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Preface

Vector optimization model has found many important applications in decision
making problems such as those in economics theory, management science,
and engineering design (since the introduction of the Pareto optimal solu-
tion in 1896). Typical examples of vector optimization model include maxi-
mization/minimization of the objective pairs (time, cost), (benefit, cost), and
(mean, variance) etc.

Many practical equilibrium problems can be formulated as variational in-
equality problems, rather than optimization problems, unless further assump-
tions are imposed. The vector variational inequality was introduced by Gian-
nessi (1980). Extensive research on its relations with vector optimization, the
existence of a solution and duality theory has been pursued.

The fundamental idea of the Ekeland’s variational principle is to assign an
optimization problem a slightly perturbed one having a unique solution which
is at the same time an approximate solution of the original problem. This
principle has been an important tool for nonlinear analysis and optimization
theory. Along with the development of vector optimization and set-valued
optimization, the vector variational principle introduced by Nemeth (1980)
has been an interesting topic in the last decade.

Fan Ky’s minimax theorems and minimax inequalities for real-valued func-
tions have played a key role in optimization theory, game theory and math-
ematical economics. An extension was proposed to vector payoffs was intro-
duced by Blackwell (1955).

The Wardrop equilibrium principle was proposed for a transportation net-
work. Until only recently, all these equilibrium models are based on a single
cost. Vector network equilibria were introduced by Chen and Yen (1993) and
are one of good examples of vector variational inequality applications.

This book studies vector optimization models, vector variational inequali-
ties, vector variational principles, vector minimax inequalities and vector net-
work equilibria and summarizes the recent theoretical development on these
topics.



VIII  Preface

The outline of the book is as follows.

In Chapter 2, we examine vector optimization problems with a fixed dom-
ination structure, a variable domination structure and a set-valued function
respectively. We will investigate optimality conditions, duality and topological
properties of solutions for these problems.

In Chapter 3, we study existence, duality, gap function and characteri-
zation of a solution of vector variational inequalities. We will also explore
set-valued vector variational inequalities and vector complementarity prob-
lems.

In Chapter 4, we present unified variational principles for vector-valued
functions and set-valued functions respectively. We will also explore well-
posedness properties of vector-valued/set-valued optimization problems.

In Chapter 5, we consider minimax inequalities for vector-valued and set-
valued functions.

In Chapter 6, we consider weak vector equilibrium, vector equilibrium and
continuous-time vector equilibrium principles.

One characteristic of the book is that special attention is paid to problems
of set-valued and variable ordering nature. To deal with various nonconvex
problems with vector objectives, the nonlinear scalarization method has been
extensively used throughout the book. Most results of this book are original
and should be interesting to researchers and graduates in applied mathematics
and operations research. Readers can benefit from new methodologies devel-
oped in the book.

We are indebted to Franco Giannessi and Kok Lay Teo for their continu-
ous encouragement and valuable advice and comments on the book. We are
thankful to Xinmin Yang and Shengjie Li for their joint research collabora-
tion on some parts of the book. The first draft of the book was typed by Hui
Yu, whose assistance is appreciated. We acknowledge that the research of this
book has been supported by the National Science Foundation of China and
the Research Grants Council of Hong Kong, SAR, China.

Guang-ya Chen, Academy of Mathematics and Systems Science
Xuexiang Huang, Chongqing Normal University
Xiaoqi Yang, The Hong Kong Polytechnic University
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1

Introduction and Mathematical Preliminaries

In this chapter, we will present necessary mathematical concepts and results,
which will be used in the later chapters. Most of the results can be found in
the books: Aubin and Ekeland [5], Aubin and Frankowska (6], Rockafellar and
Wets [168], Sawaragi, Nakayama and Tanino [176] and Yu [221]. Some new
mathematical concepts and results on nonlinear scalarization functions will
also be given.

1.1 Convex Cones and Minimal Points

Vector optimization problems (or multiobjective programming problems or
multicriteria decision making problems) have close relations with orderings or
preferences in objective spaces. It is known that orderings in a vector space
can be defined by convex cones.

Let Y be a topological vector space, and S C Y a nonempty subset. The
topological interior, topological boundary and topological closure of S are
denoted by intS, 8S and clS, respectively.

A set K C X is said to be convex if, for any z1,z2 € K, A € [0, 1], we have
Az + (1 — )\).’L‘Q € K.

A set C is called a cone if, for any A > 0, \C C C.

A set C is called a convex cone if C + C C C and, for any A > 0, \C C C.

Let B C C\{0} be a subset. B is called a base of C if, for each ¢ € C,
there exist b € B and ) > 0 such that ¢ = \b.

A convex cone C in Y is called pointed if

CN(~C) = {o}.

An ordering relation < is said to be

(1) Reflexive if z < z;
(ii) Asymmetricif z <y, y <z == 2 = y;
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(iii) Transitiveifz <y, y <z =z < 2.

An ordering relation is called a partial order if it satisfies reflexive, asym-
metric and transitive conditions.
In principle, any nonempty subset C of Y can define an ordering relation
by
y<oz < z—yelC, VyzeY.

However, only some particular subsets C of Y can define ordering relations
with nice and useful properties. In this book, we restrict our attention to two
cases: (i) C is a convex cone in Y and (ii) C is a convex subset of Y with
0 € 9C. We emphasize that, throughout the book, we will discuss under case
(i) unless explicitly stated otherwise.

If C is a convex cone in Y and C defines an ordering relation of Y, then C
is called an ordering cone. If C is a pointed and convex cone, then the ordering
relation <¢ is a partial order. If the interior intC of C is nonempty, we
can define a strict ordering relation “<;,:c” in Y as follows: for any y,z € Y,

Y <intc 2 <= z —y € mntC.
Similarly, we can define an ordering relation “>¢” and a strict ordering rela-
tion “Z>inic”.
By (Y, C), we denote an ordered space with the ordering of Y defined by

set C. Suppose that intC' # 0. We can define an ordering relation “%s”and a
strict ordering relation “¥£;,:c” as follows: for any y,z € Y

y¥fcz &= z—y %cO;

y Lintc 2 <= z—y ¢ intC.

Similarly, we can define an ordering relation “2¢” and a strict ordering
relation “Zinic”.
We also define the following ordering relations: for any y,z € Y,

¥y <c\{o} 2 & z—y e C\{0},

y Lovioy 2 = z—y & C\{0}.
Given two subsets of Y, say A and B, the following ordering relationships
on sets are defined:

A<cB <= n<cé VneA {ehB

A<intc B <= n<inc§, Vn€eA B

A <o\{0} B &< n <c\{o} &, Vne A, £€ B;

AZcB <= n%c& VneA {cB

A&intc B = n&intc§, V€A, {€DB;

AZovoy B == nfco\oy §, Vne A€ B.

Let A and B be two sets. We denote by A\B the difference of A and B.
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Lemma 1.1. Let C be an ordering cone in'Y. Then, for any a,b,c €Y,

i)a>ch = a+c>2cb+c;
(ii) a 2inc b = a+c>mcb+c;
lll) a >C\{0} b= a+c >C'\{0} b+ ¢
(ivia Pcb=a+cPcb+c
(V) a Zintc b==> a+c Zintc b+c;
(vi) a ZC\{O} b= a+c 20\{0} b+c.

The same is true for <c, <intc, S<c\{0}, L0, Lintc ond Lo\ (o} Tespectively.

(

Lemma 1.2. Let C be a convex ordering cone in'Y . Then, for any a,b,c €Y,

fla<gb<cec=a<cg

(i) a <c b <c\{o} ¢ = a <c\{0} &
(iii) a <¢ b <intc ¢ = a <intc G
(IV) a ﬁzntC‘ b >zntC c—a zzntc o
V) a ﬁzntC b>cc=a ZzntC c;
(Vl) ZzntC b<imtcc=a ﬁzntC c;
(vii) @ 2inic b <o c = a Linic C.

Let Y™* be the topological dual space of Y and C' a convex cone of Y. Set
C*={feY":(f,z) >0,Yz € C},

where (f, z) denotes the value of f at z. C* is called the dual cone (or positive
polar cone) of C. Sometimes, we also use C" to denote the dual cone of C.
We set
Cti={feY*:(f z)>0,VzecC\{0}}.

Proposition 1.3. [96] Let (Y,C) be an ordered Banach space with C C Y
being a convexr cone. Consider the following properties that a convexr cone
C C Y may possess:

(i) C is a pointed and convexr cone;

(ii) C has a base;
(iii) intC* # 2.

Then (iti) => (i) = (i); if Y is some Euclidean space, and C is closed,
then all three properties are equivalent.

Definition 1.4. Let Y be a topological vector space ordered by a convex cone
C inY or a convex subset C of Y with 0 € 8C. Let A C Y be a nonempty
set. A point y* € A is called a minimal point of A if

(A-y)n(=C\{0}) =1

A point y* € A is called a maximal point of A if

(A—-y)n(C\{0}) =
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We denote the set of all minimal points of A and the set of all maximal
points of A by MingA and Maxc A, respectively.

Definition 1.5. Let Y be a topological vector space ordered by a convex cone
C inY. Let A be a nonempty subset of Y. A is said to have the lower (upper)
domination property if, for each y, there is a point y* € Ming A (or MazcA)
such thaty € y* +C (oryey* —C).

Proposition 1.6. Let Y be a topological vector space ordered by a closed and
convex cone C in'Y. If A CY is a nonempty compact set, then A has the
lower (upper) domination property, hence MincA # & (MazcA # @).

Thus, we obtain immediately that A C MingA+C (or A C MaxcA—C).

Definition 1.7. Let C C Y be a convex cone or a conver subset of Y with
0€8C andintC # 0, ACY be a nonempty subset. A point y* € A is called
o weakly minimal point of A if

An(y" —intC) = 2.
A point y* € A is called a weakly mazimal point of A if
ANy +intC) = @.

We denote the set of all weakly minimal points of A and the set of all
weakly maximal points of A by Min;n;cA and Max;,;cA, respectively.

Definition 1.8. Let Y be a topological vector space ordered by a conver cone
C or a convexr subset C with 0 € 0C. Let K C X and f : K — Y be a
vector-valued function. x* € K is said to be a minimal solution of f on K if

(f(K) = F(&")) N (=C\{0}) = 0.

Suppose that intC # §. z* € K is said to be a weakly minimal solution of f
on K if

(f(K) = f(z%)) N (=intC) = 0.

We denote the set of all minimal solutions of f on K and the set of all
weakly minimal solutions of f on K by Ming(f, K) and Min;no(f, K) re-
spectively.

Definition 1.9. Let Y be a topological vector space ordered by a convexr cone
C or a convex subset C with 0 € 8C. Let K C X and f: K — Y be a vector-
valued function. y* € K is said to be a minimal point of f on K if there is a
z* € Minc(f, K) such that y* = f(z*). v* € K is said to be a weakly minimal
point of f on K if there is o x* € Mininsc(f, K) such that y* = f(z*).

We denote the set of all minimal points of f on K and the set of all weakly
minimal points of f on K by Ming f(K) and Min; o f(K) respectively.
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Definition 1.10. Let Y be a topological vector space ordered by a convex cone
C or a convex subset C with 0 € 8C. Let K C X and f: K — Y be a vector-
valued function. x* € K is said to be a local minimal solution of f on K if
there exists a neighborhood U(z*) of * such that

(F(KE NU (")) — f(z*)) N (=C\{0}) = 0.

Suppose that intC # 0. x* € K is said to be a local weakly minimal solution
of f on K if there exists a neighborhood U(x*) of x* such that

(f(KNU(")) — f(z*)) N (=intC) = (.

Let C:Y 3 Y be a set-valued function (i.e., for every y € Y, C(y) is a
subset of Y) such that for each y € Y, C(y) is a convex cone or a convex set
with 0 € 8C(y), for ally € Y.

The set-valued function C' or the family of sets {C(y) : y € Y} is called a
domination structure on Y. The domination structure describes a variable or-
dering structure or a variable preference structure when dealing with minimal
points of a set.

We define relations <g(y), o), So@)op Lowhi(o} Sinto(y) and
Lintc(y) With respect to the convex cone C(y) as follows: for any y1,y2 €Y,

1 <o) Y2 <= 2 —y1 € C(y);

y1 Low) 2 = 2~ £ Cy);
Y1 Scw)\{o} ¥2 < y2—y1 € C(y) \ {0};
Y1 ooy Y2 <= v2—y1 € C(y) \ {0};
Y1 Sinto(y) Y2 = Y2 — 1 € ntC(y);
Y1 Lintc(y) Y2 = 2 —y1 ¢ ntC(y).
Similarly, we can define >¢(y), Ze): Zo@)\{0} Zo@)\(0}> Zintc(y), and

ZintC(y)-

Yu [221] proposed the following solution concepts for vector optimization
problems with a variable domination structure.

Definition 1.11. Let C : Y 3 Y be convex cone valued. Let A be a nonempty
subset of Y. A point y* € A is called a nondominated minimal point of A if

AN —-Cy) ={y"}, YyeA

We denote the set of all nondominated minimal points of A by Mingy)A.
It is clear that a nondominated minimal point of A is a minimal point of A
with respect to C(y) for every y € A.
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Definition 1.12. Let A be a nonempty subset of Y. Let C : Y 2 Y be convez
cone valued with intC(y) # O,Vy € Y. A point y* € A is called a weakly
nondominated minimal point of A if

ANy —intC(y)) =@, VyeA (1.1)

We denote the set of all weakly nondominated minimal points of A by
Minmtc(y)A. )

Using the ordering notation, (1.1) is equivalent to that, for any yi1,y2 € 4,
it follows that

Y1 ﬁintC(yz) y* .

In fact, Definitions 1.11 and 1.12 deal with a similar “minimal” case as
in Definitions 1.4 and 1.7. By the same way, we can define a nondominated
maximal point and a weakly nondominated maximal point of A similar to
“maximal” in Definitions 1.4 and 1.7.

We propose the following alternative concepts of nondominated minimal
points for vector optimization problems with a variable domination structure.

Definition 1.13. Let C : Y 3 Y be convex set valued or convex cone valued,
and int C(y) # 0,Yy € Y. Let A be a nonempty subset inY. A point y* € A
is called a nondominated-like minimal point of A, if

(A-y")N(=Cly"N\{0}) =0

A point y* is called to be a weakly nondominated-like minimal point of A,

if
(A—y") N (=ntC(y")) = 2.

We denote the set of all nondominated-like minimal points of A and the
set of all weakly nondominated-like minimal points of A by LMing(,)A and
LMin;nic(y)A, respectively.

The following example shows that the two definitions of weakly nondomi-
nated minimal points given in Definitions 1.12 and 1.13 may be different.

Ezample 1.14. Let Y = IR? be a 2-dimensional Euclidean space, and A =
{(y1,92)T €R?: 1<y < 2,92 = 1}. Let

Cly) = {(d1,d2)T € R? : dy + kdy > 0,dy > 0},

where y = (2 — k,1)T, 0 < k < 1. It is easy to verify that only y' = (1,1)7
is a weakly nondominated minimal point of A. But, by definition, both y; =
(1,1)T and ya = (2,1)T are weakly nondominated-like minimal points of A.

Let C: X 3 Y be a set-valued function such that for each z € Y, C(x)
is a nonempty convex cone or a nonempty convex set with 0 € 8C(z), for all
zeX.
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The set-valued function C or the family of sets {C(z) : * € X} is also called
a domination structure on Y. The domination structure describes a variable
ordering structure or a variable preference structure in vector optimization
problems with an objective function.

We define relations <c(z), £c(z), Sc@)\{(o}r Lo@\(0} SintC(z), and
ZLintC(z) With respect to the convex cone C(x) as follows: for any y1,y2 €Y,

Y1 <c(e) Y2 = Y2 — Y1 € C(x);

Y1 £o@) Y2 <= y2—u € C(z);

Y1 <c@n{o} Y2 &= y2 —y1 € C(z)\ {0}
Y1 Lo@n{o} ¥2 <= w2 —y & C(z)\ {0}
Y1 SintC(x) Y2 = Y2 — Y1 € intC(x);
Y1 LintC(e) Y2 = Y2 —y1 € intC(x).

Similarly, we can define >¢(s), 2c(2), Zc@)\{0}> ZC(2)\{0}> ZintC(z), and
«)—‘intC(w)-

Definition 1.15. Let C : X 3 Y be convex set valued with 0 € C(x),Vz €
X or convexr cone valued. Suppose that K C X and f: K — Y is a vector-
valued function. x* € K is said to be a nondominated-like minimal solution
of f with respect to C(z) if

(f(K) = f(z")) N (=C(z")\{0}) = 0.

The set of all nondominated-like minimal solutions of f with respect to C(z)
is denoted by LMing(q) f(K).

Suppose that ntC(z) # O,V € X. z* € K is said to be a weakly
nondominated-like minimal solution of f with respect to C(x) if

(f(K) = f(z")) N (=intC(z7)) = 0.

The set of all weakly nondominated-like minimal solutions of f with respect
to C(z) is denoted by LMininsc () f(K).

Definition 1.186. Let (Y, C) be an ordered Hausdorff topological vector space
and A CY. A point z € A is called an infimum point of A if,

(i) y £o\foy 2, Yy € A and

(ii) there exists a sequence {z} C A such that zx — z as k — oo.

We denote by InfA the set of infimum points of A.
A point z € A is called a supremum point of A if,

(i) y 2c\joy %, Yy € A and

(ii) there exists o sequence {zx} C A such that zx — z as k — .

We denote by SupA the set of supremum points of A.
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Clearly, if z is a minimal point of A, then z is an infimum point of A.

Definition 1.17 ([177]). Let (Y,C) be an ordered vector space, and A C'Y
be nonempty. ag € A is called an upper bound of A if ap 2¢ a,Va € A. If ap
is an upper bound of A and ag <¢c b for any upper bound b of A, then ag is
unique and called the absolute supremum (least upper bound) of A. We denote
ag = ASupc A. Similarly, we can define the absolute infimum (largest lower
bound) of A and denote it by Alnfc A.

Definition 1.18 (Luc [142]).

(i) The cone C is called Daniell if any decreasing sequence having a lower
bound converges to its infimum;

(ii) A subset A of Y is said to be minorized, if there is a y € Y such that
AcC{y}+C.

Consider the scalar optimization problem:
(P)  minep(z),
where K C X is a nonempty set and ¢ : X — IR is a real-valued function.
(i) * € K is called an optimal solution of (P) if
p(a*) < (@), Voe K.

(ii) z* € K is called a local optimal solution of (P) if there exists a neigh-
borhood U(z*) of z* such that

olz*) < p(z), VYze KNU(z").

1.2 Elements of Set-Valued Analysis

In this section, we present necessary concepts and results in set-valued anal-
ysis. More detailed investigation of set-valued analysis can be found in Aubin
and Frankowska [6] and Aubin and Ekeland [5]. Some particular concepts and
results of set-valued analysis are presented in the following context.

Let X, Y be two Hausdorff topological spaces and F : X 3 Y a set-valued
function.

Definition 1.19. F is said to be closed if its graph
Gr(F)={(z,y):z € X,y € F(z)}
is closed.

Definition 1.20. (i) F' is said to be upper semicontinuous (u.s.c. in short)
at xo € X if, for any neighborhood V (F'(xzo)) of the set F(zg), there exists
a netghborhood U(xg) of the point o such that

F(z) c V(F(z0)), Yz € U(zo).
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(i) F is said to be lower semicontinuous (L.s.c., in short) at xo € X if, for any
y € F(xo) and any neighborhood V (yo) of yo, there exists a neighborhood
U(xo) of the point xo such that

F(z)NV(y) # @, VzeU(zo).

(iii) F is said to be continuous at zo if F is both u.s.c. and lLs.c. at xo.
(iv) F is said to be continuous on X if it is continuous at every z € X.

Proposition 1.21. /5] Let X be a topological space and Y a locally convex
topological vector space. Suppose that F : X 3 Y is a set-valued function
which is w.s.c., nonempty and closed-valued. Then F is closed.

Definition 1.22. A set-valued function F : X =3'Y is said to have open lower
sections if the set F~1(y) = {x € X : y € F(x)} is open in X for everyy €Y.

Proposition 1.23 (Tian [192]). Let X be a topological space and Y a convex
set of a topological vector space. Let F : X =Y and G: X 3'Y be set-valued
functions with open lower sections. Then

(i) the set-valued function M : X =Y, defined by M(z) = co(G(z)) for all
z € X, has open lower sections;

(ii) the set-valued function @ : X Y, defined by Q(z) = G(z)NF(z) for all
z € X, has open lower sections.

Definition 1.24. Let F : Y =Y be a set-valued function.

(i) The vector-valued function e : Y — Y is said to be a selection of F if
e(y) € F(y), for everyy €Y.

(i) e : Y = Y is said to be a continuous selection of F if e is a selection
of F and e is continuous on Y.

Theorem 1.25 (Generalized Browder Selection Theorem). Let K be
a nonempty compact subset of a Hausdorff topological vector space, and let
V be a subset of a topological vector space. Suppose that H : K 3 V is a
set-valued function with nonempty convex values and has open lower sections.
Then there exists a continuous selection h : K — V of H. Moreover, h(K) is
contained in the convex hull of a finite subset M C V.

Proof. For each v € V, H !(v) is open, and each point € K lies in at
least one of these open subsets. Since K is compact, there exists a finite
set M = {v1,--,v} C V such that K = Uf=1H'1(vi). Let {f1, -, 0k}
be a partition of unit subordinated to this covering, i.e., each (3; is a con-
tinuous function from K to [0, 1], which vanishes outside of H~1(v;), while
Zle Bi(z) =1 for all z in K.

Now, we define the continuous function h : K — co(M) by h(z) :=
Zf;l Bi(z)v;. Clearly, B;(z) > 0 implies that £ € H~(v;) and therefore
v; € H(x). Thus h(z) is a convex linear combination of points of H(z). Since
H(z) is assumed to be convex for each z € K, it follows that h(z) € H(z).
The theorem is proved. |
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Theorem 1.26 (Browder Fixed Point Theorem). Let K be a nonempty,
compact and convex subset of a Hausdorff topological vector space. Suppose
F: K = K is a set-valued function with nonempty convex values and open
lower sections. Then F' has a fized point in K.

Theorem 1.27 (Fan-Glicksber-Kakutani). Let K be a nonempty com-
pact subset of a real locally convex Hausdorff wvector topological space. If
F : K = K is upper semi-continuous and, for any z € K, F(z) is a nonempty,
convezx and closed subset, then F has a fixed point in K.

Definition 1.28. A nonempty topological space is said to be acyclic if all of
its reduced Cech homology groups over the rational vanish.

In particular, any contractible space is acyclic, and hence any convex or
star-shaped set in a topological vector space is acyclic.

Theorem 1.29. [159] Let K be a compact convex subset of a locally convex
Hausdorff topological vector space, and F' : K = K be an upper semicontinu-
ous set-valued function with nonempty, closed and acyclic values. Then F has
a fired point in K.

Now, we introduce the concepts of the contingent tangent cone of a set
and the contingent derivative of a set-valued function.

Let X and Y be two topological vector spaces, and K a nonempty subset
of X.

Definition 1.30. Let z € K. The set T(K,Z) C X is called a contingent
tangent cone to K at T if

T(K,z) = {r € X : I{axr} C X and {hi} C R4 \{0},
s.t. xx — z,hg — 0 and T + heay € K,VEk}.
We know that (i) if X is a normed space, then T(K, Z) is closed and (ii)

if K is a convex set, then T'(K, Z) is also convex.
Obviously, if (X, || -||) is a normed space, then

T(K,Z) = Nex0 Na>0 No<h<a (K — Z)/h) + €B),

where B = {z € X : ||z]| = 1}.

Definition 1.31. /6] Let G: X =3 Y be a set-valued function, and let (%,7)
be a point of Gr(G). We denote by DG(Z, ) the set-valued function from X
to Y whose graph is the contingent tangent cone T(Gr(G), (Z,7)) C X x Y.
DG(Z,7) is called the contingent derivative of G at (Z,7).
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It is useful to note that y € DG(Z, §){(x) if and only if there exist {hx} C
R \{0} and {(zk,yx)} C X x Y, such that hy — 0, (zx,yx) — (=,y) and
7+ hiyr € G(Z + hgay) for all n.

Let X and Y be two Banach spaces. We denote by L(X,Y) the set of
all linear continuous operators from X to Y. The value of a linear operator
f:X — Y at a point x is denoted by (f,z). For any A € L(X,Y), we
introduce a norm

A}z = sup{[|A(@)]] : [lz]| < 1}.

Since Y is a Banach space, L(X,Y) is also a Banach space with the norm
[I |l (or | - || in short).

Definition 1.32. Let f : K C X — L(X,Y) be a vector-valued function. f is
said to be Fréchet differentiable at xo € K if there exists a linear continuous
operator @ : X — L(X,Y), such that

po 1£(@) = £(20) = 8z = 20)]|

@=ao ||z — ol|

=0.

@ is called the Fréchet derivative of f at xo. If f is Fréchet differentiable at
every x of K, f is said to be Fréchet differentiable on K.

Definition 1.33. Let f : K € X — Y be a vector-valued function. f is
said to be Gateaux differentiable at xq € K if there exists a linear function
Df(zg) : X =Y such that, for any v € X,

o flxo +tv) — fxo)
(Df(20), ) = lim =—=— =

Df(xg) is called the Gateauz derivative of f at zo. If f is Gateauz differen-
tiable at every x of K, f is said to be Gateauz differentiable on K.

Theorem 1.34 (Knaster, Kuratowski and Mazurkiewicz (KKM, in
short) Theorem). Let E be o subset of a topological vector space V. For
each © € E, let a closed and conver set F(z) in V be given such that F(z)
is compact for at least one x € E. If the convex hull of every finite subset
{z1,22,- -+ ,xzk} of E is contained in the corresponding union U}, F(x;), then

A set-valued F : E = E function is called a KKM map if we have
co{z1,+ - ,xx} C UE_ F(z;) for every finite subset {21, -+ ,z%} of E.

Definition 1.35. Let T be a mapping from X into L(X,Y). T is called v-
hemicontinuous if, for every x,y € X, the mapping t — (T'(z + ty),y) is
continuous at 07,
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Definition 1.36. Let X and Y be topological vector spaces, C C Y be a
nonempty convexr cone with intC # & and C # {0} or Y. LetT : X —
L(X,Y) be a mapping.

(1) T is called C-monotone, if, for every z,y € X,
(T(z) =T(y),z —y) 2¢ 0;
(ii) T is called strictly C-monotone, if, for every x, y € X and x # y,
(T(z) — T(y),z — y) Zintc 0.

Definition 1.37. Let X and Y be topological vector spaces and C C'Y be
a convexr cone. The set-valued function T : X =3 L(X,Y) is said to be C-
monotone if and only if

(ug —u1,y—z) 2¢ 0, Vz,y€ X,u1 € F(z),uz € F(y).

It is clear that any selection of a C-monotone set-valued function is also
C-monotone.

Definition 1.38. Let X and Y be Banach spaces, C C Y be a convex cone
with nonempty interior intC and intC* # @. Let K be a conver and un-
bounded subset of X. We say that a mapping T : K — L(X,Y) is weakly
coercive on K if there exist zo € K and ¢ € intC™ such that

{coT(x) — coT(zo), x — zo)/l|x — o|| — +o0,
whenever € K and ||z|| — +o0.

It is easy to see that if Y = R, then L(X,Y) = X*, intC* =R, = {a €
R : o > 0}, and the weakly coercive condition reduces a standard coercive
condition in “scalar” variational inequality.

1.3 Nomnlinear Scalarization Functions

A useful approach for analyzing a vector optimization problem is to reduce
it to a scalar optimization problem. Nonlinear scalarization functions play an
important role in this reduction in the context of nonconvex vector optimiza-
tion problems.

Let Y be a Hausdorff topological vector space, C C Y a closed and convex
cone of Y with nonempty interior intC'.
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Definition 1.39. A function ¢ : Y — IR is monotone if, for any y1,2 €Y,

Y1 >c y2 = P(y1) = ¥(y2).

A function 9 : Y — IR is strictly monotone if, for any y1,42 € Y,

Y1 Zintc Y2 = Y(y1) > ¥(y2).

A function ¢ :' Y — IR is strongly monotone if, for any y1, 2 € Y,

Y1 Zo\{0} Y2 == P(y1) > P(y2)-

The following nonlinear scalarization function is of fundamental impor-
tance to our analysis. The original version is due to Gerstewitz [77]. Its first
appearance in English seems to be due to Luc [142].

Definition 1.40. Given a fized e € intC and a € Y, the nonlinear scalariza-
tion function is defined by:

bea(y) =min{t e R:yca+te—-C}, yev. (1.2)

Proposition 1.41. The function &, is well-defined, that is, the minimum in
(1.2) is attained.

Proof. For any y € Y, define
L={X€eR: yere-C}

It is sufficient to show that L is bounded from below and a closed subset in
R.
Suppose that

{M} C Land \p = X*, ask — +oo.
We have
Ape—y€eC, Vk.

By the closedness of C, we have
Ne—yeC.

It implies that A* € L. Thus, L is closed.
Assume that, for each r € IR, there exist A, € IR such that A\, < r and
Yy € Are — C. By Lemma 1.51 (ii), there exists v € IR such that y ¢ ae — C.
By Lemma 1.51(iii),
Y ¢ ue — C? ‘v’y <a,

a contradiction. Thus, L is bounded from below. |
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If Y is the /-dimensional Euclidean space RY and C = ]Ri, e =
(e1,€2,--- ,e0) ,a = (a1,az, -+ ,az) ", then the function &, may be rewritten
as

€ea(y) = max{(y; — as)/e; 1 1 <4 < £}, fory = (y1,y2,~,ye) -

It can be verified that £, is a continuous and convex function on Y, and
it is monotone and strictly monotone.

Remark 1.42. The function &, plays an important role in many areas of mul-
ticriteria, or vector optimization problems. Note, however, that the function
£eq 18 not strongly monotone. It is for this reason that the function &, is more
useful in dealing with weakly minimal points.

Proposition 1.43. For any fixed e € intC, y € Y and r € IR, we have
(i) beo(y) < r <= y € re—intC;

(ii) Lo(y) <7 <= y e —C;
(iil) ¢eo(y) =7 <= y € re — IC;
(iv) &eo(re) = 1.

Proof. Follows directly from Definition 1.40 of &.,.- [ |

Sometimes, we denote £.o by &e.

Proposition 1.44. Let C = {y € Y : f(y) <0, f € I'}, where I' C Y*\{0}.
Assume that intC # &, Let e € imtC anda €Y. Then, fory e Y,

()

Proof. Firstly, we prove that, for all f € I', f(e) < 0. Assume to the contrary,
i.e., there exists fo € I such that fy(e) > 0. Since fo # 0 and fo is a
linear functional, there exists an yo € Y such that fo(yo) < 0. Observe that
e € intC. Thus, if o > 0 is small enough, we have e —ayg € C. It follows from
the definition of C that

0 > fole — ayo) = fole) — afo(yo) >0,

€ea(y) = sup
fer

a contradiction.
Furthermore, since y € a + £eo(y)e — C,

fly —€ealy)e —a) >0, Vfel.

Since f is linear,
f(y) - gea(y)f(e) - f(a') 2 0.
As f(e) < 0, we have
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aawzfgﬁﬁ&ﬁ,erﬂ

Consequently,
€ea(y) 2 sup {

fer

fly) — f(a)}
f(e) '

Conversely, let

to = sup
fer

(f0_sa)
f(e)
Then
fy) — f(a)
f(e)
Observing that f(e) < 0 and that f is linear, we have

<tyg, Vfel.

fly—a—tge) >0, Vfel,

which implies that y — a — f{pe <¢ 0 by the definition of C. By the definition
of £, we have

to > €ee(y) =min{t e R:y € a+te —C}. [ ]

Corollary 1.45. Let C :={y €Y : fi(y) <0, fi € Y*,i=1,2,--- ,m}. Then
€ea (y) = 1211%); { —fz(yi({(‘e)fl (0,)
€eoly) = 122&{%%}, Vyev.

)
Corollary 1.46. Let Y = R* and C = IR}, e = (1,1,---,1)7 € IR’. Then,
foranyaéﬂ?e,yel}i’é,

}, Vyey,

ealy) = 1’2?2%[% - ag,

€eo(y) = lrgiage[yi],

Proof. In Corollary 1.45, let m = £ and fi(y) = —w,2 = 1,2,-+-,£ Thus
C={yeY: fily) £0,fi € Y*\{0},¢=1,2,---,£}. Then the conclusion
follows directly from Corollary 1.45. |

Proposition 1.47. Fore € intC,a €Y and be —C,

fea(y — b) 2 Leal(y),
and the equality holds for b € C N (=C).
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Proof. The conclusions follow directly from the monotonicity of &e,. ]

Now we introduce a nonlinear scalarization function for a variable domi-
nation structure.

Let Y be a locally convex Hausdorff topological vector space. Let C : ' Y =3
Y be a set-valued function and, for any y € Y, C(y) be a proper, closed and
convex cone with intC(y) # @ and e : Y — Y be a vector-valued function
and for any y € X, e(y) € intC(y). Let Y™* be the dual space of Y, equipped
with weak star topology. Let C* : Y =2 Y™ be defined by

C'y) ={s€ X" :($,2) 20, VzeC(y)}, VyeY.

Thus, the set
B*(y) = {6 €C*(y) : ($,e(y)) = 1}

is a weak star compact base of the cone C*(y).

Definition 1.48. The nonlinear scalarization function € :' Y xY — IR is
defined by

Ey,z)=min {Ae€ R: z€ Ae(y) —C(y)}, (y,2) €Y xY.

Remark 1.49. (i) Let C be a proper, closed and convex cone in Y with intC #
&, and let e € intC. Recall that in Definition 1.40

éeo(2) =min{tc R:z€te—C}, ze€Y.

If, for any y € Y, C(y) = C and e(y) = e in Definition 1.48, then &£(y, 2)
reduces to eo(2).
(ii) Let e € int Nyey C(y) # @. A nonlinear scalarization function in [42] is
defined as
€e(y,2) =inf{te R:zete—C(y)}. (1.3)

We note that if for any y € Y, e(y) = e, the function £(y, z) reduces to
e(y, 2). In the new definition of £(y, z) (Definition 1.48), the assumption
int Nyey C(y) # & is removed.

Lemma 1.50. [78] For eachy €Y,
Y = U{)e(y) —intC(y) : A € RT\{0}}.
Lemma 1.51. For A € IR and y € Y, we set Cy\(y) = e(y) — C(y).

(i) If z € Cx(y) holds for some A € IR, and y € Y, then
z € pe(y) —intC(y), for each p > X;

moreover,
z € pe(y) —Cly), for each u> M.



1.3 Nonlinear Scalarization Functions 17

(ii) For each y,z € Y, there exists a real number A € IR such that z ¢ Cx(y).
(iii) Let z € Y. If z ¢ Ca(y) for some A € IR, andy €Y, then

z ¢ Culy), for each p < A
Proof. (i) Let u > A and let z € Cx(y) hold for some y € Y. We have
pe(y) — z = (1 — Ae(y) + Ae(y) — 2z € intC(y) + Cly) C intC(y).

Thus,
z € pe(y) —intC(y) C pe(y) — C(y).
(ii) Let us assume that there exist yo, 20 € Y such that, for all A € IR,
20 € Cx(yo). From (i), we have
20 € Ae(yo) — intC(yo), forall A € R.

Thus,
{Xe(yo) — 20 : A € R} C intC(yo);

equivalently,
{=Xe(yo) — 20 : A € R} C intC(yo)-

From Lemma 1.50, we have
Y = {Xe(yo) — intC(yo) : A € RT\{0}}.

Therefore, for each y € Y, there exist ¢ € intC(yo) and a € IRT\{0} such
that

—y = ae(yo) — ¢
then,
y = —ae(yo) + ¢
= (—ae(yo) — 20) + c+ 20
€ ntC(yo) + intC(yo) + 20
= 2o + intC(yo).
Thus

Y C 2z + intC(yo).
This contradicts C(yo) # Y.
(iif) Let
z¢ Cx(y), forsomedeRandycV.

Suppose that, for some p < A, z € Cy(y). From (ii), we have that z € Cy(y).
This contradicts the assumption. ]
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Proposition 1.52. The function £ : Y XY — IR is well defined.
Proof. For any y,z € Y, define

L={XeR: zeXe(y) —C(y)}

It is sufficient to show that L is bounded from below and a closed subset in
IR.
Suppose that

{A} C Land A\p = X*, ask — +oo.

We have
Mee(ao) — 2 € Cly),  Vn.

By the closedness of C(y), we have
Ae(y) —z € Cly).

It implies that A* € L. Thus, L is closed.

Assume that, for each r € IR, there exist A, € IR such that A\, < 7
and z € Aqe(y) — C(y). By Lemma 1.51 (ii), there exists o € IR such that
z ¢ ae(yo) — C(y). By Lemma 1.51(iii),

z & pe(y) —Cly), Vu<a,

a contradiction. Thus, L is bounded from below. ]

Proposition 1.53. For any (y,2) € Y XY,

I )
8y, 2) = oeB () (b e(®))’

where B*(y) is a base of C*(y).
Proof. We show firstly,

(Y, 2) = supgece (y)\ {0} %-

Since £(y,2) = min{A € R : z € Xe(y) — C(y)}, z € &(y, 2)e(y) — C(y),
equivalently,

£(y, 2)e(y) —z € Cly).
Forany ¢ € C*(y)\{0} C C*(y), we have (¢, £(y, 2)e(y)—z ) > 0, equivalently,

g(yv Z><¢’ e(y)> - <¢7 Z) > 0.
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Because e(y) € intC(y) and ¢ € C*(y)\{0}, then, we have (¢, e(y)) > 0. So
(¢,9)

&y, 2) > b)) That is to say,

?,
€y, 2) > SUPgeC* (y)\{0} Zﬁ%T?»'

On the other hand, let

¢, z)
A0 = SUD e+ (y)\ {0} m

So, for any ¢ € C*\{0}, Ao > (;g,b’e(j» . Since (¢, e(y)) > 0, Ao{p,e(y)—2z) >

0. Then, Aoe(y) —z € C(y), i.e. z € Age(y) — C(y). From the definition of &,
Ao > &(y, z) = min{A € R: z € Xe(y) — C(y)}, i.e.,

§u:2) < sUPgec- \10) (7;%

So we have

(Y, 2) = SUPgcce (y)\ {0} %-

Since B*(y) is the base of C*(y) for any y € Y, ¢ € C*(y)\{0}, there are
A >0, and ¢ € B*(y) such that ¢ = Ap. Soforany y € Y,

(6, Qo ()

(¢,e(y))  (Mp,e®)  (pe(m)

So we have

b)) (¢,2)
SUPgec+(y)\{0} (¢, e(y)) PIPSEB W T4 e(y)) (6 e(y)

i.e.
é(ya Z) = SUPgecp* (y)%

(6, 2)
oLEY) brely)) "

Proposition 1.54. For each r € IR and y,z € Y, the following statements
are true.

Since B*(y) is weak star compact, £(y, z) =

(i) &(y, 2) <17 <> z € re(y) — mtC(y).
(ii) £(y, 2) <7 <=z € Te(y) — C(y)-
(iii) &(y, 2) > r <= 2z ¢ re(y) — ntC(y).
(iv) £(y,2) > 7 <= z ¢ re(y) — C(y).
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(v) &y, 2) =1 <= z € re(y) — OC(y).

Proof. We only prove (i). The proofs for other assertions are similar and
omitted. Indeed,

max 92
€8 () (¢, e(y))
<= (¢,2) < r(d,e(y)),V¢ € B*(y)
> <¢7 Te(y) - Z> > O?V¢ € B*(y)
< (¢, re(y) —2z) >0,Vo € C*(y)\{0}
< re(y) — z € ntCy)
= z e re(y) —intC{y).

(y,z) <r <

Proposition 1.55. Let Y be a locally convex Hausdorff topological vector
space. Then, for any giveny €Y,

(i) &(y, -) is positively homogenous;

(ii) £(y, ) is strictly monotone, that is, if 21 >inic(y) 22, then

§(y,22) < &y, 21).
Proof. (i) Let u > 0. For z € Y, we have

I N
&(y, puz) = oeB(v) (6, e(y))

e #02)
~ HyeB ) (6, e(v))

= p &y, 2)-

(i) Let 21 >intc(y) 22- Set 1 = £(y, 21). By the definition of £(y, 21), we
have

zo € 21 —tC(y) C re(y) — Cly) —ntC(y) C re(y) — intC(y).

By Proposition 1.54 (i), we have

£y, z2) <1 =&y, 21). u

Proposition 1.56. For any fixed y € Y, and any 21,22 € Y,

(i) g(ya Z1 + 22) S §(y7 Zl) + f(yv ZQ);

(ii) g(ya 21 — 22) > E(y,z1) - £(y7 22)'
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Proof. (i)
_ Gntz)
S mtzm)= max =
<¢) Z1> <¢’ 22>

= ¢£B%(y) (9, e(y)) + ¢€rrz?%)({y) (b, e(y))
=&(y, 21) +€(y, 22).

(ii) It follows from (i) that

£y, 21) = E(y, 21 — 22+ 22) <E(Y, 21 — 22) +&(Y, 22)-

Then, &(y, z1) — £(y, 22) < £(y, 21 — z2). This implies that (ii) holds. [ |

Theorem 1.57. Let Y be a locally convex Hausdorff topological vector space,
and let C: Y 3Y be a set-valued function such that for each y € Y, C(y) is
a proper, closed, conver cone in'Y with intC(y) # . And lete:Y — Y be
a continuous selection of the set-valued function intC(-). Define a set-valued
function W:Y 2Y by W(y) = Y\intC(y), forye Y. We have

(i) If W is upper semi-continuous, then £(-,-) is upper semi-continuous on
Y xY;

(i) If C is upper semi-continuous, then £(-,-) is lower semi-continuous on
Y xY.

Proof. (i) In order to show that &(-, -) is upper semi-continuous, we must check,
for any A € R, the set

A={(y,2) €Y xY : £(y,2) > 1}

is closed. Let (ya,z2a) € A and (Ya,2a) — (Yo,20). We have {(Ya, 2a) > T,
that is to say, by Proposition 1.54 (iii), that

Zoy ¢ re(ya) - into(ya)'

Namely, re(ya) — 2o € Y\intC(ya) = W(ya). Since e(-) is continuous on
Y, (re(ya) — ZarYa) — (re{yo) — 20,¥0). Since W is upper semi-continuous
and closed-valued, by Proposition 1.21, W is closed. So re(yo) — 20 € W (yo)-
Namely, 20 ¢ re(yo) — intC(yo). By Proposition 1.54 (iii), it is equivalent to
&(yo,20) > 7. So, A is closed, i.e., £(,-) is upper semi-continuous on ¥ x Y,

(ii) In order to show &(-,-) is lower semi-continuous, we must check, for
any A € IR, the set

B:={(y,2) €Y xY : £(y,2) <1}

is closed. Let (Yo, 2a) € B and (Ya, 2a) — (Y0, 20). We have {(ya, 20) < 7, it
is to say, by Proposition 1.54 (ii),
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Za € 7€(Ya) = C(Ya)-

Since e(+) is continuous on Y, (re(ya) — 2, Ya) — (re(yo) — 20, Yo)- Since C(-)
is upper semi-continuous and closed-valued, by Proposition 1.21, C is closed.
So re(yo) — 20 € C(yo). Namely, zo € re(yo) — C(yo). By Proposition 1.54
(ii), it is equivalent to &(yo, z0) < 7. So, B is closed, i.e., (-, ) is lower semi-
continuous on Y x X. ||

Remark 1.58. (i) If Y is a paracompact space, and intC~1(z) = {y € Y :
z € intC(y)} is an open set and for each y € Y, intC(y) # @ and C(y)
is convex, by the Browder continuous selection theorem, intC(-) has a
continuous selection e(-).

(ii) If e € int Nyey C(y), we could let, for any y € Y, e(y) = e. The function
e is also continuous.

The following examples are to show that if C' (W, respectively) is not
upper semi-continuous, then £(-,-) is not lower semi-continuous (upper semi-
continuous, respectively) even if all the other conditions of Theorem 1.57 are
satisfied.

Ezample 1.59. Let Y = IR?, the 2-dimensional Euclidean space. Let

1 3
A= cone({(y1,42)T ER®:y1 +1o = 2,550 < 5}%
3
B =cone({(y1,12)" €ER*:y1+y2=2,0<y1 < 5}),
1
C = cone({(yl,yg)—r ceR?:y1+1p=2,-<y < 2}).

5 S
The set-valued map C : Y =3 Y is defined by

Av if v = 0;
C((ylayz)T) = Ba if Y1 > 0;
O, if < 0.

Thus,
Y\intA, ify; =0;
W((y1,v2)") = Y\intB, if y; > 0;
Y\intC, ify; <O.

Let e = (1,1)7 and for any y = (y1,42)" €Y, e(y) =e.

Note that for any y € Y, intC(y) # & and e € intC(y). We also note that
W (-} is upper semi-continuous, so &(-,-) is upper semi-continuous on ¥ x Y.
But C(-) is not upper semi-continuous. Note that the level set of the function
& at 0,
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= {((y1,92) ", (z1,2)") € R* x R? : £((y1,92) ", (21, 22) ") < 0}
= {(y1,52)T € R?*: g1 = 0} x (A)) U

{(y1,92)T € R*: 1 > 0} x (—B))

U{(y1,52) T € R? : 1 <0} x (=0)),

L(,0)

is not a closed set. That is to say, £(-, ) is not lower semi-continuous.

Ezample 1.60. Let Y = IR?, the 2-dimensional Euclidean space. Let

1 3
A=cone({(y1,y2)T €R® g1 + 42 =2, FSUS 5})7

B = cone({(y1,12)" € R® : g1 + 42 = 2,0 <y1 <2}),
The set-valued map C : Y 3Y is defined by

B, ify1=0;

Clyr, ) ") = {A if 1 £ 0,

Then,
Y\intB, ify; =0;

W((yl,yz)T) = {Y\intA, if g1 #£ 0.

Let e = (1,1)7 and for any y = (y1,92)" €Y, e(y) =e.

Note that for any y € Y, intC(y) # @ and e € intC(y). We also note that
C(-) is upper semi-continuous, so £(-,-) is lower semi-continuous on ¥ x Y.
But W(-) is not upper semi-continuous. Note that the strict level set of the
function £ at 0,

Ls(£,0) = {((v1, yz)Ta (21, ZQ)T) e R* xR?: §((yl,y2)T7 (21, ZQ)T) < 0}
= ({(y1,32)" € R?:y1 =0} x (—intB)) U
{(y1,52)" € R*: g1 # 0} x (—intA))

is not an open set. That is to say, (-, ) is not upper semi-continuous.

1.4 Convex and Generalized Convex Functions

In this section, we introduce some concepts of (generalized) convexity for
vector-valued and set-valued functions.

Let X,Y be two topological vector spaces, C C Y a convex cone with
nonempty interior intC.

Definition 1.61. (i) A set A C Y is said to be C-bounded below if there exists
b such that AC b+ C.
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(ii) A set A C Y is said to be C-bounded above if there exists b such that
AcCb-C.

(iii) A is said to be C order bounded if A is both C-bounded below and C-
bounded above.

(iv) A set A CY is said to be strongly C-bounded below if there exists b € —C
such that A C b+ intC.

(v) A set ACY is said to be C-convex if A+ C is a convex set.

Let K C X be a nonempty subset, and let f : K — Y be a vector-valued
function. We denote the C-epigraph of f by

epicf ={(z,y) e KxY:ze K,y € f(x)+ C}.

Definition 1.62. Let K C X be a conver set and f : K — Y be a vector-
valued function, K a nonempty convex subset of Y.

(1) f is C-convezr on K if, for any z1,72 € K, A € [0,1],
f()\:L‘l + (1 - )\)1‘2) <c /\f(.’131) + (1 - )\)f(xz),
i.e.,
FQzy + (1= N)z2) € AMf(z1) + (1 = A) f(z2) — C;
(ii) f is strictly C-convez on K if, for any 1,22 € K, 21 # 22, A € [0, 1],
FQz1 4+ (1= N)x2) Sinto Af(z1) + (1= N)f(z2),

i.e.,

FfOz1+ (1 = Nz2) € Af(z1) + (1 — N) f(z2) — intC;
(iii) f is C-quasiconvex on K if, fory €Y, z1,22 € K, A € [0,1],
F(@1), f(22) € y — C implies f(Az1 + (1 = Naa) € y — 5
(iv) f is strictly C-quasiconvez, if, fory € Y, z1,29 € K, x1 % 22, A € (0, 1),
f(z1), f(m2) € y — C implies f(Azx1 + (1 — N)z2) € y —intC.
Definition 1.62 is a generalization of the convexity and quasiconvexity of

real-valued functions, respectively.

f: K — Y is called a C-concave function on K if —f is C-convex on K.
Similarly, we can define the strict C-concavity and (strict) C-quasiconcavity
of vector-valued functions.

Proposition 1.63. Let K be a nonempty convex subset of X. Assume that f
is Gateauz differentiable on K. LetY be a Hausdor[f topological space ordered
by a closed and convex cone C. If f is C-convex on K, then, for everyz,y € K,

f(y) 2c f(:L') + (Df(x)7y - $>’
where Df(x) is the Gateaur derivative of f at x.
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Proof. Let f be Gdteaux differentiable on K. If f is C-convex on K, then for
any z,y € K, and t € (0,1),

fy+ (1 -t)z) etfly) + (1 - 1) f(z) -
fle+tly —=z)) € tf(y) + (1 =) f(z) - C,

ie.,
fe+ty=2) - 1@ , ,

1) € (@) + :

As t — 0+, we have

fy) 2¢ f(x) +(Df(x),y — ). u

Similarly, we have

Proposition 1.64. Let K be a nonempty convexr subset of X. Assume that f
is Gateauz differentiable on K. Let Y be a Hausdorff topological space ordered
by a closed and convex cone C. If f is C-concave on K, then, for every
z,y € K,

fy) <o f(z) +(Df(2),y — =)

Definition 1.65. Let C be a closed, conver and pointed cone in Y with the
nonempty interior intC, K be a closed and convex subset of X. Let z,y € K,
and t € (0,1). A set-valued function F : K 3Y is said to be:

(i) Type I C-convez iff, F(tx + (1 —t)y) CtF(z)+ (1 —-t)F(y) —

(ii) Type II C-convez iff, tF(z)+ (1 —t)F(y) C F(tz+ (1 —t)y) + C;
(iii) Type I C-concave iff, tF(x ) (1—-t)F(y) C Fltz+ (1 —¢t)y) —
(iv) Type II C-concave iff, F(tx + (1 —t)y) C tF(z)+ (1 — t)F(y) + C;

Remark 1.66. It is not difficult to see that
(i) F is type I C-convex iff, —F is type II C-concave;
(ii) F is type II C-convex iff, ~F is type I C-concave.

If F is a single-valued function, then both type I and type II convexity
(concavity, respectively) are equivalent to the usual C-convexity (usual C-
concavity, respectively).

Proposition 1.67 (Luc [142]). f is C-convez if and only if epic f is a con-
vex set. Moreover, assuming that'Y is separated and C is closed, f is C-convex
if and only if po f is a convex function for every ¢ € C*.

We denote the level set of f at a point y € Y by Levs(y), i.e

Levi(y) ={z € X : f(z) ey —C}.
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Proposition 1.68 (Luc [142]). The following statements hold:

(i) f is C-quasiconvex if and only if Levs(y) is convex for each y € Y;
(ii) f is C-quasiconvex if and only if €eq 0 f is quasiconvez for a fized e € intC
and every a € Y, where £eq(y) =min{t e R:y€a+te—C},y €Y.

Definition 1.69. Let C : X 3 Y be closed conver cone valued, K C X a
nonempty convex set and f: K — Y. f is said to be C(x)-convez if, for any
z1,x2 € K, X € [0,1], there holds

FOz1 4 (1= Nz2) <oar+(1-Nes) Af(@1) + (1= X) f(z2).
The C(z)-epigraph of f is defined by
epig)f ={(z,9) e K xY 1z € K,y € f(z) + C()}.

Definition 1.70. Let C : X =2 Y be convex cone valued. C is said to be a
convex process if,

(i) for any z1,z2 € X, C(z1) + C(z2) C C(z1 + 2);

(i) for any A >0, x € X, C(A\z) = AC(z).

Proposition 1.71. If the C(x)-epigraph of f is convez, then f is C{x)-
convex. On the other hand, if f is C(z)-convex and C : X Y is a convex
process, then the C(x)-epigraph of f is conver.

Proof. Assume that the C(z)-epigraph of f is convex. Let (z1, f(z1)) and
(z2, f(22)) € epig(y)f and 0 < A < 1. Then A(z1, f(z1))+ (1 —A)(22, f(z2)) €
ePic(e)fs 1€, (Az1 + (1 — A)z2, Af(21) + (1 — M) f(22)) € epig(y)f- Thus it
holds that

FQz1+ (1= N)z2) Soari+(1-Ma) Af(@1) + (1= A) f(z2).

So, f is C(z)-convex.
On the other hand, assume that f is C(x)-convex. Let (z1,11), (z2,¥2) €
epic(z)f. and 0 < XA <1. Then

y1 — f(x1) € C(z1) and y2 — f(z2) € C(z2).

Thus

Ay = f(@1)) + (1 = A)(y2 = f(=z2)) € AC(21) + (1 = A)C(w2).
Since C(x) is a convex process, we have

AC(z1) + (1 = X)C(z2) € C(Az1 + (1 = N)z2).
Thus
Arn+ (1= Nya — Af(z1) = (L= N f(z2) € C(Azy + (1 — Nza).

It follows from the C(z)-convexity of f that

A+ (1= Ny — fAzr + (1= Nze) € C(Azy + (1 — N)za).
So (Az1+ (1 = N2, Ay1 + (1 — A)y2) € epig(y)f- [ |
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Proposition 1.72. Let Y be a Banach space. Let K be a nonempty convex
subset of X. Let C : X 3Y be closed, cover cone valued and upper semicon-
tinuous. Assume that f is Gateauz differentiable on K. If f is C(x)-convex
on K, then, for every x,y € K,

fW) Zo@) f(z) + (Df(z),y — ).

Proof. By C(x)-convexity of f, we have
fty+ (1 =t)z)) € tf(y) + (1 - ) f(z) - Clty + (1 — t)z).

That is,
7)€ fa) + LEE=D IE 4 6y 4 (1 -ty
Let ¢t — 0, it follows from the closedness of C(z) and the u.s.c. of C that
f) € f(z) + (Df(z),y — z) + C(z). u

Definition 1.73. f : K — Y is called C-convezxlike on K if, for any z1,xs €
K and any X € (0,1), there exists t3 € K such that

Af(z1) + (L= A)f(z2) — f(z3) € Cs

[ is called C-subconvexlike on K if there exists a 8 € intC such that, for
any 1,22 € K, any € > 0, there exists x3 € K satisfying

€0+ M(z1) + (1 — N f(x2) — f(zs) € C.

Remark 1.74. It is not riecessary for K to be convex in Definition 1.73. Suppose
that K is a convex subset of a topological vector space. It is clear that C-
convexity implies C-convexlikeness, and, in turn, C-convexlikeness implies C-
subconvexlikeness. Moreover, for each point ¢ € Y, f(-)+c is C-subconvexlike
if and only if f is C-subconvexlike (see Jeyakumer [119]).

Definition 1.75 (Yang [201]). f : K — Y is said to be generalized C-
subconvezlike on K if there exists a 6 € intC such that, for any 1,22 € X
and any € > 0, there exist z3 € K and n > 0 satisfying

e + Af(z3) + (1 — A)f(zs) — nf(zs) € C.
Proposition 1.76. The following statements are equivalent:

(i) f is generalized C-subconvezlike on K;
(ii) cone(f(K)) + intC is convex;
(iii) for any 0 € intC, any 1,22 € K and any A € (0,1), there exist x3 € K
and n > 0 such that

0+ Af(z1)+ (1= AN f(zs) — nf(zs) € intC.
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Proof. First, we show that (i) = (ii). Let
A = cone(f(K)) +intC, y1,y2 € A, X€(0,1).
Then, there exist a; > 0, z; € K, and s; € intC, i = 1, 2, satisfying
yi = o f(zi) + s, 1=1,2.
Set

7=y + (1 =Ny = darf(z1) + (1 = Moz f(x2) + s0

where 59 = As;+(1—A)sz € intC'. Thus we can find a symmetric neighborhood
U of the null element of Y such that so+U C intC. If a; = 0 or gz = 0, then
obviously § € A. Without loss of generality, we can assume that o1 > 0 and
ag > 0. Set

a=2Aa1+ (1 —Naz, fB=(a1)/a.

Then § € (0,1) and

§=a(Bf(z1) + (1= B)f(22)) + so. (1.4)

By the definition of generalized C-subconvexlikeness, there exists 8 € intC
such that, for the above 8 € (0,1), z1,22 € K, and any € > 0, we can find
x3 = z3(0, x1,22,€) € K and 1 := n(8, z1, %2, €) > 0 satisfying

k=0 + Bf(x1) + (1 — B)f(z2) — nf(z3) € C. (1.5)

Since U is absorbing and symmetric, we can select an £ > 0 small enough
such that —eaf € U, so that

so —eaf € so +U CintC. (1.6)
By (1.4) - (1.6), we obtain

g = ak + anf(x3) + (so — eah)
€ C + cone(f(K)) + intC
C cone(f(K)) +ntC = A.

Therefore, A is convex.
Next, we show that (ii) = (iii). Let 6 € intC, z1,2z2 € K, A € (0,1).
Obviously,
flx:) + 0 € cone(f(K)) +intC, i=1,2.

Since cone(f(K)) + intC is convex, we have also
yi=0+Af(z1)+ (1 —-A)f(z2)

= Af(z1) +0) + (1 = A)(f(22) + 6)
€ cone(f(K)) + intC.
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This implies that there exist 3 € K and « > 0 such that
7 € af(zs) +intC.
If a # 0, then, take 7 = «, the proof for (ii) = (iii) is completed.
If @« = 0, then § € intC. Thus, there is a symmetric neighborhood V' of
the null element of Y such that
g+ V CintC.

Since V is absorbing and symmetric, for arbitrarily fixed z4 € K, we can find
an 7 > 0 small enough such that —nf(z5) € V. Hence

7 —nf(zs) € g+ V CintC.
So (i) = (ii).

Finally, we show that (iii) = (i). Suppose that the condition (iii) holds,
and 0 is a given point in intC. Let § = €. For any € > 0, § € intC, by the
condition (iii), for any z1,z2 € K, and A € (0,1), and any € > 0, there exist
z3 € K and n > 0 such that

0+ Af(z1)+ (1 =N f(ze) — nf(zs) € intC.

Thus, f is a generalized C-subconvexlike vector-valued function on K. |

Ezample 1.77. Let K = {(1,0)7,(0,1)T} ¢ R%,C = IR%, and let f = I :
K — TR? be the identity vector-valued function. Obviously,

cone(f(K)) +intC = intIR2,

which is a convex subset in IR?. By Proposition 1.76, f is a generalized C-
subconvexlike vector-valued function on K. But

) . 2
F(K) +intC = K + intIRY}
is not convex. f is not C-subconvexlike on K.

Proposition 1.78. f is C'-subconvezlike on K if and only if the set f(K) +
ntC is conver.

Proof. The proof of this proposition is similar to that of Proposition 1.76 and
thus omitted. |

When Y = RY, Proposition 1.78 can be found in Li and Wang [138§].
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Theorem 1.79 (Gordan-Form Alternative Theorem). Let K C X
be a nonempty subset, and let C be a closed, convex and pointed cone with
nonempty interior intC. If f is generalized C-subconvezlike on K, then ex-
actly one of the following statements is true:

(i) there exists T € K such that f(Z) <intc 0;
(ii) there exists u € C*\{0} such that (u, f(z)) >0, for any z € K.

Proof. Obviously, (i) and (ii) cannot hold simultaneously. Otherwise, a con-
tradiction is introduced. In fact, we have 0 > (u, f(Z)) > 0.
Suppose that (i) is not true. Then,

0 ¢ cone(f(K)) + intC.

In fact, assume that
0 € cone(f(K)) + intC.

There exist Z € K and a > 0 such that 0 € af(Z) + intC and o > 0, since
0 ¢ intC. Thus
—f(z) € (1/a)intC C intC,

i.e., f(Z) <intc 0. This is a contradiction.

By Proposition 1.76, cone(f(K)) + intC is a convex set with a nonempty
interior. By the separation theorem for convex sets, there exists p € Y*\{0}
such that

(wyaf(x)+s) >0, Ya>0,z€K,s e intC.

Setting a = 0, we obtain
(u,8) >0, Vz€intC.

Thus,
(u,8) >0, VseC,

i.e., p € C*\{0}. Also, setting @ = 1, we obtain
(u, f(x)+s) >0, VzeK,seintC.
Letting s — 0, we have
(w, f(z)) 20, VzeK,
so that (ii) holds. The proof is thus completed. |
Now, we define the generalized convexity of set-valued functions.

Definition 1.80. Let Xy be a nonempty convexr subset of X and F : Xg =Y
o set-valued function.
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(i) F 1is said to be properly quasi C-convex on Xo if, for any x1,z2 € Xo and
A e o,1],

either F(x1) C F(Az1+ (1 — AN)z2) + C,
or F(z2) C F(Az1+ (1 — A)zg) + C.

(ii) F is said to be naturally quasi C-convex on Xy if, for any x1,22 € X and
A elo,1],

F(Azy+ (1 = MNz2) Cco(F(z1) U F(z2)) — C,
where co(A) denotes the convex hull of A.

Similarly, we can define the proper quasi C-concavity and natural quasi
C-concavity.

Remark 1.81. Definition 1.80 is a generalization of the concepts of proper
quasi C-convexity and natural quasi C-convexity for vector-valued functions
in Ferro [71] and Tanaka [188]. Note that if Y = IR and C = R, then
both proper quasi C-convexity and natural quasi C' convexity reduce to the
ordinary quasiconvexity for real-valued functions.

Proposition 1.82. Let F' : Xo = Y be a set-valued function and Xy a
nonempty convex subset. If F is naturally quasi C-convez, then, for given
e€ntC and a €Y, €, 0 F is naturally quasi IRy -convex. If F is properly
quasi C-convex, then, for given e € intC and a €Y, €4 0 F is properly quasi
IR -convex.

Proof. We prove only the first conclusion of the proposition. Take any x1, g €
Xo, A€ [0,1] and y € F(A\z1 + (1 — A)z2). By the natural quasi C-convexity
of F, there exist y; € F(z1) UF(z2) and o; > 0,4 = 1,2,---,kand c € C
such that Y°F | oy =1 and y = Y5 a4y; — c. Therefore

€ea(y) = fea(z o3Y; — C).
=1

Since &, is a convex and monotone function, we have

k
fea(y) S Zaigea(yi) — ]R+
i=1

C co{bea © F(z1) U&eq 0 Fz2)} — Ry
Thus, &g o F' is naturally quasi IR.;-convex. |

Definition 1.83. Let X be a convexr subset of a topological vector space and
Y be a Hausdorff topological vector space. Let F : X x X %Y be a set-valued
function. Let C : X =Y be a set-valued function. Given any finite subset
A= {z1,22, -, x5} in X and any = € co{x1, 22, -, Tk},
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(i) F is said to be strongly type I C-diagonally quasi-convex (SIC-DQC, in
short) in the second argument if, for some z; € A,

F(z,z;) C C(x);

(ii) F is said to be strongly type II C-diagonally quasi-convex (SIIC-DQC, in
short) in the second argument if, for some z; € A,

F(z,z;) NC(x) # 2

(iii) F is said to be weakly type I C-diagonally quasi-convex (WIC-DQC, in
short) in the second argument if, for some z; € A,

F(z,z;) N —intC(x) = &

(iv) F is said to be weakly type II C-diagonally quasi-convexr (WIIC-DQC, in
short) in the second argument if, for some z; € A,

F(z, ;) ¢ —intC(x).

Remark 1.84. WhenY =R, C({z) =R, foranyz € X,and F: XxX — Yis
a single-valued function, the above four kinds of C-diagonal quasi-convexities
reduce to r-diagonal quasi-convexity for a single-valued function in Zhou and
Chen [224].

It is easy to verify the following proposition.

Proposition 1.85. If, for each x € X, C(z) is a pointed, closed and convex
cone in Y, then the following statements hold:

(i) SIC-DQC implies SIIC-DQC;
(ii) SIC-DQC implies WIC-DQC;
(iii) WIC-DQC implies WIIC-DQC.

1.5 Notations
The following notations will be used in the later chapters.
Spaces

IR: the real line

IR™: real m-dimensional space

IR'": the nonnegative orthant of R™
(X, D): ordered decision space

(Y, C): ordered objective space

(Z, P): ordered constraint space



1.5 Notations 33
(X, d): metric space
Vectors

xT: the transpose of a vector

2"y or zy: the standard inner product of vectors z and y

|lz||: the norm of x

T >0 Y TZo\{0} Y T ZintC Y T 20 Y, T Fintc Y- the orderings induced
by C

Functions

¢ : X — IR: a scalar function

f:+ X —Y: avector valued function with domain X and range Y
fogor f(g): composition of functions f and ¢

v f or Df: derivative of f

71 the inverse of f

F: X 3Y: a set-valued function

DF: contingent derivative of a set-valued function F’

D F: contingent epideriative of a set-valued function F’

DyF': generalized contingent epideriative of a set-valued function F
d(x, D): distance function from vector = to set D

haus(A, B) Hausdorff distance between sets A and B

ea, e, & nonlinear scalarization functions

Sets

€, ¢: element membership

C, C, ¢: set inclusion

(: empty set

U, N, x: union, intersection, Cartesian product

A\B: the difference of sets A and B

A¢: the complement of set A

intC': the interior of a set C'

OC' the boundary of a set C

clC: the closure of a set C

B,: the closed ball centered at 0 with radius r in a normed space

B(z,r): the closed ball centered at z with radius r in a normed space

Y*: the dual space of space Y

L(X,Y): the set of all the continuous linear operators from topological
vector space X to topological vector space Y

C* or C*: the dual cone of C

Ming A: the set of minimal points of A

MaxcA: the set of maximal points of A

Min;,:c A: the set of weakly minimal points of A
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Max;ntcA: the set of weakly maximal points of A

Ming(y)A: the set of minimal points of A with respect to the variable
domination structure C(y)

Maxc(y)A: the set of maximal points of A with respect to the variable
domination structure C(y)

Minnsc(y)A: the set of weakly minimal points of A with respect to the
variable domination structure C(y)

Max;nic(y)A: the set of weakly maximal points of A with respect to the
variable domination structure C(y)

LMing(,)A: the set of nondominated-like minimal points of A with respect
to the variable domination structure C(y)

LMaxc(y) A: the set of nondominated-like maximal points of A with respect
to the variable domination structure C(y)

LMin;nsc(y)A: the set of weakly nondominated-like minimal points of A
with respect to the variable domination structure C(y)

LMax;nic(y)A: the set of weakly nondominated-like maximal points of A
with respect to the variable domination structure C(y)

LMingnsc(z)f(S): the set of weakly nondominated-like minimal points of
f over § with respect to the variable domination structure C(z)

LMaX;n¢c(2)f(S): the set of weakly nondominated-like maximal points of
f over S with respect to the variable domination structure C(z)

epic f: the epigraph of function f

Levs(y): the level set of function f

co(A): the convex hull of set A

cone(A): the cone generated by set A

T(K, z) the contingent tangent cone of K at = € clK

ASup A: the absolute supremum of set A with respect to C

Alnfs A: the absolute infimum of set A with respect to C

Sup A the set of suprema of set A with respect to C

Info A: the set of infima of set A with respect to C

U{x): a neighborhood of point z

Dom(F'): the domain of function F

Gr(F): the graph of function F

Range(F'): the range of function F

D¥*: weak C-dual cone of cone D

Dgt: strong C-dual cone of cone D

PM (K, C): the set of Benson’s proper minimal points

argmin(X, J): the set of weakly minimal solutions of the vector optimiza-
tion problem (X, J)

0¥ f : the set of weak subgradients of the vector-valued function f

Problems

Let X, (Y,C), (Z,P)bespaces, KC X, f: X =Y, F: X3Y.
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(VOP): Ming f(z), where B={z € X : g(z) <p 0,z € K}
z€B
(VOPV): Ming(q) f(z), where B = {z € X : g(x) <p 0,z € K} and

z€B
X3Y
(VUP): Ming f(z)
z€X

VOK): Ming f(z)

(
(VOKV): Mlnc(z) f(z), where C: X 3Y
€K
(VUP,): Minu, £(z)
(VMP): Mirégc f(z), where Q@ = {z € X : g(z) <p 0}
s
(VPL): Mir;{c L{z,T), where L(z,T) = f(z) + T(g(z)) and T € L(Z,Y)
z€
VDL): Max¢c TeLJEJ(Z,Y) &(T), where &(T) = PM(L(X,T),C)
SOK): Mir}l{c F(x)
zE

SOKV): Ming(q) F(x), where C : X 3 Y
z€EK
PVOP): constrained paramteric vector optimization problem

(

(

(

(

(WVVI): weak vector variational inequality problem

(VVI): vector variational inequality problem

(GVVI): generalized (general) vector variational inequality problem
(GWYVVI): generalized weak vector variational inequality problem
(SWVVI): set-valued weak vector variational inequality problem
(GPVVI): generalized vector pre-variational inequality problem
(GPQVVI): generalized vector pre-quasi-variational inequality problem
(VEQ,): vector equilibrium problem

(GVQVI): generalized vector quasivariational inequality problem
(GVQVI),,: perturbed GVQVI problem induced by parameter w
(DGVVI): dual general vector variational inequality

(VCP): (weak) vector complementarity problem

(PVCP): positive vector complementarity problem

(SVCP): strong vector complementarity problem

(WMEP): weak (vector) minimal element problem

(VUMP): vector unilateral minimization problem
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Vector Optimization Problems

The concept of nondominated solution with variable domination structure
was introduced by Yu [221]. This is a generalization of the minimal solution
in multicriteria decision making problems. Various theories of nondominated
solutions with variable domination structure were established in Yu [221],
Tanino and Sawaragi [190].

It is worth noting that the solution concept with variable orderings in Yu
[221] is given in the sense that a candidate point is guaranteed to be optimal
only if it is not dominated by any other reference point with respect to their
corresponding ordering. As such not much progress has been made in this
direction. In Chen [25], another kind of nondominated solutions with variable
domination structure was given with respect to the ordering of the candidate
point in the context of vector variational inequalities. The related concept of
nondominated solutions with variable domination structure in the context of
vector optimization was given in Section 1.1.

In this chapter we consider three kinds of vector optimization problems,
i.e., the problem with a fixed domination structure, the problem with a vari-
able domination structure and the problem with a set-valued function. We
investigate optimality conditions, characterizations and topological proper-
ties of solutions for these problems. In particular, we investigate weak duality,
strong duality and exact penalization of vector optimization problems in terms
of augmented Lagrangian and nonlinear Lagrangian.

2.1 Vector Optimization (VO)

In this section, we investigate firstly the case where the domination structure
is a convex set but it is not necessarily a convex cone. The need for such
an extension comes from the fact that there exists a large class of problems
where, if we insist that the domination structure be a convex cone, then it
must be {0}. In this case each feasible solution will be nondominated, and our
analysis will become useless.
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Suppose that Y is a Banach space and C' C Y is nonempty and convex
with 0 € 8C and intC # 0.
Let S C Y. For any c € C\{0}, we set

S(e)={y+pfc:B20,ye S}

Clearly, if S is convex, then S{c) is a convex set and, for any set S C Y,
S C S(c). We have the following proposition.

