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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the clas-
sical techniques of applied mathematics. This renewal of interest, both in
research and teaching, has led to the establishment of the series Texts in
Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos, mix with
and reinforce the traditional methods of applied mathematics. Thus, the
purpose of this textbook series is to meet the current and future needs of
these advances and to encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Math-
ematical Sciences (AMS) series, which will focus on advanced textbooks
and research-level monographs.

Pasadena, California J.E. Marsden
New York, New York L. Sirovich
College Park, Maryland S.S. Antman



Preface

This book is based on a two-semester course in ordinary differential equa-
tions that I have taught to graduate students for two decades at the Uni-
versity of Missouri. The scope of the narrative evolved over time from
an embryonic collection of supplementary notes, through many classroom
tested revisions, to a treatment of the subject that is suitable for a year (or
more) of graduate study.

If it is true that students of differential equations give away their point
of view by the way they denote the derivative with respect to the inde-
pendent variable, then the initiated reader can turn to Chapter 1, note
that I write ẋ, not x′, and thus correctly deduce that this book is written
with an eye toward dynamical systems. Indeed, this book contains a thor-
ough introduction to the basic properties of differential equations that are
needed to approach the modern theory of (nonlinear) dynamical systems.
But this is not the whole story. The book is also a product of my desire to
demonstrate to my students that differential equations is the least insular
of mathematical subjects, that it is strongly connected to almost all areas
of mathematics, and it is an essential element of applied mathematics.

When I teach this course, I use the first part of the first semester to pro-
vide a rapid, student-friendly survey of the standard topics encountered in
an introductory course of ordinary differential equations (ODE): existence
theory, flows, invariant manifolds, linearization, omega limit sets, phase
plane analysis, and stability. These topics, covered in Sections 1.1–1.8 of
Chapter 1 of this book, are introduced, together with some of their im-
portant and interesting applications, so that the power and beauty of the
subject is immediately apparent. This is followed by a discussion of linear
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systems theory and the proofs of the basic theorems on linearized stabil-
ity in Chapter 2. Then, I conclude the first semester by presenting one
or two realistic applications from Chapter 3. These applications provide a
capstone for the course as well as an excellent opportunity to teach the
mathematics graduate students some physics, while giving the engineering
and physics students some exposure to applications from a mathematical
perspective.

In the second semester, I introduce some advanced concepts related to
existence theory, invariant manifolds, continuation of periodic orbits, forced
oscillators, separatrix splitting, averaging, and bifurcation theory. Since
there is not enough time in one semester to cover all of this material in
depth, I usually choose just one or two of these topics for presentation in
class. The material in the remaining chapters is assigned for private study
according to the interests of my students.

My course is designed to be accessible to students who have only stud-
ied differential equations during one undergraduate semester. While I do
assume some knowledge of linear algebra, advanced calculus, and analysis,
only the most basic material from these subjects is required: eigenvalues and
eigenvectors, compact sets, uniform convergence, the derivative of a func-
tion of several variables, and the definition of metric and Banach spaces.
With regard to the last prerequisite, I find that some students are afraid to
take the course because they are not comfortable with Banach space the-
ory. These students are put at ease by mentioning that no deep properties
of infinite dimensional spaces are used, only the basic definitions.

Exercises are an integral part of this book. As such, many of them are
placed strategically within the text, rather than at the end of a section.
These interruptions of the flow of the narrative are meant to provide an
opportunity for the reader to absorb the preceding material and as a guide
to further study. Some of the exercises are routine, while others are sections
of the text written in “exercise form.” For example, there are extended ex-
ercises on structural stability, Hamiltonian and gradient systems on man-
ifolds, singular perturbations, and Lie groups. My students are strongly
encouraged to work through the exercises. How is it possible to gain an un-
derstanding of a mathematical subject without doing some mathematics?
Perhaps a mathematics book is like a musical score: by sight reading you
can pick out the notes, but practice is required to hear the melody.

The placement of exercises is just one indication that this book is not
written in axiomatic style. Many results are used before their proofs are pro-
vided, some ideas are discussed without formal proofs, and some advanced
topics are introduced without being fully developed. The pure axiomatic
approach forbids the use of such devices in favor of logical order. The other
extreme would be a treatment that is intended to convey the ideas of the
subject with no attempt to provide detailed proofs of basic results. While
the narrative of an axiomatic approach can be as dry as dust, the excite-
ment of an idea-oriented approach must be weighed against the fact that
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it might leave most beginning students unable to grasp the subtlety of the
arguments required to justify the mathematics. I have tried to steer a mid-
dle course in which careful formulations and complete proofs are given for
the basic theorems, while the ideas of the subject are discussed in depth
and the path from the pure mathematics to the physical universe is clearly
marked. I am reminded of an esteemed colleague who mentioned that a
certain textbook “has lots of fruit, but no juice.” Above all, I have tried to
avoid this criticism.

Application of the implicit function theorem is a recurring theme in the
book. For example, the implicit function theorem is used to prove the rec-
tification theorem and the fundamental existence and uniqueness theorems
for solutions of differential equations in Banach spaces. Also, the basic re-
sults of perturbation and bifurcation theory, including the continuation of
subharmonics, the existence of periodic solutions via the averaging method,
as well as the saddle node and Hopf bifurcations, are presented as appli-
cations of the implicit function theorem. Because of its central role, the
implicit function theorem and the terrain surrounding this important re-
sult are discussed in detail. In particular, I present a review of calculus in
a Banach space setting and use this theory to prove the contraction map-
ping theorem, the uniform contraction mapping theorem, and the implicit
function theorem.

This book contains some material that is not encountered in most treat-
ments of the subject. In particular, there are several sections with the title
“Origins of ODE,” where I give my answer to the question “What is this
good for?” by providing an explanation for the appearance of differential
equations in mathematics and the physical sciences. For example, I show
how ordinary differential equations arise in classical physics from the fun-
damental laws of motion and force. This discussion includes a derivation
of the Euler–Lagrange equation, some exercises in electrodynamics, and
an extended treatment of the perturbed Kepler problem. Also, I have in-
cluded some discussion of the origins of ordinary differential equations in
the theory of partial differential equations. For instance, I explain the idea
that a parabolic partial differential equation can be viewed as an ordinary
differential equation in an infinite dimensional space. In addition, traveling
wave solutions and the Galërkin approximation technique are discussed.
In a later “origins” section, the basic models for fluid dynamics are intro-
duced. I show how ordinary differential equations arise in boundary layer
theory. Also, the ABC flows are defined as an idealized fluid model, and I
demonstrate that this model has chaotic regimes. There is also a section on
coupled oscillators, a section on the Fermi–Ulam–Pasta experiments, and
one on the stability of the inverted pendulum where a proof of linearized
stability under rapid oscillation is obtained using Floquet’s method and
some ideas from bifurcation theory. Finally, in conjunction with a treat-
ment of the multiple Hopf bifurcation for planar systems, I present a short
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introduction to an algorithm for the computation of the Lyapunov quanti-
ties as an illustration of computer algebra methods in bifurcation theory.

Another special feature of the book is an introduction to the fiber con-
traction principle as a powerful tool for proving the smoothness of functions
that are obtained as fixed points of contractions. This basic method is used
first in a proof of the smoothness of the flow of a differential equation
where its application is transparent. Later, the fiber contraction principle
appears in the nontrivial proof of the smoothness of invariant manifolds
at a rest point. In this regard, the proof for the existence and smoothness
of stable and center manifolds at a rest point is obtained as a corollary of
a more general existence theorem for invariant manifolds in the presence
of a “spectral gap.” These proofs can be extended to infinite dimensions.
In particular, the applications of the fiber contraction principle and the
Lyapunov–Perron method in this book provide an introduction to some of
the basic tools of invariant manifold theory.

The theory of averaging is treated from a fresh perspective that is in-
tended to introduce the modern approach to this classical subject. A com-
plete proof of the averaging theorem is presented, but the main theme of
the chapter is partial averaging at a resonance. In particular, the “pen-
dulum with torque” is shown to be a universal model for the motion of a
nonlinear oscillator near a resonance. This approach to the subject leads
naturally to the phenomenon of “capture into resonance,” and it also pro-
vides the necessary background for students who wish to read the literature
on multifrequency averaging, Hamiltonian chaos, and Arnold diffusion.

I prove the basic results of one-parameter bifurcation theory—the saddle
node and Hopf bifurcations—using the Lyapunov–Schmidt reduction. The
fact that degeneracies in a family of differential equations might be un-
avoidable is explained together with a brief introduction to transversality
theory and jet spaces. Also, the multiple Hopf bifurcation for planar vector
fields is discussed. In particular, and the Lyapunov quantities for polyno-
mial vector fields at a weak focus are defined and this subject matter is
used to provide a link to some of the algebraic techniques that appear in
normal form theory.

Since almost all of the topics in this book are covered elsewhere, there is
no claim of originality on my part. I have merely organized the material in
a manner that I believe to be most beneficial to my students. By reading
this book, I hope that you will appreciate and be well prepared to use the
wonderful subject of differential equations.

Columbia, Missouri Carmen Chicone
June 1999



Preface to the Second Edition

This edition contains new material, new exercises, rewritten sections, and
corrections.

There are at least three nontrivial mathematical errors in the first edition:
The proof of the Trotter product formula (Theorem 2.24) is valid only in
case eA+B = eAeB ; the Floquet theorem (Theorem 2.47) on the existence
of logarithms for matrices is valid only if the square of the real matrix
in question has all positive eigenvalues; and the proof of the smoothness
of invariant manifolds (Theorem 4.1) has a gap because the continuity of
a certain fiber contraction with respect to its base space is assumed. The
first two errors were pointed out by Mark Ashbaugh, the third by Mohamed
ElBialy. These and many other less serious errors are corrected.

While much of the narrative has been revised, the most substantial addi-
tions and revisions not already mentioned are the following: the introduc-
tory Section 1.9.3 on contraction is rewritten to include a discussion of the
continuity of fiber contractions and a more informative first application of
the fiber contraction theorem, which is the proof of the smoothness of the
solution of the functional equation F ◦φ−φ = G (Theorem 1.234); Section
3.1 on the Euler-Lagrange equation is rewritten and expanded to include a
more detailed discussion of Hamilton’s theory, a presentation of Noether’s
Theorem, and several new exercises on the calculus of variations; Section
3.2 on classical mechanics has been revised by including more details; the
application (in Section 3.5) of Floquet theory to the stability of the inverted
pendulum is rewritten to incorporate a more elegant dimensionless model;
a new Section 4.3.3 introduces the Lie derivative and applies it to prove
the Hartman-Grobman theorem for flows; multidimensional continuation
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theory for periodic orbits in the presence of first integrals is discussed in
the new Section 5.3.8, the basic result on the continuation of manifolds of
periodic orbits in the presence of first integrals in involution is proved, and
the Lie derivative is used again to characterize commuting flows; and the
subject of dynamic bifurcation theory is introduced in a new Section 8.4
where the fundamental idea of delayed bifurcation is presented with appli-
cations to the pitchfork bifurcation and bursting.

Over 160 new exercises are included, most with multiple parts. While a
few routine exercises are provided where I expect them to be helpful, most
of the exercises are meant to challenge students on their understanding of
the theory, stimulate interest, extend topics introduced in the narrative, and
point the way to applications. Also, most exercises now have lettered parts
for easy identification of portions of exercises for homework assignments.

As described in the Preface, the core first graduate course in ODE is
contained in selections from the first three chapters. The instructor should
budget class time so that all of the language and basic concepts of the
subject (existence theory, flows, invariant manifolds, linearization, omega
limit sets, phase plane analysis, and stability) are introduced and some
applications are discussed in detail.

In my experience, sensitivity to the preparation of students is essential
for a successful first graduate course in differential equations. Although
the prerequisites are minimal, there are certainly some students who are
unprepared for the challenges of a course based on this book if their expo-
sure to differential equations is limited to no more than one undergraduate
course where they studied only solution methods for linear second order
equations. I have included some review (see Exercise 1.6) to serve as a
bridge from their first course to this book. In addition, I often use some
class time to review a few fundamental concepts (especially, the derivative
as a linear transformation, compactness, connectedness, uniform conver-
gence, linear spaces, eigenvalues, and Jordan canonical form) before they
are encountered in context.

The second edition contains plenty of material for second semester courses,
master’s projects, and reading courses. Professionals might also find some-
thing of value.

I remain an enthusiastic teacher of the rich and important subject of
differential equations. I hope that instructors will find this book a useful
addition to their class design and preparation, and students will have a
clear and faithful guide during their quest to learn the subject.

Columbia, Missouri Carmen Chicone
August 2005
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1
Introduction to Ordinary Differential
Equations

This chapter is about the most basic concepts of the theory of differential
equations. We will answer some fundamental questions: What is a differen-
tial equation? Do differential equations always have solutions? Are solutions
of differential equations unique? But, the most important goal of this chap-
ter is to introduce a geometric interpretation for the space of solutions of a
differential equation. Using this geometry, we will introduce some of the el-
ements of the subject: rest points, periodic orbits, and invariant manifolds.
Finally, we will review the calculus in a Banach space setting and use it
to prove the classic theorems on the existence, uniqueness, and extension
of solutions. References for this chapter include [10], [13], [57], [59], [101],
[106], [123], [141], [183], [209], and [226].

1.1 Existence and Uniqueness

Let J ⊆ R, U ⊆ R
n, and Λ ⊆ R

k be open subsets, and suppose that
f : J × U × Λ → R

n is a smooth function. Here the term “smooth” means
that the function f is continuously differentiable. An ordinary differential
equation (ODE) is an equation of the form

ẋ = f(t, x, λ) (1.1)

where the dot denotes differentiation with respect to the independent vari-
able t (usually a measure of time), the dependent variable x is a vector of
state variables, and λ is a vector of parameters. As convenient terminology,
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especially when we are concerned with the components of a vector differ-
ential equation, we will say that equation (1.1) is a system of differential
equations. Also, if we are interested in changes with respect to parameters,
then the differential equation is called a family of differential equations.

Example 1.1. The forced van der Pol oscillator

ẋ1 = x2,

ẋ2 = b(1 − x2
1)x2 − ω2x1 + a cos Ωt

is a differential equation with J = R, x = (x1, x2) ∈ U = R
2,

Λ = {(a, b, ω,Ω) : (a, b) ∈ R
2, ω > 0, Ω > 0},

and f : R × R
2 × Λ → R

2 defined in components by

(t, x1, x2, a, b, ω, Ω) �→ (x2, b(1 − x2
1)x2 − ω2x1 + a cos Ωt).

If λ ∈ Λ is fixed, then a solution of the differential equation (1.1) is a
function φ : J0 → U given by t �→ φ(t), where J0 is an open subset of J ,
such that

dφ

dt
(t) = f(t, φ(t), λ) (1.2)

for all t ∈ J0.
Although, in this context, the words “trajectory,” “phase curve,” and

“integral curve” are also used to refer to solutions of the differential equa-
tion (1.1), it is useful to have a term that refers to the image of the so-
lution in R

n. Thus, we define the orbit of the solution φ to be the set
{φ(t) ∈ U : t ∈ J0}.

When a differential equation is used to model the evolution of a state
variable for a physical process, a fundamental problem is to determine the
future values of the state variable from its initial value. The mathematical
model is then given by a pair of equations

ẋ = f(t, x, λ), x(t0) = x0

where the second equation is called an initial condition. If the differential
equation is defined as equation (1.1) and (t0, x0) ∈ J × U , then the pair
of equations is called an initial value problem. Of course, a solution of this
initial value problem is just a solution φ of the differential equation such
that φ(t0) = x0.

If we view the differential equation (1.1) as a family of differential equa-
tions depending on the parameter vector and perhaps also on the initial
condition, then we can consider corresponding families of solutions—if they
exist—by listing the variables under consideration as additional arguments.
For example, we will write t �→ φ(t, t0, x0, λ) to specify the dependence of
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a solution on the initial condition x(t0) = x0 and on the parameter vector
λ.

The fundamental issues of the general theory of differential equations
are the existence, uniqueness, extension, and continuity with respect to
parameters of solutions of initial value problems. Fortunately, all of these
issues are resolved by the following foundational results of the subject:
Every initial value problem has a unique solution that is smooth with respect
to initial conditions and parameters. Moreover, the solution of an initial
value problem can be extended in time until it either reaches the boundary of
the domain of definition of the differential equation or blows up to infinity.

The next three theorems are the formal statements of the foundational
results of the subject of differential equations. They are, of course, used
extensively in all that follows.

Theorem 1.2 (Existence and Uniqueness). If J ⊆ R, U ⊆ R
n, and

Λ ⊆ R
k are open sets, f : J × U × Λ → R

n is a smooth function, and
(t0, x0, λ0) ∈ J × U × Λ, then there exist open subsets J0 ⊆ J , U0 ⊆ U ,
Λ0 ⊆ Λ with (t0, x0, λ0) ∈ J0 × U0 × Λ0 and a function φ : J0 × J0 ×
U0 × Λ0 → R

n given by (t, s, x, λ) �→ φ(t, s, x, λ) such that for each point
(t1, x1, λ1) ∈ J0 × U0 × Λ0, the function t �→ φ(t, t1, x1, λ1) is the unique
solution defined on J0 of the initial value problem given by the differential
equation (1.1) and the initial condition x(t1) = x1.

Recall that if k = 1, 2, . . . ,∞, a function defined on an open set is called
Ck if the function together with all of its partial derivatives up to and
including those of order k are continuous on the open set. Similarly, a func-
tion is called real analytic if it has a convergent power series representation
with a positive radius of convergence at each point of the open set.

Theorem 1.3 (Continuous Dependence). If, for the system (1.1), the
hypotheses of Theorem 1.2 are satisfied, then the solution φ : J0 ×J0 ×U0 ×
Λ0 → R

n of the differential equation (1.1) is a smooth function. Moreover,
if f is Ck for some k = 1, 2, . . . ,∞ (respectively, f is real analytic), then
φ is also Ck (respectively, real analytic).

As a convenient notation, we will write |x| for the usual Euclidean norm
of x ∈ R

n. But, because all norms on R
n are equivalent, the results of this

section are valid for an arbitrary norm on R
n.

Theorem 1.4 (Extension). If, for the system (1.1), the hypotheses of
Theorem 1.2 hold, and if the maximal open interval of existence of the
solution t �→ φ(t) (with the last three of its arguments suppressed) is given
by (α, β) with −∞ ≤ α < β < ∞, then |φ(t)| approaches ∞ or φ(t)
approaches the boundary of U as t → β.

In case there is some finite T and limt→T |φ(t)| approaches ∞, we say
the solution blows up in finite time.



4 1. Introduction to Ordinary Differential Equations

The existence and uniqueness theorem is so fundamental in science that
it is sometimes called the “principle of determinism.” The idea is that if
we know the initial conditions, then we can predict the future states of the
system. Although the principle of determinism is validated by the proof of
the existence and uniqueness theorem, the interpretation of this principle
for physical systems is not as clear as it might seem. The problem is that
solutions of differential equations can be very complicated. For example,
the future state of the system might depend sensitively on the initial state
of the system. Thus, if we do not know the initial state exactly, the final
state may be very difficult (if not impossible) to predict.

The variables that we will specify as explicit arguments for the solution
φ of a differential equation depend on the context, as we have mentioned
above. We will write t �→ φ(t, x) to denote the solution such that φ(0, x) =
x. Similarly, when we wish to specify the parameter vector, we will use
t �→ φ(t, x, λ) to denote the solution such that φ(0, x, λ) = x.

Example 1.5. The solution of the differential equation ẋ = x2, x ∈ R, is
given by the elementary function

φ(t, x) =
x

1 − xt
.

For this example, J = R and U = R. Note that φ(0, x) = x. If x > 0, then
the corresponding solution only exists on the interval J0 = (−∞, x−1).
Also, we have that |φ(t, x)| → ∞ as t → x−1. This illustrates one of the
possibilities mentioned in the extension theorem, namely, blow up in finite
time.

Exercise 1.6. [Review Problems] This exercise consists of a few key examples
that can be solved using techniques from elementary courses in differential equa-
tions. (a) Solve the initial value problem

ẋ = − 1
1 + t

x + 2, x(0) = 1.

(a) Recall the methods to solve forced second-order linear differential equations
with constant coefficients; that is, differential equations of the form

mẍ + λẋ + ω2x = A cosΩt.

Determine the general solution of

ẍ + ẋ + x = 2 cos t.

Also, determine the solution of the corresponding initial value problem for the
initial conditions x(0) = 1 and ẋ(0) = 0. (b) Find the general solution of

dy

dx
= −x/y.
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(c) Find the general solution of ẋ = x(1 − x). (d) Find the general solution of

(1 +
a2

r2 ) sin θ
dr

dθ
+ (r − a2

r
) cos θ = 0.

(e) Find the general solution of the differential equation

dy

dx
=

y

(y + 2)ey − 2x
.

Show that the initial value problem with the initial condition y(2) = 0 has a
unique solution and find this solution. Solve the initial value problem

ẋ = 2x − (2 + y)ey, ẏ = −y, x(0) = 2, y(0) = ln 2

and show that limt→∞(x(t), y(t)) = (1, 0). (f) Find f so that

φ(x, z, t) = f(z) cos(kx − ωt),

φxx + φzz = 0, φz(x, −h) = 0, and φx(x, 0) = −aω sin(kx − ωt).

Exercise 1.7. Solve the following differential equation from fluid dynamics
(see [137, p. 328]):

f ′′′(x) − (f ′(x))2 = −1, f(0) = 0, f ′(0) = 0, lim
x→∞

f ′(x) = 1.

Hint: Let g := f ′ and solve g′′ = g2 − 1 with g(0) = 0 and limx→∞ g(x) = 1.
Guess that limx→∞ g′(x) = 0. Multiply both sides of the differential equation
by g′ and integrate once. Solve for the constant of integration using the guess
and solve the resulting first-order differential equation by separation of variables.
Answer:

g(x) = 3
(βe

√
2 x − 1

βe
√

2 x + 1

)2
− 2, β :=

√
3 +

√
2√

3 − √
2

.

Note: It is not clear if the original problem has a unique solution.

Exercise 1.8. Consider the differential equation ẋ = −√
x, x ≥ 0. Find the

general solution, and discuss the extension of solutions.

Exercise 1.9. (a) Determine the maximal open interval of existence of the
solution of the initial value problem

ẋ = 1/x, x(0) = 1.

(b) What is the maximal interval of existence? (c) Discuss your answer with
respect to Theorem 1.4.

Exercise 1.10. Construct infinitely many different solutions of the initial value
problem

ẋ = x1/3, x(0) = 0.

Why does Theorem 1.2 fail to apply in this case?
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1.2 Types of Differential Equations

Differential equations may be classified in several different ways. In this
section we note that the independent variable may be implicit or explicit,
and that higher order derivatives may appear.

An autonomous differential equation is given by

ẋ = f(x, λ), x ∈ R
n, λ ∈ R

k; (1.3)

that is, the function f does not depend explicitly on the independent vari-
able. If the function f does depend explicitly on t, then the corresponding
differential equation is called nonautonomous.

In physical applications, we often encounter equations containing second,
third, or higher order derivatives with respect to the independent variable.
These are called second order differential equations, third order differential
equations, and so on, where the order of the equation refers to the order of
the highest order derivative with respect to the independent variable that
appears explicitly in the equation.

Recall that Newton’s second law—the rate of change of the linear mo-
mentum acting on a body is equal to the sum of the forces acting on
the body—involves the second derivative of the position of the body with
respect to time. Thus, in many physical applications the most common
differential equations used as mathematical models are second order differ-
ential equations. For example, the natural physical derivation of van der
Pol’s equation leads to a second order differential equation of the form

ü + b(u2 − 1)u̇ + ω2u = a cos Ωt. (1.4)

An essential fact is that every differential equation is equivalent to a first
order system. To illustrate, let us consider the conversion of van der Pol’s
equation to a first order system. For this, we simply define a new variable
v := u̇ so that we obtain the following system:

u̇ = v,

v̇ = −ω2u + b(1 − u2)v + a cos Ωt. (1.5)

Clearly, this system is equivalent to the second order equation in the sense
that every solution of the system determines a solution of the second or-
der van der Pol equation, and every solution of the van der Pol equation
determines a solution of this first order system.

Let us note that there are many possibilities for the construction of
equivalent first order systems—we are not required to define v := u̇. For
example, if we define v = au̇ where a is a nonzero constant, and follow the
same procedure used to obtain system (1.5), then we will obtain a family
of equivalent first order systems. Of course, a differential equation of order
m can be converted to an equivalent first order system by defining m − 1
new variables in the obvious manner.
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If our model differential equation is a nonautonomous differential equa-
tion of the form ẋ = f(t, x), where we have suppressed the possible de-
pendence on parameters, then there is an “equivalent” autonomous system
obtained by defining a new variable as follows:

ẋ = f(τ, x),
τ̇ = 1. (1.6)

For example, if t �→ (φ(t), τ(t)) is a solution of this system with φ(t0) = x0
and τ(t0) = t0, then τ(t) = t and

φ̇(t) = f(t, φ(t)), φ(t0) = x0.

Thus, the function t �→ φ(t) is a solution of the initial value problem

ẋ = f(t, x), x(t0) = x0.

In particular, every solution of the nonautonomous differential equation
can be obtained from a solution of the autonomous system (1.6).

We have just seen that all ordinary differential equations correspond to
first order autonomous systems. As a result, we will pay special attention
to the properties of autonomous systems. In most, but not all cases, the
conversion of a higher order differential equation to a first order system is
useful. In particular, if a nonautonomous system is given by ẋ = f(t, x)
where f is a periodic function of t, then, as we will see, the conversion to
an autonomous system is very often the best way to analyze the system.

Exercise 1.11. Find a first order system that is equivalent to the third order
differential equation

εx′′′ + xx′′ − (x′)2 + 1 = 0

where ε is a parameter and the ′ denotes differentiation with respect to the
independent variable.

Exercise 1.12. Find the solution of the initial value problem

ẍ = −x2, x(0) = −1, ẋ(0) =

√
2
3

.

Hint: Write the second order equation as a first order system using ẋ = y, remove
the time dependence using the chain rule to obtain a first order equation for y
with independent variable x, solve the first order equation for y, substitute the
solution into ẋ = y, and solve for x as a function of t.
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Figure 1.1: Tangent vector field and associated integral curve.

1.3 Geometric Interpretation of Autonomous
Systems

In this section we will describe a very important geometric interpretation
of the autonomous differential equation

ẋ = f(x), x ∈ R
n. (1.7)

The function given by x �→ (x, f(x)) defines a vector field on R
n associ-

ated with the differential equation (1.7). Here the first component of the
function specifies the base point and the second component specifies the
vector at this base point. A solution t �→ φ(t) of (1.7) has the property that
its tangent vector at each time t is given by

(φ(t), φ̇(t)) = (φ(t), f(φ(t))).

In other words, if ξ ∈ R
n is on the orbit of this solution, then the tangent

line to the orbit at ξ is generated by the vector (ξ, f(ξ)), as depicted in
Figure 1.1.

We have just mentioned two essential facts: (i) There is a one-to-one
correspondence between vector fields and autonomous differential equa-
tions. (ii) Every tangent vector to a solution curve is given by a vector in
the vector field. These facts suggest that the geometry of the associated
vector field is closely related to the geometry of the solutions of the dif-
ferential equation when the solutions are viewed as curves in a Euclidean
space. This geometric interpretation of the solutions of autonomous dif-
ferential equations provides a deep insight into the general nature of the
solutions of differential equations, and at the same time suggests the “ge-
ometric method” for studying differential equations: qualitative features
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Figure 1.2: Closed trajectory (left) and fictitious trajectory (right) for an
autonomous differential equation.

expressed geometrically are paramount; analytic formulas for solutions are
of secondary importance. Finally, let us note that the vector field associ-
ated with a differential equation is given explicitly. Thus, one of the main
goals of the geometric method is to derive qualitative properties of solutions
directly from the vector field without “solving” the differential equation.

As an example, let us consider the possibility that the solution curve
starting at x0 ∈ R

n at time t = 0 returns to the point x0 at t = τ > 0.
Clearly, the tangent vector of the solution curve at the point φ(0) = x0 is
the same as the tangent vector at φ(τ). The geometry suggests that the
points on the solution curve defined for t > τ retraces the original orbit.
Thus, it is possible that the orbit of an autonomous differential equation is
a closed curve as depicted in the left panel of Figure 1.2. On the other hand,
an orbit cannot cross itself as in the right panel of Figure 1.2. If there were
such a crossing, then there would have to be two different tangent vectors
of the same vector field at the crossing point.

The vector field corresponding to a nonautonomous differential equation
changes with time. In particular, if a solution curve “returns” to its starting
point, the direction specified by the vector field at this point generally
depends on the time of arrival. Thus, the curve will generally “leave” the
starting point in a different direction than it did originally. For example,
suppose that t �→ (g(t), h(t)) is a curve in R

2 that has a transverse crossing
as in the right panel of Figure 1.2, and consider the following system of
differential equations

dx

dt
= g′(t),

dy

dt
= h′(t). (1.8)

We have just defined a differential equation with the given curve as a solu-
tion. Thus, every smooth curve is a solution of a differential equation, but
not every curve is a solution of an autonomous differential equation.
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Solution curves of nonautonomous differential equations can cross them-
selves. But, this possibility arises because the explicit time variable is not
treated on an equal footing with the dependent variables. Indeed, if we
consider the corresponding autonomous system formed by adding time as
a new variable, then, in the extended state space (the domain of the state
and time variables), orbits cannot cross themselves. For example, the state
space of the autonomous system of differential equations

ẋ = g′(τ), ẏ = h′(τ), τ̇ = 1,

corresponding to the nonautonomous differential equation (1.8), is R
3. The

system’s orbits in the extended state space cannot cross—the corresponding
vector field in R

3 is autonomous.
If the autonomous differential equation (1.7) has a closed orbit and t �→

φ(t) is a solution with its initial value on this orbit, then it is clear that
there is some T > 0 such that φ(T ) = φ(0). In fact, as we will show in
the next section, even more is true: The solution is T -periodic; that is,
φ(t + T ) = φ(t) for all t ∈ R. For this reason, closed orbits of autonomous
systems are also called periodic orbits.

Another important special type of orbit is called a rest point. To define
this concept, note that if f(x0) = 0 for some x0 ∈ R

n, then the constant
function φ : R → R

n defined by φ(t) ≡ x0 is a solution of the differential
equation (1.7). Geometrically, the corresponding orbit consists of exactly
one point. Thus, if f(x0) = 0, then x0 is a rest point. Such a solution is
also called a steady state, a critical point, an equilibrium point, or a zero
(of the associated vector field).

What are all the possible orbit types for autonomous differential equa-
tions? The answer depends on what we mean by “types.” But we have
already given a partial answer: An orbit can be a point, a simple closed
curve, or the homeomorphic image of an interval. A geometric picture of all
the orbits of an autonomous differential equation is called its phase portrait
or phase diagram. This terminology comes from the notion of phase space
in physics, the space of positions and momenta. For the record, the state
space in physics is the space of positions and velocities. But, in the present
context, the terms state space and phase space are synonymous; they are
used to refer to the domain of the vector field that defines the autonomous
differential equation. At any rate, the fundamental problem of the geomet-
ric theory of differential equations is evident: Given a differential equation,
determine its phase portrait.

Because there are essentially only the three types of orbits mentioned in
the last paragraph, it might seem that phase portraits would not be too
complicated. But, as we will see, even the portrait of a single orbit can
be very complex. Indeed, the homeomorphic image of an interval can be a
very complicated subset in a Euclidean space. As a simple but important
example of a complex geometric feature of a phase portrait, let us note
the curve that crosses itself in Figure 1.1. Such a curve cannot be an orbit
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Figure 1.3: A curve in phase space consisting of four orbits of an au-
tonomous differential equation.

Figure 1.4: Phase portrait of the harmonic oscillator

of an autonomous differential equation. On the other hand, if the crossing
point on the depicted curve is a rest point of the differential equation, then
such a curve can exist in the phase portrait as a union of the four orbits
indicated in Figure 1.3.

Exercise 1.13. Consider the harmonic oscillator (a model for an undamped
spring) given by the second order differential equation ü + ω2u = 0 with the
equivalent first order system

u̇ = ωv, v̇ = −ωu. (1.9)

The phase portrait, in the phase plane, consists of one rest point at the origin
of R

2 with all other solutions being simple closed curves as in Figure 1.4. Solve
the differential equation and verify these facts. Find the explicit time dependent
solution that passes through the point (u, v) = (1, 1) at time t = 0. Note that
the system

u̇ = v, v̇ = −ω2u
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x

Figure 1.5: Phase portrait of ẋ = µ − x2 for µ = 0.

is also equivalent to the harmonic oscillator. Is its phase portrait different from
the phase portrait of the system (1.9)? Can you make precise the notion that two
phase portraits are the same?

Exercise 1.14. Suppose that F : R → R is a smooth, positive, periodic func-
tion with period p > 0. (a) Prove: If t �→ x(t) is a solution of the differential
equation ẋ = F (x) and

T :=
∫ p

0

1
F (y)

dy,

then x(t + T ) − x(t) = p for all t ∈ R. (b) What happens for the case where F is
periodic but not of fixed sign? Hint: Define G to be an antiderivative of 1/F . Show
that the function y → G(y+p)−G(y) is constant and G(x(b))−G(x(a)) = b−a.

Exercise 1.15. [Predator-Prey Model] (a) Find all rest points of the system

ẋ = −x + xy, ẏ = ry(1 − y

k
) − axy.

This is a model for a predator-prey interaction, where x is the quantity of preda-
tors and y is the quantity of prey. The positive parameter r represents the growth
rate of the prey, the positive parameter k represents the carrying capacity of the
environment for the prey, and the positive parameter a is a measure of how often
a predator is successful in catching its prey. Note that the predators will become
extinct if there are no prey. (b) What happens to the population of prey if there
are no predators?

In case our system depends on parameters, the collection of the phase
portraits corresponding to each choice of the parameter vector is called a
bifurcation diagram.

As a simple but important example, consider the differential equation
ẋ = µ − x2, x ∈ R, that depends on the parameter µ ∈ R. If µ = 0, then
the phase portrait, on the phase line, is depicted in Figure 1.5. If we put
together all the phase portrait “slices” in R × R, where a slice corresponds
to a fixed value of µ, then we produce the bifurcation diagram, Figure 1.6.
Note that if µ < 0, there is no rest point. When µ = 0, a rest point is
born in a “blue sky catastrophe.” As µ increases from µ = 0, there is a
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x

µ

Figure 1.6: Bifurcation diagram ẋ = µ − x2.

“saddle-node” bifurcation; that is, two rest points appear. If µ < 0, this
picture also tells us the fate of each solution as t → ∞. No matter which
initial condition we choose, the solution goes to −∞ in finite positive time.
When µ = 0 there is a steady state. If x0 > 0, then the solution t �→ φ(t, x0)
with initial condition φ(0, x0) = x0 approaches this steady state; that is,
φ(t, x0) → 0 as t �→ ∞. Whereas, if x0 < 0, then φ(t, x0) → 0 as t �→ −∞.
In this case, we say that x0 is a semistable rest point. But if µ > 0 and
x0 > 0, then the solution φ(t, x0) → √

µ as t �→ ∞. Thus, x0 =
√

µ is a
stable steady state. The point x0 = −√

µ is an unstable steady state.

Exercise 1.16. Fix r > 0 and k > 0, and consider the family of differential
equations

ẋ = rx(1 − x/k) − λ

with parameter λ ∈ R. (a) Draw the bifurcation diagram. (b) This differential
equation is a phenomenological model of the number of individuals x in a popula-
tion with per capita growth rate r and carrying capacity k such that individuals
are removed from the population at the rate λ per unit time. For example, x could
represent the number of fish in a population and λ the rate of their removal by
fishing. Interpret your bifurcation diagram using this population model. Deter-
mine a critical value for λ such that if this value is exceeded, then extinction of
the population is certain. (c) What would happen if the rate λ varies with time?

Exercise 1.17. (a) Draw the bifurcation diagram for the family ẋ = λx − x3.
The bifurcation is called the supercritical pitchfork (see Chapter 8). (b) Draw
the bifurcation diagram for the subcritical pitchfork ẋ = λx + x3.
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Exercise 1.18. Describe the bifurcation diagram for the family

ẋ = λ − x2, ẏ = −y.

The name “saddle-node bifurcation” comes from the name of the rest point type
corresponding to the parameter value λ = 0.

1.4 Flows

The set of solutions of the autonomous differential equation (1.7)

ẋ = f(x), x ∈ R
n

have an important property: they form a one-parameter group that defines
a phase flow. More precisely, let us define the function φ : R × R

n → R
n as

follows: For x ∈ R
n, let t �→ φ(t, x) denote the solution of the autonomous

differential equation (1.7) such that φ(0, x) = x.
We know that solutions of a differential equation may not exist for all

t ∈ R. But, for simplicity, let us assume that every solution does exist for
all time. If this is the case, then each solution is called complete, and group
property for φ is expressed concisely as follows:

φ(t + s, x) = φ(t, φ(s, x)).

In view of this equation, if the solution starting at time zero at the point
x is continued until time s, when it reaches the point φ(s, x), and if a new
solution at this point with initial time zero is continued until time t, then
this new solution will reach the same point that would have been reached if
the original solution, which started at time zero at the point x, is continued
until time t + s.

The prototypical example of a flow is provided by the general solution
of the ordinary differential equation ẋ = ax, x ∈ R, a ∈ R. The solution is
given by φ(t, x0) = eatx0, and it satisfies the group property

φ(t + s, x0) = ea(t+s)x0 = eat(easx0) = φ(t, easx0) = φ(t, φ(s, x0)).

For the general case, let us suppose that for each x ∈ R
n t �→ φ(t, x)

is the solution of the differential equation (1.7) such that φ(0, x) = 0. Fix
s ∈ R, x ∈ R

n, and define

ψ(t) := φ(t + s, x), γ(t) := φ(t, φ(s, x)).

Note that φ(s, x) is a point in R
n. Therefore, γ is a solution of the differ-

ential equation (1.7) with γ(0) = φ(s, x). The function ψ is also a solution
of the differential equation because

dψ

dt
=

dφ

dt
(t + s, x) = f(φ(t + s, x)) = f(ψ(t)).
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Finally, note that ψ(0) = φ(s, x) = γ(0). We have proved that both t �→
ψ(t) and t �→ γ(t) are solutions of the same initial value problem. Thus, by
the uniqueness theorem, γ(t) ≡ ψ(t). The idea of this proof—two functions
that satisfy the same initial value problem are identical—is often used in
the theory and the applications of differential equations.

By the theorem on continuous dependence, φ is a smooth function. In
particular, for each fixed t ∈ R, the function x �→ φ(t, x) is a smooth
transformation of R

n. In particular, if t = 0, then x �→ φ(0, x) is the
identity transformation. Let us also note that

x = φ(0, x) = φ(t − t, x) = φ(t, φ(−t, x)) = φ(−t, φ(t, x)).

In other words, x �→ φ(−t, x) is the inverse of the function x �→ φ(t, x).
Thus, in fact, x �→ φ(t, x) is a diffeomorphism for each fixed t ∈ R.

In general, suppose that J × U is a product open subset of R × R
n.

Definition 1.19. A function φ : J × U → R
n given by (t, x) �→ φ(t, x) is

called a flow if φ(0, x) ≡ x and φ(t + s, x) = φ(t, φ(s, x)) whenever both
sides of the equation are defined.

Of course, if t �→ φ(t, x) defines the family of solutions of the autonomous
differential equation (1.7) such that φ(0, x) ≡ x, then φ is a flow.

Suppose that x0 ∈ R
n, T > 0, and that φ(T, x0) = x0; that is, the

solution returns to its initial point after time T . Then φ(t + T, x0) =
φ(t, φ(T, x0)) = φ(t, x0). In other words, t �→ φ(t, x0) is a periodic func-
tion with period T . The smallest number T > 0 with this property is called
the period of the periodic orbit through x0.

In the mathematics literature, the notations t �→ φt(x) and t �→ φt(x)
are often used in place of t �→ φ(t, x) for the solution of the differential
equation

ẋ = f(x), x ∈ R
n,

that starts at x at time t = 0. These notations emphasize that a flow
is a one-parameter family of transformations. Indeed, for each t, φt maps
an open subset of R

n (its domain) to R
n. Moreover, φ0 is the identity

transformation and φt ◦φs = φs+t whenever both sides of this equation are
defined. We will use all three notations. The only possible confusion arises
when subscripts are used for partial derivatives. But the meaning of the
notation will always be clear from the context in which it appears.

Exercise 1.20. For each integer p, construct the flow of the differential equa-
tion ẋ = xp.

Exercise 1.21. Consider the differential equation ẋ = t. Construct the family
of solutions t �→ φ(t, ξ) such that φ(0, ξ) = ξ for ξ ∈ R. Does φ define a flow?
Explain.
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Exercise 1.22. Suppose that φt is a (smooth) flow. (a) Prove that there is a
differential equation whose flow is φ. (b) Can two different differential equations
have the same flow?

Exercise 1.23. (a) Show that the family of functions φt : R
2 → R

2 given by

φt(x, y) =
(

cos t − sin t
sin t cos t

) (
x
y

)

defines a flow on R
2. (b) Find a differential equation whose flow is φt. (c) Repeat

parts (a) and (b) for

φt(x, y) = e−2t

(
cos t − sin t
sin t cos t

) (
x
y

)
.

Exercise 1.24. Write ü + αu = 0, u ∈ R, α ∈ R as a first order system.
(a) Determine the flow of the system, and verify the flow property directly. (b)
Describe the bifurcation diagram of the system. (c) Show that the system has
periodic orbits if α > 0 and determine their period(s).

Exercise 1.25. (a) Determine the flow of the first order system

ẋ = y2 − x2, ẏ = −2xy.

Hint: Define z := x + iy. (b) Show that (almost) every orbit lies on an circle and
the flow gives rational parameterizations for these orbits.

Exercise 1.26. Fluid moves through a round pipe with radius a. Suppose that
the center of the pipe is on the z-axis, the radial and angular fluid velocities both
vanish, and the axial velocity is given by u3(x, y, z) = x2 + y2 − a2. (a) What is
the (three-dimensional) fluid velocity at the pipe. (b) Determine the flow of the
fluid.

Exercise 1.27. [Evolution Families] Consider the nonautonomous differential
equation ẋ = f(t, x) and the first order system τ̇ = 1, ẋ = f(τ, x). Show that if ψ
is the solution of the nonautonomous equation with initial condition x(t0) = x0,
then t �→ (t, ψ(t)) is the solution of the system with initial condition τ(t0) = t0,
x(t0) = x0. Prove the converse. Let φ(t, τ, x) denote the flow of the autonomous
system and define T and U by (T (t, τ, x), U(t, τ, x)) = φ(t − τ, τ, x). Show that
T (τ, τ, x) = τ and U(τ, τ, x) = x. By using the definition of the flow as the
solution of the system, show that T (t, τ, x) = t. Finally, use the group property
of the flow to show that U(t, τ, x) = U(t, s, U(s, τ, x)) whenever both sides of
the identity are defined. A family of functions U such that U(τ, τ, x) = x and
U(t, τ, x) = U(t, s, U(s, τ, x)) for t, s, τ ∈ R and x ∈ R

n is called an evolution
family. This exercise shows that the solution t �→ U(t, τ, x) of the nonautonomous
differential equation ẋ = f(t, x) such that U(τ, τ, x) = x is an evolution family.

1.5 Reparametrization of Time

Suppose that U is an open set in R
n, f : U → R

n is a smooth function, and
g : U → R is a positive smooth function. What is the relationship among
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the solutions of the differential equations

ẋ = f(x), (1.10)
ẋ = g(x)f(x)? (1.11)

The vector fields defined by f and gf have the same direction at each
point in U , only their lengths are different. Thus, by our geometric inter-
pretation of autonomous differential equations, it is intuitively clear that
the differential equations (1.10) and (1.11) have the same phase portraits
in U . This fact is a corollary of the next proposition.

Proposition 1.28. If J ⊂ R is an open interval containing the origin and
γ : J → R

n is a solution of the differential equation (1.10) with γ(0) =
x0 ∈ U , then the function B : J → R given by

B(t) =
∫ t

0

1
g(γ(s))

ds

is invertible on its range K ⊆ R. If ρ : K → J is the inverse of B, then
the identity

ρ′(t) = g(γ(ρ(t)))

holds for all t ∈ K, and the function σ : K → R
n given by σ(t) = γ(ρ(t)) is

the solution of the differential equation (1.11) with initial condition σ(0) =
x0.

Proof. The function s �→ 1/g(γ(s)) is continuous on J . So B is defined
on J and its derivative is everywhere positive. Thus, B is invertible on its
range. If ρ is its inverse, then

ρ′(t) =
1

B′(ρ(t))
= g(γ(ρ(t))),

and

σ′(t) = ρ′(t)γ′(ρ(t)) = g(γ(ρ(t)))f(γ(ρ(t))) = g(σ(t))f(σ(t)). �

Exercise 1.29. Use Proposition 1.28 to prove that differential equations (1.10)
and (1.11) have the same phase portrait in U .

Because the function ρ in Proposition 1.28 is the inverse of B, we have
the formula

t =
∫ ρ

0

1
g(γ(s))

ds.
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Thus, if we view ρ as a new time-like variable (that is, a variable that
increases with time), then we have

dt

dρ
=

1
g(γ(ρ))

,

and therefore the differential equation (1.11), with the change of indepen-
dent variable from t to ρ, is given by

dx

dρ
=

dx

dt

dt

dρ
= f(x).

In particular, this is just differential equation (1.10) with the independent
variable renamed.

The next proposition expresses the same results in the language of flows.

Proposition 1.30. Suppose that f : R
n → R

n, g : R
n → R is a positive

function, and φ is the flow of the differential equation ẋ = f(x). If the
family of solutions of the family of initial value problems

ẏ = g(φ(y, ξ)), y(0) = 0,

with parameter ξ ∈ R
n, is given by ρ : R × R

n → R, then ψ, defined by
ψ(t, ξ) = φ(ρ(t, ξ), ξ) is the flow of the differential equation ẋ = g(x)f(x).

Proof. By definition ψ(0, ξ) ≡ ξ, and by the chain rule

d

dt
ψ(t, ξ) = g(ψ(t, ξ))f(ψ(t, ξ)). �

As a convenient expression, we say that the differential equation (1.10)
is obtained from the differential equation (1.11) by a reparametrization of
time.

In the most important special cases the function g is constant. If its con-
stant value is c > 0, then the reparametrization of the differential equation
ẋ = cf(x) by ρ = ct results in the new differential equation

dx

dρ
= f(x).

Reparametrization in these cases is also called rescaling.
Note that rescaling, as in the last paragraph, of the differential equation

ẋ = cf(x) produces a differential equation in which the parameter c has
been eliminated. This idea is often used to simplify differential equations.
Also, the same rescaling is used in applied mathematics to render the inde-
pendent variable dimensionless. For example, if the original time variable t
is measured in seconds, and the scale factor c has the units of 1/sec, then
the new variable ρ is dimensionless.

The next proposition is a special case of the following claim: Every au-
tonomous differential equation has a complete reparametrization (see Ex-
ercise 1.36).
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Proposition 1.31. If the differential equation ẋ = f(x) is defined on R
n,

then the differential equation

ẋ =
1

1 + |f(x)|2 f(x) (1.12)

is defined on R
n and its flow is complete.

Proof. The vector field corresponding to the differential equation (1.12) is
smoothly defined on all of R

n. If σ is one of its solutions with initial value
σ(0) = x0 and t is in the domain of σ, then, by integration with respect to
the independent variable, we have that

σ(t) − σ(0) =
∫ t

0

1
1 + |f(σ(s))|2 f(σ(s)) ds.

Note that the integrand has norm less than one and use the triangle in-
equality (taking into account the possibility that t might be negative) to
obtain the following estimate:

|σ(t)| ≤ |x0| + |t|.

In particular, the solution does not blow up in finite time. By the extension
theorem, the solution is complete. �

Exercise 1.32. Consider the scalar differential equations ẋ = x and ẋ = x2 for
x > 0. Find explicit expressions for the corresponding flows φ and ψ and for the
reparametrization function ρ, as in Proposition 1.30, so that ψ(t, ξ) = φ(ρ(t, ξ), ξ).
Show that no such relation holds if the restriction x > 0 is removed. Does it
matter that ψ is not complete? Consider instead the differential equations ẋ = x
and ẋ = x3.

Exercise 1.33. Consider the function g : (0, ∞) → R given by g(x) = x−n

for a fixed positive integer n. Construct the flow φt of the differential equation
ẋ = −x and the flow ψt of ẋ = −g(x)x on (0, ∞), and find the explicit expression
for the reparametrization function ρ such that ψt(x) = φρ(t)(x) (see [53]).

Exercise 1.34. Suppose that n is an integer. Solve the initial value problem

ẋ = y(x + y)n, ẏ = x(x + y)n, x(0) = 1, y(0) = 0.

Is the solution complete?

Exercise 1.35. Suppose that the solution γ of the differential equation ẋ =
f(x) is reparametrized by arc length; that is, in the new parametrization the
velocity vector at each point of the solution curve has unit length. Find an implicit
formula for the reparametrization ρ, and prove that if t > 0, then

|γ(ρ(t))| ≤ |γ(0)| + t.



20 1. Introduction to Ordinary Differential Equations

Figure 1.7: Phase portrait of an asymptotically stable (spiral) sink.

Exercise 1.36. Suppose that ẋ = f(x) is a differential equation defined on
an open subset U of R

n. Show that the differential equation has a complete
reparametrization.

Exercise 1.37. [Solute Transport] A model for transport of a solute (moles of
salt) and solvent (volume of water) across a permeable membrane has the form

Ẇ = A(k − M

W
), Ṁ = B(k − M

W
)

where k is a parameter representing the bulk solute concentration and A and
B are parameters that represent the permeability of the membrane (see [40]).
(a) The water volume W is a positive quantity. Show that the system can be
made linear by a reparametrization. (b) Determine the transformation between
solutions of the linear and nonlinear systems.

1.6 Stability and Linearization

Although rest points and periodic orbits correspond to very special solu-
tions of autonomous differential equations, these are often the most impor-
tant orbits in applications. In particular, common engineering practice is
to run a process in “steady state.” If the process does not stay near the
steady state after a small disturbance, then the control engineer will have
to face a difficult problem. We will not solve the control problem here, but
we will introduce the mathematical definition of stability and the classic
methods that can be used to determine the stability of rest points and
periodic orbits.
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U

δ ε

x

x0

Figure 1.8: The open sets required in the definition of Lyapunov stability.
The trajectory starting at x can leave the ball of radius δ but it must stay
in the ball of radius ε.

The concept of Lyapunov stability is meant to capture the intuitive notion
of stability—an orbit is stable if solutions that start nearby stay nearby.
To give the formal definition, let us consider the autonomous differential
equation

ẋ = f(x) (1.13)

defined on an open set U ⊂ R
n and its flow φt.

Definition 1.38. A rest point x0 of the differential equation (1.13) is stable
(in the sense of Lyapunov) if for each ε > 0, there is a number δ > 0 such
that |φt(x) − x0| < ε for all t ≥ 0 whenever |x − x0| < δ (see Figure 1.8).

There is no reason to restrict the definition of stability to rest points. It
can also refer to arbitrary solutions of the autonomous differential equation.

Definition 1.39. Suppose that x0 is in the domain of definition of the
differential equation (1.13). The solution t �→ φt(x0) of this differential
equation is stable (in the sense of Lyapunov) if for each ε > 0, there is a
δ > 0 such that |φt(x) − φt(x0)| < ε for all t ≥ 0 whenever |x − x0| < δ.

Figure 1.7 shows a typical phase portrait of an autonomous system in
the plane near a type of stable rest point called a sink. The stable rest
point depicted in Figure 1.4 is called a center. More precisely, a rest point
is a center if it is contained in an open set where every orbit (except the
rest point) is periodic.
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Figure 1.9: Phase portrait of an unstable rest point.

A solution that is not stable is called unstable. A typical phase portrait
for an unstable rest point, a source, is depicted in Figure 1.9 (see also the
saddle point in Figure 1.1).

Definition 1.40. A solution t → φt(x0) of the differential equation (1.13)
is asymptotically stable if it is stable and there is a constant a > 0 such
that limt→∞ |φt(x) − φt(x0)| = 0 whenever |x − x0| < a.

We have just defined the notion of stability for solutions in case a definite
initial point is specified. The concept of stability for orbits is slightly more
complicated. For example, we have the following definition of stability for
periodic orbits (see also Section 2.4.4).

Definition 1.41. A periodic orbit Γ of the differential equation (1.13) is
stable if for each open set V ⊆ R

n that contains Γ, there is an open set
W ⊆ V such that every solution, starting at a point in W at t = 0, stays
in V for all t ≥ 0. The periodic orbit is called asymptotically stable if, in
addition, there is a subset X ⊆ W such that every solution starting in X
is asymptotic to Γ as t → ∞.

The definitions just given capture the essence of the stability concept, but
they do not give any indication of how to determine if a given solution or
orbit is stable. We will study two general methods, called the indirect and
the direct methods by Lyapunov, that can be used to determine the stability
of rest points and periodic orbits. In more modern language, the indirect
method is called the method of linearization and the direct method is called
the method of Lyapunov. Before we discuss these methods in detail, let us
note that for the case of the stability of special types of orbits, for example
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rest points and periodic orbits, there are two main problems: (i) Locating
the special solutions. (ii) Determining their stability.

For the remainder of this section and the next, the discussion will be re-
stricted to the analysis for rest points. Our introduction to the methods for
locating and determining the stability of periodic orbits must be postponed
until some additional concepts have been introduced.

Let us note that the problem of the location of rest points for the dif-
ferential equation ẋ = f(x) is exactly the problem of finding the roots of
the equation f(x) = 0. Of course, finding roots may be a formidable task,
especially if the function f depends on parameters and we wish to find
its bifurcation diagram. In fact, in the search for rest points, sophisticated
techniques of algebra, analysis, and numerical analysis are often required.
This is not surprising when we stop to think that solving equations is one
of the fundamental themes in mathematics. For example, it is probably not
too strong to say that the most basic problem in linear algebra, abstract
algebra, and algebraic geometry is the solution of systems of polynomial
equations. The results of all of these subjects are sometimes needed to solve
problems in differential equations.

Let us suppose that we have identified some point x0 ∈ R
n such that

f(x0) = 0. What can we say about the stability of the corresponding rest
point? One of the great ideas in the subject of differential equations—not to
mention other areas of mathematics—is linearization. This idea, in perhaps
its purest form, is used to obtain the premier method for the determina-
tion of the stability of rest points. The linearization method is based on
two facts: (i) Stability analysis for linear systems is “easy.” (ii) Nonlinear
systems can be approximated by linear systems. These facts are just reflec-
tions of the fundamental idea of differential calculus: A nonlinear function
is essentially linear if we consider its behavior in a sufficiently small neigh-
borhood of a point in its domain. Indeed, it often suffices to approximate
the graph of a function by its tangent lines.

To describe the linearization method for rest points, let us consider (ho-
mogeneous) linear systems of differential equations; that is, systems of the
form ẋ = Ax where x ∈ R

n and A is a linear transformation of R
n. If the

matrix A does not depend on t—so that the linear system is autonomous—
then there is an effective method that can be used to determine the stability
of its rest point at x = 0. In fact, we will show in Chapter 2 that if all of
the eigenvalues of A have negative real parts, then x = 0 is an asymptot-
ically stable rest point for the linear system. (The eigenvalues of a linear
transformation are defined on page 154.)

If x0 is a rest point for the nonlinear system ẋ = f(x), then there is a
natural way to produce a linear system that approximates the nonlinear
system near x0: Simply replace the function f in the differential equation
with the linear function x �→ Df(x0)(x − x0) given by the first nonzero
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term of the Taylor series of f at x0. The linear differential equation

ẋ = Df(x0)(x − x0) (1.14)

is called the linearized system associated with ẋ = f(x) at x0. By applying
the change of variables w := x − x0, the linearized system has the more
convenient form ẇ = Df(x0)w.

Alternatively, we may consider a family of solutions t �→ φ(t, ε) of ẋ =
f(x) with parameter ε such that φ(t, 0) = x0. In other words, the family
of solutions contains the constant solution corresponding to the rest point
at the parameter value ε = 0. By Taylor’s theorem (with respect to ε at
ε = 0),

φ(t, ε) = x0 + εη(t, 0) + ε2R(t, ε)

for some function R. Hence, the family of first-order approximations of the
solutions in the family φ is given by

φ(t, ε) = x0 + εη(t, 0).

To determine the function t �→ η(t, 0), we use the differential equation and
Taylor’s theorem (with respect to ε at ε = 0) to obtain

εη̇(t, ε) = φ̇(t, ε)
= f(φ(t, ε))
= f(x0 + εη(t, ε))
= εDf(x0)η(t, 0) + ε2R(t, ε)

where ε2R(t, ε) is the remainder in the Taylor expansion of ε �→ f(x0 +
εη(t, ε)). After dividing by ε, we obtain the equation

η̇(t, ε) = Df(x0)η(t, ε) + εR(t, ε),

and, by taking the limit as ε → 0, it follows that

η̇(t, 0) = Df(x0)η(t, 0).

Of course, the initial condition for this equation is determined by the choice
of the family φ; in fact,

η(0, 0) =
∂φ

∂ε
(0, ε)

∣∣∣
ε=0

,

Thus, the linearized differential equation at x0 (that is, ẇ = Df(x0)w) is
the same for every family φ, and every vector v in R

n is the initial vector
(w(0) = v) for some such family.

The “principle of linearized stability” states that if the linearization of
a differential equation at a steady state has a corresponding stable steady
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state, then the original steady state is stable. In the notation of this section,
this principle states that if w(t) = 0 is a stable steady state for ẇ =
Df(x0)w, then x0 is a stable steady state for ẋ = f(x). The principle of
linearized stability is not a theorem, but it is the motivation for several
important results in the theory of stability of differential equations.

Exercise 1.42. Prove that the rest point at the origin for the differential equa-
tion ẋ = ax, a < 0, x ∈ R is asymptotically stable. Also, determine the stability
of this rest point in case a = 0 and in case a > 0.

Exercise 1.43. Use the principle of linearized stability to determine the sta-
bility of the rest point at the origin for the system

ẋ = 2x + 2y − 3 sin x, ẏ = −2y + xy.

Let us suppose that x0 is a rest point of the differential equation ẋ =
f(x). By the change of variables u = x − x0, this differential equation is
transformed to the equivalent differential equation u̇ = f(u+x0) where the
rest point corresponding to x0 is at the origin. For g(u) := f(u + x0), we
have u̇ = g(u) and g(0) = 0. Thus, it should be clear that there is no loss
of generality if we assume that a rest point is at the origin. In this case,
the linearized equation is ẇ = Dg(0)w.

If f is smooth at x = 0 and f(0) = 0, then

f(x) = f(0) + Df(0)x + R(x) = Df(0)x + R(x)

where Df(0) : R
n → R

n is the linear transformation given by the derivative
of f at x = 0 and, for the remainder R, there is a constant k > 0 and an
open neighborhood U of the origin such that

|R(x)| ≤ k|x|2

whenever x ∈ U . Because the stability of a rest point is a local property
(that is, a property that is determined by the values of the restriction of
the function f to an arbitrary open subset of the rest point) and in view of
the estimate for the size of the remainder, it is reasonable to expect that
the stability of the rest point at the origin of the linear system ẋ = Df(0)x
will be the same as the stability of the original rest point. This expectation
is not always realized. But we do have the following fundamental stability
theorem.

Theorem 1.44. If x0 is a rest point for the differential equation ẋ = f(x)
and if all eigenvalues of the linear transformation Df(x0) have negative
real parts, then x0 is asymptotically stable.

Proof. See Theorem 2.78. �
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It turns out that if x0 is a rest point and Df(x0) has at least one eigen-
value with positive real part, then x0 is not stable. If some eigenvalues of
Df(x0) lie on the imaginary axis, then the stability of the rest point may
be very difficult to determine. Also, we can expect qualitative changes to
occur in the phase portrait of a system near such a rest point as the pa-
rameters of the system are varied. These bifurcations are the subject of
Chapter 8.

Exercise 1.45. Prove: If ẋ = 0, x ∈ R, then x = 0 is Lyapunov stable. Consider
the differential equations ẋ = x3 and ẋ = −x3. Prove that whereas the origin
is not a Lyapunov stable rest point for the differential equation ẋ = x3, it is
Lyapunov stable for the differential equation ẋ = −x3. Note that the linearized
differential equation at x = 0 in both cases is the same; namely, ẋ = 0.

Exercise 1.46. Use Theorem 1.44 to show the asymptotic stability of the rest
point at the origin of the system

ẋ = −2y − 4z + (x + y)x2, ẏ = x − 3y − z + (x + y)y2, ż = −4z + (x + y)z2.

If x0 is a rest point for the differential equation (1.13) and if the linear
transformation Df(x0) has all its eigenvalues off the imaginary axis, then
we say that x0 is a hyperbolic rest point. Otherwise x0 is called nonhy-
perbolic. In addition, if x0 is hyperbolic and all eigenvalues have negative
real parts, then the rest point is called a hyperbolic sink. If all eigenvalues
have positive real parts, then the rest point is called a hyperbolic source. A
hyperbolic rest point that is neither a source nor a sink is called a hyper-
bolic saddle. If the rest point is nonhyperbolic with all its eigenvalues on
the punctured imaginary axis (that is, the imaginary axis with the origin
removed), then the rest point is called a linear center. If zero is not an
eigenvalue, then the corresponding rest point is called nondegenerate.

If every eigenvalue of a linear transformation A has nonzero real part,
then A is called infinitesimally hyperbolic. If none of the eigenvalues of
A have modulus one, then A is called hyperbolic. This terminology can be
confusing: For example, if A is infinitesimally hyperbolic, then the rest point
at the origin of the linear system ẋ = Ax is hyperbolic. The reason for the
terminology is made clear by consideration of the scalar linear differential
equation ẋ = ax with flow given by φt(x) = eatx. If a �= 0, then the linear
transformation x → ax is infinitesimally hyperbolic and the rest point at
the origin is hyperbolic. In addition, if a �= 0 and t �= 0, then the linear
transformation x �→ etax is hyperbolic. Moreover, the linear transformation
x �→ ax is obtained by differentiation with respect to t at t = 0 of the
family of linear transformations x �→ etax. Thus, in effect, differentiation—
an infinitesimal operation on the family of hyperbolic transformations—
produces an infinitesimally hyperbolic transformation.

The relationship between the dynamics of a nonlinear system and its
linearization at a rest point is deeper than the relationship between the
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stability types of the corresponding rest points. The next theorem, called
the Hartman–Grobman theorem, is an important result that describes this
relationship in case the rest point is hyperbolic.

Theorem 1.47. If x0 is a hyperbolic rest point for the autonomous dif-
ferential equation (1.13), then there is an open set U containing x0 and
a homeomorphism H with domain U such that the orbits of the differen-
tial equation (1.13) are mapped by H to orbits of the linearized system
ẋ = Df(x0)(x − x0) in the set U .

Proof. See Section 4.3. �

In other words, the linearized system has the same phase portrait as the
original system in a sufficiently small neighborhood of the hyperbolic rest
point. Moreover, the homeomorphism H in the theorem can be chosen to
preserve not just the orbits as point sets, but their time parameterizations
as well.

Exercise 1.48. In the definition of asymptotic stability for rest points, the first
requirement is that the rest point be stable; the second requirement is that all
solutions starting in some open set containing the rest point be asymptotic to
the rest point. Does the first requirement follow from the second? Answer this
question for flows on the line and the circle. Hint: Consider flows on the circle
first. They are obtained by solving differential equations of the form θ̇ = f(θ)
where f : R → R is 2π-periodic. Find a differential equation on the circle with
exactly one rest point that is semistable. See Figure 1.22 and Exercise 1.145 for
an explicit example of a planar system with a rest point such that every orbit is
attracted to the rest point, but the rest point is not asymptotically stable.

Exercise 1.49. Consider the mathematical pendulum given by the second or-
der differential equation ü + sin u = 0. (a) Find the corresponding first order
system. (b) Find all rest points of the first order system, and characterize these
rest points according to their stability type. (c) Draw the phase portrait of the
system in a neighborhood at each rest point. (d) Solve the same problems for the
second order differential equation given by

ẍ + (x2 − 1)ẋ + ω2x − λx3 = 0.

Exercise 1.50. (a) Linearize at each rest point of the predator-prey model in
Exercise 1.15. What condition on the parameters (if any) implies the existence
of an asymptotically stable rest point? (b) Interpret the result of part (a) as a
statement about the fate of the predators and prey.

Exercise 1.51. Show that the origin is an asymptotically stable rest point for
the system

ẋ = −11x − 48y − 16z + xyz,

ẏ = x + 3y + 2z + x2 − yz,

ż = 2y + 2z + sin x.
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Figure 1.10: Level sets of a Lyapunov function.

Exercise 1.52. Use the Hartman-Grobman theorem to describe (geometri-
cally) the behavior near the origin of the system

ẋ = 4y − x2z,

ẏ = −x + 4y + xy2,

ż = −10z + yz2.

Exercise 1.53. Prove that there are open intervals U and V containing the
origin and a differentiable map H : U → V with a differentiable inverse such
that the flow φt of ẋ = −x is conjugate to the flow ψt of ẋ = −x + x2; that is,
H(φt(H−1(x))) = ψt(x) whenever x ∈ V .

Exercise 1.54. [Reversible systems] A planar system ẋ = f(x, y), ẏ = g(x, y)
is called reversible if it is invariant under the change of variables t �→ −t and
y �→ −y. For example, ẋ = −y, ẏ = x is reversible. (a) Prove that a linear center
of a reversible system is a center. (b) Construct a planar system with exactly
three rest points all of which are centers. Hint: The system ẋ = (x +2)x(x − 2)y,
ẏ = (x − 1)(x + 1) has exactly two rest points both of which are centers.

1.7 Stability and the Direct Method of Lyapunov

Let us consider a rest point x0 for the autonomous differential equation

ẋ = f(x), x ∈ R
n. (1.15)

A continuous function V : U → R , where U ⊆ R
n is an open set with

x0 ∈ U , is called a Lyapunov function for the differential equation (1.15)
at x0 if
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(i) V (x0) = 0,

(ii) V (x) > 0 for x ∈ U \ {x0},

(iii) the function V is continuously differentiable on the set U \{x0}, and,
on this set, V̇ (x) := gradV (x) · f(x) ≤ 0.

The function V is called a strict Lyapunov function if, in addition,

(iv ) V̇ (x) < 0 for x ∈ U \ {x0}.

Theorem 1.55 (Lyapunov’s Stability Theorem). If there is a Lya-
punov function defined in an open neighborhood of a rest point of the dif-
ferential equation (1.15), then the rest point is stable. If, in addition, the
Lyapunov function is a strict Lyapunov function, then the rest point is
asymptotically stable.

The idea of Lyapunov’s method is very simple. In many cases the level
sets of V are “spheres” surrounding the rest point x0 as in Figure 1.10.
Suppose this is the case and let φt denote the flow of the differential equa-
tion (1.15). If y is in the level set Sc = {x ∈ R

n : V (x) = c} of the function
V , then, by the chain rule, we have that

d

dt
V (φt(y))

∣∣∣
t=0

= gradV (y) · f(y) ≤ 0. (1.16)

The vector grad V is an outer normal for Sc at y. (Do you see why it must
be the outer normal?) Thus, V is not increasing on the curve t �→ φt(y)
at t = 0, and, as a result, the image of this curve either lies in the level
set Sc, or the set {φt(y) : t > 0} is a subset of the set in R

n with outer
boundary Sc. The same result is true for every point on Sc. Therefore, a
solution starting on Sc is trapped; it either stays in Sc, or it stays in the set
{x ∈ R

n : V (x) < c}. The stability of the rest point follows easily from this
result. If V is a strict Lyapunov function, then the solution curve definitely
crosses the level set Sc and remains inside the set {x ∈ R

n : V (x) < c} for
all t > 0. Because the same property holds at all level sets “inside” Sc, the
rest point x0 is asymptotically stable.

If the level sets of our Lyapunov function are as depicted in Figure 1.10,
then the argument just given proves the stability of the rest point. But the
level sets of a Lyapunov function may not have this simple configuration.
For example, some of the level sets may not be bounded.

The proof of Lyapunov’s stability theorem requires a more delicate anal-
ysis. Let us use the following notation. For α > 0 and ζ ∈ R

n, define

Sα(ζ) := {x ∈ R
n : |x − ζ| = α},

Bα(ζ) := {x ∈ R
n : |x − ζ| < α},

B̄α(ζ) := {x ∈ R
n : |x − ζ| ≤ α}.
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Proof. Suppose that ε > 0 is given, and note that, in view of the definition
of Lyapunov stability, it suffices to assume that B̄ε(x0) is contained in the
domain U of the Lyapunov function V . Because Sε(x0) is a compact set
not containing x0, there is a number m > 0 such that V (x) ≥ m for all
x ∈ Sε(x0). Also, there is some δ > 0 with δ < ε such that V (x) ≤ m/2 for
x in the compact set B̄δ(x0). If not, then for each k ≥ 2 there is a point
xk in B̄ε/k(x0) such that V (xk) > m/2. The sequence {xk}∞

k=2 converges
to x0. Using the continuity of the Lyapunov function V at x0, we have
limk→∞ V (xk) = V (x0) = 0, in contradiction.

Let φt denote the flow of (1.15). If x ∈ Bδ(x0), then

d

dt
V (φt(x)) = gradV (φt(x)) · f(φt(x)) ≤ 0.

Thus, the function t → V (φt(x)) is not increasing. Since V (φ0(x)) ≤ M <
m, we must have V (φt(x)) < m for all t ≥ 0 for which the solution t �→ φt(x)
is defined. But, for these values of t, we must also have φt(x) ∈ Bε(x0). If
not, there is some T > 0 such that |φT (x) − x0| ≥ ε. Since t �→ |φt(x) − x0|
is a continuous function, there must then be some τ with 0 < τ ≤ T such
that |φτ (x) − x0| = ε. For this τ , we have V (φτ (x)) ≥ m, in contradiction.
Thus, φt(x) ∈ Bε(x0) for all t ≥ 0 for which the solution through x exists.
By the extension theorem, if the solution does not exist for all t ≥ 0, then
|φt(x)| → ∞ as t → ∞, or φt(x) approaches the boundary of the domain of
definition of f . Since neither of these possibilities occur, the solution exists
for all positive time with its corresponding image in the set Bε(x0). Thus,
x0 is stable.

If, in addition, the Lyapunov function is strict, we will show that x0 is
asymptotically stable.

Let x ∈ Bδ(x0). By the compactness of B̄ε(x0), either limt→∞ φt(x) = x0,
or there is a sequence {tk}∞

k=1 of real numbers 0 < t1 < t2 · · · with tk → ∞
such that the sequence {φtk

(x)}∞
k=1 converges to some point x∗ ∈ B̄ε(x0)

with x∗ �= x0. If x0 is not asymptotically stable, then such a sequence exists
for at least one point x ∈ Bδ(x0).

Using the continuity of V , it follows that limk→∞ V (φtk
(x)) = V (x∗).

Also, V decreases on orbits. Thus, for each natural number k, we have that
V (φtk

(x)) > V (x∗). But, because the function t �→ V (φt(x∗)) is strictly
decreasing, we have

lim
k→∞

V (φ1+tk
(x)) = lim

k→∞
V (φ1(φtk

(x))) = V (φ1(x∗)) < V (x∗).

Thus, there is some natural number � such that V (φ1+t�
(x)) < V (x∗).

Clearly, there is also an integer j > � such that tj > 1 + t�. For this
integer, we have the inequalities V (φtj (x)) < V (φ1+t�

(x)) < V (x∗), in
contradiction. �

The next result can be used to prove the instability of a rest point.
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Theorem 1.56. Suppose that V is a smooth function defined on an open
neighborhood U of the rest point x0 of the autonomous system ẋ = f(x)
such that V (x0) = 0 and V̇ (x) > 0 on U \ {x0}. If V has a positive value
somewhere in each open set containing x0, then x0 is not stable.

Proof. Suppose that x0 is stable, and let φt denote the flow of the differ-
ential equation. Choose ε > 0 such that B̄ε(x0) ⊂ U and B̄ε(x0) is also in
the domain of f . There is some positive δ such that δ < ε and φt(x) is in
Bε(x0) whenever x ∈ Bδ(x0) and t ≥ 0. Also, by the continuity of V , there
is some α > 0 such that V (x) ≤ α whenever x ∈ B̄ε(x0).

By hypothesis, there is some x ∈ Bδ(x0) such that V (x) > 0. Also, by
the hypotheses, β := inft≥0 V̇ (φt(x)) ≥ 0. Suppose that β = 0. In this
case, there is a sequence t1 < t2 < t3 < · · · such that limj→∞ tj = ∞ and
limj→∞ V̇ (φtj (x)) = 0. By the stability and the compactness of B̄ε(x0),
{φtj

(x)}∞
j=0 has a convergent subsequence. Without loss of generality, we

can assume that the sequence itself converges to some x∗ ∈ B̄ε(x0). By the
continuity of V̇ , we have limj→∞ V̇ (φtj (x)) = V̇ (x∗) = 0. Since V̇ does
not vanish on U \ {x0}, it follows that x∗ = x0. Since V is continuous,
limj→∞ V (φtj

(x)) = V (x0) = 0. But, V (φtj
(x)) > V (x) > 0, in contradic-

tion. Hence, β > 0.
Note that

V (φt(x)) = V (x) +
∫ t

0
V̇ (φs(x)) ds ≥ V (x) + βt

for all t ≥ 0. If t is sufficiently large, then V (φt(x)) > α, in contradiction
to the stability of x0. �

Example 1.57. The linearization of ẋ = −x3 at x = 0 is ẋ = 0. It provides
no information about stability. Define V (x) = x2 and note that V̇ (x) =
2x(−x3) = −2x4. Thus, V is a strict Lyapunov function, and the rest point
at x = 0 is asymptotically stable.

Example 1.58. Consider the harmonic oscillator ẍ+ω2x = 0 with ω > 0.
The equivalent first order system

ẋ = y, ẏ = −ω2x

has a rest point at (x, y) = (0, 0). Define the total energy (kinetic energy
plus potential energy) of the harmonic oscillator to be

V =
1
2
ẋ2 +

ω2

2
x2 =

1
2
(y2 + ω2x2).

A computation shows that V̇ = 0. Thus, the rest point is stable. The energy
of a physical system is often a good choice for a Lyapunov function.
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Exercise 1.59. As a continuation of example (1.58), consider the equivalent
first order system

ẋ = ωy, ẏ = −ωx.

Study the stability of the rest point at the origin using Lyapunov’s direct method.

Exercise 1.60. Consider a Newtonian particle of mass m moving under the
influence of the potential U . The equation of motion (F = ma) is given by

mq̈ = − grad U(q)

where the position coordinate is denoted by q = (q1, . . . , qn). If q0 is a strict local
minimum of the potential, show that the equilibrium (q, q̇) = (q0, 0) is Lyapunov
stable. Hint: Consider the total energy of the particle.

Exercise 1.61. Determine the stability of the rest points of the following sys-
tems. Formulate properties of the unspecified scalar function g so that the system
has a rest point at the origin which is respectively stable, asymptotically stable,
and unstable.

1. ẋ = y − x3,

ẏ = −x − y3

2. ẋ = y + αx(x2 + y2),
ẏ = −x + αy(x2 + y2)

3. ẋ = 2xy − x3,

ẏ = −x2 − y5

4. ẋ = y − xg(x, y),
ẏ = −x − yg(x, y)

5. ẋ = y + xy2 − x3 + 2xz4,

ẏ = −x − y3 − 3x2y + 3yz4,

ż = − 5
2y2z3 − 2x2z3 − 1

2z7

Exercise 1.62. (a) Determine the stability of all rest points for the following
differential equations. For the unspecified scalar function g determine conditions
so that the origin is a stable and/or asymptotically stable rest point.

1. ẍ + εẋ + ω2x = 0, ε > 0, ω > 0

2. ẍ + sin x = 0

3. ẍ + x − x3 = 0

4. ẍ + g(x) = 0

5. ẍ + εẋ + g(x) = 0, ε > 0

6. ẍ + ẋ3 + x = 0.

(b) The total energy is a good choice for the strict Lyapunov function required
to study system 5. It almost works. Modify the total energy to obtain a strict
Lyapunov function. Hint: See Exercise 2.80. (c) Prove the following refinement
of Theorem 1.55: Suppose that x0 is a rest point for the differential equation
ẋ = f(x) with flow φt and V is a Lyapunov function at x0. If, in addition, there
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is a neighborhood W of the rest point x0 such that for each point p ∈ W \ {x0},
the function V is not constant on the set {φt(p) : t ≥ 0}, then x0 is asymptotically
stable (see Exercise 1.171). (d) Apply part (c) to system 5.

Exercise 1.63. Suppose that in addition to the hypotheses of Lyapunov’s sta-
bility theorem 1.55, the strict Lyapunov function V is defined on all of R

n and
lim|x|→∞ V (x) = ∞. (a) Prove that the rest point is globally asymptotically sta-
ble; that is, the rest point is the ω-limit set of every point in R

n. (b) Prove that
if σ > 0, b > 0, and 0 < r < 1, then the origin is globally asymptotically stable
for the Lorenz system

ẋ = σ(y − x), ẏ = rx − y − xz, ż = xy − bz.

Exercise 1.64. Suppose that f is a function such that f ′′(x)+f ′(x)+f(x)3 = 0
for all x ≥ 0. Show that limx→∞ f(x) = 0 and limx→∞ f ′(x) = 0.

Exercise 1.65. [Basins of Attraction] Consider system 5 in the previous ex-
ercise, and note that if g(0) = 0 and g′(0) > 0, then there is a rest point at
the origin that is asymptotically stable. Moreover, this fact can be proved by
the principle of linearization. (a) Construct a strict Lyapunov function for this
system. The construction of a strict Lyapunov function is not necessary to de-
termine the stability of the rest point, but a Lyapunov function can be used to
estimate the basin of attraction of the rest point; that is the set of all points in
the space that are asymptotic to the rest point. Consider the (usual) first order
system corresponding to the differential equation

ẍ + εẋ + x − x3 = 0

for ε > 0. (b) Describe the basin of attraction of the origin. (c) Define a subset of
the basin of attraction, which you have described, and prove that it is contained
in the basin of attraction. (d) Prove the following general theorem. Let x0 be a
rest point of the system ẋ = f(x) in R

n with flow φt, and suppose that V : U → R

is a Lyapunov function at x0. If B is a closed neighborhood of x0 contained in U
such that φt(b) ∈ B whenever b ∈ B and t ≥ 0, and there is no complete orbit
in B \ {x0} on which V is constant, then x0 is asymptotically stable and B is in
the basin of attraction of x0 (see [123]).

Note: In engineering practice, physical systems (for example a chemical plant
or a power electronic system) are operated in steady state. When a disturbance
occurs in the system, the control engineer wants to know if the system will return
to the steady state. If not, she will have to take drastic action. Do you see why
theorems of the type mentioned in this exercise (possible projects for the rest of
your mathematical life) might have practical value?

1.8 Manifolds

In this section we will define the concept of a manifold as a generalization
of a linear subspace of R

n, and we will begin our discussion of the central
role that manifolds play in the theory of differential equations.
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Let us note that the fundamental definitions of calculus are local in
nature. For example, the derivative of a function at a point is determined
once we know the values of the function in some neighborhood of that point.
This fact is the basis for the manifold concept: Informally, a manifold is
a subset of R

n such that, for some fixed integer k ≥ 0, each point in the
subset has a neighborhood that is essentially the same as the Euclidean
space R

k. To make this definition precise we will have to define what is
meant by a neighborhood in the subset, and we will also have to understand
the meaning of the phrase “essentially the same as R

k.” But these notions
should be intuitively clear: In effect, a neighborhood in the manifold is an
open subset that is diffeomorphic to R

k.
Points, lines, planes, arcs, spheres, and tori are examples of manifolds.

Some of these manifolds have already been mentioned. Let us recall that a
curve is a smooth function from an open interval of real numbers into R

n.
An arc is the image of a curve. Every solution of a differential equation is a
curve; the corresponding orbit is an arc. Thus, every orbit of a differential
equation is a manifold. As a special case, let us note that a periodic orbit is
a one-dimensional torus. The statements in this paragraph are true as long
as the objects are viewed without reference to how they are “embedded”
in some larger space. For example, although an arc in R

n where n > 1 is
a manifold, it may not be a submanifold of R

n because the arc may accu-
mulate on itself (see Exercise 1.97). Thus, although the intuitive notion of
a manifold is a useful way to begin our study of these objects, it should be
clear from the last remarks that there are complications that can only be
fully understood using the precise definitions. On the other hand, an intu-
itive understanding is sufficient to appreciate the importance of manifolds
in the theory of differential equations.

We will discuss invariant manifolds, a precise approach to submanifolds
of Euclidean space, tangent spaces, coordinate transformations, and polar
coordinates as they relate to differential equations.

1.8.1 Introduction to Invariant Manifolds
Consider the differential equation

ẋ = f(x), x ∈ R
n, (1.17)

with flow φt, and let S be a subset of R
n that is a union of orbits of this

flow. If a solution has its initial condition in S, then the corresponding orbit
stays in S for all time, past and future. The concept of a set that is the
union of orbits of a differential equation is formalized in the next definition.

Definition 1.66. A set S ⊆ R
n is called an invariant set for the differen-

tial equation (1.17) if, for each x ∈ S, the solution t �→ φt(x), defined on its
maximal interval of existence, has its image in S. Alternatively, the orbit
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Stable ManifoldUnstable Manifold

Figure 1.11: Stable and unstable manifolds for the linear saddle at the
origin for the system ẋ = −x, ẏ = y.

passing through each x ∈ S lies in S. In addition, S is called an invariant
manifold if S is a manifold.

We will illustrate the notion of invariant manifolds for autonomous dif-
ferential equations by describing two important examples: the stable, un-
stable, and center manifolds of a rest point, and the energy surfaces of
Hamiltonian systems.

The stable manifold concept is perhaps best introduced by discussing a
concrete example. Thus, let us consider the planar first order system

ẋ = −x, ẏ = y,

and note that the x-axis and the y-axis are invariant one-dimensional man-
ifolds. The invariance of these sets follows immediately by inspection of
the solution of the uncoupled linear system. Note that a solution with ini-
tial value on the x-axis approaches the rest point (x, y) = (0, 0) as time
increases to +∞. On the other hand, a solution with initial value on the
y-axis approaches the rest point as time decreases to −∞. Solutions on
the x-axis move toward the rest point; solutions on the y-axis move away
from the rest point. For this example, the x-axis is called the stable man-
ifold of the rest point, and the y-axis is called the unstable manifold (see
Figure 1.11).

Similar invariant linear subspaces exist for all linear systems ẋ = Ax,
x ∈ R

n. In fact, the space R
n can always be decomposed as a direct sum of

linear subspaces: the stable eigenspace (stable manifold) defined to be the
A-invariant subspace of R

n such that the eigenvalues of the restriction of
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Center Manifold

Stable Manifold

Figure 1.12: Phase portrait for a linear system with a one-dimensional
stable and a two-dimensional center manifold.

A to this space are exactly the eigenvalues of A with negative real parts,
the unstable eigenspace (unstable manifold) corresponding similarly to the
eigenvalues of A with positive real parts, and the center eigenspace (center
manifold) corresponding to the eigenvalues with zero real parts. It turns out
that these linear subspaces are also invariant sets for the linear differential
equation ẋ = Ax. Thus, they determine its phase portrait. For example,
Figure 1.12 shows the phase portrait of a linear system on R

3 with a one-
dimensional stable manifold and a two-dimensional center manifold. Of
course, some of these invariant sets might be empty. In particular, if A
is infinitesimally hyperbolic (equivalently, if the rest point at the origin is
hyperbolic), then the linear system has an empty center manifold at the
origin.

Exercise 1.67. Discuss the existence of stable, unstable, and center manifolds
for the linear systems with the following system matrices:

⎛
⎝−1 1 0

0 −1 0
0 0 2

⎞
⎠ ,

⎛
⎝1 2 3

4 5 6
7 8 9

⎞
⎠ ,

⎛
⎝ 0 1 0

−1 0 0
0 0 −2

⎞
⎠ .

Two important theorems in the subject of differential equations, the
stable manifold theorem and the center manifold theorem, will be proved
in Chapter 4. We have the following formal definition.

Definition 1.68. The stable manifold of a rest point x0 for an autonomous
differential equation with (locally defined) flow φt is the set of all points x
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in the domain of definition of φt such that limt→∞ φt(x) = x0. The unstable
manifold of x0 is the set of all points x in the domain of definition of φt

such that limt→−∞ φt(x) = x0.

The stable manifold theorem states that a hyperbolic rest point has a
unique stable manifold (respectively, unstable manifold) that is tangent to
the corresponding stable (respectively, unstable) eigenspace of the corre-
sponding linearized system at the rest point and that these invariant sets
are indeed smooth manifolds.

The Hartman–Grobman theorem implies that a hyperbolic rest point has
stable and unstable invariant sets that are homeomorphic images of the
corresponding invariant manifolds for the corresponding linearized system,
but it gives no indication that these invariant sets are smooth manifolds.

The existence of stable and unstable invariant manifolds is essential to
our understanding of many features of the dynamics of differential equa-
tions. For example, their existence provides a theoretical basis for deter-
mining the analytic properties of the flow of a differential equation in the
neighborhood of a hyperbolic rest point. They also serve to bound other
invariant regions in the phase space. Thus, the network of all stable and
unstable manifolds forms the “skeleton” for the phase portrait. Finally, the
existence of the stable and unstable manifolds in the phase space, espe-
cially their intersection properties, lies at the heart of an explanation of
the complex motions associated with many nonlinear ordinary differential
equations. In particular, this phenomenon is fundamental in the study of
deterministic chaos (see Chapter 6).

For rest points of a differential equation that are not hyperbolic, the
center manifold theorem states the existence of an invariant manifold tan-
gent to the corresponding center eigenspace. This center manifold is not
necessarily unique, but the differential equation has the same (arbitrar-
ily complicated) phase portrait when restricted to any one of the center
manifolds at the same rest point. In particular, center manifolds cannot be
characterized by a simple dynamical property as in Definition 1.68. Analy-
sis using center manifolds is often required to understand many of the most
delicate problems that arise in the theory and applications of differential
equations. For example, the existence and smoothness properties of center
manifolds are foundational results in bifurcation theory (see Chapter 8).

Other types of invariant sets, for example, periodic orbits can have stable
manifolds, unstable manifolds and center manifolds. Indeed, the extension
of Definition 1.68 to a general invariant set is clear.

Exercise 1.69. Determine the stable and unstable manifolds for the rest point
of the system

ẋ = 2x − (2 + y)ey, ẏ = −y.

Hint: See Exercise 1.6.
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Exercise 1.70. (a) Determine a stable and a center manifold for the rest point
of the system

ẋ = x2, ẏ = −y.

(b) Show that the system has infinitely many center manifolds.

Invariant manifolds, called energy surfaces, are useful in the study of
Hamiltonian systems of differential equations. To define this important
class of differential equations, let H : R

n × R
n → R be a smooth func-

tion given by

(q1, . . . , qn, p1, . . . , pn) �→ H(q1, . . . , qn, p1, . . . , pn),

and define the associated Hamiltonian system on R
2n with Hamiltonian H

by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n.

Let us note that the dimension of the phase space of a Hamiltonian system
is required to be even. The reason for this restriction will soon be made
clear.

As a prototypical example of a Hamiltonian system, let H : R
2 → R be

given by H(x, y) := 1
2 (y2 + ω2x2). The associated Hamiltonian system is

the harmonic oscillator

ẋ = y, ẏ = −ω2x.

More generally, suppose that U : R
n → R and let H : R

n × R
n → R be

given by

H(q, p) =
p2

2m
+ U(q)

where p2 := p2
1 + · · · + p2

n. A Hamiltonian in this form is called a classical
Hamiltonian. The corresponding Hamiltonian system

q̇ =
1
m

p, ṗ = − gradU(q)

is equivalent to Newton’s equation of motion for a particle influenced by
a conservative force (see Exercise 1.60). The vector quantity p := mq̇ is
called the (generalized) momentum, the function U is called the potential
energy, and the function p �→ 1

2mp2 = m
2 q̇2 is called the kinetic energy.

The configuration space for a classical mechanical system is the space
consisting of all possible positions of the system, and the corresponding
Hamiltonian system is said to have n degrees of freedom if the configuration
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space is locally specified by n coordinates (q1, . . . , qn). For example, for the
pendulum, the configuration space can be taken to be R with the coordinate
q1 specifying the angular position of the bob relative to the downward
vertical. It is a system with one degree of freedom. Of course, for this
example, the physical positions are specified by the angular coordinate q1
modulo 2π. Thus, the configuration space can also be viewed as a nonlinear
manifold—namely, the unit circle in the plane. This is yet another way in
which manifolds arise in the study of mechanical systems.

The phase space of a Hamiltonian system is the subset of R
n × R

n of all
positions and momenta specified by the coordinates (q1, . . . , qn, p1, . . . , pn).
The dimension of the phase space is therefore even; it is the space in which
the Hamiltonian system evolves. The state space is also a subset of R

n ×
R

n, but it is the space of positions and velocities with the coordinates
(q1, . . . , qn, q̇1, . . . , q̇n) (see Chapter 3).

For c ∈ R and the Hamiltonian H : R
n × R

n → R, the corresponding
energy surface with energy c is defined to be the set

Sc = {(q, p) ∈ R
n × R

n : H(q, p) = c}.

If gradH(q, p) �= 0 for each (q, p) ∈ Sc, then the set Sc is called a regular
energy surface.

Note that the vector field given by

gradH = (
∂H

∂q
,
∂H

∂p
)

is orthogonal to the Hamiltonian vector field given by

(
∂H

∂p
,−∂H

∂q
)

at each point in the phase space. Thus, the Hamiltonian vector field is
everywhere tangent to each regular energy surface. As a consequence of
this fact—a proof will be given later in this section—every energy surface
Sc is an invariant set for the flow of the corresponding Hamiltonian system.
Moreover, every regular energy surface is an invariant manifold.

The structure of energy surfaces and their invariance is important. In-
deed, the phase space of a Hamiltonian system is the union of its energy
surfaces. Or, as we say, the space is foliated by its energy surfaces. More-
over, each regular energy surface of a Hamiltonian system with n degrees
of freedom has “dimension” 2n − 1. Thus, we can reduce the dimension of
the phase space by studying the flow of the original Hamiltonian system
restricted to each of these invariant subspaces. For example, the analysis
of a Hamiltonian system with one degree of freedom can be reduced to
the consideration of just one space dimension where the solution of the
Hamiltonian differential equation can be reduced to a quadrature. To see
what this means, consider the classical Hamiltonian H(q, p) = 1

2p2 + U(q)
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on R × R and a regular energy surface of H with energy h. Notice that,
by using the Hamiltonian differential equations and the energy relation, we
have the following scalar differential equations

q̇ = p =
dq

dt
= ±(2(h − U(q)))1/2

for solutions whose initial conditions are on this energy surface. By separa-
tion of variables and a specification of the initial condition, the ambiguous
sign is determined and the solution of the corresponding scalar differential
equation is given implicitly by the integral (=quadrature)∫ q(t)

q(0)
(2(h − U(q)))−1/2 dq = ±t.

This result “solves” the original system of Hamiltonian differential equa-
tions. The same idea works for systems with several degrees of freedom,
only the equations are more complicated.

Let us also note that the total energy of a Hamiltonian system might
not be the only conserved quantity. In fact, if F is a function on the phase
space with the property that gradF (q, p) is orthogonal to the Hamiltonian
vector field at every point (q, p) in an open subset of the phase space,
then the level sets of F are also invariant sets. In this case F is called an
integral, or first integral, of the Hamiltonian system. Thus, the intersection
of an energy surface and a level set of F must also be invariant, and, as
a consequence, the space is foliated with (2n − 2)-dimensional invariant
sets. If there are enough first integrals, then the solution of the original
system can be expressed in quadratures. In fact, for an n-degree-of-freedom
Hamiltonian system, it suffices to determine n “independent” first integrals
(see [12, §49]). For these reasons, it should be clear that energy surfaces, or
more generally, level sets of first integrals, are important objects that are
worthy of study. They are prime examples of smooth manifolds.

While the notion of an energy surface is naturally associated with Hamil-
tonian systems, the underlying idea for proving the invariance of energy
surfaces easily extends to general autonomous systems. In fact, if ẋ = f(x)
is an autonomous system with x ∈ R

n and the function G : R
n → R is

such that the vector grad G(x) is orthogonal to f(x) for all x in some open
subset of R

n, then every level set of G that is contained in this open set
is invariant. Thus, just as for Hamiltonian systems, some of the dynamical
properties of the differential equation ẋ = f(x) can be studied by restrict-
ing attention to a level set of G, a set that has codimension one in the
phase space (see Exercise 1.77).

Exercise 1.71. Find the Hamiltonian for a first order system equivalent to the
model equation for the pendulum given by θ̈+k sin θ = 0 where k is a parameter.
Describe the energy surfaces.
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Middle Axis

Short Axis

Long Axis

Figure 1.13: A rigid body and its three axes of symmetry

Exercise 1.72. Reduce the solution of the harmonic oscillator H(q, p) = 1
2 (p2+

ω2q2) where ω > 0 to a quadrature on each of its regular energy surfaces and carry
out the integration explicitly. (This is not the simplest way to solve the equations
of motion, but you will learn a valuable method that is used, for example, in the
construction of the solution of the equations of motion for the Hamiltonian system
mentioned in the previous exercise.)

Exercise 1.73. (a) Show that

İ1 = I1 cos(θ1 − θ2),

İ2 = −I1 cos(θ1 − θ2),

θ̇1 = −1 − sin(θ1 − θ2),

θ̇2 = 1

is a Hamiltonian system. (b) Find a first integral that is independent of the
Hamiltonian.

Exercise 1.74. (a) The Hamiltonian system with Hamiltonian H = q2p1 −
q1p2+q4p3−q3p4+q2q3 has a rest point at the origin (see [145, p. 212]). Linearize
at the origin and determine the eigenvalues. What can you conclude about the
stability of the rest point? (b) Prove that the rest point at the origin is unstable.

Exercise 1.75. [Basins of Attraction] Consider the differential equation

ẍ + εẋ − x + x3 = 0

with parameter ε. (a) Show that the system with ε = 0 corresponds to a classical
Hamiltonian system with a double-well potential and draw the phase portrait of
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this system. (b) Draw the phase portrait of the system for ε > 0. Note: In this
case, the term εẋ models viscous damping. (c) What is the fate of the solution
with initial condition (x(0), ẋ(0)) = (4, 0) for ε = 0.1? Note: To solve this problem
you will probably have to resort to numerics. How do we know that the result
obtained by a numerical simulation is correct?

Exercise 1.76. [Gradient Systems] If H is a Hamiltonian, then the vector field
grad H is everywhere orthogonal to the corresponding Hamiltonian vector field.
What are the properties of the flow of grad H? More generally, for a smooth
function G : R

n → R (maybe n is odd), let us define the associated gradient
system

ẋ = grad G(x).

Because a conservative force is the negative gradient of a potential, many authors
define the gradient system with potential G to be ẋ = − grad G(x). The choice of
sign simply determines the direction of the flow. Prove the following statements:
(a) A gradient system has no periodic orbits. (b) If a gradient system has a
rest point, then all of the eigenvalues of its linearization at the rest point are
real. (c) In the plane, the orbits of the gradient system with potential G are
orthogonal trajectories for the orbits of the Hamiltonian system with Hamiltonian
G. (d) If x0 ∈ R

n is an isolated maximum of the function G : R
n → R, then

x0 is an asymptotically stable rest point of the corresponding gradient system
ẋ = grad G(x).

Exercise 1.77. [Rigid Body Motion] A system that is not Hamiltonian, but
closely related to this class, is given by Euler’s equations for rigid body motion.
The angular momentum M = (M1, M2, M3) of a rigid body, relative to a coordi-
nate frame rotating with the body with axes along the principal axes of the body
and with origin at its center of mass, is related to the angular velocity vector Ω
by M = AΩ, where A is a symmetric matrix called the inertia matrix. Euler’s
equation is Ṁ = M × Ω. Equivalently, the equation for the angular velocity is
AΩ̇ = (AΩ) × Ω. If A is diagonal with diagonal components (moments of iner-
tia) (I1, I2, I3), show that Euler’s equations for the components of the angular
momentum are given by

Ṁ1 = −( 1
I2

− 1
I3

)
M2M3,

Ṁ2 =
( 1
I1

− 1
I3

)
M1M3,

Ṁ3 = −( 1
I1

− 1
I2

)
M1M2.

Assume that 0 < I1 ≤ I2 ≤ I3. Find some invariant manifolds for this system. Can
you use your results to find a qualitative description of the motion? As a physical
example, take this book and hold its covers together with a rubber band. Then,
toss the book vertically three times, imparting a rotation in turn about each of its
axes of symmetry (see Figure 1.13). Are all three rotary motions Lyapunov stable?
Do you observe any other interesting phenomena associated with the motion?
For example, pay attention to the direction of the front cover of the book after
each toss. Hint: Look for invariant quadric surfaces; that is, manifolds defined as
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level sets of quadratic polynomials (first integrals) in the variables (M1, M2, M3).
For example, show that the kinetic energy given by 1

2 〈AΩ, Ω〉 is constant along
orbits. The total angular momentum (length of the angular momentum) is also
conserved. For a complete mathematical description of rigid body motion, see [12].
For a mathematical description of the observed “twist” in the rotation of the
tossed book, see [20]. Note that Euler’s equations do not describe the motion of
the book in space. To do so would require a functional relationship between the
coordinate system rotating with the body and the position coordinates relative
to a fixed coordinate frame in space.

1.8.2 Smooth Manifolds
Because the modern definition of a smooth manifold can appear quite
formidable at first sight, we will formulate a simpler equivalent definition
for the class of manifolds called the submanifolds of R

n. Fortunately, this
class is rich enough to contain the manifolds that are met most often in the
study of differential equations. In fact, every manifold can be “embedded”
as a submanifold of some Euclidean space. Thus, the class that we will
study can be considered to contain all manifolds.

Recall that a manifold is supposed to be a set that is locally the same as
R

k. Thus, whatever is meant by “locally the same,” every open subset of
R

k must be a manifold.
If W ⊆ R

k is an open set and g : W → R
n−k is a smooth function, then

the graph of g is the subset of R
n defined by

graph(g) := {(w, g(w)) ∈ R
n : w ∈ W}.

The set graph(g) is the same as W ⊆ R
k up to a nonlinear change of

coordinates. By this we mean that there is a smooth map G with domain
W and image graph(g) such that G has a smooth inverse. In fact, such a
map G : W → graph(g) is given by G(w) = (w, g(w)). Clearly, G is smooth.
Its inverse is the linear projection on the first k coordinates of the point
(w, g(w)) ∈ graph(g); that is, G−1(w, g(w)) = w. Thus, G−1 is smooth as
well.

Open subsets and graphs of smooth functions are the prototypical ex-
amples of what we will call submanifolds. But these classes are too restric-
tive; they include objects that are globally the same as some Euclidean
space. The unit circle T in the plane, also called the one-dimensional
torus, is an example of a submanifold that is not of this type. Indeed,
T := {(x, y) : x2 + y2 = 1} is not the graph of a scalar function defined on
an open subset of R. On the other hand, every point of T is contained in a
neighborhood in T that is the graph of such a function. In other words, T

is locally the same as R. In fact, each point in T is in one of the four sets

S± := {(x, y) ∈ R
2 : y = ±

√
1 − x2, |x| < 1},

S± := {(x, y) ∈ R
2 : x = ±

√
1 − y2, |y| < 1}.
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G(W )

W

S

G

Figure 1.14: A chart for a two-dimensional submanifold in R
3.

Submanifolds of R
n are subsets with the same basic property: Every point

in the subset is in a neighborhood that is the graph of a smooth function.
To formalize the submanifold concept for subsets of R

n, we must deal
with the problem that, in the usual coordinates of R

n, not all graphs are
given by sets of the form

{(x1, . . . , xk, gk+1(x1, . . . , xk), . . . , gn(x1, . . . , xk)) :

(x1, . . . , xk) ∈ W ⊆ R
k}.

Rather, we must allow, as in the example provided by T, for graphs of func-
tions that are not functions of the first k coordinates of R

n. To overcome
this technical difficulty we will build permutations of the variables into our
definition.

Definition 1.78. Suppose that S ⊆ R
n and x ∈ S. The pair (W,G)

where W is an open subset of R
k for some k ≤ n and G : W → R

n is
a smooth function is called a k-dimensional submanifold chart for S at x
(see Figure 1.14) if there is an open set U ⊆ R

n with x ∈ U ∩ S such that
U ∩ S = G(W ) and one of the following two properties is satisfied:
1) The integer k is equal to n and G is the identity map.
2) The integer k is less than n and G has the form

G(w) = A
( w

g(w)

)
where g : W → R

n−k is a smooth function and A is a nonsingular n × n
matrix.

Definition 1.79. The set S ⊆ R
n is called a k-dimensional smooth sub-

manifold of R
n if there is a k-dimensional submanifold chart for S at every

point x in S.
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The map G in a submanifold chart (W,G) is called a submanifold coor-
dinate map. If S is a submanifold of R

n, then (even though we have not
yet defined the concept), let us also call a submanifold S of R

n a smooth
manifold.

As an example, let us show that T is a one-dimensional manifold. Con-
sider a point in the subset S+ = {(x, y) : x =

√
1 − y2, |y| < 1} of T. Define

the set W := {t ∈ R : |t| < 1}, the function g : W → R by g(t) =
√

1 − t2,
the set U := {(x, y) ∈ R

2 : (x − 1)2 + y2 < 2}, and the matrix

A :=
(

0 1
1 0

)
.

Then we have

T ∩ U =
{(x

y

)
∈ R

2 :
(x

y

)
=

(
0 1
1 0

)( t
g(t)

)
, t ∈ W

}
.

Similarly, T is locally the graph of a smooth function at points in the subsets
S− and S±, as required.

A simple but important result about submanifold charts is the following
proposition.

Proposition 1.80. If (W,G) is a submanifold chart for a k-dimensional
submanifold of R

n, then the function G : W → G(W ) ⊆ S is invertible.
Moreover, the inverse of G is the restriction of a smooth function that is
defined on all of R

n.

Proof. The result is obvious if k = n. If k < n, then define Π : R
n → R

k to
be the linear projection on the first k-coordinates; that is, Π(x1, . . . , xn) =
(x1, . . . , xk), and define

F : G(W ) → W

by
F (s) = ΠA−1s.

Clearly, F is smooth as a function defined on all of R
n. Also, if w ∈ W ,

then

F ◦ G(w) = F
(
A
( w

g(w)

))
= ΠA−1A

( w
g(w)

)
= w.

If s ∈ G(W ), then s = A
( w

g(w)

)
for some w ∈ W . Hence, we also have

G(F (s)) = G(w) = s.

This proves that F is the inverse of G. �

If S is a submanifold, then we can use the submanifold charts to define
the open subsets of S.
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Definition 1.81. Suppose that S is a submanifold. The open subsets of
S are all possible unions of all sets of the form G(W ) where (W,G) is a
submanifold chart for S.

The next proposition is an immediate consequence of the definitions.

Proposition 1.82. If S is a submanifold of R
n and if V is an open subset

of S, then there is an open set U of R
n such that V = S ∩ U ; that is, the

topology defined on S using the submanifold charts agrees with the subspace
topology on S.

As mentioned above, one of the main reasons for defining the manifold
concept is to distinguish those subsets of R

n on which we can use the
calculus. To do so, let us first make precise the notion of a smooth function.

Definition 1.83. Suppose that S1 is a submanifold of R
m, S2 is a subman-

ifold of R
n, and F is a function F : S1 → S2. We say that F is differentiable

at x1 ∈ S1 if there are submanifold charts (W1, G1) at x1 and (W2, G2) at
F (x1) such that the map G−1

2 ◦ F ◦ G1 : W1 → W2 is differentiable at
G−1

1 (x1) ∈ W1. If F is differentiable at each point of an open subset V of
S1, then we say that F is differentiable on V .

Definition 1.84. Suppose that S1 and S2 are manifolds. A smooth func-
tion F : S1 → S2 is called a diffeomorphism if there is a smooth function
H : S2 → S1 such that H(F (s)) = s for every s ∈ S1 and F (H(s)) = s for
every s ∈ S2. The function H is called the inverse of F and is denoted by
F−1.

With respect to the notation in Definition 1.83, we have defined the
concept of differentiability for the function F : S1 → S2, but we have not yet
defined what we mean by its derivative. We have, however, determined the
derivative relative to the submanifold charts used in the definition. Indeed,
the local representative of the function F is given by G−1

2 ◦F ◦G1, a function
defined on an open subset of a Euclidean space with range in another
Euclidean space. By definition, the local representative of the derivative
of F relative to the given submanifold charts is the usual derivative in
Euclidean space of this local representative of F . In the next subsection,
we will interpret the derivative of F without regard to the choice of a
submanifold chart; that is, we will give a coordinate-free definition of the
derivative of F (see also Exercise 1.85).

Exercise 1.85. Prove: The differentiability of a function defined on a manifold
does not depend on the choice of submanifold chart.

Exercise 1.86. (a) Show that θ̇ = f(θ) can be viewed as a (smooth) differential
equation on the unit circle if and only if f is periodic. To be compatible with
the usual (angular) coordinate on the circle it is convenient to consider only 2π-
periodic functions (see Section 1.8.5). (b) Describe the bifurcations that occur
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for the family θ̇ = 1 − λ sin θ with λ ≥ 0. (c) For each λ < 1, the corresponding
differential equation has a periodic orbit. Determine the period of this periodic
orbit and describe the behavior of the period as λ → 1 (see [218, p. 98]).

We have used the phrase “smooth function” to refer to a function that is
continuously differentiable. In view of Definition 1.83, the smoothness of a
function defined on a manifold is determined by the smoothness of its local
representatives—functions that are defined on open subsets of Euclidean
spaces. It is clear that smoothness of all desired orders can be defined in
the same manner by imposing the requirement on local representatives.
More precisely, if F is a function defined on a manifold S, then we will
say that F is an element of Cr(S), for r a nonnegative integer, r = ∞,
or r = ω, provided that at each point of S there is a local representative
of F all of whose partial derivatives up to and including those of order r
are continuous. If r = ∞, then all partial derivatives are required to be
continuous. If r = ω, then all local representatives are all required to have
convergent power series representations valid in a neighborhood of each
point of their domains. A function in Cω is called real analytic.

In the subject of differential equations, specifying the minimum number
of derivatives of a function required to obtain a result often obscures the
main ideas that are being illustrated. Thus, as a convenient informality, we
will often use the phrase “smooth function” to mean that the function in
question has as many continuous derivatives as needed. In cases where the
exact requirement for the number of derivatives is essential, we will refer
to the appropriate class of Cr functions.

The next definition formalizes the concept of a coordinate system.

Definition 1.87. Suppose that S is a k-dimensional submanifold. The pair
(V, Ψ) is called a coordinate system or coordinate chart on S if V is an open
subset of S, W is an open subset of R

k, and Ψ : V → W is a diffeomorphism.

Exercise 1.88. Prove: If (W, G) is a submanifold chart for a manifold S, then
(G(W ), G−1) is a coordinate chart on S.

The abstract definition of a manifold is based on the concept of coordi-
nate charts. Informally, a set S together with a collection of subsets S is
defined to be a k-dimensional manifold if every point of S is contained in at
least one set in S and if, for each member V of S, there is a corresponding
open subset W of R

k and a function Ψ : V → W that is bijective. If two
such subsets V1 and V2 overlap, then the domain of the map

Ψ1 ◦ Ψ−1
2 : Ψ2(V1 ∩ V2) → W1

is an open subset of R
k whose range is contained in an open subset of

R
k. The set S is called a manifold provided that all such “overlap maps”

are smooth (see [120] for the formal definition). This abstract notion of a
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manifold has the advantage that it does not require a manifold to be a
subset of a Euclidean space.

Exercise 1.89. Prove: If F : R
m → R

n is smooth and F (S1) ⊆ S2 for subman-
ifolds S1 and S2, then the restriction of F to S1 is differentiable.

Exercise 1.90. Prove: If α ∈ R, then the map T → T given by

(x, y) �→ (x cos α − y sin α, x sin α + y cos α)

is a diffeomorphism.

Now that we know the definition of a manifold, we are ready to prove
that linear subspaces of R

n and regular level sets of smooth functions are
manifolds.

Proposition 1.91. A linear subspace of R
n is a submanifold.

Proof. Let us suppose that S is the span of the k linearly independent vec-
tors v1, . . . , vk in R

n. We will show that S is a k-dimensional submanifold
of R

n.
Let e1, . . . , en denote the standard basis of R

n. By a basic result from
linear algebra, there is a set consisting of n − k standard basis vectors
fk+1, . . . , fn such that the vectors

v1, . . . , vk, fk+1, . . . , fn

are a basis for R
n. (Why?) Let us denote the remaining set of standard

basis vectors by f1, . . . , fk. For each j = 1, . . . , k, there are scalars λj
i and

µj
i such that

fj =
k∑

i=1

λj
ivi +

n∑
i=k+1

µj
ifi.

Hence, if (t1, . . . , tk) ∈ R
k, then the vector

k∑
j=1

tjfj −
k∑

j=1

tj

( n∑
i=k+1

µj
ifi

)
=

k∑
j=1

tj

( k∑
i=1

λj
ivi

)
is in S; and, relative to the basis f1, · · · , fn, the vector

(t1, . . . , tk,−
k∑

j=1

tjµ
j
k+1, . . . ,−

k∑
j=1

tjµ
j
n)

is in S.
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Define g : R
k → R

n−k by

g(t1, . . . , tk) :=
(

−
k∑

j=1

tjµ
j
k+1, . . . ,−

k∑
j=1

tjµ
j
n

)
and let A denote the permutation matrix given by Aej = fj . It follows that
the pair (Rk, G), where G : R

k → R
n is defined by

G(w) = A
( w

g(w)

)
,

is a k-dimensional submanifold chart such that G(Rk) = R
n ∩ S. In fact,

by the construction, it is clear that the image of G is a linear subspace of
S. Moreover, because the image of G has dimension k as a vector space,
the subspace G(Rk) is equal to S. �

As mentioned previously, linear subspaces often arise as invariant mani-
folds of differential equations. For example, consider the differential equa-
tion given by ẋ = Ax where x ∈ R

n and A is an n × n matrix. If S is
an invariant subspace for the matrix A, for example, one of its generalized
eigenspaces, then, by Proposition 1.91, S is a submanifold of R

n. Also, S
is an invariant set for the corresponding linear system of differential equa-
tions. Although a complete proof of this proposition requires some results
from linear systems theory that will be presented in Chapter 2, the essen-
tial features of the proof are simply illustrated in the special case where
the linear transformation A restricted to S has a complete set of eigenvec-
tors. In other words, S is a k-dimensional subspace of R

n spanned by k
linearly independent eigenvectors v1, . . . , vk of A. Under this assumption,
if Avi = λivi, then t → eλitvi is a solution of ẋ = Ax. Also, note that eλitvi

is an eigenvector of A for each t ∈ R. Therefore, if x0 ∈ S, then there are
scalars (a1, . . . , ak) such that x0 =

∑k
i=1 aivi and

t �→
k∑

i=1

eλitaivi

is the solution of the ordinary differential equation with initial condition
x(0) = x0. Clearly, the corresponding orbit stays in S for all t ∈ R.

Linear subspaces can be invariant sets for nonlinear differential equations.
For example, consider the Volterra–Lotka system

ẋ = x(a − by), ẏ = y(cx − d).

In case a, b, c, and d are all positive, this system models the interaction
of the population y of a predator and the population x of its prey. For
this system, the x-axis and the y-axis are each invariant sets. Indeed, sup-
pose that (0, y0) is a point on the y-axis corresponding to a population of
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predators with no prey, then t �→ (0, e−dty0) is the solution of the system
starting at this point that models this population for all future time. This
solution stays on the y-axis for all time, and, as there are is no spontaneous
generation of prey, the predator population dies out in positive time.

Let us now discuss level sets of functions. Recall that the level set with
energy c of a smooth function H : R

n → R is the set

Sc := {x ∈ R
n : H(x) = c}.

Moreover, the level set Sc is called a regular level set if gradH(x) �= 0 for
each x ∈ Sc.

Proposition 1.92. If H : R
n → R is a smooth function, then each of its

regular level sets is an (n − 1)-dimensional submanifold of R
n.

It is instructive to outline a proof of this result because it provides our
first application of a nontrivial and very important theorem from advanced
calculus, namely, the implicit function theorem.

Suppose that Sc is a regular level set of H, choose a ∈ Sc, and define
F : R

n → R by
F (x) = H(x) − c.

Let us note that F (a) = 0. Also, because gradH(a) �= 0, there is at least one
integer 1 ≤ i ≤ n such that the corresponding partial derivative ∂F/∂xi

does not vanish when evaluated at a. For notational convenience let us
suppose that i = 1. All other cases can be proved in a similar manner.

We are in a typical situation: We have a function F : R × R
n−1 → R

given by (x1, x2, . . . , xn) �→ F (x1, . . . , xn) such that

F (a1, . . . , an) = 0,
∂F

∂x1
(a1, a2, . . . , an) �= 0.

This calls for an application of the implicit function theorem. A preliminary
version of the theorem is stated here; a more general version will be proved
later (see Theorem 1.259).

If f : R
� × R

m → R
n is given by (p, q) �→ f(p, q), then, for fixed b ∈ R

m,
consider the function R

� → R
n defined by p �→ f(p, b). Its derivative at

a ∈ R
� will be denoted by fp(a, b). Of course, with respect to the usual

bases of R
� and R

n, this derivative is represented by an n × � matrix of
partial derivatives.

Theorem 1.93 (Implicit Function Theorem). Suppose that F : R
m ×

R
k → R

m is a smooth function given by (p, q) �→ F (p, q). If (a, b) is in
R

m × R
k such that F (a, b) = 0 and the linear transformation Fp(a, b) :

R
m → R

m is invertible, then there exist two open metric balls U ⊆ R
m and

V ⊆ R
k with (a, b) ∈ U ×V together with a smooth function g : V → U such

that g(b) = a and F (g(v), v) = 0 for each v ∈ V . Moreover, if (u, v) ∈ U×V
and F (u, v) = 0, then u = g(v).
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Continuing with our outline of the proof of Proposition 1.92, let us ob-
serve that, by an application of the implicit function theorem to F , there
is an open set Z ⊆ R with a1 ∈ Z, an open set W ⊆ R

n−1 contain-
ing the point (a2, . . . , an), and a smooth function g : W → Z such that
g(a2, . . . , an) = a1 and

H(g(x2, . . . , xn), x2, . . . , xn) − c ≡ 0.

The set

U := {(x1, . . . , xn) ∈ R
n : x1 ∈ Z and (x2, . . . , xn) ∈ W} = Z × W

is open. Moreover, if x = (x1, . . . , xn) ∈ Sc ∩ U , then x1 = g(x2, . . . , xn).
Thus, we have that

Sc ∩ U = {(g(x2, . . . , xn), x2, . . . , xn) : (x2, . . . , xn) ∈ W}

= {u ∈ R
n : u = A

( w
g(w)

)
for some w ∈ W}

where A is the permutation of R
n given by

(y1, . . . , yn) �→ (yn, y1, . . . , yn−1).

In particular, it follows that Sc is an (n − 1)-dimensional manifold.

Exercise 1.94. Show that S
n−1 := {(x1, . . . , xn) ∈ R

n : x1
2 + · · · + xn

2 = 1}
is an (n − 1)-dimensional manifold.

Exercise 1.95. For p ∈ S
2 and p �= ±e3 (the north and south poles) define

f(p) = v where 〈v, p〉 = 0, 〈v, e3〉 = 1−z2, and 〈p×e3, v〉 = 0. Define f(±e3) = 0
Prove that f is a smooth function f : S

2 → R
3.

Exercise 1.96. Show that the surface of revolution S obtained by rotating
the circle given by (x − 2)2 + y2 = 1 around the y-axis is a two-dimensional
manifold. This manifold is diffeomorphic to a (two-dimensional) torus T

2 := T×T.
Construct a diffeomorphism.

Exercise 1.97. Suppose that J is an interval in R and γ : J → R
n is a smooth

function. The image C of γ is, by definition, a curve in R
n. Is C a one-dimensional

submanifold of R
n? Formulate and prove a theorem that gives sufficient conditions

for C to be a submanifold. Hint: Consider the function t �→ (t2, t3) for t ∈ R and
the function t �→ (1− t2, t− t3) for two different domains: t ∈ R and t ∈ (−∞, 1).
Can you imagine a situation where the image of a smooth curve is a dense subset
of a manifold with dimension n > 1? Hint: Consider curves mapping into the
two-dimensional torus.

Exercise 1.98. Show that the closed unit disk in R
2 is not a manifold. Actually,

it is a manifold with boundary. How should this concept be formalized?

Exercise 1.99. Prove that for ε > 0 there is a δ > 0 and a root r of the
polynomial x3 − ax + b such that |r| < ε whenever |a − 1| + |b| < δ.
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Exercise 1.100. Show that if f : R
n → R

n, A is a nonsingular (n × n)-matrix
and |ε| is sufficiently small, then the differential equation ẋ = Ax + εf(x) has a
rest point.

1.8.3 Tangent Spaces
We have used, informally, the following proposition: If S is a manifold in
R

n, and (x, f(x)) is tangent to S for each x ∈ S, then S is an invariant
manifold for the differential equation ẋ = f(x). To make this proposition
precise, we will give a definition of the concept of a tangent vector on a
manifold. This definition is the main topic of this section.

Let us begin by considering some examples where the proposition on
tangents and invariant manifolds can be applied.

The vector field on R
3 associated with the system of differential equations

given by

ẋ = x(y + z),
ẏ = −y2 + x cos z,

ż = 2x + z − sin y (1.18)

is “tangent” to the linear two-dimensional submanifold S := {(x, y, z) :
x = 0} in the following sense: If (a, b, c) ∈ S, then the value of the vector
function

(x, y, z) �→ (x(y + z), y2 + x cos z, 2x + z − sin y)

at (a, b, c) is a vector in the linear space S. Note that the vector assigned
by the vector field depends on the point in S. For this reason, we will view
the vector field as the function

(x, y, z) �→ (x, y, z, x(y + z),−y2 + x cos z, 2x + z − sin y)

where the first three component functions specify the base point, and the
last three components, called the principal part, specify the vector that is
assigned at the base point.

To see that S is an invariant set, choose (0, b, c) ∈ S and consider the
initial value problem

ẏ = −y2, ż = z − sin y, y(0) = b, z(0) = c.

Note that if its solution is given by t �→ (y(t), z(t)), then the function
t �→ (0, y(t), z(t)) is the solution of system (1.18) starting at the point
(0, b, c). In particular, the orbit corresponding to this solution is contained
in S. Hence, S is an invariant set. In this example, the solution is not
defined for all t ∈ (−∞,∞). (Why?) But, every solution that starts in S
stays in S, as required by Definition 1.66.
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The following system of differential equations,

ẋ = x2 − (x3 + y3 + z3)x,

ẏ = y2 − (x3 + y3 + z3)y,

ż = z2 − (x3 + y3 + z3)z (1.19)

has a nonlinear invariant submanifold; namely, the unit sphere

S
2 := {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}.

This fact follows from our proposition, provided that the vector field asso-
ciated with the differential equation is everywhere tangent to the sphere.
To prove this requirement, recall from Euclidean geometry that a vector
in space is defined to be tangent to the sphere if it is orthogonal to the
normal line passing through the base point of the vector. Moreover, the
normal lines to the sphere are generated by the outer unit normal field
given by the restriction of the vector field

η(x, y, z) := (x, y, z, x, y, z)

to S
2. By a simple computation, it is easy to check that the vector field

associated with the differential equation is everywhere orthogonal to η on
S

2; that is, at each base point on S
2 the corresponding principal parts of

the two vector fields are orthogonal, as required.
We will give a definition for tangent vectors on a manifold that generalizes

the definition given in Euclidean geometry for linear subspaces and spheres.
Let us suppose that S is a k-dimensional submanifold of R

n and (G, W )
is a submanifold coordinate chart at p ∈ S. Our objective is to define the
tangent space to S at p.

Definition 1.101. The tangent space to R
k with base point at w ∈ R

k is
the set

TwR
k := {w} × R

k.

We have the following obvious proposition: If w ∈ R
k, then the tangent

space TwR
k, with addition defined by

(w, ξ) + (w, ζ) := (w, ξ + ζ)

and scalar multiplication defined by

a(w, ξ) := (w, aξ),

is a vector space that is isomorphic to the vector space R
k.

To define the tangent space of the submanifold S at p ∈ S, denoted
TpS, we simply move the space TwR

k, for an appropriate choice of w, to S
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with a submanifold coordinate map. More precisely, suppose that (W,G)
is a submanifold chart at p. By Proposition 1.80, the coordinate map G is
invertible. If q = G−1(p), then define

TpS := {p} × {v ∈ R
n : v = DG(q)ξ, ξ ∈ R

k}. (1.20)

Note that the set

V := {v ∈ R
n : v = DG(q)ξ, ξ ∈ R

k}

is a k-dimensional subspace of R
n. If k = n, then DG(q) is the identity

map. If k < n, then DG(q) = AB where A is a nonsingular matrix and the
n × k block matrix

B :=
( Ik

Dg(q)

)
is partitioned by rows with Ik the k × k identity matrix and g a map from
W to R

n−k. Thus, we see that V is just the image of a linear map from R
k

to R
n whose rank is k.

Proposition 1.102. If S is a manifold and p ∈ S, then the vector space
TpS is well-defined.

Proof. If K is a second submanifold coordinate map at p, say K : Z → S
with K(r) = p, then we must show that the tangent space defined using
K agrees with the tangent space defined using G. To prove this fact, let us
suppose that (p, v) ∈ TpS is given by

v = DG(q)ξ.

Using the chain rule, it follows that

v =
d

dt
G(q + tξ)

∣∣∣
t=0

.

In other words, v is the directional derivative of G at q in the direction ξ.
To compute this derivative, we simply choose a curve, here t �→ q + tξ, that
passes through q with tangent vector ξ at time t = 0, move this curve to
the manifold by composing it with the function G, and then compute the
tangent to the image curve at time t = 0.

The curve t �→ K−1(G(q + tξ)) is in Z (at least this is true for |t| suffi-
ciently small). Thus, we have a vector α ∈ R

k given by

α :=
d

dt
K−1(G(q + tξ))

∣∣∣
t=0

.

We claim that DK(r)α = v. In fact, we have

K−1(G(q)) = K−1(p) = r,
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and

DK(r)α =
d

dt
K(K−1(G(q + tξ)))

∣∣∣
t=0

=
d

dt
G(q + tξ)

∣∣∣
t=0

= v.

In particular, TpS, as originally defined, is a subset of the “tangent space
at p defined by K.” But this means that this subset, which is itself a k-
dimensional affine subspace (the translate of a subspace) of R

n, must be
equal to TpS, as required. �

Exercise 1.103. Prove: If p ∈ S
2, then the tangent space TpS

2, as in Defini-
tion 1.20, is equal to

{p} × {v ∈ R
3 : 〈p, v〉 = 0}.

Definition 1.104. The tangent bundle TS of a manifold S is the union
of its tangent spaces; that is, TS :=

⋃
p∈S TpS. Also, for each p ∈ S, the

vector space TpS is called the fiber of the tangent bundle over the base
point p.

Definition 1.105. Suppose that S1 and S2 are manifolds, and F : S1 →
S2 is a smooth function. The derivative, also called the tangent map, of F is
the function F∗ : TS1 → TS2 defined as follows: For each (p, v) ∈ TpS1, let
(W1, G1) be a submanifold chart at p in S1, (W2, G2) a submanifold chart at
F (p) in S2, (G−1

1 (p), ξ) the vector in TG−1
1 (p)W1 such that DG1(G−1

1 (p))ξ =
v, and (G−1

2 (F (p)), ζ) the vector in TG−1
2 (F (p))W2 such that

ζ = D(G−1
2 ◦ F ◦ G1)(G−1

1 (p))ξ.

The tangent vector F∗(p, v) in TF (p)S2 is defined by

F∗(p, v) =
(
F (p), DG2(G−1

2 (F (p)))ζ
)
.

Although definition 1.105 seems to be rather complex, the idea is nat-
ural: we simply use the local representatives of the function F and the
definition of the tangent bundle to define the derivative F∗ as a map with
two component functions. The first component is F (to ensure that base
points map to base points) and the second component is defined by the
derivative of a local representative of F at each base point.

The following proposition is obvious from the definitions.
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Proposition 1.106. The tangent map is well-defined and it is linear on
each fiber of the tangent bundle.

The derivative, or tangent map, of a function defined on a manifold has
a geometric interpretation that is the key to understanding its applications
in the study of differential equations. We have already discussed this in-
terpretation several times for various special cases. But, because it is so
important, let us consider the geometric interpretation of the derivative in
the context of the notation introduced in Definition 1.105. If t �→ γ(t) is a
curve—a smooth function defined on an open set of R—with image in the
submanifold S1 ⊆ R

m such that γ(0) = p, and if

v = γ̇(0) =
d

dt
γ(t)

∣∣∣
t=0

,

then t �→ F (γ(t)) is a curve in the submanifold S2 ⊆ R
n such that

F (γ(0)) = F (p) and

F∗(p, v) =
(
F (p),

d

dt
F (γ(t))

∣∣∣
t=0

)
.

We simply find a curve that is tangent to the vector v at p and move the
curve to the image of the function F to obtain a curve in the range. The
tangent vector to the new curve at F (p) is the image of the tangent map.

Proposition 1.107. A submanifold S of R
n is an invariant manifold for

the ordinary differential equation ẋ = f(x), x ∈ R
n if and only if

(x, f(x)) ∈ TxS

for each x ∈ S. If, in addition, S is compact, then each orbit on S is defined
for all t ∈ R.

Proof. Suppose that S is k-dimensional, p ∈ S, and (W,G) is a subman-
ifold chart for S at p. The idea of the proof is to change coordinates to
obtain an ordinary differential equation on W .

Recall that the submanifold coordinate map G is invertible and G−1 is
the restriction of a linear map defined on R

n. In particular, we have that
w ≡ G−1(G(w)) for w ∈ W . If we differentiate both sides of this equation
and use the chain rule, then we obtain the relation

I = DG−1(G(w))DG(w) (1.21)

where I denotes the identity transformation of R
n. In particular, for each

w ∈ W , we have that DG−1(G(w)) is the inverse of the linear transforma-
tion DG(w).

Under the hypothesis, we have that (x, f(x)) ∈ TxS for each x ∈ S.
Hence, the vector f(G(w)) is in the image of DG(w) for each w ∈ W .
Thus, it follows that

(w, DG−1(G(w))f(G(w))) ∈ TwR
k,
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and, as a result, the map

w �→ (w, DG−1(G(w))f(G(w)))

defines a vector field on W ⊆ R
n. The associated differential equation on

W is given by

ẇ = DG−1(G(w))f(G(w)). (1.22)

Suppose that G(q) = p, and consider the initial value problem on W
given by the differential equation (1.22) together with the initial condition
w(0) = q. By the existence theorem, this initial value problem has a unique
solution t �→ ω(t) that is defined on an open interval containing t = 0.

Define φ(t) = G(ω(t)). We have that φ(0) = p and, using equation (1.21),
that

dφ

dt
(t) = DG(ω(t))ω̇(t)

= DG(ω(t)) · DG−1(G(ω(t)))f(G(ω(t)))

= f(φ(t)).

Thus, t �→ φ(t) is the solution of ẋ = f(x) starting at p. Moreover, this
solution is in S because φ(t) = G(ω(t)). The solution remains in S as long
as it is defined within the submanifold chart. The same result is true for
every submanifold chart. Thus, the solution remains in S as long as it is
defined.

Suppose that S is compact and note that the solution just defined is
a solution of the differential equation ẋ = f(x) defined on R

n. By the
extension theorem, if a solution of ẋ = f(x) does not exist for all time,
for example, if it exists only for 0 ≤ t < β < ∞, then it approaches the
boundary of the domain of definition of f or it blows up to infinity as
t approaches β. As long as the solution stays in S, both possibilities are
excluded if S is compact. Since the manifold S is covered by coordinate
charts, the solution stays in S and it is defined for all time.

If S is invariant, p ∈ S and t �→ γ(t) is the solution of ẋ = f(x) with
γ(0) = p, then the curve t → G−1(γ(t)) in R

k has a tangent vector ξ at
t = 0 given by

ξ :=
d

dt
G−1(γ(t))

∣∣∣
t=0

.

As before, it is easy to see that DG(q)ξ = f(p). Thus, (p, f(p)) ∈ TpS, as
required. �

Exercise 1.108. Show that the function f(θ) = 1 − λ sin θ defines a (smooth)
vector field on T

1, but f(θ) = θ − λ sin θ does not.
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Figure 1.15: The left panel depicts a heteroclinic saddle connection and a
locally supported perturbation. The right panel depicts the phase portrait
of the perturbed vector field.

Exercise 1.109. State and prove a proposition that is analogous to Proposi-
tion 1.107 for the case where the submanifold S is not compact.

Exercise 1.110. We have mentioned several times the interpretation of the
derivative of a function whereby a curve tangent to a given vector at a point is
moved by the function to obtain a new curve whose tangent vector is the direc-
tional derivative of the function applied to the original vector. This interpretation
can also be used to define the tangent space at a point on a manifold. In fact, let
us say that two curves t �→ γ(t) and t �→ ν(t), with image in the same manifold
S, are equivalent if γ(0) = ν(0) and γ̇(0) = ν̇(0). Prove that this is an equiv-
alence relation. A tangent vector at p ∈ S is defined to an equivalence class of
curves all with value p at t = 0. As a convenient notation, let us write [γ] for the
equivalence class containing the curve γ. The tangent space at p in S is defined
to be the set of all equivalence classes of curves that have value p at t = 0. Prove
that the tangent space at p defined in this manner can be given the structure of
a vector space and this vector space has the same dimension as the manifold S.
Also prove that this definition gives the same tangent space as defined in equa-
tion 1.20. Finally, for manifolds S1 and S2 and a function F : S1 → S2, prove
that the tangent map F∗ is given by F∗[γ] = [F ◦ γ].

Exercise 1.111. Let A be an invertible symmetric (n × n)-matrix. (a) Prove
that the set M := {x ∈ R

2 : 〈Ax, x〉 = 1} is a submanifold of R
n. (b) Suppose

that x0 ∈ M . Describe the tangent space to M at x0. Hint: Apply Exercise 1.110.

Exercise 1.112. [General Linear Group] The general linear group GL(Rn) is
the set of all invertible real n × n-matrices where the group structure is given
by matrix multiplication (see also Exercise 2.55). (a) Prove that GL(Rn) is a
submanifold of R

n2
. Hint: Consider the determinant function. (b) Determine the

tangent space of GL(Rn) at its identity. Hint: Apply Exercise 1.110. (c) Prove
that the map GL(Rn)×GL(Rn) → GL(Rn) given by (A, B) �→ AB is smooth. (d)
Prove that the map GL(Rn) → GL(Rn) given by A �→ A−1 is smooth. Note: A
Lie group is a group that is also a smooth manifold such that the group operations
are smooth. The vector space TIGL(Rn) is called the Lie algebra of the Lie group
when endowed with the multiplication [A, B] = AB − BA.
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Exercise 1.113. (a) Prove that the tangent bundle of the torus T
2 is trivial;

that is, it can be viewed as TT
2 = T

2 × R
2. (b) (This exercise requires some

knowledge of topology) Prove that the tangent bundle of S
2 is not trivial.

Exercise 1.114. Suppose that f : R
n → R

n is smooth and the differential
equation ẋ = f(x) has a first integral all of whose level sets are compact. Prove
that the corresponding flow is complete.

Exercise 1.115. Prove: The diagonal

{(x, y) ∈ R
n × R

n : x = y}

in R
n × R

n is an invariant set for the system

ẋ = f(x) + h(y − x), ẏ = f(y) + g(x − y)

where f, g, h : R
n → R

n and g(0) = h(0).

Exercise 1.116. [An Open Problem in Structural Stability] Let H(x, y, z) be
a homogeneous polynomial of degree n and η the outer unit normal on the unit
sphere S

2 ⊂ R
3. Show that the vector field XH = grad H −nHη is tangent to S

2.
Call a rest point isolated if it is the unique rest point in some open set. Prove

that if n is fixed, then the number of isolated rest points of XH is uniformly
bounded over all homogeneous polynomials H of degree n. Suppose that n = 3,
the uniform bound for this case is B, and m is an integer such that 0 ≤ m ≤ B.
What is B? Is there some H such that XH has exactly m rest points? If not,
then for which m is there such an H? What if n > 3?

Note that the homogeneous polynomials of degree n form a finite dimensional
vector space Hn. What is its dimension? Is it true that for an open and dense
subset of Hn the corresponding vector fields on S

2 have only hyperbolic rest
points?

In general, if X is a vector field in some class of vector fields H, then X is
called structurally stable with respect to H if X is contained in some open subset
U ⊂ H such that the phase portrait of every vector field in U is the same; that is,
if Y is a vector field in U , then there is a homeomorphism of the phase space that
maps orbits of X to orbits of Y . Let us define Xn to be the set of all vector fields
on S

2 of the form XH for some H ∈ Hn. It is an interesting unsolved problem to
determine the structurally stable vector fields in Xn with respect to Xn.

One of the key issues that must be resolved to determine the structural stability
of a vector field on a two-dimensional manifold is the existence of heteroclinic
orbits. A heteroclinic orbit is an orbit that is contained in the stable manifold
of a saddle point q and in the unstable manifold of a different saddle point p. If
p = q, such an orbit is called homoclinic. A basic fact from the theory of structural
stability is that if two saddle points are connected by a heteroclinic orbit, then
the local phase portrait near this orbit can be changed by an arbitrarily small
smooth perturbation. In effect, a perturbation can be chosen such that, in the
phase portrait of the perturbed vector field, the saddle connection is broken (see
Figure 1.15). Thus, in particular, a vector field with two saddle points connected
by a heteroclinic orbit is not structurally stable with respect to the class of all
smooth vector fields. Prove that a vector field XH in Xn cannot have a homoclinic
orbit. Also, prove that XH cannot have a periodic orbit. Construct a homogeneous
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S

Dg(g−1(y))f(g−1(y))
g−1(y)

y

f(g−1(y))

Dg
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M

Figure 1.16: The “push forward” of a vector field f by a diffeomorphism
g : S → M .

polynomial H ∈ H3 such that XH has hyperbolic saddle points p and q connected
by a heteroclinic orbit.

Is every heteroclinic orbit of a vector field XH ∈ X3 an arc of a great circle? The
answer to this question is not known. But if it is true that all heteroclinic orbits
are arcs of great circles, then the structurally stable vector fields, with respect to
the class X3, are exactly those vector fields with all their rest points hyperbolic
and with no heteroclinic orbits. Moreover, this set is open and dense in Xn. A
proof of these facts requires some work. But the main idea is clear: if XH has
a heteroclinic orbit that is an arc of a great circle, then there is a homogeneous
polynomial K of degree n = 3 such that the perturbed vector field XH+εK has
no heteroclinic orbits for |ε| sufficiently small. In fact, K can be chosen to be of
the form

K(x, y, z) = (ax + by + cz)(x2 + y2 + z2)

for suitable constants a, b, and c. (Why?) Of course, the conjecture that hetero-
clinic orbits of vector fields in H3 lie on great circles is just one approach to the
structural stability question for X3. Can you find another approach?

There is an extensive and far-reaching literature on the subject of structural
stability (see, for example, [192] and [204]).

1.8.4 Change of Coordinates
The proof of Proposition 1.107 contains an important computation that is
useful in many other contexts; namely, the formula for changing coordinates
in an autonomous differential equation. To reiterate this result, suppose
that we have a differential equation ẋ = f(x) where x ∈ R

n, and S ⊆ R
n is

an invariant k-dimensional submanifold. If g is a diffeomorphism from S to
some k-dimensional submanifold M ⊆ R

m, then the ordinary differential
equation (or, more precisely, the vector field associated with the differential
equation) can be “pushed forward” to M . In fact, if g : S → M is the
diffeomorphism, then

ẏ = Dg(g−1(y))f(g−1(y)) (1.23)
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is a differential equation on M . Since g is a diffeomorphism, the new differ-
ential equation is the same as the original one up to a change of coordinates
as schematically depicted in Figure 1.16.

Example 1.117. Consider ẋ = x − x2, x ∈ R. Let S = {x ∈ R : x > 0},
M = S, and let g : S → M denote the diffeomorphism defined by g(x) =
1/x. Here, g−1(y) = 1/y and

ẏ = Dg(g−1(y))f(g−1(y))

= −
(1

y

)−2(1
y

− 1
y2

)
= −y + 1.

The diffeomorphism g defines the change of coordinates y = 1/x used to
solve this special form of Bernoulli’s equation; it is encountered in elemen-
tary courses on differential equations.

Exercise 1.118. According to the Hartman-Grobman theorem 1.47, there is
a homeomorphism (defined on some open neighborhood of the origin) that maps
orbits of ẏ = y to orbits of ẋ = x − x2. In this case, the result is trivial; the
homeomorphism h given by h(y) = y satisfies the requirement. For one and
two-dimensional systems (which are at least twice continuously differentiable) a
stronger result is true: There is a diffeomorphism h defined on a neighborhood
of the origin with h(0) = 0 such that h transforms the linear system into the
nonlinear system. Find an explicit formula for h and describe its domain.

Exercise 1.119. [Bernoulli’s Equation] Show that the differential equation

ẋ = g(t)x − h(t)xn

is transformed to a linear differential equation by the change of coordinates y =
1/xn−1.

Coordinate transformations are very useful in the study of differential
equations. New coordinates can reveal unexpected features. As a dramatic
example of this phenomenon, we will show that all autonomous differential
equations are the same, up to a smooth change of coordinates, near each
of their regular points. Here, a regular point of ẋ = f(x) is a point p ∈ R

n,
such that f(p) �= 0. The following precise statement of this fact, which is
depicted in Figure 1.17, is called the rectification lemma, the straightening
out theorem, or the flow box theorem.

Lemma 1.120 (Rectification Lemma). Suppose that ẋ = f(x), x ∈
R

n. If p ∈ R
n and f(p) �= 0, then there are open sets U , V in R

n with
p ∈ U , and a diffeomorphism g : U → V such that the differential equation
in the new coordinates, that is, the differential equation

ẏ = Dg(g−1(y))f(g−1(y)),
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g

U

x y

V

Figure 1.17: The flow of a differential equation is rectified by a change of
coordinates g : U → V .

is given by (ẏ1, . . . , ẏn) = (1, 0, 0, . . . , 0).

Proof. The idea of the proof is to “rectify” at one point, and then to
extend the rectification to a neighborhood of this point.

Let e1, . . . , en denote the usual basis of R
n. There is an invertible (affine)

map H1 : R
n → R

n such that H1(p) = 0 and DH1(p)f(p) = e1. (Why?)
Here, an affine map is just the composition of a linear map and a transla-
tion. Let us also note that e1 is the transpose of the vector (1, 0, 0, . . . , 0) ∈
R

n. If the formula (1.23) is used with g = H1, then the differential equation
ẋ = f(x) is transformed to the differential equation denoted by ż = f1(z)
where f1(0) = e1. Thus, we have “rectified” the original differential equa-
tion at the single point p.

Let φt denote the flow of ż = f1(z), define H2 : R
n → R

n by

(s, y2, . . . , yn) �→ φs(0, y2, . . . , yn),

and note that H2(0) = 0. The action of the derivative of H2 at the origin
on the standard basis vectors is

DH2(0, . . . , 0)e1 =
d

dt
H2(t, 0, . . . , 0)

∣∣∣
t=0

=
d

dt
φt(0, . . . , 0)

∣∣∣
t=0

= e1,

and, for j = 2, . . . , n,

DH2(0, . . . , 0)ej =
d

dt
H2(tej)

∣∣∣
t=0

=
d

dt
tej

∣∣∣
t=0

= ej .

In particular, DH2(0) is the identity, an invertible linear transformation of
R

n.
To complete the proof we will use the inverse function theorem.

Theorem 1.121 (Inverse Function Theorem). If F : R
n → R

n is a
smooth function, F (p) = q, and DF (p) is an invertible linear transforma-
tion of R

n, then there exist two open sets U and V in R
n with (p, q) ∈ U×V ,
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together with a smooth function G : V → U , such that G(q) = p and
G = F−1; that is, F ◦ G : V → V and G ◦ F : U → U are identity
functions.

Proof. Consider the function H : R
n × R

n → R
n given by H(x, y) =

F (x) − y. Note that H(p, q) = 0 and that Hx(p, q) = DF (p) is invertible.
By the implicit function theorem, there are open balls Ũ and V contained in
R

n, and a smooth function G : V → Ũ such that (p, q) ∈ Ũ × V , G(q) = p,
and F (G(y)) = y for all y ∈ V . In particular, the function F ◦ G : V → V
is the identity.

Because F is continuous, the set U := F−1(V ) ∩ Ũ is an open subset
of Ũ with p ∈ U and F (U) ⊂ V . If x ∈ U , then (x, F (x)) ∈ Ũ × V and
H(x, F (x)) = 0. Thus, by the uniqueness of the implicit solution (as stated
in the implicit function theorem), G(F (x)) = x for all x ∈ U . In other
words G ◦ F : U → U is the identity function. �

By the inverse function theorem, there are two neighborhoods U and V of
the origin such that H2 : U → V is a diffeomorphism. The new coordinate,
denoted y, on U is related to the old coordinate, denoted z, on V by the
relation y = H−1

2 (z). The differential equation in the new coordinates has
the form

ẏ = (DH2(y))−1f1(H2(y)) := f2(y).

Equivalently, at each point y ∈ U , we have f1(H2(y)) = DH2(y)f2(y).
Suppose that y = (s, y2, . . . , yn) and consider the tangent vector

(y, e1) ∈ TyR
n.

Also, note that (y, e1) is tangent to the curve γ(t) = (s + t, y2, . . . , yn) in
R

n at t = 0 and

DH2(y)e1 =
d

dt
H2(γ(t))

∣∣∣
t=0

=
d

dt
φt(φs(0, y2, . . . , yn))

∣∣∣
t=0

= f1(H2(s, y2, . . . , yn)) = f1(H2(y)).

Because DH2(y) is invertible, it follows that f2(y) = e1.
The map g := H−1

2 ◦ H1 gives the required change of coordinates. �

The idea that a change of coordinates may simplify a given problem is a
far-reaching idea in many areas of mathematics; it certainly plays a central
role in the study of differential equations.

Exercise 1.122. Show that the implicit function theorem is a corollary of the
inverse function theorem.

Exercise 1.123. Suppose that f : R
n → R

n is smooth. Prove that if |ε| is
sufficiently small, then the function F : R

n → R
n given by F (x) := x + εf(x) is

invertible in a neighborhood of the origin. Also, determine DF −1(0).
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Exercise 1.124. [Newton’s Method] Recall Newton’s method: Suppose that
f : R

n → R
n is twice continuously differentiable and f(r) = 0. We have f(r) ≈

f(x)+Df(x)(x− r) (see Theorem 1.237) and 0 ≈ f(x)+Df(x)(x− r). Solve for
r to obtain r ≈ x − Df(x)−1f(x). Finally turn this into an iterative procedure
to approximate r; that is, xn+1 = xn − Df(xn)−1f(xn). Note: To implement
this procedure (on a computer) it is usually better to solve for w in the equation
Df(xn)w = −f(xn) and then put xn+1 = xn + w (Why?). (a) Is the function
F (x) := x − Df(x)−1f(x) invertible near x = r? (b) Prove that if Df(r) is
invertible and |x0 − r| is sufficiently small, then there is a constant K > 0 such
that |xn+1 − r| ≤ K|xn − r|2 and limn→∞ xn = r. (c) A sequence {xn}∞

n=0

converges linearly to r if there is a constant λ > 0 (the asymptotic error) such
that limn→∞ |xn+1−r|/|xn−r| = λ; it converges quadratically if limn→∞ |xn+1−
r|/|xn − r|2 = λ. Show by discussing an explicit example, that quadratically
convergent sequences converge much faster than linearly convergent sequences.
(d) Compare the rates of convergence, to the positive zero of the function f(x) =
(x2 − 2)/4, of Newton’s method and the iterative scheme xn+1 = xn − f(xn). (e)
The solution of the initial value problem

θ̈ + sin θ = 0, θ(0) = π/4, θ̇(0) = 0

is periodic. Approximate the period (correct to three decimal places) using New-
ton’s method.

Exercise 1.125. [Flow Box with Section] Prove the following modification of
the rectification lemma. Suppose that ẋ = f(x), x ∈ R

2. If p ∈ R
2, the vector f(p)

is not zero, and there is a curve Σ in R
2 such that p ∈ Σ and f(p) is not tangent

to Σ, then there are open sets U , V in R
2 with p ∈ U and a diffeomorphism

g : U → V such that the differential equation in the new coordinates, that is, the
differential equation

ẏ = Dg(g−1(y))f(g−1(y)),

is given by (ẏ1, ẏ2) = (1, 0). Moreover, the image of Σ ∩ U under g is the line
segment {(y1, y2) ∈ V : y1 = 0}. Generalize the result to differential equations on
R

n.

Exercise 1.126. Prove that the function given by

(x, y) �→ x2 + 2y + 1
(x2 + y + 1)2

is constant on the trajectories of the differential equation

ẋ = −y, ẏ = x + 3xy + x3.

Show that the function

(x, y) �→
( x

x2 + y + 1
,

x2 + y

x2 + y + 1

)

is birational—that is, the function and its inverse are both defined by rational
functions. Finally, show that the change of coordinates given by this birational
map linearizes the differential equation (see [198]).
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Exercise 1.127. [Ważewski’s Equation] Suppose that Ω ⊆ R
n is open and

f : Ω → R
n is a smooth map. (a) Prove that if t �→ x(t) is a solution of Ważewski’s

equation ẋ = Df(x)−1v, where v ∈ R
n, then f(x(t)) = f(x(0)) + tv. (b) Prove

a similar formula for the differential equation ẋ = (Df(x))−1(f(x) − f(v)). (c)
Suppose that 0 ∈ Ω, f(0) = 0, Df(x) is invertible for every x ∈ Ω, and the initial
value problem ẋ = (Df(x))−1v, x(0) = 0 has a solution, which exists at least
for |t| ≤ 1, for every choice of v ∈ R

n. Prove that f is invertible with a smooth
inverse. Hint: Define t �→ x(t, ξ) to be the solution of the initial value problem
and g(ξ) = x(1, ξ). Note: Ważewski’s equation can be used to prove more general
results on the invertibility of smooth maps (see, for example, [174] and [210]).

1.8.5 Polar Coordinates
There are several special “coordinate systems” that are important in the
analysis of differential equations, especially, polar coordinates, cylindrical
coordinates, and spherical coordinates. In this section we will consider the
meaning of these coordinates in the language of differentiable manifolds,
and we will also explore a few applications, especially blowup of a rest point
and compactification at infinity. But, the main purpose of this section is to
provide a deeper understanding and appreciation for the manifold concept
in the context of the study of differential equations.

What are polar coordinates?
Perhaps the best way to understand the meaning of polar coordinates

is to recall the “angular wrapping function” definition of angular measure
from elementary trigonometry. We have proved that the unit circle T is a
one-dimensional manifold. The wrapping function P : R → T is given by

P (θ) = (cos θ, sin θ).

Clearly, P is smooth and surjective. But P is not injective. In particular,
P is not a diffeomorphism (see Exercise 1.128).

The function P is a covering map; that is, each point of T is contained
in an open set on which a local inverse of P is defined. Each such open set,
together with its corresponding inverse function, is a coordinate system, as
defined in Definition 1.87, that we will call an angular coordinate system.
The image of a point of T under an angular coordinate map is called its
angular coordinate, or simply its angle, relative to the angular coordinate
system. For example, the pair (V, Ψ) where

V := {(x, y) ∈ T : x > 0}
and Ψ : V → (−π

2 , π
2 ) is given by Ψ(x, y) = arctan(y/x) is an angular

coordinate system. The number θ = Ψ(x, y) is the angle assigned to (x, y)
in this angular coordinate system. Of course, there are infinitely many dif-
ferent angular coordinate systems defined on the same open set V . For
example, the function given by (x, y) �→ 4π + arctan(y/x) on V also de-
termines an angular coordinate system on T for which the corresponding
angles belong to the interval (7π

2 , 9π
2 ).
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π
W

V

x

P

Ψ

r

θ y

Figure 1.18: The polar wrapping function P : R
2 → R

2 and a polar coor-
dinate system Ψ : V → W on the upper half-plane.

As we have just seen, each point of T is assigned infinitely many angles.
But all angular coordinate systems are compatible in the sense that they all
determine local inverses of the wrapping function P . The totality of these
charts might be called the angular coordinates on T.

Exercise 1.128. Prove that T is not diffeomorphic to R.

Exercise 1.129. Find a collection of angular coordinate systems that cover
the unit circle.

Let us next consider coordinates on the plane compatible with the polar
wrapping function P : R

2 → R
2 given by

P (r, θ) = (r cos θ, r sin θ).

The function P is a smooth surjective map that is not injective. Thus, P
is not a diffeomorphism. Also, this function is not a covering map. For
example, P has no local inverse at the origin of its range. On the other
hand, P does have a local inverse at every point of the punctured plane
(that is, the set R

2 with the origin removed). Thus, in analogy with the
definition of the angular coordinate on T, we have the following definition
of polar coordinates.

Definition 1.130. A polar coordinate system on the punctured plane is
a coordinate system (V, Ψ) where V ⊂ R

2 \ {(0, 0)}, the range W of the
coordinate map Ψ is contained in R

2, and Ψ : V → W is the inverse of
the polar wrapping function P restricted to the set W . The collection of
all polar coordinate systems is called polar coordinates.

If

V := {(x, y) ∈ R
2 : y > 0}, W := {(r, θ) ∈ R

2 : r > 0, 0 < θ < π},
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and Ψ : V → W is given by

Ψ(x, y) =
(√

x2 + y2 ,
π

2
− arctan

(x

y

))
,

then (V, Ψ) is a polar coordinate system on the punctured plane (see Fig-
ure 1.18). By convention, the two slot functions defined by Ψ are named as
follows

Ψ(x, y) = (r(x, y), θ(x, y)),

and the point (x, y) is said to have polar coordinates r = r(x, y) and θ =
θ(x, y).

The definition of cylindrical and spherical coordinates is similar to Defi-
nition 1.130 where the respective wrapping functions are given by

(r, θ, z) �→ (r cos θ, r sin θ, z),
(ρ, φ, θ) �→ (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ). (1.24)

To obtain covering maps, the z-axis must be removed in the target plane in
both cases. Moreover, for spherical coordinates, the second variable must
be restricted so that 0 ≤ φ ≤ π.

Let us now consider a differential equation u̇ = f(u) defined on R
2 with

the usual Cartesian coordinates u := (x, y). If (V, Ψ) is a polar coordinate
system on the punctured plane such that Ψ : V → W , then we can push
forward the vector field f to the open set W by the general change of
variables formula ẏ = Dg(g−1(y))f(g−1(y)) (see page 60). The new differ-
ential equation corresponding to the push forward of f is then said to be
expressed in polar coordinates.

Specifically, the (principal part of the) new vector field is given by

F (r, θ) = DΨ(P (r, θ))f(P (r, θ)).

Of course, because the expressions for the components of the Jacobian
matrix corresponding to the derivative DΨ are usually more complex than
those for the matrix DP , the change to polar coordinates is usually easier
to compute if we use the chain rule to obtain the identity

DΨ(P (r, θ)) = [DP (r, θ)]−1 =
1
r

(
r cos θ r sin θ
− sin θ cos θ

)
and recast the formula for F in the form

F (r, θ) = [DP (r, θ)]−1f(P (r, θ)).

In components, if f(x, y) = (f1(x, y), f2(x, y)), then

F (r, θ) =

(
cos θf1(r cos θ, r sin θ) + sin θf2(r cos θ, r sin θ)

− sin θ
r f1(r cos θ, r sin θ) + cos θ

r f2(r cos θ, r sin θ)

)
. (1.25)
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Note that the vector field F obtained by the push forward of f in for-
mula (1.25) does not depend on the choice of the polar coordinate system;
that is, it does not depend on the choice of the local inverse Ψ. Thus, the
vector field F is globally defined except on the line in the coordinate plane
given by {(r, θ) ∈ R

2 : r = 0}. In general this is the best that we can do
because the second component of the vector field F has a singularity at
r = 0.

In practice, perhaps the simplest way to change to polar coordinates is
to first differentiate in the formulas r2 = x2 + y2 and θ = arctan(y/x) to
obtain the components of F in the form

rṙ = xẋ + yẏ = xf1(x, y) + yf2(x, y),
r2θ̇ = xẏ − yẋ = xf2(x, y) − yf1(x, y),

and then substitute for x and y using the identities x = r cos θ and y =
r sin θ.

Exercise 1.131. Change the differential equations to polar coordinates:

1. ẋ = −y + x(1 − x2 − y2), ẏ = x + y(1 − x2 − y2).

2. ẋ = 1 − y2, ẏ = x.

3. ẋ = (x2 + y2)y, ẏ = −(x2 + y2)x.

4. ẋ = y, ẏ = −x − ε(x2 − 1)y.

Exercise 1.132. Change the differential equations to Cartesian coordinates:

1. ṙ = ar, θ̇ = b.

2. ṙ = r3 sin θ cos3 θ, θ̇ = −1 + r2 cos4 θ.

3. ṙ = −r3, θ̇ = 1.

Exercise 1.133. Show that the system

ẋ = y + xy, ẏ = −x − x2

has a center at the origin.

Exercise 1.134. Show that the systems

ẋ = y + 2xy, ẏ = −x + xy

and

u̇ = v, v̇ = −u − 1√
5
(2u2 + 3uv − 2v2)

are the same up to a change of variables. Hint: The transformation is a rotation.

A change to polar coordinates in a planar differential equation introduces
a singularity on the line {(r, θ) ∈ R

2 : r = 0}. The next proposition states
that if the differential equation has a rest point at the origin, then this
singularity is removable (see [76]).
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Figure 1.19: The polar wrapping function factored through the phase cylin-
der.

Proposition 1.135. If u̇ = f(u) is a differential equation on the plane and
f(0) = 0, then the corresponding differential equation in polar coordinates
has a removable singularity. Also, if f is class Cr, then the desingularized
vector field in polar coordinates is in class Cr−1.

Proof. Apply Taylor’s theorem to the Taylor expansions of the compo-
nents of the vector field f at the origin. �

Even if Proposition 1.135 applies, and we do obtain a smooth vector
field defined on the whole polar coordinate plane, the desingularized vec-
tor field is not the push forward of the original vector field; that is, the
desingularized vector field is not obtained merely by a change of coordi-
nates. Remember that there is no polar coordinate system at the origin of
the Cartesian plane. In fact, the desingularized vector field in polar coor-
dinates is an extension of the push forward of the original vector field to
the singular line {(r, θ) ∈ R

2 : r = 0}.
It is evident from formula (1.25) that the desingularized vector field is

2π periodic in θ; that is, for all (r, θ) we have

F (r, θ + 2π) = F (r, θ).

In particular, the phase portrait of this vector field is periodic with period
2π. For this reason, let us change the point of view one last time and
consider the vector field to be defined on the phase cylinder; that is, on
T × R with θ the angular coordinate on T and r the Cartesian coordinate
on R.
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The phase cylinder can be realized as a two-dimensional submanifold in
R

3, for example, as the set

C := {(x, y, z) ∈ R
3 : x2 + y2 = 1}.

For this realization, the map Q : R
2 → C defined by Q(r, θ) = (cos θ, sin θ, r)

is a covering map. Here, R
2 is viewed as the “polar coordinate plane.” Thus,

we can use the map Q to push forward the vector field F to the phase
cylinder (see Exercise 1.138). There is also a natural covering map R, from
the phase cylinder minus the set {(x, y, z) ∈ C : z = 0} onto the punctured
Cartesian plane, defined by

R(x, y, z) = (xz, yz). (1.26)

If the original vector field f vanishes at the origin, then it can be pushed
forward by Ψ to F on the polar plane, and F can be pushed forward by
Q to a vector field h on the phase cylinder. If finally, h is pushed forward
by R to the punctured Cartesian plane, then we recover the original vector
field f . In fact, by Exercise 1.138, the composition R ◦ Q ◦ Ψ, depicted in
Figure 1.19, is the identity map.

Even though the phase cylinder can be realized as a manifold in R
3, most

often the best way to consider a vector field in polar coordinates is to view
the polar coordinates abstractly as coordinates on the cylinder; that is, to
view θ as the angular variable on T and r as the Cartesian coordinate on
R.

Exercise 1.136. Prove the following statements. If F is the push forward to
the polar coordinate plane of a smooth vector field on the Cartesian plane, then
F has the following symmetry:

F (−r, θ + π) = −F (r, θ).

If F can be desingularized, then its desingularization retains the symmetry.

Exercise 1.137. Prove that the cylinder {(x, y, z) ∈ R
3 : x2 + y2 = 1} is a

two-dimensional submanifold of R
3.

Exercise 1.138. Suppose that F is the push forward to the polar coordinate
plane of a smooth vector field on the Cartesian plane that vanishes at the origin.
Find the components of the push forward h of F to the phase cylinder realized
as a submanifold in R

3. Show that the push forward of h to the Cartesian plane
via the natural map (1.26) is the original vector field f .

Exercise 1.139. [Hamiltonians and Gradients on Manifolds] Let

G : R
3 → R

be a smooth map and consider its gradient. We have tacitly assumed that the
definition of the gradient in R

3 is

grad G =
(∂G

∂x
,
∂G

∂y
,
∂G

∂z

)
. (1.27)
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But this expression for the gradient of a function is correct only on Euclidean
space, that is, R

3 together with the usual inner product. The definition of the gra-
dient for a scalar function defined on a manifold, to be given below, is coordinate-
free.

Recall that if G : R
n → R, then its derivative can be viewed as a function from

the tangent bundle TR
n to TR. If TR is identified with R, then on each tangent

space of R
n, the derivative of G is a linear functional. In fact, if we work locally

at p ∈ R
n, then DG(p) is a map from the vector space R

n to R. Moreover, the
assignment of the linear functional corresponding to the derivative of G at each
point of the manifold varies smoothly with the base point. From this point of
view, the derivative of the scalar-valued function G is a differential 1-form on R

n

that we will denote by dG. Finally, the derivative of G may be interpreted as the
the differential of G. In this interpretation, if V is a tangent vector at p ∈ R

n

and γ is a curve such that γ(0) = p and γ̇(0) = V , then

dG(V ) =
d

ds
G(γ(s))

∣∣∣
s=0

.

If G is a scalar function defined on a manifold, then all of our interpretations for
the derivative of G are still viable.

The definition of the gradient requires a new concept: A Riemannian metric on
a manifold is a smooth assignment of an inner product in each tangent space of
the manifold. Of course, the usual inner product assigned in each tangent space of
R

n is a Riemannian metric for R
n. Moreover, the manifold R

n together with this
Riemannian metric is called Euclidean space. Note that the Riemannian metric
can be used to define length. For example, the norm of a vector is the square
root of the inner product of the vector with itself. It follows that the shortest
distance between two points is a straight line. Thus, the geometry of Euclidean
space is Euclidean geometry, as it should be. These notions can be generalized.
For example, let γ be a curve in Euclidean space that connects the points p and
q; that is, γ : [a, b] → R

n such that γ(a) = p and γ(b) = q. The length of γ is
defined to be

∫ b

a

√
〈γ̇(t), γ̇(t)〉 dt,

where the angle brackets denote the usual inner product. The distance between
p and q is the infimum of the set of all lengths of curves joining these points. A
curve is called a geodesic joining p and q if its length equals the distance from
p to q. For instance, the curve γ(t) = tq + (1 − t)p is a geodesic. Of course, all
geodesics lie on straight lines (see Exercise 3.9). Similarly, suppose that g is a
Riemannian metric on a manifold M and p, q ∈ M . The length of a curve γ that
connects p and q is defined to be

∫ b

a

√
gγ(t)(γ̇(t), γ̇(t)) dt

where gr(v, w) denotes the inner product of the vectors (r, v) and (r, w) in TrM .
Geodesics play the role of lines in the “Riemannian geometry” defined on a man-
ifold by a Riemannian metric.
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The gradient of G : M → R with respect to the Riemannian metric g is the
vector field, denoted by grad G, such that

dGp(V ) = gp(V, grad G) (1.28)

for each point p ∈ M and every tangent vector V ∈ TpM . The associated gradient
system on the manifold is the differential equation ṗ = grad G(p).
(a) Prove that the gradient vector field is uniquely defined.
(b) Prove that if the Riemannian metric g on R

3 is the usual inner product at
each point of R

3, then the invariant definition (1.28) of gradient agrees with the
Euclidean gradient.

Consider the upper half-plane of R
2 with the Riemannian metric

g(x,y)(V, W ) = y−2〈V, W 〉 (1.29)

where the angle brackets denote the usual inner product. The upper half-plane
with the metric g is called the Poincaré or Lobachevsky plane; its geodesics are
vertical lines and arcs of circles whose centers are on the x-axis. The geometry
is non-Euclidean; for example, if p is a point not on such a circle, then there
are infinitely many such circles passing through p that are parallel to (do not
intersect) the given circle (see Exercise 3.11).
(c) Determine the gradient of the function G(x, y) = x2 + y2 with respect to
the Riemannian metric (1.29) and draw the phase portrait of the corresponding
gradient system on the upper half-plane. Also, compare this phase portrait with
the phase portrait of the gradient system with respect to the usual metric on the
plane.

If S is a submanifold of R
n, then S inherits a Riemannian metric from the

usual inner product on R
n.

(d) Suppose that F : R
n → R. What is the relationship between the gradient of

F on R
n and the gradient of the function F restricted to S with respect to the

inherited Riemannian metric (see Exercise 1.116)?
Hamiltonian systems on manifolds are defined in essentially the same way as

gradient systems except that the Riemannian metric is replaced by a symplectic
form. Although these objects are best described and analyzed using the calculus
of differential forms (see [12], [89], and [213]), they are easy to define. Indeed,
a symplectic form on a manifold is a smooth assignment of a bilinear, skew-
symmetric, nondegenerate 2-form in each tangent space. A 2-form ω on a vector
space X is nondegenerate provided that y = 0 is the only element of X such that
ω(x, y) = 0 for all x ∈ X. Prove: If a manifold has a symplectic form, then the
dimension of the manifold is even.

Suppose that M is a manifold and ω is a symplectic form on M . The Hamilto-
nian vector field associated with a smooth scalar function H defined on M is the
unique vector field XH such that, for every point p ∈ M and all tangent vectors
V at p, the following identity holds:

dHp(V ) = ωp(XH , V ). (1.30)

(e) Let M := R
2n, view R

2n as R
n × R

n so that each tangent vector V on M is
decomposed as V = (V1, V2) with V1, V2 ∈ R

n, and define

ω(V, W ) := (V1, V2)
(

0 I
−I 0

) (W1

W2

)
.
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Show that ω is a symplectic form on M and Hamilton’s equations are produced
by the invariant definition (1.30) of the Hamiltonian vector field.
(f) Push forward the Euclidean gradient (1.27) of the function G : R

3 → R to
the image of a cylindrical coordinate map, define

G(r, θ, z) = G(r cos θ, r sin θ, z),

and show that the push forward gives the result

grad G =
(∂G

∂r
,

1
r2

∂G
∂θ

,
∂G
∂z

)
. (1.31)

(In practice, the function G is usually again called G. These two functions are
local representations of the same function in two different coordinate systems.)
(g) Recall the formula for the gradient in cylindrical coordinates from vector
analysis; namely,

grad G =
∂G
∂r

er +
1
r

∂G
∂θ

eθ +
∂G
∂z

ez. (1.32)

Show that the gradient vector fields (1.31) and (1.32) coincide.
(h) Express the usual inner product in cylindrical coordinates, and use the invari-
ant definition of the gradient to determine the gradient in cylindrical coordinates.
(i) Repeat part (h) for spherical coordinates.

Exercise 1.140. [Electrostatic Potential] Suppose that two point charges with
opposite signs, each with charge q, placed a units apart and located symmetri-
cally with respect to the origin on the z-axis in space, produce the electrostatic
potential

G0(x, y, z) = kq
[
(x2 + y2 + (z − a

2
)2)−1/2 − (x2 + y2 + (z +

a

2
)2)−1/2]

where k > 0 is a constant and q > 0. If we are interested only in the field far
from the charges, the “far field,” then a is relatively small and therefore the first
nonzero term of the Taylor series of the electrostatic potential with respect to a
at a = 0 gives a useful approximation of G0. This approximation, an example of
a “far field approximation,” is called the dipole potential in Physics (see [87, Vol.
II, 6-1]). Show that the dipole potential is given by

G(x, y, z) = kqaz(x2 + y2 + z2)−3/2.

By definition, the electric field E produced by the dipole potential associated with
the two charges is E := − grad G. Draw the phase portrait of the differential
equation u̇ = E(u) whose orbits are the “dipole” lines of force. Discuss the
stability of all rest points. Hint: Choose a useful coordinate system that reduces
the problem to two dimensions.

Blow Up at a Rest Point

As an application of polar coordinates, let us determine the phase portrait
of the differential equation in the Cartesian plane given by

ẋ = x2 − 2xy, ẏ = y2 − 2xy, (1.33)
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Figure 1.20: Phase portrait for the differential equation (1.34) on the upper
half of the phase cylinder and its “blowdown” to the Cartesian plane.

(see [76]). This system has a unique rest point at the origin that is not
hyperbolic. In fact, the system matrix for the linearization at the origin
vanishes. Thus, linearization provides no information about the phase por-
trait of the system near the origin.

Because the polar coordinate representation of a plane vector field is
always singular at the origin, we might expect that the polar coordinate
representation of a planar vector field is not particularly useful to deter-
mine the phase portrait near the origin. But this is not the case. Often
polar coordinates are the best way to analyze the vector field near the ori-
gin. The reason is that the desingularized vector field in polar coordinates
is a smooth extension to the singular line represented as the equator of the
phase cylinder. All points on the equator are collapsed to the single rest
point at the origin in the Cartesian plane. Or, as we say, the equator is the
blowup of the rest point. This extension is valuable because the phase por-
trait of the vector field near the original rest point corresponds to the phase
portrait on the phase cylinder near the equatorial circle. Polar coordinates
and desingularization provide a mathematical microscope for viewing the
local behavior near the “Cartesian” rest point.

The desingularized polar coordinate representation of system (1.33) is

ṙ = r2(cos3 θ − 2 cos2 θ sin θ − 2 cos θ sin2 θ + sin3 θ),
θ̇ = 3r(cos θ sin2 θ − cos2 θ sin θ). (1.34)

For this particular example, both components of the vector field have r
as a common factor. From our discussion of reparametrization, we know
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that the system with this factor removed has the same phase portrait as
the original differential equation in the portion of the phase cylinder where
r > 0. Of course, when we “blow down” to the Cartesian plane, the push
forward of the reparametrized vector field has the same phase portrait as
the original vector field in the punctured plane; exactly the set where the
original phase portrait is to be constructed.

Let us note that after division by r, the differential equation (1.34) has
several isolated rest point on the equator of the phase cylinder. In fact,
because this differential equation restricted to the equator is given by

θ̇ = 3 cos θ sin θ(sin θ − cos θ),

we see that it has six rest points with the following angular coordinates:

0,
π

4
,

π

2
, π,

5π

4
,

3π

2
.

The corresponding rest points for the reparametrized system are all hy-
perbolic. For example, the system matrix at the rest point (r, θ) = (0, π

4 )
is

1√
2

(
−1 0
0 3

)
.

It has the negative eigenvalue −1/
√

2 in the positive direction of the Carte-
sian variable r on the cylinder and the positive eigenvalue 3/

√
2 in the posi-

tive direction of the angular variable. This rest point is a hyperbolic saddle.
If each rest point on the equator is linearized in turn, the phase portrait
on the cylinder and the corresponding blowdown of the phase portrait on
the Cartesian plane are found to be as depicted in Figure 1.20. Hartman’s
theorem can be used to construct a proof of this fact.

The analysis of differential equation (1.33) is very instructive, but per-
haps somewhat misleading. Often, unlike this example, the blowup proce-
dure produces a vector field on the phase cylinder where some or all of the
rest points are not hyperbolic. Of course, in these cases, we can treat the
polar coordinates near one of the nonhyperbolic rest points as Cartesian
coordinates; we can translate the rest point to the origin; and we can blow
up again. If, after a finite number of such blowups, all rest points of the
resulting vector field are hyperbolic, then the local phase portrait of the
original vector field at the original nonhyperbolic rest point can be deter-
mined. For masterful treatments of this subject and much more, see [19],
[75], [76], and [219].

The idea of blowup and desingularization are far-reaching ideas in math-
ematics. For example, these ideas seem to have originated in algebraic ge-
ometry, where they play a fundamental role in understanding the structure
of algebraic varieties [29].
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Compactification at Infinity

The orbits of a differential equation on R
n may be unbounded. One way

to obtain some information about the behavior of such solutions is to (try
to) compactify the Cartesian space, so that the vector field is extended
to a new manifold that contains the “points at infinity.” This idea, due
to Henri Poincaré [185], has been most successful in the study of planar
systems given by polynomial vector fields, also called polynomial systems
(see [7, p. 219] and [99]). In this section we will give a brief description of
the compactification process for such planar systems. We will again use the
manifold concept and the idea of reparametrization.

Let us consider a plane vector field, which we will write in the form

ẋ = f(x, y), ẏ = g(x, y). (1.35)

To study its phase portrait “near” infinity, let us consider the unit sphere
S

2; that is, the two-dimensional submanifold of R
3 defined by

S
2 := {(x, y, z) : x2 + y2 + z2 = 1},

and the tangent plane Π at its north pole; that is, the point with coordi-
nates (0, 0, 1). The push forward of system (1.35) to Π by the natural map
(x, y) �→ (x, y, 1) is

ẋ = f(x, y), ẏ = g(x, y), ż = 0. (1.36)

The idea is to “project” differential equation (1.36) to the unit sphere by
central projection; then the behavior of the system near infinity is the same
as the behavior of the projected system near the equator of the sphere.

Central projection is defined as follows: A point p ∈ Π is mapped to
the sphere by assigning the unique point on the sphere that lies on the
line segment from the origin in R

3 to the point p. To avoid a vector field
specified by three components, we will study the projected vector field
restricted to a coordinate system on the sphere where the vector field is
again planar. Also, to obtain the desired compactification, we will choose
local coordinates defined in open sets that contain portions of the equator
of the sphere.

The central projection map Q : Π → S
2 is given by

Q(x, y, 1) = (x(x2 + y2 + 1)−1/2, y(x2 + y2 + 1)−1/2, (x2 + y2 + 1)−1/2).

One possibility for an appropriate coordinate system on the Poincaré sphere
is a spherical coordinate system; that is, one of the coordinate charts that
is compatible with the map

(ρ, φ, θ) �→ (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ) (1.37)



1.8 Manifolds 77

(see display (1.24)). For example, if we restrict to the portion of the sphere
where x > 0, then one such coordinate map is given by

Ψ(x, y, z) := (arccos(z), arctan
(y

x

)
).

The transformed vector field on the sphere is the push forward of the vector
field X that defines the differential equation on Π by the map Ψ ◦ Q. In
view of equation (1.37) and the restriction to the sphere, the inverse of this
composition is the transformation P given by

P (φ, θ) =
( sin φ

cos φ
cos θ,

sin φ

cos φ
sin θ

)
.

Thus, the push forward of the vector field X is given by

DP (φ, θ)−1X(P (φ, θ)).

Of course, we can also find the transformed vector field simply by differen-
tiating with respect to t in the formulas

φ = arccos((x2 + y2 + 1)−1/2), θ = arctan
(y

x

)
.

If the vector field is polynomial with maximal degree k, then after we
evaluate the polynomials f and g in system (1.36) at P (φ, θ) and take
into account multiplication by the Jacobian matrix, the denominator of
the resulting expressions will contain cosk−1 φ as a factor. Note that φ = π

2
corresponds to the equator of the sphere and cos(π

2 ) = 0. Thus, the vector
field in spherical coordinates is desingularized by a reparametrization of
time that corresponds to multiplication of the vector field defining the
system by cosk−1 φ. This desingularized system ([53])

φ̇ = (cosk+1 φ)(cos θf + sin θ g), θ̇ =
cosk φ

sin φ
(cos θ g − sin θf) (1.38)

is smooth at the equator of the sphere, and it has the same phase portrait
as the original centrally projected system in the upper hemisphere. There-
fore, we can often determine the phase portrait of the original vector field
“at infinity” by determining the phase portrait of the desingularized vec-
tor field on the equator. Note that because the vector field corresponding
to system (1.38) is everywhere tangent to the equator, the equator is an
invariant set for the desingularized system.

Spherical coordinates are global in the sense that all the spherical coor-
dinate systems have coordinate maps that are local inverses for the fixed
spherical wrapping function (1.37). Thus, the push forward of the original
vector field will produce system (1.38) in every spherical coordinate system.

There are other coordinate systems on the sphere that have also proved
useful for the compactification of plane vector fields. For example, the right
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hemisphere of S
2; that is, the subset {(x, y, z) : y > 0} is mapped diffeo-

morphically to the plane by the coordinate function defined by

Ψ1(x, y, z) =
(x

y
,

z

y

)
.

Also, the map Ψ1 ◦ Q, giving the central projection in these coordinates, is
given by

(x, y, 1) �→
(x

y
,

1
y

)
.

Thus, the local representation of the central projection in this chart is
obtained using the coordinate transformations

u =
x

y
, v =

1
y
.

Moreover, a polynomial vector field of degree k in these coordinates can
again be desingularized at the equator by a reparametrization correspond-
ing to multiplication of the vector field by vk−1. In fact, the desingularized
vector field has the form

u̇ = vk
(
f
(u

v
,

1
v

)
− ug

(u

v
,

1
v

))
, v̇ = −vk+1g

(u

v
,

1
v

)
.

The function Ψ1 restricted to y < 0 produces the representation of the
central projection in the left hemisphere. Similarly, the coordinate map

Ψ2(x, y, z) =
(y

x
,

z

x

)
on the sphere can be used to cover the remaining points, near the equator
in the upper hemisphere, with Cartesian coordinates (x, y, z) where y = 0
but x �= 0.

The two pairs of charts just discussed produce two different local vector
fields. Both of these are usually required to analyze the phase portrait near
infinity. Also, it is very important to realize that if the degree k is even, then
multiplication by vk−1 in the charts corresponding respectively to x < 0
and y < 0 reverses the original direction of time.

As an example of compactification, let us consider the phase portrait of
the quadratic planar system given by

ẋ = 2 + x2 + 4y2, ẏ = 10xy. (1.39)

This system has no rest points in the finite plane.
In the chart corresponding to v > 0 with the chart map Ψ1, the desin-

gularized system is given by

u′ = 2v2 − 9u2 + 4, v′ = −10uv (1.40)
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(2
3 , 0)

y

v

z

uxv
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x

u

y

(−2
3 , 0)

Figure 1.21: Phase portrait on the Poincaré sphere for the differential equa-
tion (1.39).

where the symbol “ ′ ” denotes differentiation with respect to the new inde-
pendent variable after reparametrization. The first order system (1.40) has
rest points with coordinates (u, v) = (± 2

3 , 0). These rest points lie on the
u-axis: the set in our chart that corresponds to the equator of the Poincaré
sphere. Both rest points are hyperbolic. In fact, (2

3 , 0) is a hyperbolic sink
and (− 2

3 , 0) is a hyperbolic source.
In the chart with v < 0 and chart map Ψ1, the reparametrized local

system is given by the differential equation (1.40). But, because k = 2, the
direction of “time” has been reversed. Thus, the sink at ( 2

3 , 0) in this chart
corresponds to a source for the original vector field centrally projected to
the Poincaré sphere. The rest point (− 2

3 , 0) corresponds to a sink on the
Poincaré sphere.

We have now considered all points on the Poincaré sphere except those
on the great circle given by the equation y = 0. For these points, we must
use the charts corresponding to the map Ψ2. In fact, there is a hyperbolic
saddle point at the origin of each of these coordinate charts, and these
rest points correspond to points on the equator of the Poincaré sphere. Of
course, the other two points already discussed are also rest points in these
charts.

The phase portrait of the compactification of system (1.39) is shown in
Figure 1.21. Because the x-axis is an invariant manifold for the original
vector field, the two saddles at infinity are connected by a heteroclinic
orbit.

Exercise 1.141. Prove that S
2 is a two-dimensional submanifold of R

3.

Exercise 1.142. Use spherical coordinates to determine the compactification
of the differential equation (1.39) on the Poincaré sphere.
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Figure 1.22: Phase portrait of Vinograd’s system (1.41).

Exercise 1.143. Find the compactification of the differential equation

ẋ = x + y − y3, ẏ = −x + y + x3

on the Poincaré sphere using spherical coordinates. Show that the equator is a
periodic orbit. See [53, p. 411] for a stability analysis of this periodic orbit, but
note that there is a typographical error in the formula given for the desingularized
projection of this vector field.

Exercise 1.144. Draw the phase portrait of the vector field

ẋ = x2 + y2 − 1, ẏ = 5(xy − 1).

This example is studied by Poincaré in his pioneering memoir on differential
equations ([185, Oeuvre, p. 66]; see also [141, p. 204]).

Exercise 1.145. [Vinograd’s System] Show that the phase portrait of Vino-
grad’s system

ẋ = x2(y − x) + y5, ẏ = y2(y − 2x) (1.41)

agrees with Figure 1.22. In particular, show that while every orbit is attracted to
the origin, the origin is not asymptotically stable (see [111, p. 191] and [227]). (a)
Prove that the system has exactly one rest point. (b) Prove that the system is
invariant with respect to the transformation x → −x and y → −y. In particular,
the phase portrait is symmetric relative to the origin. (c) Prove that the x-axis
is invariant and all points on this set are attracted to the origin. (d) Prove that
there is an open set in the plane containing the origin such that every solution
starting in the set is attracted to the rest point at the origin. Hint: Consider the
isocline x2(y − x) + y5 = 0. Prove that every solution which enters the region



1.8 Manifolds 81

bounded by the isocline and the positive x-axis is attracted to the origin. Prove
that every solution starting near the origin in the upper half-plane eventually
enters this region. (e) Prove that the rest point at the origin has an elliptic
sector; that is, there are two solutions (one approaching the rest point in forward
time, one in backward time) such that, in one of the two regions subtended by the
corresponding orbits, every solution starting sufficiently close to the rest point
in this region is doubly asymptotic to the rest point (that is, such solutions are
asymptotic to the rest point in both the forward and backward directions). Hint:
Blow up the rest point. (f) Prove that every trajectory is attracted to the origin?
Hint: Compactify the system. Show that the system, written in the coordinates
given by x = 1/v and y = u/v, takes the form

u̇ = −u(u5 − v2u2 + 3v2u − v2), v̇ = −v(u5 + v2u − v2) (1.42)

where the equation of the line at infinity is v = 0. Since the rest points at infinity
are highly degenerate, special weighted blowups compatible with the weighted
polar blowup (r, θ) �→ (r2 cos θ, r5 sin θ) are the best choice (see [19]). In fact, it
suffices to use the chart given by u = pq2 and v = q5 where system (1.42) has
the form

ṗ = −1
5
p(3p5 − 5q4p2 + 13q2p − 3), q̇ = −1

5
q(p5 + q2p − 1).

This system has a semi-hyperbolic rest point (that is, the linearization has exactly
one zero eigenvalue). The local phase portrait at this rest point can be determined
by an additional blowup. (See Exercise 4.5 for an alternative method.) To finish
the proof, use the Poincaré-Bendixson theorem 1.174. (g) Draw the global phase
portrait including the circle at infinity.

Exercise 1.146. [Singular Differential Equations] Consider the first order sys-
tem

x′ = y, y′ = z, εz′ = y2 − xz − 1,

which is equivalent to the third order differential equation in Exercise 1.11. Sup-
pose that the independent variable is τ ∈ R and ε is a small parameter. (a) For
the new independent variable t = τ/ε, show that the system is transformed to

ẋ = εy, ẏ = εz, ż = y2 − xz − 1.

Note that a change in t of one unit is matched by a change in τ of ε units. For
this reason, the variable τ is called slow and t is called fast. (b) Set ε = 0 in the
fast time system and prove that this system has an invariant manifold S, called
the slow-manifold, that consists entirely of rest points. Identify this manifold
as a quadric surface. Draw a picture. (c) Determine the stability type(s) of the
rest points on the slow manifold. (d) For ε = 0, the original slow-time system is
“singular.” In fact, if we set ε = 0 in the slow-time system, then we obtain two
differential equations coupled with an algebraic equation, namely,

x′ = y, y′ = z, y2 − xz − 1 = 0.

Prove that the set S := {(x, y, z) : y2 − xz − 1 = 0} is a manifold in R
3. For

W := {(x, y) : x > 0} and G(x, y) := (x, y, (y2 − 1)/x), show that (W, G) is a
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coordinate chart on S. The vector field

(x, y) �→
(
x, y, y,

y2 − 1
x

)

is derived from the unperturbed (ε = 0) singular system by solving the algebraic
equation for z. Draw the phase portrait of the corresponding differential equation.
Show that the line y = 1 is invariant.

While the slow-time system is singular at ε = 0, the fast-time system is reg-
ular. By understanding the fate of the slow-manifold for small ε > 0 (it is not
completely destroyed by the perturbation) the dynamics of the original slow-time
system can be partially determined. For example, the original slow-time system
has solutions that are attracted to the perturbed slow-manifold. Some of these
are attracted to the line y = 1.

The subject of this exercise is called singular perturbation theory. A fundamen-
tal idea of the theory is to make appropriate changes of coordinates that are not
defined when the small parameter ε is set to zero (for example, the change from
slow to fast time t = τ/ε). After such a change of coordinates, the new system
is equivalent to the old system only for nonzero values of ε. But, the dynamics
of the “singular limit” system obtained by setting ε = 0 in the transformed sys-
tem might be easily understood; and, more importantly, some of this dynamical
behavior might persist for small nonzero values of ε for which the transformed
system is equivalent to the original system. Thus, dynamical information about
the original system can be obtained by perturbing from (perhaps different choices
of) singular limiting systems.

See Section 6.3 and equation (6.71) for the origin of this exercise, the book [179]
for an introduction to singular perturbation theory, and the survey [132] for an
introduction to geometric singular perturbation theory.

1.9 Periodic Solutions

We have seen that the stability of a rest point can often be determined
by linearization or by an application of Lyapunov’s direct method. In both
cases, the stability can be determined by analysis in an arbitrary open ball
that contains the rest point. For this reason, we say that the stability of a
rest point is a local problem. On the other hand, to determine the stability
of a periodic solution, we must consider the behavior of the corresponding
vector field in a neighborhood of the entire periodic orbit. Because global
methods must be employed, the analysis of periodic solutions is much more
difficult (and more interesting) than the analysis of rest points. Some of the
basic ideas that are used to study the existence and stability of periodic
solutions will be introduced in this section.

1.9.1 The Poincaré Map
A very powerful concept in the study of periodic orbits is the Poincaré map.
It is a corner stone of the “geometric theory” of Henri Poincaré [185], the
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p

P (p)

Γ

Figure 1.23: A Poincaré section Σ and the corresponding Poincaré return
map. The trajectory starting at x is asymptotic to a periodic orbit Γ. The
trajectory passes through the section Σ at the point p and first returns to
the section at the point P (p).

father of our subject. To define the Poincaré map, also called the return
map, let φt denote the flow of the differential equation ẋ = f(x), and
suppose that S ⊆ R

n is an (n − 1)-dimensional submanifold. If p ∈ S and
(p, f(p)) �∈ TpS, then we say that the vector (p, f(p)) is transverse to S at
p. If (p, f(p)) is transverse to S at each p ∈ S, we say that S is a section
for φt. If p is in S, then the curve t �→ φt(p) “passes through” S as t passes
through t = 0. Perhaps there is some T = T (p) > 0 such that φT (p) ∈ S.
In this case, we say that the point p returns to S at time T . If there is
an open subset Σ ⊆ S such that each point of Σ returns to S, then Σ is
called a Poincaré section. In this case, let us define P : Σ → S as follows:
P (p) := φT (p)(p) where T (p) > 0 is the time of the first return to S. The
map P is called the Poincaré map, or the return map on Σ and T : Σ → R

is called the return time map (see Figure 1.23). Because the solution of a
differential equation is smoothly dependent on its initial value, the implicit
function theorem can be used to prove that both P and T are smooth
functions on Σ (see Exercise 1.147).

Exercise 1.147. Prove that the return-time map T is smooth. Hint: Find a
function F : R

n → R so that F (u) = 0 if and only if u ∈ Σ and define G(t, u) =
F (φt(u)). If p ∈ Σ and T is the time of its first return, then apply the implicit
function theorem to G at (T, p) to solve for T as a function of p.
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The following is a fundamental idea of Poincaré: Fixed points of the
return map lie on periodic orbits. More generally, periodic points of the
Poincaré map correspond to periodic solutions of the differential equation.
Here, if P denotes the return map, then we will say that p is a fixed point
of P provided that P (p) = p. A periodic point with period k is a fixed point
of the kth iterate of P—it passes through the Poincaré section k − 1 times
before closing. In the subject of dynamical systems, P 1 := P is the first
iterate; more precisely, the first iterate map associated with P and the kth
iterate is defined inductively by P k := P ◦P k−1. Using this notation, p ∈ Σ
is a periodic point with period k if P k(p) = p.

Often, instead of studying the fixed points of the kth iterate of the
Poincaré map, it is more convenient to study the zeros of the corresponding
displacement function δ : Σ → R

n defined by δ(p) = P k(p) − p. With this
definition, the periodic points of period k for the Poincaré map correspond
to the roots of the equation δ(p) = 0.

If p ∈ Σ is a periodic point of the Poincaré map of period k, then the
stability of the corresponding periodic orbit of the differential equation is
determined by computing the eigenvalues of the linear map DP k(p). In
fact, an important theorem, which we will prove in Section 2.4.4, states
that if P k(p) = p and DP k(p) has all its eigenvalues inside the unit circle,
then the periodic orbit with initial point p is asymptotically stable.

Exercise 1.148. Suppose that A is an 2 × 2 matrix and consider the linear
transformation of R

2 given by x �→ Ax as a dynamical system. (a) Prove: If the
spectrum of A lies inside the unit circle in the complex plane, then Akx → 0 as
k → ∞ for every x ∈ R

2. (b) Prove: If at least one eigenvalue of A lies outside
the unit circle, then there is a point x ∈ R

2 such that ||Akx|| → ∞ as k → ∞.
(c) Define the notion of stability and asymptotic stability for discrete dynamical
systems, and show that the origin is asymptotically stable for the linear dynamical
system associated with A if and only if the spectrum of A lies inside the unit
circle. (d) Suppose that the spectrum of A does not lie inside the unit circle. Give
a condition that implies the origin is stable. See Section 2.4.4 for the n × n case.

Exercise 1.149. [One-dimensional Dynamics] A discrete dynamical system
need not be invertible. For example, consider the quadratic family f : [0, 1] →
[0, 1] defined by f(x) = λx(1−x), for λ in the interval (0, 4]. It defines a dynamical
system via xn+1 = f(xn). (a) Prove: If λ < 1, then f has a globally attracting
fixed point. (b) If 1 < λ < 3, then f has a globally attracting nonzero fixed point.
(c) Prove: A bifurcation occurs at λ = 3 such that for λ > 3 there is a periodic
orbit with period two and this orbit is asymptotically stable for 3 < λ < 1 +

√
6.

(d) Prove: A bifurcation occurs at λ = 1 +
√

6 such that for λ > 1 +
√

6 there
is a periodic orbit with period four. (e) In fact, a countable sequence of such
bifurcations occur at λ1 = 3, λ2 = 1+

√
6, . . . so that a periodic orbit of period 2n

is born at λn. The sequence {λn}∞
n=1 converges to a number λ∞ ≈ 3.57. It turns

out that limn→∞(λn −λn−1)/(λn+1 −λn) = 4.67 · · · . This is a universal constant
(for families whose graphs have a unique nondegenerate maximum, e.g. x �→
λ sin(πx) for x ∈ [0, 1]) called the Feigenbaum number. Verify these statements
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with numerical experiments. (f) For λ = λ∞, the dynamical system has periodic
points of all periods. It is not difficult to prove that the system is chaotic at λ = 4.
At least, it is not difficult to prove that the dynamics are as random as a coin
toss. The ideas for a proof are in the next few exercises. (g) Prove that the tent
map h : [0, 1] → [0, 1] given by h(x) = 2x, for 0 ≤ x ≤ 1/2 and h(x) = 2 − 2x,
for 1/2 ≤ x ≤ 1 is semiconjugate to the quadratic map f(x) = 4x(1 − x) via
g : [0, 1] → [0, 1] given by g(x) = sin2 πx; that is f(g(x)) = g(h(x)) for x ∈ [0, 1].
(h) Prove: Every point in [0, 1] can be represented by a binary decimal expansion
x = .x1x2x3 · · · , where xn = 0 or xn = 1. (i) Prove: The map h acts on binary
sequences by the rule h(.x1x2x3 · · · ) = .(x1 ⊕ x2)(x1 ⊕ x3)(x1 ⊕ x4) · · · , where
⊕ is addition base two. (j) Use the binary representation of h to prove that for
an arbitrary sequence of coin tosses, say HHTTHT · · · , there is a point in [0, 1]
such that its iterates under h fall in the intervals H = [0, 1/2) and T = [1/2, 1]
in the order specified by the coin tosses. Note: Much more can be said about
one-dimensional dynamical systems (see, for example, [72],[96], [103], and [218]).

Although it is very difficult, in general, to find a suitable Poincaré section
and to analyze the associated Poincaré map, there are many situations
where these ideas can be used to great advantage. For example, suppose
that there is a Poincaré section Σ and a closed ball B ⊆ Σ such that P :
B → B. Recall Brouwer’s fixed point theorem (see any book on algebraic
topology, for example, [150] or [159]).

Theorem 1.150 (Brouwer’s Fixed Point Theorem). Every continu-
ous map of a closed (Euclidean) ball into itself has at least one fixed point.

By this theorem, the map P must have at least one fixed point. In
other words, the associated differential equation has a periodic orbit pass-
ing through the set B. This idea is used in the following “toy” example.
See Exercise 1.158 for an application.

Consider the nonautonomous differential equation

ẏ = (a cos t + b)y − y3, a > 0, b > 0 (1.43)

and note that the associated vector field is time periodic with period 2π.
To take advantage of this periodicity property, let us recast this differential
equation—using the standard “trick”—as the first order system

ẏ = (a cos τ + b)y − y3,

τ̇ = 1. (1.44)

Also, for each ξ ∈ R, let t �→ (τ(t, ξ), y(t, ξ)) denote the solution of sys-
tem (1.44) with the initial value

τ(0, ξ) = 0, y(0, ξ) = ξ

and note that τ(t, ξ) ≡ t. Here, the order of the variables is reversed to
conform with two conventions: The angular variable is written second in
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Figure 1.24: The phase cylinder for the differential equation (1.43).

a system of this type, but the phase portrait is depicted on a plane where
the angular coordinate axis is horizontal.

The vector field corresponding to the system (1.44) is the same in every
vertical strip of width 2π in the plane considered with coordinates (τ, y).
Thus, from our geometric point of view, it is convenient to consider sys-
tem (1.44) as a differential equation defined on the cylinder T×R obtained
by identifying the line Σ := {(τ, y) : τ = 0} with each line {(τ, y) : τ = 2π�}
where � is an integer (see Figure 1.24). On this cylinder, Σ is a section for
the flow. Moreover, if ξ ∈ R is the coordinate of a point on Σ, then the
associated Poincaré map is given by

P (ξ) = y(2π, ξ)

whenever the solution t �→ (τ(t, ξ), y(t, ξ)) is defined on the interval [0, 2π].

By the definition of a Poincaré map, the fixed points of P correspond to
periodic orbits of the differential equation defined on the phase cylinder.
Let us prove that the fixed points of P correspond to periodic solutions of
the original differential equation (1.43). In fact, it suffices to show that if
y(2π, ξ0) = ξ0 for some ξ0 ∈ R, then t �→ y(t, ξ0) is a 2π-periodic solution
of the differential equation (1.43).

By the extension theorem, there is some t∗ > 0 such that the function
t �→ z(t) given by z(t) := y(t+2π, ξ0) is defined on the interval [0, t∗). Note
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Figure 1.25: The Poincaré map for the system (1.44).

that z(0) = y(2π, ξ0) = ξ0 and

ż(t) = ẏ(t + 2π, ξ0)
= (a(cos(t + 2π)) + b)y(t + 2π, ξ0) − y3(t + 2π, ξ0)
= (a cos t + b)y(t + 2π, ξ0) − y3(t + 2π, ξ0)
= (a cos t + b)z(t) − z3(t).

Thus, t �→ z(t) is a solution of the differential equation (1.43) with the
same initial value as the solution t �→ y(t, ξ0). By the uniqueness theorem,
it follows that z(t) = y(t, ξ0) for 0 ≤ t < t∗. Hence, if t �→ y(t + 2π, ξ0)
blows up on the interval t∗ ≤ t ≤ 2π, then so does the function t �→ y(t, ξ0),
contrary to the hypothesis. Thus, t �→ y(t, ξ0) is defined on the interval
[0, 4π] and y(t+2π, ξ0) = y(t, ξ0) for 0 ≤ t ≤ 2π. By repeating the argument
inductively with z(t) = y(t+k2π, ξ0) for the integers k = 2, 3, . . . , it follows
that t �→ y(t, ξ0) is a 2π-periodic solution of the differential equation (1.43),
as required.

Because y(t, 0) ≡ 0, it follows immediately that P (0) = 0; that is, the
point ξ = 0 corresponds to a periodic orbit. To find a nontrivial periodic
solution, note that a cos t + b ≤ a + b, and consider the line given by
y = a+ b+1 in the phase cylinder. The y-component of the vector field on
this line is

(a + b + 1)(a cos τ + b − (a + b + 1)2).

Since

a cos τ + b − (a + b + 1)2 ≤ (a + b + 1) − (a + b + 1)2 < 0,
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the vector field corresponding to the first order system “points” into the
region that lies below the line. In particular, if 0 ≤ ξ ≤ a + b + 1, then
0 ≤ P (ξ) ≤ a + b + 1; that is, P maps the closed interval [0, a + b + 1] into
itself. Hence, the Brouwer fixed point theorem can be applied to prove the
existence of a periodic orbit (see also Exercise 1.151). But, because P (0) =
0, this application of the Brouwer fixed point theorem gives no information
about the existence of nontrivial periodic solutions. The remedy, as we will
soon see, is to construct a P invariant closed interval that does not contain
ξ = 0.

Suppose that P ′(0) > 1; that is, the trivial periodic solution is unstable.
Then, there is some number c such that 0 < c < a + b + 1 and P ′(ξ) > 1
as long as 0 ≤ ξ ≤ c. By the mean value theorem, P (c) = P ′(ξ)c for some
ξ, 0 < ξ < c. Thus, P (c) > c. Because P is a Poincaré map, it is easy to
see that the interval c ≤ ξ ≤ a + b + 1 is mapped into itself by P and, as
a result, there is at least one fixed point in this interval. This fixed point
corresponds to a periodic solution of the differential equation (1.43).

To prove that P ′(0) > 1 we will use a variational equation. This method
is employed very often in the analysis of differential equations. The present
elementary example is a good place to learn the basic technique. The idea is
simple: The derivative of the solution of a differential equation with respect
to its initial value is itself the solution of a differential equation.

Recall that P (ξ) = y(2π, ξ). Since

d

dt
y(t, ξ) = (a cos t + b)y(t, ξ) − y3(t, ξ)

we have that

d

dt
yξ(t, ξ) = (a cos t + b)yξ(t, ξ) − 3y2(t, ξ)yξ(t, ξ).

Because y(0, ξ) = ξ, we also have the initial condition yξ(0, ξ) = 1. More-
over, at the point ξ = 0 the function t �→ y(t, ξ) is identically zero. Thus, if
t → w(t) is the solution of the variational initial value problem

ẇ = (a cos t + b)w, w(0) = 1,

then P ′(0) = w(2π).
The variational differential equation is linear. Its solution is given by

w(t) = e
∫ t
0 (a cos s+b) ds = ea sin t+bt.

In particular, we have

P ′(0) = w(2π) = e2πb > 1,

as required. Moreover, this computation shows that the periodic solution
given by y(t) ≡ 0 is unstable. (Why?)
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Exercise 1.151. Prove Brouwer’s fixed point theorem for a closed interval in
R. Hint: Use the intermediate value theorem.

Exercise 1.152. Find the initial point for the nontrivial periodic solution in
the interval 0 < ξ < a+b+1 for (1.43) as a function of a and b. Are there exactly
two periodic solutions?

Exercise 1.153. Find conditions on a(t) and on f that ensure the existence of
at least one (nontrivial) periodic solution for a differential equation of the form

ẏ = a(t)y + f(y).

Exercise 1.154. Consider the differential equation (1.43) on the cylinder, and
the transformation given by u = (y + 1) cos τ , v = (y + 1) sin τ that maps the
portion of the cylinder defined by the inequality y > −1 into the plane. What
is the image of this transformation? Find the differential equation in the new
coordinates, and draw its phase portrait.

We have proved that there is at least one 2π-periodic solution of the
differential equation (1.43) with initial condition in the interval 0 < ξ <
a + b + 1. But even more is true: This periodic orbit is stable and unique.
To prove this fact, let us suppose that 0 < ξ0 < a + b + 1 and P (ξ0) = ξ0,
so that the corresponding solution t �→ y(t, ξ0) is 2π-periodic.

To determine the stability type of the solution with initial value ξ0, it
suffices to compute P ′(ξ0). As before, P ′(ξ0) = w(2π) where t �→ w(t) is
the solution of the variational initial value problem

ẇ = [(a cos t + b) − 3y2(t, ξ0)]w, w(0) = 1.

It follows that

P ′(ξ0) = w(2π)

= e
∫ 2π
0 a cos t+b−3y2(t,ξ0) dt

= e2πb−3
∫ 2π
0 y2(t,ξ0) dt.

To compute
∫ 2π

0 y2 dt, note that because y(t, ξ0) > 0 for all t, we have
the following equality

ẏ(t, ξ0)
y(t, ξ0)

= a cos t + b − y2(t, ξ0).

Using this formula and the periodicity of the solution t �→ y(t, ξ0), we have
that ∫ 2π

0
y2(t, ξ0) dt = 2πb −

∫ 2π

0

ẏ(t, ξ0)
y(t, ξ0)

dt = 2πb,

and, as a result,

P ′(ξ0) = e2πb−3(2πb) = e−4πb < 1. (1.45)
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Hence, every periodic solution in the interval [0, a + b + 1] is stable. The
uniqueness of the periodic solution is a consequence of this result. In fact,
the map P is real analytic. Thus, if P has infinitely many fixed points
in a compact interval, then P is the identity. This is not true, so P has
only a finite number of fixed points. If ξ0 and ξ1 are the coordinates of
two consecutive fixed points, then the displacement function, that is, ξ �→
P (ξ) − ξ, has negative slope at two consecutive zeros, in contradiction.

Exercise 1.155. Find an explicit formula for the solution of the differential
equation (1.43) and use it to give a direct proof for the existence of a nontrivial
periodic solution.

Exercise 1.156. Prove that P ′′(ξ) < 0 for ξ > 0, where P is the Poincaré
map defined for the differential equation (1.43). Use this result and the inequal-
ity (1.45) to prove the uniqueness of the nontrivial periodic solution of the dif-
ferential equation.

Exercise 1.157. Show that the (stroboscopic) Poincaré map for the differential
equation (1.43) has exactly one fixed point on the interval (0, ∞). How many fixed
points are there on (−∞, ∞)?

Exercise 1.158. Suppose that h : R → R is a T -periodic function, and 0 <
h(t) < 1/4 for every t ∈ R. Show that the differential equation ẋ = x(1−x)−h(t)
has exactly two T -periodic solutions. The differential equation can be interpreted
as a model for the growth of a population in a limiting environment that is
subjected to periodic harvesting (cf. [200]).

Exercise 1.159. Is it possible for the Poincaré map for a scalar differential
equation not to be the identity map on a fixed compact interval and at the same
time have infinitely many fixed points in the interval?

Exercise 1.160. [Boundary Value Problem] (a) Prove that the Dirichlet bound-
ary value problem

x′′ = 1 − x2, x(0) = 0, x(2) = 0

has a solution. Hint: Use the phase plane. Show that the first positive time T
such that the orbit with initial conditions x(0) = 0 and x′(0) = 0 reaches the
x-axis is T < 2 and for the initial conditions x(0) = 0 and x′(0) = 2/

√
3, T > 2.

To show this fact use the idea in the hint for Exercise 1.12 to construct an
integral representation for T . (b) Find a solution of the boundary value problem
by shooting and Newton’s method (see Exercise 1.124). Hint: Use the phase plane
with x′ = y. Consider the solution t �→ (x(t, η), y(t, η)) with initial conditions
x(0) = 0 and y(0) = η and use Newton’s method to solve the equation y(2, η) = 0.
Note: The solutions with different choices for the velocity are viewed as shots.
The velocity is adjusted until the target is hit.

Exercise 1.161. Consider the linear system

ẋ = ax, ẏ = −by



1.9 Periodic Solutions 91

where a > 0 and b > 0 in the open first quadrant of the phase plane and let φt

denote its flow. (a) Show that L := {(ξ, 1) : ξ > 0} and M := {(1, η) : η > 0} are
transverse sections for the system. (b) Find a formula for the section map h from
L to M . (c) Find a formula for T : L → R, called the time-of-flight map, which
is defined by φT (ξ)(ξ, 1) = (1, h(ξ)).

Exercise 1.162. Compute the time required for the solution of the system

ẋ = x(1 − y), ẏ = y(x − 1)

with initial condition (x, y) = (1, 0) to arrive at the point (x, y) = (2, 0). Note
that this system has a section map y �→ h(y) defined from a neighborhood of
(x, y) = (1, 0) on the line given by x = 1 to the line given by x = 2. Compute
h′(0).

Exercise 1.163. Observe that the x-axis is invariant for the system

ẋ = 1 + xy, ẏ = 2xy2 + y3,

and the trajectory starting at the point (1, 0) crosses the line x = 3 at (3, 0).
Thus, there is a section map h and a time-of-flight map T from the line x = 1 to
the line x = 3 with both functions defined on some open interval about the point
(1, 0) on the line x = 1. Compute T ′(0) and h′(0).

Exercise 1.164. Research Problem: Consider the second order differential equa-
tion

ẍ + f(x)ẋ + g(x) = 0

where f and g are 2π-periodic functions. Determine conditions on f and g that
ensure the existence of a periodic solution.

1.9.2 Limit Sets and Poincaré–Bendixson Theory
The general problem of finding periodic solutions for differential equations
is still an active area of mathematical research. Perhaps the most well
developed theory for periodic solutions is for differential equations defined
on the plane. But, even in this case, the theory is far from complete. For
example, consider the class of planar differential equations of the form

ẋ = f(x, y), ẏ = g(x, y)

where f and g are quadratic polynomials. There are examples of such
“quadratic systems” that have four isolated periodic orbits—“isolated”
means that each periodic orbit is contained in an open subset of the plane
that contains no other periodic orbits (see Exercise 1.194). But, no one
knows at present if there is a quadratic system with more than four isolated
periodic orbits. The general question of the number of isolated periodic or-
bits for a polynomial system in the plane has been open since 1905; it is
called Hilbert’s 16th problem (see [55], [126], [187], and [197]).
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Although there are certainly many difficult issues associated with pe-
riodic orbits of planar systems, an extensive theory has been developed
that has been successfully applied to help determine the dynamics of many
mathematical models. Some of the basic results of this theory will be ex-
plained later in this section after we discuss some important general prop-
erties of flows of autonomous, not necessarily planar, systems.

The properties that we will discuss enable us to begin to answer the
question “What is the long term behavior of a dynamical system?” This
is often the most important question about a mathematical model. Ask
an engineer what he wants to know about a model ordinary differential
equation. Often his response will be the question “What happens if we
start the system running and then wait for a long time?” or, in engineering
jargon, “What is the steady state behavior of the system?” We already
know how to answer these questions in some special circumstances where
the steady state behavior corresponds to a rest point or periodic orbit. The
following definitions will be used to precisely describe the limiting behavior
of an arbitrary orbit.

Definition 1.165. Suppose that φt is a flow on R
n and p ∈ R

n. A point x
in R

n is called an omega limit point (ω-limit point) of the orbit through p if
there is a sequence of numbers t1 ≤ t2 ≤ t3 ≤ · · · such that limi→∞ ti = ∞
and limi→∞ φti(p) = x. The collection of all such omega limit points is
denoted ω(p) and is called the omega limit set (ω-limit set) of p. Similarly,
the α-limit set α(p) is defined to be the set of all limits limi→∞ φti(p) where
t1 ≥ t2 ≥ t3 ≥ · · · and limi→∞ ti = −∞.

Definition 1.166. The orbit of the point p with respect to the flow φt is
called forward complete if t → φt(p) is defined for all t ≥ 0. Also, in this
case, the set {φt(p) : t ≥ 0} is called the forward orbit of the point p. The
orbit is called backward complete if t → φt(p) is defined for all t ≤ 0 and
the backward orbit is {φt(p) : t ≤ 0}.

Proposition 1.167. The omega limit set of a point is closed and invari-
ant.

Proof. The empty set is closed and invariant.
Suppose that ω(p) is not empty for the flow φt and x ∈ ω(p). Consider

φT (x) for some fixed T ∈ R. There is a sequence t1 ≤ t2 ≤ t3 ≤ · · · with
ti → ∞ and φti(p) → x as i → ∞. Note that t1 +T ≤ t2 +T ≤ t3 +T ≤ · · ·
and that φti+T (p) = φT (φti(p)). By the continuity of the flow, we have that
φT (φti(p)) → φT (x) as i → ∞. Thus, φT (x) ∈ ω(p), and therefore ω(p) is
an invariant set.

To show ω(p) is closed, it suffices to show that ω(p) is the intersection of
closed sets. In fact, we have that

ω(p) =
⋂
τ≥0

closure {φt(p) : t ≥ τ}. �
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Proposition 1.168. Suppose that p ∈ R
n and the orbit of the flow φt

through the point p is forward complete. If the forward orbit of p has com-
pact closure, then ω(p) is nonempty, compact, and connected.

Proof. The sequence {φn(p)}∞
n=1 is contained in the compact closure of

the orbit through p. Thus, it has at least one limit point x. In fact, there
is an infinite sequence of integers n1 ≤ n2 ≤ · · · such that φni(p) → x as
i → ∞. Hence, x ∈ ω(p), and therefore ω(p) �= ∅.

Since ω(p) is a closed subset of the compact closure of the orbit through
p, the set ω(p) is compact.

To prove that ω(p) is connected, suppose to the contrary that there
are two disjoint open sets U and V whose union contains ω(p) such that
ω(p) ∩ U �= ∅ and ω(p) ∩ V �= ∅. There is some t1 > 0 such that φt1(p) ∈ U
and some t2 > t1 such that φt2(p) ∈ V . But the set K = {φt(p) : t1 ≤ t ≤
t2} is the continuous image of an interval, hence a connected set. Thus K
cannot be contained in U ∪ V . In particular, there is at least one τ1 > 0
such that φτ1(p) is not in this union.

Similarly we can construct a sequence τ1 ≤ τ2 ≤ · · · such that

lim
i→∞

τi = ∞

and for each i the point φτi(p) is in the complement of U ∪ V . By the
compactness, the sequence {φτi

(p)}∞
i=1 has a limit point x. Clearly, x is

also in ω(p) and in the complement of U ∪ V . This is a contradiction. �

Exercise 1.169. Construct examples to show that the compactness hypothesis
of Proposition 1.168 is necessary.

Exercise 1.170. Show that a reparametrization of a flow does not change its
omega limit sets. Thus, an omega limit set is determined by an orbit and its
direction, not the parametrization of the orbit.

Exercise 1.171. Suppose that x0 is a rest point for the differential equation
ẋ = f(x) with flow φt, and V is a Lyapunov function at x0. If, in addition, there
is a neighborhood W of the rest point x0 such that, for each point p ∈ W \ {x0},
the function V is not constant on the forward orbit of p, then x0 is asymptotically
stable. Hint: The point x0 is Lyapunov stable. If it is not asymptotically stable,
then there is a point p in the domain of V whose omega limit set ω(p) is also
in the domain of V such that ω(p) �= {x0}. Show that V is constant on this
omega limit set (the constant is the greatest lower bound of the range of V on
the forward orbit through p).

Exercise 1.172. Suppose that the differential equation ẋ = f(x) with flow φt

has a compact invariant set K, and V : K → R is a continuously differentiable
function such that V̇ (x) ≤ 0 for every x ∈ K. If Ω is the largest invariant set in
{x ∈ K : V̇ (x) = 0}, then every solution in K approaches Ω as t → ∞.
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Figure 1.26: A positively invariant annular region for a flow in the plane.

The ω-limit set of a point for a flow in R
n with n ≥ 3 can be very

complicated; for example, it can be a fractal. But the situation in R
2 is

much simpler. The reason is the deep fact about the geometry of the plane
stated in the next theorem.

Theorem 1.173 (Jordan Curve Theorem). A simple closed (continu-
ous) curve in the plane divides the plane into two connected components,
one bounded and one unbounded, each with the curve as boundary.

Proof. Modern proofs of this theorem use algebraic topology (see for ex-
ample [212]). �

This result will play a central role in what follows.
The fundamental result about limit sets for flows of planar differential

equations is the Poincaré–Bendixson theorem. There are several versions
of this theorem; we will state two of them. The main ingredients of their
proofs will be presented later in this section beginning with Lemma 1.187.

Theorem 1.174 (Poincaré–Bendixson). If Ω is a nonempty compact
ω-limit set of a flow in R

2, and if Ω does not contain a rest point, then Ω
is a periodic orbit.

A set S that contains the forward orbit of each of its elements is called
positively invariant. An orbit whose α-limit set is a rest point p and whose
ω-limit is a rest point q is said to connect p and q. Note: the definition of
a connecting orbit allows p = q.
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y
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Figure 1.27: A limit cycle in the plane.

Theorem 1.175. Suppose that φt is a flow on R
2 and S ⊆ R

2 is a pos-
itively invariant set with compact closure. If p ∈ S and φt has at most a
finite number of rest points in the closure of S, then ω(p) is either (i) a
rest point, (ii) a periodic orbit, or (iii) a union of finitely many rest points
and a nonempty finite or countable infinite set of connecting orbits.

Exercise 1.176. Illustrate possibility (iii) of the last theorem with an example
having an infinite set of connecting orbits.

Exercise 1.177. We have assumed that all flows are smooth. Is this hypothesis
required for all the theorems in this section on ω-limit sets?

Definition 1.178. A limit cycle Γ is a periodic orbit that is either the
ω-limit set or the α-limit set of some point that is in the phase space but
not in Γ.

A “conceptual” limit cycle is illustrated in Figure 1.27. In this figure,
the limit cycle is the ω-limit set of points in its interior (the bounded
component of the plane with the limit cycle removed) and its exterior
(the corresponding unbounded component of the plane). A limit cycle that
is generated by numerically integrating a planar differential equation is
depicted in Figure 1.28 (see [33]).

Sometimes the following alternative definition of a limit cycle is given. A
“limit cycle” is an isolated periodic orbit; that is, the unique periodic orbit
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Figure 1.28: Two orbits are numerically computed for the system ẋ =
0.5x − y + 0.1(x2 − y2)(x − y), ẏ = x + 0.5y + 0.1(x2 − y2)(x + y): one with
initial value (x, y) = (0.5, 0), the other with initial value (x, y) = (0, 5).
Both orbits approach a stable limit cycle.

in some open subset of the phase space. This definition is not equivalent
to Definition 1.178 in general. The two definitions, however, are equivalent
for real analytic systems in the plane (see Exercise 1.182).

An annular region is a subset of the plane that is homeomorphic to the
closed annulus bounded by the unit circle at the origin and the concentric
circle whose radius is two units in length.

The following immediate corollary of the Poincaré–Bendixson theorem
is often applied to prove the existence of limit cycles for planar systems.

Theorem 1.179. If a flow in the plane has a positively invariant annular
region S that contains no rest points of the flow, then S contains at least
one periodic orbit. If in addition, some point in S is in the forward orbit
of a point on the boundary of S, then S contains at least one limit cycle.

We will discuss two applications of Theorem 1.179 where the main idea
is to find a rest-point free annular region as depicted in Figure 1.26.

The first example is provided by the differential equation

ẋ = −y + x(1 − x2 − y2), ẏ = x + y(1 − x2 − y2). (1.46)

Note that the annulus S bounded by the circles with radii 1
2 and 2, respec-

tively, contains no rest points of the system. Let us show that S is positively
invariant. To prove this fact, consider the outer normal vector N on ∂S that
is the restriction of the vector field N(x, y) = (x, y, x, y) ∈ R

2 × R
2 to ∂S

and compute the dot product of N with the vector field corresponding to
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the differential equation. In fact, the dot product

x2(1 − x2 − y2) + y2(1 − x2 − y2) = (x2 + y2)(1 − x2 − y2)

is positive on the circle with radius 1
2 and negative on the circle with radius

2. Therefore, S is positively invariant and, by Theorem 1.179, there is at
least one limit cycle in S.

The differential equation (1.46) is so simple that we can find a formula
for its flow. In fact, by changing to polar coordinates (r, θ), the transformed
system

ṙ = r(1 − r2), θ̇ = 1

decouples, and its flow is given by

φt(r, θ) =
(( r2e2t

1 − r2 + r2e2t

) 1
2
, θ + t

)
. (1.47)

Note that φt(1, θ) = (1, θ + t) and, in particular, φ2π(1, θ) = (1, θ + 2π).
Thus, the unit circle in the plane is a periodic orbit with period 2π. Here,
of course, we must view θ as being defined modulo 2π, or, better yet, we
must view the polar coordinates as coordinates on the cylinder T × R (see
Section 1.8.5).

If the formula for the flow (1.47) is rewritten in rectangular coordinates,
then the periodicity of the unit circle is evident. In fact, the periodic solu-
tion starting at the point (cos θ, sin θ) ∈ R

2 (in rectangular coordinates) at
t = 0 is given by

t �→ (x(t), y(t)) = (cos(θ + t), sin(θ + t)).

It is easy to see that if r �= 0, then the ω-limit set ω((r, θ)) is the entire
unit circle. Thus, the unit circle is a limit cycle.

If we consider the positive x-axis as a Poincaré section, then we have

P (x) =
( x2e4π

1 − x2 + x2e4π

) 1
2
.

Here P (1) = 1 and P ′(1) = e−4π < 1. In other words, the intersection point
of the limit cycle with the Poincaré section is a hyperbolic fixed point of
the Poincaré map; that is, the linearized Poincaré map has no eigenvalue
on the unit circle of the complex plane. In fact, here the single eigenvalue
of the linear transformation of R given by x �→ P ′(1)x is inside the unit
circle. It should be clear that in this case the limit cycle is an asymptotically
stable periodic orbit. We will also call such an orbit a hyperbolic stable limit
cycle. (The general problem of the stability of periodic orbits is discussed
in Chapter 2.)
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As a second example of the application of Theorem 1.179, let us consider
the very important differential equation

θ̈ + λθ̇ + sin θ = µ

where λ > 0 and µ are constants, and θ is an angular variable; that is, θ is
defined modulo 2π. This differential equation is a model for an unbalanced
rotor or pendulum with viscous damping λθ̇ and external torque µ.

Consider the equivalent first order system

θ̇ = v, v̇ = − sin θ + µ − λv, (1.48)

and note that, since θ is an angular variable, the natural phase space for
this system is the cylinder T × R. With this interpretation we will show
the following result: If |µ| > 1, then system (1.48) has a globally attracting
limit cycle. The phrase “globally attracting limit cycle” means that there
is a limit cycle Γ on the cylinder and Γ is the ω-limit set of every point on
the cylinder. In other words, the steady state behavior of the unbalanced
rotor, with viscous damping and sufficiently large torque, is stable periodic
motion. (See [143] for the existence of limit cycles in case |µ| ≤ 1.)

The system (1.48) with |µ| > 1 has no rest points. (Why?) Also the
quantity − sin θ + µ − λv is negative for sufficiently large positive values
of v, and it is positive for negative values of v that are sufficiently large
in absolute value. Therefore, there are numbers v− < 0 and v+ > 0 such
that every forward orbit is contained in the compact subset of the cylinder
A := {(r, θ) : v− ≤ v ≤ v+}. In addition, A is diffeomorphic to an annular
region in the plane. It follows that the Poincaré–Bendixson theorem is valid
in A, and therefore the ω-limit set of every point on the cylinder is a limit
cycle.

Although there are several ways to prove that the limit cycle is unique,
let us consider a proof based on the following propositions: (i) If the diver-
gence of a vector field is everywhere negative, then the flow of the vector
field contracts volume (see Exercise 2.22). (ii) Every periodic orbit in the
plane surrounds a rest point (see Exercise 1.189). (A replacement for the
first proposition is given in Exercise 1.200; an alternate method of proof is
suggested in Exercise 1.202.)

To apply the propositions, note that the divergence of the vector field for
system (1.48) is the negative number −λ. Also, if |µ| > 1, then this system
has no rest points. By the second proposition, no periodic orbit of the
system is contractable on the cylinder (see panel (a) of Figure 1.29). Thus,
if there are two periodic orbits, they must bound an invariant annular
region on the cylinder as in panel (b) of Figure 1.29. But this contradicts
the fact that the area of the annular region is contracted by the flow. It
follows that there is a unique periodic orbit on the cylinder that is a globally
attracting limit cycle.
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Ω

(b)(a)

Ω

Figure 1.29: Panel (a) depicts a contractable periodic orbit on a cylinder.
Note that the region Ω in panel (a) is simply connected. Panel (b) de-
picts two periodic orbits that are not contractable; they bound a multiply
connected region Ω on the cylinder.

Exercise 1.180. Give a direct proof that the point (1/
√

2, 1/
√

2) on the unit
circle is an ω-limit point of the point (3, 8) for the flow of system (1.46).

Exercise 1.181. Discuss the phase portrait of system (1.48) for |µ| < 1.

Exercise 1.182. (a) Show that the set containing “limit cycles” defined as
isolated periodic orbits is a proper subset of the set of limit cycles. Also, if the
differential equation is a real analytic planar autonomous system, then the two
concepts are the same. Hint: Imagine an annular region consisting entirely of
periodic orbits. The boundary of the annulus consists of two periodic orbits that
might be limit cycles, but neither of them is isolated. To prove that an isolated
periodic orbit Γ is a limit cycle, show that every section of the flow at a point
p ∈ Γ has a subset that is a Poincaré section at p. For an analytic system, again
consider a Poincaré section and the associated Poincaré map P . Zeros of the
analytic displacement function ξ �→ P (ξ) − ξ correspond to periodic orbits. (b)
Show that the polynomial (hence real analytic) system in R

3 given by

ẋ = −y + x(1 − x2 − y2),

ẏ = x + y(1 − x2 − y2),

ż = 1 − x2 − y2 (1.49)

has limit cycles that are not isolated. (c) Determine the long-term behavior of
the system (1.49). In particular, show that

lim
t−>∞

z(t) = z(0) − 1
2

ln(x2(0) + y2(0)).

Exercise 1.183. Show that the system

ẋ = ax − y + xy2, ẏ = x + ay + y3
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has an unstable limit cycle for a < 0 and no limit cycle for a > 0. Hint: Change
to polar coordinates.

Exercise 1.184. Show that the system

ẋ = y + x(x2 + y2 − 1) sin
1

x2 + y2 − 1
,

ẏ = −x + y(x2 + y2 − 1) sin
1

x2 + y2 − 1

has infinitely many limit cycles in the unit disk.

Exercise 1.185. Prove: An analytic planar system cannot have infinitely many
limit cycles that accumulate on a periodic orbit. Note: This (easy) exercise is a
special case of a deep result: An analytic planar system cannot have infinitely
many limit cycles in a compact subset of the plane; and, a polynomial system
cannot have infinitely many limit cycles (see [79] and [126]).

Exercise 1.186. Consider the differential equation

ẋ = −ax(x2 + y2)−1/2, ẏ = −ay(x2 + y2)−1/2 + b

where a and b are positive parameters. The model represents the flight of a
projectile, with speed a and heading toward the origin, that is moved off course
by a constant force with strength b. Determine conditions on the parameters
that ensure the solution starting at the point (x, y) = (p, 0), for p > 0, reaches
the origin. Hint: Change to polar coordinates and study the phase portrait of
the differential equation on the cylinder. Explain your result geometrically. The
differential equation is not defined at the origin. Is this a problem?

The next two lemmas are used in the proof of the Poincaré Bendixson
theorem. The first lemma is a corollary of the Jordan curve theorem.

Lemma 1.187. If Σ is a section for the flow φt and if p ∈ R
2, then the

orbit through the point p intersects Σ in a monotone sequence; that is, if
φt1(p), φt2(p), and φt3(p) are on Σ and if t1 < t2 < t3, then φt2(p) lies
strictly between φt1(p) and φt3(p) on Σ or φt1(p) = φt2(p) = φt3(p).

Proof. The proof is left as an exercise. Hint: Reduce to the case where
t1, t2, and t3 correspond to consecutive crossing points. Then, consider the
curve formed by the union of {φt(p) : t1 ≤ t ≤ t2} and the subset of Σ
between φt1(p) and φt2(p). Draw a picture. �

Lemma 1.188. If Σ is a section for the flow φt and if p ∈ R
2, then ω(p)∩Σ

contains at most one point.

Proof. The proof is by contradiction. Suppose that ω(p) ∩ Σ contains at
least two points, x1 and x2. By rectification of the flow at x1 and at x2, that
is, by the rectification lemma (Lemma 1.120), it is easy to see that there are
sequences {φti(p)}∞

i=1 and {φsi
(p)}∞

i=1 in Σ such that limi→∞ φti
(p) = x1

and limi→∞ φsi(p) = x2. By the rectification lemma in Exercise 1.125,
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such sequences can be found in Σ. Indeed, we can choose the rectifying
neighborhood so that the image of the Poincaré section is a line segment
transverse to the rectified flow. In this case, it is clear that if an orbit
has one of its points in the rectifying neighborhood, then this orbit passes
through the Poincaré section.

By choosing a local coordinate on Σ, let us assume that Σ is an open
interval. Working in this local chart, there are open subintervals J1 at x1
and J2 at x2 such that J1∩J2 = ∅. Moreover, by the definition of limit sets,
there is an integer m such that φtm(p) ∈ J1; an integer n such that sn > tm
and φsn

(p) ∈ J2; and an integer � such that t� > sn and φt�
(p) ∈ J1. By

Lemma 1.187, the point φsn(p) must be between the points φtm
(p) and

φt�
(p) on Σ. But this is impossible because the points φtm

(p) and φt�
(p)

are in J1, whereas φsn(p) is in J2. �

We are now ready to prove the Poincaré–Bendixson theorem (Theo-
rem 1.174): If Ω is a nonempty compact ω-limit set of a flow in R

2, and
if Ω does not contain a rest point, then Ω is a periodic orbit.

Proof. Suppose that ω(p) is nonempty, compact, and contains no rest
points. Choose a point q ∈ ω(p). We will show first that the orbit through
q is closed.

Consider ω(q). Note that ω(q) ⊆ ω(p) and ω(q) is not empty. (Why?)
Let x ∈ ω(q). Since x is not a rest point, there is a section Σ at x and a
sequence on Σ consisting of points on the orbit through q that converges
to x. These points are in ω(p). But, by the last corollary, this is impossible
unless every point in this sequence is the point x. Since q is not a rest point,
this implies that q lies on a closed orbit Γ, as required. In particular, the
limit set ω(p) contains the closed orbit Γ.

To complete the proof we must show ω(p) ⊆ Γ. If ω(p) �= Γ, then we will
use the connectedness of ω(p) to find a sequence {pn}∞

n=1 ⊂ ω(p) \ Γ that
converges to a point z on Γ. To do this, consider the union A1 of all open
balls with unit radius centered at some point in Γ. The set A1 \ Γ must
contain a point in ω(p). If not, consider the union A1/2, (respectively A1/4)
of all open balls with radius 1

2 (respectively 1
4 ) centered at some point in

Γ. Then the set A1/4 together with the complement of the closure of A1/2
“disconnects” ω(p), in contradiction. By repeating the argument with balls
whose radii tend to zero, we can construct a sequence of points in ω(p) \ Γ
whose distance from Γ tends to zero. Using the compactness of ω(p), there
is a subsequence, again denoted by {pn}∞

n=1, in ω(p) \ Γ that converges to
a point z ∈ Γ.

Let U denote an open set at z such that the flow is rectified in a diffeo-
morphic image of U . There is some integer n such that pn ∈ U . But, by
using the rectification lemma, it is easy to see that the orbit through pn

has a point y of intersection with some Poincaré section Σ at z. Because
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pn is not in Γ, the points y and z are distinct elements of the set ω(p) ∩ Σ,
in contradiction to Lemma 1.188. �

Exercise 1.189. Suppose that γ is a periodic orbit of a smooth flow defined
on R

2. Use Zorn’s lemma to prove that γ surrounds a rest point of the flow. That
is, the bounded component of the plane with the periodic orbit removed contains
a rest point. Note: See Exercise 1.217 for an alternative proof.

Exercise 1.190. Use Exercise 1.189 to prove Brouwer’s fixed point theorem for
the closed unit disk D in R

2. Hint: First prove the result for a smooth function
f : D → D by considering the vector field f(x) − x, and then use the following
result: A continuous transformation of D is the uniform limit of smooth transfor-
mations [123, p. 253].

Exercise 1.191. Suppose that a closed ball in R
n is positively invariant under

the flow of an autonomous differential equation on R
n. Prove that the ball con-

tains a rest point or a periodic orbit. Hint: Apply Brouwer’s fixed point theorem
to the time-one map of the flow. Explain the differences between this result and
the Poincaré-Bendixson theorem.

Exercise 1.192. Construct an example of an (autonomous) differential equa-
tion defined on all of R

3 that has an (isolated) limit cycle but no rest points.

Exercise 1.193. Prove: A nonempty ω-limit set of an orbit of a gradient sys-
tem consists entirely of rest points.

Exercise 1.194. Is a limit cycle isolated from all other periodic orbits? Hint:
Consider planar vector fields of class C1 and those of class C ω—real analytic
vector fields. Study the Poincaré map on an associated transversal section.

The next theorem can often be used to show that no periodic orbits exist.

Proposition 1.195 (Dulac’s Criterion). Consider a smooth differential
equation on the plane

ẋ = g(x, y), ẏ = h(x, y).

If there is a smooth function B(x, y) defined on a simply connected region
Ω ⊆ R

n such that the quantity (Bg)x +(Bh)y is not identically zero and of
fixed sign on Ω, then there are no periodic orbits in Ω.

Proof. We will prove Bendixson’s criterion, which is the special case of
the theorem where B(x, y) ≡ 1 (see Exercise 1.198 for the general case). In
other words, we will prove that if the divergence of f := (g(x, y), h(x, y))
given by

div f(x, y) := gx(x, y) + hy(x, y)

is not identically zero and of fixed sign in a simply connected region Ω,
then there are no periodic orbits in Ω.
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Suppose that Γ is a closed orbit in Ω and let G denote the bounded
region of the plane bounded by Γ. Note that the line integral of the one form
g dy−h dx over Γ vanishes. (Why?) On the other hand, by Green’s theorem,
the integral can be computed by integrating the two-form (div f) dxdy over
G. Since, by the hypothesis, the divergence of f does not vanish, the integral
of the two-form over G does not vanish, in contradiction. Thus, no such
periodic orbit can exist. �

The function B mentioned in the last proposition is called a Dulac function.
We end this section with a result about global asymptotic stability in

the plane.

Theorem 1.196. Consider a smooth differential equation on the plane

ẋ = g(x, y), ẏ = h(x, y)

that has the origin as a rest point. Let J denote the Jacobian matrix for
the transformation (x, y) �→ (g(x, y), h(x, y)), and let φt denote the flow of
the differential equation. If the following three conditions are satisfied, then
the origin is globally asymptotically stable.

Condition 1. For each (x, y) ∈ R
2, the trace of J given by gx(x, y) +

hy(x, y) is negative.
Condition 2. For each (x, y) ∈ R

2, the determinant of J given by
gx(x, y)hy(x, y) − gy(x, y)hx(x, y) is positive.

Condition 3. For each (x, y) ∈ R
2, the forward orbit {φt(x, y) : 0 ≤

t < ∞} is bounded.

Proof. From the hypotheses on the Jacobian matrix, if there is a rest point,
the eigenvalues of its associated linearization all have negative real parts.
Therefore, each rest point is a hyperbolic attractor; that is, the basin of
attraction of the rest point contains an open neighborhood of the rest point.
This fact follows from Hartman’s theorem (Theorem 1.47) or Theorem 2.61.
In particular, the origin is a hyperbolic attractor.

By the hypotheses, the trace of the Jacobian (the divergence of the vector
field) is negative over the entire plane. Thus, by Bendixson’s criterion, there
are no periodic solutions.

Let Ω denote the basin of attraction of the origin. Using the continuity
of the flow, it is easy to prove that Ω is open. In addition, it is easy to
prove that the boundary of Ω is closed and contains no rest points.

We will show that the boundary of Ω is positively invariant. If not, then
there is a point p in the boundary and a time T > 0 such that either φT (p)
is in Ω or such that φT (p) is in the complement of the closure of Ω in
the plane. In the first case, since φT (p) is in Ω, it is clear that p ∈ Ω, in
contradiction. In the second case, there is an open set V in the complement
of the closure of Ω that contains φT (p). The inverse image of V under the
continuous map φT is an open set U containing the boundary point p. By
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the definition of boundary, U contains a point q ∈ Ω. But then, q is mapped
to a point in the complement of the closure of Ω, in contradiction to the
fact that q is in the basin of attraction of the origin.

If the boundary of Ω is not empty, consider one of its points. The
(bounded) forward orbit through the point is precompact and contained
in the (closed) boundary of Ω. Thus, its ω-limit set is contained in the
boundary of Ω. Since the boundary of Ω contains no rest points, an ap-
plication of the Poincaré–Bendixson theorem shows this ω-limit set is a
periodic orbit, in contradiction. Thus, the boundary is empty and Ω is the
entire plane. �

Theorem 1.196 is a (simple) special case of the “Markus-Yamabe prob-
lem.” In fact, the conclusion of the theorem is true without assuming Con-
dition 3 (see [104]).

Exercise 1.197. Prove: If δ > 0, then the origin is a global attractor for the
system

u̇ = (u − v)3 − δu, v̇ = (u − v)3 − δv.

Also, the origin is a global attractor of orbits in the first quadrant for the system

u̇ = uv(u − v)(u + 1) − δu, v̇ = vu(v − u)(v + 1) − δv.

(Both of these first order systems are mentioned in [229].)

Exercise 1.198. [Dulac’s Criterion] (a) Prove Proposition 1.195. (b) Use Du-
lac’s criterion to prove a result due to Nikolai N. Bautin: The system

ẋ = x(a + bx + cy), ẏ = y(α + βx + γy)

has no limit cycles. Hint: Show that no periodic orbit crosses a coordinate axis.
Reduce the problem to showing that there are no limit cycles in the first quadrant.
Look for a Dulac function of the form xrys. After some algebra the problem
reduces to showing that a certain two-parameter family of lines always has a
member that does not pass through the (open) first quadrant.

Exercise 1.199. (a) Suppose that the system ẋ = f(x, y), ẏ = g(x, y) has a
periodic orbit Γ with period T and B is a positive real valued function defined on
some open neighborhood of Γ (as in Dulac’s Criterion). Prove that Γ is a periodic
orbit of the system ẋ = B(x, y)f(x, y), ẏ = B(x, y)g(x, y) with period

τ =
∫ T

0

1
B(x(t), y(t))

ds

where t �→ (x(t), y(t)) is a periodic solution of the original system whose orbit is
Γ. (b) How does the period of the limit cycle of system (1.46) change if its vector
field is multiplied by (1 + x2 + y2)α? Hint: The solution ρ of the initial value
problem

ρ̇ = B((x(ρ), y(ρ)), ρ(0) = 0

satisfies the identity ρ(t + τ) = ρ(t) + T .
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Exercise 1.200. [Uniqueness of Limit Cycles] (a) Prove the following proposi-
tion: If the divergence of a plane vector field is of fixed sign in an annular region
Ω of the plane, then the associated differential equation has at most one periodic
orbit in Ω. Hint: Use Green’s theorem. (b) Recall Dulac’s criterion from Exer-
cise 1.198 and note that if the divergence of the plane vector field F is not of fixed
sign in Ω, then it might be possible to find a nonnegative function B : Ω → R

such that the divergence of BF does have fixed sign in Ω. As an example, consider
the van der Pol oscillator,

ẋ = y, ẏ = −x + λ(1 − x2)y

and the “Dulac function” B(x, y) = (x2 + y2 − 1)−1/2. Show that van der Pol’s
system has at most one limit cycle in the plane. (The remarkable Dulac function
B was discovered by L. A. Cherkas.) (c) Can you prove that the van der Pol
oscillator has at least one limit cycle in the plane? Hint: Change coordinates
using the Liénard transformation

u = x, v = y − λ(x − 1
3
x3)

to obtain the Liénard system

u̇ = v + λ(u − 1
3
u3), v̇ = −u.

In Chapter 5 we will prove that the van der Pol system has a limit cycle if λ > 0
is sufficiently small. In fact, this system has a limit cycle for each λ > 0. For this
result, and for more general results about limit cycles of the important class of
planar systems of the form

ẋ = y − F (x), ẏ = −g(x),

see [101, p. 154], [123, p. 215], [141, p. 267], and [183, p. 250].

Exercise 1.201. (a) Prove that the system

ẋ = x − y − x3, ẏ = x + y − y3

has a unique globally attracting limit cycle on the punctured plane. (b) Find all
rest points of the system

ẋ = x − y − xn, ẏ = x + y − yn,

where n is a positive odd integer and determine their stability. (c) Prove that
the system has a unique stable limit cycle. (d) What is the limiting shape of the
limit cycle as n → ∞?

Exercise 1.202. Show there is a unique limit cycle for system (1.48) with
|µ| > 1 by proving the existence of a fixed point for a Poincaré map and by
proving that every limit cycle is stable. Hint: Recall the analysis of system (1.44)
and consider dv/dθ.

Exercise 1.203. Can a system of the form

ẋ = y, ẏ = f(x) − af ′(x)y,

where f is a smooth function and a is a parameter, have a limit cycle? Hint:
Consider a Liénard transformation.
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Exercise 1.204. Draw the phase portrait of the system

ẋ = y + 2x(1 − x2 − y2), ẏ = −x.

Exercise 1.205. [Rigid Body Motion] The Euler equations for rigid body mo-
tion are presented in Exercise 1.77. Recall that the momentum vector is given by
M = AΩ where A is a symmetric matrix and Ω is the angular velocity vector,
and Euler’s equation is given by Ṁ = M ×Ω. For ν a positive definite symmetric
matrix and F a constant vector, consider the differential equation

Ṁ = M × Ω + F − νM.

Here, the function M �→ νM represents viscous friction and F is the external
force (see [16]). Prove that all orbits of the differential equation are bounded,
and therefore every orbit has a compact ω-limit set.

Exercise 1.206. (a) Prove that the origin is a center for the system ẍ+ẋ2+x =
0. (b) Show that this system has unbounded orbits. (c) Describe the boundary
between the bounded and unbounded orbits?

Exercise 1.207. Draw the phase portrait for the system ẍ = x2 − x3. Is the
solution with initial conditions x(0) = 1

2 and ẋ(0) = 0 periodic?

Exercise 1.208. Draw the phase portrait of the Hamiltonian system ẍ + x −
x2 = 0. Give an explicit formula for the Hamiltonian and use it to justify the
features of the phase portrait.

Exercise 1.209. Let t �→ x(t) denote the solution of the initial value problem

ẍ + ẋ + x + x3 = 0, x(0) = 1, ẋ(0) = 0.

Determine lim
t→∞

x(t).

Exercise 1.210. Show that the system

ẋ = x − y − (x2 +
3
2
y2)x, ẏ = x + y − (x2 +

1
2
y2)y

has a unique limit cycle.

Exercise 1.211. Find the rest points in the phase plane of the differential
equation ẍ+(ẋ2 +x2 −1)ẋ+x = 0 and determine their stability. Also, show that
the system has a unique stable limit cycle.

Exercise 1.212. Determine the ω-limit set of the solution of the system

ẋ = 1 − x + y3, ẏ = y(1 − x + y)

with initial condition x(0) = 10, y(0) = 0.

Exercise 1.213. Show that the system

ẋ = −y + xy, ẏ = x +
1
2
(x2 − y2)

has periodic solutions, but no limit cycles.
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Exercise 1.214. Consider the van der Pol equation

ẍ + (x2 − ε)ẋ + x = 0,

where ε is a real parameter. How does the stability of the trivial solution change
with ε. Show that the van der Pol equation has a unique stable limit cycle for
ε = 1. What would you expect to happen to this limit cycle as ε shrinks to ε = 0.
What happens for ε < 0?

Exercise 1.215. Find an explicit nonzero solution of the differential equation

t2x2ẍ + ẋ = 0.

Define new variables u = 2(3tx2)−1/2, v = −4ẋ(3x3)−1/2 and show that

dv

du
=

3v(v − u2)
2u(v − u)

.

Draw the phase portrait of the corresponding first order system

u̇ = 2u(v − u), v̇ = 3v(v − u2).

Exercise 1.216. [Yorke’s Theorem] A theorem of James Yorke states that if
f : U ⊆ R

n → R
n is Lipschitz on the open set U with Lipschitz constant L and

Γ is a periodic orbit of ẋ = f(x) contained in U , then the period of Γ is larger
than 2π/L (see [238]). Use Yorke’s theorem to estimate a lower bound for the
period of the limit cycle solution of the system in Exercise 1.201 part (a). Note:
The period of the periodic orbit is approximately 7.5. Hint: Use the mean value
theorem and note that the norm of a matrix (with respect to the usual Euclidean
norm) is the square root of the spectral radius of the matrix transpose times the
matrix (that is; ‖A‖ =

√
ρ(AT A)).

Exercise 1.217. [Poincaré index] Let C be a simple closed curve not passing
through a rest point of the vector field X in the plane with components (f, g).
Define the Poincaré index of X with respect to C to be

I(X, C) =
1
2π

∫
C

d arctan
( g

f

)
;

it is the total change the angle (f(x, y), g(x, y)) makes with respect to the (posi-
tive) x-axis as (x, y) traverses C exactly once counter clockwise (see, for example,
[59] or [141]). (a) Prove: The index is an integer. (b) Prove: The index does not
change with a deformation of C (as long as the deformed curve does not pass
through a rest point). (c) Prove: If C is smooth and T is a continuous choice of
the tangent vector along this curve, then I(T, C) = 1. In particular, the index
of a vector field with respect to one of its closed orbits is unity. (d) The index
of a point with respect to X is defined to be the index of X with respect to an
admissible curve C that surrounds this point and no other rest point of X. Prove:
The index of a regular point (a point that is not a rest point) is zero. (e) Prove:
A periodic orbit surrounds at least one rest point.
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1.10 Review of Calculus

The basic definitions of the calculus extend easily to multidimensional
spaces. In fact, these definitions are essentially the same when extended
to infinite dimensional spaces. Thus, we will begin our review with the
definition of differentiation in a Banach space.

Definition 1.218. Let U be an open subset of a Banach space X, let Y
denote a Banach space, and let the symbol ‖ ‖ denote the norm in both
Banach spaces. A function f : U → Y is called (Fréchet) differentiable at
a ∈ U if there is a bounded linear operator Df(a) : X → Y , called the
derivative of f , such that

lim
h→0

1
‖h‖‖f(a + h) − f(a) − Df(a)h‖ = 0.

If f is differentiable at each point in U , then the function f is called differ-
entiable.

Using the notation of Definition 1.218, let L(X, Y ) denote the Banach
space of bounded linear transformations from X to Y , and note that the
derivative of f : U → Y is the function Df : U → L(X, Y ) given by
x �→ Df(x).

The following proposition is a special case of the chain rule.

Proposition 1.219. Suppose that U is an open subset of a Banach space
and f : U → Y . If f is differentiable at a ∈ U and v ∈ U , then

d

dt
f(a + tv)

∣∣
t=0 = Df(a)v.

Proof. The proof is obvious for v = 0. Assume that v �= 0 and consider
the scalar function given by

α(t) := ‖1
t
(f(a + tv) − f(a)) − Df(a)v)‖

=
1
|t| ‖f(a + tv) − f(a) − Df(a)tv‖

for t �= 0. It suffices to show that limt→0 α(t) = 0.
Choose ε > 0. Since f is differentiable at a, there is some δ > 0 such that

1
‖h‖‖f(a + h) − f(a) − Df(a)h‖ < ε

whenever 0 < ‖h‖ < δ. If |t| < δ‖v‖−1, then ‖tv‖ < δ and

1
|t|‖v‖‖f(a + tv) − f(a) − Df(a)tv‖ < ε.

In particular, we have that α(t) ≤ ‖v‖ε whenever |t| < δ‖v‖−1, as required.

�
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The following is a list of standard facts about the derivative; the proofs
are left as exercises. For the statements in the list, the symbols X, Y , Xi,
and Yi denote Banach spaces.

(i) If f : X → Y is differentiable at a ∈ X, then f is continuous at a.

(ii) If f : X → Y and g : Y → Z are both differentiable, then h = g ◦ f
is differentiable, and its derivative is given by the chain rule

Dh(x) = Dg(f(x))Df(x).

(iii) If f : X → Y1 × · · · × Yn is given by f(x) = (f1(x), . . . , fn(x)), and if
fi is differentiable for each i, then so is f and, in fact,

Df(x) = (Df1(x), . . . , Dfn(x)).

(iv) If the function f : X1×X2×· · ·×Xn → Y is given by (x1, . . . , xn) �→
f(x1, . . . , xn), then the ith partial derivative of f at a1, . . . , an ∈
X1 × · · ·×Xn is the derivative of the function g : Xi → Y defined by
g(xi) = f(a1, . . . , ai−1, xi, ai+1, . . . , an). This derivative is denoted
Dif(a). Of course, if f is differentiable, then its partial derivatives
all exist and, if we define h = (h1, . . . , hn), we have

Df(x)h =
n∑

i=1

Dif(x)hi.

Conversely, if all the partial derivatives of f exist and are continuous
in an open set

U ⊂ X1 × X2 × · · · × Xn,

then f is continuously differentiable in U .

(v) If f : X → Y is a bounded linear map, then Df(x) = f for all x ∈ X.

The Cr-norm of an r-times continuously differentiable function f : U →
Y , defined on an open subset U of X, is defined by

‖f‖r = ‖f‖0 + ‖Df‖0 + · · · ‖Drf‖0

where ‖ ‖0 denotes the usual supremum norm, as well as the operator
norms over U ; for example,

‖f‖0 = sup
u∈U

‖f(u)‖

and

‖Df‖0 = sup
u∈U

(
sup

‖x‖=1
‖Df(u)x‖

)
.
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Also, let us use Cr(U, Y ) to denote the set of all functions f : U → Y such
that ‖f‖r < ∞. Of course, the set Cr(U, Y ) is a Banach space of functions
with respect to the Cr-norm.

Although the basic definitions of differential calculus extend unchanged
to the Banach space setting, this does not mean that there are no new
phenomena in infinite dimensional spaces. The following examples and ex-
ercises illustrate some of the richness of the theory. The basic idea is that
functions can be defined on function spaces in ways that are not available
in the finite dimensional context. If such a function is defined, then its dif-
ferentiability class often depends on the topology of the Banach space in a
subtle manner.

Example 1.220. Let X = C([0, 1]) and define F : X → X by

F (g)(t) := sin g(t)

(see [57]). We have the following proposition: The function F is continu-
ously differentiable and

(DF (g)h)(t) = (cos g(t))h(t).

To prove it, let us first compute

|F (g + h)(t) − F (g)(t) − DF (g)h(t)|
= | sin(g(t) + h(t)) − sin g(t) − (cos g(t))h(t)|
= | sin g(t) cos h(t) + cos g(t) sinh(t) − sin g(t) − (cos g(t))h(t)|
= |(−1 + cos h(t)) sin g(t) + (−h(t) + sin h(t)) cos g(t)|
≤ ‖F (g)‖| − 1 + cos h(t)| + ‖ cos ◦g‖| − h(t) + sin h(t)|

≤ 1
2
(
‖F (g)‖ ‖h‖2 + ‖ cos ◦g‖ ‖h‖2).

This proves that F is differentiable.
The function DF : X → L(X, X) given by g �→ DF (g) is clearly contin-

uous, in fact,

‖DF (g1) − DF (g2)‖ = sup
‖h‖=1

‖DF (g1)h − DF (g2)h‖

= sup
‖h‖=1

sup
t

|(cos g1(t))h(t) − (cos g2(t))h(t)|

≤ sup
‖h‖=1

sup
t

|h(t)||g1(t) − g2(t)|

= ‖g1 − g2‖.

Thus F is continuously differentiable, as required.

Example 1.221. Let X := L2([0, 1]) and define F : X → X by

F (g)(t) = sin g(t).
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The function F is Lipschitz, but not differentiable.
To prove that F is Lipschitz, simply recall that | sin x − sin y| ≤ |x − y|

and estimate as follows:

‖F (g1) − F (g2)‖2 =
∫ 1

0
| sin g1(t) − sin g2(t)|2 dt

≤
∫ 1

0
|g1(t) − g2(t)|2 dt

≤ ‖g1 − g2‖2.

We will show that F is not differentiable at the origin. To this end, let
us suppose that F is differentiable at the origin with derivative DF (0). We
have that F (0) = 0, and, by Proposition (1.219), all directional derivatives
of F at the origin exist. Therefore, it follows that

lim
s→0

F (sg) − F (0)
s

= lim
s→0

F (sg)
s

= DF (0)g

for all g ∈ L2([0, 1]).
To reach a contradiction, we will first prove that DF (0) is the identity

map on L2([0, 1]). To do this, it suffices to show that DF (0)g = g for every
continuous function g ∈ L2([0, 1]). Indeed, this reduction follows because
the (equivalence classes of) continuous functions are dense in L2([0, 1]).

Let us assume that g is continuous and square integrable. We will show
that the directional derivative of F at the origin in the direction g exists
and is equal to g. In other words, we will show that

lim
s→0

F (sg)
s

= g;

that is,

lim
s→0

∫ 1

0

∣∣∣ sin(sg(t))
s

− g(t)
∣∣∣2 ds = 0. (1.50)

Indeed, let us define

ψs(t) :=
∣∣∣ sin(sg(t))

s
− g(t)

∣∣∣2, s > 0

and note that

ψs(t) ≤
(∣∣∣ sin(sg(t))

s

∣∣∣ + |g(t)|
)2

.

Because | sin x| ≤ |x| for all x ∈ R, we have the estimates

ψs(t) ≤
( |sg(t)|

|s| + |g(t)|
)2

≤ 4|g(t)|2.
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Moreover, the function t �→ 4|g(t)|2 is integrable, and therefore the function
t �→ ψs(t) is dominated by an integrable function.

If t is fixed, then
lim
s→0

ψs(t) = 0.

To prove this fact, let us observe that |g(t)| < ∞. If g(t) = 0, then ψs(t) = 0
for all s and the result is clear. If g(t) �= 0, then

ψs(t) =
∣∣∣g(t)

( sin(sg(t))
sg(t)

− 1
)∣∣∣2

=
∣∣∣g(t)

∣∣∣2∣∣∣ sin(sg(t))
sg(t)

− 1
∣∣∣2

and again ψs(t) → 0 as s → 0.
We have proved that the integrand of the integral in display (1.50) is

dominated by an integrable function and converges to zero. Hence, the
required limit follows from the dominated convergence theorem and, more-
over, DF (0)g = g for all g ∈ L2([0, 1]).

Because DF (0) is the identity map, it follows that

lim
h→0

‖F (h) − h‖
‖h‖ = 0.

But let us consider the sequence of functions {hn}∞
n=1 ⊂ L2([0, 1]) defined

by

hn(t) :=
{

π/2, 0 ≤ t ≤ 1/n,
0, t > 1/n.

Since

‖hn‖ =
(∫ 1

0
(hn(t))2dt

)1/2
=

( 1
n

π2

4

)1/2
=

1√
n

π

2
,

it follows that hn → 0 as n → ∞. Also, let us note that

‖F (hn) − hn‖ =
(∫ 1

0
| sin hn(t) − hn(t)|2dt

)1/2

=
( 1

n

∣∣∣1 − π

2

∣∣∣2)1/2

and therefore

lim
n→∞

‖F (hn) − hn‖
‖hn‖ = lim

n→∞

1√
n
(1 − π

2 )
1√
n

π
2

=
1 − π

2
π
2

�= 0.

This contradiction proves that F is not differentiable at the origin. Is F
differentiable at any other point?
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Exercise 1.222. Let GL(Rn) denote the set of invertible linear transforma-
tions of R

n and let f : GL(Rn) → GL(Rn) be the function given by f(A) = A−1.
Prove that f is differentiable and compute its derivative.

Exercise 1.223. Consider the evaluation map

eval : Cr(U, Y ) × U → Y

defined by (f, u) �→ f(u). Prove that eval is a Cr map. Also, compute its deriva-
tive.

Exercise 1.224. [Omega Lemma] (a) Suppose that f : R → R is a C2 function
such that the quantity supx∈R

|f ′′(x)| is bounded. Prove that F : X → X as in
Example 1.221 is C1. (b) The assumption that f is C2 can be replaced by the
weaker hypothesis that f is C1. This is a special case of the omega lemma (see [2,
p. 101]). If M is a compact topological space, U is an open subset of a Banach
space X, and g is in Cr(U, Y ) where Y is a Banach space and r ≥ 1, then the
map Ωg : C0(M, U) → C0(M, Y ) given by Ωg(f) = g ◦ f is Cr and its derivative
is given by

(DΩg(f)h)(m) = Dg(f(m))h(m).

Prove the omega lemma.

1.10.1 The Mean Value Theorem
The mean value theorem for functions of several variables is important. Let
us begin with a special case.

Theorem 1.225. Suppose that [a, b] is a closed interval, Y is a Banach
space, and f : [a, b] → Y is a continuous function. If f is differentiable
on the open interval (a, b) and there is some number M > 0 such that
‖f ′(t)‖ ≤ M for all t ∈ (a, b), then

‖f(b) − f(a)‖ ≤ M(b − a).

Proof. Let ε > 0 be given and define φ : [a, b] → R by

φ(t) = ‖f(t) − f(a)‖ − (M + ε)(t − a).

Clearly, φ is a continuous function such that φ(a) = 0. We will show that
φ(b) ≤ ε.

Define S := {t ∈ [a, b] : φ(t) ≤ ε}. Since φ(a) = 0, we have that a ∈ S.
In particular S �= ∅. By the continuity of φ, there is some number c such
that a < c < b and [a, c) ⊆ S. Moreover, since φ is continuous φ(t) → φ(c)
as t → c. Thus, since φ(t) ≤ ε for a ≤ t < c, we must have φ(c) ≤ ε and, in
fact, [a, c] ⊆ S.

Consider the supremum c∗ of the set of all c such that a ≤ c ≤ b and
[a, c] ⊆ S. Let us show that c∗ = b. If c∗ < b, then consider the derivative
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of f at c∗ and note that because

lim
‖h‖→0

‖f(c∗ + h) − f(c∗) − f ′(c∗)h‖
‖h‖ = 0,

there is some h such that c∗ < c∗ + h < b and

‖f(c∗ + h) − f(c∗) − f ′(c∗)h‖ ≤ ε‖h‖.

Set d = c∗ + h and note that

‖f(d) − f(c∗)‖ ≤ ‖f(c∗ + h) − f(c∗) − f ′(c∗)h‖ + ‖f ′(c∗)h‖
≤ ε‖h‖ + M‖h‖
≤ (ε + M)(d − c∗).

Moreover, since

‖f(d) − f(a)‖ ≤ ‖f(d) − f(c∗)‖ + ‖f(c∗) − f(a)‖
≤ (ε + M)(d − c∗) + (M + ε)(c∗ − a) + ε

≤ (ε + M)(d − a) + ε,

we have that
‖f(d) − f(a)‖ − (ε + M)(d − a) ≤ ε,

and, as a result, d ∈ S, in contradiction to the fact that c∗ is the supremum.
Thus, c∗ = b, as required.

Use the equality c∗ = b to conclude that

‖f(b) − f(a)‖ ≤ (ε + M)(b − a) + ε

≤ M(b − a) + ε(1 + (b − a))

for all ε > 0. By passing to the limit as ε → 0, we obtain the inequality

‖f(b) − f(a)‖ ≤ M(b − a),

as required. �

Theorem 1.226 (Mean Value Theorem). Suppose that f : X → Y is
differentiable on an open set U ⊆ X with a, b ∈ U and a + t(b − a) ∈ U for
0 ≤ t ≤ 1. If there is some M > 0 such that

sup
0≤t≤1

‖Df(a + t(b − a))‖ ≤ M,

then
‖f(b) − f(a)‖ ≤ M‖b − a‖.
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Proof. Define g(t) := f(a + t(b − a)). Clearly, g is differentiable on [0, 1]
and, by the chain rule, g′(t) = Df(a + t(b − a))(b − a). In particular,

‖g′(t)‖ ≤ ‖Df(a + t(b − a))‖‖b − a‖ ≤ M‖b − a‖.

Here, g : [0, 1] → Y and ‖g′(t)‖ ≤ M‖b − a‖ for 0 ≤ t ≤ 1. By the previous
theorem,

‖g(1) − g(0)‖ ≤ M‖b − a‖,

that is,
‖f(b) − f(a)‖ ≤ M‖b − a‖. �

1.10.2 Integration in Banach Spaces
This section is a brief introduction to integration on Banach spaces follow-
ing the presentation in [140]. As an application, we will give an alternative
proof of the mean value theorem and a proof of a version of Taylor’s theo-
rem.

Let I denote a closed interval of real numbers and X a Banach space with
norm ‖ ‖. A simple function f : I → X is a function with the following
property: There is a finite cover of I consisting of disjoint subintervals such
that f restricted to each subinterval is constant. Here, each subinterval can
be open, closed, or half open.

A sequence {fn}∞
n=1 of not necessarily simple functions, each mapping I

to X, converges uniformly to a function f : I → X if for each ε > 0 there
is an integer N > 0 such that ‖fn(t) − fm(t)‖ < ε whenever n, m > N and
t ∈ I.

Definition 1.227. A regulated function is a uniform limit of simple func-
tions.

Lemma 1.228. Every continuous function f : I → X is regulated.

Proof. The function f is uniformly continuous. To see this, consider F :
I × I → X defined by F (x, y) = f(y)−f(x) and note that F is continuous.
Since the diagonal D = {(x, y) ∈ I × I : x = y} is a compact subset of
I × I (Why?), its image F (D) is compact in X. Hence, for each ε > 0,
a finite number of ε-balls in X cover the image of D. Taking the inverse
images of the elements of some such covering, we see that there is an open
cover V1, . . . , Vn of the diagonal in I × I such that if (x, y) ∈ Vi, then
‖F (x, y)‖ < ε. For each point (x, x) ∈ D, there is a ball centered at (x, x)
and contained in I × I that is contained in some Vi. By compactness, a
finite number of such balls cover D. Let δ denote the minimum radius of
the balls in this finite subcover. If |x − y| < δ, then (x, y) ∈ Bδ(x, x) and
in fact ‖(x, y) − (x, x)‖ = |y − x| < δ. Thus, (x, y) ∈ Vi for some i in
the set {1, . . . , n}, and, as a result, we have that ‖F (x, y)‖ < ε; that is,
‖f(y) − f(x)‖ = ‖F (x, y)‖ < ε, as required.
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Let us suppose that I = {x ∈ R : a ≤ x ≤ b}. For each natural number
n, there is some δ > 0 such that if |x − y| < δ, then ‖f(x) − f(y)‖ < 1

n .
Let us define a corresponding simple function fn by fn(x) = f(a) for a ≤
x ≤ a + δ

2 , fn(x) = f(a + δ
2 ) for a + δ

2 < x ≤ a + δ, fn(x) = f(a + δ) for
a + δ < x ≤ a + 3δ

2 , and so on until a + k δ
2 ≥ b. This process terminates

after a finite number of steps because I has finite length. Also, we have the
inequality ‖fn(x) − f(x)‖ < 1

n for all x ∈ I. Thus, the sequence of simple
functions {fn}∞

n=1 converges uniformly to f . �

Definition 1.229. The integral of a simple function f : I → X over the
interval I = [a, b] is defined to be∫ b

a

f(t) dt :=
n∑

j=1

µ(Ij)vj

where I1, . . . , In is a partition of I, f |Ij (t) ≡ vj , and µ(Ij) denotes the
length of the interval Ij .

Proposition 1.230. If f is a simple function on I, then the integral of f
over I is independent of the choice of the partition of I.

Proof. The proof is left as an exercise. �

Proposition 1.231. If f is a regulated function defined on the interval
I = [a, b], and if {fn}∞

n=1 is a sequence of simple functions converging
uniformly to f , then the sequence defined by n �→

∫ b

a
fn(t) dt converges

in X. Moreover, if in addition {gn}∞
n=1 is a sequence of simple functions

converging uniformly to f , then

lim
n→∞

∫ b

a

fn(t) dt = lim
n→∞

∫ b

a

gn(t) dt.

Proof. We will show that the sequence n �→
∫ b

a
fn(t) dt is Cauchy. For this,

consider the quantity

‖
∫ b

a

fn(t) dt −
∫ b

a

fm(t) dt‖.

Using χL to denote the characteristic function on the interval L, we have
that, for some partitions of I and vectors {vi} and {wi},

fn(x) =
k∑

i=1

χIi(x)vi, fm(x) =
l∑

i=1

χJi(x)wi.

The partitions I1, . . . , Ik and J1, . . . , Jl have a common refinement; that
is, there is a partition of the interval I such that each subinterval in the
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new partition is contained in one of the subintervals I1, . . . , Ik, J1, . . . , Jl.
Let this refinement be denoted by K1, . . . , Kp and note that

fn(x) =
p∑

i=1

χKi
(x)αi, fm(x) =

p∑
i=1

χKi
(x)βi.

Also, we have the inequality

‖
∫ b

a

fn(t) dt −
∫ b

a

fm(t) dt‖ = ‖
p∑

i=1

µ(Ki)αi −
p∑

i=1

µ(Ki)βi‖

≤
p∑

i=1

µ(Ki)‖αi − βi‖.

There are points ti ∈ Ki so that
p∑

i=1

µ(Ki)‖αi − βi‖ =
p∑

i=1

µ(Ki)‖fn(ti) − fm(ti)‖

and, because
∑p

i=1 µ(Ki) = b − a,

p∑
i=1

µ(Ki)‖fn(ti) − fm(ti)‖ ≤ (b − a) max
i

‖fn(ti) − fm(ti)‖

≤ (b − a) max
x∈I

‖fn(x) − fm(x)‖.

By combining the previous inequalities and using the fact that the sequence
{fn}∞

n=1 converges uniformly, it follows that the sequence n �→
∫ b

a
fn(t) dt

is a Cauchy sequence and thus converges to an element of X.
Suppose that {gn}∞

n=1 is a sequence of simple functions that converges
uniformly to f , and let us suppose that∫ b

a

fn(t) dt → F,

∫ b

a

gn(t) dt → G.

We have the estimates

‖F − G‖ ≤ ‖F −
∫ b

a

fn(t) dt‖ + ‖
∫ b

a

fn dt −
∫ b

a

gn dt‖ + ‖
∫ b

a

gn dt − G‖

and

‖
∫ b

a

fn dt −
∫ b

a

gn dt‖ ≤ (b − a) max
x∈I

‖fn(x) − gn(x)‖

≤ (b − a) max
x∈I

(‖fn(x) − f(x)‖ + ‖f(x) − gn(x)‖).

The desired result, the equality F = G, follows by passing to the limit on
both sides of the previous inequality. �
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In view of the last proposition, we have the following basic definition:

Definition 1.232. Let f be a regulated function on the interval [a, b] and
{fn}∞

n=1 a sequence of simple functions converging uniformly to f in X.
The integral of f denoted

∫ b

a
f(t) dt is defined to be the limit of the sequence

n �→
∫ b

a
fn dt in X.

Proposition 1.233. The functional f �→
∫ b

a
f(t) dt, defined on the space

of regulated functions, is linear.

Proof. If f and g are regulated on the interval [a, b], with sequences of
simple functions fn → f and gn → g, then cfn + dgn → cf + dg and

∫ b

a

(cf + dg)(t) dt = lim
n→∞

∫ b

a

(cfn + dgn)(t) dt.

But, for these simple functions, after a common refinement,

∫ b

a

cfn + dgn dt =
n∑

i=1

µ(Ii)(cvi + dwi) = c

n∑
i=1

µ(Ii)vi + d

n∑
i=1

µ(Ii)wi. �

Proposition 1.234. If λ : X → R is a continuous linear functional and
if f : I → X is regulated, then the composition λf := λ ◦ f : I → R is
regulated, and

λ

∫ b

a

f(t) dt =
∫ b

a

(λf)(t) dt.

Proof. If {fn}∞
n=1 is a sequence of simple functions converging uniformly

to f and

fn(x) =
∑

i

χIi(x)vi,

then

λ(fn(x)) =
∑

i

χIi
(x)λ(vi)

and, in particular, λfn is a simple function for each n. Moreover, λ ◦ f is
regulated by λfn.

A continuous linear functional, by definition, has a bounded operator
norm. Therefore, we have that

|λfn(x) − λf(x)| = |λ(fn(x) − f(x))|
≤ ‖λ‖‖fn(x) − f(x)‖
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and∣∣∣λ ∫ b

a

f(t) dt −
∫ b

a

λf(t) dt
∣∣∣

≤
∣∣∣λ ∫ b

a

f(t) dt − λ

∫ b

a

fn(t) dt
∣∣∣ +

∣∣∣λ ∫ b

a

fn(t) dt −
∫ b

a

λf(t) dt
∣∣∣

≤ ‖λ‖‖
∫ b

a

f(t) dt −
∫ b

a

fn(t) dt‖ +
∣∣∣ ∫ b

a

λfn(t) dt −
∫ b

a

λf(t) dt
∣∣∣.

The result follows by passing to the limit as n → ∞. �

Proposition 1.235. If f : [a, b] → X is regulated, then

‖
∫ b

a

f(t) dt‖ ≤ (b − a) sup
t∈[a,b]

‖f(t)‖. (1.51)

Proof. Note that the estimate (1.51) is true for simple functions; in fact,
we have

‖
∑

µ(Ii)vi‖ ≤
∑

µ(Ii) sup |vi| ≤ (b − a) sup |vi|.

Because f is regulated, there is a sequence {fn}∞
n=1 of simple functions

converging to f and, using this sequence, we have the following estimates:

‖
∫ b

a

f(t) dt‖ ≤ ‖
∫ b

a

f(t) dt −
∫ b

a

fn(t) dt‖ + ‖
∫ b

a

fn(t) dt‖

≤ ‖
∫ b

a

f(t) dt −
∫ b

a

fn(t) dt‖ + (b − a) sup
x

‖fn(x)‖

≤ ‖
∫ b

a

f(t) dt −
∫ b

a

fn(t) dt‖

+(b − a) sup
x

‖fn(x) − f(x)‖ + (b − a) sup
x

‖f(x)‖.

The desired result is obtained by passing to the limit as n → ∞. �

Let us now apply integration theory to prove the mean value theorem. We
will use the following proposition.

Proposition 1.236. Suppose that U is an open subset of X. If f : U → Y
is a smooth function, and x + ty ∈ U for 0 ≤ t ≤ 1, then

f(x + y) − f(x) =
∫ 1

0
Df(x + ty)y dt. (1.52)

Proof. Let λ : Y → R be a continuous linear functional and consider the
function F : [0, 1] → R given by

F (t) = λ(f(x + ty)) =: λf(x + ty).
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The functional λ is C1 because it is linear. Also, the composition of smooth
maps is smooth. Thus, F is C1.

By the fundamental theorem of calculus, we have that

F (1) − F (0) =
∫ 1

0
F ′(t) dt,

or, equivalently,

λ(f(x + y) − f(x)) = λf(x + y) − λf(x)

=
∫ 1

0
λ(Df(x + ty)y) dt

= λ

∫ 1

0
Df(x + ty)y dt.

Here, f(x + y) − f(x) and
∫ 1
0 Df(x + ty)y dt are elements of Y , and λ has

the same value on these two points. Moreover, by our construction, this
is true for all continuous linear functionals. Thus, it suffices to prove the
following claim: If u, v are in X and λ(u) = λ(v) for all continuous linear
functionals, then u = v. To prove the claim, set w = u − v and note that
Z := {tw : t ∈ R} is a closed subspace of Y . Moreover, λ0 : Z → R

defined by λ0(tw) = t‖w‖ is a linear functional on Z such that ‖λ0(tw)‖ =
|t|‖w‖ = ‖tw‖. Thus, ‖λ0‖ = 1, and λ0 is continuous. By the Hahn–Banach
theorem, λ0 extends to a continuous linear functional λ on all of Y . But for
this extension we have, λ(w) = λ(1 · w) = ‖w‖ = 0. Thus, we have w = 0,
and u = v. �

With the same hypotheses as in Proposition 1.236, the mean value the-
orem (Theorem 1.226) states that if x + t(z − x) ∈ U for 0 ≤ t ≤ 1, then

‖f(z) − f(x)‖ ≤ ‖z − x‖ sup
t∈[0,1]

‖Df(x + t(z − x))‖. (1.53)

Proof. By Proposition 1.236 we have that

‖f(z) − f(x)‖ = ‖
∫ 1

0
Df(x + t(z − x))(z − x) dt‖.

Also, the function t �→ Df(x + t(z − x))(z − x) is continuous. Thus, the
desired result is an immediate consequence of Lemma 1.228 and Proposi-
tion 1.235. �

The next theorem is a special case of Taylor’s theorem (see [2, p. 93] and
Exercise 1.238).

Theorem 1.237 (Taylor’s Theorem). Suppose that U is an open subset
of X. If f : U → Y is C1 and x + th ∈ U for 0 ≤ t ≤ 1, then

f(x + h) = f(x) + Df(x)h +
∫ 1

0
(Df(x + th)h − Df(x)h) dt.
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Proof. By Proposition 1.236 we have

f(x + h) = f(x) +
∫ 1

0
Df(x + th)h dt

= f(x) +
∫ 1

0
((Df(x + th)h − Df(x)h) + Df(x)h) dt

= f(x) + Df(x)h +
∫ 1

0
(Df(x + th)h − Df(x)h) dt,

as required. �

Exercise 1.238. Prove the following generalization of Theorem 1.237. Suppose
that U is an open subset of X. If f : U → Y is Cr and x + th ∈ U for 0 ≤ t ≤ 1,
then

f(x + h) = f(x) + Df(x)h + D2f(x)h2 + · · · + Drf(x)hr

+
∫ 1

0

(1 − t)r−1

(r − 1)!
(Drf(x + th)hr − Drf(x)hr) dt.

1.11 Contraction

A map transforming a complete metric space into itself that moves each
pair of points closer together has a fixed point. This contraction princi-
ple has far reaching consequences including the existence and uniqueness
of solutions of differential equations and the existence and smoothness of
invariant manifolds. The basic theory is introduced in this section.

1.11.1 The Contraction Mapping Theorem
In this section, let us suppose that (X, d) is a metric space. A point x0 ∈ X
is a fixed point of a function T : X → X if T (x0) = x0. The fixed point x0
is called globally attracting if limn→∞ Tn(x) = x0 for each x ∈ X.

Definition 1.239. Suppose that T : X → X, and λ is a real number such
that 0 ≤ λ < 1. The function T is called a contraction (with contraction
constant λ) if

d(T (x), T (y)) ≤ λd(x, y)

whenever x, y ∈ X.

The next theorem is fundamental; it states that a contraction, viewed as
a dynamical system, has a globally attracting fixed point.
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Theorem 1.240 (Contraction Mapping Theorem). If the function T
is a contraction on the complete metric space (X, d) with contraction con-
stant λ, then T has a unique fixed point x0 ∈ X. Moreover, if x ∈ X, then
the sequence {Tn(x)}∞

n=0 converges to x0 as n → ∞ and

d(Tn(x), x0) ≤ λn

1 − λ
d(T (x), x).

Proof. Let us prove first that fixed points of T are unique. Suppose that
T (x0) = x0 and T (x1) = x1. Because T is a contraction, d(T (x0), T (x1)) ≤
λd(x0, x1), and, because x0 and x1 are fixed points, d(T (x0), T (x1)) =
d(x0, x1). Thus, we have that

d(x0, x1) ≤ λd(x0, x1).

If x0 �= x1, then d(x0, x1) �= 0 and therefore λ ≥ 1, in contradiction.
To prove the existence of a fixed point, let x ∈ X and consider the

corresponding sequence of iterates {Tn(x)}∞
n=1. By repeated applications

of the contraction property, it follows that

d(Tn+1(x), Tn(x)) ≤ λd(Tn(x), Tn−1(x)) ≤ · · · ≤ λnd(T (x), x).

Also, by using the triangle inequality together with this result, we obtain
the inequalities

d(Tn+p(x), Tn(x)) ≤ d(Tn+p(x), Tn+p−1(x)) + · · · + d(Tn+1(x), Tn(x))
≤ (λn+p−1 + · · · + λn)d(T (x), x)
≤ λn(1 + λ + · · · + λp−1)d(T (x), x)

≤ λn

1 − λ
d(T (x), x). (1.54)

Since 0 ≤ λ < 1, the sequence {λn}∞
n=1 converges to zero, and therefore

{Tn(x)}∞
n=1 is a Cauchy sequence. Thus, this sequence converges to some

point x0 ∈ X.
We will prove that x0 is a fixed point of the map T . Let us first note

that, because the sequences {Tn+1(x)}∞
n=0 and {Tn(x)}∞

n=1 are identical,
limn→∞ Tn+1(x) = x0. Also, by the contraction property, it follows that T
is continuous and

d(Tn+1(x), T (x0)) = d(T (Tn(x)), T (x0)) ≤ λd(Tn(x), x0).

Therefore, using the continuity of T , we have the required limit

lim
n→∞ Tn+1(x) = lim

n→∞ T (Tn(x)) = T (x0).

To prove the estimate in the theorem, pass to the limit as p → ∞ in the
inequality (1.54) to obtain

d(x0, T
n(x)) ≤ λn

1 − λ
d(T (x), x). �
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Exercise 1.241. Suppose that X is a set and n is a positive integer. Prove :
If T is a function, T : X → X, and if T n has a unique fixed point, then T has a
unique fixed point.

Exercise 1.242. Suppose that g ∈ C[0, ∞), where C[α, ∞) denotes the Ba-
nach space of continuous functions that are bounded in the supremum norm on
the interval [α, ∞) and

∫ ∞
1 t|g(t)| dt < ∞. Prove that if α > 0 is sufficiently large,

then the integral equation

x(t) = 1 +
∫ ∞

t

(t − s)g(s)x(s) ds

has a unique solution in C[α, ∞). (b) Relate the result of part (a) to the differ-
ential equation ẍ = −g(t)x and the existence of its solutions with specified limits
as t → ∞ (cf. [157, p. 132]).

1.11.2 Uniform Contraction
In this section we will consider contractions depending on parameters and
prove a uniform version of the contraction mapping theorem.

Definition 1.243. Suppose that A is a set, T : X × A → X, and λ ∈ R is
such that 0 ≤ λ < 1. The function T is a uniform contraction if

d(T (x, a), T (y, a)) ≤ λd(x, y)

whenever x, y ∈ X and a ∈ A.

For uniform contractions in a Banach space where the metric is defined
in terms of the Banach space norm by d(x, y) = ‖x − y‖, we have the
following result (see [57]).

Theorem 1.244 (Uniform Contraction Theorem). Suppose that X
and Y are Banach spaces, U ⊆ X and V ⊆ Y are open subsets, Ū denotes
the closure of U , the function T : Ū ×V → Ū is a uniform contraction with
contraction constant λ, and, for each y ∈ V , let g(y) denote the unique
fixed point of the contraction x �→ T (x, y) in Ū . If k is a non-negative in-
teger and T ∈ Ck(Ū × V, X), then g : V → X is in Ck(V, X). Also, if T is
real analytic, then so is g.

Proof. We will prove the theorem for k = 0, 1. The proof for k > 1 uses an
induction argument. The analytic case requires a proof of the convergence
of the Taylor series of g.

By the definition of g given in the statement of the theorem, the identity
T (g(y), y) = g(y) holds for all y ∈ V . If k = 0, then

‖g(y + h) − g(y)‖ = ‖T (g(y + h), y + h) − T (g(y), y)‖

≤ ‖T (g(y + h), y + h) − T (g(y), y + h)‖
+ ‖T (g(y), y + h) − T (g(y), y)‖

≤ λ‖g(y + h) − g(y)‖ + ‖T (g(y), y + h) − T (g(y), y)‖,
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and therefore

‖g(y + h) − g(y)‖ ≤ 1
1 − λ

‖T (g(y), y + h) − T (g(y), y)‖.

But T is continuous at the point (g(y), y). Thus, if ε > 0 is given, there is
some δ > 0 such that

‖T (g(y), y + h) − T (g(y), y)‖ < ε whenever ‖h‖ < δ.

In other words, g is continuous, as required.
Suppose that k = 1 and consider the function g : V → Ū given by

g(y) = T (g(y), y). We will prove that g is C1.
The first observation is simple. If g is C1, then, by the chain rule,

Dg(y) = Tx(g(y), y)Dg(y) + Ty(g(y), y).

In other words, if Dg(y) exists, we expect it to be a solution of the equation

z = Tx(g(y), y)z + Ty(g(y), y). (1.55)

We will prove that, for each y ∈ V , the mapping

z �→ Tx(g(y), y)z + Ty(g(y), y),

on the Banach space of bounded linear transformations from Y to X, is a
contraction. In fact, if z1 and z2 are bounded linear transformations from
Y to X, then

‖Tx(g(y), y)z1 + Ty(g(y), y) − (Tx(g(y), y)z2 + Ty(g(y), y))‖
≤ ‖Tx(g(y), y)‖‖z1 − z2‖.

Thus, the map is a contraction whenever ‖Tx(g(y), y)‖ < 1. In fact, as we
will soon see, ‖Tx(g(y), y)‖ ≤ λ. Once this inequality is proved, it follows
from the contraction principle that for each y ∈ V the equation (1.55) has
a unique solution z(y). The differentiability of the the function y �→ g(y) is
then proved by verifying the limit

lim
‖h‖→0

‖g(y + h) − g(y) − z(y)h‖
‖h‖ = 0. (1.56)

To obtain the required inequality ‖Tx(g(y), y)‖ ≤ λ, note that T is C1.
In particular, the partial derivative Tx is a continuous function and

lim
‖h‖→0

‖T (x + h, y) − T (x, y) − Tx(x, y)h‖
‖h‖ = 0.
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Let ξ ∈ X be such that ‖ξ‖ = 1 and note that for each ε > 0, if we set
h = εξ, then we have

‖Tx(x, y)ξ‖ = ‖1
ε
Tx(x, y)h‖

≤ 1
ε

(
‖T (x + h, y) − T (x, y) − Tx(x, y)h‖

+ ‖T (x + h, y) − T (x, y)‖
)

≤ ‖T (x + h, y) − T (x, y) − Tx(x, y)h‖
‖h‖ +

λ‖h‖
‖h‖ .

Passing to the limit as ε → 0, we obtain ‖Tx(x, y)ξ‖ ≤ λ, as required.
To prove (1.56), set γ = γ(h) := g(y + h) − g(y). Since, g(y) is a fixed

point of the contraction mapping T , we have

γ = T (g(y) + γ, y + h) − T (g(y), y).

Set

∆ := T (g(y) + γ, y + h) − T (g(y), y) − Tx(g(y), y)γ − Ty(g(y), y)h

and note that

γ = T (g(y) + γ, y + h) − T (g(y), y) − Tx(g(y), y)γ
−Ty(g(y), y)h + Tx(g(y), y)γ + Ty(g(y), y)h

= Tx(g(y), y)γ + Ty(g(y), y)h + ∆.

Also, since T is C1, we have for each ε > 0 a δ > 0 such that ‖∆‖ <
ε(‖γ‖ + ‖h‖) whenever ‖γ‖ < δ and ‖h‖ < δ.

The function h �→ γ(h) is continuous. This follows from the first part of
the proof since T ∈ C0. Thus, we can find δ1 > 0 so small that δ1 < δ and
‖γ(h)‖ < δ whenever ‖h‖ < δ1, and therefore

‖∆(γ(h), h)‖ ≤ ε(‖γ(h)‖ + ‖h‖) whenever ‖h‖ < δ1.

For ‖h‖ < δ1, we have

‖γ(h)‖ = ‖Tx(g(y), y)γ + Ty(g(y), y)h + ∆(γ, h)‖

≤ λ‖γ‖ + ‖Ty(g(y), y)‖‖h‖ + ε(‖γ(h)‖ + ‖h‖)

and, as a result,

(1 − λ − ε)‖γ(h)‖ ≤ (‖Ty(g(y), y)‖ + ε)‖h‖.

If we take ε < 1 − λ, then

‖γ(h)‖ ≤ 1
1 − λ − ε

(‖Ty(g(y), y)‖ + ε)‖h‖ := ψ‖h‖,
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and it follows that

‖∆(γ(h), h)‖ ≤ ε(1 + ψ)‖h‖, ‖h‖ < δ1, 0 < ε < 1 − λ.

Finally, recall equation (1.55),

z = Tx(g(y), y)z + Ty(g(y), y),

and note that

(I − Tx(g(y), y))(γ(h) − z(y)h) = γ(h) − Tx(g(y), y)γ(h) − Ty(g(y), y)h
= ∆(γ(h), h).

Also, since ‖Tx(g(y), y)‖ < λ < 1, we have

(I − Tx(g(y), y))−1 = I +
∞∑

j=1

T j
x

and

‖(I − Tx(g(y), y))−1‖ ≤ 1
1 − ‖Tx‖ ≤ 1

1 − λ
.

This implies the inequality

‖γ(h) − z(y)h‖ ≤ ε

1 − λ
(1 + ψ)‖h‖,

and the limit (1.56) follows.
By an application of the first part of the proof about solutions of contrac-

tions being continuously dependent on parameters, y �→ z(y) is continuous.
This completes the proof of the theorem for the case k = 1. �

Exercise 1.245. Let C[0, ∞) denote the Banach space of continuous functions
on the interval [0, ∞) that are bounded in the supremum norm and E [0, ∞)
the space of continuous functions bounded with respect to the norm |f |E :=
supt≥0 |etf(t)|. (a) Prove that E [0, ∞) is a Banach space. (b) For f ∈ E [0, ∞)
and φ ∈ C[0, ∞) let

T (φ, f)(t) := 1 +
∫ ∞

t

(t − s)f(s)φ(s) ds.

Prove that T : C[0, ∞) × E [0, ∞) → C[0, ∞) is C1. (c) Let V ⊂ E be the metric
ball centered at the origin with radius 1/2. Prove that there is a C1 function
g : V → C[0, ∞) such that T (g(f), f) = g(f). (d) Show that the space E [0, ∞)
can be replaced by other Banach spaces to obtain similar results. Can it be
replaced by C[0, ∞)?
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1.11.3 Fiber Contraction
In this section we will extend the contraction principle to bundles. The
result of this extension, called the fiber contraction theorem [121], is useful
in proving the smoothness of functions that are defined as fixed points of
contractions.

Let X and Y be metric spaces. A map Γ : X × Y → X × Y of the form

Γ(x, y) = (Λ(x), Ψ(x, y)),

where Λ : X → X and Ψ : X × Y → Y , is called a bundle map over
the base Λ with principal part Ψ. Here, the triple (X × Y, X, π), where
π : X × Y → X is the projection π(x, y) = x, is called the trivial bundle
over X with fiber Y .

Definition 1.246. Suppose that µ ∈ R is such that 0 ≤ µ < 1. The
bundle map Γ : X ×Y → X ×Y is called a fiber contraction if the function
y �→ Ψ(x, y) is a contraction with contraction constant µ for every x ∈ X.

Theorem 1.247 (Fiber Contraction Theorem). Suppose that X and
Y denote metric spaces, and that Γ : X ×Y → X ×Y is a continuous fiber
contraction over Λ : X → X with principal part Ψ : X × Y → Y . If Λ has
a globally attracting fixed point x∞, and if y∞ is a fixed point of the map
y �→ Ψ(x∞, y), then (x∞, y∞) is a globally attracting fixed point of Γ.

Remark: The proof does not require the metric spaces X or Y to be
complete.

Proof. Let dX denote the metric for X, let dY denote the metric for Y ,
and let the metric on X × Y be defined by d := dX + dY . We must show
that for each (x, y) ∈ X × Y we have limn→∞ Γn(x, y) = (x∞, y∞) where
the limit is taken with respect to the metric d.

For notational convenience, let us denote the map y �→ Ψ(x, y) by Ψx.
Then, for example, we have

Γn+1(x, y) = (Λn+1(x), ΨΛn(x) ◦ ΨΛn−1(x) ◦ · · · ◦ Ψx(y))

and, using the triangle inequality, the estimate

d(Γn+1(x, y), (x∞, y∞)) ≤ d(Γn+1(x, y), Γn+1(x, y∞))
+ d(Γn+1(x, y∞), (x∞, y∞)). (1.57)

Note that

d(Γn+1(x, y), Γn+1(x, y∞)) = dY (ΨΛn(x) ◦ ΨΛn−1(x) ◦ · · · ◦ Ψx(y),
ΨΛn(x) ◦ ΨΛn−1(x) ◦ · · · ◦ Ψx(y∞)).

Moreover, if µ is the contraction constant for the fiber contraction Γ, then
we have

d(Γn+1(x, y), Γn+1(x, y∞)) ≤ µn+1dY (y, y∞),
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and therefore, limn→∞ d(Γn(x, y), Γn(x, y∞)) = 0.
For the second summand of (1.57), we have

d(Γn+1(x, y∞), (x∞, y∞)) = dX(Λn+1(x), x∞)
+ dY (ΨΛn(x) ◦ · · · ◦ Ψx(y∞), y∞).

By the hypothesis that x∞ is a global attractor, the first summand on the
right hand side of the last equality converges to zero as n → ∞. Thus, to
complete the proof, it suffices to verify the limit

lim
n→∞ dY (ΨΛn(x) ◦ ΨΛn−1(x) ◦ · · · ◦ Ψx(y∞), y∞) = 0. (1.58)

Let us observe that

dY (ΨΛn(x) ◦ · · · ◦ Ψx(y∞), y∞) ≤ dY (ΨΛn(x) ◦ · · · ◦ Ψx(y∞), ΨΛn(x)(y∞))
+dY (ΨΛn(x)(y∞), y∞)

≤ µdY (ΨΛn−1(x) ◦ · · · ◦ Ψx(y∞), y∞)
+dY (ΨΛn(x)(y∞), y∞),

and by induction that

dY (ΨΛn(x) ◦ ΨΛn−1(x) ◦ · · · ◦ Ψx(y∞), y∞) ≤
n∑

j=0

µn−jdY (ΨΛj(x)(y∞), y∞).

For each nonnegative integer m, define am := dY (ΨΛm(x)(y∞), y∞). Each
am is nonnegative and

am = dY (Ψ(Λm(x), y∞), Ψ(x∞, y∞)).

Using the continuity of Ψ and the hypothesis that x∞ is a globally attract-
ing fixed point, it follows that the sequence {am}∞

m=0 converges to zero
and is therefore bounded. If A is an upper bound for the elements of this
sequence, then for each m = 0, 1, . . . ,∞ we have 0 ≤ am < A.

Let ε > 0 be given. There is some K > 0 so large that

0 ≤ ak <
1
2
(1 − µ)ε

whenever k ≥ K. Hence, if n ≥ K, then

n∑
j=0

µn−jaj =
K−1∑
j=0

µn−jaj +
n∑

j=K

µn−jaj

≤ A

K−1∑
j=0

µn−j +
1
2
(1 − µ)ε

n∑
j=K

µn−j

≤ A
µn−K+1

1 − µ
+

1
2
ε.
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Moreover, there is some N ≥ K such that

µn−K+1 <
(1 − µ)ε

2A

whenever n ≥ N . In other words, limn→∞
∑n

j=0 µn−jaj = 0. �

As mentioned above, the fiber contraction principle is often used to prove
that functions obtained as fixed points of contractions are smooth. We will
use this technique as one method to prove that the flow defined by a smooth
differential equation is smooth, and we will use a similar argument again
when we discuss the smoothness of invariant manifolds. We will codify some
of the ideas that are used in applications of the fiber contraction principle,
and we will discuss a simple application to illustrate the procedure.

The setting for our analysis is given by a contraction Λ : C → C, where C
denotes a closed subset of a Banach space of continuous functions that map
a Banach space X to a Banach space Y . Let α∞ ∈ C denote the unique
fixed point of Λ, and recall that α∞ is globally attracting; that is, if α ∈ C,
then Λn(α) → α∞ as n → ∞.

Define the Banach space of all (supremum norm) bounded continuous
functions from X to the linear maps from X to Y and denote this space
by C(X, L(X, Y )). Elements of C(X, L(X, Y )) are the candidates for the
derivatives of functions in C. Also, let C1 denote the subset of C consisting
of all continuously differentiable functions with bounded derivatives.

The first step of the method is to show that if α ∈ C1, then the derivative
of Λ(α) has the form

(D(Λ(α)))(ξ) = Ψ(α, Dα)(ξ)

where ξ ∈ X and where Ψ is a map

Ψ : C × C(X, L(X, Y )) → C(X, L(X, Y )).

Next, define the bundle map

Γ : C × C(X, L(X, Y )) → C × C(X, L(X, Y ))

by

(α,Φ) �→ (Λ(α), Ψ(α,Φ))

and prove that Γ is a continuous fiber contraction. Warning: In the appli-
cations, the continuity of α �→ Ψ(α,Φ) is usually not obvious. It is easy
to be deceived into believing that a map of the form g �→ g ◦ α is contin-
uous when g and α are continuous because the definition of the mapping
involves the composition of two continuous functions. To prove that the
map is continuous requires the omega lemma (Exercise 1.224), one of its
relatives, or a new idea (see Theorem 1.249 and [80]).
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Finally, pick a point α0 ∈ C1 so that Dα0 ∈ C(X, L(X, Y )), let (φ0, Φ0) =
(α0, Dα0), and define, for all positive integers n,

(φn+1, Φn+1) = Γ(φn, Φn).

By the fiber contraction principle, there is some Φ∞ ∈ C(X, L(X, Y )) such
that limn→∞(φn, Φn) = (α∞, Φ∞). By the construction of Ψ, if n ≥ 0,
then D(φn) = Φn. If the convergence is uniform (or at least uniform on
compact subsets of X), then we obtain the desired result, D(α∞) = Φ∞,
as an application of the following theorem from advanced calculus (see
Exercise 1.252).

Theorem 1.248. If a sequence of differentiable functions is uniformly
convergent and if the corresponding sequence of their derivatives is uni-
formly convergent, then the limit function of the original sequence is dif-
ferentiable and its derivative is the limit of the corresponding sequence of
derivatives.

Moreover, we have Φ∞ ∈ C(X, L(X, Y )), and therefore Φ∞ is continuous.
In particular, the fixed point α∞ is continuously differentiable.

We will formulate and prove a simple result to illustrate a typical ap-
plication of the fiber contraction principle. For this, let us consider specif-
ically the linear space C0(RM , RN ) consisting of all continuous functions
f : R

M → R
N and let C0(RM , RN ) denote the subspace consisting of all

f ∈ C0(RM , RN ) such that the supremum norm is finite; that is,

‖f‖ := sup
ξ∈RM

|f(ξ)| < ∞.

Of course, C0(RM , RN ) is a Banach space with the supremum norm. Also,
let B0

ρ(RM , RN ) denote the subset of C0(RM , RN ) such that, for

f ∈ B0
ρ(RM , RN ),

the Lipschitz constant of f is bounded by ρ; that is,

Lip(f) := sup
ξ1 
=ξ2

|f(ξ1) − f(ξ2)|
|ξ1 − ξ2|

≤ ρ.

The set B0
ρ(RM , RN ) is a closed subset of C0(RM , RN ) (see Exercise 1.251).

Hence, B0
ρ(RM , RN ) is a complete metric space with respect to the supre-

mum norm.
In case f ∈ C0(RM , RN ) is continuously differentiable, its derivative

Df is an element of C0(RM , L(RM , RN )), the space of continuous func-
tions from R

M to the linear maps from R
M to R

N . The subset F of
C0(RM , L(RM , RN )) consisting of all elements that are bounded with re-
spect to the norm

‖Φ‖ := sup
ξ∈RM

(
sup
|v|=1

|Φ(ξ)v|
)
,
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is a Banach space. The closed metric ball Fρ of radius ρ > 0 centered at
the origin of F (that is, all Φ such that ‖Φ‖ ≤ ρ) is a complete metric space
relative to the norm on F .

Theorem 1.249. If F : R
N → R

N and G : R
M → R

N are continuously
differentiable functions, ‖F‖ + ‖G‖ < ∞, ‖DF‖ < 1, and ‖DG‖ < ∞,
then the functional equation F ◦ φ − φ = G has a unique solution α in
B0

ρ(RM , RN ) for every ρ > ‖DG‖/(1−‖DF‖). Moreover, α is continuously
differentiable and ‖Dα‖ < ρ.

Proof. Suppose that ρ > ‖DG‖/(1 − ‖DF‖) or ‖DF‖ρ + ‖G‖ < ρ. If
φ ∈ B0

ρ(RM , RN ), then the function F ◦ φ − G is continuous. Also, we have
that

‖F ◦ φ − G‖ ≤ sup
ξ∈RM

|F (φ(ξ))| + ‖G‖ ≤ sup
ζ∈RN

|F (ζ)| + ‖G‖ < ∞,

and, by the mean value theorem,

|F (φ(ξ)) − G(ξ) − (F (φ(η)) − G(η))| ≤ ‖DF‖|φ(ξ) − φ(η)|
+‖DG‖|ξ − η|

≤ (‖DF‖ Lip(φ) + ‖DG‖)|ξ − η|,

where ‖DF‖ Lip(φ) + ‖DG‖ < ρ. It follows that the function F ◦ φ − G is
an element of the space B0

ρ(RM , RN ).
Let us define Λ : B0

ρ(RM , RN ) → B0
ρ(RM , RN ) by

Λ(φ)(ξ) := F (φ(ξ)) − G(ξ).

Also, note that by the hypothesis ‖DF‖ < 1. If φ1 and φ2 are in the space
B0

ρ(RM , RN ), then

|Λ(φ1)(ξ) − Λ(φ2)(ξ)| < ‖DF‖‖φ1 − φ2‖;

that is, Λ is a contraction on the complete metric space B0
ρ(RM , RN ). There-

fore, there is a unique function α ∈ B0
ρ(RM , RN ) such that F ◦ α − α = G.

Moreover, if φ ∈ B0
ρ(RM , RN ), then limn→∞ Λn(φ) = α.

We will prove that the function α is continuously differentiable. To this
end, note that for φ ∈ B0

ρ(RM , RN ) and Φ ∈ Fρ we have

‖DF (φ(ξ))Φ(ξ) − DG(ξ)‖ ≤ ‖DF‖‖Φ‖ + ‖DG‖ < ρ;

and, using this result, define Ψ : B0
ρ(RM , RN ) × Fρ → Fρ by

Ψ(φ,Φ)(ξ) := DF (φ(ξ))Φ(ξ) − DG(ξ).

The function Φ �→ Ψ(φ,Φ) is a contraction on Fρ whose contraction con-
stant is less than one and uniform over B0

ρ(RM , RN ); in fact, we have that

‖Ψ(φ,Φ1)(ξ) − Ψ(φ,Φ2)(ξ)‖ ≤ ‖DF‖‖Φ1 − Φ2‖.



132 1. Introduction to Ordinary Differential Equations

Thus, we have defined a bundle map

Γ : B0
ρ(RM , RN ) × Fρ → Bρ(RM , RN ) × Fρ

given by

Γ(φ,Φ) := (Λ(φ),Ψ(φ,Φ)),

which is a uniform contraction on fibers. To prove that Γ is a fiber contrac-
tion, it suffices to show that Γ is continuous.

Note that Λ is a contraction, Φ �→ Ψ(φ,Φ) is an affine function, and

|Ψ(φ,Φ)(ξ) − Ψ(φ0, Φ0)(ξ)| ≤ ‖DF‖‖Φ − Φ0‖ + ‖Φ0‖‖DF ◦ φ − DF ◦ φ0‖.

Thus, to prove the continuity of Γ, it suffices to show that the function
φ �→ DF ◦ φ is continuous.

Fix φ0 ∈ B0
ρ(RM , RN ) and note that the function DF is uniformly contin-

uous on the closed ball B centered at the origin in R
N with radius ‖φ0‖+1.

Also, the image of φ0 is in B. By the uniform continuity of DF , for each
ε > 0 there is a positive number δ < 1 such that |DF (ξ) − DF (η)| < ε
whenever ξ, η ∈ B and |ξ − η| < δ. If ‖φ − φ0‖ < δ and ξ ∈ R

M , then

|φ(ξ)| ≤ ‖φ − φ0‖ + ‖φ0‖ < 1 + ‖φ0‖;

and therefore, the image of φ is in the ball B. Thus, we have that

‖DF ◦ φ − DF ◦ φ0‖ < ε whenever ‖φ − φ0‖ < δ;

that is, DF is continuous at φ0 (cf. Exercise 1.258).
Let Φ∞ denote the unique fixed point of the contraction Φ �→ Ψ(α,Φ)

over the fixed point α. Also, let us define a sequence in B0
ρ(RM , RN ) × Fρ

as follows: (φ0, Φ0) = (0, 0) and, for each positive integer n,

(φn+1, Φn+1) := Γ(φn, Φn).

Note that Dφ0 = Φ0 and, proceeding by induction, if Dφn = Φn, then

Dφn+1 = D(Λ(φn)) = DF ◦ φnDφn − DG

= Ψ(φn, Dφn) = Ψ(φn, Φn) = Φn+1;

that is, Dφn = Φn for all integers n ≥ 0.
By the fiber contraction theorem, we have that

lim
n→∞ φn = α, lim

n→∞ Dφn = Φ∞.

The sequence {φn}∞
n=0 converges uniformly to α and the sequence of its

derivatives converges uniformly to Φ∞. By Theorem 1.248 we have that α
is differentiable with derivative Φ∞. Thus, α is continuously differentiable.
�
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Theorem 1.249 is an almost immediate corollary of the uniform contrac-
tion principle (see Exercise 1.254). For more sophisticated applications,
there are at least three approaches to proving the smoothness of a map ob-
tained by contraction: the uniform contraction principle, the fiber contrac-
tion principle, and the definition of the derivative. While the main difficulty
in applying the uniform contraction principle is the proof of the smooth-
ness of the uniform contraction, the main difficulty in applying the fiber
contraction principle is the proof of the continuity of the fiber contraction,
especially the continuity of the principle part of the fiber contraction with
respect to the base point. The best choice is not always clear; it depends on
the nature of the application and the skill of the applied mathematician.

Exercise 1.250. Let U denote an open ball in R
n or the entire space, and V

an open ball in R
m. Prove that the set of bounded continuous functions from U

to R
n is a Banach space, hence a complete metric space. Also, prove that the set

of continuous functions from U into V̄ as well as the set of continuous functions
from V̄ to R

n are Banach spaces.

Exercise 1.251. Prove that B0
ρ(RM , R

N ) is a closed subset of the Banach space
C0(RM , R

N ).

Exercise 1.252. Prove Theorem 1.248.

Exercise 1.253. Give a direct proof of Theorem 1.249 in case F is linear.

Exercise 1.254. Prove Theorem 1.249 using the uniform contraction principle.
Hint: Construct a uniform contraction in R

N with parameter space R
M such that

the solution of the functional equation is the map that assigns to each point in
the parameter space the corresponding fixed point of the contraction.

Exercise 1.255. Suppose that F : R → R is continuous, and consider the
function Λ given by φ �→ F ◦ φ on C0(R, R). Show that C0(R, R) is a metric
space with metric d(f, g) := supξ∈R

|f(ξ) − g(ξ)| and Λ : C0(R, R) → C0(R, R).
Construct a bounded continuous function F such that Λ is not continuous. Show
that your Λ is continuous when restricted to C0(R, R).

Exercise 1.256. Derive the smoothness statement in the uniform contraction
theorem as a corollary of the fiber contraction theorem.

Exercise 1.257. In the context of Theorem 1.249, prove that the solution of
the functional equation F ◦ φ − φ = G is Cr (r-times continuously differentiable)
if F and G are Cr, their Cr-norms are finite, and ‖DF‖ < 1. What condition
would be required to prove that the solution is C∞ or Cω (real analytic).

Exercise 1.258. Prove the following lemma: If (X, dX) and (Y, dY ) are met-
ric spaces, f : X → Y is continuous, and K ⊂ X is compact, then f is uni-
formly continuous on K. Moreover, for every ε > 0 there is a δ > 0 such that
dY (f(x1), f(x2)) < ε whenever dX(x1, x2) < δ and x2 ∈ K. Use this lemma to
prove the continuity of the map φ �→ DF ◦ φ in the proof of Theorem 1.249. The
lemma leads to only a slight improvement in the proof. On the other hand, this
lemma simplifies the proof of continuity for many other fiber contractions.
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1.11.4 The Implicit Function Theorem
The implicit function theorem is one of the most useful theorems in analysis.
We will prove it as a corollary of the uniform contraction theorem.

Theorem 1.259 (Implicit Function Theorem). Suppose that X, Y ,
and Z are Banach spaces, U ⊆ X, V ⊆ Y are open sets, F : U×V → Z is a
C1 function, and (x0, y0) ∈ U×V with F (x0, y0) = 0. If Fx(x0, y0) : X → Z
has a bounded inverse, then there is a product neighborhood U0×V0 ⊆ U×V
with (x0, y0) ∈ U0×V0 and a C1 function β : V0 → U0 such that β(y0) = x0
and F (β(y), y) ≡ 0. Moreover, if F (x, y) = 0 for (x, y) ∈ U0 × V0, then
x = β(y).

Proof. Define L : Z → X by Lz = [Fx(x0, y0)]−1z and G : U × V → X
by G(x, y) = x − LF (x, y). Note that G is C1 on U × V and F (x, y) = 0
if and only if G(x, y) = x. Moreover, we have that G(x0, y0) = x0 and
Gx(x0, y0) = I − LFx(x0, y0) = 0.

Since G is C1, there is a product neighborhood U0 × V1 whose factors
are two metric balls, U0 ⊆ U centered at x0 and V1 ⊆ V centered at y0,
such that

‖Gx(x, y)‖ <
1
2

whenever (x, y) ∈ U0 × V1.
Let us suppose that the ball U0 has radius δ > 0. Note that the function

given by y �→ F (x0, y) is continuous and vanishes at y0. Thus, there is a
metric ball V0 ⊆ V1 centered at y0 such that

‖L‖‖F (x0, y)‖ <
δ

2

for every y ∈ V0. With this choice of V0, if (x, y) ∈ U0 × V0, then, by the
mean value theorem,

‖G(x, y) − x0‖ = ‖G(x, y) − G(x0, y) + G(x0, y) − x0‖
≤ ‖G(x, y) − G(x0, y)‖ + ‖LF (x0, y)‖

≤ sup
u∈U0

‖Gx(u, y)‖‖x − x0‖ +
δ

2
≤ δ.

In other words, G(x, y) ∈ Ū0; that is, G : Ū0 × V0 → Ū0.
Again, by the mean value theorem, it is easy to see that G is a uniform

contraction; in fact,

‖G(x1, y) − G(x2, y)‖ ≤ sup
u∈U0

‖Gx(u, y)‖‖x1 − x2‖

≤ 1
2
‖x1 − x2‖.
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Thus, there is a unique smooth function y �→ β(y) defined on the open ball
V0 such that β(y0) = x0 and G(β(y), y) ≡ β(y). In particular,

β(y) = β(y) − LF (β(y), y)

and therefore F (β(y), y) ≡ 0, as required. �

1.12 Existence, Uniqueness, and Extension

In this section we will prove the basic existence and uniqueness theorems
for differential equations. We will also prove a theorem on extension of so-
lutions. While the theorems on existence, uniqueness, and extension are the
foundation for theoretical study of ordinary differential equations, there is
another reason to study their proofs. In fact, the techniques used in this
section are very important in the modern development of our subject. In
particular, the implicit function theorem is used extensively in perturbation
theory, and the various extensions of the contraction principle are funda-
mental techniques used to prove the existence and smoothness of invariant
manifolds. We will demonstrate these tools by proving the fundamental
existence theorem for differential equations in two different ways.

Suppose that J ⊆ R, Ω ⊆ R
n, and Λ ⊆ R

m are all open sets, and

f : J × Ω × Λ → R
n

given by (t, x, λ) �→ f(t, x, λ) is a continuous function. Recall that if λ ∈ Λ,
then a solution of the ordinary differential equation

ẋ = f(t, x, λ) (1.59)

is a differentiable function σ : J0 → Ω defined on some open subinterval
J0 ⊆ J such that

dσ

dt
(t) = f(t, σ(t), λ)

for all t ∈ J0. For t0 ∈ J , x0 ∈ Ω, and λ0 ∈ Λ, the initial value problem
associated with the differential equation (1.59) is given by the differential
equation together with an initial value for the solution as follows:

ẋ = f(t, x, λ0), x(t0) = x0. (1.60)

If σ is a solution of the differential equation as defined above such that in
addition σ(t0) = x0, then we say that σ is a solution of the initial value
problem (1.60).

Theorem 1.260. If the function f : J × Ω × Λ → R
n in the differential

equation (1.59) is continuously differentiable, t0 ∈ J , x0 ∈ Ω, and λ0 ∈
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Λ, then there are open sets J0 ⊆ J , Ω0 ⊆ Ω, and Λ0 ⊆ Λ such that
(t0, x0, λ0) ∈ J0 × Ω0 × Λ0, and a unique C1 function σ : J0 × Ω0 × Λ0 →
R

n given by (t, x, λ) → σ(t, x, λ) such that t �→ σ(t, x, λ) is a solution
of the differential equation (1.59) and σ(0, x, λ) = x. In particular, t �→
σ(t, x0, λ0) is a solution of the initial value problem (1.60).

Proof. The proof we will give is due to Joel Robbin [190]. Suppose that
σ is a solution of the initial value problem (1.60), δ > 0, and σ is defined
on the interval [t0 − δ, t0 + δ]. In this case, if we define τ := (t − t0)/δ and
z(τ) = σ(δτ + t0) − x0, then z(0) = 0 and for −1 ≤ τ ≤ 1,

dz

dτ
(τ) = δσ̇(δτ + t0) = δf(δτ + t0, z + x0, λ0), (1.61)

at least if z + x0 ∈ Ω. Conversely, if the differential equation (1.61) has a
solution defined on a subinterval of −1 ≤ τ ≤ 1, then the differential equa-
tion (1.59) has a solution. Thus, it suffices to show the following proposi-
tion: If δ > 0 is sufficiently small, then the differential equation (1.61) has
a solution defined on the interval −1 ≤ τ ≤ 1.

Choose an open ball centered at the origin with radius r that is in Ω and
let U denote the open ball centered at the origin with radius r/2. Define
the Banach spaces

X := {φ ∈ C1([−1, 1], Rn) : φ(0) = 0}, Y := C([−1, 1], Rn)

where the norm on Y is the usual supremum norm, the norm on X is given
by

‖φ‖1 = ‖φ‖ + ‖φ′‖,

and φ′ denotes the first derivative of φ. Also, let X0 denote the open subset
of X consisting of those elements of X whose ranges are in the open ball
at the origin with radius r/2.

Consider the function

F : (−1, 1) × J × U × Λ × X0 → Y

by
F (δ, t, x, λ, φ)(τ) = φ′(τ) − δf(δτ + t, φ(τ) + x, λ).

We will apply the implicit function theorem to F .
We will show that the function F is C1. Since the second summand in the

definition of F is C1 by the omega lemma (see Exercise 1.224), it suffices
to show that the map d given by φ �→ φ′ is a C1 map from X to Y .

Note that φ′ ∈ Y for each φ ∈ X and d is a linear transformation.
Because

‖dφ‖ ≤ ‖dφ‖ + ‖φ‖ = ‖φ‖1,

the linear transformation d is continuous. Since the map d : X → Y is
linear and bounded, it is its own derivative. In particular, d is continuously
differentiable.
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If (t0, x0, λ0) ∈ J × U × Λ, then F (0, t0, x0, λ0, 0)(τ) = 0. Also, if we set
δ = 0 before the partial derivative is computed, then it is easy to see that

Fφ(0, t0, x0, λ0, 0) = d.

In order to show that Fφ(0, t0, x0, λ0, 0) has a bounded inverse, it suffices
to show that d has a bounded inverse. To this end, define L : Y → X by

(Ly)(τ) =
∫ τ

0
y(s)ds.

Clearly,
(d ◦ L) (y) = y and (L ◦ d) (ψ) = ψ.

Thus, L is an inverse for d. Moreover, since

‖Ly‖1 = ‖Ly‖ + ‖(d ◦ L)y‖

≤ ‖y‖ + ‖y‖ ≤ 2‖y‖,

it follows that L is bounded.
By an application of the implicit function theorem to F , we have proved

the existence of a unique smooth function (δ, t, x, λ) �→ β(δ, t, x, λ), with
domain an open set K0 × J0 × Ω0 × Λ0 containing the point (0, t0, x0, λ0)
and range in X0 such that β(0, t0, x0, λ0) = 0 and

F (δ, t, x, λ, β(δ, t, x, λ)) ≡ 0.

Thus, there is some δ > 0 such that

τ �→ z(τ, t0, x0, λ0) := β(δ, t0, x0, λ0)(τ)

is the required solution of the differential equation (1.61). Of course, this
solution depends smoothly on τ and all of its parameters. �

We will now consider a proof of Theorem 1.260 that uses the contraction
principle and the fiber contraction theorem. For this, it is convenient to
make a minor change in notation and to introduce a few new concepts.

Instead of working directly with the initial value problem (1.60), we will
study the solutions of initial value problems of the form

ẋ = F (t, x), x(t0) = x0 (1.62)

where there is no dependence on parameters. In fact, there is no loss of gen-
erality in doing so. Note that the initial value problem (1.60) is “equivalent”
to the following system of differential equations:

ẏ = f(t, y, λ), λ̇ = 0, y(t0) = y0. (1.63)
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In particular, if we define x = (y, λ) and F (t, (y, λ)) := (f(t, y, λ), 0), then
solutions of the initial value problem (1.60) can be obtained from solutions
of the corresponding initial value problem (1.62) in the obvious manner.
Moreover, smoothness is preserved. Thus, it suffices to work with the initial
value problem (1.62).

Although the existence of a local solution for the initial value prob-
lem (1.62) can be proved using only the continuity of the function F , if F
is merely continuous, then a solution of the initial value problem may not
be unique. A sufficient condition for uniqueness is the requirement that F
is Lipschitz with respect to its second argument; that is, there is a constant
λ > 0 such that for each t ∈ J and for all x1, x2 ∈ Ω,

|F (t, x1) − F (t, x2)| ≤ λ|x1 − x2|

where |x| is the usual norm of x ∈ R
n. We will not prove the most general

possible result; rather we will prove the following version of Theorem 1.260.

Theorem 1.261. If the function F : J × Ω → R
n in the initial value

problem (1.62) is continuous and Lipschitz (with respect to its second ar-
gument), t0 ∈ J , and x0 ∈ Ω, then there are open sets J0 ⊆ J and
Ω0 ⊆ Ω such that (t0, x0) ∈ J0 × Ω0 and a unique continuous function
σ : J0 × Ω0 → R

n given by (t, x) → σ(t, x) such that t �→ σ(t, x) is a solu-
tion of the differential equation ẋ = F (t, x) with σ(t0, x) = x. In particular,
t �→ σ(t, x0) is the unique solution of the initial value problem (1.62). If,
in addition, F is C1, then so is the function σ.

Proof. The function t �→ x(t) is a solution of the initial value problem if
and only if it is a solution of the integral equation

x(t) = x0 +
∫ t

t0

F (s, x(s)) ds.

In fact, if dx/dt = F (t, x), then, by integration, we obtain the integral
equation. On the other hand, if t �→ x(t) satisfies the integral equation,
then, by the fundamental theorem of calculus

dx

dt
= F (t, x(t)).

Fix (t0, x0) ∈ J×Ω. Let b(t0, δ) and B(x0, ν) denote metric balls centered
at t0 and x0 with positive radii, respectively δ and ν, such that

b̄(t0, δ) × B̄(x0, ν) ⊆ J × Ω.

Since F is continuous on J × Ω, there is some number M > 0 such that

sup
(t,x)∈b(t0,δ)×B(x0,ν)

|F (t, x)| ≤ M.
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Since F is Lipschitz on J × Ω, there is some number λ > 0 such that, for
each t ∈ J and all x1, x2 ∈ Ω,

|F (t, x1) − F (t, x2)| ≤ λ|x1 − x2|.

If F ∈ C1 on J × Ω, then there is some number K > 0 such that

sup
(t,x)∈b(t0,δ)×B(x0,ν)

‖DF (t, x)‖ ≤ K, (1.64)

where, recall, DF (t, x) is the derivative of the map x �→ F (t, x) and

‖DF (t, x)‖ := sup
{v∈Rn:|v|=1}

|DF (t, x)v|

with |x| the usual norm of x ∈ R
n.

Choose δ > 0 so that δλ < min(1, ν
2 ) and δM < ν

2 , define the Banach
space of bounded continuous R

n-valued functions on b(t0, δ) × B(x0,
ν
2 )

with the norm
‖φ‖ = sup

(t,x)∈b(t0,δ)×B(x0, ν
2 )

|φ(t, x)|,

and let X denote the complete metric space consisting of all functions in
this Banach space with range in B̄(x0, ν). In case F is C1, let us agree to
choose δ as above, but with the additional restriction that δK < 1. Finally,
define the operator Λ on X by

Λ(φ)(t, x) = x +
∫ t

t0

F (s, φ(s, x)) ds. (1.65)

Let us prove that Λ : X → X. Clearly, we have Λ(φ) ∈ C(b(t0, δ) ×
B(x0,

ν
2 ), Rn). In view of the inequality

|Λ(φ)(t, x) − x0| ≤ |x − x0| +
∣∣ ∫ t

t0

|F (s, φ(s, x))| ds
∣∣

≤ |x − x0| + δM

<
1
2
ν +

1
2
ν,

the range of the operator Λ is in B̄(x0, ν), as required.
The operator Λ is a contraction. In fact, if φ1, φ2 ∈ X, then

|Λ(φ1)(t, x) − Λ(φ2)(t, x)| ≤
∣∣ ∫ t

t0

|F (s, φ1(s, x)) − F (s, φ2(s, x))| ds
∣∣

≤ δλ‖φ1 − φ2‖,

and therefore
‖Λ(φ1) − Λ(φ2)‖ ≤ δλ‖φ1 − φ2‖,
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as required. By the contraction principle, Λ has a unique fixed point. This
function is a solution of the initial value problem (1.62) and it is continu-
ously dependent on the initial condition.

If φ∞ denotes the fixed point of Λ, then d
dtφ∞(t, x) = F (t, φ∞(t, x)).

Because the functions φ∞ and F are continuous, it follows that, for each
fixed x ∈ B(x0,

ν
2 ), the function t �→ φ∞(t, x) is C1. To show that φ∞ is C1,

it suffices to show that for each fixed t ∈ b(t0, δ) the function x �→ φ∞(t, x)
is C1. We will prove this fact using the fiber contraction principle. The idea
for this part of the proof is due to Jorge Sotomayor [211].

Let us define a Banach space consisting of the “candidates” for the deriva-
tives of functions in X with respect to their second arguments. To this end,
let L(Rn, Rn) denote the set of linear transformations of R

n and define the
Banach space

Y := C(b(t0, δ) × B(x0,
ν

2
), L(Rn, Rn))

consisting of all indicated functions that are bounded with respect to the
norm on Y given by

‖Φ‖ := sup
(t,x)∈b(t0,δ)×B(x0, ν

2 )
‖Φ(t, x)‖,

where, as defined above,

‖Φ(t, x)‖ := sup
{v∈Rn:|v|=1}

|Φ(t, x)v|.

Let I denote the identity transformation on R
n, DF (t, x) the derivative

of the map x �→ F (t, x), and define Ψ : X × Y → Y by

Ψ(φ,Φ)(t, x) := I +
∫ t

t0

DF (s, φ(s, x))Φ(s, x) ds.

Also, define Γ : X × Y → X × Y by

Γ(φ,Φ) := (Λ(φ),Ψ(φ,Φ)).

The function Γ is a continuous bundle map. The proof of this fact is left
to the reader. Let us note, however, that the key result required here is
the continuity of the function φ �→ Ψ(φ,Φ). The proof of this fact uses the
continuity of DF and φ, and the compactness of the interval b̄(t0, δ) (see
Exercise 1.258 and the proof of Theorem 1.249).

Let us prove that Γ is a fiber contraction. Recall that we have chosen the
radius of the time interval, δ > 0, so small that δK < 1, where the number
K is defined in equation (1.64). Using this fact, we have

‖Ψ(φ,Φ1)(t, x) − Ψ(φ,Φ2)(t, x)‖

= ‖
∫ t

t0

DF (s, φ(s, x))(Φ1(s, x) − Φ2(s, x)) ds‖

< δK‖Φ1 − Φ2‖,
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as required.
Let φ0(t, x) ≡ x and note that (φ0, I) ∈ X × Y . By the fiber contraction

theorem (Theorem 1.247), the iterates of the point (φ0, I) under Γ converge
to a globally attracting fixed point, namely, (φ∞, Φ∞), where in this case
φ∞ is the solution of the initial value problem (the fixed point of Λ) and
Φ∞ is the unique fixed point of the contraction Φ �→ Ψ(φ∞, Φ) on Y .

We will prove that Dφ∞(t, ·) = Φ∞(t, ·). (The derivative denoted by
D is the partial derivative with respect to the second variable.) Let us
start with the equation Dφ0(t, x) = I, and for each integer n > 1 define
(φn, Φn) := Γn(φ0, I) so that

Φn+1(t, x) = Ψ(φn, Φn)(t, x) := I +
∫ t

t0

DF (s, φn(s, x))Φn(s, x) ds,

φn+1(t, x) = x +
∫ t

t0

F (s, φn(s, x)) ds.

Let us show the identity Dφn(t, ·) = Φn(t, ·) for each integer n ≥ 0. The
equation is true for n = 0. Proceeding by induction on n, let us assume
that the equation is true for some fixed integer n ≥ 0. Because we can
“differentiate under the integral,” the derivative

Dφn+1(t, x) =
∂

∂x
(x +

∫ t

t0

F (s, φn(s, x)) ds)

is clearly equal to

I +
∫ t

t0

DF (s, φn(s, x))Φn(s, x) ds = Φn+1(t, x),

as required. Thus, we have proved that the sequence {Dφn(t, ·)}∞
n=0 con-

verges to Φ∞(t, ·). Finally, by Theorem 1.248 we have that Dφ∞(t, ·) =
Φ∞(t, ·). �

Exercise 1.262. It is very easy to show that a C2 differential equation has a
C1 flow. Why? We have proved above the stronger result that a C1 differential
equation has a C1 flow. Show that a Cr differential equation has a Cr flow for
r = 2, 3, . . . , ∞. Also, show that a real analytic differential equation has a real
analytic flow.

So far we have proved that initial value problems have unique solutions
that exist on some (perhaps small) interval containing the initial time. If we
wish to find a larger interval on which the solution is defined, the following
problem arises. Suppose that the initial value problem

ẋ = f(t, x), x(t0) = x0
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has a solution t �→ φ(t) defined on some interval J containing t0. Maybe
the solution is actually defined on some larger time interval J1 ⊇ J . If we
have a second solution ψ(t) defined on J1, then, by our local uniqueness
result, ψ(t) = φ(t) on J . But, we may ask, does ψ(t) = φ(t) on J1? The
answer is yes.

To prove this fact, consider all the open intervals containing J . The union
of all such intervals on which φ(t) = ψ(t) is again an open interval J∗; it
is the largest open interval on which φ and ψ agree. Let us prove that
J∗ ⊇ J1. If not, then the interval J∗ has an end point t1 ∈ J1 that is not
an endpoint of J1. Suppose that t1 is the right hand endpoint of J∗. By
continuity,

φ(t1) = ψ(t1).

Thus, by our local existence theorem, there is a unique solution of the
initial value problem

ẋ = f(t, x), x(t1) = φ(t1)

defined in some neighborhood of t1. It follows that φ(t) = ψ(t) on some
larger interval. This contradiction implies that J∗ ⊇ J1, as required. In
particular, if a solution extends, then it extends uniquely.

Our existence theorem for solutions of initial value problems gives no
information about the length of the maximal interval of existence. For
example, recall that even if the vector field associated with a differential
equation has no singularities, solutions of the differential equation may not
exist for all t ∈ R. The classic example (already mentioned) is the initial
value problem

ẋ = x2, x(0) = 1.

The maximal interval of existence of the solution x(t) = (1 − t)−1 is the
interval (−∞, 1). Moreover, this solution blows up in finite time, that is,
x(t) → ∞ as t → 1−. Of course, the maximal interval of existence need not
be an open set (see Exercise 1.9).

In general, it is difficult to determine the exact domain on which a solu-
tion is defined. But, following the presentation in [123], the next theorem
shows that our example illustrates the typical behavior.

Theorem 1.263. Let U ⊆ R
n and J ⊆ R be open sets such that the open

interval (α, β) is contained in J . Also, let x0 ∈ U . If f : J × U → R
n is a

C1 function and the maximal interval of existence of the solution t → φ(t)
of the initial value problem ẋ = f(t, x), x(t0) = x0 is α < t0 < β with
β < ∞, then for each compact set K ⊂ U there is some t ∈ (α, β) such that
φ(t) �∈ K. In particular, either |φ(t)| becomes unbounded or φ(t) approaches
the boundary of U as t → β.

Proof. Suppose that the solution φ has maximal interval of existence (α, β)
with β < ∞ and K is a compact subset of U such that φ(t) ∈ K for all
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t ∈ (α, β). We will show that under these assumptions the interval (α, β)
is not maximal.

The set [t0, β] × K is compact. Thus, there is some M > 0 such that
|f(t, x)| < M for each (t, x) ∈ [t0, β] × K. Moreover, the function φ :
[t0, β) → K is continuous.

We will show that the function φ extends continuously to the interval
[t0, β]. Note first that φ is uniformly continuous on [t0, β). In fact, if s1, s2 ∈
[t0, β) and s1 < s2, then

|φ(s2) − φ(s1)| =
∣∣∣ ∫ s2

s1

f(t, φ(t)) dt
∣∣∣ ≤ M |s2 − s1|. (1.66)

A standard theorem from advanced calculus states that φ extends contin-
uously to [t0, β]. For completeness we will prove this fact for our special
case.

Construct a sequence {tn}∞
n=1 of numbers in the interval [t0, β) that

converges to β, and recall that a convergent sequence is Cauchy. By in-
equality (1.66), the sequence {φ(tn)}∞

n=1 is also Cauchy. Hence, there is
some ω ∈ R such that φ(tn) → ω as n → ∞.

Let us extend the function φ to the closed interval [t0, β] by defining
φ(β) = ω. We will prove that this extension is continuous. For this, it
suffices to show that if {sj}∞

n=1 is a sequence in [t0, β) that converges to β,
then limj→∞ φ(sj) = ω. (Why?)

We have that

|φ(sj) − ω| ≤ |φ(sj) − φ(tj)| + |φ(tj) − ω|.

Let ε > 0 be given. If δ = ε/(2M), then |φ(s) − φ(t)| < ε/2 whenever
s, t ∈ [t0, β) and |s − t| < δ. Also, because

|sj − tj | ≤ |sj − β| + |tj − β|,

there is some integer N such that |sj − tj | < δ whenever j ≥ N , and
therefore

|φ(sj) − ω| ≤ ε

2
+ |φ(tj) − ω|

whenever j ≥ N . Moreover, since φ(tj) → ω as j → ∞, there is some
N1 ≥ N such that |φ(tj) − ω| < ε/2 whenever j ≥ N1. In particular, for
j ≥ N1, we have |φ(sj) − ω| < ε, and it follows that φ(sj) → ω. In other
words, φ extends continuously to β.

For t0 ≤ t < β, the function φ is a solution of the differential equation. In
particular, φ is continuously differentiable on [t0, β) and, on this interval,

φ(t) = φ(t0) +
∫ t

t0

f(s, φ(s)) ds.
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Moreover, since f is continuous and φ has a continuous extension, the map
s �→ f(s, φ(s)) is continuous on [t0, β]. Thus, if follows that

φ(β) = φ(t0) + lim
t→β−

∫ t

t0

f(s, φ(s)) ds

= φ(t0) +
∫ β

t0

f(s, φ(s)) ds. (1.67)

By the existence theorem for differential equations, there is a number
δ > 0 such that the initial value problem

ẋ = f(t, x), x(β) = φ(β)

has a solution t �→ ψ(t) defined on the interval (β − δ, β + δ) ⊆ J . Let us
use this fact to define the continuous function γ : [t0, β + δ) → R

n by

γ(t) =

{
φ(t), if t0 ≤ t ≤ β,

ψ(t), if β < t < β + δ.

For t0 ≤ t ≤ β, we have that

γ(t) = φ(t0) +
∫ t

t0

f(s, γ(s)) ds. (1.68)

Also, in view of equation (1.67), if β < t < β + δ, then

γ(t) = φ(β) +
∫ t

β

f(s, γ(s)) ds

= φ(t0) +
∫ t

t0

f(s, γ(s)) ds.

In other words, the equality (1.68) is valid on the interval [t0, β + δ). It
follows that γ is a solution of the differential equation that extends the
solution φ. This violates the maximality of β—there is some t such that
φ(t) is not in K. �



2
Linear Systems and Stability of
Nonlinear Systems

In this chapter we will study the differential equation

ẋ = A(t)x + f(x, t), x ∈ R
n

where A is a smooth n × n matrix-valued function and f is a smooth
function such that f(0, t) = fx(0, t) ≡ 0. Note that if f has this form, then
the associated homogeneous linear system ẋ = A(t)x is the linearization of
the differential equation along the zero solution t �→ φ(t) ≡ 0.

One of the main objectives of the chapter is the proof of the basic results
related to the principle of linearized stability. For example, we will prove
that if the matrix A is constant and all of its eigenvalues have negative real
parts, then the zero solution (also called the trivial solution) is asymptoti-
cally stable. Much of the chapter, however, is devoted to the general theory
of homogeneous linear systems; that is, systems of the form ẋ = A(t)x. In
particular, we will study the important special cases where A is a constant
or periodic function.

In case t �→ A(t) is a constant function, we will show how to reduce
the solution of the system ẋ = Ax to a problem in linear algebra. Also, by
defining the matrix exponential, we will discuss the flow of this autonomous
system as a one-parameter group with generator A.

Although the behavior of the general nonautonomous system ẋ = A(t)x
is not completely understood, the special case where t �→ A(t) is a periodic
matrix-valued function is reducible to the constant matrix case. We will
develop a useful theory of periodic matrix systems, called Floquet theory,
and use it to prove this basic result. The Floquet theory will appear again
later when we discuss the stability of periodic nonhomogeneous systems. In
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particular, we will use Floquet theory in a stability analysis of the inverted
pendulum (see Section 3.5).

Because linear systems theory is so well developed, it is used extensively
in many areas of applied science. For example, linear systems theory is an
essential tool for electromagnetics, circuit theory, and the theory of vibra-
tion. In addition, the results of this chapter are a fundamental component
of control theory.

2.1 Homogeneous Linear Differential Equations

This section is devoted to a general discussion of the homogeneous linear
system

ẋ = A(t)x, x ∈ R
n

where t �→ A(t) is a smooth function from some open interval J ⊆ R to the
space of n × n matrices. Here, the continuity properties of matrix-valued
functions are determined by viewing the space of n × n matrices as R

n2
;

that is, every matrix is viewed as an element in the Cartesian space by
simply listing the rows of the matrix consecutively to form a row vector of
length n2. We will prove an important general inequality and then use it
to show that solutions of linear systems cannot blow up in finite time. We
will discuss the basic result that the set of solutions of a linear system is a
vector space, and we will exploit this fact by showing how to construct the
general solution of a linear homogeneous system with constant coefficients.

2.1.1 Gronwall’s Inequality
The important theorem proved in this section does not belong to the theory
of linear differential equations per se, but it is presented here because it will
be used to prove the global existence of solutions of homogeneous linear
systems.

Theorem 2.1 (Gronwall’s Inequality). Suppose that a < b and let α,
φ, and ψ be nonnegative continuous functions defined on the interval [a, b].
Moreover, suppose that α is differentiable on (a, b) with nonnegative con-
tinuous derivative α̇. If, for all t ∈ [a, b],

φ(t) ≤ α(t) +
∫ t

a

ψ(s)φ(s) ds, (2.1)

then

φ(t) ≤ α(t)e
∫ t

a
ψ(s) ds (2.2)

for all t ∈ [a, b].
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Proof. Assume for the moment that α(a) > 0. In this case α(t) ≥ α(a) > 0
on the interval [a, b].

The function on the interval [a, b] defined by t �→ α(t) +
∫ t

a
ψ(s)φ(s) ds

is positive and exceeds φ. Thus, we have that

φ(t)

α(t) +
∫ t

a
ψ(s)φ(s) ds

≤ 1.

Multiply both sides of this inequality by ψ(t), add and subtract α̇(t) in the
numerator of the resulting fraction, rearrange the inequality, and use the
obvious estimate to obtain the inequality

α̇(t) + ψ(t)φ(t)

α(t) +
∫ t

a
ψ(s)φ(s) ds

≤ α̇(t)
α(t)

+ ψ(t),

which, when integrated over the interval [a, t], yields the inequality

ln
(
α(t) +

∫ t

a

ψ(s)φ(s) ds
)

− ln(α(a)) ≤
∫ t

a

ψ(s) ds + ln(α(t)) − ln(α(a)).

After we exponentiate both sides of this last inequality and use hypothe-
sis (2.1), we find that, for each t in the interval [a, b],

φ(t) ≤ α(t)e
∫ t

a
ψ(s) ds ≤ α(t)e

∫ t
a

ψ(s) ds. (2.3)

Finally, for the case α(a) = 0, we have the inequality

φ(t) ≤ (α(t) + ε) +
∫ t

a

ψ(s)φ(s) ds

for each ε > 0. As a result of what we have just proved, we have the estimate

φ(t) ≤ (α(t) + ε)e
∫ t

a
ψ(s) ds.

The desired inequality follows by passing to the limit (for each fixed t ∈
[a, b]) as ε → 0. �

Exercise 2.2. What can you say about a continuous function f : R → [0, ∞)
if

f(x) ≤
∫ x

0
f(t) dt?

Exercise 2.3. Prove the “specific Gronwall lemma” [201]: If, for t ∈ [a, b],

φ(t) ≤ δ2(t − a) + δ1

∫ t

a

φ(s) ds + δ3,

where φ is a nonnegative continuous function on [a, b], and δ1 > 0, δ2 ≥ 0, and
δ3 ≥ 0 are constants, then

φ(t) ≤
(δ2

δ1
+ δ3

)
eδ1(t−a) − δ2

δ1
.
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2.1.2 Homogeneous Linear Systems: General Theory
Consider the homogeneous linear system

ẋ = A(t)x, x ∈ R
n. (2.4)

By our general existence theory, the initial value problem

ẋ = A(t)x, x(t0) = x0 (2.5)

has a unique solution that exists on some open interval containing t0. The
following theorem states that this open interval can be extended to the
domain of A.

Theorem 2.4. If t �→ A(t) is continuous on the interval α < t < β and
if α < t0 < β (maybe α = −∞ or β = ∞), then the solution of the initial
value problem (2.5) is defined on the open interval (α, β).

Proof. Because the continuous function t �→ A(t) is bounded on each
compact subinterval of (α, β), it is easy to see that the function (t, x) �→
A(t)x is locally Lipschitz with respect to its second argument. Consider the
solution t �→ φ(t) of the initial value problem (2.5) given by the general
existence theorem (Theorem 1.261) and let J0 denote its maximal interval
of existence. Suppose that J0 does not contain (α, β). For example, suppose
that the right hand end point b of J0 is less than β. We will show that this
assumption leads to a contradiction. The proof for the left hand end point
is similar.

If t ∈ J0, then we have

φ(t) − φ(t0) =
∫ t

t0

A(s)φ(s) ds.

By the continuity of A and the compactness of [t0, b], there is some M > 0
such that ‖A(t)‖ ≤ M for all t ∈ [t0, b]. (The notation ‖ ‖ is used for the
matrix norm corresponding to some norm | | on R

n.) Thus, for t ∈ J0, we
have the following inequality:

|φ(t)| ≤ |x0| +
∫ t

t0

‖A(s)‖|φ(s)| ds

≤ |x0| +
∫ t

t0

M |φ(s)| ds.

In addition, by Gronwall’s inequality, with ψ(t) := M , we have

|φ(t)| ≤ |x0|eM
∫ t

t0
ds = |x0|eM(t−t0).

Thus, |φ(t)| is uniformly bounded on [t0, b).
Because the boundary of R

n is empty, it follows from the extension the-
orem that |φ(t)| → ∞ as t → b−, in contradiction to the existence of the
uniform bound. �



2.1 Homogeneous Linear Differential Equations 149

Exercise 2.5. Use Gronwall’s inequality to prove the following important in-
equality: If t �→ β(t) and t �→ γ(t) are solutions of the smooth differential equation
ẋ = f(x) and both are defined on the time interval [0, T ], then there is a constant
L > 0 such that

|β(t) − α(t)| ≤ |β(0) − α(0)|eLt.

Thus, two solutions diverge from each other at most exponentially fast. Also,
if the solutions have the same initial condition, then they coincide. Therefore,
the result of this exercise provides an alternative proof of the general uniqueness
theorem for differential equations.

Exercise 2.6. Prove that if A is a linear transformation of R
n and f : R

n → R
n

is a (smooth) function such that |f(x)| ≤ M |x|+N for positive constants M and
N , then the differential equation ẋ = Ax + f(x) has a complete flow.

Exercise 2.7. Suppose that X(·, λ) and Y (·, λ) are two vector fields with pa-
rameter λ ∈ R, and the two vector fields agree to order N in λ; that is, X(x, λ) =
Y (x, λ) + O(λN+1). If x(t, λ) and y(t, λ) are corresponding solutions defined on
the interval [0, T ] with initial conditions at t = 0 that agree to order N in λ,
prove that x(T, λ) and y(T, λ) agree to order N in λ. Hint: First prove the result
for N = 0.

2.1.3 Principle of Superposition
The foundational result about linear homogeneous systems is the principle
of superposition: The sum of two solutions is again a solution. A precise
statement of this principle is the content of the next proposition.

Proposition 2.8. If the homogeneous system (2.4) has two solutions φ1(t)
and φ2(t), each defined on some interval (a, b), and if λ1 and λ2 are num-
bers, then t → λ1φ1(t) + λ2φ2(t) is also a solution defined on the same
interval.

Proof. To prove the proposition, we use the linearity of the differential
equation. In fact, we have

d

dt
(λ1φ1(t) + λ2φ2(t)) = λ1φ̇1(t) + λ2φ̇2(t)

= λ1A(t)φ1(t) + λ2A(t)φ2(t)

= A(t)(λ1φ1(t) + λ2φ2(t)).

�

As a natural extension of the principle of superposition, we will prove
that the set of solutions of the homogeneous linear system (2.4) is a finite
dimensional vector space of dimension n.
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Definition 2.9. A set of n solutions of the homogeneous linear differen-
tial equation (2.4), all defined on the same open interval J , is called a
fundamental set of solutions on J if the solutions are linearly independent
functions on J .

Proposition 2.10. If t → A(t) is defined on the interval (a, b), then the
system (2.4) has a fundamental set of solutions defined on (a, b).

Proof. If c ∈ (a, b) and e1, . . . , en denote the usual basis vectors in R
n,

then there is a unique solution t �→ φi(t) such that φi(c) = ei for i =
1, . . . , n. Moreover, by Theorem 2.4, each function φi is defined on the
interval (a, b). Let us assume that the set of functions {φi : i = 1, . . . , n} is
linearly dependent and derive a contradiction. In fact, if there are scalars αi,
i = 1, . . . , n, not all zero, such that

∑n
i=1 αiφi(t) ≡ 0, then

∑n
i=1 αiei ≡ 0.

In view of the linear independence of the usual basis, this is the desired
contradiction. �

Proposition 2.11. If F is a fundamental set of solutions of the linear
system (2.4) on the interval (a, b), then every solution defined on (a, b) can
be expressed as a linear combination of the elements of F .

Proof. Suppose that F = {φ1, . . . , φn}. Pick c ∈ (a, b). If t �→ φ(t) is
a solution defined on (a, b), then φ(c) and φi(c), for i = 1, . . . , n, are all
vectors in R

n. We will show that the set B := {φi(c) : i = 1, . . . , n}
is a basis for R

n. If not, then there are scalars αi, i = 1, . . . , n, not all
zero, such that

∑n
i=1 αiφi(c) = 0. Thus, y(t) :=

∑n
i=1 αiφi(t) is a solution

with initial condition y(c) = 0. But the zero solution has the same initial
condition. Thus, y(t) ≡ 0, and therefore

∑n
i=1 αiφi(t) ≡ 0. This contradicts

the hypothesis that F is a linearly independent set, as required.
Using the basis B, there are scalars β1, . . . , βn ∈ R such that φ(c) =∑n
i=1 βiφi(c). It follows that both φ and

∑n
i=1 βiφi are solutions with the

same initial condition, and, by uniqueness, φ =
∑n

i=1 βiφi. �

Definition 2.12. An n × n matrix function t �→ Ψ(t), defined on an open
interval J , is called a matrix solution of the homogeneous linear system (2.4)
if each of its columns is a (vector) solution. A matrix solution is called
a fundamental matrix solution if its columns form a fundamental set of
solutions. In addition, a fundamental matrix solution t �→ Ψ(t) is called
the principal fundamental matrix solution at t0 ∈ J if Ψ(t0) = I.

If t �→ Ψ(t) is a matrix solution of the system (2.4) on the interval J ,
then Ψ̇(t) = A(t)Ψ(t) on J . By Proposition 2.10, there is a fundamental
matrix solution. Moreover, if t0 ∈ J and t �→ Φ(t) is a fundamental matrix
solution on J , then (by the linear independence of its columns) the matrix
Φ(t0) is invertible. It is easy to see that the matrix solution defined by
Ψ(t) := Φ(t)Φ−1(t0) is the principal fundamental matrix solution at t0.
Thus, system (2.4) has a principal fundamental matrix solution at each
point in J .
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Definition 2.13. The state transition matrix for the homogeneous linear
system (2.4) on the open interval J is the family of fundamental matrix
solutions t �→ Ψ(t, τ) parametrized by τ ∈ J such that Ψ(τ, τ) = I, where
I denotes the n × n identity matrix.

Proposition 2.14. If t �→ Φ(t) is a fundamental matrix solution for the
system (2.4) on J , then Ψ(t, τ) := Φ(t)Φ−1(τ) is the state transition ma-
trix. Also, the state transition matrix satisfies the Chapman–Kolmogorov
identities

Ψ(τ, τ) = I, Ψ(t, s)Ψ(s, τ) = Ψ(t, τ)

and the identities

Ψ(t, s)−1 = Ψ(s, t),
∂Ψ
∂s

(t, s) = −Ψ(t, s)A(s).

Proof. See Exercise 2.15. �

A two-parameter family of operator-valued functions that satisfies the
Chapman–Kolmogorov identities is called an evolution family.

In the case of constant coefficients, that is, in case t �→ A(t) is a constant
function, the corresponding homogeneous linear system is autonomous,
and therefore its solutions define a flow. This result also follows from the
Chapman–Kolmogorov identities.

To prove the flow properties, let us show first that if t �→ A(t) is a
constant function, then the state transition matrix Ψ(t, t0) depends only
on the difference t−t0. In fact, since t �→ Ψ(t, t0) and t �→ Ψ(t+s, t0+s) are
both solutions satisfying the same initial condition at t0, they are identical.
In particular, with s = −t0, we see that Ψ(t, t0) = Ψ(t − t0, 0). If we define
φt := Ψ(t, 0), then using the last identity together with the Chapman–
Kolmogorov identities we find that

Ψ(t + s, 0) = Ψ(t, −s) = Ψ(t, 0)Ψ(0,−s) = Ψ(t, 0)Ψ(s, 0).

Thus, we recover the group property φt+s = φtφs. Since, in addition, φ0 =
Ψ(0, 0) = I, the family of operators φt defines a flow. In this context, φt is
also called an evolution group.

If t �→ Φ(t) is a fundamental matrix solution for the linear system (2.4)
and v ∈ R

n, then t �→ Φ(t)v is a (vector) solution. Moreover, every solution
is obtained in this way. In fact, if t �→ φ(t) is a solution, then there is
some v such that Φ(t0)v = φ(t0). (Why?) By uniqueness, we must have
Φ(t)v = φ(t). Also, note that Ψ(t, t0)v has the property that Ψ(t0, t0)v = v.
In other words, Ψ “transfers” the initial state v to the final state Ψ(t, t0)v.
Hence, the name “state transition matrix.”

Exercise 2.15. Prove Proposition 2.14.
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Exercise 2.16. [Cocycles] A cocycle is a family of functions, each mapping
from R × R

n to the set of linear transformations of R
n such that Φ(0, u) = I and

Φ(t+s, u) = Φ(t, φs(u))Φ(s, u). (To learn more about why cocycles are important,
see [45].) Suppose u̇ = f(u) is a differential equation on R

n with flow φt. Show
that the family of principal fundamental matrix solutions Φ(t, u) of the family of
variational equations ẇ = Df(φt(u))w is a cocycle over the flow φt.

Exercise 2.17. [Time-dependent vector fields] The solution of a nonautonomous
differential equation ẋ = X(t, x) is an evolution family φt,s; that is, t �→ φt,s(ξ)
is the solution with initial condition φs,s(ξ) = ξ. (a) Prove that φ−t,t

τ (ξ) +
φ−t,t

x (ξ)X(t, ξ) = 0, where the subscripts denote partial derivatives—the reason
why superscripts are used to denote the evolution variables. Hint: Differentiate
the left-hand side of the Chapman-Kolmogorov identity φ−t,τφτ,t = φ−t,t with
respect to τ . (b) Define F (t, ξ) = φ−t,t(ξ). Prove that F (0, ξ) = ξ and

Ft(t, ξ) + Fx(t, x)X(t, x) = −X(−t, F (t, ξ)).

(c) Suppose that X is 2T -periodic in t. Prove that ξ lies on a periodic orbit if
and only if F (T, ξ) = ξ. (d) Suppose that X is 2T -periodic in t and X(t, x) =
−X(−t, x). Show that every orbit is periodic. (For more on this subject see [163].)

The linear independence of a set of solutions of a homogeneous linear
differential equation can be determined by checking the independence of a
set of vectors obtained by evaluating the solutions at just one point. This
useful fact is perhaps most clearly expressed by Liouville’s formula, which
has many other implications.

Proposition 2.18 (Liouville’s Formula). Suppose that t �→ Φ(t) is a
matrix solution of the homogeneous linear system (2.4) on the open interval
J . If t0 ∈ J , then

det Φ(t) = det Φ(t0)e
∫ t

t0
tr A(s) ds

where det denotes determinant and tr denotes trace. In particular, Φ(t) is a
fundamental matrix solution if and only if the columns of Φ(t0) are linearly
independent.

Proof. The matrix solution t �→ Φ(t) is a differentiable function. Thus, we
have that

lim
h→0

1
h

[Φ(t + h) − (I + hA(t))Φ(t)] = 0.

In other words, using the “little oh” notation,

Φ(t + h) = (I + hA(t))Φ(t) + o(h). (2.6)

(The little oh has the following meaning: f(x) = g(x) + o(h(x)) if

lim
x→0+

|f(x) − g(x)|
h(x)

= 0.
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Thus, we should write o(±h) in equation (2.6), but this technicality is not
important in this proof.)

By the definition of the determinant of an n × n matrix, that is, if B :=
(bij), then

det B =
∑

σ

sgn(σ)
n∏

i=1

bi,σ(i),

and the following result: The determinant of a product of matrices is the
product of their determinants, we have that

det Φ(t + h) = det(I + hA(t)) det Φ(t) + o(h)
= (1 + h trA(t)) det Φ(t) + o(h),

and therefore

d

dt
det Φ(t) = trA(t) det Φ(t).

Integration of this last differential equation gives the desired result. �

Exercise 2.19. Find a fundamental matrix solution of the system

ẋ =
(

1 −1/t
1 + t −1

)
x, t > 0.

Hint: x(t) =
(

1
t

)
is a solution.

Exercise 2.20. Suppose that every solution of ẋ = A(t)x is bounded for t ≥ 0
and let Φ(t) be a fundamental matrix solution. Prove that Φ−1(t) is bounded for
t ≥ 0 if and only if the function t �→ ∫ t

0 tr A(s) ds is bounded below. Hint: The
inverse of a matrix is the adjugate of the matrix divided by its determinant.

Exercise 2.21. Suppose that the linear system ẋ = A(t)x is defined on an
open interval containing the origin whose right-hand end point is ω ≤ ∞ and the
norm of every solution has a finite limit as t → ω. Show that there is a solution
converging to zero as t → ω if and only if

∫ ω

0 tr A(s) ds = −∞. Hint: A matrix
has a nontrivial kernel if and only if its determinant is zero (cf. [115]).

Exercise 2.22. [Transport Theorem] Let φt denote the flow of the system ẋ =
f(x), x ∈ R

n, and let Ω be a bounded region in R
n. Define

V (t) =
∫

φt(Ω)
dx1dx2 · · · dxn

and recall that the divergence of a vector field f = (f1, f2, . . . , fn) on R
n with

the usual Euclidean structure is

div f =
n∑

i=1

∂fi

∂xi
.
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(a) Use Liouville’s theorem and the change of variables formula for multiple
integrals to prove that

V̇ (t) =
∫

φt(Ω)
div f(x)dx1dx2 · · · dxn.

(b) Prove: The flow of a vector field whose divergence is everywhere negative con-
tracts volume. (c) Suppose that g : R

n × R → R and, for notational convenience,
let dx = dx1dx2 · · · dxn. Prove the transport theorem:

d

dt

∫
φt(Ω)

g(x, t) dx =
∫

φt(Ω)
gt(x, t) + div(gf)(x, t) dx.

(d) Suppose that the mass in every open set remains unchanged as it is moved
by the flow (that is, mass is conserved) and let ρ denote the corresponding mass-
density. Prove that the density satisfies the equation of continuity

∂ρ

∂t
+ div(ρf) = 0.

(e) The flow of the system ẋ = y, ẏ = x is area preserving. Show directly that
the area of the unit disk is unchanged when it is moved forward two time units
by the flow.

Exercise 2.23. Construct an alternate proof of Liouville’s formula for the n-
dimensional linear system ẋ = A(t)x with fundamental matrix det Φ(t) by dif-
ferentiation of the function t �→ det Φ(t) using the chain rule. Hint: Compute
d
dt

det Φ(t) directly as a sum of n determinants of matrices whose components are
the components of Φ(t) and their derivatives with respect to t. For this computa-
tion note that the determinant is a multilinear function of its rows (or columns).
Use the multilinearity with respect to rows. Substitute for the derivatives of com-
ponents of Φ using the differential equation and use elementary row operations
to reduce each determinant in the sum to a diagonal component of A(t) times
det Φ(t).

2.1.4 Linear Equations with Constant Coefficients
In this section we will consider the homogeneous linear system

ẋ = Ax, x ∈ R
n (2.7)

where A is a real n × n (constant) matrix. We will show how to reduce
the problem of constructing a fundamental set of solutions of system (2.7)
to a problem in linear algebra. In addition, we will see that the principal
fundamental matrix solution at t = 0 is given by the exponential of the
matrix tA just as the fundamental scalar solution at t = 0 of the scalar
differential equation ẋ = ax is given by t �→ eat.

Let us begin with the essential observation of the subject: The solutions of
system (2.7) are intimately connected with the eigenvalues and eigenvectors
of the matrix A. To make this statement precise, let us recall that a complex
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number λ is an eigenvalue of A if there is a complex nonzero vector v such
that Av = λv. In general, the vector v is called an eigenvector associated
with the eigenvalue λ if Av = λv. Moreover, the set of all eigenvectors
associated with an eigenvalue forms a vector space. Because a real matrix
can have complex eigenvalues, it is convenient to allow for complex solutions
of the differential equation (2.7). Indeed, if t �→ u(t) and t �→ v(t) are real
functions, and if t �→ φ(t) is defined by φ(t) := u(t)+ iv(t), then φ is called
a complex solution of system (2.7) provided that u̇ + iv̇ = Au + iAv. Of
course, if φ is a complex solution, then we must have u̇ = Au and v̇ = Av.
Thus, it is clear that φ is a complex solution if and only if its real and
imaginary parts are real solutions. This observation is used in the next
proposition.

Proposition 2.24. Let A be a real n×n matrix and consider the ordinary
differential equation (2.7).

(1) The function given by t �→ eλtv is a real solution if and only if λ ∈ R,
v ∈ R

n, and Av = λv.

(2) If v �= 0 is an eigenvector for A with eigenvalue λ = α + iβ such
that β �= 0, then the imaginary part of v is not zero. In this case, if
v = u + iw ∈ C

n, then there are two real solutions

t → eαt[(cos βt)u − (sin βt)w],

t → eαt[(sinβt)u + (cos βt)w].

Moreover, these solutions are linearly independent.

Proof. If Av = λv, then

d

dt
(eλtv) = λeλtv = eλtAv = Aeλtv.

In particular, the function t → eλtv is a solution.
If λ = α + iβ and β �= 0, then, because A is real, v must be of the form

v = u + iw for some u, w ∈ R
n with w �= 0. The real and imaginary parts

of the corresponding solution

eλtv = e(α+iβ)t(u + iw)
= eαt(cos βt + i sin βt)(u + iw)
= eαt[(cos βt)u − (sin βt)w + i((sinβt)u + (cos βt)w)]

are real solutions of the system (2.7). To show that these real solutions
are linearly independent, suppose that some linear combination of them
with coefficients c1 and c2 is identically zero. Evaluation at t = 0 and at
t = π/(2β) yields the equations

c1u + c2w = 0, c2u − c1w = 0.
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By elimination of u we find that (c2
1 + c2

2)w = 0. Since w �= 0, both coeffi-
cients must vanish. This proves (2).

Finally, we will complete the proof of (1). Suppose that λ = α + iβ and
v = u+ iw. If eλtv is real, then β = 0 and w = 0. Thus, in fact, λ and v are
real. On the other hand, if λ and v are real, then eλtv is a real solution. In
this case,

λeλtv = Aeλtv,

and we have that λv = Av. �

A fundamental matrix solution of system (2.7) can be constructed explic-
itly if the eigenvalues of A and their multiplicities are known. To illustrate
the basic idea, let us suppose that C

n has a basis B := {v1, . . . , vn} con-
sisting of eigenvectors of A, and let {λ1, . . . , λn} denote the corresponding
eigenvalues. For example, if A has n distinct eigenvalues, then the set con-
sisting of one eigenvector corresponding to each eigenvalue is a basis of C

n.
At any rate, if B is a basis of eigenvectors, then there are n corresponding
solutions given by

t �→ eλitvi, i = 1, . . . , n,

and the matrix

Φ(t) = [eλ1tv1, . . . , eλntvn],

which is partitioned by columns, is a matrix solution. Because det Φ(0) �=
0, this solution is a fundamental matrix solution, and moreover Ψ(t) :=
Φ(t)Φ−1(0) is the principal fundamental matrix solution of (2.7) at t = 0.

A principal fundamental matrix for a real system is necessarily real. To
see this, let us suppose that Λ(t) is the imaginary part of the principal
fundamental matrix solution Ψ(t) at t = 0. Since, Ψ(0) = I, we must
have Λ(0) = 0. Also, t �→ Λ(t) is a solution of the linear system. By the
uniqueness of solutions of initial value problems, Λ(t) ≡ 0. Thus, even if
some of the eigenvalues of A are complex, the principal fundamental matrix
solution is real.

Continuing under the assumption that A has a basis B of eigenvectors,
let us show that there is a change of coordinates that transforms the system
ẋ = Ax, x ∈ R

n, to a decoupled system of n scalar differential equations.
To prove this result, let us first define the matrix B := [v1, . . . , vn] whose
columns are the eigenvectors in B. The matrix B is invertible. Indeed,
consider the action of B on the usual basis vectors and recall that the vector
obtained by multiplication of a vector by a matrix is a linear combination of
the columns of the matrix; that is, if w = (w1, . . . , wn) is (the transpose of)
a vector in C

n, then the product Bw is equal to
∑n

i=1 wivi. In particular,
we have Bei = vi, i = 1, . . . , n. This proves that B is invertible. In fact,
B−1 is the unique linear map such that B−1vi = ei.
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Using the same idea, let us compute

B−1AB = B−1A[v1, . . . , vn]

= B−1[λ1v1, . . . , λnvn]

= [λ1e1, . . . , λnen]

=

⎛⎜⎝λ1 0
. . .

0 λn

⎞⎟⎠ .

In other words, D := B−1AB is a diagonal matrix with the eigenvalues
of A as its diagonal elements. The diffeomorphism of C

n given by the
linear transformation x = By transforms the system (2.7) to ẏ = Dy, as
required. Or, using our language for general coordinate transformations,
the push forward of the vector field with principal part x �→ Ax by the
diffeomorphism B−1 is the vector field with principal part y �→ Dy. In
particular, the system ẏ = Dy is given in components by

ẏ1 = λ1y1, . . . , ẏn = λnyn.

Note that if we consider the original system in the new coordinates, then
it is obvious that the functions

yi(t) := eλitei, i = 1, . . . , n

are a fundamental set of solutions for the differential equation ẏ = Dy.
Moreover, by transforming back to the original coordinates, it is clear that
the solutions

xi(t) := eλitBei = eλitvi, i = 1, . . . , n

form a fundamental set of solutions for the original system (2.7). Thus,
we have an alternative method to construct a fundamental matrix solu-
tion: Change coordinates to obtain a new differential equation, construct
a fundamental set of solutions for the new differential equation, and then
transform these new solutions back to the original coordinates. Even if A
is not diagonalizable, a fundamental matrix solution of the associated dif-
ferential equation can still be constructed using this procedure. Indeed, we
can use a basic fact from linear algebra: If A is a real matrix, then there is a
nonsingular matrix B such that D := B−1AB is in (real) Jordan canonical
form (see [59], [123], and Exercise 2.38). Then, as before, the system (2.7)
is transformed by the change of coordinates x = By into the linear system
ẏ = Dy.

We will eventually give a detailed description of the Jordan form and also
show that the corresponding canonical system of differential equations can
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be solved explicitly. This solution can be transformed back to the original
coordinates to construct a fundamental matrix solution of ẋ = Ax.

Exercise 2.25. (a) Find the principal fundamental matrix solutions at t = 0
for the matrix systems:

1. ẋ =
(

0 1
1 0

)
x.

2. ẋ =
(

2 −1
1 2

)
x.

3. ẋ =
(

0 1
0 0

)
x.

4. ẋ =
(

7 −8
4 −5

)
x.

(b) Solve the initial value problem for system 2 with initial value x(0) = (1, 0).
(c) Find a change of coordinates (given by a matrix) that diagonalizes the system
matrix of system 4. (d) Find the principal fundamental matrix solution at t = 3
for system 3.

Exercise 2.26. (a) Determine the flow of the first order system that is equiv-
alent to the second order linear differential equation

ẍ + ẋ + 4x = 0.

(b) Draw the phase portrait.

Exercise 2.27. [Euler’s Equation] Euler’s equation is the second order linear
equation

t2ẍ + btẋ + cx = 0, t > 0

with the parameters b and c. (a) Show that there are three different solution types
according to the sign of (b − 1)2 − 4c. Hint: Guess a solution of the form x = rt

for some number r. (b) Discuss, for each of the cases in part (a), the behavior
of the solution as t → 0+. (c) Write a time-dependent linear first order system
that is equivalent to Euler’s equation. (d) Determine the principal fundamental
matrix solution for the first order system in part (c) in case b = 1 and c = −1.

Instead of writing out the explicit, perhaps complicated, formulas for the
components of the fundamental matrix solution of an n × n linear system
of differential equations, it is often more useful, at least for theoretical
considerations, to treat the situation from a more abstract point of view. In
fact, we will show that there is a natural generalization of the exponential
function to a function defined on the set of square matrices. Using this
matrix exponential function, the solution of a linear homogeneous system
with constant coefficients is given in a form that is analogous to the solution
t �→ etax0 of the scalar differential equation ẋ = ax.
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Recall that the set of linear transformations L(Rn) (respectively L(Cn))
on R

n (respectively C
n) is an n2-dimensional Banach space with respect

to the operator norm
‖A‖ = sup

|v|=1
|Av|.

Most of the theory we will develop is equally valid for either of the vector
spaces R

n or C
n. When the space is not at issue, we will denote the Banach

space of linear transformations by L(E) where E may be taken as either
R

n or C
n. The theory is also valid for the set of (operator norm) bounded

linear transformations of an arbitrary Banach space.

Exercise 2.28. Prove: L(E) is a finite dimensional Banach space with respect
to the operator norm.

Exercise 2.29. Prove: (a) If A, B ∈ L(E), then ‖AB‖ ≤ ‖A‖‖B‖. (b) If A ∈
L(E) and k is a nonnegative integer, then ‖Ak‖ ≤ ‖A‖k.

Exercise 2.30. The space of n×n matrices is a topological space with respect
to the operator topology. Prove that the set of matrices with n distinct eigenvalues
is open and dense. A property that is defined on the countable intersection of
open dense sets is called generic (see [123, p. 153–157]).

Proposition 2.31. If A ∈ L(E), then the series I +
∑∞

k=1
1
k!A

k is abso-
lutely convergent.

Proof. Define

SN := 1 + ‖A‖ +
1
2!

‖A2‖ + · · · +
1

N !
‖AN‖

and note that {SN}∞
N=1 is a monotone increasing sequence of real numbers.

Since (by Exercise 2.29) ‖Ak‖ ≤ ‖A‖k for every integer k ≥ 0, it follows
that {SN}∞

N=1 is bounded above. In fact,

SN ≤ e‖A‖

for every N ≥ 1. �

Define the exponential map exp : L(E) → L(E) by

exp(A) := I +
∞∑

k=1

1
k!

Ak.

Also, let us use the notation eA := exp(A).
The main properties of the exponential map are summarized in the fol-

lowing proposition.
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Proposition 2.32. Suppose that A, B ∈ L(E).

(0) If A ∈ L(Rn), then eA ∈ L(Rn).

(1) If B is nonsingular, then B−1eAB = eB−1AB.

(2) If AB = BA, then eA+B = eAeB.

(3) e−A = (eA)−1. In particular, the image of exp is in the general linear
group GL(E) consisting of the invertible elements of L(E).

(4) d
dt (e

tA) = AetA = etAA. In particular, t �→ etA is the principal fun-
damental matrix solution of the system (2.7) at t = 0.

(5) ‖eA‖ ≤ e‖A‖.

Proof. The proof of (0) is obvious.
To prove (1), define

SN := I + A +
1
2!

A2 + · · · +
1

N !
AN ,

and note that if B is nonsingular, then B−1AnB = (B−1AB)n. Thus, we
have that

B−1SNB = I + B−1AB +
1
2!

(B−1AB)2 + · · · +
1

N !
(B−1AB)N ,

and, by the definition of the exponential map,

lim
N→∞

B−1SNB = eB−1AB .

Using the continuity of the linear map on L(E) defined by C �→ B−1CB,
it follows that

lim
N→∞

B−1SNB = B−1eAB,

as required.
While the proof of (4) given here has the advantage of being self con-

tained, there are conceptually simpler alternatives (see Exercises 2.33–
2.34). As the first step in the proof of (4), consider the following proposition:
If s, t ∈ R, then e(s+t)A = esAetA. To prove it, let us denote the partial
sums for the series representation of etA by

SN (t) := I + tA +
1
2!

(tA)2 + · · · +
1

N !
(tA)N

= I + tA +
1
2!

t2A2 + · · · +
1

N !
tNAN .
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We claim that

SN (s)SN (t) = SN (s + t) +
2N∑

k=N+1

Pk(s, t)Ak (2.8)

where Pk(s, t) is a homogeneous polynomial of degree k such that

|Pk(s, t)| ≤ (|s| + |t|)k

k!
.

To obtain this identity, note that the kth order term of the product, at
least for 0 ≤ k ≤ N , is given by

( k∑
j=0

1
(k − j)!j!

sk−jtj
)
Ak =

( 1
k!

k∑
j=0

k!
(k − j)!j!

sk−jtj
)
Ak =

1
k!

(s + t)kAk.

Also, for N + 1 ≤ k ≤ 2N , the kth order term is essentially the same, only
some of the summands are missing. In fact, these terms all have the form

( k∑
j=0

δ(j)
(k − j)!j!

sk−jtj
)
Ak

where δ(j) has value zero or one. Each such term is the product of Ak and
a homogeneous polynomial in two variables of degree k. Moreover, because
|δ(j)| ≤ 1, we obtain the required estimate for the polynomial. This proves
the claim.

Using equation (2.8), we have the following inequality

‖SN (s)SN (t) − SN (s + t)‖ ≤
2N∑

k=N+1

|Pk(s, t)| ‖A‖k

≤
2N∑

k=N+1

(|s| + |t|)k

k!
‖A‖k.

Also, because the series

∞∑
k=0

(|s| + |t|)k

k!
‖A‖k

is convergent, it follows that its partial sums, denoted QN , form a Cauchy
sequence. In particular, if ε > 0 is given, then for sufficiently large N we
have

|Q2N − QN | < ε.
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Moreover, since

Q2N − QN =
2N∑

k=N+1

(|s| + |t|)k

k!
‖A‖k,

it follows that
lim

N→∞
‖SN (s)SN (t) − SN (s + t)‖ = 0.

Using this fact and passing to the limit as N → ∞ on both sides of the
inequality

‖esAetA − e(s+t)A‖ ≤ ‖esAetA − SN (s)SN (t)‖

+ ‖SN (s)SN (t) − SN (s + t)‖

+ ‖SN (s + t) − e(s+t)A‖,

we see that

esAetA = e(s+t)A, (2.9)

as required.
In view of the identity (2.9), the derivative of the function t �→ etA is

given by

d

dt
etA = lim

s→0

1
s
(e(t+s)A − etA)

= lim
s→0

1
s
(esA − I)etA

=
(

lim
s→0

1
s
(esA − I)

)
etA

=
(

lim
s→0

(A + R(s))
)
etA

where

‖R(s)‖ ≤ 1
|s|

∞∑
k=2

|s|k
k!

‖A‖k ≤ |s|
∞∑

k=2

|s|k−2

k!
‖A‖k.

Moreover, if |s| < 1, then ‖R(s)‖ ≤ |s|e‖A‖. In particular, R(s) → 0 as
s → 0 and as a result,

d

dt
etA = AetA.

Since ASN (t) = SN (t)A, it follows that AetA = etAA. This proves the
first statement of part (4). In particular t �→ etA is a matrix solution of
the system (2.7). Clearly, e0 = I. Thus, the columns of e0 are linearly
independent. It follows that t �→ etA is the principal fundamental matrix
solution at t = 0, as required.
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To prove (2), suppose that AB = BA and consider the function t �→
et(A+B). By (4), this function is a matrix solution of the initial value prob-
lem

ẋ = (A + B)x, x(0) = I.

The function t �→ etAetB is a solution of the same initial value problem. To
see this, use the product rule to compute the derivative

d

dt
etAetB = AetAetB + etABetB ,

and use the identity AB = BA to show that etAB = BetA. The desired
result is obtained by inserting this last identity into the formula for the
derivative. By the uniqueness of the solution of the initial value problem,
the two solutions are identical.

To prove (3), we use (2) to obtain I = eA−A = eAe−A or, in other words,
(eA)−1 = e−A.

The result (5) follows from the inequality

‖I +A+
1
2!

A2 + · · ·+ 1
N !

AN‖ ≤ ‖I‖+ ‖A‖+
1
2!

‖A‖2 + · · ·+ 1
N !

‖A‖N . �

We have defined the exponential of a matrix as an infinite series and
used this definition to prove that the homogeneous linear system ẋ = Ax
has a fundamental matrix solution, namely, t �→ etA. This is a strong result
because it does not use the existence theorem for differential equations.
Granted, the uniqueness theorem is used. But it is an easy corollary of
Gronwall’s inequality (see Exercise 2.5). An alternative approach to the
exponential map is to use the existence theorem and define the function
t �→ etA to be the principal fundamental matrix solution at t = 0. Proposi-
tion 2.32 can then be proved by using properties of the solutions of homo-
geneous linear differential equations.

Exercise 2.33. Show that the partial sums of the series representation of etA

converge uniformly on compact subsets of R. Use Theorem 1.248 to prove part (4)
of Proposition 2.32.

Exercise 2.34. (a) Show that exp : L(E) → L(E) is continuous. Hint: For r >
0, the sequence of partial sums of the series representation of exp(X) converges
uniformly on Br(0) := {X ∈ L(E) : ‖X‖ < r}. (b) By Exercise 2.30, matrices
with distinct eigenvalues are dense in L(E). Such matrices are diagonalizable
(over the complex numbers). Show that if A ∈ L(E) is diagonalizable, then
part (4) of Proposition 2.32 holds for A. (c) Use parts (a) and (b) to prove
part (4) of Proposition 2.32. (d) Prove that exp : L(E) → L(E) is differentiable
and compute D exp(I).

Exercise 2.35. Define exp(A) = Φ(1) where Φ(t) is the principal fundamental
matrix at t = 0 for the system ẋ = Ax. (a) Prove that exp(tA) = Φ(t). (b) Prove
that exp(−A) = (exp(A))−1.
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Exercise 2.36. [Laplace Transform] (a) Prove that if A is an n × n-matrix,
then

etA − I =
∫ t

0
AeτA dτ.

(b) Prove that if all eigenvalues of A have negative real parts, then

−A−1 =
∫ ∞

0
eτA dτ.

(c) Prove that if s ∈ R is sufficiently large, then

(sI − A)−1 =
∫ ∞

0
e−sτeτA dτ ;

that is, the Laplace transform of etA is (sI − A)−1. (d) Solve the initial value
problem ẋ = Ax, x(0) = x0 using the method of the Laplace transform; that
is, take the Laplace transform of both sides of the equation, solve the resulting
algebraic equation, and then invert the transform to obtain the solution in the
original variables. By definition, the Laplace transform of the (perhaps matrix
valued) function f is

L{f}s =
∫ ∞

0
e−sτf(τ) dτ.

To obtain a matrix representation for etA, let us recall that there is a
real matrix B that transforms A to real Jordan canonical form. Of course,
to construct the matrix B, we must at least be able to find the eigenvalues
of A, a task that is equivalent to finding the roots of a polynomial of degree
n. Thus, for n ≥ 5, it is generally impossible to construct the matrix B
explicitly. But if B is known, then by using part (1) of Proposition 2.32,
we have that

B−1etAB = etB−1AB .

Thus, the problem of constructing a principal fundamental matrix is solved
as soon as we find a matrix representation for etB−1AB .

The Jordan canonical matrix B−1AB is block diagonal, where each block
corresponding to a real eigenvalue has the form “diagonal + nilpotent,”
and, each block corresponding to a complex eigenvalue with nonzero imag-
inary part has the form “block diagonal + block nilpotent.” In view of this
block structure, it suffices to determine the matrix representation for etJ

where J denotes a single Jordan block.
Consider a block of the form

J = λI + N

where N is the nilpotent matrix with zero components except on the super
diagonal, where each component is unity and note that Nk = 0. We have
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that

etJ = et(λI+N) = etλIetN = etλ(I + tN +
t2

2!
N2 + · · · +

tk−1

(k − 1)!
Nk−1)

where k is the dimension of the block.
If J is a Jordan block with diagonal 2 × 2 subblocks given by

R =
(

α −β
β α

)
(2.10)

with β �= 0, then etJ is block diagonal with each block given by etR. To
obtain an explicit matrix representation for etR, define

P :=
(

0 −β
β 0

)
, Q(t) :=

(
cos βt − sin βt
sin βt cos βt

)
,

and note that t �→ etP and t �→ Q(t) are both solutions of the initial value
problem

ẋ =
(

0 −β
β 0

)
x, x(0) = I.

Thus, we have that etP = Q(t) and

etR = eαtetP = eαtQ(t).

Finally, if the Jordan block J has the 2 × 2 block matrix R along its
block diagonal and the 2 × 2 identity along its super block diagonal, then

etJ = eαtS(t)etN (2.11)

where S(t) is block diagonal with each block given by Q(t), and N is the
nilpotent matrix with 2 × 2 identity blocks on its super block diagonal. To
prove this fact, note that J can be written as a sum J = αI + K where K
has diagonal blocks given by P and super diagonal blocks given by the 2×2
identity matrix. Since the n × n matrix αI commutes with every matrix,
we have that

etJ = eαtetK .

The proof is completed by observing that the matrix K can also be written
as a sum of commuting matrices; namely, the block diagonal matrix with
each diagonal block equal to P and the nilpotent matrix N .

We have outlined a procedure to find a matrix representation for etA. In
addition, we have proved the following result.

Proposition 2.37. If A is an n × n matrix, then etA is a matrix whose
components are (finite) sums of terms of the form

p(t)eαt sin βt and p(t)eαt cos βt

where α and β are real numbers such that α + iβ is an eigenvalue of A,
and p(t) is a polynomial of degree at most n − 1.
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Exercise 2.38. [Jordan Form] Show that every real 2×2-matrix can be trans-
formed to real Jordan canonical form and find the fundamental matrix solutions
for the corresponding 2 × 2 real homogeneous linear systems of differential equa-
tions. Draw the phase portrait for each canonical system. Hint: For the case of a
double eigenvalue suppose that (A−λI)V = 0 and every eigenvector is parallel to
V . Choose a vector W that is not parallel to V and note that (A−λI)W = Y �= 0.
Since V and W are linearly independent, Y = aV + bW for some real numbers a
and b. Use this fact to argue that Y is parallel to V . Hence, there is a (nonzero)
vector Z such that (A − λI)Z = V . Define B = [V, W ] to be the indicated 2 × 2-
matrix partitioned by columns and show that B−1AB is in Jordan form. To solve
ẋ = Ax, use the change of variables x = By.

Exercise 2.39. Find the Jordan canonical form for the matrix⎛
⎝1 1 2

0 −2 1
0 0 −2

⎞
⎠ .

Exercise 2.40. Find the principal fundamental matrix solution at t = 0 for
the linear differential equation whose system matrix is

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 0 0 −2
0 a 2 0

⎞
⎟⎟⎠ ,

where a := 4−ω2 and 0 ≤ ω ≤ 1, by changing variables so that the system matrix
is in Jordan canonical form, computing the exponential, and changing back to
the original variables.

Exercise 2.41. Suppose that J = λI + N is a k × k-Jordan block and let
B denote the diagonal matrix with main diagonal 1, ε, ε2, . . . , εk−1. (a) Show
that B−1JB = λI + εN . (b) Prove: Given ε > 0 and a matrix A, there is a
diagonalizable matrix B such that ‖A − B‖ < ε (cf. Exercise 2.30). (c) Discuss
the statement: A numerical algorithm for finding the Jordan canonical form will
be ill conditioned.

Exercise 2.42. (a) Suppose that A is an n × n-matrix such that A2 = I. Find
an explicit formula for etA. (b) Repeat part (a) in case A2 = −I. (c) Solve the
initial value problem

ẋ =

⎛
⎜⎜⎝

2 −5 8 −12
1 −2 4 −8
0 0 2 −5
0 0 1 −2

⎞
⎟⎟⎠ x, x(0) =

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠ .

(d) Specify the stable manifold for the rest point at the origin of the linear system

ẋ =

⎛
⎜⎜⎝

2 −3 4 −4
1 −2 4 −4
0 0 2 −3
0 0 1 −2

⎞
⎟⎟⎠ x.



2.1 Homogeneous Linear Differential Equations 167

Exercise 2.43. Prove that det eA = etr A for every n × n matrix A. Hint: Use
Liouville’s formula 2.18.

The scalar autonomous differential equation ẋ = ax has the principal
fundamental solution t �→ eat at t = 0. We have defined the exponential
map on bounded linear operators and used this function to construct the
analogous fundamental matrix solution t �→ etA of the homogeneous au-
tonomous system ẋ = Ax. The scalar nonautonomous homogeneous linear
differential equation ẋ = a(t)x has the principal fundamental solution

t �→ e
∫ t
0 a(s) ds.

But, in the matrix case, the same formula with a(s) replaced by A(s) is
not always a matrix solution of the linear system ẋ = A(t)x (cf. [130] and
see Exercise 2.50).

As an application of the methods developed in this section we will for-
mulate and prove a special case of the Lie–Trotter product formula for
the exponential of a sum of two k × k-matrices when the matrices do not
necessarily commute (see [221] for the general case).

Theorem 2.44. If γ : R → L(E) is a C1-function with γ(0) = I and
γ̇(0) = A, then the sequence {γn(t/n)}∞

n=1 converges to exp(tA). In partic-
ular, if A and B are k × k-matrices, then

et(A+B) = lim
n→∞

(
e

t
n Ae

t
n B

)n

.

Proof. Fix T > 0 and assume that |t| < T . We will first prove the following
proposition: There is a number M > 0 such that ‖γj(t/n)‖ ≤ M whenever
j and n are integers and 0 ≤ j ≤ n. Using Taylor’s theorem, we have the
estimate

‖γ(t/n)‖ ≤ 1 +
T

n
‖A‖ +

T

n

∫ 1

0
‖γ̇(st/n) − A‖ ds.

Since σ �→ ‖γ̇(σ) − A‖ is a continuous function on the compact set S :=
{σ ∈ R : |σ| ≤ T}, we also have that K := sup{‖γ̇(σ) − A‖ : σ ∈ S} < ∞,
and therefore,

‖γj(t/n)‖ ≤ ‖γ(t/n)‖j ≤ (1 +
T

n
(‖A‖ + K))n.

To finish the proof of the proposition, note that the sequence {(1+ T
n (‖A‖+

K))n}∞
n=1 is bounded—it converges to exp(T (‖A‖ + K)).
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Using the (telescoping) identity

etA − γn(t/n) =
n∑

j=1

(
(e

t
n A)n−j+1γj−1(t/n) − (e

t
n A)n−jγj(t/n)

)
=

n∑
j=1

(
(e

t
n A)n−je

t
n Aγj−1(t/n) − (e

t
n A)n−jγ(t/n)γj−1(t/n)

)
,

we have the estimate

‖etA − γn(t/n)‖ ≤
n∑

j=1

e
n−j

n T‖A‖‖e
t
n A − γ(t/n)‖‖γj−1(t/n)‖

≤ M‖e
t
n A − γ(t/n)‖

n∑
j=1

e(n−j)/nT‖A‖

≤ MneT‖A‖‖e
t
n A − γ(t/n)‖.

By Taylor’s theorem (applied to each of the functions σ �→ eσA and σ �→
γ(σ)), we obtain the inequality

‖e
t
n A − γ(t/n)‖ ≤ T

n
J(n)

where

J(n) :=
∫ 1

0
‖γ̇(st/n) − A‖ ds +

∫ 1

0
‖A‖‖e

st
n A − I‖ ds

is such that limn→∞ J(n) = 0. Since

‖etA − γn(t/n)‖ ≤ MTeT‖A‖J(n),

it follows that limn→∞‖etA − γn(t/n)‖ = 0, as required.
The second statement of the theorem follows from the first with A re-

placed by A + B and γ(t) := etAetB . �

The product formula in Theorem 2.44 gives a method to compute the
solution of the differential equation ẋ = (A + B)x from the solutions of
the equations ẋ = Ax and ẋ = Bx. Of course, if A and B happen to
commute (that is, [A, B] := AB − BA = 0), then the product formula
reduces to et(A+B) = etAetB by part (2) of Proposition 2.32. It turns out
that [A, B] = 0 is also a necessary condition for this reduction. Indeed, let
us note first that t �→ etAetB is a solution of the initial value problem

Ẇ = AW + WB, W (0) = I. (2.12)

If t �→ et(A+B) is also a solution, then by substitution and a rearrangement
of the resulting equality, we have the identity

A = e−t(A+B)Aet(A+B).
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By computing the derivative with respect to t of both sides of this identity
and simplifying the resulting equation, it follows that [A, B] = 0 (cf. Exer-
cise 2.53).

What can we say about the product etAetB in case [A, B] �= 0? The
answer is provided by (a special case of) the Baker-Campbell-Hausdorff
formula

etAetB = et(A+B)+(t2/2)[A,B]+R(t,A,B) (2.13)

where R(0, A, B) = Rt(0, A, B) = Rtt(0, A, B) = 0 (see, for example, [225]).
To obtain formula (2.13), note that the curve γ : R → L(E) given by

t �→ etAetB is such that γ(0) = I. Also, the function exp : L(E) → L(E)
is such that exp(0) = I and D exp(0) = I. Hence, by the inverse function
theorem, there is a unique smooth curve Ω(t) in L(E) such that Ω(0) = 0
and eΩ(t) = etAetB . Hence, the function t �→ eΩ(t) is a solution of the initial
value problem (2.12), that is,

D exp(Ω)Ω̇ = AeΩ + eΩB. (2.14)

By evaluation at t = 0, we have that Ω̇(0) = A + B. The equality Ω̈(0) =
[A, B] is obtained by differentiating both sides of equation (2.14) with re-
spect to t at t = 0. This computation requires the second derivative of exp
at the origin in L(E). To determine this derivative, use the power series
definition of exp to show that it suffices to compute the second derivative
of the function h : L(E) → L(E) given by h(X) = 1

2X2. Since h is smooth,
its derivatives can be determined by computing directional derivatives; in
fact, we have that

Dh(X)Y =
d

dt

1
2
(X + tY )2

∣∣
t=0 =

1
2
(XY + Y X),

D2h(X)(Y, Z) =
d

dt
Dh(X + tZ)Y

∣∣
t=0 =

1
2
(Y Z + ZY ),

and D2 exp(0)(Y, Z) = 1
2 (Y Z + ZY ). The proof of formula (2.13) is com-

pleted by applying Taylor’s theorem to the function Ω.

Exercise 2.45. Compute the principal fundamental matrix solution at t = 0
for the system ẋ = Ax where

A :=

⎛
⎝1 2 3

0 1 4
0 0 1

⎞
⎠ .

Exercise 2.46. Reduction to Jordan form is only one of many computational
methods that can be used to determine the exponential of a matrix. Repeat
Exercise 2.45 using the method presented in [112].
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Exercise 2.47. Determine the phase portrait for the system(
ẋ
ẏ

)
=

(
0 1

−1 −µ

) (
x
y

)
.

Make sure you distinguish the cases µ < −2, µ > 2, µ = 0, 0 < µ < 2, and
−2 < µ < 0. For each case, find the principal fundamental matrix solution at
t = 0.

Exercise 2.48. (a) Show that the general 2 × 2 linear system with constant
coefficients decouples in polar coordinates, and the first-order differential equation
for the angular coordinate θ can be viewed as a differential equation on the unit
circle T

1. (b) Consider the first-order differential equation

θ̇ = α cos2 θ + β cos θ sin θ + γ sin2 θ.

For 4αγ − β2 > 0, prove that all orbits on the circle are periodic with period
4π(4αγ − β2)−1/2, and use this result to determine the period of the periodic
orbits of the differential equation θ̇ = η+cos θ sin θ as a function of the parameter
η > 1. Describe the behavior of this function as η → 1+ and give a qualitative
explanation of the behavior. (c) Repeat the last part of the exercise for the
differential equation θ̇ = η − sin θ where η > 1. (d) Show that an n-dimensional
homogeneous linear differential equation induces a differential equation on the
real projective space of dimension n − 1. (e) There is an intimate connection
between the linear second-order differential equation

ÿ − (q(t) + ṗ(t)/p(t))ẏ + r(t)p(t)y = 0

and the Riccati equation

ẋ = p(t)x2 + q(t)x + r(t).

In fact, these equations are related by x = −ẏ/(p(t)y). For example ÿ + y = 0
is related to the Riccati equation u̇ = −1 − u2, where in this case the change of
variables is x = ẏ/y. Note that the unit circle in R

2, with coordinates (y, ẏ), has
coordinate charts given by (y, ẏ) �→ ẏ/y and (y, ẏ) �→ y/ẏ. Thus, the transfor-
mation from the linear second-order equation to the Riccati equation is a local
coordinate representation of the differential equation induced by the second-order
linear differential equation on the circle. Explore and explain the relation between
this coordinate representation and the polar coordinate representation of the first-
order linear system. (f) Prove the cross-ratio property for Riccati equations: If
xi, i = 1, 2, 3, 4, are four linearly independent solutions of a Riccati equation,
then the quantity

(x1 − x3)(x2 − x4)
(x1 − x4)(x2 − x3)

is constant. (g) Show that if one solution t �→ z(t) of the Riccati equation is
known, then the general solution can always be found by solving a linear equation
after the substitution x = z + 1/u. (h) Solve the initial value problem

ẋ + x2 + (2t + 1)x + t2 + t + 1 = 0, x(1) = 1.

(see [200, p. 30] for this equation, and [71] for more properties of Riccati equa-
tions).
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Exercise 2.49. The linearized Hill’s equations for the relative motion of two
satellites with respect to a circular reference orbit about the earth are given by

ẍ − 2nẏ − 3n2x = 0,

ÿ + 2nẋ = 0,

z̈ + n2z = 0

where n is a constant related to the radius of the reference orbit and the gravi-
tational constant. There is a five-dimensional manifold in the phase space corre-
sponding to periodic orbits. An orbit with an initial condition not on this manifold
contains a secular drift term. Determine the manifold of periodic orbits and ex-
plain what is meant by a secular drift term. Answer: The manifold of periodic
orbits is the hyperplane given by ẏ + 2nx = 0.

Exercise 2.50. Find a matrix function t �→ A(t) such that

t �→ exp
( ∫ t

0
A(s) ds

)

is not a matrix solution of the system ẋ = A(t)x. Show that the given exponential
formula is a solution in the scalar case. When is it a solution for the matrix case?

Exercise 2.51. In the Baker-Campbell-Hausdorff formula (2.13), the second-
order correction term is (t2/2)[A, B]. Prove that the third-order correction is
(t3/12)([A, [A, B]] − [B, [A, B]]).

Exercise 2.52. Show that the commutator relations

[A, [A, B]] = 0, [B, [A, B]] = 0

imply the identity

etAetB = eΩ(t) (2.15)

where Ω(t) := t(A+B)+(t2/2)[A, B]. Is the converse statement true? Find (3×3)
matrices A and B such that [A, B] �= 0, [A, [A, B]] = 0, and [B, [A, B]] = 0.
Verify identity (2.15) for your A and B. Hint: Suppose that [A, [A, B]] = 0 and
[B, [A, B]] = 0. Use these relations to prove in turn [Ω(t), Ω̇(t)] = 0, D exp(Ω)Ω̇ =
exp(Ω)Ω̇, and [exp(Ω), Ω̇] = 0. To prove the identity (2.15), it suffices to show that
t �→ exp(Ω(t)) is a solution of the initial value problem (2.12). By substitution
into the differential equation and some manipulation, prove that this function is
a solution if and only if

d

dt
(e−Ω(t)AeΩ(t) − t[A, B]) = 0.

Compute the indicated derivative and use the hypotheses to show that it vanishes.

Exercise 2.53. Find n×n matrices A and B such that [A, B] �= 0 and eAeB =
eA+B (see Problem 88-1 in SIAM Review, 31(1), (1989), 125–126).

Exercise 2.54. Let A be an n×n matrix with components {aij}. Prove: Every
component of eA is nonnegative if and only if the off diagonal components of A
are all nonnegative (that is, aij ≥ 0 whenever i �= j). Hint: The ‘if’ direction is
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an easy corollary of the Trotter product formula. But, this is not the best proof.
To prove both directions, consider the positive invariance of the positive orthant
in n-dimensional space under the flow of the system ẋ = Ax.

Exercise 2.55. [Lie Groups and Lax Pairs] Is the map

exp : L(E) → GL(E)

injective? Is this map surjective? Do the answers to these questions depend on
the choice of E as R

n or C
n? Prove that the general linear group is a submanifold

of R
N with N = n2 in case E = R

n, and N = 2n2 in case E = C
n. Show that the

general linear group is a Lie group; that is, the group operation (matrix product),
is a differentiable map from GL(E) × GL(E) → GL(E). Consider the tangent
space at the identity element of GL(E). Note that, for each A ∈ L(E), the map
t �→ exp(tA) is a curve in GL(E) passing through the origin at time t = 0. Use
this fact to prove that the tangent space can be identified with L(E). It turns out
that L(E) is a Lie algebra. More generally, a vector space is called a Lie algebra
if for each pair of vectors A and B, a product, denoted by [A, B], is defined on
the vector space such that the product is bilinear and also satisfies the following
algebraic identities: (skew-symmetry) [A, B] = −[B, A], and (the Jacobi identity)

[[A, B], C] + [[B, C], A] + [[C, A], B] = 0.

Show that L(E) is a Lie algebra with respect to the product [A, B] := AB −BA.
For an elementary introduction to the properties of these structures, see [119].

The delicate interplay between Lie groups and Lie algebras leads to a far-
reaching theory. To give a flavor of the relationship between these structures,
consider the map Ad : GL(E) → L(L(E)) defined by Ad(A)(B) = ABA−1. This
map defines the adjoint representation of the Lie group into the automorphisms
of the Lie algebra. Prove this. Also, Ad is a homomorphism of groups: Ad(AB) =
Ad(A) Ad(B). Note that we may as well denote the automorphism group of L(E)
by GL(L(E)). Also, define ad : L(E) → L(L(E)) by ad(A)(B) = [A, B]. The map
ad is a homomorphism of Lie algebras. Now, ϕt := Ad(etA) defines a flow in L(E).
The associated differential equation is obtained by differentiation. Show that ϕt

is the flow of the differential equation

ẋ = Ax − xA = ad(A)x. (2.16)

This differential equation is linear; thus, it has the solution t �→ et ad(A). By the
usual argument it now follows that et ad(A) = Ad(etA). In particular, we have the
commutative diagram

L(E) ad−→ L(L(E))⏐⏐�exp
⏐⏐�exp

GL(E) Ad−→ GL(L(E)).

The adjoint representation of GL(E) is useful in the study of the subgroups of
GL(E), and it is also used to identify the Lie group that is associated with a given
Lie algebra. But consider instead the following application to spectral theory. A
curve t �→ L(t) in L(E) is called isospectral if the spectrum of L(t) is the same as
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the spectrum of L(0) for all t ∈ R. We have the following proposition: Suppose
that A ∈ L(E). If t �→ L(t) is a solution of the differential equation (2.16), then
the solution is isospectral. The proof is just a restatement of the content of the
commutative diagram. In fact, L(t) is similar to L(0) because

L(t) = Ad(etA)L(0) = etAL(0)e−tA.

A pair of curves t �→ L(t) and t �→ M(t) is called a Lax pair if

L̇ = LM − ML.

The sign convention aside, the above proposition shows that if (L, M) is a Lax
pair and if M is constant, then L is isospectral. Prove the more general result: If
(L, M) is a Lax pair, then L is isospectral.

Finally, prove that

d

dt

(
etAetBe−tAe−tB)∣∣∣

t=0
= 0

and
d

dt

(
e

√
tAe

√
tBe−√

tAe−√
tB)∣∣∣

t=0
= AB − BA. (2.17)

As mentioned above, [A, B] is in the tangent space at the identity of GL(E).
Thus, there is a curve γ(t) in GL(E) such that γ(0) = I and γ̇(0) = [A, B].
One such curve is t �→ et[A,B]. Since the Lie bracket [A, B] is an algebraic object
computed from the tangent vectors A and B, it is satisfying that there is another
such curve formed from the curves t �→ etA and t �→ etB whose respective tangent
vectors at t = 0 are A and B.

Exercise 2.56. Prove that if α is a real number and A is an n × n real matrix
such that 〈Av, v〉 ≤ α|v|2 for all v ∈ R

n, then ‖etA‖ ≤ eαt for all t ≥ 0. Hint:
Consider the differential equation ẋ = Ax and the inner product 〈ẋ, x〉. Prove the
following more general result suggested by Weishi Liu. Suppose that t �→ A(t)
and t �→ B(t) are smooth n × n matrix valued functions defined on R such that
〈A(t)v, v〉 ≤ α(t)|v|2 and 〈B(t)v, v〉 ≤ 0 for all t ≥ 0 and all v ∈ R

n. If t �→ x(t)
is a solution of the differential equation ẋ = A(t)x + B(t)x, then

|x(t)| ≤ e
∫ t
0 α(s) ds|x(0)|

for all t ≥ 0.

Exercise 2.57. Let v ∈ R
3, assume v �= 0, and consider the differential equa-

tion

ẋ = v × x, x(0) = x0

where × denotes the cross product in R
3. Show that the solution of the differential

equation is a rigid rotation of the initial vector x0 about the direction v. If the
differential equation is written as a matrix system

ẋ = Sx

where S is a 3 × 3 matrix, show that S is skew symmetric and that the flow
φt(x) = etSx of the system is a group of orthogonal transformations. Show that
every solution of the system is periodic and relate the period to the length of v.
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Exercise 2.58. Consider the linear system ẋ = A(t)x where A(t) is a skew-
symmetric n × n-matrix for each t ∈ R with respect to some inner product on
R

n, and let | | denote the corresponding norm. Show that |φ(t)| = |φ(0)| for every
solution t �→ φ(t).

Exercise 2.59. [An Infinite Dimensional ODE] Let E denote the Banach space
C([0, 1]) given by the set of all continuous functions f : [0, 1] → R with the
supremum norm

‖f‖ = sup
s∈[0,1]

|f(s)|

and consider the operator U : E → E given by (Uf)(s) = f(as) where 0 ≤ a ≤ 1.
Also, let g ∈ E denote the function given by s → bs where b is a fixed real
number. Find the solution of the initial value problem

ẋ = Ux, x(0) = g.

This is a simple example of an ordinary differential equation on an infinite di-
mensional Banach space (see Section 3.6).

Exercise 2.60. Write a report on the application of the Lie-Trotter formula
to obtain numerical approximations of the solution of the initial value problem
ẋ = (A + B)x, x(0) = v with expressions of the form

T (t, n)v = (e(t/n)Ae(t/n)B)nv.

For example, approximate x(1) for such systems where

A :=
(

a 0
0 b

)
, B :=

(
c −d
d c

)
.

Compare the results of numerical experiments using your implementation(s) of
the “Lie-Trotter method” and your favorite choice of alternative method(s) to
compute x(1). Note that etA and etB can be input explicitly for the suggested
example. Can you estimate the error |T (1, n)v − eA+Bv|? Generalizations of this
scheme are sometimes used to approximate differential equations where the “vec-
tor field” can be split into two easily solved summands. Try the same idea to
solve nonlinear ODE of the form ẋ = f(x) + g(x) where etA is replaced by the
flow of ẋ = f(x) and etB is replaced by the flow of ẋ = g(x).

2.2 Stability of Linear Systems

A linear homogeneous differential equation has a rest point at the origin. We
will use our results about the solutions of constant coefficient homogeneous
linear differential equations to study the stability of this rest point. The
next result is fundamental.

Theorem 2.61. Suppose that A is an n × n (real ) matrix. The following
statements are equivalent:
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(1) There is a norm | |a on R
n and a real number λ > 0 such that for

all v ∈ R
n and all t ≥ 0,

|etAv|a ≤ e−λt|v|a.

(2) If | |g is an arbitrary norm on R
n, then there is a constant C > 0

and a real number λ > 0 such that for all v ∈ R
n and all t ≥ 0,

|etAv|g ≤ Ce−λt|v|g.

(3) Every eigenvalue of A has negative real part.

Moreover, if −λ exceeds the largest of all the real parts of the eigenvalues
of A, then λ can be taken to be the decay constant in (1) or (2).

Corollary 2.62. If every eigenvalue of A has negative real part, then the
zero solution of ẋ = Ax is asymptotically stable.

Proof. We will show that (1) ⇒ (2) ⇒ (3) ⇒ (1).
To show (1) ⇒ (2), let | |a be the norm in statement (1) and | |g the

norm in statement (2). Because these norms are defined on the finite di-
mensional vector space R

n, they are equivalent; that is, there are constants
K1 > 0 and K2 > 0 such that for all x ∈ R

n we have

K1|x|g ≤ |x|a ≤ K2|x|g.

(Prove this!) Hence, if t ≥ 0 and v ∈ R
n, then

|etAv|g ≤ 1
K1

|etAv|a ≤ 1
K1

e−λt|v|a ≤ K2

K1
e−λt|v|g.

To show (2) ⇒ (3), suppose that statement (2) holds but statement (3)
does not. In particular, A has an eigenvalue µ ∈ C, say µ = α + iβ with
α ≥ 0. Moreover, there is at least one eigenvector v �= 0 corresponding to
this eigenvalue. By Proposition 2.24, the system ẋ = Ax has a solution
t �→ γ(t) of the form t → eαt((cos βt)u − (sin βt)w) where v = u + iw,
u ∈ R

n and w ∈ R
n. By inspection, limt→∞ γ(t) �= 0. But if statement (2)

holds, then limt→∞ γ(t) = 0, in contradiction.
To finish the proof we will show (3) ⇒ (1). Let us assume that state-

ment (3) holds. Since A has a finite set of eigenvalues and each of its
eigenvalues has negative real part, there is a number λ > 0 such that the
real part of each eigenvalue of A is less than −λ.

By Proposition 2.37, the components of etA are finite sums of terms of the
form p(t)eαt sin βt or p(t)eαt cos βt where α is the real part of an eigenvalue
of A and p(t) is a polynomial of degree at most n − 1. In particular, if the
matrix etA, partitioned by columns, is given by [c1(t), . . . , cn(t)], then each
component of each vector ci(t) is a sum of such terms.
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Let us denote the usual norm of a vector v = (v1, . . . , vn) in R
n by |v|.

Also, |vi| is the absolute value of the real number vi, or (if you like) the
norm of the vector vi ∈ R. With this notation we have

|etAv| ≤
n∑

i=1

|ci(t)||vi|.

Because

|vi| ≤
( n∑

j=1

|vj |2
)1/2 = |v|,

it follows that

|etAv| ≤ |v|
n∑

i=1

|ci(t)|.

If β1, . . . , β� are the nonzero imaginary parts of the eigenvalues of A and
if α denotes the largest real part of an eigenvalue of A, then using the
structure of the components of the vector ci(t) it follows that

|ci(t)|2 ≤ e2αt
2n−2∑
k=0

|dki(t)||t|k

where each coefficient dki(t) is a quadratic form in

sin β1t, . . . , sin β�t, cos β1t, . . . , cos β�t.

There is a constant M > 0 that does not depend on i or k such that the
supremum of |dki(t)| for t ∈ R does not exceed M2. In particular, for each
i = 1, . . . , n, we have

|ci(t)|2 ≤ e2αtM2
2n−2∑
k=0

|t|k,

and as a result

|etAv| ≤ |v|
n∑

i=1

|ci(t)| ≤ eαtnM |v|
( 2n−2∑

k=0

|t|k
)1/2

.

Because α < −λ < 0, there is some τ > 0 such that for t ≥ τ , we have
the inequality

e(λ+α)tnM
( 2n−2∑

k=0

|t|k
)1/2 ≤ 1,

or equivalently

eαtnM
( 2n−2∑

k=0

|t|k
)1/2 ≤ e−λt.



2.2 Stability of Linear Systems 177

In particular, if t ≥ τ , then for each v ∈ R
n we have

|etAv| ≤ e−λt|v|. (2.18)

To finish the proof, we will construct a new norm for which the same
inequality is valid for all t ≥ 0. In fact, we will prove that

|v|a :=
∫ τ

0
eλs|esAv| ds

is the required norm.
The easy proof required to show that | |a is a norm on R

n is left to
the reader. To obtain the norm estimate, note that for each t ≥ 0 there
is a nonnegative integer m and a number T such that 0 ≤ T < τ and
t = mτ + T . Using this decomposition of t, we find that

|etAv|a =
∫ τ

0
eλs|esAetAv| ds

=
∫ τ−T

0
eλs|e(s+t)Av| ds +

∫ τ

τ−T

eλs|e(s+t)A| ds

=
∫ τ−T

0
eλs|emτAe(s+T )Av| ds

+
∫ τ

τ−T

eλs|e(m+1)τAe(T−τ+s)Av| ds.

Let u = T + s in the first integral, let u = T − τ + s in the second integral,
use the inequality (2.18), and, for m = 0, use the inequality |emτAeuAv| ≤
e−λmτ |v|, to obtain the estimates

|etAv|a =
∫ τ

T

eλ(u−T )|e(mτ+u)Av| du +
∫ T

0
eλ(u+τ−T )|e((m+1)τ+u)Av| du

≤
∫ τ

T

eλ(u−T )e−λ(mτ)|euAv| du

+
∫ T

0
eλ(u+τ−T )e−λ(m+1)τ |euAv| du

≤
∫ τ

0
eλue−λ(mτ+T )|euAv| du

= e−λt

∫ τ

0
eλu|euAv| du

≤ e−λt|v|a,

as required. �

Recall that a matrix is infinitesimally hyperbolic if all of its eigenvalues
have nonzero real parts. The following corollary of Theorem 2.61 is the
basic result about the dynamics of hyperbolic linear systems.



178 2. Linear Systems and Stability of Nonlinear Systems

Corollary 2.63. If A is an n × n (real ) infinitesimally hyperbolic matrix,
then there are two A-invariant subspaces Es and Eu of R

n such that R
n =

Es ⊕ Eu. Moreover, if | |g is a norm on R
n, then there are constants

λ > 0, µ > 0, C > 0, and K > 0 such that for all v ∈ Es and all t ≥ 0

|etAv|g ≤ Ce−λt|v|g,

and for all v ∈ Eu and all t ≤ 0

|etAv|g ≤ Keµt|v|g.

Also, there exists a norm on R
n such that the above inequalities hold for

C = K = 1 and λ = µ.

Proof. The details of the proof are left as an exercise. But let us note that
if A is infinitesimally hyperbolic, then we can arrange for the Jordan form
J of A to be a block matrix

J =
(

As 0
0 Au

)
where the eigenvalues of As all have negative real parts and the eigenval-
ues of Au have positive real parts. Thus, there is an obvious J-invariant
splitting of the vector space R

n into a stable space and an unstable space.
By changing back to the original coordinates, it follows that there is a
corresponding A-invariant splitting. The hyperbolic estimate on the stable
space follows from Theorem 2.61 applied to the restriction of A to its stable
subspace; the estimate on the unstable space follows from Theorem 2.61
applied to the restriction of −A to the unstable subspace of A. Finally, an
adapted norm on the entire space is obtained as follows:

|(vs, vu)|2a = |vs|2a + |vu|2a. �

The basic result of this section—if all eigenvalues of the matrix A are
in the left half plane, then the zero solution of the corresponding homo-
geneous system is asymptotically stable—is a special case of the principle
of linearized stability. This result provides a method to determine the sta-
bility of the zero solution that does not require knowing other solutions of
the system. As we will see, the same idea works in more general contexts.
But, additional hypotheses are required for most generalizations.

Exercise 2.64. Find Es, Eu, C, K, λ, and µ as in Corollary 2.63 (relative to
the usual norm) for the matrix

A :=
(

2 1
0 −3

)
.
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Exercise 2.65. As a continuation of Exercise 2.56, suppose that A is an n × n
matrix and that there is a number λ > 0 such that every eigenvalue of A has real
part less than −λ. Prove that there is an inner product and associated norm such
that 〈Ax, x〉 ≤ −λ|x|2 for all x ∈ R

n and conclude that |etAx| ≤ e−λt|x|. This
gives an alternative method of constructing an adapted norm (see [123, p. 146]).
Show that there is a constant C > 0 such that |etAx| ≤ Ce−λt|x| with respect
to the usual norm. Moreover, show that there is a constant k > 0 such that if B
is an n × n matrix, then |etBx| ≤ Cek‖B−A‖−λt|x|. In particular, if ‖B − A‖ is
sufficiency small, then there is some µ > 0 such that |etBx| ≤ Ce−µt|x|.
Exercise 2.66. Suppose that A and B are n × n-matrices and all the eigen-
values of B are positive real numbers. Also, let BT denote the transpose of B.
Show that there is a value µ∗ of the parameter µ such that the rest point at the
origin of the system

Ẋ = AX − µXBT

is asymptotically stable whenever µ > µ∗. Hint: X is a matrix valued variable.
Show that the eigenvalues of the linear operator X �→ AX − XBT are given by
differences of the eigenvalues of A and B. Prove this first in case A and B are
diagonalizable and then use the density of the diagonalizable matrices (cf. [207,
p. 331]).

2.3 Stability of Nonlinear Systems

Theorem 2.61 states that the zero solution of a constant coefficient ho-
mogeneous linear system is asymptotically stable if the spectrum of the
coefficient matrix lies in the left half of the complex plane. The principle
of linearized stability states that the same result is true for steady state
solutions of nonlinear equations provided that the system matrix of the
linearized system along the steady state solution has its spectrum in the
left half plane. As stated, this principle is not a theorem. In this section,
however, we will formulate and prove a theorem on linearized stability
which is strong enough for most applications. In particular, we will prove
that a rest point of an autonomous differential equation ẋ = f(x) in R

n is
asymptotically stable if all eigenvalues of the Jacobian matrix at the rest
point have negative real parts. Our stability result is also valid for some
nonhomogeneous nonautonomous differential equations of the form

ẋ = A(t)x + g(x, t), x ∈ R
n (2.19)

where g : R
n × R → R

n is a smooth function.
A fundamental tool used in our stability analysis is the formula, called

the variation of parameters formula, given in the next proposition.

Proposition 2.67 (Variation of Parameters Formula). Consider the
initial value problem

ẋ = A(t)x + g(x, t), x(t0) = x0 (2.20)
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and let t �→ Φ(t) be a fundamental matrix solution for the homogeneous
system ẋ = A(t)x that is defined on some interval J0 containing t0. If t �→
φ(t) is the solution of the initial value problem defined on some subinterval
of J0, then

φ(t) = Φ(t)Φ−1(t0)x0 + Φ(t)
∫ t

t0

Φ−1(s)g(φ(s), s) ds. (2.21)

Proof. Define a new function z by z(t) = Φ−1(t)φ(t). We have

φ̇(t) = A(t)Φ(t)z(t) + Φ(t)ż(t).

Thus,
A(t)φ(t) + g(φ(t), t) = A(t)φ(t) + Φ(t)ż(t)

and
ż(t) = Φ−1(t)g(φ(t), t).

Also note that z(t0) = Φ−1(t0)x0.
By integration,

z(t) − z(t0) =
∫ t

t0

Φ−1(s)g(φ(s), s) ds,

or, in other words,

φ(t) = Φ(t)Φ−1(t0)x0 + Φ(t)
∫ t

t0

Φ−1(s)g(φ(s), s) ds. �

Let us note that in the special case where the function g in the differential
equation (2.20) is a constant with respect to its first variable, the variation
of parameters formula solves the initial value problem once a fundamental
matrix solution of the associated homogeneous system is determined.

Exercise 2.68. Consider the linear system

u̇ = −δ2u + v + δw, v̇ = −u − δ2v + δw, ẇ = −δw

where δ is a parameter. Find the general solution of this system using matrix
algebra and also by using the substitution z = u+ iv. Describe the phase portrait
for the system for each value of δ. Find an invariant line and determine the rate
of change with respect to δ of the angle this line makes with the positive w-axis.
Also, find the angular velocity of the “twist” around the invariant line.

Exercise 2.69. (a) Use variation of parameters to solve the system

ẋ = x − y + e−t, ẏ = x + y + e−t.

(b) Find the set of initial conditions at t = 0 so that limt→∞(x(t), y(t)) = (0, 0)
whenever t �→ (x(t), y(t)) satisfies one of these initial conditions.
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Exercise 2.70. Suppose that g : R
n → R

n is smooth and consider the family
of solutions t �→ φ(t, ξ, ε) of the family of differential equations

ẋ = Ax + εx + ε2g(x)

with parameter ε such that φ(0, ξ, ε) = ξ. Compute the derivative φε(1, ξ, 0). Hint:
Solve an appropriate variational equation using variation of parameters.

Exercise 2.71. The product Φ(t)Φ−1(s) appears in the variation of parameters
formula where Φ(t) is the principal fundamental matrix for the system ẋ = A(t)x.
Show that if A is a constant matrix or A is 1 × 1, then Φ(t)Φ−1(s) = Φ(t − s).
Prove that this formula does not hold in general for homogeneous linear systems.

Exercise 2.72. Give an alternative proof of Proposition 2.67 by verifying di-
rectly that the variation of parameters formula (2.21) is a solution of the initial
value problem (2.20)

Exercise 2.73. Suppose that A is an n×n-matrix all of whose eigenvalues have
negative real parts. (a) Find a (smooth) function f : R → R so that a solution of
the scalar equation ẋ = −x + f(t) is not bounded for t ≥ 0. (b) Show that there
is a (smooth) function f : R → R

n so that a solution of the system ẋ = Ax+f(t)
is not bounded for t ≥ 0. (c) Show that if the system ẋ = Ax + f(t) does have a
bounded solution, then all solutions are bounded.

Exercise 2.74. [Nonlinear Variation of Parameters] Consider the differential
equations ẏ = F (y, t) and ẋ = f(t, x) and let t �→ y(t, τ, ξ) and t �→ x(t, τ, ξ) be
the corresponding solutions such that y(τ, τ, ξ) = ξ and x(τ, τ, ξ) = ξ. (a) Prove
the nonlinear variation of parameters formula

x(t, τ, ξ) = y(t, τ, ξ) +
∫ t

τ

[yτ (t, s, x(s, τ, ξ)) + yξ(t, s, x(s, τ, ξ))f(s, x(s, τ, ξ))] ds.

Hint: Define z(s) = y(t, s, x(s, τ, ξ), differentiate z with respect to s, integrate
the resulting formula over the interval [τ, t], and note that z(t) = x(t, τ, ξ)
and z(τ) = y(t, τ, ξ). (b) Derive the variation of parameters formula from the
nonlinear variation of parameters formula. Hint: Consider ẏ = A(t)y and ẋ =
A(t)x+h(t, x). Also, let Φ(t) denote a fundamental matrix for ẏ = A(t)y and note
that d/dtΦ−1(t) = −Φ−1(t)A(t). (c) Consider the differential equation ẋ = −x3

and prove that x(t, ξ) (the solution such that x(0, ξ) = ξ) is O(1/
√

t) as t → ∞;
that is, there is a constant C > 0 such that |x(t, ξ)| ≤ C/

√
t as t → ∞. Next sup-

pose that M and δ are positive constants and g : R → R is such that |g(x)| ≤ Mx4

whenever |x| < δ. Prove that if t �→ x(t, ξ) is the solution of the differential equa-
tion ẋ = −x3 + g(x) such that x(0, ξ) = ξ and |ξ| is sufficiently small, then
|x(t, ξ)| ≤ C/

√
t. Hint: First show that the origin is asymptotically stable using

a Lyapunov function. Write out the nonlinear variation of parameters formula,
make an estimate, and use Gronwall’s inequality.

The next proposition states an important continuity result for the so-
lutions of nonautonomous systems with respect to initial conditions. To
prove it, we will use the following lemma.



182 2. Linear Systems and Stability of Nonlinear Systems

x(T, ξ)

O(ξ0)

V

ξ0

ξ

U

x(T, ξ0)

Figure 2.1: Local stability as in Proposition 2.76. For every open set U
containing the orbit segment O(ξ0), there is an open set V containing ξ0
such that orbits starting in V stay in U on the time interval 0 ≤ t ≤ T .

Lemma 2.75. Consider a smooth function f : R
n × R → R

n. If K ⊆ R
n

and A ⊆ R are compact sets, then there is a number L > 0 such that

|f(x, t) − f(y, t)| ≤ L|x − y|

for all (x, t), (y, t) ∈ K × A.

Proof. The proof of the lemma uses compactness, continuity, and the mean
value theorem. The details are left as an exercise. �

Recall that a function f as in the lemma is called Lipschitz with respect to
its first argument on K × A with Lipschitz constant L.

Proposition 2.76. Consider, for each ξ ∈ R
n, the solution t �→ φ(t, ξ) of

the differential equation ẋ = f(x, t) such that φ(0, ξ) = ξ. If ξ0 ∈ R
n is

such that the solution t �→ φ(t, ξ0) is defined for 0 ≤ t ≤ T , and if U ⊆ R
n

is an open set containing the orbit segment O(ξ0) = {φ(t, ξ0) : 0 ≤ t ≤ T},
then there is an open set V ⊆ U , as in Figure 2.1, such that ξ0 ∈ V and
{φ(t, ξ) : ξ ∈ V, 0 ≤ t ≤ T} ⊆ U ; that is, the solution starting at each
ξ ∈ V exists on the interval [0, T ], and its values on this interval are in U .

Proof. Let ξ ∈ R
n, and consider the two solutions of the differential equa-

tion given by t �→ φ(t, ξ0) and t �→ φ(t, ξ). For t in the intersection of the
intervals of existence of these solutions, we have that

φ(t, ξ) − φ(t, ξ0) = ξ − ξ0 +
∫ t

0
f(φ(s, ξ), s) − f(φ(s, ξ0), s) ds

and

|φ(t, ξ) − φ(t, ξ0)| ≤ |ξ − ξ0| +
∫ t

0
|f(φ(s, ξ), s) − f(φ(s, ξ0), s)| ds.
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We can assume without loss of generality that U is bounded, hence its
closure is compact. It follows from the lemma that the smooth function f
is Lipschitz on U × [0, T ] with a Lipschitz constant L > 0. Thus, as long as
(φ(t, ξ), t) ∈ U × [0, T ], we have

|φ(t, ξ) − φ(t, ξ0)| ≤ |ξ − ξ0| +
∫ t

0
L|φ(s, ξ) − φ(s, ξ0)| ds

and by Gronwall’s inequality

|φ(t, ξ) − φ(t, ξ0)| ≤ |ξ − ξ0|eLt.

Let δ > 0 be such that δeLT is less than the distance from O(ξ0) to the
boundary of U . Since, on the intersection J of the domain of definition of
the solution t �→ φ(t, ξ) with [0, T ] we have

|φ(t, ξ) − φ(t, ξ0)| ≤ |ξ − ξ0|eLT ,

the vector φ(t, ξ) is in the bounded set U as long as t ∈ J and |ξ − ξ0| < δ.
By the extension theorem, the solution t �→ φ(t, ξ) is defined at least on
the interval [0, T ]. Thus, the desired set V is {ξ ∈ U : |ξ − ξ0| < δ}. �

We are now ready to formulate a theoretical foundation for Lyapunov’s
indirect method, that is, the method of linearization. The idea should be
familiar: If the system has a rest point at the origin, the linearization of
the system has an asymptotically stable rest point at the origin, and the
nonlinear part is appropriately bounded, then the nonlinear system also
has an asymptotically stable rest point at the origin.

Theorem 2.77. Consider the initial value problem (2.20) for the case
where A := A(t) is a (real ) matrix of constants. If all eigenvalues of A
have negative real parts and there are positive constants a > 0 and k > 0
such that |g(x, t)| ≤ k|x|2 whenever |x| < a, then there are positive con-
stants C, b, and α that are independent of the choice of the initial time t0
such that the solution t �→ φ(t) of the initial value problem satisfies

|φ(t)| ≤ C|x0|e−α(t−t0) (2.22)

for t ≥ t0 whenever |x0| ≤ b. In particular, the function t �→ φ(t) is defined
for all t ≥ t0, and the zero solution (the solution with initial value φ(t0) =
0), is asymptotically stable.

Proof. By Theorem 2.61 and the hypothesis on the eigenvalues of A, there
are constants C > 1 and λ > 0 such that

‖etA‖ ≤ Ce−λt (2.23)

for t ≥ 0. Fix δ > 0 such that δ < a and Ckδ − λ < 0, define α := λ − Ckδ
and b := δ/C, and note that α > 0 and 0 < b < δ < a.
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If |x0| < b, then there is a maximal half-open interval J = {t ∈ R : t0 ≤
t < τ} such that the solution t → φ(t) of the differential equation with
initial condition φ(t0) = x0 exists and satisfies the inequality

|φ(t)| < δ (2.24)

on the interval J .
For t ∈ J , use the estimate

|g(φ(t), t)| ≤ kδ|φ(t)|,

the estimate (2.23), and the variation of parameters formula

φ(t) = e(t−t0)Ax0 + etA

∫ t

t0

e−sAg(φ(s), s) ds

to obtain the inequality

|φ(t)| ≤ Ce−λ(t−t0)|x0| +
∫ t

t0

Ce−λ(t−s)kδ|φ(s)| ds.

Rearrange the inequality to the form

eλ(t−t0)|φ(t)| ≤ C|x0| + Ckδ

∫ t

t0

eλ(s−t0)|φ(s)| ds

and apply Gronwall’s inequality to obtain the estimate

eλ(t−t0)|φ(t)| ≤ C|x0|eCkδ(t−t0);

or equivalently

|φ(t)| ≤ C|x0|e(Ckδ−λ)(t−t0) ≤ C|x0|e−α(t−t0). (2.25)

Thus, if |x0| < b and |φ(t)| < δ for t ∈ J , then the required inequality (2.22)
is satisfied for t ∈ J .

If J is not the interval [t0,∞), then τ < ∞. Because |x0| < δ/C and in
view of the inequality (2.25), we have that

|φ(t)| < δe−α(t−t0) (2.26)

for t0 ≤ t < τ . In particular, the solution is bounded by δ on the interval
[t0, τ). Therefore, by the extension theorem there is some number ε > 0
such that the solution is defined on the interval K := [t0, τ + ε). Using
the continuity of the function t �→ |φ(t)| on K and the inequality (2.26), it
follows that

|φτ)| ≤ δe−α(τ−t0) < δ.

By using this inequality and again using the continuity of the function
t �→ |φ(t)| on K, there is a number η > 0 such that t �→ φ(t) is defined on
the interval [t0, τ + η), and, on this interval, |φ(t)| < δ. This contradicts
the maximality of τ . �
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Corollary 2.78. If f : R
n → R

n is smooth (at least class C2), f(ξ) = 0,
and all eigenvalues of Df(ξ) have negative real parts, then the differential
equation ẋ = f(x) has an asymptotically stable rest point at ξ. Moreover,
if −α is a number larger than every real part of an eigenvalue of Df(ξ),
and φt is the flow of the differential equation, then there is a neighborhood
U of ξ and a constant C > 0 such that

|φt(x) − ξ| ≤ C|x − ξ|e−αt

whenever x ∈ U and t ≥ 0.

Proof. It suffices to prove the corollary for the case ξ = 0. By Taylor’s
theorem (Theorem 1.237), we can rewrite the differential equation in the
form ẋ = Df(0)x + g(x) where

g(x) :=
∫ 1

0
(Df(sx) − Df(0))x ds.

The function ξ �→ Df(ξ) is class C1. Thus, by the mean value theorem
(Theorem 1.53),

‖Df(sx) − Df(0)‖ ≤ |sx| sup
τ∈[0,1]

‖D2f(τsx)‖

≤ |x| sup
τ∈[0,1]

‖D2f(τx)‖.

Again, by the smoothness of f , there is an open ball B centered at the
origin and a constant k > 0 such that

sup
τ∈[0,1]

‖D2f(τx)‖ < k

for all x ∈ B. Moreover, by an application of Proposition 1.235 and the
above estimates we have that

|g(x)| ≤ sup
s∈[0,1]

|x|‖Df(sx) − Df(0)‖ ≤ k|x|2

whenever x ∈ B. The desired result now follows directly from Theorem 2.77.

�

Exercise 2.79. Generalize the previous result to the Poincaré–Lyapunov The-
orem: Let

ẋ = Ax + B(t)x + g(x, t), x(t0) = x0, x ∈ R
n

be a smooth initial value problem. If

(1) A is a constant matrix with spectrum in the left half plane,
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(2) B(t) is the n×n matrix, continuously dependent on t such that ‖B(t)‖ → 0
as t → ∞,

(3) g(x, t) is smooth and there are constants a > 0 and k > 0 such that

|g(x, t)| ≤ k|x|2

for all t ≥ 0 and |x| < a,

then there are constants C > 1, δ > 0, λ > 0 such that

|x(t)| ≤ C|x0|e−λ(t−t0), t ≥ t0

whenever |x0| ≤ δ/C. In particular, the zero solution is asymptotically stable.

Exercise 2.80. This exercise gives an alternative proof of the principle of lin-
earized stability for autonomous systems using Lyapunov’s direct method. (a)
Consider the system

ẋ = Ax + g(x), x ∈ R
n

where A is a real n × n matrix and g : R
n → R

n is a smooth function. Suppose
that every eigenvalue of A has negative real part, and that for some a > 0, there
is a constant k > 0 such that, using the usual norm on R

n,

|g(x)| ≤ k|x|2

whenever |x| < a. Prove that the origin is an asymptotically stable rest point
by constructing a quadratic Lyapunov function. Hint: Let 〈·, ·〉 denote the usual
inner product on R

n, and let A∗ denote the transpose of the real matrix A.
Suppose that there is a real symmetric positive definite n × n matrix that also
satisfies Lyapunov’s equation

A∗B + BA = −I

and define V : R
n → R by

V (x) = 〈x, Bx〉.
Show that the restriction of V to a sufficiently small neighborhood of the origin is
a strict Lyapunov function. To do this, you will have to estimate a certain inner
product using the Schwarz inequality. Finish the proof by showing that

B :=
∫ ∞

0
etA∗

etA dt

is a symmetric positive definite n × n matrix which satisfies Lyapunov’s equa-
tion. To do this, prove that A∗ and A have the same eigenvalues. Then use the
exponential estimates for hyperbolic linear systems to prove that the integral
converges. (b) Give an alternative method to compute solutions of Lyapunov’s
equation using the following outline: Show that Lyapunov’s equation in the form
A∗B + BA = S, where A is diagonal, S is symmetric and positive definite, and
all pairs of eigenvalues of A have nonzero sums, has a symmetric positive-definite
solution B. In particular, under these hypotheses, the operator B �→ A∗B + BA
is invertible. Show that the same result is true without the hypothesis that A
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is diagonal. Hint: Use the density of the diagonalizable matrices and the con-
tinuity of the eigenvalues of a matrix with respect to its components (see Ex-
ercises 2.66 and 8.1). (c) Prove that the origin is asymptotically stable for the
system ẋ = Ax + g(x) where

A :=

⎛
⎝−1 2 0

−2 −1 0
0 0 −3

⎞
⎠ , g(u, v, w) :=

⎛
⎝u2 + uv + v2 + wv2

w2 + uvw
w3

⎞
⎠

and construct the corresponding matrix B that solves Lyapunov’s equation.

Exercise 2.81. Suppose that f : R
n → R

n is conservative; that is, there is
some function g : R

n → R such that f(x) = grad g(x). Also, suppose that M
and Λ are symmetric positive definite n × n matrices. Consider the differential
equation

Mẍ + Λẋ + f(x) = 0, x ∈ R
n

and note that, in case M and Λ are diagonal, the differential equation can be
viewed as a model of n particles each moving according to Newton’s second law
in a conservative force field with viscous damping. (a) Prove that the function
V : R

n → R defined by

V (x, y) :=
1
2
〈My, y〉 +

∫ 1

0
〈f(sx), x〉 ds

decreases along orbits of the associated first-order system

ẋ = y, Mẏ = −Λy − f(x);

in fact, V̇ = −〈Λy, y〉. Conclude that the system has no periodic orbits. (b)
Prove that if f(0) = 0 and Df(0) is positive definite, then the system has an
asymptotically stable rest point at the origin. Prove this fact in two ways: using
the function V and by the method of linearization. Hint: To use the function V
see Exercise 1.171. To use the method of linearization, note that M is invertible,
compute the system matrix for the linearization in block form, suppose there is
an eigenvalue λ, and look for a corresponding eigenvector in block form, that is
the transpose of a vector (x, y). This leads to two equations corresponding to the
block components corresponding to x and y. Reduce to one equation for x and
then take the inner product with respect to x.

2.4 Floquet Theory

We will study linear systems of the form

ẋ = A(t)x, x ∈ R
n (2.27)

where t → A(t) is a T -periodic continuous matrix-valued function. The
main theorem in this section, Floquet’s theorem, gives a canonical form
for fundamental matrix solutions. This result will be used to show that
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there is a periodic time-dependent change of coordinates that transforms
system (2.27) into a homogeneous linear system with constant coefficients.

Floquet’s theorem is a corollary of the following result about the range
of the exponential map.

Theorem 2.82. If C is a nonsingular n×n matrix, then there is an n×n
matrix B (which may be complex) such that eB = C. If C is a nonsingular
real n × n matrix, then there is a real n × n matrix B such that eB = C2.

Proof. If S is a nonsingular n × n matrix such that S−1CS = J is in
Jordan canonical form, and if eK = J , then SeKS−1 = C. As a result,
eSKS−1

= C and B = SKS−1 is the desired matrix. Thus, it suffices to
consider the nonsingular matrix C or C2 to be a Jordan block.

For the first statement of the theorem, assume that C = λI + N where
N is nilpotent; that is, Nm = 0 for some integer m with 0 ≤ m < n.
Because C is nonsingular, λ �= 0 and we can write C = λ(I + (1/λ)N). A
computation using the series representation of the function t �→ ln(1 + t)
at t = 0 shows that, formally (that is, without regard to the convergence
of the series), if B = (lnλ)I + M where

M =
m−1∑
j=1

(−1)j+1

jλj
N j ,

then eB = C. But because N is nilpotent, the series are finite. Thus, the
formal series identity is an identity. This proves the first statement of the
theorem.

The Jordan blocks of C2 correspond to the Jordan blocks of C. The
blocks of C2 corresponding to real eigenvalues of C are all of the type
rI + N where r > 0 and N is real nilpotent. For a real matrix C all
the complex eigenvalues with nonzero imaginary parts occur in complex
conjugate pairs; therefore, the corresponding real Jordan blocks of C2 are
block diagonal or “block diagonal plus block nilpotent” with 2×2 diagonal
subblocks of the form (

α −β
β α

)
as in equation (2.10). Some of the corresponding real Jordan blocks for the
matrix C2 might have real eigenvalues, but these blocks are again all block
diagonal or “block diagonal plus block nilpotent” with 2 × 2 subblocks.

For the case where a block of C2 is rI + N where r > 0 and N is real
nilpotent a real “logarithm” is obtained by the matrix formula given above.
For block diagonal real Jordan block, write

R = r

(
cos θ − sin θ
sin θ cos θ

)
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where r > 0, and note that a real logarithm is given by

ln rI +
(

0 −θ
θ 0

)
.

Finally, for a “block diagonal plus block nilpotent” Jordan block, factor
the Jordan block as follows:

R(I + N )

where R is block diagonal with R along the diagonal and N has 2 × 2
blocks on its super diagonal all given by R−1. Note that we have already
obtained logarithms for each of these factors. Moreover, it is not difficult
to check that the two logarithms commute. Thus, a real logarithm of the
Jordan block is obtained as the sum of real logarithms of the factors. �

Theorem 2.82 can be proved without reference to the Jordan canonical
form (see [5]).

Theorem 2.83 (Floquet’s Theorem). If Φ(t) is a fundamental matrix
solution of the T -periodic system (2.27), then, for all t ∈ R,

Φ(t + T ) = Φ(t)Φ−1(0)Φ(T ).

In addition, there is a matrix B (which may be complex) such that

eTB = Φ−1(0)Φ(T )

and a T -periodic matrix function t �→ P (t) (which may be complex valued)
such that Φ(t) = P (t)etB for all t ∈ R. Also, there is a real matrix R and
a real 2T -periodic matrix function t → Q(t) such that Φ(t) = Q(t)etR for
all t ∈ R.

Proof. Since the function t �→ A(t) is periodic, it is defined for all t ∈ R.
Thus, by Theorem 2.4, all solutions of the system are defined for t ∈ R.

If Ψ(t) := Φ(t + T ), then Ψ(t) is a matrix solution. Indeed, we have that

Ψ̇(t) = Φ̇(t + T ) = A(t + T )Φ(t + T ) = A(t)Ψ(t),

as required.
Define

C := Φ−1(0)Φ(T ) = Φ−1(0)Ψ(0),

and note that C is nonsingular. The matrix function t �→ Φ(t)C is clearly
a matrix solution of the linear system with initial value Φ(0)C = Ψ(0). By
the uniqueness of solutions, Ψ(t) = Φ(t)C for all t ∈ R. In particular, we
have that

Φ(t + T ) = Φ(t)C = Φ(t)Φ−1(0)Φ(T ),
Φ(t + 2T ) = Φ((t + T ) + T ) = Φ(t + T )C = Φ(t)C2.
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Φ(T + τ)Φ−1(τ)v

v

t = τ t = τ + T

Figure 2.2: The figure depicts the geometry of the monodromy operator for
the system ẋ = A(t)x in the extended phase space. The vector v in R

n at
t = τ is advanced to the vector Φ(T + τ)Φ−1(τ)v at t = τ + T .

By Theorem 2.82, there is a matrix B, possibly complex, such that

eTB = C.

Also, there is a real matrix R such that

e2TR = C2.

If P (t) := Φ(t)e−tB and Q(t) := Φ(t)e−tR, then

P (t + T ) = Φ(t + T )e−TBe−tB = Φ(t)Ce−TBe−tB = Φ(t)e−tB = P (t),

Q(t + 2T ) = Φ(t + 2T )e−2TRe−tR = Φ(t)e−tR = Q(t).

Thus, we have P (t + T ) = P (t), Q(t + 2T ) = Q(t), and

Φ(t) = P (t)etB = Q(t)etR,

as required. �

The representation Φ(t) = P (t)etB in Floquet’s theorem is called a Flo-
quet normal form for the fundamental matrix Φ(t). We will use this normal
form to study the stability of the zero solution of periodic homogeneous lin-
ear systems.

Let us consider a fundamental matrix solution Φ(t) for the periodic sys-
tem (2.27) and a vector v ∈ R

n. The vector solution of the system starting
at time t = τ with initial condition x(τ) = v is given by

t �→ Φ(t)Φ−1(τ)v.
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If the initial vector is moved forward over one period of the system, then
we again obtain a vector in R

n given by Φ(T + τ)Φ−1(τ)v. The operator

v �→ Φ(T + τ)Φ−1(τ)v

is called a monodromy operator (see Figure 2.2). Moreover, if we view the
periodic differential equation (2.27) as the autonomous system

ẋ = A(ψ)x, ψ̇ = 1

on the phase cylinder R
n × T where ψ is an angular variable modulo T ,

then each monodromy operator is a (stroboscopic) Poincaré map for our
periodic system. For example, if τ = 0, then the Poincaré section is the fiber
R

n on the cylinder at ψ = 0. Of course, each fiber R
n at ψ = mT where

m is an integer is identified with the fiber at ψ = 0, and the corresponding
Poincaré map is given by

v �→ Φ(T )Φ−1(0)v.

The eigenvalues of a monodromy operator are called characteristic multi-
pliers of the corresponding time-periodic homogeneous system (2.27). The
next proposition states that characteristic multipliers are nonzero complex
numbers that are intrinsic to the periodic system—they do not depend on
the choice of the fundamental matrix or the initial time.

Proposition 2.84. The following statements are valid for the periodic lin-
ear homogeneous system (2.27).

(1) Every monodromy operator is invertible. Equivalently, every charac-
teristic multiplier is nonzero.

(2) All monodromy operators have the same eigenvalues. In particular,
there are exactly n characteristic multipliers, counting multiplicities.

Proof. The first statement of the proposition is obvious from the defini-
tions.

To prove statement (2), let us consider the principal fundamental matrix
Φ(t) at t = 0. If Ψ(t) is a fundamental matrix, then Ψ(t) = Φ(t)Ψ(0). Also,
by Floquet’s theorem,

Φ(t + T ) = Φ(t)Φ−1(0)Φ(T ) = Φ(t)Φ(T ).

Consider the monodromy operator M given by

v �→ Ψ(T + τ)Ψ−1(τ)v

and note that

Ψ(T + τ)Ψ−1(τ) = Φ(T + τ)Ψ(0)Ψ−1(0)Φ−1(τ)
= Φ(T + τ)Φ−1(τ)
= Φ(τ)Φ(T )Φ−1(τ).
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In particular, the eigenvalues of the operator Φ(T ) are the same as the
eigenvalues of the monodromy operator M. Thus, all monodromy operators
have the same eigenvalues. �

Because

Φ(t + T ) = Φ(t)Φ−1(0)Φ(T ),

some authors define characteristic multipliers to be the eigenvalues of the
matrices defined by Φ−1(0)Φ(T ) where Φ(t) is a fundamental matrix. Of
course, both definitions gives the same characteristic multipliers. To prove
this fact, let us consider the Floquet normal form Φ(t) = P (t)etB and note
that Φ(0) = P (0) = P (T ). Thus, we have that

Φ−1(0)Φ(T ) = eTB .

Also, by using the Floquet normal form,

Φ(T )Φ−1(0) = P (T )eTBΦ−1(0)
= Φ(0)eTBΦ−1(0)
= Φ(0)(Φ−1(0)Φ(T ))Φ−1(0),

and therefore Φ−1(0)Φ(T ) has the same eigenvalues as the monodromy
operator given by

v �→ Φ(T )Φ−1(0)v.

In particular, the traditional definition agrees with our geometrically mo-
tivated definition.

Returning to consideration of the Floquet normal form P (t)etB for the
fundamental matrix Φ(t) and the monodromy operator

v �→ Φ(T + τ)Φ−1(τ)v,

note that P (t) is invertible and

Φ(T + τ)Φ−1(τ) = P (τ)eTBP−1(τ).

Thus, the characteristic multipliers of the system are the eigenvalues of
eTB . A complex number µ is called a characteristic exponent (or a Floquet
exponent) of the system, if ρ is a characteristic multiplier and eµT = ρ.
Note that if eµT = ρ, then µ + 2πik/T is also a Floquet exponent for each
integer k. Thus, while there are exactly n characteristic multipliers for the
periodic linear system (2.27), there are infinitely many Floquet exponents.
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Exercise 2.85. Suppose that a : R → R is a T -periodic function. Find the
characteristic multiplier and a Floquet exponent of the T -periodic system ẋ =
a(t)x. Also, find the Floquet normal form for the principal fundamental matrix
solution of this system at t = t0.

Exercise 2.86. For the autonomous linear system ẋ = Ax a fundamental ma-
trix solution t �→ Φ(t) satisfies the identity Φ(T − t) = Φ(T )Φ−1(t). Show that,
in general, this identity does not hold for nonautonomous homogeneous linear
systems. Hint: Write down a Floquet normal form matrix Φ(t) = P (t)etB that
does not satisfy the identity and then show that it is the solution of a (periodic)
nonautonomous homogeneous linear system.

Exercise 2.87. Suppose as usual that A(t) is T -periodic and the Floquet nor-
mal form of a fundamental matrix solution of the system ẋ = A(t)x has the form
P (t)etB . (a) Prove that

tr B =
1
T

∫ T

0
tr A(t) dt.

Hint: Use Liouville’s formula 2.18. (b) By (a), the sum of the characteristic ex-
ponents is given by the right-hand side of the formula for the trace of B. Prove
that the product of the characteristic multipliers is given by exp(

∫ T

0 tr A(t) dt).

Let us suppose that a fundamental matrix for the system (2.27) is rep-
resented in Floquet normal form by P (t)etB . We have seen that the char-
acteristic multipliers of the system are the eigenvalues of eTB , but the
definition of the Floquet exponents does not mention the eigenvalues of
B. Are the eigenvalues of B Floquet exponents? This question is answered
affirmatively by the following general theorem about the exponential map.

Theorem 2.88. If A is an n×n matrix and if λ1, . . . , λn are the eigenval-
ues of A repeated according to their algebraic multiplicity, then λk

1 , . . . , λk
n

are the eigenvalues of Ak and eλ1 , . . . , eλn are the eigenvalues of eA.

Proof. We will prove the theorem by induction on the dimension n.
The theorem is clearly valid for 1 × 1 matrices. Suppose that it is true

for all (n − 1) × (n − 1) matrices. Define λ := λ1, and let v �= 0 denote a
corresponding eigenvector so that Av = λv. Also, let e1, . . . , en denote the
usual basis of C

n. There is a nonsingular n×n matrix S such that Sv = e1.
(Why?) Thus,

SAS−1e1 = λe1,

and it follows that the matrix SAS−1 has the block form

SAS−1 =
(

λ ∗
0 Ã

)
.

The matrix SAkS−1 has the same block form, only with the block di-
agonal elements λk and Ãk. Clearly the eigenvalues of this block matrix
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are λk together with the eigenvalues of Ãk. By induction, the eigenvalues
of Ãk are the kth powers of the eigenvalues of Ã. This proves the second
statement of the theorem.

Using the power series definition of exp, we see that eSAS−1
has block

form, with block diagonal elements eλ and eÃ. Clearly, the eigenvalues of
this block matrix are eλ together with the eigenvalues of eÃ. Again using
induction, it follows that the eigenvalues of eÃ are eλ2 , . . . , eλn . Thus, the
eigenvalues of eSAS−1

= SeAS−1 are eλ1 , . . . , eλn . �

Theorem 2.88 is an example of a spectral mapping theorem. If we let
σ(A) denote the spectrum of the matrix A, that is, the set of all λ ∈ C such
that λI − A is not invertible, then, for our finite dimensional matrix, σ(A)
coincides with the set of eigenvalues of A. Theorem 2.88 can be restated as
follows: eσ(A) = σ(eA).

The next result uses Floquet theory to show that the differential equa-
tion (2.27) is equivalent to a homogeneous linear system with constant
coefficients. This result demonstrates that the stability of the zero solution
can often be determined by the Floquet multipliers.

Theorem 2.89. If the principal fundamental matrix solution of the T -
periodic differential equation ẋ = A(t)x (system (2.27)) at t = 0 is given
by Q(t)etR where Q and R are real, then the time-dependent change of
coordinates x = Q(t)y transforms this system to the (real ) constant co-
efficient linear system ẏ = Ry. In particular, there is a time-dependent
(2T -periodic ) change of coordinates that transforms the T -periodic system
to a (real ) constant coefficient linear system.

(1) If the characteristic multipliers of the periodic system (2.27) all have
modulus less than one; equivalently, if all characteristic exponents
have negative real part, then the zero solution is asymptotically stable.

(2) If the characteristic multipliers of the periodic system (2.27) all have
modulus less than or equal to one; equivalently, if all characteristic
exponents have nonpositive real part, and if the algebraic multiplic-
ity equals the geometric multiplicity of each characteristic multiplier
with modulus one; equivalently, if the algebraic multiplicity equals the
geometric multiplicity of each characteristic exponent with real part
zero, then the zero solution is Lyapunov stable.

(3) If at least one characteristic multiplier of the periodic system (2.27)
has modulus greater than one; equivalently, if a characteristic expo-
nent has positive real part, then the zero solution is unstable.

Proof. We will prove the first statement of the theorem and part (1). The
proof of the remaining two parts is left as an exercise. For part (2), note
that since the differential equation is linear, the Lyapunov stability may
reasonably be determined from the eigenvalues of a linearization.
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By Floquet’s theorem, there is a real matrix R and a real 2T -periodic
matrix Q(t) such that the principal fundamental matrix solution Φ(t) of
the system at t = 0 is represented by

Φ(t) = Q(t)etR.

Also, there is a matrix B and a T -periodic matrix P such that

Φ(t) = P (t)etB .

The characteristic multipliers are the eigenvalues of eTB . Because Φ(0) is
the identity matrix, we have that

Φ(2T ) = e2TR = e2TB ,

and in particular
(eTB)2 = e2TR.

By Theorem 2.88, the eigenvalues of e2TR are the squares of the character-
istic multipliers. These all have modulus less than one. Thus, by another
application of Theorem 2.88, all eigenvalues of the real matrix R have neg-
ative real parts.

Consider the change of variables x = Q(t)y. Because

x(t) = Q(t)etRx(0)

and Q(t) is invertible, we have that y(t) = etRx(0); and therefore,

ẏ = Ry.

By our previous result about linearization (Lyapunov’s indirect method),
the zero solution of ẏ = Ry is asymptotically stable. In fact, by Theo-
rem 2.61, there are numbers λ > 0 and C > 0 such that

|y(t)| ≤ Ce−λt|y(0)|

for all t ≥ 0 and all y(0) ∈ R
n. Because Q is periodic, it is bounded.

Thus, by the relation x = Q(t)y, the zero solution of ẋ = A(t)x is also
asymptotically stable. �

While the stability theorem just presented is very elegant, in applied
problems it is usually impossible to compute the eigenvalues of eTB explic-
itly. In fact, because eTB = Φ(T ), it is not at all clear that the eigenvalues
can be found without solving the system, that is, without an explicit rep-
resentation of a fundamental matrix. Note, however, that we only have to
approximate finitely many numbers (the Floquet multipliers) to determine
the stability of the system. This fact is important! For example, the stability
can often be determined by applying a numerical method to approximate
the Floquet multipliers.
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Exercise 2.90. If the planar system u̇ = f(u) has a limit cycle, then it is
possible to find coordinates in a neighborhood of the limit cycle so that the
differential equation has the form

ρ̇ = h(ρ, ϕ)ρ, ϕ̇ = ω

where ω is a constant and for each ρ the function ϕ �→ h(ρ, ϕ) is 2π/ω-periodic.
Prove: If the partial derivative of h with respect to ρ is identically zero, then there
is a coordinate system such that the differential equation in the new coordinates
has the form

ṙ = cr, φ̇ = ω.

Hint: Use Exercise 2.85 and Theorem 2.89.

Exercise 2.91. View the damped periodically-forced Duffing equation ẍ+ ẋ−
x + x3 = ε sin ωt on the phase cylinder. The unperturbed system (ε = 0) has
a periodic orbit on the phase cylinder with period 2π/ω corresponding to its
rest point at the origin of the phase plane. Determine the Floquet multipliers
associated with this periodic orbit of the unperturbed system; that is, the Floquet
multipliers of the linearized system along the periodic orbit.

Exercise 2.92. Consider the system of two coupled oscillators with periodic
parametric excitation

ẍ + (1 + a cos ωt)x = y − x, ÿ + (1 + a cos ωt)y = x − y

where a and ω are nonnegative parameters. (See Section 3.3 for a derivation of
the coupled oscillator model.) (a) Prove that if a = 0, then the zero solution
is Lyapunov stable. (b) Using a numerical method (or otherwise), determine the
Lyapunov stability of the zero solution for fixed but arbitrary values of the param-
eters. (c) What happens if viscous damping is introduced into the system? Hint:
A possible numerical experiment might be designed as follows. For each point in
a region of (ω, a)-space, mark the point green if the corresponding system has a
Lyapunov stable zero solution; otherwise, mark it red. To decide which regions
of parameter space might contain interesting phenomena, recall from your expe-
rience with second-order scalar differential equations with constant coefficients
(mathematical models of springs) that resonance is expected when the frequency
of the periodic excitation is rationally related to the natural frequency of the
system. Consider resonances between the frequency ω of the excitation and the
frequency of periodic motions of the system with a = 0, and explore the region
of parameter space near these parameter values. Although interesting behavior
does occur at resonances, this is not the whole story. Because the monodromy
matrix is symplectic (see [11, Sec. 42]), the characteristic multipliers have two
symmetries: If λ is a characteristic multiplier, then so is its complex conjugate
and its reciprocal. It follows that on the boundary between the stable and unsta-
ble regions a pair of characteristic exponents coalesce on the unit circle. Thus, it
is instructive to determine the values of ω, with a = 0, for those characteristic
multipliers that coalesce. These values of ω determine the points where unstable
regions have boundary points on the ω-axis.
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Is there a method to determine the characteristic exponents without find-
ing the solutions of the differential equation (2.27) explicitly? An example
of Lawrence Marcus and Hidehiko Yamabe shows no such method can be
constructed in any obvious way from the eigenvalues of A(t). Consider the
π-periodic system ẋ = A(t)x where

A(t) =

(
−1 + 3

2 cos2 t 1 − 3
2 sin t cos t

−1 − 3
2 sin t cos t −1 + 3

2 sin2 t

)
. (2.28)

It turns out that A(t) has the (time independent) eigenvalues 1
4 (−1±

√
7 i).

In particular, the real part of each eigenvalue is negative. On the other hand,

x(t) = et/2
(

− cos t
sin t

)
is a solution, and therefore the zero solution is unstable!

The situation is not hopeless. An important example (Hill’s equation)
where the stability of the zero solution of the differential equation (2.27)
can be determined in some cases is discussed in the next section.

Exercise 2.93. (a) Find the principal fundamental matrix solution Φ(t) at t =
0 for the Marcus–Yamabe system; its system matrix A(t) is given in display (2.28).
(b) Find the Floquet normal form for Φ(t) and its “real” Floquet normal form. (c)
Determine the characteristic multipliers for the system. (d) The matrix function
t �→ A(t) is isospectral. Find a matrix function t �→ M(t) such that (A(t), M(t))
is a Lax pair (see Exercise 2.55). Is every isospectral matrix function the first
component of a Lax pair?

The Floquet normal form can be used to obtain detailed information
about the solutions of the differential equation (2.27). For example, if we use
the fact that the Floquet normal form decomposes a fundamental matrix
into a periodic part and an exponential part, then it should be clear that
for some systems there are periodic solutions and for others there are no
nontrivial periodic solutions. It is also possible to have “quasi-periodic”
solutions. The next lemma will be used to prove these facts.

Lemma 2.94. If µ is a characteristic exponent for the homogeneous linear
T -periodic differential equation (2.27) and Φ(t) is the principal fundamental
matrix solution at t = 0, then Φ(t) has a Floquet normal form P (t)etB such
that µ is an eigenvalue of B.

Proof. Let P(t)etB be a Floquet normal form for Φ(t). By the definition
of characteristic exponents, there is a characteristic multiplier λ such that
λ = eµT , and, by Theorem 2.88, there is an eigenvalue ν of B such that
eνT = λ. Also, there is some integer k �= 0 such that ν = µ + 2πik/T .
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Define B := B − (2πik/T )I and P (t) = P(t)e(2πikt/T )I . Note that µ is
an eigenvalue of B, the function P is T -periodic, and

P (t)etB = P(t)etB.

It follows that Φ(t) = P (t)etB is a representation in Floquet normal form
where µ is an eigenvalue of B. �

A basic result that is used to classify the possible types of solutions that
can arise is the content of the following theorem.

Theorem 2.95. If λ is a characteristic multiplier of the homogeneous lin-
ear T -periodic differential equation (2.27) and eTµ = λ, then there is a
(possibly complex) nontrivial solution of the form

x(t) = eµtp(t)

where p is a T -periodic function. Moreover, for this solution x(t + T ) =
λx(t).

Proof. Consider the principal fundamental matrix solution Φ(t) at t = 0.
By Lemma 2.94, there is a Floquet normal form representation Φ(t) =
P (t)etB such that µ is an eigenvalue of B. Hence, there is a vector v �= 0
such that Bv = µv. Clearly, it follows that etBv = eµtv, and therefore the
solution x(t) := Φ(t)v is also represented in the form

x(t) = P (t)etBv = eµtP (t)v.

The solution required by the first statement of the theorem is obtained by
defining p(t) := P (t)v. The second statement of the theorem is proved as
follows:

x(t + T ) = eµ(t+T )p(t + T ) = eµT eµtp(t) = λx(t). �

Theorem 2.96. Suppose that λ1 and λ2 are characteristic multipliers of
the homogeneous linear T -periodic differential equation (2.27) and µ1 and
µ2 are characteristic exponents such that eTµ1 = λ1 and eTµ2 = λ2. If
λ1 �= λ2, then there are T -periodic functions p1 and p2 such that

x1(t) = eµ1tp1(t) and x2(t) = eµ2tp2(t)

are linearly independent solutions.

Proof. Let Φ(t) = P (t)etB (as in Lemma 2.94) be such that µ1 is an
eigenvalue of B. Also, let v1 be a nonzero eigenvector corresponding to the
eigenvalue µ1. Since λ2 is an eigenvalue of the monodromy matrix Φ(T ), by
Theorem 2.88 there is an eigenvalue µ of B such that eTµ = λ2 = eTµ2 . It
follows that there is an integer k such that µ2 = µ+2πik/T . Also, because
λ1 �= λ2, we have that µ �= µ1. Hence, if v2 is a nonzero eigenvector of
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B corresponding to the eigenvalue µ, then the eigenvectors v1 and v2 are
linearly independent.

As in the proof of Theorem 2.95, there are solutions of the form

x1(t) = eµ1tP (t)v1, x2(t) = eµtP (t)v2.

Moreover, because x1(0) = v1 and x2(0) = v2, these solutions are linearly
independent. Finally, let us note that x2 can be written in the required
form

x2(t) =
(
eµte2πki/T

)(
e−2πki/T P (t)v2

)
. �

The T -periodic system (2.27) has the Floquet normal form

t �→ Q(t)etR

where Q is a real 2T -periodic function and R is real matrix. By Theo-
rem 2.37 and 2.89, all solutions of the system are represented as finite
sums of real solutions of the two types

q(t)r(t)eαt sin βt and q(t)r(t)eαt cos βt,

where q is 2T -periodic, r is a polynomial of degree at most n−1, and α+iβ
is an eigenvalue of R. We will use Theorem 2.95 to give a more detailed
description of the nature of these real solutions.

If the characteristic multiplier λ is a positive real number, then there is
a corresponding real characteristic exponent µ. In this case, if the periodic
function p in Theorem 2.95 is complex, then it can be represented as p =
r + is where both r and s are real T -periodic functions. Because our T -
periodic system is real, both the real and the imaginary parts of a solution
are themselves solutions. Hence, there is a real nontrivial solution of the
form x(t) = eµtr(t) or x(t) = eµts(t). Such a solution is periodic if and only
if λ = 1 or equivalently if µ = 0. On the other hand, if λ �= 1 or µ �= 0,
then the solution is unbounded either as t → ∞ or as t → −∞. If λ < 1
(equivalently, µ < 0), then the solution is asymptotic to the zero solution
as t → ∞. On the other hand, if λ > 1 (equivalently, µ > 0), then the
solution is unbounded as t → ∞.

If the characteristic multiplier λ is a negative real number, then µ can
be chosen to have the form ν + πi/T where ν is real and eTµ = λ. Hence,
if we again take p = r + is, then we have the solution

eµtp(t) = eνteπit/T (r(t) + is(t))

from which real nontrivial solutions are easily constructed. For example, if
the real part of the complex solution is nonzero, then the real solution has
the form

x(t) = eνt(r(t) cos(πt/T ) − s(t) sin(πt/T )).
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Such a solution is periodic if and only if λ = −1 or equivalently if ν = 0.
In this case the solution is 2T -periodic. If ν �= 0, then the solution is
unbounded. If ν < 0, then the solution is asymptotic to zero as t → ∞. On
the other hand, if ν > 0, then the solution is unbounded as t → ∞.

If λ is complex, then we have µ = α+ iβ and there is a solution given by

x(t) = eαt(cos βt + i sin βt)(r(t) + is(t)).

Thus, there are real solutions

x1(t) = eαt(r(t) cos βt − s(t) sinβt),
x2(t) = eαt(r(t) sinβt + s(t) cos βt).

If α �= 0, then both solutions are unbounded. But, if α < 0, then these
solutions are asymptotic to zero as t → ∞. On the other hand, if α > 0,
then these solutions are unbounded as t → ∞. If α = 0 and there are
relatively prime positive integers m and n such that 2πm/β = nT , then
the solution is nT -periodic. If no such integers exist, then the solution is
called quasi-periodic.

We will prove in Section 2.4.4 that the stability of a periodic orbit is de-
termined by the stability of the corresponding fixed point of a Poincaré map
defined on a Poincaré section that meets the periodic orbit. Generically, the
stability of the fixed point of the Poincaré map is determined by the eigen-
values of its derivative at the fixed point. For example, if the eigenvalues
of the derivative of the Poincaré map at the fixed point corresponding to
the periodic orbit are all inside the unit circle, then the periodic orbit is
asymptotically stable. It turns out that the eigenvalues of the derivative of
the Poincaré map are closely related to the characteristic multipliers of a
time-periodic system, namely, the variational equation along the periodic
orbit. We will have much more to say about the general case later. Here
we will illustrate the idea for an example where the Poincaré map is easy
to compute.

Suppose that

u̇ = f(u, t), u ∈ R
n (2.29)

is a smooth nonautonomous differential equation. If there is some T > 0
such that f(u, t + T ) = f(u, t) for all u ∈ R

n and all t ∈ R, then the
system (2.29) is called T -periodic.

The nonautonomous system (2.29) is made “artificially” autonomous by
the addition of a new equation as follows:

u̇ = f(u, ψ), ψ̇ = 1 (2.30)

where ψ may be viewed as an angular variable modulo T . In other words,
we can consider ψ + nT = ψ whenever n is an integer. The phase cylinder
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for system (2.30) is R
n×T, where T (topologically the unit circle) is defined

to be R modulo T . This autonomous system provides the correct geometry
with which to define a Poincaré map.

For each ξ ∈ R
n, let t �→ u(t, ξ) denote the solution of the differential

equation (2.29) such that u(0, ξ) = ξ, and note that t �→ (u(t, ξ), t) is the
corresponding solution of the system (2.30). The set Σ := {(ξ, ψ) : ψ = 0}
is a Poincaré section, and the corresponding Poincaré map is given by
ξ �→ u(T, ξ).

If there is a point p ∈ R
n such that f(p, t) = 0 for all t ∈ R, then the

function t �→ (p, t), or equivalently t �→ (u(t, p), t), is a periodic solution of
the system (2.30) with period T . Moreover, let us note that u(T, p) = p.
Thus, the periodic solution corresponds to a fixed point of the Poincaré
map as it should.

The derivative of the Poincaré map at p is the linear transformation of
R

n given by the partial derivative uξ(T, p). Moreover, by differentiating
both the differential equation (2.29) and the initial condition u(0, ξ) = ξ
with respect to ξ, it is easy to see that the matrix function t �→ uξ(t, p)
is the principal fundamental matrix solution at t = 0 of the (T -periodic
linear) variational initial value problem

Ẇ = fu(u(t, p), t)W, W (0) = I. (2.31)

If the solution of system (2.31) is represented in the Floquet normal form
uξ(t, p) = P (t)etB , then the derivative of the Poincaré map is given by
uξ(T, p) = eTB . In particular, the characteristic multipliers of the vari-
ational equation (2.31) coincide with the eigenvalues of the derivative of
the Poincaré map. Thus, whenever the principle of linearized stability is
valid, the stability of the periodic orbit is determined by the characteristic
multipliers of the periodic variational equation (2.31).

As an example, consider the pendulum with oscillating support

θ̈ + (1 + a cos ωt) sin θ = 0.

The zero solution, given by θ(t) ≡ 0, corresponds to a 2π/ω-periodic so-
lution of the associated autonomous system. A calculation shows that the
variational equation along this periodic solution is equivalent to the second
order differential equation

ẍ + (1 + a cos ωt)x = 0,

called a Mathieu equation. The normal form for the Mathieu equation is

ẍ + (a − 2q cos 2t)x = 0,

where a and q are parameters.
Since, as we have just seen (see also Exercise 2.92), equations of Mathieu

type arise frequently in applications, the stability analysis of such equations
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is important (see, for example, [12], [18], [101], [127], [149], and [237]). In
Section 2.4.2 we will show how the stability of the zero solution of the
Mathieu equation, and, in turn, the stability of the zero solution of the
pendulum with oscillating support, is related in a delicate manner to the
amplitude a and the frequency ω of the periodic displacement.

Exercise 2.97. This is a continuation of Exercise 2.57. Suppose that v : R →
R

3 is a periodic function. Consider the differential equation

ẋ = v(t) × x

and discuss the stability of its periodic solutions.

Exercise 2.98. Determine the stability type of the periodic orbit discussed in
Exercise 2.91.

Exercise 2.99. (a) Prove that the system

ẋ = x − y − x(x2 + y2),

ẏ = x + y − y(x2 + y2),

ż = z + xz − z3

has periodic orbits. Hint: Change to cylindrical coordinates, show that the cylin-
der (with radius one whose axis of symmetry is the z-axis) is invariant, and recall
the analysis of equation (1.43). (b) Prove that there is a stable periodic orbit. (c)
The stable periodic orbit has three Floquet multipliers. Of course, one of them
is unity. Find (exactly) a vector v such that Φ(T )v = v, where T is the period of
the periodic orbit and Φ(t) is the principal fundamental matrix solution at t = 0
of the variational equation along the stable periodic solution. (d) Approximate
the remaining two multipliers. Note: It is possible to represent these multipliers
with integrals, but they are easier to approximate using a numerical method.

2.4.1 Lyapunov Exponents
An important generalization of Floquet exponents, called Lyapunov expo-
nents, are introduced in this section. This concept is used extensively in
the theory of dynamical systems (see, for example, [103], [144], [176], and
[233]).

Consider a (nonlinear) differential equation

u̇ = f(u), u ∈ R
n (2.32)

with flow ϕt. If ε ∈ R, ξ, v ∈ R
n, and η := ξ + εv, then the two solutions

t �→ ϕt(ξ), t �→ ϕt(ξ + εv)

start at points that are O(ε) close; that is, the absolute value of the differ-
ence of the two points in R

n is bounded by the usual norm of v times ε.
Moreover, by Taylor expansion at ε = 0, we have that

ϕt(ξ + εv) − ϕt(ξ) = εDϕt(ξ)v + O(ε2)
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where Dϕt(ξ) denotes the derivative of the function u �→ ϕt(u) evaluated at
u = ξ. Thus, the first order approximation of the difference of the solutions
at time t is εDϕt(ξ)v where t �→ Dϕt(ξ) is the principal fundamental matrix
solution at t = 0 of the linearized equation

Ẇ = Df(ϕt(ξ))W

along the solution of the original system (2.32) starting at ξ. To see this
fact, just note that

ϕ̇t(u) = f(ϕt(u))

and differentiate both sides of this identity with respect to u at u = ξ.
If we view v as a vector in the tangent space to R

n at ξ, denoted TξR
n,

then Dϕt(ξ)v is a vector in the tangent space Tϕt(ξ)R
n. For each such v,

if v �= 0, then it is natural to define a corresponding linear operator L,
from the linear subspace of TξR

n generated by v to the linear subspace
of Tϕt(ξ)R

n generated by Dϕt(ξ)v, defined by L(av) = Dϕt(ξ)av where
a ∈ R. Let us note that the norm of this operator measures the relative
“expansion” or “contraction” of the vector v; that is,

‖L‖ = sup
a
=0

|Dφt(ξ)av|
|av| =

|Dφt(ξ)v|
|v| .

Our two solutions can be expressed in integral form; that is,

ϕt(ξ) = ξ +
∫ t

0
f(ϕs(ξ)) ds,

ϕt(ξ + εv) = ξ + εv +
∫ t

0
f(ϕs(ξ + εv)) ds.

Hence, as long as we consider a finite time interval or a solution that is
contained in a compact subset of R

n, there is a Lipschitz constant Lip(f) >
0 for the function f , and we have the inequality

|ϕt(ξ + εv) − ϕt(ξ)| ≤ ε|v| + Lip(f)
∫ t

0
|ϕs(ξ + εv) − ϕs(ξ)| ds.

By Gronwall’s inequality, the separation distance between the solutions is
bounded by an exponential function of time. In fact, we have the estimate

|ϕt(ξ + εv) − ϕt(ξ)| ≤ ε|v|et Lip(f).

The above computation for the norm of L and the exponential bound for
the separation rate between two solutions motivates the following definition
(see [144]).
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Definition 2.100. Suppose that ξ ∈ R
n and the solution t �→ ϕt(ξ) of the

differential equation (2.32) is defined for all t ≥ 0. Also, let v ∈ R
n be a

nonzero vector. The Lyapunov exponent at ξ in the direction v for the flow
ϕt is defined to be

χ(p, v) := lim sup
t→∞

1
t

ln
( |Dφt(ξ)v|

|v|

)
.

As a simple example, let us consider the planar system

ẋ = −ax, ẏ = by

where a and b are positive parameters, and let us note that its flow is given
by

ϕt(x, y) = (e−atx, ebty).

By an easy computation using the definition of the Lyapunov exponents,
it follows that if v is given by v = (w, z) and z �= 0, then χ(ξ, v) = b. If
z = 0 and w �= 0, then χ(ξ, v) = −a. In particular, there are exactly two
Lyapunov exponents for this system. Of course, the Lyapunov exponents
in this case correspond to the eigenvalues of the system matrix.

Although our definition of Lyapunov exponents is for autonomous sys-
tems, it should be clear that since the definition only depends on the funda-
mental matrix solutions of the associated variational equations along orbits
of the system, we can define the same notion for solutions of abstract time-
dependent linear systems. Indeed, for a T -periodic linear system

u̇ = A(t)u, u ∈ R
n (2.33)

with principal fundamental matrix Φ(t) at t = 0, the Lyapunov exponent
defined with respect to the nonzero vector v ∈ R

n is

χ(v) := lim sup
t→∞

1
t

ln
( |Φ(t)v|

|v|

)
.

Proposition 2.101. If µ is a Floquet exponent of the system (2.33), then
the real part of µ is a Lyapunov exponent.

Proof. Let us suppose that the principal fundamental matrix Φ(t) is given
in Floquet normal form by

Φ(t) = P (t)etB .

If µ = a + bi is a Floquet exponent, then there is a corresponding vector
v such that eTBv = eµT v. Hence, using the Floquet normal form, we have
that

Φ(T )v = eµT v.
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If t ≥ 0, then there is a nonnegative integer n and a number r such that
0 ≤ r < T and

1
t

ln
( |Φ(t)v|

|v|

)
=

1
T

( nT

nT + r

)( 1
n

ln
( |P (nT + r)erBenµT v|

|v|

))
=

1
T

( nT

nT + r

)( 1
n

ln |enTa| +
1
n

ln
( |P (r)erBv|

|v|

))
.

Clearly, n → ∞ as t → ∞. Thus, it is easy to see that

lim
t→∞

1
T

( nT

nT + r

)( 1
n

ln |enTa| +
1
n

ln
( |P (r)erBv|

|v|

))
= a. �

Let us suppose that a differential equation has a compact invariant set
that contains an orbit whose closure is dense in the invariant set. Then,
the existence of a positive Lyapunov exponent for this orbit ensures that
nearby orbits tend to separate exponentially fast from the dense orbit. But,
since these orbits are confined to a compact invariant set, they must also
be bounded. This suggests that each small neighborhood in the invariant
set undergoes both stretching and folding as it evolves with the flow. The
subsequent kneading of the invariant set due to this stretching and fold-
ing would tend to mix the evolving neighborhoods so that they eventually
intertwine in a complicated manner. For this reason, the existence of a pos-
itive Lyapunov exponent is often taken as a signature of “chaos.” While
this criterion is not always valid, the underlying idea that the stretching im-
plied by a positive Lyapunov exponent is associated with complex motions
is important in the modern theory of dynamical systems.

Exercise 2.102. Show that if two points are on the same orbit, then the cor-
responding Lyapunov exponents are the same.

Exercise 2.103. Prove the “converse” of Proposition 2.101; that is, every Lya-
punov exponent for a time-periodic system is a Floquet exponent.

Exercise 2.104. If ẋ = f(x), determine the Lyapunov exponent χ(ξ, f(ξ)).

Exercise 2.105. How many Lyapunov exponents are associated with an orbit
of a differential equation in an n-dimensional phase space.

Exercise 2.106. Suppose that x is in the omega limit set of an orbit. Are the
Lyapunov exponents associated with x the same as those associated with the
original orbit?

Exercise 2.107. In all the examples in this section, the lim sup can be replaced
by lim. Are there examples where the superior limit is a finite number, but the
limit does not exist? This is (probably) a challenging exercise! For an answer
see [144] and [176].
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2.4.2 Hill’s Equation
A famous example where Floquet theory applies to give good stability
results is Hill’s equation,

ü + a(t)u = 0, a(t + T ) = a(t).

It was introduced by George W. Hill in his study of the motions of the moon.
Roughly speaking, the motion of the moon can be viewed as a harmonic
oscillator in a periodic gravitational field. But this model equation arises in
many areas of applied mathematics where the stability of periodic motions
is an issue. A prime example, mentioned in the previous section, is the
stability analysis of small oscillations of a pendulum whose length varies
with time.

If we define

x :=
(

u
u̇

)
,

then Hill’s equation is equivalent to the first order system ẋ = A(t)x where

A(t) =
(

0 1
−a(t) 0

)
.

We will apply linear systems theory, especially Floquet theory, to analyze
the stability of the zero solution of this linear T -periodic system.

The first step in the stability analysis is an application of Liouville’s
formula (2.18). In this regard, you may recall from your study of scalar
second order linear differential equations that if ü + p(t)u̇ + q(t)u = 0 and
the Wronskian of the two solutions u1 and u2 is defined by

W (t) := det
(

u1(t) u2(t)
u̇1(t) u̇2(t)

)
,

then

W (t) = W (0)e− ∫ t
0 p(s) ds. (2.34)

Note that for the equivalent first order system

ẋ =
(

0 1
−q(t) −p(t)

)
x = B(t)x

with fundamental matrix Ψ(t), formula (2.34) is a special case of Liouville’s
formula

det Ψ(t) = det Ψ(0)e
∫ t
0 tr B(s)ds.

At any rate, let us apply Liouville’s formula to the principal fundamental
matrix Φ(t) at t = 0 for Hill’s system to obtain the identity det Φ(t) ≡ 1.
Since the determinant of a matrix is the product of the eigenvalues of
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the matrix, we have an important fact: The product of the characteristic
multipliers of the monodromy matrix, Φ(T ), is 1.

Let the characteristic multipliers for Hill’s equation be denoted by λ1
and λ2 and note that they are roots of the characteristic equation

λ2 − (tr Φ(T ))λ + det Φ(T ) = 0.

For notational convenience let us set 2φ = tr Φ(T ) to obtain the equivalent
characteristic equation

λ2 − 2φλ + 1 = 0

whose solutions are given by

λ = φ ±
√

φ2 − 1.

There are several cases to consider depending on the value of φ.
Case 1: If φ > 1, then λ1 and λ2 are distinct positive real numbers such

that λ1λ2 = 1. Thus, we may assume that 0 < λ1 < 1 < λ2 with λ1 = 1/λ2
and there is a real number µ > 0 (a characteristic exponent) such that
eTµ = λ2 and e−Tµ = λ1. By Theorem 2.95 and Theorem 2.96, there is a
fundamental set of solutions of the form

e−µtp1(t), eµtp2(t)

where the real functions p1 and p2 are T -periodic. In this case, the zero
solution is unstable.

Case 2: If φ < −1, then λ1 and λ2 are both real and both negative. Also,
since λ1λ2 = 1, we may assume that λ1 < −1 < λ2 < 0 with λ1 = 1/λ2.
Thus, there is a real number µ > 0 (a characteristic exponent) such that
e2Tµ = λ2

1 and e−2Tµ = λ2
2. As in Case 1, there is a fundamental set of

solutions of the form

eµtq1(t), e−µtq2(t)

where the real functions q1 and q2 are 2T -periodic. Again, the zero solution
is unstable.

Case 3: If −1 < φ < 1, then λ1 and λ2 are complex conjugates each
with nonzero imaginary part. Since λ1λ̄1 = 1, we have that |λ1| = 1, and
therefore both characteristic multipliers lie on the unit circle in the complex
plane. Because both λ1 and λ2 have nonzero imaginary parts, one of these
characteristic multipliers, say λ1, lies in the upper half plane. Thus, there is
a real number θ with 0 < θT < π and eiθT = λ1. In fact, there is a solution
of the form eiθt(r(t)+ is(t)) with r and s both T -periodic functions. Hence,
there is a fundamental set of solutions of the form

r(t) cos θt − s(t) sin θt, r(t) sin θt + s(t) cos θt.

In particular, the zero solution is stable (see Exercise 2.113) but not asymp-
totically stable. Also, the solutions are periodic if and only if there are
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relatively prime positive integers m and n such that 2πm/θ = nT . If such
integers exist, all solutions have period nT . If not, then these solutions are
quasi-periodic.

We have just proved the following facts for Hill’s equation: Suppose that
Φ(t) is the principal fundamental matrix solution of Hill’s equation at t = 0.
If | tr Φ(T )| < 2, then the zero solution is stable. If | tr Φ(T )| > 2, then the
zero solution is unstable.

Case 4: If φ = 1, then λ1 = λ2 = 1. The nature of the solutions depends
on the canonical form of Φ(T ). If Φ(T ) is the identity, then e0 = Φ(T ) and
there is a Floquet normal form Φ(t) = P (t) where P (t) is T -periodic and
invertible. Thus, there is a fundamental set of periodic solutions and the
zero solution is stable. If Φ(T ) is not the identity, then there is a nonsingular
matrix C such that

CΦ(T )C−1 = I + N = eN

where N �= 0 is nilpotent. Thus, Φ(t) has a Floquet normal form Φ(t) =
P (t)etB where B := C−1( 1

T N)C. Because

etB = C−1(I +
t

T
N)C,

the matrix function t �→ etB is unbounded, and therefore the zero solution
is unstable.

Case 5: If φ = −1, then the situation is similar to Case 4, except the
fundamental matrix is represented by Q(t)etB where Q(t) is a 2T -periodic
matrix function.

By the results just presented, the stability of Hill’s equation is reduced,
in most cases, to a determination of the absolute value of the trace of
its principal fundamental matrix evaluated after one period. While this is
a useful fact, it leaves open an important question: Can the stability be
determined without imposing a condition on the solutions of the equation?
It turns out that in some special cases this is possible (see [149] and [237]).
A theorem of Lyapunov [144] in this direction follows.

Theorem 2.108. If a : R → R is a positive T -periodic function such that

T

∫ T

0
a(t) dt ≤ 4,

then all solutions of the Hill’s equation ẍ + a(t)x = 0 are bounded. In
particular, the trivial solution is stable.

The proof of Theorem 2.108 is outlined in Exercises 2.113 and 2.116.

Exercise 2.109. Consider the second order system

ü + u̇ + cos(t) u = 0.
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Prove: (a) If ρ1 and ρ2 are the characteristic multipliers of the corresponding first
order system, then ρ1ρ2 = exp(−2π). (b) The Poincaré map for the system is
dissipative; that is, it contracts area.

Exercise 2.110. Prove: The equation

ü − (2 sin2 t)u̇ + (1 + sin 2t)u = 0.

does not have a fundamental set of periodic solutions. Does it have a nonzero
periodic solution? Is the zero solution stable?

Exercise 2.111. Discuss the stability of the trivial solution of the scalar time-
periodic system ẋ = (cos2 t)x.

Exercise 2.112. Prove: The zero solution is unstable for the system ẋ = A(t)x
where

A(t) :=
(

1/2 − cos t 12
147 3/2 + sin t

)
.

Exercise 2.113. Prove: If all solutions of the T -periodic system ẋ = A(t)x are
bounded, then the trivial solution is Lyapunov stable.

Exercise 2.114. For Hill’s equation with period T , if the absolute value of the
trace of Φ(T ), where Φ(t) is the principal fundamental matrix at t = 0, is strictly
less than two, show that there are no solutions of period T or 2T . On the other
hand, if the absolute value of the trace of Φ(T ) is two, show that there is such a
solution. Note that this property characterizes the boundary between the stable
and unstable solutions.

Exercise 2.115. Prove: If a(t) is an even T -periodic function, then Hill’s equa-
tion has a fundamental set of solutions such that one solution is even and one is
odd.

Exercise 2.116. Prove Theorem 2.108. Hint: If Hill’s equation has an un-
bounded solution, then there is a real solution t �→ x(t) and a real Floquet
multiplier such that x(t + T ) = λx(t). Define a new function t �→ u(t) by

u(t) :=
ẋ(t)
x(t)

,

and show that u is a solution of the Riccati equation

u̇ = −a(t) − u2.

Use the Riccati equation to prove that the solution x has at least one zero in the
interval [0, T ]. Also, show that x has two distinct zeros on some interval whose
length does not exceed T . Finally, use the following proposition to finish the
proof. If f is a smooth function on the finite interval [α, β] such that f(α) = 0,
f(β) = 0, and such that f is positive on the open interval (α, β), then

(β − α)
∫ β

α

|f ′′(t)|
f(t)

dt > 4.
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To prove this proposition, first suppose that f attains its maximum at γ and
show that

4
β − α

≤ 1
γ − α

+
1

β − γ
=

1
f(γ)

(f(γ) − f(α)
γ − α

− f(β) − f(γ)
β − γ

)
.

Then, use the mean value theorem and the fundamental theorem of calculus to
complete the proof.

Exercise 2.117. Prove: If t �→ a(t) is negative, then the Hill’s equation ẍ +
a(t)x = 0 has an unbounded solution. Hint: Multiply by x and integrate by parts.

2.4.3 Periodic Orbits of Linear Systems
In this section we will consider the existence and stability of periodic solu-
tions of the time-periodic system

ẋ = A(t)x + b(t), x ∈ R
n (2.35)

where t �→ A(t) is a T -periodic matrix function and t �→ b(t) is a T -periodic
vector function.

Theorem 2.118. If the number one is not a characteristic multiplier of
the T -periodic homogeneous system ẋ = A(t)x, then (2.35) has at least one
T -periodic solution.

Proof. Let us show first that if t �→ x(t) is a solution of system (2.35)
and x(0) = x(T ), then this solution is T -periodic. Define y(t) := x(t + T ).
Note that t �→ y(t) is a solution of (2.35) and y(0) = x(0). Thus, by the
uniqueness theorem x(t + T ) = x(t) for all t ∈ R.

If Φ(t) is the principal fundamental matrix solution of the homogeneous
system at t = 0, then, by the variation of parameters formula,

x(T ) = Φ(T )x(0) + Φ(T )
∫ T

0
Φ−1(s)b(s) ds.

Therefore, x(T ) = x(0) if and only if

(I − Φ(T ))x(0) = Φ(T )
∫ T

0
Φ−1(s)b(s) ds.

This equation for x(0) has a solution whenever the number one is not an
eigenvalue of Φ(T ). (Note that the map x(0) �→ x(T ) is the Poincaré map.
Thus, our periodic solution corresponds to a fixed point of the Poincaré
map).

By Floquet’s theorem, there is a matrix B such that the monodromy
matrix is given by

Φ(T ) = eTB .

In other words, by the hypothesis, the number one is not an eigenvalue of
Φ(T ). �
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Corollary 2.119. If A(t) = A, a constant matrix such that A is infinites-
imally hyperbolic (no eigenvalues on the imaginary axis), then the differ-
ential equation (2.35) has at least one T -periodic solution.

Proof. The monodromy matrix eTA does not have 1 as an eigenvalue. �

Exercise 2.120. Discuss the uniqueness of the T -periodic solutions of the sys-
tem (2.35). Also, using Theorem 2.89, discuss the stability of the T -periodic
solutions.

In system (2.35) if b = 0, then the trivial solution is a T -periodic solution.
The next theorem states a general sufficient condition for the existence of
a T -periodic solution.

Theorem 2.121. If the T -periodic system (2.35) has a bounded solution,
then it has a T -periodic solution.

Proof. Consider the principal fundamental matrix solution Φ(t) at t = 0 of
the homogeneous system corresponding to the differential equation (2.35).
By the variation of parameters formula, we have the equation

x(T ) = Φ(T )x(0) + Φ(T )
∫ T

0
Φ−1(s)b(s) ds.

Also, by Theorem 2.82, there is a constant matrix B such that Φ(T ) = eTB .
Thus, the stroboscopic Poincaré map P is given by

P (ξ) := Φ(T )ξ + Φ(T )
∫ T

0
Φ−1(s)b(s) ds

= eTB
(
ξ +

∫ T

0
Φ−1(s)b(s) ds

)
.

If the solution with initial condition x(0) = ξ0 is bounded, then the
sequence {P j(ξ0)}∞

j=0 is bounded. Also, P is an affine map; that is, P (ξ) =
Lξ + y where L = eTB = Φ(T ) is a real invertible linear map and y is an
element of R

n.
Note that if there is a point x ∈ R

n such that P (x) = x, then the
system (2.35) has a periodic orbit. Thus, if we assume that there are no
periodic orbits, then the equation

(I − L)ξ = y

has no solution ξ. In other words, y is not in the range R of the operator
I − L.
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There is some vector v ∈ R
n such that v is orthogonal to R and the

inner product 〈v, y〉 does not vanish. Moreover, because v is orthogonal to
the range, we have

〈(I − L)ξ, v〉 = 0

for each ξ ∈ R
n, and therefore

〈ξ, v〉 = 〈Lξ, v〉. (2.36)

Using the representation P (ξ) = Lξ + y and an induction argument, it
is easy to prove that if j is a nonnegative integer, then P j(ξ0) = Ljξ0 +∑j−1

k=0 Lky. By taking the inner product with v and repeatedly applying
the reduction formula (2.36), we have

〈P j(ξ0), v〉 = 〈ξ0, v〉 + (j − 1)〈y, v〉.

Moreover, because 〈v, y〉 �= 0, it follows immediately that

lim
j→∞

〈P j(ξ0), v〉 = ∞,

and therefore the sequence {P j(ξ0)}∞
j=0 is unbounded, in contradiction. �

2.4.4 Stability of Periodic Orbits
Consider a (nonlinear) autonomous system of differential equations on R

n

given by u̇ = f(u) with a periodic orbit Γ. Also, for each ξ ∈ R
n, define

the vector function t �→ u(t, ξ) to be the solution of this system with the
initial condition u(0, ξ) = ξ.

If p ∈ Γ and Σ′ ⊂ R
n is a section transverse to f(p) at p, then, as a

corollary of the implicit function theorem, there is an open set Σ ⊆ Σ′ and
a function T : Σ → R, the time of first return to Σ′, such that for each
σ ∈ Σ, we have u(T (σ), σ) ∈ Σ′. The map P, given by σ �→ u(T (σ), σ), is
the Poincaré map corresponding to the Poincaré section Σ.

The Poincaré map is defined only on Σ, a manifold contained in R
n. It

is convenient to avoid choosing local coordinates on Σ. Thus, we will view
the elements in Σ also as points in the ambient space R

n. In particular, if
v ∈ R

n is tangent to Σ at p, then the derivative of P in the direction v is
given by

DP(p)v = (dT (p)v)f(p) + uξ(T (p), p)v. (2.37)

The next proposition relates the spectrum of DP(p) to the Floquet multi-
pliers of the first variational equation

Ẇ = Df(u(t, p))W.
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Proposition 2.122. If Γ is a periodic orbit and p ∈ Γ, then the union of
the set of eigenvalues of the derivative of a Poincaré map at p ∈ Γ and the
singleton set {1} is the same as the set of characteristic multipliers of the
first variational equation along Γ. In particular, zero is not an eigenvalue.

Proof. Recall that t �→ uξ(t, ξ) is the principal fundamental matrix solu-
tion at t = 0 of the first variational equation and, since

d

dt
f(u(t, ξ)) = Df(u(t, ξ)ut(t, ξ) = Df(u(t, ξ)f(u(t, ξ)),

the vector function t �→ f(u(t, ξ)) is the solution of the variational equation
with the initial condition W (0) = f(ξ). In particular,

uξ(T (p), p)f(p) = f(u(T (p), p)) = f(p),

and therefore f(p) is an eigenvector of the linear transformation uξ(T (p), p)
with eigenvalue the number one.

Since Σ is transverse to f(p), there is a basis of R
n of the form

f(p), s1, . . . , sn−1

with si tangent to Σ at p for each i = 1, . . . , n − 1. It follows that the
matrix uξ(T (p), p) has block form, relative to this basis, given by(

1 a
0 b

)
where a is 1 × (n − 1) and b is (n − 1) × (n − 1). Moreover, each v ∈ R

n

that is tangent to Σ at p has block form (the transpose of) (0, vΣ). As a
result, we have the equality

uξ(T (p), p)v =
(

1 a
0 b

)(
0
vΣ

)
.

The range of DP(p) is tangent to Σ at p. Thus, using equation (2.37)
and the block form of uξ(T (p), p), it follows that

DP(p)v =
(

dT (p)v + avΣ
bvΣ

)
=

(
0

bvΣ

)
.

In other words, the derivative of the Poincaré map may be identified with
b and the differential of the return time map with −a. In particular, the
eigenvalues of the derivative of the Poincaré map coincide with the eigen-
values of b. �

Exercise 2.123. Prove that the characteristic multipliers of the first varia-
tional equation along a periodic orbit do not depend on the choice of p ∈ Γ.
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Most of the rest of this section is devoted to a proof of the following
fundamental theorem.

Theorem 2.124. Suppose that Γ is a periodic orbit for the autonomous
differential equation u̇ = f(u) and P is a corresponding Poincaré map
defined on a Poincaré section Σ such that p ∈ Γ ∩ Σ. If the eigenvalues of
the derivative DP(p) are inside the unit circle in the complex plane, then
Γ is asymptotically stable.

There are several possible proofs of this theorem. The approach used
here is adapted from [123].

To give a complete proof of Theorem 2.124, we will require several pre-
liminary results. Our first objective is to show that the point p is an asymp-
totically stable fixed point of the dynamical system defined by the Poincaré
map on Σ.

Let us begin with a useful simple replacement of the Jordan normal form
theorem that is adequate for our purposes here (see [129]).

Proposition 2.125. An n × n (possibly complex) matrix A is similar to
an upper triangular matrix whose diagonal elements are the eigenvalues of
A.

Proof. Let v be a nonzero eigenvector of A corresponding to the eigenvalue
λ. The vector v can be completed to a basis of C

n that defines a matrix
Q partitioned by the corresponding column vectors Q := [v, y1, . . . , yn−1].
Moreover, Q is invertible and

[Q−1v, Q−1y1, . . . , Q−1yn−1] = [e1, . . . , en]

where e1, . . . , en denote the usual basis elements.
Note that

Q−1AQ = Q−1[λv, Ay1, . . . , Ayn−1]
= [λe1, Q

−1Ay1, . . . , Q−1Ayn−1].

In other words, the matrix Q−1AQ is given in block form by

Q−1AQ =
(

λ ∗
0 Ã

)
where Ã is an (n−1)×(n−1) matrix. In particular, this proves the theorem
for all 2 × 2 matrices.

By induction, there is an (n − 1) × (n − 1) matrix R̃ such that R̃−1ÃR̃
is upper triangular. The matrix (QR)−1AQR where

R =
(

1 0
0 R̃

)
is an upper triangular matrix with the eigenvalues of A as its diagonal
elements, as required. �
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Let ρ(A) denote the spectral radius of A, that is, the maximum modulus
of the eigenvalues of A.

Proposition 2.126. Suppose that A is an n × n matrix. If ε > 0, then
there is a norm on C

n such that ‖A‖ε < ρ(A) + ε. If A is a real matrix,
then the restriction of the “ε-norm” to R

n is a norm on R
n with the same

property.

Proof. The following proof is adapted from [129]. By Proposition 2.125,
there is a matrix Q such that

QAQ−1 = D + N

where D is diagonal with the eigenvalues of A as its diagonal elements, and
N is upper triangular with each of its diagonal elements equal to zero.

Let µ > 0, and define a new diagonal matrix S with diagonal elements

1, µ−1, µ−2, . . . , µ1−n.

A computation shows that

S(D + N)S−1 = D + SNS−1.

Also, it is easy to show—by writing out the formulas for the components—
that every element of the matrix SNS−1 is O(µ).

Define a norm on C
n, by the formula

|v|µ := |SQv| = 〈SQv, SQv〉

where the angle brackets on the right hand side denote the usual Euclidean
inner product on C

n. It is easy to verify that this procedure indeed defines
a norm on C

n that depends on the parameter µ.
Post multiplication by SQ of both sides of the equation

SQAQ−1S−1 = D + SNS−1

yields the formula

SQA = (D + SNS−1)SQ.

Using this last identity we have that

|Av|2µ = |SQAv|2 = |(D + SNS−1)SQv|2.

Let us define w := SQv and then expand the last norm into inner products
to obtain

|Av|2µ = 〈Dw, Dw〉 + 〈SNS−1w, Dw〉
+〈Dw, SNS−1w〉 + 〈SNS−1w, SNS−1w〉.
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A direct estimate of the first inner product together with an application
of the Schwarz inequality to each of the other inner products yields the
following estimate:

|Av|2µ ≤ (ρ2(A) + O(µ))|w|2.

Moreover, we have that |v|µ = |w|. In particular, if |v|µ = 1 then |w| = 1,
and it follows that

‖A‖2
µ ≤ ρ2(A) + O(µ).

Thus, if µ > 0 is sufficiently small, then ‖A‖µ < ρ(A) + ε, as required. �

Corollary 2.127. If all the eigenvalues of the n × n matrix A are inside
the unit circle in the complex plane, then there is an “adapted norm” and a
number λ, with 0 < λ < 1, such that |Av|a < λ|v|a for all vectors v, real or
complex. In particular A is a contraction with respect to the adapted norm.
Moreover, for each norm on R

n or C
n, there is a positive number C such

that |Anv| ≤ Cλn|v| for all nonnegative integers n.

Proof. Under the hypothesis, we have ρ(A) < 1; thus, there is a number
λ such that ρ(A) < λ < 1. Using Proposition 2.126, there is an adapted
norm so that ‖A‖a < λ. This proves the first part of the corollary. To
prove the second part, recall that all norms on a finite dimensional space
are equivalent. In particular, there are positive numbers C1 and C2 such
that

C1|v| ≤ |v|a ≤ C2|v|

for all vectors v. Thus, we have

C1|Anv| ≤ |Anv|a ≤ |A|na |v|a ≤ C2λ
n|v|.

After dividing both sides of the last inequality by C1 > 0, we obtain the
desired estimate. �

We are now ready to return to the dynamics of the Poincaré map P
defined above. Recall that Γ is a periodic orbit for the differential equation
u̇ = f(u) and P : Σ → Σ′ is defined by P(σ) = u(T (σ), σ) where T is the
return time function. Also, we have that p ∈ Γ ∩ Σ.

Lemma 2.128. Suppose that V ⊆ R
n is an open set with compact closure

V̄ such that Γ ⊂ V and V̄ is contained in the domain of the function f . If
t∗ ≥ 0, then there is an open set W ⊆ V that contains Γ and is such that,
for each point ξ ∈ W , the solution t �→ u(t, ξ) is defined and stays in V on
the interval 0 ≤ t ≤ t∗. Moreover, if ξ and ν are both in W and 0 ≤ t ≤ t∗,
then there is a number L > 0 such that

|u(t, ξ) − u(t, ν)| < |ξ − ν|eLt∗ .
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Proof. Note that V̄ is a compact subset of the domain of the function
f . By Lemma 2.75, f is globally Lipschitz on V with a Lipschitz constant
L > 0. Also, there is a minimum positive distance m from the boundary of
V to Γ.

An easy application of Gronwall’s inequality can be used to show that if
ξ, ν ∈ V , then

|u(t, ξ) − u(t, ν)| ≤ |ξ − ν|eLt (2.38)

for all t such that both solutions are defined on the interval [0, t].
Define the set

Wq := {ξ ∈ R
n : |ξ − q|eLt∗ < m}

and note that Wq is open. If ξ ∈ Wq, then

|ξ − q| < me−Lt∗ < m.

Thus, it follows that Wq ⊆ V .
Using the extension theorem (Theorem 1.263), it follows that if ξ ∈ Wq,

then the interval of existence of the solution t �→ u(t, ξ) can be extended as
long as the orbit stays in the compact set V̄ . The point q is on the periodic
orbit Γ. Thus, the solution t → u(t, q) is defined for all t ≥ 0. Using the
definition of Wq and an application of the inequality (2.38) to the solutions
starting at ξ and q, it follows that the solution t �→ u(t, ξ) is defined and
stays in V on the interval 0 ≤ t ≤ t∗.

The union W :=
⋃

q∈Γ Wq is an open set in V containing Γ with the
property that all solutions starting in W remain in V at least on the time
interval 0 ≤ t ≤ t∗. �

Define the distance of a point q ∈ R
n to a set S ⊆ R

n by

dist(q, S) = inf
x∈S

|q − x|

where the norm on the right hand side is the usual Euclidean norm. Simi-
larly, the (minimum) distance between two sets is defined as

dist(A, B) = inf{|a − b| : a ∈ A, b ∈ B}.

(Warning: dist is not a metric.)

Proposition 2.129. If σ ∈ Σ and if limn→∞ Pn(σ) = p, then

lim
t→∞ dist(u(t, σ), Γ) = 0.

Proof. Let ε > 0 be given and let Σ0 be an open subset of Σ such that
p ∈ Σ0 and such that Σ̄0, the closure of Σ0, is a compact subset of Σ. The
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return time map T is continuous; hence, it is uniformly bounded on the set
Σ̄0, that is,

sup{T (η) : η ∈ Σ̄0} = T ∗ < ∞.

Let V be an open subset of R
n with compact closure V̄ such that Γ ⊂ V

and V̄ is contained in the domain of f . By Lemma 2.128, there is an open
set W ⊆ V such that Γ ⊂ W and such that, for each ξ ∈ W , the solution
starting at ξ remains in V on the interval 0 ≤ s ≤ T ∗.

Choose δ > 0 so small that the set

Σδ := {η ∈ Σ : |η − p| < δ}

is contained in W ∩ Σ0, and such that

|η − p|eLT ∗
< min{m, ε}

for all η ∈ Σδ. By Lemma 2.128, if η ∈ Σδ, then, for 0 ≤ s ≤ T ∗, we have
that

|u(s, η) − u(s, p)| < ε.

By the hypothesis, there is some integer N > 0 such that Pn(σ) ∈ Σδ

whenever n ≥ N .
Using the group property of the flow, let us note that

Pn(σ) = u(
n−1∑
j=0

T (Pj(σ)), σ).

Moreover, if t ≥
∑N−1

j=0 T (Pj(σ)), then there is some integer n ≥ N and
some number s such that 0 ≤ s ≤ T ∗ and

t =
n−1∑
j=0

T (Pj(σ)) + s.

For this t, we have Pn(σ) ∈ Σδ and

dist(u(t, σ), Γ) = min
q∈Γ

|u(t, σ) − q|

≤ |u(t, σ) − u(s, p)|

= |u(s, u(
n−1∑
j=0

T (Pj(σ)), σ)) − u(s, p)|

= |u(s, Pn(σ)) − u(s, p)|.

It follows that dist(u(t, σ), Γ) < ε whenever t ≥
∑N−1

j=0 T (Pj(σ)). In other
words,

lim
t→∞ dist(u(t, σ), Γ) = 0,

as required. �
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We are now ready for the proof of Theorem 2.124.

Proof. Suppose that V is a neighborhood of Γ. We must prove that there is
a neighborhood U of Γ such that U ⊆ V with the additional property that
every solution of u̇ = f(u) that starts in U stays in V and is asymptotic to
Γ.

We may as well assume that V has compact closure V̄ and V̄ is contained
in the domain of f . Then, by Lemma 2.128, there is an open set W that
contains Γ and is contained in the closure of V with the additional property
that every solution starting in W exists and stay in V on the time interval
0 ≤ t ≤ 2τ where τ := T (p) is the period of Γ.

Also, let us assume without loss of generality that our Poincaré section
Σ is a subset of a hyperplane Σ′ and that the coordinates on Σ′ are chosen
so that p lies at the origin. By our hypothesis, the linear transformation
DP(0) : Σ′ → Σ′ has its spectrum inside the unit circle in the complex
plane. Thus, by Corollary 2.127, there is an adapted norm on Σ′ and a
number λ with 0 < λ < 1 such that ‖DP(0)‖ < λ.

Using the continuity of the map σ → DP(σ), the return time map, and
the adapted norm, there is an open ball Σ0 ⊆ Σ centered at the origin
such that Σ0 ⊂ W , the return time map T restricted to Σ0 is bounded by
2τ , and ‖DP(σ)‖ < λ whenever σ ∈ Σ0. Moreover, using the mean value
theorem, it follows that

|P(σ)| = |P(σ) − P(0)| < λ|σ|,

whenever σ ∈ Σ0. In particular, if σ ∈ Σ0, then P(σ) ∈ Σ0.
Let us show that all solutions starting in Σ0 are defined for all positive

time. To see this, consider σ ∈ Σ0 and note that, by our construction, the
solution t �→ u(t, σ) is defined for 0 ≤ t ≤ T (σ) because T (σ) < 2τ . We
also have that u(T (σ), σ) = P(σ) ∈ Σ0. Thus, the solution t �→ u(t, σ)
can be extended beyond the time T (σ) by applying the same reasoning
to the solution t → u(t, P(σ)) = u(t + u(Tσ), σ)). This procedure can be
extended indefinitely, and thus the solution t → u(t, σ) can be extended
for all positive time.

Define U := {u(t, σ) : σ ∈ Σ0 and t > 0}. Clearly, Γ ⊂ U and also every
solution that starts in U stays in U for all t ≥ 0. We will show that U is
open. To prove this fact, let ξ := u(t, σ) ∈ U with σ ∈ Σ0. If we consider the
restriction of the flow given by u : (0,∞) × Σ0 → U , then, using the same
idea as in the proof of the rectification lemma (Lemma 1.120), it is easy to
see that the derivative Du(t, σ) is invertible. Thus, by the inverse function
theorem (Theorem 1.121), there is an open set in U at ξ diffeomorphic to
a product neighborhood of (t, σ) in (0,∞) × Σ0. Thus, U is open.
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To show that U ⊆ V , let ξ := u(t, σ) ∈ U with σ ∈ Σ0. There is some
integer n ≥ 0 and some number s such that

t =
n−1∑
j=0

T (Pj(σ)) + s

where 0 ≤ s < T (Pn(σ)) < 2τ . In particular, we have that ξ = u(s,Pn(σ)).
But since 0 ≤ s < 2τ and Pn(σ) ∈ W it follows that ξ ∈ V .

Finally, for this same ξ ∈ U , we have as an immediate consequence of
Proposition 2.129 that limt→∞ dist(u(t, Pn(ξ)),Γ) = 0. Moreover, for each
t ≥ 0, we also have that

dist(u(t, ξ), Γ) = dist(u(t, u(s,Pn(ξ))),Γ) = dist(u(s + t, Pn(ξ)),Γ).

It follows that limt→∞ dist(u(t, ξ), Γ) = 0, as required. �

A useful application of our results can be made for a periodic orbit Γ
of a differential equation defined on the plane. In fact, there are exactly
two characteristic multipliers of the first variational equation along Γ. Since
one of these characteristic multipliers must be the number one, the product
of the characteristic multipliers is the eigenvalue of the derivative of every
Poincaré map defined on a section transverse to Γ. Because the determinant
of a matrix is the product of its eigenvalues, an application of Liouville’s
formula proves the following proposition.

Proposition 2.130. If Γ is a periodic orbit of period ν of the autonomous
differential equation u̇ = f(u) on the plane, and if P is a Poincaré map
defined at p ∈ Γ, then, using the notation of this section, the eigenvalue λΓ
of the derivative of P at p is given by

λΓ = detuξ(T (p), p) = e
∫ ν
0 div f(u(t,p)) dt.

In particular, if λΓ < 1 then Γ is asymptotically stable, whereas if λΓ > 1
then Γ is unstable.

The flow near an attracting limit cycle is very well understood. A next
proposition states that the orbits of points in the basin of attraction of the
limit cycle are “asymptotically periodic.”

Proposition 2.131. Suppose that Γ is an asymptotically stable periodic
orbit with period T . There is a neighborhood V of Γ such that if ξ ∈ V ,
then limt→∞ |u(t + T, ξ) − u(t, ξ)| = 0 where | | is an arbitrary norm on
R

n. (In this case, the point ξ is said to have asymptotic period T .)

Proof. By Lemma 2.128, there is an open set W such that Γ ⊂ W and
the function ξ �→ u(T, ξ) is defined for each ξ ∈ W . Using the continuity of
this function, there is a number δ > 0 such that δ < ε/2 and

|u(T, ξ) − u(T, η)| <
ε

2
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whenever ξ, η ∈ W and |ξ − η| < δ.
By the hypothesis, there is a number T ∗ so large that dist(u(t, ξ), Γ) < δ

whenever t ≥ T ∗. In particular, for each t ≥ T ∗, there is some q ∈ Γ such
that |u(t, ξ) − q| < δ. Using this fact and the group property of the flow,
we have that

|u(t + T, ξ) − u(t, ξ)| ≤ |u(T, u(t, ξ)) − u(T, q)| + |q − u(t, ξ)|
≤ ε

2
+ δ < ε

whenever t ≥ T ∗. Thus, limt→∞ |u(t + T, ξ) − u(t, ξ)| = 0, as required. �

A periodic orbit can be asymptotically stable without being hyperbolic.
In fact, it is easy to construct a limit cycle in the plane that is asymp-
totically stable whose Floquet multiplier is the number one. By the last
proposition, points in the basin of attraction of such an attracting limit
cycle have asymptotic periods equal to the period of the limit cycle. But,
if the periodic orbit is hyperbolic, then a stronger result is true: Not only
does each point in the basin of attraction have an asymptotic period, each
such point has an asymptotic phase. This is the content of the next result.

Theorem 2.132. If Γ is an attracting hyperbolic periodic orbit, then there
is a neighborhood V of Γ such that for each ξ ∈ V there is some q ∈ Γ such
that limt→∞ |u(t, ξ)−u(t, q)| = 0. (In this case, ξ is said to have asymptotic
phase q.)

Proof. Let Σ be a Poincaré section at p ∈ Γ with compact closure, return
map P, and return-time map T . Without loss of generality, we will assume
that for each σ ∈ Σ we have (1) limn→∞ Pn(σ) = p, (2) T (σ) < 2T (p), and
(3) ‖DT (σ)‖ < 2‖DT (p)‖.

By the hyperbolicity hypothesis, the spectrum of DP(p) is inside the unit
circle; therefore, there are numbers C and λ such that C > 0, 0 < λ < 1
and

|p − Pn(σ)| < Cλn‖p − σ‖.

Let

K :=
2C‖DT (p)‖

1 − λ
sup
σ∈Σ̄

‖p − σ‖ + 3T (p).

Using the implicit function theorem, it is easy to construct a neighbor-
hood V of Γ such that for each ξ ∈ V , there is a number tξ ≥ 0 with
σξ := u(tξ, ξ) ∈ Σ. Moreover, using Lemma 2.128, we can choose V such
that every solution with initial point in V is defined at least on the time
interval −K ≤ t ≤ K. Indeed, by the asymptotic stability of Γ, there is a
neighborhood V of Γ such that every solution starting in V is defined for
all positive time. If we redefine V to be the image of V under the flow for
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time K, then every solution starting in V is defined at least on the time
interval −K ≤ t ≤ K.

We will show that if σξ ∈ Σ, then there is a point qξ ∈ Γ such that

lim
t→∞ |u(t, σξ) − u(t, qξ)| = 0.

Using this fact, it follows that if r := u(−tξ, qξ), then

lim
t→∞ |u(t, ξ) − u(t, r)| = lim

t→∞ |u(t − tξ, u(tξ, ξ)) − u(t − tξ, qξ)|

= lim
t→∞ |u(t − tξ, σξ) − u(t − tξ, qξ)| = 0.

Thus, it suffices to prove the theorem for a point σ ∈ Σ.
Given σ ∈ Σ, define

sn := nT (p) −
n−1∑
j=0

T (Pj(σ)).

Note that

(n + 1)T (p) − nT (p) = T (Pn(σ)) + sn+1 − sn,

and, as a result,

|sn+1 − sn| = |T (p) − T (Pn(σ))| ≤ 2‖DT (p)‖‖p − Pn(σ)‖.

Hence,

|sn+1 − sn| < 2‖DT (p)‖C‖p − σ‖λn

whenever n ≥ 0.
Because sn = s1 +

∑n−1
j=1 (sj+1 − sj) and

n−1∑
j=1

|sj+1 − sj | < 2C‖DT (p)‖‖p − σ‖
n−1∑
j=1

λj < 2C‖DT (p)‖‖p − σ‖
1 − λ

,

the series
∑∞

j=1(sj+1 − sj) is absolutely convergent—its absolute partial
sums form an increasing sequence that is bounded above. Thus, in fact,
there is a number s such that limn→∞ sn = s. Also, the sequence {sn}∞

n=1
is uniformly bounded; that is,

|sn| ≤ |s1| + 2C‖DT (p)‖‖p − σ‖
1 − λ

≤ K.

Hence, the absolute value of its limit |s| is bounded by the same quantity.
Let ε > 0 be given. By the compactness of its domain, the function

u : [−K, K] × Σ̄ → R
n
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is uniformly continuous. In particular, there is a number δ > 0 such that if
(t1, σ1) and (t2, σ2) are both in the domain and if |t1 − t2| + |σ1 − σ2| < δ,
then

|u(t1, σ1) − u(t2, σ2)| < ε.

In view of the equality,

u(nT (p), σ) = u(sn,Pn(σ)),

which follows from the definition of sn, we have

|u(nT (p), σ) − u(s, p)| = |u(sn,Pn(σ)) − u(s, p)|.

Since for sufficiently large n,

|sn − s| + |Pn(σ) − p| < ε,

it follows that

lim
n→∞ |u(nT (p), σ) − u(s, p)| = 0.

Also, for each t ≥ 0, there is an integer n ≥ 0 and a number s(t) such that
0 ≤ s(t) < T (p) and t = nT (p)+s(t). Using this fact, we have the equation

|u(t, σ) − u(t, u(s, p))| = |u(s(t), u(nT (p), σ)) − u(s(t), u(nT (p), u(s, p))|.

Also, because q := u(s, p) ∈ Γ and Lemma 2.128, there is a constant L > 0
such that

|u(t, σ) − u(t, q)| = |u(s(t), u(nT (p), σ)) − u(s(t), q))|
≤ |u(nT (p), σ) − q|eLT (p).

By passing to the limit as n → ∞, we obtain the desired result. �

Necessary and sufficient conditions for the existence of asymptotic phase
are known (see [47, 77]). An alternate proof of Theorem 2.132 is given
in [47].

Exercise 2.133. Find a periodic solution of the system

ẋ = x − y − x(x2 + y2),

ẏ = x + y − y(x2 + y2),

ż = −z,

and determine its stability type. In particular, compute the Floquet multipliers
for the monodromy matrix associated with the periodic orbit [128, p. 120].
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Exercise 2.134. (a) Find an example of a planar system with a limit cycle
such that some nearby solutions do not have an asymptotic phase. (b) Contrast
and compare the asymptotic phase concept for the following planar systems that
are defined in the punctured plane in polar coordinates:

1. ṙ = r(1 − r), θ̇ = r,

2. ṙ = r(1 − r)2, θ̇ = r,

3. ṙ = r(1 − r)n, θ̇ = r.

Exercise 2.135. Suppose that v �= 0 is an eigenvector for the monodromy
operator with associated eigenvalue λΓ as in Proposition 2.130. If λΓ �= 1, then
v and f(p) are independent vectors that form a basis for R

2. The monodromy
operator expressed in this basis is diagonal. (a) Express the operators a and b
defined in the proof of Proposition 2.122 in this basis. (b) What can you say
about the derivative of the transit time map along a section that is tangent to v
at p?

Exercise 2.136. This exercise is adapted from [235]. Suppose that f : R
2 → R

is a smooth function and A := {(x, y) ∈ R
2 : f(x, y) = 0} is a regular level set of

f . (a) Prove that each bounded component of A is an attracting hyperbolic limit
cycle for the differential equation

ẋ = −fy − ffx, ẏ = fx − ffy.

(b) Prove that the bounded components of A are the only periodic orbits of the
system. (c) Draw and explain the phase portrait of the system for the case where

f(x, y) = ((x − ε)2 + y2 − 1)(x2 + y2 − 9).

Exercise 2.137. Consider an attracting hyperbolic periodic orbit Γ for an au-
tonomous system u̇ = f(u) with flow ϕt, and for each point p ∈ Γ, let Γp denote
the set of all points in the phase space with asymptotic phase p. (a) Construct
Γp for each p on the limit cycle in the planar system

ẋ = −y + x(1 − x2 − y2), ẏ = x + y(1 − x2 − y2).

(b) Repeat the construction for the planar systems of Exercise 2.134. (c) Prove
that F :=

⋃
p∈Γ Γp is an invariant foliation of the phase space in a neighborhood

U of Γ. Let us take this to mean that every point in U is in one of the sets in the
union F and the following invariance property is satisfied: If ξ ∈ Γp and s ∈ R,
then ϕs(ξ) ∈ Γϕs(p). The second condition states that the flow moves fibers of
the foliation (Γp is the fiber over p) to fibers of the foliation. (d) Are the fibers
of the foliation smooth manifolds?
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Applications

Is the subject of ordinary differential equations important? The ultimate
answer to this question is certainly beyond the scope of this book. But
two main points of evidence for an affirmative answer are provided in this
chapter:

• Ordinary differential equations arise naturally from the foundations
of physical science.

• Ordinary differential equations are useful tools for solving physical
problems.

You will have to decide if the evidence is sufficient. Warning: If you pay
too much attention to philosophical issues concerning the value of a mathe-
matical subject, then you might stop producing mathematics. On the other
hand, if you pay no attention to the value of a subject, then how will you
know that it is worthy of study?

3.1 Origins of ODE: The Euler–Lagrange Equation

Let us consider a smooth function L : R
k × R

k × R → R, a pair of points
p1, p2 ∈ R

k, two real numbers t1 < t2, and the set C := C(p1, p2, t1, t2) of
all smooth curves q : R → R

k such that q(t1) = p1 and q(t2) = p2. Using
this data, there is a function Φ : C → R given by

Φ(q) =
∫ t2

t1

L(q(t), q̇(t), t) dt. (3.1)
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The Euler–Lagrange equation, an ordinary differential equation associated
with the function L—called the Lagrangian—arises from the following
problem: Find the extreme points of the function Φ. This variational prob-
lem is the basis for Lagrangian mechanics.

Recall from calculus that an extreme point of a smooth function is a
point at which its derivative vanishes. To use this definition directly for the
function Φ, we would have to show that C is a manifold and Φ is differ-
entiable. This can be done. Instead, we will bypass these requirements by
redefining the notion of extreme point. In effect, we will define the concept
of directional derivative for a scalar function on a space of curves. Then,
an extreme point is defined to be a point where all directional derivatives
vanish.

Recall our geometric interpretation of the derivative of a smooth function
on a manifold: For a tangent vector at a point in the domain of the function,
choose a curve whose tangent at time t = 0 is the given vector, move the
curve to the range of the function by composing it with the function, and
then differentiate the resulting curve at t = 0 to produce a tangent vector
on the range. This tangent vector is the image of the original vector under
the derivative of the function. In the context of the function Φ on the space
of curves C, let us consider a curve γ : R → C. Note that for s ∈ R, the
point γ(s) ∈ C is itself a curve γ(s) : R → R

k. So, in particular, if t ∈ R,
then γ(s)(t) ∈ R

k. Rather than use the cumbersome notation γ(s)(t), it is
customary to interpret our curve of curves as a “variation of curves” in C,
that is, as a smooth function Q : R × R → R

k with the “end conditions”

Q(s, t1) ≡ p1, Q(s, t2) ≡ p2.

In this interpretation, γ(s)(t) = Q(s, t).
Fix a point q ∈ C and suppose that γ(0) = q, or equivalently that

Q(0, t) = q(t). Then, as s varies we obtain a family of curves called a
variation of the curve q. The tangent vector to γ at q is, by definition, the
curve V : R → R

k × R
k given by t �→ (q(t), v(t)) where

v(t) :=
∂

∂s
Q(s, t)

∣∣∣
s=0

.

Of course, v is usually not in C because it does not satisfy the required
end conditions. On the other hand, v does satisfy a perhaps different pair
of end conditions, namely,

v(t1) =
∂

∂s
Q(s, t1)

∣∣∣
s=0

= 0, v(t2) =
∂

∂s
Q(s, t2)

∣∣∣
s=0

= 0.

Let us view the vector V as an element in the “tangent space of C at q.”
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What is the directional derivative DΦ(q)V of Φ at q in the direction V ?
Following the prescription given above, we have the definition

DΦ(q)V :=
∂

∂s
Φ(Q(s, ·))

∣∣∣
s=0

=
∫ t2

t1

∂

∂s
L(Q(s, t),

∂Q

∂t
(s, t), t)

∣∣∣
s=0

dt

=
∫ t2

t1

(∂L

∂q

∂Q

∂s
+

∂L

∂q̇

∂2Q

∂s∂t

)∣∣∣
s=0

dt. (3.2)

After evaluation at s = 0 and an integration by parts, we can rewrite the
last integral to obtain

DΦ(q)V =
∫ t2

t1

[∂L

∂q
(q(t), q̇(t), t) − d

dt

(∂L

∂q̇
(q(t), q̇(t), t)

)]∂Q

∂s
(0, t) dt

=
∫ t2

t1

[∂L

∂q
(q(t), q̇(t), t) − d

dt

(∂L

∂q̇
(q(t), q̇(t), t)

)]
v(t) dt. (3.3)

The curve q is called an extremal if DΦ(q)V = 0 for all tangent vectors
V . Since for a given v we can construct Q(s, t) := q(t) + sv(t) so that
∂Q/∂s = v, the curve q is an extremal if the last integral in equation (3.3)
vanishes for all smooth functions v that vanish at the points t1 and t2.

Proposition 3.1. The curve q is an extremal if and only if it is a solution
of the Euler–Lagrange equation

d

dt

(∂L

∂q̇

)
− ∂L

∂q
= 0.

Proof. Clearly, if the curve q is a solution of the Euler–Lagrange equation,
then, by formula (3.3), we have that DΦ(q) = 0. Conversely, if DΦ(q) = 0,
we will show that q is a solution of the Euler–Lagrange equation. If not,
then there is some time τ in the open interval (t1, t2) such that the quantity

∂L

∂q
(q(t), q̇(t), t) − d

dt

(∂L

∂q̇
(q(t), q̇(t), t)

)
appearing in the formula (3.3) does not vanish when evaluated at τ . In this
case, this quantity has constant sign on a closed interval containing the
point τ . Moreover, there is a smooth nonnegative function v that vanishes
outside this closed interval and is such that v(τ) = 1 (see Exercise 3.15).
Hence, DΦ(q)V �= 0 with respect to the variation Q(s, t) := q(t)+ sv(t), in
contradiction. �

When we search for the extreme points of a function, we are usually inter-
ested in its maxima or minima. The same is true for the function Φ defined
above. In fact, the theory for determining the maxima and minima of Φ is
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similar to the usual finite-dimensional theory, but it is complicated by the
technical problems of working in infinite-dimensional function spaces. The
general theory is explained in books on the calculus of variations (see for
example [82]).

In mechanics, the Lagrangian L is taken to be the difference between
the kinetic energy and the potential energy of a particle, the corresponding
function Φ is called the action, and a curve q : R → R

k is called a motion.
Hamilton’s principle states: Every motion of a physical particle is an ex-
tremal of its action. Of course, the motions of a particle as predicted by
Newton’s second law are the same as the motions predicted by Hamilton’s
principle (see Exercise 3.2).

Exercise 3.2. Prove: The motions of a particle determined by Newton’s second
law are the same as the motions determined by Hamilton’s principle. In this
context, Newton’s law states that the time rate of change of the momentum
(mass×velocity) is equal to the negative gradient of the potential energy.

One beautiful feature of Lagrangian mechanics, which is evident from the
definition of extremals, is the following fact: Lagrangian mechanics is co-
ordinate free. In particular, the form of the Euler–Lagrange equation does
not depend on the choice of the coordinate system. Thus, to describe the
motion of a particle, we are free to choose the coordinates q := (q1, · · · , qk)
as we please and still use the same form of the Euler–Lagrange equation.

As an illustration, consider the prototypical example in mechanics: a free
particle. Let (x, y, z) denote the usual Cartesian coordinates in space and
t �→ q(t) := (x(t), y(t), z(t)) the position of the particle as time evolves.
The kinetic energy of a particle with mass m in Cartesian coordinates is
m
2 (ẋ2(t) + ẏ2(t) + ż2(t)). Thus, the “action functional” is given by

Φ(q) =
∫ t2

t1

m

2
(ẋ2(t) + ẏ2(t) + ż2(t)) dt,

the Euler–Lagrange equations are simply

mẍ = 0, mÿ = 0, mz̈ = 0, (3.4)

and each motion is along a straight line, as expected.
As an example of the Euler–Lagrange equations in a non-Cartesian co-

ordinate system, let us consider the motion of a free particle in cylindri-
cal coordinates (r, θ, z). To determine the Lagrangian, note that the ki-
netic energy depends on the Euclidean structure of space, that is, on the
usual inner product. A simple computation shows that the kinetic energy
of the motion t → (r(t), θ(t), z(t)) expressed in cylindrical coordinates is
m
2 (ṙ2(t) + r2θ̇2(t) + ż2(t)). For example, to compute the inner product of
two tangent vectors relative to a cylindrical coordinate chart, move them
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to the Cartesian coordinate chart by the derivative of the cylindrical co-
ordinate wrapping function (Section 1.8.5), and then compute the usual
inner product of their images. The Euler–Lagrange equations are

mr̈ − mrθ̇2 = 0, m
d

dt
(r2θ̇) = 0, mz̈ = 0. (3.5)

Clearly, cylindrical coordinates are not the best choice to determine the
motion of a free particle. But it does indeed turn out that all solutions of
system (3.5) lie on straight lines (see Exercise 3.5).

We will discuss some of the properties enjoyed by the Euler-Lagrange dy-
namical system. For simplicity we will consider only the case of autonomous
Lagrangians, L : R

k × R
k → R.

Define a new variable

p :=
∂L

∂q̇
(q, q̇). (3.6)

We will assume the Lagrangian is regular; that is, q̇ is defined implicitly as
a function α : R

k × R
k → R

k in equation (3.6) so that q̇ = α(q, p). In this
case, the Hamiltonian H : R

k × R
k → R is defined by

H(q, p) = pq̇ − L(q, q̇) = pα(q, p) − L(q, α(q, p)).

This function is often written in the simple form

H =
∂L

∂q̇
q̇ − L.

The transformation from the Lagrangian to the Hamiltonian is called the
Legendre transformation.

Proposition 3.3. If the Lagrangian is regular, then the Hamiltonian is
a first integral of the corresponding Lagrangian dynamical system. More-
over, the Lagrangian equations of motion are equivalent to the Hamiltonian
system

q̇ =
∂H

∂p
(q, p), ṗ = −∂H

∂q
(q, p).

Proof. Using the definition of p and α, and the Euler-Lagrange equation,
we have that

d

dt
H(q, p) = ṗα(q, p) + p

d

dt
α(q, p) − ∂L

∂q
(q, α(q, p))α(q, p)

− ∂L

∂q̇
(q, α(q, p))

d

dt
α(q, p)

= (
d

dt

∂L

∂q̇
(q, α(q, p)) − ∂L

∂q
(q, α(q, p)))α(q, p)

= 0;
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that is, H is constant along solutions of the Euler-Lagrange equation. We
also have

∂H

∂p
= α + p

∂α

∂p
− ∂L

∂q̇

∂α

∂p

= q̇

and
∂H

∂q
= p

∂α

∂q
− ∂L

∂q
− ∂L

∂q̇

∂α

∂p

= − ∂L

∂q

= − d

dt

∂L

∂q̇

= − ṗ,

as required. �

A first-order system equivalent to the Euler-Lagrange equation has di-
mension 2k. Here, k is called the number of degrees of freedom. The space
R

k with coordinate q is called the configuration space; its dimension is the
same as the number of degrees of freedom. The space R

k ×R
k with coordi-

nates (q, q̇) is called the state space; it corresponds to the tangent bundle of
the configuration space. The space R

k ×R
k with coordinates (q, p) is called

the phase space; it corresponds to the cotangent bundle of the configura-
tion space. A regular level set of the Hamiltonian is a (2k − 1)-dimensional
invariant manifold for the dynamical system. Hence, the existence of this
first integral allows us to reduce the dimension of the dynamical system.
In effect, we can consider the (2k − 1)-dimensional first-order system on
each regular level set of H. Since the intersection of two invariant sets is
an invariant set, the dimension of the effective first-order system can be
reduced further if there are additional first integrals.

There is an important connection between symmetries and first integrals
of the Lagrangian equations of motion. The basic result in this direction is
stated in the following theorem.

Theorem 3.4 (Noether’s Theorem). Suppose that φt is the flow of the
differential equation q̇ = f(q) for q ∈ R

k and L : R
k × R

k → R is an
(autonomous) Lagrangian given by (q, q̇) �→ L(q, q̇). If

L(φs(q), Dφs(q)q̇) = L(q, q̇)

for all q ∈ R
k and all s in some open interval that contains the origin in

R, then

I(q, q̇) :=
∂L

∂q̇
(q, q̇)f(q)

is a first integral of the corresponding Euler-Lagrange equation.
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Proof. Let q be a solution of the Euler-Lagrange equation and note that

d

dt
I(q, q̇) =

d

dt

(∂L

∂q̇

)
f(q) +

∂L

∂q̇
Df(q)q̇

=
∂L

∂q
f(q) +

∂L

∂q̇
Df(q)q̇.

By the hypothesis,

d

ds
L(φs(q), Dφs(q)q̇)

∣∣
s=0 = 0.

Hence, we have that

∂L

∂q
f(q) +

∂L

∂q̇

d

ds
Dφs(q)q̇

∣∣
s=0 = 0.

To complete the proof of the desired equality dI/dt = 0, it suffices to show
that

d

ds
Dφs(q)

∣∣
s=0 = Df(q).

Because

d

ds
φs(q) = f(φs(q)),

we have

d

ds
Dφs(q) = Df(φs(q))Dφs(q),

and therefore,

d

ds
Dφs(q)|s=0 = Df(q)Dφ0(q).

Since φ0(q) ≡ q, it follows that Dφ0(q) is the identity transformation of
R

k. �

By Proposition 3.3, the Lagrangian

L(x, y, ẋ, ẏ) =
1
2
(ẋ2 + ẏ2) − U(x2 + y2), (3.7)

where U : R → R, has the Hamiltonian

H(x, y, ẋ, ẏ) =
1
2
(ẋ2 + ẏ2) + U(x2 + y2)

as a first integral. Note that this Hamiltonian corresponds to the total
energy of the system, which can be viewed as a model for the motion of
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a particle with unit mass in a potential field. Also, the Lagrangian of this
system is invariant under the linear flow

φt(x, y) =
(

cos t − sin t
sin t cos t

)(
x
y

)
.

By an application of Noether’s theorem,

I(x, y, ẋ, ẏ) = xẏ − yẋ

(the angular momentum of the particle) is a first integral of the correspond-
ing Lagrangian dynamical system.

The existence of the integral I is a consequence of the circular symme-
try of the Lagrangian, a feature that suggests the introduction of polar
coordinates. In fact, the Lagrangian in polar coordinates is given by

L =
1
2
(ṙ2 + r2θ̇2) − U(r2),

and the Euler-Lagrange equations take the form

r̈ = rθ̇2 − 2rU ′(r2),
d

dt
(r2θ̇) = 0. (3.8)

By integration of the second equation, which is equivalent to the statement
İ = 0, there is a constant k such that θ̇ = k/r2. Thus, the Euler-Lagrange
equations decouple, and the reduced system is

r̈ =
k2

r3 − 2rU ′(r2). (3.9)

It is no accident that this system is itself an Euler-Lagrange equation (see [1,
Ch.4] and Exercise 3.7).

We also have the equivalent Hamiltonian

H(r, θ, pr, pθ) =
1
2
(p2

r +
p2

θ

r2 ) + U(r2).

The introduction of the new variables pr and pθ is required here because,
by the definition of p,

p = (ṙ, r2θ̇).

Hamilton’s equations are given by

ṙ = pr,

θ̇ = pθ/r2,

ṗr =
p2

θ

r3 − 2rU ′(r2),

ṗθ = 0.
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Due to the existence of the second first-integral, these equations decouple.
Note that the existence of this integral actually reduces the dimension of
the first-order system by two dimensions. The effective Hamiltonian system

ṙ = pr,

ṗr =
k2

r3 − 2rU ′(r2) (3.10)

with Hamiltonian

H =
1
2
(p2

r +
k2

r2 ) + U(r2)

is obtained by fixing an angular momentum k := pθ. This one degree-
of-freedom system can be solved by quadrature. In particular, by fixing
a value of the reduced Hamiltonian corresponding to a regular level set,
we obtain a one-dimensional curve in the two-dimensional reduced space
that corresponds to an orbit of the original Lagrangian system. Here, the
existence of two independent integrals for our Lagrangian, which has two
degrees of freedom, ensures that we can reduce the problem of finding
solutions of the original system to a quadrature; that is, we can reduce the
problem to the integration

t − t0 =
∫ r(t)

r(t0)
(2h − k2/r2 − 2U(r2))−1/2 dr,

where h is the fixed total energy, the value of the (reduced) Hamiltonian
along the orbit (see [1, Ch.4]). Some features of the solutions of the reduced
system are discussed in the exercises.

For a system with k degrees of freedom, the problem of finding solutions
can often be reduced to a quadrature if there are k independent integrals
(see [12, Ch. 10]).

Exercise 3.5. Show that all solutions of system (3.5) lie on straight lines. Com-
pare the parametrization of the solutions of system (3.5) with the solutions of
the system (3.4). Hint: If necessary, read Section 3.2.2, especially, the discussion
on the integration of the equations of motion for a particle in a central force
field—Kepler’s problem.

Exercise 3.6. Repeat Exercise 3.5 for spherical coordinates.

Exercise 3.7. Find a Lagrangian with Euler-Lagrange equation (3.9).

Exercise 3.8. (a) Discuss the qualitative features of the extremals for the La-
grangian (3.7) with U(ξ) := ξ by studying the Euler-Lagrange equations (3.8)
and the reduced system (3.10). In particular, show that the reduced system has
periodic solutions. (b) Find a sufficient condition for the full Lagrangian system
to have periodic solutions. (c) Show that these periodic solutions are restricted
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to invariant two-dimensional tori in the phase space. While the introduction
of polar coordinates is viable, it is better to use symplectic polar coordinates:
x =

√
2r cos θ and x =

√
2r sin θ. To see one reason for this, repeat the exercise

using these coordinates in the configuration space and recall Exercise 1.60. The
underlying reason why symplectic polar coordinates are preferable is more subtle:
they preserve the natural volume element in the configuration space. More gener-
ally, they preserve the symplectic form (see [12, Ch. 8]). (d) Repeat the exercise
for the Kepler potential U(ξ) = −ξ−1/2. Hint: See Section 3.2.2.

Exercise 3.9. [Geodesics] (a) Show that images in R
3 of extremals of the La-

grangians L(ẋ, ẏ, ż) = ẋ2(t) + ẏ2(t) + ż2(t) and
√

L are the same. Hint: For the
second Lagrangian, consider curves parametrized by arc length. (b) Generalize to
the case of Riemannian metrics, that is, compare the extremals of the functionals

Φ(q) =
∫ t2

t1

(gk�q̇
k q̇�)1/2 dt

and

Ψ(q) =
∫ t2

t1

gk�q̇
k q̇� dt

where (q, q̇) = (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n), the Riemannian metric g is given
in components, the matrix (gij) is positive definite and symmetric (see Exer-
cise 1.139), and the Einstein summation convention is observed: sum on repeated
indices over {1, 2, . . . , n}. The images of the extremals of Φ are called geodesics
of the Riemannian metric g. Show that the images of the extremals of Φ and Ψ
are the same. (c) Show that the Euler-Lagrange equations for Ψ are equivalent
to the geodesic equations

q̈i + Γi
k�q̇

k q̇� = 0

where

Γi
k� =

1
2
gij(

∂g�j

∂qk
+

∂gkj

∂q�
− ∂g�k

∂qj
)

are the Christoffel symbols and (gij) is the inverse of the matrix (gij). The
Euler-Lagrange equations for Φ are the same provided that the extremals are
parametrized by arc length.

Exercise 3.10. [Surfaces of Revolution] (a) Determine the geodesics on the
cylinder {(x, y, z) ∈ R

3 : x2 + y2 = 1} with respect to the Riemannian metric
obtained by restricting the usual inner product on R

3. Hint: Use Exercise 3.9.
To determine the metric, use the local coordinates (r, θ) �→ (cos θ, sin θ, r), where
q = (r, θ) and q̇ = (ṙ, θ̇). Compute the tangent vector vr in the direction of
r at (r, θ) from the curve (r + t, θ) and compute the tangent vector vθ in the
direction θ from the curve (r, θ + t). The vector q̇ on the cylinder is given by
ṙvr + θ̇vθ, and the square of its length with respect to the usual metric on R

3

is the desired Lagrangian; in fact, L(r, θ, ṙ, θ̇) = ṙ2 + θ̇2. The geodesics on the
cylinder are orbits of solutions of the corresponding Euler-Lagrange equations.
(b) Repeat part (a) for the unit sphere in R

3 and for the hyperboloid of one
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sheet {(x, y, z) ∈ R
3 : z = x2 + y2}. (c) Generalize your results to determine

the geodesics on a surface of revolution. In this case, prove that every meridian
is a geodesic and find a necessary and sufficient condition for a latitude to be a
geodesic. Hint: Use the parametrization

(r, θ) �→ (ρ(r) cos θ, ρ(r) sin θ, r),

where ρ is the radial distance from the axis of revolution to the surface. (d) Prove
Clairaut’s relation: The radial distance from the axis of revolution to a point on a
geodesic multiplied by the sine of the angle between the tangent to the geodesic
at this point and the tangent vector at the same point in the direction of the
axis of revolution is constant along the geodesic. Hint: Compute the cosine of
π/2 minus the “Clairaut angle” using a dot product. Clairaut’s relation is a
geometric interpretation of the first integral obtained from the Euler-Lagrange
equation with respect to the angle of rotation around the axis of revolution. (e)
Give an example of a curve with the Clairaut relation that is not a geodesic.

Exercise 3.11. [Poincaré plane] Consider the Riemannian metric (Poincaré
metric) on the upper half-plane given by (dx2 + dy2)/y2 and the corresponding
Lagrangian

L(x, y, ẋ, ẏ) =
1
2

ẋ2 + ẏ2

y2 .

The solutions of the Euler-Lagrange equations are geodesics by Exercise 3.9. (a)
Show that every geodesic lies on a vertical line or a circle with center on the
x-axis. Hint: The Lagrangian L is a first integral of the motion; that is, the
length of the velocity vector along an extremal for L is constant. (b) A more
sophisticated approach to this problem opens a rich mathematical theory. Show
that the Euler-Lagrange equations for L are invariant under all linear fractional
transformations of the upper half-plane given by

z �→ az + b

cz + d

where z is a complex variable and the coefficients a, b, c, d ∈ R are such that
ad − bc = 1 and recall that linear fractional transformations preserve the set
of all lines and circles. Hint: Write the Euler-Lagrange equations in complex
form using z = x + iy and show that the resulting equation is invariant under
the transformations. Or, write the metric in complex form and show that it is
invariant under the transformations.

Exercise 3.12. [Strain Energy] Strain is defined to be the relative change in
length in some direction. For f : R

n → R
n, relative change in length at ξ ∈ R

n is
given by (|f(ξ)−f(x)|− |x− ξ|)/|x− ξ|. For a unit vector v ∈ TξR

n, the strain at
ξ in the direction v is |Df(ξ)v| − 1. This formula is obtained by replacing x with
ξ + tv and passing to the limit at t → 0. Consider the class C of all continuously
differentiable invertible functions f : [0, 1] → [α, β] with f(0) = α and f(1) = β
and define the total strain energy to be E(f) =

∫ 1
0 (|f ′(s)|−1)2 ds. (a) Show that

g(s) = (β − α)s + α is an extremal and (b) g is the minimum of E over C. Hints:
For part (b), compute E(g) and show directly that E(f) ≥ E(g) for every f ∈ C.
Use the fundamental theorem of calculus and the Cauchy-Schwarz inequality.
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Exercise 3.13. [Minimal Surface Area] The determination of surfaces of rev-
olution with minimal surface areas is a classic and mathematically rich prob-
lem in the calculus of variations (see [27]). (a) Consider all smooth functions
q : R → (0, ∞) whose graphs pass through the two point (0, a) and (�, b) in the
plane, where a, b, and � are positive. Prove that if the surface area of the surface
of revolution obtained by revolving the graph of q : [a, b] → (0, ∞) about the hori-
zontal axis {(t, y) : y = 0} is an extremal, then q(t) = c cosh((t−d)/c) for suitable
constants c and d; that is, this two-parameter family of functions solves the Euler-
Lagrange equation for the functional whose Lagrangian is L(q, q̇) = 2πq

√
1 + q̇2.

Hint: To solve the Euler-Lagrange equation, use the first integral given by Propo-
sition 3.3. (b) Show that the solution of the Euler-Lagrange equation with the
boundary conditions imposed can have no solutions, one solution, or two solu-
tions. Hint: To show that there can be two solutions, consider (for example) the
case where a = b = 2 and � = 1. In this case q is a solution provided that
2 = c cosh(1/(2c)), and this equation for c has two positive roots. Which of these
two solutions corresponds to the smallest surface area? Caution: If a surface with
minimal surface area exists among the surfaces of revolution generated by suffi-
ciently smooth curves, then the minimizing curve is an extremal. But, of course,
there may be no such minimizer. Sufficient conditions for minima are known
(see [27]). In the case a = b = 2 and � = 1, one of the two cantenaries is in fact
the minimizer. Nature also knows the minimum solution. To demonstrate this
fact, dip two hoops in a soap solution and pull them apart to form a surface of
revolution.

Exercise 3.14. A derivative moved across an integral sign in display (3.2).
Justify the result.

Exercise 3.15. [Bump functions] Prove that if B1 ⊂ B2 are open balls in
R

n, then there is a C∞ function that has value one on B1 and vanishes on the
complement of B2. Hint: Show that the function f defined to be exp(−1/(1 −
|x|2) for |x| < 1 and zero for |x| ≥ 1 is C∞; then, consider the function x �→∫ x

−∞ f(s) ds/
∫ ∞

−∞ f(s) ds, etc.

3.2 Origins of ODE: Classical Physics

What is classical physics? Look at Section 18–2 in Richard Feynman’s
lecture notes [87]; you might be in for a surprise. The fundamental laws of
all of classical physics can be reduced to a few formulas. For example, a
complete theory of electromagnetics is given by Maxwell’s laws

div E = ρ/ε0,

curlE = −∂B
∂t

,

div B = 0,

c2 curlB =
j
ε0

+
∂E
∂t
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and the conservation of charge

div(j) = −∂ρ

∂t
.

Here E is the called electric field, B is the magnetic field, ρ is the charge
density, j is the current, ε0 is a constant, and c is the speed of light. The
fundamental law of motion is Newton’s law

dp
dt

= F

“the rate of change of the momentum is equal to the sum of the forces.”
The (relativistic) momentum of a particle is given by

p :=
m√

1 − v2/c2
v

where, as is usual in the physics literature, v := |v| and the norm is the
Euclidean norm. For a classical particle (velocity much less than the speed
of light), the momentum is approximated by p = mv. There are two fun-
damental forces: The gravitational force

F = −GMm

r2 er

on a particle of mass m due to a second mass M where G is the univer-
sal gravitational constant and er is the unit vector at M pointing in the
direction of m; and the Lorentz force

F = q(E + v × B)

where q is the charge on a particle in an electromagnetic field. That’s it!
The laws of classical physics seem simple enough. Why then is physics,

not to mention engineering, so complicated? The answer is that in almost
all realistic applications there are lots of particles and the fundamental laws
act together on all of the particles.

Rather than trying to model the motions of all the particles that are
involved in an experiment or a physical phenomenon which we wish to
explain, it is often more fruitful to develop constitutive force laws that
are meant to approximate the true situation. The resulting equations of
motion contain new “forces” that are not fundamental laws of nature.
But, by using well conceived constitutive laws, the predictions we make
from the corresponding equations of motion will agree with experiments or
observations within some operating envelope. While the constitutive laws
themselves may lead to complicated differential equations, these equations
are supposed to be simpler and more useful than the equations of motion
that would result from the fundamental force laws. Also, it is important
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to realize that in most circumstances no one knows how to write down the
equations of motion from the fundamental force laws.

Let us consider a familiar example: the spring equation

mẍ = −ω0x

for the displacement x of a mass (attached to the end of a spring) from
its equilibrium position. This model uses Newton’s law of motion, together
with Hooke’s restoring force law. Newton’s law is fundamental (at least if we
ignore relativistic effects); Hooke’s law is not. It is meant to replace the law
of motion that would result from modeling the motions of all the particles
that make up the spring. When Hooke’s (linear) law is not sufficiently
accurate (for example, when we stretch a spring too far from its equilibrium
position), we may refine the model to obtain a nonlinear equation of motion
such as

mẍ = −ω0x + αx3,

which is already a complicated differential equation.
Frictional forces are always modeled by constitutive laws. What law of

nature are we using when we add a viscous damping force to a Hookian
spring to obtain the model

mẍ = −αẋ − ω0x?

The damping term is supposed to model a force due to friction. But what
is friction? There are only two fundamental forces in classical physics and
only four known forces in modern physics. Friction is not a nuclear force
and it is not due to gravitation. Thus, at a fundamental level it must be a
manifestation of electromagnetism. Is it possible to derive the linear form of
viscous damping from Maxwell’s laws? This discussion could become very
philosophical!

These models introduce constitutive laws—in our example, restoring
force and friction forces laws—that are not fundamental laws of nature.
In reality, the particles (atoms) that constitute the spring obey the electro-
magnetic force law and the law of universal gravitation. But, to account for
their motions using these fundamental force laws would result in a model
with an enormous number of coupled equations that would be very difficult
to analyze even if we knew how to write it down.

The most important point for us to appreciate is that Newton’s law of
motion—so basic for our understanding of the way the universe works—is
expressed as an ordinary differential equation. Newton’s law, the classi-
cal force laws, and constitutive laws are the origin of ordinary differential
equations. It should be clear what Newton meant when he said “Solving
differential equations is useful.”

In the following subsections some applications of the theory of differen-
tial equations to problems that arise in classical physics are presented. The
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first section briefly describes the motion of a charged particle in a con-
stant electromagnetic field. The second section is an introduction to the
two-body problem, including Kepler motion,Delaunay elements, and per-
turbation forces. The analysis of two-body motion is used as a vehicle to
explore a realistic important physical problem where it is not at all obvious
how to obtain useful predictions from the complicated model system of dif-
ferential equations obtained from Newton’s law. Perturbations of two-body
motion are considered in the final sections: Satellite motion about an oblate
planet is used to illustrate the “method of averaging,” and the diamagnetic
Kepler problem—the motion of an electron of a hydrogen atom in a con-
stant magnetic field—is used to illustrate some important transformation
methods for the analysis of models of mechanical systems.

3.2.1 Motion of a Charged Particle
Let us consider a few simple exercises to “feel” the Lorentz force (for more
see [87] and [138]). The equation of motion for a charged particle is

dp
dt

= q(E + v × B)

where p is the momentum vector, q is a measure of the charge, and v is the
velocity. We will consider the motion of a charged particle (classical and
relativistic) in a constant electromagnetic field; that is, the electric field E
and the magnetic field B are constant vector fields on R

3.
In case E = 0, let us consider the relativistic motion for a charged par-

ticle. Because the momentum is a nonlinear function of the velocity, it is
useful to notice that the motion is “integrable.” In fact, the two functions
p �→ 〈p,p〉 and p �→ 〈p,B〉 are constant along orbits. Use this fact to
conclude that v �→ 〈v,v〉 is constant along orbits, and therefore the energy

E :=
mc2√

1 − v2/c2

is constant along orbits. It follows that the equation of motion can be recast
in the form

E
c2 v̇ = qv × B,

and the solution can be found as in Exercise 2.57. The solution of this
differential equation is important. For example, the solution can be used to
place magnetic fields in an experiment so that charged particles are moved
to a detector (see [87]).

Another important problem is to determine the drift velocity of a charged
particle moving in a constant electromagnetic field (see Exercise 3.16).
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Exercise 3.16. Consider a classical particle moving in space with a constant
magnetic field pointing along the z-axis and a constant electric field parallel to
the yz-plane. The equations of motion are

mẍ = qB3ẏ, mÿ = q(E2 − B3ẋ), mz̈ = qE3. (3.11)

(a) Solve the system (3.11). (b) Note that the first two components of the solution
are periodic in time. Their average over one period gives a constant vector field,
called the drift velocity field. Find this vector field. (c) Describe the motion of
the charged particle in space.

Exercise 3.17. Use the theory of linear differential equations with constant
coefficients to determine the motion for a “spatial oscillator” (see [138]) in the
presence of a constant magnetic field. The equation of motion is

v̇ = −ω2
0r +

q

m
v × B

where r = (x, y, z) is the position vector, the velocity is v = (ẋ, ẏ, ż), and B =
(0, 0, B3). (This model uses Hooke’s law). By rewriting the equations of motion
in components, note that this model is a linear system with constant coefficients.
(a) Find the general solution of the system. (b) Determine the frequency of the
motion in the plane perpendicular to the magnetic field and the frequency in the
direction of the magnetic field.

3.2.2 Motion of a Binary System
Let us consider two point masses, m1 and m2, moving in three-dimensional
Euclidean space with corresponding position vectors R1 and R2. Also, let
us define the relative position vector R := R2 − R1 and its length r := |R|.
According to Newton’s law (using of course the usual approximation for
small velocities) and the gravitational force law, we have the equations of
motion

m1R̈1 =
G0m1m2

r3 R + F1, m2R̈2 = −G0m1m2

r3 R + F2

where F1 and F2 are additional forces acting on m1 and m2 respectively.
The relative motion of the masses is governed by the single vector equation

R̈ = −G0(m1 + m2)
r3 R +

1
m2

F2 − 1
m1

F1.

By rescaling distance and time such that R = αR̄ and t = βt̄ with
G0(m1 +m2)β2 = α3, we can recast the equations of motion in the simpler
form

R̈ = − 1
r3 R + F. (3.12)

We will study this differential equation.
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The analysis of two-body interaction plays a central role in the history
of science. This is reason enough to study the dynamics of the differential
equation (3.12) and the surrounding mathematical terrain. As you will see,
the intrinsic beauty, rich texture, and wide applicability of this subject
make it one of the most absorbing topics in all of mathematics.

The following glimpse into celestial mechanics is intended to introduce
an important application of ordinary differential equations, to see some of
the complexity of a real world application and to introduce a special form of
the dynamical equations that will provide some motivation for the theory
of averaging presented in Chapter 7.

There are many different approaches to celestial mechanics. For a math-
ematician, perhaps the most satisfactory foundation for mechanics is pro-
vided by the theory of Hamiltonian systems. Although we will use Hamil-
ton’s equations in our analysis, the geometric context (symplectic geome-
try) for a modern treatment of the transformation theory for Hamiltonian
systems (see [1], [12], and [160]) is unfortunately beyond the scope of this
book. To bypass this theory, we will present an expanded explanation of
the direct change of coordinates to the Delaunay elements given in [52]
(see also [48] and [51]). In the transformation theory for Hamiltonian sys-
tems it is proved that our transformations are special coordinate transfor-
mations called canonical transformations. They have a special property:
Hamilton’s equations for the transformed Hamiltonian are exactly the dif-
ferential equations given by the push forward of the original Hamiltonian
vector field to the new coordinates. In other words, to perform a canonical
change of coordinates we need only transform the Hamiltonian, not the dif-
ferential equations; the transformed differential equations are obtained by
computing Hamilton’s equations from the transformed Hamiltonian. The
direct method is perhaps not as elegant as the canonical transformation
approach—we will simply push forward the Hamiltonian vector field in the
usual way—but the direct transformation method is effective and useful.
Indeed, we will construct special coordinates (action-angle coordinates) and
show that they transform the Kepler system to a very simple form. More-
over, the direct method applies even if a nonconservative force F acts on
the system; that is, even if the equations of motion are not Hamiltonian.

Let us begin by rewriting the second order differential equation (3.12) as
the first order system

Ṙ = V, V̇ = − 1
r3 R + F (3.13)

defined on R
3×R

3. Also, let us use angle brackets to denote the usual inner
product on R

3 so that if X ∈ R
3, then |X|2 = 〈X, X〉.

The most important feature of system (3.13) is the existence of conserved
quantities for the Kepler motion, that is, the motion with F = 0. In fact,
total energy and angular momentum are conserved. The total energy of the
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Figure 3.1: The osculating Kepler orbit in space.
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Kepler motion E : R
3 × R

3 → R is given by

E(X, Y ) :=
1
2
〈Y, Y 〉 − 1

〈X, X〉1/2 , (3.14)

the angular momentum by

A(X, Y ) := X × Y. (3.15)

Let us also define the total angular momentum

G(X, Y ) := |A(X, Y )|. (3.16)

Note that we are using the term “angular momentum” in a nonstandard
manner. In effect, we have defined the angular momentum to be the vec-
tor product of position and velocity ; in physics, angular momentum is the
vector product of position and momentum.

If t �→ (R(t), V (t)) is a solution of system (3.13), then

Ė =
d

dt
E(R(t), V (t)) = 〈F, V 〉, Ȧ = R × F. (3.17)

Thus, if F = 0, then E and A are constant on the corresponding orbit.
In particular, in this case the projection of the Kepler orbit into physical
space, corresponding to the curve t �→ R(t), is contained in a fixed plane
passing through the origin with normal vector given by the constant value
of A along the orbit. In this case, the corresponding plane normal to A is
called the osculating plane. At each instant of time, this plane contains the
Kepler orbit that would result if the force F were not present thereafter.
Refer to Figure 3.1 for a depiction of the curve t �→ R(t) in space and the
angles associated with the Delaunay elements, new coordinates that will
be introduced as we proceed.

Let us define three functions er : R
3 → R

3, and eb, en : R
3 ×R

3 → R
3 by

er(X) =
1

|X|X,

en(X, Y ) =
1

G(X, Y )
X × Y,

eb(X, Y ) = en(X, Y ) × er(X).

If X, Y ∈ R
3 are linearly independent, then the vectors er(X), eb(X, Y ),

and en(X, Y ) form an orthonormal frame in R
3. Also, if these functions are

evaluated along the (perturbed) solution t �→ (R, Ṙ), then we have

er =
1
r
R, en =

1
G

R × Ṙ, eb =
1

rG
(R × Ṙ) × R =

1
rG

(r2Ṙ − 〈Ṙ, R〉R).

(3.18)
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(Note that subscripts are used in this section to denote coordinate direc-
tions, not partial derivatives.)

If ex, ey, ez are the direction vectors for a fixed right-handed usual Carte-
sian coordinate system in R

3, and if i denotes the inclination angle of the
osculating plane relative to the z-axis, then

cos i = 〈en, ez〉. (3.19)

Of course, the angle i can also be viewed as a function on R
3 × R

3 whose
value at each point on the orbit is the inclination of the osculating plane.
The idea is that we are defining new variables: They are all functions defined
on R

3 × R
3.

If the osculating plane is not coincident with the (x, y)-plane, then it
meets this plane in a line, called the line of nodes. Of course, the line of
nodes lies in the osculating plane and is orthogonal to the z-axis. Moreover,
it is generated by the vector

ean := 〈eb, ez〉er − 〈er, ez〉eb.

The angle of the ascending node h between the x-axis and the line of nodes
is given by

cos h =
1

|ean| 〈ean, ex〉. (3.20)

If the osculating plane happens to coincide with the (x, y)-plane, then there
is no natural definition of h. On the other hand, the angle h(t) is continuous
on each trajectory. Also, at a point where i(t) = 0, the angle h is defined
whenever there is a continuous extension.

Let us compute the orthogonal transformation relative to the Euler an-
gles i and h. This is accomplished in two steps: rotation about the z-axis
through the angle h followed by rotation about the now rotated x-axis
through the angle i. The rotation matrix about the z-axis is

M(h) :=

⎛⎝cos h − sin h 0
sin h cos h 0

0 0 1

⎞⎠ .

To rotate about the new x-axis (after rotation by M(h)), let us rotate back
to the original coordinates, rotate about the old x-axis through the angle
i, and then rotate forward. The rotation about the x-axis is given by

M(i) :=

⎛⎝1 0 0
0 cos i − sin i
0 sin i cos i

⎞⎠ .

Thus, the required rotation is

M := (M(h)M(i)M−1(h))M(h) = M(h)M(i).
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In components, if the new Cartesian coordinates are denoted x′, y′, z′, then
the transformation M is given by

x = x′ cos h − y′ sin h cos i + z′ sin h sin i,

y = x′ sin h + y′ cos h cos i − z′ cos h sin i,

z = y′ sin i + z′ cos i. (3.21)

Also, by the construction, the normal en to the osculating plane is in the
direction of the z′-axis.

If polar coordinates are introduced in the osculating plane

x′ = r cos θ, y′ = r sin θ,

then the position vector along our orbit in the osculating coordinates is
given by

R(t) = (r(t) cos θ(t), r(t) sin θ(t), 0).

For a Kepler orbit, the osculating plane is fixed. Also, using the orthog-
onal transformation M , the vectors R and Ṙ are given in the original fixed
coordinates by

R = M

⎛⎝r cos θ
r sin θ

0

⎞⎠ , Ṙ = M

⎛⎝ ṙ cos θ − rθ̇ sin θ

ṙ sin θ + rθ̇ cos θ
0

⎞⎠ . (3.22)

If X, Y ∈ R
3, then, because M is orthogonal, we have 〈MX, MY 〉 = 〈X, Y 〉.

As a consequence of this fact and definition (3.14), it follows that the total
energy along the orbit is

E(R, Ṙ) =
1
2
(ṙ2 + r2θ̇2) − 1

r
.

For arbitrary vectors X, Y ∈ R
3, the coordinate-free definition of their

vector product states that

X × Y := (|X||Y | sin ϑ)η (3.23)

where ϑ is the angle between X and Y and η is the unit vector orthogonal
to X and Y such that the ordered triple (X, Y, η) has positive (right hand)
orientation. Also, note that M is orientation preserving (detM > 0). Using
this fact and the definition the vector product, it follows that MX ×MY =
M(X × Y ) and the angular momentum along the orbit is

A(R, Ṙ) = r2θ̇. (3.24)

Thus, using equation (3.17), there is a constant (angular momentum) Pθ

such that

r2θ̇ = Pθ, E =
1
2
(
ṙ2 +

P 2
θ

r2

)
− 1

r
, (3.25)
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Figure 3.2: Schematic phase portrait of system (3.26). There is a center sur-
rounded by a period annulus and “bounded” by an unbounded separatrix.
The period orbits correspond to elliptical Keplerian motions.

and, because Ė = 0, we also have

r2θ̇ = Pθ, ṙ
(
r̈ − P 2

θ

r3 +
1
r2

)
= 0.

If ṙ ≡ 0, r(0) �= 0, and Pθ �= 0, then the Kepler orbit is a circle; in fact,
it is a solution of the system ṙ = 0, θ̇ = Pθr(0)−2. If ṙ is not identically
zero, then the motion is determined by Newton’s equation

r̈ = −
( 1
r2 − P 2

θ

r3

)
.

The equivalent system in the phase plane,

ṙ = Pr, Ṗr = − 1
r2 +

P 2
θ

r3 (3.26)

is Hamiltonian with energy

E =
1
2
(
P 2

r +
P 2

θ

r2

)
− 1

r
.

It has a rest point with coordinates (r, Pr) = (P 2
θ , 0) and energy −1/(2P 2

θ ).
This rest point is a center surrounded by an annulus of periodic orbits,
called a period annulus, that is “bounded” by an unbounded separatrix as
depicted schematically in Figure 3.2. The separatrix crosses the r-axis at
r = 1

2P 2
θ and its energy is zero. Thus, if a Kepler orbit is bounded, it has

negative energy.
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Exercise 3.18. Prove all of the statements made about the phase portrait of
system (3.26).

Exercise 3.19. The vector product is defined in display (3.23) in a coordinate-
free manner. Suppose instead that X = (x1, x2, x3) and Y = (y1, y2, y3) in Carte-
sian coordinates, and their cross product is defined to be

X × Y := det

⎛
⎝ e1 e2 e3

x1 x2 x3

y1 y2 y3

⎞
⎠ .

Discuss the relative utility of the coordinate-free versus coordinate-dependent
definitions. Determine the vector product for vectors expressed in cylindrical or
spherical coordinates. Think about the concept of coordinate free-definitions; it
is important.

The rest of the discussion is restricted to orbits with negative energy and
positive angular momentum Pθ > 0.

The full set of differential equations for the Kepler motion is the first
order system

ṙ = Pr, θ̇ =
Pθ

r2 , Ṗr =
1
r2

(P 2
θ

r
− 1

)
, Ṗθ = 0. (3.27)

Note that the angle θ increases along orbits because θ̇ = Pθ/r2 > 0. Also,
the bounded Kepler orbits project to periodic motions in the r–Pr phase
plane. Thus, the bounded orbits can be described by two angles: the polar
angle relative to the r-axis in the r–Pr plane and the angular variable θ.
In other words, each bounded orbit lies on the (topological) cross product
of two circles; that is, on a two-dimensional torus. Because the phase space
for the Kepler motion is foliated by invariant two-dimensional tori, we
will eventually be able to define special coordinates, called action-angle
coordinates, that transform the Kepler system to a very simple form. In
fact, the special class of Hamiltonian systems (called integrable Hamiltonian
systems) that have a portion of their phase space foliated by invariant tori
can all be transformed to a simple form by the introduction of action-angle
coordinates. Roughly speaking, the action specifies a torus and the “angle”
specifies the frequency on this torus. This is exactly the underlying idea for
the construction of the action-angle coordinates for the Kepler system.

To integrate system (3.27), introduce a new variable ρ = 1/r so that

ρ̇ = −ρ2Pr, Ṗr = ρ2(ρP 2
θ − 1),

and then use θ as a time-like variable to obtain the linear system

dρ

dθ
= − 1

Pθ
Pr,

dPr

dθ
=

1
Pθ

(ρP 2
θ − 1). (3.28)
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Equivalently, we have the “harmonic oscillator model” for Kepler motion,

d2ρ

dθ2 + ρ =
1

P 2
θ

. (3.29)

It has the general solution

ρ =
1

P 2
θ

+ B cos(θ − g) (3.30)

where the numbers B and g are determined by the initial conditions.
The Kepler orbit is an ellipse. In fact, by a rearrangement of equa-

tion (3.30) we have

r =
P 2

θ

1 + P 2
θ B cos(θ − g)

.

If we introduce a new angle, the true anomaly v := θ − g, and the usual
quantities—the eccentricity e, and a, the semimajor axis of the ellipse—
then

r =
a(1 − e2)
1 + e cos v

. (3.31)

Exercise 3.20. Use the conservation of energy for system (3.27) to show that

dr

dθ
=

r

Pθ

(
2Er2 + 2r − P 2

θ

)1/2
.

Solve this differential equation for E < 0 and show that the Kepler orbit is an
ellipse.

Because the energy is constant on the Kepler orbit, if we compute the
energy at v = 0 (corresponding to its perifocus, the point on the ellipse
closest to the focus), then we have the corresponding values

r = a(1 − e), ṙ = 0, E = − 1
2a

. (3.32)

Moreover, from the usual theory of conic sections, the semiminor axis is
b = a

√
1 − e2, and the area of the ellipse is

πab = πa2
√

1 − e2 = πPθa
3/2. (3.33)

The area element in polar coordinates is 1
2ρ2 dθ. Hence, if the period of the

Kepler orbit is T , then∫ 2π

0

r2(θ)
2

dθ =
∫ T

0

r2(θ(t))
2

θ̇(t) dt = πPθa
3/2.
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Because r2θ̇ = Pθ, the integral can be evaluated. The resulting equation is
Kepler’s third law

T 2 = 4π2a3 (3.34)

where, again, T is the orbital period and a is the semimajor axis of the
corresponding elliptical orbit. For later reference, note that the frequency
of the oscillation is

ω :=
1

a3/2 . (3.35)

Exercise 3.21. (a) Kepler’s third law is given by equation (3.34) for scaled
distance and time. Show that Kepler’s third law in “unscaled” variables (with
the same names as in (3.34)) is given by

T 2 =
4π2

G0(m1 + m2)
a3.

(b) Show that the magnitude of the physical angular momentum in the unscaled
variables for a Kepler orbit is

m2r
2θ̇ = m2

(α3

β2 a(1 − e2)
)1/2 = m2

(
G0(m1 + m2)a(1 − e2)

)1/2

where r and t are unscaled, and with α and β as defined on page 240.

3.2.3 Perturbed Kepler Motion and Delaunay Elements
In this section we will begin an analysis of the influence of a force F on
a Keplerian orbit by introducing new variables, called Delaunay elements,
such that system (3.12) when recast in the new coordinates has a useful
special form given below in display (3.59).

Recall the orthonormal frame [er, eb, en] in display (3.18), and let

F = Frer + Fbeb + Fnen.

The functions L, G : R
3 × R

3 → R, two of the components of the Delaunay
coordinate transformation, are defined by

L(X, Y ) := (−2E(X, Y ))−1/2, G(X, Y ) := |A(X, Y )|

where E is the energy and A the angular momentum. Using the results in
display (3.17), we have that

L̇ = L3〈F, Ṙ〉, Ġ =
1
G

〈R × Ṙ, R × F 〉.



250 3. Applications

Moreover, in view of the vector identities

〈α, β × γ〉 = 〈γ, α × β〉 = 〈β, γ × α〉,
(α × β) × γ = 〈γ, α〉β − 〈γ, β〉α,

and the results in display (3.18), it follows that

Ġ =
1
G

〈F, (R × Ṙ) × R〉 =
1
G

〈F, rGeb〉 = rFb. (3.36)

Also, using the formula for the triple vector product and the equality rṙ =
〈R, Ṙ〉, which is obtained by differentiating both sides of the identity r2 =
〈R, R〉, we have

eb =
1

rG
(R × Ṙ) × R =

1
rG

(r2Ṙ − 〈R, Ṙ〉R)

and

Ṙ = ṙer +
G

r
eb. (3.37)

As a result, the Delaunay elements L and G satisfy the differential equations

L̇ = L3(ṙFr +
G

r
Fb), Ġ = rFb. (3.38)

If the force F does not vanish, then the relations found previously for the
variables related to the osculating plane of the Kepler orbit are still valid,
only now the quantities a, e, v, and Pθ > 0 all depend on time. Thus, for
example, if we use equation (3.24), then

G = Pθ =
√

a(1 − e2). (3.39)

Also, from equations (3.32), (3.37), and the definition of L we have

L =
√

a, e2 = 1 − G2

L2 , (3.40)

and

− 1
2a

=
1
2
〈Ṙ, Ṙ〉 − 1

r
=

1
2
(
ṙ2 +

a(1 − e2)
r2

)
− 1

r
. (3.41)

Let us solve for ṙ2 in equation (3.41), express the solution in the form

ṙ2 = − 1
ar2 (r − a(1 − e))(r − a(1 + e)),

and substitute for r from formula (3.31) to obtain

ṙ =
e sin v

G
. (3.42)
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Hence, from equation (3.38),

L̇ = L3(Fr
e

G
sin v + Fb

G

r

)
, Ġ = rFb. (3.43)

The Delaunay variable H is defined by

H := 〈A, ez〉 = G〈 1
G

R × Ṙ, ez〉 = G cos i (3.44)

where i is the inclination angle of the osculating plane (see equation (3.19)).
To find an expression for Ḣ, let us first recall the transformation equa-
tions (3.21). Because en has “primed” coordinates (0, 0, 1), it follows that
en has original Cartesian coordinates

en = (sinh sin i,− cos h sin i, cos i), (3.45)

and, similarly, R is given by

R = r(cos θ cos h − sin θ sin h cos i, cos θ sin h + sin θ cos h cos i, sin θ sin i).
(3.46)

Using equation (3.45) and equation (3.46), we have

eb = en × er

=
1
r
en × R

= (− sin θ cos h − cos θ sin h cos i,

− sin θ sin h + cos θ cos h cos i, cos θ sin i). (3.47)

By differentiating both sides of the identity Gen = A, using the equation
er × eb = en, and using the second identity of display (3.17), it follows that

Gėn = Ȧ − Ġen

= rer × F − rFben

= r(Fber × eb + Fner × en) − rFben

= −rFneb. (3.48)

The equations

di

dt
=

rFn

G
cos θ, ḣ =

rFn sin θ

G sin i
(3.49)

are found by equating the components of the vectors obtained by sub-
stitution of the identities (3.45) and (3.47) into (3.48). Finally, using the
definition (3.44) together with equations (3.43) and (3.49), we have the
desired expression for the time derivative of H, namely,

Ḣ = r(Fb cos i − Fn sin i cos θ). (3.50)
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Using the formula for Ṙ given in equation (3.37), the identity 〈er, ez〉 =
sin θ sin i derived from equation (3.46), and the equation 〈eb, ez〉 = cos θ sin i
from (3.47), let us note that

〈Ṙ, ez〉 = ṙ sin i sin θ +
G

r
sin i cos θ.

A similar expression for 〈Ṙ, ez〉 is obtained by differentiation of both sides
of the last equation in display (3.21) and substitution for di/dt from (3.49).
The following formula for θ̇ is found by equating these two expressions:

θ̇ =
G

r2 − rFn cos i sin θ

G sin i
. (3.51)

From equations (3.31) and (3.39),

r =
G2

1 + e cos v
. (3.52)

Let us solve for v̇ in the equation obtained by logarithmic differentiation of
equation (3.52). Also, if we use the identity 1 − e2 = G2/L2 to find an ex-
pression for ė, substitute for L̇ and Ġ using the equation in display (3.43),
and substitute for ṙ using (3.42), then, after some simple algebraic manip-
ulations,

v̇ =
G

r2 + Fr
G

e
cos v + Fb

G2

re sin v

(G cos v

e
− 2r

G
− r2 cos v

eL2G

)
.

A more useful expression for v̇ is obtained by substituting for r from equa-
tion (3.52) to obtain

v̇ =
G

r2 + Fr
G

e
cos v − Fb

G

e

(
1 +

r

G2

)
sin v. (3.53)

Recall equation (3.30), and define g, the argument of periastron, by g :=
θ − v. Using equations (3.51) and (3.53), the time derivative ġ is

ġ = −Fr
G

e
cos v + Fb

G

e

(
1 +

r

G2

)
sin v − Fn

r cos i

G sin i
sin(g + v). (3.54)

The last Delaunay element, �, called the mean anomaly, is defined with
the aid of an auxiliary angle u, the eccentric anomaly, via Kepler’s equation

� = u − e sin u (3.55)

where u is the unique angle such that

cos u =
e + cos v

1 + e cos v
, sin u =

1 − e cos u√
1 − e2

sin v. (3.56)
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The lengthy algebraic computations required to obtain a useful expres-
sion for �̇ are carried out as follows: Differentiate both sides of Kepler’s
equation and solve for �̇ in terms of u̇ and ė. Use the relations (3.56) and
equation (3.52) to prove the identity

r = L2(1 − e cos u) (3.57)

and use this identity to find an expression for u̇. After substitution using
the previously obtained expressions for ṙ, ė, and L̇, it is possible to show
that

�̇ =
1
L3 +

r

eL

[
(−2e + cos v + e cos2 v)Fr − (2 + e cos v) sin vFb

]
. (3.58)

In summary, the Delaunay elements (L, G, H, �, g, h) for a Keplerian mo-
tion perturbed by a force F satisfy the following system of differential
equations:

L̇ = L3(Fr
e

G
sin v + Fb

G

r

)
,

Ġ = rFb,

Ḣ = r(Fb cos i − Fn sin i cos(g + v)),

�̇ =
1
L3 +

r

eL

[
(−2e + cos v + e cos2 v)Fr − (2 + e cos v) sin vFb

]
,

ġ = −Fr
G

e
cos v + Fb

G

e

(
1 +

r

G2

)
sin v − Fn

r cos i

G sin i
sin(g + v),

ḣ = rFn
sin(g + v)

G sin i
. (3.59)

Our transformation of the equations of motion for the perturbed Kepler
problem to Delaunay elements—encoded in the differential equations in
display (3.59)—is evidently not complete. Indeed, the components of the
force F , as well as the functions

r, e, cos v, sin v, cos i, sin i,

must be expressed in Delaunay elements. Assuming that this is done, it is
still not at all clear how to extract useful information from system (3.59).
Only one fact seems immediately apparent: If the force F is not present,
then the Kepler motion relative to the Delaunay elements is a solution of
the integrable system

L̇ = 0, Ġ = 0, Ḣ = 0, �̇ =
1
L3 , ġ = 0, ḣ = 0.

In fact, by inspection of this unperturbed system, it is clear that the Ke-
plerian motion is very simple to describe in Delaunay coordinates: The
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three “action” variables L, G, and H remain constant and only one of the
angular variables, namely �, is not constant. In particular, for each initial
condition, the motion is confined to a topological circle and corresponds to
uniform rotation of the variable �, that is, simple harmonic motion. The
corresponding Keplerian orbit is periodic.

The result that two of the three angles that appear in system (3.59)
remain constant for unperturbed motions is a special, perhaps magical,
feature of the inverse square central force law. This special degeneracy of
Kepler motion will eventually allow us to derive some rigorous results about
the perturbed system, at least in the case where the force F is “small,” that
is, where F = εF�, the function F� is bounded, and ε ∈ R is regarded as a
small parameter.

As we have just seen, a suitable change of coordinates can be used to
transform the Kepler model equations to a very simple form. The underly-
ing reason, mentioned previously, is that a region in the unperturbed phase
space is foliated by invariant tori. Due to the special nature of the inverse
square force law, each two-dimensional torus in this foliation is itself foli-
ated by periodic orbits, that is, by one-dimensional tori. In other words,
there is an open region of the unperturbed phase space filled with periodic
orbits.

The foliation in the Kepler model is exceptional. In the generic case, we
would not expect the flow on every invariant torus to be periodic. Instead,
the flow on most of the tori would be quasi-periodic. To be more precise,
consider a Poincaré section Σ and note that a two-dimensional torus in the
foliation meets Σ in a one-dimensional torus T. The associated Poincaré
map is (up to a change of coordinates) a (linear) rotation on T. The rotation
angle is either rationally or irrationally related to 2π, and the angle of
rotation changes continuously with respect to a parametrization of the tori
in the foliation. In this scenario, the set of “quasi-periodic tori” and the set
of “periodic tori” are both dense. But, with respect to Lebesgue measure,
the set of quasi-periodic tori is larger. In fact, the set of quasi-periodic tori
has measure one, whereas the set of periodic tori has measure zero (see
Exercise 3.22). For the special case of Kepler motion, the flow is periodic
on every torus.

Exercise 3.22. Consider the map P : R
2 \ {(0, 0)} → R

2 given by

P (x, y) = (x cos(x2 + y2) − y sin(x2 + y2), x sin(x2 + y2) + y cos(x2 + y2)).

(a) Prove that every circle C with radius r centered at the origin is an invariant
set. (b) Prove that if m and n are integers and r2 = 2πm/n, then every orbit of
P on C is periodic. (c) Prove that if no such integers exist, then every orbit of
P on C is dense. (d) Prove that the set of radii in a finite interval (for example
the interval [1, 2]) corresponding to tori where all orbits of the Poincaré map are
dense has measure one.
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The origin of many important questions in the subject of differential
equations arises from the problem of analyzing perturbations of integrable
systems; that is, systems whose phase spaces are foliated by invariant tori.
In fact, if the phase space of a system is foliated by k-dimensional tori,
then there is a new coordinate system in which the equations of motion
have the form

İ = εP (I, θ), θ̇ = Ω(I) + εQ(I, θ)

where I is a vector of “action variables,” θ is a k-dimensional vector of
“angle variables,” and both P and Q are 2π-periodic functions of the an-
gles. Poincaré called the analysis of this system the fundamental problem
of dynamics. In other words, if we start with a “completely integrable”
mechanical system in action-angle variables so that it has the form İ = 0,
θ̇ = Ω(I), and if we add a small force, then the problem is to describe
the subsequent motion. This problem has been a central theme in mathe-
matical research for over 100 years; it is still a prime source of important
problems.

Let us outline a procedure to complete the transformation of the per-
turbed Kepler system (3.59) to Delaunay elements. Use equation (3.39) and
the definition of L to obtain the formula

G2 = L2(1 − e2),

and note that from the definition of H we have the identity

cos i =
H

G
.

From our assumption that G = Pθ > 0, and the inequality 0 ≤ i < π,
we can solve for e and i in terms of the Delaunay variables. Then, all
the remaining expressions not yet transformed to Delaunay variables in
system (3.59) are given by combinations of terms of the form rn sin mv
and rn cos mv where n and m are integers. In theory we can use Kepler’s
equation to solve for u as a function of � and e. Thus, if we invert the
transformation (3.56) and also use equation (3.57), then we can express
our combinations of r and the trigonometric functions of v in Delaunay
variables.

The inversion of Kepler’s equation is an essential element of the transfor-
mation to Delaunay variables. At a more fundamental level, the inversion
of Kepler’s equation is required to find the position of a planet on its el-
liptical orbit as a function of time. The rigorous treatment of the inversion
problem seems to have played a very important role in the history of 19th
century mathematics.

Problem 3.23. Write a report on the history and the mathematics related to
Kepler’s equation (see [61] and [91]). Include an account of the history of the
theory of Bessel functions ([60], [228]) and complex analysis ([15], [31]).
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To invert Kepler’s equation formally, set w := u − � so that

w = e sin(w + �),

suppose that

w =
∞∑

j=1

wje
j ,

use the sum formula for the sine, and equate coefficients in Kepler’s equa-
tion for w to obtain the wj as trigonometric functions of �. One method that
can be used to make this inversion rigorous, the method used in Bessel’s
original treatment, is to expand in Fourier series.

It is easy to see, by an analysis of Kepler’s equation, that the angle � is
an odd function of u. Thus, after inverting, u is an odd function of � as is
e sin u. Thus,

e sin u =
2
π

∞∑
ν=1

(∫ π

0
e sin u sin ν� d�

)
sin ν�,

and, after integration by parts,

e sin u =
2
π

∞∑
ν=1

(1
ν

∫ π

0
cos ν�(e cos u

du

d�
) d�

)
sin ν�.

By Kepler’s equation e cos u = 1 − d�/du. Also, we have that

e sin u =
2
π

∞∑
ν=1

(1
ν

∫ π

0
cos(ν(u − e sin u)) du

)
sin ν�.

Bessel defined the Bessel function of the first kind

Jν(x) :=
1
2π

∫ 2π

0
cos(νs − x sin s) ds =

1
π

∫ π

0
cos(νs − x sin s) ds

so that

e sin u =
∞∑

ν=1

2
ν

Jν(νe) sin ν�.

Hence, if we use the definition of the Bessel function and Kepler’s equation,
then

u = � +
∞∑

ν=1

2
ν

Jν(νe) sin ν�.
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By similar, but increasingly more difficult calculations, all products of the
form

rn sin mu, rn cos mu, rn sin mv, rn cos mv,

where n and m are integers, can be expanded in Fourier series in � whose
νth coefficients are expressed as linear combinations of Jν(νe) and J ′

ν(νe)
(see [135] and [228]). Thus, we have at least one method to transform
system (3.59) to Delaunay elements.

3.2.4 Satellite Orbiting an Oblate Planet
The earth is not a sphere. In this section we will consider the perturbations
of satellite motion caused by this imperfection.

The law of universal gravitation states that two particles (point masses)
attract by the inverse square law. The earth is composed of lots of particles.
But, if the earth is idealized as a sphere with uniformly distributed mass,
then the gravitational force exerted on a satellite obeys the inverse square
law for the earth considered as a point mass concentrated at the center
of the sphere. But because the true shape of the earth is approximated
by an oblate spheroid that “bulges” at the equator, the gravitational force
exerted on a satellite depends on the position of the satellite relative to the
equator. As we will see, the equations of motion of an earth satellite that
take into account the oblateness of the earth are quite complex. At first
sight it will probably not be at all clear how to derive useful predictions
from the model. But, as an illustration of some of the ideas introduced so
far in this chapter, we will see how to transform the model equations into
action-angle variables. Classical perturbation theory can then be used to
make predictions.

Introduce Cartesian coordinates so that the origin is at the center of
mass of an idealized planet viewed as an axially symmetric oblate spheroid
whose axis of symmetry is the z-axis. The “multipole” approximation of
the corresponding gravitational potential has the form

−G0m1

r
+ U(r, z) + O

((R0

r

)3)
where

U = −1
2

G0m1J2R
2
0

r3

(
1 − 3

z2

r2

)
,

m1 is the mass of the planet, R0 is the equatorial radius, and J2 is a
constant related to the moments of inertia of the planet (see [94] and [152]).
Note that the first term of the multipole expansion is just the point mass
gravitational law that determines the Kepler motion.
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The oblateness problem has been widely studied by many different meth-
ods, some more direct than our Delaunay variable approach (see [152], [184],
[94], and [201]). But, our approach serves to illustrate some general meth-
ods that are widely applicable.

As an approximation to the gravitational potential of the planet, let us
drop the higher order terms and consider Kepler motion perturbed by the
force determined by the second term of the multipole expansion, that is,
the perturbing force per unit of mass is the negative gradient of U . Since
the satellite has negligible mass compared to the planet, we may as well
assume that the motion of the planet is not affected by the satellite. Thus,
under this assumption and in our notation, if we let m2 denote the mass
of the satellite, then F2 = −m2 gradU and the equation of motion for the
satellite is given by

R̈ = −G0m1

r3 R − gradU. (3.60)

To use the general formulas for transformation to Delaunay variables
given in display (3.59), we must first rescale system (3.60). For this, let
β denote a constant measured in seconds and let α := (G0m1)1/3β2/3,
so that α is measured in meters. Then, rescaling as in the derivation of
equation (3.12), we obtain the equation of motion

R̈ = − 1
r3 R + F (3.61)

where

Fx = − ε

r5

(
1 − 5

z2

r2

)
x,

Fy = − ε

r5

(
1 − 5

z2

r2

)
y,

Fz = − ε

r5

(
3 − 5

z2

r2

)
z, (3.62)

and

ε :=
3
2
J2

R2
0

(G0m1)2/3β4/3

is a dimensionless parameter. It turns out that if we use parameter values
for the earth of

G0m1 ≈ 4 × 1014m3/sec2, R0 ≈ 6.3 × 106m, J2 ≈ 10−3,

then ε ≈ 11β−4/3.
By adjusting our “artificial” scale parameter β, we can make the param-

eter ε as small as we like. But there is a cost: The unit of time in the scaled
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system is β seconds. In particular, if ε is small, then the unit of time is
large. At any rate, the rescaling suggests that we can treat ε as a “small
parameter.”

We have arrived at a difficult issue in the analysis of our problem that
often arises in applied mathematics. The perturbation parameter ε in our
model system is a function of β. But we don’t like this. So we will view β
as fixed, and let ε be a free variable. Acting under this assumption, let us
suppose that we are able to prove a theorem: If ε > 0 is sufficiently small,
then the system . . . . Does our theorem apply to the original unscaled
system? Strictly speaking, the answer is “no”! Maybe our sufficiently small
values of ε are smaller than the value of ε corresponding to the fixed value
of β.

There are several ways to avoid the snag. For example, if we work harder,
we might be able to prove a stronger theorem: There is a function β �→ ε0(β)
given by . . . such that if 0 ≤ ε0(β), then the corresponding system . . . .
In this case, if β is fixed and the corresponding value of ε is smaller than
ε0(β), then all is well. But, in most realistic situations, the desired stronger
version of our hypothetical theorem is going to be very difficult (if not
impossible) for us to prove. Thus, we must often settle for the weaker
version of our theorem and be pleased that the conclusion of our theorem
holds for some choices of the parameters in the scaled system. This might
be good. For example, we can forget about the original model, declare
the scaled model to be the mathematical model, and use our theorems to
make a prediction from the scaled model. If our predictions are verified by
experiment, then we might be credited with an important discovery. At
least we will be able to say with some confidence that we understand the
associated phenomena mathematically, and we can be reasonably certain
that we are studying a useful model. Of course, qualitative features of our
scaled model might occur in the original model (even if we cannot prove
that they do) even for physically realistic values of the parameters. This
happens all the time. Otherwise, no one would be interested in perturbation
theory. Thus, we have a reason to seek evidence that our original model
predicts the same phenomena that are predicted by the scaled model with a
small parameter. We can gather evidence by performing experiments with
a numerical method, or we can try to prove another theorem.

Returning to our satellite, let us work with the scaled system and treat
ε as a small parameter. To express the components of the force resolved
relative to the frame [er, eb, en] in Delaunay elements, let us transform
the vector field F to this frame using the transformation M defined in
display (3.46) followed by a transformation to (er, eb, en)-coordinates. In
fact, the required transformation is

N :=

⎛⎝cos h − sin h 0
sin h cos h 0

0 0 1

⎞⎠⎛⎝1 0 0
0 cos i − sin i
0 sin i cos i

⎞⎠⎛⎝cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞⎠ .
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Note that the angle θ is given by θ = g + v and the position vector is
given by R = (r, 0, 0) in the (er, eb, en)-coordinates. Using the usual “push
forward” change of coordinates formula

N−1F (N(R)),

it follows that the transformed components of the force are

Fr = − ε

r4 (1 − 3 sin2(g + v) sin2 i),

Fb = − ε

r4 sin(2g + 2v) sin2 i,

Fn = − ε

r4 sin(g + v) sin 2i. (3.63)

Substitution of the force components (3.63) into system (3.59), followed
by expansion in Fourier series in �, gives the equations of motion for a
satellite orbiting an oblate planet. While the resulting equations are quite
complex, it turns out that the equation for H is very simple; in fact, Ḣ = 0.
This result provides a useful internal check for our formulas expressed in
Delaunay elements because it can be proved directly from the definition
of H as the z-component of the angular momentum in the original Carte-
sian coordinates: Simply differentiate in formula (3.44) and then use for-
mula (3.17). Thus, we have extracted one prediction from the equations of
motion: The z-component of the angular momentum remains constant as
time evolves. Of course, the axial symmetry of the mass also suggests that
H is a conserved quantity.

Recall that system (3.59) has a striking feature: while the angle � is
changing rapidly in the scaled time, the actions L, G, and H together with
the other angles g and h change (relatively) slowly—their derivatives have
order ε. As a rough measure of the time scale on which the model is valid,
let us determine the time scale on which the satellite maintains “forward
motion” (that is, �̇ > 0). Since L̇ = O(ε), we have that L(t) ≈ L(0) + C1εt
where L(0) > 0 and C1 is a constant. By substitution of this expression
into the right-hand side of the equation

�̇ =
1
L3 + O(ε)

and using C2ε to approximate the O(ε) term in this equation, the approx-
imation of the right-hand side can only vanish if t has order ε−4/3. As an
approximation, we may as well say that the forward motion for the per-
turbed solution is maintained at least on a time scale of order 1/ε, that is,
for 0 ≤ t ≤ C/ε, where C is some positive constant.

Because of the slow variation of the actions, it seems natural, at least
since the time of Laplace, to study the average motion of the slow variables
relative to �. The idea is that all of the slow variables are undergoing rapid
periodic oscillations due to the change in �, at least over a long time scale.
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Thus, if we average out these rapid oscillations, then the “drift” of the slow
variables will be apparent. As mentioned before, we will make this idea
precise in Chapter 7. Let us see what predictions can be made after this
averaging is performed on the equations of motion of the satellite orbiting
the oblate planet.

The averages that we wish to compute are the integral averages over �
on the interval [0, 2π] of the right hand sides of the equations of motion
in display (3.59). As we have seen, the variable � appears when we change
r, cos v, and sin v to Delaunay variables. Let us consider the procedure for
the variable G. Note that after substitution,

Ġ = −ε sin2 i
sin(2g + 2v)

r3 .

Using the sum formula for the sine, we see that we must find the average

〈 sin 2v

r3 〉 :=
1
2π

∫ 2π

0

sin 2v

r3 d�

and the average 〈(cos 2v)/r3〉. (Warning: Angle brackets are used to denote
averages and inner products. But this practice should cause no confusion if
the context is taken into account.) The procedure for computing these and
all the other required averages for the Delaunay differential equations is ev-
ident from the following example. Differentiate in Kepler’s equation (3.55)
to obtain the identity

d�

dv
= (1 − e cos u)

du

dv

and likewise in the expression for cos u in display (3.56) to obtain

du

dv
=

1 − e cos u√
1 − e2

.

Combine these results to compute

d�

dv
=

r2

GL3

and use a change of variable in the original integral to find the average

〈 sin 2v
r3 〉 =

1
2πL3G

∫ 2π

0

sin 2v

r
dv.

Finally, substitution for r from equation (3.52) and an easy integration are
used to prove that 〈(sin 2v)/r3〉 = 0 and 〈(cos 2v)/r3〉 = 0. As a result, it
follows that Ġ = 0. Similarly, the complete set of averaged equations of
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motion are

L̇ = Ġ = Ḣ = 0,

ġ = −ε
1

2L3G4 (5 sin2 i − 4),

ḣ = −ε
1

L3G4 cos i (3.64)

where cos i = H/G. Let us note that the dependent variables that appear
in the averaged system (3.64) should perhaps be denoted by new symbols
so that solutions of system (3.64) are not confused with solutions of the
original system. This potential confusion will not arise here.

Finally, we have arrived at a system that we can analyze. In fact, the
(square root of the) semimajor axis of the osculating ellipse, the total an-
gular momentum, and the z-component of the angular momentum are con-
stant on average. The argument of periastron g, or, if you like, the angle
from the equatorial plane to the line corresponding to the perigee (closest
approach of the satellite) is changing on average at a rate proportional to
4 − 5 sin2 i. If the inclination i of the osculating plane—an angle that is on
average fixed—is less than the critical inclination where sin2 i = 4

5 , then
the perigee of the orbit advances. If the inclination angle is larger than
the critical inclination, then the perigee is retrograde. Similarly, the rate
of regression of the ascending node—given by the angle h in the equatorial
plane relative to the x-axis—is proportional to the quantity − cos i. Thus,
for example, if the orbit is polar (i = π

2 ), then the rate of regression is zero
on average. These observations indicate the importance of the critical in-
clination, but a deeper analysis is required to predict the satellite’s motion
near the critical inclination (see [64]–[68]).

The averaging computation that we have just completed is typical of
many “first order” approximations in mechanics. Averaging is, of course,
only one of the basic methods that have been developed to make predictions
from “realistic” systems of ordinary differential equations that originate in
celestial mechanics.

Exercise 3.24. Because the perturbation force for the oblate planet comes
from a potential, the force is conservative. In fact, the perturbed system in this
case is Hamiltonian with the total energy, including the correction to the gravi-
tational potential, as the Hamiltonian function. It turns out that the coordinate
change to Delaunay variables is of a very special type, called canonical. For a
canonical change of coordinates it is not necessary to change variables directly
in the equations of motion. Instead, it suffices to change variables in the Hamil-
tonian function and then to derive the new equations of motion in the usual way
from the transformed Hamiltonian (see Section 1.8.1). Show, by constructing an
example, that a general change of coordinates is not canonical. Assume that the
Delaunay coordinates are canonical, write the Hamiltonian in Delaunay variables,
and derive from it the Hamiltonian equations of motion in Delaunay variables. In
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particular, show, using the form of the Hamiltonian differential equations, that
the average of L̇ over the angle � must vanish. This provides an internal check for
the formulas derived in this section. Do you see how one might obtain the aver-
aged equations directly from the Hamiltonian? One reason why the Hamiltonian
approach was not used in the derivation of the equations in Delaunay elements
is that we have not developed the theory required to prove that the change to
Delaunay variables is canonical. Another reason is that our approach works even
if the perturbing force is not conservative.

3.2.5 The Diamagnetic Kepler Problem
In this section we will derive equations of motion for the electron of the
hydrogen atom in a constant magnetic field. The purpose of the section
is to apply Delaunay variables, averaging, and the transformation from
Lagrangian to Hamiltonian mechanics. We will discuss a version of Larmor’s
theorem.

Consider the classical equations for the motion of an electron of an atom
in the presence of a constant magnetic field. Let us assume that the electron
is subjected to the Coulomb potential relative to the nucleus of the atom
and to the Lorentz force due to the constant magnetic field B. If q is the
charge of an electron and Z is the atomic number of the atom, and if, as
usual, R is the position of the electron relative to Cartesian coordinates
centered at the nucleus, V is the velocity of the electron, and r := |R|, then
the Coulomb potential is

U :=
kZq(−q)

r
= −kZq2

r

where k is a constant. (Note the similarity to the gravitational potential!)
In our choice of units, q is measured in coulombs and kq2, often denoted
e2 in physics where of course e is not the eccentricity, has value kq2 ≈
(1.52 × 10−14)2Nm2 in mks units where N is used to denote newtons. For
the rest of this section let us suppose that Z = 1, the atomic number of
the hydrogen atom.

Let us assume that the constant magnetic field B is parallel to the z-axis
and the electric field E vanishes. Then, as we have seen previously, the
Lorentz force is given by

qV × B.

According to Newton’s law, the equations of motion are given in vector
form by

ṗ = qV × B − kq2

r3 R (3.65)

where p is the momentum. Because the speed of the electron of a hydrogen
atom is about one percent of the speed of light ([87]), let us use the classical
momentum p = mV .



264 3. Applications

Equation (3.65) is given in components by

mẍ = −kq2

r3 x + qbẏ,

mÿ = −kq2

r3 y − qbẋ,

mz̈ = −kq2

r3 z, (3.66)

and after rescaling as in equation (3.61) it has the form

R̈ = − 1
r3 R + F

where F := ε(ẏ, −ẋ, 0), ε := 2ωβ, and ω := 1
2mqb is called the Larmor

frequency. Using the formulas in Section 3.2.3, V = Ṙ expressed in the
frame [er, eb, en] is given by

Ṙ =
e sin v

G
er +

G

r
eb,

and, after some computation, it follows that

Fr = ε
G cos i

r
,

Fb = −ε
e cos i sin v

G
,

Fn = −ε
sin i

G
(e sin g + sin(g + v)).

Although the equations of motion (3.59) for this choice of F are compli-
cated, the corresponding averaged system is simple; in fact, we have

Ḣ = Ġ = L̇ = ġ = 0, ḣ = − ε

2
. (3.67)

This result is a special case of Larmor’s theorem: For a charged particle
influenced by a centrally symmetric field (for example, the Coulomb field)
and an axially symmetric weak magnetic field, there is a time-dependent
coordinate system rotating with uniform velocity about the axis of symme-
try of the magnetic field (at the Larmor frequency) such that, in the new
coordinates, the motion is the same as for the charged particle influenced
by the centrally symmetric field only.

To determine the Lagrangian and Hamiltonian formulation of the model
equation (3.65), let us recast system (3.65) in the form

d

dt
(p − 1

2
q(R × B)) =

1
2
q(V × B) − gradU. (3.68)
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This first step may appear to arrive out of thin air. In fact, it is just
the bridge from Newtonian to Lagrangian mechanics. As we will see in a
moment, system (3.68) is in the form of an Euler–Lagrange equation.

In physics, a new vector field A, called the vector potential, is introduced
so that B = curlA. For our constant magnetic field, an easy computation
shows that A = 1

2B × R. This vector field can be substituted into the left
hand side of equation (3.68) and used in the rest of the computation. Let
us, however, continue using the original fields.

If we define the Lagrangian

L :=
1

2m
〈p, p〉 +

q

2
〈B × R, V 〉 − U,

then, using a vector identity, we have

∂L
∂V

= p − q

2
(R × B),

∂L
∂R

= −q

2
∂

∂R
〈R, B × V 〉 − gradU

=
q

2
V × B − gradU ;

that is, equation (3.68) with Q := R = (x, y, z) is exactly

d

dt

( ∂L
∂Q̇

)
=

∂L
∂Q . (3.69)

In view of our derivation of the Euler–Lagrange equation in Section 3.1, we
have reason to expect that there is a variational principle associated with
the differential equation (3.69). This is indeed the case (see [138]).

The position variable Q and the velocity variable Q̇ define a coordinate
system on R

3 × R
3. Let us define a new variable

P :=
∂L
∂Q̇

(Q, Q̇) = p − q

2
Q × B (3.70)

and note that the relation (3.70) can be inverted to obtain Q̇ as a function
of Q and P. In fact, there is a function α such that

P ≡ ∂L
∂Q̇

(Q, α(Q,P)).

Thus, we have defined new coordinates (P,Q) on R
3 × R

3.
The reason for introducing P is so that we can define the Hamiltonian

H := PQ̇ − L(Q, Q̇) = Pα(Q,P) − L(Q, α(Q,P)).
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This terminology is justified by the following results:

∂H
∂P = Q̇ +

(
P − ∂L

∂Q̇
) ∂α

∂P = Q̇,

∂H
∂Q = − ∂L

∂Q = − d

dt

∂L
∂Q̇

= −Ṗ.

Thus, the original system is equivalent to the Hamiltonian system with
Hamiltonian H. In particular, H is constant along orbits.

By the definition of H, we have

H = 〈p +
q

2
(B × R), V 〉 − 1

2m
〈p, p〉 − q

2
〈B × R, V 〉 + U(Q)

=
1

2m
〈p, p〉 + U(Q)

=
1

2m
〈P +

q

2
Q × B,P +

q

2
Q × B〉 + U(Q).

For the constant magnetic field B := (0, 0, b), the Hamiltonian is

H =
1

2m

(
P2

1 + P2
2 + P2

3
)

+ ω(yP1 − xP2) +
mω2

2
(x2 + y2) − kq2

r
(3.71)

where ω := 1
2mqb is the Larmor frequency. Here, the magnitude b of the

magnetic field has units N sec/(coul m) and the Larmor frequency ω has
units 1/sec.

Recall that, in general, the Hamiltonian is constant along solutions of
the corresponding Hamiltonian system. Thus, H is a first integral of its
corresponding Hamiltonian system. An interesting feature of this system
is the existence of another independent first integral. In fact, the angular
momentum function

(x, y, z,P1,P2,P3) �→ yP1 − xP2 (3.72)

is constant on orbits (see Exercise 3.26).
By Larmor’s theorem we expect that there is a rotating coordinate sys-

tem (rotating with the Larmor frequency about the axis of symmetry of
the magnetic field) such that the transformed system is Hamiltonian but
with the “angular momentum term” ω(yP1 − xP2) eliminated from the
corresponding Hamiltonian. Indeed, an easy computation shows that the
change of variables (x′, y′,P ′

1,P ′
2) → (x, y,P1,P2) given by

x = x′ cos Ωt − y′ sin Ωt, y = x′ sin Ωt + y′ cos Ωt,
P1 = P ′

1 cos Ωt − P ′
2 sin Ωt, P2 = P ′

1 sin Ωt + P ′
2 cos Ωt

transforms the Hamiltonian system to a new system whose Hamiltonian
(after renaming the variables) is

H =
1

2m

(
P2

1 + P2
2 + P2

3
)

+ (ω + Ω)(yP1 − xP2) +
mω2

2
(x2 + y2) − kq2

r
.
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Hence, if Ω := −ω, then the Hamiltonian for the transformed system is
given by

H∗ =
1

2m

(
P2

1 + P2
2 + P2

3
)

+
mω2

2
(x2 + y2) − kq2

r
. (3.73)

Because of the analogy with the perturbed Kepler motion, this is called
the diamagnetic Kepler problem ([105]). The corresponding Hamiltonian
equations of motion are

ẋ =
1
m

P1, ẏ =
1
m

P2, ż =
1
m

P3,

Ṗ1 = −
(kq2

r3 x + mω2x
)
,

Ṗ2 = −
(kq2

r3 y + mω2y
)
,

Ṗ3 = −kq2

r3 z. (3.74)

Equivalently, we have the second order system

mẍ = −kq2

r3 x − mω2x,

mÿ = −kq2

r3 y − mω2y,

mz̈ = −kq2

r3 z (3.75)

which is given in vector form by

R̈ = −kq2m−1

r3 R + F0 (3.76)

where F0 = −ω2(x, y, 0). This last system is again analogous to the equa-
tion for relative motion of the perturbed two-body problem.

Let us note that the Kepler orbit of the electron is rotating with the
Larmor frequency ω about the axis of symmetry of the constant magnetic
field. For a weak magnetic field, the rotation frequency is slow. According
to our reduced Hamiltonian system in the rotating coordinates, the pertur-
bation due to the magnetic field in the rotating system has order ω2. Thus,
the main effect is rotation of the electron about the axis of symmetry of
the magnetic field. The second order effects, however, are important.

As an instructive project, rescale system (3.75) and use equations (3.59)
to transform the diamagnetic Kepler problem to Delaunay elements. Also,
average the transformed equations and discuss the average motion of the
electron (see Exercise 3.28). It turns out that the diamagnetic Kepler prob-
lem has very complex (chaotic) motions; it is one of the model equations
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studied in the subject called quantum chaos, but that is another story ([93],
[105]).

Exercise 3.25. Verify the equations (3.67).

Exercise 3.26. Prove that the function given in display (3.72) is constant on
orbits of the Hamiltonian system with Hamiltonian (3.71). What corresponding
quantity is conserved for system (3.65)?

Exercise 3.27. Transform equation (3.66) directly to equation (3.75) using a
rotating coordinate system.

Exercise 3.28. Show that system (3.75) can be rescaled in space and time to
the dimensionless form

R̈ = − 1
r3 R − ω2β2

⎛
⎝x

y
0

⎞
⎠ (3.77)

where β is measured in seconds. Define ε := ω2β2 and show that the scaled
system is equivalent to the first order system

ẋ = P1, ẏ = P2, ż = P3,

Ṗ1 = −x/r3 − εx, Ṗ2 = −y/r3 − εy, Ṗ3 = −z/r3.

Use the result of Exercise 3.26 and the new variables (ρ, θ, z, Pρ, Pθ, Pz) given by

x = ρ cos θ, y = ρ sin θ,

Pρ = cos θ P1 + sin θ P2, Pθ = x P2 − y P1, Pz = P3

to show that the differential equation expressed in the new variables decouples
so that the set of orbits with zero angular momentum correspond to solutions of
the subsystem

ρ̇ = Pρ, ż = Pz, Ṗρ = − ρ

(ρ2 + z2)3/2 − ερ, Ṗz = − z

(ρ2 + z2)3/2 . (3.78)

Exercise 3.29. Consider system (3.77) to be in the form

R̈ = − 1
r3 R + F.

Show that

Fr = −εr cos2 θ, Fb = εr sin θ cos θ, Fn = 0,

and the averaged Delaunay system is given by

L̇ = 0, Ġ = ε
5
4
L2(L2 − G2) sin 2g, ġ = −ε

1
4
L2G(3 + 5 cos 2g).

Draw the phase cylinder portrait of the (g, G)-subsystem. Find the rest points
and also show that there is a homoclinic orbit.
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Figure 3.3: Two pendula connected by a spring. To build a simple bench
model, consider suspending two lead fishing weights on “droppers” from a
stretched horizontal section of monofilament.

Exercise 3.30. Consider the diamagnetic Kepler problem as a perturbation,
by the Coulomb force, of the Hamiltonian system with Hamiltonian

H∗
0 =

1
2m

(P2
1 + P2

2 + P2
3
)

+
mω2

2
(x2 + y2).

Write out Hamilton’s equations, change coordinates so that the equations of mo-
tion corresponding to the Hamiltonian H∗

0 are in action-angle form (use polar
coordinates), and find the perturbation in the new coordinates. Is averaging rea-
sonable for this system?

3.3 Coupled Pendula: Normal Modes and Beats

Consider a pendulum of length L and mass m where the angle with positive
orientation with respect to the downward vertical is θ and let g denote the
gravitational constant (near the surface of the earth). The kinetic energy of
the mass is given by K := m

2 (Lθ̇)2 and the potential energy is given by U :=
−mgL cos θ. There are several equivalent ways to obtain the equations of
motion; we will use the Lagrangian formulation. Recall that the Lagrangian
of the system is

L := K − U =
m(Lθ̇)2

2
+ mgL cos θ, (3.79)
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and the equation of motion is given by Lagrange’s equation

d

dt

∂L
∂θ̇

− ∂L
∂θ

= 0.

Thus, the equation of motion for the pendulum is

mL2θ̈ + mgL sin θ = 0. (3.80)

For two identical pendula coupled by a Hookian spring with spring con-
stant k, the potential energy due to the spring depends on (at least) the
placement of the spring and the choice of the plane for the pendulum mo-
tion. For small oscillations, a reasonable linear approximation of the true
potential energy due to the spring is given by

1
2
ka�2(θ1 − θ2)2

where a is a dimensionless constant and � is the distance from the pivot
point of the pendulum to the point where the spring is attached. Here,
we do not model the physical attachment of the spring and the pendula.
Perhaps a different expression for the potential energy of the spring would
be required to model a laboratory experiment. Our model, however, is a
reasonable approximation as long as the spring moves in a fixed plane
where the spring is either stretched or twisted by the pendulum motion.
The corresponding Lagrangian is

L =
m

2
(
(Lθ̇1)2 + (Lθ̇2)2

)
+ mgL(cos θ1 + cos θ2) − 1

2
ka�2(θ1 − θ2)2,

and the equations of motion are given by

mL2θ̈1 + mgL sin θ1 + ka�2(θ1 − θ2) = 0,
mL2θ̈2 + mgL sin θ2 − ka�2(θ1 − θ2) = 0.

Let us note that time (the independent variable) and the parameters
of the system are rendered dimensionless by rescaling time via t = µs,
where µ := (L/g)1/2, and introducing the dimensionless constant α :=
ka�2/(mgL) to obtain the system

θ′′
1 + sin θ1 + α(θ1 − θ2) = 0,

θ′′
2 + sin θ2 − α(θ1 − θ2) = 0.

To study the motions of the system for “small” oscillations of the pen-
dula, the approximation sin θ ≈ θ—corresponding to linearization of the
system of differential equations at the origin—yields the model

θ′′
1 + (1 + α)θ1 − αθ2 = 0,

θ′′
2 − αθ1 + (1 + α)θ2 = 0. (3.81)
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Although this linear second order system can be expressed as a first order
system and solved in the usual manner by finding the eigenvalues and
eigenvectors of the system matrix, there is a simpler way to proceed. In
fact, if Θ is defined to be the transpose of the state vector (θ1, θ2), then
system (3.81) has the form

Θ′′ = AΘ

where A is the matrix (
−(1 + α) α

α −(1 + α)

)
.

The idea is to diagonalize the symmetric matrix A by a linear change of vari-
ables of the form Θ = BZ, where B is an orthogonal matrix whose columns
are unit-length eigenvectors of A, so that the transformed differential equa-
tion, Z ′′ = B−1ABZ, decouples. For system (3.81), the component form of
the inverse change of variables Z = B−1Θ is

x =
1√
2
(θ1 + θ2), y =

1√
2
(θ1 − θ2),

and the decoupled system is

x′′ = −x, y′′ = −(1 + 2α)y.

There are two normal modes of oscillation. If y(s) ≡ 0, then θ1(s) −
θ2(s) ≡ 0 and the pendula swing “in phase” with unit frequency relative to
the scaled time. If x(s) ≡ 0, then θ1(s) + θ2(s) ≡ 0 and the pendula swing
“in opposing phase” with angular frequency (1+2α)1/2 in the scaled time.
The frequency of the second normal mode is larger than the frequency of
the first normal mode due to the action of the spring; the spring has no
effect on the first normal mode.

Consider the following experiment. Displace the second pendulum by a
small amount and then release it from rest. What happens?

In our mathematical model, the initial conditions corresponding to the
experiment are

θ1 = 0, θ′
1 = 0, θ2 = a, θ′

2 = 0.

The predicted motion of the system, with β :=
√

1 + 2α, is given by

x(s) =
a√
2

cos s, y(s) = − a√
2

cos βs,

and

θ1(s) =
a

2
(cos s − cos βs), θ2(s) =

a

2
(cos s + cos βs).
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Use the usual identities for cos(φ ± ψ) with

φ :=
1 + β

2
s, ψ :=

1 − β

2
s,

to obtain

θ1(s) =
(
a sin

β − 1
2

s
)
sin

β + 1
2

s, θ2(s) =
(
a cos

β − 1
2

s
)
cos

β + 1
2

s,

and note that each pendulum swings with quasi-frequency 1
2 (β + 1) and

(relatively) slowly varying amplitude. Also, the “beats” of the two pendula
are out of phase; that is, whereas the first pendulum is almost motion-
less and the second pendulum swings at maximum amplitude when s is
approximately an integer multiple of 2π/(β − 1), the second pendulum is
almost motionless and the first pendulum swings at maximum amplitude
when s is approximately an odd integer multiple of π/(β−1). This interest-
ing exchange-of-energy phenomenon can be observed even with very crude
experimental apparatus—try it.

Exercise 3.31. Suppose that the kinetic energy of a mechanical system is given
by 1

2 〈KΘ̇, Θ̇〉 and its potential energy is given by 1
2 〈PΘ, Θ〉, where Θ is the state

vector, K and P are symmetric matrices, and the angle brackets denote the
usual inner product. If both quadratic forms are positive definite, show that they
can be simultaneously diagonalized. In this case, the resulting system decouples.
Solutions corresponding to the oscillation of a single component while all other
components are at rest are called normal modes. Determine the frequencies of
the normal modes (see [12]).

Exercise 3.32. (a) Find the general solution of the system

ẍ = a sin t(x sin t + y cos t) − x, ÿ = a cos t(x sin t + y cos t) − y.

Hint: Find a time-dependent transformation that makes the system autonomous.
(b) Find the Floquet multipliers corresponding to the zero solution. (c) For which
values of a is the zero solution stable; for which values is it stable?

Exercise 3.33. Build a bench top experiment with two “identical” coupled
pendula (see Figure 3.3), and tune it until the beat phenomena are observed. Show
that a measurement of the length of the pendula together with a measurement of
the number of oscillations of one pendulum per second suffices to predict the time
interval required for each pendulum to return to rest during a beating regime.
Does your prediction agree with the experiment? How sensitive is the predicted
value of this time scale relative to errors in the measurements of the lengths of the
pendula and the timing observation? Approximate the spring constant in your
physical model?

Problem 3.34. Consider small oscillations of the coupled pendula in case there
are two different pendula, that is, pendula with different lengths or different
masses. What happens if there are several pendula coupled together in a ring or
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Figure 3.4: Representation of the Fermi–Ulam–Pasta coupled oscillator.

in series? What about oscillations that are not small? What predictions (if any)
made from the linear model remain valid for the nonlinear model? What happens
if there is damping in the system?

3.4 The Fermi–Ulam–Pasta Oscillator

The analysis of the small oscillations of coupled pendula in Section 3.3 can
be generalized in many different directions. Here we will consider a famous
example due to Enrico Fermi, Stania�law Ulam, and John R. Pasta [86] that
can be viewed as a model for a series of masses coupled to their nearest
neighbors by springs. The original model was obtained as the discretization
of a partial differential equation model of a string—one of the ways that
systems of ordinary differential equations arise in applied mathematics.

Let us consider N identical masses positioned on a line as in Figure 3.4,
and let us suppose that the masses are constrained to move only on this
line. Moreover, let us suppose that the masses are coupled by springs, but
with the first and last masses pinned to fixed positions. If xk denotes the
displacement of the kth mass from its equilibrium position; then, using
Newton’s second law, the equations of motion are given by

mẍk = F (xk+1 − xk) − F (xk − xk−1), k = 1, . . . , N − 2

where F (xk+1 − xk) is the force exerted on the kth mass from the right
and −F (xk − xk−1) is the force exerted on the kth mass from the left.

One of the Fermi–Ulam–Pasta models uses the scalar force law

F (z) = α(z + βz2), α > 0, β ≥ 0,

to model the restoring force of a nonlinear spring. This choice leads to the
following equations of motion:

mẍk = α(xk−1 − 2xk + xk+1)(1 + β(xk+1 − xk−1)), k = 1, . . . N − 2
(3.82)

where we also impose the boundary conditions

x0(t) ≡ 0, xN−1(t) ≡ 0.

If we set β = 0 in the equations (3.82), then we obtain the linearization of
system (3.82) at the point corresponding to the rest positions of the masses.
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The first objective of this section is to determine the normal modes and
the general solution of this linearization.

Let us define the state vector x with components (x1, . . . , xN−2), and
let us write the system in matrix form

ẍ = c2Qx (3.83)

where c2 = α/m and

Q =

⎛⎜⎜⎜⎝
−2 1 0 0 · · · 0

1 −2 1 0 · · · 0
... · · ·
0 · · · 1 −2

⎞⎟⎟⎟⎠ .

Because Q is a real negative definite symmetric matrix, the matrix has a
basis of eigenvectors corresponding to real negative eigenvalues. If v is an
eigenvector corresponding to the eigenvalue λ, then ec

√−λ itv is a solution
of the matrix system. The corresponding normal mode is the family of real
solutions of the form

x(t) = R cos(c
√

−λ t + ρ) v

where R and ρ depend on the initial conditions.
If v = (v1, . . . , vN−2) is an eigenvector of Q with eigenvalue λ, then

vk−1 − 2vk + vk+1 = λvk, k = 1, . . . , N − 2.

To solve this linear three term recurrence, set vk = ak, and note that ak

gives a solution if and only if

a2 − (2 + λ)a + 1 = 0. (3.84)

Also, note that the product of the roots of this equation is unity, and one
root is given by

r =
2 + λ +

√
λ(4 + λ)

2
.

Thus, using the linearity of the recurrence, the general solution has the
form

vk = µrk + νr−k

where µ and ν are arbitrary scalars. Moreover, in view of the boundary
conditions, v0 = 0 and vN−1 = 0, we must take µ + ν = 0 and rN−1 −
1/rN−1 = 0. In particular, r must satisfy the equation r2(N−1) = 1. Thus,
the possible choices for r are the roots of unity

r� = eπi�/(N−1), � = 0, 1, . . . , 2N − 3.
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We will show that the r� for � = 1, . . . , N −2 correspond to N −2 distinct
eigenvalues of the (N − 2) × (N − 2) matrix Q as follows: The eigenvalue

λ� = −4 sin2(
π�

2(N − 1)
)

corresponding to r� is obtained by solving equation (3.84) with a = r�; that
is, the equation

e2πi�/(N−1) − (2 + λ)eπi�/(N−1) + 1 = 0.

The remaining choices for r� of course cannot lead to new eigenvalues. But
to see this directly consider the range of integers � expressed in the form

0, 1, . . . , N − 2, N − 1, (N − 1) + 1, . . . , (N − 1) + N − 2

to check that the corresponding r� are given by

1, r1, . . . , rN−2,−1,−r1, . . . ,−rN−2,

and the corresponding λ� are

0, λ1, . . . , λN−2,−4, λN−2, . . . , λ1.

Here, the choices r = 1 and r = −1, corresponding to � = 0 and � = N − 1,
give vk ≡ 0. Hence, they do not yield eigenvalues.

The components of the eigenvectors corresponding to the eigenvalue λ�

are given by

vk = µ
(
eπi�k/(N−1) − e−πi�k/(N−1)) = 2iµ sin(

π�k

N − 1
)

where µ is a scalar. If µ = 1/(2i), then we have, for each � = 1, . . . , N − 2,
the associated eigenvector v� with components

v�
k = sin(

π�k

N − 1
).

Because Q is symmetric, its eigenvectors corresponding to distinct eigen-
values are orthogonal with respect to the usual inner product. Moreover,
we have that

〈v�, v�〉 =
N−2∑
k=1

sin2(
π�k

N − 1
) =

N − 1
2

where the last equality can be proved by first applying the identity

sin θ =
eiθ − e−iθ

2i
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and then summing the resulting geometric series. Thus, the vectors( 2
N − 1

)1/2
v1, . . . ,

( 2
N − 1

)1/2
vN−2

form an orthonormal basis of R
N−2.

The general solution of the system (3.82) with β = 0 is given by the
vector solution t �→ x(t) with components

xk(t) =
( 2

N − 1

)1/2 N−2∑
�=1

(γ�p�(t) + η�q�(t)) sin(
π�k

N − 1
)

where c2 = α/m,

p�(t) = cos(2ct sin(
π�

2(N − 1)
)), q�(t) = sin(2ct sin(

π�

2(N − 1)
)),

and γ�, η� are real constants. In vector form, this solution is given by

x(t) =
( 2

N − 1

)1/2 N−2∑
�=1

(γ�p�(t) + η�q�(t))v�;

it is the solution of the first-order system corresponding to the model (3.82)
with initial value

x(0) =
( 2

N − 1

)1/2 N−2∑
�=1

γ�v
�,

ẋ(0) = 2c
( 2

N − 1

)1/2 N−2∑
�=1

η� sin(
π�

2(N − 1)
)v�.

Moreover, let us note that if we use the orthonormality of the normalized
eigenvectors, then the scalars γ� and η� can be recovered with the inversion
formulas

γ� = 〈x(0),
( 2

N − 1

)1/2
v�〉,

η� = 〈ẋ(0),
( 2

N − 1

)1/2(
2c sin

π�

2(N − 1)
)−1

v�〉.

Now that we have determined the normal modes and the general solution
of the linearized system, let us use them to describe the Fermi–Ulam–Pasta
experiments.

If B is the matrix whose columns are the ordered orthonormal eigenvec-
tors of Q, then the linear coordinate transformation x = By decouples the
system of differential equations (3.82) with β = 0 into a system of the form

ÿk = c2λkyk, k = 1, . . . , N − 2
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where λk is the eigenvalue corresponding to the kth column of B. Note
that the total energy of this kth mode is given by

Ek :=
1
2
(
ẏ2

k − c2λky2
k

)
,

and this energy can be easily computed from the vector solution x(t) by
using the identity ( 2

N − 1

)1/2
〈x(t), vk〉 = yk.

Fermi, Ulam, and Pasta expected that after an initial excitation the av-
erages over time of the linear mode energies Ek(t) of the nonlinear (β �= 0)
oscillator (3.82) would tend to equalize after a sufficiently long time pe-
riod. The process leading to this “equipartition of energy” is called ther-
malization. In fact, the purpose of their original experiment—numerical
integration of the system starting with nonzero energy in only one normal
mode—was to determine the length of time required for thermalization to
occur. Contrary to their expectation, the results of the experiment sug-
gested that thermalization does not occur. For example, for some choices
of the system parameters, the energy becomes distributed among the vari-
ous linear modes for a while, but eventually almost all the energy returns
to the initial mode. Later, most of the energy might be in the second mode
before returning again to the first mode, and so on. For other values of the
system parameters the recurrence is not as pronounced, but none of their
experiments suggested that thermalization does occur. The explanation for
this “beat phenomenon” and for the nonexistence of thermalization leads to
some very beautiful mathematics and mathematical physics (see the article
by Richard Palais [180]). It is remarkable that the first numerical dynamics
experiments performed on a computer (during 1954–55) turned out to be
so important (see [230]).

Exercise 3.35. Solve the differential equation (3.83) by converting it to a first
order system and then finding a basis of eigenvectors.

Exercise 3.36. Describe the geometry of the modes of oscillation of the masses
in the Fermi–Ulam–Pasta model with respect to the linearized model (3.83). For
example, is it possible that all the masses move so that the distances between
adjacent masses stays fixed?

Exercise 3.37. Solve system (3.82) with β = 0 and periodic boundary condi-
tions: x0(t) = xN−1(t).

Exercise 3.38. Repeat the Fermi–Ulam–Pasta experiment. Begin with the pa-
rameters

N = 32, m = 1.0, α = 1.0, β = 0.25,
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and choose an initial condition so that the velocity of each mass is zero and all
the energy is in the first mode; for example, take

xk(0) =
( 2

N − 1

)1/2
sin(

πk

N − 1
).

Integrate system (3.82) numerically and output the mode energies for at least
the first few modes. Discuss how the mode energies change over time.

Exercise 3.39. Consider system (3.82) with its first boundary condition re-
placed by x0(t) = A sin ωt. What is the general behavior of this system? Note:
This problem is open-ended; it does not seem to have a simple answer.

3.5 The Inverted Pendulum

Consider a pendulum with oscillating vertical displacement. We will outline
a proof of the following amazing fact: The inverted pendulum can be made
stable for certain rapid oscillations of small vertical displacement.

Historical comments and a very interesting description of the stabiliza-
tion phenomenon based on topological methods is given by Mark Levi
(see [142]). David Acheson’s book [4] includes results on the stabilization
of the double pendulum.

The equation of motion for the displaced inverted pendulum is obtained
as a modification of the pendulum model (3.80). For this, let H be a smooth
one-periodic function with unit amplitude where L is the length of the
pendulum and g is the gravitational constant. Let us also incorporate two
control parameters, the amplitude δ and the (relative) frequency Ω of the
vertical displacement, so that the displacement function is given by

t �→ δH(Ωt).

This displacement may be viewed as an external force with period 1/Ω by
taking the force to be

F := mLΩ2δH ′′(Ωt) sin θ.

An alternative way to view the model is to imagine the pendulum inside
an “Einstein elevator” that is being periodically accelerated. In this case,
the external force is perceived as a time-dependent change in the gravita-
tional field. The new gravitational “constant” measured in some units, say
cm/sec/sec, is given by

g − Ω2δH ′′(Ωt),

and the equation of motion is obtained by replacing g by this difference in
the model (3.80). The minus sign is not important, it is there to make this
formulation compatible with the Lagrangian formulation. Indeed, with the
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choice for the force given above and the Lagrangian (3.79), the Lagrange
equation

d

dt

dL
dθ̇

− dL
dθ

= F

yields the following equation of motion:

θ̈ +
g

L
sin θ = δ

Ω2

L
H ′′(Ωt) sin θ.

Let us rescale time with the change of variable given by

t =
1
Ω

s.

Also, after this change of time, let us use the scaled period and amplitude
of the displacement

α :=
g

LΩ2 , β :=
δ

L
,

and the function given by

a(s) := H ′′(s)

to construct the dimensionless equation of motion

θ′′ + (α − βa(s)) sin θ = 0 (3.85)

where the function s �→ a(s) is periodic with period one.
To study the stability of the rest point at θ = π corresponding to the

inverted pendulum, the equation of motion is linearized at θ = π to obtain
the periodic linear system

w′′ − (α − βa(s))w = 0 (3.86)

with parameters α and β. While we will consider the two-parameter family
of differential equations in the entire parameter plane, only those systems
with parameters in the first quadrant correspond to the physical pendulum.

We will outline a proof of the following proposition:

Proposition 3.40. If a(s) = sin 2πs in the differential equation (3.86),
then the point (α, β) = (0, 0) is a boundary point of an open subset in
the first quadrant of the parameter plane such that the differential equation
corresponding to each point of this open set has a stable trivial solution.

The open set mentioned in Proposition 3.40 contains points close to the
origin of the parameter plane that correspond to high-frequency small-
amplitude displacements which stabilize the inverted pendulum. Proposi-
tion 3.40 is true if the normalized displacement a(s) = sin 2πs is replaced
by certain other periodic functions that will also be determined.
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Stability region

β

α

Figure 3.5: Stabilization region for the inverted pendulum.

According to Proposition 3.40, the (periodic) trivial solution of the lin-
earized pendulum model equation is stable. Because such a periodic solu-
tion is not hyperbolic, we have no method that can be used to prove that
the corresponding rest position of the original nonlinear model of the in-
verted pendulum is stable. In fact, the principle of linearized stability gives
the correct insight: the rest position of the original nonlinear model of the
inverted pendulum is stable whenever its linearization is stable. The proof
of this fact seems to require an analysis (KAM theory) that is beyond the
scope of this book (see [142]).

We will use Floquet theory, as in our analysis of Hill’s equation, to prove
Proposition 3.40.

Let Φ(s, α, β) denote the principal fundamental matrix at s = 0 for the
first order system

w′ = z, z′ = (α − βa(s))w (3.87)

corresponding to the differential equation (3.86). Recall from our study
of Hill’s equation that the trivial solution of the system (3.87) is stable
provided that

| tr Φ(1, α, β)| < 2.

If (α, β) = (0, 0), then

Φ(1, 0, 0) = exp
(

0 1
0 0

)
=

(
1 1
0 1

)
.

At this point of the parameter space tr Φ(1, 0, 0) = 2. Thus, it is reasonable
to look for nearby points where tr Φ(1, 0, 0) < 2. The idea is simple enough:
Under our assumption that H is smooth, so is the function τ : R

2 → R

given by (α, β) �→ tr Φ(1, α, β). We will use the implicit function theorem
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to show that the boundary of the region of stability, depicted in Figure 3.5,
is a smooth curve that passes through the origin of the parameter space
and into the positive first quadrant.

To compute the partial derivative τα(0, 0), let A(s) denote the system
matrix for the system (3.87) and use the matrix equation Φ′ = A(s)Φ to
obtain the variational initial value problem

Φ′
α = A(s)Φα + Aα(s)Φ, Φα(0) = 0.

At (α, β) = (0, 0), the variational equation is given by the following (inho-
mogeneous) linear system

W ′ =
(

0 1
0 0

)
W +

(
0 0
1 0

)
Φ(s, 0, 0)

=
(

0 1
0 0

)
W +

(
0 0
1 0

)(
1 s
0 1

)
=

(
0 1
0 0

)
W +

(
0 0
1 s

)
.

It can be solved by variation of parameters to obtain

Φα(1, 0, 0) = W (1) =
( 1

2 ∗
∗ 1

2

)
;

and therefore, τα(0, 0) = 1.
Define the function g(α, β) := τ(α, β) − 2 and note that we now have

g(0, 0) = 0, gα(0, 0) = 1.

By an application of the implicit function theorem, there is a function β �→
γ(β), defined for sufficiently small β, such that γ(0) = 0 and τ(γ(β), β) ≡ 2.

To determine which “side” of the curve Γ := {(α, β) : α = γ(β)} cor-
responds to the region of stability, let us consider points on the positive
α-axis. In this case, the linearized equation has constant coefficients:

w′′ − αw = 0.

Its principal fundamental matrix solution at s = 0 evaluated at s = 1 is
given by (

cosh
√

α 1√
α

sinh
√

α√
α sinh

√
α cosh

√
α

)
,

and, for α > 0, we have τ(α, 0) = 2 cosh
√

α > 2.
By the implicit function theorem, the curve Γ in the parameter space

corresponding to tr Φ(1, α, β) = 2 is unique. Also, by the computation
above, the positive α-axis lies in the unstable region. Because τα(0, 0) = 1,
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we must have τα(γ(β), β) > 0 as long as β is sufficiently small. Thus, it
follows that the trace of the monodromy matrix increases through the value
2 as the curve Γ is crossed. In particular, the trace of the monodromy matrix
is less than 2 on the left side of this curve; that is, Γ forms a boundary of
the stable region as depicted in Figure 3.5.

Finally, to determine the conditions on the periodic displacement so that
the restriction of Γ to β > 0 lies in the first quadrant, we will use the
equality

τβ(0, 0) = −
∫ 1

0
a(s) ds

(see Exercise 3.41).
Because the original external excitation of the pendulum is periodic, the

average value of its second derivative (corresponding to the function s �→
a(s)) is zero. In this case, we have that τβ(0, 0) = 0, or equivalently, γ′(0) =
0. A portion of the stability region will be as depicted in Figure 3.5 provided
that γ′′(0) > 0. In this case, if the amplitude, β = δ > 0, of the periodic
perturbation is sufficiently small, then there is a range of sufficiently high
frequencies Ω (recall that α := 1/Ω2) such that the linearized pendulum
motion is stabilized. By differentiation of the implicit relation τ(γ(β), β) =
2, it is easy to see that the required condition on the second derivative of γ
is equivalent to the inequality τββ(0, 0) < 0. Of course, this requirement is
not always satisfied (see Exercise 3.43), but it is satisfied for a(s) = sin(2πs)
(see Exercise 3.42).

Exercise 3.41. Prove that

τβ(0, 0) = −
∫ 1

0
a(s) ds.

Exercise 3.42. Prove that τββ(0, 0) < 0 for the case a(s) = sin(2πs). Hint:
Compute the variational derivatives directly in terms of the second order equa-
tion (3.86).

Exercise 3.43. Find a condition on the function a(s) so that τββ(0, 0) < 0.
Also, if a(s) is expressed as a convergent Fourier series, find the corresponding
condition in terms of its Fourier coefficients. Hint: If

a(s) =
∞∑

k=1

ak cos(2πks) + bk sin(2πks),

then

τββ(1, 0, 0) = 2
( ∞∑

k=1

1
2πk

bk

)2
−

∞∑
k=1

( 1
2πk

)2(a2
k + 3b2

k).

Exercise 3.44. Find an example of a periodic function s �→ a(s) with period
one such that τββ(0, 0) > 0. For this choice of the displacement, the inverted
pendulum is not stabilized for small β > 0.
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(3π)2

β

α

(π)2 (2π)2

Figure 3.6: Regions of instability (Arnold tongues) for the linearized pen-
dulum.

Exercise 3.45. What can you say about the stability of the inverted pendulum
using Lyapunov’s theorem (Theorem 2.108) or Exercise 2.114?

Let us consider the stability of the noninverted pendulum. Note that the
linearization of the differential equation (3.85) at θ = 0 is given by

w′′ + (α − βa(s))w = 0,

and let Ψ(s, α, β) denote the principal fundamental matrix solution at s = 0
of the corresponding homogeneous linear system. In this case, we have

tr Ψ(1, α, 0) = 2 cos
√

α.

Because the boundaries of the regions of instability are given by

| tr Ψ(1, α, β)| = 2,

they intersect the α-axis only if
√

α is an integer multiple of π. In view of
the equation α = g/(LΩ2), these observations suggest the zero solution is
unstable for small amplitude displacements whenever there is an integer n
such that the period of the displacement is

1
Ω

=
n

2

(
2π

(L

g

)1/2)
;

that is, the period of the displacement is a half-integer multiple of the
natural frequency of the pendulum. In fact, the instability of the pendulum
for a small amplitude periodic displacement with n = 1 is demonstrated in
every playground by children pumping up swings.

The proof that the instability boundaries do indeed cross the α-axis
at the “resonant” points (α, β) = ((nπ)2, 0), for n = 1, . . . ,∞, is obtained
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from an analysis of the Taylor expansion of the function given by Ψ(1, α, β)
at each resonant point (see Exercise 3.46). Typically, the instability regions
are as depicted in Figure 3.6. The instability region with n = 1 is “open”
at β = 0 (the tangents to the boundary curves have distinct slopes); the
remaining instability regions are “closed.” It is an interesting mathematical
problem to determine the general shape of the stability regions (see [101],
[153], [154], and [149]).

Exercise 3.46. Suppose that a(s) = sin(2πs) and set

g(α, β) = tr Ψ(1, α, β) − 2.

Show that gα((nπ)2, 0) = 0 and gβ((nπ)2, 0) = 0. Thus, the implicit function
theorem cannot be applied directly to obtain the boundaries of the regions of
instability, the boundary curves are singular at the points where they meet the
α-axis. By computing appropriate higher order derivatives and analyzing the
resulting Taylor expansion of g, show that the regions near the α-axis are indeed
as depicted in Figure 3.6. Also, show that the regions become “thinner” as n
increases.

3.6 Origins of ODE: Partial Differential Equations

In this section there is an elementary discussion of three big ideas:

• Certain partial differential equations (PDE) can be viewed as ordi-
nary differential equations with an infinite dimensional phase space.

• Finite dimensional approximations of some PDE are systems of ordi-
nary differential equations.

• Traveling wave fronts in PDE can be determined by ordinary differ-
ential equations.

While these ideas are very important and therefore have been widely stud-
ied, only a few elementary illustrations will be given here. The objective of
this section is to introduce these ideas as examples of how ordinary differ-
ential equations arise and to suggest some very important areas for further
study (see [32], [108], [107], [118], [177], [182], [206], [220], and [239]). We
will also discuss the solution of first order PDE as an application of the
techniques of ordinary differential equations.

Most of the PDE mentioned in this section can be considered as mod-
els of “reaction-diffusion” processes. To see how these models are derived,
imagine some substance distributed in a medium. The density of the sub-
stance is represented by a function u : R

n × R → R so that (x, t) �→ u(x, t)
gives its density at the site with coordinate x at time t.
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If Ω is a region in space with boundary ∂Ω, then the rate of change of the
amount of the substance in Ω is given by the flux of the substance through
the boundary of Ω plus the amount of the substance generated in Ω; that
is,

d

dt

∫
Ω

u dV = −
∫

∂Ω
X · η dS +

∫
Ω

f dV

where X is the vector field representing the motion of the substance; dV
is the volume element; dS is the surface element; the vector field η is the
outer unit normal field on the boundary of Ω; and f , a function of density,
position and time, represents the amount of the substance generated in Ω.
The minus sign on the flux term is required because we are measuring the
rate of change of the amount of substance in Ω. If, for example, the flow
is all out of Ω, then X · η ≥ 0 and the minus sign is required because the
rate of change of the amount of substance in Ω must be negative.

If Stokes’s theorem is applied to rewrite the flux term and the time
derivative is interchanged with the integral of the density, then∫

Ω
ut dV = −

∫
Ω

div X dV +
∫

Ω
f dV.

Moreover, because the region Ω is arbitrary in the integral identity, it is
easy to prove the fundamental balance law

ut = − div X + f. (3.88)

To obtain a useful dynamical equation for u from equation (3.88), we
need a constitutive relation between the density u of the substance and
the flow field X. It is not at all clear how to derive this relationship from
the fundamental laws of physics. Thus, we have an excellent example of
an important problem where physical intuition must be used to propose a
constitutive law whose validity can only be tested by comparing the results
of experiments with the predictions of the corresponding model. Problems
of this type lie at the heart of applied mathematics and physics.

For equation (3.88), the classic constitutive relation—called Darcy’s,
Fick’s, or Fourier’s law depending on the physical context—is

X = −K gradu + µV (3.89)

where K ≥ 0 and µ are functions of density, position, and time; and V
denotes the flow field for the medium in which our substance is moving.
The minus sign on the gradient term represents the assumption that the
substance diffuses from higher to lower concentrations.

By inserting the relation (3.89) into the balance law (3.88), we obtain
the dynamical equation

ut = div(K gradu) − div(µV ) + f. (3.90)
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Also, if we assume that the diffusion coefficient K is equal to k2 for some
constant k, the function µ is given by µ(u, x, t) = γu where γ is a constant,
and V is an incompressible flow field (div V = 0); then we obtain the most
often used reaction-diffusion-convection model equation

ut + γ gradu · V = k2∆u + f. (3.91)

In this equation, the gradient term is called the convection term, the Lapla-
cian term is called the diffusion term, and f is the source term. Let us also
note that if the diffusion coefficient is zero, the convection coefficient is
given by γ = 1, the source function vanishes, and V is not necessarily
incompressible, then the dynamical equation (3.90) reduces to the law of
conservation of mass, also called the continuity equation, given by

ut + div(uV ) = 0. (3.92)

Because equation (3.91) is derived from general physical principles, this
PDE can be used to model many different phenomena. As a result, there
is a vast scientific literature devoted to its study. We will not be able to
probe very deeply, but we will use equation (3.91) to illustrate a few aspects
of the analysis of these models where ordinary differential equations arise
naturally.

3.6.1 Infinite Dimensional ODE
A simple special case of the reaction-diffusion-convection model (3.91) is
the linear diffusion equation (the heat equation) in one spatial dimension,
namely, the PDE

ut = k2uxx (3.93)

where k2 is the diffusivity constant. This differential equation can be used
to model heat flow in an insulated bar. In fact, let us suppose that the bar is
idealized to be the interval [0, �] on the x-axis so that u(x, t) represents the
temperature of the bar at the point with coordinate x at time t. Moreover,
because the bar has finite length, let us model the heat flow at the ends of
the bar where we will consider just two possibilities: The bar is insulated
at both ends such that we have the Neumann boundary conditions

ux(0, t) = 0, ux(�, t) = 0;

or, heat is allowed to flow through the ends of the bar, but the temperature
at the ends is held constant at zero (in some appropriate units) such that
we have the Dirichlet boundary conditions

u(0, t) = 0, u(�, t) = 0.
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If one set of boundary conditions is imposed and an initial temperature
distribution, say x �→ u0(x), is given on the bar, then we would expect
that there is a unique scalar function (x, t) �→ u(x, t), defined on the set
[0, �] × [0,∞) that satisfies the PDE, the initial condition u(x, 0) = u0(x),
and the boundary conditions. Of course, if such a solution exists, then
for each t > 0, it predicts the corresponding temperature distribution
x �→ u(x, t) on the bar. In addition, if there is a solution of the boundary
value problem corresponding to each initial temperature distribution, then
we have a situation that is just like the phase flow of an ordinary differential
equation. Indeed, let us consider a linear space E of temperature distribu-
tions on the rod and let us suppose that if a function v : [0, �] → R is in E ,
then there is a solution (x, t) �→ u(x, t) of the boundary value problem with
v as the initial temperature distribution such that x �→ u(x, t) is a function
in E whenever t > 0. In particular, all the functions in E must satisfy the
boundary conditions. If this is the case, then we have defined a function
(0,∞) × E → E given by (t, v) �→ ϕt(v) such that ϕ0(v)(x) = v(x) and
(x, t) �→ ϕt(v)(x) is the solution of the boundary value problem with initial
temperature distribution v. In other words, we have defined a dynamical
system with (semi) flow ϕt whose phase space is the function space E of
possible temperature distributions on the bar. For example, for the Dirich-
let problem, we might take E to be the subset of C2[0, �] consisting of those
functions that vanish at the ends of the interval [0, �].

Taking our idea a step further, let us define the linear transformation A
on E by

Au = k2uxx.

Then, the PDE (3.93) can be rewritten as

u̇ = Au, (3.94)

an ordinary differential equation on the infinite dimensional space E . Also,
to remind ourselves of the boundary conditions, let us write A = AN
if Neumann boundary conditions are imposed and A = AD for Dirichlet
boundary conditions.

Although the linear homogeneous differential equation (3.94) is so simple
that its solutions can be given explicitly, we will see how the general solution
of the PDE can be found by treating it as an ordinary differential equation.

Let us begin by determining the rest points of the system (3.94). In fact, a
rest point is a function v : [0, �] → R that satisfies the boundary conditions
and the second order ordinary differential equation vxx = 0. Clearly, the
only possible choices are affine functions of the form v = cx+d where c and
d are real numbers. There are two cases: For AN we must have c = 0, but d
is a free variable. Thus, there is a line in the function space E corresponding
to the constant functions in E that consists entirely of rest points. For the
Dirichlet case, both c and d must vanish and there is a unique rest point
at the origin of the phase space.
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Having found the rest points for the differential equation (3.94), let us
discuss their stability. By analogy with the finite dimensional case, let us
recall that we have discussed two methods that can be used to determine
the stability of rest points: linearization and Lyapunov’s direct method.
In particular, for the finite dimensional case, the method of linearization is
valid as long as the rest point is hyperbolic, and, in this case, the eigenvalues
of the system matrix for the linearized system at the rest point determine
its stability type.

Working formally, let us apply the method of linearization at the rest
points of the system (3.94). Since this differential equation is already linear,
we might expect the stability of these rest points to be determined from
an analysis of the position in the complex plane of the eigenvalues of the
system operator A. By definition, if λ is an eigenvalue of the operator AD
or AN , then there must be a nonzero function v on the interval [0, �] that
satisfies the boundary conditions and the ordinary differential equation

k2vxx = λv.

If v is an eigenfunction with eigenvalue λ, then we have that∫ �

0
k2vxxv dx =

∫ �

0
λv2 dx. (3.95)

Let us suppose that v is square integrable, that is,∫ �

0
v2 dx < ∞

and also smooth enough so that integration by parts is valid. Then, equa-
tion (3.95) is equivalent to the equation

vxv
∣∣∣�
0

−
∫ �

0
v2

x dx =
λ

k2

∫ �

0
v2 dx.

Thus, if either Dirichlet or Neumann boundary conditions are imposed,
then the boundary term from the integration by parts vanishes, and there-
fore the eigenvalue λ must be a nonpositive real number.

For AD, if λ = 0, then there is no nonzero eigenfunction. If λ < 0, then
the eigenvalue equation has the general solution

v(x) = c1 cos αx + c2 sin αx

where α := (−λ)1/2/k and c1 and c2 are constants; and, in order to satisfy
the Dirichlet boundary conditions, we must have(

1 0
cos α� sin α�

)(
c1
c2

)
=

(
0
0

)
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for some nonzero vector of constants. In fact, the determinant of the matrix
must vanish, and we therefore have to impose the condition that α� is an
integer multiple of π; or equivalently,

λ = −
(nπk

�

)2

with a corresponding eigenfunction given by

x �→ sin
nπ

�
x

for each integer n = 1, 2, . . . ,∞. By a similar calculation for AN , we have
that λ = 0 is an eigenvalue with a corresponding eigenfunction v ≡ 1, and
again the same real numbers

λ = −
(nπk

�

)2

are eigenvalues, but this time with corresponding eigenfunctions

x �→ cos
nπ

�
x.

The nature of the real parts of the eigenvalues computed in the last para-
graph and the principle of linearized stability suggest that the origin is an
asymptotically stable rest point for the Dirichlet problem. On the other
hand, the rest points of the Neumann problem seem to be of a different
type: each of these rest points would appear to have a one-dimensional
center manifold and an infinite dimensional stable manifold. All of these
statements are true. But to prove them, certain modifications of the corre-
sponding finite dimensional results are required. For example, the principle
of linearized stability is valid for rest points of infinite dimensional ODE
under the assumption that all points in the spectrum of the operator given
by the linearized vector field at the rest point (in our case the operator A)
have negative real parts that are bounded away from the imaginary axis
in the complex plane (see, for example, [206, p. 114]). More precisely, the
required hypothesis is that there is some number α > 0 such that the real
part of every point in the spectrum of the operator is less than −α. In gen-
eral, the principle of linearized stability fails for rest points of differential
equations in infinite dimensional spaces (see Exercise 3.48).

Recall that a complex number λ is in the spectrum of the linear operator
A if the operator A − λI does not have a bounded inverse. Of course, if
v �= 0 is an eigenfunction with eigenvalue λ, then the operator A−λI is not
injective and indeed λ is in the spectrum. In a finite dimensional space, if an
operator is injective, then it is invertible. Hence, the only complex numbers
in the spectrum of a finite dimensional linear operator are eigenvalues. But,
in an infinite dimensional space, there can be points in the spectrum that
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are not eigenvalues (see [78]). For example, let us define the space L2(0, �)
to be all (real) functions v : [0, �] → R such that∫ �

0
v2(x) dx < ∞ (3.96)

where we consider two such functions v and w to be equal if∫ �

0
(v(x) − w(x))2 dx = 0,

and consider the operator B : L2 → L2 given by (Bf)(x) �→ xf(x). This
operator has no eigenvalues, yet the entire interval [0, �] is in its spectrum.
(Why?)

The operators AD and AN , considered as operators defined in L2(0, �),
have spectra that consist entirely of eigenvalues (pure point spectrum). To
prove this claim, note first that these operators are not defined on all of
L2. After all, a square integrable function does not have to be differen-
tiable. Instead, we can view our operators to be defined on the subset of
L2 consisting of those functions that have two derivatives both contained
in L2. Then, the claim about the spectra of AD and AN can be proved in
two steps. First, if a complex number λ is not an eigenvalue, then for all
w ∈ L2 there is some function v that satisfies the boundary conditions and
the differential equation

k2vxx − λv = w.

In other words, there is an operator B : L2 → L2 given by Bw = v
such that (A − λI)Bw = w. The boundedness of B is proved from the
explicit construction of B as an integral operator. Also, it can be proved
that B(A − λI)v = v for all v in the domain of A (see Exercise 3.47).
Using these facts and the theorem on linearized stability mentioned above,
it follows that the origin is an asymptotically stable rest point for the
Dirichlet problem.

Exercise 3.47. Show that the spectrum of the operator in L2(0, �) given by
Av = vxx with either Dirichlet or Neumann boundary conditions consists only of
eigenvalues. Prove the same result for the operator Av = avxx + bvx + cv where
a, b, and c are real numbers.

Exercise 3.48. This exercise discusses an example (a slight modification of an
example in [45, p. 32]) of an infinite dimensional linear differential equation such
that the spectrum of the system matrix is in the left half-plane and the trivial
solution is unstable. It requires some Hilbert space theory. For each n ≥ 1 let An

denote the n × n-matrix with ai,i+1 = 1 and all other components zero (that is,
the super diagonal is all ones, every other component is zero). Let H denote the
(complex) Hilbert space X = ⊕n≥1C

n with the �2-norm, and define the operator
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A in H by Ax = {Anxn + 2πinxn}∞
n=1. (a) Prove that An is nilpotent and the

spectrum of An is {0}. (b) Prove that An is an unbounded operator and it can
be densely defined in H. (c) Prove that {2πin : n ≥ 1} are eigenvalues of A.
(d) Prove that the differential equation ẋ = (A − 1

2I)x on H has the solution
T tx = {e−t/2e2πintetAn}∞

n=1, which is a semi-group defined for t ≥ 0. (e) Prove
that the spectrum of A − 1

2I lies in the left half-plane. Hint: Show that the
resolvent of A (that is, R(A, λ) = (A − λI)−1) is a bounded operator whenever
the real part of λ is greater than zero using the following fact: The resolvent of An

can be represented as a finite sum. (f) Let pn := (1, 1, . . . , 1)/
√

n ∈ Cn and let xn

denote the element of H such that the nth component of xn is pn and all other
components are zero. Prove that ‖xn‖ = 1. (g) Prove that limn→∞ |etAnpn −
etpn| = 0 for each fixed t ≥ 0. (h) Prove that T t is not stable. Hint: It suffices
to show that, for the semigroup St generated by A, if C > 1 is given, there is an
element x ∈ H such that ‖x‖ = 1 and ‖Stx‖ ≥ Cet/2. Prove this inequality using
part (g).

In view of our results for finite dimensional linear systems, we expect that
if we have a linear evolution equation v̇ = Av, even in an infinite dimen-
sional phase space, and if Aw = λw, then etλw is a solution. This is indeed
the case for the PDE (3.93). Moreover, for linear evolution equations, we
can use the principle of superposition to deduce that every linear combi-
nation of solutions of this type is again a solution. If we work formally,
that is, without proving convergence, and if we use the eigenvalues and
eigenvectors computed above, then the “general solution” of the Dirichlet
problem is given by

u(x, t) =
∞∑

n=1

e−( nπk
� )2tan sin

nπ

�
x,

and the general solution of the Neumann problem is given by

u(x, t) =
∞∑

n=0

e−( nπk
� )2tbn cos

nπ

�
x

where an and bn are real numbers.
If the initial condition u(x, 0) = u0(x) is given, then, for instance, for the

Dirichlet problem we must have that

u0(x) =
∞∑

n=1

an sin
nπ

�
x.

In other words, the initial function u0 must be represented by a Fourier
sine series. What does this mean? The requirement is that the Fourier sine
series converges to u0 in the space L2 endowed with its natural norm,

‖v‖ :=
(∫ �

0
v2(x) dx

)1/2
.
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In fact, the inner product space L2 is a Hilbert space; that is, with respect
to this norm, every Cauchy sequence in L2 converges (see [199]). The precise
requirement for u0 to be represented by a Fourier sine series is that there
are real numbers an and corresponding L2 partial sums

N∑
n=1

an sin
nπ

�
x

such that

lim
N→∞

‖u0 − uN‖ = 0.

If the initial function u0 is continuous, then for our special case the cor-
responding solution obtained by Fourier series also converges pointwise to
a C2 function that satisfies the PDE in the classical sense. We will show in
a moment that this solution is unique, and therefore the special solutions
of the PDE obtained from the eigenvalues and corresponding eigenfunc-
tions do indeed form a fundamental set of solutions for our boundary value
problems.

There are several ways to prove that solutions of the diffusion equation
with a given initial condition are unique. We will use the “energy method”;
an alternative uniqueness proof is based on the maximum principle (see
Exercise 3.49). To show the uniqueness result, let us note that if two so-
lutions of either the Dirichlet or Neumann boundary value problem satisfy
the same initial condition, then the difference u of these two solutions is
a solution of the same boundary value problem but with initial value the
zero function. Using an integration by parts, we also have the equality

d

dt

∫ �

0

1
2
u2 dx =

∫ �

0
utu dx = k2

∫ �

0
uxxu dx = −k2

∫ �

0
u2

x dx.

It follows that the function

t �→
∫ �

0

1
2
u2(x, t) dx

is not increasing, and therefore it is bounded above by its value at t = 0,
namely, ∫ �

0

1
2
u2(x, 0) dx = 0.

The conclusion is that u(x, t) ≡ 0, as required.

Exercise 3.49. Prove the maximum principle: If ut(x, t) = k2uxx(x, t) is a C2

function on the open rectangle (0, �) × (0, T ) and a continuous function on the
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closure of this rectangle, then the maximum of the function u is assumed either
on the line (0, �) × {0} or on one of the lines

{0} × [0, T ], {�} × [0, T ].

Also, use the maximum principle to prove the uniqueness of solutions of the
boundary value problem with initial condition for the diffusion equation. Hint:
Use calculus (see [217, p. 41]).

Exercise 3.50. Solve the PDE (3.93) by the method of separation of variables;
that is, assume that there is a solution of the form u(x, t) = p(x)q(t), substitute
this expression into the PDE, impose the boundary conditions, and determine
the general form of the functions p and q.

Using the explicit form of the Fourier series representations of the gen-
eral solutions of the heat equation with Dirichlet or Neumann boundary
conditions, we can see that these solutions are very much like the solutions
of a homogeneous linear ordinary differential equation: They are expressed
as superpositions of fundamental solutions and they obviously satisfy the
flow property ϕs(ϕt(v)) = ϕs+t(v) as long as s and t are not negative (the
series solutions do not necessarily converge for t < 0). Because of this re-
striction on the time variable, the solutions of our evolution equation are
said to be semi-flows or semi-groups.

In the case of Dirichlet boundary conditions, if we look at the series
solution, then we can see immediately that the origin is in fact globally
asymptotically stable. For the Neumann problem there is a one-dimensional
invariant manifold of rest points, and all other solutions are attracted expo-
nentially fast to this manifold. Physically, if the temperature is held fixed
at zero at the ends of the bar, then the temperature at each point of the bar
approaches zero at an exponential rate, whereas if the bar is insulated at
its ends, then the temperature at each point approaches the average value
of the initial temperature distribution.

Our discussion of the scalar diffusion equation, PDE (3.93), has served
to illustrate the view that a (parabolic) PDE is an ordinary differential
equation on an infinite dimensional space. Moreover, as we have seen, if
we choose to study a PDE from this viewpoint, then our experience with
ordinary differential equations can be used to advantage as a faithful guide
to its analysis.

Exercise 3.51. Verify the semi-flow property ϕs(ϕt(v)) = ϕs+t(v) for the solu-
tions of the scalar heat equation with Dirichlet or Neumann boundary conditions.
Generalize this result to the equation ut = uxx +f(u) under the assumption that
every initial value problem for this equation has a local solution. Hint: How is
the flow property proved for finite dimensional autonomous equations?
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Let us now consider the nonlinear PDE

ut = k2uxx + f(u, x, t), 0 < x < �, t > 0 (3.97)

where f is a smooth function that represents a heat source in our heat
conduction model.

To illustrate the analysis of rest points for a nonlinear PDE, let us as-
sume that the source term f for the PDE (3.97) depends only on its first
argument, and let us impose, as usual, either Dirichlet or Neumann bound-
ary conditions. In this situation, the rest points are given by those solutions
of the ordinary differential equation

k2uxx + f(u) = 0 (3.98)

that also satisfy the Dirichlet or Neumann boundary conditions.
The boundary value problem (3.98) is an interesting problem in ordinary

differential equations. Let us note first that if we view the independent
variable as “time,” then the second order differential equation (3.98) is just
Newton’s equation for a particle of mass k2 moving in a potential force
field with force −f(u). In addition, the corresponding first order system in
the phase plane is the Hamiltonian system

u̇ = v, v̇ = −f(u)

whose total energy is given by

H(u, v) :=
k2

2
v2 + F (u)

where F , the potential energy, can be taken to be

F (u) :=
∫ u

0
f(w) dw,

and, as we know, the phase plane orbits all lie on curves of constant energy.
We will use these facts below.

A rest point of the PDE (3.97) with our special form of f and Dirichlet
boundary conditions corresponds to a trajectory in the phase plane that
starts on the v-axis and returns to the v-axis again exactly at time x = �.
On the other hand, a rest point for the PDE with Neumann boundary
conditions corresponds to a trajectory in the phase plane that starts on
the u-axis and returns to the u-axis at time x = �.

Though the nonlinear boundary value problems that have just been de-
scribed are very difficult in general, they can be “solved” in some important
special cases. As an example, let us consider the following Dirichlet bound-
ary value problem

ut = uxx + u − u3, u(0, t) = 0, u(�, t) = 0 (3.99)
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v

u

Figure 3.7: Phase portrait of the system u̇ = v v̇ = −u + u3.

(see Exercise 3.54 for Neumann boundary conditions). Note first that the
constant functions with values 0 or ±1 are solutions of the differential
equation uxx +u−u3 = 0, but only the zero solution satisfies the Dirichlet
boundary conditions. Thus, there is exactly one constant rest point. Let us
determine if there are any nonconstant rest points.

The phase plane system corresponding to the steady state equation for
the PDE (3.99) is given by

u̇ = v, v̇ = −u + u3.

It has saddle points at (±1, 0) and a center at (0, 0). Moreover, the period
annulus surrounding the origin is bounded by a pair of heteroclinic orbits
that lie on the curve

1
2
v2 +

1
2
u2 − 1

4
u4 =

1
4

(see Figure 3.7). Using this fact, it is easy to see that the interval (0, 1/
√

2)
on the v-axis is a Poincaré section for the annulus of periodic orbits. Also, a
glance at the phase portrait of the system shows that only the solutions that
lie on these periodic orbits are candidates for nonconstant steady states for
the PDE; they are the only periodic orbits in the phase plane that meet the
v-axis at more than one point. Also, let us notice that the phase portrait
is symmetric with respect to each of the coordinate axes. In view of this
symmetry, if we define the period function

T :
(
0,

1√
2

)
→ R (3.100)

so that T (a) is the minimum period of the periodic solution starting at
u(0) = 0, v(0) = a, then

u(
1
2
T (a)) = 0, v(

1
2
T (a)) = −a.
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Hence, solutions of our boundary value problem that correspond to rest
points for the PDE also correspond to periodic solutions whose half-periods
are exactly some integer submultiple of �; equivalently, these solutions cor-
respond to those real numbers a such that 0 < a < 1/

√
2 and T (a) = 2�/n

for some positive integer n. In fact, each such a corresponds to exactly
two rest points of the PDE; namely, x �→ u(x) and x �→ u(� − x) where
x �→ (u(x), v(x)) is the phase trajectory such that u(0) = 0 and v(0) = a.

The number and position in the phase plane of all rest point solutions
of the PDE can be determined from the following three propositions: (i)
T (a) → 2π as a → 0+; (ii) T (a) → ∞ as a → (1/

√
2)−; and (iii) T ′(a) > 0

(see Exercise 3.52). Using these facts, it follows that there is at most a
finite number of rest points that correspond to the integers 1, 2, . . . , n such
that n < �/π.

Exercise 3.52. Prove that the period function T given in display (3.100) has a
positive first derivative. Hint: Find the explicit time-dependent periodic solutions
of the first order system u̇ = v, v̇ = −u + u3 using Jacobi elliptic functions. For
a different method, see [34] and [196].

Exercise 3.53. Find the rest points for the Dirichlet boundary value problem

ut = uxx + au − bu2, u(x, 0) = 0, u(x, �) = 0

(see [41]).

Are the rest points of the PDE (3.99) stable? It turns out that the sta-
bility problem for nonconstant rest points, even for our scalar PDE, is too
difficult to describe here (see [206, p. 530]). On the other hand, we can say
something about the stability of the constant rest point at the origin for
the PDE (3.99). In fact, let us note that if � < π, then it is the only rest
point. Moreover, its stability can be determined by linearization.

Let us first describe the linearization procedure for a PDE. The correct
formulation is simple if we view the PDE as an ordinary differential equa-
tion on a function space. Indeed, we can just follow the recipe for linearizing
an ordinary differential equation of the form u̇ = g(u). Let us recall that if
z is a rest point and g is a smooth function, then the linearization of the
ordinary differential equation at z is

ẋ = Dg(z)(x − z),

or equivalently

ẇ = Dg(z)w

where w := x − z. Moreover, if the eigenvalues of Dg(z) all have negative
real parts, then the rest point z is asymptotically stable (see Section 2.3).
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In order to linearize at a rest point of a PDE, let us suppose that the
function x �→ z(x) is a rest point for the PDE

ut = g(u)

where g(u) := uxx + f(u) and f : R → R is a differentiable function. If the
domain of AD is viewed as the function space C2[0, �], then the function
g : C2[0, �] → C0[0, �] is differentiable. This statement follows because the
function u �→ uxx is linear and the function f is smooth. But there is a
subtle point: in the definition of g we must view the notation f(u) to mean
f◦u where u ∈ C2[0, �]. The difficulty is that the smoothness of the function
u �→ f ◦u depends on the topology of the function space to which u belongs
(see Example 1.221).

Once we know that g is differentiable, its derivative can be easily com-
puted as a directional derivative; in fact,

Dg(z)v =
d

dt
g(z + tv)

∣∣∣
t=0

= vxx + Df(z)v.

Therefore, by definition, the linearized equation at the rest point z is given
by

ẇ = wxx + Df(z(x))w. (3.101)

For a nonconstant rest point, the linearized equation (3.101) depends on
the space variable x. The determination of stability in this case is often
quite difficult—-recall the stability analysis for periodic solutions of finite
dimensional ordinary differential equations. For a constant rest point, the
linearized equation has the form ẇ = Aw where A is the linear operator
given by w �→ wxx+Df(z)w for z a fixed number. In this case, as mentioned
previously, it seems natural to expect the following result: If the spectrum
of A is in the open left half-plane and bounded away from the imaginary
axis, then the rest point is asymptotically stable. In fact, this result, when
properly interpreted, is true for the PDE (3.99). But to prove it, we have
to specify the function space on which the spectrum is to be computed and
recast the arguments used for ordinary differential equations in an infinite
dimensional setting. For the PDE (3.99) the idea—derived from our study
of ordinary differential equations—of applying the principle of linearized
stability is justified, but some functional analysis is required to carry it out
(see [206, Chapter 11]).

Our example is perhaps too simple; there are PDE where the linearized
stability of a steady state can be easily proved, but the stability of the rest
point is an open question. The problem for a general PDE of the form

ut = Au + f(u)

is that the linear operator A, the function f , and the linearized operator
A+Df(z) must all satisfy additional hypotheses before the ODE arguments
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for the validity of the principle of linearized stability can be verified in the
infinite dimensional case. This fact is an important difference between the
theory of ordinary differential equations and the theory of PDE.

Let us put aside the theoretical justification of linearized stability and re-
consider the rest point at the origin for the PDE (3.99) where the linearized
system is given by

wt = wxx + w, w(0) = 0, w(�) = 0.

In this case, the spectrum of the differential operator defined by

Aw = wxx + w

consists only of eigenvalues (see Exercise 3.47). In fact, using the analysis
of the spectrum of the operator w → wxx given above, the spectrum of A
is easily obtained by a translation. In fact, the spectrum is{

1 −
(nπ

�

)2
: n = 1, 2, . . . ,∞

}
.

Because

1 −
(nπ

�

)2
≤ 1 −

(π

�

)2
,

the spectrum of A lies in the left half of the complex plane and is bounded
away from the imaginary axis if and only if 1 < π2/�2. Hence, using this
fact and assuming the validity of the principle of linearized stability, we
have the following proposition: If � < π, then the origin is the only steady
state and it is asymptotically stable.

Let us go one step further in our qualitative analysis of the PDE ut =
uxx + f(u) by showing that there are no periodic solutions. In fact, this
claim is true independent of the choice of � > 0 and for an arbitrary smooth
source function f . The idea for the proof, following the presentation in [206],
is to show that there is a function (essentially a Lyapunov function) that
decreases on orbits. In fact, let us define

E(u) = −
∫ �

0

(1
2
u(x)uxx(x) + F (u(x))

)
dx

where F is an antiderivative of f and note that

Ė = −
∫ �

0

(1
2
utuxx +

1
2
uutxx + f(u)ut

)
dx.

After integration by parts twice for the integral of the second term in
the integrand, and after imposing either Dirichlet or Neumann boundary
conditions, it follows that

Ė = −
∫ �

0
(uxx + f(u))ut dx = −

∫ �

0
(uxx + f(u))2 dx.
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Hence, except for the rest points, the time derivative of E is negative along
orbits. In particular, there are no periodic orbits. Can the function E be
used to give a proof of the stability of the rest point at the origin?

For the PDE (3.99) with � < π we have now built up a rather complete
picture of the phase portrait. In fact, we know enough to conjecture that
there is a unique rest point that is globally asymptotically stable. Is this
conjecture true?

Exercise 3.54. Analyze the existence of rest points, the stability types of con-
stant rest points, and the phase portrait for the Neumann boundary value prob-
lem

ut = uxx + u − u3, ux(0, t) = 0, ux(�, t) = 0.

Note that there are three constant rest points. Use equation (3.101) to determine
their stability types.

3.6.2 Galërkin Approximation
Since most differential equations, ODE or PDE, cannot be solved, it is nat-
ural to seek approximate solutions. For example, numerical methods are
often used to obtain approximate values of state variables. But the utility
of approximation methods goes far beyond number crunching: approxima-
tions are used to gain insight into the qualitative behavior of dynamical
systems, to test computer codes, and to obtain existence proofs. Indeed,
approximation methods are central elements of applied mathematics. In
this section we will take a brief look at a special case of Galërkin’s method,
one of the classic approximation methods for PDE. It is one of an array of
methods that are based on the idea of finding finite dimensional approxi-
mations of infinite dimensional dynamical systems.

As a remark, let us note that other approximation methods for PDE
are based on the idea of finding finite dimensional invariant (or approx-
imately invariant) submanifolds in the infinite dimensional phase space.
Recall that rest points and periodic orbits are finite dimensional invariant
submanifolds. But these are only the simplest examples. In fact, let us note
that a rest point or a periodic orbit might have an infinite dimensional sta-
ble manifold and a finite dimensional center manifold. In this case, the local
dynamical behavior is determined by the dynamics on the center manifold
because nearby orbits are attracted to the center manifold. An important
generalization of this basic situation is the concept of an inertial manifold.
By definition, an inertial manifold M is a finite dimensional submanifold
in the phase space that has two properties: M is positively invariant, and
every solution is attracted to M at an exponential rate (see [220]).

In general, if there is an attracting finite dimensional invariant manifold,
then the dynamical system restricted to this invariant set is an ordinary
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differential equation that models the asymptotic behavior of the full in-
finite dimensional PDE. In particular, the ω-limit set of every solution
lies on this manifold. Thus, the existence of such an invariant manifold
provides the theoretical basis for a complete understanding of the infinite
dimensional dynamical system using the techniques of ordinary differential
equations. Unfortunately, it is usually very difficult to prove the existence of
attracting invariant manifolds. Even if an invariant manifold does exist, it
is often equally difficult to obtain a specification of the manifold that would
be required to reduce the original infinite dimensional dynamical system
to an ordinary differential equation. As an alternative, an approximation
method—such as Galërkin’s method—that does not require the existence
of an invariant manifold can often be employed with great success.

The following philosophical question seems to accompany all theoreti-
cal approximation methods for PDE “Is the set of reduced equations—
presumably a system of nonlinear ordinary differential equations—easier
to analyze than the original PDE?” In general, the answer to this ques-
tion is clearly “no.” If, however, the finite dimensional approximation is
low dimensional or of some special form, then often qualitative analysis is
possible, and useful insights into the dynamics of the original system can
be obtained. Perhaps the best answer to the question is to avoid the im-
plied choice between infinite dimensional and finite dimensional analysis.
The best approach to an applied problem is with a mind free of prejudice.
Often several different methods, including physical thinking and numerical
analysis, are required to obtain consistent and useful predictions from a
model.

Let us begin our discussion of the Galërkin approximation method with
an elementary, but key idea. Recall that a (real) vector space H is an inner
product space if there is a bilinear form (denoted here by angle brackets)
such that if h ∈ H, then 〈h, h〉 ≥ 0 and 〈h, h〉 = 0 if and only if h = 0.
It follows immediately that if v ∈ H and 〈v, h〉 = 0 for all h ∈ H, then
v = 0. We will use this fundamental result to solve equations in H. Indeed,
suppose that we wish to find a solution of the (linear) equation

Au = b. (3.102)

If there is a vector u0 ∈ H such that 〈Au0 − b, h〉 = 0 for all h ∈ H, then
u0 is a solution of the equation.

Definition 3.55. Suppose that S is a subspace of the Hilbert space H.
A Galërkin approximation of a solution of equation (3.102) is an element
uS ∈ S such that

〈AuS − b, s〉 = 0

for all s ∈ S.

Of course, every h ∈ H is an approximation of a solution. To obtain
a useful approximation, we will consider a sequence of subspaces, S1 ⊂
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S2 ⊂ · · · , whose union is dense in H together with corresponding Galërkin
approximations un ∈ Sn such that 〈Aun − b, s〉 = 0 for all s ∈ Sn. In this
case, we might expect that the sequence u1, u2, . . . converges to a solution
of the equation (3.102).

If H is a finite dimensional inner product space and the subspaces

S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ H

are strictly nested, then a corresponding sequence of Galërkin approxima-
tions is finite. Thus, we do not have to worry about convergence. But, if H
is an infinite dimensional Hilbert space, then the approximating subspaces
must be chosen with care in order to ensure the convergence of the sequence
of Galërkin approximations.

Let us recall that a sequence B = {νi}∞
i=1 of linearly independent ele-

ments in H is called a Hilbert space basis if the linear manifold S spanned
by B—all finite linear combinations of elements in B—is dense in H; that
is, if h ∈ H, then there is a sequence in S that converges to h in the natural
norm defined from the inner product. A Hilbert space that has such a basis
is called separable.

Galërkin’s principle. Suppose that H is a Hilbert space, B = {νi}∞
i=1 is

a Hilbert space basis for H, and A : H → H is a linear operator. Also,
for each positive integer n, let Sn denote the linear manifold spanned by
the finite set {ν1, . . . , νn}. Then, for each positive integer n, there is some
un ∈ Sn such that 〈Aun − b, s〉 = 0 for all s ∈ Sn. Moreover, the sequence
{un}∞

n=1 converges to a solution of the equation Au = b.

The Galërkin principle is not a theorem. In fact, the Galërkin approxima-
tions may not exist or the sequence of approximations may not converge.
The applicability of the method depends on the equation we propose to
solve, the choice of the space H, and the choice of the basis B.

Existence of Weak Solutions

Let us consider the steady state equation

−uxx + g(x)u − f(x) = 0, 0 < x < �, (3.103)

with either Dirichlet or Neumann boundary conditions where f and g are
smooth functions defined on the interval [0, �]. The basic idea is to look for
a weak solution. To see what this means, note that if u is a solution of the
differential equation (3.103), then∫ �

0
(−uxx + gu − f)φ dx = 0 (3.104)

whenever φ is a square integrable function defined on [0, �]. In the Hilbert
space L2(0, �) (see display (3.96)), the inner product of two functions v and
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w is

〈v, w〉 :=
∫ �

0
v(x)w(x) dx.

Therefore, if u is a solution of the equation (3.103), then equation (3.104)
merely states that the inner product of φ with the zero function in L2

vanishes. Moreover, if we define the operator Au = −uxx + gu and the
function b = f , then 〈Au − b, φ〉 = 0 whenever φ is in the Hilbert space
L2(0, �). Turning this analysis around, we can look for a function u such
that 〈Au − b, φ〉 = 0 for all φ in L2. In this case u is called a weak solution
of the PDE.

Although L2 is a natural Hilbert spaces of functions, the following prob-
lem arises if we try to apply the Galërkin method in L2 to the PDE (3.103):
the elements in L2 are not all differentiable; therefore, the operator A is
not defined on all of L2(0, �).

In which Hilbert space should we look for a solution? By asking this
question, we free ourselves from the search for a classical or strong solution
of the PDE (3.103), that is, a twice continuously differentiable function
that satisfies the PDE and the boundary conditions. Instead, we will seek
a weak solution by constructing a Hilbert space H whose elements are in
L2 such that a Galërkin formulation of our partial differential equation
makes sense in H. If our boundary value problem has a classical solution,
and we choose the Hilbert space H as well as the Galërkin formulation
appropriately, then the L2 equivalence class of the classical solution will
also be in H. Moreover, if we are fortunate, then the weak solution of the
boundary value problem obtained by applying the Galërkin principle in H
will be exactly the equivalence class of the classical solution.

To construct the appropriate Hilbert space of candidate solutions for the
equation (3.104), let us first formally apply the fundamental method for
PDE (that is, integration by parts) to obtain the identity∫ �

0
(−uxx + gu − f)φ dx =

∫ �

0
(uxφx + guφ − fφ) dx − uxφ

∣∣∣�
0
. (3.105)

If the functions φ and u are sufficiently smooth so that the integration by
parts is valid, then equation (3.104) is equivalent to an equation involving
only first derivatives with respect to the variable x, namely, the equation∫ �

0
(uxφx + guφ) dx − uxφ

∣∣∣�
0

=
∫ �

0
fφ dx. (3.106)

In other words, to use equation (3.106) as a Galërkin formulation of our
boundary value problem, we must define a Hilbert space H whose elements
have one derivative with respect to x in L2. Moreover, suppose that such
a Hilbert space H exists. If we find a function u ∈ H such that equa-
tion (3.106) holds for all φ ∈ H and u happens to be smooth, then the inte-
gration by parts is valid and we also have a solution of equation (3.104) for
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all smooth functions φ. Using this fact, it is easy to prove that u satisfies the
PDE (3.103) pointwise, that is, u is a classical solution (see Exercise 3.56).

Exercise 3.56. Suppose that u is a C2 function. If equation (3.104) holds for
every φ ∈ C∞, then prove that −uxx + g(x)u − f(x) = 0.

If Dirichlet boundary conditions are imposed, then the boundary condi-
tions must be built into the Hilbert space of test functions from which we
select φ. In other words, we must impose the condition that the test func-
tions satisfy the Dirichlet boundary conditions. The appropriate Hilbert
space H1

D(0, �) is defined to be the completion with respect to the Sobolev
norm of the set of smooth functions on [0, �] that satisfy the Dirichlet
boundary conditions. Here, the Sobolev norm of a function φ is given by

‖φ‖1 :=
(∫ �

0
φ2(x) dx +

∫ �

0
φ2

x(x) dx
)1/2

.

The Sobolev space H1
D(0, �) is a Hilbert space with respect to the inner

product

〈φ, ψ〉1 =
∫ �

0
φψ dx +

∫ �

0
φxψx dx.

Informally, H1
D(0, �) is the space of functions that satisfy the Dirichlet

boundary conditions and have one derivative in L2.
We have the following Galërkin or weak formulation of our Dirichlet

boundary value problem: Find u ∈ H1
D(0, �) such that

(u, φ) :=
∫ �

0
(uxφx + guφ) dx =

∫ �

0
fφ dx = 〈f, φ〉 (3.107)

for all φ ∈ H1
D(0, �). (Note: In equation (3.107) the inner product 〈f, φ〉 is

the L2 inner product, not the H1 inner product.) If u is a weak solution
of the Dirichlet boundary value problem, then, using the definition of the
Sobolev space, we can be sure that u is the limit of smooth functions that
satisfy the boundary conditions. Of course, u itself is only defined abstractly
as an equivalence class, thus it only satisfies the boundary conditions in
the generalized sense, that is, u is the limit of a sequence of functions that
satisfy the boundary conditions.

For the Neumann boundary value problem, again using equation (3.105),
the appropriate space of test functions is H1(0, �), the space defined just like
H1

D except that no boundary conditions are imposed. This requires a bit of
explanation. First, we have the formal statement of the weak formulation
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of the Neumann problem: Find a function u in H1(0, �) such that, with the
same notation as in display (3.107),

(u, φ) = 〈f, φ〉

for all φ ∈ H1(0, �). We will show the following proposition: If u is smooth
enough so that the integration by parts in display (3.105) is valid and
the equivalence class of u in H1(0, �) is a weak solution of the Neumann
problem, then u satisfies the Neumann boundary conditions. In fact, if
φ ∈ H1

D(0, �) ⊂ H1(0, �), then φ is a limit of smooth functions that satisfy
the Dirichlet boundary conditions. By using integration by parts for a se-
quence of smooth functions converging to φ in H1

D(0, �) and passing to the
limit, we have the identity∫ �

0
(−uxx + gu)φ dx =

∫ �

0
fφ dx (3.108)

for all φ ∈ H1
D(0, �). In other words, −uxx + gu − f is the zero element

of H1
D(0, �). By Exercise 3.57, the space H1

D(0, �) is a dense subspace of
H1(0, �). Thus, it is easy to see that the identity (3.108) holds for all
φ ∈ H1(0, �). Finally, by this identity, the boundary term in the integra-
tion by parts formula in display (3.105) must vanish for each φ ∈ H1(0, �);
hence u satisfies the Neumann boundary conditions, as required. Our weak
formulation is therefore consistent with the classical boundary value prob-
lem: If a weak solution of the Neumann boundary value problem happens
to be smooth, then it will satisfy the Neumann boundary conditions.

Exercise 3.57. Prove that H1
D(0, �) is a dense subspace of H1(0, �).

Our analysis leads to the natural question “If a weak solution exists,
then is it automatically a strong (classical) solution?” The answer is “yes”
for the example problems that we have formulated here, but this impor-
tant regularity result is beyond the scope of our discussion. Let us simply
remark that the regularity of the weak solution depends on the form of
the PDE. It is also natural to ask if our weak boundary value problems
have solutions. While the existence theory for boundary value problems is
difficult in general, we will formulate and prove an elementary result that
implies the existence of solutions for some of the examples that we have
considered. The proof of this result uses the contraction principle.

Let us suppose that H is a real Hilbert space, that ( , ) is a bilinear
form on H (it maps H × H → R), 〈 , 〉 is the inner product on H, and
‖ ‖ := 〈 , 〉1/2 is the natural norm. The bilinear form is called continuous
if there is a constant a > 0 such that

|(u, v)| ≤ a‖u‖‖v‖
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for all u, v ∈ H. The bilinear form is called coercive if there is a constant
b > 0 such that

(u, u) ≥ b‖u‖2

for all u ∈ H.

Theorem 3.58 (Lax–Milgram Theorem). If H is a real Hilbert space,
( , ) is a continuous and coercive bilinear form on H, and F is a bounded
linear functional F : H → R, then there is a unique u ∈ H such that

(u, φ) = F (φ)

for every φ ∈ H. Moreover,

‖u‖ ≤ 1
b
‖F‖.

Proof. The main tool of the proof is a standard result in Hilbert space
theory, the Riesz representation theorem: If F is a bounded linear func-
tional, then there is a unique f ∈ H such that F (φ) = 〈f, φ〉 for every
φ ∈ H (see [199]). In particular, this is true for the functional F in the
statement of the theorem.

If u ∈ H, then the function given by φ �→ (u, φ) is a linear functional on
H. To see that this functional is bounded, use the continuity of the bilinear
form to obtain the estimate

|(u, φ)| ≤ a‖u‖‖φ‖

and note that ‖u‖ < ∞. The Riesz theorem now applies to each such
functional. Therefore, there is a function A : H → H such that

(u, φ) = 〈Au, φ〉

for all φ ∈ H. Moreover, using the linearity of the bilinear form, it follows
that A is a linear transformation.

It is now clear that the equation in the statement of the theorem has a
unique solution if and only if the equation Au = f has a unique solution
for each f ∈ H.

By the continuity and the coerciveness of the bilinear form, if u, v, φ ∈ H,
then

〈A(u − v), φ〉 = (u − v, w) ≤ a‖u − v‖‖φ‖, (3.109)
〈A(u − v), u − v〉 = (u − v, u − v) ≥ b‖u − v‖2. (3.110)

Also, by the Schwarz inequality, we have that

sup
‖φ‖≤1

|〈v, φ〉| ≤ ‖v‖,



306 3. Applications

and, for φ := (1/‖v‖)v, this upper bound is attained. Thus, the norm of
the linear functional φ �→ 〈w, φ〉 is ‖w‖. In particular, using the inequal-
ity (3.109), we have

‖Au − Av‖ = sup
‖w‖≤1

〈A(u − v), φ〉 ≤ a‖u − v‖. (3.111)

Define the family of operators Aλ : H → H by

Aλφ = φ − λ(Aφ − f), λ > 0,

and note that Aλu = u if and only if Au = f . Thus, to solve the equation
Au = f , it suffices to show that for at least one choice of λ > 0, the operator
Aλ has a unique fixed point.

By an easy computation using the definition of the norm, equation (3.109),
the Schwarz inequality, and equation (3.111), we have that

‖Aλu − Aλv‖2 = (1 − 2λa + λ2a2)‖u − v‖2.

The polynomial in λ vanishes at λ = 0 and its derivative at this point is
negative. It follows that there is some λ > 0 such that the corresponding
operator is a contraction on the complete metric space H. By the contrac-
tion mapping theorem, there is a unique fixed point u ∈ H. Moreover, for
this u we have proved that (u, u) = F (u). Therefore,

‖u‖‖F‖ ≥ 〈f, u〉 ≥ b‖u‖2,

and the last statement of the theorem follows. �

Construction of Weak Solutions

The Lax–Milgram theorem is a classic result that gives us one way to
prove the existence of weak solutions for our boundary value problems.
One way to construct a solution, or at least a computable approximation
of a solution, is to use the Galërkin method described above. In fact, with
the previously defined notation, let us consider one of the finite dimensional
Hilbert spaces Sn of H. Note that if the hypotheses of the Lax–Milgram
theorem are satisfied, then there is a unique un ∈ Sn such that

(un, s) = 〈f, s〉 (3.112)

for all s ∈ Sn with the additional property that

‖un‖ ≤ 1
b
‖f‖ (3.113)

where b is the coercivity constant. The Galërkin principle is the statement
that the sequence {un}∞

n=1 converges to the unique solution u of the weak
boundary value problem. The approximation un can be expressed as a
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linear combination of the vectors ν1, . . . , νn that, by our choice, form a
basis of the subspace Sn. Thus, there are real numbers c1, . . . , cn such that

un =
n∑

j=1

cjνj .

Also, each element s ∈ Sn is given in coordinates by

s =
n∑

i=1

siνi.

Thus, the equation (3.112) is given in coordinates by the system of equa-
tions

n∑
j=1

cj(νj , νi) = 〈f, νi〉, i = 1, . . . n,

or, in the equivalent matrix form for the unknown vector (c1, . . . cn), we
have the equation

S

⎛⎜⎝ c1
...

cn

⎞⎟⎠ =

⎛⎜⎝ 〈f, ν1〉
...

〈f, νn〉

⎞⎟⎠
where S, called the stiffness matrix—the terminology comes from the the-
ory of elasticity—is given by Sij := (νj , νi). Of course, by the Lax–Milgram
theorem, S is invertible and the matrix system can be solved to obtain the
approximation un.

Does the sequence of approximations {un}∞
n=1 converge? The first obser-

vation is that, by the inequality (3.113), the sequence of approximates is
bounded. Let u be the weak solution given by the Lax–Milgram theorem.
Subtract the equality (un, s) = 〈f, s〉 from the equality (u, s) = 〈f, s〉 to
see that

(u − un, s) = 0 (3.114)

for all s ∈ Sn. Also, using the coerciveness of the bilinear form, if φ ∈ Sn,
then

b‖u − un‖2 ≤ (u − un, u − un) = (u − un, u − un + φ − φ)
= (u − un, φ − un) + (u − un, u − φ).

Moreover, with un, φ ∈ Sn and equation (3.114), we have the inequality

b‖u − un‖2 ≤ (u − un, u − φ) ≤ a‖u − un‖‖u − φ‖.
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It follows that

‖u − un‖ ≤ a

b
‖u − φ‖ (3.115)

for all φ ∈ Sn.
Recall that the linear span of the sequence {νj}∞

j=1 is assumed to be
dense in H. Hence, for each ε > 0 there is some integer m and constants
c1, . . . , cm such that

‖u −
m∑

j=1

cjνj‖ < ε.

If we set n = m and v =
∑m

j=1 cjνj in the inequality (3.115), then

‖u − un‖ ≤ a

b
ε.

In other words, the sequence of Galërkin approximations converges to the
weak solution, as required.

In the context of the steady state problem with which we started, namely,
the PDE (3.103), the Lax–Milgram theorem applies if g is bounded above
zero (see Exercise 3.59). For example, let g be a constant function given by
g(x) = λ > 0, consider Dirichlet boundary conditions, and let Sn denote
the span of the subset {ν1, ν2, . . . , νn} of H1

D(0, �), where

νj(x) := sin
jπ

�
x.

The smooth function f is represented by a Fourier (sine) series,

f(x) =
∞∑

j=1

aj sin
jπ

�
x,

on the interval (0, �), and the corresponding Galërkin approximation is

un(x) =
n∑

j=1

aj

λ + (jπ/�)2
sin

jπ

�
x, (3.116)

exactly the partial sum of the Fourier series approximation of the solution
(see Exercise 3.60).

Exercise 3.59. Prove that if g is bounded above zero, then the bilinear form

(u, v) :=
∫ �

0
(uxvx + guv) dx

is continuous and coercive on the spaces H1
D and H1. Also, prove that if f is

smooth, then F (φ) :=
∫ �

0 fφ dx is a continuous linear functional on H1
D and H1.
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Exercise 3.60. Suppose g is a negative constant. Find the stiffness matrix
for the Galërkin approximation for the PDE (3.103) with Dirichlet boundary
conditions using the basis given by

νj(x) := sin
jπ

�
x, j = 1, 2, . . . , ∞

for H1
0 , and verify the approximation (3.116). Also, consider the PDE (3.103)

with Neumann boundary conditions, and find the Galërkin approximations cor-
responding to the basis

1, cos
πx

�
, sin

πx

�
, . . . .

Galërkin Approximations and ODE

We have now seen one very simple example where the Galërkin principle
can be turned into a theorem. Let us take this as a prototype argument
to justify the Galërkin principle and proceed to our main objective in this
section: to see how the Galërkin method leads to problems in ordinary
differential equations.

Let us consider the PDE

ut = uxx + f(x, t), 0 < x < �, t > 0 (3.117)

with either Dirichlet or Neumann boundary conditions. The weak form
of this boundary value problem is derived from the integration by parts
formula∫ �

0
(ut − uxx − f(x, t))φ dx =

∫ �

0
(utφ + uxφx − f(x, t))φ dx − uxφ

∣∣∣�
0
.

Just as before, we can formulate two weak boundary value problems.

The Dirichlet Problem: Find u(x, t), a family of functions in H1
D(0, �)

such that ∫ �

0
(utφ + uxφx) dx =

∫ �

0
fφ dx

for all φ ∈ H1
D(0, �).

The Neumann Problem: Find u(x, t), a family of functions in H1(0, �)
with the same integral condition satisfied for all φ ∈ H1(0, �).

To apply the Galërkin method, choose ν1, ν2, . . . a linearly independent
sequence whose span is dense in the Hilbert space H1

D(0, �) or H1(0, �), and
define the finite dimensional spaces Sn as before. The new wrinkle is that
we will look for an approximate solution in the subspace Sn of the form

un(x, t) =
n∑

j=1

cj(t)νj(x)
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where the coefficients are differentiable functions of time. According to the
Galërkin principle, let us search for the unknown functions c1, . . . , cn so
that we have (un, s) = 〈f, s〉 for all s ∈ Sn. Expressed in coordinates, the
requirement is that the unknown functions satisfy the system of n ordinary
differential equations

n∑
j=1

c′
j(t)

∫ �

0
νjνk dx +

n∑
j=1

cj(t)
∫ �

0
(νj)x(νk)x dx =

∫ �

0
fνk dx

indexed by k = 1, . . . , n. In matrix form, we have the linear system of
ordinary differential equations

MC ′ + SC = F (t)

where M, given by

Mkj :=
∫ �

0
νjνk dx

is called the mass matrix, S, given by

Skj :=
∫ �

0
(νj)x(νk)x dx

is the stiffness matrix, and C := (c1, . . . , cn). If the initial condition for
the PDE (3.117) is u(x, 0) = u0(x), then the usual choice for the initial
condition for the approximate system of ordinary differential equations is
the element un

0 ∈ Sn such that

〈un
0 , s〉 = 〈u0, s〉

for all s ∈ Sn. This “least squares” approximation always exists. (Why?)
We have, in effect, described some aspects of the theoretical foundations

of the finite element method for obtaining numerical approximations of
PDE (see [216]). But a discussion of the techniques that make the finite
element method a practical computational tool is beyond the scope of this
book.

The Galërkin method was originally developed to solve problems in elas-
ticity. This application yields some interesting dynamical problems for the
corresponding systems of ordinary differential equations. Let us consider,
for instance, the PDE (more precisely the integro-PDE ),

uxxxx +
(
α − β

∫ 1

0
u2

x dx
)
uxx + γux + δut + εutt = 0

that is derived in the theory of aeroelasticity as a model of panel flutter
where u(x, t) represents the deflection of the panel (see for example the book
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of Raymond L. Bisplinghoff and Holt Ashley [26, p. 428] where the physical
interpretation of this equation and its parameters are given explicitly). The
boundary conditions for “simply supported” panel edges are

u(0, t) = u(1, t) = 0, uxx(0, t) = uxx(1, t) = 0.

If we take just the first Fourier mode, that is, the Galërkin approximation
with trial function

u1(x, t) = c(t) sinπx,

then we obtain the equation

εc̈ + δċ + π2(π2 − α)c +
π4

2
βc3 = 0. (3.118)

Let us note that if π2−α < 0, then this Galërkin approximation is a form of
Duffing’s equation with damping. We have already developed some of the
tools needed to analyze this equation. In fact, most solutions are damped
oscillations whose ω-limits are one of two possible asymptotically stable
rest points (see Exercise 3.61). On the other hand, if a periodic external
force is added to this system, then very complex dynamics are possible
(see [124] and Chapter 6).

Exercise 3.61. Draw representative phase portraits for the family of differen-
tial equations (3.118). How does the phase portrait depend on the choice of the
parameters?

Exercise 3.62. Consider the basis functions

νj(x) := sin(jπx/�)

for H1
D(0, �). (a) Find the mass matrix and the stiffness matrix for the Galërkin

approximations for the weak Dirichlet boundary value problem (3.117) with
f(x, t) := sin(πx/�) cos ωt. (b) Solve the corresponding system of linear dif-
ferential equations for the nth approximation un(x, t). (c) What can you say
qualitatively about the solutions of the Galërkin approximations? What long
term dynamical behavior of the PDE (3.117) is predicted by the Galërkin ap-
proximations? (d) Find a steady state solution? (e) Repeat the analysis for
f(x, t) = cos ωt. (f) Do you see a problem with the validity of these formal com-
putations? (g) Formulate and solve analogous problems for Neumann boundary
conditions.

Exercise 3.63. Consider a two (Fourier) mode Galërkin approximation for the
PDE

ut = k2uxx + u − u3 + a cos ωt, 0 < x < �, t > 0

with either Dirichlet or Neumann boundary conditions. (a) What is the general
character of the solutions in the phase plane? Hint: Start with the case where
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there is a time-independent source term (a = 0) and consider the stability of
the steady state solution of the PDE at u ≡ 0. (b) Is the (linearized) stability
criterion for the PDE reflected in the stability of the corresponding rest point in
the phase plane of the approximating ordinary differential equation? (c) Is the
ω-limit set of every solution of the approximation a rest point?

3.6.3 Traveling Waves
The concept of traveling wave solutions will be introduced in this section
for the classic reaction-diffusion model system

ut = k2uxx + au(1 − u), x ∈ R, t > 0 (3.119)

where k and a > 0 are constants.
The PDE (3.119), often called Fisher’s equation, can be used to model

many different phenomena. For example, this equation is a model of logistic
growth with diffusion ([88], [173]), and it is also a model of neutron flux
in a nuclear reactor (see [182]). For a general description of this and many
other models of this type see [173] and [182].

Let us begin with the observation that equation (3.119) can be rescaled
to remove the explicit dependence on the system parameters. In fact, with
respect to the new time and space variables

τ = at, ξ =
√

a

k
x,

equation (3.119) can be recast in the form

uτ = uξξ + u(1 − u). (3.120)

Therefore, with no loss of generality, we will consider the original model
equation (3.119) for the case a = 1 and k = 1.

In some applications, Fisher’s equation is considered on the whole real
line (that is, (−∞ < x < ∞)) and the physically relevant boundary condi-
tions are

lim
x→−∞ u(x, t) = 1, lim

x→∞ u(x, t) = 0. (3.121)

For example, u might measure the diseased fraction of a population, which
is distributed in some spatial direction (with spatial position x). The in-
fected portion of the population increases to unity in the negative spatial
direction; it decreases to zero in the positive x direction.

The basic idea is to look for a solution of equation (3.119) in the form of
a traveling wave, that is,

u(x, t) = U(x − ct)
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where the wave form is given by the function U : R → R and the wave
speed is |c| �= 0. For definiteness and with respect to our disease model,
let us assume that c > 0. By substituting the traveling wave ansatz into
Fisher’s equation, we obtain the second order nonlinear ordinary differential
equation

Ü + cU̇ + U − U2 = 0,

which is equivalent to the phase plane system

U̇ = V, V̇ = −U − cV + U2. (3.122)

All solutions of the system (3.122) correspond to traveling wave solutions
of Fisher’s equation. But, a meaningful solution of a physical model must
satisfy additional properties. For example, in the case where u measures
the infected fraction of a population, we must have 0 ≤ u ≤ 1 and the
boundary conditions (3.121).

Fisher’s equation, for a population model in which we ignore diffusion,
reduces to the one-dimensional ordinary differential equation u̇ = u−u2 for
logistic growth, whose dynamics can be completely determined. In partic-
ular, the phase space is R, there is an unstable rest point at u = 0, a stable
rest point at u = 1, and a connecting orbit, that is, an orbit with α-limit
set {0} and ω-limit set {1}. For our disease model, this result predicts that
if some fraction of the population is infected, then the entire population is
eventually infected.

This suggests a natural question: Is there a traveling wave solution
u(x, t) = U(x − ct) for the PDE (3.119) such that 0 < u(x, t) < 1, u
satisfies the boundary conditions (3.121), and

lim
t→∞ u(x, t) = 1, lim

t→−∞ u(x, t) = 0?

In other words, is there an orbit—for the PDE viewed as an infinite
dimensional ordinary differential equation in a space of solutions that in-
corporates the boundary conditions—connecting the steady states u ≡ 0
and u ≡ 1 as in the case of the one-dimensional logistic model?

Let us note that all the required conditions are satisfied if 0 < U(s) < 1
and

lim
s→∞ U(s) = 0, lim

s→−∞ U(s) = 1.

An answer to our question is given by the following proposition.

Proposition 3.64. The PDE (3.120) with the boundary conditions (3.121)
has a traveling wave solution (x, t) �→ u(x, t) = U(x−ct), with 0 < u(x, t) <
1, whose orbit connects the steady states u ≡ 0 and u ≡ 1 if and only if
c ≥ 2.
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V

U

Ω

Figure 3.8: The invariant region Ω for the system (3.122) in case c ≥ 2.

Proof. Note that the solution u(x, t) = U(x − ct) is a connecting orbit if
0 < U(s) < 1, and

lim
s→∞ U(s) = 0, lim

s→−∞ U(s) = 1.

The system matrix of the linearized phase plane equations (3.122) at the
origin has eigenvalues

1
2
(−c ±

√
c2 − 4),

and its eigenvalues at the point (1, 0) are given by

1
2
(−c ±

√
c2 + 4).

Therefore, if c > 0, then there is a hyperbolic sink at the origin and a
hyperbolic saddle at the point (1, 0). Moreover, if a connecting orbit exists,
then the corresponding phase plane solution s �→ (U(s), V (s)) must be on
the unstable manifold of the saddle and the stable manifold of the sink.

Note that if c < 2, then the sink at the origin is of spiral type. Hence,
even if there is a connecting orbit in this case, the corresponding function
U cannot remain positive.

Assume that c ≥ 2 and consider the lines in the phase plane given by

V =
1
2
(

− c +
√

c2 − 4
)
U, V =

1
2
(

− c +
√

c2 + 4
)
(U − 1). (3.123)

They correspond to eigenspaces at the rest points. In particular, the second
line is tangent to the unstable manifold of the saddle point at (U, V ) =
(1, 0). The closed triangular region Ω (see Figure 3.8) in the phase plane
bounded by the lines (3.123) and the line given by V = 0 is positively
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invariant. This result is easily checked by computing the dot product of the
vector field corresponding to system (3.122) with the appropriate normal
fields along these lines to see that the vector field points into Ω at every
point on its boundary except for the rest points. Indeed, along the lines
defined by the equations in display (3.123), we have

V̇ − 1
2
(−c +

√
c2 − 4)U̇ = U2 ≥ 0,

V̇ − 1
2
(−c +

√
c2 + 4)U̇ = (U − 1)2 ≥ 0, (3.124)

and V̇ = −U + U2 < 0 for 0 < U < 1 along the line with equation V = 0.
Suppose (as we will soon see) that the unstable manifold at the saddle

intersects the region Ω. Then a solution that starts on this portion of the
unstable manifold must remain in the region Ω for all positive time. Thus,
the ω-limit set of the corresponding orbit is also in Ω. Because U̇ ≤ 0 in
Ω, there are no periodic orbits in Ω and no rest points in the interior of Ω.
By the Poincaré–Bendixson theorem, the ω-limit set must be contained in
the boundary of Ω. In fact, this ω-limit set must be the origin.

To complete the proof, we will show that the unstable manifold at the
saddle has nonempty intersection with the interior of Ω. To prove this fact,
let us first recall that the unstable manifold is tangent to the line given by
the second equation in display (3.123). We will show that the tangency is
quadratic and the unstable manifold lies above this line.

In the new coordinates given by

Z = U − 1, W = V,

the saddle rest point is at the origin for the equivalent first order system

Ż = W, Ẇ = Z − cW + Z2.

The additional change of coordinates

Z = P, W = Q + αP := Q +
1
2
(−c +

√
c2 + 4)P

transforms the system so that the unstable manifold of the saddle point is
tangent to the horizontal P -axis. We will show that the unstable manifold
is above this axis in some neighborhood of the origin; it then follows from
the second formula in display (3.124) that the unstable manifold lies above
the P -axis globally.

Note that the unstable manifold is given, locally at least, by the graph
of a smooth function Q = h(P ) with h(0) = h′(0) = 0. Since this manifold
is invariant, we must have that Q̇ = h′(P )Ṗ , and therefore, by an easy
computation,

P 2 − (c + α)h(P ) = h′(P )(h(P ) + αP ). (3.125)
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The function h has the form h(P ) = βP 2 + O(P 3). By substitution of this
expression into equation (3.125), we obtain the inequality

β = (3α + c)−1 > 0,

as required. �

Much more can be said about the traveling wave solutions that we
have just found. For example, the ω-limit set of most solutions of the
PDE (3.119), which start with physically realistic initial conditions, is the
traveling wave solution with wave speed c = 2. This result was proved by
Andrei N. Kolmogorov, Ivan G. Petrovskii, and Nikolai S. Piskunov [136]
(see also [17] and [25]). For a detailed mathematical account of traveling
wave solutions see the book of Paul C. Fife [88] and also [173] and [206].

Exercise 3.65. The reaction term for the PDE studied in Proposition 3.64 is
g(u) = u(1 − u). Prove a generalization of this proposition where the reaction
term is given by a function g that is C1 on (0, 1) and such that g′ is bounded
on (0, 1), g(0) = g(1) = 0, g(u) > 0 on (0, 1), g′(0) = 1, and g′(u) < 1 on (0, 1]
(see [136]).

Exercise 3.66. Show that the PDE

ut − u2ux = uxx + u, x ∈ R, t ≥ 0

has a nonconstant solution that is periodic in both space and time.

Exercise 3.67. For positive constants α and β, find a traveling wave solution
of the Korteweg-de Vries (KdV) equation

ηt + (1 +
3
2
αη)ηx +

1
3
βηxxx = 0, x ∈ R, t ≥ 0

in the form η(x, t) = N(x − ct) where N , N ′, and N ′′ all vanish as the argument
of N approaches ±∞ and c > 1. The solution is an approximation of the “great
wave of translation” observed by John Scott Russell (1808-1882). Further analysis
of this equation led to the theory of solitons—nonlinear solitary waves that retain
their basic shape after interaction with other solitary waves of the same type (see
for example [217]).

3.6.4 First Order PDE
Consider the model equation (3.91) in case there is no diffusion, but the
medium moves with velocity field V ; that is, the differential equation

ut + γ gradu · V = f. (3.126)

This is an important example of a first order partial differential equation.
Other examples are equations of the form

ut + (f(u))x = 0,
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called conservation laws (see [206]), and equations of the form

St + H(Sq, q, t) = 0,

called Hamilton–Jacobi equations (see [12]). We will show how such PDE
can be solved using ordinary differential equations in case the derivatives
of the unknown function appear linearly and there is only one space dimen-
sion. The theory can be generalized to fully nonlinear equations with several
space dimensions (see, for example, [81] and Exercises 3.73 and 3.74).

The equation (3.126), for γ = 1, is given by

ut + v(x, t)ux = f(u, x, t),

or, with a redefinition of the names of the functions, it has the more general
form

f(x, y, u)ux + g(x, y, u)uy = h(x, y, u). (3.127)

We will solve the PDE (3.127) using the following basic idea: If the graph
G of a function z = u(x, y) is an invariant manifold for the first order
system

ẋ = f(x, y, z), ẏ = g(x, y, z), ż = h(x, y, z), (3.128)

then u is a solution of the PDE (3.127). Indeed, because

(x, y) �→ (x, y, u(x, y), ux(x, y), uy(x, y),−1)

is a normal vector field on G, it follows from the results of Section 1.8.1 that
the manifold G is invariant if and only if the dot product of the vector field
associated with the system (3.128) and the normal field is identically zero;
that is, if and only if equation (3.127) holds. The orbits of the system (3.128)
are called characteristics of the PDE (3.127).

Perhaps it is possible to find an invariant manifold for the first order
system (3.128) by an indirect method, but we will construct the invariant
manifold directly from appropriate initial data. To see how this is done, let
us suppose that we have a curve in space given by γ : R → R

3 such that in
coordinates

γ(s) = (γ1(s), γ2(s), γ3(s)).

This curve is called noncharacteristic at γ(0) (with respect to the PDE (3.127))
if

γ̇1(0)g(γ(0)) − γ̇2(0)f(γ(0)) �= 0.

The geometric interpretation is clear: The projection of the tangent vec-
tor of the noncharacteristic curve at γ(0) onto its first two components is
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transverse to the first two components of the tangent to the characteristic
at this point.

Let ϕt denote the flow of the system (3.128), and define H : R
2 → R

3 by

(s, t) �→ ϕt(γ(s)). (3.129)

Also, define H : R
2 → R

2 by projection of the image of H onto its first two
components. More precisely, let e1, e2, e3 be the usual basis vectors for R

3

and let the usual inner product be denoted by angle brackets. Then H is
given by

(s, t) �→ (〈ϕt(γ(s)), e1〉, 〈ϕt(γ(s)), e2〉).

The image of H is an invariant set for system (3.128). We will prove
the following proposition: if γ is a noncharacteristic curve at γ(0) and
both |s| and |t| are sufficiently small, then the image of H is an invariant
two-dimensional manifold.

Using this proposition, we will obtain the desired solution of our PDE by
simply reparameterizing the invariant manifold with the coordinate trans-
formation given by H.

The idea of the proof of the proposition is to show that DH(0, 0) is
invertible and then apply the inverse function theorem. To show that H is
locally invertible at γ(0), note that

DH(0, 0)e1 =
d

ds
H(s, 0)

∣∣∣
s=0

=
d

ds
(γ1(s), γ2(s))

∣∣∣
s=0

= (γ̇1(0), γ̇2(0)),

and similarly

DH(0, 0)e2 = (f(γ(0)), g(γ(0))).

Because the curve γ is noncharacteristic at γ(0), the matrix representation
of DH(0, 0) has nonzero determinant and is therefore invertible. By the
inverse function theorem, H is locally invertible at the origin.

Let H = (H1,H2,H3) and suppose that H is invertible. We have the
identity

H(H−1(x, y)) = (x, y,H3(H−1(x, y))).

In other words, the surface given by the range of H is locally the graph of
the function u defined by

u(x, y) = H3(H−1(x, y)).
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Hence, u is a local solution of the PDE (3.127). Moreover, since u(H(s, t)) =
H3(s, t), we have that

u(γ1(s), γ2(s)) = γ3(s).

This last equation is used to encode initial data for the PDE along a non-
characteristic curve.

We have now proved that if we are given a noncharacteristic curve, then
there is a corresponding local solution of the PDE (3.127). Also, we have
obtained a method to construct such a solution.

The method is very simple: Choose a noncharacteristic curve γ, which
encodes initial data via the formula u(γ1(s), γ2(s)) = γ3(s); determine the
flow φt of the first order system (3.128) for the characteristics; define the
function H given by H(s, t) = φt(γ(s)), and invert the associated function
H given by H(s, t) = (H1(s, t),H2(s, t)). The corresponding solution of the
PDE (3.127) is u(x, y) = H3(H−1(x, y)).

As an example, let us consider the model equation

uτ + a sin(ωτ)ux = u − u2, 0 ≤ x ≤ 1, τ ≥ 0

with initial data u(x, 0) = u0(x) defined on the unit interval. A phenomeno-
logical interpretation of this equation is that u is the density of a species
with logistic growth in a moving medium that is changing direction with
frequency ω and amplitude a. We have used τ to denote the time parameter
so that we can write the first order system for the characteristics in the
form

τ̇ = 1, ẋ = a sin(ωτ), ż = z − z2. (3.130)

To specify the initial data, define the noncharacteristic curve given by s �→
(0, s, u0(s)). After solving system (3.130) and using the definition of H in
display (3.129), we have that

H(s, t) =
(
t, s +

a

ω
(1 − cos ωt),

etu0(s)
1 + u0(s)(et − 1)

)
.

Also, because H−1 is given explicitly by

H−1(τ, x) = (τ, x − a

ω
(1 − cos ωτ)),

we have the solution

u(x, τ) =
eτu0(x − a

ω (1 − cos ωτ))
1 + (eτ − 1)u0(x − a

ω (1 − cos ωτ))
. (3.131)

What does our model predict? For example, if the initial condition is
given by a positive function u0, then the ω-limit set of the corresponding
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solution of the PDE is the constant function u ≡ 1, the solution correspond-
ing to no drift. On the other hand, if the initial population is distributed so
that some regions have zero density, then the fate of the initial population
is more complicated (see Exercise 3.68).

Exercise 3.68. What long term behavior for the corresponding model equation
is predicted by the solution (3.131)? How does your answer depend on the choice
of u0, a, and ω?

Exercise 3.69. Find the general solution of the PDE aux + buy = h(x, y) in
case a and b are constants and h is a given function. Hint: Solve the homogeneous
equation (h = 0) first.

Exercise 3.70. (a) Find the general solution of the PDE aux + buy = cu
in case a, b, and c are constants using the method developed in this section.
(b) Find the general solution using the following alternative method: Find an
integrating factor for the expression uy − (c/b)u; that is, find a function µ so that
(µ(y)u)y = uy − (c/b)u.

Exercise 3.71. Solve the PDE xux + yuy = 2u with u prescribed on the unit
circle. Hint: Define the noncharacteristic curve

s �→ (cos s, sin s, h(cos s, sin s)).

Exercise 3.72. (a) Find the general solution of the PDE xux − yuy = 2u. (b)
Give a geometric description of the noncharacteristic curves.

Exercise 3.73. [Several Space Dimensions] Solve the PDE ut = a(x, y)ux +
b(x, y)uy with initial data u(0, x, y) = g(x, y). Hint: This is an example of a
first order PDE with two space variables. The method of solution illustrates
the generalization of the theory presented in this section. (a) Write the PDE in
the standard form uτ − a(x, y)ux − b(x, y)uy = 0, where t is replaced by τ for
notational convenience, and let ψt denote the flow of the differential equation

ẋ = a(x, y), ẋ = b(x, y).

Show that ψ̃t = ψ−t is the flow of the differential equation

ẋ = −a(x, y), ẋ = −b(x, y).

(b) The characteristics of the PDE are the solutions of the system

τ̇ = 1, ẋ = −a(x, y), ẋ = −b(x, y), ż = 0.

Show that the flow φt of this system has the form

φt(τ, x, y, z) = (t + τ, ψ−t(x, y), z).

(c) Because the solution u has three arguments, the initial data must be encoded
into a noncharacteristic surface of the form

γ(r, s) = (γ1(r, s), γ2(r, s), γ3(r, s), γ4(r, s)).
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Define the notion of a noncharacteristic surface and show that the parametrized
surface given by the function γ(r, s) = (0, r, s, g(r, s)) is a noncharacteristic sur-
face. (d) Define H(r, s, t) = φt(γ(r, s)). Show that H4(r, s, t) = g(r, s). (e) Define
H to be the function H composed with the linear projection onto its first three
components. Show that H−1(τ, x, y) = (ψτ (x, y), τ). (f) By the theory in this sec-
tion, the solution of the PDE with the given initial data is u(t, x, y) = g(ψt(x, y)).
Verify that this is the solution by direct substitution into the PDE. (g) Find the
solution of the initial value problem

ut = −yux + xuy, u(0, x, y) = 2x2 + y2.

Exercise 3.74. [Several Space Dimensions (Continued)] (a) Let X denote a
vector field on R

2. Generalize the method outlined in Exercise 3.73 to cover the
initial value problem for the equation of continuity

ut + div(uX) = 0, u(0, x, y) = g(x, y).

(b) Suppose that u denotes the density of some substance in a medium whose
instantaneous direction of motion in the physical three-dimensional space is ap-
proximated by the vector field X(x, y, z) = (−(x+ y), x − y, 0). Suppose that the
initial density is constant, say u(x, y, z) = 1, and determine the density at time
t > 0. Give a physical interpretation of your answer. (c) Repeat part (b) for the
initial density u(x, y, z) = x2 + y2.

Exercise 3.75. A function U that is constant along the orbits of an ordinary
differential equation is called an invariant function, or a first integral. In symbols,
if we have a differential equation ẋ = f(x) with flow ϕt, then U is invariant
provided that U(φt(x)) = U(x) for all x and t for which the flow is defined.
Show that U is invariant if and only if 〈grad U(x), f(x)〉 ≡ 0. Equivalently, the
directional derivative of U in the direction of the vector field given by f vanishes.
Consider the differential equation

θ̇ = 1, φ̇ = α

where α ∈ R. Also, consider both θ and φ as angular variables so that the
differential equation can be viewed as an equation on the torus. Give necessary
and sufficient conditions on α so that there is a smooth invariant function defined
on the torus.

Exercise 3.76. A simple example of a conservation law is the (nonviscous)
Burgers’s equation ut + uux = 0. Burgers’s equation with viscosity is given by

ut + uux =
1

Re
uxx

where Re is called the Reynold’s number. This is a simple model that incorporates
two of the main features in fluid dynamics: convection and diffusion. Solve the
nonviscous Burgers’s equation with initial data u(x, 0) = (1 − x)/2 for −1 <
x < 1. Note that the solution cannot be extended for all time. This is a general
phenomenon that appears in the study of conservation laws that is related to the
existence of shock waves (see [206]). Also, consider the viscous Burgers’s equation
on the same interval with the same initial data and with boundary conditions

u(−1, t) = 1, u(1, t) = 0.
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How can we find Galërkin approximations? The problem is that with the nonho-
mogeneous boundary conditions, there is no vector space of functions that satisfy
the boundary conditions. To overcome this problem, we can look for a solution
of our problem in the form

u(x, t) = v(x, t) +
1
2
(1 − x)

where v satisfies the equation

vt + (v +
1
2
(1 − x))(vx − 1

2
) = vxx

and Dirichlet boundary conditions. Determine the Galërkin approximations us-
ing trigonometric trial functions. Use a numerical method to solve the resulting
differential equations, and thus approximate the solution of the PDE. For a nu-
merical analyst’s approach to this problem, consider the Galërkin approximations
with respect to the “test function basis” of Chebyshev polynomials given by

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1

and

Tn+1(x) = 2xTn(x) − Tn−1(x).

The Chebyshev polynomials are orthogonal (but not orthonormal) with respect
to the inner product defined by

〈f, g〉 :=
∫ 1

−1
f(x)g(x)(1 − x2)−1/2 dx.

Also, the Chebyshev polynomials do not satisfy the boundary conditions. In spite
of these facts, proceed as follows: Look for a Galërkin approximation in the form

un(x, t) =
n∑

i=1

ci(t)Tn−1(x),

but only construct the corresponding system of differential equations for

c1, . . . , cn−2.

Then, define the last two coefficients so that the boundary conditions are satisfied
(see [90]). Compare numerical results. Finally, note that Burgers’s equation can,
in principle, be solved explicitly by the Hopf–Cole transformation. In fact, if u
is a solution of Burgers’s equation and ψ is defined so that ψx = u, then ψ is
defined up to a function that depends only on the time variable. An appropriate
choice of the antiderivative satisfies the equation

ψt +
1
2
ψ2

x =
1

Re
ψxx.

If φ is defined by the equation ψ = −(2/Re) ln φ, then

φt =
1

Re
φxx.

Thus, solutions of the heat equation can be used to construct solutions of Burg-
ers’s equation. Because Burgers’s equation can be solved explicitly, this PDE is
a useful candidate for testing numerical codes.



4
Hyperbolic Theory

This chapter is an introduction to the theory of hyperbolic structures in
differential equations. The basic idea that is discussed might be called the
principle of hyperbolic linearization: If the system matrix of the linearized
flow of a differential equation has no eigenvalue with zero real part, then
the nonlinear flow behaves locally like the linear flow. This idea has far-
reaching consequences that are the subject of many important and useful
mathematical results. Here we will discuss two fundamental theorems: the
center and stable manifold theorem for a rest point and Hartman’s theorem.

4.1 Invariant Manifolds

The stable manifold theorem is a basic result in the theory of ordinary
differential equations. It and many closely related results, for example, the
center manifold theorem, form the foundation for analyzing the dynamical
behavior of a dynamical system in the vicinity of an invariant set. In this
section we will consider some of the theory that is used to prove such
results, and we will prove the existence of invariant manifolds related to
the simplest example of an invariant set, namely, a rest point. Nevertheless,
the ideas that we will discuss can be used to prove much more general
theorems. In fact, some of the same ideas can be used to prove the existence
and properties of invariant manifolds for infinite dimensional dynamical
systems.
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The concept of an invariant manifold for a rest point arises from the study
of linear systems. Recall that if A is the system matrix of a linear differential
equation on R

n, then the spectrum of A splits naturally—from the point of
view of stability theory—into three subsets: the eigenvalues with negative,
zero, and positive real parts. After a linear change of coordinates that
transforms A to its real Jordan normal form, we find that the differential
equation u̇ = Au decouples into a system

ẋ = Sx, ẏ = Uy, ż = Cz

where (x, y, z) ∈ R
k × R

� × R
m with k + � + m = n, and where S, U and C

are linear operators whose eigenvalues have all negative, positive, and zero
real parts, respectively. The subspace R

k ⊂ R
n is called the stable manifold

of the rest point at the origin for the original system u̇ = Au, the subspace
R

� is called the unstable manifold, and the subspace R
m is called the center

manifold.
According to Theorem 2.61, there are constants K > 0, a > 0, and b > 0

such that if ξ ∈ R
k and ζ ∈ R

n, then

‖x(t, ξ)‖ = ‖etSξ‖ ≤ Ke−at‖ξ‖, t ≥ 0,

‖y(t, ζ)‖ = ‖etUζ‖ ≤ Kebt‖ζ‖, t ≤ 0, (4.1)

where t �→ x(t, ξ) is the solution of the differential equation ẋ = Sx with
the initial condition x(0, ξ) = ξ, and y is defined similarly. Here, ‖ ‖ is
an arbitrary norm on R

n. There are no such exponential estimates on the
center manifold.

An analysis of the dynamics on the center manifold, when it exists, is
often one of the main reasons for finding a center manifold in the first place.
In this regard, let us recall that the flow of a nonlinear system near a rest
point where the linearization has an eigenvalue with zero real part is not
determined by the linearized flow. For example, the linearization at a rest
point of a planar system might have a center, whereas the corresponding
rest point for the nonlinear system is a sink or a source. In this case the
center manifold at the rest point is an open subset of the plane. As this
example shows, we can expect the most complicated (and most interesting)
dynamics near a nonhyperbolic rest point to occur on a corresponding cen-
ter manifold. If a center manifold has dimension less than the dimension
of the phase space, then the most important dynamics can be studied by
considering the restriction of the original system to a center manifold. To
illustrate, let us imagine a multidimensional system that has a rest point
with a codimension two stable manifold and a two-dimensional center man-
ifold. Then, as we will see, the orbits of the nonlinear system are all locally
attracted to the center manifold, and therefore the nontrivial dynamics can
be determined by studying a planar system. This “center manifold reduc-
tion” to a lower dimensional system is one of the main applications of the
theory.
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The stable manifold theorem states that if the linear system u̇ = Au
has no center manifold, then the nonlinear system u̇ = Au + H(u), where
H : R

n → R
n with H(0) = 0 and DH(0) = 0, has stable and unstable

manifolds corresponding to the stable and unstable manifolds of the linear
system. These manifolds are invariant sets that contain the rest point at
the origin, and they have the same dimensions as the corresponding linear
manifolds. In fact, the corresponding linear manifolds are their tangent
spaces at the rest point. Moreover, the flow restricted to the stable and the
unstable manifolds has exponential (hyperbolic) estimates similar to the
inequalities in display (4.1)

There are several different methods available to prove the existence of
invariant manifolds. Each of these methods has technical as well as concep-
tual advantages and disadvantages. Here we will use the Lyapunov–Perron
method. The basic idea is to determine the invariant manifold as the graph
of a function that is obtained as the fixed point of an integral operator on
a Banach space. An alternative method based on the “graph transform” is
also very important (see [122] and [194]). The Lyapunov–Perron method
has wide applicability and it can be used to prove very general theorems.
While the graph transform method is perhaps even more far-reaching, the
main reason for using the Lyapunov–Perron method here is that the theory
illustrates many useful ODE techniques.

For the invariant manifold theory that we will discuss, it is not neces-
sary to assume the existence of an infinitesimally hyperbolic linearization.
Instead, it suffices to assume that the spectrum of the linearization has a
spectral gap; that is, the spectrum is separated into two vertical strips in
the complex plane such that the maximum of the real parts of the eigen-
values in the left hand strip is strictly less than the minimum of the real
parts of the eigenvalues in the right hand strip. This hypothesis is exactly
the condition required to apply the Lyapunov–Perron method to obtain
the existence of an invariant manifold. The stable, unstable, and center
manifold theorems are easily obtained as corollary results.

We will use the notation C1 as a prefix to denote spaces of continuously
differentiable functions. If f is such a function, then let ‖f‖1 denote the
C1-norm given by the sum of the supremum norm of f and the supremum
norm of its derivative Df , where the supremum is taken over the domain
of definition of the function.

The next theorem is the main result of this section. It states the existence
of a smooth global invariant manifold at a rest point of a nonlinear system,
provided that the linearization of the system at the rest point has a spectral
gap and the nonlinear remainder terms are sufficiently small. The proof
of this theorem is quite long, but it is not too difficult to understand.
The idea is to set up a contraction in an appropriate Banach space of
continuous functions so that the fixed point of the contraction is a function
whose graph is the desired invariant manifold. Then the fiber contraction



326 4. Hyperbolic Theory

principle is applied to show that this function is smooth. The proof uses
many important ODE techniques that are well worth learning.

Theorem 4.1. Suppose that a and b are real numbers with a < b, S :
R

k → R
k and U : R

� → R
� are linear transformations, each eigenvalue of

S has real part less than a, and each eigenvalue of U has real part greater
than b. If F ∈ C1(Rk × R

�, Rk) and G ∈ C1(Rk × R
�, R�) are such that

F (0, 0) = 0, DF (0, 0) = 0, G(0, 0) = 0, DG(0, 0) = 0, and ‖F‖1 and ‖G‖1
are sufficiently small, then there is a unique function α ∈ C1(Rk, R�) with
the following properties

α(0) = 0, Dα(0) = 0, sup
ξ∈Rk

‖Dα(ξ)‖ < ∞,

whose graph, namely the set

W (0, 0) = {(x, y) ∈ R
k × R

� : y = α(x)},

is an invariant manifold for the system of differential equations given by

ẋ = Sx + F (x, y), ẏ = Uy + G(x, y). (4.2)

Moreover, if (ξ, α(ξ)) ∈ W (0, 0), then for each λ > a there is a constant
C > 0 such that the solution t �→ (x(t), y(t)) of the system (4.2) with initial
condition (ξ, α(ξ)) satisfies the exponential estimate

‖x(t)‖ + ‖y(t)‖ ≤ Ceλt‖ξ‖.

Proof. We will use several Banach spaces and several different norms. The
proofs that these spaces with the indicated norms are indeed Banach spaces
are left to the reader. We will outline a proof for just one of the spaces.

Let C0(RN , RM ) denote the linear space of all continuous functions

f : R
N → R

M ,

and let us use it to define the following Banach spaces: C0(RN , RM ), the
set of all functions f ∈ C0(RN , RM ) such that f(0) = 0 and

‖f‖0 = sup
ξ∈RN

‖f(ξ)‖ < ∞;

C1(RN , RM ), the set of all continuously differentiable functions

f ∈ C0(RN , RM )

such that f(0) = 0, Df(0) = 0, and

‖f‖1 = ‖f‖0 + ‖Df‖0 < ∞;
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and E0(RN , RM ), the set of all functions f ∈ C0(RN , RM ) such that f(0) =
0 and

‖f‖E = sup{‖f(ξ)‖
‖ξ‖ : ξ ∈ R

N , ξ �= 0} < ∞.

Also, for f ∈ C0(RN , RM ), let the Lipschitz constant of f be denoted by

Lip(f) := sup
ξ 
=η

‖f(ξ) − f(η)‖
‖ξ − η‖

whenever the indicated supremum is finite.
Proposition A: The space E0(RN , RM ) with the E-norm is a Banach

space.
To prove the proposition, let us assume for the moment that if {fn}∞

n=1
is a sequence in E0(RN , RM ) that converges in the E-norm to a function
f : R

N → R
M , then the sequence converges uniformly on compact subsets

of R
N . Using the usual theorems on uniform convergence, it follows from

this fact that the limit function f is continuous on R
N . Also, there is a

sufficiently large integer n such that ‖f − fn‖E < 1. Thus, for this choice
of n, we have that

‖f‖E ≤ ‖f − fn‖E + ‖fn‖E < 1 + ‖fn‖E ,

and as a result we see that the E-norm of f is bounded.
To show that E0(RN , RM ) is a Banach space, we must show that it is

complete. To this end, suppose that the above sequence is Cauchy. We will
show that the sequence converges to a function f : R

N → R
M with f(0) =

0. By the facts claimed above, we must then have that f ∈ E0(RN , RM ),
as required.

Let us define a function f : R
N → R

M . First, set f(0) = 0. If ξ ∈ R
N is

not the zero vector, let ε > 0 be given and note that there is an integer J
such that

‖fm(ξ) − fn(ξ)‖
‖ξ‖ <

ε

‖ξ‖
whenever m and n exceed J . Thus, the sequence {fn(ξ)}∞

n=1 is a Cauchy
sequence in R

M , and hence it has a limit that we define to be f(ξ).
We claim that the sequence {fn}∞

n=1 converges to the function f in the
E-norm. To prove the claim, let ε > 0 be given. There is an integer J , as
before, such that, if ξ �= 0, then

‖fn(ξ) − fp(ξ)‖
‖ξ‖ <

ε

2

whenever the integers n and p exceed J . It follows that if ξ ∈ R
N , including

ξ = 0, then the inequality

‖fn(ξ) − fp(ξ)‖ ≤ ε

2
‖ξ‖
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holds whenever n and p exceed J . Using this fact, we have the following
estimates

‖fn(ξ) − f(ξ)‖ ≤ ‖fn(ξ) − fp(ξ)‖ + ‖fp(ξ) − f(ξ)‖

≤ ε

2
‖ξ‖ + ‖fp(ξ) − f(ξ)‖.

If we now pass to the limit as p → ∞, we find that, for all ξ ∈ R
N ,

‖fn(ξ) − f(ξ)‖
‖ξ‖ ≤ ε

2
< ε

whenever n exceeds J . Thus, we have that ‖fn − f‖E < ε whenever n
exceeds J , and therefore the sequence converges to f in the E-norm.

To finish the proof, we must show that convergence in the E-norm is
uniform on compact sets. To this end, suppose that {fn}∞

n=1 converges to
f in the E-norm, let K be a compact subset of R

N , and let ε > 0 be given.
Also, let us define r := supξ∈K ‖ξ‖. There is an integer J such that if ξ �= 0,
then

‖fn(ξ) − f(ξ)‖
‖ξ‖ <

ε

r + 1

whenever n exceeds J . Hence, as before, if ξ ∈ K, then

‖fn(ξ) − f(ξ)‖ ≤ ε

r + 1
‖ξ‖ ≤ ε

r

r + 1
< ε

whenever n exceeds J . It follows that the convergence is uniform on the
compact set K. This completes the proof of Proposition A.

Let us define two subsets of the Banach spaces defined above as follows:

B0
ρ(RN , RM ) := {f ∈ E0(RN , RM ) : Lip(f) ≤ ρ},

B1
δ(RN , RM ) := {f ∈ C1(RN , RM ) : ‖f‖1 < δ}.

The set B0
ρ(RN , RM ) is a closed (in fact, compact) subset of E0(RN , RM ),

while the set B1
δ(RN , RM ) is an open subset of C1(RN , RM ). Moreover, the

set B0
ρ(RN , RM ) is a complete metric space with respect to the metric given

by the E-norm.
Fix ρ > 0. If δ > 0, F ∈ B1

δ(Rk × R
�, Rk), and α ∈ B0

ρ(Rk, R�), then the
differential equation

ẋ = Sx + F (x, α(x)) (4.3)

has a continuous flow. In fact, for each ξ ∈ R
k, there is a solution t �→

x(t, ξ, α) such that x(0, ξ, α) = ξ and such that (t, ξ, α) �→ x(t, ξ, α) is a
continuous function.
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To compress notation, let

χ(t) := x(t, ξ, α)

and note that the function t �→ χ(t) is defined for all t ≥ 0.
By the hypotheses of the theorem, there is a constant K > 0 such that for

all ξ ∈ R
k and for all ν ∈ R

�, we have the following exponential estimates

‖etSξ‖ ≤ Keat‖ξ‖, ‖e−tUν‖ ≤ Ke−bt‖ν‖

for all t ≥ 0. A direct proof of these estimates under the spectral gap
condition is similar to the proof of Theorem 2.61. These estimates can also
be obtained as a corollary to this theorem. Hint: Apply Theorem 2.61 to
new operators S + cI and U + cI, where c is a real number chosen so that
there is a spectral gap containing the origin.

Using the inequality ‖DF‖0 < δ and the mean value theorem, we have
that

‖F (x, y)‖ = ‖F (x, y) − F (0, 0)‖ ≤ δ(‖x‖ + ‖y‖)

where we are using the sum of the norms on each factor for the norm on
the product space R

k × R
�. Also, after obtaining a similar estimate for α,

and combining these estimates, it follows that

‖F (x, α(x))‖ ≤ δ(1 + ρ)‖x‖.

By an application of the variation of parameters formula given in Propo-
sition (2.67), the function χ satisfies the integral equation

χ(t) = etSξ +
∫ t

0
e(t−τ)SF (χ(τ), α(χ(τ))) dτ (4.4)

from which we obtain the estimate

‖χ(t)‖ ≤ Keat‖ξ‖ +
∫ t

0
Kδ(1 + ρ)ea(t−τ)‖χ(τ)‖ dτ.

Equivalently, we have

e−at‖χ(t)‖ ≤ K‖ξ‖ +
∫ t

0
Kδ(1 + ρ)e−aτ‖χ(τ)‖ dτ,

and by an application of Gronwall’s inequality, we obtain the estimate

‖x(t, ξ)‖ = ‖χ(t)‖ ≤ K‖ξ‖e(Kδ(1+ρ)+a)t. (4.5)

In particular, the solution t �→ x(t, ξ) does not blow up in finite time.
Hence, it is defined for all t ≥ 0.
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For α ∈ B0
ρ(Rk, R�) and G ∈ B1

δ(Rk × R
�, R�), if the graph

Mα := {(x, y) ∈ R
k × R

� : y = α(x)}

is an invariant set for the system (4.2), then the function

t �→ y(t, ξ, α) := α(x(t, ξ, α))

is a solution of the differential equation

ẏ = Uy + G(x, y) (4.6)

with initial condition y(0, ξ, α) = α(ξ). Equivalently, by variation of pa-
rameters and with the notational definition γ(t) := y(t, ξ, α), we have the
equation

e−tUγ(t) − α(ξ) =
∫ t

0
e−τUG(χ(τ), α(χ(τ))) dτ.

Note that

‖e−tUγ(t)‖ ≤ Ke−btρ‖χ(t)‖ ≤ K2ρ‖ξ‖e(Kδ(1+ρ)+a−b)t. (4.7)

Thus, using the inequality a − b < 0, if we choose δ so that

0 < δ <
b − a

K(1 + ρ)
,

then limt→∞ ‖e−tUγ(t)‖ = 0 and

α(ξ) = −
∫ ∞

0
e−τUG(χ(τ), α(χ(τ))) dτ. (4.8)

Conversely, if α ∈ B0
ρ(Rk, R�) satisfies the integral equation (4.8), then

the graph of α is an invariant manifold. To see this, consider a point (ξ, α(ξ))
on the graph of α, and redefine χ(t, ξ) := x(t, ξ, α) and γ(t) := α(χ(t, ξ)).
We will show that γ is a solution of the differential equation (4.6). Indeed,
from the integral equation (4.8), we have that

d

dt

(
e−tUγ(t)

)
= − d

dt

∫ ∞

0
e−(t+τ)UG(χ(τ, χ(t, ξ)), α(χ(τ, χ(t, ξ)))) dτ

= − d

dt

∫ ∞

0
e−(t+τ)UG(χ(τ + t, ξ), α(χ(τ + t, ξ))) dτ

= − d

dt

∫ ∞

t

e−sUG(χ(s, ξ), α(χ(s, ξ))) ds

= e−tUG(χ(t, ξ), γ(t)).
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In other words,

e−tU γ̇(t) − e−tUUγ(t) = e−tUG(χ(t, ξ), γ(t)),

and therefore γ is a solution of the differential equation (4.6), as required.
Proposition B: Suppose that ρ > 0. If δ > 0 is sufficiently small,

F ∈ B1
δ(Rk ×R

�, Rk), and G ∈ B1
δ(Rk ×R

�, R�), then the Lyapunov–Perron
operator Λ defined by

Λ(α)(ξ) := −
∫ ∞

0
e−tUG(x(t, ξ, α), α(x(t, ξ, α))) dt

is a contraction on the complete metric space B0
ρ(Rk, R�).

Let us first prove that, for sufficiently small δ > 0, the Lyapunov-Perron
operator Λ maps the metric space B0

ρ(Rk, R�) into itself. To show that Λ(α)
is Lipschitz with Lip(Λ(α)) ≤ ρ, consider ξ, η ∈ R

k and note that

‖Λ(α)(ξ) − Λ(α)(η)‖ ≤ K(1 + ρ)‖G‖1

∫ ∞

0
e−bt‖x(t, ξ, α) − x(t, η, α)‖ dt.

Using the integral equation (4.4), we have the estimate

‖x(t, ξ, α) − x(t, η, α)‖

≤ Keat‖ξ − η‖ +
∫ t

0
K‖F‖1(1 + ρ)ea(t−τ)‖x(τ, ξ, α) − x(τ, η, α)‖ dτ.

After multiplying both sides of this last inequality by e−at and applying
Gronwall’s inequality, we have that

‖x(t, ξ, α) − x(t, η, α)‖ ≤ K‖ξ − η‖e(K‖F‖1(1+ρ)+a)t. (4.9)

Returning to the original estimate, let us substitute the inequality (4.9)
and carry out the resulting integration to obtain the inequality

‖Λ(α)(ξ) − Λ(α)(η)‖ ≤ K2δ(1 + ρ)
b − a − Kδ(1 + ρ)

‖ξ − η‖. (4.10)

If ‖F‖1 and ‖G‖1 are sufficiently small, that is, if δ > 0 is sufficiently
small, then it follows that Λ(α) is a Lipschitz continuous function with
Lipschitz constant less than ρ. In fact, it suffices to take

0 < δ < min
{ b − a

K(1 + ρ)
,

(b − a)ρ
K(1 + ρ)(K + ρ)

}
.

If δ > 0 is less than the first element in the brackets, then the denominator
of the fraction in inequality (4.10) is positive. If δ > 0 is less than the second
element, then the fraction is less than ρ. Moreover, if we take ξ = 0, then
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x(t, 0, α) ≡ 0 is the corresponding solution of the differential equation (4.3),
and it follows that Λ(α)(0) = 0.

To show that ‖Λ(α)‖E < ∞, let us use the estimate (4.10) with η = 0 to
get

sup
ξ 
=0

‖Λ(α)(ξ)‖
‖ξ‖ ≤ K2δ(1 + ρ)

b − a − Kδ(1 + ρ)
< ∞.

This completes the proof that Λ is a transformation of the complete metric
space B0

ρ(Rk, R�) into itself.
It remains to show that Λ is a contraction. By definition, the norm on

the product R
k × R

� is the sum of the Euclidean norms on the factors.
Thus, because ‖G‖1 is finite and the Lipschitz constant for all functions in
the space B0

ρ(Rk, R�) does not exceed ρ, we obtain the inequalities

‖Λ(α)(ξ) − Λ(β)(ξ)‖

≤ K

∫ ∞

0
e−bt‖G(x(t, ξ, α), α(x(t, ξ, α))) − G(x(t, ξ, β), β(x(t, ξ, β)))‖ dt

≤ K‖G‖1

∫ ∞

0
e−bt(‖x(t, ξ, α) − x(t, ξ, β)‖

+ ‖α(x(t, ξ, α)) − α(x(t, ξ, β))‖ + ‖α(x(t, ξ, β)) − β(x(t, ξ, β))‖ dt

≤ K‖G‖1

∫ ∞

0
e−bt((1 + ρ)‖x(t, ξ, α) − x(t, ξ, β)‖

+ ‖α − β‖E‖x(t, ξ, β)‖) dt. (4.11)

To estimate the terms in the integrand of the last integral in the dis-
play (4.11), let us use the integral equation (4.4) to obtain the estimate

‖x(t, ξ, α) − x(t, ξ, β)‖ ≤

K

∫ t

0
ea(t−τ)‖F (x(τ, ξ, α), α(x(τ, ξ, α))) − F (x(τ, ξ, β), β(x(τ, ξ, β)))‖ dτ.

Then, by proceeding exactly as in the derivation of the estimate (4.11), it
is easy to show that

‖x(t, ξ, α) − x(t, ξ, β)‖

≤ K‖F‖1

∫ t

0
ea(t−τ)(1 + ρ)‖x(τ, ξ, α) − x(τ, ξ, β)‖ dτ

+ K‖F‖1‖α − β‖E
∫ t

0
‖x(τ, ξ, β)‖ dτ.
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After inserting the inequality (4.5), integrating the second integral, and
multiplying both sides of the resulting inequality by e−at, we find that

e−at‖x(t, ξ, α) − x(t, ξ, β)‖ ≤
∫ t

0
K(1 + ρ)‖F‖1e

−aτ‖x(τ, ξ, α) − x(τ, ξ, β)‖ dτ

+
K‖F‖1‖ξ‖
δ(1 + ρ)

‖α − β‖E
(
eKδ(1+ρ)t − 1

)
.

Then, an application of Gronwall’s inequality followed by some algebraic
manipulations can be used to show the estimate

‖x(t, ξ, α) − x(t, ξ, β)‖ ≤ K

1 + ρ
‖α − β‖E‖ξ‖e(2Kδ(1+ρ)+a)t.

Returning to the main estimate, if we insert the last inequality as well
as the inequality (4.5), then an integration together with some obvious
manipulations yields the estimate

‖Λ(α) − Λ(β)‖E ≤ 2K2δ

b − a − 2Kδ(1 + ρ)
‖α − β‖E .

Moreover, if

0 < δ < min
{ b − a

2K(1 + ρ)
,

b − a

2K(K + 1 + ρ)

}
,

then Λ has a contraction constant strictly less than one, as required.
Taking into account all the restrictions on δ, if

0 < δ <
b − a

K
min

{ ρ

(1 + ρ)(K + ρ)
,

1
2(1 + ρ)

,
1

2(K + 1 + ρ)

}
,

then the Lyapunov–Perron operator has a fixed point whose graph is a
Lipschitz continuous invariant manifold that passes through the origin.
This completes the proof of Proposition B.

We will use the fiber contraction principle to prove the smoothness of
the invariant manifold that is the graph of the function α obtained as the
fixed point of the Lyapunov–Perron operator (see [191] for a similar proof
for the case of diffeomorphisms). To this end, let us follow the prescription
outlined after the proof of the fiber contraction theorem (Theorem 1.247).

The space of “candidates for the derivatives of functions in B0
ρ(Rk, R�)”

is, in the present case, the set F = C0(Rk, L(Rk, R�)) of all bounded con-
tinuous functions Φ that map R

k into the linear maps from R
k into R

� with
Φ(0) = 0 and with the norm

‖Φ‖F := sup
ξ∈Rk

‖Φ(ξ)‖,
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where ‖Φ(ξ)‖ denotes the usual operator norm of the linear transformation
Φ(ξ). Also, let Fρ denote the closed ball in F with radius ρ, that is,

Fρ := {Φ ∈ F : ‖Φ‖ ≤ ρ}

where ρ > 0 is the number chosen in the first part of the proof.
Proposition C: Suppose that β ∈ B0

ρ(Rk, R�), the function t �→ x(t, ξ, β)
is the solution of the differential equation (4.3) with parameter β and initial
condition x(0, ξ, β) = ξ, and Φ ∈ Fρ. If ‖F‖1 and ‖G‖1 are both sufficiently
small, then Ψ given by

Ψ(β,Φ)(ξ) := −
∫ ∞

0
e−tU [Gx(x(t, ξ, β), β(x(t, ξ, β)))W (t, ξ, β,Φ)

+ Gy(x(t, ξ, β), β(x(t, ξ, β)))Φ(x(t, ξ, β))W (t, ξ, β,Φ)] dt,

(4.12)

where t �→ W (t, ξ, β,Φ) is the solution of the initial value problem

ẇ = Sw + Fx(x(t, ξ, β), β(x(t, ξ, β)))w
+ Fy(x(t, ξ, β), β(x(t, ξ, β)))Φ(x(t, ξ, β))w,

w(0) = I, (4.13)

defines a function from B0
ρ ×Fρ to Fρ. If, in addition, β is continuously dif-

ferentiable and if Λ denotes the Lyapunov–Perron operator, then DΛ(β) =
Ψ(β, Dβ).

To prove Proposition C, let us note first that W is continuous, and it
satisfies the integral equation

W (t, ξ, β,Φ) := etS +
∫ t

0
e(t−s)S [Fx(x(s, ξ, β), β(x(s, ξ, β)))W (s, ξ, β,Φ)

+Fy(x(s, ξ, β), β(x(s, ξ, β)))Φ(x(s, ξ, β))W (s, ξ, β,Φ)] ds.

(4.14)

The integral equation is simply obtained by applying the variation of pa-
rameters formula to the differential equation (4.13); the continuity of W
follows from the continuity of the solutions of differential equations with re-
spect to parameters because the right hand side of the differential equation
is continuous in (t, ξ, β,Φ). This fact is not obvious. But, it can be proved
from the observation that the terms on the right hand side of the differen-
tial equation can all be rewritten as compositions of continuous functions.
For example, to show that

(t, ξ, β,Φ) �→ Φ(x(t, ξ, β))

is continuous, note that x is continuous and the function R
k × Fρ →

L(Rk, R�) given by (ζ,Φ) �→ Φ(ζ) is continuous. The continuity of the last
function follows from the continuity of the elements of F and the estimate

‖Φ1(ζ) − Φ2(η)‖ ≤ ‖Φ1(ζ) − Φ1(η)‖ + ‖Φ1 − Φ2‖F .



4.1 Invariant Manifolds 335

We will show that the improper integral in the definition of Ψ is con-
vergent. Using the hypotheses of the theorem and estimating in the usual
manner, we have that

‖Ψ(β,Φ)(ξ)‖ ≤
∫ ∞

0
Ke−bt‖G‖1(1 + ρ)‖W (t, ξ, β,Φ)‖ dt. (4.15)

An upper bound for ‖W (t, ξ, β,Φ)‖ can be obtained from the integral
equation (4.14). In fact, estimating once again in the usual manner, we
have

‖W (t, ξ, β,Φ)‖ ≤ Keat +
∫ t

0
K‖F‖1(1 + ρ)e(t−s)a‖W (s, ξ, β,Φ)‖ ds.

After multiplying both sides of this last inequality by e−at and then apply-
ing Gronwall’s inequality, we obtain the estimate

‖W (t, ξ, β,Φ)‖ ≤ Ke(K‖F‖1(1+ρ)+a)t. (4.16)

If the inequality (4.16) is inserted into the estimate (4.15), with

‖F‖1 ≤ δ <
b − a

K(1 + ρ)
,

and the resulting integral is evaluated, then we have that

‖Ψ(β,Φ)(ξ)‖ ≤ K2‖G‖1(1 + ρ)
b − a − Kδ(1 + ρ)

. (4.17)

Thus, the original integral converges. Moreover, if the quantity ‖G‖1 is
sufficiently small—the upper bound

‖G‖1 ≤ δ ≤ ρ(b − a − Kδ(1 + ρ))
K2(1 + ρ)

will suffice—then

‖Ψ(β,Φ)(ξ)‖ ≤ ρ.

Finally, it is easy to check that Ψ(β,Φ)(0) = 0. Therefore, Ψ(β,Φ) ∈ Fρ,
as required.

If β is continuously differentiable, then the solution t �→ x(t, ξ, β) of the
differential equation (4.3) given by

ẋ = Sx + F (x, β(x))

is continuously differentiable by Theorem 1.261. Moreover, if we define
Φ := Dβ, then W (t, ξ, β) := xξ(t, ξ, β) (the solution of the first variational
equation of the differential equation (4.3)) is the corresponding solution
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of the integral equation (4.14). In this case, the integrand of the integral
expression for Λ(β)(ξ) is clearly a differentiable function of ξ with deriva-
tive exactly the integrand of the integral expression for Ψ(β, Dβ)(ξ). As we
have shown above, this integrand is bounded above by an integrable func-
tion. Thus, differentiation under the integral sign is justified, and in fact,
DΛ(β) = Ψ(β, Dβ), as required. This completes the proof of the proposi-
tion.

Let us show that

Γ : B0
ρ(Rk, R�) × Fρ → B0

ρ(Rk, R�) × Fρ

given by (β,Φ) �→ (Λ(β), Ψ(β,Φ)), is a continuous fiber contraction. For
this, let β ∈ B0

ρ(Rk, R�) and consider the estimates (analogous to those
made previously) given by

‖Ψ(β,Φ1)(ξ)−Ψ(β,Φ2)(ξ)‖

≤K

∫ ∞

0
e−bt(‖GxW + GyΦ1W − GxW − GyΦ2W )‖ dt

≤K

∫ ∞

0
e−bt‖G‖1‖Φ1 − Φ2‖F |W (t, ξ, β,Φ2)| dt, (4.18)

where, for notational convenience, the arguments of some of the functions
in the integrands are suppressed.

Using the estimate (4.16), we have that

‖Ψ(β,Φ1)(ξ)−Ψ(β,Φ2)(ξ)‖

≤ K2‖G‖1

∫ ∞

0
e(K‖F‖1(1+ρ)+a−b)t dt ‖Φ1 − Φ2‖F

≤ K2‖G‖1

b − a − K‖F‖1(1 + ρ)
‖Φ1 − Φ2‖F . (4.19)

Thus, if

0 < δ <
b − a

K(K + 1 + ρ)
,

‖F‖1 ≤ δ, and ‖G‖1 ≤ δ, then

0 <
2K2‖F‖1

b − a − 2K‖G‖1(1 + ρ)
< 1,

and therefore Γ is a fiber contraction.
We must show that Γ is continuous. As in the proof of Theorem 1.249,

it suffices to show that the map Ψ is continuous with respect to its first
argument. This result follows from the next proposition.



4.1 Invariant Manifolds 337

Proposition D: Suppose that Φ ∈ Fρ, H : R
k × R

� → L(R�, R�), and
K : R

k × R
� → L(Rk, R�). If H and K are bounded continuous functions,

then the functions ∆ : B0
ρ(Rk, R�) → Fρ, given by

∆(β)(ξ) =
∫ ∞

0
e−tUH(x(t, ξ, β), β(x(t, ξ, β)))Φ(x(t, ξ, β))W (t, ξ, β,Φ)) dt,

and Υ : B0
ρ(Rk, R�) → Fρ, given by

Υ(β)(ξ) =
∫ ∞

0
e−tUK(x(t, ξ, β), β(x(t, ξ, β)))W (t, ξ, β,Φ)) dt,

where W is defined in Proposition C, are continuous.
The proof of Proposition D is rather long; we will outline the ideas of

the proof for the function ∆.
It suffices to show that ∆ is continuous at each point of its domain; that

is, for each α ∈ B0
ρ(Rk, R�) and each ε > 0, there is some δ > 0 such that

‖∆(β) − ∆(α)‖F < ε whenever ‖β − α‖E < δ.
For notational convenience, let

h(t, ξ, β) := H(x(t, ξ, β), β(x(t, ξ, β))).

By using the definition of ∆, the hyperbolic estimates, and the triangle
inequality, the proof is reduced to showing that the supremum over ξ ∈ R

k

of each of the three integrals

I1 := K

∫ ∞

0
e−bt‖H‖0‖Φ‖F‖W (t, ξ, β) − W (t, ξ, α)‖ dt,

I2 := K

∫ ∞

0
e−bt‖H‖0‖Φ(x(t, ξ, β)) − Φ(x(t, ξ, α))‖‖W (t, ξ, α)‖ dt,

I3 := K

∫ ∞

0
e−bt‖H(t, ξ, β) − H(t, ξ, α)‖‖Φ‖F‖W (t, ξ, α)‖ dt,

is less than ε/3 whenever ‖β − α‖E is sufficiently small.
The inequality (4.16) implies the convergence of the integrals I1, I2, and

I3. Thus, there is some T > 0 such that the supremum over ξ ∈ R
k of each

corresponding integral over [T, ∞] is less than ε/6 uniformly with respect
to β. With this estimate in hand, it suffices to show that the supremum
over ξ ∈ R

k of each corresponding integral over the compact interval [0, T ]
is bounded above by ε/6 for sufficiently small ‖β − α‖E . In other words, it
suffices to show the continuity with respect to β of integrals over a finite
time interval. For example, for I1 it suffices to show that the function
h : B0

ρ(Rk, R�) → F given by

h(β)(ξ) :=
∫ T

0
e−btW (t, ξ, β) dt
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is continuous. This result requires a technical observation. From advanced
calculus, an integral of the form∫ T

0
ω(t, β) dt

is continuous with respect to β provided that ω is continuous. But, this
theorem is usually stated for ω : R×R

m → R
n; that is, for β a variable in a

finite-dimensional space. The usual proof is to argue that the corresponding
function of β is continuous at each point α ∈ R

m by using the uniform
continuity of ω on a compact set of the form [0, T ]×B where B is a closed
ball in R

m with center at a point α. But, in our case, the set B0
ρ(Rk, R�) is

not compact because it is a ball in an infinite-dimensional Banach space.
A proof that includes infinite-dimensional parameters is only slightly more
complicated; it uses the compactness of [0, T ]. The idea is simple: Pick
α ∈ B0

ρ(Rk, R�) and ε > 0; and, for each t ∈ [0, T ], use the continuity of ω
to find a product neighborhood {s : |s − t| < δt} × {β : ‖β − α‖E < δt} in
R × Bρ(Rk, R�) on which∫ T

0
‖ω(s, β) − ω(t, α)‖ dt < ε/T.

Because [0, T ] is compact, there are finitely many such neighborhoods that
cover [0, T ] × {α}. For a positive δ less than the minimum of the corre-
sponding {δt1 , δt2 , . . . , δtN

}, we have that

‖ω(t, β) − ω(t, α‖ < ε/T

whenever ‖β − α‖E < δ, as required.
To complete the proof of Proposition D, it suffices to show that the

function ω : [0, T ] × B0
ρ(Rk, R�) → F , given by ω(t, β)(ξ) = W (t, ξ, β), the

function p : [0, T ]×B0
ρ(Rk, R�) → F , given by p(t, β)(ξ) = Φ(x(t, ξ, β)), and

the function h : [0, T ] × B0
ρ(Rk, R�) → F , given by h(t, β)(ξ) = H(t, ξ, β)

are continuous. We have already indicated the idea for the proof of this
fact for ω and p (see the discussion following display (4.14)); the proof for
h is similar. This completes the outline of the proof of Proposition D.

Continuing with the proof of the theorem, let us define (φ0, Φ0) = (0, 0) ∈
B0

ρ(Rk, R�) × Fρ and note that Dφ0 = Φ0. Also, let us define recursively a
sequence {(φn, Φn)}∞

n=0 by

(φn+1, Φn+1) := Γ(φn, Φn) = (Λ(φn), Ψ(φn, Φn)).

If Dφn = Φn, then, by Proposition C, DΛ(φn) = Ψ(φn, Φn) and DΛ(φn) ∈
Fρ. Thus, Dφn+1 = DΛ(φn) = Ψ(φn, Φn) = Φn+1. Moreover, if α is the
fixed point of the Lyapunov–Perron operator, then by the fiber contraction
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theorem and the fact that Fρ is a complete metric space, there is some
Φ∞ ∈ Fρ such that

lim
n→∞ φn = α, lim

n→∞ Φn = Φ∞.

The sequence {φn}∞
n=0 converges in E0(Rk, R�) to α and its sequence

of derivatives converges uniformly to a continuous function—an element
of Fρ. By Theorem 1.248, α is continuously differentiable with derivative
Φ∞, provided that the convergence of the sequence {φn}∞

n=0 is uniform.
While the norm in E0(Rk, R�) is not the uniform norm, the convergence
is uniform on compact subsets of R

k. As differentiability and continuity
are local properties, the uniform convergence on compact subsets of R

k of
the sequence {φn}∞

n=0 to α is sufficient to obtain the desired result: α is
continuously differentiable with derivative Φ∞.

For a direct proof that the function α is continuously differentiable, con-
sider ξ, h ∈ R

k and note that, by the fundamental theorem of calculus, if
n is a positive integer, then

φn(ξ + h) − φn(ξ) =
∫ 1

0

d

dt
φn(ξ + th) dt =

∫ 1

0
Φn(ξ + th)h dt.

If we pass to the limit as n → ∞ and use the uniform convergence of
{Φn}∞

n=0 to the continuous function Φ∞, then we have the identity

α(ξ + h) − α(ξ) =
∫ 1

0
Φ∞(ξ + th)h dt,

and consequently the estimate

‖α(ξ + h) − α(ξ) − Φ∞(ξ)h‖ ≤ ‖
∫ 1

0
Φ∞(ξ + th)h dt −

∫ 1

0
Φ∞(ξ)h dt‖

≤ ‖h‖
∫ 1

0
‖Φ∞(ξ + th) − Φ∞(ξ)‖ dt.

The Lebesgue dominated convergence theorem can be used to show that
the last integral converges to zero as h → 0. This proves that Dα = Φ∞,
as required. �

As a remark, note that for the existence and smoothness of the invariant
manifold in Theorem 4.1, both ‖F‖1 and ‖G‖1 are required to be less than
the minimum of the numbers

(b − a)ρ
K(1 + ρ)(K + ρ)

,
b − a

2K(1 + ρ)
,

b − a

2K(K + 1 + ρ)
.

Of course, if K is given, then there is an optimal value of ρ, namely, the
value that makes the minimum of the three numbers as large as possible.
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Theorem 4.1 requires that the nonlinear terms F and G in the differential
equation (4.2) have sufficiently small C1-norms over the entire product
space R

k × R
�. Clearly, we cannot expect a differential equation whose

linearization at a rest point has a spectral gap to also have globally small
corresponding nonlinear terms. To overcome this difficulty, we will use the
following observation: By restricting attention to a sufficiently small open
set containing the rest point, the C1-norm of the nonlinear terms can be
made as small as we like.

Suppose that the coordinates are already chosen so that the rest point is
at the origin and the differential equation is given in a product neighbor-
hood of the origin in the form

ẋ = Sx + f(x, y), ẏ = Uy + g(x, y) (4.20)

where f and g, together with all their first partial derivatives, vanish at
the origin.

Let δ > 0 be given as in the proof of Theorem 4.1. Choose a ball Br at
the origin with radius r > 0 such that

sup
(x,y)∈Br

‖Df(x, y)‖ <
δ

3
, sup

(x,y)∈Br

‖Dg(x, y)‖ <
δ

3
.

Then, using the mean value theorem, we have that

sup
(x,y)∈Br

‖f(x, y)‖ <
δr

3
, sup

(x,y)∈Br

‖g(x, y)‖ <
δr

3
.

Moreover, there is a smooth “bump function” (cf. Exercise 4.17) γ : R
k ×

R
� → R, also called in this context a “cut-off function,” with the following

properties:
(i) γ(x, y) ≡ 1 for (x, y) ∈ Br/3;
(ii) the function γ vanishes on the complement of Br in R

k × R
�;

(iii) ‖γ‖ = 1 and ‖Dγ‖ ≤ 2/r.
With these constructions, it follows that

‖D(γ · f)‖ ≤ ‖Dγ‖‖f‖ + ‖γ‖‖Df‖ <
(2

r

)(δr

3

)
+

δ

3
< δ (4.21)

with the same upper estimate for ‖D(γ · G)‖.
If we define F (x, y) := γ(x, y)f(x, y) and G(x, y) := γ(x, y)g(x, y), then

the system

ẋ = Sx + F (x, y), ẏ = Uy + G(x, y)

has a global C1 invariant manifold. The subset of this manifold that is
contained in the ball Br/3 is an invariant manifold for the system (4.20).
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If the rest point is hyperbolic, so that a < 0 < b in Theorem 4.1, then we
have proved the existence and uniqueness of a stable manifold at the rest
point. In particular, solutions starting on this invariant manifold converge
to the origin as t → ∞. To obtain the existence of an unstable manifold,
simply reverse the direction of the independent variable, t → −t, and apply
Theorem 4.1 to the resulting differential equation.

Of course, the local invariant manifolds that are produced in the manner
just described may very well be just small portions of the entire invariant
manifolds at the rest point. It’s just that one of the global invariant man-
ifolds may not be the graph of a function. If W s

loc(0, 0) denotes the local
stable manifold for a rest point at the origin, and if φt denotes the flow
of the corresponding differential equation, then we can define the stable
manifold by

W s(0, 0) :=
⋃
t≤0

φt(W s
loc(0, 0)).

It can be shown that W s(0, 0) is an immersed disk. A similar statement
holds for the unstable manifold.

In case the rest point is not hyperbolic, let us consider the system

ẋ = Sx + f(x, y, z), ẏ = Uy + g(x, y, z), ż = Cz + h(x, y, z)

where we have already changed coordinates so that (x, y, z) ∈ R
k ×R

�×R
m

with the spectrum of S in the left half plane, the spectrum of U in the right
half plane, and the spectrum of C on the imaginary axis. If, for example,
we group the first and last equations so that the system is expressed in the
form (

ẋ
ż

)
=

(
S 0
0 C

)(
x
z

)
+

(
f(x, y, z)
h(x, y, z)

)
,

then we are in the situation of Theorem 4.1 where the corresponding spec-
tral gap is bounded by a = 0 and some b > 0. An application of Theo-
rem 4.1 produces a “center-stable manifold”—a manifold W cs(0, 0) given
as the graph of a smooth function α : R

k × R
m → R

�. Using a reversal
of the independent variable and a second application of Theorem 4.1, let
us produce a center-unstable manifold W cu(0, 0) given as the graph of a
smooth function ω : R

� × R
m → R

k. The intersection of these manifolds is
denoted by W c(0, 0) and is a center manifold for the original system (that
is, an invariant manifold that is tangent to the eigenspace of the linear sys-
tem corresponding to the eigenvalues with zero real parts). To prove this
fact, we will show that W c(0, 0) is given, at least locally, as the graph of a
function µ : R

m → R
k × R

� with µ(0) = 0 and Dµ(0) = 0.
There seems to be a technical point here that depends on the choice of

the number ρ. Recall that ρ > 0 was used in the proof of Theorem 4.1 as the
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bound on the Lipschitz constants for the functions considered as candidates
for fixed points of the Lyapunov–Perron operator. If 0 < ρ < 1, then we
will show, as a corollary of Theorem 4.1, that there is a smooth global
center manifold. If ρ > 1, then we will show that there is a local center
manifold. Of course, in the proof of Theorem 4.1 we were free to choose
ρ < 1 as long as we were willing to take the C1-norms of the nonlinear terms
sufficiently small, perhaps smaller than is required to prove the existence
of the center-stable and the center-unstable manifolds.

Let us suppose that 0 < ρ < 1. If there is a smooth function ν : R
m → R

k

with ν(0) = 0 that satisfies the functional equation

ν(z) = ω(α(ν(z), z), z), (4.22)

then it is easy to check that W c(0, 0) is the graph of the smooth function
ζ �→ (ν(ζ), α(ν(ζ), ζ)), as required.

In order to solve the functional equation, let us consider the Banach space
E0(Rm, Rk) with the E-norm as defined in the proof of Theorem 4.1, the
subset B0

ρ(Rm, Rk) consisting of all elements of E0(Rm, Rk) whose Lipschitz
constants do not exceed ρ, and the operator Λ that is defined for functions
in B0

ρ(Rm, Rk) by

Λ(ν)(ζ) := ω(α(ν(ζ), ζ), ζ).

We are using the same symbol to denote this operator as we used to de-
note the Lyapunov–Perron operator because the proof that each of these
operators has a smooth fixed function is essentially the same.

To show that Λ is a contraction on the complete metric space B0
ρ(Rm, Rk),

note that if ν ∈ B0
ρ(Rm, Rk), then Λ(ν) is continuous on R

m. Moreover, it
is easy to show the following inequality:

‖Λ(ν)(ζ1) − Λ(ν)(ζ2)‖ ≤ Lip(ω) Lip(α) Lip(ν)‖ζ1 − ζ2‖ ≤ ρ3‖ζ1 − ζ2‖.

In particular, we have that ‖Λ(ν)(ζ1)‖ ≤ ρ3‖ζ1‖. It now follows that
‖Λ(ν)‖E < ∞ and Lip(Λ(ν)) ≤ ρ. Thus, Λ maps the complete metric
space B0

ρ(Rm, Rk) into itself. Also, we have that

‖Λ(ν1)(ζ) − Λ(ν2)(ζ)‖ ≤ Lip(ω) Lip(α)‖ν1(ζ) − ν2(ζ)‖ ≤ ρ2‖ν1 − ν2‖E‖ζ‖,

and, as a result, Λ is a contraction on B0
ρ(Rm, Rk). Therefore, Λ has a

globally attracting fixed point ν ∈ B0
ρ(Rm, Rk).

To show that ν is smooth, we can again use the fiber contraction princi-
ple. In fact, the proof is completely analogous to the proof of the smoothness
of the invariant manifold in Theorem 4.1 (see also the discussion after the
fiber contraction theorem (Theorem (1.247))). We will outline the main
steps of the proof.
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Consider the set F = C0(Rm, L(Rm, Rk)) of all bounded continuous func-
tions Φ that map R

m into the bounded linear maps from R
m into R

k with
Φ(0) = 0 and with the norm

‖Φ‖F := sup
ξ∈Rk

‖Φ(ξ)‖

where, as before, ‖Φ(ξ)‖ denotes the operator norm of the transformation
Φ(ξ). Also, let Fρ denote the closed ball in F with radius ρ, that is,

Fρ := {Φ ∈ F : ‖Φ‖ ≤ ρ}.

For φ ∈ B0
ρ(Rm, Rk) and for Φ ∈ Fρ, let us define

Ψ(φ,Φ)(ζ) := ωy(α(φ(ζ), ζ), ζ)[αx(α(φ(ζ), ζ), ζ)Φ(ζ) + αz(φ(ζ), ζ), ζ)]
+ ωz(α(φ(ζ), ζ), ζ).

It is easy to check that Ψ maps B0
ρ(Rm, Rk) × Fρ into Fρ. Moreover, if φ

is continuously differentiable, then DΛ(φ) = Ψ(φ, Dφ).
The transformation Γ : B0

ρ(Rm, Rk) × Fρ → B0
ρ(Rm, Rk) × Fρ given by

Γ(φ,Φ) = (Λ(φ),Ψ(φ,Φ)) is a fiber contraction. In fact, we have

‖Ψ(φ,Φ1)(ζ) − Ψ(φ,Φ2)(ζ)‖ ≤ ρ2‖Φ1 − Φ2‖.

Also, let us define Φ∞ to be the unique fixed point of the map Φ �→ Ψ(ν,Φ)
where, recall, ν is the unique fixed point of Λ.

Let (φ0, Φ0) = (0, 0) ∈ B0
ρ(Rm, Rk) × Fρ and define recursively the se-

quence {(φ0, Φ0)}∞
n=0 by

(φn+1, Φn+1) = Γ(φn, Φn).

It is easy to check that Φn = Dφn for each nonnegative integer n. By the
fiber contraction principle, we have that limn→∞ φn = ν and

lim
n→∞ Φn = Φ∞.

As before, by using the uniform convergence on compact subsets of R
m of

the sequence {φn}∞
n=0 and the uniform convergence of {Φn}∞

n=0, we can
conclude that ν is continuously differentiable with derivative Φ∞.

If ρ > 1, let us consider the map ∆ : R
k × R

m → R
k defined by

∆(x, z) := x − ω(α(x, z), z).

An application of the implicit function theorem at the origin produces a
local solution z �→ ν(z) that can be used as above to define a function
whose graph is a subset W c

loc(0, 0) of W c(0, 0).
We have proved that a C1 differential equation has C1 local invariant

manifolds at a rest point. It should be reasonably clear that the methods
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Figure 4.1: Schematic phase portrait for system (4.23) modified with a cut-
off function that removes the nonlinearity outside of the indicated disk.
Note that only the horizontal axis is a global center manifold for the mod-
ified differential equation.

of proof used in this section, together with an induction argument, can
be used to show that if 1 ≤ r < ∞, then a Cr differential equation has
Cr local invariant manifolds at a rest point. The case of C∞, or analytic,
differential equations is more difficult. For example, an analytic differential
equation may not have a C∞ center manifold (see [103, p. 126]).

Let us note that (local) center manifolds may not be unique. For example,
the rest point at the origin for the planar differential equation

ẋ = x2, ẏ = −y (4.23)

has infinitely many center manifolds (see Exercise 4.2). This fact may seem
contrary to the uniqueness of the invariant manifolds proved in Theo-
rem 4.1. The apparent contradiction arises because only one of the local
center manifolds for the differential equation (4.23) is defined globally. More
precisely, if this differential equation is modified by a cut-off function, then
only one of the local center manifolds extends as the graph of a globally
defined function (see Figure 4.1). Indeed, in the unbounded region where
the cut-off function vanishes, the modified vector field is given by the lin-
earized equations at the rest point, and for this linear system the only
invariant one-dimensional manifold that is the graph of a function over the
horizontal axis is the horizontal axis itself.

The local stable and unstable manifolds are unique. The key observation
is that, unlike for the center manifold case, the linearization at a hyperbolic
rest point, which defines the modified vector field in the region where the
cut-off function vanishes, is such that local invariant manifolds for the orig-
inal system would extend globally for the modified vector field as graphs
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of functions. Thus, the existence of more than one local stable or unstable
manifold would violate Theorem 4.1.

Exercise 4.2. Show that the system (4.23) has infinitely many local center
manifolds.

4.2 Applications of Invariant Manifolds

The most basic application of invariant manifold theory is the rigorous
proof that the phase portraits of rest points of nonlinear systems have
invariant manifolds akin to the (linear) invariant subspaces at the zero
solution of a constant coefficient homogeneous linear system. But the ap-
plications of invariant manifold theory go far beyond this fact. It turns out
that invariant sets (for example, periodic orbits, invariant tori, etc.) also
have associated invariant manifolds. It is even possible to have a system
(called a uniformly hyperbolic system or an Anosov system) where every
orbit has associated nontrivial stable and unstable manifolds. The existence
of invariant manifolds provides an important part of the analysis required
to understand the dynamical behavior of a differential equation near an
invariant set, for example a steady state.

Another important application of invariant manifold theory arises when
we are interested in the qualitative changes in the phase portrait of a fam-
ily of differential equations that depends on one or more parameters. For
example, let us imagine that the phase portrait of a family at some param-
eter value has a rest point (more generally, an invariant set) that is not
hyperbolic. In this case we expect that the qualitative dynamical behavior
of the system will change—a bifurcation will occur—when the parameter
is varied. Often, if there are qualitative changes, then they are confined to
changes on a center manifold. After all, the dynamics on stable and unsta-
ble manifolds is very simple: asymptotic attraction in forward or backward
time to the invariant manifold. This observation often allows the reduction
of a multidimensional problem to a much lower dimensional differential
equation restricted to the center manifold as we will now explain.

Let us consider a differential equation that depends on a parameter ν.
Moreover, let us assume that the differential equation has a rest point
whose position in space is a smooth function of ν near ν = 0. In this case,
there is a change of coordinates that fixes the rest point at the origin and
transforms the system to the form

ẋ = S(ν)x + F (x, y, z, ν),
ẏ = U(ν)y + G(x, y, z, ν),
ż = C(ν)z + H(x, y, z, ν)
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where S, U , and C are matrices that depend on the parameter. More-
over, C(0) has eigenvalues with zero real parts, S(0) has eigenvalues with
negative real parts, and U(0) has eigenvalues with positive real parts.

There is a standard “trick” that is quite important. Let us introduce ν
as a new dependent variable; that is, let us consider the system

ẋ = S(ν)x + F (x, y, z, ν),
ẏ = U(ν)y + G(x, y, z, ν),
ż = C(ν)z + H(x, y, z, ν),
ν̇ = 0.

Also, note that if we expand the matrices S, U , and C in powers of ν at
ν = 0 to obtain, for example, S(ν) = S(0)+νS(ν), then the term νS(ν)x is
a nonlinear term with respect to our new differential equation, and therefore
it can be grouped together with F (x, y, z, ν) in the first equation. Hence, by
an obvious redefinition of the symbols, we lose no generality if we consider
the system in the form

ẋ = Sx + F (x, y, z, ν),
ẏ = Uy + G(x, y, z, ν),
ż = Cz + H(x, y, z, ν)
ν̇ = 0

where the matrices S, U and C do not depend on ν. Moreover, by grouping
together the last two equations, let us view the system as having its center
part augmented by one extra center direction corresponding to ν. If ν is a
vector of parameters, then there may be several new center directions.

By our general theorem, there is a center manifold given as the graph
of a function with components x = α(z, ν) and y = β(z, ν) defined on the
space with coordinates (z, ν). In particular, the center manifold depends
smoothly on the coordinate ν in some open ball containing ν = 0, and
therefore the restriction of the original differential equation to this invariant
center manifold—its center manifold reduction—depends smoothly on the
parameter ν and has the form

ż = Cz + H(α(z, ν), β(z, ν), z, ν). (4.24)

The “interesting” dynamics near the original rest point for ν near ν = 0
is determined by analyzing the family of differential equations (4.24). In
fact, this construction is one of the most important applications of center
manifold theory.

The qualitative behavior for center manifold reduced systems is the same
on all local center manifolds. Moreover, each bounded invariant set of the
original system, sufficiently close to the rest point under consideration,
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is also an invariant set for each center manifold reduced system (see, for
example, [58]).

Exercise 4.3. (a) Determine a center manifold for the rest point at the origin
of the system

ẋ = −xy, ẏ = −y + x2 − 2y2

and a differential equation for the dynamics on this center manifold. (b) Show
that every solution of the system is attracted to the center manifold (see the
interesting article by A. J. Roberts [195]). (c) Determine the stability type of
the rest point at the origin. Hint: Look for the center manifold as a graph of a
function of the form

y = h(x) = −αx2 + βx3 + · · · .

Why does the expected h have h(0) = 0 and h′(0) = 0? The condition for
invariance is ẏ = h′(x)ẋ with y = h(x). Find the first few terms of the series
expansion for h, formulate a conjecture about the form of h, and then find h
explicitly. Once h is known, the dynamical equation for the flow on the center
manifold is given by ẋ = −xh(x). (Why?) (d) Find an explicit equation for the
unstable manifold of the saddle point at the origin for the system

ẋ = εx − xy, ẏ = −y + x2 − 2y2,

and find the differential equation that gives the dynamics on this invariant man-
ifold. (e) How does the phase portrait change as ε passes through ε = 0.

Exercise 4.4. Find the third order Taylor series approximation of the (scalar)
center manifold reduced family at the origin, as in display (4.24), for the system

ż = ε − z + w +
1
4
((1 + ε)z2 − 2εwz − (1 − ε)w2),

ẇ = ε + z − w − 1
4
((1 + ε)z2 − (2ε − 4)wz + (3 + ε)w2).

Exercise 4.5. The system

ṗ = −1
5
p(3p5 − 5q4p2 + 13q2p − 3), q̇ = −1

5
q(p5 + q2p − 1).

derived in Exercise 1.145 has a semi-hyperbolic rest point at (p, q) = (1, 0). Use
a center manifold reduction to determine the phase portrait in a neighborhood
of this rest point. Hint: Use the hint for part (c) of Exercise 4.3.

4.3 The Hartman–Grobman Theorem

In the last section we proved the existence of stable and unstable manifolds
for hyperbolic rest points of differential equations using a classic idea that
is worth repeating: The existence of the desired object, for example an
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invariant manifold, is equivalent to the existence of a fixed point for a
properly defined map on a function space, and the hyperbolicity hypothesis
is used to prove that this map is a contraction. This same idea is used in
this section to prove the Hartman–Grobman theorem (Theorem 1.47). This
result provides a perfect setting for our exploration of various aspects of
hyperbolicity theory. See [11], [165], [186], [181], [192], and [54] for the
origins of this marvelous proof, and for the original proofs see [102] and
[113].

4.3.1 Diffeomorphisms
We will prove the Hartman–Grobman theorem for discrete dynamical sys-
tems, that is, dynamical systems defined by diffeomorphisms as follows:
Suppose that Ω ⊆ R

n and F : Ω → Ω is a diffeomorphism. The orbit
of ξ ∈ Ω is the set of all iterates of ξ under transformation by F . More
precisely, the orbit of ξ is the set {F �(ξ) : � ∈ Z}, where F−1 denotes the
inverse of F , we define F 0(ξ) = ξ and (by induction) F �+1(ξ) := F (F �(ξ))
for every integer �. A fixed point of the dynamical system defined by F
(that is, a point ξ such that F (ξ) = ξ) is analogous to a rest point for the
dynamical system defined by a differential equation.

There is, of course, a very close connection between the dynamical sys-
tems defined by differential equations and those defined by diffeomor-
phisms. If, for example, ϕt is the flow of an autonomous differential equa-
tion, then for each fixed t ∈ R the time t map given by ξ �→ ϕt(ξ) is
a diffeomorphism on its domain that defines a dynamical system whose
orbits are all subsets of the orbits of the flow. Also, a Poincaré map is a
diffeomorphism whose orbits correspond to features of the phase portrait of
its associated differential equation. In particular, a fixed point of a Poincaré
map corresponds to a periodic orbit of the associated differential equation.

Let ϕt be the flow of the differential equation ẋ = f(x) and recall that
t �→ Dφt(ζ) is the solution of the variational initial value problem

Ẇ = Df(ϕt(ζ))W, W (0) = I.

In particular, if ζ is a rest point, then the solution of the initial value
problem is

Dφt(ζ) = etDf(ζ).

Thus, if ζ is a hyperbolic rest point and t �= 0, then the linear transfor-
mation Dφt(ζ) has no eigenvalues on the unit circle of the complex plane.
For this reason, a fixed point of a diffeomorphism is called hyperbolic if the
derivative of the diffeomorphism at the fixed point has no eigenvalue on
the unit circle.

The next theorem is a version of the Hartman–Grobman theorem for
diffeomorphisms. Informally, it states that the phase portrait near a hy-
perbolic fixed point is the same, up to a continuous change of coordinates,
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as the phase portrait of the dynamical system induced by the derivative of
the diffeomorphism evaluated at the fixed point.

Theorem 4.6 (Hartman–Grobman Theorem). Let Ω be an open sub-
set of R

n. If ζ is a hyperbolic fixed point for the diffeomorphism F : Ω → Ω,
then there is an open set U ∈ R

n containing ζ and a homeomorphism H
with domain U such that

F (H(x)) = H(DF (ζ)x)

whenever x ∈ U and both sides of the equation are defined.

The proof of Theorem 4.6 is based on the idea that the conjugating homeo-
morphism is the solution of a functional equation. Sufficient conditions for
the appropriate functional equation to have a unique solution are given in
the following key lemma.

Lemma 4.7. Suppose that A : R
n → R

n is an invertible hyperbolic linear
transformation and p : R

n → R
n is a smooth function such that p(0) = 0.

If 0 < α < 1 and the C1-norm of the function p is sufficiently small, then
there is a unique continuous function h : R

n → R
n such that ‖h‖ ≤ α,

h(0) = 0, and

h(Ax) − Ah(x) = p(x + h(x)) (4.25)

for every x in R
n.

Proof. For h : R
n → R

n, define the linear operator L by

L(h)(x) = h(Ax) − Ah(x),

the (nonlinear) operator Φ by

Φ(h)(x) = p(x + h(x)) − p(x),

and recast equation (4.25) in the form

L(h)(x) = Φ(h)(x) + p(x). (4.26)

The operator L is invertible on the Banach space C(Rn), the space of
bounded continuous transformations of R

n with the supremum norm. To
prove this fact, let us use the hyperbolicity of the linear transformation
A to decompose the space R

n as the direct sum of the invariant linear
eigenspaces Es and Eu that correspond, respectively, to the subsets of the
spectrum of A that lie inside and outside of the unit circle. Of course, if
the fixed point is a sink or a source, then there is only one eigenspace.

By Corollary 2.127, there are adapted norms (both denoted by | |) on
the eigenspaces such that the sum of these norms is equivalent to the norm
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on R
n, and in addition there is a number λ, with 0 < λ < 1, such that if

x = xs + xu ∈ Es ⊕ Eu, then

|Axs| < λ|xs|, |A−1xu| < λ|xu|.

Also, if h is a transformation of R
n, then h can be expressed uniquely as a

sum of functions h = hs + hu where hs : R
n → Es and hu : R

n → Eu.
Using the projections to Es and Eu, let us note that

L(h)(x) = [hs(Ax) − A(hs(x))] + [hu(Ax) − A(hu(x))].

Because the eigenspaces are invariant sets for A, it follows that the equation

L(h)(x) = p(x),

where p : R
n → R

n, has a solution h if and only if the “operator equations”

Ls(hs)(x) := hs(Ax) − Ahs(x) = ps(x),

Lu(hu)(x) := hu(Ax) − Ahu(x) = pu(x)

both have solutions. In particular, to prove that L is invertible, it suffices
to prove that Ls and Lu are both invertible as operators on the respec-
tive spaces C0(Rn, Es) and C0(Rn, Eu) where C0(Rn, Es), respectively
C0(Rn, Eu), denotes the space of continuous bounded functions from R

n

to Es, respectively Eu, with the adapted norm.
Let us define two additional operators S and U by

S(hs)(x) := hs(Ax), U(hu)(x) := hu(Ax)

so that

Ls(hs) = (S − A)hs, Lu(hu) = (U − A)hu.

Because A is invertible, both of the operators S and U are invertible; for
example, we have that S−1(hs)(x) = hs(A−1x). Moreover, it is easy to
prove directly from the definition of the operator norm that these operators
and their inverses all have norm one. Thus, we have

‖S−1A‖ ≤ ‖S−1‖ ‖A‖ < λ < 1,

and therefore the operator I − S−1A is invertible. In fact, its inverse is
given by

I − S−1A = I +
∞∑

�=1

(S−1A)�

where the Neumann series is easily proved to be absolutely convergent by
comparison with the geometric series

∞∑
�=0

λ� =
1

1 − λ
.
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Because the operator Ls can be rewritten in the form

Ls = S − A = S(I − S−1A),

it is invertible with inverse

L−1
s = (I − S−1A)−1S−1.

Moreover, we have the following norm estimate:

‖L−1
s ‖ ≤ 1

1 − λ
.

Similarly, for the operator Lu, we have that

Lu = U − A = A(A−1U − I) = −A(I − A−1U)

with

‖A−1U‖ < λ < 1.

Therefore, the inverse of Lu is given by

L−1
u = −(I − A−1U)−1A−1,

and, in addition, we have the norm estimate

‖L−1
u ‖ ≤ λ

1 − λ
<

1
1 − λ

.

Using the norm estimates for the inverses of the operators Ls and Lu, it
follows that L is invertible and

‖L−1‖ <
2

1 − λ
.

Let us recast equation (4.26) in the form

h = L−1Φ(h) + L−1p

and note that the solutions of equation (4.26) are exactly the fixed points
of the operator T defined by

T (h) := L−1Φ(h) + L−1p.

Also, the set

C0
α := {h ∈ C0(Rn) : ‖h‖ ≤ α, h(0) = 0}

is a complete metric subspace of the Banach space C0(Rn). Thus, to com-
plete the proof of the lemma, it suffices to show the following proposition:
T : C0

α → C0
α and T is a contraction.
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To prove the proposition, note that if h(0) = 0, then T (h)(0) = 0 and
and

‖T (h)‖ ≤ ‖L−1‖(‖Φ(h)‖ + ‖p‖)

≤ 2
1 − λ

(
sup

x∈Rn

|p(x + h(x)) − p(x)| + ‖p‖
)

≤ 2
1 − λ

(
sup

x∈Rn

|Dp(x)| ‖h‖ + ‖p‖
)

≤ 2
1 − λ

(
‖p‖1‖h‖ + ‖p‖

)
≤ 2

1 − λ
(1 + α)‖p‖1

where ‖ ‖1 denotes the C1 norm. Hence, if

‖p‖1 <
α

1 + α
(1 − λ),

then T is a transformation of the space C0
α. Moreover, because

‖T (h1) − T (h2)‖ = ‖L−1(Φ(h1) − Φ(h2))‖

≤ 2
1 − λ

sup
x∈Rn

‖p(x + h1(x)) − p(x + h2(x))‖

≤ 2
1 − λ

‖p‖1‖h1 − h2‖,

the same restriction on the size of ‖p‖1 ensures that T is a contraction. �

Let us prove Theorem 4.6.

Proof. Assume, without loss of generality, that ζ is the origin of R
n. Also,

define A := DF (0) and note that, because F is a diffeomorphism, A is an
invertible hyperbolic linear transformation.

Choose α ∈ R such that 0 < α < 1. If we define f(x) := F (x)−Ax, then
f(0) = 0 and Df(0) = 0. Thus, using the continuity of f , there is an open
neighborhood V of the origin such that the C1-norm of the restriction of f
to V is less than α/3. This norm is defined as usual in terms of C0-norms
as follows

‖f‖1 = ‖f‖ + ‖Df‖.

By using an appropriate bump function, as in the derivation of the esti-
mate (4.21), there is a smooth function f∗ defined on all of R

n such that
f = f∗ on V and the C1-norm of f∗ (with the supremum taken over R

n)
does not exceed three times the C1-norm of the restriction of f to V ; that
is, since ‖f‖1 ≤ α/3, we have that ‖f∗‖1 < α.



4.3 The Hartman–Grobman Theorem 353

Apply Lemma 4.7 with p = f∗ and define a new continuous function
H : R

n → R
n by

H(x) = x + h(x). (4.27)

Using equation (4.25), it is easy to see that F ∗(H(x)) = H(A(x)) for all
x ∈ R

n, where F ∗(x) := f∗(x) + Ax. This function H, restricted to a
suitably small neighborhood of the origin, is a candidate for the required
local homeomorphism. Indeed, to complete the proof of the theorem, we
will show that there is an open set U containing the origin and contained
in V such that the restriction of H to U is a homeomorphism.

To prove that H is injective, let us suppose that H(x) = H(y) for some
points x and y in R

n. Using the identities

H(Ax) = F ∗(H(x)) = F ∗(H(y)) = H(Ay),

we have that

H(A�x) = H(A�y)

for every integer �. But then

A�x + h(A�x) = A�y + h(A�y)

and

‖A�x − A�y‖ = ‖h(A�x) − h(A�y)‖ ≤ 2‖h‖.

In particular, the set

{‖A�(x − y)‖ : � ∈ Z}

is bounded. But this is a contradiction unless x = y. In fact, because A is
a hyperbolic linear transformation on R

n, if z �= 0, then either

lim
�→∞

‖A�z‖ = ∞, or lim
�→−∞

‖A�z‖ = ∞.

Thus, H is injective.
There is an open neighborhood U of the origin such that its closure Ū

is compact, contained in V , and H(Ū) ⊂ V . Because H is a continuous
injective function on the compact set Ū ⊂ R

n, an elementary argument
using point set topology [168, p. 167] shows that H restricted to Ū is a
homeomorphism onto its image. In particular, H has a continuous inverse
defined on H(Ū). This inverse restricted to H(U) is still continuous. Thus,
H restricted to U is a homeomorphism onto its image. Finally, by Brouwer’s
theorem on invariance of domain (see [169, p. 207]), H(U) is open. �
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4.3.2 Differential Equations
In this section we will prove the following version of the Hartman–Grobman
theorem for a hyperbolic rest point of an autonomous differential equation.

Theorem 4.8. Suppose that ζ is a rest point of the differential equation
ẋ = f(x) on R

n with flow ϕt and ψt is the flow of the linearized system
ẋ = Df(ζ)(x − ζ). If ζ is a hyperbolic rest point, then there is an open
subset U of R

n such that ζ ∈ U and a homeomorphism G with domain
U such that G(ϕt(x)) = ψt(G(x)) whenever x ∈ U and both sides of the
equation are defined.

While the proofs of Theorem 4.8 and the Hartman–Grobman theorem for
diffeomorphisms are similar, there are some subtle differences. For example,
note that whereas the conjugating homeomorphism H in the diffeomor-
phism case is a solution of the functional equation F (G(x)) = G(DF (ζ)x),
the corresponding equation in Theorem 4.8 has the form

G(F (x)) = DF (ζ)G(x).

If G is a homeomorphism, then these two equations are equivalent. But,
the form of these equations is important for the method used here to prove
the existence of G.

Let us begin with a lemma analogous to Lemma 4.7. For the statement
of this lemma, recall that C(Rn) denotes the Banach space of bounded
continuous transformations of R

n with the supremum norm.

Lemma 4.9. If A : R
n → R

n is an invertible hyperbolic linear transfor-
mation and F : R

n → R
n is a homeomorphism, then the operator given

by

Φ(g)(x) = Ag(x) − g(F (x))

is a bounded linear transformation with a bounded inverse on the Banach
space C(Rn).

Proof. If g ∈ C(Rn), then clearly x �→ Φ(g)(x) is a continuous trans-
formation of R

n. Also, it is clear that Φ is a linear operator. The norm
estimate

|Φ(g)(x)| ≤ |Ag(x)| + |g(F (x))| ≤ ‖A‖ ‖g‖ + ‖g‖

(where ‖A‖ is the operator norm of the linear transformation A and ‖g‖ is
the supremum norm of the function g), shows that Φ is a bounded linear
operator on C(Rn).

The proof that the operator Φ has a bounded inverse is similar to the
proof of Lemma 4.7. In fact, relative to the splitting R

n = Es ⊕ Eu, the
operator Φ is given by Φ = Φs + Φu where

Φs(gs) := A ◦ gs − gs ◦ F, Φu(gu) := A ◦ gu − gu ◦ F.
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The important point is that the operators S and U defined by

S(gs) := gs ◦ F, U(gu) := gu ◦ F

and their inverses are all bounded, and they all have operator norm one.
The operators Φs and Φu are inverted using Neumann series, as in the
proof of Lemma 4.7. �

Let us prove Theorem 4.8.

Proof. Assume that ζ = 0 and define B := Df(0). Also, note that

ψt(x) = etBx

and define A := ψ1, the time-one map of the flow ψt.
By using an appropriate bump function γ defined on a neighborhood of

the origin, the differential equation

ẋ = f∗(x), (4.28)

where f∗ := γf , has a complete flow ϕ∗
t together with the following addi-

tional properties.
(i) The function f∗ : R

n → R
n has a finite Lipschitz constant.

(ii) There is an open neighborhood V of the origin such that the time
one map F := ϕ∗

1 agrees with the time one map ϕ1 of the flow ϕ1
on V .

(iii) The function p(x) := F (x) − Ax has finite C1-norm that is suffi-
ciently small so that, by Lemma 4.7, there is a function h ∈ C(Rn)
with h(0) = 0, ‖h‖ < 1, and

h(Ax) − Ah(x) = p(x + h(x))

for all x ∈ R
n.

Let us prove first that there is a continuous map G : R
n → R

n such that
G(F (x)) = A(G(x); that is, G conjugates the time one maps of the linear
and nonlinear flows. In fact, because p has finite C1-norm, it follows that
p ∈ C(Rn) and by Lemma 4.9, there is a unique g ∈ C(Rn) such that

Ag(x) − g(F (x)) = p(x).

By defining G(x) := x + g(x), we have that

G(F (x)) = AG(x). (4.29)

To construct a conjugacy between the linear and the nonlinear flows, use
the “time one conjugacy” G to define G : R

n → R
n by

G(x) :=
∫ 1

0
ψ−s(G(ϕ∗

s(x))) ds.
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We will show that

ψt(G(x)) = G(ϕ∗
t (x)). (4.30)

In fact, using the linearity of ψt, the change of variable τ = s + t − 1, the
flow property, and equation (4.29), we have

ψ−t(G(ϕ∗
t (x))) =

∫ 1

0
ψ−t−s(G(ϕ∗

s+t(x))) ds

=
∫ t

t−1
ψ−τ (ψ−1(G(ϕ∗

1(ϕ
∗
τ (x))) dτ

=
∫ t

t−1
ψ−τ (G(ϕ∗

τ (x))) dτ.

By splitting the last integral into the two parts∫ 0

t−1
ψ−τ (G(ϕ∗

τ (x))) dτ +
∫ t

0
ψ−τ (G(ϕ∗

τ (x))) dτ,

changing the variable in the first integral to σ := τ + 1, and using the flow
property together with equation (4.29), we obtain the identity

ψ−t(G(ϕ∗
t (x))) =

∫ 1

t

ψ−σ+1(G(ϕ∗
−1+σ(x))) dσ +

∫ t

0
ψ−τ (G(ϕ∗

τ (x))) dτ

= G(x),

as required.
Recall equation (4.29) and note that if we set t = 1 in equation (4.30),

then we have the functional identities

G(F (x)) = AG(x), G(F (x)) = AG(x).

By Lemma 4.9, the function G is unique among all continuous transforma-
tions of R

n of the form G(x) = x + g(x) that satisfy the same functional
equation, provided that g ∈ C(Rn). Thus, to prove that G = G, it suffices
to show that the function x �→ G(x) − x is in C(Rn). To see this fact, let
us note first that we have the identities

G(x) − x =
∫ 1

0
ψ−s(G(ϕ∗

s(x))) ds − x

=
∫ 1

0
ψ−s[G(ϕ∗

s(x)) − ψs(x)] ds

=
∫ 1

0
ψ−s[G(ϕ∗

s(x)) − ϕ∗
s(x) + ϕ∗

s(x) − ψs(x)] ds,
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and the estimate

|G(x) − x| ≤ e‖B‖( |G(ϕ∗
s(x)) − ϕ∗

s(x)| + |ϕ∗
s(x) − ψt(x)| )

≤ e‖B‖( ‖g‖ + sup
0≤s≤1

|ϕ∗
s(x) − ψs(x)| ).

Also, for 0 ≤ s ≤ 1, we have the inequalities

|ϕ∗
s(x) − ψs(x)| ≤

∫ s

0
|f∗(ϕ∗

t (x)) − Bψt(x)| dt

≤
∫ s

0
|f∗(ϕ∗

t (x)) − f∗(ψt(x))| + |f∗(ψt(x)) − Bψt(x)| dt

≤
∫ s

0
Lip(f∗)|ϕ∗

t (x) − ψt(x)| dt + (‖f∗‖ + ‖B‖e‖B‖).

Thus, by Gronwall’s inequality,

sup
0≤s≤1

|ϕ∗
s(x) − ψs(x)| ≤ (‖f∗‖ + ‖B‖e‖B‖)eLip(f∗),

and, as a result, the function x �→ G(x) − x is in C(Rn).
It remains to show that G = G is a homeomorphism when restricted to

some neighborhood of the origin. Using property (iii) given above and the
proof of the Hartman–Grobman theorem for diffeomorphisms, the function
h given in property (iii) can be used to define a continuous function H by
H(x) = x + h(x) so that

F (H(x)) = H(Ax).

Thus,

G(H(Ax)) = G(F (H(x))) = AG(H(x))

and, with K := G◦H, we have K(A(x)) = A(K(x)). Moreover, the function
K has the form

K(x) = x + h(x) + g(x + h(x))

where, by the construction of G and H, the function

α : x �→ h(x) + g(x + h(x))

is in C(Rn) and A(α(x)) − α(Ax) = 0. By Lemma 4.9, there is only one
function α in C(Rn) that solves this functional equation. It follows that
α(x) ≡ 0. Therefore, K is the identity function and G(H(x)) = x for all
x ∈ R

n. Because there is an open set U containing the origin such that the
restriction of H to U is a homeomorphism onto its image, we must have
that G restricted to H(U) is the inverse of H. In particular, G restricted
to H(U) is a homeomorphism onto U . �
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Exercise 4.10. Suppose A is an invertible linear transformation of R
n. Let L

denote the set of all Lipschitz functions mapping R
n to R

n and, for α ∈ L, let
Lip(α) denote the (least) Lipschitz constant for α. Prove: There is an ε > 0 such
that if α ∈ L and Lip(α) < ε, then A + α : R

n → R
n is continuous and bijective.

Also, prove that the inverse map is Lipschitz, hence continuous. This result is a
version of the Lipschitz inverse function theorem.

Exercise 4.11. [Toral Automorphisms] Consider the torus T
2 = R

2/Z
2, that

is, all equivalence classes of points in the plane where two points are equivalent
if their difference is in the integer lattice. A unimodular matrix, for example

A :=
(

2 1
1 1

)
,

induces a map on T
2 called a toral automorphism. (a) Prove that A is a hyperbolic

linear map (spectrum off the unit circle). (b) Prove that the map induced by A on
T

2 is invertible. (c) Determine all periodic points of the induced map. (d) Prove
that the induced map has a dense orbit. (e) Show that every orbit of the induced
map has a one-dimensional stable and a one-dimensional unstable manifold, the
sets defined as the points in T

2 that are asymptotic to the given orbit under
forward, respectively backward, iteration. Hyperbolic toral automorphisms are
the prototypical examples of Anosov (uniformly hyperbolic) dynamical systems
and they enjoy many interesting dynamical properties; for example, they are
“chaotic maps” where the entire phase space is a “chaotic attractor”. Also, note
that toral automorphisms are examples of area preserving dynamical systems:
the measures of subsets of the phase space do not change under iteration by the
map. (The flow of a Hamiltonian system has the same property.) (f) Prove that
hyperbolic toral automorphisms are ergodic; that is, they are area preserving
maps such that every one of their invariant sets has measure zero or measure
one. Hint: See [133]. The first order system ẋ = 1, ẏ = α induces a flow on the
torus (where x and y are viewed as angular variables modulo one). (g) Prove that
the flow of this system is measure preserving. (h) Prove that the flow is ergodic
if α is irrational.

4.3.3 Linearization via the Lie Derivative
A proof of the Hartman–Grobman theorem for differential equations is
given in this section that does not require the Hartman–Grobman theorem
for diffeomorphisms (see [54]).

We will use the concept of the Lie derivative for vector fields.

Definition 4.12. Suppose that X and Y are vector fields on R
n and φt

is the flow of X. The Lie derivative of Y in the direction of X, denoted
LXY , is the vector field given by

LXY (x) =
d

dt
Dφ−t(φt(x))Y (φt(x))

∣∣
t=0.

Also, we will use the following elementary result.
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Proposition 4.13. If X, Y , and Z are vector fields, φt is the flow of X,
and LXY = Z, then

d

dt
Dφ−t(φt(x))Y (φt(x)) = Dφ−t(φt(x))Z(φt(x)).

Proof. Note that

d

dt
Dφ−t(φt(x))Y (φt(x)) =

d

ds
Dφ−(t+s)(φ(t+s)(x))Y (φ(t+s)(x))

∣∣
s=0.

Set y = φt(x). Using the cocycle property

Dφ−t−s(z) = Dφ−t(φ−s(z))Dφ−s(z),

where z ∈ R
n (see Exercise 2.16), and the identity φt+s(x) = φs(y), we

have that

d

ds
Dφ−(t+s)(φt+s(x))Y (φt+s(x))

∣∣
s=0 = Dφ−t(y)

d

ds
Dφ−s(φs(y))Y (φs(y))

∣∣
s=0

= Dφ−t(φt(x))Z(φt(x)).

�

A C1 vector field f on R
n such that f(0) = 0 is called locally topolog-

ically conjugate to its linearization A := Df(0) at the origin if there is a
homeomorphism G : U → V of neighborhoods of the origin such that the
flows of f and A are locally conjugated by G; that is,

G(etAx) = φt(G(x))

whenever x ∈ U , t ∈ R
n, and both sides of the conjugacy equation are

defined. Recall that a matrix is infinitesimally hyperbolic if all of its eigen-
values have nonzero real parts.

Theorem 4.14 (Hartman–Grobman Theorem). Let f be a C1 vector
field on R

n such that f(0) = 0. If the linearization A of f at the origin is
infinitesimally hyperbolic, then f is locally topologically conjugate to A at
the origin.

Proof. For each r > 0 there is a smooth bump function ρ : R
n → [0, 1]

with the following properties: ρ(x) ≡ 1 for |x| < r/2, ρ(x) ≡ 0 for |x| > r,
and |dρ(x)| < 4/r for x ∈ R

n. The vector field Y = A + ξ where ξ(x) :=
ρ(x)(f(x) − Ax) is equal to f on the open ball of radius r/2 at the origin.
Thus, it suffices to prove that Y is locally conjugate to A at the origin.

Suppose that ϕt is the flow of Y . We will seek a solution G = id + η of
the conjugacy equation

G(etAx) = ϕt(G(x)) (4.31)
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where η : R
n → R

n is continuous and differentiable in the direction A. Let
us first note that equation (4.31) is equivalent to the equation

e−tAG(etAx) = e−tAϕt(G(x)). (4.32)

By substituting G = id + η and differentiating both sides of the resulting
equation with respect to t at t = 0, we obtain the infinitesimal conjugacy
equation

LAη = ξ ◦ (id +η) (4.33)

where

LAη :=
d

dt
(e−tAη(etA))

∣∣
t=0 (4.34)

is the Lie derivative of η in the direction of the vector field given by A. (If G
is a conjugacy, then the right-hand side of equation (4.32) is differentiable;
therefore, in this case, the Lie derivative of G in the direction A is defined.)

We will show that if r > 0 is sufficiently small, then the infinitesimal
conjugacy equation has a bounded continuous solution η : R

n → R
n (dif-

ferentiable along A) such that G := id +η is a homeomorphism of R
n whose

restriction to the ball of radius r/2 at the origin is a local conjugacy as in
equation (4.31).

Since A is infinitesimally hyperbolic, A = A+⊕A−, where A+ : R
n → R

n

is a linear map whose spectrum is in the left half of the complex plane
and A− : R

n → R
n is a linear map whose spectrum is in the right half

of the complex plane. Put E+ = Range(A+) and E− = Range(A−). By
Corollary 2.63, there are positive constants C and λ such that

|etAv+| ≤ Ce−λt|v+|, |e−tAv−| ≤ Ce−λt|v−| (4.35)

for t ≥ 0, v+ ∈ E+, and v− ∈ E−. The Banach space B of bounded (in the
supremum norm) continuous vector fields on R

n, which we identity with
bounded continuous functions from R

n to R
n, splits into the complementary

subspaces B+ and B− of vector fields with ranges, respectively, in E+ or E−.
In particular, a vector field η ∈ B has a unique representation η = η+ +η−,
where η+ ∈ B+ and η− ∈ B−.

The function Υ on B defined by

(Υη)(x) =
∫ ∞

0
etAη+(e−tAx) dt −

∫ ∞

0
e−tAη−(etAx) dt (4.36)

is a bounded linear operator Υ : B → B. The boundedness of Υ follows
from the hyperbolic estimates (4.35) and the boundedness of the projections
P± : R

n → E±; for instance,

|etAη+(e−tAx)| ≤ Ce−λt|P+η(e−tAx)|
≤ Ce−λt‖P+‖‖η‖. (4.37)
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The continuity of the function x �→ (Υη)(x) is an immediate consequence
of the following lemma from advanced calculus—essentially the Weierstrass
M -test—and the estimates of the integrands as in display (4.37).

Lemma 4.15. Suppose that h : [0,∞) × R
n → R

m, given by (t, x) �→
h(t, x), is continuous (respectively, the partial derivative hx is continuous).
If for each y ∈ R

n there is an open set S ⊂ R
n with compact closure S̄

and a function M : [0,∞) → R such that y ∈ S, the integral
∫ ∞
0 M(t) dt

converges, and |h(t, x)| ≤ M(t) (respectively, |hx(t, x)| ≤ M(t) ) whenever
t ∈ [0,∞) and x is in S̄, then H : R

n → R
m given by H(x) =

∫ ∞
0 h(t, x) dt

is continuous (respectively, H is continuously differentiable and DH(x) =∫ ∞
0 hx(t, x) dt ).

Using the definition of LA in display (4.34) and the fundamental theorem
of calculus, it is easy to prove that Υ is a right inverse for LA, that is,
LAΥ = idB. As a consequence, if

η = Υ(ξ ◦ (id +η)) := F (η), (4.38)

then η is a solution of the infinitesimal conjugacy equation (4.33).
The function F defined in display (4.38) maps B into B. Also, if η1 and

η2 are in B, then (by the linearity of Υ and the mean value theorem applied
to the function ξ)

‖F (η1) − F (η2)‖ ≤ ‖Υ‖ ‖ξ ◦ (id +η1) − ξ ◦ (id +η2)‖
≤ ‖Υ‖ ‖Dξ‖ ‖η1 − η2‖.

Using the definition of ξ and the properties of the bump function ρ, we
have that

‖Dξ‖ ≤ sup
|x|≤r

‖Df(x) − A‖ +
4
r

sup
|x|≤r

|f(x) − Ax|.

Because Df is continuous, there is some positive number r such that
‖Df(x) − A‖ < 1/(10‖Υ‖) whenever |x| ≤ r. By Taylor’s theorem (ap-
plied to the C1 function f) and the obvious estimate of the integral form
of the remainder, if |x| ≤ r, then |f(x)−Ax| < r/(10‖Υ‖). For the number
r > 0 just chosen, we have the estimate ‖Υ‖‖Dξ‖ < 1/2; therefore, F is
a contraction on B. By the contraction mapping theorem applied to the
restriction of F on the closed subspace B0 of B consisting of those elements
that vanish at the origin, the equation (4.38) has a unique solution η ∈ B0,
which also satisfies the infinitesimal conjugacy equation (4.33).

We will show that G := id +η is a local conjugacy. Apply Proposition 4.13
to the infinitesimal conjugacy equation (4.33) to obtain the identity

d

dt
(e−tAη(etAx)) = e−tAξ(G(etAx)).
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Using the definitions of G and Y , it follows immediately that

d

dt
(e−tAG(etAx)) = −e−tAAG(etAx) + e−tAY (G(etAx))

and (by the product rule)

e−tA d

dt
G(etAx) = e−tAY (G(etAx)).

Therefore, the function given by t �→ G(etAx) is the integral curve of Y
starting at the point G(x). But, by the definition of the flow ϕt of Y , this
integral curve is the function t �→ ϕt(G(x)). By uniqueness, G(etAx) =
ϕt(G(x)). Because Y is linear on the complement of a compact set, Gron-
wall’s inequality can be used to show that the flow of Y is complete. Hence,
the conjugacy equation holds for all t ∈ R.

It remains to show that the continuous function G : R
n → R

n given by
G(x) = x + η(x) is a homeomorphism. Since η is bounded on R

n, the map
G = id +η is surjective. To prove this fact, choose y ∈ R

n, note that the
equation G(x) = y has a solution of the form x = y + z if z = −η(y + z),
and apply Brouwer’s fixed point theorem to the map z �→ −η(y + z) on
the ball of radius ‖η‖ centered at the origin. (Using similar ideas, it is also
easy to prove that G is proper; that is, the inverse image under G of every
compact subset of R

n is compact.) We will show next that G is injective.
If x and y are in R

n and G(x) = G(y), then ϕt(G(x)) = ϕt(G(y)) and, by
the conjugacy relation, etAx + η(etAx) = etAy + η(etAy). By the linearity
of etA, we have that

|etA(x − y)| = |η(etAy) − η(etAx)| ≤ 2‖η‖.

But, if u is a nonzero vector in R
n, then the function t �→ |etAu| is un-

bounded on R (see Exercise 4.16). Hence, x = y, as required. By Brouwer’s
theorem on invariance of domain, the bijective continuous map G is a home-
omorphism. (Brouwer’s theorem can be avoided by using instead the fol-
lowing elementary fact: A continuous, proper, bijective map from R

n to R
n

is a homeomorphism.)

Exercise 4.16. Suppose A : R
n → R

n is a linear map and u ∈ R
n. Show that

if A is infinitesimally hyperbolic and u �= 0, then the function t �→ |etAu| is
unbounded for t ∈ R.

Exercise 4.17. Prove that for each r > 0 there is a C∞ function ρ : R
n → [0, 1]

with the following properties: ρ(x) ≡ 1 for |x| < r/2, ρ(x) ≡ 0 for |x| > r, and
|dρ(x)| < 4/r for x ∈ R

n.

In the classic paper [114], Philip Hartman shows that if a > b > 0 and
c �= 0, then there is no C1 linearizing conjugacy at the origin for the
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analytic differential equation

ẋ = ax, ẏ = (a − b)y + cxz, ż = −bz. (4.39)

On the other hand, he proves the following two results. (1) If a C2 vector
field has a rest point such that either all eigenvalues of its linearization
have negative real parts or all eigenvalues have positive real parts, then the
vector field is locally C1 conjugate to its linearization. (2) If a C2 planar
vector field has a hyperbolic rest point, then the vector field is locally C1

conjugate to its linearization. Hartman proves the analogs of these theorems
for diffeomorphisms and then derives the corresponding theorems for vector
fields as corollaries (cf. [54]). We also note that Shlomo Sternberg proved
that the analytic planar system

ẋ = −x, ẏ = −2y + x2 (4.40)

is not C2 linearizable. Thus, it should be clear that smooth linearization is
a delicate issue.

In general, the conjugacy obtained as in the proof of Theorem 4.14 is
not smooth. This fact is illustrated by linearizing the smooth scalar vector
field given by f(x) = −ax + ξ(x) where a > 0, ξ(0) = 0, and ξ′(0) = 0.
Suppose that ξ vanishes outside a sufficiently small open subset of the origin
with radius r > 0 so that, as in the proof of Theorem 4.14, the linearizing
transformation is G = id +η and

η(x) =
∫ ∞

0
e−atξ(eatx + η(eatx)) dt. (4.41)

Set Ξ := ξ ◦ (id +η) and R := r + ‖η‖. By an application of the (reverse)
triangle inequality, |x + η(x)| ≥ r whenever |x| ≥ R. Hence, Ξ(x) = 0
whenever |x| > R. For x �= 0, the change of variable u := eat transforms
equation (4.41) into

η(x) =
1
a

∫ R/|x|

1

Ξ(ux)
u2 du.

Moreover, if x > 0, then (with w = ux)

η(x) =
x

a

∫ R

x

Ξ(w)
w2 dw,

and if x < 0, then

η(x) = −x

a

∫ x

−R

Ξ(w)
w2 dw.

If η were continuously differentiable in a neighborhood of the origin, then
we would have the identity

η′(x) =
1
a

∫ R

x

Ξ(w)
w2 dw − Ξ(x)

ax
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for x > 0 and the identity

η′(x) = −1
a

∫ x

−R

Ξ(w)
w2 dw − Ξ(x)

ax

for x < 0. Because the left-hand and right-hand derivatives agree at x = 0
and Ξ(0) = Ξ′(0) = 0, it would follow that∫ R

0

Ξ(w)
w2 dw = −

∫ 0

−R

Ξ(w)
w2 dw.

But this equality is not true in general. For example, it is not true if ξ(x) =
ρ(x)x2 where ρ is a bump function as in the proof of Theorem 4.14. In this
case, the integrands are nonnegative and not identically zero.

There are at least two ways to avoid the difficulty just described (cf. [54]).
First, note that the operator LA, for the case Ax = −ax, has the formal
right inverse given by

(Υη)(x) := −
∫ ∞

0
eatη(e−atx) dt.

Thus, the formal conjugacy is G = id +η, where

η(x) = −
∫ ∞

0
eatξ(e−atx + η(e−atx)) dt.

In this case, no inconsistency arises from the assumption that η′(0) exists,
and this method does produce a smooth conjugacy for the scalar vector
fields under consideration here.

Another idea that can be used to search for a smooth conjugacy is to
differentiate both sides of the desired conjugacy relation

etAG(x) = G(φt(x))

with respect to t at t = 0. Or, equivalently, we can seek a conjugacy G =
id +η such that

DG(G−1(y))f(G−1(y)) = Ay,

where y = x + η(x); that is, the push forward of f by G is the lineariza-
tion of f at the origin. In this case, it is easy to see that η determines a
linearizing transformation G if η is a (smooth) solution of the first-order
partial differential equation

Dη(x)f(x) + aη(x) = −ξ(x).

To determine η, let φt denote the flow of f , replace x by the integral
curve t �→ φt(x), and note that along this characteristic curve

d

dt
η(φt(x)) + aη(φt(x)) = −ξ(φt(x))
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(see Section 3.6.4). By variation of parameters, we have that

d

dt
eatη(φt(x)) = −eatξ(φt(x));

and, after integration, we have the identity

eatη(φt(x)) = η(x) −
∫ t

0
easξ(φs(x)) ds.

Recall that a function h : Ω ⊆ R
k → R

n is called Hölder continuous on
Ω if there are positive constants c > 0 and 0 < ν ≤ 1 such that

|h(x) − h(y)| ≤ c|x − y|ν

for all x, y ∈ Ω. The number ν is called the Hölder exponent. If η is con-
tinuously differentiable, η(0) = 0, Dη(0) = 0, and Dη is Hölder continuous
with exponent η, then (using Taylor’s theorem)

|η(x)| ≤
∫ 1

0
|Dη(sx)x| ds =

c

1 + ν
|x|1+ν .

By Corollary 2.78, if x is near x = 0 and ε > 0 is given, then there is some
constant C > 0 such that |φt(x)| ≤ Ce(ε−a)t. Combining these estimates,
it is easy to see that there is some constant K > 0 such that

|eatη(φt(x))| ≤ Ke((1+η)ε−ηa)t.

Hence, if 0 < ε < aη/(1 + η), then

lim
t→∞|eatη(φt(x))| = 0

and we would have

η(x) =
∫ ∞

0
eatξ(φt(x)) dt; (4.42)

that is, the function η defined by the smooth linearizing transformation
G = id +η is given by the formula (4.42).

If, for example, ξ ∈ C2, then the function η defined in display (4.42) is C1

and G = id +η is a smooth linearizing transformation (see Exercise 4.20).
As a test of the validity of this method, consider the differential equation
ẋ = −ax + x2, where a > 0. In this case, the flow φt can be computed
explicitly and the integral (4.42) can be evaluated to obtain the smooth
near-identity linearizing transformation G : (−a, a) → R given by

G(x) = x +
x2

a − x
. (4.43)
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Exercise 4.18. Why are Hölder exponents restricted to the interval (0, 1]?

Exercise 4.19. Verify that the function G defined in display (4.43) is a lin-
earizing transformation (at the origin) for the differential equation ẋ = −ax+x2,
where a > 0.

Exercise 4.20. Suppose that a > 0, r > 0, and ξ : R → [0, ∞) is a C2 function
which vanishes in the complement of the interval (−r, r). Also, suppose that
ξ(0) = ξ′(0) = 0. Show that if r is sufficiently small and φt is the flow of the
differential equation ẋ = −ax + ξ(x), then η defined in display (4.42) is a C1

function.



5
Continuation of Periodic Solutions

A fundamental engineering problem is to determine the response of a phys-
ical system to an applied force. In this chapter some mathematical ideas
are introduced that can be used to address a classic case of this problem
where the physical system is an oscillator that is modeled by a differential
equation with periodic orbits and the applied force is modeled as a small
periodic perturbation. Partial answers to several important questions will
be given. Which, if any, of the unperturbed periodic orbits persist under the
perturbation? Are the perturbed periodic orbits stable? Can the perturbed
periodic orbits be approximated by analytic formulas? Although we will
restrict most of our discussion to planar systems—the case of most prac-
tical value, many of the results of the theory presented here can be easily
generalized to multidimensional systems (see [189] for some results in the
spirit of this chapter). On the other hand, the multidimensional case will
be discussed in detail for systems with first integrals and in the exercises.

Continuation theory has a long history in applied science and mathemat-
ics; it is still an active area of mathematical research. Thus, there is a math-
ematical and scientific literature on this topic that is far too extensive to be
reviewed here. Nevertheless, every student of the subject should be aware
of the classic books by Aleksandr A. Andronov, Aleksandr A. Vitt, and Se-
men E. Khaiken [9], Nikolai N. Bogoliubov and Yuri A. Mitropolsky [28],
Chihiro Hayashi [117], Nikolai Minorsky [162], and James J. Stoker [215];
and the more recent works of Miklós Farkas [84], John Guckenheimer and
Philip Holmes [103], Jack K. Hale [106], Jirair K. Kevorkian and Julian
D. Cole [134], James Murdock [170], Ali H. Nayfey [175], and Stephen W.
Wiggins [233].
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5.1 A Classic Example: van der Pol’s Oscillator

An important mathematical model in the history of our subject is known
as van der Pol’s equation

ẍ + ε(x2 − 1)ẋ + ω2x = a sin Ωt. (5.1)

After this differential equation was introduced by Lord Rayleigh [188] in
1883, it has been suggested as a model for many different physical phe-
nomena. For example, Balthasar van der Pol [222] investigated it more
extensively when he studied the equation in 1926 as a model of the voltage
in a triode circuit. Then, just two years later, van der Pol and Johannes van
der Mark [224] proposed the equation as a model for the human heartbeat.
In this introduction, we will use the differential equation (5.1) to illustrate
some of the ideas that will be explored more fully later in this chapter.

Let us observe some of the dynamical features of the van der Pol equa-
tion. If a = 0 and ε = 0, then equation (5.1) is the familiar model of a linear
spring; that is, a spring with restoring force modeled by Hooke’s law. This
equation is often referred to as the spring equation or the harmonic oscilla-
tor. The term a sin Ωt represents a periodic external force with amplitude a,
period 2π/Ω and frequency Ω. The term ε(x2 −1)ẋ can be viewed as repre-
senting a nonlinear damping. The “direction” of this damping depends on
the state (x, ẋ) of the system where x represents position and ẋ represents
velocity. In fact, the energy of the spring is given by

E :=
1
2
ẋ2 +

1
2
ω2x2,

and has time derivative

Ė = aẋ sin Ωt − ε(x2 − 1)ẋ2.

Thus, the external forcing and the nonlinear damping cause energy fluctu-
ations. Energy due to the damping leaves the system while |x| > 1 and is
absorbed while |x| < 1.

Our subject is motivated by the following basic question: If the current
state of the system is known, what does the model predict about its future
states? Even though the van der Pol equation has been studied intensively,
we cannot give a complete answer to this question. Nevertheless, as we will
see, many useful predictions can be made. In particular, in this section we
will show how to determine the steady state behavior of the system when
there is no external force and the damping is small.

Let us consider the unforced, weakly damped, scaled van der Pol equation
given by

ẍ + ε(x2 − 1)ẋ + x = 0. (5.2)
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Poincaré section
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(ξ, 0)
x

Figure 5.1: The left panel depicts the phase portrait for the harmonic os-
cillator. The right panel shows a perturbed orbit with initial state (ξ, 0) on
the positive x-axis that returns to the positive x-axis at the point P (ξ, ε).

The corresponding unperturbed (ε = 0) equation ẍ + x = 0 is explicitly
solvable. Indeed, the solution with initial state (x0, ẋ0) is given by

t �→ x0 cos t + ẋ0 sin t.

In particular, all solutions of the unperturbed system, except for the solu-
tion corresponding to the rest point at (0, 0), are periodic with period 2π.
Hence, there is no problem predicting the future states of the unperturbed
system.

What happens when ε �= 0? Does the differential equation (5.2) have a
periodic solution? If it does, then can we find a “formula” that represents
the solution? Or, if this is not possible, how can we approximate the periodic
solution? Is the periodic solution stable? We will approach such questions
using the geometric interpretation of the differential equation as a system
in the phase plane; that is, as the equivalent first order system given by

ẋ = −y,

ẏ = x − ε(x2 − 1)y. (5.3)

Here, the choice ẋ = y works just as well, but the minus sign ensures
that trajectories move in the positive sense of the usual orientation of the
Euclidean plane.

If ε = 0, then all orbits of system (5.3), except the rest point at the origin,
are circles that intersect the positive x-axis as shown in the left panel of
Figure 5.1. To investigate the orbits of the system (5.3) for ε �= 0, we will
consider the Poincaré map defined on the positive x-axis.

Let us note that if ε �= 0 is sufficiently small, then the orbit of the solution
of system (5.3) with initial condition (x(0), y(0)) = (ξ, 0) remains close to
the circle with radius ξ at least until it returns to the x-axis after a finite
time T (ξ, ε) that depends on the initial point and the value of ε. More
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precisely, if t �→ (x(t, ξ, ε), y(t, ξ, ε)) is the solution of system (5.3) with
initial condition

x(0, ξ, ε) = ξ, y(0, ξ, ε) = 0,

then, as long as ε is sufficiently small, the trajectory of this solution will
return to the positive x-axis at the point with coordinate x(T (ξ, ε), ξ, ε).
The function (ξ, ε) �→ P (ξ, ε) given by

P (ξ, ε) := x(T (ξ, ε), ξ, ε) (5.4)

is called the parametrized return map (see the right panel of Figure 5.1).
If P (ξ, ε) = ξ, then t �→ (x(t, ξ, ε), y(t, ξ, ε)) is a periodic solution of the

system (5.3) with period T (ξ, ε). In other words, if ξ is a fixed point of
the map ξ �→ P (ξ, ε) or a zero of the associated displacement function
δ(ξ, ε) = x(T (ξ, ε), ξ, ε) − ξ, then (ξ, 0) is the initial point for a periodic
orbit of the perturbed system.

Because δ(ξ, 0) ≡ 0, it is natural to look for the root ξ implicitly as a
function β of ε such that, for ε �= 0, the point ξ = β(ε) is the initial point
of a periodic solution of system (5.3). More precisely, we seek a function β
defined on some neighborhood of ε = 0 in R such that δ(β(ε), ε) ≡ 0. The
obvious way to find an implicit solution is to apply the implicit function
theorem (Theorem 1.259).

In the present context, the displacement function is defined by δ : U ×
V → R where U and V are both open subsets of R. Moreover, we have that
δ(ξ, 0) ≡ 0. If there were some point (ξ, 0) such that δξ(ξ, 0) �= 0, then by
the implicit function theorem there would be an implicit solution and our
problem would be solved. But it is clear that the hypothesis of the implicit
function theorem is not satisfied. In fact, because δ(ξ, 0) ≡ 0, we have that
δξ(ξ, 0) ≡ 0. As we will see, however, the implicit function theorem does
apply after a further reduction.

Let us use the Taylor series of δ at ε = 0 to obtain the equation

δ(ξ, ε) = εδε(ξ, 0) + O(ε2)

where the O(ε2) term denotes the remainder. This notation is used formally
in the following way: The statement f(ε) = g(ε) + O(ε2) means that there
are constants K > 0 and ε0 > 0 such that the inequality

|f(ε) − g(ε)| < Kε2.

holds for |ε| < ε0. The required reduction is accomplished by defining a
new function

∆(ξ, ε) := δε(ξ, 0) + O(ε)

so that
δ(ξ, ε) = ε(δε(ξ, 0) + O(ε)) = ε∆(ξ, ε).
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Clearly, if there is a function ε �→ β(ε) such that ∆(β(ε), ε) ≡ 0, then
δ(β(ε), ε) ≡ 0.

Even though the implicit function theorem does not apply to the dis-
placement function δ, it might well apply to the function ∆. At any rate,
we have reduced the original search for a periodic solution of the per-
turbed van der Pol equation to the problem of finding implicit solutions
of the equation ∆(ξ, ε) = 0. Thus, by the implicit function theorem, we
have the following proposition: If ξ > 0 is a simple zero of the function
ξ �→ ∆(ξ, 0), that is, ∆(ξ, 0) = 0 and ∆ξ(ξ, 0) �= 0, or equivalently if
δε(ξ, 0) = 0 and δξε(ξ, 0) �= 0, then an implicit solution ξ = β(ε) exists. The
function ξ �→ δε(ξ, 0) is called the reduced displacement function, and a sim-
ple zero of the reduced bifurcation function (respectively the corresponding
unperturbed periodic orbit) is called a continuation point of periodic solu-
tions of the system (5.3) (respectively a continuable periodic orbit). Also, a
periodic orbit is said to persist if it is continuable. The ideas used to prove
our proposition recur in every continuation problem that we will consider;
their implementation constitutes the first part, called the reduction step,
in the solution of the continuation problem.

The second part of the continuation method is the identification step,
that is, the identification of the reduced displacement function in terms of
the original differential equation. For system (5.3), perhaps the most direct
route to the identification of the reduced displacement function is via a
change to polar coordinates. But, as an illustration of a general method, let
us work directly in the original variables and identify the reduced function
by solving a variational equation derived from system (5.3).

To carry out the identification step, apply the chain rule to compute the
partial derivative

δε(ξ, 0) = ẋ(T (ξ, 0), ξ, 0)Tε(ξ, 0) + xε(T (ξ, 0), ξ, 0)

and evaluate at ε = 0 to obtain the equality

ẋ(T (ξ, 0), ξ, 0) = −y(0, ξ, 0) = 0.

In particular, the function ξ �→ ẋ(T (ξ, 0), ξ, 0)Tε(ξ, 0) and all of its deriva-
tives vanish. Thus, to complete the identification step it suffices to deter-
mine the partial derivative xε(T (ξ, 0), ξ, 0). To do this, let us compute the
partial derivative with respect to ε at ε = 0 of both sides of the differen-
tial equation (5.3) to obtain a variational equation. Also, let us compute
the partial derivative with respect to ε of both sides of each of the ini-
tial conditions x(0, ξ, ε) = ξ and y(0, ξ, ε) = 0 to obtain the corresponding
(variational) initial value problem

ẋε = −yε, ẏε = xε − (x2 − 1)y, xε(0, ξ, 0) = 0, yε(0, ξ, 0) = 0 (5.5)

whose solution is t �→ (xε(t, ξ, 0), yε(t, ξ, 0)).
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The variational initial value problem (5.5) is expressed in matrix form
by

Ẇ = AW + b(t), W (0) = 0 (5.6)

where

A =
(

0 −1
1 0

)
, b(t) =

(
0

(1 − x2(t, ξ, 0))y(t, ξ, 0)

)
,

and this nonhomogeneous 2 × 2 linear system is readily solved by the vari-
ation of parameters formula (2.67). Indeed, let us recall that the principal
fundamental matrix solution at t = 0 of the associated homogeneous linear
system Ẇ = AW is the 2 × 2 matrix function t �→ Φ(t) with Φ̇ = AΦ and
Φ(0) = I, and the solution t �→ W (t) of the initial value problem (5.6) is
given by

W (t) = Φ(t)W (0) + Φ(t)
∫ t

0
Φ−1(s)b(s) ds. (5.7)

Moreover, for the system (5.3), we have that W (0) = 0, T (ξ, 0) = 2π, and

Φ(t) = etA =
(

cos t − sin t
sin t cos t

)
.

It follows that

x(t, ξ, 0) = ξ cos t, y(t, ξ, 0) = ξ sin t

and, in addition,(
xε(2π, ξ, 0)

yε(2π, ξ, 0)

)
= Φ(2π)

∫ 2π

0
Φ−1(s)b(s) ds

=

(∫ 2π

0 sin s[(1 − ξ2 cos2 s)ξ sin s] ds∫ 2π

0 cos s[(1 − ξ2 cos2 s)ξ sin s] ds

)
.

After an elementary integration, we have that

δε(ξ, 0) =
π

4
ξ(4 − ξ2), ξ > 0, (5.8)

and therefore ξ = 2 is a simple zero of the reduced displacement function
ξ �→ δε(ξ, 0). Hence, the unperturbed periodic orbit with radius 2 persists.
But since ξ = 2 is the only zero of the displacement function, all other pe-
riodic orbits of the unperturbed system are destroyed by the perturbation.
In particular, there is a function ε �→ β(ε) defined on some neighborhood
of ε = 0 such that β(0) = 2, and for each ε in the domain of β the corre-
sponding van der Pol system (5.3) has a periodic orbit with initial condition
(x(0), y(0)) = (β(ε), 0).
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The theory we have just developed to analyze the existence of continua-
tions of periodic solutions of the van der Pol equation will be generalized in
the next two sections of this chapter. In Sections 5.3.6 and 5.3.7 we will dis-
cuss a method that can be used to obtain analytical approximations of the
perturbed periodic orbit. For an analysis of the stability of the perturbed
periodic solution see Exercise 5.3.

Let us formalize what we have done so far by considering the weakly
linear system

u̇ = Au + εg(u), u ∈ R
2 (5.9)

where

u =
(

x
y

)
, A =

(
0 −1
1 0

)
, g(u) =

(
g1(u)
g2(u)

)
.

By repeating the steps of the argument made for system (5.3), it is easy to
prove the following theorem.

Theorem 5.1. A simple zero of the function B : (0,∞) → R given by

ξ �→
∫ 2π

0
g1(ξ cos s, ξ sin s) cos s + g2(ξ cos s, ξ sin s) sin s ds

is a continuation point of periodic solutions of the system (5.9). Moreover,
if ξ0 is a continuation point, then B(ξ0) = 0.

Exercise 5.2. Apply Theorem 5.1 to find the continuation points of periodic
solutions for the system

ẋ = −y + εp(x, y), ẏ = x + εq(x, y)

where p and q are entire functions with series representations given by

p =
∑

pijx
iyj , q =

∑
qijx

iyj .

For example, give a complete analysis when p, q are quadratic polynomials and
again when p, q are cubic polynomials.

Exercise 5.3. [Stability] Prove that for sufficiently small ε the stability of the
perturbed periodic solution passing near the continuation point (ξ, 0) is deter-
mined by the size of Pξ(ξ, ε). In particular, show that Pξ(ξ, ε) ≥ 0 and prove the
following statements: If Pξ(ξ, ε) < 1, then the periodic solution is (asymptoti-
cally) stable; and if Pξ(ξ, ε) > 1, then the periodic solution is (asymptotically)
unstable. Also, note that

P (ξ, ε) = P (ξ, 0) + εPε(ξ, 0) + O(ε2),

and therefore

Pξ(ξ, ε) − 1 = ε(δξε(ξ, 0) + O(ε)).
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If, for example, ε > 0 is sufficiently small and δξε(ξ, 0) < 0, then the periodic
orbit is stable. Thus, if ε is sufficiently small, then to determine the stability, it
suffices to compute the sign of the mixed partial derivative at the continuation
point ξ. Apply your results to determine the stability of the perturbed periodic
orbit for the van der Pol equation.

Exercise 5.4. The period of the perturbed periodic orbit for the van der Pol
oscillator is given by the function

ε �→ T (β(ε), ε)

where T is the return time function that appears in the definition of the Poincaré
map (5.4) and β is the implicit solution of the corresponding displacement func-
tion. Determine the first two terms of the Taylor series at ε = 0 of the period of
the perturbed periodic orbit. Hint: Use the identity

y(T (β(ε), ε), β(ε), ε) ≡ 0.

We will learn a more efficient method for computing the period of the perturbed
periodic orbit in Section 5.3.6 (see Exercise 5.50).

5.1.1 Continuation Theory and Applied Mathematics
Continuation theory, also called regular perturbation theory, is very useful
in applied mathematics where we wish to make predictions from a differ-
ential equation model of a physical process. In most instances, our model
is a family of differential equations; that is, the model depends on param-
eters. If a member of the family—obtained by fixing the parameters—has
a dynamical feature (for example, a rest point, periodic orbit, or invari-
ant manifold) that is relevant to the analysis of our applied problem, then
there is a natural and fundamental question: Does this feature persist if we
change the parameter values? Continuation theory is a diverse collection of
tools that can be used to answer this question in some situations.

In the rest of this chapter, we will extend the continuation theory for pe-
riodic solutions introduced in Section 5.1 to cover more complex problems.
But, as in the example provided by the van der Pol equation, we will always
look for continuations of unperturbed periodic solutions in a family of dif-
ferential equations with a small parameter. We will see that the underlying
ideas for the general continuation analysis are the same as those introduced
in this section: Construct an appropriate displacement function; reduce to
a bifurcation function whose simple zeros correspond—by an application
of the implicit function theorem—to continuation points; and identify the
reduced bifurcation function in terms of the given differential equation.

Perhaps our analysis of the continuation of periodic solutions for the gen-
eral weakly nonlinear system provides initial evidence for the notion that
the proof of a general result such as Theorem 5.1 is often easy compared
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with the task of applying the result to a realistic model. For our example,
where the perturbation term is a single harmonic, the bifurcation function
is a quadratic polynomial (formula (5.8)) and its roots are therefore easy to
determine. If, however, we consider a perturbation with several harmonics,
as for example in Exercise 5.2, then the problem of finding the number and
position of the persistent unperturbed periodic solutions becomes more dif-
ficult. This illustrates a maxim that lies at the heart of many problems in
applied mathematics: The more realistic the model, the more difficult it is
to apply general theorems.

Maxim number two: General theorems are always too weak. If you work
hard and are fortunate, you might develop all of the ideas necessary to prove
a classic and beautiful theorem such as Theorem 5.1. You may then go to
your collaborator, a very good engineer, and proudly announce your result:
“If ... and ε is sufficiently small, then there is a periodic solution.” But you
know what is coming! Your collaborator will say, “That’s interesting, but
how small do I have to make the perturbation so that I can be sure there is
a periodic orbit?” You are now invited to find a computable number ε0 > 0
and a proof that periodic solutions exist at least for |ε| < ε0. If you succeed
in doing this for the model equation (5.2), then your collaborator will be
happy for a moment. But before long she comes back to you with a new
perturbation term in mind: “Does your method apply if we add ... ?”

When confronted with an applied problem, there is a natural tendency
for a mathematician to try to prove a theorem. Perhaps by now you feel that
your contribution to the applied project is not receiving enough credit. But
in fact your results are enormously valuable. Because you have answered
some basic questions, new questions can be asked. You have also provided
a way to understand why a periodic orbit exists. After proving a few more
theorems that apply to show the existence of periodic orbits for a few
more basic model equations, your understanding of periodic orbits begins
to coalesce into a theory that gives a conceptual framework, which can
be used by you, and others, to discuss the existence of periodic orbits in
systems that are too complex to analyze rigorously.

In general, the applied mathematician faces a highly nontrivial, perhaps
impossible, task when trying to rigorously verify the hypotheses of general
theorems for realistic models of physical systems. In fact, doing so might
require the development of a new area of mathematics. Most often, we are
left to face the realization that rigorous results can only be obtained for
simplified models.

Do not be discouraged.
The analysis of a mathematical model, even a simple one, deepens our

understanding, sharpens our formulation of results, forces us to seek new
methods of analysis, and often reveals new phenomena. In addition, rigor-
ous results for simple models provide test cases that can be used to debug
implementations of numerical methods that we intend to use to obtain
predictions from more realistic models.
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When we return as mathematicians to confront a realistic model of our
original physical problem (the understanding of which is the real object of
the game), it is not always clear how to continue doing mathematics. In-
stead, we turn to computation and investigate numerical methods. Perhaps
we become experts in computer algebra, or we investigate computer graph-
ics in order to find useful visual representations of our data, and so on. But
when our simulations are implemented, we are happy to have knowledge of
the range of expected phenomena, we are happy to be able to test our code
on the simplified models we have rigorously analyzed, and we are happy
to verify numerically the hypotheses of a general theorem that we have
proved. All of this helps us gain confidence in our predictions.

By running our simulations, we find evidence for an answer to our origi-
nal physical question. But during the process, we might also see unexpected
results or we conceive new ideas to improve our simulations. These experi-
ences motivate us to find additional rigorous results. Thus, we are naturally
led back to questions in mathematics. And so it goes—a natural cycle that
will be repeated many times during our attempts to understand physical
phenomena.

Our technical skills will improve and our depth of understanding will
increase as we master more sophisticated mathematical methods and learn
from the experience of doing applied mathematics. The remainder of this
chapter is intended to help provide an example of an area of applicable
mathematics as well as the opportunity to gain some useful experience with
some types of differential equations that appear as mathematical models.

5.2 Autonomous Perturbations

In this section we will consider the periodic solutions of the system

u̇ = f(u) + εg(u), u ∈ R
2 (5.10)

where ε is a small parameter and the unperturbed system

u̇ = f(u) (5.11)

has periodic solutions. If the unperturbed differential equation (5.11) is
nonlinear, then there are at least two cases to consider in our search for
periodic solutions of system (5.10): system (5.11) has a limit cycle (see
Definition 1.178); and system (5.11) has an (invariant) annulus of periodic
solutions. In the limit cycle case, we wish to determine if the limit cycle
persists after perturbation; in the case of an invariant annulus of periodic
solutions, we wish to determine which, if any, of its constituent periodic
solutions persist.

Let us begin with the general assumption that the unperturbed sys-
tem (5.11) has a periodic solution Γ. To employ the method suggested in
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Section 5.1, we must define a displacement function. To do this, let us
choose a point v ∈ Γ and a curve Σ1 that is transverse to Γ at v. By
an application of the implicit function theorem, there is an open segment
Σ ⊆ Σ1 with v ∈ Σ and some ε0 > 0 such that for each σ ∈ Σ the so-
lution of the system (5.10) with |ε| < ε0 that has initial value σ returns
to Σ1 after some finite positive time. More precisely, there is a return
time function T : Σ × (−ε0, ε0) → R and a (parametrized) Poincaré map
P : Σ × (−ε0, ε0) → Σ1. The subset Σ ⊆ Σ1 is called a Poincaré section.

Although the usual definitions of Poincaré section and Poincaré map do
not mention parametrized systems, the important idea in the definition of
the Poincaré section Σ is that solutions starting in Σ return to Σ1. Let us
also note that for each ε in the interval (−ε0, ε0) the corresponding Poincaré
map σ �→ P (σ, ε) is defined on the fixed Poincaré section Σ.

In the example in Section 5.1, the Poincaré section is a line. Here, by
allowing the Poincaré section Σ to be a curve, we create a new technical
problem: What is the definition of displacement on the manifold Σ? There
are at least two options. We could define ∆ : Σ × (−ε0, ε0) → R

2 by
∆(σ, ε) := P (σ, ε) − σ. If we do so, then the “displacement” is a vector
in R

2. Alternatively, if we view Σ1 as a one-dimensional manifold, then
we can define the displacement function δ : R × (−ε0, ε0) → R relative
to a local coordinate representation of Σ. Indeed, let us choose a function
σ : R → Σ ⊆ R

2 such that σ(0) = v and for each ξ ∈ R the vector σ̇(ξ)
is a nonzero tangent vector to Σ at σ(ξ). A displacement function is then
defined by

δ(ξ, ε) := σ−1(P (σ(ξ), ε)) − ξ. (5.12)

If we want to avoid local coordinates, then our näıve notion of distance
will have to be replaced by some measure of distance on the manifold Σ.
This could be a reason to study differential geometry! The introduction of
manifolds might seem unnecessarily complex, and certainly, the mention
of manifolds and local coordinates can be avoided as long as the discus-
sion is about curves. But, for generalizations of our continuation theory to
higher dimensional problems, these ideas are unavoidable. Even in the one-
dimensional case, since we will have to compute partial derivatives of the
displacement, we must ultimately make some choice of local coordinates.
Hence, we may as well make this choice at the outset. Let us also note that
our analysis is based on the implicit function theorem. For this reason, it
is advantageous to study a function R × R → R, the usual context for the
implicit function theorem, rather than a function R × R → R

2. Thus, we
will work with the definition of displacement given by equation (5.12).

Consider the case where the unperturbed system (5.11) has a limit cycle
Γ with period 2π/ω and let δ be defined as in equation (5.12). We have
δ(0, 0) = 0. Also, because Γ is isolated among periodic solutions of the
system (5.11), the function ξ �→ δ(ξ, 0) does not vanish in some punctured
neighborhood of ξ = 0. Thus, in this case the function δ is already in a
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form where the implicit function theorem can be directly applied. In fact,
we have the following proposition: If δξ(0, 0) �= 0, then Γ persists. The
conclusion means that there is a continuous function ε �→ β(ε) defined in
some interval containing ε = 0 with β(0) = 0 and δ(β(ε), ε) ≡ 0. Also,
it is easy to identify δξ(0, 0). By the definition given in equation (5.12),
the number δξ(0, 0) + 1 is the local representative of the derivative of the
Poincaré map on Σ at {v} = Γ∩Σ. In other words, δξ(0, 0) �= 0 if and only
if the derivative of the Poincaré map is not the identity at v. A periodic
orbit in the plane with this property is called hyperbolic. More generally, a
periodic orbit Γ is hyperbolic if the derivative of the Poincaré map at v has
no eigenvalue with modulus one.

To identify δξ(0, 0) in terms of the function f , let

t �→ u(t, ζ, ε), ζ ∈ R
2, ε ∈ R

denote the solution of system (5.10) with initial condition u(0, ζ, ε) = ζ, and
define the local representation of the return time map T : R×(−ε0, ε0) → R

by T (ξ, ε) = T (σ(ξ), ε). From the definition of the displacement in dis-
play (5.12), we have

σ(δ(ξ, ε) + ξ) = P (σ(ξ), ε) = u(T (ξ, ε), σ(ξ), ε). (5.13)

Set ε = 0 and note that ξ �→ σ(δ(ξ, ε)+ξ) defines a curve in Σ1 ⊆ R
2. After

differentiation with respect to ξ at ξ = 0, we obtain an equality between
tangent vectors to Σ at v. In fact,

(δξ(0, 0) + 1)σ̇(0) = u̇(T (0, 0), v, 0)Tξ(0, 0) + uζ(T (0, 0), v, 0)σ̇(0)
= Tξ(0, 0)f(v) + uζ(2π/ω, v, 0)σ̇(0). (5.14)

To be (absolutely) precise, the left hand side is

σ∗(0)
[
(δξ(0, 0) + 1)

∂

∂ξ

]
where ∂

∂ξ denotes the unit tangent vector to R at ξ = 0 and σ∗(0) is the
linear map given by the differential of σ. This differential is a linear map
from the tangent space of R at ξ = 0 to the tangent space of Σ at v. We
represent this quantity as a vector in R

2 that is tangent to Σ at v:

σ∗(0)(δξ(0, 0) + 1)
∂

∂ξ
= (δξ(0, 0) + 1)σ∗(0)

∂

∂ξ
= (δξ(0, 0) + 1)σ̇(0).

Similar remarks apply to the identifications made on the right hand side.
An expression for δξ(0, 0) can be determined from equation (5.14) once

we compute the derivative uζ(2π/ω, v, 0). Let us note that by taking the
partial derivative with respect to ζ in the equations

u̇(t, ζ, 0) = f(u(t, ζ, 0)), u(0, ζ, 0) = ζ,
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it is easy to see that the function t �→ uζ(t, ζ, 0) is the matrix solution
of the homogeneous variational equation (also called the first variational
equation) given by

Ẇ = Df(u(t, ζ, 0))W (5.15)

with initial condition W (0) = I where Df denotes the derivative of the
function f . In other words, t �→ uζ(t, ζ, 0) is the principal fundamental
matrix solution of the system (5.15) at t = 0 and the desired derivative
uζ(2π/ω, v, 0) is just the value of the solution of the variational initial
value problem at t = 2π/ω.

Let ϕt(ζ) := u(t, ζ, 0) denote the flow of the differential equation (5.11)
and t �→ Φ(t) the principal fundamental matrix solution of the system (5.15)
at t = 0. The following proposition is simple but fundamental:

Φ(t)f(ζ) = f(ϕt(ζ)).

To prove it, note that Φ(0)f(ζ) = f(ζ) and

d

dt
f(ϕt(ζ)) = Df(ϕt(ζ))f(ϕt(ζ)).

Thus, t �→ f(ϕt(ζ)) and t �→ Φ(t)f(ζ) are solutions of the same initial value
problem, and therefore they must be equal.

Define f⊥ = Rf where R is the rotation matrix
(

0 −1
1 0

)
and note that f

and f⊥ are linearly independent at each point of the plane at which f is
nonzero (for example at each point on Γ). If f(ζ) �= 0, then there are two
real-valued functions t �→ a(t, ζ) and t �→ b(t, ζ) such that

Φ(t)f⊥(ζ) = a(t, ζ)f(ϕt(ζ)) + b(t, ζ)f⊥(ϕt(ζ)). (5.16)

We will soon find useful formulas for a and b. Before we do so, let us
note that the fundamental matrix Φ(t) is represented as a linear trans-
formation from R

2, with the basis {f(ζ), f⊥(ζ)}, to R
2, with the basis

{f(ϕt(ζ)), f⊥(ϕt(ζ))}, by the matrix

Φ(t) =
(

1 a(t, ζ)
0 b(t, ζ)

)
. (5.17)

In equation (5.14), σ̇(0) is a tangent vector at v ∈ Σ ⊆ R
2. Hence, there

are real constants c1 and c2 such that

σ̇(0) = c1f(v) + c2f
⊥(v),

and therefore

(δξ(0, 0) + 1)(c1f(v) + c2f
⊥(v))

= Tξ(0, 0)f(v) + Φ(2π/ω)(c1f(v) + c2f
⊥(v))

= Tξ(0, 0)f(v) + c1f(v) + c2a(2π/ω, v)f(v) + c2b(2π/ω, v)f⊥(v).
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Moreover, because Σ is transverse to Γ, we have c2 �= 0. Using this fact and
the linear independence of f and f⊥, it follows that

δξ(0, 0) = b(2π/ω, v) − 1, (5.18)

Tξ(0, 0) = −c2a(2π/ω, v) + c1δξ(0, 0)

= −c2a(2π/ω, v) + c1(b(2π/ω, v) − 1). (5.19)

Let us identify the quantities a(2π/ω, v) and b(2π/ω, v) geometrically.
From equation (5.18), it is clear that b(2π/ω, v) is the (local representative
of the) derivative of the Poincaré map for the unperturbed system (5.11)
at {v} = Γ ∩ Σ. If σ̇(0) = −f⊥(v) (for example, if we take t �→ σ(t) to be
the solution of the differential equation u̇ = −f⊥(u) with initial condition
u(0) = v ), then c1 = 0, c2 = −1, and a(2π/ω, ζ) is the derivative of the
(local representative of the) return time map for (5.11) on Σ at v.

Recall that the Euclidean divergence and curl of the vector function
f : R

2 → R
2 with f(x, y) = (f1(x, y), f2(x, y)) are defined as follows:

div f(x, y) :=
∂f1

∂x
(x, y) +

∂f2

∂y
(x, y),

curl f(x, y) :=
∂f2

∂x
(x, y) − ∂f1

∂y
(x, y).

Also, the scalar curvature function of the smooth curve t �→ (x(t), y(t)) is
given by

κ :=
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2 .

We will write κ(t, ζ) to denote the scalar curvature along the curve t �→
ϕt(ζ) given by the phase flow ϕt of an autonomous planar differential equa-
tion.

Theorem 5.5 (Diliberto’s Theorem). Let ϕt denote the flow of the dif-
ferential equation u̇ = f(u), u ∈ R

2. If f(ζ) �= 0, then the principal funda-
mental matrix solution t �→ Φ(t) at t = 0 of the homogeneous variational
equation

Ẇ = Df(ϕt(ζ))W

is such that

Φ(t)f(ζ) = f(ϕt(ζ)),

Φ(t)f⊥(ζ) = a(t, ζ)f(ϕt(ζ)) + b(t, ζ)f⊥(ϕt(ζ))

where

b(t, ζ) =
|f(ζ)|2

|f(ϕt(ζ))|2 e
∫ t
0 div f(ϕs(ζ)) ds, (5.20)

a(t, ζ) =
∫ t

0

(
2κ(s, ζ)|f(ϕs(ζ))| − curl f(ϕs(ζ))

)
b(s, ζ) ds. (5.21)
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The integral formulas (5.20) and (5.21) for a(t, ζ) and b(t, ζ) seem to
have been first obtained by Stephen P. Diliberto [74]. We note, however,
that his formula for a(t, ζ) incorrectly omits the factor 2 of the curvature
term.

Proof. By definition

t �→ a(t)f(ϕt(ζ)) + b(t)f⊥(ϕt(ζ))

is the solution of the variational equation (5.15) with initial value f⊥(ζ).
In particular, a(0) = 0, b(0) = 1, and

a(t)Df(ϕt(ζ))f(ϕt(ζ))
+ a′(t)f(ϕt(ζ)) + b(t)Df⊥(ϕt(ζ))f(ϕt(ζ)) + b′(t)f⊥(ϕt(ζ))

= a(t)Df(ϕt(ζ))f(ϕt(ζ)) + b(t)Df(ϕt(ζ))f⊥(ϕt(ζ)). (5.22)

After taking the inner product with f⊥(ϕt(ζ)) and suppressing the argu-
ments of various functions, we obtain the equation

b′|f |2 = b
(
〈Df · f⊥, f⊥〉 − 〈Df⊥ · f, f⊥〉

)
.

Since f⊥ = Rf , where R =
( 0 −1

1 0

)
, we have

〈Df⊥ · f, f⊥〉 = 〈RDf · f, Rf〉 = 〈Df · f, f〉

and
b′|f |2 = b(〈Df · f⊥, f⊥〉 + 〈Df · f, f〉 − 2〈Df · f, f〉).

By an easy (perhaps lengthy) computation, it follows that

b′ = b div f − b
d

dt
ln |f |2.

The solution of this differential equation with the initial condition b(0) = 1
is exactly formula (5.20).

From equation (5.22), taking the inner product this time with f(ϕt(ζ)),
we obtain

a′|f |2 = b(〈Df · f⊥, f〉 − 〈Df⊥ · f, f〉)
= b(〈f⊥, (Df)∗f〉 − 〈RDf · f, f〉)
= b(〈f⊥, (Df)∗f〉 + 〈f⊥, Df · f〉)
= b(〈f⊥, 2Df · f〉 + 〈f⊥, ((Df)∗ − (Df))f〉)

(5.23)

where ∗ denotes the transpose. Also, by simple computations, we have

〈f⊥, 2Df · f〉 = 2κ|f |3,
〈f⊥, ((Df)∗ − (Df))f〉 = −|f |2 curl f
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where the scalar curvature κ, the curl, and the other functions are eval-
uated on the curve t �→ ϕt(ζ). After substitution of these formulas into
equation (5.23), an integration yields formula (5.21). �

Recall that the periodic orbit Γ is hyperbolic if the derivative of the
Poincaré map on Σ at v = Γ ∩ Σ has no eigenvalue with modulus one.
By our geometric identification, this derivative is just b(2π/ω, v). Using
the equality |f(ϕ2π/ω(v))| = |f(v)| and Diliberto’s theorem, we have the
identification

b(2π/ω, v) = e
∫ 2π/ω
0 div f(ϕt(v)) dt.

Thus, the derivative of the Poincaré map is independent of the choice of
section Σ. In addition, by a change of variables, it is easy to see that the
derivative does not depend on v ∈ Γ. These remarks give an alternate proof
of Proposition 2.130, which we restate here in a slightly different form.

Proposition 5.6. A periodic solution t �→ ϕt(ζ) of u̇ = f(u) with period
2π/ω is hyperbolic if and only if∫ 2π/ω

0
div f(ϕt(ζ)) dt �= 0. (5.24)

Also, using equation (5.18) together with the implicit function theorem,
we have a theorem on persistence.

Theorem 5.7. A hyperbolic periodic solution of the differential equation
u̇ = f(u) persists for autonomous perturbations.

Exercise 5.8. Prove: If ϕt is the flow of the differential equation ẋ = f(x) with
the periodic orbit Γ, then

∫ 2π/ω

0 div f(ϕt(ζ)) dt does not depend on the choice of
ζ ∈ Γ.

Exercise 5.9. With respect to Proposition 5.6, suppose that Γ is the periodic
orbit corresponding to the periodic solution t �→ ϕt(ζ). Show that the inequality

∫
Γ

div f ds < 0

is not sufficient to prove that Γ is a stable limit cycle.

Exercise 5.10. Suppose that Γ is a hyperbolic periodic solution with period
T of the planar system u̇ = f(u) and ζ ∈ Γ. Using the notation of Diliberto’s
theorem, define

g(ϕt(ζ)) =
1

b(t, ζ)

( a(T, ζ)
b(T, ζ) − 1

+ a(t, ζ)
)
f(ϕt(ζ)) + f⊥(ϕt(ζ)).

Prove the following facts: (a) Φ(t)g(ζ) = b(t, ζ)g(ϕt(ζ)). (b) g(ϕT (ζ)) = g(ζ). (c)
The vector g is nowhere parallel to f . (d) The vector field determined by g on Γ
is invariant under the linearized flow.
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Exercise 5.11. [Multidimensional Systems] Suppose that u̇ = f(u), u ∈ R
n

has a periodic orbit Γ cut transversely by an (n−1)-dimensional surface Σ ⊆ R
n.

Here, transversality means that f(v) is not tangent to Σ for v = Γ ∩ Σ. (a) Show
that the analogue of Theorem 5.7 is valid in this context. Hint: Although there
is no obvious substitute for Diliberto’s formulas, the ideas of this section apply.
Use the definition of hyperbolicity, that is, the derivative of the Poincaré map on
Σ at v has its spectrum off the unit circle in the complex plane; and then proceed
abstractly by following the same argument presented for Theorem 5.7. (b) Is the
hyperbolicity hypothesis necessary when n > 2? Can you prove a stronger result?

Exercise 5.12. Obtain equation (5.20) using Liouville’s formula (2.18). Warn-
ing: At first sight, in the context of equation (5.20), it might appear that the

fundamental matrix for system (5.15) is given by
( 1 a(t)

0 b(t)

)
relative to the basis

{f(ϕt(ζ)), f⊥(ϕt(ζ))}.

But, this matrix does not represent the fundamental matrix solution in any
fixed basis. Rather, it represents a transition from the initial basis given by
{f(ζ), f⊥(ζ)} to the basis {f(ϕt(ζ)), f⊥(ϕt(ζ))}.

Exercise 5.13. Let t �→ α(t) be a nonconstant solution of the scalar second-
order differential equation ẍ = f(x). (a) Show that the principal fundamental
matrix solution Φ(t) at t = 0 of the first variational equation along α is defined
by

Φ(t) =
(

α̇(t) β(t)
f(α(t)) β̇(t)

)

where α̇(0)β̇(0) − β(0)α̈(0) = 1, β is given by t �→ α̇(t)γ(t), γ is an antiderivative
of α̇(t)−2 defined on the time intervals where ẋ does not vanish, and β, defined by
removing singularities, is smooth on the domain of α (cf. [63]). Also, Compare this
result with the fundamental matrix solution given by Diliberto’s theorem. Hint:
Use Abel’s formula. Show that the second-order ODE is reversible. A planar
system ẋ = p(x, y), ẏ = q(x, y) is called reversible if t �→ (x(−t), −y(−t)) is
a solution whenever t �→ (x(t), y(t)) is a solution. For the second order ODE,
t �→ x(T − t) is a solution whenever t �→ x(t) is a solution. Show that if ẋ has two
zeros, then x(t) is periodic. In case ẋ has no zeros, show that γ is an antiderivative
such that α̇(0)β̇(0) − β(0)α̈(0) = 1. In case ẋ has exactly one zero at t = T and
T ≥ 0, show that the function γ is an antiderivative on the interval (−∞, T ) (or
on the maximal interval of time less than T on which the solution x is defined)
such that α̇(0)β̇(0) − β(0)α̈(0) = 1, and γ(T + s) := −γ(T − s) for s > 0. A
similar construction is made if T < 0. In case ẋ has two zeros, x is periodic and
γ is an antiderivative defined periodically on the whole line such that the initial
condition α̇(0)β̇(0) − β(0)α̈(0) = 1 is satisfied.

Problem 5.14. How can Diliberto’s theorem be generalized to the case of vari-
ational equations for differential equations defined in R

n for n > 2? A solution of
this exercise together with some examples would perhaps make a nice research
article.
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To determine the persistence of periodic orbits of the differential equa-
tion (5.11), our main hypothesis, δξ(0, 0) �= 0, is equivalent to requiring
the unperturbed periodic solution to be hyperbolic. Let us consider the
continuation problem for nonhyperbolic periodic orbits.

If an unperturbed planar periodic orbit is not hyperbolic, then we cannot
determine an implicit solution of the equation δ(ξ, ε) = 0 by a direct appli-
cation of the implicit function theorem. Instead, the main new tool for the
analysis is the (Weierstrass) preparation theorem. The following statement
is a special case of this important result (see [8], [29], and [57]).

Theorem 5.15 (Preparation Theorem). If δ : R × R → R, given by
(ξ, ε) �→ δ(ξ, ε), is analytic (or C∞) and

δ(0, 0) =
∂δ

∂ξ
(0, 0) =

∂2δ

∂ξ2 (0, 0) = · · · =
∂n−1δ

∂ξn−1 (0, 0) = 0,
∂nδ

∂ξn
(0, 0) �= 0,

then there are n smooth functions ai : R → R defined near ε = 0 and a
function U : R × R → R defined near (ξ, ε) = (0, 0) such that ai(0) = 0,
i = 1, . . . , n, U(0, 0) �= 0, and

δ(ξ, ε) = (a0(ε) + a1(ε)ξ + · · · + an−1(ε)ξn−1 + ξn)U(ξ, ε).

The name “preparation theorem” is used because the function δ, written
in the form given in the conclusion of the theorem, is prepared for a study
of its zeros. Moreover, because U(0, 0) �= 0 (such a function U is called a
unit in the algebra of functions defined in a neighborhood of the origin),
the zeros of the function δ(ξ, ε) near (ξ, ε) = (0, 0) are exactly the zeros of
the Weierstrass polynomial

a0(ε) + a1(ε)ξ + · · · + an−1(ε)ξn−1 + ξn.

In particular, there are at most n zeros for each fixed ε near ε = 0.
For the case where δ is the displacement function associated with a pe-

riodic orbit Γ, the multiplicity of Γ is defined to be the degree n of the
Weierstrass polynomial. If n = 1, then Γ is hyperbolic and exactly one
continuation point of periodic solutions exists for |ε| �= 0 sufficiently small.
It follows from the preparation theorem that if Γ has multiplicity n, then
there is some choice of the function g in the differential equation (5.10)
such that n families of periodic solutions bifurcate from Γ at ε = 0. But,
for each specific perturbation, the actual number of continuations can only
be determined by analyzing the coefficients of the Weierstrass polynomial.

Exercise 5.16. Show that the system

ẋ = −y + x(x2 + y2 − 1)2,

ẏ = x + y(x2 + y2 − 1)2 (5.25)

has a limit cycle with multiplicity 2.
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As an illustration of the ideas just presented, let us analyze the contin-
uation problem for a periodic orbit Γ with multiplicity 2.

Using the displacement function δ associated with Γ, we have that

δ(0, 0) = δξ(0, 0) = 0, δξξ(0, 0) �= 0,

and, by the preparation theorem,

δ(ξ, ε) = (a0(ε) + a1(ε)ξ + ξ2)U(ξ, ε) (5.26)

where a0(0) = 0, a1(0) = 0, but U(0, 0) �= 0. We will solve for ξ implicitly
with respect to ε. But, in anticipation of a bifurcation at ε = 0, we cannot
expect to have a smooth continuation given by a function ε �→ β(ε) such
that β(0) = 0 and δ(β(ε), ε) ≡ 0. More likely, there are implicit solutions
defined for ε > 0 or ε < 0, but not both. For this reason, we say there are N
positive branches at the bifurcation point (0, 0) if there is some ε0 > 0 and
N continuous functions β1, . . . , βN , each defined for 0 ≤ ε < ε0 such that
for each j = 1, . . . , N , βj(0) = 0, and δ(βj(ε), ε) ≡ 0. Negative branches are
defined analogously for −ε0 < ε ≤ 0. Of course, the number and position
of the branches is determined by the roots of the Weierstrass polynomial.

With respect to the Weierstrass polynomial in display (5.26), we have

a0(ε) = a01ε + O(ε2), a1(ε) = O(ε),

and therefore the roots of this Weierstrass polynomial are given by

ξ = β(ε) =
−a1(ε) ±

√
−4a01ε + O(ε2)
2

.

If ε �= 0 has fixed sign and a01ε > 0, then there are no real branches. On
the other hand, if a01ε < 0, then there are two real branches given by

β1(ε) =
√

−a01ε + O(ε), β2(ε) = −
√

−a01ε + O(ε).

To identify the coefficient a01, compute the derivatives

δε(0, 0) = a01U(0, 0),
δξξ(0, 0) = 2U(0, 0),

and note that

a01 = 2δε(0, 0)/δξξ(0, 0). (5.27)

Of course δξξ(0, 0) is just the second derivative of the unperturbed Poincaré
map ξ �→ σ−1P (σ(ξ), 0). A formula for the derivative δε(0, 0) will be com-
puted below.
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Let us apply the result in equation (5.27) to the bifurcation of limit cycles
for the system

ẋ = − y + x(x2 + y2 − 1)2,

ẏ =x + y(x2 + y2 − 1)2 + ε(x2 − 1)y. (5.28)

By a change to polar coordinates, we have the equivalent system

ṙ =r(r2 − 1)2 + εr sin2 θ(r2 cos2 θ − 1),

θ̇ =1 + ε cos θ sin θ(r2 cos2 θ − 1).

Note that, for r near r = 1, if ε is sufficiently small, then we can treat θ as
a time-like variable and obtain the following differential equation for r:

dr

dθ
= F (r, θ, ε) :=

r(r2 − 1)2 + εr sin2 θ(r2 cos2 θ − 1)
1 + ε cos θ sin θ(r2 cos2 θ − 1)

. (5.29)

Also, for each ξ near ξ = 1, let us define the function θ �→ r(θ, ξ, ε) to be the
unique solution of the differential equation (5.29) with the initial condition
r(0, ξ, ε) = ξ.

Note that the displacement function is given by δ(ξ, ε) = r(2π, ξ, ε) − ξ.
Thus, to compute the partial derivative δξ(ξ, ε), it suffices to solve the
variational initial value problem

d

dθ
rξ = Fr(r(θ, ξ, ε), ξ, ε)rξ, rξ(0, ξ, ε) = 1

to obtain the useful formula

rξ(θ, ξ, ε) = e
∫ θ
0 Fr(r(s,ξ,ε),ξ,ε) ds.

By Exercise 5.16, the point ξ = 1 corresponds to the unperturbed limit
cycle. Thus, if we view ξ as a coordinate on the positive x-axis, then
δ(1, 0) = r(2π, 1, 0) − 1 = 0. Moreover, we have

rξ(2π, ξ, 0) = e
∫ 2π
0 (r2−1)(5r2−1) dθ,

and therefore δξ(1, 0) = 0. By taking one more derivative with respect to
ξ, let us note that

δξξ(1, 0) = rξξ(2π, 1, 0) =
∫ 2π

0
8rξ dθ = 16π

is positive. To compute δε(1, 0), solve the variational initial value problem

d

dθ
rε = sin2 θ(cos2 θ − 1), rε(0, 1, 0) = 0
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to obtain

δε(1, 0) = rε(2π, 1, 0) = −
∫ 2π

0
sin4 θ dθ < 0.

By our analysis of the Weierstrass polynomial, there are two branches of
periodic solutions for small ε > 0. One branch consists of stable limit cycles;
the other branch consists of unstable limit cycles. We will outline a method
for proving this fact, but the details are left to the reader.

The stability of the perturbed limit cycles is determined by δξ(β(ε), ε). In
fact, the orbit is unstable if δξ(β(ε), ε) > 0 and stable if δξ(β(ε), ε) < 0. To
prove this claim, recall that δ(ξ, ε) = σ−1(P (σ(ξ), ε)) − ξ and the stability
type is determined by the derivative of the Poincaré map. Since δξ(0, 0) =
0, the stability type for small ε is determined by the sign of δεξ(0, 0). If
δεξ(0, 0) > 0 and a branch of continued periodic solutions exists for ε > 0,
then the branch is unstable. If the branch exists for ε < 0, then the branch
is stable. If δεξ(0, 0) < 0 and the branch exists for ε > 0, then it is stable,
whereas, if the branch exists for ε < 0, then it is unstable.

We have discussed a complete analysis for autonomous perturbations
in case Γ is hyperbolic, and we have just indicated how to approach the
problem when Γ has finite multiplicity. Let us consider the case where Γ
has infinite multiplicity; that is, when δ(ξ, 0) ≡ 0. This, of course, is not
quite correct if by infinite multiplicity we mean that all partial derivatives
of the displacement function δ with respect to ξ vanish at (ξ, ε) = (0, 0);
maybe δ is infinitely flat but still δ(ξ, 0) �= 0 for ξ �= 0. On the other hand,
if δ is analytic (it will be if the differential equation (5.10) is analytic), then
infinite multiplicity at the point ξ = 0 does imply that δ(ξ, 0) ≡ 0.

Exercise 5.17. Give an example of an infinitely flat limit cycle: The periodic
orbit is isolated but ∂kδ/∂ξk(0, 0) = 0 for k = 1, 2, 3, . . . .

Suppose that δ(ξ, 0) ≡ 0 and consider the perturbation series

δ(ξ, ε) = δε(ξ, 0)ε +
1
2!

δεε(ξ, 0)ε2 + O(ε3).

Note that

δ(ξ, ε) = ε(δε(ξ, 0) + O(ε)). (5.30)

Here, since δ(ξ, 0) ≡ 0, the periodic orbit Γ is contained in a period annulus;
that is, an annulus in the plane consisting entirely of periodic orbits of the
unperturbed differential equation (5.11) (see, for example, Figure 3.2).

Although we could consider continuations from the fixed periodic orbit
Γ, it is traditional to consider all of the periodic orbits in the period annu-
lus together. Let us determine if any of the periodic orbits in the annulus
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persist. For this problem, if we recall equation (5.30) and use the implicit
function theorem, then the reduction step is easy: A simple zero of the
function ξ �→ δε(ξ, 0) is a continuation point of periodic solutions. Equiva-
lently, if δε(ξ0, 0) = 0 and δξε(ξ0, 0) �= 0, then the periodic solution Γξ0 of
the unperturbed system (5.11) with initial value σ(ξ0) ∈ Σ persists.

For the identification step, we will find a useful formula for δε(ξ, 0). Let
us first compute the partial derivative with respect to ε in equation (5.13)
to obtain the identity

δε(ξ, 0)σ̇(ξ) = Tε(ξ, 0)f(σ(ξ)) + uε(T (ξ, 0), σ(ξ), 0), (5.31)

and note that t �→ uε(t, σ(ξ), 0) is the solution of the inhomogeneous vari-
ational initial value problem

Ẇ = Df(ϕt(σ(ξ)))W + g(ϕt(σ(ξ))), W (0) = 0, (5.32)

where the initial condition follows from the identity u(0, σ(ξ), 0) ≡ σ(ξ).
(The differential equation in display (5.32) is also called the second varia-
tional equation.)

By the variation of constants formula,

uε(T (ξ, 0), σ(ξ), 0) = Φ(T (ξ, 0))
∫ T (ξ,0)

0
Φ−1(s)g(ϕs(σ(ξ))) ds

where Φ(t) denotes the principal fundamental matrix solution of the sys-
tem (5.15) at t = 0.

Let us use the identifications given in equations (5.20) and (5.21) by first
expressing the function g in the form

g(ϕt(σ(ξ))) = c1(t, σ(ξ))f(ϕt(σ(ξ))) + c2(t, σ(ξ))f⊥(ϕt(σ(ξ)))

with

c1(t, σ(ξ)) =
1

|f(ϕt(σ(ξ)))|2 〈g(ϕt(σ(ξ))), f(ϕt(σ(ξ)))〉,

c2(t, σ(ξ)) =
1

|f(ϕt(σ(ξ)))|2 〈g(ϕt(σ(ξ))), f⊥(ϕt(σ(ξ)))〉

:=
1

|f(ϕt(σ(ξ)))|2 f(ϕt(σ(ξ))) ∧ g(ϕt(σ(ξ))).

Also, note that the inverse of the matrix (5.17) represents the action of
the inverse of the principal fundamental matrix at t = 0 from the span of
{f, f⊥} at u(t, σ(ξ), 0) to the span of {f, f⊥} at σ(ξ). Likewise, the matrix
in equation (5.17) evaluated at T (ξ, 0) is the matrix representation of the
fundamental matrix with respect to the basis {f, f⊥} at σ(ξ). Thus, we
have that

Φ(T (ξ, 0)) =
(

1 a(T (ξ, 0), σ(ξ))
0 b(T (ξ, 0), σ(ξ))

)
,

Φ−1(s)g(ϕs(σ(ξ))) =
1

b(s, σ(ξ))

(
b(s, σ(ξ)) −a(s, σ(ξ))

0 1

)(
c1(s, σ(ξ))
c2(s, σ(ξ))

)
,
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and

uε(T (ξ, 0), ξ, 0) = (N (ξ) + a(T (ξ, 0), σ(ξ))M(ξ))f(σ(ξ))
+ b(T (ξ, 0), σ(ξ))M(ξ)f⊥(σ(ξ)) (5.33)

where

M(ξ) :=
∫ T (ξ,0)

0

1
b(t, σ(ξ))|f(ϕt(σ(ξ)))|2 f(ϕt(σ(ξ))) ∧ g(ϕt(σ(ξ))) dt

=
1

|f(σ(ξ))|2

×
∫ T (ξ,0)

0
e− ∫ t

0 div f(ϕs(σ(ξ))) dsf(ϕt(σ(ξ))) ∧ g(ϕt(σ(ξ))) dt,

N (ξ) :=
∫ T (ξ,0)

0

1
|f(ϕt(σ(ξ)))|2 〈g(ϕt(σ(ξ))), f(ϕt(σ(ξ)))〉 dt

−
∫ T (ξ,0)

0

a(t, σ(ξ))
b(t, σ(ξ))|f(ϕt(σ(ξ)))|2 f(ϕt(σ(ξ))) ∧ g(ϕt(σ(ξ))) dt.

After taking the inner product of both sides of the equation (5.31) with
the vector f⊥(σ(ξ)), and using the formulas for M and N , the quantity
δε(ξ, 0) is seen to be given by

δε(ξ, 0) =
b(T (ξ, 0), σ(ξ))|f(σ(ξ))|2

〈σ̇(ξ), f⊥(σ(ξ))〉 M(ξ). (5.34)

In this formula, 〈σ̇, f⊥〉 �= 0 because Σ is transverse to the unperturbed
periodic solutions, and b(t, ζ) �= 0 because |f | does not vanish along the
unperturbed periodic orbit.

The autonomous Poincaré–Andronov–Melnikov function is defined by

M(ξ) :=
∫ T (ξ,0)

0
e− ∫ t

0 div f(ϕs(σ(ξ))) dsf(ϕt(σ(ξ))) ∧ g(ϕt(σ(ξ))) dt. (5.35)

Here, ξ �→ T (ξ, 0) is a local representation of the period function associated
with the period annulus of the differential equation (5.11); the number
T (ξ, 0) is the minimum period of the periodic orbit labeled by ξ, that is,
the orbit passing through the point in the plane with coordinates (ξ, 0).
It should be clear that values of the function M are independent of the
choice of Poincaré section. In fact, as long as ξ is a smooth parameter for
the periodic solutions in our period annulus, the value of M at a particular
periodic solution is not altered by the choice of the parametrization.

Theorem 5.18. Suppose that the differential equation (5.11) has a period
annulus A whose periodic solutions are parametrized by a smooth function
σ : R → A given by ξ �→ σ(ξ). If ξ0 is a simple zero of the function
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ξ �→ M(ξ) given by the formula (5.35) for the perturbed system (5.10),
then the periodic solution of the unperturbed system (5.11) passing through
ξ0 is continuable.

Proof. This result follows immediately from the formula (5.34) and the
persistence of the simple zeros of ξ �→ δε(ξ, 0). We only remark that, in
general, if α(ξ) = β(ξ)γ(ξ) with β(ξ) nonvanishing, then the simple zeros
of α and γ coincide. �

Exercise 5.19. Find the continuable periodic solutions of the perturbed har-
monic oscillator in each of the following systems:

1. weakly damped van der Pol equation:

ẍ + ε(x2 − 1)ẋ + ω2x = 0;

2. nonlinear weakly damped van der Pol equation:

ẍ + ε(x2 − 1)ẋ + ω2x − ελx3 = 0;

3. modified van der Pol equation:

ẍ + ε(x2 + ẋ2 − 1)ẋ + x = 0.

5.3 Nonautonomous Perturbations

Let us consider the periodic solutions of the nonautonomous periodically
perturbed system

u̇ = f(u) + εg(u, t, ε), u ∈ R
2. (5.36)

More precisely, let us suppose that the unperturbed system has a periodic
solution Γ whose period is 2π/ω and that t �→ g(u, t, ε) is periodic with
period

η := η(ε) =
n

m

2π

ω
+ kε + O(ε2) (5.37)

where n, m are relatively prime positive integers and k ∈ R is the “detuning
parameter.” In particular, at ε = 0 we have

mη(0) = n
2π

ω
(5.38)

and we say that the periodic solution Γ is in (m : n) resonance with the
perturbation g. Equation (5.38) is called a resonance relation. If, as before,
we let t �→ u(t, ζ, ε) denote the solution of the differential equation (5.36)
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u(η(ε), ζ, ε)

ζ

τ = 0 τ = η(ε)

Figure 5.2: The left panel depicts an orbit on a invariant cylinder start-
ing at ζ and returning to the Poincaré section at τ = 0 for the Poincaré
map (5.40). The right panel is a schematic depiction of the same orbit on
the torus formed by identifying the Poincaré section at τ = 0 with the plane
at τ = η(ε). If the orbit were to close on the mth return to the section, it
would be an (m : 1) subharmonic.

with initial condition u(0, ζ, ε) = ζ in R
2, then we have that t �→ u(t, ζ, 0)

defines a 2π/ω-periodic function for each ζ ∈ Γ.
The nonautonomous differential equation (5.36) is equivalent to the first

order system

u̇ = f(u) + εg(u, τ, ε),
τ̇ = 1

(5.39)

in the extended phase plane. Because g is a periodic function of time, it is
customary to view τ as an angular variable modulo η(ε). This leads to the
very useful geometric interpretation of the system (5.39) as a differential
system on the phase cylinder R

2 × T where

T := {e2πiτ/η(ε) : τ ∈ R}.

There is an annular region A ⊆ R
2 containing Γ and some ε0 > 0 such

that Σ = A×{1} ⊆ R
2 ×T is a Poincaré section for the system (5.39) with

associated (parametrized) Poincaré map P : Σ× (−ε0, ε0) → R
2 defined by

(ζ, 1, ε) �→ u(η(ε), ζ, ε).

But, because the set A × {1} is naturally identified with A, we will view
the Poincaré map as the map P : A × (−ε0, ε0) → R

2 given by

(ζ, ε) �→ u(η(ε), ζ, ε). (5.40)

We are going to look for (m : n) subharmonic solutions of the perturbed
system (5.36), that is, periodic solutions of the differential equation (5.36)
with period mη(ε). They correspond to periodic points of period m for
the Poincaré map. Actually, there is a finer classification of such solutions
that is often made as follows: A periodic solution is called a harmonic if it
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closes at the first pass through the Poincaré section after rotating once in
the T direction. Harmonics are associated with (1 : 1) resonance. A periodic
solution is called a subharmonic of order m if it closes at the mth pass,
m > 1, through the Poincaré section after rotating once in the T direction.
The name “subharmonic” is used because the frequency 2π/(mη(ε)) is a
submultiple of the frequency 2π/η(ε) of the perturbation. Subharmonics
are associated with (m : 1) resonance with m > 1. A periodic solution
is called an (m, n) ultrasubharmonic if it closes at the mth pass through
the Poincaré section after rotating n times, n > 1, in the T direction.
Ultrasubharmonics are associated with (m : n) resonance with n > 1. The
geometry of subharmonic orbits in the extended phase plane is depicted in
Figure 5.2.

The key point derived from our geometric interpretation of the perturba-
tion problem is the following: A periodic point of period m for the Poincaré
map is a periodic solution with period mη(ε) for the system (5.36). To see
this, let ζ be a periodic point of period m so that

u(mη(ε), ζ, t) = ζ.

Consider the solution t �→ u(t, ζ, ε) of the system (5.36) and the function
given by

v(t) := u(t + mη(ε), ζ, ε),

and note that
v̇ = f(v) + εg(v, t + mη(ε), ε).

Using the periodicity of g, this last equation simplifies to yield

v̇ = f(v) + εg(v, t, ε),

and therefore t �→ v(t) is a solution of the differential equation (5.36). As
v(0) = ζ and u(0, ζ, ε) = ζ, the solutions t �→ u(t, ζ, ε) and t �→ v(t) must be
the same; that is, u(t+mη(ε), ζ, ε) = u(t, ζ, ε) and the function t �→ u(t, ζ, ε)
is mη(ε)-periodic.

As before, let us define the (parametrized) displacement function δ :
A × (−ε0, ε0) → R

2 by

δ(ζ, ε) = u(mη(ε), ζ, ε) − ζ. (5.41)

Here there is no need for a local coordinate representation via a coordinate
chart: Points in the domain A × (ε0, ε0) ⊂ R

2 × R are already expressed in
local coordinates.

Clearly, if ζ ∈ Γ, where Γ is a resonant periodic solution of the differential
equation (5.11), then δ(ζ, 0) = 0; in effect,

δ(ζ, 0) = u(mη(0), ζ, 0) − ζ = u(m
n

m

2π

ω
, ζ, 0) − ζ = 0.
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To see if Γ persists, we would like to apply the implicit function theorem
to the function δ at the point (ζ, 0) where δ(ζ, 0) = 0. Thus, we would like
to show that the linear map δζ(ζ, 0) : R

2 → R
2 is invertible. But, for a

point ζ that lies on a resonant periodic solution Γ, this map always has
a nontrivial kernel. In fact, we have that δζ(ζ, 0)f(ζ) ≡ 0 for ζ ∈ Γ. This
result is geometrically obvious. But to construct an analytic proof, let us
use the definition of the directional derivative and the group property of
the unperturbed flow to obtain the identity

δζ(ζ, 0)f(ζ) =
d

dt
δ(u(t, ζ, 0), 0)

∣∣
t=0

=
d

dt
(u(2πn/ω, u(t, ζ, 0), 0) − u(t, ζ, 0))

∣∣
t=0

=
d

dt
(u(2πn/ω + t, ζ, 0) − u(t, ζ, 0))

∣∣
t=0

= f(u(2πn/ω, ζ, 0)) − f(ζ) = 0.

(5.42)

We have just proved that the kernel of the linear transformation δζ(ζ, 0)
contains the subspace generated by f(ζ). Here and hereafter we will let
[v] denote the subspace spanned by the enclosed vector. In particular, we
have [f(ζ)] ⊆ Kernel δζ(ζ, 0). The analysis to follow later in this chapter
falls naturally into two cases: [f(ζ)] = Kernel δζ(ζ, 0) and Kernel δζ(ζ, 0) =
R

2. After a short section devoted to the continuation of periodic orbits
from unperturbed rest points where the kernel of the derivative of the
displacement can be trivial, we will develop some of the theory required to
determine the continuable periodic orbits in each of these two cases.

Exercise 5.20. [Multidimensional Oscillators] Suppose that the system u̇ =
f(u), for the vector case u ∈ R

n, has a T -periodic orbit Γ given by the solution
t �→ γ(t). (a) Show that the number one is a Floquet multiplier of the (periodic)
variational equation ẇ = Df(γ(t))w. (b) Prove that if the Floquet multiplier
one has algebraic multiplicity one and if g : R

n × R × R → R
n is a smooth

function given by (u, t, ε) �→ g(u, t, ε) such that the corresponding map given
by t �→ g(u, t, ε) is T -periodic for each u and ε, then Γ persists in the family
u̇ = f(u) + εg(u, t, ε). (c) Is the same result true if the geometric multiplicity is
one?

5.3.1 Rest Points
Let us suppose that the unperturbed system

u̇ = f(u),

derived from the system (5.36) by setting ε = 0, has a rest point u = ζ.
This point is a fixed point of the unperturbed Poincaré map and a zero
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of the unperturbed displacement function. In particular, the rest point
corresponds to a periodic solution of the artificially autonomous system

u̇ = f(u), τ̇ = 1, (5.43)

where τ is considered as an angular variable modulo η(0). To determine if
the corresponding periodic solution continues, we have the following theo-
rem.

Theorem 5.21. If ζ is a rest point for the unperturbed system u̇ = f(u)
derived from the system (5.36), and the Jacobian matrix Df(ζ) has no
eigenvalue of the form 2πNi/η where N is an integer, then the periodic
orbit with period η(0) for system (5.43) corresponding to ζ persists as an
η(ε)-periodic solution of equation (5.36).

Proof. The partial derivative

δζ(ζ, 0) = uζ(η(0), ζ, 0) − I

is easily computed by solving the variation initial value problem

Ẇ = Df(ζ)W, W (0) = I

to obtain

δζ(ζ, 0) = eηDf(ζ) − I.

The matrix δζ(ζ, 0) is invertible if and only if the number one is not an
eigenvalue of eηDf(ζ). Thus, the desired result follows from Theorem 2.88
and the implicit function theorem. �

Exercise 5.22. Describe the bifurcations of rest points that may occur in case
2πNi/η is an eigenvalue of Df(ζ) for some integer N .

5.3.2 Isochronous Period Annulus
If the coordinate neighborhood A ⊂ R

2 containing the unperturbed peri-
odic orbit Γ is a period annulus A, it is possible that every periodic solution
in A has the same period, that is, the period annulus is isochronous. In
this case, if a resonance relation holds for one periodic solution in A, then
it holds for all of the periodic solutions in A. We will determine the con-
tinuable periodic solutions for an unperturbed system with an isochronous
period annulus.

Let us note that a period annulus for a linear system is necessarily
isochronous. Although there are nonlinear systems with isochronous pe-
riod annuli (just transform a linear system with a period annulus by a
nonlinear change of coordinates), they can be difficult to recognize.
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Exercise 5.23. Prove that the following systems have isochronous period an-
nuli.

1. ẍ + 1 − √
1 + 2x = 0.

2. (Loud’s system) ẋ = −y + Bxy, ẏ = x + Dx2 + Fy2 in case (D/B, F/B)
is one of the following:

(0, 1), (−1
2
, 2), (0,

1
4
), (−1

2
,

1
2
)

(see [42] and [148]).

Loud’s theorem states that every quadratic system with an isochronous period
annulus can be transformed by a linear change of coordinates to one of the four
systems mentioned above. An interesting unsolved pure mathematics problem is
to determine the number and positions of critical points for the period functions
of the period annuli of Loud’s system as the parameters B, D, and F are varied.
For example, there are some period functions with two critical points. It is not
known if this is the maximum number (see [42]).

For the rest of this subsection, let us assume that the unperturbed sys-
tem (5.11) has an isochronous period annulus A where every periodic orbit
has period 2π/ω. In this case, δ(ζ, 0) ≡ 0 and δζ(ζ, 0) ≡ 0 for ζ ∈ A.

Because the perturbation series for the displacement function (see dis-
play (5.41)) has the form

δ(ζ, ε) = ε(δε(ζ, 0) + O(ε)),

we have the following proposition: A simple zero ζ of the function ζ �→
δε(ζ, 0) is an (ultra)subharmonic continuation point. In other words, there
is a number ε0 > 0 and a continuous function β : (−ε0, ε0) → R

2 given
by ε �→ β(ε) such that β(0) = ζ and δ(β(ε), ε) ≡ 0. Of course, β(ε) is the
initial value of a subharmonic solution of the differential equation (5.36).
This result is the now familiar reduction step of our analysis.

To identify the function ζ �→ δε(ζ, 0), we simply compute this partial
derivative from the definition of the displacement (5.41) to obtain

δε(ζ, 0) = mη′(0)f(ζ) + uε(mη(0), ξ, 0)
= mkf(ζ) + uε(2πn/ω, ζ, 0).

As before, t �→ uε(t, ζ, 0) is the solution of a variational initial value prob-
lem, namely,

Ẇ = Df(ϕt(ζ))W + g(ϕt(ζ), t, 0), W (0) = 0

where ϕt is the flow of the unperturbed system. The solution of the ini-
tial value problem is obtained just as in the derivation of equation (5.33).
The only difference is the “nonautonomous” nature of g, but this does
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not change any of the formal calculations. In fact, with the notation as in
equation (5.33), we obtain

uε(2πn/ω, ζ, 0) = (N (ζ) + a(2πn/ω, ζ)M(ζ))f(ζ)
+ b(2πn/ω, ζ)M(ζ)f⊥(ζ). (5.44)

By the geometric interpretation of the functions a and b given following
equation (5.19), these functions are readily reinterpreted in the present
context. In fact, since every orbit of our isochronous period annulus is not
hyperbolic, we must have b(2π/ω, ζ) = 1, and, since the period function is
constant, we also have a(2π/ω, ζ) = 0. Thus, we obtain the identity

δε(ζ, 0) = (mk + N (ζ))f(ζ) + M(ζ)f⊥(ζ). (5.45)

Exercise 5.24. Show that b(n2π/ω, ζ) = bn(2π/ω, ζ) and

a(2πn/ω, ζ) = a(2π/ω, ζ)
n−1∑
j=0

bj(2π/ω, ζ).

Theorem 5.25. Suppose the differential equation (5.36) is such that the
unperturbed system has an isochronous period annulus A with period 2π/ω
and the perturbation g(u, t, ε) has period ν(ε) = (n/m)2π/ω + kε + O(ε2)
where n and m are relatively prime positive integers. If the bifurcation
function B : A → R

2 given by ζ �→ (mk + N (ζ),M(ζ)) has a simple zero
ζ, then ζ is a continuation point of (m : n) (ultra)subharmonics for the
system (5.36).

Proof. The theorem follows from equation (5.45). Indeed, if

F (ζ) :=
(

f1(ζ) −f2(ζ)
f2(ζ) f1(ζ)

)
and B(ζ) :=

(
mk + N (ζ)

M(ζ)

)
,

then
B(ζ) = F (ζ) · B(ζ),

and the simple zeros of B coincide with the simple zeros of B. �

Theorem 5.25, specialized to the case where the unperturbed system is
linear, is slightly more general than Theorem 5.1. For example, suppose
that f(u) = Au where

A =
(

0 −ω
ω 0

)
, ω > 0.

Since div f ≡ 0 and |f | is constant on orbits, b(t, ζ) ≡ 1. Also, let us note
that

2κ(t, ζ)|f(ϕt(ζ))| − curl f(ϕt(ζ)) = 2
1
|ζ|ω|ζ| − 2ω = 0,
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and therefore a(t, ζ) ≡ 0. (This is a good internal check that the formula
for a is correct!) Thus, in this special case,

N (ζ) =
∫ n2π/ω

0

1
|f(ϕt(ζ))|2 〈f(ϕt(ζ)), g(ϕt(ζ), t, 0)〉 dt,

M(ζ) =
1

|f(ζ)|2
∫ n2π/ω

0
f(ϕt(ζ)) ∧ g(ϕt(ζ), t, 0) dt.

More explicitly, we have that

N (ζ) =
1

ω|ζ|2
∫ n2π/ω

0
xg2(x, y, t, 0) − yg1(x, y, t, 0) dt,

M(ζ) = − 1
ω|ζ|2

∫ n2π/ω

0
xg1(x, y, t, 0) + yg2(x, y, t, 0) dt (5.46)

where

x := x(t, ζ) = ζ1 cos ωt − ζ2 sin ωt, y := y(t, ζ) = ζ1 sin ωt + ζ2 cos ωt.

Let us consider the stability of the perturbed (ultra)subharmonics. Note
that the “perturbation series” for the Poincaré map is given by

P (ζ, ε) = ζ + εPε(ζ, 0) + O(ε2),

and Pε(ζ, 0) = δε(ζ, 0). Thus, the formula for the partial derivative of the
Poincaré map with respect to ε is given by equation (5.45) and

P (ζ, ε) =
(

ζ1
ζ2

)
+ ε

(
kmω

(
−ζ2
ζ1

)
+

(∫ n2π/ω

0 g1 cos ωt + g2 sin wt dt∫ n2π/ω

0 g2 cos ωt − g1 sin wt dt

))
+ O(ε2) (5.47)

where g1 and g2 are evaluated at (x, y, t, 0).
It should be clear that the stability of the perturbed (ultra)subharmonics

is determined by the eigenvalues of the matrix Pζ(ζ, ε), called the linearized
Poincaré map evaluated at the fixed point of ζ �→ P (ζ, ε) correspond-
ing to the subharmonic. The subharmonic is stable if both eigenvalues lie
inside the unit circle in the complex plane. Of course, if the linearized
Poincaré map is hyperbolic, then the local behavior near the periodic orbit
is determined—stability is just a special case of this more general fact.

It is not too difficult to show that if ε > 0 is sufficiently small, then
the matrix Pζ(ζ, ε) evaluated at the perturbed fixed point has both of its
eigenvalues inside the unit circle in the complex plane provided that each
eigenvalue of the matrix Pζε(ζ, 0) has negative real part. For ε < 0, each
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eigenvalue of the matrix Pζε(ζ, 0) must have positive real part. Equivalently,
it suffices to have

det Pζε(ζ, 0) > 0, ε trPζε(ζ, 0) < 0.

The proof of this fact contains a pleasant surprise.
The perturbation series for the Poincaré map evaluated along the curve

ε �→ (β(ε), ε) has the form

Pζ(β(ε), ε) = I + εA + ε2B + O(ε3)

where A = Pζε(β(0), 0). In particular, we have used the equality Pζζ(ζ, 0) =
0. The characteristic polynomial of the first order approximation of this
matrix, namely, I + εA, has coefficients that contain terms of second order
in ε. Thus, it appears that second order terms in the perturbation series
are required for computing the eigenvalues to first order. Fortunately, there
is an unexpected cancellation, and the eigenvalues, for ε > 0, are given by

1 + ε
1
2
(
trA ±

√
tr2 A − 4 detA

)
+ O(ε2). (5.48)

Using formula (5.48), it is easy to show that if the eigenvalues of A have
nonzero real parts, then the first order terms of the expansion determine
the stability. If A has an eigenvalue with zero real part, then higher order
terms in the perturbation expansion must be considered (see [172]).

General formulas for the eigenvalues of Pζε(ζ, 0) can be obtained in terms
of certain partial derivatives of M and N . But, such formulas are usually
not useful. A better approach is to use the special properties of the system
under investigation.

Exercise 5.26. Prove the statements following equation (5.48) concerning the
eigenvalues of the matrix Pζ(ζ, ε).

5.3.3 The Forced van der Pol Oscillator
In this subsection we will outline, by formulating a series of exercises, some
applications of the continuation theory (developed so far in this chapter)
to the classic case of the van der Pol oscillator. Also, we mention briefly
some of the additional structures that can be studied using our first order
methods.

Exercise 5.27. Find the (ultra)subharmonics for the periodically forced van
der Pol oscillator

ẍ + ε(x2 − 1)ẋ + x = εa sinΩt.

In particular, for fixed a �= 0, find the regions in (Ω, ε) space near the line ε = 0
where (ultra)subharmonics exist.



5.3 Nonautonomous Perturbations 399

The regions mentioned in Exercise 5.27 are called entrainment domains
or, in some of the electrical engineering literature, they are called synchro-
nization domains. We cannot determine the entire extent of the entrain-
ment domains because our first order theory is only valid for sufficiently
small |ε|. Higher order methods can be used to obtain more information
(see, for example, [161] and [109], and for some classic numerical experi-
ments [117]).

To use the formulas for M and N in display (5.46), let us consider the
first order system in the phase plane given by

ẋ = −y, ẏ = x + ε(−(x2 − 1)y − a sin Ωt).

Also, let us consider curves in the (Ω, ε) parameter space of the form ε �→
(Ω(ε), ε) where

Ω(ε) =
m

n
− k

(m

n

)2
ε + O(ε2),

η(ε) = 2π
n

m
+ kε + O(ε2).

To complete Exercise 5.27, start by looking for harmonics; that is, look
for periodic solutions of the perturbed system with periods close to 2π for
Ω near Ω = 1. Set m = n = 1. To help debug the computations for this
example, first try the case k = 0 where k is the detuning, and show that
there is a harmonic at the point (ζ1, ζ2) provided that ζ2 = 0 and ζ1 is a
root of the equation ζ3

1 −4ζ1 +4a = 0. This corresponds to perturbation in
the vertical direction in the parameter space. Show that the harmonic will
be stable if |ζ1| > 2 and that there is a unique (stable) harmonic in case
a = 1.

There is a very interesting difference between the (1 : 1) resonance and
the (m : n) resonance with m/n �= 1. To glimpse into this structure, con-
sider the (m : n) resonance where m/n �= 1 and use equation (5.47) to
compute the following first order approximation of the associated Poincaré
map:

ζ1 �→ ζ1 + ε
(

− kmζ2 + nπζ1 − nπ

4
ζ1(ζ2

1 + ζ2
2 )

)
,

ζ2 �→ ζ2 + ε
(
kmζ1 + nπζ2 − nπ

4
ζ2(ζ2

1 + ζ2
2 )

)
. (5.49)

This map preserves the origin. Thus, it is natural to study the map in polar
coordinates where it is represented to first order by

r �→ r + εnπr
(
1 − r2

4

)
,

θ �→ θ + εmk. (5.50)

Here the first order formula in the rectangular coordinates goes over to
a formula in polar coordinates that contains higher order terms in ε that
have been deleted. Can we safely ignore these higher order terms?
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For the (1 : 1) resonance with k included as a parameter, a similar first
order computation yields the map

ζ1 �→ ζ1 + ε
(

− kζ2 + πζ1 − aπ − π

4
ζ1(ζ2

1 + ζ2
2 )

)
,

ζ2 �→ ζ2 + ε
(
kζ1 + πζ2 − π

4
ζ2(ζ2

1 + ζ2
2 )

)
. (5.51)

Note that if this map preserves the origin, then a = 0. Thus, polar coor-
dinates are not the natural coordinates for studying this map. Instead, a
useful representation of the map is obtained by changing to the complex
coordinate z = ζ1 + iζ2 where the map is represented in the form

z �→ z + ε
(
(π + ki)z − 1

4
πz2z̄ − aπ

)
. (5.52)

We will that show the dynamics of the map defined in display (5.49) are
quite different from the dynamics of the map in display (5.51).

For the map (5.50), the circle r = 2 is an invariant set and every point
in the plane except the origin is attracted to this circle under iteration. On
the circle, the map gives a rational or an irrational rotation depending on
whether or not k is rational. In other words, an analysis of the dynamics
at this approximation suggests that there is an invariant torus in the phase
space of the differential equation and solutions of the differential equation
that do not start on the torus are attracted at an exponential rate to
this torus in positive time. Roughly speaking, such an invariant torus is
called normally hyperbolic; for the precise definition of normal hyperbolicity
see [85] and [122].

Solutions of the differential equation on the invariant torus may wind
around the torus, as in the case of irrational rotation, or they may be
attracted to a subharmonic on the torus as in the case of rational rotation.
There are general theorems that can be used to show that a normally
hyperbolic torus will persist with the addition of a small perturbation (see,
for example, [85], [106], and [122], and also [39] and [46]). Thus, we see that
there is a second possible type of entrainment. It is possible that solutions
are entrained to the torus when there are no periodic solutions on the torus.
In this case, corresponding to an irrational rotation, every solution on the
torus is dense; that is, every solution on the torus has the entire torus as
its omega limit set.

Exercise 5.28. View the circle as the set {eiθ : θ ∈ R} and define the (linear)
rotation on the circle through angle α as the map eiθ �→ ei(θ+α) for some fixed
k ∈ R. Prove the following classic result of Jacobi: If α is a rational multiple of
π, then every point on the circle is periodic under the rotation map. If α is an
irrational multiple of π, then the orbit of each point on the circle is dense in the
circle. In the irrational case, the solutions are called quasi-periodic.
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For the forced van der Pol oscillator, we cannot determine the quasi-
periodicity of the flow by looking at the first order approximation of the
Poincaré map—the flow on the torus is nonlinear. There are actually three
possibilities. The nonlinear flow can have all its orbits dense, all its orbits
periodic, or it can have isolated periodic solutions. We have to be careful
here because the nonlinear Poincaré map on the invariant torus is not, in
general, a rotation as defined above. Rather, it is likely to be conjugate to
a rotation by a nonlinear change of coordinates.

The Poincaré map will have a stable subharmonic, or at least an isolated
subharmonic, on the invariant torus provided that the bifurcation function
has simple zeros on this torus. We will have more to say about this topic
below.

For the case m/n �= 1, an examination of the map (5.50) shows that
a necessary condition for the existence of subharmonics on the invariant
torus near r = 1 is that k = 0. In the (m : n) entrainment domain in the
(Ω, ε) (frequency-amplitude) parameter space the curves corresponding to
the subharmonics would have to be expressible as series

Ω =
mω

n
−

(m

n

)2( k

2π

)
ω2ε +

∞∑
j=2

Ωjε
j

(see equation (5.37)). But because k = 0, it follows that they are all of
the form Ω = mω/n + O(ε2). Thus, all such curves have the same tangent
line at ε = 0, namely, the line given by Ω = mω/n. The portion of the
entrainment domain near ε = 0 that is filled by such curves is called an
Arnold tongue.

For the map (5.51), there are fixed points corresponding to harmonics
but not necessarily an invariant torus. In case k = 0, there is a fixed point
only if ζ2 = 0 and

ζ3
1 − 4ζ1 + 4a = 0.

In case k �= 0, the computations are more complicated. There are many
different ways to proceed. One effective method is “Gröbner basis reduc-
tion” (see [70]). Without going into the definition of a Gröbner basis for a
polynomial ideal, the reduction method is an algorithm that takes as input
a set of polynomials (with rational coefficients) and produces a new set of
polynomials with the same zero set. The reduced set is in a good normal
form for further study of its zero set. The output depends on the ordering
of the variables. In particular, the Gröbner basis is not unique.

For example, by using the MAPLE V command gbasis with the lexico-
graphic ordering of the variables ζ1 and ζ2, the equations

−kζ2 + πζ1 − aπ − π

4
ζ1

(
ζ2
1 + ζ2

2
)

= 0,

kζ1 + πζ2 − π

4
ζ2

(
ζ2
1 + ζ2

2
)

= 0,
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can be reduced to

4k2ζ1 + 4kπζ2 + aπ2ζ2
2 = 0,

16k3aπ +
(
16k4 + 16k2π2) ζ2 + 8akπ3ζ2

2 + a2π4ζ3
2 = 0. (5.53)

By an inspection of the equations (5.53), it is clear that there are either
one, two, or three fixed points in the Poincaré section. If there is exactly
one solution, then (for sufficiently small ε > 0), either it corresponds to
a stable harmonic that attracts the entire phase space, and, as a result,
there is no invariant torus, or, it corresponds to an unstable harmonic and
there is an invariant torus. The first order approximation of the Poincaré
map restricted to the invariant circle corresponding to this invariant torus
may be conjugate to either a rational or an irrational rotation. In case it is
rational, each point on the invariant circle is periodic. On the other hand,
if it is irrational, then each point has a dense orbit. Are these properties
present in the perturbed Poincaré map?

If there are three harmonics, several different phase portraits are possible,
but generally the Poincaré map has a sink, a source, and a saddle. The
“most likely” possibility in this case is to have the unstable separatrices
of the saddle attracted to the sink. In this case, the separatrices together
with the saddle and the sink form an invariant “circle” that corresponds
to an invariant torus for the flow of the differential equation. We may
ask if this set is a manifold. The answer is not obvious. For example, if
the linearization of the Poincaré map at the sink happens to have complex
eigenvalues, then the separatrices will “roll up” at the sink and the invariant
“circle” will not be smooth. In our case, however, if ε is small, then the
linearization of the Poincaré map is near the identity; and therefore, this
roll up phenomenon does not occur. Does this mean the invariant circle is
smooth?

The case where there is an “invariant torus”—consisting of a saddle, its
unstable manifold, and a sink—is particularly interesting from the point
of view of applications. For example, a trajectory starting near the stable
manifold of the saddle will be “entrained” by the harmonic corresponding
to the saddle on perhaps a very long time scale. But, unless the orbit
stays on the stable manifold, a very unlikely possibility, it will eventually
leave the vicinity of the saddle along the unstable manifold. Ultimately, the
orbit will be entrained by the sink. But, because of the possibility of a long
sojourn time near the saddle, it is often not clear in practice, for example,
in a numerical experiment, when a trajectory has become entrained (phase
locked) to the input frequency with a definite phase. This phenomenon
might be the cause of some difficulties if we wish to control the response of
the oscillator.

Which regions in the (k, a) parameter space correspond to the existence
of three harmonics? Answer: the region of the parameter space where the
cubic polynomial (5.53) has three distinct real roots. To find this region,
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Figure 5.3: Discriminant locus for the polynomial (5.53). The bounded
region corresponds to the existence of three harmonics for the periodically
forced van der Pol equation.

let us first compute the discriminant locus of the polynomial, that is, the
set of points in the parameter space where the cubic polynomial has a
double root (see [29]). Of course, the discriminant locus is the zero set of
the discriminant of the polynomial. Equivalently, the discriminant locus is
given by the set of points in the parameter space where the polynomial and
its first derivative have a simultaneous solution. This set is also the zero
set of the resultant of the polynomial and its first derivative. In our case,
a computation shows that the discriminant locus of the cubic polynomial
in display (5.53) is the zero set of the polynomial

∆(k, a) := 27π6a4 − 16π6a2 − 144π4a2k2 + 64π4k2 + 128π2k4 + 64k6.
(5.54)

The discriminant locus is also the boundary of the region corresponding
to the existence of three real roots. This region is the bounded region
depicted in Figure 5.3.

Exercise 5.29. The discriminant locus corresponds to an invariant curve for
the Hamiltonian system

k̇ = −∂∆
∂a

(k, a), ȧ =
∂∆
∂k

(k, a) (5.55)

with Hamiltonian ∆. Show that the invariant set consists of six trajectories and
five rest points (zeros of the vector field). The four rest points not at the origin
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are all degenerate—the Jacobian matrix at each rest point has zero eigenvalues.
Study the local behavior of the discriminant locus at each of its singular points
to explain the corners in Figure 5.3. For example, show that

k0 = −
√

3
3

π, a0 = −4
9

√
6

is a rest point and that the discriminant locus near this rest point is given by

a − a0 =
√

2
π

(k − k0) ± 2
3

31/4

π3/2 (k − k0)3/2 + O((k − k0)2).

In particular, the tangents to the discriminant locus at the singular point coincide;
that is, the discriminant locus has a cusp at the singular point. To show this you
can just note that the discriminant locus is a quadratic in a2 and solve. A more
complicated but perhaps more instructive way to obtain the same result is to use
the theory of Newton polygons and Puiseux series (see, for example, [29]).

For each parameter value (k, a) in the unbounded region of the plane
bounded by the discriminant locus, the corresponding differential equation
has one subharmonic solution. We can determine the stability of this sub-
harmonic using the formulas given in the preceding section following for-
mula (5.47). In particular, there are curves in the parameter space starting
near each cusp of the discriminant locus that separates the regions corre-
sponding to stable and unstable harmonics. These curves are exactly the
curves in the (k, a) parameter space given by the parameter values where
the following conditions (see formula (5.48)) are met at some fixed point
of the first order linearized Poincaré map: The trace of the linearization of
the O(ε) term of the first order Poincaré map vanishes and its determinant
is positive. We call these the PAH curves in honor of Poincaré, Andronov,
and Hopf.

To determine the PAH curve, note first that the trace of the O(ε) term
of the linearization (5.51) is given by π(2 − zz̄) and use fact if there is a
fixed point, then the O(ε) term of the map (5.52) vanishes. Thus, (k, a) lies
on the PAH curve when the determinant is positive and the following two
equations have a simultaneous solution:

2 − zz̄ = 0,

(π + ki)z − 1
4
πz2z̄ − aπ = 0.

All three conditions are satisfied provided that (k, a) lies on one of the
curves given by

a2π2 =
π2

2
+ 2k2, |k| ≤ π

2
. (5.56)

The portion of the PAH curve in the region where k > 0 and a > 0 is
depicted in Figure 5.4. Note that the PAH curve does not pass through the
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cusp on the discriminant locus; rather, it “stops” on the discriminant locus
at the point (k, a) = (π/2, 1). This suggests there are more bifurcations for
parameter values in the region corresponding to three harmonics—inside
the bounded region cut off by the discriminant locus. This is indeed the
case. A more detailed bifurcation diagram and references to the literature
on these bifurcations can be found in [103, p. 71] where the first order
approximation is obtained by the method of averaging, a topic that will be
covered in Chapter 7.

Exercise 5.30. Compare and contrast our computation of the first order ap-
proximation of the Poincaré map with the first order approximation obtained by
the method of averaging, see Chapter 7 and [103], [233], or [201].

Exercise 5.31. Find the points where the PAH curve intersects the discrimi-
nant locus. Show that the determinant of the linearized Poincaré map vanishes
at a fixed point of the first order Poincaré map exactly when the parameter value
defining the map is on the discriminant locus. Study the bifurcations at the point
(k, a) = (π/2, 1) on the hyperbola (5.56) to account for the end point of the PAH
curve. The set of (k, a) points where the determinant of the O(ε) term of the
linearized Poincaré map vanishes at the fixed point is determined by finding the
parameters (k, a) where the equations

π2 − π2zz̄ +
3
16

π2(zz̄)2 + k2 = 0,

(π + ki)z − 1
4
πz2z̄ − aπ = 0.

have a simultaneous solution for z.

The eigenvalues of the linearized Poincaré map are generally complex
conjugates λ(k, a) and λ̄(k, a); they lie on the unit circle in the complex
plane when (k, a) is on one of the PAH curves. In other words, the sta-
bility of a corresponding harmonic is not determined by the first order
terms of the perturbation series at this point. If we consider a second curve
µ �→ (k(µ), a(µ)) that crosses one of the boundary curves at the parameter
value µ = 0, then we will see that the fixed point of the Poincaré map
changes its stability as we cross from µ < 0 to µ > 0. For example, the
real parts of the eigenvalues of the linearized map may change from neg-
ative to positive values—the stability changes in this case from stable to
unstable. The bifurcation corresponding to this loss of stability is called
Hopf bifurcation. The theory for this bifurcation is quite subtle; it will be
discussed in detail in Chapter 8. But roughly speaking if the parameter
value µ > 0 is sufficiently small, then the Poincaré map has an invariant
circle with “radius” approximately

√
µ and “center” approximately at the

unstable harmonic.
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Figure 5.4: The left panel depicts the PAH curve in the region in the (k, a)
parameter space with k > 0 and a > 0 together with the discriminant locus.
The right panel is a blowup of the figure near the cusp on the discriminant
locus.

Exercise 5.32. Show (numerically) that the Hopf bifurcation occurs as de-
scribed in this section for the forced van der Pol oscillator. See Figure 5.4. For
example, fix k = 2 and ε = .001, then compute phase portraits of the Poincaré
map for several choices of a in the range a = 1.2 to a = 1.1.

Exercise 5.33. Determine the “phase portrait” of the Poincaré map for the
forced van der Pol oscillator near (1 : 1) resonance for the case when the pa-
rameters (k, a) lie on the discriminant locus. In particular, determine the phase
portrait in case (k, a) is a singular point of the discriminant locus. How does the
phase portrait change on a curve of parameter values that passes through the
discriminant locus?

Exercise 5.34. Code a numerical simulation of the Poincaré map for the forced
van der Pol oscillator and verify that the first order analysis of this section predicts
the dynamical behavior of the iterated Poincaré map.

Exercise 5.35. Consider the forced van der Pol oscillator near (1 : 1) resonance
for fixed input amplitude a, for example, a = 3

4 . Determine the value of the
detuning for which the amplitude of the response is maximum.

5.3.4 Regular Period Annulus
In this section we will discuss a continuation theory for periodic solutions
of the periodically perturbed oscillator

u̇ = f(u) + εg(u, t, ε), u ∈ R
2, (5.57)

in case the unperturbed system has a resonant periodic orbit that is con-
tained in a nonisochronous period annulus.

Consider an unperturbed resonant periodic orbit Γ for system (5.57)
that is contained in a period annulus A, and recall that if A is isochronous,
then all of the orbits in A are resonant and the unperturbed displacement
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function ζ �→ δ(ζ, 0), defined as in display (5.41) by

δ(ζ, ε) = u(mη(ε), ζ, ε) − ζ, (5.58)

vanishes identically. If A is not isochronous, then we expect that although
the unperturbed displacement function does vanish on Γ, it does not vanish
on nearby periodic orbits.

What happens when we attempt to apply the implicit function theorem?
For each z ∈ Γ we have δ(z, 0) = 0. If, in addition, the linear transformation
δζ(z, 0) : R

2 → R
2 were invertible, then z would be a continuation point.

But, as demonstrated by the result in display (5.42), this linear transfor-
mation is not invertible. In particular, all vectors tangent to Γ are in its
kernel.

In this section, we will consider the case where the kernel of the deriva-
tive of the displacement function at each point z ∈ Γ is exactly the one-
dimensional tangent space to Γ at z. In other words, we will assume that
Kernel δζ(ζ, 0) = [f(ζ)]. If this condition is met, then Γ, as well as the
corresponding invariant torus for the system

u̇ = f(u), τ̇ = 1,

is called normally nondegenerate.
Before proceeding to the continuation analysis, let us consider a geomet-

rical interpretation of our assumption about the kernel of the derivative
of the displacement function. For this, we do not need to assume that the
periodic orbit Γ is contained in a period annulus. Instead, we may assume
more generally that there is a region R ⊆ R

2 and an ε0 > 0 such that the
displacement function δ : R × (−ε0, ε0) → R

2 is defined. Also, let us as-
sume that there is a curve Σ ⊆ R transverse to Γ—a Poincaré section—such
that the return time map T : Σ × (−ε0, ε0) → R is defined. The following
proposition gives the geometrical conditions we seek.

Proposition 5.36. Suppose Γ is an (m : n) resonant unperturbed periodic
solution of the periodically perturbed oscillator (5.57); T : Σ × (−ε0, ε0) →
R is the return time map defined on a Poincaré section Σ with {v} =
Γ ∩ Σ; and R ⊆ R

2 is a region containing Γ such that for some ε0 > 0 the
displacement δ : R × (−ε0, ε0) → R

2 given in equation (5.58) is defined. If
Γ is contained in a period annulus A ⊆ R such that the differential T∗(v, 0)
of σ �→ T (σ, 0) at σ = v is nonsingular, then Kernel δζ(ζ, 0) = [f(ζ)] and
Range δζ(ζ, 0) = [f(ζ)] for each ζ ∈ Γ. If Γ is a hyperbolic limit cycle,
or if T∗(v, 0) is nonsingular, then Kernel δζ(ζ, 0) = [f(ζ)] for all ζ ∈ Γ.
Moreover, if Σ is orthogonal to Γ at v, then

Range δζ(ζ, 0) = [r1f(ζ) + r2f
⊥(ζ)]
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for each ζ ∈ Γ where, for a and b as in Diliberto’s theorem (Theorem 5.5),

r1 = a(2πn/ω, v) = −
n−1∑
j=0

bj(2π/ω, v)(T∗(ζ, 0)f⊥(ζ)),

r2 = b(2πn/ω, v) − 1 = bn(2π/ω, v) − 1.

Proof. By equation (5.42), we have [f(ζ)] ⊆ Kernel δζ(ζ, 0). Consider the
vector field f⊥ and the solution t �→ u⊥(t, ζ) of the initial value problem

u̇ = f⊥(u), u(0) = ζ.

In other words u⊥(t, ζ) is the flow of f⊥. We have

δζ(ζ, 0)f⊥(ζ) =
d

dt
(u(mη(0), u⊥(t, ζ), 0) − u⊥(t, ζ))

∣∣∣
t=0

= uζ(2πn/ω, ζ, 0)f⊥(ζ) − f⊥(ζ).

Here t �→ uζ(t, ζ, 0) is the principal fundamental matrix at t = 0 for the
variational equation (5.15). Thus, from equation (5.16) and Exercise 5.24
we have

δζ(ζ, 0)f⊥(ζ) =
( n−1∑

j=0

bj(2π/ω, v)
)
a(2π/ω, v)f(ζ)

+(bn(2π/ω, v) − 1)f⊥(ζ). (5.59)

If Γ is contained in a period annulus, then b(2π/ω, v) = 1 and, by equa-
tion (5.19),

a(2π/ω, v) = − |f(ζ)|2
〈σ̇(0), f⊥(ζ)〉T ′(0)

where σ̇(0) is the tangent vector to Σ at ζ determined by the parametriza-
tion of Σ. Thus,

δζ(ζ, 0)f⊥(ζ) = −n
|f(ζ)|2

〈σ̇(0), f⊥(ζ)〉T ′(0)f(ζ) �= 0

and Kernel δζ(ζ, 0) = [f(ζ)]. Also, the range of δζ(ζ, 0) is [f(ζ)].
On the other hand, if Γ is a hyperbolic limit cycle, then b(2π/ω, v) �= 1,

the coefficient of f⊥(ζ) in equation (5.59) does not vanish, and f⊥(ζ) /∈
Kernel δζ(ζ, 0). Hence, in this case we have that Kernel δζ(ζ, 0) = [f(ζ)].
Moreover, if Σ is orthogonal to Γ at ζ, then

δζ(ζ, 0)f⊥(ζ) =
( n−1∑

j=0

bj(2π/ω, v)
)(

− T ′(0)|f(ζ)|2
〈σ̇(0), f⊥(ζ)〉

)
f(ζ)

+ (bn(2π/ω, v) − 1)f⊥(ζ).

�
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We say that a period annulus A is a regular period annulus if the dif-
ferential T∗(ζ, 0) of the return time, defined as in the previous theorem, is
nonsingular at every point of A. Let us note that the differential T∗(ζ, 0) is
nonsingular if and only if the corresponding period function for the period
annulus A has a nonvanishing derivative; that is, the period function is
regular.

Every resonant periodic orbit contained in a regular period annulus is
normally nondegenerate. Also, by Proposition 5.36, if Γ is a resonant pe-
riodic orbit in A and ζ ∈ Γ, then both the kernel and range of the partial
derivative δζ(ζ, 0) are given by [f(ζ)]. In particular, if we restrict the lin-
ear map δζ(ζ, 0) to [f⊥(ζ)], then the map δζ(ζ, 0) : [f⊥(ζ)] → [f(ζ)] is an
isomorphism. We will use these facts in the analysis to follow.

Exercise 5.37. Prove that a linear map on a finite dimensional vector space,
when restricted to a complement of its kernel, is an isomorphism onto its range.
What happens in an infinite dimensional space?

Let us reiterate a basic fact: The partial derivative δζ(ζ, 0) of the dis-
placement function, when viewed as a map on all of R

2, has a nontrivial
kernel. Although this precludes a direct application of the implicit function
theorem to solve the equation δ(ζ, ε) = 0 on R

2 × R, we can use the im-
plicit function theorem to reduce our search for continuation points to the
problem of solving a related equation on a lower dimensional space. This is
accomplished by using an important technique called Lyapunov–Schmidt
reduction. This method is very general. In fact, it works for equations de-
fined on Banach spaces when the linear map playing the role of our deriva-
tive δζ(ζ, 0) is a Fredholm operator. We will give a brief introduction to
these simple but powerful ideas in an abstract setting. As we will demon-
strate when we apply the method to our continuation problem, it is very
fruitful to keep the idea of the method firmly in mind, but it may not be
efficient to adapt all of the abstraction verbatim. Also, on a first reading
and for the applications to be made later in this section, it is sufficient to
consider only finite dimensional real Banach spaces, that is, R

n with the
usual norm.

Let us suppose that B1 and B2 are Banach spaces and L(B1,B2) denotes
the bounded linear maps from B1 to B2. Also, with this notation, let us
recall that a map G : B1 → B2 is C1 if there is a continuous map L : B1 →
L(B1,B2) such that

lim
n→0

‖G(x + h) − G(x) − L(x) · h‖
‖h‖ = 0

for each x ∈ B1. A map A ∈ L(B1,B2) is called Fredholm if it has a finite
dimensional kernel and a closed range with a finite dimensional comple-
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ment. The index of a Fredholm map is defined to be the difference of the
dimensions of its corange and kernel.

Suppose that X and Y are open subsets of the Banach spaces B and
E respectively, and F : X × Y → B, given by (x, y) �→ F (x, y), is a C1

map such that F (0, 0) = 0. Since F is C1, the partial derivative Fx(0, 0)
is a bounded linear map on B. Let us assume in addition that Fx(0, 0) is
Fredholm with index zero.

If B is finite dimensional, as in our application where F is the displace-
ment function and B = R

2, then every linear map is automatically Fred-
holm. Although we will use the hypothesis that our Fredholm map has index
zero to ensure that the final reduced bifurcation function is a map between
finite dimensional spaces of the same dimension, the general Lyapunov–
Schmidt reduction technique does not require the Fredholm map to have
index zero.

Let K denote the kernel of the Fredholm map Fx(0, 0), and let R de-
note its range. There are subspaces KC and RC such that B = K ⊕ KC
and B = R ⊕ RC. The complement RC exists by the Fredholm hypoth-
esis. The existence of a complement KC for the finite dimensional kernel
K in an infinite dimensional Banach space is a consequence of the Hahn–
Banach theorem (see [199, p. 105]). Indeed, choose a basis for the finite
dimensional subspace, apply the Hahn–Banach theorem to extend the cor-
responding dual basis functionals to the entire Banach space, use the ex-
tended functionals to define a projection from the entire space to the finite
dimensional subspace, and construct the desired complement as the range
of the complementary projection.

The complementary subspaces KC and RC are not unique. In fact, in
the applications, the correct choices for these spaces can be an important
issue. On the other hand, there are always complementary linear projections
P : B → R and Q : B → RC corresponding to the direct sum splitting
of B. Also, there is a product neighborhood of the origin in X of the form
U × V where U ⊆ K and V ⊆ KC.

Consider the map H : U×V ×Y → R defined by (u, v, y) �→ PF (u+v, y).
Its partial derivative with respect to v at (0, 0, 0) is given by

PFx(0, 0)
∣∣
KC

: KC → R. (5.60)

The map P is the projection to the range of Fx(0, 0). Thus, PFx(0, 0)
∣∣
KC

=
Fx(0, 0)

∣∣
KC

. Note that in a finite dimensional space the map (5.60) is an
isomorphism. The same result is true in an infinite dimensional space un-
der the assumption that Fx(0, 0) is Fredholm. In effect, the open mapping
theorem (see [199, p. 99]) states that a continuous bijective linear map of
Banach spaces is an isomorphism.

The main idea of the Lyapunov–Schmidt reduction results from the ob-
servation that, by the implicit function theorem applied to the map H,
there are open sets U1 ⊆ U and Y1 ⊆ Y , and a C1 map h : U1 × Y1 → KC,
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with h(0, 0) = 0 such that

PF (u + h(u, y), y) ≡ 0.

The (Lyapunov–Schmidt) reduced function F̃ : U1×Y1 → RC associated
with F is defined by

(u, y) �→ QF (u + h(u, y), y).

Clearly, F̃ (0, 0) = 0. If there is a continuous function y �→ β(y), with
β(y) ∈ U1 such that β(0) = 0 and F̃ (β(y), y) ≡ 0, then

QF (β(y) + h(β(y), y), y) ≡ 0,

PF (β(y) + h(β(y), y), y) ≡ 0.

In particular, since P and Q are projections to complementary subspaces
of B, we must have

F (β(y) + h(β(y), y), y) ≡ 0,

that is, y �→ β(y)+h(β(y), y) is an implicit solution of F (x, y) = 0 for x as
a function of y near (x, y) = (0, 0).

The implicit function theorem cannot be used directly to find u as an im-
plicit function of y for the reduced equation F̃ (u, y) = 0. (If this were possi-
ble, then we would have been able to solve the original equation F (x, y) = 0
by an application of the implicit function theorem.) To prove this fact, let
us consider the partial derivative

F̃u(0, 0) = QFx(0, 0)(I + hu(0, 0)) : K → RC.

Here r := Fx(0, 0)(I + hu(0, 0))u ∈ R, so Qr = 0. Thus, F̃u(0, 0) is not
invertible; it is in fact the zero operator.

Although the implicit function theorem does not apply directly to the
reduced function, we may be able to apply it after a further reduction. For
example, in the applications to follow, we will have a situation where

F̃ (u, 0) ≡ 0. (5.61)

In this case, under the assumption that F ∈ C2, let us apply Taylor’s the-
orem (Theorem 1.237) to obtain the representation F̃ (u, y) = F̃y(u, 0)y +
G(u, y)y where (u, y) �→ G(u, y) is the C1 function given by

G(u, y) =
∫ 1

0
(F̃y(u, ty) − F̃y(u, y)) dt.

Thus, we also have

F̃ (u, y) = (F̃y(u, 0) + G(u, y))y
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where G(u, 0) = 0 and

Gy(u, 0) =
∫ 1

0
(tF̃yy(u, 0) − F̃yy(u, 0)) dt = −1

2
F̃yy(u, 0).

In particular, let us note that the simple zeros of the reduced bifurcation
function B : U1 → RC defined by

B(u) = F̃y(u, 0)

are the same as the simple zeros of the function u �→ F̃y(u, 0) + G(u, 0).
Thus, by another application of the implicit function theorem, it follows
that if the reduced bifurcation function B has a simple zero, then the
equation

F̃y(u, 0) + G(u, y) = 0

has an implicit solution. Therefore, the simple zeros of the reduced bifur-
cation function B are continuation points.

Let us now apply the Lyapunov–Schmidt reduction to our continua-
tion problem in case the resonant periodic orbit Γ is contained in a reg-
ular period annulus. For definiteness, let Γm/n := Γ denote the unper-
turbed periodic solution that is in (m : n) resonance with the periodic
perturbation, and recall from Proposition 5.36 that Kernel δζ(ζ, 0) = [f(ζ)]
and Range δζ(ζ, 0) = [f(ζ)]. According to the Lyapunov–Schmidt reduc-
tion, we should choose coordinates and projections relative to the split-
ting R

2 = [f(ζ)] ⊕ [f⊥(ζ)]. But, in keeping with the philosophy that the
Lyapunov–Schmidt reduction is merely a guide to the analysis, we will con-
sider instead a coordinate system that has the required splitting property
“infinitesimally;” that is, we will choose coordinates tangent to the sum-
mands of the splitting rather than coordinates on the subspaces themselves.

Let ϕt denote the flow of the system u̇ = f(u) and let ψt denote the flow
of the system u̇ = f⊥(u). Of course, ϕt(ζ) = u(t, ζ, 0). Define

Υ(ρ, φ) = ϕφψρ(v),

where v ∈ Γm/n is viewed as arbitrary but fixed. Also, the subscripts on ϕ
and ψ denote the temporal parameter in the respective flows, not partial
derivatives. This should cause no confusion if the context is taken into
account.

The (ρ, φ) coordinates are defined in some annulus containing Γm/n.
They have the property that for ρ fixed, φ �→ Υ(ρ, φ) is tangent to f ,
whereas for φ fixed at φ = 0, the map ρ �→ Υ(ρ, φ) is tangent to f⊥. More
precisely, we have that

Υρ(ρ, φ) = DΥ(ρ, φ)
∂

∂ρ
= Dϕφ(ψρ(v))f⊥(ψρ(v)),

Υφ(ρ, φ) = DΥ(ρ, φ)
∂

∂φ
= f(Υ(ρ, φ))
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where ∂/∂ρ (respectively ∂/∂φ) denotes the unit vector field tangent to the
ρ-axis (respectively the φ-axis) of the coordinate plane. Also, in the new
(local) coordinates, the displacement is given by

∆(ρ, φ, ε) := δ(Υ(ρ, φ), ε) (5.62)

and we have that
∆(0, φ, 0) = δ(ϕφ(v), 0) ≡ 0.

The first step of the Lyapunov–Schmidt reduction method is to find an
implicit solution of the map H given by H(ρ, φ, ε) := P · ∆(ρ, φ, ε) where
P := P(φ) is a projection onto the range [f(ϕφ(v))] of the linear map
δζ(ϕφ(v), 0). For definiteness, let 〈 , 〉 denote the usual inner product on R

2

and define H by
(ρ, φ, ε) �→ 〈∆(ρ, φ, ε), f(ϕφ(v))〉.

The partial derivative of H with respect to ρ—the direction complemen-
tary to the kernel—evaluated at (0, φ, 0) is given by 〈∆ρ(0, φ, 0), f(ϕφ(v))〉.
Using Diliberto’s theorem, Proposition 5.36, and equation (5.59), we have

∆ρ(0, φ, 0) = δζ(ϕφ(v), 0)DΥ(0, φ)
∂

∂ρ

= δζ(ϕφ(v), 0)Dϕφ(v)f⊥(v)

= δζ(ϕφ(v), 0)
(
a(φ)f(ϕφ(v)) + b(φ)f⊥(ϕφ(v))

)
= b(φ)δζ(ϕφ(v), 0)f⊥(ϕφ(v))

= b(φ)a(2πn/ω)f(ϕφ(v)). (5.63)

Thus,

Hρ(0, φ, 0) = 〈∆ρ(0, φ, 0), f(ϕφ(v))〉 = b(φ)a(2πn/ω)|f(ϕφ(v))|2 �= 0,

and we can apply (as expected) the implicit function theorem to obtain an
implicit function (φ, ε) �→ h(φ, ε) such that h(φ, 0) = 0 and

〈∆(h(φ, ε), φ, ε), f(ϕφ(v))〉 ≡ 0.

Also, because ∆(0, φ, 0) ≡ 0 and the implicit solution produced by an appli-
cation of the implicit function theorem is unique, we have that h(φ, 0) ≡ 0.

The second step of the Lyapunov–Schmidt reduction is to consider the
zeros of the reduced displacement function ∆̃ given by

(φ, ε) �→ Q(φ)(∆(h(φ, ε), φ, ε)) = 〈∆(h(φ, ε), φ, ε), f⊥(ϕφ(v))〉

where Q(φ) is the indicated linear projection onto the complement of the
range of the partial derivative δζ(ϕφ(v), 0). Here, as mentioned previously,
we can make a further reduction. In fact, because

〈∆(h(φ, 0), φ, 0), f⊥(ϕφ(v))〉 ≡ 0,
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it follows that
∆̃(φ, ε) = ε(∆̃ε(φ, 0) + O(ε)).

Let us define the bifurcation function B : R → R by

B(φ) := ∆̃ε(φ, 0).

By the general remarks following equation (5.61), the simple zeros of B are
(ultra)subharmonic continuation points. This ends the reduction phase of
our analysis.

We will identify the bifurcation function B geometrically and analyti-
cally. As we will see in a moment,

B(φ) = ∆̃ε(φ, 0) = Q(φ)Pε(ϕφ(v), 0) (5.64)

where P is the Poincaré map. Also, let us note that if we take Q to be an
arbitrary projection to the complement of the range of δζ(ϕφ(v), 0), then
we will obtain an equivalent bifurcation function, that is, a bifurcation
function with the same simple zeros. In any case, the bifurcation function
is the projection onto the complement of the range of the partial derivative
of the Poincaré map with respect to the bifurcation parameter.

To determine an analytic expression for the bifurcation function and to
show that the representation (5.64) is valid, start with the definitions of
B and ∆̃, and compute the derivative of ε∆̃(φ, ε) at ε = 0 to obtain the
formula

B(φ) = 〈∆ρ(h(φ, 0), φ, 0)hε(φ, 0) + ∆ε(h(φ, 0), φ, 0), f⊥(ϕφ(v))〉
= 〈∆ρ(0, φ, 0)hε(φ, 0) + ∆ε(0, φ, 0), f⊥(ϕφ(v))〉.

By using equation (5.63) and the identity h(φ, 0) ≡ 0, it follows that

B(φ) = 〈∆ε(0, φ, 0), f⊥(ϕφ(v))〉.

Here, ∆ρ(0, φ, 0)hε(φ, 0) is viewed as the vector ∆ρ(0, φ, 0) multiplied by
the scalar hε(φ, 0) . Strictly speaking, ∆ρ(0, φ, 0) is a linear transformation
R → R

2 represented by a 2 × 1 matrix that we identify with a vector in
R

2 and hε(φ, 0) is a linear transformation R → R that we identify with a
scalar.

To find a formula for the partial derivative ∆ε(0, φ, 0), first use the defi-
nition δ(ζ, ε) = u(mη(ε), ζ, ε) − ζ and compute the partial derivative with
respect to ε to obtain the equation

∆ε(0, φ, 0) = mη′(0)f(ϕφ(v)) + uε(2πn/ω, ϕφ(v), 0). (5.65)

Then, by equation (5.33), we have

uε(2πn/ω, ζ, 0) = (N + aM)f(ζ) + bMf⊥(ζ), (5.66)
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Figure 5.5: The top left panel depicts a resonant periodic orbit Γ viewed
as a manifold of fixed points for the Poincaré map. The “twist” in the
tangential directions along Γ due to the changing periods of the periodic
orbits in the period annulus and the normal “push” directions due to the
perturbations as detected by the Melnikov function are also depicted. In
this illustration, the Melnikov function has two zeros. The top right panel
shows the local directions of twist and push near the continuation points
corresponding to these zeros. The bottom two panels depict the perturbed
fixed points of the Poincaré map (subharmonics of the perturbed differential
equation) and their stability types as would be expected by inspection of
the directions of twist and push. The local phase portraits of the perturbed
periodic orbits are seen to be saddles and rotation points that alternate
in the direction of the unperturbed resonant orbit. The global depiction
of the stable and unstable manifolds of the saddle point only illustrates
one of many possibilities. Also, the rotation point is depicted as a center,
but of course it can be a source or sink, depending on the nature of the
perturbation.
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and therefore
B(φ) = b(2πn/ω)|f(ϕφ(v))|2M(φ).

Thus, φ is an (ultra)subharmonic continuation point if and only if φ is a
simple zero of the subharmonic Melnikov function

M(φ) :=
∫ 2πn/ω

0
e− ∫ t

0 div f(ϕs+φ(v)) dsf(ϕt+φ(v)) ∧ g(ϕt+φ(v), t, 0) dt.

(5.67)

These arguments are formalized in the following theorem.

Theorem 5.38. If Γ is an (m : n) resonant unperturbed periodic solu-
tion of the differential equation (5.57) contained in a regular period annu-
lus, then the simple zeros of the bifurcation function φ �→ M(φ) defined
by (5.67) are the (ultra)subharmonic continuation points.

What is the real meaning of the Melnikov function? One answer to this
question is provided by the identification given by equation (5.64). The
partial derivative of the Poincaré map in the direction ε determines the
infinitesimal direction of drift for orbits of the perturbed Poincaré map
near the point ϕφ(v). When the magnitude of the infinitesimal drift is zero,
then we expect a periodic orbit. The precise condition for this is given in
Theorem 5.38.

The stability type of the perturbed orbit is also determined by an ex-
amination of the direction of drift determined by the Melnikov function.
In fact, the resonant periodic orbit is fixed by the unperturbed Poincaré
map. By the assumption that the resonant orbit is “normally nondegener-
ate,” the drift of the unperturbed Poincaré map is in opposite directions
on opposite sides of the resonant orbit. The sign of the Melnikov function
determines the drift in the direction of the complement to the range of the
infinitesimal displacement, a direction that is known to be transverse to
the unperturbed orbit. A plot of these directions at a continuable point
suggests the stability type as seen in Figure 5.5.

Exercise 5.39. Use the Lyapunov–Schmidt reduction to determine conditions
on the triplet of functions (g1, g2, g3) so that the system of equations

1 − x2 − y2 − z2 + εg1(x, y, z) = 0,

1 − x2 − y2 − z2 + εg2(x, y, z) = 0,

xyz + εg3(x, y, z) = 0,

has solutions for small ε �= 0. What (additional) condition assures that roots
found in this way are simple?

Exercise 5.40. Consider the forced rotor given by

θ̈ + ε sin θ = ε sin t.
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The associated first order system with φ̇ = v can be considered as a differential
equation on the cylinder R × T, where T denotes the unit circle. In this interpre-
tation, all orbits of the unperturbed system are periodic. Moreover, the periodic
orbit Γ corresponding to v = 0 is (1 : 1) resonant. Show that Γ is normally non-
degenerate, and determine the continuation points on Γ. What can you say about
the (m : n) resonant periodic orbits? Change the time scale in the differential
equation to slow time τ =

√
εt. What is the meaning of the continuable peri-

odic solutions relative to the transformed differential equation? The slow time
equation is a rapidly forced pendulum. Does it have subharmonics?

Exercise 5.41. Suppose that F : R
3 × R → R

3 is a function given in the form

F (u, ε) = g(u) + εh(u)

where g, h : R
3 → R

3 are smooth vector functions with

g(u) = (g1(u), g2(u), g3(u)), h(u) = (h1(u), h2(u), h3(u)).

Prove the following theorem: If the slot functions g1 and g2 are identical and
v ∈ R

3 is such that g(v) = 0 and the vectors grad g1(v) and grad g3(v) are linearly
independent, then there is a curve s �→ γ(s) in R

3 such that γ(0) = 0, γ̇(s) �= 0,
and F (γ(s), 0) ≡ 0. If such a curve exists and s = 0 is a simple zero of the scalar
function given by s �→ h2(γ(s)) − h1(γ(s)), then there is a curve ε �→ β(ε) is R

3

such that β(0) = v and F (β(ε), ε) ≡ 0. Moreover, for each sufficiently small ε �= 0,
the point β(ε) is a simple zero of the function u �→ F (u, ε) (see [49]).

Exercise 5.42. Prove that the roots of a (monic) polynomial depend continu-
ously on its coefficients.

5.3.5 Limit Cycles–Entrainment–Resonance Zones
In Section 5.3.4 we considered the continuation of (ultra)subharmonics of
the differential equation

u̇ = f(u) + εg(u, t, ε), u ∈ R
2 (5.68)

from a resonant unperturbed periodic orbit contained in a period annulus.
Here, we will consider continuation of (ultra)subharmonics from a resonant
unperturbed limit cycle.

If we view the differential equation (5.68) as an autonomous first order
system on the phase cylinder R

2 × T, then the unperturbed differential
equation has an invariant torus Γ×T. For the theory in this section, it is not
necessary to determine the fate of the invariant torus after perturbation. In
fact, if Γ is a hyperbolic limit cycle, then the corresponding invariant torus
is a normally hyperbolic invariant manifold. Roughly speaking, an invariant
manifold is attracting and normally hyperbolic if the linearized flow for each
orbit on the manifold contracts normal vectors at an exponential rate, and
if the slowest such rate is faster than the fastest contraction rate for a vector
that is tangent to the manifold. There is a similar definition if the manifold
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is repelling or if it has both attracting and repelling normal directions. In
our case, if the limit cycle Γ is attracting, then its normal contraction rate
is exponential and its tangential contraction rate is zero. Moreover, the
invariant unperturbed torus corresponding to Γ inherits this behavior (see
Exercise 5.44). Thus, this invariant torus is normally hyperbolic. In this
case, by a powerful, important theorem (see [85] and [122]), the normally
hyperbolic torus persists after perturbation. The continuation theory in
this section describes the flow on this perturbed invariant torus. Typically,
there is an even number of (ultra)subharmonics that alternate in stability
around the perturbed torus.

By the above remarks, if our unperturbed system has a resonant, at-
tracting hyperbolic limit cycle, then after perturbation there is an attract-
ing invariant torus and nearby perturbed orbits are attracted to stable
(ultra)subharmonic orbits on this torus. In the engineering literature this
phenomenon is called entrainment: As nearby orbits are attracted to the
perturbed invariant torus, their quasi-periods approach the periods of the
(ultra)subharmonics on the perturbed torus. In particular, the asymptotic
periods are entrained to a multiple of the period of the input perturba-
tion. For a perturbation of small amplitude, this entrained period is close
to the resonant period mη(0) as in equation (5.38). We will determine a
bifurcation function whose simple zeros are the continuation points of these
(ultra)subharmonics.

For the remainder of this section let us consider the periodically per-
turbed oscillator (5.68) under the following assumptions:
(i) There is an unperturbed periodic orbit Γ in (m : n) resonance with

the periodic perturbation as in the equation (5.38).
(ii) There is a region R ⊆ R

2 with Γ ⊂ R such that the displacement
δ : R × (−ε0, ε0) → R

2 is defined for some ε0 > 0.
(iii) As in Proposition 5.36, the periodic orbit Γ is a hyperbolic limit cycle,

or alternatively, the differential of the return time map σ �→ T (σ, 0)
at v = Γ∩Σ defined on some curve Σ transverse to Γ, is nonsingular.

Let us also note that by the third hypothesis and Proposition 5.36, we have
that Kernel δζ(ζ, 0) = [f(ζ)] for ζ ∈ Γ, and therefore the invariant torus
Γ × T is normally nondegenerate.

The analysis required to obtain the bifurcation function in case the un-
perturbed resonant periodic orbit is a limit cycle is analogous to the analysis
carried out in the last section for the case of a regular period annulus. In
particular, using the same notation as before, we can apply the Lyapunov–
Schmidt reduction to the displacement function represented in the same
(ρ, φ)-coordinates.

By the abstract theory of the Lyapunov–Schmidt reduction, ρ can be
defined implicitly as a function of (φ, ε) when it is projected onto the range
of the infinitesimal displacement, that is, the partial derivative of the dis-
placement with respect to the space variable. It is easy and instructive to
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verify this directly. In fact, with respect to the (ρ, φ)-coordinates, the sec-
tion Σ as in Proposition 5.36 is just an integral curve of f⊥, and hence it
is orthogonal to Γ. Thus, let us first consider the map

(ρ, φ, ε) �→ 〈∆(ρ, φ, ε), r1f(ϕφ(v)) + r2f
⊥(ϕφ(v))〉

where r1 and r2 are defined in Proposition 5.36 and ∆ is the local co-
ordinate representation defined in display (5.62) of the displacement. By
equation (5.63) and this proposition, its differential with respect to ρ at
(ρ, ε) = (0, 0) is given by

〈∆ρ(0, φ, 0), r1f(ϕφ(v)) + r2f
⊥(ϕφ(v))〉

= 〈δζ(ϕφ(v), 0)DΥ(0, φ)∂/∂ρ, r1f(ϕφ(v)) + r2f
⊥(ϕφ(v))〉

= 〈b(φ)δζ(ϕφ(v), 0)f⊥(ϕφ(v)), r1f(ϕφ(v)) + r2f
⊥(ϕφ(v))〉

= b(φ)〈r1f(ϕφ(v)) + r2f
⊥(ϕφ(v)), r1f(ϕφ(v)) + r2f

⊥(ϕφ(v))〉
= b(φ)|f(ϕφ(v))|2(r2

1 + r2
2).

Also, let us note that during the course of the last computation we have
proved that

∆ρ(0, φ, 0) = b(φ)(r1f(ϕφ(v)) + r2f
⊥(ϕφ(v))). (5.69)

By the assumptions for this section, we have r2
1 + r2

2 �= 0, and therefore
∆ρ(0, φ, 0) �= 0. Thus, by an application of the implicit function theorem,
there is a function (φ, ε) �→ h(φ, ε) such that h(φ, 0) ≡ 0 and

〈∆(h(φ, ε), φ, ε), r1f(ϕφ(v)) + r2f
⊥(ϕφ(v))〉 ≡ 0.

Recall that Γ × T is normally nondegenerate if

Kernel δζ(ϕφ(v), 0) = [f(φφ(v))].

Since this kernel is a one-dimensional subspace of the two-dimensional tan-
gent space of the Poincaré section, the range of the infinitesimal displace-
ment must also be one-dimensional, and therefore r2

1 + r2
2 �= 0. Of course,

this inequality also holds if either Γ is hyperbolic or the differential of the
return time is nonzero.

The reduced displacement function is just the projection of the dis-
placement onto a complement for the range of the infinitesimal displace-
ment. For definiteness, let us consider the reduced displacement function
(φ, ε) �→ ∆̃(φ, ε) given by

∆̃(φ, ε) = 〈∆(h(φ, ε), φ, ε), −r2f(ϕφ(v)) + r1f
⊥(ϕφ(v))〉.

Since ∆(h(φ, 0), φ, 0) ≡ 0, we have ∆̃(φ, 0) ≡ 0 and

∆̃(φ, ε) = ε(∆̃ε(φ, 0) + O(ε)).
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If the bifurcation function B : R → R is defined by B(φ) := ∆̃ε(φ, 0), then
we have, as usual, the following proposition: The simple zeros of B are the
(ultra)subharmonic continuation points. This ends the reduction step.

The identification of the bifurcation function B is accomplished with the
aid of a simple computation. Indeed, using the definition of B, we have
that

B(φ) = 〈∆ρ(h(φ, 0), φ, 0)hε(φ, 0) + ∆ε(h(φ, 0), φ, 0),
− r2f(ϕφ(v)) + r1f

⊥(ϕφ(v))〉. (5.70)

To simplify this expression, apply identity (5.69) to obtain the representa-
tion

B(φ) = 〈∆ε(h(φ, 0), φ, 0), −r2f(ϕφ(v)) + r1f
⊥(ϕφ(v))〉.

Also, let us note that, as in the last section, B(φ) = Q(φ)Pε(ϕφ(v), 0).
Using the equations (5.65) and (5.37), substitute the solution (5.33) of

the nonhomogeneous variational equation for ∆ε to obtain the formula

B(φ) = 〈mη′(0)f(ϕφ(v)) +
(
N (φ) + a(2πn/ω)M(φ)

)
f(ϕφ(v))

+ b(2πn/ω)M(φ)f⊥(ϕφ(v)),−r2f(ϕφ(v)) + r1f
⊥(ϕφ(v))〉

where, by Proposition 5.36,

r1 = a(2πn/ω, ϕφ(v)), r2 = b(2πn/ω, ϕφ(v)) − 1.

Hence, the bifurcation function is given by

B(φ) =
(
(1 − b(2πn/ω, ϕφ(v)))(mk + N (φ))

+ a(2πn/ω, ϕφ(v))M(φ)
)
|f(ϕφ(v))|2.

Define the subharmonic bifurcation function by

C(φ) := (1 − b(2πn/ω, ϕφ(v)))(mk + N (φ)) + a(2πn/ω, ϕφ(v))M(φ)
(5.71)

where

b(t, ϕφ(v)) =
|f(v)|2

|f(ϕt+φ(v))|2 e
∫ t
0 div f(ϕs+φ(v)) ds,

a(t, ϕφ(v)) =
∫ t

0

(
2κ(s, ϕφ(v))|f(ϕs+φ(v))|

− curl f(ϕs+φ(v))
)
b(s, ϕφ(v)) ds,

b(2πn/ω, ϕφ(v)) = bn(2π/ω, ϕφ(v)) = (e
∫
Γ div f )n,

a(2πn/ω, ϕφ(v)) =
( n−1∑

j=0

bj(2π/ω, ϕφ(v))
)

×
∫ 2π/ω

0

(
2κ(t, ϕφ(v))|f(ϕt+φ(v))|

− curl f(ϕt+φ(v))
)
b(t, ϕφ(v)) dt;
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and

M(φ) =
∫ 2πn/ω

0

1
b(t, φ)|f(ϕt+φ(v))|2 f(ϕt+φ(v)) ∧ g(ϕt+φ(v), t, 0) dt,

N (φ) =
∫ 2πn/ω

0

1
|f(ϕt+φ(v))|2 〈g(ϕt+φ(v), t, 0), f(ϕt+φ(v))〉 dt

−
∫ 2πn/ω

0

a(t, φ)
b(t, φ)|f(ϕt+φ(v))|2 f(ϕt+φ(v)) ∧ g(ϕt+φ(v), t, 0) dt.

Remark 1. The function φ �→ b(2πn/ω, ϕφ(v)) is constant, but the function
φ �→ a(2πn/ω, ϕφ(v)) may not be constant.

Theorem 5.43. If Γ is an (m : n) resonant unperturbed periodic solution
of the periodically perturbed oscillator (5.68) such that Γ× T is a normally
nondegenerate unperturbed invariant torus for the system (5.39), then the
simple zeros of the subharmonic bifurcation function φ �→ C(φ) are (ul-
tra)subharmonic continuation points.

By inspection of the formula for the subharmonic bifurcation function
φ �→ C(φ), let us note that this function is periodic with period 2π/ω, the
period of the resonant limit cycle Γ. This simple observation leads to an
important application of Theorem 5.43, at least in the case where Γ is hy-
perbolic. In fact, the theorem provides a partial answer to the following
question: What are the regions in the (η, ε) parameter space correspond-
ing to the existence of (m : n) (ultra)subharmonics of the system (5.68)?
For this application it is traditional to view these regions in frequency-
amplitude coordinates instead of period-amplitude coordinates. Thus, let us
define Ω = 2π/η. The subset Dm/n of all (Ω, ε) in the parameter space such
that the corresponding system (5.68) has an (m : n) (ultra)subharmonic is
called the (m : n) entrainment domain. In effect, relative to the geometric
interpretation provided by the system (5.39), if (Ω, ε) is in Dm/n, then there
is a solution of the corresponding system on the perturbed invariant torus
that wraps n times in the direction of φ, the parameter on Γ, and m times
in the direction of the “time” given by τ in system (5.39).

Theorem 5.43 only applies for ε sufficiently small. Thus, it cannot provide
an answer to the general question posed above. Nonetheless, this theorem
does give valuable insight into the geometry of entrainment domains near
ε = 0. To see why this is so, note first that the frequency, in terms of
equation (5.37), is given by

Ω =
m

n
ω − km2

2πn2 ω2ε + O(ε2), (5.72)

and the (ultra)subharmonics correspond to the simple zeros of the subhar-
monic bifurcation function C. Thus, using the definition of C we expect
(ultra)subharmonics to exist whenever the detuning parameter k satisfies
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the equation

(1 − b(2πn/ω, ϕφ(v)))mk = −C(φ) (5.73)

for some φ ∈ R, where the new function C is defined by

C(φ) = (1 − b(2πn/ω, ϕφ(v)))N (φ) + a(2πn/ω, ϕφ(v))M(φ).

The existence of solutions for equation (5.73) depends on the maximum
and minimum values of the function C on the interval 0 ≤ φ < 2π/ω.
Let us denote these values by Cmin and Cmax. Also, let us assume that
the unperturbed resonant torus is attracting, that is, b(2πn/ω, ϕφ(v)) < 1.
Under these assumptions, we have the following result: If

Cmin < (b − 1)mk < Cmax,

then (m : n) (ultra)subharmonics exist for sufficiently small |ε|. In other
words, from equation (5.72), the lines in the frequency-amplitude space
given by

L1 := {(Ω, ε) : Ω =
m

n
ω +

Cmin

(1 − b)
mω2

2πn2 ε},

L2 := {(Ω, ε) : Ω =
m

n
ω +

Cmax

(1 − b)
mω2

2πn2 ε} (5.74)

are the tangent lines to the (m : n) entrainment domain at ε = 0. The
shape of an entrainment domain (see, for example, Figure 5.6) suggested
to Vladimir Arnold the shape of a tongue. Thus, entrainment domains are
often referred to as Arnold tongues. They are also called resonance zones
or resonance horns.

If C(φ) ≡ 0, then the tangents L1 and L2 computed above coincide. In
this case the tongue has vertical tangents provided that it extends all the
way to the ε-axis.

If C has a simple zero, then the corresponding tongue is “open.” Also,
in the (Ω, ε)-coordinates the left boundary of the tongue corresponds to
the φ coordinate on Γ giving the minimum value of C, while the right
boundary corresponds to the maximum value of C. Thus, we see how the
phase of the entrained solution shifts as the detuning parameter is changed
so that (1−b(2πn/ω))mk passes from the minimum to the maximum value
of C. Finally, if a boundary is crossed as the detuning k is varied, say the
boundary corresponding to the minimum of C, then it is clear that for k
sufficiently small there are no (ultra)subharmonics, for k at the minimum
of C there is a bifurcation point, and as k increases from this value, two
branches of subharmonics bifurcate. This scenario is very common (generic,
in fact) and is called a saddle-node bifurcation. It will be studied in detail
in Chapter 8.
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ε

Ω = 1
Ω

L+L−

D1/1

Figure 5.6: A schematic depiction of the (1 : 1) entrainment domain D1/1
and its tangent lines L± := {(Ω, ε) : ε = ±2 (Ω − 1)} at (Ω, ε) = (1, 0) for
the system (5.75).

Let us consider the family of differential equations

ẋ = −y + x(1 − x2 − y2),
ẏ = x + y(1 − x2 − y2) + ε cos(Ωt) (5.75)

to illustrate some typical computations that are used to approximate the
boundaries of entrainment domains (see [37]).

The unperturbed member of the family (5.75) has the unit circle as an
attracting hyperbolic limit cycle with the corresponding solution starting
at (x, y) = (cos θ, sin θ) given by

x(t) = cos(t + θ), y(t) = sin(t + θ).

If Ω(ε) := m/n + Ω1ε, then the period of the forcing function is

2π

Ω(ε)
=

2πn

m
− 2π

( n

m

)2
Ω1ε + O(ε2).

Also, for this system a ≡ 0, and therefore

C(θ) = (1 − b(2πn))mk + (1 − b(2πn))N (θ, 2πn)

=
(
1 − e−4πn

)
mk +

(
1 − e−4πn

) ∫ 2πn

0
cos(t + θ) cos(Ω(0)t) dt.
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Moreover, we have that

C(θ) =
(
1 − e−4πn

) ∫ 2πn

0
cos(t + θ) cos(

m

n
t) dt

=
(
1 − e−4πn

)
×{

πn cos θ, m
n = 1,

n2

m2−n2

(
sin θ + m+n

2n sin(2πm − θ) + m−n
2n sin(2πm + θ)

)
, m

n �= 1

=

{(
1 − e−4πn

)
πn cos θ, m = n,

0, m �= n.

Thus, for m = n; that is, for the (1 : 1) resonance, the tangents of the
entrainment domain at the resonant point (Ω, ε) = (1, 0) are

ε = ±2 (Ω − 1) ,

whereas, for the case m �= n, the tangents have infinite slope.
The phase shift mentioned above is also easy to see in this example. The

phase angle is θ. Also, if we use the equality m = n and divide by a common
factor, then the equation

k + π cos θ = 0

has the same roots as the zeros of the subharmonic bifurcation function. In
particular, the detuning parameter k simply serves to translate the graph of
the function θ �→ π cos θ in the vertical direction. Thus, at the left boundary
of the tongue, k = π and the phase of the entrained solution will be near
θ = π, whereas at the right hand boundary we have k = −π and the phase
will be near θ = 0.

Exercise 5.44. Suppose that Γ is a hyperbolic limit cycle of the planar system
u̇ = f(u). Show that the linearized flow on the limit cycle attracts or repels
normal vectors on the limit cycle at an exponential rate. Hint: The limit cycle
has a characteristic multiplier that is not unity. Alternatively use the function b
defined in Diliberto’s theorem. Also, show that normal vectors on the invariant
torus Γ × T for the system

u̇ = f(u), ψ̇ = 1

on the phase cylinder where ψ is an angular variable are attracted exponentially,
whereas tangent vectors have contraction rate zero.

Exercise 5.45. The theory of this chapter does not apply directly to determine
the subharmonic solutions of the system

ẋ =y − x(1 − x2 − y2)2 − ε cos t,

ẏ = − x − y(1 − x2 − y2)2 + ε sin t.

Why? Develop an extension of the continuation theory to cover this case and use
your extension to determine the subharmonics (see [35]).
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Mercury

Perihelion

Sun

Figure 5.7: The point of closest approach to the Sun moves after each orbit
in the direction of the revolution of Mercury. (The orbit of Mercury is
nearly circular. The figure is not drawn to scale.)

5.3.6 Lindstedt Series and the Perihelion of Mercury
We have discussed in detail how to prove the existence of periodic solutions
of nonlinear differential equations by continuation. In this section we will
consider a procedure invented by Anders Lindstedt in 1882 that can be used
to find useful series approximations for these periodic solutions. Lindstedt’s
method will be applied to the problem of the precession of the perihelion of
Mercury—the most famous verification of the general theory of relativity—
and in the next section it will used to determine the widths of entrainment
domains for a forced van der Pol oscillator. The limitations of Lindstedt’s
method will also be briefly discussed.

Let us begin with the problem of the perihelion of Mercury. If a Cartesian
coordinate system is fixed at the Sun, then the osculating ellipse traced
out by the motion of Mercury is observed to precess. This means that
the perihelion of Mercury—the point of closest approach to the Sun—
changes after each revolution, moving in the direction of the motion of
the planet (see Figure 5.7). In fact, the point of perihelion is observed to
advance by approximately 43 seconds of arc per century. No satisfactory
explanation of this phenomenon was known until after the introduction of
the general theory of relativity by Albert Einstein. In particular, in 1915
Einstein found that his theory indeed predicts a precession of 43 seconds
of arc per century—a stunning confirmation of his theory (see [214, Part
I]). Shortly thereafter, Karl Schwarzschild (1916) found a solution of the
gravitational field equations for a circularly symmetric body—the Sun—
and he gave a rigorous derivation of the same relativistic correction to the
Newtonian solution for the orbit of Mercury (see, for example, [231, p. 247]
for more history).
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While the derivation of Schwarzschild’s solution of the perihelion prob-
lem from the general theory of relativity is beyond the scope of this book
(see [138], [214], or [231] for readable accounts), it turns out that the recip-
rocal ρ of the distance r from the center of the Sun to Mercury, as Mercury
moves on a geodesic with respect to the space-time metric produced by the
Sun, is closely approximated by a solution of the differential equation

d2ρ

dφ2 = γ − ρ + δρ2 (5.76)

where

γ :=
G0M(1 − G0(m+M)

ac2 )
G0(m + M)a(1 − e2)

, δ :=
3G0M

c2 , (5.77)

M is the mass of the Sun, m is the mass of Mercury, G0 is the Newtonian
gravitational constant, a is the semi-major axis of the elliptical orbit of
Mercury, e is the eccentricity of the ellipse, and c is the speed of light
(see [138] and [231]). We will predict the precession of the perihelion of
Mercury from the differential equation (5.76).

Exercise 5.46. The constant γ in display (5.77) is usually given (see [231]) in
the form

γ :=
c2b2

G0M

where b := r2dθ/ds and s is the proper time along the orbit of Mercury. Show that
this formula agrees with the definition of γ in display (5.77). Hint: In relativity,

ds

dt
= c

√
1 − v2

c2 ;

that is, the proper time is the arc length along the orbit with respect to the space-
time metric. Use the formula for the angular momentum given in Exercise 3.21.
Approximate the velocity v along the orbit by 2πa/T , where T is the orbital
period, and use Kepler’s third law, as in Exercise 3.21.

In view of the results in Section 3.2.2, especially the harmonic oscillator
model (3.29) for Kepler motion, the system (5.76) with α = 0 is exactly
the same as the model predicted from Newton’s theory. In fact, as we have
seen, this model predicts a fixed elliptical orbit for Mercury. We will see
that the perturbed orbit precesses.

The sizes of the parameters in equation (5.76) depend on the choice of
the units of measurement. Thus, it is not meaningful to say that α is a small
parameter. This basic problem is ubiquitous in applied mathematics. While
some authors do not worry about the units, there is only one correct way
to proceed: rescale the variables so that the new system is dimensionless.
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For equation (5.76), if we define a new dependent variable η := ρ/γ, then
the differential equation is recast in the form

d2η

dφ2 + η = 1 + εη2 (5.78)

where the ratio ε := δγ is dimensionless. To approximate ε, note that

ε =
3GM/c2

a(1 − e2)
GM

G(m + M)

(
1 − G(m + M)

ac2

)
,

m is much smaller than M , and GM/(ac2) is small, to obtain

ε ≈ 3GM

c2a(1 − e2)
, (5.79)

and use the physical constants

G0 = 6.668 × 10−11 m3

kg·sec2 , a = (387)(149, 598, 845)m,

c = 3 × 108 m
sec , mSun = (332700)(5.977) × 1024kg,

e = 0.206,

(5.80)

reported in [94] to compute the approximation

ε ≈ 7.973 × 10−8. (5.81)

The differential equation (5.78) has two rest points in the phase plane:
a center near the point with coordinates (1, 0), and a saddle near (1/ε, 0).
Moreover, the orbit corresponding to the perturbed motion of Mercury
corresponds to one of the periodic orbits surrounding the center (see Exer-
cise 5.47).

Exercise 5.47. Show that the phase portrait of the system (5.78) has exactly
two rest points: a saddle and a sink; approximate the positions of these rest
points with power series in ε; and show that the orbit of Mercury corresponds
to a periodic orbit. Note that it is not enough for this physical problem to prove
the result for “sufficiently small epsilon.” Rather, the value ε = γδ must be
used! Hint: Initial conditions for the orbit of Mercury can be approximated from
the physical data. The level sets of the energy corresponding to the differential
equation (5.78) are invariant manifolds in the phase plane. In fact, one of them
forms the boundary of the period annulus.

How can we find a useful approximation of the perturbed periodic orbit
corresponding to the motion of Mercury? To answer this question, let us
view ε as a parameter and observe that the differential equation (5.78) is
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analytic. Thus, the periodic solution φ �→ η(φ, ε) that we wish to approxi-
mate is given by an analytic function η of two variables. Also, this solution
is an analytic function of the initial conditions. Thus, the perturbed solu-
tion can be expanded as a convergent power series in ε; at least this is true
if ε is sufficiently small. We will come back to this problem in a moment.
For now, let us assume that there is a series expansion of the form

η(φ, ε) = η0(φ) + η1(φ)ε + η2(φ)ε2 + O(ε3). (5.82)

A natural idea is to substitute the series (5.82) into the differential equa-
tion (5.78), and then try to solve for the unknown Taylor coefficients by
equating like powers of ε. In fact, if this is done, then (using dots to denote
derivatives with respect to φ) the order zero equation is

η̈0 + η0 = 1. (5.83)

Note that we have some freedom in the choice of initial data for the
solution of the differential equation (5.83). For example, if we consider the
system in the phase plane, then there is an interval on the η-axis that lies
to the right of the unperturbed rest point at (1, 0) and contains one of the
intersection points of our perturbed periodic orbit with the η-axis. In fact,
this interval can be chosen to be a Poincaré section. Thus, we can suppose
that the desired periodic orbit corresponding to the solution φ �→ η(φ, ε)
starts at φ = 0 on this section at a point with coordinate 1 + b for some
b = b(ε) > 0. In other words, for sufficiently small ε > 0, we have the initial
conditions η(0, ε) = 1 + b and η̇(0, ε) = 0. In particular, η0(0) = 1 + b,
η̇0(0) = 0, and the corresponding solution or the order zero differential
equation is

η0(φ) = 1 + b cos φ.

Note that truncation at this order predicts elliptical motion for Mercury.
In fact, the zero order approximation is just the solution of the harmonic
oscillator model (3.29) of Kepler motion.

By using a trigonometric identity and some algebraic manipulation, the
first order term in the series expansion of η is seen to be the solution of the
initial value problem

η̈1 + η1 =
( 1
β2 +

b2

2
)

+
2b

β2 cos φ +
b2

2
cos 2φ,

η1(0) = 0, η̇1(0) = 0, (5.84)

and, by an application of the variation of constants formula, the solution
of this initial value problem has the form

η1(φ) = c1 + c2φ sin φ + c3 cos 2φ
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where c1, c2, and c3 are nonzero constants.
We now have a problem: The first order approximation

η(φ) ≈ η0(φ) + εη1(φ)

is not periodic. Indeed, because one Fourier mode of the forcing function in
the differential equation (5.84) is in resonance with the natural frequency of
the harmonic oscillator, the expression for η1(φ) contains the secular term
c2φ sin φ. Indeed, the function φ �→ c2φ sin φ is unbounded as φ → ∞.

The word “secular” means an event that occurs once in a century. The
inference is clear: Even if its coefficient is small, a secular term will eventu-
ally have arbitrarily large values. In particular, if there is a secular term in
an approximation with a finite number of terms, then the approximation
will not be periodic unless there is a fortuitous cancellation.

We started with a periodic function φ �→ η(φ, ε), but the first order term
in its series expansion in powers of the perturbation parameter ε is not
periodic. How can this be?

As an example to illustrate the reason for the appearance of secular
terms, let us consider the harmonic oscillator with small detuning given by

ü + (1 + ε)2u = 0

with the initial conditions u(0) = b and u̇(0) = 0. For this example, we
have that

u(t, ε) = b cos((1 + ε)t) = b cos t − (bt sin t)ε − 1
2
(bt2 cos t)ε2 + O(ε3).

Hence, even though the series represents a periodic function, every finite
order approximation obtained by truncation of the series is unbounded.
Clearly, these finite order approximations are not useful over long time in-
tervals. Also, note that the terms in this series expansion have the “wrong”
period. Whereas the solution is periodic with period 2π/(1+ε), the trigono-
metric terms on the right hand side all have period 2π.

Lindstedt observed that secular terms appear in the series for a perturbed
periodic solution because the parameter-dependent frequency of the per-
turbed periodic orbit is not taken into account. He showed that the secular
terms can be eliminated if the solution and its frequency are simultaneously
expanded in powers of the perturbation parameter.

As an illustration of Lindstedt’s method, let us consider a perturbed
linear system of the form

ü + λ2u = εf(u, u̇, ε) (5.85)

that has a family of periodic solutions t �→ u(t, ε) with the initial conditions
u(0, ε) = b and u̇(0, ε) = 0. In other words, the corresponding periodic orbits
in the phase plane all pass through the point with coordinates (b, 0). Also,
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let us define the function ω given by ε �→ ω(ε) such that the frequency of
the periodic solution t �→ u(t, ε) is ω(ε).

Lindstedt introduces a new independent variable

τ = ω(ε)t

so that the desired periodic solution t �→ u(t, ε) is given by

u(t, ε) = v(ω(ε)t, ε)

where τ �→ v(τ, ε) is the 2π-periodic solution of the initial value problem

ω2(ε)v′′ + λ2v = εf(v, ω(ε)v′, ε), v(0, ε) = b, v′(0, ε) = 0 (5.86)

and v′ denotes the derivative of v with respect to τ .
Lindstedt’s computational method is the following: Write the 2π-periodic

function τ �→ v(τ, ε) and the frequency ε �→ ω(ε) as series

v(τ, ε) = v0(τ) + v1(τ)ε + v2(τ)ε2 + · · · ,

ω(ε) = λ + ω1ε + ω2ε
2 + · · · ,

substitute these series into the differential equation (5.86), and then com-
pute the unknown coefficients recursively by equating the terms with like
powers of ε. Alternatively, the differential equations for the Taylor coeffi-
cients of v can be computed directly from the differential equation (5.86)
as variational equations.

To determine the order zero coefficient, set ε = 0 in equation (5.86) to
see that v0 is the solution of the initial value problem

λ2(w′′ + w) = 0, w(0) = b, w′(0) = 0,

and therefore

v0(τ) = b cos τ. (5.87)

Next, let us note that v1(τ) = vε(τ, 0). Hence, by differentiating both
sides of equation (5.86) with respect to ε and evaluating at ε = 0, the
function v1 is seen to be the solution of the initial value problem

λ2(w′′ + w) = f(b cos τ, −λb sin τ, 0) + 2λω1b cos τ,

w(0) = 0, w′(0) = 0. (5.88)

Because the function τ �→ v(τ, ε) is 2π-periodic independent of ε, so is the
function τ �→ vε(τ, 0), and therefore the point (b, 0) is a continuation point
of periodic solutions in the phase plane for the (usual) first order system
corresponding to the differential equation in display (5.88). By rescaling
and then applying Theorem 5.1 to this first order system, it follows that∫ 2π

0
(f(b cos τ, −λb sin τ, 0) + 2λω1b cos τ) sin τ dτ = 0.
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Hence, the Fourier series for the function τ �→ f(b cos τ, −λb sin τ, 0), which
has the form

A0 + A1 cos τ + B1 sin τ +
∞∑

n=2

(An cos nτ + Bn sin nτ),

must be such that B1 = 0. If we impose this condition and also choose
ω1 = A1/(2λb), then the forcing function on the right hand side of the
linear system (5.88) has no resonant term. Thus, the corresponding solution
v1 contains no secular terms, and it is periodic with period 2π.

Using the second order variational equation, Theorem 5.1, and an appro-
priate choice of ω2, all secular terms can be eliminated in the corresponding
linear system, and the function v2 is therefore periodic with period 2π. In
fact, this procedure can be repeated to determine all of the coefficients
of the Taylor series in ε for the perturbed frequency ω(ε) and the solu-
tion v. Moreover, it follows from our assumptions that the resulting series
converge.

The original periodic solution is represented by a series of form

u(t, ε) = v(ω(ε)t, ε) = b cos(ω(ε)t) + v1(ω(ε)t)ε + O(ε2) (5.89)

where v1 is determined above, and the frequency of the original periodic
solution is given by

ω(ε) = λ +
A1

2λb
ε + O(ε).

Let us note that because the series coefficients of the series (5.89) depend
on ε, the Lindstedt series expansion for u is not a Taylor series.

If the Lindstedt procedure is carried out to some finite order—the only
possibility in most applied problems—then, to obtain an approximation to
the desired periodic solution, we must substitute a truncation of the series
for the frequency ω into a truncation of the Lindstedt series for the periodic
solution. This leads to the question “How well does the truncated Lindstedt
series approximate the original periodic solution?” The answer for the case
considered here is that the difference between the nth order truncation and
the solution is O(εn+1) on a time interval of length C/ε for some constant
C > 0. See [170] for a careful treatment of order estimates of this type.

For one-dimensional oscillators, the error estimate just mentioned for
Lindstedt series can be obtained from the associated Taylor series for the
same solution. The analysis for multidimensional differential equations is
more complicated. For example, for Hamiltonian perturbations of multidi-
mensional Hamiltonian systems, the Lindstedt series generally diverge! This
famous result of Poincaré is very important in the history of mathemat-
ics. The divergence of these series suggests that the underlying dynamics
must be very complex. In fact, this observation led Poincaré to several ma-
jor results, for example, the discovery of chaotic dynamics in Hamiltonian
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dynamical systems (see [12], [21], [73], [145], [146], [160], [166], [167], and
[214]). On the other hand, Lindstedt series are useful for approximating
the periodic solutions that are obtained as continuations of periodic orbits
of the type considered in this chapter. In fact, it is no accident that The-
orem 5.1 is used to obtain the Lindstedt series for the example analyzed
above. The bifurcation functions (called the determining equations in the
context of Lindstedt series) can be used to obtain Lindstedt approximations
for the continued periodic solutions in each case that we have discussed (see
Exercise 5.49).

Let us return to the perihelion of Mercury.
To apply Lindstedt series to obtain an approximation for the precession

of perihelion, introduce new variables

v := η − 1, τ = ω(ε)φ

into equation (5.78) so that

ω2(ε)v′′ + v = ε(1 + v)2

(where v′ denotes dv/dτ), and use equations (5.87) and (5.88) to show that
v0(τ) = b cos τ and v1 is the solution of the initial value problem

w′′ + w =
(
1 +

b2

2
)

+ 2b(1 + ω1) cos τ +
b2

2
cos 2τ

with initial conditions w(0) = w′(0) = 0. Thus, following Lindstedt’s pro-
cedure, if ω1 := −1, then the secular terms are eliminated. In fact, in the
original variables we have

ρ(φ) = γ + bγ cos
(
(1 − ε)φ

)
+ O(ε). (5.90)

Moreover, the lowest-order truncation of the Lindstedt series (5.90) that
includes the relativistic correction yields the approximation

ρ(φ) ≈ γ + bγ cos
(
(1 − ε)φ

)
. (5.91)

In view of equation (5.91), the distance r = 1/ρ of Mercury to the center
of the Sun is approximated by

r ≈ 1
γ
(
1 + b cos

(
(1 − ε)φ

)) . (5.92)

Also, the perihelion for this elliptical orbit occurs when the argument of the
cosine is a multiple of 2π. Thus, if the orbit starts at perihelion at φ = 0,
then after one revolution it returns to perihelion when (1 − ε)φ = 2π, that
is, when φ has advanced by approximately

2πε =
6πG0M

a(1 − e2)
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radians from the unperturbed value φ = 2π.
Using the expression for Kepler’s third law in Exercise 3.21 and the

physical constants (5.80), the orbital period of Mercury is seen to be

T ≈ 7.596 × 106sec.

In other words, Mercury orbits the Sun approximately 414.9 times in a
century. Using the estimate for ε in display (5.81), the orbital advance of
the perihelion per century is thus found to be 2.08 × 10−4 radians, or ap-
proximately 43 seconds of arc per century. (Can you imagine how Einstein
must have felt when he computed this number?)

Exercise 5.48. For the perturbed harmonic oscillator ü + u = εu, the natural
frequency is “corrected” at first order in the perturbation parameter by ω(ε) =
1 − ε. What is the first order correction if the perturbation is εu2 or εu3? What
about εun.

Exercise 5.49. Discuss the application of Lindstedt’s method to forced oscil-
lators. For example, find the first order approximation for the solution(s) of the
forced oscillator

ü + u = ε(α cos(ωt) + bu3).

Hint: Recall the theory in Section 5.3.2 for the continuation of periodic solutions
in an isochronous period annulus. In particular, recall that we expect to find
periodic solutions when the parameter ω is near a resonance, say ω(ε) = 1 + ω1ε.
In this case, assume the value of the detuning ω1 is known, and look for solutions
(harmonics) with frequency ω. This search can be conducted within the geometry
of the stroboscopic Poincaré map. Unlike the case of an autonomous perturbation;
here the frequency is known, but the initial position of the solution in the Poincaré
section is not known. Rather, the initial position, the continuation curve, is a
function of ε. This suggests the introduction of a new time variable τ = ω(ε)t so
that we can look for periodic solutions with period 2π of the scaled differential
equation

ω2(ε)v′′ + v = ε(α cos(τ) − βu3).

To apply the Lindstedt method, we must expand v(t, ε) as a power series in ε as
before, but, because the initial position of the periodic orbit is not known, we
must also expand the initial values v(0, ε) and v′(0, ε). The coefficients for these
series expansions of the initial data and the function v are to be determined by
equating coefficients. If

v(0, ε) = ζ10 + ζ11ε + O(ε2), v′(0, ε) = ζ20 + ζ21ε + O(ε2),

then the 2π-periodic zero order approximation is

v0(τ) = ζ10 cos τ + ζ20 sin τ.

The values of ζ10 and ζ20 are determined at the next order. Compute the first
order approximation, consider the condition required to make the approximation
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2π-periodic, and compare your result with the bifurcation equations obtained at
the end of Section 5.3.2. Also, consider the form of the Lindstedt series in the
original time variable.

Exercise 5.50. Compute to at the least second order in the small parame-
ter the approximate period of the perturbed periodic orbit for the van der Pol
oscillator (5.3) (see [6] and [69]).

5.3.7 Entrainment Domains for van der Pol’s Oscillator
Consider the forced van der Pol oscillator in the form

ẍ + δ(x2 − 1)ẋ + x = ε cos Ωt. (5.93)

We will use the formulas of Section 5.3.5 together with Lindstedt approx-
imations to estimate—because the unperturbed system is not explicitly
integrable—the widths of the entrainment domains for system (5.93).

For small δ, the second order Lindstedt approximation for the solution
corresponding to the unperturbed limit cycle Γ is given by [226]

x(t) = 2 cos s +
(3
4

sin s − 1
4

sin 3s
)
δ

+
(

− 1
8

cos s +
3
16

cos 3s − 5
96

cos 5s
)
δ2 + O(δ3) (5.94)

where s = (1−δ2/16+O(δ4))t, and the approximate period of the limit cycle
is τ := 2π(1 + δ2/16) + O(δ4). Moreover, these approximations are valid;
that is, the difference between the approximation and the exact solution is
bounded by a constant times δ3 on the time scale of one period of the limit
cycle Γ.

Recall the function C given in equation (5.73) and the formulas (5.74)
used to determine the width of the entrainment domains. To use these
formulas, let us approximate the extrema of the function C. This is accom-
plished by using the Lindstedt series (5.94) to approximate the phase plane
parameterization of Γ given by

θ �→ (x(t + θ), ẋ(t + θ)) .

If the resulting formulas are inserted into C and the terms of like order are
collected, then we obtain an approximation of the form

C(θ) ≈ c1(θ)δ + c2(θ)δ2.

This approximation vanishes unless m = n or m = 3n, a manifestation of
the resonances that appear in the approximation of the limit cycle as well
as the order of the approximation. At these resonances we have that

b(nτ) = 1 − 2nπδ + 2n2π2δ2 + O(δ3).
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Also, for m = n the function C is given by

C(θ) = −(n2π2 cos θ)δ +
1
8
n2π2(sin 3θ − 3 sin 5θ

+ sin θ + 8nπ cos θ + 4 sin θ cos 2θ + 6 sin θ cos 4θ)δ2 + O(δ3),

while for m = 3n it is given by

C(θ) = −1
8
(
n2π2 sin 3θ

)
δ2.

In order to approximate the extrema of C in case m = n, note that the
extrema of the function θ �→ C(θ)/δ at δ = 0 occur at θ = 0 and θ = π.
The perturbed extrema are then approximated using the series expansion
of the left hand side of the equation C ′(θ) = 0. In fact, for m = n we have

Cmin = −n2π2δ + n3π3δ2 + O(δ3), Cmax = n2π2δ − n3π3δ2 + O(δ3),

while for m = 3n we have

Cmin = −1
8
n2π2δ2 + O(δ3), Cmax =

1
8
n2π2δ2 + O(δ3).

By inserting these expressions into the formulas (5.74) for the tangent lines
of the entrainment domains at ε = 0 we obtain for m = n the O(δ4)
approximation

ε = ±
(
4 +

1
2
δ2)(Ω −

(
1 − 1

16
δ2)),

while for m = 3n we obtain the O(δ3) approximation

ε = ±
(32

3
δ−1 − 32nπ

3
+

4
3
δ − 4nπ

3
δ2)(Ω − 3

(
1 − 1

16
δ2)).

Of course, the accuracy of these computations can be improved and higher
order resonances can be studied by starting with higher order Lindstedt
approximations (see [6] and [69]). Also, the presence of the term containing
δ−1 in the slope of the tangent line for the (3 : 1) resonance indicates
that the entrainment domain has nearly vertical tangents for small δ, and
therefore this entrainment domain is very thin near the Ω-axis.

Exercise 5.51. Numerical values can be obtained from the approximation for-
mulas in this section. For example, if δ = 0.1 and (m : n) = (1 : 1), then the
tangents obtained from the Lindstedt series are approximately

ε = ±4.005(Ω − 0.999).

Find the entrainment domain for this case using a numerical simulation of the van
der Pol oscillator, approximate the tangents to the entrainment domains using
the results of your simulation, and compare the results with the approximations
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given by Lindstedt series (see [37]). Hint: Find the frequency ω of the unperturbed
van der Pol limit cycle using a numerical simulation. Set up a grid of (Ω, ε) values
for Ω near ω and ε near zero. Then, for each choice of these parameter values set
initial conditions near the intersection of the unperturbed limit cycle with the x-
axis, iterate the Poincaré map several times and test to see if the iterates converge
to a fixed point. If they do, assume that entrainment has occurred and color the
corresponding grid point. If no entrainment occurs, then leave the corresponding
grid point uncolored. The entrainment domain will emerge from the display of
the colored grid points.

5.3.8 Periodic Orbits of Multidimensional Systems with First
Integrals

Consider a k-dimensional family of differential equations

ẋ = f(x, λ), x ∈ R
n, λ ∈ R

k (5.95)

with the family of solutions t �→ φ(t, x, λ) such that φ(0, x, λ) = x. We will
discuss the continuation theory for periodic orbits of the family member
with λ = 0.

The continuation theory for a periodic orbit, whose Floquet multiplier
one has geometric multiplicity one, is a straightforward generalization of
the theory for planar systems that has been discussed in detail in this
chapter (see Exercises 5.11 and 5.20). In this section, we will discuss the
continuation of periodic orbits in case the family (5.95) has m first inte-
grals H1, H2, . . . , Hm; that is, for each j ∈ {1, 2, . . . , m}, we have Hj :
R

n × R
k → R and d/dtHj(φ(t, x, λ), λ) ≡ 0. The theory uses a familiar

idea—apply the implicit function theorem—-but it is slightly more compli-
cated because the existence of m independent first integrals increases the
geometric multiplicity of the Floquet multiplier one to at least m + 1. In
this case, a periodic orbit is usually contained in an m-parameter family of
periodic orbits and it is this m-parameter family that persists.

The set of first integrals {H1, H2, . . . , Hm} is called independent on U ×
V ⊆ R

n×R
k if {gradH1(x, λ), gradH1(x, λ), . . . , gradHm(x, λ)} is linearly

independent whenever (x, λ) ∈ U × V .

Theorem 5.52. If the member of the family (5.95) corresponding to λ = 0
has a periodic orbit Γ0 with period T0 and the family has m independent first
integrals on U × {λ : |λ| < λ0} where U ⊆ R

n is an open neighborhood of
Γ0 and λ0 > 0, then the geometric multiplicity of the Floquet multiplier one
is at least m + 1. If, in addition, the geometric multiplicity of the Floquet
multiplier one of Γ0 is m + 1, then Γ0 is contained in an m-parameter
family Υ(µ) (that is, µ is contained in an open subset of R

m and the image
of Υ is an m + 1-dimensional manifold) of periodic orbits of ẋ = f(x, 0)
and this family persists. Its continuation Γ(λ, µ) is unique and defined for
|λ| < a and |µ| < a for some a > 0. Moreover the family of periodic
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orbits µ → Γ(λ, µ), which may be chosen such that Γ(0, 0) = Γ0, is such
that each periodic orbit Γ(λ, µ) is contained in an (n − m)-dimensional
invariant manifold M(λ) = {x ∈ R

n : H1(x, λ) = a1(λ, µ), H2(x, λ) =
a2(λ, µ), . . . , Hm(x, λ) = am(λ, µ)}, where for each i ∈ {1, 2, . . . , m}, ai :
{λ : |λ| < a}×{µ : |µ| < a} → R, the corresponding period function T (λ, µ)
is such that T (0, 0) = T0, and every function in sight is as smooth as the
family (5.95).

Proof. We will outline a proof.
Let the first integrals be H1, H2, . . . , Hm and suppose that Γ0 contains

the point x0 ∈ R
n. By the hypothesis, the set

{gradH1(x0, 0), gradH2(x0, 0), . . . , gradHm(x0, 0)}

is linearly independent. Also, by the definition of a first integral, the nonzero
vector f(x0, 0) is perpendicular (with respect to the usual metric in R

n)
to the span of these gradients. Choose vectors v1, v2, . . . , vn−m−1 in R

n

so that the gradients together with these vectors span the hyperplane at
x0 that is perpendicular to f(x0, 0). Let Σ be a subset of this hyperplane
Σ0 that contains x0 and is a Poincaré section for the family (5.95) for all
|λ| < λ1, where λ1 > 0, and let P : Σ × {λ : |λ| < λ1} → Σ0 denote the
associated family of Poincaré maps.

By the definition of a first integral, it follows that

Hi(P (ξ, λ), λ) = Hi(ξ, λ) (5.96)

for all each i ∈ {1, 2, . . . , m}, ξ ∈ Σ and |λ| < λ1. Also, by the definition
and a differentiation, we have that, for each i ∈ {1, 2, . . . , m},

gradHi(x0, 0)φξ(T (0, 0), x0, 0) = gradHi(x0, 0),

that is, the number one is an eigenvalue of the transpose of the linear map
φξ(T (0, 0), x0, 0). Since the transpose has the same eigenvalues as the map,
one is also an eigenvalue (hence, a Floquet multiplier) of φξ(T (0, 0), x0, 0).
Since the gradients are linearly independent, its geometric multiplicity is at
least m + 1. (Note: The relationship between the eigenvalues and eigenvec-
tors of a linear transformation and its transpose is made clear by examining
the transformation to Jordan canonical form; indeed, BAB−1 = J if and
only if (B−1)∗A∗B∗ = J∗, where the upper star denotes the transpose.)

Define Λ : R
n−1 × R

k × R
m → R

n−1 by

Λ(ξ, λ, µ) = (H1(ξ, λ) − H1(x0, 0) + µ1, . . . , Hm(ξ, λ) − Hm(x0, 0) + µm,

(P (ξ, λ) − ξ) · v1, . . . , (P (ξ, λ) − ξ) · vn−m−1).

Note that Λ(x0, 0, 0) = 0 and, by the multiplicity hypothesis, Λξ(x0, 0, 0) :
R

n−1 → R
n−1 is invertible. By the implicit function theorem, there is a

positive number b and a unique function

β : {λ : |λ| < b} × {µ : |µ| < b} → Σ
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such that Λ(β(λ, µ), λ, µ) ≡ 0.
Using equation (5.96) and the implicit solution, it follows that

Hi(P (β(λ, µ), λ), λ) = Hi(β(λ, µ), λ)

for i ∈ {1, 2, . . . , m} and

(P (β(λ, µ), λ) − β(λ, µ)) · vi = 0

for i ∈ {1, 2, . . . , n − m − 1}. Using the independence of the first integrals
and the inverse function theorem applied to the map

ξ �→ (H1(ξ, λ), . . . , Hm(ξ, λ), ξ · v1, . . . , ξ · vm−n−1),

it follows that P (β(λ, µ), λ) = β(λ, µ) whenever |λ| and |µ| are smaller than
some positive number a.

In particular, for each fixed λ, there is an m-dimensional family of peri-
odic solutions. �

In addition to the existence of independent first integrals, the key as-
sumption of Theorem 5.52 is on the multiplicity of the Floquet multiplier
one. In particular, the result may not hold if this multiplicity is too large.

For a planar Hamiltonian system, the Hamiltonian is an independent first
integral at a periodic orbit and the multiplicity of the Floquet multiplier
is exactly two. Thus, by Theorem 5.52, a periodic orbit of a planar Hamil-
tonian system cannot be isolated; it must be contained in a one-parameter
family of periodic orbits. In the case of more than one degree-of-freedom
(corresponding to a four or higher even-dimensional system), it is necessary
to check that the multiplicity of the Floquet multiplier is m + 1. In fact,
for Hamiltonian systems, this multiplicity is often exceeded. The reason is
simple to understand. But, some additional theory of Hamiltonian systems
is required to prove a theorem that states the exact multiplicity.

Suppose that the functions H1, H2, . . . , Hm are independent first inte-
grals of the Hamiltonian system X1 with Hamiltonian H1. We have proved
that if X1 has a periodic orbit, then one is a Floquet multiplier with ge-
ometric multiplicity at least m + 1. Consider the Hamiltonian systems
X2, . . . , Xm corresponding to the remaining integrals. Also, let φt

i denote
the flow of Xi. It might happen that, for some j, the flow of Xj commutes
with the flow of X1; that is, φt

1 ◦ φs
i = φs

i ◦ φt
1. In this case, at the point x0

on a periodic orbit of X1 with period T and by differentiation with respect
to s at x = 0, we have the identity DφT

1 (x0)Xj(x0) = Xj(x0). In other
words, Xj(x0) is an eigenvector corresponding to the Floquet multiplier
one. It turns out that if the flow of Xj(x0) commutes with the flow of each
of the vector fields X1, X2, . . . , Xm, then Xj(x0) is not in the span of the
eigenvectors corresponding to the mere existence of first integrals. Thus,
the multiplicity of the Floquet multiplier is at least m+2; and, in this case,
Theorem 5.52 does not apply.
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We will need a few new ideas to see why Xj(x0) is independent of the
other eigenvectors with eigenvalue one.

For the Hamiltonian case, the dimension n must be even, say n = 2N . Let
angle brackets denote the usual inner product on R

N and, for two vectors
v = (v1, v2) and w = (w1, w2) in R

n = R
N ×R

N , define the skew-symmetric
bilinear form ω : R

n × R
n → R by

ω(v, w) = 〈v1, w2〉 − 〈v2, w1〉.

Also, note that ω is nondegenerate; that is, if ω(v, w) = 0 for all w, then
v = 0. In general, a nondegenerate skew-symmetric bilinear form on a
vector space is called a symplectic form, an object that plays a fundamental
role in Hamiltonian mechanics. Indeed, in our case, we have the equation

gradH1(v) = ω(X1, v)

for all v ∈ R
n. In general, suppose that we have a symplectic form assigned

to each tangent space of an even-dimensional manifold M so that the as-
signment varies smoothly over the manifold and a function H : M → R.
The Hamiltonian vector field with Hamiltonian H is defined to be the
unique vector field XH on M such that

dH(Y )p = ω(XH , Y )p

for all vector fields Y on the manifold and all p ∈ M . Thus, in the general
theory of Hamiltonian systems, the symplectic form comes first; it is used
to define the Hamiltonian structure. In our simple case, the manifold is R

n

and the (usual) symplectic form is constant over the manifold. It produces
the Hamiltonian vector field (Hy,−Hx).

Returning to our Floquet multipliers, we will show that the eigenvector
Xj is not in the span of the eigenvectors corresponding to the Floquet
multipliers obtained by the existence of first integrals. Similar to the con-
struction in the proof of Theorem 5.52 where the vectors v1, v2, . . . , vn−m−1
are defined, let us choose coordinates, on the Poincaré section Σ in a neigh-
borhood of the point x0 ∈ Σ that lies on a periodic orbit of X1, using the
first integrals as the first m coordinates. Here, we take the coordinate map
to be

x �→ (H1(x), H2(x), . . . , Hm(x), x · v1, x · v2, . . . , x · vn−m−1).

Since, for the Poincaré map P , we have the equation Hi(P (ξ)) = Hi(ξ), the
first m coordinates of P (ξ) are simply ξ1, ξ2, . . . , ξm. Hence, the derivative
of P has the block form (

I 0
A B

)
where I is the m×m-identity and B : R

n−m−1 → R
n−m−1. The m Floquet

multipliers obtained by the existence of the first integrals correspond to
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the diagonal elements of the m × m-identity. Note that an eigenvector
corresponding to one of these eigenvalues must have a nonzero element
among its first m components. In fact, if the eigenvector has block form
(u, v), then it must satisfy the equation Au+Bv = v. If u = 0, then Bv = v
and the eigenvalue belongs to B instead.

We say that Xi and Xj (and H1 and Hj) are in involution if ω(Xi, Xj) =
0. We need the following proposition.

Proposition 5.53. The Hamiltonian vector fields Xi and Xj are in invo-
lution if and only if their flows commute.

Assuming this result, we will show that if the Hamiltonian vector field X1
has independent first integrals H1, H2, . . . , Hm and Hj is in involution with
each of these first integrals, then the Floquet multiplier one has multiplicity
at least m + 2.

Since Xj is in involution with the Hamiltonian vector field Xi, for each
i ∈ {1, 2, . . . , m}, we have that

gradHj · Xi = ω(Xj , Xi) = 0.

In other words, Xi does not have a component in the direction of the first
m coordinates. This proves the claim.

It remains to prove Proposition 5.53. By employing more machinery (the
calculus of differential forms), this fact has an elegant proof (see, for ex-
ample, [2]), which holds for Hamiltonians on manifolds. We will simply
give the ingredients of a proof for the manifold R

n with the usual constant
symplectic form.

For simplicity of notation, let’s consider two Hamiltonians H and K
and their corresponding Hamiltonian vector fields X = (Hy,−Hx) and
Y = (Ky,−Kx). These vector fields are in involution when

〈Hx, Ky〉 − 〈Hy, Kx〉 = 0.

We define the Lie bracket [X, Y ] of X and Y by [X, Y ] = LXY (see Defini-
tion 4.12), and we claim that [X, Y ] = XY − Y X, where XY is the vector
field obtained by taking the directional derivative of each component of Y
in the direction X, etc. In our notation, the x-component of [X, Y ] is

〈Hy, Kyx〉 − 〈Hx, Kyy〉 − (〈Ky, Hyx〉 − 〈Kx, Hyy〉).

By differentiating ω(X, Y ) with respect to y, we find that this expression
vanishes. The second component is the same as the derivative of the in-
volution relation with respect to x. The next lemma finishes the proof of
Proposition 5.53.

Lemma 5.54. (1) On R
n, [X, Y ] = XY −Y X. (2) The flows of two vector

fields X and Y commute if and only if their Lie bracket vanishes.
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Proof. Let φt denote the flow of the vector field X and ψt denote the flow
of Y .

By the definition of the Lie derivative

LXY (x) =
d

dt
Dφ−t(φt(x))Y (φt(x))

∣∣
t=0.

Let the vector field Z be defined by

Z(φt(x)) = Dφ−t(φt(x))Y (φt(x)) (5.97)

and note that Dφt(x)Z(φt(x)) = Y (φt(x)). Also, from the definition of a
flow, note the identity

d

dt
Dφt(x) = DX(φt(x))Dφt(x).

Using these formulas and differentiating with respect to t in equation (5.97),
we have

Dφt(x)
d

dt
Z(φt(x)) = DY (φt(x))X(φt(x)) − DX(φt(x))Y (φt(x));

and, after evaluation at t = 0, the identity

LXY = DY (x)X(x) − DX(x)Y (x).

In other words, [X, Y ] = XY − Y X.
Suppose that the flows commute; that is, φt ◦ψs = ψs ◦φt. Equivalently,

we have the identity ψs = φ−t ◦ ψs ◦ φt. By differentiating with respect to
s and evaluating at s = 0, it follows that

Dφ−t(φt(x))Y (φt(x)) = Y (x).

Hence [X, Y ] = LXY = 0.
Suppose that [X, Y ] = 0. Note that, in general, if d/dth(φt(x))|t=0 = 0

for all x, then t �→ h(φt(x)) is a constant function; indeed,

0 =
d

dt
h(φt(φs(x)))|t=0 =

d

dt
h(φs+t)|t=0 =

d

ds
h(φs).

By applying this fact in the definition of the Lie derivative and using the
hypothesis, we have that t �→ Dφ−t(φt(x))Y (φt(x)) is constant. Hence,

Dφ−t(φt(x))Y (φt(x)) = Y (x).

Let γs := φ−t ◦ ψs ◦ φt and note that

d

ds
γs(x) = Dφ−t(ψs ◦ φt(x))Y (ψs ◦ φt(x))

= Dφ−t(φt ◦ γs(x)))Y (φt ◦ γs(x))
= Y (γs(x)).
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By the uniqueness of solutions of initial value problems, we must have that
γs = ψs.

�

Exercise 5.55. Suppose that A and B are matrices. Use Lemma 5.54 to prove
that etAetB = et(A+B) if and only if AB = BA.

Exercise 5.56. Prove that if ẋ = f(x), for x ∈ R
n, has n independent first

integrals, then f = 0.

Exercise 5.57. Show that periodic orbits of the uncoupled harmonic oscillators
model

H(q1, q2, p1, p2) =
1
2
(p2

1 + p2
2) +

1
2
(q2

1 + q2
2)

occur in four-parameter families. This suggests the existence of an independent
integral in involution with the Hamiltonian. Find this integral.

Exercise 5.58. Prove that the system

ẋ = −y + x(x2 + y2 − 1), ẏ = x + y(x2 + y2 − 1)

does not have a (nonconstant) first integral.

Exercise 5.59. (a) Prove that the system

ẋ = −y + xy, ẏ = x + y2

has a (nonconstant) first integral. (b) Prove that the system has a center at the
origin.

Exercise 5.60. [Completely Integrable Hamiltonians] A Hamiltonian system
with n degrees-of-freedom is called completely integrable if it has n independent
first integrals. (a) Prove that the Hamiltonian system with Hamiltonian H =
p2
1/2+1− cos q2 +(p2

2 + q2
2)/2 is completely integrable. (b) Prove that the system

q̇ = p,

ṗ = − sin q +
x4

4
sin q,

ẋ = y,

ẏ = −x − x3 cos q (5.98)

has a (nonconstant) first integral. (d) Prove that system (5.98) is not completely
integrable. Hint: Use theorem 5.52 (cf. [103, Section 4.8]).

5.4 Forced Oscillators

In this section we will apply our continuation theory to the oscillator

ẍ + εh(x, ẋ)ẋ + f(x) = εg(t) (5.99)
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where the function t �→ g(t), the external force, has period 2π/Ω. As usual,
we will consider the differential equation (5.99) as the first order system

ẋ = y, ẏ = −f(x) + ε(g(t) − h(x, y)y), (5.100)

and we will assume that the unperturbed system

ẋ = y, ẏ = −f(x) (5.101)

has a period annulus A containing a resonant periodic solution Γm/n whose
period 2π/ω is in (m : n) resonance with the period of g. Also, we will
assume that the period function on A has a nonzero derivative at Γm/n.

Under the assumptions stated above, we have proved that the simple
zeros of the function φ �→ M(φ) given by

M(φ) =
∫ n2π/ω

0
y(t + φ, ξ)

(
g(t) − h(x(t + φ, ξ), y(t + φ, ξ))y(t + φ), ξ)

)
dt

(5.102)

are the continuation points for (m : n) (ultra)subharmonics. Here φ may
be viewed as a coordinate on Γm/n and ξ is a point on Γm/n that defines an
origin for the coordinate φ. For simplicity, we choose ξ to lie on the x-axis.

Note that the integrand of the integral used to define M is periodic with
period n2π/ω. If we suppress the variable ξ and change the variable of
integration to s = t + φ, then

M(φ) =
∫ φ+n2π/ω

φ

(
y(s)g(s − φ) − h(x(s), y(s))y2(s)

)
ds.

The function

θ �→
∫ θ+n2π/ω

θ

(
y(s)g(s − φ) − h(x(s), y(s))y2(s)

)
ds

is constant for each fixed value of φ. Thus, we can represent the bifurcation
function in the following convenient form:

M(φ) =
∫ n2π/ω

0

(
y(s)g(s − φ) − h(x(s), y(s))y2(s)

)
ds = I1(φ) + I2,

where

I1(φ) :=
∫ n2π/ω

0
y(s)g(s − φ) ds, I2 :=

∫ n2π/ω

0
h(x(s), y(s))y2(s) ds.

The function t �→ (x(−t),−y(−t)) is a solution of the unperturbed differ-
ential equation with initial value at the point (ξ, 0). Thus, by the uniqueness
of solutions, x is an even function and y is an odd function of time.
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Because s �→ y(s) is an odd function, we have the Fourier series

y(s) =
∞∑

k=1

yk sin kωs, g(s) = g0 +
∞∑

k=1

gc
k cos kΩs +

∞∑
k=1

gs
k sin kΩs

where all coefficients are real. With these representations, it is easy to
compute

I1(φ) =
∞∑

k=1

∞∑
�=1

ykgs
�

∫ n2π/ω

0
sin(kωs) sin(�Ω(s − φ)) ds

+
∞∑

k=1

∞∑
�=1

ykgc
�

∫ n2π/ω

0
sin(kωs) cos(�Ω(s − φ)) ds.

Moreover, taking into account the resonance relation Ω = mω/n and ap-
plying the change of variables θ = ωs/n, we have

I1(φ) =
n

ω

∞∑
k=1

∞∑
�=1

ykgs
�

∫ 2π

0
sin(nkθ) sin(m�θ − �Ωφ)

+
n

ω

∞∑
k=1

∞∑
�=1

ykgc
�

∫ 2π

0
sin(nkθ) cos(m�θ − �Ωφ).

The integrals in the last formula vanish unless k = mj and � = nj for some
integer j > 0. Thus, we obtain a simplification that yields the formula

I1(φ) =
nπ

ω

( ∞∑
j=1

ymjg
s
nj cos(njΩφ) +

∞∑
j=1

ymjg
c
nj sin(njΩφ)

)
=

nπ

ω

( ∞∑
j=1

ymjg
s
nj cos(mjωφ) +

∞∑
j=1

ymjg
c
nj sin(mjωφ)

)
.

In particular, φ �→ I1(φ) is a 2π/(mω)-periodic function.
To simplify I2, let us note that the corresponding integrand is 2π/ω-

periodic, and therefore

I2 = n

∫ 2π/ω

0
h(x(s), y(s))y2(s) ds.

We are interested in the simple zeros of M on the interval 0 ≤ φ < 2π/ω.
Let us note that the graph of I1(φ) over this interval repeats m times
since φ �→ I1(φ) is 2π/(mω)-periodic. The constant I2 simply translates
the graph of I1(φ) to the graph of M . Also, if I1(φ) − I2 has k zeros on
0 ≤ φ < 2π/(mω), then M has mk zeros.

Generally, a periodic function has an even number of zeros over one pe-
riod. Hence, generally, there is a nonnegative integer N such that k =
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2N , and M has an even number of zeros. Thus, we expect 2mN (ul-
tra)subharmonics to continue from a given resonant periodic solution. It
is important to note that this number will be large if m is large. In this
regard, let us note that if the period of the unperturbed orbit Γm/n is large,
then there are resonances with m large.

In order for I1 to be nonzero, the forcing must contain some Fourier
modes that are the same as the modes present in the derivative y of the
unperturbed solution corresponding to the periodic orbit Γm/n. It is not
clear how to determine which modes are present in this unperturbed so-
lution without solving the differential equation. But, because y is an odd
function, we might expect all odd modes to be present.

Under the assumption that I1 is not zero, M has zeros provided that I2
is not too large in absolute value. In effect, I2 serves to translate the graph
of the periodic function I1 in a vertical direction. This suggests that if the
damping is too large, then there will be no periodic solutions that continue
from the resonant unperturbed periodic orbits. In fact, there is a delicate
relationship between the amplitude of I1 and the magnitude of I2 that is
required to determine the global dynamics. The precise relationship that is
required must be obtained from each choice of the model equation.

Example 5.61. Consider the damped periodically forced oscillator

ẍ + εαx + f(x) = εβ cos Ωt.

Whereas gc
1 = β, all other Fourier modes vanish. Thus, on a resonant

unperturbed orbit, if we use the notation of this section, we must have
n = 1 and j = 1. In fact, we have

I1(φ) =
π

ω
ymβ sin(mωφ), I2 = α

∫ 2π/ω

0
y2(s) ds,

M(φ) =
π

ω
ymβ sin(mωφ) − α|y|22

where the norm is the L2-norm. Note that M has simple zeros if and only
if

0 <

(
πymβ

ω|y|22α

)−1

< 1.

In particular, if ym �= 0 and if the ratio α/β is sufficiently small, then there
are 2m zeros.

To determine the number and positions of the continuable periodic orbits,
we must determine the resonant periodic orbits in the period annuli of the
unperturbed system (5.101); that is, we must determine the behavior of the
period function associated with the given period annulus. While the period
function must have a nonzero derivative at a resonant unperturbed periodic
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orbit to apply our first-order continuation theory, it is sometimes possible
to determine if a resonant periodic orbit is continuable even in the case
where the period function vanishes at this orbit (see [35] and [189]). But,
the more basic problem of finding the critical points of a period function
is nontrivial even for system (5.101) (see the survey [196], and also [41]
and [42]).

Note that system (5.101) has all its rest points on the x-axis. If these rest
points are all nondegenerate (their linearizations have nonzero eigenvalues),
then the rest points will be either hyperbolic saddle points or centers. To
prove this fact, recall that system (5.101) has a first integral. Indeed, if
we view the differential equation ẍ + f(x) = 0 as a model equation for a
nonlinear spring, then we know that its total energy

H(x, y) =
1
2
y2 + F (x)

where
F (x) :=

∫ x

0
f(s) ds

is a first integral. Here the choice F (0) = 0 is arbitrary; the addition of a
constant to H just redefines the “potential energy.” Also, note that H is
constant on the trajectories of the differential equation (5.101).

Without loss of generality, suppose that system (5.101) has a rest point
at the origin. By our choice of the energy, H(0, 0) = 0. Also, since f(0) = 0,
we also have that Hx(0, 0) = 0. By the assumption that the rest point is
nondegenerate, we have Hxx(0, 0) = f ′(0) �= 0 and so

H(x, y) =
1
2
y2 +

f ′(0)
2

x2 + O(x3).

More generally, suppose H : R
n → R. We say that H has a singularity

at 0 ∈ R
n if H(0) = 0 and gradH(0) = 0. The singularity is called non-

degenerate if det(Hess H(0)) �= 0 where Hess H is the n × n matrix with
components

∂2H

∂xi∂xj
(x1, . . . , xn), i = 1, . . . , n, j = 1, . . . , n.

Theorem 5.62 (Morse’s Lemma). If H : R
n → R, given by

(x1, . . . , xn) �→ H(x1, . . . , xn),

has a nondegenerate singularity at the origin, then there is a smooth func-
tion h : R

n �→ R
n such that h(0) = 0, det Dh(0) �= 0, and

H(h(x1, . . . , xn)) =
n∑

i,j=1

∂2H

∂xi∂xj
(0)xixj .
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Informally, Morse’s lemma states that there is a nonlinear change of coor-
dinates defined in some neighborhood of the origin such that the function H
in the new coordinate system is given by the quadratic form determined by
the Hessian of H at the origin. See [158] for an elementary proof of Morse’s
lemma. The best proof uses more sophisticated machinery (see [2]).

Exercise 5.63. Prove Morse’s lemma for n = 1. Hint: Reduce to the case where
the function H is given by H(x) = x2f(x) and f(0) > 0. Define g(x) = x

√
f(x)

and prove that there is a function h such that g(h(x)) = x. The desired change
of coordinates is given by x = h(z).

Exercise 5.64. Suppose that H : R
n → R has a nondegenerate singularity at

the origin. Show that Hess H(0) has n real eigenvalues

λ2
1, . . . , λ2

k, −λ2
k+1, . . . , −λ2

n

where λi �= 0 for i = 1, . . . , n. The number n − k is called the index of the
singularity. Prove the following corollary of the Morse lemma: There is a change
of coordinates h : R

n → R
n such that

H(h(x1, . . . , xn)) =
k∑

i=1

λ2
i x

2
i −

n∑
i=k+1

λ2
i x

2
i .

For system (5.101), it follows from the Morse lemma that there is a
new coordinate system near each rest point such that the orbits of the
system (5.101) all lie on level curves of the conic y2 + f ′(0)x2. There are
only two cases: If f ′(0) > 0, then the origin is a center, and if f ′(0) < 0,
then the origin is a hyperbolic saddle.

Each center is surrounded by a period annulus A. Let us suppose that
there are rest points on the boundary of A. In this case, there are either
one or two hyperbolic saddle points on the boundary; the remainder of the
boundary is composed of the stable and unstable manifolds of these saddle
points. Because there are rest points on the boundary of A, the corre-
sponding period function grows without bound as its argument approaches
the boundary of A. In particular, the period annulus contains an infinite
number of resonant periodic orbits, and among these there are orbits with
arbitrarily large periods. Also, the period function approaches 2π/

√
f ′(0),

the period of the linearization of the system at the origin, as its argument
approaches the origin. Thus, there is at least one unperturbed periodic so-
lution with each preassigned period in the interval (2π/

√
f ′(0),∞). Let

us also note that if the period function is not an increasing function, then
there may be more than one unperturbed orbit in A with the same period.
Also, if there is a rest point on the outer boundary of the period annulus,
then the frequency of the resonant periodic orbits approaches zero as the
resonant orbits approach the boundary.
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Since the rational numbers are a dense subset of R and since the res-
onance relation has the form n2π/ω = m2π/Ω, there are infinitely many
resonant periodic solutions in each subannulus containing two periodic or-
bits with different periods. In particular, a period annulus whose boundary
contains rest points has a subannulus with this property. Thus, it should
be clear that if the unperturbed system (5.101) has a period annulus con-
taining periodic orbits with different periods, if the derivative of the period
function does not vanish on each resonant orbit in the annulus, and if the
damping is sufficiently small, then there will be a large number of perturbed
(ultra)subharmonics.

Are there infinitely many (ultra)subharmonics? Our analysis does not
answer this question. To see why, recall our main result: If the function M
in display (5.102) has simple zeros along an (m : n) resonant unperturbed
periodic orbit, then for sufficiently small ε there are 2mN perturbed (ul-
tra)subharmonics where N is some positive integer. But, if we consider
an infinite number of resonant orbits, for example a sequence of periodic
orbits that approach the boundary of our period annulus, then it might
happen that the infinite number of requirements for ε to be sufficiently
small cannot be satisfied simultaneously without taking ε = 0. For this
reason, we cannot conclude that there is an ε > 0 such that the corre-
sponding perturbed system has infinitely many periodic solutions even if
(ultra)subharmonics continue from all resonant unperturbed periodic or-
bits. Thus, we are left with evidence that oscillators with an infinite number
of (ultra)subharmonics exist, but we have no proof.

If an oscillator has an infinite number of hyperbolic periodic orbits of
saddle type all contained in some compact subset of its extended phase
space, then we might expect the dynamical behavior of the oscillator in
a neighborhood of this set to be very complex: orbits in the neighbor-
hood might tend to follow a stable manifold, pass by a saddle point, follow
the motion on its unstable manifold, pass near another stable manifold,
and then repeat the process. Whatever the exact nature of such a flow, it
should be clear that we cannot hope to understand the dynamics of os-
cillators without considering this possible behavior. It turns out that by
using some new ideas introduced in Chapter 6 we will be able to show that
some periodically perturbed oscillators do indeed have an infinite number
of (ultra)subharmonics and that their flows are “chaotic”.



6
Homoclinic Orbits,
Melnikov’s Method, and Chaos

In the last chapter, we discussed the near resonance continuation theory for
periodic orbits of periodically perturbed oscillators. For the case where the
unperturbed oscillator has a regular period annulus, we found that there is
generally an infinite number of resonances at which a first order perturba-
tion theory can be used to prove the existence of perturbed periodic orbits.
But, as mentioned previously, we cannot conclude from the results of our
analysis that the perturbed oscillator has infinitely many periodic orbits.
To do so would seem to require a condition that might be impossible to
satisfy. Indeed, the nonzero amplitude of the perturbation would have to
be made sufficiently small for each of an infinite sequence of continuations
corresponding to an infinite sequence of resonant unperturbed periodic or-
bits that approaches the boundary of a period annulus. The subject of this
chapter is a perturbation theory that is valid at the boundary of the period
annulus. When the theory is applied, the amplitude of the perturbation is
required to be sufficiently small only once.

Generally, the boundary of a period annulus for an unperturbed oscil-
lator consists of one or more saddle points connected by homoclinic or
heteroclinic orbits. Let us define a saddle connection to be an orbit whose
α- and ω-limit sets are hyperbolic saddle points. A saddle connection is
called a homoclinic orbit if its α- and ω-limit sets coincide. On the other
hand, the saddle connection is called a heteroclinic orbit if its α-limit set
is disjoint from its ω-limit set.

If the saddle points on the boundary of our period annulus are hyper-
bolic, then they persist along with their stable and unstable manifolds.
For simplicity, let us consider the case where there is just one hyperbolic
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Figure 6.1: A homoclinic loop.

Figure 6.2: Possible phase portraits of a planar system after perturbation
of a system with a homoclinic orbit.
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Figure 6.3: A homoclinic loop bifurcation: A periodic orbit appears after a
perturbation that breaks a homoclinic loop.

saddle point p on the boundary of our period annulus such that this rest
point is “connected to itself” by a homoclinic orbit as in Figure 6.1. If the
perturbation is autonomous, then the portions of the perturbed stable and
unstable manifolds at p that form the homoclinic loop either coincide or
separate into one of the two configurations depicted in Figure 6.2. For a
periodic nonautonomous perturbation, we will consider the corresponding
(stroboscopic) Poincaré map. The saddle point p is a fixed (or periodic)
point for the unperturbed Poincaré map and the homoclinic orbit lies on
the invariant stable and unstable manifolds of p. After perturbation, the
perturbed stable and unstable manifolds can coincide, split, or cross. The
main problem addressed in this chapter is the determination of the relative
positions of the perturbed invariant manifolds for both the autonomous
and nonautonomous cases.

For autonomous perturbations, the splitting of saddle connections is im-
portant because it is related to the existence of limit cycles. For example,
suppose that the perturbed configuration of stable and unstable manifolds
is as depicted in the right hand panel of Figure 6.2. If the perturbation of
the rest point at the inner boundary of the unperturbed period annulus
is a source and the perturbation is sufficiently small, then no additional
rest points appear; and, by the Poincaré–Bendixson theorem, there must
be at least one periodic orbit “inside” the original homoclinic loop (see
Figure 6.3).

For the case of a periodic perturbation, the most interesting case occurs
when the perturbed stable and unstable manifolds of the Poincaré map
cross. For the case of a homoclinic loop, a point of intersection is called a
transverse homoclinic point for the Poincaré map if the stable and unstable
manifolds meet transversally, that is, the sum of their tangent spaces at
the crossing point is equal to the tangent space of the two-dimensional
Poincaré section at this point. (There is an analogous concept for transverse
heteroclinic points.)

If there is a transverse homoclinic point, then, by a remarkable theorem
called the Smale–Birkhoff theorem, there is a nearby “chaotic invariant
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Figure 6.4: Part of a homoclinic tangle for the stable and unstable manifolds
of a saddle fixed point of a Poincaré map.

set.” A weak version of this theorem states that if there is a transverse
homoclinic point, then the perturbed Poincaré map has infinitely many
unstable periodic points in a small neighborhood of the unperturbed ho-
moclinic loop. But even more is true: There is a compact invariant set that
contains these periodic points and also infinitely many nonperiodic solu-
tions that “wander as randomly as a sequence of coin tosses” in the vicinity
of the boundary of the original period annulus [203]. Moreover, the trajec-
tories of solutions starting in this invariant set are “sensitively dependent”
on their initial conditions; that is, no matter how close we take their initial
conditions, the corresponding points on two different trajectories will be at
least half of the diameter of the invariant set apart at some finite future
time. The existence of such an invariant set is what we mean when we say
the system is chaotic (see, for example, the mathematical references [103],
[166], [194], [203], [205], and [233], as well as the general references [14],
[73], [105], and [145]).

Although the proof of the existence of “chaotic dynamics” in the presence
of a transverse homoclinic point requires several new ideas that we will
not discuss here, it is very easy to see why the existence of a transverse
homoclinic point must lead to complicated dynamics. Note first that the
forward iterates of a transverse homoclinic point, themselves all transverse
homoclinic points, must approach the corresponding saddle point along
its stable manifold. Because these points also lie on the unstable manifold
of the same saddle point , the unstable manifold must stretch and fold as
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shown schematically in Figure 6.4. This homoclinic tangle is responsible
for the existence of a chaotic invariant set.

The chaotic invariant sets in the homoclinic tangle are similar to hyper-
bolic saddle points in the sense that these chaotic invariant sets have both
stable and unstable manifolds. Thus, roughly speaking, many solutions
of the corresponding differential equation (which have their initial points
near one of these chaotic invariant sets) will approach the chaotic invari-
ant set along the direction of the stable manifold on some long time-scale,
but eventually these trajectories leave the vicinity of the chaotic invariant
set along the direction of the stable manifold. Such an orbit will exhibit
transient chaos. This is what usually happens if the differential equation
is not conservative. On the other hand, for Hamiltonian systems where
the dimension of the phase space is not more than four (for a mechanical
system this means that there are not more than two degrees-of-freedom),
these “transient orbits” are often constrained to some neighborhood of the
original homoclinic loop. In this case, they continually revisit the chaotic
invariant sets obtained from the transverse homoclinic points and they ex-
hibit chaotic effects for all time. Finally, there are dissipative systems that
contain “chaotic attractors,” compact chaotic invariant sets that attract
all nearby orbits. These chaotic sets are not necessarily associated with
transverse homoclinic points. Chaotic attractors are poorly understood.
For example, it is generally very difficult to prove the existence of a chaotic
attractor for a system of differential equations. On the other hand, it is not
at all difficult to “see” a chaotic attractor using numerical simulations (see
Exercise 6.1).

We will show how to detect the splitting of saddle connections by defin-
ing a function that determines the separation of the perturbed invariant
manifolds as a function of the bifurcation parameters. It turns out that the
appropriate function is the limit of the subharmonic Melnikov function as
the base points on the periodic orbits approach the boundary. For exam-
ple, for the case of the forced oscillator (5.100) where we have defined the
subharmonic Melnikov function M in display (5.102), the function we seek
is the limit of M as ξ approaches a point on the boundary that is not a rest
point. The limit function, again denoted by M , is again called the Melnikov
function. In fact, the Melnikov function for the differential equation (5.100)
is given by

M(φ) =
∫ ∞

−∞
y(t + φ, ξ)

(
g(t) − h(x(t + φ, ξ), y(t + φ, ξ))y(t + φ, ξ)

)
dt

or, after the obvious change of variables, by

M(φ) =
∫ ∞

−∞
y(s, ξ)

(
g(s − φ) − h(x(s, ξ), y(s, ξ))y(s, ξ)

)
ds

where ξ is a base point on the boundary and the coordinate φ specifies
position on the boundary.
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For an autonomous perturbation, the Melnikov function does not depend
on the initial point for the unperturbed solution on the boundary. In this
case the sign of the Melnikov function determines the direction in which the
invariant manifolds split. For a time periodic perturbation, the Melnikov
function does depend on the initial point on the boundary, and its sim-
ple zeros correspond to positions where the perturbed stable and unstable
manifolds intersect transversally for sufficiently small ε �= 0.

The derivation and analysis of the Melnikov function for autonomous per-
turbations is of course a special case of its derivation for nonautonomous
perturbations. Since the analysis for autonomous perturbations is concep-
tually simpler, we will give a detailed discussion of this case first.

Exercise 6.1. Write a report on numerical simulations of the Lorenz system

ẋ = σ(y − x), ẏ = ρx − y − xz, ż = −βz + xy

(see the original paper of Edward N. Lorenz [147] or any book on dynamical
systems theory). Start by setting the parameter values β = 8

3 , ρ = 28, and
σ = 10. Choose an initial condition in the first quadrant, for instance near the
unstable manifold of the saddle point at the origin, integrate forward in time,
and display the resulting approximate orbit using three-dimensional graphics.
The “Lorenz butterfly attractor” will appear. Also graph one of the observables,
say t �→ y(t), and compare the time series you obtain with the graph of a periodic
function. Choose a second initial condition near the initial condition you started
with and plot together the two simulated graphs of t �→ y(t). Note that these
graphs will stay close together for a while (as they must due to the smoothness
of solutions with respect to initial conditions), but eventually they will diverge.
In fact, after a transient, the evolution of the two solutions will appear to be
completely unrelated. For this reason, it is impossible to predict the position
of the state vector from the initial conditions over long time-periods with an
accuracy that is small compared with the diameter of the attractor; the evolution
of the system is extremely sensitive to changes in the initial conditions. This is
the signature of a chaotic flow.

6.1 Autonomous Perturbations:
Separatrix Splitting

Consider the planar system

u̇ = f(u, λ), u ∈ R
2, λ ∈ R

n (6.1)

and let ξ0 ∈ R
2 be a regular point for the unperturbed system

u̇ = f(u, 0). (6.2)
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As usual, let t �→ u(t, ξ, λ) denote the solution of the differential equa-
tion (6.1) such that u(0, ξ, λ) = ξ, define f⊥(u) = Rf(u, 0) where

R :=
(

0 −1
1 0

)
,

and let t �→ Ψ(t, ξ) denote the flow of the orthogonal system u̇ = f⊥(u).
Here, of course, t �→ Ψ(t, ξ0) is transverse to t �→ u(t, ξ0, 0) at ξ0.

Define

Σ := {Ψ(t, ξ0) : t ∈ R}, (6.3)

and suppose that we have devised some construction that produces two
families of solutions of the differential equation (6.1), each parametrized by
λ, whose members are all transverse to Σ such that at λ = 0 the corre-
sponding solutions coincide with the unperturbed solution t �→ u(t, ξ0, 0).
Our objective is to obtain some information about the rate of separation
of the solutions belonging to the two parametrized families of solutions. In
fact, we will obtain a general conclusion about this separation rate follow-
ing the presentation given by Stephen Schecter [202]. This result will then
be used to address the problem of breaking saddle connections.

Suppose that our construction produces two smooth functions ρi : R
n →

R, i = 1, 2, given by λ �→ ρi(λ) such that ρi(0) = 0 where ρi(λ) gives the
point of intersection of the ith family with Σ. We desire information about
the separation of the two solution families of the differential equation (6.1)
given by

γi(t, λ) := u(t, Ψ(ρi(λ), ξ0), λ), i = 1, 2. (6.4)

Let us view these families as “variations” of the unperturbed solution; that
is, γi is a family of solutions containing the unperturbed solution at λ = 0

γi(t, 0) = u(t, ξ0, 0), i = 1, 2.

Also, γi has initial value on the transverse section Σ. In fact,

γi(0, λ) = Ψ(ρi(λ), ξ0).

The separation of the variations from the unperturbed solution is defined
by the function λ �→ ρ1(λ) − ρ2(λ); it measures a signed distance between
the points where our variations cross Σ. Of course, in a perturbation prob-
lem, it is unlikely that we will be given the functions ρ1 and ρ2 explicitly.
At best, we will be able to infer their existence (probably by an application
of the implicit function theorem). Nonetheless, for small λ, a good approx-
imation of the separation is given by the separation function sep : R

n → R

defined by

sep(λ) := 〈Ψ(ρ1(λ), ξ0) − Ψ(ρ2(λ), ξ0), f⊥(ξ0)〉
= f(ξ0, 0) ∧ (Ψ(ρ1(λ), ξ0) − Ψ(ρ2(λ), ξ0)).
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Let us note that, sep(0) = 0. Also, sep(λ) = 0 if and only if the solutions
γ1(t, λ) and γ2(t, λ) are identical. This last fact follows because a solution
of an initial value problem is unique.

As usual, we can determine the local nature of S := {λ : sep(λ) = 0}
provided that there is at least one j = 1, . . . , n such that sepλj

(0) �= 0. In
fact, if this condition holds, then (by the implicit function theorem) S is a
surface of dimension n − 1 passing through 0 ∈ R

n whose normal vector at
this point is just grad(sep)(0).

What have we done so far? In analogy with our continuation theory for
periodic solutions, we have defined a function akin to the displacement
function and we have reduced the study of its zero set to an application
of the implicit function theorem. Let us make this reduction useful by
identifying the partial derivatives of the separation function.

To identify the partial derivatives of the separation function using the
original differential equation (6.1), we expect to solve a variational equa-
tion. But to obtain a nontrivial variational equation we must have some
time dependence in the separation function. This requirement motivates
the definition of the time-dependent separation function S : R × R

n → R

given by

S(t, λ) := 〈γ1(t, λ) − γ2(t, λ), f⊥(ϕt(ξ0))〉
= f(ϕt(ξ0), 0) ∧ (γ1(t, λ) − γ2(t, λ))

where ϕt is the flow of the system (6.2). Since S(0, λ) = sep(λ), the main
idea—originally due to Melnikov—is to compute the desired partial deriva-
tives of the separation function sep from the corresponding partial deriva-
tives of the time-dependent separation function S.

Let us define two auxiliary functions

Si(t, λ) := 〈γi(t, λ), f⊥(ϕt(ξ0))〉
= f(ϕt(ξ0), 0) ∧ γi(t, λ)

for i = 1, 2, and note that S(t, λ) = S1(t, λ) − S2(t, λ). To compute the
required partial derivatives, start with the formula

Si
λj

(t, 0) = f(ϕt(ξ0), 0) ∧ γi
λj

(t, 0), (6.5)

and use the solution t �→ γi(t, λ) of the differential equation (6.1) to obtain
the variational equation

γ̇i
λi

(t, 0) = fu(ϕt(ξ0), 0)γi
λj

(t, 0) + fλj (ϕt(ξ0), 0). (6.6)

Next, define A(t) := fu(ϕt(ξ0), 0) and use equation (6.5) to obtain the
differential equation

Ṡi
λj

(t, 0) = fu(ϕt(ξ0), 0)f(ϕt(ξ0), 0) ∧ γi
λj

(t, 0) + f(ϕt(ξ0), 0) ∧ γ̇i
λj

(t, 0)

= A(t)f(ϕt(ξ0), 0) ∧ γi
λj

(t, 0) + f(ϕt(ξ0), 0) ∧ A(t)γi
λj

(t, 0)
+ f(ϕt(ξ0), 0) ∧ fλj (ϕt(ξ0), 0). (6.7)
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Formula (6.7) can be simplified by an application of the following easily
proved proposition from vector analysis: If A is a 2×2 matrix and v, w ∈ R

2,
then

Av ∧ w + v ∧ Aw = (trA)v ∧ w.

In fact, with the aid of this proposition, we have

Ṡi
λj

(t, 0) = div f(ϕt(ξ0), 0)f(ϕt(ξ0), 0) ∧ γi
λj

(t, 0)
+ f(ϕt(ξ0), 0) ∧ fλj (ϕt(ξ0), 0)

= div f(ϕt(ξ0), 0)Si
λj

(t, 0) + f(ϕt(ξ0), 0) ∧ fλj (ϕt(ξ0), 0). (6.8)

The differential equation (6.8) is a linear variational equation for the
function t �→ Si

λj
(t, 0). To solve it, let us assume that we know the behavior

of γ1(t, 0) as t → −∞ and the behavior of γ2(t, 0) as t �→ ∞. If we define

K(t) := e− ∫ t
0 div f(ϕt(ξ0),0) ds

and integrate both sides of the differential equation

d

dt

(
K(t)Si

λj
(t, 0)

)
= K(t)f(ϕt(ξ0)) ∧ fλj

(ϕt(ξ0), 0),

then we obtain the identities

S1
λj

(0, 0) = K(t)S1
λj

(t, 0) +
∫ 0

t

K(s)f(ϕs(ξ0)) ∧ fλj
(ϕs(ξ0), 0) ds,

−S2
λj

(0, 0) = −K(t)S2
λj

(t, 0) +
∫ t

0
K(s)f(ϕs(ξ0)) ∧ fλj

(ϕs(ξ0), 0) ds.

Note that the right hand side of each of these identities is constant with
respect to t. Using this fact, the desired partial derivative is given by

sepλj
(0) = lim

t→−∞

[
K(t)f(ϕt(ξ0)) ∧ γ1

λj
(t, 0)

+
∫ 0

t

K(s)f(ϕs(ξ0)) ∧ fλj
(ϕs(ξ0), 0) ds

]
+ lim

t→∞

[
− K(t)f(ϕt(ξ0)) ∧ γ2

λj
(t, 0)

+
∫ t

0
K(s)f(ϕs(ξ0)) ∧ fλj

(ϕs(ξ0), 0) ds
]
. (6.9)

We reiterate that the indicated limits exist because the quantities in square
brackets are constants. Of course, the summands of each expression in
square brackets are not necessarily constants.

The representation (6.9) of the partial derivatives of the separation func-
tion is useful because it is general. We will return to the main topic of this
section and apply this result to the perturbation of saddle connections.
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Suppose that ξ0 denotes a point on a saddle connection for system (6.2)
connecting the hyperbolic saddle points p0 and q0 (maybe p0 = q0); that
is,

lim
t→−∞ ϕt(ξ0) = p0, lim

t→∞ ϕt(ξ0) = q0.

Also, let Σ denote the section at ξ0 defined in display (6.3). By the im-
plicit function theorem, if λ is sufficiently small, then there are perturbed
hyperbolic saddle points

pλ = p0 + O(λ), qλ = q0 + O(λ)

for the system (6.1). Define t �→ γ1(t, λ) to be the solution of the sys-
tem (6.1) with initial condition on Σ (as in equation (6.4)) that lies on
the unstable manifold of pλ, and let t �→ γ2(t, λ) denote the corresponding
solution on the stable manifold of the hyperbolic saddle point qλ. By The-
orem 4.1, the stable and unstable manifolds γi, i = 1, 2, intersect the fixed
curve Σ. To see this, add the equation λ̇ = 0 to the system (6.1) and use
the smoothness of the center stable manifold corresponding to each rest
point of the augmented system corresponding to the saddle points p0 and
q0.

We will outline a proof of the following proposition:

Proposition 6.2. If system (6.1) with λ = 0 has a saddle connection and
if γ1 and γ2, as in display (6.4), are defined to be solutions on the unstable
and stable manifolds of the perturbed saddle points, then

lim
t→−∞ K(t)f(ϕt(ξ0)) ∧ γ1

λj
(t, 0) = 0, (6.10)

lim
t→∞ K(t)f(ϕt(ξ0)) ∧ γ2

λj
(t, 0) = 0. (6.11)

Moreover,

sepλj
(0) =

∫ ∞

−∞
e− ∫ t

0 div f(ϕs(ξ0),0) dsf(ϕt(ξ0), 0) ∧ fλj (ϕt(ξ0), 0) dt. (6.12)

The important formula (6.12) for the partial derivatives of the separation
function with respect to the parameters was probably known to Poincaré.
It was also discovered independently by several different authors (see, for
example, [156], [193], and [208]). In spite of this history, the integral is now
most often called the Melnikov integral.

Since sep(0) = 0, the Taylor series of the separation function at λ = 0 is

sep(λ) =
n∑

j=1

λj sepλj
(0) + O(|λ|2). (6.13)

In particular, if n = 1 and ε := λ1, then

sep(ε) = ε(sepε(0) + O(ε)). (6.14)



6.1 Autonomous Perturbations: Separatrix Splitting 459

Therefore, if sepε(0) �= 0 and if |ε| is sufficiently small, then formula (6.12)
can be used to determine the sign of sep(ε), and therefore the splitting
direction of the perturbed stable and unstable manifolds relative to the
direction determined by f⊥(ξ0).

An outline for a proof of the limit (6.11) will be given; a proof for the
limit (6.10) can be constructed similarly.

View the vector field f as a mapping f : R
2 × R

n → R
2. Since f(q0, 0) =

0 and since fu(q0, 0) : R
2 → R

2 is a nonsingular linear transformation
(it has no eigenvalue on the imaginary axis in the complex plane by the
hyperbolicity of q0), the implicit function theorem implies there is a map
q : R

n → R
2 defined near λ = 0 such that q(0) = q0 and f(q(λ), λ) ≡ 0. By

the continuous dependence of the eigenvalues of a matrix on its coefficients,
we have that q(λ) is a hyperbolic saddle point for |λ| sufficiently small.

As mentioned above, the stable manifold of q(λ) varies smoothly with
λ by Theorem 4.1. In particular, the function (t, λ) �→ γ2(t, λ) depends
smoothly on t and λ, and limt→∞ γ2(t, λ) = q(λ). The matrix fu(q0, 0)
has two real eigenvalues −µ1 < 0 < µ2. Moreover, as t → ∞ the curve
t �→ γ2(t, 0) approaches the saddle point q0 tangent to the eigenspace cor-
responding to the eigenvalue −µ.

By an affine change of coordinates, if necessary, we may as well assume
that q0 is located at the origin and the unperturbed differential equation
u̇ = f(u, 0) has the form

ẋ = −µx + f1(x, y), ẏ = νy + f2(x, y) (6.15)

where both µ and ν are positive constants, and the functions f1 and f2
together with their first order partial derivatives vanish at the origin. In
these coordinates, the stable manifold of the hyperbolic saddle point at the
origin is given by the graph of a smooth function h : U → R where U ⊂ R

is an open interval containing the origin on the x-axis. Moreover, because
the stable manifold is tangent to the x-axis at the origin, we have h(0) = 0
and h′(0) = 0.

The estimate that we will use to compute the limit (6.11) is the content
of the following proposition.

Proposition 6.3. If |x0| is sufficiently small, then there is a positive con-
stant c such that the solution of the system (6.15) starting at (x0, h(x0))
satisfies the estimate

|x(t)| + |y(t)| ≤ ce−µt, t ≥ 0.

The next lemma (compare Theorem 4.1) will be used to prove Proposi-
tion 6.3.

Lemma 6.4. If t �→ x(t) is the solution of the initial value problem

ẋ = −µx + g(x), x(0) = x0,
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where µ > 0 and g : R → R is a smooth function such that g(0) = 0 and
g′(0) = 0, then there are constants ε > 0 and c > 0 such that |x(t)| ≤ ce−µt

for t ≥ 0 whenever |x0| < ε.

Proof. The function defined by

G(x) :=
{

x−2g(x), x �= 0
0, x = 0

is continuous at x = 0. Thus, there is some constant C such that |G(x)| ≤ C
for sufficiently small |x|.

For x �= 0, we have

− ẋ

x2 − µ

x
= −G(x).

If y := 1/x, then ẏ − µy = −G(x(t)) and

e−µty(t) = y(0) −
∫ t

0
e−µsG(x(s)) ds.

Thus, we have the estimate

|e−µty(t)| ≥ |y(0)| −
∫ t

0
e−µs|G(x(s)| ds.

For sufficiently small |x0|,

|y(0)| ≤ |e−µty(t)| + C

∫ t

0
e−µs ds. (6.16)

To prove this last inequality, use the following simple proposition: if |x0|
is sufficiently small, then |x(t)| < |x0| for t ≥ 0. It is proved by observing
that the point x = 0 is an attracting rest point for our one-dimensional
differential equation. A weaker assumption would also be sufficient. For
example, it suffices to assume that for |x0| sufficiently small, the interval
(−|x0|, |x0|) is positively invariant. This follows immediately by considering
the direction of the vector field corresponding to our differential equation
at the end points of the appropriately chosen interval.

After an elementary integration, inequality (6.16) states that

|y(0)| ≤ |e−µty(t)| +
C

µ
(1 − e−µt).

Moreover, because t ≥ 0, it follows that

|y(0)| ≤ |e−µty(t)| +
C

µ
,

and therefore
1

|x0|
− C

µ
≤ 1

eµt|x(t)| .
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If |x0| > 0 is sufficiently small, then

1
|x0|

− C

µ
>

1
c

> 0

for some c > 0. Thus, we have that

|x(t)| ≤ ce−µt.

�

Exercise 6.5. Under the same hypotheses as in Lemma 6.4, prove that

lim
t→∞

eµtx(t)

exists and is not equal to zero (see [202]).

Let us prove Proposition 6.3.

Proof. Consider the change of coordinates for the system (6.15) given by

p = x, q = y − h(x).

In these coordinates, the saddle point stays fixed at the origin, but the sta-
ble manifold is transformed to the p-axis. The restriction of the transformed
differential equation to the p-axis is given by

ṗ = −µp + f1(p, h(p)). (6.17)

If g(p) := f1(p, h(p)), then all the hypotheses of the lemma are satisfied,
and we conclude that there is some |p0| �= 0 such that solutions of the
differential equation (6.17) satisfy |p(t)| ≤ ce−µt for some c > 0 and all
t ≥ 0 whenever |p(0)| < |p0|. In the original coordinates, the corresponding
solution on the stable manifold is given by x(t) = p(t), y(t) = h(x(t)).
Since y = h(x) is tangent to the x-axis at x = 0, there is a constant c1 > 0
such that |h(x)| < c1x

2 for |x| sufficiently small. Thus, if the initial value
of the solution of the differential equation (6.15) on the stable manifold is
sufficiently close to the origin, then there is a positive constant c such that

|x(t)| + |y(t)| = |x(t)| + |h(x(t))| ≤ |x(t)|(1 + c1|x(t)|) ≤ ce−µt. �

To conclude our discussion of the limit (6.11), we must analyze the
asymptotic behavior of the functions K(t), f(ϕt(ξ0), 0), and γ2

λj
(t, 0). Let

us note first that since f(u, 0) is Lipschitz, we have

||f(u, 0)|| = ||f(u, 0) − f(0, 0)|| ≤ L||u||

for some constant L > 0. By the proposition,

||f(ϕt(ξ0), 0)|| ≤ Lce−µt.
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Likewise, using the smoothness of u �→ f(u, 0), we have

div f(u, 0) = tr fu(0, 0) + R(u)

where, for sufficiently small ||u||, there is a constant c2 > 0 such that the
remainder R satisfies ||R(u)|| ≤ c2||u||. Thus

K(t) = e− ∫ t
0 ν−µ due− ∫ t

0 R(u(s)) ds

≤ e(µ−ν)tec2
∫ t
0 ce−µs ds

≤ c3e
(µ−ν)t

for some c3 > 0. It follows that

lim
t→∞ K(t)f(ϕt(ξ0), 0) = 0.

To complete the argument, we will show that |γ2
λj

(t, 0)| is bounded. For
this, we use the smoothness of the stable manifold with respect to the
parameter λ. There is no loss of generality if we assume that the hyperbolic
saddle q(λ) remains at the origin with its stable manifold tangent to the
x-axis as in system (6.15). Indeed, this geometry can be achieved by a
parameter-dependent affine change of coordinates. More precisely, there is
a smooth function (x, λ) �→ h(x, λ) defined near (x, y) = (0, 0) such that
the stable manifold is the graph of the function x �→ h(x, λ). Of course, we
also have that h(0, λ) ≡ 0 and hx(0, λ) ≡ 0. Using this representation of
the stable manifold,

γ2(t, λ) = (x(t, λ), h(x(t, λ), λ))

where t �→ x(t, λ) is a solution of a differential equation

ẋ = −µx + g(x, λ)

similar to differential equation (6.17). After differentiation, we find that

γ2
λj

(t, 0) = (xλj
(t, 0), hx(x(t, 0), 0)xλj

(t, 0) + hλj
(x(t, 0), 0)).

By the smoothness of the function h, both hx(x, 0) and hλj (x, 0) are
bounded for x in some fixed but sufficiently small interval containing x = 0.
Thus, the boundedness of the function t �→ γ2

λj
(t, 0) will be proved once we

show that t �→ xλj
(t, 0) is bounded as t → ∞. To obtain this bound, note

that the function t �→ xλj (t, 0) is a solution of the variational equation

ẇ = −µw + gx(x(t, 0), 0)w + gλj
(x(t, 0), 0). (6.18)

Because gx(0, 0) = 0 and the function g is smooth, we have the estimate

|gx(x, 0)| ≤ c1|x|
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for some c1 > 0. In addition, since g(0, λ) ≡ 0, it follows that gλj (0, 0) = 0.
Also, by the smoothness of g, the partial derivative gλj

is locally Lipschitz.
In fact, there is some c2 > 0 such that

|gλj (x, 0)| = |gλj (x, 0) − gλj (0, 0)| ≤ c2|x|.

With the obvious choice of notation, the differential equation (6.18) has
the form

ẇ = (−µ + α(t))w + β(t) (6.19)

and the solution

w(t) = e−µte
∫ t
0 α(s) ds

(
w(0) +

∫ t

0
eµse− ∫ s

0 α(τ) dτβ(s) ds
)
.

By Proposition 6.3, there is a constant c3 > 0 such that

|α(t)| ≤ c3e
−µt, |β(t)| ≤ c3e

−µt,

for t ≥ 0. Also, let us note that∫ t

0
|α(s)| ds ≤ c3

µ
(1 − e−µt) <

c3

µ
.

Thus, we obtain the following growth estimate for the solution of the dif-
ferential equation (6.19):

|w(t)| ≤ e−µtec3/µ|w(0)| + e−µtec3/µc3e
c3/µt.

In particular, |w(t)| is bounded for t ≥ 0. This completes the proof.

As an application of our result on the splitting of separatrices, let us
consider the damped van der Pol oscillator

ẍ + ε(x2 − 1)ẋ + x − c2x3 = 0

where c > 0 and ε is a small parameter. If, as usual, we define ẋ = y, then
the energy for the unperturbed system is given by

H(x, y) =
1
2
y2 +

1
2
x2 − 1

4
c2x4.

The unperturbed Hamiltonian system

ẋ = y, ẏ = −x + c2x3

has a pair of hyperbolic saddle points at (x, y) = (±1/c, 0) and a center at
the origin surrounded by a regular period annulus. The boundary of the
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period annulus is a pair of heteroclinic orbits of the unperturbed system
that both lie on the curve with energy 1/(4c2).

The Melnikov integral has the form

M =
∫ ∞

−∞
y2(1 − x2) dt.

Using the equality ẋ/y = 1 and the energy relation, let us note that the
time parameter on the heteroclinic orbits is given by

t =
∫ x

0

( 1
2c2 − σ2 +

c2

2
σ4)−1/2

dσ.

After integration, this fact yields the solution

x(t) =
1
c

tanh(t/
√

2 ), y(t) =
1

c
√

2
sech2(t/

√
2 ),

and the formula

M =
1

2c2

∫ ∞

−∞
sech4(t/

√
2 )(1 − 1

c2 tanh2(t/
√

2 )) dt.

This elementary integral can be evaluated using the substitution u =
tanh(t/

√
2 ) to obtain the value

M =
2
√

2
15c2

(
5 − 1

c2

)
.

If, for example, c2 < 1
5 , then M < 0 and both heteroclinic orbits break.

If in addition ε > 0 is sufficiently small, then the system will have a limit
cycle surrounding the origin. (Why?)

Exercise 6.6. Discuss the splitting of saddle connections for the damped Duff-
ing equation

ẍ + εx − x + c2x3 = 0.

Does the perturbed system have limit cycles?

Exercise 6.7. A heteroclinic orbit of a planar Hamiltonian system does not
persist under a general (autonomous) Hamiltonian perturbation. Prove that a
homoclinic loop of a planar Hamiltonian system persists under (autonomous)
Hamiltonian perturbation. Determine the fate of the heteroclinic orbits in the
phase plane for the mathematical pendulum when it is perturbed in the family

θ̇ = v, v̇ = − sin θ + ε

as ε varies in the closed unit interval. Repeat the exercise for the perturbed
pendulum system viewed as a family on the phase cylinder?



6.2 Periodic Perturbations: Transverse Homoclinic Points 465

6.2 Periodic Perturbations:
Transverse Homoclinic Points

In this section we will consider periodic perturbations of a planar Hamil-
tonian oscillator

ẋ = Hy(x, y), ẏ = −Hx(x, y) (6.20)

whose phase portrait has a homoclinic loop as depicted in Figure 6.1. Our
main objective is to prove that if the Melnikov function defined on the
homoclinic loop has simple zeros, then the periodically perturbed oscillator
has transverse homoclinic points.

There are at least two reasons for the unnecessary restriction to unper-
turbed Hamiltonian systems. First, because Hamiltonian vector fields are
divergence free, the Liouville factor

e− ∫ t
0 div f(ϕt(ξ0),0) ds

is constant. Therefore, the expression for the Melnikov integral is simplified
(see, for example, formula (6.9)). The second reason is the recognition that
for the most important applications of the theory, the unperturbed systems
are Hamiltonian.

To avoid writing the components of system (6.20), let us define the vector
ν = (x, y) and, with a slight abuse of notation, the function

f(ν) := (Hy(ν),−Hx(ν))

so that differential equation (6.20) has vector form

ν̇ = f(ν).

Also, let us suppose that g : R
2 × R × R → R

2 is a function given by
(ν, t, ε) �→ g(ν, t, ε) that is 2π/Ω-periodic in t. The corresponding periodi-
cally perturbed oscillator is given in vector form by

ν̇ = f(ν) + εg(ν, t, ε),

and in component form by

ẋ = Hy(x, y) + εg1(x, y, t, ε),
ẏ = −Hx(x, y) + εg2(x, y, t, ε). (6.21)

Let us denote the flow of the unperturbed Hamiltonian system (6.20) by
ϕt, the homoclinic loop at the hyperbolic saddle point ν0 for the unper-
turbed system (6.20) by Γ, and the solution of the perturbed system (6.21)
by t �→ V (t, ν, ε) where ν ∈ R

2 and V (0, ν, ε) ≡ ν. Also, as usual, let us
define the (stroboscopic) parametrized Poincaré map P : R

2 × R → R
2 by

P (ν, ε) := V (2π/Ω, ν, ε).
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Finally, the Melnikov function M : Γ → R for the perturbed oscilla-
tor (6.21) is defined by

M(ζ) :=
∫ ∞

−∞
f(ϕt(ζ)) ∧ g(ϕt(ζ), t, 0) dt (6.22)

where, of course, f ∧ g := f1g2 − g1f2.
The main result of this section on the existence of transverse homoclinic

points is stated in the following theorem.

Theorem 6.8. If |ε| is sufficiently small, then the parametrized Poincaré
map for the system (6.21) has a hyperbolic saddle fixed point ν(ε) such that
ν(ε) = ν0 +O(ε). If ζ0 is a simple zero of the Melnikov function M defined
on Γ and |ε| �= 0 is sufficiently small, then the corresponding Poincaré map
(at this value of ε) has a transverse homoclinic point relative to the stable
and unstable manifolds of the hyperbolic fixed point ν(ε). If, on the other
hand, M has no zeros and |ε| �= 0 is sufficiently small, then the stable and
unstable manifolds of ν(ε) do not intersect.

For the applications of Theorem 6.8, it is often convenient to work with a
local coordinate on the homoclinic loop Γ. In fact, if we choose some point
z on Γ, then the homoclinic orbit is parametrized by the corresponding
solution of the differential equation, for example, by � �→ ϕ−�(z). Thus, the
function M : R → R defined by

M(�) := M(ϕ−�(z)) =
∫ ∞

−∞
f(ϕt−�(z)) ∧ g(ϕt−�(z), t, 0) dt (6.23)

is a local representation of the Melnikov function. Moreover, by the change
of variables σ := t − �, we also have the useful identity

M(�) =
∫ ∞

−∞
f(ϕσ(z)) ∧ g(ϕσ(z), σ + �, 0) dσ. (6.24)

As an important example, let us consider the first order system equivalent
to the periodically forced pendulum

θ̈ + λ sin θ = εa sin Ωt

on the phase cylinder, that is, the system

θ̇ = v,

v̇ = −λ sin θ + εa sin Ωt (6.25)

where θ is an angular coordinate modulo 2π. The unperturbed phase cylin-
der system has a hyperbolic saddle point with coordinates (θ, v) = (π, 0)
and two corresponding homoclinic loops. Moreover, the unperturbed sys-
tem is Hamiltonian with respect to the total energy

H(θ, v) :=
1
2
v2 − λ cos θ,
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and both homoclinic loops lie on the energy surface in the phase cylinder
corresponding to the graph of the energy relation

v2 = 2λ(1 + cos θ).

Using the equality (1/v)dθ/dt = 1, the energy relation, and the identity
1 + cos θ = 2 cos2(θ/2), we have the unperturbed system restricted to the
upper homoclinic orbit given by the scalar differential equation

2
√

λ =
1

cos(θ/2)
dθ

dt
.

If we impose the initial condition θ(0) = 0, then the initial value problem
has the elementary implicit solution

1
2

ln
(1 + sin(θ/2)

1 − sin(θ/2)

)
=

√
λ t,

or equivalently the solution

t �→ θ(t) = 2 arcsin(tanh(
√

λ t)).

The corresponding solution of the pendulum equation

θ = 2 arcsin(tanh(
√

λ t)) = 2 arctan(sinh(
√

λ t)),

v = 2
√

λ sech(
√

λ t) (6.26)

with the initial condition (θ, v) = (0, 2
√

λ ) is easily determined by substi-
tution of θ(t) into the energy relation or by differentiation of the function
t �→ θ(t) with respect to t.

In view of the solution (6.26) on the upper homoclinic loop, the Melnikov
function (6.24) for the periodically forced pendulum is given by

M(�) := 2a
√

λ

∫ ∞

−∞
sech(

√
λσ) sin(Ω(σ + �)) dσ.

By using the trigonometric identity for the sine of the sum of two angles
and by observing that the function σ �→ sech(

√
λσ) sin(Ωσ) is odd, the

formula for M can be simplified to the identity

M(�) = 2a
√

λ sin(Ω�)
∫ ∞

−∞
sech(

√
λσ) cos(Ωσ) dσ

where the value of the improper integral is given by∫ ∞

−∞
sech(

√
λσ) cos(Ωσ) dσ =

π√
λ

sech
( πΩ
2
√

λ

)
. (6.27)
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Figure 6.5: Phase portrait for the system (6.30) on the phase cylinder.
The homoclinic manifold is the cylinder over the homoclinic loop of the
corresponding planar Hamiltonian system.

The function M has infinitely many simple zeros given by{
� =

mπ

Ω
: m ∈ Z

}
.

Thus, by Theorem 6.8, the Poincaré map for the system (6.25) has trans-
verse homoclinic points. (Treat yourself to an aesthetic experience. Find a
few quiet hours, sit alone, avoid all computer algebra systems, review the
elements of complex analysis, and then use the residue calculus to com-
pute the value of the improper integral (6.27). Pure as light, let Cauchy’s
theorem, a crown jewel of 19th century mathematics, shine within.)

In preparation for the proof of Theorem 6.8, let us recast the differential
equation (6.21) as the first order system on the phase cylinder R

2 ×T given
by

ẋ = Hy(x, y) + εG1(x, y, τ, ε),
ẏ = −Hx(x, y) + εG2(x, y, τ, ε),
τ̇ = Ω (6.28)

where τ is an angular variable modulo 2π and

Gi(x, y, τ, ε) := gi(x, y, τ/Ω, ε)
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for i = 1, 2. Also, let us note that the corresponding vector form of sys-
tem (6.28) is

V̇ = f(V ) + εG(V, τ, ε),
τ̇ = Ω. (6.29)

The unperturbed system

ẋ = Hy(x, y),
ẏ = −Hx(x, y),
τ̇ = Ω (6.30)

has a two-dimensional homoclinic manifold S corresponding to the homo-
clinic loop of the corresponding planar Hamiltonian system as sketched
in Figure 6.5. Note that the original hyperbolic saddle point of the pla-
nar Hamiltonian system corresponds to a hyperbolic periodic orbit γ of
system (6.30) that has two-dimensional stable and unstable manifolds, de-
noted W s(γ) and Wu(γ), respectively. Moreover, the homoclinic manifold
is contained in W s(γ) ∪ Wu(γ).

To obtain a coordinate system on the homoclinic manifold, let us recall
that the local coordinate on the homoclinic loop is given by the function
� �→ ϕ−�(z) where z is fixed in Γ. The manifold S is parametrized in the
same manner. In fact, if p ∈ S, then there is a unique point (�, τ) ∈ R × T

such that

p = (ϕ−�(z), τ).

In other words, the map

(�, τ) �→ (ϕ−�(z), τ)

is a global chart whose image covers the manifold S.
We are interested in the fate of the homoclinic manifold for ε �= 0. The

first observation is that the periodic orbit γ is continuable for sufficiently
small |ε| and its continuation is a hyperbolic periodic orbit γ(ε) with a
two-dimensional stable manifold W s(γ(ε)) and a two-dimensional unstable
manifold Wu(γ(ε)). The persistence of γ, and hence the first statement of
Theorem 6.8, follows easily from the results of Chapter 5. The existence of
the perturbed stable and unstable manifolds follows from results similar to
those in Chapter 4. In fact, the existence of the perturbed invariant mani-
folds can be proved from the existence of invariant manifolds for the hyper-
bolic fixed point of the perturbed Poincaré map. The Hartman–Grobman
theorem for diffeomorphisms in Chapter 4 can be used to obtain the exis-
tence of continuous invariant manifolds at the hyperbolic fixed point of the
Poincaré map corresponding to the hyperbolic saddle point ν0. The proof of
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the smoothness of these invariant sets is analogous to the proof of smooth-
ness given in Chapter 4 for the invariant stable and unstable manifolds at
a hyperbolic rest point of a differential equation.

We will prove a version of Theorem 6.8 that takes into account the ge-
ometry of the homoclinic manifold. The formulation of this result requires
an extension of the Melnikov function (6.23) to a function, also denoted by
the symbol M , that is defined on the homoclinic manifold S by

M(�, τ) :=
∫ ∞

−∞
f(ϕt−�(z)) ∧ G(ϕt−�(z), Ωt + τ, 0) dt. (6.31)

The statement in Theorem 6.8 concerning the existence of a transverse
homoclinic point is an easy consequence of the following result.

Theorem 6.9. If there is a point in S with coordinates (�, τ) such that

M(�, τ) = 0, M�(�, τ) �= 0,

and if |ε| �= 0 is sufficiently small, then the stable manifold W s(γ(ε)) and
the unstable manifold Wu(γ(ε)) intersect transversally at a point in the
phase cylinder O(ε) close to the point (ϕ−�(z), τ).

A point p of transversal intersection of the stable and unstable manifolds
of the hyperbolic periodic orbit γ in the phase cylinder corresponds to a
point of transversal intersection of the stable and unstable manifolds of
the corresponding hyperbolic fixed point of the perturbed Poincaré map.
In fact, the corresponding point of transversal intersection on the Poincaré
section may be taken to be the first intersection of the orbit through p with
the Poincaré section.

The proof of Theorem 6.9 will require some additional notation and two
lemmas.

Let us measure the splitting of the stable and unstable manifolds relative
to the unperturbed homoclinic manifold S. To be precise, note first that
there is a natural choice for a normal vector at each point p := (ϕ−�(z), τ) ∈
S, namely the vector

N(�, τ) = (ϕ−�(z), τ, η(�), 0)

with base point (ϕ−�(z), τ) and the first component of its principal part
given by

η(�) := DH(ϕ−�(z)) = (Hx(ϕ−�(z)), Hy(ϕ−�(z))).

Of course, the tangent space to S at the point p is generated by the two
vectors

(Hy(ϕ−�(z)),−Hx(ϕ−�(z)), 0), (0, 0, 1)
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L(p)

W u(γ(ε))

Splitting Distance
W s(γ(ε))

Figure 6.6: Perturbed stable and unstable manifolds. The splitting distance
is computed with respect to the lines in the direction of the normals to the
homoclinic manifold.

where the base point is suppressed and the last component is in R, the
tangent space to the circle T at the point with angle τ . Note that both of
these basis vectors are orthogonal to the vector N(�, τ) with respect to the
usual inner product of R

3.
The unperturbed stable and unstable manifolds are transverse to the line

L(p) through the point p on S with direction vector N(�, τ). Thus, for a
small perturbation, the perturbed stable and unstable manifolds must also
intersect L(p) transversally (see Figure 6.6). The idea is to use the distance
between the intersection points of the perturbed invariant manifolds and
the line L(p) as a measure of the distance between the perturbed mani-
folds at the point p ∈ S. But there is a problem: The perturbed invariant
manifolds might intersect the line more than once, perhaps even an infinite
number of times. Thus, it is not clear which intersection points to choose
in order to measure the distance at p between the perturbed stable and
unstable manifolds.

Suppose that ps(ε) is a point on L(p)∩W s(γ(ε)), and pu(ε) is a point on
L(p) ∩ Wu(γ(ε)). Also, recall that the point p depends on the coordinates
� and τ . If, in components relative to the phase cylinder,

ps(ε) = (zs(�, τ, ε), τ), pu(ε) = (zu(�, τ, ε), τ),
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then there are corresponding solutions of the perturbed system (6.28) given
by

t �→ (V s(t, zs(�, τ, ε), ε), τ + Ωt), t �→ (V u(t, zu(�, τ, ε), ε), τ + Ωt).

Of course, the solution corresponding to ps(ε) is in the (invariant) stable
manifold W s(γ(ε)) and the solution corresponding to pu(ε) is in the unsta-
ble manifold Wu(γ(ε)). There is one choice for ps(ε) among all points in
L(p) ∩ W s(γ(ε)) such that the corresponding solution

t �→ (V s(t, zs(�, τ, ε), ε), τ + Ωt), (6.32)

does not intersect L(p) for all t > 0. Likewise, there is one choice for pu(ε)
among all points in L(p) ∩ Wu(γ(ε)) such that the corresponding solution

t �→ (V u(t, zu(�, τ, ε), ε), τ + Ωt), (6.33)

does not intersect L(p) for all t < 0. In other words, these solutions are,
respectively, the “last” intersection point of the perturbed stable manifold
and the “first” intersection of the perturbed unstable manifold with the
line L(p). While it is intuitively clear that these special intersections points
exist, this fact can be proved (see, for example, [233, p. 495]). At any rate,
let us use these special intersection points to measure the distance between
the perturbed stable and unstable manifolds.

Lemma 6.10. If p ∈ S and |ε| is sufficiently small, then the first com-
ponents of the solutions (6.32) and (6.33) corresponding to the last inter-
section point ps(ε) and the first intersection point pu(ε) on L(p) have the
following representations:

V s(t, zs(�, τ, ε), ε) = ϕt−�(z) + εrs(t) + O(ε2), t ≥ 0,

V u(t, zu(�, τ, ε), ε) = ϕt−�(z) + εru(t) + O(ε2), t ≤ 0 (6.34)

where the functions rs : (0,∞) → R
2 and ru : (−∞, 0) → R

2 given by
rs(t) = V s

ε (t, zs(�, τ, 0), 0) and ru(t) = V u
ε (t, zu(�, τ, 0), 0) are bounded on

the indicated infinite time intervals.

Proof. We will prove the result for the solutions on the stable manifold;
the result for the unstable manifold is similar. Also, we will suppress the
variables � and τ by using the notation

V s(t, ε) := V s(t, zs(�, τ, ε), ε), V u(t, ε) := V u(t, zu(�, τ, ε), ε).

The basic estimate required to prove the lemma is obtained with an
application of Gronwall’s inequality (Lemma 2.1). Fix � and τ . Also, recall
that t �→ V s(t, ε) is a solution of the differential equation

V̇ = F (V, t, ε) := f(V ) + εG(V, t, ε),
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and t �→ ϕt−�(z) is a solution of the differential equation V̇ = F (V, t, 0).
By integration, we have that

V s(t, ε) − zs(�, τ, ε) =
∫ t

0
F (V s(σ, ε), σ, ε) dσ,

ϕt−�(z) − ϕ−�(z) =
∫ t

0
F (ϕσ−�(z), σ, ε) dσ. (6.35)

Both solutions belong to the projection to the V -plane of a stable manifold
of a periodic orbit in the phase cylinder. Thus, both solutions for t ≥ 0 lie
in a compact subset K of the plane. By the smoothness of the function F ,
there is a Lipschitz constant C1 > 0 such that

|F (V1, t, ε) − F (V1, t, 0)| ≤ C(|V1 − V2| + |ε|)

for Vi, i = 1, 2 in K and |ε| sufficiently small. Also, by the smoothness of
the stable manifold with respect to ε, if |ε| is sufficiently small, then there
is a constant C2 > 0 such that

|zs(�, τ, ε) − ϕ−�(z)| ≤ C2ε. (6.36)

If we subtract the equations in display (6.35) and use the inequalities
just mentioned, then we obtain the estimate

|V s(t, ε) − ϕt−�(z)| ≤ εC2 + εC1t + C1

∫ t

0
|V s(σ, ε) − ϕσ−�(z)| dσ.

Hence, by an application of Gronwall’s inequality,

|V s(t, ε) − ϕt−�(z)| ≤ ε(C2 + C1t)eC1t. (6.37)

Recall that ν(ε) denotes the perturbed hyperbolic saddle point and ν0
the hyperbolic saddle point for the planar Hamiltonian system. By a simple
application of the implicit function theorem, it follows that

ν(ε) = ν0 + O(ε).

Since the solutions in the inequality (6.37) belong to the respective stable
manifolds of ν(ε) and ν0, there is some constant C3 > 0 and some T > 0
such that if t > T , then

|V s(t, ε) − ϕt−�(z)| ≤ εC3. (6.38)

Therefore, if |ε| is sufficiently small, then, by the Gronwall estimate (6.37)
for 0 ≤ t ≤ T and the estimate (6.38) for t > T , there is a constant C > 0
such that

|V s(t, ε) − ϕt−�(z)| ≤ εC (6.39)
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for all t ≥ 0.
Because the solution V is a smooth function of the parameter ε, there is

a smooth remainder R such that

V s(t, ε) = ϕt−�(z) + εrs(t) + ε2R(t, ε).

Thus, using the inequality (6.39), we have that

ε|rs(t) + εR(t, ε)| = |V s(t, ε) − ϕt−�(z)| ≤ εC.

Finally, let us divide this estimate by ε and then set ε = 0 to obtain the
desired result: |rs(t)| ≤ C for t ≥ 0. �

Let us define the distance between the perturbed stable and unstable
manifolds at p = (ϕ�(z), τ) to be

sep(�, τ, ε) :=
〈pu

ε − ps
ε , N(�, τ)〉

|N(�, τ)|

=
〈zu(�, τ, ε) − zs(�, τ, ε), η(�)〉

|η(�)|

=
DH(ϕ−�(z))(zu(�, τ, ε) − zs(�, τ, ε))

|η(�)| (6.40)

Because sep(�, τ, 0) ≡ 0, we have the representation

sep(�, τ, ε) = sep(�, τ, 0) + ε sepε(�, τ, 0) + O(ε2)
= ε(sepε(�, τ, 0) + O(ε)). (6.41)

Also, by differentiation with respect to ε in equation (6.40), it follows that
the leading order coefficient of the separation function is given by

sepε(�, τ, 0) =
M̄(�, τ)

|DH(ϕ−�(z))| (6.42)

where

M̄(�, τ) := DH(ϕ−�(z))(V u
ε (0, zu(�, τ, 0), 0) − V s

ε (0, zs(�, τ, 0), 0)). (6.43)

In particular, up to a normalization, M̄(�, τ) is the leading coefficient in
the expansion (6.41).

Lemma 6.11. The function M̄ defined in display (6.43) is equal to the
Melnikov function defined in display (6.31); that is, if a point on the ho-
moclinic manifold is given in coordinates by (�, τ), then

M̄(�, τ) = M(�, τ).
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Proof. (The proof of this lemma is similar to the proof of Proposition 6.2.)
Define the time-dependent Melnikov function

m(t, �, τ) := DH(ϕt−�(z))(V u
ε (t, 0) − V s

ε (t, 0))

where � and τ are suppressed as in the proof of Lemma 6.10, and note that
m(0, �, τ) = M̄(�, τ). Also, define two more auxiliary functions ms and mu

by

ms(t, �, τ) = DH(ϕt−�(z))V s
ε (t, 0), mu(t, �, τ) = DH(ϕt−�(z))V u

ε (t, 0)

so that m(t, �, τ) = mu(t, �, τ)−ms(t, �, τ). If m∗ denotes either mu or ms,
and likewise V ∗ denotes V s or V u, then

ṁ∗(t, �, τ) = D2H(ϕt−�(z))[f(ϕt−�(z)), V ∗
ε (t, 0)]

+ DH(ϕt−�(z))V̇ ∗
ε (t, 0). (6.44)

Let us also recall that t �→ V ∗(t, ε) is defined to be a solution of the sys-
tem (6.21); that is,

V̇ ∗ = f(V ∗) + εG(V ∗, Ωt + τ, ε). (6.45)

By differentiation of equation (6.45) with respect to ε at ε = 0 we obtain
the second variational equation

V̇ ∗
ε = Df(ϕt−�(z))V ∗

ε + G(ϕt−�(z), Ωt + τ, 0). (6.46)

Let us substitute the expression for V̇ ∗
ε given by equation (6.46) into the

differential equation (6.44) and rearrange the terms to obtain

ṁ∗(t, �, τ) = DH(ϕt−�(z))G(ϕt−�(z), Ωt + τ, 0) + B(t)V ∗
ε (t, 0) (6.47)

where B(t) is the linear transformation of R
2 given by

B(t)V := D2H(ϕt−�(z))[f(ϕt−�(z)), V ]
+ DH(ϕt−�(z))Df(ϕt−�(z))V. (6.48)

Also, by differentiating both sides of the identity

DH(ξ)f(ξ) ≡ 0

with respect to ξ ∈ R
2, let us observe that

D2H(ξ)f(ξ) + DH(ξ)Df(ξ) ≡ 0.

Thus, it follows that B(t) ≡ 0, and the differential equation (6.47) for m∗

reduces to

ṁ∗(t, �, τ) = DH(ϕt−�(z))G(ϕt−�(z), Ωt + τ, 0). (6.49)
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By integration of equation (6.49) separately for ms and mu, the following
formulas are obtained:

ms(t, �, τ) − ms(0, �, τ) =
∫ t

0
DH(ϕσ−�(z))G(ϕσ−�(z), Ωσ + τ, 0) dσ,

mu(0, �, τ) − mu(t, �, τ) =
∫ 0

−t

DH(ϕσ−�(z))G(ϕσ−�(z), Ωσ + τ, 0) dσ.

(6.50)

In view of Lemma 6.34, the function t �→ V s
ε (t, 0) is bounded. Also,

because DH vanishes at the hyperbolic saddle point ν0, we have that

lim
t→∞ DH(ϕt−�(z)) = 0,

and therefore

lim
t→∞ ms(t, �, τ) = 0.

It follows that the improper integral on the right hand side of the first
equation in display (6.50) converges and

−ms(0, �, τ) =
∫ ∞

0
DH(ϕt−�(z))G(ϕt−�(z), Ωt + τ, 0) dt.

Similarly, we have that

mu(0, �, τ) =
∫ 0

−∞
DH(ϕt−�(z))G(ϕt−�(z), Ωt + τ, 0) dt.

To complete the proof, simply note the equality

mu(0, �, τ) − ms(0, �, τ) = M̄(�, τ)

and that the sum of the integral representations of the quantities mu(0, �, τ)
and −ms(0, �, τ) is just the Melnikov integral. �

As a consequence of Lemma 6.11 and the representation of the separation
function (6.41), we have now proved that

sep(�, τ, ε) = ε
( M(�, τ)

|DH(ϕ−�(z))| + O(ε)
)
. (6.51)

In other words, the Melnikov function (properly normalized) is the leading
order term in the series expansion of the separation function in powers of
the perturbation parameter. This is the key result of Melnikov theory.

Let us now prove Theorem 6.9.
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Proof. For notational convenience, let us define

S(�, τ, ε) :=
M(�, τ)
|η(�)| + O(ε).

where η(�) = DH(ϕ−�(z)) so that formula (6.51) is recast in the form

sep(�, τ, ε) = εS(�, τ, ε).

If M(�0, τ0) = 0 and M�(�0, τ0) �= 0, then (�0, τ0, 0) is a zero of S such that
S�(�0, τ0, 0) �= 0. Therefore, by the implicit function theorem, there is a
real-valued function h defined on some product neighborhood of ε = 0 and
τ = τ0 such that h(0, τ0) = �0 and S(h(ε, τ), τ, ε) ≡ 0. Or, in other words,
using the definition of the separation function, our result implies that if |ε|
is sufficiently small, then the stable and unstable manifolds intersect at the
points given by

(V s(0, zs(h(ε, τ), ε), ε), τ) ≡ (V u(0, zu(h(ε, τ), ε), ε), τ), (6.52)

or equivalently at the points

(zs(h(ε, τ), ε), τ) ≡ (zu(h(ε, τ), ε), τ). (6.53)

To complete the proof we will show that if |ε| �= 0 is sufficiently small,
then the stable and unstable manifolds intersect transversally at the point
given in display (6.53).

Let us note that the curves in the phase cylinder given by

� �→ (zs(�, τ0, ε), τ0), τ �→ (zs(�0, τ, ε), τ)

both lie in W s(γ(ε)). Therefore, the vectors

(zs
� (�0, τ0, ε), 0), (zs

τ (�0, τ0, ε), 1)

span the tangent space to W s(γ(ε)) at the intersection point with coordi-
nates (�0, τ0). Indeed, since S�(�0, τ0, 0) �= 0, it follows from the definition of
the separation function and the continuity with respect to ε that if |ε| �= 0
is sufficiently small, then zs

� (�0, τ0, ε) �= 0. Thus, the first tangent vector
is nonzero. Because the second component of the second tangent vector is
nonzero, the two vectors are linearly independent. Similarly, the vectors

(zu
� (�0, τ0, ε), 0), (zu

τ (�0, τ0, ε), 1)

span the tangent space to the unstable manifold at the intersection point.
The stable and unstable manifolds meet transversally provided that three

of the four tangent vectors given above span R
3. To determine a linearly

independent subset of these tangent vectors, we will use the definition of
the Melnikov function and Lemma 6.34.
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First, in view of the equalities

M(�0, τ0) = 0, zu(�0, τ0, ε) = zs(�0, τ0, ε),

and the definition of the Melnikov function, let us note that

∂

∂�

(DH(ϕ−�(z))(zu(�, τ0, ε) − zs(�, τ0, ε))
|η(�)|

)∣∣∣
�=�0

= ε
(M�(�0, τ0)

|η(�0)|
+ O(ε)

)
and
∂

∂�

(DH(ϕ−�(z))(zu(�, τ0, ε) − zs(�, τ0, ε))
|η(�)|

)∣∣∣
�=�0

=(DH(ϕ−�0(z))(zu
� (�0, τ0, ε) − zs

� (�0, τ0, ε))
|η(�0)|

)
.

By combining the results of these computations, we have that

DH(ϕ−�0(z))(zu
� (�0, τ0, ε) − zs

� (�0, τ0, ε)) = ε(M�(�0, τ0) + O(ε)). (6.54)

Set t = 0 and τ = τ0 and differentiate both sides of both equations in
display (6.34) with respect to � at � = �0 to obtain the representations

zs
� (�0, τ0, ε) = −f(ϕ−�(z)) + εzs

ε�(�0, τ0, 0) + O(ε2),
zu

� (�0, τ0, ε) = −f(ϕ−�(z)) + εzu
ε�(�0, τ0, 0) + O(ε2).

Thus, by substitution into the equation (6.54), let us note that

ε
(
DH(ϕ−�0(z))(zu

ε�(�0, τ0, 0) − zs
ε�(�0, τ0, 0)) + O(ε)

)
= ε(M�(�0, τ0) + O(ε)). (6.55)

Also, since the determinant of a matrix is a multilinear form with respect
to the columns of the matrix, it follows by an easy computation using the
definition of the Hamiltonian vector field f that

det
(
zu

� (�0, τ0, ε), zs
� (�0, τ0, ε)

)
= ε

(
det

(
− f, zs

ε�

)
+ det

(
zu

ε�,−f
)

+ O(ε)
)

= ε(DH(ϕ−�0(z)(zu
ε�(�0, τ0, 0)

− zs
ε�(�0, τ0, 0)) + O(ε)). (6.56)

In view of the equations (6.55) and (6.56) we have that

det
(
zu

� (�0, τ0, ε), zs
� (�0, τ0, ε)

)
= M�(�0, τ0) + O(ε).

Therefore, the determinant is not zero, and the vectors

zu
� (�0, τ0, ε), zs

� (�0, τ0, ε)

are linearly independent. Hence, due to the independence of these vectors,
the tangent vectors

(zu
� (�0, τ0, ε), 0), (zs

� (�0, τ0, ε), 0), (zs
τ (�0, τ0, ε), 1)
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are linearly independent, as required. As a result, if |ε| �= 0 is sufficiently
small, then the perturbed stable and unstable manifolds meet transversally
at the base point of these tangent vectors. �

Exercise 6.12. Discuss the existence of transverse homoclinic points for the
periodically perturbed Duffing oscillator

ẍ − x + x3 = ε sin(Ωt).

Exercise 6.13. Discuss the existence of transverse homoclinic points for the
periodically perturbed damped pendulum

θ̈ + ω2 sin θ = εg(θ, t)

where

g(θ, t) := −λθ̇ + sin(Ωt).

How does the existence of transverse homoclinic points depend on the parame-
ters? What happens if the sinusoidal time periodic external force is replaced by
a smooth periodic function p(t). What happens if the viscous damping term is
replaced by −λθ̇2?

Exercise 6.14. Discuss the existence of transverse homoclinic points for the
parametrically excited pendulum

θ̈ + (ω2 + ε cos(Ωt)) sin θ = 0.

Exercise 6.15. Discuss the existence of transverse homoclinic points for the
pendulum with “feedback control”

θ̈ + sin θ + αθ − β = ε(−λθ̇ + γ cos(Ωt)

(see [236]). The “Melnikov analysis” of this system seems to require numerical
approximations of the Melnikov integral. Compute an approximation of the Mel-
nikov integral and find parameter values where your computations suggest the
existence of simple zeros. Plot some orbits of the stroboscopic Poincaré map to
obtain an approximation of its phase portrait. Also find parameter values where a
numerical experiment suggests the corresponding dynamical system has sensitive
dependence on initial conditions.

Exercise 6.16. Using formula (6.31), prove that M�(�, τ) �= 0 if and only if
Mτ (�, τ) �= 0. Note that a corollary of this result is the conclusion of Theorem 6.9
under the hypothesis that M(�, τ) = 0 and Mτ (�, τ) �= 0.

6.3 Origins of ODE: Fluid Dynamics

The description of the motion of fluids is a central topic in practical scien-
tific research with a vast literature in physics, engineering, mathematics,
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and computation. The basic model is a system of partial differential equa-
tions of evolution type. Thus, as might be expected, many specializations of
this model lead to ordinary differential equations. In fact, some of the most
interesting and most important problems in ordinary differential equations
have their origin in fluid dynamics.

The purpose of this section is to briefly discuss the Euler and Navier–
Stokes model equations; to derive a system of ordinary differential equa-
tions, called the ABC system, that has been used to describe the steady
state motion of an ideal fluid in a certain ideal situation; and to discuss the
dynamics of the ABC system as an application of our analysis of perturbed
oscillators.

Caution: Treat this section as “a finger pointing at the moon.”

6.3.1 The Equations of Fluid Motion
Let us consider a fluid with constant density ρ confined to some region
R in space, and let us assume that the motion of the fluid is given by
the time-dependent velocity field u : R × R → R

3 with (ξ, t) �→ u(ξ, t).
The position of a particle of the moving fluid is given by a smooth curve
t �→ γ(t) in R. Thus, the momentum of this fluid particle is ρu(γ(t), t),
and, according to Newton’s law, the motion of the particle is given by the
differential equation

ρ
d

dt
(u(γ(t), t)) = F

where F denotes the sum of the forces. Although a fluid is always subjected
to the force of gravity and perhaps to other external body forces, let us
ignore these forces and consider only the constitutive force laws that model
the internal shear forces that are essential to our understanding of the
physical nature of fluids, just as Hooke’s law is the essential constitutive
force law for springs.

Internal fluid forces can be derived from more basic physical laws (see,
for example, [56] and [139]); however, let us simply note that the basic force
law is

F = µ∆u − gradP

where µ is a constant related to the viscosity of the fluid, P is called the fluid
pressure, and the Laplacian operates on the velocity field componentwise.
Of course, the gradient and the Laplacian derivatives are with respect to the
space variables only. Let us also note that the viscosity term is a function of
the fluid velocity, but the pressure is a second unknown dependent variable
in the system. Thus, we will have to have two equations in the two unknown
functions u and P .
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Using Newton’s law and the constitutive force law, the equation of motion
for a fluid is

ρ
(∂u

∂t
(ξ, t) + Du(ξ, t)u(ξ, t)

)
= µ∆u(ξ, t) − gradP (ξ, t)

where D denotes differentiation with respect to the space variables. In
fluid mechanics, if x, y, z are the Cartesian coordinates in R

3 and ex, ey, ez

are the usual unit direction vectors (here the subscripts denote coordinate
directions, not partial derivatives), then the gradient operator

∇ :=
∂

∂x
ex +

∂

∂y
ey +

∂

∂z
ez

is introduced and the advection term (Du)u is rewritten, using the usual
inner product, in the form 〈u, ∇〉u, or more commonly as u · ∇u. Here, ∇
acts componentwise on the vector field u.

The fluid density must satisfy the continuity equation (3.92)

∂ρ

∂t
+ div(ρu) = 0.

Thus, under our assumption that the density is constant (homogeneous
fluid), we must have that u is divergence free. This is equivalent to the
assumption that the fluid is incompressible.

Because our fluid is confined to a region of space, some boundary condi-
tions must be imposed. In fact, physical experiments show that the correct
boundary condition is u ≡ 0 on the boundary ∂R of the region R. To
demonstrate this fact yourself, consider cleaning a metal plate by using a
hose to spray it with water; for example, try cleaning a dirty automobile.
As the pressure of the water increases, the size of the particles of dirt that
can be removed decreases. But, it is very difficult to remove all the dirt
by spraying alone. This can be checked by polishing with a clean cloth. In
fact, the velocity of the spray decreases rapidly in the boundary layer near
the plate. Dirt particles with sufficiently small diameter are not subjected
to flow velocities that are high enough to dislodge them.

By introducing units of length, time, and velocity (that is, x �→ x/L,
t �→ t/T and u �→ u/U) and introducing the kinematic viscosity ν :=
µ/ρ, the system of equations for the velocity field and the pressure can be
rescaled to the dimensionless form of the Navier–Stokes equations for an
incompressible fluid in R given by

∂u

∂t
+ u · ∇u =

1
Re

∆ − grad p,

div u = 0,

u = 0 in ∂R (6.57)

where Re := LU/ν is the (dimensionless) Reynolds number. The existence
of this scaling is important: If two flows have the same Reynold’s number,
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then the flows have the same dynamics. For example, flow around a scaled
model of an airplane in a wind tunnel might be tested at the same Reynold’s
number expected for the airplane under certain flight conditions. Perhaps
the same Reynold’s number can be obtained by increasing the velocity in
the wind tunnel to compensate for the smaller length scale of the model.
In principle, the behavior of the model is then exactly the same as the real
aircraft.

Euler’s equations for fluid motion can be viewed as an idealization of the
Navier–Stokes equations for a fluid with zero viscosity. These equations
have the form

∂u

∂t
+ u · ∇u = − grad p,

div u = 0,

〈u, η〉 = 0 in ∂R (6.58)

where η is the outward unit normal vector field on ∂R. Note that the “no
slip” boundary condition for the Navier–Stokes equations is replaced by the
condition that there is no fluid passing through the boundary. The reason
for the physically unrealistic Euler boundary conditions is to ensure that
Euler’s partial differential equations are “well posed”, that is, they have
unique solutions depending continuously on initial conditions.

A naive expectation is that the limit of a family of solutions of the
Navier–Stokes equations as the Reynold’s number increases without bound
is a solution of Euler’s equations. After all, the term ∆u/Re would seem
to go to zero as Re → ∞. Note, however, the possibility that the second
derivatives of the velocity field are unbounded in the limit. For this and
other reasons, the limiting behavior of the Navier–Stokes equations for large
values of the Reynold’s number is not yet completely understood. Thus, the
dynamical behavior of the family as the Reynold’s number grows without
bound is a fruitful area of research.

Flow in A Pipe

As an example of the solution of a fluid flow problem, let us consider per-
haps the most basic example of the subject: flow in a round pipe.

If we choose cylindrical coordinates r, θ, z with the z-axis being the axis
of symmetry of a round pipe with radius a, then it seems natural to expect
that there are some flow regimes for which the velocity field has its only
nonzero component in the axial direction of the pipe; that is, the velocity
field has the form

u(r, θ, z, t) = (0, 0, uz(r, θ, z, t)) (6.59)

where the components of this vector field are taken with respect to the
basis vector fields er, eθ, ez that are defined in terms of the usual basis of
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Euclidean space by

er := (cos θ, sin θ, 0), eθ := (− sin θ, cos θ, 0), ez := (0, 0, 1).

Let us express the Euler and the Navier–Stokes equations in cylindrical
coordinates. Recall that if f is a function and F = Frer + Fθeθ + Fzez is a
vector field on Euclidean space, then in cylindrical coordinates,

∇f =
∂f

∂r
er +

1
r

∂f

∂θ
eθ +

∂f

∂z
ez,

div f =
1
r

∂

∂r
(rFr) +

1
r

∂Fθ

∂θ
+

∂Fz

∂z
,

∆f =
1
r

∂

∂r

(
r
∂f

∂r

)
+

1
r2

∂2f

∂θ2 +
∂2f

∂z2 . (6.60)

To obtain the Navier–Stokes equations in cylindrical coordinates, consider
the unknown velocity field u = urer + uθeθ + uzez. Write this vector
field in the usual Cartesian components by using the definitions of the
direction fields given above, insert the result into the Navier–Stokes equa-
tions, and then compute the space derivatives using the operators given
in display (6.60). If we multiply the first two of the resulting component
equations—the equations in the directions ex and ey—by the matrix(

cos θ sin θ
− sin θ cos θ

)
,

then we obtain the equivalent system

∂ur

∂t
+ (u · ∇)ur − 1

r
u2

θ =
1

Re
(
∆ur − 1

r2 (ur + 2
∂uθ

∂θ
)
)

− ∂p

∂r
,

∂uθ

∂t
+ (u · ∇)uθ +

1
r
uruθ =

1
Re

(
∆uθ − 1

r2 (uθ − 2
∂ur

∂θ
)
)

− 1
r

∂p

∂θ
,

∂uz

∂t
+ (u · ∇)uz =

1
Re

∆uz − ∂p

∂z
,

div u = 0. (6.61)

The Euler equations in cylindrical coordinates for the fluid motion in the
pipe are obtained from system (6.61) by deleting the terms that are divided
by the Reynold’s number. If the velocity field u has the form given in
equation (6.59), then u automatically satisfies the Euler boundary condition
at the wall of the pipe. Thus, the Euler equations for this velocity field u
and scaled pressure p reduce to the system

∂p

∂r
= 0,

∂p

∂θ
= 0,

∂uz

∂t
+ uz

∂uz

∂z
= −∂p

∂z
= 0,

∂uz

∂z
= 0.
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It follows that p must be a function of z only, and

∂uz

∂t
= −∂p

∂z
. (6.62)

If we now differentiate equation (6.62) with respect to z, then we see im-
mediately that ∂2p/∂z2 = 0. Therefore, p = p0 + p1z for some constants
p0 and p1, and we must also have that uz = −p1t + u0 for some constant
u0. Let us note that if we were to impose the no slip boundary conditions
(which are not correct for Euler flow), then the only possible solution is
uz = 0 and p = p0. In particular, we cannot impose a nonzero initial fluid
velocity.

There are two cases for Euler flow (with the no penetration boundary
condition): If p1 = 0, then the pressure is constant in the pipe and the
velocity field is constant. This is called plug flow. If p1 �= 0, then both
the pressure and the velocity become unbounded as time passes to infinity.
Both cases are not physically realistic. For example, the flow in the first
case does not satisfy the experimentally observed fact that the velocity of
the flow is larger in the center of the pipe than at its wall. Nonetheless,
because of its mathematical simplicity, plug flow is often used as a model.
For example, plug flow is often used to model flow in tubular reactors
studied in chemical engineering.

What about Navier–Stokes flow?
If we consider the same pipe, the same coordinate system, and the same

hypothesis about the direction of the velocity field, then the Navier–Stokes
equations reduce to

∂p

∂r
= 0,

∂p

∂θ
= 0,

∂uz

∂t
+ uz

∂uz

∂z
=

1
Re

∆uz − ∂p

∂z
= 0,

∂uz

∂z
= 0,

with the no slip boundary condition at the wall of the pipe given by

uz(a, θ, z, t) ≡ 0.

This system of equations is already difficult to solve! Nevertheless, we can
obtain a solution if we make two additional assumptions: The velocity field
is in steady state and it is symmetric with respect to rotations about the
central axis of the pipe. With these assumptions, if we take into account
the equation ∂uz/∂z = 0, then it suffices to solve the single equation

1
Re

(1
r

∂

∂r

(
r
∂uz

∂r

))
= pz.

Because pr = 0 and pθ = 0, we have that pz depends only on z while the
left hand side of the last equation depends only on r. Thus, the functions
on both sides of the equation must have the same constant value, say c. If
this is the case, then p = cz + p0.
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The remaining ordinary differential equation

ru′′
z (r) + u′

z(r) = (cRe)r

with the initial condition uz(a) = 0 has the continuous solution

uz(r) =
1
4
cRe (r2 − a2).

Thus, we have derived the result that the steady state velocity field u pre-
dicted by the Navier–Stokes equations is parabolic with respect to the radial
coordinate. This flow field is physically realistic, at least if the Reynold’s
number is sufficiently small; it is called Poiseuille flow.

Exercise 6.17. Consider Poiseuille flow in a section of length L of an infinite
round pipe with radius a. If the pressure is p in at the inlet of the section and
the flow speed at the center of the pipe is v in, then determine the pressure at
the outlet. What happens in the limit as the Reynold’s number grows without
bound? Compare with the prediction of plug flow.

Using the vector identity

1
2

grad(u · u) = u × curlu + u · ∇u

where · denotes the usual inner product on Euclidean space, let us rewrite
Euler’s equation in the form

ut − u × curlu = grad(−1
2
(u · u) − p).

With the definition α := − 1
2 |u|2 − p, we obtain Bernoulli’s form of Euler’s

equations

ut = u × curlu + gradα,

div u = 0,

u · η = 0 in ∂R. (6.63)

Potential Flow

Let us consider an important specialization of Bernoulli’s form of Euler’s
equations: potential flow in two space dimensions. The idea is the following.
Assume that the velocity field u is the gradient of a potential f so that u =
grad f . Substitution into system (6.63), using the identity curl(gradu) = 0
and some rearrangement, gives the equations of motion

grad(
∂f

∂t
+

1
2
| grad f |2 − p) = 0, ∆f = 0. (6.64)
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As a result, we see immediately that the quantity

∂f

∂t
+

1
2
| grad f |2 − p

is constant with respect to the space variables. In particular, if u is a steady
state velocity field, then there is a constant c such that

p = c − 1
2
|u|2; (6.65)

that is, the pressure is a constant minus half the square of the velocity.
This is Bernoulli’s law.

In view of the second equation of system (6.64), the potential f is a
harmonic function. Therefore, by considering a hypothetical flow on a two-
dimensional plane with Cartesian coordinates (x, y) and velocity field u =
(ẋ, ẏ), the potential f is locally the real part of a holomorphic function, say
h = f +iψ. Moreover, the pair f, ψ satisfies the Cauchy–Riemann equations

∂f

∂x
=

∂ψ

∂y
,

∂f

∂y
= −∂ψ

∂x
.

Thus, the assumption that u = grad f implies the fluid motions are solu-
tions of an ordinary differential equation that can be viewed in two different
ways: as the gradient system

ẋ =
∂f

∂x
, ẏ =

∂f

∂y
;

or the Hamiltonian system

ẋ =
∂ψ

∂y
, ẏ = −∂ψ

∂x
. (6.66)

The function ψ, a Hamiltonian function for system (6.66), is called the
stream function. The orbits of system (6.66), called stream lines, all lie on
level sets of ψ. Let us also note that because the stream lines are orbits of
a gradient system, there are no periodic fluid motions in a region where the
function h is defined.

It should be clear that function theory can be used to study planar
potential flow. For example, if ψ is a harmonic function defined in a simply
connected region of the complex plane such that the boundary of the region
is a level set of ψ, then ψ is the imaginary part of a holomorphic function
defined in the region, and therefore ψ is the stream function of a steady
state flow. This fact can be used to find steady state solutions of Euler’s
equations in many regions of the complex plane.

As an example, let us start with plug flow in a pipe with radius a and
notice that every planar slice containing the axis of the pipe is invariant
under the flow. In fact, if we view the strip

S := {(x, y) : 0 < y < 2a}



6.3 Origins of ODE: Fluid Dynamics 487

as such a slice where we have taken x as the axial direction, then the
plug flow solution of Euler’s equations in S is given by the velocity field
u = (0, c) and the pressure p = p0 where c and p0 are constants. This is a
potential flow, with potential f(x, y) = cx, stream function ψ(x, y) = cy,
and complex potential h(x, y) = cz = c(x + iy).

Suppose that Q is an invertible holomorphic function defined on S and
that R is the image of S under Q, then w �→ h(Q−1(w)) for w ∈ R
is a holomorphic function on R. Moreover, by writing h = f + iψ, it is
easy to see that w �→ ψ(Q−1(w)) is a stream function for a steady state
potential flow in R. In particular, stream lines of ψ map to stream lines of
w �→ ψ(Q−1(w)).

For example, let us note that w := Q(z) =
√

z has a holomorphic branch
defined on the strip S such that this holomorphic function maps S into the
region in the first quadrant of the complex plane bounded above by the
parabola {(σ, τ) : στ = a}. In fact, Q−1(w) = w2 so that

x = σ2 − τ2, y = 2στ.

The new “flow at a corner” has the complex potential h(Q−1(w)) = cw2 =
c(σ2 − τ2 + 2iστ). Thus, the velocity field is

u = (2cσ, −2cτ).

The corresponding pressure is found from Bernoulli’s equation (6.65). In
fact, there is a constant p1 such that

p = p1 − 2c2(σ2 + τ2). (6.67)

The stream lines for the flow at a corner are all parabolas.
The flow near a wall is essentially plug flow. In fact, if we consider, for

example, the flow field on a vertical line orthogonal to the σ-axis, say the
line with equation σ = σ0, then the velocity field near the wall, where
τ ≈ 0, is closely approximated by the constant vector field (2cσ0, 0). In
other words, the velocity profile is nearly linear.

Exercise 6.18. Consider the plug flow vector field u = (c, 0) defined in a hori-
zontal strip in the upper half plane of width 2a. Find the push forward of u into
the first quadrant with respect to the map Q(z) =

√
z with inverse Q−1(w) = w2.

Is this vector field a solution of Euler’s equations at the corner? Explain.

A Boundary Layer Problem

We have just seen that planar steady state Euler flow has stream lines
that are (locally) orbits of both a Hamiltonian differential equation and a
gradient differential equation. Moreover, in our example of flow at a corner,
the velocity profile near the walls is linear. What about planar steady state
Navier–Stokes flow?
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Let us again consider the physical problem of flow at a corner (see [155,
p. 222]). By physical reasoning, we might expect that the most prominent
difference between Euler flow and Navier–Stokes flow at a corner is pro-
duced near the walls at the corner. The stream lines of the Euler flow are
bent near the corner, but the velocity of the flow field does not approach
zero at the walls—the fluid in the Euler model moves as if it had zero vis-
cosity. For the Navier–Stokes flow, where the viscosity of the fluid is taken
into account, the fluid velocity vanishes at the walls. On the other hand,
the Navier–Stokes flow far away from the corner would be expected to be
essentially the same as the Euler flow.

In our model, the fluid velocity field is assumed to be divergence free.
Because we are working in two space dimensions, this assumption implies
that there is a stream function; that is, the velocity field is Hamiltonian.
In fact, if the planar coordinates at the corner are renamed to x, y and
the velocity field u has components v, w so that the associated differential
equation for the fluid motion is

ẋ = v(x, y), ẏ = w(x, y),

then the orbits of this system correspond to solutions of the exact first or-
der differential equation dy/dx = w/v. Recall that the differential equation
is exact if the corresponding differential one-form wdx−vdy is closed; that
is, if ∂w/∂y+∂v/∂x = 0. Thus, there is a (locally defined) function ψ(x, y)
such that ∂ψ/∂x = −w and ∂ψ/∂y = v; that is, ψ is a stream function for
the flow. This result is proved in elementary courses in differential equa-
tions; it is also a special case of Poincaré’s lemma: If n > 0, then a closed
form on a simply connected region of R

n is exact.
Using the stream function for the Euler flow at the corner given by

(x, y) �→ 2cxy and some physical reasoning, we might guess that the stream
function for the corresponding Navier–Stokes flow is given by ψ(x, y) =
xg(y) for some function g to be determined. Of course, we are free to
assume our favorite form for this stream function. The problem is to show
that there is a corresponding solution of the Navier–Stokes equations and
to use this solution to predict the velocity profile for the flow near the
corner.

For the stream function ψ(x, y) = xg(y), the velocity field is

(v(x, y), w(x, y)) = (xg′(y),−g(y)). (6.68)

Because the formula for the pressure for the Euler flow is given by equa-
tion (6.67) and the unknown function g depends only on the second space
variable, let us postulate that the pressure for the Navier–Stokes flow is
given by

p(x, y) = p0 − 2c2(x2 + G(y)) (6.69)

where p0 is a constant, and G is a function to be determined.
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Figure 6.7: Plot of f ′(t/ε) versus t for the solution of the Falkner-Skan
boundary value problem (6.72) with ε = 1/10.

The steady state Navier–Stokes equations are

v
∂v

∂x
+ w

∂v

∂y
=

1
Re

∆v − ∂p

∂x
,

v
∂w

∂x
+ w

∂w

∂y
=

1
Re

∆w − ∂p

∂y
,

∂v

∂x
+

∂w

∂y
= 0 (6.70)

with the boundary condition that the velocity field (v(x, y), w(x, y)) van-
ishes at the wall.

If the velocity field (6.68) and the pressure (6.69) are inserted into the
Navier–Stokes equations (6.70), the system reduces to the equations

1
Re

g′′′ + gg′′ − (g′)2 + 4c2 = 0, G′ =
1

2c2 (gg′ +
1

Re
g′′) (6.71)

with the boundary conditions

g(0) = 0, g′(0) = 0.

We also have made the assumption that the velocity field (6.68) is the same
as the Euler velocity field (2cx,−2cy) far away from the wall. Ideally, we
must have 2cx ≈ xg′(y) for large y, that is,

lim
y→∞ g′(y) = 2c.

We will be able to solve for the pressure and thus construct the desired
solution of the system (6.70) provided that there is a solution of the first
equation of system (6.71) with the specified initial and boundary condi-
tions. Let us rescale with g := 2cf and define ε = 1/(cRe) to reduce our
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quest for a solution of system (6.70) to finding a function f that solves the
boundary value problem

εf ′′′ + ff ′′ − (f ′)2 + 1 = 0, f(0) = f ′(0) = 0, f ′(∞) = 1 (6.72)

for ε > 0 a small parameter (see Exercises 1.11, 1.146, and 6.19). The
ordinary differential equation, essentially the Falkner–Skan equation (see
[62], [83], [116], and [137]), is typical of a class of equations that arise
in “boundary layer theory,” the origin of an important class of “singular
perturbation problems,” (see [132], [134], [170], [175], and [179]).

Exercise 6.19. A proof of the existence of a solution of the boundary value
problem (6.72) is not trivial. This exercise outlines the main ingredients for a
geometric proof. Recall Exercise 1.146 and recast the boundary value problem as
follows: For ε > 0 sufficiently small, determine the existence of a solution of the
system

ẋ = y, ẏ = z, εż = y2 − xz − 1 (6.73)

such that x(0) = 0, y(0) = 0, and limτ→∞ y(τ) = 1. Equivalently, we may
consider the fast-time system

ẋ = εy, ẏ = εz, ż = y2 − xz − 1 (6.74)

and again seek a solution with x(0) = 0, y(0) = 0, and limt→∞ y(t) = 1. (a) For
system (6.74) with ε = 0, show that the plane {(x, y, z) : y = 1} is invariant and
the open ray {(x, y, z) : x > 0, y = 1, z = 0} is invariant with basin of attraction
{(x, y, z) : x > 0, y = 1}. (b) For ε > 0 and small, the qualitative structure of
part (a) persists. Show that the line {(x, y, z) : y = 1, z = 0} is invariant for
system (6.74) for all ε. (c) By part (a), the half-plane {(x, y, z) : x > 0, y = 1}
is the stable manifold of the open ray {(x, y, z) : x > 0, y = 1, z = 0}. This
qualitative structure will persist for sufficiently small ε. Justify this statement.
(d) This is the hard part. If ε > 0, then the two-dimensional stable manifold
for the open ray {(x, y, z) : x > 0, y = 1, z = 0} intersects the plane {(x, y, z) :
y = 0} and the curve of intersection meets the line {(x, y, z) : x = 0, y = 0}
exactly once. Show that if this statement is true, then the original boundary
value problem (6.73) has a unique solution. (e) Reproduce Figure (6.7). Hint: Set
x(0) = 0 and y(0) = 0 in system (6.74) and use Newton’s method to find a zero
of the function ζ → y(40, ζ)−1, where t �→ y(t, ζ) is the second component of the
solution of the system with the initial value y(0, ζ) = 0. This numerical method
is called shooting. Note: There is nothing special about the number 40; it is just
a choice for a large experimental value of the fast time. (f) Support the claim in
part (d) by numerical experiments. In particular, graph an approximation of the
intersection curve of the stable manifold and the plane.

6.3.2 ABC Flows
The dynamics of a fluid that is predicted by Euler’s equations (6.58) depend
on the region that confines the flow and on the initial velocity field. In this
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section, we will study the fluid dynamics of an ideal family of steady state
solutions that are periodic in the entire space relative to all three directions.

Let us seek a steady state solution u, a rest point of the infinite dimen-
sional flow given by Euler’s equations in Bernoulli’s form (6.63), that is
periodic in each space variable with period 2π. If there is such a steady
state, then it exists on all of R

3 so no additional boundary condition is
necessary. In effect, the usual boundary condition for Euler’s equations is
replaced by the periodicity requirements. For this reason our requirements
are called periodic boundary conditions. Also, if we like, we can view the
solution as a vector field on the (compact) three-dimensional torus T

3 de-
fined by considering each of the Cartesian coordinates of R

3 modulo 2π.
We will consider the special class of steady states given as solutions of the
system

u × curlu = 0, div u = 0. (6.75)

System (6.75) has many solutions, but certainly the most famous are the
velocity fields of the form

u = (A sin z + C cos y, B sin x + A cos z, C sin y + B cos x)

where A, B, and C are constants. These vector fields generate the ABC
flows (see [12], [16], [38], [44], [95], and [92]). The corresponding system of
ordinary differential equations

ẋ = A sin z + C cos y,

ẏ = B sin x + A cos z,

ż = C sin y + B cos x (6.76)

is a useful test example for the behavior of steady state Euler flow.
By rescaling the system and the time parameter, and by reordering the

variables if necessary, all the interesting cases for different parameter values
can be reduced to the consideration of parameters satisfying the inequalities
A = 1 ≥ B ≥ C ≥ 0. To obtain a perturbation problem, let us consider
the system with A = 1 > B = β > C = ε where ε is a small parameter.
Also, to simplify some formulas to follow, let us introduce a translation of
the first variable x �→ x + π/2. The ABC system that we will study then
has the form

ẋ = sin z + ε cos y,

ẏ = β cos x + cos z,

ż = −β sin x + ε sin y (6.77)

where 0 < β < 1, and ε ≥ 0 is a small parameter.
Note that the subsystem

ẋ = sin z, ż = −β sin x (6.78)
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Figure 6.8: Computer generated phase portrait for system (6.78) with β =
0.16.

of system (6.77) is Hamiltonian with respect to the Hamiltonian function

H(x, z) := β cos x + cos z. (6.79)

Of course, the function H is constant on orbits of system (6.78).
A typical phase portrait for system (6.78) is depicted in Figure 6.8. In-

dependent of the choice of β, there is a rest point at the origin surrounded
by a period annulus A whose outer boundary consists of two hyperbolic
saddle points with coordinates (±π, 0) together with the heteroclinic orbits
connecting these saddles (see Exercise 6.20). If we view the system on T

3,
then these saddle points coincide, and the boundary of the period annulus
is just one saddle and a homoclinic orbit.

Exercise 6.20. Prove the statements made in this section about the phase
portrait of system (6.78).

Each orbit Γh in A corresponds to a level set of H given by

Γh := {(x, z) : H(x, z) = h}

for some h in the range 1 − β < h < 1 + β. The boundary of the period
annulus corresponds to the level set with h = 1 − β.

On each orbit in the closure of the period annulus A for the unperturbed
system (6.78) we have that

ẏ = β cos x + cos z = h
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for some “energy” h > 0. It follows that ẏ is positive everywhere in an
open neighborhood of the closure of A. Let us therefore view y as a time-
like variable for the perturbed system and consider the associated system

x′ =
sin z

β cos x + cos z
+ ε

cos y

β cos x + cos z
,

z′ =
−β sin x

β cos x + cos z
+ ε

sin y

β cos x + cos z
(6.80)

where ′ denotes differentiation with respect to y. Of course, if we find a
solution

y �→ (x(y, ε), z(y, ε)) (6.81)

of system (6.80), then there are corresponding solutions

t �→ (x(y(t), ε), y(t), z(y(t), ε)) (6.82)

of system (6.77) obtained by solving the equation

ẏ = β cos x(y, ε) + cos z(y, ε). (6.83)

Let us notice that system (6.80) with ε = 0 is the same as system (6.78)
up to a reparametrization of the independent variable. Moreover, the un-
perturbed system (6.80) is a Hamiltonian system with respect to the Hamil-
tonian function (6.79). Finally, we have the following useful proposition: If
y �→ (x(y), z(y)) is the solution of the unperturbed system (6.80) with the
initial condition x(0) = 0, z(0) = z0, then

−x(−y) = x(y), z(−y) = z(y), (6.84)

that is, x is odd and z is even. To see this, consider the new functions u
and v defined by

(u(y), v(y)) = (−x(−y), z(−y))

and verify that the function y �→ ((u(y), v(y)) is a solution of the unper-
turbed system (6.80) with the initial condition u(0) = 0, v(0) = z0.

6.3.3 Chaotic ABC Flows
The unperturbed system (6.80) has heteroclinic cycles. For example, a cycle
is formed by the hyperbolic saddle points at (x, z) = (±π, 0) and their
connecting orbits. (Note that this cycle is also the boundary of a period
annulus.) Or, if we view the system on the phase cylinder obtained by
considering the variable x as an angle, then this cycle has only one saddle
point and it is connected by two distinct homoclinic orbits. In this section
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we will see that for all but one value of the parameter β in the interval
0 < β < 1, the Melnikov function along these heteroclinic orbits has simple
zeros. Thus, for sufficiently small ε > 0, system (6.80), and of course the
corresponding original ABC system, has a chaotic invariant set. This result
serves as an interesting application of our perturbation theory. It suggests
that “real” fluids have chaotic motions.

Let us recall that the unperturbed heteroclinic orbits lie on the set

{(x, z) : cos z + β cos x = 1 − β}, (6.85)

and let us consider the unperturbed solution y �→ (x(y), z(y)) starting
at the point (0, arccos(1 − 2β)). The Melnikov function is given (up to a
nonzero scalar multiple) by

M(φ) =
1

(1 − β)2

∫ ∞

−∞
(sin(z(y + φ)) sin y + β sin(x(y + φ)) cos y) dy.

(6.86)

This integral is easily transformed to the more useful representation

M(φ) =
sin φ

(1 − β)2

∫ ∞

−∞
(β sin x(s) sin s − sin z(s) cos s) ds (6.87)

by first changing the independent variable in the integral (6.86) to s := y+θ
and then by using the sum formulas for sine and cosine together with the
facts that the function y �→ sin x(y) is odd and y �→ sin z(y) is even. If, in
addition, we apply integration by parts to obtain the formula∫ ∞

−∞
sin z(s) cos s ds =

β

1 − β

∫ ∞

−∞
cos z(s) sinx(s) sin s ds,

and substitute for cos z(s) from the energy relation in display (6.85), then
we have the identity∫ ∞

−∞
sin z(s) cos s ds =

∫ ∞

−∞
β sin x(s) sin s ds

− β2

1 − β

∫ ∞

−∞
sin x(s) cos x(s) sin s ds.

Finally, by substitution of this identity into equation (6.87), we obtain the
following representation for the Melnikov function

M(φ) =
β2 sin φ

(1 − β)3

∫ ∞

−∞
sin x(s) cos x(s) sin s ds. (6.88)

Of course it is now obvious that the Melnikov function will have infinitely
many simple zeros along the heteroclinic orbit provided that the integral

Is :=
∫ ∞

−∞
sin x(s) cos x(s) sin s ds.
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does not vanish.
To determine if Is is not zero, let us consider a method to evaluate

this improper integral. The first step is to find explicit formulas for the
unperturbed solution. Note that z(y) > 0 along the heteroclinic orbit.
Integrate the unperturbed differential equation

x′(y)
sin z(y)

=
1

1 − β

on the interval (0, y), and use the energy relation to obtain the equation

y

1 − β
=

∫ x(y)

0

1√
1 − ((1 − β) − β cos s)2

ds

=
1
β

∫ x(y)

0

1√
(1 + cos s)((2 − β(1 + cos s))

ds.

The form of the last integrand suggests the substitution u = 1 + cos s,
which transforms the integral so that the last equality becomes

y
√

β

1 − β
= −

∫ 1+cos x(τ)

2

1
u
√

(2 − u)(2 − βu)
du.

Using the indefinite integral∫
1

u
√

(2 − u)(2 − βu)
du = −1

2
ln

(4
√

(2 − u)(2 − βu) − 2(β + 1)u + 8
u

)
and a simple algebraic computation, we have the equality

cos x(y) = − (β − 1)e4cy + 2(3 − β)e2cy + β − 1
(β − 1)e4cy − 2(β + 1)e2cy + β − 1

where

c :=
√

β

1 − β
.

Also, by the trigonometric identity sin2 x + cos2 x = 1, we have that

sin x(y) = −4
√

1 − β
ecy(ecy − 1)

(β − 1)e4cy − 2(β + 1)e2cy + β − 1
.

Define

F (w) := −4(1 − β)−3/2 w(w2 − 1)((1 − β)w4 + 2(β − 3)w2 + 1 − β)
(w4 + 2 1+β

1−β w2 + 1)2
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and note that

Is =
∫ ∞

−∞
F (ecy) sin y dy

=
∫ ∞

−∞
F (eζ

√
β) sin((1 − β)ζ) dζ.

Also, note that the poles of the integrand of Is correspond to the zeros of the
denominator of F . To determine these zeros let us write the denominator
in the factored form

w4 + 2
1 + β

1 − β
w2 + 1 = (w2 − u1)(w2 − u2)

where

u1 :=
√

β − 1√
β + 1

, u2 :=
√

β + 1√
β − 1

.

The poles corresponding to e2ζ
√

β = u1 are

ζ =
1

2
√

β

(
ln(−u1) + πi + 2kπi

)
, k ∈ Z,

where Z denotes the set of integers, and the poles corresponding to u2 are

ζ =
1

2
√

β

(
ln(−u2) − πi + 2kπi

)
, k ∈ Z.

The locations of the poles suggest integration around the rectangle Γ in
the complex plane whose vertices are T , T + iπ/

√
β, −T + iπ/

√
β, and

−T . In fact, for sufficiently large T > 0, Γ encloses exactly two poles of the
integrand, namely,

ζ1 :=
1

2
√

β

(
ln(−u1) + πi

)
, ζ2 :=

1
2
√

β

(
ln(−u2) + πi

)
.

The function F defined above is odd. It also has the following property:
If w �= 0, then F (1/w) = −F (w). Using these facts, the identity sin ζ =
(eiζ − e−iζ)/(2i), and a calculation, our integral can be recast in the form

Is = −i

∫ ∞

−∞
F
(
eζ

√
β
)
ei(1−β)ζ dζ.

For notational convenience, define

K := K(β) =
(1 − β)π

2
√

β
,
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and also consider the contour integral∫
Γ

F
(
eζ

√
β
)
ei(1−β)ζ dζ.

The corresponding path integral along the upper edge of Γ is just e−2K

multiplied by the path integral along the lower edge. Also, by using the
usual estimates for the absolute value of an integral, it is easy to see that
the path integrals along the vertical edges of Γ approach zero as T increases
without bound. Thus, the real improper integral Is is given by

Is = −i
(
1 + e−2K)−1

∫
Γ

F
(
eζ

√
β
)
ei(1−β)ζ dζ

= 2π
(
1 + e−2K)−1(Res(ζ1) + Res(ζ2)) (6.89)

where the residues are computed relative to the function G given by

G(ζ) := F
(
eζ

√
β
)
ei(1−β)ζ .

Define

F1(w) := (w2 − u1)2F (w), F2(w) := (w2 − u2)2F (w)

and compute the Laurent series of G at ζ1 and ζ2 to obtain the following
residues:

Res(ζ1) =
ei(1−β)ζ1

4βu2
1

(√
βeζ1

√
βF ′

1
(
eζ1

√
β
)

−
(
2
√

β − i(1 − β)
)
F1

(
eζ1

√
β
))

,

Res(ζ2) =
ei(1−β)ζ2

4βu2
2

(√
βeζ2

√
βF ′

2
(
eζ2

√
β
)

−
(
2
√

β − i(1 − β)
)
F2

(
eζ2

√
β
))

.

To simplify the sum of the residues, let us define

A := cos
(1 − β

2
√

β
ln(−u2)

)
, B := sin

(1 − β

2
√

β
ln(−u2)

)
so that

ei(1−β)ζ1 = e−K(A − Bi), ei(1−β)ζ2 = e−K(A + Bi),

and let us note that since u1 = 1/u2, we have

eζ1
√

βeζ2
√

β = −1.

Also, note that the function F1 is odd, F ′
1 is even, and verify the following

identities:

F1(1/w) = − 1
w4u2

2
F2(w),

F ′
1(1/w) =

1
w2u2

2
F ′

2(w) − 4
w3u2

2
F2(w).
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Figure 6.9: Some orbits of the stroboscopic Poincaré map for system (6.80)
with ε = 0.01 and β = 0.1.

Finally, for notational convenience, define L :=
√

−u2 .
Using the notation and the identities just mentioned, the residues are

given by

Res(ζ1) =
e−K

4βu2
2

(
(A − Bi)(−iL

√
β F ′

2(iL) +
(
2
√

β + i(1 − β)
)
F2(iL)

)
,

Res(ζ2) =
e−K

4βu2
2

(
(A + Bi)(iL

√
β F ′

2(iL) −
(
2
√

β − i(1 − β)
)
F2(iL)

)
.

Thus, in view of formula (6.89), we have

Is =
πe−K

βu2
2(1 + e−2K)

(
B
√

β
(

− 2iF2(iL) − LF ′
2(iL)

)
+ A(1 − β)iF2(iL)

)
.

(6.90)

The quantities

F ′
2(iL) =

4(1 +
√

β )2(β + 2
√

β ) − 1)√
1 − β (1 −

√
β )β3/2

,

−iF2(iL) = 4
(1 +

√
β

1 −
√

β

)1/2 (1 +
√

β )2√
1 − β (1 −

√
β )β

are real and −iF2(iL) is nonzero for 0 < β < 1. Also, if the identity

2 + L F ′
2(iL)

iF2(iL)
=

1 − β√
β
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Figure 6.10: Blowup of Figure (6.9) near the unperturbed hyperbolic saddle
point at (x, z) = (π, 0). Several orbits are depicted.

is inserted into equation (6.90), then

Is =
π(1 − β)e−K

βu2
2(1 + e−2K)

(−iF2(iL))
(
B − A

)
.

Remark 2. The computation of the Melnikov function for the ABC flow
given here follows the analysis in [38] where there are a few computational
errors that are repaired in the analysis of this section. In particular, the
final value of Is reported in [38] is not correct.

Clearly, Is = 0 if and only if A = B, or equivalently if

tan
(1 − β

2
√

β
ln

(1 +
√

β

1 −
√

β

))
= 1.

The last equation has exactly one root for β in the open unit interval:
β ≈ 0.3. Thus, except at this one parameter value, our computation proves
that the perturbed stable and unstable manifolds intersect transversally,
and, as a result, the corresponding perturbed flow is chaotic in a zone near
these manifolds.

The results of a simple numerical experiment with the dynamics of sys-
tem (6.80) are depicted in Figure 6.9 and Figure 6.10. These figures each
depict several orbits of the stroboscopic Poincaré map—the independent
variable y is viewed as an angular variable modulo 2π. Figure 6.10 is a
blowup of a portion of Figure 6.9 near the vicinity of the unperturbed sad-
dle point at (x, z) = (π, 0). The results of this experiment suggest some of
the fine structure in the stochastic layer that forms after breaking the het-
eroclinic orbits of the unperturbed Poincaré map. As predicted, the orbit
structure appears to be very complex (see [16]).
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Figure 6.11: The figure depicts the attractor for the stroboscopic Poincaré
map for the system θ̈ +µθ̇ +sin θ = −1/10+2 cos(2t) sin θ where, from left
to right, µ = 0.03, 0.0301, 0.1, 0.5, 0.56, and 0.65.

Exercise 6.21. Reproduce Figures 6.9 and 6.10. The value ε = 0.01 was used
to obtain an easily reproducible picture. Note that our theory only predicts the
existence of chaotic invariant sets for sufficiently small ε. Probably ε = 0.01 is too
big. Perform a series of numerical experiments to illustrate how the stochastic
layer changes as ε changes for both smaller and larger values of ε.

Exercise 6.22. Discuss the statement: “The ABC system is conservative.”
Note that system (6.80) is a perturbed Hamiltonian system with no damping.
The nature of chaotic invariant sets for dissipative systems can be quite different
from the chaotic invariant sets for Hamiltonian systems. In particular, dissipa-
tive systems can have chaotic attractors. Roughly speaking, a chaotic attractor
S is a compact invariant set with a dense orbit such that S contains the ω-limit
set of every orbit in an open neighborhood of S. Although it is very difficult to
prove the existence of chaotic attractors, numerical evidence for their existence
is abundant. Consider the stroboscopic Poincaré map on the phase cylinder for
the parametrically excited pendulum with damping and torque given by

θ̈ + µθ̇ + sin θ = −τ + a cos(2t) sin θ.

Let the usual coordinates on the phase cylinder be (v, θ) where v := θ̇. It is
convenient to render the graphics in a new coordinate system on the cylinder
that flattens a portion of the cylinder into an annulus on the plane. For example,
in Figure 6.11 iterates of the Poincaré map are plotted in the (x, y)-plane with

x = (2(4 − v))1/2 cos θ, y = (2(4 − v))1/2 sin θ
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for the system

θ̈ + µθ̇ + sin θ = − 1
10

+ 2 cos(2t) sin θ

for six different values of µ. In each case a single orbit is depicted. The same
picture is obtained independent of the initial value for the iterations as long as
the first few iterations are not plotted. Thus, it appears that each depicted orbit
is near an attractor. Reproduce Figure 6.11. Also, explore other regions of the
parameter space of the oscillator by performing numerical experiments. To learn
more about chaotic attractors, see, for example, [103], [194], and [233].

Periodic Orbits of ABC Flows

In the last section we proved that the ABC system has chaotic invariant
sets for some choices of the parameters. If such a set exists as a consequence
of the transversal intersection of stable and unstable manifolds near an un-
perturbed heteroclinic cycle, then it follows from a general theory (one
which we have not presented here) that the chaotic invariant set contains
infinitely many periodic orbits. But, this result does not tell us if any of the
unperturbed periodic orbits in the various resonant tori are continuable. Al-
though the rigorous determination of the continuable unperturbed periodic
orbits seems to be a difficult problem which is not yet completely solved,
we will use this problem as a vehicle to introduce some new techniques.

Before we begin the continuation analysis, let us note that if we find a
continuable subharmonic of the unperturbed system (6.80), then there is
a corresponding family of periodic solutions of system (6.77). To see this,
let us suppose that the family of solutions (6.81) is a continuation of an
unperturbed periodic orbit with period 2πm for some positive integer m,
and let us consider the solutions of the equation (6.83) with the initial
condition y(0) = 0. Because the family (6.81) at ε = 0 is a periodic orbit
of the unperturbed system (6.80), there is a number h such that

β cos x(y, 0) + cos z(y, 0) = h.

Thus, t �→ ht is a solution of equation (6.83). Since this solution is complete,
if ε is sufficiently small, then the solution t �→ y(t, ε) of system (6.83) such
that y(0, ε) = 0 exists at least on the interval

0 ≤ t ≤ 2πm

h
.

Moreover, there is a positive function ε �→ η(ε) such that η(0) = 2πm/h
and

y(η(ε), ε) = 2πm.

The corresponding vector function

t �→ (x(y(t, ε), ε), y(t, ε), z(y(t, ε), ε)) (6.91)
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is a solution of system (6.77). Moreover, we have, for example, the equations

x(y(η(ε), ε), ε) = x(2πn, ε) = x(0, ε) = x(y(0, ε), ε);

that is, the function s �→ x(y(s, ε), ε) is periodic with period η(ε). Of course,
the same is true for the function s �→ x(z(s, ε), ε), and it follows that, for
each fixed small ε, the function (6.91) is a periodic solution of the ABC
system.

As we have seen, the unperturbed system (6.80) has a period annulus A
surrounding the origin whose boundary contains hyperbolic saddle points.
These saddle points are fixed points of the stroboscopic Poincaré map that
persist under perturbation (see Exercise 6.23). In the perturbed system
their continuations are unstable periodic orbits, as are the corresponding
periodic orbits of the ABC system. This fact is important for proving the
hydrodynamic instability of the ABC systems (see [92]).

Exercise 6.23. Prove that the hyperbolic saddle points in the phase plane for
the unperturbed system (6.80) viewed as periodic orbits in the corresponding
phase cylinder persist as hyperbolic periodic orbits under perturbation in sys-
tem (6.80) and that these perturbed periodic orbits are hyperbolic saddle type
periodic orbits for the corresponding ABC system.

As the periodic orbits in A approach the outer boundary of this period
annulus, the corresponding periods increase without bound. Therefore, the
period annulus A is certainly not isochronous. We might expect this period
annulus to be regular. But, because this is not always the case, the per-
turbation analysis for this problem is complicated. Note, however, that the
continuation theory will apply if we can find a resonant unperturbed peri-
odic orbit Γ for the system (6.80) such that the derivative of the associated
period function does not vanish at Γ and simultaneously the associated
subharmonic Melnikov function (5.67) has simple zeros.

As discussed in the last section, periodic orbits in A are in one-to-one
correspondence with their energy h, with 1 − β < h < 1 + β. Also, let us
consider the corresponding period function h �→ T (h) where T (h) is the
minimum period of the periodic orbit denoted Γ(h). Because the perturba-
tion terms are periodic with period 2π, the periodic orbit Γ(h) is in (m : n)
resonance provided that

2πm = nT (h).

Let us fix h and assume for the moment that T ′(h) �= 0 so that the
required regularity assumption is satisfied, and let us consider the solution
y �→ (x(y), z(y)) of the unperturbed system with orbit Γ(h) and initial
condition (x(0), y(0)) = (0, arccos(h − β)). Because the divergence of the
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unperturbed system vanishes, simple zeros of the function

M(φ) =
1
h2

∫ 2πm

0
(sin(z(y + φ)) sin y + β sin(x(y + φ)) cos y) dy

correspond to continuation points. By an argument similar to the one used
to derive equation (6.88), it is easy to show that

M(φ) =
β2

h3 sin φ

∫ 2πm

0
sin x(s) cos x(s) sin s ds.

Thus, using our continuation analysis, in particular Theorem 5.38, we have
proved the following proposition.

Proposition 6.24. Suppose that Γ(h) is an (m : n) resonant unperturbed
periodic orbit of system (6.80) with energy h in a period annulus with period
function T and s �→ (x(s), y(s)) is an unperturbed solution with orbit Γ(h).
If T ′(h) �= 0 and

I(h) :=
∫ 2πm

0
sin(2x(s)) sin s ds �= 0, (6.92)

then there are 2m continuation points on Γ(h).

To apply Proposition 6.24 to prove that there are in fact 2m continuation
points on the orbit Γ(h) we must show that I(h) �= 0 and T ′(h) �= 0.
But, even if we cannot do this rigorously, our analysis is still valuable. For
example, if we fix β, then we can use numerical approximations to graph the
functions I and T as an indication of the validity of the requirements. This
is probably a more reliable method than a direct search for the periodic
solutions by numerical integration of the perturbed differential equations.

There is no simple argument to show that I(h) �= 0. In fact, for most res-
onances, I(h) vanishes and our first order method fails. A precise statement
is the content of the next proposition.

Proposition 6.25. If n �= 1, then I(h) = 0.

Proof. To prove the proposition, use the periodicity of the integrand to
recast the integral as

I(h) =
∫ πm

−πm

sin(2x(s)) sin s ds.

Then, by the change of variables s = mσ and the resonance relation we
have that

I(h) = m

∫ π

−π

sin
(
2x

(nT (h)
2π

σ
))

sin mσ ds.
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The function

t �→ sin
(
2x

(T (h)
2π

t
)
)

is odd and 2π-periodic. Thus, it can be represented by a (convergent)
Fourier sine series, say

∞∑
ν=1

bν(h) sin νt.

If this series is evaluated at t = nσ and inserted into the integral, all but
one of the summands vanish. The exceptional term is

bν(h)
∫ π

−π

sin nνσ sin mσ dσ

with nν = m. Since m and n are relatively prime, this term can only be
nonzero if n = 1 and ν = m, as required. Moreover, I(h) �= 0 if and only if
the Fourier coefficient bν(h) �= 0. �

Exercise 6.26. Prove: If t �→ y(t) is an odd periodic function with period 2π/ω
and 2πn/ω = 2πm/Ω for relatively prime integers m and n with n > 1, then

∫ 2πn/ω

0
y(t) sin Ωt dt = 0.

Although an antiderivative for the integrand of I(h) at an (m : 1) res-
onance cannot be expressed in elementary functions, this integral can be
evaluated using Jacobi elliptic functions. We will indicate the procedure for
doing this below. Unfortunately, the resulting value seems to be too com-
plex to yield a simple statement of precisely which of the (m : 1) resonances
are excited at first order. Therefore we will not give the full derivation here.
Instead, we will use this problem to introduce the Jacobi elliptic functions
and the Picard–Fuchs equation for the period function. For a partial result
on the existence of continuable periodic orbits see [38] and Exercise 6.27.
In fact, most of the (m : 1) resonances are excited.

Exercise 6.27. This exercise is a research project. For which (m : 1) resonances
of system (6.80) is the integral (6.92) not zero?

Let us now glimpse into the wonderful world of elliptic integrals, a gem of
19th century mathematics that remains a very useful tool in both modern
pure and applied mathematics (see [30] and [234]). Perhaps the best way
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to approach the subject of special functions is to view it in analogy with
trigonometry. The trigonometric functions are so familiar that we tend not
to notice how they are used. Often, we operate with these functions simply
by using their properties—periodicity and trigonometric identities. We do
not consider their values, except at a few special values of their arguments.
The complete elliptic integrals and the Jacobi elliptic functions that we will
mention below can be treated in the same way. Of course, it is clear why
the trigonometric functions show up so often: Circles appear everywhere in
mathematics! The reason why elliptic functions show up so often is deeper;
perhaps after more familiarity with the subject this reason will become
apparent.

What are elliptic functions? For 0 ≤ φ ≤ π/2 and 0 ≤ k ≤ 1, define

u := u(φ, k) =
∫ φ

0

1√
1 − k2 sin2 θ

dθ.

The Jacobi elliptic functions are functions of two variables defined as fol-
lows:

sn(u, k) := sinφ, cn(u, k) := cos φ, dn(u, k) :=
√

1 − k2 sn2(u, k)

where the argument k it is called the elliptic modulus. The complete elliptic
integrals of the first and second kinds are defined, respectively, by

K(k) :=
∫ π/2

0

1√
1 − k2 sin2 θ

dθ, E(k) :=
∫ π/2

0

√
1 − k2 sin2 θ dθ.

The domain of the Jacobi elliptic functions can be extended to the entire
complex plane where each of these functions is “doubly periodic”; for ex-
ample, sn has the periods 4K(k) and 2iK(

√
1 − k2 ), and cn has the periods

4K(k) and 2K(k) + 2iK(
√

1 − k2 ). In fact, more generally, a doubly peri-
odic meromorphic function for which the ratio of its periods is not real is
called an elliptic function. By the definitions of the Jacobi elliptic functions,
we have the identities

sn2(u, k) + cn2(u, k) = 1, dn2(u, k) + k2 sn2(u, k) = 1.

These are just two simple examples of the many relations and identities
that are known.

Exercise 6.28. Consider the solution t �→ (x(t), y(t)) of the system of differ-
ential equations ẋ = −y, ẏ = x with the initial condition x(0) = 1 and y(0) = 0,
and define the sine and cosine functions by

(x(t), y(t)) = (cos t, sin t).
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Prove the basic trigonometric identities and periodicity properties of the sine and
cosine using this definition. Also, prove that

θ =
∫ sin θ

0

1√
1 − s2

ds.

Suppose that 0 < k < 1 and consider the solution of the system of differential
equations

ẋ = yz, ẏ = −xz, ż = −k2xy

with initial condition (x(0), y(0), z(0)) = (0, 1, 1). Show that this solution is given
by

(x(t), y(t), z(t)) = (sn(t, k), cn(t, k), dn(t, k)).

If this solution is taken as the definition of the Jacobi elliptic functions, then it
is possible to derive many of the most important properties of these functions
without too much difficulty (see [22, p. 137]).

Exercise 6.29. Consider the pendulum model given by θ̈ + λ sin θ = 0, define
the phase plane in the usual manner by defining a new variable v := θ̇, and note
that there is a center at the origin of the phase plane. The period function for the
corresponding period annulus is not constant. Fill in the details of the following
derivation of a formula for this period function.

If the periodic orbit meets the θ-axis at θ = θ0, then the energy surface corre-
sponding to the periodic orbit is the graph of the relation

v2 = 2λ(cos θ − cos θ0).

Note that dθ/dt = v and consider the symmetries of the periodic orbit to deduce
that the period T of the orbit is given by

T =
4√
2λ

∫ θ0

0

1√
cos θ − cos θ0

dθ.

Use the identity cos θ = 1 − 2 sin2(θ/2) to rewrite both of the terms cos θ and
cos θ0 in the integrand, and then change variables in the integral using

sin φ =
sin(θ/2)
sin(θ0/2)

to obtain the formula

T =
4√
λ

∫ π/2

0

1√
1 − k2 sin2 φ

dφ =
4√
λ

K(k), k = sin(θ0/2).

Show that the limit of the period function as the periodic orbits approach the
origin is T (0) := 2π/

√
λ and that the period function grows without bound as

the periodic orbits approach the outer boundary of the period annulus. Suppose
that the bob of a physical pendulum is pulled out 15◦, 30◦, or 90◦ from the
downward vertical position and released from rest. Approximate the periods of
the corresponding periodic motions using a numerical integration or a careful



6.3 Origins of ODE: Fluid Dynamics 507

analysis of the series expansion of K in powers of k. What percent error is made
if these periods are approximated by T (0)? (Galileo is said to have deduced
that the period of the librational motion of a pendulum does not depend on its
amplitude. He made this deduction while sitting in a cathedral and observing a
chandelier swinging in the breeze blowing through an open window. Discuss his
theory in light of your approximations.)

How do the elliptic functions arise for the ABC flows? To answer this
question, let us consider the solution y �→ (x(y), z(y)) of the unperturbed
system (6.80) defined above with the initial condition

x(0) = 0, z(0) = arccos((h − β))

and note that the corresponding orbit Γ(h) meets the positive x-axis at the
point with coordinates

(arccos((h − 1)/β), 0).

The first equation of the unperturbed system (6.80) can be rewritten in
the form

1
sin z(y)

x′(y) =
1
h

.

If we restrict attention for the moment to the portion of Γ(h) in the first
quadrant with y > 0, then after integration, we have the identity

y

h
=

∫ y

0

x′(τ)
sin z(τ)

dτ.

If we apply the change of variables s = x(τ) followed by t = − cos s and
rearrange the integrand, then we have the identity

βy

h
=

∫ − cos x(y)

c

1√
a − t

√
b − t

√
t − c

√
t − d

dt

where

a := 1, b :=
1 − h

β
, c := −1, d := −1 + h

β

and a > b ≥ − cos x(y) > c > d. This integral can be evaluated using the
Jacobi elliptic functions (see [30, p. 112]) to obtain

βy

h
=

√
β sn−1(sin φ, k)

where

k2 =
(1 + β)2 − h2

4β
, sin φ =

( 2β(1 − cos x(y))
(1 − h + β)(1 + h − β cos x(y)

)1/2
.
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It follows that

cos x(y) =
1 − A2 sn2(βy/h, k)
1 − B2 sn2(βy/h, k)

with

A2 :=
(1 − h + β)(1 + h)

2β
, B2 :=

1 − h + β

2
,

and, using the trigonometric identity sin2 θ + cos2 θ = 1, we also have

sin x(y) =
√

2
√

A2 − B2 sn(βy/h, k) dn(βy/h, k)
1 − B2 sn2(βy/h, k)

.

Moreover, it is easy to see that the solution formulas for sinx(y) and
cos x(y) are valid for all y.

The function sn has real period 4K; and therefore, the period of Γ(h) is
given by

T =
4h√
β

K(k(h)) = 8
√

C2 − k2 K(k)

where

C2 =
(1 + β)2

4β
.

Because dh/dk < 0, the critical points of T are in one-to-one correspon-
dence with the critical points of the period function viewed as a function
of the elliptic modulus k.

There is a beautiful approach to the study of the monotonicity properties
of T that is based on the following observation: The derivatives of the
complete elliptic integrals E and K can be expressed as linear combinations
(with function coefficients) of the same complete elliptic integrals. In fact,
we have

E′(k) =
E(k) − K(k)

k
, K ′(k) =

E(k) − (1 − k2)K(k)
k(1 − k2)

.

Of course, this means that K ′′ and E′′ can also be expressed in the same
manner. As a result, the three expressions for T (k), T ′(k), and T ′′(k) are
all linear combinations of the two functions E(k) and K(k). Thus, T , T ′,
and T ′′ must be linearly dependent; that is, T satisfies a second order
differential equation. In fact, T satisfies the Picard–Fuchs equation

C2 − k2

k(1 − k2)
T ′′ +

k4 + (1 − 3C2)k2 + C2

k2(1 − k2)2
T ′

+
(1 − 2C2)k2 + C2(2 − C2)

k(C2 − k2)(1 − k2)2
T = 0.



6.3 Origins of ODE: Fluid Dynamics 509

The function T is positive, 0 < k < 1, and 1 < C2 < ∞. By the Picard–
Fuchs equation, if T ′(k) = 0, then the sign of T ′′(k) is the same as the sign
of the expression

C := C2(C2 − 2) + (2C2 − 1)k2.

We also have the Taylor series expansion

T (k) = 4πC +
π(C2 − 2)

C
k2 + O(k4).

These facts are the key ingredients required to prove the following two
propositions: 1) If C2 > 2, then T has no critical points. 2) T has at most
two critical points. The proofs are left as exercises.

Exercise 6.30. (a) Prove: If f and g are two functions such that f ′, f ′′, g′, and
g′′ are all linear combinations (with function coefficients) of f and g, then every
linear combination T of f and g is a solution of a homogeneous second order ODE.
(b) Find a second order ODE satisfied by the function x �→ a sin x+ b cos x where
a and b are constants. Prove that this function does not have a positive relative
minimum. (c) Repeat part (b) for the function x �→ x sin x + x cos x. (d) Repeat
part (b) for the function x �→ Jν(x) + J ′

ν(x) where Jν is the Bessel function
of the first kind of order ν and a is a constant. Hint: Recall Bessel’s equation
x2J ′′

ν +xJ ′
ν+(x2−ν2)Jν = 0. (e) Formulate a general theorem that uses properties

of the coefficients of the second order ODE satisfied by T and the asymptotics
of T at the origin to imply that T is a monotone function. Apply your result to
prove that the function T : (0, 1) → R given by T (k) = 2E(k) − (2 − k2)K(k) is
negative and monotone decreasing (see [42, page 290]).



7
Averaging

This chapter is an introduction to the method of averaging—a far-reaching
and rich mathematical subject that has many important applications. Our
approach to the subject is through perturbation theory; for example, we will
discuss the existence of periodic orbits for periodically forced oscillators.
In addition, some ideas will be introduced that have implications beyond
the scope of this book.

We have already discussed in Section 3.2 applications of the method of
averaging to various perturbations of a Keplerian binary. While an un-
derstanding of these applications is not required as background for the
mathematical theory in this chapter, a review of the Keplerian perturba-
tion problem in celestial mechanics is highly recommended as a wonderful
way to gain an appreciation for the subject at hand. For further study there
are many excellent mathematical treatments of the theory and applications
of the method of averaging (see, for example, [12], [14], [106], [146], [170],
[201] and [103], [134], [145], [175], [233]).

7.1 The Averaging Principle

Let us consider a family of differential equations given by

u̇ = f(u) + εg(u, t, ε), u ∈ R
n (7.1)



512 7. Averaging

where the perturbation term is periodic in time with period η > 0. Also,
let us suppose that the unperturbed system

u̇ = f(u), u ∈ R
n (7.2)

is completely integrable (see Exercise 5.60). In this case, a theorem of
Joseph Liouville states that the phase space for the unperturbed system is
foliated by invariant tori (see [12]). We will not prove this result; instead,
we will simply assume that a region of the phase space of our unperturbed
system is foliated by invariant tori. In the planar case, this is exactly the
assumption that the unperturbed system has a period annulus.

The method of averaging is applied after our system is transformed to
the standard form

İ = εF (I, θ), θ̇ = ω(I) + εG(I, θ).

The new coordinates (I, θ), called action-angle variables, are always de-
fined under our integrability assumption on the unperturbed system. To
illustrate this result, we will construct the action-angle variables for the
harmonic oscillator and outline the construction for a general planar Hamil-
tonian system; the Delaunay elements, defined for the Kepler problem in
Section 3.2, provide a more substantial example.

The harmonic oscillator is the Hamiltonian system

q̇ = p, ṗ = −ω2q, (7.3)

with Hamiltonian H : R × R → R, which represents the total energy, given
by

H(q, p) :=
1
2
p2 +

1
2
ω2q2.

For this system, the entire punctured plane is a period annulus, the periodic
orbits correspond to regular level sets of H, and each level set is an ellipse.
Similarly, if a general one-degree-of-freedom Hamiltonian system

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(7.4)

with Hamiltonian H : R × R → R has a period annulus A, then each
periodic orbit in A is a subset of a regular level set of H.

In case A is a period annulus for the Hamiltonian system (7.4), let
O(q0, p0) denote the periodic orbit that passes through the point (q0, p0) ∈
A, and note that O(q0, p0) is a subset of the regular energy surface

{(q, p) ∈ R
2 : H(q, p) = H(q0, p0)}.

The function I : A → R defined by

I(q0, p0) :=
1
2π

∫
O(q0,p0)

p dq (7.5)
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is called the action variable for the Hamiltonian system on the period an-
nulus. Its value at (q0, p0) is the normalized area of the region in the phase
space enclosed by the periodic orbit O(q0, p0). (The action variable should
not be confused with the action integral of a mechanical system, which is
the integral of its Lagrangian over a motion.)

For the harmonic oscillator, the action variable at (q0, p0) �= (0, 0) is
1/(2π) multiplied by the area enclosed by the ellipse O(q0, p0) with equation

1
2
p2 +

1
2
ω2q2 =

1
2
a2

where a := (p2
0+ω2q2

0)1/2. The area of the ellipse (π times the product of the
lengths of its semimajor and semiminor axes) is a2/ω. Therefore, the action
variable for the harmonic oscillator is proportional to its Hamiltonian; in
fact,

I(q, p) =
a2

2ω
=

1
ω

H(q, p).

Since the Hamiltonian is constant on orbits, the action variable is a first
integral, that is, İ = 0.

For our planar Hamiltonian system (7.4), let Σ be a Poincaré section
in the period annulus A, and let T : A → R denote the period function;
it assigns to (q, p) ∈ A the period of the periodic orbit O(q, p). Also, let
t �→ (Q(t), P (t)) denote the solution corresponding to O(q, p) that has its
initial value on Σ. Since, by the definition of the action variable,

I(q, p) =
1
2π

∫ T (q,p)

0
P (s)Q̇(s) ds,

the function t �→ I(q(t), p(t)) is constant for every solution t �→ (q(t), p(t))
on O(q, p); that is, İ = 0.

To define the angle variable, let us first define the time map τ : A → R;
it assigns to each point (q, p) ∈ A the minimum positive nonnegative time
required to reach (q, p) along the solution of the system that starts at the
intersection point of the orbit O(q, p) and the section Σ. With this notation,
the angular variable θ is defined by

θ(q, p) :=
2π

T (q, p)
τ(q, p). (7.6)

For the harmonic oscillator, every periodic orbit has the same period
2π/ω. Moreover, if we take the section Σ to be the positive q-axis, then

q =
a

ω
cos(ωτ(q, p)), p = −a sin(ωτ(q, p)).

Since q̇ = p, we have that

−a sin(ωτ(q, p))
d

dt
(τ(q, p)) = −a sin(ωτ(q, p)),
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and therefore, τ̇ = 1. Hence, the angular variable satisfies the differential
equation θ̇ = ω.

In the general case, the frequency of the periodic orbit may be a noncon-
stant function of the action variable, and the differential equation for the
angular variable has the form θ̇ = ω(I). To prove this fact, note first that
if t �→ (q(t), p(t)) is a solution, then t �→ T (q(t), p(t)) is a constant function
whose value is the period of the corresponding periodic orbit. For nota-
tional convenience, let t �→ (Q(t), P (t)) denote the solution corresponding
to the same periodic orbit that has its initial value on the section Σ. Using
the definition of τ , we have the identities

Q(τ(q(t), p(t))) = q(t), P (τ(q(t), p(t))) = p(t).

In particular, t �→ (Q(τ(q(t), p(t))), P (τ(q(t), p(t)))) is a solution of the
original Hamiltonian system. More generally, suppose that the function
t �→ u(t) is a complete solution of the differential equation u̇ = f(u) and
t �→ u(γ(t)) is also a solution for some function γ : R → R. Clearly t �→
u(t + γ(0)) is a solution of the differential equation with the same initial
condition as t �→ u(γ(t)). Hence, u(γ(t)) = u(t + γ(0)) for all t ∈ R; and,
by differentiating both sides of this identity with respect to t, we have that

f(u(γ(t)))γ̇(t) = f(u(t + γ(0))).

Since u(γ(t)) = u(t + γ(0)) and f does not vanish along the orbit, we
have the equation γ̇ = 1. By applying this result to the Hamiltonian sys-
tem, it follows that τ̇ = 1, and therefore, θ̇ = 2π/T (q, p). Clearly, T is
constant on each orbit O(q, p). Since the action variable increases as the
areas bounded by the periodic orbits in the period annulus increase, the
frequency ω(q, p) := 2π/T (q, p) can be viewed as a function of the action
variable and θ̇ = ω(I), as required.

In Section 7.3, we will prove that the function

(q, p) �→ (I(q, p), θ(q, p))

defines a polar coordinate chart on an annular subset of A. It follows that
the change to action-angle variables is nonsingular, and the Hamiltonian
system in action-angle variables, that is, the system

İ = 0, θ̇ = ω(I),

can be viewed as a system of differential equations on the phase cylinder,
which is the product of a line with coordinate I and a one-dimensional
torus with coordinate θ (see Section 1.8.5).

More generally, a multidimensional integrable system has an invariant
manifold that is topologically the cross product of a Cartesian space R

M

and a torus T
N . In this case, action-angle variables I and θ can be defined

in R
M × T

N such that the integrable system is given by

İ = 0, θ̇ = ω(I) (7.7)
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where I ∈ R
M and θ ∈ T

N are vector variables. This is the standard
form for an integrable system, the starting point for classical perturbation
theory.

The method of averaging is a powerful tool that is used to obtain and
analyze approximate solutions for perturbations of integrable systems, that
is, for systems of differential equations of the form

İ = εF (I, θ), θ̇ = ω(I) + εG(I, θ) (7.8)

where θ is a vector of angular variables defined modulo 2π, the functions
θ �→ F (I, θ) and θ �→ G(I, θ) are 2π-periodic, and |ε| is considered to
be small. Poincaré called the analysis of system (7.8) “the fundamental
problem of dynamical systems.”

In physical applications, mathematical models are rarely formulated di-
rectly in action-angle variables. As illustrated by the analysis of the per-
turbed Kepler problem in Section 3.2, the transformation to action-angle
variables can be a formidable task. On the other hand, the benefits of
working with a system in the standard form (7.8) often justify the effort to
obtain the coordinate transformation.

An immediate benefit derived from the transformation to action-angle
variables is the simplicity of the geometry of the unperturbed dynamics of
system (7.7). In fact, the solution with the initial condition (I, θ) = (I0, θ0)
is given by I(t) ≡ I0 and θ(t) = ω(I0)t + θ0. Note that the action variables
specify a torus in the phase space, and the angle variables evolve linearly
on this torus.

Definition 7.1. Suppose that I0 is in R
M . The N -dimensional invariant

torus

{(I, θ) ∈ R
M × T

N : I = I0}

for the system (7.7) is resonant if there is a nonzero integer vector K
of length N such that 〈K, ω(I0)〉 = 0 where 〈 〉 denotes the usual inner
product. In this case we also say that the frequencies, the components of
the vector ω(I0), are in resonance.

If an invariant torus for the system (7.7) is not resonant, then every orbit
on the torus is dense. In case N = 2, every orbit on a resonant torus is
periodic. Matters are not quite so simple for N > 2 where the existence
of a resonance relation does not necessarily mean that all orbits on the
corresponding invariant torus are periodic. This is just one indication that
the dynamics of systems with more than two frequencies is in general quite
different from the dynamics of systems with one frequency. But, in all
cases, the existence of resonant tori plays a central role in the analysis of
the perturbed dynamical system.

Some aspects of the near resonance behavior of the planar case of sys-
tem (7.1) are discussed in detail in Chapter 5, especially the continuation
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theory for resonant unperturbed periodic solutions. As we have seen, this
special case, and the general multidimensional time-periodic system (7.1)
can be viewed as systems on a phase cylinder by the introduction of a new
angular variable so that the extended system is given by

u̇ = f(u) + εg(u, τ, ε), τ̇ = 1. (7.9)

If u ∈ R
2 and the system u̇ = f(u) has a period annulus A, then it is

integrable. In this case, a subset of the three-dimensional phase space for
the extended system (7.9) at ε = 0 is filled with invariant two-dimensional
tori corresponding to the periodic orbits in A. Thus, there is one action
variable, which has a constant value on each periodic orbit, and two angle
variables. One of the angular variables is τ ; the other is the angle variable
defined for the action-angle variables of the unperturbed planar system.

The basic idea that leads to the development of the method of aver-
aging arises from an inspection of system (7.8). In particular, since |ε| is
assumed to be small and the time derivatives of the action variables are all
proportional to ε, the action variables will remain close to their constant
unperturbed values (while undergoing small-amplitude high-frequency os-
cillations due to the relatively fast angular velocities) on a time interval
whose length is inversely proportional to |ε|. Thus, on this time interval,
we would expect to obtain a close approximation to the slow evolution
of the action variables (with their small-amplitude high-frequency oscil-
lations removed) by averaging the (slow) action variables over the (fast)
angle variables.

In most applications, we are interested in the evolution of the action vari-
ables, not the angle variables. For example, let us note that the semimajor
axis of the orbit of a planet about a star is given by an action variable.
While a determination of the planet’s exact position in the sky requires
the specification of an action and an angle variable, a prediction of the
long-term evolution of the relative distance between the planet and the
star is probably more interesting (and more realistic) than a prediction of
the planet’s exact position relative to the star at some point in the distant
future.

The Averaging Principle. Let t �→ (I(t), θ(t)) be a solution of sys-
tem (7.8), and let t �→ J(t) denote the solution of the corresponding initial
value problem

J̇ = εF̄ (J), J(0) = I(0) (7.10)

(called the averaged system) where F̄ is the function defined by

F̄ (J) :=
1

(2π)N

∫
TN

F (J, θ) dθ.

If ε > 0 is small, then there are constants C > 0 and τ > 0 such that
|I(t) − J(t)| < εC as long as 0 ≤ εt < τ ; that is, the solution of the
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averaged system is a useful approximation of the evolution of the action
variables of system (7.8).

The averaging principle has a long history, which is deeply rooted in
perturbation problems that arise in celestial mechanics (see, for example,
[201]); but, the averaging principle is not a theorem. Nevertheless, in a phys-
ical application, it might be reasonable to replace a mathematical model,
which is given in the form of the differential equation (7.8), with the cor-
responding averaged system (7.10), to use the averaged system to make a
prediction, and to then test the prediction against the results of a physical
experiment.

The next theorem (the averaging theorem) validates the averaging prin-
ciple under the hypothesis that there is exactly one angle variable. In this
case, there is a 2π-periodic change of variables for system (7.8) such that the
transformed differential equation decouples, and the first-order truncation
with respect to ε of its action variables is exactly the averaged system (7.10).
The existence of such “averaging transformations” is the essential ingredi-
ent used in the proof of the averaging theorem and the central issue of the
subject.

Theorem 7.2 (Averaging Theorem). Suppose that system (7.8) is de-
fined on U × T where U is an open subset of R

M .

(i) If there is some number λ such that ω(I) > λ > 0 for all I ∈ U ,
then there is a bounded open ball B contained in U , a number ε1 > 0,
and a smooth function k : B × T → B such that for each I ∈ B the
function θ �→ k(I, θ) is 2π-periodic, the function I → I + εk(I, θ) is
invertible on B for 0 ≤ ε < ε1, and the change of coordinates given
by

L = I + εk(I, θ) (7.11)

transforms the system (7.8) to the form

L̇ = εF̄ (L) + ε2F1(L, θ, ε), θ̇ = ω(L) + εG1(L, θ, ε) (7.12)

where

F̄ (L) =
1
2π

∫ 2π

0
F (L, θ) dθ

and both of the functions F1 and G1 are 2π-periodic with respect to
their second arguments.

(ii) If in addition T > 0, B0 is an open ball whose closure is contained
in the interior of B, and if for each I0 ∈ B the number τ(I0) denotes
the largest number less than or equal to T such that the solution of
the averaged system (7.10) with initial condition J(0) = I0 is in the
closure of B0 for 0 ≤ t ≤ τ(I0), then there are positive numbers
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ε2 ≤ ε1 and C such that for each I0 ∈ B0 and for 0 ≤ ε < ε2
all solutions t �→ (I(t), θ(t)) of the system (7.8) with initial value
I(0) = I0 are approximated by the solution t �→ J(t) of the averaged
system (7.10) with J(0) = I0 as follows:

|I(t) − J(t)| < Cε

on the time interval given by 0 ≤ εt < τ(I0).

Proof. To prove statement (i), define a new function F̃ on U ×T given by

F̃ (L, θ) := F (L, θ) − F̄ (L),

and let k denote the solution of the differential equation

∂k

∂θ
(L, θ) = − 1

ω(L)
F̃ (L, θ) (7.13)

with the initial condition k(L, 0) = 0; that is, k is given by

k(L, θ) = − 1
ω(L)

∫ θ

0
F̃ (L, s) ds.

The function k is defined on U × T, and the function θ �→ k(L, θ) is
2π-periodic. To prove the periodicity, fix L, define the new function

k̂(θ) = k(L, θ + 2π) − k(L, θ),

and note that k̂(0) = 0 and k̂′(θ) ≡ 0. (Our definition of k is given using
the assumption that there is only one angle. The existence of a correspond-
ing 2π-periodic function is problematic when there are several angles (see
Exercise 7.4).)

We will show that the relation L = I + εk(I, θ) defines a coordinate
transformation by proving that the corresponding function (I, θ) �→ (L, θ)
is invertible. To this end, consider the smooth function K : U ×U ×T×R →
R

M given by

(I, L, θ, ε) �→ I + εk(I, θ) − L.

For each point ξ = (L, θ) in c�(B) × T (where c� denotes the closure of the
set), we have that K(L, L, θ, 0) = 0 and the partial derivative KI(L, L, θ, 0)
is the identity transformation of R

M . Therefore, by the implicit function
theorem, there is a product neighborhood Γξ ×γξ contained in (U ×T)×R

and containing the point (ξ, 0), and a smooth function Hξ : Γξ × γξ → U
such that

Hξ(L, θ, ε) + εk(Hξ(L, θ, ε), θ) = L
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for all ((L, θ), ε) ∈ Γξ × γξ. In other words, the function L �→ Hξ(L, θ, ε) is
a local inverse for the function I �→ I + εk(I, θ). Moreover, if (I, (L, θ), ε) ∈
U × Γξ × γξ is such that K(I, L, θ, ε) = 0, then I = Hξ(L, θ, ε).

Since c�(B)×T is compact, there is a finite collection of the neighborhoods
Γξ × γξ that cover B × T. Let Γ denote the union of the corresponding Γξ,
and let γ denote the intersection of the corresponding intervals on the real
line. We have B ⊂ Γ, and there is some ε0 such that γ contains the closed
interval [0, ε0].

The function k has a global Lipschitz constant Lip(k) on the compact
set c�(B) × T. Let us define ε1 > 0 such that

ε1 < min
{ 1

Lip(k)
, ε0

}
.

If θ ∈ T and 0 ≤ ε ≤ ε1, then the map I �→ I + εk(I, θ) is injective. In fact,
if

I1 + εk(I1, θ) = I2 + εk(I2, θ),

then

|I1 − I2| = |ε|Lip(k)|I1 − I2| < |I1 − I2|,

and therefore I1 = I2. It follows that there is a function H : Γ×T×[0, ε1] →
B such that H is the “global” inverse; that is,

H(L, θ, ε) + εk(H(L, θ, ε), θ) = L.

By the uniqueness of the smooth local inverses Hξ, the function H must
agree with each function Hξ on the intersection of their domains. Thus, H
is smooth and we have defined a coordinate transformation L := I+εk(I, θ)
on B×T× [0, ε1]. Moreover, by expanding H in a Taylor series at ε = 0 and
with the first order remainder given by H, we see that I = L + εH(I, θ, ε).
It is also easy to check that θ �→ H(I, θ, ε) is a 2π-periodic function.

Using the coordinate transformation, we have that

L̇ = İ + ε
∂k

∂I
İ + ε

∂k

∂θ
θ̇

= εF (I, θ) + ε
∂k

∂I
(I, θ)(εF (I, θ)) + ε

∂k

∂θ
(I, θ)(ω(I) + εG(I, θ))

= ε(F (I, θ) +
∂k

∂θ
(I, θ)ω(I)) + ε2α(I, θ)

where

α(I, θ) :=
∂k

∂I
(I, θ)F (I, θ) +

∂k

∂θ
(I, θ)G(I, θ).
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Using the inverse transformation and Taylor’s theorem, there is a function
F1 such that

L̇ = ε(F (L, θ) +
∂k

∂θ
(L, θ)ω(L)) + ε2F1(L, θ, ε). (7.14)

After the formula for the partial derivative of k (equation (7.13)) is inserted
into the equation (7.14), the new differential equation is given by

L̇ = ε(F̃ (L, θ) + F̄ (L) − F̃ (L, θ)) + ε2β(L, θ, ε).

Thus, the coordinate transformation (7.11) applied to the system (7.8)
yields a new system of the form

L̇ = εF̄ (L) + ε2F1(L, θ, ε),
θ̇ = ω(L) + εG1(L, θ, ε). (7.15)

This completes the proof of statement (i).
To prove the asymptotic estimate in statement (ii), consider the differen-

tial equation for L − J obtained by subtracting the averaged system from
the first differential equation of the system (7.15) and then integrate to
obtain

L(t) − J(t) = L(0) − J(0) + ε

∫ t

0
F̄ (L(s)) − F̄ (J(s)) ds

+ ε2
∫ t

0
F1(L(s), θ(s), ε) ds.

If Lip(F̄ ) > 0 is a Lipschitz constant for F̄ , and if B is an upper bound
for the function

(L, θ, ε) �→ |F1(L, θ, ε)|

on the compact space c�(B) × T × [0, ε1], then we have the estimate

|L(t) − J(t)| ≤ |L(0) − J(0)| + ε Lip(F̄ )
∫ t

0
|L(s) − J(s)| ds + ε2Bt

(7.16)

as long as L(t) remains in c�(B).
An application of the specific Gronwall lemma from Exercise 2.3 to the

inequality (7.16) yields the following estimate

|L(t) − J(t)| ≤
(
|L(0) − J(0)| + ε

B

Lip(F̄ )

)
eε Lip(F̄ )t.

We also have that

L(0) = I(0) + εk(I(0), θ(0)), I(0) = J(0).
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Thus, if 0 ≤ εt ≤ τ(I(0)) (where τ is defined in the statement of the
theorem), then there is a constant C0 such that

|L(t) − J(t)| ≤ C0ε (7.17)

as long as L(t) remains in c�(B).
Note that L(t) is in c�(B) whenever |L(t)−J(t)| is less than the minimum

distance between the boundaries of B0 and B. If 0 < ε2 < ε1 is chosen so
that C0/ε2 is less than this distance, then the estimate (7.17) ensures that
L(t) is in c�(B) on the time interval 0 ≤ εt ≤ τ(I(0)).

Finally, let C1 be an upper bound for the function

(L, θ) �→ |k(L, θ)|

and note that for t in the range specified above we have the inequality

|I(t) − J(t)| ≤ |I(t) − L(t)| + |L(t) − J(t)| ≤ εC1 + εC0.

Therefore, with C := C0 + C1, we have the required asymptotic estimate.

�

Exercise 7.3. (a) Write van der Pol’s equation

ẍ + ε(x2 − 1)ẋ + ω2x = 0.

as a first order system and transform to action angle variables. Hint: Use ẋ = ωy.
(b) Compute the averaged equation and show that it has a hyperbolic rest point.
(c) Compare the results of part (b) and Section 5.1.

Exercise 7.4. Consider the PDE

ω1kθ(θ, φ) + ω2kφ(θ, φ) = g(θ, φ)

where g is 2π-periodic with respect to the angular variables θ and φ. This differ-
ential equation can be viewed as a PDE on the two-dimensional torus T

2. Does
the PDE have a 2π-periodic solution? More precisely, find sufficient conditions
on g, ω1, and ω2 such that periodic solutions exist. Hint: Look for a solution k
represented as a Fourier series. Note that expressions of the form mω1 + nω2,
where m and n are integers, will appear in certain denominators. If there are
resonances (that is, integers m and n such that mω1 + nω2 = 0) or an infi-
nite sequence of “small denominators,” then the Fourier series for k, which is
determined by equating coefficients after substitution of the Fourier series in
the PDE, will not converge for most choices of g. On the other hand, conver-
gence is possible if the frequencies satisfy an appropriate Diophantine condition
|mω1 + nω2| ≥ C(|m| + |n|)−α, where C > 0 and α > 0 are constants and the
inequality holds for every nonzero integer vector (m, n). There is a vast literature
on the problem of small divisors (see, for example, [146]).
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7.2 Averaging at Resonance

In this section we will demonstrate a remarkable fact: Some of the most
important features of the dynamical behavior near a resonance of a generic
multidimensional oscillator are determined by an associated one-degree-of-
freedom oscillator that resembles a perturbed pendulum with torque. We
will also give some examples to show that the averaging principle is not
always applicable in multifrequency systems.

Let us consider the system (7.1) with u ∈ R
M+N where the period of

the perturbation is η = 2π/Ω and where the unperturbed system has an
invariant set that is foliated by N -dimensional invariant tori. In this case, if
action-angle variables (I, ϕ) ∈ R

M×T
N are introduced, then the differential

equation is expressed in the form

İ = εF (I, ϕ, t) + O(ε2),
ϕ̇ = ω(I) + εG(I, ϕ, t) + O(ε2). (7.18)

Moreover, it is 2π-periodic in each component of the N -dimensional vector
of angles and 2π/Ω-periodic in time. By introducing an additional angular
variable τ , system (7.18) is equivalent to the autonomous system with M
action variables and N + 1 angle variables given by

İ = εF (I, ϕ, τ/Ω) + O(ε2),
ϕ̇ = ω(I) + εG(I, ϕ, τ/Ω) + O(ε2),
τ̇ = Ω. (7.19)

Let us suppose that there is a resonance relation

〈K, ω(I)〉 = nΩ (7.20)

where K is an integer vector of length M , and n is an integer such that
the components of K and the integer n have no common factors. The
corresponding set

RK,n := {(I, ϕ, τ) : 〈K, ω(I)〉 = nΩ},

which is generally a hypersurface in the phase space, is called a reso-
nance manifold. Our goal is to describe the perturbed dynamics of the
system (7.19) near this resonance manifold. To do this, we will use yet
another set of new coordinates that will be introduced informally and ab-
stractly. In practice, as we will demonstrate later, the appropriate new
coordinates are chosen using the ideas of the abstract construction; but,
their precise definition depends on special features of the system being
studied.

The set

AK,n := {I : 〈K, ω(I)〉 = nΩ},
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is the intersection of the resonance manifold with the “action space.” This
set is generally a manifold in R

M , sometimes also called a resonance man-
ifold. To distinguish AK,n from RK,n, let us call AK,n the resonance layer
associated with the resonance relation (7.20).

A point in the action space is determined by its distance from the reso-
nance layer and by its projection to the resonance layer. In particular, there
are local coordinates defined in a neighborhood of the resonance layer, or
at least near a portion of this manifold, given by

r = 〈K, ω(I)〉 − nΩ, z = A(I)

where r is a measure of the distance of the point with action variable I
to the resonance layer and the (M − 1)-dimensional vector z is the vector
coordinate of the projection, denoted by the smooth map A, of the point
I to the resonance layer AK,n.

For ε �= 0, let us define the new stretched distance-coordinate ρ = r/
√

ε
and new angular variables

ψ = 〈K, ϕ〉 − nτ, χ = B(ϕ, τ)

where the vector function B : T
N+1 → T

N+1 is chosen so that the transfor-
mation to the new angles is invertible. Of course, B must also be 2π-periodic
in each component of ϕ and in τ .

In the coordinates ρ, z, ψ, and χ, system (7.19) has the form

ρ̇ =
√

ε〈K, Dω(I)F (I, φ, τ/Ω)〉 + O(ε),
ż = O(ε),
ψ̇ =

√
ερ + O(ε3/2),

χ̇ = O(1) (7.21)

where I, φ, and τ are viewed as functions of ρ, z, ψ, and χ.
In system (7.21), ρ and ψ are slow variables, the M − 1 variables repre-

sented by the vector z are “super slow,” and χ is an N -dimensional vector
of fast variables. In keeping with the averaging principle, we will average
over the fast (angular) variables, although we have provided no theoretical
justification for doing so unless N = 1. The system of differential equations
obtained by averaging over the fast variables in system (7.21) is called the
partially averaged system at the resonance.

To leading order in µ :=
√

ε, the partially averaged system at the reso-
nance is

ρ̇ = µ〈K, Dω(I)F ∗(I, ψ)〉,
ż = 0,

ψ̇ = µρ (7.22)

where F ∗ is obtained by averaging the function

χ �→ F (I, φ(ψ, χ), τ(ψ, χ)/Ω).
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Here we have used the names of the original variables for the corresponding
averaged variables even though this is a dangerous practice. The solutions
of the partially averaged equations are not the same as the solutions of the
original system.

The function F ∗ is periodic in its second argument with period some
integer multiple of 2π. In particular, using Fourier series, there is a constant
vector c(I) and a vector-valued periodic function ψ �→ h(I, ψ) with zero
average such that

F ∗(I, ψ) = c(I) + h(I, ψ).

Also, we can easily obtain the expansion, in powers of µ, of the function
Dω expressed in the new coordinates. In fact, because

I(r, z) = I(µρ, z) = I(0, z) + O(µ),

it follows that Dω(I) = Dω(I(0, z)) + O(µ).
Under the generic assumption

〈K, Dω(I(0, z))F ∗(I(0, z), ψ)〉 �= 0

(that is, the vector field corresponding to the averaged system is transverse
to the resonance manifold); and, in view of the form of system (7.22) and
the above definitions, there are real-valued functions z �→ p(z) and (z, ψ) �→
q(z, ψ) such that the function (z, φ) �→ p(z) + q(z, φ) is not identically zero
and the first order approximation to the partially averaged system has the
form

ρ̇ = µ(p(z) + q(z, ψ)),
ż = 0,

ψ̇ = µρ. (7.23)

Finally, by defining a slow time variable s = µt and taking into account
that z is a constant of the motion, we will view system (7.23) as the fol-
lowing parametrized family of differential equations with parameter z:

dρ

ds
= p(z) + q(z, ψ),

dψ

ds
= ρ ; (7.24)

or, equivalently,

d2ψ

ds2 − q(z, ψ) = p(z) (7.25)

where the function ψ �→ q(z, ψ) is periodic with average zero. For instance,
q might be given by q(z, ψ) = −λ sin ψ for some λ > 0.
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Figure 7.1: Phase portrait of pendulum with “large” constant torque. All
orbits pass through the resonant value of the action variable.

In accordance with the usual physical interpretation of the differential
equation (7.25), we have just obtained a wonderful result: Near a reso-
nance, every oscillator behaves like a pendulum influenced by a constant
torque.

The precise nature of the dynamical behavior near the resonance de-
pends on the functions p and q in the differential equation (7.25) and the
perturbation terms that appear in the higher order approximations of the
partially averaged system. In particular, let us note that the coefficients
of the pendulum equation are functions of the super slow variables. Thus,
they vary slowly with the slow time. Although a rigorous description of the
motion predicted by the partially averaged system is highly nontrivial and
not yet completely understood, our result certainly provides a fundamen-
tal insight into the near resonance dynamics of oscillators. Also, this result
provides a very good reason to study the dynamics of perturbed pendulum
models.

Consider the simple pendulum with constant torque (equation (7.25)
with p(z) = c and q(z, ψ) := −λ sin ψ) given by

ρ̇ = c − λ sin ψ, ψ̇ = ρ (7.26)

where λ > 0 and c ≥ 0. The phase space of this system is the cylinder
(ρ, ψ) ∈ R×T. Also, let us note that the circle given by the equation ρ = 0
would correspond to the resonance manifold in our original oscillator.

If c/λ > 1, then ρ̇ > 0, and it is clear that all trajectories pass through
the resonance manifold as depicted in Figure 7.1. If, on the other hand,
c/λ < 1, then there are two rest points on the resonance manifold, a saddle
and a sink, and the phase portrait will be as depicted in Figure 7.2. In
particular, some orbits still pass through the resonance manifold, but now
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Figure 7.2: Phase portrait for pendulum with “small” constant torque. The
region bounded by the homoclinic orbit corresponds to the trajectories that
are captured into resonance. The corresponding action variable oscillates
around its resonant value.

the periodic orbits surrounded by the homoclinic loop are captured into the
resonance. These orbits correspond to orbits for which an action variable
librates near its resonant value on a long time-scale. In the pendulum model,
the libration goes on for ever. On the other hand, if a pendulum system
is obtained by partial averaging at a resonance, then its coefficients are
expected to vary slowly with time. In particular, the ratio c/λ will change
over time and perhaps reach a value that exceeds one. In this case, the
corresponding action variable can drift away from its resonance value.

If the averaging procedure is carried to the next higher order in µ, then
a typical perturbation that might appear in the pendulum model is a small
viscous friction. For example, the perturbed system might be

ρ̇ = c − µρ − λ sin ψ, ψ̇ = ρ. (7.27)

The phase portrait of this system on the phase cylinder for the case c/λ < 1
is depicted in Figure 7.3. Note that there is a “thin” set of trajectories,
some with their initial point far from the resonance manifold, that are
eventually captured into the resonance. Again, because the coefficients of
system (7.27) will generally vary slowly with time, it is easy to imagine the
following scenario will occur for the original system: An action variable of
our multidimensional oscillator evolves toward a resonance, it is captured
into the resonance and begins to librate about its resonant value. After
perhaps a long sojourn near the resonance, the action variable slowly drifts
away from its resonant value. Meanwhile, the same action variable for a
solution with a slightly different initial condition evolves toward the reso-
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Figure 7.3: Phase portrait for pendulum with “small” constant torque and
“small” viscous friction. A thin strip of trajectories are captured into the
resonance. The corresponding action variable with initial condition in the
strip moves toward its resonant value and then begins to oscillate around
its resonant value.

t

I0

I

Figure 7.4: Two schematic time signals of an action variable I are depicted
for orbits with slightly different initial conditions. One time trace passes
through the resonant value I = I0; the other is captured into the resonance
on a long time-scale before it leaves the vicinity of its resonant value.
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nant value, but the values of the action variable pass through the resonance
without oscillating about the resonant value (see Figure 7.4).

Although the dynamics of the differential equation (7.25) are similar to
the dynamics of the simple pendulum, there are generally several alternat-
ing saddles and centers along the resonance manifold. After a perturbation,
there can be several “thin” subsets of the phase space corresponding to tra-
jectories that are eventually captured into the resonance. Again trajectories
that are captured into a resonance will tend to remain near the resonance
manifold on a long time interval. But as the remaining super slow action
variables drift, the trajectory will often move into a region near the reso-
nance manifold where it will pass through the resonance. After it reaches
this region, the trajectory will eventually move away from the influence of
the resonance—at least for a while. To complicate matters further, the set
of resonance manifolds is dense in the action space (the rational numbers
are dense in the real line); and, for the case of at least three angle vari-
ables, resonance manifolds corresponding to different integer vectors can
intersect. Thus, there is a complex web, called the Arnold web, of reso-
nance manifolds that each influence the perturbed motion of nearby orbits.
Although the precise dynamics in the phase space and the corresponding
fluctuations of the action variables is usually very difficult to analyze, the
resonance capture mechanism, which is partly responsible for the complex-
ity of the motions in phase space for dissipative systems, is made reasonably
clear by our analysis.

The study of pendulum-like equations with slowly varying parameters is
the subject of hundreds of research articles. You should now see why there
is so much interest in such models. Perhaps the simplest case to analyze
is the pendulum with periodic forcing or with periodic changes in some of
its parameters. While we have not discussed all of the known dynamical
behavior associated with such models, we have discussed the possibility
that periodic orbits continue (Chapter 5) and chaotic invariant sets appear
(Chapter 6). This general subject area is certainly not closed; it remains a
fruitful area of mathematical research (see, for example, [110], [164]).

Exercise 7.5. Consider the pendulum model with slowly varying torque given
by

ρ̇ = a sin(
√

εt) − λ sin ψ, ψ̇ = ρ

where a, λ, and ε are parameters. Identify the region in phase space correspond-
ing to the librational motions of the pendulum at the parameter value ε = 0.
Determine (by numerical integration if necessary) the behavior in forward and
backward time of the corresponding solutions for the system with ε > 0 that have
initial conditions in the librational region.

Exercise 7.6. Consider the phase modulated pendulum (remember that our
pendulum model (7.27) is only a special case of the type of equation that is
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obtained by partial averaging) given by

ψ̈ + sin(ψ + a sin(εt)) = 0.

What can you say about the dynamics?

Exercise 7.7. Show that resonance manifolds do not intersect in systems with
just two angle variables, but that they can intersect if there are three or more
angles.

Because a trajectory can be captured into resonance, the averaging prin-
ciple is not generally valid for systems with more than one angular variable.
To see why, note that a solution of the averaged system might pass through
a resonance while the corresponding solution of the original system is cap-
tured into the resonance. If this occurs, then the norm of the difference
of the evolving action variables and the corresponding averaged variables,
given by |I(t) − J(t)|, may grow to a value that is O(1) in the perturba-
tion parameter as time evolves and the solution t �→ I(t) is trapped in the
resonance. In particular, this scenario would violate the expected estimate;
that is, |I(t) − J(t)| < C1ε.

A complete analysis for the dynamics of multifrequency systems is not
known. Thus, this is an area of much current research (see, for example,
[12], [14], [145], and [201]). One of the most important issues is to deter-
mine the “diffusion rates” for the action variables to leave the vicinity of
a resonance and to arrive at a second resonance. The long term stability
of the models of the motion of many-body systems, for example our solar
system, is essentially bound up with this question. This is currently one of
the great unsolved problems in mathematics.

A concrete counterexample to the validity of averaging for the case of
two or more angles is provided by the system

İ1 = ε,

İ2 = ε cos(θ2 − θ1),
θ̇1 = I1,

θ̇2 = I2, (7.28)

introduced in [201] (see Exercise 7.8).

Exercise 7.8. Find the averaged system for the oscillator (7.28) and the gen-
eral analytical solution of the averaged system. Show that a solution of the orig-
inal system is given by

I1(t) = εt + I0,

I2(t) = I1(t),

θ1(t) = ε
1
2
t2 + I0t + θ1(0),

θ2(t) = θ1(t).
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For these solutions, show that the estimate expected from the averaging theorem
(Theorem 7.2) is not valid.

Let us note that system (7.28) has a resonance manifold given by the
resonance relation I2 −I1 = 0. As prescribed above in our partial averaging
procedure, consider new coordinates defined by

√
ε ρ = I2 − I1, z = I2, ψ = θ2 − θ1, χ = θ2,

and note that system (7.28), when expressed in these coordinates, is given
by

ρ̇ =
√

ε (cos ψ − 1),
ż = ε cos ψ,

ψ̇ =
√

ε ρ,

χ̇ = z. (7.29)

Averaging over the fast angle χ in system (7.29) produces the partially
averaged system

˙̄ρ =
√

ε (cos ψ̄ − 1),
˙̄z = 0,

˙̄ψ =
√

ε ρ̄. (7.30)

For each fixed z̄, there is an orbit O1 whose ω-limit set is the rest point
(ρ̄, z̄, ψ̄) = (0, z̄, 0) and a second orbit O2 with this rest point as its α-
limit set. (Prove this!) The trajectories corresponding to the orbit O1 are
all captured into the resonance relative to the first order approximation of
the partially averaged system, and the rest point is captured for all time.
But the action variable corresponding to z̄, a super slow variable, drifts
from its initial value so that the trajectories corresponding to the orbit O1
eventually pass through the resonance. This example thus provides a clear
illustration of the mechanism that destroys the possibility that the averaged
system—not the partially averaged system—gives a good approximation to
the full system over a long time-scale. In effect, the averaged system for
this example does not “feel the influence of the resonance.”

Exercise 7.9. The partially averaged system (7.30) is obtained by averaging
over just one angle. Thus, the averaging theorem ensures that under appropriate
restrictions the partially averaged system is a good approximation to the original
system. Formulate appropriate restrictions on the domain of definition of the
partially averaged system and determine an appropriate time scale for the validity
of averaging. Give a direct proof that your formulation is valid.
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Exercise 7.10. In applied mathematics, often only the lowest order resonances
are considered; they seem to have the most influence on the dynamics. As an
example to illustrate why this observation might be justified, consider the near
resonance dynamics of system (7.28) at a “high” order resonance given by the
resonance relation mI1 = nI2 where m and n are relatively prime, and m �= n.
Show that there are integers k and � such that the matrix

R :=
(

m −n
k �

)

is unimodular. Next, define new angular coordinates by
(

φ1

φ2

)
= R

(
θ1

θ2

)
.

Also, define new action variables by

√
ε ρ = mI1 − nI2, z = kI1 + �I2.

Change to the new coordinates, find the partially averaged system, and show
that, in this approximation, all orbits pass through the resonance. Does this
mean that the averaging principle is valid for orbits starting near the higher
order resonances in this example?

Let us consider the system (7.1) with u ∈ R
2; that is, a planar period-

ically perturbed oscillator. Furthermore, let us assume that action-angle
variables have been introduced as in system (7.18). In this case, the reso-
nance layer given by the resonance relation mω(I) = nΩ is (generically) a
point I = I0 in the one-dimensional action space.

To determine the partially averaged system at the resonance layer given
by I = I0, let ρ denote the scaled distance to the resonance layer; that is,

√
ε ρ = I − I0.

Also, let τ = Ωt, and introduce a new angular variable by

ψ = mφ − nτ.

Then, to first order in the perturbation parameter
√

ε, the differential equa-
tion in these new coordinates is given by the system

ρ̇ =
√

ε F (I0, ψ/m + nτ/m, τ/Ω) + O(ε),
ψ̇ =

√
ε mω′(I0)ρ + O(ε),

τ̇ = Ω

where ρ and ψ are slow variables, and τ (corresponding to the time variable
in our nonautonomous perturbation) is a fast angular variable.
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By the averaging theorem, there is a change of coordinates such that the
transformed system, to leading order in µ =

√
ε, is given by

J̇ = µF̄ (θ), θ̇ = µmω′(I0)J (7.31)

where

F̄ (θ) :=
1

2πm

∫ 2πm

0
F (I0, θ/m + nτ/m, τ/Ω) dτ.

Under the assumption that ω′(I0) �= 0—in other words, under the as-
sumption that the unperturbed resonant periodic orbit corresponding to
the action variable I = I0 is normally nondegenerate—the averaged sys-
tem for ε > 0 has a nondegenerate rest point at (J0, θ0) if and only if J0 = 0
and the function F̄ has θ0 as a simple zero.

Note that the solution of the system

J̇ = µF̄ (θ), θ̇ = µmω′(I0)J, τ̇ = Ω

starting at the point (J, θ, τ) = (0, θ0, 0) is a periodic orbit, and in addi-
tion if the rest point is hyperbolic, then this periodic orbit is hyperbolic.
We would like to conclude that there is a corresponding periodic orbit for
the original oscillator. This fact is implied by the following more general
theorem.

Theorem 7.11. Consider the system

İ = εF (I, θ) + ε2F2(I, θ, ε),
θ̇ = ω(I) + εG(I, θ, ε) (7.32)

where I ∈ R
M and θ ∈ T, where F , F2, and G are 2π-periodic functions

of θ, and where there is some number c such that ω(I) > c > 0. If the
averaged system has a nondegenerate rest point and ε is sufficiently small,
then system (7.32) has a periodic orbit. If in addition ε > 0 and the rest
point is hyperbolic, then the periodic orbit has the same stability type as
the hyperbolic rest point; that is, the dimensions of the corresponding stable
and unstable manifolds are the same.

Proof. The averaged differential equation is given by J̇ = εF̄ (J) where
F̄ is the average of the function θ �→ F (I, θ). Let us suppose that J0 is a
nondegenerate rest point of the averaged system; that is, F̄ (J0) = 0 and
the derivative DF̄ (J0) is an invertible transformation.

By the averaging theorem, if ε is sufficiently small, then there is a 2π-
periodic change of coordinates of the form J = I + εL(I, θ), defined in
an open set containing {J0} × T, such that system (7.32) in these new
coordinates is given by

J̇ = εF̄ (J) + O(ε2),
θ̇ = ω(J) + O(ε). (7.33)



7.2 Averaging at Resonance 533

Let t �→ (J(t, ξ, ε), θ(t, ξ, ε)) denote the solution of the system (7.33)
such that J(0, ξ, ε) = ξ and θ(0, ξ, ε) = 0. By an application of the implicit
function theorem, there is a smooth function (ξ, ε) �→ T (ξ, ε) that is defined
in a neighborhood of (J, θ) = (J0, 0) such that T (J0, 0) = 2π/ω(J0) and
θ(T (ξ, ε), ξ, ε) ≡ 2π. Moreover, let us define a (parametrized) Poincaré map,
with the same domain as the transit time map T , by

P (ξ, ε) = J(T (ξ, ε), ξ, ε).

By expanding the function ε �→ P (ξ, ε) into a Taylor series at ε = 0, we
obtain

P (ξ, ε) = J(T (ξ, 0), ξ, 0) + ε(J̇(T (ξ, 0), ξ, 0)Tε(ξ, 0)
+ Jε(T (ξ, 0), ξ, 0)) + O(ε2).

Note that J(T (ξ, 0), ξ, 0) ≡ ξ and J̇(T (ξ, 0), ξ, 0) = 0. Moreover, the func-
tion t �→ Jε(t, ξ, 0) is the solution of the variational initial value problem
given by

Ẇ = F̄ (J(t, ξ, 0)), W (0) = 0.

Using the identities J(t, ξ, 0) ≡ ξ and T (ξ, 0) ≡ 2π/ω(ξ), it follows that
Jε(t, ξ, 0) = tF̄ (ξ) and

P (ξ, ε) = ξ + ε
2π

ω(ξ)
F̄ (ξ) + O(ε2). (7.34)

Consider the displacement function δ(ξ, ε) := P (ξ, ε) − ξ and note that
its zeros correspond to the fixed points of the Poincaré map. Also, the
zeros of the displacement function are the same as the zeros of the reduced
displacement function defined by

∆(ξ, ε) :=
2π

ω(ξ)
F̄ (ξ) + O(ε).

By easy computations, it follows that ∆(J0, 0) = 0 and

∆ξ(J0, 0) =
2π

ω(J0)
DF̄ (J0).

Hence, by an application of the implicit function theorem, there is a func-
tion ε �→ β(ε) defined on some interval containing ε = 0 such that β(0) = J0
and such that for each ε in the domain of β, the vector β(ε) ∈ R

M is a
fixed point of the Poincaré map ξ �→ P (ξ, ε). In particular, (J, θ) = (β(ε), 0)
is the initial condition for a periodic orbit of the system (7.33). Since the
original system (7.32) is obtained from system (7.33) by an (appropriately
periodic) change of coordinates, there are corresponding periodic orbits in
the original system.
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Finally, to determine the stability type of the periodic orbit, we must
compute the derivative of the Poincaré map with respect to the space vari-
able. Using the series expansion (7.34), if the derivative with respect to ξ is
evaluated at the initial point ξ = β(ε) of the perturbed periodic orbit and
the result is expanded in a Taylor series at ε = 0, the following formula is
obtained:

Pξ(β(ε), ε) = I + ε
2π

ω(J0)
DF̄ (J0) + O(ε), (7.35)

where, in deference to tradition, I in this formula is the identity map of
R

M , not the variable I in the original differential equation.
Abstractly, the matrix equation (7.35) has the form

P − I = ε(A + R(ε))

where A is infinitesimally hyperbolic with, say, N eigenvalues with positive
real parts and M −N eigenvalues with negative real parts. If ε is sufficiently
small, then the matrix A+R(ε) has the same number of such eigenvalues. If
in addition ε > 0, then the matrix ε(A+R(ε)) has the same number of such
eigenvalues that are all as close to the origin in the complex plane as desired.
Since there are only a finite number of eigenvalues and the eigenvalues of
P are exactly the eigenvalues of the matrix ε(A + R(ε)) shifted one unit
to the right in the complex plane, it follows that, for sufficiently small
positive ε, the matrix P has N eigenvalues outside the unit circle and
M − N eigenvalues inside the unit circle, as required. The proof that this
structure is preserved by the inverse of the averaging transformation and
is therefore inherited by the original system is left to the reader. �

The partially averaged system (7.31) obtained above is given more pre-
cisely by the system

J̇ = µF̄ (θ) + O(µ2), θ̇ = µmω′(I0)J + O(µ2) (7.36)

where the presence of perturbation terms is indicated by the order symbol.
Let us assume that ω′(I0) > 0 and consider some of the possible phase por-
traits of this system. The phase portrait (of the phase plane) of the first or-
der approximation of system (7.36) in case F̄ = 0 is depicted in Figure 7.5.
The J-axis, the intersection of the resonance manifold with the (J, θ)-plane,
consists entirely of rest points. A higher order analysis is required to deter-
mine the dynamics of the perturbed system. The phase portrait for the first
order approximation in case F̄ has fixed sign (taken here to be positive)
is shown in Figure 7.6. In this case all orbits pass through the resonance.
A typical phase portrait for the case where F̄ has simple zeros is depicted
in Figure 7.7. There are several regions corresponding to librational mo-
tions where orbits are permanently captured into resonance. Finally, in
Figure 7.8, two possible phase portraits of the stroboscopic Poincaré map
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θ

J

Figure 7.5: Phase portrait of the first order approximation of the partially
averaged system (7.36) in case F̄ = 0.

J

θ

Figure 7.6: Phase portrait of the first order approximation of the partially
averaged system (7.36) in case F̄ is a positive function.
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θ

J

Figure 7.7: Phase portrait of the first order approximation of the partially
averaged system (7.36) in case F̄ has simple zeros.

Figure 7.8: Phase portrait of the stroboscopic Poincaré map for the per-
turbed system (7.36). The left panel depicts entrainment, the right panel
depicts chaos.
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of the perturbed system are illustrated. Whereas the left panel corresponds
to resonance capture—in the context of a periodically perturbed oscillator
this would also be called entrainment—the right hand panel corresponds to
transient chaos; that is, the chaotic invariant set is of saddle type so that
nearby orbits approach the chaotic set along a stable manifold, they “feel”
the chaos on some finite time scale, and they eventually drift away along
an unstable manifold.

Exercise 7.12. In Theorem 7.11, suppose that the rest point is nondegenerate
but not hyperbolic. What can be said about the stability type of the correspond-
ing periodic orbit?

Exercise 7.13. Compare and contrast the continuation theory for periodic or-
bits of planar periodically perturbed oscillators given in Chapter 5 and the theory
presented in this chapter.

Exercise 7.14. Consider the following modification of an example introduced
in [100] and [103], namely, the system

ẋ = y(1 − x2 − y2) + ε[δx − x(x2 + y2) + γx cos(Ωt)],

ẏ = −x(1 − x2 − y2) + ε[δy − y(x2 + y2)] (7.37)

where δ, γ, and Ω are positive constants and ε is a small parameter.
Here the action-angle variables are trigonometric. Show that (I, θ) defined by

the transformation

x =
√

2I sin θ, y =
√

2I cos θ

are action-angle variables for the system (7.37). The square root is employed
to make the transformation have Jacobian equal to one. This is important in
Hamiltonian mechanics where it is desirable to have coordinate transformations
that respect the Hamiltonian structure—such transformations are called sym-
plectic or canonical. At any rate, to find continuable periodic orbits, consider the
(m : n) = (2 : 1) resonance. Partially average the system at this resonance and
use Theorem 7.11 to conclude that the original system has periodic orbits for
small ε > 0.

There are some interesting dynamics going on in this example. Try some numer-
ical experiments to approximate the phase portrait of the stroboscopic Poincaré
map. What is the main feature of the dynamics? Can you see the subharmonic
solutions near the (2 : 1) resonance? In addition to the references given above,
look at [39].

Exercise 7.15. If a linear oscillator is periodically perturbed, then its response
is periodic with the same frequency as the perturbation. On the other hand, the
amplitude of the response depends on the frequency. In particular, the amplitude
is large if the input frequency is (nearly) resonant with the natural frequency of
the oscillator. A lot of important scientific work and a lot of engineering has been
accomplished under the impression that the above statements are true when the
first sentence begins with the phrase “If an oscillator is periodically forced . . . .”
By reading to this point in this book you are in a strong position to challenge
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Figure 7.9: The figure depicts the response signal for v := θ̇ versus time
for the system θ̇ = v, v̇ = − sin θ − ε(m1 + m2v − B cos(Ω(t − t0)) sin θ)
with t0 = 0, Ω = 2, m1 = 10, m2 = 1, B = 32, and ε = .001. The left
panel depicts an orbit that is captured into resonance; the initial condition
is (θ, θ̇) = (0, 3.940252). The right panel depicts the corresponding signal
for the orbit with initial condition (θ, θ̇) = (0, 3.940253).

these statements when the word “linear” is left out. Prove that the statements are
true for linear oscillators and give examples to show that nonlinear oscillators do
not always behave so simply. Suppose that a nonlinear oscillator, say ẋ = f(x),
is periodically perturbed with a periodic perturbation of frequency Ω and the
function t �→ xi(t) is observed where xi is one of the component functions of a
solution t �→ (x1(t), . . . , xn(t)). Will the signal t �→ xi(t) retain some “trace” of
the periodic input? For example, consider the power spectrum of this function,
that is, the square of the absolute value of its Fourier transform. Will the fre-
quency Ω have a large amplitude in the power spectrum? Try some numerical
experiments. The previous question does not have a simple answer. But questions
of this type arise all the time in physics and engineering where we are confronted
with multivariable systems that are often far too complex to be analyzed with
analytic methods. Discuss the reasons why the study of simple models might be
valuable for understanding complex systems.

Exercise 7.16. Consider the system

θ̇ = v, v̇ = − sin θ − ε(m1 + m2v − B cos(Ω(t − t0)) sin θ),

a parametrically excited pendulum with damping and torque. Reproduce the
Figure 7.9 as an illustration of passage through resonance. Determine an ap-
proximate neighborhood of the point (θ, θ̇) = (0, 3.940252) corresponding to the
initial conditions for orbits that are captured into resonance. Can you automate
a criterion for “capture into resonance”? Explore other regions of the parameter
space by using numerical experiments.
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7.3 Action-Angle Variables

To use the theory presented so far in this chapter we must be able to
express our oscillator in action-angle variables. In practice, the construction
of action-angle variables is a formidable task—recall the construction of
the Delaunay variables in Chapter 3. For linear oscillators the appropriate
coordinate change can be constructed using polar coordinates, while the
construction of action-angle variables for the pendulum requires the use of
Jacobi elliptic functions. A general construction of action-angle variables
for planar oscillators is presented in this section. The construction uses
some of the ideas discussed in Chapter 5.

Let us consider a differential equation of the form

u̇ = f(u) + εg(u, t) (7.38)

where the unperturbed system

u̇ = f(u) (7.39)

has a period annulus A. We will construct action-angle variables near a
periodic orbit Γ contained in A. The differential equation (7.39), expressed
in the new coordinates that we denote by I and ϑ, has the form

İ = 0, ϑ̇ = ω(I).

Interpreted geometrically, these new coordinates are related to polar co-
ordinates in that I is a radial variable and ϑ is an angular variable. In
fact, whereas I is constant on each periodic solution, ϑ changes linearly on
each periodic solution. In case the system (7.39) is Hamiltonian, the new
coordinates reduce to the usual action-angle variables on A.

With reference to system (7.39), define the orthogonal system

u̇ = f⊥(u), u ∈ X (7.40)

where, in oriented local coordinates, f⊥(u) := Jf(u) with

J =
(

0 −1
1 0

)
.

We mention that J rotates vectors in the plane through a positive angle
of π/2 radians. The same symbol J is often used in this context with the
opposite sign.

Let ϕt denote the flow of the differential equation (7.39) and let ψt denote
the flow of the differential equation (7.40). Also, for vectors ξ1 and ξ2 in
R

2, define ξ1 ∧ ξ2 := 〈ξ1, Jξ2〉, where the brackets denote the usual inner
product in R

2.
A periodic orbit Γ of (7.39) has an orientation determined by its time

parameterization. To specify an orientation, we define ε = ε(f) = 1 in case
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for each ζ ∈ Γ the vector f⊥(ζ) is the outer normal at ζ. If f⊥(ζ) is the
inner normal, then ε := −1. Also, the orientation of the period annulus
A is defined to be the orientation inherited from its constituent periodic
solutions.

Choose a point ζ ∈ A and note that there is an open interval U ⊂ R

containing the origin such that the image of the map ρ �→ ψρ(ζ) for ρ ∈ U
is a section Σζ transverse to the orbits of system (7.39) in A. Also, define
Υ : U × R → A by

Υ(ρ, φ) = ϕφ(ψρ(ζ)). (7.41)

Clearly, