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Foreword

This book contains expository lecture notes for some of the courses and talks given
at the school Topics in PDE’s and Applications 2008. A CRM & FISYMAT Joint
Activity, which took place at the FisyMat-Universidad de Granada (April 7 to 11,
2008) and at the Centre de Recerca Matemàtica (CRM) in Bellaterra, Barcelona
(May 5 to 9, 2008).

The goal of the school was to present some of the main advances that were
taking place in the field of nonlinear Partial Differential Equations and their ap-
plications. Oriented to Master and PhD students, recent PhD doctorates, and
researchers in general, the courses encompassed a number of areas in order to
open new perspectives to researchers and students.

The program in the Granada event consisted of five courses taught by Luigi
Ambrosio, Luis Caffarelli, François Golse, Pierre-Louis Lions, and Horng-Tzer Yau,
as well as two talks given by Yan Guo and Pierre-Emmanuel Jabin. The event
at the Centre de Recerca Matemàtica consisted of five courses taught by Henri
Berestycki, Häım Brezis, Carlos Kenig, Robert V. Kohn, and Gang Tian.

The volume covers several topics of current interest in the field of nonlinear
Partial Differential Equations and its applications to the physics of continuous me-
dia and of particle interactions. The lecture notes describe several powerful meth-
ods introduced in recent top research articles, and carry out an elegant description
of the basis for, and most recent advances in, the quasigeostrophic equation, inte-
gral diffusions, periodic Lorentz gas, Boltzmann equation, and critical dispersive
nonlinear Schrödinger and wave equations.

L. Caffarelli and A. Vasseur’s lectures describe the classical De Giorgi trun-
cation method and its recent applications to integral diffusions and the quasi-
geostrophic equation. The lectures by F. Golse concern the Lorentz model for the
motion of electrons in a solid and, more particularly, its Boltzmann–Grad limit in
the case of a periodic configuration of obstacles —like atoms in a crystal. Y. Guo’s
lectures concern the Boltzmann equation in bounded domains and a unified theory
in the near Maxwellian regime —to establish exponential decay toward a normal-
ized Maxwellian— for all four basic types of boundary conditions. The lectures by
C. Kenig describe a recent concentration-compactness/rigidity method for critical
dispersive and wave equations, in both defocusing and focusing cases. The issues
studied center around global well-posedness and scattering.

v
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We are very thankful to the CRM and FisyMat for hosting these advanced
courses. In particular, we thank the CRM director Joaquim Bruna for making
the CRM event possible. The CRM administrative staff and FisyMat coordinators
were very helpful at all times. We acknowledge financial support from the Minis-
terio de Educación y Ciencia, Junta de Andalućıa, and Generalitat de Catalunya,
institutions that supported the two events in the school.

Finally and above all, we thank the authors for their talks, expertise, and
kind collaboration.
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Chapter 1

The De Giorgi Method for
Nonlocal Fluid Dynamics

Luis A. Caffarelli and Alexis Vasseur

Introduction

In 1957, E. De Giorgi [7] solved the 19th Hilbert problem by proving the regularity
and analyticity of variational (“energy minimizing weak”) solutions to nonlinear
elliptic variational problems. In so doing, he developed a very geometric, basic
method to deduce boundedness and regularity of solutions to a priori very discon-
tinuous problems. The essence of his method has found applications in homoge-
nization, phase transition, inverse problems, etc.

More recently, it has been successfully applied to several different problems
in fluid dynamics: by one of the authors [12], to reproduce the partial regularity
results for Navier–Stokes equations originally proven in [1]; by several authors [5],
to study regularity of solutions to the Navier–Stokes equations with symmetries;
and by the authors, to prove the boundedness and regularity of solutions to the
quasi-geostrophic equation [2].

These notes are based on minicourses that we gave at the school Topics
in PDE’s 2008 in Fisymat-Granada and CRM Barcelona, as well as at schools in
Ravello and Córdoba (Argentina). The structure of the notes consists of two parts.
The first one is a review of De Giorgi’s proof, stressing the important aspects of
his approach, and the second one is a discussion on how to adapt his method to
the regularity theory for the quasi-geostrophic equation.

L.A. Caffarelli et al., Nonlinear Partial Differential Equations, Advanced Courses  1
in Mathematics - CRM Barcelona, DOI 10.1007/978-3-0348-0191-1_1, © Springer Basel AG 2012 



2 Chapter 1. The De Giorgi Method for Nonlocal Fluid Dynamics

1.1 The De Giorgi theorem

The 19th Hilbert problem consisted in showing that local minimizers of an energy
functional

E(w) =

∫
Ω

F (∇w) dx

are regular if F (p) is regular. By a local minimizer it is meant that

E(w) ≤ E(w + ϕ)

for any compactly supported function ϕ in Ω. Such a minimizer w satisfies the
Euler–Lagrange equation

div(Fj(∇w)) = 0.

Already in one dimension it is clear that F must be a convex function of p
to avoid having “zig-zags” as local minimizers. By performing the derivations, the
equation for w can also be written as

Fij(∇w)Dij(w) = 0,

a non-divergence elliptic equation from the convexity of F .
It was already known at the time (Calderón–Zygmund) that continuity of

∇w would imply, by a bootstrapping argument, higher regularity of w. But for a
weak solution, all that was known was that ∇w belongs to L2.

If we now formally take a directional derivative of w in the direction e,
ue = Dew, we find that ue satisfies the equation

Di (Fij(∇w)Djue) = 0,

a uniformly elliptic equation if F is strictly convex. At this point, there are two
possibilities to try to show the regularity of w: either try to link ∇w in the coef-
ficient with ue = Dew in some sort of system, or tackle the problem at a much
more basic level. Namely, forget that

Aij(x) = Fij(∇w)

is somewhat linked to the solution. Accept that we cannot make any modulus of
continuity assumption on Aij , and just try to show that a weak solution of

DiAij(x)Dju = 0

is in fact continuous.
This would imply jumping in the invariance class of the equation. All previous

theories (Schauder, Calderón–Zygmund, Cordes–Nirenberg) are based on being a
small perturbation of the Laplacian: Aij are continuous, or with small oscillation.
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But the class of uniformly elliptic equations (I ≤ Aij ≤ ΛI) with no regu-
larity assumptions is a scaling invariant class in itself, and never gets close to the
Laplacian.

De Giorgi then studied solutions u of

Diaij(x)Dju = 0

with no assumption on aij , except uniform ellipticity (I ≤ aij ≤ ΛI), and showed
that u is Cα. Applying this theorem to (w)e, he solved the Hilbert problem.

Hence, we need to prove the following:

Theorem 1. Let u be a solution of DiaijDju = 0 in B1 of RN with 0 < λI ≤
aij(x) ≤ ΛI (i.e., aij is uniformly elliptic). Then u ∈ Cα(B1/2) with

‖u‖Cα(B1/2) ≤ C‖u‖L2(B1),

where α = α(λ,Λ, n).

Proof. The proof is based on the interplay between the Sobolev inequality, which
says that ‖u‖L2+ε is controlled by ‖∇u‖L2 , and the energy inequality, which says
that, in turn, since u is a solution of the equation, ‖∇uθ‖L2 is controlled by ‖uθ‖L2

for every truncation uθ = (u− θ)+. �

1.1.1 Sobolev and energy inequalities

We next recall the Sobolev and energy inequalities.

Sobolev inequality

If v is supported in B1, then

‖v‖Lp(B1) ≤ C‖∇v‖L2(B1)

for some p(N) > 2.
If we are not too picky, we can prove it by representing

v(x0) =

∫
B1

∇v(x) · (x0 − x)

|x− x0|n dx = ∇v ∗G.

Since G “almost” belongs to LN/(N−1), any p < 2N/(N − 2) would do. The case
p = 2N/(N − 2) requires another proof.

Energy inequality

If u ≥ 0, DiaijDju ≥ 0, and ϕ ∈ C∞
0 (B1), then∫

B1

(∇[ϕu])2 ≤ C sup |∇ϕ|2
∫
B1∩ suppϕ

u2.

(Note that there is a loss going from one term to the other: ∇(ϕu) versus u.)
We denote by Λα the term Δαθ = −(−Δ)αθ.
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Proof. We multiply Lu = Di(aijDj(−u)) by ϕ2u. Since everything is positive,
we get

−
∫
∇T (ϕ2u)A∇u ≥ 0, where A = (aij).

We have to transfer a ϕ from the left ∇ to the right ∇. For this, we use that∫
∇T (ϕu)Au(∇ϕ) ≤ ε

∫
∇T (ϕu)A∇(ϕu) +

1

ε

∫
|∇ϕ|2u2‖A‖.

(Try it!) �

1.1.2 Proof of the De Giorgi theorem

The proof of the De Giorgi theorem is now split into two parts:

• Step 1: From L2 to L∞.

• Step 2: Oscillation decay.

We start with Step 1.

Lemma 2 (From an L2 to an L∞ bound). If ‖u+‖L2(B1) is small enough, namely
smaller than δ0(n, λ,Λ), then supB1/2

u+ ≤ 1.

Before going into the proof of this lemma, let us give a simple, geometric
analogy that avoids some of the technicalities of the proof.

Suppose that Ω is a domain in Rn and ∂Ω is a minimal surface when restricted
to B1, in the sense that the boundary of any perturbation inside B1 will have larger
area.
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We want to prove that a minimal surface “has no cusps”.

Lemma 3. If Vol(Ω∩B1) ≤ ε0, a small enough constant, then Vol(Ω∩B1/2) = 0.

For this purpose, we will take dyadic balls Brk = B 1
2+2−k converging to B1/2,

and rings Rrk = Brk−1
−Brk ; and we will find a nonlinear recurrence relation for

Vk = Vol(Ω ∩Brk) for k even, that will imply that Vk goes to zero. In particular,
Ω never reaches B1/2. In this analogy, volume replaces the square of the L2 norm
of u, area the energy

∫ |∇u|2, the isoperimetric inequality the Sobolev inequality,
and the minimality of the area the energy inequality. The argument is based on
the interplay between area and volume, as follows.

Ar controls Vk for r ≥ rk in a nonhomogeneous way

We have

Vk ≤ Vr ≤ (isoperimetric inequality) ≤ [Area(∂“Vr”)]
N/N−1

= (two parts) = [Ar +Area(∂Ω ∩Br)]
N/N−1 ≤ (2Ar)

N/N−1.

By minimality,
Area(∂Ω ∩Br) ≤ Ar.

This is the “energy inequality”.
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Vk controls Ar for some r in Rk+1 in a homogeneous way

We have

Vol(“Vk” \ “Vk+1”) ∼
∫ rk

rk+1

Ar ≥ 2−k inf Ar
rk+1≤r≤rk

.

If we combine both estimates, we get (notice the different exponents)

Vk+1 ≤ (2Ar)
N/(N−1)

rk+1≤r≤rk

≤ 2(N/(N−1))k V
N/(N−1) !!

k .

If V0 < ε0, the build up in the exponent as we iterate beats the large geometric
coefficient in the recurrence relation above, and Vk goes to zero. In particular,
B1/2 is “clean”.

We now pass to the proof of Lemma 2. The origin becomes now plus infinity,
‖u‖L2 plays the role of volume, and ‖∇u‖L2 that of area. We have the added
complication of having to truncate in space.

Proof of Lemma 2. We will consider a sequence of truncations ϕkuk, where ϕk is
a sequence of shrinking cut-off functions converging to χB1/2

. More precisely:

ϕk ≡
⎧⎨⎩1 for |x| ≤ 1 + 2−(k+1)

0 for |x| ≥ 1 + 2−k

|∇ϕk| ≤ C 2k.

Note that ϕk ≡ 1 on suppϕk+1,

B1/2

while uk is a sequence of monotone truncations converging to (u− 1)+:

uk = [u(1− 2−k)]+.

Note that, where uk+1 > 0, uk > 2−(k+1). Therefore {(ϕk+1uk+1) > 0} is
contained in {(ϕkuk) > 2−(k+1)}.

We will now show that, if ‖u‖L2(B1) = A0 is small enough, then

Ak =

∫
(ϕkuk)

2 → 0.
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In particular, (u− 1)+
∣∣
B1/2

= 0 a.e., that is, u never goes above 1 in B1/2.

This is done, as in the example, through a (nonlinear) recurrence relation
for Ak.

By the Sobolev inequality, we have[ ∫
(ϕk+1uk+1)

p

]2/p
≤ C

∫
(∇[ϕk+1uk+1])

2.

But, from Hölder,∫
(ϕk+1uk+1)

2 ≤
[ ∫

(ϕk+1uk+1)
p

]2/p
· |{ϕk+1uk+1 > 0}|ε,

so we get

Ak+1 ≤ C

∫
[∇(ϕk+1uk+1)]

2 · |{ϕk+1uk+1 > 0}|ε.

We now control the right-hand side by Ak through the energy inequality.
From energy we get∫

|∇(ϕk+1uk+1)|2 ≤ C 22k
∫
suppϕk+1

u2
k+1

(but ϕk ≡ 1 on suppϕk+1)

≤ C 22k
∫
(ϕkuk)

2 = C 22kAk.

To control the last term, from the observation above:

|{ϕk+1uk+1 > 0}|ε ≤ |{ϕkuk > 2−k}|ε,

and, by Chebyshev,

≤ 22kε
(∫

(ϕkuk)
2

)ε

.

So we get

Ak+1 ≤ C 24k(Ak)
1+ε.

Then, for A0 = δ small enough, Ak → 0 (prove it). The build up of the exponent
in Ak forces Ak to go to zero. In fact, Ak has faster than geometric decay, i.e., for
any M > 0, Ak < M−k if A0(M) is small enough. �

Corollary 4. If u is a solution of Lu = 0 in B1, then

‖u‖L∞(B1/2) ≤ C‖u‖L2(B1).
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Step 2: Oscillation decay

Let oscD u = supD u− infD u. We want to show:

Theorem 5. If u is a solution of Lu = 0 in B1, then there exists σ(λ,Λ, n) < 1
such that

oscB1/2
u ≤ σ oscB1 u.

Let us begin with the following lemma.

Lemma 6. Let 0 ≤ v ≤ 1, Lv ≥ 0 in B1. Assume that |B1/2 ∩ {v = 0}| = μ, where
μ > 0. Then supB1/4

v ≤ 1− σ(μ).

In other words, if v+ is a subsolution of Lv, smaller than one in B1, and is
“far from 1” in a set of non-trivial measure, it cannot get too close to 1 in B1/2.

The proof of Theorem 5 is based on the following idea. Suppose that, in B1,
|u| ≤ 1, i.e., osc u ≤ 2. Then u is positive or negative at least half of the time. Say
it is negative, i.e.,

|{u+ = 0}| ≥ 1
2 |B1|.

Then, on B1/2, u should not be able to be too close to 1. For u harmonic, for
instance, this just follows from the mean value theorem.

To start with our proof of Lemma 6, we first observe that if

|{u+ = 0}| ≥
(
1− δ

2

)
|B1|,

then
‖u+‖2L2(B1)

≤ δ/2,

and the previous lemma would tell us that u+|B1/2
≤ 1/2.

So we must bridge the gap between knowing that |{u+ = 0}| ≥ 1
2 |B1| and

knowing that |{u+ = 0}| ≥ (1− δ
2 )B1.

A main tool is the De Giorgi isoperimetric inequality, which establishes that
a function u with finite Dirichlet energy needs “some room in between” to go from
a value (say 0) to another (say 1).

It may be considered a quantitative version of the fact that a function with
a jump discontinuity cannot be in H1.

Sublemma. Let 0 ≤ w ≤ 1. Set

|A| = |{w = 0} ∩B1/2|,
|C| = |{w = 1} ∩B1/2|,
|D| = |{0 < w < 1} ∩B1/2|.

Then, if
∫ |∇w|2 ≤ C0

0 , we have

C0|D| ≥ C1(|A| |C|1− 1
n )2.
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Proof. For x0 in C we reconstruct w by integrating along any of the rays that go
from x0 to a point in A:

1 = w(x0) =

∫
wr dr, or

|A| ≤ area of S(A) ≤
∫
D

|∇w(y)| dy
|x0 − y|n−1(

wr dr dσ ≤ |∇w|rn−1dr dσ

rn−1

)
.

C

Integrating x0 on C,

|A| |C| ≤
∫
D

|∇w(y)|
(∫

C

dx0

|x0 − y|n−1

)
dy.

Among all C with the same measure |C|, the integral in x0 is maximized by the
ball of radius |C|1/n, centered at y:∫

C

· · · ≤ |C|1/n.

Hence,

|A| |C| ≤ |C|1/n
(∫

D

|∇w|2
)1/2

|D|1/2.

Since
∫ |∇w|2 ≤ C0

0 , the proof is complete. �
With this sublemma, we go to the proof of Lemma 6.

Idea of the proof of Lemma 6. We will consider a dyadic sequence of truncations
approaching 1,

vk = [v − (1− 2−k)]+,

and their renormalizations
wk = 2kvk.
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B1/2

v

v
v

v

|{v = 0}| ≥ μ > 0

v3
v2

v1

From the isoperimetric inequality, each time we truncate we expect the measure
of the support to decay in a quantitative way. After a finite number of steps, the
measure of the support of wk0

will fall below the critical value δ/2, and wk will
only be able to reach halfway towards 1, i.e.,

v|B1/2
≤ 1− 2−k0 .

We will be interested in the set Ck = {vk > 2−(k+1)} = {wk > 1/2}, its comple-
ment Ak = {vk = 0}, and the transition set Dk = [Ck − Ck−1].

Ck

Dk

Ck-1

We will show that, by applying the isoperimetric inequality and the previous
lemma in a finite number of steps k0 = k0(λ,Λ, μ),

|Ck0
| = 0.

Then σ(μ) = 2−k0 . Note that:

(a) A0 = μ (μ = 1/2 will do for our case).

(b) By the energy inequality, since |wk|B1
≤ 1,∫

B1/2

|∇wk|2 ≤ C.

(c) If Ck gets small enough,

4

∫
(wk)

2 ≤ |Ck| < δ,

we apply Lemma 6 to 2wk and 2wk|B1/4
≤ 1, and we are done.
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We iterate this argument with 2min(wk,
1
2 ) = w. If |Ck| stays bigger than

δ after a finite number of steps k0 = k(δ, μ), we get
∑ |Dk| ≥ |B1/2|. This is

impossible, so for some k < k0, |Ck| ≤ δ, which makes |Ck+1| = 0 from the first
part of the proof. �
Corollary 7. oscB

2−k
u ≤ λk oscB1

u.

Corollary 8. u ∈ Cα(B1/2) with λ = 2−α (defining α).

Corollary 9. If ‖u‖L∞(Rn) ≤ C, then u is constant.

The argument in Lemma 2 is very useful (and powerful) when two quantities
of different homogeneity compete with each other: area and volume (in a minimal
surface), or area and harmonic measure, or harmonic measure and volume as in
free boundary problems.

1.2 Integral diffusion and the quasi-geostrophic
equation

Nonlinear evolution equations with integral diffusions arise in many contexts: In
turbulence [13], in boundary control problems [8], in problems of planar crack
propagation in 3-D, in surface flame propagation, in “mean field games” theory,
in mathematical finance [10] and in the quasi-geostrophic equation [6].

1.2.1 Quasi-geostrophic flow equation

The quasi-geostrophic (Q-G) equation is a 2-D “Navier–Stokes type” equation.
In 2-D, Navier–Stokes simplifies considerably, since

(a) incompressibility (div�v = 0) implies that (−v2, v1) is a gradient:

(−v2, v1) = ∇ϕ;

(b) curl�v is a scalar, θ = curl�v = Δϕ.

The Navier–Stokes equation thus becomes a system:{
θt + �v∇θ = Δθ,

curl�v = θ.

For the Q-G equation, we still have that

(−v2, v1) = ∇ϕ.

But the potential ϕ is related to vorticity by θ = (−Δ)1/2ϕ. That is, the final
system becomes (we denote Δαθ = −(−Δ)αθ)

θt + �v∇θ = Δ1/2θ,
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and (−v2, v1) = (R1θ,R2θ), where Ri are the Riesz transforms of θ.
Note that we are in a critical case, since the regularization term (Δ1/2θ) is

of the same order as the transport term (�v∇θ).

1.2.2 Riesz transforms and the dependence of v on θ

More precisely, we can deduce this relation through Fourier transform:

θ̂ = |ζ|ϕ̂ and v̂ = (−iζ2ϕ̂, iζ1ϕ̂).
In particular,

v̂ =

(
− iζ2
|ζ| θ̂,

iζ1
|ζ| θ̂

)
.

The multipliers iξj/|ξ| are classical operators, called Riesz transforms, that corre-
spond in physical space x to convolution with kernels

Rj(x) =
xj

|x|n+1
,

i.e.,

vji (x) =

∫
Rj(x− y)θ(y) dy.

Note that, on one hand,

‖v‖L2(Rn) = ‖v̂‖L2(Rn) ≤ ‖θ̂‖L2(Rn),

that is, the Riesz transforms are bounded operators from L2 to L2. On the other
hand, R is neither integrable at zero nor at infinity. It is a remarkable theorem
that, because of the spherical cancellation on R (mean value zero and smoothness),
we have the following: The operator R ∗ θ = v is a bounded operator from Lp to
Lp for any 1 < p <∞ (Calderón–Zygmund). Unfortunately, it is easy to show that
singular integral operators are not bounded from L∞ to L∞. They are bounded,
though, from BMO to BMO.

1.2.3 BMO spaces

What is BMO? It is the space of functions with bounded mean oscillation. That is,
in any cube Q the “average of u minus its average” is bounded by a constant C,

1

|Q|
∫
Q

∣∣∣u(x)− 1

Q

∫
Q

u(y) dy
∣∣∣ dx ≤ C.

The smallest C good for all cubes defines a seminorm (as it does not distinguish
a constant that we may factor out). The space of functions u in BMO of the unit
cube is smaller than any Lp (p <∞) but not included in L∞ (for this, (log |x|)−
is a typical example).
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In fact, functions u in BMO have “exponential” integrability,∫
Q1

eC|u| <∞.

1.2.4 The fractional Laplacian and harmonic extensions

The fractional Laplacian Δαθ can be defined as convolution with a singular kernel
(0 < α < 1),

Δαθ(x0) = C(α) p.v.

∫
[θ(x)− θ(x0)]

|x− x0|n+2α
dx,

or through Fourier transform

̂(−Δ)αθ(ξ) = |ξ|2αθ̂(ξ).

Note that the kernel
K = C(α)|x|−(n+2α)

is singular near zero, so, in principle, some cancellation in u is expected for the
integral to converge. For instance, θ bounded and in C2 near x0 suffices. Also,
C(α) ∼ (1− α) guarantees that, as α→ 1, Δαθ converges to Δθ.

A particularly interesting case is the case α = 1/2, since in this case (−Δ)1/2u
coincides with the Dirichlet to Neumann map. More precisely, given θ defined for
x in Rn, we extend it to θ∗ defined for (x, y) in (Rn+1)+ by combining it with the
Poisson kernel:

Py(x) =
C y

(y2 + |x|2)n+1
2

= y−nP1(x/y).

Then θ∗(x, y) satisfies

Δx,yθ
∗ = 0 in Rn × R+

and it can be checked that Λ1/2θ(x0) = Dyθ
∗(x0, 0) in two ways:

(a) Represent θ∗(x0, h) as

θ∗(x0, h) = [Ph ∗ θ](x0)

and take the limit on the difference quotient

Dyθ
∗(x0, 0) = lim

h→0

θ∗(x0, h)− θ∗(x0, 0)

h
,

or

(b) Fourier-transform in x:

θ̂∗(ξ, y) satisfies |ξ|2θ̂∗ = Dyy θ̂∗.
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Thus
θ̂∗(ξ, y) = θ̂(ξ)e−y|ξ|.

In particular,

Dy θ̂(ξ, 0) = −θ̂(ξ)|ξ| = ̂(Δ1/2θ)(ξ).

Hence, we can make sense of the Green’s and “energy” formula for the half
Laplacian: Let σ(x), θ(x) be two “nice, decaying” functions defined in Rn, and
σ̄(x, y), θ̄(x, y) decaying extensions into (Rn+1)+. Then we have∫

Rn

σ(θ̄)ν =

∫
(Rn+1)+

∇x,yσ̄∇(x,y)θ̄ +

∫
(Rn+1)+

σ̄Δx,y θ̄.

If we choose θ̄(x, y) and the harmonic extension θ∗, the term θ̄ν(x, 0) becomes
−Δ1/2θ, and Δθ∗ ≡ 0, giving us∫

Rn

σ(−Δ1/2)θ =

∫
(Rn+1)+

∇σ∇θ∗.

Further, if we choose

σ = (θ − λ)+ and σ̄ = (θ∗ − λ)+

(i.e., the truncation of the extension of θ), we get∫
Rn

(θ − λ)+(−Λ1/2θ) =

∫
(Rn+1)+

[∇(θ∗ − λ)+]2 dx dy.

To complete our discussion, we point out that the harmonic extension θ∗ of θ
is the one extension that minimizes Dirichlet energy,

E(θ∗) =
∫
R

n+1
+

|∇θ∗|2,

and that this minimum defines the H1/2 norm of θ. In particular, we obtain∫
Rn

(θ − λ)+(−Δ1/2)θ =

∫∫
[∇(θ∗ − λ)+]2 dx dy

≥
∫∫

[∇(θ − λ)∗+]
2 dx dy = ‖(θ − λ)+‖2H1/2

since the harmonic extension of the truncation has less energy than the truncation
of the harmonic extension.
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To recapitulate

The operator Δ1/2 is interesting because:

(a) It can be understood as a “surface diffusion” process.

(b) It is the “Euler–Lagrange equation” of the H1/2 energy.

(c) Being of “order 1”, diffusion competes with transport.

In fact, the derivatives of θ are

DXjθ = Rj(Δ
1/2θ) and Δ1/2(θ) =

∑
j

Rj(DXjθ),

whereRj , the Riesz transform, is the singular integral operator with symbol iξj/|ξ|.

1.2.5 Regularity

The regularity theory for the quasi-geostrophic equation is based on two linear
transport regularity theorems: Theorems 10 and 11.

Theorem 10. Let θ be a (weak) solution of

θt + vΔθ = (Δ1/2)θ in Rn × [0,∞)

for some incompressible vector field v (with no a priori bounds) and initial data
θ0 in L2. Then

‖θ( · , 1)‖L∞(Rn) ≤ C‖θ( · , 0)‖L2(Rn).

Remarks. (i) All we ask from v is that the energy inequality makes sense for
any function h(θ) with linear growth. Formally, if we multiply and integrate,
we may write∫ T2

T1

∫
Rn

h(θ)v∇θ =

∫∫
v∇H(θ) =

∫∫
div vH(θ) = 0,

where H ′(θ) = h(θ).

Therefore, the contribution of the transport term in the energy inequal-
ity vanishes. In the case of the Q-G equation, this can be attained by rigor-
ously constructing θ in a particular way, for instance as a limit of solutions
in increasing balls BK .

(ii) From the scaling of the equation: For any λ,

θλ =
1

λ
θ(λx, λt)

is again a solution (with a different v). From Theorem 10 we obtain

‖θ( · , t0)‖L∞x = t0‖θt0( · , 1)‖L∞ ≤ t0‖θt0( · , 0)‖L2 = t
−n/2
0 ‖θ0‖L2 .

That is, uniform decay for large times.
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The proof of Theorem 10 is a baby version of the De Giorgi theorem based
on the interplay between the energy inequality (that controls the derivatives of θ
by θ itself), and the Sobolev inequality (that controls θ by its derivatives). It is
a baby version because, as in the minimal surface example, no cut-off in space is
necessary.

The energy inequality is attained, as usual, by multiplying the equation with
a truncation of θ,

(θλ) = (θ − λ)+,

and integrating in Rn × [T1, T2].
As we pointed out before, the term corresponding to transport vanishes, and

we get

1

2

∫ [
(θλ)

2(y, T2)− (θλ)
2(y, T1)

]
dy + 0 =

∫∫
Rn×[T1,T2]

θλΛ
1/2θ dy dt.

The last term corresponds, for the harmonic extension θ∗(x, z) to (x ∈ Rn,
z ∈ R+), to ∫ T2

T1

dt

(∫
Rn

(θ∗)λ(y, 0, t)Dz(θ
∗)(y, 0, t) dy

)
= −

∫ T2

T1

∫∫
R

n+1
+

∇(θ∗)λ(y, z, t)∇θ∗(y, z, t) dy dz

= −
∫ T2

T1

dt

∫∫
R

n+1
+

[∇θ∗λ]
2
dy dz.

Note that (θ∗)λ is not the harmonic extension of θλ, but the truncation of the
extension of θ, i.e., (θ∗ − λ)+.

Nevertheless, it is an admissible extension of θλ (going to zero at infinity)
and, as such,

‖θ∗λ‖H1(Rn+1
+ ) ≥ ‖θλ‖H1/2(Rn).

Therefore we end up with the following energy inequality:

‖θλ( · , T2)‖2L2 +

∫ T2

T1

‖θλ‖2H1/2 dt ≤ ‖θλ(T1)‖2L2 .

We will denote by A = (AT1,T2) the term on the left and by B = BT1 the one on
the right. Therefore, BT1 controls in particular (from the Sobolev inequality) all
of the future:

sup
t≥T1

‖θ(t)‖2L2 +

∫ ∞

T1

‖θ(t)‖2Lp ≤ BT1
.

This combination, in turn, actually controls

‖θ‖2Lq(Rn×[T1,∞))
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for some q with 2 < q < p, in the following way. Every such q is a convex combi-
nation

q = α2 + (1− α)p =
1

r
2 +

1

s
p

for r, s appropriate conjugate exponents.
Therefore, fixing such a q, we have, for each time t,∫

θq ≤
(∫

θ2
)1/r

·
(∫

θp
)1/s

.

We choose s = p/2 (> 1) and integrate in t. For the corresponding q, we get

‖θ‖qLq(Rn×[T1,∞)) ≤ sup
t≥t1

‖θ‖2/rL2(Rn) ·
∫ ∞

T1

‖θ‖2Lp ≤ (BT1
)1+

1
r = (BT1

)q/2.

We call CT1
= ‖θ‖2/qLq(Rn×[T1,∞]), i.e., CT1

≤ BT1
.

We are ready to prove the L∞ bound. For that purpose, we will find a recur-
rence relation for the constants

CTk
(θk)

of a sequence of increasing cut-offs λk = 1− 2−k of θ (i.e., θk = θλk
) and cut-offs

in time Tk = 1− 2−k, that will imply that θ∞ = (θ − 1)+ ≡ 0 for t > 1.
Indeed, on one hand, from Sobolev:

CTk
(θk) ≤ BTk

(θk).

We now invert the relation. For I = [Tk−1, Tk]× Rn, we have∫∫
I

(θk)
2 ≤

[∫∫
I

θqk

]2/q
|{θk > 0} ∩ I|1/q̄ = α · β

(by Hölder with θ2 and χθk>0) with q̄ the conjugate exponent to q/2.
In turn, α ≤ CTk−1

(θk−1) and, by going from k to k − 1, we can estimate
(this should sound familiar by now):

β =
∣∣{θk−1 > 2−k} ∩ I

∣∣1/q̄ ≤ [
2qk

∫∫
I

(θk−1)
q

]1/q̄
(by Chebyshev),

since θk ≤ θk−1 and further θk > 0 implies θk−1 > 2−k.
That is, β ≤ 2Ck

[
CTk−1

(θk−1)
]ε

and, putting together the estimates for α
and β, ∫∫

I

(θk)
2 ≤ 2Ck

[
CTk−1

(θk−1)
]1+ε

.

But then,

inf
[Tk−1<t<Tk]

Bt(θk) ≤ 2k2Ck · [CTk−1
(θk−1)

]1+ε
.



18 Chapter 1. The De Giorgi Method for Nonlocal Fluid Dynamics

We obtain the recurrence relation

CTk
(θk) ≤ 2C̄k

[
CTk−1

(θk−1)
]1+ε

.

Due to the 1 + ε nonlinearity, CTk
(θk) → 0 if C0(θ

+) was small enough, i.e., if
‖θ0‖L2 ≤ δ0, then ‖θ( · , t)‖L∞ ≤ 1, for t ≥ 1. Since the equation is linear in θ, we
can apply this result to (δ0/‖θ0‖L2)θ, which gives

‖θ( · , t)‖L∞ ≤ ‖θ0‖L2

δ0
for t ≥ 1.

We now pass to the issue of regularity, i.e., the “oscillation lemma”. Having
shown boundedness for the Q-G equation, our situation is now the following. We
have a solution θ that satisfies the energy bound:⎧⎪⎨⎪⎩

sup
t
‖θ(t)‖2L2(Rn) + ‖D1/2θ‖2Rn+1

+

≤ C

and also ‖θ‖L∞(X,t) ≤ 1,
(#)

and we want to prove that θ is Hölder continuous. To do this, we need to reproduce
the local in space De Giorgi method. Of the velocity field, we may assume now
(being the Riesz transform of θ) that

div v = 0, sup
t

(
‖v‖2L2(Rn) + ‖v‖BMO(Rn)

)
≤ C. (∗)

We decouple v from θ, and will prove a linear theorem, where for v satisfying (∗)
and θ satisfying (#) and the equation

θt + v∇θ = Δ1/2θ,

we have:

Theorem 11. θ is locally Cα.

To simplify the notation, we will assume that θ exists for t ≥ −4 and will
focus on the point (X, t) = (0, 0). The Hölder continuity will be proven through
an oscillation lemma, i.e., we will prove that on a geometric sequence of cylinders

Γk = B4−k × [4−k, 0]

the oscillation of θ,
ωk = sup

Γk

θ − inf
Γk

θ,

decreases geometrically, i.e.,

ωk+1 ≤ μωk for μ < 1.
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This is proved in several steps, following the L2 to L∞ and oscillation lemmas
discussed before.

The underlying idea is the following: Suppose that, on the cylinder Γ0 =
B1 × [−1, 0], θ lies between −1 and 1. Then at least half of the time it will be
below or above zero. Let us say that it is below zero. Then, because of the diffusion
process, by the time we are at the top of the cylinder and near zero, θ should have
gone uniformly strictly below 1, so now −1 ≤ θ ≤ 1− δ and the oscillation ω has
been reduced.