Proposition 2.1. Let S C Y be a convex set, C a nonempty open convex set
satisfying 0 € 8C. Then, for any point ¢ € C, we have

MincS = MincS(c).

Proof. It is obvious that ¢ # 0 since 0 € 9C, C is open and ¢ € C. Let
y* € MingS. Suppose that y* ¢ MincS(c). Then, there exist yo € S and
Bo > 0 such that

yo + Boc —y* € —C. (2.1)

Since y* € MingS, we see that
(S—y")Nn-C=49. (2.2)

By the standard separation theorem for convex sets, we obtain ¢ € Y*\{0}
and r € IR such that
ply—-y")<r, Vyes (2.3)

and
p(dy>r, Ve -C. (2.4)

Taking y = y* in (2.3), we have
r>0. (2.5)
Setting y = yo in (2.3), we obtain
e(yo —y*) < (2.6)
The combination of (2.1) and (2.4) yields
oo — y*) + Poplc) 2 7
Again, using (2.4), we have
e(yo —y") Z 7+ Pop(—c) 2 r + Bor- (2.7)
(2.7) together with (2.3) gives us

Bor < 0. (2.8)
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From (2.1) and (2.2), we deduce that
Bo > 0. (2.9)
It follows from (2.8) and (2.9) that
r<0. (2.10)
By (2.5) and (2.10), we have r = 0. Thus, (2.3) and (2.4) become
ply—y") <0, Vyes (2.11)

and
() >0, vde-—C. (2.12)

Now, we prove from (2.12) that
o(c) >0, VY e-C. (2.13)

Suppose to the contrary that there exists a ¢/ € —C such that ¢(c¢’) = 0. As
@ # 0, there exists § € Y such that ¢(g) > 0. From ¢’ € —C, we see that there
exists a real number o > 0 such that ¢’ —aj € —C. By (2.12), we should have

0 < p(c' —ap)
= (") — ap(7)
= —ap(y) <0,

a contradiction. So (2.13) holds. Using (2.1) and (2.13), we have

(Yo —y") >0,

contradicting (2.11). This proves that MincS C MincS(c). In what follows,
we show that MincS O MincS(c). Let y* € MingS(c). Then,

(S(c) -y )N—-C=4. (2.14)
Since S C S(c), it follows that
(S—y )n-C=40. (2.15)

Assume that y* = y1+S1cwithy; € Sand 8; > 0.If3; =0,theny* =y; € S.
This together with (2.15) implies that y* € MincS. Suppose that 8; > 0.
By (2.14) and the separation theorem for convex sets, we have ¢; € Y*\{0},
r1 € IR such that

1(y —y1 = Pic) <71, Yy € S(o). (2.16)

and
p1(c’)y > r, V'"e-C. (2.17)
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From (2.16), we have

1 Z 0.
Now we show that r; = 0. Otherwise, by 0 € C, we can choose a sequence
{ck} € —C such that ¢ — 0. Thus, from (2.17), we have

= i >
0 kl{gloo p1(ck) =211 >0,

a contradiction. Arguing as in the first half of the proof, we can further show
by contradiction that
e1(c’) >0, V"e-C. (2.18)

On the other hand, setting y = y; in (2.16), we obtain

wl(—ﬂlc) S Oa
contradicting (2.18) since —f1¢ € —C'. The proof is complete. |

Lemma 2.2. Let C be a nonempty, open and convex set of Y with 0 € 9C
and y € intT(C,0). Then

{ay:0<a<1}nC # 2.

Proof. If the conclusion is not true, then {ay : 0 < a < 1} NC = @. Set
L = {ay:0 < a < 1}. By the separation theorem for convex sets, there exist
a continuous linear function ¢ € Y*\{0}, and r € IR such that

Y(y) =7, ifyed,

Y(y) <r, ifyelL.

Showing as in the proof of the second part of Proposition 2.1, we can prove
that 7 = 0. Thus,
Y(y) 20, ifyeC,

Y(y) <0, ifye L.

Since y € ntT(C,0), there exist an open ball N(y) C intT(C,0) and yo €
N(y), such that (yo) < 9(y). Hence, there exist a sequence {yx} C C,yx — 0
and a sequence of nonnegative real numbers {ay} with the limit +o00, such that
Yo = limg 00 cui(yx) and ¥(yo) = Hmg_0 ¢(akyk). Since P(yx) > 0, for all k,
we have ¥(yo) > 0. On the other hand, it follows from y € L and ¥(y) < 0
that 1¥(yo) < ¥(y) < 0. This leads to a contradiction. Thus LNC #@. N

Theorem 2.3. Let S be a convex subset of Y, C a nonempty, open and convex
set of Y with 0 € OC. Then

MingS = Mi”intT(C,O)S
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Proof. Let yo € Minn¢r(c,0)S. Then (yo —intT(C,0)U {0})NS = {yo}. Since
yo — CU{0} C yo —intT(C,0) U {0} and yo € 5, it follows that

(yo —CU{0}) NS = {yo}.

That is, yo € MingS. Hence Min;n,7(c,0)S C MingS.

On the other hand, let yo € MingS. Without loss of generality, we can
suppose that yo = 0. Thus, we suppose that (—C U {0}) N S = {0}. We will
prove that (—intT(C,0) U {0}) N S = {0}. Suppose that y; € (—intT'(C,0)U
{0})N S and y1 # 0. Then y; € —intT(C,0)N S. Set

L={y:y=ay,0<a <1}

By Lemma 2.2, we have LN (—=C) # &. Let ¥ € LN (—C). Then y' # 0.
Since y1 € S and S is a convex set, L = (0,31] C S and (0,%'] € S. Thus
y' € (—C)N S. This contradicts that (—C' U {0}) NS = {0}. Thus we obtain

(—intT(C,0) U {0}) N S = {0}. m

Suppose that X, Y, and Z are Banach spaces over IR, f maps from X into
Y and g maps from X into Z. Let C' C Y be a nonempty convex subset with
0€ 90C, P C Z a closed and convex cone and K C X a convex set.

We consider the vector constrained optimization problem:

(VOP) Ming f(z),
z€eB

where B={zx € X :g(z) <p 0, z € K}.

Remark 2.4. U T € L(X, Z), 2y € Z, then the problem
Minc{f(z): T(z) = 20},

with affine constraints, may be obtained from the problem (VOP) for K = X,
P = {0} and g(z) = T'(x) — 20, Yz € X.

Theorem 2.5. Let C be a convex subset of Y with 0 € 8C and intC # 2.
For the vector optimization problem (VOP), the following results hold:

(i) Suppose that there exists a continuous linear functional @ € Y*, satisfying
©o(c) > 0, for all c € C\{0}, such that & € B is an optimal solution of the
following optimization problem P{y):

min o(f(z)).

tEB

Then T is a nondominated minimal solution of the problem (VOP).
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(ii) Let f(B) be a convex set of Y and T a nondominated minimal solution
of the problem (VOP). Then there exists a continuous linear functional
© € Y* satisfying p(c) > 0 for all ¢ € intC, such that T is an optimal
solution of the problem P(p).

Proof. (i) If Z is not a nondominated minimal solution of (VOP), then there
exist ¢ € C\{0} and z € B such that f(Z) — f(z) = c. Thus, we have

e(f(@)) = p(f(z)) + #(c).

Since ¢(c) > 0 for all ¢ € C\{0}, ¢(f(Z)) > ¢(f(x)). This contradicts the
fact that Z is an optimal solution of P(¢y).
(ii) Let Z be a nondominated minimal solution of (VOP). We have

(f(@) —cu{o})nf(B) ={f(Z)}.
Since 0 € 8C, we have
(f(z) —intC)N f(B) = @.

By the separation theorem for convex sets, there exist ¢ € Y*\{0} andr ¢ R
such that

pv) <rif ve f(Z) —intC,
o(u) > rif ue f(B).
Thus,
¢(f(Z) —c) < #(f(z)), Ve B,ceintC.

As 0 € 9C and intC # ), we can choose a sequence {cx} C intC such that
cx, — 0 as kK — 0o. Consequently,

¢(f(Z) —cx) < #(f(x)), Vz € B,k.

Passing to the limit as £ — oo, we obtain

¢(f(z)) < ¢(f(z)), VzeB.

That is, Z is an optimal solution of P(¢).
Furthermore, since f(Z) € f(B), for every ¢ € intC and v = f(Z) — ¢, we
have
r 2 o(f(@) —c) = o(f(Z)) — e(c) 2 7 — p(c).
Thus {c) > 0, for all ¢ € intC. Arguing as in the second part of the proof
of Proposition 2.1, we can show that ¢(c) > 0 for all ¢ € intC. The proof is
complete. |

In what follows, we need the standard Lagrange multiplier theorem for a
scalar optimization problem with operatorial convex constraints, which can
be found in Barbu and Procparu [9].
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Assume that P C Z is a closed and convex cone with nonempty interior
intP. Let h : X — IR be a convex function and g : X — Z be P-convex and
K C X be convex. Consider the scalar convex programming problem:

(CP) min h(z)
s.t. x € K,
g(z) <p 0.

Theorem 2.6. Consider the scalar convex programming problem (CP). Sup-
pose that the Slater constraint qualification holds: there exists xo € K such
that g(zo) € —intP. Then z* € K is an optimal solution of (CP) if and only
if there exists ut € PT such that

h(z™) +u'(g9(z") < h(z) + u'(g(z)), VreK.

We establish now characterizations of a solution for the problem (VOP)
in terms of Lagrange multipliers . Suppose that P C Z is a closed and con-
vex cone with the nonempty interior intP, and K C X is a convex set. Let
g: X — Z be P-convex.

Theorem 2.7. Let f(B) be a convexr subset of Y. Assume that there exists
a point xo € B such that g(xo) € —intP. Let T be a nondominated minimal
solution of (VOP). Then there exist ¢ € Y™ satisfying p(c) > 0 for all c €
ntC and a continuous linear vector-valued function M : Z — Y such that
M(P) c intT(C,0)U{0}, Mog(Z)=0 and

o(f(Z) + Mog(®)) < o(f(x)+ Mog(z)), VzekK.

Proof. Suppose that Z is a nondominated minimal solution of (VOP). By
Theorem 2.5(ii), there exists ¢ € Y™ satisfying ¢(c) > 0 for all ¢ € intC, such
that

¢(f(Z)) = minp(f(z)).

z€B
Theorem 2.6 guarantees that there exists ut € Pt with u™(g(Z)) = 0 and

p(f(Z)) < o(f(2)) +u'(9(z)), Yz € K.

Choose ¢ € intC. Let the vector-valued function M : Z — Y, be defined by
M(z) = ut(z)¢c/p(€). Since ut(z) > 0 for all z € P and ¢(¢) > 0, M(P) C
intT(C,0)U{0}, Mog(Z) = 0 and M is a continuous linear vector-valued func-
tion. Since u*(g(Z)) = 0 and o(M o g(z)) = p(u (9(x))e/¢(2)) = u' (9(x)),
we have

o(f(Z)+Mog(Z)) <p(f(x)+ Mog(x)), VrelkK. [
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Corollary 2.8. Let C C Y be a nonempty open and convex set with 0 € 0C.
Let the conditions of Theorem 2.7 hold. Then there exists a continuous lin-
ear vector-valued function M : Z — 'Y, such that M(P) C intT(C,0) U {0},
Mog(Z) =0 and T is a nondominated minimal solution of the unconstrained
vector optimization problem:

Ming(f(z) + M o g(z)).
z€K

Proof. By Theorem 2.7 and in view of C = intC, there exists a continuous
linear vector-valued function M : Z — Y, such that M (P) C intT(C,0)U{0},
M o ¢g(Z) = 0 and

P(f(Z) + Mog(z)) < p(f(x) + Mog(z)), VaeK,

where ¢ € Y* satisfying ¢(c) > 0 for all ¢ € C. By Theorem 2.5(i), Z is a
nondominated minimal solution of the following unconstrained problem:

l\;ﬁer;{o(f(w) + M o g(z)). u

We establish now the Kuhn-Tucker condition for the problem (VOP). As-
sume that f : X —» Y, g : X — Z are Fréchet differentiable vector-valued
functions and ¢ is P-convex.

Definition 2.9. The generalized constraint qualification condition is said to
hold ot Z, if there exists a closed and conver cone G C X such that GNK C
T(B,Z), where

K={he X:¢(z)(h)e P(-P,g(z))} (2.19)
and P(—P, g(Z)) is the closed and convezr hull of T(—P, g(Z)).

Let
H = {u*(g'(z)) : v" € P*(=P,g(2))}. (2.20)

We have the following relation between K and H.

Proposition 2.10. Let K and H be defined by (2.19) and (2.20), respectively.
Then clH = K*.

Proof. First we prove that clH C K*. Clearly, we need only to show that
HcC K*. Let ut € P*(—P,g(z)) and u*(¢'(Z)) € H. Then, u*(v) > 0,Vv €
P(—P, ¢(Z)). Now suppose that h € K. Then, ¢'(Z)(h) € P(-P,g(z)). It
follows that u* (¢’ (z)(h)) > 0, or, (ut(¢’(Z))(h) > 0. That is, u™ (¢'(Z)) € K.
Now we prove that K+ C clH. Let h; € K*. Then

hi(h) > 0, for any h satisfying ¢'(z)(h) € P(—P, g()). (2.21)
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Suppose that hy ¢ clH. Since clH is a closed and convex cone, there exists
hy € Z* such that
hg(’vl) >0, YnvueH (2.22)

and
ha(h1) < 0. (2.23)

By (2.22), we have
ut(g'(Z)(h2)) 20, Yu® € P*(~P,g(2)).

Thus,
- 1+ -
d'(z)(ha) € [P*(=P,g(7))] " = P(~P,g(2)).
By (2.21), we have ha(h1) > 0, contradicting (2.23). So hy € clH. [

Definition 2.11. Assume that the generalized constraint qualification condi-
tion holds at . H(G) is said to hold if

(i) K* + GT is closed,
(ii) H is closed.

Proposition 2.12. Let C be a convex subset of Y with 0 € 0C, S be a subset
of Y and yo € S a nondominated minimal point of S. Then

T(S,yo) N (—intC) = @.

Proof. Suppose that y € T(S,yo) N (—intC). Since 0 ¢ intC, y # 0. There
exist a sequence {y*} C S with limit yo and a sequence of nonnegative real
numbers {ay}, such that limy_,., ax(¥* —y0) = y. Since y is an interior point
of —C, there exist an open ball N(y) C —intC and a positive integer number
k, such that if k > k we have ax(y® — yo) € N(y). Choose ko > k, such that
ak, > 1 and y*o # yo (since y # 0 and o — +00, such a kg can be chosen.)
Thus there exists cg € intC such that ok, (¥ —yo) = —co, Yo —y*° = co/ k-
Since 0 € 9C and C is a convex set, we have

(0,c0l ={c=0aco: 0 < <1} CintC.

Thus co/ok, € intC. This contradicts the fact that yo is a nondominated
minimal point of S. n

The following lemma is an elementary property of tangent cones (see Bor-
wein [19}).

Lemma 2.13. Let f : X — Y be a Fréchet differentiable vector-valued func-
tion and B C X. Let & € B. Then

f(@)(T(B,7)) C T(f(B), (z)).
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Proof. Let v € T(B,%). We show that f'(Z)(u) € T(f(B), f(Z)). Indeed,
there exists {ax} C B and {tx} C R4 \{0} with tx — 0 such that

(ax — Z)/tk — wu. Note that limy—yoo(f(ar) — F(Z))/tx € T(f(B), f(Z))-
Consequently, limg—+o0(f(ax) — f(Z))/tx = f(Z)(u) € T(f(B), f()). The
proof is complete. ]

Theorem 2.14. Let C C Y be a conver set with 0 € OC and a nonempty
interior intC. Let T be a minimal solution of the problem (VOP). Assume
that f(B) is a convex set and g satisfies the generalized constraint qualification
condition and H(G) holds. Then there exist ¢ € Y™* satisfying o(c) > 0 for
c € intC and vt € PT(P, g()), such that

po fi(z)—utog(z)eGT.
Proof. Set S = f(B) and yo = f(Z). By Proposition 2.12, we have
T(f(B), f(2)) N (=intC) =

Since f(B) is a convex set, T{f(B), f(Z)) is a convex cone. By the separation
theorem for convex sets, there exists a continuous linear functional ¢ € Y™,
such that

p(v) <€if ve —intC,
p(u) 2 £if ueT(f(B),f(Z)).

Since 0 € T(f(B), f(Z)), £ £ 0. If there exists a point ¢y € intC, such
that ¢(—co) = r < 0, it follows from 0 € 9C that Acp € intC for all X :
0 < XA < 1. Choosing 0 < A1 < min(§/r, 1), we have p(—A1co) = A1p(—co) >
(&/m)p(—co) = €. Since —A1co € —intC, it is a contradiction. Hence, we have
& > 0. Thus, it is necessary that £ = 0. So, p(c) > 0,Vc € intC. Further
argument as in the second part of the proof of Proposition 2.1 confirms that
p(c) > 0 for all ¢ € intC. By Lemma 2.13,

f(@)T(B, %)) C T(£(B), f(z))-
Since the generalized constraint qualification condition GNK C T(B, Z) holds
at Z, we have

f'@)(G N K) C T(£(B), f(z))-
Hence we have p(u) > 0 if u € f/(Z)(G N K), that is

wo f'(Z)(h) >0, Yhe GNK.
Since the hypothesis H(G) holds, we have

pof(x)e (KNG)T = Kt +GT.

Observing that
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Kt =H={utog(z):ut € PT(-P,g(x))},

we obtain
po f(z) —utog'(z) € G,
where ¢ € C7 satisfying ¢(c) > 0 for all ¢ € intC and ut € PH{(—P,¢(z)). B

Proposition 2.15. A local weakly minimal solution of a C-convex wvector-
valued function f over a convex set K C X with respect to a convex cone C
is a global one.

Proof. Let z* be a local weakly minimal solution of f(z) over K. Thus, for
some neighborhood V of z*,

flx) = f(z*) ¢ —intC, Yz e VNK. (2.24)

Suppose, if possible, that z* is not a global weakly minimal solution. Then,
there is some y € K for which

fly) = f(z*) € —intC.
ForO0<a<l,z*+ a(ly—a*) € K, since K is convex. Since f is C-convex,

f& +taly—2") - f(z¥) € -C+af(y) + (1 -a)f(z") - f(z7)
=—C+a(f(y) — f(="))
€ —C —intC
C —intC,

which contradicts (2.24), since z* + a{y — z*) € V N K for sufficiently small
positive a. |

2.2 VO with a Variable Domination Structure

Let Y be a real normed space, and let C': Y 3 Y be a set-valued function such
that, for each y € Y, the set C(y) is a nonempty convex set with 0 € C(y).
Assume that intC(y) # 0,Vy € Y, and NyesC(y) \ {0} #0,S C Y.

Now we establish results corresponding to those in Section 2.1.

Suppose that S C Y. For any ¢ € yQS C(y)\{0}, let

S(c) ={y+Bc:8>0,ycS8}.

It is obvious that S C S(c) and, if S is convex, then S(c) is also convex.
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Proposition 2.16. Let S C Y be a convex set, C :' Y 3Y be a set-valued
function such that, for each y € S, C(y) is a nonempty open convex set with
0 € 8C(y). Then, for any point c € QS C(y), we have

y

LMingy)S = LMincy)S(c).

Proof. It is obvious that ¢ # 0 since, for any y € S, 0 € 8C(y), C(y) is open
and ¢ € C(y). Now we can follow the proof of Proposition 2.1 with MincS
replaced by LMinc(,)S, MincS(c) replaced by LMinc(,)S(c), C replaced
by C(y™). u

Theorem 2.17. Let S be a convexr subset of Y, C :' Y 3 Y be a set-valued
function such that, for each y € S, C(y) is a nonempty open conver set with
0€ 9C(y). Then,

LMinC(y)S = LMinintT(C(y),o)S-
Proof. The proof of Theorem 2.3 works if we replace C with C(yo). |

Now we assume that X,Y, and Z are Banach spaces, f maps from X into
Y and g maps from X into Z. Let C : X =2 Y be a set-valued function such
that, for each € X, C(z) is a nonempty and convex set with 0 € 9C(x),
P C Z a closed and convex cone and K C X a convex set.

We consider a constrained vector optimization problem with a variable
domination structure:

(VOPV) Min%(z)f(.’l/‘),
T€

where B={r € X : g(z) <p 0, z € K}, and C : X 3 Y is a set-valued
function.

Theorem 2.18. Let C' : X = Y be a set-valued function such that, for each
z € X, C(x) is a convexr subset of Y with 0 € C(z) and intC(z) # &. For
the vector optimization problem (VOPYV), the following results hold:

(i) Let T € B. Suppose that there exists a continuous linear functional ¢ €
Y™, satisfying p(c) > 0, for all c € C(Z)\{0}, such that T € B is an
optimal solution of the following optimization problem P(p):

min o(f(z))-

Then T is a nondominated-like minimal solution of the problem (VOPYV).

(ii) Let f(B) be a convex subset of Y and T a nondominated-like minimal
solution of the problem (VOPYV). Then there exists a continuous linear
functional ¢ € Y™ satisfying p(c) > 0 for all ¢ € intC(Z), such that T is
an optimal solution of the problem P{yp).
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Proof. The proof is the same as that of Theorem 2.5 except that C is replaced
by C(Z) and (VOP) is replaced by (VOPV). |

Let g be a vector-valued function from X into Z and g a P-convex vector-
valued function. Suppose that C': X 3 Y is a set-valued function such that,
for each x € X, C(z) is a convex subset of Y with 0 € 9C(z) and nonempty
interior intC(x), P C Z a closed and convex cone with nonempty interior
ntP, and K C X a convex set.

Theorem 2.19. Let f(B) be a convex subset of Y. Assume that there exists a
point o € B such that g(zo) € —intP. Let T be a nondominated-like minimal
solution of (VOPV). Then there exist ¢ € Y™* satisfying p(c) > 0 for all
¢ € ntC(%) and a continuous linear vector-valued function M : Z — Y such
that M (P) C intT(C(Z),0)U{0}, M og(Z)=0 and

o(f(Z) + Mog(T)) < ¢(f(z) + Mog(x)), VeekK.
Proof. The proof of Theorem 2.7 works with C replaced by C(Z). |

Corollary 2.20. Let C : X =3 Y be a set-valued function such that, for each
z € X, C(z) is a nonempty open and convex set with 0 € C(xz). Let the condi-
tions of Theorem 2.19 hold. Then there exists a continuous linear vector-valued
function M : Z — Y, such that M(P) C intT(C(Z),0)U{0}, Mog(z)=10
and T is a nondominated-like minimal solution of the unconstrained vector
optimization problem with variable domination structure:

Ming @) (f(z) + M o g(z)).
z€K

Proof. The proof is the same as that of Corollary 2.8 except that C is replaced
by C(Z). |

Theorem 2.21. Let C : X =3 Y be set-valued function such that, for each
z € X, C(z) is a convex set with 0 € 0C (z) and nonempty interior intC(x).
Let & be a nondominated-like minimal solution of the problem (VOPV). As-
sume that f(B) is a conver set and g satisfies the generalized constraint
qualification condition given in Definition 2.9 and H(QG) in Definition 2.11
holds. Then there exist ¢ € Y* satisfying o(c) > 0 for ¢ € intC(Z) and
ut € PY(—P, g(%)), such that

pof(Z)—uog'(z) e G
Proof. The proof of Theorem 2.14 works if C' is replaced by C(Z). |

The following result provides a characterization of a weakly nondominated-
like point in terms of the nonlinear scalar function £ given in (1.3).
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Theorem 2.22. Let Y be a normed space and A C'Y a nonempty subset. Let
C:Y 3Y be a set-valued function such that, for each y € Y, C(y) is a
proper, closed and convex cone inY. Let C = NyeyC(y) and e € intC. Let
y* € A. Then y* is a weakly nondominated-like minimal point of A if and
only if

Igg%&@ﬂw=&

Proof. Suppose that y* € A is a weakly nondominated-like minimal point of
A with respect to the variable domination structure C. By definition, we have

(A—-y") N (=intC(y")) = 2,
equivalently, for each a € A,
a—y* ¢ —intC(y").
By Proposition 1.54, the above inequality holds if and only if
Ly ,a—y") =20, VacA.

Observe that £.(y*,0) = 0. Obviously, the theorem holds. |

2.3 Characterizations of Solutions for VO

In this section, we deal with characterizations of the Benson’s proper minimal
solution for a vector optimization problem.

Let X be a nonempty subset of some Hausdorff topological space and
C CY and P C Z be closed and convex cones with intC # () and intP # 0.
Let (Y,C) and (Z, P) be two ordered locally convex Hausdorff topological
spaces.

Definition 2.23 (Benson [12]). Let K C Y be a nonempty subset. § is
called a Benson’s proper minimal point of K with respect to C, if

cleone(K + C - g) N (—-C) = {0}.
The set of all Benson’s proper minimal points is denoted by PM (K, C).
We consider an unconstrained vector optimization problem

(VUP) Ming f(z),
zeX

where f: X — Y is a vector-valued function.
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Definition 2.24. A point Z is called o Benson’s proper minimal solution of
(VUP), if f(Z) is a Benson’s proper minimal point of the set f(X).

Next, we establish characterizations of Benson’s proper minimal solutions,
such as, scalarization, Lagrangian multipliers, saddle-point criterion, duality
under a generalized cone-subconvexlikeness and the vector variational inequal-
ity, respectively.

(I) Scalarization Characterizations

Lemma 2.25 (Borwein [19]). Let C;,Co C Y be two closed and convez
cones such that C1 N Cy = {0}. If Cy is pointed and locally compact, then

(—-CH N () + 2.

Lemma 2.26. Let C C Y be a closed and convex cone with the nonempty
interior intC, and let T € X. Then

(1) cone(f(X) + intC — f(Z)) = cone(f(X) — f(T)) + intC;
(ii) clecone(f(X) + intC — f(Z)) = clecone(f(X) + C — f(Z)).

Proof. (i) This is obvious, since intC is a cone.
(ii) Tt is sufficient if the following relation holds:

cone(f(X) + C — f(Z)) C cleone(f(X) + intC — f(Z)).
Indeed, let
y € cone(f(X) +C — f(T)).
Then, there exist @ > 0,z € X and ¢ € C such that
y = a(f(z) +c— f(2)).

Since C is convex, there exists a sequence {cx} < ntC such that ¢ =
Hmg oo Ck. Set

yk = o(f(z) + ek — f(T)) € cone(f(X) + intC — f(Z)).

Then,
Jim ye = a(f(z) + ¢~ f(z)) = y.
-0
Hence,
y € cleone(f(X) + intC — f(%)).
The proof is complete. |

We consider a scalar minimization problem for the problem (VUP):
(VUP,) min(u, f(z)),

where p € Y*\{0}.
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Theorem 2.27. Let C C Y be a closed, conver and pointed cone with
nonempty interior intC, and let C be also locally compact. Let T € K, and let
the vector-valued function f(z) — f(Z) be generalized C-subconvexlike on X.
Then, T is a Benson’s proper minimal solution of (VUP) if and only if there
exists p € C** such that T is an optimal solution of (VUDP,).

Proof. Suppose that Z € X is a Benson’s proper minimal solution of (VUP).
By Definition 2.23, we have

cleone(f(X) +C — f(Z)) N (-C) = {0}.
By Lemma 2.26 (ii), we have also
cleone(f(X) + intC — f(z)) N (—C) = {0}.
By Lemma 2.26 (i) and Proposition 1.76,
cone(f(X) + intC — f(Z)) = cone(f(X) — f(T)) + intC

is a convex cone, since f{x)— f(Z) is generalized C-subconvexlike on X. Thus,
by Lemma 2.25, there exists ji € C™ such that

i € (clcone(f(X) +intC — f(Z))7.
Thus, we obtain
and so, T is an optimal solution of (VUP;). Conversely, suppose that there
exists i € C1* such that Z is an optimal solution of (VU P;), i.e., (2.25) holds.

For any u € cone(f(X) + C — f(Z)), there exist & > 0,z € X and c€ C
such that

v = a(f(z) +c— f(z)).
From (2.25), we have
(B, u) = alp, f(z) — f(Z)) + afp, c) > 0. (2.26)
For arbitrarily fixed y € clcone(f(X) + C — f(Z)), there exists a sequence
{ux} such that

uk € cone(f(X)+C - f(7), y= klim Uk
By (2.26), we have
</~_‘L7uk> 205 VkEN
Letting £ — 0o, we obtain

Now, assume that £ € X is not a Benson’s proper minimal solution of (VUP).
By Definition 2.23, there exists y € —C\{0} such that

Y € cleone(f(X) + C — f(z)).

Since ji € C1%, we have (fi,y’) < 0, which contradicts (2.27). The proof is
complete. |
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(ITI) Lagrangian Multiplier Characterizations

We consider the following vector constrained optimization problem:

(VMP) Ming f(x),
z€Q
where @ = {z € X : g(z) <p 0}, g is a vector valued function from X into Z,
and P C Z is a closed and convex cone with nonempty interior intP.
We say that (VMP) satisfies the generalized Slater constraint qualification
condition if there exists an ' € K such that g(z') <intp 0.

By L(Z,Y), we denote the set of all continuous linear vector-valued func-
tions from Z into Y. A subset L (Z,Y) of L(Z,Y) is defined as

L (2,Y):={TeL(ZY):T(P)CC}.

A vector-valued Lagrangian function for (VMP) is defined as a vector-
valued function L : X x Ly — Y,

Lz, T) = f(x) + T(g9(x)), (z,T)e X xLy(Z,Y).

We consider an unconstrained vector minimization problem induced by

(VMP):

(VPL) Ming L(z,T)
zeX

We need to introduce the concept of generalized cone-subconvexlikeness
for the ordered pair (f, g).

Let f: X — Y and g : X — Z be two vector-valued functions. Let
h(z) = (f(z),g9(x)), z € X. An ordered pair (f, g) is said to be generalized
C x P-subconvexlike on X if the vector-valued function h : X — Y X Z is
generalized C' x P-subconvexlike on X.

Lemma 2.28. Let (f, g) be generalized C X P-subconvexlike on X. Then

(i) for each p € CT\{0}, ((u, f),9) is generalized IR, x P-subconvezlike on

(ii) for each T € Ly(Z,Y), L(z,T) = f(z) + T(9(z)) is generalized C-
subconvexlike on X.

Proof. We prove only (ii), because the proof of (i) is similar to that of (ii).
By Proposition 1.76, for any (01, 6s) € int(C x P) = (intC) x (intP), any
z1, xg € X and any A € (0,1), there exist 3 € X and 1 > 0 such that

(01,02) + A(f(z1), 9(22)) + (1 = A)(f(w2), 9(x2)) — n(f(x3), 9(w3))
€ intC X intP,

which implies that
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01+ Mf(z1) + (1 — N) f(z2) — nf(zs) € intC, (2.28)
01+ Ag(z1) + (1 — Ng(z2) — ng(x3) € intP C P, (2.29)
From T € Ly (Z,Y) and (2.29), we obtain
T(61) + AT(g(z1)) + (1 — AT (g(z2)) —nT(g9(x3)) e T(P) C C.  (2.30)
Set 6 := 0y + T(62). Then 8 € intC + C C intC. Thus, by (2.28) and (2.30),

we have

0+ Mf(@1) + T(g(z1)) + (1 = N)(f(22) + T(9(x2)) — n(f(zs) + T(g(z3))
€ intC + C C intC.

Theorem 2.29. Let C C Y be a closed, conver and pointed cone with
nonempty interior ntC, and let C be locally compact. Let T € K, let
(f(z) - f(Z),9(x)) be generalized C x P-subconvezlike on K. Let (VMP)
satisfy the generalized Slater constraint qualification. Then T is a Benson’s
proper minimal solution of (VMP) if and only if there exists T € Ly(Z,Y)
with T(g(Z)) = 0 and T is a Benson’s proper minimal solution of (VPL).

Proof. Suppose that € K is a Benson’s proper minimal solution of (VMP).
By Theorem 2.27 (where X = K), there exists i € C** such that Z is an
optimal solution of (Py), i.e.,

(B, f(z) — f(2)) 20, VzekK. (2.31)
From (2.31), it is easy to verify that the following system is inconsistent:
(8, f(z) — f(z)), 9(x)) € —int(IRy x P), VzeX.

By Lemma 2.28 and & € C** C C*™\{0}, the ordered pair ({f, f(z) —
f(Z)),9(z)) is generalized IRy x P-subconvexlike on X. By Theorem 1.79,
there exists w* = (r,A) € (R4 x P)*\{(0,0)} such that

r(m, f(z) — f(Z)) + (A 9(2)) = (w*, (&, f(z) = f(Z)), 9(2)))
>0, VzeX. (2.32)

If r =0, then A # 0. In this case, (2.32) becomes
(A g(z)y >0, VzelX. (2.33)

By the generalized Slater constraint qualification, there exists '’ € K C X
such that g(z') <;ntp 0. Observing that g(z’) € —intP and A € P*T\{0}, so
obviously we have also (A, g(z’)) < 0. This is a contradiction. So r # 0. Since
r € IR, this implies that » > 0. Setting = Z in (2.33), we have (A, g(Z)) > 0.
We have also (X, g(Z)) <0, since Z € K, i.e. g(Z) <p 0. Therefore,
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(A 9(z)) = 0. (2.34)

Set o := i, we obtain o € C**. We can select a ¢ € C such that (o,c) = 1.
Define
T(z):=(\z)c, z€Z.

Obviously, T € L(Z,Y). Notice that A € P*, so that we have
(\,p)>0, VpeP.

Hence,
T(p)=(A\p)ceC, VpeP

ie., T € Li(Z,Y). By (2.34), we obtain

T(9(z)) = (A g(z))c = 0. (2.35)
Since r > 0, (2.32) can be rewritten as
(B, f(z) = £(@)) + (1/r){A g(2)) 20, VzeX. (2.36)

Notice that 1 = (o, ¢) = (rfi, ¢). Thus

— (3, T(g()). (2.37)
From (2.35) to (2.37), we obtain

(g, L(z, Ty — L(%,T)) >0, VzelX.
Thus, % is an optimal solution of the following scalar minimization problem:

;Iél)r{l(ﬂ, L{z,T)).

From (2.35), we have also
L(z,T) - L(z,T) = f(z) — f(Z) + T(9(2)).

Hence, by Lemma 2.28, L(z,T) — L(Z,T) is generalized C-subconvexlike on
X. Using Theorem 2.27, Z is a Benson’s proper minimal solution of (VPL).

Now, we suppose that there exists T € L1 (Z,Y) such that T(g(Z)) = 0
and Z € K is a Benson’s proper minimal solution of (VPL). Using Theorem
2.27 and Lemma 2.28, there exists i € C1? such that Z is an optimal solution
of the following scalar minimization problem:

min (4, L(z, T)).

Then, we have
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(B, f(Z) + T(9(2))) < (B, f(z) + T(9(x))), VrelX. (2-38)

Observe that g(z) <p 0,Vz € K. From T € L1(Z,Y), we have T'(g9(x)) € —C,
and so
(i, T(9(@)) <0, VoeK. (2.39)

By (2.35), (2.38) and (2.39), we obtain

(B, £(z)) = (1, f(Z) + T(9(2)))
<, f(@) + (B, T(g9(2)))
< (@, f(z)),

for all £ € X, which shows that there exists i € C** such that z € K is
an optimal solution of (Pg), where X = K. Hence, Z is a Benson’s proper
minimal solution of (VMP) by Theorem 2.27. The proof is complete. [ |

(IITI) Saddle-Point Characterizations

We will characterize the Benson’s proper minimal solution by using saddle
points of a real-valued Lagrangian function of (VMP). To this aim, we need
the following concepts.

The real-valued Lagrangian function L; : X x PT — IR for (VMP) is
defined as

La(@,A) = (B, f(z)) + (A g(=)), (z,A) € X x PF,

where i € Ctt.

Definition 2.80. (VMP) is said to satisfy the saddle-point criterion at € X
for some i € Ct, if there exists A\ € PT such that (Z,\) is a saddle point of
the Lagrangian function Lz(x,)), that is,

La(%,X) < La(z,A) < La(z,A), V(z,A) € X x PT. (2.40)

Theorem 2.31. Let C C Y be a closed, convex and pointed cone with
nonempty interior intC, and let C be locally compact. Let T € K and
(f(x)—f(z),g9(x)) be generalized C x P-subconverlike on X. Let (VMP) satisfy
the generalized Slater constraint qualification. Then, T is a Benson’s proper
minimal solution of (VMP) if and only if there exists i € C* such that
(VMP) satisfies the saddle-point criterion at T for fi.

Proof. First, suppose that Z € X is a Benson proper minimal solution of
(VMP). By Theorem 2.29, there exists T' € Ly(Z,Y’) such that T(g(Z)) =0
and Z is a Benson’s proper minimal solution of (VPL). From the proof of
Theorem 2.29, we know that L(z,T) — L(Z, T) is generalized C-subconvexlike
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on X. Therefore, by Theorem 2.27, there exists i € C*¢ such that Z is an
optimal solution of the following scalar minimization problem:

min (A, L(z, T)).

Thus, we have

(B, f(Z) + T(9(2))) < (B, f(z) + T(g(x))), VzeX. (2.41)
Set X := fioT. Then A € C*%. Hence, by the above inequality, we have
La(2, ) = (B, f(Z)) + (A, 9(2))
= (B, f(z) + T(9(2)))
< (@, f(z) + T(9(2)))
= (i, f(2)) + (X, 9(=))
=La(z, ), VexelX. (2.42)

Since & € K, (X, g(Z)) < 0,VA € P*. Furthermore,

(A, 9(2)) = (8, T(9(z))) =0,
since T'(g(Z)) = 0. Then

Lu(Z, A) = (B, f(Z)) + (A, 9(Z))
< (B, f(z)) + (X 9(2))
= La(%,N), Vre Pt
From (2.41) and (2.42), (VMP) satisfies the saddle-point criterion at Z for f.
Next, suppose that there exists i € C* such that (VMP) satisfies the
saddle-point criterion at Z for fi. From Definition 2.30, there exists A € CF

such that (Z,)) is a saddle point of the Lagrangian function L;(z, ). B
(2.17), for allz € K C X,

(B, () + (A, 9()) < (B, f(2)) + (N 9(2)), (2.43)
and, for all A € C*,

(A, 9(2)) < (A g())- (2.44)
Taking A = aX € Ct, a > 0, from (2.44), we get
(1-a)(g@) 20, Yax0,

which implies that (), g(Z)) = 0. Notice that (}\, g(z)) < 0, Vz € K. From
(2.43), we obtain

(B, f(@)) < (B, f(z)), VzEK.
Hence, Z is an optimal solution of the following scalar minimization problem:

min(z, f(z)).

By Theorem 2.27, where X := K, T is a Benson’s proper minimal solution of
(VMP). The proof is complete. [
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(IV) Duality Characterizations

Now, we characterize the Benson’s proper minimal solution by means of a dual
problem of (VMP). Let C be a closed, convex and pointed cone with intC # 0.

Set
L(X, Ty :={L(z,T): z € X}.

The set-valued function
Q(T) = PM(L(XaT)aC)a TEL"’(Z?Y)’

is called the proper dual function for (VMP).

The set-valued optimization problem
(VDL) Maxg Urer, (z,v) (T)

is called the dual problem of (VMP).
A point § € Urer, (z,y)®(T) is called a maximal point of (VDL) if
g Zovoy ¥ Y € Urer, zn®(T).
Theorem 2.32 (Weak Duality). Let x € K be any feasible solution of
(VMP), and let y € Upcr_ (z,v)P(T) be any feasible point of (VDL). Then
f(@) £c\joy v-

Proof. Assuming that the conclusion is not true, we have y — f(z) € C\{0}.
Since z € K, T(g(z)) € —C, VT € L (Z,Y). Hence, we obtain

y— Lz, T)=y— f(z) —T(9(x)) € C\{0} + C
c C\{0}, VzeK,Te L (ZY). (2.45)

On the other hand, from y € Uper, (z,v)®(T), there exists T € Ly(Z,Y)
such that B _
ye®(T)=PM(L(X,T),C).

Hence y € Ming(L(X,T)). By the definition of the minimal point, it follows
that
y— L(z,T) ¢ C\{0}, VzeX.

Consequently, we have
y— L(z,T) ¢ C\{0}, Vz€K,

which contradicts (2.45). [ |
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Lemma 2.33. Let C C Y be a closed, convex and pointed cone with the
nonempty interior intC, and let C' be also locally compact. Let T € K and
f(Z) € Urer,zv)®(T), and let (f(z) — f(Z),g(x)) be generalized C x P-
subconvezlike on X. Then Z is a Benson’s proper minimal solution of (VMP)
and f(Z) is a mazximal point of (VDL).

Proof. From
(@) € Urer, (zv®(T),
there exists T € L (Z,Y) such that

#(z) € 8(T) = PM(L(X, T),C).

This implies that there exists & € X such that f(Z) = L(2,T) and 2 is a
Benson’s proper minimal solution of (VPL), where T = T. Since (f(z) —
f(Z), g{x)) is generalized C x P subconvexlike on X, by Lemma 2.28 and

f(@) = L(&,7T),
L(z,T) — L(z,T) = f(z) — f() + T(g(z))

is generalized C-subconvexlike on X. By Theorem 2.27, there exists z € C +i
such that % is an optimal solution of the problem min,ex (%, L(z, T)). Hence,

we have
(i, £(z)) < (@, () + (1, T(g(x))), VYze€X.
Since z € K, T(g(x)) € —C, so {fi, T(g(z))) < 0. Therefore, we obtain

(@, f(Z)) < (g, f(x)), VzeK.

This shows that  is an optimal solution of (VU P;), where X = K. So, Z is
a Benson’s proper minimal solution of (VMP) by Theorem 2.27.
By Theorem 2.32, we know that

— f(&) ¢ C\{0}, Vy € Urer,z,yv)®(T).

Since
f(Z) € Urer,(z,v)?(T),
f(Z) is a maximal point of (VDL). |

Theorem 2.34 (Strong Duality). Let C C Y be a closed, convexr and
pointed cone with the nonempty interior intC, and let C be also locally com-
pact. Let T € K, let f(x) — f(Z) be generalized C-subconvezlike on K, and
let (f(z) — f(Z),9(z)) be generalized C x P-subconvezlike on X. Let (VMP)
satisfies the generalized Slater constraint qualification. Then T is a Benson’s
proper manimal solution of (VMP) if and only if f(Z) is a mazimal point of
(VDL).
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Proof. Suppose that z € K is a Benson’s proper minimal solution of (VMP).
By Theorem 2.29, there exists T € L4 (Z,Y) with T'(g(Z)) = 0 and Z satisfies

f(j) € PM(L(Xs T)a O) = Q(T) C UTEL-{-(Z,Y)@(T)'

By Lemma 2.33, f(Z) is a maximal point of (VDL). Conversely, suppose that
f(Z) is a maximal point of (VDL). Then f(Z) is a feasible point of (VDL),
ie.,

f(Z) € Urer, (z,v)®(T).
Using Lemma 2.33, it follows from Z € K that Z is a Benson’s proper minimal
solution of (VMP). [ ]

2.4 Continuity of Solutions for VO

Consider the constrained parametric vector optimization problem

(PVOP) Mingpe f(z), st g(z,t) <b(t), ze€fteT,
+

where 2 C IR? is a nonempty and convex subset, T is a nonempty subset
of a metric space, and f : IRP - R, g: IRP xT — R™, b: T — R™ are
continuous vector-valued functions, with g(-,t) convex, V¢t € T. If {2 and T are
fixed, then (PVOP) is specified by the three elements f, g, b. Thus, problem
(PVOP) can be denoted as problem ¢ = (g,b, f). Denote by C({2, ]Ré) the
space of continuous functions from 2 into ]Re, with the metric

p1(f1, f2) = sup || f1(z) — fa(2)],
€N

where | - || denotes a norm in IR. Define similarly the metric py for C(£2 x
T,IR™) and p3 for C(T,IR™). Then (PVOP) may be considered as an ele-
ment of the space Z = C(£2, R") x C(2 x T,IR™) x C(T,R™), with the metric
p = p1 + p2 + p3. Denote by Q) a subspace of Z corresponding to problems
(PVOP). Denote also Y = C(2 x T,R™) x C(T,R™).

Let
X(g,b)={x e 2:g(z,t) <b(¥),Vt €T}

be the feasible region for (PVOP) and = € X(g, b). If, for some neighborhood
V(o) of o,
flx)y = f(zo) €W, Vz € V(zo)N X(g,b),

where W = ]Re\(—z'nﬂRi), then xg is called a local weakly minimal solution
of (P). Denote by M{q) the set of all the local weakly minimal solutions of
(PVOP). If

f(z) = f(zo) € W, Vz € X(9,b),

then zo is called a {(global) weakly minimal solution of (PVOP). Denote by
Mgy(q) the set of all the weakly minimal solutions of (PVOP).
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Lemma 2.35. Let (go, bo) € Y, and let T be compact. Assume that the Slater
condition holds, i.e., there exists s € §2 such that

go(s,t) <bo(t), VteT. (2.46)

Then, the set-valued function X is Ls.c. at (go,bo). If, in addition, 2 is com-
pact, then X is also u.s.c. at (go,bo).

Proof. . Let G be open, and let G N X(go, bo) # @. Now, X(g0,bo) = 2N A4,
where
A={z e RP: go(z,t) <bo(t), VteT}.

From the Slater condition, {2 NintA # &. Furthermore, by the convexity of
go(-,t)Vt, the Slater condition and go and by are continuous, as well as the
compactness of T', we have

intA={z e R": go(z,t) < bo(t), VteT}.

Let 2’ € G N X(go,bg). Then there is a sequence {z;} C 2 NintA with
{#;} — 2'; and, for some j, z; € G. Since G is open, GN 2 NintA # @.

Let zp € G N2 NintA. Suppose, if possible, that there does not exist
€ > 0 such that the ball B(zg,e) C X{gk,bx) for all sufficiently large k.

Then, for each € = k € N, there exists zj for which = ¢ X(gk, br) and

k )
[|ze — zol| < l, so {zx} — ®o. Since zx ¢ X(gx, bx), there is a subsequence
{z;} of {zx}, an integer ¢ € {1,2,---,m}, and a sequence {t;} C T, such that
the component i of g;(z;,t;) —b;(t;) is positive for each j. Since T is compact,
a suitable subsequence {t;} — ¢ € T. Let j — oo; the component ¢ of
go(@o, to) — bo(tg) = 0, contradicting go(xo, ) < bo(tg). Hence, for some € > 0,
and all sufficiently large k, B(zo,€) C X (g, bx); hence G N X{gk, bx) # @.
Thus, X is Ls.c. at (go, bo).
Now, let {2 be compact; let (g, bk} — (go,bo) € Y; let

zr € X(g9k,bx), {zx} — ", Vk € N.

Thus, uniform convergence and continuity on the compact set {2 give z* €
X (g0, bo); hence, X is u.s.c. at (go, bo)- |

Theorem 2.36. Let g0 = (go, bo, fo) € Q, and let T and 2 be compact. Then
M is u.s.c. at qg.

Proof. If M is not u.s.c. at qo, then there is an open set G D M(qo) and a
sequence {gx} C @ such that, for each k, M(gx) is not contained in G. Thus,
for each k, there is z € M(gx)\G. Since {2 is compact, {xr} may be replaced
by a convergent subsequence, say {xr} — zg, with o € X(go,bo) by the
continuity of go and bg. Since M is not u.s.c. at qo, Zo ¢ M(qo). Thus, from
the definition of local weakly minimal solutions, there exist V(zp) C G and
20 € X(go,bo) NV (z0) such that
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fo(zo) — fo(zo) € intRE,

where V(zg) denotes some neighborhood of zo. By Lemma 2.35, X is lower
semicontinuous at (go, bo), so there exists a sequence {zx} — 2, with 2z, €
X(gk, bk), Vk. Since {zx} — zo and {zx} — 20,

fk(xk) — f(zk) € intIRi,
for all sufficiently large &, contradicting zx € M (qx). [ ]

Lemma 2.37. Let (gk,bk) — (go, bo),’ let Ck = X(gk, bk) and C(J = X(go, bo)
be convez sets; let Cy contain two points a,b with 2d := ||a — b|| > 0, let the
set-valued function X be l.s.c. at (go,bo). If 0 <w < d, then

Co={z€Co:||lz—all =w}# 2
Ci,={zeCy:llz—a||=w}#a.

Proof. If 0 < w < d, then b ¢ B(a,w). Since Cy is convex, the line segment
[a,b] € Cp and [a,b] intersects C{. So, Cj # @. Since X is Ls.c. at (go, bo)
and (gi, bx) — (go, bo), there exist ug, vy € Ci, with {ux} — a and {vg} — b.
Now d(ug, vg) > w provided that

- §—
lluk — al| < T“’ v — b]| < T“’ with & = ||a — b|| > w,
for k sufficiently large. Also, we have [uy, vx] C Ck, since C is convex. Hence,
C, # 2. [ |

Theorem 2.38. Let 2 C IRP be compact and convez; let go = (go, bo, fo) € Q
be a convex problem. For each zo € M(qo), assume that the Slater constraint
qualification (2.46) holds, and assume that the following coercivity condition
holds, i.e., there are a vector & = 6(zg) € IR® and a positively increasing
function T, with 7(0) = 0, depending on § and xq, such that

§fo(x) — 6fo(zo) 2 47(|lz — zol])-

Then the set-valued function M is l.s.c. at qo, in the domain of convex prob-
lems (PVOP).

Proof. Let
{ax} = {(gx, b, fir)} — g0 = (90, bo, fo),

with each g a convex (PVOP) problem. Let x:9 € M(go) and § = §(xp). Let
N(o) = {z € R” : p(z, X(go, bo)) < a},

where ¢+, ) is the metric function in IR? from a point to the set. By Lemma
2.35, X is w.s.c. at (go, bo). Hence, X (g, bx) C N{(a) for all sufficiently large
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k. With d, Cg, C, in Lemma 2.37, noting that the feasible sets are convex,
and with 0 < w < min{d, a}, Lemma 2.37 shows that C{j # &, C}. # &. Since
{gx} — qo uniformly, we deduce that |6 fi(z') —dfo(z")| < 7 = 7(w), for all 2’
with ||z’ — zg|| = w and all sufficiently large k. For such z’,

0 fire(zo) < 6fo(xo) + 7, by the uniform convergence,
<éfo(z') — 4T+, by the coercivity condition,
<Ofu(@)+7—47+T, by the uniform convergence.

Thus,

éfk(:c’) > 0 fi(zo) + 27.

Since X is l.s.c. at (go, bo) by Lemma 2.35, there exists a sequence {zx} — o,
with zx € X(gk, br) for each k. Hence,

Sfe(z’) > b fu(zk) + 27 — T,

for all sufficiently large &, by the uniform convergence. Consequently, z’ is not
a minimal solution of & fi(x) over z feasible for gx with ||z — zo|| € w. Now,
such a minimal solution exists, say at z = 2, since the intersection of the
feasible set of ¢ and the set {z : ||z — zo|| < w} is compact; therefore,

z € {z € R" : ||z — zo]| < w}.

Hence, z; is a local weakly minimal solution of é fi(x) over the feasible set of
qr; it is global, since g is convex.

Suppose, if possible, that zx is not a weakly minimal solution of gx. Then,
for some feasible x,

Fi(@) — frelzk) € —intIRE.
But 0#£6 € lRfr, so that

5fk($) — Jfk(zk) < 0,

contradicting the minimality of 2. Thus, z; is a weakly minimal solution of
gx- Choose a sequence {w;} — 0+ . For each wj, for sufficiently large k, say
all £ > kj, qx has a weakly minimal solution satisfying |[zx — z¢|| < w;. Thus
M isls.c. |

2.5 Set-Valued VO with a Fixed Domination Structure

Optimizations with set-valued objective functions are closely related to prob-
lems in stochastic programming, fuzzy programming, optimal control and the
duality of vector optimization problems. If the values of a given function vary
in a specified region, this fact could be described using a membership func-
tion in theory of fuzzy sets or using information on distributions of the func-
tion values. In this general setting, probability distributions or membership
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functions are not needed because only sets are considered. Optimal control
problems with differential inclusions belong to this class of set-valued opti-
mization problems as well. Set-valued optimization seems to have the poten-
tial to become a bridge between different areas in optimization. And it is a
substantial extension of standard optimization theory. Set-valued analysis is
the most important tool for such an advancement in continuous optimization.
And conversely, the development of set-valued analysis receives important
impulses from set-valued optimization. In this section, we consider set-valued
optimization problems with fixed domination structures.

Let X and Y be normed spaces, and let Y be ordered by a convex cone
C CY.Let K be a nonempty subset of X, and let F': X =2 Y be a set-valued
function. The epigraph of F' is defined by

epicF = {(z,y) € (X,Y) :y € F(z)+ C}.

Let F: K 3'Y be a set-valued function. Let a pair (Z, §) with Z € K and
7 € F(Z) be given.

Definition 2.39 (Jahn and Rauh [118]). A function D.F(Z,5) : X = Y,
whose epigraph equals the contingent cone to the epigraph of F at (Z,7), i.e.,

epiCDeF(ivg) = T(epiCFa (ja g))
is called the contingent epiderivative of F' at (%, 7).

It is worth noting that the contingent epiderivative exists only for some
specially ordered spaces.

Definition 2.40. Let Z € X, € Y and G(zx) = {y € Y : (z,y) €
T(epicF,(Z,7))}. A set-valued function DyF(Z,3) : K — {Z} =3 Y is called
the generalized contingent epiderivative of F at (Z,7), if, for any x € K —{Z},

MincG(x), if G(x) # @,

Dy,F(z,9)(z) = {Q if G(z) = @.

Note that, for some z € K—{%}, theset {y € Y : (z,y) € T(epicF, (Z,7))}
may be empty. In this case, we have D, F(Z,7)(z) = @.

The following lemma is needed.

Lemma 2.41. [142] Let C C Y be a closed and conver cone. Assume that C
is Daniell. Let A C'Y be nonempty, closed and minorized. Then MingA is
nonempty.

Theorem 2.42. Let C be a pointed, closed and conver cone, and let C
be Daniell. Let, for every x € K, the set G(z) = {y € Y : (z,y) €
T(epicF, (Z,5))} be minorized. Then, for all x € K, DyF(Z,3)(z) exists.
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Proof. Since the contingent cone is always closed in a normed space, for every
z € K, G(z) is minorized and closed. By Lemma 2.41, MincG(z) is nonempty,
i.e., DgF(Z,7) is well-defined. [ |

Theorem 2.43. Let C be a closed, pointed and convex cone in Y, and let
K = X. Let, for all x € X, DyF(z,y)(xz) # @. Then DyF(Z,y) is strictly
positive homogeneous. Moreover, if F is C-conver and the set

G(z) ={y €Y : (z,y) € T(epiF, (z,7))}
fulfills the domination property for all x € X, then DyF(Z,7) is subadditive.

Proof. We take any o > 0 and & € X. Then we obtain

éDgF(ff, Paz) = Minc{%y €Y : (az,y) € T(epicF, (Z,7))}
=Minc{u €Y : (az,au) € T(epicF, (z,7))}
=Minc{u €Y : (z,u) € T(epicF, (z,7))}
= D F(Z,7)(z).

Thus
DyF(z,y)(ax) = aDgF (z,y)(z).

Next, for z1,22 € X, y1 € DgF(Z,7)(x1), y2 € DgF(Z,7)(x2), we have
(x1,91) € T{epicF,(z,7)) and (x2,y2) € T(epicF, (Z,7)). Since F is C-
convex, epioF is convex and T'(epi F, (Z,7)) is a convex cone, we have

(z1+ @2, 41 +y2) € T(epicF, (Z,9)),
implying
DyF(Z,9)(x1) + Dy(Z, §)(w2) C G(z1 + 72).
By the domination property, we have
G(z1+ x2) C MingG(z1 + 22) + C = Dg(F(Z, §)(z1 + z2) + C.
Thus
DyF(z,9)(m1) + DyF(%,3)(@2) C DyF(5,9)(@1 +22) +C W

Lemma 2.44. [118] Let F : X =3 Y be a set-valued function. Let (Z,7) €
Gr(F). If the contingent epiderivative D F(Z, ) exists, then it is unique.

Now we consider the relation between the generalized contingent epideriva-
tive and the contingent epiderivative, and we give an existence theorem of the
contingent epiderivative in a complete vector lattice.
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Theorem 2.45. Let (Y,C) be an ordered complete vector lattice. Then, for
any T € K and §j € F(Z), the contingent epiderivative D F(Z, ) exists and

D .F(z,9)(z) = Info {y €Y : (z,y) € T(epicF,(z,7))}, YVzxelX.
Proof. We define
f(z) =Infc{y €Y : (z,y) € T(epiF, (Z,9))}, VzxeX.

Since (Y,C) is an ordered complete vector lattice, f(x) is well defined for
every z € X and f(z) is single-valued. Now we prove that f = D.F(Z,y). By
the order completeness of Y, we have

fl@)+C > G(z), VrelX.

For (z,y) € T(epicF, (Z,7)), we have y € G(z) C f(z) + C. Thus (z,y) €
epif. Hence
T(epicF, (2,7)) C epigf.

Conversely, for any z € X, it follows from the vector completeness that
(.’I?, f(w)) - T(epiCFv (‘%ay))
Thus

epicf C T(epicF, (Z,7)) + {0} x C

=epicDF(%,7) + {0} x C

= epic D F(Z, §)

= T(epicF, (2, 9))-

Hence we have
epicf = T(epicF, (Z,7)).

Consequently, f equals the epiderivative D, F(Z, ) which, by Lemma 2.44, is
unique. |

Theorem 2.46. Let X, Y be real normed spaces, let K = X, let C C X be a
pointed and convex cone and F : K 3Y q set-valued function. Let z € X and
g € F(Z) be given. If the contmgent epzdemvatwe D.F(Z, ) exists and the set
Gz)={yeY :(z,y) € T(epicF, (Z,5))} fulfills the domznatzon property for
allz € X, then
epic D F(Z,§) = epic DgF(Z, §).

Proof. By the definition of Dy F', we have

epicDgF(Z,9) C T(epicF, (Z,7)) + {0} x C
= epicDF(Z,5) + {0} x C
= epig D F(Z, 7).
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Thus,
epicDyF(Z,7) C epigDF(Z, 7).

Conversely, we suppose that
(z,§) € epicDF(%,7) and (x,7) ¢ epiDyF(Z,7),

i.e.,

or
g ¢ Minc{y e Y : (z,y) € T(epicF, (Z,7))} + C.

Since (z, ) € epigDF(Z, ), i.e., (z,9) € T(epicF, (Z, 7)), we have
Ge{yeY : (z,y) € T(epicF, (Z,9))}
By the domination property of G(z),
g € Minc{y €Y : (z,y) € T(epicF, (Z,5))} + C = DyF (z,7)(z) + C.
This is a contradiction. Hence,
epigDeF(Z,§) = epic Dy F(Z, 7). [
We consider a set-valued optimization problem:

(SOK) Ming F (),
z€EK

where F': X 3Y is a set-valued function and K C X.

Definition 2.47. Let the ordering cone C have the nonempty interior intC.

A pair (Z,5) withT € K and § € F(Z) is called a (weakly) minimal pair of

the problem (SOK) if § is a (weakly) minimal point of the set of F(K), where
F(K) = UwEKF(w)'

We can obtain a unified necessary and sufficient optimality condition for
a weakly minimal solution of (SOK).

Theorem 2.48. Let C' have nonempty interior intC, and let (Z,7) € Gr(F)
be a (weakly) minimal pair of (SOK). Then

D,F(z,y)(x—z)C W, VexekK,

where W = Y\ (—intC).
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Proof. We prove by contradiction. Suppose that there exists an € K such
that
DyF(@,7)( —3) £ W.

Then, there is a 2 € DgF(Z,y)(x — %) with z € —intC. By the definition of
DyF(Z,7), we have
(x — 7, 2) € T(epicF, (Z,7))-

Then there are sequences {(zk,yx)}ren in epicF and {Ax}ren of positive
real numbers with (Z,7) = klim (zk, yx) and
—00

(x—Z,2) = kli_)rglo Me(Tk — T, Yk — §)-
Thus there exists an M € N with
e € {7} —intC, Vk> M.
Since (z, yx) € epicF, there is a §x € F(zg) with yx € {yx} + C. Thus
¥k € {yx} — C C{y} —intC — C = {g} —intC, VYn> M.
Hence (Z,7) is not a weakly minimal pair of (SOK). |

We need the following lemma for deriving a sufficient optimality condition.

Lemma 2.49. Let K be o nonempty convex subset of X. Let C be a closed,
convez and pointed cone being Danielll, let F' be C-convez, and let, for every
z € K and y € F(x), G(z — Z) be minorized. Moreover, let the set G(x — %)
fulfill the domination property, for all x € K, where

G(z)={y €Y :(z,y) € T(epicF, (Z,7))}
Then, for every T € K and § € F(Z),
F(z) —{y} C DgF(z,5)(z —Z)+ C, VreK.

Proof. Take arbitrary elements x € K and y € F(z). We define a sequence
{(zk, yx) teen with

Il
Kl

(t—%), VkeN,

(

Since K is convex and F is C-convex, it follows that, for all k € N,

Th + —(x —
k +-(y—7), VkeN.

Il
<

Y

ol e T

1. 1
xk—(l—E)m+E3:€K,

and
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1 1 1 1
=1--)j+-yeF{(l1-=-)x+ —
=010+ eF(1-2)3+ ¢

Hence, the elements of the sequence (zk,yk)ken belong to epioF and this
sequence converges to (Z, 7). Moreover, we obtain

z)+C = F(xx)+ C.

lim k(zx — Z,ye — 9) = (x — Z,y — J).

k—o0
Consequently, we get (z — Z,y — §) € T(epiF, (T, 7)), i-e.,
y—y€Gz-2)={yeY: (z-7,y) €T(epicF (%,9))}
By the definition of Dy(Z,7) and the domination property, we have
G(z — %) C DgF(z,9)(z —Z) + C.

Thus
F(z) — {3} C DyF(Z,5)(zx — %)+ C. [ |

Theorem 2.50. Let the assumptions in Lemma 2.49 hold, and let C have
nonempty interior intC. If, for z € K and § € F(Z),

@#DGF(Z,y)(x—x)CW, VzxelkK,
where W = Y\(—intC), then (Z,7) is a weakly minimal pair of (SOK).
Proof. By the assumptions, we have
DyF(z,5)(x —Z) N (—intC) = @, Vrec K.

Thus,
(DgF(z, )z —Z)+C)N (—intC) =@, VreK.

By Lemma 2.49, we have
(F(z)—{g}h)Nn(—intC)=@2, VzekK.
Thus, it means that 7 is a weakly minimal point of F(K). |

Subgradients for vector-valued functions were extensively considered (see
Thibault [194], Zowe [227] and the references therein). In Yang [206], the
existence of a weak subgradient for a convex relation (i.e., a set-valued function
with a convex graph) was considered. In the sequel, we consider the existence
of a weak subgradient for a general set-valued function without the restriction
of the convex relation. We obtain a sufficient optimality condition for set-
valued optimization problems in terms of weak subgradients of set-valued
functions.
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Definition 2.51. Let intC #0, K C X, f: X =»Y and z € K. A continu-
ous linear vector-valued function A : X — Y is called a weak subgradient of f
at T if
f@) - f(@) —Alz —Z) e W, Vzek,
where W = Y\ (—intC).
We denote by 02 f(Z) the set of all weak subgradients of f.
Definition 2.52. Let K C X, f: X = Y and z € K. A continuous linear
vector-valued function A: X —'Y is called a strong subgradient of f at T if
flx) = f(Z) - Alz—Z)e C, VzxekK.

Definition 2.53. Let C' have a nonempty interior intC, let F : K =% Y be
a set-valued function and T € K. A continuous linear vector-valued function
A: X =Y is called a weak subgradient of F' at T if

Flz)-F&) —Alz—-%) CW, Vzelk,
where W = Y\ (—intC).
Lemma 2.54. Let K and C' have nonempty interiors intK and intC, respec-
tively, let K be a conver subset of X. Let F : K 3Y be C-convex on K, let

F be upper semicontinuous at T € intK, and let —F(Z) be minorized. Then
epiF is a convex subset of X XY and int(epio F) # @.

Proof. It is easy to verify that epic F is convex. We prove that int(epic F') # @.
Since —F'(x) is minorized, there is a § € Y with F(%) C {§} — intC. Since
Z € intK and F is upper semicontinuous at Z, there is a neighborhood U of
the zero in X so that {Z} + U C K and

F(z +U) C {7} — intC.

For an arbitrarily chosen § € § + intC, there is an open neighborhood V' of
the zero in Y with
{g} +V c {5} + intC.

Thus, we conclude
{7} +V -F{z} +U) C {g} + intC — ({g} — intC)
C intC + intC
cC.

Hence, we get
({z} +U.{g} + V) € epiF,
i.e., int(epiF) # @. [ |

It follows from the proof of the preceding lemma that intM # &, where
M={(z,y) e XxY:zeK, ye F(z)+ intC}.
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Theorem 2.55. Let C have nonempty interior intC, K be a convex subset
of X with nonempty interior intK, T € intK be given. Let F : K 3'Y be
C'-convez, upper semicontinuous at T and F(Z) — C be convex. Let F(Z) and
—F(Z) be minorized, and let the set equation

F(Z) N (F(Z) — intC) = @

be fulfilled. Then there exists a weak subgradient A of F' at T € intK satisfying,
for every x € K, the property

Alx — ) ¢ —intC & Az — %) € C,
holds.

Proof. We define the set D = C'—{z} and the set-valued function H : K 3 Y
with
H(z)=F(z+Z)— F(%), VxeK.
Then 0 € D, D is convex, H is upper semicontinuous at 0, and H(0) is
minorized. In order to see that H is C-convex, take arbitrary z1,2z2 € K and
A €(0,1). Then
AH(z1) + (1 — Azo) H (z2)

=AF(zo+Z)+ (1 - N F(z2+Z)— AF(Z) — (1 - \)F(Z)

CFMz1+ Q=N +3)+C—F#)+C

CHMx1+ (1 =Nz2)+C.

Next we set
B={(x,y)e X xY:xz € D,y € H(z) + intC}.

By Lemma 2.54, we obtain intB # @. Now we show that (0,0) ¢ B.
Suppose that (0,0) € B. Then there is a y € H(0) so that 0 € y+intC, which
implies H(0) N (—intC) # @, i.e.,

(F(z)—-F@)n(—intC) # &

which contradicts the assumption condition. By the separation theorem for
convex sets, there is a nonzero (—p, o) € X* x Y* such that

—p(z)+o(y) >0, V(z,y) € B.

If 0 = 0, then —p(z) > 0, Yz € D. Because of 0 € intD, we obtain p = 0,
contradicting (—p, o) # (0,0). Hence we get o # 0. Moreover, observing that
o € C*, there is a § € intC with () = 1. We now define a vector-valued
function A: X — Y by

Alz) = p(z)y, VzeX.
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Obviously, A is linear and continuous. Next, we assert, for this function A,
that
y— A(z) ¢ —intC, Vz € D,y € H(x).

Suppose that there exist an x € D and a y € H(z) with
y — A(z) € —intC.
Since o € C*\{0}, we then get
0> oy — Alz)) = a(z) — p(z)o(y) = o(y) — p(z).
This is a contradiction. Hence,
y— A(z) ¢ —intC, Vzxe D,y e H(z),
i.e., A is a weak subgradient of F' at Z. Finally, for every x € D, we get

Alzx) ¢ —intC = p(x)g ¢ —intC

Remark 2.56. (i) The following implication shows that the assumption con-
dition “F'(Z) N (F(Z) — intC) = &” is rather restrictive for the set F(Z):

intF(7) # @ = F(T) N (F(z) — intC) # 2.

Hence the assumption condition can only be fulfilled for a set F(Z) with
an empty interior.

Indeed, if intF(Z) is nonempty, then there are a § € F(Z) and a neigh-
borhood M of § so that M C F(Z). Consequently, we obtain

FEyn(F(z)—mtC)c M N (M — intC) # .

(ii) If, as a special case, F' : K — Y is single-valued, then the assumption
condition is always fulfilled.

Theorem 2.57. Let C have a nonempty interior intC. If there exists a weak
subgradient A of F' at T € K such that

Alz—z)eC, VzeK,
then, every § € F(Z),(Z,7) is o weokly minimal pair of (SOK), and we have

the property
FE)n(F(z)—miC)=@.
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Proof. Since A is a weak subgradient of F' at € K, we have
F(z)—-F(@)—{A(zx—xz)}CcW, Vzek,
where W = Y'\(—intC). Thus, for every § € F(Z), we have
Fay—gc{A@z—-2)}+WCcC+W=W, VzckK,
resulting in
FK)N({y} —ntC) = @,

i.e., 7 is a weak minimal point of F(K). Thus we have

resulting in

Hence
F(Z)n{F(z) —intC) = @. [ ]

Remark 2.58. In the special case K = X, the assumption “A(x —Z) € C,Vz €
K” reads
Alx—-z)eC, VzeX.

Then we can conclude
Alz) e CN(-C)= {0}, VzeX,

which means that A = 0, or in other words, 0 is a weak subgradient of F' at
Z € X. Hence, we obtain the standard assumption known from the theory of
subgradients in convex analysis.

2.6 Set-Valued VO with a Variable Domination
Structure

In this section, we consider set-valued optimization problems with a variable
domination structure.

Let X and Y be real normed spaces, and K C X be nonempty. Let
C : X 3Y be a cone-valued function, i.e., for every z € X, the set C(x)
is a closed and convex cone with nonempty interior intC(z).

Let F: X 3 Y be a set-valued function. We consider a set-valued opti-
mization problem with variable domination structure C:

(SOKV) Minc(z)F(ac).
TEK
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Definition 2.59. Let Z € K and §j € F(Z).
(i) The pair (Z,y) is called a nondominated-like minimal solution pair of
(SOKV) if
(F(K) -9 N (=C(@)) = {z}-
(i) The pair (Z,9) is called a weakly nondominated-like minimal solution
pair of (SOKV) if

(F(K) — ) N (-intC (7)) = {g}

Under certain conditions, we shall see that a set-valued optimization prob-
lem (SOKYV) can be transformed into an equivalent vector-valued optimization
problem in the sense that their solution sets of nondominated-like minimal so-
lution pairs are identical.

Definition 2.60. We say that a cone-valued function C' : X 3'Y is pointed
on K C X if the cone UyexC(z) is pointed, i.e.,

(Uzex C(x)) N (= Uzer C(z)) = {0}
Remark 2.61. A cone valued function C' : K 2 Y is pointed if and only if
C(z1) N (—C(z2)) = {0}, Vzi,z2€ K.

Definition 2.62. Let f : X — Y be a vector-valued function and C: X Y
be a cone valued function. We say that C is weakly upper f-monotone if, for
any r1, %2 € X; z1 7é r2,

f(x1) = f(@2) & C(z2)\{0} = C(z1) C C(z2).

Proposition 2.63. Let K C X and C : X =3 Y be a pointed cone-valued
function on K. Let f : X — Y be a vector-valued function and F : X 3Y be
given by

F(z)= f(z)+ C(z), zeX.

(i) Suppose that C is weakly upper f-monotone. If & € K is a nondominated-
like minimal solution of the vector optimization problem:

(VOKYV) Minc(z) f(=),
zeK

then (Z, f(Z)) is a nondominated-like minimal solution pair of the set-
valued optimization problem:

(SOKV) Ming(q) F(z).
zeK

(ii) If (Z,9) is a nondominated-like minimal solution pair of (SOKV), then Z
is a nondominated-like minimal solution of (VOKV) and § = f(Z).
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Proof. Suppose that Z € K is a nondominated-like minimal solution of
(VOKV). Then
f(z) = f(z) ¢ -C@\{0}, VzeK.
We claim that
(f(z) = f(@) + C@) N (-C@)\{0}) = &, VzekK.
Indeed, if there exists & € K such that
(f(@) - f(z) + C(@)) N (-C(@)\{0}) # &,
then there exists ¢ € C(Z) and ¢ # 0 such that
—c e f(z)— f(z)+ C(1).

It follows that
(&) - f(Z) € —e - C(2).

From the pointedness and weak upper monotonicity of C, we have
f@) - f(z) € =2 - C(2).

Since C' is pointed and ¢ # 0, it follows that
f@) - f(z) € =C(@)\{0},

which contradicts the fact that T is a nondominated-like minimal solution.
Thus, we have

y— @) ¢ -C@)\{0}, VyeF(z)zekK.

Hence (Z, f(Z)) is a nondominated-like minimal solution pair of (SOKV).
Now we prove that (ii) holds. To this end, let us assume that (Z,7) is a
nondominated-like minimal solution pair of (SOKV). Then

yeF(@)= f(z)+C)

and
y—¢—-C@\{0}, VyeF(K). (2.47)

It is clear that § = f(Z). We are now ready to prove that Z is a nondominated-
like minimal solution of (VOKV). Suppose to the contrary that % is not a
nondominated-like minimal solution of (VOKV). Then, for some point z¢ €

K\{z},
f(zo) — f(z) € =C(z)\{0}.
But f(Z) = ¥, and therefore

f(@o) =y € =C(2)\{0},



76 2 Vector Optimization Problems

contradicting (2.47). Hence, Z is a nondominated-like minimal solution of

(VOKV). n

Contingent cone and contingent derivative are important tools for dealing
set-valued optimization problems. They are now employed to derive necessary
and sufficient optimality conditions for nondominated-like minimal pairs of
set-valued optimization problems with a variable domination structure.

Theorem 2.64. Let X and Y be real normed spaces. Let C : X 3 Y be a
cone-valued function such that intC(x) # & for everyx € X. Let K C X
be a nonempty subset, and let F : K 3 Y be a set-valued function such that
F(z) # @ for every x € K. If (Z,9) is a weakly nondominated-like minimal
solution pair of (SOKV), then

DF(z,g)(x —Z) Cc W(Z), Vzelk,
where W (z) = Y\(—intC(x)) end DF(Z, ) is the contingent derivative of F
at (%, 7).

Proof. We proceed by contradiction. Let (Z,7) € K x F(Z) be a weakly
nondominated-like minimal solution pair of (SOKV). Suppose that there is
an g € K such that

DF (z,y) (@0 — ) € W ().

Then there is a point z such that z € DF(Z, §)(zo — Z) and z € —intC(Z).
By the definition of DF, we have

(J"O -z, Z) € TGr(F)('i’ g)

So there are sequences {(x,yx)} in Gr(F) and {Ax} of positive numbers for
which

(%,9) = lim (zx, yx)
and
(@o = %,2) = lim Ae(zh — Z,yx — B)-

We assert that there is a positive integer M so that
yr € §—intC(Z), Vk> M.

Since yx € F(zk) C UgerF(z), it follows that (Z,y) cannot be a weakly
nondominated-like minimal solution pair of (SOKV). |

We need the following lemma.

Lemma 2.65. [6/ Let X and Y be normed spaces, f : K — Y be a single-
valued function, where K C X is open, M : X 'Y be a set-valued function
and L C X. Let F : X =2 Y be a set-valued function defined by
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Fz) = f(x) — M(x), ifx el
0, ifz ¢ L.
If f is Fréchet differentiable at x € K Ndom(F'), then, for every y € F(x),

f'(@)(u) — DM (z, f(z) —y)(u), i v € T(L, )

DF(z,y)(u) C {@, ifu ¢ T(L,z).

If M is constant, then
DF (z,y)(u) = f'(z)(u) = T(M, f(z) — y)-

Corollary 2.66. Let the assumptions of Theorem 2.64 hold. Let C be a con-
stant cone-valued function, i.e., C(z) = C, for every x € K, where C is
a pointed, closed and convex cone with intC # &. Let f : K — Y be a
Fréchet differentiable single-valued function. If (Z, f(Z)) € imtK XY is a
weakly nondominated-like minimal solution pair of (SOKV), then T satisfies
the vector variational inequality

f(@)z—-Z)eW, Vzelk,
where W = Y\(-C).

Proof. Set F(z) = f(x) + C for every z € K. If f is Fréchet differentiable,
then for (x,y) € GrF we have, by Lemma 2.65,

DF(z,y)(u) = f'(z)u —T(C, f(z) —y), YueT(K,z).
Thus from Theorem 2.64, we have
@)z —2) - T(C, f(z) - f(z)) CW, VYzeKn(@+T(K 7)),

- F(@) (@ —7)—T(C,0)CW, VzeKn(@+T(K,z)).

Since C' is a closed convex cone and Z € intK, we have T(C,0) = C and
T(K,z) = X. Hence

f@z—z)CcW, VrekK. [ ]

Next, we establish a sufficient condition for (SOKV). To this end, we need
some concepts.

Definition 2.67. Let F : X 3 Y be a set-valued function. F is said to be
C(Z) pseudo-convez ot (Z,§) € Gr(F) if and only if

F(z)—g C DF(Z,7)(x — )+ C(Z), Yz € Dom(F).
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Definition 2.68. Let K be a nonempty conver subset of X, and let Z € K
and § € F(K). F is said to be C(Z)-convez at (Z,7) if, for any 2’2" € K
and X € (0,1),

AF(z')+ (1 = AN)F(z")y c FQ2'+ (1 = A)z") + C(z).

Remark 2.69. The order pseudo-convex function is a generalization of the
pseudo-convex function given in Aubin and Frankowska [6]. If C is a con-
stant function, the C-convexity at § of F' reduces to the usual C-convexity of
F.

Definition 2.70 (Thibault [193]). A set-valued function F : X =3Y is said
to be compactly approzimable at (Z,7) € Gr(F), if, for every & € X, there are
a set-valued function IR from X into the set of all nonempty compact subsets
of Y, a neighborhood V of & in X, and a real functionr : (0,1] x X — (0, +00)
satisfying

W o,z "2 =0

(ii) for every x € V and t € (0, 1]

F(Z+tx) C g+ t(R(T) + r(t,z)By),
where By is the closed unit ball centered at the origin of Y.

Lemma 2.71. [183] Let C C Y be a nonempty, pointed, closed and convex
cone. Let F : X 3Y be a set-valued function. Let (xo,y0) € Gr(F). If F is
compactly approzimable at (zo,yo), then

D(F + C){(mo,y0)(u) = DF (zo, yo)(u) + C, VYu € X.

Proposition 2.72. Let the set-valued function F : X =3 Y be compactly ap-
prozimable at (Z,y) € Gr(F) and let Dom(F) be a nonempty convex subset.
Let F be C(x)-convex at (Z,y). Then F is C(Z) pseudo-convex at (T, 7).

Proof. Fix a point (z,y) € Gr(F'). We define a sequence {(zg,yx)} in X XY
by

1 1
xk=5c+%(x—a':), yk=g7+-l;(y—§), Vk € N.

Since dom(F’) is convex and F is C(Z)-convex at (Z, §), it follows that, for all
k€N,

1. 1
zp = (1— E)x—f— 7€ Dom(F’)
and

wo= (1= g+ 1y € F((L- DT +22) + C@)
= F(l‘k) + C(.’Z’)
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Thus, (zk,yx) € Gr(F + C(7)), for every k € N, and (zx,yx) — (Z,9) as
k — o00. Moreover, we have

lim n(zy —T,yx — §) = (x — T,y — J).
n—00

Consequently,
(x -2,y — ¥) € Tarr+c@) (T, 9)-

Therefore,
y—y€DF+C&)&,§)(x—Z), YzeDom(F),yeF(z).
F being compactly approximable at (Z,¥), by Lemma 2.71, we have
D(F +C@))(z,y)(x — ) = DF(z,§)(x — Z) + C(Z).
Thus
y—7€ DF(Z,9)(x—%)+ C(z), VzeDom(F),ye F(x).
So F is C(Z) pseudo-convex at (Z, ). |

Theorem 2.73. Let X and Y be real normed spaces. Let C : X 3Y be a
cone-valued function such that intC(x) # & for everyxz € X. Let K C X be
a nonempty convexr subset and let F : X 3 Y be compactly approzimable at
(Z,9) € Gr(F). Suppose that F is C(Z)-convez at (Z,5), C(Z) is a pointed,
closed and convex cone, and

@ # DF(Z,g)(z — %) C W(Z), Vz €K,

where W(Z) = Y\(—intC(Z)). Then (Z,7) is a weakly nondominated-like min-
imal solution pair of (SOKV).

Proof. By assumption, we have
DF(z,§)(z —z) N (—intC(Z)) = @, Ve K.
Since C(Z) is pointed and convex, we have
(DF(Z,9)(x — Z) + C(z)) N (—intC(z)) = @, Vz € K.
By Proposition 2.72, F is C(Z) pseudo-convex at (Z,%). Thus we have
(F(z) —g) N (—=ntC(z)) =@, VrekK.

So (Z, §) is a weakly nondominated-like solution pair of (SOKV). [ |
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2.7 Augmented Lagrangian Duality for VO

The conventional Lagrangian function is discussed in section 2.3 where con-
vexity is posed to guarantee the strong duality. However, such a strong duality
result may be not true if the convexity is not assumed. Let ¥ = R (=1,
X = [0, +00), f(z) = z, g(x) = x — 2. Consider the problem:

inf f(z), st gi() <O

The conventional Lagrangian for this problem is
Lz, \) = f(z) + M\gi(z) =z + Mz — z2), Vz € X, A > 0.

It is easy to check that 1£§( L(z,)\) = —00,¥YA > 0 and 1é1)f{ L(z,0) = 0. Thus,
x x

sup lél)f( L(z,\) = 0. However, the optimal value of the original constrained

A>0T

problem is 1.

In this section, let X = IR" and ¥ = R¢U {—00, 400}, where —o0 is
an imaginary point, each of whose coordinates is —oco, and the imaginary
point 400 is analogously understood. Let C = ]Ri U {+o0} and intC =
intIRi U{+o0}. Without confusion, we shall not differentiate the —oo, 400 in
R U {—00, 400} and the —oo and +00 in the extended real space. The same
terminology and notation such as minimal solutions and ordering relations for
standard vector optimization problems will be used for (EOP). In particular,
for the space IR’ U {—o00, +o0}, we use the following orderings: for any z! =

¢
(21,40, 2}), 2= (23, ,22) €e R°U{~00, +oo},
2 <o P = zilgz?, i=1,--,4
1 2 1 2
z7 Se\{o} 20 = z; £z,
i=1,---,f with at least one ¢ such that zil <zi2;
2! <imte 72 = z1-1<zi2, t=1,---,4.

Moreover, let A C IR¢ be a nonempty set. By z* € Infc A, we mean that
(i) z* € R*U {+00, —00};
(i) z £cv\joy 2%, V2 € A;
(iii) Jzx € A such that z; — 2*.
The point z* € Infc A is called an infimum point of A.
Meanwhile, we define z* € SupcA if and only if —z* € Info(—A).

Definition 2.74. Let f : IR — IR®U{—o00, +00} be an extended vector-valued
function. Then f is said to be proper if f(x) > —oco,Vz € IR" and there exists
some z € IR™ such that f(z) < +o0.

Consider the primal vector optimization problem (EOP):
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Infc f(l‘)
zelR™

where f : R™ — IR*U{~00, +00} is a proper extended vector-valued function.

Finally, the set of minimal solutions and weakly minimal solutions of
(EOP) are denoted respectively by Ming(f, R™) and Minin.c(f, IR™), namely,

Ming(f,R") = {z* € R" : f(z) £c\(0} f(z™), Vx € R"},

Mingpic(f, R") = {z* € R": f(z) Lintc f(z*), Yz € R"}.

_ Let f: R*" x R™ — IRY U {+o0} be a perturbed function such that
f(z,0) = f(z),Vx € R™. Define the optimal value function by

p(u) = Info{f(z,u) : z € R*}, ue€R™

Obviously, p(0) is the set of the infimum points of (EOP). It is also clear that
Mine f(IR™) C p(0).
A function o : R™ — IRy U {400} is called an augmenting function if it

is proper, lower semicontinuous, and convex with the unique minimum value
0at 0 R".

Definition 2.75. Let 0 : IR™ — IR, U {+00} be an augmenting function and
e=(1,---,1)T € IR®. The augmented Lagrangian L : IR™ x IR™ x (0, +00) =
IR U {400, —00} is a set-valued function defined by

L(z,y,r) = Info{f(z,u) +ro(u)e — (y,u)e : u € R™},

where x € IR™,y € IR™,r € (0,400).
The augmented Lagrangian dual function is a set-valued function defined
by
U(y,r) = Info U g L(z,y,7), y€R™,re(0,+c0).
The augmented Lagrangian dual problem is a set-valued optimization prob-
lem defined by

(DEOP) Supo ¥(y,7)  subject to (y,r) € IR™ x (0, +00).
Denote by Q the set of all the supermum points of the dual problem (DEOP).
We have the following proposition, whose proof is elementary and omitted.

Proposition 2.76. For any x € IR",y € IR™,r € (0,+0) and z € L(z,y,r),
we have z ¢ f(x).

Definition 2.77. Let X be a set. Let f : X — IR‘U{—00, 400} be an extended
vector-valued function.

(i) f is said to be externally stable if, for any x € X, there exists a minimal
solution x* of f on X such that f(z*) <¢ f(z).
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(i) f is said to be Inf-externally stable if, for any x € X, there exists a
z* € Info f(X) such that z* <¢ f(z).

(iii) f is said to be bounded below on X if there exists z € IR® such that
f(z) >c z,Vz € X.

Proposition 2.78. Let A C IR* U {—00,+0o} be a nonempty set and there
exists 2o € IR® such that a >¢ 20,Va € A. Then, for any a € A, there exists
a* € Infn A such that o* <¢ a.

Proof. Clearly, —o0o ¢ A. If A = {+oco}, then the conclusion holds automati-
cally. Now assume that A\{+oo} # 0. Let a € A. Consider the following two
cases:

(1) a <intc +00.

(it) a = +o0.

Suppose that case (i) holds. Then A; = {be A:b<ca}={be A:
20 <¢ b <¢ a} is a nonempty and bounded subset of Jisha Thus, cl4; is a
nonempty and compact subset of IR®. It follows that there exists a* € clA;
such that

b ﬁC\{O} a*, VbeclA,. (2.48)

Since a* € clA;, by the definition of A;, we see that z9 <¢ a* <¢ a. So
a* € Rf and o* <c¢ a. Moreover, there exists ar € A; C A such that ax — a*.
Finally, we show that b £c\ (0} a*, Vb € A. Indeed, if b ¢ A;, it can be easily
shown by contradiction that b £\ 0y a”. If b € Ay, it follows from (2.48) that
b £c\ {0y @”. Thus, we have proved a* € Infc A.

Suppose that case (i) holds. Then choose a; € A such that a; <inic +00.
Replacing a in the proof of case (i) by a1, the conclusion follows. | |

Corollary 2.79. Let X be a set. Let f : X — ﬂieu{—oo,—i—oo} be an extended
vector-valued function, which is bounded below on X. Then f is Inf-externally
stable on X.

Proof. The conclusion follows directly from Proposition 2.78. |
Let z € R", y € R™ and r > 0. It is obvious (by setting u = 0) that
if f(z,:) + ro(:) — (y,) is Inf-externally stable on IR™, then there exists

z € L(z,y,r) such that z <¢ f(x). The following theorem can be straightfor-
wardly proved.

Theorem 2.80. Weak Duality. Let x € IR",y € IR™,r € (0,+00). Assume
that there exists z € L{xz,y,r) such that z <¢ f(z). Then

22 ZC\{O} f(:L'), VZ2 S !P(y, 7').
The following corollary follows immediately from Theorem 2.80.
Corollary 2.81. Let the assumption in Theorem 2.80 hold. Then

22 Fimc 24, V2 €p(0), 22 € Q.
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Definition 2.82. (i) A function g : IR" — IRU {+00, —o0} is called level-
bounded if, for any o € IR, the set {x € IR" : g(z) < &} is bounded.

(it) A function h : IR™ x IR™ — IRU {+o00, —00} with values h(x,u) is
called level-bounded in x locally uniformly in u if for each @ € IR™ and o € IR,
there exists a neighborhood Vi of @ along with a bounded set D C IR™ such
that {x € IR" : h(x,v) < a} C D for allv € V;.

Now we introduce the function ¢ defined by
£(z) = max {z1, -+, 2}, V2= (21, -, 2) € RE U {—~00, +00}.

It is easy to check that £ is an increasing, continuous, subadditive, positively
homogenous and convex function.
It is also clear that

£(z+te) = €(z) +t, Vz € REU {+o0},t € RU {+00}.
The following lemma will be frequently used in the sequel.

Lemma 2.83. [176] Let X be a subset of IR™ and f : X — IR‘U{—o0, +00} be
a proper vector-valued function such that each component f; (i=1,---,1) is
Isc. Suppose that zo € X is such that f(xo) € R and X; = {z € X : f(z) <c
f(zo)} is a compact set. Then there exists x* € X1 such that f(z) £c\ (0}
fz*), vz € X.

Theorem 2.84. Strong Duality. Assume that, for any x € IR",y € IR™,r €
(0,+00), there exists z* € L(x,y,r) such that z* <c f(x). Suppose that
f(z,u) is_a proper vector-valued function such that each of its component

function f;(x,u) is lsc and &(f(z,w)) is level-bounded in x locally uniformly
in u. Suppose further that there exist j € IR™, and ¥ > 0 such that

Info{6(f(z,u)) + Fo(u) — (J,u) : ¢ € R",u € R™} >insc —00.  (2.49)
Then p(0) C Q.

Proof. Let Z € p(0). Obviously, Z <;ntc +00. In addition, from (2.49) we
deduce that 2 >;n:c —o0o. Hence Z € RY. By the assumption on &(f(x, u))
and setting u = 0, we see that £(f(x,0)) = £(f()) is level-bounded. Moreover,
z € p(0) implies that there exists {zx} C IR"™ such that f(zx) — Z as k —
+00. Consequently, &(f(zx)) — £(2). In addition, the Isc of f; and f(z,0) =
f(z), Yz € R" imply that each component function f; of f is Isc and therefore,
&(f) is Isc. Thus we see that the set {z : £(f(x)) < &(2)+1} is a nonempty and
closed set, hence a nonempty and compact set because £(f(z)) = £(f(z,0))
is level-bounded. As a result, we can assume, without loss of generality, that

zr — x*. By the Isc of f; , we have

(2*) < lim inf £ = i : 5 =1
f’(x)—l}ﬂi{g fi(zr) kgrfoofz(mk) Zi, i=1,--+ ¢,
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where z; is the ith coordinate of z. Thus we obtain f(z*) <¢ Zz. It follows that
f(z*) = Z because Z € p(0). Let

A®G,r) = {(z, ) : f(z,u) +ro(u)e — (F,u)e <c f(z*)}, r27+1.
).

Clearly, (z*,0) € A(g,r). Let (z,u) € A(g, 7). Then

§(f(2*)) 2 &(F(z,u) + Fo(u) — (§,u) + (r = F)o(u) 2> mo + (r — F)o(u),
where
mo = inf{€(f(z, w)) + Fo(u) — (F,u) : 2 € R”,u € R™} > —c0.
So we get

o(u) < Mﬁi)—r_m(’ <E(f(a*)) —mo, TZF+L (2.50)
Since ¢ is an augmenting function, we deduce that o is level-bounded and
U ={u:o(u) <&f(z*)) — mo} is compact. Let

F={(z,u) € R" x U : {(f(z,v)) < £(f(2")) + maxuer, (7, w)},
B(7,r) = {(z,u) € R" x R™ : {(f(x,u)) + ro(u) — (7,u) < &(f(z"))}-

Since &(f) is level-bounded in z locally uniformly in u, we deduce that
A(g,7) € B(g,r) C F. Using the fact that &(f(z,u)) is level-bounded in
z locally uniformly in « and that it is also lsc, it can be shown by contradic-
tion that F' is compact. By the lsc of f; and o, we know that A(7,r) is closed.
So A(g,r) is compact. Let rg T +o00. Assume that rp, > 7+ 1 when k > ko.
Since A(y,rx) is compact when k > ko and each fi(z,u) + rio(u) — (7, u)
(i=1,---,€) is Isc in (x,u), we deduce that I(x},u}) € A(g,7x) C F such
that, for k& > ko,

Flar, up) + reo(ur)e — (7, upe
€ Info{f(z,u) + rro(u)e — (F,u)e : (z,u) € R™ x R™}. (2.51)

Let us show that

f@, ui) + rro(ui)e — (g, ui)e
€U(y, k), k = ko (2.52)

When k > ko, by (2.51), we get

f(@,u) + reo(u)e — (7, uhe ooy f(@h, uk) — reo(up)e + (7, up)e,

for all z € IR™, w € R™. Therefore,

Fxg, u) + reo(u)e — (7, uhe Lovjoy F(@h, uk) — reo(up)e + (7, up)e,
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for all w € R™, and k > kg. That is, for k£ > ko,
F(@k, up) + rro(ug)e — (7, up)e

€ Info{f(z},u) + reo(u)e — (F,u)e : u € R™}
= L(mz,ﬂ, rk).

We prove by contradiction that (2.52) holds. Suppose that there exist k; > ko,
' € R™ and z € L(a', §, rx,) such that

f(aky uk,) + mryo(ug, Je — (§, ug, )e 2o\(o} 2 (2.53)
It follows that there exist uy € IR™ and zx € R¢ such that
z =z + f(@',ur) + 7, 0(ur)e — (¥, ux)e and zx — 0, as k — +oo  (2.54)
and
F(@' ug) + T, 0 (ur)e — (7, uk)e + 2
<ov(oy fxk,, up,) + re,o(ug, e — (7, ui, e (2.55)

Just as we have shown that A(g,r) C F is bounded when r >¢ 7+ 1, we can
show by employing (2.55) that {ux} is bounded. Without loss of generality,
we assume that ur — u’. Letting & — oo in (2.54), (2.55) and applying the
Isc of the function f and o, we obtain

z <¢ f(xl, ul) + Tkla(u’l)e - <g7 u’l>e
<o Fzhy,uk,) + o (uk, e — (3, vk, e. (2.56)
Noting that z € L{z’, §, Tk, ), we deduce from the first inequality in (2.56) that
z= f(a', ) + i, 0 e — (7,u)e.

This fact combined with (2.51) and (2.53) yields a contradiction.
As {(z},ur)} C F and F' is compact, without loss of generality, we assume
that
(@, up) — (@o,u0) € F.

It follows from (2.50) that
£(f(z") —mo

olug) < >——2—— k> ko
Te—T

Therefore,
o(up) < lim infy 000 (uf) < 0.

As a result, up = 0. Moreover, we have

F(xx) — (B upde <c\foy flzk, uk) + reo(ui)e — (7, up)e <cvqoy f(z*). (2.57)
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Namely,

i@k, ui) — (B, uk) Sovjoy fi(e™), i=1,- L
Thus
fi(zo) = fi(z0,0) < lim inf, o0 fi(zf, uf)—0 < fi(z*), i=1,---,£ (2.58)
Since f(z*) € p(0), f(zo) = f(z*). This fact combined with (2.58) yields
limy, oo fi(zh, ul) = fi(z*), i=1,---,4 (2.59)
(2.57) and (2.59) yield
ltt o0 F (5, 15) + T (u)e — (7, ui)e = £(z7).
Furthermore, by Theorem 2.80, we have
z 2o\oy f(z*), Vze¥(y,r),y € R™ r>0.
Hence z* = f(z*) € Q. |
It is worth mentioning that if f(z,u) is not proper or Isc, and that f is not

proper, then Theorem 2.84 may not be valid even for a scalar optimization
problem. Let us look at the following example.

Ezxample 2.85.Let £=m =n =1, o(u) = |u],Yu € R, f(z) = +o0,Vz € R.

- fu0,z€(0,1]
7 0, ifu#0,2€|0,1];
f@,u) = {+oo, else.

Clearly, f(z,u) is level-bounded in z locally uniformly in u. f is also proper,
but not lsc. Simple calculation gives us the augmented Lagrangian: for any
y€R, r >0,

Wz, y,r)=

- i%{—yu-l—r[u[},if:c € (0,1}
400, else.

For any r > 0, (0,7) = i%rlu[ = 0 > —o0. However, from the expression of
u

l(z,y,7), we deduce that I(z,y,r) <0,Vz € [0,1],y € R,r > 0. Hence

sup  P(y,r) <0.
yelR,r>0
So

sup  Y(y,r) < inf f(z) = +oo.
yelR,r>0 zelR

That is, Theorem 2.84 fails.
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The following proposition further illustrates the relationship between the
dual map ¥ and solutions of (EOP).

Proposition 2.86. Assume that f : IR™ x IR™ — IR‘U {400} is a proper ez-
tended vector-valued function such that each of its component function f;(x,u)
is Isc. Assume further that there exist §,7 such that

f(x,u) + Fa(u)e - (y,u)e ZC mie, VLL',U,

where my is a real number. Let 7, — 400 and each xp a weakly minimal
solution to

(EOPy) Info L(z,§,rx)  subject to x € IR™.
If 2 — «* and {€(f(xk))} is bounded from above, then * € Mininic(f, IR™).

Proof. Suppose to the contrary that there exist 2’ € IR" and ¢y > 0 such that
f@@') = f(=") <c —eoe.

Let

U ={u e R™: f(z',u) + rro(u)e — (g, u)e <¢ f(z')}.

As argued in the proof of Theorem 2.84, we can show that there exist ko > 0
and a compact set Uy such that Uy is compact and Uy C Uy when k& > ko.
Thus, for every k > ko, there exists u, € Uy, such that uy is a minimal solution
of the problem:

Info f(z',u) + rio(u)e — (§,u)e, subject to u € R™.

Since 7y is a weakly minimal solution to (EOPy), we deduce that 3z, €
Inf{ f (zx, R™) + rxo(R™) — (7, IR™)e} such that

F(&' ur) + reo(ur)e — (G, ur)e Lintc 2k, k > ko. (2.60)

As
2 € Info{f(wk, u) + reo(u) — (F,u)e : u € R™}, (2.61)

we deduce that, for every k > ko, there exists a sequence {u{c} such that

f(:ck,ufc) + rio(ul)e — (g,ui)e — 2k, asj — 4oo.

It is not difficult to prove that, for every k > ko, {ufc} is bounded. So we

assume without loss of generality that v}, — u}, as j — co. Moreover, fi and
o are lsc, therefore,

Fxr, u}) + rio(uy)e — (9, ui)e <c zx, k > ko. (2.62)

(2.61) and (2.62) yield
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26 = f(zr, uy) + rio(ul)e — (J,up)e, k> ko. (2.63)
Substituting (2.63) into (2.60), we get for k > ko
F@' uk) + reo(ur)e = (5, ur)e Lino flan, ui) — rro(ui)e + (7, uie. (2.64)

The combination of (2.61) and (2.63) yields

f(xk) = f(xka 0) + TkO’(O)e - <g> 0)6
Zovioy —F(ar, ug) — rro(up)e — (G, up)e, k> ko.

As a result,
fl@r) Zonjoy (re — F)o(ui)e +maie, k> ko.

Thus
E(f(xx)) > (e — F)o(ul) —m1, k> ko.

It follows that {u} } is bounded because{¢(f(zx)} is bounded above. Without
loss of generality, we assume that up — u*. Since {{(f(zx))} is bounded
above, arguing as in the proof of Theorem 2.84, we can prove that v* = 0. By
the Isc of f; and o, we obtain

filz™) <c¢ linrggffi(:ck,ugc) +reo(uy) + (Gug), i=1,---,¢

So there exists k1 > kg such that

Flx, uy) + reo(ul)e — (7, up)e >c f(z*) —eo/2e, k>ki>ky (2.65)
Note that ug € Uy, i.e.,

f(@' uk) + rio(ug)e — (F, ur)e <c f(@'), k> ko.
This inequality combined with (14) yields
(@' ug) + reo(uk)e — (G, ukye — f(z*) <c —eoe, k> ko. (2.66)

(2.65) and (2.66) jointly yield, for k > k1 > ko,

F(&@', uk) + rro(ur)e — (G, ur)e — f(ak, ui) — rro(up)e + (J, uj)e
<c —¢€o/2e, (2.67)

(2.67) contradicts (2.64). [

2.8 Augmented Lagrangian Penalization for VO

Consider the primal vector optimization problem (EOP):
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Infc f(x)
ze]R"™

where f : IR® — IR‘U{—o00, +00} is a proper extended vector-valued function.

_ Let f: R" x R™ — IR’ U {+00} be a perturbed function such that
f(z,0) = f(z),Vz € IR". The optimal value function is defined by

p(u) = Info{f(x,u) : z € R"}, uwecR™.

Let o : R™ — Ry U {400} be an augmenting function. The augmented
Lagrangian L : R™ xIR™x (0, +00) = IR*U{+00, —00} is a set-valued function
defined by

L(z,y,r) = Infc{f(z,u) +ro(u)e — (y,u)e : u € R™},

where y € R™,r € (0, +00).
The set-valued dual function is defined by

U(y,r) = Infc U, g~ L(=,y,7), y€R™,r€(0,+00).

Definition 2.87. f(=z,u) is said to be Inf-externally stable in x when |jul > 0
is sufficiently small if there exists a neighborhood Wy of 0 € IR™ such that, for
any fixed u € Wy, Vz € IR", there exists z, € p(u) such that z, <¢ f(z,u).

Theorem 2.88. Assume

(a) f(z,u) is proper and each of its component function fi(z,u) is lsc;
f(z,w) is Inf-externally stable in x when ||ul| is sufficiently small; £(f(z,u))
is level-bounded in x locally uniformly in u.

(b) there exist § € IR™,7 > 0 and m1 € IR such that

fz,u) + Fo(u)e — (§,u)e >c mie, Vr,u.
Then there exists r* > 0 such that when r > r*

p(0) S ¥(y,7) (2.68)

if and only if there exist a neighborhood W of 0 € IR™ and a scalar v’ > 0
such that

Zu ﬁintc’ z+ (g’ u)e - ’I"IG'(U)C, V2, € p(u), zZ € p(O), u € W. (269)
Proof. Sufficiency. Let
n(z) =min{z1, -+, 2}, VYz= (21, ,2)€ R U{~o0,+oo}.

We assert that 7(p(0)) = {n(2) : z € p(0)} is bounded above by some M > 0.
Otherwise, there exists a sequence z; € p(0) such that zx — 400 as k — +0o0.
Arbitrarily fix a 29 € p(0). As shown in the proof of Theorem 2.84, z € RY.
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Moreover, We obtain (zg — 2x) — —00, which contradicts (2.69) when u = 0.
Now we prove by contradiction that (2.69) implies (2.68). Suppose that 3z €
p(0) and ri T +oo such that

2y & U(g,7x) = Infe{L(z,7,7%) : * € R"} (2.70)

Since z; € p(0), arguing as in the proof of Theorem 2.84, we conclude that,
for each k,

2z = f(zk) (2.71)
for some z} € Ming(f,IR").

Consider the following two cases:
(1) f(z}) € Infe{f(z,u) + rro(w)

€
e

(ii) f(z3) ¢ Infc{f(z,u) + rio(u

—(g,u)e: (z,u) € R™ x R™};
—(g,u)e: (z,u) € R" x R™}.

If case (i) occurs, noticing that f(z}) = f(z},0) + rxo(0)e — (,0)e, we
deduce that

Fx,u) + reo(u)e — (§, u)e £ovioy f(zR), Ve e R™,ue R™
Letting z = z},, we obtain

f(@i,u) + reo(u)e — (g, u)e £ f(zk), uweR™.

This relation shows that f(z}) € L(},,7%) since f(zi) = f(z},0) +
ryo(0)e — (g,0)e. This fact combined with (2.70) yields that there exist
zr € R™ and 2z € L(xzk, §, 7) such that

zk <¢ 2. (2.72)

Furthermore, for each z, there exists a sequence {ug, ;} such that

f(@r, ur,5) + rro(uk,j)e — (F, uk,j)e — 2z as j — oo.
As a result,

mye+ (ry — 7)o(ug,j)e

<o f@k, uk,g) + To(uk,z)e — (U, uk j)e + (rk — 7)o (uk,j)e — 2.
The formula above combined with (2.72) yields
my + (i — T)o(uk,5) < n(z) < nlzg) < M.

Thus, o(ug,;) < M —m; when k > kg, where kg satisfies rg, > 7+ 1. So, for
each k > ko, {uk,;} is bounded. Without loss of generality, we assume that
ug,; — ug. It follows from the lsc of f; and ¢ that

f@r, uk) + reo(ur)e — (G, ur)e <c zx, k> ko
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However, zx € L(zk, 3, %) Therefore,

zi = f@k, un) + reo(ue)e — (G ur)e, k2 ko (2.73)
The combination of (2.71), (2.72) and (2.73) yields

Fl@r, uk) + reo(ur)e — (§, uk)e Lovioy f(ah), k> ko (2.74)

It follows that
mie+ (rx — F)o(un)e <c fzk, ur) + reo(ur)e — (7, urye <c¢ f(z}) = 2.

Therefore,
my + (re —T)o(un) < n(zx) < nlzg) < M.
Namely,
(’I”k — F)a(uk) <M —-m;y. (275)
So {ux} is bounded. Without loss of generality, we assume that ux — o' It
follows from (2.75) that o(v’) < lim infg,eo0(uk) < 0. Hence v/ = 0. Thus

ur € W1 when k > k1 > ko. By the external stability of f(m, ug) in = when n
is sufficiently large, we get z,, € p(ug) such that

Zu, < flzr, uk). (2.76)

(2.74) and (2.76) jointly yield

Zuy, + TR0 (uk)e — (G, ur)e Lo qoy f(ZF),

which contradicts (2.69) because rx — +00 as k — +oo.
If case (ii) occurs, noticing that f(zf) = f(z},0) + rro(0)e — (g, 0)e, we
conclude that there exists (g, ux) € R™ x R™ such that

[ (@i, uk) + rro(uk)e — (7, ur)e £o\{oy f(Tk)-

Thus, we have returned to (2.74) in case (i). So once again, we will be led to
a contradiction.

Necessity. We also prove by contradiction. Suppose that Jur, — 0,7 T
+00, zx € p(ur) and z; € p(0) such that

Zur, <intc 2k + (§, uk)e — ro(uk)e.

Then 3z, € IR™, x5 € Ming(f,IR™) such that

@k, uk) Sintc fzk) + (F, uk)e — reo(uk)e.

Note that f(x;) € ¥(g, ) when k > kj is such that 7, > max{r’,7+1). By
the definition of ¥(F, ry), we see that for any wy, € Info{f(zk, u) + rro(u)e —
(F,u)e:u e R™}, we have



92 2 Vector Optimization Problems

wi Lovioy F(ak), Kk 2 ka. (2.77)
Let

Qr = {u e R™: f(zx,u) + rro(w)e — (§,u)e <¢
F(@r, uk) + meo(ur)e — (7, urhe <intc f(zr)}

It is easy to check (as in the proof of sufficiency) that when k > k3 > ko, the
set {u € R™ : f(zk,u) +rro(u)e — (G, u)e <¢ f(z})} is compact. Thus Q is
compact when k > k3 > ka. Consequently, we obtain u}, € Q) such that, for

any k > k3 >¢ ks,

@i, ui) + reo(up)e — (7, ui)e
€ Info{f(zk,w) + reo(u)e — (g, u)e : u € R™},
and ~

f(@r, up) +rro(ug)e — (7, u)e <intc f(zh),
which contradicts (2.77) when k > k3 > ko. | ]

The following simple example verifies Theorem 2.88.

Ezample 2.89.Let p=1,£ =2, X = [-1,1]. Let f(z) = (|z|, —|z]), Vz € R;
h(z) = z,¥z € R. Consider the following constrained vector optimization
problem
(Vop) infe f(z)
st. xe X,
h(z) <0.

Denote by Xo = { € X : h(z) < 0} the feasible set of (VOP;). Define
Fl@) = {f(x), if z € Xo;

400, otherwise.

Then (VOP,) is equivalent to (EOP) (in the sense that the two problems have
the same sets of (weakly) minimal solutions).
Let u € IR. It is easy to see that

Fo o) = ] 9@, ifh(z) Su,zeX
f@ )= { +00, otherwise

is a perturbed function of f. Let o(u) = |u|, Vu € IR. It is routine to check that
condition (a) in Theorem 2.88 holds. Let § = 0,7 = 1. Then, we can verify
that condition (b) in Theorem 2.88 holds. Furthermore, it can be computed
that

p(0) = {(z,—z) : z € [0,1]}.

(u) = {(z,—x):z€[0,1]}, fu>0andueW
P = {{(—=z,z): z < u}, ifu<OandueW,
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where
W={uelR:|ul <1}

Take ' = 1. It can be easily checked that (2.69) holds. By Theorem 2.88,
there exists r* > 0 such that when r > 7*, p(0) C ¥(g, 7). As a matter of fact,
we can choose r* = 3. Whenever r > r*,

U (g,r) = Infe LfRL(x,g,r)

= Infs eU [Info{f(x,w) + r|ule}]

= Infe $8X[Infc{(|x[, —|z|) + rlule: u 2 z}]

= Infe (ViUA),
z€[~1,1]

where V1 = {(z,—z) : z € [0,1]} and Vo = {{(—(r + D)z, —(r — D)z) : z €
[-1,0]}. Thus,
#(y,r)=Vi={(z,—z):z€[0,1]}.
Consequently,
p(0)=¥(y,r), r=r*=3.

(2.68) indicates the uniformly exact penalization. That is, there exists a com-
mon 7* > 0 such that z* € ¥(g,r) for each z* € p(0) whenever r > r*.

For application purpose, we may need only the following weaker version
of exact penalization, which requires weaker conditions.

Theorem 2.90. Assume (a) as in Theorem 2.88 and
(b’) there exist § € IR™,7 > 0 such that

inf, o &(F(w,w)) + Fo(u) = (§,u) > ~co,

Let z* € p(0). Then there exists r* > 0 such that z* € ¥(§,r) whenever
r > r* if and only if there exist a neighborhood W of 0 € IR™ and r’ > 0 such
that

o gintC 2+ <ga u>e - r'o(u)e, Vi, € p(u)a ueW.

Proof. The proof of this theorem is almost the same as that of Theorem 2.88,
we need only to replace z; with z* and n with £ in the proof of Theorem
2.88. |

2.9 Nonlinear Lagrangian Duality for VO

In this section, we discuss a nonlinear Lagrangian approach to weak and strong
duality results where no convexity is required for the problem data.
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Let Y = IR’ be an ¢-dimensional Euclidean space, and C = ]Ri. Let
e=(1,---,1) € intC, and e; = (0,0,---,1,0,---,0) (the ith component is 1
and the other components are 0’s), i = 1,---,£. Let K C IR™ be a nonempty
closed set, f = (f1,...,fe) : K — IR’ be a vector-valued function such that
each of its component function f; is l.s.c., and g; : K — IR be l.s.c. for any
jef{1,---,m}.

Consider the following constrained vector optimization problem (VOP):

Ming f(z), (2.78)
z€B
where B={z € K : g;(x) <0,j=1,---,m}. It is clear that B is closed. We
denote by Ming f(B) and Infe f(B) the set of minimal points and the set of
infimum points of (VOP) respectively.
Without loss of generality, we assume throughout this section that

min inf f;(x) > 0.
1<i<tzeK filz) 2

If this assumption does not hold, then consider the following optimization
problem (VOP'):

Ming (exp(fi(z)) + 1, -, exp(fe(z)) +1)
st. zeK,gj(z)<0, j=1,---,m.

It is clear that the sets of minimal solutions and weakly minimal solutions
of (VOP) are the same as that of (VOP’), respectively.
For u = (u1, - ,um) € R™, and v € (0, +00), let

1/~
m

lully = {3 luil”

=1

Let y' = (yf,---,yh) %% = (13,--,42) € R™, define the notation of
componentwise product for y! and y?:

vy = (Wil Yh )

A vector-valued function p : ]RfF x IR™ — IR’ is called increasing if for any
(2%, y') € R, x R™( = 1,2) with (21, y') — (22,9%) € C x R, we have

p(ztyY) >c p(%, oP).

Let p be an increasing vector-valued function defined on the domain ]Ri X
IR™ such that each of its component function p; is l.s.c. and p enjoys the
following two properties:

(A) There exist positive real numbers a;{(j = 1,---,m) such that for
any z € IRﬂ,y = (41, ,¥m) with (z,y) belonging to the domain of p,

p(z,y) 2c z and p(2,y) Z¢ ( max {a;y;})e.
1<i<m
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(B) Vz € C,p(z,0,---,0) = 2.
It is easy to prove the following elementary proposition.

Proposition 2.91. Let p(z,y) = p'(p'(2,v),y), where p’ is an increasing
function with properties (A) and (B). Then p is also an increasing function
having properties (A) and (B).

Ezample 2.92. Let z = (21, +,2¢),¥ = (Y1, ,Ym), and (2z,y) € C x R™.
Some examples of the increasing function p defined on C x R™ having prop-
erties (A) and (B) are as follows:

(i) poo(z,y) = Ele max {Zi7y17 e a/y‘m}ei;
s m 1
(i) py(2,9) = Ef=1 (2] + 2=t ) Tei, 0< Y < 095
(iii) p(z,y) = 2 + (X7, bjy;?)e, where b; >0,j=1,---,m.
Let
F(z,d) = (f(z),d * g(z)),

where d = (d, -+ ,d) € R and g(z) = (g1(), * , gm()).

Let p be an increasing function defined on C x R™ with properties (A)
and (B). The nonlinear Lagrangian function corresponding to p for (VOP) is
defined as

N(z,d) = p(F(z,d)).

The following problem (DVOP)

sup g(d), (2.79)
delRY

where ¢(d) = InfcN(K,d),Vd € RT is called the nonlinear Lagrangian dual
problem to (VOP) corresponding to p.

Remark 2.93. If p is convex, e.g., all the p’s except p, in the case of v € (0, 1)
in Example 2.92, the problem of computing g(d):

Jnf p(F(z,d))

is a type of convex composite multiobjective optimization problems studied
in [121].

It is elementary to prove the following results.

Lemma 2.94. Let p be an increasing function with properties (A) and (B).
Then p(F(z,d)) = f(z),Vx € B, d € IRT.

Proposition 2.95. Weak Duality. Vx € B,d € IR, (¢(d)—f(z))N(C\{0}) =
0.
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Corollary 2.96. If z* € B satisfies f(z*) € Supcq(IRY), then
z* € Mininic(f, B).

Corollary 2.97. [Supoq(IR}) — Info f(B)] NintC = 0.

Definition 2.98. Let X C IR" be a set and f : X — IR® be a vector-valued
function. The set f(X) is said to be externally stable if for any x € X, there
exists a minimal solution z* € X of f on X such that f(z*) <c¢ f(x).

The following lemma on external stability can be easily proved.

Lemma 2.99. Let X C IR"™ be a compact subset. Let f : X — IR be a vector-
valued function such that each of its component functions is l.s.c.. Then f(X)
is externally stable.

It is routine to prove the next lemma.

Lemma 2.100. Let s : C x IR™ — IR be an increasing l.s.c. function. Let
f: X — C be a vector-valued function such that each component function f;
islsc. Letgi: X = R (j=1,---,m) be Ls.c.. Then s(f(x),g(x)) is l.s.c.
on X.

Let {(Z) = maxlsisg{zi}, Vz = (Zl, sy Zz).
Clearly, £ is an increasing, continuous, subadditive, positively homoge-
neous and convex function.

Definition 2.101. Let X C IR" be an unbounded set. A vector-valued func-
tion f : X — IR’ is said to be coercive on X if

§(f(z)) — +oo,

lim
2| —+co,zeX
where ||.|| is @ norm of IR™.

The following result establishes a proper relation between (VOP) and
(DVOP).

Theorem 2.102. Strong Duality. Assume that X is closed, f(z) >¢ 0,Vz €
X and f is coercive on X if X is unbounded. Then

Info f(B) C Supcq(IRY).

Proof. Let 2* € Infgf(B). Then 3z; € B such that f(z}) — 2* as k —
+o0. It follows that £(f(z})) — &(2*) as kK — +oo. Therefore, {z}} is a
bounded sequence by the coercivity of f on X. Since B is closed, there exists
a subsequence {x,lcj} such that x}c], — z* for some z* € B. Note that f;(z*) <

lierinffi(x,lc_) = (z*};,9=1,---,£, where (2*); denotes the ith component of
Jj—+oo 7
z*. We have f(z*) <¢ z*. This with z* € Infc f(B) implies that f(z*) = 2z*.
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Hence z* € Ming f(B). Since f is coercive on X, we deduce that 3N > 0 such
that

§(f(z) 2&(f(z") +1, Vo e Xy = {z € X : ||| > N}, (2-80)

We claim that
f(x) £e\joy f(&*), Yz e Xi. (2.81)

Otherwise, £(f(x)) < &(f(z*)), contradicting (2.80).

Let d = ke,k = 1,2,---. Since Xy = {z € X : ||z|| < N} is a nonempty
compact set and z* € X5, by Lemmas 2.99 and 2.100, we obtain a se-
quence {z2} C X, such that each z7 is a minimal solution to the problem:

mip p(f(@), kg(z)) and

p(f(z2), kg(2R)) <c p(f(z*), kg(z*)) = f(z"). (2.82)

We show that this fact combined with (2.81) yields that p(F(z%,d)) €
Q(k, e 7k) = Inpr(F(Ka d))

(i) It is obvious that if z € X3, p(F (2%, d)) 2c\ (0} p(F(z,d)).

(ii) Suppose that 3 Z € X; such that

p(F(z%,d)) >c\ (0} P(F(E,d)). (2.83)
Note that
p(F(z},d)) <c f(z*)
and
(@) 2c\(0y F(T).
Then
p(F(x3,d) ooy F(T). (2.84)

By (2.83) and (2.84),
p(F(Z,d)) 2o\{0y f(Z),

a contradiction with the property (A).

It follows from {3} C X» that there exists a subsequence {7 } such that
x%j — xg € Xo.
Let us show that z¢ € B. If not, d(xzo, B) > &y for some &y > 0. It follows
that d(z}_, B) > do/2 when j is sufficiently large.

Let X3 = {z € X5 : d(z, B) > §p/2} and g(z) = HaxX g; (x). Since g(z) >
<jis<m
0,Vz € X3, X3 is compact and g is 1.s.c, we deduce that rg}? g(z) = mg > 0.
z€X3
By property (A) of the function p, there exist positive numbers a;( =
1,---,m) such that

p(f(z%,), kig(=},)) >c (mok;  din a;)e,
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when j is sufficiently large, which contradicts (2.82). So zg € B.
Applying property (A) and (2.82), we have
f(@},) <c p(f(aR,), kig(=h,)) <c f(z*).
Thus,
fi@r,) < pi(f(a}), kig(ar)) < fil@®), i=1,---,L (2.85)
Applying the lower limit to (2.85) by letting j — oo, we conclude that f;(zo) <
fi(z*),i=1,--- £, which implies that
f(@o) = (%) (2.86)
since z* € Ming(f, B).
(2.86) combined with (2.85) as well as 23 — o yields that
p(f(z},), kig(aR,)) — f(z*), asj— +oo.
Finally, it follows directly from Proposition 2.95 that
(¢{d) — f(z)) N(C\{0}) =0, VdeRT.
The proof is complete. ]

Example 2.103. The condition that f is coercive on X is important to guaran-
tee the validity of Theorem 2.102. Otherwise, it may fail even if B is compact.
Let £ =1,K = [0,400), f(z) =1/(z+1),Vz € K, q1(z) =z - 1,if 0 <z <
1agl($) = 1/\/5 - 1/.’11, ifl<z< +00, p(ylayQ) = ma’x{yl,yZ}aVyla Y2 € R.
Consider the problem:
inf f(z) st. z € K, g1(z) <0.

It is easy to see that B = [0, 1] (which is compact) and infg f (B) ={1/2}.

p(f(2), dg1(z)) = max{f(z), dgi (=)}
= max{1/(z +1),d(1/vz - 1/z)}, Vz e X\B,d>0.

Clearly, ¢(d) = 0,Vd > 0. It follows that supy ¢(IR4+) = {0}. Hence
infg, f(B) C supeg(IR4) does not hold.

We also observe that, for z* € ianR+ f(B), there does not exist d* € IR,
such that z* € ¢(d*). Indeed, let £ = 1, X = [1/2,+00) and f(z) = 1/z, if
z e [1/2,1]; f(z) =2 -z, ifz € [1,2]; f(z) = z— 2, if z € (2,+00). Let
gi(z) =2 — 1.

Consider the problem:

inf f(z), st gi(z) <0.

Let N(z,d) = max{f(z),dg1(z)}, d > 0, z € X. Then it is not difficult

to derive the following fact: ¢(d) = d/(1 + d),Vd > 0. Clearly, ¢(d) < 1 =
igg f(zx),vd > 0.



2.9 Nonlinear Lagrangian Duality for VO 99

Based on some conditions on the constraint functions, we also have the
following result.

Theorem 2.104. Let g(z) = az 9j(z). Assume that there exist N > 0
<j<m

and my > 0 such that
g(z) > my, Vze X with|z|| > N. (2.87)
Then Info f(B) C Supcq(RY).

Proof. It follows from (2.87) that B is a nonempty compact set. For any
z* = f(z*) € Info f(B), by Proposition 2.95 we have that

(q(d) - f(z*)) N (C\{0}) = 0, Vd € R
Furthermore, whenever z € X with ||z|| > N,
P (@), k@) 2o (b1 min fai}e inge ") +e,
when k is sufficiently large. Consequently, when £ is sufficiently large, the set

{z € X :p(f(2), kg(z)) <c f)HC {z € X : [lz]| < N})

is a nonempty compact set. Therefore, when k is sufficiently large, Jzx € X
with ||zx|| < N such that zj is a minimal solution to the problem

min p(f(z), kg(z))

with
f(zk) <o p(f(zk), kg(zk)) <c f(z7). (2.88)

Since ||zk|| < N for k sufficiently large, it follows that there exists a subse-
quence {zy,} converging to ' € X. We can show as in the proof of Theorem
2.102 that 2’ € B. This fact combined with (2.88) yields that f(z') <¢ f(z*).
Therefore, f(z') = f(z*) since * € Ming(f, B). Hence, p(f(zk, ), kig(zk,)) —
f(z*). So f(z*) € Suppyq(IR) and the proof is complete. |

The following proposition further clarifies the relation between (VOP) and
(DVOP).

Proposition 2.105. Let d* € R}',Vk and d* — +00 as k — oo (i.e., d¥ —
+00,Vi as k — +00). Suppose that each x* is a weakly minimal solution to

Info N(z,d*). Then any limiting point of {z*} is a weakly minimal solution
zeK

to VOP.
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Proof. Without loss of generality, suppose that z¥ — z*. We can show by
contradiction that z* € B. In fact, if d(z*, B) > &y for some o > 0, then
d(z*, B) > &0/2, when k is sufficiently large. Since z* — z*, we deduce that
llz*¥ — z*|| < 1 when k is sufficiently large.
Let Xy = {x € X : d(z,B) > 80/2, |z —=*|| < 1}. Then z* € X4 when k is
sufficiently large. Let g(x) =  max gz( ). Then g(z*) > ;21)? glx) =m1 >0
3

when k is sufficiently large. So

Pf(ah), d* xg(a*) 2c ga*)(min as min db)e

>c (m1 min a; mmd
o ( Ligigm " 1i<m Je

Zintc f(2o) (2.89)

for any fixed xo € B and k large enough. Moreover, by Lemma 2.94,

f(0) = p(f(wo), d* * g(0))- (2.90)

The combination of (2.89) and (2.90) contradicts the fact that zy is a weakly
minimal solution to Mingp(f(z), d* * g(z)). Therefore, z* € B.
€K

Now we show that * € Minuc(f, B). Otherwise, 3z” € B such that
F(&"”) <intc f(z*). Therefore,

F@") <into f(zx), (2.91)
when k is sufficiently large since each component function of f is L.s.c..
Note that
F(a") = p(f(2"),d* x g(z"))
and

p(f(zx), d* % g(zx)) 20 fla),
it follows from (2.91) that

p(f(20), d* ¥ g(20)) Sintc p(f(zx), d" * g(zr)),

when k is sufficiently large. Namely, zx is not a weakly minimal solution to

min p(f(z),d* * g(x))

zeX
when k is sufficiently large, which cannot be true. The proof is complete. W

Remark 2.106. A vector-valued function p : IRﬁ xR — IR? is called increas-
ing if for any (2%,3*) € RL xR™(i = 1,2) with (21, y') — (22, 4?) € R: xR,
we have

p(z',y") 2c (2%, 7).
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Let p be an increasing vector-valued function defined on the domain IRi X
™ such that each of its component function p; is l.s.c. and p enjoys the
following two properties:
(A’) There exist positive real numbers a;(j = 1,---,m) such that for
any z € RS,y = (y1,--+,ym) with (z,y) belonging to the domain of p,
P(z,y) 2c = and p(z,y) 2c (max {a;y;})e.

(B)Vz e lRi,p(z,O,--- ,0) = 2.

Examples of such p having properties (A’) and (B’) are the restrictions of
Poo, P, P considered in Example 2.92 to C' x IR

If p is defined on the domain ]RfJr x IRT" as above, then it can be shown
that all the results in this section also hold for the case where

gt @) = (¢f (), , gh (),

Fi(z,d) = (f(z),d*g"(2)),
Ny(z,d) = p(Fi(z,d)).

Next we consider the saddle point problem of the nonlinear Lagrangian.
Let p be an increasing function defined on IRﬁ_ x IR™ enjoying properties
(A) and (B) and F(z,d) = (f(z),d * g(x))-
Let
N(z,d) = p(F(z,d)).

Definition 2.107. The point (z*,d*) € K x IR is called a saddle point of
the nonlinear Lagrangion N{xz,d) if

(i) N(z,d*) = N(z*,d") £c\(0} 0, Vz € K;
(i) N(z*,d) — N(z*,d*) ooy 0, ¥d € ™.

It should be noted that a saddle point may not exist even if all the con-
ditions of Theorem 2.102 hold. The following proposition presents the rela-
tionship among a saddle point of N(z, d), a minimal solution of (VOP) and a
maximal solution of (DVOP).

Proposition 2.108. The point (z*,d*) € K x IR is a saddle point of N (z,d)
if and only if x* is a minimal solution of (VOP), f(z*) € q(d*) and d* is a
minimal solution to (DVOP).

In the following, we compare the conventional Lagrangian function with a
special class of nonlinear Lagrangian functions.
We define a Lagrangian function as follows

L'(z,d) = f(z) + Zdjgj(a:)e,
j=1
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where the dual variable d = (dy,- -+ ,dm) € R,z € X.
It is clear that the following inequality holds:

m 1/ m
(Z bZ) >3 b, Wb 20,7€(0,1]. (2.92)
=1

Let v € (0, 1]. Consider the following class of nonlinear Lagrangian func-

tions:
1/~

£ m
Ny(z,d)=> | f(=)+> dlgi" ()| e
i=1 j=1

where z € X,d = (d1, -+ , dym) € R™. It follows from (2.92) that
N,(z,d) >¢ f(z)+ Zd]g] )e >c L'(z,d), VzeX, deRT. (2.93)

This inequality allows us to establish the following conclusion.

Proposition 2.109. Assume that v € (0,1]. Any saddle point of L' is also a
saddle point of N,.

Let f(z) = f(z),z € B and f(x) = +oo,z € IR™\ Xo. It is obvious that
(VOP) is identical to:

Info f(z)
ze]R"”

Let u = (u1, -+, um) € R™. Set

ra _ f(x)a lfg](x)su]ajzla,m,iL‘EX,
Fw,u) = {+oo, otherwise.

Let 0 : R™ — IR be an augmenting function. Simple reasoning gives us the
augmented Lagrangian:

f(@) + | infe {ro(g(x) +v) — (v, 9(z) +v)}
L(fﬂ,y,f') = vEIR'+
ifze X,ye R™,r >0,
400, else,

where g(x) = (g1(z), -, gm(x)).
Let the dual map be

U(y,r) = Infe U eIR™ L(z,y,r), yeR™,re(0,+00).

The augmented Lagrangian dual problem (DVOP’) is
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Supe  P(y,7).
yelR™ ,re(0,+o0)

It is easy to check that the augmented Lagrangian function L(z,y,r) de-
fined above has the following properties:

I L(z,y,r) >¢ f(z), Vo € B,Yy € R™,r > 0; L(z,0,7) >¢
flz), VeeX,ye R™,r>0; L(z,0,7) = f(z), VYze B,Vr>0.

(I) If z € X\ B, then L(z,y,r) — 400, Vye€ R™ asr — +oo.

In the following, we consider the relationship between the augmented La-
grangian L(z,y,r) (defined above) and a special class of nonlinear Lagrangian
in terms of their saddle points.

Let v € (0,1]. Consider the following class of nonlinear Lagrangians for
(VOP):

i=1

4 m 2l
=y !f? (z) + Zd}’gfv(x)] &,
j=1

where z € X,d = (d1, -+ ,dn) € RY, ¢ = (0,---1,0,---0) (the ith
component being 1 and all the other components belng Os) and g/ (z z) =

max(g;(x),0).
It is easy to see that

Ny(z,d) >¢ N1(z,d) = [Z:djgJ (z)] e,

where x € X,d € R,y € (0,1].

Proposition 2.110. Let the augmented Lagrangian L(z,y,r) for (VOP) be
defined as above. Then (z*,y*,r*) is a saddle point of L{z,y,r) if and only
if * is a minimal solution to (VOP), g(z*) € ¥(y*,r*) and (y*,7*, g(z*))
solves the dual problem (DVOF').

Proof. The proof is similar to that of the usual saddle point theorem for a
vector optimization problem. |

Proposition 2.111. Let the augmenting function o be finite everywhere.
Let the augmented Lagrangian L(z,y,r) for (VOP) be defined as above. If
(z*,y*, ) is a saddle point of L, then there exists d* € IR such that (z*,d*)
is also a saddle point of Ny(z,d), where v € (0, 1].

Proof. Since {z*,y*,r*) is a saddle point of L(z,y,r), by Proposition 2.108,
z* € B is a minimal solution to (VOP) and

L(z,y",r") = f(z) + [Infc{r*a(g(z) +v) — (¥",9(z) + v) : v € R} }]e
£ L(z*,y*,r*) = f(z*), VzreX.
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Since o is finite everywhere, we deduce that o is locally Lipschitz near 0 € R™.
Thus, there exist # > 0 and > 0 such that when [ju|| <4, o(u) < 8ljul|, where
Jull = 37 s and w = (u,- - um). I 2 € X\B and 31, gF (z) < 6,
then

inf{r*o(g(z) +v) - (v, 9(z) +v) :v € R} < (O + ") Y_ g (=)
=1

(This follows by setting v; = —g;(z) if gj(z) < 0 and v; = 0 if g;(z) > 0). Let
d* = (di,---,dy,) € RY be chosen such that dmin;<j<mdje >¢ g(z*) and
minlsjgmd;f >0r* + Hy*[l .

Ifz € X\Band }_7-, g} (z) <6, then

Ny(z,d") — Ny(z7,d") 20 Ni(z,d") — f(z7)

= f(z)+ Zd§g}“(m)] e —g(z*)

>c flz)+ |(Or" + IIy*II)Zg}*(w)} e—g(z*)

j=1

>¢ Lz, y",r") - f(z")

Thus N, (z,d*) £ N, (z*,d*).
Ifz € X\Band }7"; g (z) > 4, then

f(@) £c\(oy f(z¥) + 6 min 1<j<md]e
because f(x) >¢ 0. In addition, we have

Ny(z,d*) — Ny(z*,d*) 2¢ Ni(z,d") — f(z¥)
>¢ f(z) — f(z") + dminicj<mdje.

Hence
N, (z,d") £cvjoy Ny(z™,d7).

If z € B, then N, (z,d*) = g(z) £ Ny(z*,d*) = g(z*).
Finally, we show that

N,(z*,d) 2 Ny(z*,d"), Vde R}
This is obvious because Ny (z*,d) = Ny(z*,d*) = g(z*). [ |

2.10 Nonlinear Penalization for VO

In this section, we consider exact penalization results for a vector optimization
problem via a nonlinear penalty function.
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Let X =IR",Y = IR? be an ¢-dimensional Euclidean space, and C = ]Rfr.
Let K C IR™ be a nonempty closed set, f = (f1,...,f¢) : K — R be a
vector-valued function such that each of its component function f; is ls.c.,
and g; : K — IR be ls.c. for any j € {1,---,m}.

Consider the following constrained vector optimization problem (VOP):

Infe f(z), (2.94)
z€B
where B = {x € K : gj(x) <0,j=1,---,m}. It is clear that B is closed. We
denote by Ming f(B) and Infe f(B) the set of minimal points and the set of
infimum points of (VOP) respectively.
Consider the following nonlinear penalty function:

£
Ny (z,d) = py(f(2),d* g7 (z)) = Z Y@+ dlgi @) e

where 0 < v < +00, and e; = (0,0,---,1,0,---,0) (the éth component is 1
and the other components are 0’s), i =1,---, £

If £ = 1, this class of nonlinear penalty functions can be considered as a
composition of the following two functions

1/y
Y Y
Yo + Zy]‘ , and (fl(x)7dlgl(x)7 T ’dmgm(]"))’

j=1

while the first one is a so-called increasing positively homogenous function,
see [172].

If y =1 and £ = 1, then nonlinear penalty function N,(z,d) reduces to
the classical [} scalar penalty function

fil@)+ ) digf (@).
j=1

Let u = (u1, - ,um) € R™. We associate (VOP) with a perturbed prob-
lem:
Infe f(x), (2.95)
z€B(u)
where B(u) = {z € X : gj(z) < uj,j = 1,---,m}. We will denote by
Ming f(B(u)) and Info f(B(u)) the sets of minimal points and infimum points
of (VOP,) respectively.
We need the following lemma.

Lemma 2.112. For any xo € B(u), there exists z* € Info f(B(u)) such that
z* <¢ f(zo)-
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Proof. It follows immediately from Proposition 2.78. |

Definition 2.113. We say that (VOP,) is y-rank uniformly weakly stable if
there exist 6 > 0 and M > 0 such that

Infof(BW) ~ el (B) | prel ~ (—intc)y = 0 (2.96)
Jull} | |

for any u € IRT* with 0 < |jully < 4.

It is not hard to show that the restriction u € IRY" in the definition of the
~-rank uniform weak stability can be replaced by u € IR™. This is also true
for the v-rank weak stability in the following Definition 2.115.

In the definition of y-rank uniform weak stability of (VOP), the term
“uniform” shows the difference from the usual stability in which Infe f(B) in
(2.96) is replaced by a specific point of Infc f(B) and the fact that different
points of Infe f(B) may have different M’s in (2.96).

Let 0 < v1 < 72. It is not hard to see that if (VOP) is v2-rank uniformly
weakly stable, then it is also y;-rank uniformly weakly stable.

Theorem 2.114. If (VOP) is y-rank uniformly weakly stable, then 3d* € IR
such that when d — d* € IRT',

Info £(B) € 4x(d), (2.97)
where g,(d) = Info Ny (K, d). The converse is also true.

Proof. We begin by proving the first half of this theorem.

If Infe f(B) = 0, then the conclusion holds automatically. Now we assume
that Infe f(B) # 0.

Let n(z) = lrilzilél zi,¥z = (21, ,2) € R®. We show by contradiction
that n(Infe f(B)) = {n(z) : z € Infc f(B)} is bounded from above by some
M’ > 0. Otherwise, there exists z; € Infc f(B) such that zx — +oo. Since
Infc f(B) # 0, it follows that for any é > 0, B(us) D X(0) = B # 0, where
us = (0,0,---,0,8) € IRT". Suppose that zo € B C B(us). Then by Lemma
2.112, there exists 25 € Info f(B(us)) such that

zs <c f(=o).

Hence,
(25 — z)/|uell} <c (f(zo) — 2k)/|lus||] — —oc0 as k — oo,

which contradicts (2.96) because § > 0 can be arbitrarily small.
Suppose that there exists di = (dk,1,- - ,dk,m) — +00 and z; € Infe f(B)
such that z, ¢ 1é1)f( N, (z,dk).
x

By z, € Infc f(B), it follows that Elxi such that g(xfc) <0 and f(:v{c) —
ZE as j — o0.
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It follows from z; ¢ 12)f{ N,(z,d) that 3z;, € X such that
x

Ny (@, di) <c\{o} 2k-

That is,
m 1/

¢
Z £ (@) + Z JgJ ei <o\{0} Zk- (2.98)

=1 j=1
Using (2.98), we deduce that max gj(z},) > 0 since z, € Infc f(B).
<jsm
(2.98) also implies that

Z k,]g] .’L‘;c (Zk) f’y(xk) < (zk)z’ i=1,---,¢, (2.99)

where (z;); denotes the ith component of vector z.

That is, [y, dz’jg;"y(ac;c)]l/” <n(z) < M.

It follows that g] f@)—0@G=1,-- ,m) as k — +oo.

Now let ux,; = =g, (mk) and uk = (Uk,1," ", Uk,m)- Clearly, |luklly > 0 and
fluklly — 0. It follows from (2.99) that ||uk||7 min d,c < (2k)] — £ (=}). By

<<

Lemma 2.112, we deduce that Jvy € Infcf( (u )) such that v, <¢ f(z})-
By the mean-value theorem, we have (zx)] — (v&)7 = v(sk)7 ™ ((28)i — (V& )i)s
where (sr)i € ((vk)i, (2):). Therefore, it follows from (2.99) that if v < 1,
then

lluk]ly  min di; < ¥(s1)7 ™ ()i (vr)i) < ¥(o)7 ™ ((2i)i—(wk)i); (2.100)
if vy < 1, then

. -1
Juelly min a7, < 997 ((z0): — (00)0): (2101)
Since 1é1)f( fi(z) > 0,Vi, it follows that

lxsr%nm(vk)i > mq > 0. (2.102)

Let M” = max {M""™',mJ™'}. The combination of (2.100), (2.101) and
(2.102) yields that

[kl 12}21md2,j < yM"((2k)i — (ki)

ie.,

min d}
(k)i — (2k)i 1<j<m ©d

lly = M
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which contradicts (2.96). Thus (2.97) holds.

Now we prove the second half of the theorem by contradiction.

Suppose that 3uy = (uk,1,- ,Ukm) € R with up — 07 and 2 €
Infc f(B(uk)), vk € Infc f(B) such that

(2 — Uk)/”“lc”:; — —o0, as k — +o00,

where the virtual element —co is such that for any « € IRfr, —00 <;ntc —Qe.
Then 3z, € X with gj(zx) < uk,j,Vj such that

(f(@k) — ve)/Huklly — —oo, as k — +oo. (2.103)
By the assumption of the theorem, 3d* = (df, - -, d},) € IRT" such that when
d—d* €RY, . € zle%g N, (z,d). Therefore,
Ny (2k,d*) Lo\ (o} V- (2.104)
We assume that ¢* € {1,---,£} is such that
/vy

TR+ Y dTg (@) > (k).
j=1

Namely,

(k) — (k)] > Zd*” T (xp,). (2.105)

It follows from (2.103) and (2.104) that max gj(zx) > 0. So, from (2.105),
<j<m

we deduce that

i (@k) — (oe)de 2 — max di7||ug]].

That is,
[(06) = £ @)/ fuell} < max 5. (2.106)

Since

(Wi)7 — F(@i) = v ((ok)ir — fir (@), sk € (fir (zk), (VR )2),

it follows from the assumption on f that there exists a > 0 such that

(ok)3 = FE(zx) > va((vk)er — fir (). (2.107)
(2.106) and (2.107) yield that

[fir (k) — (vi)i=]/ lurll] > — 1%}2de;7/(’““)’

which contradicts (2.103). The proof is complete. |
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Definition 2.115. (i) Let z* € Info f(B). The problem (VOP) is said to be
~v-rank weakly stable at z* if there exist positive real numbers 0, and M«

such that
Info f(B(u)) — 2"
lully
for any v € IRT with 0 < [|ull, < 6.
(i) The problem (VOP) is said to be y-rank weakly stable if it is y-rank
weakly stable at every z* € Inf, f(B).

+ Me| N (—intC) = 0,

The following simple example shows that (VOP) is 1-rank weakly stable
but not 1-rank uniformly weakly stable. Let n =1,4=2, K =R, m = 1.
Let f(z) = (exp(—z'/?), exp(—z/?)) if z > 0; f(z) = (exp(z),exp(—=x)) if
z <0. Let g(z) = z,Vz € IR.

It is easy to check that

Infc f(B) = {(exp(x), exp(—=z)) : z < 0}
and, for any u > 0,

Infc f(B(u))
= {(exp(—u'/?), exp(—u'/?))} U {(exp(), exp(—7)) : ¢ < —u'/?}.

It is elementary to prove that (VOP) is 1-rank weakly stable but not 1-rank
uniformly weakly stable.

It is clear that if (VOP) is y-rank uniformly weakly stable, then (VOP) is
v-rank weakly semi-stable.

The proof of the next theorem is similar to that of Theorem 2.114 and
thus omitted.

Theorem 2.116. Let z* € Info f(B). Then (VOP) is v-rank weakly stable
at z* if and only if there exists a d* € IR} such that 2* € q,(d) whenever
d—d* € RY.

Corollary 2.117. (VOP) is y-rank weakly stable if and only if, for every z*,
there exists a d* € IRY" such that z* € q,(d) whenever d — d* € IRT".

The next theorem uses a well-known condition in the study of sensitivity
of a constrained optimization problem, i.e., the compactness of the feasible
set with a small perturbation. Under this condition, the set of minimal points
of (VOP) and that of N,(:,d) are nonempty. The conclusion follows directly
from Theorem 2.114.

Theorem 2.118. Assume that there ezists u® = (ul, -+ ,ul) € intIR] with
[ull] > 0 sufficiently small such that X (u®) = {z € X : g;(z) < u),Vj} is
compact. If (VOP) is v-rank uniformly weakly stable, then there exists d* €
IRY such that when d —d* € IR,
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where gy (d) is the set of minimal points of N,(-,d) over K. The converse is
also true.

The following theorem establishes further relationship between the solu-
tions of (VOP) and that of the penalty problems based on N,,.

