[Hint: Apply question 6 in Problem 49.]
3. Let (u,) be the sequence defined inductively by

—M;l/ + Up = Un—1 on (07 1)7
1y (0) = u, (1) =0,

starting with some ug € L2(O, 1). Prove that
_ 1 _
lun —uoll 20,1y < m“llo —uollz20,1y Vn,
where ug = fo] uo.

Set

Let

vV ={veHY0,1);v() =0}

H = {f is measurable on (0, 1) and xf (x) € L2(O, 1}
1. Show that H equipped with the scalar product

1
(f.9)n = /0 Fx)g(x)xdx
is a Hilbert space.
2. Given f € H and ¢ > 0, check that there exists a unique u € V satisfying
1 1 1
/ u OV (x)(x% + &)dx —i—/ u(x)v(x)x>dx =/ F@)v@x)x2dx YveV.
0 0 0

This u is denoted by u,.

3. Prove that u, € H2(0, 1) and satisfies

W —((x*+e)ul) 4+ x*u, =x2f on (0, 1),
u,(0)=0 and u.(1)=0.
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4.

Deduce that
2 luy (x)] < l/ tf(@) —us()ldt Vx €[0,1].
x Jo

Prove that xu, (x) and u/,(x) remain bounded in L2(0,1)as e — 0.

[Hint: Use question 1 in Exercise 8.8.]

. Passto thelimitas ¢ — 0 and conclude that there exists aunique # € V satisfying

1 1
(3) / ' OV (x) + u(x)v(x))x2dx = / f@)v@x)x>dx Vv eV.
0 0
Consider the operator T : H — H defined by Tf = u, where u is the solution
of (3).
Check that T is a self-adjoint compact operator from H into itself.
Determine all the eigenvalues of T'.

[Hint: Look for eigenfunctions of the form )lc sin kx with appropriate k.]

Simplicity of eigenvalues.

Consider the Sturm-Liouville operator

Au=—(pu') +qu onl = (0,1),

where p € Cl([O, 1D, p > a >0o0n 1, and g € C([0, 1]). (No further assumptions
are made; in particular, the associated bilinear form a (u, v) = fol (pu'v' +quv) need
not be coercive.) Set

N ={uec H*0,1); au,v) =0 Yv e H}(0, 1)}.

. Prove that there exists a unique U € N satisfying U (0) = 1 and U’(0) = 0.

[Hint: Apply Theorem 7.3 (Cauchy—Lipschitz—Picard) to the equation Au = 0
written as a first-order differential system.]

Prove that dim N = 2.

[Hint: Consider the unique V € N satisfying V(0) = 0 and V’(0) = 1. Then
write any u € N as u = u(0)U + u'(0)V ]

Let Ng = {u € N; u(0) = 0}. Check that dim Ng = 1.
Set Noo = {# € N; u(0) = u(1) = 0}. Prove that

dim Nog =1 <= 0 is an eigenvalue of A with zero Dirichlet condition.

Otherwise, dim Ngg = 0.
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5. Deduce that all the eigenvalues of A with zero Dirichlet condition are simple.
(By contrast, eigenvalues associated with periodic boundary conditions can have
multiplicity 2; see Exercise 8.34.)

6. Extend the above results to the case in which the condition p € C!([0, 1]) is
replaced by p € C([0, 1]) and N is replaced by

N={uecH 0 1):aw, v)=0 VYve HiO, D}

Consider the problem

) —u”"+u=f on(0,1),
u() =u(l) and u'(1) —u'(0) =k,

where k € R and f(x) are given.

1. Find the weak formulation of problem (1).

2. Show that for every f € L%(0, 1) and every k € R there exists a unique weak
solution # € H'(0, 1) of (1). What is the corresponding minimization problem?

3. Show that the weak solution u belongs to H 2(0, 1) and satisfies (1). Check that
u € C2([0, 1)) if f € C([0, 1]).

4. Prove thatu <0Oon (0, 1)if f <0 on (0,1)and k <O.

5. Take k = 0 and consider the operator T : L2(0,1) — L2(0, 1) defined by Tf =
u. Check that 7 is a self-adjoint compact operator. Compute the eigenvalues of 7'
and prove that the multiplicity of each eigenvalue A is 2 (i.e., dim N (T —Al) = 2),
except for the first one.

Remark. Note that by contrast, each eigenvalue of a Sturm-Liouville operator with
Dirichlet boundary condition (#(0) = u(1) = 0) is simple (i.e., the corresponding
eigenspace has dimension 1).

Fix two functions a, b € C([0, 1]) and consider the problem

W {—u”—l—au’—l—bu =f on(0, 1),

u(0) = u(1) =0,

with f € L2(0, 1).
Given g € L%(0, 1), letv € H%(0, 1) be the unique solution of

@)

—v" =g on(0,1),
v(0) = v(1) =0.

Set Sg = v, sothat S : L2(0, 1) — H?(0, 1).
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1. Check that problem (1) is equivalent to

ue HY 0, 1),

) u=_S(f —au' — bu).

Consider the operator T : H'(0, 1) — H'(0, 1) defined by
Tu = —S(au' + bu),u € H' (0, 1).

2. Show that T is a compact operator.

3. Prove that problem (1) has a solution for every f € L%(0, 1) iff the only solution
uof (1) with f =0isu = 0.

4. Assume that b > 0 on (0, 1). Prove that the only solution of (1) with f = 0 is
u=>~0.

[Hint: Fix aconstantk > Osuchthatk?—ka—b > Oon [0, 1]. Setu, (x) = u(x)+
gek*, & > 0.Implement on u, the “classical approach” to the maximum principle;
see Remark 26 in Chapter 8. Deduce that u(x) < gek Vx e [0,1], Ve >0.]

Conclude that for every f € L?(0, 1) problem (1) admits a unique solution
u e H*(0, 1).

5. Check that in general (without any assumption on a or b), the space of solutions
of problem (1) with f = 0 has dimension O or 1. If this dimension is 1 prove
that problem (1) has a solution iff fol foo = 0 for some function ¢g # 0 to be
determined.

[Hint: Use Exercise 8.33 and the Fredholm alternative.]

Let I = (0, 1). Given two functions f, f> on I, consider the system

—u} +uy=f1 onl,
—u/z/—ul = f» onl,

ey

where u1, u, are the unknowns.
-A-

In this part we prescribe the Dirichlet condition

() u1(0) =u2(0) = u1(1) = u2(1) =0.

1. Define an appropriate concept of weak solution for the problem (1)—(2). Show
that for every pair f = [fi, f2] € L2(I) x L2(I) there exists a unique weak
solution

u=1[uy,uz] € HL(I) x HY(I) of (1)—(2).
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2. Check that uy, up € H2(I).

3. Prove that if f = [f1, fa] € C(I) x C(I), then u = [uy, ur] € C*>(I) x C%(I)
and u is a classical solution of (1)—(2).

4. Consider the operator T from L2(I) x L2(I) into itself defined by Tf = u.Check
that T is compact.

5. Prove that EV(T) = @.
6. Is T surjective? Deduce that o (T") = {0}.
7. Is T self-adjoint? Compute T*.

-B-

In this part we prescribe the Neumann condition
3) u}(0) = uj (1) = uy(0) = u5h(1) = 0.

1. Define an appropriate concept of weak solution for the problem (1)-(3). Check
that the Lax—Milgram theorem does not apply.
Given ¢ > 0, consider the system

—u/l/—l—uz—l—sul = f1 onl,
"
—uy —up+euy = fr onl.

(I1e)

2. Show that for every f = [fi, f2] € L2(1) X LZ(I) there exists a unique weak
solution u® = [u$, u5] € H'(I) x H'(I) of the problem (1,)—(3).

3. Prove that
117y + 150720y < I filGag) + 12072
4. Deduce that u® = [u{, u5] remains bounded in H2(I) x H%(I) as ¢ — 0.
5. Show that for every f = [ fi1, f2] € LZ(I) X L2(I) there exists a unique solution
u=1[ur,ur] € H*(I) x H2(I) of (1)-(3).
8.37

1. Prove that the identity operator from H 1(0, 1) into L2(0, 1) is a Hilbert—Schmidt
operator (see Problem 40).

[Hint: Write u(x) = u(0) + [ u/(t)dt and apply questions A3, A6, and B4 in
Problem 40.]

2. Consider the eigenvalues (1) of the Sturm—Liouville problem

—(pu") +qu =2u on(0,1),
u(0) = u(1) =0.
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Recall that under the asumptions of Theorem 8.22, A, — +o00. Thus, for some
integer N, we have A, > 0 Vn > N. Prove that

~+00 1
— < o0.
2 5
n=N )L”
Remark. A much sharper estimate is described in Exercise 8.42.

Example of an operator with continuous spectrum.

Given f € L2(R), letu € H'(R) be the unique (weak) solution of the problem

_I/l// + u = f on Rs

/u’v’+/uv=/fv vv e H' (R).
R R R

Set u = Tf and consider T as a bounded linear operator from H = L?(R) into
itself.

1. Check that T* = T (H is identified with its dual space) and that ||T'|| < 1.

in the sense that

Prove that EV(T) = (. Is T a compact operator?

Let A € (—o00, 0); check that A € p(T).

Let L € (1, +00); check that A € p(T).

Deduce that o (T) C [0, 1].

Is T surjective? Deduce that 0 € o (T).

Is (T — I) surjective? Deduce that 1 € o (T) and that ||T'|| = 1.
Let A € (0, 1).Is (T — AI) surjective?

Conclude that o (T) = [0, 1].

Y ® N ok » N

Given f € L?(0, 1), consider the function ¢ : H'(0, 1) — R defined by

1 1 1 1 1
_ 2 4 1
(P(U)——/U +—/v—f fv, ve H(0,1).
2 Jo 4 Jo 0

1. Check that ¢ is convex and continuous on H'(0, 1).
2. Show that p(v) — 400 as |[v||g1 — oo.

3. Deduce that there exits a unique u € H 1(0, 1) such that

o)) pu) = min @(v).
veH1(0,1)
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4. Show that
1 1
() / W'V + uv) =/ fv VYve HY(0,1).
0 0
[Hint: Write that (1) < ¢o(u + gv) Vv € HY(0,1) and compute ¢ (u + €v)

explicitly.]

5. Prove that u € H2(0, 1) and that u satisfies

) {—u”+u3 —f ae.on(0,1),

u'(0)=u'(1)=0.

6. Conversely, show that any solution of (3) satisfies (1). Deduce that (3) admits a
unique solution.

7. Show thatif f > 0a.e.on (0, 1),thenu > 0on (0, 1).
[Hint: Use the same technique as in Section 8.5.]
8. Prove thatif f € L°°(0, 1) then

lell3 oo 0.1y < I f 0.1y

[Hint: Argue as in the proof of Theorem 8.19 using as test function G (u — K1/3),
where K = || f| <]

9. What happens when ¢(v) is replaced by
PR B ! .
W(v)=—f ) (0)—] fv, veH(0,1)?
2 Jo 4 0

Let j € C'(R, R) be a convex function satisfying

(D j@) = t|—C VreR, forsome C € R,
and
(2) —1<j@) <+1 VieR.

[A good example to keep in mind is j () = (1 + 2)1/2 ]
Given f € L2(0, 1), consider the function ¢ : H 1(0, 1) — R defined by

1 1 1
go(v):l/ v’2+/ j(v)—/ fu, veHY(0,1).
2 Jo 0 0

1. Prove that if | fol f| > 1, then

inf  ¢(v) = —o0.
veH1(0,1)
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[Hint: Take v = const.]
2. Show thatif | [} f] <1, then

inf  ¢(v) > —oo0.
veH1(0,1)

[Hint: Write fol fv= fol f(—71)+ fv, where v = fol v, f = fol f»and use the
Poincaré—Wirtinger inequality; see Comment 1 on Chapter 8, and Problem 47.]

3. Show thatif | f) f| < 1, then

lim ¢(v) = 4o00.

”U”HI(O.I)_)OO

Deduce thatinf ¢ 419, 1) ¢ (v) is achieved, and that every minimizer u € H'(0,1)

satisfies ' 1 1
/ u’u/+/ j’(u)w:/ fw Ywe HY0,1).
0 0 0

Show thatu € H 2(0, 1) is a solution of the problem

- !—u” +j'w)y=f on(0,1),

uw'(0)=u'(1) =0.
4. Suppose that | fol f| = 1. Show that inerH1(0’1) @ (v) is not achieved.

[Hint: Argue by contradiction. If the infimum is achieved at some u, then u
satisfies (3). Integrate (3) on (0, 1).]

5. What happens to a minimizing sequence (u,) of ¢ when | fol fl=1?

[Hint: Show that u, = u,, + (4, — u,) with |u,| — oo and ||u, —up|lz1 < C
asn — 00.]

Let g € C([0, 1]) and assume that the bilinear form

1
a(u,v):/ W'V + quv), u,ve HO,1),
0

is coercive on Hé (0, 1). The space HO1 (0, 1) is equipped with the scalar product

a(u, v), now denoted by (u, v) y, and the norm |u|yg = (u, u);l/z.

1. Prove that

1
@)) o= sup{/ |u|4;ueH01(O, 1)and|u|H=1}>O
0

is achieved by some u.
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[Hint: Consider a maximizing sequence (u,) converging weakly in HO1 0,1) to
some ug. Check that o = fol luo|* and that |ug|z < 1. Show that |ug|y = 1 by
introducing uo/|uo| g -]

2. Show that one can assume ug > 0 on [0,1].
[Hint: Replace ug by |ug| and apply Exercise 8.11.]

3. Prove that ug belongs to H 2(0, 1) and satisfies

—uy 4+ quo = éu% on (0, 1),

2

up(0) = uo(l) = 0.
[Hint: Write |wellz4¢0.1) < lluollz40.1)> Where we = lub(‘)(itf}"’H, v E H& 0, 1),
and ¢ > 0 is sufficiently small. Then use a Taylor expansion for ||w, ||‘1‘44 .1 and

for |ug + 8U|%_1 ase — 0.]
4. Deduce that ug(x) > 0 Vx € (0, 1).
[Hint: Use the strong maximum principle; see Problem 45.]

5. Let u; be any maximizer in (1). Show that either u;(x) > 0 Vx € (0,1) or
ui(x) <0vx € (0,1).

[Hint: Check that |u(x)| > 0Vx € (0, 1).]
6. Deduce that there exists a solution u € C2([0, 1]) of the problem
—u" 4+ qu=u> on(0,1),

3) u > 0on (0, 1),
u(0) =u(l) =0.

[Hint: Take u = kug for some appropriate constant k > 0.]

7. Assume now that a is not coercive and more precisely that there exists some
V] € HO1 (0, 1) such that vy # 0 and a(vy, v1) < 0. Prove that problem (3) has no
solution.

[Hint: Check that A; < 0, where A is the first eigenvalue of Au = —u” + qu
and multiply (3) by the corresponding eigenfunctions ¢;.]

Asymptotic behavior of Sturm—Liouville eigenvalues.

Consider the operator Av = —v” + a(x)v on I = (0, L), with zero Dirichlet
condition and a € C ([0, L]).

1. Let (A;) denote the sequence of eigenvalues of A. Prove that

2,2

An — < llallL>@,.) Vn.

L2
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[Hint: Consider the eigenvalues of the operator Ag corresponding to @ = 0 and
use the Courant-Fischer min—max principle (see Problem 49).]

Consider now the general Sturm—Liouville operator
Bu=—(pu') +qu on(0,1)
with zero Dirichlet condition. Assume that p € C2([0, 1), p>a>00n(0,1),
and g € C([0, 1]).
Set L = fol p(t)~Y2dt and introduce the new variable x = fé p(t)~V2dt, so
that 0 < x < L when 0 < ¢ < 1. Given a function u € C2([0, 1]), set
v(x) = p*u@), 0<rt<l.
2. Prove that u satisfies —(pu’)’ +qu = pu on (0, 1) iff v satisfies —v” +av = pv
on (0, L), where a € C([0, 1]) depends only on p and q.
[Hint: Prove, after some tedious computations, that a(x) = q(t) + 41'1 p' @) —

(P (1)* ]
16p(t) -

3. Deduce that the eigenvalues (u;) of the operator B satisfy

°n?




Chapter 9

Sobolev Spaces and the Variational Formulation
of Elliptic Boundary Value Problems in
N Dimensions

9.1 Definition and Elementary Properties of the Sobolev Spaces
whlrp (Q)

Let Q@ ¢ RY be an open set and let p € R with 1 < p < oo.

Definition. The Sobolev space W7 () is defined by!

whr(Q) = [u e LP(Q)

g1, 82,..., gy € LP(Q) such that
1,2, N

/uf:—/giw Yo € CO(Q), Vi=
Q 0x Q

We set

’HI(SZ) = Wl’z(Q).‘

Foru € W''P(Q) we define 2 2 = g;, and we write
1

<8u ou ou )
Vu = gradu = .

axy 9x2’ T dxn

The space W7 (Q) is equipped with the norm

du
3)6,'

N
lullyrp = lullp + Y
i=1

p

or sometimes with the equivalent norm (||u||§ + Z,N:1 ||%||£)1/p Gf1 < p < o0).

The space H'!() is equipped with the scalar product

I When there is no confusion we shall often write W17 instead of W17 ().
2 This definition makes sense: g; is unique (a.e.) by Corollary 4.24.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 263
DOI 10.1007/978-0-387-70914-7 9, © Springer Science+Business Media, LLC 2011
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- v +XN: du  dv / . N ou dv
u, v = (u,v —_— — = uv _—
H! L2 iz ax,- axi L2 Q o 3)6,' ax,'

The associated norm

ou
0

N\ 172

e Proposition 9.1. W'-7(Q) is a Banach space for every 1 < p < co. WHP(Q) is
reflexive for 1 < p < oo, and it is separable for 1 < p < oco. HY(Q) is a separable
Hilbert space.

N

2
lullgr = (IIMI|2+ E
i=1

is equivalent to the W!? norm.

Proof. Adapt the proof of Proposition 8.1 using the operator Tu = [u, Vu].

Remark 1. In the definition of W!? we could equally well have used C °(R2) as set
of test functions ¢ (instead of C Cl (2)); to show this, use a sequence of mollifiers (p;,).

Remark 2. 1t is clear that if u € C'(Q) N LP(Q) and if % € LP(Q) foralli =

1,2,..., N (here 5’7”[ means the usual partial derivative of u), then u € W”’(Q).
Furthermore, the usual partial derivatives coincide with the partial derivatives in
the WP sense, so that notation is consistent. In particular, if Q2 is bounded, then
cl(Q) ¢ whr(Q) forall 1 < p < oo. Conversely, one can show that if u €
W”’(Q) for some 1 < p < oo and ifg—; e C() foralli =1,2,..., N (here

% means the partial derivative in the WP sense), then u € C!($2); more precisely,

there exists a function i € C'(€2) such that u = @ a.e.

* Remark 3. For every u € LIIOC(Q), the theory of distributions gives a meaning to

% (% is an element of the huge space of distributions D’(2), a space that contains
1 1

in particular LIIOC(Q)). Using the language of distributions one can say that W17 ()

is the set of functions u € L” (€2) for which all the partial derivatives g—;, 1<i<N
(in the sense of distributions), belong to L (£2).

When Q = RY and p = 2 one can also define the Sobolev spaces using the Four-
ier transform; see, e.g., J.-L. Lions—E. Magenes [1], P. Malliavin [1], H. Triebel [1],
L. Grafakos [1]. We do not take this point of view here.

Remark 4. 1t is useful to keep in mind the following facts:

(i) Let (u,) be a sequence in WLP such that u, — u in L? and (Vuy,) converges to
some limitin (L7)N. Thenu € W7 and ||u, —u|ly1., — 0.When 1 < p < 00
it suffices to know that u, — u in L? and that (Vu,) is bounded in (LP)" to
conclude that u € W7 (why?).
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(ii) Given a function f defined on Q we denote by f its extension outside 2, that s,

o) fx) ifxeq,
X) =

0 if x e RM\Q.
Letu € W'P(Q) and leta € C (). Then 3

ad d d
aueWHP@RY) and —(am) = a—u + —au
0x; 0x; 0Xx;

Indeed, let ¢ € C, Cl (]RN ); we have
/‘ __0¢ / I / ( ) oo
ou—- ou— = _ -
RV 0x; Q Ox o Lox; e (/7
f ou n o / ou n o
= — —a U— —+ —u
0x; 4 0x; ¥ RN 8xl 0Xx; ¢

The same conclusion holds if instead of assuming that o € CL], (2), we take
a € CYRN) N L®@RN) with Va € L®°RM)N and suppa ¢ R\ (39).

Here is a first density result that holds for general open sets €2; we establish later
(Corollary 9.8) a more precise result under additional assumptions on 2. We need
the following.

Definition. Let @ C RY be an open set. We say that an open set w in RY is strongly
included in © and we write » CC Qif @ C Q and @ is compact.*

e Theorem 9.2 (Friedrichs). Let u € W7 (Q) with 1 < p < co. Then there exists
a sequence (uy) from C° (RN) such that

(D) UpjQ —> U in LP(Q)
and
) Vitnw = Vit in LP ()" forall o cC Q.

Incase Q =RN andu € WH-P(RN) with 1 < p < 09, there exists a sequence (uy)
from C2° (RN such that
up — u in LP(RY)

and
Vu, = Vu in LP(RM)V,

In the proof we shall use the following lemma.

3 Be careful: in general, ii ¢ Wh?(RY) (why?).
4 & denotes the closure of w in RV,
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Lemma 9.1. Let p € L'(RY) and letv e WHP(RN) with 1 < p < oo. Then

1 N 0 dv .
pxve W P(RY) and Fy. (,0*v)=,o*—a Vi=1,2,...,N.
Xi i

Xi

Proof of Lemma 9.1. Adapt the proof of Lemma 8.4.

Proof of Theorem 9.2. Set

u(x) ifx e 2,

“O=10 it e RN,

and set v, = p, x u (wWhere p, is a sequence of mollifiers). We know (see Section
4.4) that v, € C®@®R"N) and v, — & in L?(RY). We claim that Vno = Ve
in L?(w)N for all o cC Q. Indeed, given » CC €, fix a function a € CCI(Q),
0 <« < 1, such that @ = 1 on a neighborhood of w.

If n is large enough we have

(3) Pn * (@) = pp xit  ON W,
since

Supp(op * U — pp * it) = supp(pp * (1 — @)u)

1
C supp o, +supp(l —a)u C B (O, ) + supp(l — @)

n
C (w)°

for n large enough. From Lemma 9.1 and Remark 4(ii) we have

0 . ou da
—(opxau) = pp*x a— + —u ).
0x; X; i

It follows that

9 9
L (ppxa@m) —» a2 £ 2% inLP®RY)
8x,~ 8x,~ 3)6,'

and in particular,

ad _ ou .
—(p, o) > — in L (w).
8xi axi

Because of (3) we have

9 9
L opxit) = 2L in LP ().
8)61' 3)6,'

Finally, we multiply the sequence (v,) by a sequence of cut-off functions (&,) as
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in the proof of Theorem 8.75 It is easily verified that the sequence u, = ¢,v, has
the desired properties, i.e., u, € C° (RM), u, — u in LP(Q), and Vu,, — Vu in
(LP(w))N forevery w CC Q.

In case 2 = RY the sequence u, = &, (p, * u) has the desired properties.

* Remark 5. It can be shown (Meyers—Serrin’s theorem) that if u € wbLP(Q) with
1 < p < oo then there exists a sequence (u,) from C*(2) N WP () such that
u, = uin whp (2); the proof of this result is fairly delicate (see, e.g., R. Adams [1]
or A. Friedman [2]). In general, if Q is an arbitrary open set and if u € wlr ()
there need not exist a sequence (u;) in CLI. (RN such that UpiQ —> U in whr(Q).
Compare the Meyers—Serrin theorem (which holds for any open set) to Corollary 9.8
(which assumes that €2 is regular).

Here is a simple characterization of W7 functions:

Proposition 9.3. Let u € LP(Q) with 1 < p < oo. The following properties are
equivalent:

(i) u e Whr(Q),
(ii) there exists a constant C such that

v

l/t_

Q 0x

(iii) there exists a constant C such that for all o CC , and all h € RN with
|h| < dist(w, 92) we have

<Cllglly g Y9 eCX(Q). Yi=12....N,

lzhu — ullLrwy < Clhl.

(Note that Thu(x) = u(x + h) makes sense for x € w and |h| < dist(w, 92).)
Furthermore, we can take C = ||VullLr(q) in (ii) and (iii).

If Q = RN we have
Thue — ullp@yy < 1AIIVUll Lo @Ny-

Proof.
(i) = (ii). Obvious.
(i1) = (1). Proceed as in the proof of Proposition 8.3.
(i) = (iii). Assume first that u € C°(RV). Let h € RN and set

v(t) =ulx+th), tekR.

3 Throughout this chapter we denote systematically by (¢,) a sequence of cut-off functions, that is,
we fix a function ¢ € C(RY) with0 < ¢ < 1 and

1 ifx] < 1,

CO=10 it =2

and we set §,(x) = ¢(x/n),n=1,2,....
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Then v/(t) = h - Vu(x + th) and thus
1 1
u(x+h) —ulx)=v()—v0) = / V(Hdt = f h-Vu(x + th)dt.
0 0
It then follows that for 1 < p < oo,
1
[Thu(x) — u(x)|? < Ihlp/ [Vu(x + th)|Pdt
0
and
1
[ 1wt —weorar < i [ ax [ 19ut e+
w w 0

1
=|h|p/ dt/ [Vu(x +th)|Pdx
0 w

1
- |h|"/ dtf V()P dy.
0 w+th

If || < dist(w 0S2), there exists an open set ' CC 2 such that w + th C o' for all
t € [0, 1] and thus

@ fuae =y = 17 [ (9u.
w/

This concludes the proof of (ii) for u € C2° (R¥)and 1 < p < oo. Assume now
that u € Wl’p(Q) with 1 < p < oo. By Theorem 9.2 there exists a sequence (u,)
in C2°(RM) such that u, — u in LP(2) and Vu, — Vu in L (w)" Yo CC Q.
Applying (4) to (u,) and passing to the limit, we obtain (iii) for every u € whr(Q),
1 < p < 0o. When p = oo, apply the above (for p < o0) and let p — co.

(iil) = (ii). Let ¢ € C2°(2) and consider an open set w such that supp ¢ C w CC
Q. Let h € RY with |h| < dist(w, 3S2). Because of (iii) we have

’/(Thu —u)p
Q

On the other hand, since

< Clh| ||(p||Lp’(Q)~

/Q W(x + ) — u(x)g()dx = /Q Uy — h) — p())dy,

it follows that

—h) —
/u(y)“"(y )= 90D 4y < Clgl g,
Q 7]

Choosing h = te;, t € R, and passing to the limit as # — 0, we obtain (ii).



9.1 Definition and Elementary Properties of the Sobolev Spaces W7 (Q) 269
* Remark 6. When p = 1 the following implications remain true:
(i) = (i) © (ii).

The functions that satisfy (ii) (or (iii)) with p = 1 are called functions of bounded
variation (in the language of distributions a function of bounded variation is an L'
function such that all its first derivatives, in the sense of distributions, are bounded
measures). This space plays an important role in many applications. One encounters
functions of bounded variation (or with similar properties) in the theory of minimal
surfaces (see, e.g., E. Giusti [1] and the works of E. DeGiorgi, M. Miranda, and
others cited there), in questions of elasticity and plasticity (functions of bounded
deformation, see, e.g., R. Temam—G. Strang [2] and the cited work of P. Suquet),
in quasilinear equations of first order, the so-called conservation laws, which admit
discontinuous solutions (see, e.g., A. 1. Volpert [1] and A. Bressan [1]). On this vast
subject, see also the book by L. Ambrosio—N. Fusco-D. Pallara [1] and Comment 16
at the end of this chapter.

Remark 7. Proposition 9.3 ((i) = (iii)) implies that any function u € W!*°(Q) has
a continuous representative on 2. More precisely, if €2 is connected then

) lu(x) —u(| = IVulro@) dgt(x, y) Vx,yeQ

(for this continuous representative u), where disto(x, y) denotes the geodesic dis-
tance from x to y in ; in particular, if €2 is convex then distq(x, y) = |x — y|. From
here one can also deduce that if u € W7 () for some 1 < p < oo (and some open
set 2), and if Vu = 0 a.e. on €2, then u is constant on each connected component
of Q.

Proposition 9.4 (differentiation of a product). Let u, v € W7 (Q) NL*>(Q) with
1 < p <oo. Thenuv € WHP(Q) N L®(Q) and

9
— wv) = —v+u—, i=12,...,N.

au av
Bx,- 3)6,' Bx,-

Proof. As in the proof of Corollary 8.10, it suffices to consider the case I < p < oo.
By Theorem 9.2 there exist sequences (u,), (v,) in C° (R™) such that

Uy, — U, U, — v in L?(Q) and a.e. on Q,

Vu, = Vu, Vv, = Vv inLP(w)N forallw cC .
Checking the proof of Theorem 9.2, we see easily that we have further
lunllpoo@myy < llullLeo@) and  [lvpllpoo@yy < [lvllLoo(e)-

On the other hand,

I ouy vy, 1
UpVy— = — Up+up— )@ Vo e C.(2).
Q 0x; o \ 0x; 0x;
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Passing to the limit, by the dominated convergence theorem, this becomes

A ou av
Uv— = — —v+u—|o V(peC(Q)
Q@ Ox o \0x; ax;

Proposition 9.5 (differentiation of a composition). Ler G € C'(R) be such that
G(0) = 0and |G'(s)| < M Vs € R for some constant M. Let u € WP (Q) with
1 <p <oo. Then

9 3
GouecWhP(Q) and a—(Gou)z(G/ou)a—”, i=1,2,....N.
Xi

Xi

Proof. Wehave|G(s)| < M|s| Vs € R and thus |Gou| < M|ul; as a consequence,
Gou e LP() and also (G’ o u)% € LP(R2). It remains to verify that

(©6) (Gou)— = /(G/ou)—go Vo € CL(Q).

When 1 < p < 0o, one chooses a sequence (u,) in C° (RN) such that u, — u
in L?(Q) and a.e. on 2, Vu, — Vu in LP (@)Y Vo CC Q (Theorem 9.2). We

have
/(Goun)—= /(G/

But Gou, — GouinLP(2) and (G’ ouy) 8“" — (G’ou) U in LP(w) Yo CC Q
(by dominated convergence), so that (6) follows. When p = oo fix an open set Q'
such that suppp C Q@ cC Q. Thenu € WHP(Q')  Vp < oo and (6) follows from
the above.

Proposition 9.6 (change of variables formula). Let Q and Q' be two open sets in
RN and let H : Q' — S be a bijective map, x = H(y), such that H € C'(Q),
H™ ' e CY(Q), JacH € L®(Q)), JacH™' € L®(Q).Y Let u € WP (Q) with
1<p<ooThenuoH € Wh?(QY) and

9 du OH; o
gy O = > o HOVG ) Vi= 120N,

i

Proof. When 1 < p < oo, choose a sequence (u,) in C?O(RN) such that u, — u
in L?(2) and Vu, — Vuin L?(w)Y Yo cC Q.Thusu, o H — uo H in L?(Q)

and
9 0H; ] J0H;
o) s (P in L” (&) Vo' cC Q.
dx; dyj 0x; dy;
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Given ¥ € CCI(Q’), we have

dup 0 H;
o migr== [ (o) v

In the limit we obtain the desired result. When p = oo, proceed in the same way as
at the end of the proof of Proposition 9.5.

The spaces W™ 7 (L)

Let m > 2 be an integer and let p be a real number with 1 < p < co. We define by
induction

W’"’p(Q)z{ueWm Lr(Q); o e W brQ) vi=1,2,. }
Xi

Alternatively, these sets could also be introduced as

Yo with |a| < m, Jg, € LP () such that

W™P(Q) = u e LP(Q) o ] > ’
/QuD ¢=(-1) /anw Vo € C7 ()

where we use the standard multi-index notation o« = (a1, o, ..., ay) witha; > 0
an integer,

alelg
dx}1ax5? -+ dxy '

N
el =) o and D%p =
i=1

We set D“u = go. The space W™ ?(2) equipped with the norm

lullwnr =" [ID%ull,

0<|a|<m

is a Banach space.
The space H” (2) = W™2(2) equipped with the scalar product

. v)gn = Y (D*u, D*v)p2

0<ler|<m

is a Hilbert space.

Remark 8. One can show that if €2 is “smooth enough” with ' = 92 bounded, then
the norm on W7 () is equivalent to the norm

lullpy + > 11D%ull.

la|=m
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More precisely, it is proved that for every multi-index o with 0 < |e| < m and for
every ¢ > 0 there exists a constant C (depending on €2, ¢, o) such that

ID%ull, <& Y I1DPull, + Cllull, Yue W™P(Q)
|Bl=m

(see, e.g., R. Adams [1]).

9.2 Extension Operators

It is often convenient to establish properties of functions in W7 () by beginning
with the case © = RY (see for example the results of Section 9.3). It is therefore
useful to be able to extend a function u € WP(Q) to a function i € WhP(RN).
This is not always possible (in a general domain 2). However, if Q is “smooth,”
such an extension can be constructed. Let us begin by making precise the notion of
a smooth open set.

Notation. Given x € RY write

x = xy)withxy’ e RN "1 X/ = (x1, x2, ..., Xn—1),

N—1 1/2
x| = <Z x?) .
i=1

RY = {x = (', xy); xy > 0},

and set

We define

Q =f{r =\ xy) x| < Land xy| < 1),
0. = 0NRY,
Qo = {x = (x', 0); || < 1}.

Definition. We say that an open set  is of class C if for every x € dQ = I there
exist a neighborhood U of x in RY and a bijective map H : Q — U such that

HeC'(Q), H'ec'U), H( Q) =UNQ, and H(Qy) =UNT.
The map H is called a local chart.

Theorem 9.7. Suppose that Q is of class C' with T bounded (or else Q = Rﬁ).
Then there exists a linear extension operator

P:whr(Q) — WhP@®RY) (1 <p<o0)

such that for allu € WhHP (),
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(1) Puig =u,
(ii) 1 Pullpr@yy < CllullLe ),
(iii) ||PM||W1,p(RN) < C”M”Wl,p(gz),

where C depends only on 2.

We shall begin by proving a simple but fundamental lemma concerning the ex-
tension by reflection.

Lemma 9.2. Givenu € WP (Q,) with 1 < p < oo, one defines the function u* on
Q to be the extension by reflection, that is,

.ot u(x',xy)  ifxy >0,
w (x', xy) = .
u(x', —xy) ifxy <O.
Then u* € WP(Q) and

||“*||LP(Q) <2lullLrg.)- ||“*||w1-p(Q) < 2”””W'-P(Q+)‘

Proof. In fact, we shall prove that

ou* ou \* )
@) =—) for 1<i<N-1
Bx,- ax,‘
and
ou* du \J
3 =—) .
3)61\1 axN

where (a L)* denotes the extension by reflection of 2 o and where we set, whenever
fis defined on Oy,

fD(X/,XN) — {f(-x/ny) if-)CN > O,

—fx', —xy) ifxy <O.
We shall use a sequence (7)) of functions in C*°(R) defined by
(@) =nkt), teR, k=12,...,

where 7 is any fixed function, n € C°°(R), such that

0 ifr<1/2,
) =
n(t) :1 ifr> 1.

Proof of (7). Let ¢ € CCI.(Q). For1l <i < N — 1, we have
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] ]
© /u*_wzf s
[0) 8xi O+ Bxi

where ¥ (x', xy) = ¢(x’, xn§) + ¢(x’, —xn). The function ¥ does not in general
belong to C, cl (Q+), and thus it cannot be used as a test function (in the definition of
W:P). On the other hand, nx (xy)¥ (x', xy) € CL(Q+) and thus

0 ou
Ma—(md/f) =— — kY.
0+ OXi 0, 9xi

Since aixi(nkw) = nk%, we have
oy ou
(10) [ umgt == [ .
0. axi 0. 8xi
Passing to the limit in (10) as k — oo (by dominated convergence), we obtain
a ad
(11) / u—wz_/ My
o+ dx; 0+ dx;

Combining (9) and (11), we are led to

L0 du du \*
wos=— | my=— | (=) e
0 axi 0. 8xi 0 8xi

from which (7) follows.

Proof of (8). For every ¢ € CC1 (Q) we have

d d
(12) /uﬁ_wzf WX
0 8xN (o axN
where x (x/, xy) = o(x’, x5) — @(x’, —xp). Note that x (x’, 0) = 0 and thus there

exists a constant M such that | x (x’, xy)| < M|xy| on Q. Since g x € Ccl,(Q+), we
have

d ou
(13) ua—(nkx) = - Mk X-
0+ OAN 0, 9xN
But
d ax
(14) —(mkx) = mk—— + kn'(kxn) x.
BxN axN

We claim that

(15) / ukn'(kxy)x — 0as k — oo.
O+
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Indeed, we have

‘/ ukn' (kxy)x §kMC[ lu|xndx SMC/ |u|dx
[ O<xy<l1/k O<xy<l1/k

with C = sup, (o, 117" (#)], from which (15) follows.
We deduce from (13), (14), and (15) that

/ ax /‘ ou

U—— = — —x
0, Oxn 0, OxN
Finally, we have

ou du .
(16) / T X 2/ — ] @
0. 0xN o \0xN

Combining (12) and (16), we obtain (8). This concludes the proof of Lemma 9.2.

The conclusion of Lemma 9.2 remains valid if Q is replaced by Rﬁ (the proof
is unchanged). This establishes Theorem 9.7 for @ = RY.

* Remark 9. Lemma 9.2 gives a very simple construction of extension operators for
certain open sets 2 that are not of class C!. Consider, for example, the square

Q:{xeR2;0<x1<1, 0<xy <1}

Letu € Whp (€2). By four successive reflections (see Figure 6) we obtain an exten-
sionii € WHP(Q) of u in

§={xeR2; —1<x;1 <3, -1 <x <3}

Fig. 6
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Then fix any function ¢ € C Cl () such that ¢ = 1 on Q. Denote by Pu the
function i extended to R2 by 0 outside 2. It is easily shown that the operator
P: WP (Q) — WP (R?) satisfies (i), (ii), and (iii).

The next lemma is very useful.

Lemma 9.3 (partition of unity). Let I' be a compact subset of RN and let Uy, Us,
..., Ur be an open covering of T, i.e.,, I' C Ule U,;. Then there exist functions 6y,
01, 62, ..., 6 € C®@RN) such that

k
) 0<6;,<1 Vi=0,1,2,....k and Z@izlonRN,
i=0

(ii) {supp@i is compact and supp6; C U; Vi=1,2,...,
il

suppfp C RV\T.

If Q is an open bounded set and I = 9, then 0y, € C° ().

Proof. This lemma is classical; similar statements can be found, for example, in
S. Agmon [1], R. Adams [1], G. Folland [1], P. Malliavin [1].

Proof of Theorem 9.7. We “rectify” T' = 02 by local charts and use a partition of
unity.” More precisely, since I" is compact and of class C', there exist open sets
(Ui)i<i<k In RY such that ' C Ufle U; and bijective maps H; = Q — U; such
that

HieC'(Q), H'eC'(Un, Hi(Qy)=UinQ, and H(Qy)="U;NT.

1

Consider the functions 6y, 01, 62, ..., 6 introduced in Lemma 9.3. Given u €
WP (Q), write

k k
U= 20,-14 = Z”f’ where u; = O;u.
i=0 i=0

Now we extend each of the functions u; to RV, distinguishing uo and (u;)1<;<k-

(a) Extension of ug. We define the extension of ug to RN by

io(x) = up(x) ifx e Q,
R I if x € RM\Q.

7 In the following we shall often use this technique to transfer a result proved on Rf (or Q1) to the
same conclusion on a smooth open set 2.
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Recall that 6y € C'(RV) N L®(RY), Vg, € L®(RN), since V) = — Y, Vg,
has compact support, and that supp 8y C RV\T". It follows (by Remark 4(ii)) that

9 du 96
i e WHP@RYY and  ——iip = Gy + 0.
E)xi 8x,~ Bx,-

Thus
luollwrr@yy < Cllullyipg)-
(b) Extension of u;j, 1 <i <k.

Consider the restriction of u to U; N 2 and “transfer” this function to O with the
help of H;. More precisely, set v; (y) = u(H;(y)) fory € Q. We know (Proposition
9.6) thatv; € Wh-» (Q+). Then define the extension on Q by reflection of v; (Lemma
9.2); call it v}. We know that v} € WbP(Q). “Retransfer” v} to U; using Hl-_1 and
call it w;:

w; (x) = v;[Hi_l(x)] for x € U;.

Then w; € WHP(U;), w; = uw on U; N, and

lwillwirw,y = Cllullwirw,ne)-

Finally, set for x € RN,

() = 0; (x)w; (x) if x e U;,
o if x e RM\U;,

so that i; € WHP(RN) (see Remark 4(ii)), i; = u; on €2, and
ldillwrr@yy < Cllullwirw,ne)-

(c) Conclusion. The operator Pu = up+ ZlNzl u; possesses all the desired properties.

e Corollary 9.8 (density). Assume that Q2 is of class C', and let u € WP () with
1 < p < oo. Then there exists a sequence (uy) from C2° (RN) such that Uplg —> U
in W-P(Q). In other words, the restrictions to Q2 of C o0 (RN) functions form a dense
subspace of WhP ().

Proof. Suppose first that I is bounded. Then there exists an extension operator P (by
Theorem 9.7). The sequence8 &n(pn * Pu) converges to Pu in whP(RN) and thus it
answers the problem. When I is not bounded we start by considering the sequence
Lyu. Given g > 0, fix ng such that [|£,yu — u ||y 1., < €. One may then construct an
extension v € WL (RN) of Znout (since this only involves the intersection of I' with
a large ball). We finally pick any w € CfO(RN) such that [[w — v|ly1.pgryy < €.

8 Asusual, (pn) 1s a sequence of mollifiers and (&, ) is a sequence of cut-off functions as in the proof
of Theorem 9.2.
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9.3 Sobolev Inequalities

In Chapter 8 we saw that if 2 has dimension 1, then wWlr(Q) c L®(Q) with
continuous injection, for all 1 < p < oo. In dimension N > 2 this inclusion is true
only for p > N; when p < N one may construct functions in W' that do not
belong to L™ (see Remark 16). Nevertheless, an important result, essentially due
to Sobolev, asserts that if 1 < p < N then WH2(Q) C LP" () with continuous
injection, for some p* € (p, +00). This result is often called the Sobolev embedding
theorem. We begin by considering the following case:

A. The case @ = RY,
e Theorem 9.9 (Sobolev, Gagliardo, Nirenberg). Let 1 < p < N. Then

1
N 9

x 1
wlP(@RNY ¢ LP"(RYN), where p* is given by — =
p

< | =

and there exists a constant® C = C(p, N) such that
(17) lullp < ClIVull, Vue WHPRY).

Remark 10. The value p* can be obtained by a very simple scaling argument (scaling
arguments, dear to the physicists, sometimes give useful information with a minimum
of effort). Indeed, assume that there exist constants C and g (1 < g < oo) such that

(18) lully < CIVull, VYu € C@RY).

Then necessarily ¢ = p*. To see this, fix any function u € C°(R"), and plug into
(18) u; (x) = u(rx). We obtain

N _ N
lully < CAYT a7 Vul, Vi >0,

which implies 14 % - % =0, i.e.,, g = p* (provided u does not vanish identically).
The proof of Theorem 9.9 relies on the following lemma:

Lemma 9.4. Let N > 2 and let fi, f>, ..., fx € LN"I@®RN"N). For x € RN and
1 <i <N set

~ N-1
Xi = (X1, X2, « ooy Xio1, Xit1, ..., XN) € RTT
i.e., x; is omitted from the list. Then the function
= = = N
fx) = fik) fa(&2) -+~ fn(En), x € R,

belongs to L'(RN) and

9 We can take C(p, N) = (N —1)p/(N — p), but this constant is not optimal. The best constant
is known (but it is not simple!), see Th. Aubin [1], G. Talenti [1], and E. Lieb [1].
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N
L emy < T Tl ov-1n-r).

i=1

Proof. The case N = 2 is trivial (why?). Let us consider the case N = 3.
‘We have

‘/le(X)ldﬂ = |f3(X1,X2)|A;|f1(x2,X3)||f2(x1,X3)|dX3

1/2 1/2
5Ifs(xl,xz)l</R|f1(Xz,x3)|2dx3> (fR|fz(x1,x3)|2dx3)

(by Cauchy—Schwarz). Applying Cauchy—Schwarz once more gives

/R 1 @ldx < 13l il |l 2.

The general case is obtained by induction—assuming the result for N and then
deducing it for N + 1. Fix xy+1 € R; because of Holder’s inequality,

/ | f)ldxidxs - -dxn
]RN

, 1/N'
< Ifn+illy ) [/ |fifre I dX1dx2~'de]

(with N = N/(N — 1)). Applying the induction assumption to the functions
AN AN, f]Y, we obtain

N
N’ N’ N’
fRNw ¥ s daw = [T g1
i=l1

from which it follows that

N

/RN [ f()ldxy - -dxy < ||fN+1”LN(]RN)H”fz'”LN(RN*I)'

i=1

Now vary xy+1. Each of the functions xy+1 = | fill v @wn~-1) belongs to LY (R),

1 <i < N. As a consequence, their product H,N:1 Il fill v -1y belongs to L'(R)
(see Remark 2 following Holder’s inequality in Chapter 4) and

N+1
/R L AFCOldxdny - dxvdai = [Ty

i=1

Proof of Theorem 9.9. We begin with the case p = 1 and u € C/(RV). We
have
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X1 Qu
lu(xi, x2, ..., xn)| = / —(t, x2, ..., xyn)dt
oo 0X]

< —(t, x2, ..., xn)|dt
8)61

and similarly, foreach 1 <i < N,

at ¥ £,

[ (x1, x2, ..., xn)| < ‘—(Xl,xz,.--,xi—l,t,xi+1,--.XN)
oo |0

Thus
N
)V < T[AGD.
i=1
We deduce from Lemma 9.4 that

N 1/(N-1) N Ju 1I/(N=1)
)NV Vdx < TTIAN vy, = [ [ = :
/RN E LYRN-T) E X || L1 rNy
As a consequence, we have
3 1/N
(19) llaell pvsv—n @ny <
LI(RN)

This completes the proof of (17) when p = 1 and u € Ccl. (RN). We turn now to the
case | < p < N, still with u € CL(RN). Let m > 1; apply (19) to |u|"'u instead
of u. We obtain

1/N 1/N

ou
-1 Bx,-

|m71 _

|u < mllully,
ax,-

N
(20) ||M||ﬁN/(N—1) = ml_[
i=1

P(m 1)

1 P

Then choose m such that mN/(N — 1) = p'(m — 1), which gives m =
(N —-1)p*/N (m > lsince | < p < N). We obtain

gu |V/N

0x;

llaell p <

and thus
lullpr < CIVull, Vue C'(RY),

To complete the proof let u € wbr(RN), and let (u,) be a sequence from C, Cl (RM)
such that u,, — u in W7 (R"). One can also suppose, by extracting a subsequence
if necesary, that u, — u a.e. We have

lenll pr < ClIVuyllp.
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It follows from Fatou’s lemma'? that
uelP and |ul, <C|Vul,.*
e Corollary 9.10. Let 1 < p < N. Then
WhP@®RY) c LIRY) ¥q < [p, p’]
with continuous injection.

Proof. Given g € [p, p*], we write

l —

l—«

4
q p P

for some « € [0, 1].

We know (see Remark 2 in Chapter 4) that

-«
P

lullg < loellpllaell o < lullp + Nul p=
(by Young’s inequality). Using Theorem 9.9, we conclude that
lullg < Cllullyr,  Yu € WHPRY).
e Corollary 9.11 (the limiting case p = N). We have
WHP®RY) € LYRY) ¥g € [N, +00).
Proof. Assume u € C!(RN); applying (20) with p = N, we obtain

-1
”””%N/(N_l) = m”u||r(’,1n_1)1v/(1v_1)”VMHN Vm > 1,

and thanks to Young’s inequality we have
2D lullmn/v—1) < CUlullgn-yn/v—1) + IVully) VYm > 1.
In (21) we choose first m = N; it becomes

lull vz w1y < Cllullyrn,
and by the interpolation inequality (see Remark 2 in Chapter 4) we have
(22) lully = Cllullyrn

for all ¢ with N < ¢ < N?/(N — 1). Reiterating this argument with m = N + 1,
m = N + 2, etc., we arrive at

(23) lully < Cllullyry  Vu € CHRY)

10 One can also conclude by noticing that (u,,) is a Cauchy sequence in L?".
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for all ¢ € [N, 400), with a constant C depending on g and N.!! Inequality (23)
extends by density to WV,

e Theorem 9.12 (Morrey). Let p > N. Then

(24) whP@®Y) ¢ L¥®RY)

with continuous injection. Furthermore, for allu € WP (RN), we have
(25) u(x) —u(y)| < Clx = y|*|[Vull, a.e x,yeRY,
where « = 1 — (N /p) and C is a constant (depending only on p and N).

Remark 11. Inequality (25) implies the existence of a functionz € C (RN) such that
u = i a.e.on RV (Indeed, let A C R" be a set of measure zero such that (25) holds
forx, y € R¥\ A;since RV\ A is dense in RY, the function 1Ny 4 admits a (unique)
continuous extension to RV ) In other words, every function u € W17 (RY) with
p > N admits a continuous representative. When it is useful, we replace u by its
continuous representative, and we also denote by u this continuous representative.

Proof. We begin by establishing (25) for u € C g (RVM). Let Q be an open cube,
containing 0, whose sides—of length r—are parallel to the coordinate axes. For
x € Q we have

Ld
u(x) —u) = /(; Eu(tx)dt

and thus
1y ou
(26) |u(x>—u(0)|s/ > Ixil|—(tx)
0 o 0x;
Set

u= Lf u(x)dx = (mean of u on Q).
101 Jo

Integrating (26) on Q, we obtain

'”_”(O)'—|Q|/ 2;/
o 2
o

N
o2

—(IX)

axl

! This constant “blows up” as ¢ — +00.
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Then, from Holder’s inequality, we have

1/p
[ 3 (y)‘dy<</ ) itQ|"/"
Xi

(sincetQ C Q fort € (0, 1)). We deduce from this that

| LN P1=(N/p)
i —u(0)| < —— | VullLrcoy r™'? / dt =
i —u(O) = -7 IVullrg) A 1—(N/p)

By translation, this inequality remains true for all cubes Q whose sides—of length
r—are parallel to the coordinate axes. Thus we have

IVullLrg)-

1=(N/p)
(N/p)

By adding these (and using the triangle inequality) we obtain

,
27 lu —ulx)| < T N7o) VullLroy Vx € Q.

1=(N/p)

— o IVule Vx,y e Q.
(N/p) v

2r
(23) lu(x) —u(y)| < -

Given any two points x, y € RV, there exists such a cube Q with side r = 2|x — y|
containing x and y. This implies (25) when u € C Cl (RM). For a general function
u € WhP(RN) we use a sequence (u,) of C}(RV) such that u, — u in WP (RN)
and u, — u a.e.

We now prove (24). Letu € C}(RV), x € R, and let Q be a cube of side r = 1
containing x. From (27) and Holder’s inequality we have

lu()| < lul+ ClIVullLr(g) < Cllullwirgy < Cllullwir@nys
where C depends only on p and N. Thus
lull poomyy < Cllullwrpwyy Vu € Ccl- ®RM).
For a general function u € W17 (R") we use a standard density argument.
Remark 12. We deduce from (24) that if u € W7 (RV) with N < p < oo, then

lim u(x) =0.
|x]—00

Indeed, there exists a sequence (u,) in Cc1 (RV) such that u, — u in WhP(RN). By
(24), u is also the uniform limit on RY of the u,’s

e Corollary 9.13. Let m > 1 be an integer and let p € [1, 400). We have

3

1 1
wmP(RNY c LIRY), where —=— — if ——— >0,
4q P

N

S =
=3



284 9 Sobolev Spaces and the Variational Formulation of Elliptic BVPs in N Dimensions

wP@RN) c LYRN) Vg € [p, +00) if — -5 =0
p

m N 00 N . 1 m

W’p(R)CL R™) lf———<0,
p N

and all these injections are continuous. Moreover, ifm — (N / p) > 0 is not an integer,
12
set
k=[m—(N/p)] and 6 =m—(N/p)—k (0 <6 <1).

We have, for all u € W’”*p(RN),
[D%ull oo mry < Cllullyympryy Vo with o] <k
and"
|D*u(x) — D*u(y)| < Cllullymp@nyx — yI” ae. x,y e RN, Va with |a| = k.
In particular, W™P(RN) c CF(RN).14

Proof. All of these results are obtained by repeated applications of Theorem 9.9,
Corollary 9.11, and Theorem 9.12.

Remark 13. The case p = 1 and m = N is special. We have WV ¢ L. (But
it is not true, in general, that W™? C L* for p > 1 and m = N/p.) Indeed, for
u € CX(RY), we have

X1 X2 XN aNu
u(xy,x2,...,xn) =/ / f —(t1, 2, ..., ty)dt1dty - - - dty
oo 0o J—000X10X2 - 0XN

and thus
(29) lull < Cllullyna Yu € CZRY).
The case of a general function u € W1 follows by density.

Now let us turn to the following.
B. The case  c RV.

We suppose here that  is an open set of class C! with ' bounded or else that
Q=R

e Corollary 9.14. Let 1 < p < oo. We have

12 [ ] denotes the integer part.

13 This implies that D%y is Lipschitz continuous for all & with || < k, i.e.,
[DY%(x) — DY%u(y)| < Cllullwmrlx —y| ae.x,yeRN.

14 This is to be understood modulo the choice of a continuous representative.
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WP (Q) c L (Q),

whP(Q) c L1(Q)
WhP(Q) c L™(RQ),

where

1

p

1

p

Vg € [p, +00),

1
N

k]

if p<N,

if p=N,
if p> N,

285

and all these injections are continuous. Moreover, if p > N we have, for all u €
Whr(Q),
lu(x) —u)| < Clullyrplx —y|* aex,ye,

witha = 1 — (N/p) and C depends only on Q, p, and N. In particular, WP (Q) C
cQ).b

Proof. Consider the extension operator
P:whr(Q) — whP@®Y)
(see Theorem 9.7) and then apply Theorem 9.9, Corollary 9.11, and Theorem 9.12.

e Corollary 9.15. The conclusion of Corollary 9.13 remains true if RN is replaced
by Q.10

Proof. By repeated application of Corollary 9.14.17

e Theorem 9.16 (Rellich-Kondrachov). Suppose that Q2 is bounded and of class
C'. Then we have the following compact injections:

1 . 1 1 1 )
WHP(Q) C L1(Q) Vq €ll,p*), where —=———, if p<N,
p p N
whP(Q) C LY(Q) Vg € [p. +00), if p=N,
whP(Q) C C(Q), if p>N.

In particular, WP (Q) C LP(Q) with compact injection for all p (and all N).

Proof. The case p > N follows from Corollary 9.14 and Ascoli—Arzela’s theorem.
The case p = N reduces to the case p < N. Therefore, we are left with the case
p <N.

Let H be the unit ball in W7 (). Let P be the extension operator of Theorem
9.7.Set F = P(H), so that H = F|q. In order to show that H has compact closure

15 Once more, this is modulo the choice of a continuous representative.
16 To be precise, if m — (N/p) > 0 is not an integer, then

WP () C CX(Q), where k = [m — (n/p)]

and CX(Q) = {u € CK(Q); DYu has a continuous extension on 2 for all & with || < k}.

17" Alternatively, one could apply Corollary 9.13 together with an extension operator P :
WmP(Q) — W™P(RN), but this would require an extra hypothesis: £ would have to be of
class C™ to construct this extension operator.
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in L1(2) for g € [1, p*) we invoke Theorem 4.26. Since 2 is bounded, we may
always assume that ¢ > p. Clearly, F is bounded in W!?(R") and thus it is also
bounded in L4 (R") by Corollary 9.10. We have to check that

lélimonrhf — fllza@~y = O uniformly in f € F.

By Proposition 9.3 we have

ltnf — fllee@yy < VRV fllppwyy V€ F.
Since p < g < p*, we may write
1 o l-«o
—=—4+— for some o € (0, 1].
q9 P p

Thanks to the interpolation inequality (see Remark 2 in Chapter 4) we have

e f = Fllzasy < Mmnf = F1G @ llmf = FI5% g
< VRNV £, oy @I o o)) ™ < ClRIC,
where C is independent of F (since F is bounded in wb.P(RN)). The desired con-
clusion follows.
Remark 14. Theorem 9.16 is “almost optimal” in the following sense:

(i) If 2 is not bounded, the injection wWLP(Q) c LP() is, in general, not com-
pact.18

(ii) The injection WP (Q) C LP" () is never compact even if 2 is bounded and
smooth.

* Remark 15. Let Q be a bounded open set of class C'. Then the norm
ulll = IVullp + llullg
is equivalent to the WP norm so long as

l<g<p ifl<p<N,
l<g<ooifp=N,
l1<g<ooifp>N.

* Remark 16 (the limiting case p = N). Let Q be a bounded open set of class C!
and letu € W]’N(Q). Then in general, u ¢ L°(£2). For example, if

Q={xeRY; |x| <1/2},

the function

18 See the detailed discussion in R. Adams [1], p. 167 concerning the compactness of this injection
for unbounded domains.
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u(x) = (log 1/|x))* with 0 <a <1 —(1/N)

belongs to WV (), but it is not bounded because of the singularity at x = 0.
Nevertheless, we have Trudinger’s inequality

/ NN o v e whN(Q)
Q

(see, e.g., R. Adams [1] or D. Gilbarg—N. Trudinger [1]).

9.4 The Space W, ¥ (®)

Definition. Let 1 < p < o0; W(}’p(Q) denotes the closure of CCl () in WHrP(Q).
Set!? 5
HL (@) = W, 2 ().

The space WO1 P equipped with the W!-? norm, is a separable Banach space; it is
reflexiveif 1 < p < oco. H(}, equipped with the A ! scalar product, is a Hilbert space.

* Remark 17. Since CC1 (RN) is dense in W17 (RY), we have
Wy P RNy = whPRN),

By contrast, if @ ¢ RY and Q@ # RY, then in general, W(}’P(Q) £ Whr(Q).
However, if RV \ is “sufficiently thin” and p < N, then W(;’p(SZ) = WLP(Q). For
example, if @ = RV\{0} and N > 2 one can show that H(} (Q) = H(Q).

Remark 18. Itis easy to check—using a sequence of mollifiers—that C°(€2) is dense
in WO1 "7 (€2). In other words, C2°(£2) could equally well have been used instead of
CL(Q) in the definition of W,” (£).

The functions in WOl "P(Q) are “roughly” those of WLP(Q) that “vanishon I' =
9. It is delicate to make this precise, since a function u € W7 () is defined only
a.e. (and the measure of I is zero!) and u need not have a continuous representative.20
The following characterizations suggest that we “really” have functions that are “zero
on I'.” We begin with a simple fact:

Lemma 9.5. Letu € WP (Q) with1 < p < oo and assume that supp u is a compact
subset of Q. Then u € Wol'p(Q).

Proof. Fix an open set w such that suppu C w CC 2 and choose @ € C Cl (w) such
that @ = 1 on supp u; thus cou = u. On the other hand (Theorem 9.2), there exists a

19 When there is ambiguity we shall write WOl P HO1 instead of WOI”’ (2), HO1 (2).

20 Nevertheless, if u € WP () one can give a meaning to ujr (when € is regular) and one can
show, for example, that ujr € LP(T"). This relies on the theory of traces (see the comments at the
end of this chapter).
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sequence (uy) in C?O(RN) such that u, — u in LP(Q2) and Vu,, — Vu in L?(0)V.
It follows that ovu,, — au in WP (€2). Thus au belongs to Wol’p(Q), and so does u.

Theorem 9.17. Suppose that 2 is of class C'. Let*!
uewWhP@QNc@ ) withl < p < oo.

Then the following properties are equivalent:

Du=0o0nT.
(i) u € Wy P ().

Proof.
(i) = (ii). Suppose first that supp u is bounded.
Fix a function G € C!(R) such that

0 iflt] <1,

IG(t)| <|t|] YVteR and G(t) = .
roif] > 2.

Then u, = (1/n)G (nu) belongs to W!? (by Proposition 9.5). It is easy to verify
(using dominated convergence) that u,, — u in W17 On the other hand,

suppu, C {x € ; lu(x)| > 1/n},

and thus supp u,, is a compact set contained in 2. From Lemma 9.5, u,, € WOl P
and it follows that u € WO1 "7 In the general case in which supp u is not bounded,
consider the sequence (&,u) (where () is a sequence of cut-off functions as in the
proof of Theorem 9.2). From the above, ¢,u € Wol’p , and since {,u — u in whp,
we conclude that u € WO1 P

(i) = (i). Using local charts this is reduced to the following problem. Let u €
W()l’p(Q+) N C(Q.); prove that u = 0 on Q.

Let (u,) be a sequence in Cc1 (Q+) such that u, — u in W”’(QJF). ‘We have, for
(x',xn) € O,

0
|un(x’,xN>|s/ ‘ M nldt,
0

and thus for 0 < ¢ < 1,

1 & &
—/ / lun (x, xn)|dx'dxy 5/ f dx'dr.
& Jix'j<1Jo Ix'|<1 J0
In the limit, when n — oo (¢ > 0 fixed) we obtain
/ / lu(x’, xy)dx'dxn </ / —(x t)|dx'dt.
'] <1 x| <1 dxn

21 Recall that if p > N, thenu € WHP(Q) = u € C(Q) (see Corollary 9.14).



9.4 The Space W, (%) 289

Finally, as ¢ — 0, we are led to

/ lu(x’,0)]dx’ =0
[x"|<1

(since u € C(Q.) and aax—‘L € L'(04)). Thus u = 0 on Qy.

Remark 19. In the proof of (i) = (ii) we have not used the smoothness of 2. However,
the converse (ii) = (i) requires a smoothness hypothesis on €2 (consider for example
=RN\{0} with N > 2 and p < N).

. . 1
Here is another characterization of W, P

Proposition 9.18. Suppose Q is of class C'. Let u € LP(Q) with 1 < p < oo. The
following properties are equivalent:

(i) u € Wy (%),
(ii) there exists a constant C such that

foae
e
Q 0x;

(iii) the function

<Clol, i YeeC®RY), Vi=1,2,...N,

() = u(x) ifx e,
) ifx € RN\Q,

belongs to WLP(RN), and in this case % =
1

dx;
Proof.
(i) = (ii). Let (u,) be a sequence from CC1 () such that u,, — u in W17, For

@ € C/(RV) we have
/ 8un(p - duy
Q 0x; |~ | 9x;

‘ / axl
(i) = (iii). Let ¢ € C1(RN); we have

lellpr-
p

Passing to the limit, we obtain (ii).

axl C“(p”LP @ = C”‘p”u’ "(RN)*

‘an

Thus i € WHP(RY) (by Proposition 9.3).

(iii) = (i). One can always assume that 2 is bounded (if not, consider the sequence
(¢qu)). By local charts and partition of unity this is reduced to the following problem.
Letu € L?(Q+) be such that the function

_ ulx) ifxe Q, xy >0,
u(x) = .
0 ifx e O, xy <0,
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belongs to W17 (Q); prove that

au € Wy'P(Qy) Va e ClQ).

Let (p,,) be a sequence of mollifiers such that

1 1
supppnc{xeRN; —<xN<—};
2n n

one may choose, for example,
on(x) =n"p(nx) and suppp C {x € RVN: (1/2) < xy < 1}.

Thus p, * (ait) — «ii in WP (RY) (note that it extended by 0 outside Q belongs
to W17 (RN)). On the other hand,

supp(p, * au) C supp pp + supp(ai) C Q4

for n large enough. It follows that
pn * (ait) € CH(Q4)
and thus au € W()l’p(Q+).

Remark 20. The proof of Corollary 9.14 uses the extension operator, and because
of this fact one must assume that € is smooth. If W7 (Q) is replaced by Wol’I7 ()
one can use the canonical extension by O outside €2, which is valid for arbitrary
domains €2 (in the proof of Proposition 9.18, the implication (i) = (iii) does not
use any smoothness hypothesis on €2). It follows, in particular, that the conclusion
of Corollary 9.14 is true for W(;’p (€2) with an arbitrary open set 2. Similarly, the

conclusion of Theorem 9.16 is true for W(} "7 () with an arbitrary bounded open set
. It can also be deduced from Theorem 9.9 that if 2 is an arbitrary open set and
1 < p < N, then

1,
(30) lull Lo @y < C(p, NI VullLere) Yu € Wy ().

e Corollary 9.19 (Poincaré’s inequality). Suppose that 1 < p < oo and Q is a
bounded open set. Then there exists a constant C (depending on Q2 and p) such that

L,
lullr) < CliVullLr@y Yu e WyP(Q).

In particular, the expression ||Vul|Lr () is a norm on Wol’p(Q), and it is equivalent

. 1 : N du v
to the norm ||ul|w1.p; on Hy(2) the expression ) ;_; [q Iy 9y 8 scalar product

that induces the norm ||Vul| ;2 and it is equivalent to the norm ||u|| y1.

Remark 21. Poincaré’s inequality remains true if €2 has finite measure and also if Q2
has a bounded projection on some axis.
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Remark 22. For every integerm > 1 and 1 < p < oo one defines W(;” "P(Q) as being
the closure of C'(2) in ng’p(Q). “Roughly,” a function u belongs to W(')"’p(Q) if
u € WmP(Q) and if Dy = 0 on I" for all multi-indices « such that |«| < m — 1.

It is important to notice the distinction between W,"'” () and WP (Q) N Wé Q)
form > 2.

The Dual Space of W,'” ()

Notation. We denote by W’l’p,(Q) the dual space of Wol’p(Q), 1 < p < oo, and
by H~'(Q) the dual of H] (). The dual of L*(Q) is identified with L?(), but
we do not identify H& (€2) with its dual (see Remark 3 in Chapter 5). We have the
inclusions

Hi(Q) c L) c H'(Q),

where these injections are continuous and dense.
If © is bounded then

W(}”’(Q) CLAQ) c W@ if 2N/(N+2)<p < oo,

with continuous and dense injections. If 2 is not bounded, the same holds, but only
for the range 2N /(N +2) < p < 2.

The elements of W~-7" are completely described by the following result:

Proposition 9.20. Let F € W—LP(Q). Then there existfunctions fo, f1, f2, ..., fn €
LP () such that

N
ov 1
<F,v>=/ ov + / — Yve W, (),
szf ; szflaxi 0
and
IFIl = max || il
If Q is bounded we can take fo = 0.

Proof. Adapt the proof of Proposition 8.14.

9.5 Variational Formulation of Some Boundary Value Problems

We are now going to use the previous setting in the study of some elliptic partial
differential equations (= PDEs) of second order.

Example 1 (homogeneous Dirichlet problem for the Laplacian). Let  C RY be an
open bounded set. We are looking for a function u : 2 — R satisfying
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—Au+u=f in,

31
(1) u=0 onl =0Q,

where

N 92u
Z —2 = Laplacian of u,

and f is a given function on 2. The boundary condition u = 0 on T is called the
(homogeneous) Dirichlet condition.

Definition. A classical solution of (31) is a function u € C%(Q) satisfying (31) (in
the usual sense). A weak solution of (31) is a function u € H(} (R2) satisfying

(32) /Vu~Vv—|—/uv=/ fv Vve HHQ),
Q Q Q

where Vi - Vo = YN, 37”1337”1
We carry out the program described in Chapter 8.

Step A: Every classical solution is a weak solution.
Indeed, u € H'(Q)NC(Q)andu = 0on T, so that u € H (£2) by Theorem 9.17
(see also Remark 19). On the other hand, if v € C (2) we have

/Vu-Vv—i—/uv:/fv,
Q Q Q

and by density this remains true for all v € H(} ().

Step B: Existence and uniqueness of a weak solution.
This is the content of the following basic result.

e Theorem 9.21 (Dirichlet, Riemann, Poincaré, Hilbert). Given any f € L*(S),
there exists a unique weak solutionu € H(} (2) of (31). Furthermore, u is obtained by

1
min {—/(|VU|2+|U|2)—/ fv}.
veH @) |2 Ja Q

This is Dirichlet’s principle.

Proof. Apply Lax—Milgram in the Hilbert space H = HO1 (£2) with the bilinear form
a(u,v) = f (Vu - Vv + uv)
Q

and the linear functional ¢ : v — [, fv.

Step C: Regularity of the weak solution.
This question is delicate. We shall address it in Section 9.6.
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Step D: Recovery of a classical solution.

Assume that the weak solution u € Hé (€2) of (31) belongs to C 2(5), and assume
that  is of class C!. Then u = 0 on I’ (by Theorem 9.17). On the other hand,
we have

/(—Au—i-u)v:/fv Yo e CH(Q)
Q Q

and thus —Au +u = f a.e. on Q (by Corollary 4.24). In fact, —Au +u = f
everywhere on €2, since u € C2(Q); thus u is a classical solution.

We describe now some other examples. In each case it is essential to specify
precisely the function space and the appropriate weak formulation.

Example 2 (inhomogeneous Dirichlet condition). Let  C RY be a bounded open
set. We look for a function u : Q2 — R satisfying

—Au+u=f in€,

33
(33) u=g onl,

where f is given on €2 and g is given on I'. Suppose that there exists a function
g € HY(Q) N C(Q) such that?> § = g on I' and consider the set

K={veHY(Q); v—§eH}(Q)

It follows from Theorem 9.17 that K is independent of the choice of g and depends
only on g. K is a nonempty closed convex set in H'!().

Definition. A classical solution of (33) is a function u € C2(Q) satisfying (33). A
weak solution of (33) is a function u € K satisfying

(34) /(w - Vv + uv) =/ fv Vve H} ().
Q Q
As above, any classical solution is a weak solution.

e Proposition 9.22. Given any f € L*(), there exists a unique weak solution
u € K of (33). Furthermore, u is obtained by

min{l/(|Vv|2+v2)—/ fv}.
vek | 2 Q Q

Proof. We claim that u € K is a weak solution of (33) if and only if we have

35) /Vw(Vv—Vu)—i—/u(v—u)z/f(v—u) Yv € K.
Q Q Q

22 This assumption is satisfied, for example, if Qis of class Cland g € C1(I). If Qs regular enough
it is not necessary to suppose that g € C(2). Applying the theory of traces (see the comments at
the end of this chapter), it suffices to know that g € HY (), ie., g€ H2().
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Indeed, if u is a weak solution of (33) it is clear that (35) holds even with equality.
Conversely, ifu € K satisfies (35) we choose v = u+win (35)withw € HO1 (2),and
(34) follows. We may then apply Stampacchia’s theorem (Theorem 5.6) to conclude
the proof.

The study of regularity and recovery of a classical solution follows the same pattern
as in Example 1.

Example 3 (general elliptic equations of second order). Let Q C RY be an open
bounded set. We are given functions a;;(x) € C @), 1<i, J < N, satisfying the
ellipticity condition

N
(36) > aij0EE = e, YxeQ, V&eRY witha > 0.
ij=1
A function ag € C(Q) is also given. We look for a function u : Q>R satisfying

N

3 ? ( 3”)+ f inQ
I A U ,
(37) o o ) T

u=0 onT.

A classical solution of (37) is a function u € C%(S) satisfying (37) in the usual
sense. A weak solution of (37) is a function u € H(} (R2) satisfying

du dv
(38) /Z G By /anuu=/gfu Yu € Hy(Q).

As above, any classical solution is a weak solution. If ag(x) > 0 on 2 then for all
f € L*(R) there exists a unique weak solution u € HOI: just apply Lax—Milgram in
the space H = H(} with the continuous bilinear form

a(u, v) /ia 8u8v+/auv
) = iJa_ a ouv.
@52 0x; 0x;

The coerciveness of a( , ) comes from the ellipticity assumption, the assumption
ap > 0, and Poincar€’s inequality. If the matrix (a;;) is also symmetric, then the form
a( , )is symmetric and u is obtained by

1 N v v
. 2
min { — E ajj— — +apv ) —/ fu
veH] 2/9(,'1':1 L ax; 8Xj Q

We now consider a more general problem: find a function u : Q@ — R satisfying
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0 au .
_Zr<”8 )—i—Za,——}—aou—f in Q,
(39) i,j ‘x] Xi
u=0 onT,
where the functions (a;;) € L*(£2) satisfy the ellipticity condition and the functions

(ai)o<i<n are given in L°°(2). A weak solution of (39) is a function u € HOl such
that

ou ov
40 a;;j— — a—v—}—/auv:/ v Yve HL.
( ) /quiixiaxj /Zlaxl Q 0 Qf 0
The associated continuous bilinear form is

du v
41 , V) = ji—— — .
41 a(u, v) /Q;a,j o3 0% /Za, 8x,v+/ aopuv

In general this form is not symmetric;3 in certain cases it is coercive: one may then
use Lax—Milgram to obtain the existence and uniqueness of a weak solution. In the
general case—even without coerciveness—one still has the following.

Theorem 9.23. If f = 0, then the set of solutions u € Hé of (40) is a finite-
dimensional vector space, say of dimension d. Moreover, there exists a subspace
F C L*() of dimension d such that**

[(40) has a solution] <— |:/ fv=0 Vve F:| .
Q

Remark 23. Suppose that the homogeneous equation associated to (40), i.e., with
f = 0, has u = 0 as its unique solution. Then for every f € L? there exists a
unique solution u € H(} of (40).25 In particular, if ag > 0 on Q2 one can show, by
a maximum-principle-type method, that f = 0 = u = 0. We thus deduce, under
only the hypothesis ag > 0 on 2 (and no assumption on a;, 1 < i < N), that for
every f € L there exists a unique solution u € HO1 of (40); see, e.g., D. Gilbarg—
N. Trudinger [1].