If we achieve this result, we renormalize and repeat. How do we achieve
this oscillation reduction? For the heat equation, this will just follow from simple
properties of the fundamental solution.

Here, following De Giorgi, we proceed in two steps. First, we show that if θ
is “most of the time negative” or very tiny in B1× [−1, 0], then, indeed, it cannot
stick to the value 1 close to the top of the cylinder and so it goes strictly below 1
in, say, B1/4 × [−1/4, 0].

Next we have to close the gap between “being negative most of the time”
and “being negative half of the time”, since this last statement is what we can
verify at each step.

This takes a finite sequence of cut-offs and renormalizations, exploiting the
fact that for θ to go from a level (say 0) to another (say 1), some minimal amount
of energy is necessary (the De Giorgi isoperimetric inequality). Finally, once this
has been reached, we can iterate.

In our case, the arguments are complicated by the global character of the
diffusion that may cancel the local effect that we described above. Luckily, we
may encode the global effect locally into the harmonic extension, but this requires
some careful treatment.

The first technical complication is that we must now truncate not only in θ
and t but also in X, yet this does not have the effect of fully localizing the energy
inequality, as a global term remains.

In the light of the iterative interaction between the Sobolev and energy in-
equalities, let us explore a little bit what kind of energy formulas we may expect
after a cut-off in space.

Let us start with a cut-off in x and z, for θ(x, t) and its harmonic extension
θ∗(x, z, t). That is, η is a smooth nonnegative function of x, z with support in
B∗

4 = B4×(−4, 4), and as usual we multiply the equation by η2θ∗λ (which coincides
with θλ for z = 0) and integrate.

We get the following terms:

2

∫ T2

T1

∫
η2θλθt dx dt ≡

∫
η2(θλ)

2(T2) dx−
∫

η2(θλ)
2(T1) dx. (I)

Next we have the transport term, an extra term not usually present in the
energy inequality:
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2

∫∫
η2θλv∇θ dx dt =

∫∫
η2 div[v(θλ)

2] dx dt

= −
∫∫

2η∇η [v(θλ)
2] dx dt.

(II)

We split the term into the two factors (∇η)v θλ and ηθλ, the logic being that v
is almost bounded and thus the first term is almost like the standard right-hand
side in the energy inequality while the second would be absorbed by the energy.

For each fixed t, we get

|II| ≤
∫ T2

T1

‖ηθλ‖L2n/(n−1)‖∇η[vθλ]‖L2n/(n+1)

≤
∫ T2

T1

ε‖ηθλ‖2L2n/(n−1) +
1

ε
‖∇η[vθλ]‖2L2n/(n+1) .

But 2n/(n+1) < 2, so we can split by Hölder [∇η]θλ in L2 and v in a (large)
Lp, more precisely L2n since we have that v is in every Lp.

That is,

II ≤ ε

∫ T2

T1

‖ηθλ‖2L2n/(n−1) +
1

ε

∫ T2

T1

‖v‖2L2n(B2)
‖[∇η]θλ‖2L2 .

(Remember that, by hypothesis, ‖v‖L2n(B2) ≤ C for every t.)
Hence,

II ≤ ε

∫ T2

T1

‖ηθλ‖2L2n/(n−1) +
1

ε
C

∫ T2

T1

‖[∇η]θλ‖2L2 .

Finally, III is our energy term, i.e.,

III =

∫∫
η2θλΔ

1/2θ.

Using the harmonic extension θ∗, we get that

III = −
∫∫

η2θλθ
∗
ν dx dt = −

∫∫∫
∇x,z(η

2θ∗λ)∇θ∗ dx dz dt.

By the standard energy inequality computation, we get that

III ≤ −
∫∫∫

[∇x,zηθ
∗
λ]

2 dx dz dt+

∫∫∫
(∇η)2(θ∗λ)

2.

We may choose η to be a cut-off in x and z or to integrate to infinity in z, if we
have control of θ∗λ in z.

Remark. If, for some reason, we know that (θ∗λ) ≡ 0 in B1 × {z0} for some z0,
then we may cut off only in x and still stop the integration at z0.
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Putting together I, II and III, we get

sup
T1≤t≤T2

‖ηθλ‖2L2 +

∫ T2

T1

‖∇(ηθ∗λ)‖2L2

≤ ‖ηθλ(T1)‖2L2 + ε

∫ T2

T1

‖ηθλ‖2L2n/(n−1)

+
1

ε
C

∫ T2

T1

‖(∇η)θλ‖2L2 +

∫ T2

T1

‖(∇η)θ∗λ‖2L2
x,z

.

Notice that ηθ∗λ is one extension of ηθλ and therefore the term in the left∫ T2

T1

‖∇(ηθ∗λ)‖2L2 controls

∫ T2

T1

‖ηθλ‖2H1/2 ,

so the left-hand side controls, by the Sobolev inequality, the term∫ T2

T1

‖ηθλ‖2L2n/(n−1)

and absorbs the ε term on the right.

We finally get the energy estimate:

sup
T1≤t≤T2

‖ηθλ‖2L2 +

∫ T2

T1

‖∇(ηθ∗λ)‖2L2

≤ ‖ηθλ(T1)‖2L2 +

∫ T2

T1

‖(∇η)θ∗λ‖2L2
x,z

+ φ

∫ T2

T1

‖(∇η)θλ‖2L2

(1.2.1)

where the constant φ depends only on the BMO seminorm and mean value of the
velocity v (namely the constant in (∗)).

In fact, if it weren’t because of the term on the right∫ T2

T1

‖(∇η)θ∗λ‖2L2
x,z

involving the extra variable z, everything would reduce to Rn, and we would have
the usual interplay between the Sobolev and energy inequalities, as in the global
case, and a straightforward adaptation of the second-order case would work.

In light of this obstruction, let us reassess the situation. As we mentioned
before, our first lemma (Lemma 12) would be (following the iterative scheme) to
show that if, say, the L2 norm of θ+ is very small (and θ+ ≤ 2) in B4 × [−4, 0],
then θ+ is strictly less than 2 in B1 × [−1, 0], i.e., θ+ ≤ γ0 < 2 for some γ0.

Let us see how this can work.
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1.2.6 A geometric description of the argument

Starting up, for a fixed time t, we decompose θ∗ into two parts:

• θ∗1 goes to zero linearly as z → 0 for |x| < 1/2.

• θ∗2 has a very small trace in L2, so it becomes very small in L∞ as z grows.

Given δ, we may assume that θ∗(X, δ) ≤ Cδ since we can choose ‖θ‖L2 as small
as we please.

Therefore, the first truncation θ∗λ0
is controlled by its trace, with very small L2

norm, and the very narrow sides (of size δ), whose influence decays exponentially
moving inwards in X:

We will try now to perpetuate, in our inductive scheme, this configuration.
The idea of the inductive scheme is then as follows:

(1) In X, we will cut dyadically (as in De Giorgi) converging to χB1/2
.

(2) In θ, also dyadically converging to λ (where 1 < λ < 2).

(3) In Z, though, we will cut at a very fast geometric rate, going to zero (as δk).

The reason why we may hope to maintain this configuration is because in-
herent to the De Giorgi argument is the very fast decay (faster than geometric
decay) of the L2 norm of the truncation θk.
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The idea is that, on one hand, the fast cut-off in Z will make the influence
of the tiny sides decay so much in X that at the level of the next cut-off (in X)
it will be wiped out by the dyadic cut-off in θ, while the contribution of the trace
θk will decay so fast (faster than M−k if we choose c0 very small) that

θ∗k(X, δk) ≤ θk ∗ Pδk ≤ ‖θk‖L2‖Pδk‖L2

will also be wiped out by the consecutive truncation.

At the end of the process, at time t0, we have only information on the trace θ,
but we can go inwards by harmonicity to complete the proof.

1.2.7 First part

In this first part, we prove that a solution θ between 0 and 2, with very small L2

norm, separates from θ = 2 in a smaller cylinder.

Lemma 12. We assume that

‖v‖L∞(−4, 0; BMO(RN )) + sup
−4≤t≤0

∣∣∣∣∫
B4

v(t, x) dx

∣∣∣∣ ≤ C0. (1.2.2)

Then there exist ε0 > 0 and λ > 0 such that, for every solution θ to (1.2.1), the
following property holds true: If we have θ∗ ≤ 2 in [−4, 0]×B∗

4 and∫ 0

−4

∫
B∗4

(θ∗)2+ dx dz ds+

∫ 0

−4

∫
B4

(θ)2+ dx ds ≤ ε0,

then (θ)+ ≤ 2− λ on [−1, 0]×B1.
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Proof. The proof follows the strategy discussed above. First, we introduce some
previous tools. Since the method was based on the control of θ∗ by two harmonic
functions, one for the local data and the other for the far away, before starting the
proof we build two useful barriers.

Step 1: Barriers

The first barrier is the following:

Barrier b1(x, z)
b1 = 2 in z = 1

b1 = 2 in |x| = 1

z = 1/2

b1≤2− 4λ< 2 b1 = 2 in |x| = 1

b1 = 0 in z = 0

Then b1 has the following properties:

(i) b1 is harmonic in B∗
1 ;

(ii) b1 = 2 in ∂B∗
1 except z = 0;

(iii) b1 = 0 in ∂B∗
1 ∩ {z = 0};

and, for some 0 < λ, we have b1 ≤ 2− 4λ < 2 in B∗
1/2.

The barrier b1 implies that
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The barrier b2 satisfies the following:

x1 = −1 x1 = 1

�
�
��

���z = ±δ

(i) b2 is harmonic in D;

(ii) b2 = 0 for z ± δ;

(iii) b2 = 1 for x1 = 1 and b2 = 0 for x1 = −1.
Then b2 ≤ C̄ cos(z/δ) e−(1−x1)/δ. In particular, if 1 − x1 = h  δ, we have

b2 ≤ C̄e−h/δ and C̄ = (cos 1)−1.

Remark. Exponential decay also holds for DiaijDj by applying the Harnack in-
equality to the intervals Ik = {k ≤ x1 ≤ k + 1}.

Now we are ready to set the main inductive steps as discussed above. When
we do so, we will realize that we have to start the process for some advanced value
k of the step. So we will go back and do a first large step to cover the starting of
the process.

Step 2: Setting of the constants

We recall that λ > 0 is defined by the fact that the barrier function satisfies that
b1 < 2 − 4λ in B∗

1/2. Next, C̄ = (cos 1)−1 is the constant in the bound for the
barrier function b2. The smallness constant C0 in the hypothesis of Lemma 12 will
be chosen later as C0(λ,M).

We need to fix constants M for the rate of decay of the L2 norm of the
truncation θk and δ for the rate of decay of the support in z of θ∗k.

We require:

(i) nC̄e−(2δ)−k ≤ λ2−k−2 (with δ small so the side contribution is absorbed by
the cut-off);

(ii) δn(Mδn)−k‖P (1)‖L2 ≤ λ2−k−2 (with M(δ) large to keep the support of the
truncation in the δk strip);

(iii) M−k ≥ Ck
0M

−(k−3)(n+1/n) for k ≥ 12n (so that the inductive decay gives us
the fast geometric decay).

Here P (1) denotes the restriction of the Poisson kernel P (x, z) to z ≡ 1.
The choice is straightforward. We first construct δ to verify the first inequality

in the following way. If δ < 1/4, the inequality is true for k > k0 due to the



26 Chapter 1. The De Giorgi Method for Nonlocal Fluid Dynamics

exponential decay. If necessary, we then choose δ smaller to make the inequality
also valid for k < k0. Now that δ has been fixed, we have to choose M large to
satisfy the remaining inequalities. Note that the second inequality is equivalent to(

2

δnM

)k

≤ λδn

4‖P (1)‖L2

.

It is sufficient to take

M ≥ sup

(
2

δn
,
8‖P (1)‖L2

λδn

)
.

The third inequality is equivalent to(
M

CN
0

)k/N

≥M3(1+1/N).

For this it is enough to take M ≥ sup(1, C2N
0 ). Indeed, this ensures M2/C2N

0 ≥M
and hence (

M

CN
0

)k/N

≥Mk/(2N) ≥M6.

The main inductive step will be the following.

Step 3: Induction

We set
θk = (θ − Ck)+,

with Ck = 2− λ(1 + 2−k). We consider a cut-off function in x only such that

1{B
1+2−k−1} ≤ ηk ≤ 1{B

1+2−k}, |∇ηk| ≤ C2k,

and we let

Ak = 2

∫ 0

−1−2−k

∫ δk

0

∫
RN

|∇(ηkθ
∗
k)|2 dx dz dt+ sup

[−1−2−k,1]

∫
RN

(ηkθk)
2 dx dt.

We want to prove that, for every k ≥ 0,

Ak ≤M−k, and (1.2.3)

ηkθ
∗
k is supported in 0 ≤ z ≤ δk (1.2.4)

(it vanishes at δk, and thus we can extend it by zero).

Step 4: Starting the process

We prove in this step that, if ε0 is small enough, then (1.2.3) is verified for 0 ≤ k ≤
12N , and that (1.2.4) is verified for k = 0. We use the energy inequality (1.2.1)
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with cut-off function ηk(x)ψ(z) where ψ is a fixed cut-off function in z only. Taking
the mean value of (1.2.1) in T1 between −4 and −2, we find that (1.2.3) is verified
for 0 ≤ k ≤ 12N if ε0 is taken such that

C224N (1 + φ)ε0 ≤M−12N . (1.2.5)

We have used that |∇ηk|2 ≤ C224N for 0 ≤ k ≤ 12N . Let us consider now the
support property (1.2.4). By the maximum principle, we have

θ∗ ≤ (θ+1B4) ∗ P (z) + b1(x, z)

in R+×B∗
4 , where P (z) is the Poisson kernel. Indeed, the right-hand side function

is harmonic, positive, and the trace on the boundary is bigger than the one of θ∗.
From Step 1 we have b1(x, z) ≤ 2− 4λ. Moreover,

‖θ+1B4 ∗ P (z)‖L∞(z≥1) ≤ C‖P (1)‖L2

√
ε0 ≤ C

√
ε0.

Choosing ε0 small enough so that this constant is smaller than 2λ gives

θ∗ ≤ 2− 2λ for 1 ≤ z ≤ 2, t ≥ 0, x ∈ B2,

so
θ∗0 = (θ∗ − (2− 2λ))+ ≤ 0 for 1 ≤ z ≤ 2, t ≥ 0, x ∈ B2.

Hence, η0θ
∗
0 vanishes for 1 = δ0 ≤ z ≤ 2.

Step 5: Propagation of the support property (1.2.4)

Assume that (1.2.3) and (1.2.4) are verified at k. We want to show that (1.2.4) is
verified at (k + 1). We will also show that the following is verified at k:

ηk+1θ
∗
k+1 ≤ [(ηkθk) ∗ P (z)]ηk+1 on B

∗
k, (1.2.6)

where B
∗
k = B1+2−k × [0, δk]. We want to control θ∗k on this set by harmonic

functions taking into account the contributions of the sides one by one. Consider
B1+2−k−1/2 × [0, δk]. On z = δk we have no contribution thanks to the induction
property (1.2.4) at k (the trace is equal to 0). The contribution of the side z = 0
can be controlled by ηkθk ∗ P (z). (It has the same trace as θk on B1+2−k−1/2 .)

On each of the other sides we control the contribution by the following func-
tion of x = (x1, . . . , xN ):

b2((xi − x+)/δk, z/δk) + b2((−xi + x−)/δk, z/δk),

where x+ = (1+2−k−1/2) and x− = −x+. Indeed, b2 is harmonic, and on the side
x+
i and x−

i it is bigger than 2. Finally, by the maximum principle,

θ∗k ≤
N∑
i=1

[
b2((xi − x+)/δk, z/δk) + b2((−xi + x−)/δk, z/δk)

]
+ (ηkθk) ∗ P (z).
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From Step 1, for x ∈ B1+2−k−1 :

N∑
i=1

[
b2((xi − x+)/δk, z/δk) + b2((−xi + x−)/δk, z/δk)

]
≤ 2NCe

− 2−k

4(
√

2+1)δk ≤ λ2−k−2

(thanks to Step 2). This gives (1.2.6), since

θ∗k+1 ≤ (θ∗k − λ2−k−1)+.

More precisely, this gives

θ∗k+1 ≤ ((ηkθk) ∗ P (z)− λ2−k−2)+.

So,

ηk+1θ
∗
k+1 ≤ ((ηkθk) ∗ P (z)− λ2−k−2)+.

From the second property of Step 2, we find that, for δk+1 ≤ z ≤ δk,

|(ηkθk) ∗ P (z)| ≤
√
Ak‖P (z)‖L2

≤ M−k/2

δ(k+1)N/2
‖P (1)‖L2 ≤ λ2−k−2.

The last inequality makes use of Step 2. Therefore,

ηk+1θ
∗
k+1 ≤ 0 for δk+1 ≤ z ≤ δk.

Note, in particular, that with Step 4 this gives that (1.2.4) is verified up to k =
12N + 1 and (1.2.6) up to k = 12N .

Step 6: Propagation of property (1.2.3)

We show in this step that if (1.2.3) is true for k − 3 and (1.2.4) is true for k − 3,
k − 2 and k − 1, then (1.2.3) is true for k.

First notice that, from Step 5, (1.2.4) is true at k − 2, k − 1, and k. We just
need to show that

Ak ≤ Ck
0 (Ak−3)

1+1/N for k ≥ 12N + 1, (1.2.7)

with

C0 = C
21+2/N

λ2/N
. (1.2.8)

Indeed, if we do the third inequality of Step 2, this will give us the result.
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Step 7: Proof of (1.2.7)

Since ηkθ
∗
k1{0<z<δk−1} has the same trace at z = 0 as (ηkθk)

∗ and the latter is
harmonic, we have∫ δk−1

0

∫
RN

|∇(ηkθ
∗
k)|2 =

∫ ∞

0

∫
RN

|∇(ηkθ
∗
k1{0<z<δk−1})|2

≥
∫ ∞

0

∫
RN

|∇(ηkθk)
∗|2

=

∫
RN

|Λ1/2(ηkθk)|2.

Note that we have used (1.2.4) in the first equality. The Sobolev and Hölder
inequalities give

Ak−3 ≥ C‖ηk−3θk−3‖2L2(N+1)/N ([−1−2−k−3,0]×RN ).

From (1.2.6),

‖ηk−2θ
∗
k−2‖2L2(N+1)/N ≤ ‖P (1)‖2L1‖ηk−3θk−3‖2L2(N+1)/N .

Hence,

Ak−3 ≥ C‖ηk−2θ
∗
k−2‖2L2(N+1)/N + C‖ηk−3θk−3‖2L2(N+1)/N

≥ C
(‖ηk−2θ

∗
k−1‖2L2(N+1)/N + ‖ηk−2θk−1‖2L2(N+1)/N

)
.

Since ηk is a cut-off function in x, and using (1.2.4), we have that ηkθ
∗
k vanishes on

the boundary ofB1+2−k×[−δk, δk]. We can then apply the energy inequality (1.2.5)
on ηkθ

∗
k1{0<z<δk−1}. Taking the mean value of (1.2.5) in T1 between −1− 2−k−1

and −1− 2−k, we find:

Ak ≤ C22k(φ+ 2)

(∫ δk

0

∫
RN

η2k−1θk
2 +

∫ δk

0

∫
RN

η2k−1θ
∗
k
2

)
.

We have used here the fact that |∇η|2 ≤ C22kη2k−1. If θk > 0, then θk−1 ≥ 2−kλ.
So,

1{θk>0} ≤ C2k

λ
θk−1,

and

1{ηk−1>0}1{θk>0} ≤ C2k

λ
ηk−2θk−1.

Therefore,∫
η2k−1θk

2 +

∫
η2k−1θ

∗
k
2

≤ C22k/N

λ2/N

[∫
(ηk−2θk−1)

2(N+1)/N +

∫
(ηk−2θ

∗
k−1)

2(N+1)/N

]
,
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and so

Ak ≤ C2k(2+2/N)

λ2/N
A

1+1/N
k−3 .

This gives (1.2.7), for C big enough compared to λ2/N . �

1.2.8 Second part

In the first part, we have established that, if 0 ≤ θ+ ≤ 2 and its energy or norm is
very small in B∗

4 , then θ+ ≤ 2− λ in Bj , i.e., the oscillation of θ actually decays.
We now want to get rid of the “very small” hypothesis.
This second lemma (Lemma 13) proves that, if θ+ ≤ 0 “half of the time” and

it only needs very little room (say, δ) to go from {θ+ ≤ 0} to {θ ≥ 1}, it is because
(θ − 1)+ has already very small norm to start with. This produces a dichotomy:
either the support of θ decreases substantially, or θ becomes small anyway, in the
same spirit as De Giorgi’s lemma.

Lemma 13. For every ε1 > 0 there exists a constant δ1 > 0 with the following
property: For every solution θ to (1.2.1) with v verifying (1.2.2), if θ∗ ≤ 2 in Q∗

4

and

|{(x, z, t) ∈ Q∗
4 : θ∗(x, z, t) ≤ 0}| ≥ |Q∗

4|
2

,

then the following implication holds true: If

|{(x, z, t) ∈ Q∗
4 : 0 < θ∗(x, z, t) < 1}| ≤ δ1,

then ∫
Q1

(θ − 1)2+ dx dt+

∫
Q∗1

(θ∗ − 1)2+ dx dz dt ≤ C
√
ε1.

This lemma is, of course, the adapted version of the De Giorgi’s isoperimetric
inequality.

The idea of the proof is the following. We first throw away a small set of
times for which It =

∫
B∗1
|∇u∗|2 dx dz is very large:

It ≥ K2

ε21
.

This is a tiny set of times:
|S| ≤ C ε2/k2,

since ∫∫
|∇u∗|2 dx dz dt ≤ C0.

Outside of S, for each time t, the isoperimetric inequality is valid:

|A| |B| ≤ |D| K/ε1.
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But for some t, say t < − 1
64 , we may choose a slice where |A| > 1

64 and
|D| ≤ δ. Then |B| ≤ (64)2δ K/ε1 ≤ Kε1 if δ ∼ ε2. In particular, (θ − 1)+ has
very small L2 norm for that t: ‖(θ−1)+‖L2 ≤ kε1. But the energy inequality then
controls the L2 norm of (θ − 1)+ into the future. We now give a more detailed
proof.

Proof. Take ε1 � 1. From the energy inequality and using that θ∗ ≤ 2 in Q∗
4,

we get ∫ 0

−4

∫
B∗1

|∇θ∗+|2 dx dz dt ≤ C.

Let

K =
4
∫ |∇θ∗+|2 dx dz dt

ε1
.

Then ∣∣∣∣∣
{
t :

∫
B∗1

|∇θ∗+|2(t) dx dz ≥ K

}∣∣∣∣∣ ≤ ε1
4
. (1.2.9)

For all t ∈ {t :
∫
B∗1
|∇θ∗+|2(t) dx dz ≤ K}, the isoperimetric inequality gives that

|A(t)||B(t)| ≤ |C(t)|1/2K1/2,

where

A(t) = {(x, z) ∈ B∗
1 : θ∗(t, x, z) ≤ 0},

B(t) = {(x, z) ∈ B∗
1 : θ∗(t, x, z) ≥ 1},

C(t) = {(x, z) ∈ B∗
1 : 0 < θ∗(t, x, z) < 1}.

Let us set δ1 = ε81 and

I =

{
t ∈ [−4, 0] : |C(t)|1/2 ≤ ε31 and

∫
B∗1

|∇θ∗+|2(t) dx dz ≤ K

}
.

First we have, using the Chebyshev inequality,∣∣∣{t ∈ [−4, 0] : |C(t)|1/2 ≥ ε31}
∣∣∣ ≤ |{(t, x, z) : 0 < θ∗ < 1}|

ε61

≤ δ1
ε61
≤ ε21 ≤ ε1/4.

Hence |[−4, 0] \ I| ≤ ε1/2. Secondly, we get for every t ∈ I such that |A(t)| ≥ 1/4,

|B(t)| ≤ |C(t)|1/2K1/2

|A(t)| ≤ 4Cε
5/2
1 ≤ ε21. (1.2.10)
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In particular, ∫
B∗1

θ∗+
2(t) dx dz ≤ 4(|B(t)|+ |C(t)|) ≤ 8ε21.

But ∫
B1

θ2+(t) dx =

∫
B1

θ∗+
2(t, x, z) dx− 2

∫ z

0

∫
B1

θ∗+(t)∂zθ
∗ dx dz̄

for any z. Therefore, integrating in z on [0, 1], we find:∫
B1

θ2+(t) dx ≤
∫
B∗1

θ∗+
2(t, x, z) dx dz + 2

√
K

√∫
B∗1

θ∗+
2(t) dx dz ≤ C

√
ε1.

We want to show that |A(t)| ≥ 1/4 for every t ∈ I ∩ [−1, 0]. First, since

|{(t, x, z) : θ∗ ≤ 0}| ≥ |Q∗
4|/2,

there exists t0 ≤ −1 such that |A(t0)| ≥ 1/4. For this t0,
∫
θ2+(t0) dx ≤ C

√
ε1.

Using the energy inequality, for any r > 0 (where ∇η is of order 1/r) we have, for
every t ≥ t0, ∫

B1

θ2+(t) dx ≤
∫
B1

θ2+(t0) dx+
C(t− t0)

r
+ Cr.

Let us choose r such that

Cr + C
√
ε1 ≤ 1/128.

So, for t− t0 ≤ δ∗ = r/(128C), we have∫
B1

θ2+(t) dx ≤
1

64
.

(Note that δ∗ does not depend on ε1. Hence we can suppose ε1 � δ∗.) Moreover,

θ∗+(z) = θ+ +

∫ z

0

∂zθ
∗
+ dz̄ ≤ θ+ +

√
z

(∫ z

0

|∂zθ∗+|2 dz̄
)1/2

.

So, for t− t0 ≤ δ∗, t ∈ I and z ≤ ε21, we have, for each x,

θ∗+(t, x, z) ≤ θ+(t, x) +

(
ε21

∫ ∞

0

|∂zθ∗+|2 dz̄
)1/2

.

The integral, in x only, of the square of the right-hand side term is less than
1/8 + C

√
ε1 ≤ 1/4. So, by Chebyshev, for every fixed z ≤ ε1,

|{x ∈ B1, θ∗+(t, x, z) ≥ 1}| ≤ 1

4
.
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Integrating in z on [0, ε21] gives

|{z ≤ ε21, x ∈ B1, θ∗+(t) ≥ 1}| ≤ ε21
4
.

First we work in B1 × [0, ε21]. Since |C(t)| ≤ ε61, this gives

|A(t)| ≥ |B1|ε21 − |{z ≤ ε21, x ∈ B1, θ∗+(t) ≥ 1}| − |C(t)|

≥ ε21(1− 1/4)− ε61 ≥ ε21/2.

In the same way as in (1.2.10), we find that

|B(t)| ≤ |C(t)|1/2K1/2

|A(t)| ≤ C
√
ε1,

and
|A(t)| ≥ 1− |B(t)| − |C(t)| ≥ 1− 2

√
ε1 − ε61 ≥ 1/4.

Hence, for every t ∈ [t0, t0 + δ∗] ∩ I we have |A(t)| ≥ 1/4. On [t0 + δ∗/2, t0 + δ∗]
there exists t1 ∈ I (δ∗ ≥ ε1/4). And so, we can construct an increasing sequence tn
with 0 ≥ tn ≥ t0+nδ∗/2, such that |A(t)| ≥ 1/4 on [tn, tn+δ∗]∩I ⊃ [tn, tn+1]∩I.
Finally, on I∩ [−1, 0] we have |A(t)| ≥ 1/4. This gives from (1.2.10) that, for every
t ∈ I ∩ [−1, 0], |B(t)| ≤ ε1/16. Hence,

|{θ∗ ≥ 1}| ≤ ε1/16 + ε1/2 ≤ ε1.

Since (θ∗ − 1)+ ≤ 1, this gives that∫
Q∗1

(θ∗ − 1)2+ dx dz dt ≤ ε1.

We have, for every t, x fixed,

θ − θ∗(z) = −
∫ z

0

∂zθ
∗ dz.

So,

(θ − 1)2+ ≤ 2

(
(θ∗(z)− 1)2+ +

(∫ z

0

|∇θ∗| dz
)2

)
for any z. Hence we have

(θ − 1)2+ ≤
2√
ε1

∫ √
ε1

0

(θ∗ − 1)2+ dz + 2
√
ε1

∫ √
ε1

0

|∇θ∗|2 dz.

Therefore, ∫
Q1

(θ − 1)2+ dx ds ≤ C
√
ε1. �
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1.2.9 Oscillation lemma

We are now ready to iterate the process for the oscillation lemma.

Lemma 14. There exists λ∗ > 0 such that, for every solution θ to (1.2.3) with v
satisfying (1.2.2), if θ∗ ≤ 2 in Q∗

1 and

|{(t, x, z) ∈ Q∗
1 : θ∗ ≤ 0}| ≥ 1

2
,

then θ∗ ≤ 2− λ∗ in Q∗
1/16.

Note that λ∗ depends only on N and C in (1.2.2).

Proof. For every k ∈ N, k ≤ K+ = E(1/δ1 + 1) (where δ1 is defined in Lemma 13
for ε1 such that 4C

√
ε1 ≤ ε0, and ε0 is defined in Lemma 12), we define

θk = 2(θk−1 − 1) with θ0 = θ.

So we have θk = 2k(θ − 2) + 2. Note that, for every k, θk verifies the same
equation, θk ≤ 2, and |{(t, x, z) ∈ Q∗

1 : θk ≤ 0}| ≥ 1
2 . Assume that, for all

those k, |{0 < θ
∗
k < 1}| ≥ δ1. Then, for every k,

|{θ∗k < 0}| = |{θ∗k−1 < 1}| ≥ |{θ∗k−1 < 0}|+ δ1.

Hence, |{θ∗K+
≤ 0}| ≥ 1 and θ

∗
K+

< 0 almost everywhere, which means that

2K+(θ∗ − 2) + 2 < 0, or θ∗ < 2− 2−K+ , and in this case we are done.

Else, there exists 0 ≤ k0 ≤ K+ such that |{0 < θ
∗
k0

< 1}| ≤ δ1. From

Lemma 13 and Lemma 12 (applied on θk0+1) we get (θk0+1)+ ≤ 2 − λ, which
means that

θ ≤ 2− 2−(k0+1)λ ≤ 2− 2−K+λ

in Q1/8. Consider the function b3 defined by

(i) Δb3 = 0 in B∗
1/8;

(ii) b3 = 2 on the sides of the cube except for z = 0;

(iii) b3 = 2− 2−K+ inf(λ, 1) on z = 0.

We have b3 < 2−λ∗ in B∗
1/16, and from the maximum principle we get θ∗ ≤ b3. �

1.2.10 Proof of Theorem 11

We fix t0 > 0 and consider t ∈ [t0,∞)× RN . We define

F0(s, y) = θ(t+ st0/4, x+ t0/4(y − x0(s))),
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where x0(s) is a solution to⎧⎨⎩ ẋ0(s) =
1

|B4|
∫
x0(s)+B4

v(t+ st0/4, x+ yt0/4) dy,

x0(0) = 0.

Note that x0(s) is uniquely defined from the Cauchy–Lipschitz theorem. We set

θ̃∗0(s, y) =
4

supQ∗4 F
∗
0 − infQ∗4 F

∗
0

(
F ∗
0 −

supQ∗4 F
∗
0 + infQ∗4 F

∗
0

2

)
,

v0(s, y) = v(t+ st0/4, x+ t0/4(y − x0(s)))− ẋ0(s),

and then, for every k > 0,

Fk(s, y) = Fk−1(μ̃s, μ̃(y − xk(s))),

θ̃∗k(s, y) =
4

supQ∗4 F
∗
k − infQ∗4 F

∗
k

(
F ∗
k −

supQ∗4 F
∗
k + infQ∗4 F

∗
k

2

)
,

ẋk(s) =
1

|B4|
∫
xk(s)+B4

vk−1(μ̃s, μ̃y) dy,

xk(0) = 0,

vk(s, y) = vk−1(μ̃s, μ̃(y − xk(s)))− ẋk(s),

where μ̃ will be chosen later. We divide the proof into several steps.

Step 1. For k = 0, θ̃0 is a solution to (1.2.3) in [−4, 0]×RN , ‖v0‖BMO = ‖v‖BMO,∫
v0(s) dy = 0 for every s, and |θ̃0| ≤ 2. Assume that it is true at k − 1. Then

∂sFk = μ̃∂sθ̃k−1 − μ̃ẋk(s) · ∇θ̃k−1.

So θ̃k is a solution to (1.2.3) and |θ̃k| ≤ 2. By construction, for every s we have∫
B4

vk(s, y) dy = 0 and ‖vk‖BMO = ‖vk−1‖BMO = ‖v‖BMO. Moreover, we have

|ẋk(s)| ≤
∫
B4

vk−1(μ̃(y − xk(s))) dy

≤ C‖vk−1(μ̃y)‖Lp

≤ Cμ̃−N/p‖vk−1‖Lp

≤ Cpμ̃
−N/p‖vk−1‖BMO.

So, for 0 ≤ s ≤ 1, y ∈ B4 and p > N ,

|μ̃(y − xk(s))| ≤ 4μ̃(1 + Cpμ̃
−N/p) ≤ Cμ̃1−N/p.