Theorem 2.119. Assume that B # () and there exists d* = (d},d3,---,d}) €
IR such that for all d satisfying d — d* € IRT", z* € X is a minimal solution
of the problem MincNy(x,d), then x* is a minimal solution of (VOP).

zeK

Proof. Let x* be a minimal solution of MingN,(z,d) for any d satisfying
xeK
d—d* € IRY. Then we have

Ny(z,d) — Ny(z",d) £cnfoy 0, Vz € X, d satisfying d — d* € RT.
For any zo € B, we have N, (zo,d) = f(z0),Vd € R} by Lemma 2.94. Thus,

1
? /v

f(@o) — E f(@) + Zd;'yg;ﬂ(m*) e; £c\{o} 0, (2.108)
j=1

i=1

where Vzo € B,d — d* € R}. We claim that gf(m*) =0,Vj (ie., z* € B).
Otherwise, Y7, g7 (z*) > 0.
It follows from (2.108) that there exists i* € {1,---,£} such that

How) ~ 162 L5l "0 2 (i, )30 )
j=1 j=1
Hence,
y ol ”)
o {47 (@o) - }>Zd 2 (mip 4] Zg

which is impossible if we let d; — +o0,Vj. Therefore, «* € B. It follows di-
rectly from Lemma 2.94 and (2.108) that z* € Ming f(B) and the proof is
complete. n



3

Vector Variational Inequalities

The concept of a vector variational inequality was introduced by Giannessi [79]
in a finite dimensional space. Chen and Yang [40] considered general vector
variational inequalities and vector complementary problems in infinite dimen-
sional spaces, and Chen [25] considered vector variational inequalities with a
variable ordering structure. Yang [207] studied inverse vector variational in-
equalities and its relations with a vector optimization problem. Through the
last twenty years of development, existence results of solutions for several kinds
of vector variational inequalities have been derived and the vector variational
inequality problem has found many of its applications in vector optimization,
set-valued optimization, approximate analysis of vector optimization problems
and vector network equilibrium problems. Because of these applications, the
study of vector-variational inequalities has attracted wide attention.

In this chapter, we will study relations between vector variational inequali-
ties (VVI) and vector optimization problems, existence of a solution of (VVI),
inverse VVI, gap functions of VVI, set-valued VVI, and vector complemen-
tarity problems. We will investigate these with or without a variable ordering
structure.

3.1 Vector Variational Inequalities (VVI)

Let X and Y be Hausdorfl topological vector spaces. By L(X,Y), we denote
the set of all linear continuous vector-valued functions from X into Y. For
l € L(X,Y), the value of linear vector-valued function ! at z is denoted by
(l,z). Let C C Y be a nonempty convex cone. Then (Y,C) is an ordered
Hausdorff topological vector space.

Definition 3.1. A vector variational inequality (VVI) is a problem of finding
z* € K such that

(Vv (T(z"),z —2) £c\{0y 0, Vz € K,
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where T : K — L(X,Y) and K C X is a nonempty subset.

Let the topological interior intC of the cone C be nonempty. We have the
following definition.

Definition 3.2. A weak vector variational inequality (WVVI) is a problem
of finding x* € K such that

(Wwvvi) (T(z*),x — ") €intc 0, Vz €K,

where T : K — L(X,Y) and K C X is a nonempty subset.

Consider a vector optimization problem:

(VOK) Ming f(x),
zeK
where f : X — Y is a vector-valued function. The following proposition pro-

vides a relationship between the (WVVI) and the vector optimization problem
(VOK).

Proposition 3.3. Assume f is Gateauzr differentiable with Gateaux deriva-
tive Df. Let K be a convexr subset of X and T = Df. If x is a weakly min-
imal solution of (VOK), then z solves (WVVI). Assume further that f is
a C—conver vector-valued function. If x solves (WVVI), then x is a weakly
minimal solution of (VOK).

Proof. Let = be a weakly minimal solution of (VOK). For any y € K, we have
z+tly—x) e K, Vt€ (0,1). Then

f(.’l) + t(y - w)) - f(x) Lintc 0, Vi€ (0’ 1)7
+

t(y —tm)) — @) e 0, Ve (01).

Let t — 0+. Then
(Df(z),y — ) Lintc 0, Vy € K.

Noting that T'= Df, = solves (WVVI).
Conversely, let z solve (WVVI). Then

(Df(z),y — x) Lintc 0, Vy € K.

Since f is C—convex, for any y € K,

fy) = f(z) = (Df(z),y —x) € C
= f(y) = f(z) € (Df(z),y —2) +C
= fly) —fle) e WH+CCW,
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where W = Y\ (—intC). Thus

f(y) - f(.’,E) ﬁintc O’ Vy € Ka
i.e., z solves (VOK). ]

The following establishes when a solution of (VVI) is also a solution of

(VOK).

Proposition 3.4. Let K be a convex subset of X and T = Df. Let C be a
pointed and convex cone inY . If f is C—conver and x solves (VVI), then z
is a minimal solution of (VOK).

Proof. Suppose that z is not a minimal solution of (VOK). Then there is a
y € K such that f(z) — f(y) >c\{o} 0. Since f is C—convex, we have

fy) — f(z) = (Df(z),y —z) 2¢ 0.
Thus
(T(z),y —z) = (Df(z),y —z) € —=C — C\{0} C —C\{0},

a contradiction. [ |

In the following example, we show that a minimal solution of (VOK) may
not be a solution of (VVI).

Ezample 8.5.Let X =R, Y =R? and C = IRi. Consider the problem
Ming f(z), subject to z € [—1,0]

where f(z) = (x,22 + 1)7. It is clear that every € [~1,0] is a minimal
solution of the problem. Let = 0. Then, for y = —1,

Vi) = () e .

Thus z = 0 is not a solution of (VVI).
However, we can show that the following holds.

Proposition 3.6. Assume that T = Df holds and f is C-concave. If z* is a
minimal solution of (VOK), then x solves also (VVI).

Proof. Suppose that z is a minimal solution of (VOK). Then z is a weakly
minimal solution of (VOK). If z* does not solve (VVI), then there exists a
z € K such that

(T(z"),z — ") <c\(0} O-

By the concavity assumption,
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f(@) = f(z") <c (Df(z*),z —z*) = (T(z"),z — =*) <c\{0} 0
Since C' is convex, we have
f(@) <c\qoy (=),

which contradicts that z* is a minimal solution of (VOK). |

Moreover, a minimal solution of (VOK) can be characterized by a so-called
Minty VVI.

Theorem 3.7. Giannessi [81] Let X = IR, Y = IR’ and C = IRi Let

f(@) = (fi(@),- -, fe(@) T, and T(z) = V f(2) := (Vfi(z), -, V()"

be the Jacobian (an £ X n matriz) of the vector-valued function f at x. Let
[ be IR -convex and v-hemicontinuous on K and K be convex. Then, x* is
a minimal solution of (VOK) if and only if it is a solution of the following
Minty VVI:

T(x)(x —z*) flRi\{o} 0, Vz € K. (3.1)

Proof. Suppose that z* is a minimal solution of (VOK). If z* is not a solution
of the Minty VVI (3.1), then there exists Z € K such that

T(Z)(Z —z") S]Ri\{o} 0,
that is,
T(Z)(z* — ) ZlRi\{o} 0.
Since f is IRﬁ_—convex, we have
f(=") - f(@) 2R T(z)(z" - 7) 2R\ (0} ¥
Then
7(@) ~ £(=") <Rt g0y O

it is a contradiction.
Conversely, let * be a solution of the Minty VVI (3.1). Suppose on the
contrary that there is T € K such that

f(j) - f(:l?*) S]Ri\{O} 0. (32)
Since K is convex, Z(a) 1= az* + (1 — a)Z € K,Va € [0,1]. Because of

the convexity of f and of the Lagrange Mean Value Theorem, there exists
@ € (0,1), such that

2o/ @@) 2Re (=) - £(2). (3-3)

+
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From (3.2) and (3.3), we have
where & = z(a@). Multiplying both sides of this inequality by 1 — &,
(T(2),z" — %) ZIRi\{O} 0,
which contradicts the assumption. |

Next we show that (VVI) is a necessary optimality condition for a Geoffrion
properly minimal solution of (VOK).

Let X = R™, Y = R’ and C = R.. Let f(z) := (fi(x), -, fe(z))T. A
point z* € K is said to a Geoffrion properly minimal solution of (VOK) [76]
if there exists a scalar M > 0 such that, for each 4,

fi(z®) — fi(x)
IAZ ) ZIAT)
fi(x) = fi(z*)
for some j such that f;(z) > f;j(z*) whenever z € K and fi(z) < fi(z").
Every Geoffrion properly minimal solution is a minimal solution.
Let T(z) = Vf(z) := (Vfi(z), -, Vfe(z))" be the Jacobian (an ¢ x n

matrix) of the vector-valued function f at z.

Proposition 3.8. Assume that f and K are convexr. If z* is a Geoffrion
properly minimal solution for (VOK), then z* is a solution of (VVI).

Proof. Since z* is a Geoffrion properly minimal solution for (VOK), it follows
from [76] that there exists A € intIR%. such that z* solves the following problem

min AT f(z), subject to z € K.
Then we have
VAT @) (z—2z*) > 0, VzeK.
Noticing that V(AT f) = ATV f. Thus z* satisfies

Vi) —2z*) Lovjoy 0, Vz € K.
Therefore z* is a solution of (VVI). |

A function g : IR™ — IR is said to be pseudolinear on K if g is both pseu-
doconvex and pseudoconcave on K. It is known [45] that, g is a pseudolinear
function if and only if, for any pair of z and y, there exists a scalar n(z,y) > 0
such that

9(y) — (@) = (2, y)Vy(z) " (y — 2).
Any linear function and any linear fractional function (ratio of linear func-
tions) is pseudolinear.
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Let f(z) =: (fi(z), -, fe(z))T, each f; is pseudolinear. Then there exists
a scalar 7;(z,y) > 0 such that

fiy) = fi(@) = mi(e, )V fi(2) " (y — @). (3.4)
Consider the vector pseudolinear optimization problem
Ming f(z), subject to z € K. (3.5)

Then we have

F) = f@) = (@, y)ViaE) (=), 0z, y)Vie(2)" (y —2)". (3.6)
Let T : R® — IR®*™ be a matrix-valued function defined by

T(z) = (m(z,y)Vii(), - mele,y)V fe(2)) " 3.7)
Consider the following vector variational inequality problem of finding
x € K such that
T(z)(y — ) £c\vpoy 0, Yy €K, (3.8)
where T is defined by (3.7).

The following shows an equivalent condition between VOX(3.5) and
VVI(3.8). Let f and T be defined by (3.4) and (3.7)

Theorem 3.9. Assume that K is convex and each fi(i = 1,2, --,£) is pseu-
dolinear. The point =* is o minimal solution of VOK(3.5) if and only if z*
solves VVI(3.8).

Proof. Let z* be a minimal solution of VOK(3.5). There is no z € K such
that

f(z) = f(z*) <c\(o} O,
that is
(m@z*,2)V (@) (@ —z), - mez*, 2)V fe(z*)(z —2) T <cypoy 0.
Thus, there is no z € K such that

T(z*)(z —z*) <c\{o} O
Then x* solves VVI(3.8). |

Proposition 3.10. Let X and Y be Banach spaces. Let C : X 3 Y be closed,
convez cone valued and u.s.c.. Let K C X be a nonempty conver subset. Let
f be a Giteaux differentiable function with Gateaux derivative denoted by
T{(xz) = Df(x). If T € K is o weakly nondominated-like minimal solution of f
on K, then T is a solution of the following generalized weak vector variational
inequality problem

(GWVVI) (T(i)7 T = j) ﬁintC(a‘c) 0, VzxekK.

Conversely, if f is C(z)-convez on K and T is a solution of (GWVVI), then
Z is a weakly nondominated-like minimal solution of f on K.
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Proof. Suppose that £ € K, and Z is a weakly nondominated-like minimal
solution of f on K. For any = € K, we have T + t(z — %) € K, V¢t € (0,1]. By
Definition 1.15,

@+ tx — 7)) — f(Z) Linso@) 0, VE€(0,1],

then
fE+tx—2) ~ f(
t

T
) ﬁmtc(i) 0, Vte(0,1].
Let t — 0+. Thus
(T(Z),z — Z) ¢ —intC(Z), VYzreK.

So Z is a solution of (WVVI). Conversely, let f be C-convex. Then, by Propo-
sition 1.72,

fy) - f(z) € (T(z),y—z) + C(z), Vz,yekK.
Since Z is a solution of (GWVVI), we have
<T(‘:E)’ y— j> ﬁintC’(a’c) 07 Vz € K7

i.e.

(T(Z),y—z)eW(@), Vyek,
where W(Z) = Y\(—intC(Z)). Then

fly) = (@) e W(@), Vyek,

that is,
fly) = f(Z) ¢ —intC(z), VyecK.

So Z is a nondominated-like minimal solution of f on K. |

Corollary 3.11. Let Y be a real normed space and K C Y. Let f : Y —
Y be a Gateaux differentiable vector-valued function with Gateauzr derivative
denoted by F(y) = Df(y). Let f be C(y)-convex on K. Let C: Y 3 Y be an
u.s.c. set-valued function such that for each y € Y, C(y) is a proper, closed
and convex cone inY. Let C = NyeyC(y) and e € intC. Let § € K. Then §
is a weakly nondominated-like minimal solution of f on K if and only if

miné.(5, F7)(w—9) = 0.

Proof. By Proposition 3.10, 7 is a weakly nondominated-like minimal solution
of f on K if and only if

F@y)(y —9) ¢ —intC(y), Vye K.
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By Proposition 1.54, the above inequality holds if and only if

(U Fy—-1) 20, VyekK.
Observing that £.(7,0) = 0, the theorem holds. [ |
The relations between vector variational inequality problems and set-

valued optimization problems are shown in Section 2.4, see Theorems 2.48,
2.50, 2.64 and 2.73.

Now we consider existence of solutions for weak vector variational inequal-
ities (WVVI).

Lemma 3.12 (Generalized Linearization Lemma). Let the mapping T :
X — L(X,Y) be monotone and v-hemicontinuous. Then the following two
problems are equivalent for each convexr subset K in X:

(i) T E K; (T(x)7y - $> %_intc’ 0’ Vy S K;
(ii) z € K, (T(y),y — z) Lintc 0, Vy € K.

Proof. Let = be a solution given by (i). Since T' is monotone,
(T(y)—T($),y—$> >c Oa yEK?

(T(),y —2) 2c (T(z),y — 2) Zitc 0, Yy EK.
Thus we have
(T(y),y — %) Lintc 0, Vy € K.
Suppose (ii} holds. Forany y € K, 0 < A < 1,
(Ty + (1= Nz), \y+ (1 = Nz — x) Lintc 0.
Dividing by A, we have

(T(z+ My — 1)),y — x) Lintc 0.
Let A — 0+, we obtain (i) since T is v-hemicontinuous. |

Definition 3.13. A mapping A € L(X,Y) is called completely continuous, if
it maps weakly convergent sequences to strongly convergent ones.

In next theorem, we shall use the weak topology of X and the norm topol-
ogy of Y.

Theorem 3.14. Assume that X is a reflerive Banach space and K ¢ X
is convex. Assume that (Y,C) is an ordered Banach space with intC # @
and intC* # &. Let the mapping T : K — L(X,Y) be monotone, v-
hemicontinuous and let, for any y € K, T(y) be completely continuous map-
ping on X. If
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(i) K is compact, or
(ii) K is closed, T is weakly coercive on K,

then the vector variational inequality (WVVI) is solvable.
Proof. We set
Fily) ={z e K: (T(2),y —z) £inic 0}, yE€ K.

For (i), we prove that F; is a KKM map on K. Let {z1,---,zx} C K,
S i =1,0; >0. Suppose that z = Y ;_; o;z; € Up_1 Fi(z;). Then

<T($)a Zi— IE) <intc 0, V’L,

n n
(T(z),2) = Y ai(T(z), @) Simc y_ ailT(x), ) = (T(x), ).
i=1 i=1
It is impossible, so we obtain
co{zy, - ,zk} C U1 Fi(zs),
i.e., F1 is a KKM map on K.

Let
Fy(y) ={rc K:(T(y),y — =) Lintc 0}, y€ K.

We have Fy(y) C Fa(y) for all y € K. Indeed, let z € Fi(y), so that (T(z),y—
z) %intc 0. By the monotonicity of T, it follows that

<T(y)7 y— SL') 20 <T($), Y- $> ﬁintc 07

that is, x € Fa(y). Thus F; is also a KKM map on K. By Lemma 3.12, we
have

Nyex F1(y) = Nyex F2(y).

We observe that for each y € K, Fy(y) is a (weakly) compact subset in
K. Indeed, for any y € K and any z € clF>(y), there exists a sequence
{Zk}nen C Fao(y) such that z, weakly converges to z. Since T'(y) is completely
continuous, we have that (T'(y), y—zx) € W strongly converges to (T'(y), y—z).
The strong closedness of W implies that (T'(y),y—z) € W, that is, z € Fa(y).
Hence, for each y € K, Fu(y) is weakly closed. Since we consider a weakly
topology on X and K is (weakly) compact, F>(y) is compact for each y € K.
By the KKM theorem (see Theorem 1.34), we have

Nyex F1(y) = Nyex Fa(y) # @.

Hence, there exists an Z € K such that

(T(Z),y — Z) Lintc 0, Vz € K.
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Consider the case (ii). Firstly, we prove the following conclusion: if ¢ € intC*
and z* is a solution of the (scalar) variational inequality (VI).:

(VI), z€ K, {(coT(x),y—=z)>0, Vzelk,
then z* is a solution of (WVVI).

Indeed, suppose that z* is not a solution of (WVVI). Then (T'(z*),y —
x*) <intc 0 for some y € K. Thus, by ¢ € intC*

<C o T(.CE*), Y- .’L'*> <0,
i.e., z* is not a solution of (VI),.

For (ii), it is sufficient to prove that (VI). has a solution, where c is the
one in the weak coercive condition. Let B, denote a closed ball of center 0 and
radius r in X (for the norm in X). By the Hartmann-Stampacchia theorem,
there exists a solution x,. of the variational inequality problem

zr € KNBy, (coT(z;),y—zr) >0, VyeKnNBHB,.

Choose r > ||z*|| with z* as z¢ in the weak coercive condition. Then, we have
(coT(xy),z* — zr) > 0. Moreover,

(coT(xr), " — zr)

—{coT(x,) —coT(x"),zr — ") + (—co T(z"), zr — z*)

—(coT(xy) —coT(z"),z, —z") + ||co T(z")||||zr — ]

—|lzr —a*||({co T(zr) — co T(z), zr —z%)/|lzr — 2*|| = |[co T(z")|]).

IA

Now if {|z,|| is unbounded, we assume without loss of generality that ||z.| —
oo. By the above inequality and the weak coercivity of 7', we may choose r
large enough such that {(co T'(z,),z* — z,) < 0, which contradicts

(coT(xy),z" —xp) > 0.

If ||z,|| is bounded, then we assume by the reflexivity of X and without
loss of generality that ||z,|| — Z € X as r — co. For any y € K, there exists
7 > 0 such that when r > 7, y € K N B,.. Thus

(coT(zr),y —zr) 2 0.
Letting r — oo, we have
<co T(i‘)v Y- j) > 0.

Hence Z solves (VI).. |
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Now we consider the existence of solutions for vector variational inequal-
ities with variable domination structures. We assume that X and Y are two
Banach spaces.

Let K C X be a nonempty, closed and convex subset, and let 7' : K —
L{X,Y) be a vector-valued function. Let C : X =3 Y be a set-valued function,
that is, for every x € X, C(z) is a closed and convex cone with nonempty
interior intC(x).

Consider the following (WVVI):
zo € K, (T(x0),x — %0) LintC(zo) 0, VT € K. (3.9)

Definition 3.15. Let T : X — L(X,Y) be a vector-valued function. T is said
to be C(x)-monotone on X if for any z,y € X,

(T(y) —T(x),y — =) 20(x) 0.

Lemma 3.16. [Generalized Linearization Lemma] Let T : X — L{X,Y) be
C-monotone and v-hemicontinuous on X. Then the following problems (I)
and (II) are equivalent for any conver subset K :

(i) T e Ka <T($),y - :L') gintC(z) 0’ Vy € K;
(ii) T c K’ <T(y),y - SC> gintC(m) Oa ‘v’y € K.

Proof. Since T is C(x)-monotone on X, we have
<T(y) - T(.’L’), Y- .’1)) ZC(z) Oa Vy € K.

Let z € K be a solution of (I). For the ordered Banach space (Y, C(z)) with
a fixed z € K, we have, by (iv) of Lemma 1.1

<T(y)7y - .fL') ﬁintC(z) 07 Vy € K

that is (II).
Now, we suppose that (II) holds. Then, for any y € K and X € (0,1), by
the convexity of K, we have

(TOW + (1 = M), Ay + (L~ N — @) Zineca) O
Dividing by A, we have
(T(z+ My — ),y — @) Lintc) 0-
Thus (I) is derived by the v-hemicontinuity of T' and the closedness of
W(z) = Y\(—intC(z)), for a fixed z € K as A\, 0. |

Set, for every y € K
Fl(y) = {iE €K: (T($)7y - $> zintC(m) 0},

Fz(y) = {.’E EK: (T(y)’y - CE) zintO(z) 0}
Now we equip X with a weak topology, Y with a strong topology and
L(X,Y) with the strong operator topology.
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Lemma 3.17. Let K C X be weakly compact. Let T : K — L(X,Y)
be a vector-valued function, and let, for every y € K, T(y) be a com-
pletely continuous operator. Let the set-valued function W : K — Y with
W(z) = Y\(—intC(z)) for every x € K be upper semicontinuous on K. Then
Fy(y) is weakly closed for every y € K.

Proof. We denote the weakly closed hull of Fy(y) by Fa(y). There exists a
sequence {zy}ren C Fa(y) converges weakly to some z € K. For every k € N,
we have

<T(y)’ Y- IL'k> ﬁintC(zk) 0,

that is
(T(y),y —xx) € W(zx), Vk€EN.

Since T'(y) is completely continuous and W is upper semicontinuous on K,
we have

<T(y)’ Y- :C) € W(ZL’),
that is z € Fy(y). |

Theorem 3.18. Let X be a reflexive Banach space, and Y a Banach space.
Let K C X be a nonempty bounded, closed and convexr subset in X. Let C :
X =Y be a set-valued function, such that, for every x € X, C(z) is a closed,
pointed and convex cone with nonempty interior intC(x). Let the set-valued
function W : K 3Y with W(x) = Y\(—intC(x)) for every x € K be upper
semicontinuous on K. Let the vector-valued function T : K — L(X,Y) be
C(z)-monotone and v-hemicontinuous on K, and let, for everyy € K, T(y) be

a completely continuous operator. Then the weak vector variational inequality
WVVI(3.9) is solvable.

Proof. We first prove that F; is a KKM mapping on K. Suppose that
{z1, -+ ,zx} C K, Zleozi =10 >0, =1,---,k,z = Zleaixi ¢
Uk, Fi(z;). Then

(T(z), 2 — ) Zintc(z) 0, 1=1,---,n.

Thus
k

E o; <T($), X4 = JJ) ZintC(x) 0,

i=1
that is

(T(z),z) — (T(x), ) Zinto() 0,
which is absurd. Thus we deduce that

conv{zy, - ,xk} C UleFl(x,-),

so that Fj is a KKM mapping on K. Now we have F;(y) C Fa(y) for y € K.
Indeed, let = € Fi(y), so that
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<T(JJ), Y- $C> ﬁintC(z) 0.
Since T is C-monotone on K, we have

<T(y)a Y- x) - <T(.’I}), Y- .'L‘> _>_C(x) 0.

By (iv) of Lemma 1.1, we find that

<T(y)a Y- (L’) éintC(m) 0,

that is, z € Fa(y). Thus, F3 is also a KKM mapping. By Lemma 3.16 we have
that
Nyer F1(y) = Nyex F2(y).

Besides, by Lemma 3.17 Fy(y) is weakly closed for every y € K.

Now we observe that K is weakly compact since X is a reflexive Banach
space and K is a bounded, close and convex subset in X. Since Fz(y) C K and
weak closedness of Fy(y), F>(y) is a weak compact. If we equip X with the
weak topology, we can use the KKM theorem for F,. Thus Nyex Fo(y) # @.
so that Nyex Fi(y) # @, thus there exists x¢ € K such that zo € Nyex F1(y),
that is

(T(.’ZJO), y— $0> ﬁintC’(mo) Oa Vy € K.
This completes the proof. |

Set
Ct =co{C(z): xz € K}.
Then if, for every z € K, C(x) is a closed, pointed and convex cone with
the nonempty interior intC(x), Cy is also a closed, and convex cone with

nonempty interior intCy. We assume that C is also pointed.
We extend the Definition 1.38.

Definition 3.19. Let K C X be a convex and unbounded subset. We shall say
that T : K — L(X,Y) is coercive on K if there exist zo € K and s € C7\{0}
such that

(soT(x) —soT(xg),x— xo)/||x — xo|| — +o00,

whenever x € K and ||z|| — oo; here so T(x) = s(T(x)).

Let X and Y be topological vector spaces, K a nonempty subset of X,
H a nonempty subset of Y, and M : K — Y a mapping. We want to study
conditions under which the system:

(S) Jye K, st. M(y)€H,

will have or will not have a solution.
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Definition 3.20. [73] Let Z be a subset of R. The real function w : Y — R
is called a weak separation function if

HY={heY :wh)¢Z} 2 H.
The real function s : Y — R is called a strong separation function if
H*={heY:s(h)¢ Z} C H.
Lemma 3.21. [73] Let the sets H, K, Z and the mapping M be given. Then:
(i) The system (S) and the system
w(M(y)) C Z, VyeK,

are not simultanecously possible, whatever the weak separation function w
may be;
(ii) The system (S) and the system

s(M(y)) € Z, VyeK,

are not simultaneously possible, whatever the strong separation function s
may be.

Theorem 3.22. Let X,Y,C, W and T satisfy the assumption conditions in
Theorem 3.18. Let K C X be a closed, convex and unbounded subset. Moreover

let T' be coercive on K with s € C7 . Then the weak vector variational inequality
WVVI(3.9) is solvable.

Proof. Note that z¢ € K is a solution of (WVVI) iff the system
(") Jye K, st {T(xg),y— xo) € —intC(zo)
is impossible. Observe that

Ci\{0} c C*(z)\{0}, Vze K.

We assume that s € C7\{0} is the same one as in the coercive condition. We
set in Lemma 3.21

Z= (—OO:O]’ H= 7;77'.)50(3“0)’ M(y) = (T(:L‘o),'y - $0>,

then w(h) = s(h),h € Y is a weak separation function for the system (S’).
Thus, by Lemma 3.21(i), in order to show the existence of solutions for
(WVVI), it is sufficient to prove that the classical scalar variational inequality

(VI), x €K, (soT(z),y—z)>0, VzxekK,

has a solution in K.
B, denote the closed ball in X with the center at 0 and the radius r. In
the spacial case where
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Y=R, C(z)=R, VzeKnNB,.
Theorem 3.18 guarantees the existence of a solution z, of the following (VI)
(VD) ze€ KNB,, (soT(z),y—z)>0, YyeKnNB,.
Choose 7 > ||zol|, with o as in the coercive condition. Then, we have
(s o T(zy), o — zry > 0.
Moreover,

(s o T(xr), z0 — 27)
= —(soT(z,) — soT(xq),xr — xo) + (s 0 T(x0), zr — o)
—(s o T(z;) — 50 T(x0), zr — mo) + ||s 0 T (o)l — 2ol

<
< —ll&r — ol |({(s 0 T(@r) — 5 0 T(x0), r — z0)/||2r — mo|| + [|s © T(z0)|l-

Now, if ||z|| = r, for all r, we may choose r large enough so that the above
inequality and the coercivity of T imply
(soT(xr), 20 — xr) <0,

which contradicts
(soT(xy),xo —xr) 2 0.

Hence, there exists r such that ||z,|| < r. Now, Yz € K, we choose € > 0 small
enough such that z, + ¢(x — z,) € K N B, and thus

(soT(zy),e(x—2,)) 20, VzeK,

that is
(soT(zy),z —zr) >0, VzekK,

which shows that z, is the solution of (VI),. By the above claim, z, is a so-
lution of (WVVI). |

Remark 3.23. Y = R,C(z) = Ry,Vz € K, the (WVVI) collapses to the
usual scalar variational inequality (VI):
x € K, <T(.’L‘0),.’L‘ - $0> >0, VzxeK.
Then the theorem 3.22 collapses to the following theorem 3.24.
Theorem 3.24. Let X be a reflerive Banach space, and K be a nonempty

bounded, closed and convex subset in X. Let T : K — X* be monotone and
hemicontinuous on K. Then the variational inequality (VI) is solvable.
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Obviously, the hemicontinuity of 7' in Theorem 3.18 is equivalent to the
continuity for each one dimensional flat L ¢ X. Thus, Theorem 3.24 is essen-
tially the Hartmann-Stampacchia theorem for variational inequalities.

This section is concluded by a discussion on the scalarization of (VVI).
Consider the following form of a (VI) of finding z* € K such that

O\ (T(a"),z —2*) >0, VzeK. (3.10)

If A € intC* and z* is a solution of VI(3.10), then z* is a solution of the
(VVI). If A € C*\ {0} and z* is a solution of VI(3.10), then z* is a solution
of the (WVVI).

3.2 Inverse VVI

In this section, we study inverse VVI problems and establish their equivalences
with given VVI problems. An inverse VVI is also called a dual VVI in the
literature.

Let T : X — L{X,Y) be a function, and h : X — Y is a function. The
(VVI,) problem consists in finding z* € X, such that

(T(z*),z — z*) £o\qoy h(z™) — h(z), Vo € X.

Assume that T is one-to-one (injective). Define 77 : L(X,Y) — X as
follows:

T'(l) :== ~T~Y(~1), VI € Domain(T") = —Range(T).

If T is linear, then T" = T~ 1.
The inverse VVI of the (VVI,) problem is defined as: finding I* €
Domain(T"), such that

(L =17, T'I") Lovgoy (™) —hX(D), Vi€ L(X,Y),

where h% (1) := Maxc{(l,z) — h(z) : € X} is the vector conjugate function

of h. This problem is denoted by (IVVI,).

Definition 3.25. Let h : X — Y be a C-convex function. The Fenchel con-
Jugate of h is the set-valued function h% : L(X,Y) Y, such that

R (l) i= Mazc{(l,z) — h(z) : z € X}, 1€ L(X,)Y).
Thus, a generalization of Young’s inequality follows immediately:
Lemma 3.26. Let h and hZ be as in Definition 3.25. Then

h(z) + h<(l) — (I, z) £c\{0y 0, Vz e X,le L(X,Y).
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Let h: X — Y and z* € X. We define the subgradient of h at * by
O<h(z*) ={l € L(X,Y) : h(z) — h(z") £c\(oy L,z —2"),Vz € X}.
We also define the strong subgradient of h at z* by
0h(z*) = {l € L(X,Y) : h(z) — h(z") >¢c (I, — 27),Vz € X}.

Theorem 3.27. Let X be a Hausdorff topological vector space and (Y,C) be
an ordered Hausdorff topological vector space. The function T is one-to-one
and h: X — 'Y is continuous. Assume that hZ(l) # @,Vl € L(X,Y).

(i) If z* is a solution of (VVIy,), then I* = —T(z*) is a solution of (IVVI,)

and the following relation is satisfied:

(I", ") € hiz™) + h(I").

(i) If I* is a solution of (IVVI,), C is connected, i.e., CU(—C) =Y, and

O<h(z*) # @, where z* = =T'(I*), then z* is a solution of (VVI).
Proof. (i) Let «* be a solution of (VVI},)

z" € X : (T(z"),z — z*) Lo\(oy h(z™) — h(z), Ve X,
—(T(z"),z") — h(z") £c\joy —(T(z"),z) — h(zx), VzeX.

That is
—(T'(z"),z*) — h(z") € KX (=T (z")) (3.11)

—(T(z"),z") — h(z") — hL() C hL(—T(z*)) —hZ(l), Vi€ L(X,Y)

If I* = —T(z*) is not a solution of (IVVI,), then there exists [ € L(X,Y),
such that

(=1, T'(1")) <c\foy h<(l") — hX (D).
It follows from (3.11) that
(=1, T'(1") <c\(oy —(T(z"), ") — h(z") — hZ (D),

—(l,z") <c\(oy —h(=") — R (D).
It is a contradiction with the definition of hZX(l). Then [* is a solution of

(IVVIL,).
It is easy to verify that

(I",z*) € h(z*) + R (1").

(ii) Let I* be a solution of (IVVI,). Let * = —T"(I*). Then I* = ~T'(z*).
That is
U=, T Zoygoy hL(l) — h(l), VI L(X,Y)

(I +T(z"), =) £o\joy P2 (=T(z")) — hZ (D), (3.12)
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—(T(z"),2") = (L,z") + (D) £c\(oy P<(=T(2"))-
Since d<h(z*) # @, let | € O<h(z*), then

{l,z*y — h(z") € h’_‘<_(l).
It follows from (3.12) that
—(T(z"),z") — h(z") £c\(oy h<(=T(z7)).

From the definition of hZ and C' being connected, we get

—(T(z"),z") — h(z") € h2(=T(z")).
If * = —T"(I*) is not a solution of the (VVI,), then Ju € X, such that

(T(x"),u—z*) Lov(oy h(z") — h(u),

—(T(z"), ") — h(=") Lc\joy —(T (@), u) — h(u).

Then we obtain

—(T(z"),z%) — h(z") ¢ K< (=T(z")),

a contradiction. Therefore z* = —T7(I*) is a solution of the (VVI,). This
completes the proof. |

Corollary 3.28. Assume that A: X — X* is one-to-one and that hy : X —
IR be a lower semi-continuous convex function. ™ is a solution of the following
variational inequality: find x* € X, such that

(Az*,z —z*) > hi(z) — h1(z*), VzeX

if and only if I* = —Ax* € X* is a solution of the inequality which consists
in finding I* € Domain(A"), such that

(A1 =1") > hi(*) — hi(D), VIe X,
and the following identity is satisfied
ha(z*) +hi(l") = (I, 27),
where h} is the Fenchel conjugate of hq,

hi(l) = max{{l,z) — hi(z) : z € X}.
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Proof. This follows from Theorem 3.27 by letting C = R+.. ]

The inverse weak VVI (for short, IWVVI,) of (WVVI,) is defined as: find
I* € Domain(T"), such that:

(L= 1 T (1)) Zinte W) —h5(D), Vi€ L(X,Y)

where f%(l) = Maxin:c{l(z) — f(x) : * € X} is the weak vector conjugate
function of f.
Let h: X — Y and z* € X. We define the weak subgradient of h at z* by

O<h(z*)={l e L(X,Y) : h(z) — h(z") Linrc {l,x — "), Vz € X}.

Theorem 3.29. Let X be a Hausdorff topological vector space and (Y,C) be
an ordered Hausdorff topological vector space with intC # &. The function T
is one-to-one and h : X — Y is continuous. Assume that h% (l) # @,V €
L(X,Y).

(i) If z* is a solution of (WVVI,), then I* = =T (x*) is a solution of IWVVI,
and the following inclusion is satisfied:

(I*,3%) € h(z*) + h%(I*).

(i) If I* is a solution of (IWVVI), C is connected, i.e., CU{—C) = X, and
O<h(z*) # &, where x* = =T'(I*), then x* is a solution of (WVVI,).

Proof. The proof follows the same lines as that of Theorem 3.27 by replacing
ordering ‘ o\ {0}’ by £intc and L (1) by hZ(1). [ ]

In the following some examples are given to show the application of a weak
inverse VVL.

Ezample 3.30. (Vector approximation). Consider the vector approximation
problem

Ming(flar —z||%,- -+, [lae — z||*) subject to = € X,

where X is a Hilbert space with the inner product [-,-], a;(:3 = 1,---,£) is a
fixed element of X, ||z|? = [z, z]. If 2* € X is a weakly minimal solution, i.e.,

(lar =z, -+, flae = 2l?) Zinto (lar —*[|?,- -+, lae — &*||?), Yz € X,
then
(lar,z—2"],- -+, [ae, @ — 2*]) Linee (a1, 27, [ag, z — 2¥])
Hence, this is a weak VVI (WVVI,) with Y = R, T(z) = ([z, ], -, [z,]),
h(z) = —([a1,z],- -, [a¢, 2]).

We can verify that {* = —T(z*) satisfies
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(I =0, —z*) Lintc K (") —hL(), Vie L(X,IR™).
Since T7(1*) = —z*, I* is a solution of the inverse VVI
(IL=01",T'(1)) Lintc RE(l*) = RL(), Vie L(X,IR™).
Consider the vector unconstrained optimization problem {for short, VUP)
Ming f(z), subject to z € R",

where f: IR" — IR? is a differentiable vector-valued function.
Let h: X = Y be a set-valued function and z* € X. We define the weak
subgradient of h at z* by

0Lh(z*) ={l e L(X,Y) : h(z) — h(z") Lintc (I, —2"),Vz € X}.
(VUP) is said to be weakly stable if the set-valued mapping W : R™ — IR?
W(u) = ~Maxinio{—¢(z,u) : ¢ € R™}

has a weak subgradient at u© = 0.
Now we construct the dual problem (for short, DVUP) of (VUP) as follows

(DVUP) Ming — ¢%(0,I), subject to I' € R™*¥
where ¢ : R"™ x IR® — IR’ is the perturbation function satisfying
&(x,0) = h(zx), VYzelR"™

Proposition 3.31. Assume that (VUP) is weakly stable and C is connected.
If * is a solution of (VUP), then there emists Iy € IR™** such that I* =
—V f(z*) is a solution of the inverse vector variational inequality and I'y is a
solution of (DVUP) and satisfy the inclusion

(I*T, Iy) € d<p(z*,0).

Proof. Let * be a weakly minimal solution of VUP. Then, z* is a solution of
the following (WVVI): find z* € R", such that

Vf(x*)T(w —z") Lintc 0, Yz € R™.
Then from Theorem 3.29, I* = —V f(z*) satisfies
(I =1)T(=2") Linso 0L (") = 0% (1), VI eR™,
where 0% (1) = MaxXintc{l"z : z € R™}. This is the inverse (VVI) of (WVVI)
ifwelet T'=Vhand —2z*=T'(I*),f= 0.

It is easy to verify that the weak inverse relation of (VUP) and (DVUP)
holds: for any z € R", I' € R™,
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¢(z,0) ¢ —¢<(0,I') — intC.

From [176], if (VUP) is weakly stable, then there exists a solution Iy € IR™ ¢
of (DVUP) satisfying
(07 FO) € 8<q§(x*, 0)

Assume that C is connected. Then, from the vector variational inequality,
—Vfz) 'z <c0, VzeR"
Hence (I*7, Io) € O<p(z*,0). [ |

We now consider the inverse VVI with a variable ordering relation. Let T :
X — L(X,Y) be a function, and h : X — Y be a function. Let C: X 3 Y
be a set-valued function such that, for every z € X, C(z) is a nonempty convex
cone. (VVIY) with a variable ordering relation consists in finding z* € X, such
that

<T(CC*), T — l‘*> ﬁc(z*)\{o} h(:L‘*) - h(IL‘), Vz € X.
Let h : X — Y. We define the subgradient of h at z* with a variable
ordering relation by

Oh(z®) = {l € L(X,Y) : h(z) — h(z*) Zo@n (o} (b — &%), Vo € X}.

The inverse VVI of (VVI}) with a variable ordering relation is defined as:
finding I* € Domain(7"), such that

(I =1"T'(1")) £o@ o RS — (1), Vi€ L(X,Y),

where hZ(l) := Maxg(e+){(l;z) — h(z) : € X} is the vector conjugate
function of h with a variable ordering relation. This problem is denoted by
(IVVIY).

It is clear that if let [ € 0% h(z*), then

(") = h(z") € KZ(1).

Theorem 3.32. Let X and Y be Hausdorff topological vector spaces and
C: X Y be a set-valued function such that, for every x € X, C(x) is
a nonempty conver cone. The function T is one-to-one and h : X — Y is
continuous. Assume that K< (1) # @,Vl € L(X,Y).

(i) If z* is a solution of (VVI}), then I* = —T(z*) is a solution of (IVVI})
and the following relation is satisfied:
(I*,z*) € h(z*) + hZ(I").

(i) If I* is a solution of (IVVI,), C is connected, i.e., C(x)U(-C(z)) =Y,
for every x € X, and O2h(z*) # @, where z* = —T'(I*), then z* is a
solution of (VVL)).
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Proof. (i) Let z* be a solution of (VVI}):
gt e X : (T(z"),z — x") Lo@)\{o} h(z") — h(z), Vz € X,

—(T(z"),2") = h(z") £o@ gy —(T("),2) — h(z), VrelX.

That is
~(T(a*),z*) — h(a") € h2(~T(a")) (3.13)

—(T(z*),z*) — h(z*) = R (1) S hL(-T(z")) — h(l), Vi€ L(X,Y).
If I* = —T'(z*) is not a solution of (IVVI}), then there exists | € L(X,Y),
such that
(L=1,T'(1")) <o)y K<) —RZ (D).
It follows from (3.13) that
(=1 T'(I") <c@ oy —(T("),2") = hz") = hZ (1),

It is a contradiction with the definition of hZ¥(I). Then I* = —T(z*) is a
solution of (IVVI}).
It is easy to verify that

(I*,2%) € h(z*) + R (I").

(ii) Let {* be a solution of (IVVI}). Let z* = —T"(I*). Then I* = —T'(z*).
That is

<l - l*a T,(l*» ﬁC(m*)\{O} h*gv(l*) - h’g}(l)v vie L(X7 Y)
<l + T(.’L‘*), —x*) gC(w*)\{O} h*su(——T(CC*)) — hg}(l), (3.14)

—(T(2*),a") = (L,2") + hZ (1) £o@ oy RS (=T (7).
Since 92h(z*) # @, let | € OLh(z*), then

(l,z") — h(z™) € KZ(1).
It follows from (3.14) that
—(T(z*), ") = h(z") Lo (o} h< (=T ("))
From the definition of h*S” and C being connected, we get
—(T(z%),z%) — h(z") € K (=T (z")).
If * = —T"(I*) is not a solution of the (VVI}), then Ju € X, such that

(T(z*),u — &) Lo n\fo Ma™) — h(u),
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—(T(z"),2") — h(z") Lo njoy —(T (@), u) — h(w).

Then we obtain
—(T(z"),z") — h(z*) ¢ K (-T(z")),

a contradiction. Therefore z* = —7"(I*) is a solution of the (VVI}). This
completes the proof. [ |

Consider the inverse WVVI with a variable ordering relation. Let T :
X — L(X,Y) be a function, and h: X — Y be a function. Let C: X 3 Y
be a set-valued function such that, for every z € X, C(x) is a convex cone with
nonempty interior. The (WVVI}) problem with a variable ordering relation
consists in finding z* € X, such that

(T(z"),z — ") Lintc(a) Ma™) — h(z), Vz € X.

Let h: X — Y. We define the weak subgradient of h at z* with a variable
ordering relation by

0Zh(z™) ={l € L(X,Y) : h(z) — h(z*) Lintc(@) (I, —2"),Vz € X}.

The inverse WVVI of (WVVI}) with a variable ordering relation is defined
as: finding {* € Domain(7"), such that

(=1, T'(I") Linto(ar) W) —hZ(1), Vie L(X,Y),

where hZY (1) := Maxnic(e+){{l, ) — h(x) : * € X} is the weak vector conju-
gate function of A with a variable ordering relation. This problem is denoted
by (IWVVIY).

Theorem 3.33. Let X and Y be Hausdorff topological vector spaces and
C:X 33Y be a set-valued function such that, for every x € X, C(z) is
a nonempty convex cone with nonempty interior. The function T is one-to-
one and h: X — 'Y is continuous. Assume that K (l) # @,V € L(X,Y).

(i) If * is a solution of (WVVI), then I* = —T(z*) is a solution of
(IWVVE ) and the following relation is satisfied:
(I*, ") € h(z™) + hZ(I").

(it) If I* is a solution of (IWVVI, ), C is connected, i.e., C(z)U(—C(z)) =Y,
for every z € X, and 0Lh(z*) # @, where ¢* = —=T'(I*), then z* is a
solution of (WVVL, ).
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3.3 Gap Functions for VVI

The concept of a gap function is well-known both in the context of convex
optimization and variational inequalities. The minimization of gap functions
is a viable approach for solving variational inequalities. In this section, we
generalize the gap function for variational inequalities to vector variational
inequalities. The convexity and differentiability of gap functions are also stud-
ied.

Let X and Y be Banach spaces, and let C C Y be a closed and convex
cone with nonempty interior intC.

Consider following vector variational inequality problem (VVI) of finding
y € K such that
(T(y),z ~y) Loy 0, Vz €K,
where K is a closed subset of X and T': X — L(X,Y) is a function.

The weak vector variational inequality problem (WVVI) of finding y € K
such that

(T(y),x - y> ﬁintC 0, VrekK.

Definition 3.34. Let C be a convexr and closed cone in 'Y with nonempty
interior and K C X be a closed set.

(i) A set-valued function ¢ : K =Y is said to be a gap function of (VVI) if
1. 0 € ¢(y) if and only if y solves (VVI);

2. 0 ZC\{O} ¢(:L‘), zeK.
(ii) A set-valued function ¢, : K =Y is said to be a gap function of (WVVI)
if
1. 0 € ¢u(y) if and only if y solves (WVVI);
2. 0 Zintc $uw(z), Vo € K.

Let
(T(z),z— K) =U{(T(z),z—2) : 2 € K}.

Define the set-valued function ¢ : K =3 Y by
o(z) := Maxg(T(z),z — K), z€K.

Theorem 3.35. Let C be a convex and pointed cone in Y. The set-valued
Junction ¢(x) = Mazc(T(x),z — K) is a gap function for (VVI).

Proof. We first prove that 0 € ¢(y) if and only if y solves (VVI).
Suppose that y solves (VVI). Then

(T(y),y —z) 2c\{0} 0, Vz € K.

In particular, let = y, then

(T(y),y —y) =0.
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Thus,
0e(T(y),y - K).

We assert that 0 € &(y). Otherwise, if there exits some z € K, such that
(T(y),y — ) 2c\foy (T(y),y —y) = 0, then this contradicts the fact that y
solves (VVI).

Conversely, suppose 0 € ¢(y). If y does not solve (VVI), then there exists
z € K, such that

(T(),z = v) <c\(0y 0,
(T(y),y —x) Zc\{oy 0 = (T(y),y — y)-
Thus, 0 ¢ ¢(y), a contradiction.

Moreover, for any z € K, 0 € (T'(z),z — z). By the definition of ¢(x), we
have

0 2c\(0} 9(z), Vz € K.
The proof is complete. |

Define the set-valued function ¢, : K =2 Y by
du(z) := Maxjnic(T(z),z — K), Vze K.
Theorem 3.36. The set-valued function ¢, () is a gap function for ( WVVI).
Proof. The proof is similar to that for Theorem 3.35 and is omitted. |

We now extend the definition of a gap function to a general VVI as follows.

Definition 3.37. Let C be a closed and convex cone in'Y. The general vector
variational inequality problem (for short, GVVI) consists of finding y € X
such that

(GVVI) (T(y),z —y) + h(z) — h(y) £o\(o} 0, Vz € X,

where T : X — L(X,Y) is assumed to be injective, and h: X — 'Y is assumed
to be a function.

Definition 3.38. A set-valued function ¢' : X =3Y is said to be a gap func-
tion of the (GVVI) iff

1.0 2c\(0} #'(2), VzeX;
2.0 € ¢'(y) if and only if y solves (GVVI).

Define the set-valued function ¢’ : X = Y by
¢’ () = Mazc((T(z),z — X) + h(z) — (X)), z€X.
It follows immediately that
¢'(v) = h(y) + 9(=T(¥)) + (T(¥),v),

where g is the Fenchel conjugate of h. We now have a much simpler proof that
¢’ is a gap function for (GVVI), and the meaning of “gap” is now apparent.
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Theorem 3.39. Assume that C is a pointed, closed and convexr cone. Then
¢’ is a gap function for problem (GVVI).

Proof. (1) The fact that ¢'(y) £c\{o} O follows directly from Young’s inequal-
ity of Lemma 3.26.

(2) Suppose that 0 € ¢’'(y). If y does not solve (GVVI), then there exists
some x € X, such that

(T(y),y — ) — h(z) + h(y) Zc\joy 0= (T(y),y — y) — h(y) + h(y),

then 0 ¢ ¢'(y), a contradiction. On the other hand, suppose that y solves
(GVVI). Then

(T(y),z —y) + h(z) = h(y) £ov(o3 0 Vo € X.
That is,
(T(y),y — o) + h(y) — h(z) Ferio) 0 Va € X.
By the definition of ¢'(y), we have that
¢'(y) Zonioy 0.

This together with (i) yields 0 € ¢/(y) by the pointedness of C. |

The above generalization of (VVI) can be easily extended to (WVVI).

Definition 3.40. The general weak vector variational inequality (for short,
GWVVI) consists of finding y € X such that

<T(y)7l‘ - y) - h(y) + h(.’l)) Zintc 0, Vre X,

where T : X — L(X,Y) is assumed to be injective, and h : X — Y is assumed
to be a function.

Definition 3.41. A set-valued function ¢}, : X =3 Y is said to be a gap
function of the (GWVVI) iff

1.0 Zintc ¢, (z), VzeX;
2.0 € ¢l,(y) if and only if y solves (GWVVI).

Define the set-valued function ¢, : X =3 Y by
#,(2) = Maxinsc((T(2),x — X) + h(z) — h(X)), Ve X.

Theorem 3.42. The set-valued function ¢}, : X =Y is a gap function for
(GWVVI).

The above gap functions are of set-valued nature. Special single-valued gap
functions can be constructed in terms of nonlinear scalarization functions. Let
T:X — L(X,Y) and K C X be a compact set. Consider the following weak
vector variational inequality problem of finding z* € K such that

(T(:L‘*),:I: - 37*) ﬁintc 07 Vr € K. (315)
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Theorem 3.43. Let e € intC. Then z* € K solves WVVI(3.15) if and only
if g(x*) = 0, where

g(x) = a%ikléeO((T(x)ay_x))’ (316)

s a mon-positive function.

Proof. Assume that z* € K solves the problem WVVI(3.15). Then, it follows
from Proposition 1.43 that

(T(x*),z — ") Lintc 0, Ve € K

& (T(z"),z —z") € —intC, Ve e K
S Co((T(z"),z—2%)) >0, VzeK
& min Eo((T(2%), 2 —27)) 2 0.

It is clear that &o((T(z*),2* — z*)) = 0. Hence, g(z*) = 0. [
In the special case where Y = R and C = IRi, the nonlinear scalar

function may be expressed in the following equivalent form:

Yi — a4
- . 1
£ea(y) max, —— (3.17)

Corollary 3.44. Let Y = IR® and C = lRﬁ_ and let

g1(w) = min max {(T3(z),y —2)}, @ €K, (3.18)

where T(z) = [T1(z),- -, Te(z)]T. Then z* € K solves WVVI problem (8.15)
if and only if g1(z*) = 0.

Proof. Tt follows from Theorem 3.43 and (3.17) by letting @ = 0 and
e=(1,---,1)T ¢ R [

Consider the following vector variational inequality problem of finding
z* € K such that

(T(z"),z —2*) £c\{0} 0, Vz € K. (3.19)

Theorem 3.45. Let e € intC. Then z* € K solves VVI(8.19) only if g(z*) =
0, where g(z) is defined by (3.16). If Y = IR® and C = ZRi, then x € K solves
VVI only if g1(z*) = 0, where g1(x) is defined by (3.18).

Proof. Note that a solution of VVI(3.19) is also a solution of WVVI(3.15).
The results follow from Theorem 3.43 and Corollary 3.44. |

The following example shows that Theorem 3.45 is only a necessary con-
dition for VVI.
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Ezxample 3.46. Let K = [~1,0] and C = lRi. Consider the VVI defined as
follows:
(1,2z)(y — x) g]}{i\{o} 0, Vy € K.

Then z = 0 is not a solution of VVI(3.19), but g1(0) = 0. Hence Theorem
3.45 is only a necessary condition for VVI.

Next we study the gap function of vector variational inequalities with a
variable ordering relation.

Let X = Y. Consider the following vector variational inequality problem
of find y* € K, such that

(T(W"),y—y") ¢ —intC(y"), YyeK, (3.20)

where K C Y isasubset, T:Y — L(Y,Y) is a functionand C: Y =2 Y is a
set-valued function.
By Proposition 1.54, (3.20) holds if and only if

£y, (TW*),y—vy*) >0, VyekK.

Note that £(y*,0) = 0. Then (3.20) holds if and only if

g}éigf(y*, (T(y*),y—y")) =0.

Thus we have the following result.

Theorem 3.47. Let Y be a real normed space and K C Y be a nonempty
subset. Let C:Y 3Y be a set-valued map such that for eachy €Y, C(y) is
a proper, closed and conver cone in'Y and C linear. Let C = Nyey C(y) and
k0 € intC. Let y* € K. Then y* is a solution of vector variational inequality
(8.20), if and only if

miné(y", (T(y"),y —y™) = 0. (3.21)

Under some appropriate conditions, the gap function for both the (general)
vector variational inequality and (general) weak vector variational inequality
can be shown to be convex.

Definition 3.48. Let K be an affine subset of X. The function T : K —
L(X,Y) is affine if, V2', 2" € K,Vo, B € IR, with a+ 8 =1 we have

T(az' + Bz") = oT(z") + BT (z").

Lemma 3.49. Let T : K — L(X,Y) be a function. If T is affine and mono-
tone, then the function (T'(-), ) : K — Y is C-convez.
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Proof. Givent € (0,1), o', 2" € K,
(T(tz' + (1 = t)a"), ta’ + (1 — t)a”) — ¢T ("), 2") — (1 — t)(T("), =")
= (T(@'),z") + (1 - )*(T(z"), z") + t(1 — ) ((T(z"),z") + (T(z"),z")
T (z),2') — (1 = t)|(T(z"), 2"
= —t(1 —t)(T (@' —2"), 2’ — ")
<c 0.

It is well-known that the Fenchel conjugate of a scalar valued function is
convex in the usual definition. With the above definition of convexity for set-
valued functions, this notion is now affirmative for a vector-valued function.

Lemma 3.50. Let h : X — Y be a C-convex function and let, for any u €
L(X,Y), the set {{u,z}—h(x): z € X} satisfy the domination property. Then
the Fenchel conjugate of h is type I C-convex.

Proof. By definition, the Fenchel conjugate of the vector-valued function A is
a set-valued function ¢ : L(X,Y) =3 Y such that

g(u) = Maxc{(u,z) — h(z) : x € X}.
We have, V¢ € (0,1),4,v" € L(X,Y),
g(tu' + (1 —t)u”)
= Maxc{(tv' + (1 —t)u",z) — h(z) : z € X}
C{{t+ (-t z) - f(z):z € X}

= {t((w,z) — h(2)) + (1 = t)((u", z) - h(w)) rxe X}
C t{({,2) — h(z)) : xGX}+(1—t){( ;&) — h(z)) : z € X}
C tMaxc{({v', ) — h(z) : weX}—C’

+(1 - OMaxc{((w",z) — h(z)) iz € X} = C

= tg(u) + (1 —t)g(u”") - C.
Then g is type I C-convex. |

Lemma 3.51. If g: L(X,Y) 2 Y is type I C-conver, and T : X — L(X,Y)
is affine, then the composite goT : X =3'Y s type I C-convex.
Proof. Given z’,z"” € X and t € (0,1),
goT(tz' + (1 —~t)a") = g(T(tz’ + (1 - t)z”))
= g(tT(z") + (1 - )T (z"))
Ctg(T(@')+ (1 —-t)g(T(z") - C
=tgoT(z")+ (1 —t)goT(z") - C.
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Theorem 3.52. Let C be a closed and convex cone in Y and let for any
u € L(X,Y) the set {{u,z) — h(z) : x € X} satisfy the domination property.
Consider the problem (GVVI). If T is affine and monotone, and h : X =Y
is C-convez, then the gap function ¢’ is type I C-conver.

Proof. By definition, the gap function ¢'(z) can be rewritten as,
¢'(z) = go (-T)(z) + (T(x),2) + h(z),

where the Fenchel conjugate g of h is type I C-convex by Lemma 3.50. Since
T is affine, so is —7T. By Lemma 3.51, go (—T) is type I C-convex. By Lemma
3.49 (T'(-), -} is C-convex, and hence ¢’ is type I C-convex. |

Recall that
&(z) = Maxc{(T(z),z — K), =z €K,

¢w(x) :MaxintC<T(x))$_K>> S Kv
respectively.

It is worth noting that (VVI) is equivalent to the following set-valued
optimization problem:

Minc®(z), subject to z € K, (3.22)

and (WVVI) is equivalent to the following set-valued optimization problem:

Ming®,,(z), subject to x € K. (3.23)

If T is a vector-valued function from X into X™*, then (VVI) and (WVVI)
become the ordinary variational inequality problem and the gap functions &
and @, reduce to Auslender’s gap function [7]. Thus, set-valued optimization
problems (3.22) and (3.23) reduce to a scalar optimization problem:

min ¢(x), subject to z € K,

where ¢(z) = max(T(z)},z — K). If ¢ is differentiable, then the above math-
ematical programming problem may be solved by a descent algorithm which
possesses a global convergence property [95]. Therefore, it is very important
and valuable to discuss differential properties of gap functions ¢ and &,, of
vector variational inequalities. In sequel, let X and Y be two real Banach
spaces. Let § and © denote the origin points of ¥ and L(X,Y"), respectively.
For any A € L(X,Y), we introduce the norm:

14|z = sup{||A(@)lly : ||| < 1}.

Since Y is a Banach space, L(X,Y') is also a Banach space with the norm ||| .
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3.4 Set-valued VVI

In this section, we develop existence of a solution for a set-valued VVI using a
selection of a set-valued function. We also discuss gap functions of a set-valued
VVI

Let X and Y be two Banach spaces, K C X and T : K =3 L(X,Y).
Consider the set-valued WVVI of finding z* € K and ¢ € T(z*) such that

{t,z — x*) Lintc 0, Vz € K. (3.24)

Lemma 3.53. Let Ty : K — L(X,Y) be a selection of T : K = L(X,Y). If
x* is a solution of the following WVVI: finding x* € K such that

(Ty(x*), — &) Linic 0, Vz €K,
then x* is a solution of the set-valued WVVL

Theorem 3.54. Let X and Y be Banach spaces and K be a nonempty com-
pact and convex subset of X. Let C be a proper, closed, and convex cone and
intC # &, and Assume further that T : K = L(X,Y) is C-monotone; and
there is a v-hemicontinuous selection Ty of T on K. Let, for any y € K,

Ti(y) be completely continuous on X. Then there exists a solution to the
WVVI(3.24).

Proof. By the assumption, there is a -v-hemicontinuous selection 77 : K —
L(X,Y) such that T1(z) € T(z),Vz € K and T} is v-hemicontinuous on K. It
is clear that T7 is also C-monotone. Then all conditions of Theorem 3.14 are
satisfied. Thus, there is a solution z* to the problem WVVI(3.26). By Lemma
3.53, z* is a solution of WVVI(3.25). n

We consider the set-valued WVVI with a variable ordering relation. Let
C: K 3Y be cone-valued and T : K =3 L(X,Y). Consider the set-valued
weak vector variational inequality with a variable ordering relation of finding
z* € K and t € T(z*) such that

(t,z—z") zintC(z) 0, VzekK. (3.25)

Let f : X — Y be a vector-valued function. Consider the vector optimiza-
tion problem with variable domination structure C(z):

(VOKV). Ming(s) f()
zeK

We set Cp = Nyei C(x), and assume that intCp # .

Proposition 3.55. Let f : K — Y be Cy-convex and continuous at x* €
K and T(z) = O<f(x) with respect to the cone Co. If z* is a weakly
nondominated-like solution of the vector optimization problem (VOKV), then
(z*,0) solves (GWVVI).
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Proof. Suppose that z* is a weakly nondominated-like solution of (VOKV).
Then
f(x) — f(x*) Lintc@z) 0, Vz € K.
This implies that
f(@) = f(2") £intc, 0, Vz € K.

By the definition of Cp-weak subgradient, 0 € T(z*) = I« f(z). Thus
(GWVVI) is satisfied with the given z* and ¢ = 0. |

Proposition 3.56. Let f : K — Y be Cy-convexr and continuous at x* €
K and T(z) = 0%, f(x). If (z*,t) solves (GWVVI), then x* is a weakly
nondominated-like solution of (VOKV).

Proof. Suppose that (z*,%) solves (GWVVI). Let W(z*) = Y\ — intC(z*).

Then
{t,x—z*) e W(z¥), Vz€K.

It follows from the definition of a Cy-strong subgradient that
f(z) - fz*) ~ f,z —z*) € Co C C(z*), Vz € K.
Combining these relations, we obtain
f(@) = f(z*) e W(z*) + C(z*) c W(z*), Vz e K.

Thus z* is a weakly nondominated-like solution of (VOKV). |

Lemma 3.57. Let Ty : K — L(X,Y) be a selection of T : K =3 L(X,Y). If
x* is a solution of the following (WVVI): finding z* € K such that

(T1(z*),z — %) Lintc(x) 0, Vz € K, (3.26)
then =* is a solution of (3.25).
Proof. Assume that z* € K is a solution of WVVI(3.26). That is,
(T1(z*),z — 2*) Lintc(@z) 0, Vz € K.
Let £ = Ty (z*). Then f € T(z*) and
(t,x —2") Lintc(x) 0, Vo € K.
Therefore, z* € K is a solution of WVVI(3.25). [ |

We apply this lemma to derive the existence of a solution for WVVI(3.25).
Let W : K 2 Y be a set-valued mapping. The graph of W on K is defined
by
GW) = {(z,y)lz € K,y € W(x)}.
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Definition 3.58. T : K =3 L(X,Y) is C(z)-pseudomonotone if, for every
pair of points ¢ € K,y € K and for allt' € T(z),t" € T(y), we have

{t',y — x) Lintc(a) 0 implies (t",y — ) Lintc(z) 0-

Definition 3.59. T} : K — L(X,Y) is C(x)-pseudomonotone if, for every
pair of points x € K,y € K, we have

(T1(x), y — x) Linto(e) 0 implies (T1(y),y — ) LintC(z) O-

The following lemma provides a connection between the pseudomonotonic-
ity properties of a set-valued mapping and that of its selection.

Lemma 3.60. Let T : K = L(X,Y) be a set-valued mapping and Ty
be a selection of T. If T is C(z)-pseudomonotone, then Ty is also C(z)-
pseudomonotone.

Theorem 3.61. Let X andY be Banach spaces and K be a nonempty weakly
compact and convez subset of X. Let C : K 2'Y be a set-valued mapping such
that, for each x € K, C(x) is a proper, closed, and convex cone with apex at the
origin and intC(z) # &, and W : K 3 Y defined by W(z) =Y \ (—intC(x))
be such that the graph G(W) of W is weakly closed in X x Y. Suppose that
T(x) is a nonempty set of L(X,Y), for each x € K. Assume further that

(P)T: K = L(X,Y) is C(z)-pseudomonotone;
(C) there is a continuous selection Ty of T on K.

Then there exists o solution to the WVVI(3.25).

Proof. By the assumption, there is a continuous selection 77 : K — L(X,Y)
such that Ti(x) € T(x),Vz € K. It follows from Lemma 3.60 that T3 is also
C(x)-pseudomonotone. Then all conditions of Theorem 3.1 in [124] are sat-
isfied. Thus, there is a solution z* to the problem WVVI(3.26). By Lemma
3.57, z* is a solution of WVVI(3.25). n

Next we construct the gap functions for set-valued VVIs.

Let Y = R € = IRi and K C X a compact subset. Assume that
T: K = L(X,IRY) is a set-valued mapping with a compact set T'(z) for each
x.

Consider the (WVVI) with the set-valued mapping T, which consists in
finding z* € K, and ¢ € T(z*) such that

ty—z*) Linc 0, VyeK. (3.27)

Recall that ¢ : K C X — IR is said to be a gap function of WVVI(3.27) if
(i) ¢(z) <0, Vze K;

(ii) 0 = ¢(z*) if and only if z* is a solution of WVVI(3.27).

Let z,y € K and ¢t € T(x). Denote
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{t,v) = (((&yDas - ((G9))e)s

i.e., ({t,y)): is the i-th component of {¢t,y), i =1,---,£. We define two map-
pings ¢, : K x L(X,IR®) —» R and ¢ : K — IR as follows

é1(x,t) = min ggsxl((t, y—x))i (3.28)
and
o(z) = max{¢1(z, t)|t € T(x)}. (3.29)

Since K is compact, ¢1(z,t) is well-defined. If X is a Hausdorff topolog-
ical vector space, then g;(z,%) is a lower semi-continuous function in z (see
Corollary 22 in [5]). Since T'(z) is a compact set, ¢(z) is well-defined.

For z € K and ¢t € T(z), it is easy to see that

= mi —z)); <0.
o1 (x, ) Lrélfcllngl?%e«t’y z)); <0

Theorem 3.62. ¢(x) defined by (3.29) is a gap function of WVVI(8.27).

Proof. It is clear that ¢ (z,t) <0, Vz € K,t€ T(z). Thus¢(z) <0,Vz € K.
If 0 = ¢(z*), then there exists € T'(z*) such that ¢(z*, ) = 0. Consequently,
we have B

min max ((£,y —27))i =0,
if and only if, for any y € K,

S
gg@((t,y z*))i 20

from which it follows that, for any y € K,
<E7 Y- $*> ﬁintc 0
if and only if z* is a solution of WVVI(3.27). |

By Theorem 3.62, the solution of WVVI(3.27) is equivalent to finding a
global solution x* to the following optimization problem

max ¢(z), (3.30)
with ¢(z*) = 0.
Recall that
¢(z) = max{¢1(z, t)|t € T(z)}.

It is clear that the optimization problem (3.30) is equivalent to the following
generalized semi-infinite programming problem
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max §

st. ¢i(z,t) <s, VteT(x),
o1z, 1) = s, Tt € T(x),
z e K.
Note also that ¢ of WVVI(3.27) does not depend on the vector y € K. For
the case where the linear operator ¢ depends on the vector y € K, we have
another type of vector variational inequalities.

Consider the generalized WVVI with the set-valued mapping 7', which
consists in finding z* € K, such that Vy € K, 3t(y) € T(Z) satisfying

{t(y),y — ") Linec 0. (3.31)

Next, let us consider the gap function for the generalized WVVI(3.31). To
this end, for xz € K, let

Sy ={tit : K — T(x)},

that is, S is the set of all operators ¢ from K to T'(z).
Let z € K and t € S;. Then t(y) € T(x),Vy € K. Define two mappings
¢7 and ¢* as follows.

¢I($’t) = ;%IQ g?‘%{e«t(y)ay _J:))iv (332)

where ((t(y),y)): is the i-th component of (t(y),y), 2 =1,---,¢, and
¢"(z) = max{¢(z, t)|t € Sz} (3.33)
We have the following result.
Theorem 3.63. ¢*(z) defined by (3.33) is a gap function of WVVI(3.31).

Proof. It is clear that ¢ (z,t) <0,V € K,t € S; and hence ¢*(z) <0, Ve
K.

Assume that z* is a solution of WVVI(3.31). Let y € K. Since z* is a
solution of WVVI(3.31), it follows that, for each y € K, there isa t(y) € T(z*)
such that

(E(y),y — 2") Zintc 0

from which it follows that

112?5){5(@(3/)’ y—x*)); > 0.

Thus, an operator ¢ from K into T'(z*) has been defined. Then € Sz and

lrgggz(@(y),y —z*)); >0, VyeK.
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Hence

* * — M ry _ * R > .
¢1(a",£) = min max ((i(y),y —27))i 2 0

So ¢%(z*,%) = 0. Also it is clear that, for any ¢t € Sy«

max ((t(y), " — ")) =0
from which it follows that ¢}(z*,t) = 0 and consequently 0 = ¢*(z*).
If 0 = ¢*(x*), then there exists £ € Sy« such that ¢;(z*,t) = 0. Thus

min max (((y),y —2")i =0.

So we have, for any y € K,

_ MY >0,
max ({ty),y —27))i 2 0
Hence, for any y € K, B
ty),y —z") Linec 0.

Therefore z* is a solution of WVVI(3.31). [ ]

3.5 Stability of Generalized Set-valued Quasi-VVI

The study concerning the sensitivity and stability of variational inequalities is
important because almost all variational inequalities are solved for a specified
fixed set of data. Consequently, the computed solution could be consider-
ably inaccurate or could even become infeasible when the data is subject to
disturbances. In the last decade, the properties of continuity and Lipschitz
continuity of the locally unique solution to parametric variational inequalities
were investigated, and a global stability result was established for generalized
quasivariational inequalities. For the case in which the solution set is not a
singleton, the upper semicontinuity property of the solution set was obtained
in Gong [92]. This section aims to establish some stability results for the so-
lution set of a generalized vector quasivariational inequality. Under suitable
conditions, we obtain that the solution set is closed and upper semicontinu-
ous.

Let Z be a finite dimensional vector space. Let X and Y be two metric
spaces. Let C : X = Z be a cone-valued function which induces a vari-
able domination structure in Z. Let K € X, and let S : K = X and
F: K =3 L(X, Z) be two set-valued functions. Further assume that

mitC(x) # @, ze€ K.

The generalized vector quasivariational inequality problem is of finding
x* € S(z*) and 2* € F(z*) such that
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(GVQVI) (", y — 2") Lintc@+) 0, Vy € S(z").

For a given generalized vector quasivariational inequality problem, we de-
fine the perturbed (GVQVI) problem as follows.

Let K and W be two nonempty, closed and convex subsets in X and Y, re-
spectively. Let S: K xW =3 K and F : K x W =3 L(X, Z) be two set-valued
functions. Let C : K X W =% Z be a family of domination structures such
that intC(z, w) # &, for every x € K and w € W. The perturbed (GVQVI)
problem is : Find z* € S{z*,w) and z* € F(z*,w) such that

(GVQVI), (2", — 2") LintC(a*w) 0, for any y € S(z*,w).

In order to prove the stability result for the (GVQVI) problem, we assume
that the following hypothesis is satisfied.

Assumption 3.64. (i) S(z,w) # &, forz € K and w € W;
(ii) F(z,w)# &, forx € K and w € W.

For brevity, let us introduce the following notations:

(i) G(z,w)={(z,2): 2 € F(z,w)}, forx € K and w € W;
(ii) A(w ) Uzex Gz, w), for every w € W;
(iii) A= UyewA(w);
(iv) for each w € W,

I{w) = {(z,2) € A(w) : (2,9 — ) LintC(a,w) 0 for any y € S(z,w)}.
Note that I(w) is the solution set of the (GVQVI),, problem.

Lemma 3.65. [5] Let X and Y be two metric spaces and Q : X =Y be a
compact-valued function. Then @ is u.s.c. at z* if and only if, for any € > 0,
there exists an n > 0 such that

Q(z) € B(Q(z"),€), for each x € B(z,n),

where B(z*,n) denotes the ball with the center at x* and the radius n and
where

B(Q(.’E*, e)) = UyEQ(z*)B(y? 6)'

Lemma 3.66. Let H : X =3 IR’ be a set-valued function. Suppose that H
is l.s.c. at z* € X, that H(x) is a conver set, and that intH(z) # & for
every € Ne(z*), where N.(z*) C X is a neighborhood of z*. Let {zx} C X
and {yr} C IR™ be two sequences converging to x* and y*, respectively. If
y* € intH(z*), then yx € intH (xy) except for a finite number of k's.

