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To Our Parents 



Preface 

Vector optimization model has found many important applications in decision 
making problems such as those in economics theory, management science, 
and engineering design (since the introduction of the Pareto optimal solu­
tion in 1896). Typical examples of vector optimization model include maxi­
mization/minimization of the objective pairs (time, cost), (benefit, cost), and 
(mean, variance) etc. 

Many practical equilibrium problems can be formulated as variational in­
equality problems, rather than optimization problems, unless further assump­
tions are imposed. The vector variational inequality was introduced by Gian-
nessi (1980). Extensive research on its relations with vector optimization, the 
existence of a solution and duality theory has been pursued. 

The fundamental idea of the Ekeland's variational principle is to assign an 
optimization problem a slightly perturbed one having a unique solution which 
is at the same time an approximate solution of the original problem. This 
principle has been an important tool for nonlinear analysis and optimization 
theory. Along with the development of vector optimization and set-valued 
optimization, the vector variational principle introduced by Nemeth (1980) 
has been an interesting topic in the last decade. 

Fan Ky's minimax theorems and minimax inequalities for real-valued func­
tions have played a key role in optimization theory, game theory and math­
ematical economics. An extension was proposed to vector payoffs was intro­
duced by Blackwell (1955). 

The Wardrop equilibrium principle was proposed for a transportation net­
work. Until only recently, all these equilibrium models are based on a single 
cost. Vector network equilibria were introduced by Chen and Yen (1993) and 
are one of good examples of vector variational inequality applications. 

This book studies vector optimization models, vector variational inequali­
ties, vector variational principles, vector minimax inequalities and vector net­
work equilibria and summarizes the recent theoretical development on these 
topics. 



VIII Preface 

The outline of the book is as follows. 
In Chapter 2, we examine vector optimization problems with a fixed dom­

ination structure, a variable domination structure and a set-valued function 
respectively. We will investigate optimality conditions, duality and topological 
properties of solutions for these problems. 

In Chapter 3, we study existence, duality, gap function and characteri­
zation of a solution of vector variational inequalities. We will also explore 
set-valued vector variational inequalities and vector complementarity prob­
lems. 

In Chapter 4, we present unified variational principles for vector-valued 
functions and set-valued functions respectively. We will also explore well-
posedness properties of vector-valued/set-valued optimization problems. 

In Chapter 5, we consider minimax inequalities for vector-valued and set-
valued functions. 

In Chapter 6, we consider weak vector equilibrium, vector equilibrium and 
continuous-time vector equilibrium principles. 

One characteristic of the book is that special attention is paid to problems 
of set-valued and variable ordering nature. To deal with various nonconvex 
problems with vector objectives, the nonlinear scalarization method has been 
extensively used throughout the book. Most results of this book are original 
and should be interesting to researchers and graduates in applied mathematics 
and operations research. Readers can benefit from new methodologies devel­
oped in the book. 

We are indebted to Franco Giannessi and Kok Lay Teo for their continu­
ous encouragement and valuable advice and comments on the book. We are 
thankful to Xinmin Yang and Shengjie Li for their joint research collabora­
tion on some parts of the book. The first draft of the book was typed by Hui 
Yu, whose assistance is appreciated. We acknowledge that the research of this 
book has been supported by the National Science Foundation of China and 
the Research Grants Council of Hong Kong, SAR, China. 

Guang-ya Chen, Academy of Mathematics and Systems Science 
Xuexiang Huang, Chongqing Normal University 
Xiaoqi Yang, The Hong Kong Polytechnic University 
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Introduction and Mathematical Preliminaries 

In this chapter, we will present necessary mathematical concepts and results, 
which will be used in the later chapters. Most of the results can be found in 
the books: Aubin and Ekeland [5], Aubin and Frankowska [6], Rockafellar and 
Wets [168], Sawaragi, Nakayama and Tanino [176] and Yu [221]. Some new 
mathematical concepts and results on nonlinear scalarization functions will 
also be given. 

1.1 Convex Cones and Minimal Points 

Vector optimization problems (or multiobjective programming problems or 
multicriteria decision making problems) have close relations with orderings or 
preferences in objective spaces. It is known that orderings in a vector space 
can be defined by convex cones. 

Let y be a topological vector space, and S C Y a, nonempty subset. The 
topological interior, topological boundary and topological closure of S are 
denoted by intS, dS and c/5, respectively. 

A set if C X is said to be convex if, for any xi, X2 € jFf, A G [0,1], we have 
Axi + (1 - X)x2 e K. 

A set C is called a cone if, for any A > 0, AC C C. 
A set C is called a convex cone if C + C C C and, for any A > 0, AC C C. 
Let B C C\{0} be a subset. B is called a base of C if, for each c e C, 

there exist b G B and A > 0 such that c = \b. 
A convex cone C in y is called pointed if 

Cn(-C) = {0}. 

An ordering relation -< is said to be 

(i) Reflexive ii x ^ x; 
(ii) Asymmetric ii x ^y,y -< x = > x = y\ 
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(iii) Transitive ii x ^y^y < z = ^ x ^ z. 

An ordering relation is called a partial order if it satisfies reflexive, asym­
metric and transitive conditions. 

In principle, any nonempty subset C of y can define an ordering relation 
by 

y<cz^^F=>z-yeC, \Jy,zeY. 
However, only some particular subsets C oiY can define ordering relations 
with nice and useful properties. In this book, we restrict our attention to two 
cases: (i) C is a convex cone in Y and (ii) C is a convex subset of Y with 
0 G dC. We emphasize that, throughout the book, we will discuss under case 
(i) unless explicitly stated otherwise. 

If C is a convex cone in Y and C defines an ordering relation of y , then C 
is called an ordering cone. If C is a pointed and convex cone, then the ordering 
relation < c is a partial order. If the interior intC of C is nonempty, we 
can define a strict ordering relation ''^<intc^ in Y as follows: for any y^z G F , 

y <intc z <==^ z -y G intC. 

Similarly, we can define an ordering relation ">c" and a strict ordering rela­
tion ">mtc"-

By (y, C), we denote an ordered space with the ordering of Y defined by 
set C. Suppose that intC ^ 0. We can define an ordering relation "^^' '^nd a 
strict ordering relation '%intc^^ as follows: for any y^z EY 

ytcz <=^ z-y ^cO; 

y iiintc z <=> z-y ^ intC. 

Similarly, we can define an ordering relation " ^ c " and a strict ordering 
relation "^intc'-

We also define the following ordering relations: for any y,z G F , 

y<c\{o}z <=^ z-yeC\{0}, 

y^c\{o}Z <=^ z-y^C\{0}. 
Given two subsets of F , say A and J5, the following ordering relationships 

on sets are defined: 

A<cB ^=^ rj<c^, V77 G A, ^ G 5 ; 

A <intC B <==> Tj <intC ^, ^V ^ A ^ ^ B] 

A <c\{0) B ^^ T] <c\{o} <e, V77 G A, ^ G B; 

A^cB ^=^ rj^c^, V77 G A, ^ G 5 ; 

-^ ZiintC B <==^ rj ^intc <?, yrj e A, ^ e B\ 

A ^c\{o} B <==> r} ^c\{0} ^, V77 G ̂ , ^ G B. 

Let A and B be two sets. We denote by A\B the difference of A and B. 
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Lemma 1.1. Let C be an ordering cone in Y. Then, for any a,b,c e Y, 

(i) a>c b =^ a + c >c b + c; 
(ii) a >intc b =^ a + c >intc b + c; 

(iii) a >c\{o} b==> a + c >c\{o} b + c; 
(iv) a^c b =^ a-\- c^c b-^ c; 
(v) a ^intc b=^ a + c t.intc b + c; 

(vi) a ^c\{0} b=^ a^c ^c\{o} & + c 

The same is true for < c , <intc, ^c\{o}^ ^ c , ^intc «^^ ^c\{o} respectively. 

Lemma 1.2. Let C be a convex ordering cone in Y. Then, for any a,b,cG Y, 

(i) a <c b <c c =^ a <c c; 
(ii) ci<cb <c\{o} c=> a <c\{o} c; 

(iii) a <c b <intc c ==> a <intc c; 
(iv) a ^intc b >intc c = > a 'jtintc c; 
(v) a ^intc b>c c = ^ a ^intc c; 

(vi) a ^intc b <intc c => a ^intc c; 
(vii) a ^intc b<c c=^ a £intc c. 

Let y* be the topological dual space of Y and C a convex cone of Y, Set 

C * - { / € y * : ( / , x ) > 0 , V x G C } , 

where (/, x) denotes the value of / at x. C* is called the dual cone (or positive 
polar cone) of C. Sometimes, we also use C~^ to denote the dual cone of C. 

We set 
C+' = {/ G F* : (/,x) > 0,Vx G C\{0}}. 

Proposition 1.3. [96] Let {Y,C) be an ordered Banach space with C C Y 
being a convex cone. Consider the following properties that a convex cone 
C CY may possess: 

(i) C is a pointed and convex cone; 
(ii) C has a base; 

(iii) intC* ^ 0 . 

Then (iii) ==> (ii) ==> (i); if Y is some Euclidean space, and C is closed, 
then all three properties are equivalent. 

Definition 1.4. Let Y be a topological vector space ordered by a convex cone 
C inY or a convex subset CofY with 0 G dC. Let A C Y be a nonempty 
set. A point y* G A is called a minimal point of A if 

(A-2 /* )n ( -C \{O}) = 0; 

A point y* G A is called a maximal point of A if 

(A- j / * )n (C \{o} ) = 0. 
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We denote the set of all minimal points of A and the set of all maximal 
points of A by Minc^ and Maxc;^, respectively. 

Definition 1.5. Let Y be a topological vector space ordered by a convex cone 
C in Y. Let A be a nonempty subset ofY. A is said to have the lower (upper) 
domination property if, for each y, there is a point y* G Mine A (or MaxcA) 
such that y e y* +C (or y e y'^ — C). 

Propos i t ion 1.6. Let Y be a topological vector space ordered by a closed and 
convex cone C inY. If A C. Y is a nonempty compact set, then A has the 
lower (upper) domination property, hence Mine A 7̂  ^ (MaxcA ^ 0). 

Thus, we obtain immediately that A C Minc^ + C (or A C M a x c ^ - C). 

Definition 1.7. Let C C Y be a convex cone or a convex subset of Y with 
0 € dC and intC ^^, AcY be a nonempty subset. A point y* e A is called 
a weakly minimal point of A if 

A n (2/* - intC) = 0 . 

A point y* G A is called a weakly maximal point of A if 

A n (y* + intC) = 0. 

We denote the set of all weakly minimal points of A and the set of all 
weakly maximal points of A by Min^ntc^ and Max^ntc^? respectively. 

Definition 1.8. Let Y be a topological vector space ordered by a convex cone 
C or a convex subset C with 0 G dC. Let K C X and f : K -^ Y be a 
vector-valued function, x* € K is said to be a minimal solution of f on K if 

{f{K)-fixn)n{-c\m = 9. 

Suppose that intC ^ (/). x* e K is said to be a weakly minimal solution of f 
on K if 

{f{K)-f{x'))r\{-intC) = %. 

We denote the set of all minimal solutions of f on K and the set of all 
weakly minimal solutions of f on K by Minc{f^K) and Minintcify^) ^^~ 
spectively. 

Definition 1.9. Let Y be a topological vector space ordered by a convex cone 
C or a convex subset C with 0 G dC. Let K C X and f : K -^ Y be a vector-
valued function, y* E K is said to be a minimal point of f on K if there is a 
X* G Mine if, K) such that y* = f{x*). y* e K is said to be a weakly minimal 
point of f on K if there is a x"" e Minintcif, ^) ^'^^^ ^^^^ V* — fi^*)-

We denote the set of all minimal points oi f on K and the set of all weakly 
minimal points of / on if by Mincf{K) and Min^ntc/(-^) respectively. 



1.1 Convex Cones and Minimal Points 5 

Definition 1.10. Let Y be a topological vector space ordered by a convex cone 
C or a convex subset C with 0 G dC. Let K C X and f : K -^ Y be a vector-
valued function, x* e K is said to be a local minimal solution of f on K if 
there exists a neighborhood U{x*) of x* such that 

{f{K n t/(x*)) - fix")) n (-c\{0}) = 0. 

Suppose that intC y^ (/}. x* E K is said to be a local weakly minimal solution 
of f on K if there exists a neighborhood U{x*) of x* such that 

{f{K n t/(a;*)) - /(x*)) n i-intC) = 0. 

Let C : y =t F be a set-valued function (i.e., for every y € F , C{y) is a 
subset of Y) such that for each y GY, C{y) is a, convex cone or a convex set 
with 0 e dC{y), for all y GY. 

The set-valued function C or the family of sets {C{y) : y eY} is called a 
domination structure on Y. The domination structure describes a variable or­
dering structure or a variable preference structure when dealing with minimal 
points of a set. 

We define relations <c(y), ^C{y), <C{y)\{o}^ ^C(y)\{o}, <intc{y)^ and 
^intc(y) with rcspcct to the convex cone C{y) as follows: for any yi^y2 GY, 

yi <ciy) 2/2 '^=^ y2-yi e C{y); 

yi ^c(y) y2 ^^=^ y2-yi ^ C{y)\ 

2/1 <C{y)\{Q} 2/2 <̂ =̂  y2 - 2/1 G C{y) \ {0}; 

2/1 ^c(2/)\{0} y2 <=> y2-yi^ C{y) \ {O}; 

2/1 <intc{y) 2/2 <=^ 2/2 - 2/1 ̂  intC{y)', 

yi ^intc(y) 2/2 <=> 2/2 - 2/1 ̂  intC{y). 

Similarly, we can define >c(y), ^C{y)^ >c(t/)\{o}, ^c(y)\{o}, >intc{y), and 
^intC{y)' 

Yu [221] proposed the following solution concepts for vector optimization 
problems with a variable domination structure. 

Definition 1.11. Let C :Y ^Y be convex cone valued. Let A be a nonempty 
subset ofY.A point y"" e A is called a nondominated minimal point of A if 

Ar\{y*-C{y)) = {y*), Vj/e A 

We denote the set of all nondominated minimal points of A by Mine{y) A. 
It is clear that a nondominated minimal point of ^ is a minimal point of A 
with respect to C{y) for every y G A. 
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Definition 1.12. Let Abe a nonempty subset ofY. Let C :Y :=tY be convex 
cone valued with intC{y) ^ (l)^\/y G Y. A point y* £ A is called a weakly 
nondominated minimal point of A if 

A n (y* - intC{y)) = 0, \fye A. (1.1) 

We denote the set of all weakly nondominated minimal points of A by 
MinintC(y)^- " 

Using the ordering notation, (1.1) is equivalent to that, for any 2/1,2/2 ^ ^5 
it follows that 

yi ^intc(y2) y*-

In fact. Definitions 1.11 and 1.12 deal with a similar "minimal" case as 
in Definitions 1.4 and 1.7. By the same way, we can define a nondominated 
maximal point and a weakly nondominated maximal point of A similar to 
"maximal" in Definitions 1.4 and 1.7. 

We propose the following alternative concepts of nondominated minimal 
points for vector optimization problems with a variable domination structure. 

Definition 1.13. Let C :Y ^Y be convex set valued or convex cone valued, 
and int C{y) 7̂  0, Vy G Y. Let A be a nonempty subset inY. A point y'^ e A 
is called a nondominated-like minimal point of A, if 

{A-y*)n{-C{y*)\m^<D. 

A point y* is called to be a weakly nondominated-like minimal point of A, 

if 
(A-2/*)n(-mtC(2/*)) = 0 . 

We denote the set of all nondominated-like minimal points of A and the 
set of all weakly nondominated-like minimal points of A by LMmc{y)A and 
LMmintc{y)A respectively. 

The following example shows that the two definitions of weakly nondomi­
nated minimal points given in Definitions 1.12 and 1.13 may be different. 

Example I.I4. Let Y = IB? be a 2-dimensional Euclidean space, and A = 
{(2/1,2/2)^ G IR^ 1 < 2/1 < 2,2/2 = 1}. Let 

C{y) = {{du d2V eJR^ :d2 + kdi >0,di> 0}, 

where y = {2 — k, 1)^, 0 < A: < 1. It is easy to verify that only y^ = (1,1)^ 
is a weakly nondominated minimal point of A. But, by definition, both 2/1 = 
(1,1)^ and 2/2 = (2,1)^ are weakly nondominated-like minimal points of A. 

Let C : X =4 y be a set-valued function such that for each x G F , C{x) 
is a nonempty convex cone or a nonempty convex set with 0 G 9C(x), for all 

xex. 
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The set-valued function C or the family of sets {C{x) : x G X} is also called 
a domination structure on Y. The domination structure describes a variable 
ordering structure or a variable preference structure in vector optimization 
problems with an objective function. 

We define relations <c{x), ^c(x), <c(x)\{o}, ^c{x)\{o}, <intc(x), and 
^intc{x) with respect to the convex cone C{x) as follows: for any yi,y2 ^ y•, 

2/1 <c{x) 2/2 <̂ =̂  2/2 - yi e C{x)\ 

2/1 ^C(rr) 2/2 <̂ => 2/2 - 2/1 ̂  C'(^); 

2/1 <C(a.)\{0} 2/2 <=^ 2/2 - 2/1 ̂  C(^) \ {0}; 

2/1 ^C(x)\{o} 2/2 <=^ V2-V\^ C{x) \ {0}; 

2/1 <mtc(a:) 2/2 <==̂  2/2 - 2/1 ^ intC{x)\ 

2/1 ^intc{x) y2 '^=^ 2/2 - yi ^ intC{x). 

Similarly, we can define >c(cc), ^C(x), >c(a;)\{o}j 2c(a;)\{o}5 >intc{x), and 

Definition 1.15. Let C : X =tY be convex set valued with 0 G 9C(x), Vx G 
X or convex cone valued. Suppose that K <Z X and f : K -^ Y is a vector-
valued function, x* e K is said to be a nondominated-like minimal solution 
of f with respect to C{x) if 

( / ( i^)- / (cr*) )n(-C(x*) \{O}) = 0. 

The set of all nondominated-like minimal solutions of f with respect to C{x) 
is denoted by LMinc{x))f{K). 

Suppose that intC{x) 7̂  0,Vx G X. x* G i^ is said to be a weakly 
nondominated-like minimal solution of f with respect to C{x) if 

{f{K) - fix*)) n i-intCix*)) = 0. 

The set of all weakly nondominated-like minimal solutions of f with respect 
to C{x) is denoted by LMinintc{x)f{K). 

Definition 1.16. Let (Y", C) be an ordered Hausdorff topological vector space 
and A CY. A point z e A is called an infimum point of A if 

(i) y ^c\{o} z, yy GA and 
(a) there exists a sequence {zk} C A such that Zk ^^ z as k —^ 00. 
We denote by InfA the set of infimum points of A. 

A point z E A is called a supremum point of A if, 
(i) y ^c\{o} z, My e A and 
(a) there exists a sequence {zk} C A such that Zk —^ z as k -^ 00. 
We denote by Sup A the set of supremum points of A. 
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Clearly, if z is a minimal point of A, then z is an infimum point of A. 

Definition 1.17 ([177]). Let (YiC) be an ordered vector space, and A CY 
be nonempty, ao E A is called an upper bound of A if ao >c a^Ma G A. If ao 
is an upper bound of A and ao <c b for any upper bound b of A, then ao is 
unique and called the absolute supremum (least upper bound) of A. We denote 
ao = ASupcA. Similarly, we can define the absolute infimum (largest lower 
bound) of A and denote it by AInfcA. 

Definition 1.18 (Luc [142]). 

(i) The cone C is called Daniell if any decreasing sequence having a lower 
bound converges to its infimum; 

(ii) A subset A of Y is said to be minorized, if there is a y G Y such that 
Ac{y} + C. 

Consider the scalar optimization problem: 

(P) niin(^(x), 
xeK 

where K C X is a, nonempty set and (/? : X -^ IR is a real-valued function. 
(i) X* G K is called an optimal solution of (P) if 

(̂ (x*) < (p{x), \/x e K. 

(ii) X* E K is called a local optimal solution of (P) if there exists a neigh­
borhood U{x*) of X* such that 

V (̂a:*) <ip{x), VxGi^n t / (x* ) . 

1.2 Elements of Set-Valued Analysis 

In this section, we present necessary concepts and results in set-valued anal­
ysis. More detailed investigation of set-valued analysis can be found in Aubin 
and Frankowska [6] and Aubin and Ekeland [5]. Some particular concepts and 
results of set-valued analysis are presented in the following context. 

Let X,Y he two Hausdorff topological spaces and F : X =t y a set-valued 
function. 

Definition 1.19. F is said to be closed if its graph 

GriF) = {{x,y):xeX,yeF{x)} 

is closed. 

Definition 1.20. (i) F is said to be upper semicontinuous (u.s.c. in short) 
atxo G X if, for any neighborhood V{F{xo)) of the set F{xo), there exists 
a neighborhood U{xo) of the point xo such that 

F{x) C V{F{xo)), Vx G U{xo). 
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(ii) F is said to be lower semicontinuous (l.s.c, in short) atxo e X if for any 
y G F{xo) and any neighborhood V{yo) of yo, there exists a neighborhood 
U{xo) of the point XQ such that 

F{x)nV{yo)^0, yxeU{xo). 

(iii) F is said to be continuous at XQ if F is both u.s.c. and l.s.c. at XQ. 
(iv) F is said to be continuous on X if it is continuous at every x E X. 

Proposition 1.21. [5] Let X be a topological space and Y a locally convex 
topological vector space. Suppose that F : X ^ Y is a set-valued function 
which is u.s.c, nonempty and closed-valued. Then F is closed. 

Definition 1.22. A set-valued function F : X ::=tY is said to have open lower 
sections if the set F~^{y) = {x G X : y e F{x)} is open in X for every y GY. 

Proposition 1.23 (Tian [192]). LetX be a topological space andY a convex 
set of a topological vector space. Let F : X =tY and G : X ^Y be set-valued 
functions with open lower sections. Then 

(i) the set-valued function M : X ::4 Y, defined by M{x) = co(G{x)) for all 
X e X, has open lower sections; 

(ii) the set-valued function Q : X ^Y, defined by Q{x) = G{x)r\F{x) for all 
X E X, has open lower sections. 

Definition 1.24. Let F :Y :i:tY be a set-valued function. 
(i) The vector-valued function e '.Y -^Y is said to be a selection of F if 

e{y) e F{y), for every y eY. 
(ii) e :Y -^ Y is said to be a continuous selection of F if e is a selection 

of F and e is continuous on Y. 

Theorem 1.25 (Generalized Browder Selection Theorem). Let K be 
a nonempty compact subset of a Hausdorff topological vector space, and let 
V be a subset of a topological vector space. Suppose that H : K =t V is a 
set-valued function with nonempty convex values and has open lower sections. 
Then there exists a continuous selection h : K -^V of H. Moreover, h{K) is 
contained in the convex hull of a finite subset M C.V. 

Proof. For each v G V^ H~^{v) is open, and each point x G K lies in at 
least one of these open subsets. Since K is compact, there exists a finite 
set M = {vir" ,Vk} C V such that K = Ui^iH~^{vi). Let {/?i,--- ,/?fc} 
be a partition of unit subordinated to this covering, i.e., each Pi is a con­
tinuous function from K to [0,1], which vanishes outside of H~^{vi), while 
E J L I A ( ^ ) = 1 for all X in K. 

Now, we define the continuous function h : K —^ co{M) by h{x) := 
Yli=iPi{x)vi. Clearly, /3i(x) > 0 implies that x G H~^{vi) and therefore 
Vi G H{x). Thus h{x) is a convex linear combination of points of H{x). Since 
H{x) is assumed to be convex for each x G X, it follows that h{x) G H{x). 
The theorem is proved. • 
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Theorem 1.26 (Browder Fixed Point Theorem). Let K be a nonempty, 
compact and convex subset of a Hausdorff topological vector space. Suppose 
F : K ^ K is a set-valued function with nonempty convex values and open 
lower sections. Then F has a fixed point in K. 

Theorem 1.27 (Fan-Glicksber-Kakutani). Let K be a nonempty com­
pact subset of a real locally convex Hausdorff vector topological space. If 
F : K =t K is upper semi-continuous and, for any x G K, F{x) is a nonempty, 
convex and closed subset, then F has a fixed point in K. 

Definition 1.28. A nonempty topological space is said to be acyclic if all of 
its reduced Cech homology groups over the rational vanish. 

In particular, any contractible space is acyclic, and hence any convex or 
star-shaped set in a topological vector space is acyclic. 

Theorem 1.29. [159] Let K be a compact convex subset of a locally convex 
Hausdorff topological vector space, and F : K ^ K be an upper semicontinu-
ous set-valued function with nonempty, closed and acyclic values. Then F has 
a fixed point in K. 

Now, we introduce the concepts of the contingent tangent cone of a set 
and the contingent derivative of a set-valued function. 

Let X and Y be two topological vector spaces, and K a nonempty subset 
oiX. 

Definition 1.30. Let x e K. The set T{K,x) C X is called a contingent 
tangent cone to K at x if 

T{K,x) = {xeX : 3{xk} C X and {hk} C iR+\{0}, 

s.t. Xk -^ x^hk -^ 0 and x -j- hkXk € i^, VA:}. 

We know that (i) if X is a normed space, then T[K^ x) is closed and (ii) 
if iiT is a convex set, then T{K^ x) is also convex. 

Obviously, if (X, || • ||) is a normed space, then 

T{K, x) = ne>o n ^ o no<^<a(((i^ - x)/h) + eB), 

where B = {x e X \ \\x\\ = l). 

Definition 1.31. [6] Let G : X :=^Y be a set-valued function, and let (x^y) 
be a point of Gr{G). We denote by DG{x,y) the set-valued function from X 
to Y whose graph is the contingent tangent cone T{Gr{G), (x, y)) C X xY. 
DG{x^y) is called the contingent derivative of G at (x,y). 
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It is useful to note that y G DG{x, y){^) if ^nd only if there exist {hk} C 
IR+\{0} and {{xk.yk)} C X xY, such that hk -^ 0, {xk.Vk) -> {x,y) and 
y + /î yfe G G(x + /i/ca:/c) for all n. 

Let X and Y be two Banach spaces. We denote by L{X^Y) the set of 
all linear continuous operators from X to F . The value of a linear operator 
/ : X -^ y at a point x is denoted by (/, x). For any A G Z/(X, F ) , we 
introduce a norm 

||A|U = sup{ | | ^ (x ) | | : | | a ; | | < l } . 

Since F is a Banach space, I/(X, Y) is also a Banach space with the norm 
II • | |L (or II • II in short). 

Definition 1.32. Let f : K C X -^ L{X,Y) be a vector-valued function, f is 
said to be Frechet differentiable at XQ G K if there exists a linear continuous 
operator ^ : X —^ L{X, Y), such that 

^^ \\f{x)-f{xo)-^{x-Xo)\\ ^ ^ 
x-^xo ||x-Xo|| 

^ is called the Frechet derivative of f at XQ. If f is Frechet differentiable at 
every x of K, f is said to be Frechet differentiable on K. 

Definition 1.33. Let f : K C X -^ Y be a vector-valued function, f is 
said to be Gateaux differentiable at XQ e K if there exists a linear function 
Dfi^o) ' X —^Y such that, for any v e X, 

{Df{xo),v) = lun . 

Df{xo) is called the Gateaux derivative of f at XQ. If f is Gateaux differen­
tiable at every x of K, f is said to be Gateaux differentiable on K. 

Theorem 1.34 (Knaster, Kuratowski and Mazurkiewicz (KKM, in 
short) Theorem). Let E be a subset of a topological vector space V. For 
each x e E, let a closed and convex set F{x) in V be given such that F{x) 
is compact for at least one x E E. If the convex hull of every finite subset 
{xi, X2, • • • , Xk} of E is contained in the corresponding union \J^^-^F{xi), then 
r\x^EF{x) i^ 0 . 

A set-valued F : E :=t E function is called a KKM map if we have 
co{xi, • • • , Xk} C U^^iF(xi) for every finite subset {xi, • • • , Xk} of E. 

Definition 1.35. Let T be a mapping from X into L{X^Y). T is called v-
hemicontinuous if for every x,y G X, the mapping t -^ {T{^ + ty),y) ^̂  
continuous at 0" .̂ 
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Definition 1.36. Let X and Y be topological vector spaces, C C Y be a 
nonempty convex cone with intC ^ 0 and C ^ {0} or Y. Let T : X —> 
L(X, Y) be a mapping. 

(i) T is called C-monotone, if, for every x,y e X, 

{T{x)-T{y),x-y) > c 0; 

(ii) T is called strictly C-monotone, if, for every x, y € X and x ^ y, 

{T{x)-T{y),x-y) >intc 0. 

Definition 1.37. Let X and Y be topological vector spaces and C C Y be 
a convex cone. The set-valued function T : X ^ L{X^ Y) is said to be C-
monotone if and only if 

{u2 -ui,y- x) >c 0, yx,yeX^me F{x),U2 e F{y). 

It is clear that any selection of a C-monotone set-valued function is also 
C-monotone. 

Definition 1.38. Let X and Y be Banach spaces, C C Y be a convex cone 
with nonempty interior intC and intC* ^ 0. Let K be a convex and un­
bounded subset of X. We say that a mapping T : K -^ L{X,Y) is weakly 
coercive on K if there exist XQ E K and c G intC* such that 

(coT(x) — coT{xo),x — xo)/\\x — xo\\ —> +oo, 

whenever x e K and \\x\\ —^ +oo. 

It is easy to see that if F = IR, then L{X,Y) = X\ intC* = IR+ = {a G 
IR : a > 0}, and the weakly coercive condition reduces a standard coercive 
condition in "scalar" variational inequality. 

1.3 Nonlinear Scalarization Functions 

A useful approach for analyzing a vector optimization problem is to reduce 
it to a scalar optimization problem. Nonlinear scalarization functions play an 
important role in this reduction in the context of nonconvex vector optimiza­
tion problems. 

Let y be a Hausdorff topological vector space, C C F a closed and convex 
cone of Y with nonempty interior intC. 
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Definition 1.39. A function ij) :Y —^ IR is monotone if, for any yi, i/2 ^ ^, 

yi >c 2/2 =^ V (̂yi) > '0(^2). 

A function i/j :Y ^^ M is strictly monotone if, for any yi,y2 ^Y, 

yi >intC 2/2 = ^ 1p{yi) > '0(2/2). 

A function I/J :Y -^ IR is strongly monotone if, for any 2/1,2/2 ^ y, 

yi >c\{0} 2/2 =^ V (̂2/i) > '0(2/2). 

The following nonlinear scalarization function is of fundamental impor­
tance to our analysis. The original version is due to Gerstewitz [77]. Its first 
appearance in English seems to be due to Luc [142]. 

Definition 1.40. Given a fixed e G intC and a EY, the nonlinear scalariza­
tion function is defined by: 

iea{y) = mm{t eIR:yea + te-C}, y eY, (1.2) 

Proposition 1.41. The function ^ea is well-defined, that is, the minimum in 
(1-2) is attained. 

Proof. For any y ^Y^ define 

L = { A G B : ye\e-C}. 

It is sufficient to show that L is bounded from below and a closed subset in 

Suppose that 

{\k} C L and A/c -^ A*, as fc —̂  +00. 

We have 
Xke-y e C, \fk. 

By the closedness of C, we have 

A*e - 7/ G C. 

It implies that A* G L. Thus, L is closed. 
Assume that, for each r G IR, there exist Ar> G IR such that Xr < r and 

y G Ar-e — C. By Lemma 1.51 (ii), there exists a G H such that y ^ ae — C. 
By Lemma 1.51(iii), 

y ^ jie — C, V/i < a, 

a contradiction. Thus, L is bounded from below. • 
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If Y is the ^-dimensional Euclidean space IR ,̂ and C = IR^, e — 
(ei, 62, • • • , e^)^, a — (ai, a2, • • • , a^)^, then the function ^ea may be rewritten 
as 

^ea{y) = niax{(2/i - ai)/ei : 1 < i < ^} , for ?/ = (yi, 2/2, •' * , y^)"^-

It can be verified that ^ea is a continuous and convex function on F , and 
it is monotone and strictly monotone. 

Remark 1.42. The function <̂ea plays an important role in many areas of mul-
ticriteria, or vector optimization problems. Note, however, that the function 
^ea is not strongly monotone. It is for this reason that the function ^ea is more 
useful in dealing with weakly minimal points. 

Proposition 1.43. For any fixed e G intC, y EY and r E M, we have 

(i) ^eo{y) < r 4=^ y ere- intC; 
(ii) ^eo{y) <r <=^ y ere-C; 

(iii) ^eo(y) = r <=^ y ere- dC\ 
(iv) ^eo{re) = r. 

Proof. Follows directly from Definition 1.40 of ^ea- • 

Sometimes, we denote êo by ^e-

Proposition 1.44. LetC = {y eY : f{y) < 0 , / G F}, where F C F*\{0}. 
Assume that intC ^ 0 . Let e G intC and a eY. Then, for y eY, 

-<'>=?^f{^^^}-
Proof Firstly, we prove that, for all f e F, /(e) < 0. Assume to the contrary, 
i.e., there exists fo e F such that /o(e) > 0. Since /o 7̂  0 and /o is a 
linear functional, there exists an yo ^ ^ such that /o(yo) < 0. Observe that 
e G intC. Thus, if a > 0 is small enough, we have e — ayo G C. It follows from 
the definition of C that 

0 > /o(e - ayo) = /o(e) - afo{yo) > 0, 

a contradiction. 

Furthermore, since y e a + ^ea{y)e — C, 

f{y-U{y)e-a)>o, yfeF 

Since / is linear, 

f{y)-U{y)f{e)-f(a)>o. 
As /(e) < 0, we have 
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Consequently, 

Conversely, let 

iea{y) > —TT^x—, v / e r. 

-'">^?"f{^^^}-

Then 

to = sup < —— 
fer { /(e) 

J7-. < to, V/ G r . 
/(e) 

Observing that /(e) < 0 and that / is linear, we have 

/ ( y - a - ^ o e ) > 0 , V/G T, 

which implies that y — a — toe <c 0 by the definition of C By the definition 
of <̂ ea, we have 

0̂ > £.ea{y) = min{t G IR : y G a + te - C}. • 

Corollary 1.45. Let C :={yeY : fi{y) < 0, /^ G F*, i - 1,2, • • • , m}. Then 

l<i<m I fi[e) J 

^eo(y)- max { f ^ } , yyeY. 
l<i<m lfi{e) J 

Corollary 1.46. Let Y = M^ and C = IR^^, e = (1,1, • • • , 1)"^ G IR^. Then, 
for any a G IR^, y G IR^, 

£,ea{y) = m a x b i - a i ] , 

^eo{y) = max [y ]̂, 
i<i<i 

Proof. In Corollary 1.45, let m = ^ and fi{y) — —yi^i = 1,2, ••• ,^. Thus 
C = {y eY : fi{y) < 0,/i G y*\{0},z - 1,2, • • • , ^ } . Then the conclusion 
follows directly from Corollary 1.45. • 

Proposition 1.47. For e G intC, a ^Y and b G -C, 

^ea{y-b) >Cea{y), 

and the equality holds for b E C D {—C). 
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Proof. The conclusions follow directly from the monotonicity of ^ea- • 

Now we introduce a nonlinear scalarization function for a variable domi­
nation structure. 

Let y be a locally convex Hausdorff topological vector space. Let C :Y ^ 
y be a set-valued function and, for any y eY^ C{y) he a, proper, closed and 
convex cone with intC{y) j^ 0 and e : y -^ y be a vector-valued function 
and for any y e X, e{y) G intC{y). Let y* be the dual space of y , equipped 
with weak star topology. Let C* : y =1 y* be defined by 

C*{y) = {4>eX'':{cf>,z)>0, Vz € C(2/)}, VyGY. 

Thus, the set 
B*{y) = {4>GC*{y):{<l>,e{y))=l} 

is a weak star compact base of the cone C*{y). 

Definition 1.48. The nonlinear scalarization function ^ : Y x Y -^ IR is 
defined by 

^{y, z) = mm{XeIR: ze Xe{y) - C{y)}, {y, z)eYxY, 

Remark 1.49. (i) Let C be a proper, closed and convex cone in Y with intC ^ 
0, and let e G intC. Recall that in Definition L40 

S,eo{z) = mm{t elR: z ete- C}, z eY. 

If, for any y E Y, ^iv) = C' and e{y) = e in Definition 1.48, then ^{y, z) 
reduces to <̂ eo(̂ )-

(ii) Let e G int C\y£Y C{y) ^ 0. A nonlinear scalarization function in [42] is 
defined as 

^e(2/, z) = mi{t elR:zete- C{y)}. (1.3) 

We note that if for any y e Y, e(y) = e, the function ^{y, z) reduces to 
^e{y^z). In the new definition oi^{y^z) (Definition 1.48), the assumption 
int C\y^Y C{y) ^ 0 is removed. 

Lemma 1.50. [78] For each y eY, 

Y = U{Xe{y)-intC{y): A G iR+\{0}}. 

Lemma 1.51. For X e M and y eY, we set C\{y) = Xe{y) — C{y). 

(i) If z e C\{y) holds for some X e M, and y eY, then 

z e /jie{y) — intC{y)^ for each fi > X] 

moreover, 
z e lJie{y) — C{y), for each /i > A. 
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(ii) For each y^z eY, there exists a real number X e M such that z ^C\ (y). 
(iii) Let z £Y. If z ^ C^xiv) /^^ some X G JR, and y GY, then 

z ^ Cfj,{y), for each /i < A. 

Proof (i) Let /x > A and let z G C\{y) hold for some y GY, We have 

fie{y) -z={fi- X)e{y) + Xe{y) -zG intC{y) + C{y) C intC{y). 

Thus, 
z G fie{y) - intC{y) C /ie(y) - C{y). 

(ii) Let us assume that there exist yo^zo G Y such that, for all A G H, 
ZQ G Cx{yo). From (i), we have 

ZQ G Ae(yo) - intC{yo), for all A G IR. 

Thus, 
{Xe{yo) - zo : A G H} C intC{yo); 

equivalently, 
{-Xe(yo) -ZQ: XGJR} C intC{yo). 

From Lemma 1.50, we have 

Y = {Xe{yo) - intC{yo) : A G IR+\{0}}. 

Therefore, for each y G Y, there exist c G intC{yo) and a G IEI'^\{0} such 
that 

-y = ae{yo) - c; 

then, 

y = -ae{yo) + c 

= (-ae(yo) -zo) + c-\- ZQ 

G intC{yo) + intC{yo) + ZQ 

= ZQ -\-intC{yo). 

Thus 
Y C zo-\-intC{yo). 

This contradicts C{yo) "^Y. 

(iii) Let 
z ^ C\{y), for some A G IR and y GY. 

Suppose that, for some fi < X, z G C/^{y). From (ii), we have that z G C\{y). 
This contradicts the assumption. • 
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Proposition 1.52. The function ^ :Y xY ^^ JR is well defined. 

Proof. For any y,z EY, define 

L = { A G I R : zeXe{y)-C{y)}. 

It is sufficient to show that L is bounded from below and a closed subset in 
IR. 

Suppose that 

{Xk} C L and A/e ^ A*, as A; —̂  +oo. 

We have 
A/ce(yo) - z e C{y), Vn. 

By the closedness of C(y), we have 

\*e{y) - z e C{y). 

It implies that A* G L. Thus, L is closed. 
Assume that, for each r G IR, there exist Â  G IR such that Xr < r 

and z G Xre{y) — C{y). By Lemma 1.51 (ii), there exists a G IR such that 
z ^ ae(yo) — C{y). By Lemma 1.51(iii), 

z ^ /ie(y) - C(y), V/i < a, 

a contradiction. Thus, L is bounded from below. • 

Proposition 1.53. For any (y, z) eY xY, 

(0, z) 
^(y, 2;) = max 

0€B*(y) (0,e(y))' 

^/lere 5*(y) 5̂ a 6a5e of C*{y). 

Proof. We show firstly, 

^(y,zj - sup^ec*(y)\{0} ( 0 ; ^ ( ^ -

Since ^(y,2;) = min{A G IR : 2: G Ae(y) - C(y)}, 2: G ^{y,z)e{y) - C{y), 
equivalently, 

i{y,z)e{y)-zeC{y). 

For any (j) G C*(y)\{0} C C*(y), we have (0, <̂ (y, 2:)e(y)-2:) > 0, equivalently, 

^(y,z)((/>, e(y))-((/>, ^) > 0. 
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Because e{y) € intC{y) and (f) € C*{y)\{0}, then, we have (0, e(t/)) > 0. So 

^{y, z) > , j ^ ' f \ , • That is to say, 

{4>, z) 

On the other hand, let 

, _ {<̂ , z) 

Ao - sup^gc-(y)\{o} • (^;7(^-

So, forany<^eC*\{0} ,Ao>7^^^ .Since(<A,e(y) ) > 0, Xo{4>,eiy)-z) > 

0. Then, Aoe(y) — z £ C{y), i.e. z G Aoe(i/) — C{y). From the definition of (,, 
Ao > C(2/, z) = mini A € R : 2; € Ae(y) - C{y)}, i.e., 

So we have 

Since -B*(?/) is the base of C*{y) for any y eY, (j) e C*(y)\{0}, there are 
A > 0, and ip G ̂ *(y) such that (j) = Xip. So for any y G F , 

(0, y) {X(f, y) {(f, y) 
(0, e[y)) {X(f, e{y)) {if, e{y))' 

So we have 

(0, z) _ {(j), z) 

i.e. 

'{<P.e{y)y 

Since ^*(2/) is weak star compact, Hy, z) = max , , \ i, - • 
<^€B*(y) ((/>,e(y)) 

Proposition 1.54. For eac/i r € M and y,z e Y, the following statements 
are true. 

(i) ^{y, z) <r <=^ z G re{y) - intC{y). 
(ii) ^{y, z) <r ^=^ z G re{y) - C{y). 
(iii) £^{y, z) > r 4=^ z ^ re{y) - intC{y). 
(iv) ^{y,z) > r <=> z ^ re{y) - C{y). 
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(v) ^(y, z) = r^=^ze re{y) - dC{y). 

Proof. We only prove (i). The proofs for other assertions are similar and 
omitted. Indeed, 

^{y z) <r <^=> max ,f',.. < r 

{cl>,z) < r{cj>,e{y))M^B''{y) 

{ct>,re{y) - z) > 0,y(l> e B*{y) 

^>{ct>,re{y)-z) > 0, V0 G C*(y)\{0} 

<=> re{y) — z e intC{y) 

<̂ => z G re{y) — intC{y). 

Proposition 1.55. Let Y he a locally convex Hausdorff topological vector 
space. Then, for any given y EY, 

(i) ^(2/, •) is positively homogenous; 
(ii) ^(y, •) is strictly monotone, that is, if zi >intc(y) ^2, then 

i{y^Z2) < ^{y^zi). 

Proof, (i) Let /i > 0. For z eY^we have 

((/>, fl Z) 
^{y,ldz)= max 

<t>eB*{y) (</>,e(y)) 

jj, m a x 
<f>eB*{y) {(t>,e{y)) 

(ii) Let zi >intciy) ^2- Set r = ^{y^zi). By the definition of ^{y^zi)^ we 
have 

Z2 ^ zi — intC{y) C re{y) — C{y) — intC{y) C re{y) — intC{y). 

By Proposition 1.54 (i), we have 

i{y,Z2) <r = ^{y,zi). • 

Proposition 1.56. For any fixed y GY, and any zi,Z2 G Y, 

(i) ^{y, zi + Z2) < <f(y, zi) + ^(y, 2:2); 

(ii) ^(y, zi - Z2) > ^{y, zi) - ^{y, Z2). 
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Proof, (i) 

^{y, zi + Z2) = max , . . .̂  

< max -n—rrr + "i^x 
0€B* (y) ((/), e(y)) </>€S* (y) (0, e{y)) 

= i{y^zi)-^i{y,Z2). 

(ii) It follows from (i) that 

^(y, ^i) = ^{y^ zi-Z2-\- Z2) < i{y, zi - Z2) + ^(y, 2:2). 

Then, ^(2/, zi) — ^(2/, 2:2) < ^(2/, ̂ ^̂i — 2:2)- This implies that (ii) holds. • 

Theorem 1.57. Let Y he a locally convex Hausdorff topological vector space, 
and let C :Y ::4Y be a set-valued function such that for each y £Y, C{y) is 
a proper, closed, convex cone in Y with intC{y) 7̂  0 . And let e : Y -^ Y be 
a continuous selection of the set-valued function intC{'). Define a set-valued 
function W : F =^ y by W{y) = Y\intC{y), for y £Y. We have 

(i) If W is upper semi-continuous, then ^(•,-) is upper semi-continuous on 
Y xY; 

(ii) If C is upper semi-continuous, then ( ^ ( T ) is lower semi-continuous on 
Y xY. 

Proof, (i) In order to show that ^(•, •) is upper semi-continuous, we must check, 
for any A G IR, the set 

A:={{y,z)eYxY'.(^[y,z)>r} 

is closed. Let {yoi.Za) G A and (ya.Za) -^ (yo.zo). We have ^{yoc.Za) > r, 
that is to say, by Proposition 1.54 (iii), that 

Za ire{ya)-intC{ya)' 

Namely, re{ya) — Za ^ Y\intC{ya) = W{yoc). Since e(-) is continuous on 
y , {re{yot) — Za^y^) —^ {re{yQ) — zo^yo)- Since W is upper semi-continuous 
and closed-valued, by Proposition 1.21, Ŵ  is closed. So re{yo) — ZQ G W{yo). 
Namely, ZQ ̂  re{yo) — intC{yo). By Proposition 1.54 (iii), it is equivalent to 
(̂2/05 ZQ) > r. So, A is closed, i.e., (̂ (•, •) is upper semi-continuous on y x y . 

(ii) In order to show ^(^ •) is lower semi-continuous, we must check, for 
any A G IR, the set 

B:={{y,z)eYxY:ay,z)<r} 

is closed. Let (2/a,^a) G B and {yo^Zo) -^ (yo.zo). We have ^{y^^Za) < r, it 
is to say, by Proposition 1.54 (ii), 
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Za Gre{ya)-C{ya). 

Since e(-) is continuous on F , {re{ya) - Za,ya) -^ (^e(yo) - zo.yo). Since C(-) 
is upper semi-continuous and closed-valued, by Proposition 1.21, C is closed. 
So re{yo) - ZQ G C{yo). Namely, ZQ e re{yo) — C{yo). By Proposition 1.54 
(ii), it is equivalent to ^{yo, ^o) ^ -̂ So, B is closed, i.e., ^(•, •) is lower semi-
continuous on y X X. • 

Remark 1.58. (i) If y is a paracompact space, and intC~^{x) = {y e Y : 
X G intC{y)} is an open set and for each y EY, intC{y) ^ 0 and C{y) 
is convex, by the Browder continuous selection theorem, intC{') has a 
continuous selection e(-). 

(ii) If e G int fly^y C{y), we could let, for any y €Y, e{y) = e. The function 
e is also continuous. 

The following examples are to show that if C {W, respectively) is not 
upper semi-continuous, then ^(•, •) is not lower semi-continuous (upper semi-
continuous, respectively) even if all the other conditions of Theorem 1.57 are 
satisfied. 

Example 1.59. Let Y = IR^, the 2-dimensional Euclidean space. Let 

A = cone{{{yi, 2/2)"̂  G IR^ : t/i + 2/2 = 2, - < 2/1 < -} ) , 

B = cone{{{yuy2V G H^ : yi + 2/2 = 2,0 < yi < -} ) , 

C = cone{{{yuy2y G B^ : 2/1 + 2/2 = 2, - < yi < 2}). 

The set-valued map C :Y ^Y is defined by 

C{{yuy2V)=\ 

Thus, 

A, if yi = 0; 

B, i f2 / i>0; 

C, i f y i < 0 . 

\Y\intA, iiyi = 0] 
W{{yuy2)'^) = < Y\intB, if yi > 0; 

[Y\intC, i fy i<0 . 

Let e = (1,1)"^ and for any y = (yi, 2/2)"̂  G Y, e(y) = e. 
Note that for any y EY, intC{y) ^ 0 and e G intC{y). We also note that 

W{') is upper semi-continuous, so (̂-5 •) is upper semi-continuous on y x F . 
But C(-) is not upper semi-continuous. Note that the level set of the function 
^ a t 0, 
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i (? ,0) = {((2/1,2/2^,(^1,^2)^) € ]R2 X M ^ ^((2/1,2/2)^,(^1,^2)^) < 0} 

= ({(2/1,2/2)^ € R ^ 2/1 = 0} X (-A)) U 

( { ( 2 / 1 , 2 / 2 ) ' ' € i R ' : y i > o } x ( - B ) ) 

U({(2 / i ,2 /2)^eIR2:2/ i<0}x(-C)) , 

is not a closed set. That is to say, ^(-j •) is not lower semi-continuous. 

Example 1.60, Let Y — IR^, the 2-dimensional Euclidean space. Let 

1 3 
A - cone({(yi,2/2)^ G IR^ : 2/1 + y2 = 2, - < 2/1 < -} ) , 

5 - cone({(yi,2/2)'^ G IR^ : 2/i + y2 = 2,0 < yi < 2}), 

The set-valued map C : y =t y is defined by 

^ / / xTx f̂ ^ if 2/1 = 0; 
[ A ifyiT^o. 

Then, 

W[[yuy2) ) <^Y\intA, ifyi^O. 

Let e = (1,1)"^ and for any y = (2/1,2/2)^ ^ y , e(2/) = e. 
Note that for any y G F , intC{y) ^ 0 and e G intC{y). We also note that 

C(-) is upper semi-continuous, so ^(^ •) is lower semi-continuous on F x y . 
But W{') is not upper semi-continuous. Note that the strict level set of the 
function ^ at 0, 

L,(^,0) = {((^1,2/2^, {ZUZ2V) € IR2 X IR^ ^((2/1,2/2)^, {zuZ2y) < 0} 

= ({(2/1,2/2)^ G IR' : yi = 0} X {-intB)) U 

({(yi,2/2)"^ G IR^ yi 7̂  0} X i-intA)) 

is not an open set. That is to say, ^{-^ •) is not upper semi-continuous. 

1.4 Convex and Generalized Convex Functions 

In this section, we introduce some concepts of (generalized) convexity for 
vector-valued and set-valued functions. 

Let X, Y be two topological vector spaces, C C Y a. convex cone with 
nonempty interior intC. 

Definition 1.61. (i) A set A C Y is said to be C-bounded below if there exists 
b such that A cb-\- C. 
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(a) A set A C Y is said to be C-bounded above if there exists b such that 
Acb-C. 
(Hi) A is said to be C order bounded if A is both C-bounded below and C-
bounded above. 
(iv) A set A ^Y is said to be strongly C-bounded below if there exists b G —C 
such that A<zb-\- intC. 
(v) A set A CY is said to be C-convex if A-\- C is a convex set. 

Let K <Z X he d, nonempty subset, and let / : if —> F be a vector-valued 
function. We denote the C-epigraph of / by 

ep ic / = {{^.y) eKxY:xeK,ye f{x) + C}. 

Definition 1.62. Let K C X be a convex set and f : K —^ Y be a vector-
valued function, K a nonempty convex subset ofY. 

(i) / is C-convex on K if, for any xi, X2 € i^, A G [0,1], 

f{\xi + (1 - \)X2) <c A/(xi) + (1 - A)/(X2), 

i.e., 
f{Xxi + (1 - X)x2) e Xf{xi) + (1 - X)f{x2) - C; 

(ii) / is strictly C-convex on K if, for any xi , X2 G iiT, xi 7̂  X2, A G [0,1]; 

/(Axi + (1 - X)x2) <intc A/(xi) + (1 - A)/(X2), 

i.e., 
f{Xxi + {1- X)x2) G A/(xi) + (1 - A)/(X2) - intC; 

(iii) / is C-quasiconvex on K if, for yGY,xi,X2^K,XE [0,1], 

/ (x i ) , f{x2) ey-C implies f{Xxi + (1 - A)x2) ey-C\ 

(iv) / is strictly C-quasiconvex, if, for y EY, XI ,X2 GJPC, xi i=- X2, AG (0,1)^ 

/(^i)? /(^2) ^y — C implies f{Xx\ + (1 - A)a:2) G y — intC. 

Definition 1.62 is a generalization of the convexity and quasiconvexity of 
real-valued functions, respectively. 

/ : iiT —> y is called a C-concave function on K if —/ is C-convex on K. 
Similarly, we can define the strict C-concavity and (strict) C-quasiconcavity 
of vector-valued functions. 

Proposition 1.63. Let K be a nonempty convex subset of X. Assume that f 
is Gateaux differentiable on K. Let Y be a Hausdorff topological space ordered 
by a closed and convex cone C. If f is C-convex on K, then, for every x,y e K, 

fiy)>cf{x) + {Df{x),y-x), 

where Df{x) is the Gateaux derivative of f at x. 
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Proof. Let / be Gateaux differentiable on K. If / is C-convex on K, then for 
any x,y & K, and t € (0,1), 

f{ty + (1 - t)x) e tfiy) + (1 - t)f{x) - C, 

fix + t{y - x)) € tf{y) + (1 - t)f{x) - C, 

/(y)€/(.) + fctfcll^iM + a 
As t —> 0+, we have 

/(2/)>c/W + WW,2/-x). • 

Similarly, we have 

Proposition 1.64. Let K he a nonempty convex suhset of X. Assume that f 
is Gateaux differentiable on K. Let Y be a Hausdorff topological space ordered 
by a closed and convex cone C. If f is C-concave on K, then, for every 

f{y)<cf{x) + {Df{x),y-x). 

Definition 1.65. Let C be a closed, convex and pointed cone in Y with the 
nonempty interior intC, K be a closed and convex subset of X. Let x^y E K, 
and t G (0,1). A set-valued function F : K ^Y is said to be: 

(i) Type I C-convex iff, F{tx + (1 - t)y) C tF{x) + (1 - t)F{y) - C; 
(ii) Type II C-convex iff, tF{x) + (1 - t)F{y) C F{tx + (1 - t)y) + C; 

(iii) Type IC-concave iff tF{x) + (1 - t)F{y) C F{tx + (1 - t)y) - C; 
(iv) Type IIC-concave iff, F{tx + (1 - t)y) C tF{x) + (1 - t)F(y) + C; 

Remark 1.66. It is not difficult to see that 

(i) F is type I C-convex iff, —F is type II C-concave; 

(ii) F is type II C-convex iff, —F is type I C-concave. 

If F is a single-valued function, then both type I and type II convexity 
(concavity, respectively) are equivalent to the usual C-convexity (usual C-
concavity, respectively). 

Proposition 1.67 (Luc [142]). / is C-convex if and only if epi^f is a con­
vex set. Moreover, assuming that Y is separated and C is closed, f is C-convex 
if and only if (po f is a convex function for every (p E C*. 

We denote the level set of / at a point y eY hy Lev/(2/), i.e., 

LeYf{y) = {xeX:f{x)ey-C}. 
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Proposition 1.68 (Luc [142]). The following statements hold: 

(i) / is C-quasiconvex if and only if Levf{y) is convex for each y € Y; 
(ii) / is C-quasiconvex if and only if^ea^f is quasiconvex for a fixed e G intC 

and every a eY, where ^ea{y) = min{t G M: y G a + te — C}, y EY. 

Definition 1.69. Let C : X ^ Y be closed convex cone valued, K C X a 
nonempty convex set and f : K -^Y. f is said to be C{x)-convex if, for any 
xi,X2 G K, A G [0,1]; there holds 

A/(a;i) + (1 - X)fix2). 

The C(x)-epigraph of / is defined by 

epic(x)/ = {(^. y)eKxY:xeK,ye f{x) + C{x)}. 

Definition 1.70. Let C : X ^ Y be convex cone valued. C is said to be a 
convex process if, 

(i) for any xi,X2 G X, C{xi) + C{x2) C C{xi + X2); 
(ii) for any X>0, x e X, C{Xx) = XC(x). 

Proposition 1.71. / / the C{x)-epigraph of f is convex, then f is C{x)-
convex. On the other hand, if f is C{x)-convex and C : X =t Y is a convex 
process, then the C{x)-epigraph of f is convex. 

Proof Assume that the C(a;)-epigraph of / is convex. Let (x i , / (x i ) ) and 
(0:2,/(a:2)) G epi^(,) / and 0 < A < 1. Then A(a;i,/(xi)) + (l-A)(x2,/(X2)) G 
^P^c(x)f^ i-e-̂  (-̂ ^1 + (1 - A)a:2, A/(xi) + (1 - A)/(x2)) G epic^a:)/- Thus it 
holds that 

f{Xxi + (1 - X)X2) A/(xi) + (1 - A)/(a;2). 

So, / is C(x)-convex. 
On the other hand, assume that / is C(x)-convex. Let (xi,yi), (x2,2/2) G 

^pic(x)/- ^^^ 0 < A < 1. Then 

2/1 - f{xi) G C{xi) and y2 - /(^2) G C{x2). 

Thus 

X{y - fix,)) + (1 - X){y2 - f{x2)) G AC(xi) + (1 - A)C(x2). 

Since C{x) is a convex process, we have 

XC{xi) + (1 - A)C(x2) C C{Xxi + (1 - A)x2). 

Thus 

Xyi + (1 - A)2/2 - Xfixi) - (1 - X)f{x2) G C{Xxi + (1 - X)x2). 

It follows from the C(a:)-convexity of / that 

Ayi + (1 - X)y2 - f{Xxi + (1 - X)x2) G C{Xxi + (1 - A)a;2). 

So {Xxi + (1 - A)x2, Xyi + (1 - X)y2) G epi<^(^)/. • 
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Proposition 1.72. Let Y be a Banach space. Let K be a nonempty convex 
subset of X. Let C : X :=tY be closed, covex cone valued and upper semicon-
tinuous. Assume that f is Gateaux differentiable on K. If f is C{x)-convex 
on K, then, for every x^y e K, 

f{y)>c(.)f{x) + {Df{x),y-x). 

Proof By C(a;)-convexity of / , we have 

f{ty + (1 - t)x)) e tf{y) + (1 - t)f{x) - C{ty + (1 - t)x). 

That is, 

f(y) e m + /(^ + ̂ (^-^))-/(^) + City + (1 - t)x). 

Let t —̂  0, it follows from the closedness of C{x) and the u.s.c. of C that 

f{y) € fix) + iDfix),y - x) + C(a;). • 

Definition 1.73. f : K -^Y is called C-convexlike on K if, for any xi, X2 G 
K and any A G (0,1), there exists xs G K such that 

Xfixi) + il-X)fix2)-fix3)eC; 

f is called C-subconvexlike on K if there exists a 6 G intC such that, for 
any xi , X2 G K, any e > 0, there exists xs E K satisfying 

60 + \f{xi) + (1 - X)f{x2) - fixs) G C. 

Remark 1.74- It is not Jiecessary for K to be convex in Definition 1.73. Suppose 
that K is a convex subset of a topological vector space. It is clear that C-
convexity implies C-convexlikeness, and, in turn, C-convexlikeness implies C-
subconvexlikeness. Moreover, for each point c GY, / ( • ) + C is C-subconvexlike 
if and only if / is C-subconvexlike (see Jeyakumer [119]). 

Definition 1.75 (Yang [201]). f : K -^ Y is said to be generalized C-
subconvexlike on K if there exists a 6 G intC such that, for any xi,X2 G X 
and any e > 0, there exist xs G K and r] > 0 satisfying 

ee + A/(X3) + (1 - A)/(X3) - 77/(^3) e C. 

Proposition 1.76. The following statements are equivalent: 

(i) / is generalized C-subconvexlike on K; 
(ii) cone{f{K)) + intC is convex; 

(iii) for any 6 G intC, any xi,X2 G K and any A G (0,1)^ there exist X3 G K 
and rf > 0 such that 

e + A/(xi) + {1- X)f{xs) - vfixs) e intC. 
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Proof. First, we show that (i) => (ii). Let 

A = cone{f{K)) + intC, yi,2/2 ^ ^ , AG (0,1). 

Then, there exist a^ ^ 0 , Xi e K, and 5̂  G intC^ i = 1,2, satisfying 

Vi = aif{xi) + Si, i = 1,2. 

Set 
y = Xyi + (l- A)2/2 = Aai/(xi) + (1 - A)a2/(x2) + SQ 

where SQ = A5i+(1—A)52 € intC. Thus we can find a symmetric neighborhood 
U of the null element of Y such that SQ + U C intC. If a i = 0 or a2 — 0, then 
obviously y ^ A, Without loss of generality, we can assume that a i > 0 and 
a2 > 0. Set 

a = Xai + (1 — A)ce25 P = (Aai)/a. 

Then (3 G (0,1) and 

y = aipfixi) + (1 - /?)/(x2)) + 50. (1.4) 

By the definition of generalized C-subconvexlikeness, there exists 9 G intC 
such that, for the above P G (0,1), xi,X2 G K, and any £: > 0, we can find 
^3 •= ^3(A ^1,3^2,s) e K and 77 := rj{p,xi,X2,e) > 0 satisfying 

^ := £^ + pfixi) + (1 - /?)/(x2) - ry/(x3) G C. (1.5) 

Since t/ is absorbing and symmetric, we can select an £ > 0 small enough 
such that —eaO eU, so that 

so-£a9 eso-\-U C intC. (1.6) 

By (1.4) - (1.6), we obtain 

y = ak-{- arjf{xs) + (50 - ea6) 

G C-^cone{f{K))-\-intC 

C cone{f{K)) + intC = A. 

Therefore, A is convex. 
Next, we show that (ii) ==> (iii). Let 6 G intC, xi,X2 G iiT, A G (0,1). 

Obviously, 
f{xi) + e e cone{f{K)) + intC, i = 1,2. 

Since cone{f{K)) + intC is convex, we have also 

^ - ^ + A / ( x i ) + ( l - A ) / ( x 2 ) 

= A(/(xi) + 0) + ( l - A ) ( / ( x 2 ) + ^) 

G cone{f{K)) + intC. 
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This impUes that there exist xs e K and a > 0 such that 

y G a/(x3) + intC. 

If a 7̂  0, then, take rj = a, the proof for (ii) =^ (iii) is completed. 
If a = 0, then y G intC. Thus, there is a symmetric neighborhood V of 

the null element of Y such that 

y + V C intC. 

Since V is absorbing and symmetric, for arbitrarily fixed ^3 G iC, we can find 
an 7/ > 0 small enough such that —r]f(x''^) G V. Hence 

y-Vf{x'^)^y + V CintC. 

So (ii) = ^ (iii). 

Finally, we show that (iii) ==> (i). Suppose that the condition (iii) holds, 
and ^ is a given point in intC. Let 6 = eO. For any e > 0, 6 e intC, by the 
condition (iii), for any xi,X2 G K, and A G (0,1), and any e > 0, there exist 
X3 G iiT and 77 > 0 such that 

^ + A/(xi) + (1 - X)f{x2) - vfi^s) G into, 

Thus, / is a generalized C-subconvexlike vector-valued function on K. • 

Example 1.77. Let X = {(1,0)"^, (0,1)"^} c IR^C - IR^, and let / = / : 
K —> H^ be the identity vector-valued function. Obviously, 

cone{f{K)) + intC = mtlR^, 

which is a convex subset in IR^. By Proposition L76, / is a generalized C-
subconvexlike vector-valued function on K. But 

f{K) + intC = K + intJR\ 

is not convex. / is not C-subconvexlike on K. 

Proposition 1.78. / is C-subconvexlike on K if and only if the set f{K) + 
intC is convex. 

Proof. The proof of this proposition is similar to that of Proposition 1.76 and 
thus omitted. • 

When y = IR , Proposition 1.78 can be found in Li and Wang [138]. 
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Theorem 1.79 (Gordan-Formi Alternative Theorem). Let K C X 
be a nonempty subset, and let C be a closed, convex and pointed cone with 
nonempty interior intC. If f is generalized C-subconvexlike on K, then ex­
actly one of the following statements is true: 

(i) there exists x € K such that f{x) <intc 0; 
(ii) there exists /i G C*\{0} such that (n, f{x)) > 0, for any x e K. 

Proof Obviously, (i) and (ii) cannot hold simultaneously. Otherwise, a con­
tradiction is introduced. In fact, we have 0 > (/i, f{x)) > 0. 

Suppose that (i) is not true. Then, 

0 ^ cone{f{K)) + intC, 

In fact, assume that 
0 G cone{f{K)) + intC. 

There exist x e K and a > 0 such that 0 G af{x) + intC and a > 0, since 
0 ^ intC. Thus 

-f{x) G {l/a)intC C intC, 

i.e., f{x) <intc 0. This is a contradiction. 
By Proposition 1.76, cone{f{K)) + intC is a convex set with a nonempty 

interior. By the separation theorem for convex sets, there exists fi G y*\{0} 
such that 

(//, af{x) + 5) > 0, Va > 0, X G X, 5 G intC. 

Setting a = 0, we obtain 

(/i, s) > 0, Mx e intC. 

Thus, 
(//, s) > 0, Mse C, 

i.e., ji G C*\{0}. Also, setting a = 1, we obtain 

(^, f{x) + 5) > 0, yxeK.s^ intC. 

Letting 5 ^^ 0, we have 

( / i , / ( x ) )>0 , ^xeK, 

so that (ii) holds. The proof is thus completed. • 

Now, we define the generalized convexity of set-valued functions. 

Definition 1.80. Let XQ be a nonempty convex subset of X and F : XQ ^Y 
a set-valued function. 
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(i) F is said to be properly quasi C-convex on XQ if, for any xi , X2 G XQ and 
A €[0,1], 

either F{xi) C F{Xxi + (1 - A)x2) + C, 

or F{X2) C F{\xi + (1 - A)X2) + C. 

(ii) F is said to be naturally quasi C-convex on XQ if, for any a;i,a;2 € X and 
AG [0,1], 

F{Xxi + (1 - A)x2) C co{F{xi) U F{x2)) - C, 

where co{A) denotes the convex hull of A. 

Similarly, we can define the proper quasi C-concavity and natural quasi 
C-concavity. 

Remark 1.81. Definition 1.80 is a generalization of the concepts of proper 
quasi C-convexity and natural quasi C-convexity for vector-valued functions 
in Ferro [71] and Tanaka [188]. Note that if F = IR and C = IR+, then 
both proper quasi C-convexity and natural quasi C convexity reduce to the 
ordinary quasiconvexity for real-valued functions. 

Proposition 1.82. Let F : XQ ^ Y be a set-valued function and XQ a 
nonempty convex subset. If F is naturally quasi C-convex, then, for given 
e G intC and a E Y, ^ea^ F is naturally quasi M^-convex. If F is properly 
quasi C-convex, then, for given e G intC and a GY, ^ea o F is properly quasi 
IR-\--convex. 

Proof. We prove only the first conclusion of the proposition. Take any xi, 0:2 G 
Xo, A G [0,1] and y G F{Xxi + (1 — A)a;2). By the natural quasi C-convexity 
of F , there exist yi G F{xi) U F{x2) and a^ > 0, z = 1, 2, • • • , /c and c e C 
such that Yli=i ^i = ^ 2iiid y = J2i=i ^iVi ~ ^' Therefore 

n 

^ea{y) =^ea(^Oiiyi-c). 

i=l 

Since ^ea is a convex and monotone function, we have 

^ea{y) G Y^ai^eaiyi) " IR+ 

C C0{U O F{xi) U ^ea O F{X2)} " IR+. 

Thus, ^ea o i^ is naturally quasi IR+-convex. • 

Definition 1.83. Let X be a convex subset of a topological vector space and 
Y be a Hausdorff topological vector space. Let F : X x X ^Y be a set-valued 
function. Let C : X ^ Y be a set-valued function. Given any finite subset 
A = {xi, 0:2, • • • , Xk} in X and any x G co{xi, X2, • • • , Xk}, 
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(i) F is said to be strongly type I C-diagonally quasi-convex (SIC-DQC, in 
short) in the second argument if, for some Xi G A, 

F{x,Xi) C C{x)\ 

(ii) F is said to be strongly type IIC-diagonally quasi-convex (SIIC-DQC, in 
short) in the second argument if, for some xi G A, 

F{x,Xi)r]C{x)^ 0 ; 

(iii) F is said to be weakly type I C-diagonally quasi-convex (WIC-DQC, in 
short) in the second argument if, for some Xi G A, 

F{x, Xi) n -intC{x) = 0 ; 

(iv) F is said to be weakly type II C-diagonally quasi-convex (WIIC-DQC, in 
short) in the second argument if, for some xi G A, 

F{x,Xi) ^ -intC{x). 

Remark I.84. When F = IR, C{x) = IR+ for any x £ X^amd F : XxX -^ Y is 
a single-valued function, the above four kinds of C-diagonal quasi-convexities 
reduce to r-diagonal quasi-convexity for a single-valued function in Zhou and 
Chen [224]. 

It is easy to verify the following proposition. 

Proposition 1.85. //; for each x G X, C{x) is a pointed, closed and convex 
cone in Y, then the following statements hold: 

(i) SIC-DQC implies SIIC-DQC; 
(ii) SIC-DQC implies WIC-DQC; 

(iii) WIC-DQC implies WIIC-DQC 

1.5 Notations 

The following notations will be used in the later chapters. 

Spaces 

IR: the real line 
]R" :̂ real m-dimensional space 
IR!J?: the nonnegative orthant of IR"̂  
{X,D): ordered decision space 
(y, C): ordered objective space 
{Z,P): ordered constraint space 
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(X, d): metric space 

Vectors 

x~^: the transpose of a vector x 
x^y or xy: the standard inner product of vectors x and y 
\\x\\: the norm of x 
x>c y, X >c\{0} 2/, X >intc y, x'^c y, X ^intc y- the orderings induced 

b y C 

Functions 

(/?: X ^ IR: a scalar function 
/ : X ^ F : a vector valued function with domain X and range Y 
f o g or f{g): composition of functions / and g 
V / or Df: derivative of / 
/ ~ :̂ the inverse of / 
F : X =tY: a set-valued function 
DF: contingent derivative of a set-valued function F 
DeF: contingent epideriative of a set-valued function F 
DgF: generalized contingent epideriative of a set-valued function F 
d{x^ D): distance function from vector x to set D 
haus(A, B) Hausdorff distance between sets A and B 
^ea,^e,^* nonlinear scalarization functions 

Sets 

G, ^: element membership 
C, C, ^ : set inclusion 
0: empty set 
U, n ,x : union, intersection, Cartesian product 
A\B: the difference of sets A and B 
A^\ the complement of set A 
intC: the interior of a set C 
dC: the boundary of a set C 
clC: the closure of a set C 
Br', the closed ball centered at 0 with radius r in a normed space 
B{x,r): the closed ball centered at x with radius r in a normed space 
y*: the dual space of space Y 
L{X,Y): the set of all the continuous linear operators from topological 

vector space X to topological vector space Y 
C* or C'^: the dual cone of C 
Minc^: the set of minimal points of A 
MaxcA: the set of maximal points of A 
MiiiintcA: the set of weakly minimal points of A 
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MdiXintcA: the set of weakly maximal points of A 
Minc(y)^: the set of minimal points of A with respect to the variable 

domination structure C{y) 
MdiXc(y)A: the set of maximal points of A with respect to the variable 

domination structure C{y) 
Minintc{y)A: the set of weakly minimal points of A with respect to the 

variable domination structure C{y) 
Ma,Xintc(y)^' the set of weakly maximal points of A with respect to the 

variable domination structure C{y) 
LMmc{y)A: the set of nondominated-like minimal points of A with respect 

to the variable domination structure C{y) 
LMeiXc{y)A: the set of nondominated-like maximal points of A with respect 

to the variable domination structure C{y) 
L'M.mintc{y)A: the set of weakly nondominated-like minimal points of A 

with respect to the variable domination structure C{y) 
LMaXintc{y)A: the set of weakly nondominated-like maximal points of A 

with respect to the variable domination structure C{y) 
LMinintc{x)f{S): the set of weakly nondominated-like minimal points of 

/ over 5 with respect to the variable domination structure C{x) 
LMdiXintc(x)f{S): the set of weakly nondominated-like maximal points of 

/ over S with respect to the variable domination structure C{x) 
^V^cf'- the epigraph of function / 
Levf (y): the level set of function / 
co{A): the convex hull of set A 
cone{A): the cone generated by set A 
T{K, x) the contingent tangent cone of K at x e clK 
ASup(^^: the absolute supremum of set A with respect to C 
Alnfc^: the absolute infimum of set A with respect to C 
Sup(7 A the set of suprema of set A with respect to C 
Infc^: the set of infima of set A with respect to C 
U{x): a neighborhood of point x 
Dom(F): the domain of function F 
Gr(F): the graph of function F 
Range(F): the range of function F 
D^'^: weak C-dual cone of cone D 
D^: strong C-dual cone of cone D 
PM{K, C): the set of Benson's proper minimal points 
argmin{X, J ) : the set of weakly minimal solutions of the vector optimiza­

tion problem (X, J) 
d'^f : the set of weak subgradients of the vector-valued function / 

Problems 

Let X, (y, C), (Z, P) be spaces, K C X, f : X ^Y, F : X ^Y. 
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(VOP): Mine fix), where B = {x e X : g{x) < P 0, x G K} 
x€B 

(VOPV): Minc(x)/(^), where B = {x € X : g{x) < P 0,x G K) and 
xeB 

C:X^Y 
(VUP):Minc/(x) 

xex 
( V O K ) : M i n c / W 

x^K 
(VOKV): Minc(x) / ( ^ ) , where C : X =4 F 

xeK 
{YVV^):Mm{^JiJ{x)) 

(VMP): Minc/ (x) , where Q-^ {x e X : g{x) <P 0} 
xeQ 

(VPL): Mine L{x, T), where L(x, T) = /(x) + T{g{x)) and T G L{Z, Y) 
xex 

(VDL): Maxc U ^(T), where ^(T) = PM{L{X, T), C) 

(SOK):MincF(x)'^ 

(SOKV): Minc(a:) F{x), where C : X =^ F 
xeK 

(PVOP): constrained paramteric vector optimization problem 
(WVVI): weak vector variational inequality problem 
(VVI): vector variational inequality problem 
(GVVI): generalized (general) vector variational inequality problem 
(GWVVI): generalized weak vector variational inequality problem 
(SWVVI): set-valued weak vector variational inequality problem 
(GPVVI): generalized vector pre-variational inequality problem 
(GPQVVI): generalized vector pre-quasi-variational inequality problem 
(VEQi): vector equilibrium problem 
(GVQVI): generalized vector quasivariational inequality problem 
(GVQVI)^i,: perturbed GVQVI problem induced by parameter w 
(DGVVI): dual general vector variational inequality 
(VCP): (weak) vector complementarity problem 
(PVCP): positive vector complementarity problem 
(SVCP): strong vector complementarity problem 
(WMEP): weak (vector) minimal element problem 
(VUMP): vector unilateral minimization problem 



Vector Optimization Problems 

The concept of nondominated solution with variable domination structure 
was introduced by Yu [221]. This is a generalization of the minimal solution 
in multicriteria decision making problems. Various theories of nondominated 
solutions with variable domination structure were established in Yu [221], 
Tanino and Sawaragi [190]. 

It is worth noting that the solution concept with variable orderings in Yu 
[221] is given in the sense that a candidate point is guaranteed to be optimal 
only if it is not dominated by any other reference point with respect to their 
corresponding ordering. As such not much progress has been made in this 
direction. In Chen [25], another kind of nondominated solutions with variable 
domination structure was given with respect to the ordering of the candidate 
point in the context of vector variational inequalities. The related concept of 
nondominated solutions with variable domination structure in the context of 
vector optimization was given in Section 1.1. 

In this chapter we consider three kinds of vector optimization problems, 
i.e., the problem with a fixed domination structure, the problem with a vari­
able domination structure and the problem with a set-valued function. We 
investigate optimality conditions, characterizations and topological proper­
ties of solutions for these problems. In particular, we investigate weak duality, 
strong duality and exact penalization of vector optimization problems in terms 
of augmented Lagrangian and nonlinear Lagrangian. 

2.1 Vector Optimization (VO) 

In this section, we investigate firstly the case where the domination structure 
is a convex set but it is not necessarily a convex cone. The need for such 
an extension comes from the fact that there exists a large class of problems 
where, if we insist that the domination structure be a convex cone, then it 
must be {0}. In this case each feasible solution will be nondominated, and our 
analysis will become useless. 
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Suppose that F is a Banach space and C C Y is nonempty and convex 
with OedC and intC ^ 0. 

Let S cY. For any c G C\{0}, we set 

S{c)={y + pc:p>0,y£S}. 

Clearly, if S is convex, then 5(c) is a convex set and, for any set S C F , 
S C S{c). We have the following proposition. 