For μ̃ small enough, this is smaller than 1.
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Step 2. For every k we can use the oscillation lemma. If |{θ̃∗k ≤ 0}| ≥ 1
2 |Q∗

4|,
then we have θ̃∗k ≤ 2 − λ∗. Else we have |{−θ̃∗k ≤ 0}| ≥ 1

2 |Q∗
4| and applying the

oscillation lemma on −θ̃∗k gives θ̃∗k ≥ −2 + λ∗. In both cases, this gives

| sup θ̃∗k − inf θ̃∗k| ≤ 2− λ∗,

and so ∣∣∣∣∣supQ∗1
F ∗
k − inf

Q∗1
F ∗
k

∣∣∣∣∣ ≤ (1− λ∗/2)k
∣∣∣∣∣supQ∗1

F ∗
0 − inf

Q∗1
F ∗
0

∣∣∣∣∣ .
Step 3. For s ≤ μ̃2n,

n∑
k=0

μ̃n−kxk(s) ≤ μ̃2n
n∑

k=0

μ̃n−k

μ̃−N/p
≤ μ̃n

2
,

for μ̃ small enough. So∣∣∣∣∣ sup
[−μ̃2n,0]×B∗

μ̃n/2

θ∗ − inf
[−μ̃2n,0]×B∗

μ̃n/2

θ∗
∣∣∣∣∣ ≤ (1− λ∗/2)n.

This gives that θ∗ is Cα at (t, x, 0), and so θ is Cα at (t, x). �
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Chapter 2

Recent Results on the Periodic
Lorentz Gas

François Golse

Introduction: from particle dynamics to kinetic models

The kinetic theory of gases was proposed by J. Clerk Maxwell [34, 35] and L. Boltz-
mann [5] in the second half of the XIXth century. Because the existence of atoms,
on which kinetic theory rested, remained controversial for some time, it was not
until many years later, in the XXth century, that the tools of kinetic theory be-
came of common use in various branches of physics such as neutron transport,
radiative transfer, plasma and semiconductor physics, etc.

Besides, the arguments which Maxwell and Boltzmann used in writing what
is now known as the “Boltzmann collision integral” were far from rigorous —
at least from the mathematical viewpoint. As a matter of fact, the Boltzmann
equation itself was studied by some of the most distinguished mathematicians of
the XXth century —such as Hilbert and Carleman— before there were any serious
attempts at deriving this equation from first principles (i.e., molecular dynamics).
Whether the Boltzmann equation itself was viewed as a fundamental equation
of gas dynamics, or as some approximate equation valid in some well identified
limit is not very clear in the first works on the subject —including Maxwell’s and
Boltzmann’s.

It seems that the first systematic discussion of the validity of the Boltzmann
equation viewed as some limit of molecular dynamics —i.e., the free motion of a
large number of small balls subject to binary, short range interaction, for instance
elastic collisions— goes back to the work of H. Grad [26]. In 1975, O. E. Lanford
gave the first rigorous derivation [29] of the Boltzmann equation from molecular
dynamics. His result proved the validity of the Boltzmann equation for a very short
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40 Chapter 2. Recent Results on the Periodic Lorentz Gas

time of the order of a fraction of the reciprocal collision frequency. (One should also
mention an earlier, “formal derivation” by C. Cercignani [12] of the Boltzmann
equation for a hard sphere gas, which considerably clarified the mathematical
formulation of the problem.) Shortly after Lanford’s derivation of the Boltzmann
equation, R. Illner and M. Pulvirenti managed to extend the validity of his result
for all positive times, for initial data corresponding with a very rarefied cloud of
gas molecules [27].

An important assumption made in Boltzmann’s attempt at justifying the
equation bearing his name is the “Stosszahlansatz”, to the effect that particle pairs
just about to collide are uncorrelated. Lanford’s argument indirectly established
the validity of Boltzmann’s assumption, at least on very short time intervals.

In applications of kinetic theory other than rarefied gas dynamics, one may
face the situation where the analogue of the Boltzmann equation for monatomic
gases is linear, instead of quadratic. The linear Boltzmann equation is encountered
for instance in neutron transport, or in some models in radiative transfer. It usually
describes a situation where particles interact with some background medium —
such as neutrons with the atoms of some fissile material, or photons subject to
scattering processes (Rayleigh or Thomson scattering) in a gas or a plasma.

In some situations leading to a linear Boltzmann equation, one has to think
of two families of particles: the moving particles whose phase space density satisfies
the linear Boltzmann equation, and the background medium that can be viewed
as a family of fixed particles of a different type. For instance, one can think of
the moving particles as being light particles, whereas the fixed particles can be
viewed as infinitely heavier, and therefore unaffected by elastic collisions with the
light particles. Before Lanford’s fundamental paper, an important —unfortunately
unpublished— preprint by G. Gallavotti [19] provided a rigorous derivation of
the linear Boltzmann equation assuming that the background medium consists
of fixed entities, like independent hard spheres whose centers are distributed in
the Euclidean space under Poisson’s law. Gallavotti’s argument already possessed
some of the most remarkable features in Lanford’s proof, and therefore must be
regarded as an essential step in the understanding of kinetic theory.

However, Boltzmann’s Stosszahlansatz becomes questionable in this kind of
situation involving light and heavy particles, as potential correlations among heavy
particles may influence the light particle dynamics. Gallavotti’s assumption of a
background medium consisting of independent hard spheres excluded this possi-
bility. Yet, strongly correlated background media are equally natural, and should
also be considered.

The periodic Lorentz gas discussed in these notes is one example of this type
of situation. Assuming that heavy particles are located at the vertices of some
lattice in the Euclidean space clearly introduces about the maximum amount of
correlation between these heavy particles. This periodicity assumption entails a
dramatic change in the structure of the equation that one obtains under the same
scaling limit that would otherwise lead to a linear Boltzmann equation.
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Figure 2.1: Left: Paul Drude (1863–1906); right: Hendrik Antoon Lorentz (1853–1928)

Therefore, studying the periodic Lorentz gas can be viewed as one way of
testing the limits of the classical concepts of the kinetic theory of gases.

Acknowledgements. Most of the material presented in these lectures is the re-
sult of collaboration with several authors: J. Bourgain, E. Caglioti, H. S. Dumas,
L. Dumas and B. Wennberg, whom I wish to thank for sharing my interest for this
problem. I am also grateful to C. Boldighrini and G. Gallavotti for illuminating
discussions on this subject.

2.1 The Lorentz kinetic theory for electrons

In the early 1900’s, P. Drude [16] and H. Lorentz [30] independently proposed to
describe the motion of electrons in metals by the methods of kinetic theory. One
should keep in mind that the kinetic theory of gases was by then a relatively new
subject: the Boltzmann equation for monatomic gases appeared for the first time
in the papers of J. Clerk Maxwell [35] and L. Boltzmann [5]. Likewise, the existence
of electrons had been established shortly before, in 1897 by J. J. Thomson.

The basic assumptions made by H. Lorentz in his paper [30] can be summa-
rized as follows.
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First, the population of electrons is thought of as a gas of point particles
described by its phase-space density f ≡ f(t, x, v), that is, the density of electrons
at the position x with velocity v at time t.

Electron-electron collisions are neglected in the physical regime considered
in the Lorentz kinetic model —on the contrary, in the classical kinetic theory of
gases, collisions between molecules are important as they account for momentum
and heat transfer.

However, the Lorentz kinetic theory takes into account collisions between
electrons and the surrounding metallic atoms. These collisions are viewed as sim-
ple, elastic hard sphere collisions.

Since electron-electron collisions are neglected in the Lorentz model, the
equation governing the electron phase-space density f is linear. This is at variance
with the classical Boltzmann equation, which is quadratic because only binary
collisions involving pairs of molecules are considered in the kinetic theory of gases.

With the simple assumptions above, H. Lorentz arrived at the following equa-
tion for the phase-space density of electrons f ≡ f(t, x, v):

(∂t + v · ∇x + 1
mF (t, x) · ∇v)f(t, x, v) = Nat r

2
at |v| C(f)(t, x, v).

In this equation, C is the Lorentz collision integral, which acts on the only
variable v in the phase-space density f . In other words, for each continuous func-
tion φ ≡ φ(v), one has

C(φ)(v) =
∫
|ω|=1
ω·v>0

(
φ(v − 2(v · ω)ω)− φ(v)

)
cos(v, ω) dω,

and the notation C(f)(t, x, v) designates C(f(t, x, · ))(v).
The other parameters involved in the Lorentz equation are the mass m of

the electron, and Nat, rat respectively the density and radius of metallic atoms.
The vector field F ≡ F (t, x) is the electric force. In the Lorentz model, the self-
consistent electric force —i.e., the electric force created by the electrons them-
selves— is neglected, so that F takes into account only the effect of an applied
electric field (if any). Roughly speaking, the self consistent electric field is linear
in f , so that its contribution to the term F · ∇vf would be quadratic in f , as
would be any collision integral accounting for electron-electron collisions. There-
fore, neglecting electron-electron collisions and the self-consistent electric field are
both in accordance with assuming that f � 1.

The line of reasoning used by H. Lorentz to arrive at the kinetic equations
above is based on the postulate that the motion of electrons in a metal can be
adequately represented by a simple mechanical model —a collisionless gas of point
particles bouncing on a system of fixed, large spherical obstacles that represent
the metallic atoms. Even with the considerable simplification in this model, the
argument sketched in the article [30] is little more than a formal analogy with
Boltzmann’s derivation of the equation now bearing his name.
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Figure 2.2: The Lorentz gas: a particle path

This suggests the mathematical problem of deriving the Lorentz kinetic equa-
tion from a microscopic, purely mechanical particle model. Thus, we consider a
gas of point particles (the electrons) moving in a system of fixed spherical obsta-
cles (the metallic atoms). We assume that collisions between the electrons and the
metallic atoms are perfectly elastic, so that, upon colliding with an obstacle, each
point particle is specularly reflected on the surface of that obstacle.

Undoubtedly, the most interesting part of the Lorentz kinetic equation is
the collision integral which does not seem to involve F . Therefore we henceforth
assume for the sake of simplicity that there is no applied electric field, so that

F (t, x) ≡ 0 .

In that case, electrons are not accelerated between successive collisions with
the metallic atoms, so that the microscopic model to be considered is a simple,
dispersing billiard system —also called a Sinai billiard. In that model, electrons
are point particles moving at a constant speed along rectilinear trajectories in a
system of fixed spherical obstacles, and specularly reflected at the surface of the
obstacles.

More than 100 years have elapsed since this simple mechanical model was
proposed by P. Drude and H. Lorentz, and today we know that the motion of
electrons in a metal is a much more complicated physical phenomenon whose
description involves quantum effects.

Yet the Lorentz gas is an important object of study in nonequilibrium satis-
tical mechanics, and there is a very significant amount of literature on that topic
—see for instance [44] and the references therein.

The first rigorous derivation of the Lorentz kinetic equation is due to G. Gal-
lavotti [18, 19], who derived it from a billiard system consisting of randomly (Pois-
son) distributed obstacles, possibly overlapping, considered in some scaling limit
—the Boltzmann–Grad limit, whose definition will be given (and discussed) below.
Slightly more general, random distributions of obstacles were later considered by
H. Spohn in [43].
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While Gallavotti’s theorem bears on the convergence of the mean electron
density (averaging over obstacle configurations), C. Boldrighini, L. Bunimovich
and Ya. Sinai [4] later succeeded in proving the almost sure convergence (i.e., for
a.e. obstacle configuration) of the electron density to the solution of the Lorentz
kinetic equation.

In any case, none of the results above says anything on the case of a periodic
distribution of obstacles. As we shall see, the periodic case is of a completely
different nature —and leads to a very different limiting equation, involving a phase-
space different from the one considered by H. Lorentz, i.e., R2×S1, on which the
Lorentz kinetic equation is posed.

The periodic Lorentz gas is at the origin of many challenging mathematical
problems. For instance, in the late 1970s, L. Bunimovich and Ya. Sinai studied the
periodic Lorentz gas in a scaling limit different from the Boltzmann–Grad limit
studied in the present paper. In [7], they showed that the classical Brownian motion
is the limiting dynamics of the Lorentz gas under that scaling assumption —their
work was later extended with N. Chernov; see [8]. This result is indeed a major
achievement in nonequilibrium statistical mechanics, as it provides an example of
an irreversible dynamics (the heat equation associated with the classical Brownian
motion) that is derived from a reversible one (the Lorentz gas dynamics).

2.2 The Lorentz gas in the Boltzmann–Grad limit with
a Poisson distribution of obstacles

Before discussing the Boltzmann–Grad limit of the periodic Lorentz gas, we first
give a brief description of Gallavotti’s result [18, 19] for the case of a Poisson
distribution of independent, and therefore possibly overlapping obstacles. As we
shall see, Gallavotti’s argument is in some sense fairly elementary, and yet brilliant.

First we define the notion of a Poisson distribution of obstacles. Henceforth,
for the sake of simplicity, we assume a 2-dimensional setting.

The obstacles (metallic atoms) are disks of radius r in the Euclidean plane
R2, centered at c1, c2, . . . , cj , . . . ∈ R2. Henceforth, we denote by

{c} = {c1, c2, . . . , cj , . . .} = a configuration of obstacle centers.

We further assume that the configurations of obstacle centers {c} are dis-
tributed under Poisson’s law with parameter n, meaning that

Prob({{c} | #(A ∩ {c}) = p}) = e−n|A| (n|A|)p
p!

,

where |A| denotes the surface, i.e., the 2-dimensional Lebesgue measure of a mea-
surable subset A of the Euclidean plane R2.

This prescription defines a probability on countable subsets of the Euclidean
plane R2.
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Obstacles may overlap: in other words, configurations {c} such that

for some j �= k ∈ {1, 2, . . .}, one has |ci − cj | < 2r

are not excluded. Indeed, excluding overlapping obstacles means rejecting obstacle
configurations {c} such that |ci − cj | ≤ 2r for some i, j ∈ N. In other words,
Prob(d{c}) is replaced with

1

Z

∏
i>j≥0

1|ci−cj |>2r Prob(d{c}),

where Z > 0 is a normalizing coefficient. Since the term
∏

i>j≥0 1|ci−cj |>2r is not
of the form

∏
k≥0 φk(ck), the obstacles are no longer independent under this new

probability measure.
Next we define the billiard flow in a given obstacle configuration {c}. This

definition is self-evident, and we give it for the sake of completeness, as well as in
order to introduce the notation.

Given a countable subset {c} of the Euclidean plane R2, the billiard flow in
the system of obstacles defined by {c} is the family of mappings

(X(t; · , · , {c}), V (t; · , · , {c})) : Zr × S1 → Zr × S1

where
Zr := {y ∈ R2| dist(x, cj) > r for all j ≥ 1},

defined by the following prescription.
Whenever the position X of a particle lies outside the surface of any obstacle,

that particle moves at unit speed along a rectilinear path:

Ẋ(t;x, v, {c}) = V (t;x, v, {c}),
V̇ (t;x, v, {c}) = 0, whenever |X(t;x, v, {c})− ci| > r for all i,

and, in case of a collision with the i-th obstacle, is specularly reflected on the
surface of that obstacle at the point of impingement, meaning that

X(t+;x, v, {c}) = X(t−;x, v, {c}) ∈ ∂B(ci, r),

V (t+;x, v, {c}) = R
[
X(t;x, v, {c})− ci

r

]
V (t−;x, v, {c}),

where R[ω] denotes the reflection with respect to the line (Rω)⊥:

R[ω]v = v − 2(ω · v)ω, |ω| = 1.

Then, given an initial probability density f in
{c} ≡ f in

{c}(x, v) on the single-

particle phase-space with support outside the system of obstacles defined by {c},
we define its evolution under the billiard flow by the formula

f(t, x, v, {c}) = f in
{c}(X(−t;x, v, {c}), V (−t;x, v, {c})), t ≥ 0.
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Let τ1(x, v, {c}), τ2(x, v, {c}), . . . , τj(x, v, {c}), . . . be the sequence of collision
times for a particle starting from x in the direction −v at t = 0 in the configuration
of obstacles {c}. In other words,

τj(x, v, {c}) = sup{t | #{s ∈ [0, t] | dist(X(−s, x, v, {c}); {c}) = r} = j − 1}.

Letting τ0 = 0 and Δτk = τk − τk−1, the evolved single-particle density f is
a.e. defined by the formula

f(t, x, v, {c}) = f in(x− tv, v)1t<τ1

+
∑
j≥1

f in

(
x−

j∑
k=1

ΔτkV (−τ−k )− (t− τj)V (−τ+j ), V (−τ+j )

)
1τj<t<τj+1 .

In the case of physically admissible initial data, there should be no particle
located inside an obstacle. Hence we assumed that f in

{c} = 0 in the union of all

the disks of radius r centered at the cj ∈ {c}. By construction, this condition
is obviously preserved by the billiard flow, so that f(t, x, v, {c}) also vanishes
whenever x belongs to a disk of radius r centered at any cj ∈ {c}.

As we shall see shortly, when dealing with bounded initial data, this con-
straint disappears in the (yet undefined) Boltzmann–Grad limit, as the volume
fraction occupied by the obstacles vanishes in that limit.

Therefore, we shall henceforth neglect this difficulty and proceed as if f in

were any bounded probability density on R2 × S1.
Our goal is to average the summation above in the obstacle configuration {c}

under the Poisson distribution, and to identify a scaling on the obstacle radius r
and the parameter n of the Poisson distribution leading to a nontrivial limit.

The parameter n has the following important physical interpretation. The
expected number of obstacle centers to be found in any measurable subset Ω of
the Euclidean plane R2 is∑

p≥0

pProb({{c} | #(Ω ∩ {c}) = p}) =
∑
p≥0

pe−n|Ω| (n|Ω|)p
p!

= n|Ω|,

so that
n = # obstacles per unit surface in R2.

The average of the first term in the summation defining f(t, x, v, {c}) is

f in(x− tv, v)〈1t<τ1〉 = f in(x− tv, v)e−n2rt

(where 〈 · 〉 denotes the mathematical expectation) since the condition t < τ1
means that the tube of width 2r and length t contains no obstacle center.

Henceforth, we seek a scaling limit corresponding to small obstacles, i.e.,
r → 0 and a large number of obstacles per unit volume, i.e., n→∞.
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v

t

2r

x

Figure 2.3: The tube corresponding with the first term in the series expansion
giving the particle density

There are obviously many possible scalings that satisfy this requirement.
Among all these scalings, the Boltzmann–Grad scaling in space dimension 2 is
defined by the requirement that the average over obstacle configurations of the
first term in the series expansion for the particle density f has a nontrivial limit.

Boltzmann–Grad scaling in space dimension 2

In order for the average of the first term above to have a nontrivial limit, one must
have

r → 0+ and n→ +∞ in such a way that 2nr → σ > 0.

Under this assumption,

〈f in(x− tv, v)1t<τ1〉 −→ f in(x− tv, v)e−σt.

Gallavotti’s idea is that this first term corresponds with the solution at time
t of the equation

(∂t + v · ∇x)f = −nrf
∫
|ω|=1
ω·v>0

cos(v, ω) dω = −2nrf,

f
∣∣
t=0

= f in

that involves only the loss part in the Lorentz collision integral, and that the
(average over obstacle configuration of the) subsequent terms in the sum defining
the particle density f should converge to the Duhamel formula for the Lorentz
kinetic equation.

After these necessary preliminaries, we can state Gallavotti’s theorem.
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Theorem 2.2.1 (Gallavotti [19]). Let f in be a continuous, bounded probability den-
sity on R2 × S1, and let

fr(t, x, v, {c}) = f in((Xr, V r)(−t, x, v, {c})),

where (t, x, v) �→ (Xr, V r)(t, x, v, {c}) is the billiard flow in the system of disks of
radius r centered at the elements of {c}. Assuming that the obstacle centers are
distributed under the Poisson law of parameter n = σ/2r with σ > 0, the expected
single particle density

〈fr(t, x, v, · )〉 −→ f(t, x, v) in L1(R2 × S1)

uniformly on compact t-sets, where f is the solution of the Lorentz kinetic equation

(∂t + v · ∇x)f + σf = σ

∫ 2π

0

f(t, x,R[β]v) sin β
2

dβ
4 ,

f
∣∣
t=0

= f in,

where R[β] denotes the rotation of an angle β.

End of the proof of Gallavotti’s theorem. The general term in the summation giv-
ing f(t, x, v, {c}) is

f in

(
x−

j∑
k=1

ΔτkV
r(−τ−k )− (t− τj)V

r(−τ+j ), V r(−τ+j )

)
1τj<t<τj+1

,

and its average under the Poisson distribution on {c} is

∫
f in

(
x−

j∑
k=1

ΔτkV
r(−τ−k )− (t− τj)V

r(−τ+j ), V r(−τ+j )

)

×e−n|T (t;c1,...,cj)| n
jdc1 . . . dcj

j!
,

where T (t; c1, . . . , cj) is the tube of width 2r around the particle trajectory col-
liding first with the obstacle centered at c1 and whose j-th collision is with the
obstacle centered at cj .

As before, the surface of that tube is

|T (t; c1, . . . , cj)| = 2rt+O(r2).

In the j-th term, change variables by expressing the positions of the j en-
countered obstacles in terms of free flight times and deflection angles:

(c1, . . . , cj) �−→ (τ1, . . . , τj ;β1, . . . , βj).
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Figure 2.4: The tube T (t, c1, c2) corresponding with the third term in the series
expansion giving the particle density
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Figure 2.5: The substitution (c1, c2) �→ (τ1, τ2, β1, β2)

The volume element in the j-th integral is changed into

dc1 . . . dcj
j!

= rj sin
β1

2
· · · sin βj

2

dβ1

2
· · · dβj

2
dτ1 . . . dτj .

The measure in the left-hand side is invariant by permutations of c1, . . . , cj ; on
the right-hand side, we assume that

τ1 < τ2 < · · · < τj ,

which explains why the 1/j! factor disappears in the right-hand side.
The substitution above is one-to-one only if the particle does not hit twice

the same obstacle. Define therefore
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Ar(T, x, v) = {{c} | there exists 0 < t1 < t2 < T and j ∈ N such that

dist(Xr(t1, x, v, {c}), cj) = dist(Xr(t2, x, v, {c}), cj) = r}
=

⋃
j≥1

{{c} | dist(Xr(t, x, v, {c}), cj) = r for some 0 < t1 < t2 < T},

and set
fM
r (t, x, v, {c}) = fr(t, x, v, {c})− fR

r (t, x, v, {c}),
fR
r (t, x, v, {c}) = fr(t, x, v, {c})1Ar(T,x,v)({c}),

respectively the Markovian part and the recollision part in fr.
After averaging over the obstacle configuration {c}, the contribution of the

j-th term in fM
r is, to leading order in r:

(2nr)je−2nrt

∫
0<τ1<···<τj<t

∫
[0,2π]j

sin β1

2 · · · sin βj

2
dβ1

4 · · · dβj

4 dτ1 . . . dτj

×f in

(
x−

j∑
k=1

ΔτkR

[
k−1∑
l=1

βl

]
v − (t− τj)R

[
j∑

l=1

βl

]
v,R

[
j∑

l=1

βl

]
v

)
.

It is dominated by

‖f in‖L∞O(σ)je−O(σ)t t
j

j!

which is the general term of a converging series.
Passing to the limit as n → +∞, r → 0 so that 2rn → σ, one finds (by

dominated convergence in the series) that

〈fM
r (t, x, v, {c})〉 −→ e−σtf in(x− tv, v)

+σe−σt

∫ t

0

∫ 2π

0

f in(x− τ1v − (t− τ1)R[β1]v,R[β1]v) sin
β1

2
dβ1

4 dτ1

+
∑
j≥2

σje−σt

∫
0<τj<···<τ1<t

∫
[0,2π]j

sin β1

2 · · · sin βj

2

×f in

(
x−

j∑
k=1

ΔτkR

[
k−1∑
l=1

βl

]
v − (t− τj)R

[
j∑

l=1

βl

]
v,R

[
j∑

l=1

βl

]
v

)
×dβ1

4 · · · dβj

4 dτ1 . . . dτj ,

which is the Duhamel series giving the solution of the Lorentz kinetic equation.
Hence, we have proved that

〈fM
r (t, x, v, · )〉 → f(t, x, v) uniformly on bounded sets as r → 0+,

where f is the solution of the Lorentz kinetic equation. One can check by a straight-
forward computation that the Lorentz collision integral satisfies the property∫

S1

C(φ)(v) dv = 0 for each φ ∈ L∞(S1).



2.3. Santaló’s formula for the geometric mean free path 51

Integrating both sides of the Lorentz kinetic equation in the variables (t, x, v) over
[0, t]×R2 × S1 shows that the solution f of that equation satisfies∫∫

R2×S1

f(t, x, v) dx dv =

∫∫
R2×S1

f in(x, v) dx dv

for each t > 0.
On the other hand, the billiard flow (X,V )(t, · , · , {c}) obviously leaves the

uniform measure dx dv on R2 × S1 (i.e., the particle number) invariant, so that,
for each t > 0 and each r > 0,∫∫

R2×S1

fr(t, x, v, {c}) dx dv =

∫∫
R2×S1

f in(x, v) dx dv.

We therefore deduce from Fatou’s lemma that

〈fR
r 〉 → 0 in L1(R2 × S1) uniformly on bounded t-sets, and

〈fM
r 〉 → f in L1(R2 × S1) uniformly on bounded t-sets,

which concludes our sketch of the proof of Gallavotti’s theorem. �
For a complete proof, we refer the interested reader to [19, 20].
Some remarks are in order before leaving Gallavotti’s setting for the Lorentz

gas with the Poisson distribution of obstacles.
Assuming no external force field as done everywhere in the present paper is

not as inocuous as it may seem. For instance, in the case of Poisson distributed
holes —i.e., purely absorbing obstacles, so that particles falling into the holes dis-
appear from the system forever— the presence of an external force may introduce
memory effects in the Boltzmann–Grad limit, as observed by L. Desvillettes and
V. Ricci [15].

Another remark is about the method of proof itself. One has obtained the
Lorentz kinetic equation after having obtained an explicit formula for the solution
of that equation. In other words, the equation is deduced from the solution —
which is a somewhat unusual situation in mathematics. However, the same is true
of Lanford’s derivation of the Boltzmann equation [29], as well as of the derivation
of several other models in nonequilibrium statistical mechanics. For an interesting
comment on this issue, see [13] on p. 75.

2.3 Santaló’s formula for the geometric mean free path

From now on, we shall abandon the random case and concentrate our efforts on
the periodic Lorentz gas.

Our first task is to define the Boltzmann–Grad scaling for periodic systems of
spherical obstacles. In the Poisson case defined above, things were relatively easy:
in space dimension 2, the Boltzmann–Grad scaling was defined by the prescription
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2r

1

Figure 2.6: The periodic billiard table

that the number of obstacles per unit volume tends to infinity while the obstacle
radius tends to 0 in such a way that

# obstacles per unit volume × obstacle radius −→ σ > 0.

The product above has an interesting geometric meaning even without assum-
ing a Poisson distribution for the obstacle centers, which we shall briefly discuss
before going further in our analysis of the periodic Lorentz gas.

Perhaps the most important scaling parameter in all kinetic models is the
mean free path. This is by no means a trivial notion, as will be seen below. As
suggested by the name itself, any notion of mean free path must involve first the
notion of free path length, and then some appropriate probability measure under
which the free path length is averaged.

For simplicity, the only periodic distribution of obstacles considered below is
the set of balls of radius r centered at the vertices of a unit cubic lattice in the
D-dimensional Euclidean space.

Correspondingly, for each r ∈ (0, 1
2 ), we define the domain left free for particle

motion, also called the “billiard table” as

Zr = {x ∈ RD | dist(x,ZD) > r}.

Defining the free path length in the billiard table Zr is easy: the free path
length starting from x ∈ Zr in the direction v ∈ SD−1 is

τr(x, v) = min{t > 0 | x+ tv ∈ ∂Zr}.
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x v

(x,v)rτ

Figure 2.7: The free path length

Obviously, for each v ∈ SD−1 the free path length τr( · , v) in the direction v
can be extended continuously to

{x ∈ ∂Zr | v · nx �= 0},

where nx denotes the unit normal vector to ∂Zr at the point x ∈ ∂Zr pointing
towards Zr.

With this definition, the mean free path is the quantity defined as

Mean Free Path = 〈τr〉,

where the notation 〈 · 〉 designates the average under some appropriate probability
measure on Zr × SD−1.

A first ambiguity in the notion of mean free path comes from the fact that
there are two fairly natural probability measures for the Lorentz gas.

The first one is the uniform probability measure on (Zr/Z
D)× SD−1,

dμr(x, v) =
dx dv

|Zr/ZD| |SD−1| ,

that is invariant under the billiard flow —the notation |SD−1| designates the
(D − 1)-dimensional uniform measure of the unit sphere SD−1. This measure is
obviously invariant under the billiard flow

(Xr, Vr)(t, · , · ) : Zr × SD−1 −→ Zr × SD−1

defined by {
Ẋr = Vr

V̇r = 0
whenever X(t) /∈ ∂Zr

while {
Xr(t

+) = Xr(t
−) =: Xr(t) if X(t±) ∈ ∂Zr,

Vr(t
+) = R[nXr(t)]Vr(t

−),
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with R[n]v = v − 2(v · n)n denoting the reflection with respect to the hyperplane
(Rn)⊥.

The second such probability measure is the invariant measure of the billiard
map

dνr(x, v) =
(v · nx)+ dS(x) dv

(v · nx)+ dx dv-meas(Γr
+/Z

D)

where nx is the unit inward normal at x ∈ ∂Zr, while dS(x) is the (D − 1)-
dimensional surface element on ∂Zr, and

Γr
+ = {(x, v) ∈ ∂Zr × SD−1 | v · nx > 0}.

The billiard map Br is the map

Γr
+ � (x, v) �−→ Br(x, v) = (Xr, Vr)(τr(x, v);x, v) ∈ Γr

+ ,

which obviously passes to the quotient modulo ZD-translations:

Br : Γr
+/Z

D −→ Γr
+/Z

D.

In other words, given the position x and the velocity v of a particle immediately
after its first collision with an obstacle, the sequence (Bn

r (x, v))n≥0 is the sequence
of all collision points and post-collision velocities on that particle’s trajectory.

With the material above, we can define a first, very natural notion of mean
free path, by setting

Mean Free Path = lim
N→+∞

1

N

N−1∑
k=0

τr(Bk
r (x, v)).

Notice that, for νr-a.e. (x, v) ∈ Γ+
r /Z

D, the right-hand side of the equality above
is well-defined by the Birkhoff ergodic theorem. If the billiard map Br is ergodic
for the measure νr, one has

lim
N→+∞

1

N

N−1∑
k=0

τr(Bk
r (x, v)) =

∫
Γr
+/ZD

τr dνr,

for νr-a.e. (x, v) ∈ Γr
+/Z

D.

Now, a very general formula for computing the right-hand side of the above
equality was found by the great Spanish mathematician L. A. Santaló in 1942. In
fact, Santaló’s argument applies to situations that are considerably more general,
involving for instance curved trajectories instead of straight line segments, or ob-
stacle distributions other than periodic. The reader interested in these questions
is referred to Santaló’s original article [38].
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Figure 2.8: Luis Antonio Santaló Sors (1911–2001)

Santaló’s formula for the geometric mean free path

One finds that

�r =

∫
Γr
+/ZD

τr(x, v) dνr(x, v) =
1− |BD|rD
|BD−1|rD−1

where BD is the unit ball of RD and |BD| its D-dimensional Lebesgue measure.

In fact, one has the following slightly more general

Lemma 2.3.1 (H. S. Dumas, L. Dumas, F. Golse [17]). For f ∈ C1(R+) such that
f(0) = 0, one has∫∫

Γr
+/ZD

f(τr(x, v))v · nx dS(x) dv =

∫∫
(Zr/ZD)×SD−1

f ′(τr(x, v)) dx dv.

Santaló’s formula is obtained by setting f(z) = z in the identity above, and
expressing both integrals in terms of the normalized measures νr and μr.

Proof. For each (x, v) ∈ Zr × SD−1 one has

τr(x+ tv, v) = τr(x, v)− t,
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so that
d

dt
τr(x+ tv, v) = −1.

Hence τr(x, v) solves the transport equation{
v · ∇xτr(x, v) = −1, x ∈ Zr, v ∈ SD−1,
τr(x, v) = 0, x ∈ ∂Zr, v · nx < 0.

Since f ∈ C1(R+) and f(0) = 0, one has{
v · ∇xf(τr(x, v)) = −f ′(τr(x, v)), x ∈ Zr, v ∈ SD−1,
f(τr(x, v)) = 0, x ∈ ∂Zr, v · nx < 0.

Integrating both sides of the equality above, and applying Green’s formula shows
that

−
∫∫

(Zr/ZD)×SD−1

f ′(τr(x, v)) dx dv

=

∫∫
(Zr/ZD)×SD−1

v · ∇x(f(τr(x, v))) dx dv

= −
∫∫

(∂Zr/ZD)×SD−1

f(τr(x, v))v · nx dS(x) dv.

Beware the unusual sign in the right-hand side of the second equality above, coming
from the orientation of the unit normal nx, which is pointing towards Zr. �

With the help of Santaló’s formula, we define the Boltzmann–Grad limit for
the Lorentz gas with periodic as well as random distribution of obstacles as follows:

Boltzmann–Grad scaling

The Boltzmann–Grad scaling for the periodic Lorentz gas in space dimension D
corresponds with the following choice of parameters:

distance between neighboring lattice points = ε� 1,

obstacle radius = r � 1,

mean free path = �r → 1

σ
> 0.

Santaló’s formula indicates that one should have

r ∼ cε
D

D−1 with c =

(
σ

|BD−1|
)− 1

D−1

as ε→ 0+.

Therefore, given an initial particle density f in ∈ Cc(R
D × SD−1), we define

fr to be

fr(t, x, v) = f in

(
rD−1Xr

(
− t

rD−1
;

x

rD−1
, v

)
, Vr

(
− t

rD−1
;

x

rD−1
, v

))
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where (Xr, Vr) is the billiard flow in Zr with specular reflection on ∂Zr.
Notice that this formula defines fr for x ∈ Zr only, as the particle density

should remain 0 for all time in the spatial domain occupied by the obstacles.
As explained in the previous section, this is a set whose measure vanishes in
the Boltzmann–Grad limit, and we shall always implicitly extend the function fr
defined above by 0 for x /∈ Zr.

Since f in is a bounded function on Zr×SD−1, the family fr defined above is a
bounded family of L∞(RD×SD−1). By the Banach–Alaoglu theorem, this family
is therefore relatively compact for the weak-∗ topology of L∞(R+×RD ×SD−1).