Proof. Fix A > 0, large enough that the bilinear form

a(u, v) +k/ uv
Q

is coercive on HOI. For every f € L? there exists a unique u € HO1 satisfying

23 In dimension N there is no known device, as there is in one dimension, to reduce it to the
symmetric case.

24 In other words, (40) has a solution iff f satisfies d orthogonality conditions.

25 Note the close relationship between existence and uniqueness of solutions in elliptic problems.
This remarkable relationship is a consequence of Fredholm’s alternative (Theorem 6.6).
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a(u,tp)~|—k/ uq):/ fo Vope Hol.
Q Q

Setu = Tf,sothat T : L> — L? is a compact linear operator (since 2 is bounded,
the injection HO1 C L?is compact; see Theorem 9.16 and Remark 20). Equation (40)
is equivalent to

(42) u=T(f+ Au).

Set v = f + Au as a new unknown, and (42) becomes
43) v—ATv = f.

The conclusion follows from Fredholm’s alternative.

Example 4 (homogeneous Neumann problem). Let 2 C RY be a bounded domain
of class C'. We look for a function u : @ — R satisfying

—Aut+u=f inQ,

(44) ou
— =0 onT,
on
where f is given on 2; g—”: denotes the outward normal derivative of u, i.e., g—z =

Vu - n, where n is the unit normal vector to I', pointing outward. The boundary
condition g—z = 0 on I is called the (homogeneous) Neumann condition.

Definition. A classical solution of (44) is a function u € C2(Q) satisfying (44). A
weak solution of (44) is a function u € H' () satisfying

(45) /Vu-Vv—l—/uv:/fv Vv e H\(Q).
Q Q Q

Step A: Every classical solution is a weak solution.
Recall that by Green’s formula we have

9 _ _
(46) /(Au)vzf—”vda—/ Vu-Vv VYueCXQ), VYvecClQ),
Q r on Q

where do is the surface measure on I'. If u is a classical solution of (44), then
u € H'(€), and we have

/Vu-Vv+/uv=/fv vv e CH(Q).
Q Q Q

We conclude by density (Corollary 9.8) that

/Vu~Vv+/uv=/fv Vv e H\(Q).
Q Q Q
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Step B: Existence and uniqueness of the weak solution.

Proposition 9.24. Forevery f e [*(S2), there exists a unique weak solutionu € H" ()
of (44). Furthermore, u is obtained by

1
min {—/(|Vv|2+v2)—/ fv}.
veH (@) | 2 Jo Q
Proof. Apply Lax-Milgram in H = H'(Q).

Step C: Regularity of the weak solution.
This will be discussed in Section 9.6.

Step D: Recovery of a classical solution.
If u € C%() is a weak solution of (44), we have from (46)

d _
47) /(—Au +u)v—|—/ 2 vdo =/ fv VveclD).
Q r on Q
In (47) first choose v € Ccl, (2) to deduce

—Au+u=f inQ.

Then return to (47) with v € C!(2); one obtains
ou =
—vdo =0 VveC ()
r on

and therefore g—z =0onT.

Example 5 (unbounded domains). In the case that Q is an unbounded open set in RY
one imposes—in addition to the usual boundary conditions on I' = dQ2—a boundary
condition at infinity, for example u(x) — 0 as |[x| — oo. This “translates,” at the
level of a weak solution, by the condition u € H I Of course, one must first prove
that if u is a classical solution such that u(x) — 0 as |x| — o0, then u must belong to
H' (see the discussion in Example 8 of Chapter 8). Here are a few typical examples:

(@) @ =RY; given f € L>(R") the equation
—Au+u=f RV
has a unique weak solution in the following sense:

ue H'(@RY) and /w-w+/ uv:/ fv Vve H'(RY).
RN RN RN

(b) 2 = Rﬁ ; given f € L2(Rﬁ ) the problem
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—Au+u=f inRY,
u(x',0)=0 forx e RN-1,

has a unique weak solution in the following sense:
u e H} () and / Vu - W+f uv =/ fv Yue HN).
Q Q Q

(¢) 2 =RY; given f € L*(RY) the problem
—Au+u=f inRY,

d
—u(x/,O) =0 forx' e RV-I
8xN

has a unique weak solution in the following sense:

ue H(Q) and /Vu~Vv+/uv=/fv vv e H(Q).
Q Q Q

9.6 Regularity of Weak Solutions

Definition. We say that an open set 2 is of class C™, m > 1 an integer, if for every
x € T there exist a neighborhood U of x in RY and a bijective mapping H : Q — U
such that

HeC"(Q), H'eC"U), H(Q)=UNQ, H(Q)=UNT.
We say that Q2 is of class C* if it is of class C™ for all m.
The main regularity results are the following.

o Theorem 9.25 (regularity for the Dirichlet problem). Let Q2 be an open set of
class C? with T bounded (or else @ = RY). Let f € L*(Q) and let u € H; ()

satisfy
(48) /ww+/ u(p:[ fo Yo e Hi(Q).
Q Q Q

Thenu € HZ(Q) and ||ull g2 < C|| f 12, where C is a constant depending only on
Q. Furthermore, if Q is of class C"™ 12 and f € H™ (), then

ue Hm+2(Q) and ||M||Hm+2 S C”f“Hm

In particular, if f € H™(2) withm > N /2, thenu € C%(Q). Finally, if Q is of class
C® andif f € C*(Q), thenu € C®(Q).
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Theorem 9.26 (regularity for the Neumann problem). With the same assumptions
as in Theorem 9.25 one obtains the same conclusions for the solution of the Neumann
problem, i.e., foru € H 1 (2) such that

(49) /VM~V§0+/M(,0=/f(p Vo € H(Q).
Q Q Q

Remark 24. One would obtain the same conclusions for the solution of the Dirichlet
(or Neumann) problem associated to a general second-order elliptic operator, i.e., if
u e HOI(Q) is such that

du g ou 1
' ax: ox: i = Vo € H} (Q):
/Q;azjaxi ox; +lealaxi¢+Aa0uw /Qfgp © L)

then2®
[f €L*(RQ), a;eC'(Q) and a € CQ)]=uec HX (),
and form > 1,
[f € H"(Q),a;; € C"™'(Q) and a; € C"(Q)] = u € H"(Q).

We shall prove only Theorem 9.25; the proof of Theorem 9.26 is entirely analo-
gous. The main idea of the proof is the following. We consider first the case Q = RV,
then the case 2 = Rf . For a general domain 2 we proceed in two steps:

1. Interior regularity, i.e., u is regular on every domain w CC 2. Here, the proof
follows the same pattern as Q = RV

2. Boundary regularity, i.e., u is regular on some neighborhood of the boundary.
Here, the proof resembles, in local charts, the case 2 = RQ\_’ .

We recommend that the reader study well the cases 2 = RY and Q = Rﬁf before
tackling the general case. The plan of this section is the following:

A. The case @ =RV,
B. The case Q2 = Rﬁ.
C. The general case:
C;. Interior estimates.
C,. Estimates near the boundary.

The essential ingredient of the proof is the method of translations*’ due to
L. Nirenberg.

A. The case @ = RY.

Notation. Given i € RV, h #£ 0, set

26 1f € is not bounded we must also assume that D%a;j € L*(R) Va,|a] <m+ 1and D%; €
L>®(Q) Va, |a| < m.

27 Also called the technique of difference quotients.
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1 h) —
Dypu = m(thu —u), 1i.e., Dpulkx)= W

]In (1\4]18) take ¢ = D_,(Dpu). This is possible, since ¢ € H'(RN) (since u €
H' (R"Y)); we obtain

[ 10w+ [ 1D = [ 1 D0
and thus
(50) IDhuli7; < 11 £ ll2ll D—p(Dpo) |2
On the other hand, recall (Proposition 9.3) that
(51) ID_pvll2 < IVoll2 Vv e H'.
Using this with v = Dyu, we obtain
IDnull3 < £ 1201V (Da)ll2,

and consequently
[ Dnullgr < I1f 2.

In particular,

ou

<Ifll2 Vi=1,2,....N.
8x,‘

(52) H Dy,
2

Applying Proposition 9.3 once more, we see that g—)’:l € H' and thus u € H>.

We now prove that f € H! = u € H3. We denote by Du any of the derivatives
%, 1 <i < N. We already know that Du < H'. We have to prove that Du € H?.
For this it suffices to verify that

(53) fV(Du) Vo + /(Du)(p = /(Df)(p Vo € H!

(and then we may apply to Du the preceding analysis, which gives Du € H?).
Ifp e C¥ (RN) we may replace ¢ by Dg in (48); it becomes

/Vu~V(D<p)+/uDgo:/ngo,

fV(Du) Vo + /(Du)fp = /(Df)fp Vg € CXRY).

and thus
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This implies (53), since C2°(RY) is dense in H!(RY) (Proposition 9.2).

To show that f € H™ = u € H™*? it suffices to argue by induction on m and
to apply (53).

B. The case 2 = Rf .

We use again translations, but only in the tangential directions, i.e., in a direction
h € R¥N=1 x {0}: we say that & is parallel to the boundary, and denote this by & || T.
It is essential to observe that

ue H)(Q) = tu e H(Q) ifh|T.

In other words, HO1 (R2) is invariant under tangential translations.
We choose 4 || I and insert ¢ = D_j,(Dpu) in (48); we obtain

[ 1v@wf + [ 1Dl = [ £ D-sDw.
ie.,
(54) DRl < 1f 2l Dp(Dpo) 2.
We use now the the following lemma.
Lemma 9.6. We have
IDhvlz2gy < V0l 2y Yo e HY(RQ), VAT,
Proof. Start with v € C, Cl (R™) and follow the proof of Proposition 9.3 (note that

Q+th=Qforallrandall || ). For a general v € H'Y(Q) argue by density.
Combining (54) and Lemma 9.6, we obtain

(55) [Dpull gy < 1f N2 VA T.

Letl <j<N,1<k<N-—1,h=|hle, and ¢ € C°(2). We have
Jon(ae)e=- o (55)
Dy\ — )o=— | uD_p|—
8Xj ij
0
feo-(55)
8)(]

Passing to the limit as # — 0, this becomes

82
(56) ‘ / u—"2
0x;j0x

Finally, we claim that

and thanks to (55),
< £l llell2.

=lflzllellz Vl<j<N, Vi<k<N-1l
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32
(57) / u—e
oxy
To prove (57) we return to equation (48) and deduce that
82<p
el < Szl fo -
ax i, ax;
from (56). Combining (56) and (57), we end up with
[eas
u
0x;0xy

As a consequence, u € H 2(), since there exist functions f ik € L?(2) such that

82
fu ¢ Z/fjk(/’ Yo € C(Q)

0x;j0xy

<Iflz2llgl Yo € CZ ().

= Clflz llell

i= 1

=Clfl2llelz Yo e CZ(Q), VI<jk=<N.

(as in the proof of Proposition 8.3).

We show finally that f € H™(Q) = u € H™?(Q). By Du we mean any one

of the tangential derivatives Du = du )< Jj < N — 1. We first establish the

3)(/' ’
following result.

Lemma 9.7. Let u € H*(Q) N Hy (Q) satisfying (48). Then Du € H} () and,
moreover,

(58) /V(Du) - Vo + [(Du)q) = /(Df)(p Yo € HOI(Q).

Proof. The only delicate point consists in proving that Du € HO1 (2), since (58) is
derived from (48) by choosing D¢ instead of ¢ (with ¢ € C2°(€2)) and then arguing
by density. Leth = |hlej, 1 < j < N — 1, so that Dju € HO1 (since HO1 18 invariant
under tangential translations). By Lemma 9.6 we have

[ Dpullgr < llull g2

Thus there exists a sequence /4, — 0 such that Dy, u converges weakly to some g
in Hy (since Hy is a Hilbert space). In particular, Dj,,u — g weakly in L?. For

¢ € CX(Q2) we have
[@ue= [u-se)

and in the limit, as /#,, — 0, we obtain

9
/g(p: —/u—‘p Vo € C2(Q).
ax‘/
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Therefore, 7.~ =g € H ().

Proof of f € H™ = u € H"%2. This is by induction on m. Assume the claim up
to order m, and let f € H™ We already know that u < H™2: also Du (any
tangential derivative) belongs to H(} (f2) and satisfies (58). Applying the induction
assumption to Du and D f we see that Du € H™*2. To conclude it suffices, for
example, to check that ax” € H™*! For this purpose we return once more to

equation (48), which we write

92
e e Hm+1
2: 2
BxN P

C. The general case.

We prove only that f € L*(Q) = u € H*(); the implication f € H” = u €
H™*2 is done by induction on m as in Cases A and B. To simplify the presentation
we assume that €2 is bounded. We use a partition of unity and write u = Zf:o Oiu
as in the proof of Theorem 9.7.

C;. Interior estimates.

We claim that §gu € H2(2). Since Ooie € C°(K2), the function Hpu extended by 0
outside €2 belongs to H LRNY (see Remark 4(ii)). It is easy to verify that fpu is a
weak solution in RV of the equation

— A@Bou) + o = 6o f — 2V6y - Vi — (Abo)u = g,
with g € L2(RY). We deduce from Case A that Ggu € H*(RY) and
6oully2 < CIfll2 + lullg) < C'lIfl2

(since [lullyr < || fll2 by (48)).

C,. Estimates near the boundary.
We claim that ;u € H2(Q) for 1 < i < k. Recall that we have a bijective map
H : Q — U; such that

HeC*Q), J=H'eC®U), HQy) =QNU;, and H(Qy) =TINU;.

We write x = H(y) and y = H ' (x) = J(x). It is easy to verify that v = Gju €
HO1 (2 N U;) and that v is a weak solution in 2 N U; of the equation

ot
AV =6 f — O —2V6; - Vu — (A = g,

with g € L>(Q N U;) and ||g]l> < C| f|l2. More precisely, we have

(59) / w-ww:f gpdx Yo € Hi(QNU)).
QNU; QNU;
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We now transfer vjony; to Q. Set
w(y) = v(H(y)) fory € O,

ie.,
w(Jx) =v(x) forx € QN U;.

The following lemma—which is fundamental—shows that equation (59) becomes
a second-order elliptic equation for w on Q.?

Lemma 9.8. With the above notation, w belongs to H& (Q+) and satisfies

ad dw oY 3 |
(60) Y| aws—o—dv=[ gvdy V¥ e Hy(Qy),
O+ O+

k. t=1

where?® § = (g o H)|detlac H| € L>(Q) and the functions ar, € C'(Q.,) satisfy
the ellipticity condition (36).

Proof. Let ¢ € H(}(Q+) and set ¢(x) = ¥ (Jx) for x € Q N U;. Then ¢ €
Hi(QNU;) and

av ow dJg o

oy 9Jy
0x; P Yk ij’ 0x; 7 aye Bx]"

Thus
0Jr dJy dw 0
/ Vv-Vgodx:/ _k_l_w_wdx
Qny; enu; i1 0xj dx; dyk dye

0Jy 0Jy dw 0
=/ 3k 9Je 0w OV 1 vac Hldy
0+ T 0x; 0x;j dyx dye

from the usual change-of-variables formulas in an integral. As a consequence,

dw 9
(61) / Vv - Vedx = / Zakg—w—wdy,
QnU; 0+ Oyx 0ye

with ag = ) 37115% |detJac H|.

We note that ag; € C! (§+) and that the ellipticity condition is satisfied, since for
all £ € RV, we have

28 More generally, if we start with an elliptic equation for v we end up with an elliptic equation for
w: the ellipticity condition is preserved under change of variables.
29 detJac H denotes the Jacobian determinant, i.e., the determinant of the Jacobian matrix Jac H =

J9H;
(3.
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axeérE = |detlac H| Ok,
0
k., k

j
with o > 0, since the Jacobian matrices Jac H and Jac J are not singular.
On the other hand, we have

2
2
> ofé|

(62) f godx = / (g o H)Y|detTac H|dy.
QNU; o

Combining (59), (61), and (62) we obtain (60). This completes the proof of
Lemma 9.8.

We now return to the proof of the boundary estimates and show that w € H 2(04)
with30 lwll g2 < C|lgll2. This will imply, by returning to N U;, that 6;u belongs
to H*(Q N U;) and thus, in fact, to H>(Q) with [|6;ul| 2 < C|| fll2.

As in Case B (2 = R_’X), we use tangential translations. In (60) choose v =
D_j(Dyw) with || Qo, and || small enough that ¢ € Hj (Q4).3! We obtain

d
(©3) Z/ Dh(ke—)—< ) = /Qgthhw).

dy
But
(64) /Q+ D (Dpw) =< [gll2llD—n(Drw)ll2 = lIgl12[IVDpwll2
(by Lemma 9.6).

On the other hand, write

ow
Dy, (au E) (y) = are(y + h)—th(y) + (Dpake(y)) —(y)

and as a consequence we have
ow) 0 5
©65) > | Dulare—— | =—(Dpw) = al|V(Dyw)ll5 — Cllwll g1 |V Dpwila.
7 0+ dyk ) Oye

Combining (64) and (65), we obtain
(66) IVDywll2 < C(lwligr +1Igl2) = Cligll2

(noting that because of (60) and Poincaré’s inequality, |w| z1 < C||gll2). We deduce
from (66)—as in Case B—that

30 In the following we denote by C various constants depending only on axy.
31 Recall that suppw C {(x’, xy); |x'] <1 —8and 0 < xy < 1 — 8} for some § > 0.
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Jw Y
67 —_—
(67) ‘/Q+8y8

To conclude that w € H>(Q4) (and lwllg2 < C|lgll2) it remains to show that

68 —_—
©% ‘/QJr BYNa

For this purpose we return to the equation where we replace ¢ by (1/ann)y
W e CCI(Q+)); this is possible, since ayy € CI(Q+) and ayy > o > 0. It
becomes

b (VY[ E fade i (L),
/N dyn dyn (aNN) aNNI/f Z Oyk dye \ann

(k,£)#(N,N)
Jw 0 1 0 0
dw 3y _ /_< aNN>_ww+/ g
dyn dyn ann \ dyn / dyn ay
aake> v
f 2 [
©9) Z yr \ dy¢

an
(k.OF(N.N)
ke

- Z /2;8;(61 )

(k,£)#(N,N)

<Clgl2 ¥l Yo € CHQ1), Yk, &) # (N, N).

<Clgl Iyl V¥ € CHQ4).

that is,

Combining (67)32 and (69), we obtain

'/ dw oy
0. dyn dyn

This establishes (68) and completes the estimates near the boundary.

< C(wlm +18ID1¥ 12 ¥¥ € CLQ4).

Remark 25. Let  be an arbitrary open set and let u € H' () be such that
/ Vu~Vg0=/ fo Vo e CX(Q).
Q Q

We suppose that f € H™(S2). Then u € H™+2(Q) for every 0 € C°(2): we say
that u € Hl'gc+2(§2). To prove this it suffices to proceed as in Case C; and to argue

by induction on m. In particular, f € C®(Q) = u € C®(Q).>3

The same conclusion holds for a very weak solution in the sense that u € L?()
is such that

32 We use (67) with (ageann) ¥ instead of .
33 But in general, we cannot say that, for example, u € C(S2) (even if  and f are very smooth),
since no boundary condition has been prescribed.
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—/uAgo:/ fo Vo e CX(Q).
Q Q

(The proof is a little more delicate; see, e.g., S. Agmon [1].) We emphasize the local
nature of the regularity results in elliptic problems. More precisely, let f € L*(R2)
andletu € HO1 (£2) be the unique weak solution of

fVu~V(p+fu<p=/f<p Vo € Hy(Q).
Q Q Q

Fix o CC ; then u, depends on the values of f in all of Q—and not only the
values of f in .3* By contrast, the regularity of u|, depends only on the regularity
of fio- For example, f € C*(w) = u € C*®°(w) even if f is very irregular outside
w. This property is called hypoellipticity.

Remark 26. From a certain point of view, the regularity results are a little surprising.
. . . 52
Indeed, an assumption made on Au, i.e., on the sum of the derivatives ) X ng, forces
k

. . . 2 C e .
a conclusion of the same nature for all the derivatives 3)‘3 5 individually.
i0Xj

9.7 The Maximum Principle

The maximum principle is a very useful tool, and it admits a number of formulations.
We present here some simple forms.
Let Q be a general open subset of RV .

¢ Theorem 9.27 (maximum principle for the Dirichlet problem). Assume 33 that
feLl*Q) and ue H(QNC®)
satisfy
(70) /w-w+/ u(p:/ fo Yo e Hi(Q).
Q Q Q

Then for all x € L,
min{inf u, inf f} < u(x) < max { sup u, supf} .
r Q r Q

(Here and in the following, sup = essential sup and inf = essential inf.)

Proof. We use Stampacchia’s truncation method. Fix a function G € C!'(R) such
that

34 For example, if f > 0in Q, f =0inw, and f > 0 in some open subset of €2, then u > 0 in
(and thus on w); see the strong maximum principle in the comments at the end of this chapter.

35 If Q is of class C! one can remove the assumption u € C(S2) by invoking the theory of traces,
which gives a meaning to u|r (see comments at the end of this chapter); also if u € HO1 (R2) the
assumption # € C(£2) can be removed.
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1) |G'(s)| <M Vs eR,
(i) G is strictly increasing on (0, 4-00),
(i) G(s)=0 Vs <O0.

Set
K = max { supu, supf}
r Q
and assume K < oo (otherwise there is nothing to prove). Let v = G(u — K).
We distinguish two cases:
(a) The case |2| < oo.

Then v € H'(Q) (from Proposition 9.5 applied to the qu:tion t— Gt —-—K)—
G(—K)). On the other hand, v € H(} (), since v € C(R) and v = 0 on I" (see
Theorem 9.17). Plug this v into (70) and proceed as in the proof of Theorem 8.18.

(b) The case |2| = oo.

We have then K > 0 (since f(x) < K a.e.in Qand f € L? imply K > 0). Fix
K’ > K. By Proposition 9.5 applied to the function ¢ +> G(r — K’) we see that
v=G(u—K') € H(Q). Moreover, v € C(Q) and v = 0 on T'; thus v € H] (Q).
Plugging this v into (70) we have

(71) /|W|2G’(u—1</)+/ uG(u—K’):/ fGu — K.
Q Q Q
On the other hand, G(u — K’) € L1(Q), since3®

0<Gu—K') < Mlul,

and on the set [u > K'] = {x € Q; u(x) > K’} we have

K// |u|§/u2<oo.
[u>K’] Q

We conclude from (71) that
/(u —KNGu—-K" < / (f—KNGu—-K')<0.
Q Q

It follows thatu < K’ a.e.in Q and thus u < K a.e.in 2 (since K’ > K is arbitrary).
e Corollary 9.28. Let f € L*(Q2) and u € H'(€2) N C () satisfy (70). We have

(72) [u>0o0nT and f > 0in Q] = [u > 0in ],
(73) llullLoe(@y < max{llullLooqry, IIf Lo}

36 Because G(u — K') — G(—K') < M|u| and G(—K') =0as —K' < 0.
37 As above, the assumption u € C () can be removed in certain cases.
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In particular,
(74) if f=0inQ, then |lu| o) < llullLe),
(75) ifu=0o0nT, then ||lullL=@) < |l fllLx)-

Remark 27. If Q2 is bounded and u is a classical solution of the equation
(76) —Au+u=finQ

one can give another proof of Theorem 9.27. Indeed, let xo € 2 be a point such that
u(xp) = maxgu.

(1) If xo € T, then u(xp) < supru < K.
(i) If xo € €, then Vu(xg) = 0 and 24 2(xo) <Oforalll <i < N, so that

Au(xg) < 0. From this, using equatlon (76) we have

u(xo) = f(xo) + Au(xo) < f(xo) < K.

This method has the advantage that it applies to general second-order elliptic
equations. For example, the conclusion of Theorem 9.27 holds for

(77) —Z P (a,,axl>+Za,—+u— in Q.

i,j=1
Note that if xg € €2, then

N 2,

Z a;j(xp) j

ij=1

(XO)

indeed, by a change of coordinates (depending on x() one can reduce this to the case
in which the matrix a;;(xo) is diagonal. The conclusion of Theorem 9.27 remains
true for weak solutions of (77), but the proof is more delicate; see D. Gilbarg—
N. Trudinger [1].

Proposition 9.29. Suppose that the functions a;;j € L () satisfy the ellipticity

condition (36), aﬁd that a;, ag € L*°(Q) withag > 0in Q. Let [ € LZ(Q) and
u € HY(€) N C(R) be such that

ou d¢ 1
b T ox; ax; P = Vo € H ().
(78) /Q;Clugxi 3x] /Zazaxz(/)‘i‘/aou(p /Qf(/) @ € Hy(Q)

Then

(79) [u>00nTand f >0in Q] = [u > 0in 2].

38 A above, the assumption u € C () can be removed in certain cases.
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Suppose that ay = 0 and that Q2 is bounded. Then

(80) [szinQ]:[uZiIllfu inQi|

and

(81) [f:OinQ]=>[irllfu§supu inQi|.
r

Proof. We prove this result in the case a; = 0, 1 <i < N; the general case is more
delicate (see D. Gilbarg—N. Trudinger [1], Theorem 8.1). To establish (79) is the
same as showing that

(79" [u<OonTand f <0in Q] = [u < 0in ].
We choose ¢ = G(u) in (78) with G as in the proof of Theorem 9.27; we thus obtain
Ju ou
——G <0,
/ Z g 5o G0) =
and so
/ IVul?>G’ (u) < 0.
Q
Set H(t) = [,[G'(5)]"/?ds, so that
H@) € H (Q) and |VHwW)|* = |Vul*G'(u) = 0.
It follows®” that H(x) = 0in  and hence u < 0 in .

We now prove (80) in the following form:

(80" [ffOinQ]é[ufsupuinQ}.
r

Set K = supr u; then (u — K) satisfies (78), since ap = 0 and (u — K) € HY(Q),
since €2 is bounded. Applying (79’), we obtain u — K < 0 in , i.e., (80). Finally,
(81) follows from (80) and (80').

Proposition 9.30 (maximum principle for the Neumann problem). Ler f €
L*(Q) and u € H'(Q) be such that

/Vu-V(p+fu(p=/f(p Vo € H(Q).
Q Q Q

39 Note that if f € W'’ (Q) with 1 < p < coand Vf = 0in 2, then f = 0in Q. Indeed, let 7 be
the extension of f by 0 outside €2; then f e whP(RYN) and v f=Vf= 0 (see Proposition 9.18).
As a consequence, f is constant (see Remark 7), and since f € LP(RN), f = 0.
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Then we have, for a.e. x € ,
inf f <u(x) <supf.
Q2 Q

Proof. Analogous to the proof of Theorem 9.27.

9.8 Eigenfunctions and Spectral Decomposition

In this section we assume that €2 is a bounded open set.

o Theorem 9.31. There exist a Hilbert basis (e)n>1 of L%(Q) and a sequence
(An)n>1 of reals with A, > 0 Vn and A, — 400 such that

(82) en € HL () N C®(RQ),
(83) —Ae, = Ape, in Q2.

We say that the ),,’s are the eigenvalues of —A (with Dirichlet boundary condition)
and that the ey,’s are the associated eigenfunctions.

Proof. Given f € L*(Q) letu = Tf be the unique solution u € H] () of the
problem

(84) fw-w:f fo Yo e Hy(Q).
Q Q

We consider T as an operator from L%() into L%(). Then T is a self-adjoint
compact operator (repeat the proof of Theorem 8.21 and use the fact that H(} (©) C
L?(2) with compact injection). On the other hand, N(T') = {0} and (T'f, f);2 >0
Vf € L%. We conclude (applying Theorem 6.11) that > admits a Hilbert basis (e,,)
consisting of eigenfunctions of T associated to eigenvalues (u,) with u,, > 0 Vn
and p,, — 0. Thus we have ¢, € HO1 (2) and

f Vep - Vo = 1 eng Yo € HH ().
Q MUn JQ

In other words, e, is a weak solution of (83) with A,, = 1/u,. From the regularity
results of Section 9.6 (see Remark 25) we know thate,, € H?(w) for everyw CC Q.1t
follows thate,, € H*(w) for everyw CC Qandthene, € H 5(w) for every w CC €2,
etc. Thus e, € Ny>=1 H™(w) for all @ CC 2. As a consequence, e, € C*(w) for
allw CC Q,ie., e, € C*(Q).

Remark 28. Under the assumptions of Theorem 9.31, the sequence (e,/v/An)
is a Hilbert basis of HOI(Q) equipped with the scalar product fQ Vu - Vv,
and (e,/+/A, + 1) is a Hilbert basis of H(} (2) equipped with the scalar product
Jo(Vu - Vv + uv). Indeed, it is clear that the sequence (e,/+/A,) is orthonormal
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in H () (use (83)). It remains to Verlfy that the vector space spanned by the e,’s
is dense in H (2). So, let f € H (£2) be such that (f, en)Hl = 0 Vn. We have to

prove that f = 0. From (83) we have 4, [ e, f = 0Vn and consequently f = 0
(since (ey) is a Hilbert basis of L2(2)).

Remark 29. Under the hypotheses of Theorem 9.31 (for a general bounded domain
€2) it can be proved that e, € L% (£2). On the other hand, if Q is of class C* then
€ C%°(); this results easily from Theorem 9.25.

Remark 30. Let a;; € L°°(R2) be functions satisfying the ellipticity condition (36)
and let ag € L°° (). Then there exists a Hilbert basis (e,) of L?($2) and there exists
a sequence (A,) of reals with A, — +oo such that e, € HO1 (2) and

Ben a(p .
/Z aij 8x, ox; /S;aoen(ﬂ:?»nfgen(p Vo € Hy(£2).

Comments on Chapter 9

This chapter is an introduction to the theory of Sobolev spaces and elliptic equations.
The reader who wishes to dig deeper into this vast subject can consult an extensive
bibliography; we cite among others, S. Agmon [1], L. Bers—F. John—M. Schechter [1],
J.-L.Lions [1],J.-L. Lions—E. Magenes [1], A. Friedman [2], M. Miranda [1], G. Fol-
land [1], F. Treves [4], R. Adams [1], D. Gilbarg-N. Trudinger [1], G. Stampac-
chia [1], R. Courant-D. Hilbert [1] Vol. 2, H. Weinberger [1], L. Nirenberg [1],
E. Giusti [2], L. C. Evans [1], M. Giaquinta [1], E. Lieb—M. Loss [1], M. Taylor [1],
W.Ziemer [1], O. Ladyzhenskaya—N. Uraltseva [1], N. Krylov [1], [2], V. Maz’ja [1],
C. Morrey [1], Y. Z. Chen-L. C. Wu [1], E. DiBenedetto [1], Q. Han-F. H. Lin [1],
J. Jost [1], W. Strauss [1], and the references in these texts.

1. In Chapter 9 we have often supposed that  is of class C'; this excludes, for
example, the domains with “corners.” In various situations one can weaken this
hypothesis and replace it by somewhat “exotic” conditions: €2 is piecewise of class
C!, Q is Lipschitz, © has the cone property, 2 has the segment property, etc.; see,
for example, R. Adams [1] and S. Agmon [1].

2. Theorem 9.7 (existence of an extension operator) can be adapted to the spaces
WP (2) (2 of class C'™) with the help of a suitable generalization of the technique
of extension by reflection; see, e.g., R. Adams [1] and S. Agmon [1].

3. Some very useful inequalities involving the Sobolev norms.

e A. Poincaré-Wirtinger’s inequality. Let © be a connected open set of class C'!
and let 1 < p < oco. Then there exists a constant C such that

1
lu—al, <ClVull, Yue WlP(Q), where it = @/ u
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From this is deduced, because of the Sobolev inequality, that if p < N,

lu—dllp < CllVull, Vue W (Q).

e B. Hardy’s inequality. Let Q be a bounded open set of class C! and let 1 < p
< 00. Set d(x) = dist(x, I'). There exists a constant C such that

u
d

[u e WhP () and (u/d) € LP(Q)] = [u € Wy (Q)];

<C|Vul, YueW,".
P

Conversely,

see J. L. Lions—E. Magenes [1].

e C. Interpolation inequalities of Gagliardo—Nirenberg. We mention only some
examples that are encountered frequently in the applications. For the general case
see L. Nirenberg [1] or A. Friedman [2].

To fix ideas, let 2 C RY be a regular bounded open set.

Example 1. Letu € LP() N W27 (Q) with 1 < p < ooand 1 < r < oo. Then
u € Wha(Q), where q is the harmonic mean of p and r, i.e., é = %(% + %), and
172 172
1Dullze < Clullyla, Nl

Particular cases:
(a) p = o0, and thus g = 2r. We have

1/2 1/2
[Dulize < Cllull o, llull oo

This inequality can be used, among other things, to show that W2 N L™ is an
algebra, that is to say,

u,v e W NL® = uve W' NL®

(this property remains true for W”" N L° with m an integer, m > 2).
(b) p = g =r. We have

172 172
w2.p ”u”LP )

[DullLr < Cllul
from which one deduces in particular that
IDullzr < el D?ullLr + Cellullr Ve > 0.
Example 2. Let 1 < g < p < oo. Then

85 luler < Clully el Yue W (Q), where a =1—(q/p).
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We note the particular case that is used frequently
N=2, p=4 g¢g=2, and a=1/2,

that is to say,
1/2
LZ

1/2

o Vue H(Q).

lullps < Cllaell 5 [lull

We remark, in this connection, that we have also the usual interpolation inequality
(Remark 2 of Chapter 4)

lullzr < llul g lullfe  with a=1—(q/p),

but it does not imply (85), since W'V is not contained in L.

Example 3. Let1 < g < p <ooandr > N.Then

(86) lulle < Cllully ull Vu € W (Q),

a
wlr

1 1y1 11
e 4. The following property is sometimes useful. Letu € W7 () with 1 < p < oo
and €2 any open set. Then Vu = 0 a.e. on the set {x € ; u(x) = k}, where k is any
constant.

* 5. The functions in W7 (Q) are differentiable in the usual sense a.e. in 2 when
p > N.More precisely, letu € W7 (Q) with p > N.Then there existsaset A C Q
of measure zero such that
u(x +h) —u(x)—h-Vu(x)
m
h—0 |A]

=0 VxeQ\A.

This property is not valid when u € W7(Q) and p < N(N > 1). On this question
consult E. Stein [1] (Chapter 8).

6. Fractional Sobolev spaces.
One can define a family of spaces intermediate between L (€2) and W17 (£2). More
precisely,if 0 <s < 1 (s e R)and 1 < p < oo, set

|u(x) —u(y)l

s,p — P .
W (Q)_{ueL (Q); PR

e LP(Q x sz)},

equipped with the natural norm. Set H*(Q) = W*2(). For studies of these spaces,
see, e.g., R. Adams [1], J.-L. Lions—E. Magenes [1], P. Malliavin [1], H. Triebel [1],
and L. Grafakos [1]. The spaces W* 7 (2) can also be defined as interpolation spaces
between W7 and L”, and also using the Fourier transform if p = 2 and Q = RV,

We define finally W* P (Q2) for s real, s not an integer, s > 1 as follows. Write
s = m + o with m = the integer part of s, and set

WP (Q) = {u € WP (Q); D*u € WoP(Q) Va with |a| = m]}.
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By local charts one also defines W* 7 (I"), where I is a smooth manifold (for example
the boundary of a regular open set). These spaces play an important role in the theory
of traces (see Comment 7).

e 7. Theory of traces.
Let 1 < p < co. We begin with a fundamental lemma.

Lemma 9.9. Let Q2 = RQ_/ . There exists a constant C such that

1/p
(/ lu(x’, 0)|de’> < Cllullwirq Yu e CLRN).
RN—]
Proof. Let G(t) = |t|P~'t and letu € C!(RV). We have

“+o00 9
G, 0) = — f G, o)y
0 XN

+o0 ou
= —/ G'(u(x', xn)) — (', x§)dxy.
0 oxn
Thus

0
& xw) |day

o0
lu(x’, 0)|7 < p/ lu(x’, xy)|P™!
0 8)6]\/

*© | 9u
<C </ lux’, xy)|[Pdxy +/ ‘—(x/, xN)
0 0o |dxy

P
de) ,

It can be deduced from Lemma 9.9 that the map u +— ur with I' = Q2 =
RN=1 x {0} defined from C!(RV) into LP(I") extends, by density, to a bounded
linear operator of W7 () into L?(I"). This operator is, by definition, the trace of
u on I'; it is also denoted by u|r.

We remark that there is a fundamental difference between L? (Rﬁ yand Wh-? (Rﬁ ):
the functions in LP (Rﬁ ) do not have a trace on T'. One can easily imagine—using
local charts—how to define the trace on I' = 9<2 for a function u € WP () when
Q is a regular open set in RV (for example, 2 of class C! with I' bounded). In this
case uir € LP(I") (for the surface measure do). The most important properties of
the trace are the following:

(i) Ifu € WHP(Q), then in fact ujr € W'=(/P)-P(T) and

and the conclusion follows by integration in x’ € RV=1,

1
||M\F||Wl—(1/p>,p(r) =< C”“”Wl-p(gz) Yu € WHP(Q).
Furthermore, the trace operator u + ur is surjective from whr(Q) onto

wi=a/p).p(1).
(i1) The kernel of the trace operator is WO1 P(Q),ie.,

Wy () = fu € WP (Q); ur =0}
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(iii) We have Green’s formula

0 d
—uv=— u—v+ uv(i—1>~2)d0 Vu,veHl(Q),
Q 0x; Q 0x r

where n is the outward unit normal vector to I'. Note that the surface integral has a
meaning, since u, v € LZ(F).
In the same way we can speak of g—z for a function u € W>P(Q): set g—z =

Vu)r - Z, which has a meaning since (Vu)|r € LP ()N, and S—Z € LP(I') (in fact
fu e wi=(/P-P(I)). Also Green’s formula holds:

3
—/(Au)v:/ w-vU—/ M odo Yu,ve HAQ).
Q Q r on

(iv) The operator u — {ur, g—Z} is bounded, linear, and surjective from WP ()
onto W2=(/P.P (1) x w!=(/P)P(T"). On these questions, see J.-L. Lions—E. Ma-
genes [1] for the case p = 2 (and the references cited therein for the case p # 2).

8. Operators of order 2m and elliptic systems.

The existence and regularity results proved in Chapter 9 extend to elliptic operators
of order 2m and to elliptic systems.** One of the essential ingredients is Gérd-
ing’s inequality. On these questions, see S. Agmon [1], J.-L. Lions—E. Magenes [1],
S. Agmon—A. Douglis-L. Nirenberg [1]. The operators of order 2m and certain sys-
tems play an important role in mechanics and physics. We point out, in particular, the
biharmonic operator A2 (theory of plates), the system of elasticity, and the Stokes
system (fluid mechanics); see for example Ph. Ciarlet [1], G. Duvaut-J.-L. Lions [1],
R. Temam [1], J. NeCas—L. Hlavacek [1], M. Gurtin [1].

9. Regularity in L? and C%* spaces.
The regularity theorems proved in Chapter 9 for p = 2 extend to the case p # 2.

e Theorem 9.32 (Agmon-Douglis—Nirenberg). Suppose that Q2 is of class C* with
" bounded. Let 1 < p < oo. Then for all f € LP(R2), there exists a unique solution

uewirQ)n Wé’p(Q) of the equation

87) —Autu=f inQ.

Moreover, if Q is of class C"™ 2 and if f € W™P(Q) (m > 1 an integer), then
ueW"P(Q) and |lullymizp < C|fllwmr.

There is an analogous result if (87) is replaced by a second-order elliptic equation
with smooth coefficients. The proof of Theorem 9.32 is considerably more compli-
cated than the case p = 2 (Theorem 9.25). The “classical” approach rests essentially
on two ingredients:

40 But the maximum principle does not, except in very special cases.
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(a) A formula for an explicit representation of u using the fundamental solution.

For example, if & = R, then the solution of (87) is given by u = G  f, where
G(x) = ﬁe‘lﬂ. So that formally, axaiz—a“xj = %gcj « f: “unfortunately” agjg(j
not belong to L' (R3),*! because of the singularity at x = 0, and one cannot apply
elementary estimates on convolution products (such as Theorem 4.15).

does

(b) To overcome this difficulty one uses the theory of singular integrals in LP
due to Calderon-Zygmund (see, for example, E. Stein [1] and L. Bers—F. John—
M. Schechter [1]).

Warning: the conclusion of Theorem 9.32 is false for p = 1 and p = oc.

Another basic regularity result, in the framework Holder spaces,*? is the following.

e Theorem 9.33 (Schauder). Suppose that 2 is bounded and of class C 2. with
0 < o < 1. Then for every f € CY%(Q) there exists a unique solution u € Cc2Y(Q)
of the problem

(88) —Au+u=f inQ,
u=0 onT.

Furthermore, if  is of class C"T>% (m > 1 an integer) and if f € C™*(Q), then
u € C"T2UQ) with ||ul|gnsra < C|l flloma.

An analogous result holds if (88) is replaced by a second-order elliptic oper-
ator with smooth coefficients. The proof of Theorem 9.33 rests—as does that of
Theorem 9.32—on an explicit representation of u# and on the theory of singular
integrals in Cco« spaces due to Holder, Korn, Lichtenstein, Giraud. On this sub-
ject, see S. Agmon—A. Douglis—L. Nirenberg [1], L. Bers—F. John—M. Schechter [1],
C. Morrey [1], D. Gilbarg—N. Trudinger [1]. A different approach, which avoids the
theory of singular integrals, has been devised by Campanato and Stampacchia (see,
e.g., Y. Z. Chen-L. C. Wu [1] and E. Giusti [2]). Other elementary techniques have
been developed by A. Brandt [1] (based solely on the maximum principle) and by
L. Simon [2].

Let Q be a bounded regular open set and let f € C (). From Theorem 9.32
there exists u € W2P(Q) N Wol’p(Q) (for all 1 < p < o00) that is the unique
solution of (87). In particular, u € C*(Q) for all 0 < o < 1 (from Morrey’s

41 But almost!

42 Recall that with 0 < o < 1 and m an integer,

0@ = lucc@: sup MU _
X, yEQ lx — yl®
Xy

and C"™*(Q) = {u € C(Q); DPu e C%%(Q) VP with || = m)}.
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theorem (Theorem 9.12)). In general, u does not belong to C?, or even to W2,
This explains why one often avoids working in the spaces L 1(Q), L®(R), and C(Q),
spaces for which we do not have optimal regularity results.

Theorems 9.32 and 9.33 extend to elliptic operators of order 2m and to elliptic
systems; see S. Agmon—A. Douglis—L. Nirenberg [1]. We finally point out, in a dif-
ferent direction, that second-order elliptic equations with discontinuous coefficients
are the subject of much work. We cite, for example, the following celebrated result.

e Theorem 9.34 (De Giorgi, Nash, Stampacchia). Ler 2 C RN, with N > 2, be
a bounded regular open set. Suppose that the functions a;j € L () satisfy the
ellipticity condition (36). Let f € LP(Q2) with p > N /2 and letu € HOl (R2) be such

that
ou dg 1
Y aij——= [ fo Ve Hy(Q.
Q i 8x,~ 3x]' Q
Thenu € CO*(Q) foracertain 0 < a < 1 (which depends on 2, a;j and p).

On these questions, see G. Stampacchia [1], D. Gilbarg—N. Trudinger [1], O. Lady-
zhenskaya—N. Uraltseva [1], and E. Giusti [2].

10. Some drawbacks of the variational method and how to get around them!
The variational method gives the existence of a weak solution very easily. It is not
always applicable, but it can be completed. We indicate two examples. Let @ ¢ RY
be a bounded regular open set.

(a) Duality method. Let f € L'(Q)—or even f a (Radon) measure on 2—and
look for a solution of the problem

89) —Autu=f inQ,
u=0 onTl.

As soon as N > 1, the linear functional ¢ > fQ fo is not defined for every
Q€ Hé (£2), and as a consequence the variational method is ineffective. On the other
hand, one can use the following technique. We denote by 7 : L?(Q2) — L*(R2) the
operator f > u (where u is the solution of (89), which exists for f < L2(Q)).
We know that T is self-adjoint. On the other hand (Theorem 9.32), T : L?(Q2) —
WZ’P(Q) for 2 < p < o0, and because of the theorems of Sobolev and Morrey,
T : LP(Q) — Co(RQ) if p > N/2. By duality we deduce that

T M(Q) = Co(R)* — LY (Q)if p > N/2.

Since T is self-adjoint in L2, T* is an extension of T': thus one can consider u = T* f
as a generalized solution of (89). In fact, if f € LY (Q), thenu = T* f € L4(Q) for
all g < N/(N — 2); u is the unique (very) weak solution of (89) in the following
sense:

—qug0+fmp=/f(p V¢GC2(§), ¢ =0onT.
Q Q Q



9.8 Comments on Chapter 9 319

In the same spirit, one can study (89) for f given in H " (2); see J.-L. Lions—
E. Magenes [1].

(b) Density method. Let g € C(I") and look for a solution of the problem

—Au+u=0 inQ

90
G0 u=g onl.

In general, if g € C(I'), there does not exist a function g € H L(Q) such that
gir = g (see Comment 7 and note that C(I") is not contained in H'2()). 1t is
thus not possible to look for a solution of (90) in H'(2): the variational method is
ineffective. Nevertheless, we have the following result.

e Theorem 9.35. There exists a unique solution u € C(Q)NC®Q) of (90).

Proof. Fix § € C.(R") such that g = g; g exists by the Tietze-Urysohn theorem
(see, e.g., J. Dieudonné [1], J. Dugundji [1], J. Munkres [1]). Let (g,) be a sequence
in C° (RM) such that gn — g uniformly on RY. We set gn = &nir- Applying the
variational method and regularity results, we see that there exists a classical solution
up € C%(2) of the problem

—Au, +u, =0 in &,
U, =gp onl.

From the maximum principle (Corollary 9.28) we have

lum — unllroe@) < llgm — gullLom)-

As a consequence, (u,) is a Cauchy sequence in C(R) and u,, — u in C(Q). It is
clear that we have

/u(—A<p+<p)=0 Vo € CX(Q)
Q

and therefore u € C*® () (see Remark 25). Thus u € C(Q) N C®() satisfies (90).
The uniqueness of the solution of (90) follows from the maximum principle (see
Remark 27).

* Remark 31. It is essential in Theorem 9.35 to suppose that Q2 is smooth enough.
When 2 has a “pathological” boundary we run into questions of potential theory
(regular points, Wiener criterion, etc.).

Another approach to solving (90) is the Perron method, which is classical in
potential theory. Define

u(x) = sup {v(x); v e c©n CZ(Q), —Av+v<0inQandv <gonTl},

and prove (directly) that u satisfies (90). A function v such that —Av 4+ v < 0 in Q
and v < g on I is called a subsolution of (90).
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11. The strong maximum principle.

We can strengthen the conclusion of Proposition 9.29 when u is a classical solution.
More precisely, let Q2 be a connected, bounded, regular open set. Let a;; € C Q)
satisfy the ellipticity condition (36), a;, ap € C(2) with ag > 0 on Q.

Theorem 9.36 (Hopf). Let u € C(Q2) N C*(Q) satisfy
o1 _Zax (auaxl> Xi:az—-i-aou—f in 2.

Suppose that f > 0 in Q. If there exists xo € 2 such that u(xo) = mingu and if
u(xg) < 0,% then u is constant in Q (and furthermore f = 0 in 2).

For the proof, see, e.g., L. Bers—F. John—-M. Schechter [1], D. Gilbarg-N. Tru-
dinger [1], M. Protter—H. Weinberger [1], and P. Pucci-J. Serrin [1].

Corollary 9.37. Let u € C(Q2) N C3(RQ) satisfy (91) with f > 0 in Q. Suppose that
u>0onl. Then

e citheru > 0in Q,
e oru=0inQ.

For other results connected to the maximum principle (Harnack’s inequality etc.),
see, e.g., G. Stampacchia [1], D. Gilbarg—N. Trudinger [1], M. Protter—H. Wein-
berger [1], R. Sperb [1], and P. Pucci-J. Serrin [1].

12. Laplace-Beltrami operators.

Elliptic operators defined on Riemannian manifolds (with or without boundary) and
in particular the Laplace—Beltrami operator play an important role in differential
geometry and physics; see, for example, Y. Choquet—C. Dewitt—M. Dillard [1].

13. Spectral properties. Inverse problems.

Eigenvalues and eigenfunctions of second-order elliptic operators enjoy a number
of remarkable properties. Here we cite some of them. Let 2 C RV be a connected,
bounded, open regular set. Leta;; € C 1(Q) satisfy the ellipticity condition (36) and
ag € C(2). Let A be the operator

:—Zax <”3 >+a()l/l

with homogeneous Dirichlet conditions (# = 0 on I'). We denote by (4,) the se-
quence of eigenvalues of A arranged in increasing order, with A, — 400 when
n — oo. Then the first eigenvalue A1 has multiplicity 1 (one says that A; is a simple
eigenvalue),** and we can choose the associated eigenfunction e to have e¢; > 0 in
2; this follows from the Krein—Rutman theorem (see the comments on Chapter 6

43 The hypothesis u(xg) < 0 is unnecessary if ag = 0.
44 In dimension N > 2 the other eigenvalues can have multiplicity > 1.
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2/N when n — oo with

and Problem 41). Additionally, one can show that A, ~ cn
¢ > 0; see S. Agmon [1].

The relations that exist between the geometric properties* of € and the spectrum
of A are the subject of intensive research; see, e.g., M. Kac [1], Marcel Berger [1],
R. Osserman [1], I. M. Singer [1], P. Bérard [1], I. Chavel [1]. The objective of
spectral geometry is to “recover” the maximum amount of information about <2,
purely from the knowledge of the spectrum ().

A strikingly simple question is the following. Let 2| and €2, be two bounded
domains in R?; suppose that the eigenvalues of the operator —A (with Dirichlet
boundary conditions) are the same for €21 and €2;. Are 21 and 25 isometric? This
problem has been nicknamed by M. Kac: “Can one hear the shape of a drum?”*°
One knows that the answer is positive if €21 is a disk. In 1991, C. Gordon-L. Webb—
S. Wolpert [1] gave a negative answer for domains with corners. The problem of Kac
is still open for smooth domains.

Another important class of “inverse problems” involves the determination of the
coefficients and parameters in a PDE, or the shape and characteristics of an internal
object, solely from measurements at the boundary (e.g., Dirichlet-to-Neumann map)
or at “infinity” (inverse scattering). These problems arise in many areas (medical
imaging, seismology, etc.); see, e.g., G. Uhlmann [1], C. B. Croke et al. [1].

14. Degenerate elliptic problems.
Consider problems of the form

d ou u
_ _ R L — inQ
; ox; ( ij 8x,~) +lZa, ox; 4+au=f in
+ boundary conditions on I', or on part of I',

where the functions a;; do not satisfy the ellipticity condition (36) but only

(36') > aij(x)EE =0 VxeQ, VEeRY.

ij
Consult for example the works of J. Kohn-L. Nirenberg [1], M. S. Baouendi—
C. Goulaouic [1], O. Oleinik—E. Radkevitch [1].

15. Nonlinear elliptic problems.

This is an immense field of research motivated by innumerable questions in geometry,
mechanics, physics, optimal control, probability theory, etc. It has had some spec-
tacular development since the early work of Leray and Schauder at the beginning of
the 1930s. We distinguish some categories:

(a) Semilinear problems. This consists, for example, of problems of the form

45 Particularly when €2 is a Riemannian manifold without boundary and A is the Laplace-Beltrami
operator.

46 Because the harmonics of the vibration of a membrane attached to the boundary T" are the func-
tions e, (x) sin /A, t, where (A,, e,) are the eigenvalues and eigenfunctions of —A with Dirichlet
boundary conditions.
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) {—Au — f(x,u) inQ,

u=2~0 onT,

where f(x, u) is a given function.
This category includes, among others, bifurcation problems, in which one studies
the structure of the set of solutions (A, u) of the problem
o1 —Au = fp(x,u) in,
u=20 onTl,

with A a variable parameter.

(b) Quasilinear problems. Consider problems of the form

1

a au
- T a"(X’M,VM)—>=f(x,u,Vu) in ,

(93) 12]: ax; ( Y ax;
u=20 onT,

where the functions a;;(x, u, p) are elliptic, but possibly degenerate; we have for
example

> aij(x.u, pEig; = au, p)lE* VxeQ, VEeRY, VueR, VpeR",
i.j

with o (i, p) > 0Vu € R,Vp € RY but a(u, p) is not uniformly bounded below by
a constant & > 0. In particular, the celebrated equation of minimal surfaces falls in
this category with a;; (x, u, p) = 6;;(1 + |p|?)~1/2. More generally, one considers
fully nonlinear elliptic problems of the form

(94) F(x,u, Du, D*u) = 0,

where the matrix E?Tfi(x, u, p, q) is elliptic (possibly degenerate). For example, the
Monge—Ampére equation fits into this category.

(c) Free boundary problems. It is a question of solving a linear elliptic equation
in an open set Q2 that is not given a priori. The fact that Q is unknown is often
“compensated for” by having two boundary conditions on I'; for example Dirichlet
and Neumann. The problem consists in finding simultaneously an open set €2 and a

function u such that. . ..
Techniques:
(a) There are several techniques used for the problems (92) or (92'):

e Monotonicity methods, see F. Browder [1] and J. L. Lions [3].

e Topological methods (Schauder’s fixed-point theorem, Leray—Schauder de-
gree theory, etc.); see J. T. Schwartz [1], M. Krasnoselskii [1], and L. Niren-
berg [2], [3].
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e Variational methods (critical point theory, min-max techniques, Morse the-
ory, etc.); see P. Rabinowitz [1], [2], Melvyn Berger [1], M. Krasnoselskii [1],
L. Nirenberg [3], J. Mawhin—-M. Willem [1], M. Willem [1], M. Struwe [1].

For a general survey, see, e.g., the books of A. Ambrosetti—-G. Prodi [1] and
E. Zeidler [1].

(b) Solving problems of type (93) may involve elaborate techniques of estimates;*’
see the works of E. De Giorgi, O. Ladyzhenskaya—N. Uraltseva [1], J. Serrin [1],
E. Bombieri [1] and D. Gilbarg—N. Trudinger [1]. Important progress on the
fully nonlinear equations and in particular on the Monge—Ampere equation has
also been made recently; see, e.g., S. T. Yau [1], L. Caffarelli-L. Nirenberg—
J. Spruck [1] and X. Cabré-L. Caffarelli [1].

(c) On the free boundary problems many new results have appeared in recent
years, often in connection with the theory of variational inequalities; see, e.g.,
D. Kinderlehrer—G. Stampacchia [1], C. Baiocchi-A. Capelo [1], A. Fried-
man [4], J. Crank [1] and L. Caffarelli-S. Salsa [1].

16. Geometric measure theory.

At the interface between geometry and PDE, this area has been extensively devel-
oped since the 1960s, starting with basic contributions by H. Federer, E. De Giorgi,
A. L. Volpert, and F. Almgren, in connection with questions arising in the calculus
of variations, isoperimetric inequalities, etc. It has numerous applications to phys-
ical problems, such as phase transitions, fractures in mechanics, edge detection in
image processing, line vortices in liquid crystals, superconductors and superfluids.
The space BV (functions of bounded variation) plays a distinguished role in these
questions. We refer, e.g., to L. Ambrosio—N. Fusco-D. Pallara [1], L. Simon [1],
L. C. Evans—R. Gariepy [1], and F. H. Lin—X. P. Yang [1].

47 This is the case, for example, for the minimal surface equation.



Chapter 10
Evolution Problems: The Heat Equation and the
Wave Equation

10.1 The Heat Equation: Existence, Uniqueness, and Regularity
Notation. Let © C RY be an open set with boundary I'. Set

0 = Q x (0, +00)
¥ =T x (0, +00);

% is called the lateral boundary of the cylinder Q. See Figure 7.

Consider the following problem: find a function u(x, 1) : Q x [0, +00) — R
such that

(1) LN in
— — Au = in Q,
ot
)
(3) [u(x,0) = up(x) onQ,|
Q )
| |
! Q ! x
Fig. 7
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2 . . . .
where A = Zl}V: 1 aax_z denotes the Laplacian in the space variables x, t is the time

variable, and ug(x) is a given function called the initial (or Cauchy) data.
Equation (1) is called the heat equation because it models the temperature dis-
tribution u in the domain €2 at time ¢. The heat equation and its variants occur in
many diffusion phenomena' (see the comments at the end of this chapter). The heat
equation is the simplest example of a parabolic equation.”
Equation (2) is the (homogeneous) Dirichlet boundary condition; it could be
replaced by the Neumann condition

2) 3_14 =0 on X
on

(n is the outward unit normal vector to I') or any of the boundary conditions en-
countered in Chapters 8 and 9. Condition (2) corresponds to the assumption that the
boundary T is kept at zero temperature; condition (2’) corresponds to the assump-
tion that the heat flux across I' is zero. We solve problem (1), (2), (3) by viewing
u(x,t) as a function defined on [0, +00) with values in a space H, where H is a
space of functions depending only on x: for example H = L?(Q), or H = HO1 ().
When we write just u(z), we mean that u(¢) is an element of H, namely the function
x +— u(x,t). This viewpoint allows us to solve very easily problem (1), (2), (3) by
combining the theorem of Hille-Yosida with the results of Chapters 8 and 9.

To simplify matters, we assume throughout Chapter 10 that 2 is of class C* with
I bounded (but this assumption may be considerably weakened if we are interested
only in weak solutions).

o Theorem 10.1. Assume ug € L2(Q2). Then there exists a unique function u(x, t)
satisfying (1), (2), (3) and

) u € C([0, 00); L*(22)) N C((0, 00); H*(2) N Hy (),
(5) u € CH((0, 00); L*(Q)).
Moreover,

ueC®Q x[e,00)) Ve>D0.
Finally, u € L*(0, oo; HO1 (Q)) and 3

1 2 T 2 1 2
©) S + /0 VU2 gt = 3ol VT > 0.

Proof. We apply the Hille-Yosida theory in H = L?*(2) (but other choices
are possible; see the proof of Theorem 10.2). Consider the unbounded operator

! The diffusion of heat is only one example among many others.

2 Regarding the traditional classification of PDE into three categories, “elliptic,” “parabolic,” “hy-
perbolic,” see, e.g., R. Courant-D. Hilbert [1].

3 In line with the above discussion we use the following notation: |u(T)|12(q) = fQ lu(x, T)2dx
N .
and |Vu(z)|§2(m =N /o |§7”i(x,t)|2dx.
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A: D(A) C H — H defined by

D(A) = H*(Q) N H} (),
Au = —Au.

Itis important to note that the boundary condition (2) has been incorporated in the
definition of the domain of A. We claim that A is a self-adjoint maximal monotone
operator. We may then apply Theorem 7.7 and deduce the existence of a unique
solution of (1), (2), (3) satisfying (4) and (5).

(i) A is monotone. For every u € D(A) we have

(Au,u);> = / (—Au)u =/ |Vul*> > 0.
Q Q

(i) A is maximal monotone. We have to check that R(I + A) = H = L?. But we
already know (see Theorem 9.25) that for every f € L there exists a unique
solution u € H> N HO1 of the equation u — Au = f.

(iii) A is self-adjoint. In view of Proposition 7.6 it suffices to verify that A is sym-
metric. For every u, v € D(A) we have

(Au, v);2 :/(—Au)v:/ Vu-Vvu
Q Q

(u, Av);2 :/ u(—Av):/ Vu - Vo,
Q Q

so that (Au, v) = (u, Av).

and

Next, it follows from Theorem 9.25 that D(A¢) ¢ H*(Q), for every integer ¢,
with continuous injection. More precisely,

DAY =ue H* Qi u=Au=---=A"u=0 onT}.
We know by Theorem 7.7 that the solution u of (1), (2), (3) satisfies
u € CK((0, 00); D(AY) Vk, V¢

and therefore
u € CK((0, 00); H*'(Q)) Vk, VL.

It follows (thanks to Corollary 9.15) that
u € CK((0, 00); CH(Q)) Vk.

We now turn to the proof of (6). Formally, we multiply (1) by u and integrate on
Q2 x (0, T). However, one has to be careful, since u(¢) is differentiable on (0, c0)

but not on [0, co). Consider the function ¢(t) = %|u(t)|%2(9). It is of class C! on
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(0, o0) (by (5)) and, for ¢t > 0,
/ du 2
@'(1) = | u@), d—(t) = (), Au®))2 =— | [Vu@®)|".
t L2 Q
Therefore, for 0 < ¢ < T < oo, we obtain

T T
o(T) — p(e) = f ¢ (dt = — / Vu()2,d.

& &

Finally we let & — 0. Since g(¢) — 5|uo|? (because u € C([0, 0o]; L*(R))), we
find that u € L?(0, oo; H} (<)) and that (6) holds.

If we make additional assumptions on u( the solution u becomes more regular
up to t = 0 (recall that away from ¢ = 0, Theorem 10.1 always guarantees that u is
smooth, i.e., u € C®(Q x [&, 00)) Ve > 0).

Theorem 10.2.
(@) Ifug € HO1 (R2) then the solution u of (1), (2), (3) satisfies

u € C([0, 00); Hy () N L*(0, 00; H*())

and 5
a—': e L2(0, 00; L2(Q)).
Moreover, we have
7 Mool s Lveaps . = Lvu?
( ) o E(I) LZ(Q) t+§| l/t( )lLZ(Q) — 5' uO'LZ(Q)'

(b) Ifup € H*(Q) N Hy (), then
u € C([0, 00); H*()) N L*(0,00; H>(Q))

and 3
8—’: € L2(0, 00; HL()).

() Ifug € H*(Q) Yk and satisfies the so-called compatibility conditions

(8) uozAu0=~--=Aju0=-~-=0 onT’

for every integer j, then u € C®(Q x [0, 00)).

Proof of (a). We work here in the space H; = H&(Q) equipped with the scalar

product
(u, V) H, :/ Vu~Vv+/uv.
Q Q

In H; consider the unbounded operator A1 : D(A1) C H; — H defined by
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D(Ay) = {u € H3(Q) N H} (Q); Au € H} ()},
Aju = —Au.

We claim that A is maximal monotone and self-adjoint.

(1) Ay is monotone. For every u € D(A) we have
(Aru, v) g, =/ V(—Au)~Vu+/(—Au)u=/ |Au|2+/ |Vul? > 0.
Q Q Q Q

(ii) Aj is maximal monotone. We know (by Theorem 9.25) that forevery f € H'(Q)
the solution u € HO1 (2) of the problem

u—Au=f ing,
u=0 onT,
belongs to H3(Q). If, in addition, f € HJ(Q) then Au € H}(RQ), and so
ue D(Ay).
(iii) Aj is symmetric. For every u, v € D(A1) we have

(Au, v)g, :/ V(—Au)~Vv+/(—Au)v
Q Q
=/ AuAv—i—/ Vu-Vv=(u, A1v)gn,.
Q Q

Applying Theorem 7.7, we see that if ug € H(} (2) there exists a solution u of
(1), (2), (3) (which coincides with the one obtained in Theorem 10.1 because of
uniqueness) such that

u € C([0,00); H{(R)).

Finally, set ¢(¢) = %|Vu(t)|i2(m. This function is C* on (0, co) and
0 = (Vuw, v @) autt), ) du |
= u y _ = —Au , — = — | —
¢ '), dr )T e
It follows that for 0 < ¢ < T < oo, we have
T 2
du
o(T) — p(e) + / d—(t) dt =0.
& t LZ

2

12> and we conclude easily.

Ase — 0, ¢p(e) — %|Vu0|

Proof of (b). We work here in the space H, = H 2@)nN H& (£2) equipped with the
scalar product
(M, v)Hz = (Au, AU)LZ + (uv U)L2
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(the corresponding norm is equivalent to the usual A2 norm; why?). In H, consider
the unbounded operator A : D(Ay) C Hy — Hj defined by

D(Ay) = {u € H*(Q); u € H}(RQ) and Au € H} ()},
Au = —Au.

It is easy to show that A is a self-adjoint maximal monotone operator in H,.* We
may therefore apply Theorem 7.7 to A in H. Finally, we set ¢(¢) = %lAu(z)@z.
This function is C*° on (0, o) and

/ du 2 2
)= (Au(t), AE(I) = (Au(r), A%u(t))2 = —IVAu)l;,.
L

Thus, for0 < ¢ < T < 0o, we have

1 2 1 2 r 2
S18uD = S1AuE) 2 + [ 1VARDIdi =0.

&

In the limit, as ¢ — 0, we see that u € L2(0, co; H3()) (why?) and (because of
equation (1)), 4 € L2(0, co; H'(Q)).

Proof of (c). In the space H = L2(2), consider the operator A: D(A)C H— H
defined by

D(A) = HX(Q) N Hi (),
Au = —Au.

Applying Theorem 7.5, we know that if uy € D(AX), k > 1, then
u € Ck1([0, 00); D(AT)) Vj=0,1,..., k.

Assumption (8) says precisely that uy € D(A) for every integer k > 1. Therefore
we have

ueck—]([o’oo)’ D(A])) szl’ VJ:O,l,,k

It follows (as in the proof of Theorem 10.1) that u € C % (Q x [0, 00)).

e Remark 1. Theorem 10.1 shows that the heat equation has a strong smoothing effect
on the initial data ug. Note that the solution u(x, t) is C* in x for every ¢t > 0 even
if the initial data is discontinuous. This effect implies, in particular, that the heat
equation is time irreversible. In general one cannot solve the problem

ou .
©)) E—Auzo in 2 x (0,7),
4 More generally, if A : D(A) C H — H is a self-adjoint maximal monotone operator one may
consider the Hilbert space H = D(A) equipped with the scalar product («, v) 5 = (Au, Av) +
(u, v). Then the operator A D(A) cH - H defined by D(A) = D(A?) and Au = Auis a
self-adjoint maximal monotone operator in H.
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(10) u=2~0 onI" x (0,7),
with “final” data
(11 u(x,T) =ur(x) on<.
We would necessarily have to assume that
ur € C®(Q) and Aur =0onT Vj=>0.

But even with this assumption there need not be a solution of the backward problem
(9), (10), (11). This problem should not be confused with the problem (9'), (10),
(11), where

/ ou . .
“9) —E—AM—O in 2 x (0,7),

which always has a unique solution for any data ur € L>(2) (change ¢ into T — ¢
and apply Theorem 10.1).

Remark 2. The preceding results are also true—with some slight modifications—if
we replace the Dirichlet condition by the Neumann condition.

Remark 3. When 2 is bounded, problem (1), (2), (3) can also be solved by a decom-
position in a Hilbert basis of L*(£2). For this purpose it is very convenient to choose
a basis (e; (x));>1 of L2(Q) composed of eigenfunctions of —A (with zero Dirichlet
condition), i.e.,
—Ae; = Aje; in ,
e =0 onI"

(see Section 9.8). We seek a solution u of (1), (2), (3) in the form of a series >

o0

(12) (e, 1) =y ai(t)e;(x).

i=1
We see immediately that the functions a; (#) must satisfy

aj(t) + riai(t) =0,

so that a; (1) = a; (0)e*. The constants a; (0) are determined by the relation

o0
(13) uo(x) = Y _ a;j(0)ei (x).

i=1

In other words, the solution u of (1), (2), (3) is given by

3 For obvious reasons this method is also called the method of “separation of variables.” or Fourier
method. In fact, Fourier discovered the Fourier series while studying the heat equation in one space
variable.
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(14) u(x, 1) =Y ai(0)e *'e;(x),

i=1

where the constants a; (0) are the components of u¢(x) in the basis (¢;), i.e., a; (0) =
f uope;.
Q

For the study of the convergence of this series (and also the regularity of u obtained
in this way) we refer to H. Weinberger [1]. Note the analogy between this method
and the standard technique used in solving the linear system of differential equations

M Mu=0

—_ u= s

dt
where u(#) takes its values in a finite-dimensional vector space, and M is a symmetric
matrix. Of course, the main difference comes from the fact that problem (1), (2), (3)
is associated with an infinite-dimensional system.

Remark 4. The compatibility conditions (8) look perhaps mysterious, but in fact they
are natural. These are necessary conditions in order to have a solution u of (1), (2), (3)
that is smooth up to t = 0, i.e., u € C*®(Q x [0, 00) (the assumption uy € C*®(RQ)
with up = 0 on 92 does not guarantee smoothness up to ¢t = 0). Indeed, suppose
u € C®(Q x [0, 00)) satisfies (1), (2), (3). Then clearly,

15 4 _ o onT x 0 vj
(15) 57 =0 onlx(0.00) V.

and by continuity, we also have

u_ o onr [0,00) Vj
—_— = onI" x [0, oo .
ot /
On the other hand,
3%u A u A2 inQ
— = — | =A“u in Q,
912 ot
and by induction, '
dlu Aj nQ V)
— = u mn .
atJ J

By continuity once more we have

d/u ; . =
(16) m:A]u in Q x [0, 00).

Comparing (15) and (16) on I" x {0}, we obtain (8).
Remark 5. Of course, there are many variants of the regularity results for u near

t = 0if we make assumptions that are intermediate between the cases (b) and (c) of
Theorem 10.2.
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10.2 The Maximum Principle
The main result is the following.
o Theorem 10.3. Assume ug € L%(Q) and let u be the solution of (1), (2), (3). Then
we have, for all (x,t) € Q,
min {0, irglzfuo} < u(x,t) < max {0, supuo} .
Q
Proof. As in the elliptic case we use Stampacchia’s truncation method. Set
K = max {O, sup uo}
Q
and assume that K < +o00. Fix a function G as in the proof of Theorem 9.27 and let
s
H(s) =f G(o)do, seR.
0
It easily checked that the function ¢ defined by
p(t) = / H@u(x,t) — K)dx
Q

has the following properties:

(17) ¢ € C([0,00); R), ¢0)=0, ¢=>0 onl0,00),
(18) ¢ € C'((0, 00); R,
and

o't = / Gu(x,t) — K)a—u(x, Hdx = f Gu(x,t) — K)Au(x, t)dx
Q ot Q

= —/ G'(u — K)|Vu|*dx <0,
Q

since G(u(x,t) — K) € HO1 (R2) for every ¢t > 0. It follows that ¢ = 0 and thus, for
every t > 0, u(x,t) < K a.e.on L.

Corollary 10.4. Let ugy € L%(Q). The solution u of (1), (2), (3) has the following
properties:

@) Ifup = 0a.e.on Q, thenu > 0in Q.
(i) If ug € L*®°(R2), thenu € L*°(Q) and

(19) lullzegy < lluollLoe(e)-
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Corollary 10.5. Let ug € C_'(ﬁ) N L?(2) with ug = 0 on T.° Then the solution u of
(D), (2), (3) belongs to C(Q).

Proof of Corollary 10.5. Let (u0,) be a sequence of functions in CZ°(€2) such that
uon — ug in L°(Q) and in L2(Q) (the existence of such a sequence is easily
established). By Theorem 10.2 the solution u, of (1), (2), (3) corresponding to the
initial data ug, belongs to C oo(E). On the other hand (Theorem 7.7), we know that

|un (1) — u(®)| 1200y < 0w — uolr2) VI =0.
Because of (19) we have
lun — umllLeo@) < llwon — tomllLoe(w)-
Therefore, the sequence (u,) converges to u uniformly on @, andsou € C (§)~

As in the elliptic case, there is another approach to the maximum principle. For
simplicity we assume here that € is bounded. Let u(x, t) be a function satisfying’

(20) ueC@xI0,T),

21 u is of class C' in ¢ and of class C2 in x in £ x 0, T7),
0

(22) a—b;—AugO inQ x (0, 7).

Theorem 10.6. Assume (20), (21), and (22). Then

23) max u = maxu,
Qx[0,T] P

where P = (Q x {0})) U (T x [0, T1) is called the “parabolic boundary” of the
cylinder Q2 x (0, T).

Proof. Setv(x,t) = u(x,t) + g|x|*> with & > 0, so that

0
24) 8_1: —Av<—-2¢N <0 inQx(0,T).
We claim that

7max V =maxv.
Qx[0,T] P

Suppose not. Then there is some point (xg, fg) € Q x [0, T such that (xo, 1) ¢ P
and
max v = v(xp, fy).
Qx[0,7]

Since xg € Qand 0 <ty < T, we have

6 If 2 is not bounded we also assume that ug(x) — 0 as |x| — 00.
7 Note that we do not prescribe any boundary condition or any initial data.
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25) Av(xo.10) < 0

and

26) O k0. 10) = 0
— (X0, sl
a1 0, L0

(if o < T we have 2%(xo,f9) = 0, and if tp = T we have 3*(xo, %) > 0).8
Combining (25) and (26), we obtain (3_1; — Av) (x0, tp) > 0, a contradiction with
(24). Therefore we have

~max v =maxv < maxu + ¢C,
Qx[0,T] p P

where C = sup, . |x|2. Since u < v, we conclude that

~max u <maxu+eC Ve>0.
Qx[0,T] P

This completes the proof of (23).

10.3 The Wave Equation

Let @ c RY be an open set. As above, we set
0=02x(0,00) and £ =T x (0, 00).

Consider the following problem: find a function u(x, 1) : 2x [0, 0o) — R satisfying

92u .
(27) W —Au=0 1in Q,
o
(29) ] u(x,0) = ug(x) on <,
30) 2—1:()6, 0) = vo(x) on L,

2 . . . . .
where A = ZlN: 1 837 denotes the Laplacian in the space variables x, t is the time
i
variable, and ug, vg are given functions.

Equation (27) is called the wave equation. The operator (% — A) is often denoted
by O and is called the d’Alembertian. The wave equation is a typical example of a
hyperbolic equation.

8 To be safe one should work in © x (0, 77) with 7/ < T and then let 7/ — T, since v is of class
Clintonlyin  x (0, T).
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When N = 1 and Q = (0, 1), equation (27) models the small® vibrations of
a string in the absence of any exterior force. For each ¢, the graph of the function
x € Q — u(x,t) represents the configuration of the string at time . When N = 2
equation (27) models the small vibrations of an elastic membrane. For each t, the
graph of the function x € Q — u(x, t) represents the configuration of the membrane
at time 7. More generally, equation (27) models the propagation of a wave (acoustic,
electromagnetic, etc.) in some homogeneous elastic medium Q c RV,

Equation (28) is the (homogeneous) Dirichlet boundary condition; it could be
replaced by the Neumann condition or any of the boundary conditions encountered
in Chapter 8 or 9. The condition # = 0 on X means that the string (or the membrane)
is fixed on I, while the Neumann condition says that the string is free at its endpoints.

Equations (29) and (30) represent the initial state of the system: the initial config-
uration (one also says initial displacement) is described by ug, and the initial velocity
is described by vg. The data (uq, vg) are usually called the Cauchy data.

To simplify matters we assume throughout this section that €2 is of class C*°, with
I" bounded.

e Theorem 10.7 (existence and uniqueness). Assume ug € H*(Q) N H(} () and
vy € H& (R2). Then there exists a unique solution u of (27), (28), (29), (30) satisfying

(31) u € C([0, 00); H*(QNHL (2)NCL([0, 00); H (2))NC?([0, 00); L3(2)).

Moreover, 10

32 ‘Mtz
(32) E()

. + |Vu(t)|L2(Q) = |UO|L2(Q) + |VMO|L2(Q) Vi > 0.

Remark 6. Equation (32) is a conservation law that asserts that the energy of the
system is invariant in time.

Before proving Theorem 10.7 let us mention a regularity result.
Theorem 10.8 (regularity). Assume that the initial data satisfy
uo € HYQ), vo € HY(Q) Vk,
and the compatibility conditions

Aug=0 onT Vj >0, jinteger,
Alvy=0 onT Vj >0, jinteger.

Then the solution u of (27), (28), (29), (30) belongs to C*®(Q x [0, 00)).

% The full equation is a very difficult nonlinear equation; equation (27) is a linearized version of
this near an equilibrium.

. . . . . 2 ; 2
10 We use the same notation as in the preceding sections, that is, |% (t)|L2(Q) = fQ ‘ %—‘;(x, t)| dx,

|V“(t)|i2(9) =Y fo |%<x’ ’)|2dx~
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Proof of Theorem 10.7. As in Section 10.1 we consider u(x, t) as a vector-valued
function defined on [0, c0); more precisely, for each r > 0, u(¢) denotes the map
x > u(x, t). We write (27) in the form of a system of first-order equations:11

0
8—1:—11:0 in Q,
(33)
W Au=0 im0
_ u = s
Jat

and we set U = (%), so that (33) becomes

dU
34 — 4+ AU =0,
(34) FTI

where

0 —1 0 -1\ (u —v
o (e (50 ()
We now apply the Hille—Yosida theory in the space H = H(} (Q) x L*(RQ) equipped
with the scalar product

Uy, Uz):/ Vu1~Vu2dx+/ uluzdx—i—/ vivadx,
Q Q Q

where Uy = (3!) and Uy = (32).
Consider the unbounded operator A : D(A) C H — H defined by (35) with
D(A) = (H*(Q) N HY(Q) x HJ (Q).

Note that the boundary condition (28) has been incorporated in the space H. The
condition v = & = 0 on X is a direct consequence of (28).

En
We claim that A + [ is maximal monotone in H:
(i) A + I is monotone; indeed, if U = (%) € D(A) we have

(AU, Uy + U3

:_/VU.VM—/MU+/(—AM)U+/M2+/|Vu|2+/v2
Q Q Q Q Q Q
=—/uv+fu2+/v2+/|vu|220-

Q Q Q Q

(ii) A+ I is maximal monotone. This amounts to proving that A 421 is surjective.
Given F = (5) € H, we must solve the equation AU + 2U = F, i.e., the system

!1 This is the standard device, which consists in writing a differential equation of order k as a system
of k first-order equations.
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—v+2u=f inQ,

(36) ,
—Au+2v=g inQ,

with

ue H*(Q)NHJ(Q) and v e H)(Q).
It follows from (36) that
(37) —Au+4u=2f+g.

Equation (37) has a unique solution u € H*(Q2) N Hj () (by Theorem 9.25). Then
we obtain v € HOI(Q) simply by taking v = 2u — f. This solves (36).

Applying Hille-Yosida’s theorem (Theorem 7.4) and Remark 7.7, we see that
there exists a unique solution of the problem

U L AU =0 on[0.00)
(38) dt =0 onibhoeo
U (0) = Uy,
with
(39) U € C'([0,00); H)NC([0,00); D(A)),

since Ug = ('58) € D(A). From (39) we deduce (31).

In order to prove (32) it suffices to multiply (27) by BB—'; and to integrate on 2.
Note that ) 5
9°ud 19 0
/ _Z_de:__ —M(x,t) dx
q 0t* 0t 20t Jo| ot
and

9 9 19
/(—Au)-”dx:/ Vi - —(Vu)dx = -—f \Vu|?dx.
Q at Q ot 20t Jo

Remark 7. When €2 is bounded we may use on H(} () the scalar product [ Vu;-Vu,
(see Corollary 9.19), and on H = HO1 () x L2() the scalar product

U1, Up) =/ Vuy - Vup —i—/ vivy, Wwhere U; = (ul> and U, = <u2> .
Q Q V1 v2

With this scalar product we have

(AU, U) = —/ Vo - Vu +/(—Au)v =0 VU= (“) € D(A).
Q Q v

It is easy to check that:

(i) A and — A are maximal monotone,
(i) A* = —A.
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As a consequence we may also solve the problem

du

o AU =0on [0, +00), U(0) = Uy,
or equivalently

dU

I + AU =0o0n(—00,0], U(©) =Uy

)'12

(just change ¢ into —¢)." Relation (32) may be written as

[U® g = |Upln VYt eR.

One says that the one-parameter family {U (¢)},er is a group of isometries on H.

e Remark 8. The wave equation has no smoothing effect on the initial data, in contrast
with the heat equation. To convince oneself of this it suffices consider the case 2 = R.
Then there is a very simple explicit solution of (27), (28), (29), (30), namely

X+t
40) ulx,t) = %(uo(x +1t)+uglx — 1)) + % f vo(s)ds.
x—t

In particular, if vg = 0, we have

1
u(x,t) = E(MO(X + 1) +uolx —1)).

Clearly u is not more regular than ug. We can be even more precise. Assume ug €
C®R\{x0}). Then u(x, t) is C* on R x R, except on the lines x + t = x¢ and
x —t = xgo. These are called the characteristics passing through the point (xg, 0).
One says that singularities propagate along the characteristics.

Remark 9. When 2 is bounded, problem (27), (28), (29), (30) can be solved by de-
composition in a Hilbert basis, as was done for the heat equation. It is very convenient
to work in the basis (¢;) of L2(Q) composed of eigenfunctions of —A (with Dirich-
let condition), i.e., —Ae; = Aje; in 2, ¢; = 0 on I'; recall that A; > 0. We seek a
solution of (27), (28), (29), (30) in the form of a series

(41) w(x, 1) =Y ai(t)e;(x).

We see immediately that the functions a; () must satisfy
aj (1) + ria;i (1) = 0,

so that

/

a;(0) .

L sin(y/ Ait).

v

12 In other words, time is reversible; from this viewpoint there is a basic difference between the
wave equation and the heat equation (for which time is not reversible).

ai(t) = a;(0) cos(v/ ;1) +
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The constants a; (0) and alf (0) are determined by the relations

uo(x) =Y _a;j(0)ei(x) and wo(x) =Y _ aj(0)e;(x).
i i
In other words, a;(0) and af(O) are the components of u( and vy in the basis (¢;).
For the study of the convergence of this series see, e.g., H. Weinberger [1].

Proof of Theorem 10.8. We use the same notation as in the proof of Theorem 10.7.
It is easy to see, by induction on k, that

=9

In particular, D(AX) ¢ H*t1(Q) x H*(Q) with continuous injection. Applying
Theorem 7.5, we see that if Uy = (5)) € D(A¥), then the solution U of (38)
satisfies

ue HH(Q)and A/lu=00nT Vj, 0<j <[k/2]
ve HY(Q)and A/v=0onT Vj, 0<j <[k+1/2]—1]

Ue Ck—j([o’ 00); D(AY)) Vj=0,1,...,k.

Thus u € C*=7 ([0, 00); HIT1(Q)) Vj =0, 1,..., k. We conclude with the help of
Corollarl 9.15 that under the assumptions of Theorem 10.8 (i.e., Up € D(A%) Vi),
u € CK(Q x [0, 00)) Vk.

Remark 10. The compatibility conditions introduced in Theorem 10.8 are necessary
and sufficient in order to have a solution u € C*° (2 x [0, 00)) of the problem (27),
(28), (29), (30). The proof is the same as in Remark 4.

Remark 11. The techniques presented in Section 10.3 may also be used for solving
the Klein—Gordon equation
, 3%u 2 .
Q7 W—Au—i—mu:Oan, m > 0.
Note that (27') cannot be reduced to (27) by a change of unknown such as v(x, t) =
At
eMu(x,t).

Comments on Chapter 10

Comments on the heat equation

1. The approach of J.-L. Lions.

The following result allows us to prove, in a very general framework, the existence
and uniqueness of a weak solution for parabolic problems. This theorem can be
viewed as a parabolic counterpart of the Lax—Milgram theorem. Let H be a Hilbert
space with scalar product (, ) and norm | |. The dual space H* is identified with H.
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Let V be another Hilbert space with norm || ||. We assume that V C H with dense
and continuous injection, so that

VCcHCV*

(see Remark 5.1).
Let T > O be fixed; for a.e. ¢t € [0, T] we are given a bilinear form a(t; u, v) :
V x V — R satisfying the following properties:

(1) Forevery u, v € V the function t +— a(t; u, v) is measurable,
@) la(t; u,v)| < M|ull|lv|| fora.e.t € [0, T],Vu,v eV,
(i) a(t; v, v) = a|v||*> — Clv|* forae.r € [0, T],Yv € V,

where @ > 0, M and C are constants.

Theorem 10.9 (J.-L. Lions). Given f € L%0,T: V*) and uy € H, there exists a
unique function u satisfying

d
uel*0,T:V)NC(0,T]; H), d—L; e L?(0,T: V*)

<i[z_bz[(t), v> +a(tu(),v) = (f(0),v) foraete©.T), YveV,

and
u(0) = uog.

For a proof see, e.g., J.-L. Lions—E. Magenes [1].
Application. H = L*(Q), V = HJ (Q) and

ou dv au
a(t;u,v) :;/Qa,'j(x,t)a—xjgjdx+lZ/Qa,~(x,t)a—xiv+/an(x,t)uv dx

with a;;, a;, ap € L (2 x (0, T)) and

(42) Za,»,-(x, NEE; > alt|? forae. (x,1) € 2 x (0,T), V&eRN a>0.
ij

In this way we obtain a weak solution of the problem

ou 0 ou ou
— — — | a;i— j— = in 2 x (0, 7),
43) a’ %23xf<”8xf>+2,-:a'3xl'+a0u foo mex@n

u=20 onI" x (0, 7),

u(x,0) =up(x) ong.

Under additional assumptions on the data, the solution of (43) has greater regularity;
see the following comments.
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2. C®°- regularity. o
We assume here that €2 is bounded and of class C*°. Let a;;, a;, agp € C*° (2 x [0, T'])
satisfy (42).

Theorem 10.10. Assume ug € L*(Q) and f e C®(Q x [0, T]). Then the solution
u of (43) belongs to C®(Q x [g, T1) for every ¢ > 0. If in addition ug € C*(Q)
and { f, uo} satisfy the appropriate compatibility conditions'3 on T x {0}, then u €
C®(Q x [0, T).

For a proof, see, e.g., J.-L. Lions—E. Magenes [1], A. Friedman [1], [2], and
O. Ladyzhenskaya—V. Solonnikov—N. Uraltseva [1]; it is based on estimates very
similar to those presented in Chapter 7 and in Section 10.1.

Let us mention that there is also an abstract theory that extends the Hille-Yosida
theory to problems of the form fi—?(t) + A(t)u(t) = f(t), where for each ¢, A(t) is a
maximal monotone operator. This theory has been developed by T. Kato, H. Tanabe,
P. E. Sobolevski, and others. It is technically more complicated to handle than the
Hille—Yosida theory; see A. Friedman [2], H. Tanabe [1], and K. Yosida [1].

3. L? and C%*-regularity.
Consider the problem'*

d

a—b;—Au:f inQ x (0, 7),
(44) w=0 onT x (0,T).

u(x,0) =ug(x) onQ.

Assume, for convenience, that 2 is bounded and of class C®°. Let us start with a
simple result.

Theorem 10.11 (L?-regularity). Given f € L*(Q x (0, T)) and ug € H} (),
there is a unique solution of (44) satisfying

ue C(0,T); H}(2)NL20,T; HX(Q) N HL(R))

and 5
8—”; € L20,T: LX(Q)).

The proof is easy; see, e.g., J.-L. Lions—E. Magenes [1]. More generally, in L?
spaces, we have the following.

Theorem 10.12 (L?-regularity). Given f € L?(Q2 x (0, T)) with 1 < p < oo and
ug = 0,1 there exists a unique solution of (44) satisfying

13 We do not write down explicitly these relations; they are the natural extensions of (8) (see also
Remark 4).

14 Of course, we could also prescribe an inhomogeneous Dirichlet condition u(x, t) = g(x, t) on
I' x (0, T), but for simplicity we deal only with the case g = 0.

15 To simplify matters.
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ou Jdu 92u
ot’ axi7 axiaxj'

e LP(Q2 x (0,T)) Vi, j.

)

Theorem 10.13 (Holder regularity). LetO < o < 1. Assume that'® f € C**/%(Qx
[0, T1) and ug € C**(Q) satisfy the natural compatibility conditions
up=0onT and —Aupg= f(x,0)onT.

Then (44) has a unique solution u such that

u ou 9%u

—, —, € C¥*2(Q x[0,T]) Vi, j.
or" ax; dxiox (@x[0.TD ¥ J

I/l,

The proofs of Theorems 10.12 and 10.13 are delicate, except for the case p = 2
of Theorem 10.12. As in the elliptic case (see the comments at the end of Chapter 9)
they rely on the following:

(1) an explicit representation formula for u involving the fundamental solution of
% — A. For example, if Q = RY and f = 0then

43) u(x,1) = / Ex — y, Duo()dy = E % up,
RN

where « refers to convolution solely in the space variables x, and E is the heat
kernel, E(x, t) = (47t)~N/2e=X’/4; see, e.g., G. Folland [1].
(ii) a technique of singular integrals.
On this topic see, e.g., O. Ladyzhenskaya—V. Solonnikov—N. Uraltseva [1], A. Fried-
man [1], N. Krylov [1], [2], P. Grisvard [1] (Section 9), D. Stroock—S. Varadhan [1].
A. Brandt [2], B. Knerr [1], and L. Simon [2] have devised more elementary argu-
ments for the Holder regularity.

The general “philosophy” to keep in mind is the following: if u is the solution of
(44) with ug = 0 then %—’t‘ and Au both have the same regularity as f.

Finally, we mention that the conclusions of Theorems 10.11, 10.12, and 10.13
still hold if A is replaced by

Za (e, 12X +) ai 02 4 g 1)
— | aji(x,t)— ai(x,t)— +ap(x, t)u
i ax]' Y 3)6,' ; ' 8)6,' 0
with smooth coefficients such that

(46) Y aij(x.0EE; = vEP Vxr, YEERY, v>0.
ij

16 Thatis, | f(x1, 1) — f(x2, 2)| < C(x1 — x2? + |11 — ])*? Vxi, x0, 11, to.
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In the case of irregular coefficients (i.e., a;; € L*(Q x (0, T)) satisfying (46)) a
difficult _result of Nash—Moser asserts that there exists some o > 0 such that u €
coef 2(9 x [0, T]); see, e.g., O. Ladyzhenskaya—V. Solonnikov—N. Uraltseva [1].

4. Some examples of parabolic equations.

Linear and nonlinear parabolic equations (and systems) occur in many fields: me-
chanics, physics, chemistry, biology, optimal control, probability, finance, image
processing etc. Let us mention some examples:

(1) The Navier—Stokes system:

ou; ou; a . .
(47) a—tl—Aui—i—Zuj—l:fi—}——p inQx(0,7T),1<i<N,
J

8Xj Bx,-
(48) divu:i%zo on Q2 x (0, 7),
iop Oxi
49) u=20 onI" x (0, 7),
(50) u(x,0) = ug(x) on €2,

plays a central role in fluid mechanics; see, e.g., R. Temam [1] and its references.
(ii) Reaction—diffusion systems. These are nonlinear parabolic equations or systems
of the form
ou

E_MAu:f(u) inQ x (0,7)

+ boundary conditions and initial data,

where u(x, ) takes its values in R™, M is an m x m (diagonal) matrix, and f is
anonlinear map from R™ into R™. These systems are used to model phenomena
occurring in various fields: chemistry, biology, neurophysiology, epidemiology,
combustion, population genetics, ecology, geology, etc.; see, e.g., P. Fife [1] and
its numerous references. The solutions of reaction—diffusion equations display
a wide range of behaviors, including the formation of traveling waves and self-
organized patterns.

(iii) Free boundary problems. For example, the Stefan problem describes the evo-
lution of a mixture of ice and water; see, e.g., the expository paper of E. Ma-
genes [1] and the book of A. Friedman [4].

(iv) Diffusion equations play a central role in probability (Brownian motion, Markov
processes, diffusion processes, stochastic differential equations, etc.); see, e.g.,
D. Stroock-S. Varadhan [1].

(v) Many other examples of semilinear parabolic problems are presented in D. D.
Henry [1], Th. Cazenave—A. Haraux [1].

(vi) An interesting use of the heat equation has been made in connection with the
Atiyah—Singer index; see, e.g., P. Gilkey [1].

(vii) More sophisticated nonlinear diffusion equations are used in image processing
(variants of the Perona—Malik model). The recent solution by G. Perelman of
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the celebrated Poincaré conjecture relies on R. Hamilton’s careful study of the
Ricci flow, which is a kind of nonlinear heat equation.

5. For further results concerning the maximum principle for parabolic equations,
see, e.g., A. Friedman [1], M. Protter—H. Weinberger-[1], R. Sperb [1]. For example,
if u is the solution of (1), (2), (3) with ug > 0 and ug # O, then u(x,t) > 0
Vx € ,Vt > 0. When @ = R" this follows easily from the explicit representation
formula (45).

Comments on the wave equation

6. Weak solutions of the wave equation.

There is a general abstract setting for the existence and uniqueness of a weak solution
of the wave equation. Let V and H be two Hilbert spaces suchthat V.C H C V* (as
in Comment 1). For each ¢ € [0, T] we are given a symmetric continuous bilinear
form a(t; u,v) : V x V — R such that

(i) the function t — a(t; u, v) is of class C! Vu,v € V,
(i) a(t;v,v) > a||v|> = Clv|* Ve €[0,T], Yve V,a > 0.

Theorem 10.14 (J.-L. Lions). Given f € L2(0, T; H), up € V,and vg € H, there
exists a unique function u satisfying

2,

dzeL(OTV)

ueC(0,T]; V), le—I: e C([0,T]; H),
d*u
<F(I), v> +a(t;u),v) =(f@),v) foraet € (0,T), YveV,
u0) =ug and d—u(O) = .
dt

For a proof, see, e.g., J.-L. Lions—E. Magenes [1].
Application. Let H = L*(Q), V = H}(Q),

(t; u,v) = /Za,](x t)— —dx—i—/ ap(x,t) uvdx

with (42) and
g, eL®Qx (0,T)), aj=aj; Vi j.

Then there is a unique weak solution of the problem

0? d G]
_M_Z—(al]a—u>+aou=f inQX(O,T),
- Xi

2 )
ot Y 0x;j

(28), (29), (30).
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Note that the assumptions on the initial data (uo € HO1 () and vy € L3(Q)) are
weaker than those made in Theorem 10.7. Under additional assumptions on f', ug, and
vo (regularity and compatibility conditions) as well as on a;, ag one gains regularity
on u.

7. The L?-theory for the wave equation is delicate and had been extensively studied
over the past 30 years. The Strichartz estimates are an important tool; see, e.g.,
S. Klainerman [1].

8. Maximum principle.

Some very special forms of the maximum principle hold for the wave equation; see,
e.g., M. Protter—H. Weinberger [1]. For example, let u be the solution of (27), (28),
(29), (30).

(1) fQ=R,uyp>0and vg > 0, thenu > 0.
(i) If 2 = R?, ug = 0 and vy > 0, then u > 0.

Assertion (i) follows from the representation formula (40). A similar but more com-
plicated formula holds in RY: see, e.g., S. Mizohata [1], G. Folland [1], H. Wein-
berger [1], R. Courant-D. Hilbert [1], and S. Mikhlin [1]. It implies (ii).

However, the reader is warned of the following:

(i) If 2 = (0, 1), ug > 0, and vy = 0, then in general one cannot infer that u > 0.
Gv) If Q = R2, up > 0, and vg = 0, then in general one cannot infer that u > 0.

An unusual form of maximum principle for the telegraph equation (which re-
sembles the wave equation) has recently been devised by J. Mawhin-R. Ortega—
A. M. Robles—Perez [1].

9. Domain of dependence. Wave propagation. Huygens’ principle.
There is a fundamental difference between the heat equation and the wave equation:

(i) For the heat equation, a small perturbation'” of the initial data is immediately
felt everywhere, i.e.,Vx € Q, Vt > 0. For example, we have seen that if ug > 0
andug # 0,thenu(x, t) > 0 Vx € Q,Vr > 0. One says that the heat propagates
at infinite speed. '8

(ii) For the wave equation, the situation is completely different. Assume for example
Q = R. The explicit formula (40) shows that u (X, ) depends solely on the values
of ug and v in the interval [x — 7, x + 7]; see Figure 8.

One says that the interval [x — 7, X + 7] on the x-axis is the domain of dependence
of the point (x, 7). The same holds for @ = RV (N > 2) : u(x, f) depends only
on the values of uq and vy in the ball {x € R¥; |x — x| < 7}. This ball in the
hyperplane RV x {0} is called the domain of dependence of the point (X, f).
Geometrically it is the intersection of the cone

17 That is, localized in a small region.

18 Physically this is not realistic! However, the representation formula (45) shows that a perturbation
on the initial data localized near x = x( has negligible effects at the point (x, ¢) if ¢ is small and
[x — xq| is large.
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{(x,)) eRN xR; |[x — x| <i—tandt <1}

with the hyperplane RV x {0}. The physical interpretation is that waves propagate
at speed less than 1.1° A signal localized in the domain®® D attime t = 01is felt at
the point x € RN only after timet > dist(x, D)(u(x, t) = Ofort < dist(x, D)).

When N > 1 is odd, for example N = 3, there is an even more striking effect:
u(x, 1) depends only on the values of ugy and vo?! on the sphere {x € RV;
|x —x| = t}. This is Huygens’principle. Physically, it says that a signal localized
in the domain D at time ¢ = 0 is observed at the point x € R" only during the
time [11, 2] with f; = infycp dist(x, y) and 1, = SUpPcp dist(x, y). After the
time 7, the signal is not felt at the point x.

On the other hand, if the dimension N is even (for example N = 2) the signal
persists at x for all time 7 > #;.2

An application to music. A listener placed in R? at distance d from a musical
intrument®> hears at time ¢ the note played at time ( — d) and nothing else!**
For more details on Huygens’ principle the reader may consult R. Courant—
D. Hilbert [1], G. Folland [1], P. Garabedian [1], and S. Mikhlin [1].

19 The speed 1 comes in because we have normalized the wave equation. Some readers may prefer
to work with the equation % —2Au=0.

20 That is, ug and vg have their supports in D.

21 And of some of their derivatives.

22 The effect is damped out with time but it does not vanish completely.

23 Of small dimension.

24 While in R? he would hear a weighted average of all notes played during the time [0, t — d].



Chapter 11
Miscellaneous Complements

This chapter contains various complements that have not been incorporated in the
main body of the book in order to keep the presentation more compact. They are
connected to Chapters 1-7. Some of the proofs are very sketchy. Several proofs have
been omitted, and the interested reader is invited to consult the references.

11.1 Finite-Dimensional and Finite-Codimensional Spaces

As is well known, every finite-dimensional space X of dimension p is isomorphic to
R?. In particular, X is complete, all norms on X are equivalent, and the closed unit
ball By is compact.

Proposition 11.1. Let E be a Banach space and let X C E be a finite-dimensional
space. Then X is closed.

Proof. Assume that (x,) is a sequence in X such that x, — x in E. Then (x,) is a
Cauchy sequence in X and thus (x,) converges to a limit in X. Hence x € X.

Proposition 11.2. Assume that X is finite-dimensional and F is a Banach space.
Then every linear operator T : X — F must be bounded.

Proof. Let (¢;) be a basis in X and write x = Zf:] x;e;. Then Tx = Z{):l x;Te;,
so that || Tx|| < ,le |xi| ITe;|l < (max;||Te;l) nyzl lx;| < Cllx]l.

In particular, all linear functionals on X are continuous. The dual space X* of a
finite-dimensional space X is also finite-dimensional, and dim X* = dim X. More
precisely, if (e;) is a basis of X then write x € E as x = Zip:l xje; and set fi(x) =
xi,i =1,2,..., p. Clearly the functionals ( f;) are linearly independent in X* and
they generate X™*. Thus they form a basis of X*. What is less obvious is the following:

Proposition 11.3. Assume that X is a Banach space (with dim X < 00) such that
X* is finite-dimensional. Then X is finite-dimensional and dim X = dim X*.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 349
DOI 10.1007/978-0-387-70914-7 11, © Springer Science+Business Media, LLC 2011
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Proof. We need Hahn—Banach, or more precisely Corollary 1.4. Let J : X — X**
be the canonical injection defined in Section 1.3. Since dim X* < oo, we deduce
from the above discussion that dim X** < co. But X is isomorphic to J(X) C X**,
and thus dim X < dim X** = dim X*. Therefore dim X < oo, and we deduce (again
from the above discussion) that dim X* = dim X.

Proposition 11.4. Let E be a Banach space and let M C E be a closed subspace.
Assume that X C E is a finite-dimensional subspace. Then (M + X) is closed.
Moreover, (M + X) admits a complement in E if and only if M does.

[Warning: Recall that in general, the sum of two closed subspaces need not be
closed; see, e.g., Exercise 1.14.]

Proof. First, assume in addition that M N X = {0}. Write u,, = x, + y, withx, € X,
Yn € M, and u, — u in E. We claim that (x,) is bounded. If not, then ||x,, || — oo
for some subsequence ny — 00. Passing to a further subsequence, we may assume
that ” g H — & in X, with ||| = 1 (here we use the fact that dim X < o0).
Vn Up Xn

Thus 20 = oo~ T
& € M N X and we must have £ = 0. Impossible. Hence we have shown that (x,)
is bounded. Passing to a subsequence, we may assume that x,, — x in X. Then
Ypn — u —x € M (since M is closed). Therefore u € (M + X), and this completes
the proof that (M + X) is closed when M N X = {0}.

In the general case, let X be a complement of (M N X) in X (this is finite-
dimensional stuff). Clearly X is finite- dimensional, M N X = {0}, and M + X =
M + X. We have already proved that (M + X) is closed, and so is (M + X).

— —&; moreover, £ € M (since M is closed). Thus

Suppose now that M admits a complement, say N, in E. Let Py; and Py be the
proje;gtions onto M and N. Since Py (X) has ﬁ~nite dimension, it has a complement,
say N, in N (see Section 2.4). We claim that N is a complement of (M + X) in E.

First we have -

(M + X)NN = {0}.

Indeed, if i = m + x withii € N, m € M, and x € X, then
n=Pyn=Py(m+x)=Pyx € Py(X),

and thus i € N N Py (X) = {0}.
Next, we have N
M+X)+N=E.

Indeed, any £ € E may be written as
§ = Pu§ + Py§,
and Py & may be further decomposed as

Py& = Pyx + 1,



11.1 Finite-Dimensional and Finite-Codimensional Spaces 351
for some x € X and some 71 € ﬁ But x = Py x + Pyx, so that
Pné = (x — Pyx) +n,

and therefore ~
E=PyéE+x—Pyx+neM+X)+N.

Conversely, assume that (M + X) admits a complement, say W, in E.Let X be,
as above, a complement of (M N X) in X. We claim that (W + X) is a complement
of M.

First we have ~

W+ X)NnM={0}.

Indeed, if m € M can be written as m = w + X with w € W and X e~)~( , then
w=m—x,sothatw € (M+X)NW = {0}. Thereforem = x € (MNX)NX = {0}.
Finally, we verify that B
W+X)+M=E.

Indeed, it suffices to check that
M +X)=(M+X)

(since W + (M + X) = E). Clearly M + X C M + X (since X C X).~C0nversely,
any x € X can be written as x = x| + X with x; € M N X and X € X. Therefore
M+XCM+X.

Let M be a subspace of a Banach space E. Recall that M has finite codimension
if there exists a finite-dimensional space X C E such that M + X = E. We may
always assume that M N X = {0} (otherwise choose a complement of M N X in
X). The codimension M, codim M, is by definition the dimension of such X (and is
independent of the special choice of X); it coincides with dim(E/M).

[Warning: A subspace of finite codimension need not be closed. For example, if
dim E = oo, take any linear functional f on E that is not continuous (see Exer-
cise 1.5). Then M = f -1 ({0}) has codimension 1 but M is not closed (by Proposi-
tion 1.5); in fact, M is dense in E'.]

Proposition 11.5. Let E be a Banach space and let M be a closed subspace of E of
finite codimension. Then any subspace M of E containing M must be closed.

Proof. The space M admits an algebraic complement in M, say X. Clearly dim X <
oo, and M = X + M. Applying Proposition 11.4, we see that M is closed.

Proposition 11.6. Let E be a Banach space and let M be a closed subspace of E of
finite codimension. Let D be a dense subspace of E. Then there exists a complement
X of M with X C D.

Proof. Let d be the codimension of M in E. If d = 0, we have M = E and we may
take X = {0}. Hence we may assume that d > l._Fix any x; € D with x| ¢ M; this
is possible, for otherwise D C M implies E = D C M # E; a contradiction. Let
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Mi = M + Rx;p. Then M is closed (by Proposition 11.4) and codim M} =d — 1.
Repeating this construction (d — 1) times yields a subspace X C D, of dimension
d,suchthat M + X = E and M N X = {0}.

Proposition 11.7. Let E be a Banach space and let G, L C E be closed subspaces.
Assume that there exist finite-dimensional spaces X1, X, C E such that

(D G+L+X,=E,
() GNLC X,.

Then G (resp. L) admits a complement.

Proof. We divide the proof into two steps.

Step 1: The conclusion of Proposition 11.7 holds when X5 = {0}.
Let X be a complement of (G + L) N X in X ;. We already know by Proposition
11.4 that (L 4 X1) is closed. We claim that (L 4+ X) is a complement of G.
First, we have -
G+(L+X)=E.

Indeed, any £ € E may be writtenasé = g+ £+ hwithge G, L € L,h € Xl,agld
h may be further decoanosed ash=h;+hywithh; e (GH+L)NX;and hy € X;.
Hence £ € G + L + X;.
Next we have N
GN(L+ X)) ={0}.

Indeed, suppose that g =~E+)21 withg € G, € L,andx; € X|.Thenx; = g— ¢,
sothat X; € (G + L) N X| = {0}. Hence g = £ € G N L = {0} (this is assumed in
Step 1).

Step 2: The general case. _
Let G be a complement of (G N L) in G and let L be a complement of (G N L)
in L (note that G and L exist, since G N L is finite-dimensional; see Section 2.4).
We claim that

3) G+L)+ X1 +X2)=E
and
4) (GNL)={0).

This will complete the proof of the proposition. Indeed, from Step 1 we deduce that
G admits a complement. Therefore G = G + (G N L) also admits a complement by
Proposition 11.4.

Verification of (3). Any & € E may be written as

E=g+Ll+x; with geG, £eL, and x| € X;.

Butg=5+h; withg € Gand h; € GN L;similarly £ = ¢ + hy with £ € L and
hy € G N L. Therefore
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E=@+D+x1+ (i +h)e(G+L)+ X1+ Xa).

Verification of (4). Assume that g € G N L. Then ge(GNL)N L (since GCG
and L C L).But (GNL)N L ={0}.

11.2 Quotient Spaces

Let E be a Banach space and let M be a closed subspace. We consider an equivalence
relation on E defined by x ~ y if x —y € M. The set of all equivalence classes is a
vector space, denoted by E /M, and is called the quotient space of E (mod M). The
canonical map that associates to every x € E its equivalence class [x] is denoted by
w: E — E/M. Clearly m is a surjective linear operator. The quotient space E/M
is equipped with the quotient norm

= = inf = inf —m||.
IxllE/m = e ()l E/m Inf Iyl = inf Jlx —m||

yelx]

It is clear that |[[x]||g/» is @ norm on E/M (to check that |[[x]||g/» = O implies
[x] = 0, one uses the fact that M is closed). Moreover, 7 : E — E/M is a bounded
operator and || || < 1. When there is no confusion we simply write || || instead of

I le/m-

Proposition 11.8. The quotient space E /M equipped with the norm || ||g/m is a
Banach space.

Proof. Let (7 (xx)) be a Cauchy sequence in E/M. We have to show that (7 (xy))
converges, and since (7 (xy)) is Cauchy, it suffices to prove that a subsequence
converges. Passing to a subsequence (still denoted by (x;)), we may assume that
I (xk41) — T(xp) || < 2L’< Vk (see the proof of Theorem 4.8). Hence there exists a
sequence (my) in M such that ||xg41 — xx —myg| < 2%{ Write my = pg+1 — (i with
n1 =0and uy € M Vk. Since (xx — k) is a Cauchy sequence in E, it converges
to a limit £ in E. Therefore m (xx) = m (xx — ux) also converges (to w(£)) in E/M.

Proposition 11.9. Let M be a closed subspace of E and let m* : (E/M)* — E*
be the adjoint of 7 : E — E/M. Then R(x*) = M=, and more precisely, 7* is
bijective from (E/M)* onto M=+, with

I7*E)lles = Nl e/my VE € (E/M)*.
In particular, (E /M)* is isomorphic and isometric to M.
Proof. With& € (E/M)* and x € E, write
(T* (&), x) = (§, w(x)).

If x € M we have (x) = 0 and thus (7*(£),x) =0 Vx € M,ie.,n*(&) e M*.

Conversely, let f € M~; we need to show that f = 7*(£) for some & € (E/M)*.
Given y € E/M, write y = m(x) for some x € E and then define £(y) = (f, x).



354 11 Miscellaneous Complements

Note that this definition does not depend on the special choice of x, since f € ML,
Clearly & is linear in y and we have |§(y)| < || fllgxllx —m| Vm € M. Taking
the inf over all m € M gives [E(Y)| = I flle«llw C)lle/m = I1f e« IVl E/m- Hence
& € (E/M)*,and clearly, (m*(&),x) = (§,7(x)) = (f,x) Vx € E,ie,n*(&) = f.
Moreover, €llg/my < I fllex = I7* (&)l £+

On the other hand, we know that

Im*E e < IElIE /My~

since ||7*|| = ||| < 1. Consequently,

I*@Eller = 1€l e/my» V& € (E/M)".

Let F, G be Banach spaces and let T € L(F, G). Consider the closed subspace
N(T) of F, the quotient space F/N(T), and the canomcal maprw : F — F/N(T).
The operator T can be factored as T = T o 7T, where T:F /N(T) = G; 1ndeed
given y € F/N(T), write y = m(x) for some x € F and set Ty = Tx. Clearly T
is well defined independently of the choice of x, and bijective from F/N(T) onto
R(T); moreover, | T|| = || T||.

Consider now a special case of this setting. Let M be a closed subspace of a
Banach space E. Let T : E* — M* be defined by

T(f)=/fim VfeE".

Then N(T) = M~ and (by Hahn-Banach) R(T) = M*. Applying the above to
F = E* and G = M*, we obtain an operator T:E* /M — M* that is bijective,
andsuchthat T o = T.

Proposition 11.10. For any Banach space E and any closed subspace M of E, the
operator T is a bijective isometry from E*/ M~ onto M*.

Proof. We have only to show that T is an isometry. Given any f € E*, consider
the functional fy on M. By Corollary 1.2 we know that there exists a functional

f € E*suchthat fiyy = fiyr and || fllg= = Il fimlee = IT ()l me.

Since f — f € M+, we have

7w () e ypae = dist(f, MY < 1 f = (F = Plles = 1 Flles = 1T f llase.
Hence we have proved that
e g s < I TF = Vf € E*.
But7 =T o 7T, So that

17 ()l geppre < NT (Dl Yf € E*,

ie.,
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IV ge e < NIT Ol ¥y € E*/M*
On the other hand, it is clear that

1T o) ()l = IT (Nl < I flle= Vf € E*.

Replacing f by (f — g) with g € M~ and taking the infimum over g € M~ yields

T () < N (Pllgejyr YV f € EX,

ie.,
1T lIme < Uyllpeyr Yy € EY/M*.

We conclude that T is an isometry.

The quotient space E/M inherits many of the properties of the space E, e.g.,
reflexivity and uniform convexity.

Proposition 11.11. Assume that E is a reflexive Banach space and M is a closed
subspace. Then E /M is reflexive.

Proof. We know that E* is reflexive (see Corollary 3.21) and thus M is also reflexive
(being a closed subspace of E*; see Proposition 3.20). On the other hand, M~ is
isomorphic to (E/M)* (by Proposition 11.9). Therefore (E/M)* is reflexive, and so
is E/M, again by Corollary 3.21.

Proposition 11.12. Assume that E is a uniformly convex Banach space and M is a
closed subspace. Then E /M is uniformly convex.

Proof. Letn(x),w(y) € E/M besuch that |7(x)|| < 1, [x(y)|| <1, and ||7(x) —
m(y)|| > e. Since E is reflexive, we know (see Corollary 3.23) that there exist
my; € M and my € M such that ||x — mq|| < 1 and ||x — m3|| < 1. Moreover,
[(x —y) —m]| > & Vm € M. The uniform convexity of E yields

(x —mp) + (y —m2)
<1-2,
2
and thus
w(x) +mw(y)
— <1-6.

Proposition 11.13. Let E be a Banach space and let M C E be a closed subspace.
Then

(a) dim M < oo if and only if codim M+ < oo, and in that case
dim M = codim ML,
(b) codim M < oo if and only if dim M+ < oo, and in that case

codim M = dim M~*.
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Proof.

(a) We know by Proposition 11.10 that E* /M~ is always isomorphic to M*. Thus
dim M* < oo <« dim(E*/M™') < oo. By Proposition 11.3 we know that
dim M < oo & dim M* < oo and then dim M = dim M*. On the other hand,
dim(E*/MJ-) < 00 < codim M+ < co. Hence dim M < oo < codim M+ <
oo and dim M = dim M* = dim(E*/M*) = codim M.

(b) Proposition 11.9 yields that dim M* < oo < dim(E/M)* < oco. Using once
more Proposition 11.3, this is equivalent to dim(E/M) < oo, i.e., codim M <
oo. Then dim M+ = dim(E/M)* = dim(E/M) = codim M.

A “dual” statement is partially true.

Proposition 11.14. Let N C E* be a closed subspace. Then dim N < oo if and
only if codim N+ < oo, and in that case dim N = codim N. It is also true that
dim Nt < codim N, but it may happen that diim N+ < codim N < oc.

Proof. Recall that
Nt={xeE; (f,x)=0 VfeN}

Clearly N C N++; but it may happen that N # N~ (see Remark 6 in Chapter 1).
For example, take £ € E** with& ¢ Eandlet N = £ 1({0) = (f € E*; (£, f) =
0}. Then N is a closed subspace of E* of codimension 1 (i.e., N is a hyperplane).
However, N+ = {0} (because the orthogonal of N in E** is R by Lemma 3.2 and
thus N+, the orthogonal of N in E, is reduced to {0}). In thiscase N = N # N+ =
E*, and dim Nt = 0, while codim N = 1.

We now return to the general case. Since N C N 11 we have codim Nt+ <
codim N < co. Set M = N+ C E. By Proposition 11.10 we have

codim M+ = dim(E*/M~) = dim M*,
and thus codim N1+ = dim M < co. Therefore
dim Nt < codim N < o0.

We now prove that dim N < oo = codim N+ < oo and codim N+ = dim N.
We first claim that N1+ = N. We already know that N C NL+ Let S oo fp
be a basis of N and let f € Nt1. Since f =0on N+ = {x € E; (f;, x) = 0Vi},
we may apply Lemma 3.2 and conclude that f = 3" A; f;. Therefore N+ C N. As
above, set M = N-L. Since dim M+ < oo, we deduce from Proposition 11.13 that
codim M < oo and that codim M = dim M1, i.e., codim N1 = dim N.

Conversely, assume codim N L < 00, and set again M = N 1 sothat codim M <
oo. Applying Proposition 11.13 once more yields dim M+ < oo, i.e., dim N1+ <
00. Since N C N1+, we deduce that dim N < oo and we are back to the previous
situation. Hence dim N = codim N-+.
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11.3 Some Classical Spaces of Sequences

Given a sequence x = (X1, X2, ..., Xk, ... ), set

00 I/p
Ixll, = (Z |xk|p> . l<p<oo,
k=1

[*lloo = sup|xi|
k

and consider the corresponding spaces

€7 ={x: |lxll, < oo}, 1<p< o0,

€ = {x; [Ixlloo < 00},
which are Banach spaces for the £ (resp. £°°) norms. This can be established directly
(and is quite easy); or one can rely on Theorem 4.8 applied to 2 = N equipped
with the counting measure, 1 (E) = the number of points in a set £ C N. Many

properties mentioned below are consquences of general results from Chapter 4. For
the convenience of the reader, we also present some direct proofs.

There are two interesting subspaces of £*°:

¢ = {x; lim xj exists
k—00

and

— Q0

co = {x; klim Xp = 0} .

They are both equipped with the £°° norm. Clearly cg C ¢ C £°° with ¢g closed in
¢, and ¢ closed in £°°.

Holder’s inequality takes the form

o
>

k=1

®)

) s 11
< lxllpllyll, ¥xetP, Vyet w1th;+?=l.

The space ¢2 is a Hilbert space equipped with the scalar product

)
(x, y) = Zxkyk~
k=1

It is clear that £7 C ¢y with
Ixlloc < llxll, Vp, 1<p<oo, Vxeltl,

and this yields £ C €9 when 1 < p < g < oo, with
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Ixlly < lxll, Vx e e

Proposition 11.15. The space £F is reflexive, and even uniformly convex, for
1 <p<oo.

Proof. Apply Theorem 4.10 and Exercise 4.12 with Q = N.
Proposition 11.16. The spaces c, cy, and £P, with 1 < p < oo, are separable.

Proof. Let
D = {x = (xx); xx € Q Vk, and x; = 0 for k sufficiently large} .

It is clear that D is countable; moreover, D is dense in £” when 1 < p < oo and in
co. Theset D + A(1,1,1,...), with A € Q, is countable and dense in c.

Proposition 11.17. The space £° is not separable.

Proof. Assume that A C £°° is countable. We will check that A cannot be dense
in £%°. Write A = (a¥), where each a* € £, so that a* = (a'l‘, alzc, ...). For each
integer k set

af+1 iflaf| <1,

b, =
“o if jak| > 1.

Note that b = (by) € € and |b; — af| > 1 Vk. Therefore,

b — a*lloc > b —af] > 1 Vi,

and thus b ¢ A.

Proposition 11.18. Let 1 < p < oo. Given any ¢ € (€P)*, there exists a unique

u € P such that
o0

(9, x) = Zukxk Vx € ¢”.

k=1
Moreover,
lullpy = lI@llerys-

Proof. Letey = (0,0,..., 1,0,0,...).Setur = ¢(ex). We claim that u = (uy) €
¢” and ®)

(6) lullpr < N@llerys-
Inequality (6) is clear when p = 1, since
lukl < Pl ery-llexllt < I@llery- V.

We now turn to the case 1 < p < oo. Fix an integer N. Then for every x =
(x1,x2,...,xn5,0,0,...) we have
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N N
) D wxi =¢ (Z xkek> < lI@liery-llxllp-
k=1

k=1

Choosing x; = |uk|P/’2uk yields

N 1/p
(Dum) < llgllerye-

k=1

As N — 0o we see that u € ¢7" and (6) holds. Moreover,

o (x) = Zuk xx VxeD,

k=1

where D is defined in the proof of Proposition 11.16. Since D is dense in £7 we

obtain
o0

()= upx; Vxeldl.

k=1

Holder’s inequality yields
lp O < llullplixll, Vx e£?,
and therefore ||| (¢ry» < [lull . Combining with (6), we obtain

o1l erys = llull pr-

The uniqueness of u is obvious.

Proposition 11.19. Given any ¢ € (co)*, there exists a unique u € £' such that

o0
(p,x) = Zuk X VYx € co.

k=1
Moreover,
llullr = @l coy*-

Proof. This is an easy adaptation of the proof of Proposition 11.18 (with p = oo
and p’ = 1); the last part of the proof holds since D is dense in cg (but not in £°°).

Proposition 11.20. Given ¢ € (c)*, there exists a unique pair (u, 1) € £' x R such

that
[o)0]
LX) = up xp + A limx;, Vx ec.
(¢ x) =Y ug xx Jim Xy
k=1
Moreover,

lullr + 1A = NPl ey
Proof. Applying Proposition 11.19 to ¢, we find some u € ¢! such that
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() =Y iy ¥y €co.

k=1
If x € cwritex = y +ae, wheree = (1,1, 1,...),a = limg_ooxk, and y € cp.
Then
o0 o0 o0
G(x) =Y ur yk +adle) = Y ur(xy —a) +ap(e) = Y ux xi + Aa,
k=1 k=1 k=1

where A = ¢ (e) — Y ooy Uk
Conversely, given any u € £! and A € R, the functional

9]
8 = Al s ec,
(8) $(x) ];ukxw Jim x, xec

defines an element of (c)*. We claim that

€)) ol = lluelln 4 [A].

It is clear that
(10) ANy < llullt + [A].

Choosing x = (xi) in (8), where N is a fixed integer and

sign (ug), 1<k <N,
sign (), k> N,

yields
N 00
G =Y lwel + sign(A) Y we+ A = 1§l

k=1 k=N+1
As N — o0 we obtain
lullr + A1 < @)

which, together with (10), gives (9).
Proposition 11.21. The spaces £', £, ¢, and co are not reflexive.

Proof. From Propositions 11.19 and 11.18 we know that (cg)* is ¢V and (£h)* is £°.
Therefore the identity map from cg into £°° corresponds to the canonical injection
J : co = (cp)*™ defined in Section 1.3. Since it is not surjective, we conclude that cq
is not reflexive. Applying Corollary 3.21, we deduce that £! and £ are not reflexive.
Moreover, ¢ cannot be reflexive; otherwise, cg, which is a closed subspace of ¢, would
be reflexive by Proposition 3.20.

The following table summarizes the main properties discussed above:
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Reflexive|Separable Dual Space
¢P with1 < p <oo| YES | YES e
0! NO YES £
co NO YES 0!
c NO YES ' xR
> NO NO  |Strictly bigger than ¢!

11.4 Banach Spaces over C: What Is Similar and What Is
Different?

Throughout this section we assume that E is a vector space over C. Of course we
may associate to E a vector space over R simply by considering the product Ax with
A restricted to R, and x € E; the corresponding vector space over R will often be
denoted by ER to distinguish it from E.

A linear subspace M C E is a subset M satisfying Ax € Mandx +y € M
Vi € C,Vx,y € M. Of course a linear subspace M of E is also a linear subspace of
ER. But the converse is not true. For example, a line L in R? containing O is a linear
subspace of R?. However, if we identify C with R, the line L is no longer a linear
subspace of C because i L = L rotated by /2, is not contained in L.

A norm on E is by definition a function E with values in [0, +00) such that
[xIl =0 < x =0, [[]Ax]| = [A] x|l VA € C, Vx € E,and |lx + yll < [lx]| + Iyl
Clearly || || is also a norm on EF, but the converse is not true.

A linear functional on E is amap f : E — C such that f(Ax) = Af(x) and
fx+y)= f(x)+ f(y) VA € C,Vx,y € E. The dual space E* is the space of
all continuous linear functionals on E; E™ is a vector space over C and is equipped
with the norm

I flles = sup |f(x)].
E

x€
lxl<1

The complex number f(x) is also denoted by (f, x), and we clearly have
(Af, ux) = Al f, x) VA, u € C,Vx € E.The correspondence between the complex
dual E* and the real dual E}; is given by the following simple but illuminating result.

Proposition 11.22. The map

I:feE*"—RefekEy

. T . .
is a bijective isometry from E* onto Ex.

Proof. Clearly,
IRe(f, x)| < [{fs ) < 1f e~ llx]]

and thus

an IO ey < I flle-
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Itis also clear that [/ is injective because Re( f, x) = 0Vx € E implies Re(f, ix) =0
Vx € E,ie.,Im(f, x) = 0Vx € E,andthus f = 0. Nextwe claimthat / is surjective.
Indeed, given ¢ € Eﬁi{ set

12) fx) =¢x) —igp(ix) VxekE

[warning: ¢(ix) is not equal to i@ (x), because both ¢(x) and ¢(ix) belong to R]. It
is easy to check that f € E*, i.e., f(Ax) = Af (x) VA € C, Vx € E (please verify!)
and that /(f) = Re f = ¢. From (11) we have ||g0||ED§ < || fllg+. It is also clear
from (12) that

172
@1 = (IeF +10G0R) T = V2lgleg I

(since ||lix|| = ||x||). But we can do better. Assume f(x) # O and set A = VICIRSN o

Then ' [ f (0l
1F )l = %f(x) =7 (3)=0(5)-ie (%) .

Since | f(x)| € R, ¢ () € R,and ¢ () € R, we see that ¢ (%) = 0 and thus
| f(x)| = ¢ (). Therefore

_ 1
A

If@r=lele |5

lelles llxll = llelleg Ixll-

i

Hence ||f||Eﬂ*{ < ||<p||EH§ = ||I(f)||EE§. Combining this with (11), we conclude that
I is an isometry.

Proposition 11.22 implies that there are very few changes in Chapters 1-5 when
we are dealing with vector spaces over C, except that we need to be a little careful
with Hahn—Banach (see below). A major change occurs in Chapter 6 when we deal
with eigenvalues and spectrum. This is already visible in finite dimension: any n x n
matrix M with entries in C admits eigenvalues in C; but it may have no eigenvalues
in R, even if the entries of M belong to R. We now describe chapter by chapter the
changes to be made.

Chapter 1. We select a few examples showing that some statements remain un-
changed while some others need slight modifications.

Proposition 11.23. Let G C E be a linear subspace. If g : G — C is a continuous
linear functional, then there exists f € E* that extends g, and such that

Iflle = llgllG--

Proof. Set = Reg, so that v is an element of G, and l¥llG:, = lglle-- By
Corollary 1.2 there exists some ¢ € Ef& that extends 1, and such that

lelley = l1¥ley-
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Applying Proposition 11.22, we see that there exists f € E* such that ¢ = Re f and
I fllex = llelleg = I¥llgy, = llglig+- In addition, we have ¢ = Re f = ¢ =Reg
on G, ie., Re f(x) = Reg(x) Vx € G; taking ix instead of x yields Im f(x) =
Img(x)Vx € G,and thus f = gon G.

Next, we state one of the geometric forms of Hahn—-Banach. A closed real hy-
perplane H in E is a set of the form

H={x e E;Re(f,x) =a}=[Re f =«],

for some f € E*, f # 0, and some o € R. We again warn the reader that if « = 0,
then H is a linear subspace of ER, but it is not a linear subspace of E over C; for
example, in £ = C, H is a line (and a line is not a linear subspace of E). We say
that H separates A, B C E if

Re(f,x) <a Vxe A and Re(f,x)>a VxeB.

Proposition 11.24. Let A, B C E be two nonempty convex subsets of E such that
ANB = (. Assume that one of them is open. Then there exists a closed real hyperplane
that separates A and B.

Proof. Applying Theorem 1.6 to ER yields a hyperplane H = [¢ = «] for some
¢ € Ep that separates A and B in the usual sense. Then use Proposition 11.23 to
assert that ¢ = Re f for some f € E*.

The definition of the orthogonal M of a linear subspace M of E is unchanged,
M+ ={(fe€E" (fx)=0 Vxe M)
and clearly we have Mt ={feE" Re(f, x) = 0Vx € M} (since we may take ix

in place of x). It is easily seen that M+ = M.

Given a function ¢ : E — (—00, +00], we define its conjugate ¢* on E* by

@*(f) = sup{Re(f, x) — p(x)}.

xeE

With obvious notation we have

o (f)=erUf) VfeE"

Proposition 11.25. Assume that ¢ : E — (—00, 400] is convex, Ls.c., and ¢ #*
+00. Then ¢** = ¢.

Proof. There are two methods. Either one can apply Theorem 1.11 to ¢ = ¢ viewed
on ER, in conjunction with Proposition 11.22. Or one can repeat the proof of The-
orem 1.11; when Hahn-Banach is used, one can separate the convex sets A and B
using a real hyperplane as above.

The definition of the indicator function /g is unchanged. If M is a linear subspace
of E and ¢ = Iy, then
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@*(f) = sup Re(f,x) = I ;1.
xeM

Indeed if f € M+ we have (f, x) = 0 Vx € M and thus ¢*(f) = 0. Otherwise, if
f ¢ M there exists some xo € M such that (f, xo) # 0. Replacing xo by ixg if
needed we may assume that Re( f, xo) # 0. Replacing xg by —xg if needed we may
assume that Re( f, xo) > 0 and then sup, . o(f, Axp) = 4o00.

Chapter 2. All the statements are unchanged (in Corollaries 2.4 and 2.5 replace R
by C). Some proofs rely on the R-structure (e.g., formula (21) in the proof Theo-
rem 2.16). They can easily be adapted to C; alternatively, the C-statement can be
established by applying the R-version to ET.

Chapter 3. All the statements are unchanged (in Lemmas 3.2 and 3.3 replace R by
C). Some proofs require obvious modifications (e.g., the proof of Proposition 3.11).

Chapter 4. Totally unchanged.

Chapter 5. A Hilbert space over C is a vector space over C equipped with a scalar
product (u, v) € C. This is a map from H x H into C satisfying

(u,v) =(v,u) V(u,v)€H,
forevery v € H, u +— (u, v) is linear,
(u,u) >0 Vu #0.

In particular, we have
(Au, pv) = Ap(u,v) Vi, ueC, Vu,veH.
The quantity |u| = (u, u)l/2 is a norm; we have
lu+v|*> = |v]®> +2Re(u, v) + |v|*> Vu,v e H,
and the Cauchy—Schwarz inequality becomes
[(u, v)| < |ullv] Vu,veH.

A typical example is L?(2; C) equipped with the scalar product

(u, v) =/ u(x)v(x)du.
Q

The connection between Hilbert spaces over R and over C goes as follows. Sup-
pose H is a Hilbert space over C. Then Hy equipped with the scalar product Re(u, v)
becomes a Hilbert space over R. Therefore all the statements of Chapter 5 apply to
Hpr. Here are some examples.

Proposition 11.26. Let K C H be a nonempty closed convex set. Then for every
f € H there exists a unique element u € K such that
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|f —ul=min|f —v]| = dist(f, K).
Moreover, u is characterized by the property
uekK and Re(f —u,v—u)<0 Vvek.
Proposition 11.27. Given any ¢ € H* there exists a unique f € H such that
ou) =, f) Yu e H.

Moreover,

Lfl = llella-.
Proof. Applying Theorem 5.5 to Re ¢ in Hp, we find some f € H such that

Re¢(u) =Re(u, f) VYu € H.
Applying this to iu yields Im ¢(u) = Im(u, f) and thus (1) = (u, f) Yu € H.
Consider now a function a(u, v) : H x H — C satisfying

(13) Vv € H,u +> a(u, v) is linear and Vu € H, v — a(u, v) is linear,
(14) a is continuous, i.e., |a(u, v)| < Clu||lv] Yuv € H,

(15) a is coercive, i.e., Rea(u, u) > oz|u|2 Yu € H, for some o > 0.

Proposition 11.28. Assume that a satifies (13), (14), and (15). Let K be a nonempty
closed convex setin H. Then given any ¢ € H* there exists a unique u € K such that

(16) Rea(u,v —u) > Re{p,v—u) VveKk.

Moreover, if a(v, w) = a(w, v) Yv, w € H, then u is characterized by the property
1 !
uekK and —a(u,u)—Re{p,u)=minq{—a(v,v) —Re(p,v);.
2 vek | 2

When K = H, (16) becomes a(u, v) = (¢, v) Yv € H. In particular, we deduce
that any operator 7' € L(H) satisfying

(17) Re(Tu,u) > alu|> Yu € H, for some a > 0,

is bijective from H onto itself. There is a variant that looks slightly more general
(see, however, Remark 1 below).

Proposition 11.29 (Lax-Milgram). Assume that T € L(H) satisfies
(18) [(Tu,u)| > oz|u|2 Yu € H, for some o > 0.

Then T is bijective.
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Proof. See Remark 8 in Chapter 5.

Remark 1. Clearly (17) implies (18). Conversely, assume that (18) holds. Then there
exists some & € C with |€] = 1 such that

(19) Re(§Tu,u) > alul> Vu € H.
Indeed, the numerical range
W(T) ={(Tu,u);u € H, lu] =1}

is a convex set (by Proposition 11.33 below). Moreover, by (18) we know that O ¢
W(T), and in fact dist(0, W(T')) > «. Let p denote the projection of 0 onto W(T)
(in C ~ R?). After a rotation in the plane (i.e., a multiplication by & € C, || = 1)
bringing p to the point (0, | p|) on the x-axis, we conclude that (19) holds.

Chapter 6. Sections 6.1 and 6.2 are totally unchanged. The main difference occurs
in Section 6.3.
Let E be a Banach space over C and let T € L(E). The resolvent set is defined by

o(T) ={r € C; (T — AI) is bijective from E onto E}.

The spectrum is the complement of p(T), i.e., 6 (T) = C\ p(T). A number » € C
is an eigenvalue if the corresponding eigenspace N(T — AI) # {0} and the set of
all eigenvalues is denoted by EV (T). Clearly EV(T) C o (T). It may happen that
EV(T) = @ (e.g., the right shift Tu = (0, uy, uz, ...)). However, o (T) is never
empty.

Proposition 11.30. The spectrum o (T) is a nonempty compact set and
o(T) C{reC; A < |ITII}.

Proof. The main novelty is that o (T") is nonempty. The proof relies on the theory of
analytic functions on C (more precisely Liouville’s theorem) and we will not present
it here. The interested reader may consult A. Taylor—-D. Lay [1], W. Rudin [2], or
A. Knaap [2].

The estimate |A| < || T'|| YA € o(T) is usually not sharp. For example, in C2 the
operator T (u1, uz) = (uz, 0) satisfies 0 (T') = {0} and || T'|| = 1. The optimal bound
is given in terms of the spectral radius. We already know (see Exercise 6.23) that for
every operator T € L(E),

#(T) = lim || T"||"/" exists
n—oo
and clearly r(T) < ||T'||; r(T) is called the spectral radius.
Proposition 11.31. For every T € L(E) we have

r(T) = max{|A|; A € o (T)}.
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For the proof we refer again to A. Taylor—D. Lay [1], W. Rudin [2], or A. Knaap [2].
The argument relies heavily on the fact that E is a Banach space over C through the
theory of power series on C. When E is a Banach space over R we can say only
that max{|A|; A € o(T)} < r(T), and the inequality can be strict even if o (T) is
nonempty (see Exercise 6.23).

Another interesting difference between real and complex spaces concerns the so-
called spectral mapping theorem. Consider first the real case: let Q(r) = Z/f:() ay t*
be a polynomial with coefficients a;y € R and let T € L(E), where E is a Banach
space over R. We know (see Exercise 6.22) that

(20) Q(EV(T)) C EV(Q(T)) and  Q(o(T)) C o(Q(T)),

and these inclusions might be strict (except, e.g., in the case of a Hilbert space when
T* = T). In the complex case these inclusions become equalities: Suppose Q(¢) is
a polynomial with coefficients ax € C andlet T € L(E), where E is a Banach space
over C.

Proposition 11.32. We have

2n Q(EV(T)) = EV(Q(T))
and
(22) Q0 (T)) = o (Q(T)).

Proof. We already know that (20) holds (the argument is the same as in Exer-
cise 6.22). Assume by contradiction that the inclusions are strict. Then there exists
uw € EV(Q(T)) suchthat u ¢ Q(EV(T)). Write

Q) —p=a(t =)t —t)---(t —1p),

witha # Oandt; ¢ EV(T) Vi.In addition, we have some x 7% O such that Q(T)x =
wx. Since (T — t1) is injective, we deduce that (T — 1) --- (T —t,1)x = 0, and
repeating the same argument yields x = 0. Impossible.

Similarly, suppose n € o (Q(T)) is such that u ¢ Q(o(T)). Write Q(¢t) — u as
above with #; ¢ o (T) Vi. Then Q(T) — ! can be written as a product of bijective
operators. Therefore Q(T) — ul is bijective, i.e., u € p(Q(T)). Impossible.

In Hilbert spaces, a useful tool in the study of the spectrum is the numerical range.
Let H be a Hilbert space over C; the numerical range of an operator T € L(H) is
defined by

W(T)={(Tu,u); u € H and |u| = 1}.

Proposition 11.33. We have
o(T) C W(T),

and more precisely, if , ¢ W(T), then A € p(T) with
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(23) 1T = 2D~ < 1/dist(x, W(T)).

In addition, W (T) is convex.

Proof. Assume that A ¢ W (T) and set o« = dist(A, W(T)). We have
[((Tu,u) — Al >a VYu e H with |u| =1.

Thus
|(Tu — Au,u)| > alul> Vu € H.

Applying Lax—Milgram (Proposition 11.29), we conclude that (T — A1) is bijective
and that |Tu — Au| > alu| Yu € H, ie., (T — 1D~ < 1/a.

The convexity of W(T) is a counterintuitive fact due to Toeplitz and Hausdorff.
For the proof we refer to P. R. Halmos [2].

In general, the numerical range W(T') can be much larger than the spectrum.
For example, with H = C2 and T (u1, ur) = (uz,0) we have EV(T) = o(T) =
{0}, while W(T) = {» € C;|r| < 1/2}. However, if T is self-adjoint, or more
generally normal (see below), then W(T) = conv o (T), the convex hull of o (T)
(see P. R. Halmos [2] and Remark 2 below).

When H is a Hilbert space over C and T € L(H), a word of caution about the
concept of adjoint T* is necessary. Following a general procedure, the adjoint of an
operator T € L(H) is defined via the relation

(T*f, wyg g = (f, Tu)yp»u Vf € H*, YueH,

and then 7* € L(H*) (we emphasize that T*(Af) = AT*f VA € CandVf € H*).
Moreover, (A\T)* = AT* VA € C (because f : H — C is linear).

On the other hand, we may also identify H* with H (via the isomorphism in
Proposition 11.27), and view T* as an operator from H into itself defined through
the relation

(Tu,v) = (u, T*v) VYu,v € H,

and we have T* € L(H) (we emphasize that T*(Av) = AT*v VA € Cand Vv € H).
However, we now have

(24) AT)*=AT* VaeC

(as can be easily checked). This convention is commonly used, so that 7* and T live
in the same world: one can compare 7* and T, compose 7* and T, etc.
We say that an operator T € L(H) is self-adjoint (or Hermitian) if 7* =T, i.e.,

(Tu,v) = (u,Tv) VYu,ve H.

If T is self-adjoint, then (Tu, u) = (u, Tu) = (Tu,u) Vu € H,sothat (Tu,u) € R
Yu € H.lInparticular, the numerical range W (T') is a subset of R and thus o (T') C R.
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The spectral decomposition of compact, self-adjoint operators is exactly the same as
in Chapter 6.

Proposition 11.34. Let H be a separable Hilbert space over C andlet T be a compact
self-adjoint operator. Then there exists a Hilbert basis composed of eigenvectors of
T (and the corresponding eigenvalues are real).

We say that an operator T € L(H) isnormalif it satisfies T*oT = T oT™*. Various
properties of normal operators are discussed in Problem 43 when the underlying space
H is a Hilbert space over R; they still remain valid when H is a Hilbert space over
C. But we have now much more:

Proposition 11.35. Let H be a Hilbert space over C and let T be a normal operator.
Then

(25) max{|A; A € o(T)} = |IT].
Proof. Since T is normal, we have
|T?|| = ||T||? for every integer p > 1.

This is proved in Problem 43 when H is a Hilbert space over R, and the same
argument remains valid when H is a Hilbert space over C (alternatively apply the
real result to 7 on Hg). Therefore r(T) = lim,— oo || T"|Y/" = ||T . Combining this
with Proposition 11.31 yields (25).

Proposition 11.36. Let H be a separable Hilbert space over C and let T be a compact
normal operator, then there exists a Hilbert basis composed of eigenvectors of T (but
the corresponding eigenvalues need not be real).

Proof. If T is normal, so is (T — A[I) for any A € C. Therefore (as in Problem 43)
we have N(T — Al) = N((T — AI)*) = N(T* — AI). It follows that N(T — AI)
and N(T — wl) are orthogonal when A # p. We may then proceed exactly as in
the proof of Theorem 6.11. We obtain a compact normal operator Ty on F1 with
o (Tp) = {0}. Instead of invoking Corollary 6.10 to conclude that Ty = 0, we apply
instead Proposition 11.35 and derive that Ty = 0. It is here that we make use of the
fact that H is a space over C (the same conclusion fails in real spaces).

Remark 2. Ttis easy to deduce from Proposition 11.36 that W(T') = conv o (T) when
T is a compact normal operator. Indeed, choose a basis (e;) as in Proposition 11.36.
Givenu € H with |u| = L writeu = ) u;e; and ) lu;|* = 1.Then Tu = > Aiuje;
and (Tu,u) = Zki|u,~|2. It is still true that W(T') = conv o (T") for any normal
operator T (not necessarily compact); see P. R. Halmos [2].

Let H be a Hilbert space over C. We say that an operator T € L(H) is an isometry
if |Tu| = |u| Yu € H, and T is a unitary operator if T is an isometry that is also
surjective. Various properties of isometries and unitary operators are discussed in
Problem 44 when the underlying space H is a Hilbert space over R; most of them
remain valid when H is a Hilbert space over C, except a statement about the spectrum,
which needs to be modified as follows:
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Proposition 11.37. Let T be an isometry. Then
EV(T)C S'={1eC; Al =1}).

If T is a unitary operator, then
o(T) C S,

and if T is not a unitary operator, then
o(M)={reC Al =1}
The proof is an easy adaptation of the one given in the solution of Problem 44,
question 6.

An operator T € L(H) is said to be skew-adjoint (or antisymmetric) if 7* = —T.
Clearly, T is skew-adjoint if and only if i T is self-adjoint (this follows from (24)).
Thus, for any skew-adjoint operator we have EV(T) C o(T) C W(T) C iR.

Chapter 7. Very little needs to be changed. In the definition of a monotone operator
replace the assumption (Av,v) > 0 Vv € D(A) by Re(Av,v) > 0 Vv € D(A).
Many computations in Sections 7.2, 7.3, and 7.4 rely on the following identity: if
¢ € C'(10, +00); H), then |p|* € C'([0,+00); R) and %|pl> = 2Re(%£, ),

since J 4 J J
4, 2_ 4 _(4® ae
dﬂm —dﬁww) (df¢>+<%ch>

dey do dy
=(-= = =2Re| — )
(dt,¢)+(d,,¢) e(dt,¢)

Chapters 8 and 9. Interesting properties of the spectrum of second-order elliptic
operators that are not self-adjoint may be found in S. Agmon [1] (Section 16).



Solutions of Some Exercises

In this section the formulas are numbered (S1), (S2), etc, in order to avoid any
confusion with formulas from the previous sections.

1. The equality (f, x) = ||lx||? implies that | x| < || f||. Corollary 1.3 implies that
F(x) is nonempty. It is clear from the second form of F(x) that F(x) is closed
and convex.

2. In a strictly convex normed space any nonempty convex set that is contained in
a sphere is reduced to a single point.

3. Note that

Lo lie
(Foy = IAIEIYIE= SIAIE+ Sl

Conversely, assume that f satisfies
L S Y
(SD) Ellyll —EIIXII =(f,y—x)Vy€eE.

Firstchoose y = Ax with A € Rin(S1); by varying A one sees that ( f, x) = ||x 2.
Next choose y in (S1) such that || y|| = § > 0; it follows that

Foy) < 28 4 Lpa?
Ly < — —|lx|I-.
V=375
Therefore we obtain
1o 1 2
SILfIl= sup (f,y) < =8+ ~llx[I*.
veE 2 2
lyl=s

The conclusion follows by choosing § = ||x||.
4. If f € F(x) one has

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 371
DOI 10.1007/978-0-387-70914-7, © Springer Science+Business Media, LLC 2011
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1||||2 1||||2><f )
2y 2x_’yx

and if g € F(y) one has

1 1
?MF—?MFZ@J—YY

Adding these inequalities leads to (f — g, x — y) > 0. On the other hand, note
that 5 5
(f =g x—=y)=IxI"+lylI” = (f, y) — (g, x)

= [l + Iy I? = 20l 1yl-
5. By question 4 we already know that [|x|| = ||y]|. On the other hand, we have
(F(x) = F(y), x = y) = [IxII> = (F), W1+ Y1 = (F (), %],

and both terms in brackets are > 0. It follows that || x||? = [|y||?> = (F (x), y) =
(F(y), x),whichimplies that F'(x) € F(y)andthus F(x) = F(y) by question 2.

1(a).

I fllex = max |fi].
1<i<n

1(b). f € F(x) iff for every 1 <i < n one has

f= (signx;)|lx]ly ifx; #0,
l anything in the interval [—||x||1, +[x[I1] if x; = 0.

2(a).
n
Iflles =D 1fil-
i=1
2(b). Given x € E consider the set
I={1<i=<n;lxi|=xlo}

Then f € F(x) iff one has

() fi =0 Vigl,
(i) fixi =0Vieland Y ;;1fil = lIx]lco-

n 1/2
nmp=(zymﬁ
i=1

and f € F(x)iffone has f; = x; Vi = 1,2, ..., n. More generally,
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n 1/p'
I fllee = (ZW’) :
i=1

where 1/p +1/p’ = 1, and f € F(x) iff one has f; = |x,-|”72xi/||x||§_2
Vi=1,2,...,n.

1.

I £llex = 1 (note that £(*) = 1/(1 + &) Yo > 0).

2. If there exists such a u we would have fol(l —u)dt = 0 and thus u = 1; absurd.

1.

Let P denote the family of all linearly independent subsets of E. It is easy to see
that P (ordered by the usual inclusion) is inductive. Zorn’s lemma implies that P
has a maximal element, denoted by (e;);cs, Which is clearly an algebraic basis.
Since e¢; # 0 Vi € I, one may assume, by normalization, that ||e;|| = 1 Vi € I.

. Since FE is infinite-dimensional one may assume that N C /. There exists a

(unique) linear functional on E such that f(e;) =i ifi € Nand f(e;) = 0 if
i € I\N.

. Assume that [ is countable, i.e., I = N. Consider the vector space F;, spanned by

(ei)i<i<n- Fnisclosed (see Section 11.1) and, moreover, UZ‘;I F,, = E.Itfollows

from the Baire category theorem that there exists some n¢ such that Int(F,,) # .
Thus E = F,,; absurd.

1.

Let x,y € C, so that x = limx, and y = lim y, with x,, y, € C. Thus rx +
(1 — 1)y = lim[rx, + (1 — 1)y,] and therefore tx + (1 — t)y € C Vt € [0, 1].
Assume x, y € Int C, so that there exists some r > 0 such that B(x,r) C C and
B(y,r) C C. It follows that

tB(x,r)+ (1 —t)B(y,r) C C VvVt € [0, 1].

ButtB(x,r)+ (1 —t)B(y,r) = B(tx + (1 —t)y, r) (why?).
Let r > 0 be such that B(y,r) C C. One has

tx+ ({1 —-1B(,r)CcC Vtel01],

and therefore B(tx+ (1 —1t)y, (1—1)r) C C.Itfollowsthattx+ (1 —1)y € IntC
vt € [0, 1).

Fix any yo € Int C. Given x € C one has x = lim,_o[(1 — })x + +yo]. But
(11— %)x + % yo € Int C and therefore x € Int C. This proves that C C Int C and
hence C C Int C.

1.

We already know that
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pAx) =Ap(x)VA >0, Vx € E and px+y) <pkx)+p(y)Vx,y€eE.

It remains to check that

(i) p(—x) = p(x) Vx € E, which follows from the symmetry of C.
(i) p(x) = 0 = x = 0, which follows from the fact that C is bounded. More
precisely, let L > 0 be such that ||x|| < L Vx € C. It is easy to see that

1
px) = Tlx| Vx € E.

2. C is not bounded. Consider for example the sequence u, (1) = 1/n/(1 + nt) and

1/2
check that u, € C, while Jun || = /7. Here p(u) = ( I |u(t)|2dt) is a norm
that is not equivalent to ||u]|.

1. Let

n
P=13)i= (1A, .... ) € R % > 0Viand Z,\l:l},

i=1

so that P is a compact subset of R"” and C,, is the image of P under the continuous
map A > Y ' Aix;.

2. Apply Hahn-Banach, second geometric form, to C,, and {0}. Normalize the linear
functional associated to the hyperplane that separates C,, and {0}.

4. Apply the above constructionto C = A — B.

1.10

(A) = (B) is obvious.

(B) = (A). Let G be the vector space spanned by the x;’s (i € I). Givenx € G
write x = ) ;. ;Bix; and set g(x) = Y ;. ;Bia;. Assumption (B) implies that
this definition makes sense and that |g(x)| < M||x|| Vx € G. Next, extend g to
all of E using Corollary 1.2.

(A) = (B) is again obvious.
(B) = (A). Assume first that the f;’s are linearly independent (1 < i < n). Set
o = (xg,a2,...,a,) € R". Consider the map ¢ : E — R” defined by

() = ((f1. %), ..., (fa, X)) -

Let C = {x € E;|lx|| < M + ¢}. One has to show that « € ¢(C). Suppose,
by contradiction, that « ¢ ¢(C) and separate ¢(C) and {«} (see Exercise 1.9).
Hence, there exists some 8 = (81, B2, ..., Bn) € R", B # 0, such that

B-ox)<B-a VxeC, i.e.,<z,3ifi,x)52ﬁiai Vx € C.
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It follows that (M +¢)|| >_ B fill < Y Bi;. Using asumption (B) one finds that
> Bi fi = 0. Since the f;’s are linearly independent one concludes that 8 = 0;
absurd.

In the general case, apply the above result to a maximal linearly independent
subset of (f;)1<i<n-

1. Itis clear that C C C** and that C** is closed. Conversely, assume that xg € C**
andxg ¢ C.One may strictly separate {xo} and C, so that there exist some fo € E*
and some «q € R such that

(fo,x) < oo < (fo,x0) Vx € C.
Since 0 € C it follows that ag > 0; letting f = (1/ap) fo, one has
(f,x) <1< {f xo)Vx eC.

Thus f € C* and we are led to a contradiction, since xg € C**.
2. If C is a linear subspace then

C*={feE*"(fix)=0VxeC})=Ct.

1.18

v )b iff=a,

@ v = +oo if f £a.
flogf—f if f>0,

(b) ©*(f) =10 if f=0,
+00 if f<0.

(©) o () =1fI.

(d) *(f)=0.

IR e if f >0,
© v = —1—log|fl iff<O.
® o (f) =1+ fH2

1 2 .

* _ Ef 1f|f| <1,
N v = +oo  if|f] > 1.

. T, 11
(h) ¢ (f)=—IfIP with—+— = 1.

p p p
if 1
) =10 1o=r=l

+o00  otherwise.
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Ly
i = fP it f>=0,
* .
0 v () {0 if £ <0.
® 0 (f)—{_#m,,f A
. o
O ¢(f)=|f|+?|f|p-

The conjugate functions are defined on 7" with % + é =1by

(@) o*(f) = IR AP YR FLfl? < oo,
+00 otherwise.
b o = | el A SR a il D < o,
Foo otherwise,
. (k—1)
W]th ap = —kk/(kfl) .
* 0 if || flleee <1,
Y =
«© e 400  otherwise.
1.21

2. ¢* = I4, where A = {[f1, f2I; /1 =0, f2 <0,and 4 f» > 1}.
3. One has

inf {p(x) + ¥ (x)} =0

xeE
and

¢* =1Ip, where D' ={[f1, f2]: f» =0}
It follows that
(=) + Y (f) =+o0 VfeE,
and thus
sup {—¢* (= f) — ¥*(f)} = —oo.

feE*
4. The assumptions of Theorem 1.12 are not satisfied: there is no element xo € E
such that ¢(xg) < +00, ¥ (xg) < +00, and ¢ is continuous at xg.
1.22
1. Write that
Ix —all < llx =yl + 1y —al.
Taking inf,e4 leads to ¢(x) < ||lx — y|| + ¢(y). Then exchange x and y.
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2. Letx,y € E and ¢t € [0, 1] be fixed. Given ¢ > 0 there exist some a € A and
some b € A such that

lx —al <@&)+e and |y—>b| <) +e.
Therefore
ltx + (A =0y —[ta+ (1 —0b]l <tex)+ (1 —Dey) +e&.
Butta + (1 —t)b € A, so that

x4+ (1 -1y <tpx)+ 1 —-0te(y)+e& Ve=>D0.

3. Since A is closed, one has A = {x € E; ¢(x) < 0}, and therefore A is convex if

@ 1s convex.

4. One has
@*(f) = sup{(f, x) — 322 lx —all}

xeE

= sup sup{(f, x) — [lx — all}

xeE acA

= sup sup{(f, x) — [lx — all}
acA xeE

= (L)) + I, ().

1. Let f € D(¢p*) N D(Y¥*). For every x, y € E one has
(fix =y) —px —y) < *(f),
(fLy) =¥ =¥ ().

Adding these inequalities leads to

(V) (x) = (f, x) — " (f) =¥ (f).
In particular, (pVi/)(x) > —oo. Also, we have

(V)" (f) = sup{(f, x) — yilellfg[fﬂ(x - +¥ymh

xeE

= sup sup{(f, x) —@(x —y) — ¥ (»)}
xeE yeE

= sup sup{(f, x) —@(x —y) — ¥ (»)}
yeE xeE

=" (f) +¥*(f).
2. One has to check thatVf, g € E* and Vx € E,

(f.x) =) =¥ (x) =" (f — ) + ¥ (9).
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This becomes obvious by writing

<f7x) = <f_g1x>+(g7x>

3. Given f € E*, one has to prove that

D sup{(f, x) — o) =¥ (x)} = gienl;f*{w*(f -8+ V¥ (@)

xeE

Note that

sup{(f, x) — o) — ¥ (x)} = —ggg{é(ﬁ + ¥ ()}

xeE

with ¢(x) = @(x) — (f, x). Applying Theorem 1.12 to the functions ¢ and
leads to

inf {¢(x) + ¥ (x)} = sup {—¢"(—g) — V" (&)},
xeE gEE*
which corresponds precisely to (S1).

4. Clearly one has

(@* VY (x) = sup {(f, x) — gieng*[fp*(f -9+ v

feE*

= sup sup {(f,x) —¢*(f — &) —¥*(9)}
feE* geE*

= sup sup {(f,x) —¢*(f — ) — ¥ (g)}
geE* feE*

=™ (x) + ¥ (x).

1.24

1. One knows (Proposition 1.10) that there exist some f € E* and a constant C
such that ¢(y) > (f,y) — C Vy € E. Choosing n > | f||, one has ¢, (x) >
—n|x|| — C > —o0.

2. The function ¢, is the inf-convolution of two convex functions; thus ¢, is convex
(see question 7 in Exercise 1.23). In order to prove that |¢,(x1) — @, (x2)| <
n|lx; — x2]|, use the same argument as in question 1 of Exercise 1.22.

3. (¢n)* = Iy, + ¢* (by question 1 of Exercise 1.23).

5. By question 1 we have ¢(y) > —|| f|| Iyl — C Vy € E, which leads to

nlx = yull < LI Iynll + € + @(x) + 1/n.

It follows that |y,| remains bounded as n — oo, and therefore lim,_, oo
[[x — yqll = 0. On the other hand, we have ¢, (x) > ¢(y,) — 1/n, and since
@ is 1.s.c. we conclude that lim inf,,_ 0 @, (x) > @(x).

6. Suppose, by contradiction, that there exists a constant C such that ¢,(x) < C
along a subsequence still denoted by ¢, (x). Choosing y, as in question 5 we see
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that y, — x. Moreover, ¢(y,) < C 4+ 1/n and thus ¢(x) < liminf,_ o ¢(y,) <
C; absurd.

4. For each fixed ¢ > 0 the function

1 2 2]
J— t —
y = > [IIJC + oyl llx |

is convex. Thus the function y + [x, y] is convex as a limit of convex functions.
On the other hand, G(x,y) = sup,.o{—5[llx + tylI> — IIx]]} is Ls.c. as a
supremum of continuous functions.

5. One already knows (see question 3 of Exercise 1.1) that

1|| +ty|? 1|| 12 > (f, ty)
I S = ALY

and therefore
[x,¥1=>{(f,y) Vx,yeE, Vf e F(x).

On the other hand, one has

* _1 2 l 2
@ (f)—EIIfll —(f,x)+2||x||

and
0 if (f,y)+a<0,

v = {+oo i (f,y) +a > 0.

It is easy to check that inf,cg{@(z) + ¥ (z)} = 0. It follows from Theorem 1.12
that there exists some fy € E* such that p*(fo) +¢¥*(— fo) =0, i.e., {fo, y) > «
and 3 foll> — (fo. x) + 3/x]|* = 0. Consequently, we have || fol = [x| and

(fo. x) = lIxII%, i.e., fo € F(x).

P2y
6. @) 1 <p<oo[x,y]l= letl‘p_zx,y,'
lx1lp
®) p=1,1x, v = llxlh [, co(signxi)yi + ¥, o byl
(c) p = 00, [x, Y] = maxiel{xiy,-}, where I = {1 <i<mn; |xi| — ”x”oo}

Let T : E — F be a continuous linear extension of T. It is easy to check that
E=N(T)+ G and N(T) N G = {0}, so that N(T) is a complement of G; absurd.

Without loss of generality we may assume that xo = 0.

1. Let X = {x € E; ||x|| < p} with p > 0 small enough that X C D(¢). The sets
F, are closed and |, F, = X. By the Baire category theorem there is some
ng such that Int(F,,,) # #. Let x; € E and p; > 0 be such that B(x, p1) C Fy,.
Given any x € E with || x| < p1/2 write x = %(xl +2x) + %(—)q) to conclude

that (x) < 1no + Lo(—x).
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2. There exist some & € E and some constant ¢t € [0, 1] such that ||£]] = R and
xy = tx1 + (1 — r)&. It follows that

o(x2) <tp(x) +(1 —-M
and consequently ¢(x2) — ¢(x1) < (1 — H[M — ¢(x1)]. But xo — x; =
(1 —t)(§€ — x1) and thus ||x — x1|| = (1 —t)(R — r). Hence we have

(M — p(x1)].

o) — g = 127011

On the other hand, if x = 0 one obtains ¢||x;|| = (1 — t)R and therefore

T
(l—n=—"t_ <
il + R -2

It follows that ¢ (0) — @(x1) < %[M —@(x1)],sothat M — @ (x1) < 2[M — ¢(0)].

[2.2] We have p(0) < p(x,) + p(—x,) — 0, s0 that p(0) < 0. On the other hand
p(0) = 2p(0) by (). Thus p(0) = 0.

Next we prove that p(o,x,) — 0. Argue by contradiction and assume that
|p(onxy)| > 2e along a subsequence, for some ¢ > 0. Passing to a further sub-
sequence we may assume that o, — « for some a € R. For simplicity we still
denote (x,) and () the corresponding sequences.

The sets F, are closed and | J,,..; F» = R. Applying the Baire category theorem,
we find some ng such that Int Fno_;é #. Hence, there exist some Ag € R and some
6 > 0 such that |p((Ao + t)xx)| < € Vk > ng, Vt with |t| < §. On the other hand,
note that

ploagxg) < p((Ao + ax — a)xg) + p((a — Ao)xi),
—plagxr) < —p((Ao + ax —a)xg) + p((Ao — a)xg).

Hence we obtain | p(agxx)| < 2¢ for k large enough. A contradiction.
Finally, write

plapxy) — plax) < play(xp — x)) + plapx) — plax) — 0
and
p(anx) < P(Oln(x —xn)) + p(anxn),
so that

playxy) — plax) > —p(a,(xp — x)) + plapx) — plax) — 0.

By (i) there exists a linear operator T : E — F* such that a(x,y) =
(Tx,y)r+.F VYx,y. The aim is to show that T is a bounded operator, i.e., T (BEg)
is bounded in F*. In view of Corollary 2.5 it suffices to fix y € F and to check that
(T (BE), y) is bounded. This follows from (ii).
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1. Onehas (Ax,, —A(xo+x), x,—xo—x) > 0and thus (Ax,, x) < &,||Ax,||+C(x)
with &, = ||x, — xp|| and C(x) = [|A(xo + x)||(1 + [|x||) (assuming &, < 1 Vn).
It follows from Exercise 2.5 that (Ax;,) is bounded; absurd.

2. Assume that there is a sequence (x,) in D(A) such thatx, — xgand ||Ax,|| — oo.
Choose r > 0 such that B(xg,r) C conv D(A). For every x € E with ||x|| < r
write

m m
xo+x=) fiyiwitht; >0Vi, » =1, and y; € D(A)Vi
i=1 i=1
(of course ¢, y;, and m depend on x). We have
(Axp — Ay, xp — yi) 2 0

and thus #; (Ax,, x, — yi) > t; (Ay;, x, — y;). It follows that

m

(Axp, Xy — X0 — X) = Y 1i{Ayi, xn — yi),

i=1

which leads to

(Axp, x) < &l Axnll + C(x)

with &, = [lx, — xoll and C(x) = 371, # | Ayi (1 + llxo — yilD)-
3. Letxg € Int D(A). Following the same argument as in question 1, one shows that
there exist two constants R > 0 and C such that

Il <C Vx e D(A) with lx — xoll < Rand Vf € Ax.

For every x € €7 set Tyx = Z:’: 1 @i x;, so that T;,x converges to a limit for
every x € £P. It follows from Corollary 2.3 that there exists a constant C such that

|T,x| < Clx|ler Vx €£P, Vn.

Choosing x appropriately, one sees that o € €7 and ||| p <C.

Method (ii). Let us check that the graph of T is closed. Let (x,) be a se-
quence in E such that x, — x and Tx,, — f. Passing to the limit in the inequality
(Txp — Ty, x, —y) > 0leads to

(f=Ty,x—y)=0 VyekE.

Choosing y = x + tz withr € R and z € E, one sees that f = Tx.

1. If T(M) is closed then M + N(T) = T~Y(T(M)) is also closed. Conversely,
assume that M+ N (T') is closed. Since T is surjective, one has T (M +N(T))¢) =
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(T (M))€. The open mapping theorem implies that 7 ((M + N (T))“) is open and
thus T (M) is closed.

2. If M is any closed subspace and N is any finite-dimensional space then M + N
is closed (see Section 11.1).

By the open mapping theorem there is a constant ¢ > 0 such that T (Bg) D
¢Bp. Let (e,) denote the canonical basis of ¢!, i.e.,

en =(0,0,...,0, 1,0,...).
)

There exists some u, € E such that ||u,|| < 1/c and T (u,) = e,. Given y =
V1, Y25+ s Yny--.) € 2! set Sy = Z;’ilyiei. Clearly the series converges and S
has all the required properties.

Without loss of generality we may assume that 7 is surjective (otherwise,
replace E by R(T)). Assume by contradiction that there is a sequence (x,,) in E such
that

lxalle =1 and | TxpllF + [xa] < 1/n.

By the open mapping theorem there is a constant ¢ > 0 such that T(Bg) D cBF.
Since | Tx,||F < 1/n, there exists some y,, € E such that

Tx, =Ty, and |y llg <1/nc.

Write x,, = y, + z, with z, € N(T), |lyxlle — 0 and |z,]|g — 1. On the other
hand, |x,| < 1/n;hence |z,| < (1/n)+|y,| < (1/n) + M|y, | E, and consequently
|zn| — 0. This is impossible, since the norms || ||z and | | are equivalent on the
finite-dimensional space N (T).

[2.13]First, let T € O sothat T~" € L(F, E) (by Corollary 2.7). Then T + U € O
forevery U € L(E, F) with ||U|| small enough. Indeed, the equation Tx +Ux = f
may be written as x = T~!(f — Ux); it has a unique solution (for every f € F)
provided |7~ U]l < 1 (by Banach’s fixed-point theorem; see Theorem 5.7).

Next, let T € Q2. In view of Theorem 2.13, R(T) is closed and has a complement
in F.Let P : F — R(T) be a continuous projection. The operator PT is bijective
from E onto R(T) and hence the above analysis applies. Let U € L(E, F) be such
that ||U]| < §; the operator (PT + PU) : E — R(T) is bijective if § is small
enough and thus (PT + PU)~! is well-defined as an element of L(R(T), E). Set
S = (PT 4+ PU) 'P.Clearly S € L(F, E) and S(T + U) = If.

1. Consider the quotient space E=E /N (T') and the canonical surjection 77 : E' — E
so that || x|z = dist(x, N (T)) Vx € E. T induces an injective operator T on
E. More precisely, write T = TomwithT e L(E, F), so that R(T) = R(T)

On the other hand, Corollary 2.7 shows that R(T) is closed iff there is a constant
C such that
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Iyllg < CITyll Vy€kE,
or equivalently

lmxllz < CITnx|| Vxe€E.

The last inequality reads
dist(x, N(T)) < C||Tx| Vx €E.

The operator T : E1 x Ep — F is linear, bounded, and surjective. Moreover,
N(T) = N(T1) x N(T) (since R(T1) N R(T>) = {0}). Applying Exercise 2.10 with
M = E| x {0}, one sees that T (M) = R(Ty) is closed provided M + N (T) is closed.
But M + N(T) = E{ x N(Tp) is indeed closed.

Let 7 denote the canonical surjection from E onto E/L (see Section 11.2).
Consider the operator T : G — E /L defined by Tx = wx for x € G. We have

dist(x, N(T)) = dist(x, G N L) < Cdist(x, L) = C|Tx| V¥x € G.

It follows (see Exercise 2.14) that R(T) = 7 (G) is closed. Therefore 7~ [7(G)] =
G + L is closed.

Recall that N (A*) = R(A)™ .

1. Letu € N(A) and v € D(A); we have
(A(u+tv), u +1v) > —C||A(u + tv)|*> Vi € R,

which implies that (Av, u) = 0. Thus N(A) C R(A)*.

2. D(A) equipped with the graph norm is a Banach space. R(A) equipped with the
norm of E* is a Banach space. The operator A : D(A) — R(A) satisfies the
assumptions of the open mapping theorem. Hence there is a constant C such that

Vf € R(A), Jv € D(A) with Av = f and |[v]|pcay < CIf]-

In particular, ||v]| < C||f|. Givenu € D(A), the above result applied to f = Au
shows that there is some v € D(A) such that Au = Av and ||v|| < C||Au||. Since
u—ve N(A) C R(A)L, we have

(Au,u) = (Av,u) = (Av,v) = —[|Av] lv]| = —C]|Au]>.

1. Distinguish two cases:

Case (1): f(a) = 1. Then N(A) = Ra and R(A) = N(f).
Case (ii): f(a) # 1. Then N(A) = {0} and R(A) = E.
2. A is not closed. Otherwise the closed graph theorem would imply that A is

bounded and consequently that f is continuous.
3. D(A*) ={u € E*; {(u,a) =0}and A*u =u VYu € D(A%).
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4. N(A*) ={0}and R(A*) ={u € E*; (u,a) = 0}.

5. R(A)* = {0}and R(A*)" = Ra (note that N ( f) is dense in E; see Exercise 1.6).
It follows that N(A*) = R(A)+ and N(A) C R(A*)* .
Observe that in Case (i), N(A) # R(A*)*L.

6. If A is not closed it may happen that N(A) # R(A*)L.

1. Clearly D(A) is dense in E. In order to check t_hat A is closed let (u/) be a
sequence in D(A) such that u/ — u in E and Au’/ — f in E. It follows that

u) — u, Vn and nul — fn Vn.

Jj—o0 j—o0o

Thus nu,, = f, Yn, sothatu € D(A) and Au = f.

2.
D(A*) = {v = (vp) € £7; (nvy) € L7},

A*v = (nv,) and D(A*) = cg.

1. We have D(B*) = {v € G*; T*v € D(A*)} and B* = A*T*.
2. If D(A) # E and T = 0, then B is not closed. Indeed, let (u,) be a sequence in
D(A) such that u, — u withu ¢ D(A). Then Bu, — Obutu ¢ D(B).

2. By Corollary 2.7, T-1e L(F, E). Since T-T = I and TT ! = I, it follows
that T*(T~Y* = Ig~ and (T~V)*T* = Ip~.

‘We have

"(T* ) = sup{(T" f.x)—p(x)} = sup {{(f,y)—¥ (M} =~ inf {y (M +E),

x€E YER(T)

where ¢(y) = —(f, y) + Ir)(y). Applying Theorem 1.12, we obtain

¢"(T* f) = min{¢*(g) + ¥*(—g)}.
geF*

But
. 0 if f+ge R,
(g = . L
400 iff+g¢ R(T),
and thus
e (T"f) = f+§2}\?(r*)l/’ (-8 = her,%‘(‘}*)‘/’ (f =h.

Let G = E x X and consider the operator

Sx,y)=Tx+y:G— F.
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Applying the open mapping theorem, we know that S is an open map, and thus
S(E x (X\{0})) = R(T) + (X \ {0}) is open in F. Hence its complement, R(T),
is closed.

Apply Corollary 2.4.

[3.2] Note that (f, o) = L3 (f.x;) Vf € E*. Since (f,x,) — (f,x), it
follows that ( f, on) — (f, x).

1.

Set G, = conv (|J;2, {xi}). Since x, — x for the topology o (E, E*) it follows

that x € G,,G(E £ Vn. On the other hand, G, being convex, its closure for
the weak topology o (E, E*) and that for the strong topology are the same (see
Exercise 3.3). Hence x € G, Vn (the strong closure of G,) and there exists a
sequence (y,,) such that y, € G, Vn and y, — x strongly.

. There exists a sequence (ux) in E such thatuy — x anduy € conv (72, {x;}) V.

Hence there exists an increasing sequence of integers (n;) such that

Uy € conv (U{x,-}) Vk.

i=1

The sequence (z,,) defined by z, = uy for ny < n < ngy1 (and z, = x; for
1 < n < n1) has all the required properties.

1.

Letx ¢ A+ B. We shall construct a neighborhood W of 0 for o (E, E*) such that
x+W)n(A+ B)=4.

For every y € B there exists a convex neighborhood V (y) of 0 such that
x+VONNA+y) =0

(since A + yisclosedand x ¢ A + y).

Clearly
1
Bc <y - EV(y)),

yeB

and since B is compact, there is some finite set / such that
BCU( ——V(yl ) with y; € B.
iel

Set

W= %ﬂvm).

iel
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We claim that (x + W) N (A + B) = {. Indeed, suppose by contradiction that
there exists some w € W such that x + w € (A + B). Hence there is some i € [
such that

1
Xt+weA+yi— Vi)

Since V (y;) is convex it follows that there exists some w’ € V(y;) such that
x +w’ € A+ y;. Consequently (x + V(y;)) N (A + y;) # @; absurd.

Remark. If E* is separable and A is bounded one may use sequences in order to
prove that A + B is closed, since the weak topology is metrizable on bounded
sets (see Theorem 3.29). This makes the argument somewhat easier. Indeed, let
Xn = an + by, be a sequence such that x,, — x weakly o (E, E*) witha, € A and
b, € B.Since B is weakly compact (and metrizable), there is a subsequence such
that b,, — b weakly o (E, E*) withb € B.Thus a,, — x —b weakly o (E, E*).
But A is weakly closed and therefore x — b € A,i.e.,x € A+ B.

. By question 1, (A — B) is weakly closed and therefore it is strongly closed. Hence

one may strictly separate {0} and (A — B).

1.

2.
3.

Since Vi is a neighborhood of 0 for o (E, E*), one may assume (see Proposi-
tion 3.4) that V} has the form

Vi={x e E;[(f.x)] <ex Vf € Fi},

where ¢, > 0 and F} is a finite subset of E*. Hence the set F = U,fozl Fy is
countable. We claim that any g € E* can be written as a finite linear combination
of elements in F. Indeed, set

V={xek; (g, x)| <1}

Since V is neighborhood of O for o (E, E*), there exists some integer m such that
{x € E;d(x,0) < 1/m} C V and consequently V,, C V. Suppose x € E is
such that (f,x) =0Vf € F,.Thentx € V,, Vt € Rand thustx € V Vt € R,
ie., (g, x) = 0. Applying Lemma 3.2, we see that g is a linear combination of
elements in F;,.

Use the same method as in question 3 of Exercise 1.5.

If dim E* < oo, then dim E** < oo; consequently dim E < oo (since there is a
canonical injection from E into E**).

4. Apply the following lemma (which is an easy consequence of Lemma 3.2): As-

sume that x1, x2, ..., x¢, y € E satisfy

[f € E* (f.xi) =0Vil = [(f,y) =0l.

Then there exist constants Aq, A2, ..., A such that y = Zle AiX;.

1.

Apply Theorem 1.12 with
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@(x) = (fo.x) + I, (x) and ¥ (x) = Iy (x).

2. Note that Bz~ is compact for o (E*, E), while M is closed for o (E*, E) (why?).

It suffices to argue on sequences (why?). Assume x,, — x strongly in E and
Ax, / Ax for o(E*, E), i.e., there exists some y € E such that (Ax,,y) 4
(Ax, y). We already know (by Exercise 2.6) that (Ax,) is bounded. Hence, there is
a subsequence such that (Ax,,,y) — € # (Ax, y). Applying the monotonicity of
A, we have

(Axp, — A(x +1y),xy —x —1ty) > 0.

Passing to the limit, we obtain
—t +t{A(x +1ty),y) =0,

which implies that £ = (Ax, y); absurd.

1. Assumption (A) implies that ¢*(f) > R| fll + (f,x0) — M Vf € E*. Con-
versely, assume that (B) holds and set ¥ (f) = ¢*(f) — (f, x0). We claim that
there exist constants k > 0 and C such that

(S V() Zklfll—C VfekE".

After a translation we may always assume that ¢ (0) < oo (see Proposition 1.10).
Fix & > ¥ (0). Using assumption (B) we may find some r > 0 such that

V(g) >a Vge E*with|g| >r
Given f € E* with || f|| > r write

vf) =ty (f)+ A =y ) withr =r/|| f].

Since ||zf|| = r, this leads to ¢ — ¥ (0) < m(w(f) — 1 (0)), which establishes
claim (S1). Passing to the conjugate of (S1) we obtain (A).

2. The function v is convex and L.s.c. for the weak* topology (why?). Assumption
(B) says that for every A € R the set {f € E*; ¥(f) < A} is bounded. Hence, it
is weak* compact (by Theorem 3.16), and thus inf g« ¢ is achieved. On the other
hand,

infyr = — sup {(f, xo) — " ()} = —¢™(x0) = —p(x0).

E* feE*
Alternatively, one could also apply Theorem 1.12 to the functions ¢ and I,
(note that ¢ is continuous at xo; see Exercise 2.1).

1. For every fixed p we have x,4, € K, Vn. Passing to the limit (as n — 00) we
see that x € K, since K, is weakly closed (see Theorem 3.7). On the other hand,
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let V be a convex neighborhood of x for the topology o (E, E*). There exists an
integer N such that x, € V ¥n > N.Thus K, C V V¥n > N and consequently
Mhey Kn C V. Since this is true for any convex neighborhood V of x, it follows
that (2, K, C {x} (why?).

2. Let V be an open neighborhood of x for the topology o (E, E*). Set K|, =
K, N (V°). Since K, is compact for o (E, E*) (why?), it follows that K, is also
compact for o (E, E*). On the other hand, ﬂ;’;l K ,2 = (), and hence there is some
integer N such that K, =@, ie., Ky C V.

3. We may assume that x = 0. Consider the recession cone

Cp = ﬂ,\Kn.

r>0

Since C,, C K, we deduce that ﬂf’ozl C,={0}.LetSg = {x € E; ||x|| = 1}.The
sequence (C, N S) is decreasing and (), (C, N S) = @. Thus, by compactness,
Cyo NS = @ for some ng. Therefore C,,, = {0} and consequently K, is bounded
(why?). Hence (x,,) is bounded and we are reduced to question 2.

4. Consider the sequence x, = (0,0,..., n,0,...), when n is odd, and x,, = 0
when 7 is even. ()

3.18

2. Suppose, by contradiction, that e” — a in £! for the topology o (¢!, £>°). Thus

—00
we have (&, ") k—) (&, a) V& € £*°. Consider the element & € £°° defined by
—00

&=(,0,...,-1,0,..., 1,0,...,—1,0,...).
(n1) (n2) (n3)

Note that (&, ") = (—1)¥ does not converge as k — 00; a contradiction.

3. Let E = £, so that ¢! c E*. Set fn = €", considered as a sequence in E*.
We claim that ( f;;) has no subsequence that converges for o (E*, E). Suppose, by
contradiction, that f,, = fin E* for o (E*, E), i.e., (fu,. 1) = (fin) Vn € E.
Choosing n = & as in question 2, we see that (f;,,§) = (—1)* does not con-
verge; a contradiction. Here, the set B+, equipped with the topology o (E*, E)
is compact (by Theorem 3.16), but it is not metrizable. Applying Theorem 3.28,
we may also say that E = £°° is not separable (for another proof see Remark 8
in Chapter 4 and Proposition 11.17).

3.19

1. Note that if x" — x strongly in £7, then

o
Ve > 0 3 such that Z Ix!P < &P Vn.
i=1/

2. Apply Exercise 3.17.
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3. The space Bp is metrizable for the topology o (E, E*) (by Theorem 3.29). Thus
it suffices to check the continuity of A on sequences.

1. Consider the map T : E — C(K) defined by
(Tx)(t) = (t,x) withx € Eandt € Bg» = K.

Clearly [T x|l = sup;eg [(TX)(@)] = [Ix]|.
2. Since K = Bg»is metrizable and compact for o (E*, E), there is a dense countable
subset (#,) in K. Consider the map S : E — £°° defined by

Sx = ({t1, x), {2, x), ..., {tn, X), ...).
Check that ||Sx||¢e = ||x]|.

Let (a;) be a dense countable subset of E. Choose a first subsequence such
that ( f,,, , a1) converges to a limit as k — oo. Then, pick a subsequence out of (ny)
such that fn;(, ap) converges, etc.
By a standard diagonal process we may extract a sequence (gx) out of the sequence
(f) such that (gg, a;) k—> £; Vi. Since the set (g;) is dense in E, we easily obtain
— 00

that (gx, a) — £, Ya € E. It follows that g; converges for o (E*, E) to some g (see
Exercise 3.16).

(a) Bp is metrizable for o (E, E*) (by Theorem 3.29) and 0 belongs to the closure
of S ={x € E; ||x|| = 1} for o (E, E*) (see Remark 2 in Chapter 3).

(b) Since dim E = oo there is a closed subspace Eg in E that is separable and
such that dim Ey = oo (why?). Note that Ej is reflexive and apply Case (a) (in
conjunction with Corollary 3.27).

Suppose, by contradiction, that C(K) is reflexive. Then E = {u € C(K);
u(a) = 0} is also reflexive and sup,cp, f(u) is achieved.

On the other hand, we claim that supueBEf(u) = 1. Indeed, VN, du € E such
that 0 < u < lon K andu(a;) = 1Vi = 1,2,..., N. (Apply, for example, the
Tietze—Urysohn theorem; see, e.g., J. Munkres [1].) Hence there exists some u € Bg
such that f(u) = 1. This leads to u(a,) = 1 VYn and u(a) = 0; absurd.

1. Giveny € B, there is some integer n; such that ||y — a,, || < 1/2. Since the set
%(a,-),->n1 is dense in %BF, there is some ny > n1 such that

1

1
Hy — Qpy — Eanz

Z.

<

Construct by induction an increasing sequence ny 1 oo of integers such that
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y = ay, +%an2+%an3+...+2k_l_lank+...

2. Suppose, by contradiction, that § € L(F, 21 is such that TS = Ip. Let (yn) be
any sequence in F such that ||y,|| = 1 Vr and y, — 0 weakly o (F, F*). Thus
Sy, — 0 for o (¢!, £*°) and consequently Sy, — 0 strongly in £' (see Problem
8). It follows that y, = T 'Sy, — 0; absurd.

3. Use Theorem 2.12.

4, T* : F* — £%° is defined by

T*v = ((v,a1), (v,az), ..., {(v,a,),...).

B~ is compact and metrizable for o (E*, E). Hence there exists a countable

subset of Bg+ that is dense for o (E*, E).

L. Clearly [| £ < [Iflli < V2IfIVf € E*.

2. Set |f|> = fo’zl zln|(f, ap)|?. Note that the norm | | is associated to a scalar
product (why?), and thus it is strictly convex, i.e., the function f — |f 12 is
strictly convex. More precisely, we have Vr € [0, 1],V f, g € E™,

(S1) ltf + (1 =gl +t(1 =) f —gl* =11+ A —0lgl

Consequently, the function f — || f||> 4+ | £|? is also strictly convex.
. Same method as in question 2. Note that if (b, x) = 0 Vn, then x = 0 (why?).
4. Givenx € E set [x] = {352 | 5¢|(bu, x)|*}!/2, and let [ £] denote the dual norm
of [ ]on E*. Note that [ f] also satisfies the identity (S1). Indeed, we have

98]

1 1
Slf+a- 1)g)* = sup {(tf + 0 =0g,x) — E[X]z} )

xeE

l[—12— (f — >—1[]2
2f gl =supi(f—gy Sy

yeE
and thus

1 2 1 2
Fuf + A =ngl + St =nlf = ¢l

1 1
= sup {(rf + (=g, x)+t(1—0(f —g,y) — E[xlz -5t - t)[y]z}.

X,y

We conclude that (S1) holds by a change of variables x = t& 4+ (1 — #)n and
y = & — n. Applying question 3 of Exercise 1.23, we see that

2 _ . _ 2] 2 2
1713 = inf {if—nlh + a2} = min {17 =01 + 12}

We claim that the function f +— | f ||% is strictly convex. Indeed, given f, g € E*,
fix hy, hy € E* such that

I£I3 = I1f — I3+ [h 12,
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Igl3 = llg — hallf + [ha]*.
For every t € (0, 1) we have
lef + (1 = 0gll3 < lltf + (1 = 0)g = (thy + (1 = M)} + [thy + (1 = o]
<tIf13+ A =0lgl3.
unless f —hy =g —hyand hy = hy,ie., f =g.

Since E isreflexive, sup, ¢ g, (f, x) is achieved by some unique point xo € Bg.
Then x = xo|| f|| satisfies f € F(x).

Alternatively, we may also consider the duality map F* from E* into E**. The
set F*(f) is nonempty (by Corollary 1.3). Fix any & € F*(f). Since E is reflexive
there exists some x € E such that Jx = & (J is the canonical injection from E into
E*). We have

IEN=I£l=llxll and (& f)=[fI>=(f x).
Thus f € F(x).

Uniqueness. Let x1 and x» be such that f € F(x1) and f € F(x). Then ||x1| =

lx21l = Il £, and therefore, if x; % x, we have
X1+ x2
—| < .
> (WAl

On the other hand, (f, x1) = (f, x2) = || f||* and hence

X1+ x2
2

£ 12 =<f, >< I if xg # xo.

1. Assume, by contradiction, that there exist My > 0, &y > 0, and two sequences
(x2), (yn) such that

lxall < M, llyall =M, |lxy — yull > €0,
and

Xn + Yn

"o L2 4 i —
> = = - —.
2 o Ml S el =0

(S1)

Consider subsequences, still denoted by (x,) and (y,), such that ||x,| — a and
[lynll = b. We find that a + b > gg and %az + %b2 < (#)2 Therefore
a=b#0.

Set
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X
x)=-—"- and y, = n_
(B (Nl

For n large enough we have ||x), — y, || > (g0/a) + o(1) (as usual, we denote by
o(1) various quantities—positive or negative—that tend to zero as n — 00). By
uniform convexity there exists dp > 0 such that

il IR
Thus
It Il a1 = 89) + 0(1).
By (S1) we have
2
Q > a® +o(1).

Hence a? < a2(1 — 809)% + o(1); absurd.

1. The infimum is achieved since E is reflexive and we may apply Corollary 3.23.
The uniqueness comes from the fact that the space E is strictly convex and thus
the function y — ||y — x||? is strictly convex.

2. Let (y,) be a minimizing sequence; setd, = ||x — yyll and d = infycc [|x — y||,
so that d, — d. Let (y,, ) be a sequence such that y,, — z weakly. Thus z € C
and ||x — z|| < d (why?). It follows that

X =Yg —x—zweakly and |lx —y, |l = d=I|x—z|,

and therefore (see Proposition 3.32) y,, — z strongly. The uniqueness of the limit
implies that the whole sequence (y,) converges strongly to Pcx. The argument
is standard and we will use it many times. We recall it for the convenience of
the reader. Assume, by contradiction, that (y,) does not converge to y = Pcx.
Then there exist ¢ > 0 and a subsequence, (yn,), such that ||y, — y[ = ¢ Vj.
From (y,;) we extract (by the argument above) a further subsequence, denoted
by (yn,), such that y,, — Pcx. Since (y;,) is a subsequence of (ymj), we have
lyn, — yll = & Vk and thus || Pcx — y|| > &. Absurd.

3 and 4. Assume, by contradiction, that there exist some g9 > 0 and sequences
(x,,) and (yy,) such that

IxXull = M, ANyall =M, NXa=yull > 0, and [|[Pcx,—Pcynll =0 Vn.

We have

Pan+Pcyn
2

Xn + Yn _ Pcxp + Pcyn
2 2

lx, — Pexull < (X0 —

+ o(1),

and similarly
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Xn + Yn _ Pcxp + Pcyn
2 2

yn = Pcynll = +o(1).

It follows that

2

X Pcx P
n+ Yn CXn + £CYn +0(1)

2 2

1 2 1 2
S 5 llxn = Pexall ™+ llya—Peynll” =

On the other hand, if we set a, = x, — Pcx, and b, = y, — Pcy,, then
llan — bull > o + o(1) and ||la,|| < M’, ||b,|| < M’. Using Exercise 3.29, we
know that there is some &y > O such that

a, + b, 2

< L+ Lz =
2 _2an 2 n O’

that is,

Xn + Yn Pcxp + Pcyn 2

(52) 2 2

1 2 1 2
= Sl = Pexnll”™+ S llyn = Peynll” = do.

Combining (S1) and (S2) leads to a contradiction.
5. Same argument as in question 1.
6. We have

(S3) nllyn — x1? + o) <nlly —xlI> + ¢(y) Vy € D(p).

Since ¢ is bounded below by an affine continuous function (see Proposition 1.10),
we see that (y,) remains bounded as n — o0 (check the details). Let (yn k) be a
subsequence such that y,, — z weakly. Note that z € D(p) (why?). From (S3)
we obtain ||z — x| < |ly —x|| Vy € D(¢), and thus Vy € D(¢p). Hence z = Pcx,
where C = D(¢). Using (S3) once more leads to

limsup|ly, —x|| < |ly — x|| Yy € D(¢), and in particular for y = z.
n—od
We conclude that y,, — z strongly, and finally the uniqueness of the limit shows
(as above) that the whole sequence (y,) converges strongly to Pcx.

2. Note that hy = 5 (| f — gal + fo + &) -

3. Note that fugn — f& = (fu — f)gn + f(gn — &) and that f(g, —g) — Oin
L?(€2) by dominated convergence.

1. Recall that L1(Q)NL>(R) C L”(2) and more precisely | f |5 < LFIE I f I
Since Q is o-finite, we may write Q = | J,Q, with |Q,| < oo Vn. Given
f € LP(Q), check that f,, = xq, T, f € LY (Q)N L®(Q) and that f, —> f in
LP(Q) n—00
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2. Let (f,) be sequence in LP(2) N L9(R2) such that f, — f in LP(2) and
I fully < 1. We assume (by passing to a subsequence) that f, — f a.e. (see
Theorem 4.9). It follows from Fatou’s lemma that f € L7(£2) and that || f|l; < 1.

3. We already know, by question 2, that f € L9(2) and thus f € L"(£2) for every r
between p and g. On the other hand, we may write % = % + 122 With0 < « <1,

and we obtain !
Lfw = Fllr < o = FIGNS2 = £SO < 1 = FI2QO)

1. We have || fll, < || flleol["/? and thus limsup, , .o fll, < [ flloc- On the
other hand, fix 0 < k < || f]lco, and let

A={xeQ|f(x)|>k}

Clearly |A| # O and | fl, > k|A|"/P. 1t follows that lim inf ,_, o || f | , > k and
therefore liminf , ol fllp = | f llco-

2. Fix k > C and let A be defined as above. Then k”|A| < ||f||§ < C? and thus
|A| < (C/k)P Vp > 1. Letting p — o0, we see that [A| = 0.

3. f(x) =log|x]|.

Consider the operator 7' : L?(2) — L9(R2) defined by Tu = au. We claim
that the graph of T is closed. Indeed, let (u,) be a sequence in L”(£2) such that
up, — u in LP(Q) and au, — f in L9(2). Passing to a subsequence we may
assume that u, — u a.e. and au, — f a.e. Thus f = au ae.,andso f = Tu. It
follows from the closed graph theorem (Theorem 2.9) that 7" is bounded and so there
is a constant C such that

(S1) laully < Cllull, Vu € LP(2).
Case I: p < oo. It follows from (S1) that
[ 1altivl = ol o e L@,
Therefore the map v +— | |a|9v is a continuous linear functional on LP/4(Q) and
thus |a]? € LP/D(Q).

Case 2: p = oo0. Choose u = 1 in (S1).

1. X equipped with the norm || ||; is a Banach space. For every n, X;, is a closed
subset of X (see Exercise 4.5). On the other hand, X =  J, X,,. Indeed, for every
f € X thereis some ¢ > 1suchthat f € L9(Q). Thus f € L'*1/"(Q) provided
14+ (1/n) < g, and, moreover,
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1 o 11—«
< oy l—C(n .th — n l’l'
I i1 = WAIT LN wi Tram -1 + p

It follows from the Baire category theorem that there is some integer n¢ such that
Int X,,, # ¥. Thus X C L'T1/"0(Q).

2. Theidentity map /: X — LP (L) is a linear operator whose graph is closed. Thus
it is a bounded operator.

For every t € R we have
FOr < j(f(x) + j*(r) ae. on Q,

and by integration we obtain

1 1 . "
(1 1) =@ [+ 7o
Therefore

1 T RS
’(@/J)‘f?ﬁ{(mnfgf)t ’(”}flm ol

4.10

1. Letuy,ur € D(J)andletr € [0, 1]. The function x — j(tu;(x)+ (1 —1)usr(x))
is measurable (since j is continuous). On the other hand, j(fu; 4+ (1 — H)uy) <
tj(u1) + (1 —t)j(u2). Recall that there exist constants a and b such that j(s) >
as+b Vs € R (see Proposition 1.10). It follows that j (fu; + (1 +1t)uz) € LY()
and that J (tu1 + (1 — Huo) < tJ(uy) + (1 —1t)J (u).

2. Assumefirstthat j > 0. We claim that forevery A € Rtheset{u € L?(2); J(u) <
A} is closed. Indeed, let (u,) be a sequence in L? (2) such that u,, — u in LP(R2)
and [ j(u,) < A. Passing to a subsequence we may assume that u, — u a.e. It
follows from Fatou’s lemma that j (1) € L'() and that f Jj(u) < A. Therefore
Jis Ls.c. In the general case, let f(s) = j(s) — (as + b) = 0. We already know
that J is L.s.c., and so is J (u) = J (u) + a [ u + b|Q|.

3. We first claim that

JNf) < /j*(f) Vf € LP'(Q) such that j*(f) € L'(%).

Indeed, we have fu — j(u) < j*(f) a.e.on Q, VYu € LP(R2), and thus

s {ffu - J(u)} < /j .

The proof of the reverse inequality is more delicate and requires some “regular-
ization” process. Assume first that 1 < p < oo and set
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. . 1 »
]n(t)zj(t)+;|l‘| , telR.
We claim that
(S1) ()= / nf) VfelL'().

Indeed, let f € LP/(Q). For a.e. fixed x € Q,

. 1
sup {f(x)u —Jj) — ;Iul”}

ueR

is achieved by some unique element u = u(x). Clearly we have
. 1 :
J(u(x)) + ;IM(X)I” — f(ux) < j0).

It follows that u € L?(2) and that j (u) € L'(2) (why?).
We conclude that

1
Jy(f) = sup {/fv—Jn(v)} z/{fu—j(u)——lul”} =/j2(f).
veD(J) n

Since we have already established the reverse inequality, we see that (S1) holds.
Next we let n 1 oo. Clearly, J < J,, so that J¥ < J*, ie., [ jx(f) < J*(f).
We claim that for every s € R, j (s) 1 j*(s) as n 1 oo. Indeed, we know that

in=Jj'Vv (% | |1’)* (see Exercise 1.23), and we may then argue as in Exercise 1.24.
We conclude by monotone convergence that if f € D(J*), then

el @ and / PO < .

Finally, if p = 1, the above method can be modified using, for example, j,(¢) =
. 1,2
J@) + Pt

4. Assuming first that f(x) € 9j (u(x)) a.e. on 2, we have

j) —jux)) = f(x)(v —u(x)) YveR, ae.on Q.

Choosing v = 0, we see that j (i) € L'(€2) and thus
J() — J(u) > /f(v —u) Yve D).

Conversely, assume that f € 98J(u). Then we have J(u) + J*(f) = [ fu.
Thus j(u) € LY(Q), j*(f) € LY (), and [ {j ) + j*(f) — fu} = 0. Since
jw) + j*(f) — fu > 0 ae., we find that j(u) + j*(f) — fu = 0 ae., ie.,
f(0) €3 ) ae.
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Set f =u®, g =v*, and p = 1/«. We have to show that

(s1) (/f>p+</g)p§ [/ (fp+g”)1/pr.

Seta = [ fand b = [ g, so that we have

a’ +bP = /a”‘lf +bP7lg < /(a” + 607 4 g P

= (@’ + bp)l/p/ /(fp +gMip.

It follows that (a? + bP)Y/P < [(fP + gP)V/P,ie., (SD).

1.

It suffices to show that

P+ DI eP + 1= 2| L |Pys
I N i |=25) -0,
te[—1,+1] [t — 1|7

or equivalently that

2
(P +1—2 |t
inf 1 al > 0.
tel—1,41] |t — 12

But the function ¢(¢) = [t|? +1 —2 |%|‘” satisfies

o) >0 Vte[-1,+1), o)=¢' (1) =0 and ¢"(1) > 0.

1 and 2. Let g, = Xs,(«), SO that g, — 0 a.e. and |g,| < 1. It follows—by

3.

dominated convergence (since |2] < oo)—that f gn — 0,ie., | S ()] = 0.
Given any integer m > 1, we may apply question 2 with « = 1/m to find an
integer N,, such that |Sy,, (1/m)| < §/2™. Letting X,, = Sy, (1/m), we obtain

1
[ fe@) — f(X)| < — Vk>N,, VxeQ\Z,.
m

Finally, set A = | J;-_; T, so that |A| < 8. We claim that f, — f uniformly
on Q\A. Indeed, given ¢ > 0, fix an integer m such that mg > 1/¢. Clearly,

[fix) — f(O)] <& Vk=Npy, VYxeQ\Xp,
and consequently

|fe(x) — f(x)| <& Vk> Np,, VxeQ\A.



398 Solutions of Some Exercises

4. Given ¢ > 0, first fix some § > 0 using (i) and then fix some A using question 3.
We obtain that [ 4 1 ful? <& Vnand f,;, — f uniformly on Q\A. It follows from
Fatou’s lemma that [, | f|” < & and thus

fQ|fn—f|f’=/A|fn—f|f’+/Q\A|fn—f|Pszpa+|sz| L= £

1(iv). Note that f fae — 0 Vo € C.(£2). Suppose, by contradiction, that f,, — f
weakly o (L', L®). It follows that f fo =0Vgp € C.(R2) and thus (by Cor-
ollary 4.24) f =0a.e. Also [ fu, > [ f=0ibut [ fo, = [o* e "dt — 1;
a contradiction.

2(iv). Note that fgn(p — 0 Vg € C.(2) and use the fact that C.(€2) is dense in

LP'(Q) (since p/ < 00).
4.16

1. Let us first check that if a sequence ( f;,) satisfies

(S1) fo — f weakly o (LP, L")

and

(52) fon— fae.

then f = f~a.e.

Indeed, we know from Exercise 3.4 that there exists a sequence (g,) in L” (£2)
such that

(S3) gn € conv {fn, fus1,--. 1,

and

(S4) gn — [ strongly in L” ().

It follows from (S2) and (S3) that g, — f a.e. On the other hand (by The-
orem 4.9), there is a subsequence (gnk) such that g,, — f a.e. Therefore
f= f a.e.

Let us now check, under the asumptions (i) and (ii), that f,, — f weakly
o (LP, LP"). There exists a subsequence (fi’lk) converging weakly o (L7, L")
to some limit, say f From the preceding discussion we know that f = fa.e.
The “uniqueness of the limit” implies that the whole sequence ( f,;) converges
weakly to f (fill in the details using a variant of the argument in Exercise

3.32).
3. First method. Write
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S5 W= fllg = Wfn = Tifullg + 1T fo = Ti fllg + 1T f = fllg-

Note that for every k > 0 we have

/|fn—kan|q 5/ alf.
[l ful=k]

On the other hand, we have [ | f,|” < C” and thus k?~¢ f[ 1 fl? = CP.

| ful=k

It follows that

cp 1/q
(S6) ”fn_kan”q =< <kp_q) Vn.
Passing to the limit (as n — 00), with the help of Fatou’s lemma we obtain
CcP 1/q
(S7) If =T fllg = <kp—_q) .

Given ¢ > 0, fix k large enough that (CP/kP~9)1/9 < &, 1t is clear (by
dominated convergence) that || Ty f, — Ty f1l; —> 0, and hence there is some
n—oo

integer N such that
(S8) ITifo —Tifllg <& ¥n>=N.

Combining (S5), (S6), (S7), and (S8), we see that || f,, — fll; < 3¢ Vn > N.

Second method. By Egorov’s theorem we know that given § > 0 there exists
some A C 2 such that |A| < § and f,, — f uniformly on 2\ A. Write

/Qlfn—fl"=/Q\A+/A

< I fw = Fl o) @ +11Lfa = FI91A-@/»
< fa = Flfei@n)Ql+ @O)8@WP),

which leads to

me/]ﬁ—fwgaom“ﬂm>va>u

n—oo

4.17

1. By homogeneity it suffices to check that

It + 117 — [¢]P — 1]
sup = < o0
re[—1,+1] [P~ + |7




400 Solutions of Some Exercises

4.18

1. First, it is easy to check that fab u,(t)dt — (b—a) f (foreverya, b € (0, 1)).
This implies that u, — f weakly o (L”, L?") whenever | < p < oo (since

p’ < oo, step functions are dense in Lp/). When p =1, ie., f € LIIOC(R),

there is a T-periodic function g € L°°(R) such that % OT | f —g| < & (where
& > 0 is fixed arbitrarily).

Set v, (x) = g(nx), x € (0,1) and let ¢ € L*°(0, 1). We have

Vunw—fffp §3S||§0||oo+‘/vn¢_§/¢'

and thus limsup,_, o | [ un9 — f [ ¢| < 3ell@lloc Y& > 0. It follows that
u, — f weakly o (L', L®).

) — e
2. timyoollitn = Fllp = [+ J5 17 = 717]
3. (i) up = 0foro(L>®, L.

(i) uy = L(a + B) foro (L™, LY).

4.20

1. Let (u,) be a sequence in LP(2) such that u,, — u strongly in L7 (S2).
There exists a subsequence such that u,, (x) — u(x) a.e. and |u,,| < v Vk
with v € L?(R2) (see Theorem 4.9). It follows by dominated convergence that
Auy,, — Au strongly in L9(€2). The “uniqueness of the limit” implies that the
whole sequence (Au,) converges to Au strongly in L9 (£2) (as in the solution
to Exercise 3.32).

2. Consider the sequence (u,) defined in Exercise 4.18, question 3(ii). Note that
uy — 3(a + B), while Au, — J(a(e) +a(p)). It follows that

a (‘”2”3) - %(a(a) +a(B) Va,peR,

and thus a must be an affine function.
4.21

1. Check that | ; un(t)dt — O for every bounded interval /. Then use the density
of step functions (with compact support) in L? (R).

2. We claim once more that f ; un(t)dt — 0O for every bounded interval 1.
Indeeed, given ¢ > 0, fix § > 0 such that §(|jugllcc + [I]) < &. Set
E = [|lug| > 8] and write

/un(t)dt =/ uo(t)dt =/ uo+/ up.
I (I4n) (I+n)NE (I+n)NE¢

Choose N large enough that |(I +nr) N E| < § Vn > N (why is it possible?).
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‘ / U (t)dt
1

Then use the density of step functions (with compact support) in L!(R).
3. Suppose, by contradiction, that u,, — u weakly o (L', L®). Consider the
function f € L°°(R) defined by

F=> =D XCnmit)-
i

We obtain

<lluolloo +68|1] <& Vn=N.

Note that funkf = (=1)* does not converge.

4.22

1. In order to prove that (B) = (A) use the fact that the vector space spanned
by the functions xr with E measurable and |E| < oo is dense in LP(Q)
provided p’ < oo (why?).

2. Use the fact that the vector space spanned by the functions xg (with E C Q2
and E measurable) is dense in L°°(2) (why?).

4. Given ¢ > 0, fix some measurable subset w C Q2 such that |w| < oo and

S1) /f<&

eweﬁjriLf+<AfLﬁJ+(LﬁLf>

and therefore

(S2) / Jn = / S +o(l) (by(b)and (c)).
¢ ¢

On the other hand, we have

/ﬁ= n+f o= f+/ fut o(D)
F FNw FN(w®) FNw FN(w°)

and thus

(S3) / fn_f f=/ (fu — F) +o(1).
F F FN(°)

Combining (S1), (S2), and (S3), we obtain

‘Lﬁ—ﬁf

< 2e +o(1).
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4.23

1.

2.

4.24

1.
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It follows that || o~ / r f. Finally, we use the fact that the vector space
spanned by the functions g with F C €2, F measurable and |F| < oo, is
dense in L*°(2) (why?).

Let (u,) be a sequence in C such that #,, — u strongly in L? (£2). There exists
a subsequence (i, ) such that u,, — u a.c. Thusu > f ae.
Assume that u € L°°(R2) satisfies

/ugo > / fo VYope L'() such that foe L'(Q) and ¢ > 0.

We claim that 4 > f a.e. Indeed, write Q@ = J, 2, with |Q,| < oo and set
Q) = Q,N[lfl < nl,sothat | J,Q, = Q. Let A = [u < f]. Choosing
® = XAng,. We find that fAﬂQ’ |f —ul <0Oandthus |JANKQ,|=0Vn It
follows that |[A| = 0.

. Note that if ¢ € L(Q) is fixed with fo € L'(Q) then the set {u €

L>®(Q); [ug > [ fo}is closed for the topology o (L*°, L').

For every ¢ € L' (R") we have

/vn§0 = /”{n(ﬁn*‘p) = /uin(ﬁn*tp—g&)-i-/u{ngo
and thus

oo

The first term on the right side tends to zero by Theorem 4.22, while the second
term on the right side tends to zero by dominated convergence.

= lulloollon * ¢ = @llt + lullooll (G — Dl

. Let B = B(xg, R) and let x denote the characteristic function of B(xg, R+1).

Set v, = p,, x (¢, xu). Note that v,, = v, on B(xg, R), since

supp(3, — vy) C B(0, 1/n) + B(xo, R + 1)C.

On the other hand, we have

f|vn_v|=/|5n_xv|§f [Un — XVl
B B RN

5/ Ipn*(fn—i)xulJr/ [(on * xV) — x|
RN RN

5/ |<;n—;)xu|+/ (pn % xv) — 10| > 0.
RN RN
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4.25
1. Let u denote the extension of u by 0 outside €2. Let
Q, = {x € Q;dist(x, 02) > 2/n and |x| < n}.

Let ¢, (resp. ¢) denote the characteristic function of €2, (resp. €2), so that
& — ¢ on RN Let v, = p, * (§,u). We know that v, € C°(£2) and that
/ g lvn — u| — 0O for every ball B (by Exercise 4.24). Thus, for every ball B
there is a subsequence (depending on B) that converges to u a.e. on B. By a
diagonal process we may construct a subsequence (vnk) that converges to u
a.e.on RV,

4.26

1. Assume that A < oo. Let us prove that f € L'(Q) and that || f||; < A. We

have
r

Let K C €2 be any compact subset and let ¥ € C.(£2) be a function such that
0 <y <landy = 1on K.Letu be any function in L°°(£2). Using Exercise
4.25 we may construct a sequence (u,) in C.(€2) such that ||u,|lcoc < |u|lco
and u,, — u a.e. on 2. We have

‘ [

Passing to the limit as » — oo (by dominated convergence) we obtain

I

Choosing u = sign(f) we find that |, x |f| < A for every compact subset
K C . It follows that f € L'() and that || f||; < A.
2. Assume that B < co. We have

< Allellc Vo € Ce(£2).

< Allulloo-

< Alullos Vu € L*(Q).

/fw < Bllgllec Vo € Ce(R), ¢ = 0.
Using the same method as in question 1, we obtain
[fwu < Bllullc Vu € L*(2), u > 0.

Choosing u = [0 we find that [, /T < B.

Let us first examine an abstract setting. Let E be a vector space and let f, g
be two linear functionals on E such that f # 0. Assume that
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[¢ € E and f(p) > 0] = [g(p) = O].

We claim that there exists a constant A > 0 such that g = Af. Indeed, fix any g9 € E
such that f(¢g) = 1. For every ¢ € E and every ¢ > 0, we have

flo— flepo+epy) =¢>0

and thus g(¢ — f(@)@o + epg) > 0. It follows that g(¢) > Af (¢) Yo € E, and thus
g =Af, with A = g(¢o) = 0.

Application. E = C2(Q), f(¢) = [ug, and g(p) = [ v

1 and 2. Notethat#—k%—i— 1= 1and that (1 —a)r = p, (1 — B)r = q. For

ae. x € RY write

[f(x =g = o1(Me2(y)p3(y)

with o1(y) = [f(x = V% @20 = lg(IP, and ¢3(y) = [f(x —
I g(y)|' P, Clearly, 91 € L7 (RY) and ¢» € L? (RV). On the other
hand, |p3(y)|" = |f(x — y)|?|g(¥)|?. We deduce from Theorem 4.15 that
for a.e. x € RV the function y — |g3(y)|" is integrable. It follows from
Holder’s inequality (see Exercise 4.4) that for a.e. x € RY, the function
y = | f(x — y)g(y)| is integrable and that

1/r
/ 1f =Wl gMldy < [ £1%1g118 (f If(x — y>|"|g<y>|qdy) :
Thus
(%)@ < IF19 gl / £ (x = WIPIg0I7dy,

and consequently

/I(f*g)(X)Irdx < IS IS I AU NG = I F 1 gl

3. If1 < p<oocandl < g < oo, there exist sequences ( f,,) and (g,,) in C(RY)
suchthat f, — fin L?(RV)andg, — gin LY(RN).Then f,xg, € C.(RV),
and, moreover, ||(f; x g:) — (f * g)llco — 0. It follows that (f x g)(x) — 0
as |x| — oo.
Given any & > 0 there is a finite covering of F by balls of radius & in L? (RV),
say.?-'c U _1 B(fi,e).

2. For each i there is some §; > 0 such that

ltnfi — fillLo@wyy <& Yh € RN with [h] < §;
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(see Lemma 4.3). Set § = minj<;<x d;. It is easy to check that

ltaf — fll, <3¢ Vfe F, Vhe R with || <.

3. For each i there is some bounded open set ©; € R" such that
”fi”Ll’(RN\Qi) <é&.
Set @ = Uf-‘zl §2; and check that || fll vy <26 Vf e F.

4.37
1. Write

+n +n
ﬁuﬂﬂw@ﬂx= fm(¢<?>—¢@0dt+¢®) Foyde

n n —n

= A, + By;

A, — 0 by Lebesgue’s theorem and B,, — 0 since fjo? f@®)dt =0.
2. Note that, for all § > 0,

8 né 0o
/ |un(x)|dx :/ |f(@®)ldt — / |f(®)ldt > 0.
0 0 0

3. Argue by contradiction. We would have

/uw =0 VpeC(-1,+1)
1

and thus u = 0 (by Corollary 4.24). On the other hand, if we choose ¢ = x(o,1)

we obtain . oo
/ungo = / f(@®)dt — / f@®dt > 0.
I 0 0

Impossible.
438
2. Check that, Yo € C1([0, 1]),

1
/un¢:/<p+0(—),asn—>oo.
1 1 n

Then use the facts that ||u, ||| is bounded and C1([0, 1]) is dense in C ([0, 1]).
3. The sequence (u;) cannot be equi-integrable since | supp u,| — 0 and

= fun= [l
1 supp up
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4. If up, — u weakly o (LY, L) we would have, by question 2 and Corollary
4.24,u = 1. Choose a further subsequence (u”i) suchthat ) ", | supp Uy, | < 1.

Let ¢ = x4 where
A=1\ (U suppun;c> ,
k

so that |A| > 0. We have

/Iun,kgo:o Vk

and thus 0 = [; ¢ = |A|. Impossible.
5. Consider a subsequence (u,,, ) such that

Z | supp uy, | < oo.
k

Let By = szk(supp up;)and B = () Bg. Clearly | By| — Oask — oo, and
thus |[B| = 0. If x ¢ B there exists some kg such that u,, (x) = 0 Vk > k.

1. Using the parallelogram law with @ = u 4+ v and b = v leads to (u, 2v) =
2(u, v).

2. Compute (i) — (ii) + (iii).

3. Note that by definition of ( , ), the map A € R +— (Au, v) is continuous.

Let A be a measurable set such that 0 < |A| < |2|, and choose a measurable
set Bsuchthat ANB = Jand 0 < |B| < |RQ]. Let u = x4 and v = xp.
Assume first that 1 < p < oo. We have |lu + v||) = |lu — vl = |A| + |B|
and thus [|u + v||3 + [lu — v[|3 = 2(|A| + |B|)*”. On the other hand, we have
2(llull3 + IvlI3) = 2(1A|*? + | B|*/7). Finally, note that

(@ +B)YP >a*P + P Ya, B> 0if p <2,
(@4 B)YP < a®P 4+ 2P Yo, B> 0if p > 2.

Examine the case p = oo with the same functions « and v.

Check that

(S1) 2(tnttn — twtt, tn = ttm) = (ty + )it =t |* + (0 = 1) (e |* = litm]*),
which implies that

(tn — tw)(un|* — lum)®) <0 ¥m,n.
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1.

Letn > m, so that ¢, > t,, and thus |u,| < |u,|. (Note that if ¢, = t,,, then
U, = Uy, in view of (S1)). On the other hand, we have for n > m,

(tn + t) |ty — | < (ty — 1) () — [1n|*) < tn (i |* — |un])?)

and thus
2 2 2
[ty — | < |um|” — lun|”.

It follows that |u,| | £ as n 1 oo and that (u,) is a Cauchy sequence.

. Letn > m,sothatt, >1t, and |u,,| < |u,|. Forn > m we have

2 2 2 2 2
(tn + t)lun — upm|” <t — t) (unl”™ — luml”) <t (lunl” — lun )

and thus
2 2 2
[ty — wm|”™ < |upl” — lum|”.

We now have the following alternative:

(i) either |u,| 1 oo asn 1 oo,
(ii) or |u,| T £ < oo asn 1 oo and then (u,) is a Cauchy sequence.

On the other hand, letting v, = #,u, and s,, = 1/t,,, we obtain
(SnVn — SmVUm, Uy — V) <0,

and thus (v,) converges to a limit by question 1. It follows thatift, — ¢t > 0
then (u,) also converges to a limit. Finally if 7, — 0, both cases (i) and (ii)
may occur. Take, for example, H = R, u,, = C/t, for (i), u, = C for (ii).

Note that

1.

v—ul>=lv— fI>—lu— f>+2(f —u,v—u).

Let K = ﬂnK,,. We claim that u,, — u = Pg f. First, note that the sequence
dy, = |f — uy| = dist(f, K,) is nondecreasing and bounded above. Thus
dy 1 € < 0o asn 1 oo. Next, using the parallelogram law (witha = f — u,
and b = f — u,;,), we obtain

2 2

Up + Um
2

Up — Up

2

‘f— = 2 (1F — w417 = un?).

It follows that |u, — uy|? < 2(d31 — dnz) if m > n. Thus (u,) converges to
a limit, say u, and clearly # € K. On the other hand, we have | f — u,| <
|f —v| Vv € K, and in particular | f — u,| < |f — v| Yv € K. Passing to
the limit, we obtain |f —u| < |f — v| Vv € K.

Clearly K = Un K, is convex (why?). We claim that u, — u = Px f. First,
note that the sequence d, = |f — u,| = dist(f, K,;) is nonincreasing and
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thus d, — £. Next, we have (with the same method as above) |u, — um|* <
2 (d,% — d,%,) if m > n. Thus (u,) converges to a limit, say u, and clearly
u € K. Finally, note that | f — u,,| < |f — v| Yv € K, provided m > n.
Passing to the limit (as m — oo) leads to | f — u| < |f —v| Yv € |J,Kn,
and by density Yv € K.

The sequence («;,) is nonincreasing and thus it converges to a limit, say «. We
claim that « = inf g @. First, itis clear thatinf g ¢ < «, and thusinfg ¢ < .
On the other hand, let u be any element in K and let u, = Pk, u. Passing to
the limit in the inequality «;, < ¢(u,,), we obtain o < @(u) (since u, — u).
It follows that o < infg ¢.

1. Consider, for example, the case that ||u|| > 1 and ||v]| < 1. We have

_ N —v) + @ —vlluDll

el

u
ITu — To| = H_ _ UH
[l
< llu—vll 4+ llull =1 < 2fju — v,
since flull < lu — vl + [lvll < llu —v|l +1.
2. Letu = (1,0) and v = (1, @). Then we have |Tu — Tv| = 2|a|/(1 + |a]),

while ||u — v|| = |«a|. We conclude by choosing « # 0 and arbitrarily small.
3. T coincides with Pp, . Just check that if ||| > 1. then

u u
(u——,v——) <0 Vve B
el

(i) = (ii). Write that
Fu)<F({(—-tu—+tv) Vte(@1), YveK,

which implies that

% [F(u+1t(—u) — Fu)] > 0.

Passing to the limit as # — 0 we obtain (ii).
(i) = (i). We claim that

F()—Fu) > (F'(w),v—u) Yu,v € H.

Indeed, the function? € R +— ¢(¢) = F(u+t(v—u))isof class C! and convex.
Thus (1) — ¢(0) > ¢'(0).

T is surjective iff E is complete.

1. Transfer onto R(T') the scalar product of E by letting
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(T (u), T(v))) = (u,v) Yu,vekE.

Note that [((f, &) < | flle<llgllex Yf, g € R(T). The scalar product (( , )) can
be extended by continuity and density to R(T'), which is now equipped with the
structure of a Hilbert space.

2. Fix any f € E*. The map g € R(T) — (f, T~'(g)) is a continuous linear
functional on R(T). It may be extended (by continuity) to R(T"). Using the Riesz—
Fréchet representation theorem in R(7') we obtain some element 2 € R(T) such
that ((h, g)) = (f, T_l(g)) Vg € R(T). Thus we have ((h, T(v))) = (f,v)
Vv € E.Ontheotherhand, we have ((h, Tv)) = (h, v) Vh € R(T), Vv € E (this
is obvious when & € R(T)). It follows that f = h and consequently f € R(T),
ie, R(T) = E*.

3. We have constructed an isometry T : E — E* with R(T') dense in E*. Since E*
is complete, we conclude that (up to an isomorphism) E* is the completion of E.

5.13

1. We claim that the parallelogram law holds. Indeed, let f € F(u) andletg € F(v).
Then f + g € F(u £ v) and so we have

(f+gutv)=lutvl® and (f—gu—v)=]u—-v|.
Adding these relations leads to

2(flull* + Ioll®) = llu+ vlI* + flu — v]|*.

2. Let T : E — E™* be the map introduced in Exercise 5.12. We claim that F (u) =
{T (u)}. Clearly, T' (1) € F(u). On the other hand, we know that E* is a Hilbert
space for the dual norm || ||g+. In particular, E* is strictly convex and thus (see
Exercise 1.1) F(u) is reduced to a single element.

The convexity inequality a(fu + (1 — t)v,tu + (1 — t)v) < ta(u,u) +
(1 —t)a(v, v) is equivalent to t (1 — t)a(u — v, u — v) > 0.

Consider the operator A € L(H) defined by a(u, v) = (Au, v) Yu,v € H. Then
F'(u) = Au + A*u, since we have

Fu+h)—Fu) = (Au+ A*u, h) +a(h, h).

First, extend S by continuity into an operator S:G — F.Next,letT = So P,
where Pz denotes the projection from H onto G.

(i) = (i). Assumption (ii) implies that T is injective and that R(T') is closed. Thus
R(T) has a complement (since H is a Hilbert space). We deduce from Theorem
2.13 that T has a left inverse.
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(i) = (ii). Assumption (i) implies that T is injective and that R(T') is closed. Then,

use Theorem 2.21.

5.19 | Note that lim sup,, _, o, |, —u|? = lim sup,,_, oo (|tn]> = 2(tt, u) +u[?) < 0.

1.

Ifu € N(S) we have (Sv,v —u) > 0 Vv € H; replacing v by v, we see that
(Sv,u) =0Vv € H. Conversely, if u € R(S)+ we have (Sv — Su, v) > 0Vuv €
H; replacing v by tv, we see that (Su, v) = 0 Vv € H. (See also Problem 16.)

. Apply Corollary 5.8 (Lax—Milgram).
. Method (a). Setu; = (I +1S)~' f.

If feN(S),thenu, = f Vt > 0.
If f € R(S), write f = Sv, so that u; + S(tu; — v) = 0. It follows that

(us, tuy —v) < 0 and thus |u;| < (1/t)|v]. Consequently u; — 0 ast — oo.
By density, one can still prove that u;, — 0 as t — oo for every f € R(S) (fill in
the details).

In the general case f € H, write f = f1 + f» with fi = Py f and fo» =

Method (b). We have u; + tSu; = f and thus |u;| < |f|. Passing to a sub-
sequence #, — 00 we may assume that u;, — u weakly and that Su = 0 (why?),
ie., u € N(S). From question 1 we know that (Su;,v) = 0 Yv € N(S) and
thus (f — u;, v) = 0 Vv € N(S). Passing to the limit, we find that (f — u, v)
= 0 Vv € N(S). Thus u = Py(s)f and the “uniqueness of the limit” implies
that u; — u weakly as r — oco. On the other hand, we have (Su,, u;) > 0, i.e.,
(f — us, ur) > 0 and consequently lim sup,_, lus 1> < (f, u) = |u|?. It follows
that u; — u strongly as ¢t — oo.

W

. Set § = I — T and apply question 1 of Exercise 5.20.
. Write f = u — Tu and note that o,, (f) = 1 (u — T"u).
. First, check thatlim,,_, o000, (f) =0V f € R(I — T).Next, splitageneral f € H

as f = fi+ fowith ff e NU—T)and f» € NI —T)* = R(I — T). We then
have 0, (f) = 0, (f1) +0u(f2) = f1 + ou(f2).

. Apply successively inequality (1) to u, Su, Su, ..., S'u, ..., and add the result-

ing inequalities. Note that

1S"u — 8" u| < |S'u— S| Vi=0,1,...,n.

. Writing f =u — Tu = 2(u — Su), we obtain |, (f)| < 2|ul/~/n + 1.
. Use the same method as in question 3.
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2. Letm > n. Applying Exercise 5.4 with f = u,, and v = Pk u,, one obtains

2 2 2
|Pguy — Prum|™ < |Pxuy — upm|” — [Pritm — U

2 2
S|\ Pgup —uy|” — |Pgity, — tpy|”.

Therefore, (Pxu,) is a Cauchy sequence.

3. We may assume that u,, — u weakly. Recall now that (v, — Pgu,, v — Pgu,)
< 0 Vv € K. Passing to the limit (along the sequence ny) leads to (u — £, v — £)
<0 Vv € K. Since u € K, we may take v = u and conclude that u = £. Once
more, the “uniqueness of the limit” implies that u, — £ weakly.

4. Foreveryv € K, lim,_, oo |u, —v |2 exists and thus lim,, _, oo (1, v —w) also exists
forevery v, w € K.Itfollows that ¢ (z) = lim,,_, o (4, z) exists foreveryz € H.
Using the Riesz—Fréchet representation theorem we may write ¢(z) = (u, z) for
some u € H. Finally, note that (u — £, v — £) <0 Vv € K and thus £ = Pxu.

5. By translation and dilation we may always assume that K = By . Thus |u,| | «.

If ¢ < 1, then u, = Pku, for n large enough (and we already know that Pxu,
converges strongly).

If o > 1, then Pxu, = u,/|u,| converges strongly and so does u,.

6. Recall that (4, — Pgu,,v — Pxu,) <0Vv € K and thus (4, — €, v —¥¢) < ¢,
Yv € K, with g, — 0 (¢, depends on v). Adding these inequalities leads to
(o —€,v—20) < ¢, Vv € K,withe, — 0. Assuming that o;,, — & weakly, then
o € K satisfies (0 —¢, v—4{) < 0 Vv € K. Therefore 6 = ¢ and the “uniqueness
of the limit” implies that o;, — ¢ weakly.

3. Note that 4/nu,, is bounded, and that for each fixed j, (/nuy,, ej) = Oasn — oo.

Let F be the closure of the vector space spanned by the E,,’s. We know (see
the proof of Theorem 5.9) that ZZO:1|PE,1M|2 = |Pru|* Yu € H, and thus | Ppu| =
lu| Yu € D.1Itfollows that | Pru|> = |u|?> Yu € D and therefore Prou = 0 Yu € D.
Consequently Priu =0 Vu € H, i, FL =1{0},andso F = H.

1. V is separable by Proposition 3.25. Consider a dense countable subset (v,) of V
and conclude as in the proof of Theorem 5.11.

2.1f2 < p < oo use the inequality [|ull, < [lullis??[lu]3/”. Note that every
infinite-dimensional Hilbert space (separable or not) admits an infinite orthonor-
mal sequence.

6. Integrating over 2, we find that k < M?|Q2|, which provides an upper bound for
the dimension of E.
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1. For every fixed ¢ € [0, 1] consider the function u;(s) = p(s)xo,r](s) and write
that 302 [(ur, en)| < lluel3.

2. Equalityin (2) implies equalityin (1) fora.e.t € [0, 1]. Thusu; = Zflozl(u,, en)en
for a.e. t € [0, 1], and hence u; € E = the closure of the vector space spanned
by the e,’s. It remains to check that the space spanned by the functions (u;) is
dense in L. Let f € L? be such that fol fu; = 0 for a.e. ¢. It follows that

fé fp=0Vte[0,1],andso fp =0a.e.

It is easy to check that (¢;, ¢;) = Ofori # j.Letn = 27t _ 1. Let E

denote the space spanned by {¢o, ¢1, . .., ¢, } and let F' denote the space spanned by
the characteristic functions of the intervals (2PlT’ 2’%31), where i is an integer with
0<i<2!! — 1. Clearly E C F,dimE =n+ 1 = 2P*! and dim F = 27*!,

Thus E = F.

2. The function u = ryr, is orthogonal to all the functions (r;);>¢ and u # 0. Thus
(ri)i>o0 is not a basis.

3. Itis easy to check that (wy,),>0 is an orthonormal system and that wo = rp, wye =
re+1 Y€ > 0. In order to prove that (wy),>0 is a basis one can use the same
argument as in Exercise 5.31.

3. Consider the sequence of functions defined on [0, 1] by

0 if 0<r=<3i,
un () ={nt -5 if J<r=<i+i
1 if J+i<r<l
Note that T'(u,) — f,but f ¢ T(Bg), since f ¢ C'([0, 1]).

Argue by contradiction. If the conclusion fails, there exists some § > 0 such
that ||Tu||r > Sllullg Yu € E. Hence R(T) is closed. Consider the operator
To : E — R(T) defined by Ty = T. Clearly Ty is bijective. By Corollary 2.6,
TO*1 € L(R(T), E). On the other hand, Ty € KC(E, R(T)). Hence Bg is compact
and dim E < oo.

Let T : V — £ be the operator defined by

Tu = (\/k_lul,\/zuz,...,mun,...).

Clearly |Tul|,2 = |lullyv VYu € V,and T is surjective from V onto 2. Since €2 is
complete, it follows that V is also complete.
Consider the operator J, : V — ¢2 defined by
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Jou = (i, up, ..., u,,0,0,...).

It is easy to check that ||J, — 1|2y ¢2) — O and thus the canonical injection from
V into £2 is compact.

1. Assume that T is continuous from E weak into F strong. Then for every ¢ > 0
there exists a neighborhood V of 0 in E weak suchthatx € V = ||[Tx| < ¢. We
may assume that V has the form

V={xeE;|(fi,x)|<dé Vi=1,2,...,n},

where f1, f2,..., fn € E*and § > 0.
LetM ={x € E;(fi,x)=0Vi =1,2,...,n},sothat Tx = 0 Vx € M. On
the other hand, M has finite codimension (see Example 2 in Section 2.4). Thus
E = M+ N withdim N < oo.Itfollowsthat R(T) = T (N) is finite-dimensional.
2. Note that if u, — u weakly in E then Tu,, — Tu weakly in F. On the other
hand, (T u;) has compact closure in F (for the strong topology). Thus Tu,, — Tu
(see, e.g., Exercise 3.5).
6. Note that T* € L(E*, (co)*). But (co)* = ¢! (see Section 11.3). Since E* is
reflexive, it follows from question 5 that 7* is compact. Hence (by Theorem 6.4)
T is compact.

1. There is a constant ¢ such that Br(ry C ¢T (Bg) and thus the unit ball of R(T') is
compact.

2. Let Ep be a complement of N(T'). Then Ty = Tjg, is bijective from Ey onto
R(T). Thus dim Eg = dim R(T) < oo.

1. (A)= (B):
Let Eg be a complement of N(T) and let P : E — N(T) be an associated
projection operator. Then Ty = T}, is bijective from Eq onto R(T). By the open
mapping theorem there exists a constant C such that

lulle < CliTullr VYu € Eo.
It follows that Yu € E,
lulle < llu— Pullg + |Pullg < CliTullp + || Pullg.

©) = (A):

(i) To check that the unit ball in N(7') is compact, let (u,) be a sequence in
N(T) such that |lu,||g < 1. Since (Q(u,)) has compact closure in G, one
may extract a subsequence (Q(up,)) converging in G. Applying (C), we see
that (u,, ) is Cauchy.
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(i1) Introducing a complement of N(7') we may assume in addition that T is
injective. Let (u,) be a sequence in E such that Tu,, — f. Let us first check
that (u,) is bounded. If not, set v, = u,/||u,|. Applying (C), we see that a
subsequence (v, ) is Cauchy. Let v,;, — v withv € N(T) and [Jv]| = 1;
impossible. Therefore (u,) is bounded and we may extract a subsequence
(Q(up,)) converging in G. Applying (C) once more, we find that (u,,) is
Cauchy.

To recover the result in Exercise 2.12 write
lulle < CUITullr + |Pulle) < CUITullF + | Pul),
since all norms on N(T') are equivalent. Moreover,
|Pul < |u— Pul+ lu| < Cllu — Pullg + lu] < Cl|Tullr + |ul.
2. Note that
lulle < CUITullr + 1Pulle) < CUT + Sullr + | Pulle + |ISullF)

and consider the compact operator Q : E — E x F defined by Qu = [Pu, Su].
6.10

1. Note that Vu € E,

QM [l[ull < 1QMu — Q(THull + QT )ull
= 1Q(T) @ — Tw)l| + | Q(T)ul|
< Cllu = Tull +11Q(T)ul).

2. Proof of the implication N(I — T) = {0} = R(I — T) = E. Suppose by
contradiction that R(I — T) = Ey # E.Set E, = (I — T)"E. Then (E,) is a
decreasing sequence of closed subspaces. Choose u,, € E, such that |lu,| = 1
and dist(u,,, E;+1) > 1/2. Write

QM) un—Q(T)um= Q(T)up—Q(D)up+Q(Dun—Q(Dum+Q(Duym—Q (Tt

Thus, for m > n, we have

19(Tun — Q(Mumll = 1Q(D)1/2,

and this is impossible.
For the converse, follow the argument described in the proof of Theorem 6.6.

3. Using the same notation as in the proof of Theorem 6.6, write S = T + A o P.
Here S ¢ IC(E),but A o P € KC(E). Thus Q(S) € K(E) (why?). Then continue
as in the proof of Theorem 6.6.
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1. There exists an integer ng > 1 such that Int F,,, 7 ¥ and thus B(ug, p) C Fy,.
Forevery u € F and |A| < p/|lull we have ug + Au € Fy,. Therefore

] Ju(x) — u()| < lug(x) — uo()| + nod(x, )" < 2nod (x, y)'/"0.

It follows that

2ng
|mm—u@ns7;wwuoN”°vLyeK

2. The theorem of Ascoli—Arzela implies that By is compact.

Suppose, by contradiction, that there exist some g9 > 0 and a sequence (u,)
such that ||u,||g = 1 and ||Tu,||r > €0 +nlu,|. Then |u,| — 0 and we may assume
that u,, — u weakly. But the function u > |u| is convex and continuous. Thus it is
L.s.c. for the weak topology and hence u = 0. It follows that Tu, — 0. Impossible.

1.Ifu = f4+ AT — A~ f, we have Au = T(u — f) and hence || |u] <

N7l + 1£1D-
2. By the proof of Proposition 6.7 we know that if & € R is such that | — A| ||(T —

AD7Y < 1, then u € p(T). Thus dist(x, o (T)) = 1/|(T — AI)~.
4. U-nDr=4T-D.
6. Note that the relation Uu — Au = f is equivalent to

(A+1) 1
u— u=
*=1 r=1

(f =T§).

2. (T —aD™" = L5 S an—i-iri,
3.(T =A™ = =Y a7l

— — —1 i
4. I-T)'=a-rH 1Yy, 1.

1. |S¢]l = |ISell = 1. Note that S¢ o S, = I and thus S, ¢ K(E), S¢ ¢ K(E).

3. Forevery A € [—1, +1] the operator (S, — A7) is not surjective: for example, if
f=(-1,0,0,...) the equation S,x — Ax = f has no solution x € 22,

4. N(S¢g —2I) =R, A, 2%, ..).

6. S =S¢ and S} = §;.

7. Writing S,x — Ax = f, we have

x| = 1Syx] = [Ax + fI < |Al|x[ + | f].

Thus
[Srx — Ax| > (1 — [AD]x],
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and hence R(S, — AI) is closed. Applying Theorem 2.19 yields
o
R(S, —A)=N(Sg— 2Dt ={xet’ Y 3 'y =0
i=1

and
R(S; — A1) = N(S, — .)* = E.

8. Wehave R(S, £1) = N(S¢ £ )" = Eand R(S¢ £ 1) = N(S, £ I)- = E.
We already know (see question 3) that R(S, == I) # E. On the other hand,
R(S¢£1) # E;otherwise, since Sy =1 is injective, we would have 1 € p(Sy).
Impossible.

9. EV(S,oM)=0ifa, #0 Vnand EV (S, o M) = {0} if a, = O for some n.

10. We may always assume that @ # 0; otherwise S, o M is compact and the
conclusion is obvious.
Let us show that (T — AT) is bijective for every A with |A| > |«|. Note that
M = ol + K, where K is a compact operator. Letting 7 = S, o M, we obtain
T =aS +Kyand (T — M) = (&S, — A1)+ K1 = J o (I + K3), where
J = (a8, — A1) is bijective and K, K, are compact. Applying Theorem 6.6
(¢), it suffices to check that N(T — AT) = {0}. This has already been established
in question 9.
Let us show that (T — A7) is not bijective for |A| < |«|. Assume by contradiction
that (T — A1) is bijective. Write (S, —21) = L(T —AD) - 1K = J' o (1 + K3),
where J' is bijective and K3 is compact. Applying once more Theorem 6.6 (c),
we see that

A A
(Sr — —I) injective < (Sr — —I) surjective.
o o

But we already know (from questions 2 and 3) that (S, — %I ) is injective and
not surjective, for |A| < |«|. Impossible.

11. (S o M) = [ — /labl, ++/[abl]. Indeed, if || < +/[ab], the operator

(S o M — AI) is not surjective, since (for example)
f=(1,0,0,...) & R(S, oM — AI).

On the other hand, if |A| > +/|ab|, the operator (S, o M — A1) is bijective, since
(S; o M)? = abS?. Thus ||(S, o M)?|| < |ab| and we may apply Exercise 6.16,
question 4.

1. Note that )
ITu(x) — Tu()| < |x — y|"7 |lul .

If1 < p < oo we may apply Ascoli-Arzela to conclude that 7 (Bg) has compact
closure in C ([0, 1]) and a fortiori in L? (0, 1). If p = 1, apply Theorem 4.26.
2. EV(T) = (. Note first that 0 ¢ EV(T). Indeed, the equation 7Tu = 0 implies



Solutions of Some Exercises 417

4.

1
/ Uxap =0 Va,bel0,1].
0

If 1 < p < 1 we may use the density of step functions in L”" to conclude that
u = 0. When p = 1, we prove that

1
/ up =0 Vg e C([0,1])
0

by approximating uniformly ¢ by step functions. We conclude with the help of
Corollary 4.24 that u = 0.

For A # Oandfor f € C([0, 1]), setu = (T—)J)’lf.Then v(x) = f(;c u(t)dt
satisfies:

veC'(0,1]) and v—2rv = f withv(0)=0.

Therefore

u@ =~ f@) ~ 2 fo " eI f (1.

The same formula remains valid for f € L? (argue by density).
N 1
(T*v)(x) = [, v(t)dt.

2.

Suppose, by contradiction, that there exists some p € Q(o (7)) such that u ¢
o(Q(T)). Then u = Q(A) withA € o(T),and Q(T) — Q(A)I = S is bijective.
We may write

Ot — 0N =t —1Q@) VteR,

and thus . .
(T —2DQO(T) = Q(TY(T —AI)=S.

Hence T — Al is bijective and A € p(T); impossible.
Take E =R?, T = (% })and Q(r) = 1°.

Then EV(T) = o(T) =W and EV(T?) = o(T?) = {—1}.
T2 + 1 is bijective by Lax—Milgram. Every polynomial of degree 2 without real
roots may be written (modulo a nonzero factor) as
2
Q) =1*+at+b= <t+‘—l)2+b—a—
2 4
with b — a?/4 > 0, and we may apply Lax—Milgram once more.
If a polynomial Q(¢) has no real root, then its roots are complex conjugates. We
may then write Q(t) = Q1(¢) Q2(¢) ... Q¢(t), where each Q; (¢) is a polynomial
of degree 2 without real roots. Since Q; (T') is bijective, the same holds for Q(T).
(i) Suppose, by contradiction, that u € EV(Q(T)) and u ¢ Q(EV(T)). Then
there exists u 7~ 0 such that Q(T)u = pu. Write
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QW) —pu=@C—t)t —n) - —1)0(@),

where the #;’s are the real roots of the polynomial Q(¢) — u and Q has no real
root. Thent; ¢ EV(T) Vi, since u ¢ Q(EV(T)). We have

(T =T —tl)-- (T — 8,1 O(Tu = 0.

Since each factor in this product is injective, we conclude that u = 0. Impossible.

(ii) Argue as in (i).

3. In E = R? take T'(u;, u2) = (u2,0). Then T? = 0, so that r(T) = 0, while
ITI = 1.

5. In E = R3 take T (u1, uz, u3) = (u2, —uy, 0). Then o (T) = {0}. Using the fact
that 73 = —T it is easy to see that »(T) = 1.
Comment. If we work in Banach spaces over C the situation is totally different;
see Section 11.4. There, we always have r(T) = max{|A|; A € o(T)}. Taking
E = C3 in the current example we have o (T) = {0, +i, —i} and then r(T) =
max{|A|; A € o(T)} = 1.

6. Assuming that the formula holds for 7", we have

t s
(") = ! /ds/ (s — )" \u(r)dr
(n—1!Jo 0

1 t t
:m/o u(t) [/ (s—t)”ldsi|dt

1 t
= _/ @t — ) 'u(r)dr.
n! 0

7. Consider the functions f and g defined on R by

£ = et ifo<r<1,
o otherwise,
u(t) if0<r<l,
1) =
8() {0 otherwise,

so that for 0 <t < 1, we have
1
(f*xg)®) :/o (t — Du(r)dt = (T"u)(@).
We deduce that

1
If*glleroy < If *gller@ < 1L wllgllLr@®) = ;”“”Ll’(o,ly
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8. Apply Stirling’s formula.

2. (v) = (vi). For every ¢ > 0, T, = T + ¢l is bijective and o (T;) C [e, 1 + €].
Thus o(Tg_l) C [ﬁ, %]. Applying Proposition 6.9 to Tg_1 yields

(T v, v) > L [v> VYveH
& ’ sl 1+8 5

i.e.,
(Teu, u) = 1+8|Tgu|2 Yu € H.

3. Set U = 2T — I. Clearly (vii) is equivalent to
(vii) lu| < |Uu| VueH.

Applying Theorem 2.20, we see that (vii) = (—1, +1) C p(U) = 2p(T) — 1.
Thus (vii) = (viii).

Conversely, (viii)) = (—1,+1) C p(U). Thus o (U) C (—o0, —1] U [1, 400)
and a(U‘l) C [—1, +1]. By Proposition 6.9 we know that ||U_1|| <1, ie.,
(vii") holds.

By construction we have

Mo(I+K)=1 onX,
(I+K)yoM=1 onR(I+K).

Given any x € E, write x = x| 4+ x» with x| € X and x € N(I + K). Then
Mo(I+K) x)=Mo(+ K)(x;)=x1 =x— Px

where P is a projection onto N (I + K).
For any x € E we have

(I+K)oM@x)=(+K)oMoQx)=0x =x — Px,
where P is a finite-rank projection onto a complement of R(/ + K) in E.

4. We have
u;l = g“,,u/ + {,/lu.
Clearly ¢,u’ — u’ in L? by dominated convergence. It remains to show that
¢u — 0in LP. Note that
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2/n
gl =€ [Pt Pax,
/n
where C = |||} -
When p = 1 we have, since u € C([0, 1]) and u(0) =0,
2/n
n/ lu(x)|dx < max |u(x)] - 0asn — oo.
1/n xelt,2]
When p > 1 we have
2/n 2/n )4 2/n 14
np/ lu(x)|Pdx = np/ xpde < 21’/ de -0
1/n 1/n xP n X

by question 1.

1. By question 1 in Exercise 8.8 we know that @ € L?. On the other hand,

u(x) = /x u'(dt = xu'(x) — /x u” ()edt,
0 0

and thus , | g
% = ”)(Cx) — ;/o u” (H)edt.
But
X l X
2 /0 u (Htdt| < ;[0 lu”(t)|dt € L?,
as above.

2. We have v € C1((0, 1)) and

ulx) u'(x)

v’(x):——z—i— el?,
X

X

by question 1.

Moreover,

1 X
v(x):w:—/ uw'(t)dt — 0 asx — 0,
X X Jo

since u € C'([0, 1]) and «/(0) = 0.
3. We need only to show that

Ngpu'll, + 1 ull, — 0asn — 0.

But
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!/
' l1h < CnP/
1/n

2/n

2/n \,, P
i (0)|Pdx < 2Pc/ P
in  XP

and

2/n

2/n 14
lu(x)|Pdx < 4Pc/ '”(;C)' dx
in Xx°P

" P 2
I¢/u]h < Cn f’/
1/n

“/)(Cx) e L? and —”()2‘) eLP.
, X
4. Letu € X,y. Thenu’ € X,,—1 and Zm(ff € L?(I) by the induction assumption.

Next, observe that
u(x 1 [ u@
wx) _ / w) M dr.
xm xm 0 tm—l

Applying once more Hardy’s inequality (see Problem 34, part C) we obtain

LIS 1/x WO 4y e Lo,
x Jo

xm tm

In order to prove that ;‘,,(,—f), € X1, note that

u(x) Du(x) M(x)
P <xm_l) = m—1 (m — ) € LP),
and that
1 [ '
[t ()| < / |u()|tm—1d[§/ |u()|dt_)0 asx — 0,
xm—1 xm—1 pm—1 0 pm—1

5. It suffices to check that Dfv € X for every integer £ suchthat 0 < £ <k — 1.
DIty (x)

But Dv is a linear combination of functions of the form nkri—a» Where o is
an integer such that 0 < o < £. Then use question 4.
6. It suffices to show that (D%¢,)(DPu) — 0in L?(I) when o + B = m and

1 <o <m.But|D%,(x)| < Cn® and thus

: 2/n Dﬂ »
/ | D5y ()17 | DPu(x)|Pdx < Cn®? f u) | e
0 1/n
2/m DPu(x) |p
=C ‘ dx — 0
1/n
DP u(x) p
since € LP(I) by question 4.

8. To prove thatv € C([0, 1]), note that v(x) = )lcf(f u'(t)dr and thatu’ € C([0, 1])
with u’(0) = 0.
Next, we prove that v € W1 (I). Integrating by parts, we see that
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1 X
/ 1
vi(x) = —2/ u” (t)rdt,
X 0

and a straightforward computation gives
1
[CA S/ lu" I = )de < [lu”l1.
0

9. Set .
u(x):/ (1 + |logz))~'dz.
0

Itis clear thatu € W2 () with u(0) = «’(0) = 0, and, moreover, ”/)(CX) ¢ L'(I).
The relation

ne) _ ')

4
— v (x),
2 X

X

combined with question 8 shows that % ¢ L'(I).

8.10
4. Clearly, as n — oo,
v;l(x) =G (mu(x)u'(x) - f(x) ae,

where
0 if  wu(x) #0,

foo = {u/(x) if  u(x)=0.

6. We have | X
/ v = —/ vhg Yo eClI.
0 0

Passing to the limit as n — oo yields

1
f fe=0 VYoecC.),
0
and therefore f =0 a.e.on I, ie., u’(x) =0a.e.on [u = 0].
8.12
1. Use Exercise 8.2 and the fact that

lim infl|u), || Lr > [l Lr.
n—0oo

2. Considerthe sequence (u,) in Exercise 8.2. We have ||lu, || ;1 < %and )l = 1.
Thus %un € Bj. On the other hand, %un — %u in L', where
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0 if xe(0,1/2),

Y= reas,

But u ¢ W', Thus By is not closed in L.
8.16

2. R(A) =L?(0,1)and N(A) = {0}.
3. ve D(A%) iff v € L? and there is a constant C such that

1
‘/ vu’
0

In particular, v € D(A*) = v € Wl'l’/, and then

< Clull, Vue D(A).

1
(S1) u(Hv(1) —/ wv'| < Cllull, Vu € D(A).
0

We deduce from (S1) that
lu(D)] ()] < (C+ V) llull, Yu € D(A).

It follows that v(1) = 0, since there exists a sequence (u,) in D(A) such that
un(1) = 1and |Ju,|, — 0. Hence we have proved that

ve DAY = ve W' and w(l)=0.
It follows easily that
D(A*) = {ve W' and v(1) = 0},

with A*v = —v'.
4. We have

1

NA) = {0}, R(X)z{fem;/ f(t)dt:O},
0

and _ N )
(A)*v = —v'  with D((A)*) = whr'.

In the determination of D(A™) it is useful to keep in mind the following fact.
Let 7 =(0,1)and 1 < p < oco. Assume that u € LP(I) satisfies

(S1) ’/W
1

thenu € Wh-2(1).

< Clglly Y e Cl(I) such that /I<p =0,
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Indeed, fix a function ¥ € C Cl (I) such that f ; Yo = 1. Let ¢ be any function in
Cl(I). Inserting ¢ = ¢ — ([, {)o into (S1), we obtain

‘/u( /z
1 1

where C’ depends only on u and . Therefore u € W' (I) by Proposition 8.3.
When Au = u” — xu’ we have

< Cligly +C’

’

Av=v"+xv +v.
Note the following identity
2 2
A* (e Tu)=e TAu Vue HXI),
which allows to compute N (A*) under the various boundary conditions.
Given f € L?(0, 1), set F(x) = [, f(t)dt. Then

L F2(odx it f) f(nde =0,
+o00 otherwise.

w*(f)==
Indeed, if f, f(r)dt =0, then [, fv= [ F'v=— [} Fv' Yve H'(0,1),and
1 1 1 1 1 1
©*(f) = sup {/ fv——/ v’z}zsup {—/ Fv’——/ v’z}
vert 1Jo 2 Jo veH! 0 2 Jo
1 1 1 1 1
= sup {—/ Fw——/ wz}z—/ F>.
wel? 0 2 Jo 2 Jo

2. Let U be any function satisfying

—(pU"Y +qU =f on(0, D),
U(l) =0.

Then X
/0 fvo = p0)(U'(0) — ko U(0)).

Therefore, if fol fuvo = 0, any such function U satisfies U’ (0) = ko U(0). Since
U (0) can be chosen arbitrarily we see that the set of solutions is one-dimensional.

8.22

1. The function p(x) = x belongs to H!(0, 1), but /o(x) = /x ¢ H'(0, 1).
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2. For every p € H'(0, 1), with p > 0on (0,1), set y. = 4/p + €. Since the
function ¢ +— /f + ¢ is C! on [0, +00), we deduce that Ve € H'(0,1) and,
moreover,

/

I »p
2/p+e’
so that |y/| < w on the set [p > 0]. On the other hand, we know that p’ = 0
a.e. on the set [p = 0] (see Exercise 8.10) and thus |y/| < u a.e. on [p = 0].
Therefore |y/| < p a.e. on (0, 1).

Consequently, if 4 € L? we deduce that lyillp2 < Case — 0. Since y, — /p,
ase — 0,in C([0,1]) and y/ — p in LZ(O, 1), we conclude (see Exercise 8.2)
that /p € H'(0,1) and ((/p)’ = L.

Conversely, if \/p € H'(0,1), sety = /P, so that p = yZand p/ = 2yy.
Hence u = y’ a.e. on [p > 0] and, moreover, u = y’ a.e. on [p = 0] since
y'=0ae.on[y =0]=[p=0].

Ve =

8.24

1. One may choose C, =1+ 1/¢.
2. The weak formulation is

ue H\(I),
a(u,v) = fol(u’v’ + kuv) —u(DHv(l) = /01 fv Yve H\I).

Clearly a(u, v) is a continuous bilinear form on H Lo, 1. By question 1 it is
coercive, e.g., if k > 2.

The corresponding minimization problem is

. 11/2 k2)1(12 !
Urggll 2/(;(v+v —2v)—/0fv.

3. Let g € L>(I) and let v € H?(I) be the corresponding solution of (1) (with f
replaced by g). We have

1 1
/ ug = / u(—v” + kv)
0 0

—u(D)v' (1) + u(0)v'(0) + o’ (Hv(1) — u' (0)v(0)

(Tf’ g)L2

1
+/ (—u” + ku)v
0

1

—u(Dv(l) +u(v() +/O fo=(f.Tg),>.

Therefore T is self-adjoint. It is compact since it is a bounded operator from L (1)
into H'(I), and H'(I) ¢ L*(I) with compact injection (see Theorem 8.8).
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4. By the results of Section 6.4 we know that there exists a sequence (u,) in L3(I)
satisfying Tu, = pnu, with ||u,ll;2 =1, uy > 0 Vn, and u, — 0. Thus we
have —u), + ku, = /LL””” so that —u), = (ML" —k)u, on 1.

5. The value A = 0 is excluded (why?). If A > 0 we have u(x) = Acos Vax +
B sin +/Ax, where the constants A and B are adjusted to satisfy the boundary
condition, i.e., B = 0 and A(cos A+ +/Asin \/X) = 0,sothat A # Oiff JAisa
solution of the equation tant = —1/¢ (which has an infinite sequence of positive
solutions #,, — 00, as can be seen by inspection of the graphs). If A < 0 we have
u(x) = AevVMx  Be=VI*¥ Putting this together with the boundary conditions
gives A = B and A |)\|e\/m — B |)\|e_\/m = AeVM + Be=VTA In order to
have some u # 0, A must satisfy \/m(e\/m — e VI = VI 4 o=V e
t = /[A] is a solution of the equation e* = % An inspection of the graphs
shows that there is a unique solution 7o > 1 and then A = —tg.

8.25

2. Assume by contradiction that there is a sequence (u,) in H L(I) such that
a(uy,u,) — 0 and ||Mn||1-11(1) = 1. Passing to a subsequence (u,,) we may
assume that u;,k — u’ weakly in L? and u, — u strongly in L%. By lower
semicontinuity (see Proposition 3.5) we have liminf f; (u;k)2 > [,(u)* and
therefore a(u,u) = 0, so that u = 0. But f,(u;lk)2 =1-/ u,zlk and thus

At tn) = [3 Wy )? + (fo tn)? =1 = [y u, + (fy un,)> — 1. Impossible.
4. We have
/L/U’:/gv vv e H'(I),
I I

where g = f — (fo1 u)x(0.1)- Therefore u € H?(I) and satisfies

—u” + (fo1 u)xo, =f onl,
u'0)=u'(2) =0.

5. We have u € C2(1) iff [ u = 0. This happens iff [, f = 0.
8. The eigenvalues of T are positive and if 1/A is an eigenvalue, we must have a
function u # 0 satisfying

—u" + [ u = hu on (0, 1),
—u" = \u on (1,2),
u'(0) =u'(2) =0,

u(1=) = u(1+) and o’ (1—) = u’(14).

Therefore

ux) = ; + A cos(v/Ax) on (0, 1),
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u(x) = A cos(vA(x —2)) on(l,2),
where the constants k, A and A are determined using the relations

u(l=) =u(1+)and w’(1-) = u(14+),
k= fol u.

We conclude that either sin(ﬁ) =0,ie, A =n’72withn =1,2,... ,orAis
a solution of the equation tan(v/2) = 2+/A(1 — 1).

8.26

3. Seta(v,v) = [; pv'? 4 gv2. We have (Sy f — Sp f, f) = J; fuy —up). We
already know that %a(uN,uN)—fl fuy < %a(uD,uD)—f, fup.On the other
hand, a(uy,uy) = [, fuy and a(up,up) = [, fup. Therefore [, f(uy —
up) > 0.

6. Seta;(v,v) = a(v,v) + k,~v2(0),i = 1,2, and uy, = uy, ug, = uz. Since u; is
a minimizer of (%ai(v, v) — [, fv)onV = {v e H'(I); v(1) = 0}, we have

1 1 1 1
~a(ua, uz) + =kyu3(0) —/fuz < za(ui, uy) + skoui(0) —/ful.
2 2 I 2 2 I

On the other hand, we have

auy, uy) + kyu}(0) :/Iful,

and
a(uz, uz) + kou3(0) =/Ifuz~
Therefore
1/ <1 Lk — ki (0) f
-3 lfbtz_Z/;ful-l-2 2 — kpui(0) — If“l,
so that
(St f = S f- f) = /1 fluz —uy) > (ki — k2)u?(0) > 0.

8.27

4. The solution ¢ of
—¢"+¢=1onl,
p(=1) = (1) =0,
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is given by ¢(x) = 1 + A(e* + ™), where A = —e/(e2 + 1) . By uniqueness
of ¢ we must have u = Au(0)¢. Therefore

1 e +1

M= — = —.
T 90) " e—1?

5. Equation (1) becomes u = S(f +Au(0)) = Sf+Au(0)S1 = Sf +Au(0)p. Thus
w(0)(1 = 2p(0)) = (S)(O). ie., u(0) = 22500 and y = sf + 20SDOC
the desired solution.

6. When A = A, the existence of a solution # implies (Sf)(0) = 0 (just follow the
computation in question 5). Conversely, assume that (Sf)(0) = 0. A solution of
(1) must have the form u = Sf 4 A for some constant A. A direct computation
shows that any such u satisfies —u” +u = f+A.Butu(0) = (Sf)(0)+ % =4

=%
Thus we have —u” +u = f + Aou(0), i.e., (1) holds for any A. Therefore the set
of all solutions of (1) when A = Ag is Sf + Re.

8.29

2. The existence and uniqueness of a solution u € H (0, 1) comes from Lax—
Milgram. In particular, u satisfies

1 1
/ u'v' :/ (f —uw)v Yve HO,1),
0 0

and therefore u’ € H'(0, 1), i.e., u € H>(0, 1); moreover, —u” + u = f on
(0, 1). Using the information that u € H 2(0, 1), we may now write

a(u,v) = /1(—14” +u)v +u'(Hv(1) — u'(0)v(0)
4(-) (u(1) —u(0)(v(1) —v(0)
=/Olfv vu e H'(0, 1).
Consequently,
@' (1) +u(l) — u(0)v(1) — @'(0) + u(1) — u(0)v(0) =0 Vv e H'(0,1).
Since v(0) and v(1) are arbitrary, we conclude that
W' (1) +ul) —u©) =0 and u'(0)+u(l) —u(0) = 0.

5. Using the same function G as in the proof of Theorem 8.19 we have, taking
v=G(—u),a(u, G(—u)) = fol fG(—u) > O0since f > 0and G > 0. On the
other hand,
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1 1
a(u, G(—u)) = —f u’zG’(—u)—/ (—u)G(—u)
0 0
+ (1) —u(0)(G(—u(l)) — G(—u(0)))
1
< —/ (—uw)G(—u),

0

since G is nondecreasing. It follows that

1
f (—uw)G(—u) =0,
0

and consequently —u < 0.
7. Let 1/X be an eigenvalue and let u be a corresponding eigenfunction. Then

—u"4+u=>xu on(0,1),

u'(0) = u(0) — u(l),

' (1) =u(0) —u(l).
Since a(u, u) = Afol u? > fol u?, we see that A > 1. Moreover, A = 1 is an
eigenvalue corresponding to u = const. Assume now A > 1 and seto = /A — 1.

We must have
u(x) = Acosax + Bsinax.

In order to satisfy the boundary condition we need to impose

Ba=A— Acosa — Bsina,
—Aasine + Bacosa = A — Acosa — Bsina.

This system admits a nontrivial solution iff 2(1 — cosa) + asina = 0, i.e.,
sin(a/2) = 0 or («/2) + tan(e/2) = 0.

8.34

1. Let u be a classical solution. Then we have
1 1
—u' (DHv(1) + ' (0)v(0) +f W'V + uv) = / fv Vve HI(O, 1).
0 0
Let V ={ve H'(0,1); v(0) = v(1)}. If v € V we obtain
1 1
a(u,v) = / W'V + uv) = / fv 4+ kv(0).
0 0
The weak formulation is

1
ueV and a(u,v):/ fv+kv(0) VvelV.
0
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By Lax—Milgram there exists a unique weak solution # € V, and the correspond-
ing minimization problem is

. 1 ! 2 2 !
512‘1/1{5/0(1) +v)—'/0 fv—kv(O)}.

. Clearly, any weak solution u belongs to H2(0, 1) and satisfies

—u”" +u=f ae on(0,1),
' (D) —u’ (0)v(0) = kv(0) YveV,

i.e.,
W' (1) —u'(0) =k.

The eigenvalues of T are given by Ay = 1/ug, where uy corresponds to a non-
trivial solution of

—u”" 4+ u=pru ae.on(0,]1),
u(ly = u(0), u'(1) = u(0).

Therefore ux > 1 and u is given by

u(x) = Asin (\/uk - 1x) + B cos (\//Lk — 1x)
with /g =T = 27k, k =0, 1, . ...

2.

4.
6.

Suppose that Tu = Au withu € H>(R) and u # 0. Clearly A # 0 and u satisfies
—u"+u= lu on R
3 .

If . = 1, we have u(x) = Ax + B for some constants A, B. Since u € L2(R) we
deduce that A = B = 0. Therefore 1 ¢ EV(T).

If(% — 1) > 0 we have u(x) = Asinax + Bcosax, with o = ,/% — 1. The

condition u € L*(R) yields again A = B = 0. Similarly, if (% —1) < 0 we
have no solution, except u = 0. Hence EV(T) = (J. T cannot be a compact
operator. Otherwise we would have o (T') = {0} by Theorem 6.8 and then T = 0
by Corollary 6.10. But obviously 7' # 0 (otherwise any f in LZ(R) would be
=0).

If » < 0,(T — AI) is bijective from H = L?(R) onto itself, for example by
Lax—Milgram and the fact that (T'f, f) > 0V f € H. Thus A € p(T).

IfA > 1> |T| wehave A € p(T) by Proposition 6.7.

T is not surjective, since R(T) C H 2(R).
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7. T — I is not surjective. Indeed, if we try to solve Tf — f = ¢ for a given ¢ in
L*(R) we are led to —u” + u = f (lettingu = Tf) and u = f + ¢. Therefore
u” = ¢ admits a solution u € H?. Suppose, for example, that suppe C [0, 1].
An immediate computation yields #(x) = 0 Vx < 0 and u(x) = 0 Vx > 1. Thus
u'(0) = u/(1) = 0. It follows that 0 = u'(1) — u'(0) = fol @. Therefore the
equation Tf — f = ¢ has no solution f € L*(R) when fol ¢ #0.Hence T — I
cannot be surjective.

8. T — Al is not surjective. Indeed, if we try to solve Tf — Af = ¢ we are led
to —u” +u = f (letting u = Tf) and u = Af + ¢. Therefore —u” +u =
%(u — ). Assume again that supp ¢ C [0, 1]. We would have u” = —uu outside

[0, 1], with u = ,/% — 1. Therefore u = 0 outside [0, 1] and consequently
u(0) = u'(0) = u(l) = u'(1) = 0. The equation —u” + (1 — Hu = —1¢
implies that fol @v = 0 for any solution v of —v” = v on (0, 1); for example
fol @ (x) sin ux = 0. Therefore the equation Tf — Af = ¢ has no solution f €
L?(R) when fol @(x) sin ux # 0. Consequently (7" — AI) is not surjective.

8.39

2. We have v? < %v4 + % Vv € R, and thus

1o, 1
() = EHUHHI —1” If 2 vl g

Therefore ¢ (v) — oo as ||[v|| g1 — oo.

3. The uniqueness follows from the fact that ¢ is strictly convex on H'(0, 1); this
is a consequence of the strict convexity of the function ¢ — ¢* on R.

4. We have

1 1
o(u + ev) = 3 / W'? + 2eu'v + £2v'?)
0
1 1
+ 1 / (u4 + 4eu’v + 66%uv? + 483uv’ + £4v4)
0
1
—/ f(u—+ev).
0
Writing that ¢ (1) < ¢(u + ev) gives
1
/ v +udv— fo)+ A, >0,
0
where A, — 0 as ¢ — 0. Passing to the limit as ¢ — 0 and choosing +v yields

WV +uPv— fv)y=0 Yve H\(0,1).
0
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6. From the convexity of the function ¢ — ¢* we have

1 1
—vt— -yt > u3(v —u) Vu,vel.
4 4

On the other hand, we clearly have

1 1
5u’2 - Eu” >u' (v —u')ae. on(0,1) Yu,ve HY0,1).

Thus Vu,v e HY(0, 1)
1 1 1
(p(u)—(p(u)i/ u/(v/—u’)—i—/ u3(v—u)—/ f —u).
0 0 0
If u is a solution of (3) we have
1 1 1
f u’(v’—u’)+/ u3(v—u)=/ fv—u) YveH\ (01,
0 0 0

and therefore (1) < ¢(v) Yv € H'(0, 1).

9. We claim that ¢ (v) — 400 as ||v| g1 — o00. Indeed, this boils down to showing
that for every constant C the set {v € H'(0,1); ¥(v) < C} is bounded in
H'(0,1). If Y (v) < C write

1 1
_/Ofv=/0 F@—=v0)+v0) < [Ifll2 (IV2 + [vO)]),

so that ||v'||;2 and |v(0)| are bounded (why?). Hence [[v|l;2 < [[V/[I;2 + [v(0)]
is also bounded, so that ||v|| 51 is bounded. For the uniqueness of the minimizer
check that v (““4*2) < 1(y(u1) + ¥ (u2)), and equality holds iff u} = u), and
ul(O) = u2(0), i.e., uip = uj.

We have

1 1
YU+ sv) = 3 / W'? 4 2eu'v' + £20'?)
0
1 1
+3 (u4(0) + 4813 (0)v(0) + - - - + s4u4(0)) — / fu+ ev).
0
If u is a minimizer of ¥ we write ¥ (1) < ¥ (u + €v), and obtain
1
[ v = ro 40 + 520
0
where B, — 0 as ¢ — 0. Passing to the limit as ¢ — 0, and choosing +v yields

1
(S1) f W' — fu)+uPOw©O) =0 Yve H'Y(O,1).
0
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Consequently, u € H 2(0, 1) satisfies
(52) —u”" = f ae.on(0,1).
Returning to (S1) and using (S2) yields
u'(Du(1) —u'(0)v(0) + u?()v(0) =0 Yv e H'(0,1),
so that
(S3) W' (1) =0, u'0)=u’0).
Conversely, any function u satisfying (S2) and (S3) is a minimizer of : the

argument is the same as in question 6. In this case we have an explicit solution.
The general solution of (S2) is given by

ulx) = —/x(x —t)f(t)dt + Ax + B,
0

and then (S3) is equivalent to
1
A=/fmm,wmA=§.
0

8.42

2. Differentiating the equation
(S1) v(x) = pH(Ou@)
with respect to # gives
_ I _
V@ pT 0 = p o p Ou@ + pod o).
Thus

/ / 1/4 1 /
p@u () =v'(x)p /(1) — i (Du(t)
(S2) )
=v'@p 0 = 2 O Ov ).
Differentiating (S2) with respect to ¢ gives

1 1
(83) (pu') =v"(x)p~*t) - Zp”(op”“(z)v(x) + Ep/(t)zp*5/4<r)v(x>.

Combining (S3) with the equation —(pu’)’ + qu = pu on (0, 1) yields
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1 1
V' (x)p~ VA — Zp”(t)p*”“(t)v(x) + Ep’(t)zp*/“(t)v(x)

= (q(t) — wp~ v ).

(84)

Hence v satisfies
—v" 4+ a(x)v = pvon (0, L),

Whel‘e



Problems

The numbers in parentheses refer to the chapters in the book whose knowledge is
needed to solve the problem.

PROBLEM 1 (1, 4 only for question 9)
Extreme points; the Krein—-Milman theorem

Let E be ann.v.s. and let K C E be a convex subset. A point a € K is said to be
an extreme point if

tx+(1—-t)y#a Vte(©,1), Vx,ye Kwithx #y.

1. Check that a € K is an extreme point iff the set K\{a} is convex.

2. Let a be an extreme point of K. Let (x;)1<i<, be a finite sequence in K and let
(@i)1<i<n be a finite sequence of real numbers such that o; > 0 Vi, > o; = 1,
and Y «;x; = a. Prove that x; = a Vi.

In what follows we assume that K C E is a nonempty compact convex subset
of E. A subset M C K is said to be an extreme set if M is nonempty, closed, and
whenever x, y € K are such that rtx 4+ (1 — ¢t)y € M for some ¢t € (0, 1), then
xeMandye M.

3. Leta € K. Check that a is an extreme point iff {a} is an extreme set.

Our first goal is to show that every extreme set contains at least one extreme
point.

4. Let A C K be an extreme set and let f € E*. Set

B = {x €A, (f,x):max(f,y)}.
yeA

Prove that B is an extreme subset of K.

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 435
DOI 10.1007/978-0-387-70914-7, © Springer Science+Business Media, LLC 2011
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5. Let M C K be an extreme set of K. Consider the collection F of all the extreme
sets of K that are contained in M; F is equipped with the following ordering:

A<B if BCA.

Prove that F has a maximal element M.

6. Prove that M) is reduced to a single point.
[Hint: Use Hahn—Banach and question 4.]

7. Conclude.

8. Prove that K coincides with the closed convex hull of all its extreme points.
[Hint: Argue by contradiction and use Hahn—Banach.]

9. Determine the set £ of all the extreme points of Bg (= the closed unit ball of E)
in the following cases:

(a) E =,

(b) E=c,

() E = co,

d) E=1¢',

(e) E=¢Pwithl < p < o0,
() E=L'R).

[For the notation see Section 11.3].

PROBLEM 2 (1, 2 only for question B4)
Subdifferentials of convex functions

Let E be an n.v.s. and let ¢ : E — (—00, +00] be a convex function such that
¢ # +o0. For every x € E the subdifferential of ¢ is defined by

dp(x) ={f € E5p(y) —px) = (f,y—x) VyekE} if x € D(¢p),
dp(x) =0 if x ¢ D(p),

and we set
D(9¢) = {x € E; d¢(x) # ¥},
so that D(d¢) C D(¢). Construct an example for which this inclusion is strict.
-A -
1. Show that d¢(x) is a closed convex subset of E*.

2. Letx1,x3 € D(0¢), f1 € 0p(x1), and f € d¢(x2). Prove that

(fi — f2,x1 —x2) = 0.
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3.

4,

6]

Prove that
f edpx) = o(x) +¢*(f) = (f, x).

Determine d¢ in the following cases:

@ @) = llx]%,

() ¢(x) = x|,

(¢) ¢(x) = Ik (x) (the indicator function of K), where K C E is a nonempty
convex set (resp. a linear subspace),

(d) ¢(x) is a differentiable convex function on E.

[Hint: In the cases (a), (b), d¢ is related to the duality map F defined in Remark 2
of Chapter 1; see also Exercise 1.1.]

. Let Y : E — (—00, +00] be another convex function such that ¢ # 4o0.

Assume that D(¢) N D(yr) # (. Prove that
0p(x) + oY (x) Ca(p+y¥)(x) VxeE
(with the convention that A + B = ¢ if either A = @ or B = (). Construct an

example for which this inclusion is strict.

-B-

Throughout part B we assume that xg € E satisfies the assumption

dM € R and 3R > Osuchthatp(x) <M Vx € E with ||x — x| < R.

. Prove that d¢(xg) # @.

[Hint: Use Hahn—Banach in £ x R.]
Prove that || 1| < (M — ¢(x0)) Vf € dg(x0).
Deduce that Vr < R, 3L > 0 such that

lp(x1) —@(x2)| = Llixi —x2ll  Vxi,x2 € E with [lx; —xoll =7, i =1,2.

[See also Exercise 2.1 for an alternative proof.]

. Assume here that E is a Banach space and that ¢ is L.s.c. Prove that

Int D(0¢) = Int D(¢).

. Prove that for every y € E one has

. @(xo +1y) — ¢(x0)
lim = max (f,y).
110 t fedg(xo)
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[Hint: Look at Exercise 1.25, question 5.]
6. Lety : E — (—00, 400] be a convex function such that xo € D(y). Prove that
dp(x)+ 0y (x) =d(p+v¥)(x) VxeE.

[Hint: Given fo € 9(¢ + ¥)(x), apply Theorem 1.12 to the functions o(y) =
e(y) — @) — (fo,y —x)and ¥ (y) = ¥ (y) — ¥ (x).]
-C-

1. Let ¢ : E — R be a convex function such that ¢(x) < k||x|| + C Vx € E, for
some constants k > 0 and C. Prove that

lp(x1) — @(x2)| < kllxp —x2ll  Vxi,x2 € E.

What can one say about D(¢*)?

2. Let A C R” be open and convex. Let ¢ : A — R be a convex function. Prove
that ¢ is continuous on A.

-D-

Let ¢ : E — R be a continuous convex function and let
C={xeckE; pkx) =<0}

Assume that there exists some xo € E such that ¢(xp) < 0. Given x € C prove
that f € dlc(x) iff there exists some A € R such that f € Adp(x) with A = 0 if
o) <0,and X > 0if p(x) = 0.

PROBLEM 3 (1)

The theorems of Ekeland, Bronsted—Rockafellar,
and Bishop—Phelps; the ¢-subdifferential

-A -

Let M be a nonempty complete metric space equipped with the distance d(x, y).
Let Y : M — (—o00, 400] be an 1.s.c. function that is bounded below and such that
¥ # +00. Our goal is to prove that there exists some a € M such that

v(x)—vY(@) +dx,a) >0 VxeM.
Given x € M set

Sx)={yeM; y(y)—v¥(x)+dx,y) <0}

1. Check that x € S(x), and that y € S(x) = S(y) C S(x).
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2. Fix any sequence of real numbers (g,) with ¢, > 0 Vr and ¢, — 0. Given
X0 € M, one constructs by induction a sequence (x,) as follows: once x,, is
known, pick any element x,, satisfying

Xpt1 € S(x),
Y(xpe1) < inf Y (x) +&nq41.
x€S(xy)

Check that S(x,+1) C S(x,) Vn and that

Y (Xntp) — Y () +dxn, xp1p) <0 Vn, Vp.

Deduce that (x,) is a Cauchy sequence, and so it converges to a limit, denoted
by a.

3. Prove that a satisfies the required property.

[Hint: Given x € M, consider two cases: either x € S(x,,) Vn, or AN such that
x & S(n).]

4. Give a geometric interpretation.

-B-

Let E be a Banach space and let ¢ : E — (—00, +00] be a convex Ls.c. function
such that ¢ % +o00. Given ¢ > 0 and x € D(gp), set

dep(x) ={f € E; o) +¢"(f) — (f.x) <¢}.

Check that 9. (x) # 0.

Our purpose is to show that given any xo € D(¢) and any fo € d.¢(xp) the
following property holds:

VA >0, dx; € D(p) and 3 f] € E* with f| € dp(x])
such that ||x; — xo|| < &/A and || f1 — foll < A.

(The subdifferential ¢ is defined in Problem 2; it is recommended to solve Problem 2
before this one.)

1. Consider the function ¥ defined by
Y (x) =) + ¢*(fo) — (fo, x).
Prove that there exists some x; € E such that ||x; — xo]| < &/A and
vx) -y +Alx —xil[ =0 VxeE.

[Hint: Use the result of part A on the set
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M ={x € E; ¥(x) < ¢¥(x0) — Allx — xoll}.]
2. Conclude.

[Hint: Use the result of Problem 2, question B6.]
3. Deduce that

D(@¢) = D(¢) and R(3¢) = D(¢*),
where R(dp) = {f € E*; 3x € D(d¢) such that f € dp(x)}.

-C-

Let E be a Banach space and let C C E be a nonempty closed convex set.

1. Assuming that C is also bounded, prove that the set
{f € E*; sup(f, x)is achieved}
xeC
is dense in E*.
[Hint: Apply the results of part B to the function ¢ = I¢.]

2. One says that a closed hyperplane H of E is a supporting hyperplane to C at a
point x € C if H separates C and {x}. Prove that the set of points in C that admit
a supporting hyperplane is dense in the boundary of C(= C \ Int C).

PROBLEM 4 (1)
Asplund’s theorem and strictly convex norms

Let E be an n.v.s. and let ¢, 9 : E — [0, 00) be two convex functions such
that ¢9(0) = ¥9(0) = 0and 0 < Yo(x) < @o(x) Vx € E. Starting with ¢y and g
one defines by induction two sequences of functions (¢,,) and (V) as follows:

1
Ynr1(x) = E(‘pn (x) + ¥ (x))

and
1 1
Y1 (x) = E inf {p,(x +y) + ¥ (x — )} = = (@, Vi) (2x).
yeE 2

[Before starting this problem solve Exercise 1.23, which deals with the inf-convolu-
tion V.]

-A -

1. Check that 0 < ¥, (x) < ¢,(x) Vx € E, Vn and that ¢, (0) = ¥, (0) = 0.
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2. Check that ¢, and v, are convex.

3. Prove that the sequence (¢,) is nonincreasing and that the sequence (v,) is
nondecreasing. Deduce that (¢,) and () have a common limit, denoted by 6,
with 9 < 6 < ¢, and that 0 is convex.

4. Prove that ¢ 1 6*.
5. Prove that ), | = %((p; + v,,), and deduce that v, | * when D(y)) = E*.

6. Assume that there exists some xo € D(¢o) such that ¢q is continuous at xg. Prove
that ¢, and v, are also continuous at x.

[Hint: Apply question 2 of Exercise 2.1.]
Deduce that

1
Pp1 ()= 7 inf {g;(f +8)+ ¥, (f — 9}
geE

-B-

Let ¢ : E — [0, +00) be a convex function that is homogeneous of order two,
ie., p(Aix) = A2p(x) VA € R, Vx € E. Prove that

1 1
P +y) = 2o+ o) Yxy ek, Ve

Deduce that the function x +— /¢@(x) is a seminorm and conversely. Establish
also that

1 1
(1) 4o(x) < ?(p(x +y) + 1—_t<p(x —y) Vx,yeE, Vte(,1).

In what follows we assume, in addition, that ¢y and 1/ are homogeneous of order
two and that there is a constant C > 0 such that

wo(x) < (1 4+ C)yp(x) Vx € E.

1. Check that ¢,, ¥, and 6 are homogeneous of order two.

2. Prove that for every n, one has

n(x) < <1 + %) Y(x) Vx eE.

[Hint: Argue by induction and use (1).]

3. Assuming that either ¢ or ¥ is strictly convex, prove that 6 is strictly convex
(for the definition of a strictly convex function, see Exercise 1.26).
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[Hint: Use the inequality established in question B2. It is convenient to split ¢,
as ¢, =6, + %goo, where 6, is some convex function that one should not try to
write down explicitly. Note that

1 C 1
On + T §00§959n+2—n§00-]

-C-

Assume that there exist on E two equivalent norms denoted by || ||; and || ||2. Let
Il II7 and || ||5 denote the corresponding dual norms on E*. Assume that the norms
Il l1 and || ||5 are strictly convex. Using the above results, prove that there exists a
third norm || ||, equivalent to || ||; (and to || ||2), that is strictly convex as well as its
dual norm || ||*.

PROBLEM 5 (1, 2)
Positive linear functionals

Let E be an n.v.s. and let P be a convex cone with vertex at 0, i.e., Ax + ny € P,
Vx,y € P,Vi, > 0.Set F = P — P, sothat F is a linear subspace. Consider the
following two properties:

(i) Every linear functional f on E such that f(x) > 0 Vx € P, is continuous on E.
(ii) F is a closed subspace of finite codimension.

The goal of this problem is to show that (i) = (ii) and that conversely, (ii)) = (i)
when E is a Banach space and P is closed.

-A-

Throughout part A we assume (i).

1. Prove that F is closed.

[Hint: Given any xo ¢ F, construct alinear functional f on E such that f(xg) =
land f =0on F.]

2. Let M be any linear subspace of E such that M N F' = {0}. Prove that dim M <
+-00.

[Hint: Use Exercise 1.5.]
3. Deduce that (i) = (ii).

-B-

Throughout part B we assume that E is a Banach space and that P is closed.
1. Assume here in addition that

(iii) P—P=E.
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Prove that there exists a constant C > 0 such that every x € E has a decompo-
sitionx =y —zwithy,z € P, ||yl < C|lx]| and ||z]| < C]lx]|.

[Hint: Consider the set
K={x=y—zwithy,ze P,|y|| <1land|z| <1}

and follow the idea of the proof of the open mapping theorem (Theorem 2.6).]
2. Deduce that (iii) = (i).

[Hint: Argue by contradiction and consider a sequence (x,) in E such that
lxn |l < 1/2" and f(x,) > 1. Then, use the result of question B1.]

3. Prove that (i1) = (1).

-C-

In the following examples determine F = P — P and examine whether (i) or (ii)
holds:

(a) E = C([0, 1]) with its usual norm and
P={ueE;u) >0 Vrel0,l1]},
(b) E = C([0, 1]) with its usual norm and
P={uecFE;u(t)>0 Vtel0,1], and u(0) = u(1) =0},
c) E={uce CLH[0, 1]); u(0) = u(1) = 0} with its usual norm and

PROBLEM 6 (1, 2)

Let E be a Banach space and let A : D(A) C E — E™* be a closed unbounded
operator satisfying
(Ax,x) >0 Vx e D(A).
-A -
Our purpose is to show that the following properties are equivalent:
(i) Vx € D(A), 3C(x) € Rsuch that (Ay,y —x) > C(x) Vy e D(A),
(i) Ik > 0 such that

I(Ay, x)| < k(llx|| + | Ax[Dv/(Ay. y) Vx,y € D(A).

1. Prove that (ii) = (i).
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Conversely, assume (i).

2. Prove that there exist two constants R > 0 and M > 0 such that
(Ay,x —y) <M Vye D(A) and Vx € D(A) with ||x| + ||Ax|| < R.

[Hint: Consider the function ¢(x) = supycp4){(Ay, x — y) and apply Exer-
cise 2.1.]

3. Deduce that

I(Ay, x)|> <4M(Ay,y) Vy e D(A) and Vx € D(A)with|x||+]Ax| < R.

4. Conclude.
-B-
In what follows assume that D(A) = E. Leta > 0.

1. Prove that the following properties are equivalent:

(iii) Ayl < ay/(Ay,y) Vy€E,
1
@iv) (Ay,y —x) > —Za2||x||2 Vx,y € E.

[Hint: Use the same method as in part A.]
2. Let A* € L(E™, E™*) be the adjoint of A. Prove that (iv) is equivalent to

1
(v*) (A*y,y — x) > —Za2||x||2 Vx,y € E.

3. Deduce that (iii) is equivalent to

(iii*) [A*y|| < ay/(A*y,y) Vye€E.
PROBLEM 7 (1, 2)

The adjoint of the sum of two unbounded linear operators

Let E be a Banach space. Given two closed linear subspace M and N in E, set
p(M,N) = sup dist(x, N).
xeM
llxll=1
-A -

1. Check that p(M, N) < 1; if, in addition, N C M with N # M, prove that
o(M,N)=1.
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[Hint: Use Lemma 6.1.]

2. Let L, M, and N be three closed linear subspaces.
Seta =p(M,N)and b = p(N, L). Prove that p(M, L) < a + b + ab.
Deduce thatif L € M,a <1/3,andb < 1/3,then L = M.

3. Prove that p(M, N) = p(N+, M1).
[Hint: Check with the help of Theorem 1.12 that Vx € E andVf € E*

dist(x, N) = sup (g, x) and dist(f, Mty = sup (f, y).]
geNt yeM
lgli<l yli<1
-B-

Let E and F be two Banach spaces; E x F is equipped with the norm ||[u, v]||ExF =
llu|| g+ lv] r. Given two unbounded operators A : D(A) C E — FandB : D(B) C
E — F that are densely defined and closed, set

p(A, B) = p(G(A), G(B)).

1. Prove that p(A, B) = p(B*, A*).
2. Prove that if D(A) N D(B) is dense in E, then
A*+ B*C(A+ B)".
[Recall that D(A + B) = D(A) N D(B) and D(A* + B*) = D(A*) N D(B*).]

It may happen that the inclusion A* + B* C (A + B)* is strict—construct such
an example. Our purpose is to prove that equality holds under some additional
assumptions.

3. Assume

H D(A) C D(B) and there exist constants k € [0, 1) and C > 0
such that | Bu|| < k||Aul|| + Cllull Yu € D(A).

Prove that A + B is closed and that p(A, A+ B) <k + C.

4. In addition to (H) assume also

(H) D(A*) C D(B*) and there exist constants k* € [0, 1) and
C* > O such that | B*v|| < k*||A*v|| + C*||lv|]] Vv € D(AY).

Let e > Obe such thate(k + C) < 1/3 and e(k* + C*) < 1/3.
Prove that A 4+ ¢ B* = A* 4+ ¢B*.
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5. Assuming (H) and (H*) prove that (A + B)* = A* + B*.

[Hint: Use successive steps. Check that the following inequality holds V¢ €
[0, 1] :

k C
|Bu|| < mllAu + tBul| + T k||u|| Yu € D(A).]
PROBLEM 8 (2, 3, 4 only for question 6)

Weak convergence in £'. Schur’s theorem.

Let E = ¢!, so that E* = £ (see Section 11.3). Given x € E write
o
x=(e, X, x,..) and xlh =) lxl,
i=1

and given f € E* write
f=Ufao i) and [ flleo = sup|fil.
1

Let (x") be a sequence in E such that x* — 0 weakly o (E, E*). Our goal is to
show that ||x"||; — O.

1. Given f, g € Bg~ (i.e,, | flloo < 1 and ||gllcc < 1) set

o0

1
dif.9) =) 5lfi - gil

i=1

Check that d is a metric on Bg~ and that Bg+ is compact for the corresponding
topology.

2. Given ¢ > 0 set
Fo={f € Bg~; {f.x")|<e Vn=k}

Prove that there exist some f 0OcB E*, a constant p > 0, and an integer ko such
that

[f € Bg- and d(f, f°) < p] = [f € Fi,].
[Hint: Use Baire category theorem.]

3. Fix an integer N such that (1/2V¥~1) < p. Prove that

N
X"l <e+2) x| ¥n = ko.
i=1
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4. Conclude.

5. Using a similar method prove that if (x”) is a sequence in £! such that for every
f € £*° the sequence ({f, x")) converges to some limit, then (x") converges to a
limit strongly in £

6. Consider E = L'(0, 1), so that E* = L>°(0, 1). Construct a sequence («") in E

such that u” — 0 weakly o (E, E*) and such that ||u"|; = 1 Vn.

PROBLEM 9 (1, 2, 3)
Hahn—Banach for the weak* topology and applications
Let E be a Banach space.
-A -

1. Let A C E*and B C E* be two nonempty convex sets such that AN B = (.

Assume that A is open in the topology o (E*, E). Prove that there exist some

x € E,x # 0, and a constant « such that the hyperplane { f € E*; (f, x) = «}
separates A and B.

2. Assumethat A C E*isclosedino (E*, E) and B C E* is compactin o (E*, E).
Prove that A 4+ B is closed in o (E*, E).

3. Let A C E* and B C E™ be two nonempty convex sets such that A N B = #.
Assume that A is closed in o (E*, E) and B is compact in o (E*, E). Prove that
there existsome x € E, x # 0, and a constant « such that the hyperplane { f € E*;
(f, x) = o} strictly separates A and B.

4. Let A C E* be convex. Prove that ZU(E ’E), the closure of A in o (E™*, E), is
convex.

-B-
Here are various applications of the above results:
1. Let N C E* be a linear subspace. Recall that
Nt={x€eE; (f,x)=0 VfeN)

and
Nt ={feE* (f,x)=0 VxeN').
Prove that Nt+ = NO(E*’E).
What can one say if E is reflexive?
Deduce that ¢ is dense in £>° in the topology o (£%°, £1).

2. Let ¢ : E — (—00, +00] be a convex l.s.c. function, ¢ # +o00. Prove that
Y = ¢* is Ls.c. in the topology o (E*, E).
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Conversely, given a convex function ¥ : E* — (—00, +00] that is Ls.c. for the
topology o (E*, E) and such that ¢ % 400, prove that there exists a convex l.s.c.
function ¢ : E — (—00, +o0], ¢ # +00, such that {y = ¢*.

3. Let F be another Banach space and let A : D(A) C E — F be an unbounded

linear operator that is densely defined and closed. Prove that
i RAYE = Ny,
Gy D@An’ " Z pr
What can one say if E (resp. F) is reflexive?
4. Prove—without the help of Lemma 3.3—that J(BEg) is dense in B« in the

topology o (E**, E*) (see Lemma 3.4).

5. Let A : BE — E* be a monotone map, that is,

(Ax — Ay, x —y)>0 Vx,y € Bg.

Set Sg = {x € E; |lx|| = 1}. Prove that A(Bg) C conv A(Sp)” .

PROBLEM 10 (3)

The Eberlein-Smulian theorem

Let E be a Banach space and let A C E. Set B = ZU(E’E*)

problem is to show that the following properties are equivalent:

. The goal of this
P) B is compact in the topology o (E, E*).

Q) Every sequence (x,) in A has a weakly convergent subsequence.

Moreover, (P) (or (Q)) implies the following property:

For every y € B there exists a sequence (y,) C A

(R) x
such that y, — y weakly o (E, E™).

-A -
Proof of the claim (P) = (Q).

1. Prove that (P) = (Q) under the additional assumption that E is separable.

[Hint: Consider a set (b;) in Bg» that is countable and dense in Bg~ for the
topology o (E*, E) (why does such a set exist?). Check that the quantity d (x, y) =
Z,fil 21—k [(br, x — y)| is a metric and deduce that B is metrizable for o (E, E™*).]

2. Show that (P) = (Q) in the general case.
[Hint: Use question Al.]
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-B-
For later purpose we shall need the following:

Lemma. Let F be an n.v.s. and let M C F* be a finite-dimensional vector space.
Then there exists a finite subset (a;)1<i<k in B such that

max (g, a;) >

Vg e M.
max gl Ve

N =

[Hint: First choose points (g;)1<i<k in Sy such that Sy C Ule B(gi, 1/4),
where Sy = {g € M; |gll = 1}.]

-C-

Let & € E* be such that £ € ZG(E"’E*). Using assumption (Q) we shall prove

that £ € B and that there exists a sequence (yx) C A such that yy — £ ino (E, E*).

1. Setn; = 1 and fix any f; € Bg~. Prove that there exists some x| € A such that

[€. f1) = (f.x)l < L.
2. Let My = [&, x1] be the linear space spanned by & and x;. Prove that there exist
(fi)l<i5n2 in Bg+ such that

1
max (n, fi) = Sl Vn € M.

1<i<ny 2

Prove that there exists some x, € A such that
L. .
I(S,f;>—(ﬁ,xz)|<§ Vi, 1 <i <ns.

3. Iterating the above construction, we obtain two sequences (x;x) C A and (f;) C
B+, and an increasing sequence of integers (ny) such that

1
(a) max (n, fi) = Sl Vn € Mk =1[§, x1,x2, ..., Xkl
N <U<Nfy] 2
1
(b) I(E,fi)—(fi,le)|<m Vi,1 <i < ngy.
4. Deduce from (a) that
1 o
sup(n, fi) = Slnll - Ve | Mo=M
izl k=1
and then that |
sup(n, fi) = Slnll - Vi € M,

i>1
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where M denotes the closure of M in E**, in the strong topology.

5. Using (b) and assumption (Q), prove that there exists some x € B N M such that
& fiy={(fi,x) Vi=1

Deduce that & = x and conclude.

—

Prove that (Q) = (P).
2. Prove that (Q) = (R).

PROBLEM 11 (3)
A theorem of Banach-Dieudonné—Krein-Smulian

Let E be a Banach space and let C C E* be a convex set. Assume that for each
integer n, the set C N (nBg~) is closed in the topology o (E*, E). The goal of this
problem is to show that C is closed in the topology o (E*, E).

-A -

Suppose, in addition, that 0 ¢ C. We shall prove that there exists a sequence (x;)
in E such that

(D) |xzl = 0 and sup(f,x,)>1 VfeC.
n

Let d = dist(0, C) and consider a sequence d,, 1 +00 such that d; > d. Set

Ce={feC: Ifll =di}.

1. Check that the sets Cj are compact in the topology o (E*, E). Prove that there
exists some fo € C such thatd = || fo|l > O.

2. Prove that there exists some x; € E such that
(fixi)>1 VfeC.

[Hint: Use Hahn-Banach for the weak* topology; see question A3 of Prob-
lem 9.]

3. Set A; = {x1}.Prove that there exists a finite subset Ay C E suchthat Ay C %BE
and sup,c4,ua,(f, x) > 1 Vf € Ca.
[Hint: For each finite subset A C E such that A C %BE consider the set

Ya=1feCy sup (fix)<l1yp,
xeAjUA
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and prove first that Ny Y4 = @.]
4. Construct, by induction, a finite subset Ay C E such that

1
Ay C —Bg and sup (f,x)>1 Vf eCy.
dk_l xEUf.‘:lA,-

5. Construct a sequence (x,) satisfying (1).

-B-
1. Assume once more that 0 ¢ C. Prove that there exists some x € E such that
(fix)=1 VfeC.

[Hint: Let (x,) be a sequence satisfying (1). Consider the operator 7' : E* — ¢g
defined by T (f) = ({f, x»))» and separate (in cp) T (C) and the open unit ball of
co-]

2. Conclude.

PROBLEM 12 (1, 2, 3)
Before starting this problem it is necessary to solve Exercise 1.23.

Let E be a reflexive Banach space and let ¢, ¥ : E — (—00, +00] be convex
Ls.c. functions such that D(¢) N D(¥) # @. Set 8 = ¢*Vyr*.

-A-

We claim that

D((¢ +¥)*) = D(¢*) + D(y™).

1. Prove that D(¢*) + D(y*) C D((¢ + ¥)*).

2. Prove that 6 maps E* into (—o0, +0o¢], 6 is convex, D(0) = D(¢*) + D(¥™*)
and0* = + .

3. Deduce that D((¢ + ¥)*) = D(0) and conclude.

-B-

Assume, in addition, that ¢ and i satisfy

(H) UrD(p) — D) = E.

1=0

We claim that

® (p+ )" =9 VY,
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(i1) inf {p(x) + ¥ (x)} = max{—¢*(-g) — ¥* ()},

xeE geE™
(ii1) D((p +¥)*) = D(¢*) + D(¥™).

1. Prove that for every fixed f € E* and o € R the set

M={geE" ¢"(f —g) +V¥"(g) <a}

is bounded.
[Hint: Use assumption (H) and Corollary 2.5.]

2. Let o € R be fixed. Let (f;;) and (g,) be two sequences in E* such that (f;) is
bounded and ¢*(f, — gn) + ¥*(gn) < . Prove that (g,) is bounded.

3. Deduce that 6 is l.s.c.

4. Prove (i), (ii), and (iii).
Compare these results with question 3 of Exercise 1.23 and with Theorem 1.12.

PROBLEM 13 (1, 3)

Properties of the duality map. Uniform
convexity. Differentiability of the norm

Let E be a Banach space. Recall the definition of the duality map (see Remark 2
in Chapter 1): For every x € E,

F(x)={f € E* | £l = lIxll and {f, x) = lx|I*}.
Before starting this problem it is useful to solve Exercises 1.1 and 1.25.
-A-

Assume that E* is strictly convex, so that F(x) consists of a single element.

1. Check that
lim — (Ix +ayll> = |x|®) = (Fx,y) Vx,y€E.
A—0 2\

[Hint: Apply a result of Exercise 1.25; distinguish the cases A > 0 and A < 0.]

2. Prove that forevery x, y € E,themap t € R +— (F(x +ty), y) is continuous at
t=0.

[Hint: Use the inequality 1 (|[v]> — [[ul|?) > (Fu,v — u) withu = x + ty and
v=ux+Ay.]

3. Deduce that F is continuous from E strong into E* weak*.

[Hint: Use the result of Exercise 3.11.]
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Prove the same result by a simple direct method in the case that E is reflexive or
separable.

4. Check that
(Fx+ Fy, x +y) + (Fx — Fy, x —y) =2(Ilx|* + IyI®) Vx,y € E.
Deduce that

[Fx+ Fyl+lx —yll =2 Vx,y € E with [lx]| = |ly]| = 1.

5. Assume, in addition, that E is reflexive and strictly convex. Prove that F is bijective
from E onto E*. Check that F~! coincides with the duality map of E*.

-B-

In this part we assume that E* is uniformly convex.

1. Prove that F is continuous from E strong into E* strong.
2. More precisely, prove that F' is uniformly continuous on bounded sets of E.
[Hint: Argue by contradiction and apply question A4.]

3. Deduce that the function ¢(x) = %Hx |? is differentiable and that its differential
is F, i.e., for every xo € E we have

im @(x) — @(x0) — (Fxo,x — x0)
X—X0 llx — xol|

=0.

-C-
Conversely, assume that for every x € E, the set Fx consists of a single element
and that F is uniformly continuous on bounded sets of E. Prove that E* is uniformly
convex.

[Hint: Prove first the inequality

1 1
If+gll < Eufu2 + Engn2 —(f—g )+ sup lp(x +y) + o(x — )}
xXe
lx]<1

Vye E, Vf,ge€ E*]
PROBLEM 14 (1, 3)

Regularization of convex functions by inf-convolution

Let E be a Banach space such that E* is uniformly convex. Assume that ¢ : E —
(—00, +00] is convex l.s.c. and ¢ % 4-00. The goal of this problem is to show that
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there exists a sequence (¢, ) of differentiable convex functions such that ¢, 1 ¢ as
n 1 +oo.

-A -
For each fixed x € E consider the function @, : E* — (—00, +00] defined by
() = I+ ()~ (fr0), [ e B
1. Check that there exists a unique element f, € E* such that
()= inf ®.(/).

Set Sx = fx.
2. Prove that the map x — Sx is continuous from E strong into E* strong.

[Hint: Prove first that S is continuous from E strong into E* weak*.]

-B-
Consider the function ¢ : £ — R defined by
. 1 b
Yx)=¢¥x)=inf {=llx =yl + o).
yeE | 2
We claim that i is convex, differentiable, and that its differential coincides with S.

1. Check that v is convex and that
. .1 N
@) Y (x) = — min {—I|f||2+90(f)—(f,X>} Vx € E,
feE* |2

1
(ii) Yr(f) = §||f||2 +¢*(f) VfeE".

[Hint: Apply Theorem 1.12.]

2. Deduce that
Y(x) +¥*(Sx) = (Sx,x) Vxe€E

and that

V() =¥ () = (Sx,y —x)[ < ISy — Sx[| [y —x[| Vx,y€E.

3. Conclude.

-C-

For each integer n > 1 and every x € E set
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_ L)
on(0) = inf {Zlx =y +o0 ]

Prove that ¢, is convex, differentiable, and that for every x € E, ¢,(x) 1 ¢(x) as
n 1 4oo0.

[Hint: Use the same method as in Exercise 1.24.]

PROBLEM 15 (1, 5 for question B6)

Center of a set in the sense of Chebyshev. Normal structure.
Asymptotic center of a sequence in the sense of Edelstein. Fixed points
of contractions following Kirk, Browder, Gohde, and Edelstein.

Before starting this problem it is useful to solve Exercise 3.29.

Let E be a uniformly convex Banach space and let C C E be a nonempty closed
convex set.

-A -

Let A C C be a nonempty bounded set. For every x € E define

@(x) = sup [lx — yl|.
yeA

1. Check that ¢ is a convex function and that

lp(x1) —@(2)| < [lx1 — x2]l Vx1,x2 € E.

2. Prove that there exists a unique element ¢ € C such that
@(c) = inf p(x).
xeC

The point ¢ is called the center of A and is denoted by ¢ = o (A).

3. Prove that if A is not reduced to a single point then

¢(0(A)) <diam A = sup |x — y|.
xX,yeA
-B-

Let (a,) be a bounded sequence in C; set

o0
Ap=|Jla} and @,(x) = sup x—y| forxeE.

i=n yEAn

1. For every x € E, consider ¢(x) = lim,_, 4 » ¢, (x). Prove that this limit exists
and that ¢ is convex and continuous on E.
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2. Prove that there exists a unique element o € C such that
@(o) = inf @(x).
xeC

The point o is called the asymptotic center of the sequence (ay,).

3. Let o, = 0(A,) be the center of the set A, in the sense of question A2. Prove
that

Jim g (o) = lim ¢(0n) = ¢(0),
and that 0,, = o weakly o (E, E™).
4. Deduce that 0, — o strongly.
[Hint: Argue by contradiction and apply the result of Exercise 3.29.]
5. Assume a, — a strongly. Determine the asymptotic center of the sequence (aj,).

6. Assume here that E is a Hilbert space and thata,, — a weakly o (E, E*). Compute
¢(x) and determine the asymptotic center of the sequence (ay).
[Hint: Expand squares of norms.]

-C-
Assume that T : C — C is a contraction, that is,
ITx =Tyl <llx—yl Vx,yeC.

Leta € C be given and let a, = T"a be the sequence of its iterates. Assume that
the sequence (a,) is bounded. Let o be the asymptotic center of the sequence (ay).
1. Prove that o is a fixed pointof T, i.e., To = o.

2. Check that the set of fixed points of T is closed and convex.

PROBLEM 16 (2, 3)
Characterization of linear maximal monotone operators

Let E be a Banach space and let A : D(A) C E — E™* be an unbounded linear
operator satisfying the monotonicity condition

M) (Au,u) >0 VYu € D(A).
We denote by (P) the following property:

If x € E and f € E™* are such that
P) (Au— f,u—x)>0 VYu e D(A),
then x € D(A) and Ax = f.