Proposition 2.1. Let S cY be a convex set, C a nonempty open convex set 
satisfying 0 G dC. Then, for any point c E C, we have 

MincS = MincS{c). 

Proof It is obvious that c ^ 0 since 0 G 9C, C is open and c E C. Let 
y* G MincS. Suppose that y* ^ MincS{c), Then, there exist yo G S and 
/3o ^ 0 such that 

2/o + /?oc-y* e-C. (2.1) 

Since t/* G MincS, we see that 

( 5 - y * ) n - C - 0 . (2.2) 

By the standard separation theorem for convex sets, we obtain (p G y*\{0} 
and r G IR such that 

^ ( y - y * ) < r , yyeS (2.3) 

and 
^(cO > r, Vc' G - C . (2.4) 

Taking y = y'^ in (2.3), we have 

r > 0. (2.5) 

Setting 2/ = 2/0 in (2-3), we obtain 

^{yo-yl<r. (2.6) 

The combination of (2.1) and (2.4) yields 

^{yo -2/*)+/3o^(c) > r . 

Again, using (2.4), we have 

Hyo -y*)>r + Po^{-c) > r + /3or. (2.7) 

(2.7) together with (2.3) gives us 

Por < 0. (2.8) 
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From (2.1) and (2.2), we deduce that 

/3o > 0. (2.9) 

It follows from (2.8) and (2.9) that 

r < 0 . (2.10) 

By (2.5) and (2.10), we have r = 0. Thus, (2.3) and (2.4) become 

(^(2/ -y*)<0, \/yeS (2.11) 

and 
<f(c') > 0, Vc' G -C. (2.12) 

Now, we prove from (2.12) that 

(̂ (cO > 0, Vc' G -C. (2.13) 

Suppose to the contrary that there exists a c' G —C such that <p{c') — 0. As 
(̂  7̂  0, there exists y EY such that (p{y) > 0. From c' G —C, we see that there 
exists a real number a > 0 such that c^ — ay e —C. By (2.12), we should have 

0 < (p{c' — ay) 

= (p{c') - a(f{y) 

= -a(p(y) < 0, 

a contradiction. So (2.13) holds. Using (2.1) and (2.13), we have 

^{yo-yl >o, 

contradicting (2.11). This proves that MincS C MincS{c). In what follows, 
we show that MincS D MincS{c). Let y* G MincS{c), Then, 

( 5 ( c ) - 2 / * ) n - C = 0. (2.14) 

Since S C S{c), it follows that 

( 5 - 2 / * ) n - C = 0. (2.15) 

Assume that 2/* = yiH-/?iC with yi G S and /?i > 0. If ^i = 0, then y* = yi e S. 
This together with (2.15) implies that y* G MincS. Suppose that Pi > 0. 
By (2.14) and the separation theorem for convex sets, we have (pi G F * \ { 0 } , 

r i G IR such that 

My - 2/1 - Pic) < n , Vy G S{c). (2.16) 

and 
^i(c'0 > r i , Wc'' e-C. (2.17) 
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From (2.16), we have 
ri > 0 . 

Now we show that vi = 0. Otherwise, by 0 G 5C, we can choose a sequence 
{ck} C —C such that Ck -^ 0. Thus, from (2.17), we have 

0 = lim (fi{ck) > r i > 0, 

a contradiction. Arguing as in the first half of the proof, we can further show 
by contradiction that 

(/?i(c'0 > 0, Vc'' e -C. (2.18) 

On the other hand, setting 2/ = yi in (2.16), we obtain 

(^i(- /? ic)<0, 

contradicting (2.18) since —Pic G —C. The proof is complete. • 

Lemma 2.2. Let C be a nonempty, open and convex set of Y with 0 G dC 
and y G intT{C, 0). Then 

{ay:O<a<l}nC^0. 

Proof. If the conclusion is not true, then {ay :O<a<l}r\C=0. Set 
L = {ay : 0 < a < 1}. By the separation theorem for convex sets, there exist 
a continuous linear function ip G y*\{0}, and r G IR such that 

'0(y) > r, if y G C, 

Hy) ^ 5̂ if 2/ G L. 

Showing as in the proof of the second part of Proposition 2.1, we can prove 
that r = 0. Thus, 

V^(y)>0, ifyeC, 

^{y) < 0 , iiyeL. 

Since y G intT{C,0), there exist an open ball N{y) C intT{C^O) and yo G 
N{y), such that '0(2/0) < i^iv)- Hence, there exist a sequence {yk} C C^yk —^ 0 
and a sequence of nonnegative real numbers {ak} with the limit +oo, such that 
yo = limk-^oo c^kiyk) and V'(yo) = limfc^o V̂ (Q;fcyfc). Since \p{yk) > 0, for all k, 
we have '0(yo) > 0. On the other hand, it follows from y G L and '0(y) < 0 
that '0(yo) < '0(y) < 0. This leads to a contradiction. Thus LDC ^ 0. • 

Theorem 2.3. Let S be a convex subset ofY ,C a nonempty, open and convex 
set of Y withOedC. Then 

MincS = MinintT{c,o)S. 
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Proof. Let yo e MinintT{c,o)S. Then (yo - i n t T { C , 0 ) U { 0 } ) n S = {yo}. Since 
yo - C U {0} C yo - intT{C, 0) U {0} and yo G 5, it follows that 

( y o - C U { 0 } ) n 5 = { y o } . 

That is, yo G Mines'. Hence MinintTCCO)^ C MincS. 
On the other hand, let yo G MincS. Without loss of generality, we can 

suppose that yo = 0. Thus, we suppose that (—C U {0}) fl 5 = {0}. We will 
prove that {-intT{C, 0) U {0}) nS= {0}. Suppose that yi G {-intT{C, 0) U 
{0}) n S and yi ^ 0. Then yi G -intT{C, 0) H 5. Set 

L = {y :y = ayi ,0 < a < 1}. 

By Lemma 2.2, we have L n ( -C) ^̂  0 . Let y' e L H ( -C) . Then y' ^ 0. 
Since yi G 5 and 5 is a convex set, L = (0, yi] C 5 and (0, y'] C 5. Thus 
y' G ( -C) n 5. This contradicts that {-C U {0}) fi 5 = {0}. Thus we obtain 

(-intT{c, 0) u {0}) r\S = {0}. m 

Suppose that X, F , and Z are Banach spaces over IR, / maps from X into 
Y and g maps from X into Z. Let C C F be a nonempty convex subset with 
0 G 5C, P C Z a closed and convex cone and K C X a, convex set. 

We consider the vector constrained optimization problem: 

(VOP) Minc/(x), 
xGB 

where B = {x e X : g{x) <p 0, x G K). 

Remark 2.4. If T G L{X, Z), ZQ € Z, then the problem 

Minc{f{x):T{x) = zo}, 

with aflBne constraints, may be obtained from the problem (VOP) for i^ = X, 
P = {0} and g{x) = T{x) - ZQ, \/X G X. 

Theorem 2.5. Let C be a convex subset of Y with 0 G dC and intC ^ 0 . 
For the vector optimization problem (VOP), the following results hold: 

(i) Suppose that there exists a continuous linear functional (/? G F*, satisfying 
ip{c) > 0, for allc e C\{0}, such that x e B is an optimal solution of the 
following optimization problem P{^): 

mmip{f{x)). 
x£B 

Then x is a nondominated minimal solution of the problem (VOP). 
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(ii) Let f{B) be a convex set of Y and x a nondominated minimal solution 
of the problem (VOP). Then there exists a continuous linear functional 
(/? € y* satisfying (p{c) > 0 for all c G intC, such that x is an optimal 
solution of the problem P(}p). 

Proof, (i) If X is not a nondominated minimal solution of (VOP), then there 
exist c G C\{0} and x £ B such that f{x) — f{x) = c. Thus, we have 

<p{m) = fifix))+fie). 

Since (p{c) > 0 for all c G C\{0}, ip{f{x)) > (p{f{x)). This contradicts the 
fact that X is an optimal solution of P{(p). 

(ii) Let X be a nondominated minimal solution of (VOP). We have 

{f{x)-Cu{o})nfiB) = {f{x)}. 

Since 0 G 5C, we have 

{f{x)-intC)nf{B)=0, 

By the separation theorem for convex sets, there exist (/? G y*\{0} and r G IR 
such that 

(p{v) < r if V e f(x) — intC^ 

ip{u) > r if ue f{B). 

Thus, 
</>(/(x) - c) < 0(/(x)), \/xeB,c£ into, 

As 0 G dC and intC 7̂  0, we can choose a sequence {cfc} C intC such that 
Cfc ̂  0 as fc —> 00. Consequently, 

(t>{f{x)-Ck)<(t>{f{x)), yxeB.k, 

Passing to the limit as A: —> 00, we obtain 

<t>im)<<l>{f{x)), VxeS. 

That is, X is an optimal solution of P(0). 
Furthermore, since f{x) G f{B), for every c G mtC and v = f{x) — c, we 

have 
r > ^{f{x) -c) = (f{f{x)) - (p{c) >r- (p{c), 

Thus (p{c) > 0, for all c G intC. Arguing as in the second part of the proof 
of Proposition 2.1, we can show that (p{c) > 0 for all c G intC. The proof is 
complete. • 

In what follows, we need the standard Lagrange multiplier theorem for a 
scalar optimization problem with operatorial convex constraints, which can 
be found in Barbu and Procparu [9]. 
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Assume that P C Z is a, closed and convex cone with nonempty interior 
intP. Let h : X ^IRhe a, convex function and g : X —^ Z he P-convex and 
K C X he convex. Consider the scalar convex programming problem: 

(CP) min h{x) 

s.t. X E K, 

9{x) <P 0. 

Theo rem 2.6. Consider the scalar convex programming problem (CP). Sup­
pose that the Slater constraint qualification holds: there exists XQ e K such 
that g{xo) G —intP. Then x* G K is an optimal solution of (CP) if and only 
if there exists u'^ G P^ such that 

h{x*) + i^+(^(x*)) < h{x) + u-^{g{x)), Vx G K. 

We establish now characterizations of a solution for the problem (VOP) 
in terms of Lagrange multipliers . Suppose that P C Z is a closed and con­
vex cone with the nonempty interior intP, and iiT C X is a convex set. Let 
g : X -^ Z he P-convex. 

Theorem 2.7. Let f{B) he a convex suhset ofY. Assume that there exists 
a point XQ G B such that g{xo) G —intP. Let x he a nondominated minimal 
solution of (VOP). Then there exist (p G Y* satisfying (f{c) > 0 for all c G 
into and a continuous linear vector-valued function M : Z —^ Y such that 
M{P) C intT{C, 0) U {0}, M o g{x) = 0 and 

^{f{x) + M o g{x)) < ^{f{x) + M o g{x)), Vx G K. 

Proof Suppose that x is a nondominated minimal solution of (VOP). By 
Theorem 2.5(ii), there exists (f eY* satisfying ip{c) > 0 for all c G intC, such 
that 

(f{f{x)) = mjny:>{f{x)). 

Theorem 2.6 guarantees that there exists u~^ G P^ with u'^{g{x)) = 0 and 

vim) < Vifix)) + u+{gix)), Vx € K. 

Choose c G into. Let the vector-valued function M : Z ^ F , be defined by 
M{z) = u-^{z)c/(p{c). Since u-^{z) > 0 for all z G P and (f{c) > 0, M{P) C 
intT{C, 0)U{0}, Mog{x) = 0 and M is a continuous linear vector-valued func­
tion. Since u'^{g{x)) = 0 and (f{Mog[x)) = (fi{u'^{g{x))c/(f{c)) = u'^{g{x)), 
we have 

(f{f{x) + M o g{x)) < ^{f(x) + M o g{x)), \/x € K. • 
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Corollary 2.8. Let C CY be a nonempty open and convex set with 0 G dC. 
Let the conditions of Theorem 2.7 hold. Then there exists a continuous lin­
ear vector-valued function M : Z -^ Y, such that M{P) C intT{C,0) U {0}, 
M o g{x) — 0 and x is a nondominated minimal solution of the unconstrained 
vector optimization problem: 

Minc{f{x) + M o g{x)). 

Proof. By Theorem 2.7 and in view of C = intC^ there exists a continuous 
linear vector-valued function M : Z ^Y, such that M{P) C intT{C, 0)U{0}, 
M o g{x) = 0 and 

^( / (x) + M o g{x)) < ^{f{x) + M o g{x)), \/x G K, 

where (p £ Y* satisfying (p{c) > 0 for all c G C By Theorem 2.5(i), x is a 
nondominated minimal solution of the following unconstrained problem: 

Mmc{f{x) + Mog{x)). m 
xeK 

We establish now the Kuhn-Tucker condition for the problem (VOP). As­
sume that f : X -^ Y., g \ X —^ Z are Frechet differentiable vector-valued 
functions and g is P-convex. 

Definition 2.9. The generalized constraint qualification condition is said to 
hold at X, if there exists a closed and convex cone G C X such that GDK C 
T{B^x), where 

K=={hGX: g'{x){h) G P{-P, g{x))} (2.19) 

and P{—P,g{x)) is the closed and convex hull ofT{—P^g{x)). 

Let 
H = {u^{g\x)) : u+ G P^{-P, g{x))}' (2.20) 

We have the following relation between K and H. 

Proposition 2.10. LetK and H be defined by (2.19) and (2.20), respectively. 
ThenclH = K^. 

Proof. First we prove that clH C K^. Clearly, we need only to show that 
H C K"^. Let u-^ G P+( -P ,^ (^ ) ) and u+{g\x)) G H. Then, u-^{v) >0,\/ve 
P{-P,g{x)). Now suppose that h e K. Then, g'{x){h) G P{-P,g{x)). It 
follows that u-^{g'(x){h)) > 0, or, {u-^{g'{x)){h) > 0. That is, u+{g'{x)) G K+. 
Now we prove that K'^ C clH. Let hi e K~^. Then 

hi{h) > 0, for any h satisfying g'{x){h) G P{-P,g{x)). (2.21) 
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Suppose that hi ^ clH. Since clH is a closed and convex cone, there exists 
/i2 G Z* such that 

h2{vi) > 0, V ;̂i G H (2.22) 

and 
/ I 2 ( / M ) < 0 . (2.23) 

By (2.22), we have 

u^{g\x){h2)) > 0, V^+ G P + ( - P , g{x)). 

Thus, 

'̂(x)(/i2) e [P+(-P,^(x))]+ = P{-P,g{x)). 
By (2.21), we have h2{hi) > 0, contradicting (2.23). So hi G c/iJ. • 

Definition 2.11. Assume that the generalized constraint qualification condi­
tion holds at X. H{G) is said to hold if 

(i) K^ + G+ is closed, 
(ii) H is closed. 

Propos i t ion 2.12. Let C be a convex subset ofY with 0 G dC, S be a subset 
of Y and yo G S a nondominated minimal point of S. Then 

T{S,yo)n{-intC) = 0. 

Proof Suppose that y G T{S,yo) f) {-intC). Since 0 ^ intC, y y^ 0. There 
exist a sequence {y^} C S with limit yo and a sequence of nonnegative real 
numbers {a/e}, such that limfc_cx) (^k{y^ ~2/o) = V- Since y is an interior point 
of — C, there exist an open ball N{y) C —intC and a positive integer number 
k, such that if A: > fc we have ak{y^ ~ Vo) ̂  ^{v)- Choose ko >k^ such that 
o^ko ^ 1 and y^° 7̂  yo (since y 7̂  0 and ak -^ +00, such a A:o can be chosen.) 
Thus there exists CQ G intC such that ako{y^^ ~yo) = —CQ, yo — y^^ = co/ockQ-
Since 0 G 9C and C is a convex set, we have 

(0, Co] = {c = aco : 0 < a < 1} C intC. 

Thus co/ako G intC. This contradicts the fact that yo is a nondominated 
minimal point of S. • 

The following lemma is an elementary property of tangent cones (see Bor-
wein [19]). 

L e m m a 2.13. Let f : X —^ Y be a Frechet differentiable vector-valued func­
tion and B C X. Let x e B. Then 

f'{x){T{B,x))cTifiB),fix)). 
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Proof Let u G T{B,x). We show that f{x){u) € T{f{B)J{x)). Indeed, 
there exists {ak} C B and {tk} C lR+\{0} with t^ -^ 0 such that 
{ak - x)/tk -> ^. Note that limfc_+oo(/K) " /(^))Afc ^ T{f{B)J{x)). 
Consequently, limfc^+oc(/(afc) - / ( x ) ) ^ ^ = f{x){u) e T{f{B)J{x)). The 
proof is complete. • 

Theorem 2.14. Let C C Y be a convex set with 0 G dC and a nonempty 
interior intC. Let x be a minimal solution of the problem (VOP). Assume 
that f{B) is a convex set and g satisfies the generalized constraint qualification 
condition and H{G) holds. Then there exist (̂  G y* satisfying (p{c) > 0 for 
c G intC and u'^ G P~^{P,g{x)), such that 

^of{x)-u'^og\x)eG^. 

Proof Set S = f{B) and yo = f{x). By Proposition 2.12, we have 

T{f{B),f{x))n{-intC) = 0. 

Since f{B) is a convex set, T{f{B), f{x)) is a convex cone. By the separation 
theorem for convex sets, there exists a continuous linear functional (̂  G F*, 
such that 

^{v) < ^ if V G —intC^ 

^(«)>eif ueT{f{B)Jix)). 

Since 0 G T{f{B),f{x)), ^ < 0. If there exists a point CQ G intC, such 
that (fi{—co) = r < 0, it follows from 0 G dC that ACQ G intC for all A : 
0 < A < 1. Choosing 0 < Ai < min(^/r, 1), we have (̂ (—AiCo) = Ai(/?(—CQ) > 
(^/r)(/?(—Co) = ^. Since —AICQ G —intC, it is a contradiction. Hence, we have 
^ > 0. Thus, it is necessary that ^ = 0. So, ip{c) > 0,Vc G intC. Further 
argument as in the second part of the proof of Proposition 2.1 confirms that 
(p{c) > 0 for all c G intC. By Lemma 2.13, 

f'ix){T{B,x))cT{f{B),f{x)). 

Since the generalized constraint qualification condition GDK C T{B, x) holds 
at X, we have 

f'{x){GnK)cT{f{B),f{x)). 

Hence we have ip{u) >Oifue f{x){G D K), that is 

^of{x){h)>0, \/heGnK. 

Since the hypothesis H{G) holds, we have 

ip o f{x) e{Kn G)+ = î + + G+. 

Observing that 
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K+ = H = {u-^og\x) : u+ G P+( -P ,^ (x ) )} , 

we obtain 
ipof'(x)-U+og'{x)&G+, 

where (p G C"̂  satisfying (/?(c) > 0 for all c G intC and W^ G P^{—P, P(^))- " 

Proposition 2.15. ^ /oca/ weakly minimal solution of a C-convex vector-
valued function f over a convex set K C X with respect to a convex cone C 
is a global one. 

Proof Let x* be a local weakly minimal solution of f{x) over K, Thus, for 
some neighborhood V of x*, 

f{x) - /(x*) i -into, WxeVDK. (2.24) 

Suppose, if possible, that x* is not a global weakly minimal solution. Then, 
there is some y E K ior which 

/ ( 2 / ) - / ( x * ) G - m t a 

For 0 < a < 1, X* + a{y — x*) G X, since K is convex. Since / is C-convex, 

/(x* + a{y - X*)) - /(x*) G - C + af{y) + (1 - a)/(x*) - /(x*) 

= - C + a ( / ( 2 / ) - / ( x * ) ) 

G - C - mtC 

C —intC, 

which contradicts (2.24), since x* + a(y — x*) G F fl iC for sufficiently small 
positive a. • 

2.2 VO with a Variable Domination Structure 

Let y be a real normed space, and let C : F =^ F be a set-valued function such 
that, for each y G F , the set C{y) is a nonempty convex set with 0 G dC{y). 
Assume that intC{y) 7̂  0, Vy G F , and nyesC{y) \ {0} 7̂  0 ,5 C Y. 

Now we establish results corresponding to those in Section 2.1. 
Suppose that S CY. For any c G fl C(y)\{0}, let 

5 ( c ) - { y + / ? c : / ? > 0 , y e 5 } . 

It is obvious that S C S{c) and, if S is convex, then 5(c) is also convex. 
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Proposition 2.16. Let S C Y be a convex set, C :Y -=^Y be a set-valued 
function such that, for each y E S, C{y) is a nonempty open convex set with 
0 G dC{y). Then, for any point c e D C{y), we have 

LMinc{y)S = LMinc(y)S{c). 

Proof It is obvious that c 7̂  0 since, for any 2/ G 5, 0 G dC{y), ^{v) is open 
and c G C{y). Now we can follow the proof of Proposition 2.1 with MincS 
replaced by LMinc(y)S, MincS{c) replaced by LMinc(y)S{c), C replaced 
by C(j/*). • 

Theorem 2.17. Let S be a convex subset ofY,C:Y^Ybea set-valued 
function such that, for each y £ S, C{y) is a nonempty open convex set with 
OedC{y). Then, 

LMinc{y)S = LMinintT{C{y),Q)S. 

Proof. The proof of Theorem 2.3 works if we replace C with C(yo). • 

Now we assume that X, y , and Z are Banach spaces, / maps from X into 
Y and g maps from X into Z. Let C : X =:̂  y be a set-valued function such 
that, for each x G X, C{x) is a nonempty and convex set with 0 G dC{x), 
P C Z a. closed and convex cone and K C X a, convex set. 

We consider a constrained vector optimization problem with a variable 
domination structure: 

(VOPV) Minc(x)/(a;), 
xeB 

where B = {x G X : g{x) <p 0, x G K}, and C : X :=t Y is a, set-valued 
function. 

Theorem 2.18. Let C : X ^ Y be a set-valued function such that, for each 
X e X, C{x) is a convex subset ofY with 0 G dC{x) and intC{x) ^ 0 . For 
the vector optimization problem (VOPV), the following results hold: 

(i) Let X G JB. Suppose that there exists a continuous linear functional ^ G 
F*, satisfying (f{c) > 0, for all c G C{x)\{0}, such that x e B is an 
optimal solution of the following optimization problem P{(f)'' 

niinv?(/(x)). 
xEiJ 

Then x is a nondominated-like minimal solution of the problem (VOPV). 
(ii) Let f(B) be a convex subset of Y and x a nondominated-like minimal 

solution of the problem (VOPV). Then there exists a continuous linear 
functional (̂  G F* satisfying ip{c) > 0 for all c G intC{x), such that x is 
an optimal solution of the problem P{(p)' 
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Proof The proof is the same as that of Theorem 2.5 except that C is replaced 
by C{x) and (VOP) is replaced by (VOPV). • 

Let ^ be a vector-valued function from X into Z and g a P-convex vector-
valued function. Suppose that C : X ^Y is a, set-valued function such that, 
for each x e X, C{x) is a convex subset of Y with 0 G dC{x) and nonempty 
interior intC{x), P C Z a closed and convex cone with nonempty interior 
intP, and K C X a, convex set. 

Theorem 2.19. Let f{B) he a convex suhset ofY. Assume that there exists a 
point XQ E B such that g{xo) G —intP. Let x he a nondominated-like minimal 
solution of (VOPV), Then there exist (p e Y* satisfying (p{c) > 0 for all 
c G intC{x) and a continuous linear vector-valued function M : Z —^ Y such 
that M{P) C intT{C{x), 0) U {0}, M o g{x) = 0 and 

^{f{x) + M o g{x)) < if (fix) + M o g{x)), Vx G K. 

Proof The proof of Theorem 2.7 works with C replaced by C{x). • 

Corollary 2.20. Let C : X :=tY he a set-valued function such that, for each 
X E X, C{x) is a nonempty open and convex set with 0 G dC{x). Let the condi­
tions of Theorem 2.19 hold. Then there exists a continuous linear vector-valued 
function M : Z ^Y, such that M{P) C intT{C{x),0) U {0}, M o g{x) = 0 
and X is a nondominated-like minimal solution of the unconstrained vector 
optimization prohlem with variahle domination structure: 

Minc{x){f{x) -V M o g{x)). 

Proof. The proof is the same as that of Corollary 2.8 except that C is replaced 
by C{x). • 

Theorem 2.21. Let C : X ::=t Y he set-valued function such that, for each 
X e X, C{x) is a convex set with 0 G dC{x) and nonempty interior intC{x). 
Let X he a nondominated-like minimal solution of the prohlem (VOPV). As­
sume that f{B) is a convex set and g satisfies the generalized constraint 
qualification condition given in Definition 2.9 and H{G) in Definition 2.11 
holds. Then there exist </? G F* satisfying (p{c) > 0 for c G intC{x) and 
W^ G P^{-P,g{x)), such that 

(pof{x)-u-^og\x) G G + . 

Proof. The proof of Theorem 2.14 works if C is replaced by C{x). • 

The following result provides a characterization of a weakly nondominated-
like point in terms of the nonlinear scalar function ^ given in (1.3). 
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Theorem 2.22. Let Y be a normed space and A cY a nonempty subset. Let 
C : Y :=X Y be a set-valued function such that, for each y e Y, C{y) is a 
proper, closed and convex cone in Y. Let C = ny£YC{y) and e G intC. Let 
y* e A. Then y* is a weakly nondominated-like minimal point of A if and 
only if 

min ^e{y*,u) = 0. 
ueA-y* 

Proof. Suppose that y* e A is a weakly nondominated-like minimal point of 
A with respect to the variable domination structure C. By definition, we have 

( A - y * ) n ( - m t C ( y * ) ) = 0 , 

equivalently, for each a E A, 

a-y* ^ -intC{y*). 

By Proposition 1.54, the above inequality holds if and only if 

^e (2 /* ,a -y*)>0 , V a € A 

Observe that ^e(y*5 0) = 0. Obviously, the theorem holds. • 

2.3 Characterizations of Solutions for VO 

In this section, we deal with characterizations of the Benson's proper minimal 
solution for a vector optimization problem. 

Let X be a nonempty subset of some Hausdorff topological space and 
C CY and P C Z he closed and convex cones with intC ^ 0 and intP ^ 0. 
Let (y, C) and (Z, P) be two ordered locally convex Hausdorff topological 
spaces. 

Definition 2.23 (Benson [12]). Let K C Y be a nonempty subset, y is 
called a Benson's proper minimal point of K with respect to C, if 

clcone{K + C - j/) H ( -C) = {0}. 

The set of all Benson's proper minimal points is denoted by PM{K, C). 

We consider an unconstrained vector optimization problem 

{VUP) Mine f{x), 
xex 

where / : X -^Y is a, vector-valued function. 
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Definition 2.24. A point x is called a Benson's proper minimal solution of 
(VUP), if f{x) is a Benson's proper minimal point of the set f{X). 

Next, we establish characterizations of Benson's proper minimal solutions, 
such as, scalarization, Lagrangian multipliers, saddle-point criterion, duality 
under a generalized cone-subconvexlikeness and the vector variational inequal­
ity, respectively. 

(I) Scalarization Characterizations 

Lemma 2.25 (Borwein [19]). Let Ci,C2 C Y be two closed and convex 
cones such that Ci fl C2 = {0}. If C2 is pointed and locally compact, then 

{-c+)n{C+')^0. 

Lemma 2.26. Let C C Y be a closed and convex cone with the nonempty 
interior intC, and let x E X. Then 

(i) cone{f{X) + intC - f{x)) = cone{f{X) - f{x)) + intC; 
(ii) clcone{f{X) + intC - f{x)) = clcone{f{X) + C - f{x)). 

Proof, (i) This is obvious, since intC is a cone. 
(ii) It is sufficient if the following relation holds: 

cone{f{X) + C - f{x)) C clcone{f{X) + intC - f{x)), 

Indeed, let 
yecone{f{X)-VC-f{x)), 

Then, there exist a > 0,x G X and c£ C such that 

y = a{f{x)^c- f{x)). 

Since C is convex, there exists a sequence {ck} C intC such that c = 
limfc^ooCfc. Set 

Vk := OL{f[x) + Cfc - f{x)) e cone{f{X) + intC - f{x)). 

Then, 
lim yk = a(f{x) + c - f{x)) = y. 

k-^oo 

Hence, 
y e clcone{f{X) + intC - f(x)). 

The proof is complete. • 

We consider a scalar minimization problem for the problem (VUP): 

where /x € i^*\{0}. 

{VUP^) min{M,/(a:)>, 
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Theorem 2.27. Let C C Y be a closed, convex and pointed cone with 
nonempty interior intC, and let C be also locally compact. Let x G K, and let 
the vector-valued function f{x) — j(x) be generalized C-subconvexlike on X. 
Then, x is a Benson's proper minimal solution of (VUP) if and only if there 
exists fi G C"̂ * such that x is an optimal solution of (VUP^). 

Proof Suppose that x G X is a Benson's proper minimal solution of (VUP). 
By Definition 2.23, we have 

clcone{f{X) +C- f{x)) H ( -C) = {0}. 

By Lemma 2.26 (ii), we have also 

clcone{f{X) + intC - f{x)) H ( -C) = {0}. 

By Lemma 2.26 (i) and Proposition L76, 

cone{f{X) + into - f{x)) = cone{f{X) - f{x)) + intC 

is a convex cone, since f{x) — f{x) is generalized C-subconvexlike on X. Thus, 
by Lemma 2.25, there exists ft G C+* such that 

fi G {clcone{f{X) + intC - / (x))+. 

Thus, we obtain 
{jlj{x)-f{x))>0, VXGX, (2.25) 

and so, x is an optimal solution of (VUPp,). Conversely, suppose that there 
exists ft G C'^^ such that x is an optimal solution of (VUPp), i.e., (2.25) holds. 

For any u G cone{f{X) + C — f{x)), there exist a > 0, x e X and c e C 
such that 

u = a{f{x) + c- f{x)). 

From (2.25), we have 

iJl, u) = a{fi, fix) - f{x)) + a(/i, c) > 0. (2.26) 

For arbitrarily fixed y G clcone{f{X) -\-C — / (x)) , there exists a sequence 
{uk} such that 

Uk G cone{f{X) + C - / (x)) , y = lim Uk. 
k—^oo 

By (2.26), we have 
(M, Uk) > 0, Vfc G N. 

Letting A: ^ oo, we obtain 

(M, y) > 0, Vy G cone{f{X) + C - f{x)). (2.27) 

Now, assume that x G X is not a Benson's proper minimal solution of (VUP). 
By Definition 2.23, there exists y' G — C\{0} such that 

y'eclcone{f{X) + C-f{x)). 

Since p, G C"̂ *, we have {fi,y') < 0, which contradicts (2.27). The proof is 
complete. • 
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(II) Lagrangian Multiplier Characterizations 

We consider the following vector constrained optimization problem: 

(VMP) Mine fix), 
xeQ 

where Q = {x G X : g{x) <p 0}, p is a vector valued function from X into Z, 
and P C Z is a closed and convex cone with nonempty interior intP. 

We say that (VMP) satisfies the generalized Slater constraint qualification 
condition if there exists d^n x' G K such that g{x') <intp 0. 

By L{Z, Y), we denote the set of all continuous linear vector-valued func­
tions from Z into Y. A subset L-^{Z, Y) of L{Z, Y) is defined as 

L+(Z, Y) := {T e L{Z, Y) : T{P) C C}. 

A vector-valued Lagrangian function for (VMP) is defined as a vector-
valued function L : X x LJ^ -^ Y, 

L{x,T) := f{x) + ng{x)), {x,T) e X x L+{Z, Y). 

We consider an unconstrained vector minimization problem induced by 
(VMP): 

(VPL) Mine L{x,T) 
xex 

We need to introduce the concept of generalized cone-subconvexlikeness 
for the ordered pair (/, 5'). 

Let f : X ^^ Y and g : X -^ Z he two vector-valued functions. Let 
h{x) = {f{x),g{x)), X e X. An ordered pair (/, y) is said to be generalized 
C X P-subconvexlike on X if the vector-valued function h : X —^ Y x Z is 
generalized C x P-subconvexlike on X. 

Lemma 2.28. Let (f,g) be generalized C x P-subconvexlike on X. Then 

(i) for each /x G C"^\{0}, {{^,f),g) is generalized IR^ x P-subconvexlike on 
X; 

(n) for each T e LJ,{Z,Y), L{X,T) = f{x) + T{g{x)) is generalized C-
subconvexlike on X. 

Proof. We prove only (ii), because the proof of (i) is similar to that of (ii). 
By Proposition 1.76, for any {61,62) G int{C x P) = {intC) x {intP), any 
xi, X2 G X and any A G (0,1), there exist X3 G X and 77 > 0 such that 

{61,62) + X{f{xi),g{x2)) + (1 - X){f{x2),g{x2)) - il{f{x^),g{x^)) 

G intC X intP, 

which implies that 
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Oi + Xf{xi) + (1 - A)/(X2) - r//(x3) e mtC, (2.28) 

Oi + A5(a;i) + (1 - A)5(a;2) - wC^^s) e m t P C P, (2.29) 

From T € L+(Z, F) and (2.29), we obtain 

r ( ^ i ) + AT(5(a;i)) + (1 - \)T{9{x2)) - r)T{g{x^)) € r ( P ) C C. (2.30) 

Set e := 6li + T(6'2). Then 61 G intC + C C miC. Thus, by (2.28) and (2.30), 
we have 

e + A(/(xi) + T(^(xi)) + (1 - A)(/(X2) + r(p(x2)) - r7(/(x3) + T{g{x^)) 

e intC + C C intC, 

Theorem 2.29. Let C C Y be a closed, convex and pointed cone with 
nonempty interior intC, and let C be locally compact. Let x e K, let 
{f{x) — f{x),g{x)) be generalized C x P-subconvexlike on K. Let (VMP) 
satisfy the generalized Slater constraint qualification. Then x is a Benson's 
proper minimal solution of (VMP) if and only if there exists T G L^{Z,Y) 
with T{g{x)) = 0 and x is a Benson's proper minimal solution of (VPL). 

Proof. Suppose that x ^ K \s> d. Benson's proper minimal solution of (VMP). 
By Theorem 2.27 (where X = K)., there exists Jl G C"̂ * such that x is an 
optimal solution of (P/z), i.e., 

( / i , / ( x ) - / ( x ) ) > 0 , "ixeK. (2.31) 

From (2.31), it is easy to verify that the following system is inconsistent: 

((/i,/(x) - f{x)),g{x)) G -mt(IR+ x P) , Vx G X. 

By Lemma 2.28 and /i G C+^ C C+\{0}, the ordered pair {{Jlj{x) -
f{x)),g{x)) is generalized IR+ x P-subconvexlike on X. By Theorem 1.79, 
there exists w'' = (r. A) G (IR+ x P)+\{(0,0)} such that 

r{flj{x)-f{x)) + {\g{x)) = {w\{{flj{x)-f{x)),g{x))) 

> 0, Vx G X. (2.32) 

If r = 0, then A / 0. In this case, (2.32) becomes 

(A,^(x))>0, V X G X (2.33) 

By the generalized Slater constraint qualification, there exists x' e K C X 
such that g{x^) <intp 0. Observing that g{x') G —intP and A G P'^\{0}, so 
obviously we have also (A, g{x')) < 0. This is a contradiction. So r 7̂  0. Since 
r G IR-j-, this implies that r > 0. Setting x = x\n (2.33), we have {A, g{x)) > 0. 
We have also (A, g{x)) < 0, since x ^ K, i.e. g{x) <p 0. Therefore, 
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{\,g{x))^0. (2.34) 

Set a := rjx^ we obtain a G C + \ We can select a c G C such that (cr, c) == 1. 
Define 

T{z) := {\z)c, zeZ. 

Obviously, T G L(Z, Y). Notice that A G P"^, so that we have 

(A,p)>0 , ypeP. 

Hence, 

T(p) = {A,p)ceC, V p e P , 

i.e., T e L^{Z,Y). By (2.34), we obtain 

r (5 (S) ) - (A,5(5) )c = 0. (2.35) 

Since r > 0, (2.32) can be rewritten as 

{Ji,f{x)-f{x)) + {llr){\,g{x))>0, Vx G X. (2.36) 

Notice that 1 = {a, c) = {rfx^ c). Thus 

{l/r){\g{x)) = {jJi,c){\g{x)) 

= {jl,T{g{x)). (2.37) 

From (2.35) to (2.37), we obtain 

(/i, L(x, T) - L(x, T)) > 0, \/xe X. 

Thus, X is an optimal solution of the following scalar minimization problem: 

min(/i ,L(x,r)) . 

From (2.35), we have also 

L{x, T) - L{x, T) = fix) - fix) + Tigix)). 

Hence, by Lemma 2.28, L(x,T) — L{x,T) is generalized C-subconvexlike on 
X. Using Theorem 2.27, x is a Benson's proper minimal solution of (VPL). 

Now, we suppose that there exists T G L^{Z^Y) such that T{g{x)) = 0 
and X G i^ is a Benson's proper minimal solution of (VPL). Using Theorem 
2.27 and Lemma 2.28, there exists ft G C"̂ * such that x is an optimal solution 
of the following scalar minimization problem: 

niin (//,L(a;,T)). 

Then, we have 
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(M, m + T{g{x))) < (/x, fix) + T{g{x))), Mx € X. (2.38) 

Observe that g{x) <P 0, Va; 6 K. From T € L+C^, Y), we have r(5(x)) € - C , 
and so 

{/i,r(5(:c))><0, V x € K (2.39) 

By (2.35), (2.38) and (2.39), we obtain 

(M,/(x)) = (AZ,/(S) + T(g(x))) 
< {Jljix)) + {jx,T{g{x))) 

<(M, /W) , 

for all X G X, which shows that there exists /2 G C"*"̂  such that x G X is 
an optimal solution of (P/i), where X = K. Hence, x is a Benson's proper 
minimal solution of (VMP) by Theorem 2.27. The proof is complete. • 

(III) Saddle-Point Characterizations 

We will characterize the Benson's proper minimal solution by using saddle 
points of a real-valued Lagrangian function of (VMP). To this aim, we need 
the following concepts. 

The real-valued Lagrangian function Lp, : X x P+ —» IR for (VMP) is 
defined as 

L^(x, A) := {Ji,f{x)) + (A,^(x)), (x. A) e X x P^, 

where Jx G C'*"\ 

Definition 2.30. (VMP) is said to satisfy the saddle-point criterion atx G X 
for some Jx G C"̂ % if there exists A G P^ such that (x, A) is a saddle point of 
the Lagrangian function Lp,{x, X), that is, 

Lf,{x, A) < L-^{x, A) < L^(x, A), V(x, A) G X x P+. (2.40) 

Theorem 2.31. Let C C Y be a closed, convex and pointed cone with 
nonempty interior intC, and let C be locally compact. Let x e K and 
{f{x)—f{x),g{x)) be generalized CXP'Subconvexlike onX. Let (VMP) satisfy 
the generalized Slater constraint qualification. Then, x is a Benson's proper 
minimal solution of (VMP) if and only if there exists ft G C'^^ such that 
(VMP) satisfies the saddle-point criterion at x for ft. 

Proof First, suppose that x G X is a Benson proper minimal solution of 
(VMP). By Theorem 2.29, there exists T G L+(Z,Y) such that T{g{x)) = 0 
and X is a Benson's proper minimal solution of (VPL). From the proof of 
Theorem 2.29, we know that L(x, T) — I/(x, T) is generalized C-subconvexlike 
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on X. Therefore, by Theorem 2.27, there exists ft G C"̂ * such that x is an 
optimal solution of the following scalar minimization problem: 

min {ji,L{x,T)). 

Thus, we have 

(M, m + T{g{x))) < (M, fix) + T{g{x))), \/x G X. (2.41) 

Set X := JloT. Then A G C + \ Hence, by the above inequality, we have 

Lf,{x,X)^{fiJ{x)) + {X,g{x)) 

= {fl,f{x) + Tig{x))) 

<{fi,f{x) + T{g{x))) 

= {ji,f{x)) + CX,g{x)) 

= Lji{x,X), V x e X (2.42) 

Since x £ K, {X,g{x)) < 0,VA € P""". Furthermore, 

{X,gix)) = {ji,T{g{x)))=0, 

since T{g{x)) = 0. Then 

Lp{x,X) = {ji,fix)) + {X,g{x)) 

<{fi,m) + {X,g{x)) 

= L-^{x,X), V A e P + . 

From (2.41) and (2.42), (VMP) satisfies the saddle-point criterion at x for p,. 
Next, suppose that there exists jj. G C+' such that (VMP) satisfies the 

saddle-point criterion at x for jl. From Definition 2.30, there exists A G C"*" 
such that (£, A) is a saddle point of the Lagrangian function Lp,{x,X). By 
(2.17), for all a; G ii: C X, 

iJi, fix)) + (A, gix)) < (Jl, fix)) + (A, gix)), (2.43) 

and, for all A G C"^, 
{\g{x))<C\g{x)). (2.44) 

Taking A = aA G C+, a > 0, from (2.44), we get 

{l-a)(X,g{x)) > 0 , V a > 0 , 

which implies that (A,^(x)) = 0. Notice that (X,g{x)) < 0, Vx G il^. From 
(2.43), we obtain 

{fi,fix))<{fl,fix)), yx€K. 

Hence, x is an optimal solution of the following scalar minimization problem: 

min(M,/(a;)). 
xGK 

By Theorem 2.27, where X := K, x is a, Benson's proper minimal solution of 
(VMP). The proof is complete. • 
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(IV) Duality Characterizations 

Now, we characterize the Benson's proper minimal solution by means of a dual 
problem of (VMP). Let C be a closed, convex and pointed cone with intC ^ 0. 

Set 
L ( X , r ) : = { i : ( x , r ) : x G X } . 

The set-valued function 

^ ( r ) := PM{L{X,T),C), T S L+{Z, Y), 

is called the proper dual function for (VMP). 

The set-valued optimization problem 

{VDL) Maxc UT€L+(z,y) ^{T) 

is called the dual problem of (VMP). 
A point y G DTeL+(z,Y)^{T) is called a maximal point of (VDL) if 

y ^c\{o} y, y ^ UTGL+(z,y)^(^). 

Theorem 2.32 (Weak Duality). Let x e K be any feasible solution of 
(VMP), and let y G UTeL+iz,Y)^{T) be any feasible point of (VDL). Then 

f{x) tc\{0} y-

Proof Assuming that the conclusion is not true, we have y — f{x) G C\{0}. 
Since xeK, T{g{x)) G - C , VT G L+(Z, Y). Hence, we obtain 

y - L{x, T)=y- f{x) - T{g{x)) G C\{0} + C 

C C\{0}, yxeK^Te L^{Z,Y). (2.45) 

On the other hand, from y G UTGL+(z,y)^(^)) there exists f G LJ^{Z^Y) 

such that 
ye^{T) = PM{L{X,f),C). 

Hence y G MinciL{X^ T)). By the definition of the minimal point, it follows 
that 

y-L{x,f)^C\{0}, \/xeX. 

Consequently, we have 

y-L{x,f)^C\{0}, \/xeK, 

which contradicts (2.45). • 



2.3 Characterizations of Solutions for VO 59 

Lemma 2.33. Let C C Y be a closed, convex and pointed cone with the 
nonempty interior intC, and let C be also locally compact. Let x E K and 
f{x) G UTeL+(z,Y)^{T), and let {f{x) — f{x),g{x)) be generalized C x P-
subconvexlike on X. Then x is a Benson's proper minimal solution of (VMP) 
and f{x) is a maximal point of (VDL). 

Proof. From 
f{x) e UT€L+(z,y)^(T), 

there exists T G L-^{Z, Y) such that 

f{x)e^{f) = PM{L{X,f),C). 

This implies that there exists x E X such that f{x) = L{x,T) and x is a 
Benson's proper minimal solution of (VPL), where T = T. Since {f{x) — 
f(x),g{x)) is generalized C x P subconvexlike on X, by Lemma 2.28 and 
f{x) = L{x,f), 

L{x, f) - L{x, f) = fix) - fix) + figix)) 

is generalized C-subconvexlike on X. By Theorem 2.27, there exists fl G C"̂ * 
such that X is an optimal solution of the problem miuxexiP', L{x, T)). Hence, 
we have 

iJl, fix)) < ifl, fix)) + (fi, figix))), \/x G X. 

Since x £ K, figix)) € -C, so {fi, figix))) < 0. Therefore, we obtain 

{fl,fix))<{il,fix)), Mx&K. 

This shows that x is an optimal solution of {VUPp)^ where X = K. So, x is 
a Benson's proper minimal solution of (VMP) by Theorem 2.27. 

By Theorem 2.32, we know that 

y - fix) i C\{0}, Vy € UT6L+(z,r)^(T). 

Since 
f{x) G UreL+(z,y)^(r), 

f{x) is a maximal point of (VDL). • 

Theorem 2.34 (Strong Duality). Let C C Y be a closed, convex and 
pointed cone with the nonempty interior intC, and let C be also locally com­
pact. Let X e K, let f{x) — f{x) be generalized C-subconvexlike on K, and 
let {f{x) — f{x),g{x)) be generalized C x P-subconvexlike on X. Let (VMP) 
satisfies the generalized Slater constraint qualification. Then x is a Benson's 
proper minimal solution of (VMP) if and only if f{x) is a maximal point of 
(VDL). 
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Proof. Suppose that x G -fC is a Benson's proper minimal solution of (VMP). 
By Theorem 2.29, there exists T G L^{Z, Y) with f{g{x)) = 0 and x satisfies 

fix) e PM{L{X,f),C) = ^ ( f ) c UTEL^(z,y)^(T). 

By Lemma 2.33, f{x) is a maximal point of (VDL). Conversely, suppose that 
f{x) is a maximal point of (VDL). Then f{x) is a feasible point of (VDL), 
i.e., 

f{x) e UTGL+(z,y)^(T). 

Using Lemma 2.33, it follows from x E K that x is a Benson's proper minimal 
solution of (VMP). • 

2.4 Continuity of Solutions for VO 

Consider the constrained parametric vector optimization problem 

(PVOP) Minjĵ £ / (x) , s. t. g{x, t) < b{t), xef2,tGT, 

where i? C IR^ is a nonempty and convex subset, T is a nonempty subset 
of a metric space, and / : IR^ ^ IR^ ^ : IR^ x T -> IR" ,̂ 6 : T -> IR"̂  are 
continuous vector-valued functions, with g{',t) convex, Vt G T. If i? and T are 
fixed, then (PVOP) is specified by the three elements / , p, b. Thus, problem 
(PVOP) can be denoted as problem q = (g^b^f). Denote by C(i7, IR^) the 
space of continuous functions from i? into IR , with the metric 

P l ( / l , / 2 ) = sup | | / l ( x ) - / 2 ( x ) | | , 

where || • || denotes a norm in IR . Define similarly the metric p2 for C{f2 x 
T,IR'^) and ps for C(T,IR'^). Then (PVOP) may be considered as an ele­
ment of the space Z = C(i7, IR^) x C(i7 x T, IR"^) x C{T, IR"^), with the metric 
p = pi + P2 + Ps- Denote by Q a subspace of Z corresponding to problems 
(PVOP). Denote also Y = C{Q x r , IR^) x C( r , IR^) . 

Let 
X{g, b) = {xen: g{x, t) < b{t)M G T} 

be the feasible region for (PVOP) and XQ G X ( ^ , b). If, for some neighborhood 
V{XQ) of XQ, 

fix) - fixo) G W, Vx G y(xo) n Xig, 6), 

where W = IR^\(-mtIR^), then XQ is called a local weakly minimal solution 
of (P). Denote by M(g) the set of all the local weakly minimal solutions of 
iPVOP). If 

fix)-fixo) eW, V X G X ( ^ , 6 ) , 

then XQ is called a (global) weakly minimal solution of (PVOP). Denote by 
Mgiq) the set of all the weakly minimal solutions of (PVOP). 
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Lemma 2.35. Let {go, bo) ^Y, dnd let T be compact. Assume that the Slater 
condition holds, i.e., there exists s e f2 such that 

go{s,t)<bo{t), yteT. (2.46) 

Then, the set-valued function X is l.s.c. at (poj^o)- ^L ^^ addition, Q is com­
pact, then X is also u.s.c. at {go, bo)-

Proof. . Let G be open, and let G H ^(^'o, ^o) ¥" 0- Now, X{go, bo) = f2 D A, 
where 

A = {xeJRF : go{x, t) < bo{t), \/t e T}. 

From the Slater condition, i? D intA ^ 0 . Furthermore, by the convexity of 
go{'->i)^t, the Slater condition and go and bo are continuous, as well as the 
compactness of T, we have 

intA = {xe'5R^ : go{x, t) < bo{t), Vt G T}. 

Let x' G G n X{go,bo)' Then there is a sequence {zj} C i? fl intA with 
{zj} —̂  x'; and, for some j , Zj G G. Since G is open, G fl i? fl intA ^ 0 . 

Let xo G G n i? n intA. Suppose, if possible, that there does not exist 
e > 0 such that the ball B{xo,€) C X{gk,bk) for all sufficiently large k. 

Then, for each e = —, A: G AT, there exists Xk for which Xk i X{gk,bk) and 
k 

W^k — ^o|| < T' s^ {^k} -^ ^0- Since Xk i X{gk,bk), there is a subsequence 
k 

{zj} of {xk}, an integer i G {1,2, • • • , m}, and a sequence {tj} C T, such that 
the component i oi gj{zj,tj) — bj{tj) is positive for each j . Since T is compact, 
a suitable subsequence {tj} —> to G T. Let j —> oo; the component i of 
5'o(^Oĵ o) —bo{to) > 0, contradicting 5^0(^0,̂ ) < ^o(^o)- Hence, for some e > 0, 
and all sufficiently large k, B{xo,€) C X{gk,bk)\ hence G C] X{gk,bk) ^ 0 . 
Thus, X is l.s.c. at {go, bo)-

Now, let f2 be compact; let {gk, bk) —> (̂ o? bo) G F ; let 

Xfc G X{gk,bk), {xk} -^ x*,Vfc G Â . 

Thus, uniform convergence and continuity on the compact set i? give x* G 
X(^Oj^o); hence, X is u.s.c. at (̂ 'Oĵ o)- • 

Theorem 2.36. Let qo = (^0, bo, /o) G Q^ and /et T and Q be compact. Then 
M is u. s. c. at qo. 

Proof. If M is not u.s.c. at ^o, then there is an open set G D M{qo) and a 
sequence {qk} C Q such that, for each k, M{qk) is not contained in G. Thus, 
for each fc, there is x^ G M{qk)\G. Since i? is compact, {x^} may be replaced 
by a convergent subsequence, say {xk} —̂  xo, with XQ G X(^05&O) by the 
continuity of ^0 and 6o- Since M is not u.s.c. at qo, xo ^ M{qo). Thus, from 
the definition of local weakly minimal solutions, there exist V{xo) C G and 
zo G X{go, bo) n V{xo) such that 
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/o(^o) - /o(^o) € intlR^, 

where V{xo) denotes some neighborhood of XQ. By Lemma 2.35, X is lower 
semicontinuous at {go, bo), so there exists a sequence {zk} -^ ZQ, with Zk G 
X{9k,bk), V/c. Since {xfc} ̂  â o and {z^} -^ 2:0, 

/fc(a;fc) - f{zk) G intlR^, 

for all sufficiently large fc, contradicting Xk E M{qk). • 

Lemma 2.37. Let (̂ fc, 6/e) -^ (^0, '^o); let Ck = X{gk, bk) and Co = X{go, bo) 
be convex sets; let Co contain two points a, b with 2d := ||a — 6|| > 0; let the 
set-valued function X be l.s.c. at {go, bo). IfO<uj<d, then 

C'Q = {xeCo: \\x-a\\ = uj}^0; 

C'k = {xeCk: \\x-a\\=uj}^0. 

Proof. If 0 < (jj < d, then b ^ B{a,uj). Since Co is convex, the line segment 
[a, 6] C Co and [a, 6] intersects CQ. SO, CQ 7̂  0 . Since X is l.s.c. at (^0,^0) 
and {gk, bk) -^ {go, bo), there exist Uk, Vk e Ck, with {uk} -^ a and {t;^} -^ b. 
Now d{uk,Vk) > OJ provided that 

Ik/c - all < — y - ' IÎ A: - fc|| < —^^ with (5 = ||a - 6|| > cj, 

for k sufficiently large. Also, we have [uk, Vk] C Ck, since Ck is convex. Hence, 

Theorem 2.38. Let i? C iR^ 6e compact and convex; let go = {go^bo, fo) ^ Q 
6e a convex problem. For each xo € M{qo), assume that the Slater constraint 
qualification (2.4^) holds, and assume that the following coercivity condition 
holds, i.e., there are a vector 6 = S{xo) G M and a positively increasing 
function r, with r(0) = 0; depending on S and xo, such that 

Sfo{x)-6fo{xo)>ir{\\x-xo\\). 

Then the set-valued function M is l.s.c. at qo, in the domain of convex prob­
lems (PVOP). 

Proof. Let 
te} = {{gk, bk, fk)} -^ qo = {go, bo, fo), 

with each qk a convex (PVOP) problem. Let xo G M{qo) and S = S{xo)' Let 

N{a) = {xeW: <f{x, X{go, bo)) < a } , 

where (p{',-) is the metric function in IR^ from a point to the set. By Lemma 
2.35, X is u.s.c. at {go, bo)- Hence, X{gk,bk) C N{a) for all sufficiently large 
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k. With d, CQ, Cj^ in Lemma 2.37, noting that the feasible sets are convex, 
and with 0 < a; < mm{d, a } . Lemma 2.37 shows that CQ 7̂  0 , C^ 7̂  0 . Since 
{Qk} —> ^0 uniformly, we deduce that \Sfk{x') —Sfo{x')\ <T = r{(jo), for all x' 
with ||x' — xoll = UJ and all sufficiently large k. For such x\ 

Sfk{xo) < Sfo{xo) + r, by the uniform convergence, 

< Sfo{x') — 4T -\-T, by the coercivity condition, 

< 6fk{x') -{- T — AT -\- r, by the uniform convergence. 

Thus, 
Sfkix') >Sfk{xo) + 2T. 

Since X is l.s.c. at (̂ 0? ^0) by Lemma 2.35, there exists a sequence {x^} —^ XQ, 
with Xk ^ X{gk,bk) for each k. Hence, 

Sfkix') >Sfk{xk) + 2r-T, 

for all sufficiently large fc, by the uniform convergence. Consequently, x' is not 
a minimal solution of Sfkix) over x feasible for qk with \\x — xo\\ < u. Now, 
such a minimal solution exists, say dit z = Zk^ since the intersection of the 
feasible set of qk and the set {x : \\x — XQ\\ < uj} is compact; therefore, 

Zk ^ {x e WC : ||x — xoll < cj}. 

Hence, Zk is a local weakly minimal solution of Sfk ix) over the feasible set of 
qk'f it is global, since qk is convex. 

Suppose, if possible, that Zk is not a weakly minimal solution of qk. Then, 
for some feasible x, 

fkix) - fkizk) € -intJR^., 

But 07^5 GlR+, so that 

Sfkix)-Sfkizk)<0, 

contradicting the minimality of Zk • Thus, Zk is a weakly minimal solution of 
qk' Choose a sequence {UJJ} —> 0 + . For each Uj, for sufficiently large fc, say 
all k > kj, qk has a weakly minimal solution satisfying ||2;/e — a;o|| < < ĵ- Thus 
M is l.s.c. • 

2.5 Set-Valued VO with a Fixed Domination Structure 

Optimizations with set-valued objective functions are closely related to prob­
lems in stochastic programming, fuzzy programming, optimal control and the 
duality of vector optimization problems. If the values of a given function vary 
in a specified region, this fact could be described using a membership func­
tion in theory of fuzzy sets or using information on distributions of the func­
tion values. In this general setting, probability distributions or membership 
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functions are not needed because only sets are considered. Optimal control 
problems with differential inclusions belong to this class of set-valued opti­
mization problems as well. Set-valued optimization seems to have the poten­
tial to become a bridge between different areas in optimization. And it is a 
substantial extension of standard optimization theory. Set-valued analysis is 
the most important tool for such an advancement in continuous optimization. 
And conversely, the development of set-valued analysis receives important 
impulses from set-valued optimization. In this section, we consider set-valued 
optimization problems with fixed domination structures. 

Let X and Y be normed spaces, and let Y be ordered by a convex cone 
C CY. Let X be a nonempty subset of X, and let F : X =:t F be a set-valued 
function. The epigraph of F is defined by 

epicF = {{x, y) e{X,Y):ye F{x) + C}. 

Let F : K ^Y he a, set-valued function. Let a pair (x, y) with x G K and 
y G F{x) be given. 

Definition 2.39 (Jahn and Rauh [118]). A function DeF{x,y) :X ^Y, 
whose epigraph equals the contingent cone to the epigraph of F at {x,y), i.e., 

epicDeF{x, y) = T{epicF, (x, y)) 

is called the contingent epiderivative of F at {x,y). 

It is worth noting that the contingent epiderivative exists only for some 
specially ordered spaces. 

Definition 2.40. Le^ x £ X,y e Y and G{x) = {y G Y : {x,y) G 
T{epi(jF,{x,y))}. A set-valued function DgF{x^y) : K — {x} zit Y is called 
the generalized contingent epiderivative of F at (x^y), if for any x G K — {x}, 

[ 0 , ifG{x) = 0. 

Note that, for some x G K—{x}, the set {y eY : (x, y) G r (ep i^F, (x, y))} 
may be empty. In this case, we have DgF{x, y){^) = ^• 

The following lemma is needed. 

Lemma 2.41. [142] Let C cY be a closed and convex cone. Assume that C 
is Daniell. Let A C Y be nonempty, closed and minorized. Then Mine A ^̂  
nonempty. 

Theorem 2.42. Let C be a pointed, closed and convex cone, and let C 
be Daniell. Let, for every x e K, the set G{x) = {y G Y : (x^y) G 
T{epi(jF^ (x, ^))} be minorized. Then, for all x G K, DgF{x,y){x) exists. 
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Proof. Since the contingent cone is always closed in a normed space, for every 
X e K, G{x) is minorized and closed. By Lemma 2.41, MincG(x) is nonempty, 
i.e., DgF{x,y) is well-defined. • 

Theorem 2.43. Let C be a closed, pointed and convex cone in Y, and let 
K = X. Let, for all x e X, DgF{x,y){x) ^ 0 . Then DgF{x,y) is strictly 
positive homogeneous. Moreover, if F is C-convex and the set 

G{x) = {yeY:{x,y)e T{epiF, (x,y))} 

fulfills the domination property for all x G X, then DgF{x, y) is subadditive. 

Proof. We take any a > 0 and x G X. Then we obtain 

-DgF{x, y){ax) = Mmc{-y e Y : (ax, y) G T(epi^F, (x, y))} 
a a 

= Mmc{u G Y : {ax, an) G T(epi^F, (x, y))} 

= Mmc{ueY : {x,u) e T{epicF,{x,y))} 

= DgF{x,y){x). 

Thus 
DgF{x,y){ax) = aDgF{x,y){x). 

Next, for xi,X2 e X, yi e DgF{x,y){xi), 2/2 ^ DgF{x,y){x2), we have 
{xi,yi) G r(epi(-F, (x,y)) and (x2,2/2) ^ T{epicF,{x,y)). Since F is C-
convex, epi^F is convex and T(epi^F, (x, y)) is a convex cone, we have 

(xi + X2,2/1 + 2/2) G T(epi^F, (x, y)), 

implying 
DgF{x, y){xi) + Dg{x,y){x2) C G(xi + X2). 

By the domination property, we have 

G(xi + X2) C MincG(xi + X2) + C = Dg{F{x, y){xi + X2) + C. 

Thus 

DgF{x,y){xi) + DgF{x,y){x2) C DgF{x,y)(xi + X2) + C • 

Lemma 2.44. [118] Let F : X ^ Y be a set-valued function. Let {x,y) G 
Gr{F). If the contingent epiderivative DeF{x,y) exists, then it is unique. 

Now we consider the relation between the generalized contingent epideriva­
tive and the contingent epiderivative, and we give an existence theorem of the 
contingent epiderivative in a complete vector lattice. 
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Theorem 2.45. Let (Y", C) be an ordered complete vector lattice. Then, for 
any x e K and y G F{x), the contingent epiderivative DeF{x,y) exists and 

DeF{x, y){x) - Infc {y eY : {x, y) G T{epicF, {x, y))}, Vx G X 

Proof. We define 

fix) = lnic{y eY:{x,y)e T{epicF, (x, y))}, Vx G X. 

Since (y^C) is an ordered complete vector lattice, f{x) is well defined for 
every x G X and f{x) is single-valued. Now we prove that / = DeF{x, y). By 
the order completeness of y , we have 

f{x)^C^G{x), V X G X 

For {x,y) G T(epi^F, (x,y)), we have y G G{x) C / (x) + C. Thus (x,2/) G 
epi^/ . Hence 

r(epi^F,(x,y)) C epi^/ . 

Conversely, for any x G X, it follows from the vector completeness that 

( x , / ( x ) ) c r ( e p i c F , ( x , y ) ) . 

Thus 

e p i c / c T ( e p i ^ F , ( x , y ) ) + { 0 } x C 

= epicDeF{x,y)^{Q}xC 

= epicDeF{x,y) 

= T{epicF,{x,y)). 

Hence we have 

Consequently, / equals the epiderivative DeF{x, y) which, by Lemma 2.44, is 
unique. • 

Theorem 2.46. Let X, Y be real normed spaces, let K = X, let C C X be a 
pointed and convex cone and F : K :=tY a set-valued function. Let x E X and 
y G F{x) be given. If the contingent epiderivative DeF{x,y) exists and the set 
G{x) = {y G y : (x,2/) G T{epi(jF^ (x, y))} fulfills the domination property for 
all X e X, then 

epicDeF{x,y) = epicDgF{x,y). 

Proof. By the definition of DgF^ we have 

epicDgF(x, y) C T(epi^F, (x, y)) + {0} x C 

= epicDeF{x,y)^{{)}xC 

= epicDeF{x,y). 
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Thus, 
epicDgF{x,y) C epicDeF{x,y). 

Conversely, we suppose that 

{x,y) G epicDeF{x,y) and {x,y) ^ epiDgF{x,y), 

i.e., 
y^DgF{x,y){x)-\-C, 

or 
y ^ Minciy eY:{x,y)e T{epicF, (x, y))} + C. 

Since (x,y) G epi^I>ei^(^, y), i.e., (x,y) G r (epi^F, (x, ^)), we have 

ye{y€Y:{x,y)e T(epi^F, (x, y))}. 

By the domination property of G(x), 

y G Minc{y G F : (x, y) G T{epicF, (x, y))} + C = Z)^F(x, y){x) + C. 

This is a contradiction. Hence, 

epi(-Z)ei^(^, y) = epicDgF{x, y). • 

We consider a set-valued optimization problem: 

(SOK) MincF(x), 

where F : X =4 F is a set-valued function and K C X. 

Definition 2.47. Let the ordering cone C have the nonempty interior intC. 
A pair (x, y) with x E K and y G F{x) is called a (weakly) minimal pair of 
the problem (SOK) ify is a (weakly) minimal point of the set of F{K), where 

F{K) = U,eKF(x). 

We can obtain a unified necessary and sufficient optimality condition for 
a weakly minimal solution of (SOK). 

Theorem 2.48. Let C have nonempty interior intC, and let (x, y) G Gr{F) 
be a (weakly) minimal pair of (SOK). Then 

DgF{x, y){x -x)cW, Vx G K, 

where W = Y\{-intC), 
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Proof. We prove by contradiction. Suppose that there exists a,n x G K such 
that 

DgF{x,y){x-x)<^W, 

Then, there is a. z G DgF{x,y){x — x) with z G —intC. By the definition of 
DgF{x,y), we have 

{x-x,z) £T{epicF,{x,y)). 

Then there are sequences {{xk,yk)}keN in epi(jF and {Xk}keN of positive 
real numbers with {x,y) = lim (xk, yk) and 

(x - X, z) == lim Xk{xk -x,yk- y). 
k^oo 

Thus there exists an M G iV with 

Vk G {y} - intC, Vfc > M. 

Since (xj^, yk) G epî ^^F, there is a y^ G F{xk) with y^ G {yit} + C. Thus 

2/"̂  € {yk} -C (l{y}- into -C = {y}- intC, Vn > M. 

Hence (x, y) is not a weakly minimal pair of (SOK). • 

We need the following lemma for deriving a sufficient optimality condition. 

Lemma 2.49. Let K be a nonempty convex subset of X, Let C be a closed, 
convex and pointed cone being Danielll, let F be C-convex, and let, for every 
X e K and y E F{x), G{x — x) be minorized. Moreover, let the set G{x — x) 
fulfill the domination property, for all x E K, where 

G{x) = {yeY:{x,y)£ T{epicF, (x, y))}-

Then, for every x G K and y E F{x), 

F{x) - {y} C DgF{x, y){x - x) + C, Vx G K. 

Proof. Take arbitrary elements x E K and y G F{x). We define a sequence 
{{xk,yk)}keN with 

Xk = x-\- Y{X — x), \/k G iV, 

yk = y+ -^{y-y), VA; GN. 

Since K is convex and F is C-convex, it follows that, for all A: G iV, 

Xk = {I- r ) ^ + z^^ ^ ' 

and 
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j/fc = (1 - ^)y +pe F((l - ^)x +ix) + C = Fixk) + C. 

Hence, the elements of the sequence {xk,yk)keN belong to epi^^F and this 
sequence converges to {x,y). Moreover, we obtain 

lim k{xk -x,yk-y) = {x-x,y- y). 
k-^oo 

Consequently, we get {x — x^y — y) G T(epiF, (x,y)), i.e., 

y-yeG{x-x) = {yeY',{x-x,y)e T(epi^F, (x, y))}, 

By the definition of Dg (x, y) and the domination property, we have 

G{x -x) C DgF{x, y){x -x)-\-C. 

Thus 
F{x) - {y} C DgF{x, y){x - x) + C. • 

Theorem 2.50. Let the assumptions in Lemma 2.49 hold, and let C have 
nonempty interior intC. If, for x G K and y G F{x), 

0 ^ DgF{x, y){x - x) C W, Vx G K, 

where W = Y\{—intC), then (x, y) is a weakly minimal pair of (SOK). 

Proof. By the assumptions, we have 

DgF{x, y){x -x)n {-intC) = 0 , Vx G K. 

Thus, 
{DgF{x, y){x - x) + C) n {-intC) - 0 , Vx G K. 

By Lemma 2.49, we have 

(F(x) - {y}) n i-intC) = 0 , Vx G K. 

Thus, it means that ^ is a weakly minimal point of F{K). • 

Subgradients for vector-valued functions were extensively considered (see 
Thibault [194], Zowe [227] and the references therein). In Yang [206], the 
existence of a weak subgradient for a convex relation (i.e., a set-valued function 
with a convex graph) was considered. In the sequel, we consider the existence 
of a weak subgradient for a general set-valued function without the restriction 
of the convex relation. We obtain a suflScient optimality condition for set-
valued optimization problems in terms of weak subgradients of set-valued 
functions. 
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Definition 2.51. Let intC ^^, KcX,f:X-^Y and x e K. A continu­
ous linear vector-valued function A : X —^ Y is called a weak subgradient of f 
at X if 

f{x) - f{x) - A{x -x)eW, yxe K, 

where W = Y\{-intC). 

We denote by d'^f{x) the set of all weak subgradients of / . 

Definition 2.52. Let K C X, f : X ^ Y and x e K. A continuous linear 
vector-valued function A: X —^Y is called a strong subgradient of f at x if 

f{x) - f{x) - A{x -x)eC, Wx€ K. 

Definition 2.53. Let C have a nonempty interior intC, let F : K ^ Y be 
a set-valued function and x € K. A continuous linear vector-valued function 
A: X ^^Y is called a weak subgradient of F at x if 

F{x) - F{x) - A{x -x)cW, Vx G K, 

where W = Y\{-intC). 

Lemma 2.54. Let K and C have nonempty interiors intK and intC, respec­
tively, let K be a convex subset of X. Let F : K ^Y be C-convex on K, let 
F be upper semicontinuous at x ^ intK, and let —F{x) be minorized. Then 
epiF is a convex subset of X xY and int{epi(jF) ^ 0 . 

Proof. It is easy to verify that epicF is convex. We prove that int{epicF) ^ 0 . 
Since —F{x) is minorized, there is a ^ G F with F{x) C {y} — intC. Since 
X G intK and F is upper semicontinuous at x, there is a neighborhood U of 
the zero in X so that [x] + U C K and 

F{x + C/) C {y} - into, 

For an arbitrarily chosen y E y + intC, there is an open neighborhood V of 
the zero in Y with 

{y} + Vc {y} + intC. 

Thus, we conclude 

{y} + V- F{{x} + C/) c {y} + intC - {{y} - intC) 

C intC + intC 

C C . 

Hence, we get 
({x} + t/,{^} + F )Gep iF , 

i.e., int{epiF) y^ 0. • 

It follows from the proof of the preceding lemma that intM ^ 0 , where 

M = {(x, y) eX xY :xe K, y G F{x) + intC}, 
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Theorem 2.55. Let C have nonempty interior intC, K be a convex subset 
of X with nonempty interior intK, x G intK be given. Let F : K ^ Y be 
C-convex, upper semicontinuous at x and F{x) — C be convex. Let F{x) and 
—F{x) be minorized, and let the set equation 

F{x) n {F{x) - intC) = 0 

be fulfilled. Then there exists a weak subgradientA of F atx G intK satisfying, 
for every x £ K, the property 

A{x -x)^ -intC <^ A{x -X)GC, 

holds. 

Proof. We define the set D = C — {x} and the set-valued function H : K ^Y 
with 

H{x) = F{x -\-x)- F{x), \/x e K. 

Then 0 G i^, i^ is convex, H is upper semicontinuous at 0, and H{ff) is 
minorized. In order to see that H is C-convex, take arbitrary xi, X2 G K and 
AG (0,1). Then 

\H{XI)^{1-\X2)H{X2) 

= XF{x2 + x) + (1 - X)F{X2 -hx)- XF{x) - (1 - X)F{x) 

C F{Xxi + (1 - X)x2 + x) + C - F{x) + C 

C H{Xxi + (1 - X)x2) + C. 

Next we set 

B = {{x, y) eX xY :xeD,y e H{x) + intC}. 

By Lemma 2.54, we obtain intB ^ 0 . Now we show that (0,0) ^ B. 
Suppose that (0,0) G B. Then there is a 2/ G i^(0) so that 0 G y-VintC, which 
implies iJ(0) n {-intC) ^ 0 , i.e., 

{F{x) - F{x)) n {-intC) ^ 0 

which contradicts the assumption condition. By the separation theorem for 
convex sets, there is a nonzero (—p, cr) G X* x Y* such that 

-p{x) + a{y) > 0 , V ( x , y ) G 5 . 

If cr = 0, then —p{x) > 0, Vx G D. Because of 0 G intD^ we obtain p = 0, 
contradicting (—p, cr) ^ (0,0). Hence we get cr 7̂  0. Moreover, observing that 
cr G C*, there is a ^ G intC with a{y) = 1. We now define a vector-valued 
function A: X -^Y hy 

A{x) = p{x)y, \/x G X. 
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Obviously, A is linear and continuous. Next, we assert, for this function A, 
that 

y - A{x) ^ -intC, Wx G D,y G H{x). 

Suppose that there exist diU x e D and a y G H{x) with 

y - A{x) G -intC. 

Since a G C*\{0}, we then get 

0 > cr(y - A{x)) = a{x) - p{x)a{y) = a{y) - p{x). 

This is a contradiction. Hence, 

y - A{x) ^ -into, Vx e D,y e H{x), 

i.e., ^ is a weak subgradient of F at x. Finally, for every x G D, we get 

A{x) ^ —intC ^ p{x)y ^ —intC 

=> p{x) > 0 

=> A{x) G C. 

Remark 2.56, (i) The following implication shows that the assumption con­
dition "F(x) n {F{x) — intC) = 0" is rather restrictive for the set F{x): 

intF{x) ^ 0 ^ F{x) n {F{x) - intC) ^ 0 . 

Hence the assumption condition can only be fulfilled for a set F{x) with 
an empty interior. 
Indeed, if intF{x) is nonempty, then there are a y G F{x) and a neigh­
borhood M of ^ so that M C F{x). Consequently, we obtain 

F{x) n (F(x) - intC) C M H (M - intC) ^ 0 . 

(ii) If, as a special case, F : K -^ Y is single-valued, then the assumption 
condition is always fulfilled. 

Theorem 2.57. Let C have a nonempty interior intC. If there exists a weak 
subgradient A of F at x E K such that 

A{x -x)eC, Vx G K, 

then, every y G JP(X), (X, y) is a weakly minimal pair of (SOK), and we have 
the property 

F{x) n (F(x) - intC) = 0 . 
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Proof. Since A is a weak subgradient oi F at x G K, we have 

F{x) - F{x) - {A{x - x)} CW, Vx G K, 

where W = Y\{—intC). Thus, for every y G F{x), we have 

F{x) -yc {A{x -x)} + WcC + W = W, Vx G X, 

resulting in 
F{K) n {{y} - intC) = 0 , 

i.e., y is a weak minimal point of F{K). Thus we have 

F{x) - F(x) - {A{0)} C W, 

resulting in 
F{x) - F{x) C W, 

Hence 
F{x) n {F{x) - intC) = 0, • 

Remark 2.58. In the special case K = X^ the assumption ''A{x — x) G C.,\/x G 
X" reads 

A{x -X)GC, VX G X. 

Then we can conclude 

A{x) GCr\ ( -C) - {0}, Mx G X, 

which means that A = 0, or in other words, 0 is a weak subgradient of F at 
X G X. Hence, we obtain the standard assumption known from the theory of 
subgradients in convex analysis. 

2.6 Set-Valued VO with a Variable Domination 
Structure 

In this section, we consider set-valued optimization problems with a variable 
domination structure. 

Let X and Y be real normed spaces, and K G X he nonempty. Let 
C : X =t y be a cone-valued function, i.e., for every x G X, the set C{x) 
is a closed and convex cone with nonempty interior mtC{x). 

Let F : X =t y be a set-valued function. We consider a set-valued opti­
mization problem with variable domination structure C: 

(SOKV) Mmc{x)F{x). 
xeK 
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Definition 2.59. Let x e K and y G F{x). 
(i) The pair (x, y) is called a nondominated-like minimal solution pair of 

(SOKV) if 
{F{K)-y)n{-C{x)) = {y}, 

(a) The pair (x, y) is called a weakly nondominated-like minimal solution 
pair of (SOKV) if 

{F{K)-y)r\{-intC{x)) = {y}. 

Under certain conditions, we shall see that a set-valued optimization prob­
lem (SOKV) can be transformed into an equivalent vector-valued optimization 
problem in the sense that their solution sets of nondominated-like minimal so­
lution pairs are identical. 

Definition 2.60. We say that a cone-valued function C : X ^Y is pointed 
on K C X if the cone UxeKC{x) is pointed, i.e., 

{UxeKC{x)) n ( - U^eK C{x)) = {0} . 

Remark 2.61. A cone valued function C : K ^Y is pointed if and only if 

C{xi) n {-C{x2)) = {0}, Vxi, X2 G K. 

Definition 2.62. Let f : X -^Y be a vector-valued function and C : X ^Y 
be a cone valued function. We say that C is weakly upper f-monotone if, for 
any xi , X2 € X, xi^ X2, 

f{xi) - f{x2) i C(X2)\{0} ^ C(xi) C C{X2). 

Proposition 2.63. Let K C X and C : X ^ Y be a pointed cone-valued 
function on K. Let f : X -^Y be a vector-valued function and F : X :=tY be 
given by 

F{x) = f{x) + C{x), xeX. 

(i) Suppose that C is weakly upper f-monotone. IfxGKisa nondominated-
like minimal solution of the vector optimization problem: 

(VOKV) Minc(.) fix), 
xGK 

then (x, f{x)) is a nondominated-like minimal solution pair of the set-
valued optimization problem: 

{SOKV) Minci.) ^ (^ ) -
xeK 

(ii) / / (x, y) is a nondominated-like minimal solution pair of (SOKV), then x 
is a nondominated-like minimal solution of (VOKV) and y = f{x). 
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Proof. Suppose that S € iiT is a nondominated-like minimal solution of 
(VOKV). Then 

f{x) - fix) i -C{x)\{0}, \/x e K. 

We claim that 

(fix) - fix) + Cix)) n i-Cix)\{0}) = 0 , Vx e K. 

Indeed, if there exists x E K such that 

ifix) - fix) + Cix)) n i-Cix)\{0}) ^ 0 , 

then there exists c € C{x) and c 7̂  0 such that 

-c e /(x) - fix) + Cix). 

It follows that 
fix)-fix)e-c-Cix). 

From the pointedness and weak upper monotonicity of C, we have 

fix)-fix)€-c-Cix). 

Since C is pointed and c 7̂  0, it follows that 

fix) - fix) G-Cix)\{0}, 

which contradicts the fact that x is a nondominated-like minimal solution. 
Thus, we have 

y - fix) i -C(x) \{0} , Ny e F(x), x e K. 

Hence (x, f{x)) is a nondominated-like minimal solution pair of (SOKV). 
Now we prove that (ii) holds. To this end, let us assume that (x, y) is a 

nondominated-like minimal solution pair of (SOKV). Then 

y e F{x) = fix) + C{x) 

and 
y-y^-Cix)\{0}, yyeFiK). (2.47) 

It is clear that y = f{x). We are now ready to prove that x is a nondominated-
like minimal solution of (VOKV). Suppose to the contrary that x is not a 
nondominated-like minimal solution of (VOKV). Then, for some point XQ G 
K\{x}, 

fixo) - fix) € -C(x) \{0} . 

But f{x) = y, and therefore 

fixo) -y€ -Cix)\{0}, 
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contradicting (2.47). Hence, x is a nondominated-like minimal solution of 
(VOKV). • 

Contingent cone and contingent derivative are important tools for dealing 
set-valued optimization problems. They are now employed to derive necessary 
and sufficient optimality conditions for nondominated-like minimal pairs of 
set-valued optimization problems with a variable domination structure. 

Theorem 2.64. Let X and Y be real normed spaces. Let C : X ^ Y be a 
cone-valued function such that intC{x) ^ 0 for every x e X. Let K C X 
be a nonempty subset, and let F : K :=4 Y be a set-valued function such that 
F{x) 7̂  0 for every x ^ K. If (x, y) is a weakly nondominated-like minimal 
solution pair of (SOKV), then 

DF{x, y){x -x)c W{x), \/x G K, 

where W{x) = Y\{—intC{x)) and DF{x^y) is the contingent derivative of F 
at{x,y). 

Proof We proceed by contradiction. Let (x,y) G K x F{x) be a weakly 
nondominated-like minimal solution pair of (SOKV). Suppose that there is 
an xo E iiT such that 

DF{x,y){xo-x)(^W{x). 

Then there is a point z such that z G DF{x,y){xo — x) and z G —intC{x), 
By the definition of JDF, we have 

(xo -X,2 : ) GTGr(F)(^,^). 

So there are sequences {{xk^yk)} in Gr(F) and {\k} of positive numbers for 
which 

(x,y) = lim {xk.yk) 
n—>oo 

and 
(xo - X, z) = lim \k[xk -x,yk- y)> 

n-^oo 
We assert that there is a positive integer M so that 

yk^y- intC{x), Vfc > M. 

Since yk G F{xk) C ^xeKF{x)^ it follows that (x,y) cannot be a weakly 
nondominated-like minimal solution pair of (SOKV). • 

We need the following lemma. 

Lemma 2.65. [6] Let X and Y be normed spaces, f : K ^^ Y be a single-
valued function, where K C X is open, M : X :^Y be a set-valued function 
and L C X, Let F : X ^Y be a set-valued function defined by 
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P/ . _ j fix) - M{x), ifxeL 

Iff is Frechet differentiable at x G K H dom{F), then, for every y G F{x), 

njT/ ^( . f f'{x){u) - DM{x,f{x) -y){u),ifueT{L,x) 

If M is constant, then 

DF{x, y){u) = nx){u) - T{M, /(x) - y). 

Corollary 2.66. Let the assumptions of Theorem 2.64 hold. Let C be a con­
stant cone-valued function, i.e., C{x) = C, for every x E K, where C is 
a pointed, closed and convex cone with intC ^ 0 . Let f : K —^ Y be a 
Frechet differentiable single-valued function. If (x, f{x)) G intK x Y is a 
weakly nondominated-like minimal solution pair of (SOKV), then x satisfies 
the vector variational inequality 

f{x){x-x) eW, \/xeK, 

where W = Y\{-C). 

Proof Set F{x) = f{x) + C for every x £ K.li f \s Frechet differentiable, 
then for (x, y) G GrF we have, by Lemma 2.65, 

DF{x, y)(u) = f{x)u - T{C, f{x) - y), Vtx G T{K, x). 

Thus from Theorem 2.64, we have 

f'{x){x -x)- T{C, fix) - fix)) CW, Vx G i^ n (x + TiK, x)), 

i.e., 
f (x)(x - x) - Tic, 0)CW, Vx G ii: n (x + T ( X , X)). 

Since C is a closed convex cone and x G intK, we have T(C, 0) = C and 
TiK,x) = X. Hence 

/ ( x ) ( x - x ) CT^, V X G K • 

Next, we establish a sufficient condition for (SOKV). To this end, we need 
some concepts. 

Definition 2.67. Let F : X :=% Y be a set-valued function. F is said to be 
Cix) pseudo-convex at (x, y) G Gr(F) if and only if 

Fix) -y C DFix, y)(x - x) + C(x), Vx G DomiF). 
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Definition 2.68. Let K be a nonempty convex subset of X, and let x G K 
and y G F{K). F is said to be C{x)-convex at (x^y) if, for any x'^x" G K 
and A G (0,1); 

\F{x') + (1 - \)F{x") C F(\x' + (1 - \)x") + C{x). 

Remark 2.69. The order pseudo-convex function is a generalization of the 
pseudo-convex function given in Aubin and Frankowska [6]. If C is a con­
stant function, the C-convexity at ^ of F reduces to the usual C-convexity of 
F. 

Definition 2.70 (Thibault [193]). A set-valued function F \ X :=XY is said 
to be compactly approximable at {x,y) G Gr{F), if, for every x £ X, there are 
a set-valued function M from X into the set of all nonempty compact subsets 
ofY, a neighborhood V ofx in X, and a real function r : (0,1] x X —> (0, +oo) 
satisfying 

(i) ,, lim r(t ,x) = 0, 

(ii) for every x GV and t G (0,1] 

F{x -\-tx)cy + t{R{x) + r(t, X)BY), 

where By is the closed unit ball centered at the origin ofY. 

Lemma 2.71. [183] Let C C Y be a nonempty, pointed, closed and convex 
cone. Let F : X ^ Y be a set-valued function. Let (xo,yo) ^ Gr{F). If F is 
compactly approximable at (xo^yo), then 

D{F + C)(xo, yo){u) = DF{xo, yo){u) + C, We X. 

Proposition 2.72. Let the set-valued function F : X ^ Y be compactly ap­
proximable at {x,y) G Gr{F) and let Dom{F) be a nonempty convex subset. 
Let F be C{x)-convex at (x^y). Then F is C{x) pseudo-convex at (x^y). 

Proof. Fix a point (x, y) G Gr(F). We define a sequence {(x/e, yk)} in X x Y" 
by 

Xk = x^-j^{x-x), yk = y + T{y-y), \/k e N. 

Since dom(F) is convex and F is C(x)-convex at (x, y), it follows that, for all 
keN, 

Xk = {l- T)X -{- yxe Dom(F) 
k k 

and 

yk = {i- py +lye F{{1 - ^)x + ^x) + C{x) 

= F{xk) + C{x). 
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Thus, {xk.yk) e Gr(F + C(x)), for every k G N, and (xk.yk) -^ {x,y) as 
A; —> oo. Moreover, we have 

lim n{xk - x,yk - y) = {x - x,y - y), 

Consequently, 
{x-x,y-y) e TGr(F+c(x))(^, y)-

Therefore, 

y-yG D{F + C{x)){x, y){x - x), Vx G Dom(F), y G F(x). 

F being compactly approximable at (^, y), by Lemma 2.71, we have 

D{F + C(x))(x, y)(x - x) = DF{x, y){x - x) + C(x). 

Thus 

y-ye DF{x, y){x - ^) + C(x), Vx G Dom(F), y G F{x). 

So F is C(x) pseudo-convex at (x, y). • 

Theorem 2.73. Let X and Y be real normed spaces. Let C : X :=t Y be a 
cone-valued function such that intC{x) ^ 0 for every x E X. Let K C X be 
a nonempty convex subset and let F : X ^ Y be compactly approximable at 
(x, y) G Gr{F). Suppose that F is C{x)-convex at (x,y), C{x) is a pointed, 
closed and convex cone, and 

0 ^ DF{x, y){x - x) C W{x), Vx G K, 

where W{x) = Y\{—intC{x)). Then (x, y) is a weakly nondominated-like min-
imal solution pair of (SOKV). 

Proof. By assumption, we have 

DF{x, y)(x - x) n {-intC{x)) = 0 , Vx G K. 

Since C{x) is pointed and convex, we have 

{DF{x, y)(x - x) -f C(x)) H {-intC{x)) = 0 , Vx G K. 

By Proposition 2.72, F is C(x) pseudo-convex at (x, y). Thus we have 

(F(x) - y) n (-mtC(x)) = 0 , Vx G K. 

So (x, y) is a weakly nondominated-like solution pair of (SOKV). • 
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2.7 Augmented Lagrangian Duality for VO 

The conventional Lagrangian function is discussed in section 2.3 where con­
vexity is posed to guarantee the strong duality. However, such a strong duality 
result may be not true if the convexity is not assumed. Let y = IR , ^ = 1, 
X = [0, +oo), f{x) = x, g{x) = X — x'^. Consider the problem: 

in f / (x ) , s.t. ^i(a:) < 0. 

The conventional Lagrangian for this problem is 

L(x, A) = f{x) + Xgi{x) = x + X{x- x^), \/x e X, A > 0. 

It is easy to check that inf L{x, A) = —oo, VA > 0 and inf L{x, 0) = 0. Thus, 
x£X xeX 

sup inf I/(x, A) = 0. However, the optimal value of the original constrained 

problem is 1. 
In this section, let X = IR^ and F = IR U {—oo,+oo}, where —oo is 

an imaginary point, each of whose coordinates is —oo, and the imaginary 
point +00 is analogously understood. Let C = IR^ U {+00} and intC = 
mtlR^ U{+oo}. Without confusion, we shall not differentiate the —00, +00 in 
IR U {—00, +00} and the —00 and +00 in the extended real space. The same 
terminology and notation such as minimal solutions and ordering relations for 
standard vector optimization problems will be used for (EOP). In particular, 
for the space IR U{—00,+00}, we use the following orderings: for any z^ = 
{zl • . . , z}), z^ = {zl... , z|) G IR^ U {-00, +00}, 

z'<cz^ <=^ zl<zl i = l , . . . , ^ ; 

z^ <c\{0} z^ <^^ z} < zf, 

i = 1,''' ,£ with at least one i such that z} < zf; 

Z^ <intC Z^ <̂ => z\ <zf, i=l,'" ,t 

Moreover, let A C IR be a nonempty set. By 2;* G InfcA, we mean that 
(i) z* GlR^U{+oo,-oo}; 
(ii) z^c\{0} z%\fzG A] 
(iii) 3zk G A such that Zk ^ z*. 

The point z* G IntcA is called an infimum point of A. 
Meanwhile, we define z* G Sup^^ if and only if —z* G Infc(—^). 

Definition 2.74. Let f : lEP —> i??^U{—00, +00} be an extended vector-valued 
function. Then f is said to be proper if f{x) > —00, Vx G HT' and there exists 
some X G M^ such that f{x) < +00. 

Consider the primal vector optimization problem (EOP): 
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Infc fix) 
xemr 

where / : H^ -^ IR^U{—oo, +00} is a proper extended vector-valued function. 

Finally, the set of minimal solutions and weakly minimal solutions of 
(EOP) are denoted respectively by Minc(/ , K^) and Miuintcif, ^^)^ namely, 

Minc(/,IR") = {x* G M" : f{x) ^c\{o} fix^. Vx G IR"}, 

Minintc(/ ,B^) = {x* G B " : f{x) ^intc /(:^*), Vx G IR"}. 

Let / : IR'' X IR"̂  -> IR^ U {+00} be a perturbed function such that 
/ (x , 0) = / (x) , Vx G IR^. Define the optimal value function by 

p{u) = Infc{/(x, u):xe IR^}, u G IR^. 

Obviously, p{0) is the set of the infimum points of (EOP). It is also clear that 
Minc/(IR")Cp(0) . 

A function a : IR"̂  —> IR+ U {+00} is called an augmenting function if it 
is proper, lower semicontinuous, and convex with the unique minimum value 
0 at 0 G IR"". 

Definition 2.75. Let a : IR^ —> iR+ U {+00} be an augmenting function and 
e = (1, • • • , 1)''' G IR^. The augmented Lagrangian L : IR^ x IR^ x (0, +00) =4 
m U {+00, —00} is a set-valued function defined by 

L{x, y, r) = Infc{f{x, u) + r(j{u)e - (y, u)e : u e IR^}, 

where x G IR^, y G IR^, r G (0, +00). 
The augmented Lagrangian dual function is a set-valued function defined 

by 
^{y, r) = Infc U.^iR- ^(^^ V^ ^)^ yeM'^.re (0, +00). 

The augmented Lagrangian dual problem is a set-valued optimization prob­
lem defined by 

(DEOP) Supc ^{y, r) subject to {y, r) e IR^ x (0, +00). 

Denote by Q the set of all the supermum points of the dual problem (DEOP). 

We have the following proposition, whose proof is elementary and omitted. 

Proposition 2.76. For any x G IR", y G IR^, r G (0, +00) and z G L(x, y, r) , 
we have z ^c f{x). 

Definition 2.77. LetX be a set. Let f : X -^ IR^U{—oo, +00} be an extended 
vector-valued function. 

(i) f is said to be externally stable if, for any x E X, there exists a minimal 
solution X* of f on X such that f{x*) <c f{x). 
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(a) f is said to be Inf-externally stable if for any x e X, there exists a 
z* e Inf (J f{X) such that z* <c f{x). 

(Hi) f is said to be bounded below on X if there exists z G Si such that 
f{x)>cz,\/xeX, 

Proposition 2.78. Let A C IR^ \J {—oo,+oo} be a nonempty set and there 
exists zo G IR^ such that a >c zo^Wa G A. Then, for any a G A, there exists 
a* G InffjA such that a* <c a. 

Proof. Clearly, —oo ^ A.li A= {+00}, then the conclusion holds automati­
cally. Now assume that i4\{+oo} 7̂  0. Let a G A. Consider the following two 
cases: 

(i) CL <intC + 0 0 . 

(ii) a = +00. 
Suppose that case (i) holds. Then Ai = {b G A : b <c a} = {b G A : 

^0 ^c b <c a} is a nonempty and bounded subset of IR . Thus, clAi is a 
nonempty and compact subset of IR . It follows that there exists a* G clAi 
such that 

&^c\{o}a*, WbGclAi, (2.48) 

Since a* G clAi, by the definition of Ai, we see that ZQ <C a* <c a. So 
a* G IR and a* <c a. Moreover, there exists ak G Ai C. A such that Ok —> a*. 
Finally, we show that b ^c\{o} <̂ *, V6 G A. Indeed, \ib ^ Ai/it can be easily 
shown by contradiction that b ^c\{o} a*. If 6 G Ai, it follows from (2.48) that 
b ^c\{o} <̂ *- Thus, we have proved a* G InfcA. 

Suppose that case (ii) holds. Then choose ai G A such that ai <intc +00. 
Replacing a in the proof of case (i) by ai , the conclusion follows. • 

Corollary 2.79. LetX be a set Let / : X —> iR^U{-oo, +00} be an extended 
vector-valued function, which is bounded below on X. Then f is Inf-externally 
stable on X. 

Proof The conclusion follows directly from Proposition 2.78. • 

Let X G IR"", y G IR"̂  and r > 0. It is obvious (by setting u = 0) that 
if / (x , •) + ra(') — (2/, •) is Inf-externally stable on IR" ,̂ then there exists 
z G L(x, 2/, r) such that z <c f{x). The following theorem can be straightfor­
wardly proved. 

Theorem 2.80. Weak Duality. Let x G iR^.y G iK^.r G (0,+cx)). Assume 
that there exists z G L(x, 2/, r) such that z <c f{x). Then 

z^ ^c\{0} fix), yz^G^{y,r). 

The following corollary follows immediately from Theorem 2.80. 

Corollary 2.81. Let the assumption in Theorem 2.80 hold. Then 

z^tintcz^. yz^ Gp{0),z^GQ. 
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Definition 2.82. (i) A function g : IR^ -^ IRU {+oo, —oo} is called level-
bounded if for any a € M, the set {x € IR^ : g{x) < a} is bounded. 

(a) A function h : M^ x jK^ -^ IR\J {+00, —00} with values h{x,u) is 
called level-bounded in x locally uniformly in u if for each u € M^ and a G IR, 
there exists a neighborhood Va of u along with a bounded set D C IR^ such 
that {x e M"^ : h{x, v) < a} C D for all v G Vu. 

Now we introduce the function £ defined by 

^{z) = max {zi, • • • , ze}, Mz = (zi, • • • , z^) G IR^ U {-00, +00}. 

It is easy to check that £ is an increasing, continuous, subadditive, positively 
homogenous and convex function. 

It is also clear that 

i{z -f te) = i[z) + t, Vz G K^ U {+00}, t G IR U {+00}. 

The following lemma will be frequently used in the sequel. 

Lemma 2.83. [116] Let X be a subset of IK" and f : X -^ iR^U{-oo,+00} be 
a proper vector-valued function such that each component fi (i = 1,- - - ,1) is 
Isc. Suppose that XQ G X is such that f{xo) G m and Xi = {x G X : f{x) <c 
f{xo)} is a compact set Then there exists x* G Xi such that f{x) ^c\{o} 
/(a;*),Va;GX 

Theorem 2.84. Strong Duality. Assume that, for any x G IR^^y G IR^.r G 
(0,+oo), there exists z* G L{x,y,r) such that z* <c / (^)- Suppose that 
f{x, u) is a proper vector-valued function such that each of its component 
function fi{x,u) is Isc and ^{f{x,u)) is level-bounded in x locally uniformly 
in u. Suppose further that there exist y G IR^, and f > 0 such that 

Infc{^{f{x, u)) + ra{u) - {y, u)) : x e iR", u G BT} >intc -00 . (2.49) 

Then p(0) C Q. 

Proof Let z G p{0). Obviously, z <intc +00. In addition, from (2.49) we 
deduce that z >intc —oo- Hence z G IR .̂ By the assumption on ^{f{x,u)) 
and setting x̂ = 0, we see that ^{f{x, 0)) = ^(/(x)) is level-bounded. Moreover, 
z G p{0) implies that there exists {xk} Q K^ such that f(xk) —> z as A: ^ 
+00. Consequently, ^{f{xk)) -^ ^{z). In addition, the Isc of fi and / (x ,0) = 
/ (x) , Vx G IR^ imply that each component function fi of / is Isc and therefore, 
^(/) is Isc. Thus we see that the set {x : ^{f{x)) < ^(^) + l} is a nonempty and 
closed set, hence a nonempty and compact set because ^{f{x)) = ^(/(^,0)) 
is level-bounded. As a result, we can assume, without loss of generality, that 
Xk —^ X*. By the Isc of fi , we have 

/i(x*) < lim inf fi{xk) = lim fi{xk) = Zi, z = 1, • • • ,£, 
k—^-\-oo Ac—>4-oo 
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where zi is the ith coordinate of z. Thus we obtain /(x*) <c z. It follows that 
/(x*) = z because z G p(0). Let 

MVi 0 = {(^5 '̂ ) • / ( ^ ' ^) + ^ ^ W e - (y, tx)e < c / ( ^* )} , r > f + 1. 

Clearly, (x*,0) G ̂ (y , r ) . Let {x,u) G A(y,r). Then 

^(/(x*)) > C(/(x, t^)) + fa{u) - (y, ̂ ) + (r - f)(7(^) > mo -f (r - f)(7(w), 

where 

mo = inf{^(/(x, u)) + faCii) -{y,u):xe IR'', iz G IR"^} > - c o . 

So we get 

<y{u) < ^ (Z^ '^* ) ) -^" < C ( / ( x * ) ) - m o , r > f + l . (2.50) 

Since cr is an augmenting function, we deduce that a is level-bounded and 
Ui = {u\ a{u) < ^{f{x*)) — mo} is compact. Let 

F = {(x, t/) G IR^ X C/i : ^(/(x, 7x)) < ^(/(x*)) + max^^t/i (y, ^ )} , 

B{y, r) = {(x, u) G M" X IR- : ^(/(x, tx)) + ra(i/) - (y, u) < ^(/(x*))}. 

Since ^(/) is level-bounded in x locally uniformly in u, we deduce that 
^(y,^) £ B{y^r) C F. Using the fact that ^{f{x,u)) is level-bounded in 
X locally uniformly in t/ and that it is also Isc, it can be shown by contradic­
tion that F is compact. By the Isc of fi and a, we know that A{y,r) is closed. 
So A{y,r) is compact. Let Vk t +oo. Assume that Vk > r + 1 when k > ko-
Since A{y,rk) is compact when k > ko and each fi{x,u) + rk(T{u) — {y,u) 
{i = 1, • • • ,£) is Isc in (x,tx), we deduce that 3{xl,ul) G A{y,rk) ^ F such 
that, for k> ko, 

fi^t K) + ^/cO-«)e - (y, Ufc)e 

G Infc{/(x, u) + rka{u)e - (y, u)e : (x, iz) G IR"" x IR^}. (2.51) 

Let us show that 

fi^h O + ^ / c^« )e - (y, 1x̂ )6 

G^{y,rk), k>ko (2.52) 

When fc > fco, by (2.51), we get 

/ (x , u) -f- rk(T{u)e - (y, i/)e ^c\{o} /(a^fc, O - ^ifccr«)e + (y, O e , 

for all X G IR"", tz G IR" .̂ Therefore, 

/(x^, iz) + rka{u)e - (y, ^)e ^c\{o} / ( 4 . 0 - ^ fc^«)e + (y, O e , 
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for all u G IR" ,̂ and k > ko. That is, for k > A:o, 

fi^h K) + rk(T{ul)e - (y, ul)e 

G lnic{f{xl,u) + rk(T{u)e - {y,u)e:uG IR^} 

We prove by contradiction that (2.52) holds. Suppose that there exist ki > ko, 
x' G IR^ and z G L{x'^y,rk^) such that 

/ ( 4 i . < i ) + ^/ciO-«Je - {y, ul^)e >c\{o} z (2.53) 

It follows that there exist Uk G IR"̂  and z^ G IR such that 

z = Zk-\- f{x\ Uk) + rkicr{uk)e - (y, Uk)e and Zjt -^ 0, as A: ^ +oo (2.54) 

and 

f{x\ Uk) + rk^(j{uk)e - {y, Uk)e + Zk 

<c\{0} f{xl^,ulJ + rkMK^)e-{y^K^)e' (2.55) 

Just as we have shown that A{y, r) C F is bounded when r >c f + 1, we can 
show by employing (2.55) that {uk} is bounded. Without loss of generality, 
we assume that Uk -^ u'. Letting k —> oo in (2.54), (2.55) and applying the 
Isc of the function / and a, we obtain 

z <c f{x\ u) + rk^(T{u)e - (y, u)e 

<c f{xl^,ulJ-hrk,(T{ulJe-{y,ul^)e. (2.56) 

Noting that z G L{x', y, r ^ J , we deduce from the first inequality in (2.56) that 

z = f{x\ u) + rk^a{u)e - (y, u)e. 

This fact combined with (2.51) and (2.53) yields a contradiction. 
As {(x]J, u^.)} C F and F is compact, without loss of generality, we assume 

that 

i^k^K) -^ (^o,̂ o) ^F. 
It follows from (2.50) that 

, ^ ^ ( / ( : ^ * ) ) - m o 
a(uk) < ^ — - ^ , k > ko. 

Tk-r 

Therefore, 
c^(^o) ^ lim infk-^oo(^iul) < 0. 

As a result, t̂ o "= 0- Moreover, we have 

/ ( 4 ) - {y^ O e <c\{0} / ( 4 . '̂ fc) + rk(T{ul)e - (y, O e <c\{o} /(^*)- (2.57) 
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Namely, 

fii^k^K) -{y^'^k) <c\{0} fi{x*), i = lr-- ,^' 

Thus 

fi{xo) = Mxo^O) < lim inin-.ooMxlul)-0 < /^(x*), z - 1, • • • , £ (2.58) 

Since /(x*) G p(0), / (XQ) = /(x*). This fact combined with (2.58) yields 

limn^ocMxl, ul) = fi{x''), i = lr" J. (2.59) 

(2.57) and (2.59) yield 

limn^oo/(^^ K) + rk(7{ul)e - {y, ul)e = /(x*). 

Furthermore, by Theorem 2.80, we have 

z ^c\{0} / (^*) , Vz e ^{y, r) , 2/ G B"^, r > 0. 

Hence z* = / ( x * ) G Q. • 

It is worth mentioning that if / (x , u) is not proper or Isc, and that / is not 
proper, then Theorem 2.84 may not be valid even for a scalar optimization 
problem. Let us look at the following example. 

Example 2.85. Let I = m = n = 1., a{u) = \u\,\/u G IR, / (x) = +oo, Vx G IR. 
Let 

. 7 ^ , A _ / 0 , i f i x^O,xG[0 , l ] ; 
/ i ^ , ^ j - j + o o , e l s e . 

Clearly, / (x , u) is level-bounded in x locally uniformly in u. f is also proper, 
but not Isc. Simple calculation gives us the augmented Lagrangian: for any 
?/ G IR, r > 0, 

r inf{-yix + r H } , i f x G [ 0 , l ] ; 
l{x,y,r)= < ^7^0 

[^ +00, else. 

For any r > O , ' 0 ( O , r ) = infr|^^| = 0>—oo. However, from the expression of 

/(x, y, r) , we deduce that /(x, y, r) < 0, Vx G [0,1], 2/ G IR,r > 0. Hence 

sup '0(y, r) < 0. 
y€lR,r>0 

So 
sup '0(y, r) < inf / (x) = + o o . 

y€lR,r>0 a;€lR 

That is. Theorem 2.84 fails. 
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The following proposition further illustrates the relationship between the 
dual map ^ and solutions of (EOP). 

Proposition 2.86. Assume that J: M^ x IR!^ -^ JI^U {+00} is a proper ex­
tended vector-valued function such that each of its component function fi{x, u) 
is Isc. Assume further that there exist y, f such that 

/ (x , u) + fa{u)e — (y, u)e >c ruie, Vx, w, 

where mi is a real number. Let r^ —> +00 and each Xk a weakly minimal 
solution to 

(EOPk) Infc L{x, y, rk) subject to x e IfT. 

Ifxk -^ X* and {^{f{xk))} is bounded from above, then x* e Minintcif, ^^)' 

Proof Suppose to the contrary that there exist x' G IR'̂  and eo > 0 such that 

fix') - /(x*) <c -6oe. 

Let 
Uk = {uem!^: f{x\ u) + rk(T{u)e - (y, u)e <c f{x')}. 

As argued in the proof of Theorem 2.84, we can show that there exist /CQ > 0 
and a compact set C/Q such that Uk is compact and Uk C f/o when k > ko-
Thus, for every fc > feo, there exists Uk G Uk such that Uk is a minimal solution 
of the problem: 

Infc fi^', y) + rkO-{u)e — (y, 'u)e, subject to î  G IR" .̂ 

Since Xk is a weakly minimal solution to (EOPk), we deduce that 3zk G 
Inf{/(xA:,IR^) + rfca(Il^) - (y,lR"')e} such that 

/ (x ' , Uk) + rkcr{uk)e - (y, Uk)e ^intc Zk, k> ko. (2.60) 

As 
Zk G lnic{f{xk,u) + rka{u) - (y, u)e:ue IR^}, (2.61) 

we deduce that, for every fc > fco, there exists a sequence {u-^} such that 

/(xfc, ul) + rk(T{ul.)e - (y, u^e -> Zk, as j -» +00. 

It is not difficult to prove that, for every k > fco, {^l.} is bounded. So we 
assume without loss of generality that ul. —^ u'j^ as j -^ 00, Moreover, fi and 
a are Isc, therefore, 

/(x/c, O + rk(T{u',^)e - (y, u'j^)e <c Zk, k > ko. (2.62) 

(2.61) and (2.62) yield 
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Zk = fixk^u'j,) + rka{u'i,)e - {y, O e , k > ko. (2.63) 

Substituting (2.63) into (2.60), we get for k > ko 

f{x\ Uk) + rk(T{uk)e - (y, Uk)e ^intc f{xk,u'k) - rk(j{u'k)e + {y, u'k)e. (2.64) 

The combination of (2.61) and (2.63) yields 

f{xk) = f(xk, 0) + rka{0)e - {y, 0)e 

^c\{o} -f{xk, O - rk(T{u'j^)e - (y, 'a';.)e. A; > ko. 

As a result, 

f{xk) ^c\{o} (̂ fc - ^)cr(^fc)e + ^1^5 ^ > ^0. 

Thus 
^{f{xk)) > {vk - r)a{u'f,) - mi . A; > ko. 

It follows that {u^f^} is bounded because{^(/(a;jfc)} is bounded above. Without 
loss of generality, we assume that u'j^ -^ u*. Since {^{f{xk))} is bounded 
above, arguing as in the proof of Theorem 2.84, we can prove that u* = 0. By 
the Isc of fi and a, we obtain 

/i(^*) <c \im ini fi{xk,u',,) -{- rk(T{Uk) -\- {y,Uk), z = !,••• , £ 
n—̂ •oo 

So there exists ki > ko such that 

f{xk, Uk) + rkcr{uk)e - (y, Uk)e >c f{x*) - eo/2e, k > ki > ko (2.65) 

Note that Uk ^Uk-, i-e., 

f{x', Uk) + rkcr{uk)e - {y, Uk)e <c f{x'), k > ko. 

This inequality combined with (14) yields 

f{x\ Uk) + rk(T{uk)e - (y, Uk)e - /(x*) <c -eoe, k > ko- (2.66) 

(2.65) and (2.66) jointly yield, for k> ki > ko, 

f{x\ Uk) + rk(T(uk)e - {y, Uk)e - f{xk, u'k) - rk(T{uk)e + (y, Uk)e 

<c -6o/2e, (2.67) 

(2.67) contradicts (2.64). • 

2.8 Augmented Lagrangian Penalization for VO 

Consider the primal vector optimization problem (EOP): 
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Infc fix) 

where / : IR"̂  -^ IR^U{—oo, +00} is a proper extended vector-valued function. 

Let / : IR"" X IR"̂  -> IR^ U {+00} be a perturbed function such that 
f{x, 0) = / (x) , Vx G IR^. The optimal value function is defined by 

p{u) = Infc{/(x, u):xe WC}, u G IR^. 

Let (7 : IR"̂  -^ IR-j- U {+00} be an augmenting function. The augmented 
Lagrangian L : IR^ xIR"^ x (0, +00) =^ IR^U{+CXD, -00} is a set-valued function 
defined by 

I/(x, 2/, r) = Infc{/(x, u) + ra{u)e - (y, u)e:ue IR"^}, 

where y G IR" ,̂ r G (0, +00). 
The set-valued dual function is defined by 

^{y, r) = Infc U^^jRr ^ ( ^ ' ?/' 0 , 2/ e IR"̂ , r G (0, +00). 

Definition 2.87. f{x,u) is said to be Inf-externally stable in x when \\u\\ > 0 
is sufficiently small if there exists a neighborhood Wi 0/ 0 G IR^ such that, for 
any fixed u G Wi, Vx G IBT', there exists Zu G p('u) such that Zu <c /(^5 '^)' 

Theorem 2.88. Assume 
(a) f{x,u) is proper and each of its component function fi{x^u) is Isc; 

f{x,u) is Inf-externally stable in x when \\u\\ is sufficiently small; ^{f{x,u)) 
is level-bounded in x locally uniformly in u. 

(b) there exist y G iR"^, f > 0 and mi e M such that 

f{x,u)-{-fa{u)e—{y,u)e>cmie, \/x,u. 

Then there exists r* > 0 such that when r >r* 

p{0)C^{y,r) (2.68) 

if and only if there exist a neighborhood W of 0 G IR^ and a scalar r' > 0 
such that 

Zu iintc z + (y, u)e - r'G{u)e, "izu G p{u), z G p(0), u£W. (2.69) 

Proof. Sufficiency. Let 

r]{z) = minimi,--- ,z^}, V2: = (zi, • • • ,z^) G IR^ U {-oo,+oo}. 

We assert that 77(^(0)) = {v{z) • z G p{0)} is bounded above by some M > 0. 
Otherwise, there exists a sequence Zk G p{0) such that Zk —> +00 as A: —> +00. 
Arbitrarily fix a ZQ ^ P(0)- A.s shown in the proof of Theorem 2.84, ZQ G IR^. 
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Moreover, We obtain {ZQ — Zk) —> —oo, which contradicts (2.69) when u = ^. 
Now we prove by contradiction that (2.69) implies (2.68). Suppose that 3zl G 
p(0) and Tk T +00 such that 

4 i ny. rk) = Infc{L(x, y, Vk)'. x £ IR"} (2.70) 

Since z^ G p(0), arguing as in the proof of Theorem 2.84, we conclude that, 
for each fc, 

zl = f{xl) (2.71) 

for some xl G Minc(/,IR' '). 
Consider the following two cases: 
(i) f{xl) G Infc{/(x, u) + rka{u)e - {y, u)e : (x, ti) G H " x IR^}; 
(ii) f{xl) ^ Infc{/(x, u) + rk(7{u)e - (y, u)e : (x, ^) G IR" x IR^}. 

If case (i) occurs, noticing that f{xl) = /(a:^,0) + r/c(j(0)e — {y, 0)e, we 
deduce that 

/ (x , u) + rit(7(u)e - (y, u)e ^c\{o} f{xl), Vx G IR^, î G IR^. 

Letting x = x^, we obtain 

/ ( 4 , u) + rfc(j(^i)e - (y, u)e ^ / ( 4 ) , ix G IR^. 

This relation shows that /(x^) G L{xl,y,rk) since /(x^) = /(x^,0) + 
rkcr{0)e — (y, 0)e. This fact combined with (2.70) yields that there exist 
Xk G IR"̂  and Zk G L{xk^ y, Vk) such that 

^ f c < c 4 . (2.72) 

Furthermore, for each z^, there exists a sequence {ukj} such that 

f{xk, Ukj) + rk(T{ukj)e - (y, 'UA;,j)e -> Zk as j ^ oo. 

As a result, 

^ i e + (rA: -f)a{ukj)e 

<c f{xk,Ukj) + fa{ukj)e - (y, 'U/c,i)e + (r/c - r)a{ukj)e -> 2;̂ . 

The formula above combined with (2.72) yields 

mi + {vk - f)a{ukj) < v{zk) < v{zl) < M, 

Thus, (T{ukj) < M — mi when k > fco, where ko satisfies Vko > f -{• 1. So, for 
each A: > ko, {ukj} is bounded. Without loss of generality, we assume that 
Ukj —^Uk' It follows from the Isc of fi and a that 

f{xk, Uk) + rka{uk)e - (y, Uk)e <c Zk, k > ko 
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However, Zk G L{xk,y,rk)- Therefore, 

Zk = f{xk,Uk) + rk(T{uk)e - {y, Uk)e, k > ko (2.73) 

The combination of (2.71), (2.72) and (2.73) yields 

f{xk, Uk) + rk(T{uk)e - (y, Uk)e ^c\{o} fi^k)^ k > ko (2.74) 

It follows that 

mie + {vk - f)(T{un)e <c f{xk, Uk) + rk(j{uk)e - (y, Uk)e <c f{xl) = z^. 

Therefore, 
mi + {vk - f)a{un) < r}{zk) < r^^zl) < M. 

Namely, 
{vk - f)a{uk) < M - mi . (2.75) 

So {uk} is bounded. Without loss of generality, we assume that Uk -^ u'. It 
follows from (2.75) that (T{U') < lim \idk-^oo(^{uk) < 0. Hence u^ = 0. Thus 
Uk ^ Wi when k > ki > ko. By the external stability of / (x , Uk) in x when n 
is sufficiently large, we get Zu^ ^ p{uk) such that 

Zuk <c f{xk,Uk). (2.76) 

(2.74) and (2.76) jointly yield 

Zuk + rk(T{uk)e - {y, Uk)e ^c\{o} fi^l)^ 

which contradicts (2.69) because rk -^ +oo as A: -^ +oo. 
If case (ii) occurs, noticing that f{xl) = /(a;^,0) + rkcr{0)e — (y,0)e, we 

conclude that there exists {xk,Uk) G IR"̂  x IR^ such that 

f{xk, Uk) + rk(T{uk)e - {y, Uk)e ^c\{o} / (^D-

Thus, we have returned to (2.74) in case (i). So once again, we will be led to 
a contradiction. 

Necessity. We also prove by contradiction. Suppose that 3uk —> 0,rfc T 
+00, Zk G p{uk) and z^. G p(0) such that 

Zuk <intc Zk + (y, Uk)e - rkcr{uk)e. 

Then 3xk G IR'',x^ G Minc(/,IR'') such that 

f{xk,Uk) <intc f{xl) + (y, Uk)e - rkcr{uk)e. 

Note that /(x^) G !Ẑ (y, Vk) when k>k2is such that rk2 ^ max{r', f + 1). By 
the definition of lẐ (y, r/e), we see that for any Wk G Infc{/(xfc, ti) + r/cC (̂̂ )̂e — 
(y, 'u)e : li G H ^ } , we have 
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Wk ^c\{0} f{xl), k > k2. (2.77) 

Let 

Qk = {ue IR"̂  : /(xfc, u) + rka{u)e - (y, 'u)e < c 

/(^fc, Uk) + rk(T(uk)e - {y, Uk)e <intc / ( ^ D l -

It is easy to check (as in the proof of sufficiency) that when k > ks > k2, the 
set {u e IR^ : f{xk,u) + rkcr{u)e — {y, u)e <c fi^l)} is compact. Thus Qk is 
compact when k > ks > k2' Consequently, we obtain î ^ € Qk such that, for 
any k > ks >c ^2, 

/(xfc, iXfc) + r f c a « ) e - (y, O e 

G Infc{/(x/c, ^) + rk(T{u)e - (y, u)e:uG IR"^}, 

and 
/(^fc, O + r f c a « ) e - (^, O e <intc /(a^D^ 

which contradicts (2.77) when k > ks > k2. • 

The following simple example verifies Theorem 2.88. 

Example 2.89. Let p = 1, £ = 2, X = [-1,1]. Let f{x) = (|x|, -\x\),\/x G IR; 
h(x) = x,Wx G IR. Consider the following constrained vector optimization 
problem 

(VOPi) infc f{x) 
s.t. X G X, 

h{x) < 0. 

Denote by XQ = {x G X : /i(x) < 0} the feasible set of (VOPi). Define 

^ ^ \ +00, otherwise. 

Then (FOPi) is equivalent to (EOP) (in the sense that the two problems have 
the same sets of (weakly) minimal solutions). 

Let tz G IR. It is easy to see that 

• ^^ ' ' ' ' ' ^~ \+oo ,o the r . 
) <u,x e X 

otherwise 

is a perturbed function of / . Let a{u) = |ii|, Vt̂  G IR. It is routine to check that 
condition (a) in Theorem 2.88 holds. Let y = O^r = 1. Then, we can verify 
that condition (b) in Theorem 2.88 holds. Furthermore, it can be computed 
that 

p{0) = {{x,-x):x€[0,l]}. 

t \ - i {(^' ~^) : ̂  € [0,1]}, if u > 0 and u£W 
x < u}, ii u <0 and u eW, 
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where 
W={uelR:\u\< 1}. 

Take r ' = 1. It can be easily checked that (2.69) holds. By Theorem 2.88, 
there exists r* > 0 such that when r >r*, p{0) C ^(y, r) . As a matter of fact, 
we can choose r* = 3. Whenever r >r*^ 

^{y, r) = Infc U L{x, y, r) 

= Infc U [lnfc{f{x,u)^r\u\e}] 
XGJR ttelR 

= Infc U [Infc{(|x|, —|x|) + r|ii|e : tx ̂  x}] 
XGX 

= Infc (1̂ 1 UFs), 
rr€[-l , l] 

where Vi = { (x , -x ) : x G [0,1]} and V2 = {{-{r + l ) x , - ( r - l)x) : x G 
[-1,0]}. Thus, 

l ^ ( y , r ) - V i = { ( x , - x ) : x G [ 0 , l ] } . 

Consequently, 
p(0) =iZ>^(y,r), r > r * = 3 . 

(2.68) indicates the uniformly exact penalization. That is, there exists a com­
mon r* > 0 such that z* G ^(y, r) for each z* G p(0) whenever r >r*. 

For application purpose, we may need only the following weaker version 
of exact penalization, which requires weaker conditions. 

Theorem 2.90. Assume (a) as in Theorem 2.88 and 
(b') there exist y G iR"^, f > 0 such that 

^'^fx.uiUi^^ ^)) + ^<^W - {y^ '^) > -00 . 

Let z* G p{0). Then there exists r* > 0 such that z* G ̂ {y,r) whenever 
r >r* if and only if there exist a neighborhood WofO^ M^ and r ' > 0 such 
that 

Zu ^intc z* + (y, u)e- r'(j{u)e, Mzu G p{u), ueW. 

Proof. The proof of this theorem is almost the same as that of Theorem 2.88, 
we need only to replace z^ with z* and ry with ^ in the proof of Theorem 
2.88. • 

2,9 Nonlinear Lagrangian Duality for VO 

In this section, we discuss a nonlinear Lagrangian approach to weak and strong 
duality results where no convexity is required for the problem data. 
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Let Y = IR^ be an ^-dimensional Euclidean space, and C = IR+. Let 
e = (1, • • • , 1) G intC, and ê  = (0,0, • • • , 1,0, • • • , 0) (the ith component is 1 
and the other components are O's), i = 1," - ,£. Let K C ]R^ be a nonempty 
closed set, / = ( / i , . . . , /^) : i^ —> IR be a vector-valued function such that 
each of its component function fi is l.s.c, and gj'.K—^lRhe l.s.c. for any 
j G {!,••• ,m} . 

Consider the following constrained vector optimization problem (VOP): 

Mina/(x), (2.78) 
xeB 

where B = {x e K : gj{x) < 0, j = 1, • • • , m}. It is clear that B is closed. We 
denote by Mine / (5 ) and lrdcf{B) the set of minimal points and the set of 
infimum points of (VOP) respectively. 

Without loss of generality, we assume throughout this section that 

min inf fi{x) > 0. 

If this assumption does not hold, then consider the following optimization 
problem (VOP'): 

Mine (exp(/i(x)) + ! , • • • , exp{fe{x)) + 1) 
s.t. xEK,gj{x)<0, J — l , - - - , m . 

It is clear that the sets of minimal solutions and weakly minimal solutions 
of (VOP) are the same as that of (VOP'), respectively. 

For u = {ui,"- ,Urn) G IR^, and 7 G (0, +00), let 

^ 1/7 

17 

Let y^ = ivlr" ^vD^v'^ = {vlr" iVli) ^ '^'^^ define the notation of 
componentwise product for y^ and y'^: 

y^ ^y^ = {y\y\,'-' ,2/m2/m)-

A vector-valued function p : IR^ x IR"̂  -^ IR^ is called increasing if for any 
{z\y') G IR^ X IR^(z = 1,2) with {z^,y^) - {z'^.y^) eCx IR!f̂ , we have 

Let p be an increasing vector-valued function defined on the domain IR^ x 
IR"̂  such that each of its component function pi is l.s.c. and p enjoys the 
following two properties: 

(A) There exist positive real numbers aj{j = 1, • • • , m) such that for 
any z G IR+,y = ivir " ^Um) with {z,y) belonging to the domain of p, 
p{z,y) >c z and p{z,y) >c ( max {ajyj})e. 

l<j<m 
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(B) V Z G C , P ( Z , 0 , - - - , 0 ) = Z. 

It is easy to prove the following elementary proposition. 

Proposition 2.91. Le^ p(z, 2/) = p'{jp'{Ziy)iy), where p' is an increasing 
function with properties (A) and (B). Then p is also an increasing function 
having properties (A) and (B). 

Example 2.92. Let z = (zi, • • • , z^), y = (yi, • * * ? Vm)^ and (z, y) e C x IR^. 
Some examples of the increasing function p defined on C x IR"̂  having prop­
erties (A) and (B) are as follows: 

(i) poo{z, y) = E L I ^^^ {zi.Vir" ^ ym}ei] 

(ii) p^{z, y) = YlLi i^i + E j L i yt^) ^^u 0 < 7 < oo; 

(iii) p{z, y) = z-\- {J2T=i ^J^j^)^' ^^^^^ 6̂- > 0, j = 1, • • • , m. 

Let 
F{x,d) = {f{x),d^g{x)), 

where d= {di,-- ,dm) e JR"^ and g{x) = (^i(x), • • • ,gm{x)). 
Let p be an increasing function defined on C x H"^ with properties (A) 

and (B). The nonlinear Lagrangian function corresponding to p for (VOP) is 
defined as 

N{x,d) = p{F{x,d)). 

The following problem (DVOP) 

sup q{d), (2.79) 
deTRT^ 

where q{d) = lnicN{K,d),\/d G IR^ is called the nonlinear Lagrangian dual 
problem to (VOP) corresponding to p. 

Remark 2.93. lip is convex, e.g., all the p's except p^ in the case of 7 G (0,1) 
in Example 2.92, the problem of computing q{d)\ 

mip{F{x,d)) 

is a type of convex composite multiobjective optimization problems studied 
in [121]. 

It is elementary to prove the following results. 

Lemma 2.94. Let p be an increasing function with properties (A) and (B). 
Thenp{F{x,d)) = f{x),'ix e B, d e IK^. 

Proposition 2.95. Weak Duality. \/xeB,de IRJ^, {q{d)-f{x))r\{C\{d}) = 
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Corollary 2.96. If x* G B satisfies fix'') G Supcq{IH^), then 

x* G Mimntcif^B). 

Corollary 2.97. [Supcq{M'^) - Infcf{B)] D intC = 0. 

Definition 2.98. Let X C ST' be a set and f : X —^ IR^ be a vector-valued 
function. The set f{X) is said to be externally stable if for any x e X, there 
exists a minimal solution x* G X of f on X such that f{x*) <c f{x). 

The following lemma on external stability can be easily proved. 

L e m m a 2.99. Let X C IR^ be a compact subset. Let f : X ^^ M be a vector-
valued function such that each of its component functions is l.s.c. Then f{X) 
is externally stable. 

It is routine to prove the next lemma. 

L e m m a 2.100. Let s : C x M^ —^Mbean increasing l.s.c. function. Let 
f : X ^^ C be a vector-valued function such that each component function fi 
is l.s.c. Let Qj : X ^^ R (j = 1,"' ,m) be l.s.c. Then s{f{x),g{x)) is l.s.c. 
on X. 

Let ^(z) = mdiXi<i<i{zi}, \/z = (zi, • • • , zi). 
Clearly, ^ is an increasing, continuous, subadditive, positively homoge­

neous and convex function. 

Definition 2.101. Let X C M^ be an unbounded set. A vector-valued func­
tion / : X —> IR^ is said to be coercive on X if 

where \\.\\ is a norm of IR^. 

The following result establishes a proper relation between (VOP) and 
(DVOP). 

Theorem 2.102. Strong Duality. Assume that X is closed, f{x) >c 0, Vx G 
X and f is coercive on X if X is unbounded. Then 

InfcfiB) C Supcq{m^). 

Proof Let z* G Infc / (^ ) . Then 3x1 ^ ^ such that f{xl) -> z* as k -^ 
+00. It follows that ^{f{xl)) -^ ^(z*) as k -^ +oo. Therefore, {xl} is a 
bounded sequence by the coercivity of / on X. Since B is closed, there exists 
a subsequence {xl} such that x^. —> x* for some x* G B. Note that fi{x*) < 
lim m{fi{xl ) = {z*)i^i = 1, • • • ,^, where (z*)i denotes the ith component of 
j - > + o o •? 

z*. We have f{x*) <c z^. This with z* G Infc / (5) implies that /(x*) = z*. 
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Hence x* G Mmcf{B). Since / is coercive on X, we deduce that 3N > 0 such 
that 

^{f{x)) > ^(/(x*)) + 1, Vx G Xi = {x G X : ||x|| > N}. (2.80) 

We claim that 
f{x)^c\{o}f{xn. VxGXi . (2.81) 

Otherwise, <^(/(x)) < <J(/(x*)), contradicting (2.80). 
Let d = ke,k = 1, 2, • • • . Since X2 = {x G X : ||x|| < N} is a nonempty 

compact set and x* G X2, by Lemmas 2.99 and 2.100, we obtain a se­
quence {x|} C X2 such that each x | is a minimal solution to the problem: 
min p{f{x),kg{x)) and 

pifixl), kg{xl)) <c p{f{x*), kgix*)) = f{x*). (2.82) 

We show that this fact combined with (2.81) yields that p(F(x|,(i)) G 
q{kr",k) = lnicp{F{K,d)), 

(i) It is obvious that if x G X2, p(F(x | , d)) ^c\{o} p{F{x, d)). 
(ii) Suppose that 3 x G Xi such that 

p{F{xl d)) >c\{o} p{F{x, d)), (2.83) 

Note that 
p{F{xld))<cf{xn 

and 
fix'") ^c\{o} fix). 

Then 
piFixld))^c\{o}fix). (2.84) 

By (2.83) and (2.84), 
piFix,d))^c\{o}fix), 

a contradiction with the property (A). 
It follows from {x|} C X2 that there exists a subsequence {x| .} such that 

xl. ^ x o GX2. 
Let us show that XQ G B. If not, cf(xo, B) > SQ for some SQ > 0. It follows 

that d(x|.,-B) > So/2 when j is sufficiently large. 
Let X3 = {x G X2 : (i(x, B) > (5o/2} and ^(x) = max gjix). Since ^(x) > 

l < j ' < m 

0, Vx G X3, X3 is compact and g is l.s.c, we deduce that min p(x) = mo > 0. 
XGX3 

By property (A) of the function p, there exist positive numbers aiii = 
1, • • • , m) such that 

Pifi^lXhgixl)) >c imokj mm ai)e, 
•' •' \<%<m 
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when j is sufficiently large, which contradicts (2.82). So XQ G B. 
Applying property (A) and (2.82), we have 

/ ( < ) <cp{fix%),ki9ixl)) <c fix*)-

Thus, 

fi{xl.)<Pi{fixl.),kjg{xl.))<Mx*), i = l,---,t (2.85) 

Applying the lower limit to (2.85) by letting j -^ oo, we conclude that fi{xo) < 
fi{x*), i = 1, • • • , £, which implies that 

/(xo) = /(x*) (2.86) 

since x* G Mmc{f,B). 
(2.86) combined with (2.85) as well as x | . —> XQ yields that 

Pifi^lj)^ kj9{xl.)) -^ /(x*), as j -^ +00. 

Finally, it follows directly from Proposition 2.95 that 

iq{d) - fix*)) n (C\{0}) = 0, Vd G IR^. 

The proof is complete. • 

Example 2.103. The condition that / is coercive on X is important to guaran­
tee the validity of Theorem 2.102. Otherwise, it may fail even if B is compact. 
Let ^ = l , i f = [0,+oo),/(x) = l / ( x + l ) , V x £ K, gi{x) = x - l , i f O < x < 
l;^i(x) = 1 / A / X - I / X , if 1 < X < +oo,p(yi,y2) = max{2/i,y2}, V2/i,y2 ^ H-

Consider the problem: 

inf/(x) s.t. X eK, gi(x) < 0. 

It is easy to see that B = [0,1] (which is compact) and infjj^ f{B) — {1/2}. 

p{f{x),dgi{x)) = max{/(x),c/^i(x)} 

= max{l/(x + 1), d(l/x/x - 1/x)}, Vx G X\B, d>0. 

Clearly, q{d) = 0,Vd > 0. It follows that supjj^ ^(IR+) = {0}. Hence 
infjp^ f{B) C sup(^^(IR-|-) does not hold. 

We also observe that, for z* G infjp^ f{^)^ there does not exist d* G IR+ 
such that z* G ^(d*). Indeed, let i = 1,X = [1/2,+oo) and / (x) = 1/x, if 
X G [1/2,1]; / (x) = 2 - X, if X G [1, 2]; / (x) = x - 2, if x G (2, +oo). Let 
^i(x) = x - 1. 

Consider the problem: 

in f / (x ) , s.t. ^i(x) < 0. 
xex 

Let N{x,d) = max{/(x),dpi(x)}, d > 0, x G X. Then it is not difficult 
to derive the following fact: q{d) = d/(l + d),Vd > 0. Clearly, q{d) < 1 = 
i n f / ( x ) , V d > 0 . 

xEiB 
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Based on some conditions on the constraint functions, we also have the 
following result. 

Theorem 2.104. Let g{x) = max gj{x). Assume that there exist N > 0 
l < j i < m 

and rui > 0 such that 

g{x)>mi, ^x eX with\\x\\> N. (2.87) 

Then Infcf{B) C SupcqiJR"^)-

Proof. It follows from (2.87) that J5 is a nonempty compact set. For any 
z* = f{x*) G Infc/(J5), by Proposition 2.95 we have that 

{q{d) - fix*)) n (C\{0}) = 0, Vd e IR!;̂ . 

Furthermore, whenever x G X with ||x|| > N, 

P{f{^), kgi^)) >c {kmi min {ai})e >[^tc /(^*) + ^' 

l<i<m Aiii^v-^ 

when k is sufficiently large. Consequently, when k is sufficiently large, the set 

{xeX: p{f{x), kg{x)) <c /(x*)}(C {x e X : \\x\\ < N}) 

is a nonempty compact set. Therefore, when k is sufficiently large, 3xk G X 
with ||xfc|| < N such that Xk is a minimal solution to the problem 

niin p{f{x),kg{x)) 
xex 

with 
f{xk) <c P{f{xk). kg{xk)) <c /(x*). (2.88) 

Since \\xk\\ < N for k sufficiently large, it follows that there exists a subse­
quence {xki} converging to x' G X. We can show as in the proof of Theorem 
2.102 that x' G B. This fact combined with (2.88) yields that f{x') <c f{x*). 
Therefore, f{x^) = /(x*) since x* G Minc(/ , B). Hence, p{f{xki), kig{xki)) -> 
/(x*). So /(x*) G Sup(;;g(IR!J!) and the proof is complete. • 

The following proposition further clarifies the relation between (VOP) and 
(DVOP). 

Proposition 2.105. Let d^ G iR!J?,VA: and d^ -^ -foo as k-^ oo (i.e., d^ -> 
+oo,Vi as k -^ +oo^. Suppose that each x^ is a weakly minimal solution to 
Inf(jN{x,d^). Then any limiting point of {x^} is a weakly minimal solution 
xeK 
to VOP. 
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Proof. Without loss of generality, suppose that x^ -^ x*. We can show by 
contradiction that x* G B. In fact, if d{x*,B) > So for some So > 0, then 
d{x^,B) > So/2, when k is sufficiently large. Since x^ -^ x*, we deduce that 
||x^ — x*|| < 1 when k is sufficiently large. 

Let X4 = {xeX : d{x,B) > So/2, \\x-x*\\ < 1}. Then x^ G X^ when k is 
sufficiently large. Let g{x) = max Pi(x). Then 9{x^) > min ^(x) = mi > 0 

l<i<m x^Xs <i<m 
when k is sufficiently large. So 

p{f{x^),d^*g{x^)) >c9{x''){mm ai min d^)e 

l<i<m l<t<m 

l<i<m l<z<m 

>intc f{xo) (2.89) 
for any fixed xo ^ B and fe large enough. Moreover, by Lemma 2.94, 

f{xo)=p{f{xo),d^^g{xo)). (2.90) 

The combination of (2.89) and (2.90) contradicts the fact that Xk is a weakly 
minimal solution to Mmcp{f{x), d^ * g{x)). Therefore, x* G B. 

xeK 
Now we show that x* G Minintc(/5-^)- Otherwise, 3x'' G 5 such that 

fix'') <intc fix*). Therefore, 

fix") <intc fixk). (2.91) 

when k is sufficiently large since each component function of / is l.s.c. 
Note that 

fix")=pifix'%d^^gix")) 

and 
Vifixk),d^^gixk))>c fixk), 

it follows from (2.91) that 

p(/(xo), d^ * ^(xo)) <intc vifixk), d^ * gixk)), 

when k is sufficiently large. Namely, Xk is not a weakly minimal solution to 

min pifix),d^ ^gix)) 

when k is sufficiently large, which cannot be true. The proof is complete. • 

Remark 2.106. A vector-valued function p : IR^ x IR![̂  -^ H^ is called increas­
ing if for any iz\y') G H ^ xia!p(z = 1,2) with (^I,yi)-(z2,y2) ^ IR^ xIR![^, 
we have 

P( ;2^ \y ' )>cp(^ ' ,y ' ) . 
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Let p be an increasing vector-valued function defined on the domain IR^ x 
IR![̂  such that each of its component function pi is l.s.c. and p enjoys the 
following two properties: 

(A') There exist positive real numbers aj{j = I , --- ,m) such that for 
any z G IR+,2/ = (^/ir** ^Vm) with (z, y) belonging to the domain of p, 
p{z,y) >c z and p{z,y) >c ( max {%%})e. 

{B')yz eJRi,p{z,0,--- ,0) = z. 

Examples of such p having properties (A') and (B') are the restrictions of 
Poo, P-y, P considered in Example 2.92 to C x ]R!p. 

If p is defined on the domain IR .̂ x IR™ as above, then it can be shown 
that all the results in this section also hold for the case where 

9'^ix) = {gt{x),--- ,5m(a;)), 

F+{x,d) = if{x),d*g+ix)), 

N+{x,d)=p{F+{x,d)). 

Next we consider the saddle point problem of the nonlinear Lagrangian. 
Let p be an increasing function defined on IR_̂  x IR^ enjoying properties 

(A) and (B) and F{x, d) = (/(x), d * g{x)). 
Let 

N{x,d)=p{F{x,d)). 

Definition 2.107. The point (x*,c?*) € K x M^ is called a saddle point of 
the nonlinear Lagrangian N{x,d) if 

(i) N{x,d*) - iV(x*,d*) ^c\{0} 0, Vx G K; 

(ii) N{x\d) - iv(x*,d*) ^c\{o} 0, v^ G m^:^. 
It should be noted that a saddle point may not exist even if all the con­

ditions of Theorem 2.102 hold. The following proposition presents the rela­
tionship among a saddle point of N{x, cJ), a minimal solution of (VOP) and a 
maximal solution of (DVOP). 

Propos i t ion 2.108. The point (x*, d*) G KxM^ is a saddle point ofN{x, d) 
if and only if x* is a minimal solution of (VOP), /(x*) G q{d*) and d* is a 
minimal solution to (DVOP). 

In the following, we compare the conventional Lagrangian function with a 
special class of nonlinear Lagrangian functions. 

We define a Lagrangian function as follows 

m 

L'{x,d) = f{x) + ^djgj{x)e, 
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where the dual variable d= (cZi, • *" 5 ^m) ^ IR>+5 x G X. 
It is clear that the following inequality holds: 

/ m \ 1/7 rn 

(2.92) 
^ 2 = 1 2 = 1 

Let 7 G (0,1]. Consider the following class of nonlinear Lagrangian func­
tions: 

N^{x,d) = Yl 
i=l 

fn^) + T.d]gf{x) 
1/7 

where xeX,d= (di, -" ,dm) e WV^. It follows from (2.92) that 

m 

N^{x,d)>cf{x) + Y^djgf{x)e>cL\x,d), Vx G X, c/G IR!['. (2.93) 

This inequality allows us to establish the following conclusion. 

Proposition 2.109. Assume that 7 G (0,1]. Any saddle point of L' is also a 
saddle point of N^. 

Let f{x) = / (x ) ,x G B and f{x) = +00, a: G lR'^\Xo. It is obvious that 
(VOP) is identical to: 

infc m 

Let u = (lii, • • • , Um) ^ IR"̂ - Set 

_ / / ( x ) , if gj{x) <UjJ = I , --- , m , x G X ; 
/(x,ix) 

+00, otherwise. 

Let cr : IR"̂  ^ IR be an augmenting function. Simple reasoning gives us the 
augmented Lagrangian: 

{ /(x) + 'm{c^{ra{g{x) -\-v) - {y,g{x) + v)} 
L^€lR+ 
i f x G X , 2 / G l R ^ , r > 0 , 

+00, else, 

where g{x) = {gi{x), • • • ,gm{x)). 
Let the dual map be 

^{y, r) = Infc U^^j^- L(x, y, r) , y G IR^, r G (0, +00). 

The augmented Lagrangian dual problem (DVOP') is 

e, 
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Supc ^{y.r). 
y€lR'^,r€(0,+oo) 

It is easy to check that the augmented Lagrangian function L{x,y, r) de­
fined above has the following properties: 

(I) L{x,y,r) >c / (x) , Wx e B,Wy e IR^,r > 0; L(x,0,r) >c 
f{x), yxeX.ye IR'^^r > 0; L{x,0,r) = / (x) , Vx £B,yr> 0. 

(II) lixGX\ B, then L(x, y, r) -^ +oo, My^WTd^r-^ +oo. 

In the following, we consider the relationship between the augmented La­
grangian L(x, 2/, r) (defined above) and a special class of nonlinear Lagrangian 
in terms of their saddle points. 

Let 7 G (0,1]. Consider the following class of nonlinear Lagrangians for 
(VOP): 

1/7 

|/7(x) + ^djp;^(x)| N^{x,d) = Yl 
Z = : l 

6^, 

where x e X,d = {di,"',dm) € IR+, ei = (0, • • • 1,0, • •-0) (the ith 
component being 1 and all the other components being O's) and g'^{x) = 
max(^^(x),0). 

It is easy to see that 

N^{x,d) >c Ni{x,d) = f{x) -\- e, 

where xeX,de 1R+, 7 € (0,1]. 

Proposition 2.110. Let the augmented Lagrangian L{x,y,r) for (VOP) be 
defined as above. Then (x*,2/*,r*) is a saddle point of L{x,y,r) if and only 
if X* is a minimal solution to (VOP), g{x*) e lZ (̂2/*,r*) and (y*,r*,p(x*)) 
solves the dual problem (DVOP). 

Proof The proof is similar to that of the usual saddle point theorem for a 
vector optimization problem. • 

Proposition 2.111. Let the augmenting function a be finite everywhere. 
Let the augmented Lagrangian L{x,y,r) for (VOP) be defined as above. If 
(x*, y*,r*) is a saddle point of L, then there exists d* G IR^ such that (x*, d*) 
is also a saddle point of N^{x^d), where 7 € (0,1]. 

Proof. Since (x*,?/*,r*) is a saddle point of L{x,y,r), by Proposition 2.108, 
X* G -B is a minimal solution to (VOP) and 

L(x,2/*,r*) = fix) + [Infc{rV(^(x) + ^) - {y\g{x) + v):ve lR'^}]e 

^L{x\y\r*) = f{xn. Vx G X 
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Since a is finite everywhere, we deduce that G is locally Lipschitz near 0 G H"^. 
Thus, there exist 0 > 0 and 5 > 0 such that when \u\ < S, a{u) < 0\\u\\, where 
\W\\ = ZljLi Wj\ ^^^ ^ = ('^1' • • • ''^m). If X G X\B and YJjLi9'j'{^) < <5, 
then 

m 

inf{rV(p(x) + ;̂) - (y*,p(x) + ^) :v^lRJ^}< (^r* + | |y* | | )E^.^(^) 

(This follows by setting Vj = —gj{x) iigj{x) < 0 and Vj = 0 iigj{x) > 0). Let 
d* = (dj, • • • ,d^) G IR!f! be chosen such that 6m.ini<j<md'je >c 9{x*) and 
mmi<j<md* >9r*-}- \\y*\\ . 

If X G X\B and J ^ ^ i ^t(a;) < 6, then 

e - ^ ( x * ) 

>cL{x,y'',rn-f{xn 

e-g{x*) 

Thus N^{x,d*) ^ N^{x\d*). 
If X G X \ J B and J^'Jl^ g^{x) > S, then 

f{x) ^c\{0} /(^*) + ^ min i<j<md*e 

because f{x) >c 0. In addition, we have 

N^{x,d*)-N^{x\d'') >c iVi(x,d*) - /(x*) 

>c f{x) - f{x*) + 6mmi<j<md*e. 

Hence 

I fxG JB, then Ar^(x,d*) = g{x) ^ iV^(x*,d*) = ^(x*). 
Finally, we show that 

N^{x\d) t ^7(x*,d*), Vd G K!;' 

This is obvious because N^{x*,d) = iV^(x*, c?*) = ^(x*). • 

2.10 Nonlinear Penalization for VO 

In this section, we consider exact penalization results for a vector optimization 
problem via a nonlinear penalty function. 
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Let X = IR^, Y = IR^ be an ^-dimensional Euclidean space, and C = IR_j_. 
Let K C IR"̂  be a nonempty closed set, / = ( / i , . . . ,/^) : jFf ^ IR be a 
vector-valued function such that each of its component function fi is l.s.c, 
and Qj : K ^^JRhe l.s.c. for any j G {1, • • • , m}. 

Consider the following constrained vector optimization problem (VOP): 

Inicfix), 
xeB 

(2.94) 

where B = {x E K : gj{x) < 0, j = 1, • • • , m}. It is clear that B is closed. We 
denote by Mincf{B) and lnicf{B) the set of minimal points and the set of 
infimum points of (VOP) respectively. 

Consider the following nonlinear penalty function: 

Ar^(x, d) = p^ifix), d * g'^ix)) = ^ 
i=l 

1 1/7 

where 0 < 7 < +00, and ê  = (0,0, • • • , 1,0, • • • , 0) (the zth component is 1 
and the other components are O's), i = 1, • • • ,£. 

If i = 1, this class of nonlinear penalty functions can be considered as a 
composition of the following two functions 

Vo+J^y: 
i=i 

1/7 

, and {fi{x),digi{x), • • • ,dmgm{x)), 

while the first one is a so-called increasing positively homogenous function, 
see [172]. 

If 7 = 1 and i = 1, then nonlinear penalty function N^{x,d) reduces to 
the classical h scalar penalty function 

fi{x) + J2dj9t{^)' 

Let u = (i^i, • • • ,tim) ^ IR"̂ - We associate (VOP) with a perturbed prob­
lem: 

Infc fix), 
xeB{u) 

(2.95) 

where B{u) = {x G X : gj{x) < Uj,j = I ,--- ,m} . We will denote by 
Mincf(B{u)) and lnicfiB{u)) the sets of minimal points and infimum points 
of (VOPu) respectively. 

We need the following lemma. 

Lemiina 2.112. For any XQ G B{U), there exists z* G Inf(jf{B(u)) such that 
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Proof It follows immediately from Proposition 2.78. • 

Definition 2.113. We say that (VOPu) is j-rank uniformly weakly stable if 
there exist S > 0 and M > 0 such that 

Infcf{B{u))-Infcf{B) ^ ^^^ 

\\uf, 
n i-intC) = 0, (2.96) 

for any u G M^ with 0 < \\u\\^ < 5. 

It is not hard to show that the restriction u G IR^ in the definition of the 
7-rank uniform weak stability can be replaced hy u e IR^. This is also true 
for the 7-rank weak stability in the following Definition 2.115. 

In the definition of 7-rank uniform weak stability of (VOP), the term 
"uniform" shows the difference from the usual stability in which Infc/(-B) in 
(2.96) is replaced by a specific point of lnicf{B) and the fact that different 
points of lnfcf{B) may have different M's in (2.96). 

Let 0 < 71 < 72. It is not hard to see that if (VOP) is 72-rank uniformly 
weakly stable, then it is also 71-rank uniformly weakly stable. 

Theorem 2.114. / / (VOP) is ^-rank uniformly weakly stable, then 3d* G IR^ 
such that when d — d* e M^, 

InfcfiB) C q^{d), (2.97) 

where q-yid) = InfcN^{K,d). The converse is also true. 

Proof We begin by proving the first half of this theorem. 
If InfcfiB) = 0, then the conclusion holds automatically. Now we assume 

that InfcfiB) ^ 0. 
Let rjiz) = min 2:̂ ,Vz = izi,--- ^zi) G K^. We show by contradiction 

that rjilnfcfiB)) = {rjiz) : z G InicfiB)} is bounded from above by some 
M' > 0. Otherwise, there exists Zk G InicfiB) such that Zk -^ +00. Since 
InicfiB) 7̂  0, it follows that for any S > 0, Bius) D X(0) = 5 ^ 0 , where 
i/<5 = (0,0, • • • , 0, S) G lR!p. Suppose that XQ e B C Bins). Then by Lemma 
2.112, there exists zs G InicfiB ins)) such that 

Z5 <C fixo)' 

Hence, 

iz5 - Zk)/\\us^ <c ifi^o) - Zk)/\\us^ -^ -00 as fc ^ 00, 

which contradicts (2.96) because 6 > 0 can be arbitrarily small. 
Suppose that there exists dk = (cifc,i, • * • , dk^m) -^ +00 and Zk G Infc / (^ ) 

such that Zk ^ inf N^ix^dk)-

By Zk G InicfiB), it follows that 3x^ such that gix^j^) < 0 and /(x^) -^ 
Zk as j -^ cx). 
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It follows from Zk ^ inf iV^(x, dk) t ha t Bx'j^ G X such tha t 

N^{x'k,dk) <c\{0} Zk> 

Tha t is, 

E /7(4)+EKi^r(4)) 
1/7 

ei <c\{0} ^fc. (2.98) 

Using (2.98), we deduce tha t max gj{x'p,) > 0 since Zk G I n f c / ( ^ ) . 
l < j < m 

(2.98) also implies tha t 

m 

E < i ^ r ( 4 ) < izk)l - fU^'k) < {Zk)l i = l.'"A (2.99) 

where {zk)i denotes the zth component of vector Zk-

T h a t is, [E7=i ^ . . - ^ r C ^ i b ) ] ' / ^ < 'jC f̂c) < M'. 

It follows tha t gf{x^k) ~^ ^ (J — ^^''' ? ^ ) as fc —̂  +oo . 

Now let Ukj = g'j{x'k) and Uk = {uk,i, • • • .Uk^m)- Clearly, ||t^A;||7 > 0 and 
\\uk\U -^ 0. It follows from (2.99) tha t ||ufc||^ min dl • < (zfc)7 - / 7 ( 4 ) . By 

l < j < m '*' 

Lemma 2.112, we deduce tha t 3vk G Infc/(5(i^/c)) such tha t Vk <c fi^k)-
By the mean-value theorem, we have {zk)] — (vk)] = 7{sk)]~ {{zk)i - {yk)i), 
where {sk)i G {{vk)i,{zk)i). Therefore, it follows from (2.99) t ha t if 7 < 1, 
then 

\\u,r mm cll^j<j{sk)r\izk)i-{vk)i)<7{vk)r\izk)i-ivk)i); (2.100) 

if 7 < 1, then 

\\uk\\:, min dl . < ^M'^-\{zk)i - {vk)i). (2.101) 

Since inf fi{x) > 0, Vz, it follows tha t 
xex 

min {vk)i > 7712 > 0. (2.102) 
l<i<m 

Let M ' ' = m a x { M ' ^ " \ m ^ ~ ^ } . The combination of (2.100), (2.101) and 
(2.102) yields tha t 

i.e., 

UkU min dl • < jM'\{zk)i - {vk)i), 
' l<i<m '-' 

/ X / X m i n dl • 
{vk)i - {zk)i ^ i<j<m >̂-̂  
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which contradicts (2.96). Thus (2.97) holds. 
Now we prove the second half of the theorem by contradiction. 
Suppose that 3uk = {uk,i,''' ^^^k^m) ^ 1^+ with Uk -^ 0"̂  and Zk G 

lnfcf{B{uk)),Vk e InfcfiB) such that 

{zk - Vk)/\\uk\^ -> -oo , as A: -^ +oo, 

where the virtual element —oo is such that for any a G IR^, —oo <intc —ote. 
Then 3xk G X with gj{xk) < Ukj^^j such that 

{f{xk) - Vk)/\\uk\\:!, -^ -oo , as ^ ^ +00. (2.103) 

By the assumption of the theorem, 3d* = (<ij, • • • , d^) G JR^ such that when 
d-d*G IR!Ĵ , Vk G inf N^{x, d). Therefore, 

N^{xk,d*)^c\{o}Vk^ (2.104) 

We assume that i* G {1, • • • , ^} is such that 

1/7 

fU^k)-^Y^d;^gf{xk) > {Vk)i 

Namely, 
m 

fU^k) - {vk)l >-Y^dfgf{xk). (2.105) 

It follows from (2.103) and (2.104) that max gj{xk) > 0. So, from (2.105), 
l < j < 7 n 

we deduce that 

fi*M - {vk)l > - m a x cJ*'̂ ||tXfc||:̂ . 
l<j<m '' ' 

That is, 
[{vk)l - f^.ixk)]/\\ukU < m .^ d*\ (2.106) 

Since 

K)7* - fi*{xk) = isl~^{{yk)i* - fi*{xk)), Sk G {fi*{xk), {vk)i), 

it follows from the assumption on / that there exists a > 0 such that 

Ml - fU^k) > Mivkh - fi*{xk)). (2.107) 

(2.106) and (2.107) yield that 

[fi*{xk) - {'^k)A/\Wk\\l > - max d^^/{ka), 
l < j < m '' 

which contradicts (2.103). The proof is complete. • 
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Definition 2.115. (i) Let z* G Infcf{B). The problem (VOP) is said to be 
'j-rank weakly stable at z* if there exist positive real numbers Sz* and Mz* 
such that 

^Infcf{B{u))-z^ + Mz*e n {-intC) = 0, 

for any u G M^ with 0 < ||ii||^ < 5z* • 
(a) The problem (VOP) is said to be 'y-rank weakly stable if it is j-rank 

weakly stable at every z* G Inf(jf{B). 

The following simple example shows that (VOP) is 1-rank weakly stable 
but not 1-rank uniformly weakly stable. Let n = l , £ = 2 , i ^ = IR, m = l . 
Let f{x) = (exp(-x^/^), exp(-a:^/^)) if x > 0; f{x) = (exp(x),exp(—x)) if 
X <0. Let g{x) = x^Wx e IR. 

It is easy to check that 

IntcfiB) = {(exp(x),exp(-x)) :x<0} 

and, for any u> 0, 

ln{cf{B{u)) 

= {(exp(-i^^/^), exp(-u^/^))} U {(exp(x),exp(-a;)) : x < -u^^^}. 

It is elementary to prove that (VOP) is 1-rank weakly stable but not 1-rank 
uniformly weakly stable. 

It is clear that if (VOP) is 7-rank uniformly weakly stable, then (VOP) is 
7-rank weakly semi-stable. 

The proof of the next theorem is similar to that of Theorem 2.114 and 
thus omitted. 

Theorem 2.116. Let z* G Infcf{B). Then (VOP) is j-rank weakly stable 
at z* if and only if there exists a d* € M^ such that z* G q-yid) whenever 
d-d"" em"!^. 

Corollary 2.117. (VOP) is j-rank weakly stable if and only if for every z*, 
there exists a d* G IR^ such that z* G q-yid) whenever d — d* E IR^. 

The next theorem uses a well-known condition in the study of sensitivity 
of a constrained optimization problem, i.e., the compactness of the feasible 
set with a small perturbation. Under this condition, the set of minimal points 
of (VOP) and that of Ny{-,d) are nonempty. The conclusion follows directly 
from Theorem 2.114. 

Theorem 2.118. Assume that there exists u^ = {u^, • • • ,u^) G intlR^ with 
\\u^\\ > 0 sufficiently small such that X{u^) = {x G X : gj{x) < u^,\/j} is 
compact. If (VOP) is 'j-rank uniformly weakly stable, then there exists d* G 
iR!J? such that when d-d"" elK]^, 
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MincfiB) C q^{d), 

where q^{d) is the set of minimal points of N^{'^d) over K. The converse is 
also true. 

The following theorem establishes further relationship between the solu­
tions of (VOP) and that of the penalty problems based on N^. 

Theorem 2.119. Assume thatB 7̂  0 and there exists d* = (cĴ , ^2, •' * 5 ^m) ^ 
IH!^ such that for all d satisfying d — d* E IR^, x* E X is a minimal solution 
of the problem MincN^{x^ d), then x* is a minimal solution of (VOP). 

xeK 

Proof. Let x* be a minimal solution of MincNy{x,d) for any d satisfying 
x£K 

ĉ  - ĉ * € IR+. Then we have 

Ny{x, d) - N^{x*, d) ^c\{0} 0, \/x e X,d satisfying d-d*e WC^. 

For any XQ e B, we have N^{xo,d) = f{xo),\/d G IR^ by Lemma 2.94. Thus, 
1/7 

/(^o)-E 
i=l 

fnxl-\-Y.d]g-^\x^) ei ^c\{0} 0, (2.108) 

where VXQ G B,d-d* € IR!J!. We claim that gf{x*) = 0, Vj ( i.e., x* G B). 

Otherwise, Ej^Li^^'^'C^*) > 0-
It follows from (2.108) that there exists 2* G {1, • • • ,^} such that 

m m 

fl{xo)-fl{x') > J2d]9f{xn > ( min^<ij)^ff+^(x"'). 
j = l ^ ^ j = l 

Hence, 

m m 

max{/7(xo) - fUxl} > J2<^j9f{x'') > ( min dj) ^ f f ^ C ^ * ) , 
3=1 j=l 

which is impossible if we let dj -^ +00, Vj. Therefore, x* G B. It follows di­
rectly from Lemma 2.94 and (2.108) that x* G MincfiB) and the proof is 
complete. • 



Vector Variational Inequalities 

The concept of a vector variational inequality was introduced by Giannessi [79] 
in a finite dimensional space. Chen and Yang [40] considered general vector 
variational inequalities and vector complementary problems in infinite dimen­
sional spaces, and Chen [25] considered vector variational inequalities with a 
variable ordering structure. Yang [207] studied inverse vector variational in­
equalities and its relations with a vector optimization problem. Through the 
last twenty years of development, existence results of solutions for several kinds 
of vector variational inequalities have been derived and the vector variational 
inequality problem has found many of its applications in vector optimization, 
set-valued optimization, approximate analysis of vector optimization problems 
and vector network equilibrium problems. Because of these applications, the 
study of vector-variational inequalities has attracted wide attention. 

In this chapter, we will study relations between vector variational inequali­
ties (VVI) and vector optimization problems, existence of a solution of (VVI), 
inverse VVI, gap functions of VVI, set-valued VVI, and vector complemen­
tarity problems. We will investigate these with or without a variable ordering 
structure. 

3.1 Vector Variational Inequalities (VVI) 

Let X and Y be Hausdorff topological vector spaces. By L{X, F ) , we denote 
the set of all linear continuous vector-valued functions from X into Y. For 
/ G L(X, y ) , the value of linear vector-valued function / at x is denoted by 
(/,x). Let C C Y he a, nonempty convex cone. Then (Y^C) is an ordered 
HausdorflF topological vector space. 

Definition 3.1. A vector variational inequality (VVI) is a problem of finding 
x"" e K such that 

(VVI) (T(x*), X - X*) ^c\{0} 0, Vx G K, 
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where T : K ^ L{X, Y) and K C X is a nonempty subset. 

Let the topological interior intC of the cone C be nonempty. We have the 
following definition. 

Definition 3.2. A weak vector variational inequality {WVVI) is a problem 
of finding x* G K such that 

(WVVI) (r(x*), X - X*) ^intc 0, \/x e K, 

where T : K ^^ L{X., Y) and K C X is a nonempty subset. 

Consider a vector optimization problem: 

(VOK) Minc/ (x) , 
x€K 

where / : X ^ F is a vector-valued function. The following proposition pro­
vides a relationship between the (WVVI) and the vector optimization problem 
(VOK). 

Proposition 3.3. Assume f is Gateaux differentiable with Gateaux deriva­
tive Df. Let K be a convex subset of X and T = Df. If x is a weakly min­
imal solution of {VOK), then x solves (WVVI). Assume further that f is 
a C—convex vector-valued function. If x solves (WVVI), then x is a weakly 
minimal solution of (VOK). 

Proof. Let x be a weakly minimal solution of {VOK). For any y e K,we have 
x-j-t{y-x)e K, \/t e (0,1). Then 

f{x + t{y - x)) - f{x) ^intc 0, Vt e (0,1), 
f{x + t{y-x))-f{x) 

t 

Let t -> 0+. Then 

^ i n t c O , V t G ( 0 , l ) . 

{Df{x),y-x)^intcO, yyeK. 

Noting that T = Df, x solves (WVVI). 
Conversely, let x solve (WVVI). Then 

{Df{x),y-x)^intcO, yyGK. 

Since / is C—convex, for any y G K, 

fiy)-fix)-{Dfix),y-x)eC 
^^ fiy)-fix)e{Df{x),y-x) + C 
=^ fiy)-fix)GW + CcW, 
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where W = Y\{-intC). Thus 

f{y)-f{x)^intcO, WyeK, 

i.e., X solves (VOK). • 

The following establishes when a solution of (VVI) is also a solution of 
(VOK). 

Proposition 3.4. Let K be a convex subset of X and T = Df. Let C be a 
pointed and convex cone inY. If f is C—convex and x solves {VVI), then x 
is a minimal solution of (VOK). 

Proof. Suppose that x is not a minimal solution of (VOK). Then there is a 
y G K such that f{x) — f(y) >c\{o} 0. Since / is C—convex, we have 

fiy)-f{x)-{Df{x),y-x)>cO. 

Thus 

(T{x), y-x) = (Df{x), y-x)e-C- C\{0} C -C\{0}, 

a contradiction. • 

In the following example, we show that a minimal solution of (VOK) may 
not be a solution of (VVI). 

Example 3.5. Let X = H, F = H^ and C = JR]_. Consider the problem 

Mine f{x)j subject to x G [—1,0] 

where f{x) = (cc,x^ + 1)"^. It is clear that every x G [—1,0] is a minimal 
solution of the problem. Let x = 0. Then, for y = —1, 

V / ( x ) ( 2 / - x ) = ( Q ^ ) e - I R ^ 

Thus X = 0 is not a solution of (VVI). 

However, we can show that the following holds. 

Proposition 3.6. Assume that T = Df holds and f is C-concave. If x* is a 
minimal solution of (VOK), then x solves also (VVI). 

Proof. Suppose that x is a minimal solution of (VOK). Then x is a weakly 
minimal solution of (VOK). If x* does not solve (VVI), then there exists a 
X E K such that 

{T{x*),x-x'')<c\{o}0. 

By the concavity assumption, 



114 3 Vector Variational Inequalities 

fix) - fix*) <c (Dfix*), x-x*) = (Tix*), X - X*) <c\{o} 0. 

Since C is convex, we have 

f{x) <c\{o} / (^*) , 

which contradicts that x* is a minimal solution of (VOK). • 

Moreover, a minimal solution of (VOK) can be characterized by a so-called 
Minty VVI. 

Theorem 3.7. Giannessi [81] Let X = JOT, Y = Ilf and C = IR^^. Let 

f{x) := ( / i (x ) , . . . , / , (x))^ , and T{x) = Vf{x) := (V/i(x), • • • , V/ , (x))^ 

be the Jacobian (an i x n matrix) of the vector-valued function f at x. Let 
f be IR^-convex and v-hemicontinuous on K and K be convex. Then, x* is 
a minimal solution of (VOK) if and only if it is a solution of the following 
Minty VVL 

T{x){x - X*) ^iR^^\^o} 0' ^^ ^ ^ - (^-1) 

Proof Suppose that x* is a minimal solution of (VOK). If x* is not a solution 
of the Minty VVI (3.1), then there exists x G K such that 

T(x)(x-x*)<jj^.^^^^^O, 

that is, 

Tix)ix*-x)>j^.^^^^^O. 

Since / is IR^-convex, we have 

fix") - fix) >jj^.^ Tix)ix* - x) >iR^^\{o} 0-

Then 

it is a contradiction. 
Conversely, let x* be a solution of the Minty VVI (3.1). Suppose on the 

contrary that there is x G i^ such that 

fix)-fix*)<^e^^^^^O. (3.2) 

Since K is convex, x(a) := ax* + (1 — a)x G K,Wa G [0,1]. Because of 
the convexity of / and of the Lagrange Mean Value Theorem, there exists 
a G (0,1), such that 

^fixi^))>^^Jix*)-fix). (3.3) 
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From (3.2) and (3.3), we have 

(r(x),x*-x) >iK^ \̂{o}̂ ' 

where x = x{a). Multiplying both sides of this inequality by 1 — a, 

(2^(*) .^*-*)>IRtU0}° ' 

which contradicts the assumption. • 

Next we show that (VVI) is a necessary optimality condition for a Geoffrion 
properly minimal solution of (VOK). 

Let X = R^, y = IR^ and C = B ^ . Let f{x) := (/i(x), • • • , fi{x)y. A 
point x* € K is said to a Geoffrion properly minimal solution of (VOK) [76] 
if there exists a scalar M > 0 such that, for each z, 

fi{x*)-Mx) 
fj{x)-fj{x*)- ' 

for some j such that fj{x) > fj{x*) whenever x G K and fi{x) < fi{x*). 
Every Geoffrion properly minimal solution is a minimal solution. 

Let T{x) = V/(x) := (V/i(a:), • • • , V/^(x))^ be the Jacobian (an ^ x n 
matrix) of the vector-valued function / at x. 

Proposition 3.8. Assume that f and K are convex. If x* is a Geoffrion 
properly minimal solution for (VOK), then x* is a solution of (VVI). 

Proof. Since x* is a Geoffrion properly minimal solution for (VOK), it follows 
from [76] that there exists A G mtlR^ such that x* solves the following problem 

min X^f{x), subject to x £ K. 

Then we have 
V(A"^/)(x*)(x-x*) > 0 , WxeK. 

Noticing that V(A'^/) = A'^V/. Thus x* satisfies 

V / ( x * ) ( x - x * ) ^c\{0} 0 , V X G K . 

Therefore x* is a solution of (VVI). • 

A function g : IR'̂  —> IR is said to be pseudolinear on i^ if ^ is both pseu-
doconvex and pseudoconcave on K. It is known [45] that, ^ is a pseudolinear 
function if and only if, for any pair of x and y, there exists a scalar r]{x, y) > 0 
such that 

9{y) - 9{x) = ^(^, y)'^9{xV{y - ^)-

Any linear function and any linear fractional function (ratio of linear func­
tions) is pseudolinear. 
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Let f{x) =: {fi{x), • • • , fi{x))^^ each fi is pseudolinear. Then there exists 
a scalar r}i{x,y) > 0 such that 

My) - fi{x) = m{x,y)Vfi{xy{y - x), (3.4) 

Consider the vector pseudolinear optimization problem 

Minc/(a:), subject to x e K. (3.5) 

Then we have 

f{y) - fix) = (mix, y)VMxf{y - x), • • • , m{x, 2/)V/,(x)T(y _ ^ ) ) T (35) 

Let T : IR" —> R,^^" be a matrix-valued function defined by 

T{x) = {m{x,y)yMx),---,m{x,y)Vfe{x)f. (3.7) 

Consider the following vector variational inequality problem of finding 
X £ K such that 

T{x){y-x) tc\{o} 0 , VyeiT, (3.8) 

where T is defined by (3.7). 
The following shows an equivalent condition between VOK(3.5) and 

VVI(3.8). Let / and T be defined by (3.4) and (3.7) 

Theorem 3.9. Assume that K is convex and each / i(i = 1,2, • • • ,^) is pseu­
dolinear. The point x* is a minimal solution of VOK(3.5) if and only if x"" 
solves VVI(3.8). 

Proof. Let x* be a minimal solution of VOK(3.5). There is no x ^ K such 
that 

f{x)-f{x*) <c\{o} 0, 

that is 

(r/i(x*, x)V/i(x*)(x - X*),... , 77̂ (0;*, x)V/£(x*)(x - x*))"^ <c\{o} 0. 

Thus, there is no x € i^ such that 

r ( x * ) ( x - x * ) <c\{o} 0. 

Then x* solves VVI(3.8). • 

Proposition 3.10. Let X and Y be Banach spaces. Let C : X ^Y be closed, 
convex cone valued and u. s. c.. Let K C X be a nonempty convex subset. Let 
f be a Gateaux differentiable function with Gateaux derivative denoted by 
T{x) = Df{x). If X ^ K is a weakly nondominated-like minimal solution of f 
on K, then x is a solution of the following generalized weak vector variational 
inequality problem 

{GWVVI) {T{x),x-x)^intc(x)0, ^xeK. 

Conversely, if f is C{x)-convex on K and x is a solution of (GWVVI), then 
X is a weakly nondominated-like minimal solution of f on K. 
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Proof. Suppose that x e K, and x is a weakly nondominated-like minimal 
solution of / on K. For any x e K, we have x + t{x — x) e K,\/t e (0,1]. By 
Definition 1.15, 

fix + t{x - X)) - fix) ^intCix) 0, \/t G (0, 1], 

then 
f{x + t{x - x)) - f{x) ^ w / ^ m i l 

7 %intc(x) 0, vt e (0, ij. 
Let t^O-h. Thus 

{T{x), x-x) ^ -intC{x), Vx € K. 

So X is a solution of (WVVI). Conversely, let / be C-convex. Then, by Propo­
sition 1.72, 

m - fix) e {T{x), y-x) + C{x), yx, y € K. 

Since x is a solution of (GWVVI), we have 

(r(x) , y-x) ^intc(x) 0, Vx e K, 

i.e. 
{T{x),y-x)eW{x), yyGK, 

where W{x) = Y\{-intC(x)), Then 

f{y)-f{x)eW{x), MyeK, 

that is, 

f[y)-f{x)i-intC{x), \/yeK. 
So X is a nondominated-like minimal solution oi f on K. • 

Corollary 3.11. Let Y be a real normed space and K d Y. Let f : Y —^ 
Y be a Gateaux differentiable vector-valued function with Gateaux derivative 
denoted by F{y) = Df{y). Let f be C{y)-convex on K. Let C .Y ^Y be an 
u.s.c. set-valued function such that for each y £Y, C{y) is a proper, closed 
and convex cone in Y. Let C — C\y^YC{y) and e £ intC. Let y G K. Then y 
is a weakly nondominated-like minimal solution of f on K if and only if 

min^e(^, F{y){y-y)) = 0. 

Proof. By Proposition 3.10, y is a weakly nondominated-like minimal solution 
oi f on K if and only if 

F{y){y-y)i-intC{y), ^y e K. 
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By Proposition 1.54, the above inequality holds if and only if 

Uy.Fiy){y-y))>0, \/y e K. 

Observing that ^e{y, 0) = 0, the theorem holds. • 

The relations between vector variational inequality problems and set-
valued optimization problems are shown in Section 2.4, see Theorems 2.48, 
2.50, 2.64 and 2.73. 

Now we consider existence of solutions for weak vector variational inequal­
ities (WVVI). 

Lemma 3.12 (Generalized Linearization Lemma). Let the mapping T : 
X —> I/(X, Y) be monotone and v-hemicontinuous. Then the following two 
problems are equivalent for each convex subset K in X: 

(i) x£K, (T(x), y-x) ^intc 0, yy € K; 
(ii) xeK, {T{y),y-x) ^intc 0, Vy € K, 

Proof Let x be a solution given by (i). Since T is monotone, 

{T{y)-T{x),y-x)>cO, y e K, 

{T{y),y-x)>c ( T ( x ) , y - x ) ^intc 0, Vy G K. 

Thus we have 
{T{y),y-x)^intcO, ^y € K. 

Suppose (ii) holds. For any y £ K, 0 < X < 1, 

{T{Xy + (1 - A)x), Ay + (1 - X)x - x) ^intc 0. 

Dividing by A, we have 

{T{x + X{y - x)), y-x) ^intc 0. 

Let A ^> 0-h, we obtain (i) since T is -y-hemicontinuous. • 

Definition 3.13. A mapping A G L{X^Y) is called completely continuous^ if 
it maps weakly convergent sequences to strongly convergent ones, 

In next theorem, we shall use the weak topology of X and the norm topol­
ogy of Y. 

Theorem 3.14. Assume that X is a reflexive Banach space and K C X 
is convex. Assume that (F, C) is an ordered Banach space with intC ^ 0 
and intC* ^ 0 . Let the mapping T : K —^ L{X,Y) be monotone, v-
hemicontinuous and let, for any y e K, T{y) be completely continuous map­
ping on X. If 
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(i) K is compact, or 
(ii) K is closed, T is weakly coercive on K, 

then the vector variational inequality (WVVI) is solvable. 

Proof. We set 

Fi{y) = {xeK: (T(x), y-x) ^intc 0}, yeK. 

For (i), we prove that Fi is a KKM map on K. Let {xi,--- ,Xfc} C K, 
YJi^i OLi = l,ai>0. Suppose that x = ^27=1 ^i^i ^ ^i'=iFi{xi). Then 

{T{x),Xi-x) <intcO, Vz, 

n n 

{T{x),x) = ^ai{T{x),Xi) <intcY^ai{T{x),x) = {T{x),x). 
i=l i=l 

It is impossible, so we obtain 

co{xi , ' " ,Xk} C U,^^iFi(xi), 

i.e., Fi is a KKM map on K. 

Let 
F2{y) = {xeK: {T{y), y-x) ^intc 0}, y e K. 

We have Fi{y) C F2{y) for all ?/ € if. Indeed, let x G Fi(^), so that {T{x),y-
x) ^intc 0. By the monotonicity of T, it follows that 

{T{y),y-x)>c { T ( x ) , y - x ) i^i^tc 0, 

that is, X G F2{y). Thus F2 is also a KKM map on K. By Lemma 3.12, we 
have 

HyeKFiiy) = nyeKF2(y). 

We observe that for each y e K, ^2(2/) is a (weakly) compact subset in 
K. Indeed, for any y E K and any x G clF2{y), there exists a sequence 
{xk}n€N C -̂ 2(2/) such that Xk weakly converges to x. Since T{y) is completely 
continuous, we have that {T{y), y—Xk) G W strongly converges to {T{y), y—x). 
The strong closedness of W implies that {T{y)^y — x) G W, that is, x G ^2(2/)-
Hence, for each y G K, F2{y) is weakly closed. Since we consider a weakly 
topology on X and K is (weakly) compact, ^2(2/) is compact for each y E K. 

By the KKM theorem (see Theorem 1.34), we have 

nyeKFi{y) = nyeKF2{y)^0. 

Hence, there exists a.n x E K such that 

{T{x),y-x) ^intcO, \/xeK. 
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Consider the case (ii). Firstly, we prove the following conclusion: if c G intC* 
and X* is a solution of the (scalar) variational inequality (VI)c: 

{VI)c xeK, ( c o T ( x ) , y - x ) > 0 , Vx € X, 

then X* is a solution of (WVVI). 

Indeed, suppose that x* is not a solution of (WVVI). Then (T(x*),2/ -
X*) <intc 0 for some y G K. Thus, by c G intC* 

( c o T ( x * ) , y - x * ) < 0 , 

i.e., X* is not a solution of {VI)c' 

For (ii), it is sufficient to prove that {VI)c has a solution, where c is the 
one in the weak coercive condition. Let Br denote a closed ball of center 0 and 
radius r in X (for the norm in X). By the Hartmann-Stampacchia theorem, 
there exists a solution Xr of the variational inequality problem 

Xr e KD Br, {c o T{xr), V - Xr) > 0, \fy G K H Br. 

Choose r > ||x*|| with x* as XQ in the weak coercive condition. Then, we have 
(c o T(xr), X* — Xr) > 0. Moreovcr, 

( c o T ( X r ) , X * — Xr) 

= -{C O T{Xr) - C O r ( x * ) , Xr - X*) + ( - C O T ( x * ) , Xr - X*) 

< - ( c o T ( x ^ ) - c o T ( x * ) , x ^ - x * ) + | | coT(x*) | | | | x r -x* | | 

= - | | x ^ - x * | | ( ( c o T ( x r ) - c o T ( x * ) , x ^ - x * ) / | | x r - x * | | - | | c o T ( x * ) | | ) . 

Now if II Xr 11 is unbounded, we assume without loss of generality that ||xr|| -^ 
oo. By the above inequality and the weak coercivity of T, we may choose r 
large enough such that (c o T(xr), x* — Xr) < 0, which contradicts 

( c o T ( X r ) , X * - X r . ) > 0. 

If IJXrll is bounded, then we assume by the reflexivity of X and without 
loss of generality that || G X as r —> oo. For any y G K, there exists 
f > 0 such that when r >f, y G K H Br. Thus 

( c o T ( X r ) , y — Xr) > 0. 

Letting r —> oo, we have 

{coT{x),y-x) >0 . 

Hence x solves (VI)c- • 
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Now we consider the existence of solutions for vector variational inequal­
ities with variable domination structures. We assume that X and Y are two 
Banach spaces. 

Let i^ C X be a nonempty, closed and convex subset, and let T : J^ -^ 
L(X, Y) be a vector-valued function. Let C : X :=tY he a, set-valued function, 
that is, for every x E X, C{x) is a closed and convex cone with nonempty 
interior intC{x). 

Consider the following (WVVI): 

xo G K, (r(xo), X - xo) ^intc(xo) 0. Vx G K. (3.9) 

Definition 3.15. LetT : X —^ L{X,Y) be a vector-valued function. T is said 
to be C{x)-monotone on X if for any x^y E X, 

( r ( y ) - T ( x ) , y - x ) > c ( . ) 0 . 

Lemma 3.16. [Generalized Linearization Lemma] Let T : X —> L{X,Y) be 
C-monotone and v-hemicontinuous on X. Then the following problems (I) 
and (II) are equivalent for any convex subset K: 

(i) xeK, {T{x), y-x) ^intc{x) 0, \/y e K; 
(ii) xeK, {T{y),y-x) ^intc{x) 0, Vy G K. 

Proof. Since T is C(a;)-monotone on X, we have 

{T{y)-T{x),y-x)>cix)0, Wy e K. 

Let X G K he a. solution of (I). For the ordered Banach space (Y, C{x)) with 
a fixed X G K, we have, by (iv) of Lemma 1.1 

(T(2/) ,y-x) ^intc{x) 0, Vy G r , 

that is (II). 
Now, we suppose that (II) holds. Then, for any y G K and A G (0,1), by 

the convexity of X, we have 

{T{Xy + (1 - A)x), Ay + (1 - X)x - x) ^intc{x) 0. 

Dividing by A, we have 

{T{x + A(y - x)), y-x) ^intc(x) 0. 

Thus (I) is derived by the i;-hemicontinuity of T and the closedness of 
W{x) = Y\{-intC{x)), for a fixed x G i^ as A \ 0. • 

Set for every y G K 

Fi{y) = {XGK: ( r ( x ) , y - x ) ^intcix) 0}; 

F2{y) = {XGK: {T{y),y-x) ^intc{x) 0}. 

Now we equip X with a weak topology, Y with a strong topology and 
L{X, Y) with the strong operator topology. 
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Lemma 3.17. Le^ K C X be weakly compact. Let T : K —^ L{X^Y) 
be a vector-valued function, and let, for every y e K, T{y) be a com­
pletely continuous operator. Let the set-valued function W . K -^ Y with 
W{x) = Y\{—intC{x)) for every x E K be upper semicontinuous on K. Then 
-̂ 2(2/) is weakly closed for every y G K. 

Proof. We denote the weakly closed hull of ^2(2/) by ^2(2/)- There exists a 
sequence {xk}keN C F2{y) converges weakly to some x G K. For every A: G iV, 
we have 

{T{y),y-Xk) ^intc{xk) 0. 

that is 
{T{y),y-Xk)eW{xk), ^k e N. 

Since T{y) is completely continuous and W is upper semicontinuous on K, 
we have 

{T{y),y-x)eW{x), 

that is X € ^2(2/)- • 

Theorem 3.18. Let X be a reflexive Banach space, and Y a Banach space. 
Let K C X be a nonempty bounded, closed and convex subset in X. Let C : 
X ^Y be a set-valued function, such that, for every x G X, C{x) is a closed, 
pointed and convex cone with nonempty interior intC{x). Let the set-valued 
function W \ K ^Y with W{x) = Y\{—intC{x)) for every x G K be upper 
semicontinuous on K. Let the vector-valued function T \ K ^>^ L{X, Y) be 
C{x)-monotone and v-hemicontinuous on K, and let, for every y G K, T{y) be 
a completely continuous operator. Then the weak vector variational inequality 
WVVI(3.9) is solvable. 

Proof. We first prove that Fi is a KKM mapping on K. Suppose that 
{xi,'",Xk} C K, Y!i^^ai = l , a i > 0,2 = !,••• ,A:, X = EiLi^*^* ^ 
U^^iFi(xi). Then 

Thus 

that is 

(T(x) , Xi - X) >intC{x) 0, Z = 1, • • • 

k 

^ ai{T{x), Xi - X) >intC{x) 0, 
i=l 

{T{x),x) - {T{x),x) >intcix)0, 

which is absurd. Thus we deduce that 

conv{xi, '•' ,Xk} C U^^iFi(xi), 

so that Fi is a KKM mapping on K. Now we have Fi{y) C ^2(2/) foi" y ^ K. 
Indeed, let x G Fi{y), so that 
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{T{x),y-x) ^intc(x) 0. 

Since T is C-monotone on iiT, we have 

(r(y), y-x)- ( r (x) , y-x) >c(.) 0. 

By (iv) of Lemma 1.1, we find that 

{T{y),y-x) ^intc{x) 0, 

that is, X G -̂ 2(2/)- Thus, F2 is also a KKM mapping. By Lemma 3.16 we have 
that 

nyeKFi{y)=nyeKF2iy). 

Besides, by Lemma 3.17 ^2(2/) is weakly closed for every y G K. 
Now we observe that K is weakly compact since X is a reflexive Banach 

space and iiT is a bounded, close and convex subset in X. Since ^2(2/) C K and 
weak closedness of ^2(2/)) -̂ 2(2/) is a weak compact. If we equip X with the 
weak topology, we can use the KKM theorem for F2. Thus ny^KF2{y) 7̂  0 . 
so that Hy^KFiiy) / 0, thus there exists XQ e K such that XQ G r\y^KFi{y)^ 
that is 

(T(a;o), 2/ - ^0) ^mtc(xo) 0̂  ^2/ ^ ^ • 

This completes the proof. • 

Set 
C+ - co{C{x) :xeK}. 

Then if, for every x E K, C{x) is a closed, pointed and convex cone with 
the nonempty interior intC{x), C-\- is also a closed, and convex cone with 
nonempty interior intC^. We assume that C^ is also pointed. 

We extend the Definition 1.38. 

Definition 3.19. Let K C X be a convex and unbounded subset We shall say 
that T : K -^ L{X, Y) is coercive on K if there exist XQ G K and s G C^\{0} 
such that 

{soT{x) - soT{xo),x- xo)/\\x- xo\\ -^ +00, 

whenever x e K and \\x\\^ 00; here s o T{x) = s{T{x)). 

Let X and Y be topological vector spaces, K a nonempty subset of X, 
H a nonempty subset of y , and M : X ^ y a mapping. We want to study 
conditions under which the system: 

(S) 32/Gi^, s.t. M{y)eH, 

will have or will not have a solution. 
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Definition 3.20. [73] Let Z he a subset of M. The real function w :Y -^R 
is called a weak separation function if 

H"" = {heY : w{h) ^Z}DH. 

The real function s :Y —^'R is called a strong separation function if 

H' = {heY: s{h) ^Z}CH. 

Lemma 3.21. [73] Let the sets H,K, Z and the mapping M be given. Then: 

(i) The system (S) and the system 

w{M{y)) C Z, Wye K, 

are not simultaneously possible, whatever the weak separation function w 
may be; 

(ii) The system (S) and the system 

s{M{y))CZ, WyeK, 

are not simultaneously possible, whatever the strong separation function s 
may be, 

Theorem 3.22. Let X, Y", C, W and T satisfy the assumption conditions in 
Theorem 3.18. LetK C X be a closed, convex and unbounded subset. Moreover 
let T be coercive on K with s G C^. Then the weak vector variational inequality 
WVVI(3.9) is solvable. 

Proof. Note that xo G iC is a solution of (WVVI) iff the system 

(50 3y G K, s.t. (T(xo), y - XQ) G -intC{xo) 

is impossible. Observe that 

C; \{0} C C*(x)\{0}, \/xeK. 

We assume that s G C^\{0} is the same one as in the coercive condition. We 
set in Lemma 3.21 

Z = (-00,0], if = intC{xo), M{y) = {T{xo), y-xo), 

then w{h) = s{h),h G Y is a weak separation function for the system (S')-
Thus, by Lemma 3.21 (i), in order to show the existence of solutions for 
(WVVI), it is sufficient to prove that the classical scalar variational inequality 

(VI)^ xeK, {soT{x),y-x)>0, Wx G K, 

has a solution in K. 
Br denote the closed ball in X with the center at 0 and the radius r. In 

the spacial case where 
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Y = R, C(x)-R+ yxeKHBr. 

Theorem 3.18 guarantees the existence of a solution Xr of the following (VI) 

(VI) xeKDBr, {soT{x),y-x) > 0, \/yGKr]Br. 

Choose r > llxoll, with XQ as in the coercive condition. Then, we have 

{s O T{Xr), XQ — Xr) > 0. 

Moreover, 

{s oT{Xr),Xo — Xr) 

= —{s O T{Xr) —SO r ( x o ) , Xr — XQ) + (S O T{XO), Xr — XQ) 

< -{soT{Xr) - SoT{xo),Xr - XQ) + 115 O r ( x o ) | 11 |Xr - Xo| | 

< -\\Xr -Xo\\{{soT{Xr) - SoT{xo),Xr - a;o)/| |^r " ^o | | + l k o T ( x o ) | | . 

Now, if \\xr\\ = r, for all r, we may choose r large enough so that the above 
inequality and the coercivity of T imply 

{s O T{Xr), XQ — Xr) < 0, 

which contradicts 
{s O T{Xr), XQ — Xr) > 0. 

Hence, there exists r such that ||a:r|| < r. Now, Vx G K, we choose e > 0 small 
enough such that Xr + e{x — Xr) G K HBr and thus 

{s o r (x r ) , e(x - Xr)) > 0, Vx G K, 

that is 
{S O T(Xr), X - Xr) > 0, Vx G K, 

which shows that Xr is the solution of (VI)s. By the above claim, Xr is a so­
lution of (WVVI). • 

Remark 3.23. liY = M,C(x) = R+,Vx G if, the (WVVI) collapses to the 
usual scalar variational inequality (VI): 

xo G K, (r(xo), X - xo) > 0, Vx G K. 

Then the theorem 3.22 collapses to the following theorem 3.24. 

Theorem 3.24. Let X be a reflexive Banach space, and K be a nonempty 
bounded, closed and convex subset in X. Let T : K —^ X* be monotone and 
hemicontinuous on K. Then the variational inequality (VI) is solvable. 
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Obviously, the hemicontinuity of T in Theorem 3.18 is equivalent to the 
continuity for each one dimensional flat L C X. Thus, Theorem 3.24 is essen­
tially the Hartmann-Stampacchia theorem for variational inequalities. 

This section is concluded by a discussion on the scalarization of (VVI). 
Consider the following form of a (VI) of finding x* e K such that 

(A, {T(x*), X - X*)) > 0, \/xG K. (3.10) 

If A G intC* and x* is a solution of VI(3.10), then x* is a solution of the 
(VVI). If A G C* \ {0} and x* is a solution of VI(3.10), then a;* is a solution 
ofthe(WVVI). 

3.2 Inverse VVI 

In this section, we study inverse VVI problems and establish their equivalences 
with given VVI problems. An inverse VVI is also called a dual VVI in the 
literature. 

Let T : X —> L{X, Y) be a function, and h : X -^ Y is a, function. The 
(VVI/i) problem consists in finding x* G X, such that 

(T(x*), X - X*) ^c\{0} h{x*) - h{x), Vx G X. 

Assume that T is one-to-one (injective). Define T' : L{X^Y) -^ X as 
follows: 

T\l) := -T-\-l), V/ G Domain(TO = -Range( r ) . 

If T is linear, then T = T-^. 
The inverse VVI of the (VVI/^) problem is defined as: finding /* G 

Domain(T'), such that 

(/ - r,T'{n) tc\{0} hlin - h^il), V/ e L{X, Y), 

where /i<(0 := Maxc{(/,x) — h{x) : x G X} is the vector conjugate function 
of h. This problem is denoted by (IVVI/^). 

Definition 3.25. Let h : X ^^ Y be a C-convex function. The Fenchel con­
jugate of h is the set-valued function h% : L{X, Y) ^ Y, such that 

h*^{l) := Maxc{{l,x) - h{x) : x G X} , / G L{X,Y). 

Thus, a generalization of Young's inequality follows immediately: 

Lemma 3.26. Let h and /i< be as in Definition 3.25. Then 

h{x) + ^ ( 0 - (/,x) ^c\{0} 0, \/xeX,l£ L{X,Y). 
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Let h : X —^Y and x* € X. We define the subgradient of h at x* by 

a</i(x*) = {le L{X,Y) : /i(x) - /i(x*) ^c\{0} (i,^: - x*),Vx G X} . 

We also define the strong subgradient of /i at x* by 

a^/i(x*) = {/ G L{X,Y) : /i(x) - /i(x*) >c (/,x - x*),Vx G X } . 

Theorem 3.27. Let X be a Hausdorff topological vector space and (Y, C) be 
an ordered Hausdorff topological vector space. The function T is one-to-one 
and h : X ^^Y is continuous. Assume that /i<(/) 7̂  0 , V/ G L{X, Y). 

(i) If X* is a solution of (VVIh), then I* = —T(x*) is a solution of (IVVIh) 
and the following relation is satisfied: 

(r,x*)G/i(x*) + /i^(r). 

(a) If I* is a solution of (IVVIh), C is connected^ i.e., C U (—C) = Y, and 
5</i(x*) 7̂  0, where x* = —T\l*), then x* is a solution of (VVIh)-

Proof, (i) Let x* be a solution of (VVI/i) 

X* G X : (T(x*), X - X*) ^c\{o} Hx*) - h{x), Vx G X, 

-(T(x*), X*) - /i(x*) ^c\{0} -(T(x*), x> - /i(x), Vx G X. 

That is 
-(T(x*),x*) - / i (x*) G / i^ ( - r (x*)) (3.11) 

-(T(x*),x*) -/i(x*) -/i^(0 c /i^(_r(x*)) -/i^(0, v/ G L(x,y) 
If Z* = -T(x*) is not a solution of (IVVI/i), then there exists / G L(X,y ) , 
such that 

(/-r,T'(r))<c\{o}/i<(r)-/i^(0. 
It follows from (3.11) that 

(/ - r,r in) <c\{o} -{T{x*),x*) - Kx*) - hi{i), 
-{l,x*)<c\{o}-hix*)-hl{l). 

It is a contradiction with the definition of /i<(/). Then I* is a solution of 
(IVVIft). 

It is easy to verify that 

{r,x*) €hix*) + hl{l*). 

(ii) Let I* be a solution of (IVVIft). Let x* = -T'il"). Then /* = -Tix"). 
That is 

(/ - l*,T'in) ^c\{o} h%(n - Kil), V/ e LiX,Y) 

{I + T{x*), -x^ tc\{o} h'<{-Tix*)) - h%{l), (3.12) 
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-{Tixn,xn-{l,x*) + h*^il) ^c\{o} h*^{-T{x')). 

Since d<h{x*) ^ 0, let / G d<h{x*), then 

{l,x*)-h{x*) eh^il). 

It follows from (3.12) that 

-{T{x*),x*)-h{x*) ^c\{o} hl{-T{x*)). 

From the definition of /i< and C being connected, we get 

-{T{x'-),x*)-hix*) e h*^{~T{x*)). 

If X* = —T'{1*) is not a solution of the (VVI/i), then 3w € X, such that 

{T{x*),u-xn^c\{o}h{x'')-h{u), 

-{T{x*),x*)-h{x') ^c\{0} -{T{x*),u)-h{u). 

Then we obtain 

-{T{x*),x*)-h{x')ihl{-T{x*)), 

a contradiction. Therefore x* — —T^{1*) is a solution of the (VVI^). This 
completes the proof. • 

Corollary 3.28. Assume that A : X —^ X* is one-to-one and that hi : X —^ 
Mbe a lower semi-continuous convex function, x* is a solution of the following 
variational inequality: find x* G X, such that 

(^x*,x - x*) >hi{x) - /ii(x*), VXGX 

if and only if I* = —Ax* e X* is a solution of the inequality which consists 
in finding /* G Domain{A'), such that 

{A'i\i-r)> hi{r) - hiii), v/ G X*, 

and the following identity is satisfied 

hx{x*)+hi{n = {i*,x*}, 
where h^ is the Fenchel conjugate of hi, 

hl{l) = max{(/,x) — hi{x) : x e X}. 
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Proof. This follows from Theorem 3.27 by letting C = 1R+. • 

The inverse weak VVI (for short, IWVVI/,) of (WVVI/^) is defined as: find 
/* G Domain(T'), such that: 

( / - r , r ( /*)) ^intc /i<(r) -/i*<(/), v/ G L{x,Y) 

where /<(/) = Maxintc{'(^) — / (^) • ^ ^ -^} is the weak vector conjugate 
function of / . 

Let h : X -^Y and x* € X. We define the weak subgradient of h at x* by 

a</i(x*) = {/ G L{X,Y) : /i(x) - /i(x*) ^intc {Ux- X*), Vx G X} . 

Theorem 3.29. Let X he a Hausdorff topological vector space and (F, C) he 
an ordered Hausdorff topological vector space with intC / 0 . The function T 
is one-to-one and h : X —^ Y is continuous. Assume that /i<(/) ^ 0,V/ G 
L{X,Y). 

(i) Ifx* is a solution of (WVVIh), then I* — -T(x*) is a solution of IWVVIh 
and the following inclusion is satisfied: 

(r,x*)G/i(a:*) + /i:^(r). 

(a) If I* is a solution of (IWVVIh), C is connected, i.e., C\J{—C) = X, and 
9</i(x*) 7̂  0, where x* = —T'{1*), then x* is a solution of (WVVIh)-

Proof The proof follows the same lines as that of Theorem 3.27 by replacing 
ordering ' ^c\{0}' by ^ 

intC 
and/i:^(/)by/i:^(/). • 

In the following some examples are given to show the application of a weak 
inverse VVI. 
Example 3.30. (Vector approximation). Consider the vector approximation 
problem 

Mincdl^i — x|p, • • • , ||a^ — x|p) subject to x £ X, 

where X is a Hilbert space with the inner product [•,•], ai(i = 1, •••,£) is a 
fixed element of X, ||x|p = [x, x].li x* G X is a weakly minimal solution, i.e., 

(||ai - x f , • • • , \\ai - x f ) ^intc (||ai - x*f, • • • , ||a^ - x * f ) , Vx G X, 

then 

( [ a i , x - x * ] , - - - , [a^ ,x-x*]) ^intc ([ai,x - x*], • • • , [a^ ,x-x*]) 

Hence, this is a weak VVI (WVVI/,) with Y = K ^ T{x) = ([x, • ] , • • . , [x, •]), 

We can verify that /* — —T(x*) satisfies 
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(/ - /*, -X*) tintc h*^{r) - h^il), \fl € L(X,IR™). 

Since T'(/*) = —x*, I* is a solution of the inverse VVI 

(/ - r , T ' { n ) ^intc /i<(r) - /i*<(0, v/ e Lix,jR'^). 

Consider the vector unconstrained optimization problem (for short, VUP) 

Minc/(x), subject to x G IR'̂ , 

where / : M^ —> JR^ is a differentiable vector-valued function. 
Let /i : X =^ y be a set-valued function and x* G X. We define the weak 

subgradient of ft, at x* by 

a^ft(x*) = {le L{X,Y) : h{x) - /i(x*) ^intc {hx- X*), Va; G X], 

(VUP) is said to be weakly stable if the set-valued mapping W : IR"̂  —> IR 

W(u) = -M8iXintc{-(t>{^^u) : X G M"^} 

has a weak subgradient at ix = 0. 
Now we construct the dual problem (for short, DVUP) of (VUP) as follows 

(DVUP) Minc-( /><(0,r ) , subject to T G IR''^^ 

where (f>: IR"̂  x IR —> IR is the perturbation function satisfying 

(/>(x,0) = ft(x), VxGlR^. 

Propos i t ion 3.31. Assume that (VUP) is weakly stable and C is connected. 
If X* is a solution of (VUP), then there exists FQ G HT'^^ such that /* = 
—V/(x*) is a solution of the inverse vector variational inequality and FQ is a 
solution of (DVUP) and satisfy the inclusion 

{r^,ro)ed<^{x*,o). 

Proof. Let x* be a weakly minimal solution of VUP. Then, x* is a solution of 
the following (WVVI): find x* € IR", such that 

V/(a;*)^(x - X*) ^intc 0, Vx G IR". 

Then from Theorem 3.29, /* = - V / ( x * ) satisfies 

(/ -/*)^(-x*) ^intc o^(r) -o*<(0, v/ e 1R"̂ ^ 

where 0::;(/) = Ma,yiintc{l'^x : x e IR"}. This is the inverse (VVI) of (WVVI) 
if we let T=Vh and - x * = T'{1*), / = 0 . 

It is easy to verify that the weak inverse relation of (VUP) and (DVUP) 
holds: for any x G IR", T € IR"''^ 
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From [176], if (VUP) is weakly stable, then there exists a solution To € IR""̂ ^ 
of (DVUP) satisfying 

(o,ro)Ga<(/>(x*,o). 

Assume that C is connected. Then, from the vector variational inequality, 

-V/(x*)"^a: < c 0, VxGlR''. 

Hence (/*^, A ) G a<(/)(x*, 0). • 

We now consider the inverse VVI with a variable ordering relation. Let T : 
X —> L{X, Y) be a function, and h : X -^ Y he a, function. Let C : X ^Y 
be a set-valued function such that, for every x G X, C(x) is a nonempty convex 
cone. (VVI)^) with a variable ordering relation consists in finding x* G X, such 
that 

(T(x*), X - X*) ^c(x*)\{0} h{xn - /i(x), Vx G X. 

Let /i : X ^ y . We define the subgradient of h at x* with a variable 
ordering relation by 

dlh{x*) = {le L(X,Y) : h{x) - /i(x*) ^c(.*)\{0} {l.x- x*),Vx G X} . 

The inverse VVI of (VVI)[) with a variable ordering relation is defined as: 
finding /* G Domain(T'), such that 

(/ - r , T'in) ^c(.-)\{o} h*^{n - h*^ii), v/ € L(x, y), 

where h'!^{l) := Maxc(a;*){{/,x) — h{x) : x G X} is the vector conjugate 
function of h with a variable ordering relation. This problem is denoted by 
(1VV15;). 

It is clear that if let I G 9</i(x*), then 

( / ,x*)-/ i (x*)G/i^^(0. 

Theorem 3.32. Let X and Y be Hausdorff topological vector spaces and 
C : X ^ Y be a set-valued function such that, for every x G X, C{x) is 
a nonempty convex cone. The function T is one-to-one and h : X ^^ Y is 
continuous. Assume that hiy{l) 7̂  0,V/ G L(X, y ) . 

(i) Ifx" is a solution of (VVI^), then I* = -T(x*) is a solution of (IVVI^) 
and the following relation is satisfied: 

(r,x*) G/i(x*) + /i^^(r). 

(a) If I* is a solution of (IVVF^), C is connected, i.e., C{x) U (—C(x)) = Y, 
for every x e X, and 9</i(x*) 7̂  0, where x* = —T^{r), then x* is a 
solution of (VVFJ. 
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Proof, (i) Let x* be a solution of (VVIj;): 

x*eX: (r(x*), X - X*) ^c(x*)\{0} /i(^*) - /^W, Vx G X, 

-(T(x*), X*) - /i(x*) ^c(.*)\{0} -(T(x*), x) - /i(x), Vx G X 

That is 
- ( r (x*) ,x*) - /i(x*) G /i^^(-T(x*)) (3.13) 

-(T(x*),x*) - /i(x*) - h'^il) C / i^ ( - r (x*)) - /i^(/), V/ G i : (X,F) . 

If /* = - r ( x * ) is not a solution of (IVVll), then there exists / G L(X,y ) , 
such that 

(/ - r,T'{n) <c(x-)\{o} h*^{n - hi^i). 
It follows from (3.13) that 

{/ - r,T'{n) <c(x.)\{o} -{Tix*), X*) - h{x*) - h*^{l), 

-{l,x*)<c(.')\{o}-h{x*)-h7{l). 

It is a contradiction with the definition of h'^{l). Then Z* = —T{x*) is a 
solution of (IWIX). 

It is easy to verify that 

{r,x*) €h{x*) + h*^{i*). 

(ii) Let /* be a solution of (IVVi;;). Let x* = -T'{1*). Then /* = -Tix*). 
That is 

(/ - r , T'in) ^c(x.)\{o} /i<''(r) - h*^ii), yi e L(X, F ) 

(/ + T{x*), -x') ^c(x-)\{o} h^^i-Tix*)) - h*^{l), (3.14) 

- ( r (x*) ,x*) - (Z,x*> + /i^^W ^c(x.)\{0} h*^{-T{x*)). 

Since 9|/i(a;*) 7̂  0 , let / e dlh{x*), then 

(/ ,a;*)-/i(x*)e/i<"(/). 

It follows from (3.14) that 

-{T{x*),x*) - h{x*) ^c(x.)\{0} h*^{-T{x')). 

From the definition of K^ and C being connected, we get 

-(T(x*),x*) - /i(x*) G /i^^(-r(x*)). 

If X* = -T'( /*) is not a solution of the (VVI);), then 3w G X, such that 

(T(x*), u - X*) ^c(x*)\{o} /^(^*) - Ku), 
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-{T{x'-),x*)-h{x'') ^c(x.)\{0} -{Tix*),u)-h{u). 

Then we obtain 

a contradiction. Therefore x* = -T'(/*) is a solution of the (VVI)^). This 
completes the proof. • 

Consider the inverse WVVI with a variable ordering relation. Let T : 
X —> L{X, Y) be a function, and h : X -^ Y he a, function. Let C : X ::^Y 
be a set-valued function such that, for every x G X, C(x) is a convex cone with 
nonempty interior. The (WVVIJ^) problem with a variable ordering relation 
consists in finding x* G X, such that 

(T(x*),x - X*) ^intc{x*) h{x*) - h{x), Wx G X. 

Let h : X ^Y. We define the weak subgradient of h at x* with a variable 
ordering relation by 

a^/i(x*) = {le L{X,Y) : h{x) - h{x*) ^intcix*) (/,x - x*),Vx G X}. 

The inverse WVVI of (WVVI)[) with a variable ordering relation is defined 
as: finding /* G Domain(T'), such that 

(/ - r,T'(/*)> ^intc(.') h^^in - h*^{l), \/l e LiX,Y), 

where h'^{l) := MdiKintc(x*){{l^ ^) — h{^) • x ^ ^} is the weak vector conju­
gate function of h with a variable ordering relation. This problem is denoted 
by (iwvvi;;). 

Theorem 3.33. Let X and Y be Hausdorff topological vector spaces and 
C : X ^ Y be a set-valued function such that, for every x G X, C{x) is 
a nonempty convex cone with nonempty interior. The function T is one-to-
one and h : X ^Y is continuous. Assume that h'!^{l) ^̂^ 0 , V/ G L{X, Y). 

(i) If x* is a solution of (WVVF^), then I* = —T{x*) is a solution of 
(IWVVI^) and the following relation is satisfied: 

(r,x*) G/i(x*) + /i:^^(r). 

(a) If I* is a solution of (IWVVF^), C is connected, i.e., C(x)U(-C(x)) = Y, 
for every x G X, and 9^/i(x*) ^ 0, where x* = —T'{1*), then x* is a 
solution of (WVVFJ. 
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3.3 Gap Functions for VVI 

The concept of a gap function is well-known both in the context of convex 
optimization and variational inequalities. The minimization of gap functions 
is a viable approach for solving variational inequalities. In this section, we 
generalize the gap function for variational inequalities to vector variational 
inequalities. The convexity and differentiability of gap functions are also stud­
ied. 

Let X and Y be Banach spaces, and let C C F be a closed and convex 
cone with nonempty interior intC. 

Consider following vector variational inequality problem (VVI) of finding 
y £ K such that 

( T ( y ) , x - y ) ^ c \ { 0 } 0 , Vx e K, 

where K is a, closed subset of X and T : X ^ L{X, F ) is a function. 
The weak vector variational inequality problem (WVVI) of finding y E K 

such that 
{T{y),x-y)^ 

intC 

0, \/x e K. 
Definition 3.34. Let C he a convex and closed cone in Y with nonempty 
interior and K C X be a closed set. 
(i) A set-valued function (j): K ^Y is said to be a gap function of (VVI) if 

1. 0 G (j){y) if and only if y solves (VVI); 
2. 0 ^c\{o} 0(^), ̂  e ii:. 

(ii) A set-valued function (j)^ : K '=XY is said to be a gap function of (WVVI) 
if 
1. 0 £ (pwiy) if and only if y solves (WVVI); 

Let 
(T(x), x-K)= U{(T(a;), x-z):zeK}. 

Define the set-valued function </>: X =4 F by 

(/)(x) := Maxc(T(x),x - i f ) , x e K. 

Theorem 3.35. Let C be a convex and pointed cone in Y. The set-valued 
function <j){x) — Maxc{T{x)^ x — K) is a gap function for (VVI). 

Proof. We first prove that 0 G (j){y) if and only if y solves (VVI). 
Suppose that y solves (VVI). Then 

( r ( y ) , y - x ) ^ c \ { 0 } 0 , MxeK. 

In particular, let x = y, then 

{T{y),y-y)=0. 
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Thus, 
^e{T{y),y-K), 

We assert that 0 G 0(2/)- Otherwise, if there exits some z e K, such that 
(r(y), y — z) >c\{0} (^(y)? y ~ y) = ^^ then this contradicts the fact that y 
solves (VVI). 

Conversely, suppose 0 G 0(2/)- If y does not solve (VVI), then there exists 
X E K, such that 

{T{y),x-y)<c\{o}0, 

{T{y),y- x) >c\{o} 0 = {T{y),y - y). 

Thus, 0 ^ (/>{y), a contradiction. 
Moreover, for any x £ K, 0 e {T{x), x — x).Bj the definition of (t>{x), we 

have 
0 ^c\{0} ct>{x), \/x € K. 

The proof is complete. • 

Define the set-valued function (j)^ : K ^Y hy 

(j)^{x) := Maxintc(T(x), x-K), \/x e K. 

Theorem 3.36. The set-valued function 4>w{^) is a gap function for {WW I). 

Proof, The proof is similar to that for Theorem 3.35 and is omitted. • 

We now extend the definition of a gap function to a general VVI as follows. 

Definition 3.37. Let C be a closed and convex cone in Y. The general vector 
variational inequality problem (for short, GVVI) consists of finding y £ X 
such that 

{GVVI) {T{y),x-y)^h{x)-h{y)tc\(o}0, Mx & X, 

where T : X ^ L{X, Y) is assumed to be infective, and h: X —^Y is assumed 
to be a function. 

Definition 3.38. A set-valued function (j)' \ X ^Y is said to be a gap func­
tion of the (GVVI) iff 

1. 0 tc\{0} 0'(^), Vx G X; 
2. 0 G (i)'{y) if and only if y solves (GVVI). 

Define the set-valued function </>' : X =^ F by 

^\x) = Maxc{{T{x), x-X)-\- h{x) - h{X)), x e X. 

It follows immediately that 

<l>'iy) = h{y) + g{-T{y)) + (T{y),y), 

where g is the Fenchel conjugate of h. We now have a much simpler proof that 
0' is a gap function for (GVVI), and the meaning of "gap" is now apparent. 
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Theorem 3.39. Assume that C is a pointed, closed and convex cone. Then 
(j)' is a gap function for problem (GVVI). 

Proof. (1) The fact that (j)'{y) ^c\{o} 0 follows directly from Young's inequal­
ity of Lemma 3.26. 

(2) Suppose that 0 G </>'(?/). If y does not solve (GVVI), then there exists 
some X G X, such that 

{T{y), y-x)- h{x) + h{y) >c\{o} 0 - {T{y), y - y) - h{y) + /i(y), 

then 0 ^ (t>'{y)^ ^ contradiction. On the other hand, suppose that y solves 
(GVVI). Then 

(r(y), x-y) + h{x) - h{y) ^c\{o} 0 Vx G X 

That is, 
(r(2/), 2/ - x) + h{y) - h{x) ^c\{0} 0 WxeX. 

By the definition of </>'(y), we have that 

^\y) ^c\{o} 0. 

This together with (i) yields 0 G (p^iy) by the pointedness of C • 

The above generalization of (VVI) can be easily extended to (WVVI). 

Definition 3.40. The general weak vector variational inequality (for short, 
GWVVI) consists of finding y e X such that 

{T{y), x-y)- h{y) + h{x) ^intc 0, Vx G X, 

where T : X -^ L{X, Y) is assumed to be infective, and h : X —^Y is assumed 
to be a function. 

Definition 3.41. A set-valued function (f)'^ : X :=^ Y is said to be a gap 
function of the (GWVVI) iff 

2. 0 G (f)'^{y) if and only if y solves (GWVVI). 

Define the set-valued function (j)'^ : X ^Y hy 

cl>'^{x) = Max,ntc((T(x), x - X) + h{x) - h{X)), Vx G X. 

Theorem 3.42. The set-valued function (j)'^ \ X ^ Y is a gap function for 
(GWVVI). 

The above gap functions are of set-valued nature. Special single-valued gap 
functions can be constructed in terms of nonlinear scalarization functions. Let 
T : X -^ L(X, Y) and i^ C X be a compact set. Consider the following weak 
vector variational inequality problem of finding x* e K such that 

(r(a;*), X - x*) ^intc 0, \fx G K. (3.15) 
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Theorem 3.43. Let e G intC. Then x* e K solves WVVI(3.15) if and only 
if g{x*) = 0, where 

g{x) = mmU{{T{x),y-x)), (3.16) 
xGK 

is a non-positive function. 

Proof Assume that x* G iC solves the problem WVVI(3.15). Then, it follows 
from Proposition 1.43 that 

(T(x*), X - X*) ^intc 0, WxeK 

<^ (T(x*), X - X*) ^ -into, yxeK 

^ ^eo((T(x*), X - X*)) > 0, \/xeK 

^ min ^eo((T(x*), x - x*)) > 0. 
xeK 

It is clear that ^eo{{T{x*), x* - x*)) = 0. Hence, g{x*) = 0. • 

In the special case where Y = JR^ and C = IR^, the nonlinear scalar 
function may be expressed in the following equivalent form: 

Ceaiy) = max ^^^——. (3.17) 

Corollary 3.44. LetY = IR^ and C = IR^^ and let 

5'i(^) = niin max{(Ti(x),2/— x)}, x E K, (3.18) 
yeK l<i<£. 

where T{x) = [Ti{x), • • • ,r^(x)]"^. Then x* e K solves WVVI problem (3.15) 
if and only if gi{x*) = 0. 

Proof. It follows from Theorem 3.43 and (3.17) by letting a = 0 and 
e = ( l , . . . , l ) ^ G l R ^ • 

Consider the following vector variational inequality problem of finding 
X* e K such that 

(r(x*), X - X*) ^c\{0} 0, Vx G K. (3.19) 

Theorem 3.45. Let e G intC. Then x* G K solves VVI(3.19) only ifgix'') = 
0; where g{x) is defined by (3.16). IfY = IR^ and C = IR^^, then x e K solves 
VVI only if gi{x*) = 0, where gi{x) is defined by (3.18). 

Proof Note that a solution of VVI(3.19) is also a solution of WVVI(3.15). 
The results follow from Theorem 3.43 and Corollary 3.44. • 

The following example shows that Theorem 3.45 is only a necessary con­
dition for VVI. 
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Example 346. Let K = [-1,0] and C = IR^. Consider the VVI defined as 
follows: 

{l,2x)(y-x)^^2^^^^^0, yyGK. 

Then x = 0 is not a solution of VVI(3.19), but gi{0) = 0. Hence Theorem 
3.45 is only a necessary condition for VVI. 

Next we study the gap function of vector variational inequalities with a 
variable ordering relation. 

Let X = Y. Consider the following vector variational inequality problem 
of find y* G K, such that 

{Tiy*),y-y*)^-intCiy*), Vj/€ iC, (3.20) 

where if C y is a subset, T : F —> Z/(F, Y) is a function and C :Y =tY is a. 
set-valued function. 

By Proposition 1.54, (3.20) holds if and only if 

^iy*,{Tiy*),y-y*))>0, \fy G K. 

Note that ^(y*, 0) = 0. Then (3.20) holds if and only if 

rmnay\{T{yn,y-y*)) = 0. 
yeK 

Thus we have the following result. 

Theorem 3.47. Let Y be a real normed space and K C Y be a nonempty 
subset. Let C '.Y zi^Y be a set-valued map such that for each y ^Y, C{y) is 
a proper, closed and convex cone in Y and C linear. Let C = (^yeYC{y) and 
k^ e intC. Let y* e K. Then y* is a solution of vector variational inequality 
(3.20), if and only if 

min^(y*,(T(y*),2/-2/*)) = 0. (3.21) 

Under some appropriate conditions, the gap function for both the (general) 
vector variational inequality and (general) weak vector variational inequality 
can be shown to be convex. 

Definition 3.48. Let K be an affine subset of X. The function T : K -^ 
I/(X, Y) is affine if, Vx', a;" G K,\/a,(3 E IR, with a + /? = 1 we have 

T{ax' + I3x") = aT{x') + /?T(x"). 

L e m m a 3.49. Let T : K —^ L{X.,Y) be a function. IfT is affine and mono­
tone, then the function (T(-), -) : K -^Y is C-convex. 
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Proof Given t G (0,1), x\ x" G K, 

{T{tx' + (1 - t)x"), tx' + (1 - t)x") - t{T{x'), x') - (1 - t){T{x"), x") 

= t'{T{x'),x') + (1 - tf{T{x"),x'') + t{l - t){{T{x'),x") + (T(x'0,xO 

-t{T{x'),x')-{l-t){T{x"lx") 

= -t{l-t){T{x' -x"),x' -x") 

<cO. 

It is well-known that the Fenchel conjugate of a scalar valued function is 
convex in the usual definition. With the above definition of convexity for set-
valued functions, this notion is now aflSrmative for a vector-valued function. 

Lemma 3.50. Let h -. X -^ Y he a C-convex function and let, for any u G 
L(X, Y), the set {{u., x)—h{x) : x G X} satisfy the domination property. Then 
the Fenchel conjugate of h is type IC-convex. 

Proof. By definition, the Fenchel conjugate of the vector-valued function h is 
a set-valued function g : L(X, Y) ^Y such that 

g{u) = Maxc{(z^, x) — h{x) : x G X}. 

We have, Mt G (0,1), u', u" G L(X, F ) , 

g{tu' + (1 - t)u") 

= Msixc{{tu' + (1 - t)u'\ x) - h{x) :XGX} 

C {{tu' + (1 - t)u", x) - f{x) :x^X) 

= {t{{u', x) - h{x)) + (1 - t){{u", x) - h{x)) :xeX} 

C t{{{u\x) - h{x)) : X G X} + (1 - t){{u'',x) - h{x)) : x e X} 

C tMaxc{((^', x) - h{x) :x^ X} -C 

+(1 - t)Maxc{((^'', x) - h{x)) :xeX}-C 

= tg{u')-^{l-t)g{u")-C. 

Then g is type I C-convex. • 

Lemma 3.51. If g : L{X, Y)z:iY is type I C-convex, andT:X^ L{X, Y) 
is affine, then the composite g oT : X ^Y is type I C-convex. 

Proof. Given x', x" € X and t S (0,1), 

g o T{tx' + (1 - t)x") = g{T{tx' + (1 - t)x")) 

= g{tT{x') + {l-t)T{x")) 

Ctg{T{x')) + {l-t)giT{x"))-C 

^tgo T{x') + (1 - t)g o T{x") - C. 
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Theorem 3.52. Let C be a closed and convex cone in Y and let for any 
u G L{X^Y) the set {{u^x) — h{x) : x G X} satisfy the domination property. 
Consider the problem (GVVI). IfT is affine and monotone, and h : X -^ Y 
is C-convex, then the gap function (f)' is type I C-convex. 

Proof. By definition, the gap function </>'(x) can be rewritten as, 

(j>'{x) = g o (-T)(x) + (T(x), x) + h{x), 

where the Fenchel conjugate g oi h is type I C-convex by Lemma 3.50. Since 
T is affine, so is —T. By Lemma 3.51, go[—T) is type I C-convex. By Lemma 
3.49 (T(-), •) is C-convex, and hence (j)' is type I C-convex. • 

Recall that 
^{x) = Maxc(T(x),x - K), x e K, 

^w{x) = MsiXintc{T{x), x-K), X GK, 

respectively. 
It is worth noting that (VVI) is equivalent to the following set-valued 

optimization problem: 

Mmc^{x), subject to x e K, (3.22) 

and (WVVI) is equivalent to the following set-valued optimization problem: 

Mmc^yj{x), subject to x e K. (3.23) 

If r is a vector-valued function from X into X*, then (VVI) and (WVVI) 
become the ordinary variational inequality problem and the gap functions ^ 
and ^w reduce to Auslender's gap function [7]. Thus, set-valued optimization 
problems (3.22) and (3.23) reduce to a scalar optimization problem: 

min(^(x), subject to x e K, 

where ip{x) = max(T(x),x — K). If (p is differentiable, then the above math­
ematical programming problem may be solved by a descent algorithm which 
possesses a global convergence property [95]. Therefore, it is very important 
and valuable to discuss differential properties of gap functions ^ and ^w of 
vector variational inequalities. In sequel, let X and Y be two real Banach 
spaces. Let 0 and & denote the origin points of Y and L(X, y ) , respectively. 
For any A G L{X, Y), we introduce the norm: 

\\A\\L = SUP{\\A{X)\\Y:\\X\\<1}. 

Since y is a Banach space, L(X, Y) is also a Banach space with the norm 11 • | |L-
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3.4 Set-valued VVI 

In this section, we develop existence of a solution for a set-valued VVI using a 
selection of a set-valued function. We also discuss gap functions of a set-valued 
VVI. 

Let X and Y be two Banach spaces, K C X and T : K =t L{X,Y). 
Consider the set-valued WVVI of finding x* e K and i G T(x*) such that 

{i, X - X*) £intc 0, Vx G K. (3.24) 

Lemma 3.53. Let Ti : K -^ L{X,Y) be a selection ofT : K z=X L{X,Y). If 
X* is a solution of the following WVVI: finding x* E K such that 

(ri(x*),x - X*) ^intc 0, Vx G K, 

then X* is a solution of the set-valued WVVL 

Theorem 3.54. Let X and Y be Banach spaces and K be a nonempty com­
pact and convex subset of X. Let C be a proper, closed, and convex cone and 
intC 7̂  0, and Assume further that T : K :=^ L{X, Y) is C-monotone; and 
there is a v-hemicontinuous selection Ti of T on K. Let, for any y E K, 
T\{y) be completely continuous on X. Then there exists a solution to the 
WVVI(3.24). 

Proof By the assumption, there is a i;-hemicontinuous selection Ti : K -^ 
L{X, Y) such that Ti(x) G T(x), Vx G K and Ti is t;-hemicontinuous on K. It 
is clear that Ti is also C-monotone. Then all conditions of Theorem 3.14 are 
satisfied. Thus, there is a solution x* to the problem WVVI(3.26). By Lemma 
3.53, X* is a solution of WVVI(3.25). • 

We consider the set-valued WVVI with a variable ordering relation. Let 
C : K ^ Y he cone-valued and T : K :=:t L{X,Y). Consider the set-valued 
weak vector variational inequality with a variable ordering relation of finding 
X* G ii: and f G r(x*) such that 

(?, X - X*) ^intc{x) 0, Vx G K, (3.25) 

Let / : X -^ y be a vector-valued function. Consider the vector optimiza­
tion problem with variable domination structure C(x): 

{VOKV). Minc(.) /(x) 
xeK 

We set Co = r]xeKC{x), and assume that intCo ^ 0 . 

Proposition 3.55. Let f : K —> Y be Co-convex and continuous at x* G 
K and T{x) = 9</(x) with respect to the cone CQ. If x* is a weakly 
nondominated-like solution of the vector optimization problem (VOKV), then 
(x*,0) solves {GWVVI). 
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Proof Suppose that x* is a weakly nondominated-like solution of (VOKV). 
Then 

fix) - fix"") ^intCix^) 0, Mx G K. 

This implies that 
/ (x ) - / (a ;* )^ ,n tCoO, V x € K 

By the definition of Co-weak subgradient, 0 G T{x*) = 5</(x) . Thus 
(GWVVI) is satisfied with the given x* and i = 0. • 

Proposition 3.56. Let f : K —^ Y be Co-convex and continuous at x* G 
K and T{x) = dl.J{x). If (x*,t) solves (GWVVI), then x* is a weakly 
nondominated-like solution of (VOKV). 

Proof Suppose that {x\t) solves (GWVVI). Let I^(x*) = Y\- intC{x''). 
Then 

(?,x-x*) eWix''), \/xeK, 

It follows from the definition of a Co-strong subgradient that 

fix) - fix') -{i,x- X*) G Co C C(x*), Vx G K, 

Combining these relations, we obtain 

fix) - fix'') G Ty(x*) + C(a;*) C W(x*), \/x G K. 

Thus X* is a weakly nondominated-like solution of (VOKV). • 

Lemma 3.57. Let Ti : K ^ LiX,Y) be a selection ofT :K ^ LiX.Y). If 
X* is a solution of the following (WVVI): finding x* e K such that 

( r i ( x * ) , x - x * ) ^intc(x) 0, Vx G K, (3.26) 

then X* is a solution of (3.25). 

Proof. Assume that x* G iC is a solution of WVVI(3.26). That is, 

( r i (x* ) , X - X*) tintC{x) 0, VX G K. 

Let ? = Ti(x*). Then f G T(x*) and 

(f, X - X*) ^intC(x) 0, Vx G X . 

Therefore, x* G X is a solution of WVVI(3.25). • 

We apply this lemma to derive the existence of a solution for WVVI(3.25). 
Let PF : iiT =^ y be a set-valued mapping. The graph of M̂  on K is defined 

by 
g{W) == {{x,y)\x e K,y eW{x)}. 
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Definition 3.58. T : K :=X L{X,Y) is C{x)-pseudomonotone if, for every 
pair of points x G K,y e K and for all t' G T{x), t" G T{y), we have 

{t\ y-x) £intc{x) 0 implies {t", y - x) ^intc{x) 0. 

Definition 3.59. Ti : K -^ L{X,Y) is C{x)-pseudomonotone if, for every 
pair of points x e K,y G K, we have 

( T i ( x ) , y - x ) ^intc(x) 0 implies {Ti{y),y-x) ^intc{x) 0. 

The following lemma provides a connection between the pseudomonotonic-
ity properties of a set-valued mapping and that of its selection. 

Lemma 3.60. Let T : K ^ L[X^ Y) be a set-valued mapping and Ti 
be a selection of T. If T is C{x)-pseudomonotone, then Ti is also C{x)-
pseudomonotone. 

Theorem 3.61. Let X and Y be Banach spaces and K be a nonempty weakly 
compact and convex subset of X. Let C : K ̂ Y be a set-valued mapping such 
that, for each x G K, C{x) is a proper, closed, and convex cone with apex at the 
origin and intC{x) ^ 0, and W : K ^Y defined by W{x) = Y\ {—intC{x)) 
be such that the graph Q{W) of W is weakly closed in X x Y. Suppose that 
T{x) is a nonempty set of L{X^Y), for each x G K. Assume further that 

(P) T : K :=t L{X^ Y) is C{x)-pseudomonotone; 
(C) there is a continuous selection Ti ofT on K. 

Then there exists a solution to the WVVI(3.25). 

Proof, By the assumption, there is a continuous selection Ti : K ^^ L{X^ Y) 
such that Ti{x) G T{x)^\/x G K, It follows from Lemma 3.60 that Ti is also 
C(a:)-pseudomonotone. Then all conditions of Theorem 3.1 in [124] are sat­
isfied. Thus, there is a solution x* to the problem WVVI(3.26). By Lemma 
3.57, X* is a solution of WVVI(3.25). • 

Next we construct the gap functions for set-valued W i s . 
Let y = IR ,̂ C = IR^ and i^ C X a compact subset. Assume that 

T : K ^ L{X, IR ) is a set-valued mapping with a compact set T{x) for each 
X. 

Consider the (WVVI) with the set-valued mapping T, which consists in 
finding x* G K, and i G T{x*) such that 

{i,y-x*)^intcO, yyGK, (3.27) 

Recall that (j): K cX ^JRis said to be a gap function of WVVI(3.27) if 
(i) (t>{x) < 0, Vx G K; 
(ii) 0 = </>(x*) if and only if x* is a solution of WVVI(3.27). 
Let x^y G K and t G T{x). Denote 
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{t,y) = {{{t,y))u---,{{t,y))e). 

i.e., ((t,y))i is the i-th. component oi {t,y), i = 1,- - - ,i. We define two map­
pings (/)i : K X L{X, IR^) —> R and (f): K ^JR as follows 

01 (x, t) = min max ((t, y - x))i (3.28) 
yeK l<%<e, 

and 
(/>(x) - max{(/)i(:r, t)|t G T(x)}. (3.29) 

Since K is compact, (f)i{x,t) is well-defined. If X is a Hausdorff topolog­
ical vector space, then gi{x,t) is a lower semi-continuous function in x (see 
Corollary 22 in [5]). Since T{x) is a compact set, </)(x) is well-defined. 

For X G K and t G T(x), it is easy to see that 

</>i(x,t) = min max((t, y — x))^ < 0. 
y^K l<i<£ 

Theorem 3.62. (/>(x) defined by (3.29) is a gap function of WVVI(3.27). 

Proof It is clear that </>i(x, t) <0, "ix e K,t e T{x), Thus </>(x) < 0, Vx G X. 
If 0 = 0(x*), then there exists f G T(x*) such that (/>(x*, t) = 0. Consequently, 
we have 

n^in ,«}ax ((?, y - x*))i = 0, 
y£K l<z<t 

if and only if, for any y G K, 

max ((i, y — x*))i > 0 
i<i<r^ // — 

from which it follows that, for any yeK, 

{i,y-x*) ^intcO 

if and only if x* is a solution of WVVI(3.27). • 

By Theorem 3.62, the solution of WVVI(3.27) is equivalent to finding a 
global solution x* to the following optimization problem 

max (j){x), (3.30) 

with </>(a;*) = 0. 
Recall that 

(t){x) = max{0i(x,t)|t G T{x)}. 

It is clear that the optimization problem (3.30) is equivalent to the following 
generalized semi-infinite programming problem 
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max s 
x,s 
s.t. </>i(a;,t) < 5 , VtGT(x), 

0i(x, t i ) = 5, 3ti eT{x), 

xeK. 

Note also that ?of WVVI(3.27) does not depend on the vector y G K. For 
the case where the linear operator i depends on the vector y E K, we have 
another type of vector variational inequalities. 

Consider the generalized WVVI with the set-valued mapping T, which 
consists in finding x* G K, such that Vy G K, 3i{y) G T{x) satisfying 

{i{y),y-x'')^intcO. (3.31) 

Next, let us consider the gap function for the generalized WVVI(3.31). To 
this end, iov x e K, let 

Sx = {t\t: K -^ T(x)}, 

that is, Sx is the set of all operators t from K to T{x). 
Let X G K and t £ Sx- Then t{y) G T{x)^\/y G K. Define two mappings 

(pl and 0* as follows. 

(pKx, t) = niin max ((t(y), y - x))i, (3.32) 

where {{t{y),y))i is the i-th component of {t{y),y), i = 1, • • • ,^, and 

(/>*(x) = max{0t(^.^)l^ ^ Sx} (3.33) 

We have the following result. 

Theorem 3.63. </)*(x) defined by (3.33) is a gap function of WVVI(3.31). 

Proof. It is clear that (f)l{x,t) < O^^x e K,t e Sx and hence 0*(x) < 0, Vx G 
K. 

Assume that x* is a solution of WVVI(3.31). Let y e K. Since x* is a 
solution of WVVI(3.31), it follows that, for each y e K, there is a i{y) G T(x*) 
such that 

{i{y),y-x*) ^intcO 

from which it follows that 

max((?(y),y-a;*))i > 0. 

Thus, an operator tfrom K into T(x*) has been defined. Then i e Sx and 

max^((%), y - x*)), > 0, Vy G K. 
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Hence 
(t>U^\t) - niin max((f(y),y -x*) ) i > 0. 

y£K l<t<£ 

So 01 (x*, Q = 0. Also it is clear that, for any t G Sx*, 

l<z<^ 

from which it follows that (/>i(a;*, t) = 0 and consequently 0 = (/)*(x*). 
If 0 = 0*(a;*), then there exists i e Sx* such that ^^(x*, F) = 0. Thus 

min max ( (%) , y - x*))^ = 0. 

So we have, for any y £ K^ 

max( ( t (2 / ) ,y -x*) ) i>0 . 

Hence, for any y e K, 
{Ky)^y-x*) ^intcO. 

Therefore x* is a solution of WVVI(3.31). • 

3.5 Stability of Generalized Set-valued Quasi-VVI 

The study concerning the sensitivity and stability of variational inequalities is 
important because almost all variational inequalities are solved for a specified 
fixed set of data. Consequently, the computed solution could be consider­
ably inaccurate or could even become infeasible when the data is subject to 
disturbances. In the last decade, the properties of continuity and Lipschitz 
continuity of the locally unique solution to parametric variational inequalities 
were investigated, and a global stability result was established for generalized 
quasivariational inequalities. For the case in which the solution set is not a 
singleton, the upper semicontinuity property of the solution set was obtained 
in Gong [92]. This section aims to establish some stability results for the so­
lution set of a generalized vector quasivariational inequality. Under suitable 
conditions, we obtain that the solution set is closed and upper semicontinu-
ous. 

Let Z be a finite dimensional vector space. Let X and Y he two metric 
spaces. Let C : X ^ Z he a, cone-valued function which induces a vari­
able domination structure in Z. Let K C X, and let S : K ^ X and 
F : K ^ L{X, Z) he two set-valued functions. Further assume that 

intC{x) 7̂  0 , X e K. 

The generalized vector quasivariational inequality problem is of finding 
X* e S{x*) and z* e F(x*) such that 
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(GVQVI) {z\y- X*) tintc{x*) 0, Vy G 5(x*). 

For a given generalized vector quasivariational inequality problem, we de­
fine the perturbed (GVQVI) problem as follows. 

Let K and W be two nonempty, closed and convex subsets in X and F , re­
spectively. Let 5 : K X VF =4 K and F : i r X VF =4 L(X, Z) be two set-valued 
functions. Let C : K x W :=t Z he a. family of domination structures such 
that intC{x, w) ^ 0 , for every x € K and w eW, The perturbed (GVQVI) 
problem is : Find x* G S{x'',w) and z* G F{x*,w) such that 

{GVQVI)n^ {z\y-x*) ^intcix*,w) 0, for any y G S{x\w). 

In order to prove the stability result for the (GVQVI) problem, we assume 
that the following hypothesis is satisfied. 

Assumption 3.64. (i) 5(x, w) ^ 0 , for x G K and w G W; 
(ii) F{x, w) ^ 0, for x e K and w eW. 

For brevity, let us introduce the following notations: 

(i) G(x, w) = {(x, z) : z e F(x, w)}, fovxeK and w eW; 
(ii) A{w) = \JxeKG{x,w), for every w eW; 

(iii) A = UwewA{w)] 
(iv) for each w GW, 

I{w) = {{x, z) G A{w) : {z,y- x) ^intc{x,w) 0 for any y G 5(x, w)}. 

Note that I{w) is the solution set of the (GVQVI)iy problem. 

Lemma 3.65. [5] Let X and Y he two metric spaces and Q : X ^ Y he a 
compact-valued function. Then Q is u.s.c. at x* if and only if, for any e > 0, 
there exists an rj > 0 such that 

Q{x) C B{Q{x*)j e), for each x G -B(x, ry), 

where B{x*,r}) denotes the hall with the center at x* and the radius rj and 
where 

B{Q{x\€)) = UyeQ(x*)B{y,e). 

Lemma 3.66. Let H : X ^ He he a set-valued function. Suppose that H 
is l.s.c. at X* G X, that H{x) is a convex set, and that intH{x) ^ 0 for 
every x G N^{x*), where Ne{x*) C X is a neighborhood of x*. Let {xk} C X 
and {yk} C M^ he two sequences converging to x* and 7/*, respectively. If 
y* G intH{x*), then yk G intH{xk) except for a finite number of k's. 

Proof. Note that t/* G intH(x*). Thus, there exists an e > 0 such that 

2 /*+5eCiy(x*) , 
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where Be denotes the closed ball in IR^ with center at 0 and radius e. Since 
Vk —̂  y* 5 there exists a number K > 0 such that 

| | y i t -2 /* | |<e /2 , yk>K. 

Proceeding by contradiction, we assume that there exists an ATQ > 0, such 
that yk ^ intH{xk) for k > KQ. Since H{x) is a convex set and intH{x) ^ 0 
for all X £ Xe(x*), we may assume without loss of generality that H{xk) is a 
convex set and intH{xk) ^ 0 for fc > KQ. Then, by the separation theorem 
for convex sets, there exists a vector ak G IR with ||afc|| = 1 such that 

H{xk) C{yelR^: (a^,y) < (a^,yk)}, for k > KQ. 

Let Ki = max{i^, KQ} and 

yk = y* -^ {e/2 + (a/c, yk - 2/*))a/c, for k>Ki. 

Note that 

Wvk-y^W = k / 2 + {ak.yk -y*)\ • ||Q;/e|| 

< e/2+||aA:|| • \\yk-y*\\ 

< e. 

Thus, we have 

Since 

yk ey"" + Be, f o r n > i V i . 

(a/c, yk) = (a/c, y*) + (e/2) + (a^, 2/fc - 2/*) = 6/2 + (a/c, yk), 

and for each 2/ G H{xk) 

\\yk-y\\ > \{ak,yk-y)\ 

= \{{c^k,yk) - {o^k.yk)) -^ {{oLk,yk) - {ak,y))\ 
> € / 3 , 

it follows that 
yk i H{xk) + ^e/3, for k>Ki, 

Since y* + Be is a compact set, we can assume without loss of generality that 
yk -^ y- Obviously, 

Since H is l.s.c. at x*, there exist a number K2 > 0 and a sequence {y/c} such 
that 

yk e H{xk), for all k> K2, and y/̂  -> y. 
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Then, 
Vk-yk-^O, ask -^ oo. 

However, this contradicts the fact that 

Vk ^ H{xk) + ^e/3, for k>Ki. 

Thus, the number for which yk ^ intH{xk) is finite. This completes the 
proof. • 

Theorem 3.67. Let K he a closed set. For any given w G W, suppose that 
the following conditions are satisfied: 

(i) S{',w) is l.s.c. on K; 
(ii) C{',w) is l.s.c. on K and C(x^w) is a convex set for every x G K; 

(iii) F{'^w) is u.s.c. on K and F{x^w) is a closed set for every x £ K. 

Then, the solution set I{w) of the perturhed (GVQVI) prohlem is closed. 

Proof. Without loss of generality, suppose that w = ^. Take any sequence 
{{xk^Zk)} C /(O) satisfying {xk^Zk) —> (x*,2:*). By the closedness of K., it 
follows that X* G K. Then, by condition (iii), we have z* G F(x*, 0). Suppose 
that (x*,2:*) ^ /(O). Then, there exists x G 5(x*,0) such that 

By the lower semicontinuity of 5(-,0), there exists an Xk G S{xkr) except 
for a finite number of n's such that Xk ^^ x. Then, from the continuity of 
f{x, y, z) = {z,y — z), we obtain 

{Zk,Xk -Xk) -> {Z*,X-X*). 

Thus, it follows from Lemma 3.66 that 

{Zk.Xk - Xk) ^intCixk) Oj 

except for a finite number of n's, which contradicts that {{xk^yk)} C /(O) 
satisfying {xk, Zk) -^ (x*, z*). This completes the proof. • 

Remark 3.68. Let 

Z = IR, X = B ^ , ly - IR^ L(X, Z) = H^, C(x, w) = IR+, 

foi X e K and w eW. Then the problem (GVQVI)^^; reduces to the classical 
perturbed generalized quasivariational inequality (in short, (GQVI)), which 
was considered in Tobin [195]. For the corresponding perturbed (GQVI), the 
following examples 3.69, 3.70, 3.71 show the necessity of conditions of Theorem 
3.67. 
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Example 3.69. Let K= [1,2],W =JR,C{x,w) = JR.^, S{x,w) = [1,2], 

/[1,1.5), x = l, 

^ ^ \[1,1.2), x^l, 

for each x £ K and w G W. 
Note that, for each w E W and each x G iC, F{x,w) is not a closed set. 

Clearly, for any given w EW, the solution set I{w) = {(1,^) : z £ [1,1.5)} of 
the perturbed (GQVI) problem is not closed. 

Example 3.70. Let K = ( -1,1) , T^ = IR and 

F{x, w) = 0, C{x, w) = IR+, 5(x, w) = ( -1,1) , x e K,w e W. 

Note that the set K is not closed as required in Theorem 3.67. Clearly, for 
any given w eW, the solution set 

7 H = { ( x , 0 ) : x G ( - l , l ) } 

of the perturbed (GQVI) problem is not closed. 

Example 3.71. Let K= [1,2],W = JR,C{x,z) = ]R+,S{x,w) = [1,2], 

[[1,3], x^l, 

for X G K and w eW. 
Note that, for any w e W, F{',w) is not u.s.c. at x = 1. Clearly, for any 

given w GW, the solution set 

j,.U{l,z):z&[l,2],x=l} 

\{ix,z):z€[l,z],x^l}, 

of the perturbed (GQVI) problem is not closed. 

Theorem 3.72. Let A be a compact set, and let K and W he closed sets. 
Suppose that the Assumption 3.64 holds and that the following conditions are 
satisfied: 

(i) 5(-, •) is l.s.c. on K X W; 
(ii) C(-, •) is l.s.c. on K X W and C{x,w) is a convex set for each {x,w) G 

KxW] 
(iii) F(-, •) is u.s.c. on K x W and F{x^w) is a closed set for each (x^w) G 

KxW. 

Then, the solution set I{w) of the perturbed (GVQVI)w problem is u.s.c. on 
W. 
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Proof. Without loss of generality, we assume that w = ^. Let us establish the 
result by contradiction. Suppose that I(w) is not u.s.c. at 0 G W. By the 
compactness of A and Theorem 3.67, I{w) is a compact-valued function on 
W. Then, by Lemma 3.65, there exists an e > 0 such that, for any 1/k > 0, 
A: = 1,2,3, • • • , we can find 

{wk} C B{0,l/k), and {xk,Zk) G I{wk), 

satisfying 
{{xk,Zk)}<^B{m,e). (3.34) 

By the compactness of A, we can assume that {xk, Zk) -^ (x*, z'*'). Then, from 
(3.34), we have 

(x*,z*) ^/(O). (3.35) 

Since F(-, •) is u.s.c. on KxW and F(x, w) is a closed set for each (x, w) G 
if X T^, we obtain z* G F(x*, 0). Then (x*, z*) G ̂ (0). Now, by (3.35), there 
exists a y* G C(x*, 0) such that 

{z*,y* -z"") G-mtC(x*,0) . 

Then, for y* G ̂ (x*, 0), it follows from the lower semicontinuity of S{-, •) that 
there exits a sequence {yk} with yk G S{xk,Wk) such that yk -^ y*, using the 
continuity of / (x , 2/, 2:) = {z,y — x)^ we obtain 

{zk,yk-xk) -^ {z*,y* -X*) . 

By Lemma 3.66, except for a finite number of n'5, we have 

{zk, yk - Xk) G -intS{xk,Wk). 

This contradicts the fact that (xk^Zk) G I{wk), and Hence the proof is 
complete. • 

3.6 Existence of Solutions for Generalized Pre-VVI 

In this section, we study the existence of solutions for two more general classes 
of vector variational inequalities. 

Let X and Z be real locally convex Hausdorff topological vector spaces, 
and (F, C) be an ordered locally convex Hausdorff topological vector space, 
ordered by a closed and convex cone C with nonempty interior intC. Let 
K C X and E C Z he nonempty subsets. Let r] : K x K —^ K he a, vector-
valued function. Assume that V : K ^ E and K : K ^ K are two set-valued 
functions. Assume that H : K x E -^ L{X^ Y) is a vector-valued function. 

Consider the following generalized vector pre-variational inequality prob­
lem (in short, GPVVI) of finding x e K,z e F(x), s.t. 
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{H{x, z), r]{y, x)) ^intc 0, ^y e K, 

and the generalized vector pre-quasi-variational inequality problem (in short, 
GPQVVI) of finding x e K{x), z G V{x), s.t. 

{H{x, z), r}{y, x)) ^intc 0, "iy e K{x). 

These vector variational inequality problems arise from the optimality con­
ditions for a vector optimization problem where the feasible set is so-called 
ry-connected, see Yang [209]. When rj(x, y) = x—y and iJ(x, z) = T{x),\/z G E", 
(GPVVI) reduces to (WVVI). In the sequel, we will use the nonlinear scalar 
function ^e, e G intC (see Chapter 1): 

^e{y) = mm{t GlR:y ete-C}, y eY, 

The function ^e is continuous and strictly monotone. For a set Q C F , let 

UQ)-^yeQUy)-

It is well known that F : X —^ Y is a, C-quasi-convex vector-valued function 
if and only if ^e o F is a quasi-convex function on X, see Proposition 1.68. 

Theorem 3.73. Let K be a nonempty, compact and convex subset of X and 
E be a nonempty convex subset of Z. Let r] : K x K -^ K be a continuous 
set-valued function satisfying rj{x, x) = 0, \/x G K, and let V : X ^ Z be 
a set-valued function which is upper semicontinuous, nonempty, closed and 
convex valued. Let V~^{z) = {x e X : z e V{x)} be open for each z G Z. 
Let H : K X E -^ L(X, Y) be a continuous vector-valued function. If there 
exists e G intE such that the function ^e{{II{x,z),ri{y,x))) is quasi-convex 
with respect to x, then there exists x e K, z £ V{x) such that 

{H{x, z), ri{y, x))) ^intc 0, Vy G K. 

Proof By the given conditions and the generalized Browder's selection theo­
rem (Theorem 1.25), there exists a continuous vector-valued function f : K ^ 
Z such that f{x) G V{x), \/x G K. 

Let 
0(x,z,y) = {H{x,z),rj{y,x)), xe K,zeE,y£K. 

Then 0 is a continuous vector-valued function from K x E x K into Y. For 
simplicity, for any fixed e, we denote ^e by ^. 

Now, for A; = 1, 2, • • • , we define a set-valued function Fk : K ^ K hy 

Fk{x) = {yeK:{^o <t>){x, fix), y) - min(^ o 0)(x, f{x), u) <\}, 

where x E K. Since i^ is a compact subset and ^ is continuous, for any x E K, 
(^o(/>)(x, / (x) , y) is a continuous function in y. It follows that (^o(/))(x, f{x), K) 
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is a compact set in IR, and hence Fk{x) is nonempty for all k. 
Under the conditions of Theorem 3.73, we show that the following Lemmas 

hold which are parts of the proof for Theorem 3.73. 

Lemma 3.74. For every k, x, Fk{x) is a convex set. 

Proof. Let 2/1,2/2 ^ Fk(x) and A € (0,1). Then 2/1,2/2 € K and there exist 
Qfi > 0, i = 1, 2 such that 

(^ o (t>){x, f{x), yi) = min(^ o </>)(x, / (x) , u) + - - ai, z = 1, 2. 
ueK K 

Let ao = minjai , 0̂ 2} and to = uiiiiueKiC o (j)){x, f{x), u) -{- ^ — ao. Then 

(^ o (j)){x, / (x) , 2/i) < to, 2 = 1, 2. 

Hence, 

yi G Lev(^o0)(^j(^), . )(to) = {^ G iC : (^ o (/))(x,/(x),i/) < to}. 

By the assumption that (^ o 0)(x, / (x) , •) is quasi-convex, the set Lev(̂ o</))(a:, 
/ (x) , •)(to) is a convex set. Then A2/1 + (1 - X)y2 € Lev(^o<^)(a;,/(x),.)(^o), that 
is 

(^o(/>)(a;,/(a:),A2/i + ( l -A)2 /2 )< to . 

Therefore we have that 

(? o (/))(x, / (x) , A2/1 + (1 - A)2/2) - min(<^ o (/>)(x, / (x) , w) < -r-

Then Aj/i + (1 - A)2/2 € Fk{x). • 

Let for each y € K 

Fk\y) = {xeK:y^ F,(x)} 

= {x G ii: : (^ o (j)){x, / (x) , y) - min(^ o (/>)(x, / (x) , ^) < - } . 

Lemma 3.75. For each y £ K, the set Fj^ ^{y) is open. 

k Proof. Suppose that the conclusion is not true. Then there exist XQ G F ^ ̂ {y) 
and a net {x^} such that x^ ^ xo, XQ, ^ Fj^ ^{y) for every a, namely, y ^ 
Fk{xa)' Therefore 

(<? o </>)(xa, / (xa) , y) - min(^ o (/>)(xc„ / (x^) , '?̂ ) > T-
t/G/C AC 

Since the function (x, y) -^ (^o(/>)(x, / (x) , y) is continuous and K is compact, 
by a well known result in mathematical programming, the function M : x —̂  
miiiueKii, o 0)(^5 /(^)5 '̂ ) is continuous in x. Therefore we have 
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(^ o (f)){xo, f{xo), y) - min(^ o 0)(xo, / (XQ) , U)>-, 
ueK K 

which contracts y G Fk{xo). Hence Fj^^{y) is open. • 

Hence we have shown that all assumptions in Theorem 1.26 are satisfied. 
Then there exists Xk G K such that 

Xk eFk(xk), A:= 1,2, ••• . 

Since K is compact and V is u.s.c, we can assume that Xk ^^ x £ K 
and f{xk) -^ f{x) G V{x). Then by the definition of Fk we have for each 
A : - l , 2 , . . . , 

(^ o (l)){xk, f{xk), Xk) < min(^ o (/>)(xfc, f{xk), u) + - , 
ueK k 

and as A; ^ +oo 

{i o (/))(a:, / (x) , x) < min(^ o (/>)(x, / (x) , 'u). 

Since r}{x, x) = 0 and ^(0) = 0, 

mm{£,o(l)){xJ{x),u) = 0. 

That is 
{^oct>){xj{x),u)>0, yueK 

By the strict monotonicity of ^, we have 

(/>(x, / (x) , ix) ^ —intC, Mu e K. 

Let z = f{x) e V{x). Then 

(iJ(x, ^), 77(2/, x)) ^ -intC, \/u e K. 

• 

As a direct result, we have: 

Corollary 3.76. Let K be a nonempty, compact and convex subset of X. 
Let T : K -^ L{X, Y) be a continuous vector-valued function. If there exists 
e e intC such that the function ^e{{T{x), y — x)) is quasi-convex with respect 
to y, then there exists x £ K such that 

{T{x),y-x) ^intcO, \fyeK. 
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Proof Assume that Z is a Hausdorff topological vector space. Define V{x) = 
Z,x e X and rj{y,x) = y — x. Then V~^{u) = X is open for any u e Z. Let 
H{x, z) = T{x), lixeK^zGZ. The result follows from Theorem 3.73. • 

Now we consider the following generalized vector pre-quasi-variational in­
equality problem of finding x e. K{x) and z G V{x) such that 

{GPQVVI) {H{x, z), rj{y, x)) ^^c 0, V̂ / G K{x), 

We have the following result. 

Theorem 3.77. Let K and E he two nonempty compact and convex suhsets 
of X and Z, respectively. Let V : X :=t Z he an upper semicontinuous, closed, 
convex and vector-valued function. Let r]: KxK —^ K he a continuous vector-
valued function such that //(x, x) = 0̂  Vx G K. Let H : K x E ^^ L{X, Y) 
he a continuous vector-valued function. Let K : K ^ K he a continuous set-
valued function with a compact-valued K{x). If there exist e G intC such that 
the function ^e{{II{x, z), rj{y, x))) : K —> M is quasi-convex with respect to y, 
then there exist x £ K{x), z ^V{x) such that 

{H{x, z), rj{y, x)) ^intc 0, \/y G K{x). 

Proof. For simplicity, for any fixed e, we denote still ^e by ^. As in the proof 
of Theorem 3.73, let 

</>(x, z, y) = -{H{x, z), r]{y, x)), x e K,zeE,y eK. 

Then 0 is a continuous vector-valued function. Define 

M{x, z) = Minintc{(t>{x, z,y):y e K{x)}, xe K.zeK. 

Then M : K x E ^Y is a, set-valued function. • 

Under the conditions of Theorem 3.77, we show that the following lemmas 
hold which are parts of the proof for Theorem 3.77. 

Lemma 3.78. M is a closed set-valued function. 

Proof We show that Gr(M) is closed. Let a net (xa^Za^ya) ^ Gr(M) 
converge to (xo^zo^yo). Note that (xa^Za^ya) ^ Gr(M) is equivalent to 
ya G M{xa,Za) = Min^ntc{</>(^a, ^a, 2/) • 2/ ^ ^ ( ^ a ) } - Then there exists 
Ua G K{xa) such that ya = 4^{xa^ Zot,Ua)' By the compactness of K, we can 
assume, without loss of generality, that Ua ^^ UQ E K. Then, by the continuity 
of (/>, 

yo = (p{xo,zo,uo). 

Suppose that yo ^ M{xo,zo). Then, there exist u^ G K{xo) and p E C such 
that yo = (f>{xo^zo,u') + p. Since K is l.s.c, there exist u'^ G A'(xa),Va such 
that li' —> u\ Then 
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^ ( X c , Zoc, U'^) -ya = -P+ (2/0 - Vex) + 0 ( ^ a , Zoc, O - </>(xo, ZQ, U'), 

and for a large enough, 

which is a contradiction to the assumption ya G M{XOL^ZO,). Thus M is a 
closed function. • 

Now we define a set-valued function V : K x E -=X K hy 

V{x,z) := {u G K{x) : ^o (l){x,z,u) = min ^o (j){x,z,v)}. 
vGK{x) 

It is clear that V{x,z) is nonempty for any {x,z) e K x E. 

Lemma 3.79. For each {x,z), V{x^z) is a closed function. 

Proof. Let {{xa^Za^Uot)} be a net in Gr(V) such that 

\X(x 5 Z(x , Ua) -^ {xo,Zo,Uo). 

Then u^ G -K'(XQ:) and 

?XQ,) = min ^ o (/>(xa, 2:̂ , v). 
veK(xoc) 

By the continuity of K, UQ G ^ ( X Q ) . By the strict monotonicity of ^, it is easy 
to verify that 

(l){Xa,Za,Ua) G M.mintc{H^a,Za,v) : V G ^ ( x ^ ) } . 

Since M(x, z) is a closed function, 

(l){xo,zo,uo) G Minintc{0(^o,^o,'y) : ^ G K(xo)}. 

Now we show that 

^o(l){xo,zo,uo) = min ^ o </)(xo, zo,'̂ )̂-

Since ^ o (j){x,z,K{x)) is l.s.c, there exists t/c G IR such that tk = ^ o 
(j){xkyZk,Vk) and 

tfc-^ min ^o(f){xo,zo,v). 
veK{xo) 

Suppose that 
^o(/)(xo, 2:0,1̂ 0) 7̂  min ^ o ^{xo,zo,v). 

veK(xo) 

Then 
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£,o(f){xo,zo,uo) > min ^o (f){xo,zo,v), 
veK(xo) 

Therefore, for k large enough, we have that 

^0(j){xk,Zk,Vk) > tk, 

which is a contradiction. Hence, Lemma 3.79 holds. • 

Lemma 3.80. For each (x, z), V(x, z) is a convex set. 

Proof. Let txi, ̂ 2 G V(x, z) and A G (0,1). Let 

ro = min ^ o (f)(x,z,v). 
v£K{x) 

Then 
^ o (j){x, z, ui)=^o (f){x, z, U2) = ro. 

Since K{x) is a convex set, Xui + (1 — X)u2 G K{x), by the assumption, the 
function ix —> <̂  o (f){x, z, u) is quasi-convex. Then the set 

A = {u e K '. ^o (j)(x, z, u) < ro} 

is convex and since t^i, 1̂2 G A, \ui + (1 — \)u2 G A. Then 

i o (/)(x, 2;, A-ui + (1 - X)u2) < ro. 

Noting that K{x) is convex, we have 

^ o (t){x, z, Xui + (1 - X)u2) = ro. 

Then Xui + (1 - A)'U2 G V(x, z). • 

Now we complete the proof of Theorem 3.77. Since V is u.s.c, V{K) is a 
compact set. Let W : K x E ^ K x E : 

W{x,z) = V(x,z) X V{x), ( x , z ) e K xE. 

Then W is upper semicontinuous and for each x G K^ z G £", W{x.,z) is a 
nonempty, closed and convex subset. By Fan-Glicksberg-Kakustani theorem, 
there exists (x, z) G W{x^ z). Hence 

X G K(x), ^ o (/>(x, ̂ , x) = min ^ o </>(x, z, t;), 

and z G F(x). By the strict monotonicity of ^, we have 

(j){x, z, x) G Minintc{</>(^, z, 1;) : -y G K{x)). 

Hence, for any y e K{x), 
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0(x, z, y) - <t){x, z, x) t.intc 0. 

Since ?7(x, x) = 0, 0(x, z, x) = 0, we have 

</)(x, z, 2;) ^intc 0, \fy G K{x), 

i.e., 
{H{x, z), r}{y, x)) ^intc 0, Vy € ii:(x). 

3.7 Existence of Solutions for Equil ibrium Problems 

The equilibrium problem is a generalization of variational inequalities. It con­
tains many important mathematical models as special cases, for instance, 
optimization problems, problems of Nash equilibrium, variational inequali­
ties, complementarity problems and fixed point problem, etc (See Blum and 
Oettli [18]). It is known that a vector equilibrium problem includes vector 
optimization, vector variational inequality, vector complementarity problems 
as special cases. In this section, we consider two kinds of vector equilibrium 
problems with a variable domination structure, and establish the existence of 
solutions for these problems. 

Let y be a Hausdorff topological vector space, and let X and Z be 
nonemtpy subsets of two Hausdorff topological vector spaces, respectively. 
Let K : X lit X, T : X =4 Z and C : X 14 y be set-valued functions with 
nonempty values. Let / : X x Z x X = : t y b e a set-valued function. 

Consider the following vector equilibrium problem of finding {x^z) e XxZ 
such that X G K{x), z G T(x) and 

(VEQi) / (X, Z, U) ^intCix) 0, W G K{x). 

First we present a lemma. 

Lemma 3.81. [5] Assume that Xi and Yi are Hausdorff topological spaces 
and Z\ is a compact topological space. Let f : Xi x Zi —> Yi be a vector-
valued function. Define a set-valued function F : Xi ^ Yi by 

F{x) = {f{x,z):zeZi}, xeXi. 

If f is continuous on Xi x Zi, then F is u. s. c. 

We have the following existence result for the problem (VEQi). 

Theorem 3.82. Let X and Z be nonempty compact convex sets of two locally 
convex Hausdorff topological vector spaces, respectively. Suppose that 
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(i) K : X -lit X is a set-valued function with nonempty closed convex values 
and open lower sections; 

(ii) T : X ^ Z is upper semicontinuous with nonempty closed acyclic values; 
(iii) C : X ^ Y is a set-valued function, which satisfies the following condi­

tions: 
(a) for any u G X, the set {(x, z) e X x Z : / (x , z, u) <intc{x) 0} ^̂  open 

in X X X; 
(b) for any z G Z, the set-valued function f{'^z^ •) is weakly type II C-

diagonally quasi-convex in the third argument. 

Then there exists (x^z) G X x Z such that x G K{x), z G T{x), 

/ ( X , Z, U) ^intC(x) 0, yu e K{x). 

Proof Let us define a set-valued function P : X x Z ̂  X hy 

P(x, z) = {ueX : fix, z, u) <intc(x) 0}, V(x, Z)GX xZ. 

The theorem will be proven if we can show that there exists (x^z) e X x Z 
satisfying x G K{x), z G T{x) and K{x) fl P(x, z) = 0 . To this end, we first 
show that for each (x, 2:) G X x Z, 

x^coP{x,z). (3.36) 

If not, there would exist (x*,2;*) e X x Z such that x* G P(x*,z*). 
That is, there exists a finite subset {xi,X2,--- ,x/e} C P(x*,2:*) such that 
X* G co{xi,X2,*-- ,Xfc}. Therefore, we have f{x*,z*,Xi) C —intC{x*) for 
i = 1, 2, • • • , n, contradicting (b). Hence (3.36) holds. 

Now we define another set-valued function G : X x Z ::=t X hy 

G(x, z) = K{x) n coP{x, z), V(x, z)eXx Z. 

For each u e X, the set {{x,z) e X x Z : / (x , 2;, tx) C —intC{x)} is open by 
hypothesis (a), or equivalently the set P~^{u) is open for each u G X, and so 
P has an open lower section. Since K has an open lower section by hypothesis 
(i), the set-valued function G has also an open lower section by Proposition 
1.23. 

Next let U = {{x,z) e X x Z : G{x,z) ^ 0 } . We have two cases to 
consider. 

Case 1: U = 0, 
We note that in this case K{x) fl coP{x, z) = 0 for each (x, z) e X x Z. 
In particular, for each {x,z) e X x Z we have 

K{x)nP{x,z) = 0. 

By hypothesis (i) and the fact that X is a compact convex set, use Brow-
der's fixed point theorem , see Theorem 1.26, to assert the existence of 
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a fixed point x G K{x). Also from (ii) we have T{x) ^ 0 . So, picking 
z e T(x), we have 

K{x)r\P{x,z) = 0. 

Therefore, in this particular case the assertion of the theorem holds. 
Case: 2: ( 7 ^ 0 . 

The fact that G : X x Z ^ X has open lower sections in X x Z and 
U = \JvexG~^{v) implies that U is open. We now define a set-valued 
function H : X x Z :=:t X by 

rr(^ N̂ / ^ ( ^ ' ^ ) ' iHx,z)GU 
^ ' ^ \K{X), ii{x,z)eXxY\U. 

Then, for each t; G X, we have 

H-\v) = G-\v) U {K-^{v) X Z), 

which is open, and whence H has an open lower section. It follows from 
the generalized Browder's selection theorem (see Theorem 1.25) that there 
exists a continuous selection h : X x Z —^ X for H. Now consider the set-
valued function MiXxZ^XxZ given by 

M{x,z) = {h{x,z),T{x)), 

which clearly has nonempty closed acyclic values. If we show that M 
is upper semicontinuous, then, by Theorem 1.29, M has a fixed point 
{x,z) G M{x^z). Moreover, (x, f) ^ U. Suppose to the contrary that 
(x, z) G U. Then 

X = /i(x, z) G G(x, z) = K(x) n coP{x^ z), 

so that X G coP{x, z). But this is a contraction to (3.36). Hence (x, z) ^ U. 
Therefore, 

(x, z) G K{x) X T{x) and G(x, ^) = 0 . 

Thus X G K{x), z G T(x) and K(x) D coP{x,z) = 0 . In particular, 
K{x) n P{x,z) = 0 . So the assertion of the theorem also holds in this 
case. 
It remains to prove that M : X x Z :zt X x Z is upper continuous. We 
observe that XxZ is compact, h : XxZ —^ X is continuous, and T : X :=t 
Z is upper semi-continuous. By Lemma 3.81, M is upper semicontinuous. 
This completes the proof. 

Corollary 3.83. Let X and Z be nonempty compact convex subsets in two 
locally convex Hausdorff topological vector spaces, respectively. Let Y be a 
Hausdorff topological vector space and C cY be a given subset withintC ^ 0 . 
Assume: 
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{i) K : X ^ X is a set-valued function having nonempty closed convex values 
and open lower sections; 

(ii) T : X ^ Z is an upper semicontinuous set-valued function with nonempty 
closed acyclic values; and 

(iii) f ' . X x Z x X ^ Y i s a set-valued function satisfying the following 
conditions: 
{a) for each u £ X, / (x , z, u) is lower semicontinuous in (x, z); 
(6) for each z E Z, /(•, z^ •) is weakly type IIC-diagonally quasi-convex in 

the third argument. 

Then, there exists {x,z) G X x Z such that x G K{x), z G T{x), and 

/ ( X , Z, U) ^intC 0, \lu e K{x). 

Proof. We shall invoke Corollary 3.83 to prove this corollary Let us set C{x) — 
C for all x £ X. The lower semicontinuity of / (x , z, u) in (x, z) implies that 
the set 

{(x, z)eX X Z : f{x, z, u) <intc 0} 

is open in X x Z for any u e X. Thus all conditions of Theorem 3.82 are 
satisfied and the corollary follows immediately. • 

Corollary 3.84. LetX be a nonempty, compact and convex subset of a locally 
convex Hausdorff topological vector space. Assume: 

{i) C : X ^Y is a set-valued function with intC{x) ^ 0 for all x G X; 
(ii) F : XxX ^Y is a set-valued function satisfying the following conditions: 

(a) for each y E X, the set {x E X : F{x, y) <intc{x) 0} ^̂  open in X; 
(b) F{x,y) is weakly type II C-diagonally quasi-convex in y. 

Then there exists x £ X such that 

F{x, y) tintc{x) 0, yy G X. 

Proof. This corollary will be proven by invoking Theorem 3.82. To this end, 
let Z — {z} be a singleton. Let K{x) = X, T{x) = {z} for every x E X^ and 
let / (x , z, y) — F(x, y) for all {x,z,y) e X x Z x X. Then all the conditions 
of Theorem 3.82 are satisfied and the corollary follows immediately. • 

Theorem 3.85. Assume all the hypotheses of Theorem 3.82 are satisfied ex­
cept for the compactness of the sets X and Z. Suppose further that A C X and 
D C Z are two nonempty compact convex subsets and B C A is a nonempty 
subset such that 

{ay K{B) c A; 
{by for each x e A, the set {K{x) n ^ ) x {T{x) n B) is nonempty; 
(c)' for each x G A\B, there exists u G K{x) D A such that 

f{x,Z,u) <intC{x) 0,V2; G T{x). 
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Then there exists {x,z) € B x D such that x e K{x), z G T{x) and 

/ (X, Z, U) ^intC{x) 0, Vli G K{x). 

Proof. Define G:Az=x A hy 

G{x) = K{x) n A, xe A. 

For each x e A, G{x) is nonempty and convex by (6)' and G has open lower 
sections. Define a set-valued function M : A^ D hy 

M{x) = T{x) n D, xeA. 

It is easy to see that the set-valued function M is also upper semi-continuous 
with closed acyclic values. Note that, by {a)' we have 

I i^(x) n ^ , otherwise. 

It follows from Theorem 3.82 that there exists (x, z) G G{x)xM{x) such that 

/ (x , z, u) ^intcix) 0, Vtx G G{x). (3.37) 

We claim that x € B.lf not, x G ̂ \-B, then, by (c)', there would exist a point 
y G K{x) nA = G{x) such that 

f{x, Z, y) <intC{x) 0, ^Z G T(x ) . 

Thus, 
f{x,z,y) <intcO, 

contradicting (3.37). So x G ^ such that G{x) = K{x). Since z G M(x) = 
r (x ) nD C T(x), we conclude that x G ii^(x), z G T(x) and 

/ (X, Z, tx) ^intC(x) 0, Vli G i^(x) . 

The theorem is proved. • 

Theorem 3.86. Assume that all the hypotheses of Theorem 3.82 are satisfied, 
except that the condition (iv) is replaced by 

{ivY f:XxZxX^Y satisfies: 
(a) Vii G X, the set {(x, z) G X x Z : / (x , z, u) fl —intC{x) ^ 0 } is open 

in X X Z; 
(b) Vz G Z, /(• , z, •) 25 weakly type I C-diagonally quasi-convex in the third 

argument. 
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Then there exists {x,z) G X x Z such that x e K{x),z ET{X) and 

/ (x , z, u) tintc{x) 0, Vtx G K{x). 

Proof. We proceed as in the proof of Theorem 3.82. But we need to modify 
the set-valued function P : X x Z =4 Z to be 

P{x, z) = {ueX \ / (x , z, u) n -intC{x) i- 0 } , V(x, z) G X x Z. 

Then it is easy to show that x ^ co{P{x., 2;)) is valid for all (x, z) G X x Z 
due to the fact that /(• , z, •) is weakly type I C-diagonally quasi-convex in the 
third argument. The rest of the proof is similar to that of Theorem 3.82. • 

Theorem 3.87. Assume that all the hypotheses of Theorem 3.82 are satisfied, 
except that the condition (iv) is replaced by 

{ivy f :X X Z X X :^Y satisfies: 
{a)\/u G X, the set {{x,z) e X x Z : f{x,z,u) 0 C{x) — 0 } is open in 

XxZ; 
{h)\lz G Z,f{-,z,') is strongly type II C-diagonally quasi-convex in the 

third argument. 

Then there exists {x,z) G X x Z such that x G K{x), z G T{x) and 

f{x, z, u) n C{x) ^ 0 , Mue K{x). 

Theorem 3.88. Assume that all the hypotheses of Theorem 3.82 are satisfied, 
except that the condition (iv) is replaced by 

{ivy f:XxZxXz=tY satisfies: 
{a)Wu G X, the set {{x,z) E X x Z : f{x,z,u) C C{x) ^ 0 } is open in 

XxZ; 
{b)\lz G Z,f{-,z,-) is strongly type I C-diagonally quasi-convex in the 

third argument. 

Then there exists {x^z) E X x Z such that x G K{x), z G T{x) and 

f{x, z, u) C C{x), Mu G K{x). 

The proof of Theorem 3.87, as well as Theorem 3.88, is similar to that of 
Theorem 3.82 and is therefore omitted. 

3.8 Vector Complementarity Problems (VCP) 

The concept of vector complementarity problems was introduced in Chen 
and Yang [40]. Relations among vector complementarity problems, vector 
variational inequalities, vector optimization problems and minimal element 
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problems were obtained. The existence of solutions for (positive) vector com­
plementarity problems was also derived in [40, 208]. Further results on the 
existence of solutions for other type of vector complementarity problems can 
be found in Fu [74], Yu and Yao [222]. 

Let {X, D) and (Y, C) be two ordered Banach spaces. We assume that the 
interior intC of the ordering cone C is nonempty and C is closed and convex. 

The weak C-dual cone D^'^ of D is defined by 

D^^ = {ge L(X, Y) : {g, x) ^i^tc 0, Vx G D}, 

The strong C-dual cone D^Q' of D is defined by 

D'^ = {ge L(X, Y) : {g, x) >c 0, Vx € D}. 

It is obvious that D'*^^ and D^(j' are nonempty, since the null linear function 
in L{X, Y) belongs to L)^+ and D^^. It is easy to prove that D'^ C D"^^ if 
C is pointed. 

When y = M, the weak and strong C-dual cones of D reduce to the dual 
cone D* oi D. 

We will prove that the weak and strong C-dual cones of D are algebraically 
closed and the strong C-dual cone of D is convex. 

Definition 3.89. Let X be a linear space and A be a subset of X. 

(i) The algebraic interior of A, say cor A, is defined by 

cor A = {x e A \\/x e X,35 > 0,x + tx e A,\/t e (0,5)}\ 

(ii) A is called algebraically open if A = cor A; 
(iii) A is called algebraically closed if the complement A^ of A is algebraically 

open. 

If X is a topological vector space and C is closed and convex, then 
corC = intC. 

Proposition 3.90. Let (X, D) and (Y", C) be ordered Banach spaces, and let 
intC i=- 0 . Then the weak C-dual cone D^^ is algebraically closed. 

Proof We will prove that {D'^'^y is algebraically open. Let ^o ^ cor(Dg"'~)^. 
Then, there exists g € L(X,F) , such that ^o + (1/^)^ ^ i^c'^y, for k large 
enough. Hence, 

go + {l/k)geD^+; 

i.e., for k large enough, 

{go + ( 1 / % , x) ^intc 0, xeD. (3.38) 
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Assume that ^o ^ {Dc^Y, so that ^o ^ ^ c ^ - Then there exists XQ e D such 
that (go^xo) <intc 0. Therefore, for any y G y , we have 

— (̂ 'Oj ^o) + ty > c 0, for t > 0 small enough. 

Letting 
y = yi- (^,^o), yi eY,t = i/k, 

we see that 

-{go.xo) + {l/k)y = -{go.xo) + {l/k){yi - {g,xo)) 

= -{go + {l/k)g,xo) + {l/k)yi >c 0 

where yi EY and k is large enough. Hence, we deduce that 

-{go + {l/k)g,xo) € corC; 

i.e., 
(^0+ {l/k)g,xo) <mtcO, 

which contradicts (3.38). It follows that go ^ {D'^^y. Hence, 

Thus, (D^'^Y is algebraically open. Then D^^ is algebraically closed. • 

Proposition 3.91. Let {X,D) and {Y,C) be ordered Banach spaces, and let 
intC ^ 0 . Then the strong C-dual cone D^ is algebraically closed and con­
vex. 

Proof. It is similar to the proof of Proposition 3.90 to prove the algebraic 
closedness of D^. We show that D^ is convex. Let ^i,^2 ^ D^,0 < A < 1. 
For any x € D, 

{Xgi + (1 - X)g2,x) = X{gux) + (1 - X){g2,x) >c 0. 

Note that 
Xg^ + {l-X)g2eD'c^. 

Thus, Dp' is convex. • 

Remark 3.92. In general, D^^ is not necessarily a convex cone, since the weak 
ordering '^intc in Y is not transitive. In fact, let X = IR, D = IR-|_, Y = IR^, 
C = JR\. Then Dp^ = ]R\ is convex, but 

^c^ = {x G IR^ : X = (xi, ^2)^, xi <D 0 or X2 <D 0} 

is not convex. 
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Now we consider three types of vector complementarity problems. Let 
T : X —> L{X, Y) be a vector-valued function and let C be a closed, pointed 
and convex cone with intC ^ 0 . 

A (weak) vector complementarity problem (VCP) is the problem of finding 
X G D, such that 

{T{x),x);tintcO, T{x)eD^-^. 

A positive vector complementarity problem (PVCP) is the problem of 
finding an x G -D such that 

intC 
0, T{x) G DfT. 

A strong vector complementarity problem (SVCP) is the problem of find­
ing diii X G D such that 

( T ( x ) , x ) - 0 , T{X)GD'C^. 

We denote the sets of solutions of (VCP), (PVCP) and (SVCP) by iV, Np, 
and Ns, respectively. There are close relations between vector complementar­
ity problems and vector optimization problems. In this connection we consider 
the following vector optimization problem: 

(VOP^) Minc{{T(x) ,x) :xeD,T{x) G Z)^+}. 

We denote the set of all weakly minimal solutions of (VOPw) by Eyj, and 
we set f{x) = (T(x),x) and H^j = f{Ew)' 

Theorem 3.93. / / H^j ^ 0 and there exists z G Hy^ such that z ^intc 0, 
then the vector complementarity problem (VCP) is solvable. 

Proof Let z G H^ and z 'itintc 0. There exists a point x e D such that 
T{x) G D^+, z = f{x) = (T(x), x) tintc 0. So x is a solution of (VCP). • 

Theorem 3.94. / / there exists at most a finite number of solutions of the 
vector complementarity problem (VCP), then (VCP) is solvable if and only if 
Hyj ^ 0 and there exists z G Hy^ such that z '^tintc 0. 

Proof. Let xi be a solution of (VCP). If xi G E^j, we are done. If xi ^ Eyj, 
by the definition of weak minimal solutions, there exists X2 £ D such that 
T{x2) G D^^ and {T{x2),X2) <intc (T(xi),xi) ^MC 0. Thus we obtain 

{T{X2),X2) ^intC 0, 

hence X2 is a solution of (VCP) and xi ^ X2, continuing this procedure, by 
the finiteness of the number of solutions of (VCP), there exists x/c G D such 
that Xk is a solution of (VCP), Xk e E^,, z= {T{xk), Xk) ^intc 0,z G H^j. 

Conversely, we finish the proof from Theorem 3.93. • 
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We next consider the existence of solutions of the positive vector com­
plementarity problem (PVCP). To this end, we observe the following vector 
optimization problem: 

{VOPs) Minc{{T{x),x) : x G D,T{x) e L>^+}. 

We denote the set of all minimal solutions of (VOPs) by Es and set 
Hs = f{Es). 

Similarly, we can prove the following result. 

Theorem 3.95. / / there exist at most a finite number of solutions of the 
(PVCP), then the (PVCP) is solvable if and only if Hg ^ 0 and there exists 
z e Hs, such that z ^intc 0-

Remark 3.96. (i) The equivalent relation in Theorem 3.94 is a generalization 
of the corresponding results in Borwein [20]; 

(ii) The results on the nonemptiness of iJ^ and Hg can be found in Chen and 
Yang [40]. 

In the sequel, we will show the relationship among the vector optimization 
problem (VOPwi), the vector complementarity problem (VCP), the weak min­
imal element problem (WMEP), the vector variational inequality (VVI) and 
the vector unilateral minimization problem (VUMP). 

Define the feasible set associated to T by 

J^^ = {xeX:xe D,T{x) e D^-^}. 

Problem VOPwi' finding x G J^w such that 

(/,x) e Mmintc{{l,y) -y^^w}, 

where / G L{X, Y) is given; 
Problem WMEP: finding x G J^w such that x ^intc y-, Vy G J^w\ 

Problem VCP: finding x GT^ such that 

(T(x) ,x)^intcO; 

Problem WVVI: finding x e D such that 

{T{x),y-x) ^intcO, yyeD; 
Problem VUMP: finding x G D such that x is a weakly minimal solution 
of the vector optimization problem: 

Mincfix), 
xeD 

where f : X —>Y is given. 
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Definition 3.97. Let (X, D) and (Y, C) be ordered Banach spaces. Let I : 
X ^^ Y be a linear vector-valued function and intD ^ 0, intC ^ 0. I is 
called a weak positive linear operator if 

X ^intD 0 implies (/,x) ^intc 0. 

In particular, when Y = M, x ^intc 0 implies (/, x) < 0, I is called a weak 
positive linear functional. 

Jameson [114] defines / as a positive (or monotone) operator if (/, D) C C. 
Generally, there is no inclusion relation between a positive linear operator and 
a weak positive linear operator. 

Example 3.98. If F = X, intC ^ 0 , then the unit operator from X to itself 
is a weak positive sublinear operator. 

Example 3.99. Let X = Wi?,Y = W{?, D = IR^, C = IR^, x= ( ^ M e X. 

Define the operator I as follows: 

( Xi - X 2 \ 

2x2 e IR^ 

Then, for any x^y e X, x ^intD y implies (/,x) :;i^intc {l^y)- So / is a weak 
positive linear operator. 

Definition 3.100. LetX, Y be Banach spaces and I be a linear operator from 
X toY. If the image of any bounded subset of X is a self-sequentially compact 
subset in Y, then I is said to be weakly completely continuous. 

Definition 3.101. Let {X,D) and {Y,C) be Banach spaces. The norm || • || 
in X is said to be strictly monotonically increasing on D if, for each y E D, 

X e {{y} -intD) HD implies | |x|| < ||y||. 

Theorem 3.102. Let (X, D) and (Y, C) be ordered Banach spaces, intD ^ 0, 
intC 7̂  0 . Suppose that 

(i) T = Df is the Frechet derivative of the C-convex function f from X to 

.. ^' 
(ii) / is a weak positive linear operator; 

(iii) There exists x G J^w such that T{x) is one to one and weak completely 
continuous; 

(iv) X is a topological dual space of a real normed space and the norm 11 • 11 in 
X is strictly monotonically increasing on D; 
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If vector variational inequality (WVVI) is solvable, then {VOPwi), (WMEP), 
(VCP) and (VUMP) have a solution, respectively. 

Since the assertions which guarantee Theorem 3.102 are in various degrees 
of generality, we shall treat them in a sequence of propositions, each with its 
own hypotheses. 

Proposition 3.103. Let T = Df be the Frechet derivative of f : X -^ Y. 
Then x G D solves (VUMP) implies that x solves (WVVI); if, in addition, f 
is C-convex, then conversely, x solves (WVVI) implies that it solves (VUMP). 

Proof. Let x be a solution of (VUMP). Since J9 is a convex cone, we get 

f{x) tintC f{x + t{w - X)) , 0<t<l,WeD, 

i.e., 
if{x + t{w - X)) - f{x))/t ^intC 0. 

Let t tend to 0 from the right, we have 

{Df{x), w-x) ^intc 0, V^ G D, 

which is the weak vector variational inequality. 
Conversely, let x solve the weak vector variational inequality: 

{T{x),w-x)^intc^. yweD. 

Since / is C-convex, by Proposition 1.63, we have, for any w G D, 

f{w)-f{x)>c{Df{x),w-x) 
= {T{x),W-x) ^intcO, 

i.e., f{w) ^intc f{x),Mw G D. Thus, x is a solution of (VUMP). • 

Proposition 3.104. x solves (WVVI) implies that x solves (VCP). 

Proof. According to the assumption, 

{T{x),y-x)^intc^. yyeD. 

We set y = 0, then {T{x)^x) '^intc 0. We set y = w + x, w e D, then 
yeDsind {T{x), w) ^intc 0, i.e., T{x) G JD^+. Hence x solves the (VCP). • 

Remark 3.105. Generally, the converse conclusion in Proposition 3.104 does 
not hold. However, if T is conegative (T is called conegative if (T(x),x) <c 
0,Vx G D)., then the converse conclusion also holds. 

Proposition 3.106. Let I be a weak positive linear operator. Then x solves 
(WMEP) implies that x solves {VOPn^i). 
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Proof This assertion is immediate from the definition of the weak positive 
linear operator. • 

Lemma 3.107 (Jahn [116]). Let A be a nonempty subset of an ordered space 
(y, C) with C cY being a convex cone and intC ^ 0 . Let Y be the topological 
dual space of a real normed space (Z, || • | |) . Suppose that there exists y G Y 
such that the set {y — C)nA is weakly closed and bounded below and the norm 
W'W in Y is strictly monotonically increasing. Then the set A has at least one 
minimal element. 

Lemma 3.108. / / (WVVI) is solvable, then the feasible set T^w is nonempty. 

Proof. Let x be a solution of (WVVI), that is, 

{T{x) ,y — x) ^intc 0? y ^ L). 

We set y = z -{- x,z G D, then y e D since JD is a convex cone and 
(T(x), z) £intc 0 for all z e D. So T{x) e D^^ and x G ^ ^ . • 

It is easy to fulfill the following lemma. 

Lemma 3.109. If the norm || • || in an ordered Banach space (X, D) is strictly 
monotonically increasing, then the order intervals 

[a^b] = {x G X : a <D X <D b} 

in X are bounded, where a,b e X. 

Proposition 3.110. / / the (WVVI) is solvable, and 

(i) there exists x in Tw such that T{x) : X —^Y is a one-to-one vector-valued 
function and it is weak completely continuous; 

(ii) Y is the topological dual space of a normed space (X, 11 • 11) and the norm 
11 • 11 in X is strictly monotonically increasing, 

then the (VOPwi) has at least one solution. 

Proof. By the assumptions and Lemma 3.108, J^w 7̂  0- Let x G J-'w such that 
T{x) is one to one and weakly completely continuous, and {yk} C {J^w)x, yk -^ 
y (weakly), where 

{J^w)x = {{x} -D)r\J'^(z {{x} - JD) n i) = [0, x]. 

[0,x] is the order interval, i.e., 

[0, x] = {2/ G X : 2/ >D 0 and y <D X}. 

The order interval [0, x] is bounded by Lemma 3.109, so {!Fw)x is also bounded. 
We observe that (T(x), {J^w)x) is a self-sequentially compact, since T{x) 

is weak completely continuous. Thus there exists a subsequence (T(a:), yk^) C 
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{T{x), {J^w)x), which converges to z e (T(x), {Tw)x)' We obtain a point yo G 
{^w)x such that 

(T(x), Vk,) ^ (T(^), 2/0) (strongly). 

On the other hand, ii yk —^ y (weakly) and T{x) is weak completely continu­
ous, we derive 

{T{x),yk) -^ {T{x),y) (strongly). 

By the uniqueness of the convergence, we obtain 

{T{x),yo) = {T{x),y). 

Since T{x) is one to one, we have yo = 2/, i.e., y G {J^w)x and {J^w)x is weakly 
closed. By Lemma 3.107, Tw has a weakly minimal element. • 

Definition 3.111. Let {X,D) and {Y,C) he ordered Banach spaces. The op­
erator T : X ^ L{X, Y) is said to be positive if 

{T{x),y) >cO, \/x,yeD. 

The vector-valued function F : X ^^ Y is called positive ii F(x) G C, for 
all X e D. 

The following corollary is elementary from the definition. 

Corollary 3.112. T is positive if and only ifT{x) is positive for any x E D. 

We consider the positive vector complementarity problem (PVCP). The 
feasible set related to the (PVCP) is 

J's = {xeX:xe D,T{x) G D^+}. 

For a given / G L{X,Y), we consider following three problems: the vector 
optimization problem (VOP^^), the weak minimal element problem (WMEP5) 
and the positive vector complementarity problem (PVCP). 

Problem VOPs^: finding x e Ts such that 

(/,x) G Minintc{{l,y) : y ^ ^ s } , 

w h e r e / G L ( X , F ) ; 

Problem WMEP^: finding x E J^s such that x ^intD y, Vy € J^s'-, 
Problem PVCP: finding x e J^s such that (T(x),x) '^intD 0. 

Proposition 3.113. Let T he strictly monotone and x he the solution of 
(PVCP). Then, x is a weakly minimal element of Ts-
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Proof. It is elementary that x eJ^sC D.lix e dD, then x solves (WMEP^). 
Otherwise, there exists x' G J^s such that x' <intD ^^ so 

X = X — x' -\- x' G intD + D C intD, 

this is a contradiction. If x e intD, by the strict monotonicity of T, 

(T(x), X — u) >intc {T{u), X — u), for each u G J^s^u^ x. 

If ^ >mtD ^5 {T{u),x — u) >intc 0, then for c G intC, 

0 it {T{x),x) >c {T{x),u) + c. 

Therefore, 
( T ( x ) , 7 x ) + C ^ ^ n t c O . 

Then {T{x),u) >c 0 does not hold, since c G mtC, which is contrary to 
the assumption condition oi x G J^s- So x >intD ^ does not hold, that is, 
X ^intD u. Hence, x solves (WMEP^). • 

Remark 3.114- Proposition 3.113 is a generalization of the corresponding re­
sult of Riddell [163]. 

Proposition 3.115. x solves (PVCP) implies that x solves (WVVI). 

Proof By the definition of (PVCP), x G D, (T(x),x) ^intc 0, for all x G J9; 
i.e., for any y ^ D, 

{T{x),x^intcO<{T{x),y) 

and 
{T{x),y-x) ^intcO, 

which is (WVVI). • 

Remark 3.116. In Proposition 3.104, we prove that x solves (WVVI) implies 
that X solves (VCP). In this proposition we prove an inverse relation under the 
condition that T is a positive operator. On the other hand, if T is a positive 
operator, it is elementary that x solves (WVVI) implies that x solves (PVCP). 
We have shown that (WVVI) and (PVCP) are equivalent if T is a positive 
operator. 

As a summary of the above results, we have following theorem. 

Theorem 3.117. Let (X, D) and (Y, C) be ordered Banach spaces andintD ^ 
0, intC 7̂  0 . Suppose that 

(i) T = Df is the Frechet derivative of the C-convex vector-valued function 

(ii) / G L{X, Y) is a weak positive linear operator; 
(iii) T is strictly monotone. 

If the (PVCP) is solvable, then {VOPsi), {WMEPs), (PVCP), (WVVI) and 
(VUMP) have at least one common solution. 
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3.9 VCP with a Variable Domination Structure 

In this section, we investigate a vector complementarity problem with a vari­
able ordering relation. We establish existence results of a solution for a vector 
complementarity problem under an inclusive type condition. We also obtain 
some equivalence results among a vector complementarity problem, a vector 
variational inequality problem, a vector optimization problem, a weak min­
imal element problem, and a vector unilateral optimization problem under 
some monotonicity conditions and some inclusive type conditions in ordered 
Banach spaces. 

Let (X, D) be an ordered Banach space, y be a Banach space, {C{x) : 
X e X} be a family of closed, pointed, and convex cones in Y with nonempty 
interior intC{x) for all x G X, and T : X ^ L{X^ Y). Throughout this section, 
we assume that C \ X ^Y he upper semicontinuous. 

Consider the following three kinds of vector complementarity problems 
with a variable ordering relation. 

(Weak) Vector Complementarity Problem (VCP): finding x € D, such that 

(T(x), x) ^intc{x) 0, (T(x), y) ^intc{x) 0, Vy G D. 

Positive Vector Complementarity Problem (PVCP): finding x e D, such 
that 

(T(x), x) tintc{x) 0, (T(x), y) <ci.) 0, Vy G D. 

Strong Vector Complementarity Problem (SVCP): finding x e D, such that 

(T(x), x) = 0, (r(x) , y) <c(.) 0, \/y G D, 

Remark 3.118. In here, without confusion, for example, we use the same no­
tation (VCP) for a vector complementarity problem with a variable ordering 
relation as that for the problem with a fixed ordering relation. 

If C(x) = C for all X G X, where C is a closed, pointed, and convex cone 
in Y with nonempty interior intC, then (VCP), (PVCP), and (SVCP) reduce 
to the problems considered in section 3.8. 

Next we establish some existence results of (VCP) involving a variable 
ordering structure . 

The feasible set of (VCP) is 

JT = {x G X : xeD, {T{x), y) ^ 
intC{x) 

Let f{x) = (T(x), x) for all x e D. We consider the following vector optimiza­
tion problem (VOP): 

Mmintc(x)f{x) subject to x G ^ . 

Theorem 3.119. Assume that LMinintc(x)f{^) ¥" ^- U there exists x G 
LMinintc{x)f[^) such that f{x) ^intc(x) 0, then the vector complementarity 
problem (VCP) is solvable. 
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Proof, Let x € LMmintc(x)f{^) and f{x) ^intc(x) 0. Then x e D and 

(T(X) , X) = fix) ^intC(x) 0, (T (X) , y) ^intCix) 0, Vy G i ) . 

It follows that X is a solution of (VCP). This completes the proof. • 

Definition 3.120. Let f : X -^Y, We say that C{x) satisfies an f-inclusive 
condition if, for any x, y € X, 

f{x) <intc{y) f{y) implies that C{x) C C{y). 

This inclusive condition requires that any two of the family of closed and 
convex cones satisfy an inclusion relation so long as their corresponding vari­
ables satisfy certain conditions. It is easy to see that, if C(x) = C for all x G X, 
where C is a closed, pointed, and convex cone in y , then C{x) satisfies the 
/-inclusive condition. 

Example 3,121. Let X = F = IR^ and D = IR^. Define f{u) = {3x + 2,3y -f 
2)"^ and 

C {(rcosx,rsinx) : r > 0, 0 < x < 7r/8}, 
if x G (—oo,7r/8], y G (—oo,+oo); 

du) 
{(rcosx,rs inx) : r > 0, 0 < x < x}, 

if X G (7r/8,7r/2), y G (-oo,+oo); 

if X G [7r/2, +oo), y G (-oo, +00) 

for all ẑ  = (oo^y) G X. Then it is easy to see that C{u) satisfies the / -
inclusive condition. In fact, for any u = (xi,yi) G X and v = (x2,y2) G X, 
if fiy) ^intciv) f{v), then f{v) — f{u) G intC{v) C intD and so xi < X2. 
Therefore, C{u) C C{v) and C(x) satisfies the /-inclusive condition. 

Theorem 3.122. Suppose that C satisfies the f-inclusive condition and that 
there exist at most a finite number of solutions for (VCP). Then (VCP) 
is solvable if and only if LMinintc(x)f{^) 7̂  0, 0,'^d there exists x G 
LMinintc(x)f{^) such that f{x) ^intc(x) 0. 

Proof Let xi be a solution of (VCP). Then 

( T ( x i ) , Xi) ^intC(x^) 0, ( ^ ( x i ) , y) ^intCix^) 0, Vy G D, 

If xi G LMinintc(x)f{J^), then 

/ ( X i ) = { r ( x i ) , X i ) 'itintC(xi) 0 

and we are done. If xi ^ LMinintc(x)f{^)j by the definition of a weakly 
minimal-like solution, there exists X2 ^ D such that 
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(T(x2),y) ^intc(x,)0, yyeD 

and 

f{X2) = {T{X2),X2) <intC{xi) (T(xi ) ,Xi) = f{xi) ^intC{xi) 0. 

This implies t ha t 

f{x2) = {T(X2),X2) ^intC{xi) 0. 

Since f{x2) <intc{xi) /(^i)? ^^d C satisfies the /-inclusive condition, it fol­
lows that C{x2) C C{xi) and so 

f{x2) = (T(X2),X2) ^intC{x2) 0-

Thus, X2 is a solution of (VCP) and X2 ^ x\. Continuing this process, there 
exists Xk G D such that Xk is a solution of (VCP) and Xk € LMinintc{x)f{J^) 
since (VCP) has at most a finite number of solutions. Therefore, 

f{Xk) = {T{Xk),Xk) ^intCixk) 0-

The only if part follows from Theorem 3.119 and we complete the proof. • 

Remark 3.123. (1) If C{x) = C for all x e X, where C is a closed, pointed, 
and convex cone in y , then C satisfies the /-inclusive condition and Theorem 
3.122 is the same as Theorem 3.2 of Chen and Yang [40]. 

(2) If C{x) = C for all X G X, where C is a closed, pointed, and convex 
cone in y = (—oo, +oo), then we obtain the results in Borwein [20]. 

We next consider the positive vector complementarity problem (PVCP): 
finding x e D such that 

(T(x), x) tintc{x) 0, (r(x) , y) >c(^) 0, Vy G D. 

Let 
J^o = {xeX: xeD, (T(x), y) >c^^) 0, \Jy G D}. 

Consider the following vector optimization problem (VOP)o 

Minc(a;)/(^) subject to x G ^o-

Similarly, we can prove the following results. 

Theorem 3.124. If LMinc{x)f{^o) / ^ CLi^d there exists x G LMinc{x)f{^o) 
such that f{x) ^intc{x) 0? ihen (PVCP) is solvable. 

Theorem 3.125. Suppose that C satisfies the f-inclusive condition and that 
there exist at most a finite number of solutions of (PVCP). Then (PVCP) is 
solvable if and only if LMinc(x)f i^o) ^ ^ 0''^d there exists x G LMinc(x)f(^o) 
such that f{x) ^intc{x) 0. 
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Next we consider equivalences between vector complementarity problems 
and weak minimal element problems. 

Let (X, D) be an ordered Banach space with intD / 0 , Y be a Banach 
space, and {C{x) : x € X} be a family of closed, pointed, and convex cones 
in Y such that intC{x) ^ 0 for all x G X. Let T : X -^ L(X, Y) be a given 
map and / : X —> y be a given operator. 

Recall that the feasible set of (VCP) associated with T is defined by: 

J'^ixeX: xeD, {T{x),y) ^intc{x) 0, ^yeD]. 

We now consider the following five problems. 
The vector optimization problem (VOP)r. for a given / G I/(X, F) , finding 

X ^T such that /(x) G Min^yitc(a^)^(»^); 
The weak minimal element problem (WMEP): finding x ^ T such that 

X G M i u i n t D ^ ; 

The vector complementarity problem (VCP): finding x ^ T such that 

The vector variational inequality problem (WVVI): finding x G JD such 
that 

(r(x) , y-x) i:intc{x) 0, Vy G I); 

The vector unilateral optimization problem (VUOP): finding x e D such 
that f{x) G LMinintc(a:)/(^). 

Definition 3.126. ([4]) A linear operator I : X -^Y is called weakly positive 
with respect to the variable ordering relation C{x) if, for any x,y G X, x ^intu 
y implies that l{x) ^intc{x) Kv)-

Theorem 3.127. Let (X, D) be an ordered Banach space with intD j^ 0, Y 
be a Banach space, and {C{x) : x £ X} be a family of closed, pointed, and 
convex cones in Y such that intC{x) ^ 0 for all x £ X. Suppose 

(1)T = Df is the Frechet derivative of a convex operator f : X —^Y; 
(2) I is a weakly positive linear operator with respect to the variable ordering 

relation C{x); 
(3) there exists x £ J- such that Tx is one to one and weak completely contin­

uous; 
(4)X is a topological dual space of a real normed space and the norm || • || in 

X is strictly monotonically increasing on D. 

If (WVVI) is solvable, then (VOP)i, (WMEP), (VCP), and (VUOP) are also 
solvable. 

Remark 3.128. If C{x) = C for all x G X, where C is a closed, pointed, and 
convex cone in y , then Theorem 3.127 coincides with Theorem 4.1 of Chen 
and Yang [40]. 

We need the following propositions to establish Theorem 3.127. 
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Proposition 3.129. Let T = Df he the Frechet derivative of an operator 
f : X ^^Y. Then x solves (VUOP) implies x solves (WVVI). If in addition, 
f is a C(x)-convex function, then conversely, x solves (WVVI) implies x 
solves (VUOP). 

Proof Let x be a solution of (VUOP). Then 

xeD d.nA f{x) e LMinintc{x)f{D), 

i.e., 
f{x) ^intc{x) f{y), Vy G D. 

Since D is a convex cone, 

f{x) ^intC(x) f{x + t{w - X)), ^<t<l, W eD. 

It follows that 
-[f{x + t{w - X)) - f{x)] ^intC{x) 0. 

Since / is Frechet differentiable on X, letting t ^ 0" ,̂ we get 

{Df{x), W-X) ^intC{x) 0, ' V^ € D, 

which is (WVVI). 
Conversely, let x solve (WVVI). Then 

(T(x), w-x) tintc{x) 0, yw e D. 

Since / is C(a;)-convex, by Proposition 1.72, 

f{w) - f{x) >c(x) {Df{x), w-x) ^intCix) 0, \/w ^ D 

and so 
f{w) ^intC{x) f{x), yw € D, 

which is the (VUOP). This completes the proof. • 

Definition 3.130. A map T : X —^ L{X, Y) is called co-negative with respect 
to the variable ordering relation C{x) if (T(x), x) <c{x) 0 holds for all x G D. 

Proposition 3.131. / / x solves (WVVI), then x also solves (VCP). Con­
versely, ifT is co-negative with respect to the variable ordering relation C{x), 
then X solves (VCP) implies x solves (WVVI). 

Proof. Let x be a solution of (WVVI). Then 

(T(x), y-x) ^intc{x) 0, Vy G D. 

Letting 2/ = 0, we get (T(x), x) ^intc{x) 0- For y = w + x with any w E D, we 
have 
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{T{X),W) ^ intC(x)0, V ^ G L > . 

Thus, X is a solution of the (VCP). 
Conversely, let x solve the (VCP). Then 

(T (x ) ,x )<c( . )0^ 
intC(x) 

{T{x),y}, VyeD. 
This implies 

{T{x), x) tintc{x) {T{x), y), "iyeD 
and so 

(r(x) , y-x) ^intc{x) 0, Vy G I). 

This completes the proof. • 

Proposition 3.132. Let I he a weakly positive linear operator with respect to 
the variable ordering relation C(x). Then x solves (WMEP) implies x solves 
(VOP)i, 

Proof. Let a; be a solution of (WMEP). Then x e J^ and 

X ^intD T= {xeX : X eD, {T{x),y) ^intc(x) 0, Vy € D}. 

For any z £ J^, x ^intD ^ implies x ^intD z. Since I is a weakly positive 
linear operator with respect to the variable ordering relation C(x), it follows 
that l{x) ^intc{x) l{^) and so 

l{x) ^intC{x) K^)i 

which is (VOP)/. This completes the proof. • 

Definition 3.133. Let (X, D) he an ordered Banach space and A a nonempty 
suhset of X. 

(1) If, for some x e X, Ax = {{x} — D) D A j^ 0, then Ax is called a 
section of the set A. 

(2) A is called weakly closed if {xk} C A, x e X, (x*,Xfc) -^ (x*,x) for 
all X* e X*, then x G A, 

Lemma 3.134. / / (WVVI) is solvable, then the feasible set T is nonempty. 

Proof Let x be a solution of (WVVI). Then 

{ r ( x ) , y - x ) ^intc(x) 0, Vy e D. 

Taking y = z-\- x with any z e D, we know that y £ D and 

{T{x),z)^intcix)0, yzeD. 

Thus, X £ T. This completes the proof. • 
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Lemma 3.135. / / the norm \\ • \\ in an ordered Banach space X is strictly 
monotonically increasing, then the order intervals in X are bounded. 

Proposition 3.136. Suppose (WVVI) is solvable and 

(1) there exists x in !F such that Tx is one to one and weak completely con­
tinuous; 

(2)X is the topological dual space of a real normed space (Z, || • ll;̂ ) and the 
norm \\'\\ in X is strictly monotonically increasing. 

Then (WMEP) has at least one solution. 

Proof. By the assumption and Lemma 3.134, !F ^ 0 . Let a; G ^ be a point 
such that T{x) is one to one and weak completely continuous, and {yk} C T 
with yk ^^ y (weakly). Since 

jT, = [{x}-D)r]Tc {{x}-D)r\D = [{),xl 

by Lemma 3.4, [0,x] is bounded and so is J^x- Since Tx is weak completely 
continuous, {T{x)^Tx) is a self-sequentially compact set and so {T{x),yk) C 
{T{x),J^x) implies there exists a subsequence {T{x),yki) which converges to 
z e {T{x)^J^x)' We get a point yo € J^x such that 

{T{x),yk,)-^ {Tx, yo) (strongly). 

On the other hand, since yk ^^ y (weakly) and T{x) is weak completely 
continuous, 

{T{x),yk)^{T{x),y) (strongly). 

By the uniqueness of the limit, we get {T{x),y) = (T(x),yo)- Since Tx is 
one to one, y = yo and so y ^ ^x- Since Tx is weakly closed, it follows 
from Lemma 3.2 that T has a weakly minimal point a such that a 'itintD ^-
Therefore, (WMEP) has at least one solution. This completes the proof. • 

Definition 3.137. Let {X,D) be an ordered Banach space, Y be a Banach 
space, and {C{x) : x G X} be a family of closed, pointed, and convex cones 
inY.A map T : X ^ L{X, Y) is called positive with respect to the variable 
ordering relation C{x) if 

(T(x), y) >c{x) 0, for any x,y e D. 

Equivalently, 
{T{x),y)eC{x), Wx.yeD. 

An operator K : X -^Y is called positive if 

K{x) >c{x) 0, for any x e D. 
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We now consider the positive vector complementarity problem (PVCP): 
Finding x e D such that 

{T{x),x)^ 
intC{x) 

0, {T{x),y)>cix)0, MyeD. 

The feasible set related to (PVCP) is defined as 

J'o^ixeX: xeD, (r(x),y) >c(.) 0, V2/ G D}, 

Let us consider the following problems. 

The vector optimization problem (VOP)zo* finding x G To such that l{x) G 
LMmintpl{J^o)' 

The weak minimal element problem (WMEP)o: finding x E J^o such that 
X e LMinintD^o-

The positive vector complementarity problem (PVCP): finding x e J^o 
such that 

(T(x) ,x ) ^intC(x) 0. 
The vector variational inequality problem (VVIP): finding x e D such 

that 
(r(x) , y-x) ^intcix) 0, \/y e D. 

The vector unilateral optimization problem (VUOP): for a given map / : 
X ^Y, finding xeD such that f{x) e LUiuintpfiD). 
Definition 3.138. A map T : X ^^ L{X^Y) is said to he strictly monotone 
with respect to the variable ordering relation C{x) if 

{T{x) - T{y), x-y) >intc{x) 0, \/x,yeX,xi^ y. 

Definition 3.139. We say that C{x) satisfies an inclusive condition if for 
any x,y e X, 

X <intD y implies that C{x) C C{y). 

It is easy to see that, if C{x) = C for all x e X, where C is a closed, 
pointed, and convex cone in y , then C{x) satisfies the inclusive condition. 

Example 3.140. Let X = (-oo, +oo), D = [0, +oo), Y = B?, and 

{(rcosx,rs inx) : r > 0, 0 < x < 7r/8}, if a; G (—oo,7r/8]; 

C{x) = ^ {(rcosx,rsinx) : r >0, 0 <x < x}, if x G (7r/8,7r/2); 

[D, if X G [7r/2, +oo) 

for all X G X. Then it is easy to check that C{x) satisfies the inclusive condi­
tion. 
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Proposition 3.141. Let T he strictly monotone with respect to the variable 
ordering relation C{x) and x a solution of (PVCP). IfC satisfies the inclusive 
condition, then x is a weakly minimal point of To (i.e., x solves (WMEP)o). 

Proof It is easy to see that x e J^o c: D. li x e hd{D) (where hd{D) denotes 
the boundary of D), then x solves (WMEP)o. Otherwise, there exists x' e To 
such that X >intD ^' and so 

X — X — x' -\-x' Q. intD -\r D C intD, 

which is a contradiction. If x G intD, by the strict monotonicity of T, 

(Tx, X -u) >intc(x) {T{u), x-u), yue To,u^x. 

Suppose x >intD '^' Since T is positive, {T{u), x — u) >c{u) 0 and 

(T(x), x-u) >intc{x) {T{u), x-u) >c{u) 0. 

By the assumption, we get P{u) C C{x) and so 

{T{x),x-u) 

e {T{u), x-u)+ intC{x) C C{u) + intC{x) 

C C{x) + intC{x) =- intC{x). 

It follows that 
{T{x),X-u) >intCix)0 

and thus 
0 ^intc(x) {T{x),x) >c{x) {T{x),u) + k 

for some k € intC{x). This implies 

{T{x),u) + k'^intc{x)^' 

Since k G intC{x) and x G ̂ o, 

(T(x), 1̂ ) + fc G C{x) + intC{x) C intC{x) 

and so 
{T{x),u)-]-k >intC(x) 0, 

which is a contradiction. Therefore, x >intD u does not hold, that is x ^intD ^• 
It follows that X ^intD To and x solves (WMEP)o. This completes the proof.• 

Proposition 3.142. If x solves (PVCP), then x also solves (WVVI). 

Proof Suppose x solves (PVCP). Then x e D and 

(T(x), x) ^intc{x) 0, (Tx, y) >c{x) 0, y G D. 
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If (T(x), y-x) <intc(x) 0, then 

(r(x) , x) = - ( r ( x ) , y - x) + (T(x), y) e intC{x) + C{x) C mtC(x) 

and so 
( r ( x ) , x ) > in tC( r r )0 , 

which is a contradiction. It follows that 

{T{x),y-x) ^intc(x) 0 

and X solves (WVVI). This completes the proof. • 

Similarly, we can get other equivalence conditions. We have the following 
theorem. 

Theorem 3.143. Let {X,D) be an ordered Banach space with intD ^ 0, Y 
be a Banach space, and {C{x) : x G X} be a family of closed, pointed, and 
convex cones in Y such that intC(x) ^ 0 for all x G X. Suppose that C 
satisfies the inclusive condition and 

(1) T = Df is the Frechet derivative of the convex operator f : X ^^Y; 
(2) I is a weakly positive linear operator with respect to the variable ordering 

relation C{x); 
(3)T is strictly monotone with respect to the variable ordering relation C{x). 

If (PVCP) is solvable, then (VOP)io, (WMEP)o, (PVCP), (WVVI), and 
(VUOP) have at least a common solution. 



Vector Variational Principles 

Ekeland's variational principle is an important tool for nonlinear analysis and 
optimization theory. It can be applied to derive the famous Caristi-Kirk's fixed 
point theorem and fixed point theorem for directional contractions, and to im­
prove the so-called Ambrosetti-Rabinowitz "Mountain Pass" theorem. It was 
employed to improve and generalize Morse's critical theory. It has important 
applications in the geometry theory of Banach spaces and in the study of non­
linear operators in Banach spaces. It has many applications in control theory. 
It is used to study the existence of optimal solutions, optimality conditions 
for mathematical programming problems, stability and well-posedness of op­
timization problems, approximate optimal solutions and approximate duality 
theory and approximate saddle point theory, development of approximate al­
gorithms for mathematical programming. It also has important applications 
in convex analysis. Along with the development of vector optimization and 
set-valued optimization, many authors have tried to improve it, generalize it 
and find as many applications as possible. 

In the first part of this chapter, we obtain variants of variational principles 
for vector-valued functions and develop variational principles for set-valued 
functions. We derive vector versions of "Drop theorem", "Petal theorem" and 
"Caristi-Kirk fixed point theorem". We establish equivalences among these 
theorems and vector variational principles. 

The study of well-posedness of an optimization problem is to investigate 
the behavior of the variable when the corresponding objective function value is 
close to the optimal value. In scalar optimization, the notion of well-posedness 
originates from Tykhonov [196] in dealing with unconstrained optimization 
problems. Its extension to the constrained case was introduced by Levitin 
and Polyak [132]. Since then, various notions of well-posedness have been 
defined and extensively studied (see [145], [225], [226] and a recent mono­
graph [59]). In vector-valued and set-valued optimization, there have also 
been quite a number of publications on the topic of well-posedness (see, e.g., 
[11, 144, 141, 54, 99, 100, 101] and the references therein). The last two sec­
tions of this chapter are based on the results from [99] and [100]. We shall 
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follow the embedding technique employed in [226] to introduce the notion of 
extended well-posedness for vector-valued and set-valued optimization prob­
lems. Corresponding to different understandings of "approximation" of the 
objective values to the optimal value set, we shall introduce different no­
tions of well-posedness in vector-valued and set-valued optimization. We shall 
provide various characterizations and criteria for these types of extended well-
posedness, generalizing most of Zolezzi's results in [226]. We shall derive new 
variants of vector variational principles and apply them to present sufficient 
conditions for these notions of extended well-posedness. 

4.1 Variational Principles for Vector-Valued Functions 

In this section, we present a unified variational principle for vector-valued 
functions. Generally speaking, this principle includes Nemeth's, Tammer's 
and Isac's variational principles for vector-valued functions as its special cases. 
And in some sense, it also includes Dentcheva and Helbig's variational princi­
ple for vector-valued functions as its special case. We establish a generalized 
variational principle for vector-valued functions without a normality assump­
tion. The main tool we used in this section is Hausdorff maximality principle 
and scalarization method. 

In 1972, Ekeland presented his original variational principle (see [62, 63]). 
We state it as the following Theorem 4.1. 

Theorem 4.1 (Ekeland's variational principle). Let (X, d) he a complete 
metric space, Lp : X—> iRU{+oo} a proper lower semicontinuous (in short, 
l.s.c) function which is hounded helow. Let there he given e > 0 and x E X 
such that 

ip{x) < inf (p{x) + e. 

Then, for any A > 0; there exists Xg G X such that 

(i) (p{xe) < (fix); 
(ii) d{xe,x) < A; 

(iii) (p{xe) < (p{x) + e/\d{x^ Xg), Vx G X\{xe}. 

Generally speaking, there are two ways to prove this theorem: one is to 
apply the Hausdorff maximality principle to the epigraph of / under the or­
der induced by Phelps' cone, and the other is to utilize a dissipative dynamic 
system. 

Ekeland's variational principle was extended to the vector case by many 
authors, for instance, Nameth [151], Tammer [185], Isac [111]. 

First of all, we recall some basic concepts and some previous results in this 
field. 

We say that a set A is a partially ordered set if there is a partial order 
defined on A, and we denote "-<". 
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Let A be an arbitrary set and "^" be a partial order on A. We say that 
A is totally ordered by "^" if, for any a^b e A, either a •< b ov b -< a holds. 

The following theorem, known as the Hausdorff maximality principle, is 
equivalent to the so-called axiom of choice, and Zorn's lemma, which are 
fundamental theorems in abstract analysis (see, e.g., [4]). 

Theorem 4.2. Let A be a set partially ordered by relation "<^\ Then there 
exists a maximal subset (with respect to the set inclusion relation), which is 
totally ordered by "^ ". 

Let y be a Hausdorff topological vector space ordered by a nontrivial con­
vex cone C. We introduce the following definitions. 

A subset A of y is called full if ^ = (^ + C) H (A - C). 

We say that a cone C is normal if C is a pointed and convex cone and the 
zero point of Y has a neighborhood base consisting of full sets. 

Let Co C C be a convex cone and {xoc}(xei be a net of CQ. The net {xa}a£i 
is said to be CQ increasing if XQ- — x ĵ € Co, whenever a> (3. 

A convex cone Co C C is called C bound regular (sequentially C bound 
regular) if each Co increasing and C order bounded net (sequence) in Co con­
verges to an element of Co-

Co is said to be complete if any Cauchy net {cv}v^i of Co converges to 
some point Co G Co. 

Let X be a nonempty set, F be a Hausdorff topological vector space, and 
C C y be a nontrivial convex cone. A vector-valued function r : X x X —^Y 
is called a C metric function if it satisfies the following conditions: for any 
x,y,ze X, 

(i) r(x,x) = 0; 
(ii) r{x, y) <c 0 implies x = y; 

(iii) r{x,y) = r{y,x)\ 
(iv) r(x, z) <c r(x, y) + r{y, z). 

Let -B(O) denote a neighborhood base of the zero element of Y. Let 

X{U, a) = {xeX: r{a, x) eU), Ue B(0), a e X. 

If {X{U,a) : U G jB(0),a G X} form a neighborhood base for a Hausdorff 
topology on X, then the resulting topology is called the Hausdorff topology 
induced by r. We denote by (X, r) the Hausdorff space with its topology 
induced by r. If (X, r) is complete, we say that (X, r) is a complete C metric 
space. 
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Remark 4'^' (i) We have slightly modified the definition of C metric r in 
Nemeth [151]. If C is pointed, then our definition of C is the same as the 
one in Nemeth [151]. 

(ii) Generally speaking, a C metric r function may not induce a Hausdorff 
topology on X unless some special assumption is made on C. 

We assume that X is a topological vector space, y is a topological vector 
space ordered by a nontrivial convex set C, CQ € C\{0}, / : X —> y is a 
vector-valued function. 

Let [/ be a closed subset of X. We say that f is C lower semicontinuous 
(l.s.c.) on U if, for any y EY, the set {x GU : f{x) G y — clC} is closed. 

We say that / is C order bounded below (some times, we call it C bounded 
below or C lower bounded) on U if f{x) >c yo^^ix £U for some yo G Y, 

f is said to be (CQ, C) lower semicontinuous on U if, for any t G IR, the set 
{x £U '. f{x) £ tco — clC} is closed. 

/ is called submonotone (with respect to C) if, from the conditions: 

(a) lim^x^ = X, where {x^}^^i is a net in X, (7, <) is a totally ordered set; 

(6) f{xv) <c fiXfj,), whenever i; > /i, 

it follows that f{x) <c f{xv)yv G / . 
If C is a closed and convex cone, then it is not difficult to see that if / is 

l.s.c on X, then / is both {CQ^ C) l.s.c. and submonotone (with respect to C). 

Example 44. Let U = [-2,2] C IR and C = IR+. Let / = (/i, /s) : C/ -^ IR^ 
be defined as follows: 

/ i (^) =x^ 
x^ if xG [ -2 , -1] , 
x + 3, i fxG (-1,1) , 
1/2, i f x = : l , 
^2, i f x G ( l , 2 ] . 

f2{x) = I 

Then / is ((3/2,2), C) l.s.c. on U. 

Now we state several forms of Ekeland's variational principle for vector-
valued functions and some of their corollaries obtained by Nemeth [151], Tam-
mer [185] and Isac [111]. 

Definition 4.5. Let M be a subset of Y, and H be a subset of C. A point 
X £ M is called an H near to minimal point of M if 

{x-H-C)nM = 0, 
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First, we introduce Tammer's variational principle for vector-valued func­
tions. 

Let K he a, nonempty closed subset of X and C be a convex subset of Y. 

Definition 4.6. Let e > 0. ^ point x^ e K is called an e-minimal solution of 
f on K if 

fix) - fix,) + ec° ^c\{0} 0, Vx G U, 

Definition 4.7. Let e > 0 and intC ^ 0. A point x, E K is called a weakly 
e-minimal solution of f on K if 

fix) - fix,) + ec"" %intc 0, Vx G K, 

The following assumption is made. 

Assumption 4.8. C and D are proper subsets of Y and CQ is an element of 
Y \ {0}. The following conditions hold: 

(a) C is an open convex subset of Y with 0 G clC \ C and 

Y = U{clC -^ aco\a e M}. 

(b) acoeD\ {0} for each a G iR+, and OGclD\ D, 
(c) clC + iD\{0}) C C, 
(d) dC + dCc clC. 

Theorem 4.9 (Tammer [185]). Let Y be a topological vector space and X 
be a real Banach space. Let Assumption 4-S hold. Assume that f : X —^ Y is 
(co, C) l.s.c. and C bounded below on U. 

Given e > 0, XQ is a weakly e-minimal solution of f on K. Then there 
exists an X, E K such that 

( i ) / (x ) - / (xe ) + 6 c V - ^ \ { 0 } , yxeK; 
(ii) ||xe-Xo|| < ^/e; 

(iii) fix) - fix,) + Vi| |x - x,\\c^ ^ -D\{0}, Vx G K. 

The following corollary can be obtained by replacing both C and D in 
Theorem 4.9 by intC. 

Corollary 4.10 (Tammer [185]). Assume that C is a convex cone with 
nonempty interior and CQ G intC. Assume that f : X ^^ Y is (co,C) l.s.c. 
and C bounded from below on K. 

Given e> 0, XQ is an e-minimal solution of f on K. Then there exists an 
X, G K such that 

(i) X, is a weakly e-minimal solution of f on K; 
(ii) | | x e - x o | | < yfe; 

(iii) fix) - fix,) + y i | | x - x,\\c^ ^intc 0, Vx G K. 
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Second, we present Isac's vector variational principle. 

Theorem 4.11 (Isac [111]). Let {X,d) be a complete metric space, Y a 
locally convex Hausdorff space and C C Y a normal cone. Let c^ £ C\{0}; 
and e > 0. Assume that x* e X satisfies 

( i ) / (x ) - / ( x * ) + e c V c 0, Vx G X; 
(ii) Vx G X, a > 0, the set {y eY : f{y) - f{x) + ad{x, y)c^ <c 0} is closed. 

Then there exist Ai > 0, and x' £ X such that 

(iii) f{x') <c f{x% 
(iv) d(x',x*) < Ai, 
(v) f{x) - fix') + e/Aid(x', xy ^c 0, Vx G X\{x'}. 

Theorem 4.13 below is a variant of Theorem 6.1 of Nemeth [151]. To prove 
it, we need the following lemma. 

Now, let X be a topological space and Y a locally convex Hausdorff space, 
C C F a convex cone with nonempty interior intC. 

Lemmia 4.12. Let Co C C be C bound regular complete. Assume that there 
exists U G B{0) such that H = Co\U ^ 0 and that there exists x* e X such 
that (/(x*) — C) n f{X) is C bounded below. Then, for any €> 0, there exists 
an x'^ e X such that 

(i) f{x[) <c fix*); 
( i i ) ( / « ) - e i 7 - C ) n / ( X ) = 0 . 

Proof We prove it by contradiction. Suppose that 3e > 0 such that the conclu­
sion of Lemma 4.12 does not hold. Then, for xi = x*, ( / (x i ) -e iJ—C)n/(X) 7̂  
0 , i.e., 3x2 G X, /ii G if such that 

/ ( x 2 ) - / ( x i ) + e / i i < c 0 . 

For X2, 3x3 G X, /i2 ^ if such that 

f{x3)-f{x2) + eh2<c0. 

Continuing the process, for x/c, 3x^4-1 e X, hk £ H such that 

f{xk+i) - f{xk) + ehk <c 0, 

we have 
k 

/(xfc+i) - / (x i ) + 6 ^ /i, < c 0, VA: G N. 
i=l 

Since (/(x*) — C) (1 f{X) is C bounded below, it follows that 3?/o G Y such 
that f{xk) >c yo, yk G N. So i n ^ i hi} is Co increasing, C bounded. Hence 
{^i=i hi} is convergent. Consequently, hk EU when k is large enough, which 
contradicts the assumption H = Co\U. • 
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Theorem 4.13. Let C he a nontrivial closed and convex cone, Co C C a 
convex cone which is C bound regular complete and Co fl —C C —Co- Let 
(X, r) be a complete Co metric space. Let r{'^a) be continuous with respect to 
the topology of X induced by r for any a E X. Let f be submonotone (with 
respect to C and the topology of X induced by r). Assume that there exists an 
X* e X such that 

(i) (fix*) -C)n f{X) has a C lower bound. 

Then, for any e > 0, there exists Xe such that 

(ii) fix*) - fix,) - €r{x\xe) >c 0, 
(iii) fix,) - fix) - erix,, x) ^c 0, Vx G X\{x,}. 

If there exists C/ G -B(O) such that H = Co\U ^ 0, then there exists x'^ G X 
such that 

(iv) fix',) <c fix*), 
( v ) ( / ( x ' J - 6 f l - - C ) n / ( X ) = 0. 

For Xg as above, there is an x'l G X such that 

(vi) / « ) - fix) - erix'l, x) tc 0, Vx G X\{x ' /} ; 
( v i i ) r ( x ^ , O G [ / . 

Proof. Define a relation -( on T = {(x,/(x)) G X y.Y \ x G XJix) <c 
fix*) - erix\x)} by putting (x, fix)) ^ iy, fiy)) iff 

f{y) - fipc) - er(x, y) >c 0. 

It is easy to see that ^ is a partial order on T. Applying the Hausdorff 
maximality principle, we have a subset Zi of T, which is maximal with respect 
to the set inclusion relation, and also totally ordered with respect to ^ , with 
(x*,/(x*)) as its upper bound (with respect to the order -<). We will show 
that Zi contains its infimum with respect to -<. 

We introduce the relation < on XQ = {x G X : (x, fix)) G Zi} by putting 
x < y iS (x, fix)) -< (2/, fiy))- Then Xo is totally ordered with respect to <. 
Now let us demonstrate that the filter of its lower section (for the concept of 
the lower section of a totally ordered set and the concept of the filter of its 
lower section, the reader may refer to [122]) is Cauchy by contradiction. 

Suppose that there exists a neighborhood U' of 0 such that, for each z G 
Xo, 3x,y G Xo with x < z^y < z such that 

rix.y) ^ U'. 

Suppose that x <y. Put vi = y^V2 = x. Then riv2,vi) ^ U' and 

fivi) - fiv2) - eriv2,vi) >c 0. 

Starting with x instead of z, we can continue this procedure. As a result, we 
can obtain a decreasing sequence {vk} in Xo such that 
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r{v2k.V2k-i)iU', Vfc. (4.1) 

From the definition of < on XQ, we also have 

f{vk) - f{vk+i) - er(t;fc-Hi, Vjfc) >c 0, "ik. 

So we have 
k 

/ ( ^ i ) - / K + i ) - e'^rivi+i.Vi) >cO. 

Since 

/K )€ ( / ( x * ) -C )n / (X ) , Vfc, 
by (i), the sequence {f{vk)} has a C lower bound, say i/o? i-̂ -? 

/ K + i ) - 2 / o > c 0, 

this relation yields 
k 

f{vi) -yo -eY^r{vi^i,Vi) >c 0, 

k 

which shows that V^ r{vi-^i,Vi) are C order bounded. This simply contradicts 
i=l 

(4.1). 
The contradiction shows that the lower section of XQ forms a Cauchy filter, 

which converges by the completeness oi X to Xe ^ X. 
Since / is submonotone with respect to C, we have 

f{p) - f{xe) >c 0, for every p G XQ. (4.2) 

Let p be an arbitrary point in XQ. For every p < g, we have 

m-m-er{p,q)>cO, 

which, together with (4.2), yields 

fiq)-f{xe)-er{p,q)>cO. 

Letting p ^ Xe in this relation and taking into account the fact that C is 
closed and r(-,g) is continuous, it follows that 

f{q) - fi^e) - er{xe, q) >c 0, 

that is, (xe,/(Xe)) -< {q,f{q)), for each q with {q,f{q)) G Zi. Now that Zi is 
maximal, (x^, f{x^)) must be in Zi and it is the infimum of Zi with respect 
to -<. 
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The last assertion implies also that there does not exist any v in X\{xe} 
such that 

{Vj{v)) ^(Xe,/(Xe)). 

Thus (ii) and (iii) have been proved. 
If H is defined as in the theorem, then by Lemma 4.12, then we deduce 

the existence of x^ such that (iv) and (v) hold. If we proceed as above taking 
x'^ in place of x*, then we can get an x'^ so as to have (iii) and (ii) with x'/ 
instead of x[, that is, to have the relation 

/ « ) < c / « ) - e r ( x ' ; , < ) . (4.3) 

Suppose that (vi) does not hold. Then, we have r{x'^,x^^) G Co\?7 = H, 
that is, 

/ « ) - er{x',, x'l) -C = fixi) -eH-C, 

this relation together with (4.3) contradicts (v). • 

Remark 4'H' (i) Theorem 4.13 is slightly different from Theorem 6.1 in 
Nemeth [151]. We do not require that C be pointed and normal. 

(ii) If the relation -< is defined on f{V) as that in Nemeth [151]: 

V/(^i), f{v2) e f{V), f{vi) ^ f{v2) iff f{vi) - f{v2) + r{vi, V2) <c 0. 

This relation may not be well-defined. For example, V = [—1,1] C IR, £" = 
IR,C = Co = IR^ = {t e ]R : t > 0},r{vi,V2) = \vi - V2l\fvuV2 e 
VJ{v) = v\\lv e V. Observe that / ( - I ) = / ( I ) = 1 G f{V),f{1/2) = 
1/4 e f{V), Thus, 

/(1/2) - / ( I ) + | l /2 - 1| = 1/4 <c 0, (4.4) 

hence 1/4 -< 1 holds. 
However, 

/ (1/2) - / ( - I ) + | l /2 - (-1)1 = 3/4 ^c 0, (4.5) 

hence 1/4 -< 1 does not hold. (4.4) and (4.5) lead us to confusion about 
the relation -<. 

Now we will take a unified approach to the above three vector variational 
principles: Nemeth's, Tammer's and Isac's vector variational principles, and 
we will explore the relationship between the unified principle and the three 
principles (or their variants). 

Theorem 4.15. Let C be a convex cone, Co C C be a C bound regular com­
plete convex cone and Co H —C C —Co- Suppose that (X, r) is a complete Co 
metric space. Assume that one of conditions (i) and (ii) holds 

(i) / is submonotone (with respect to C) and C is closed and, Va G X, r(-, a) 
is continuous with respect to the topology of X induced by r, 
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(ii) Va > 0, Vx € X, {y G X : f{y) + ar{x, y) - f{x) <c 0} is closed. 

Furthermore, assume that there exists an x* e X such that 

(iii) {f{x*) -C)n f{X) is C lower bounded. 

Then, for any e > 0, there exists an Xe ^ X such that 

(iv) /(x*) - f{xe) - er(x*,Xe) >c 0; and 
(v) f{xe) - fix) - er(xe, x) tc 0, Vx G X\{xe}. 

/ / there is a U e B{0) such that H — Co\U ^ 0, then there exists x[ e X 
such that 

(vi) / « ) <c fix''); and 
( v i i ) ( / ( x ' J - 6 i / - C ) n / ( X ) = 0. 

For x\ as above, there exists an x" G X satisfying 

(viii) fix':) - fix) - e r « , x) ^c 0, Vx € X\{x':}; and 
( i x ) r « , O G f / . 

Proof By Theorem 4.13, if (i) holds, then Theorem 4.15 is true. 
Now we assume that (ii) holds. We follow the proof of Theorem 4.13. We 

need only to show that ix^fix^)) is an infimum of Zi with respect to the 
relation "-<" defined in the proof of Theorem 4.13. Taking a = e in (ii), we 
know that Vx G XQ, X(a;) = {y e X : y < x} = {y e X : fiy) - fix) + 
€r(x, y) <c 0} is closed. So 

fixe) - fix) + er(xe, x) <c 0, Vx G XQ. 

That is, (xe,/(xe)) -< (x,/(x)) in Zi. Since Zi is maximal, (xe,/(xe)) must 
be in Zi, so (xe, fixe)) is an infimum of Zi with respect to -<. The rest of the 
proof is the same as that of Theorem 4.13 with only some notation changes.• 

It is easy to see that Theorem 4.15 is stronger than Theorem 4.13, hence 
also stronger than Nemeth's vector variational principle (Theorem 6.1 in 
Nemeth [151]). 

Lemma 4.16. Let iX,d) be a complete metric space, C be a convex cone 
and c^ G C\{0} be such that there exists a X e C* with A(c*) > 0. Let 
Co = {ac^ : a > 0}, r(a;, y) = c?(x, y)c^, Vx, yeX. Then 

(i) Co is a C bound regular complete convex cone; 
(ii) (X, r) is a complete Co metric space and Va G X,ri',a) is continuous; 

and 
(iii) Co n - c c -Co. 
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Proof, (i) Co is complete. In fact, for any Cauchy net {a^c^}, and any U € 
5(0), 3VQ such that a^^c^ —ay^c^ G U whenever VI^V2>VQ. Given A G C* such 
that A(c°) > 0, \av^ — av^\ = X{u)/X{c^) for some u GU. As X is continuous, 
it is easy to see {ay} is a Cauchy net, and {ay} converges to some ao > 0. 
Hence, {ayC^} converges to aoc^. Now we prove that Co is C bound regular. 
Given a monotonically increasing net {ayC^} C Co, i.e., ay^ > oty^., whenever 
v\ > V2, and it is C bound, i.e., 3c^ G C such that ayC^ <c c^, Vt', then, given 
A G C* with A(c°) > 0, we have ayX{c^) < A(c^), which implies that {ay} 
is bounded. This combined with the monotonicity of {ay} yields that {ay} 
converges to ao. So ayC^ -^ aoc^ G Co. Moreover, it is obvious that Co is a 
convex cone. 

(ii) It is not hard to see that (X, r) is a Co metric space and the topology 
induced by r is equivalent to that of {X,d). So (X, r) is Co complete. It is 
easy to see that Va G X,r(-, a) is continuous since d{',a) is continuous. 

(iii) If ac^ £ —C, then A(ac^) = aX{c^) < 0, which implies a < 0. Hence 
a = 0, i.e., ac° = 0 G -Co. • 

Corollary 4.17. Let {X,d) be a complete metric space, C a convex cone, 
c° G C\{0} be such that 3X G C* with A(c°) > 0. Let f : X ^ Y be C order 
lower semicontinuous. Given e > 0, x"" e X satisfying 

(iv) {fix"") — C) n f{X) is C lower bounded; and 
(v) fix) - fix"") + ecO ^c 0, Vx G X. 

Then for any Ai > 0, there exists an x' e X such that 

(vi) fix') <c fix*); 
(vii) c?(ci:',a:*) < Ai; and 

(viii) f{x) - fix') + 6/Aid(x',x)cO ^c 0,Vx G X\{x'}. 

Proof. Replacing r(x,y) with (i(x,y)c°/Ai, choosing U such that c^ ^ U and 
A('u)/A(c°) < 1 for any u eU, letting H = Co\U {Co is as defined in Lemma 
4.16) and applying Lemma 4.16 and Theorem 4.15, we can establish Corollary 
4.17. • 

The following Corollary 4.18 improves Theorem 4.11. 

Corollary 4.18. Let iX,d) be a complete metric space, C a convex cone, 
c^ G C\{0} be such that there exists a X e C* with A(c^) > 0. Given e > 0, 
there exists an x* e X satisfies 

(iO fix) - fix'') + ecO ^c 0, Vx G X; 

and (/(x*) — C ) n / ( X ) is C lower bounded. Let (ii) in Theorem 4-1^ hold (or 
f is submonotone with respect to C and C is closed). Then for any Ai > 0; 
there exists an x' £ X such that (iii),(iv) and (v) in Theorem ^ . i i hold. 

Since the proof of Corollary 4.18 is the same as that of the Corollary 4.17, 
we omit it. 
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To illustrate the relationship between Corollary 4.17 and Theorem 4.11, 
Corollary 4.18 and Theorem 4.13, we prove the following two lemmas. 

Lemma 4.19. If C is a closed and convex cone, then the following two state­
ments are equivalent: 

(ix) c^ G C\{0}, 3A G C* such that X{c^) > 0; 
(x) c^ G C\{-C). 

Proof Assume that (ix) hold. Then, by A(c^) > 0, we know by contradiction 
that c^ eC\- C, i.e., (x) holds true. 

Now we assume that (x) holds. We prove, by contradiction, that (ix) holds. 
Suppose that VA G C\ X{c^) = 0. Then c^ G ( C * ) * = C. In addition, X{-c^) = 
0, VA G C*, which implies that -c^ G (C*)* = C, i.e., c^ G -C. Hence 
c° G C n ( -C) , contradicting (x). • 

Lemma 4.20. The following statements are true. 

(xi) If C is a nontrivial, pointed, closed and convex cone, then Vc° G C\{0}, 
3A G C* such that A(c°) > 0; 

(xii) If C is a normal cone, then Vĉ  G C\{0}, 3X G C* 5̂ ĉ/i that A(c°) > 0; 

(xiii) If C is a nontrivial convex cone with nonempty interior intC, then Vc° G 
mtC, V A G C * \ { 0 } , A ( C O ) > 0 . 

Proof (xi) When C is a nontrivial pointed, closed and convex cone, by Lemma 
4.19, we know (xi) holds; 

(xii) When C is a normal cone, Y* = C* — C*. We show that by contra­
diction that (xii) holds. Otherwise, suppose 3c° G C\{0} such that VA G C* 
A(c^) = 0. Then V̂u G F*, /i(c^) = 0, hence c° = 0, which contradicts c° ^ 0. 
Hence (xii) holds. 

(xiii) c^ G intC ^ 0 . We prove that VA G C*\{0}, A(c°) > 0. Otherwise, 
if Ao G C*\{0} such that Ao(c°) = 0. Let ZOGY with 

Ao(;̂ o) > 0. (4.6) 

As c^ G intC^ c^ — SZQ G C when 5 > 0 is small enough. Hence Ao(co — SZQ) > 
0 = ^ Ao(2:o) < 0, contradicting (4.6). So (xiii) holds. • 

Remark 4-21. By Lemma 4.19 and Lemma 4.20, the assumptions on the dom­
inating cone C in Corollary 4.17 and Corollary 4.18 are much weaker than 
those in Theorem 4.11 and Theorem 4.13. 

Remark 4-22. (i) If / is C lower bounded, then (v) in Corollary 4.17 holds 
automatically; 

(ii) So long as we slightly strengthen the conditions of Tammer's vector vari­
ational principle (Corollary 4.10): let f he C order lower semicontinuous. 
We can have a stronger version of Tammer's vector variational principle 
(see Corollary 4.10) by setting Ai = v^e, c° G intC. 
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Remark 4.23. It is obvious that (i) in Theorem 4.11 implies (i') in Corollary 
4.18. Hence, if (ii) in Theorem 4.11 holds, then Corollary 4.18 is an improve­
ment of Isac's vector variational principle. 

Now we show other generalizations of Isac's vector variational principle 
(see Isac [111]). 

Let (X, d) be a complete metric space, and let (F, C) be an ordered Haus-
dorff topological vector space in which the ordering is induced by a closed and 
convex cone C with nonempty interior. 

Definition 4.24. We say that a vector-valued function $ : X x X —^ Y is a 
half distance if the following properties are satisfied: 

i. ^(x ,x) = 0, \/xeX', 
2. ^(x, y) <c ^(x, z) + ^(z, 2/), Vx, y.zeX. 

The family of half distance is not empty (see Isac [111]). For example, every 
distance measure is a half distance and for every g : X -^ Y, the function 
defined by 

^(^,y) = 9{y) -9{x)^ Mx.yex 

is a half distance. Moreover, if L is an arbitrary vector space and T : L ^^Y 
is a subadditive function such that T(0) = 0, then, for every h : X ^^ L, the 
function defined by 

0{x,y) = Tihiy)-h{x)), Vx,y€X, 

is a half distance. Thus, the family of half distance is a rich one. 

Definition 4.25. Let F : X ^ X be a dynamic system, x* e X is said to be 
a critical point of F «/{x*} = F{x*). 

The following theorem about the existence of a critical point will be used. 

Tiieorem 4.26 (Dancs-Hegedus-Medvegyev [50]). Let {X,d) be a com­
plete metric space and F : X :=:t X be a dynamic system. If the following 
conditions are satisfied: 

(i) F{x) is a closed set, Vx G X; 
(ii) xeF{x),yxeX; 

(iii) X2 e F{xi) = > F{x2) C r(xi),Vxi,X2 G X; 
(iv) for every sequence {xk}keN C X satisfying Xk-^-i G F{xk), we have 

lim d{xk,Xk^i) = 0. 

Then, F has a critical point x* e X. Moreover, for any x G X, there is a 
critical point of F in F{x). 
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Let us recall the nonlinear scalarization function ^ca discussed in Chapter 
1: For c G mtC, a EY^ the nonlinear function is defined by 

^ca{y) = min{t G IR : 2/ G a + tc - C}, Vy G F. 

We know that £^ca is convex, continuous, increasing and strictly increasing. 
Now we set a = 0, denote ^co by <̂c for simplicity. In this case, (^c is 

subadditive, convex, continuous, increasing and strictly increasing. 
Next theorem is a generalization of the Ekeland's variational principle 

for a vector-valued function and an improvement of Isac's vector variational 
principle (see Theorem 4.11). 

Theo rem 4.27. Let (X, d) he a metric space and ^ : X x X ^^ Y be a 
half distance. If, for any element c^ G intC, the following assumptions are 
satisfied: 

(i) for any x G X, the set {y e X : <^(x, y) + c^d{x, y) <c 0} is closed; and 
(ii) there exist VQ E X and WQ eY such that ^{VQ, X) >C WQ^WX G X, 

then there exists an x* G X such that 

^{x\x)-\-c^d{x\x) ^c 0, Vx G X\{x*}. 

Proof Consider the dynamic system 

r{x) = {yeX: ^{x, y) + c''d{x, y) <c 0}, Vx G X. 

The claim is proved if we show that F has a critical point in X. To this aim, it 
is suflScient to verify the assumptions of Dancs-Hegdus-Medvegyev Theorem 
(Theorem 4.26). 

From assumption (i), we have that F{x) is closed Vx G X, that is, (i) 
of Theorem 4.26 is satisfied. Using the properties of d and ^ , we have that 
X G F{x)^ Vx G X which means that (ii) of Theorem 4.26 is also satisfied. To 
verify (iii) of Theorem 4.26, we consider two elements Xi,X2 G X such that 
X2 G F{xi). We need to show that F{x2) C F{xi). It follows from X2 G F{xi) 
that 

(ii) ^(xi , X2) + c^d{xi, X2) <c 0. 

Let z G r(x2) . Then 

(ia) ^{X2,z) + c^d{x2,z) < c 0. 

We will have z G r '(xi) if we show that 

^{xi,z)-Vc^d{xi,z) <cO . 

From (ii), there is an element ci G C, such that 

^(x i ,X2) +C°(i(xi,X2) = - C i , 
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and from (22), there is an element C2 G C, such that 

^{X2, Z) + C^d{X2, Z) = - C 2 . 

Since ^ is a half distance, there is an element C3 G C, such that 

^ ( X i , Z) = ^ ( X i , X2) + ^ ( X 2 , Z) - C3. 

Moreover, it is obvious that there exists an element C4 G C such that 

c^d{xi, z) — c^d{xiy X2) + c^d{x2, z) — C4. 

Thus, we have 

^{xi,z) -^ c^d{xi,z) 

= ^ ( X i , X2) + ^ ( X 2 , Z) - C3 + C^d{xi, Z) 

= ^{Xi, X2) + ^{X2, Z) - C3 + C^d{xi, X2) + C°d(x2, Z) - C4 

= - C i - C2 — C3 — C4 <c 0, 

which shows that r{x2) C /^(xi). Then (iii) of Theorem 4.26 is satisfied. To 
verify (iv) of Theorem 4.26, we consider a sequence {xk}k^N C X, such that 
^/e+i G r{xk), Wk e N with an arbitrary xi in X. We have 

^{xk, Xfc+i) + c^d{xk, Xfc+i) < c 0, VA:. 

Thus, we have 

k 

^ ( ^ ( x i , Xi^i) + c°c((xi, Xi+i))) < c 0, Vfc. 
2 = 1 

Since (fco is increasing, we get 

^c0(^(XA;,X/c + l ) ) + C°C?(Xfe,XA;^_l)) < 0, \/k. 

As ^ is a half distance and ^c^ is increasing, we deduce that 

k 

<^co(^(^(xi,Xi+i) + c^d{xi,Xi^i))) < 0, VA:. 
i=l 

Thus, 
k 

^co(^(xi,Xifc+i)) + ^c i (x i ,Xi+i ) < 0, Vfc. 

That is, 
k 

J2d{xi,Xi^i) < -^co(^(xi,Xfc+i)), VA;. (4.7) 
2 = 1 
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Since ^{vo,Xk+i) <c ^(vo,3;i) + ^{xi,Xk-\-i), we have 

- ^ ( x i , Xfc+i) <c ^(^0, ̂ i) - ^ K , ^fc+i), Vfc. (4.8) 

By (4.7) and (4.8), we obtain 

^d{xi,Xi-^i) <^co{^{vo,xi) -^{vo,Xk-^i)), \/k. 
i=i 

By assumption (ii), we have 

k 

^d{xi,Xi-^i) <^co{^{vo,xi)-wo), Wk. 

k 

We denote 5^ = y^d{xi,Xi-^i). Since the sequence {sk}keN is monoton-
i=l 

ically increasing and bounded above, it is a convergent sequence. Thus 
CX) 

2^d{xi^Xi-^i) is a convergent series. Hence the sequence {d{xk^Xk-\-i)}keN 
i=l 
converges to 0. Thus we have shown that assumption (iv) of Theorem 4.26 
is satisfied. By Theorem 4.26, F has a critical point in X, and the proof is 
complete. • 

Corollary 4.28. / / all the assumptions in Theorem 4-27 are satisfied, then 
3x* E r{vo), such that 

^{x\x) + c^d{x\x) £c 0, Vx G X\{x*}, 

where r{x) = {y £ X : ^(x, y) + c^d{x, y) <c 0} and the element VQ is the 
same as the one in Theorem 4.21. 

Proof. By the second conclusion of Theorem 4.26, there exists a critical point 
of r in r{vQ). Thus, the conclusion follows from Theorem 4.27. • 

Next we will present an alternative version of vector variational principle 
which has a close relation to the e-minimal solution of vector optimization 
problems. 

Definition 4.29. Let A <zY and e > 0. An element ye E A is said to be an 
e-minimal point of A with respect to c^ G intC if there exists no element y of 
A such that 

Ve Gy+C,cO, (4.9) 

where C^cO = ec° + C\{0}. 

We will denote the set of all e-minimal points of A with respect to c^ by 
Mineco(A). 
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Lemma 4.30. If ye G Minec'^{A), then 

ĉo {y-ye)> -Lo (ec°) = - e , Vy G A. 

Proof. Observe that ye G Mec^ (A) is equivalent to 

A n { 2 / e - 6 C ^ - C \ { O } } - 0 , 

( A - 2 / e ) n { - e c ° - C \ { O } } = 0 . 

By the properties of ^c^, we have 

^co{y-ye)> - 6 , \/y eA.y^ye- ec°. 

Thus 
ĉo(2/ - ye) > -^co (6c°), WyeA.y^ye- ec^. 

Then 
^co(y-2/e)>-^co(ec°), VT/G A 

• 
Lemma 4.31. Let (X, d) be a metric space, let f : X -^Y be a vector-valued 
function. Given e> 0, let Xe G X and 

Lo{f{xe)) < ^co{f{x)) + V~ed{xe,x), Vx G X,X ^ x^. (4.10) 

Then f{xe) G Mincifec^iX)), where fed^{x) = f{x) + y/ed{xe,x)c^,yx G X. 

Proof It follows from (4.10) that 

^ c o ( / ( ^ ) + V ^ c / ( X e , x ) c ^ - / ( X e ) ) 

= <^co(/(x) - / ( X e ) ) + V ^ d ( X e , x ) 

> L^{f{x)) + Ved{Xe,x) - ^co{f{Xe)) 

> 0 . 

Thus, 

fix) + x / i d ( x „ X)C° - f{Xe) ^C 0, VX 7^ Xe. 

Sof{Xe)eMmc{feco{X)). • 

Theorem 4.32. Let (X, d) 6e a complete metric space, and let (Y, C) be an 
ordered Hausdorff topological vector space with intC ^ 0. Let f : X ^^ Y be a 
vector-valued function and C bounded below. Assume that, for a given e > 0 
and for every x e X, the set 

{yeX: f{y) - fix) + Ved{x, y)c'' <c 0}, 

is closed. 
Then, for every point x^ G X satisfying /(x°) G Mineco {f (X)), there exists 

a point Xe G X such that 
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1. fix.) <c / (x°) ; 
2.d{x^,x)<^; 
3. hAx,) e MincihAX)), 

where fccf>{x) = f{x) + ^/ed{x.,x)c°,'ix e X. 

Proof. Since f{x°) G Mineco(/(X)), by Lemma 4.30, Va; € X, 

^co( / (x) - / (a :° )>-eco(ec°) = - e . 

Let 
^{x.y) = iAfiy) - f{x)), x,yGX. 

Thus, assumption (ii) of Theorem 4.27 is satisfied since ĉo is subadditive, 
^(x, y) is a half distance and (̂  : X x X —» IR is a real-valued function. 
Observe that 

/ ( 2 / ) - / ( x ) + v^c/(x,y)c°<cO, 

is equivalent to 
fiy)-f{x)<c-Ved{x,yy. (4.11) 

By the properties of ^c^, we have that (4.11) holds if and only if 

^co{f{y)-f{x))<-V~€d{x,y), 

if and only if 
^{x,y) + ^d{x,y)<0. 

By the closedness of the set {y e Y : f{y) — f{x) + ^d{x,y)c^ <c 0}, 
the set {y : ̂ (x, y) + y/ed{x, y) < 0} is closed. Hence the assumption (i) of 
Theorem 4.27 is satisfied. Then it follows from Corollary 4.28 that there exists 
Xe e r{x^) = {y eX : ^(x°, y) + y/ed{x^, y) < 0}, such that 

^(xe, x) + y/ed{xe, x) > 0, Vx G X, X 7̂  Xe. (4-12) 

Since x^ G r (x° ) , 

ico{f{Xe) - / ( X ° ) ) + x/icZ(x^Xe) < 0. 

It follows that 
^co ( / ( a ; e ) - / (x° ) )<0 . 

Therefore, 
f{Xe) <C fix°). 

Moreover, by Lemma 4.30, 

e c o ( / ( a ; e ) - / ( x ° ) ) > - e . 

Thus, ^/ed{x°,x.) < e, i.e., d{x°,Xe) < y/e. Finally, by (4.12), we obtain that, 
for any x £ X and x ^ Xe, 

^ c o ( / ( x ) - fix,)) + y i d ( X e , X ^ ) > 0, 

implying 

(fix) + V^diXe, X)C°) n ( / (Xe) - C \ { 0 } ) = 0 , VcC € X , X 76 X^. 

Hence, f{x,) € Minc(/eco(X)). • 
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4.2 Variational Principles for Set-Valued Functions 

In this section, we introduce the concept of approximate optimal solutions for 
set-valued functions and provide a sufficient condition for the existence of ap­
proximate optimal solutions for set-valued functions. We present a variational 
principle for set-valued functions. 

Let X be a nonempty set, Y a locally convex Hausdorff space, C C F a 
nonempty, nontrivial, pointed, closed and convex cone with nonempty interior 
intC. Let e G intC. 

A set-valued function F : X :=4 Y is said to be proper if dom{F) = {x e 
X : F{x) 7̂  0 } ^ 0 . 

Definition 4.33. Let F : X ^ Y be a set-valued function, and e > 0. 4̂ 
point x'*' e X is said to be an e-minimal solution of F on X, if there exists a 
y* e F(x*) such that 

( i ) (F (x*) -2 /* )n ( -C\{O}) = 0; 
(ii) (F(x) - y* + ee) n (-C\{0}) = 0 , for all x e X\{x*}. 

A set-valued function F : X =t 1̂  is said to be C order bounded below on 
X ii3y GY such that 

F{x) -y CC, for all x e X. 

If dom{F) = 0 , then F is always regarded as being bounded below. 

Theorem 4.34. IfF : X ^Y is proper, compact-valued and C order bounded 
below, then, for any €> 0, there exist an x* e X and a y* e F{x*) such that 

( i ) (F (x*) -2 /* )n ( -C\{O}) = 0; 
(ii) {F{x) - y* + ee) H (-C\{0}) = 0 , Vx G X\{x*}. 

Proof We prove the conclusion by contradiction. 
Suppose that there exists a real number eo > 0 such that the conclusion of 

this theorem does not hold. Arbitrarily take an xi G dom{F) and a yi G F{xi). 
Since F{xi) is compact, by the domination property of the compact set F{xi), 
there exists a y[ G Mmc{F{xi)) such that y[ — y e -C. At this time, (ii) 
cannot hold with y* replaced by y[. So, there exist X2 G X and 2/2 ^ ^(^2) 
such that 

2/2 - 2/1 + eoe < c 0. (4.13) 

Since F{x2) is compact, we deduce that there exists a 2/2 such that 2/2 ^c 2/2 
and 2/2 ^ Mmc{F{x2)). This combined with (4.13) yields 

2/2 - 2/1 + ^oe <c 0. 

Once again, for 2/2? (ii) does not hold. We deduce 3^3 G X and 2/3 G 
Mmc{F{x3)) such that 
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2/3 - 2/2 + ^oe <c 0. 

Hence, 

k 

Yl(yi - Vi-i + ^oe) - y^ - y'l + (/c - l)6oe <c 0, VA: > 2. 
i=2 

This implies 
( 2 / ) ^ - y i ) / ( ^ - l ) + ^oe<cO, A:>2. 

Since F is C order bounded below, 3y e Y such that y^ — V ^ c 0? for ^H 
k G N. So we have 

(2/ - 2/'i)/(fc - 1) + ^oe < c 0, for all k>2. 

Letting fe —> oo, we have eoe <c 0, which is impossible. • 

From Theorem 4.34 and Definition 4.33, we obtain an existence result of 
an 6-minimal solution of F on X. 

Theorem 4.35. IfF : X ^Y is proper, compact-valued andC order bounded 
below, then for any real number e > 0, the set of e-minimal solutions of F on 
X is nonempty. 

Theorem 4.36. Let (X, d) be a complete metric space, and Y a locally con­
vex Hausdorff space, C a nontrivial, pointed, closed and convex cone with 
nonempty interior intC and e G intC. Let F : X =^ Y be a set-valued func­
tion satisfying 

(i) F is proper and compact-valued on X; 
(ii) F is u.s.c, on X and bounded below on X. 

Given a real number e > 0, two points xi G dom{F) and yi G F(xi) such that 

( i i i ) ( F ( x i ) - y i ) n ( - C \ { O } ) = 0; 
(iv) {F{x) - 2/1 + ee) n (-C\{0}) = 0 , for all x G X\{xi}. 

Then, for any real number A > 0, there exist X2 G dom{F) and 2/2 ^ ^(^2) 
such that 

(v) 2/2 <cyi\ 
(vi) d{xi,X2) < A; 

(v i i ) (F(x2) -2 /2)n( -C\{O}) = 0; 
(viii) (F(x) - 2/2 + ee) n (-C\{0}) = 0 , for all x G X\{x2}. 

(ix) (F(x) - 2/2 + e/\d{x, X2)e) fl ( -C) = 0 , for all x G X\{x2}. 



4.2 Variational Principles for Set-Valued Functions 203 

Proof. We consider a set-valued function Fi : X :=XY: 

Fi{x) = {y£ Fix) : y <c yi] = F{x) n (yi - C). 

By the assumptions of this theorem, we know that Fi is also proper (since 
2/1 ^ ^ i (^ i ) 7̂  ^)? compact-valued and C order bounded below. 

Now we define a real function as 

ff^\ ^ f "^in{^e(y - yi) : y G Fi(x)}, xe dom{F); 
^^^^ [+00, x^dom{F). 

We will show that / : X -^ IR U {+00} is proper, lower semicontinuous 
and bounded below. In fact, if Fi{x) = 0 , then f{x) = +00; if Fi{x) 7̂  0 , 
—00 < f{x) < +00 by (i). By (iii), f{xi) > 0. On the other hand, f{xi) < 
^e{yi — yi) = 0. So f{xi) = 0, which implies that / is proper. Since Fi is 
C order bounded below on X, we have that / is bounded below on X. In 
order to show that / is l.s.c. on X, we need only to show that, for all t G IR, 
A = {x e X : f{x) < t} is closed. Suppose Xk ^ A and Xk —> a;*. By the 
definition of / , there exists yk G Fi{xk) (which implies yk <c yi) such that 

Uyk-yi)<t (4.14) 

and 
y ^ - y i <cO. (4.15) 

Since F is u.s.c. at x*, there exists a Zjt G F{x*) such that 

Zk-Vk-^O, (4.16) 

By the compactness of F(x*), there exists a subsequence {zki} of {zk} 
and z* G F(x*) such that Zk^ -^ z*. This combined with (4.15) and (4.16) 
yields y/c, -^ z* and 2;* - yi G -C. Hence 2:* G Fi{x*) Pi (yi - C) = Fi(x*). 
By (4.14), ê(yfci - yi) <t. Letting k —> +00, we have ^e(^* - yi) < .̂ So 
/(x*) < t, i.e., x* G A. Therefore, the set A is closed. Besides, by (iv), we 
have/(x) + e > 0 = / (x i ) . 

For the function / , applying Ekeland's variational principle, we obtain 
that, for any real number A > 0, there exists an a;2 ^ X such that 

f{x2) < f{xi) = 0; (4.17) 

d{xi,X2)<X] (4.18) 

fix) + e/Xdix,X2) > fix2),\/x G X\{X2}. (4.19) 

From (4.17), we deduce ^(^2) ^ 0 , and (4.18) is just (vi). 
Suppose that ^e(y2 - 2/i) = min{^e(y - yi) : y G Fi(x2)}, ys G ^(^2). 

By the compactness of ^(^2) and the domination property of the set ^(^2), 
there exists a y2 G MmciFix2)) with y2 <c y2- By the monotonicity of ^e, 
we have 
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Uy2-yi) = rmii{Uy-yi)-y^Fi{x2)} = Uy2 -yi)- (4.20) 

Hence, (v) and (vii) hold. By (v), (iv) and (iii), we know (viii) holds. Finally, 
let us show that (ix) holds. From (4.19) and (4.20) and the definition of / , 
we deduce that if x ^ dom{Fi) then (iv) holds automatically; and, for any 
X e dom{Fi)\{x2}, 

mm{ie{y - yi): y e Fi{x)} - ^e{y2 - yi) + e/\d{x, X2) > 0. 

That is, 

^e{y - 2/1) - £>e{y2 - yi) + e/\d{x, X2) > 0, Mxe dom{Fi)\{x2}, y € F{x). 

Consequently, we have 

^e{y - 2/2) + e/Xd{x,X2) > 0, Vx € dom{Fi)\{x2},yG Fi(x), 

i.e., 

2/ - 2/2 + e/\d{x, X2)e ^c 0, Vx € dom{Fi)\{x2}, y G Fi{x). 

When y G F(x)\Fi(x) , we can show by contradiction that 

2/ - 2/2 + e/Xd{x, X2)e ^c 0, Vx G dom{Fi)\{x2}. 

Otherwise, there exists an x' € dom{Fi)\{x2} and 

y' e F{x')\Fiix') (4.21) 

such that 
y' - 2/2 + e/Xd{x\ X2)e <c 0. 

This implies 2/' —2/2 ^ —intC. From (v), we derive y' <c 2/2 ^ c 2/i- This means 
y' G JPI(X'), which contradicts (4.21). So (ix) holds. The proof is complete. • 

Next, we will establish a general Ekeland's variational principle for set-
valued functions in complete order metric spaces and complete metric spaces. 
This principle is a generalization of some results of Nemeth [151], Tammer 
[185], andlsac [111]. 

To this aim, we need some additional concepts for set-valued functions. 
Let X be a Hausdorff topological vector space, and Y a locally convex 

vector space. Let C C F be a nonempty pointed and convex cone and Y be 
endowed with the order <c induced by C. 

Definition 4.37. A set-valued function F : X ziXY is said to he submonotone 
with respect to C at XQ G X if, under the following conditions: 

(i) Um 
a ^a — ^; where {XQ;}Q;€/ '^^ ^ ^^^ ^^ -^ indexed by the totally ordered 

set {I, <), 
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(ii) y^ <c y(3 wherever y^ e F{xa), y(3 ^ F{x(3) and a>f3, 

it follows that there exists ay £ F{x) such that 

y<cya, yaGl. 

Let Co C C be a convex cone in Y, and let r : X x X ^ F be a Co-metric 
on X. We now make the following assumptions on the set-valued function 
F'.X^Y. 

Assumption 4.38. Let e > 0 be given. For every XQ e X, yo £ F{XQ), and 
for every net {{xa^y<x)}oc^i ̂ ^ Gr(F) with the property that Xa -^ x £ X and 
2/Q; — 2/0 + ^f^{xot,xo) <c 0, Va G / , there exists aye F{x) such that 

y-yo-\-er{x,xo) <c 0. 

Assumption 4.39. For each x e X and each y e Y, F{x) D {y — C) is 
compact. 

Now, we introduce the following concept of approximate solutions for a 
set-valued optimization problem. 

Definition 4.40. Let F : X ^ Y be a set-valued function and H C C. We 
say that the pair {x,y) e X xY is an H near to the minimal solution of F 
on X if y e Minc{F{x)) and 

{F{x) -y + H)n ( -C) = 0 , Vx G X\{x}. 

Remark 4.41. When F is a real function, C = {t e JR : t > 0}, H = {t e JR : 
t > e}, this definition reduces to the definition of an e-minimal solution of a 
real function. 

Proposition 4.42. Let C be closed. If F is nonempty compact-valued and 
u.s.c, then F is submonotone with respect to C at every point of X. 

Proof. Fix X e X. Let {{xct,ya)}cxei be a net in Gr{F) satisfying properties 
(i) and (ii) of Definition 4.37. Then XQ, -^ x in X and 

ya — yf3 ^c 0, whenever a> (3. 

Since F is compact-valued and u.s.c, there exists a convergent subnet of 
{ya}a€/ (again denoted by {ya}a£i) with limit y G F{x). Letting T/Q, —̂  y in 
the above relation and taking into account the fact that C is closed, we have 
2/ — 2/Q; < c 0, Va G / , proving that F is submonotone at x. • 

Proposition 4.43. Let C be closed, and let r{',a) be continuous for every 
a e X. If F is compact-valued and u.s.c, then Assumption 4-38 holds. 
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Proof. Let e > 0. Fix (XQ, yo) ^ Gr{F), Consider a net { (xc ya)}aei in Gr{F) 
with the property that Xa -^ x and 

2/a - yo + er(xa, xo) < c 0, Va G / . 

By the same argument as in the proof of Proposition 4.42, we may assume 
that 

(xa^Va) -^ {x,y) GGr{F). 

Taking into account the fact that C is closed and r(-,xo) is continuous and 
taking the limit in the above relation, we obtain 

y-yo + er{x,xo) <c 0. 

Hence, Assumption 4.38 holds. • 

Proposition 4.44. IfF is suhmonotone with respect to C, then F{x) has the 
domination property for every x E X. 

Proof Fix X G X and y € F{x). It is clear that <c is still a partial order on 
D = {z E F{x) : z <c y}' According to the Hausdorff maximality principle, 
there exists a maximal totally ordered Z C D. Let / = {{z,Tz) : z G Z}, 
where Tz determined by z £ Z is the lower section {a e Z : a <c z}. Setting 

(a,Ta) < {b,Tb), whenever TtCTa, 

we see that / is totally ordered due to the fact that Z is totally ordered. Define 
the net (/>:/—> Z as the function 

a= {a,Ta) -^ Za = a. 

Then, Z is indexed by the totally ordered set / with the property that 

Za < c Zf3, whenever a> (3. 

By the submonotonicity of F at x (simply taking XQ, = x for all a ) , we can 
find an element y € F{x) such that 

y <c Za, Va G / . 

Clearly, 
{y-C)nF{x) = {y}, 

by the maximality of Z. Therefore, 

y G Mmc{F{x)) and y <c y, 

establishing the fact that F{x) has the domination property. • 

Next, we give a suflftcient condition for the existence of approximate opti­
mal solutions to set-valued functions. 
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Proposition 4.45. Let Co C C be a complete C-bound regular convex cone, 
and let U C B{0) be such that H = Co\U ^ 0 . Suppose that F : X =t Y 
is a set-valued function such that F{x) has the domination property for every 
X e X, and F is C order lower bounded on X. Then F has an H near to the 
minimal solution on X. 

Proof. First, let us prove that there exist an x G X and a y G F(x) such that 

(F(x) -y^H)r\ ( -C) = 0 , Vx G X\{x}. 

We proceed by contradiction. Arbitrarily fix xi G X and yi G F{xi). Then, 
we can choose x^+i G X\{xi} and yi^i G F{xi^i) such that 

(2/i+i -yi-\-H)r\ {-C) 7̂  0 , for z = 1, 2 , . . • . 

Then, we have 
yz+i -yi-^hi <c 0, 

for some hi G H. Summing up these relations from z = 1 to A:, we get 

k 

yfc+i-2/i + ^ / i i < c O . (4.22) 
i=l 

Since F is C order lower bounded on X, we find that {Yl,i=i ^i} is C bounded 
and clearly it is Co increasing. It follows from the C bound regularity of Co 

k 

that {2_]hi} is convergent, therefore, hk G U for sufficiently large k. This 
i=l 

contradicts the assumption that H = Co\U, and thus the existence of (x, y) 
is established. 

Second, by the domination property of F(x), we can find an element y^ G 
Minc{F{x)) such that T/' <C y^ Thus 

{F{x) -y' + H)n ( -C) = 0 , Vx G X\{x}, 

and so the pair (x, T/O is an H near to the minimal solution of F on X. • 

Proposition 4.46. The conclusion of Proposition 4-4^ remains true when the 
condition "F is C-order lower-bounded on X^^ is replaced by 

(C) There exist x[ G X and y[ G F{x[) such that F is C-order lower-bounded 
on the set {x e X : {y[ - C) H F{x) ^ 0 } . 

Proof. Repeat the argument as in the proof of Proposition 4.45, with (xi, t/i) 
replaced by (x^, y[) to generate the corresponding elements x^, y ,̂ /i^, z > 2, so 
as to have (4.22) with yi replaced y'^. Then apply condition (C) to show that 

k 

( T J hi}\sC bounded. The rest of the proof now follows in a similar fashion.H 
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Now we will derive a general Ekeland's variational principle for set-valued 
functions. 

Let e > 0 be given, and let r : X x X —> F be a Co-metric on X. Suppose 
that F : X =1 y is a set-valued function such that F{x) has the domination 
property for every x e X. Then Mmc{F{x)) ^ 0 , for every x € X, and we 
have a nonempty set-valued function E : X ^Y defined by 

E{x) := Mmc{F{x)), Vx G X. 

Let us introduce a relation ^ on T = Gr{E) as follows: 

{xi.yi) -< (x2,2/2) iff 2/1 -y2-\-er{xi,X2) <c 0, for (xi ,^i) , (^2,2/2) ^T. 

Lemma 4.47. The relation ~< is a partial order on T. 

Proof. The relation -< is clearly well defined on T. It remains to show that it 
is reflexive, antisymmetric and transitive. 

(i) Reflexivity. For (x,y) G T, we clearly have (x,y) -< (x,y), since y — y-{-
er{x,x) = 0 <c 0. 

(ii) Antisymmetry. Let (xi,yi), (x2,y2) ^ T, with {xi,yi) ^ (x2,y2) and 
(^2,2/2) -< (xi,yi). Then we have 

yi-y2 + er{xi,X2)<cO, (4.23) 

y2-yi + er{x2, xi) <c 0. (4.24) 

The combination of (4.23) and (4.24) yields 

er(xi,X2) + er(x2,xi) = 2er(xi,X2) <c 0, 

so that r(xi,X2) <c 0. Thus r(xi,a:2) = 0 and hence xi = X2. Furthermore, 
it follows from (4.23) and (4.24) that ±{yi — 2/2) ^ c 0, which implies yi = y2. 
Therefore, (xi,yi) = (x2,2/2). 

(iii) Transitivity. Let {xi^yi) e T^i = 1,2,3, with (xi,7/i) -< (0:2,2/2) and 
(3:2,2/2) -< (xs.ys). Then 

2/1 - 2/2 + er(xi, a;2) <c 0, (4.25) 

2/2 - 2/3 + er(x2, X3) <c 0. (4.26) 

The combination of (4.25) and (4.26) yields 

2/1 - 2/3 + e(r(a;i, 0:2) + r(x2, X3)) < c 0. 

Using 
r(xi,X3) < c ^(^1,3:2) + r(x2,X3), 

we have that 
yi -2/3 + er(xi,X3) < c 0, 

and hence (xi, 2/1) --< (^3,2/3). • 
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Theorem 4.48. Let Y be a locally convex space ordered by a nonempty 
pointed and convex cone C d Y, and let (X, r) be a complete Co metric 
space, where Co C C is a complete C bound regular convex cone. Let e > 0 
and F : X ^Y be a set-valued function satisfying 

(i) F is submonotone with respect to C and C is closed, 

or 

(ii) C is closed and Assumptions 4-^8 and 4-39 hold. 

Suppose that the following (iii) holds: 

(iii) there exists {xo,yo) ^ Gr{F) such that F is C order lower bounded on 
Xi = {xeX:iyo-C)n F{X) ^ 0 } . 

Then, for every (xo,yo) satisfying (iii); there exists (x*,y*) G Gr{E) such 
that 

(iv) yo-y* - er{xo, x*) >c 0; 
(v) {F{x) -y* + er(x, x*)) H ( -C) = 0 , Vx G X\{x*}. 

Moreover, let U G B{0). If H = Co\U ^ 0, then 

(vi) there exists {xi,yi) G Gr{E) with yi <c yo such that 

{F{x)-yi + eH)n{-C) = 0, Vx G X\{x i} , 

i.e., (xi,2/i) is an eH near to the minimal solution of F on X. 

For every such (xi,?/i) in (vi), there exists {xe,ye) ^ Gr{E) such that (iv), 
and (v) hold with {xo,yo) cind (x*,y*) replaced by (xi^yi) and (xe^ye), re­
spectively. Moreover, (xe,ye) is an eH near to the minimal solution of F on 
X, satisfying 

(vii) r(xi,Xe) G U. 

Proof Let 
E{x) = MincF(x), x e X. 

By Proposition 4.44 and (i) or (ii), F{x) has the domination property for 
every x G X. Thus, we see that the set-valued function E{x) 7̂  0,Vx G X. 
By (iii) and the fact that F{xo) has the domination property, there exists 
2/0 G Minc{F{xo)) such that yo <c yo and F is C lower bounded on 

X[ = {xeX:{y'o-C)nF{x)^0}, 

since Xi C Xi . Now, we consider the partial order -̂  on T = Gr{E) as given 
in Lemma 4.47. Let 

Zi = {{x,y) e T : {x,y) ^ (xo.yo)}^ 
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Applying the Hausdorff maximality principle to (Zi, ^ ) , we obtain a maximal 
totally ordered subset ZQ of Zi. 

As in the proof of Proposition 4.44, let us write 

ZQ = {{Xa,ya)}ael^ 

where (7, <) is a totally ordered index set with the property that 

(^a,2/a) ^ (^/3,2//?), whenever a-< p. 

We shall show that ZQ contains its minimal point with respect to the relation 

First, let us introduce a relation A on XQ = {xa}aei by defining 

XaAxf3, whenever (xc^/a) ^ (xp^y^). 

This relation is well defined. Indeed, we need only to show that if (xa^Va), 
(xfs^yp) G ZQ and Xa = Xf3, then y^ = yp- We may assume that (xa^yot) -< 
{X(3,yf3), so that 

y<x-yi3 + er{xa, Xfs) <c 0. 

Since XQ, = X/3, we have yot — yp <c 0. This and the fact that ya^y^ G 
M.mc{F{xo)) yield ya = y/3' 

Thus, xpAxa whenever a > /?, and so XQ is totally ordered with respect 
to A. Moreover, the filter of its lower section is Cauchy. To verify this, let us 
assume the contrary: there exists a neighborhood U' G B{0) such that, for 
each s in XQ, there exist p, q in XQ, pAs and qAs, such that r(p, q) ^ [/'. Fix 
5 and let p, q be as above. We can suppose that pAq. Put xi = q,X2 = p-
Then, r(x2,xi) ^ U' and 

2̂ - 2̂1 + er(x2, xi) <c 0, with (x^, 2:̂ ) G ZQ, i = 1, 2. 

Starting with p instead of 5, we can continue this procedure. Accordingly we 
can determine the decreasing sequence {xjfc} in XQ such that, for A; = 1,2, • • • , 

r{x2k.X2k-i)iU', (4.27) 

and (xfc, Zk) G ZQ. From the definition of the relation Z\, we also have that 

Zk-\-i -Zk + er(xfc+i, Xk) <c 0, for all A:. 

Summing up this relations, we get 

Zk+i - zi + e^r(xi+i,Xi) <c 0. 
i=l 

Since each Xk is in X( and {zk} is C order lower bounded, the set {^i^i 
r(xi+i,Xi) : A: — 1,2, • • •} is C order bounded. Then {Yli=iT{xi^i^Xi)} is 
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convergent and this clearly contradicts (4.27). 
This contradiction shows that the lower sections of XQ form a Cauchy fil­

ter, which converges by the completeness of X to some x* G X, or equivalently 
lilTiaXa = X*. 

Now we show that x* G XQ holds under condition (i) or (ii). 

Case 1. Suppose that (i) holds. Let a> (3. Then, we have {xoc^ya) ~< i^fSiVis), so 
that 

ya-y(3 + €r{Xa, Xfs) <C 0, 

and hence 
Va <c yp-

Since Xa —^ x* and F is submonotone with respect to C, there exists 
y G F{x*) such that 

y-ya<c 0, Va G / . (4.28) 

Also, 
y(x-y(3 + €r{xa, xp) <c 0, whenever a > p. (4.29) 

From (4.28) and (4.29), we obtain 

y-yp-{- er{xc,, xp) <c 0, Va > p. (4.30) 

Letting Xa -^ x* in (4.30) and taking into account the fact that C is 
closed and r(-,x^) is continuous, it follows that 

y-y(3 + er(x*, Xf3) <c 0, V^ G I. (4.31) 

Since F{x*) has the domination property by Proposition 4.44, we have 
y* < c y for some y* G -E'(x*), and hence 

ix*,y*)eT. 

This combined with (4.31) yields 

y" -yp + er{x\xp) <c 0, V^ G / , 

so that 
(x*,y*) ^ {xf3,y(3), y{xf3,yf3) G Zo, 

and hence (x*,?/*) G ZQ by the maximality of ZQ. Thus x* G XQ and 
(x*, y*) is the minimal point of ZQ. 

Case 2. Suppose that (ii) holds. Fix /? G / . Then 

yoi—y(3-\- ^r{xoc, X(3) <c 0, whenever a > /?. 

Since XQ, —> x*, it follows from Assumption 4.38 that there exists y^ G 
F(x*) such that 
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y^-yf3 + er{x'',x^)<c0, MpGl. (4.32) 

As F(x*) has the domination property, we can find an element y*^ G £'(x*) 
such that 2/̂  <c yp, so that (x*, t/^) € T. This combined with (4.32) yields 

y}-yp + er{x\xp) <c 0, V/3 G / . 

Hence, 
(x*,y^) -< (x/?, y/3), V(x/3,y/?) G ZQ. 

For each /? G / , define 

5 ^ = {(x*,z) G {x*} X E(x*) : {x\z) < (x^,y^)}. 

Clearly, 
Bf3,cB^,, V/3i</?2. (4.33) 

We show that each Bp is nonempty and compact. 
The nonemptiness of Bjs has been proved already. Now we prove that B(3 
is closed. Let {(x*, Za)} C Bp he a, net, and let Za —^z*. Then (x*, Za) -< 
{xf3,yp), i.e., 

Za-y(3-\- € r (x* , Xp) <c 0. 

By the closedness of C, we deduce that 

^* -y/3 + er(x*,X/?) < c 0, 

namely, {x*,z*) G 5/?. Hence Bp is closed. Note that 

5 / 5 C { x * } x ( F ( x * ) n ( y ^ - C ) ) . 

By Assumption 4.39, F(x*) n (y/3 — C) is compact, hence, {x*} x (F(x*) H 
(yp—C)) is compact. This fact, combined with the closedness oiBp, yields 
that Bp is compact. 
By the maximality of ZQ, we conclude (x*, y*) G ZQ. Furthermore, we have 
that X* G Xo by the definition of XQ and (x*, y*) is the minimal point of 
Zo. 

So, in both cases, we have proved that x* G XQ. We also have that (x*, y*) G 
Zo and it is the minimal point of Zo with respect to -<. 

By (x*,y*) G Zi, we see that (x*,y*) -< (^o,^o)' which together with 
yo ^ c yo implies that 

2/* - y o + er(x*,xo) < c 0, 

and so (iv) is established. 
That (v) holds can be shown by contradiction. Indeed, suppose that 

(F(xO - y* + er(x', X*)) n ( -C) ^ 0 , 
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for some x' G X\{x*}. Then, there exists y' G F{x') such that 

y ' - 2 /* + er(x',x*) G -C. 

As -F(x') has the domination property, there is an element y e E{x') satisfying 
y ^c y'' Hence 

y - ? / * +er(x ' ,x*) <cO, 

i.e., (x',y) ^ (a;*,Z/*) and {x',y) G ZQ. It follows that {x',y) = (x*,?/*), 
contradicting x' G X\{a;*}. We have proved (v). 

Let U G 5(0) and iJ = Co \ (7 ^ 0 . Then by applying Proposition 4.46 
with eH replacing H^ we conclude the existence xi in X with the property 
(vi). 

If we proceed as above taking (xi, yi) in place of (XQ, yo)? we can get a pair 
(xe,2/e) ^ Gr{E) so as to have (iv) and (v) with (xo,2/o) and (x*,y*) replaced 
by (xi,2/i) and (xe,ye), respectively. Moreover, the pair (xe,ye) is an eH near 
to the minimal solution of F. 

Finally, we show by contradiction that (vii) holds. To this end, suppose 
that r(xi,Xe) ^ U. Then, xi ^ Xe and 

r (x i ,Xe)Gi / . (4.34) 

Since (iv) holds with (xo,yo) and (x*,y*) replaced by (xi,yi) and (xe,ye)? 
respectively, we have 

yi-Ve- er(xi, Xe) >c 0. (4.35) 

As Xe ^ xi, (vi) yields 

(ye - yi + ei7) n ( -C) = 0 . (4.36) 

But, from (4.34) and (4.35), we deduce that 

ye-yi+ er(xi, Xe) G (ye - yi + ei:^) H ( -C) ^ 0 , 

contradicting (4.36). Hence, (vii) holds. • 

Corollary 4.49. Let (X, d) be a complete metric space, and let Y be a locally 
convex Hausdorff space ordered by the nonempty, pointed and convex cone C. 
Let c^ G C\{0} be such that 6(c^) > 0 for some 6 in C. Let e > 0 be given, 
and let F : X ^Y be a set-valued function satisfying: 

(i) F is submonotone with respect to C and C is closed; or 
(ii) C is closed and Assumptions 4.38 and 4-39 hold with r(x, y) = d{x, y)c^/Xi 

where Ai > 0. 

Suppose that (iii) below holds: 

(iii) there exists (xi,yi) G Gr{E) such that 

(F(x) - yi + ec^) H ( -C) = 0 , Vx G X \ { x i } , 

and F{X) fl (yi — X) is C lower bounded. 
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Then, for every e> 0, there exists (xg, ye) G Gr{E) such that : 

(iv) 2/e - 2/1 + {e/Xi)d{xi,Xe)c^ <c 0; 
(v) {F{x) - 2/e + {e/Xi)d{xu x.y) n ( -C) = 0 , Vx G X\{xe}; 

(vi) cf(xi,a;e) < Ai. 

Proof. Let us set 
r(x,x') = d(x^x')c^ /Xi 

in Theorem 4.48 and choose 

t/ = {^ G X : e{u)/e{c'^) < 1}. 
Clearly, c° ^ U. Also, let 

Co = {ac° : a > 0} and if = Co\f/. 

Now, we can apply Lemma 4.16 to show that Co is a complete C bound regu­
lar convex cone in C. Then, we conclude from (vi) of Theorem 4.48 that there 
exists (xe.ye) € Gr{E) such that (iv), (v) and r{xi,Xe) G U hold. It is easy 
to see that r{xi,Xe) E U is equivalent to (vi). • 

4.3 Equivalents of Variational Principles for 
Vector-Valued Functions 

In this section, we will establish new vector variants of "Drop Theorem", 
"Petal Theorem" and "Caristi-Kirk Fixed Point Theorem". We will derive 
equivalents between those theorems and variational principles for vector-
valued functions. We will obtain a fixed point theorem for directional con­
tractions as an application of vector variational principles. 

Let y be a locally convex Hausdorff space ordered by a nontrivial convex 
cone C CY with nonempty interior intC. Let (X, r) be a complete C metric 
space, where r : X x X —^ Y is C metric function. 

First of all, we state an immediate consequence of Theorem 4.15. 

Theorem 4.50. Let Y be a locally convex Hausdorff space ordered by a non-
trivial convex cone C, Co C C a C bound regular complete convex cone, and 
Co n —C C —Co. Let (X, r) be a complete Co metric space. Let f : X -^Y be 
a vector-valued function such that 3wo G Y such that 

fix) >c wo, yx G X 

Suppose that ^x e X,a > 0, the set {y G X : f{y) — f{x) + ar(x, y) <c 0} 
is closed (or f is submonotone (w.r.t. C), C is closed and \/a G X, r{a,') is 
continuous.) 

Then there exists an x* e X such that 

fix) - fix"") + r(x*, x) ^c 0, Vx G X\{x*}. 



4.3 Equivalents of Variational Principles for Vector-Valued Functions 215 

Proof. It is easy to verify that all conditions of Theorem 4.15 hold with e = 1. 
By (v) of Theorem 4.15, it follows that this theorem holds true. • 

Now we explore the equivalents of Theorem 4.50. To this end, we need the 
following assumption. 

Assumption 4.51. h : X x X ^^ Y is a half distance function. \/x G X, 
Va > 0; the set {y £ X : h{x,y) + ar{x,y) <c 0} is closed (or h{x,-) 
is submonotone with respect to C and C is closed and Va G X, r{a,') is 
continuous with respect to the topology of X induced by r). 3XQ ^ X, WQ ^Y 
such that h{xo,x) >c WQ^\/X G X. 

Let 
DQ = {x eX : h(xo,x) + r(xo,x) <c 0}. 

Theorem 4.52. All the following Theorems A, B, C and D are true and 
equivalent to Theorem 4-50. 

Theorem A. Let Assumption 4.51 hold. Then there exists an x* G Do 
such that 

h{x\x) + r{x\x) ^c 0, Vx G X\{a;*}. (4.37) 

Theorem B. Let Assumption 4.51 hold. Let the set-valued function T : 
X :=tY satisfy the condition 

W eDo,3xe T{x') such that h{x', x) + r(x', x) <c 0. (4.38) 

Then there exists an x* G Do such that x* £T{x*). 

Theorem C. Let Assumption 4.51 hold. Let M C X satisfy 

W G Do\M, 3xe X such that x j^ x' and h{x\ x) + r{x\ x) <c 0. (4.39) 

Then there exists an x* G Do Pi M. 

Theorem D. Let Assumption 4.51 hold. Let the following hold: 

Vx' G Do, satisfying 3xi G X such that h{x\xi) <c\{o} 0? we have 

X2 G X\{x'} such that h{x', X2) + r{x\ X2) <c 0. (4.40) 

Then there exists an x* G Do such that 

/i(x*,x) ^c\{o} 0, X eX. 

Proof. Firstly, we prove that Theorem A is equivalent to Theorem 4.50. 

Theorem 4.50 => Theorem A: 
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Let f{x) = h{xo^ x). Then all the conditions of Theorem 4.50 are satisfied. 
It follows that there is an x* G Do such that 

f{x) + r{x\x) - /(x*) ^c 0, Vx G X\{x*}. 

That is 
/i(xo, x) + r(x*, x) — /i(xo, X*) ^c 0, Vx G X\{x*}. 

Since /i is a half distance function, we have 

h{xQ,x*) — /i(xo,x) <c /i(x*,x). 

Hence, (4.37) holds true. 

Theorem A ==> Theorem 4.50: 

Let 
h{x,y) = f{y)-f{x), Vx,2/GX 

Arbitrarily fixing an XQ G X, by the assumption of Theorem 4.50, we know 
that Assumption 4.51 holds. Applying Theorem A, we have an x* G X such 
that 

/i(x*, x) + r(x*, x) ^c 0, Vx G X\{x*}, 

hence, 
/ ( x ) - / ( x * ) + r ( x * , x ) ^ c O , VxGX\{x*}. 

Now, we turn to proving that Theorem A, B, C and D are equivalent to 
each other. 

Theorem A = ^ Theorem B: 

By Theorem A, there exists an x* G DQ such that (4.37) holds. We claim 
that X* G r(x*) . Otherwise, by (4.38), 3x G r (x*) ,x / x* such that 

/i(x*, x) + r(x*, x) <c 0, 

which contradicts (4.37). 

Theorem B ==> Theorem C: 

Define T(x') = X\{x '} , Vx' G X. Suppose that DoHM = 0 , i.e., Vx' G i^o 
implies x' ^ M. Then by (4.39), 3x G X\{x '} = T(x') such that 

/i(x', x) + r(x', x) <c 0, 

i.e., (4.38) holds. By Theorem B, 3x* G Do such that x* G T(x*), which 
contradicts the definition of T. 
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Theorem C =^ Theorem D: 

Let 
M = {xeX: h{x, y) ^c\{o} 0, "iyeX}. 

Then \/x' e DQ\M, 3xi G X with h{x', xi) <c\{o} 0. 
By (4.40), we have X2 G X\{x'} such that 

h{x', X2) + r(x', X2) <c 0. 

That is (4.39) holds. By Theorem C, 3x* eDoHM, i.e., 

/i(^%y)<c\{o}0, Vyex 

Theorem D = ^ Theorem C: 

Assume that M is as in Theorem C. Vx' e D^/ii x' ^ M^ then Theorem 
C is proved. Now we suppose that 3x' e Do\M. Hence, by the assumption of 
M, 3xi G X with xi 7̂  x' such that 

h{x\xi) + r{x',xi)<cO. (4.41) 

So 
h{x\xi) <c\{0} 0. 

If xi G M, since x^ e Do, 

h{xo,x) + r(a;o, x') < c 0. 

By (4.41), 
h{x', xi) + r{x\ xi) <c 0. 

So we have 

/i(xo, x') + h{x', xi) + r(a;o, x') + r{x', xi) <c 0. 

Since h and r are a half distance function and a Co metric function, respec­
tively, it follows that 

h{xQ, xi) + r(xo, xi) < c 0. 

Thus xi G Do n M. Otherwise, xi G DQ\M. By (4.39), 3x2 7̂  ^1 such that 

h{xi,X2) + r(xi,X2) < c 0. (4.42) 

By (4.41), (4.42) and the triangle inequalities of h and r, we have 

h{x', X2) + r{x\ X2) <c 0. 
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And it is easy to see that x' ^ X2, since h{x'^ X2) ^c\{o} 0 sind /i(xi, X2) ^c\{o} 
0, then h{x',X2) <c\{o} 0, which derives that (4.40) holds. By Theorem D, 
3x* € -Do such that 

/ i(x*,x)^c\{0}0, V X G X (4.43) 

We assert x* G M. Otherwise, by (4.39), 3x3 € X X3 7̂  x* and 

/i(x*,3:3) + r(x*,X3) < c 0. 

This demonstrates that 

/i(x*,X3) + r(x*,X3) <c\{0} 0, 

since r(a:*,a:3) <c\{o} 0? which contradicts (4.43). 

Theorem C = ^ Theorem A: 
For any x' G X, define 

5(xO = {x G X\{x '} : /i(x', x) + r(x', x) < c 0}. 

Let 
M = {xeX: B{x) = 0 } . 

If x' G D o \ ^ 5 then by the definition of M, 3x G JB(x') such that x' ^ x and 

/i(x', x) + r(x', x) <c 0, 

hence (4.39) holds. By Theorem C, 3x* G DoHM, which implies that ^(x*) == 
0 , i.e.. Theorem A holds. • 

Remark 4-53. (i) Theorem 7.1 of Nemeth [151] is a special case of Theorem 
B and Theorem B is a new variant of Caristi-Kirk fixed point theorem. 

(ii) Theorem C is the vector form of Oettli and Thera's result [153]. 
(iii) Theorem D corresponds to the existence result of Takahashi [184] and 

Tammer [186]. 
(iv) Let X G X. If /i(x, •) is C order lower semicontinuous, then /i(x, •) is 

submonotone with respect to C. 

We give a new standard assumption. 

Assumption 4.54. (X, d) is a complete metric space, Y is a locally convex 
Hausdorff space ordered by a nontrivial convex cone C, c^ G C\{0} is such 
that 3 A G C* such that A(c^)>0, h : X x X ^Y is a half distance function. 
Vx G X, Va > 0; the set {y e X : h{x, y) + ad{x^ y)c^ <c 0} is closed 
(or /i(x, •) is submonotone and C is closed). 3xo G X, ^0 ^ ^ such that 
/i(xo,x) >c wo.yx G X. 

Let 
i^o - {x G X : /i(xo, x) + d{xo, x)c° <c 0}. 

The following theorem is a special form of Theorem 4.50 (with r{x,y) = 
d{x,y)c^,\/x,ye X and Co = {ac° : a > 0}). 
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Theorem 4.55. Let (X, d) be a complete metric space, and Y a locally convex 
Haus dor ff space ordered by a nontrivial convex cone C. Let c^ G C\{0} be such 
that 3X G C* with A(c°) > 0. Let f : X -^Y be a vector-valued function such 
that 3wo G Y such that 

f{x) >c Wo, Vx G X 

Suppose that Mx G X, Va > 0, the set {y £ X \ f{y) - f{x) + ad{x, y)c^ <c 0} 
is closed (or f is submonotone with respect to C and C is closed.) Then 
3x* e X such that 

fix) - /(x*) + d(x*, x)c° ^c\{0} 0, Vx G X\{x*}. 

If we set Co = {ac^ : Q̂  > 0}, r{x^y) = d{x,y)c^^ then the following 
theorem is a special form of Theorem 4.52. 

Theorem 4.56. All the following theorems are true and they are equivalent 
to Theorem 4-55. 

Theorem A'. Let Assumption 4.54 hold. Then 3x* e DQ such that 

h{x\ x) + d{x\x)c^ %c 0, Vx G X\{x*}. (4.44) 

Theorem B'. Let Assumption 4.54 hold, and let T : X =t ^ satisfy 

Vx' G Do. 3x G F{x) such that h{x\ x) + d{x , x)^ <c 0. 

Then 3x* G D'o such that x* G T(x*). 

Theorem C\ Let Assumption 4.54 hold, and let M C X satisfy: Vx' G 
DQ\M, there exists x G X such that 

X 7^ X and h{x\ x) + d{x\ x)c^ <c 0. (4.45) 

Then 3x* eD'^HM. 

Theorem D'. Let Assumption 4.54 hold, and let the following (4.46) hold: 

For all x' G DQ satisfying 3xi G X with h{x\ xi) <c\{o} 0? we have 

X2 G X\{x '} such that h{x\ X2) + d{x\ X2)c^ <c 0. (4.46) 

Then 3x* G DQ such that 

/i(x*,x) ^c\{0} 0, Vx G X. 

Proof By letting Co = {ac° : a > 0}, r(x, y) = c/(x, y)c^ and applying Theo­
rem 4.52, the theorem is proved. • 

In sequel, we will consider some applications of the above results. 
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Theorem 4.57. Let Assumption 4-54 hold. Let A be a closed set, XQ e A C X 
and B C X be a bounded set. Let r i > d{b, XQ), for some b e X, and 

Ar^ = {x e A: d{b, x) < r i } . 

If h : X X X -^Y is a half distance function and 

h{x,y) <c -eoc^ ^x e A,y e B (4.47) 

for some eo > 0, then, 3a > 0, and x* e Ci, where 

Ci = {yeX: h{x\ y) + ad(x^ 2/)c° <c 0} n Ar,, 

such that 
BcC2 = {yeX: h{x\ y) + ad{x\ y)c'' <c 0}, 

and C2 n An = {^*}-

Proof. Obviously, Ar^ is a closed set. So {Ar^, ad) is complete, where 0 < a < 
^0/(^1 -\- r), r = sup{(i(6, x) : x e B}. Replace X and d in Theorem A' with 
An and ad, respectively. By Theorem A\ 3x* G Ci such that 

/i(x*,x) + ac?(x*,x)c° ^ c 0, Vx G .4ri\{^*}-

Hence, Vx G A^, x 7̂  x*, we have x ^ C2. Obviously, x* G C2 since 0 G —C, 
so C2 n An = Ci. If X G J5, then 

/i(x*,x) + ac!(x*,x)c° < c -eoc^ + a(c!(x*, 6) + d(6,x))c^ 

< c -eoc° + a( r i + r)c° 

<cO. 

So X G C2. • 

Now, we will apply Theorem 4.50 to obtain a fixed point theorem for a 
directional contraction function in vector form, which is a generalization of a 
fixed point theorem in Clarke [46]. 

Let y be a locally convex Hausdorff space ordered by a nontrivial, closed 
and convex cone C, Co C C a C bound, regular complete convex cone, Co H 
—C C —Co. Let {X,d) be a complete Co metric space, Va G X, r(a, •) be 
continuous. 

For any x, y G X, the open segment ]x, 2/[ is the set of all points z (if any) 
in X distinct from x and y satisfying r{x,z)-\- r{z,y) = r{x,y). 

A vector-valued function T : X -^ X is said to be a directional contraction 
function provided T is continuous and 36 G (0,1) such that whenever x E X 
with Tx ^x,3y £ ]x, Tx[ such that r ( r x , Ty) <c Sr(x, y). 

Theorem 4.58. Let Y be a locally convex Hausdorff space ordered by a non-
trivial, closed and convex cone C, Co C C aC bound regular complete convex 
cone, Cofl—C C —Co. Let (X,r) be a complete Co metric space. In addition, 
Va G X, r{a,') is continuous. Then, every directional contraction function 
admits a fixed point. 
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Proof. Let T : X ^ X be a directional contraction function. 
Define f : X -^ X hy 

f{x) = r{x,Tx), \/xeX. 

We will show that / is submonotone with respect to C, In fact, for any net 
{Xfj,} C X such that limx^ = x and f{xv) <c f{^ij)^ t' > /i, we will show that 
/ (x)<c/ (x ; . ) ,V/x . 

Suppose that this is not true. Then 3/xo with 

/ (x^J - / ( x ) ^c 0. 

Thus 3A € C*\{0} such that 

for some eo > 0. That is 

\{r{x^,,Tx^,)) < X{r{x,Tx)) - eo- (4.48) 

On the other hand, 

\/v, r{x, Tx) <c r{x, Xy) + r{xy, Txy) + r{Txy, Tx). (4.49) 

By the continuity of T and the definition of (X, r) being a CQ metric space, 

Vt/ G 5(0), 3VQ^ whenever v >VQ^ 

r{x,Xy) + r{Txy,Tx) e U. 

Let us choose U to be such that 

X{u) < eo/2, V^ G U. 

By (4.49), we have 

\(r[x,Tx)) < eQ/2-V\{r{xy,Txy)). 

Note that \{r{xy,Txy)) < A(r(x^o,Tx^o)),i; > ji^. So we have 

A(r(x,Tx)) < eo/2 +A( r (x^ , , rx ; , J ) . (4.50) 
But (4.50) contradicts (4.48). Thus we have proved that / is submonotone 
with respect to C. 

By the definition of / , we have / (x) > c 0, Vx G X. 
By Theorem 4.50 with e = (1 - 5)/2, 3x* G X such that 

/ ( x ) - / ( x * ) + ( ( l - (5 ) /2 ) r (x ,x* )^cO, VxGX\{x*}. 

That is, 
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r(x, Tx) - r(x*, Tx*) + ((1 - S)/2)r{x, x*) ^c 0, Vx G X\{x*}. (4.51) 

If X* = Tx*, then we have proved the theorem. Otherwise, we assume that 
X* 7̂  Tx*. Since T is a directional contraction function, by definition, we have 
that 3xi G ]x*,Tx*[ such that 

r(x*, Tx*) = r(xi , x*) + r(xi , Tx*) (4.52) 

and 
r(Txi,Tx*) <c (5r(x,x*). (4.53) 

By (4.51), we have 

r(xi , Txi) - r(x*, Tx*) + (1 - S)r{xu x*) ^ c 0. (4.54) 

Substituting (4.52) into (4.54), we obtain 

r (x i ,Txi ) - r(xi,Tx*) - (5/2r(xi,x*) ^c 0, 

r (Tx i ,Tx* ) - (5 r (x i , x* )^cO, 

which contradicts (4.53). The contradiction proves the theorem. • 

4.4 Equivalents of Variational Principles for Set-Valued 
Functions 

In this section, we will establish set-valued variants of "Petal Theorem" and 
"Cristi-Kirk Point Theorem". We will also establish equivalence between these 
theorems and the vector variational Principe for set-valued functions (see 
Huang [98]). 

We make the following assumption. 

Assumption 4.59. Y is a locally convex Hausdorff space ordered by a non-
trivial convex cone CcY.CoCCisaC bound regular complete convex cone 
and Co H —C C —CQ. r : X X X —^ CQ is a CQ metric function, (X^r) is a 
complete Co metric space. F : X :=t Y is a set-valued function and \/x G X, 
F{x) has the domination property. There exist xo ^ X and yo G F{XQ) such 
that F is C order lower bounded on Xi = {x E X : {yo — C) D F{x) ^ 0 } . 
Either of the following two statements holds: 

(l) C is closed, Ma G X, r(a, •) is continuous with respect to the topology of X 
induced by r and F is submonotone with respect to C; 

(11^ \/xo G X, yo G F{xo), a net {xa} C X, x^ -^ x G X and y^ G F{xo) 
such that ya — yo + T{xa,xo) <c 0, it follows that 3y G F{x) such that 
y-yo + r{x,xo) < c 0. 
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The following theorem is a direct consequence of Theorem 4.48. 

Theorem 4.60. Let the Assumption 4-59 hold. Then there exists x* e X and 
y* G Minc{F{x*)) such that 

2/* <c yo and {F{x) - y* + r(x, x*)) H ( -C) = 0 , Vx G X\{x*}. (4.55) 

Proof. Let e = 1 in Theorem 4.48. The former formula of (4.55) follow from 
(iv) of Theorem 4.48 and the latter formula of (4.55) is just (v) of Theorem 
4.48. • 

Theorem 4.61. All the following theorems are true and equivalent to Theo­
rem 4-60. 

Theorem A". Let Assumption 4.59 hold. In addition, we assume that 

{a") Vx e X,yy e F{x) with y <c yo, there exists xi G Xi such that {F{xi) — 
y) n (-C\{0}) ^ 0 , it follows that 3x2 G Xi\{x} and 2/2 ^ ^(^^2) such 
that 2/2 - y + r{x, X2) <c 0. 

Then there exist x* G Xi and y* G Minc(F(x*)) with y* <c yo such that 

(F (x ) -2 /* )n ( -C \{O}) = 0 , VxGX\{x*}. 

Theorem 5 ' ' . Let Assumption 4.59 hold. Let T : X =t X be a set-valued 
function such that {b") holds: 

(6'') Vx G Xi,Vy G F(x) with y < c 2/0, there exist x G T(x) and y G F{x) 

such that y — y -\- r(x, x) < c 0. 

Then there exist x* G Xi and y* G F(x*) such that 

X* G T(x*), y* < c yo. 

Theorem C". Let Assumption 4.59 hold. Let M C X has the property 

{c") Vx G Xi\M,Vy G F(x) with y < c yo, there exist x e X, y e F{x) such 
that X 7̂  X and y — y + r(x, x) < c 0. 

Then, there exist x* G M fl Xi and y* G F(x*) such that y* < c yo-

Proo/. Theorem 4.60 = ^ Theorem A'': 

It follows from Theorem 4.60 that there exist x* G Xi and y* G 
Minc(F(x*)) such that (4.55) holds. Now we show that 

( F ( x ) - y * ) n ( - C \ { O } ) 3 . 0 , VxGX\{x*}. 
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Otherwise, 3xi G X\{x*} and yi G F(a;i) such that yi - y * G - C \ { 0 } . Thus, 
xi G Xi and yi < c yo- According to (a"), there exist X2 G Xi\{x*} and 
y2 e F{x2) such that 

2/2 - y * + r(x*,X2) < c 0, 

which contradicts ( 4.55). 

Theorem 4.60 =^ Theorem B'': 

It follows from Theorem (4.60) that there exist x* G Xi and y* G 
Minc(F(x*)) such that (4.55) holds. Let us show that x* G T(x*). Other­
wise, by {b''), 3x G T(x*)\{x*} and y G F(x) such that 

y-y* -\-r{x,x*) <c 0, 

which contradicts (4.55). 

Theorem 4.60 = ^ Theorem C : 

Theorem 4.60 implies that there exist x* G Xi and y* G Minc(i^(x*)) 
such that (4.55) holds. Let us show that x* e XiDM. Otherwise, x* G Xi\M 
and y* <c7 yo- By (c''), 3x G X\{x*} and y G F(x) such that 

y - y * -\-r{x,x*) <c 0, 

which contradicts (4.55). 

Theorem C ==^ Theorem 4.60: 

Let M = {x G X : 3y G F{x) such that {F{x) - y + r(x,x)) H ( -C) = 
0,Vx G X\{x}}. We show that the conclusion of Theorem 4.60 holds. Let 
Xi G X\M. If yi G F{xi) with yi < c yo? by the definition of M, there exists 
X2 G X\{x i} and y2 G F(x2) such that 

2/2 -2/1 +r(xi,a:2) < c 0, 

which implies that y2 <c 2/i <c 2/o, so X2 G Xi \{x i} . By Theorem C'\ 
3x* G M n Xi and y* G F(x*) with y* < c yo, i.e., 3x* G Xi and y* G F(a:*) 
with y* <c yo such that 

2/* < c 2/0 and (F(x) - y* + r(x, x*)) n ( -C) = 0 , Vx G X\{x*}. (4.56) 

By the domination property of F(x*), there exists y' G Minc(i^(x*)) such 
that y ' < c y * . By (4.56), 

y' <c yo and {F{x) - y' + r(x, x*)) fl ( -C) - 0 , Vx G X\{x*}, 

i.e.. Theorem 4.60 holds. 
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Theorem 5 " = > Theorem 4.60: 

Let T{x) = {w e X\{x} : 3yi € F{w) and y2 € F{x) such that yi - t/2 + 
r{x,w) <c 0}. We prove by contradiction. Suppose that Theorem 4.60 fails. 
Then \/x e Xi,Vy G F(x) with y < c 2/o, 3i; G X\{x} and yi G F(7;) such 
that 

2/1 - y + r(x,^;) < c 0. 

Obviously, v G F(x). So (6'') holds. By Theorem B'', 3x* G Xi such that 
X* G T(x*), which contradicts the definition of T. 

Theorem A" => Theorem C": 

We prove by contradiction. Suppose that Xi H M = 0 . Let us verify 
that {a'') holds. \/x e Xi,\/y e F{x) with y <c Vo, 3xi G Xi such that 
{F{xi) -y)n ( -C\{0}) 7̂  0 . By (c'O, 3:z:2 G X\{x} and 7/2 ^ ^^(^2) such 
that y2-y + r{x,X2) <c 0. Therefore, {a'') holds. By Theorem A'', 3a;* G Xi 
and 2/* G Mine(i^(a:*)) with y* <c yo such that 

( F ( x ) - 2 / * ) n ( - C \ { O } ) - 0 , V X G X \ { X * } . (4.57) 

Once again, by (c"), 3x3 ^ -^\{^*} ^^^ Us ^ ^(^3) such that 

y3-2/* + r(x3,x*) <cO, 

which contradicts (4.57). • 

Remark 4-^2. Theorem A'' is a Takahashi type existence theorem for a mini­
mal solution for a set-valued function. Theorem B'^ is a fixed point theorem 
of Caristi-Kirk type. Theorem C" is a set-valued version of Oettli and Thera's 
result (see Oettli and Thera [153]). 

To present the equivalence of a relatively special variational principle for 
set-valued functions, we make the following standard assumption. 

Assumption 4.63. Let (X, d) be a complete metric space, Y be a locally con­
vex Hausdorff space, C CY be a nonempty nontrivial convex cone, c^ G C\{0} 
is such that 3A G C* such that A(c°) > 0. Let Y be ordered by C. Let F :=^ y 
be a set-valued function with F{x) ^ 0 for all x £ X and for every x E X, 
F(x) has domination property. There exist XQ G X and yo G F{xo) such that 
F is C order lower bounded on Xi = {x E X : {yo — C) D F{x) ^ 0 } . 
Furthermore, either of the following two conditions holds: 

(i\) C is closed and F is submonotone with respect to C; 
(\1\) the condition (II) of Assumption 4-^9 holds with r(xi,X2) = d{xi,X2) 

c^,Vxi,X2 G X . 

Applying Theorem 4.60 and Lemma 4.16, it is not difl[icult to prove the 
following Theorem 4.64, which is a special case of Theorem 4.60. 
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Theorem 4.64. Let Assumption 4-^3 hold. Then there exists an x* E X and 
y* G Minc{F{x*)) such that 

2/* <c yo and {F{x) - y* + d{x, x*)c°) fl ( -C) - 0 , Vx G X\{x*}. 

Theorem 4.65. All the following theorems are true and equivalent to Theo­
rem 4-^4-

Theorem A^. Let Assumption 4.63 hold. In addition, assume that (a'/) 
holds: 

(a'/) \/x e Xi,\/y £ F{x) with y <c yo, there exists xi G Xi such that {F{xi) — 
y) n (-C\{0}) ^ 0 , it follows that 3^2 G Xi\{x} and 7/2 G F(x2) such 
that y2 — y + d{x, X2)c^ <c 0. 

Then there exist x* G Xi and y* G Mine(-F(a:*)) with y* < c yo such that 

( F ( x ) - y * ) n ( - C \ { O } ) = 0 , VxGX\{x*}. 

Theorem Bi. Let Assumption 4.63 hold. Let T : X ^ X he a, set-valued 
function such that (6'/) holds: 

(bi) \/x e X^yy e F{x) with y <c yo there exist x G T{x) and i/ G F{x) such 
that y — y + d{x, x)c^ <c 0. 

Then there exist x* G Xi and y* G F(x*) such that 

X* G r(x*), 2/* < c yo. 

Theorem C('. Let Assumption 4.63 hold. Let M C X have the property 

(ci) V^ G X i \ M , Vy G F(x) with y <c yo, there exist x e X,y e F{x) such 
that X ^ X and y — y -\- d{x, x)c^ <c 0. 

Then there exist x* G M fl Xi and 2/* G F{x*) such that y* <c7 yo. 
Proof. Let Co = {ac° : a > 0},r(xi,a;2) = d{xi,X2)c^y\fxi,X2 G X. Applying 
Lemma 4.16 and Theorem 4.61, we can easily derive the conclusion of the 
theorem. • 

Finally, we will present stronger versions of Theorem B^' and B^, respec­
tively. Using the stronger results, we can obtain the existence of maximal 
solutions for vector optimization problems. 

Let 
Do = {x£X: {F{x) + r(x, XQ)) n (yo - C) ^ 0 } , 

where XQ and yo are as in Assumption 4.59. It is obvious that Do C Xi. 
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Theorem 4.66. Let Assumption 4-59 hold. Let T : X ^ X be a set-valued 
function with F{x) ^ 0 for all x ^ X such that Vx G Do, 3y € F{x) with 
y < c 2/0 — '̂ '(^j xo),\/x € T(x) and y G F{x) such that y — y-\- r(x, x) <c 0. 

Then 3x* e DQ and y* G F(a;*) such that 

T(x*) = {x*}, i /*<c2/o- r (x* ,xo) . 

Proof Firstly, we prove that 3x* G T(x*) and ?/* G Mine(-F(a:*)) such that 
y* <c yo - r(xo,x*) (thus x* G .Do). By (iv) and (v) of Theorem 4.48, there 
exist X* G Xi,y* G Minc{F{x*)) with 

y* < c yo - r (xo ,x*) and 

(F(x) - 2/* + r(x, X*)) n ( -C) = 0 , Vx G X\{x*}, (4.58) 

The first formula in (4.58) implies x* G Do- Now we show that x* G T(x*). 
Otherwise, x* ^ T(x*). By the assumption of this theorem, Vx G T(x*), 
3 /̂ G F(x) such that y — y* + r(x,x*) < c 0, which contradicts the second 
formula in (4.58). Hence x* G T(x*). Finally, we show by contradiction that 
T(x*) = {x*}. Otherwise, 3xi G T(x*)\{x*}. By the assumption of this the­
orem, there exists yi G F{xi) such that yi — y* -\- r(xi,x*) < c 0, which 
contradicts (4.58). So x* is just what we desire in the conclusion. • 

Now we let 

D'Q = {X£X: F{X) + d{x, xo)c° n (yo -C)^0}, 

where xo, yo are as in Assumption 4.63. It is obvious that DQC X\, 

Theorem 4.67. Let Assumption 4-63 hold. Let T : X ^ X be a set-valued 
function with F{x) ^ 0, for all x e X such that \^x e DQ^Vy e F{x) with 
y < c yo—d{x.,xo)c^, Vx G T{x) andy G F{x) such thaty — y+d{x,x)c^ <c 0. 

Then 3x* G DQ and y* G F(x*) such that 

T(x*) = {x*}, 2/* <c Vo - d{x\ xo)c^ 

Proof. The proof is very similar to that of Theorem 4.66. • 

As applications of the above theorems, we derive existence theorems of 
maximal solutions for vector optimization problems. 

Theorem 4.68. Let U be a nonempty set, Y a locally convex Hausdorff space 
ordered by a nontrivial convex cone C C Y. Let a convex cone Co C C be C 
bound regular such that Co H —C C —Co- Let r : X x X ^^Y be a Co metric 
function, (X, r) a complete Co metric linear space. Let Ci C X be a nonempty 
nontrivial convex cone and Ci induces an order in X. Let f : U ^^ X be a 
vector-valued function. If there exist a complete subset X2 C f{U) and a set-
valued function F : X2 ^Y with F{x) ^ 0 for all x e X2 such that 
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(i) \fx £ X2, F{x) has the domination property; 
(ii) the set-valued function F : X ^ X, r{x) — f{U) fl (Ci + x) is such that 

F{X2) C X2; 
(iii) there exist XQ E X and yo e F{xo) such that F is C order lower bounded 

on X3 = {xeX2: F{x) n{y- C) i- 0 } ; 
(iv) C is closed, F is submonotone with respect to C and Va € X, r{a,-) is 

continuous with respect to the topology of X induced by r; or VXQ G X and 
yo G F{xo), and a net {xa} C X, Xa —^ x e X and ya G F{xa) such that 
ya—yo-\-T{xo,,xo) <c 0, itfollows3y G F{x) such thaty—yo-\-r{x,xo) <c 
0. 

(v) Vx G Do,yy G r{x) with y <c yo - r{x^xo),'ix G r{x), 3y G F{x) such 
that y — y-\-r{x,x) G —C, where Do = {x E X2 : {F{x) + r(x,xo)) H {yo — 
C) y^ 0 } . 

Then, there exists u* G U, which is a maximal solution of f on U, and y* G 
F(/(iz*)) such that ?/* - 2/0 + r{xo, /(i/*)) <c 0. 

Proof Applying Theorem 4.66 by setting X = X2, T = F. It follows that 
3x* G -Do and y* G F{x*) with y* <c yo - r(x*,xo) such that F{x*) = {x*}. 
Suppose that x* = f{u*), u* G U, then the conclusion of this theorem follows. 

• 
T h e o r e m 4.69. Let U be a nonempty set, Y a locally convex Hausdorff space 
ordered by a nontrivial convex cone C. Let c^ e C be such that 3\ G C* such 
that A(c°) >0. Let{X,\\'\\)bea Banach space, Ci C X a nonempty nontrivial 
convex cone and C\ induces an order in X. Let f :U —> X be a vector-valued 
function. If there exist a complete subset X2 C f{U) and a set-valued function 
F : X2^Y with F{x)^0 for all x G X2 such that: 

(i) for all X e X2, F{x) has the domination property; 
(ii) the set-valued function F : X :=t X^r{x) = f{U) fl (Ci + x) is such that 

F{X2) C X2; 
(iii) there exist xo G X2 and yo E F{xo) such that F is C order lower bounded 

on Xs = {xeX2: F{x) H {yo - C) ^ 0 } ; 
(iv) C is closed, F is submonotone with respect to C, or \/xo G X and yo G 

F{xo) and a net {xa} C X, x^ ^ x e X and ya G F{xot) such that 
y<x — yo + \\x — xo\\c^ <c 0, it follows that 3y G F{x) such that y — yo -\-
\\x - xo\\c^ <c 0, 

(v) forallx G Do, ^y G F{x) withy <c yo-\\x-xo\\c^,yx G r{x),3y G F{x) 
such that y — y + \\x — x\\c^ < c 0; where Do = {x e X2 : {F{x) + ||x — 
xo\\c^)n{yo-C)^0}. 

Then there exists u* E U, which is a maximal solution of f on U, and y* E 
F(/(tx*)) such that y* - 2/0 + \\xo - /(^*)||c° <c 0. 

Proof The proof is very similar to that of Theorem 4.68. • 
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4.5 Extended Well-Posedness in Vector-Valued 
Optimization 

In this and next sections, we assume (unless stated otherwise) that (X, d) is 
a metric space, F is a normed space ordered by a nontrivial pointed, closed 
and convex cone C with nonempty interior intC, e G intC is a fixed element 
and + GO is a virtual element such that Va > 0, ae <c +oo. We also assume 
that the parametric space (P, p) is a metric space, a point p* E P is fixed and 
L is a closed ball in P with the center p* and a positive radius. 

Suppose that A CYU {4-CXD}. Denote by IniintcA the set of weak infima 
of A. Here by a* G InfintcA, we mean 

(a) a* = +00 if A= {+00} 
or 
(b) the following conditions are satisfied: 
(i) a* G Y; 
(ii) a- a* ^intc 0, Va G A; 
and 
(iii) there exists a sequence {a^} C A such that a^ -^ a* as n —> +00. 

In this section, we consider well-posedness of vector-valued optimization 
problems. 

Let J : X ^ F U {+00} and I: X x L ^ Y U {+00} be extended vector-
valued functions such that I{x^p*) = J(x),Vx G X, where +00 is a virtual 
element such that Va > 0, ae < c +00. 

The function I{.,p) is said to be proper if there exists x E X such that 
I{x,p) <mtC +00. 

The problems are set as follows. 
The original problem: 

(X,J ) : lnfintc{J{x):xeX}. 

The perturbed problem corresponding to parameter p: 

(X,/(. ,p)) : lniintc{I{x,p) :xeX}. 

Note that the original problem (X, J) is the same as problem (X, /(.,p*)). 
Let 

V{p) = lniintc{I{x,p) :xeX}, 

Recall that, hy y eV{p), we mean 
(a) y = +00 if /(x,p) = +00, \/x G X; 
or 
(b) the following conditions are satisfied: 
(i) 2/ G F ; 
(ii) \/x G X, I{x,p) - y ^intc 0; 
and 
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(iii) there exists a sequence {xk} C X such that I{xk,p) —̂  y as n —̂  +00. 

Throughout the section, we always assume V{p) 7̂  0 wherever the symbol 
V{p) appears. Denote by argmiriintci^^H-^P)) ^^^ ^̂ ^ ^^ weakly minimal 
solutions of /( . ,p) on X. 

Remark J^.IO. If y is a weakly minimal point of I{X,p), then y G V{p). 

Suppose that (Z^di) is a metric space, z £ Z and ZQ C Z, denote by 
d{z,Zo) =inf {di{z^zo) : ZQ e ZQ} the distance function from point z to set 
ZQ. Recall that ^e • ^ —̂  IR in Chapter 1 is defined as 

^e{y) = mm{telR:yete- C}, Vy G F. 

Noting that C = {c e Y : l{c) < 0,V/ € —C*}, the next proposition follows 
immediately from Proposition 1.44. 

Proposition 4.71. For any y EY, 

ê(y) = sup —5". 

By Proposition 4.71, it is clear that if there exists A € C*\{0} such that 
A(/) is bounded below on X, then ^e(/) is also bounded below on X, where 
/ : X —> y is a vector-valued function. 

Throughout this section, we make the following assumption. 

Assumption 4.72. For any p G L, I{.,p) is proper and^e{I{x^p)) is bounded 
below on X. 

Now we introduce three notions of extended well-posedness for vector op­
timization problems. 

Definition 4.73. Problem (X, J) is called well-posed in the weakly extended 
sense if 

argminintci^, J) ¥" 0; (4.59) 

y ( p ) ^ 0 , V p G L ; (4.60) 

[for any sequences pk -^ p* in P and {xk} in X such that 

d{I{xk',Pk)^y{Pk)) -^ 0, there exist a subsequence {xk^} of {xk} 

and some point x* G argminintci^i J) such that x^. —> x*.] (4.61) 

Definition 4.74. Problem (X, J) is called well-posed in the extended sense if 
(4-59) and (4-60) hold and 
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[for any sequences pk -^ P* in P and {xk} in X such that 

3{ak}, ak>0,ak-^0 and yk e V{pk) with 

I{xk,Pk) ^c Vk + <̂ fce, there exist a subsequence {xki} of c 

{xk} and some point x* G argmiUintciX, J) such that 

Xk,^x\] (4.62) 

Definition 4.75. Problem {X, J) is called well-posed in the strongly extended 
sense if (4-59) and (4-60) hold and 

[for any sequences pk —^P* in P and {xk} in X such that 

liminf[ inf ^e(y — H^k^Pk))] > 0, there exists a subsequence 
n-^+oo yeV(pk) 

{xki} of {xk} and some point x* G argminintc{X, J) 

such that Xki ~^ ^*-] (4.63) 

The sequences {xk} in (4.61), (4.62), and (4.63) are called a strongly 
asymptotically minimizing sequence, asymptotically minimizing sequence, 
weakly asymptotically minimizing sequence, respectively. 

Remark 4-'^^- (si-) It is not difficult to see that a strongly asymptotically min­
imizing sequence is also asymptotically minimizing and an asymptotically 
minimizing sequence is also weakly asymptotically minimizing. 

(b) Due to (a), we know that the strongly extended well-posedness implies 
the extended well-posedness and that the extended well-posedness implies the 
weakly extended well-posedness. However, the converse may not be true. 

Example 4.77. Let X = [0,+oo), Y = C[0,1] x IR, C = Ci x 11+, where 
C[0,1] stands for the set of continuous functions defined on the interval [0,1] 
and Ci = {f e C[0,1] : f{t) > 0,Vt G [0,1]}. Let e = (1,1) G intC, P = 
]R^,p* = O a n d 

jU^.ii^^^)^ i f xG[0 , l ] ; 
\ifx{t)A/k-\-x-k)-{-{0,p), ifxG(A:,fc + l ] ,A:=l ,2 , . . . , 

where 

f - f e i ( l - l / ( f e + l ) ) ' = - 2 + l / ( A ; + l ) , 

if t € [0,1 - l/{k + 1 ) ) , x € { k , k + 1]; 
-fci'=-i + l / ( f e+ l ) , 

i{t€[l-l/{k + l),l],xe {k,k+l]. 

Now we show that problem {X, J) is well-posed in the weakly extended sense 
but not well-posed in the extended sense. 

It is not hard to verify that V{p) = {(0,0)}, Vp € P; argminintc{X, J) = 
[0,1]; A = (0,1) e C*\{0} is such that \{I{x,p)) is bounded below for any 

Ut) 
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p e P and so Assumption 4.72 holds; for any sequences Xk ^ X,pk ^ P such 
that pk —^ 0 and I{xk,Pk) -^ 0, we have Xk € [0,1] when k is sufficiently large. 
Thus there exist a subsequence x^. and x* G [0,1] such that Xki -^ x*. So 
(X, J ) is well-posed in the weakly extended sense. However, for the sequence 
Xk = k-\-l/k,pk = l/k{k > 2) such that I{xk,Pk) = {fk+i/k{t),S/k) <c 
(0,0) + {l/{k + l),3/fc) there exists no subsequence Xki and x* G [0,1] such 
that Xki ~^ ^*-

Example 4.78, Let X = IR+, y = IR^, C = B ^ , P = IR+, e = (1,1), p* = 0 
and 

jr^^.h^O)^ i f xG[0 , l ] ; 
^ ^ ^ |(A;,x-fc) + (0,p), i fxG (A:,A:+l],A:=l,2,.... 

We show that problem (X, J) is well-posed in the extended sense but not 
well-posed in the strongly extended sense. 

It is clear that V{p) = (0,0) for any p £ P; argminintc{X,J) = [0,1]; 
/( . ,p) is bounded below for any p G P and thus Assumption 4.72 holds 
naturally; for any sequences Xk,Pk such that pk —> p* and I{xk,Pk) ^c 
(0,0) + e/c(l, 1) for some {ek} C IR-f with 6/c —» 0 we have Xk G [0,1] when k 
is sufficiently large. Hence there exists a subsequence Xfc. and x* G [0,1] such 
that Xki —̂  ^*- So (X, J ) is well-posed in the extended sense. However, for the 
sequence Xk = k^pk = l/k, it is easy to verify that Xk is weakly asymptoti­
cally minimizing corresponding to pk and there exists no subsequence x/j. and 
X* G [0,1] such that x^. -^ x*. Hence, (X, J ) is not well-posed in the strongly 
extended sense. 

(c) When Y = 1R, C = IR+, all the three types of extended well-posedness 
reduce to the extended well-posedness defined in [226]. 

(d) Any one of three types of well-posedness implies that argminintc{X^ J) 
is compact. 

For simplicity, we write argmiriintcip) instead of argminintc{X,I{.,p)); 
problem(p) instead of problem(X,/(.,p)). Thus, problem(p*) = {X,J). 

Now we give some criteria and characterizations of the three notions of 
extended well-posedness. 

Let e G intC. For any e > 0, ^ G L, we denote 

e - argmiriintcip) = {x e X : I{x,p) - I{x',p) - ee ^mtc 0, Vx' G X}. 

Let 
M(e,p) = {x G X : /(x,p) - y - ee ^.intc 0, Vy G F(p)}. 

Clearly, e —argmiriintcip) C M(€,p). However, the reverse inclusion may not 
hold. 

The following proposition is about the nonemptiness of the set e — 
argmiriintcip)' 
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Propos i t ion 4.79. Let Assumption ^.12 hold. Then e — argmiriintcip) ¥" 
0 ,Ve>O,pGL. 

Proof, Since Assumption 4.72 holds, for any p e L, ^e(^(^,p)) is bounded 
below. So for any e > 0, there exists Xe £ X such that 

UIixe,P)) < inf 6 ( / (x ,p ) ) + €. (4.64) 

We assert that x^ e e — argmiriintcip)' Otherwise, there exists x^ e X such 
that 

I{x\p) - I{xe,p) + ee <intc 0. 

So 

that is, 
6(/(xe,p)) > UI{^'.P)) + ^ > inf 6 ( / (x ,p ) ) + e, 

which contradicts (4.64). • 

M can be viewed as a set-valued function from intIR+ x L into X. 

Propos i t ion 4.80. If M{.,.) is u.s.c. at (0,p*); argmiriintcip*) is nonempty 
and compact, then problem (p*) is well-posed in the strongly extended sense. 
Conversely, if problem (p*) is well-posed in the strongly extended sense, then 
M is u.s.c. at (0,p*). 

Proof Let pk ^ p*, ek ^ 0 and Uk ^ ek — argmiuintciPk)- Consider 

Tk = {x e X : d(x, argmiriintcip*)) < V^l^ VA:. 

Then, by the u.s.c. of M at (0,p*), there exists a subsequence Uki of Uk 
such that Uki G Tki^^L By the compactness oiargmiriintcip*)') there exists a 
further subsequence of Uki that converges to a point in argm^inintciP*)- This 
proves the first half of the proposition. Arguing by contradiction, it is easy to 
prove the second half of the proposition. • 

Definition 4.81. We say that problem (p*) is stable in the weakly extended 
sense (respectively, in the extended sense, in the strongly extended sense) if 

argmiriintcip*) ¥" 0 ^^^ f^"^ every sequence pk —> p* 

and every strongly asymptotically (respectively, asymptotically, 

weakly asymptotically) minimizing sequence {xk} 

corresponding to {pk}-, ^e have 

dixk, argmiriintcip*)) "^ 0- (4.65) 
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Proposition 4.82. If problem (p*) is well-posed in the weakly extended (re­
spectively, extended, strongly extended) sense, then (4-^5) holds (respectively). 
Conversely, if (4-^5) holds, then (p*) is well-posed in the weakly extended 
(respectively, extended, strongly extended) sense provided argmiriintciP*) ^̂  
compact. 

Proof. We only prove the case of well-posedness in the weakly extended sense. 
The other two cases can be similarly proved. Assume that (p*) is well-posed 
in the weakly extended case. Suppose that (4.65) fails. Then, for suitable 
sequences pk -^ P*, Xk strongly asymptotically minimizing corresponding to 
Pk, and for some e > 0, we have 

e < d{xk, argminintcip*)), Vn. 

Weakly extended well-posedness of (p*) implies the existence of a subsequence 
{xki} such that Xki -^ u e argminintcip*)] hence, 

0 < e < Mm sup d{xki,argminintc{p*)) ^ d{xki^u) = 0, 
i—*-f-oo 

a contradiction. This proves the first half of the proposition. Conversely, as­
sume (4.65). li Pk -^ p* and if Xk is strongly asymptotically minimizing cor­
responding to Pk, for each k, we find a point Uk € argmiriintciP*) such that 
d{xk, Wife) -^ 0; by compactness, we get weakly extended well-posedness. • 

Given nonempty subsets A, B of X, consider the excess of A to -B defined 
by 

e{A, B) = sup {d{a, B) : a G A}. 

The Hausdorff distance between A and B is defined as 

haus(A, B) = max {e(A, B), e{B, A)}. 

For a bounded metric space, a sequence of subsets Ak and a subset B thereof, 
e{Ak,B) —> 0 iff d{ak,B) -^ 0 for every selection Ok G Ak. Therefore, a 
reformulation of Proposition 4.82 yields the following corollary. 

Corollary 4.83. / / X is bounded, then the strongly extended well-posedness 
of {p*) implies e(e - argminintc{p),CLrgminintc{p )) -^ 0 as (e,p) -> (0,p*). 
The converse holds provided argmiriintciP*) ^̂  nonempty and compact. 

In the following theorem, we shall give a metric characterization of the 
extended well-posedness of problem (p*). 

Consider a real-valued function c = c{t, s) defined for t > 0, 5 > 0 suffi­
ciently small, such that 

c( t ,5)>0,c(0,0) = 0 (4.66) 

Sk -^0,tk> 0, c{tk, Sk) -> 0 imply tk -> 0. (4.67) 
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Theorem 4.84. If problem (p*) is well-posed in the extended sense, then there 
exists c satisfying (4-^6), (4-67) and 

{I{x,p) - V{p) - c{d{x,argminintc{p*)), p{p^P''))e} H ( - intC) = 0, 

\/xGX,peL. (4.68) 

Conversely, if argmiriintcip*) ^̂  nonempty and compact, and (4-^^) ci'^^d 
(4-67) hold for some c satisfying (4-6S), then (p*) is well-posed in the ex­
tended sense. 

Proof Let (p*) be well-posed in the extended sense. Consider 

c(5, t) = inf { inf ^e{I{x,p) - y) : p(p,p*) = 5, d[x, argmiuintcip*)) = t} 

where 5 > 0, t > 0 are suitably small. Let us first check that (4.66) and (4.67) 
hold. For any 5 > 0,t > 0 suitably small, for any x,p satisfying pip^p"^) = 
s, d{x, argmiriintcip'')) = t, ii y e V{p), then 

I{x,p) -y ^intc 0, 

therefore, 
UHx,p)-y)>o. 

Thus, 
inf £ e ( / ( x , p ) - 2 / ) ) > 0 . 

yev{p) 

Hence, c(5, t) > 0. Moreover, if 5 = 0, t = 0, it follows from the extended 
well-posedness of (p*) that argmiriintcip*) is nonempty and compact. Hence, 
d{x,argminintc{p*)) = 0 implies x G argmiriintcip*)' In addition, pip^p"") = 
0 implies p = p*> Consequently, the combination of d(x, argmiriintcip*)) — ^ 
and pipyp"") = 0 yields I{x,p) G T/̂ (p*). Hence, 

c(0,0) < inf Ul{x,p) -y)< 6 ( / (x ,p ) - I{x,p)) = 0. 
yeV{p*) 

This combined with the inequality c(0,0) > 0, which has been proved above, 
yields c(0,0) = 0. Thus, (4.66) is verified. Now we show that (4.67) holds. 
Suppose that Sk > 0,tfc > 0 and c{sk,tk) —^ 0, then there exist pk, Xk and 
yk G V{pk) such that 

U{I{xk,Pk) - yk) -^ 0,p(pfc,p*) = Sk,d(xk,argminintc{p*)) = tk- (4.69) 

By (4.69), there exist a/c > 0, a^ ^ 0 such that 

ie{I{Xk,Pk) -yk) < OLk, 

implying 
I{xk,Pk) <c yk + OLke. 
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Hence, {xk} is an asymptotically minimizing sequence corresponding to {pk}-
So 

tk = d{xk,argminintc{p*)) -^ 0 

by Proposition 4.82, i.e., (4.67) holds. By the definition of c, it is easy to see 
that (4.68) holds. This proves the first part. Now assume that {pk} C L with 
Pk —^ P* and {xk} is an asymptotically minimizing sequence corresponding to 
{pk}' That is, there exist yk G V{pk) and a ;̂ > 0, a/c —» 0 such that 

I{xk,Pk) <c Vk + OLke. (4.70) 

Moreover, (4.68) implies 

I{xk,Pk) -yk - c{d{xk,argminintc{p^)),p{Pk,P*))e ^intc 0. (4.71) 

The combination of (4.70) and (4.71) yields 

ake - c{d{xk, argmirnntcip*)), p{Pk,p''))e ^intc 0. (4.72) 

Arguing by contradiction, it is easy to see that (4.72) implies 

cidixk^argmiriintciP*))^ p{Pk,P*)) -^ 0. 

By (4.67), we have 
d{xk,argmmintc{p^)) -^ 0. 

Applying Proposition 4.82, we conclude that (p*) is well-posed in the extended 

sense. • 

Recall that the Kuratowski measure of noncompactness of a subset A of 
X is defined by 

a{A) = inf {k > 0 : A has a finite cover of sets with diameter < k}. 

In the following theorem, we need the condition: 

a(U{6 - argmiuintcip) - p{p,P^) < e}) -> 0, as e -^ 0. (4.73) 

Definition 4.85. Problem (p) is said to have the weak domination property if, 
for any x e X, there exists x' G argminintc{p) such that I{x\p) <c I{x^p). 

Theorem 4.86. If X is a complete metric space and Vx' G X, ^e{Hx\.) — 
/(. , .)) is u.s.c. on X X {p*}, H-'^S) holds and problem (p) enjoys the weak 
domination property, then problem (p*) is well-posed in the strongly extended 
sense. Conversely, the strongly extended well-posedness of problem (p*) implies 
(4.73). 



4.5 Extended Well-Posedness in Vector-Valued Optimization 237 

Proof. Let 
r(e) = U{e - argmiriintcip) - p(p,P*) < e}. 

Suppose that (4.73) holds. Then cl{T{e)) is nonempty, closed and increasing 
in e (with respect to the relation of set inclusion). By (4.73), a(c/(T(e))) = 
a(T(e)) -^ 0 as e -^ 0. By the Kuratowski theorem ([126], p.318), we have 
haus[cl{T{e)), T] ^ 0 as e ^ 0, where 

T = n{c/(r(e)) : e > 0} (4.74) 

is nonempty and compact. 
Let us show that 

T = argmiriintcip*)- (4-75) 

It is obvious from (4.74) that 

d{x, Tie)) = 0, Vx G T, Ve > 0. (4.76) 

To prove (4.75), we need only to show that T C argmiriintcip*) since 
argmiriintcip*) C T holds automatically. Suppose that there exists x G T 
such that X ^ argmiriintcip*)- Then 3x' G X with J(x') — J(x) <intc 0. 
Hence, 3(5 > 0 with ^e(J(xO - J(x)) < -5 or ^e(/(x',p*) - /(x,p*)) < - 5 . 
Since ^e(-^( '̂5 •) ~ li--,-)) is u.s.c. on X x {p*}, we deduce that 3eo > 0 such 
that, when (i(x, tx) < eo, pip,P*) < eo, we have 

Ce(/(a; ' ,p)-/(w,i>))<-<5. 

Namely, 
7(x',p) - liu.p) <intc -Se. 

So when e < min (eo,(5), for any u with diu^x) < CQ, u ^ T(e) holds. In 
other words, u G T(e) implies diu^x) > eo, which contradicts (4.76). Hence, 
T = argmiriintcip") • 

Now we prove that problem (p*) is well-posed in the strongly extended 
sense. Suppose that pk -^ P*?{ Ĵfc} is a weakly asymptotically minimizing 
sequence corresponding to {pk}, namely, 

[ inf edy-Iixk^Pk))] > 0 . 

Hence 3ek > 0, e/c is decreasing and converges to 0 such that 

y - lixk.Pk) + e^e ^intc 0, Vy G F(pfc). 

Since ipk) has weak domination property, we conclude that x^ G ê  — 
argmiuintciPk)' Moreover, Ck is monotone decreasing, we have a subsequence 
{pki} such that 

piPki^P*) <ek 

and 



238 4 Vector Variational Principles 

Xki eck- argmiriintciPki) C T(e/c). 

By (4.74) and (4.75), we know that 

d{xk,,argminintc{p*)) ^ 0. 

From the compactness of argmiriintcip'^)^ we deduce that (p*) is well-posed 
in the strongly extended sense. 

Now we prove the second part of the theorem. Assume that (p*) is well-
posed in the strongly extended sense. Consider the excess 

q(e) = e{T{e), argmiriintcip'')), e > 0. 

We show that q{e) ^ 0 as e -^ 0. If not, there exist (J > 0, ê  -^ 0, x^ G T{ek) 
such that 

d{xk,argminintc{p')) > 5, V/c. (4.77) 

We can find pk -^ P* such that Xk is a weakly asymptotically minimizing 
sequence corresponding to pk^ and thus (4.77) contradicts the extended strong 
well-posedness of (p*). Hence, q{e) -^ 0 as e ^ ' 0. So, we have 

r(e) C {ue X : d{u,argminintc{p*)) < Q{^)}' 

Hence, 
aiTie)) < 2q{e), 

since 
a{argminintc{p^)) = 0, 

and (4.73) follows. • 

Remark 4.87. If, for any A G C*,x' G X, A(/(x',.)) isu.s.c. atp* and A(/(.,.)) 
isl.s.c. onXx{p*},thenfor anyx' G X,^e{I{^^i •)~-^(-? •)) isu.s.c. onXx{p*}. 

Similar to the proof of the first part of Theorem 4.86, we can prove 

Theorem 4.88. If X is complete, and for any x' G X, ^^{I{x'.,.) — /(. , .)) is 
u.s.c. on X X {p*} and (4-74) holds, then {p*) is well-posed in the extended 
sense. 

Remark 4-S9. In Theorem 4.88, we dropped the assumption that (p) has the 
weak domination property. 

In the remainder of this section, we assume that (X, || • ||) is a Banach space. 

The following theorem is a new variant of Ekeland's variational principle 
for a vector-valued function without assuming that the function is C order 
bounded below. 
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Theorem 4.90. Let f : X ^ Y be a vector-valued function, f is Ls.c. on X 
and ^e{f) 5̂ bounded below on X. Let e > 0 and x* satisfy 

/ ( x ) - / (x* ) + ee^cO, Vx G X 

Then, for any real number S > 0, 3x' G X such that 
(i) f{x') <c fix*), 
(ii) | |x ' -x*| | <6, 
(in) fix) - fix') + f ||x - x'\\e ^intc 0, Vx G X\{x'}. 

Proof Let Xi = {x e X : fix) <c fix*)}. Then Xi is a closed sub­
set of X by the l.s.c. of / . It follows from the assumption on x* that 
^eifix) — fix*)) + e > 0,Vx G X, i.e., x* is an e-minimum of the scalar 
function ^eifix) — fix*)) on Xi. In addition, from the conditions of this the­
orem, we deduce that £,eifix) — fix*)) is l.s.c. and bounded below. Applying 
Theorem 4.1, we know that for any S > 0, there exists an x' G Xi such 
that (ii) holds, and ^dfix) - fix'')) + f ||x - x'|| > 0,Vx G Xi\{x'}, i.e., 
fix) — fix') + fll̂ ^ — x'\\e ^intc 0,Vx G Xi\{x'}, hence (iii) holds. Since 
x' G Xi , (i) holds true automatically. • 

Let C*^ = {leC* : ||/|| - 1}. 

Proposition 4.91. Assume that for all p G L, /(.,;?) is Gateaux differen-
tiable; Vx' G X,^eiLix\.) — /(., .)) ^̂  u.s.c. on X x {p*};/(.,p) is l.s.c; As­
sumption 4-72 holds; and 

(C'l) for any sequence pk -^ p* in P, if Xk is an asymptotically min­
imizing sequence corresponding to pk and there exists Xk G C*^ such that 
\\Xki\7xIi^k,Pk)) II —̂  0; then {xk} has a convergent subsequence. 

Then (p*) is well-posed in the extended sense. 

Proof. Given pk —̂  p*, let Xk be an asymptotically minimizing sequence cor­
responding to Pk. That is, 3yk G Vipk), ajt > 0, ajt ^ 0 such that 

lixk.Pk) <c yk^oLkC. 

It is easy to see that 

/(x,pfc) - lixk.Pk) + 2a/ce ^ c 0, Vx G X. 

Noticing that /(.,pfc) is l.s.c. and Assumption 4.72 holds, applying Theorem 
4.90 with e = 2ak, S = \/2afc, we obtain Zk £ X such that 

lizk.Pk) <c Hxk.Pk) and \\zk - Xk\\ < V2a^ (4.78) 

and 
lix.pk) - lizk.Pk) + \ /2a^ |k - ^k\\e %intc 0, Vx G X, 
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implying 

{I{x,pk) - I{zk,Pk))/\\x - Zk\\ + V2^e ^intc 0, Vx G X, (4.79) 

For any d G X\{0}, t > 0, let x = Zk + td, substitute it into (4.79), let t -^ 0 
and apply the Gateaux differentiability of 7(.,pjfc). We have 

\7xI{zk,Pk){d) + \/2a^e ^ 
intC 

0, W G X 
Applying the separation theorem for convex sets, we know there exists Xk G 
C*° such that 

Xk{VxI{zk.Pk){d)) + x/2^Afc(e) > 0, Vd G X, 
that is, 

Xk{\/xI{zk,Pk){d)) > -\/2a^A/c(e), \fd G X 

Arguing by contradiction, we deduce that 

\\Xk{VxI{zk^Pk))\\ < \/2a^A/c(e) < \/2a^||e||. 

Hence, 
\\Xk(VxI{zk,Pk))\\ -> 0, as fc -> oo. 

Noticing that {zk} is still an asymptotically minimizing sequence correspond­
ing to {pk} and applying (Ci), we know that {zk} has a subsequence {zki} 
converging to z*. By (4.78), \\zk — Xk\\ -^ 0 as fc —> oo. So Xĵ . -^ z*. Let us 
show by contradiction that z* G argminintc{X, J). Otherwise, 3xo G X with 

7(Xo,P*)-/(^*,P*)<intcO. 

So 3J > 0 such that 

7(xo,p*) - 7(2:*,p*) <intc -<5e, 

that is, 

ui{xoy)-i{z\p''))<-s. 
It follows from the u.s.c. of ^e(7(xo,.) — 7(.,.) on X x {p*} that 3eo > 0, when 
P{P^P*) < 0̂ and \\u — z*\\ < eo, 

^e(7(xo,p)-7(tx,p)) < - 5 , 

that is, 
7(xo,p) - 7(1^,^) + 6e <intc 0. 

Hence, when k is sufficiently large, 

A^cPfcJ - I{xki,Pki) + ^e <intc 0, 

which contradicts Xki G a^. — argmiriintciPki)' So (p*) is well-posed in the 
extended sense. • 

Similarly, we can prove the following two propositions. 
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Proposition 4.92. Assume that for any p e L, I{.,p) is Gateaux differen-
tiable; Mx' G X^^e{I{x',.) — /(. , .)) ^̂  u.s.c. on X x {p*}; /( . ,p) is l.s.c; 
Assumption J^.12 holds; and 

{C2) for any sequence pk —> p* in P, if Xk is a weakly asymptotically 
minimizing sequence corresponding to pk and there exists Xk G C*° such that 
\\Xk{\7x^i^k^Pk))\\ —^ 0, then {xk} has a convergent subsequence. 

Moreover, \/p G L, problem {p) enjoys the weak domination property. 
Then (p*) is well-posed in the strongly extended sense. 

Proposition 4.93. Assume that for any p e L, /( . ,p) is Gateaux differen-
tiable; Mx' G X,^e{I{x',.) — /(.,•)) ^̂  u.s.c. on X x {p*}; /(. ,p) is l.s.c; 
Assumption 4-72 holds; and 

{C3) for any sequence pk -^ p* in P, if Xk is a strongly asymptotically 
minimizing sequence corresponding to pk and there exists Xk G C*° such that 
\\Xk{\7xI{'^k^Pk))\\ -^ 0; then {xk} has a convergent subsequence. 

Moreover, assume that 

\\Zk -Xk\\ -^ 0,I{Zk,Pk) <C I{Xk,Pk) 

and XkjPk CLS in (C3) imply d{I{zk,Xk), V{pk)) -^ 0. (4.80) 

Then (p*) is well-posed in the weakly extended sense. 

Remark 4-94- (4.80) holds automatically when Y = Wi^C = H-f. 

4.6 Extended Well-Posedness in Set-Valued 
Optimization 

In this section, we investigate the extended well-posedness properties of set-
valued optimization problems. 

Let Z be a topological space and F : X =4 -̂  be a set-valued function. 
F is called strict if, for every x e X, F{x) j^ 0. Let / : y ^ ' IR be a real 
function. Recall that / is monotone with respect to C if, for any 2/1,2/2 G Y 
with yi <c y2i we have / (yi) < /(2/2)- We assume that the parametric space 
(P, p) is a metric space, a point p* G P is fixed and L is a closed ball in P 
with the center p* and a positive radius. 

We also make the following assumption. 

Assumption 4.95. Set-valued functions J : X =4 F, and I: X x L ^Y are 
strict and for any p £ L, there exist X G C*\{0} and a real number a such 
that X{y) >a,\/ye I{X,p), where J{x) = /(x,p*), Vx G X. 



242 4 Vector Variational Principles 

Consider the following set-valued optimization problems: 

and 

{X,J):lniintc U J{x) 
xeX 

{X,I{.,p)):lniintc ^I{x,p). 
x£X 

(X, J ) is called the original problem, while (X,/( . ,p)) is called the model 
perturbation of the original problem corresponding to the parameter p G L. 
Let V{p) denote the set of weak infima of / (X,p) , Wp e L. By y e V{p) we 
mean that the following conditions are satisfied: 

(i) 2/ e y ; 
(ii) There exists no x G X such that [I{x,p) — y]{—intC) ^ 0; 
and 
(iii) There exists a sequence Xk ^ X and yk G I{xk,p) such that yk —> y-
Recall that an element x G X is called a weakly minimal solution to 

(X,/( . ,p)) if there exists a y G I{x,p) such that y G V{p). 
We denote by argmiriintci^^ J) sind argmiuintci^^ H">P)) ^^^ ^^^^ of the 

weakly minimal solutions of (X, J) and (X, I{.,p)),yp e L, respectively. 
Throughout this section, we always assume that V{p) ^ ^ wherever it 

appears. 

Definition 4.96. (X, J) is said to be well-posed in the extended sense with 
respect to the embedding defined by I if 

(i) Assumption 4-95 holds; 
(a) argminintc{X, J) ^ 0; 
(iii) 

[Vpfc —̂  P* 0''^d (xk^yk) G X X Minc{I{xk,Pk)) such that 

Uk <c Zk + e^e, for some e^ > 0, e/c ^ 0 

and some Zk G V{pk),] (4-81) 

then there exist a subsequence {xfc.} of {xk} and x* G argmiriintci^^ J) such 
that Xki —> X*. 

The sequence (xk^yk) o,s in (4-^1) is called an asymptotically minimizing 
sequence corresponding to sequence pk-

Definition 4.97. (X, J) is said to be well-posed in the strongly extended sense 
with respect to the embedding defined by I if 

(i) Assumption 4-95 holds; 
(a) argmiuintci^, J) 7̂  0; 
(iii) 

[Vp/c -^ P* and {xk.yk) G X x Minc{I{xk,Pk)) such that 
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{I{X,pk) -yk + eke) n (-C\{0}) = 0, for some ê  > 0,6^ -> 0,] (4.82) 

then there exist a subsequence {xki} of {xk} and x* € argminintci^^ J) such 
that Xki ~^ ^*-

The sequence {xk,yk) as in (4-^2) is called a strongly asymptotically min­
imizing sequence corresponding to sequence pk -

Clearly, an asymptotically minimizing sequence corresponding to pk is a 
strongly asymptotically minimizing sequence corresponding to pk. 

Remark 4-98. (i) It is easy to see that the strongly extended well-posedness 
implies the extended well-posedness if V{p) is nonempty, for all p e L. How­
ever, the converse may not be true. The following example demonstrates this 
fact. 

Example 4.99. Let X = IR+, Y = W{?,C = IR^, e - (1,1), P = IR+, p* = 0 
and 

(0,0) + [0 , l ]x [0 , l ] , 

ifa;G[0,l],Vp; 

^ '"̂ ^ Vfc,^-fc) + (0,p) + [0,l]x[0,l], 
i fxG (A:,A: + l],fc = l ,2 , - - - ,Vj9. 

We show that the problem (X, J) is well-posed in the extended sense, but 
not well-posed in the strongly extended sense. 

It is clear that V{p) = {(0,0)},Vp; argminintc{X^J) = [0,1]; and As­
sumption 4.95 holds. It is easy to see that for any sequences Xk, Pk, yk ^ 
I{xk,Pk) such that pk -> p* and yk <c (0,0) -f 6^(1,1) with ê ; -^ 0" ,̂ we have 
Xk G [0,1] when k is sufficiently large. Hence there exists a subsequence {xfe.} 
and X* G [0,1] such that x^. -^ x*. So (X, J ) is well-posed in the extended 
sense. However, for sequence Xk = n, pk = l/k, yk = (A:, 1/k) G I{xk,Pk), it is 
easy to check that x/c is a strongly asymptotically minimizing corresponding 
to Pk and there exists no subsequence Xki and x* G [0,1] such that x^. -^ x*. 
Hence (X, J ) is not well-posed in the strongly extended sense. 

(ii) When Y = JR,C = IR+ and / , J are real-valued, the definition of the 
strongly extended well-posedness is the same as that of the extended well-
posedness defined in [226]. 

(iii) If / , J are single-valued, then the extended (strongly extended) 
well-posedness here reduces to the extended (resp. strongly extended) well-
posedness in [99]. 

(iv) If {X, J) is well-posed in the (strongly) extended sense, then the so­
lution set argminintc{X, J) is sequentially closed and compact. 
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For simplicity, we write argminintc{v) instead of argminintc{^^H">P))'') 
(p) instead of (X, /( . ,p)). Thus, (p*) = (X, J ) . 

Now we give some criteria and characterizations for these two types of 
well-posedness. First of all, we consider the following set-valued function: 

(e,p) -> M(e,p) = €~ argminintcip) = {x e X :3y e Mmc(I{x,p)) with 
(/(X,p) - y + ee) n (-C\{0}) = 0}, for e > 0,p G L. 

Lemma 4.100. Let F : X :=t Y be a set-valued function and there exist 
A G C*\{0} and a real number a such that X{y) > a^y e F{X). Then for 
any e > 0, there exist an x* and ay* € F(x*) such that {F{X) — y* + ee) fl 
(-C\{O}) = 0. 

Proof Let 5 = inf {A(y) : y € F{X)}. By the assumption of Lemma 4.100, 
we have 5 > —oo. Since A(e) > 0, we deduce that, for any e > 0, there exist 
X* GX and y* G F(x*) such that 

A(2/*) < s + eA(e) < X{y) + eA(e), \/y G F{X), (4.83) 

Now we show by contradiction that x* and y* are just what we want in Lemma 
4.100. 

Suppose that there exist xi £ X and yi e F{xi) such that 

yi-y* + €e <c\{0} 0. 

Then 
A(2/i - 2/* + ee) < 0. 

Therefore, 
A(2/i)<A(2/*)-6A(e), 

which contradicts (4.83). The proof is complete. • 

Proposition 4.101. / / Assumption 4.95 holds and, for any p G L,x E X^ 
I{x,p) enjoys the lower domination property, then Ve > 0, M{e^p) ^ 0. 

Proof. Let p G L. It follows from Lemma 4.100 that, for any e > 0, there exist 
X* G X and y* G /(x*,p) such that {I{X,p) - y* + ee) H (-C\{0}) - 0. Since 
I{x*,p) has the lower domination property, we conclude that there exists 
yl G Mine (/(a:*, p)) such that 2/1 < c 2/*. Therefore, {I{X,p) - 2/1 + ee) fl 
(-C\{0}) = 0. That is, M{e,p) ^ 0. The proof is complete. • 

In the following, we assume that (X, d) is a metric space. 

Proposition 4.102. Let Assumption 4-95 hold. If (p*) is well-posed in the 
strongly extended sense, then 

M is upper semicontinuous at (0,p*). (4.84) 

Conversely, if M is u.s.c. at (0,p*) and argmiriintciv*) ^̂  nonempty and 
compact, then (p*) is well-posed in the strongly extended sense. 
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Proof. We prove (4.84) by contradiction. 
Suppose that 

36 > 0, {ek,Pk) -^ (0,p*)(e/c > 0) and Xk e ek - argmiriintciPk) (4.85) 

such that 
d{xk,argminintc{p*)) > S. (4.86) 

By (4.85), 3yk € Mmc{I{xk,Pk)) with {I{X,pk) - Vk + eke) H (-C\{0}) = 0, 
implying (xk^Vk) is a strongly asymptotically minimizing sequence corre­
sponding to pk. Hence, there exist a subsequence {xfc.} of {xk} and x* G 
argmiuintcip*) such that Xki —̂  a;*, contradicting (4.86). 

Now let us prove the second part. Let pk -^ p*, ek -^ 0{€k > 0). If (x^, yk) 
is a strongly asymptotically minimizing sequence corresponding to pk, then 
Xk € M{ek,Pk)' By the u.s.c. of M, we know that 3uk € argmiuintcip*) such 
that 

Xk-Uk^ 0. (4.87) 

By the compactness of argminintc{p*)^ there exist a subsequence {uki] of 
{uk} and X* € argmiuintcip*) such that 

txfc,-^x*. (4.88) 

The combination of (4.87) and (4.88) yields x^. —̂  x*. Hence, (p*) is strongly 
well-posed in the extended sense and the proof is complete. • 

Now we introduce the concept of the (strongly) extended stability of (p*): 

[argmiriintcip*) is nonempty, for any sequence pk —̂  p*, for any 

strongly asymptotically (resp. asymptotically) minimizing sequence 

(xk^Vk) corresponding to pk, we have 

d{xk, argmiriintcip*)) -^ 0.] (4.89) 

The following proposition establishes the relationship between the (strongly) 
extended stability of (p*) and the (strongly) extended well-posedness of (p*). 

Proposition 4.103. If {p*) is well-posed in the (strongly) extended sense, 
then (4'S9) holds. Conversely, (4-89) implies the well-posedness of (p*) in the 
(resp. strongly) extended sense if argmiriintcip'^) ^̂  compact. 

Proof. We only prove the "strong" case since the proof of the other case is 
quite similar. We prove the first part of the proposition by contradiction. 
Suppose that (4.89) fails. Then 36 > 0,pfc -^ p* and a corresponding strongly 
asymptotically minimizing sequence (x^, yk) such that 

d{xk,argminintc{p*)) > S. (4.90) 
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By the strongly extended well-posedness of (p*), there exist a subsequence 
{xki} of {xk} and x* G argmiriintcip*) such that Xki -^ a;*, yielding 
d{xki,argminintc{p*)) -^ 0, contradicting (4.90). 

Conversely, for any pk -^ p* and a strongly asymptotically minimizing 
sequence {xk,yk) corresponding to pk, it follows from (4.89) that 

d{xk,argminintc{p*)) -^ 0. 

So 3uk G argmiriintciP*) such that 

d(xfc,i//c)->0. (4.91) 

Now that argmiriintcip*) is compact, there exist a subsequence {uki} of 
{i//c} and X* G argmiuintcip*) such that 

t̂ fc, ^ x * . (4.92) 

The combination of (4.91) and (4.92) yields d{xki,x*) -^ 0. 
Hence, (p*) is strongly extended well-posed and the proof is complete. • 

Now we consider the metric characterizations. First, we introduce the con­
cept of the stability of (p*): 

Let M* = argmiriintcip'')' (p*) is said to be stable if M* ^ ^ and 
^Vk G J(xfc),efc > 0,e/c ^ 0,t//c - Zk <c e^e, for some {zk) C V(p*) im­
plies d{xk,M*) -^ 0. 

A function c : D -> IR is called forcing iff 0 G D C [0, +oo), c(0) = 0, c{t) > 
0,yt e D and ak G D,c{ak) -^ 0 implies ak —̂  0. 

Proposition 4.104. / / 

[M* 7«̂  0 and {J{x) - ^(p*) - c[d(x, M*)]e) fl - m t C ) = 0, Vx G X 

and some forcing function c], (4.93) 

then (p*) is stable. Conversely, if J is u.s.c. on X, \/x G X, J(x) enjoys the 
lower domination property and (p*) is stable, then (4-93) holds true. 

Proof. Assume that (4.93) holds. Let Xk e X,yk E J{xk), ê  ^ 0, ejt > 0 and 
Vk <c Zk + e/ce, for some {zk} C V{p*). Then 

^e{yk - Zk) < €k. (4.94) 

By (4.93), we have yk — Zk — c[d{xk, M*)]e ^ —intC, implying 

UVk - Zk) - c[d{xk, M*)] > 0. (4.95) 

The combination of (4.94) and (4.95) yields c[d{xk,M*)] -^ 0, implying 
d{xky M*) -^ 0, by the forcing property of c. 
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Conversely, if J is u.s.c. on X, we first show that M* is closed. In fact, 
suppose that Xk € M*,Xk —> x*. Then 3yk G J{xk) with 

{J{X) - yk) n {-intC) = 0. (4.96) 

Suppose that x* ^ M*. Then \/y G J(x*), 3zy G J(X\{x*}) such that Zy-y G 
- m t C (Otherwise, 3y*' G J(x*) such that {J{X\{x*}-y*')n-intC = 0, by 
the lower domination property of J{x*), 3y* G Minc{J{x*)) with 2/* < c ?/*', 
hence, (J(X) — ?/*) fl {—intC) = 0, implying x* G M*). So there exist an open 
set Uy such that y G Uy and 

2̂, - [/̂  C - m t C , yy G J(x*). (4.97) 

Obviously, J(a:*) C U Uy = U. Due to the upper semicontinuity of J at x* 
2/GJ(a;*) 

and Xk -^ X*, it follows that J{xk) C C/, when fc is sufficiently large, implying 
yk G [/, when fc is sufficiently large. Due to (4.97), for every k sufficiently 
large, 3zk G J{X\{x*}) such that Zk — yk ^ —intC, which contradicts (4.96). 

Now we define 

c ( t ) = i n f { inf ^e{z - y) : d{x,M*) = t}, Vt > 0. 
zeJ{x),yev(p*) 

Since \fx e X,\fz e J{x)^\/y G l^(p*), z - y ^ -intC, implying £^e{z - y) >0, 
we have 

c{t) > 0, Vt > 0. (4.98) 

As M* is closed, so x* G M* iid(x\ M*) = 0. Thus inf £e(^-2/) < 

0, yielding 
c(0) < 0. (4.99) 

(4.98) and (4.99) jointly imply c(0) = 0. Suppose that a^ > 0 and c{ak) —> 
0. By the definition of c, it follows that 3ek —> 0, ejt > 0 and Xk G X,Zk G 
J{^k)^yk ^ ^(p*) such that d{xk,M*) = ak and 

Uzk-yk)<€k. (4.100) 

By (4.100), we have Zk —yk < c ^k^i^^k G AT. By the stability of (p*), we know 
that ak = d{xk, M*) -^ 0. Finally, from the definition of c(t), we have 

Uz -y)> c[d{x, M*)], Vz G J(x), Vy G y(p*), 

i.e., 
(J(X) - F(p*) - c[d{x, M*)]e) n ( - in tC) = 0. 

The proof is complete. • 

Consider a real-valued function: c = c(t, 5) defined for t > 0, 5 > 0 suffi­
ciently small such that 
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c{t,s) >0,c(0,0) = 0, (4.101) 

Sk -^0,tk> 0, c{tk, Sk) -^ 0 implies tk -^ 0. (4.102) 

The following theorem is a metric characterization of the extended well-
posedness of (p*). 

Theorem 4.105. //(p*) is well-posed in the extended sense, then 

[{I{x,p) - V{p) - c[d{x, argmiriintcip*)), p{p,p*)]e) H {-intC) = 0, 

Vx G X, Vp G L and some c verifying (4.101) and (4.102).] (4.103) 

Conversely, if V{p) ^ 0, Assumption 4-^5 holds and argminintcijp*) ^^ 
nonempty and compact and (4-103) holds for some c verifying (4-101) and 
(4-102), then (p*) is well-posed in the extended sense. 

Proof Let (p*) be well-posed in the extended sense. 
Consider 

c{t, s) = inf { inf ^e{z-y) : p{p,p*) = s, d{x, argmimntcip*)) = ^}^ 
zei{x,p),yev(p) 

for t > 0,5 > 0 sufBciently small. It is easy to see that c{t,s) > 0. We 
conclude that c(0,0) = 0 since argmiuintcip*) is closed. Now let 5^ > 0, t^ > 0 
with c(tk,Sk) -^ 0 and Sk -^ 0. Then 3xk € X,pk G L,Zk e I{xk,Pk),yk ^ 
V{pk), e/c > 0, Cfc ̂  0 such that 

U^k-yk)<ek, (4.104) 

p{Pk,P*) = Sk,d{xk,argminintc{p*)) = tk- (4.105) 

By (4.100), we have 
Zk -yk <c ^ke. (4.106) 

It follows from (4.105), (4.106) and the extended well-posedness of (p*) that 
tk -^ 0. In addition, by the definition of c(t, 5), we have 

^e{z -y) > c[d{x,argminintc{p*)),p{p,P*)], Vz G I{x,p),\/y e V{p), 

implying 

{I{x,p) - V{p) - c[d{x,argminintc{p*),p{p,P^))\e) H {-intC) = 0. 

Conversely, if pk -> p*,Xk e X,yk G I{xk,Pk),ek -> 0(e/c > ^),Zk G V{pk) 
such that yk <c Zk + e^e. By (4.103), we have ek > ^e{yk - Zk) > 
c[d{xk,argminintc{p*)),p{Pk,P*)]- It follows from (4.102) that we deduce 
(i(x/e, argmiriintcip*)) —^ 0. Applying the compactness of argminintc{p*)^ we 
conclude that (p*) is well-posed in the extended sense. The proof is complete.• 

When p is near p*, we need the following condition: 

a(U{e - argmiuintcip) - pip^p") < e}) - ^ 0 , as e ̂  0, (4.107) 

where a(-) is the Kuratowski measure of the noncompactness of a set. 
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Definition 4.106. ([H^]) I is said to be compact on X x {p*} if for any 
X e X, "iiixk.Pk)} 'With (xk.Pk) -^ {x,p*),\fyk e I{xk,Pk), there exist a 
subsequence {yki} and y e I{x,p*) such that yk^ -^ y. 

Theorem 4.107. Assume thatX is a complete metric space and Assumption 
4.95 holds, argmiuintcip*) ¥" ̂ ^^ip) ^ ^.^P ^ L. \/p e L,x e X,I{x,p) is 
externally stable. / ( . , . ) is compact onXx {p*}, I{x,.) is lower semicontinuous 
at p* for all X G X. Then (p*) is well-posed in the strongly extended sense if 
(4-107) holds. Conversely, this type of strong well-posedness implies (4-107). 

Proof. Let, for any 6 > 0, 

T(e) = U{e - argmiuintcip) • P(P)P*) < ^}-

It follows from Proposition 4.101 that r(e) 7̂  0. Besides, a{clT{e)) = 
a{T{e)) ^ 0, as e -> 0. 

By the Kuratowski theorem ([126], p.318), we have 

haus[dT(e), T] -^ 0 as e -> 0, 

where 
T = n{clT{e) : e > 0} 

is nonempty and compact. Now we prove that T = argmiriintcip*)' Let Vx* G 
T. Then 

d{x\T{e))=0,\/€>0. 

Given €k > 0,e/e -^ 0,Vfc,3'Ujt G T(ejt) such that d{x'^,Uk) < l/k. Hence, by 
the compactness oil at (a:*,p*), 3pk —^p*,yk G I{uk,Pk) such that there exist 
a subsequence {yki} and y* G I{x*,p*) such that yki -^ y*- We claim that 
y* e V{p*). Otherwise, 3x e X, z e I{x,p*) and S > 0 with z - y* <c Se. 
From the lower semicontinuity of / (x, . ) at p* and pki -^ p*, we deduce that 
3zki ^ ^i^^Pki) such that z^. — y^. <c —S/2e, when i is sufficiently large, 
which is impossible since Uki G T{eki)^ yki G I{uki,Pki) and e^. -^ 0. Hence, 
X* G argmiriintcip*)' The opposite inclusion argmiriintcip*) C T is obvious. 

Now let pk -^ p* and {xk^yk) be a strongly asymptotically minimizing 
sequence corresponding to pk- Then, by taking a subsequence, we can find a 
decreasing e/c > 0 such that 

(I{xk,Pk) -yk-\- eke) n (-C\{0}) - 0. 

A further subsequence verifies p{pki,P*) < ^k, yielding (since ek decreases) 

{I{xki,Pki) - yki + ekc) n (-C\{0}) - 0. 

Hence, 
Xki G€k- argmiriintciPki) C T{ek)-

So 
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d{xk,,argminintc{v'^)) -> 0. 

Consequently, the strong extended well-posedness of (p*) holds true by the 
compactness oi argmiuintcip'')' 

The proof of the second part of this theorem is the same as that of Theo­
rem 4.86. The proof is complete. • 

In what follows, we present a variant of Ekeland's variational principle 
for set-valued functions and derive necessary condition for an approximate 
solution to a set-valued optimization problem based on a kind of generalized 
derivative for set-valued functions defined by Chen and Jahn [37] (see also 
Definition 2.40 in Chapter 2). Finally, we introduce a condition and provide 
suflScient conditions for the extended and strongly extended well-posednesses 
of set-valued optimization problems. 

From now on, we assume that X and Y are both Banach spaces. 
We need the following Ekeland's variational principle for set-valued func­

tions. 

Lemma 4.108. Let F : X :=^Y be strict, compact-valued and upper semicon-
tinuous. Suppose that there exist A G C*\{0}, a e M such that X{y) > a,\/y e 
F{X), Given e > 0, x* e X and y* G F(x*) such that {{F{X) - 2/*) + ee) H 
(—C\{0}) = 0, then, for any 5 > 0, there exist Xe G X and y^ G Minc{F{xe)) 
such that 

(i)ye <cy*; 
(a) ||xe — x*\\ < S; 
(Hi) {F{X) - ye + e/6\\x - x,\\e) H (-C\{0}) = 0. 

The proof is almost the same as that of Theorem 4.36 though the condi­
tions are slightly weaker. 

In the following, we will introduce a kind of epiderivatives for scalar set-
valued functions and give a necessary optimality condition for an approximate 
solution to a set-valued optimization problem. 

Definition 4.109. Let S C X be a nonempty set and F : S ^ M be a set-
valued function. Let (x*,y*) G 5 X F{x*) be given. The modified generalized 
contingent epideriative DmF{x*,y*) : X -^ JRU{—CXD}U{+OO} ofF at (x*, y*) 
is defined as follows: for any /i G X, 

r m/{t:( / i , t )GT(epi(F),(x*,y*))}, 
DmF{x\y''){h) = I if3teIR such that {h,t) G T{epi{F), (x*,y*)), 

[ +00, otherwise, 

where 
epi{F) = { ( x , y ) e X X m-.ye F{x) + M^}. 
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Remark 4-^10. We have slightly modified the definition of the generalized con­
tingent epiderivative of F at (x*, y*) G Gr{F) given in Definition 2.40 (when 
Y reduces to IR and C reduces to IR+). One advantage of this modifica­
tion is that DmF{x*^y*){h) is a finite real number or —oo or +oo for any 
h e x when y = IR and C = IR+, while the Definition 2.40 may lead to 
DgF{x*, y''){h) = 0, for some h e X. 

Proposition 4.111. Xê  F : S ^ M be a set-valued function, {x*,y*) € 
S X F{x*), f : S —> IR be locally Lipschitz near x*, the direction derivative 
f{x*, h) exists for all h G T(5, x*). Then 

Dm{F^f){x\y''^f{x'')){h) = DmF{x\y''){h)^f{x\h),\lheX. (4.108) 

Proof. We prove (4.108) in three cases. 
(i) lih^ T(5,x*), then (4.108) holds automatically. 
(ii) Suppose that h G T{S,x'') and 

Vt G IR, (/i, t) ^ T{epi{F), (x*, 2/*)). (4.109) 

In this case, we assert that 

Vt G IR, (/i, t) i T{epi{F + / ) , (x*, y* + /(x*)). 

Otherwise, 3{h,f) G T{epi{F + f)Ax\y* + /(x*)). So 3\k G IR+,Afc ^ 
+00, Xfc e S,yk> Zk + f{xk) with z^ G F(a;/c) such that 

h= lim AA;(x/e-x*), 
/c—>-+oo 

lim Afc(7/fc - y * - / ( x * ) ) 
Ac—>--i-oo 

lim Afe{yfc- / (xfc) - r )+ lim Afe(/(a;fc) - / ( x * ) ) 

lim Afe(j/fc-/(xfc)-2/*) + /'(a;*,/i). 
K—>-+00 

As 

so we have 

{xk.yk- f{xk)) G epi(F), 

( / i , t ' - / (x*, / i ) )GT(epi(F) , (x*,2/*)) , 

contradicting (4.109). Thus, we have proved that if Vt G IR, (/i, t) ^ T{epi{F), 
(x*,y*)),then (4.108) holds. 

(iii) 3t' G IR such that (/i, t') G T{epi{F), (x*, ?/*)). 
As shown in case (ii) (with F replaced by F + / , / replaced by —/, y* 

replaced by y* + /(a:*) and /(x*) replaced by —/(x*)), we can prove that 
there exists t G IR such that 
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(/ i , t)GT(epi(F + /),(x*,2/* + /(x*)). 

Let 
( / i , t )€T(epi (F + /),(a:*,2/* + /(x*)). 

Then 3Xk € IR+, Â  -^ +00, Xk e S,yk > Zk -\- /(x*) with Zk G F(xfc) such 
that 

h= lim Ajfc(x/e-x*), 

f = lim Afc(j/j, - 2/* - /(x*)) = t - / ' (x*, /»). 

So 
( / i , t - / ' (x* , / i ) )e r (ep i (F) , (a ;* ,y*) ) . 

Thus, 
t - / ' (a:*, / i )>£' ,„F(a;*,y*)(/ i ) , 

implying 

Dm{F + f){x*,y* + f{x*)){h) > DmF{x\y''){h) + f{x*, h). (4.110) 

On the other hand, noticing that F •= {F -\- f) -\- (—/), we have 

D^F(x*,2/*)(/i) > D ^ ( F + /)(x*,2/*+/(x*)) - / ( x * , / i ) , 

yielding 

Dm{F + /)(x*,2/* + /(x*))(/i) < DmF{x\y''){h) + / (x* , / i ) . (4.111) 

From (4.110) and (4.111), we derive (4.108). The proof is complete. • 

Lemma 4.112. LetF : X ^Y he a set-valued function, (x*,y*) G XxF(a;*) 
he such that {F{X) - y*) D {-intC) = 0. Then 

Dmri{x\ 0)(/i) > 0, V/i G X, (4.112) 

where r]{x) = ^e{F{x) - y*) = {^e{y -y'") -y ^ F{x)}. 

Proof We argue by contradiction. Suppose that 3/i* G X such that 

DmV{x\OW)<0. 

Then 3t* < 0 such that 

(/i*,r)Gr(epi(ry),(a;*,0)), 

i.e., 3\k G IR+, Ajfc -^ +00, Xjt ^ X^yk > Zk with 2:̂  G r/(xfc) such that 

/i* = lim A/c(x/c-x*),t* = lim Xk{yk-0). 
fc—>+oo n—)-+oo 

So Zfc < 0 when k is sufficiently large. Hence, 3vk G F{xk) such that z/c = 
ê('?̂ fc - 2/*) < 0, implying that Vk — y* <intc 0 contradicting (4.112). The 

proof is complete. • 



4.6 Extended Well-Posedness in Set-Valued Optimization 253 

Lemma 4.113. Let F : X ^ Y be strict, compact-valued and upper semi-
continuous. Suppose that there exists A G C*\{0} and a e JR such that 
Ky) > «,Vy G F{X). Lete>0 and (x*,^*) G Gr{F) satisfy 

( F ( X ) - y * ) + ee)n(-C\{O}) = 0. 

Then, for any S > 0, there exist x^ e X and y^ G Minc{F{xe)) such that 
(i)ye <cy*; 
(a) \\Xe —X*\\ < S] 

(iiij DmV{^e,^){h) + €/S\\h\\ > 0,V/i G X, where 

r]{x) = UF{x) - ye) = {Uv - Ve) : V e F{x)}. 

Proof. It follows from Lemma 4.108 that (i) and (ii) hold. Due to (ill) in 
Lemma 4.108, we know that 

{Xe,ye) eX X H{Xe) 

satisfies 
{HiX)-y,)n{-C\{0}) = <D, 

where 
H{x) = F{x) + e/6\\x - x^e. 

By Lemma 4.112, 
DmUH){x„0){h)>0,yh€X, 

where 

UH{x)) = ^e(F(x) - 2/e) + €/6\\x - x,|| = rj{x) + e/S\\x - x^l 

It follows from Proposition 4.111 that 

DmUH){Xe,0){h) = DmV{Xe,0){h) + e/5\\h\\. 

Hence, 
DmTjixe, 0){h) + e/S\\h\\ > 0, Whe X. 

The proof is complete. • 

Proposition 4.114. (p*) is well-posed in the strongly extended sense if the 
following conditions hold: 

(i) I{.^p) is strict, compact-valued, upper semicontinuous and Assumption 
4.95 holds whenp is near p*; 

(ii) /( . , . ) is compact on X x {p*} and I{x,.) is lower semicontinuous at 
P * , V X G X ; 

(Hi) argminintcip*) ^ 0; 
(iv) \fpk -^ p*^{x'j^^y'^) is a strongly asymptotically minimizing sequence 

corresponding to pk and Dmrjk{x'k^O){h) + €k\\h\\ > 0,V/i G X, for some 
€k -^ 0(ejt > 0), where r}k{x) = £^e{I{x^Pk) — yĵ ), Vx G X, then there exists a 
convergent subsequence {x^.}. 
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Proof. Let pk -^ p* and (xk.Vk) be a strongly asymptotically minimizing 
sequence corresponding to pk- Then Bek > 0, ê t —> 0 such that 

{I{X,pk) -yk + eke) n (-C\{0}) = 0. (4.113) 

Applying Lemma 4.113 (setting 5 = y ^ ) ' ^̂  follows from (i) that 3a;J, € 
X, y^ G I{x'}^,pk) such that 

( a ) ||xifc -x^j^W < y ^ ; 
(b) 2/J;. <C Vk] 
(c) jD^r/fc(4,0)(/i) + ^\\h\\ > 0, V/i G X. 
By (b) and (4.113), we have 

(I(X,pk)-yi + eke)ni-C\{0}) = (l}. 

So {{Xk^yk)} is also a strongly asymptotically minimizing sequence corre­
sponding to Pk' This fact combined with (iv) and (c) yields that there exist a 
subsequence {xk/} and x* e X such that Xk/ -^ x*. 

This fact together with (a) implies x/c- —> x*. 
Now let us show x* 6 argmiriintciP*)' 
Indeed, by y/c. G I{xki^Pki) and (ii), there exists a subsequence {t/fcî } and 

2/* G I{x*,p*) such that 2/̂ .̂  ^ 2/*- We show that y* G T^(p*). Otherwise, 
3x G X and z G I{x,p*), S > 0 such that 

As I{x,.) is l.s.c. at p*, so 32;̂ .̂  G I{x,pki^) such that /̂ĉ ^ ^ ^. Hence, 

Zki^ - Vki^ <c -S/2e, 

when / is large enough, contradicting (4.113). The proof is complete. • 

Proposition 4.115. (p*) is well-posed in the extended sense if the following 
conditions hold: 

(i) I{.,p) is strict, compact-valued, upper semicontinuous and Assumption 
4-95 holds when p is nearp*; 

(ii) argmiriintcip) 7̂  0, Vp G L; 
(Hi) / ( . , . ) is compact on X x {p*} and / (x, . ) is lower semicontinuous at 

P * , V X G X . 

(iv) ypk —̂  F*l{^'kiy'k) ^^ ^^ asym'ptotically minimizing sequence corre­
sponding to pf^ and 

for some e^ > 0, e/e ^ 0, where 

Vkix) = $e(I(x,pk) - y'k), yx G X, 

then there exists a convergent subsequence {x^.}. Moreover, \\zk — Xk\\ -^ 
0, Vk e I{zk,Pk), Vk <c Vk irnplies d{yk, V{pk)) -^ 0. 

Since the proof is almost the same as that of Proposition 4.114, we omit it. 



Vector Minimax Inequalities 

Pioneer work of minimax theorems and minimax inequalities belongs to Fan 
[67, 69]. Many applications of minimax theorems and minimax inequalities 
are found in optimization theory, game theory and mathematical economics. 
Nieuwenhuis [152] published the first work of minimax theorems for vector-
valued functions in 1983. In this direction, several interesting results appeared 
in Ferro [71, 72] and Tanaka [187, 188]. In Li, Chen and Lee [134], minimax in­
equalities for set-valued functions were considered. In this chapter, we consider 
minimax inequalities for set-valued functions, and vector-valued functions. 

5.1 Minimax Inequalities for Set-Valued Functions 

Let X and Z be two metric spaces. Let C C IR^ be a pointed, closed and 
convex cone with nonempty interior intC. 

Lemma 5.1. Let XQ and ZQ be compact subsets of X and Z, respectively, 
Let F : XQ X ZQ ^ He be a continuous set-valued function and, for each 
(x, z) G Xo X ZQ, let F{x,z) be a compact set. Then 

r{x) = Miuintc ^zezo F{x, z) and L{z) = Maxintc ^x^Xo F{x, z) 

are u.s.c. on XQ and ZQ, respectively. 

Proof First, we prove that F is u.s.c. on XQ. Since F is continuous and ZQ 
is compact, UzeZoF{x, z) is compact for ant x £ XQ. Thus F{x) is compact-
valued for any x € XQ. Suppose that r{x) is not u.s.c. at XQ G XQ. Then there 
exists e > 0 and, for any 1/k > 0, A; = 1, 2, • • • , there exist Xk G J5(x, l/k) 
and yk G r{xk) such that 

ykiB{r{xQ),e). (5.1) 
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Then, there exists Zk G ZQ such that yk G F{xk^Zk). By the compactness of 
Zo, we can assume, without loss of generality, that Zk ^^ ZQ e ZQ. Obviously, 
Xk -^ ^0- Since X and Z are two metric spaces, by the compactness of XQ and 
Zo, we know that XQ X ZQ is a compact set in X x Z. Therefore, F{XQ^ ZQ) 
is a compact set. Since {yk} C F(Xo,Zo), we can assume, without loss of 
generality, that y/e ^ yo as /c —̂  oo. By the upper semicontinuity of F{x,z), 
we have yo G F{xo,zo). Obviously, by (5.1), yo ^ r{xo). Then, there exist 
ZQ G ZQ and y^ ^ ^(^o? 'Ŝ Q) such that 

yo-Vo ^ intC. 

Take any sequence {z^.} G ZQ with the limit ZQ. Since F{x,z) is l.s.c. on 
Xo X Zo, there exists y^ G F{xk^zl) such that yl -^ yQ. Hence, when n is 
large enough, 

Vk-yl^ ^^^C', 

which contradicts the assumption yk G r{xk)' Then, F{x) is u.s.c. on XQ. • 

Propos i t ion 5.2. /P>̂ y Le^ XQ C X, ZQ C Z be nonempty convex subsets, and 
let A C XQ X ZQ be a subset such that 

(i) for each z £ ZQ, the set {x G XQ : {x,z) e A} is closed in XQ; 
(ii) for each x G XQ, the set {z £ ZQ : {x,z) ^ A} is convex or empty. 

Suppose that there exist a subset B of A and a compact convex subset K of 
XQ such that B is closed in X x ZQ and such that 

(iii) for each z £ ZQ, the set {x £ K : {x.,z) £ B} is nonempty and convex. 

Then, there exists a point XQ e K such that {XQ} X ZQ C A. 

It is obvious that if ^ = 1 and C = IR-j-, then, the symbols Maxc and 
Maxintc have the same meaning, so do Mine înd Min^ntc- In the remainder 
of the section, we use the symbols max and min instead of Maxc (Max^ntc) 
and Mine (Min^ntc) when £= 1 and C = IR-f, respectively. 

Proposition 5.3. Let XQ C X and ZQ C Z be two nonempty compact and 
convex sets. Assume that F : XQXZQ :=t M is a continuous set-valued function 
and that, for each {x,z) e XQ x ZQ, F{X,Z) is a compact set and F satisfies 
(i) to (iii) below: 

(i) for each x £ XQ, F{XQ, •) is M.^-concave on ZQ; 
(ii) for each z G ZQ, F ( - , Z) is naturally quasi M^-convex on XQ; 

(iii) for each t E ZQ, there exists xt G XQ such that 

max F{xt,t) < maxUz^Zo 'mi'^^xeXo F{x,z). 

Then, 

minUxeXo maxUzeZo F{x,z) = maxUzeZo ^^^UO^GXO F{X,Z). (5.2) 
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Proof. Since 

max UveZo F{x, v) > min UUGXQ F{U, Z), for all x e XQ and z G ZQ, 

we have 

minUa:€Xo maxU;2GZo F[x,z) > maxU^GZo minUa^^Xo F{x,z). 

Now, we prove that the converse inequality holds. Indeed, choose any real 
number t such that 

max UzeZo min UcceXo F{^^ ^) < t^ 

and let 
A = B = {(x, z)eXoxZo:yye F(x, z), y < t}, 

Now we prove that A and B satisfy conditions (i) and (ii) of Proposition 5.2 
with K = XQ. 

First, we show that (i) holds. Indeed, for each z G ZQ, let 

Xk G {x e Xo : {x, z) G A] 

and 
Xk -^ XQ. 

By the lower semicontinuity of F(-,2:), for any yo ^ ^(^o^^)? there exists 
yk G F{xk,z) such that /̂fc -^ 2/o- Since {xk,z) G A for any k, we have that 
yfc < t. Thus 

Xo G {x G Xo : (x, z) G A}, 

and hence {x G XQ : (x, z) G A} is closed. 
Second, we show that (ii) holds. Indeed, since, for each x G XQ, 

{z e Zo : (x, z) ^ A} = {z e ZQ : 3yo ^ F{x, z) such that 2/0 > ^}, 

by the IR-|--concavity of F(x, •), we see that {z G ZQ : {x^z) ^ A} \s convex. 
We show that B is closed. Let (x/e, Zk) G B and (xfc, 2;fc) -^ (XQ, ZQ). Since 

F is l.s.c. at (xo, ZQ)^ for any y G F(xo, 2:0)? there exists yk G F{xk, Zk),'^k G A/" 
such that yk -> 2/. Since (xk.yk) ^ B,yk < t. Then, 2/ < ^ and (XQ^ZQ) G 5 ; 
i.e., -B is closed in XQ x ZQ. 

Now, we show that (iii) in Proposition 5.2 holds. For any z e ZQ, let 

1̂,X2 G {x G Xo: (x,z) e B} = {x eXo'.'iy e F(x,z),2/ < t}. 

By the natural quasi IR+-convexity of F{',z), for any yo G F(Axi + (1 — 
A)x2,2r),A G [0,1], there exists ?/* G co{F(xi, 2:),F(x2, 2;)} such that yo ^ 
y* — IR _̂. Then yo < t and Axi + (1 — A)x2 G {x G X : {x^z) e B}^ i.e., 
{x G Xo : {x^z) G 5 } is a convex set. Obviously, for each z G Zo, {x G Xo : 
(x, z) G B} is nonempty by the assumption about t and the assumption (iii). 
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Then, by Proposition 5.2, there exists XQ G XQ such that {XQ} X ZQ C A; i.e., 
y <t ior any y G F{xo, z) and 2: G ZQ. Thus, we have 

maxUzGZo ^(^0, z) < t. 

By the definition of t, we know that (5.2) holds. • 

Remark 5.4- In the assumption (iii) and (4.1.1) of Proposition 5.3, max and 
min exist. As for the righthand side of (iii), one could say that UxeXo^(^5 ^) 
is compact, since XQ is compact and F(-, z) is compact-valued and u.s.c. So, 
there exists min. By Lemma 5.1, min U^^Xo F{x,z) is u.s.c. in z. Therefore, 
UzeZo^^^xeZo F{x,z) is compact and there exists a maximal point. 

Remark 5.5. If F{x, z) is a single-valued function, condition (iii) always holds. 
Proposition 5.3 is a generalization of the minimax theorem for single-valued 
functions. When F{x,z) is a single-valued function. Proposition 5.3 reduces 
to Theorem 4 in Ha [94]. 

In the sequel, we need the following lemma. 

Lemma 5.6. [4] The convex hull of a compact subset of a finite dimensional 
space is compact. 

Now we present two types of minimax theorems for set-valued functions. 

Theorem 5.7. Let X and Z be two metric spaces. Let XQ and ZQ be compact 
convex subsets of X and Z, respectively. Let F : XQ x ZQ ̂  IR^ be a contin­
uous set-valued function with compact values; for each x ^ XQ, let F{x,') be 
naturally quasi C-convex on ZQ and, for each z G ZQ, let F(-, z) be C-concave 
on XQ, where C is a closed, convex and pointed cone in JR^. Suppose that 
F{x,z) fulfills the following hypotheses: 

(Hi) there exists to G ZQ such that 

Maxintc ^xexo F{x, to) C Maxintc U^eXo F{x, t) - C, "it e ZQ\ 

{H2) for each u e XQ, there exists tu G ZQ such that 

Maxc UxeXo Minintc ^zeZo F{x, z) - F{u, tu) C C. 

Then, 

Maxintc y-^xexo F{x, to) 

C Maxc {co {UxeXo^^riintc ^zeZo F{x, z))} - C (5.3) 
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Proof. Set 
r{x) = Mixiintc ^z^Zo F{x, z). 

By Lemma 5.1, r{x) is u.s.c. on XQ and, for each x e XQ, r{x) is a nonempty 
compact set. Since XQ is compact, by Lemma 5.1 and Lemma 5.6, r{Xo) and 
co(jr(Xo)) are compact sets. Then co{r{Xo)) — C is a closed and convex set. 

Suppose that a GlR^ and a ^ co{r{Xo)) — C. By the separation theorem 
for convex sets, there exists a nontrivial linear continuous function / : IR —> IR 
and (5 G IR, e > 0 such that 

l{a) >S + €>S> l{(3), V^ € co(r(Xo)) - C. 

Then, for any y G co{r{Xo)) and 5 G C, we have 

l{s)>l{y-a), 

Thus, 

l{s) > 0, \/se C. 

Since C is a cone, taking s = 0, we have 

/(a) >6-\-e>6> l{(3), \/l3 G co(r(Xo)). (5.4) 

Consider the set-valued function 

G = 1{F) : Xo X Zo =t IR. 

Obviously, for each x G XQ, l{F{x, •)) is naturally quasi-IR+-convex on ZQ and, 
for each z G ZQ, /(i^(-, z)) is IR+-concave on X under the assumed conditions. 
By hypothesis (H2), we have that, for each u e XQ, there exists tu G ZQ such 
that 

Then, by Proposition 5.3, we have 

minUzeZo maxUxeXoGix, z) = maxUa^^Xo m\n{JzeZoG{x, z). (5.5) 

Since G(a;, •) = /(F(a;, •)) is continuous for each x G XQ and ZQ is compact, 
there exist ZQ G ZQ and yo ^ F{X,ZQ) such that 

/(2/0) = mmVJzeZoK^ix.z)). 

Since /(s) > 0, V5 G C, arguing by contradiction, we have that 

VQ G r{x) = Miuintc ^zezo F{x, z). 

Hence, by (5.4) for each x e XQ, 

miii\JzeZoG{x, z) = /(T/O) < 6 < S-{- e < /(a). 
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Then, 
maxUajGXo inm[JzeZoG{x,z) < 6 < 6-{- e < /(a). 

By (5.5), 
mmUzeZo^^^^xeXoG{x, z) < /(a). 

By Lemma 5.1, mdiX\JxeXoG{x, •) is u.s.c. on ZQ. Thus, by the compactness 
of ZQ , there exists z' G ZQ such that 

mdixUxeXoG{x,z^) < 1(a)] 

I.e., 
l{y) < /(a), Vy e F(x, z') and x G XQ. 

By /(s) > 0,V5 G C, we have 

a-y^ —C V̂ / G F(x,z ' ) and x G XQ; 

that is, 
a i Maxintc U^^Xo F{x, z') - C. (5.6) 

Thus if 
a G Maxintc ^x^Xo F{x,to), 

by hypothesis (Hi), we have that 

a G Maxintc ^xeXo F{x, t) - C, Mt e ZQ, 

which contradicts (5.6). Thus 

a G Maxintc Uô X̂o -^(^, ^o) 

implies 
aeco (UxeXoMin^ntc U^^Zo F[x, z)) - C. 

Since 

CO (UxGXoMin^ntc U;,eZo ^ ( ^ , 'S:)) 

is compact, by the domination property of a compact set, we have 

CO (Ua^eXoMiuintc Û GZo F{x, z)) - C 

C Maxc {co (Uo^GXoMinintc U;,eZo ^ ( ^ , z))} - C. 

Thus, (5.3) holds. • 

Remark 5.8. (i) Hypothesis (Hi) controls the change of MaxintcUxGXo-^(^5 ^) 
when z varies. Obviously, this condition holds if F is a scalar real set-
valued function; 

(ii) If F is a single-valued function, then hypothesis (H2) always holds. 
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Theorem 5.9. Let XQ and ZQ be compact subsets in X and Z, respectively. 
Let F : XQ X ZQ ^ IR^ be a continuous set-valued function with compact val­
ues; for each x £ XQ, let F{X^-) be C-convex on ZQ and, for each z G ZQ, let 
F{'^z) be naturally quasi C-concave on XQ. Suppose that F{x,z) fulfills the 
following hypotheses: 

(iJs) there exists XQ G XQ such that 

Mintntc UzGZo F{xo, z) C Mintntc ^ZGZO F{X, Z) + C , VX G XQ; 

(-^4) for each t e ZQ, there exists xt G XQ such that 

F{xt, t) - Mine Û GXo Maxintc ^x^x^ F{x, z) C C 

Then 

Minintc ^zezo ^(^0, z) C Mine {co (UzeZo^f^^ntc ^xeXo ^{x, z))} + C. 

Proof Set 
L{z) = Maxintc ^xexo F{x, z). 

Thus, co(L(Zo)) + C is a closed and convex set. Suppose that a G IR^ and 
a ^ CO{L{ZQ)) + C By a similar method to that used in the proof of Theorem 
5.7, there exists a nontrivial continuous linear function I : IR^ -^ IR such that 

/(a) <5 <5 + e< 1(0), (3 G co(L(Zo)), 

l{s) > 0, Mse C, 

Consider the set-valued function 

G = 1{-F) : Xo X Zo =t IR. 

Thus, G = —1{F) satisfies the conditions of Proposition 5.3. We have that 

minUo^eXo maxU;^eZoG(x, z) = maxU;̂ GZo minUa^eXoG(x, z). (5.7) 

Since /(F(-, z)) is continuous for each z G ZQ and XQ is compact, there exist 
XQ G XQ and yo G F{xo, z) such that 

/(2/0) = maxUa.^XoK^(^,^))-

Since l{x) > 0,V5 G C, we have 

yo G L[z) = Maxintc ^xeXo ^ ( ^ , z). 

Thus, by (5.7), we have that 

maxUx€XoniinU;2GZo^(^(^,^)) > K^), 
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and there exists x' G XQ such that 

a ^ Min^ntc U^ezo F{x', z) + C. (5.8) 

Thus, if 
a e Miiiintc ^zezo F{XQ, Z), 

by hypothesis (H3) we have that 

OL G M i n e DZ^ZQ 

which contradicts (5.8). Thus, 

Miiiintc ^zezo ^(^0, z) C Mine {co {UzeZo^^^intc ^xeXo F{x, z))} + C, 

and this completes the proof. • 

In the sequel, we consider minimax theorems for set-valued functions in a 
general scheme. Let X, Z and Y be real locally convex spaces. Let C CY he 
a pointed, closed and convex cone such that intC ^ 0 , and let Y* denote the 
topological dual space of Y. 

Lemma 5.10. C C Y is a closed and convex cone if and only if there exists 
a subset F C y*\{0} such that 

C = {yeY:fiy)<0,yfer}. (5.9) 

Proof Assume that C be a closed and convex cone. Let F = —C*\{0}. Using 
the standard separation theorem for convex cones, it is not hard to verify that 
(5.9) holds. Conversely, if there exists F C y*\{0} such that (5.9) holds, then, 
it is obvious that C is a closed and convex cone. • 

Let us recall the nonlinear scalarization function ^ea '- Y -^ IR, which is 
defined in Chapter 1 by 

^ea{y) = ram{t eJR : y G a +te - C}, Wy £Y, 

where e G intC and a GY. 
The function ^ea is continuous and strictly monotone, and many other im­

portant properties can be found in Chapter 1. 
Note that Proposition 5.3 can be established, when condition (i) in Propo­

sition 5.3 is replaced by the assumption that -F(x, •) is properly quasi IR-|--
convex on ZQ. 

Lemma 5.11. Let F : XQ x ZQ ^ Y be a set-valued function, and let, for 
each X e XQ, F{X,') be naturally quasi C-convex on ZQ. Suppose that, for 
each z G ZQ, —F{-,Z) is properly quasi C-convex on XQ. Then ^ea{F{x,')) 
is naturally quasi M^-convex on ZQ and —^ea{F{'-,z)) is properly quasi IRJ\.-

convex XQ . 
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Proof. Take any 2:1,2:2 G ZQ, A G (0,1) and y G F{x,Xzi + (1 - X)z2). By 
naturally quasi C-convexity of F(x, •), there exists yi G F{x,zi)UF{x,Z2) and 

ĉ i > 0,2 = 1, 2, • • • , n, and c G C such that Y^ ai — 1 and 2/ = ^ Q̂ i2/z — c. 

n 

<^ea(y) = 6 a ( X 1 ^ ^ 2 / i - c ) . 

Therefore, 

i=l 

By the properties of ^ea, 

iea{y) e Y^ai^eaiyi)-^-^ C Co{^ea{F{x, Zi)) U ^ea{F{x, Z2))} - JR-^. 
i=l 

Thus, for each x E XQ, ^ea{F{x^')) is naturally quasi IR-^-convex. By the 
monotonicity of ^ea and properly quasi C-convexity of —F{',z), it is clear 
that —^ea{F{'^z)) is properly quasi IR-|--convex for any z E Z. The proof is 
complete. • 

Theorem 5.12. Let XQ and ZQ be compact and convex subsets in X and Z, 
respectively, and let e G intC. Suppose that the following conditions are sat­
isfied: 

(i) F : XQ X ZQ '=XY is a continuous set-valued function with compact-values; 
(ii) for each x E Xo,—F{x,') is properly quasi C-convex on ZQ; 

(iii) for each z E ZQ, F{',z) is naturally quasi C-convex on XQ; 
(iv) for any u E XQ, there exists v E ZQ such that 

F{u, v) C Maxc Uxexo Mimntc ^zeZo F{x, z) - C. 

Then 

Mine Uô GXo Maxintc ^zeZo F{x, y) 

C Maxc ^zezo Mimntc ^^xeXo F{x, y) + y \ (C\{0}) . (5.10) 

Proof Set 
L{x) = M^XintC ^z€Zo F{X, z), 

and let 

yo ^ Mine ^xeXo Max^^tc ^z^Zo F{x, z) = MincL{Xo). 

By the definition of minimal points, we have 

( L ( X o ) - 2 / o ) n ( - C ) = {0}, 

that is 
(L(Xo)\{2/o})n(2/o-C) = 0 . 
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By Proposition 1.54, we have 

Cevo(2/)>0, Vy e L(Xo)\{j/o}, (5.11) 

and 
Lyoiyo) = 0. (5.12) 

Let xo G XQ. By the continuity of êyo ^^^ ^^^ compactness of XQ, there exist 
Zx G ZQ and yi e F{x,Zx) such that 

ma,x\JzeZo^eyo{F{x, •)) = ^eyoiVl)-

By the properties of êyo 5 ^^ have 

yi G L(x). 

From (5.11) and (5.12), 

m8.xU,eZo^eyoF{x,.)) > 0. (5.13) 

Since x is any element of XQ, (5.13) implies that 

minUa^eXo maxU;,eZoCeyo(^(^)')) > 0. (5.14) 

Consider the set-valued function G: 

G = ^eyoiF):Xo xZo=^IR. 

From Lemma 5.11 and (5.11), Proposition 5.3 holds for G. We have 

minUxGXo maxU^GZoG(x, z) = maxU^eZo minUxeXoG{x, z). 

So, there exist XQ G XQ, 2̂0 G ZQ and 2/2 G F(xo, 2̂ 0) such that 

minUrceXo maxU;2eZoG(x, z) 

= maxU;2GZoG(xo,2;) 

= maxU;,eZominUx€XoG(x,2:) 

^minUa:eXoG(x,2:o) 

= 62/0(^0). (5.15) 

Therefore, by the strict monotonicity of ^eyo, we have 

7/2 G Maxintc U;sGZo ^(^0, ^) = L{XQ), (5.16) 

and 
2/2 G Min^ntC UxGXo ^ ( ^ , '^o). 

From (5.14) and (5.15), we get 6^0(^2) > 0. 
Suppose 2/0 = 2/2- Then 
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2/o^2/2 + C\{0}. (5.17) 

If yo 7̂  2/2, by (5.11) and (5.16), we get ^eyo{y2) > 0, from Proposition 1.54, 
we have 2/2 ^ Vo — C, that is 

yo^y2 + C\{o}. (5.18) 

^From (5.17) and (5.18), we get 

yoey2 + Y\{C\{0}) 

C Mimntc ^xexo F[x, zo) + ^ \ (C\{0}) 

C U.eZoMin^ntc U^GXO F{X, Z) + y \ (C\{0}) . 

Since i^(*,-) is continuous and XQ and ZQ are compact, by the domination 
property, we have 

U;2eZoMinintc ^xeXo F{x, z) C Maxc UzeZo Min^ntc U^̂ exo ^ ( ^ , ^) - C. 

Thus, 

2/0 e Maxc Uzezo Min^^tc U^^Xo i^(^, z) - C + y \ (C\{0}) 

= Maxc U.ezo MiiUntc ^xeXo F{x, z) + y \ (C\{0}) . 

Hence, the inclusion (5.10) holds. This completes the proof. • 

5.2 Minimax Inequalities for Vector-Valued Functions 

In this section we establish several types of minimax theorems for vector-
valued functions. 

First, we assume that X and Z are metric spaces. 

Lemma 5.13. Let XQ and ZQ be nonempty compact convex subsets in X and 
Z, respectively. Let f : XQ x ZQ ^^ IR^ be a continuous vector-valued function. 
Then, TT{Z) = co{Maxintcf{Xo,z)) and ip{x) = co{Minintcf {^^ ^0)) are u.s.c. 
on ZQ and XQ, respectively. 

Proof. By the continuity of / , the compactness of XQ and Lemma 5.6, 'K{Z) 
is compact-valued on ZQ. Suppose that TT{Z) is not u.s.c. at ZQ G ZQ. Then 
3e > 0 and Vl/n, n = 1,2, • • • , there exist Zk G B{ZQ^ 1/k) and iT{zk) such 
that 

yk^B{7r{zQ),€). (5.19) 

Since /(Xo,-^o) is compact, co(/(Xo,-^0)) is compact. Obviously, 

2/fc€co(F(Xo,Zo)). 

Then, we can assume that yk —^yQ- By (5.19), we have 
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yo ^ 7r{zo) (5.20) 

Since yk G n{zk), there exist yl G MaXintc/(^o, f̂c) and \l > 0, i = 
0,1, • • • ,£, such that 

^Xi = l^ndyk = J2^kyl 
i=0 i=0 

By Lemma 5.1, Max^ntc/(^Oj^) is u.s.c. on ZQ. Since 

{vi} C U.eZoMaxc/(Xo,^) and Â  G [0,1], z = 0,1,2, • • • ,^, 

without loss of generality, we can assume that Â  —» AQ, n ^ GO, and y^ —> 
2/o, n ^ 00, i = 0,1,2, • • • , ^. Obviously, 

e e 

^ A ^ = l a n d 2/0 = X I ^02/0-

By Lemma 5.1 y^ e MdiKintcfi^o^^o)- Therefore, yo G 7r(zo), which contra­
dicts (5.20), and thus 7r{z) is u.s.c. on ZQ. 

By a similar method, we can prove that ip{x) is u.s.c. on XQ. • 

Theorem 5.14. Let XQ and ZQ be nonempty compact convex sets in X and 
Z, respectively. Let f : XQ x ZQ —> M^ be a vector-valued function such that 

(i) Bx = {z e ZQ : f{x,z) ^ co{Maxintcf{^o,z)) + C} is convex or empty 
for all x G XQ; 

(ii) /(•,•) is continuous on XQ X ZQ; 
(iii) for each z G ZQ, f{-,z) is C-concave. 

Then, there exists XQ G XQ such that 

Minintcfi^Q, ^o) C Mine ^zeZo co{MaXintcf {ZQ, z)) + C. 

Moreover, if 

Maxc UueXo Minintcf{u, ZQ) C Minintcfix, Z) + C, Vx G XQ, 

then we have that, 

MaxcUxeXo ^'^'^dntcfix, ZQ) cMincUzeZoCo{Maxintcf{XQ,z))-\-C. (5.21) 

Proof. Suppose that 
M{z) = MdiXintcfiXQ,z) 

and 
A = B = {(x, Z)GXQXZQ: / ( X , Z) G CO{M(Z)) + C}. 

Now, we show that A and B satisfy the conditions of Proposition 5.2 with 
K = XQ. In fact, for any z e ZQ, let 
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Xk G {x e XQ : (x, z) G A} and Xk —> XQ. 

Then 
f{xk,z)eco{M{z)) + C, 

By the compactness of XQ and the continuity of f{'^z)^ the set co{M{z)) is 
compact. Then 

/(xo,^)Gco(M(z)) + C, 

i.e., 
XQ e {x e XQ : (x , z) G A}, 

and hence, {x G XQ : (x, z) G A} is closed. By condition (i), we have that, for 
any x G XQ, 

{z G Zo : (x, z) ^ ^ } = {z G Zo : / (x , z) ^ co{MsiXintcf{Xo, z)) + C} 

is convex or empty. 
We prove that 5 is a closed subset. Now let {xk, Zk) E B and (x/e, Zk) -^ 

(XQ^ZQ). Then, f{xk,Zk) —> /{XQ^ZQ) since / is continuous on XQ x ZQ. Since 
(ook^Zk) G J5, 

f{xk,Zk) eco{M{zk))^C. 

Then, there exist yk E co{M{zk)) and Ck E C such that 

f{xk,Zk) = yk + Ck. 

By the compactness of ZQ and Lemma 5.13, we have that co{M{Zo)) is com­
pact. Therefore, we can assume that yk -^ 2/o and t/o ^ co(M(2;o))). So 

Cfc = /(xfc, Zfc) - 2//e -^ / ( ^ o , 2:0) -yo eC. 

Set Co = /(xo, ZQ) - yo. Then 

/ (xczo) eco{M{zo))-{-C 

and (xo, ZQ) G B, i.e., 5 is closed on XQ x ZQ. 
Finally, we show that, for any z e ZQ, {x e XQ : (x, z) G B} is convex and 

nonempty. Indeed, for any z G ZQ, by the domination property of the compact 
set /(Xo, z), there exists XQ G XQ such that 

/(xo, z) G Maxintc/(Xo, z). 

Thus, 
/ (xo,z)Gco(M(z)) + C, 

i.e., 
{x G Xo : / (x , z) G co(M(z)) + C} 7̂  0 . 

Let xi, X2 G {x G Xo : (x, z) G ^ } . Then 



268 5 Vector Minimax Inequalities 

fixuz), f{x2, z) € co{M{z)) + C. (5.22) 

Since /(• , z) is C-concave, for A G (0,1), 

A/(xi, ^) + (1 - X)f{x2,z) G /(Axi + (1 - A)X2, z) - C. 

Therefore, by (5.22), we have that 

f{Xxi + (1 - A)x2, z) G co{M{z)) + C, 

Xxi + (1 - A)x2 G {x G Xo : (x, z) G 5 } . 

Thus, by Proposition 5.2, there exists XQ G XQ such that {XQ} X ZQ C A, that 
IS 

/(xo, 2;) G co(Max^ntc/(^o, 2;)) + C, Vz G ZQ. 

Thus, by the domination property, Lemma 5.13 and the compactness of ZQ, 
we have that 

/(xo, z) G Mine UtGZo co(Maxintc/(^o, ^)) + C', Vz G ZQ, 

Minintc/(^, Zo) C Mine ^teZo co(Maxintc/(^o, t)) + C. 

Moreover, if 

Maxc Uuexo Miuintcfiu, ZQ) C Minintc/(^, ZQ) + C , X G XQ, 

then 

Maxc UxGXo Mmintcf{x, ZQ) C Mine Ut^Zo co{MsiXintc f {XQ, t)) + C, 

and this completes the proof of this theorem. • 

Theorem 5.15. Let XQ and ZQ be nonempty compact convex sets in X and 
Z, respectively. Let f : XQ x ZQ —^ IR^ be a vector-valued function such that 

(i) Bz = {x £ XQ : / (x , z) ^ co{Minintcf{x, ZQ)) — C} is convex or empty 
for all z e ZQ; 

(ii) /(•,•) is continuous on XQ X ZQ; 
(iii) for each x G XQ, / ( X , •) is C-convex. 

Then, there exists ZQ G ZQ such that 

Maxintcf{Xo,zo) C Maxc ^xeXo co{Minintcf {x, ZQ)) - C. 

Moreover, if 

Mine UtGZo MaXintcf{Xo, t) C MaxintcfiXo, z) - C, Vz G ZQ, 

then, we have that 

Mine UtGZo Maxintcf{Xo,t) C Maxc UxeXo co{Minintcf{x, ZQ)) - C. 
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Proof. Suppose that 
Q{x) = Miuintcfix, Zo) 

and 
A = B = {(x, z)eXoxZo: f{x, z) G co{Q{x)) - C}. 

By a method similar to that used in the proof of Theorem 5.14, we can prove 
that A and B satisfy the conditions of Proposition 5.2 with K = XQ. Thus, 
by Proposition 5.2, there exists ZQ G ZQ such that XQ X {2:0} C A, that is, 

/ (x , Zo) G co{Mmintcf{x, ZQ)) - C , VX G XQ. 

By Lemma 5.13 and the compactness of XQ, we have that 

/ (x , Zo) G Maxc U^exo co{Mmintcf{u, ZQ)) - C , VX G XQ, 

Maxintc/(^o, ^0) C Maxc U^^Xo co(Minintc/(^, ^0)) - C. 

Moreover, if 

Mine Utezo M^.•Kintcf{Xo,t) C Max^ntc/C^o, ^) - C, Vz G ZQ, 

then we have that 

Mine UtGZo Max^ntc/(^o, )̂ C Maxc U^^Xo co{Mmintcf{x, Zo))-C, 

and this completes the proof of this theorem. • 

Example 5.16. Let XQ = [0,1], ZQ = [0,1], ^ = 2, C = IR^. Let / : XQ x ZQ -> 
IR ,̂ / (x , z) = (xz, xz)^, for every x, z G [0,1]. We have that 

(i) 

B, = {zeZo: fix, z) ^ co{Me.Xintcf{Xo,z)) + C} = T ^ ' ^ '̂ ^ ^ J' 
[ 0 , x = l , 

is convex or empty for any x G [0,1]; 
(ii) /(•,•) is continuous on Xo x ZQ; 

(iii) for each 2: G ZQ, /(• , 2̂ ) is C-convex; 

(iv) Maxc ^xexo Miuintcfix, ZQ) = { L j } and Miuintcfix, Zo) = {(^j} 

for all X G XQ. 

Then 

Max Uuexo Min^ntc/(^, -̂ 0) C MiiUntcfix, Zo) + C, Vx G XQ. 

From the result of Theorem 5.14, we have that 

Maxc Uxexo Mimntcfix, Zo) C Mine ^teZo co(Maxintc/(^o, 0 ) + C. 
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In fact, we can verify that 

Maxc U^exo Mini„tc/(x, ZQ) = {(0,0)^}, 

Mine Utezo co(Maxi„tc/(^o,t)) = {(0,0)^}. 

Thus, 

{(o,onc{(o,o)^} + a 
In what follows, we assume that X, Z and Y are real Hausdorff topological 

vector spaces. Let C C F be a closed, convex and pointed cone such that 
intC ^ 0 . We will establish a minimax theorem for vector-valued functions 
as a special case of Theorem 5.12. 

Theorem 5.17. Let XQ and ZQ be compact and convex subsets in X and 
Z, respectively, and let e G intC. Suppose that the following conditions are 
satisfied: 

(i) f : XQ X ZQ ^^ Y is a continuous vector-valued function; 
(ii) for each x E XQ, —/(X, •) is properly quasi C-convex on ZQ; 

(iii) for each z G ZQ, /(• , z) is naturally quasi C-convex on XQ. 

Then 

Mine ^x€Xo Maxintc ^zeZo /(^^ z) 

C Maxc Uzezo Mimntc ^xeXo / ( ^ , ^) + F\(C\{0}) . 

Proof Since / is a vector-valued function, (iv) of Theorem 5.12 holds. Then, 
the conclusion follows readily from Theorem 5.12. • 
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Vector Network Equilibrium Problems 

The earliest network equilibrium model was proposed by Wardrop [197] for 
a transportation network. Since then, many other equilibrium models have 
also been proposed in the economics literature (see Nagurney [149]). Until 
only recently, all these equilibrium models are based on single cost or utility 
function. Recently, equilibrium models based on multicriteria consideration 
or vector-valued cost functions have been proposed. In Chen and Yen [44], 
a multicriteria trafSc equilibrium model was proposed and the relationship 
between this model and the vector variational inequality problem was consid­
ered under a singleton assumption. Other papers that consider multicriteria 
equilibrium models can be found in Brenninger-Gothe et al [21], Chen, Goh 
and Yang [30], Dial [56], Goh and Yang [85], Leurent [131], and Yang and Goh 
[214]. In particular, the multicriteria network equilibrium model was formu­
lated as a vector variational inequality problem in Goh and Yang [85] via a 
vector optimization approach, but without the singleton assumption. 

In this chapter, we consider weak vector network equilibrium, vector net­
work equilibrium and dynamic vector equilibrium problems. We establish their 
relations with vector variational inequalities and vector optimization prob­
lems. 

6.1 Weak Vector Equilibrium Problem 

Consider a transportation network G = (A/", A) where J\f denotes the set of 
nodes and A denotes the set of arcs. Let X be the set of origin-destination (O-
D) pair and Pi, i £ X he the set of paths joining 0-D pair i. For a given path 
k E Pi, let hk denote the traffic flow on this path and h = {hi,h2, • • • , HM) ^ 
IR , where M = Y2iex 1̂ *1* ̂ ^^ path flow vector h induces a flow Va on each 
arc a £ A given by 

i£X kePi 
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where A = [Sak] ^ I R ' - ^ ' ^ ^ is the arc path incidence matrix with Sak = 1 if 
the arc belongs to path k and 0 otherwise. Let v = [va ' a G A] E 'M) ' b e the 
vector of arc flow. Succinctly 

V = Ah. (6.1) 

We will assume that the demand of traffic flow is fixed for each 0-D pair, 
i.e., J^/c^p. hk = di, where di is a given demand of each 0-D pair i. A flow 
h > 0 satisfying the demand is called a feasible flow. Let H = {h : h > 
O'Z /̂cGP ^^ ~ ^*'^^ ^ ^} be the set of feasible flows. H is clearly a closed 
and convex set. Let ta : IR' ' -^ R^ be a vector-valued cost function for 
the arc a and it is in general a function of all the arc flows, and let metric 
t(v) = [ta{v) : a G ^ ] G IR^^'"^'. The vector-valued cost function along the 
path fc, we denote Tk, Tk : K ^ —> IR^ is assumed to be the sum of all the arc 
cost along this path, thus 

rk{h) = y^^Sakta{v). 
aeA 

Let T{h) = [Tk{h) :kePi,ieI]e JR^""^. Succinctly 

T{h) = t{v)A. (6.2) 

In this section, we consider an equilibrium problem defined on transporta­
tion network with vector-valued cost functions. In this model, the cost space 
is ^-dimensional Euclidean space IR ,̂ with the ordering cone C, a pointed, 
closed and convex cone with nonempty interior intC. 

Definition 6.1. Given a flow h, we say that a path p E Pi for an 0-D pair i 
is a weakly minimal one if there does not exist another path p' G Pi such that 
Tp'(h) - rp{h) <intc 0. 

Let Fiih) = {Tp{h) : p G Pi} denote the (discrete) set of vector costs for 
all paths for 0-D pair i, and 

X,{h) = {kePi I Tkih) - Tpih) tintc 0, Vp G Pi} c Pi 

denote the set of all weakly minimal paths for 0-D pair i. 
We define the weakly minimal frontier for 0-D pair i to be the set of 

weakly minimal points in the cost-space of 0-D pair v. 

MmintciTiih)) = {̂  G IR^ I ̂  = Tp(h) where p G Xi(h)}, 

Note that Minintc(^i(/i)) is a discrete set because it is a subset of the discrete 
set Xi(K). 

The following weak vector equilibrium principle is a generalization of the 
well-known Wardrop's equilibrium principle (see Wardrop [197]): 
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Definition 6.2. A flow h £ H is said to be in weak vector equilibrium if 

Vi e I,\/k, I e Pu rk{h) >intc ri{h) ^hk = 0. (6.3) 

A flow h in weak vector equilibrium is often referred to as a weak vector 
equilibrium flow, 

In terms of the weakly minimal frontier for 0-D pair i, the weak vector 
equilibrium principle can be stated in an equivalent form: 

Definition 6.3. (Equivalent weak vector equilibrium principle) The path flow 
vector h is in weak vector equilibrium if 

\fi el, \/p e Pi, hp = 0 whenever Tp{h) ^ Minintc{Pi{h)). (6.4) 

These definitions are natural generalizations of the Wardrop equilibrium 
principle for a scalar valued cost, in which case, a strict inequality > is used in 
(6.3). The motivation for both the scalar and the vector cost cases is provided 
by the fact that an user will not choose to travel on a path if it is cheaper 
(both in the scalar and the vector sense) to travel on another path that links 
the same origin and destination. 

We shall investigate weak vector equilibrium flows by virtue of linear 
scalarization function and nonlinear scalarization function, respectively. 

Linear Scalarization Approach 
Let us first introduce the concept of a parametric equilibrium fiow. 

Definition 6.4. (Weak parametric equilibrium principle) Let a parameter A G 
C* be given. A path flow vector h is in weak X-equilibrium if 

\/i G T, Vp G Pi, hp = 0 whenever 3 ê  G Minintc{Pi{h)), 

such that X^Tp{h) > X^ei. 

Note that a parametric equilibrium flow is based on a scalar cost, as in 
the case of Wardrop's equilibria. In the case of scalarization for vector opti­
mization, it is known that certain convexity assumption is necessary before 
the scalar optimal solution is necessarily a weakly minimal solution for the 
vector problem. In the present context, however, the set of concern ri{h) is 
discrete and hence convexity has no meaning. To get around this, we make 
the following assumption. 

Assumption 6.5. 

MinintciPiih)) C Minintc{co{ri{h))), 

where co{ri{h)) is the convex hull of the discrete setFiiJi). 
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The following result establishes relationships between a weak vector equi­
librium flow and a parametric equilibrium flow. 

We need the following scalarization result, which is just Theorem 3.4.2 of 
[176]. 

L e m m a 6.6. Let A C m he a nonempty and convex set and a* € Mirtintc^' 
Then, there exists A G C*\{0} such that 

A^a* = minX^a. 
aeA 

Theorem 6.7. (i) If h is in weak vector equilibrium and Assumption 6.5 
holds, then there exists A G C* \ {0} such that the path flow h is in weak 
\-equilibrium; 

(a) If h is in weak X-equilibrium for some X G C*\{0}, then h is in weak 
vector equilibrium. 

Proof, (i) Let h be in weak vector equilibrium. Then, for k E Pi, 

hk>0=> Tk{h) G Mmintc{ri{h)) 

=> Tk{h) G Minintc(co(A(/i)) by Assumption 6.5, 

^ 3A G C*\{0} s.t. X'^Tk{h) = min A"̂ r/ 
r7€CO(A(^)) 

by Lemma Q.Q, 

= ^ 3 A G C * \ { 0 } s.t. X'^Tkih) = min X'^r} 

veri(h) 
since r^(/i) C co{ri{h)) and rk{h) G Piih). 

Hence h is in weak A-equilibrium. 
(ii) Let A G C*\{0} and let h be in weak A-equilibrium. Suppose that h is 

not in weak vector equilibrium, then by Definition 6.3, there exists i GX,p G 
Pi such that, 

hp> 0 and Tp{h) ^ Mmintc{ri{h)). 

Thus 

hp> 0 and X^Tp(h) > X^Ci, for some Ci G Minintc{I^i{h)). 

Hence h is not in weak A-equilibrium, a contradiction. • 

For A G C*, we define the minimum scalarized cost for 0-D pair i as: 

Ui{X) = min X~^rp{h). (6.5) 

L e m m a 6.8. IfX G C*\{0}, thenui{X) = X^Ci for some Ci G Minintc{ri{h)). 

Proof. From (6.5), let p G Pi be such that Ui{X) = X'^rp{h). Choose Ci := Tp{h). 
Suppose now that Ci ^ M.\iiintc{ri{h)), then there exists p G Pi, such that 
Tp(/i) >intc Tp{h). Since A G C*\{0}, X~^Tp{h) > X~^Tp{h), a contradiction. 
Therefore Ci G Minintc{ri{h)). • 



6.1 Weak Vector Equilibrium Problem 275 

Theorem 6.9. (i) Let A G C*. Then h is in weak X-equilibrium if the fol­
lowing condition holds: 

\/i el^yp e Pi, hp = 0 whenever X^Tp{h) > Ui{X)] (6.6) 

(a) If X e C*\{0} and h is in weak X-equilibrium, then condition (6.6) holds. 

Proof, (i) If there exists Ci G Minintc(^i(/i)) such that X^Tp{h) > X^Ci, say 
ei = Tq{h) for some q G Pi. Then X^Tp{h) > X~^rq{h), q G Pi. Thus clearly 

X^Tp{h) > Ui{X) = min X^Tp{h), 

by (6.6), hp = 0, so h is in weak A-equilibrium. 
(ii) Let /i be a weak A-equilibrium flow and A G C*\{0}. If X^rp{h) > 

Ui{X), by Lemma 6.8, there exists Ci G Minintc{I'i{h)) such that Ui{X) = X^Ci. 
Thus 

X^rp{h) > X^Ci, where Ci G Minintc{ri{h)). 

By Definition 6.4, hp = 0 and hence (6.6) holds. • 

Next, we discuss relations between a weak vector equilibrium flow and a 
solution of a vector optimization problem. 

Definition 6.10. We say that 

(i) the vector cost function ta is separable ifta is a function of Va only, i.e., 

ta{v) = ta{Va), Va G A. 

(ii) the vector cost function ta is integrable if 

dt^/dva' = dt^/dva, Ma, a' eA,\/k = l,"- ,L 

Clearly, a separable cost is also integrable. 
If the cost ta is integrable, then for A G C* 

d{X'^ta)/dva' = d{X'^ta')/dva, Va, a' G A, 

and, by Theorem 4.1.6 of [157], there exists a real-valued potential function, 
denoted by f X^t{z)dz such that 

dv 
• (j> X~^t{w)dw = X'^t{v). (6.7) 

For A G C*, consider the following (scalar) optimization problem P(A): 

min j) >Jt{w)dw (6.8) 

subject to 2_. ^p — î? Vi G J (6.9) 
pePi 

hp>0, MpePi, Mi el, (6.10) 
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and the definitional constraint: 

î a = ̂  5Z ^^p^p^ a eA. (6.11) 
iex pePi 

Definition 6.11. The cost matrix t{v) is said to be C-monotone if 

{t{vi) - t(y2)){vi - V2) >c 0, for vuV2e IR^^K 

Lemma 6.12. The cost function of P{X) is convex if the cost matrix t{v) is 
C-monotone. 

Proof. For a given A G C*, we have 

i 

^\k{t^{vi) - t^{v2)){vi - V2) > 0, for every vuV2 G IR'-^L 

k=l 

Thus 

{X^t(vi) - X^t{v2)){vi - V2) > 0, for every i;i,^2 e IR'"^'. 

By (6.7), the gradient of the function §^ }Jt{w)dw is monotone, so the cost 
function of P(A) is convex. • 

Let r* € IR ^ denote the path-origin incidence matrix for the network 
with entry [r]pi = jpi — 1 ii p G Pi and jpi = 0 otherwise. Its transpose F^ 
is the origin-path incidence matrix. 

Theorem 6.13. Assume that the cost function ta is integrable and the cost 
matrix t{v) is C-monotone, and let A G C*\{0}. Then h is in weak X-
equilibrium if and only if h is a solution of P{X). 

Proof. Let the Lagrangian of P{X) be defined by 

/

v 
x~^t{w)dw - u{xy{r^h - d). 

Since the problem is convex by Lemma 6.12, the sufficient and necessary 
optimality conditions for P(A) are given by 

^ = X^tiv)A -u{\fr'^ = )^T(h) -u{\fr^ > 0 (6.12) 

^ h = iX^T{h) - u{\)'^r^)h = 0; (6.13) 

^ = h'r-d' = 0''. (6.14) 
on 
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Note that u{X) is given by (6.5). (6.12) is equivalent to (6.5), (6.13) says 
that h is in weak A-equilibrium and (6.14) is the definitional constraint (6.11). 
It follows that h is in weak A-equilibrium. • 

Now consider the following network vector optimization problem (NVO): 

Mine F{v) 

subject to 2^ ^p — ^iy Vz G 2" 
pePi 

hp > 0, Vp G Pi, Vz G J , 

and the definitional constraint (6.14), where 

F{v)=((b t^{w)dw,"' , (t t\w)dwj , 

and t^ is the k^^ row of the cost matrix t{v). A vector v (or its corresponding 
h) is said to be a weakly minimal solution of (NVO) if there exists no other 
feasible v' such that F{v') <intc P{^)' 

In the special case where ta is separable, the cost function F{v) of problem 
(NVO) reduces to 

Theorem 6.14. Assume that the cost function ta is integrable and the cost 
matrix t{v) is C-monotone. If further Assumption 6.5 holds and h is in weak 
vector equilibrium, then h is a weakly minimal solution of (NVO). 

Proof. Let h be in weak vector equilibrium. By Theorem 6.7 (i), there exists 
A G C * \ { 0 } such that h is in weak A-equilibrium. By Theorem 6.13, /i is also 
a solution of P(A). Since 

^ T 
iw X^F{v) = A"̂  r / t\w)dw,.. • , / t\w)d% 

y^Xkt'^{w)dw 
k=l 

X^t{w)dw, (6.16) 
/

v 

which is the cost function of P(A), it follows from A G C* \ {0} that a solution 
to P(A) is also a weakly minimal solution of (NVO). • 

Next, necessary and sufficient optimality conditions of weak vector traffic 
equilibrium in terms of vector variational inequalities are given. 
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Theo rem 6.15. Let Assumption 6.5 hold , the cost function ta he integrahle 
and the cost matrix t{v) he C-monotone. If h is in weak vector equilihrium, 
then h is a solution of the following (WVVI) of finding h eH: 

Tih){g - h) ^intc 0, ygen. 

Proof. If h is in weak vector equilibrium, by Theorem 6.14, /i is a weakly min­
imal solution of (NVO). A necessary condition for /i to be a weakly minimal 
solution of (NVO) is that 

^^{g - h) ^intc 0, ygen. 

From (6.1) and (6.15), we have 

d£_ d£dv_ 
dh dv dh 

Thus the conclusion follows. 

A = t{v)A = T{h). 

We may now establish a sufficient condition for a flow h to be in weak 
vector equilibrium. 

T h e o r e m 6.16. h GH is in weak vector equilihrium if h solves the (WVVI) 
of finding h eH: 

T{h)(h - h) iintc 0, ^h e n. (6.17) 

Proof Let h satisfy (6.17). Choose h to be such that 

{ hj, lij^korj, 

0, if j = k, (6.18) 
hk-i-hj, if j = j . 

Clearly, h eH since \/i G X, YljePi ^J ~ ^jePi ^J ~ ^^' ^ ^ ^ 
Tih){h-h) = ^J2(hj-hj)Tjih) 

i€l jePi 

- (hk - hk)Tk{h) + (Jij - hj)Tj{h) 

= hk{Tj{h) - Tk{h)) ^intc 0. (6.19) 

If 
Tk{h) - Tj{h) >i„tc 0, (6.20) 

then (6.19) and (6.20) together imply that hk = 0 since C is a pointed cone. • 
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Nonlinear Scalarization Approach 
In this subsection, we assume that C = IR^. Choose any a G IR and 

e € intlR^. By using the nonlinear scalarization function ^ea, define a function 
e., : ]R^ ^ R by: 

itih) = U{rk{h)), kGPuiel. 

The vector-valued function ^ea • H —> IR^ and the scalar-valued function 
^la : H —> IR, i e l are defined, respectively, by 

Uih) = [^eaih) •• k e Pi, iel] (6.21) 

and 
uUh) = minUirkih)), i€l. (6.22) 

Definition 6.17. The path flow h EH is said to be in ^ea-equilibrium if there 
exist e G intlR^^ and a G IR^ such that 

Vz G J,V^,/ G Pi, U{rk{h)) > U{ri{h)) =^hk = 0. (6.23) 

Consider the following vector optimization problem (VO): 

(VO) Mine fix), 
xex 

where / : IR^ -^ IR^ X C IR^ is a possibly finite set. Note that neither / 
nor X is required to be convex. 

We have the following non-convex scalarization theorem. 

Theorem 6.18 (Non-convex Scalarization Theorem, Gerth and Wei-
dner [78]). Let A C UR^ be a IR^^ order lower bounded subset. Then 
y* G Min. ju^ A if and only if, for some a G In and e G intR^_^, 

<?ea(2/*) = m i n ^ e a ( ^ ) . 

We may now use Theorem 6.18 to establish an equivalent condition for a 
weak vector equilibrium in terms of a scalar variational inequality. 

Theorem 6.19. The path flow h ^ H is in weak vector equilibrium if and 
only if h is in ^^a-equilibrium for some e G intIR^_^ and a G IR^. 

Proof {<=) 
Assume that h is in ^ea-equilibrium for some e G intJR\. and a G IR ,̂ i.e., 

(6.23) holds. Now if Tk{h) > Ti{h), for some path / G Pi, then by the strict 
monotonicity of the ^ea function and (6.23), we conclude that hk = 0, i.e., h 
is in weak vector equilibrium. 
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Conversely, let the set Ki C IR be defined by Ki = {Tk{h) : k e Pi}.liioT 
all e € intJR^, a G IR ,̂ h is not in ^ea-equilibrium, then there exists k e Pi, 
z G T such that 

hk>0 and ^ea o Tk{h) > ^ea o Tp(/i), (6.24) 

where Tp(/i) G Min^^ -̂|p£ Ki. Theorem 6.18 implies that Tk{h) ^ Min̂ ^̂ jp̂ ^ Ki. 

By the domination theorem in vector optimization, 3Tp{h) G Min. TD£ Ki 

such that rfc(/i) > rp{h), yet /i^ > 0, i.e., h is not in weak vector equilibrium. 

• 
Remark 6.20. It is important to note that the set Ki in the above proof is a 
discrete set, in which convexity has no meaning. The converse proof would not 
have worked if we had used the linear scalarization instead, since this would 
have required the set Ki to be infinite and cone convex. 

The problem of finding a ^ea-equilibrium for given e G IR_̂  and a G IR 
is still not directly solvable. We now reduce the i^ea- equilibrium to a scalar 
variational inequality and consequently well-known techniques for solving vari­
ational inequalities can be applied accordingly. 

Theorem 6.21. The path flow h £ H is in ^ea-equilibrium if and only if 
there exist e G intlR^^ and a E IR^ such that h solves the following (scalar) 
variational inequality: 

Uih^ih -h)>0, V/i G W, (6.25) 

where U{h) = [^,\(/i) '.kePi.ieX] and ^!^^{h) = U{rk{h)). 

Proof {^=) 
Assume that h solves the variational inequality (6.25). Choose the special 

h defined by (6.18), then 

^eaihVi'h - /i) = E E (h - hinaih) 
i€l jGPi 

= {hk-h,)eea{h) + {hl-hl)eea{h) 

= hk{eeaih)-eea{h)) 

= hk{U{ri{h))-U{rk{h))) 

> 0. (6.26) 

Thus if ^ea{Tk{h)) - ^ea{ri(h)) > 0, (6.26) and hk > 0 implies that hk = 0, 
i.e., /i is in weak vector equilibrium. 

( ^ ) 
Conversely, we assume that /i G W is in ^ea-equilibrium and define, 
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Pl:={k&Pi:Uork{h)^uUh)}, 
(6.27) 

P? := {kePi-. U o Tk{h) > uUh)}. 

Then for any h ^HjWe have 

= E I E <aih)(hk -hk)+Yl <aih)hk 
iel [k€P} kePf 

= E<aWE('̂ ^-'̂ '̂ ) 
ieT kePi 

= Y.<a{h){di-di) 

= 0, 

i.e., h solves the variational inequality (6.25). • 

Corollary 6.22. Let D C IR^ be a base of S^^. Then the path flow h eH is 
in weak vector equilibrium if and only if there exists a d £ D Ci intlFr^ such 
that h solves 

Uo {hy{h-h)>0, \/he n. (6.28) 

Proof Since ^eo(y) is positively homogeneous for a > 0 we have ^eo{(^y) = 
a^eo(y)- Since D is a base, for e G mtlR^, there exist a i > 0 and d E D such 

that e = aid, and we have ^eo{y) = —^doiy)- Thus, by Theorem 6.19 and 
a i 

Theorem 6.21, the result of this Corollary holds. • 

6.2 Vector Equilibrium Problem 

In this section, we consider an equilibrium problem defined on transportation 
networks with vector-valued cost functions. In this model, the cost space is 
again ^-dimensional Euclidean space IR , with the ordering cone C, a pointed, 
closed and convex cone with nonempty interior in tC 

Definition 6.23. Given a flow h, we say that a path p £ Pi for an 0-D pair 
i is a minimal one if there does not exist another path p' G Pi such that 
Tp'ih) -Tp{h) <c\{0} 0. 
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Let ri{h) = {rp{h) : p G Pi} denote the (discrete) set of vector costs for 
all paths for 0-D pair i, and 

Il{h) = {kePi I Tkih) - rp{h) ^c\{0} 0, Vp G Pi} C Pi 

denote the set of all minimal paths for 0-D pair i. 
We define the minimal frontier for 0-D pair i to be the set of minimal 

points in the cost-space of 0-D pair i: 

Mmc{ri{h)) = {̂  € IR^ I ̂  = rp{h) where p e X'i{h)}, 

Note that M.\iic{ri{h)) is a discrete set because it is a subset oi X\{h) and 
X'i{h) is a discrete set. 

The following vector equilibrium principle is a generalization of the well-
known Wardrop's equilibrium principle (see Wardrop [197]): 

Definition 6.24. A flow h eH is said to be in vector equilibrium if 

Mi € X,yk,le Pi, Tk(h) >c\{0} ri{h) =^ hk = 0. 

A flow h in vector equilibrium is often referred to as a vector equilibrium flow. 

In terms of the minimal frontier for 0-D pair z, the vector equilibrium 
principle can be stated in an equivalent form: 

Definition 6.25. (Equivalent vector equilibrium principle) The path flow vec­
tor h is in vector equilibrium if: 

Mi eX, \/pe Pi, hp = 0 whenever rp{h) ^ Minc{ri{h)). (6.29) 

Definition 6.26. (Parametric equilibrium principle) Let a parameter A G C* 
be given. A path flow vector h is in X-equilibrium if 

Vi G T, Mp e Pi, hp = 0 whenever 3 ê  G MindPiih)), 

such that X Tp{h) > X^Ci. 

Assumption 6.27. Minc{ri{h)) C Minc{co{ri{h))). 

We need the following scalarization result, which is just Theorem 3.4.2 of 
[176]. 

Lemma 6.28. Let A C m be a nonempty and convex set and a* G Mine A. 
Then, there exists X G intC such that 

A'̂ a* = minX^a. 
aGA 

The following result establishes relationships between a vector equilibrium 
flow and a parametric equilibrium flow. 
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Theorem 6.29. (i) Ifh is in vector equilibrium and Assumption 6.21 holds, 
then there exists X e C*\ {0} such that the path flow h is in X-equilibrium; 

(ii) If h is in X-equilibrium for some X G intC*, then h is in vector equilib­
rium. 

Proof (i) Similar to the proof of Theorem 6.7 (i), but using Lemma 6.28 
instead. 

(ii) Let A G int C* and let h be in A-equilibrium. Suppose that h is not 
in vector equilibrium, then by Definition 6.24, there exists i £X,p £ Pi such 
that, 

hp>0 and Tp{h) ^ Mine(r^(ft,)). 

Thus 

ftp > 0 and A^rp(ft) > A^e^, for some Ci G Minc(i^i(ft)). 

Hence ft is not in A-equilibrium, a contradiction. • 

Lemma 6.30. Let Ui{X) be defined. If X e int C*, then Ui{X) = A^e^ for 
some Ci G MindPiih)). 

Proof From (6.5), let p G Pi be such that Ui{X) = A'^rp(ft). Choose ê  := Tp{h). 
Suppose now that ei ^ Mine(P^(ft)), then there exists p E Pi, such that 
'7p(ft) >c\{o} ^p{h)' Since A G intC*, A^rp(ft) > A'^rp(ft), a contradiction. 
Therefore ê  G Mine(P^(ft)). • 

Theorem 6.31. (i) Let A G C*. Then ft is in X-equilibrium if the following 
condition holds: 

Vi el,\/pe Pi, hp = 0 whenever X~^Tp{h) > Ui{X)] (6.30) 

(ii) If X £ int C* and ft is in X-equilibrium, then condition (6.SO) holds. 

Proof (i) If there exists Ci G Mine(il(ft)) such that A^rp(ft) > A^e^, say 
^i = Tq{h) for some q G Pi, then X^Tp{h) > X^Tq{h), q G Pi. Thus, clearly, 

A Tp(ft) > Ui{X) = minA Tp{h), 

by (6.30), ftp = 0, so ft is in A-equilibrium. 
(ii) Let ft be a A-equilibrium flow. By Lemma 6.30, there exists ê  G 

mine {^i{h)) such that Ui{X) = A^e^. Suppose that X^Tp{h) > Ui{X). Then 

X^Tp{h) > XJci. 

By Definition 6.26, hp = 0 and hence (6.30) holds. • 

We discuss relations between a vector equilibrium flow and a solution of a 
vector optimization problem. 

The following theorems can be similarly proved as Theorems 6.13 and 6.14, 
respectively. 
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Theorem 6.32. Assume that the cost function ta is integrable and the cost 
matrix t{v) is monotone, and let A G intC. h is in X-equilibrium if and only 
if h is a solution of P{\). 

Theorem 6.33. Assume that the cost function ta is integrable and the cost 
matrix t{v) is monotone. If further Assumption 6.27 holds and h is in vector 
equilibrium, then h is a weakly minimal solution of (NVO). 

The following theorem follows directly from Theorem 6.33. 

Theorem 6.34. Let Assumption 6.27 hold, the cost function ta be integrable 
and the cost matrix t{v) be monotone. Ifh is in vector equilibrium, then h is a 
solution of the following weak vector variational inequality problem of finding 
h EH such that 

T{h){g - h) ^intc 0, \/gen. 

Theorem 6.35. Let MinintciJ^i{h)) be a singleton. Ifh is an equilibrium flow, 
then h satisfies the SVVI of finding h EH: 

T{h){h-h)>c\{o}0, When. 

Proof. See the proof of Proposition 6.3 of [44]. • 

We may now establish a sufficient condition for a flow h to be in vector 
equilibrium. 

Theorem 6.36. h EH isin vector equilibrium ifh solves the (VVI) of finding 
h EH such that 

T{h)(h - h) ^c\{o} 0, V/i € H. (6.31) 

Proof. Let h satisfy (6.31). Choose h to be such that 

{ hj, iij^korj, 

0, iij = k, 
hk + hj, if j = j . 

Clearly, h eH since Vf G X, ^j^p. hj = Y^^j^Pi hj = di. Now 
T{h)(h-h) = '£J2C^^j-hj)Tj{h) 

iei jePi 

= (hk - hk)Tk{h) + (hj - hj)Tj{h) 

= hk{Tj{h) - Tkih)) ^c\{0} 0. (6.32) 

If 
Tk{h)-rj{h)>c\{o}0, (6.33) 

then (6.32) and (6.33) together imply that hk — ̂  since C is a pointed cone. 
Thus, h is in vector equilibrium. • 
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6.3 Dynamic Vector Equilibrium Problem 

Let Q = [0,tf] be the time period under consideration. For i Gl and a given 
path k e Pi, let hk{t) denote the traffic flow on this path at time t £ O and 
M = J2iex \^i\- Then, at time t, 

h{t) = [hk{t) :kePi,ieI] 

is a M-dimensional column vector. 

We only take account of the functional setting for the set of flow trajec­
tories. This set is assumed to be a reflexive Banach space I/^(i7,IEl ) with 
p > 1. The dual space of L^(^, M ^ ) is L^{f2, K ^ ) , where 1/p +l/q=1.0n 
L^(i7, H ^ ) X L^(i7,lR^), we define the canonical bilinear form by 

(G, h)=: f G{t)h{t)dt, G e L^{Q, M ^ ) , h e L^(^, H ^ ) . 
Jn 

For i EJ, the demand di{t) > 0 on this 0-D pair i depends on the time t G Q. 
At time t G i7, let 

d(t) = [di(t) :iel\, 

Also, for technical reasons, we think of the demand trajectories in L'P{Q, IR'"^'). 

A flow trajectory h G L^(i?, IR'^) satisfying the demand 

y j hk{t) = di{t) a.e. on i?, \fi GX 

kePi 

is called a feasible path flow. Let H be the set of feasible path flows, i.e., 

n = {he L^(^ , IR^) | h{t) >Oand ^ hk{t) = di{t) a.e. on i?, Vi G I}. 
kePi 

A path flow vector h(t) induces an arc flow column vector v{t) = [va{t) : 
a E A], where, for each arc a G A, 

«̂W "̂  5Z X^ ^akhk{t) 

ieT kePi 

where A = [Sak] G J R ' - ^ ' ^ ^ is the arc path incidence matrix. Hence 

v{t) = Ah{t). 

Let V be the set of feasible arc flows, i.e., 

V = {ve L ^ ( ^ , I R I ^ I ) I v{t) > 0,v{t) = Ah{t) and 

/] hk{t) = di{t) a.e. on i?, Vz G X). 
kePi 
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Let (IR^, C) be an ordered space with the ordering cone C and, for each t, 
Ca{v{t)) G IR^ be a vector cost functional on arc a (arc weight); let c{v{t)) = 
[ca{v{t)) : a e A]he a.n£x |^|-matrix. The vector weight along a path k e Pi 
is assumed to be the sum of all the arc weights along this path; thus 

rk{h{t))= "^SakCa{v{t))elR^. 
aeA 

Set 
T{h{t))=c{v{t))A 

which is an ^ X M matrix with columns given by Tk{h{t)). 
So we know that, for each / iGW,T(/ i ( - ) ) isa functional from i? to IR ^ . 

We assume that, for all heU, T{h{')) is in i:^(i7, IR^><^) where 1/p+l/q = 1. 
Define a multi-cost path functional U : i ; ' ( ^ , l R ^ ) -^ L(I/^(i7,IR^),IR^) by 

{U{h), h)= I T{h{t))h{t)dt, h,he L^{Q, IR^). 
JQ 

And define a multi-cost arc functional 5 : i7(/2, IR' '^ ' ) -> L{LP{f2, IR'*^'), IR^) 

by 

{Siv),v) = [ T Ca{v{t))Va{t)dt, V^VE L ^ ( ^ , I R I ^ I ) . 

Assumption 6.37. T is one-to-one, that is, i / / i i , / i2 G H and T{hi) = 
T{h2), then hi{t) = h2{t) a.e. on Q. 

Note: It can be shown that if S is one-to-one and Z\ is a square and nonsin-
gular matrix, then Assumption 6.37 holds. 

Proposition 6.38. / / the Assumption 6.37 holds, then the multi-cost path 
functional U is one-to-one on H. 

Proof. Proving U is one-to-one on H is equivalent to show that if, for /ii, /12 G 
n and hi{t) ^ h2{t) a.e. on 12, then U{hi) ^ t/(/i2). Suppose U{hi) = C/(/i2). 
Then, from the definition of functional (7, we have 

/ {T{hi{t)) - T{h2{t)))h{t)dt = 0, "ihe L^(/2,IR^). 

From the Hahn-Banach theorem, 

T{hi{t)) - T{h2{t)) = 0, a.e. on ft. 

From Assumption 6.37, 

h\(t) — h2{t) = 0, a.e. on Q. 
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Definition 6.39. Given an h £ H, we say that a path k e Pi for an 0-D 
pair i is a minimal one if there does not exist another path k' € Pi such that 
Tk{h{t)) -Tk'{h(t)) >c\{0} 0,a.e. on Q, 

Given diU h e H, let ri{h) = {Tk{h{t)) : k G Pi} denote the (discrete) set 
of vector cost functionals of all paths for 0-D pair i, and 

r'i{h) = {kGPi I Tk{h{t)) - Tk'{h{t)) tc\{0} 0, a.e. on Q W G Pi} C Pi 

denote the set of all minimal paths for 0-D pair i. 
We define the minimal frontier for 0-D pair i to be the set of minimal 

points in the cost-space of 0-D pair i: 

Mine (Fiih)) = {rp{h) G IR |̂ p € X^(/i)}. 

Note that Mine {Fi{h)) is a discrete set because T\{h) is a discrete set. 

Definition 6.40 (Dynamic vector equilibrium principle). A continuous 
path flow vector h e H is said to be in dynamic vector equilibrium if \/i G 
J,VA:,A:'GPi, 

hk{t) = 0 whenever Tk{h{t)) — Tk'{h{t)) >c\{o} 0? ^•^- on Q. (6.34) 

A flow h in dynamic vector equilibrium is often referred to as a dynamic vector 
equilibrium flow. 

Remark 6.41- (i) If ^ = 1, (6.34) reduces to the dynamic (scalar) Wardrop's 
principle in Daniele et al [51]. 

(ii) The dynamic vector equilibrium principle can be stated in an equivalent 
form as: the path flow vector h is in dynamic vector equilibrium if, Vi G 
X, Vp G Pi, 

hp{t) = 0 whenever Tp{h{t)) ^ Mine {Pi{h)), a.e. on i?. 

Definition 6.42 (Dynamic weak vector equilibrium principle). A con­
tinuous path flow vector h{t) e H is said to be in dynamic weak vector equi­
librium if Vz G X, V/c, fc' G Pi, 

hk{t) — 0 whenever Tk{h{t)) — Tk'(h(t)) >intc 0, a.e. on Q. (6.35) 

A flow h in dynamic weak vector equilibrium is often referred to as a dynamic 
weak vector equilibrium flow. 

The following are infinite dimensional versions of the assumptions used in 
[85]. 

Assumption 6.43. Let h eH. Assume that 

Minc{ri{h)) C Minc{co{ri{h))), a.e. on Q. 
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Remark 6.44- Assumption 6.43 is equivalent to assert that there exists a null 
set El such that, for any t E f2\Ei, 

Minc(A(/i)) C Mmc{co{ri{h))). 

Definition 6.45. We say that the vector cost function Ca is conservative if 
dc^/dva' = dc^,/dva^ a.e. on Q, Ma^a' e Ayk= i , . . . , ^ 

Assumption 6.46. The cost Ca is conservative for all a E A. 

Assumption 6.47. Each row c'^{v{t)) of the cost matrix c{v{t)) is monotone, 
i.e., for all k = 1,2,... J, vi{t),V2{t) G iR'"^', 

{c''{vi{t)) - c^{v2{t))){vi{t) - V2{t)) > 0,a.e. on Q. 

Remark 6.48. Assumption 6.47 is to say that there exists a null set E2 such 
that, for any t e f2\ £'2, c^{v(t)) is monotone, k = 1,2,...,^. 

In the following, an infinite dimensional (WVVI) problem is established 
as a necessary condition of a dynamic weak vector equilibrium flow. 

Proposition 6.49 (Necessary condition). If Assumptions 6.43, 6.46 and 
6.47 hold and h is in dynamic weak vector equilibrium, then h is a solution of 
the following (WVVI) of finding h GH such that: 

{U{h),g - h) tintc 0, V^ G U. (6.36) 

Proof. Since h is in dynamic weak vector equilibrium, then there exists a null 
set Ez such that, for any t G Q\E^, 

\/i e I,yk, k' e Pi, hk{t) = 0 whenever Tk{h{t)) - Tk'{h{t)) G intC, 

and h{t) > 0 and hi{t) = di{t),\/i G I. So, for any t G 0\{Ei UE2UE3), h{t) 
is in weak vector equilibrium, and all the assumptions of Theorem 6.15 are 
satisfied. Hence, T{h{t)){g{t) — h{t)) ^intc 0 holds, for every g G II{t), where 

H{t) = {ge JR^\g > 0 and ^ gp = di{t),\/i G X}. 
p€Pi 

Since the union of finitely many null sets is a null set, EiU E2U Es is a null 
set. So, 

T{h{t)){g{t)-h{t))^intcO 

a.e. on i7, for any g E.7i. That is to say, 

{U{h),g- h)= f T{h{t)){g{t) - h{t))dt ^intc 0. 
Jn 



6.3 Dynamic Vector Equilibrium Problem 289 

Proposition 6.50 (Sufficient condition). The flow h G H is in dynamic 
vector equilibrium ifh solves the following (VVI) of finding h E H such that 

{U{h), h-h) ^c\{o} 0, \Jh e n. (6.37) 

Proof Let hen satisfy (6.37). Choose h G L^(i7,IR^) such that 

{ hj{t), iij^koik' 

0, iij = k 
hk{t)-^hk'{t),iij = k' 

a.e. on Q. Clearly, heU, since h{t) > 0 and Ah{t) = Ah{t) == d{t) a.e. 
on i7. 

Now, 
{U{h),h-h) 
= I T{h{t))(h{t) - h{t))dt 

= I (Mi) - hk{t))Tk{h{t)) + Qik'it) - hk>{t))Tk>{h{t))dt 

- / hk{t){Tkih{t)) - Tk{h{t))dt ^c\{0} 0. (6.38) 
JQ 

If 
Tk{h{t)) - Tk'{h{t)) >c\{0} 0, a.e. on i7, 

then (6.38) implies that hk{t) = 0 a.e. on Q. Thus h is in vector dynamic 
equilibrium. • 

Proposition 6.51 (Sufficient condition). The flow h G V, is in dynamic 
weak vector equilibrium if h solves the WVVI(6.36) 

Proof: The proof is similar to that Proposition 6.50 and omitted. • 

We apply the results in Chapter 3 to establish the existence of a dynamic 
weak vector equilibrium flow. 

Proposition 6.52. Suppose the multi-cost arc functional S is C-monotone 
and v-hemi-continuous, then there exists a path flow h G 7i, which is in dy­
namic weak vector equilibrium. 

Proof Note that 
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n = {he L^(r2,lR^)| h{t) >Oand ^ hk{t) = di{t) a.e. on Q, Vi G X}. 
k£Pi 

It is clear that H is bounded, convex and closed, i.e., compact in the weak 
topology of i;'_(i?,IR^). 

For any h^h £H, set v = Ah, v = Ah. Then, from the C-monotonicity of 
the multi-cost arc functional 5, 

{U{h)-U{h),h-h) 

= [ {T{h{t))-T{hm{h{t)-h{t))dt 

= [ {c{v{t))A - c{v{t))A){h{t) - h{t))dt 
JQ 

= [ {c{v{t)) - c{v{t))){Ah{t) - Ah{t))dt 
JQ 

= f{c{v{t))-c{v{t)))ivit)-v{t))dt 
JQ 

= {S{v)-S{v),v-v)>c^, 

i.e., the multi-cost path functional U is C-monotone on Ti. Similarly, 

{S{v -Vtv),v) = {U{h^-th),h). 

So, from the -u-hemi-continuity of 5, 

\im^{U{h-^th),h) = lim{S{v + tv),v) = {S{v),v) = {U{h),h). 

So, from the i;-hemi-continuity of 5, we have the multi-cost path functional U 
is i;-hemi-continuous. Then, by Theorem 3.14, the WVVI (6.36) has one solu­
tion ft G W. So by Proposition 6.51, ft is in dynamic weak vector equilibrium.• 
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