Problem: Find an equation governing the L∞ weak-∗ limit points of the scaled
number density fr as r → 0+.

In the sequel, we shall describe the answer to this question in the 2-dimen-
sional case (D = 2).

2.4 Estimates for the distribution of free-path lengths

In the proof of Gallavotti’s theorem for the case of a Poisson distribution of obsta-
cles in space dimension D = 2, the probability that a strip of width 2r and length
t does not meet any obstacle is e−2nrt, where n is the parameter of the Poisson
distribution —i.e., the average number of obstacles per unit surface.

This accounts for the loss term

f in(x− tv, v)e−σt

in the Duhamel series for the solution of the Lorentz kinetic equation, or of the
term −σf on the right-hand side of that equation written in the form

(∂t + v · ∇x)f = −σf + σ

∫ 2π

0

f(t, x,R(β)v) sin β
2

dβ
4 .

Things are fundamentally different in the periodic case. To begin with, there
are infinite strips included in the billiard table Zr which never meet any obstacle.

The contribution of the 1-particle density leading to the loss term in the
Lorentz kinetic equation is, in the notation of the proof of Gallavotti’s theorem,

f in(x− tv, v)1t<τ1(x,v,{c}).

The analogous term in the periodic case is

f in(x− tv, v)1t<rD−1τr(x/rD−1,−v)

where τr(x, v) is the free-path length in the periodic billiard table Zr starting from
x ∈ Zr in the direction v ∈ S1.



58 Chapter 2. Recent Results on the Periodic Lorentz Gas

Figure 2.9: Open strips in the periodic billiard table that never meet any obstacle

Passing to the L∞ weak-∗ limit as r → 0 reduces to finding

lim
r→0

1t<rD−1τr(x/rD−1,−v) in w∗ − L∞(R2 × S1)

—possibly after extracting a subsequence rn ↓ 0. As we shall see below, this
involves the distribution of τr under the probability measure μr introduced in the
discussion of Santaló’s formula —i.e., assuming the initial position x and direction
v to be independent and uniformly distributed on (RD/ZD)× SD−1.

We define the (scaled) distribution under μr of free path lengths τr to be

Φr(t) = μr({(x, v) ∈ (Zr/Z
D)× SD−1 | τr(x, v) > t/rD−1}).

Notice the scaling t �→ t/rD−1 in this definition. In space dimension D,
Santaló’s formula shows that∫∫

Γ+
r /ZD

τr(x, v) dνr(x, v) ∼ 1

|BD−1|r
1−D,

and this suggests that the free path length τr is a quantity of the order of 1/rD−1.
(In fact, this argument is not entirely convincing, as we shall see below.)

In any case, with this definition of the distribution of free path lengths un-
der μr, one arrives at the following estimate.

Theorem 2.4.1 (Bourgain–Golse–Wennberg [6, 25]). In space dimension D ≥ 2,
there exist 0 < CD < C ′

D such that

CD

t
≤ Φr(t) ≤ C ′

D

t
whenever t > 1 and 0 < r < 1

2 .



2.4. Estimates for the distribution of free-path lengths 59

The lower bound and the upper bound in this theorem are obtained by very
different means.

The upper bound follows from a Fourier series argument which is reminiscent
of Siegel’s proof of the classical Minkowski convex body theorem (see [39, 36]).

The lower bound, on the other hand, is obtained by working in physical space.
Specifically, one uses a channel technique, introduced independently by P. Bleher
[2] for the diffusive scaling.

This lower bound alone has an important consequence:

Corollary 2.4.2. For each r > 0, the average of the free path length (mean free
path) under the probability measure μr is infinite:∫

(Zr/ZD)×SD−1

τr(x, v) dμr(x, v) = +∞.

Proof. Indeed, since Φr is the distribution of τr under μr, one has∫
(Zr/ZD)×SD−1

τr(x, v) dμr(x, v) =

∫ ∞

0

Φr(t) dt ≥
∫ ∞

1

CD

t
dt = +∞. �

Recall that the average of the free path length under the “other” natural
probability measure νr is precisely Santaló’s formula for the mean free path:

�r =

∫∫
Γ+
r /ZD

τr(x, v) dνr(x, v) =
1− |BD|rD
|BD−1|rD−1

.

One might wonder why averaging the free path length τr under the measures νr
and μr actually gives two so different results.

First observe that Santaló’s formula gives the mean free path under the prob-
ability measure νr concentrated on the surface of the obstacles, and is therefore
irrelevant for particles that have not yet encountered an obstacle.

Besides, by using the lemma that implies Santaló’s formula with f(z) = 1
2z

2,
one has∫∫

(Zr/ZD)×SD−1

τr(x, v) dμr(x, v) =
1

�r

∫∫
Γ+
r /ZD

1
2τr(x, v)

2 dνr(x, v).

Whenever the components v1, . . . , vD are independent over Q, the linear flow
in the direction v is topologically transitive and ergodic on the D-torus, so that
τr(x, v) < +∞ for each r > 0 and x ∈ RD. On the other hand, τr(x, v) = +∞ for
some x ∈ Zr (the periodic billiard table) whenever v belongs to some specific class
of unit vectors whose components are rationally dependent, a class that becomes
dense in SD−1 as r → 0+. Thus, τr is strongly oscillating (finite for irrational
directions, possibly infinite for a class of rational directions that becomes dense as
r → 0+), and this explains why τr does not have a second moment under νr.
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Proof of the Bourgain–Golse–Wennberg lower bound. We shall restrict our atten-
tion to the case of space dimension D = 2.

As mentioned above, there are infinite nonempty open strips included in Zr

—i.e., never meeting any obstacle. Call a channel any such nonempty open strip
of maximum width, and let Cr be the set of all channels included in Zr.

If S ∈ Cr and x ∈ S, define τS(x, v) the exit time from the channel starting
from x in the direction v, defined as

τS(x, v) = inf{t > 0 | x+ tv ∈ ∂S}, (x, v) ∈ S × S1.

Obviously, any particle starting from x in the channel S in the direction v must
exit S before it hits an obstacle (since no obstacle intersects S). Therefore

τr(x, v) ≥ sup{τS(x, v) | S ∈ Cr such that x ∈ S},
so that

Φr(t) ≥ μr

( ⋃
S∈Cr

{(x, v) ∈ (S/Z2)× S1 | τS(x, v) > t/r}
)
.

This observation suggests that one should carefully study the set of channels Cr.

Step 1: Description of Cr. Given ω ∈ S1, we define

Cr(ω) = {channels of direction ω in Cr}.
We begin with a lemma which describes the structure of Cr(ω).
Lemma 2.4.3. Let r ∈ [0, 1

2 ) and ω ∈ S1. Then:

1) if S ∈ Cr(ω), then
Cr(ω) = {S + k | k ∈ Z2};

2) if Cr(ω) �= ∅, then

ω =
(p, q)√
p2 + q2

with

(p, q) ∈ Z2 \ {(0, 0)} such that gcd(p, q) = 1 and
√
p2 + q2 <

1

2r
.

We henceforth denote by Ar the set of all such ω ∈ S1. Then

3) for ω ∈ Ar, the elements of Cr(ω) are open strips of width

w(ω, r) =
1√

p2 + q2
− 2r.
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d 2r

L

L’

d

2r

1

Figure 2.10: A channel of direction ω = 1√
5
(2, 1); minimal distance d between lines

L and L′ of direction ω through lattice points

Proof of the lemma. Statement 1) is obvious. As for statement 2), if L is an infinite
line of direction ω ∈ S1 such that ω2/ω1 is irrational, then L/Z2 is an orbit of a
linear flow on T2 with irrational slope ω2/ω1. Therefore L/Z2 is dense in T2 so
that L cannot be included in Zr.

Assume that

ω =
(p, q)√
p2 + q2

with (p, q) ∈ Z2 \ {(0, 0)} coprime,

and let L,L′ be two infinite lines with direction ω, with equations

qx− py = a and qx− py = a′ respectively.

Obviously

dist(L,L′) =
|a− a′|√
p2 + q2

.

If L ∪ L′ is the boundary of a channel of direction

ω =
(p, q)√
p2 + q2

∈ A0

included in R2 \ Z2 —i.e., of an element of C0(ω), then L and L′ intersect Z2 so
that

a, a′ ∈ pZ+ qZ = Z
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—the equality above following from the assumption that p and q are coprime.
Since dist(L,L′) > 0 is minimal, then |a− a′| = 1, so that

dist(L,L′) =
1√

p2 + q2
.

Likewise, if L ∪ L′ = ∂S with S ∈ Cr, then L and L′ are parallel infinite lines
tangent to ∂Zr, and the minimal distance between any such distinct lines is

dist(L,L′) =
1√

p2 + q2
− 2r.

This entails 2) and 3). �

Step 2: The exit time from a channel. Let ω = (p,q)√
p2+q2

∈ Ar and let S ∈ Cr(ω).
Cut S into three parallel strips of equal width and call Ŝ the middle one. For each
t > 1 define

θ ≡ θ(ω, r, t) = arcsin

(
rw(ω, r)

3t

)
.

Lemma 2.4.4. If x ∈ Ŝ and v ∈ (R[−θ]ω,R[θ]ω), where R[θ] designates the rotation
of an angle θ, then

τS(x, v) ≥ t/r.

Moreover
μr((Ŝ/Z

2)× (R[−θ]ω,R[θ]ω)) = 2
3w(ω, r)θ(ω, r, t).

The proof of this lemma is perhaps best explained by considering Figure 2.11.

Step 3: Putting all channels together. Recall that we need to estimate

μr

( ⋃
S∈Cr

{(x, v) ∈ (S/Z2)× S1 | τS(x, v) > t/r}
)
.

Pick

Ar � ω =
(p, q)√
p2 + q2

�= (p′, q′)√
p′2 + q′2

= ω′ ∈ Ar.

Observe that

| sin(ω̂, ω′)| = |pq′ − p′q|√
p2 + q2

√
p′2 + q′2

≥ 1√
p2 + q2

√
p′2 + q′2

≥ max

(
2r√

p2 + q2
,

2r√
p′2 + q′2

)
≥ sin θ(ω, r, t) + sin θ(ω′, r, t)

≥ sin(θ(ω, r, t) + θ(ω′, r, t))
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w

t

Ŝ

S

Figure 2.11: Exit time from the middle third Ŝ of an infinite strip S of width w

whenever t > 1.

Then, whenever S ∈ Cr(ω) and S′ ∈ Cr(ω′),

(Ŝ × (R[−θ]ω,R[θ]ω))) ∩ (Ŝ′ × (R[−θ′]ω′, R[θ′]ω′))) = ∅

with θ = θ(ω, r, t), θ′ = θ′(ω′, r, t) and R[θ] = rotation of an angle θ.

Moreover, if ω = (p,q)√
p2+q2

∈ Ar then

|Ŝ/Z2| = 1
3w(ω, r)

√
p2 + q2,

while

#{S/Z2 | S ∈ Cr(ω)} = 1.

Conclusion: Therefore, whenever t > 1,

⋃
S∈Cr

(Ŝ/Z2)× (R[−θ]ω,R[θ]ω)

⊂
⋃

S∈Cr

{(x, v) ∈ (S/Z2)× S1 | τS(x, v) > t/r},
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Figure 2.12: A channel modulo Z2

and the left-hand side is a disjoint union. Hence,

μr

( ⋃
S∈Cr

{(x, v) ∈ (S/Z2)× S1 | τS(x, v) > t/r}
)

≥
∑
ω∈Ar

μr((Ŝ/Z
2)× (R[−θ]ω,R[θ]ω))

=
∑

gcd(p,q)=1

p2+q2<1/4r2

1
3w(ω, r)

√
p2 + q2 · 2θ(ω, r, t)

=
∑

gcd(p,q)=1

p2+q2<1/4r2

2
3

√
p2 + q2 w(ω, r) arcsin

(
rw(ω, r)

3t

)

≥
∑

gcd(p,q)=1

p2+q2<1/4r2

2
3

√
p2 + q2

rw(ω, r)2

3t
.

Now
√
p2 + q2 < 1/4r if and only if w(ω, r) = 1√

p2+q2
− 2r > 1

2
√

p2+q2
, so

that, eventually,
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Φr(t) ≥
∑

gcd(p,q)=1

p2+q2<1/16r2

2
3

√
p2 + q2

rw(ω, r)2

3t
≥ r2

18t

∑
gcd(p,q)=1

p2+q2<1/16r2

[
1

r
√
p2 + q2

]
.

This gives the desired conclusion, since

∑
gcd(p,q)=1

p2+q2<1/16r2

[
1

4r
√
p2 + q2

]
=

∑
p2+q2<1/16r2

1 ∼ π

16r2
.

The equality above is proved as follows: the term[
1

4r
√
p2 + q2

]

is the number of integer points on the segment of length 1/4r in the direction
(p, q) with (p, q) ∈ Z2 such that gcd(p, q) = 1.

The Bourgain–Golse–Wennberg theorem raises the question of whether Φr(t)
� C/t in some sense as r → 0+ and t → +∞. Given the very different nature of
the arguments used to establish the upper and the lower bounds in that theorem,
this is a highly nontrivial problem, whose answer seems to be known only in space
dimension D = 2 so far. We shall return to this question later, and see that the
2-dimensional situation is amenable to a class of very specific techniques based on
continued fractions, that can be used to encode particle trajectories of the periodic
Lorentz gas.

A first answer to this question, in space dimension D = 2, is given by the
following

Theorem 2.4.5 (Caglioti–Golse [9]). Assume D = 2 and define, for each v ∈ S1,

φr(t|v) = μr({x ∈ Zr/Z
2 | τr(x, v) ≥ t/r}, t ≥ 0.

Then there exists Φ: R+ → R+ such that

1

| ln ε|
∫ 1/4

ε

φr(t, v)
dr

r
−→ Φ(t) a.e. in v ∈ S1

in the limit as ε→ 0+. Moreover,

Φ(t) ∼ 1

π2t
as t→ +∞.

Shortly after [9] appeared, F. Boca and A. Zaharescu improved our method
and managed to compute Φ(t) explicitly for each t ≥ 0. One should keep in mind
that their formula had been conjectured earlier by P. Dahlqvist [14], on the basis
of a formal computation.
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Figure 2.13: Black lines issued from the origin terminate at integer points with
coprime coordinates; red lines terminate at integer points whose coordinates are
not coprime

Theorem 2.4.6 (Boca–Zaharescu [3]). For each t > 0,

Φr(t) −→ Φ(t) =
6

π2

∫ ∞

t

(s− t)g(s) ds

in the limit as r → 0+, where

g(s) =

{
1 if s ∈ [0, 1],

1
s + 2

(
1− 1

s

)2
ln(1− 1

s )− 1
2

∣∣1− 2
s

∣∣2 ln |1− 2
s | if s ∈ (1,∞).

In the sequel, we shall return to the continued and Farey fractions techniques
used in the proofs of these two results, and generalize them.

2.5 A negative result for the Boltzmann–Grad limit
of the periodic Lorentz gas

The material at our disposal so far provides us with a first answer —albeit a
negative one— to the problem of determining the Boltzmann–Grad limit of the
periodic Lorentz gas.
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Figure 2.14: Graph of Φ(t) (blue curve) and Φ′′(t) (green curve)

For simplicity, we consider the case of a Lorentz gas enclosed in a periodic
box TD = RD/ZD of unit side. The distance between neighboring obstacles is
supposed to be εD−1 with 0 < ε = 1/n, for n ∈ N and n > 2 so that ε < 1/2,
while the obstacle radius is εD < 1

2ε
D−1 —so that obstacles never overlap. Define

Yε = {x ∈ TD | dist(x, εD−1ZD) > εD} = εD−1(Zε/Z
D).

For each f in ∈ C(TD × SD−1), let fε be the solution of

∂tfε + v · ∇xfε = 0, (x, v) ∈ Yε × SD−1,

fε(t, x, v) = fε(t, x,R[nx]v), (x, v) ∈ ∂Yε × SD−1,

fε
∣∣
t=0

= f in,

where nx is unit normal vector to ∂Yε at the point x, pointing towards the interior
of Yε.

By the method of characteristics,

fε(t, x, v) = f in

(
εD−1Xε

(
− t

εD−1
;

x

εD−1
, v

)
; Vε

(
− t

εD−1
;

x

εD−1
, v

))
,

where (Xε, Vε) is the billiard flow in Zε.

The main result in this section is the following.
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Theorem 2.5.1 (Golse [21, 24]). There exist initial data f in ≡ f in(x) ∈ C(TD)
such that no subsequence of fε converges in L∞(R+ ×TD × SD−1) weak-∗ to the
solution f of a linear Boltzmann equation of the form

(∂t + v · ∇x)f(t, x, v) = σ

∫
SD−1

p(v, v′)(f(t, x, v′)− f(t, x, v)) dv′,

f
∣∣
t=0

= f in,

where σ > 0 and 0 ≤ p ∈ L2(SD−1 × SD−1) satisfies∫
SD−1

p(v, v′) dv′ =
∫
SD−1

p(v′, v) dv′ = 1 a.e. in v ∈ SD−1.

This theorem has the following important —and perhaps surprising— conse-
quence: the Lorentz kinetic equation cannot govern the Boltzmann–Grad limit of
the particle density in the case of a periodic distribution of obstacles.

Proof. The proof of the negative result above involves two different arguments:

a) the existence of a spectral gap for any linear Boltzmann equation, and

b) the lower bound for the distribution of free path lengths in the Bourgain–
Golse–Wennberg theorem.

Step 1: Spectral gap for the linear Boltzmann equation

With σ > 0 and p as above, consider the unbounded operator A on L2(TD×SD−1)
defined by

(Aφ)(x, v) = −v · ∇xφ(x, v)− σφ(x, v) + σ

∫
SD−1

p(v, v′)φ(x, v′) dv′,

with domain

D(A) = {φ ∈ L2(TD × SD−1) | v · ∇xφ ∈ L2(TD × SD−1)}.

Then:

Theorem 2.5.2 (Ukai–Point–Ghidouche [45]). There exist positive constants C and
γ such that

‖etAφ− 〈φ〉‖L2(TD×SD−1) ≤ Ce−γt‖φ‖L2(TD×SD−1), t ≥ 0,

for each φ ∈ L2(TD × SD−1), where

〈φ〉 = 1

|SD−1|
∫∫

TD×SD−1

φ(x, v) dx dv.
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Taking this theorem for granted, we proceed to the next step in the proof,
leading to an explicit lower bound for the particle density.

Step 2: Comparison with the case of absorbing obstacles

Assume that f in ≡ f in(x) ≥ 0 on TD. Then

fε(t, x, v) ≥ gε(t, x, v) = f in(x− tv)1Yε
(x)1εD−1τε(x/εD−1,v)>t.

Indeed, g is the density of particles with the same initial data as f , but assuming
that each particle disappears when colliding with an obstacle instead of being
reflected.

Then
1Yε

(x)→ 1 a.e. on TD and |1Yε
(x)| ≤ 1

while, after extracting a subsequence if needed,

1εD−1τε(x/εD−1,v)>t ⇀ Ψ(t, v) in L∞(R+ ×TD × SD−1) weak-∗.

Therefore, if f is a weak-∗ limit point of fε in L∞(R+ ×TD × SD−1) as ε→ 0,

f(t, x, v) ≥ f in(x− tv)Ψ(t, v) for a.e. (t, x, v).

Step 3: Using the lower bound on the distribution of τr

Denoting by dv the uniform measure on SD−1,

1

|SD−1|
∫∫

TD×SD−1

f(t, x, v)2 dx dv

≥ 1

|SD−1|
∫∫

TD×SD−1

f in(x− tv)2Ψ(t, v)2 dx dv

=

∫
TD

f in(y)2 dy
1

|SD−1|
∫
SD−1

Ψ(t, v)2 dv

≥ ‖f in‖2L2(TD)

(
1

|SD−1|
∫
SD−1

Ψ(t, v) dv

)2

= ‖f in‖2L2(TD)Φ(t)
2.

By the Bourgain–Golse–Wennberg lower bound on the distribution Φ of free path
lengths,

‖f(t, · , · )‖L2(TD×SD−1) ≥
CD

t
‖f in‖L2(TD), t > 1.

On the other hand, by the spectral gap estimate, if f is a solution of the linear
Boltzmann equation, one has

‖f(t, · , · )‖L2(TD×SD−1) ≤
∫
TD

f in(y) dy + Ce−γt‖f in‖L2(TD)
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so that

CD

t
≤ ‖f in‖L1(TD)

‖f in‖L2(TD)

+ Ce−γt

for each t > 1.

Step 4: Choice of initial data

Pick ρ to be a bump function supported near x = 0 and such that∫
ρ(x)2 dx = 1.

Take f in to be x �→ λD/2ρ(λx) periodicized, so that∫
TD

f in(x)2 dx = 1, while

∫
TD

f in(y) dy = λ−D/2

∫
ρ(x) dx.

For such initial data, the inequality above becomes

CD

t
≤ λ−D/2

∫
ρ(x) dx+ Ce−γt.

Conclude by choosing λ so that

λ−D/2

∫
ρ(x) dx < sup

t>1

(
CD

t
− Ce−γt

)
> 0. �

Remarks.

1) The same result (with the same proof) holds for any smooth obstacle shape
included in a shell

{x ∈ RD | CεD < dist(x, εD−1ZD) < C ′εD}.

2) The same result (with the same proof) holds if the specular reflection bound-
ary condition is replaced by more general boundary conditions, such as ab-
sorption (partial or complete) of the particles at the boundary of the ob-
stacles, diffuse reflection, or any convex combination of specular and diffuse
reflection —in the classical kinetic theory of gases, such boundary conditons
are known as “accommodation boundary conditions”.

3) But introducing even the smallest amount of stochasticity in any periodic
configuration of obstacles can again lead to a Boltzmann–Grad limit that is
described by the Lorentz kinetic model.
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Example (Wennberg–Ricci [37]). In space dimension 2, take obstacles that are
disks of radius r centered at the vertices of the lattice r1/(2−η)Z2, assuming that
0 < η < 1. In this case, Santaló’s formula suggests that the free-path lengths scale
like rη/(2−η) → 0.

Suppose the obstacles are removed independently with large probability —
specifically, with probability p = 1 − rη/(2−η). In that case, the Lorentz kinetic
equation governs the 1-particle density in the Boltzmann–Grad limit as r → 0+.

Having explained why neither the Lorentz kinetic equation nor any linear
Boltzmann equation can govern the Boltzmann–Grad limit of the periodic Lorentz
gas, in the remaining part of these notes we build the tools used in the description
of that limit.

2.6 Coding particle trajectories with continued
fractions

With the Bourgain–Golse–Wennberg lower bound for the distribution of free path
lengths in the periodic Lorentz gas, we have seen that the 1-particle phase space
density is bounded below by a quantity that is incompatible with the spectral
gap of any linear Boltzmann equation —in particular with the Lorentz kinetic
equation.

In order to further analyze the Boltzmann–Grad limit of the periodic Lorentz
gas, we cannot content ourselves with even more refined estimates on the distri-
bution of free path lengths, but we need a convenient way to encode particle
trajectories.

More precisely, the two following problems must be answered somehow:

First problem: For a particle leaving the surface of an obstacle in a given direction,
find the position of its next collision with an obstacle.

Second problem: Average —in some sense to be defined— in order to eliminate
the direction dependence.

From now on, our discussion is limited to the case of spatial dimensionD = 2,
as we shall use continued fractions, a tool particularly well adapted to under-
standing the rational approximation of real numbers. Treating the case of a space
dimension D > 2 along the same lines would require a better understanding of
simultaneous rational approximation of D − 1 real numbers (by D − 1 rational
numbers with the same denominator), a notoriously more difficult problem.

We first introduce some basic geometrical objects used in coding particle
trajectories.

The first such object is the notion of impact parameter.
For a particle with velocity v ∈ S1 located at the position x on the surface

of an obstacle (disk of radius r), we define its impact parameter hr(x, v) by the
formula

hr(x, v) = sin(n̂x, v).
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x
h

x

v

n

Figure 2.15: The impact parameter h corresponding with the collision point x at
the surface of an obstacle, and a direction v

In other words, the absolute value of the impact parameter hr(x, v) is the distance
of the center of the obstacle to the infinite line of direction v passing through x.

Obviously

hr(x,R[nx]v) = hr(x, v),

where we recall the notation R[n]v = v − 2(v · n)n.
The next important object in computing particle trajectories in the Lorentz

gas is the transfer map.

For a particle leaving the surface of an obstacle in the direction v and with
impact parameter h′, define

Tr(h
′, v) = (s, h) with

{
s = 2r× distance to the next collision point,
h = impact parameter at the next collision.

Particle trajectories in the Lorentz gas are completely determined by the
transfer map Tr and its iterates.

Therefore, a first step in finding the Boltzmann–Grad limit of the periodic,
2-dimensional Lorentz gas, is to compute the limit of Tr as r → 0+, in some sense
that will be explained later.

At first sight, this seems to be a desperately hard problem to solve, as particle
trajectories in the periodic Lorentz gas depend on their directions and the obstacle
radius in the strongest possible way. Fortunately, there is an interesting property
of rational approximation on the real line that greatly reduces the complexity of
this problem.
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x’

s

n

n x
v

xx’

Figure 2.16: The transfer map

The 3-length theorem

Question (R. Thom, 1989). On a flat 2-torus with a disk removed, consider a linear
flow with irrational slope. What is the longest orbit?

Theorem 2.6.1 (Blank–Krikorian [1]). On a flat 2-torus with a segment removed,
consider a linear flow with irrational slope 0 < α < 1. The orbits of this flow have
at most three different lengths —exceptionally two, but generically three. Moreover,
in the generic case where these orbits have exactly three different lengths, the length
of the longest orbit is the sum of the two other lengths.

These lengths are expressed in terms of the continued fraction expansion of
the slope α.

Together with E. Caglioti in [9], we proposed the idea of using the Blank–
Krikorian 3-length theorem to analyze particle paths in the 2-dimensional periodic
Lorentz gas.

More precisely, orbits with the same lengths in the Blank–Krikorian theorem
define a 3-term partition of the flat 2-torus into parallel strips, whose lengths and
widths are computed exactly in terms of the continued fraction expansion of the
slope (see Figure 2.171).

The collision pattern for particles leaving the surface of one obstacle —and
therefore the transfer map— can be explicitly determined in this way, for a.e.
direction v ∈ S1.

In fact, there is a classical result known as the 3-length theorem, which is
related to Blank–Krikorian’s. Whereas the Blank–Krikorian theorem considers a
linear flow with irrational slope on the flat 2-torus, the classical 3-length theorem
is a statement about rotations of an irrational angle —i.e., about sections of the
linear flow with irrational slope.

1Figures 2.16 and 2.17 are taken from a conference by E. Caglioti at the Centre International
de Rencontres Mathématiques, Marseille, February 18–22, 2008.
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Figure 2.17: Three types of orbits: the blue orbit is the shortest, the red one is
the longest, while the green one is of the intermediate length. The black segment
removed is orthogonal to the direction of the trajectories.

Theorem 2.6.2 (3-length theorem). Let α ∈ (0, 1) \Q and N ≥ 1. The sequence

{nα | 0 ≤ n ≤ N}

defines N + 1 intervals on the circle of unit length � R/Z. The lengths of these
intervals take at most three different values.

This striking result was conjectured by H. Steinhaus, and proved in 1957
independently by P. Erdős, G. Hajos, J. Suranyi, N. Swieczkowski, P. Szüsz —
reported in [42], and by Vera Sós [41].

As we shall see, the 3-length theorem (in either form) is the key to encoding
particle paths in the 2-dimensional Lorentz gas. We shall need explicitly the for-
mulas giving the lengths and widths of the three strips in the partition of the flat
2-torus defined by the Blank–Krikorian theorem. As this is based on the continued
fraction expansion of the slope of the linear flow considered in the Blank–Krikorian
theorem, we first recall some basic facts about continued fractions. An excellent
reference for more information on this subject is [28].
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Figure 2.18: The 3-term partition. The shortest orbits are collected in the blue
strip, the longest orbits in the red strip, while the orbits of intermediate length
are collected in the green strip.

Continued fractions

Assume 0 < v2 < v1 and set α = v2/v1, and consider the continued fraction
expansion of α:

α = [0; a0, a1, a2, . . .] =
1

a0 +
1

a1 + . . .

.

Define the sequences of convergents (pn, qn)n≥0, meaning that

pn+2

qn+2
= [0; a0, . . . , an], n ≥ 2,

by the recursion formulas

pn+1 = anpn + pn−1, p0 = 1, p1 = 0,
qn+1 = anqn + qn−1, q0 = 0, q1 = 1.
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Figure 2.19: Left: Hugo D. Steinhaus (1887–1972); right: Vera T. Sós

Finally, let dn denote the sequence of errors

dn = |qnα− pn| = (−1)n−1(qnα− pn), n ≥ 0,

so that
dn+1 = −andn + dn−1, d0 = 1, d1 = α.

The sequence dn is decreasing and converges to 0, at least exponentially fast.
(In fact, the irrational number for which the rational approximation by continued
fractions is the slowest is the one for which the sequence of denominators qn have
the slowest growth, i.e., the golden mean

θ = [0; 1, 1, . . .] =
1

1 +
1

1 + . . .

=

√
5− 1

2
.

The sequence of errors associated with θ satisfies dn+1 = −dn + dn−1 for each
n ≥ 1 with d0 = 1 and d1 = θ, so that dn = θn for each n ≥ 0.)

By induction, one verifies that

qndn+1 + qn+1dn = 1, n ≥ 0.

Notation. we write pn(α), qn(α), dn(α) to indicate the dependence of these quan-
tities in α.
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Collision patterns

The Blank–Krikorian 3-length theorem has the following consequence, of funda-
mental importance in our analysis.

Any particle leaving the surface of one obstacle in some irrational direction v
will next collide with one of at most three —exceptionally two— other obstacles.

Any such collision pattern involving the three obstacles seen by the depart-
ing particle in the direction of its velocity is completely determined by exactly 4
parameters, computed in terms of the continued fraction expansion of v2/v1 —in
the case where 0 < v2 < v1, to which the general case can be reduced by obvious
symmetry arguments.

ε
2r

2rB2Ar

Q/ε

v

Q’/ε Q/

Figure 2.20: Collision pattern seen from the surface of one obstacle; ε = 2r/v1

Assume therefore 0 < v2 < v1 with α = v2/v1 /∈ Q. Henceforth, we set
ε = 2r

√
1 + α2 and define

N(α, ε) = inf{n ≥ 0 | dn(α) ≤ ε},

k(α, ε) = −
[
ε− dN(α,ε)−1(α)

dN(α,ε)(α)

]
.

The parameters defining the collision pattern are A,B,Q —as they appear on the
previous figure— together with an extra parameter Σ ∈ {±1}. Here is how they
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are computed in terms of the continued fraction expansion of α = v2/v1:

A(v, r) = 1− dN(α,ε)(α)

ε
,

B(v, r) = 1− dN(α,ε)−1(α)

ε
+

k(α, ε)dN(α,ε)(α)

ε
,

Q(v, r) = εqN(α,ε)(α),

Σ(v, r) = (−1)N(α,ε).

The extra-parameter Σ in the list above has the following geometrical meaning. It
determines the relative position of the closest and next to closest obstacles seen
from the particle leaving the surface of the obstacle at the origin in the direction v.

The case represented on the figure where the closest obstacle is on top of the
strip consisting of the longest particle path corresponds with Σ = +1; the case
where that obstacle is at the bottom of this same strip corresponds with Σ = −1.

The figure above showing one example of collision pattern involves still an-
other parameter, denoted by Q′ on that figure.

This parameter Q′ is not independent from A,B,Q, since one must have

AQ+BQ′ + (1−A−B)(Q+Q′) = 1,

each term in this sum corresponding to the surface of one of the three strips in the
3-term partition of the 2-torus. (Remember that the length of the longest orbit in
the Blank–Krikorian theorem is the sum of the two other lengths.) Therefore,

Q′(v, r) =
1−Q(v, r)(1−B(v, r))

1−A(v, r)
.

Once the structure of collision patterns elucidated with the help of the Blank–
Krikorian variant of the 3-length theorem, we return to our original problem,
namely that of computing the transfer map.

In the next proposition, we shall see that the transfer map in a given, ir-
rational direction v ∈ S1 can be expressed explicitly in terms of the parameters
A,B,Q,Σ defining the collision pattern corresponding with this direction.

Write
K = (0, 1)3 × {±1}

and let (A,B,Q,Σ) ∈ K be the parameters defining the collision pattern seen by
a particle leaving the surface of one obstacle in the direction v. Set

TA,B,Q,Σ(h
′) =

⎧⎪⎪⎨⎪⎪⎩
(Q, h′ − 2Σ(1−A)) if 1− 2A < Σh′ ≤ 1,

(Q′, h′ + 2Σ(1−B)) if −1 ≤ Σh′ < −1 + 2B,

(Q′ +Q, h′ + 2Σ(A−B)) if −1 + 2B ≤ Σh′ ≤ 1− 2A.
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With this notation, the transfer map is essentially given by the explicit formula
TA,B,Q,Σ, except for an error of the order O(r2) on the free-path length from
obstacle to obstacle.

Proposition 2.6.3 (Caglioti–Golse [10, 11]). One has

Tr(h
′, v) = T(A,B,Q,Σ)(v,r)(h

′) + (O(r2), 0)

in the limit as r → 0+.

In fact, the proof of this proposition can be read on the figure above that
represents a generic collision pattern. The first component in the explicit formula

T(A,B,Q,Σ)(v,r)(h
′)

represents exactly 2r times the distance between the vertical segments that are
the projections of the diameters of the 4 obstacles on the vertical ordinate axis.
Obviously, the free-path length from obstacle to obstacle is the distance between
the corresponding vertical segments, minus a quantity of the order O(r) that is the
distance from the surface of the obstacle to the corresponding vertical segment.

On the other hand, the second component in the same explicit formula is
exact, as it relates impact parameters, which are precisely the intersections of the
infinite line that contains the particle path with the vertical segments correspond-
ing with the two obstacles joined by this particle path.

If we summarize what we have done so far, we see that we have solved our
first problem stated at the beginning of the present section, namely that of finding
a convenient way of coding the billiard flow in the periodic case and for space
dimension 2, for a.e. given direction v.

2.7 An ergodic theorem for collision patterns

It remains to solve the second problem, namely, to find a convenient way of aver-
aging the computation above so as to get rid of the dependence on the direction v.

Before going further in this direction, we need to recall some known facts
about the ergodic theory of continued fractions.

The Gauss map

Consider the Gauss map, which is defined on all irrational numbers in (0, 1) as
follows:

T : (0, 1) \Q � x �−→ Tx = 1
x −

[
1
x

] ∈ (0, 1) \Q.

This Gauss map has the following invariant probability measure —found by
Gauss himself:

dg(x) =
1

ln 2

dx

1 + x
.
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Moreover, the Gauss map T is ergodic for the invariant measure dg(x). By
Birkhoff’s theorem, for each f ∈ L1(0, 1; dg),

1

N

N−1∑
k=0

f(T kx) −→
∫ 1

0

f(z) dg(z) a.e. in x ∈ (0, 1)

as N → +∞.
How the Gauss map is related to continued fractions is explained as follows:

for

α = [0; a0, a1, a2, . . .] =
1

a0 +
1

a1 + . . .

∈ (0, 1) \Q,

the terms ak(α) of the continued fraction expansion of α can be computed from
the iterates of the Gauss map acting on α. Specifically,

ak(α) =

[
1

T kα

]
, k ≥ 0.

As a consequence, the Gauss map corresponds with the shift to the left on
infinite sequences of positive integers arising in the continued fraction expansion
of irrationals in (0, 1). In other words,

T [0; a0, a1, a2, . . .] = [0; a1, a2, a3 . . .],

equivalently recast as
an(Tα) = an+1(α), n ≥ 0.

Thus, the terms ak(α) of the continued fraction expansion of any α ∈ (0, 1)\Q
are easily expressed in terms of the sequence of iterates (T kα)k≥0 of the Gauss
map acting on α. The error dn(α) is also expressed in terms of that same sequence
(T kα)k≥0, by equally simple formulas.

Starting from the induction relation on the error terms

dn+1(α) = −an(α)dn(α) + dn−1(α), d0(α) = 1, d1(α) = α,

and the explicit formula relating an(Tα) to an(α), we see that

αdn(Tα) = dn+1(α), n ≥ 0.

This entails the formula

dn(α) =

n−1∏
k=0

T kα, n ≥ 0.

Observe that, for each θ ∈ [0, 1] \Q, one has

θ · Tθ < 1
2 ,
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so that
dn(α) ≤ 2−[n/2], n ≥ 0,

which establishes the exponential decay mentioned above. (As a matter of fact,
exponential convergence is the slowest possible for the continued fraction algo-
rithm, as it corresponds with the rational approximation of algebraic numbers of
degree 2, which are the hardest to approximate by rational numbers.)

Unfortunately, the dependence of qn(α) in α is more complicated. Yet one can
find a way around this, with the following observation. Starting from the relation

qn+1(α)dn(α) + qn(α)dn+1(α) = 1,

we see that

qn(α)dn−1(α) =

n∑
j=1

(−1)n−j dn(α)dn−1(α)

dj(α)dj−1(α)

=

n∑
j=1

(−1)n−j
n−1∏
k=j

T k−1αT kα.

Using once more the inequality θ · Tθ < 1
2 for θ ∈ [0, 1] \Q, one can truncate the

summation above at the cost of some exponentially small error term. Specifically,
one finds that∣∣∣∣∣∣qn(α)dn−1(α)−

n∑
j=n−l

(−1)n−j dn(α)dn−1(α)

dj(α)dj−1(α)

∣∣∣∣∣∣
=

∣∣∣∣∣∣qn(α)dn−1(α)−
n∑

j=n−l

(−1)n−j
n−1∏
k=j

T k−1αT kα

∣∣∣∣∣∣ ≤ 2−l.

More information on the ergodic theory of continued fractions can be found in the
classical monograph [28] on continued fractions, and in Sinai’s book on ergodic
theory [40].

An ergodic theorem

We have seen in the previous section that the transfer map satisfies

Tr(h
′, v) = T(A,B,Q,Σ)(v,r)(h

′) + (O(r2), 0) as r → 0+

for each v ∈ S1 such that v2/v1 ∈ (0, 1) \Q.
Obviously, the parameters (A,B,Q,Σ) are extremely sensitive to variations

in v and r as r → 0+, so that even the explicit formula for TA,B,Q,Σ is not too
useful in itself.

Each time one must handle a strongly oscillating quantity such as the free
path length τr(x, v) or the transfer map Tr(h

′, v), it is usually a good idea to
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consider the distribution of that quantity under some natural probability measure
rather than the quantity itself. Following this principle, we are led to consider the
family of probability measures in (s, h) ∈ R+ × [−1, 1],

δ((s, h)− Tr(h
′, v)),

or equivalently
δ((s, h)− T(A,B,Q,Σ)(v,r)(h

′)).

A first obvious idea would be to average out the dependence in v of this
family of measures: as we shall see later, this is not an easy task.

A somewhat less obvious idea is to average over obstacle radius. Perhaps
surprisingly, this is easier than averaging over the direction v.

That averaging over obstacle radius is a natural operation in this context can
be explained by the following observation. We recall that the sequence of errors
dn(α) in the continued fraction expansion of an irrational α ∈ (0, 1) satisfies

αdn(Tα) = dn+1(α), n ≥ 0,

so that
N(α, ε) = inf{n ≥ 1 | dn(α) ≤ ε}

is transformed by the Gauss map as follows:

N(a, ε) = N(Tα, ε/α) + 1.

In other words, the transfer map for the 2-dimensional periodic Lorentz gas
in the billiard table Zr (meaning with circular obstacles of radius r centered at
the vertices of the lattice Z2) in the direction v corresponding with the slope α is
essentially the same as for the billiard table Zr/α but in the direction corresponding
with the slope Tα. Since the problem is invariant under the transformation

α �→ Tα, r �→ r/α,

this suggests the idea of averaging with respect to the scale invariant measure in
the variable r, i.e., dr/r on R∗

+.
The key result in this direction is the following ergodic lemma for functions

that depend on finitely many dns.

Lemma 2.7.1 (Caglioti–Golse [9, 22, 11]). For α ∈ (0, 1) \Q, set

N(α, ε) = inf{n ≥ 0 | dn(α) ≤ ε}.
For each m ≥ 0 and each f ∈ C(Rm+1

+ ), one has

1

| ln η|
∫ 1/4

η

f

(
dN(α,ε)(α)

ε
, . . . ,

dN(α,ε)−m(α)

ε

)
dε

ε
−→ Lm(f)

a.e. in α ∈ (0, 1) as η → 0+, where the limit Lm(f) is independent of α.
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With this lemma, we can average over obstacle radius any function that
depends on collision patterns, i.e., any function of the parameters A,B,Q,Σ.

Proposition 2.7.2 (Caglioti–Golse [11]). Let K = [0, 1]3 × {±1}. For each F ∈
C(K), there exists L(F ) ∈ R independent of v such that

1

ln(1/η)

∫ 1/2

η

F (A(v, r), B(v, r), Q(v, r),Σ(v, r))
dr

r
−→ L(F )

for a.e. v ∈ S1 such that 0 < v2 < v1 in the limit as η → 0+.

Sketch of the proof. First eliminate the Σ dependence by decomposing

F (A,B,Q,Σ) = F+(A,B,Q) + ΣF−(A,B,Q).

Hence it suffices to consider the case where F ≡ F (A,B,Q).
Setting α = v2/v1 and ε = 2r/v1, we recall that

A(v, r) is a function of
dN(α,ε)(α)

ε
,

B(v, r) is a function of
dN(α,ε)(α)

ε
and

dN(α,ε)−1(α)

ε
.

As for the dependence of F on Q, proceed as follows: in F (A,B,Q), replace
Q(v, r) with

ε

dN(α,ε)−1

N(α,ε)∑
j=N(α,ε)−m

(−1)N(α,ε)−j dN(α,ε)(α)dN(α,ε)−1(α)

dj(α)dj−1(α)
,

at the expense of an error term of the order

O(modulus of continuity of F (2−m))→ 0 as m→∞,

uniformly as ε→ 0+.
This substitution leads to an integrand of the form

f

(
dN(α,ε)(α)

ε
, . . . ,

dN(α,ε)−m−1(α)

ε

)
to which we apply the ergodic lemma above: its Cesàro mean converges, in the
small radius limit, to some limit Lm(F ) independent of α.

By uniform continuity of F , one finds that

|Lm(F )− Lm′(F )| = O(modulus of continuity of F (2−m∧m′))

(with the notation m∧m′ = min(m,m′)), so that Lm(F ) is a Cauchy sequence as
m→∞. Hence

Lm(F )→ L(F ) as m→∞
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and with the error estimate above for the integrand, one finds that

1

ln(1/η)

∫ 1/2

η

F (A(v, r), B(v, r), Q(v, r),Σ(v, r))
dr

r
−→ L(F )

as η → 0+. �
With the ergodic theorem above, and the explicit approximation of the trans-

fer map expressed in terms of the parameters (A,B,Q,Σ) that determine collision
patterns in any given direction v, we easily arrive at the following notion of a
“probability of transition” for a particle leaving the surface of an obstacle with an
impact parameter h′ to hit the next obstacle on its trajectory at time s/r with
an impact parameter h.

Theorem 2.7.3 (Caglioti–Golse [10, 11]). For each h′ ∈ [−1, 1], there exists a
probability density P (s, h|h′) on R+ × [−1, 1] such that, for each f belonging to
C(R+ × [−1, 1]),

1

| ln η|
∫ 1/4

η

f(Tr(h
′, v))

dr

r
−→

∫ ∞

0

∫ 1

−1

f(s, h)P (s, h|h′) ds dh

a.e. in v ∈ S1 as η → 0+.

In other words, the transfer map converges in distribution and in the sense
of Cesàro, in the small radius limit, to a transition probability P (s, h|h′) that is
independent of v.

We are therefore left with the following problems:

a) to compute the transition probability P (s, h|h′) explicitly and discuss its
properties, and

b) to explain the role of this transition probability in the Boltzmann–Grad limit
of the periodic Lorentz gas dynamics.

2.8 Explicit computation of the transition
probability P (s, h|h′)

Most unfortunately, our argument leading to the existence of the limit L(F ), the
core result of the previous section, cannot be used for computing explicitly the
value L(F ). Indeed, the convergence proof is based on the ergodic lemma in the last
section, coupled to a sequence of approximations of the parameter Q in collision
patterns that involve only finitely many error terms dn(α) in the continued fraction
expansion of α. The existence of the limit is obtained through Cauchy’s criterion,
precisely because of the difficulty in finding an explicit expression for the limit.

Nevertheless, we have arrived at the following expression for the transition
probability P (s, h|h′):
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Theorem 2.8.1 (Caglioti–Golse [10, 11]). The transition density P (s, h|h′) is ex-
pressed in terms of a = 1

2 |h− h′| and b = 1
2 |h+ h′| by the explicit formula

P (s, h|h′) =
3

π2sa

[ (
(s− 1

2sa) ∧ (1 + 1
2sa)− 1 ∨ ( 12s+

1
2sb)

)
+

+
(
(s− 1

2sa) ∧ 1− ( 12s+
1
2sb) ∨

(
1− 1

2sa
))

+

+sa ∧ |1− s|1s<1 + (sa− |1− s|)+
]
,

with the notations x ∧ y = min(x, y) and x ∨ y = max(x, y).
Moreover, the function

(s, h, h′) �→ (1 + s)P (s, h|h′) belongs to L2(R+ × [−1, 1]2).
In fact, the key result in the proof of this theorem is the asymptotic distri-

bution of 3-obstacle collision patterns —i.e., the computation of the limit L(f),
whose existence has been proved in the last section’s proposition.

Theorem 2.8.2 (Caglioti–Golse [11]). Define K = [0, 1]3 × {±1}. Then, for each
F ∈ C(K),

1

| ln η|
∫ 1/4

η

F ((A,B,Q,Σ)(v, r))
dr

r
−→ L(F )

=

∫
K

F (A,B,Q,Σ) dm(A,B,Q,Σ) a.e. in v ∈ S1

as η → 0+, where

dm(A,B,Q,Σ) = dm0(A,B,Q)⊗ 1
2 (δΣ=1 + δΣ=−1),

dm0(A,B,Q) =
12

π2
10<A<1 10<B<1−A 10<Q< 1

2−A−B

dAdB dQ

1−A
.

Before giving an idea of the proof of the theorem above on the distribution of
3-obstacle collision patterns, it is perhaps worthwhile explaining why the measure
m above is somehow natural in the present context.

To begin with, the constraints 0 < A < 1 and 0 < B < 1 − A have an
obvious geometric meaning (see Figure 2.20 on collision patterns.) More precisely,
the widths of the three strips in the 3-term partition of the 2-torus minus the slit
constructed in the penultimate section (as a consequence of the Blank–Krikorian
3-length theorem) add up to 1. Since A is the width of the strip consisting of the
shortest orbits in the Blank–Krikorian theorem, and B that of the strip consisting
of the next to shortest orbits, one has

0 < A+B ≤ 1

with equality only in the exceptional case where the orbits have at most two
different lengths, which occurs for a set of measure 0 in v or r. Therefore, one has

0 < B(v, r) < 1−A(v, r), for a.e. r ∈ (0, 1
2 ).
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Likewise, the total area of the 2-torus is the sum of the areas of the strips
consisting of all orbits with the three possible lengths:

1 = QA+Q′B + (Q+Q′)(1−A−B) = Q(1−B) +Q′(1−A)

≥ Q(2−A−B)

as Q′ ≥ Q (see again the figure above on collision patterns).
Therefore, the volume element

dAdB dQ

1−A

in the expression of dm0 implies that the parameters A, B
1−A —or equivalently B

mod (1−A)— and Q are uniformly distributed in the largest subdomain of [0, 1]3

that is compatible with the geometric constraints.
The first theorem is a consequence of the second: indeed, P (s, h|h′) ds dh is

the image measure of dm(A,B,Q,Σ) under the map

K � (A,B,Q,Σ) �−→ T(A,B,Q,Σ)(h
′, v).

That (1 + s)P (s, h|h′) is square integrable is proved by inspection —by using the
explicit formula for P (s, h|h′).

Therefore, it remains to prove the second theorem.
We are first going to show that the family of averages over velocities satisfy∫

|v|=1
0<v2<v1

F (A(v, r), B(v, r), Q(v, r),Σ(v, r)) dv

→ π

8

∫
K

F (A,B,Q,Σ) dm(A,B,Q,Σ)

as r → 0+ for each F ∈ Cb(K).
On the other hand, because of the proposition in the previous section,

1

ln(1/η)

∫ 1/2

η

F (A(v, r), B(v, r), Q(v, r),Σ(v, r))
dr

r
−→ L(F )

for a.e. v ∈ S1 such that 0 < v2 < v1 in the limit as η → 0+.
Since we know that the limit L(F ) is independent of v, comparing the two

convergence statements above shows that

L(F ) =

∫
K

F (A,B,Q,Σ) dm(A,B,Q,Σ).

Therefore, we are left with the task of computing

lim
r→0+

∫
|v|=1

0<v2<v1

F (A(v, r), B(v, r), Q(v, r),Σ(v, r)) dv.
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The method for computing this type of expression is based on

a) Farey fractions (sometimes called “slow continued fractions”), and

b) estimates for Kloosterman’s sums, due to Boca–Zaharescu [3].

To begin with, we need to recall a few basic facts about Farey fractions.

Farey fractions

Put a filtration on the set of rationals in [0, 1] as follows:

FQ =
{

p
q | 0 ≤ p ≤ q ≤ Q, gcd(p, q) = 1

}
,

indexed in increasing order:

0 =
0

1
< γ1 < · · · < γj =

pj
qj

< · · · < γϕ(Q) =
1

1
= 1,

where ϕ denotes Euler’s totient function:

φ(n) = n
∏

p prime
p|n

(
1− 1

p

)
.

An important operation in the construction of Farey fractions is the notion
of “mediant” of two fractions. Given two rationals

γ =
p

q
and γ̂ =

p̂

q̂

with 0 ≤ p ≤ q, 0 ≤ p̂ ≤ q̂, and gcd(p, q) = gcd(p̂, q̂) = 1, their mediant is defined
as

mediant = γ ⊕ γ̂ =
p+ p̂

q + q̂
∈ (γ, γ̂).

Hence, if γ = p
q < γ̂ = p̂

q̂ are adjacent in FQ, then

âq − aq̂ = 1 and q + q̂ > Q.

Conversely, q, q̂ are denominators of adjacent fractions in FQ if and only if

0 ≤ q, q̂ ≤ Q, q + q̂ > Q, gcd(q, q′) = 1.

Given α ∈ (0, 1) \Q and Q ≥ 1, there exists a unique pair of adjacent Farey
fractions in FQ, henceforth denoted γ(α,Q) and γ̂(α,Q), such that

γ(α,Q) = p(α,Q)
q(α,Q) < α < γ̂(α,Q) = p̂(α,Q)

q̂(α,Q) .
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Figure 2.21: The Stern–Brocot tree. Each fraction γ on the n-th line is the mediant
of the two fractions closest to γ on the (n− 1)-st line. The first line consists of 0
and 1 written as 0 = 0

1 and 1 = 1
1 . Each rational in [0, 1] is obtained in this way.

At this point, we recall the relation between Farey and continued fractions.
Pick 0 < ε < 1; we recall that, for each α ∈ (0, 1) \Q,

N(α, ε) = min{n ∈ N | dn(α) ≤ ε}, dn(α) = dist(qn(α)α,Z).

Set Q = [1/ε], and let

γ(α,Q) = p(α,Q))
q(α,Q) < γ̂(α,Q) = p̂(α,Q))

q̂(α,Q)
with gcd(p(α,Q), q(α,Q)) = gcd(p̂(α,Q), q̂(α,Q)) = 1 be the two adjacent Farey
fractions in FQ surrounding α. Then:

a) one of the integers q(α,Q) and q̂(α,Q) is the denominator of the N(α, ε)-th
convergent in the continued fraction expansion of α, i.e., qN(α,ε)(α), and

b) the other is of the form

mqN(α,ε) + qN(α,ε)−1, with 0 ≤ m ≤ aN(α,ε)(α),

where we recall that

α = [0; a1, a2, . . .] =
1

a0 +
1

a1 + . . .

.
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Setting α = v2/v1 and ε = 2r/v1, we recall that, by definition

Q(v, r) = εqN(α,ε)(α) ∈ {εq(α,Q), εq̂(α,Q)} with Q = [1/ε],

and we further define

D(v, r) = dN(α,ε)/ε = dist( 1εQ(v, r)α,Z)/ε,

and

Q̃(v, r) =

⎧⎨⎩εq̂(α,Q) if qN(α,ε)(α) = q(α,Q),
εq(α,Q) if qN(α,ε)(α) = q̂(α,Q).

Now, we recall that A(v, r) = 1−D(v, r); moreover, we see that

B(v, r) = 1− dN(α,ε)−1(α)

ε
−
[
1− dN(α,ε)−1(α)/ε

D(v, r)

]
D(v, r)

= 1− dN(α,ε)−1(α)/ε mod D(v, r)

= 1− dist( 1ε Q̃(v, r)α,Z)/ε mod D(v, r).

To summarize, we have

F (A(v, r), B(v, r), Q(v, r)) = G(Q(v, r), Q̃(v, r), D(v, r))

and we are left with the task of computing

lim
r→0+

∫
S1

+

G(Q(v, r), Q̃(v, r), D(v, r)) dv

where S1
+ is the first octant in the unit circle. The other octants in the unit circle

give the same contribution by obvious symmetry arguments.
More specifically:

Lemma 2.8.3. Let α ∈ (0, 1) \ Q, and let p
q < α < p̂

q̂ be the two adjacent Farey

fractions in FQ surrounding α, with Q = [1/ε]. Then:

a) If p
q < α ≤ p̂−ε

q̂ , then

Q(v, r) = εq, Q̃(v, r) = εq̂, D(v, r) = 1
ε (αq − p).

b) If p+ε
q < α < p̂

q̂ , then

Q(v, r) = εq̂, Q̃(v, r) = εq, D(v, r) = 1
ε (p̂− αq̂).

c) If p+ε
q < α ≤ p̂−ε

q̂ , then

Q(v, r) = ε(q ∧ q̂), Q̃(v, r) = ε(q ∨ q̂), D(v, r) = dist( 1εQ(v, r)α,Z).
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Therefore, assuming for simplicity that

G(x, y, z) = g(x, y)H ′(z) and ε = 1/Q,
one has∫

S1
+

G(Q(v, r), Q̂(v, r), D(v, r)) dv

=
∑

0<q,q̂≤Q<q+q̂
gcd(q,q̂)=1

∫ (p̂−ε)/q̂

p/q

g

(
q

Q ,
q̂

Q
)
H ′(Q(qα− p)) dα

+ three other similar terms

=
∑

0<q,q̂≤Q<q+q̂
gcd(q,q̂)=1

g

(
q

Q ,
q̂

Q
)

1

qQ
(
H

(
1− q/Q
q̂/Q

)
−H(0)

)
+ three other similar terms.

Thus, everything reduces to computing

lim
Q→+∞

1

Q2

∑
0<q,q̂≤Q<q+q̂

gcd(q,q̂)=1

ψ

(
q

Q ,
q̂

Q
)
.

We conclude with the following

Lemma 2.8.4 (Boca–Zaharescu [3]). For ψ ∈ Cc(R
2), one has

1

Q2

∑
0<q,q̂≤Q<q+q̂

gcd(q,q̂)=1

ψ

(
q

Q ,
q̂

Q
)
→ 6

π2

∫∫
0<x,y<1<x+y

ψ(x, y) dx dy

in the limit as Q →∞.

This is precisely the path followed by F. Boca and A. Zaharescu to compute
the limiting distribution of free path lengths in [3] (see Theorem 2.4.6); as ex-
plained above, their analysis can be greatly generalized in order to compute the
transition probability that is the limit of the transfer map as the obstacle radius
r → 0+.

2.9 A kinetic theory in extended phase-space for the
Boltzmann–Grad limit of the periodic Lorentz gas

We are now ready to propose an equation for the Boltzmann–Grad limit of the
periodic Lorentz gas in space dimension 2. For each r ∈ (0, 1

2 ), denote the billiard
map by

Br : Γ+
r � (x, v) �−→ Br(x, v) = (x+ τr(x, v)v,R[x+ τr(x, v)v]v) ∈ Γ+

r .
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For (x0, v0) ∈ Γ+
r , set

(xn, vn) = Bn
r (x0, v0)

and define
bnr (x, v) = (A,B,Q,Σ)(vn, r), n ∈ N∗.

Henceforth, for each n ≥ 1, we write

Kn = R2 × S1 ×R+ × [−1, 1]×Kn.

We make the following asymptotic independence hypothesis: there exists a
probability measure Π on R+ × [−1, 1] such that, for each n ≥ 1 and each Ψ in
C(Kn) with compact support,

(H)

lim
r→0+

∫
Zr×S1

Ψ(x, v, rτr(
x
r , v), hr(

x1

r , v1), b
1
r, . . . , b

n
r ) dx dv

=

∫
Qn

Ψ(x, v, τ, h, β1, . . . , βn) dx dv dΠ(τ, h) dm(β1) . . . dm(βn),

where (x0, v0) = (x − τr(x,−v)v, v) and hr(x1/r, v1) = sin(nx1 , v1), and m is the
probability measure on K obtained in Theorem 2.8.2.

If this holds, the iterates of the transfer map Tr are described by the Markov
chain with transition probability 2P (2s, h|h′). This leads to a kinetic equation on
an extended phase space for the Boltzmann–Grad limit of the periodic Lorentz
gas in space dimension 2:

F (t, x, v, s, h) =

density of particles with velocity v and position x at time t

that will hit an obstacle after time s, with impact parameter h.

Theorem 2.9.1 (Caglioti–Golse [10, 11]). Assume (H), and let f in ≥ 0 belong to
Cc(R

2 × S1). Then one has

fr −→
∫ ∞

0

∫ 1

−1

F ( · , · , · , s, h) ds dh in L∞(R+ ×R2 × S1) weak-∗

in the limit as r → 0+, where F ≡ F (t, x, v, s, h) is the solution of

(∂t+v · ∇x − ∂s)F (t, x, v, s, h)

=

∫ 1

−1

2P (2s, h|h′)F (t, x,R[π − 2 arcsin(h′)]v, 0, h′) dh′,

F (0, x, v, s, h) = f in(x, v)

∫ ∞

2s

∫ 1

−1

P (τ, h|h′) dh′ dτ,

with (x, v, s, h) running through R2 × S1 ×R∗
+ × (−1, 1). The notation R[θ] des-

ignates the rotation of an angle θ.
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Let us briefly sketch the computation leading to the kinetic equation above
in the extended phase space Z = R2 × S1 ×R+ × [−1, 1].

In the limit as r → 0+, the sequence (bnr (x, v))n≥1 converges to a sequence
of i.i.d. random variables with values in K = [0, 1]× {±1}, according to assump-
tion (H).

Then, for each s0 > 0 and h0 ∈ [−1, 1], we construct a Markov chain
(sn, hn)n≥1 with values in R+ × [−1, 1] in the following manner:

(sn, hn) = Tbn(hn−1), n ≥ 1.

Now we define the jump process (Xt, Vt, St, Ht) starting from (x, v, s, h) in
the following manner. First pick a trajectory of the sequence b = (bn)n≥1; then,
for each s > 0 and each h ∈ [−1, 1], set

(s0, h0) = (s, h).

Define then inductively sn and hn for n ≥ 1 by the formula above, together with

σn = s0 + · · ·+ sn−1, n ≥ 1,

and
vn = R[2 arcsin(hn−1)− π]vn−1, n ≥ 1.

With the sequence (vn, sn, hn)n≥1 so defined, we next introduce the formulas
for (Xt, Vt, St, Ht):

• While 0 ≤ t < τ , we set

Xt(x, v, s, h) = x+ tω, St(x, v, s, h) = s− t,

Vt(x, v, s, h) = v, Ht(x, v, s, h) = h.

• For σn < t < σn+1, we set

Xt(x, v, s, h) = x+ (t− σn)vn,

Vt(x, v, s, h) = vn,

St(x, v, s, h) = σn+1 − t,

Ht(x, v, s, h) = hn.

To summarize, the prescription above defines, for each t ≥ 0, a map de-
noted Tt:

Z ×KN∗ � (x, v, s, h,b) �−→ Tt(x, ω, τ, h) = (Xt, Vt, St, Ht) ∈ Z

that is piecewise continuous in t ∈ R+.
Denote by F in ≡ F in(x, v, s, h) the initial distribution function in the ex-

tended phase space Z, and by χ ≡ χ(x, v, s, h) an observable —without loss of
generality, we assume that χ ∈ C∞

c (Z).
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Define F (t, · , · , · , · ) by the formula∫∫∫∫
Z

χ(x, v, s, h)F (t, dx, dv, ds, dh)

=

∫∫∫∫
Z

E[χ(Tt(x, v, s, h))]F
in(x, v, s, h) dx dv ds dh,

where E designates the expectation on trajectories of the sequence of i.i.d. random
variables b = (bn)n≥1.

In other words, F (t, · , · , · , · ) is the image under the map Tt of the measure
Prob(db)F in(x, v, s, h), where

Prob(db) =
∏
n≥1

dm(bn).

Set g(t, x, v, s, h) = E[χ(Tt(x, v, s, h))]; one has

g(t, x, v, s, h) = E[1t<s χ(Tt(x, v, s, h))] +E[1s<t χ(Tt(x, v, s, h))].

If s > t, there is no collision in the time interval [0, t] for the trajectory considered,
meaning that

Tt(x, v, s, h) = (x+ tv, v, s− t, h).

Hence
E[1t<s χ(Tt(x, v, s, h))] = χ(x+ tv, v, s− t, h)1t<s.

On the other hand,

E[1s<t χ(Tt(x, v, s, h))] = E[1s<t χ(T(t−s)−0Ts+0(x, v, s, h))]

= E[1s<t χ(T(t−s)−0(x+ sv,R[Δ(h)]v, s1, h1))]

with (s1, h1) = Tb1(h) and Δ(h) = 2 arcsin(h)− π.
Conditioning with respect to (s1, h1) shows that

E[1s<t χ(Tt(x, v, s, h))]

= E[1s<t E[χ(T(t−s)−0(x+ sv,R[Δ(h)]v, s1, h1))|s1, h1]],

and
E[χ(T(t−s)−0(x+ sv,R[Δ(h)]v, s1, h1))|s1, h1]

= g(t− s, x+ sv,R[Δ(h)]v, s1, h1).

Then

E[1s<t E[χ(T(t−s)−0(x+ sv,R[Δ(h)]v, s1, h1))|s1, h1]]

= 1s<t

∫
g(t− s, x+ sv,R[Δ(h)]v,Tb1(h))] dm(b1)

= 1s<t

∫
g(t− s, x+ sv,R[Δ(h)]v, s1, h1)]2P (2s1, h1|h) ds1 dh1.
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Finally,

g(t, x, v, s, h) = χ(x+ tv, v, s− t, h)1t<s

+ 1s<t

∫
g(t− s, x+ sv,R[Δ(h)]v, s1, h1)]P (s1, h1|h) ds1 dh1.

This formula represents the solution of the problem

(∂t − v · ∇x + ∂s)g = 0, t, s > 0, x ∈ R2, s ∈ S1, |h| < 1,

g(t, x, s, 0, h) =

∫∫
R∗+×(−1,1)

P (s1, h1|h)g(t, x, v, s1, h1) ds1 dh1,

g
∣∣
t=0

= χ.

The boundary condition for s = 0 can be replaced with a source term that is
proportional to the Dirac measure δs=0:

(∂t − v · ∇x + ∂s)g = δs=0

∫∫
R∗+×(−1,1)

P (s1, h1|h)g(t, x, v, s1, h1) ds1 dh1,

g
∣∣
t=0

= χ.

One concludes by observing that this problem is precisely the adjoint of the Cauchy
problem in the theorem.

Let us conclude this section with a few bibliographical remarks. Although
the Boltzmann–Grad limit of the periodic Lorentz gas is a fairly natural problem,
it remained open for quite a long time after the pioneering work of G. Gallavotti
on the case of a Poisson distribution of obstacles [18, 19].

Perhaps the main conceptual difficulty was to realize that this limit must
involve a phase-space other than the usual phase-space of kinetic theory, i.e., the
setR2×S1 of particle positions and velocities, and to find the appropriate extended
phase-space where the Boltzmann–Grad limit of the periodic Lorentz gas can be
described by an autonomous equation.

Already Theorem 5.1 in [9] suggested that, even in the simplest problem
where the obstacles are absorbing —i.e., holes where particles disappear forever—
the limit of the particle number density in the Boltzmann–Grad scaling cannot be
described by an autonomous equation in the usual phase space R2 × S1.

The extended phase spaceR2×S1×R+×[−1, 1] and the structure of the limit
equation were proposed for the first time by E. Caglioti and the author in 2006,
and presented in several conferences —see for instance [23]; the first computation
of the transition probability P (s, h|h′) (Theorem 2.8.1), together with the limit
equation (Theorem 2.9.1) appeared in [10] for the first time. However, the theorem
concerning the limit equation in [10] remained incomplete, as it was based on the
independence assumption (H).

Shortly after that, J. Marklof and A. Strömbergsson proposed a complete
derivation of the limit equation of Theorem 2.9.1 in a recent preprint [32]. Their
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analysis establishes the validity of this equation in any space dimension, using
in particular the existence of a transition probability as in Theorem 2.8.1 in any
space dimension, a result that they had proved in an earlier paper [31]. The method
of proof in this article [31] avoided using continued or Farey fractions, and was
based on group actions on lattices in the Euclidean space, and on an important
theorem by M. Ratner implying some equidistribution results in homogeneous
spaces. However, explicit computations (as in Theorem 2.8.1) of the transition
probability in space dimension higher than 2 seem beyond reach at the time of
this writing —see however [33] for computations of the 2-dimensional transition
probability for more general interactions than hard sphere collisions.

Finally, the limit equation obtained in Theorem 2.9.1 is interesting in itself;
some qualitative properties of this equation are discussed in [11].

Conclusion

Classical kinetic theory (Boltzmann theory for elastic, hard sphere collisions) is
based on two fundamental principles:

a) Deflections in velocity at each collision are mutually independent and iden-
tically distributed.

b) Time intervals between collisions are mutually independent, independent of
velocities, and exponentially distributed.

The Boltzmann–Grad limit of the periodic Lorentz gas provides an example
of a non-classical kinetic theory where velocity deflections at each collision jointly
form a Markov chain, and the time intervals between collisions are not independent
of the velocity deflections.

In both cases, collisions are purely local and instantaneous events: indeed the
Boltzmann–Grad scaling is such that the particle radius is negligible in the limit.
The difference between these two cases is caused by the degree of correlation
between obstacles, which is maximal in the second case since the obstacles are
centered at the vertices of a lattice in the Euclidean space, whereas obstacles are
assumed to be independent in the first case. It could be interesting to explore
situations that are somehow intermediate between these two extreme cases —for
instance, situations where long range correlations become negligible.

Otherwise, there remain several outstanding open problems related to the
periodic Lorentz gas, such as

i) obtaining explicit expressions of the transition probability whose existence is
proved by J. Marklof and A. Strömbergsson in [31], in all space dimensions,
or

ii) treating the case where particles are accelerated by an external force —for
instance the case of a constant magnetic field, so that the kinetic energy of
particles remains constant.
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[24] F. Golse, On the periodic Lorentz gas in the Boltzmann–Grad scaling. Ann.
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[31] J. Marklof, A. Strömbergsson, The distribution of free path lengths in the
periodic Lorentz gas and related lattice point problems. Ann. of Math. 172
(2010), 1949–2033.
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Chapter 3

The Boltzmann Equation in
Bounded Domains

Yan Guo

3.1 Introduction

Boundary effects play a crucial role in the dynamics of gases governed by the
Boltzmann equation:

∂tF + v · ∇xF = Q(F, F ), (3.1.1)

where F (t, x, v) is the distribution function for the gas particles at time t ≥ 0,
position x ∈ Ω, and v ∈ R3. Throughout this chapter, the collision operator takes
the form

Q(F1, F2) =

∫
R3

∫
S2

|v − u|γF1(u
′)F2(v

′)q0(θ) dω du

−
∫
R3

∫
S2

|v − u|γF1(u)F2(v)q0(θ) dω du

≡ Qgain(F1, F2)−Qloss(F1, F2), (3.1.2)

where u′ = u + [(v − u) · ω]ω, v′ = v − [(v − u) · ω]ω, cos θ = (u − v) · ω/|u − v|,
0 ≤ γ ≤ 1 (hard potential) and 0 ≤ q0(θ) ≤ C| cos θ| (angular cutoff). The
mathematical study of the particle-boundary interaction in a bounded domain
and its effect on the global dynamics is one of the fundamental problems in the
Boltzmann theory. There are four basic types of boundary conditions for F (t, x, v)
at the boundary ∂Ω:

(1) Inflow injection, in which the incoming particles are prescribed.
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(2) Bounce-back reflection, in which the particles bounce back with reversed
velocity.

(3) Specular reflection, in which the particles bounce back specularly.

(4) Diffuse reflection (stochastic), in which the incoming particles are a proba-
bility average of the outgoing particles.

Due to its importance, there have been many contributions in the mathematical
study of different aspects of the Boltzmann boundary value problems [1], [2], [3],
[4], [6], [9], [10], [11], [15], [30], [31], [34], [37], [39], [46], [49], among others. See
also the references in the books [8], [12] and [44].

According to Grad [28, p. 243], one of the basic problems in the Boltz-
mann study is to prove existence and uniqueness of its solutions, as well as their
time-decay toward an absolute Maxwellian, in the presence of compatible phys-
ical boundary conditions in a general domain. In spite of those contributions to
the study of Boltzmann boundary problems, there are fewer mathematical re-
sults of uniqueness, regularity, and time decay-rate for Boltzmann solutions to-
ward a Maxwellian. In [41], it was announced that Boltzmann solutions near a
Maxwellian would decay exponentially to it in a smooth bounded convex domain
with specular reflection boundary conditions. Unfortunately, we are not aware of
any complete proof for such a result [45]. In [30], global stability of the Maxwellian
was established in a convex domain for diffusive boundary conditions. Recently,
important progress has been made in [16] and [47] to establish an almost ex-
ponential decay rate for Boltzmann solutions with large amplitude for general
collision kernels and general boundary conditions, provided that certain a-priori
strong Sobolev estimates can be verified. Even though these estimates had been
established for spatially periodic domains [22], [23] near Maxwellians, their va-
lidity is completely open for the Boltzmann solutions, even local in time, in a
bounded domain. As a matter of fact, this kind of strong Sobolev estimates may
not be expected for a general non-convex domain [23]. This is because even for
simplest kinetic equations with the differential operator v ·∇x, the phase boundary
∂Ω×R3 is always characteristic but not uniformly characteristic at the grazing set
γ0 = {(x, v) : x ∈ ∂Ω and v · n(x) = 0} where n(x) is the outward normal at x.
Hence it is very challenging and delicate to obtain regularity from the general
theory of hyperbolic PDE. Moreover, in comparison with the half-space problems
studied, for instance in [34], [49], the geometrical complication makes it difficult
to employ spatial Fourier transforms in x. There are many cycles (bouncing char-
acteristics) interacting with the boundary repeatedly, and analysis of such cycles
is one of the key mathematical difficulties.

We aim to develop a unified L2−L∞ theory in the near Maxwellian regime,
to establish exponential decay toward a normalized Maxwellian μ = e−

1
2 |v|2 , for all

four basic types of boundary conditions in rather general domains. Consequently,
uniqueness among these solutions can be obtained. For convex domains, these
solutions are shown to be continuous away from the singular grazing set γ0.
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3.2 Domain and characteristics

We let Ω = {x : ξ(x) < 0} be connected and bounded with ξ(x) a smooth function.
We assume that ∇ξ(x) �= 0 at the boundary ξ(x) = 0. The outward normal vector
at ∂Ω is given by

n(x) =
∇ξ(x)

|∇ξ(x)| , (3.2.1)

and it can be extended smoothly near ∂Ω = {x : ξ(x) = 0}. We say that Ω is real
analytic if ξ is real analytic in x. We define Ω to be strictly convex if there exists
cξ > 0 such that

∂ijξ(x)ζ
iζj ≥ cξ|ζ|2 (3.2.2)

for all x such that ξ(x) ≤ 0, and all ζ ∈ R3. We say that Ω has a rotational
symmetry if there are vectors x0 and � such that, for all x ∈ ∂Ω,

{(x− x0)×�} · n(x) ≡ 0. (3.2.3)

We denote the phase boundary in the space Ω×R3 by γ = ∂Ω×R3, and split
it into the outgoing boundary γ+, the incoming boundary γ−, and the singular
boundary γ0 for grazing velocities:

γ+ = {(x, v) ∈ ∂Ω×R3 : n(x) · v > 0},
γ− = {(x, v) ∈ ∂Ω×R3 : n(x) · v < 0},
γ0 = {(x, v) ∈ ∂Ω×R3 : n(x) · v = 0}.

Given (t, x, v), let [X(s), V (s)] = [X(s; t, x, v), V (s; t, x, v)] = [x+ (s− t)v, v]
be the trajectory (or the characteristics) for the Boltzmann equation (3.1.1):

dX(s)

ds
= V (s),

dV (s)

ds
= 0, (3.2.4)

with the initial condition [X(t; t, x, v), V (t; t, x, v)] = [x, v].

Definition 1 (Backward exit time). For (x, v) with x ∈ Ω̄ such that there exists
some τ > 0 for which x−sv ∈ Ω for 0 ≤ s ≤ τ , we define tb(x, v) > 0 to be the last
moment at which the back-time straight line [X(s; 0, x, v), V (s; 0, x, v)] remains in
the interior of Ω:

tb(x, v) = sup{τ > 0 : x− sv ∈ Ω for 0 ≤ s ≤ τ}. (3.2.5)

Clearly, for any x ∈ Ω, tb(x, v) is well-defined for all v ∈ R3. If x ∈ ∂Ω, then
tb(x, v) is well-defined for all v ·n(x) > 0. For any (x, v), we use tb(x, v) whenever
it is well-defined. We have x− tbv ∈ ∂Ω and ξ(x− tbv) = 0. We also define

xb(x, v) = x(tb) = x− tbv ∈ ∂Ω. (3.2.6)

We always have v · n(xb) ≤ 0.
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3.3 Boundary condition and conservation laws

In terms of the standard perturbation f such that F = μ+
√
μf , the Boltzmann

equation can be rewritten as

{∂t + v · ∇+ L} f = Γ(f, f), f(0, x, v) = f0(x, v),

where the standard linear Boltzmann operator (see [20]) is given by

Lf ≡ νf −Kf = − 1√
μ
{Q(μ,

√
μf) +Q(

√
μf, μ)} = νf −

∫
k(v, v′)f(v′) dv′

(3.3.1)
with the collision frequency ν(v) ≡ ∫ |v − u|γμ(u)q0(θ) du dθ ∼ {1 + |v|}γ for
0 ≤ γ ≤ 1; and

Γ(f1, f2) =
1√
μ
Q (
√
μf1,

√
μf2) ≡ Γgain(f1, f2)− Γloss(f1, f2). (3.3.2)

In terms of f , we formulate the boundary conditions as follows.

(1) The inflow boundary condition: for (x, v) ∈ γ−,

f |γ− = g(t, x, v). (3.3.3)

(2) The bounce-back boundary condition: for x ∈ ∂Ω,

f(t, x, v)|γ− = f(t, x,−v). (3.3.4)

(3) Specular reflection: for x ∈ ∂Ω, let

R(x)v = v − 2(n(x) · v)n(x), (3.3.5)

and

f(t, x, v)|γ− = f(x, v, v − 2(n(x) · v)n(x)) = f(x, v,R(x)v). (3.3.6)

(4) Diffuse reflection: assume the natural normalization with some constant cμ >
0,

cμ

∫
v·n(x)>0

μ(v)|n(x) · v| dv = 1. (3.3.7)

Then, for (x, v) ∈ γ−,

f(t, x, v)|γ− = cμ
√
μ(v)

∫
v′·n(x)>0

f(t, x, v′)
√
μ(v′){n(x) · v′} dv′. (3.3.8)
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For both the bounce-back and specular reflection conditions (3.3.4) and
(3.3.6), it is well-known that both mass and energy are conserved for (3.1.1). With-
out loss of generality, we may always assume that the mass-energy conservation
laws hold for t ≥ 0, in terms of the perturbation f :∫

Ω×R3

f(t, x, v)
√
μ dx dv = 0, (3.3.9)

∫
Ω×R3

|v|2f(t, x, v)√μ dx dv = 0. (3.3.10)

Moreover, if the domain Ω has any axis of rotation symmetry (3.2.3), then we
further assume that the corresponding conservation of angular momentum is valid
for all t ≥ 0: ∫

Ω×R3

{(x− x0)×�} · vf(t, x, v)√μ dx dv = 0. (3.3.11)

For the diffuse reflection (3.3.8), the mass conservation (3.3.9) is assumed to
be valid.

3.4 Main results

We introduce the weight function for ρ > 0 and β ∈ R1,

w(v) = (1 + ρ2|v|2)β . (3.4.1)

Theorem 2. Assume that w−2{1 + |v|}3 ∈ L1 in (3.4.1). There exists δ > 0 such
that, if F0 = μ+

√
μf0 ≥ 0 and

||wf0||∞ + sup
0≤t≤∞

eλ0t||wg(t)||∞ ≤ δ

with λ0 > 0, then there there exists a unique solution F (t, x, v) = μ +
√
μf ≥ 0

to the inflow boundary value problem (3.3.3) for the Boltzmann equation (3.1.1).
There exists 0 < λ < λ0 such that

sup
0≤t≤∞

eλt||wf(t)||∞ ≤ C

{
||wf0||∞ + sup

0≤t≤∞
eλ0t||wg(t)||∞

}
.

Moreover, if Ω is strictly convex (3.2.2), and f0(x, v) is continuous except on γ0,
and g(t, x, v) is continuous in [0,∞)× {∂Ω×R3 \ γ0} with

f0(x, v) = g(x, v) on γ−,

then f(t, x, v) is continuous in [0,∞)× {Ω̄×R3 \ γ0}.
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Theorem 3. Assume that w−2{1 + |v|}3 ∈ L1 in (3.4.1). Assume that the con-
servation of mass (3.3.9) and energy (3.3.10) are valid for f0. Then there exists
δ > 0 such that if F0(x, v) = μ +

√
μf0(x, v) ≥ 0 and ||wf0||∞ ≤ δ, there exists

a unique solution F (t, x, v) = μ +
√
μf(t, x, v) ≥ 0 to the bounce-back boundary

value problem (3.3.4) for the Boltzmann equation (3.1.1) such that

sup
0≤t≤∞

eλt||wf(t)||∞ ≤ C||wf0||∞

for some λ > 0. Moreover, if Ω is strictly convex (3.2.2), and initially f0(x, v) is
continuous except on γ0, and

f0(x, v) = f0(x,−v) on ∂Ω×R3 \ γ0,
then f(t, x, v) is continuous in [0,∞)× {Ω̄×R3 \ γ0}.
Theorem 4. Assume that w−2{1 + |v|}3 ∈ L1 in (3.4.1). Assume that ξ is both
strictly convex (3.2.2) and analytic, and the mass (3.3.9) and energy (3.3.10) are
conserved for f0. If Ω has any rotational symmetry (3.2.3), we require that the
corresponding angular momentum (3.3.11) is conserved for f0. Then there exists
δ > 0 such that if F0(x, v) = μ +

√
μf0(x, v) ≥ 0 and ||wf0||∞ ≤ δ, there exists

a unique solution F (t, x, v) = μ+
√
μf(t, x, v) ≥ 0 to the specular boundary value

problem (3.3.6) for the Boltzmann equation (3.1.1) such that

sup
0≤t≤∞

eλt||wf(t)||∞ ≤ C||wf0||∞

for some λ > 0. Moreover, if f0(x, v) is continuous except on γ0 and

f0(x, v) = f0(x,R(x)v) on ∂Ω,

then f(t, x, v) is continuous in [0,∞)× {Ω̄×R3 \ γ0}.
Theorem 5. Assume (3.3.7). Assume that w−2{1 + |v|}3 ∈ L1 for the weight
function w in (3.4.1). Assume the mass conservation (3.3.9) is valid for f0. If
F0(x, v) = μ +

√
μf0(x, v) ≥ 0 and ||wf0||∞ ≤ δ sufficiently small, then there

exists a unique solution F (t, x, v) = μ +
√
μf(t, x, v) ≥ 0 to the diffuse boundary

value problem (3.3.8) for the Boltzmann equation (3.1.1) such that

sup
0≤t≤∞

eλt||wf(t)||∞ ≤ C||wf0||∞

for some λ > 0. Moreover, if ξ is strictly convex, and if f0(x, v) is continuous
except on γ0 with

f0(x, v)|γ− = cμ
√
μ

∫
nx·v′>0

f0(x, v
′)
√
μ(v′){n(x) · v′} dv′,

then f(t, x, v) is continuous in [0,∞)× {Ω̄×R3 \ γ0}.
Our result extends the result in [30] to non-convex domains with a different,

more direct approach.
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3.5 Velocity lemma and analyticity

The Velocity Lemma plays the most important role in the study of continuity
for cycles (bouncing generalized trajectories) in the specular case. It states that,
in a strictly convex domain (3.2.2), the singular set γ0 cannot be reached via
the trajectory dx/dt = v, dv/dt = 0 from interior points inside Ω, and hence γ0
does not really participate or interfere with the interior dynamics. No singularity
would be created from γ0 and it is possible to perform calculus for the back-time
exit time tb(x, v). This is the foundation for future regularity study. Moreover,
the Velocity Lemma also provides the lower bound away from the singular set γ0,
which leads to estimates for repeating bounces in the specular reflection case. Such
a Velocity Lemma was first discovered in [22], [23], in the study of regularity of
the Vlasov–Poisson (Maxwell) system with flat geometry. It was then generalized
in [32] for the Vlasov–Poisson system in a ball, and it is the starting point for the
construction of regular solutions to the Vlasov–Poisson system in a general convex
domain [33] with specular boundary condition.

3.6 L2 decay theory

Since no spatial Fourier transform is available, we first establish linear L2 expo-
nential decay estimates in Section 3.4 via a functional analytical approach. It turns
out that it suffices to establish the following finite-time estimate:∫ 1

0

||Pf(s)||2ν ds ≤M

{∫ 1

0

||{I−P}f(s)||2ν ds+ boundary contributions

}
(3.6.1)

for any solution f to the linear Boltzmann equation

∂tf + v · ∇xf + Lf = 0, f(0, x, v) = f0(x, v) (3.6.2)

with all four boundary conditions (3.3.3), (3.3.4), (3.3.6) and (3.3.8). Here, for any
fixed (t, x), the standard projection P onto the hydrodynamic part is given by

Pf = {a(t, x) + b(t, x) · v + c(t, x)|v|2}√μ(v), (3.6.3)

Paf = a(t, x)
√
μ(v), Pbf = b(t, x)v

√
μ(v), Pcf = c(t, x)|v|2√μ(v),

and || · ||ν is the weighted L2 norm with the collision frequency ν(v).
Similar types of estimates like (3.6.1), but with strong Sobolev norms, have

been established in recent years [20] via the so-called macroscopic equations for
the coefficients a, b and c. The key of the analysis was based on the ellipticity for b
which satisfies Poisson’s equation

Δb = ∂2{I−P}f, (3.6.4)
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where ∂2 denotes some second-order differential operator. In the presence of the
boundary condition b · n(x) = 0 (bounce-back and specular) or b ≡ 0 (inflow
and diffuse) at ∂Ω, such an ellipticity is very difficult to employ for the weak L2

(instead of H1) estimate for b in (3.6.4). This is due to lack of regularity of b in
(3.6.4), and even the trace of b is hard to define. It remains an interesting open
question if such a direct approach can work, which can lead to a more explicit
estimate for the constant M in (3.6.1).

Instead, we employ the hyperbolic (transport) feature rather than elliptic
feature of the problem to prove (3.6.1), by an indirect method of contradiction
with an implicit constant M . We can find fk such that, if (3.6.1) were not valid,
then the normalized

Zk(t, x, v) ≡ fk(t, x, v)√∫ 1

0
||Pfk(s)||2ν ds

satisfies
∫ 1

0
||PZk(s)||2ν ds ≡ 1, and∫ 1

0

||(I−P)Zk(s)||2ν ds ≤ 1

k
. (3.6.5)

Denote a weak limit of Zk by Z. We expect that Z = PZ = 0, by each of the
four boundary conditions. The key is to prove that Zk → Z strongly to reach a
contradiction. By the averaging Lemma [18], we know that Zk(s) → Z strongly
in the interior of Ω. As expected, the most delicate part is to exclude possible
concentration near the boundary ∂Ω. Since Zk is a solution to the transport equa-
tion, it then follows that, near ∂Ω, the set of non-grazing velocity v ·n(x) �= 0 can
be reached via a trajectory from the interior of Ω, which implies that Zk can be
controlled on this non-grazing set with no concentration. On the other hand, over
the remaining almost-grazing set v · n(x) ∼ 0, thanks to the fact (3.6.5), we know
that

Zk ∼ PZk = {ak(t, x) + bk(t, x) · v + ck(t, x)|v|2}
√
μ(v).

We observe that such special form of velocity distribution PZk cannot have con-
centration on the almost-grazing set v ·n(x) ∼ 0, and we therefore conclude (3.6.1).
Clearly, the hyperbolic or the transport property is crucial to control boundary
behaviors via the interior compactness of Zk.

3.7 L∞ decay theory

We study linear L∞ decay for all four different types of boundary conditions:
inflow, bounce-back, specular and diffuse (stochastic) reflection. In order to control
the nonlinear term Γ(f, f), we need to estimate the weighted L∞ of wf . We recall
that L = ν − K, and study the L∞ (pointwise) decay of the linear Boltzmann
equation (3.6.2). We choose a weight function

h(t, x, v) = w(v)f(t, x, v), (3.7.1)
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and study the equivalent linear Boltzmann equation:

{∂t + v · ∇x + ν −Kw}h = 0, h(0, x, v) = h0(x, v) ≡ wf0, (3.7.2)

where

Kwh = wK

(
h

w

)
, (3.7.3)

together with various boundary conditions (3.3.3), (3.3.4), (3.3.6), or (3.3.8). In
bounce-back, specular, diffuse reflection, as well as in the inflow case with g ≡ 0,
we designate the semigroup U(t)h0 to be the solution to (3.7.2), and the semigroup
G(t)h0 to be the solution to the simpler transport equation without collision Kw:

{∂t + v · ∇x + ν}h = 0, h(0, x, v) = h0(x, v) = wf0. (3.7.4)

Notice that neither G(t) nor U(t) is a strongly continuous semigroup in L∞ [44].
We first obtain an explicit representation of G(t) in the presence of various

boundary conditions. Then we can obtain the explicit exponential decay estimate
for G(t). Moreover, we also establish the continuity for G(t) with a forcing term
q if Ω is strictly convex (3.2.2) based on the Velocity Lemma. To study the L∞

decay for U(t), we make use of the Duhamel Principle:

U(t) = G(t) +

∫ t

0

G(t− s1)KwU(s1) ds1. (3.7.5)

Following the pioneering work of Vidav [48] almost 40 years ago, we iterate (3.7.5)
back to get:

U(t) = G(t)+

∫ t

0

G(t−s1)KwG(s1) ds1+

∫ t

0

∫ s1

0

G(t−s1)KwG(s1−s)KwU(s) ds ds1,

(3.7.6)
where certain compactness property was discovered for the last double integra-
tion. Such a compactness is a feature of the so-called ‘A-smoothing operators’
introduced in [48], which have many applications in the Boltzmann theory [26].
Moreover, such an ‘A-smoothing’ property provides an effective way to estimate
the sharp growth rate of a wide class of semigroups, which is important in the
study of nonlinear instability problems [27]. Recently, a similar iteration was em-
ployed and new compactness was observed in the so-called ‘Mixture Lemma’ for
L∞ decay of the Boltzmann equation, either for a whole or a half space [34], [35],
[36]. Our idea here is to estimate the last double integral in terms of the L2 norm
of f = h/w, which decays exponentially by L2 decay theory. The presence of dif-
ferent boundary conditions now leads to complicated bouncing trajectories. Each
of the boundary conditions presents a different difficulty, as illustrated below.

For the inflow boundary condition (3.3.3), the back-time trajectory comes
either from the initial plane or from the boundary. Even though, when g �= 0, the
solution operators for (3.7.4) and (3.7.2) are not semigroups, for any (t, x, v) a
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similar representation as G(t− s1)KwG(s1 − s)KwU(s) is still possible. With the
compactness property of Kw, the main contribution in (3.7.6) is roughly of the
form∫ t

0

∫ s1

0

∫
v′,v′′bounded

|h(s,X(s; s1, X(s1; t, x, v), v
′), v′′)| dv′dv′′ds ds1. (3.7.7)

The v′ integral is estimated by a change of variable introduced in [48],

y ≡ X(s; s1, X(s1; t, x, v), v
′) = x− (t− s1)v − (s1 − s)v′. (3.7.8)

Since det(dy/dv′) �= 0 is almost always true, the v′- and v′′-integration in (3.7.7)
can be bounded as follows, where h = wf :∫

Ω,v′′ bounded
|h(s, y, v′′)| dy dv′′ ≤ C

(∫
Ω,v′′ bounded

|f(s, y, v′′)|2 dy dv′′
)1/2

.

For bounce-back, specular or diffuse reflections, the characteristic trajecto-
ries repeatedly interact with the boundary. Instead of X(s; t, x, v), we should use
the generalized characteristics, defined as cycles, Xcl(s; t, x, v) in (3.7.7). The key
question is, for any fixed (t, x, v), whether or not the change of variable

y ≡ Xcl(s; s1, Xcl(s1; t, x, v), v
′) (3.7.9)

is valid, i.e., to determine if it is almost always true that

det

{
dXcl(s; s1, Xcl(s1; t, x, v), v

′)
dv′

}
�= 0. (3.7.10)

The bounce-back cycles Xcl(s; t, x, v) from a given point (t, x, v) are rela-
tively simple, just going back and forth between two fixed points xb(x, v) and
xb(xb(x, v),−v). Now the change of variable (3.7.9) and (3.7.10) can be estab-
lished by the study of the set Sx(v).

The specular cycles Xcl(s; t, x, v) reflect repeatedly with the boundary, and
dXcl(s; s1, Xcl(s1; t, x, v), v

′)/dv′ is very complicated to compute and (3.7.10) is
extremely difficult to verify, even in a convex domain. This is in part due to
the fact that there is no apparent way to analyze dXcl(s; s1Xcl(s1; t, x, v), v

′)/dv′

inductively with finite bounces. To overcome such a difficulty, det(dvk/dv1) can be
computed asymptotically in a delicate iterative fashion for special cycles almost
tangential to the boundary, which undergo many small bounces near the boundary.
It then follows that det{dXcl(s; s1, Xcl(s1; t, x, v), v

′)/dv′} �= 0 for these special
cycles. This crucial observation is then combined with analyticity of ξ to conclude
that the set of det{dXcl(s; s1, Xcl(s1, x, v), v

′)/dv′} = 0 is arbitrarily small, and
the change of variable (3.7.9) is almost always valid. Analyticity plays an important
role in our proof, and it certainly is an interesting open question to remove such
a restriction in the future.
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The diffuse cycles Xcl(s; t, x, v) contain more and more independent variables
and (3.7.7) involves their integrations. A change of variable similar to (3.7.8) is
expected with respect to one of those independent variables. However, the main
difficulty in this case is the L∞ control of G(t) which satisfies (3.7.4). The most

natural L∞ estimate for G(t) is for the weight w = μ− 1
2 , in which the diffuse

boundary condition takes the form

h(t, x, v) = cμ

∫
v′·n(x)>0

h(t, x, v′)μ(v′){v′ · n(x)} dv′

with cμ
∫
v′·n(x)>0

μ(v′){v′ ·n(x)} dv′ = 1. However, such a weight makes the linear

Boltzmann theory break down. For any (t, x, v), since there are always particles
moving almost tangential to the boundary in the bounce-back reflection, it is
impossible to reach down the initial plane no matter how many cycles the particles
take. In other words, there is no explicit expression for G(t) in terms of initial data
completely. To establish the L∞ estimate for the different weight w = {1+ρ2|v|2}β
in (3.4.1), we make the crucial observation that the measure of those particles that
cannot reach the initial plane after k bounces is small when k is large. We make
use of the freedom parameter ρ in our weight function to control the L∞ norm.
Therefore we can obtain an approximate representation formula for G(t) by the
initial datum, with only a finite number of bounces.
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Chapter 4

The Concentration-Compactness
Rigidity Method for Critical
Dispersive and Wave Equations

Carlos E. Kenig1

4.1 Introduction

In these lectures I will describe a program (which I will call the concentration-
compactness/rigidity method) that Frank Merle and I have been developing to
study critical evolution problems. The issues studied center around global well-
posedness and scattering. The method applies to nonlinear dispersive and wave
equations in both defocusing and focusing cases. The method can be divided into
two parts. The first part (the “concentration-compactness” part) is in some sense
“universal” and works in similar ways for “all” critical problems. The second part
(the “rigidity” part) has a “universal” formulation, but needs to be established
individually for each problem. The method is inspired by the elliptic work on the
Yamabe problem and by works of Merle, Martel–Merle and Merle–Raphäel in the
nonlinear Schrödinger equation and generalized KdV equations.

To focus on the issues, let us first concentrate on the energy critical nonlin-
ear Schrödinger equation (NLS) and the energy critical nonlinear wave equation
(NLW). We thus have:⎧⎨⎩

i ∂tu+�u± |u|4/N−2u = 0, (x, t) ∈ RN × R,

u
∣∣
t=0

= u0 ∈ Ḣ1(Rn), N ≥ 3,

(4.1.1)

1Supported in part by NSF grant DMS-0456583.

L.A. Caffarelli et al., Nonlinear Partial Differential Equations, Advanced Courses  
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and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2
t u−�u = ±|u|4/N−2u, (x, t) ∈ RN × R,

u
∣∣
t=0

= u0 ∈ Ḣ1(Rn),

∂tu
∣∣
t=0

= u1 ∈ L2(Rn), N ≥ 3.

(4.1.2)

In both cases, the “−” sign corresponds to the defocusing case, while the “+” sign
corresponds to the focusing case. For (4.1.1), if u is a solution, so is 1

λN−2/2u
(
x
λ ,

t
λ2

)
.

For (4.1.2), if u is a solution, so is 1
λN−2/2u

(
x
λ ,

t
λ

)
. Both scalings leave invariant

the energy spaces Ḣ1, Ḣ1×L2 respectively, and that is why they are called energy
critical. The energy which is conserved in this problem is

E±(u0) =
1

2

∫
|∇u0|2 ± 1

2∗

∫
|u0|2∗ , (NLS)

E±((u0, u1)) =
1

2

∫
|∇u0|2 + 1

2

∫
|u1|2 ± 1

2∗

∫
|u0|2∗ , (NLW)

where 1
2∗ = 1

2 − 1
N = N−2

2N . The “+” corresponds to the defocusing case while the
“−” corresponds to the focusing case.

In both problems, the theory of the local Cauchy problem has been under-
stood for a while (in the case of (4.1.1), through the work of Cazenave–Weissler
[7], while in the case of (4.1.2) through the works of Pecher [37], Ginibre–Velo [14],
Ginibre–Velo–Soffer [13], and many others, for instance [3], [20], [34], [41], etc.).
These works show that, say for (4.1.1), for any u0 with ‖u0‖Ḣ1 ≤ δ, there exists a
unique solution of (4.1.1) defined for all time and the solution scatters, i.e., there

exist u+
0 , u

−
0 in Ḣ1 such that

lim
t→±∞

∥∥u(t)− eitΔu±
0

∥∥
Ḣ1 = 0.

A corresponding result holds for (4.1.2). Moreover, for any initial data u0 ((u0, u1))
in the energy space, there exist T+(u0), T−(u0) such that there exists a unique so-
lution in (−T−(u0), T+(u0)) and the interval is maximal (for (4.1.2), (−T−(u0, u1),
T+(u0, u1))). In both problems, there exists a crucial space-time norm (or “Stri-
chartz norm”). For (4.1.1), on a time interval I, we define

||u||S(I) = ||u||L2(N+2)/N−2
I L

2(N+2)/N−2
x

,

while for (4.1.2) we have

||u||S(I) = ||u||L2(N+1)/N−2
I L

2(N+1)/N−2
x

.

This norm is crucial, say for (4.1.1), because, if T+(u0) < +∞, we must have

||u||S((0,T+(u0))) = +∞;



4.1. Introduction 119

moreover, if T+(u0) = +∞, u scatters at +∞ if and only if ||u||S(0,+∞) < +∞.
Similar results hold for (4.1.2). The question that attracted people’s attention here
is: What happens for large data? The question was first studied for (4.1.2) in the
defocusing case, through works of Struwe [44] in the radial case, Grillakis [16], [17]
in the general case, for the preservation of smoothness, and in the terms described
here in the works of Shatah–Struwe [41], [42], Bahouri–Shatah [3], Bahouri–Gérard
[2], Kapitansky [20], etc. The summary of these works is that (this was achieved

in the early 1990s), for any pair (u0, u1) ∈ Ḣ1×L2, in the defocusing case we have
T±(u0, u1) = +∞ and the solution scatters. The corresponding results for (4.1.1) in
the defocusing case took much longer. The first result was established by Bourgain
[4] in 1998, who established the analogous result for u0 radial, N = 3, 4, with
Grillakis [18] showing preservation of smoothness for N = 3 and radial data. Tao
extended these results to N ≥ 5, u0 radial [48]. Finally, Colliander–Kell–Staffilani–
Takaoka–Tao proved this for N = 3 and all data u0 [8], with extensions to N = 4
by Ryckman–Vişan [40] and to N ≥ 5 by Vişan [54] in 2005.

In the focusing case, these results do not hold. In fact, for (4.1.2) H. Levine
[33] showed in 1974 that in the focusing case, if (u0, u1) ∈ Ḣ1 × L2, u0 ∈ L2 and
E((u0, u1)) < 0, there is always a break-down in finite time, i.e., T±(u0, u1) <∞.
He showed this by an “obstruction” type of argument. Recently Krieger–Schlag–
Tătaru [32] have constructed radial examples (N = 3), for which T±(u0, u1) <∞.
For (4.1.1) a classical argument due to Zakharov and Glassey [15], based on the
virial identity, shows the same result as H. Levine’s if

∫ |x|2|u0|2 <∞, E(u0) < 0.
Moreover, for both (4.1.1) and (4.1.2), in the focusing case we have the following
static solution:

W (x) =

(
1 +

|x|2
N(N − 2)

)−(N−2)/2

∈ Ḣ1(RN ),

which solves the elliptic equation

�W + |W |4/N−2W = 0.

Thus, scattering need not occur for solutions that exist globally in time. The
solution W plays an important role in the Yamabe problem (see [1] for instance)
and it does so once more here. The results on which I am going to concentrate
here are the following.

Theorem 1 (Kenig–Merle [23]). For the focusing energy critical (NLS), 3 ≤ N ≤ 6,

consider u0 ∈ Ḣ1 such that E(u0) < E(W ), u0 radial. Then:

i) If ‖u0‖Ḣ1 < ‖W‖Ḣ1 , the solution exists for all time and scatters.

ii) If ||u0||L2 <∞, ‖u0‖Ḣ1 > ‖W‖Ḣ1 , then T+(u0) < +∞, T−(u0) < +∞.

Remark 1. Recently, Killip–Vişan [29] have combined the ideas of the proof of
Theorem 2, as applied to NLS in [10], with another important new idea, to extend
Theorem 1 to the non-radial case for N ≥ 5.
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The case where the radial assumption is not needed in dimensions 3 ≤ N ≤ 6
is the one of (4.1.2). We have:

Theorem 2 (Kenig–Merle [24]). For the focusing energy critical (NLW), where
3 ≤ N ≤ 6, consider (u0, u1) ∈ Ḣ1 × L2 such that E((u0, u1)) < E((W, 0)). Then:

i) If ‖u0‖Ḣ1 < ‖W‖Ḣ1 , the solution exists for all time and scatters.

ii) If ‖u0‖Ḣ1 > ‖W‖Ḣ1 , then T±(u0) < +∞.

I will sketch the proofs of these two theorems and the outline of the general
method in these lectures. The method has found other interesting applications:

Mass Critical NLS:⎧⎨⎩
i ∂tu+�u± |u|4/Nu = 0, (x, t) ∈ RN × R,

u
∣∣
t=0

= u0, N ≥ 3.
(4.1.3)

Here, ||u0||L2 is the critical norm. The analog of Theorem 1 was obtained, for u0

radial, by Tao–Vişan–Zhang [50], Killip–Tao–Vişan [28], Killip–Vişan-Zhang [30],
using our proof scheme for N ≥ 2. (In the focusing case one needs to assume
||u0||L2 < ||Q||L2 , where Q is the ground state, i.e., the non-negative solution of
the elliptic equation �Q+Q1+4/N = Q.) The case N = 1 is open.