Problems 457
A -

1. Prove that if (P) holds then D(A) is dense in E.

[Hint: Show thatif f € E* and (f,u) =0 VYu € D(A), then f = 0.]
2. Prove that if (P) holds then A is closed.
3. Prove that the function u € D(A) — (Au, u) is convex.

4. Prove that N(A) C R(A)*. Deduce that if D(A) is dense in E then N(A) C
N(A®).

5. Prove that if D(A) = E, then (P) holds.
Throughout the rest of this problem we assume, in addition, that

(i) E isreflexive, E and E™ are strictly convex,
(ii)) D(A) is dense in E and A is closed,

so that A* : D(A*) C E — E* and D(A*) is dense in E (why?).

The goal of this problem is to establish the equivalence (P) < (M*), where (M*)
denotes the following property:

(M) (A*v,v) >0 Vv e D(A%).

-B-
In this section we assume that (P) holds.

1. Prove that
(A*v,v) >0 Vv e D(A) N D(AY).

2. Letv € D(A*) with v ¢ D(A). Prove that Vf € E*, 3u € D(A) such that
(Au — fiu —v) < 0.
Choosing f = —A*v, prove that (A*v, v) > 0. Deduce that (M*) holds.

3. Prove that N(A) = N(A*) and R(A) = R(A*).

-C-
In this part we assume that (M*) holds.

1. Check that the space D(A) equipped with the graph norm |lu||pa)y = llulle +
[|Au|| g» is reflexive.

2. Given x € E and f € E™*, consider the function ¢ defined on D(A) by

1 1
() = Il Au — FI?+ 5l —xI? + (Au — fu — x).
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Prove that ¢ is convex and continuous on D(A).
Prove that ¢ () — 400 as |[ull pay — oo.

3. Deduce that there exists some ug € D(A) such that p(ug) < ¢(u) Yu € D(A).
What equation (involving A and A*) does one obtain by choosing u = ug + tv
with v € D(A), t > 0, and letting t — 0?

[Hint: Apply the result of Problem 13, part A.]
4. Prove that (M*) = (P).
5. Deduce that A* also satisfies property (P).

PROBLEM 17 (1, 3, 4)
-A -

Let E be a reflexive Banach space and let M be a closed linear subspace of E.
Let C be a convex subset of E*. For every u € E set

@(u) = sup(g, u).
geC

1. Prove that for every f € ML + C we have
o) > (f,u) Yue M.

[Hint: Start with the case f € M+ + C.]
2. Conversely, let f € E* be such that

@) = (f,u) YueM.

Prove that f € ML+ + C.
[Hint: Use Hahn—Banach.]

3. Assuming that C is closed and bounded, prove that M 4 C is closed.

-B-

In this section we assume that £ = L”(2) with 1 < p < o0,

M:{MGLP(Q); fju:O},

C={geLl”(Q); |gx)] <k(x) ae x Q)

and

where j and k > 0 are given functions in LY (2).

1. Check that M is a closed linear subspace and that C is convex, closed, and
bounded.
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2. Determine M.
Determine ¢ (u) for every u € L?(2).
4. Deduce that if f € L? (2) satisfies

/k|u|z/fu YueM,

then there exist a constant A € R and a function g € C such that f = Aj + g.
5. Prove that the converse also holds.

»

-C-

Let M C L' () be a linear subspace. Let f, g € L>(2) be such that f < g a.e.
on 2. Prove that the following properties are equivalent:

6] EIgoeMl such that f < ¢ < g a.e. on €2,
(ii) /(fu+ —gu)<0 VYueM,
where uT = max{u, 0} and u~ = max{—u, 0}.

[Hint: Assuming (ii), check that (g + f)u < [(g — f)lu| Yu € M and apply
Theorem 1.12 to find some ¢ € L*°(Q2) with || < g — f,suchthaty — (g + f) €
Mt Take g = J(g + f — ¥).]

PROBLEM 18 (3, 4)

Let 2 be a measure space with finite measure. Let | < p < oco.Letg: R - R
be a continuous nondecreasing function such that

g < Ct/P""+1) VieR, forsome constant C.
Set G(1) = [, g(s)ds.

1. Check that for every u € L?(2), we have g(u) € L”,(Q) and G(u) € L' ().
Let (u,,) be a sequence in L”(2) and let u € L?(£2) be such that

(1) u, —~u weakly o(L?, Lp/)
and
(ii) limsupr(un) §/G(u).

The purpose of this problem is to establish the following properties:

(D g(u,) — g(u) strongly in LY for every q € [1, p),

Assuming, in addition, that g is increasing (strictly),
2 .
then u,, — u strongly in LY for every q € [1, p).
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2. Check that G(a) — G(b) — g(b)(a —b) > 0Va, b e R.
What can one say if G(a) — G(b) — g(b)(a — b) = 0?

3. Let (a,) be a sequence in R and let b € R be such that
lim[G(a,) — G(b) — g(b)(a, — b)] = 0.

Prove that g(a,) — g(b).

4. Prove thatf |G(uy) — Gu) — gw)(u, —u)| - 0.
Deduce that there exists a subsequence (u,,, ) such that

Gun) — G(u) — g)(un, —u) — Oae.onQ

and therefore g(u,,) — g(u) a.e. on Q2.

5. Prove that (1) holds. (Check (1) for the whole sequence and not only for a subse-
quence.)

6. Prove that (2) holds.

In what follows, we assume, in addition, that there exist constants « > 0 and
C such that

3) lg()| = alt|P' —C VieR.

7. Prove that g(u,) — g(u) strongly in LP.
8. Can one reach the same conclusion without assumption (3)?

9. If, in addition, g is increasing (strictly) prove that u,, — u strongly in L?.

PROBLEM 19 (3, 4)
Let E be the space L' (R) N L(R) equipped with the norm

lulle = Nully + [l

1. Check that E is a Banach space. Let f(x) = fi(x) + f2(x) with fj € L*(R)
and f> € L?(R). Check that the mapping u +— fR f(x)u(x)dx is a continuous
linear functional on E.

2. Let 0 < @ < 1/2; check that the mapping

1
U+ —u(x)dx
R [X]¥

is a continuous linear functional on E.

[Hint: Split the integral into two parts: [|x| > M] and [|x| < M].]
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3. Set
K:{ueE; uan.e.onRand[u(x)dxs 1}.
R

Check that K is a closed convex subset of E.

4. Let (u,) be asequence in K and letu € K be such that u,, — u weakly in L2(R).
Check that u € K and prove that

1 1
/ —u,(x)dx — / —u(x)dx.
R |[x|* R |[x|*

Consider the function J defined, for every u € E, by

J(u):/uz(x)dx—/ : u(x)dx.
R R |[x|*

5. Check that there is a constant C such that J(u) > C Vu € K.

We claim that m = inf,,cx J (1) is achieved.
6. Let (u,) be a sequence in K such that J (u,) — m. Prove that || u, | g is bounded.

7. Let (u,,) be a subsequence such that u,, — u weakly in L?(R). Prove that
J(u) = m.

8. Is E areflexive space?

PROBLEM 20 (4)
Clarkson’s inequalities. Uniform convexity of LP

-A -
In this part we assume that 2 < p < oo and we shall establish the following
inequalities:

(1) e+ yI7 4 x — yI? < 2(x1” + |y1P)P? vx,y eR,
) 2(1x [P+ IyIPHPP < 2PN (x|P +1yP)  Vx,y €R.
1. Prove (2).

[Hint: Use the convexity of the function g(z) = |¢]P/ P/.]

2. Set
f) =1 4+xYPP 41 =xPyP xe(0,1).

Prove that
f’(x) <0 Vxe(0,1).

Deduce that
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3) )< fM+&—=yf ) Vx,ye(,1).
3. Prove that ) )
fx) <21 +xP/PyPIP" yx € (0, 1).
[Hint: Use (3) with y = x?'.]
4. Deduce (1).

In what follows €2 denotes a o -finite measure space.
-B-
In this part we assume again that 2 < p < oo.

1. Prove the following inequalities:

@ I+l +If —glh < 23LF15 +1gl5)?" Vi.g e LP (),
S) 20715 + Igli)P? < 277N fIG + Nglh)  Vfig € LY.

2. Deduce Clarkson’s first inequality (see Theorem 4.10).

-C-
In this part we assume that 1 < p < 2.

1. Establish the following inequality:

© If+elp +1f—gly <201F15+1gIh?/? V. g e LP(Q).

Inequality (6) is called Clarkson’s second inequality.
[Hint: There are two different methods:

(i) By duality from (4), observing that

sup
p.yeLr

{ [ g + vy)

= ()l + [l ZH7',
il + lwlip14/P } ! g

(ii) Directly from (1) combined with the result of Exercise 4.11.]

2. Deduce that L?(2) is uniformly convex for 1 < p < 2.

PROBLEM 21 (4)
The distribution function. Marcinkiewicz spaces

Throughout this problem €2 denotes a measure space with finite measure . Given
a measurable function f : Q — R, we define its distribution function o to be
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a() = |[If] > t]l = meas{x € Q; [f(x)| >} Vi=>0.

-A -

1. Check that « is nonincreasing. Prove that o(z + 0) = «a(¢) V¢ > 0. Construct a
simple example in which «(t — 0) # «(¢) for some ¢ > 0.

2. Let (f,) be a sequence of measurable functions such that f;, — f a.e. on Q. Let
(cey) and o denote the corresponding distribution functions. Prove that

a(t) <lim inf o, (t) <lim supo,(t) <a(@ —0) Vt=>0.
n—00 n—00
Deduce that o, (f) — «a(t) a.e.
-B-
1. Letg € LIIOC(R) be a function such that g > 0 a.e. Set

t
G(t):/ g(s)ds.
0

Prove that for every measurable function f,

f G(f(x)Ddp < 0o = / a()g(t)dt < oo
Q 0

and that ~
/QG(If(x)I)dM=/O a(t)g(n)dr.

[Hint: Use Fubini and Tonelli.]
2. More generally, prove that

ee]

/ G(f)Dhdn = a(M)G() +/ a()g(t)dt Vi =0.
[1f1>2] A
3. Deduce that for 1 < p < o0,
o0
feLl(Q) / a®tP~ dt < 00
0
and that
o0
/ | FOPdp = a(MAP + p/ a®tP~dr VA > 0.
[1f1>A] Py
Check that if f € LP(2), then lim;_, y o (£)t? = 0.

-C-
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Let 1 < p < oo. Forevery f € L1() define
[f1, = sup {|A|_l/p// |fl; A C Q measurable, |A| > 0} < o0,
A

and consider the set
MP(Q) = {f € L'(Q); [f], < oo},

called the Marcinkiewicz space of order p. The space M” is also called the weak L?
space, but this terminology is confusing because the word “weak” is already used in
connection with the weak topology.

1. Check that M7 (S2) is a linear space and that [ ], is a norm. Prove that

LP(Q) C MP(2) and that [ f], < || fll, forevery f € LP(Q).

2. Prove that M”(2), equipped with the norm [ ],, is a Banach space.
Check that M7 (2) C M9(2) with continuous injection for 1 < g < p.

We claim that

[f € MP(Q)] |:f is measurable and sup tPa(r) < oo] .
t>0

3. Prove thatif f € MP(Q) then tPa(r) < [f1, ¥t > 0.

4. Conversely, let f be a measurable function such that

sup rPa(r) < oo.
t>0

Prove that there exists a constant C, (depending only on p) such that

[f15 < CpsuptPa(r).

t>0

[Hint: Use question B3 and write

[in=[ e [

AN[lf1>2] AN[lf1=A]

then vary A.]
5. Prove that M7 (2) C L4(S2) with continuous injection for 1 < g < p.

6. Letl <g <r <ooand® € (0, 1); set
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Prove that there is a constant C—depending only on ¢, r, and 8—such that

Ifll, < CLAGLL Vf e M (Q).

7. Set @ = {x € R¥; |x| < 1}, equipped with the Lebesgue measure, and let
f(x) = |x|7N/P with 1 < p < oo. Check that f € MP(Q), while f ¢ L? ().

PROBLEM 22 (4)
An interpolation theorem (Schur, Riesz, Thorin, Marcinkiewicz)

Let ©2 be a measure space with finite measure. Let
T:LY(Q) — LY(Q)

be a bounded linear operator whose norm is denoted by Ny = [|T'|[z1,11). We
assume that
T(L®(2)) C L™=(Q).

1. Prove that T is a bounded operator from L°°(2) into itself. Set
oo = Tl £(roe, L%y

The goal of this problem is to show that
T(LP(R)) Cc LP(Q2) foreveryl < p < o0

and that 7 : LP(R2) — LP(Q) is a bounded operator whose norm N, =

(Tl ccLr.Lry satisfies the inequality N, < ZNf/pN;ép/.

For simplicity, we assume first that No, = 1. Given a function u € LY(Q), we
set, for every A > 0,

u=v),+w, with v, = U X[u|> 1] and w) = U X[|u|<Ar]s
f=Tu, g.=Tvy, and h, =Tw,, sothat f =g+ h;.

2. Check that

lealh < NI/ W@ldp and [l <A VA > 0.
[lu|>A]

3. Consider the distribution functions

a(r) = [[lul > 11, B(©) = |[Lf1 > t]l, ya (@) = [Igal > 1].

Prove that
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/Oo y(@)dt < Nifla(W)r + /Ooa(t)dt] VA > 0,
0 r

and that
B <yt —X) VYA>0, Vt>A.

[Hint: Apply the results of Problem 21, part B.]
4. Assuming u € LP(2), prove that f € LP(2) and that

1
£l < 2NPlull,.

5. Conclude in the general case, in which Ny, # 1.

Remark. By a different argument one can prove in fact that N, < N 11 /p N;é‘" :
see, e.g., Bergh—-Lofstrom [1] and the references in the Notes on Chapter 1 of

their book.

PROBLEM 23 3, 4)

Weakly compact subsets of L' and equi-integrable families.
The theorems of Hahn—Vitali-Saks, Dunford—Pettis, and de la Vallée-Poussin.

Let Q be a o-finite measure space. We recall (see Exercise 4.36) that a subset
F c LY(Q) is said to be equi-integrable if it satisfies the following properties:

(a) F isbounded in L' (Q),

) Ve >0 35>0 suchthatf,|f|<e VfeF,
VA C Q with A measurable and |A| < &,

© Ve >0 Jw C 2 measurable with |w| < oo

c
such that fQ\w |f] < e.

The first goal of this problem is to establish the equivalence of the following
properties for a given set F in L' (Q):

(i) F is contained in a weakly (o (L', L>®)) compact set of LY(),
(ii) F is equi-integrable.

-A -
The implication (1) = (ii).

1. Let (f;,) be a sequence in LI(Q) such that
f Jfa— 0 VA C Q with A measurable and |A| < oo.
A

Prove that ( f,,) satisfies property (b).
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[Hint: Consider the subset X C L'(Q) defined by
X = {xa with A C 2, A measurable and |A| < oo}.

Check that X is closed in L'(€2) and apply the Baire category theorem to the
sequence
/ Tk
A
where ¢ > 0 is fixed.]

2. Let (f,) be a sequence in L() such that

XnZ{XA€X§

<e szn},

/ fn— 0 VA C Q2 with A measurable and |A| < oo.
A

Prove that ( f;,) satisfies property (c).

[Hint: Let (£2;) be a nondecreasing sequence of measurable sets with finite mea-
sure such that = | J; Q;. Consider on L*°(Q2) the metric d defined by

1
df9) =Y g [ 17 sl

SetY = {x4 with A C 2, A measurable}. Check that Y is complete for the metric
d and apply the Baire category theorem to the sequence

/ Sk
A
where ¢ > 0 is fixed.]

3. Deduce that if ( f;,) is a sequence in L(2) such that fn — f weakly o (LY, L>),
then ( f;) is equi-integrable.

Yn={XAeY; <e szn},

4. Prove that (i) = (ii).

[Hint: Argue by contradiction and apply the theorem of Eberlein—Smulian; see
Problem 10.]

5. Take up again question 1 (resp. question 2) assuming only that | 4 Jn converges
to a finite limit £(A) for every A C Q2 with A measurable and |A| < oo (resp.
|A] < 00).

The implication (ii) = (i).
1. Let E be a Banach space and let 7 C E. Assume that

Ve > 03F, C E, Fe weakly (o (E, E*)) compact such that F C F, + ¢Bg.
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Prove that F is contained in a weakly compact subset of E.

]

[Hint: Consider G = f“(E JE*)

2. Deduce that (i) = (i).

[Hint: Consider the family (x» 75 f) reF with |w| < 0o and T}, is the truncation
as in the proof of Theorem 4.12.]

-C-
Some applications.

1. Let (f,) be a sequence in LY() such that Jan — f weakly o (LY, L) and
fn — fae.Provethat || f, — fll1 = 0.

[Hint: Apply Exercise 4.14.]

2. Letuy,ur € L'(Q) with u; < u, a.e. Prove that the set K = {f € LY(Q);
u; < f < us a.e.} is compact in the weak topology o (L', L*).

3. Let (f,,) be an equi-integrable sequence in L' (). Prove that there exists a sub-
sequence (fy,) such that f,, — f weakly o(L', L™®).

4. Let (f,;) bea bounded! sequence in LY(Q) such that f 4 Jfn converges to a finite
limit, £(A), for every measurable set A C 2. Prove that there exists some f €
L'() such that f, — f weakly o (L', L>).

5. Let g : R — R be a continuous increasing function such that
lg®)| < C VteR.

SetG(t) = f(; g(s)ds.Let (f;,) be asequence in LY(2) such that fn — f weakly
o (L', L>®) and limsup [ G(f,) < [ G(f).Prove that || f, — £l — O.

[Hint: Look at Problem 18.]
-D-
In this part, we assume that |Q2| < co. Let F C L(R).

1. LetG : [0, 400) — [0, +00) be acontinuous function such thatlim,_, y oo G(¢)/t =
400. Assume that there exists a constant C such that

/G(Ifl) <C VfeF

Prove that F is equi-integrable.

! n fact, it is not necessary to assume that ( f;,) is bounded, but then the proof is more complicated;
see, e.g., R. Edwards [1] p. 276-277.
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2. Conversely, assume that F is equi-integrable. Prove that there exists a convex
increasing function G : [0, +00) — [0, 400) such thatlim;_, {5, G(¢)/t = +00
and f G(|f]) < CVf e F, for some constant C.

[Hint: Use the distribution function; see Problem 21.]

PROBLEM 24 (1, 3,4)

Radon measures
Let K be a compact metric space, with distance d, and let E = C(K) equipped
with its usual norm

1= max | f (x)].

The dual space E*, denoted by M (K), is called the space of Radon measures on K.
The space M(K) is equipped with the dual norm, denoted by || || o4 or simply || ||
The purpose of this problem is to present some properties of M(K).

-A -
We prove here that C(K) is separable. Given § > 0, let UjEJB(aj, 3/2) be a
finite covering of K. Set

qj(x) =max{0,6 —d(x,a;)}, jeJ, xeK,

and

q(x) =) q;(x).

jeJ
1. Check that the functions (g;) jes and g are continuous on K. Show that
g(x)>6/2 VxeKk.

2. Set
qj(x)

q(x)’
Show that the functions (6;) jes are continuous on K,

0;(x) jelJ, x eKk.

[0;(x) #0] < [d(x,a;) < 4],

and
D 0jx)=1 VxeKk.
jedJ
The collection of functions (8;) jes is called a partitition of unity (subordinate to
the open covering UjGJB(aj, 25), because supp6; C B(aj, 23)).
3. Given f € C(K), set

f) =" flapo;).

jed
Prove that
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If—fll < sup 1f(x) = FO)I.
d)(c,gy)«%

4. Choosing § = 1/n,the above construction yields a finite set J, now denoted by J,,,
a finite collection of points (a;) jey,, and a finite collection of functions (6;) je, -
Show that the vector space spanned by the functions (8;), j € J,,n =1,2,3...,
is dense in C(K).

5. Deduce that C(K) is separable.

-B-

In this part we assume that K = €, where Q is a bounded open set in RN It
is convenient to identify L'(Q) with a subspace of M(Q) through the embedding
T : LY (Q) - M(Q) defined by

(Tu,f):/ uf YuelLY(Q), VfecC®@).
Q

1. Check that ||Tul|pq = llullp1 Yu € LY(Q).
[Hint: Use Exercise 4.26.]

2. Let (v,) be a bounded sequence in L!(£2). Show that there exist a subsequence
(vn,) and some p € M() such that vy, A win M(R) and

Il ame < lim inffjvg, |71
k—o00
[Hint: Use Corollary 3.30.]

The aim is now to prove that given any puo € M () there exists a sequence (uy)
in CZ°(£2) such that

(D /Qunf—> (no, f) VfeC()
and
2 lunllpr = llmollme Vn.

Without loss of generality we may assume that [|uo||oq = 1 (why?).
Set
A={ueCxQ);lull <1}

3. Prove that g € ZG(E ’E).

[Hint: Apply Hahn—-Banach in E* for the weak* topology o (E*, E); see Problem
9. Then use Corollary 4.23.]

4. Deduce that there exists a sequence (v,) in A such that v, X 1o in o (E*, E).
Check that lim,— oo ||Un |71 = 1.
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5. Conclude that the sequence u,, = v, /||v, |1 satifies (1) and (2).
We say that u > 0 if

(u, f)=0 YfeC®),f=0onQ

6. Check that if > 0, then (i, 1) = |||, where 1 denotes the function f = 1.

7. Assume g € M(R), with o > 0 and ||ugll = 1 (such measures are called
probability measures). Construct a sequence (u,) in C2°(2) satisfying (1), (2),
and, moreover,

3) upy(x) >0 Vn, Vx € Q.
8. Compute ||u + 84| rq , where u € L', and 8,, with a € ©, is defined below.

-C-

We now return to the general setting and denote by §, the Dirac mass at a point
a € K, i.e., the measure defined by

(Ba, f) = fla) VfeCK).

Set

D=1{u= Z“/"Saﬁ J is finite, o; € R, and the points a;’s are all distinct
jeJ

1. Show thatif u € D then
el ="l
jeJ
and
[L=0] & [a; >0 Vjl.
Set
Dy ={n € D;|in| < 1}

2. Show that any measure pg € M (K) with ||uoll < 1 belongs to BT(E ’E).

[Hint: Use the same technique as in part B.]
3. Deduce that given any measure uo € M(Q) there exists a sequence (v,) in D

such that v, — 10 and [|va | = ||oll V7 .
4. Let o be a probability measure. Prove that there exists a sequence (v,) of prob-

*
ability measures in D such that v, — ug.

Remark. An alternative approach to question 4 is to show that the Dirac masses
are the extremal points of the convex set of probability measures; then apply
Krein—Milman (see Problem 1) in the weak™* topology; for more details see, e.g.,
R. Edwards [1].
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-D-

The goal of this part is to show that every u € M(K) admits a unique decompo-

sition = p1 — o with g, o € M(K), pi1, p2 > 0, and [lerll + izl = Nl
(The measures g1 and i, are often denoted by u™* and ™)

Given f € C(K) with f > 0, set
L(f) =sup{{n,g); g € C(K)and0 < g < f on K}.
1. Check that 0 < L(f) < ||ullll fll, LAf) = AL(f) VA > 0, and

L(fi+ f2) =L(fi)+L(f2) Vfi, f2 € C(K)with f{ > 0and f> > 0.

Given any f € C(K), set
i (f) = L(f") = L(f7), where f* = max{f,0}and f~ = max{—f, 0}.

2. Show that the mapping f +— w1(f) is linear on C(K) and that |u;(f)| <
Il I fIIYf € C(K),sothat u; € M(K). Check that ;7 > 0.

3. Set wy = w1 — w and check that o > 0. Show that ||u|| = ||w1 ]l + 2]l

4. Letv e M(K)besuchthatv > Oandv > u (i.e.,v—pu > 0). Show thatv > .
Similarly if v € M(K) and v > —pu, show that v > p». Deduce the uniqueness
of the decomposition.

-E-

Show that all the above results (except question B6) remain valid when the space
E = C(Q) is replaced by the subspace

Eo = {f € C(Q); f = 0 on the boundary of Q}.
The dual of Ey is often denoted by M () (as opposed to M (Q)).
-F-
Dunford—Pettis revisited

Let (f,) be a sequence in LY(Q). Recall that ( fn) 1s said to be equi-integrable if
it satisfies the property

@ {VS >0 38>0suchthat [, |ful <& Vn,

and YA C Q with A measurable and |[A| < §.

The goal is to prove that every equi-integrable sequence ( f,) admits a subsequence
(fn;) such that f,;, — f weakly o (L', L°), for some function f € L1(Q).

1. Show that (f,,) is bounded in L' ().
2. Check that
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f9|fn—kan|s / ful Vi VE,

Q
[1/n]>k]

where T} denotes the truncation operation.
3. Deduce that Ve > 0 3k > 0 such that

/|fn_kan|§8 Vn.
Q

[Hint: Use (4); see also Exercise 4.36.]

Passing to a subsequence, still denoted by (f»), we may assume that f, A I
weak* in M (2), for some measure u € M().
4. Prove that Ve > 0 3¢ = g, € L*°(2) such that

e — gellm < e.

[Hint: For fixed k, a subsequence of (7% f,,) converges to some limit g weak* in
o(L*®, LY.]
5. Deduce that i € L'(Q).

[Hint: Use a Cauchy sequence argument in LY().]
6. Prove that f, — u weakly o (L', L>).

[Hint: Givenu € L°°(£2), consider a sequence (u,,) in C2°(£2) such thatu,, — u
a.e.onQand |uyllco < |l¢]lco Ym (see Exercise 4.25); then use Egorov’s theorem

(see Theorem 4.29 and Exercise 4.14).]

PROBLEM 25 (1, 5)

Let H be a Hilbert space and let C C H be a convex cone with vertex at 0, that
is,0 € C and Au + pv € C VA, u > 0,Vu, v € C. We assume that C is nonempty,
open, and that C # H.

Check that 0 ¢ C and that 0 € C. Consider the set

YX={ueH; (u,v) <0 YveC}.

1. Check that ¥ is a convex cone with vertex at 0, X is closed, and 0 € X. Prove
that C = {v € H; (u,v) < 0 Yu € ¥\{0}} and deduce that ¥ is not reduced to

{0}.
[Hint: Use Hahn—Banach.]
2. Let w € C be fixed and consider the set

K={ue;, (u,w)=—1}.

Prove that K is a nonempty, bounded, closed, convex set such that 0 ¢ K and
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z\(0} = [ 2K.
A>0
Draw a figure.
[Hint: Consider a ball centered at w of radius p > 0 contained in C.]
3. Leta = Pkg0. Prove thata € (—C) N X.
4. Prove directly, by a simple argument, that (—C) N X # .

5. Let D C H be a nonempty, open, convex set and let xo ¢ D. Prove that there
exists some wo € D such that

(wg — xp, w —x9) >0 VYw e D.

Give a geometric interpretation.

[Hint: Consider the set C = U,~o u(D — xp).]

PROBLEM 26 (1, 5)

The Prox map in the sense of Moreau
Let H be a Hilbert space and let ¢ : H — (—o00, +00] be a convex L.s.c. function
such that ¢ # +o0.

1. Prove that for every f € H, there exists some u € D(¢) such that
(P) LS —ul g = inf {217 0P+ e} =1
—|f—u u)=inf {=|f —v v) =1

2 ¢ veH | 2 ¢

[Hint: Check first that / > —oo. Then use either a Cauchy sequence argument
or the fact that H is reflexive.]

2. Check that u satisfies (P) iff

(Q ueD(p and (u,v—u)+e@) —ew)=(f,v—u) Yve D).

3. Prove thatif u and u are solutions of (P) corresponding to f and £, then |u—ii| <
| f — f1. Deduce the uniqueness of the solution of (P).

4. Investigate the special case in which ¢ = Ik is the indicator function of a closed
convex set K.

5. Let ¢* be the conjugate function of ¢ and consider the problem
(P*) S —u Rttt = inf {21f— 0P+t w)| = 1
_ — — 1n — — = .
2 ! ¢ veH | 2 v ¢

Prove that the solutions u of (P) and u* of (P*) satisfy
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* * 1 2
u+u' =f and I~|—I=§|f|.

6. Given f € H and A > 0 let u) denote the solution of the problem
1 2 . 1 2
(Py) I —ual” + Apuy) = inf 1 =|f —v|" + Ap(v) .
2 veH | 2

Prove that limy .o uy = Pry f = the projection of f on D(g).
[Hint: Either start with weak convergence or use Exercise 5.3.]

7. Let K = {v € D(p); ¢(v) = infy ¢} and assume K # .
Check that K is a closed convex set and prove that lim) _, 4 ) = Pk f.
What happens to (#;) as A — +oo when K = (§?

8. Prove that lim; _, 4 %u;\ = —PWO.
[Hint: Start with the case where f = 0 and apply questions 5 and 6.]

PROBLEM 27 (5)
Alternate projections

Let H be a Hilbert space and let K C H be a nonempty closed convex set. Check
that
|Pxu — Pxv|? < (Pxu — Pxv, u —v) < |u—v|> Vu,veH.

Let K1 C H and K> C H be two nonempty closed convex sets. Set P; = P,
and P> = Pg,. Given u € H, define by induction the sequence (u,) as follows:

uo =u, uy = Piug, up = Puy, ... ,uyy—1 = Pluzy—2, uzy = Poup,_1,

-A -

The purpose of this part is to prove that the sequence (12, — u2,—1) converges to
Px 0, where K = K> — K (note that K is convex, why?).

1. Given v € H consider the sequence (v,) defined by the same iteration as above
starting with vg = v. Check that

2 2
2, — v2u|” < (U2n — Van, U2p—1 — V20—1) < |U2p—1 — V21|
and that

2 2
[t2n41 — V211" < Uong1 — V2ng1, Uan — V2p) =< |u2n — v24]°.

2. Deduce that the sequence (Ju, — v,|) is nonincreasing and thus converges to a
limit, denoted by £.
Prove that limy, oo (42, — v21) = (U25—1 = v20-1)|* = 0.
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3. Check that the sequence (|2, — u2,—1]) is nonincreasing.

Setd = dist(K, K3) = inf{la; — az|; a; € K| and a; € K3}
We claim that lim,_ o0 |2, — uon_1| =d.

4. Given ¢ > 0, choose v € K> such that dist(v, K1) <d + ¢.
Prove that |vy, — vo,—1| < d + ¢ Vn.
5. Deduce that lim,,_, o |2, — uzu—1| = d.
Set z = Pg0.
6. Check that |z| = d and that |z|2 < (z,w)VYw € K>, — K.
7. Prove that the sequence (u2, — uz,—1) converges to z.
[Hint: Estimate |z — (up, — 142,,_1)|2 using the above results.]

8. Give a geometric interpretation.

-B-

Throughout the rest of this problem we assume that z = Px0 € K> — K. (This
assumption holds, for example, if one of the sets K1 or K> is bounded, why?)

We claim that there exist a; € Ki and ap € Kj with ap — a; = z such that
uz, — ap and uz,—1 — a; weakly. Note that a; and a» may depend on the choice
of up = u. Draw a figure.

1. Consider the Hilbert space H = H x H equipped with its natural scalar product.
Set K ={[b1,brl e H ;b1 € K1,by € Kr and by — by = z}.
Check that X is a nonempty closed convex set.

2. Let b = [b1, by] € K . Determine the sequence (v,,) corresponding to vy = by.
Deduce that the sequences (|u2,—1 — b1]) and (Juz, — b2|) are nonincreasing.

3. Set x, = [u2,—1, u2,] and prove that the sequence (x,) satisfies the following
property:

P) For every subsequence (x,, ) that converges weakly to some
element x € H, then x € K.

4. Apply Opial’s lemma (see Exercise 5.25, question 3) and conclude.

PROBLEM 28 (5)
Projections and orthogonal projections

Let H be a Hilbert space. An operator P € L£(H) such that P> = P is called a
projection. Check that a projection satisfies the following properties:

(a) I — P is aprojection,
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(b) N(I — P) = R(P) and N(P) = R(I — P),
() N(P)NN(U — P) = {0},
(d) H=N(P)+ N( — P).

-A -

An operator P € L(H) is called an orthogonal projection if there exists a closed

linear subspace M such that P = Pj; (where Py, is defined in Corollary 5.4). Check
that every orthogonal projection is a projection.

1. Given a projection P, prove that the following properties are equivalent:

(a) P is an orthogonal projection,
(by P*=P,

© IPII=T,

(d) N(P) LN — P),

where the notation X L Y means that (x,y) =0Vx € X,Vy e Y.

. Let T € L(H) be an operator such that

T*=T and T?=1.
Prove that P = %(I — T) is an orthogonal projection. Prove the converse.

Assuming, in addition, that (Tu,u) > 0Vu € H, provethat T = I.

-B-

Throughout this part, M and N denote two closed linear subspaces of H. Set

P = Py and Q = Py.

1.

Prove that the following properties are equivalent:

(a) PO =QP,
(b) PQ is aprojection,
(c) QP is aprojection.

In this case, check that

(i) P Q is the orthogonal projection onto M N N,
(i) (P + Q — P Q) is the orthogonal projection onto M + N.

. Prove that the following properties are equivalent:

(@ M LN,
(b) PO =0,
(c) QP =0,

(d) |Pul>+ |Qu|* < |u*> VuecH,
(e) |Pu| <|u— Qu| Yue H,
() |Qu| < |u— Pul VYueH,
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(g) P+ Q is aprojection.

In this case, check that (P 4+ Q) is the orthogonal projection onto M + N (note
that M + N is closed; why?).

3. Prove that the following properties are equivalent:

(a) M CN,
(b) PO=P,
(c) QP =P,

(d) |Pu| < |Qu|Vu € H,
(e) Q — P is aprojection.

In this case, check that Q — P is the orthogonal projection onto M+ N N.

PROBLEM 29 (5)

Iterates of nonlinear contractions.
The ergodic theorems of Opial and Baillon

Let H be a Hilbert space and let T : H — H be a nonlinear contraction, that is,
|Tu —Tv| <|u—v| Yu,v e H.

We assume that the set
K={ue H; Tu=u}

of fixed points is nonempty. Check that K is closed and convex. Given f € H set

0n=%(f+Tf+T2f+~-~+T”_‘f)

The goal of this problem is to prove the following:

and

(A) Each of the sequences (0,,) and (u,) converges weakly to a fixed point of T'.
(B) If, in addition, T is odd, that is, T (—v) = —Tv Yv € H, then (0,,) and (u;)
converge strongly.

It is advisable to solve Exercises 5.22 and 5.25 before starting this problem. In
the special case that T is linear, see also Exercise 5.21.

-A -
Set
u, =T"f.

1. Check that for every v € K, the sequence (Ju, — v|) is nonincreasing. Deduce
that the sequences (0,) and (T 0;,) are bounded.
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2. Prove that

1
loy — Toy| < —|f —To,| Vn>1.
Jn

[Hint: Note that |[To, — Tu,'|2 < loy — u,~|2 and add these inequalities for
0<i<n-—1]

3. Deduce that the sequence (o0;,) satisfies property (P) of Exercise 5.25. Conclude
that 0, — o weakly, witho € K.

S = — I + z .

4. Prove that

[ — Su) — (v — SV)|> + |Su— Sv|> < |u—v|> Vu,veH.

5. Deduce that for every v € K,

o
2 2
D i = P < 1 — vl

n=0
and COHSCquently
M S 12 f v vn.
n nl = \/_1

6. Conclude that u,, — p© weakly, with u € K.
-B-
Throughout the rest of this problem we assume that T is odd, that is,
T(—v)=—-Tv VveH.
1. Prove that for every integer p,
2|(u,v) — (TPu, TPv)| < |u)® + |v|> = |TPu|* = |TPv|*> Vu,v € H.

[Hint: Start with the inequality |7Pu — T?v|?> < |u — v|> Yu, v € H.]

2. Deduce that for every fixed integer i > 0,
£(i) = lim (uy,, uy4i) exists.
n—odo
Prove that this convergence holds uniformly in i, that is,

(D) |(un, up+i) —€@G@)| <&, Vi and Vn, with lim ¢, =0.
n—0o0o
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3. Similarly, prove that for every fixed integeri > 0,
m(i) = lim (@y, pyi)  eXists.
n—od

Prove that m(0) = m(1) = mQ) = ---.
[Hint: Use the result of question AS.]
4. Deduce that u, — p strongly.
We now claim that 0, — o strongly.

5. Set
122
X,=— Zw).
P i=0
Prove that
2n 5
[(Un, Ontp) — Xpl < &n + ;Ifl vn, Vp.

[Hint: Use (1).]
6. Deduce that

(i) X =lim,_, X exists,
(i) |(up,0) — X| < &, Vn,
(i) |o|* = X.

7. Prove that
) n—1 2 n—1
loal® = =5 3 1 =D + = 3 e
i=0 i=0

8. Deduce that lim sup,,_, o, |0,|*> < X and conclude.

PROBLEM 30 (3, 5)

Variants of Stampacchia’s theorem. The min—max theorem of von Neumann
Let H be a Hilbert space.

-A -

Leta(u,v) : H x H — R be a continuous bilinear form such that
a(v,v) >0 Vv € H.

Let K C H be a nonempty closed convex set. Let f € H. Assume that there exists
some vg € K such that the set

{ue K; a(u,vo—u) > (f, vo—u)}

is bounded.
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1. Prove that there exists some u € K such that
awu,v—u)>(f,v—u) VYvek.
[Hint: Set f. = f + evg and consider the bilinear form a. (u, v) = a(u, v) +
&(u, v), ¢ > 0. Then, pass to the limit as ¢ — 0 using Exercise 5.14.]
2. Recover Stampacchia’s theorem.

3. Give a geometric interpretation in the case that K is bounded and a(u, v) = 0
Yu,v € H.

-B-
Letb(u, v) : Hx H — R be abilinear form that is continuous and coercive. Let

¢ : H— (—o00, +00] be a convex l.s.c. function such that ¢ # +oo.

1. Prove that there exists a unique u € D(¢) such that
bu,v—u)+¢) —e) =20 Yuve D(p).

[Hint: Apply the result of question Al in the space H x R with K = epi ¢,
f=10,—-1],a(U, V) = b(u,v) with U = [u, A] and V = [v, u]. Note that a
18 not coercive.]

2. Recover Stampacchia’s theorem.

-C-
Let Hy and H> be two Hilbert spaces and let A C Hy, B C Hj be two nonempty,

bounded, closed convex sets.

1. Let F(A, u) : Hy x Hy — R be a continuous bilinear form. Prove that there
exist L € A and &t € B such that

ey FO,p) < FO, 1) < F,,JI) Vi€A, VueB.

[Hint: Apply guestion Al with 1;1 = Hy x Hy, K = A x B, and a(u,v) =
F, ) — F(, w), where u = [A, 1], v = [A, u].]

2. Deduce that

2) min max F(\, #) = max min F(A, ).
rA€A ueB neB AreA

Note that all min and max are achieved (why?).

[Hint: Check that without any further assumptions, max min < min max; use
(1) to prove the reverse inequality.]
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3. Prove that (2) implies the existence of some A € A and 77 € B satisfying (1).

-D-

Let E and F be two reflexive Banach spaces; let A C E and B C F be two
nonempty, bounded, closed convex sets. Let K : E x F — R be a function satisfying
the following assumptions:

(a) For every fixed v € B the function u — K (u, v) is convex and L.s.c.
(b) For every fixed u € A the function v — K (u, v) is concave and u.s.c., i.e., the
function v — —K (u, v) is convex and l.s.c.

Our goal is to prove that

min max K (u,v) = max min K (u, v).
ueA veB veB ucA

We shall argue by contradiction and assume that there exists a constant y such
that
max min K(u,v) <y < min max K (u, v).

veB ucA ucA veB
1. Forevery u € A, set
B, ={veB; K(u,v) =y}
and for every v € B, set
Ay={ueA; Ku,v) <y}
Check that N,ca B, = ¥ and Nycp A, = 0.

2. Choose ui, uz, ..., uy € Aand vy, vy, ..., vy € BsuchthatN!_, B,, = @ and
ﬂ';’:lAu,« = () (justify). Apply the result of C1 with H; = R", H, = R™,

n
A ={r=(01 A, ....0); % >0 Viand Z,\,:l},

i=1

m
B'=p=(ui.p2 . ptm)ipj =0 Vjand Y pj=1¢.
j=1

and F(A, u) = Zi,j Aip i K (ui,vj). Setu =), A and v = Zj £jv;.Prove
that

K@w,v) < K(ug,v) Vk=1,2,....,n, VY&L=1,2,...,m.
3. Check that on the other hand,

mkin K@k, v) <y and m?x K@, vp) > y.

[Hint: Argue by contradiction.]
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4. Conclude.

PROBLEM 31 (3, 5)
Monotone operators. The theorem of Minty—Browder

Let E be a reflexive Banach space. A (nonlinear) mapping
A:DA) CE— E*
is said to be monotone if it satisfies
(Au — Av, u—v) >0 Vu,v e D(A)

(here D(A) denotes any subset of E).
A -

Let A: D(A) C E — E*be amonotone mapping and let K C E be a nonempty,
bounded, closed convex set. Our goal is to prove that there exists some u € K such
that

(Av,u —v) >0 Vve D(A)NK.

For this purpose, set, for each v € D(A) N K,
Ky, ={ueK; (Av,v—u) > 0}.

We have to prove that Nyepa)nk Ky # @; we shall argue by contradiction and
assume that

N K, =90.
veD(A)NK

1. Check that K, is closed and convex.

2. Deduce that there exist vy, vy, ..., v, € D(A) N K such that

1

n
N Ky =0,

Set B={A=(A1,A2,...,Ay);A; >0 Viand Z;‘:l X; = 1}, and consider the
bilinear form
F:R"xR'"> R
defined by
FOup) =300 oy Mitj{Avj, v —vj).
3. Check that F(A,A) <0VL e R".
4. Prove that there exists some A € B such that F (X, w) <0Vu € B.
[Hint: Apply question C1 of Problem 30.]
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5. Setw = Y ;_; A;v; and prove that
(Avj,u—v;) <0 Vj=12,...,n.

6. Conclude.

-B-

Throughout the rest of this problem, we assume that D(A) = E, A: E — E*is
monotone, and A is continuous.

1. Let K C E be a nonempty, bounded, closed convex set. Prove that there exists
some u € K such that (Au, w —u) > 0Vw € K.

[Hint: Consider v; = (1 — )u + tw with ¢t € (0, 1) and w € K .]

2. Let K be a closed convex set containing 0 (K need not be bounded). Assume
that the set {u € K; (Au, u) < 0} is bounded. Prove that there exists some
u € K such that
(Au,v—u) >0 VveKk.

[Hint: Apply B1 to the set Kr = {v € K ||v|| < R} with R large enough.]

3. Assume here that
(Av,v)

im
lvll—oo ]|

Prove that A is surjective.

4. Assume here that E is a Hilbert space identified with E*. Prove that  + A is
bijective from E onto itself.

PROBLEM 32 (5)
Extension of contractions. The theorem of Kirszbraun—Valentine
via the method of Schoenberg
Let H be a Hilbert space and let I be a finite set of indices.
-A-
Let (v;);cs be elements of H and let (¢;);<; be elements of R. Set
2

w(u)=ma1x{|u—yi —ci}, ueH,
IAS

and
Jw)y=1li € I; lu—yl* —ci = o).

1. Check that inf,cy ¢(u) is achieved by some unique element ug € H.
2. Prove that max;e (g (v, uo — yi) > 0 Vv € H.
3. Deduce that
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(D ugp € conv U {vi}
ieJ(ug)

4. Conversely, if ug € H satisfies (1), prove that ¢(ug) = inf,eyg @ ).
5. Extend this result to the case in which ¢ (1) = max;¢; {f;(#)} and each f; :
H — Ris aconvex C! function.

-B-
Let (x;)ier and (y;)ies be elements of Hsuch that
lyi = yjl <lxi —xj| Vi, jel
We claim that given any p € H, there exists some g € conv (UiE It yi}) such that
lg —yil <|p—xi| Viel

1. Set P ={A = (Aj)ier; A; = 0Viand Ziel A= 1}
Prove that for every p € H and for every A € P,
2

ij (ZM%‘) —yj| = Z)»jlp—xj|2~

jel iel jel

2
[Hint: Check that ), Aj‘ (Xier Aivi) — yj) =520 jer Mikjlyi = yil*]
2. Consider the function
o) = max{|u — yi|* — |p — xi*}.
iel

Let up € H be such that p(ug) = inf,cy ¢(u). Prove that ¢ (ug) < 0.
[Hint: Apply questions A3 and B1.]
3. Conclude.

.C-
1. Extend the result of part B to the case that / is an infinite set of indices.

2. Let D C H by any subset of H and let S : D — H be a contraction, i.e.,
|Su — Sv| <|u—v| VYu,veD.

Prove that there exists a contraction T defined on all of H that extends S and
such that
T(H) C conv S(D).

[Hint: Use Zorn’s lemma and question C1.]
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PROBLEM 33 (4, 6)

Multiplication operator in L?

Let 2 be a measure space (having finite or infinite measure). Set £ = L (£2) with
1 < p <oo.Leta: Q2 — R be a measurable function. Consider the unbounded
linear operator A : D(A) C E — E defined by

D(A)={ueLP(Q);au € LP(Q)} and Au = au.

1. Prove that D(A) is dense in E.
[Hint: Given u € E, consider the sequence u, (x) = (1 + n~! |a(x)|)_1u(x).]
2. Show that A closed.
3. Prove that D(A) = E iff a € L*°(Q).
[Hint: Apply the closed graph theorem.]
4. Determine N(A) and N(A)L.
5. Determine D(A*), A*, N(A*), and N(A*)L.
6. Prove that A is surjective iff there exists « > O such that |a(x)| > « a.e. on Q.
[Hint: Use question 3.]
In what follows we assume that a € L*°(Q2).

7. Determine the eigenvalues and the spectrum of A. Check that o0 (A) C [infgq a,
supg a] and that infga € o (A), supga € o(A). Here infg and supg, refer to
the ess inf and ess supg, (defined in Section 8.5).

8. In case Q is an open set in RY (equipped with the Lebesgue measure) and
a € C(2) N L*®(), prove that 0 (A) = a(L2).

9. Prove that 0 (A) = {0} iff a = 0 a.e. on Q2.

10. Assume that 2 has no atoms. Prove that A is compact iff a = 0 a.e. on Q.

PROBLEM 34 (4, 6)
Spectral analysis of the Hardy operator Tu(x) = )lc fg u(t)dt
-A-

Let E = C([0, 1]) equipped with the norm [|u|| = sup,¢(o 17 |u(?)|. Givenu € E
define the function T'u on [0, 1] by

1 [umdr ifxe(0,1],

Tu() = {u(O) if x = 0.
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Check that Tu € E and that | Tu| < ||u|| Vu € E,sothat T € L(E).
1. Prove that EV (T) = (0, 1] and determine the corresponding eigenfunctions.
2. Check that |T|| 2y = 1. Is T a compact operator from E into itself?

3. Show that o (T) = [0, 1]. Give an explicit formula for (T — AI)~! when A €
p(T).Provethat (T —A[) is surjective from E onto E forevery A € R, 1 ¢ {0, 1}.
Check that T and (T — I) are not surjective.

4. In this question we consider T as a bounded operator from £ = C([0, 1]) into
F=1L190,1) with 1 <g < oco.Provethat T € K(E, F).

[Hint: Consider the operator (T u)(x) = ﬁ f(f u(t)dt withe > 0 and estimate
ITe = TllzE, ) ase — 0.]
-B-
In this part we set E = C'([0, 1]) equipped with the norm

lull = sup |u(t)| + sup |u'(r)].
t€[0,1] te[0,1]

Given u € C1([0, 1]) we define Tu as in part A.
1. Check that if u € C'([0, 1), then Tu € C'([0, 1]) and || Tul|| < ||u|| Yu € E.
2. Prove that EV(T) = (0, 31U {1}.
3. Prove that o (T) = [0, 3] U {1}.

-C-

In this part we set E = LP(0,1) with 1 < p < oo. Given u € L?(0, 1) define
Tu by

Tu(x) = )16/0 u(t)dt forx e (0, 1].

Check that Tu € C((0, 1]) and that Tu € L9(0, 1) for every g < p. Our goal is to
prove that Tu € L?(0, 1) and that

(M ITullLro.1) < lullLro.) VYuekE.

p
p—1
1. Prove that (1) holds when u € C.((0, 1)).

[Hint: Set ¢(x) = f(f u(t)dt; check that |p|? € C1([0, 17) and compute its
derivative. Estimate ||Tu||.» using the formula

! ! dx 1 1 1
f I Tux)[Pdx =f IS = —f lp(x)IPd (——])
0 0 X )4 —1 0 xP

and integrating by parts.]
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N

Prove that (1) holds for every u € E.

In what follows we consider 7' as a bounded operator from E into itself.
3. Show that EV(T) = (0, %).
4. Deduce that |T|| zg) = %. Is T a compact operator from E into itself?
5. Prove that o (T) = [0, %].
6. Determine T*.

7. In this question we consider T as a bounded operator from £ = L?(0, 1) into
F=L90,1)with1 <g < p < oo. Show that T € K(E, F).

PROBLEM 35 (6)
Cotlar’s lemma
Let H be a Hilbert space identified with its dual space.
-A-
Assume T € L(H),sothat T* € L(H).

1. Prove that |T*T| = | T||%.

2. Assume in this question that 7 is self-adjoint.
Show that
ITN|| = ||IT N for every integer N.

3. Deduce that (for a general T € L(H)),

I(T*T)YN|| = | T||*" for every integer N.

-B-
Let (T}), 1 < j < m, be a finite collection of operators in L(H). Assume that
Vi ke{l,2,...,m},
(1) 1T Tl ? < 0 (j = k),
) 1T < 0k — ),

where w : Z — [0, 00).
Set

m—1

o= Z ().

i=—(m—1)
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The goal of this problem is to show that

3)

Set

and fix an integer N.

1. Show that

1T} T, T3, Ty - - T, Ty |l
<ow(ji —kDwky — pw(jz — k) -wtky_1 — j))o(jy — kn),
for any choice of the integers ji, k1, ..., jn, ky € {1,2,..., m}.
2. Deduce that
ZZ D 2T T o T, Ty | < mor ™,
1k N ky

where the summation is taken over all possible choices of the integers j;, k; €
{1,2,...,m}.

3. Prove that
U N | < mo?N

and deduce that (3) holds.
PROBLEM 36 (6)
More on the Riesz—Fredholm theory

Let E be a Banach space and let T € IC(E). For every integer k > 1 set
Ny =N —T) and Ry = R —T)".

1. Check that Vk > 1, Rr+1 C Ry, Ry is closed, T(Ry) C Ry, and (I — T)Ry C
Rp+1.

2. Prove that there exists an integer p > 1 such that

Ri4+1 # R Yk < p (no condition if p = 1),
Riy1 = R Vk = p.

3. Check that Vk > 1, Ny C Niy1, dim Ny < oo, T(Ny) C N, and
(I — T)Nk+1 C Ni.
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4. Show that
codim Ry =dim N, Vk > 1,

and deduce that

Ni+1 #= Ny Vk < p (no condition if p = 1),
Niy1 =N Yk > p.

5. Prove that
R, NN, = {0},
R,+N,=E.

6. Prove that (/ — T) restricted to R, is bijective from R/, onto itself.

7. Assume here in addition that E is a Hilbert space and that T is self-adjoint.
Prove that p = 1.

PROBLEM 37 (6)
Courant—Fischer min—-max principle. Rayleigh—Ritz method

Let H be an infinite-dimensional separable Hilbert space. Let T’ be a self-adjoint
compact operator from H into itself such that (Tx,x) > 0 Vx € H. Denote by
(ur), k = 1, its eigenvalues, repeated with their multiplicities, and arranged in
nonincreasing order:

M1 > 2> >0.

Let (e;) be an associated orthonormal basis composed of eigenvectors. Let Ey be

the space spanned by {ey, e, ..., ex}. For x # 0 we define the Rayleigh quotient
T b
R = 09
|x]2

1. Prove that Vk > 1,
min R(x) = ug.
xeEy

x#0

2. Prove that Vk > 2,

max R(x) = uk,
)cEEkl_1
x#0

and
maxR = ui.
max (x) =
x#0

3. Let X be any k-dimensional subspace of H with k > 1. Prove that

minR(x) < ug.
xXex
x#0
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[Hint: If k > 2, show that ¥ N E lg_—l # {0} and apply question 2.]

4. Deduce that Vk > 1,
max mmR(x)

YCH xeXx
dim X=kx#0

5. Let X be any (k — 1)-dimensional subspace of H with k > 2. Prove that

max R(x) > k.
xex

x#0

[Hint: Prove that £+ N E # {0}.]

6. Deduce that Vk > 1,
min  max R(x) =

xC H »L
dim 3= ~1540

7. Assume here that N(T') 0}, so that R(x) # 0 Vx # 0, or equivalently

= {
ur > 0 Vk. Show that Vk > 1,

1 1
gnn ma%R( ) —_
CH xe X
dim X =k x#0 Mk
and
1 1
max mlnR( ) = —,
ACH xeA R(x
codim A=k—1x Mk

where ¥ and A are closed subspaces of H.
In particular, for k = 1,

and, moreover, Vk > 2,

min = .
XEE#—I R(x) Mk
x#0

8. Let V be a closed subspace of H (finite- or infinite-dimensional). Let Py be the
orthogonal projection from H onto V and consider the operator S : V — V
defined by § = Py o Tjy. Check that S is a self-adjoint compact operator from
V into itself such that (Sx,x) >0Vx e V.

9. Denote by (v), k > 1, the eigenvalues of S, repeated with their multiplicities
and arranged in nonincreasing order. Prove that Yk with 1 <k < dim V,

max minR(x) = v.
XCV xex
dim X=kx#0
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10.

(1

2

3)

Deduce that vy < ux Yk with 1 <k <dim V.

Consider now an increasing sequence V" of closed subspaces of H such that

Jvw =h.
n

Set §™ = Py o Tle and let (v,i") ) denote the eigenvalues of S ) arranged as

(n)
k

in question 9. Prove that for each fixed k the sequence n +— v, is nondecreasing

and converges, as n — 00, to (.

PROBLEM 38 (2, 6, 11)
Fredholm—Noether operators
Let E and F be Banach spaces and let T € L(E, F).
-A -
The goal of part A is to prove that the following conditions are equivalent:
(a) R(T) is closed and has finite codimension in F,
(b) N(T) admits a complement in E.

There exist S € L(F, E) and K € IC(F, F) such that
ToS=Ir+K.

There exist U € L(F, E) and a finite-rank
projection P in F suchthat T o U = Ir — P.

Moreover, one can choose U and P such that dim R(P) = codim R(T).

1. Prove that (1) = (3)

[Hint: Let X be a complement of N(T) in E. Then Ty is bijective from X onto
R(T). Denote by Uj its inverse. Let Q be a projection from F onto R(T) and
set U =Upo Q0.]

. Prove that (2) = (3).

[Hint: Use Exercise 6.25.]

Prove that (3) = (1).

[Hint: To establish part (a) of (1) note that R(T) D R(Ir — P) and apply
Proposition 11.5. Similarly, show that R(U*) is closed and thus R(U) is also
closed. Finally, prove that there exist finite-dimensional spaces X; and X; in

E such that N(T) + R(U) + 1 = E and N(T) N R(U) C Z;. Then apply
Proposition 11.7.]

4. Conclude.
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-B-

Prove that the following conditions are equivalent:

@ (@) R(T) is closed and admits a complement,
(b) dim N(T) < oo.

5) There exists S € L(F, E) and K e K(E, E) such that
SoT =1Ip+K.

©) There exist U € L(F, E) and a finite-rank
projection PinEsuchthatUoT =1Ig — P.

-C-

One says that an operator T € L(E, F) is Fredholm (or Noether) if it satisfies

(FN) {(a) R(T) is closed and has finite codimension,

(b) dimN(T) < oo.

(The property that R(T) is closed can be deduced from the other assumptions; see
Exercise 2.27.)
The class of operators satisfying (FN) is denoted by ®(E, F). The index of T is
by definition
ind 7T = dim N(T) — codim R(T).

1. Assume that T € ®(E, F). Show that there exist U € L(F, E) and finite-rank
projections P in F (resp. P in E) such that

- {(a) ToUs=1Ip-P,
) UoT =1Ig—P,

with dim R(P) = codim R(T), dim R(P) = dim N(T).
[Hint: Use the operator U constructed in question A1.]

An operator V € L(F, E) satisfying

®) (@ ToV=Ip+K,
b) Vol =1Ig+K,

with K € K(F) and K € K(E), is called a pseudoinverse of T (or an inverse
modulo compact operators).

2. Show that any pseudoinverse V belongs to ®(F, E).

3. Prove that an operator T € L(E, F) belongs to ®(E, F) iff R(T) is closed,
dim N(T) < oo, and dim N(T*) < oo. Moreover,
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10.

11.

12.

Problems

indT = dim N(T) — dim N(T™).

[Hint: Apply Propositions 11.14 and 2.18.]

. LetT € ®(E, F). Prove that T* € ®(F*, E*) and that

ind7T*=—ind T.

[Hint: Apply Proposition 11.13 and Theorem 2.19.]

. Conversely, let T € L(E, F) be such that T* € ®(F*, E*). Prove that T €

D(E, F).

. Assume that J € L(E, F)isbijective and K € IC(E, F).ShowthatT = J + K

belongsto ®(E, F)andind T = 0. Conversely,if T € ®(E, F)andind T = 0,
prove that T can be written as T = J 4+ K with J and K as above (one may
even choose K to be of finite rank).

[Hint: Applying Theorem 6.6, prove that Iz +J ' o K belongs to ®(E, E) and
has index zero. For the converse, consider an isomorphism from N (7') onto a
complement Y of R(T).]

.LetT € ®(E,F)and K € K(E, F).Provethat T + K € ®(E, F).

. Under the assumptions of the previous question, show that

ind(T + K)=ind T.

[Hint: Set E = Ex Y, F = F x N(T),and T : E — F defined by T (x, y) =
(Tx + Kx,0). Show that T = J + K, where J is bijective from E onto F and
K € K(E, F). Then apply question 6.]

. LetT € ®(E, F). Prove that there exists ¢ > 0 (depending on 7') such that for

every M € L(E, F) with |M|| < &, wehave T + M € ®(E, F). Show that

ind(T + M) = ind T.

[Hint: Let V be a pseudoinverse of 7. Then W = Ig 4 (V o M) is bijective
if M| < |V||~!. Check that T + M = (T o W)+ compact; then apply the
previous question. ]

Let (H;),t € [0, 1], be a family of operators in L(E, F). Assume thatt — H; is
continuous from [0, 1] into L(E, F), and that H; € ®(E, F) Vt € [0, 1]. Prove
that ind H; is constant on [0, 1].

Let E1, E», and E3 be Banach spaces and let 71 € ®(Eq, Ey), Tr € ®(E», E3).
Prove that 7> o T7; € ®(E}, E3).

With the same notation as above, show that
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ind(7; o T1) = ind T} + ind T>.

[Hint: Consider the family of operators H; : E1 x Ey — E> x E3 defined in
matrix notation, for ¢ € [0, 1], by

g (1o (a-n1 T 0
=\ —tI Q-nI1)\or1)’

where [ is the identity operator in E3. Check that r — H; is continuous from
[0, 1] into L(E; x E3, E» x E3). Using the previous question, show that for
eacht, H; € ®(E| x Ey, Ey x E3). Compute ind Hy and ind H;.]

13. Let T € ®(E, F). Compute the index of any pseudoinverse V of T.

-D-
In this part we study two simple examples.
1. Assume dim E < oo and dim F < oo. Show that any linear operator 7 from E
into F belongs to ®(E, F) and compute its index.

2. Let E = F = ¢2. Consider the shift operators S, and S; defined in Exercise 6.18.
Prove that for every A € R, A # +1,A # —1, wehave S, — Al € @(62,52),
and Sy — A1 € ®(¢2, £?). Compute their indices.

Show that S, & I, Sy & I do not belong to ® (¢£2, £2).

[Hint: Use the results of Exercise 6.18.]

PROBLEM 39 (5, 6)
Square root of a self-adjoint nonnegative operator

Let H be a Hilbert space. Let S € L(H); we say that S is nonnegative, and we
write § > 0, if (Sx,x) > 0 Vx € H. When S, S, € L(H), we write S| > S, (or
Sy < S if S — S = 0.

-A -

1. Let S € £(H) be such that $* = Sand 0 < S < I. Show that || S%|| = ||IS||> < 1,
andthat 0 < S2 < S < I.
[Hint: Use Exercise 6.24.]

2. LetS € L(H)besuchthat $* = Sand S > 0.Let P(¢r) = Zaktk be a polynomial
such that a; > 0 Vk. Prove that [P(S)]* = P(S) and P(S) > 0.

3. Let (S,) be a sequence in L(H) such that S, = S, Vn and S,4+1 < S, Vn.
Assume that || S, || < M Vn, for some constant M. Prove that for every x € H,

Spx converges as n — oo to a limit, denoted by Sx, and that S € L(H) with
S*=S.
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[Hint: Let n > m. Use Exercise 6.24 to prove that | S,x — Sm)c|2 <2M(S,x —
Spx, x).]
-B-

Assume that T € L(H) satisfies T* = T, T > 0, and || T|| < 1. Consider the
sequence (S,) defined by

1
St =Sy + 5T =5), n=0,

starting with So = 1.
1. Show that Sy = S, Vn > 0.
2. Show that ) |
I=Sp1=50=8)"+7U=T),
and deduce that I/ — S,, > 0 Vn.
3. Prove that S, > 0 Vn.
[Hint: Show by induction that / — §,, < I using questions A.1 and B.2.]
4. Deduce that ||S,|| < 1 Vn.

5. Prove that
1
Sn = Sut1 =3 [(I = S)+ U = Spi—D] o (Sum1 — Su) Vn

and deduce that S,,_; — S,, > 0 Vn.

[Hint: Show by induction that (1 —S,) = P,(I—T)and (S,,—1—S,) = 0, (I-T),
where P, and O, are polynomials with nonnegative coefficients.]

6. Show that lim,,_, 50 S,x = Sx exists. Prove that S € L(H) satisfies S* = S,
$>0,|IS| <1,and S2=T.
.C-

1. LetU € L(H)besuchthat U* = U and U > 0. Prove that thereexists V € L(H)
suchthat V* =V, V > 0,and V2 = U.

[Hint: Apply the construction of part Bto 7 = U/||U||.]

Next, we prove the uniqueness of V. More precisely, if W is any operator
W € L(H) suchthat W* = W, W > 0, and W2 =U,then W = V.The operator
V is called the square root of U and is denoted by U'/2.

2. Prove that the operator V constructed above commutes with every operator X
that commutes with U (i.e., X oU = U o X implies X o V =V o X).

3. Prove that W commutes with U and deduce that V commutes with W.
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4. Check that (V — W) o (V + W) = 0 and deduce that V = W on R(V + W).
Show that N(V) = N(W) = N(U) = N(V + W). Conclude that V. = W on H.

[Hint: Note that V. = W on R(V + W) = N(U)*, and that V. = W = 0 on
N(U).]

5. Show that [|U2|| = |U||V/2.

6. Let Uy, Uy € L(H) be such that Uy = Uy, Uy = Uz, Uy = 0, Uz = 0, and
UjoUy; =UpoUj. Provethat Uy o Uy > 0.

[Hint: Introduce U 11/ 2 and U21 / 2.]

-D-

Let U € K(H) be such that U* = U and U > 0. Prove that its square root
V belongs to K(H). Assuming that H is separable, compute V on a Hilbert basis
composed of eigenvectors of U. Find the eigenvalues of V.

PROBLEM 40 4, 5, 6)
Hilbert—Schmidt operators
-A -

Let E and F be separable Hilbert spaces, both identified with their dual spaces.
The norms on E and on F are denoted by the same symbol | |. Let T € L(E, F), so
that T* € L(F, E).

1. Let (ex) (resp. (fx)) be any orthonormal basis of E (resp. F). Show that
S 1T (ex) > < 00 iff 352, IT*(fi)|* < oo, and that

DTl =) 1T (fol
k=1 k=1

2. Let (ex) and (e;) be two orthonormal bases of E. Show that Z,fil |T(ek)|2 < 0
iff 302, 1T (&)|> < oo and that

DIl =) ITE.
k=1 k=1

One says that T € L(E, F) is a Hilbert—Schmidt operator and one writes T €
HS(E, F) if there exists some orthonormal basis (e;) of E such that

D T (el < oo

k=1

3. Prove that HS(E, F) is a linear subspace of L(E, F') and that
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10.

11.

00 172
nﬂms=(Z]NqW)

k=1

defines a norm on HS(E, F). Let || || denote the standard norm or L(E, F).
Show that
ITI < ITllns VT € HS(E, F).

. Prove that HS(E, F) equipped with the norm || ||%s is a Banach space. Show

that in fact, it is a Hilbert space.

. Show that HS(E, F) C K(E, F).

[Hint: Given x € E, write x = Y o xxex and set T, (x) = Y j_; xx T (ex).
Show that |7, — T|| - O asn — c0.]

. Show that any finite-rank operator from E into F belongs to HS(E, F).
. LetT € L(E, F).Provethat T € HS(E, F) ifft T* € HS(F, E) and that

IT*lnsr ey = IT|11SE,F)-

. Assume that T € K(E, E) with T* = T, and let (A;) denote the sequence of

eigenvalues of T'. Show that T € HS(E, E) iff Z,fi 1 A,% < oo and that
o
IT15s = D 4%
k=1

Construct an example of an operator T € K(E, E) with E = ¢* such that
T ¢ HS(E, E).

. Let G be another separable Hilbert space. Let 71 € L(E, F)and T» € L(F, G).

Show that 75 o T} € HS(E, G) if either Ty or T belongs to HS.

LetT € HS(E, E) and assume N (I + T) = {0}. Show that (I + T') is bijective
and that (I +T)~!' =1 + S with S € HS(E, E).

Let (ex) (resp. (fx)) be an orthonormal basis of E (resp. F). Consider the operator
Tx¢ : E — F defined by

T e(x) = (x, ex) fe-
Show that (T, ¢) is an orthonormal basis of HS(E, F).

-B-

Assume that Q is an open subset of RY . In what follows we take E = F = L3(R).

Let K € L%(2 x Q), and consider the operator

ey

(Tu)(X)=/QK(x,y)u(y)dy-
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1. Show that T € L(E, E) and that
TN e ey < 1K L2(@x0)-
2. Show that T € HS(E, E) and that

1T nsEE) < 1K L2@x0)-

[Hint: Let (e;) be an orthonormal basis of L2(S2). Check that the family
ejr =ej® e, where (ej ® ex)(x, y) = e;(x)ex(y), is an orthonormal basis of
L%(Q2 x ). Then write

1T €2y = D I(T(e), epl? =) I(K.e; ® el ]
j=1

j=1

3. Conversely, let T € HS(E, E). Prove that there exists a unique function K €
L2(2 x §2) such that (1) holds. K is called the kernel of T

[Hint: Let t; x = (Teg, e;) and check that ka:l |t; k> < co. Define K =
kazl tjkej ® ex and prove that (1) holds.]

4. Assume that Q = (0, 1), E = L?(2), and consider the operator

(Tu)(x) = fx u(t)dt.
0

Show that T € HS(E, E) and compute || T || 4s-

PROBLEM 41 (1, 6)
The Krein—Rutman theorem

Let E be a Banach space and let P C E be a closed convex set containing O.
Assume that P is a convex cone with vertex at 0, i.e., Ax + uy € P VA > 0,
uw>0,xe P,andy € P.

Assume that

(1) IntP #9
and
2) P +£E.

Let T € KC(E) be such that

3) T(P\{0}) C IntP.
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7.

Problems

. Show that (Int P) N (—P) = @.

[Hint: Use Exercise 1.7.]

In what follows we fix some u € Int P.

. Show that there exists « > 0 such that

lx +ull >a VxeP.

[Hint: Argue by contradiction and deduce that —u € P.]

. Check that there exists » > 0 such that

Tu —rue P.

. Assume that some x € P satisfies

T(x +u)=xix forsomeA € R.

Prove that A > r.

[Hint: It is convenient to introduce an order relation on E defined by y > z if
y — z € P. Show by induction that (%)nx >u,n=1,2,...]

. Consider the nonlinear map

F(x)=T< xtu ) xeP.

llx =+ ull

Show that F : P — P is continuous and F(P) C K for some compact set
K C E. Deduce that there exists some x| € P such that

T(x1 +u) =Arix

with A1 = ||x1 +ul >r.

[Hint: Apply the Schauder fixed-point theorem; see Exercise 6.26.]

. Deduce that for every ¢ > 0 there exists x; € P such that

T(xe + eu) = Aexe

with A, = ||x. 4+ eu|| > r.

Prove that there exist xg € Int P and g > 0 such that

Txo = pnoxo.
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[Hint: Show that (x.) is bounded. Deduce that there exists a sequence &, — 0
such that x,, — xo and A,, — o with the required properties.]

-B-

1. Giventwo pointsa € Int P and b € E, b ¢ P, prove that there exists a unique
o € (0, 1) such that

(I1—ta+tbelntP Vtel0,0),
(1—0)a+obeP,

(1—ta+tb¢P vt € (o, 1].

Then we set 7(a, b) = o/(1 — o), with 0 < t(a, b) < oo.
2. Let x € P\ {0} be such that
Tx = ux for some u € R.

Prove that u© = g and x = mxg for some m > 0, where g and x¢ have been
constructed in question A7.

[Hint: Suppose by contradiction that x # mxg, ¥m > 0. Show that u > 0,
x € Int P,and —x ¢ P. Sety = xo9 — 10X, wWhere 19 = t(x9, —x). Compute
Ty and deduce that u < wg. Then reverse the roles of x¢ and x.]

3. Letx € E \ {0} be such that
Tx = pux forsome p € R.

Prove that either © = po and x = mxo withm € R, m # 0, or || < po.

[Hint: In view of question 2 one may assume that x ¢ P and —x ¢ P.If u > 0
consider 7 (xg, x), and if & < 0 consider both 7 (xg, x) and 7 (xg, —x).]

4. Deduce that N(T — uogl) = Rxp. In other words, the geometric multiplicity of
the eigenvalue p is one.

5. Prove that N ((T — pol)¥) = Rxg for all k > 2. In other words, the algebraic
multiplicity of the eigenvalue 1 is also one.

[Hint: In view of Problem 36, it suffices to show that N ((T — uo 1)2) = Ruxyp.]

PROBLEM 42 (6)
Lomonosov’s theorem on invariant subspaces

Let E be an infinite-dimensional Banach space and let T € KC(E), T # 0. The
goal of part A is to prove that there exists a nontrivial, closed, invariant subspace Z
of T,ie., T(Z) C Z,with Z # {0}, and Z # E.
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Set

A=span{l, T, T?, ...}
= inri, with A; € R and I is a finite subset of {0,1,2,...}¢.
iel

For every y € E, set Ay = {Sy; S € A}. Clearly, y € A, and thus A, # {0}
for every y # 0. Moreover, A, is a subspace of E and T(A,) C Ay, so that
T(A_y) C A_y It A_y # E for some y # 0, then A_y is a nontrivial, closed, invariant
subspace of T. Therefore we can assume that

(D A/ =E VyeE,y#0.
Since T # 0, we may fix some xo € E such that Txy # 0, and some r such that

Tx X
Tl _ Jxo]

20T T2

Set
C={xek; |x—xl =r}

1. Check that 0 ¢ C and that

ITx — Txoll < = IITxoll Vx €C,
so that

ITx] =

ITxoll Vx e C.

Deduce that 0 ¢ T(C).

2. Prove that for every y € E, y # 0, there exists some S € A, denoted by Sy,
such that
1Sy — xoll <

(SR

[Hint: Use assumption (1).]

3. Deduce that for every y € E, y # 0, there exists some ¢ > 0 (depending on y),
denoted by ¢y, such that

ISz —xoll <7 Vze B(y,e),

where S is as in question 2.
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4. Consider a finite covering of T'(C) by balls B(y;, %syj) with j € J, J finite.
Set,forj e Jandx € E,

qj(x) =max{0. &y, — [Tx — y;|} and q(x) =) gq;(x).
=

Check that the functions ¢;, j € J, and g are continuous on E. Show that
Vx e C,

1
q(x) > rjnel}l {E 8yj} > 0.
Set
1

F -
=75

> qi(0)8y,(Tx), xeC.
jeJ

5. Prove that F is continuous from C into E and that

IF(x) —xoll <r VxeC.

[Hint: Use question 3.]

6. Prove that F(C) C K, where K is a compact subset of C. Deduce that there
exists £ € C such that F(§) = §&.

[Hint: Apply the Schauder fixed-point theorem; see Exercise 6.26.]

7. Set

1
= =2 4E)Sy; o),
q(x);’ ’

with & as in question 6. Show that U € K(FE). Deduce that Z = N(I — U) is
finite-dimensional; check that & € Z.

8. Prove that T (Z) C Z and conclude.
[Hint: Show that U € A and deducethat T oU = U o T.]

9. Construct a linear operator 7' : R> — R? that has no invariant subspaces except
the trivial ones.

-B-

We now establish a stronger version of the above result. Assume that 7' € K(E)
and T # 0.Let R € L(E) be suchthat RoT = T o R. Prove that R admits a
nontrivial, closed, invariant subspace.

[Hint: Set B = span {I, R, RZ, .. .} and B, = {Sy; § € B}. Check that all the
steps in part A still hold with A replaced by BB and A, by B,.]



504 Problems
PROBLEM 43 (2,4, 5, 6)

Normal operators

Let H be a Hilbert space identified with its dual space. An operator T € L(H) is
said to be normal if it satisfies

ToT*=T"oT.

1. Prove that T is normal iff it satisfies

|Tu| = |T*u| VueH.

[Hint: Compute |T (« + v)|%.]
Throughout the rest of this problem we assume that 7" is normal.

2. Assume that u € N(T — AI) and v € N(T — pnl) with A # . Show that
(u,v) =0.

[Hint: Prove, using question 1, that N(T* — ul) = N(T — nl), and compute
(Tu,v).]

3. Prove that R(T) = R(T*) = N(T)* = N(T*)*.
4. Let f € R(T). Check that there exists u € R(T*) satisfying f = Tu.
[Hint: Note that H = R(T) & N(T).]

5. Considerasequenceu, € R(T*)suchthatu, — uasn — oo.Writeu,, = T*y,
for some y, € H. Show that Ty, converges as n — oo to a limit z € H that
satisfies T*z = f.

[Hint: Use question 1 and a Cauchy sequence argument.]
6. Deduce that R(T) = R(T™).

[Hint: Use the fact that N(T) = N(T*).]
7. Show that || 72| = ||T||%.

[Hint: Write |Tu|? < |T*Tu| |u| = |T%u| |u.]
8. Deduce that |T7| = ||T||? for every integer p > 1.

[Hint: Consider first the case p = 2%. For a general integer p, choose any k such
that 2% > p and write [T |2 = |72 = |T?~PTP|.]

9. Prove that N(T2) = N(T) and deduce that N(T?) = N(T) for every integer
p=1L

[Hint: Note that if 7%y = 0, then Tu € N(T) N R(T).]
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PROBLEM 44 (5, 6)

Isometries and unitary operators. Skew-adjoint operators.
Polar decomposition and Cayley transform.

Let H be a Hilbert space identified with its dual space and let T € L(H). One
says that

(1) T is an isometry if |Tu| = |u| Vu € H,
(i1) T is a unitary operator if T is an isometry that is also surjective,
(iii) T is skew-adjoint (or antisymmetric) if T* = —T.

-A-

1. Assume that T is an isometry. Check that | T'|| = 1.
2. Prove that T € L(H) is an isometry iff T* o T = I.

3. Assume that T € L(H) is an isometry. Prove that the following conditions are
equivalent:

(a) T is a unitary operator,
(b) T* is injective,

) ToT* =1,

(d) T* is an isometry,

(e) T* is a unitary operator.

4. Give an example of an isometry that is not a unitary operator.
[Hint: Use Exercise 6.18.]

5. Assume that T is an isometry. Prove that R(T') is closed and that 7 o T* =
Pg(ry = the orthogonal projection on R(T').

6. Assume that 7 is an isometry. Prove that
either T is a unitary operator and then o (T') C {—1, +1},
or T is not a unitary operator and then o (T) = [—1, +1].

7. Assume that T € C(H) is an isometry. Show that dim H < oo.
8. Prove that T € L(H) is skew-adjoint iff (Tu,u) =0Vu € H.
9. Assume that T € L(H) is skew-adjoint. Show that o (T') C {0}.
[Hint: Use Lax—Milgram.]
10. Assume that T € L(H) is skew-adjoint. Set

U={T+1o(T-D""

Check that U is well defined, that U = (T —1I)~'o(T+1),and that UoT = ToU.
Prove that U is a unitary operator (U is called the Cayley transform of T).
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11. Conversely, let T € L(H) be such that 1 ¢ o (7). Assume that U = (T + 1) o
(T — I)~! is an isometry. Prove that T is skew-adjoint.
-B-
We will say that an operator 7 € L(H) satisfies property (1) if

(D there exists an isometry J from N (T') into N (T*).

The goal of part B is to prove that every operator T € L(H) satisfying property
(1) can be factored as
T=UoP,

where U € L(H)isanisometry and P € L(H) is a self-adjoint nonnegative operator
(recall that nonnegative means (Pu, u) > 0 Vu € H). Such a factorization is called
a polar decomposition of T. In addition, P is uniquely determined on H, and U is
uniquely determined on N (7)* (but not on H).

1. Check that assumption (1) is satisfied in the following cases:
(i) T is injective,
(i1) dim H < oo,
(iii) T is normal (see Problem 43),
(iv) T=1—- K with K € KC(H).
2. Give an example in which (1) is not satisfied.
[Hint: Use Exercise 6.18.]
3. Assume that we have a polar decomposition T = U o P. Prove that P2 = T*oT.
4. Deduce that P is uniquely determined on H.
[Hint: Use Problem 39.]

5. Let T = U o P be a polar decomposition of 7. Show that U is uniquely deter-
mined on N(7)L.

6. Assume that 7 admits a polar decomposition. Show that (1) holds.
[Hint: Set J = Un(7).]
7. Prove thatevery operator T € L(H) satisfying (1) admits a polar decomposition.

8. Assume that T satisfies the stronger assumption
2) there exists an isometry J from N (T) onto N(T™).

Show that 7 admits a polar decomposition T = U o P, where U is a unitary
operator.

9. Deduce that every normal 7 € L£L(H) admits a polar decomposition 7 = U o P
where U is a unitary operatorand U o P = P o U.
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10. Show that every operator T € L(H) satisfying (2) can be factored as T =
P o U, where U € L(H) is a unitary operator and P € L(H) is a self-adjoint
nonnegative operator.

[Hint: Apply question 8 to 7*.]

11. Show that every operator T € K(H) satisfying (1) admits a polar decomposition
T =Uo P,where P € K(H).

12. Assume that H is separable and T € IC(H) (but T does not necessarily sat-
isfy (1)). Prove that there exist two orthonormal bases (e,) and (f,,) of H such
that

o0
Tu = Zan(u,en)fn Yu € H,

n=1

where (o) is a sequence such that o, > 0 Vn and «, — 0 asn — oco. Compute
T*. Conversely, show that any operator of this form must be compact.

PROBLEM 45 (8)

Strong maximum principle

Consider the bilinear form
1
a(u,v) = / pu/v/ + quv,
0

where p € Cl([O, 1), p>a >0o0n (0, 1),and g € C([0, 1]). We assume that a is
coercive on HO1 (0, 1) (but we make no sign assumption on q).

Given f € L%(0, 1), letu € H%(0, 1) be the solution of

0 {—(pu’)’ +qu=f on(0,1),

u(0) = u(l) = 0.

Assume that f > O a.e. on (0, 1) and f s 0. Our goal is to prove that

2) W' (©0)>0, u'(1) <0
and
3) ux) >0 Vxe(,1).

1. Assume that ¢ € H'(0, 1) satisfies

a(¥,v) <0 Yve HJ(0,1),v>00n(0,1),

4)
¥v(0) =0, (1) =<0.

Prove that v <0 on (0, 1).
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[Hint: Take v = v in (4) and use Exercise 8.11.]
Consider the problem

5) —(pg")' +49¢ =0 on (0, 1),
£(0)=0,¢(1) =1.

2. Show that (5) has a unique solution ¢ and that { > 0 on (0, 1).
Check that u > 0 on (0, 1) and deduce that #’(0) > 0 and »’(1) < 0.
4. Prove that

bt

1
©) MDMUN=Af?

[Hint: Multiply (1) by ¢ and (5) by u.]
Set p(x) = (e#* — 1), B > 0.
5. Check that if B is sufficiently large (depending only on p and ¢), then

(7) —(p¢") +qp <0 on (0, 1).

In what follows we fix B such that (7) holds.
6. Let A = (ef — 1)71. Prove that

£>Ap on(0,1).

[Hint: Apply question 1 to y = Ap — ¢. ]
7. Deduce that u’(1) < 0.

[Hint: Apply question 4.]
8. Check that ' (0) > 0.

[Hint: Change ¢ into (1 —¢).]
9. Fix § € (0, %) so small that

) Loy vee.8) and MW

(1 V. 1-4,1).
> 5 oz S Vre( )

=

N =

Why does such § exist? Let v be the solution of the problem

—(pv'Y +qv=0 on(5,1—9),
v(8) =v(l —98) =y,

where P
y = Emin{u/(o), lu’ (D)}

Show thatu > v > 0on (6, 1 —§).
10. Prove thatv > O on (8, 1 — §).
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[Hint: Assume by contradiction that v(xg) = 0 for some xg € (§, 1 — §), and
apply Theorem 7.3 (Cauchy-Lipschitz—Picard) as in Exercise 8.33.]
11. Deduce that u(x) > 0Vx € (0, 1).

Finally, we present a sharper form of the strong maximum principle.

12. Prove that there is a constant a > 0 (depending only on p and ¢) such that

1
u(x) > ax(l —x)/ f@®rd —t)dr.
0

[Hint: Start with the case where p = 1 and ¢ = k? is a positive constant;
use an explicit solution of (1). Next, consider the case where p = 1 and no
further assumption is made on ¢. Finally, reduce the general case to the previous
situation, using a change of variable.]

PROBLEM 46 (8)
The method of subsolutions and supersolutions
Leth(t) : [0, +00) — [0, +00) be a continuous nondecreasing function. Assume

that there exist two functions v, w € C?([0, 1]) satisfying

O<v=<w onl =(0,1),
(D - +v <h() onl, v(0)=v()=0,
—w”+w=>h(w) onl, w() >0 w()=>0,

(v is called a subsolution and w a supersolution). The goal is to prove that there exists
a solution u € C2([0, 1]) of the problem

—u"4+u=h@u) onl,
2 u(0) =u(l) =0,
v<u<w on /.

Consider the sequence (u#,),>1 defined inductively by

—u) 4+ uy, =h(y—1) onl,n>1,

@ un(0) = un (1) =0,

starting from up = w.
1. Showthatv <u; <wonl.

[Hint: Apply the maximum principle to (#; — w) and to (] — v).]

2. Prove by induction that for every n > 1,

v<uponl and wu,y; <u, onl.
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10.

11.

Problems

. Deduce that the sequence (,,) converges in L> (1) to a limit u and that & (u,) —

h(u) in L2(1).

. Show thatu € HO1 (I), and that

/uqo +f utp_/ h(u)e VgoeHO(I)

. Conclude that u € C%([0, 1]) is a classical solution of (2).

In what follows we choose A (¢) = 1%, where 0 < o < 1. The goal is to prove
that there exists a unique function u € C>([0, 1]) satisfying

—u" +u=u* onl,
4) u(0) =u(l) =0,
ux) >0 Vx el.
. Let v(x) = esin(zx) and w(x) = 1. Show that if ¢ is sufficiently small,

assumption (1) is satisfied. Deduce that there exists a solution of (4).

We now turn to the question of uniqueness. Let u be the solution of (4)
obtained by the above method, starting with ug = 1. Lett € C 2([0, 1]) be
another solution of (4).

. Show thatu < 1on /.

[Hint: Consider a point xo € [0, 1] where & achieves its maximum.]

Prove that the sequence (u,),>1 defined by (3), starting with 1o = 1, satisfies

u<u, onl,

1
/ @%u —u“n) = 0.
0

[Hint: Write %u — u®ii = uii(i®~" — u®~"!) and note that u® ' < 471

and deduce that & <wuon I.
Show that

Conclude that # = u on 1.

We now present an alternative proof of existence. Set, for every u € HO1 D),

1 1 2 ) 1
F(u)=§f(u +u)—/ g(u),
0 0
where g(t) = .

= tHetl 0 <o < 1,and 1t = max (¢, 0).
Prove that there exists a constant C such that

1
Fu) > Euun2 — Cllull%¥" Yu € Hy (D).
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12. Deduce that

14.

15.

16.

17.

1.

2.

m= inf F(v) > —o0,
veHJ (I

and that the infimum is achieved.

[Hint: Let (u,) be a minimizing sequence. Check that a subsequence (i, )

converges weakly in H, (I) to a limit u and that fol g(un,) — fol g(). The
reader is warned that the functional F' is not convex; why?]

. Show that m < 0.
[Hint: Prove that F(ev) < Oforall v € HOI(I ) such that v+ £ 0 and for all &
sufficiently small.]
Check that
g(b) —g@) = @"H*(b—a) Va,beR.
Letu € HO1 (I) be a minimizer of F on HOl (I). Prove that
1 1
/ W' +uv) = / @M% Vv e Hi ().
0 0
[Hint: Write that F'(u) < F(u + tv), apply question 14, and let t — 0.]
Deduce that u € C2([0, 1]) is a solution of
—u"4+u=w"H* onl,
®)
u0) =u(l) =0.
Prove thatu > Oon I and u # 0.
Conclude that u > 0 on I using the strong maximum principle (see Problem 45).
PROBLEM 47 (8)
Poincaré—Wirtinger’s inequalities
Let I = (0, 1).
-A-
Prove that
(1) lu —@lpoeery < gy Yu e WD), where w = fI”
[Hint: Note that u = u(xg) for some xo € [0, 1].]
Show that the constant 1 in (1) is optimal, i.e.,

2) sup{llu — il L(; w € WHT), and [lu'llprigy =1} = 1.
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[Hint: Consider a sequence (u,) of smooth functions on [0, 1] such that «/, > 0
on (0, 1) Vi, uy(1) = 1Vn, uy(x) =0Vx €[0,1 — 1], vn.]

n

3. Prove that the sup in (2) is not achieved, i.e., there exists no function u € wli(n)
such that
lu—ullpoy =1 and ||M/||L1(1) =1

4. Prove that

1
3) hellzeary < 51l Vi e Wy (I).

[Hint: Write that [u(x) —u(0)| < fi [« (t)|dt and Ju(x) —u(D)| < [ 1w/ ()]d1.]

5. Show that % is the best constant in (3). Is it achieved?

[Hint: Fix a € (0, 1) and consider a function u € Wol‘l (I increasing on (0, a),
decreasing on (a, 1), with u(a) = 1.]

6. Deduce that the following inequalities hold:

“4) lu —@llzacry < Clldllpery Yu € WhP(D).
and

L,
) lullzacry < Cllu' ey Yu € Wy'P (1)

withl <g <ooand1 < p < .
Prove that the best constants in (4) and (5) are achieved when 1 < ¢ < oo and
1 <p<oo.

[Hint: Minimize ||u’|| (1) in the class u € W1P(I) such that ||u — || a1y = 1,
resp. u € Wy'? (1) and ||u| oy = 1.]

-B-

The next goal is to find the best constant in (4) when p = g = 2, i.e.,
(6) lu =@l 2y < Cll'll g2y Yu € H' (D).
Set H={f e L*(I); [, f=0land V = {v € H!(I); [, v=0}.

1. Check that for every f € H there exists a unique # € V such that

/u’v’:/fv YveV.
I 1



Problems 513

2. Prove that u € H2(I) and satisfies

—u”" = f ae.onl,
u'(0)=u'(1) =0.

3. Show that the operator T : H — H defined by T'f = u is self-adjoint, compact,
and that [, fTf >0V f € H.

4. Let A1 be the largest eigenvalue of T. Prove that (6) holds with C = /A1 and
that +/A] is the best constant in (6).

[Hint: Use Exercise 6.24.]
5. Compute explicitly the best constant in (6).

-C-
1. Prove that

(7) e =@l L1y < 2/1 W' Ol (1 = ndr - Yu e WD),
2. Deduce that

®) e =l gy < %nu/np(,) Vu e Wh(D).

3. Show that the constant 1/2 in (8) is optimal, i.e.,
- 11 / 1
(9) Sup{||u—u||L1(1); uc w (1), and ||I/£ ”Ll(l) :1}: 5

4. Is the sup in (9) achieved?

PROBLEM 48 (8)

A nonlinear problem

Let j : [—1,41] — [0, +00) be a continuous convex function such that j €
C2((=1,41)), j(0) =0, j'(0) = 0, and

lim j'(t) = 400, lim j'(t) = —c0.
M+l rl—1

(A good example to keep in mind is j (1) = 1 — +/1 — 2, t € [—1, +1].) Given
f € L?(0, 1), define the function ¢ : Hj (0, 1) — (—00, +-00] by

o) = LIbv2 4 ) j) = ) fvifve HNO, 1) and o]z~ < 1,
+00

otherwise.
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Problems

. Check that ¢ is convex l.s.c. on HO1 (0, 1) and that lim”UHHIHJrOO (V) = +o0.
0

. Deduce that there exists a unique u € H& (0, 1) such that

pm) = min @(v).
veH1(0,1)

The goal is to prove thatif f € L°°(0, 1) then |lu|po@©,1) < 1,u € H?(0, 1),
and u satisfies

—u"+j'w)y=f on(0,1),

M u(0) = u(l) = 0.

. Check that

j@) —jla) = j' (@)t —a) Vie[-1,+1], Vae (-1,+1).
[Hint: Use the convexity of j.]
Fixa € [0, 1).
Set v = min(u, a). Prove that v € HOl (0, 1) and that

D A—

, u' ae.onlu <al,
0 ae.onlu > al.

[Hint: Write v = a — (a — u)™ and use Exercise 8.11.]

Prove that ]

5/ u’zs/ (f = j'(@)u —a).
[u>a] [u>a]

[Hint: Write that ¢(#) < @(v), where v is defined in question 4. Then use
question 3.]

Choose a € [0, 1) such that f(x) < j’'(a) Vx € [0, 1] and prove that u(x) < a
Vx € [0, 1].

[Hint: Show that fol w'? = 0, where w = (u —a)™ belongs to H(} (0, 1); why?]

Conclude that [|u]| =@, 1) < 1.

[Hint: Apply the previous argument, replacing u by —u, j(¢) by j(—t), and f
by —f.]

Deduce that u# belongs to H?(0, 1) and satisfies (1).

[Hint: Write that () < ¢(u + ev) with v € HO1 (0, 1) and & small.]

Check that u € C2([0, 1]) if f € C([0, 1]).
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10. Conversely, show that any function u € C?([0, 1]) such that lullpo@, 1) < 1,
and satisfying (1), is a minimizer of ¢ on HO1 O, 1).
[Hint: Use question 3 with # = v(x) and @ = u(x).]

Assume now that f € L2(0, 1). Set f, = T, f, where T}, is the truncation
operation (defined in Chapter 4 after Theorem 4.12). Let u,, be the solution of
(1) corresponding to f;,.

11. Prove that || j"(un)ll 20,1y < C as n — o0.
[Hint: Multiply (1) by j'(u,).]
12. Deduce that ||”n||H2(0,l) < C.

13. Show that a subsequence (u,,) converges weakly in H 2(0,1) to a limit u €
H?(0, 1) with u,, — u in C'([0, 1]). Prove that [u(x)| < 1 a.e. on (0, 1), and
j'(u) € L0, 1).

[Hint: Apply Fatou’s lemma to the sequence by ;' (unk)z.]

14. Show that j'(u,,) converges weakly in L%(0, 1) to j'(u) and deduce that (1)
holds.

[Hint: Apply Exercise 4.16.]

15. Deduce that |||l ,1) < 1 if one assumes, in addition, that

limTilnfj/(t)(l —n'?>0 and limsupj'(H(1+0'7 <o0.
d -1

[Hint: Assume, by contradiction, that u(xg) = 1 for some x¢9 € (0, 1).
Check that |u'(x)| < |x — xo|"?|lu”|l;2 ¥x € (0,1) and |u(x) — 1| <
Z|x — x0¥2[|lu” |2 Vx € (0, 1). Deduce that j'(u) ¢ L*(0, 1).]

PROBLEM 49 (8)

Min—max principles for the eigenvalues of Sturm—Liouville operators

Consider the Sturm-Liouville operator Au = —(pu’)’ + qu on (0, 1) with
Dirichlet boundary condition u(0) = u(l) = 0. Assume that p € clqo, 11,
p(x) >a >0Vx €[0,1],and g € C([0, 1]). Set

1
au,v) = / (pu'v' 4 quv)  Yu,v € H} (0, 1).
0

Note that we make no further assumption on ¢, so that the bilinear form a need not
be coercive. Fix M sufficiently large that a(u, v) = a(u,v) + M fol uv is coercive
(e.g., M > —minye[o,1]g(x)). Let (Ax) be the sequence of eigenvalues of A. The
space H = HO1 (0, 1) is equipped with the scalar product a(u, v), now denoted by
(#, v) g, and the corresponding norm |u|g = a(u, u)!/2. Given any f € L%(0, 1),
letu e HO1 (0, 1) be the unique solution of the problem
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1
&(u,v):/ fv Yve Hi,1).
0

Setu = T f and consider T as an operator from H into itself.
1. Show that T is self-adjoint and compact.
[Hint: Recall that the identity map from H into L2(0, 1) is compact.]

2. Let (i) be the sequence of eigenvalues of A (in the sense of Theorem 8.22) with
corresponding eigenfunctions (ex), and let (i) be the sequence of eigenvalues
of T. Check that iy > 0 Vk and show that

1
M=——M Yk and T(ex) = urexr Vk.
Mk

3. Prove that

1
(Tw, w)y =/ w?> Yw e H,
0

and deduce that

1 a(w, w
R_= (1 2)+M VUJGH,U)#O,
(w) Jow
where R is the Rayleigh quotient associated with T, i.e., R(w) = % (see

Problem 37).

4. Prove that

)] A1 = min a(if’ w) ,
weHO1 fO w?
w#0
and Vk > 2,
A =
1
. Ja(w, w) 1 .
min 1—;weH0(0,1),w;éOand we; =0Vj=12,...,k—1;.
2
Jow 0
[Hint: Apply question 2 in Problem 37 and show that (w,ej)y = 0 iff
fol wej = 0.]

5. Prove that Vk > 1,

. :a(u,u)}
Ak = min max )

1

1 UEXR 2
EdcimH%(_—O}cl) uz#0 fo !
and
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10.

11.

. {a(u,u)}
Ak = max min s

1
ACH](0,1) 4€A u?
codim A=k—1 u#0 fO

where ¥ and A are closed subspaces of HO1 ©, 1).

[Hint: Apply question 7 in Problem 37.]

. Prove similar results for the Sturm—Liouville operator with Neumann boundary

conditions.

We now return to formula (1) and discuss further properties of the eigen-
functions corresponding to the first eigenvalue A1. In particular, we will see that
there is a positive eigenfunction generating the eigenspace associated to Aj.

. Letwg € HO1 (0, 1) be a minimizer of (1) such that fol w(z) = 1. Show that

Awg = Aqwg on (0, 1).

. Set w; = |wg|. Check that wq is also a minimizer of (1) and deduce that

2) Aw; = Ajwy; on (0, 1).

[Hint: Use Exercise 8.11.]

. Prove that w; > 0 on (0, 1), w}(0) > 0, and w/ (1) < 0.

[Hint: Apply the strong maximum principle to the operator A + M; see Prob-
lem 45.]

Assume that w € Hj (0, 1) satisfies
Aw =Ajw on((0,1).

Prove that w is a multiple of wj.

[Hint: Recall that eigenvalues are simple; see Exercise 8.33. Find another proof
that does not rely on the simplicity of eigenvalues; use w?/w; as test function

in (2).]
Show that any function v € Hg (0, 1) satisfying

1
Ay =py on (1), ¥ >0on(01), and / pr=1,
0
for some 1 € R, must coincide with wy.

[Hint: If & # Ay, check that fol Yw; = 0. Deduce that it = Aq.]
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PROBLEM 50 (8)
Another nonlinear problem

Let g € C([0, 1]) and consider the bilinear form
1
a(u, v) :/ W'v' + quv), u,ve Hi(,1).
0
Assume that there exists v| € HO1 (0, 1) such that

(D) a(vy, vp) < 0.

1. Check that assumption (1) is equivalent to
(2) A1(A) <0,
where A1(A) is the first eigenvalue of the operator Au = —u” + qu with zero
Dirichlet condition.

2. Verify that

1 1!
3) —o00 <m= inf {—a(u,u)—i——/ |M|4} <0.
ueH! 0,1 | 2 4 Jo

[Hint: Use u = ev; with ¢ > 0 sufficiently small.]
3. Prove that the inf in (3) is achieved by some uy.
[Warning: The functional in (3) is not convex; why?]
Our goal is to prove that (3) admits precisely two minimizers.

4. Prove that ug belongs to CZ([O, 1]) and satisfies

—u"+qu+u’=0 on(0,1),

@ u(0) =u(l) =0.

5. Set u; = |ug|. Show that 1 is also a minimizer for (3). Deduce that u; satis-
fies (4).

[Hint: Apply Exercise 8.11.]
6. Prove that u;(x) > 0 Vx € (0, 1), u}(0) > 0, and /(1) < 0.

[Hint: Choose a constant a so large that —u} + a’uy = f >0, f # 0. Then use
the strong maximum principle.]

7. Let ug € HO1 (0, 1) be again any minimizer in (3). Prove that either ug(x) > 0
Vx € (0,1),orug(x) <0Vx € (0, 1).

[Hint: Check that |ug(x)| > 0 Vx € (0, 1).]
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8. Let U; be any solution of (4) satisfying U; > 0 on [0, 1], and U; # 0. Set
p1=U 12 Consider the functional

1 1
®(p) = /0 (WE)/F +aqp + EpZ)
defined on the set
K = {,0 € Hl(0,1); p > 0on (0, 1) and \/p € HL (0, 1)}.
Prove that
1! 5
5) cb(p)—cb(m)zifo (p—p)? VpeKk.

[Hint: Let u € C}((0, 1)). Note that

I 12,2
Ujuu <2 Ui“u

v — U?

2 on (0, 1),

and deduce (using integration by parts) that

1 1 U’
/ W?-U* > —/ —L@w?-U?) vueHO 1.
0 o Ui
Then apply equation (4) to establish (5).]
9. Deduce that there exists exactly one nontrivial solution u of (4) such that u > 0

on [0, 1]. Denote it by Uj.
[Comment: There exist in general many sign-changing solutions of (4).]

10. Prove that there exist exactly two minimizers for (3): Uy and —U.

PROBLEM 51 (8)
Harmonic oscillator. Hermite polynomials.

Let p € C(R) be such that p > 0 on R. Consider the space
+o00
V:{veHl(R);f pv2<oo}
—00
equipped with the scalar product

+00
(u, v)y :/ 'V + uv + puv),
—0o0
and the corresponding norm |u|y = (u, u)%// 2,

1. Check that V is a separable Hilbert space.
2. Show that C2°(R) is dense in V.
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[Hint: Let ¢, be a sequence of cut-off functions as in the proof of Theorem 8.7.
Given u € V, consider ,u and then use convolution.]

Consider the bilinear form
+00
a(u,v) = / w'v' 4 puv, u,veV.
—0o0

In what follows we assume that there exist constants § > 0 and A > 0 such that

(1) p(x) > 8 Vx e R with x| > A.

3. Prove that a is coercive on V. Deduce that for every f € L*(R) there exists a
unique solution # € V of the problem

+00
2) a(u,v) = fv YveV.

—00
4. Assuming that f € L?>(R) N C(R), show that u satisfies

u € C*(R),
3 —u" 4+ pu=7f onR,

u(x) - 0 as|x| — oo.

5. Conversely, prove that any solution u of (3) belongs to V' and satisfies (2).

[Hint: Multiply the equation —u” + pu = f by ¢?u and use the fact that a is
coercive. ]

In what follows we assume that

“4) lim p(x) = 4o0.

|x]—o00

6. Given f € L*(R), set u = Tf, where u is the solution of (2). Prove that T :
L*(R) - L%(R) is self-adjoint and compact.

[Hint: Using Corollary 4.27 check that V c L?(R) with compact injection.]

7. Deduce that there exist a sequence (A,) of positive numbers with A, — oo as
n — oo, and a Hilbert basis (e,) of LZ(R) satisfying

e, € VNCR),

5
®) —e)l + pep = Ape, onR.

In what follows we take p(x) = x2.

8. Check that (5) admits a solution of the form e, (x) = e‘xz/ 2p,(x), where A, =
(2n 4 1) and P, (x) is a polynomial of degree n.
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Problem 1

5. Inview of Zorn’s lemma (Lemma 1.1) it suffices to check that F is inductive. Let
(Aj)ier be a totally ordered subset of F. Set A = [);.;A; and check that A is
nonempty, A is an extreme set of K, A € F, and A is an upper bound for (A;);e;.

6. Suppose not, that there are two distinct points a, b € M. By Hahn—-Banach
(Theorem 1.7) there exists some f € E* such that { f, a) # (f, b). Set

Ml = {X GMO; <f’x> = max(f,y}}.
yeEMy

Clearly M| € F and My < M. Since My is maximal, it follows that M| = M.
This is absurd, since the points a and b cannot both belong to M.

8. Let K be the closed convex hull of all the extreme points of K. Assume, by
contradiction, that there exists some point a € K such that a ¢ Kj. Then there
exists some hyperplane strictly separating {a} and K. Let f € E* be such that

(f,x) <(f,a) YxeKj.

Note that
B= {x € K; (f x) zmaX(f,y>}
yek

is an extreme set of K such that BN K| = @. But B contains at least one extreme
point of K; absurd.
9. (@) &={x=(x); |xi| = 1Vi},
(b) £ ={x = (x;); |x;| = 1Vi, and x; is stationary for large i },
(c) £E=90,
(d) € ={x = (x;);3j such that |x;| =1, and x; = 0 Vi # j},
() &€= {x=(x;); 2 |xi|P =1},
) £E=0.
To see that £ = @ in the case () let f € L' (R) be any function such that fR [fl=

1. By a translation we may always assume that fi)oo lfl = fooo | f| = 1/2. Then

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, 521
DOI 10.1007/978-0-387-70914-7, © Springer Science+Business Media, LLC 2011
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write f = (g + h)/2 with

2f on (—o00,0), 0 on (—o0,0),
g= and h =
0 on (0, +00), 2f on (0,+00).
Problem 2

Determine d¢(x) for the function ¢ defined by ¢(x) = —4/x for x > 0 and
¢(x) = +oo forx < 0.

-A-

4. (a) dp(x) = F(x),
(b) dp(x) = mF(x) if x # 0 and 3¢(0) = B+,

ifx € Int K,

(©) dpx) = .
outward normal cone at x  if x € Boundary of K,

dp(x) = KL if K is a linear subspace,
(d) 9p(x) = De(x) = differential of ¢ at x.
5. Study the following example: In E = R? (equipped with the Euclidean norm),

¢ =1Ic withC = {[x1,x2]; (x1 — D* +x5 < 1},

and
v =1Ip with D = {[x1, x2]; x; = 0}.

-B-

1. Let C = epi ¢. Apply Hahn—Banach (first geometric form) with A = Int C and
B = [x0, ¢(xp)]- Note that A # ¢ (why?). Hence there exist some f € E* and
some constants k and a such that || f|| 4 |k| # 0 and

(f;x) + ki = a = (f xo) + ke(xo) Vx € D(g), VA = ¢(x).

Check that £ > 0 and deduce that —% f € 9p(xp).

6. Note that inf g (¢ + ¥) = 0, and so there exists some g € E* such that ¢*(—g) +
¥*(g) = 0. Check that fy — g € dp(x), and that g € 9y (x); thus fy € dp(x) +
Ay (x).

-C-
1. For every R > 0 and every xo € E we have
ox) <k(xoll + R) + C = M(R) Vx € E with ||x — xg|| < R.

Thus {
=< R (kllxoll + kR + C — ¢(x0)) V[ € dp(xo).
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Letting R — oo we see that || f|| < k Vf € dp(x9) and consequently
o(x) — @(xg) > —k|lx —xoll Vx,x0 € E.
We have D(¢*) C kBg+. Indeed, if f € D(¢*), write
(fix) < () +¢"(f) <klxll + C + ¢*(f).
Choosing ||x|| = R, we obtain
RIfI <kR+C+¢*(f) YR>0

and the conclusion follows by letting R — oo.
2. Check, with the help of a basis of R", that every point xo € A satisfies assump-
tion (1).

-D-

The main difficulty is to show that if f € dlc(x) with ¢(x) = 0 and f # O,
then there exists some A > 0 such that f € Ad¢(x). Apply Hahn—Banach (first
geometric form) in £ x R to the convex sets A = Int(epi¢) and B = {[y, 0] €
E x R; (f,y — x) > 0} (check that A N B = ). Thus, there exist some g € E*
and some constant k such that ||g|| + |k| # 0 and

(g, y) +ku>(g,z) VIly,ul€epip, V[z,0]€ B.

It follows, in particular, that K > 0 and that

(8, y) +ko(y) = (g, x) VyekE.

In fact, k # 0 (since k = 0 would imply ¢ = 0). Thus —§ € d¢(x) (since
¢(x) = 0). Moreover, g # 0 (why?). Finally, we have (g, x) > (g, z) V[z,0] € B
and consequently (g, u) < 0Vu € E such that (f, u) > 0. It follows that g = 0
on the set £~ 1({0}). We conclude that there is a constant # < 0 such that g = 0 f
(see Lemma 3.2).

Problem 3
-A-

3. Either x € S(x,) Vn and then we have ¥ (x,4+1) < ¥ (x) + €,4+1 Vn. Passing to
the limit one obtains ¥ (a) < ¥ (x) and a fortiori ¥ (x) — ¥ (a) + d(x,a) > 0.
Or 3N such that x ¢ S(xy) and then x ¢ S(x,) Vn > N. It follows that

Y(x) — () +dx,x,) >0 Yn>N.

Passing to the limit also yields ¥ (x) — ¥ (a) +d(x,a) > 0.
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-B-

1. The set M equipped with the distance d(x, y) = A|jx — y|| is complete (since
is L.s.c.) and nonempty (xo € M). Note that ¢ > 0. By the result of part A there
exists some x| € M such that

Yx) —Y(x) +Alx —x1| >0 Vxe M.

If x ¢ M we have ¥ (x) > ¥ (xg) — Allxo — x| (by definition of M), while
Y (x0) — Allxo — x|l = ¥(x1) — Allx — x1|| (since x; € M).
Combining the two cases, we see that

) — Y x) +Alx—x1| >0 VxeE.

On the other hand, since x| € M, we have ¥ (x1) < ¥ (x0) — Allxo — x1]|. But
¥(xp) < e and ¥ (x1) > 0. Consequently ||xg — x1]| < &/A.

2. Consider the functions w(x) = ¥ (x) — ¥(x1) and 6(x) = Al|lx — x1]|, so that
0 € d(w + 0)(x1). We know that d(w + 68) = dw + 96 and that 96 (x1) = ABg~.
It follows that 0 € dp(x1) — f + ABEg+.

3. Let us check that D(¢) C D(3d¢). Given any xo € D(¢), we know, from the
previous questions, thatVe > 0,VA > 0,3x; € D(d¢) suchthat ||x; —xp| < &/A.
Clearly R(d¢p) C D(¢*). Conversely, let us check that D(¢*) C R(d¢). Given
any fo € D(¢*) we know that Ve > 0, 3xg € D(¢) such that fo € d.¢(xp), and
thus VA > 0, 3f] € R(d¢) such that || f1 — foll < A.

-C-

1. Let fo € E*. Since (Ic)*(fo) < oo, we know that Ve > 0, Ixg € C such
that fo € 0.1c(xp). It follows that VA > 0, 3x; € C,3f1 € dlc(x1) with
Il fi = foll < A. Clearly we have sup, . (f1, x) = (f1, x1).

2. Let xp be a boundary point of C. Then Ve > 0,3da € E,a ¢ C, such that
lla — xoll < e. Separating C and {a} by a closed hyperplane we obtain some
fo € E* such that fy # 0 and (fp,x —a) < 0 Vx € C. Of course, we may
assume that || fo|| = 1. Thus, we have ( fo, x —xp) < ¢ Vx € C and consequently
fo € 8:1c(xo). Applying the result of part B with A = /¢ we find some x; € C
and some f| € dI¢(x1) such that ||x; — xo|| < 4/€ and || f1 — foll < /€. Since
f1 # 0 (provided ¢ < 1), we see that there exists a supporting hyperplane to C
at xj.

Problem 4

2. Argue by induction and apply question 7 of Exercise 1.23.
3. Note that x = %[(x + ¥) 4+ (x — y)], and so by convexity,

1 1
Yn(x) < [Elﬁn(x + )+ Yn(x — y)} = 5 lenbr+3) +¥nlx =y Va.y.
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Thus ¥, (x) < Yn+1(x). We have ¢, | 6, ¥ 1 6 and @1 = S(n + ¥n).
Therefore 6 = 6.

4. The sequence (¢;;) is nondecreasing and converges to a limit, denoted by w.
Since 6 < ¢, it follows that ¢; < 6* and w < 6*. On the other hand, we have
(fix)—on(x) = @j(f) Vx € E,Vf € E*.Thus (f, x) —6(x) < o(f) Vx € E,
Vf € E*, thatis, 6* < w. We conclude that w = 6*.

5. Applying question 1 of Exercise 1.23, we see that ¢ | = %((p; + ¢)). The
sequence (v,;) is nonincreasing and thus it converges to a limit ¢ such that ¢ =
%(9* + ¢). It follows that { = 6* (since ¢ < o0).

-B-
From the convexity and the homogeneity of ¢ we obtain
(x+y) tx+(1 1) 4
X = — —1)—
v =\ 1—1
<ip(5) + 0 -np () = Tom) + o)
- — — | = —px)+ — .
=\ P\T=7) T T Y

In order to establish (1) choose x = %(X +Y)and y = %(X —-Y).

2. Using (1) we find that Vx, y € E, Vt € (0, 1),

1
E{wn(x) + Y (x)}

1(1 1

< — J— S — —
_2{4t¢n(x4ry)+4(1_t)<pn(x y)
1

4(1—1)

Ont1(x)

1
+ ZWn(x‘i‘y)'F %(X—y)}-

Applying A1l and the induction assumption we have Vx, y € E and Vvt € (0, 1),

1(2 1 C
Ynt1(x) < 7 {Z%H(x-i-Y)ﬂL 300 (2+ 4—,1) Y (x —Y)}-

Choosing ¢ such that % = 4(1]—_0(2—# 4%), thatis,t = 1/2(1+ 4,,%), we conclude
that

1 C
Pny1(X) = 5 <1 + W) lon(x +y) +¥nx —y)} Vx,y€E.

It follows that ¢, 11(x) < 5(1+ 757)¥ar1(x) Vx € E.
3. Withx # yandt € (0, 1) write
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1
Otx+ (1 —0)y) <0,x+A—-0y)+ 27‘/’0(’x + ({1 =0y

1
= 10, (X) + (1 = D0 (¥) + S7900x + (1 = 1)y)
=10(x) + (1 = 0o (y)

1
+ Z—n[wo(tx + (1 =10)y) —tepo(x) — (1 = t)po(y)

C
+ 5 teotr) + (1 = t)wo(y))}
<t0(x) + (1 —1)0(y),

for n large enough, since ¢y is strictly convex.
-C-

Take ¢o(x) = %|x[1? and Yo(x) = Sa?||x[3, with & > 0 sufficiently small. The
norm || || is defined through the relation 0 (x) = %||x||2.

Problem 5
-B-

1. It suffices to prove that there is a constant ¢ > 0 such that B(0, ¢) C K. By (iii)
we have | J02, (nK) = E and thus | Ji2, (nK) = E. Applying Baire’s theorem,
one sees that Int(K) # #, and hence there exist some yp € E and a constant
¢ > 0 such that B(yy, 4c) C K. Since K is convex and symmetric it follows that
B(0,2¢) C K.

We claim that B(0,c) C K. Fix x € E with ||x|| < c. There exist y;,z1 € P
such that ||y || < 1/2, |lz1]l < 1/2 and ||x — (y1 — z1)|l < ¢/2. Next, there exist
¥2,22 € P such that [|y2|| < 1/4, ||lz2]| < 1/4, and

lx =1 —2z0) = 2 —22)ll <c/4

Iterating this construction, one obtains sequences (y,) and (z,) in P such that
lynll <1/2% llzall < 1/2", and

x=Y (i—z)
i=1

Then write x = y —z withy = > "2 y; andz = ) 72,21, so that x € K.

2. Write x, = y, — z, With y,, 2z, € P, |lysll < C/2", and |z,|| < C/2". Then
1 < f(xn) < fQn). Setu, = Y yiand u = Y 72, y;. On the one hand,
f(un) > n, and on the other hand, f(u — u,) > 0. It follows that f(u) > n Vn;
absurd.

3. Consider a complement of F' (see Section 2.4).

<c/2".
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-C-

(a) One has F = P — P = E; one can also check (i) directly: if f > 0 on P, then
|f )] < llulloo f(1) Yu € E.

(b) Here F = {u € E; u(0) = u(1) = 0} is a closed subspace of finite codimension.

(c) One has F = E. Indeed, if u € E there is a constant ¢ > 0 such that |u(z)| <
ct(1 —1t) Vt € [0, 1] and one can write ¥ = v — w with w = ct(1 — t) and
v=u-+ct(l —1).

Problem 7
-A-

2. Fix x € M with ||x|| < 1. Let ¢ > 0. Since dist(x, N) < a, there exists some
y € N such that ||x — y|| < a+ ¢, and thus ||y|| < 1 4+ a + €. On the other hand,
dist(m, L) < bandsodist(y, L) < b(||ly|l + &) < b(1 +a + 2¢). It follows
that dist(x, L) <a+ e+ b(1 +a+ 2¢) Ve > 0.

-B-

In order to construct an example such that A* + B* # (A + B)* it suffices to
consider any unbounded operator A : D(A) C E — F that is densely defined,
closed, and such that D(A) # E. Then take B = —A. We have (A 4+ B)* = 0 with
D((A + B)*) = F*, while A* + B* = 0 with D(A* + B*) = D(A*). [Note that
D(A*) # F*; why?].

3. A+ B is closed; indeed, let (u,) be a sequence in E such that u, — u in E and
(A 4+ B)u, — f in F. Note that

|Bu|| < k||Au 4+ Bul|| + k||Bu|| + Cllull VYu € D(A)

and thus

C
k||u|| Yu € D(A).

k
Bul| < ——||A B
|Bull < —— 1 Au + Bull + —

It follows that (Bu,) is a Cauchy sequence. Let Bu,, — g, and so u € D(B)
with Bu = g. On the other hand, Au,, — f — Bu, and so u € D(A) with
Au + Bu = f. Clearly one has

pP(A,A+B)=  sup inf {flu — vl + [[Au — (Av + Bv)|]}
ueD(A) veD(A)
llull+llAull<1
< sup |Bul|<k+C.
ueD(A)
llull+llAull<1

4. The same argument shows that under assumption (H*), one has

p(A*, A* + B*) < k* + C”.
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ere are some minor changes, since the dual norm on X is given
Th h. the dual E* x F* b

ILfs glllExsc e = max{|| flle+, llgll£+}-]
5. Lett € [0, 1]. For every u € D(A) one has

[Bull < kl|Aull + Cllull < k(I|Au + 1Bu|| + || Bull) + Clul],

and thus

k
1Bull = 7 lAu+1Bull + lJue]].

1—k
Fix any ¢ > 0 such that 1/& = n is an integer, 8({‘+kc) < %, and % < %
Set Ay = A+ ¢B, so that A] = A* + ¢ B* and, moreover,

k
Bu| < ——||A Yu € D(A),
|Bull < s Il + ;= llul Vu € D(A)
and also
* C*
| B*v] < - IIATv|I+1_—k*||v|| Yv € D(A).

It follows that (A} + e B)* = A} +eB*, i.e., (A +2eB)* = A* + 2¢B*, and so
on, step by step with A; = A+ jeBand j <n — 1.

Problem 8

1. Let 7 be the topology corresponding to the metric d. Since Bg+ equipped with
the topology o (E, E*) is compact, it suffices to check that the canonical injection
(Bg*,0(E*, E)) — (Bg*,T) is continuous. This amounts to proving that for
every fo € Bg+ and for every & > 0 there exists a neighborhood V (f?) of f° for
o (E*, E) such that

V()N Bg C(f € Be1d(f. f°) < &)
Let (¢') be the canonical basis of £!. Choose
V(O ={feE5If—fOe) <8Vi=1,2,...,n}

with § + (1/2"7 1) < e.

2. Note that (Bg+, d) is a complete metric space (since it is compact). The sets Fy
are closed for the topology 7, and, moreover, U,fozl Fy = Bgx (since (f, x") — 0
for every f € E*). Baire’s theorem says that there exists some integer ko such
that Int(Fy,) # 9.

3. Write 0 = (f]O, fzo, cee fio, ...) and consider the elements f € Bg+ of the
form

F= R Y L £ £ L),
so that
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o]

2
dif. fh= 3, 5 <e

i=N+1

Such f’s belong to Fy, and one has, for every n > ko,

00 N 00
Zﬁx? Zfioxin + Z (£x1)
i=1

i=1 i=N+1

|(f. x")] =

<e.

It follows that

00 N N
n 0 n n
S e+ Y I <e+ ) ¥,
i=1 i=1

i=N+1

and thus
o0

N
Dl <e+2) x| Vn=ko.

i=1 i=1

4. The conclusion is clear, since for each fixed i the sequence xlf“ tends to O as
n — oo.
5. Given ¢ > 0, set

Fr ={f € B~ |[{f,x" —x™)| <eVm,n > k}.

By the same method as above one finds integers ko and N such that

N
Ix" = x™ <& +2> |xf —x"| Vm.n > k.

i=1

It follows that (x") is a Cauchy sequence in £!.
6. See Exercises 4.18 and 4.19.

Problem 9
-A-

1. A is open for the strong topology (since it is open for the topology o (E*, E)).
Thus (by Hahn—Banach applied in E*) there exist some & € E**, £ # 0, and a
constant « such that

(6.f)=a=(.¢g VfeA VgeB.

Fix fo € A and a neighborhood V of 0 for the topology o (E*, E) such that
fo+V C A. We may always assume that V is symmetric; otherwise, consider
V N (—V). We have (§, fo + g) < o Vg € V, and hence there exists a constant
C such that [(£, g)| < C Vg € V. Therefore & : E* — R is continuous for the



530 Partial Solutions of the Problems

topology o (E™, E). In view of Proposition 3.14 there exists some x € E such
that (¢, f) = (f,x) Vf € E*.

2. See the solution of Exercise 3.7.

3. Let V be an open set for the topology o (E™*, E) that is convex, and such that
0Oe Vand VN (A — B) = @. Separating V and (A — B), we find some x € E,
x # 0, and a constant « such that

(fix)<a<(g—hx) YfeV,VgeA, YheB.

Since V is also a neighborhood of 0 for the strong topology, there exists some
r > Osuchthatr Bgx C V.Thusa > r|x|| > 0, which leads to a strict separation
of A and B.

4. Let f, g € A7 and let V be a convex neighborhood of 0 for o (E*, E). Then
(f+V)NA#Pand(g+V)NA AP Thus tf+(1—t)g+V)NAF£D
vt € [0, 1].

(E*.E)

-B-

1. If E is reflexive, then NG(E*’E) = N = the closure of N for the strong topology,

since o (E*, E) = o (E*, E**) and N is convex. Let E = ¢!, so that E* = £°°;
taking N = ¢o we have N+ = {0} and N1+ = ¢,

2. Foreveryx € E,seto(x) = supfeE*{(f,x)—tp(f)}.Thengo : E — (—00, +00]
is convex and L.s.c. In order to show that ¢ # 400 and that ¢* = 1, one may
follow the same arguments as in Proposition 1.10 and Theorem 1.11, except that
here one uses question A3 instead of the usual Hahn—Banach theorem.

3. (i) One knows (Corollary 2.18) that N(A) = R(A*)* and thus N(A)t =
R(ANL = RA"EE) 1t E is reflexive, then N(A)L = R(A*).

(ii) Argue as in the proof of Theorem 3.24 and apply question A3.

4. Suppose, by contradiction, that there exists some & € Bpw~ such that £& ¢
J@G(E**'E*). Applying question A3 in E**, we may find some f € E* and a
constant « such that

(fix) <a< (&, f) VxeBg.

Thus || fIl <« < (&, f) = || fIl; absurd.
5. Assume, by contradiction, that there exists some ug € E with |ug|| < 1 and

Aug ¢ conv A(SE)G(E 'E). Applying question A3, we may find some xo € E and
a constant « such that

(Au, xo) < a < (Aug, x0) Yu € Sg;
thus (Au — Aug, x9) < 0 Vu € Sg. On the other hand, there is some ¢ > 0 such

that [lup + x|l = 1, and by monotonicity, we have (A (ug+1x9) — Aug, xo) > 0;
absurd.
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Problem 10
A -

1. Bg+ is compact and metrizable for the topology o (E*, E) (see Theorem 3.28). It

follows, by a standard result in point-set topology, that there exists a subset in Bg»
that is countable and dense for o (E*, E). Let T denote the topology associated
to the metric d. It is easy to see that the canonical injection i: (Bg, o (E, E*)) —
(Bg,T) is continuous (see part (b) in the proof of Theorem 3.28). [Note that
in general, i —1 is not continuous; otherwise, Bg would be metrizable for the
topology o (E, E*) and E* would be separable (see Exercise 3.24). However,
there are examples in which E is separable and E* is not, for instance E = L' ()
and E* = L*°().]
Since B is compact for o (E, E*), it follows (by Corollary 2.4) that B is bounded.
Thus B is a compact (metric) space for the topology 7 and, moreover, the topolo-
gies o (E, E*) and T coincide on B.

2. Consider the closed linear space spanned by the x,,’s.

-B-
For each i choose a; € Bf such that (g;, a;) > 3/4.
-C-

4. For each n € E** set h(n) = sup;~(n, fi); the function » : E** — R is
continuous for the strong topology on E**, since we have [h(n1) — h(no)| <
I —m2ll Vou, m2 € E**.

5. A subsequence of the sequence (x,) converges to x for o (E, E*) (by assump-
tion (Q) and we have (&, f;) = (fi, x) Vi > 1.

On the other hand, x belongs to the closure of [x1, x2, ..., Xk, . . . ] for the topology
o (E, E*) and thus also for the strong topology (by Theorem 3.7). In particular,
x € M and consequently &€ — x € M. It follows that £ = x since

0 =sup(§ —x, fi) = 5 IE—XII

i>1

-D-

1. A is bounded by assumption (Q) and Corollary 2.4. It follows that ZO(E"’E*) is
compact for the topology o (E**, E*) by Theorem 3.16. But the result of part C
shows that B = A°F "E” or more precisely that J(B) = J(A)O(E £,
Consequently J(B) is compact for the topology o (E**, E*). Since the map
J~1: J(E) = E is continuous from o (E**, E*) to o (E, E*), it follows that B
is compact for o (E, E*).

2. Already established in question C4.
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Problem 11
-A-

2. Separating {0} and C; we find some x| € E and a constant « such that 0 < « <
(f,x1) Vf € C1. If needed, replace x; by a multiple of x;.

3. One has to find a finite subset A C E such that A C (1/d;)Bg and Y4 = (. We
first claim that (1), crYa =0, where F denotes the family of all finite subsets A
in (1/d,) Bg. Assume, by contradiction, that f € [ AcrYa; we have

(f,x1) <1 and (f,x) <1 Vx e (1/d1)BE.

Thus || f]| < dj and so f € Cy; it follows that ( f, x1) > 1; absurd.
By compactness there is a finite sequence A}, A), .. ., A’j such that ﬂijzl Yy =0
SetA'=AjUA,,---U A/j. It is easy to check that Y, = .

4. For every finite subset A in (1/dx—1) BE consider the set

k—1
Yi = {feCk;sup{(f,x);xe (UA,)UA} < 1}.
i=1

One proves, as in question 3, that there is some A such that Y4 = @.
5. Write the set U,fil Ay as a sequence (x;) that tends to 0.

-B-
1. Applying Hahn—Banach in ¢y, there exist some 6 € (= (cp)*; see Chapter 11)
with 6 # 0, and a constant « such that
(0,6) =a=(0,T(f)) VEecowith|§]l <1, VfeC.
It follows that
0<lfllg <a <D 0,(fixn) VfeC.
Letting x = ) 6,x,, we obtain
(fix)y>a>0 VfeC.

If needed, replace x by a multiple of x and conclude.

2. Fix any fo ¢ C; set C=cC- fo- Then 0 ¢ C and for each integer n the
set C N (nBg») is closed for o (E*, E). Hence, there is some x € E such that
(fox)>1VfeC.ThesetV ={f € E*; (f — fo,x) < 1} is a neighborhood
of foforo(E*,E)and VNC = 0.
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Problem 12
-A -
2. Apply the results of questions 1, 7, and 4 in Exercise 1.23 to the functions ¢*
and y*.
3. We have 6™ = (¢ + v)*. Following the same argument as in the proof of

Theorem 1.11, it is easy to see that epi 6** = epi 6 (warning: in general, 8 need
not be 1.s.c.).

Therefore we obtain D(8**) C D(9), i.e., D((¢ + ¥)*) C D(¢*) + D).

-B-

1. It suffices to check that for every fixed x € E the set (M, x) is bounded. In fact,
it suffices to check that (M, x) is bounded below (choose £x). Given x € E,
x # 0, write x = A(a — b) with A > 0, a € D(¢), and b € D(y/). We have

(f —g.a) <) +¢*(f —8),
(g&.b) <)+ (g),

and thus

(s ;) < —(f.a) + @ +¥®B) +a Vge M.

Consequently (M, x) > C, where C depends only on x, f, and «.

2. Use the same method as above.

3. Leta e Rbefixed and let ( f;,) beasequencein E* suchthatf( f,) <wand f,, — f.
Thus, there is a sequence (g,,) in E* such that * (f,, — g,) +v¥*(gn) < a4+ (1/n).
Consequently, (g,) is bounded and we may assume that g,, — g for o (E™, E).
Since ¢* and ¥* are L.s.c. for o (E*, E), it follows that ¢*(f — g) + ¥*(g) < «,
andso 6(f) < «.

4. (i) We have 6 = 6™ = (p + ¥)*.

(ii) Write that (¢ + ¥)*(0) = (¢*V¥*)(0) and note that
inf {p*(—g) +¥"(g)}
geE*

is achieved by the result of question B1.

(iii) This is a direct consequence of (i).

Remark. Assumption (H) holds if there is some xg € D(¢) N D(¥) such that ¢ is
continuous at xg.

Problem 13
-A -

1. By question 5 of Exercise 1.25 we know that
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1
lim — ( A 2 2) = (Fx,y).
Lim, o lx + Ay[l* — llx]] (Fx,y)

A>0

If X < Oset u = —AX and write

o= (1 a0 = 11?) = =5 (e I = ).

1
2
2. Lett, — Obesuch that (F(x +1t,y), y) — £. We have
1
5 (I 2912 = Il 4 00312) = (Fx 4+ 13 (= 1)):

Passing to the limit (with A € R fixed) we obtain % (||x +ay)? — ||x||2) > AL
Dividing by A (distinguish the cases A > 0 and A < 0) and letting A — 0 leads
to (Fx, y) = £. The uniqueness of the limit allows us to conclude that

tlgl(l)(F(x +1y),y) = (Fx,y)

(check the details).
3. Recall that F' is monotone by question 4 of Exercise 1.1.

Alternative proof. It suffices to show thatif x, — x then Fx, — Fxforo(E™*, E).
Assume x, — x. If E is reflexive or separable there is a subsequence such that
Fx,, — f for o(E*, E). Recall that (Fx,, x,) = Ix:11% and || Fx, || = [|xnll.
Passing to the limit we obtain (f, x) = |x||?> and || f|| < |lx||. Thus f = Fx;
the uniqueness of the limit allows us to conclude that Fx,, — Fx for o (E*, E)
(check the details).

-B-

1. If x, — x,then Fx, — Fx foro(E*, E) and | Fx,|| = ||lx.|| — |lx|| = || Fx].
It follows from Proposition 3.32 that Fx, — Fx.

2. Assume, by contradiction, that there are two sequences (x,), and (y,) such that
[xall < M, ||ynll < M, ||xp — yull = 0, and || Fx,, — Fy,|| > ¢ > 0. Passing to
a subsequence we may assume that ||x,|| — £, and ||y,|| — £ with ¢ < 2¢, so
that £ # 0. Set a, = xu/|lxnll and by = yn/llynll. We have [|an|l = [[bn]l = 1,
llaw — bull — 0, and ||Fa, — Fb,|| > ¢ > 0 for n large enough. Since E* is
uniformly convex there exists § > 0 such that

<1-6.

Fa, + Fb,
2

On the other hand, the inequality of question A4 leads to
2 < ||Fan + Fbull + llan — ball;

this is impossible.
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3. We have
(x) — @(x0) = (Fxo, x — x0)

and
@(x0) —@(x) = (Fx,x0 — x).

It follows that
0 < ¢(x) — @(x0) — (Fxo, x —x0) < (Fx — Fxo, x — x0)
and therefore
lp(x) — @(x0) — (Fxo,x —x0)| < |Fx — Fxoll llx — xo.
The conclusion is derived easily with the help of question B1.
-C-
Write

Il f+gll= sup (f +g, x)
5
= sug ({fix+y)+{g.x—y)+{g.x—y)—(f—g )}
<1

IA

1 1
Enfn2 + 5||g||2 —(f —g y)+ sup {p(x +y) +px — )}

xeE
lxl<t
From the computation in question B3 we see that for every x, y € E,
lpx +3) =) = (Fx, y)| = [F(x +y) = FC)Il Iyl

and
lp(x —y) —x) + (Fx, y)| < |1F(x —y) — F)| Iyl

It follows that for every x, y € E,
px+y)+ox —y) =2000) + IyIUIIF(x+y) = FOOI+ [1F(x —y) = F(x) D).

Therefore, if || f|| < 1 and ||g|| < 1, we obtain for every y € E,

If+el =2=(f =g y)+lyll sup {[F(x+y) = FO)l+[[F(x—y) = FI}.

xeE
llxl<1

Fix ¢ > 0 and assume that || f — g|| > ¢. Since F is uniformly continuous, there
exists some « > 0 such that for ||y|| < o we have

sup {[|F(x +y) = FOO)I + [F(x —y) = F(x)[I} < ¢/2.

xeE
llxlI<1
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On the other hand, there exists some yg € E, yo # 0, such that {( f — g, yo) > ¢|lyoll,
and we may assume that || yp|| = o. We conclude that

£ €
If +ell =2 =ellyoll + ZlIyoll =2 = Ze.

Problem 14
-A -

2. Assume that x, — x in E and set f, = Sx,, sothatVf € E*,

1 1
(S1) znfnn2 + @*(fn) = {fus Xn) < Eufu2 + @*(f) = (f> xn).

It follows that the sequence ( f;,) is bounded (why?) and thus there is a subsequence

such that f,, X gforo (E*, E).Passing to the limit in (S1) (note that the function
f— %||f||2 + ¢*(f) is Ls.c. for o (E*, E)), we find that

1 1
zngn2 +¢*(g) — (g, x) < Enfn2 +@*(f) — (f,x) YfeE*

(one uses also Proposition 3.13). Thus g = Sx; the uniqueness of the limit implies

that f, X osx (check the details). Returning to (S1) and choosing f = Sx, we
obtain lim sup|| f,,[|> < [|Sx||>. We conclude with the help of Proposition 3.32
that f, — Sx.

-B-

1. The convexity of ¥ follows from question 7 of Exercise 1.23. Equality (i) is
a consequence of Theorem 1.12, and equality (ii) follows from question 1 of
Exercise 1.24.

2. We have

(Sx,y) =¥ () + ¥ (Sx) =¥ () + (Sx, x) — ¥ (%)

and thus
0<y¥@y) —vyvx)—(Sx,y—x) Vx,yeE.

Changing x into y and y into x, we obtain
0=y =¥ —(Sy,x—y) Vx,y€E.
We conclude that

0=y —v¥&) —(Sx,y —x) < (Sy —Sx,y —x).
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Problem 15
-A-
2. Note that ¢ (x) > ||x|| — |la]| with a € A being fixed and thus ¥ (x) — 400 as

[lx|| = oo; therefore ¢ exists. In order to establish the uniqueness it suffices to
check that

s fc1+c2
(%5

1 1
) < E(PZ(CI) + 5(/72(62) Vey, 2 € E with ¢; # ca.

Let ci,cp € E with ¢; # ¢3. Fix some 0 < ¢ < ||c; — ¢2||. In view of Exer-
cise 3.29, and because A is bounded, there exists some § > 0 such that

(c1=y)+(c2—y)
2

1 1
H < 5 llen —yI*+ Slle2 —ylI*?=8 VyeA,

since [[(c1 — y) — (c2 — y)|I > . Taking sup, . 4 leads to

s fc1+c2
(%5

@ (C + —@(C (S.
= 2 1 2 2

3. We know that ¢(0(A)) < ¢(x) Vx € C, x # o(A). If A is not reduced to a
single point there exists some xg € A, xo # o (A), and we have

¢(0(A)) < ¢(x0) = sup [lxo — y|l < diam A.

yeA
-B-

1. Note that the sequence (¢, (x)) is nonincreasing.
3. We have

0(0) < plop) < gnlon) < ep(x) Vx eC.

Taking x = o, we find that all the limits are equal. It is easy to see that the sequence
(on) is bounded, and thus for a subsequence, 0,, — & weakly o (E, E*). Hence
we have

() < liminf @(o,,) < @(x) Vx eC.

It follows that ¢ () = inf¢ ¢ and, by uniqueness, 6 = o. The uniqueness of the
limit implies that o, — o (check the details).

4. Assume, by contradiction, that there exist some ¢ > 0 and a subsequence (oy, )
such that ||o;,, — o|| > & Vk. Using once more Exercise 3.29 we obtain some
& > 0 such that

2 1 1 2 1 2
om | 50n +0)) = J0n,0n) + S0n,(0) =6 Vk.

and since ¢ < @,,, we deduce that
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N —

21 l2 l2
0 (5n +0)) = Jon,0n) + 505,(0) =5 Vk.

This leads to a contradiction, since ¢ is l.s.c.
Note that ¢(x) = ||x — a|| and thus o = a.
Write
lx—an* =Ix —a+a—ay* =Ix—al’ +2(x —a.a —ay) +la — a|,

and thus

@2 (x) =limsup |x — an|* = |x — al® + limsup |a, — a|*> = |x — al® + ¢*(a).
n—0oo n—oo

It follows that o = a.

-C-

. Wehave ||a,+1 —Tx| < |la, —x|| Vn,Vx € C, and therefore ¢, +1(Tx) < ¢, (x)

Vx € C. Passing to the limit leads to ¢(Tx) < ¢(x) Vx € C. In particular
¢(To) <g¢(o)andthus To =o.
Letx, y € C be fixed points of T; set z = tx + (1 —t)y with ¢ € [0, 1]. We have

Tz —xll = =0lly—x| and [Tz —y| <tlly — x|

and therefore || Tz —x|| = (1 —=t)||ly —x||, ITz—y|| = t|ly — x||. The conclusion
follows from the fact that E is strictly convex. (Recall that uniform convexity
implies strict convexity; see Exercise 3.31).
Problem 16
-A-

. We have (Au — f,u) > 0 Vu € D(A) and using (P) we see that f = A0 = 0.
. Let (u,) be a sequence in D(A) such that u, — x in E and Au,, — f in E*.

We have (Au — Au,,u — u,) > 0 Vu € D(A). Passing to the limit we obtain
(Au — f,u — x) > 0 Yu € D(A). From (P) we deduce that x € D(A) and
Ax = f.

It is easy to check that if € (0, 1), the convexity inequality

(A(tu + (1 = t)v), tu + (1 — )v) < t{Au,u) + (1 —t)(Av, v)
is equivalent to (Au — Av, u — v) > 0.

Letu € N(A); we have (Av,v —u) > 0, Yv € D(A). Replacing v by v, we
see that (Av, u) = 0 Vv € D(A); thatis, u € R(A)™.

-B-

. Note that (A*v, v) = (Av, v) Yo € D(A) N D(A*).



Partial Solutions of the Problems 539

2.

The first claim is a direct consequence of (P) and the assumption that v ¢ D(A).
Choosing f = —A*v, we have some u € D(A) such that (Au + A*v,u —v) <0
and consequently (A*v, v) > (Au, u) > 0.

. Applying question A4 to A* (this is permissible since A* is monotone), we see

that N(A*) C N(A*™) = N(A); therefore N(A) = N(A*). We always have
R(A) = N(A*)" (see Corollary 2.18), and since E is reflexive, we also have
R(A*) = N(A)*.

-C-

. The map u € D(A) — [u, Au] is an isometry from D(A), equipped with the

graph norm, onto G (A), which is a closed subspace of £ x E*.

. Note that

(Au— fou—x) = =[|Aull [lxIl = A1 lull 4 (f, x).

. Using the properties below (see Problem 13)

lim Zit(nx +1yl* — x| = (Fx.y)  Vx,y€E,
}Lr%%(llf +egl? =1 =g, F~'f) V[ g€E",
we find that for all v € D(A),
(Av, F_l(Auo — )+ (F(ugp — x), v) + (Aug — f,v) + (Av,ug — x) = 0.
It follows that F~!'(Aug — f) + ug — x € D(A*) and
S A*[F'(Aug — f) +uo — x] + (Aug — f) + F(ug — x) = 0.

Letx € E and f € E* be such that (Au — f,u —x) > 0 Yu € D(A). One has to
prove that x € D(A) and Ax = f. We know that there exists some ug € D(A)
satisfying (S1). Applying (M*) leads to

(Aug — f + Fuo — x), F~'(Aug — f) +ug — x) <0,
that is,
Il Auo— f£II* + lluo — x|I* + (Ao — f, uo —x) +(F (o —x), F~' (Aug— f)) < 0.
It follows that
lAuo — f1% + luwo — xII* < lluo — x| | Aug — £1I;

therefore ug = x and Aug = f.

. Apply to the operator A* the implication (M*) = (P).



540 Partial Solutions of the Problems

Problem 18

2. [G(a) = G(b) —g(b)(a — D) =0] & [g(a) = g(b)].

3. Passing to a subsequence we may assume that a,, — a (possibly +00). We have
f; (g(t)—g(b))dt = 0and therefore g(a) = g(b). It follows that g(a,,) — g(b).

4. Note that

05/IG(un)—G(M)—g(M)(Mn—u)I = /G(un)—/G(u)—/g(u)(un—u)

and use assumption (ii). Then apply Theorem 4.9.

5. Since g(u,) is bounded in LY (why?), we deduce (see Exercise 4.16) that
g(uyn,) — g(u) strongly in L? for every ¢ € [1, p’). The uniqueness of the
limit implies that g(u;,) — g(u).

6. If g is increasing then u,, — u a.e., and using once more Exercise 4.16 we see
that u,, — u strongly in LY for every g € [1, p).

7 and 9. Applying question 4 and Theorem 4.9, we know that there exists some
function f € L' such that

ShH |G (uny) — G(u) — g)(un, —w)| < f Vk.

From (S1) and (3) we deduce that |u,, |? < f for some other function f e L.
The conclusion follows by dominated convergence.
8. T don’t know.

Problem 19

4. Note that the set K = {u € L2R);u > 0 ae.} is a closed convex subset of
L*(R). Thus, it is also closed for the weak L? topology. It remains to check that
u € L'(R) and that fR u < 1. Let A C R be any measurable set with finite
measure. We have [, u, — [, usince x4 € L?(R) and thus [, u < 1.1t follows
thatu € L'(R) and that [ u < 1. Next, write

'/—(un—u) / V n—u
| |x\>M] |x|°‘ [x|<M] |x|°‘

< ——(uy —u)|.
M“ ‘/x|<M]|x| tn

For each fixed M the last integral tends to O as n — oo (since u,, — u weakly in
L2(R)). We deduce that

lim sup
n—o0

2
<— VM >0.
MO(

1
/_(”n_”) =
x|«

5. Write
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1 1 1
u(x)dx =/ u(x)dx +/ —u(x)dx
./ x| [x|>1] X1 [xl<1] 1X1¢

5/u(x)dx+C||u||2§ 1+ Clull, VYu € K.

8. E is not reflexive. Assume, by contradiction, that E is reflexive and consider the
sequence U, = X[u,n+1]- Since (u,) is bounded in E, there is a subsequence u,,
suchthatu,, — u weakly o (E, E*).Inparticular, [ fu,, — [ fuVf € L*(R)
and therefore [ fu = 0 for every f € L*°(R) with compact support. It follows
that # = 0 a.e. On the other hand, if we choose f = 1 we see that fu =1;
absurd.

Problem 20
-A -

2. Note that

fﬁ(x) - <1 — l) x*2+(1/P)[(1 _ xl/P)P*2 | _i_xl/P)P*Z] <0.
p

-B-

1. Replacing x by f(x) and y by g(x) in (1) and integrating over 2, we obtain
I1f+llp+11F =gl < 2/(|f(x)|P’ +1g(x)|17)P7

On the other hand, letting u(x) = |f(x)|1’/ and v(x) = |g(x)|p/ and using the
fact that p/p’ > 1, we obtain

/(u + v)p/p = lu+ U”ﬁ;];/ = (“u”p/p’ + ”U”p/p/)p/p

=(IfI5 +lglh)Hr/?.

Applying (2) with x = || f]|, and y = [|g , leads to (5).
-C-
1. Method (1). By Holder’s inequality we have
/Wﬂ +oy < lulpllelly + lvllplyly
< (ully + I Y7 A2, + 1157

Moreover, equality holds when ¢ = |u|p_2u||u||% and ¥ = |v|P_2v||v||‘;‘, with
a = p’ — p. Applying the above inequality tou = f +gandv = f — g, we
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obtain

) e flo+v¥)+glp—1)
(1 +el” + _ o|PHY/P — f
I sle =07 =8lp 5= S el + v

Using Holder’s inequality we obtain

_/f(ﬁo +V)+gle—v) =flple+ iy +lglplle — iy
< (£ + 11D Ul + 917 + g — wI2)7"

On the other hand, inequality (4) applied with p’ in place of p says that

lo + vl + lle — vIi%, < 2(lgl% + 1w 15)777,
and (6) follows.
Method (ii). Applying (1) with x — f(x), y — g(x) and p — p’, we obtain

1F )+ @I +17(x) = g7 <207 WP + g7 7P
and thus
(1) + g7 +1f(x) = g)IP)P/P <277 (| f0)IP + g ()17,

Integrating over €2, we obtain, with the notation of Exercise 4.11,

[f +8l” +1f =gl Loy < 231115 + lglip” /7.

The conclusion follows from the fact that [u + v],,,» > [u],/p + [v],/, (since
p/p' < D.

Problem 21
-A -

1. Use monotone convergence to prove that «(t + 0) = a(¢). Note that if f = x,
with w C Q2 measurable, then a(1 — 0) = |w|, while ¢ (1) = 0.

2. Givent > 0,letw, = [|ful > t], @ = [|f| > ], Xn = Xw,» and X = Xe- It
is easy to check that x (x) < lim inf x,(x) for a.e. x € 2 (distinguish the cases
x € wand x ¢ w). Applying Fatou’s lemma, we see that

a(r) =f X Sliminf/ Xn = liminf o, (2).
Q Q

On the other hand, let § € (0, ¢) and write
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/anf Xn+/ an/ Xn +o(t —8).
Q [1fl=t—3] [1f1>1—3] [1f1=t—=3]

Since x, — 0 a.e.ontheset[|f| <t — §], we have, by dominated convergence,
f[|f|<z—8] Xn — 0. It follows that lim sup [, x, < a(r —8) V8 € (0, 1).

-B-

1. Consider the measurable function H : 2 x (0, co) — R defined by

H(x,t) = {g(t) ?flf(x)| > 1,
0 iflf)l <t
Note that
H(x,t)du = a(t)g(t) forae.r € (0,00),
Q
while

00 | f (o)l
f H(x,s)ds = / g(s)ds = G(|f(x)]) forae.x € Q.
0 0

Then use Fubini and Tonelli. 3
2. Given A > 0 consider the function f : 2 — R defined by

7oy _ J @) on[lf] > 2]
1= {0 on | f| < Al.

so that its distribution function & is given by
A) ifr <A
an = {40 Tr=n
a(t) iftr > A.

Apply to f the result of question B1.

-C-

3. Use the inequality [, |f| < |A|"?'[f], with A = [|f| > ] and note that

Jalf 1 = ta(®).
4. Let C = sup;_( tPa(t). We have

*© 1
/ [fl < a(k)k+/ a(t)dt+Ar|Al < C (1 + —1) Al_p+A|A| VA > 0.
A A p—

Choose A = |A|~1/P.
6. Write
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o0

00 A
Iflp = p/ aeP~ldr = p/ ()P dr + p/ a()tPde
0 0 A

A lp_l 00 l‘p_l
S RN

and choose X appropriately.

Problem 22

1. Apply the closed graph theorem.

3. We know, by Problem 21, question B3, that ||g,|l1 = fooo ya(t)dt. Applying
question 2 and once more question B3 of Problem 21, we see that ||g,||; <
Nila(MA + [° a(r)dt]. On the other hand, since || f — gillc < A, we have

[(1LfI >t Cllgal >1—Al
4. By question 3 we know that

/‘00 B(s)ds < N |:a(k))» + /ooot(t)dti| VA > 0.
A A

Multiplying this inequality by A7~ and integrating leads to

/ - AP72d), / - B(s)ds
0 A

o o o0
<N [f a()»))»p_ld)» +/ )J"%l)»/ a(t)dt} ,
0 0 A
that is,

1 o0 1 1 00 .
o1 f B(s)sP~ds < Ny (1 + ﬁ)/ a(MAP .
“1, — A

From question B3 of Problem 21 we deduce that || f]|, < pNi|lull}; finally, we
note that p!/? < el/¢ <2vp > 1.
Problem 23
-A -

1. The sets X, are closed and |_J .Xn = X. Hence, there is some integer ng such that
Int(X,,) # @. Thus, there exists Ag C 2 measurable with |[Ag| < oo, and there
exists some p > 0 such that

[xBeXand/QuB—onwp}:H/Bfk

We first claim that

<e szn()].

S1) / | fx]l <4e VA C Q measurable with |A| < p, and Yk > ng.
A
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Indeed, let A C 2 be measurable with |A| < p; consider the sets
Bi=AgUA and B, = Bj\A.

We have

/ |xB, — x40l = Al < p and / |xB, — x40l = |Al < p,
Q Q

/B|fk /Bsz
/Afk =‘/Blfk—/32fk

Applying the preceding inequality with A replaced by A N [fx > 0] and by
AN [fx < 0], we are led to (S1). The conclusion of question 1 is obvious, since
there exists some p’ > 0 such that

and therefore

<e and <e Vk=>ny.

It follows that

<2e Vk > ny.

/ | fr]| <4e VA C Q measurable with |A| < o/, Vk=1,2,...,no.
A

2. There is some integer ng such that Int(Y,,) # @. Thus, there exists Ay C
measurable and there exists some p > 0 such that

fok

Fix an integer j such that 27/ < p. We claim that

[XBeYandd(XB,XA)<p]:>[ §8Vk2no].

(82) / | fk| < 4e VA C Q measurable with A N Q; =@, Yk > ny.
A

Indeed, let A C €2 be measurable with A N ©; = ; consider the sets
By =AgUA and B; = Bj\A.

We have d(xB,, xa,) < 27/ < p and d(XBy, XAy) = 27/ < p; therefore
|fBl fil <& and |fB2 fi| < &, Yk > ng. We then proceed as in question 1.

4. Letus prove, for example, that (i) = (b). Suppose, by contradiction, that (b) fails.
There exist some g > 0, a sequence (A,) of measurable sets in €2, and a sequence
(fn) in F such that |A,| — 0 and f A, | ful = €0 Vn. By the Eberlein—Smulian

theorem there exists a subsequence such that f,, — f weakly o (L', L*®). Thus
(see question 3) ( fy,) is equi-integrable and we obtain a contradiction.
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5. Assume, for example, that f 4 Jn = £(A) for every A C Q with A measurable
and |A| < oo. We claim that (b) holds.

Indeed, consider the sequence

/‘;fj_/l;fk

In view of the Baire category theorem there exist ng, Ag C €2 measurable with
|Ag| < 0o, and p > 0 such that

[XBeXand/QIXB—XAOI<p}=>[/3fk—ﬂ(3)

Let A C Q2 be measurable with |A| < p; with the same method as in question 1
one obtains

‘/Afk

It follows that

Xn:{XAEX;

<e Vj>n, szn}.

<e¢ Vk2n0i|.

Vk > nyg.

<2e+ [€(B2) — £(B1)| < 4¢ + ‘/ Jno
A

/ | fx| < 8¢ +2/ | fnyl VYA measurable with |A| < p, Vk > ny,
A A

and the conclusion is easy.

-B-

1. We have F C F; + ¢Bg C F¢ + ¢Bg#. But F, + ¢Bg« is compact for the
topology o (E**, E*) (since it is a sum of two compact sets). It follows that G is
compact for o (E**, E*). Also, since G C E + ¢Bgs Ve > 0, we deduce that
G C E. These properties imply that G is compact for o (E, E*).

2. Given ¢ > 0 choose w C €2 measurable with |w| < oo such that fsz\w [fl<e/2
Vf € F, and choose n such that f[l fl=n] |f1 <e/2 Vf € F (see Exercise 4.36). Set
Fe = XoTu(f)) feF. Clearly, .7-'; is bounded in L°°(w) and thus it is contained in
a compact subset of L L(Q) for o (L1, L>). On the other hand, for every f € F,
we have

fQIf—wan(f)l S/wlf—Tnf|+fQ\w|f| sf[lf>n]|f|+/mw|f|ss.

Thus, F C F. + ¢Bg with E = L1(Q).
-C-

4. Applying A5 we know that (f;,) satisfies (b) and (c). In view of B2 the set (f;,)
has a compact closure in the topology o (L!, L°°). Thus (by Eberlein-Smulian)
there is a subsequence such that f,, — f weakly o (L', L®). It follows that
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1.
2.

2(A) = [, f VA measurable. The uniqueness of the limit implies that f,, — f
weakly o (L', L) (check the details).

-D-

Apply Exercise 4.36.
Set

o) = Supf Lf1,
feFJIfI>t]

sothat ® > 0, ® is nonincreasing, and lim;_, .o @ (f) = 0. We may always assume
that ®(¢) > 0 V¢ > 0; otherwise, there exists some 7 suchthat || f|o < T,forall
f € F, and the conclusion is obvious. Consider a function g : [0, co) — (0, c0)
such that g is nondecreasing and lim;_, 5o g (¢) = 00.Set G (¢) = fé g(s)ds,t =0,
so that G is increasing, convex, and lim;_. o, G(t)/t = +o0o. We recall (see
Problem 21) that for every f,

/G(|f|)=/ a(t)g(t)dt and / | f] =oz(t)t+/ a(s)ds.
0 f1>1] t

Set (1) = ftoo a(s)ds, so that B(t) < ®(¢) and B'(t) = —a(r). We claim that if
we choose g (1) = [® ()]~ !/2, then the corresponding function G has the required
property. Indeed, for every f € F, we have

/G(Ifl) =/(; a(t)g(t)dt 5/0 B OB dr

00 1/2 1/2
=2[ﬂ(0)]1/2=2[/ ot(s)dsi| =2U|f|} <c.
0

Problem 24
-B-

. Clearly A is convex, and so is ZJ(E*’E) (see Problem 9, question A4). Suppose

by contradiction that g ¢ ZJ(E*’E). By Hahn-Banach (applied in E* with the

weak* topology) there exist fo € C(2) and B € R such that

(SD) / ufo < B < (uo, fo) Vu € A.
Q
On the other hand, we have
(s2) sup [ o = I ol
UEA JQ

indeed, A is dense in the unit ball of L' () (by Corollary 4.23) and L™ is the
dual of L' (see Theorem 4.14). Combining (S1) and (S2) yields
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[ folloo = B < {10, fo) < Il folloo-

since ||l < 1. This is impossible.

4. Bp» is metrizable because E = C(Q) is separable (see Theorem 3.28). Since
o € ZU(E B C Bg+ there exists a sequence (v;,) in A such that v, X o. Then

apply Proposition 3.13.

6. Clearly (u, 1) < ||p|| Y. On the other hand, if || f]looc < 1 and & > 0 we have
(1, f) < {ue. 1) and thus [|l| = supy <1 {1, £) < (. ).

7. Set AT = {u € A;u(x) > 0 Vx € Q}. Repeat the same proof as in question 3
with A being replaced by A™; check that

sup / ufo = 11 fy oo
ueAt JQ

and that
(o, fo) < 11fy Moo

8. We claim that ||u + §4||pm = |lullpr + 1. Clearly |lu + 64llaq < llull 1 + 1. To
prove the reverse inequality, fix any ¢ > 0 and choose r > 0 sufficiently small
tha:it fB(a,r) lu| < e.Letw = Q\B(a, r) and pick ¢ € C¢(w) with [|@]| o) <1
an

/ up = |lullp1y — &
w

Then let & € C.(B(a, r)) be such that 8(a) = 1 and |0 (@) < 1. Check that
lo +OllLe(ey < 1 and

(u+3dq,0+6) > llullpig —2¢+ 1L
D-

1. Clearly L(f1) + L(f2) < L(f1 + f>). For the reverse inequality, note that if
0 < g < f1+ f>, then one can write g = g1 + g» with 0 < g; < f] and
0 < g» < f7; take, for example, g1 = max{g — f>,0} and g» = g — g1.

2. If f =h+ kwith h, k € C(K), we have

fr=f"=n"—h +k" =k,

so that
P4 +k=nt 4kt f,
and thus
LUfH4+Lh )+ Lk )=LEN+ L&Y +L(f),
ie.,

ni1(f) = i (h) + (k).



Partial Solutions of the Problems 549

Note that L(f*) < [l If*] and L(f7) < Nl If 7. Thus [u1(f)] <
el NI £ NI I f > 0 we have w1 (f) = L(f) > 0, so that ; > 0.

. If f > 0, we have (taking ¢ = f) L(f) = (u, f), so that (u1, f) = L(f) =

(m, f), e, ur = p1 —pu > 0. Next, note thatif g € C(K)and 0 < g < 1, we
have —1 <2g — 1 < 1 and thus

(1,28 = 1) < [lpell.

Therefore
1
L(1) =sup{{n,g);0=g =1} < 5(<u, L)+ D,
ie.,
2(u1, 1) =2L() < (u1, 1) — (2, 1) + [ull.
Thus

il + 2l = (e + pa, 1) < Il
and consequently ||« = 1]l + Il

-E-

One can repeat all the above proofs without modification. The only change occurs

in question D3, where we have used the function 1, which is no longer admissible.
We introduce, instead of 1, a sequence (6,,) in Eg such that 6, 1 1 as n 1 co. Note
that for every v € M(L2), v > 0, we have (v, 6,) 1 ||v].

Ifg € Epand0 < g < 6, we have —6,, <2g —6, <6, and thus (u,2g —0,) <

|lie]l. Hence

1
L(On) = sup{(n. 8): 0 = g = Ou} = S (At On) + ]}

ie.,

2(p1, On) = 2L(0n) = (i1, 0n) — (12, On) + I 1ell-

Letting n — o0 yields [|u1ll + ll2ll < [l

D

Problem 25

. Letvg € C and let u € X£\{0}; if B(vg, p) C C then (u,vo + pz) <0Vz e H

with |z] < 1. It follows that («, vg) + p|u| < 0. Conversely, let v9 € H be such
that (u, vg) < 0 Yu € \{0}. In order to prove that vy € C, assume by contradiction
that vg ¢ C and separate C and {vg}.

Ifu € X, then (1, w) + plu| < 0; therefore p|lu| < 1 forevery u € K.

If (—C) N X = { separate (—C) and X, and obtain a contradiction.

Since a € (—C) N X we may write —a = u(wo — x9) with u > 0 and wg € D.
On the other hand, since a € X\{0} we have (a,v) < 0 Vv € C and thus
(a, w — xp) < 0Vw € D. It follows that (xo — wg, w — x9) < 0Vw € D.
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Problem 26

1. By Proposition 1.10 there exist some g € H and some constant C such that
o) > (g,v) + C Vv € H; therefore I > —oo. Let (1,) be a minimizing
sequence, that is, %lf — un|2 + ¢(u,) = I, — I. Using the parallelogram law
we obtain

2 2

_un—f—um
2

Up — Up

2

‘f = 5 (I P +17 ~ unl?)

Up +u
=1y + In—@Wun) — @um) < In + In — 2¢ <%> .

It follows that |“25"2|* < I, + I,, — 2.
2. If u satisfies (Q) we have

1 2 1 > 1 2
§|f—v| +<P(U)Z§|f—ul +<p(u)+§|u—v| Yv € H.
Conversely, if u satisfies (P) we have
1 2 1 2
Elf—ul + o) =< zlf—vl +¢) YveH;
choose v = (1 — t)u + tw with ¢ € (0, 1) and note that
L — ol = 1 —ul e Y+ D wp?
—|f—v|"==|f—u —u,u—w —|u — w|*,
2 2 2

and
o) = (1 —Neu) +tp(w).

3. Choose v = i in (Q), v = u in (Q), and add.
5. By (Q) we have

(f —u,v) =) < (f —u,u) —pu) YveH

and thus ¢*(f —u) = (f —u, u) — ¢(u). It follows that
Dl gt (f—w) = 2 1f — P — o) + L1
5 u 1) u) = 3 u ou 3 .
Letting u* = f — u, one obtains
w4 ) = —2 1 — ul — ) + 21
2 u (p u = 2 u (p u 2 .
and one checks easily that

If —v)>+¢*(v) YveH.

| =

—ﬁf—uﬁ— m»+hfﬁ<
2 ¢ 2=
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(Recall that (u, v) < p(u) + ¢*(v).)
6. We have
1 2 1 2
P Elf—uxl +>~¢(Hx)§§|f—v| +Arp(v) VveH.
Using that fact that ¢(u;) > (g,u,) + C, it is easy to see that |u)| remains
bounded as A — 0. We may therefore assume that u;, — uo weakly (A, — 0)

with ug € D(¢) (why?). Passing to the limit in (P, ) (how?), we obtain

If —v]*> Yve D(p),

N -

1
5|f—uo|2 <

and we deduce that ug = Poioy f.Theuniqueness of the limit implies thatu; — ug
weakly as A — 0. To see that u; — ug we note that

If —vl*> Yve D(g),

N =

1
—limsup| f — uy|> <
2 A—0

which implies that lim sup, _, | f — ux| < |f — uol| and the strong convergence
follows.

Alternative proof. Combining (Q,) and (Q,,) we obtain

1 1
<X(uk - f)— ;(uﬂ — ), uy — uu) <0 Vi, u>0.

We deduce from Exercise 5.3, question 1, that (u) — f) converges strongly as
A — 0 to some limit. In order to identify the limit one may proceed as above.

7. We have %|f —u; >+ rpuy) < %|f —v|? 4+ 1¢(v) Yv € H, and in particular,
|f —uyl < |f —v| Vv € K. We may therefore assume that uy, — us weakly
(An = +00) and we obtain | f — us| < |f — v| Vv € K. On the other hand, we
have

1
o) < 5 If = v +¢(v) YveH,

and passing to the limit, we obtain ¢ (#so) < @(v) Vv € H.Thus,us € K, o =
Px f (why?), and u; — uoo weakly as A — 400 (why?). Finally, note that

limsup; , ol f —uxrl < |f —ucol.
If K = @, then |u,| — oo as A — 400 (argue by contradiction).

8. If f = 0 check that (1/A)u; = —u‘f/A VX > 0. In the general case (in which
f # 0) denote by u, and uj, the solutions of (P, ) corresponding respectively to f
and to 0. We know, by question 3, that |u) —u,| < | f| and thus |%uk — %Eﬂ -0
as A — +o0.

Problem 27

-A -

3. By definition of the projection we have
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[uan42 — uant1| = [Pauony1 — uont1| < |uon — uon1l
(since up, € K»), and similarly
[uont1 — uan| = [Pruon — uzp| < |uzp—1 — uznl.
It follows that
[n42 — uzpyi| < |ugp — uzn—1l.

-B-

To see that a; and a; may depend on u( take convex sets K1 and K> as shown in
Figure 9.

Fig. 9

Problem 28
A -
1. (a) = (b). Note that (v, Pv) = (Pu, Pv) = (Pu,v) Yu,v € H.
(b) = (c). Wehave |Pul®> = (Pu, Pu) = (u, P?u) = (u, Pu) Yu € H.

(¢c)= (d). From (c) we have ((# — Pu) — (v — Pv),u —v) >0Vu,ve H
and therefore (u,u —v) > 0 Yu € N(P) and Vv € N(I — P).
Replacing u by Au, we obtain (d).

(d)= (). SetM = N(I — P) and check that P = Py,.

-B-

1. (b) = (c). Note that (P Q)% = PQ and pass to the adjoints.
(c) = (a). QP isaprojection operator and ||Q P|| < 1. Thus QP is an orthog-
onal projection and therefore (Q P)* = Q P, thatis, PQ = QP.
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(i) Checkthat N(I — PQ)=MNN.

(i1) Applying (i) to (I — P) and (I — Q), we see that (I — P)(I — Q) is the
orthogonal projection onto M+ N NL. Therefore I — (I — P)(I — Q) =
P + Q — PQ is the orthogonal projection onto (M- N N1)* =M + N.

2. Itis easy to check that
(@)= (b)) =W <@ d=@.

Clearly (b) + (c) = (g). Conversely, we claim that (g) = (b) + (c). Indeed, we

have P Q 4+ Q P = 0. Multiplying this identity on the left and on the right by P,

we obtain P Q — QP = 0; thus, P Q = 0. Finally, apply case (ii) of question B1.
3. Replace N by N1 and apply question B2.

Problem 29
-A-

5. Note that Y /| i — pit1|* < |f —v|* and that |y — pns1| < [pti — i1 Vi =
0,1,...,n.

-B-

2. Since 0 € K, the sequence (Ju,|) is nonincreasing and thus it converges to some
limit, say a. Applying the result of B1 with u = u,, and v = u,;, we obtain

2 2
2|(un, unti) — Untp, Untpti)l < 2(unl” — lnsp+il”)
2 2
< 2(Jlup|” — a®).

Therefore €(i) = limy,— o (¢4, Uy+i) exists and we have
| i) = LG)] < un|* — a® = e
3. Applying to S the above result, we see that
| (Un, tnti) —m(@)| < e, Vi, Vn.
In particular, we have
> =mO)] <&, and | (in, pns1) —m(D)] < &,
and therefore

Im(0) —m(D)| < 2¢, + |ttallttn — pns1l > 0 asn — oco.

It follows that m(0) = m(1) and similarly, m(1) = m(2), etc.
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4. We have established that | (it,, ttn+i) — m(0)| < &), Vi, Vn. Passing to the limit
as i — oo we obtain |(u,, u) — m(0)| < ¢, and then, as n — oo, we obtain
|n|*> = m(0). Thus, |,| — |p| and consequently u,, — p strongly.

5. Applying (1) and adding the corresponding inequalities fori =0, 1,..., p — 1,

leads to
(n+p) n
Uy, Ontp— —0n | — Xp
p p

< gp.

We deduce that
2
(s 0ntp) — Xp| < en + %|un| (16wt p| + 10u]) < &n + ?”m2

(since |upy| < | f| Vn).
6. We have

1 1
|Xp - Xq| <2&, +2n <; + 5) |f|2 + |(un, On+p — Un+q)|

and thus limsup,, ., |Xp — Xg4| < 2¢, Vn.
7. Write that

n—1 n—1ln—i—1

nlonl* =Y P42 Y wjuj)

i=0 i=1 j=0
and apply (1).
8. Note that Y=} (n — i)e(i) = > i—1jX; and use the fact that X; — X as
j — oo.

Problem 30
-C-

3. Choose A € A and ji € B such that

min max F (A, = max F (X, and maxmin F (A, =min F (A, [1).
LEA UEB ( M) HEB ( M) HEBLEA ( M) LEA ( M)

-D-

2. The sets B, and A, are compact for the weak topology. Applying the convexity
of K in u and the concavity of K in v, we obtain

K <Z)\iu,~, v,-) < Z)\iK(Miv v;j)
i i

and
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K i) | = wiK @i, v)).
J J

It follows that

> _onik (inui, vj) S Fow) <) MK (ui ) pjv)
J i i J
and in particular

Y wiK@ vj) < F(p) VueB,
J

Z,\,-K(u,-, 7)) > F(\, i) VieA.

1
Applying (1), we see that
> wiK (i, vj) <Y nK@i,v) YieA, VpeB.
j i

Finally, choose X and u to be the elements of the canonical basis.

Problem 31
-A -
3. Note that Zi,j)‘i)‘j<AUjv v — Uj) = %Zi,j)‘i)‘j<Avj — Av;, v; — Uj).

-B-

2. Forevery R > Othere exists some ug € K g suchthat (Aug,v—ug)>0Vv € Kg.
Choosing v = 0 we see that there exists a constant M (independent of R) such
that ||ug| < M VR.Fixany R > M. Givenw € K, takev = (1 — Hup + tw
with ¢ > 0 sufficiently small (so that v € Kg).

3. Take K = E. First, prove that there exists some u € E such that Au = 0. Then,
replace A by the map v — Av — f (f € E* being fixed).

Problem 32

2. For ¢ > 0 small enough we have
@) = ¢ (o +ev) = max{lug — yil* = ¢ +26(v, uo — ui)} + O (%)

= max {lug — yil* — ¢; +2e(v, ug — y))} + O(e?)
€J (uo)

1

< @(up) + 2& max {(v, ug — yi)} + O(e?).
ieJ(up)
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3. Argue by contradiction and apply Hahn—Banach.
4. Note that for every u, v € H, we have

P(v) — @(u) > max {|[v— yi|* — |u — yi|*} = 2 max {(u — y;, v — ).
ied(u) ie(u)

5. Condition (1) is replaced by 0 € conv (Uie](uo){f’(uo)}).

-B-

1. Letting oy = ) ;.; Aix; and oy = ), .; A;yi, we obtain

iel

2 2 2 1 2
D hjloy =yl = —loy P+ Y ajlyiP =5 D0 dikjlvi = vl

jel jel i,jel

1
<5 D dikjh = xlP = —loe P 4 ) 1P
i,jel jel
= —lox = P+ ) _hjlxj = pl.
Jjel

2. Write ug = Ziej(uo))‘jyj‘ By the result of B1 we have

D hjlwo—yiP < Y Ajlp—x;

Jj€J (uo) Jj€J (uo)

It follows that Zje](uo))‘j(p(u()) < 0 and thus ¢(ugp) < 0.

Remark. One could also establish the existence of ¢ by applying the von Neumann
min—max theorem (see Problem 30, part D) to the function

2
(Z)\iyi) —Yji| — ZMHP - xjI%.
iel

Jjel
-C-

KGuapw =) u

Jjel

I. Set K; = {z € H; |z — yi| < |p— x|} and K = conv ({J;¢;{yi}). One has to
show that ((7);;Ki) # #. This is done by contradiction and reduction to a finite
set 1.

2. Consider the ordered set of all contractions T : D(T) C H — H that extend S
and such that T(D(T')) C conv S(D). By Zorn’s lemma it has a maximal element
Ty and D(Ty) = H (why?).
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1.

2.

6.

Problem 33

Note that |au,| < nlul|, so that u, € D(A). Moreover, |u,| < |u| and u, — u
a.e.

Let u, — u and au, — f in LP. Passing to a subsequence, we may assume
that u, — u a.e. and au,, — f a.e. Thusau = f.

If D(A) = E, the closed graph theorem (Theorem 2.9) implies the existence of
a constant C such that

/|au|p§C/|u|” Yu € LP.
Q Q

Hence the mapping v +— fQ la|Pv is a continuous linear functional on L'. By
Theorem 4.14 there exists f € L such that

/|a|pv:ffv vve Ll
Q Q
Thus a € L.

N(A)={u € LP;u =0ae.on[a # 0]} and N(A): = {f € LP; f =0 ae.
on [a = 0]}.

To verify the second assertion, let f € N(A)*. Then fQ fu=0Vu € N(A).
Taking u = |f|1’,_2fxla=o], we see that f = 0 a.e. on [a = 0].

D(A*) ={v e L av e LP/} and A*v = av.

Indeed, if v € D(A*), there exists a constant C such that

‘/ v(au)
Q

The linear functional u € D(A) — fQ v(au) can be extended by Hahn—Banach
(or by density) to a continuous linear functional on all of L”. Hence, by Theorem
4.11, there exists some f € L? such that

/v(au):f fu Yu e D(A).
Q Q

Given any ¢ € L?, take u = (1 + |a|) !¢, so that

< Cllull, Yu € D(A).

/ av _ f
ol+ia’ " Jori+ia?

Thus f =av e L?.

Assume that there exists a > 0 such that |a(x)| > « a.e. Then A is surjective,
since any f € LP” can be written as au = f, where u = a~'f € D(A).
Conversely, assume that A is surjective. Then a # 0 a.e. Moreover, Vf € L?,
a~'f e LP. Applying question 3 to the function a !, we see thata~! € L™,
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7.

10.

1.
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EV(A) ={A eR; |[a =A]| > 0},
p(A) = {) € R; 3¢ > O such that [a(x) — 1| > ¢ a.e. on Q},

and

c(A)={reR; Ve=>0,|[la—A <¢]l >0}.

Set M = supga and let us show that M € o(A). By definition of M we
know that a < M a.e.on Q and Ve > 0 |[a > M — ¢]| > 0. Thus, Ve > 0
[[la — M| < ¢]| > 0 and therefore M € o (A).

Note that o (A) coincides with the smallest closed set F C R such thata(x) € F
a.e. in . (The existence of a smallest such set can be established as in Proposi-
tion 4.17.)

Let us show that 0 (A) = {0}. Let A € 6 (A) with A # 0. Then A € EV (A) (by
Theorem 6.8) and thus |[a = A]| > 0. Set @ = [a = A]. Then N(A — A]) isa
finite-dimensional space not reduced to {0}. On the other hand, N(A — A1) is
clearly isomorphic to L? (w). Then w consists of a finite number of atoms (see
Remark 6 in Chapter 4) and it has at least one atom, since L? (w) is not reduced
to {0}. Impossible.

Problem 34
-A -
Clearly 0 ¢ EV(T). Assume that .. € EV(T) and A # 0. Let u be the corre-

sponding eigenfunction, so that

l /x u(t)dt = Au(x).
0

X
Thus u € C'((0, 1]) and satisfies
u=u—+rxu'.

Integrating this ODE, we see that u(x) = Cx~ 1V~ for some constant C. Since
u € C([0, 1]), we must have 0 < A < 1. Conversely, any A € (0, 1] is an
eigenvalue with corresponding eigenspace Cx~1+1/%,

. We already know that [0, 1] C o(T) C [—1, +1]. We will now prove that for any

A e R, A ¢ {0, 1}, the equation
S1) Tu— u=fekE

admits at least one solution u € E.

Assuming that we have a solution u, set ¢(x) = f(;‘ u(t)dt. Then

¢ — rx¢' = xf,
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and hence we must have
1 1
p(x) = —x'/* f V2 f(yde + Cx M,
A x
for some constant C. Therefore

1
(52 u() = ¢/(x) = / I flayds S f ) +

If . < 0orif A > 1 we must choose

1
(S3) C= —1/ =7 f()dr
A Jo

in order to make u continuous at x = 0, and then the unique solution u of (S1) is
given by

($4)  u@)=(T—rD7'f= —k—ﬂx“““ /O 1=V f(tyde — %f(xx

with |
u(0) = ﬁf 0.

It follows that o (T') = [0, 1] and p(T) = (—o00, 0) U (1, 00).

When 0 < A < 1, the function u given by

1
(S5) u(x) = %f”‘/*/ =V f()dr — %f(x),
with |
u(0) = ﬁf(o),

is still a solution of (S1). But the solution of (S1) is not unique, since we can add
to u any multiple of x~!T1/* Hence, for » € (0, 1), the operator (T — AI) is
surjective but not injective.

When A = 0, the operator T is injective but not surjective. Indeed for every
uekE, TueC'Y(0,1].

When A = 1, (T — I) is not injective and is not surjective. We already know
that N(T — I) consists of constant functions. Suppose now that u is a solution
of Tu —u = f. Then f(0) = u(0) — u(0) = 0 and therefore (T — I) is not
surjective.

4. A direct computation gives

1/q
1 Teu — Tullpao,1) < @ lullLe@,1) ifg > 1,

&
_ l)l/q
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and

ITeu = TullL1(0,1) < €log(l + 1/&)llullL>,1).-

Thus |T; — Tz, Fy — 0. Clearly T, € K(E, F) (why?), and we may then
apply Theorem 6.1 to conclude that T € IC(E, F).

-B-

1. It is convenient to write

X 1
Tu(x) = )lc/() u(t)dt :/0 u(xs)ds

and therefore

1
awo%x>=t/ W (xs)sds.
0

2. Assume that A € EV(T). By question A1 the corresponding eigenfunction must
beu(x) = Cx~'*1/* This function belongs to C' ([0, 1]) only when0 < A < 1/2
orA=1.

3. We will show that if A ¢ [0, %] U {1}, then (T — A1) is bijective. Consider the
equation

Tu—u= f e CY[0,1]).

When A < 0 or A > 1 we know, by part A, that if a solution exists, it must be
given by (S4). Rewrite it as

1
u) = —— [ sV fes)ds — ~ f(),
0 A

and thus u € C' ([0, 17).

When 1 > A > 1/2, we know from part A that (S1) admits solutions u €
C ([0, 1]). Moreover, all solutions u are given by (S2). We will see that there is a
(unique) choice of the constant C in (S2) such that u € C'([0, 1).

Write

i Lo fO ¢
_ =l 1/x — -
e fO
A 22—

A natural choice for C is such that

f0) c
— =0,
AZ—A+A

1 1
ﬁﬁr*“um—f@wﬂ—

and then u becomes
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U [ -1 fx) f0)
u(x) = =3 / /0 VR (f () — f£O))dt — T
Changing variables yields
L, f@) £
u@) = =3 | s 0) = fO)s = == = 55
Direct inspection shows that indeed u € C 1([0, 17) with
1 1 /
u'(x) = 52 ). sV £ (xs)ds — fix).

-C-
1. We have
1 1 p 1 _ A d.x
/ [Tux)|Pdx = ———|p(1)|P+ / lo(x)|? l(Slng(X))fp/(X)—_l»
0 p— 1 p— 1 0 xP
and therefore, by Holder,
! p T e 17 [ ’
/ Tu()Pdx < —2— [/ o) dx} U |go’<x>|f’dx} ,
0 p—101Jo | x 0

i.e.,
P 14 p—1
Tullp < F”Tu”p flullp.

3. Clearly 0 ¢ EV(T). Suppose that . € EV(T) and A # 0. As in part A we see
that the corresponding eigenfunction is u = Cx~'+1/* This function belongs to
LP0,1)iff0 <A < p/(p—1).

5. Assume that A < 0. Let us prove that A € p(T). For f € C([0, 1]), let Sf be the
right-hand side in (S4). Clearly

11 * 1
1SF ()] < ﬁE/o FOWE+ 51 @)

Therefore S can be extended as a bounded operator from L” (0, 1) into itself.
Since we have

(T —A)S=S(T —Al)=1 onC(0,1]),

the same holds on L”(0, 1). Consequently A € p(T).

Suggestion for further investigation: prove that for A € (0, ﬁ) the operator
(T — A1) is surjective from L7 (0, 1) onto itself. Hint: start with formula (S5) and
show that ||u||, < C|| f|l, using the same method as in questions C1 and C2.
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6. (T*v)(x) = [ "Wy,

X

7. Check that Ty is a compact operator from L? (0, 1) into C ([0, 1]) with the help
of Ascoli’s theorem. Then prove that

1_1
ITe — Tllgr,Ley < Ceda ».

Problem 35
-A -
1. Clearly |T*T|| < ||T||2. On the other hand,

|Tx|? = (Tx, Tx) = (T*Tx, x) < |T*T|| |x|*.

Thus | T]> < |T*T].
2. By induction we have

1T = T Vinteger k.

Given any integer N, fix k such that N < 2k,

Then . . . .
1T =1 | = 1>V < Vv,
and thus
1IN < 1TV
-B-
Set

X = ||Tj: Tk, T;;Tkz e TJ::\/ Tin Il
By assumption (1) we have
X < &’ (j1 = k)@ (2 — k2) -+ 0 (v — kn),
and by assumption (2),
X < ||T) ki — jp)w*(ka = ja) -+ @ (kn—1 = jn) || Ty |
< 0?0’ (ki — jo’(ka = j3) -+~ & (k-1 = jn),

since || 7;[| = I T;1'/? < w(0).

Multiplying the above estimates, we obtain
X =w0)w(i —kDotky — j2) - o(jn-1 — kn-Do (k-1 — jN)O (N — kN).

Summing over ky, then over jy, then over ky_1, then over jy_1, ..., then over &y,
then over j, then over ki, yields a bound by o2V . Finally, summing over j; gives
the bound mo 2V .
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3.

. From question 9 we know that v(

We have

I N < ZZZZ DO TR T T Try -+ T3, Ty || < mo™.
ok N kN

Therefore

Ul <m'*Ng,

and the desired conclusion follows by letting N — oo.

Problem 36
. To see that Ry is closed, note that (I — T)¥ = I — S for some S € K(E) and
apply Theorem 6.6.
. Suppose R;4+1 = R, for some g > 1. Then Ry11 = Ry Vk > g. On the

other hand, we cannot have Ryy1 # Ri Yk > 1 (see part (c) in the proof of
Theorem 6.6).

. From Theorem 6.6(b) and (d) we have

R =N(I—THH*
and thus
codim Ry = dim N((I — T*)*) = dim N((I — T)*) = dim N.

Letx € R, N Np.Thenx = (I — T)P& forsome & € E and (I — T)Px = 0.1t
follows that & € N2, = N, and thus x = 0. On the other hand,

codim R, = dim N;

combining this with the fact that R, "N, = {0}, we conclude that E = R, + N,.
(I —T)Rp, = Rp+1 = Rp,. Theorem 6.6(c) applied in the space R, allows us to
conclude that (I — T') is also injective on R).

It suffices to show that N = Nji. Let x € Nj. Then (I — T)2x = 0 and thus
(I =T)x>= (I —=T)x,I —=T)x) = (I —T)*x,x) =0.

Problem 37

" is nondecreasing in n and U]En) < ur Yk > 1
and Vn. Thus it suffices to prove that

(S1) lim inf v > .

n—>0oo
In fact, using question 9, one has, Vk < n,

max min R(x) = v,i").
Ty xex
dim =k *#0
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Note that from the assumption on V™,

(82) lim Py (x) =x VxeH.
n—0oo
Thus Py (er), ..., Pyo(ex) are linearly independent for n > Nj sufficiently

large (depending on k, but recall that k is fixed); this implies

(S3) v > min R(x),
x€E(n,k)
x#0

where E(n, k) is the space spanned by { Py (e1), ..., Pym (ex)}. However, it is
clear from (S2) that

(S4) lim min R(x) = rnln R(x).
n—00 xeE(n,k) eEy
x#£0 x;éO

Inequality (S1) follows from (S3), (S4), and question 1.

Problem 38
-A -

2. Use Exercise 6.25 or apply question 1 to the operator (/r + K), that satisfies (1)
(why?). Then write
To(SoM)=1Ir—P.

3. Clearly R({r — P) is closed and codim R(/r — P) is finite. By Proposition 11.5
we know that any space X O R(Ir — P) is also closed and has finite codimension.
In particular, (1)(a) holds.

Next, we have
U*oT* = Ip« — P*,

where P* is a compact operator (since P is). Thus we may argue as above and
conclude that R(U™) is closed. From Theorem 2.19 we infer that R(U) is also
closed.

We now prove that N(T)+ R(U)+ X = E for some finite-dimensional space X.
Givenany x € E,writex = x1+xp withx; = x—U(Tx) andx, = U(Tx). Note
that Tx; = Tx — (T o U)(Tx) = P(Tx) by (3). Therefore x; € TY(R(P)) =
N(T) + %21, where X is finite-dimensional, since R(P) is. Consequently, any
x € E belongsto N(T) + R(U) + ;.

Finally, we prove that N(T) N R(U) C ¥, with X, finite-dimensional. Indeed,
letx e N(T)NR(U). Thenx = Uy forsomey € FandTx = (T oU)(y) = 0.
Thus, by (3), y— Py = Oand therefore y € R(P).Consequentlyx € U(R(P)) =
¥, which is finite-dimensional, since R(P) is. Applying Proposition 11.7, we
conclude that N(T") admits a complement in E.
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-B-

(4) = (6). Let Ug be as in question 1 of part A. Then Uy o T = I on X. Given
any x € E write x = x| + xo with x; € X and x, € N(T). Then

(UpoT)(x) = (Upo T)(x1) = x; =x —x3 = x — Px,

where P is a finite-rank projection onto N(T).
(5) = (6). Use Exercise 2.26.

(6) = (4). From (6) it is clear that dim N (7)) < oo. Also, since T* o (l7)* =
Ig« — (P)*, we may apply part A ((2) = (1)) to T* in E* and deduce that R(T™*) is
closed in E*. Therefore R(T) is closed in F.

As in question 3 of part A, we construct finite-dimensional spaces X3 and X4 in
F such that -

NWU)+R(T)+ %23 =F,
NW)NR(T) C T4,

and we conclude (using Proposition 11.7) that R(7") admits a complement.

-C-

. Notethat Qo T =T andthus U o T = Uyo QoT =UyoT =1 — P.

2. Use (2) = (1) and (5) = (4).

3. Let Z C F be a closed subspace. From Proposition 11.13 we know that Z has
finite codimension iff Z+ is finite-dimensional, and then codim Z = dim Z1.
Apply this to Z = R(T), with Zt = N (by Proposition 2.18).

4. We already know that dim N(7*) = codim R(T) < oo. Next, we have
dim N(T) < oo, and thus codim N(T)+ < oo (by Proposition 11.13). But
N(T)* = R(T*) (by Theorem 2.19). Therefore codim R(T*) < oo and, more-
over, codim R(T*) = dim N(T).

5. From Theorem 2.19 we know that R(T) is closed. Since N(T*) = R(T)+*
is finite-dimensional, Proposition 11.11 yields that codim R(7T") < oo. Since
R(T*) = N(T)* and codim R(T*) < oo, we deduce from Proposition 11.11
that dim N(T') < oo.

6. Write T = J(Ig + J~' o K). By Theorem 6.6 we know that (I +J ' o K) €
®(E,E)andind(Ig +J 'oK) =0.Thus T € ®(E, F)andind T = 0, since
J is an isomorphism.

Conversely, assume that T € ®(E, F) and ind T = 0. Let X be a complement
of N(T) in E and let Y be a complement of R(T) in F. Since ind T = 0, we
have dim N(T) = dim Y. Let A be an isomorphism from N(T) onto Y. Given
x € E,write x = x; +xp withx; € X and xp € N(T). Set Jx = Tx; + Ax».
Clearly J is bijective and Tx = Tx; = Jx — Ax» is a desired decomposition.

7. Use a pseudoinverse. _ _

8. Let X and Y be as in question 6. Set E = E x Y and F = F x N(T). Consider
the operator T : E — F defined by

—_—
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T(x,y) = (Tx + Kx,0).

Clearly ~
R(T) = R(T + K) x {0},

N(T)=N(T +K) x Y.
Thus T € ®(E, F) and
codim R(T) = codim R(T + K) + dim N (T),
dim N(T) =dimN(T 4+ K)+dimY =dim N(T + K) + codim R(T).

We claim that T = .7+I? where J is bijective from E onto I? and K € IC(E, I?).
Indeed, writing x = x1 + x2, with x; € X and x € N(T), we have

T(x,y)=(Txi+Kx,0) = J(x,y) + K(x, y),

where ~
J(x,y) = (Tx1+y,x2)

and _
K(x,y) = (Kx,0) — (y, x2).

Clearly T is bijective and K is compact (since y and x, are finite-dimensional
variables). Applying question 6, we see that

indT = 0 = dim N(T) — codim R(T).
It follows that

ind(T + K) =dim N(T 4+ K) —codim R(T + K) = dim N(T) —codim R(T).

. Let V be a pseudoinverse of 7 and set ¢ = IVII~! (any &€ > 0if V = 0). From

(8)(b) we have -
Vo(T+M)=1Ig+(VoM)+K.

If|M| <eweseethat [V oM| < 1,and thus W = Ig + (V o M) is bijective
from E onto E (see Proposition 6.7). Multiplying the equation

Vo(T+M)=W+K
on the left by T and using (8)(a) yields
T+M=(ToW)+(ToK)—Ko(T+M).

Since W is bijective, it is clear (from the definition of ®(E, F)) that T o W €
®(E, F)andind(T o W) = ind T. Applying the previous question, we conclude
that T+ M € ®(E, F) and ind(T + M) = ind(T o W) =ind T.

Check that V| o V; is a pseudoinverse for 75 o T.
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12. Note that Hy(xp, x2) = (T1x1, Trx3), so that ind Hy = ind T} + ind 7». On the
other hand, Hi(x2, xp) = (x3, —T2(T1x1)), so that ind H; = ind(7> o T1).
13. ind V = —ind T by (8), questions 6 and 12.

-D-

1. ind T = dim E—dim F,sincedim R(T) = dim E—dim N (T) and codim R(T) =
dim F — dim R(T).

2. When |A| < 1,ind(S, — AI) = —1 and ind(Sy — AI) = +1. When |A| > 1,
(S —A[1) and (S¢ — A1) are bijective; thus ind(S, —Al) = O andind(Sy —A1) = 0.

Problem 41
-A -

1. Assume by contradiction that a € (Int P) N (—P). From Exercise 1.7 we have
0= %a + %(—a) € Int P and this implies P = E.

2. Suppose not; then there exists a sequence (x,) in P such that x,, + « — 0. Since
(xp+u)—u = x, € P,weobtain atthe limit —u € P.This contradicts question 1.

3. Clearly u # 0 (since 0 ¢ Int P by (2)). From (3) we have Tu € Int C and thus
B(Tu, p) C C for some p > 0. Then choose 0 < r < p/||u|.

4. Since Ax = T(x +u) > Tu > ru, we have %x > u. Assuming (%)”x > u, we
obtain (2)"Tx > Tu and thus (2)"(Ax — Tu) > Tu > ru. Hence (2)"Ax > ru,
i.e., (%)"Hx > u. On the other hand, Ax = T (x + u) € Int P, which implies
that A > O (by question 1). If we had 0 < A < r we could pass to the limit as
n — oo and obtain —u € P, which is impossible (again by question 1).

5. The map x — (x 4+ u)/||x + ul| is clearly continuous on P (by question 2).
F(P) C T(Bg) C Ksince T € K(E).

6. When replacing u by eu, the constant « in question 2 may change, but the constant
r in question 3 remains unchanged.

7. We have A ||xc|| = 1T (xe + euw)|| < IT|| llxe + eu| and therefore ||x.|| < ||T].
Hence A, < ||T|| + ¢|lu||. Passing to a subsequence ¢, — 0, we may assume
that A,, — po and Tx,, — £ (since T € K(E)). Hence x.,, — xo with
xo € P, no = ||xo|l = r and Txg = poxp, so that xo € Int P by (3).

-B-

1. Theset ¥ = {s € [0,1]; (1 — s)a + sb € P} is a closed interval (since P is
convex and closed). Then ¢ = max {s; s € X} has the required properties by
Exercise 1.7.

2. We cannot have . = 0 (otherwise, 0 € Int P) and we cannot have © < 0
(otherwise, —x € (Int P) N (—P)). Thus u > 0, and then x € Int P, which
implies —x ¢ P.Note thatxg and x play symmetricroles: xo, x € Int P, —x¢ ¢ P,
—x ¢ P, Txo= poxo with o > 0,and Tx = pux with u > 0. Set y = xo9 — 10X,
where 79 = t(xg, —x). Then y € P (from the definition of o and ). Moreover,
y # 0 (otherwise x = mxg with m = 1/19). Thus Ty € Int P. But
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Ty =Txo—tTx = oxo — Topx.

Hence xq + ’l‘z—(’)‘(—x) € Int P. From the definition of 7y we deduce that r}j—(’)‘ <71
and therefore u < po. Reversing the roles of xg and x yields o < u. Hence we
obtain a contradiction. Therefore x = mx( for some m > 0 and then u = .

3. If x € P or —x € P we deduce the first part of the alternative from question 2.
We may thus assume that x ¢ P and —x ¢ P.We will then show that |u| < uo. If
= 0 we are done. Suppose that u > 0 and let 79 = 7 (xp, x). Set y = x¢ + Tox,
so that y € P. We have y # 0 (otherwise —x € P) and thus

Ty = poxo + toux € Int P.

Hence xg + 2£x e Int P. From the definition of 7y we deduce that TB—(’; < 1,

and thus u < po.
Suppose now that 4 < 0.Let rg = t(xp, x) and Tp = t(x9, —x).Sety = xo+1ox
and y = x9 — Tox,sothat y, y € P and y # 0, y # 0. As above, we obtain

T T
xo—i-O—MerntP and xo—O—MerntP.

Mo MO
Thus .
T T
vot+ M emep and xo+ 2y e nep.
o 0
From the definition of 7o and 7y we deduce that
Tolpnl . ol pl
<79 and < 10.
1220] Mo

Therefore .
M <min{t—0 E} <.
Mo

4. Using question 3 with u = pg yields N(T — uol) C Rxp.

5. In view of the results in Problem 36 it suffices to show that N((T — puol)?) =
N(T — ugl).Let x € E be such that (T — ,uol)zx = 0. Using question 4 we may
write Tx — pox = axo for some o € R. We need to prove that « = 0. Suppose
not, that o # 0. Sety = fx—‘ sothat Ty — oy = xo. Then 7%y = puoTy + Txo =
,u%y + 2u0xo. By induction we obtain 7"y = ugy + n,ug_lxo foralln > 1,
which we may write as

n+1
Hnoy Mo
7" (30— F22) = - Fo—y.
0 " " y

Since xo € Int P, we may choose n sufficiently large that xo — % € P. Since

T"(P) C P, we conclude that —y € P. Thus T"(—y) € P. Returning to the
equation 7"y = ,ugy + nug_lxo Vn > 1, we obtain —y — %xo e P,ie.,

—Xx0 — %y € P. Asn — +o00 we obtain —xp € P. Impossible.
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Thus we have established that the geometric multiplicity of uo (i.e., dim(N —
ol)) is one, but also that the algebraic multiplicity is one.

Problem 42
1. We have, Vx € C,
1
ITx —Txoll = Tl llx —xoll = ITllr = 3 ITxoll,
and by the triangle inequality,
1
ITxoll = ITx]| = ITx — Txoll = 3 I Txoll-

Thus || y|| > % ITxo|l Yy € T(C), and therefore alsoVy € T (C). Since Txg # 0,
we see that 0 ¢ T'(C).
2. By assumption (1), A, is dense in E, and consequently A, N B(xo, r/2) # @,

i.e, there exists S € A such that ||Sy — xol| < r/2.
3. We have, Vz € B(y, ¢),

-
15z = xoll = 1Sz = Il + ISy — xoll = [ISlle + 5.

Then choose ¢ = m
4. If x € C, then Tx € B(yj, % ey;) for some j € J. Therefore g (x) > % &y; and
thus ¢ (x) > minjcs{5 ey, }.
5. The functions ¢g; are continuous on E and the function 1/g is continuous on C.
Thus F is continuous on C. Write
1

F(x) —x0 = @ j%‘qj(x) [Sy, (Tx) — x0].

Note that gj(x) > 0 Vx € E and g;(x) > O implies [|Tx — y;|| < &y,. Using the
result of question 2 with z = T'x and y = y; yields

ISy, (Tx) — xoll <.
Therefore
a0y, (Tx) — x0ll < q;j(x)r Vx € E, Yjel,

and thus
| F(x) —xoll <r.

6. Let 0 = T(C), so that Q is compact. Thus R; = Sy, (Q) is compact, and
so is [0, 1]R; (since it is the image of [0, 1] xR; under the continuous map
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(¢, x) — tx). Finally, > jeJ [0, 1]R; is also compact (being the image under the
map (x1,x2,...) — Zje] xj of a product of compact sets).

7. Each operator Sy, o T' is compact by Proposition 6.3. Since K(E) is a subspace
(see Theorem 6.1), we see that U € K(E) (¢;(§) is a constant). From Theorem
6.6 we know that F = N (I — U) is finite-dimensional.

Writing that F(§) = & gives

1
— Y qj(®)S,;(T&) =&,
9

and by definition of U,

UE) = (5) —— 3 " q;()S,;(T&) =&.

jelJ

8. We need to show that Ta = U(Ta) Va € Z. Note that Sy € A (by the construc-
tion of question 2; thus Sy, o7 € Aand U € A. From the definition of A itis clear
that UoT =T o U. Leta € Z,sothata = Ua. Then Ta =T (Ua) = U(Ta).

The space Z is finite-dimensional and thus Z # E (this is the only place where
we use the fact that E is infinite-dimensional). Clearly Z is closed and Z # {0},
since £ € Z (and £ € C implies £ # 0 by question 1). Thus Z is a nontrivial
closed invariant subspace of 7.

9. Nontrivial subspaces have dimension one. Thus the only nontrivial invariant sub-
spaces are of the form Rxg with xg # 0and T'xg = axg forsome « € R. Therefore
it suffices to choose any 7" with no real eigenvalue, for example a rotation by 77 /2.

Problem 43

LT (u+v)|> = |Tul>+|Tv|*4+2(T*Tu, v) and |T*(u+v)|* = |T*u|>+|T*v|*+
2(TT*u, v).

3. By Corollary 2.18 (and since H is reflexive) we always have R(T) = N(T"*
and R(T*) = N(T)*L.

4. Since f € R(T), we have f = Tv for some v € H. Using question 3 we may
decompose v = v| + vy with vy € mand vy € N(T). Then f =Tv ="Tuv,
and we choose u = vj.

5. We have by question 1 |u, — up| = |T*On — yu)l = |Tn — ym)| — 0
as m,n — oo. Thus Ty, is a Cauchy sequence; let z = lim,_7y,. Then
T*Ty, = TT*y, with TT*y, = Tu, - Tu = f and T*Ty, — T*z. Thus
T*z = f.

6. In question 5 we have proved that R(T') C R(T*). Applying this inclusion to T*
(which is also normal) gives R(T*) C R(T).

7. Clearly ||T?|| < ||T?|. For the reverse inequality write |Tu|?> = (T*Tu,u) <
|T*Tu| |u|. Since T is normal, we have |T*Tu| = |TTu| < || T?|| |u|. Therefore

T
ITI? = sup oz T8 < 1721
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8. When p = 2F we argue by induction on k. Indeed, ||T2k+] | = I1S2]l, where
S = T2, Since S is normal, we have ||S2|| = ||S||2. But ||S|| = ||T|*" from the
induction assumption. Therefore |72 || = [T 12"

For a general integer p, choose any k such that 2€ > p. We have
k k k_ k_ k_
ITIZ = 1T = IT>~PTP) < IT>PINTPI < ITI>~PITP].
Thus [|[T[|” < |IT?|, and since | T7|| < |T||?, we obtain | T7|| = ||T|”.

9. Letu € N(T?). Then Tu € N(T) N R(T) C N(T) N N(T)+ by question 2.
Therefore Tu = 0 and u € N(T). The same argument shows that N(7?) C
N(TP~Y) for p > 2, and thus N(TP?) C N(T). Clearly N(T) C N(T?) and
therefore N(T?) = N(T).

Problem 44
-A -

2. Clearly T*oT = I implies |Tu| = |u| Yu € H.Conversely, write IT (u+v)|> =
|u 4+ v|? and deduce that (Tu, Tv) = (u,v) Vu,v € H,sothat T*o T = I.

3. (A= (). T*oT = I and T bijective imply that T* = T, so that T* is

also bijective.

(b) = (c). T*oT = I implies that T* is surjective. If T* is also injective,
then T™* is bijective and T = (T*) ' Hence To T* = 1.

(c) = (d). Obvious.

(d)=(e). T*oT = I implies that T* is surjective. If 7* is an isometry, it
must be a unitary operator.

(© = (a). Apply (a) = (e)to T*.

4. In H = ¢2 the right shift S, defined by S, (x1, x2, x3,...) = (0, x1, x2,...) i
an isometry that is not surjective.

5. Let f,, € R(T) with f,, — f.Write f,, = Tu, and |u, — uy| = | fn — ful,
so that (u,,) is Cauchy sequence and u;,, — u with f = Tu. Given v € H, set
g =TT*v.Then g € R(T) and we have Vx € H,

w—g,Tx)= @, Tx)— (TT*v,Tx) = (v, Tx) — (v, TT*Tx) =0,

since T* o T = I. Thus v — g € R(T)* and consequently g = Pr(T)v.

6. Assume that T is an isometry. Write (T — AI) = (I — AT*) o T. Assume
[A] < 1. Then |AT*|| < 1 and thus (/ — AT™) is bijective. When T is a unitary
operator we deduce that (T — AI) is bijective; therefore (—1,+1) C p(T)
and hence o (T) C (—oo, —1]U [+1, +00), so that 6 (T) C {—1, +1} (since
o(T) C [—1, +1]). On the other hand, if T' is not a unitary operator and |A| < 1,
we see that (T — AI) cannot be bijective; therefore (—1, +1) C o(T), so that
o(T) =[—1,+1] (since o(T) is closed and o (T) C [—1, +1]).
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7.

9.

10.

11.

W
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T is an isometry from H onto T(H). If T e K(H) then T(By) = Brm) is
compact. Hence dim T (H) < oo by Theorem 6.5. Since T is bijective from H
onto T (H), it follows that dim H < oo.

. If T is skew-adjoint then (Tu, u) = (u, T*u) = —(u, Tu) and thus (Tu, u) = 0.

Conversely, write 0 = (T (u +v), (u +v)) = (Tu,v) + (Tv,u) Yu,v € H, so
that Tu + T*u =0 Vu € H.

Assume A # 0.Then (T —Al) = —)L(I—%T), and the operator (I—%T) satisfies
the conditions of the Lax—Milgram theorem (Corollary 5.8). Thus (T" — 1) is
bijective.

From question 9 we know that 1 ¢ o (T), and thus (T — I)~' is well defined.
From the relation (T — I) o (T +1) = (T + I) o (T — I) we deduce that
U=T-D"'o(T+1D.Similarly U oT = (T —I) "o (T+1oT =
To(T+1)o(T—1)"! = ToU because (T+1)oTo(T—1) = (T—1)oTo(T+I).
Next, we have U* = (T* — ) ' o (T* + ) and thus U* o U = (T* — )1 o
(T*+D)o(T+1)o(T—1)"" = 1I,since (T*+1)o(T+I) = (T*—1)o(T —1)
because T* + T = 0.

Thus U is an isometry. On the other hand, U = (T +1)o (T — 1 )~ lis bijective
since —1 € p(T) by question 9.

By assumption we have U* o U = I. Thus (T* — D7 Yo (T +Do(T+1)o
(T — )~' = I. This implies (T* + 1) o (T + 1) = (T* = I) o (T — I), i.e.,
T+ T =0.

(i) Trivial.

(ii) If dim H < oo, standard linear algebra gives dim N (7)) = dim N(T™*).
(iii) If T is normal, then N(T) = N(T*).
(iv) dim N(T) = dim N(T*) < oo by Theorem 6.6.

. If T = Sy, aleft shift, then dim N(7) = 1 and T* = S, satisfies N(T*) = {0}.
. Wehave T* = PoU* andthus T*oT = PoU*oU o P = P? by question A.2.
. From the results of Problem 39 we know that P must be a square rootof 7*o T,

and that P is unique.

. Suppose that T = U o P = V o P are two polar decompositions. Then U = V

on R(P) and by continuity U = V on R(P).But P? = T* o T implies N(P) =
N(T). Thus R(P) = N(P*)* = N(P)* = N(T)* (since P* = P).

. From the relation T = U o P we see that U(R(P)) C R(T). In fact, we have

U(R(P)) = R(T); indeed, given f € R(T) write f = Tx for some x € H,
and then U(Px) = f,sothat f € U(R(P)).

By continuity U maps R(P) = N(T)* into R(T) = N(T*)*. Since U is an
isometry, the space U (N (T)+) is closed (by the standard Cauchy sequence argu-
ment). But U(N(T)1) D R(T) and therefore U(N(T)+) = R(T) = N(T*)* .
Using the property (Ux,Uy) = (x,y) Vx,y € H we find that (Ux, Uy) =
0Vx € N(T)t, Yy € N(T). Thus U(y) € N(T*)+ = N(T*) Vy € N(T).
Consequently J = U|y(r) is an isometry from N (T') into N (T*).
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7. Let P be the square root of 7* o T'. We now construct the isometry U . First define
Up : R(P) — R(T) as follows. Given f € R(P), there exists some u € H (not
necessarily unique) such that f = Pu. We set

Upf =Tu.

This definition makes sense; indeed, if f = Pu = Pu’,thenu —u’ € N(P) =
N(T), so that Tu = Tu’. Moreover,

\Uof| = ITul =|Pul =|f| VfeR(P).

In addition we have Ug(R(P)) = R(T). Indeed, we already know that
Uop(R(P)) C R(T). The reverse inclusion follows from the identity Uy(Pu) =
TuVu € H.

Let Uy be the extension by continuity of Uy to TPl Then Uy is an isometry
from R(P) = N(T)" into R(T) = N(T*)*. But R(Up) D R(Up) = R(T) and
therefore (as above) R(Up) D R(T) = N(T*)*. Hence Uy is an isometry from
N(T)* onto N(T*)*.

Finally, we extend ﬁo to all of H as follows. Given x € H, write
X =x1+x2
with x; € N(T)* and x» € N(T). Set
Ux = ﬁoxl + Jxs.
Then
Ux? = [Ugx1]* +2(0ox1, Jx2) + [T = i * + bl = [,
since l~]ox1 € N(T*)L and x; € N(T™) (by (1)).

Clearly U (Pu) = Up(Pu) = Tu Yu € H, and therefore we have constructed a
polar decomposition of 7.

8. The construction of question 7 shows that R(U) = N(T*)* & R(J). Thus
R(U) = H if R(J) = N(T*), and then U is a unitary operator.

9. If T is a normal operator then N(T) = N(T*) (see Problem 43). Thus (2) is
satisfied and we may apply question 8. Next, we have T* = P o U™, and since
T is normal we can write

(PoUNo(UoP)=T"oT=ToT*"=WUoP)o(PoU"),

which implies that
P2=Uo P?oU",

and thus
P?’oU =U o P>
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10.

11.

12.

12.

Partial Solutions of the Problems

Applying the result of question C2 in Problem 39 we deduce that PoU = Uo P.
We have P2 = T* o T € K(H). This implies that P € IC(H). Indeed, let (u,)
be a sequence in H with |u,| < 1. Passing to a subsequence (still denoted by
u,), we may assume that u, — u and P2y, — P2u. Then | P(u, — u)|2 =
(P%(u, — u), uy —u) — 0, so that Pu, — Pu.Hence P € K(H).

We have T* o T € K(H), since T € K(H) and its square root P is compact
(see part D in Problem 39).

Let (e,) be an orthonormal basis of H consisting of eigenvectors of 7*T', with
corresponding eigenvalues (1), so that 1, > 0 Vn and A, — Oasn — oo. Let
I = {n € N; A, > 0}. Consider the isometry Uy defined on R(P) with values
in R(T) constructed in question 7; we have Uyo P = T on H.

Set f, = Ug(e,) for n € I, this is well defined, since Pe, = /A ey, so that
en € R(P) whenn € I. Then (f;,),es is an orthonormal system in H (but it is
not a basis of H, since f, € R(Uyg) C R(T) # H in general). Choose any basis
of H, still denoted by ( f;,),eN, containing the system (f,),er. Foru € H, write

u= Z(u’ en)en,

neN
so that
Pu = Z\/ An(u, ep)e, = Z\/ An(u, ep)en,
neN nel
and then
Tu=Up(Pu) =Y N, en) fu =D v dnlu, ) fo-
nel neN

Clearly

T*v = Z VAn(v, fu)en.

neN

Set

N
Tyu =Y antt, e) fr.
n=1

so that Ty € KC(H) (since it is a finite-rank operator). Then ||Ty — T|| <
max,>nN+1|anl, so that [Ty — T|| — 0 as N — oo, provided o, — O as
n — oo; thus T € K(H) by Corollary 6.2.

Problem 45

Consider the equation

—u"+k*u=f on(0,1),
u(0) = u(l) =0.

The solution is given by



Partial Solutions of the Problems 575

sinh(kx)

1 X
u(x) = m/o f(s)sinh(k(1 — s))ds — %/0 f(s)sinh(k(x — s5))ds.

A tedious computation shows that

k 1
sinhkx(1 —x)/o fs)s(1 —s)ds.

u(x) >

Next, suppose that p = 1 and u satisfies

—u"+qu=f on(0,1),
u0) =u(l) =0.

Write
—u" + KPu = f + (k* — q)u.

We already know that # > 0. Choosing the constant k sufficiently large we have
f + (k* — ¢)u > f, and we are reduced to the previous case.

In the general case, consider the new variable

1 [* 1 L |
y=— ——dt, where L = ——dt.
LJjy p@) o p@)

Set v(y) = u(x). Then
1
uy(x) = Uy(y)m
and

1
(p(Dux)x = Uyy()))m~

Therefore the problem

—(pl/t/)/ + qu = f on (09 1)!
u) =u(l)=0

becomes

—vyy () + L2 p(x)g(x)v(y) = L2p(x) f(x) on (0, 1),
v(0) = v(l) =0,

and we are reduced to the previous case, noting that x(1 — x) ~ y(1 — y).

Problem 46

12. Let (u,) be a minimizing sequence i.e., F (u,) — m. We have
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F(u)—l/l(u/2+u2)—/] (up) < C
n—zo n n Og n) = C.

On the other hand we may use Young’s inequality (see (2) in Chapter 4, and the
corresponding footnote) with a = (+7)**! and p = 2/(a + 1), so that p > 1
since o < 1. We obtain

gluy) < su,% +C, Ve>0.

Choosing, e.g., ¢ = 1/4 we see that (u,) is bounded in H(} (I). Therefore we
may extract a subsequence (u,,) converging weakly in Hol(l ), and strongly in
C (7) (by Theorem 8.8), to some limit u € H& (I). Therefore

1 1
lim inf/ (u;lk2 + u%k) > / u'? +u?
k—oo Jo 0

and
1

1
lim g(unk)Z/ gu).
0 0

k— 00

Consequently F(u) < m, and thus F(u) = m.

Problem 47
-A -

2. Choose a sequence (u,,) proposed in the hint. We have

1
U, = / Uy (x)dx

-
and thus |u,| < 1/n. On the other hand
lup — upllpooy = up(l) =y > 1 — .
and 1
(A /0 iy (0)dx = up (1) — u, (0) = 1.
3. Suppose, by contradiction, that the sup is achieved by some function u €

whl),ie.,
llu —wllzooqry = 1and [[u'|| 1) = 1.

We may assume, e.g., that there exists some xo € [0, 1] such that
S1) u(xg) —u = —+1.

On the other hand,
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1
S2 u= u(x) —minu | dx + minu > minu = u(yp),
¢ /o (() [0.1] ) 011 — 10,1] (o)

for some yg € [0, 1]. Combining (S1) and (S2) we obtain

u(xo) —u(yo) > 1.
But 1
u(xg) — u(yo) < /0 ' (x)|dx = 1.

Therefore all the inequalities become equalities, and in particular ¥ = minyo, 1) u.
This contradicts (S1).
6. Set
m = inf{|u'|Lr(ry; u € WHP(I) and u — | o) = 1},

and let (u,) be a minimizing sequence, i.e., ||u}, || Lr(ry — m and |lu, — @yl Le(r)
= 1. Without loss of generality we may assume that u,, = 0. Therefore (u,) is
bounded in WP (I). We may extract a subsequence (u,, ) converging weakly in
WLP(I) when p < oo (and (u;lk) converges weak* in L°°(I) when p = oc0) to
some limit u € W7 (I). By Theorem 8.8 we may also assume that Up, — U in
C (1) (since p > 1). Clearly we have

lu'lLray <m, u=0, and |lullra) = 1.
-B-
1. Apply Lax-Milgram in V equipped with the H L_horm, to the bilinear form

a(u,v) = [;u'v'. Note that a is coercive (e.g., by question A6).
2. Letw € CCl (I). Choosing v = (w — w) we obtain

/u/w/:/f(w—w):/fw Yw e CL(I).
1 1 1

We deduce that u € H?(I) and —u” = f. Similarly we have

/u/w/szw vw e H'(I)
1 1

and thus ' (0) = u’(1) = 0 (since w(0) and w(1) are arbitrary).
4. We have o (T /A1) C [0, 1]. Applying Exercise 6.24 ((v) = (vi)) we know that

M(Tf, f)=|Tf> YfeH

1 1
Al/ u/zz-/uz YueWw,
0 0

and we deduce that

where
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1
W = {u € H*(0,1); u'(0) = /(1) = 0 and f u= o} )
0

On the other hand, given any u € V, there exists a sequence u, € W such that
u, — uin H'. (Indeed let ¢, € CCl (I) be a sequence such that ¢, — u’ in
L2(I) and set u, (x) = f(;‘ ¢n (t)dt + c,,, where the constant ¢, is adjusted so that

fol u, = 0.) Therefore we obtain

lullgzqy < \/)\1||U/||L2(1) YueV.

Choosing an eigenfunction e of T corresponding to A1, and letting u; = Tej we
obtain

llueg ||L2(I) =VA ||M/1||L2(1)~

The eigenvalues of T are given by Ay = # k=1,2,.... Therefore the best
constant in (6) is 1/7.

1. Write, foru € Whi(I),

1 1 1 1 1
/|wm—an=/|wm—/ﬂww@wxs/'/|wm—u@muw
0 0 0 0 0

1 X X 1 1 y
5/ dx/ dy/ |u’(t)|dt+/ dx/ dy/ lu'(2)|dt
0 0 y 0 X X

1
- 2/ ' ()t (1 — t)dt
0

by Fubini.

3. Choose a function u € WL-1(I) such that u(x) = —% vx € (0, % —¢&), u(x) =
—i—% Vx € (% + &, 1) ,u = 0and u’ > 0, where ¢ € (0, —) is arbitrary. Then
'l = 1and flull, > 5 —e.

—_

4. There is no function u € W'1(I) such that ||u —ullpigy = % and ||u/||L1(1) =1.
Suppose, by contradiction, that such a function exists. Then

1 1 1
3 ==y =2 [ Wi —ndr < 5 [woar=3.
2 , 2/, 2

since 2t(1 —t) < % vVt € (0, 1). All the inequalities become equalities and
therefore (% —t(1 - t)) lu’(t)| = 0 a.e. Hence u’ = 0 a.e. Impossible.

Problem 49

7. We have
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a(wop + tv, wo + tv)
2
llwo + zvll7,

A1 = a(wg, wo) < Yv € HO1 (0, 1), Vr sufficiently small.

Therefore we obtain
1 1
A (1 + Zt/ wov + t2/ v2> < A1 4+ 2ta(wg, v) + tza(v, v),
0 0

and consequently
1
A / wov = a(wo, v) Yv e Hy (0, 1),
0

i.e., Awg = Ajwg on (0, 1).

8. We know from Exercise 8.11 that w; = |wg| € HO1 (0, 1) and |w}| = |wy| a.e.
Therefore a(wq, wi) = a(wp, wo), and thus w; is also a minimizer for (1). We
may then apply question 7.

10. Here is another proof which does not rely on the fact that all eigenvalues are
simple. (This proof can be adapted to elliptic PDE’s in dimension > 1.) Itis easy
to see (using question 9) that w?/w; belongs to H(} (0, 1). Therefore we have

1 w2 1 1
2
(Awy)— =A1/ w =/ (Aw)w.
0 w1 0 0

Integrating by parts we obtain

1 wa/ w2 1
/pwi - —w +61w2=/ pw’ +qu?,
0 w1 wl 0

and therefore

Consequently (g—’l)’ = wll(w’ - u:i—lw) = 0, and therefore w is a multiple of w.

Problem 50

2. Note that

1 1 1/2 1 1/2 1 1
/ |q|u2 < </ q2> ([ u4> < 8/ ut + CE/ qz.
0 0 0 0 0

Choosing ¢ = 1/8 we deduce that, Vu € HOl ©, 1),

1 | B L S Y
—a(u, - > — ! - - C.
2a(uu)+4/0u_2/0u +8/0u
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3. Let (u,) be a minimizing sequence, i.e., %a(un, Uy)+ % fol uﬁ — m. Clearly (u,)
is bounded in H(} (0, 1). Passing to a subsequence, still denoted by u,, we may
assume that u,, — uo weakly in HO1 (0, 1) and u,;, — ug in C([0, 1]). Therefore

.. 1 1 1 1 1 1
liminf,—oo fy u,? = fo up?, Jo qui — [y qud and [y up — [o ug. Conse-
quently a(ug, ug) + % f |u0|4 < m, and thus u( is a minimizer.

4. We have

1 1! 1 1!
—a(uo,uo)+—f g < —a(uo+zv,uo+rv>+—/ (uo + tv)*
2 4 Jo 2 4 Jo

1 1!
= Ea(uo, uo) + ta(ug, v) + Z/ (ug + dudrv) + 01?).
0

Taking r > 0 we obtain

1
a(ug, v) +/ u%v > 0().
0

Letting t — 0 and choosing v we are led to
1
a(ug, v) +/ ugv =0 Vv e H} (0, 1).
0

6. Recall that u; # 0 since %a(ul, uy) + 4—1‘[01 u‘l‘ = m < 0. On the other hand we
have
—u| 4+ a*uy = (@® —qg—uhuy=f >0

and f # 0 (provided a®> — ¢ — u% > (). We deduce from the strong maximum
principle (see Problem 45) that u1 > 0 on (0, 1), u}(0) > 0, and u} (1) < 0.
8. Letu € C Cl ((0, 1)); we have, using integration by parts,

1 2 1 / 277/ 1
_/ Ui/u_:/ Ul 2uu’ u Zl S/ W',
o U Jo Ui Uj 0

and therefore

1 1 U// 1
(S1) /O u? - U? = —/O 711(”2 —Uh = —/0 (g +UH@? - UD).

By density, inequality (S1) holds for every u € HO1 (0, 1). Assume p € K and set
u=,/p. Thenu € H(} (0, 1), and we have

1
1 1
<I>(p)—<1><p1>=[0 u? +qu? + Sut = U — qU} - JUY.

Using (S1) we see that
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: 2 2 2 1 1 4
B(p) — D)) = —(q+Ul)(u —U1)+qu +5ut —qU - 3U
0

2 1
14 1 IR A

Problem 51

1. The mapping v — Tv = (v, v, \/pv) is an isometry from V into L2(R)3. It
is easy to check that T (V) is a closed subspace of L2(R)3, and therefore V is
complete. V is separable since L?(R)? is separable.

3. Letu € C°(R). We have Vx € [—A, +A],

+A
(Sh) u(x) — u(—A)| s/A ' (O)ldt < V2AN | 2y

On the other hand u2(—A) = 2 f:o’z uu’ and therefore
(S2)

—A —+00 1 —+00 —+00
(=A< / |u|2+f WP < 5/ p|u|2+/ WP < Calu, u).
—00 —0Q0 —00 —00

Combining (S1) and (S2) we obtain
(S3) lu(x)| < Ca(u,w)'/? Vx € [-A, +A],

and consequently
+A
/ u|* < Ca(u,u).
—A
Next, write that

+0o0
/ up? < / ul? +/ uPdx < Cau, u).
—00 [x|<A [x|>A

+o00 +o00
/ lu'|* < a(u,u) and / plul* < au, u),
—00 —00

we conclude that a(u, u) > oc||u||%, Yu € CX(R), for some @ > 0.

4. Tt is clear that u € H?(I) for every bounded open interval / and u satisfies
—u"” + pu = f ae.onl.Since p,u and f are continuous on I we deduce that
u € C%(I). On the other hand, u(x) — 0 as |x| — oo by Corollary 8.9 (recall
that V ¢ H'(R)).

5. We have

Since

(S4) A W Q8 Eot + 20y + f e = f fFc2u.
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But
a@nu,;nu>=/R@nu’+c,;u>2 /PCnM —f fcnu+/ 2 by (S4).

Thus (since |¢,| < 1)

C
auit, &) < | fll 2 6t 2e) + 3 u?,

n<|x|<2n

Since u(x) — 0 as |x| — oo we see that n2fn<|x\<2n”2 — 0asn — oo. Using
the fact that a is coercive on V we conclude that |[,u|ly < C. It follows easily
that u € V. Returning to (S3) we obtain

+00
a(u,v) = fv YveCXM),

—00

and by density the same relation holds Vv € V.

6. Let F = {u € V; |lully < 1}. We need to show that F has compact closure in
L?(R). For this purpose we apply Corollary 4.27. Recall (see Proposition 8.5)
that

lTnue — ull 2y < 1R || L2y

and therefore

lim |tpu — ul|;2@®) = O uniformly inu € F.
[h|—0

On the other hand, given any ¢ > 0 we may fix a bounded interval / such that
[p(x)| > 8]—2 Vx € R\ I. Therefore

/ u|* < 82/ plul? < e ul} <& YueF.
R\/ R



Notation

General notations

A€ complement of the set A

E* dual space

(,) scalar product in the duality E*, E
[f =al={x; f(x) =}

B(xo, 1) open ball of radius r centered at xg

B ={x € E;|lx|]| <1}
epi ¢ = {[x, A]; p(x) < A}

7 conjugate function

L(E, F) space of bounded linear operators from
E into F

M+ orthogonal of M

D(A) domain of the operator A

G(A) graph of the operator A

N(A) kernel (= null space) of the operator A

R(A) range of the operator A

o(E, E) weak topology on E

o(E*, E) weak* topology on E*

— weak convergence

J canonical injection from E into E**

P’ conjugate exponent of p, i.e., % + # =1

a.e. almost everywhere

|A| measure of the set A

supp f support of the function f

f*xg convolution product of f with g

Pn sequence of mollifiers

(thfHx) = f(x+h) shift of the function f

w CCQ o strongly included in €2, i.e., @ is compact
and w C Q2

Px projection onto the closed convex set K
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[ Hilbert norm

p(T) resolvent set of the operator T
o(T) spectrum of the operator T
EV(T) the set of eigenvalues of the operator 7'
JHh=U+ )»A)’1 resolvent of the operator A
Ay = AlJ, Yosida approximation of the operator A
Vu = (E?T”l, 337”2, e %) gradient of the function u
8 lor] u N
D= ———— a=(xj,a2,...,0n5), laa| = ;|
X O 05 (o1, a2 N, ol =il e

N 92
Au = — Laplacian of u

Z 8xi2 p

i=l
RY = {x = (', xy) e RV I x Ry xy > 0}
0={x=,xy) e RY xR; |x'| < 1and |xy| < 1}
0, =0NnRY
Qo={x€ Q;xy =0}

1
(Dpu)(x) = i (u(x +h) —ux))
ou

8_ outward normal derivative
n

Function spaces

QCRN open set in RV

aQ=r boundary of Q2

L?(2) = {u : @ — R: u is measurable and fQ ul? < oo}, 1 <p <oo

L*®(Q) = {u : @ — R: u is measurable and |u(x)| < C a.e. in Q for some
constant C}

C:(2) space of continuous functions with compact
support in 2
Ck(Q) space of k times continuously differentiable

functions on Q,k > 0
C®(Q) = kmock(sz)
>

Cck(Q) functions in C¥(2) such that
for every multi-index o with || < k,
the function x — D%u(x) admits a continuous
extension to Q2

Ce @ = 0 C'@

CO,(X(Q) = u e C’(ﬁ)7 sup M
X, yEQ lx — y|*
_ Xy _
Che(Q) = {u € CK(Q); D/u € CO%(Q) Vj,|j| < k)

whr(Q), WO”’ (Q), WP (Q), H\(Q), H} (), H™(Q) Sobolev spaces

<oo¢ withO <o <1
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