Proof. Note that y* € intH (z*). Thus, there exists an € > 0 such that

y* + B, C H(z*),
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where B, denotes the closed ball in IR? with center at 0 and radius €. Since
Yk — y*, there exists a number K > 0 such that

How —y*l| <e€/2, Vk>K.

Proceeding by contradiction, we assume that there exists an Ny > 0, such
that yg ¢ intH (zx) for k > Kj. Since H(z) is a convex set and intH (z) # @
for all z € X(z*), we may assume without loss of generality that H(zy) is a
convex set and intH (zx) # @ for k > Kp. Then, by the separation theorem
for convex sets, there exists a vector oy, € IR® with ||a|| = 1 such that

H(zy) C {y € R*: (a,y) < (ax,yk)}, for k> Ko.
Let Ky = max{K, Ky} and
g =y + (e/2+ (am, gk — y"))ok, for k> Ki.
Note that

Tk = 37|l = le/2 4 {ors ye = y7)] - [l
< €/2+ [, Yk — y")|
< €/2+ [lowl] - [lyx = v7l

€.

IN

Thus, we have
Jk € y* + B, forn > Ni.

Since

(oo, Gre) = (ks ¥*) + (€/2) + {ak, vk — Y*) = €/2 + (o, Yk),

and for each y € H(xx)

19k — yl| > [{aw, Gr — )|
= |({ak, Uk) — {ak, y&)) + (o, Yx) — (ak, 9)|
> €/3,

it follows that
gk & H(zp) + B3, for k > K.

Since y* + B, is a compact set, we can assume without loss of generality that
Ur — . Obviously,

gy €y + B. C H(z™).
Since H is l.s.c. at x*, there exist a number K> > 0 and a sequence {g} such

that
gk € H(zy), for all k > Ks, and §x — 7.
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Then,
Uk — U — 0, as kK — o0.

However, this contradicts the fact that
Uk & H(mk) + Be/g, for k > K.

Thus, the number for which yx ¢ intH (k) is finite. This completes the
proof. ]

Theorem 3.67. Let K be a closed set. For any given w € W, suppose that
the following conditions are satisfied:
(i) S(,w) is l.s.c. on K;
(ii) C(-,w) is L.s.c. on K and C(x,w) is a convex set for every x € K;
(iii) F(-,w) is u.s.c. on K and F(z,w) is a closed set for every x € K.

Then, the solution set I{w) of the perturbed (GVQVI) problem is closed.

Proof. Without loss of generality, suppose that w = 0. Take any sequence
{(zk, zk)} C I(0) satisfying (xx,2k) — (z*,2*). By the closedness of K, it
follows that z* € K. Then, by condition (iii), we have z* € F(z*,0). Suppose
that (z*, 2*) ¢ I(0). Then, there exists Z € S(z*,0) such that

<Z*a z— CC*> éintC(m*,O) 0.

By the lower semicontinuity of S(:,0), there exists an Zx € S(zg,-) except
for a finite number of n’s such that T — Z. Then, from the continuity of
f(z,y,2) = (z,y — 2), we obtain

(2, T — ) — (2", T — x¥).
Thus, it follows from Lemma 3.66 that

(2ky Tk — Tk) Lintc(zi) 0

except for a finite number of n’s, which contradicts that {(zx,yx)} C I(0)
satisfying (x, zr) — (z*,2*). This completes the proof. |

Remark 3.68. Let
Z=R,X=R"W=R",LX,Z)=1R",C(z,w) = Ry,

for z € K and w € W. Then the problem (GVQVI),, reduces to the classical
perturbed generalized quasivariational inequality (in short, (GQVI)), which
was considered in Tobin [195]. For the corresponding perturbed (GQVI), the
following examples 3.69, 3.70, 3.71 show the necessity of conditions of Theorem
3.67.
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Ezample 3.69. Let K = [1,2],W = R, C(z,w) = Ry, S(z,w) = (1, 2],

_JL,1s), z=1,
F(x’w)_{[l,l-% z #1,

for each z € K and w € W.

Note that, for each w € W and each z € K, F(z,w) is not a closed set.
Clearly, for any given w € W, the solution set I(w) = {(1,2) : z € [1,1.5)} of
the perturbed (GQVI) problem is not closed.

Ezample 3.70. Let K = (—1,1), W =R and
F(z,w)=0,C(z,w) =Ry, S(z,w) = (-1,1), z€e K,weW.

Note that the set K is not closed as required in Theorem 3.67. Clearly, for
any given w € W, the solution set

I(’U)) = {(ZU,O) 1T € (_1a 1)}
of the perturbed (GQVI) problem is not closed.
Ezample 3.71. Let K = [1,2],W =R, C(z, z) = Ry, S(z,w) = [1,2],

1,2], z=1,

Flew) = {[1,3], 241,

forx € K and w e W.
Note that, for any w € W, F(-,w) is not u.s.c. at x = 1. Clearly, for any
given w € W, the solution set

w) = {(L,z):z€[1,2],z=1}
I(w) {{(x,z):ze[l,z],a:#l},

of the perturbed (GQVI) problem is not closed.

Theorem 3.72. Let A be a compact set, and let K and W be closed sets.
Suppose that the Assumption 8.64 holds and that the following conditions are
satisfied:

(i) S(-,-) is Ls.c. on K x W;
(ii) C(-,-) is Ls.c. on K x W and C(z,w) is a convex set for each (z,w) €
KxW,;
(iii) F(,) is w.s.c. on K x W and F(z,w) is a closed set for each (z,w) €
K xW.

Then, the solution set I(w) of the perturbed (GVQVI),, problem is u.s.c. on
w.
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Proof. Without loss of generality, we assume that w = 0. Let us establish the
result by contradiction. Suppose that I(w) is not u.s.c. at 0 € W. By the
compactness of A and Theorem 3.67, I{w) is a compact-valued function on
W. Then, by Lemma 3.65, there exists an € > 0 such that, for any 1/k > 0,
k=1,2,3,---, we can find

{wk} C B(O, 1/k)), and (l‘k, Zk) S I(wk),

satisfying
{(zr, z)} € BI(0), €). (3.34)
By the compactness of A, we can assume that (zg, zx) — (%, 2*). Then, from

(3.34), we have
(x*,2%) ¢ I(0). (3.35)

Since F'(-,-) is u.s.c. on K x W and F'(z,w) is a closed set for each (x,w) €
K x W, we obtain z* € F(z*,0). Then (z*, 2*) € A(0). Now, by (3.35), there
exists a y* € C(z*,0) such that

(z",y" — 2") € —intC(z",0).

Then, for y* € S(z*,0), it follows from the lower semicontinuity of S(-,-) that
there exits a sequence {yx} with yx € S(zk,wy) such that yp — y*, using the
continuity of f(z,y,z) = (z,y — z), we obtain

(21, yp — xk) — (2%, 9" — ™).
By Lemma 3.66, except for a finite number of n's, we have
<Zk, Yk — .’Ek> S -—intS(xk, wk).

This contradicts the fact that (zx,2r) € I(wg), and Hence the proof is
complete. ]

3.6 Existence of Solutions for Generalized Pre-VVI

In this section, we study the existence of solutions for two more general classes
of vector variational inequalities.

Let X and Z be real locally convex Hausdorff topological vector spaces,
and (Y, C) be an ordered locally convex Hausdorff topological vector space,
ordered by a closed and convex cone C with nonempty interior intC. Let
K C X and E C Z be nonempty subsets. Let n: K x K — K be a vector-
valued function. Assume that V : K = E and K : K = K are two set-valued
functions. Assume that H : K x E — L(X,Y) is a vector-valued function.

Consider the following generalized vector pre-variational inequality prob-
lem (in short, GPVVI) of finding Z € K, Z € V(&), s.t.
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(H(j’ 5)»77(.% j)) Lintc 0, Vy € K,

and the generalized vector pre-quasi-variational inequality problem (in short,
GPQVVI) of finding z € K(%),z € V(T), s.t.

(H(Z,2),n(y,Z)) £intc 0, Vy € R(G_L‘)

These vector variational inequality problems arise from the optimality con-
ditions for a vector optimization problem where the feasible set is so-called
n-connected, see Yang [209]. When n(z,y) = z—y and H(z, 2) = T'(z),Vz € E,
(GPVVI) reduces to (WVVI). In the sequel, we will use the nonlinear scalar
function &, e € intC (see Chapter 1):

¢e(y) =min{teR:yete—C}, y€vY.
The function &, is continuous and strictly monotone. For a set @ C Y, let

€e(Q) = Uyeqé€e(y)-

It is well known that F': X — Y is a C-quasi-convex vector-valued function
if and only if € o F' is a quasi-convex function on X, see Proposition 1.68.

Theorem 3.73. Let K be a nonempty, compact and convex subset of X and
E be a nonempty convex subset of Z. Let n: K x K — K be a continuous
set-valued function satisfying n(z,z) = 0, Vz € K, and let V : X =3 Z be
a set-valued function which is upper semicontinuous, nonempty, closed and
conver valued. Let V™1(z) = {x € X : 2 € V(z)} be open for each z € Z.
Let H: K x E — L(X,Y) be a continuous vector-valued function. If there
exists e € intE such that the function &.((H(x, 2),n(y, z))) is quasi-convex
with respect to x, then there exists T € K, zZ € V(Z) such that

<H(ja 2)5 77(?!: i)>) gintC 0, Vy e K.

Proof. By the given conditions and the generalized Browder’s selection theo-
rem (Theorem 1.25), there exists a continuous vector-valued function f : K —
Z such that f(z) € V(z), Yz € K.
Let
¢(x,2,y) = (H(z,2),n(y, %)), z€K,z€ E,yecK.

Then ¢ is a continuous vector-valued function from K x E x K into Y. For
simplicity, for any fixed e, we denote &, by £.
Now, for k = 1,2, , we define a set-valued function Fy : K = K by

Fi(w) = {y € K : (€9)(@, f(2), ) — min(€ 0 9)(z f(@),w) < 1},

where z € K. Since K is a compact subset and £ is continuous, for any z € K,
(&0¢)(z, f(x), y) is a continuous function in y. It follows that (£0¢)(z, f(z), K)
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is a compact set in IR, and hence Fi(z) is nonempty for all .
Under the conditions of Theorem 3.73, we show that the following Lemmas
hold which are parts of the proof for Theorem 3.73.

Lemma 3.74. For every k, z, Fx(z) is a convez set.
Proof. Let y1,y2 € Fi(z) and A € (0,1). Then y1,y2 € K and there exist
a; > 0,7=1,2 such that

(€0 )@, f(2),w) = min(€ 0 9)(a, f(2),u) + £ —aw, =1,2

Let o = min{ay, az} and o = minuex (€ 0 9)(e, £(z), ) + L — ao. Then
o)z, f(z),y:) <to, 1=1,2.
Hence,
Yi € Lev(cop)(z,1(2), - )(to) = {u € K : (£0 ¢)(z, f(z),u) <o}

By the assumption that (£ o ¢)(z, f(z), ) is quasi-convex, the set Lev(eoq)(z,
f(z),-)(to) is a convex set. Then Ay; + (1 — A)y2 € Lev(gog)(z,f(z),.)(to), that
is

(§o o)z, f(@), Ay1 + (1 — N)y2) <to.

Therefore we have that
(€0 )@, £(2), hur + (1 = o) = min(€ 0 6)(z, (@), w) < 7.
Then Ay; + (1 — A)y2 € Fi(x). [ |

Let for each y € K
Fil(y) = {z € K :y € Fi(w)}
= {2 € K: (€0 9)(, f(2), ) — min(€ 0 §)(z, f(2), ) < 7}

Lemma 3.75. For each y € K, the set F;'(y) is open.

Proof. Suppose that the conclusion is not true. Then there exist zgq € F}, L(y)
and a net {zq} such that z, — o, T4 ¢ Fk"l(y) for every «, namely, y ¢
Fy(zq). Therefore

. 1
(€0 9)(za, f(za),y) — min(§ 0 ¢)(za, f(za) u) 2 7.
Since the function (z,y) — (€0 ¢)(z, f(z),y) is continuous and K is compact,
by a well known result in mathematical programming, the function M : z —
minyek (€ 0 ¢)(z, f(x),w) is continuous in z. Therefore we have
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!

| =

(€0 9)(zo, f(z0),y) — min(§ © §)(zo, f(20), u) =
which contracts y € Fi (o). Hence Fj,'(y) is open. ]

Hence we have shown that all assumptions in Theorem 1.26 are satisfied.
Then there exists zx € K such that

xkEFk(Z'k,), k‘:l,Q,"'

Since K is compact and V is u.s.c.,, we can assume that xx — Z € K
and f(zx) — f(Z) € V(Z). Then by the definition of F) we have for each
k=1,2,--,

(€0 )@, (o), 25) < min(€ o ), flwr),w) + 1,

and as k — +00
(€0 9)(@, f(2),7) < min(¢ o $)(z, £(2), u)-
Since n(Z,Z) = 0 and £(0) =0,
min(¢ o ¢)(z, £(z), u) = 0.

That is
(€0 o)z, f(Z),u) >0, VueK

By the strict monotonicity of &, we have
oz, f(Z),u) ¢ —intC, Yuec K.
Let z = f(z) € V(Z). Then

(H(z,2),n(y, %)) ¢ —intC, VYu € K.

As a direct result, we have:

Corollary 3.76. Let K be a nonempty, compact and convexr subset of X.
Let T : K — L(X,Y) be a continuous vector-valued function. If there exists
e € intC such that the function &.((T(z),y — x)) is quasi-convexr with respect
to y, then there exists ¥ € K such that

<T('7_:)7 Yy—- j> gintC 0, VyeK.
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Proof. Assume that Z is a Hausdorff topological vector space. Define V(z) =
Z,x € X and n(y,z) = y — z. Then V~1(u) = X is open for any u € Z. Let
H(z,z) =T(z), if x € K,z € Z. The result follows from Theorem 3.73. W

Now we consider the following generalized vector pre-quasi-variational in-
equality problem of finding € K(Z) and z € V(Z) such that

We have the following result.

Theorem 3.77. Let K and E be two nonempty compact and convex subsets
of X and Z, respectively. Let V : X = Z be an upper semicontinuous, closed,
convex and vector-valued function. Letn : K x K — K be a continuous vector-
valued function such that n(z,x) =0, Vz € K. Let H: K x E — L(X,Y)
be a continuous vector-valued function. Let K : K = K be a continuous set-
valued function with a compact-valued K (z). If there exist e € intC such that
the function & ({H(z,2),n(y,x))) : K — IR is quasi-convex with respect to y,
then there exist & € K (Z), Z € V(%) such that

(H(a_ja 2)’ 77(!/7 57)) gintC 0, Vy € I—((i)

Proof. For simplicity, for any fixed e, we denote still £ by £. As in the proof
of Theorem 3.73, let

oz, 2,y) = —(H(z,2),n(y,2)), z€K,z€E,yeK.
Then ¢ is a continuous vector-valued function. Define
M(z,z) = Minjnic{o(z,2,9) :y € K(z)}, z€K,z€ K.

Then M : K x E 3Y is a set-valued function. |

Under the conditions of Theorem 3.77, we show that the following lemmas
hold which are parts of the proof for Theorem 3.77.

Lemma 3.78. M is a closed set-valued function.

Proof. We show that Gr(M) is closed. Let a net (za,Z2a,¥a) € Gr(M)
converge to (zo, 20,Y0). Note that (za,2Ze,Ya) € Gr(M) is equivalent to
Ya € M(2a;2a) = Mingnic{d(ar2a,y) : ¥ € I_((:ca)}. Then there exists
Uq € K(x4) such that yo = ¢(2a, Za, Ua). By the compactness of K, we can
assume, without loss of generality, that uy, — ug € K. Then, by the continuity
of ¢,

Yo = ¢(xo, 20, u0).

Suppose that yo ¢ M(zo,20). Then, there exist v’ € K(zo) and p € C such
that yo = ¢(xo, 20, ') + p. Since K is l.s.c., there exist u/, € K(z4), Vo such
that u/, — u'. Then
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P(Ta; Zas Ua) =~ Yo = —P+ (Yo ~ Ya) + $(Ta; Za; Ua) = ¢(T0, 20, ),
and for a large enough,
P(Tas Zas Ug) = Ya Sintc 0,

which is a contradiction to the assumption y, € M(Zq, 2o). Thus M is a
closed function. [ ]

Now we define a set-valued function V : K x E = K by

V(z,2):={uc K(x): fop(z,z,u) = min o ¢(z,z,)}.

veEK(z)

It is clear that V(z, z) is nonempty for any (z,z) € K x E.

Lemma 3.79. For each (x,z), V(z,2) is a closed function.
Proof. Let {(%w; 2, ¥a)} be a net in Gr(V) such that

(Toy Zas Ua) — (20, 20, Uo)-
Then u, € K(z4) and

§o ¢(xa7 Zas ua) = min §o ¢(maa Zay U)-
vEK (xq)

By the continuity of K, uo € K (zo). By the strict monotonicity of ¢, it is easy
to verify that

T, 2o, Ua) € Mininic{d(Ta; 2a,v) 1 v € K(za)}-

Since M(z, z) is a closed function,

é(zo, 20, uop) € Mininsc{d(xo, 20,v) : v € K(z0)}.

Now we show that

€0 ¢(xo, 20,u0) = min & o @(zo, 20, ).
vEK (z0)
Since £ o ¢(x, 2, K(x)) is ls.c., there exists t, € IR such that ¢, = £ o
&(zk, zx, vg) and
trx — min 5 20,V).
k UGR(EO)§O¢('TO % v)
Suppose that

& o ¢(x0,20,u0) 7 min & o ¢(xo, 20,v).
veK(zo)

Then
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o ¢($0, 20, uo) > min £o (;5(.7,'0, 20, 'l)).
veK (zo0)

Therefore, for k large enough, we have that
§ o ¢(xk,y 28, V&) > th,
which is a contradiction. Hence, Lemma 3.79 holds. [ |
Lemma 3.80. For each (z,z2), V(z,z) is a convex set.
Proof. Let uy,uz € V(z,z) and A € (0,1). Let

ro = vér}?l?m)f o ¢(z, z,v).

Then
£odx, z,u1) =& o Pz, z,uz) = 1o.

Since K(z) is a convex set, Au; + (1 — Aug € K(z), by the assumption, the
function uw — £ o ¢(z, z, u) is quasi-convex. Then the set

A={ueK:od(x,z,u) <ro}
is convex and since uy,us € A, Aug + (1 — A)uz € A. Then
Eod(z, 2, ur + (1 — Aug) < 7.
Noting that K () is convex, we have
oz, z, uy + (1 — Aug) = ro.
Then Au; + (1 — Nug € V(z, 2). [

Now we complete the proof of Theorem 3.77. Since V is u.s.c., V(K) is a
compact set. Let W: K x E 3 K x E:

W(z,z)=V(z,2) x V(z), (x,2) € K xE.

Then W is upper semicontinuous and for each z € K, z € E, W(z,z) is a
nonempty, closed and convex subset. By Fan-Glicksberg-Kakustani theorem,
there exists (Z,z) € W(&, z). Hence

i E K(i’l)7 §o¢(i" Z’ 'i,) :véI}?i%)EOQb(i’ 2, v),

and z € V(Z). By the strict monotonicity of ¢, we have

#(Z, 2, %) € Mininic{9(7, z,v) : v € K(7)}.

Hence, for any y € K(Z),
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&, 2,y
Since n(z,z) = 0, ¢(Z, Z,T) = 0, we have

qS(a'c,Z,y) ZintC 0, Vy € I_{(i)v

) - ¢(§7’ Z, j) zintc 0.

i.e., .
(H(i" 2)»77(3},59» gintc 07 V’y (S K(a’c)

3.7 Existence of Solutions for Equilibrium Problems

The equilibrium problem is a generalization of variational inequalities. It con-
tains many important mathematical models as special cases, for instance,
optimization problems, problems of Nash equilibrium, variational inequali-
ties, complementarity problems and fixed point problem, etc (See Blum and
Oettli [18]). It is known that a vector equilibrium problem includes vector
optimization, vector variational inequality, vector complementarity problems
as special cases. In this section, we consider two kinds of vector equilibrium
problems with a variable domination structure, and establish the existence of
solutions for these problems.

Let Y be a Hausdorff topological vector space, and let X and Z be
nonemtpy subsets of two Hausdorff topological vector spaces, respectively.
Let K : X 3 X, T: X 3 Zand C:X 22Y be set-valued functions with
nonempty values. Let f: X x Z x X 3 Y be a set-valued function.

Consider the following vector equilibrium problem of finding (Z,z) € X xZ
such that Z € K(Z),z € T(Z) and

(VEQn) f(Z,2,u) intcz) 0, Yu € K(Z).
First we present a lemma.

Lemma 3.81. [5] Assume that X1 and Yy are Hausdorff topological spaces
and Zy is a compact topological space. Let f : X1 X Z; — Y1 be a vector-
valued function. Define a set-valued function F : X; =3Y; by

F)={f(z,2):2€ Z1}, z€X;.
If f is continuous on Xy x Zy, then F is u.s.c.
We have the following existence result for the problem (VEQ;).

Theorem 3.82. Let X and Z be nonempty compact convex sets of two locally
convexr Hausdorff topological vector spaces, respectively. Suppose that
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(i) K : X =3 X is a set-valued function with nonempty closed convex values
and open lower sections;
(ii) T : X = Z is upper semicontinuous with nonempty closed acyclic values;
(iii) C : X 3 Y is a set-valued function, which satisfies the following condi-
tions:
(a) for any u € X, the set {(x,2) € X X Z : f(x, 2,u) <intc(z) 0} is open
mn X x X,
(b) for any z € Z, the set-valued function f(-,z,-) is weakly type II C-
diagonally quasi-convex in the third argument.

Then there exists (Z,%) € X x Z such that T € K(Z), zZ € T(Z),
f(Z,2,u) Lintcz) 0, Vu e K(Z).
Proof. Let us define a set-valued function P: X x Z = X by
P(z,z)={ue X : f(z,2,u) <intc@) 0}, VY(z,2) € X x Z.

The theorem will be proven if we can show that there exists (Z,2) € X x Z
satisfying Z € K(Z), Z € T(Z) and K(Z) N P(Z, 2) = @. To this end, we first
show that for each (z,2) € X x Z,

x ¢ coP(x, z). (3.36)

If not, there would exist (z*,2*) € X x Z such that z* € P(z* 2*).
That is, there exists a finite subset {x1,z2, -, 2k} C P(z*,2*) such that
z* € co{z1,xa, -+ ,xk}. Therefore, we have f(z*,z*,z;) C —intC(z*) for
t=1,2,---,n, contradicting (b). Hence (3.36) holds.

Now we define another set-valued function G : X x Z =% X by

G(z,2) = K(z) NcoP(z,z), VY(z,z)e X x Z.

For each v € X, the set {(x,2) € X x Z : f(z, z,u) C —intC(x)} is open by
hypothesis (a), or equivalently the set P~1(u) is open for each v € X, and so
P has an open lower section. Since K has an open lower section by hypothesis
(i), the set-valued function G has also an open lower section by Proposition
1.23.

Next let U = {(z,2) € X x Z : G(,2) # @}. We have two cases to
consider.

Case 1: U =g2.
We note that in this case K(z) N coP(z,z) = @ for each (z,2) € X x Z.
In particular, for each (z,z) € X x Z we have

K(z)NP(z,z)= 2.

By hypothesis (i) and the fact that X is a compact convex set, use Brow-
der’s fixed point theorem , see Theorem 1.26, to assert the existence of
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a fixed point z € K(%). Also from (ii) we have T(Z) # @. So, picking
zZ € T(Z), we have
K(Z)NP(Z,2)=2.
Therefore, in this particular case the assertion of the theorem holds.
Case: 2: U # @.
The fact that G : X x Z =3 X has open lower sections in X x Z and

U = Uye XG‘I(U) implies that U is open. We now define a set-valued
function H : X x Z =3 X by

G(z,z), U(z,z)elU
K(z), if (z,2) € X x Y\U.

Then, for each v € X, we have
H Yv) =G ) u (K o) x 2),

which is open, and whence H has an open lower section. It follows from
the generalized Browder’s selection theorem (see Theorem 1.25) that there
exists a continuous selection h : X x Z — X for H. Now consider the set-
valued function M : X x Z =2 X x Z given by

M(l‘, Z) = (h(.’L‘, Z),T(.’L‘)),

which clearly has nonempty closed acyclic values. If we show that M
is upper semicontinuous, then, by Theorem 1.29, M has a fixed point
(z,2) € M(Z,z). Moreover, (Z,Z) ¢ U. Suppose to the contrary that
(Z,Z) € U. Then

I =h(Z,Z) € G(&,2) = K(Z) N coP(Z, Z),

so that Z € coP(Z, z). But this is a contraction to (3.36). Hence (Z,z) ¢ U.
Therefore,

(%,2) € K(Z) x T(%) and G(Z,2) = @.

Thus Z € K(Z), 2 € T(Z) and K(Z) N coP(Z,7z) = @. In particular,
K(Z) N P(z,2) = @. So the assertion of the theorem also holds in this
case.

It remains to prove that M : X x Z =3 X X Z is upper continuous. We
observe that X x Z is compact, h : X X Z — X is continuous, and T : X =
Z is upper semi-continuous. By Lemma 3.81, M is upper semicontinuous.
This completes the proof.

Corollary 3.83. Let X and Z be nonempty compact convex subsets in two
locally convex Hausdorff topological vector spaces, respectively. Let Y be a
Hausdor{f topological vector space and C C Y be a given subset with intC # @.
Assume:
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(i) K : X 3 X is a set-valued function having nonempty closed convex values

and open lower sections;

(ii) T : X =2 Z is an upper semicontinuous set-valued function with nonempty
closed acyclic values; and

(iii) f : X x Zx X Y is a set-valued function satisfying the following
conditions:
(a) for each u € X, f(z,z,u) is lower semicontinuous in (z, z);
(b) for each z € Z, f(-,z,) is weakly type II C-diagonally quasi-convez in

the third argument.

Then, there erists (Z,Z) € X x Z such that & € K(Z), zZ € T(Z), and
f('fa Z, u) ﬁintC 0, Yue K(E)

Proof. We shall invoke Corollary 3.83 to prove this corollary. Let us set C(z) =
C for all z € X. The lower semicontinuity of f(z,z,u) in (z, z) implies that
the set

{(z,2) € X x Z: f(z, z,u) <intc 0}

is open in X x Z for any v € X. Thus all conditions of Theorem 3.82 are
satisfied and the corollary follows immediately. |

Corollary 3.84. Let X be a nonempty, compact and convex subset of a locally
convexr Hausdorff topological vector space. Assume:

(i) C: X Y is a set-valued function with intC(x) # & for allz € X;

(ii) F: Xx X Y is a set-valued function satisfying the following conditions:
(a) for each y € X, the set {x € X : F(x,y) <intc(s) 0} is open in X;
(b) F(z,y) is weakly type II C-diagonally quasi-convez in y.

Then there exists T € X such that
F(Z,y) £intcz 0, Yy e X.

Proof. This corollary will be proven by invoking Theorem 3.82. To this end,
let Z = {Z} be a singleton. Let K(z) = X, T(z) = {2} for every z € X, and
let f(z,z,y) = F(z,y) for all (z,2,y) € X x Z x X. Then all the conditions
of Theorem 3.82 are satisfied and the corollary follows immediately. |

Theorem 3.85. Assume all the hypotheses of Theorem 3.82 are satisfied ex-
cept for the compactness of the sets X and Z. Suppose further that A C X and
D C Z are two nonempty compact convex subsets and B C A is a nonempty
subset such that

(a)' K(B) C A;

(b) for each x € A, the set (K(z)N A) x (T(z) N B) is nonempty;

(c)’ for each x € A\B, there exists u € K(z) N A such that

f(Z,2,u) <into(z) 0, V2 € T().
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Then there exists (%,%) € B X D such that T € K(Z), zZ € T(Z) and
f(Z,Z,u) Linto@) 0, Yu € K(Z).
Proof. Define G: A =3 A by
Gz)=K(z)nA, ze€A

For each z € A, G(x) is nonempty and convex by (b)’ and G has open lower
sections. Define a set-valued function M : A = D by

M(z)=T()ND, zcA

It is easy to see that the set-valued function M is also upper semi-continuous
with closed acyclic values. Note that, by (a)’ we have

Glz) = K(x), 1fz€.B,
K(z)N A, otherwise.

It follows from Theorem 3.82 that there exists (Z, Z) € G(Z) x M(Z) such that
f(Z,Z,u) Lintcz) 0, Vu € G(2). (3.37)

We claim that Z € B. If not, Z € A\ B, then, by (c)’, there would exist a point
y € K(Z) N A = G(%) such that

f(CZ', Z,y) SintC(i) 03 Vz € T(i')
Thus,
f(:z) 27 y) SintC O,
contradicting (3.37). So Z € B such that G(Z) = K(Z). Since Z € M(Z) =
T(z) "D C T(Z), we conclude that z € K(z), z € T(Z) and
f(j) Z, u) zintC(i) 0, Vuce K(i)

The theorem is proved. |

Theorem 3.86. Assume that all the hypotheses of Theorem 3.82 are satisfied,
except that the condition (iv) is replaced by

(W) f: X x Zx X 33Y satisfies:
(a)Vu € X, the set {(z,2) € X X Z: f(z,z,u) N —intC(x) # T} is open
mnX X Z;
b)Yz e Z, f(-, 2,-) is weakly type I C-diagonally quasi-convex in the third
argument.
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Then there exists (Z,Z) € X X Z such that T € K(Z),zZ € T(Z) and
f(i> Z,U) zintC‘(i) 07 Vu € K(i)

Proof. We proceed as in the proof of Theorem 3.82. But we need to modify
the set-valued function P: X x Z = Z to be

P(z,z) ={ue X : f(z,z,u) N —intC(x) # B}, V(z,2) € X x Z.

Then it is easy to show that z ¢ co(P(z, 2)) is valid for all (z,2) € X x Z
due to the fact that f(:, z,-) is weakly type I C-diagonally quasi-convex in the
third argument. The rest of the proof is similar to that of Theorem 3.82. B

Theorem 3.87. Assume that all the hypotheses of Theorem 38.82 are satisfied,
except that the condition (iv) is replaced by
()" f: X xZxX 3Y satisfies:
(a)Vu € X, the set {(z,2) € X x Z : f(z,z,u) NC(x) = B} is open in
X x Z;
(b)Vz € Z, f(-,2,+) is strongly type II C-diagonally quasi-convez in the
third argument.

Then there exists (%,%) € X x Z such that T € K(Z),z € T(Z) and
f(Z,z,uyNC([Z) # 2, Yue K(T).

Theorem 3.88. Assume that all the hypotheses of Theorem 3.82 are satisfied,
except that the condition (iv) is replaced by
()" f: X xZx X 3Y satisfies:
(a)Vu € X, the set {(z,2) € X x Z: f(z,z,u) C C(x) # @} is open in
X xZ;
(b)Vz € Z,f(,2,-) is strongly type I C-diagonally quasi-convex in the
third argument.

Then there exists (Z,2) € X x Z such that T € K(Z),z € T(Z) and
f(Z,z,u) Cc C(x), Yue K(Z).

The proof of Theorem 3.87, as well as Theorem 3.88, is similar to that of
Theorem 3.82 and is therefore omitted.

3.8 Vector Complementarity Problems (VCP)

The concept of vector complementarity problems was introduced in Chen
and Yang [40]. Relations among vector complementarity problems, vector
variational inequalities, vector optimization problems and minimal element
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problems were obtained. The existence of solutions for (positive) vector com-
plementarity problems was also derived in [40, 208]. Further results on the
existence of solutions for other type of vector complementarity problems can
be found in Fu [74], Yu and Yao [222].
Let (X, D) and (Y, C) be two ordered Banach spaces. We assume that the
interior intC of the ordering cone C is nonempty and C is closed and convex.
The weak C-dual cone D" of D is defined by

Dt ={g€ L(X,Y) : (9,2) Lintc 0, Vz € D}.
The strong C-dual cone DSC+ of D is defined by
Dt ={ge L(X,Y): {g,z) >c 0, Vz € D}

It is obvious that ch”,+ and Déﬁ' are nonempty, since the null linear function
in L(X,Y) belongs to D& and D&, It is easy to prove that D& C D@t if
C is pointed.

When Y = IR, the weak and strong C-dual cones of D reduce to the dual
cone D* of D.

We will prove that the weak and strong C-dual cones of D are algebraically
closed and the strong C-dual cone of D is convex.

Definition 3.89. Let X be a linear space and A be a subset of X.
(i) The algebraic interior of A, say corA, is defined by

corA={Ze€ A:Vz € X,36>0,z+tx € A,Vt € (0,6)};

(ii) A is called algebraically open if A = corA;
(iii) A is called algebraically closed if the complement A® of A is algebraically
open.

If X is a topological vector space and C is closed and convex, then
corC = intC.

Proposition 3.90. Let (X, D) and (Y,C) be ordered Banach spaces, and let
intC # @. Then the weak C-dual cone D&t is algebraically closed.

Proof. We will prove that (Dg")¢ is algebraically open. Let go ¢ cor(D¥7)°.
Then, there exists g € L(X,Y), such that go + (1/k)g ¢ (D&5T)¢, for k large
enough. Hence,

9o+ (1/k)g € D&,

i.e., for k large enough,

(90 + (1/k)g,®) £intc 0, z € D. (3.38)
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Assume that go € (D& )¢, so that go ¢ Det. Then there exists 2o € D such
that (go, o) <intc 0. Therefore, for any y € Y, we have

—(go, zo) + ty >¢ 0, for t > 0 small enough.

Letting
y=1y1—(9,%0), y1 €Y, t=1/k,

we see that

—{g0, o) + (1/k)y = —{go, zo) + (1/k)(y1 — (g, %0))
= —(go + (1/k)g, o) + (1/k)y1 >c 0

where y; € Y and k is large enough. Hence, we deduce that
—{g0 + (1/k)g, zo) € corC;
i.e.,
(90 + (1/k)g, o) <intc O,
which contradicts (3.38). It follows that go ¢ (D& )°. Hence,
(DE*)° = cor(Dg*)".
Thus, (D&)° is algebraically open. Then D& is algebraically closed. |

Proposition 3.91. Let (X, D) and (Y,C) be ordered Banach spaces, and let
ntC # @. Then the strong C-dual cone Dgr is algebraically closed and con-
ver.

Proof. 1t is similar to the proof of Proposition 3.90 to prove the algebraic
closedness of D§t. We show that Dg' is convex. Let g1, 92 € DEF,0 < A < 1.
For any z € D,

(Ag1+ (1 = A)g, ) = Mg, z) + (1 — A){g2,2) >¢ 0.

Note that
Agi+ (1 —A)ge € Dé+.
Thus, D' is convex. |

Remark 3.92. In general, Dg‘L is not necessarily a convex cone, since the weak
ordering Zinsc in Y is not transitive. In fact, let X =R, D =R, Y = R?,
C= IRi Then Dé“' = IRﬁ_ is convex, but

Dg+ ={z¢€ R?:z= (xl,xg)T,xl <p 0orz; <p 0}

is not convex.
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Now we consider three types of vector complementarity problems. Let
T:X — L(X,Y) be a vector-valued function and let C' be a closed, pointed
and convex cone with intC # @.

A (weak) vector complementarity problem (VCP) is the problem of finding
x € D, such that

(T(x),z) 2intc 0, T(z) € D&T.

A positive vector complementarity problem (PVCP) is the problem of
finding an = € D such that

(T(z),z 2intc 0, T(x) € D .

A strong vector complementarity problem (SVCP) is the problem of find-
ing an z € D such that

(T(z),z) =0, T(z)e€ D&".

We denote the sets of solutions of (VCP), (PVCP) and (SVCP) by N, Np,
and Ng, respectively. There are close relations between vector complementar-
ity problems and vector optimization problems. In this connection we consider
the following vector optimization problem:

(VOP,) Minc{(T(z), ) : = € D,T(x) € D&*}.

We denote the set of all weakly minimal solutions of (VOP,,) by E,,, and
we set f(x) = (T'(z),z) and H, = f(Ey).

Theorem 3.93. If H,, # & and there exists z € H,, such that z Pinc 0,
then the vector complementarity problem (VCP) is solvable.

Proof. Let z € Hy, and z Zi;nic 0. There exists a point x € D such that
T(z) € D&Y, z = f(z) = (T(x),z) Zintc 0. So z is a solution of (VCP). MW

Theorem 3.94. If there erists at most a finite number of solutions of the
vector complementarity problem (VCP), then (VCP) is solvable if and only if
H,, # @ and there exists z € H,, such that z Zintc 0.

Proof. Let z; be a solution of (VCP). If z; € E,,, we are done. If z; ¢ E,,
by the definition of weak minimal solutions, there exists o € D such that
T(z2) € Dg"‘ and (T'(z2), z2) <intc (T(z1),Z1) Zintc 0. Thus we obtain

(T(x2),z2) Zintc 0,

hence z3 is a solution of (VCP) and z; # 2, continuing this procedure, by

the finiteness of the number of solutions of (VCP), there exists zx € D such

that z, is a solution of (VCP), xx € Ey, z = (T(z1), Zk) Zintc 0,2 € Hy,.
Conversely, we finish the proof from Theorem 3.93. [ ]
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We next consider the existence of solutions of the positive vector com-
plementarity problem (PVCP). To this end, we observe the following vector
optimization problem:

(VOP;) Minc{(T'(z),z) : = € D,T(z) € D&'}.

We denote the set of all minimal solutions of (VOP;) by Es and set
H, = f(E,).
Similarly, we can prove the following result.

Theorem 3.95. If there ezist at most a finite number of solutions of the
(PVCP), then the (PVCP) is solvable if and only if Hs # @ and there exists
z € Hs, such that z 2;ni0 0.

Remark 3.96. (i) The equivalent relation in Theorem 3.94 is a generalization
of the corresponding results in Borwein [20];

(ii) The results on the nonemptiness of H,, and H can be found in Chen and
Yang [40].

In the sequel, we will show the relationship among the vector optimization
problem (VOP,,), the vector complementarity problem (VCP), the weak min-
imal element problem (WMEP), the vector variational inequality (VVI) and
the vector unilateral minimization problem (VUMP).

Define the feasible set associated to T' by
Fow={z€X:x€D,T(z) € DE*}.
Problem VOP,,;: finding = € F,, such that
(I,z) € Mininec{{l,y) : y € Fu},

where | € L(X,Y) is given,;
Problem WMEP: finding © € F,, such that z Zinic vy, Yy € Fu;
Problem VCP: finding x € F,, such that

(T(z),x) Zintc 0;
Problem WVVI: finding z € D such that
<T('T)a Y- .CL‘) ﬁmtc 0, Vy € D;

Problem VUMP: finding « € D such that  is a weakly minimal solution
of the vector optimization problem:

Ming f(z),
z€D

where f: X — Y is given.
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Definition 3.97. Let (X,D) and (Y,C) be ordered Banach spaces. Let I :
X — Y be a linear vector-valued function and intD # &, intC # . 1 is
called a weak positive linear operator if

T Zintp 0 implies (I, x) Zintc 0.

In particular, when Y = IR,  Pintc 0 implies (l,z) < 0, 1 is called o weak
positive linear functional.

Jameson [114] defines [ as a positive (or monotone) operator if (I, D) C C.
Generally, there is no inclusion relation between a positive linear operator and
a weak positive linear operator.

Example 8.98. f Y = X, intC # @, then the unit operator from X to itself
is a weak positive sublinear operator.

Ezample 8.99. Let X =R?, Y =R3, D = ]R2+, C = ]Ri, T = (;’?) € X.
2

Define the operator [ as follows:

Ty — X2
{l,z) = 2x; € R
z1

Then, for any z,y € X,  Fintp v implies (I, ) Fintc (I,y). So  is a weak
positive linear operator.

Definition 3.100. Let X, Y be Banach spaces and | be a linear operator from
X toY. If the image of any bounded subset of X is a self-sequentially compact
subset in'Y, then l is said to be weakly completely continuous.

Definition 3.101. Let (X, D) and (Y, C) be Banach spaces. The norm || - ||
in X is said to be strictly monotonically increasing on D if, for each y € D,

z € ({y} — intD) N D implies ||z|| < ||y||.

Theorem 3.102. Let (X, D) and (Y, C) be ordered Banach spaces, intD # @,
ntC # . Suppose that

(i) T = Df is the Fréchet derivative of the C-convex function f from X to
Y;
(ii) [ is a weak positive linear operator;
(iii) There erists x € JFy, such that T(z) is one to one and weak completely
continuous;
(iv) X is a topological dual space of a real normed space and the norm || - || in
X is strictly monotonically increasing on D;
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If vector variational inequality (WVVI) is solvable, then (VOPy,;), (WMEP),
(VCP) and (VUMP) have a solution, respectively.

Since the assertions which guarantee Theorem 3.102 are in various degrees
of generality, we shall treat them in a sequence of propositions, each with its
own hypotheses.

Proposition 3.103. Let T = Df be the Fréchet derivative of f : X — Y.
Then z € D solves (VUMP) implies that x solves (WVVI); if, in addition, f
is C-convez, then conversely, x solves (WVVI) implies that it solves (VUMP).

Proof. Let = be a solution of (VUMP). Since D is a convex cone, we get
(@) Zintc flz +t(w —2)), 0<t<l,weD,

i.e.,

(f(@ + t(w — z)) — f(2))/t Lintc 0.
Let t tend to 0 from the right, we have

(Df(x),w —z) Lintc 0, Yw € D,

which is the weak vector variational inequality.
Conversely, let x solve the weak vector variational inequality:

(T(z),w — ) Lintc 0, Yw € D.
Since f is C-convex, by Proposition 1.63, we have, for any w € D,

fw) = f(z) >¢ (Df(z),w —x)
= (T(z),w — ) Lintc 0,

ie., f(w) Lintc f(z),Yw € D. Thus, z is a solution of (VUMP). [ |
Proposition 3.104. z solves (WVVI) implies that x solves (VCP).
Proof. According to the assumption,

(T(z),y — x) Lintc 0, Yy € D.

We set y = 0, then (T(z),z) Pintc 0. We set y = w+ z, w € D, then
y € D and (T(z),w) Lintc 0, i.e., T(x) € DET. Hence z solves the (VCP).H

Remark 8.105. Generally, the converse conclusion in Proposition 3.104 does
not hold. However, if T is conegative (T is called conegative if (T'(z),z) <¢
0,Vz € D), then the converse conclusion also holds.

Proposition 3.106. Let | be a weak positive linear operator. Then x solves
(WMEP) implies that x solves (VOP,,).
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Proof. This assertion is immediate from the definition of the weak positive
linear operator. |

Lemma 3.107 (Jahn [116]). Let A be a nonempty subset of an ordered space
(Y,C) with C C Y being a conver cone and intC # @. LetY be the topological
dual space of a real normed space (Z,|| - ||). Suppose that there exists y € Y
such that the set (y —C)N A is weakly closed and bounded below and the norm
[|-]| in Y is strictly monotonically increasing. Then the set A has at least one
minimal element.

Lemma 3.108. If (WVVI) is solvable, then the feasible set F, is nonempty.
Proof. Let = be a solution of (WVVI), that is,

<T(CI)), y— .’L’) ﬁintc 0, Yy e D.

We set y = z+ 2,2 € D, then y € D since D is a convex cone and
(T (), 2) £intc 0 for all z € D. So T(z) € D& and z € F,. [ |

It is easy to fulfill the following lemma.

Lemma 3.109. If the norm ||-|| in an ordered Banach space (X, D) is strictly
monotonically increasing, then the order intervals

[a,b]={z€X:a<px<pb}
in X are bounded, where a,b € X.

Proposition 3.110. If the (WVVI) is solvable, and

(i) there exists x in Fy, such that T(z) : X — Y is a one-to-one vector-valued
function and it is weak completely continuous;

(ii) Y s the topological dual space of a normed space (X,||-||) and the norm
|| - || in X is strictly monotonically increasing,

then the (VOP,;) has at least one solution.

Proof. By the assumptions and Lemma 3.108, F,, # @. Let x € F,, such that
T(z) is one to one and weakly completely continuous, and {yx} C (Fu)a, Yk —
y (weakly), where

(Fuw)s ={z}—-D)NFy C {2} —D)yNnD = [0,x].
[0, z] is the order interval, i.e.,
0,z]={ye X :y>p0and y <p z}.

The order interval [0, z] is bounded by Lemma 3.109, so (F,,). is also bounded.
We observe that (T'(z), (Fuw)z) is a self-sequentially compact, since T'(x)
is weak completely continuous. Thus there exists a subsequence (T'(z), yx,) C
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(T(z), (Fuw)z), which converges to z € (T'(x), (Fuw)e). We obtain a point yo €
(Fw)s such that

<T(1‘), yki) - <T($), y0> (StrongIY)'

On the other hand, if yx — y (weakly) and T'(x) is weak completely continu-
ous, we derive

(T'(x),yr) = (T(z),y) (strongly).
By the uniqueness of the convergence, we obtain

<T(:(:), yO) = (T(.’E), y)'

Since T'(z) is one to one, we have yo = y, i.e., y € (Fu)z and (Fy )z is weakly
closed. By Lemma 3.107, F,, has a weakly minimal element. [ |

Definition 3.111. Let (X, D) and (Y, C) be ordered Banach spaces. The op-
erator T : X — L(X,Y) is said to be positive if

(T'(z),y) >¢ 0, Vz,y€D.

The vector-valued function F': X — Y is called positive if F(z) € C, for
allz € D.
The following corollary is elementary from the definition.

Corollary 3.112. T is positive if and only if T'(z) is positive for any x € D.

We consider the positive vector complementarity problem (PVCP). The
feasible set related to the (PVCP) is

Fo={zeX:xeD,T(z)e D&}

For a given | € L(X,Y), we consider following three problems: the vector
optimization problem (VOPy, ), the weak minimal element problem (WMEP,)
and the positive vector complementarity problem (PVCP).

Problem VOP,,;: finding = € F, such that
(I, z) € Mingnec{({l,y) : y € Fs},

where | € L(X,Y);
Problem WMEP;: finding z € F;, such that x 2,mip vy, Yy € Fs;
Problem PVCP: finding x € F, such that (T'(z),z) Zinip O.

Proposition 3.113. Let T be strictly monotone and = be the solution of
(PVCP). Then, x is a weakly minimal element of F.
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Proof. It is elementary that € F; C D. If « € 8D, then z solves (WMEP ).
Otherwise, there exists ' € F; such that o’ <;:p , so

z=x—2' +2' €intD+ D C intD,

this is a contradiction. If z € intD, by the strict monotonicity of T',

(T(z),z — ) >inec (T(u),z — u), for each u € F,,u # x.
If £ >inip u, (T(u), —u) >intc 0, then for ¢ € intC,

0 (T(x),z) >c (T(x),u) + c.
Therefore,
(T(z),u) + ¢ Fintc 0.

Then (T'(z),u) >¢ 0 does not hold, since ¢ € intC, which is contrary to

the assumption condition of z € Fs. So  >;n:p w does not hold, that is,
x Zintp u. Hence, z solves (WMEP ). |

Remark 8.114. Proposition 3.113 is a generalization of the corresponding re-
sult of Riddell [163].

Proposition 3.115. z solves (PVCP) implies that x solves (WVVI).

Proof. By the definition of (PVCP), z € D, (T(z),z) Zintc 0, for all z € D;
ie., forany y € D,
(T(x),x Zintc 0 < (T(z),y)
and
(T(x),y — x) Lintc 0,

which is (WVVI). [ ]
Remark 8.116. In Proposition 3.104, we prove that x solves (WVVI) implies
that & solves (VCP). In this proposition we prove an inverse relation under the
condition that T is a positive operator. On the other hand, if T is a positive
operator, it is elementary that x solves (WVVI) implies that z solves (PVCP).

We have shown that (WVVI) and (PVCP) are equivalent if T is a positive
operator.

As a summary of the above results, we have following theorem.

Theorem 3.117. Let (X, D) and (Y, C) be ordered Banach spaces and intD #
@, intC # &. Suppose that

(i) T = Df is the Fréchet derivative of the C-convexr vector-valued function
f:X-Y;
(ii) | € L(X,Y) is a weak positive linear operator;
(iii) T is strictly monotone.

If the (PVCP) is solvable, then (VOPy,), (WMEP,), (PVCP), (WVVI) and
(VUMP) have at least one common solution.
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3.9 VCP with a Variable Domination Structure

In this section, we investigate a vector complementarity problem with a vari-
able ordering relation. We establish existence results of a solution for a vector
complementarity problem under an inclusive type condition. We also obtain
some equivalence results among a vector complementarity problem, a vector
variational inequality problem, a vector optimization problem, a weak min-
imal element problem, and a vector unilateral optimization problem under
some monotonicity conditions and some inclusive type conditions in ordered
Banach spaces.

Let (X, D) be an ordered Banach space, Y be a Banach space, {C(z) :
z € X} be a family of closed, pointed, and convex cones in Y with nonempty
interior intC(z) forallz € X, and T': X — L(X,Y’). Throughout this section,
we assume that C : X = Y be upper semicontinuous.

Consider the following three kinds of vector complementarity problems
with a variable ordering relation.

(Weak) Vector Complementarity Problem (VCP): finding = € D, such that

(T(x),z) Zintc@) 0, (T(x),¥) Lintc) 0, Vye€D.

Positive Vector Complementarity Problem (PVCP): finding € D, such
that
<T(£E),(E> ZzntC(z) 0, <T("E)7y> .<_C(z) 0, Vy €D.

Strong Vector Complementarity Problem (SVCP): finding x € D, such that
(T(.’L‘), $> =0, <T($),y> SC((E) 0, \Vly €D.

Remark 3.118. In here, without confusion, for example, we use the same no-
tation (VCP) for a vector complementarity problem with a variable ordering
relation as that for the problem with a fixed ordering relation.

If C{z) = C for all z € X, where C is a closed, pointed, and convex cone
in Y with nonempty interior intC, then (VCP), (PVCP), and (SVCP) reduce
to the problems considered in section 3.8.

Next we establish some existence results of (VCP) involving a variable
ordering structure .
The feasible set of (VCP) is

F= {(L‘ €EX:z€ D’ <T($),y> ﬁintC’(z) 07 Vy € D}

Let f(z) = (T'(z), z) for all z € D. We consider the following vector optimiza-
tion problem (VOP):

Minnic(e) f() subject to =z € F.

Theorem 3.119. Assume that LMinin,c(o)f(F) # @. If there exists x €
LMininic()f(F) such that f(x) Zintc(z) 0, then the vector complementarity
problem (VCP) is solvable.
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Proof. Let x € LMin;nic(s) f(F) and f(z) Zintc(e) 0- Then z € D and
(T(x),z) = (@) Zintc2) 0,  (T(2),y) Lintcx) 0, Yy € D.

It follows that z is a solution of (VCP). This completes the proof. |

Definition 3.120. Let f: X — Y. We say that C(z) satisfies an f-inclusive
condition if, for any x,y € X,

f(@) Sintow) f(y)  implies that C(z) C C(y).

This inclusive condition requires that any two of the family of closed and
convex cones satisfy an inclusion relation so long as their corresponding vari-
ables satisfy certain conditions. It is easy to see that, if C(z) = C forallz € X,
where C' is a closed, pointed, and convex cone in Y, then C(xz) satisfies the
f-inclusive condition.

Ezample 3.121. Let X =Y = IR? and D = IR%. Define f(u) = (3z + 2,3y +
2)T and

{(rcosz,rsinz): r >0, 0 <z < 7w/8},
if z € (—o0,7/8], y € (—00, +00);

Clu) = {(rcosz,rsinz): r >0, 0 <z <z},
if z € (7/8,7/2), y € (—00, +00);

D,

ifz €[n/2,4), y € (—00, +00)

\

for all v = (x,y) € X. Then it is easy to see that C(u) satisfies the f-
inclusive condition. In fact, for any v = (z1,%1) € X and v = (z2,y2) € X,
if f(u) <intcw) f(v), then f(v) — f(u) € intC(v) C intD and so x1 < Z2.
Therefore, C(u) C C(v) and C(x) satisfies the f-inclusive condition.

Theorem 3.122. Suppose that C satisfies the f-inclusive condition and that
there exist at most a finite number of solutions for (VCP). Then (VCP)
is solvable if and only if LMinnic@w)f(F) # @, and there exists x €

LMitinic()f(F) such that f(x) Zinic(a) 0
Proof. Let 21 be a solution of (VCP). Then
(T(z1), 1) Zintc(z) 0o (T(21),Y) Linto(z1) 0, Yy € D.
If x1 € LMingnsc(z)f(F), then
f(@1) = (T(z1), 21) ZintC(ar) O

and we are done. If 1 & LMin;,ic()f(F), by the definition of a weakly
minimal-like solution, there exists zo € D such that
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(T'(%2),y) Lintc(zz) 0, Yy €D

and

f(@2) = (T(®2), 22) <intc(a) (T(x1),21) = f(21) Zinto(ar) O-

This implies that
f(x2) = (T(%2), 22) ZintC(z1) O-

Since f(22) <intc(z,) f(1), and C satisfies the f-inclusive condition, it fol-
lows that C(z2) C C(z1) and so

f(z2) = (T(22), T2) ZintC(as) O-

Thus, 3 is a solution of (VCP) and z2 # x;. Continuing this process, there
exists xx € D such that zy is a solution of (VCP) and zx € LMin;nsc(2)f(F)
since (VCP) has at most a finite number of solutions. Therefore,

f(ar) = (T(@k), Tk) Zintc(zy) 0-

The only if part follows from Theorem 3.119 and we complete the proof. W

Remark 3.123. (1) If C(z) = C for all z € X, where C is a closed, pointed,
and convex cone in Y, then C satisfies the f-inclusive condition and Theorem
3.122 is the same as Theorem 3.2 of Chen and Yang {40].

(2) If C(z) = C for all z € X, where C is a closed, pointed, and convex
cone in Y = (—o00, +00), then we obtain the results in Borwein [20].

We next consider the positive vector complementarity problem (PVCP):
finding « € D such that

<T(.’L‘), 5(:) zintC(x) 0, (T(CL‘), y> ZC(m) 0, Vy eD.

Let
Fo={zeX: zeD, (T(x),y) 2¢@) 0, Vy€D}.

Consider the following vector optimization problem (VOP)q
Ming(q) f(z) subject to x € Fp.
Similarly, we can prove the following results.

Theorem 3.124. If LMing (5 f(Fo) # @ and there exists x € LMinc(q) f(Fo)
such that f(x) Zintc(a) 0, then (PVCP) is solvable.

Theorem 3.125. Suppose that C satisfies the f-inclusive condition and that
there erist at most a finite number of solutions of (PVCP). Then (PVCP) is
solvable if and only if LMinc ) f(Fo) # @ and there exists x € LMing () f(Fo)
such that f(x) Zintc(x) 0-
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Next we consider equivalences between vector complementarity problems
and weak minimal element problems.

Let (X, D) be an ordered Banach space with intD # &, Y be a Banach
space, and {C(z) : z € X} be a family of closed, pointed, and convex cones
in Y such that intC(z) # @ forallz € X. Let T : X — L(X,Y) be a given
map and f: X — Y be a given operator.

Recall that the feasible set of (VCP) associated with T is defined by:

F={rxeX:zeD, (T(z),y) Lintc) 0, Vy € D}.

We now consider the following five problems.

The vector optimization problem (VOP),: for a given | € L(X,Y), finding
x € F such that () € Minnsc(){(F);

The weak minimal element problem (WMEP): finding z € F such that
z € Ming,:pF;

The vector complementarity problem (VCP): finding £ € F such that
(T(.’L‘), .’17> ZintC(:c) 0;

The vector variational inequality problem (WVVI): finding x € D such
that

(I'(x),y — x) Lintcz) 0, Vy € D;

The vector unilateral optimization problem (VUOP): finding x € D such
that f(x) € LMinintc(x)f(D).

Definition 3.126. (/{/) A linear operator | : X —'Y is called weakly positive
with respect to the variable ordering relation C(z) if, for any z,y € X,  PintD
y implies that I(x) 2intc () 1(y)-

Theorem 3.127. Let (X, D) be an ordered Banach space with intD # @, Y
be a Banach space, and {C(z) : x € X} be a family of closed, pointed, and
convez cones in'Y such that intC(z) # & for allx € X. Suppose

(1)T = Df is the Frechet derivative of a convex operator f: X —Y;

(2)1 is o weakly positive linear operator with respect to the variable ordering
relation C(x);

(8) there exists x € F such that Tz is one to one and weak completely contin-
UOUS;

(4) X is a topological dual space of a real normed space and the norm || - | in
X is strictly monotonically increasing on D.

If (WVVI) is solvable, then (VOP),, (WMEP), (VCP), and (VUOP) are also

solvable.

Remark 3.128. If C(x) = C for all z € X, where C is a closed, pointed, and
convex cone in Y, then Theorem 3.127 coincides with Theorem 4.1 of Chen
and Yang [40].

We need the following propositions to establish Theorem 3.127.
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Proposition 3.129. Let T = Df be the Frechet derivative of an operator
f: X > Y. Then z solves (VUOP) implies x solves (WVVI). If, in addition,
f is a C(x)-convez function, then conversely, x solves (WVVI) implies x
solves (VUOP).

Proof. Let = be a solution of (VUOP). Then
z € D and f(z) € LMini,c2)f(D),

ie.,
(@) Zintcw@) fly), Yy € D.

Since D is a convex cone,
f(2) Zintc(e) fFl@+tlw—1)), 0<t<1l,weD.

It follows that 1
@ +tw —2)) - £(2)] Zinto@) O-

Since f is Frechet differentiable on X, letting ¢ — 0T, we get
(Df(z),w — ) Lintc(z) 0, -Vw € D,

which is (WVVI).
Conversely, let « solve (WVVI). Then

(T(z),w ~ ) Lintc(z) 0, Yw € D.
Since f is C'(x)-convex, by Proposition 1.72,
fw) = f(#) 2c@) (Df(z),w — 2) Linto() 0, Yw € D

and so
f(w) zintC(z) f(-’E), Vw € Da
which is the (VUOP). This completes the proof. [

Definition 3.130. A map T : X — L(X,Y) is called co-negative with respect
to the variable ordering relation C(x) if (T'(x), ) <¢(z) 0 holds for all z € D.

Proposition 3.131. If z solves (WVVI), then x also solves (VCP). Con-
versely, if T is co-negative with respect to the variable ordering relation C(x),
then x solves (VCP) implies z solves (WVVI).

Proof. Let x be a solution of (WVVI). Then
(T(x),y — z) Lintc@ 0, Vye D.

Letting y = 0, we get (T'(z), Z) Zintc(z) 0. For y = w+x with any w € D, we
have
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(T(x),w) Lintc(z) 0, Yw € D.

Thus, z is a solution of the (VCP).
Conversely, let  solve the (VCP). Then

(T(x),z) <c) 0 Zinto(a) (T(x),y), Yy € D.

This implies
(T(x),z) 2intc@) (T(x),y), YyeD
and so
(T(z),y — ) Lintc(z) 0, Vy € D.

This completes the proof. |

Proposition 3.132. Let | be a weakly positive linear operator with respect to
the variable ordering relation C(x). Then x solves (WMEP) implies z solves
(VOP),.

Proof. Let = be a solution of (WMEP). Then z € F and
z2imip F={re€X: zeD, (T(z),y) 2intcx) 0, Vy € D}.

For any z € F,  Pintp F implies £ Zinep 2z- Since [ is a weakly positive
linear operator with respect to the variable ordering relation C(z), it follows
that [(z) Zintc(a) {(2) and so

l(fl]) Z'LntC(z) l(]:))
which is (VOP);. This completes the proof. |

Definition 3.133. Let (X, D) be an ordered Banach space and A a nonempty
subset of X.

(1) If, for some x € X, Ay = ({z} —D)NA # @, then A, is called a
section of the set A.

(2) A is called weakly closed if {xx} C A, x € X, (z*, zx) — (z*,z) for
allz* € X*, then z € A.

Lemma 3.134. If (WVVI) is solvable, then the feasible set F is nonempty.
Proof. Let z be a solution of (WVVI). Then
(T(z),y — x) Lintcx) 0, Yy € D.
Taking y = z -+ « with any z € D, we know that y € D and
(T'(x), 2) Lintc(x) 0, Yz € D.

Thus, x € F. This completes the proof. ]
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Lemma 3.135. If the norm || - || in an ordered Banach space X is strictly
monotonically increasing, then the order intervals in X are bounded.

Proposition 3.136. Suppose (WVVI) is solvable and

(1) there exists x in F such that T'x is one to one and weak completely con-

tinuous;
(2) X is the topological dual space of a real normed space (Z, || - ||.) and the
norm || - || in X is strictly monotonically increasing.

Then (WMEP) has at least one solution.

Proof. By the assumption and Lemma 3.134, F # &. Let z € F be a point
such that T'(z) is one to one and weak completely continuous, and {yx} C F
with yr — y (weakly). Since

Fo={z}-D)nF c ({z} —D)nD = [0,],

by Lemma 3.4, [0, z] is bounded and so is F,. Since Tz is weak completely
continuous, (T(z), Fy) is a self-sequentially compact set and so {T'(z), yx) C
(T'(z), Fy) implies there exists a subsequence (T'(z), yx,) which converges to
z € (T'(z), Fz). We get a point yo € F, such that

(T(2), yr:) — (Tz,y0) (strongly).

On the other hand, since yx — y (weakly) and T'(x) is weak completely
continuous,

(T(z), yx) — (T(x),y) (strongly).
By the uniqueness of the limit, we get (T'(z),y) = (T(x),yo). Since Tz is
one to one, y = yo and so y € F,. Since F, is weakly closed, it follows

from Lemma 3.2 that F has a weakly minimal point a such that a Z;n:p F.
Therefore, (WMEP) has at least one solution. This completes the proof. B

Definition 3.137. Let (X, D) be an ordered Banach space, Y be o Banach
space, and {C(x) : z € X} be a family of closed, pointed, and convex cones
inY. Amap T : X — L(X,Y) is called positive with respect to the variable
ordering relation C(x) if

<T(Z’), y) ZC(JJ) 0, fO’f‘ any x,y € D.

Equivalently,
(T(z),y) € C(x), Va,yeD.

An operator K : X —'Y is called positive if

K(z) >¢() 0, for anyz € D.
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We now consider the positive vector complementarity problem (PVCP):
Finding x € D such that

<T($),$> ZintC(z) 0, <T(x)7y> ZC(:C) 0, ‘v’y eD.
The feasible set related to (PVCP) is defined as
Fo={zeX: zeD, (T(x),y) >c)0, Vye€ D}.

Let us consider the following problems.

The vector optimization problem (VOP);q: finding « € Fo such that {(z) €
LMinp. pl(Fo).

The weak minimal element problem (WMEP)g: finding z € Fy such that
z € LMin;.:pFo.

The positive vector complementarity problem (PVCP): finding x € Fq
such that

<T(.’L‘), .Z') 2intC(ac) 0.

The vector variational inequality problem (VVIP): finding € D such
that

(T(z),y — ) Lintc(z) 0, Vy € D.

The vector unilateral optimization problem (VUOP): for a given map f :
X — Y, finding = € D such that f{z) € LMingp f(D).

Definition 3.138. A map T : X — L(X,Y) is said to be strictly monotone
with respect to the variable ordering relation C(x) if

<T(.T,‘) - T(y),a: - y> _>_intC(w) 0, vma ye X’ T 7é Y.

Definition 3.139. We say that C(z) satisfies an inclusive condition if, for
any z,y € X,
T <;upy implies that C(z) C C(y).

It is easy to see that, if C'(z) = C for all z € X, where C is a closed,
pointed, and convex cone in Y, then C(z) satisfies the inclusive condition.

Ezample 3.140. Let X = (—00,+0), D = [0, +00), Y = R?, and
{(rcosz,rsinz): r>0,0<z <n/8}, if z € (—o0,7/8|;
Cx)=< {(rcosz,rsinz): r>0,0<z <z}, ifze(n/8 7/2);
D, if x € [1/2,400)

for all x € X. Then it is easy to check that C(x) satisfies the inclusive condi-
tion.
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Proposition 3.141. Let T be strictly monotone with respect to the variable
ordering relation C(x) and x a solution of (PVCP). If C satisfies the inclusive
condition, then z is a weakly minimal point of Fo (i.e., x solves (WMEP)y ).

Proof. It is easy to see that z € Fo C D. If x € bd(D) (where bd(D) denotes
the boundary of D), then x solves (WMEP)y. Otherwise, there exists z’ € Fo
such that z >;.:p =’ and so

r=x—2' +2' €intD+ D C intD,
which is a contradiction. If x € intD, by the strict monotonicity of T,
(Tx,z —u) Zinto@) (T(w),z—u), Yu€ Fo,u#x.
Suppose & >;n¢p u. Since T is positive, (T'(u), z — u) >¢(u) 0 and
(T(z),z — u) Zintc(e) (T(w), T —u) >cw) 0.
By the assumption, we get P(u) C C(z) and so

(T(x), % — u)
€ (T(u),z — u) + ntC(z) C C(u) + intC(x)
C C(z) + intC{x) = intC(x).

It follows that
(T(x), 2 — u) Zintc(z) 0
and thus
0 zintC(z) <T(JJ),JJ> ZC(ﬂﬁ) (T(m)?u> +k

for some k € intC(x). This implies
(T'(z),u) + k Zintc(z) 0.
Since k € intC(z) and = € Fy,
(T'(z),u) + k € C(z) + intC(x) C intC(x)

and so
<T(.’E), u) +k —>_'th(x) 0,

which is a contradiction. Therefore, © >;,:p v does not hold, that is  Z;nip u.
It follows that z 2intp Fo and x solves (WMEP)p. This completes the proof.ll

Proposition 3.142. If z solves (PVCP), then x also solves (WVVI).

Proof. Suppose z solves (PVCP). Then z € D and

(T'(z),z) Zintc@ 0, (Tz,y) >¢) 0, y€D.
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If (T'(z),y — x) <intc(a) 0, then

(T(z),z) = —(T(x),y — x) + (T(x),y) € intC(z) + C(x) C intC(x)
and so

(T(.’L‘), x> ZintC(x) Oa

which is a contradiction. It follows that

(T($)7 Y- LE> ﬁintC(z) 0

and z solves (WVVI). This completes the proof. |

Similarly, we can get other equivalence conditions. We have the following
theorem.

Theorem 3.143. Let (X, D) be an ordered Banach space with intD # &, Y
be a Banach space, and {C(x) : x € X} be a family of closed, pointed, and
convex cones in Y such that intC(z) # @ for all z € X. Suppose that C
satisfies the inclusive condition and

(1)T = Df is the Frechet derivative of the convexr operator f : X — Y

(2)1 is a weakly positive linear operator with respect to the variable ordering
relation C(z);

(8)T is strictly monotone with respect to the variable ordering relation C(z).

If (PVCP) is solvable, then (VOP)y, (WMEP),, (PVCP), (WVVI), and
(VUOP) have at least a common solution.
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Vector Variational Principles

Ekeland’s variational principle is an important tool for nonlinear analysis and
optimization theory. It can be applied to derive the famous Caristi-Kirk’s fixed
point theorem and fixed point theorem for directional contractions, and to im-
prove the so-called Ambrosetti-Rabinowitz “Mountain Pass” theorem. It was
employed to improve and generalize Morse’s critical theory. It has important
applications in the geometry theory of Banach spaces and in the study of non-
linear operators in Banach spaces. It has many applications in control theory.
It is used to study the existence of optimal solutions, optimality conditions
for mathematical programming problems, stability and well-posedness of op-
timization problems, approximate optimal solutions and approximate duality
theory and approximate saddle point theory, development of approximate al-
gorithms for mathematical programming. It also has important applications
in convex analysis. Along with the development of vector optimization and
set-valued optimization, many authors have tried to improve it, generalize it
and find as many applications as possible.

In the first part of this chapter, we obtain variants of variational principles
for vector-valued functions and develop variational principles for set-valued
functions. We derive vector versions of “Drop theorem”, “Petal theorem” and
“Caristi-Kirk fixed point theorem”. We establish equivalences among these
theorems and vector variational principles.

The study of well-posedness of an optimization problem is to investigate
the behavior of the variable when the corresponding objective function value is
close to the optimal value. In scalar optimization, the notion of well-posedness
originates from Tykhonov [196] in dealing with unconstrained optimization
problems. Its extension to the constrained case was introduced by Levitin
and Polyak [132]. Since then, various notions of well-posedness have been
defined and extensively studied (see [145], [225], [226] and a recent mono-
graph [59]). In vector-valued and set-valued optimization, there have also
been quite a number of publications on the topic of well-posedness (see, e.g.,
[11, 144, 141, 54, 99, 100, 101] and the references therein). The last two sec-
tions of this chapter are based on the results from [99] and [100]. We shall
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follow the embedding technique employed in [226] to introduce the notion of
extended well-posedness for vector-valued and set-valued optimization prob-
lems. Corresponding to different understandings of “approximation” of the
objective values to the optimal value set, we shall introduce different no-
tions of well-posedness in vector-valued and set-valued optimization. We shall
provide various characterizations and criteria for these types of extended well-
posedness, generalizing most of Zolezzi’s results in [226]. We shall derive new
variants of vector variational principles and apply them to present sufficient
conditions for these notions of extended well-posedness.

4.1 Variational Principles for Vector-Valued Functions

In this section, we present a unified variational principle for vector-valued
functions. Generally speaking, this principle includes Nemeth’s, Tammer’s
and Isac’s variational principles for vector-valued functions as its special cases.
And in some sense, it also includes Dentcheva and Helbig’s variational princi-
ple for vector-valued functions as its special case. We establish a generalized
variational principle for vector-valued functions without a normality assump-
tion. The main tool we used in this section is Hausdorff maximality principle
and scalarization method.

In 1972, Ekeland presented his original variational principle (see [62, 63]).
We state it as the following Theorem 4.1.

Theorem 4.1 (Ekeland’s variational principle). Let (X, d) be a complete
metric space, v : X — IRU{+oo} a proper lower semicontinuous (in short,
l.s.c) function which is bounded below. Let there be given ¢ > 0 and T € X
such that

< '
(&) < inf p(z) + e

Then, for any X > 0, there exists z. € X such that

(i) (zc) < o(7);
(ii) d(z., ) < X;
(iii) p(ze) < @(x) + e/Md(z,z.), Vo e X\{z}.

Generally speaking, there are two ways to prove this theorem: one is to
apply the Hausdorfl maximality principle to the epigraph of f under the or-
der induced by Phelps’ cone, and the other is to utilize a dissipative dynamic
system.

Ekeland’s variational principle was extended to the vector case by many
authors, for instance, Nameth [151], Tammer [185], Isac [111].

First of all, we recall some basic concepts and some previous results in this

field.

We say that a set A is a partially ordered set if there is a partial order
defined on A, and we denote “<”.
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Let A be an arbitrary set and “<” be a partial order on A. We say that
A is totally ordered by “<” if, for any a,b € A, either a < b or b < a holds.

The following theorem, known as the Hausdorff maximality principle, is
equivalent to the so-called axiom of choice, and Zorn’s lemma, which are
fundamental theorems in abstract analysis (see, e.g., [4]).

Theorem 4.2. Let A be a set partially ordered by relation “<”. Then there
exists a mazimal subset (with respect to the set inclusion relation), which is
totally ordered by “<”.

Let Y be a Hausdorff topological vector space ordered by a nontrivial con-
vex cone C'. We introduce the following definitions.

A subset A of Y is called fullif A= (A+C)N(A-C).

We say that a cone C' is normal if C is a pointed and convex cone and the
zero point of Y has a neighborhood base consisting of full sets.

Let Cy C C be a convex cone and {Zq4 }oecr be a net of Cy. The net {z4}aer
is said to be Cy increasing if x4 — zg € Co, whenever a > .

A convex cone Cy C C' is called C bound regular (sequentially C' bound
regular) if each Cy increasing and C order bounded net (sequence) in Cy con-
verges to an element of Cj.

Cy is said to be complete if any Cauchy net {c,}ver of Co converges to
some point ¢g € Cp.

Let X be a nonempty set, Y be a Hausdorff topological vector space, and
C C Y be a nontrivial convex cone. A vector-valued functionr: X x X — Y
is called a C metric function if it satisfies the following conditions: for any
x’ y’ z e X7

) T(.’L',.’L‘) =0;
(it) r(z,y) <c¢ 0 implies z = y;
i) 7(z,y) =7(y,2);

) r(z,2) <c r(z,y) + (Y, ).

Let B(0) denote a neighborhood base of the zero element of Y. Let
X(U,a)={z e X :r(a,z) €U}, U € B(0),a € X.

If {X(U,a) : U € B(0),a € X} form a neighborhood base for a Hausdorff
topology on X, then the resulting topology is called the Hausdorff topology
induced by r. We denote by (X,r) the Hausdorff space with its topology
induced by . If (X, r) is complete, we say that (X,r) is a complete C metric
space.
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Remark 4.3. (i) We have slightly modified the definition of C' metric r in
Nemeth [151]. If C is pointed, then our definition of C' is the same as the
one in Nemeth [151].

(ii) Generally speaking, a C metric r function may not induce a HausdorfF
topology on X unless some special assumption is made on C.

We assume that X is a topological vector space, Y is a topological vector
space ordered by a nontrivial convex set C, ¢o € C\{0}, f: X - Y isa
vector-valued function.

Let U be a closed subset of X. We say that f is C lower semicontinuous
(Ls.c.)on U if, forany y € Y, the set {z € U : f(z) € y — clC} is closed.

We say that f is C order bounded below (some times, we call it C bounded
below or C lower bounded) on U if f(z) >¢ yo, Y& € U for some yo € Y.

f is said to be (cg, C') lower semicontinuous on U if, for any ¢ € IR, the set
{z eU: f(x) € tcy — clC} is closed.

f is called submonotone (with respect to C) if, from the conditions:

(a) lim, z, = x, where {z,}ucr is a net in X, (I, <) is a totally ordered set;

(b) f(z2) <o f(zy), whenever v >

it follows that f(z) <¢ f(zv),Vv € I.
If C is a closed and convex cone, then it is not difficult to see that if f is
ls.con X, then f is both (cg, C) L.s.c. and submonotone (with respect to C).

Ezample 4.4. Let U = [-2,2] C R and C = IR?F Let f = (f1, f2) : U — R?
be defined as follows:

f1<'7“) =,
2, ifxe[-2,-1],
) x+3, ifre(-1,1),
fo(z) = 1/2, ifz=1,
2,  ifxe(L,2).

Then f is ((3/2,2),C) l.s.c.on U.

Now we state several forms of Ekeland’s variational principle for vector-
valued functions and some of their corollaries obtained by Nemeth [151], Tam-
mer [185] and Isac [111].

Definition 4.5. Let M be a subset of Y, and H be a subset of C. A point
x € M is called an H near to minimal point of M if

(t—H-C)NM=02.
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First, we introduce Tammer’s variational principle for vector-valued func-
tions.

Let K be a nonempty closed subset of X and C be a convex subset of Y.

Definition 4.6. Let € > 0. A point z. € K is called an e-minimal solution of
fon K if
f(@) — f(ze) + ec® £onj0y 0, Va € UL

Definition 4.7. Let € > 0 and intC # (). A point z. € K is called a weakly
e-minimal solution of f on K if

f(z) = f(ze) + ec® Zinic 0, Vz e K.

The following assumption is made.

Assumption 4.8. C and D are proper subsets of Y and cy is an element of
Y \ {0}. The following conditions hold:

(a) C is an open convex subset of Y with 0 € clC\ C and
Y = U{clC + aco|a € IR}.

(b) aco € D\ {0} for each o € IRy, and 0 € clD \ D.
(¢) clC + (D\{0}) c C.
(d) 0C + 0C C clC.

Theorem 4.9 (Tammer [185]). Let Y be a topological vector space and X
be a real Banach space. Let Assumption 4.8 hold. Assume that f: X — Y is
(co, C) Ls.c. and C bounded below on U.

Given € > 0, zg is a weakly e-minimal solution of f on K. Then there
exists an x. € K such that

(i) f(z) — f(ze) + ec® ¢ =D\{0}, Vz € K;
(ii) ||ze — zol| < Ve
(ili) f(z) — f(ze) + Velle —x|le® ¢ —D\{0}, Vz € K.

The following corollary can be obtained by replacing both C and D in
Theorem 4.9 by intC.

Corollary 4.10 (Tammer [185]). Assume that C is a conver cone with
nonempty interior and co € ntC. Assume that f : X — Y is (co,C) ls.c.
and C bounded from below on K.

Given € > 0, zg is an e-minimal solution of f on K. Then there exists an
z. € K such that

(i) z¢ is o weakly e-minimal solution of f on K;
(i) ||ze — mol| < Ve;
(iif) f(2) — f(zc) + Vellz — zel|c® Lintc 0, Vo € K.
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Second, we present Isac’s vector variational principle.

Theorem 4.11 (Isac [111]). Let (X,d) be a complete metric space, Y a
locally convexr Hausdorff space and C C Y a normal cone. Let c® € C\{0},
and € > 0. Assume that x* € X satisfies

(i) f(z) — f(z*) + ec® £c 0,Vz € X;
(i) Vz € X, > 0, the set {y € Y : f(y) — f(z) + ad(z,y)c® <c 0} is closed.
Then there exist Ay > 0, and ' € X such that
(iii) f(2") <¢ f(="),
(iv) d(z', z*) < A\,
(v) f(z) — f(=') + ¢/ Md(2',2)® £c 0, Vze X\{z'}.
Theorem 4.13 below is a variant of Theorem 6.1 of Nemeth [151]. To prove
it, we need the following lemma.

Now, let X be a topological space and Y a locally convex Hausdorff space,
C C Y a convex cone with nonempty interior intC'.

Lemma 4.12. Let Cy C C be C bound regular complete. Assume that there
exists U € B(0) such that H = Co\U # @ and that there exists x* € X such
that (f(z*) —C)N f(X) is C bounded below. Then, for any € > 0, there exists
an z. € X such that

(1) f(zc) <c f(=");
(ii) (f(z) —eH —C)N f(X) = 2.

Proof. We prove it by contradiction. Suppose that Je¢ > 0 such that the conclu-
sion of Lemma 4.12 does not hold. Then, for z; = z*, (f(z1)—eH—-C)Nf(X) #
@, i.e.,, dzg € X, h1 € H such that

f(JCQ) — f(xl) + eh1 <¢ 0.

For x5, Jx3 € X, ho € H such that

f(.’Eg) - f(CUz) + ehgy <¢ 0.

Continuing the process, for zx, 3zk41 € X, hr € H such that

f(@k+1) — f(zr) + ehi <c 0,
we have .
fl@es1) — f@) +€> hi<c0, VkeN.
i=1
Since (f(z*) — C) N f(X) is C bounded below, it follows that Jyo € Y such

that f(zx) >¢ yo, Vk € N. So {Zle hi} is Cp increasing, C' bounded. Hence

{Zle h;} is convergent. Consequently, hx, € U when k is large enough, which
contradicts the assumption H = Co\U. |
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Theorem 4.13. Let C be a nontrivial closed and conver cone, Coy C C a
convex cone which is C bound regular complete and Co N —C C —Cy. Let
(X,r) be a complete Cy metric space. Let r(-,a) be continuous with respect to
the topology of X induced by r for any a € X. Let f be submonotone (with
respect to C' and the topology of X induced by r). Assume that there exists an
z* € X such that

(i) (f(z*) = C)N f(X) has a C lower bound.

Then, for any € > 0, there exists x. such that

(ii) f(z*) — f(zc) —er(z™,3c) 20 0,

(iii) f(zc) — f(z) —er(ze, ) 200, Vz e X\{z.}.

If there exists U € B(0) such that H = Co\U # @, then there exists z, € X
such that

(iv) f(zg) <c f(z"),
(V) (f(ze) —eH - C)N f(X) = 2.

For x! as above, there is an z! € X such that

(vi) f(z) — f(z) —er(zV,z) 2¢ 0, Yz e X\{z!};
(vii) r(zL,z)) € U.

Proof. Define a relation < on T' = {(z, f(z)) € X xY : z € X, f(z) <c¢
f(z*) —er(z”,z)} by putting (z, f(z)) < (y, f(y)) iff

fy) — f(z) —er(z,y) >c 0.

It is easy to see that < is a partial order on T'. Applying the Hausdorff
maximality principle, we have a subset Z; of T', which is maximal with respect
to the set inclusion relation, and also totally ordered with respect to <, with
(z*, f(z*)) as its upper bound (with respect to the order <). We will show
that Z; contains its infimum with respect to <.

We introduce the relation < on Xo = {z € X : (z, f(z)) € Z1} by putting
z <y iff (z, f(z)) < (y, f(¥)). Then Xp is totally ordered with respect to <.
Now let us demonstrate that the filter of its lower section (for the concept of
the lower section of a totally ordered set and the concept of the filter of its
lower section, the reader may refer to [122]) is Cauchy by contradiction.

Suppose that there exists a neighborhood U’ of 0 such that, for each z €
Xo, dz,y € Xo with < z,y < z such that

r(z,y) ¢ U'.
Suppose that z < y. Put v1 = y,v3 = x. Then r(vz,v1) ¢ U’ and
f(v1) = f(v2) — er(v2,v1) >¢ 0.

Starting with x instead of z, we can continue this procedure. As a result, we
can obtain a decreasing sequence {v;} in Xy such that
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T‘(Ug}c,vgk_l) ¢ U’, Vk. (4.1)
From the definition of < on Xg, we also have

f(or) = foes1) — er(ves1,v6) 2¢ 0, k.

So we have i

f(v1) — f(vg41) — GZT(UH—I,W) >c 0.

1=1
Since
flw) € (fz*)-C)N f(X), Vk,
by (i), the sequence {f(vx)} has a C lower bound, say yo, i.e.,
f(kt1) — v 2¢ 0,

this relation yields

k
flor) —yo—€Y  r(vigr,v) >¢ 0,
i=1
k
which shows that Z r(vi41,v;) are C order bounded. This simply contradicts
i=1

(4.1).

The contradiction shows that the lower section of X¢ forms a Cauchy filter,
which converges by the completeness of X to z. € X.

Since f is submonotone with respect to C, we have

fp) — f(ze) >¢ 0, for every p € Xo. (4.2)

Let p be an arbitrary point in X,. For every p < ¢, we have

f(q) — f(p) —er(p,q) 2¢ 0,

which, together with (4.2}, yields

f@) = f(@e) —er(p,q) 2¢ 0.

Letting p — x, in this relation and taking into account the fact that C is
closed and (-, ¢) is continuous, it follows that

f(q) — f(ze) —er(ze,q) 20 0,

that is, (ze, f(zc)) < (g, f(¢)), for each g with (g, f(q)) € Z1. Now that Z; is
maximal, (z¢, f(z¢))} must be in Z; and it is the infimum of Z; with respect
to <.
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The last assertion implies also that there does not exist any v in X\{zc}

such that
(’U, f(?))) =< (xe, f(xﬁ))

Thus (ii) and (iii) have been proved.

If H is defined as in the theorem, then by Lemma 4.12, then we deduce
the existence of z/ such that (iv) and (v) hold. If we proceed as above taking
z! in place of z*, then we can get an z’ so as to have (iii) and (ii) with z
instead of x., that is, to have the relation

f(@d) <o flae) —er(al, zo). (4.3)
Suppose that (vi) does not hold. Then, we have r(z.,z.) € Co\U = H,
that is,
f@e) —er(zeal) = C = f(z)) —eH = C,
this relation together with (4.3) contradicts (v). |

Remark 4.14. (i) Theorem 4.13 is slightly different from Theorem 6.1 in
Nemeth [151]. We do not require that C be pointed and normal.
(ii) If the relation < is defined on f(V') as that in Nemeth [151]:

Vf(v1), f(v2) € F(V), f(v1) < fv2) Hf f(v1) — f(v2) + 7(v1,v2) <c O.

This relation may not be well-defined. For example, V = [-1,1]C IR, E =
R,C=Co =Ry = {t € R:t>0}r(v,v2) = |v1 — v2], V1,02 €
V, f(v) = v, Vv € V. Observe that f(—1) = f(1) =1 € f(V), f(1/2) =
1/4 € f(V). Thus,

FA/2) - f) +1/2-1]=1/4<c 0, (4.4)
hence 1/4 < 1 holds.
However,
fFA/2) = f(=1) +11/2= (-1)| = 3/4 £¢ 0, (4.5)

hence 1/4 < 1 does not hold. (4.4) and (4.5) lead us to confusion about
the relation <.

Now we will take a unified approach to the above three vector variational
principles: Nemeth’s, Tammer’s and Isac’s vector variational principles, and
we will explore the relationship between the unified principle and the three
principles (or their variants).

Theorem 4.15. Let C be a convex cone, Co C C be a C bound regular com-
plete convex cone and Co N —C C —Cy. Suppose that (X,r) is a complete Cy
metric space. Assume that one of conditions (i) and (ii) holds

(1) f is submonotone (with respect to C) and C is closed and, Ya € X,r(-,a)
s continuous with respect to the topology of X induced by r,
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(ii) Vo > 0,Vz € X, {y € X : f(y) + ar(z,y) — f(z) <c 0} is closed.
Furthermore, assume that there exists an z* € X such that

(iii) (f(z*) — C)N f(X) is C lower bounded.

Then, for any € > 0, there exists an x. € X such that

(iv) f(z*) — f(ze) —er(z*,zc) >¢ 0; and
(v) f(ze) — flz) —er(ze,x) 20 0, Vz e X\{z}.

If there is a U € B(0) such that H = Co\U # @, then there exists . € X
such that

(vi) f(zl) <¢ f(z*); and
(vii) (f(zl) —eH - C)N f(X) = @.

For xl. as above, there exists an x/ € X satisfying

(viii) f(z”) — f(z) —er(z”,z) ¢ 0, Vz e X\{z/}; and
(ix) r(zl,2) e U.

Proof. By Theorem 4.13, if (i) holds, then Theorem 4.15 is true.

Now we assume that (ii) holds. We follow the proof of Theorem 4.13. We
need only to show that (z., f(z.)) is an infimum of Z; with respect to the
relation “<” defined in the proof of Theorem 4.13. Taking a = € in (ii), we
know that Vz € Xo, X(z) = {ye Xy <z} ={y € X : fly) — flx) +
er(z,y) <¢ 0} is closed. So

f(xe) = f(z) + er(ze,z) <c 0, Vze Xo.

That is, (ze, f(ze)) < (z, f(x)) in Z;. Since Z; is maximal, (z., f(z¢)) must
be in Z1, so (z., f(z¢)) is an infimum of Z; with respect to <. The rest of the
proof is the same as that of Theorem 4.13 with only some notation changes.ll

It is easy to see that Theorem 4.15 is stronger than Theorem 4.13, hence
also stronger than Nemeth’s vector variational principle (Theorem 6.1 in
Nemeth [151]).

Lemma 4.16. Let (X, d) be a complete metric space, C be a conver cone
and ® € C\{0} be such that there exists a A € C* with A(c*) > 0. Let
Co = {ac® : a > 0}, r(z,y) = d(z, y)c°, Vz,y € X. Then

(1) Cy is a C bound regular complete convex cone;
(ii) (X,r) is a complete Cy metric space and Ya € X,r(-,a) is continuous;
and

(iii) Co N —C € —Cy.
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Proof. (i) Cy is complete. In fact, for any Cauchy net {a,c’}, and any U €
B(0), 3vg such that au, c®—ay,c® € U whenever vy, vy > vg. Given A € C* such
that A\(c®) > 0, |aw; — Qw,| = A(w)/A(c?) for some u € U. As X is continuous,
it is easy to see {a,} is a Cauchy net, and {o,} converges to some ag > 0.
Hence, {a,c°} converges to apc®. Now we prove that Cp is C' bound regular.
Given a monotonically increasing net {a,c®} C Co, i.e., ay, > Qu,, whenever
v1 > vy, and it is C bound, i.e., 3¢! € C such that o, c® <¢ ¢!, Vo, then, given
A € C* with A(c®) > 0, we have a,A(c®) < A(c!), which implies that {a,}
is bounded. This combined with the monotonicity of {a,} yields that {a,}
converges to ag. S0 a,c® — apc® € Cy. Moreover, it is obvious that Cp is a
convex cone.

(ii) It is not hard to see that (X, r) is a Cy metric space and the topology
induced by r is equivalent to that of (X, d). So (X,r) is Cy complete. It is
easy to see that Va € X, r(-,a) is continuous since d(-, a) is continuous.

(iii) If ac® € —C, then A(ac®) = aA(c®) < 0, which implies o < 0. Hence
a=0,ie., a =0¢c —Cy. [ ]

Corollary 4.17. Let (X,d) be a complete metric space, C a convex cone,
c® € C\{0} be such that 3\ € C* with \(c°) > 0. Let f : X — Y be C order
lower semicontinuous. Given € > 0, x* € X satisfying

(iv) (f(z*) - C)N f(X) is C lower bounded; and
(v) f(z) — f(z*) + ec® £¢ 0,Vz € X.
Then for any A1 > 0, there exists an ' € X such that
(vi) f(z') <c f(=*);
(vii) d(z', z*) < A\1; and
(viil) f(z) — f(z') + €/ Md(z’, z)® £c 0,Vx € X\{z'}.
Proof. Replacing r(z,y) with d(x,y)c®/\1, choosing U such that ¢® ¢ U and
Mu)/A(c®) <1 for any u € U, letting H = Co\U (Cy is as defined in Lemma

4.16) and applying Lemma 4.16 and Theorem 4.15, we can establish Corollary
4.17. |

The following Corollary 4.18 improves Theorem 4.11.

Corollary 4.18. Let (X,d) be a complete metric space, C a convex cone,
c® € C\{0} be such that there exists a A\ € C* with A\(c®) > 0. Given € > 0,
there exists an x* € X satisfies

(i) f(@) — f(z*) + e® £c 0, Vz € X;

and (f(z*)—C)YN f(X) is C lower bounded. Let (ii) in Theorem 4.11 hold (or
f is submonotone with respect to C and C is closed). Then for any Ay > 0,
there ezists an ' € X such that (%), (iv) and (v) in Theorem 4.11 hold.

Since the proof of Corollary 4.18 is the same as that of the Corollary 4.17,
we omit it.
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To illustrate the relationship between Corollary 4.17 and Theorem 4.11,
Corollary 4.18 and Theorem 4.13, we prove the following two lemmas.

Lemma 4.19. If C is a closed and convex cone, then the following two state-
ments are equivalent:

(ix) ® € C\{0}, I\ € C* such that A(c®) > 0;
x) &0 € O\(~C).

Proof. Assume that (ix) hold. Then, by A(c®) > 0, we know by contradiction
that ¢ € C\ — C, i.e., (x) holds true.

Now we assume that (x) holds. We prove, by contradiction, that (ix) holds.
Suppose that YA € C*, A(c®) = 0. Then ¢ € (C*)* = C. In addition, A\(—c®) =
0, VA € C*, which implies that —c® € (C*)* = C, i.e., ¢® € —C. Hence
® € CN(-C), contradicting (x). [ |

Lemma 4.20. The following statements are true.

(xi) If C is a nontrivial, pointed, closed and conver cone, then Vc® € C\{0},
I\ € C* such that A\(c®) > 0;
(xii) If C is a normal cone, then ¥c® € C\{0}, IX € C* such that \(c®) > 0;
and
(xiii) If C is a nontrivial conver cone with nonempty interior intC, then ¥c® €

intC, YA € C*\{0}, A\(c°) > 0.

Proof. (xi) When C is a nontrivial pointed, closed and convex cone, by Lemma
4.19, we know (xi) holds;

(xii) When C is a normal cone, Y* = C* — C*. We show that by contra-
diction that (xii) holds. Otherwise, suppose 3¢° € C\{0} such that Y\ € C*
A(c®) = 0. Then Vu € Y*, u(c®) = 0, hence c® = 0, which contradicts c® # 0.
Hence (xii) holds.

(xiii) ¢® € intC # @. We prove that YA € C*\{0}, A(c®) > 0. Otherwise,
if Ao € C*\{0} such that A\g(c®) = 0. Let 20 € Y with

)\0(20) > 0. (46)

As ¥ € intC, c® — 629 € C when § > 0 is small enough. Hence Ao(co — 620) >
0 = Xo(20) < 0, contradicting (4.6). So (xiii) holds. |

Remark 4.21. By Lemma 4.19 and Lemma 4.20, the assumptions on the dom-
inating cone C in Corollary 4.17 and Corollary 4.18 are much weaker than
those in Theorem 4.11 and Theorem 4.13.

Remark 4.22. (i) If f is C lower bounded, then (v) in Corollary 4.17 holds
automatically;

(ii) So long as we slightly strengthen the conditions of Tammer’s vector vari-
ational principle (Corollary 4.10): let f be C order lower semicontinuous.
We can have a stronger version of Tammer’s vector variational principle
(see Corollary 4.10) by setting A\; = /€, c® € intC.
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Remark 4.23. It is obvious that (i) in Theorem 4.11 implies (i’) in Corollary
4.18. Hence, if (ii) in Theorem 4.11 holds, then Corollary 4.18 is an improve-
ment of Isac’s vector variational principle.

Now we show other generalizations of Isac’s vector variational principle
(see Isac [111]).

Let (X, d) be a complete metric space, and let (Y, C) be an ordered Haus-
dorff topological vector space in which the ordering is induced by a closed and
convex cone C with nonempty interior.

Definition 4.24. We say that a vector-valued function ®: X x X - Y isa
half distance if the following properties are satisfied:

1. P(z,z)=0, Vz€X;
2. &(z,y) <¢ D(z,2) + D(2,y), Vz,y,z€ X.

The family of half distance is not empty (see Isac [111]). For example, every
distance measure is a half distance and for every g : X — Y, the function
defined by

P(z,y) =g(y) —g(x), Vz,yeX
is a half distance. Moreover, if L is an arbitrary vector space and T : L — Y
is a subadditive function such that 7°(0) = 0, then, for every h: X — L, the
function defined by

P(z,y) = T(h(y) — h(x)), Vz,y€ X,
is a half distance. Thus, the family of half distance is a rich one.

Definition 4.25. Let I' : X =% X be a dynamic system. x* € X is said to be
a critical point of I' if {«*} = I'(z*).

The following theorem about the existence of a critical point will be used.

Theorem 4.26 (Dancs-Hegedus-Medvegyev [50]). Let (X,d) be a com-
plete metric space and I' : X =3 X be a dynamic system. If the following
conditions are satisfied:

(i) I'(z) is a closed set, Yz € X;
(ii) z € I'(z),Vz € X;;
(iii) Tg € [‘(:El) = F(l‘g) C F(a:l),Vxl,ccg € X;
(iv) for every sequence {zk}ren C X satisfying zxt1 € I'(zx), we have
lim d(zk, zx+1) = 0.
n—00
Then, I' has a critical point z* € X. Moreover, for any & € X, there is a
critical point of I' in I'(%).
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Let us recall the nonlinear scalarization function &, discussed in Chapter
1: For ¢ € intC, a € Y, the nonlinear function is defined by

 a(y) =min{teR:yeca+tc—C}, VyeV.

We know that &, is convex, continuous, increasing and strictly increasing.
Now we set @ = 0, denote & by & for simplicity. In this case, & is
subadditive, convex, continuous, increasing and strictly increasing.
Next theorem is a generalization of the Ekeland’s variational principle
for a vector-valued function and an improvement of Isac’s vector variational
principle (see Theorem 4.11).

Theorem 4.27. Let (X,d) be a metric space and & : X x X — Y be a
half distance. If, for any element c® € intC, the following assumptions are
satisfied:

(i) for any x € X, the set {y € X : &(z,y) + %d(z,y) <c 0} is closed; and
(ii) there exist vg € X and wo € Y such that $(vo,z) >¢ wo,Vz € X,

then there exists an z* € X such that
&(z*,z) + Pd(z*,z) £c 0, Yz e X\{z*}.
Proof. Consider the dynamic system
I'z)={yc X :®(x,y) +d(z,y) <c 0}, VreX.

The claim is proved if we show that I" has a critical point in X. To this aim, it
is sufficient to verify the assumptions of Dancs-Hegdus-Medvegyev Theorem
(Theorem 4.26).

From assumption (i), we have that I'(z) is closed Vo € X, that is, (i)
of Theorem 4.26 is satisfied. Using the properties of d and @, we have that
z € I'(z), Vo € X which means that (ii) of Theorem 4.26 is also satisfied. To
verify (iii) of Theorem 4.26, we consider two elements z1, 22 € X such that
xzg € I'(x1). We need to show that I'(za) C I'(x1). It follows from zo € I'(z4)
that
(i1) ®(z1,72) + d(x1,22) <c 0.

Let z € I'(x2). Then
(i2) ®(z2,2) + Od(xa, z) <c 0.

We will have z € I'(z1) if we show that
&(z1,2) + Pd(z1, 2) <¢ 0.
From (i), there is an element c¢; € C, such that

@(scl, 332) + COd(II,‘l, 372) = —C1,
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and from (42), there is an element ¢y € C, such that

&(z2, 2) + cod(atz, z) = —ca.
Since @ is a half distance, there is an element c3 € C, such that

&(z1,2) = D(z1, x2) + P(22, 2) — C3.
Moreover, it is obvious that there exists an element ¢4 € C such that
Ad(z1,2) = d(zy, z2) + Cd(x2, 2) — c4.

Thus, we have

&(z1, z) + (w1, 2)
= &(x1, T2) + P(22, 2) — 3 + 2d(x1, 2)
= &(z1,22) + B(w2, 2) — 3 + d(z1, x2) + Pd(x2, 2) — c4
=—c—c—c3— ¢4 <¢0,
which shows that I'(z2) C I'(z1). Then (iii) of Theorem 4.26 is satisfied. To

verify (iv) of Theorem 4.26, we consider a sequence {zx}xen C X, such that
k41 € I'(zx), Vk € N with an arbitrary z; in X. We have

@($k, wkH) + cod(:ck, $k+1) <c 0, Vk.

Thus, we have

k
Z(@(Z‘z, !I}i+1) + cod(xi, $i+1))) SC 0, Vk.

i=1
Since €0 is increasing, we get
&eo (@(.’Ek, xk+1)) -+ cod(xk, xk+1)) <0, Vk.

As & is a half distance and .0 is increasing, we deduce that

k
fw(Z(@(mi, x¢+1) -+ Cod(a';i, xi+1))) <0, Vk.

=1

Thus,
k
§o (P(x1, Thy1)) + Zd(mi,%‘ﬂ) <0, Vk.
i=1

That is,

k

Y d(@i, zig1) < ~Eo(B(z1, Tht1)), VK (4.7)

i=1
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Since P(vg, Zk+1) <c P(vo, 1) + P(1, Tr41), We have

—®(z1, Th11) <c¢ P(vo,z1) — P(vo, Tht1), VE. (4.8)
By (4.7) and (4.8), we obtain

k

> d(xi, wig1) < o (P(vo, 71) — B(vo, Th11)), VK
i=1

By assumption (ii), we have

k
> d(@i zit1) < Eeo((vo, 71) — wo), V.
i=1
k
We denote s, = Zd(xi,$i+1). Since the sequence {sy}ren is monoton-

i=1
ically increasing and bounded above, it is a convergent sequence. Thus
o

Zd(xi,xi+1) is a convergent series. Hence the sequence {d(zy,Tk+1)}ken
i=1

converges to 0. Thus we have shown that assumption (iv) of Theorem 4.26
is satisfied. By Theorem 4.26, I" has a critical point in X, and the proof is
complete. ]

Corollary 4.28. If all the assumptions in Theorem 4.27 are satisfied, then
Jz* € I'(vg), such that

&(z*,x) + Vd(z*,z) £0 0, Ve X\{z*},

where I'(z) = {y € X : &(z,y) + Pd(z,y) <c 0} and the element vg is the
same as the one in Theorem 4.27.

Proof. By the second conclusion of Theorem 4.26, there exists a critical point
of I in I'(vg). Thus, the conclusion follows from Theorem 4.27. n

Next we will present an alternative version of vector variational principle
which has a close relation to the e-minimal solution of vector optimization
problems.

Definition 4.29. Let ACY and € > 0. An element y. € A is said to be an

e-minimal point of A with respect to ¢ € intC if there exists no element y of
A such that
Ye €y + Ceeo, (4.9)

where Ceeo = ec® + C\{0}.

We will denote the set of all e-minimal points of A with respect to c® by
Min,o(A4).
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Lemma 4.30. If y. € Min.o(A), then
Eeo(y = ye) 2 —Eeo(ec”) = —¢, Yy € A.
Proof. Observe that y. € M .0(A) is equivalent to
AN {y. — e® = C\{0}} = 2,

ie.,

(A—y)N{—el - C\{0}}=@.
By the properties of £.0, we have

oy —ye) > —¢, VyeAy#ye— ecl.
Thus
£CO (y - ye) > _660 (660)7 vy € Aa Yy 7é Ye — ECO‘
Then
ooy — ye) > —€o(ec®), Wy € A.
[ ]

Lemma 4.31. Let (X, d) be a metric space, let f : X — 'Y be a vector-valued
function. Given € > 0, let x. € X and

€0 (f(xe)) < €0 (f(2)) + Ved(ze, ), Vo € X,z # Te. (4.10)
Then f(z.) € Minc(f.o(X)), where foo(x) = f(x) + ed(ze, x)c?, Vz € X.
Proof. Tt follows from (4.10) that

&'CO (f(.’]?) + \/Ed(xea :L.)CO - f(‘z'€))

= Lo (f(2) — fla.)) + Ved(ze, 7)

> §c0 (f(.’l?)) + \/Ed(xéa x) - £co(f(xf))

> 0.
Thus,

f(@) + Ved(ze, ) ~ f(z) £0 0, Yz # ..

So f(ze) € Ming(feeo (X)) |
Theorem 4.32. Let (X, d) be a complete metric space, and let (Y,C) be an
ordered Hausdorff topological vector space with intC #0. Let f: X - Y be a

vector-valued function and C bounded below. Assume that, for a given ¢ > 0
and for every x € X, the set

{y €X: f(y) - f(.T) + ‘/Ed(x7y)co <c 0}7

is closed.
Then, for every point z° € X satisfying f(z°) € Min o (f(X)), there exists
a point xe € X such that
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1. f(ze) <c f(z);
2. d(x°, x) < \/e;
3. feeo(xe) € Ming(feeo (X)),
where feo(x) = f(z) + /ed(ze, ), Vz € X.
Proof. Since f(z°) € Mingo(f(X)), by Lemma 4.30, Vz € X,

o (f(z) = f(2°) 2 —Eco(ec®) = —e.
Let
@(x,y) :gco(f(y) —f(.'L‘)), x,yeX.
Thus, assumption (ii) of Theorem 4.27 is satisfied since & is subadditive,

&(z,y) is a half distance and & : X x X — IR is a real-valued function.
Observe that

Fy) — f(=) + Ved(z,y)c® <c 0,
is equivalent to
fy) = f(z) <c —Ved(z,y)c’. (4.11)
By the properties of &0, we have that (4.11) holds if and only if
o (f(y) = f(2)) < —Ved(z,y),
if and only if
P(z,y) + Ved(z,y) <O0.
By the closedness of the set {y € Y : f(y) — f(z) + Ved(z,y)® <c 0},
the set {y : ¥(z,y) + Ved(z,y) < 0} is closed. Hence the assumption (i) of
Theorem 4.27 is satisfied. Then it follows from Corollary 4.28 that there exists
ze € I'(z%) = {y € X : &(z°,y) + +/ed(, y) <0}, such that
D(xe,z) + Ved(ze,z) >0, Vre X,z # ze. (4.12)
Since z. € I'(z),

Eeo(f(ze) — f(2°)) + Ved(2®,z) < 0.
It follows that
Eo(f(ze) — fa) < 0.
Therefore,
flze) <o f(=z°).
Moreover, by Lemma 4.30,
o (f(ze) = f(2°)) = —e.
Thus, v/ed(z°, z.) <, ie., d(z°, z) < /€. Finally, by (4.12), we obtain that,
for any z € X and z # x,
€0 (f(2) = f(ze)) + Ved(ze, 2°) > 0,
implying
(F(z) + Ved(ze, )) N (fz) — C\[0}) = @, ¥z € X, # a..
Hence, f(ze) € Ming(feeo (X)). |
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4.2 Variational Principles for Set-Valued Functions

In this section, we introduce the concept of approximate optimal solutions for
set-valued functions and provide a sufficient condition for the existence of ap-
proximate optimal solutions for set-valued functions. We present a variational
principle for set-valued functions.

Let X be a nonempty set, Y a locally convex Hausdorff space, C C Y a
nonempty, nontrivial, pointed, closed and convex cone with nonempty interior
ntC. Let e € intC.

A set-valued function F' : X =2 Y is said to be proper if dom(F) = {z €
X :Fx)#0}# 0.

Definition 4.33. Let F : X =3 Y be a set-valued function, and ¢ > 0. A
point x* € X is said to be an e-minimal solution of F' on X, if there exists a
y* € F(x*) such that

)

(i) (F(z*) —y") N (-C\{0}) = &;
(i) (F(z) —y* +ee) N (—C\{0}) = @, for allz € X\{z*}.

A set-valued function F': X =2 Y is said to be C order bounded below on
X if 3y € Y such that

F)—-ycC, forallz € X.
If dom(F) = @, then F is always regarded as being bounded below.

Theorem 4.34. If F': X =3 Y is proper, compact-valued and C order bounded
below, then, for any € > 0, there exist an z* € X and a y* € F(x*) such that

(i) (F(z") —y*) N (-C\{0}) = &;
(ii) (F(z) —y* +ee) N (-C\{0}) =@, Vze X\{z*}.

Proof. We prove the conclusion by contradiction.

Suppose that there exists a real number €; > 0 such that the conclusion of
this theorem does not hold. Arbitrarily take an z; € dom(F) anday; € F(z1).
Since F'(z1) is compact, by the domination property of the compact set F'(z1),
there exists a y; € Ming(F(z1)) such that y} —y € —C. At this time, (ii)
cannot hold with y* replaced by yj. So, there exist z2 € X and y, € F(z2)
such that

y2 — Y1 + €oe <c 0. (4.13)

Since F(z2) is compact, we deduce that there exists a y5 such that y5 <c y2
and y5 € Ming(F'(z2)). This combined with (4.13) yields

yh — Yy + €oe <c 0.

Once again, for y3, (ii) does not hold. We deduce 3z3 € X and y} €
Ming(F(z3)) such that
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Y3 — yp +€0e <c 0.
Hence,

k

D> Wi — vio1 + €0e) = vh — v + (k= 1)eoe <o 0, Vk > 2.
1=2

This implies
Wk —91)/(k = 1) + ce <c 0, k>2.

Since F is C order bounded below, 3y € Y such that y;, —y >¢ 0, for all
k € N. So we have
(y —91)/(k = 1)+ eoe <c 0, for all k > 2.

Letting k£ — 00, we have epe <¢ 0, which is impossible. ]

From Theorem 4.34 and Definition 4.33, we obtain an existence result of
an e-minimal solution of F on X.

Theorem 4.35. If F: X 3 Y is proper, compact-valued and C order bounded
below, then for any real number € > 0, the set of e-minimal solutions of F' on
X is nonempty.

Theorem 4.36. Let (X, d) be a complete metric space, and 'Y a locally con-
vexr Hausdorff space, C a nontrivial, pointed, closed and conver cone with
nonempty interior intC' and e € intC. Let F : X =Y be a set-valued func-
tion satisfying

(1) F is proper and compact-valued on X;
(ii) F is u.s.c. on X and bounded below on X.

Given a real number € > 0, two points x1 € dom(F') and y1 € F(x1) such that
iii) (F(z1) —y1) N (=C\{0}) = &;

(iv) (F(x) —y1 +ee) N (—C\{0}) = @, for allz € X\{x1}.

Then, for any real number A\ > 0, there exist zo € dom(F) and yz € F(z2)
such that

(v) 2 <c v1;
(vi) d(z1,z3) < A
(vii) (F(z2) —y2) N (—C\{0}) = &;
(viii) (F(z) —y2 +ee) N (—C\{0}) = @, for all z € X\{x2}.
(ix) (F(z) —y2 + ¢/ Md(z,z2)e) N (—C) = &, for all z € X\{z2}.
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Proof. We consider a set-valued function F1 : X 3 Y:
Fi(z) ={ye€ F(z):y <cyi} =F(z)N(y1 = O).

By the assumptions of this theorem, we know that F) is also proper (since
1 € Fi(z1) # @), compact-valued and C order bounded below.
Now we define a real function as

fa) = {min{ée(y —y) iy e Fi(a)}, @€ dom(F);
+00, x ¢ dom(F).

We will show that f : X — IR U {400} is proper, lower semicontinuous
and bounded below. In fact, if Fi(z) = @, then f(z) = +oo; if Fi(z) # @,
—00 < f(z) < oo by (i). By (iii), f(z1) > 0. On the other hand, f(z;) <
&e(y1 —y1) = 0. So f(z1) = 0, which implies that f is proper. Since Fj is
C order bounded below on X, we have that f is bounded below on X. In
order to show that f is l.s.c. on X, we need only to show that, for all t € R,
A={z e X : f(z) <t} is closed. Suppose Z; € A and T — z*. By the
definition of f, there exists §x € F1(Zx) (which implies gx <¢ y1) such that

§e(Je ~v1) <1t (4.14)

and
Uk —y1 <c 0. (4.15)

Since F' is u.s.c. at z*, there exists a z;, € F(z*) such that
zZk — G — 0. (4.16)

By the compactness of F(z*), there exists a subsequence {zx,} of {zx}
and z* € F(z*) such that zx, — 2z*. This combined with (4.15) and (4.16)
yields Jx, — z* and z* — y; € —C. Hence z* € Fi(z*) N (y1 — C) = Fi(z*).
By (4.14), £c(Gk, — y1) < t. Letting k — 400, we have &.(2* —y1) < t. So
f(z*) < t, ie., x* € A. Therefore, the set A is closed. Besides, by (iv), we
have f(z)+¢> 0= f(z1).

For the function f, applying Ekeland’s variational principle, we obtain
that, for any real number A > 0, there exists an x5 € X such that

f(z2) < f(=1) = 0; (4.17)
d(z1, 2) < A (4.18)
f(@) +e/Xd(z,z2) > flz2),Vr € X\{z2}. (4.19)

From (4.17), we deduce F(x2) # @, and (4.18) is just (vi).

Suppose that &(y; —y1) = min{&(y — v1) : y € Fi(z2)}, y2 € F(z2).
By the compactness of F(z3) and the domination property of the set F(xz2),
there exists a y» € Ming(F(z2)) with y2 <¢ y5. By the monotonicity of &,
we have
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e(yz —y1) = min{€c(y —y1) 1y € Fi(z2)} = & (v3 — ). (4.20)

Hence, (v) and (vii) hold. By (v), (iv) and (iii), we know (viii) holds. Finally,
let us show that (ix) holds. From (4.19) and (4.20) and the definition of f,
we deduce that if z ¢ dom(Fi1) then (iv) holds automatically; and, for any
z € dom(Fi)\{z2},

min{&(y — y1) 1y € F1(2)} — &e(y2 — y1) + €/ Ad(z, z2) > 0.
That is,
ey — 1) — &e(v2 —y1) + €/ Md(z, 72) > 0, Vo € dom(F1)\{z2},y € F(z).
Consequently, we have

Ee(y —y2) +€/Md(x,z2) >0, Vz € dom(Fi)\{z2},y € Fi(x),
ie.,

y—y2 +€e/Md(z,z2)e £¢ 0, Vz € dom(Fi)\{z2},y € Fi(z).
When y € F(z)\Fi(z), we can show by contradiction that

y—y2+ ¢/Ad(z,z2)e £¢ 0, Vz € dom(Fi)\{z2}.
Otherwise, there exists an &’ € dom(F1)\{z2} and
Y € F(a)\Fi(z') (4.21)

such that
Y —y2+ €/ Ad(x’, z2)e <¢ 0.

This implies ¥’ —y2 € —intC. From (v), we dertve ¥ <¢ y2 <¢ yi. This means
y' € Fi(z’), which contradicts (4.21). So (ix) holds. The proof is complete. B

Next, we will establish a general Ekeland’s variational principle for set-
valued functions in complete order metric spaces and complete metric spaces.
This principle is a generalization of some results of Nemeth [151], Tammer
[185], and Isac {111].

To this aim, we need some additional concepts for set-valued functions.

Let X be a Hausdorff topological vector space, and Y a locally convex
vector space. Let C' C Y be a nonempty pointed and convex cone and Y be
endowed with the order < induced by C.

Definition 4.37. A set-valued function F : X =3'Y s said to be submonotone
with respect to C at xg € X if, under the following conditions:

(i) limg zo = x, where {z4}aer is a net in X indexed by the totally ordered
set (I, <),
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(ii) yo <c yp wherever yo € F(za), ys € F(xg) and o > (3,
it follows that there exists a y € F(z) such that

Y <C Yo, Va€l

Let Cp C C be a convex conein Y, and let 7 : X x X — Y be a Cp-metric
on X. We now make the following assumptions on the set-valued function
F.:X3Y.

Assumption 4.38. Let € > 0 be given. For every o € X, yo € F(xo), and
for every net {(zq, Ya) taecr in Gr(F) with the property that xo — x € X and
Yo — Yo + €7{Ta, To) <c 0,Va € I, there exists o y € F(x) such that

y—yo+ er(z,z0) <c 0.

Assumption 4.39. For each x € X and each y € Y, F(z)N (y — C) is
compact.

Now, we introduce the following concept of approximate solutions for a
set-valued optimization problem.

Definition 4.40. Let F': X =2 Y be a set-valued function and H C C. We
say that the pair (Z,5) € X x Y is an H near to the minimal solution of F
on X if § € Minc(F(Z)) and

(Fz)—-g+H)N(-C)=92, VreX\{z}.

Remark 4.41. When F is a real function, C ={t e R:t >0}, H={t € R:
t > €}, this definition reduces to the definition of an e-minimal solution of a
real function.

Proposition 4.42. Let C be closed. If F is nonempty compact-valued and
u.s.c., then F' is submonotone with respect to C at every point of X.

Proof. Fix z € X. Let {(Za, Ya)}acr be a net in Gr(F) satisfying properties
(i) and (ii) of Definition 4.37. Then z, — z in X and

Yo — ys <c 0, whenever a > S.

Since F' is compact-valued and u.s.c., there exists a convergent subnet of
{Ya}aer (again denoted by {ya}acr) with limit y € F(z). Letting y, — v in
the above relation and taking into account the fact that C is closed, we have
Y —Ya <¢ 0, Yo € I, proving that F' is submonotone at x. |

Proposition 4.43. Let C be closed, and let r(-,a) be continuous for every
a € X. If F is compact-valued and u.s.c., then Assumption 4.38 holds.
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Proof. Let € > 0. Fix (zo, yo) € Gr(F). Consider a net {(za, Ya)}acr in Gr(F)
with the property that z, — = and

Yo — Yo + €r{Ta, o) <c 0, Va el

By the same argument as in the proof of Proposition 4.42, we may assume
that

(xaaya) - (3773/) € GT(F)

Taking into account the fact that C is closed and r(:, o) is continuous and
taking the limit in the above relation, we obtain

Y — Yo + er(z, To) <c 0.
Hence, Assumption 4.38 holds. [ |

Proposition 4.44. If F is submonotone with respect to C, then F(z) has the
domination property for every x € X.

Proof. Fix z € X and y € F(z). It is clear that <¢ is still a partial order on
D ={z€ F(z) : z <¢ y}. According to the Hausdorff maximality principle,
there exists a maximal totally ordered Z C D. Let I = {(2,T3) : z € Z},
where T, determined by z € Z is the lower section {a € Z : a <¢ z}. Setting

(a,Ts) < (b,Tp), whenever T, C Ty,

we see that I is totally ordered due to the fact that Z is totally ordered. Define
the net ¢ : I — Z as the function

a=(a,Ty) = 2o = a.
Then, Z is indexed by the totally ordered set I with the property that
Zo <c 2, whenever a > .

By the submonotonicity of F' at = (simply taking z, = z for all &), we can
find an element § € F(x) such that

7 <¢ Za, Va€l

Clearly,
(7 —C)nF(z) ={7},
by the maximality of Z. Therefore,

g € Ming(F(x)) and § <¢ v,
establishing the fact that F(z) has the domination property. [ ]

Next, we give a sufficient condition for the existence of approximate opti-
mal solutions to set-valued functions.
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Proposition 4.45. Let Cy C C be a complete C-bound regular convex cone,
and let U C B(0) be such that H = Co\U # @. Suppose that F : X 33 Y
is a set-valued function such that F(z) has the domination property for every
z € X, and F is C order lower bounded on X. Then F has an H near to the
minimal solution on X.

Proof. First, let us prove that there exist an £ € X and a § € F(Z) such that
(F(z)—g+ H)N(-C)=2, VreX\{z}.

We proceed by contradiction. Arbitrarily fix 1 € X and y; € F(z1). Then,
we can choose z;11 € X\{z;} and y;11 € F(z;+1) such that

Yir1 — v+ H)N(-C)# @, fori=1,2,---.

Then, we have
Yi+1 — %+ hi <¢ 0,
for some h; € H. Summing up these relations from 7 = 1 to k, we get

k

Ye+1 —y1+ Y hi <o 0. (4.22)
i=1

Since F is C order lower bounded on X, we find that {3°%_, h;} is C bounded

and clearly it is Cp increasing. It follows from the C bound regularity of Cy
k

that {Z h;} is convergent, therefore, hy € U for sufficiently large k. This
=1
contradicts the assumption that H = Cp\U, and thus the existence of (Z, §)
is established.
Second, by the domination property of F(Z), we can find an element 3y’ €
Ming (F(&)) such that ¥’ <¢ §. Thus

(F(z) -y + H)N(-C) =2, VzeX\{z},
and so the pair (Z,y') is an H near to the minimal solution of F on X. H

Proposition 4.46. The conclusion of Proposition 4.45 remains true when the
condition “F is C-order lower-bounded on X7 is replaced by

(C) There exist ¢y € X and yi € F(x}) such that F is C-order lower-bounded
on the set {x € X : (y} — C)N F(z) # @}.

Proof. Repeat the argument as in the proof of Proposition 4.45, with (z1, y1)

replaced by (2}, y}) to generate the corresponding elements z;, y;, hi, i > 2, so

as to have (4.22) with y; replaced y}. Then apply condition (C) to show that
k

{Z hi} is C bounded. The rest of the proof now follows in a similar fashion.l

=1
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Now we will derive a general Ekeland’s variational principle for set-valued
functions.

Let € > 0 be given, and let 7 : X x X — Y be a Cy-metric on X. Suppose
that F : X =3 Y is a set-valued function such that F(z) has the domination
property for every z € X. Then Ming(F(z)) # &, for every z € X, and we
have a nonempty set-valued function F : X =3 Y defined by

E(z) := Ming(F(z)), Vz e X.
Let us introduce a relation < on T' = Gr(E) as follows:

(z1,91) < (%2, 92) iff y1 — Y2 + er(z1,22) <c 0, for (z1,91), (%2,92) € T.
Lemma 4.47. The relation < is a partial order on T.

Proof. The relation < is clearly well defined on T'. It remains to show that it
is reflexive, antisymmetric and transitive.

(i) Reflexivity. For (z,y) € T, we clearly have (z,y) < (z,y), since y —y +
er(z,z) =0 <¢ 0.

(ii) Antisymmetry. Let (z1,y1), (z2,92) € T, with (z1,41) < (z2,y2) and
(z2,%2) < (1,¥1). Then we have

Y1 —y2 + er(z1,22) <c O, (4.23)

Y2 —y1 + er(w2, 71) <c 0. (4.24)
The combination of (4.23) and (4.24) yields

er(z1,x2) + er(za, x1) = 2er(z1, 22) <¢ 0,

so that r(x1,z2) <¢ 0. Thus r(z1,z2) = 0 and hence z; = x5. Furthermore,
it follows from (4.23) and (4.24) that +(y1 — y2) <¢ 0, which implies y1 = y2.
Therefore, (z1,y1) = (z2,y2).

(iii) Transitivity. Let (zi,y;) € T, = 1,2, 3, with (z1,1) < (®2,y2) and
(@2, y2) < (x3,y3). Then

Y1 —y2 +er(z1,22) <c 0, (4.25)

Y2 — Y3 + er(z2,73) <c 0. (4.26)
The combination of (4.25) and (4.26) yields

Y1 — Y3 + e(r(z1,x2) + (22, 23)) <c 0.
Using
r(z1,z3) <¢ r(x1,z2) + r(z2, 23),
we have that
Y1 — y3 + er(z1,23) <c 0,
and hence (z1,y1) < (23, ¥3). [ |
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Theorem 4.48. Let Y be a locally conver space ordered by a monempty
pointed and convex cone C C Y, and let (X,r) be a complete Cy metric
space, where Coy C C is a complete C bound regular convex cone. Let € > 0
and F : X 3Y be a set-valued function satisfying

(i) F' is submonotone with respect to C and C is closed,
or

(ii) C is closed and Assumptions 4.88 and 4.89 hold.
Suppose that the following (iii) holds:

(iii) there exists (zo,yo) € Gr(F) such that F is C order lower bounded on
X ={$€X:(y0—0)ﬁF(X)7é®}.

Then, for every (xo,yo) satisfying (iii), there exists (z*,y*) € Gr(E) such
that

(iv) yo — y* —er(zo, %) >¢ 0;
(v) (F(z) —y* ter(z,2*))N(-C) =2, Vzre X\{z'}.

Moreover, let U € B(0). If H = Co\U # @, then
(vi) there exists (z1,y1) € Gr(E) with y1 <¢ yo such that

(F(z)—nm+eH)N(-C) =2, VzeX\{z},

i.e., (x1,v1) is an eH near to the minimal solution of F on X.

For every such (z1,y1) in (vi), there exists (xe,ye) € Gr(E) such that (iv),
and (v) hold with (zo,yo) and (z*,y*) replaced by (z1,y1) and (z.,ye), re-
spectively. Moreover, (Z¢,ye) is an eH near to the minimal solution of F on
X, satisfying

(vii) r(zy,zc) € U.

Proof. Let
E(zx) =MincgF(z), z€ X.

By Proposition 4.44 and (i) or (ii), F(z) has the domination property for
every ¢ € X. Thus, we see that the set-valued function E(z) # §,Vz € X.
By (iii) and the fact that F(z¢) has the domination property, there exists
Yo € Ming(F(z0)) such that yj <¢ yo and F is C lower bounded on

X{={z€X: (yh—C)NF(z)# 2},

since X{ C X;. Now, we consider the partial order < on T' = Gr(E) as given
in Lemma 4.47. Let

Zl = {(xay) eT: (xay) =< (anyé))}
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Applying the Hausdorff maximality principle to (Z;, <), we obtain a maximal
totally ordered subset Zy of Z.
As in the proof of Proposition 4.44, let us write

Zy = {(xa, ya)}aelv

where (I, <) is a totally ordered index set with the property that
(T, Ya) = (zg,Ys), whenever o < £.

We shall show that Zy contains its minimal point with respect to the relation
=.
First, let us introduce a relation A on Xog = {4 }aer by defining

ToAzg, whenever (Zq,¥a) < (8, ys)-

This relation is well defined. Indeed, we need only to show that if (z4, ¥a),
(x8,y3) € Zo and zo = zg, then y, = ysz. We may assume that (za,ya) <
(8, ys), so that

Ya —Yp + er(xa,xg) <c 0.
Since xo = %, we have yo — ys <c¢ 0. This and the fact that y,,ys €
Ming (F(zo)) yield yo = ys.

Thus, xgAzy whenever a > 3, and so Xj is totally ordered with respect
to A. Moreover, the filter of its lower section is Cauchy. To verify this, let us
assume the contrary: there exists a neighborhood U’ € B(0) such that, for
each s in Xy, there exist p, ¢ in Xo, pAs and gAs, such that r(p,q) ¢ U’. Fix
s and let p,g be as above. We can suppose that pAq. Put z; = ¢q,z2 = p.
Then, r(z2,z1) ¢ U’ and

zo — 21+ er(za, z1) <¢ 0, with (z;,2) € Zo,i=1,2.

Starting with p instead of s, we can continue this procedure. Accordingly we
can determine the decreasing sequence {z} in X such that, for k =1,2,---,

r(@2m, T2k-1) ¢ U, (4.27)
and (zk, zx) € Zo. From the definition of the relation A, we also have that
Zk41 — 2k + er(Try1,2k) <c 0, for all k.

Summing up this relations, we get

k

Zk+1 — 21+ EZ ’r‘(l‘i+1, LL‘i) <c 0.
=1

Since each zy is in X{ and {2} is C order lower bounded, the set {Zle
r(zit1,2:) + k = 1,2,---} is C order bounded. Then {Zler(:ciﬂ,xi)} is
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convergent and this clearly contradicts (4.27).

This contradiction shows that the lower sections of X form a Cauchy fil-

ter, which converges by the completeness of X to some z* € X, or equivalently
limg o = x*.

Case 1.

Case 2.

Now we show that z* € X holds under condition (i) or (ii).

Suppose that (i) holds. Let a > 3. Then, we have (z4, Yo) < (28, Ys), SO
that
Yo — Yg + €r(Ta, ) <c 0,
and hence
Yo <c Yg-

Since £, — z* and F is submonotone with respect to C, there exists
y € F(z*) such that
Y—¥Ya<c0, Vael (4.28)

Also,
Yo —Yp + er(za, x3) <c 0, whenever a > . (4.29)

From (4.28) and (4.29), we obtain
Yy —ys+er(Ta,2g) <c 0, Va=p (4.30)

Letting zo, — z* in (4.30) and taking into account the fact that C is
closed and 7(-,zg) is continuous, it follows that

y—yg+er(z*,zg) <c 0, VBel (4.31)

Since F(z*) has the domination property by Proposition 4.44, we have
y* <c y for some y* € E(x*), and hence

(" y*) €T.
This combined with (4.31) yields
Y —ygter(z*,zp) <c 0, VBel,

so that
(z*’y*) = (CUB»?JB), V(Z‘B,yg) € Zo,

and hence (z*,y*) € Zy by the maximality of Zy. Thus z* € X, and
(z*,y*) is the minimal point of Zj.

Suppose that (ii) holds. Fix 8 € I. Then
Yo — Ys + er(zq, x5) <c 0, whenever a > 8.

Since x, — z*, it follows from Assumption 4.38 that there exists jz €
F(z*) such that
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Us —ys ter(z*,zp) <c 0, VBeL (4.32)

As F(z*) has the domination property, we can find an element y3 € F(z")
such that y% <c ¥g, so that (z*,y3) € T. This combined with (4.32) yields

ys —yp+er(z”,z3) <c 0, VBeL
Hence,

(x*ayg) < (xﬁ’yﬁ)a V(xﬁ’ yﬁ) € Zp.
For each (3 € I, define

Bg = {(z",2) € {&"} x E(z") : (z",2) < (5, yp)}-

Clearly,
Bg, C Bg,, Vb1 < fa. (4.33)

We show that each Bg is nonempty and compact.
The nonemptiness of Bg has been proved already. Now we prove that Bg
is closed. Let {(z*, za)} C Bg be a net, and let 2, — 2*. Then (z*, 25) <
(z3,ya), L.e.,

Za —yg +er(z”,z8) <c 0.

By the closedness of C, we deduce that
Z* —yg +er(z”,zg) <c 0,
namely, (z*, 2*) € Bg. Hence Bg is closed. Note that
By  {a*} x (F(z") N (ys — ).

By Assumption 4.39, F(x*) N (yg — C) is compact, hence, {z*} x (F(z*)N
(ys—C)) is compact. This fact, combined with the closedness of Bg, yields
that Bg is compact.

By the maximality of Zy, we conclude (z*, y*) € Zy. Furthermore, we have
that z* € X by the definition of X( and (z*,y*) is the minimal point of
Zy.

So, in both cases, we have proved that z* € X,. We also have that (z*,y*) €
Zy and it is the minimal point of Zy with respect to <.

By (z*,y*) € Zi, we see that (z*,y*) < (xo,¥;), which together with
¥ <c Yo implies that

y* — Yo + 57"(55*,330) SC 0,

and so (iv) is established.
That (v) holds can be shown by contradiction. Indeed, suppose that

(F(@') -y +er(a,z"))N(-C) # 2,
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for some 2’ € X\{z*}. Then, there exists y’ € F'(z’) such that

v —y* +er(d,z*) € —C.
As F(z') has the domination property, there is an element § € E(z') satisfying
7 <c y'. Hence

g- y* + ET(J;/’ .’L‘*) <c 0,
ie, (z/,7) < (z*,y*) and (2/,y) € Zo. It follows that (z',9) = (z*,y*),
contradicting z’ € X\{z*}. We have proved (v).

Let U € B(0) and H = Co \ U # @. Then by applying Proposition 4.46

with eH replacing H, we conclude the existence x1 in X with the property

(vi).

If we proceed as above taking (z1,y1) in place of (zo, yo), we can get a pair
(e, ye) € Gr(E) so as to have (iv) and (v) with (2o, y0) and (z*, y*) replaced
by (x1,y1) and (z., ye ), respectively. Moreover, the pair (z., y.) is an eH near
to the minimal solution of F.

Finally, we show by contradiction that (vii) holds. To this end, suppose
that r(x1,x.) ¢ U. Then, 1 # x. and

r(zy,z.) € H. (4.34)

Since (iv) holds with (zg, o) and (z*,y*) replaced by (x1,y1) and (ze, ye),
respectively, we have
Y1 — Ye — €r(z1, 7e) 20 0. (4.35)

As z # z1, (vi) yields
(ye — 1 + eH)N (=C) = @. (4.36)
But, from (4.34) and (4.35), we deduce that
Ye —y1 T er(21, %) € (Ye —y1 + eH) N (=C) # 2,
contradicting (4.36). Hence, (vii) holds. |

Corollary 4.49. Let (X, d) be a complete metric space, and let Y be a locally
convex Hausdorff space ordered by the nonempty, pointed and convexr cone C.
Let c® € C\{0} be such that 8(c®) > 0 for some 0 in C*. Let € > 0 be given,
and let F: X 3Y be a set-valued function satisfying:

(i) F is submonotone with respect to C and C is closed; or
(ii) C is closed and Assumptions 4.38 and 4.39 hold withr(z,y) = d(z, y)c® /M1
where A1 > 0.

Suppose that (iii) below holds:
(iii) there exists (x1,y1) € Gr(E) such that

(F(@) -y +e®)N(=C) =2, VzeX\{z},
and F(X)N (y1 — X) is C lower bounded.
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Then, for every € > 0, there exists (ze,ye) € Gr(E) such that :

(iv) ye — 1 + (¢/A1)d(z1, ) <c 0;
(V) (F(x) = ye + (¢/M)d(z1, z)c®) N (=C) = 2,Vz € X\{z};
(vi) d(z1,zc) < M.

Proof. Let us set
r(z,z') = d(x,z")c® /M

in Theorem 4.48 and choose
U={ueX:0u)/oc) <1}.
Clearly, ¢ ¢ U. Also, let
Co= {ac®: a >0} and H = Co\U.

Now, we can apply Lemma 4.16 to show that Cp is a complete C' bound regu-
lar convex cone in C. Then, we conclude from (vi) of Theorem 4.48 that there
exists (e, ye) € Gr(E) such that (iv), (v) and r(z1,z.) € U hold. It is easy
to see that r(z1,z.) € U is equivalent to (vi). [ ]

4.3 Equivalents of Variational Principles for
Vector-Valued Functions

In this section, we will establish new vector variants of “Drop Theorem”,
“Petal Theorem” and “Caristi-Kirk Fixed Point Theorem”. We will derive
equivalents between those theorems and variational principles for vector-
valued functions. We will obtain a fixed point theorem for directional con-
tractions as an application of vector variational principles.

Let Y be a locally convex Hausdorff space ordered by a nontrivial convex
cone C' C Y with nonempty interior intC. Let (X, r) be a complete C metric
space, where 7 : X x X — Y is C metric function.

First of all, we state an immediate consequence of Theorem 4.15.

Theorem 4.50. Let Y be a locally convex Hausdorff space ordered by a non-
trivial convex cone C, Co C C a C bound regular complete conver cone, and
ConN—C C —Cy. Let (X,r) be a complete Cy metric space. Let f : X — 'Y be
a vector-valued function such that Jwg € Y such that

f(x) >c wo, VzeX.

Suppose that Yz € X, a0 > 0, the set {y € X : f(y) — f(z) + ar(z,y) <c 0}
is closed (or f is submonotone (w.r.t. C), C is closed and Va € X, r(a,-) is
continuous.)

Then there exists an x* € X such that

flxy = fl*)+r(@",z) £¢ 0, Ve X\{z"}.
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Proof. It is easy to verify that all conditions of Theorem 4.15 hold with € = 1.
By (v) of Theorem 4.15, it follows that this theorem holds true. |

Now we explore the equivalents of Theorem 4.50. To this end, we need the
following assumption.

Assumption 4.51. h : X x X — Y is a half distance function. Vo € X,
Ya > 0, the set {y € X : h(z,y) + ar(z,y) <c¢ 0} is closed (or h(z,-)
is submonotone with respect to C and C is closed and Yo € X, r(a,-) is
continuous with respect to the topology of X induced by r). Ixo € X, wo €Y
such that h{zo,x) >¢ wo, Yz € X.

Let
Do = {z € X : h(zo, z) + r(zo, z) <c 0}.

Theorem 4.52. All the following Theorems A, B, C and D are true and
equivalent to Theorem 4.50.

Theorem A. Let Assumption 4.51 hold. Then there exists an z* € Dy
such that
h(z*,z) +r(z", ) £c 0, Vzre X\{z"}. (4.37)

Theorem B. Let Assumption 4.51 hold. Let the set-valued function T :
X 3Y satisfy the condition

Vz' € Do, 3z € T(z') such that h(z',z) + r(z’,z) <c 0. (4.38)
Then there exists an z* € Dg such that «* € T(z*).
Theorem C. Let Assumption 4.51 hold. Let M C X satisfy
Va' € Do\M, 3z € X such that z # z’ and h(z’,z) + r(z’,z) <c 0. (4.39)
Then there exists an z* € Do N M.
Theorem D. Let Assumption 4.51 hold. Let the following hold:

Va' € Dy, satisfying 3z1 € X such that h(z',z1) <c\(0} 0, we have
z2 € X\{z'} such that h(z’,z2) + r(z’, z2) <c 0. (4.40)

Then there exists an z* € Dy such that
h(z*, x) i<_C’\{0} 0, zelX.
Proof. Firstly, we prove that Theorem A is equivalent to Theorem 4.50.

Theorem 4.50 = Theorem A:
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Let f(x) = h(zo, ). Then all the conditions of Theorem 4.50 are satisfied.
It follows that there is an z* € Dg such that

f(@) +r(@" z) - f(z") £c 0, Ve e X\{z"}.

That is
h($07$)+7'($*,1')—h($0,$*) gC 0, Vz € X\{x*}

Since h is a half distance function, we have
h(zo, z*) — h(zo, z) <c h(z*, z).
Hence, (4.37) holds true.

Theorem A == Theorem 4.50:

Let

Arbitrarily fixing an g € X, by the assumption of Theorem 4.50, we know
that Assumption 4.51 holds. Applying Theorem A, we have an z* € X such
that

h(z*,z) +r(z*,z) £c 0, Vz € X\{z"},

hence,
f(@) = f(@") +r(z"2) £0 0, Voe X\{z"}.

Now, we turn to proving that Theorem A, B, C and D are equivalent to
each other.

Theorem A = Theorem B:

By Theorem A, there exists an * € Dy such that (4.37) holds. We claim
that * € T'(z*). Otherwise, by (4.38), 3x € T'(«*),z # z* such that

h(z*, z) + r(z*, z) <c 0,
which contradicts (4.37).

Theorem B == Theorem C:

Define T'(z') = X\{z'}, V' € X. Suppose that DoNM = @, i.e.,Vz’' € Dy
implies ' ¢ M. Then by (4.39), 3z € X\{z'} = T'(2’) such that

h(z',z) + r(z’,z) <c 0,

i.e., (4.38) holds. By Theorem B, Jz* € Dy such that z* € T(z*), which
contradicts the definition of T'.
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Theorem C == Theorem D:

Let
M ={z e X :h(z,y) £c\{0} 0,y € X}.

Then V2’ € Do\M, dxy € X with h(:c’,:cl) <c\{0} 0.
By (4.40), we have z3 € X\{z'} such that

h(z', zg) + r(z’, z2) <¢ 0.
That is (4.39) holds. By Theorem C, 3z* € Dy N M, i.e.,

h(z*,y) <c\{0o} 0, Vye€X.

Theorem D = Theorem C:

Assume that M is as in Theorem C. Vz’' € Dy, if ' € M, then Theorem
C is proved. Now we suppose that Jz’ € Do\ M. Hence, by the assumption of
M, 3z1 € X with z; # 2’ such that

h(z',z1) + r(z’,z1) <c 0. (4.41)

So
h(a:’, z1) <c\{o} 0.

If 21 € M, since 2’ € Dy,
h(xo, .’El) + T‘(J)o, .Z") <c 0.

By (4.41),
h(z',z1) + r(z’,21) <¢ 0.

So we have
h(zo, ") + h(z', z1) + r(zo, ') + r(z', 21) <c 0.

Since h and r are a half distance function and a Cy metric function, respec-
tively, it follows that

h(zo, 1) + r(zo, 21) <¢ 0.
Thus 1 € Do N M. Otherwise, z; € Do\M. By (4.39), Jz3 # x1 such that
h(z1,%2) + r(z1, 22) <¢ 0. (4.42)
By (4.41), (4.42) and the triangle inequalities of h and r, we have

h(z', z2) + (2, z2) <c 0.
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And it is easy to see that ' # 2, since h(z’, 22) <c\ {0y 0 and h(z1, Z2) <o\ (0}
0, then h(z',z2) <c\j0} 0, which derives that (4.40) holds. By Theorem D,
Jx* € Dy such that

h(z*,x) £o\{0} 0, Vz € X. (4.43)
We assert z* € M. Otherwise, by (4.39), Jz3 € X z3 # z* and

h(z*,z3) + r(z*, z3) <c 0.

This demonstrates that

h(z*, z3) + r(z*, z3) <c\{0} 0,

since r(z*, z3) <c\{0} 0, which contradicts (4.43).

Theorem C = Theorem A:
For any z’ € X, define

B(z')y ={z € X\{z'} : h(z',z) + r(z’,z) <¢ 0}.

Let
M={z € X :B(z)=0o}.

If 2’ € Do\ M, then by the definition of M, 3z € B(z') such that z’ # z and
h(z',z) + r(z’',z) <c 0,

hence (4.39) holds. By Theorem C, 3z* € DoN M, which implies that B{z*) =
&, i.e., Theorem A holds. |

Remark 4.53. (i) Theorem 7.1 of Nemeth [151] is a special case of Theorem
B and Theorem B is a new variant of Caristi-Kirk fixed point theorem.

(ii) Theorem C is the vector form of Oettli and Thera’s result [153].

(iii) Theorem D corresponds to the existence result of Takahashi [184] and
Tammer [186].

(iv) Let z € X. If h(z,-) is C order lower semicontinuous, then h(z,-) is
submonotone with respect to C.

We give a new standard assumption.

Assumption 4.54. (X, d) is a complete metric space, Y is a locally convex
Hausdorff space ordered by a nontrivial convez cone C, ® € C\{0} is such
that I € C* such that \(c®) >0, h: X x X — Y is a half distance function.
Vz € X, Va > 0, the set {y € X : h(z,y) + ad(z,y)® <c 0} is closed
(or h(z,-) is submonotone and C is closed). Ixg € X, wo € Y such that
h(zo, ) > wo,Vz € X.

Let
Dy = {z € X : h(zo,z) + d(z0,2)c® <c 0}.

The following theorem is a special form of Theorem 4.50 (with r(z,y) =
d([(}, y)coavxh’y € X and CO = {aCO e Z 0})
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Theorem 4.55. Let (X, d) be a complete metric space, and Y a locally convex
Hausdorff space ordered by a nontrivial convex cone C. Let c® € C\{0} be such
that IX € C* with \(c®) > 0. Let f : X — Y be a vector-valued function such
that 3wy € Y such that

fz) >c wo, VzelX.

Suppose that Vx € X, Ya > 0, the set {y € X : f(y) — f(z) + ad(z,y)c® <¢ 0}
is closed (or f is submonotone with respect to C and C is closed.) Then
dz* € X such that

F(@) = f(@") + d(z", @)’ £ovioy 0, Vo € X\{z"}.

If we set Co = {ac® : a > 0}, r(z,y) = d(z,y)c°, then the following
theorem is a special form of Theorem 4.52.

Theorem 4.56. All the following theorems are true and they are equivalent
to Theorem 4.55.

Theorem A’. Let Assumption 4.54 hold. Then 3z* € Dy such that
h(z*,z) + d(z*, )’ £c 0, Yz € X\{z"}. (4.44)
Theorem B’. Let Assumption 4.54 hold, and let T': X =2 Y satisfy
Vz' € D), 3z € F(z') such that h(z',z) + d(z’, z)c® <¢ 0.

Then Jz* € D| such that z* € T'(z*).

Theorem C'. Let Assumption 4.54 hold, and let M C X satisfy: Vz' €
D{\ M, there exists z € X such that

z # ' and h(z',z) + d(2’,z)c® <¢c 0. (4.45)
Then 3z* € D{N M.
Theorem D’. Let Assumption 4.54 hold, and let the following (4.46) hold:

For all 2’ € Dy satisfying 3z; € X with h(z’,z1) <c\(0} 0, we have
T2 € X\{z'} such that h(z’, z2) + d(z’, 22)c® <¢ 0. (4.46)

Then 3z* € D such that
h(z*,z) £c\{0} 0, Vz € X.

Proof. By letting Co = {ac® : a > 0}, r(z,y) = d(z,y)c® and applying Theo-
rem 4.52, the theorem is proved. |

In sequel, we will consider some applications of the above results.
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Theorem 4.57. Let Assumption 4.54 hold. Let A be a closed set, zo € A C X
and B C X be a bounded set. Let r1 > d(b, o), for some b € X, and

Ay, ={zeA:dbz)<r}.
Ifh: X x X —Y is a half distance function and
h(z,y) <c —€oc®, Yz € A,ye€ B (4.47)
for some €9 > 0, then, 3o > 0, and x* € C1, where
Ci={yeX:hz’y) + adz® y)® <c 0} NA,,,

such that
BcCyo={ye X :h(z"y)+ ozd(ar:’*,y)c0 <c¢ 0},

and CaN A, = {z*}.

Proof. Obviously, A,, is a closed set. So (A, , ad) is complete, where 0 < a <
€o/(r1+r), r = sup{d(b,z) : = € B}. Replace X and d in Theorem A’ with
A,, and ad, respectively. By Theorem A’, 3z* € C; such that

h(z*,z) + ad(z*, )’ £c 0, V€ A, \{z*}.

Hence, Yz € A, = # z*, we have z ¢ Cs. Obviously, z* € Cs since 0 € —C,
so CoNAp =C1. If z € B, then

h(z*, x) + ad(z*, 7)c® <o —eoc® + a(d(z*,b) + d(b,z))c°
<c —€oc® + a(r1 +7)c°
<c¢ 0.

So x € Cs. [ ]

Now, we will apply Theorem 4.50 to obtain a fixed point theorem for a
directional contraction function in vector form, which is a generalization of a
fixed point theorem in Clarke [46].

Let Y be a locally convex Hausdorff space ordered by a nontrivial, closed
and convex cone C, Cy C C a C bound, regular complete convex cone, Cy N
—C C —Cb. Let (X,d) be a complete Cy metric space, Va € X, r(a,-) be
continuous.

For any z,y € X, the open segment |z, y] is the set of all points z (if any)
in X distinct from z and y satisfying r(z, 2) + r(2,y) = r(z, y).

A vector-valued function T': X — X is said to be a directional contraction
function provided T' is continuous and 3§ € (0, 1) such that whenever z € X
with Tz # z, 3y € |z, Tz[ such that r(Tz, Ty) <c ér(z,y).

Theorem 4.58. Let Y be a locally convex Hausdorff space ordered by a non-
trivial, closed and convex cone C, Cy C C a C bound reqular complete convex
cone, CoN—C C —Cy. Let (X,r) be a complete Cy metric space. In addition,
Va € X, r(a,-) is continuous. Then, every directional contraction function
admits a fixed point.
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Proof. Let T : X — X be a directional contraction function.
Define f: X — X by

flz) =r(z,Tz), VrelX.

We will show that f is submonotone with respect to C. In fact, for any net
{z,.} C X such that limz, = z and f(z,) <¢ f(z.),v > p, we will show that

f(.’L') SC’ f(xlt)u VI.L
Suppose that this is not true. Then Jug with

f@p) - f(z) 2¢ 0.
Thus 3) € C*\{0} such that

for some €y > 0. That is
Mr(zp, Tzp,)) < A(r(z, Tx)) — €. (4.48)
On the other hand,
Yo, r(z,Tx) <c r(z,zy) + 7(Z0, Txy) + 7Ty, Tx). (4.49)

By the continuity of T' and the definition of (X, r) being a Cy metric space,
YU € B(0), Jug, whenever v > v,

r(z, zy) + r(Txy, Tz) € U.
Let us choose U to be such that
Au) < e/2, Vuel.
By (4.49), we have
A(r(z, T)) < €0/2+ A(r(y, Ta,)).
Note that A(r(zy, T2)) < A(r(@pe, T2p,)), v > po. So we have
Ar(z,Tx)) < €0/2 4+ Mr(Tpu,, T u,))- (4.50)

But (4.50) contradicts (4.48). Thus we have proved that f is submonotone
with respect to C.

By the definition of f, we have f(z) >¢ 0,Vz € X.

By Theorem 4.50 with e = (1 — §)/2, 3z* € X such that

f(@) = f(@*) + (1= 6)/2)r(z,2") £c 0, Vz € X\{z"}.
That is,
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r(z,Tx) — r(z*,Tz*) + ((1 — 6)/2)r(x,z") £c 0, Vo e X\{z*}. (4.51)

If z* = Tz*, then we have proved the theorem. Otherwise, we assume that
x* # Tz*. Since T is a directional contraction function, by definition, we have
that 3z € |o*, Ta*| such that

r(z*, Tz*) = r{z1, %) + r(zy, Tz") (4.52)
and
r(Tz1, Tx*) <¢ or(z,z"). (4.53)
By (4.51), we have
r(z1, Tx1) —r(z*, Tz*) + (1 = &)r(z1,z") £c 0. (4.54)

Substituting (4.52) into (4.54), we obtain
(@1, Tey) —r(z1, Tz") — 6/2r(71,27) £ 0,

r(Tzy, Tx*) — ér(z1,2") £c 0,

which contradicts (4.53). The contradiction proves the theorem. ]

4.4 Equivalents of Variational Principles for Set-Valued
Functions

In this section, we will establish set-valued variants of “Petal Theorem” and
“Cristi-Kirk Point Theorem”. We will also establish equivalence between these

theorems and the vector variational Principe for set-valued functions (see
Huang [98]).

We make the following assumption.

Assumption 4.59. Y is a locally conver Hausdorff space ordered by a non-
trivial convex cone C CY. Cy C C is a C bound regular complete convex cone
and CoN—C C —Cy. r : X x X — Cy is a Cy metric function, (X,r) is a
complete Coy metric space. F : X 3Y is a set-valued function and Yz € X,
F(z) has the domination property. There exist xg € X and yo € F(xo) such
that F is C order lower bounded on X1 = {z € X : (yo — C) N F(x) # o}.
Either of the following two statements holds:

(1) C is closed, Va € X, 7(a,-) is continuous with respect to the topology of X
induced by v and F is submonotone with respect to C;

(A1) Vzo € X, yo € F(xo), a net {za} C X, 2o — T € X and yo € F(za)
such that yo — Yo + 7(Za, o) <c 0, it follows that Iy € F(Z) such that
¥ — Yo+ r(Z,z0) <c 0.
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The following theorem is a direct consequence of Theorem 4.48.

Theorem 4.60. Let the Assumption 4.59 hold. Then there exists x* € X and
y* € Ming(F(z*)) such that

¥y <cyo and (F(z) —y* +r(z,z*))N(-C)=@, VzeX\{z"}. (4.55)

Proof. Let ¢ = 1 in Theorem 4.48. The former formula of (4.55) follow from
(iv) of Theorem 4.48 and the latter formula of (4.55) is just (v) of Theorem
4.48. ]

Theorem 4.61. All the following theorems are true and equivalent to Theo-
rem 4.60.

Theorem A”. Let Assumption 4.59 hold. In addition, we assume that

(a") VZ € X,V§ € F(Z) with § <¢ yo, there exists z1 € X; such that (F(z1)—
7) N (—C\{0}) # @, it follows that 3z; € X1\{Z} and y2 € F(z3) such
that y2 — §+ (%, z2) <c 0.

Then there exist z* € Xy and y* € Ming(F(z*)) with y* <¢ yo such that
(F(z) -y )N (=C\{0}) =2, VzeX\{z"}.

Theorem B”. Let Assumption 4.59 hold. Let T : X = X be a set-valued
function such that (b") holds:

(b") VZ € X1,y € F(Z) with § <¢ o, there exist z € T(Z) and y € F(x)
such that y — 7+ r(z, %) <¢ 0.
Then there exist * € X; and y* € F(z*) such that
" €T(z"), y" <c .

Theorem C”. Let Assumption 4.59 hold. Let M C X has the property
(c"):

(") Vz € X1\M,Vy € F(z) with § <¢ yo, there exist z € X, y € F(x) such
that x # Z and y — g+ r(z, %) <¢ 0.

Then, there exist * € M N X; and y* € F(z*) such that yv* <¢ %o.
Proof. Theorem 4.60 =—> Theorem A”:

It follows from Theorem 4.60 that there exist z* € X; and y* €
Ming (F(z*)) such that (4.55) holds. Now we show that

(F(z) -y )N (-C\{0}) = 2, VzeX\{z"}.
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Otherwise, 3z1 € X\{z*} and y; € F(z1) such that y; —y* € —C\{0}. Thus,
z1 € X; and y; <¢ yo. According to (a”), there exist zo € X;\{z*} and
y2 € F(x2) such that

Y2 —y" + (¥, 22) <c 0,

which contradicts ( 4.55).
Theorem 4.60 = Theorem B”:

It follows from Theorem (4.60) that there exist z* € X; and y* €
Ming (F(z*)) such that (4.55) holds. Let us show that z* € T(z*). Other-
wise, by (b"), 3z € T(z*)\{z*} and y € F(z) such that

y -y +r(z,27) <c 0,
which contradicts (4.55).

Theorem 4.60 = Theorem C"':

Theorem 4.60 implies that there exist z* € X; and y* € Ming(F(z*))
such that (4.55) holds. Let us show that z* € X; N M. Otherwise, * € X;\M
and y* <¢ yo. By (¢"), 3z € X\{z*} and y € F(x) such that

y—y +r(z,e") <c0,
which contradicts (4.55).

Theorem C” = Theorem 4.60:

Let M = {% € X : 3y € F(Z) such that (F(z) -y + r(z,Z)) N (-C) =
@,V € X\{z}}. We show that the conclusion of Theorem 4.60 holds. Let
z1 € X\M. If y1 € F(z1) with y1 <¢ yo, by the definition of M, there exists
xzg € X\{z1} and yo € F(z2) such that

Y2 —y1 +r(z1, 22) <¢ 0,

which implies that y» <¢ ¥1 <¢ %o, s0 22 € Xi\{z1}. By Theorem C”,
Jz* € M N X; and y* € F(z*) with y* <¢ yo, i.e., 3z* € X; and y* € F(z*)
with ¥* <¢ yo such that

y* <cyo and (F(z) —y* +r(z,2")N(-C)=2, Vze X\{z*}. (4.56)

By the domination property of F(z*), there exists y' € Ming(F(z*)) such
that ¢ <¢ y*. By (4.56),

Y <c yo and (F(z) — ¢ +r(z,2")) N (-C) =2, Vze X\{z*},
i.e., Theorem 4.60 holds.
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Theorem B” = Theorem 4.60:

Let T(z) = {w € X\{z} : 3y1 € F(w) and yp € F(x) such that y; —y2 +
r(z,w) <¢ 0}. We prove by contradiction. Suppose that Theorem 4.60 fails.
Then VZ € X1,Vy € F(z) with § <¢ yo, Jv € X\{Z} and y1 € F(v) such
that

1 —§+r(Z,v) <c 0.
Obviously, v € F(Z). So (b”) holds. By Theorem B”, Jz* € X; such that
x* € T(z*), which contradicts the definition of T'.

Theorem A"’ = Theorem C":

We prove by contradiction. Suppose that X; N M = &. Let us verify
that (a”) holds. VZ € Xy, V§ € F(Z) with § <¢ wo, 3z1 € X1 such that
(F(z1) — 5) N (=C\{0}) # @. By ("), 3z2 € X\{Z} and y2 € F(x2) such
that yo — §+ 7(Z, z2) <¢ 0. Therefore, (a’’) holds. By Theorem A”, 3z* € X;
and y* € Ming(F(z*)) with y* <¢ yo such that

(F(zy—y* )N (-C\{0}) =2, VzeX\{z"}. (4.57)
Once again, by (¢”), 3z3 € X\{z*} and y3 € F(z3) such that
Y3~y tr(zs,z%) <c 0,
which contradicts (4.57). [

Remark 4.62. Theorem A” is a Takahashi type existence theorem for a mini-
mal solution for a set-valued function. Theorem B” is a fixed point theorem
of Caristi-Kirk type. Theorem C" is a set-valued version of Oettli and Thera’s
result (see Oettli and Thera [153]).

To present the equivalence of a relatively special variational principle for
set-valued functions, we make the following standard assumption.

Assumption 4.63. Let (X, d) be a complete metric space, Y be a locally con-
vex Hausdorff space, C C'Y be a nonempty nontrivial convez cone, c® € C\{0}
is such that 3\ € C* such that A(c®) > 0. Let Y be ordered by C. Let F : =Y
be a set-valued function with F(z) # @ for allx € X and for every z € X,
F(x) has domination property. There exist zo € X and yo € F(zo) such that
F is C order lower bounded on X, = {x € X : (yo — C) N F(z) # @}.
Furthermore, either of the following two conditions holds:

(I1) C is closed and F is submonotone with respect to C;
(111 ) the condition (II) of Assumption 4.59 holds with r(z1,z2) = d(z1,z2)
A, Vzy,z9 € X.

Applying Theorem 4.60 and Lemma 4.16, it is not difficult to prove the
following Theorem 4.64, which is a special case of Theorem 4.60.
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Theorem 4.64. Let Assumption 4.68 hold. Then there exists an * € X and
y* € Ming(F(z*)) such that

v* <c yo and (F(z) —y* + d(z,z*))N(-C) =@, Vze X\{z*}.

Theorem 4.65. All the following theorems are true and equivalent to Theo-
rem 4.64.

Theorem A7. Let Assumption 4.63 hold. In addition, assume that (af)
holds:

(af) VZ € X1,Vy € F(Z) with § <¢ yo, there exists z; € X, such that (F(z1)—
7) N (—C\{0}) # 2, it follows that 3z, € X;\{Z} and y2 € F(z2) such
that yo — 7 + d(Z, z2)c® <¢ 0.

Then there exist z* € X; and y* € Ming(F(z*)) with y* <¢ yo such that
(F(z) —y" )N (-C\{0}) =2, VzeX\{z"}.

Theorem BY. Let Assumption 4.63 hold. Let T : X =% X be a set-valued
function such that (b) holds:

(b)) Yz € X,Vg € F(Z) with § <¢ yo there exist x € T(Z) and y € F(z) such
that y — § + d(=z, %)c® <¢ 0.

Then there exist * € X7 and y* € F(z*) such that
¥ eT(z"), v <c vo.

Theorem C7'. Let Assumption 4.63 hold. Let M C X have the property
(c1):
(c¢}) VT € X;\M, V§ € F(Z) with § <¢ yo, there exist z € X,y € F(z) such
that z # Z and y — ¥ + d(z,7)c® <¢ 0.

Then there exist z* € M N X; and y* € F(z*) such that y* <¢ wo.

Proof. Let Co = {ac® : a > 0}, r(x1, 72) = d(z1, 2)c?,Vx1, 72 € X. Applying
Lemma 4.16 and Theorem 4.61, we can easily derive the conclusion of the
theorem. |

Finally, we will present stronger versions of Theorem B and BY, respec-
tively. Using the stronger results, we can obtain the existence of maximal
solutions for vector optimization problems.

Let

Do={z e X :(F(z)+r(z,z0)) N (yo — C) # 2},

where zg and y are as in Assumption 4.59. It is obvious that Dy C X;.
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Theorem 4.66. Let Assumption 4.59 hold. Let T : X =3 X be a set-valued

function with F(z) # @ for all x € X such that VZ € Dy, 3§ € F(Z) with

7 <c yo — (T, x0),Vz € T(Z) and y € F(zx) such that y —j§+ r(z, ) <c 0.
Then 3z* € Dy and y* € F(z*) such that

T(™) ={z"}, v <cyo —r(z", 20)-

Proof. Firstly, we prove that 3z* € T(z*) and y* € Ming(F(z*)) such that
y* <¢ Yo — (0, z*) (thus z* € Dyp). By (iv) and (v) of Theorem 4.48, there
exist z* € Xy, y* € Ming{F(z*)) with

y* <o yo — r(zo,z™) and
(F(z) —y* +r(z,z))N(-C) =9, VzeX\{z"}, (4.58)

The first formula in (4.58) implies * € Dy. Now we show that z* € T'(z*).
Otherwise, z* ¢ T(z*). By the assumption of this theorem, Vz € T(z*),
Jdy € F(z) such that y — y* + r(z,z*) <¢ 0, which contradicts the second
formula in (4.58). Hence z* € T'(z*). Finally, we show by contradiction that
T(z*) = {z*}. Otherwise, 3z € T(z*)\{z*}. By the assumption of this the-
orem, there exists y1 € F(z1) such that y1 — y* + r(z1,2*) <¢ 0, which
contradicts (4.58). So «* is just what we desire in the conclusion. [

Now we let
D6 - {I €X: F(x)+d(m,xo)coﬂ(yo _C) %Q}a
where zg, Yo are as in Assumption 4.63. It is obvious that Dj C X;.

Theorem 4.67. Let Assumption 4.68 hold. Let T : X =% X be a set-valued

function with F(z) # @, for all x € X such that VZ € Dy, Vy € F(Z) with

7 <c yo—d(Z,z0)c®, Vz € T(Z) and y € F(z) such that y—§+d(z,Z)c® <c 0.
Then 3x* € Dy and y* € F(z*) such that

T(z*)={z"}, y" <c¢y —d(z", zo)co.

Proof. The proof is very similar to that of Theorem 4.66. [ |

As applications of the above theorems, we derive existence theorems of
maximal solutions for vector optimization problems.

Theorem 4.68. Let U be a nonempty set, Y a locally convex Hausdorff space
ordered by a nontrivial convex cone C C Y. Let a convex cone Co C C be C
bound regular such that CoN—C C —Cy. Letr : X x X — Y be a Cy metric
function, (X,r) a complete Cy metric linear space. Let C1 C X be a nonempty
nontrivial conver cone and Cq induces an order in X. Let f : U — X be a
vector-valued function. If there exist a complete subset Xo C f(U) and a set-
valued function F : Xo Y with F(z) # @ for all x € Xa such that
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(i) Vo € X3, F(x) has the domination property;

(ii) the set-valued function I' : X = X, I'(z) = f(U) N (C1 + z) is such that
F(XQ) C Xo;

(iii) there exist xo € X and yo € F(xo) such that F is C order lower bounded
omXzs={zeXe:Fx)N(y—C)# 2}

(iv) C is closed, F is submonotone with respect to C and Va € X, r(a,-) is
continuous with respect to the topology of X induced by r; orVzo € X and
yo € F(xo), and a net {z,} C X, 2o — T € X and yo € F(z4) such that
Ya —Yo+7{Za, o) <c 0, it follows 35 € F (%) such that j—yo+7(T, x0) <¢
0.

(v) VZ € Do, Vy € I'(Z) with§ <¢ yo — r(%,0),Vz € I['(Z), Jy € F(x) such
thaty —g+r(z, %) € —C, where Dy = {z € Xa : (F(z)+r(z,z0)) N (yo —
C) # 2},

Then, there exists u* € U, which is a mazimal solution of f on U, and y* €

F(f(u*)) such that y* — yo + r(zo, f(u*)) <c 0.

Proof. Applying Theorem 4.66 by setting X = X, T = I'. It follows that
Jz* € Dy and y* € F(z*) with y* <¢ yo — r(z*, zo) such that I'(z*) = {z*}.
Suppose that z* = f(u*), u* € U, then the conclusion of this theorem follows.
|

Theorem 4.69. Let U be a nonempty set, Y a locally convexr Hausdorff space
ordered by a nontrivial convex cone C. Let c® € C be such that IX € C* such
that A(c®) > 0. Let (X, ||-||) be a Banach space, C1 C X a nonempty nontrivial
convex cone and C1 induces an order in X. Let f : U — X be a vector-valued
function. If there exist a complete subset Xo C f(U) and a set-valued function
F: X 3Y with F(z) # & for all x € X5 such that:

(i) for all x € X3, F(x) has the domination property;

(ii) the set-valued function I' : X = X, I'(z) = f(U) N (C1 + ) is such that
I'(X3) C Xo;

(iii) there exist zo € X9 and yo € F(xo) such that F is C order lower bounded
onXs={ze€Xo: F(x)N(y —C) # 2},

(iv) C is closed, F is submonotone with respect to C, or Vzo € X and yo €
F(xo) and a net {zo} C X, 2o — T € X and yo € F(z4) such that
Yo — Yo + ||Z — @o||c® <c 0, it follows that 35 € F(Z) such that § — yo +
||Z = 2ol|<® <c¢ 0.

(v) for allT € Do, Vy € F(Z) with§j <c yo—||Z—zo||c°,Vx € I'(Z),Jy € F(x)
such that y — § + ||z — Z||c® <¢ 0, where Dy = {z € Xz : (F(z)+ ||z —
2olc) N (yo — C) # 2}

Then there exists u* € U, which is a maximal solution of f on U, and y* €
F(f(u*)) such that y* — yo + ||zo — f(u*)]|c® <¢ 0.

Proof. The proof is very similar to that of Theorem 4.68. |
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4.5 Extended Well-Posedness in Vector-Valued
Optimization

In this and next sections, we assume (unless stated otherwise) that (X,d) is
a metric space, Y is a normed space ordered by a nontrivial pointed, closed
and convex cone C with nonempty interior intC, e € intC is a fixed element
and +oo is a virtual element such that Vo > 0, ae <¢g +oo. We also assume
that the parametric space (P, p) is a metric space, a point p* € P is fixed and
L is a closed ball in P with the center p* and a positive radius.

Suppose that A C Y U {+o0}. Denote by Inf;,:cA the set of weak infima
of A. Here by a* € Inf;,,;cA, we mean

(a) a* = +oo if A= {400}

or
(b) the following conditions are satisfied:
(i)a* €Y,

(ii) @ — a* Lintc 0, Va € A;

and

(iii) there exists a sequence {ax} C A such that ax — a* as n — +o0.

In this section, we consider well-posedness of vector-valued optimization
problems.

Let J: X 2 Y U{4+o0}and [ : X X L - Y U {+00} be extended vector-
valued functions such that I(x,p*) = J(z),Vx € X, where +o0 is a virtual
element such that Vo > 0, ae <¢ +o0.

The function I(.,p) is said to be proper if there exists z € X such that
I(xap) Sintc ~+00.

The problems are set as follows.

The original problem:

(X,J): Infinsc{J(z):z € X}.
The perturbed problem corresponding to parameter p:
(X, I(,p)): Infinc{l(z,p):z€ X}.

Note that the original problem (X, .J) is the same as problem (X, I(.,p*)).
Let
V(p) = Infinsc{I(z,p) : z € X}.

Recall that, by y € V(p), we mean
(a) y =400 if I(z,p) = +00,Vz € X
or
(b) the following conditions are satisfied:
HyeY;
(11) Vz € X7I(I’p) -y ﬁintC 0;
and
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(iii) there exists a sequence {zx} C X such that I(zx,p) — y asn — +o00.

Throughout the section, we always assume V(p) # 0 wherever the symbol
V(p) appears. Denote by argminin:c(X,I(.,p)) the set of weakly minimal
solutions of I(.,p) on X.

Remark 4.70. If y is a weakly minimal point of I(X, p), then y € V(p).

Suppose that (Z,d;) is a metric space, z € Z and Zy C Z, denote by
d(z, Zp) =inf {d1(z,20) : 20 € Zo} the distance function from point z to set
Zo. Recall that & : Y — IR in Chapter 1 is defined as

ée(y)=min{teR:yecte—C}, Vyet.

Noting that C = {c € Y : l(c) € 0,V¥] € —C*}, the next proposition follows
immediately from Proposition 1.44.

Proposition 4.71. For anyy €Y,

_ AMy)
&) ,\eéy{){o} Ale) .

By Proposition 4.71, it is clear that if there exists A € C*\{0} such that
A(f) is bounded below on X, then &.(f) is also bounded below on X, where
f: X — Y is a vector-valued function.

Throughout this section, we make the following assumption.

Assumption 4.72. For anyp € L, I(.,p) is proper and £.(I(x,p)) is bounded
below on X.

Now we introduce three notions of extended well-posedness for vector op-
timization problems.

Definition 4.73. Problem (X, J) is called well-posed in the weakly extended
sense if
argmininic(X, J) # 0; (4.59)

V(p) # 0,vp € L; (4.60)

[for any sequences pr, — p* in P and {zx} in X such that
d(I(zk,pr), V(pk)) — 0, there exist a subsequence {xk,} of {xx}
and some point £* € argmingic (X, J) such that xx, — z*.] (4.61)

Definition 4.74. Problem (X, J) is called well-posed in the extended sense if
(4.59) and (4.60) hold and
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[for any sequences px, — p* in P and {xx} in X such that
Hak},ar > 0,ar — 0 and yx € V(pi) with

I(zk,pr) <c yr + ake, there exist a subsequence {z,} of ¢

{zx} and some point z* € argmininic(X,J) such that

Tp, — x*.] (4.62)

Definition 4.75. Problem (X, J) is called well-posed in the strongly extended
sense if (4.59) and (4.60) hold and

[for any sequences pr, — p* in P and {xx} in X such that

liminf[ inf E&(y— I(zk,pr))] >0, there exists a subsequence
n--+00 yéV(pk)
{zK;} of {zx} and some point =™ € argmininic(X, J)

such that zx, — z*.] (4.63)

The sequences {zx} in (4.61), (4.62), and (4.63) are called a strongly
asymptotically minimizing sequence, asymptotically minimizing sequence,
weakly asymptotically minimizing sequence, respectively.

Remark 4.76. (a) It is not difficult to see that a strongly asymptotically min-
imizing sequence is also asymptotically minimizing and an asymptotically
minimizing sequence is also weakly asymptotically minimizing.

(b) Due to (a), we know that the strongly extended well-posedness implies
the extended well-posedness and that the extended well-posedness implies the
weakly extended well-posedness. However, the converse may not be true.

Example 4.77. Let X = [0,400), Y = C[0,1] x R, C = C; x R, where
C10, 1] stands for the set of continuous functions defined on the interval [0, 1]
and Cy = {f € C[0,1] : f(¢t) > 0,Vt € [0,1]}. Let e = (1,1) € intC, P =
Ry,p* =0 and

_ (0,0}, if z € [0, 1];
I(z,p) = {(fx(t),l/k+x—k) +0,p), ifze(kk+1,k=12..,
where
—kt(1—1/(k+1)*2 +1/(k + 1),
f(t): ifte[0’1"—1/(]‘7“’1)),1:6(]4;,];_}.]_];

—kt* L+ 1/(k + 1),
ifte[1-1/(k+1),1},z € (kk+1].

Now we show that problem (X, J) is well-posed in the weakly extended sense
but not well-posed in the extended sense.

It is not hard to verify that V(p) = {(0,0)}, Vp € P; argmininic(X,J) =
[0,1]; A = (0,1) € C*\{0} is such that A(I(x,p)) is bounded below for any
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p € P and so Assumption 4.72 holds; for any sequences xx € X, pr € P such
that pr, — 0 and I(zk, px) — 0, we have z;, € [0, 1] when k is sufficiently large.
Thus there exist a subsequence zy, and z* € [0, 1] such that zx, — z*. So
(X, J) is well-posed in the weakly extended sense. However, for the sequence
zr = k+ 1/k,pr = 1/k(k > 2) such that I(zx,pr) = (fer1/%(t),3/k) <c
(0,0) + (1/(k + 1),3/k) there exists no subsequence z, and z* € [0, 1] such
that xx, — z*.

Ezample 4.78. Let X =R, Y =IR? C = ]R2+, P=R4,e=(1,1),p*=0

and
0,0), if z € [0,1];
I(z,p) = (9.0 : 0.1] _
(kyz —k)+(0,p), ifze(kk+1,k=12,...

We show that problem (X,.J) is well-posed in the extended sense but not
well-posed in the strongly extended sense.

It is clear that V(p) = (0,0) for any p € P; argmininc(X,J) = [0,1];
I(.,p) is bounded below for any p € P and thus Assumption 4.72 holds
naturally; for any sequences xy,pr such that py — p* and I(zk,pr) <c
(0,0) + €x(1,1) for some {ex} C R4 with € — 0 we have zx € [0,1] when &k
is sufficiently large. Hence there exists a subsequence xy, and z* € [0, 1] such
that zx, — z*. So (X, J) is well-posed in the extended sense. However, for the
sequence xx = k,pr = 1/k, it is easy to verify that zy is weakly asymptoti-
cally minimizing corresponding to px and there exists no subsequence x, and
z* € [0, 1] such that zx, — z*. Hence, (X, J) is not well-posed in the strongly
extended sense.

(¢c) When Y = R, C = IR, all the three types of extended well-posedness
reduce to the extended well-posedness defined in [226].

(d) Any one of three types of well-posedness implies that argmin,:c(X, J)
is compact.

For simplicity, we write argmin;nc(p) instead of argmininc(X, I(.,p));
problem(p) instead of problem(X, I(.,p)). Thus, problem(p*) = (X, J).

Now we give some criteria and characterizations of the three notions of
extended well-posedness.
Let e € intC. For any € > 0, p € L, we denote

€ —argmininic(p) = {z € X : I(z,p) — I(z',p) — ee Fintc 0,2’ € X}.
Let
Me,p)={x e X :I(z,p) —y — €€ Fintc 0,Vy € V(p)}.

Clearly, e —argminin:c(p) C M (e, p). However, the reverse inclusion may not
hold.

The following proposition is about the nonemptiness of the set ¢ —
argmininic(p).
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Proposition 4.79. Let Assumption 4.72 hold. Then € — argmininic(p) #
0,Ve>0,p € L.

Proof. Since Assumption 4.72 holds, for any p € L, &(I(z,p)) is bounded
below. So for any € > 0, there exists . € X such that

€e(I(ze,p) < inf &(I(z,p)) +e. (4.64)

We assert that x. € € — argmin;,:c(p). Otherwise, there exists 2’ € X such
that
I(CL",p) - I(-reap) + ee Sintc 0.

So
({2, p)) — Ee(I(xe,p) < E(I(@',p) — I(Te,P)) < —¢,
that is,
el(ze,p)) > &e(I(2',p)) + e 2 nf &(I(z,p)) + e,
which contradicts (4.64). [

M can be viewed as a set-valued function from intIR4 X L into X.

Proposition 4.80. If M(.,.) is u.s.c. at (0,p*), argmini,:c(p*) is nonempty
and compact, then problem (p*) is well-posed in the strongly extended sense.
Conversely, if problem (p*) is well-posed in the strongly extended sense, then
M is u.s.c. at (0,p").

Proof. Let pr, — p*, ex — 0 and ug € €, — argminintc(px). Consider
T, = {z € X : d(z, argmininic(p™)) < 1/k}, Vk.

Then, by the us.c. of M at (0,p*), there exists a subsequence uy, of ug
such that ug, € Tk,,VI. By the compactness of argmin,.c(p*), there exists a
further subsequence of uy, that converges to a point in argmini,ic(p*). This
proves the first half of the proposition. Arguing by contradiction, it is easy to
prove the second half of the proposition. |

Definition 4.81. We say that problem (p*) is stable in the weakly extended
sense (respectively, in the extended sense, in the strongly extended sense) if

argmininic(p*) # 0 and for every sequence py — p*

and every strongly asymptotically (respectively, asymptotically,
weakly asymptotically) minimizing sequence {xx}

corresponding to {px}, we have

d(z, argmininic(p*)) — 0. (4.65)
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Proposition 4.82. If problem (p*) is well-posed in the weakly extended (re-
spectively, extended, strongly extended) sense, then (4.65) holds (respectively).
Conversely, if (4.65) holds, then (p*) is well-posed in the weakly extended
(respectively, extended, strongly extended) sense provided argmininic(p*) is
compact.

Proof. We only prove the case of well-posedness in the weakly extended sense.
The other two cases can be similarly proved. Assume that (p*) is well-posed
in the weakly extended case. Suppose that (4.65) fails. Then, for suitable
sequences px — p*, xx strongly asymptotically minimizing corresponding to
Pk, and for some € > 0, we have

€ < d(zg, argmininic(p*)), Vn.

Weakly extended well-posedness of (p*) implies the existence of a subsequence
{zk,} such that zx, — u € argmin;n:c(p*); hence,

0 < € < limsup d{zg,, argmininic(®”)) < d(zk,, u) =0,
i—-+o00
a contradiction. This proves the first half of the proposition. Conversely, as-
sume (4.65). If py — p* and if z;, is strongly asymptotically minimizing cor-
responding to py, for each k, we find a point ux € argmini,:c(p*) such that
d(zk, ux) — 0; by compactness, we get weakly extended well-posedness. W

Given nonempty subsets A, B of X, consider the excess of A to B defined
by
e(A, B) = sup {d(a,B) :a € A}.

The Hausdorff distance between A and B is defined as
haus(A, B) = max {e(4, B),e(B, A)}.

For a bounded metric space, a sequence of subsets Ax and a subset B thereof,
e(Ax,B) — 0 iff d(ax, B) — 0 for every selection ar € Ag. Therefore, a
reformulation of Proposition 4.82 yields the following corollary.

Corollary 4.83. If X is bounded, then the strongly extended well-posedness
of (p*) implies e(e — argmininic(p), argmininic(p*)) — 0 as (¢,p) — (0,p*).
The converse holds provided argmin;nsc(p*) is nonempty and compact.

In the following theorem, we shall give a metric characterization of the
extended well-posedness of problem (p*).

Consider a real-valued function ¢ = ¢(t, s) defined for ¢ > 0,5 > 0 suffi-
ciently small, such that

c(t, s) > 0,¢(0,0) =0 (4.66)
sk — 0,1t > 0, c(tk, sx) — 0 imply tx — 0. (4.67)
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Theorem 4.84. If problem (p*) is well-posed in the extended sense, then there
exists ¢ satisfying (4.66), (4.67) and

{I(z,p) — V(p) — c(d(z, argmininsc(p*)), p(p, p*))e} N (= intC) = 0,
Vz € X,p € L. (4.68)

Conversely, if argmininic(p*) is nonempty and compact, and (4.66) and
(4.67) hold for some ¢ satisfying ({.68), then (p*) is well-posed in the ex-
tended sense.

Proof. Let (p*) be well-posed in the extended sense. Consider
c(s,t) = inf { inf & (I(z,p) —v) : p(p,p*) = s, d(z, argminc(p*)) = t}
Y€V (p)

where s > 0,t > 0 are suitably small. Let us first check that (4.66) and (4.67)
hold. For any s > 0,t > 0 suitably small, for any z,p satisfying p(p, p*) =
s, d(z, argmininic(p*)) = t, if y € V(p), then

I(z,p) =y Lintc 0,

therefore,
e(I(z,p) —y) 2 0.
Thus,

yeigfp) Ee(I(z,p) —y)) = 0.

Hence, c(s,t) > 0. Moreover, if s = 0, ¢ = 0, it follows from the extended
well-posedness of (p*) that argmin;n:c(p*) is nonempty and compact. Hence,
d(zx, argminn:c(p*)) = 0 implies € argminin:c(p*). In addition, p(p, p*) =
0 implies p = p*. Consequently, the combination of d(z, argmin;n:c(p*)) =0
and p(p,p*) = 0 yields I(z,p) € V(p*). Hence,

€(0,0)< inf E(I(@.p) ~v) < &(l(w.p) ~ I(z,9)) = 0.

This combined with the inequality ¢(0,0) > 0, which has been proved above,
yields ¢(0,0) = 0. Thus, (4.66) is verified. Now we show that (4.67) holds.
Suppose that sp > 0,tx > 0 and c(sk,tx) — 0, then there exist pg, xx and
Yk € V(px) such that

fe(-[(xk,pk;) - yk‘) - 0, p(pk»p*) = Sk, d(l‘k, argminintC(p*)) = t. (469)
By (4.69), there exist ay > 0, ay — 0 such that
§e(I(xkapk) - yk) < O,

implying
I(zk,pr) <c Yk + axe.
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Hence, {x«} is an asymptotically minimizing sequence corresponding to {px}.
So
te = d(xg, argming,.c(p*)) — 0

by Proposition 4.82, i.e., (4.67) holds. By the definition of ¢, it is easy to see
that (4.68) holds. This proves the first part. Now assume that {px} C L with
pr — p* and {zx} is an asymptotically minimizing sequence corresponding to
{pr}. That is, there exist yx € V(px) and o > 0, — 0 such that

I(zk,pr) <c yr + axe. (4.70)
Moreover, (4.68) implies
I(zk, pr) — Y — c(d(@k, argmininc(p*)), p(pr, p*))e Lintc 0. (4.71)
The combination of (4.70) and (4.71) yields
are — c(d(zk, argminc(p*)), p(pr, p*))e Lintc 0. (4.72)
Arguing by contradiction, it is easy to see that (4.72) implies
c(d(zk, argmininec(p™)), p(pk, p*)) — 0.

By (4.67), we have
d(zk, argming,;c(p™)) — 0.

Applying Proposition 4.82, we conclude that (p*) is well-posed in the extended
sense. -

Recall that the Kuratowski measure of noncompactness of a subset A of
X is defined by

a(A) = inf {k > 0: A has a finite cover of sets with diameter < k}.
In the following theorem, we need the condition:
a(U{e — argmininic(p) : p(p,p*) < €}) — 0, as e — 0. (4.73)

Definition 4.85. Problem (p) is said to have the weak domination property if,
for any x € X, there exists ¢’ € argminc(p) such that I(z',p) <¢ I(z,p).

Theorem 4.86. If X is a complete metric space and Vz' € X, £.(I(z',.) —
I(.,.)) is w.s.c. on X x {p*}, (4.78) holds and problem (p) enjoys the weak
domination property, then problem (p*) is well-posed in the strongly extended
sense. Conversely, the strongly extended well-posedness of problem (p*) implies

(4.73).
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Proof. Let

T(e) = U{e — argmininic(p) : p(p,p*) < €}.
Suppose that (4.73) holds. Then c¢l(T'(¢)) is nonempty, closed and increasing
in € (with respect to the relation of set inclusion). By (4.73), a(cl(T'(¢))) =

a(T(e)) — 0 as e — 0. By the Kuratowski theorem ([126], p.318), we have
haus[cl(T(€)), T] — 0 as € — 0, where

T =n{cl(T(c)) : € > 0} (4.74)

is nonempty and compact.
Let us show that
T = argmininic(p*). (4.75)

It is obvious from (4.74) that
d(z,T(e)) =0, Yz € T,Ve > 0. (4.76)

To prove (4.75), we need only to show that T C argminm:c(p*) since
argmininic(p*) C T holds automatically. Suppose that there exists z € T
such that z ¢ argming.c(p*). Then 2’ € X with J(z') — J(z) <inic 0.
Hence, 36 > 0 with &.(J(z') — J(x)) < =8 or &(I(a',p*) — I(z,p*)) < —6.
Since & (I(z,.) — I(.,.)) is u.s.c. on X x {p*}, we deduce that Je¢ > 0 such
that, when d(z,u) < €0, p(p,p*) < €0, we have

£(I(z',p) — I(u,p)) < —0.

Namely,
I(xl’p) - [(uap) SintC _56-

So when € < min (e, d), for any u with d(u,z)} < €, v ¢ T(e) holds. In
other words, u € T'(e) implies d(u,z) > €, which contradicts (4.76). Hence,
T = argminiic(p*).

Now we prove that problem (p*) is well-posed in the strongly extended
sense. Suppose that pr — p*, {zx} is a weakly asymptotically minimizing
sequence corresponding to {py}, namely,

[ dnf €l — Lo, pe))] 0.

Hence Jex, > 0, € is decreasing and converges to 0 such that
y—I(zk, k) + ke Lintc 0, Yy € V(p).

Since (px) has weak domination property, we conclude that z; € e —
argmininic(pr). Moreover, € is monotone decreasing, we have a subsequence
{pk,} such that

PPk, P") < €k

and
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Tk, € €, — argmininsc(pr;) C T'(ek).

By (4.74) and (4.75), we know that
d(zk,, argming.c(p*)) — 0.

From the compactness of argmin,ic(p*), we deduce that (p*) is well-posed
in the strongly extended sense.

Now we prove the second part of the theorem. Assume that (p*) is well-
posed in the strongly extended sense. Consider the excess

q(e) = e(T(e), argmininic(p™)), €>0.

We show that g{€) — 0 as € — 0. If not, there exist § > 0, ex — 0, zx € T'(ex)
such that
d(zg, argminin:c(p*)) > 6, Vk. (4.77)

We can find pr — p* such that z is a weakly asymptotically minimizing
sequence corresponding to pg, and thus (4.77) contradicts the extended strong
well-posedness of (p*). Hence, ¢(¢) — 0 as ¢ — 0. So, we have

T(e) C {u € X : d(u, argmininic(®™)) < q(e)}.

Hence,
o(T'(€)) < 2q(e),
since
a(argminic(p*)) =0,
and (4.73) follows. [ |

Remark 4.87. 1f , forany A € C*,z’ € X, A(I(2’,.)) is u.s.c. at p* and A(I(.,.))
isls.c.on X x{p*}, then forany z’ € X, & (I(z',.})—I{.,.))is u.s.c. on X x{p*}.

Similar to the proof of the first part of Theorem 4.86, we can prove

Theorem 4.88. If X is complete, and for any x' € X, & (I(z',.) = I(.,.)) is
u.s.c. on X x {p*} and (4.74) holds, then (p*) is well-posed in the extended
sense.

Remark 4.89. In Theorem 4.88, we dropped the assumption that (p) has the
weak domination property.

In the remainder of this section, we assume that (X, ||-||) is a Banach space.

The following theorem is a new variant of Ekeland’s variational principle
for a vector-valued function without assuming that the function is C order
bounded below.
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Theorem 4.90. Let f: X — Y be a vector-valued function, f is l.s.c. on X
and &.(f) is bounded below on X. Let € > 0 and =* satisfy

flz) — f(x*) +ee £c 0, Ve X.

Then, for any real number § > 0, 3z’ € X such that
(i) f(z') <c f(z*),

(i) |l" — z*|| < 6,
(iit) f(z) — f(z') + §llz — 2']le Zinec 0, Vz € X\{z'}.

Proof. Let X3 = {z € X : f(z) <¢ f(z*)}. Then X; is a closed sub-
set of X by the ls.c. of f. It follows from the assumption on z* that
E(f(x) — f(z*))+€ > 0,Vz € X, ie., z* is an e-minimum of the scalar
function &.(f(z) — f(z*)) on X;. In addition, from the conditions of this the-
orem, we deduce that £.(f(z) — f(z*)) is l.s.c. and bounded below. Applying
Theorem 4.1, we know that for any § > 0, there exists an z’ € X; such
that (ii) holds, and &(f(z) — f(z*)) + §llz — 2'|| > 0,Vx € Xi\{z'}, ie,
f(z) = f(2') + $llz — 2'|le Lintc 0,Vz € X3\{z'}, hence (iii) holds. Since
z’' € X1, (i) holds true automatically. |

Let C*0 = {l € C* : ||I|| = 1}.

Proposition 4.91. Assume that for all p € L, I(.,p) is Gateauz differen-
tiable; Vo' € X, & (I(x',.) — I(.,.)) is u.s.c. on X x {p*};I(.,p) is Ls.c.; As-
sumption 4.72 holds; and

(C1) for any sequence pr, — p* in P, if xy is an asymptotically min-
imizing sequence corresponding to pr and there exists Ay € C*° such that
IMe(Vel(zk, k) || = 0, then {zx} has a convergent subsequence.

Then (p*) is well-posed in the extended sense.

Proof. Given py — p*, let z; be an asymptotically minimizing sequence cor-
responding to pg. That is, Jyx € V(pk), ax > 0, — 0 such that

I(zk, pr) <c Yk + age.
It is easy to see that
I(z,pr) — I(zk,pr) + 20ke £¢ 0, Vz e X.

Noticing that I(.,pg) is l.s.c. and Assumption 4.72 holds, applying Theorem
4.90 with € = 2ax, § = v/2ay, we obtain zx € X such that

I(zk,pr) <c I(zk,pr) and ||zx — zil] < V2ax (4.78)

and
I(‘T?pk)_‘[(zk7pk)+ V2Oék||l'"2k||€ ﬁintc’ 07 \/xEX,
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implying
(I(z,pr) — I(2k, px))/ ||z — 2]l + V2ak€ Linic 0, Vz € X. (4.79)

For any d € X\{0},t > 0, let z = 2, + td, substitute it into (4.79), let t — 0
and apply the Gateaux differentiability of I(., px). We have

Vol (2, pr)(d) + V20ue Linic 0, Vd € X.

Applying the separation theorem for convex sets, we know there exists Ay €
C*? such that

Ak(VxI(Zmpk)(d)) + \/E)\k(e) > Oa vd € Xa

that is,
)\k(sz(Zk,pk)<d>) > —/ Qak)\k(e), Vd € X.
Arguing by contradiction, we deduce that

1M (72 (21, )| < V2akAi(e) < V2] e]-

Hence,
M e(VaI(zk, )| — 0, as k — oo.

Noticing that {zx} is still an asymptotically minimizing sequence correspond-
ing to {px} and applying (C1), we know that {zx} has a subsequence {z,}
converging to z*. By (4.78), |[2x — x|l — 0 as k — oc. So zx, — 2". Let us
show by contradiction that z* € argmin,:c(X, J). Otherwise, 3zo € X with

I(CL‘o,p ) I( D ) zntCO
So 3§ > 0 such that

(o, p") — I(z*, p*) <inic —de,
that is,
§e( (.’L’o, ) I(z*’p*)) < .
It follows from the u.s.c. of £c(I(xo,.) —I(.,.) on X x {p*} that ey > 0, when
p(p,p*) < €0 and |ju — z*|| < €o,
ge( (3307 ) I(u7p)) < _6a

that is,
I(xo,p) — I(u,p) + de <intc 0.

Hence, when £ is sufficiently large,
I(:L'Ovpki) - I(kapki) + de SintC 0)

which contradicts zk, € ok, — argminec(Pr,). So (p*) is well-posed in the
extended sense. [ |

Similarly, we can prove the following two propositions.
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Proposition 4.92. Assume that for any p € L, I(.,p) is Gateauz differen-
tiable; Vz' € X, €. (I(z',.) — I(.,.)) is w.s.c. on X x {p*}; I(.,p) is ls.c.;
Assumption 4.72 holds; and

(C2) for any sequence px — p* in P, if x is a weakly asymptotically
minimizing sequence corresponding to px and there exists A\, € C*© such that
I (7 (zk, )| — O, then {zx} has a convergent subsequence.

Moreover, ¥p € L, problem (p) enjoys the weak domination property.
Then (p*) is well-posed in the strongly extended sense.

Proposition 4.93. Assume that for any p € L, I(.,p) is Gateauz differen-
tiable; Vo' € X, &(I(z',.) — I(.,.)) is uw.s.c. on X x {p*}; I(.,p) is lLs.c.;
Assumption 4.72 holds; and

(C3) for any sequence pp — p* in P, if zr is a strongly asymptotically
minimszing sequence corresponding to pr and there exists A, € C*® such that
IAe(Ve(zk, i)l — O, then {xzr} has o convergent subsequence.

Moreover, assume that
|z — x| — 0, I(2x, px) <c I(xk,pk)

and Tr, pr as in (Cs) imply d(I(zk, xk), V(px)) — 0. (4.80)

Then (p*) is well-posed in the weakly extended sense.

Remark 4.94. (4.80) holds automatically when ¥ =R, C = R;.

4.6 Extended Well-Posedness in Set-Valued
Optimization

In this section, we investigate the extended well-posedness properties of set-
valued optimization problems.

Let Z be a topological space and F' : X =% Z be a set-valued function.
F is called strict if, for every z € X, F(z) # (. Let f : Y — R be a real
function. Recall that f is monotone with respect to C' if, for any y;,y2 € Y
with y1 <¢ y2, we have f(y1) < f(y2). We assume that the parametric space
(P, p) is a metric space, a point p* € P is fixed and L is a closed ball in P
with the center p* and a positive radius.

We also make the following assumption.

Assumption 4.95. Set-valued functions J: X 3Y, and [ : X X L=3Y are
strict and for any p € L, there exist A € C*\{0} and a real number a such
that A(y) > a,Yy € I(X, p), where J(z) = I(z,p*),Vz € X.
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Consider the following set-valued optimization problems:

(X,J) : Infinic ng J{x)

and
(X,I(.,p)) : Infinic ng I(z,p).

(X,J) is called the original problem, while (X, I(.,p)) is called the model
perturbation of the original problem corresponding to the parameter p € L.
Let V(p) denote the set of weak infima of I(X,p), Vp € L. By y € V(p) we
mean that the following conditions are satisfied:

HyeY;

(ii) There exists no « € X such that [I(z, p) — y](—intC) # 0;

and

(iii) There exists a sequence z, € X and yi € I(zy,p) such that y, — y.

Recall that an element x € X is called a weakly minimal solution to
(X,I(.,p)) if there exists a y € I(x, p) such that y € V(p).

We denote by argmininio(X, J) and argminmic(X, I(., p)) the sets of the
weakly minimal solutions of (X, J) and (X, I{.,p)), Vp € L, respectively.

Throughout this section, we always assume that V(p) # (0 wherever it
appears.

Definition 4.96. (X, J) is said to be well-posed in the extended sense with
respect to the embedding defined by I if
(i) Assumption 4.95 holds;
(ii) argminic(X, J) £ 0;
[Vpx, — p* and (zx, yx) € X X Ming(I(zk,px)) such that
Ye <o 2k + €xe, for some e > 0,6, — 0
and some z € V(pk),] (4.81)

then there exist a subsequence {zk,} of {zx} and x* € argminnic(X, J) such
that zy, — x*.

The sequence (zi,yx) as in (4.81) is called an asymptotically minimizing
sequence corresponding to sequence py.

Definition 4.97. (X, J) is said to be well-posed in the strongly extended sense
with respect to the embedding defined by I if

(i) Assumption 4.95 holds;

(i) argmininic (X, J) £ 0;

(iii)

Vpx — p* and (zk,yx) € X X Minc(I(zk,px)) such that
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(I(X, pk) — yk + exe) N (—C\{0}) = 0, for some e >0,ex — 0,] (4.82)

then there exist a subsequence {xx,} of {zx} and z* € argmininsc(X, J) such
that z;, — x*.

The sequence (Tk, yx) as in (4.82) is called a strongly asymptotically min-
imizing sequence corresponding to sequence pg.

Clearly, an asymptotically minimizing sequence corresponding to py is a
strongly asymptotically minimizing sequence corresponding to py.

Remark 4.98. (i) It is easy to see that the strongly extended well-posedness
implies the extended well-posedness if V(p) is nonempty, for all p € L. How-
ever, the converse may not be true. The following example demonstrates this
fact.

Ezample 4.99.Let X =R, Y =1R? C = ]R%r, e=(1,1),P=Ry4,p*=0
and

(0,0) + [0,1] x [0,1],
if z € [0,1], Vp;

(k,z — k) + (0,p) +[0,1] x [0, 1],
ifre(kk+1,k=1,2--,Vp.

I(z,p) =

We show that the problem (X, J) is well-posed in the extended sense, but
not well-posed in the strongly extended sense.

It is clear that V(p) = {(0,0)},Vp; argminiuc(X,J) = [0,1]; and As-
sumption 4.95 holds. It is easy to see that for any sequences xy, px, Y €
I(zx, pr) such that px, — p* and yx <c (0,0) + €x(1,1) with e, — 0T, we have
zx € [0,1] when & is sufficiently large. Hence there exists a subsequence {z,}
and z* € [0, 1] such that zx, — z*. So (X, J) is well-posed in the extended
sense. However, for sequence zx = n, pr, = 1/k, yx = (k,1/k) € I(zg, pr), it is
easy to check that xj is a strongly asymptotically minimizing corresponding
to pi and there exists no subsequence z, and z* € [0, 1] such that zx, — z*.
Hence (X, J) is not well-posed in the strongly extended sense.

(ii) When Y = IR,C = R4 and I, J are real-valued, the definition of the
strongly extended well-posedness is the same as that of the extended well-
posedness defined in [226].

(iii) If I,J are single-valued, then the extended (strongly extended)
well-posedness here reduces to the extended (resp. strongly extended) well-
posedness in [99].

(iv) If (X, J) is well-posed in the (strongly) extended sense, then the so-
lution set argmininic{X, J) is sequentially closed and compact.
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For simplicity, we write argmin;n:ic(p) instead of argmin.ic(X, I(.,p));
(p) instead of (X, I(.,p)). Thus, (p*) = (X, J).

Now we give some criteria and characterizations for these two types of
well-posedness. First of all, we consider the following set-valued function:

(¢,p) — M(e,p) = € — argmininic(p) = {x € X : Iy € Min¢(I(z,p)) with
(I(X,p) —y+ee)N(—C\{0}) =0}, for e > 0,p € L.

Lemma 4.100. Let F : X = Y be o set-valued function and there exist

A € C*\{0} and a real number a such that A\(y) > a,Vy € F(X). Then for
any € > 0, there exist an x* and a y* € F(z*) such that (F(X) —y* + ee) N

(—=C\{0}) =0

Proof. Let s = inf {A(y) : y € F(X)}. By the assumption of Lemma 4.100,
we have s > —o0c. Since A(e) > 0, we deduce that, for any € > 0, there exist
z* € X and y* € F(z*) such that

Ay") < s+ erle) < A(y) +erle), Vye F(X). (4.83)

Now we show by contradiction that «* and y* are just what we want in Lemma
4.100.
Suppose that there exist 1 € X and y1 € F(x1) such that

Y1 — " + €€ <c\ g0y 0.

Then
AMyr —y" +ee) <0.
Therefore,
A(y1) £ AMy*) —eA(e),
which contradicts (4.83). The proof is complete. |

Proposition 4.101. If Assumption 4.95 holds and, for any p € L,z € X,
I{z,p) enjoys the lower domination property, then Ve > 0, M (e, p) # 0.

Proof. Let p € L. It follows from Lemma 4.100 that, for any ¢ > 0, there exist

z* € X and y* € I(z*,p) such that (I(X,p) —y* + ee) N (—C\{0}) = 0. Since

I(z*,p) has the lower domination property, we conclude that there exists

yi € Minc(I(z*,p)) such that y7 <¢ w*. Therefore, (I(X,p) — y; + ee) N

(—C\{0}) = 0. That is, M(e,p) # 0. The proof is complete. |
In the following, we assume that (X, d) is a metric space.

Proposition 4.102. Let Assumption 4.95 hold. If (p*) is well-posed in the
strongly extended sense, then

M is upper semicontinuous at (0,p"). (4.84)

Conversely, if M is u.s.c. at (0,p*) and argmin,:c(p*) is nonempty and
compact, then (p*) is well-posed in the strongly extended sense.
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Proof. We prove (4.84) by contradiction.
Suppose that

35 > 0, (ex, pk) — (0,p*)(ex > 0) and zy, € €x — argmininic(pr)  (4.85)

such that

d(zk, argminc(p*)) > 6. (4.86)
By (4.85), 3y € Ming(I(zk,pr)) with (1(X,px) — yx + exe) N (—C\{0}) = 0,
implying (zg,yx) is a strongly asymptotically minimizing sequence corre-
sponding to pi. Hence, there exist a subsequence {zi,} of {zx} and z* €
argminnsc(p*) such that zg, — z*, contradicting (4.86).

Now let us prove the second part. Let pr — p*, ex — O(ex > 0). If (zk, y&)
is a strongly asymptotically minimizing sequence corresponding to pg, then
xr, € M(er, px)- By the ws.c. of M, we know that Juy € argminin.c(p*) such
that

T — U — 0. (4.87)

By the compactness of argminin:c(p*), there exist a subsequence {ug,} of
{ux} and z* € argmininsc(p*) such that

ug; — & (4.88)

The combination of (4.87) and (4.88) yields xx, — z*. Hence, (p*) is strongly
well-posed in the extended sense and the proof is complete. |

Now we introduce the concept of the (strongly) extended stability of (p*):

[argmin;nic(p®) is nonempty, for any sequence px — p*, for any
strongly asymptotically (resp. asymptotically) minimizing sequence
(zk, yx) corresponding to py, we have

d(z, argmininic(p*)) — 0. (4.89)

The following proposition establishes the relationship between the (strongly)
extended stability of (p*) and the (strongly) extended well-posedness of (p*).

Proposition 4.103. If (p*) is well-posed in the (strongly) extended sense,
then (4.89) holds. Conversely, (4.89) implies the well-posedness of (p*) in the
(resp. strongly) extended sense if argminin:c(p*) is compact.

Proof. We only prove the “strong” case since the proof of the other case is
quite similar. We prove the first part of the proposition by contradiction.
Suppose that (4.89) fails. Then 3§ > 0, pr — p* and a corresponding strongly
asymptotically minimizing sequence (zg, yx) such that

d(zk, argminic(p*)) > 6. (4.90)
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By the strongly extended well-posedness of (p*), there exist a subsequence
{zx,} of {zx} and z* € argmininic(p*) such that xy, — =z, yielding
d(zk,;, argmini,ec(p*)) — 0, contradicting (4.90).

Conversely, for any pr — p* and a strongly asymptotically minimizing
sequence (Zk,yx) corresponding to py, it follows from (4.89) that

d(zk, argmininic(p™)) — 0.
So Juy € argmininic(p*) such that
d{xg, ug) — 0. (4.91)

Now that argminin,:c(p*) is compact, there exist a subsequence {ux,} of
{ux} and x* € argmin;n:c(p*) such that

ug;, — . (4.92)

The combination of (4.91) and (4.92) yields d(zx,;, z*) — 0.
Hence, (p*) is strongly extended well-posed and the proof is complete. W

Now we consider the metric characterizations. First, we introduce the con-
cept of the stability of (p*):

Let M* = argmin.c(p*). (p*) is said to be stable if M* # ( and
Vyr € J(xk),ex > 0,66 — O,yx — 2x <c €re, for some {zx} C V(p*) im-
plies d(x, M*) — 0.

A function ¢ : D — R is called forcing iff 0 € D C [0, +00), ¢(0) = 0,¢(t) >
0,Vt € D and ay € D, c(ax) — 0 implies ax — 0.

Proposition 4.104. If

[M*#0 and (J(z) = V(") —cld(z, M")]e) N —intC) =0, VzeX
and some forcing function cl, (4.93)

then (p*) is stable. Conversely, if J is u.s.c. on X, Vz € X, J(z) enjoys the
lower domination property and (p*) is stable, then (4.93) holds true.

Proof. Assume that (4.93) holds. Let 2y € X, yx € J(xk),ex — 0,€x > 0 and
Yk <c 2k + €xe, for some {z} C V(p*). Then

€e(yk — 2) < €k (4.94)
By (4.93), we have yi, — 2 — c[d(zk, M*)le ¢ —intC, implying
Eelyr — Zk) - c[d(mk, M*)] >0. (4.95)

The combination of (4.94) and (4.95) yields c[d(zx, M*)] — 0, implying
d(zk, M*) — 0, by the forcing property of c.
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Conversely, if J is u.s.c. on X, we first show that M™ is closed. In fact,
suppose that z, € M*, z — x*. Then Jyx € J(zx) with

(J(X) — ) N (=intC) = 0. (4.96)

Suppose that z* ¢ M*. Then Vy € J(z*), 3z, € J(X\{z*}) such that z,—y €
—intC (Otherwise, 3y*’ € J(z*) such that (J(X\{z*} —y*')N—intC = 0, by
the lower domination property of J(z*), 3y* € Ming(J(z*)) with y* <¢ y*/,
hence, (J(X)—y*)N(—intC) = @, implying z* € M*). So there exist an open
set Uy such that y € U, and

zy — Uy, C —intC, Vye J(z¥). (4.97)

Obviously, J(z*) C JL% ) Uy = U. Due to the upper semicontinuity of J at z*
yeJ(x*

and zy — z*, it follows that J(zr) C U, when k is sufficiently large, implying

yr € U, when k is sufficiently large. Due to (4.97), for every k sufficiently

large, 3z € J(X\{z*}) such that zx — yx € —intC, which contradicts (4.96).
Now we define

c(t) = inf { ez —y) 1 d(z,M") =1}, Vt=>0.

inf

ZEJ(x),yEV(p*)
Since Vz € X,Vz € J(z),Vy € V(p*),z —y ¢ —intC, implying &.(z — y) > 0,
we have

ct) >0, Vt>0. (4.98)
As M* is closed, so z* € M* if d(z*, M*) = 0. Thus inf £e(z—y) <

z€J(z*),yeV(p*)

0, yielding
c(0) < 0. (4.99)

(4.98) and (4.99) jointly imply ¢(0) = 0. Suppose that ax > 0 and c(ax) —
0. By the definition of ¢, it follows that dex — 0,ex > 0 and zx € X, 2x €
J(zk), yx € V(p*) such that d{zk, M*) = aj and

e(2k — Yk) < €. (4.100)

By (4.100), we have 2z —yx <c¢ €exe, Vk € N. By the stability of (p*), we know
that ax = d(zg, M*) — 0. Finally, from the definition of ¢(t), we have

Ee(z —y) > cld(z, M*)], Vze J(z),Vye V(p*),

i.e.,

(J(X) = V(p*) — cld(z, M*)]e) N (—intC) = 0.
The proof is complete. |

Consider a real-valued function: ¢ = ¢(¢, s) defined for ¢t > 0,s > 0 suffi-
ciently small such that
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e(t, s) > 0,¢(0,0) =0, (4.101)
s — 0,tg > 0, c(tk, sx) — 0 implies ¢ — 0. (4.102)

The following theorem is a metric characterization of the extended well-
posedness of (p*).

Theorem 4.105. If (p*) is well-posed in the extended sense, then

[(I(z,p) = V(p) — cld(z, argmininic(p™)), p(p, p*)]e) N (—intC) =0,
Vz € X,Vp € L and some c verifying (4.101) and (4.102).] (4.103)

Conversely, if V(p) # 0, Assumption 4.95 holds and argminin.c(p*) is
nonempty and compact and (4.103) holds for some c verifying (4.101) and
(4.102), then (p*) is well-posed in the extended sense.

Proof. Let (p*) be well-posed in the extended sense.
Consider

C(t, 3) = inf { ée(z_y) : p(p,p*) =3 d(CL‘, aTgmmth(P*)) = t};

inf
z€1(z,p),y€V (p)
for t > 0,s > 0 sufficiently small. It is easy to see that c(t,s) > 0. We
conclude that ¢(0, 0) = 0 since argmin,:c{p*) is closed. Now let s, > 0,tx > 0
with ¢(tk, 85) — 0 and sp — 0. Then 3z, € X,pi € L, 2, € I(zk, k), Y €
V(pk), €x > 0, ex — 0 such that

ez — yx) < ex, (4.104)
p(Pk, p*) = Sk, d(Tk, argmininsc(p”)) = te. (4.105)

By (4.100), we have
2 — Yk <o €xe. (4.106)

It follows from (4.105), (4.106) and the extended well-posedness of (p*) that
tr — 0. In addition, by the definition of c(¢, s), we have

€e(z —y) 2 cld(z, argmininic(p®)), p(p,p™)], V2 € I(z,p),Vy € V(p),
implying
(I(z,p) — V(p) — cld(z, argminimic(p*), plp, p*))]e) N (—intC) = 0.

Conversely, if pr — p*,zx € X,yx € I{zk,pk), €k — O(ex > 0),2x € V(px)
such that yr <¢ 2r + exe. By (4.103), we have ¢, > &(yx — z1) >
cld(zk, argmininic(p*)), p(pk, p*)]. It follows from (4.102) that we deduce
d(zk, argmininec(p*)) — 0. Applying the compactness of argmin;:c(p*), we
conclude that (p*) is well-posed in the extended sense. The proof is complete.l

When p is near p*, we need the following condition:
a(U{e — argminic(p) : p(p,p*) < €}) — 0, as e — 0, (4.107)

where af(-) is the Kuratowski measure of the noncompactness of a set.
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Definition 4.106. (/148]) I is said to be compact on X x {p*} if, for any
z € X, Y{(xk,pr)} with (xk,pr) — (%,0*),Vyr € I(xk,pr), there exist a
subsequence {yk,} and y € I{z,p*) such that yx, — .

Theorem 4.107. Assume that X is a complete metric space and Assumption
4.95 holds. argmininic(p*) # 0,V(p) # 0,Vp € L. Vp € L,z € X,I(x,p) is
externally stable. I(.,.) is compact on X x{p*}, I(z, .} is lower semicontinuous
at p* for allx € X. Then (p*) is well-posed in the strongly extended sense if
(4.107) holds. Conversely, this type of strong well-posedness implies (4.107).

Proof. Let, for any € > 0,

T(e) = U{e — argmininic(p) : p(p,p*) < €}.

It follows from Proposition 4.101 that T'(e) # @. Besides, a(clT(e)) =
a(T(e)) — 0,as € — 0.
By the Kuratowski theorem ([126], p.318), we have

haus{cIT(¢), T] — 0 as € — 0,

where
T =n{cT(e):e>0}

is nonempty and compact. Now we prove that T' = argmin;,;c(p*). Let Vz* €
T. Then
d(z*,T(e)) =0,Ve > 0.

Given €, > 0,¢; — 0,VEk, Jur, € T(ex) such that d(z*,ux) < 1/k. Hence, by
the compactness of I at (z*,p*), Ipr — p*, yx € I(uk,px) such that there exist
a subsequence {yk;} and y* € I(z*,p*) such that yx, — y*. We claim that
y* € V(p*). Otherwise, 3z € X, z € I(z,p*) and § > 0 with z — y* <¢g —de.
From the lower semicontinuity of I(z,.) at p* and px, — p*, we deduce that
dzx, € I(x,pk;) such that zi, — yr, <c¢ —06/2e, when ¢ is sufficiently large,
which is impossible since ux, € T(e,), yr; € I(uk;,pr;) and ex, — 0. Hence,
x* € argmininic(p*). The opposite inclusion argmin;,:c(p*} C T is obvious.

Now let px — p* and (zk,yx) be a strongly asymptotically minimizing
sequence corresponding to px. Then, by taking a subsequence, we can find a
decreasing e > 0 such that

(I(zk,pr) — Yk + exe) N (—C\{0}) = 0.
A further subsequence verifies p(px,,p*) < ek, yielding (since €, decreases)
(I(zk; Pr:) — yr, + exe) N (—C\{O}) = 0.

Hence,
Tk, € €k — argminntc(pr,) C T(ex)-

So
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d(zk,, argminisc{p*)) — 0.

Consequently, the strong extended well-posedness of (p*) holds true by the
compactness of argmini,:c(p*).

The proof of the second part of this theorem is the same as that of Theo-
rem 4.86. The proof is complete. [ ]

In what follows, we present a variant of Ekeland’s variational principle
for set-valued functions and derive necessary condition for an approximate
solution to a set-valued optimization problem based on a kind of generalized
derivative for set-valued functions defined by Chen and Jahn [37] (see also
Definition 2.40 in Chapter 2). Finally, we introduce a condition and provide
sufficient conditions for the extended and strongly extended well-posednesses
of set-valued optimization problems.

From now on, we assume that X and Y are both Banach spaces.

We need the following Ekeland’s variational principle for set-valued func-
tions.

Lemma 4.108. Let F : X 3 Y be strict, compact-valued and upper semicon-
tinuous. Suppose that there exist A € C*\{0}, a € IR such that A\(y) > a,Vy €
F(X). Given € > 0, z* € X and y* € F(z*) such that (F(X) — y*) +ee) N
(—C\{0}) = 0, then, for any 6 > 0, there ezist z. € X and y. € Minc(F(zc))
such that

(3) ye <c y*;

(@) |z —z*|| < 6;

(iit) (F(X) — ye + /8] — zclle) N (-C\{0}) = 0.

The proof is almost the same as that of Theorem 4.36 though the condi-
tions are slightly weaker.

In the following, we will introduce a kind of epiderivatives for scalar set-
valued functions and give a necessary optimality condition for an approximate
solution to a set-valued optimization problem.

Definition 4.109. Let S C X be a nonempty set and F : S =3 IR be a set-
valued function. Let (x*,y*) € S x F(z*) be given. The modified generalized
contingent epideriative Dp, F(z*,y*) : X — RU{—o0}U{+c0} of F at (z*,y*)
is defined as follows: for any h € X,

inf{t : (h,t) € T(epi(F), (z*,y*)},
Do F(z*,y*)(h) = if 3t € IR such that (h,t) € T(epi(F), (z*,y*)),
400, otherwise,

epi(F)={(z,y) e X x R:y € F(z)+ Ry}.
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Remark 4.110. We have slightly modified the definition of the generalized con-
tingent epiderivative of F at (z*,y*) € Gr(F) given in Definition 2.40 (when
Y reduces to R and C reduces to IRy). One advantage of this modifica-
tion is that Dy, F'(z*,y*)(h) is a finite real number or —oco or +oo for any
h € X when Y = IR and C = R4, while the Definition 2.40 may lead to
DyF(z*,y*)(h) = 0, for some h € X.

Proposition 4.111. Let F : S = IR be a set-valued function, (z*,y*) €
S x F(z*), f:8 — IR be locally Lipschitz near z*, the direction derivative
f(z*, h) exists for all h € T(S, z*). Then

Do (F+ f)(@*, y* + f(z*))(h) = D F(z*,y*)(h) + f'(z*, h),Vh € X. (4.108)

Proof. We prove (4.108) in three cases.
(i) If h ¢ T(S, x*), then (4.108) holds automatically.
(ii) Suppose that h € T(S, z*) and

Vt € R, (h,t) ¢ T(epi(F), (z*,y")). (4.109)
In this case, we assert that
Vt € R, (h,t) & T(epi(F + f), (z",y" + f(z¥)).
Otherwise, 3(h,t') € T(epi(F + f), (z*,y* + f(z*)). So I\ € Ry, A\ —
+o0, 2 € S, Yk > 2 + f(xk) with 2z, € F(zy) such that

h= kll)rfoo Ae(Te — %),

t = kli&loo Ae(yk — y* — f(z"))
= kli»gloo Ae(yk — flze) —y™) + kli}foo Ak (f(zr) — f(z™))
= kl}inoo Me(yr — fzr) =) + £/ (2, h).

As
(@k, yk — f(xk)) € epi(F),
so we have
(ha tl - fl(x*a h)) € T(epi(F), (IL‘*, y*)>a

contradicting (4.109). Thus, we have proved that if Vt € R, (h,t) ¢ T(epi(F),
(z*,y*)), then (4.108) holds.

(iii) 3¢’ € IR such that (h,t') € T(epi(F), (z*,y*)).

As shown in case (ii) (with F replaced by F + f, f replaced by —f, y*
replaced by y* + f(z*) and f(z*) replaced by —f(z*)), we can prove that
there exists ¢ € IR such that
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(h,t) € T{epi(F + ), (", y" + f(z")).
Let
(h,t) € T(epi(F + f), (z*,y" + f(z™)).

Then 3N; € Ry, M\p — +00,7x € S,yk > 2k + f(z*) with z; € F(xx) such
that
h= k-l—i>x-{l—loo ez — 27),

t= Jim wlye =y’ = @) = t = £ ).

So
(h,t — f'(z", h)) € T(epi(F), (z",y")).
Thus,
t—f'(z*,h) 2 D F(z",y")(h),
implying

Dm(F + )@, 5" + f(@))(h) = DnF(z",y")(h) + f'(z",h).  (4.110)
On the other hand, noticing that F = (F + f) + (—f), we have
D F (2", y")(h) 2 Dm(F + f)(z",y" + f(27)) = f(z", h),

yielding
D (F + f)(&",y" + f(="))(h) < DnF(z”,y")(h) + f'(z",h).  (4.111)
From (4.110) and (4.111), we derive (4.108). The proof is complete. [ |

Lemma 4.112. Let F : X 3 Y be a set-valued function, (z*,y*) € X x F(z*)
be such that (F(X) — y*) N (—intC) = 0. Then

Dpn(z*,0)(h) >0, VheX, (4.112)
where n(x) = £ (F(z) —y") = {€e(y —y") 1y € F(a)}.
Proof. We argue by contradiction. Suppose that 3~h* € X such that

Dpn(z*,0)(h*) < 0.
Then 3t* < 0 such that
(h*,t%) € T(epi(n), (z",0)),
ie, I € Ry, Ay — +o0, 21 € X, yx > 2 with 2 € n(xy) such that
h* = kli»gloo Az — ), t" = nlltr—ir—loo Ay —0).

So zr < 0 when k is sufficiently large. Hence, vy € F(x) such that 2z, =

€e(vr — y*) < 0, implying that vx — y* <intc O contradicting (4.112). The
proof is complete. n



4.6 Extended Well-Posedness in Set-Valued Optimization 253

Lemma 4.113. Let F : X =3 Y be strict, compact-valued and upper semi-
continuous. Suppose that there exists A € C*\{0} and a € IR such that
My) > a,Vy € F(X). Let € > 0 and (z*,y*) € Gr(F') satisfy

(F(X) —y") +ee) N (—=C\{0}) = 0.

Then, for any & > 0, there exist z. € X and y. € Minc(F(zc)) such that
(Z) Ye SC’ y*;
(i) ||ze — || < 6;
(#i5’) Dn(ze,0)(h) + €/8||h|| > 0,Yh € X, where

() = &e(F () — ye) = {€e(y —yc) : y € F(a)}.

Proof. It follows from Lemma 4.108 that (i) and (ii) hold. Due to (iii) in
Lemma 4.108, we know that

(Te,ye) € X x H(z)

satisfies

(H(X) —ye) N (=C\{0}) =0,
where

H(z) = F(z) +€¢/d||lx — z|le.

By Lemma 4.112,
Dine(H)(ze,0)(h) 2 0,Yh € X,

where
£e(H(z)) = Ee(F(z) — yc) + €/b]x — zl| = n(x) + ¢/d]|x — z]l.
It follows from Proposition 4.111 that
Diée(H)(xe, 0)(h) = Dmn(ze, 0)(h) + €/6]|A].

Hence,
Dmn(ze, 0)(h) + €/6]|h]| 20, Vhe X.

The proof is complete. |

Proposition 4.114. (p*) is well-posed in the strongly extended sense if the
following conditions hold:

(i) I(.,p) is strict, compact-valued, upper semicontinuous and Assumption
4.95 holds when p is near p*;

(it) I(.,.) is compact on X x {p*} and I(z,.) is lower semicontinuous at
p*,Vr € X,

(iit) argmininc(p*) # 0;

(iv) Vpr — p*, (2}, Y%) is a strongly asymptotically minimizing sequence
corresponding to pr and Dmni(x},0)(R) + e||h]| = 0,Vh € X, for some
ex — O(ex > 0), where ni(x) = & (I(z,pr) — ¥},), V& € X, then there exists a
convergent subsequence {x}, }.
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Proof. Let pr — p* and (xk,yx) be a strongly asymptotically minimizing
sequence corresponding to px. Then Jex > 0, ¢, — 0 such that

(I(X,px) — yk + exe) N (—=C\{0}) = 0. (4.113)

Applying Lemma 4.113 (setting § = /€x), it follows from (i) that Jz) €
X, v}, € I(z},, px) such that

(@) Nl — 2} < v

(b) ¥k <c ws

() Dmnk(z, 0)(h) + /& ||B|| = 0, VheX.
By (b) and (4.113), we have

(I(X,pr) — i + exe) N (=C\{0}) = 0.

So {(x},y;)} is also a strongly asymptotically minimizing sequence corre-
sponding to pg. This fact combined with (iv) and (c) yields that there exist a
subsequence {z,'} and z* € X such that xy,’ — z*.

This fact together with (a) implies zg; — x™.

Now let us show z* € argmininic(p”).

Indeed, by yx; € I(xk,,px;) and (i), there exists a subsequence {yy, } and
y* € I(z",p*) such that yx, — y*. We show that y* € V{(p*). Otherwise,
Jdzr € X and z € I(z,p*),d > 0 such that

z—y* <¢ —de.
As I{z, .} is L.s.c. at p*, so Jzi,;, € I(x,pkil) such that zx, — 2. Hence,
Zhi, = Yki, Sc —0/2€,
when [ is large enough, contradicting (4.113). The proof is complete. ]

Proposition 4.115. (p*) is well-posed in the extended sense if the following
conditions hold:

(i) I1(.,p) is strict, compact-valued, upper semicontinuous and Assumption
4.95 holds when p is near p*;

(ii) argmini.c(p) # 0,Vp € L;

(i) I(.,.) is compact on X x {p*} and I(z,.) is lower semicontinuous at
p*,Vx € X.

(z'v) Vpg — p*, (x;wyk) is an asymptotically minimizing sequence corre-

sponding to pg and
Donp(2h, 0)(h) + xR > 0, Vh e X,
for some € > 0,¢x — 0, where
me(z) = L (I(z,pr) — ), Yz eX,

then there exists a convergent subsequence {x), }. Moreover, ||zx — )| —
0, Yk € I(zk,Pk), Yk < Ui implies d(yx, V (px)) — 0.

Since the proof is almost the same as that of Proposition 4.114, we omit it.
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Vector Minimax Inequalities

Pioneer work of minimax theorems and minimax inequalities belongs to Fan
[67, 69]. Many applications of minimax theorems and minimax inequalities
are found in optimization theory, game theory and mathematical economics.
Nieuwenhuis [152] published the first work of minimax theorems for vector-
valued functions in 1983. In this direction, several interesting results appeared
in Ferro [71, 72] and Tanaka [187, 188]. In Li, Chen and Lee [134], minimax in-
equalities for set-valued functions were considered. In this chapter, we consider
minimax inequalities for set-valued functions, and vector-valued functions.

5.1 Minimax Inequalities for Set-Valued Functions

Let X and Z be two metric spaces. Let C C R be a pointed, closed and
convex cone with nonempty interior intC'.

Lemma 5.1. Let Xo and Zy be compact subsets of X and Z, respectively.
Let F : Xy x Zy =3 IR® be a continuous set-valued function and, for each
(z,2) € Xo X Zy, let F(z,z) be a compact set. Then

F(.’I?) = MinintC’ UzGZo F(SL’, Z) and L(Z) = Mamintc UmEXo F(x’ Z)
are u.s.c. on Xo and Zy, respectively.

Proof. First, we prove that " is u.s.c. on Xg. Since F is continuous and Zg
is compact, U,ez,F(x, z) is compact for ant € Xy. Thus I'(z) is compact-
valued for any x € Xo. Suppose that I'(z) is not u.s.c. at o € Xo. Then there
exists € > 0 and, for any 1/k > 0, k = 1,2, -+, there exist z, € B(z,1/k)
and yx, € I'(xy) such that

yk & B(I'(x0),€). (5.1)
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Then, there exists zx € Zg such that yx € F(xk, 2zx). By the compactness of
Zy, we can assume, without loss of generality, that z, — 2o € Zy. Obviously,
Zx — xg. Since X and Z are two metric spaces, by the compactness of Xy and
Zy, we know that Xy X Zg is a compact set in X x Z. Therefore, F(Xy, Zo)
is a compact set. Since {yx} C F(Xo, Zo), we can assume, without loss of
generality, that yr — yo as k — oo. By the upper semicontinuity of F(z, z),
we have yo € F(zo,20). Obviously, by (5.1), yo ¢ I'(xzo). Then, there exist
2§ € Zp and y§ € F(xg, 25) such that

Yo — Yo € ntC.

Take any sequence {z}} € Zy with the limit 5. Since F(z, z) is l.s.c. on
Xo X Zy, there exists y; € F(xx, z;) such that y; — y5. Hence, when n is
large enough,

Yk — Yy € intC,
which contradicts the assumption yx € I'(zk). Then, I'(x) is u.s.c. on Xp. B

Proposition 5.2. [94] Let Xq C X, Zy C Z be nonempty convex subsets, and
let A C Xo X Zy be a subset such that

(1) for each z € Zy, the set {x € X : (z, 2) € A} is closed in Xo;
(ii) for each x € Xy, the set {z € Zy : (z,2) ¢ A} is convex or empty.

Suppose that there exist a subset B of A and a compact convex subset K of
Xo such that B is closed in X x Zg and such that

(iii) for each z € Zy, the set {x € K : (z,2) € B} is nonempty and conver.
Then, there exists a point zg € K such that {zo} x Zy C A.

It is obvious that if { = 1 and C = IR, then, the symbols Max¢c and
Max;nic have the same meaning, so do Ming and Min;,;c. In the remainder
of the section, we use the symbols max and min instead of Maxc (Maxintc)
and Ming (Mininic) when £ =1 and C = IR, respectively.

Proposition 5.3. Let Xo C X and Zg C Z be two nonempty compact and
convex sets. Assume that F : Xo X Zo = IR is a continuous set-valued function
and that, for each (z,z) € Xo X Zy, F(z,z) is a compact set and F satisfies
(i) to (iii) below:

(i) for each z € Xo, F(zo,-) is IR, -concave on Zo;
(ii) for each z € Zy, F(-,2) is naturally quasi IR -conver on Xo;
(iii) for each t € Zy, there exists x; € Xo such that

maz F(z;,t) < mazxUzez, minUzex, F(z, 2).
Then,

minUgex, mazUzez, F(z, 2) = marUyez, minUzex, F(z, 2). (5.2)
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Proof. Since
max Uyez, F(x,v) > min Uyex, F(u, 2), for all z € Xy and 2 € Zp,
we have
min Ugzex, max Uzez, F(z,2) > maxU,ez, min Uzex, F(z, 2).

Now, we prove that the converse inequality holds. Indeed, choose any real
number ¢ such that

max Uzez, minUzex, F(z,2) < t,

and let
A=B={(z,2)€ Xo x Zy:Vy € F(z,z), y<t}h

Now we prove that A and B satisfy conditions (i) and (ii) of Proposition 5.2
with K = Xo.
First, we show that (i) holds. Indeed, for each z € Zp, let

zk € {z € Xo : (z,2) € A}

and
T — To.

By the lower semicontinuity of F(:,z), for any yo € F(=o, 2), there exists
Yk € F(zk, z) such that yr — yo. Since (zx, 2) € A for any k, we have that
yr < t. Thus

To € {l‘ € Xo: (:L‘,Z) € A},

and hence {z € X : (z,2) € A} is closed.
Second, we show that (ii) holds. Indeed, since, for each z € Xj,

{z€Zy:(x,2) ¢ A} ={z € Zy : yo € F(z, 2) such that yo > t},

by the IR -concavity of F(z,-), we see that {z € Zy : (x,2) ¢ A} is convex.
We show that B is closed. Let (zk, 2x) € B and (xk, 2i) — (2o, 20). Since
Fisls.c. at (xo, 20), for any y € F(zo, 20), there exists yx € F(zk, 2x),Vk € N
such that yx — y. Since (zk,yx) € B,yx < t. Then, y < ¢ and (o, 29) € B;
i.e., B is closed in Xy x Zp.
Now, we show that (iii) in Proposition 5.2 holds. For any z € Zy, let

z,x2€{z € Xo: (z,2) B} ={x€ Xo:Yy € F(z,2),y < t}.

By the natural quasi IR;-convexity of F(:,z), for any yo € F(Az1 + (1 —
A)zg, 2), A € [0,1], there exists y* € co{F(z1,z2), F(z2,2)} such that yo €
¥* —IR4. Then yo < tand Ax1 + (1 — Nz € {z € X : (z,2) € B}, ie,
{z € Xy : (z,2) € B} is a convex set. Obviously, for each z € Zp, {z € Xp :
(z, z) € B} is nonempty by the assumption about ¢ and the assumption (iii).
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Then, by Proposition 5.2, there exists zg € Xo such that {zo} X Zy C 4; i.e.,
y <t for any y € F(xo, z) and z € Zy. Thus, we have

max U ez, F(zo, 2) < t.
By the definition of ¢, we know that (5.2) holds. [ |

Remark 5.4. In the assumption (iii) and (4.1.1) of Proposition 5.3, max and
min exist. As for the righthand side of (iii), one could say that Uzex, F(x, 2)
is compact, since Xo is compact and F(-, z) is compact-valued and u.s.c.. So,
there exists min. By Lemma 5.1, min Uzex, F(z, 2) is u.s.c. in z. Therefore,
UzezominUgez, F(z, z) is compact and there exists a maximal point.

Remark 5.5. If F(z, z) is a single-valued function, condition (iii) always holds.
Proposition 5.3 is a generalization of the minimax theorem for single-valued
functions. When F\(z, 2) is a single-valued function, Proposition 5.3 reduces
to Theorem 4 in Ha [94].

In the sequel, we need the following lemma.

Lemma 5.8. /] The convex hull of a compact subset of a finite dimensional
space is compact.

Now we present two types of minimax theorems for set-valued functions.

Theorem 5.7. Let X and Z be two metric spaces. Let Xo and Zy be compact
conver subsets of X and Z, respectively. Let F : Xo X Zy = IR® be a contin-
uous set-valued function with compact values; for each x € Xy, let F(x,-) be
naturally quasi C-convex on Zy and, for each z € Zy, let F(-, z) be C-concave
on Xo, where C is a closed, convex and pointed cone in IR'. Suppose that
F(z, 2) fulfills the following hypotheses:

(Hy) there exists to € Zy such that
Mazinio Uzex, F(x,t0) C Mazinic Ugex, F(z,t) — C, Vit € Zy;
(Hz) for each u € Xy, there exists t, € Zog such that
Mazc Uze x, Mininic Uzezo F(z, 2) — F(u,ty) C C.
Then,

Mazinic Uzex, F(z,t0)
C Mazc {co (Uzex, Minintc Uzez, F(x,2))} = C (5.3)
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Proof. Set
I'(z) = Mininsc Uzez, F(, 2).

By Lemma 5.1, I'(z) is u.s.c. on Xy and, for each z € Xo, I'(z) is a nonempty
compact set. Since X is compact, by Lemma 5.1 and Lemma 5.6, I"(X,) and
co(I'(Xy)) are compact sets. Then co(I'(Xo)) — C is a closed and convex set.

Suppose that o € IR¢ and o ¢ co(I'(X,)) — C. By the separation theorem
for convex sets, there exists a nontrivial linear continuous function ! : R —» R
and § € R, e > 0 such that

llay>d+e>0>1B), VB€co(I'(Xo))—C.
Then, for any y € co(I'(Xo)) and s € C, we have
I(s) 2 l(y — ).

Thus,
I(s) >0, VseC.

Since C' is a cone, taking s = 0, we have
o) >d8+e>821(B), VYBe€co(I'(Xo)). (5.4)
Consider the set-valued function
G=UF):XoxZp = R.

Obviously, for each z € Xy, I(F(z, -)) is naturally quasi-IR 4 -convex on Zy and,
for each z € Zy, [(F(-, 2)) is IR -concave on X under the assumed conditions.
By hypothesis (Hz), we have that, for each u € Xy, there exists ¢, € Zp such
that

max [(F(u,t,)) < maxUzex, minU,ez,[(F(z, 2)).

Then, by Proposition 5.3, we have
minU,ez, maxUzex,G(2, 2) = maxUyzex, minU,ez,G(z, 2). (5.5)

Since G(z,') = I(F(x,+)) is continuous for each z € X and Zy is compact,
there exist 29 € Zp and yo € F(z, z9) such that

(yo) = minU ez, l(F(z, 2)).
Since I(s) > 0,Vs € C, arguing by contradiction, we have that
Yo € I'(z) = Mingnio Uzez, Fz, 2).
Hence, by (5.4) for each z € Xj,

minU,ez,G(z,2) = l(yo) <6 <+ e < l{a).
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Then,
max Ugex, minU,ez,G(x,2) <6 < d+ € < (o).

By (5.5),
min U,ez, max Ugzex,G(z, 2) < l{a).

By Lemma 5.1, maxU,e x,G(z, ) is u.s.c. on Zy. Thus, by the compactness
of Zy, there exists 2’ € Zy such that

max Uzex,G(z, 2') < l(a);
ie.,
l(y) < (o), VYye€ F(z,2) and z € Xo.
By l(s) > 0,Vs € C, we have
a—y¢—C, VYye F(z,2')and z € Xg;
that is,
a ¢ Maxinic Uzex, F(z,2') — C. (5.6)

Thus if
a € Maxinic Uzex, F(®, o),

by hypothesis (H;), we have that
o € Maxinic Uzex, F(z,t) - C, Vit e Zy,
which contradicts (5.6). Thus
o € MaX;nic Uzex, F(z, to)

implies
a € co (UgexoMininio Uzez, F(w, 2)) — C.
Since
co (Uze xoMininic Uzez, F(, 2))

is compact, by the domination property of a compact set, we have

o (UgexoMininic Uzez, F(z,2)) — C
C Max¢ {co (Uzexo,Mininic Uzez, F(z,2))} — C.

Thus, (5.3) holds. [ |

Remark 5.8. (i) Hypothesis (H;) controls the change of Max;nicUze x, F(2, 2)
when z varies. Obviously, this condition holds if F is a scalar real set-
valued function;

(ii) If F is a single-valued function, then hypothesis (Hs) always holds.
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Theorem 5.9. Let X and Zy be compact subsets in X and Z, respectively.
Let F: Xo X Zop =3 IR® be a continuous set-valued function with compact val-
ues; for each x € Xy, let F(x,-) be C-convex on Zy and, for each z € Zy, let
F(-,2z) be naturally quasi C-concave on Xg. Suppose that F(z,z) fulfills the
following hypotheses:

(Hs) there exists xo € Xg such that
Mini,;to Uzezo F(Z0, 2) C Mininic Uzez, F(z,2)+ C, Vz € Xo;
(Hy) for each t € Zy, there exists z; € Xo such that
F(zy,t) — Ming Uzex, Mazinic Uzex, F(z,2) C C.
Then
Mininic Uzez, F(xo,2) C Ming {co (U.ez, Mazinic Uzex, F(z,2))} + C.

Proof. Set
L(Z) = MaXintC’ U:EEXO F(.Z‘, Z)'

Thus, co(L(Z)) + C is a closed and convex set. Suppose that o € IR® and
a ¢ co(L(Zy)) + C. By a similar method to that used in the proof of Theorem
5.7, there exists a nontrivial continuous linear function { : IR — IR such that

Ha)<d<d+e<iB), B € co(L(Zo)),

I(s) >0, VseC.

Consider the set-valued function
G=U-F): XoxZy 3 R.
Thus, G = —I(F) satisfies the conditions of Proposition 5.3. We have that
minUgzex, max U,ez,G(, 2) = maxU,ez, minUgzex, G(z, 2). (5.7)

Since {(F(:, z)) is continuous for each z € Zy and Xj is compact, there exist
xo € Xo and yo € F(xo, z) such that

l(yo) = maxUgex, l(F(z, 2)).
Since I(z) > 0,Vs € C, we have
Yo € L(2) = Maxinie Usex, F(z, 2).
Thus, by (5.7), we have that

max Ugzex, min UZEZOZ(F(xv Z)) > l(Ol),
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and there exists ' € Xg such that
a ¢ Minguic Uzez, F(2', 2) + C. (5.8)

Thus, if
o € Mininec Uzez, F(an Z)»

by hypothesis (Hz) we have that
o € Ming U,ez, F(z,2)+C, Vz € X,
which contradicts (5.8). Thus,
Mininic Uzez, F (o, 2) C Ming {co (Uzez,Maxinic Uzex, F(z,2))} + C,

and this completes the proof. |

In the sequel, we consider minimax theorems for set-valued functions in a
general scheme. Let X, Z and Y be real locally convex spaces. Let C C Y be
a pointed, closed and convex cone such that intC # @, and let Y* denote the
topological dual space of Y.

Lemma 5.10. C C Y is a closed and convex cone if and only if there exists
a subset I' C Y*\{0} such that

C={yeY: fly) <0,VfeTl} (5.9)

Proof. Assume that C be a closed and convex cone. Let I' = —C*\{0}. Using
the standard separation theorem for convex cones, it is not hard to verify that
(5.9) holds. Conversely, if there exists I" C Y*\{0} such that (5.9) holds, then,
it is obvious that C is a closed and convex cone. |

Let us recall the nonlinear scalarization function &, : ¥ — IR, which is
defined in Chapter 1 by

 oly) =min{tcR:yca+te—C}, Vyey,

where e € intC and a € Y.

The function &, is continuous and strictly monotone, and many other im-
portant properties can be found in Chapter 1.

Note that Proposition 5.3 can be established, when condition (i) in Propo-
sition 5.3 is replaced by the assumption that F(z,-) is properly quasi IR-
convex on Zj.

Lemma 5.11. Let F : Xo X Zop 3 Y be a set-valued function, and let, for
each © € Xg, F(x,-) be naturally quasi C-conver on Zy. Suppose that, for
each z € Zy, —F(-, 2) is properly quasi C-convex on Xo. Then &..(F(x,-))
is naturally quasi IR4 -convex on Zy and —€eo(F (-, 2)) is properly quasi IR, -
conver Xg.
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Proof. Take any 21,22 € Zg, A € (0,1) and y € F(z,Az1 + (1 — A)22). By
naturally quasi C-convexity of F(z, -), there exists y; € F(z, 21)UF(z, z2) and
n n

a; >0,0=1,2,-+-,n, and ¢ € C such that Zai =landy= Zaiyi —c
i=1 i=1
Therefore,

§ea(y) = éea(z QY — C)'
i=1

By the properties of &g,

gea(y> € Z aigea(yi) - IR-I— C co{gea(F(x’ zl)) ) gea(F(xa 22))} - ]R+-

=1

Thus, for each z € Xy, &ea(F(z,)) is naturally quasi IR-convex. By the
monotonicity of &, and properly quasi C-convexity of —F(-,z), it is clear
that —£..(F'(-, 2)) is properly quasi IR -convex for any z € Z. The proof is
complete. [ ]

Theorem 5.12. Let Xy and Zy be compact and convex subsets in X and Z,
respectively, and let e € intC. Suppose that the following conditions are sat-
isfied:

F: XogxZy 3Y is a continuous set-valued function with compact-values;
for each x € Xo,—F(x,-) is properly quasi C-conver on Zy;

for each z € Zy, F(-, 2) is naturally quasi C-convex on Xp;

for any u € Xy, there exists v € Zy such that

(i
(ii
(i
(iv

N S et

F(u,v) C Mazc Uzex, Mininic Uzez, F(x,2) — C.

Then
Minc Uzexo Mazintc Uzez, F('Z‘a y)
C Mazc Uzezy Mininic Ugex, F(z,y) + Y\(C\{0}). (5.10)
Proof. Set
L(m) = MaXintC UzEZo F(l‘, z)’
and let

Yo € Ming UzexXo Maxinic UzeZo F(.’L‘, z) = MincL(Xg).
By the definition of minimal points, we have
(L(Xo) —0) N (=C) = {0},

that is
(L(Xo)\{ywo}) N(yo - C) = @.
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By Proposition 1.54, we have

€eyo(y) >0, Vy € L(Xo)\{vo},

and
geyo (yo) =0.

(5.11)

(5.12)

Let zg € Xo. By the continuity of &, and the compactness of Xg, there exist

2z € Zg and y; € F(z, z,) such that
max UzezoEeyo (F(%5+)) = Eeyo(31)-
By the properties of £y,, we have
y1 € L(x).
From (5.11) and (5.12),
maxUzezo€eyo F(z,)) > 0.
Since z is any element of Xy, (5.13) implies that
min Uge x, maxUzezo€ey, (Fz, )} > 0.
Consider the set-valued function G:
G =&y (F) : Xo x Zo = R.

From Lemma 5.11 and (5.11), Proposition 5.3 holds for G. We have

minUgze x, maxU,ez,G(z, z) = maxU,cz, minUgze x,G(z, 2).

So, there exist zg € Xo, 20 € Zo and y2 € F(xo, 20) such that

minUgzex, maxU,ez,G(z, 2)

= max U,ez,G (o, 2)

=max U,ez, minUge x,G(z, 2)
= minUzeXoG(x, Zo)

= geyo (yO)

Therefore, by the strict monotonicity of &, we have
Y2 € Maxinsc Uzez, F(o, 2) = L(xo),

and
Y2 € Min;nic Uzex, F(:E, Zo).

From (5.14) and (5.15), we get £ey, (y2) > 0.
Suppose yo = y2. Then

(5.13)

(5.14)

(5.15)

(5.16)
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Yo ¢ y2 + C\{0}. (6.17)

If yo # y2, by (5.11) and (5.16), we get &ey,(y2) > 0, from Proposition 1.54,
we have yp € yo — C, that is

Yo & y2 + C\{0}. (5.18)
(From (5.17) and (5.18), we get

Yo € y2 + Y\(C\{0})
C Minjnec Uzex, F(z, 20) + Y\(C\{0})
- UzEZoMinintC’ Uzex, F(IL', Z) + Y\(C\{O})

Since F(-,-) is continuous and Xy and Zg are compact, by the domination
property, we have

UzezoMinintc Uzex, F(:v, z) C Maxc Uzez, Mininic Uzex, F(x, Z) —C.

Thus,
Yo € Maxe Uzez, Minguie Uzex, Flz, z) — C + Y\(C\{0})
= Maxg Uzez, Mininio Uzex, F(z,2) + Y\(C\{0}).
Hence, the inclusion (5.10) holds. This completes the proof. |

5.2 Minimax Inequalities for Vector-Valued Functions

In this section we establish several types of minimax theorems for vector-
valued functions.
First, we assume that X and Z are metric spaces.

Lemma 5.13. Let Xy and Zy be nonempty compact conver subsets in X and
Z, respectively. Let f : Xo x Zo — IR® be a continuous vector-valued function.
Then, m(z) = co(Mazintc f(Xo, 2)) and o(x) = co(Mininic f(x, Zo)) are u.s.c.
on Zy and X, respectively.

Proof. By the continuity of f, the compactness of Xy and Lemma 5.6, 7(z)
is compact-valued on Z. Suppose that m(2) is not u.s.c. at zp € Zp. Then
de > 0 and V1/n, n = 1,2, -, there exist zx € B(z,1/k) and 7(z) such
that

Yk ¢ B(m(20), €). (5.19)

Since f(Xo, Zo) is compact, co(f(Xo, Zo)) is compact. Obviously,
Yr € CO(F(X(), Zo))

Then, we can assume that yx — yo. By (5.19), we have
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Yo & m(20) (5.20)

Since yr € m(zx), there exist yi € Maxinscf(Xo,2x) and )\fc >0, i =
0,1,---,4, such that

£ £
Z)\i =1land yx = Z)\}cy}c
i=0 i=0
By Lemma 5.1, Max;n:cf(Xo, 2) is u.s.c. on Zp. Since
{y;c} C UzEZoMaXCf(XOa Z) and /\?c € [07 1]7 1= 07 ]-7 27 e ’ea

without loss of generality, we can assume that A\i — A§, n — oo, and y}, —
¥e, n— o0, 1=0,1,2,-.-,£ Obviously,

¢ ¢
Z)\é =1land yo = Z)\éyf).
i=0

=0

By Lemma 5.1 y§ € Max;ntcf(Xo, 20). Therefore, yo € m(20), which contra-
dicts (5.20), and thus 7(z) is u.s.c. on Zy.
By a similar method, we can prove that ¢(z) is u.s.c. on Xp. |

Theorem 5.14. Let Xy and Zg be nonempty compact convex sets in X and
Z, respectively. Let f: Xo X Zg — IR’ be a vector-valued function such that

(i) By = {z € Zy : f(z,2) ¢ co(Mazinicf(Xo, 2)) + C} is convex or empty
for all x € Xy;
(1) f(-,-) is continuous on Xo X Zy;
(iii) for each z € Zy, f(-,z) is C-concave.

Then, there exists xg € Xg such that
Mininecf(zo, Zo) C Ming Uzez, co(Mazintc f(Zo, 2)) + C.
Moreover, if
Moazc Uyex, Mininiof(u, Zo) C Mingo f(z, Z) + C, Vz € X,
then we have that,
Maxc Uze xo, Mininic f(x, Zo) C Ming U ez, co( Mazinic f(Xo, 2))+C. (5.21)

Proof. Suppose that
M(z) = Maxnic f(Xo, 2)

and
A=B={(z,2) € Xo X Zy: f(z,2) € co(M(z)) + C}.

Now, we show that A and B satisfy the conditions of Proposition 5.2 with
K = Xyp. In fact, for any z € Zy, let
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zi € {x € Xo: (x,2) € A} and z, — zo.
Then
flzk, 2) € co(M(2)) + C.

By the compactness of X and the continuity of f(:,z), the set co(M(z)) is
compact. Then
f(xo,2) € co(M(2)) + C,

ie.,
zo € {z € Xo: (z,2) € A},

and hence, {z € Xq : (z, z) € A} is closed. By condition (i), we have that, for
any z € Xo,
{z€Zy:(z,2) ¢ A} ={z € Zy: f(z, 2) & coMax;nicf(Xo,2))+ C}

is convex or empty.

We prove that B is a closed subset. Now let (zg, 2x) € B and (zk, 2k) —
(o, 20). Then, f(xg,zx) — f(zo,20) since f is continuous on Xy x Zy. Since
(mk, Zk) S B,

Flxk, z1) € co(M(z)) + C.

Then, there exist yx € co(M(2x)) and ¢ € C such that
f(@r, 26) = ye + cx.

By the compactness of Zy and Lemma 5.13, we have that co(M(Zp)) is com-
pact. Therefore, we can assume that yx — yo and yo € co(M(z0))). So

ck = f(xk, 2x) — Yo — f(z0,20) —yo € C.
Set ¢o = f(zo, 20) — yo. Then
f(@o, 20) € co(M(z)) + C

and (zo, 20) € B, i.e., B is closed on Xy X Zg.

Finally, we show that, for any z € Zy, {z € Xy : (z,z) € B} is convex and
nonempty. Indeed, for any z € Zj, by the domination property of the compact
set f(Xo, 2), there exists o € X such that

f(Zo, 2) € Maxinic f(Xo, 2).

Thus,
f(zo,2) € co(M(2)) + C,

ie.,
{x € Xo: f(z,2) € co(M(z)) +C} # @.

Let z1,22 € {z € Xo : (z,2) € B}. Then
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f(z1, 2), f(x2, 2) € co(M(z))+ C. (5.22)
Since f(-, z) is C-concave, for A € (0,1),
Af(z1,2) + (1= A) f(ze, 2) € f(Ax1 + (1 = N)w2,2) — C.
Therefore, by (5.22), we have that
FOz1 + (1= Nz, 2) € co(M(2)) + C,

Az + (1= Nz € {z € Xo: (z,2) € B}

Thus, by Proposition 5.2, there exists zg € Xg such that {zo} X Zy C A, that
is
f(zo, 2) € coMaxinicf(Xo,2)) +C, Vz € Zp.

Thus, by the domination property, Lemma 5.13 and the compactness of Z,
we have that

f(zo, 2) € Ming Uez, co(Maxinicf(Xo,t)) + C, Vz € Zy,
Min;nicf(z, Zo) C Ming Uiez, coMaxniof(Xo, t)) + C.
Moreover, if
Maxe Uuex, Mingmico f(u, Zo) C Mininee f(z, Zo) +C, 1z € Xo,
then
Max¢ Ugex, Mininscf(z, Zo) C Ming Use z, coMaxinic f(Xo,t)) + C,
and this completes the proof of this theorem. |

Theorem 5.15. Let Xy and Zy be nonempty compact convex sets in X and
Z, respectively. Let f: Xo X Zo — IR® be a vector-valued function such that

(i) B, = {z € Xo : f(z,2) ¢ co(Mininsc f(z, Zo)) — C} is convex or empty
forall z € Zy;
(ii) f(-,-) is continuous on Xo X Zo;
(iii) for each x € Xo, f(x,) is C-convez.

Then, there exists zg € Zg such that
Mazinso f(Xo, 20) C Mazo Ugex, co(Mininicf(z, Zy)) — C.
Moreover, if
Ming Usez, Mazinio f(Xo,t) C Maximic f(Xo,2) — C, Vz € Zy,
then, we have that

Ming Uiez, Ma:l)intcf(Xo,t) C Mazc Ugex, co(Mininso f(x, Zo)) — C.
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Proof. Suppose that
Q(z) = Mingsc f(z, Zo)

and
A=B={(z,2) € Xo x Zp: f(z,2) € co(Q(z)) — C}.

By a method similar to that used in the proof of Theorem 5.14, we can prove
that A and B satisfy the conditions of Proposition 5.2 with K = Xg. Thus,
by Proposition 5.2, there exists zg € Zp such that Xo x {2} C A, that is,

f(z, z0) € coMinspecf(z, Zo)) —C, Yz € Xo.

By Lemma 5.13 and the compactness of X, we have that

f(z, 20) € Maxc Uuex, coMinnic f(u, Zo)) — C, Vz € X,

Max;ntc f(Xo, 20) C Maxc Uuex, co(Minguec f(u, Zo)) — C.
Moreover, if

Ming Uiez, Maxinio f(Xo,t) C Maxiniof(Xo,2) —C, Vz € Zy,
then we have that
Ming Uiez, Maxsnio f(Xo, t) C Maxe Ugzex, colMinmie f(z, Zo)) — C,

and this completes the proof of this theorem. |
Ezample 5.16. Let Xo = [0,1], Zo= [0,1],£=2,C =R2. Let f: Xo x Zg —
RY, f(x,2) = (x2,22)7, for every z, z € [0, 1]. We have that
()
(0,1], z#1,

By ={z € Zo: f(2,2) ¢ co(Maxinic f(Xo,2)) + C} = {z z=1

is convex or empty for any z € [0, 1];
(i) f(-,) is continuous on Xy X Zp;
(iii) for each z € Zy, f(-, 2) is C-convex;

(iv) Maxc Ugex, Minimc f(z, Zo) = {<8>} and Mininicf(2, Zo) = {(8>}
for all z € Xj.
Then

Max Uyex, Mininsc f(u, Zo) C Mingnio f(z, Zo) + C, Vz € Xo.
From the result of Theorem 5.14, we have that

Maxc Uzex, Minintcf(:(:, Zy) C Ming Uiez, CO(MaXintof(Xo, t)) + C.
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In fact, we can verify that
Maxc UzeX, Minz’nth(w, ZO) = {(O,O)T}’

Ming Utezo CO(MaXinth(X0> t)) = {(07O)T}

Thus,
{0,007} c {(0,0)T} + C.

In what follows, we assume that X, Z and Y are real Hausdorff topological
vector spaces. Let C C Y be a closed, convex and pointed cone such that
intC # @. We will establish a minimax theorem for vector-valued functions
as a special case of Theorem 5.12.

Theorem 5.17. Let Xy and Zy be compact and convex subsets in X and
Z, respectively, and let e € intC. Suppose that the following conditions are
satisfied:

(i) f: Xo x Zyg — Y is a continuous vector-valued function;
(1) for each x € Xy, —f(x,+) is properly quasi C-convez on Zy;
(iii) for each z € Zy, f(-, 2) is naturally quasi C-conver on Xg.

Then

Ming Uzex, Mazinic Uzez, f(m’ z)
C Mazc Uzez, Mininic Usex, f(w, 2) + Y \(C\{0}).

Proof. Since f is a vector-valued function, (iv) of Theorem 5.12 holds. Then,
the conclusion follows readily from Theorem 5.12. |
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Vector Network Equilibrium Problems

The earliest network equilibrium model was proposed by Wardrop [197] for
a transportation network. Since then, many other equilibrium models have
also been proposed in the economics literature (see Nagurney [149]). Until
only recently, all these equilibrium models are based on single cost or utility
function. Recently, equilibrium models based on multicriteria consideration
or vector-valued cost functions have been proposed. In Chen and Yen [44],
a multicriteria traffic equilibrium model was proposed and the relationship
between this model and the vector variational inequality problem was consid-
ered under a singleton assumption. Other papers that consider multicriteria
equilibrium models can be found in Brenninger-Gothe et al [21], Chen, Goh
and Yang [30], Dial [56], Goh and Yang [85], Leurent [131], and Yang and Goh
[214]. In particular, the multicriteria network equilibrium model was formu-
lated as a vector variational inequality problem in Goh and Yang [85] via a
vector optimization approach, but without the singleton assumption.

In this chapter, we consider weak vector network equilibrium, vector net-
work equilibrium and dynamic vector equilibrium problems. We establish their
relations with vector variational inequalities and vector optimization prob-
lems.

6.1 Weak Vector Equilibrium Problem

Consider a transportation network G = (N, .A) where N denotes the set of
nodes and A denotes the set of arcs. Let Z be the set of origin-destination (O-
D) pair and P;, ¢ € T be the set of paths joining O-D pair 4. For a given path
k € P;, let hi denote the traffic flow on this path and h = (hy, ho, -+ ,hy) €
RM, where M = Y icz |Pi]. The path flow vector h induces a flow v, on each

arc a € A given by
Vg = Z Z dakhi,
i€T keP;
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where A = [6ax] € RMIXM g the arc path incidence matrix with d,r = 1 if

the arc belongs to path k and 0 otherwise. Let v = [v, : a € A] € R be the
vector of arc flow. Succinctly
v = Ah. (6.1)

We will assume that the demand of traffic flow is fixed for each O-D pair,
i.e., ZkePi hx = d;, where d; is a given demand of each O-D pair 7. A flow
h > 0 satisfying the demand is called a feasible flow. Let H = {h : h >
0, ke p bk = di,Vi € T} be the set of feasible flows. H is clearly a closed
and convex set. Let ¢, : RM — R? be a vector-valued cost function for
the arc a and it is in general a function of all the arc flows, and let metric
t(v) = [ta(v) : a € A] € Rl The vector-valued cost function along the
path k, we denote 7%, 7% : RM — R’ is assumed to be the sum of all the arc
cost along this path, thus

Ti(h) = Sarta(v).

acA
Let T(h) = [%(h) : k € P;,i € T] € R*M. Succinctly
T(h) = t(v) A. (6.2)

In this section, we consider an equilibrium problem defined on transporta-
tion network with vector-valued cost functions. In this model, the cost space
is {-dimensional Euclidean space IR, with the ordering cone C, a pointed,
closed and convex cone with nonempty interior intC.

Definition 6.1. Given a flow h, we say that a path p € P; for an O-D pair i
is a weakly minimal one if there does not erist another path p’ € P; such that
7 (R) — 7p(h) <inic 0.

Let I;(h) = {7p(h) : p € P;} denote the (discrete) set of vector costs for
all paths for O-D pair i, and
Zi(h) ={k € P, | 7(h) —7p(h) Zintc 0, Yp € P;} C P;

denote the set of all weakly minimal paths for O-D pair i.
We define the weakly minimal frontier for O-D pair ¢ to be the set of
weakly minimal points in the cost-space of O-D pair i:

Minnio(Fi(h)) = {€ € R® | € = 7,(h) where p € T;(h)}.

Note that Min;,;c(I3(h)) is a discrete set because it is a subset of the discrete
set Z;(h).

The following weak vector equilibrium principle is a generalization of the
well-known Wardrop’s equilibrium principle (see Wardrop [197]):
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Definition 6.2. A flow h € H is said to be in weak vector equilibrium if
VieZ,Vk,l€ P, Tk(h) ZintC Tl(h) — h; = 0. (6.3)

A flow h in weak vector equilibrium is often referred to as a weak vector
equilibrium flow.

In terms of the weakly minimal frontier for O-D pair ¢, the weak vector
equilibrium principle can be stated in an equivalent form:

Definition 6.3. (Equivalent weak vector equilibrium principle) The path flow
vector h is in weak vector equilibrium if

VieZ, Vp e P;, hp =0 whenever 1,(h) ¢ Mininsc(Li(h)). (6.4)

These definitions are natural generalizations of the Wardrop equilibrium
principle for a scalar valued cost, in which case, a strict inequality > is used in
(6.3). The motivation for both the scalar and the vector cost cases is provided
by the fact that an user will not choose to travel on a path if it is cheaper
(both in the scalar and the vector sense) to travel on another path that links
the same origin and destination.

We shall investigate weak vector equilibrium flows by virtue of linear
scalarization function and nonlinear scalarization function, respectively.

Linear Scalarization Approach
Let us first introduce the concept of a parametric equilibrium flow.

Definition 6.4. (Weak parametric equilibrium principle) Let a parameter \ €
C* be given. A path flow vector h is in weak \-equilibrium if

VieI, Vpe P, hy=0 whenever 3 e; € Minn:c(Li(R)),
such that AT 7,(h) > ATe;.

Note that a parametric equilibrium flow is based on a scalar cost, as in
the case of Wardrop’s equilibria. In the case of scalarization for vector opti-
mization, it is known that certain convexity assumption is necessary before
the scalar optimal solution is necessarily a weakly minimal solution for the
vector problem. In the present context, however, the set of concern I;(h) is
discrete and hence convexity has no meaning. To get around this, we make
the following assumption.

Assumption 6.5.
Mininsc(Ii(h) C Mingpic(co(Li(h))),

where co(I5(h)) is the convex hull of the discrete set I;(h).
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The following result establishes relationships between a weak vector equi-
librium flow and a parametric equilibrium flow.

We need the following scalarization result, which is just Theorem 3.4.2 of
[176].
Lemma 6.6. Let A C IR® be a nonempty and convex set and a* € MinnicA.
Then, there exists A € C*\{0} such that

ATa* = min)\Ta.
a€A

Theorem 6.7. (i) If h is in weak vector equilibrium and Assumption 6.5
holds, then there exists A € C* \ {0} such that the path flow h is in weak
A-equilibrium;

(ii) If h is in weak \-equilibrium for some A € C*\{0}, then h is in weak
vector equilibrium.

Proof. (i) Let h be in weak vector equilibrium. Then, for k € P;,

he > 0= Tk(h) S Minmtc(pi(h))
= Tk (h) € Minjnec(co(L3(h)) by Assumption 6.5,

IN € C\{0} st. ATri(h) = i T
= 3IA € C"\{0} s 7k (h) necg?r?(h))’\ n
by Lemma 6.6,
=3I\ C*\{0} st. \T7%(h)= min \p

nerli(h)
since I;(h) C co(I3(h)) and (k) € I;(h).

Hence h is in weak A-equilibrium.

(ii) Let A € C*\{0} and let A be in weak A-equilibrium. Suppose that h is
not in weak vector equilibrium, then by Definition 6.3, there exists ¢ € Z,p €
P; such that,

hp >0 and Tp(h) ¢ Mlnmtc(ﬂ(h))

Thus
hy >0 and AT7,(h) > ATe;, for some e; € Mingnso(I3(h)).

Hence h is not in weak A-equilibrium, a contradiction. ]

For A € C*, we define the minimum scalarized cost for O-D pair ¢ as:

ui(A) = Il)réi}g AT 7, (h). (6.5)

Lemma 6.8. If\ € C*\{0}, then u;(\) = AT ¢; for some e; € Minipc(I(R)).

Proof. From (6.5), let p € P; be such that u;(A) = AT7,(h). Choose e; := 7, (h).
Suppose now that e; ¢ Mininc(I53(h)), then there exists § € P;, such that
Tp(R) Zintc 75(h). Since A € C*\{0}, AT7,(h) > AT75(h), a contradiction.
Therefore e; € Mingnec(Ii(h)). ||
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Theorem 6.9. (i) Let A € C*. Then h is in weak A-equilibrium if the fol-
lowing condition holds:

Vi € ,Vp € P;, hy = 0 whenever A" 7,(h) > us(\); (6.6)
(i) If X € C*\{0} and h is in weak A-equilibrium, then condition (6.6) holds.

Proof. (i) If there exists e; € Mininsc(I3(h)) such that AT7,(h) > ATe;, say
e; = 74(h) for some g € P;. Then A" 7,(h) > AT7,(h), g € P;. Thus clearly

AT7,(h) > u;(\) = min AT 7, (h),
PEP;
by (6.6), hp =0, so h is in weak A-equilibrium.
(ii) Let h be a weak A-equilibrium flow and A € C*\{0}. If AT7,(h) >
u;(A), by Lemma 6.8, there exists e; € Min;nic(I3(h)) such that u;(A) = ATe;.

Thus
)\TTp(h) > ATe;, where e; € Minjnic(I5(R)).

By Definition 6.4, h, = 0 and hence (6.6) holds. [
Next, we discuss relations between a weak vector equilibrium flow and a
solution of a vector optimization problem.
Definition 6.10. We say that
(i) the vector cost function t, is separable if i, is a function of v, only, i.e.,
ta(v) = to(vs), Va € A.
(ii) the vector cost function t, is integrable if
otk |ove = Ot /Ov,, Va, d' € A, Yk =1,--- L.

Clearly, a separable cost is also integrable.
If the cost t, is integrable, then for A € C*

OATta)/0ve = O N tar)/Ova,  Va,d € A,

and, by Theorem 4.1.6 of [157], there exists a real-valued potential function,
denoted by ¢ ATt(2)dz such that

9 " T T
- ]4 AT (w)dw = AT¢(v). (6.7)
For A € C*, consider the following (scalar) optimization problem P()):
min f ATt (w)dw (6.8)
subject to Y hp,=d;, VieT (6.9)
pEP;

hp, >0, Vpe P, VieZ, (6.10)
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and the definitional constraint:

Va=Y_ Y Saphy, a €A (6.11)

1€ peP;
Definition 6.11. The cost matriz t(v) is said to be C-monotone if
(t(v1) — t(v2))(v1 — v2) 2¢ 0, for vy, vz € R,

Lemma 6.12. The cost function of P(\) is convex if the cost matriz t(v) is
C-monotone.

Proof. For a given A € C*, we have
¢
z)\k(tk(vl) — t*(v2))(v1 —v2) 2 0, for every vy, vy € RMI.
k=1

Thus
(ATt(v1) = AT#(w2))(v1 — vg) > 0, for every vy, vy € RMI.

By (6.7), the gradient of the function ¢ AT#(w)dw is monotone, so the cost
function of P(X) is convex. |

Let I' € RM*Z denote the path-origin incidence matrix for the network
with entry [ = v = 1 if p € P; and 7p; = 0 otherwise. Its transpose I'"
is the origin-path incidence matrix.

Theorem 6.13. Assume that the cost function t, is integrable and the cost
matriz t(v) is C-monotone, and let A € C*\{0}. Then h is in weak A-
equilibrium if and only if h is a solution of P(A).

Proof. Let the Lagrangian of P(A) be defined by
L= jf AT t(w)dw — u(N) " (I'"h — d).

Since the problem is convex by Lemma 6.12, the sufficient and necessary
optimality conditions for P(\) are given by

oL

= At)A —u(W)TTT =XTT(h) —u(N)TTT >0 (6.12)
g—ih =\TT(h) —u(N) T A =0; (6.13)
OL _pTp_gT — o, (6.14)

ou
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Note that u(\) is given by (6.5). (6.12) is equivalent to (6.5), (6.13) says
that h is in weak A-equilibrium and (6.14) is the definitional constraint (6.11).
It follows that h is in weak A-equilibrium. [ ]

Now consider the following network vector optimization problem (NVO):
Minc F(U)
subject to Z hp=d;, Vi€l
pEP;
hp 20, VYpe P, Vi€,
and the definitional constraint (6.14), where

Fo) = (§ twpdu, o f tf(wmw)T,

and t* is the k" row of the cost matrix ¢(v). A vector v (or its corresponding
h) is said to be a weakly minimal solution of (NVO) if there exists no other
feasible v’ such that F(v') <inic F(v).

In the special case where ¢, is separable, the cost function F(v) of problem
(NVO) reduces to

F(v) = (aezA/ w)dw, - - Z/ t(w dw>. (6.15)

a€A

Theorem 6.14. Assume that the cost function t, is integrable and the cost
matriz t(v) is C-monotone. If further Assumption 6.5 holds and h is in weak
vector equilibrium, then h is o weakly minimal solution of (NVO).

Proof. Let h be in weak vector equilibrium. By Theorem 6.7 (i), there exists
A € C*\ {0} such that A is in weak A-equilibrium. By Theorem 6.13, h is also
a solution of P(A). Since

MF@w) =T (j{v t*(w)dw, - - - ,fv te(w)dw>
_ }{ U}ékktk(w)dw

= ]f ’ AT t(w)dw, (6.16)

which is the cost function of P(}), it follows from A € C*\ {0} that a solution
to P()\) is also a weakly minimal solution of (NVO). |

T

Next, necessary and sufficient optimality conditions of weak vector traffic
equilibrium in terms of vector variational inequalities are given.
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Theorem 6.15. Let Assumption 6.5 hold , the cost function t, be integrable
and the cost matriz t(v) be C-monotone. If h is in weak vector equilibrium,
then h is a solution of the following (WVVI) of finding h € H:

T(h)(g — h) Lintc 0, Vg € H.

Proof. If h is in weak vector equilibrium, by Theorem 6.14, h is a weakly min-
imal solution of (NVO). A necessary condition for h to be a weakly minimal
solution of (NVO) is that
OF(h)
Oh

From (6.1) and (6.15), we have

(g—h) Lintc 0, Vg € H.

9F OF 0 £
v ) B B
ET i : A =t(v)A =T(h).
t"(v)
Thus the conclusion follows. [ |

We may now establish a sufficient condition for a flow h to be in weak
vector equilibrium.

Theorem 6.16. h € H is in weak vector equilibrium if h solves the (WVVI)
of finding h € H: ~ _
T(h)(h —h) Lintc 0, Vh € H. (6.17)

Proof. Let h satisfy (6.17). Choose h to be such that

(kWA korj
hj =<0, if = k, (6.18)
he + hj, if j = j.

Clearly, h € H since Vi € Z, e hi =2 icp, hj = d;. Now

Z Z hj)7i(h)

i€l jep;
= hk(Tj (h) et Tk(h)) ﬁintC 0. (6.19)
It
7i(h) — 75(h) Zintc 0, (6.20)

then (6.19) and (6.20) together imply that ks = 0 since C is a pointed cone. B
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Nonlinear Scalarization Approach
In this subsection, we assume that C = ]Rﬁ. Choose any a € R¢ and

ec intIRﬁ,. By using the nonlinear scalarization function .q, define a function
¢k RM - R by:

Efa(h) :fea(Tk(h)), ke Piel.

The vector-valued function E_w : H — IRM and the scalar-valued function
ut, : H — IR, i € T are defined, respectively, by

Eea(h) =[5 (R): k€ Py, i €T (6.21)

and

ea

ut,(h) = min feal(mi(R)), €T (6.22)

Definition 6.17. The path flow h € H is said to be in Eqq-equilibrium if there
erist e € inthi and a € IR® such that

Vi e IV, 1€ Py, ea(mk(R)) > €ea(i(h)) = hi = 0. (6.23)
Consider the following vector optimization problem (VO):

(VO) Ming f(x)v

reX

where f: RM — Rf, X ¢ RY is a possibly finite set. Note that neither f
nor X is required to be convex.

We have the following non-convex scalarization theorem.

Theorem 6.18 (Non-convex Scalarization Theorem, Gerth and Wei-
dner [78]). Let A C IR’ be a H%ﬂ_ order lower bounded subset. Then
y* € Mmintﬂi’iA if and only if, for some a € IR and e € intRﬁ_,

€ea (y*) = min e, (A)

We may now use Theorem 6.18 to establish an equivalent condition for a
weak vector equilibrium in terms of a scalar variational inequality.

Theorem 6.19. The path flow h € H is in weak vector equilibrium if and
only if b is in &eq-equilibrium for some e € intﬂ%i and a € IR’

Proof. (<=)

Assume that h is in &.4-equilibrium for some e € intIRi and a € RY, i.e.,
(6.23) holds. Now if 74 (h) > 7(h), for some path [ € P;, then by the strict
monotonicity of the &, function and (6.23), we conclude that hy = 0, i.e., h
is in weak vector equilibrium.
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(=)

Conversely, let the set K; C R’ be defined by K; = {7(h) : k € P;}. If for
all e € intIR%, a € IR, h is not in &.,-equilibrium, then there exists k € P;,
i € T such that

hi >0 and &eq 0 Tk(h) > €ea © (), (6.24)

where 7,(h) € Min, ¢ K;. Theorem 6.18 implies that 7¢x(h) ¢ Min, g Ki.
wm + m +

By the domination theorem in vector optimization, 37,(h) € Min, qRE K;
m +

such that 7x(h) > 7,(h), yet hg > 0, i.e., h is not in weak vector equilibrium.
|

Remark 6.20. It is important to note that the set K; in the above proof is a
discrete set, in which convexity has no meaning. The converse proof would not
have worked if we had used the linear scalarization instead, since this would
have required the set K; to be infinite and cone convex.

The problem of finding a £.,-equilibrium for given e € ]Ri and a € R¢
is still not directly solvable. We now reduce the & - equilibrium to a scalar
variational inequality and consequently well-known techniques for solving vari-
ational inequalities can be applied accordingly.

Theorem 6.21. The path flow h € H is in Eeq-equilibrium if and only if
there exist e € inthi and a € IR® such that h solves the following (scalar)
variational inequality:

ea(h)T(h—h) >0, VheH, (6.25)
where Eeq(h) = [€5,(R) : k € Py,i € I) and €5, (h) = Eea(mi(h)).

Proof. (<=)
_ Assume that h solves the variational inequality (6.25). Choose the special
h defined by (6.18), then

£ea(h) =3 (b — hj)ElL(h)

€L jJEP;
(hk - hk) (h) (bt — hy)€L o (R)

= hk(fea("—l(h)) - §ea(7k(h)))
>o. (6.26)

Thus if £eq(7k(h)) — €ea(ni(h)) > 0, (6.26) and hy > 0 implies that hy = 0,
i.e., h is in weak vector equilibrium.

(=)
Conversely, we assume that h € H is in &e,-equilibrium and define,
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L= {k € Pi: €ea 0 Ti(h) = uiu(R)},

Pi2 = {k € P éea o Tk(h) > u’fea(h)}'

(6.27)

Then for any h € H, we have

€ea(h) =33 &k, omi(h) (R, — hi)

€T keP;

= Z { Z h)(hx — hi) + Z Ugq(R)hi

i€l | keP} keP?

=D ula(h) > (i —ha)

€T keP;
= > ul,(h)(di — d)
i€l

i.e., h solves the variational inequality (6.25). |

Corollary 6.22. Let D C IR® be a base ofﬂ?ﬂ. Then the path flow h € H is

in weak vector equilibrium if and only if there exists a d € DN inthﬁ_ such
that h solves _ _ _
Ewo(R)T(h—h) >0, VYheH. (6.28)

Proof. Since &.o(y) is positively homogeneous for a > 0 we have .9(ay) =

aéeo(y). Since D is a base, for e € intIRﬁ_, there exist o; > 0 and d € D such
1

that e = aad, and we have £0(y) = —&ao(y). Thus, by Theorem 6.19 and
ay

Theorem 6.21, the result of this Corollary holds. |

6.2 Vector Equilibrium Problem

In this section, we consider an equilibrium problem defined on transportation
networks with vector-valued cost functions. In this model, the cost space is
again ¢-dimensional Euclidean space lRe, with the ordering cone C, a pointed,
closed and convex cone with nonempty interior intC.

Definition 6.23. Given a flow h, we say that a path p € P; for an O-D pair
i 18 a minimal one if there does mot exist another path p’ € P; such that

T (h) — p(h) <cn\(oy O-
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Let I;(h) = {7p(h) : p € P;} denote the (discrete) set of vector costs for
all paths for O-D pair ¢, and

Zi(h) = {k € P | m(h) —7p(h) 20\{0} 0, VP € Pi} C P;

denote the set of all minimal paths for O-D pair 4.
We define the minimal frontier for O-D pair ¢ to be the set of minimal
points in the cost-space of O-D pair i:

Ming(Iy(h)) = {€ € R® | € = 7,(h) where p € T';(h)}.

Note that Ming(;(h)) is a discrete set because it is a subset of Z’;(h) and
Z’;(h) is a discrete set.

The following vector equilibrium principle is a generalization of the well-
known Wardrop’s equilibrium principle (see Wardrop [197]):

Definition 6.24. A flow h € H is said to be in vector equilibrium if
VieI,Vk,le P, 7i(h) ZC\{O} 7(h) = hx = 0.
A flow h in vector equilibrium is often referred to as a vector equilibrium flow.

In terms of the minimal frontier for O-D pair i, the vector equilibrium
principle can be stated in an equivalent form:

Definition 6.25. (Equivalent vector equilibrium principle) The path flow vec-
tor h is in vector equilibrium if:

Vi €I, Vp € P, h, =0 whenever 7,(h) ¢ Minc(I3(R)). (6.29)

Definition 6.26. (Parametric equilibrium principle) Let a parameter A € C*
be given. A path flow vector h is in A-equilibrium if

Vi€, Vp € P;, hy =0 whenever 3 e; € Minc(I;(h)),
such that X" 7p(h) > ATe;.

Assumption 6.27. Ming(I;(h)) € Minc(co(I(h))).

We need the following scalarization result, which is just Theorem 3.4.2 of
[176).

Lemma 6.28. Let A C IR be a nonempty and convez set and a* € MincA.
Then, there exists A € intC™ such that

ATa* = minA\Ta.
acA

The following result establishes relationships between a vector equilibrium
flow and a parametric equilibrium flow.
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Theorem 6.29. (i) If h is in vector equilibrium and Assumption 6.27 holds,
then there exists A € C*\ {0} such that the path flow h is in A-equilibrium;
(i) If h is in A-equilibrium for some X € iniC™, then h is in vector equilib-
rium.
Proof. (i) Similar to the proof of Theorem 6.7 (i), but using Lemma 6.28
instead.

(ii) Let A € int C* and let h be in A-equilibrium. Suppose that A is not
in vector equilibrium, then by Definition 6.24, there exists i € Z,p € P; such
that,

hp >0 and 7,(h) ¢ Ming(I;(h)).
Thus

hp >0 and AT7,(h) > \Te;, for some e; € Ming(I;(h)).

Hence A is not in A-equilibrium, a contradiction. |

Lemma 6.30. Let u;(\) be defined. If A € int C*, then u;(\) = A'e; for
some e; € Minc(I;(h)).

Proof. From (6.5), let p € P; be such that u;(\) = AT 7,(h). Choose ¢; := 7, (h).
Suppose now that e; ¢ Ming(I5(h)), then there exists p € P;, such that
(h) >c\(o} T5(h). Since A € intC*, AT7,(h) > AT75(h), a contradiction.
Therefore e; € Ming/(1;(h)). [ ]

Theorem 6.31. (i) Let A € C*. Then h is in A-equilibrium if the following
condition holds:

Vi € I,Yp € P;, hyp = 0 whenever A" 7p(h) > u;(\); (6.30)
(i) If X € int C* and h is in A-equilibrium, then condition (6.30) holds.

Proof. (i) If there exists e; € Ming(I;(h)) such that AT7,(h) > ATe;, say
e; = Tq(h) for some g € P;, then A" 7,(h) > AT 74(h), q € P;. Thus, clearly,

)\TTp(h) > u;(A) = min )\TTp(h),
pEP;

by (6.30), hp =0, so h is in A-equilibrium.
(ii) Let h be a A-equilibrium flow. By Lemma 6.30, there exists e; €
ming (I;(k)) such that u;(A) = ATe;. Suppose that AT 7,(h) > u;(\). Then

AT7(R) > ATes.
By Definition 6.26, h, = 0 and hence (6.30) holds. [ ]

We discuss relations between a vector equilibrium flow and a solution of a
vector optimization problem.

The following theorems can be similarly proved as Theorems 6.13 and 6.14,
respectively.
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Theorem 6.32. Assume that the cost function t, is integrable and the cost
matriz t(v) is monotone, and let A € intC*. h is in A-equilibrium if and only
if h is a solution of P()).

Theorem 6.33. Assume that the cost function t, is integrable and the cost
matriz t(v) is monotone. If further Assumption 6.27 holds and h is in vector
equilibrium, then h is a weakly minimal solution of (NVO).

The following theorem follows directly from Theorem 6.33.

Theorem 6.34. Let Assumption 6.27 hold, the cost function t, be integrable
and the cost matriz t(v) be monotone. If h is in vector equilibrium, then h is a
solution of the following weak vector variational inequality problem of finding
h € H such that

T(h)(g — h) &inec 0, Vg € H.

Theorem 6.35. Let Min,nic(L;(R)) be a singleton. If b is an equilibrium flow,
then h satisfies the SVVI of finding h € H.:

T(h)(h—h) >c\(0} 0, VR E€H.
Proof. See the proof of Proposition 6.3 of [44]. |

We may now establish a sufficient condition for a flow h to be in vector
equilibrium.

Theorem 6.36. h € H is in vector equilibrium if h solves the (VVI) of finding
h € H such that B B
T(h)(h — h) Lov(oy 0, Vh € H. (6.31)

Proof. Let h satisfy (6.31). Choose h to be such that

_ h]’, lf_] 75 k or j,
hj =<0, if j = k,

he + hj, if j =3
Clearly, h € H since Vi € Z, 3,cp hj = X ;ep, hj = di. Now

T(h)(h—h) =3 > (hj— hj)j(h)

i€L jEP;
= (hi = hi)mie(h) + (R — hy)73(h)
= hk(Tj (h) — Tk(h)) ﬁC\{O} 0. (6.32)
If
Te(h) — Tj(h) 2c\{0} 0, (6.33)

then (6.32) and (6.33) together imply that hy = 0 since C is a pointed cone.
Thus, h is in vector equilibrium. |
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6.3 Dynamic Vector Equilibrium Problem

Let £2 = [0, ¢y] be the time period under consideration. For i € T and a given
path k € P;, let hi(t) denote the traffic flow on this path at time t € £2 and
M =377 |Pi|. Then, at time t,

h(t) = [h(t) 1 k € P;,i € T)
is a M-dimensional column vector.

We only take account of the functional setting for the set of flow trajec-
tories. This set is assumed to be a reflexive Banach space LP(2, RM) with
p > 1. The dual space of L?(2,RM) is L9(2, R™), where 1/p+1/q=1. On
LI(02,RM) x L7 (2, RM), we define the canonical bilinear form by

(G, hY = /Q GOD, G e LY2,RM), h € LP(2,RM),

For i € 7, the demand d;(¢) > 0 on this O-D pair ¢ depends on the time ¢ € (2.
At time t € 2, let
d(t) = [di(t) : i € T].

Also, for technical reasons, we think of the demand trajectories in L7 (£2, IR')).
A flow trajectory h € LP(£2, IR™) satisfying the demand

Z hi(t) = di(t) a.e.on 2, Vie T
keP;
is called a feasible path flow. Let H be the set of feasible path flows, i.e.,

H={h e LP(2,R)| h(t) >0 and Y h(t) = di(t) a.e. on 2, Vi € T}.
keP;

A path flow vector h(t) induces an arc flow column vector v(t) = [va(?) :
a € A), where, for each arc a € A,

’Ua(t) = Z Z 5akhk(t)

i€ keP;
where A = [d4) € RMIXM i5 the arc path incidence matrix. Hence
v(t) = Ah(t).
Let V be the set of feasible arc flows, i.e.,

V= {ve (2, R | v(t) > 0,v(t) = Ah(t) and

0,
> hi(t) = di(t) a.e. on £2,Vi € T}.
keb;
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Let (R, C) be an ordered space with the ordering cone C and, for each ¢,
ca(v(t)) € IRY be a vector cost functional on arc a (arc weight); let c(v(t)) =
[ca(v(t)) : @ € A] be an £ x | A|-matrix. The vector weight along a path k € P;
is assumed to be the sum of all the arc weights along this path; thus

h(t)) = darca(v(t)) € RE.

a€A

Set
T'(h(t)) = c(v(t))A

which is an £ X M matrix with columns given by 7(h(t)).

So we know that, for each h € H, T'(h(-)) is a functional from §2 to IR***.
We assume that, for all h € H, T(h(-)) is in L¢(£2, R**M) where 1/p+1/q = 1.
Define a multi-cost path functional U : LP(2, RM) — L(L?(2,IRM),R%) by

(U(h), B = / ThE)h(©)dt, T € IP(2,RM),
2
And define a multi-cost arc functional S : L?(£2, R!) — L(LP(£2, R, RY)

by
/ Z co(V(t))Uo(t)dt, wv,0 € L”(Q,IR'A').
a€cA

Assumption 6.37. T is one-to-one, that is, if hi,ha € H and T(h1) =
T(ho), then hi(t) = ha(t) a.e. on £2.

Note: It can be shown that if S is one-to-one and A is a square and nonsin-
gular matrix, then Assumption 6.37 holds.

Proposition 6.38. If the Assumption 6.87 holds, then the multi-cost path
functional U is one-to-one on H.

Proof. Proving U is one-to-one on H is equivalent to show that if, for hy, ks €
‘H and hq(t) # ha(t) a.e. on §2, then U(h1) # U(h2). Suppose U(h1) = U(hg).
Then, from the definition of functional U, we have

[ @) - Tyt =0, Vhe P(@,RM),
o)
From the Hahn-Banach theorem,
T(h1(t)) — T(ha(t)) =0, a.e.on 2.
From Assumption 6.37,

hi(t) — ha(t) =0, a.e. on 2.
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Definition 6.39. Given an h € H, we say that a path k € P; for an O-D
pair i is a minimal one if there does not exist another path k' € P; such that
Te(h(t)) — 7w (M()) >0\ (0} 0, a.e. on £2.

Given an h € H, let I;(h) = {7x(h(t)) : k € P;} denote the (discrete) set
of vector cost functionals of all paths for O-D pair ¢, and

I"i(h) = {k! € P; | Tk(h(t)) - Tkl(h(t)) Zc\{o} 0, a.e. on {2 vk € Pi} CP

denote the set of all minimal paths for O-D pair i.
We define the minimal frontier for O-D pair ¢ to be the set of minimal
points in the cost-space of O-D pair i:

Ming (I3(h)) = {7p(h) € R¢| p € I":(h)}.

Note that Ming (I;(h)) is a discrete set because Z”;(h) is a discrete set.

Definition 6.40 (Dynamic vector equilibrium principle). A continuous

path flow vector h € H is said to be in dynamic vector equilibrium if, Vi €
I,Vk, k' € P,

hi(t) = 0 whenever T(h(t)) — Tr:(h(t)) >c\{0} 0, a.e. on £2. (6.34)

A flow h in dynamic vector equilibrium is often referred to as a dynamic vector
equilibrium flow.

Remark 6.41. (1) If £ = 1, (6.34) reduces to the dynamic (scalar) Wardrop’s
principle in Daniele et al [51].
(ii) The dynamic vector equilibrium principle can be stated in an equivalent

form as: the path flow vector A is in dynamic vector equilibrium if, Vi €
I, VpeP,

hp(t) = 0 whenever 7,(h(t)) ¢ Min¢ (I3(h)), a.e. on £2.

Definition 6.42 (Dynamic weak vector equilibrium principle). A con-
tinuous path flow vector h{t) € H is said to be in dynamic weak vector equi-
librium if, Vi € T,Vk, k' € P;,

hi(t) = 0 whenever i (h(t)) — 6 (h(t)) Zintc 0, a.e. on £2. (6.35)

A flow h in dynamic weak vector equilibrium is often referred to as a dynamic
weak vector equilibrium flow.

The following are infinite dimensional versions of the assumptions used in
[85].

Assumption 6.43. Let h € H. Assume that

Ming(I3(h)) € Ming(co(I;(h))), a.e. on £2.
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Remark 6.44. Assumption 6.43 is equivalent to assert that there exists a null
set E; such that, for any t € 2\ E,

Ming(I;(h)) C Ming(co(L;(h))).

Definition 6.45. We say that the vector cost function c, is conservative if
Ock |0var = Ock, JOv,, a.e. on 2, Va,a' € A,Vk=1,...,¢

Assumption 6.46. The cost ¢, is conservative for all a € A.

Assumption 6.47. Each row c*(v(t)) of the cost matriz c(v(t)) is monotone,
e, for allk=1,2,...,£, vi(t),va(t) € IRlA',

(cF(v1(8)) — c*(v2(8)) (01 (2) — v2(t)) > 0, a.e. on £2.

Remark 6.48. Assumption 6.47 is to say that there exists a null set Ey such
that, for any ¢t € 2\ Ea, c*(v(t)) is monotone, k= 1,2,...,4.

In the following, an infinite dimensional (WVVI) problem is established
as a necessary condition of a dynamic weak vector equilibrium flow.

Proposition 6.49 (Necessary condition). If Assumptions 6.43, 6.46 and
0.47 hold and h is in dynamic weak vector equilibrium, then h is a solution of
the following (WVVI) of finding h € H such that:

(U(h),g — h) £intc 0, Vg€ H. (6.36)

Proof. Since h is in dynamic weak vector equilibrium, then there exists a null
set E3 such that, for any t € £2\ E3,

Vi € I,Vk, k' € P;, hi(t) = 0 whenever 7 (h(t)) — 1 (h(t)) € intC,

and h(t) >0 and hz(t) = di(t),Vi cT. SO, for any t € .Q\(El UFEyU Eg), h(t)
is in weak vector equilibrium, and all the assumptions of Theorem 6.15 are
satisfied. Hence, T'(h(t))(g(t) — h(t)) Lintc O holds, for every g € H(t), where

H(t)={geRM|g>0and Y g, =di(t),VieT}.
PEP;

Since the union of finitely many null sets is a null set, £, U Ey U E3 is a null
set. So,

T(h(t))(g(t) — h(t)) Zinic 0
a.e. on {2, for any g € H. That is to say,

(U(h),g — h) = / T(h(t))(9(t) ~ h(8))dt Zinec 0.

7]
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Proposition 6.50 (Sufficient condition). The flow h € H is in dynamic
vector equilibrium if h solves the following (VVI) of finding h € H such that

(U(h),h—h) Zc\(0y 0, VhEH. (6.37)

Proof. Let h € H satisfy (6.37). Choose h € LP(£2,IR™) such that

) hy(8), i+ kor K
h]‘(t) =< 0, ifj=k
hk(t) + hk/(t) lf_] =k

a.e. on £2. Clearly, h € H, since h(t) > 0 and Ah(t) = Ah(t) == d(t) a.e
on {2.

Now,

s /Q a6 — b0 + (o) — D) )
= [ m(Om () = nb(e)it £onio 0. (6.38)
If

Tk (h(t)) — e/ (M(t)) Z0\(0} O, a.e. on £2,

then (6.38) implies that hy(t) = 0 a.e. on §2. Thus h is in vector dynamic
equilibrium. [ |

Proposition 6.51 (Sufficient condition). The flow h € H is in dynamic
weak vector equilibrium if h solves the WV VI(6.56)

Proof: The proof is similar to that Proposition 6.50 and omitted. ||

We apply the results in Chapter 3 to establish the existence of a dynamic
weak vector equilibrium flow.

Proposition 6.52. Suppose the multi-cost arc functional S is C-monotone
and v-hemi-continuous, then there exists a path flow h € H, which is in dy-
namic weak vector equilibrium.

Proof. Note that
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H={h e LP(2,R™)| h(t) 20 and Y hi(t) = di(t) a.e. on 2, Vi € I}.
keP;

It is clear that H is bounded, convex and closed, i.e., compact in the weak
topology of L? (2, IRM).

For any h,h € H, set v = Ah,? = Ah. Then, from the C-monotonicity of
the multi-cost arc functional S,

(U(h) —U(h),h—h)
= /Q (T(h(®)) = T(h(£))(A(t) — h(®))dt

- /Q (c(v(t) A — c(5(£)) A)(h(t) — h(t))dt
- /Q (c(v(t)) — c(5(6)))(Ah(t) — AR(E))dt

= /{2 (c(v(?)) — c(@(®)))(v(t) — v(¢))dt
= (S(v) — S(®),v—1) >¢ 0,

i.e., the multi-cost path functional U is C-monotone on H. Similarly,
(S(v + t1),v) = (U(h + th), h).
So, from the v-hemi-continuity of S,

lim (U(h + th),h) = lim (S(v + t?), %) = (S(v),¥) = (U(h), h).

t—0+ t—0+

So, from the v-hemi-continuity of S, we have the multi-cost path functional U
is v-hemi-continuous. Then, by Theorem 3.14, the WVVI (6.36) has one solu-
tion h € H. So by Proposition 6.51, A is in dynamic weak vector equilibrium. B
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