Corotational wave maps into S2, 4D Yang–Mills in the radial case: Consider the
wave map system

�u = A(u)(Du,Du) ⊥ TuM

where u = (u1, . . . , ud) : R × RN → M ↪→ Rd, where the target manifold M is
isometrically embedded in Rd, and A(u) is the second fundamental form for M
at u. We consider the case M = S2 ⊂ R3. The critical space here is (u0, u1) ∈
ḢN/2×ḢN−2/2, so that when N = 2, the critical space is Ḣ1×L2. It is known that
for small data in Ḣ1 × L2 we have global existence and scattering (Tătaru [52],
[53], Tao [47]). Moreover, Rodnianski–Sterbenz [39] and Krieger–Schlag–Tătaru
[31] showed that there can be finite time blow-up for large data. In earlier work,
Struwe [45] had considered the case of co-rotational maps. These are maps which
have a special form. Writing the metric on S2 in the form (ρ, θ), ρ > 0, θ ∈ S1,
with ds2 = dρ2 + g(ρ)2dθ2, where g(ρ) = sin ρ, we consider, using (r, φ) as polar
coordinates in R2, maps of the form ρ = v(r, t), θ = φ. These are the co-rotational
maps and Krieger–Schlag–Tătaru [31] exhibited blow-up for corotational maps.
There is a stationary solution Q, which is a non-constant harmonic map of least
energy. Struwe proved that if E(v) ≤ E(Q), then v and the corresponding wave
map u are global in time. Using our method, in joint work of Cote–Kenig–Merle [9]
we show that, in addition, there is an alternative: v ≡ Q or the solution scatters.
We also prove the corresponding results for radial solutions of the Yang–Mills
equations in the critical energy space in R4 (see [9]).



4.2. The Schrödinger equation 121

Cubic NLS in 3D: Consider the classic cubic NLS in 3D,⎧⎨⎩
i ∂tu+�u∓ |u|2u = 0, (x, t) ∈ R3 × R,

u
∣∣
t=0

= u0 ∈ Ḣ1/2(R3).

Here Ḣ1/2 is the critical space, “−” corresponds to defocusing and “+” to focusing.
In the focusing case, Duyckaerts–Holmer–Roudenko [10] adapted our method to

show that if u0 ∈ Ḣ1(R3) and M(u0)E(u0) < M(Q)E(Q), where

M(u0) =

∫
|u0|2, E(u0) =

1

2

∫
|∇u0|2 − 1

4

∫
|u0|4,

and Q is the ground state, i.e., the positive solution to the elliptic equation

−Q+�Q+ |Q|2Q = 0,

then if ||u0||L2 ||∇u0||L2 > ||Q||L2 ||∇Q||L2 , we have “blow-up” in finite time, while
if ||u0||L2 ||∇u0||L2 < ||Q||L2 ||∇Q||L2 , then u exists for all time and scatters. In
joint work with Merle [25] we have considered the defocusing case. We have shown,
using this circle of ideas, that if sup0<t<T+(u0) ||u(t)||Ḣ1/2 <∞, then T+(u0) = +∞
and u scatters. We would like to point out that the fact that T+(u0) = +∞ is
analogous to the L3,∞ result of Escauriaza–Seregin–Sverak for Navier–Stokes [11].

4.2 The Schrödinger equation

We now turn to the proofs of Theorems 1 and 2. We start with Theorem 1. We
are thus considering⎧⎨⎩

i ∂tu+�u+ |u|4/N−2u = 0, (x, t) ∈ RN × R,

u
∣∣
t=0

= u0 ∈ Ḣ1.

(4.2.1)

Let us start with a quick review of the “local Cauchy problem” theory. Besides the
norm ‖f‖S(I) = ‖f‖

L
2(N+2)/N−2
I L

2(N+2)/N−2
x

introduced earlier, we need the norm

‖f‖W (I) = ‖f‖L2(N+2)/N−2
I L

2(N+2)/N2+4
x

.

Theorem 3 ([7], [23]). Assume that u0 ∈ Ḣ1(RN ), ‖u0‖Ḣ1 ≤ A. Then, for 3 ≤
N ≤ 6, there exists δ = δ(A) > 0 such that if

∥∥eitΔu0

∥∥
S(I)

≤ δ, 0 ∈ I̊, there exists

a unique solution to (4.2.1) in RN × I, with u ∈ C(I; Ḣ1) and ‖∇u‖W (I) < +∞,

‖u‖S(I) ≤ 2δ. Moreover, the mapping u0 ∈ Ḣ1(RN )→ u ∈ C(I; Ḣ1) is Lipschitz.
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The proof is by fixed point. The key ingredients are the following “Strichartz
estimates” [43], [21]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∥∥∇eitΔu0

∥∥
W (−∞,+∞)

≤ C ‖u0‖Ḣ1 ,∥∥∥∇ ∫ t

0
ei(t−t′)Δg(·, t′)dt′

∥∥∥
W (−∞,+∞)

≤ C ‖g‖
L2

tL
2N/N+2
x

,

supt

∥∥∥∇ ∫ t

0
ei(t−t′)Δg(·, t′)dt′

∥∥∥
L2
≤ C ‖g‖

L2
tL

2N/N+2
x

(4.2.2)

and the following Sobolev embedding:

‖v‖S(I) ≤ C ‖∇v‖W (I) , (4.2.3)

and the observation that
∣∣∇(|u|4/N−2u)

∣∣ ≤ C|∇u| |u|4/N−2, so that∥∥∥∇(|u|4/N−2u)
∥∥∥
L2

IL
2N/N+2
x

� ‖u‖4/N−2
S(I) ‖∇u‖W (I) .

Remark 2. Because of (4.2.2), (4.2.3), there exists δ̃ such that if ‖u0‖Ḣ1 ≤ δ̃,
the hypothesis of the theorem is verified for I = (−∞,+∞). Moreover, given

u0 ∈ Ḣ1, we can find I such that
∥∥eitΔu0

∥∥
S(I)

< δ, so that the theorem applies.

It is then easy to see that given u0 ∈ Ḣ1, there exists a maximal interval I =
(−T−(u0), T+(u0)) where u ∈ C(I ′; Ḣ1)∩ {∇u ∈W (I ′)} of all I ′ ⊂⊂ I is defined.
We call I the maximal interval of existence. It is easy to see that for all t ∈ I, we
have

E(u(t)) =
1

2

∫
|∇u(t)|2 − 1

2∗

∫
|u|2∗ = E(u0).

We also have the “standard finite-time blow-up criterion”: if T+(u0) < ∞, then
||u||S([0,T+(u0)) = +∞.

We next turn to another fundamental result in the “local Cauchy theory”,
the so-called “Perturbation Theorem”.

Perturbation Theorem 15 (see [49], [23], [22]). Let I = [0, L), L ≤ +∞, and ũ
defined on RN × I be such that

sup
t∈I
‖ũ‖Ḣ1 ≤ A, ‖ũ‖S(I) ≤M, ‖∇ũ‖W (I) < +∞,

and verify (in the sense of the integral equation)

i ∂tũ+�ũ+ |ũ|4/N−2ũ = e on RN × I,

and let u0 ∈ Ḣ1 be such that ‖u0 − ũ(0)‖Ḣ1 ≤ A′. Then there exists ε0 = ε0(M,A,
A′) such that, if 0 ≤ ε ≤ ε0 and ‖∇e‖

L2
IL

2N/N+2
x

≤ ε,
∥∥eitΔ[u0 − ũ(0)]

∥∥
S(I)

≤ ε,

then there exists a unique solution u to (4.2.1) on RN × I, such that

‖u‖S(I) ≤ C(A,A′,M) and sup
t∈I
‖u(t)− ũ(t)‖Ḣ1 ≤ C(A,A′,M)(A′ + ε)β ,

where β > 0.
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For the details of the proof, see [22]. This result has several important con-
sequences:

Corollary 1. Let K ⊂ Ḣ1 be such that K is compact. Then there exist T+,K , T−,K

such that for all u0 ∈ K we have T+(u0) ≥ T+,K , T−(u0) ≥ T−,K .

Corollary 2. Let ũ0 ∈ Ḣ1, ‖ũ0‖Ḣ1 ≤ A, and let ũ be the solution of (4.2.1),

with maximal interval (−T−(ũ0), T+(ũ0)). Assume that u0,n → ũ0 in Ḣ1, with
corresponding solution un. Then T+(ũ0) ≤ limT+(u0,n), T−(ũ0) ≤ limT−(u0,n)

and for t ∈ (−T−(ũ0), T+(ũ0)), un(t)→ ũ(t) in Ḣ1.

Before we start with our sketch of the proof of Theorem 1, we will review the
classic argument of Glassey [15] for blow-up in finite time. Thus, assume u0 ∈ Ḣ1,∫ |x|2|u0(x)|2 dx <∞ and E(u0) < 0. Let I be the maximal interval of existence.
One easily shows that, for t ∈ I, y(t) =

∫ |x|2|u(x, t)|2 dx < +∞. In fact,

y′(t) = 4 Im

∫
u∇u · x, and y′′(t) = 8

[∫
|∇u(x, t)|2 −

∫
|u(x, t)|2∗

]
.

Hence, if E(u0) < 0, E(u(t)) = E(u0) < 0, so that

1

2

∫
|∇u(t)|2 − |u(t)|2∗ = E(u0) +

(
1

2∗
− 1

2

)∫
|u(t)|2∗ ≤ E(u0) < 0,

and y′′(t) < 0. But then, if I is infinite, since y(t) > 0 we obtain a contradiction.
We now start with our sketch of the proof of Theorem 1.

Step 1: Variational estimates. (These are not needed in defocusing problems.)
Recall that W (x) = (1+ |x|2/N(N−2))−(N−2)/2 is a stationary solution of (4.2.1).
It solves the elliptic equation �W + |W |4/N−2W = 0, W ≥ 0, W is radially

decreasing, W ∈ Ḣ1. By the invariances of the equation,

Wθ0,x0,λ0
(x) = eiθ0λ

N−2/2
0 W (λ0(x− x0))

is still a solution. Aubin and Talenti [1], [46] gave the following variational charac-
terization of W : let CN be the best constant in the Sobolev embedding ||u||L2∗ ≤
CN ||∇u||L2 . Then ||u||L2∗ = CN ||∇u||L2 , u �≡ 0, if and only if u = Wθ0,x0,λ0

for
some (θ0, x0, λ0). Note that by the elliptic equation,

∫ |∇W |2 =
∫ |W |2∗ . Also,

CN ||∇W || = ||W ||L2∗ , so that

C2
N ||∇W ||2 =

(∫
|∇W |2

)N−2
N

.

Hence,
∫ |∇W |2 = 1/CN

N , and

E(W ) =

(
1

2
− 1

2∗

)∫
|∇W |2 =

1

NCN
N

.
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Lemma 1. Assume that ||∇v|| < ||∇W || and that E(v) ≤ (1 − δ0)E(W ), δ0 > 0.
Then there exists δ = δ(δ0) so that:

i) ||∇v||2 ≤ (1− δ)||∇W ||2;

ii)

∫
|∇v|2 − |v|2∗ ≥ δ||∇v||2;

iii) E(v) ≥ 0.

Proof. Let

f(y) =
1

2
y − C2∗

N

2∗
y2
∗/2, y = ||∇v||2.

Note that f(0) = 0, f(y) > 0 for y near 0, y > 0, and that

f ′(y) =
1

2
− C2∗

N

2∗
y2
∗/2−1,

so that f ′(y) = 0 if and only if y = yc = 1/CN = ||∇W ||2. Also, f(yc) =
1/(NCN ) = E(W ). Since 0 ≤ y < yc, f(y) ≤ (1 − δ0)f(yc), f is non-negative
and strictly increasing between 0 and yc, and f ′′(yc) �= 0, we have 0 ≤ f(y),
y ≤ (1− δ)yc = (1− δ)||∇W ||2. This shows i).

For ii), note that∫
|∇v|2 − |v|2∗ ≥

∫
|∇v|2 − C2∗

N

(∫
|∇v|2

)2∗/2

=

∫
|∇v|2

[
1− C2∗

N

(∫
|∇v|2

)2/N−2
]

≥
∫
|∇v|2

[
1− C2∗

N (1− δ)2/N−2

(∫
|∇W |2

)2/N−2
]

=

∫
|∇v|2

[
1− (1− δ)2/N−2

]
,

which gives ii).
Note from this that if ||∇u0|| < ||∇W ||, then E(u0) ≥ 0, i.e., iii) holds. �

This static lemma immediately has dynamic consequences.

Corollary 3 (Energy Trapping). Let u be a solution of (4.2.1) with maximal in-
terval I, ||∇u0|| < ||∇W ||, E(u0) < E(W ). Choose δ0 > 0 such that E(u0) ≤
(1− δ0)E(W ). Then, for each t ∈ I, we have:

i) ||∇u(t)||2 ≤ (1− δ)||∇W ||, E(u(t)) ≥ 0;

ii)

∫
|∇u(t)|2 − |u(t)|2∗ ≥ δ

∫
|∇u(t)|2 (“coercivity”);



4.2. The Schrödinger equation 125

iii) E(u(t)) ≈ ||∇u(t)||2 ≈ ||∇u0||2, with comparability constants which depend
on δ0 (“uniform bound”).

Proof. The statements follow from continuity of the flow, conservation of energy
and Lemma 1. �

Note that iii) gives uniform bounds on ||∇u(t)||. However, this is a long way
from giving Theorem 1.

Remark 3. Let u0 ∈ Ḣ1, E(u0) < E(W ), but ||∇u0||2 > ||∇W ||2. If we choose δ0
so that E(u0) ≤ (1− δ0)E(W ), we can conclude, as in the proof of Lemma 1, that∫ |∇u(t)|2 ≥ (1 + δ)

∫ |∇W |2, t ∈ I. But then,∫
|∇u(t)|2 − |u(t)|2∗ = 2∗E(u0)− 2

N − 2

∫
|∇u|2

≤ 2∗E(W )− 2

N − 2

1

CN
N

− 2δ

N − 2

1

CN
N

= − 2δ

(N − 2)CN
N

< 0.

Hence, if
∫ |x|2|u0(x)|2 dx <∞, Glassey’s proof shows that I cannot be infinite. If

u0 is radial, u0 ∈ L2, using a “local virial identity” (which we will see momentarily)
one can see that the same result holds.

Step 2: Concentration-compactness procedure. We now turn to the proof of i) in
Theorem 1. By our variational estimates, if E(u0) < E(W ), ||∇u0||2 < ||∇W ||2,
if δ0 is chosen so that E(u0) ≤ (1− δ0)E(W ), recall that

E(u(t)) ≈ ||∇u(t)||2 ≈ ||∇u0||2,

t ∈ I, with constants depending only on δ0. Recall also that if ||∇u0||2 < ||∇W ||2,
E(u0) ≥ 0. It now follows from the “local Cauchy theory” that if ||∇u0||2 <
||∇W ||2 and E(u0) ≤ η0, η0 small, then I = (−∞,+∞) and ||u||S(−∞,+∞) < ∞,
so that u scatters. Consider now

G = {E : 0 < E < E(W ) :

if ||∇u0||2 < ||∇W ||2 and E(u0) < E, then ‖u‖S(I) <∞}

and Ec = supG. Then 0 < η0 ≤ Ec ≤ E(W ) and if ||∇u0||2 < ||∇W ||2, E(u0) <
Ec, I = (−∞,+∞), u scatters and Ec is optimal with this property. Theorem 1 i)
is the statement Ec = E(W ). We now assume Ec < E(W ) and will reach a
contradiction. We now develop the concentration-compactness argument:

Proposition 1. There exists u0,c ∈ Ḣ1, ||∇u0,c||2 < ||∇W ||2, with E(u0,c) = Ec,
such that, for the corresponding solution uc, we have ‖uc‖S(I) = +∞.
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Proposition 2. For any uc as in Proposition 1, with (say) ||uc||S(I+) = +∞, I+ =
I ∩ [0,+∞), there exist x(t), t ∈ I+, λ(t) ∈ R+, t ∈ I+, such that

K =

{
v(x, t) =

1

λ(t)
N−2/2

u

(
x− x(t)

λ(t)
, t

)
, t ∈ I+

}

has compact closure in Ḣ1.

The proof of Propositions 1 and 2 follows a “general procedure” which uses
a “profile decomposition”, the variational estimates and the “Perturbation Theo-
rem”. The idea of the decomposition is somehow a time-dependent version of the
concentration-compactness method of P. L. Lions, when the “local Cauchy theory”
is done in the critical space. It was introduced independently by Bahouri–Gérard
[2] for the wave equation and by Merle–Vega for the L2 critical NLS [35]. The ver-
sion needed for Theorem 1 is due to Keraani [27]. This is the evolution analog of
the elliptic “bubble decomposition”, which goes back to work of Brézis–Coron [5].

Theorem 4 (Keraani [27]). Let {v0,n} ⊂ Ḣ1, with ‖v0,n‖Ḣ1 ≤ A. Assume that∥∥eitΔv0,n∥∥S(−∞,+∞)
≥ δ > 0. Then there exists a subsequence of {v0,n} and a

sequence {V0,j}∞j=1 ⊂ Ḣ1 and triples {(λj,n, xj,n, tj,n)} ⊂ R+ × RN × R, with

λj,n

λj′,n
+

λj′,n

λj,n
+
|tj,n − tj′,n|

λ2
j,n

+
|xj,n − xj′,n|

λj,n
−−−−→
n→∞ ∞,

for j �= j′ (we say that {(λj,n, xj,n, tj,n)} is orthogonal), such that

i) ‖V0,1‖Ḣ1 ≥ α0(A) > 0.

ii) If V l
j (x, t) = eitΔV0,j, then we have, for each J ,

v0,n =

J∑
j=1

1

λ
N−2/2
j,n

V l
j

(
x− xj,n

λj,n
,− tj,n

λ2
j,n

)
+ wJ

n ,

where lim
n

∥∥eitΔwJ
n

∥∥
S(−∞,+∞)

−−−−→
J→∞

0, and for each J ≥ 1 we have

iii) ||∇v0,n||2 =

J∑
j=1

||∇V0,j ||2 + ||∇wJ
n ||2 + o(1) as n→∞ and

E(v0,n) =

J∑
j=1

E

(
V l
j

(
− tj,n
λ2
j,n

))
+ E(wJ

n) + o(1) as n→∞.

Further general remarks:

Remark 4. Because of the continuity of u(t), t ∈ I, in Ḣ1, in Proposition 2 we can
construct λ(t), x(t) continuous in [0, T+(u0)), with λ(t) > 0.
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Remark 5. Because of scaling and the compactness of K above, if T+(u0,c) <∞,

one always has that λ(t) ≥ C0(K)/(T+(u0, c)− t)
1
2 .

Remark 6. If T+(u0,c) = +∞, we can always find another (possibly different) crit-

ical element vc with a corresponding λ̃ so that λ̃(t) ≥ A0 > 0 for t ∈ [0, T+(v0,c)).
(Again by compactness of K.)

Remark 7. One can use the “profile decomposition” to also show that there exists
a decreasing function g : (0, Ec] → [0,+∞) so that if ||∇u0||2 < ||∇W ||2 and
E(u0) ≤ Ec − η, then ‖u‖S(−∞,+∞) ≤ g(η).

Remark 8. In the “profile decomposition”, if all the v0,n are radial, the V0,j can
be chosen radial and xj,n ≡ 0. We can repeat our procedure restricted to radial
data and conclude the analog of Propositions 1 and 2 with x(t) ≡ 0.

The final step in the proof is then:

Step 3: Rigidity Theorem.

Theorem 5 (Rigidity). Let u0 ∈ Ḣ1, E(u0) < E(W ), ||∇u0||2 < ||∇W ||2. Let u
be the solution of (4.2.1), with maximal interval I = (−T−(u0), T+(u0)). Assume
that there exists λ(t) > 0, defined for t ∈ [0, T+(u0)), such that

K =

{
v(x, t) =

1

λ(t)
N−2/2

u

(
x

λ(t)
, t

)
, t ∈ [0, T+(u0))

}

has compact closure in Ḣ1. Assume also that, if T+(u0) <∞,

λ(t) ≥ C0(K)/(T+(u0, c)− t)
1
2 and

if T+(u0) =∞, that λ(t) ≥ A0 > 0 for t ∈ [0,+∞). Then T+(u0) = +∞, u0 ≡ 0.

To prove this, we split two cases:

Case 1: T+(u0) < +∞. (So that λ(t)→ +∞ as t→ T+(u0).)
Fix φ radial, φ ∈ C∞

0 , φ ≡ 1 on |x| ≤ 1, suppφ ⊂ {|x| < 2}. Set φR(x) =
φ(x/R) and define

yR(t) =

∫
|u(x, t)|2φR(x) dx.

Then y′r(t) = 2 Im
∫
u∇u∇φR, so that

|y′R(t)| ≤ C

(∫
|∇u|2

)1/2(∫ |u|2
|x|2

)1/2

≤ C||∇W ||2,

by Hardy’s inequality and our variational estimates. Note that C is independent
of R. Next, we note that, for each R > 0,

lim
t↑T+(u0)

∫
|x|<R

|u(x, t)|2 dx = 0.
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In fact, u(x, t) = λ(t)N−2/2v(λ(t)x, t), so that∫
|x|<R

|u(x, t)|2dx = λ(t)−2

∫
|y|<Rλ(t)

|v(y, t)|2 dy

= λ(t)−2

∫
|y|<εRλ(t)

|v(y, t)|2 dy

+ λ(t)−2

∫
εRλ(t)≤|y|<Rλ(t)

|v(y, t)|2 dy

= A+B.

A ≤ λ(t)−2(εRλ(t))2||v||2L2∗ ≤ Cε2R2||∇W ||2,
which tends to 0 as ε tends to 0.

B ≤ λ(t)−2(Rλ(t))2||v||2L2∗ (|y|≥εRλ(t)) −−−−−−→
t→T+(u0)

0,

(since λ(t) ↑ +∞ as t → T+(u0)) using the compactness of K. But then yR(0) ≤
CT+(u0)||∇W ||2, by the fundamental theorem of calculus. Thus, letting R→∞,
we see that u0 ∈ L2, but then, using the conservation of the L2 norm, we see that
||u0||L2 = ||u(T+(u0))||L2 = 0, so that u0 ≡ 0.

Case 2: T+(u0) = +∞. First note that the compactness of K, together with
λ(t) ≥ A0 > 0, gives that, given ε > 0, there exists R(ε) > 0 such that, for all
t ∈ [0,+∞), ∫

|x|>R(ε)

|∇u|2 + |u|2∗ + |u|2
|x|2 ≤ ε.

Pick δ0 > 0 so that E(u0) ≤ (1 − δ0)E(W ). Recall that, by our variational esti-
mates, we have that

∫ |∇u(t)|2 − |u(t)|2∗ ≥ Cδ0 ||∇u0||2L2 . If ||∇u0||L2 �= 0, using
the smallness of tails, we see that, for R > R0,∫

|x|<R

|∇u(t)|2 − |u(t)|2∗ ≥ Cδ0 ||∇u0||2L2 .

Choose now ψ ∈ C∞
0 radial with ψ(x) = |x|2 for |x| ≤ 1, suppψ ⊂ {|x| ≤ 2}.

Define

zR(t) =

∫
|u(x, t)|2R2ψ(x/R) dx.

Similar computations to Glassey’s blow-up proof give

z′R(t) = 2R Im

∫
u∇u∇ψ(x/R)
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and

z′′R(t) = 4
∑
l,j

Re

∫
∂xl

∂xjψ(x/R) ∂xl
u ∂xju

− 1

R2

∫
�2ψ(x/R)|u|2 − 4

N

∫
�ψ(x/R)|u|2∗ .

Note that |z′R(t)| ≤ Cδ0R
2||∇u0||2, by Cauchy–Schwartz, Hardy’s inequality and

our variational estimates. On the other hand,

z′′R(t) ≥
[∫

|x|≤R

|∇u(t)|2 − |u(t)|2∗
]

− C

(∫
R≤|x|≤2R

|∇u(t)|2 + |u|2
|x|2 + |u(t)|2∗

)
≥ C||∇u0||2,

for R large. Integrating in t, we obtain z′R(t)− z′R(0) ≥ Ct||∇u0||2, but

|z′R(t)− z′R(0)| ≤ 2CR2||∇u0||2,

which is a contradiction for t large, proving Theorem 1 i).

Remark 9. In the defocusing case, the proof is easier since the variational estimates
are not needed.

Remark 10. It is quite likely that for N = 3, examples similar to those by
P. Raphäel [38] can be constructed, of radial data u0 for which T+(u0) < ∞
and u blows up exactly on a sphere.

4.3 The wave equation

We now turn to Theorem 2. We thus consider⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2
t u−�u = |u|4/N−2u, (x, t) ∈ RN × R,

u
∣∣
t=0

= u0 ∈ Ḣ1(Rn),

∂tu
∣∣
t=0

= u1 ∈ L2(Rn), N ≥ 3.

(4.3.1)

Recall that W (x) =
(
1 + |x|2/N(N − 2)

)−(N−2)/2
is a static solution that does

not scatter. The general scheme of the proof is similar to the one for Theorem 1.
We start out with a brief review of the “local Cauchy problem”. We first consider
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the associated linear problem,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2
tw −�w = h,

w
∣∣
t=0

= w0 ∈ Ḣ1(Rn),

∂tw
∣∣
t=0

= w1 ∈ L2(RN ).

(4.3.2)

As is well known (see [42] for instance), the solution is given by

w(x, t) = cos
(
t
√
−�

)
w0 + (−�)−1/2 sin

(
t
√
−�

)
w1

+

∫ t

0

(−�)−1/2 sin
(
(t− s)

√
−�

)
h(s) ds

= S(t)((w0, w1)) +

∫ t

0

(−�)−1/2 sin
(
(t− s)

√
−�

)
h(s) ds.

The following are the relevant Strichartz estimates: for an interval I ⊂ R, let

‖f‖S(I) = ‖f‖L2(N+1)/N−2
I L

2(N+1)/N−2
x

,

‖f‖W (I) = ‖f‖L2(N+1)/N−1
I L

2(N+1)/N−1
x

.

Then (see [14], [24])

sup
t
‖(w(t), ∂tw(t))‖Ḣ1×L2 +

∥∥∥D1/2w
∥∥∥
W (−∞,+∞)

+
∥∥∥∂tD−1/2w

∥∥∥
W (−∞,+∞)

+ ‖w‖S(−∞,+∞)

+ ‖w‖
L

(N+2)/N−2
t L

2(N+2)/N−2
x

≤ C
{
‖(w0, w1)‖Ḣ1×L2 + ‖w‖L2(N+1)/N+3

t L
2(N+1)/N+3
x

}
.

(4.3.3)

Because of the appearance of D1/2 in these estimates, we also need to use the
following version of the chain rule for fractional derivatives (see [26]).

Lemma 2. Assume F ∈ C2, F (0) = F ′(0) = 0, and that for all a, b we have
|F ′(a+ b)| ≤ C {|F ′(a)|+ |F ′(b)|} and |F ′′(a+ b)| ≤ C {|F ′′(a)|+ |F ′′(b)|}. Then,
for 0 < α < 1, 1

p = 1
p1

+ 1
p2
, 1

p = 1
r1

+ 1
r2

+ 1
r3
, we have

i) ‖DαF (u)‖Lp ≤ C ‖F ′(u)‖Lp1 ‖Dαu‖Lp2 ,

ii) ‖Dα(F (u)− F (v))‖Lp ≤ C [‖F ′(u)‖Lp1 + ‖F ′(v)‖Lp1 ] ‖Dα(u− v)‖Lp2

+C [‖F ′′(u)‖Lr1 + ‖F ′′(v)‖Lr1 ] [‖Dαu‖Lr2 + ‖Dαv‖Lr2 ] ‖u− v‖Lr3 .

Using (4.3.3) and this lemma, one can now use the same argument as for
(4.2.1) to obtain:



4.3. The wave equation 131

Theorem 6 ([14], [20], [24] and [41]). Assume that

(u0, u1) ∈ Ḣ1 × L2, ‖(u0, u1)‖Ḣ1×L2 ≤ A.

Then, for 3 ≤ N ≤ 6, there exists δ = δ(A) > 0 such that if ‖S(t)(u0, u1)‖S(I) ≤
δ, 0 ∈ I̊, there exists a unique solution to (4.3.1) in RN × I, with (u, ∂tu) ∈
C(I; Ḣ1 × L2) and

∥∥D1/2u
∥∥
W (I)

+
∥∥∂tD−1/2u

∥∥
W (I)

<∞, ‖u‖S(I) ≤ 2δ. Moreover,

the mapping (u0, u1) ∈ Ḣ1 × L2 → (u, ∂tu) ∈ C(I; Ḣ1 × L2) is Lipschitz.

Remark 11. Again, using (4.3.3), if ‖(u0, u1)‖Ḣ1×L2 ≤ δ̃, the hypothesis of the

theorem is verified for I = (−∞,+∞). Moreover, given (u0, u1) ∈ Ḣ1 × L2, we
can find I̊ � 0 so that the hypothesis is verified on I. One can then define a maximal
interval of existence I = (−T−(u0, u1), T+(u0, u1)), similarly to the case of (4.2.1).
We also have the “standard finite-time blow-up criterion”: if T+(u0, u1) < ∞,
then ‖u‖S(0,T+(u0,u1))

= +∞. Also, if T+(u0, u1) = +∞, u scatters at +∞ (i.e.,

∃(u+
0 , u

+
1 ) ∈ Ḣ1 × L2 such that

∥∥(u(t), ∂tu(t))− S(t)(u+
0 , u

+
1 )
∥∥
Ḣ1×L2 −−−−→

t↑+∞
0) if

and only if ‖u‖S(0,+∞) < +∞. Moreover, for t ∈ I, we have

E((u0, u1)) =
1

2

∫
|∇u0|2 + 1

2

∫
u2
1 −

1

2∗

∫
|u0|2∗ = E((u(t), ∂tu(t))).

It turns out that for (4.3.1) there is another very important conserved quantity
in the energy space, namely momentum. This is crucial for us to be able to treat
non-radial data. This says that, for t ∈ I,

∫ ∇u(t) · ∂tu(t) =
∫ ∇u0 · u1. Finally,

the analog of the “Perturbation Theorem” also holds in this context (see [22]). All
the corollaries of the Perturbation Theorem also hold.

Remark 12 (Finite speed of propagation). Recall that if R(t) is the forward fun-
damental solution for the linear wave equation, the solution for (4.3.2) is given by
(see [42])

w(t) = ∂tR(t) ∗ w0 +R(t) ∗ w1 −
∫ t

0

R(t− s) ∗ h(s) ds,

where ∗ stands for convolution in the x variable. The finite speed of propagation
is the statement that suppR( · , t), supp ∂tR( · , t) ⊂ B(0, t). Thus, if suppw0 ⊂
CB(x0, a), suppw1 ⊂ CB(x0, a), supph ⊂ C[

⋃
0≤t≤a B(x0, a− t)×{t}], then w ≡ 0

on
⋃

0≤t≤a B(x0, a − t) × {t}. This has important consequences for solutions of
(4.3.1). If (u0, u1) ≡ (u′

0, u
′
1) on B(x0, a), then the corresponding solutions agree

on
⋃

0≤t≤a B(x0, a− t)× {t} ∩ RN × (I ∩ I ′).
We now proceed with the proof of Theorem 2. As in the case of (4.2.1), the

proof is broken up in three steps.

Step1: Variational estimates. Here these are immediate from the corresponding
ones in (4.2.1). The summary is (we use the notation E(v) = 1

2

∫ |∇v|2− 1
2∗
∫ |v|2∗):
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Lemma 3. Let (u0, u1) ∈ Ḣ1 × L2 be such that E((u0, u1)) ≤ (1 − δ0)E((W, 0)),
||∇u0||2 < ||∇W ||2. Let u be the corresponding solution of (4.3.1), with maximal
interval I. Then there exists δ = δ(δ0) > 0 such that, for t ∈ I, we have

i) ||∇u(t)|| ≤ (1− δ)||∇W ||.

ii)

∫
|∇u(t)|2 − |u(t)|2∗ ≥ δ

∫
|∇u(t)|2.

iii) E(u(t)) ≥ 0 (and here E((u, ∂tu)) ≥ 0).

iv) E((u, ∂tu)) ≈ ‖(u(t), ∂tu(t))‖2Ḣ1×L2 ≈ ‖(u0, u1)‖2Ḣ1×L2 , with comparability
constants depending only on δ0.

Remark 13. If E((u0, u1)) ≤ (1−δ0)E((W, 0)), ||∇u0||2 > ||∇W ||2, then, for t ∈ I,

‖∇u(t)‖2 ≥ (1+ δ) ‖∇W‖2. This follows from the corresponding result for (4.2.1).

We now turn to the proof of ii) in Theorem 2. We will do it for the case when
‖u0‖L2 <∞. For the general case, see [24]. We know that, in the situation of ii),
we have ∫

|∇u(t)|2 ≥ (1 + δ)

∫
|∇W |2, t ∈ I,

E((W, 0)) ≥ E((u(t), ∂tu)) + δ̃0.

Thus,

1

2∗

∫
|u(t)|2∗ ≥ 1

2

∫
(∂tu(t))

2 +
1

2

∫
|∇u(t)|2 − E((W, 0)) + δ̃0,

so that∫
|u(t)|2∗ ≥ N

N − 2

∫
(∂tu(t))

2 +
N

N − 2

∫
|∇u(t)|2 − 2∗E((W, 0)) + 2∗δ̃0.

Let y(t) =
∫ |u(t)|2, so that y′(t) = 2

∫
u(t) ∂tu(t). A simple calculation gives

y′′(t) = 2

∫ {
(∂tu)

2 − |∇u(t)|2 + |u(t)|2∗
}
.

Thus,

y′′(t) ≥ 2

∫
(∂tu)

2 +
2N

N − 2

∫
(∂tu)

2 − 2 · 2∗E((W, 0))

+
˜̃
δ0 +

2N

N − 2

∫
|∇u(t)|2 − 2

∫
|∇u(t)|2

=
4(N − 1)

N − 2

∫
(∂tu)

2 +
4

N − 2

∫
|∇u(t)|2

− 4

N − 2

∫
|∇W |2 + ˜̃

δ0

≥ 4(N − 1)

N − 2

∫
(∂tu)

2 +
˜̃
δ0.



4.3. The wave equation 133

If I ∩ [0,+∞) = [0,+∞), there exists t0 > 0 so that y′(t0) > 0, y′(t) > 0, t > t0.
For t > t0 we have

y(t)y′′(t) ≥ 4(N − 1)

N − 2

∫
(∂tu)

2

∫
u2 ≥

(
N − 1

N − 2

)
y′(t)2,

so that
y′′(t)
y′(t)

≥
(
N − 1

N − 2

)
y′(t)
y(t)

,

or
y′(t) ≥ C0y(t)

(N−1)/(N−2), for t > t0.

But, since N − 1/N − 2 > 1, this leads to finite-time blow-up, a contradiction.
We next turn to the proof of i) in Theorem 2.

Step 2: Concentration-compactness procedure. Here we proceed initially in an
identical manner as in the case of (4.2.1), replacing the “profile decomposition” of
Keraani [27] with the corresponding one for the wave equation, due to Bahouri–
Gérard [2]. Thus, arguing by contradiction, we find a number Ec, with 0 < η0 ≤
Ec < E((W, 0)) with the property that if E((u0, u1)) < Ec, ‖∇u0‖2 < ‖∇W‖2,
‖u‖S(I) < ∞ and Ec is optimal with this property. We will see that this leads to

a contradiction. As for (4.2.1), we have:

Proposition 3. There exist

(u0,c, u1,c) ∈ Ḣ1 × L2, ‖∇u0,c‖2 < ‖∇W‖2 , E((u0,c, u1,c)) = Ec

and such that for the corresponding solution uc on (4.3.1) we have ‖uc‖S(I) = +∞.

Proposition 4. For any uc as in Proposition 3, with (say) ‖uc‖S(I+) = +∞, I+ =

I ∩ [0,+∞), there exist x(t) ∈ RN , λ(t) ∈ R+, t ∈ I+, such that

K =
{
v(x, t) =

(
1

λ(t)N−2/2uc

(
x−x(t)
λ(t) , t

)
, 1

λ(t)N/2 ∂tuc

(
x−x(t)
λ(t) , t

))
: t ∈ I+

}
has compact closure in Ḣ1 × L2.

Remark 14. As in the case of (4.2.1), in Proposition 4 we can construct λ(t),
x(t) continuous in [0, T+((u0,c, u1,c))). Moreover, by scaling and compactness of
K, if T+((u0,c, u1,c)) < ∞, we have λ(t) ≥ C0(K)/(T+((u0,c, u1,c)) − t). Also,
if T+((u0,c, u1,c)) = +∞, we can always find another (possibly different) critical

element vc, with a corresponding λ̃ so that λ̃(t) ≥ A > 0, for t ∈ [0, T+((v0,c, v1,c))),
using the compactness of K. We can also find g : (0, Ec]→ [0,+∞) decreasing so

that if ‖∇u0‖2 < ‖∇W‖2 and E((u0,c, u1,c)) ≤ Ec− η, then ‖u‖S(−∞,+∞) ≤ g(η).

Up to here, we have used, in Step 2, only Step 1 and “general arguments”.
To proceed further we need to use specific features of (4.3.1) to establish further
properties of critical elements.

The first one is a consequence of the finite speed of propagation and the
compactness of K.
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Lemma 4. Let uc be a critical element as in Proposition 4, with T+((u0,c, u1,c)) <
+∞. (We can assume, by scaling, that T+((u0,c, u1,c)) = 1.) Then there exists
x ∈ RN such that suppuc( · , t), supp ∂tuc( · , t) ⊂ B(x, 1− t), 0 < t < 1.

In order to prove this lemma, we will need the following consequence of the
finite speed of propagation:

Remark 15. Let (u0, u1) ∈ Ḣ1 × L2, ‖(u0, u1)‖Ḣ1×L2 ≤ A. If, for some M > 0
and 0 < ε < ε0(A), we have∫

|x|≥M

|∇u0|2 + |u1|2 + |u0|2
|x|2 ≤ ε,

then for 0 < t < T+(u0, u1) we have∫
|x|≥ 3

2M+t

|∇u(t)|2 + |∂tu(t)|2 + |u(t)|2∗ + |u(t)|2
|x|2 ≤ Cε.

Indeed, choose ψM ∈ C∞, ψM ≡ 1 for |x| ≥ 3
2M , with ψM ≡ 0 for

|x| ≤ M . Let u0,M = u0ψM , u1,M = u1ψM . From our assumptions, we have

‖(u0,M , u1,M )‖Ḣ1×L2 ≤ Cε. If Cε0 < δ̃, where δ̃ is as in the “local Cauchy the-
ory”, the corresponding solution uM of (4.3.1) has maximal interval (−∞,+∞)
and supt∈(−∞,+∞) ‖(uM (t), ∂tuM (t))‖Ḣ1×L2 ≤ 2Cε. But, by finite speed of prop-

agation, uM ≡ u for |x| ≥ 3
2M + t, t ∈ [0, T+(u0, u1)), which proves the remark.

We turn to the proof of the lemma. Recall that λ(t) ≥ C0(K)/(1 − t). We
claim that, for any R0 > 0,

lim
t↑1

∫
|x+x(t)/λ(t)|≥R0

|∇uc(x, t)|2 + |∂tuc(x, t)|2 + |uc(x, t)|2
|x|2 = 0.

Indeed, if �v(x, t) = 1
λ(t)N/2

(
∇uc

(
x−x(t)
λ(t) , t

)
, ∂tuc

(
x−x(t)
λ(t) , t

))
,∫

|x+x(t)/λ(t)|≥R0

|∇uc(x, t)|2 + |∂tuc(x, t)|2 =

∫
|y|≥λ(t)R0

|�v(x, t)|2 dy −−→
t↑1

0,

because of the compactness of K and the fact that λ(t)→ +∞ as t→ 1. Because
of this fact, using the remark backward in time, we have, for each s ∈ [0, 1),
R0 > 0,

lim
t↑1

∫
|x+x(t)/λ(t)|≥ 3

2R0+(t−s)

|∇uc(x, s)|2 + |∂tuc(x, s)|2 = 0.

We next show that |x(t)/λ(t)| ≤ M , 0 ≤ t < 1. If not, we can find tn ↑ 1
so that |x(tn)/λ(tn)| → +∞. Then, for R > 0, {|x| ≤ R} ⊂ {|x + x(tn)/λ(tn)| ≥
3
2R+ tn} for n large, so that, passing to the limit in n, for s = 0, we obtain∫

|x|≤R

|∇u0,c|2 + |u1,c|2 = 0,
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a contradiction.
Finally, pick tn ↑ 1 so that x(tn)/λ(tn)→ −x. Observe that, for every η0 > 0,

for n large enough, for all s ∈ [0, 1), {|x− x| ≥ 1 + η0 − s} ⊂ {|x+ x(tn)/λ(tn)| ≥
3
2R0 + (tn − s)}, for some R0 = R0(η0) > 0. From this we conclude that∫

|x−x0|≥1+η0−s

|∇u(x, s)|2 + |∂su(x, s)|2 dx = 0,

which gives the claim.
Note that, after translation, we can asume that x = 0. We next turn to a

result which is fundamental for us to be able to treat non-radial data.

Theorem 7. Let (u0,c, u1,c) be as in Proposition 4, with λ(t), x(t) continuous.
Assume that either T+(u0,c, u1,c) < ∞ or T+(u0,c, u1,c) = +∞, λ(t) ≥ A0 > 0.
Then ∫

∇u0,c · u1,c = 0.

In order to carry out the proof of this theorem, a further linear estimate is
needed:

Lemma 5. Let w solve the linear wave equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2
tw −�w = h ∈ L1

tL
2
x(R

N+1),

w
∣∣
t=0

= w0 ∈ Ḣ1(Rn),

∂tw
∣∣
t=0

= w1 ∈ L2(RN ).

Then, for |a| ≤ 1/4, we have

sup
t

∥∥∥∥(∇w

(
x1 − at√
1− a2

, x′,
t− ax1√
1− a2

)
, ∂tw

(
x1 − at√
1− a2

, x′,
t− ax1√
1− a2

))∥∥∥∥
L2(dx1dx′)

≤ C
{
‖w0‖Ḣ1 + ‖w1‖L2 + ‖h‖L1

tL
2
x

}
.

The simple proof is omitted; see [24] for the details. Note that if u is a solution

of (4.3.1), with maximal interval I and I ′ ⊂⊂ I, u ∈ L
(N+2)/N−2
I′ L

2(N+2)/N−2
x ,

and since 4
N−2 +1 = N+2

N−2 , |u|4/N−2u ∈ L1
I′L

2
x. Thus, the conclusion of the lemma

applies, provided the integration is restricted to
(

x1−at√
1−a2

, x′, t−ax1√
1−a2

)
∈ RN × I ′.

Sketch of proof of Theorem 7. Assume first that T+(u0,c, u1,c) = 1. Assume, to
argue by contradiction, that (say)

∫
∂x1

(u0,c)u1,c = γ > 0. Recall that, in this
situation, suppuc, ∂tuc ⊂ B(0, 1 − t), 0 < t < 1. For convenience, set u(x, t) =
uc(x, 1 + t), −1 < t < 0, which is supported in B(0, |t|). For 0 < a < 1/4, we
consider the Lorentz transformation

za(x1, x
′, t) = u

(
x1 − at√
1− a2

, x′,
t− ax1√
1− a2

)
,



136 Chapter 4. The Concentration-Compactness Rigidity Method

and we fix our attention on −1/2 ≤ t < 0. In that region, the previous lemma
and the following comment show, in conjunction with the support property of u,
that za is a solution in the energy space of (4.3.1). An easy calculation shows that
supp za( · , t) ⊂ B(0, |t|), so that 0 is the final time of existence for za. A lengthy
calculation shows that

lim
a↓0

E((za( · ,−1/2), ∂tza( · ,−1/2)))− E((u0,c, u1,c))

a
= −γ

and that, for some t0 ∈ [−1/2,−1/4], ∫ |∇za(t0)|2 <
∫ |∇W |2, for a small (by

integration in t0 and a change of variables, together with the variational estimates
for uc). But, since E((u0,c, u1,c)) = Ec, for a small this contradicts the definition
of Ec, since the final time of existence of za is finite.

In the case when T+(u0,c, u1,c) = +∞, λ(t) ≥ A0 > 0, the finiteness of the
energy of za is unclear, because of the lack of the support property. We instead
do a renormalization. We first rescale uc and consider, for R large, uR(x, t) =
RN−2/2uc(Rx,Rt), and for a small,

za,R(x1, x
′, t) = uR

(
x1 − at√
1− a2

, x′,
t− ax1√
1− a2

)
.

We assume, as before, that
∫
∂x1(u0,c)u1,c = γ > 0 and hope to obtain a contra-

diction. We prove, by integration in t0 ∈ (1, 2), that if h(t0) = θ(x)za,R(x1, x
′, t0),

with θ a fixed cut-off function, for some a1 small and R large, we have, for some
t0 ∈ (1, 2), that

E((h(t0), ∂th(t0))) < Ec − 1

2
γa1

and ∫
|∇h(t0)|2 <

∫
|∇W |2.

We then let v be the solution of (4.3.1) with data h( · , t0). By the properties of Ec,
we know that ‖v‖S(−∞,+∞) ≤ g( 12γa1), for R large. But, since ‖uc‖S(0,+∞) = +∞,
we have that

‖uR‖L2(N+1)/N−2

[0,1]
L

2(N+1)/N−2

{|x|<1}
−−−−→
R→∞

∞.

But, by finite speed of propagation, we have that v = za,R on a large set and, after
a change of variables to undo the Lorentz transformation, we reach a contradiction
from these two facts. �

From all this we see that, to prove Theorem 2, it suffices to show:

Step 3: Rigidity Theorem.

Theorem 8 (Rigidity). Assume that E((u0, u1)) < E((W, 0)),
∫ |∇u0|2 <

∫ |∇W |2.
Let u be the corresponding solution of (4.3.1), and let I+ = [0, T+((u0, u1))). Sup-
pose that:
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a)

∫
∇u0u1 = 0.

b) There exist x(t), λ(t), t ∈ [0, T+((u0, u1))) such that

K =
{
v(x, t) =

(
1

λ(t)N−2/2uc

(
x−x(t)
λ(t) , t

)
, 1

λ(t)N/2 ∂tuc

(
x−x(t)
λ(t) , t

))
: t ∈ I+

}
has compact closure in Ḣ1 × L2.

c) x(t), λ(t) are continuous, λ(t) > 0. If T+(u0, u1) < ∞, we have λ(t) ≥
C/(T+ − t), suppu, ∂tu ⊂ B(0, T+ − t), and if T+(u0, u1) = +∞, we have
x(0) = 0, λ(0) = 1, λ(t) ≥ A0 > 0.

Then T+(u0, u1) = +∞, u ≡ 0.

Clearly this Rigidity Theorem provides the contradiction that concludes the
proof of Theorem 2.

Proof of the Rigidity Theorem. For the proof we need some known identities (see
[24], [42]).

Lemma 6. Let

r(R) = r(t, R) =

∫
|x|≥R

{
|∇u|2 + |∂tu|2 + |u|2∗ + |u|2

|x|2
}

dx.

Let u be a solution of (4.3.1), t ∈ I, φR(x) = φ(x/R), ψR(x) = xφ(x/R), where φ
is in C∞

0 (B2), φ ≡ 1 on |x| ≤ 1. Then:

i) ∂t

(∫
ψR∇u ∂tu

)
= −N

2

∫
(∂tu)

2 +
N − 2

2

∫ [
|∇u|2 − |u|2∗

]
+O(r(R)).

ii) ∂t

(∫
φR∇u ∂tu

)
=

∫
(∂tu)

2 −
∫
|∇u|2 +

∫
|u|2∗ +O(r(R)).

iii) ∂t

(∫
ψR

{
1

2
|∇u|2 + 1

2
(∂tu)

2 − 1

2∗
|u|2∗

})
= −

∫
∇u ∂tu+O(r(R)).

We start out the proof of case 1, T+((u0, u1)) = +∞, by observing that, if
(u0, u1) �= (0, 0) and E = E((u0, u1)), then, from our variational estimates, E > 0
and

sup
t>0

‖(∇u(t), ∂tu(t))‖Ḣ1×L2 ≤ CE.

We also have ∫
|∇u(t)|2 − |u(t)|2∗ ≥ C

∫
|∇u(t)|2, t > 0

and
1

2

∫
(∂tu(t))

2 +
1

2

∫ [
|∇u(t)|2 − |u(t)|2∗

]
≥ CE, t > 0.
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The compactness of K and the fact that λ(t) ≥ A0 > 0 show that, given ε > 0,
we can find R0(ε) > 0 so that, for all t > 0, we have∫

|x+ x(t)
λ(t) |≥R(ε)

|∂tu|2 + |∇u|2 + |u|2
|x|2 + |u|2∗ ≤ εE.

The proof of this case is accomplished through two lemmas.

Lemma 7. There exist ε1 > 0, C > 0 such that, if 0 < ε < ε1, if R > 2R0(ε),
there exists t0 = t0(R, ε) with 0 < t0 ≤ CR, such that for 0 < t < t0, we have∣∣∣x(t)λ(t)

∣∣∣ < R−R0(ε) and
∣∣∣x(t)λ(t)

∣∣∣ = R−R0(ε).

Note that in the radial case, since we can take x(t) ≡ 0, a contradiction
follows directly from Lemma 7. This will be the analog of the local virial identity
proof for the corresponding case of (4.2.1). For the non-radial case we also need:

Lemma 8. There exist ε2 > 0, R1(ε) > 0, C0 > 0, so that if R > R1(ε), for
0 < ε < ε2, we have t0(R, ε) ≥ C0R/ε, where t0 is as in Lemma 7.

From Lemma 7 and Lemma 8 we have, for 0 < ε < ε1, R > 2R0(ε),
t0(R, ε) ≤ CR, while for 0 < ε < ε2, R > R1(ε), t0(R, ε) ≥ C0R/ε. This is
clearly a contradiction for ε small.

Proof of Lemma 7. Since x(0) = 0, λ(0) = 1; if not, we have for all 0 < t < CR,

with C large, that
∣∣∣x(t)λ(t)

∣∣∣ < R−R0(ε). Let

zR(t) =

∫
ψR∇u ∂tu+

(
N

2
− 1

2

)∫
φRu ∂tu.

Then

z′R(t) = −
1

2

∫
(∂tu)

2 − 1

2

∫ [
|∇u|2 − |u|2∗

]
+O(r(R)).

But, for |x| > R, 0 < t < CR, we have
∣∣∣x+ x(t)

λ(t)

∣∣∣ ≥ R0(ε) so that |r(R)| ≤ C̃εE.

Thus, for ε small, z′R(t) ≤ − ˜̃CE/2. By our variational estimates, we also have

|zR(T )| ≤ C1RE. Integrating in t we obtain CR ˜̃CE/2 ≤ 2C1RE, which is a
contradiction for C large. �
Proof of Lemma 8. For 0 ≤ t ≤ t0, set

yR(t) =

∫
ψR

{
1

2
(∂tu)

2 +
1

2
|∇u|2 − 1

2∗
|u|2∗

}
.

For |x| > R,
∣∣∣x+ x(t)

λ(t)

∣∣∣ ≥ R0(ε), so that, since
∫ ∇u0u1 = 0 =

∫ ∇u(t) ∂tu(t),

y′(R) = O(r(R)), and hence |yR(t0)− yR(0)| ≤ C̃εEt0. However,

|yR(0)| ≤ C̃R0(ε)E +O(Rr(R0(ε))) ≤ C̃E[R0(ε) + εR].
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Also,

|yR(t0)| ≥
∣∣∣∣∣
∫
∣
∣
∣x+

x(t0)

λ(t0)

∣
∣
∣≤R0(ε)

ψR

{
1

2
(∂tu)

2 +
1

2
|∇u|2 − 1

2∗
|u|2∗

}∣∣∣∣∣
−
∣∣∣∣∣
∫
∣
∣
∣x+

x(t0)

λ(t0)

∣
∣
∣>R0(ε)

ψR

{
1

2
(∂tu)

2 +
1

2
|∇u|2 − 1

2∗
|u|2∗

}∣∣∣∣∣ .
In the first integral, |x| ≤ R, so that ψR(x) = x. The second integral is bounded
by MRεE. Thus,

|yR(t0)| ≥
∣∣∣∣∣
∫
∣
∣
∣x+

x(t0)

λ(t0)

∣
∣
∣≤R0(ε)

x

{
1

2
(∂tu)

2 +
1

2
|∇u|2 − 1

2∗
|u|2∗

}∣∣∣∣∣−MRεE.

The integral on the right equals

− x(t0)

λ(t0)

∫
∣
∣
∣x+

x(t0)

λ(t0)

∣
∣
∣≤R0(ε)

{
1

2
(∂tu)

2 +
1

2
|∇u|2 − 1

2∗
|u|2∗

}
+

∫
∣
∣
∣x+

x(t0)

λ(t0)

∣
∣
∣≤R0(ε)

(
x+

x(t0)

λ(t0)

){
1

2
(∂tu)

2 +
1

2
|∇u|2 − 1

2∗
|u|2∗

}
,

so that its absolute value is greater than or equal to

(R0 −R0(ε))E − C̃(R−R0(ε))εE − C̃R0(ε)E.

Thus,

|yR(t0)| ≥ E(R−R0(ε))[1− C̃ε]− C̃R0(ε)E −MRεE ≥ ER/4,

for R large, ε small. But then ER/4− C̃E[R0(ε) + εR] ≤ C̃εEt0, which yields the
lemma for ε small, R large. �

We next turn to the case 2, T+((u0, u1)) = 1, with suppu, ∂tu ⊂ B(0, 1− t),
λ(t) ≥ C/1 − t. For (4.3.1) we cannot use the conservation of the L2 norm as in
the (4.2.1) case and a new approach is needed. The first step is:

Lemma 9. Let u be as in the Rigidity Theorem, with T+((u0, u1)) = 1. Then there
exists C > 0 so that λ(t) ≤ C/1− t.

Proof. If not, we can find tn ↑ 1 so that λ(tn)(1− tn)→ +∞. Let

z(t) =

∫
x∇u ∂tu+

(
N

2
− 1

2

)∫
u ∂tu,

where we recall that z is well defined since suppu, ∂tu ⊂ B(0, 1 − t). Then, for
0 < t < 1, we have

z′(t) = −1

2

∫
(∂tu)

2 − 1

2

∫
|∇u|2 − |u|2∗ .
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By our variational estimates, E((u0, u1)) = E > 0 and

sup
0<t<1

‖(u(t), ∂tu)‖Ḣ1×L2 ≤ CE

and z′(t) ≤ −CE, for 0 < t < 1. From the support properties of u, it is easy to
see that limt↑1 z(t) = 0, so that, integrating in t, we obtain

z(t) ≥ CE(1− t), 0 ≤ t < 1.

We will next show that z(tn)/(1− tn) −−−−→
n→∞ 0, yielding a contradiction. Because∫ ∇u(t) ∂tu(t) = 0, 0 < t < 1, we have

z(tn)

1− tn
=

∫
(x+ x(tn)/λ(tn))∇u ∂tu

1− tn
+

(
N

2
− 1

2

)∫
u ∂tu

1− tn
.

Note that, for ε > 0 given, we have∫
|x+ x(tn)

λ(tn) |≤ε(1−tn)

∣∣∣∣x+
x(tn)

λ(tn)

∣∣∣∣ |∇u(tn)||∂tu(tn)|+ |u(tn)||∂tu(tn)| ≤ CεE(1− tn).

Next we will show that |x(tn)/λ(tn)| ≤ 2(1−tn). If not, B(−x(tn)/λ(tn), (1−
tn)) ∩B(0, (1− tn)) = ∅, so that∫

B(−x(tn)/λ(tn),(1−tn))

|∇u(tn)|2 + |∂tu(tn)|2 = 0,

while∫
|x+ x(tn)

λ(tn) |≥(1−tn)

|∇u(tn)|2 + |∂tu(tn)|2 =

∫
|y|≥λ(tn)(1−tn)

∣∣∣∣∇u

(
y − x(tn)

λ(tn)
, tn

)∣∣∣∣2

+

∣∣∣∣∂tu(y − x(tn)

λ(tn)
, tn

)∣∣∣∣2 dy

λ(tn)N
−−−−→
n→∞ 0,

which contradicts E > 0. Then

1

1− tn

∫
|x+ x(tn)

λ(tn) |≥ε(1−tn)

∣∣∣∣x+
x(tn)

λ(tn)

∣∣∣∣ |∇u(tn)||∂tu(tn)|

≤ 3

∫
|x+ x(tn)

λ(tn) |≥ε(1−tn)

|∇u(tn)||∂tu(tn)|

= 3

∫
|y|≥ε(1−tn)λ(tn)

∣∣∣∣∇u

(
y − x(tn)

λ(tn)
, tn

)∣∣∣∣ ∣∣∣∣∂tu(y − x(tn)

λ(tn)
, tn

)∣∣∣∣ dy

λ(tn)N

−−−−→
n→∞ 0

because of the compactness of K and the fact that λ(tn)(1 − tn) → ∞. Arguing
similarly for

∫
u ∂tu
1−tn

, using Hardy’s inequality (centered at−x(tn)/λ(tn)), the proof
is concluded. �
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Proposition 5. Let u be as in the Rigidity Theorem, with T+((u0, u1)) = 1, suppu,
∂tu ⊂ B(0, 1− t). Then

K =
(
(1− t)N−2/2u((1− t)x, t), (1− t)N−2/2 ∂tu((1− t)x, t)

)
is precompact in Ḣ1(RN )× L2(RN ).

Proof.{
�v(x, t) = (1− t)

N
2 (∇u((1− t)(x− x(t)), t), ∂tu((1− t)(x− x(t)), t)) , 0 ≤ t < 1

}
has compact closure in L2(RN )N+1, since we have c0 ≤ (1− t)λ(t) ≤ c1 and if K
is compact in L2(RN )N+1,

K1 =
{
λN/2�v(λx) : �v ∈ K, c0 ≤ λ ≤ c1

}
also has K1 compact. Let now

ṽ(x, t) = (1− t)N/2 (∇u((1− t)x, t), ∂tu((1− t)x, t)) ,

so that ṽ(x, t) = �v(x+x(t), t). Since supp�v( · , t) ⊂ {x : |x− x(t)| ≤ 1} and E > 0,
the fact that {�v( · , t)} is compact implies that |x(t)| ≤ M . But if K2 = {�v(x +
x0, t) : |x0| ≤M}, then K2 is compact, giving the proposition. �

At this point we introduce a new idea, inspired by the works of Giga–Kohn
[12] in the parabolic case and Merle–Zaag [36] in the hyperbolic case, who studied
the equations (∂2

t −�)u− |u|p−1u = 0, for 1 < p < 4
N−1 +1, in the radial case. In

our case, p = 4
N−2 + 1 > 4

N−1 + 1. We thus introduce self-similar variables. Thus,
we set y = x/1− t, s = log 1/1− t and define

w(y, s; 0) = (1− t)N−2/2u(x, t) = e−s(N−2)/2u(e−sy, 1− e−s),

which is defined for 0 ≤ s < ∞ with suppw( · , s; 0) ⊂ {|y| ≤ 1}. We will also
consider, for δ > 0, uδ(x, t) = u(x, t + δ) which also solves (4.3.1) and its cor-
responding w, which we will denote by w(y, s; δ). Thus, we set y = x/1 + δ − t,
s = log 1/1 + δ − t and

w(y, s; δ) = (1 + δ − t)N−2/2u(x, t) = e−s(N−2)/2u(e−sy, 1 + δ − e−s).

Here w(y, s; δ) is defined for 0 ≤ s < − log δ and we have

suppw( · , s; δ) ⊂
{
|y| ≤ e−s − δ

e−s
=

1− t

1 + δ − t
≤ 1− δ

}
.

The w solve, where they are defined, the equation

∂2
sw =

1

ρ
div (ρ∇w − ρ(y · ∇w)y)− N(N − 2)

4
w

+ |w|4/N−2w − 2y · ∇∂sw − (N − 1)∂sw,
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where ρ(y) = (1− |y|2)−1/2.
Note that the elliptic part of this operator degenerates. In fact,

1

ρ
div (ρ∇w − ρ(y · ∇w)y) =

1

ρ
div (ρ(I − y ⊗ y)∇w) ,

which is elliptic with smooth coefficients for |y| < 1, but degenerates at |y| = 1.
Here are some straightforward bounds on w( · ; δ) (δ > 0): w ∈ H1

0 (B1) with∫
B1

|∇w|2 + |∂sw|2 + |w|2∗ ≤ C.

Moreover, by Hardy’s inequality for H1
0 (B1) functions [6],∫

B1

|w(y)|2
(1− |y|2)2 ≤ C.

These bounds are uniform in δ > 0, 0 < s < − log δ. Next, following [36], we
introduce an energy, which will provide us with a Lyapunov functional for w.

Ẽ(w(s; δ)) =

∫
B1

1

2

{
(∂sw)

2 + |∇w|2 − (y · ∇w)2
} dy

(1− |y|2)1/2

+

∫
B1

{
N(N − 2)

8
w2 − N − 2

2N
|w|2∗

}
dy

(1− |y|2)1/2
.

Note that this is finite for δ > 0. We have:

Lemma 10. For δ > 0, 0 < s1 < s2 < log 1/δ,

i) Ẽ(w(s2))− Ẽ(w(s1)) =

∫ s2

s1

∫
B1

(∂sw)
2

(1− |y|2)3/2
ds dy, so that Ẽ is increasing.

ii)
1

2

∫
B1

[
(∂sw) · w − 1 +N

2
w2

]
dy

(1− |y|2)1/2
∣∣∣∣s2
s1

= −
∫ s2

s1

Ẽ(w(s))ds+
1

N

∫ s2

s1

∫
B1

|w|2∗

(1− |y|2)1/2
ds dy

+

∫ s2

s1

∫
B1

{
(∂sw)

2 + ∂swy · ∇w +
∂sww|y|2
1− |y|2

}
dy

(1− |y|2)1/2
.

iii) lim
s→log 1/δ

Ẽ(w(s)) = E((u0, u1)) = E, so that, by part i), Ẽ(w(s)) ≤ E for

0 ≤ s < log 1/δ.

The proof is computational; see [24]. Our first improvement over this is:

Lemma 11.

∫ 1

0

∫
B1

(∂sw)
2

1− |y|2 dy ds ≤ C log 1/δ.
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Proof. Notice that

−2
∫

(∂sw)
2

1− |y|2 =
d

ds

{∫ [
1

2
(∂sw)

2 +
1

2

(|∇w|2 − (y · ∇w)2
)

+
(N − 2)N

8
w2 − N − 2

2N
|w|2∗

] [− log(1− |y|2)] dy
+

∫ [
log(1− |y|2) + 2

]
y · ∇w ∂sw − log(1− |y|2)(∂sw)2

− 2

∫
(∂sw)

2

}
.

We next integrate in s, between 0 and 1, and drop the next to last term by
sign. The proof is finished by using Cauchy–Schwartz and the support property of
w( · ; δ). �

Corollary 4. a)

∫ 1

0

∫
B1

|w|2∗

(1− |y|2)1/2
dy ds ≤ C(log 1/δ)1/2.

b) Ẽ(w(1)) ≥ −C(log 1/δ)1/2.

Proof. Part a) follows from ii), iii) above, Cauchy–Schwartz and Lemma 11. Note
that we obtain the power 1/2 on the right-hand side by Cauchy–Schwartz. Part b)
follows from i) and the fact that∫ 1

0

Ẽ(w(s)) ds ≥ −C(log 1/δ)1/2,

which is a consequence of the definition of Ẽ and a). �

Our next improvement is:

Lemma 12.

∫ log 1/δ

1

∫
B1

(∂sw)
2

(1− |y|2)3/2
≤ C(log 1/δ)1/2.

Proof. Use i), iii) and the bound b) in Corollary 4. �

Corollary 5. There exists sδ ∈
(
1, (log 1/δ)3/4

)
such that

∫ sδ+(log 1/δ)1/8

sδ

∫
B1

(∂sw)
2

(1− |y|2)3/2
≤ C

(log 1/δ)1/8
.

Proof. Split
(
1, (log 1/δ)3/4

)
into disjoint intervals of length (log 1/δ)1/8. Their

number is (log 1/δ)5/8 and 5
8 − 1

8 = 1
2 . �
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Note that, in Corollary 5, the length of the s interval tends to infinity, while
the bound goes to zero. It is easy to see that if sδ ∈

(
1, (log 1/δ)3/4

)
, and sδ =

− log(1 + δ − tδ), then ∣∣∣∣ 1− tδ
1 + δ − tδ

− 1

∣∣∣∣ ≤ Cδ1/4,

which goes to 0 with δ. From this and the compactness of K, we can find δj → 0, so

that w(y, sδj + s; δj) converges, for s ∈ [0, S] to w∗(y, s) in C([0, S]; Ḣ1
0 ×L2), and

w∗ solves our self-similar equation in B1 × [0, S]. Corollary 5 shows that w∗ must
be independent of s. Also, the fact that E > 0 and our coercivity estimates show
that w∗ �≡ 0. (See [24] for the details.) Thus, w∗ ∈ H1

0 (B1) solves the (degenerate)
elliptic equation

1

ρ
div (ρ∇w∗ − ρ(y · ∇w∗)y)− N(N − 2)

4
w∗ + |w∗|4/N−2w∗ = 0,

ρ(y) = (1− |y|2)−1/2.

We next point out that w∗ satisfies the additional (crucial) estimates:∫
B1

|w∗|2∗

(1− |y|2)1/2
+

∫
B1

[|∇w∗|2 − (y · ∇w∗)2
]

(1− |y|2)1/2
<∞.

Indeed, for the first estimate it suffices to show that, uniformly in j large, we have∫ sδj+δ

sδj

∫
B1

|w(y, s; δj)|2∗

(1− |y|2)1/2
dy ds ≤ C,

which follows from ii) above, together with the choice of sδj , by Corollary 5,
Cauchy–Schwartz and iii). The proof of the second estimate follows from the first
one, iii) and the formula for Ẽ.

The conclusion of the proof is obtained by showing that a w∗ in H1
0 (B1),

solving the degenerate elliptic equation with the additional bounds above, must
be zero. This will follow from a unique continuation argument. Recall that, for |y| ≤
1 − η0, η0 > 0, the linear operator is uniformly elliptic, with smooth coefficients
and that the nonlinearity is critical. An argument of Trudinger’s [51] shows that
w∗ is bounded on {|y| ≤ 1 − η0} for each η0 > 0. Thus, if we show that w∗ ≡ 0
near |y| = 1, the standard Carleman unique continuation principle [19] will show
that w∗ ≡ 0.

Near |y| = 1, our equation is modeled (in variables z ∈ RN−1, r ∈ R, r > 0,
near r = 0) by

r1/2∂r(r
1/2∂rw

∗) +�zw
∗ + cw∗ + |w∗|4/N−2w∗ = 0.

Our information on w∗ translates into w∗ ∈ H1
0 ((0, 1]× (|z| < 1)) and our crucial

additional estimates are:∫ 1

0

∫
|z|<1

|w∗(r, z)|2∗ dr

r1/2
dz +

∫ 1

0

∫
|z|<1

|∇zw
∗(r, z)|2 dr

r1/2
dz <∞.
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To conclude, we take advantage of the degeneracy of the equation. We “desin-
gularize” the problem by letting r = a2, setting v(a, z) = w∗(a2, z), so that
∂av(a, z) = 2r1/2∂rw

∗(r, z). Our equation becomes:

∂2
av +�zv + cv + |v|4/N−2v = 0, 0 < a < 1, |z| < 1, v|a=0 = 0,

and our bounds give:∫ 1

0

∫
|z|<1

|∇zv(a, z)|2 da dz =

∫ 1

0

∫
|z|<1

|∇zw
∗(r, z)|2 dr

r1/2
dz <∞,

∫ 1

0

∫
|z|<1

|∂av(a, z)|2 da

a
dz =

∫ 1

0

∫
|z|<1

|∂rw∗(r, z)|2 dr dz <∞.

Thus, v ∈ H1
0 ((0, 1]×B1), but in addition ∂av(a, z)|a=0 ≡ 0. We then extend v by

0 to a < 0 and see that the extension is an H1 solution to the same equation. By
Trudinger’s argument, it is bounded. But since it vanishes for a < 0, by Carleman’s
unique continuation theorem, v ≡ 0. Hence, w∗ ≡ 0, giving our contradiction. �
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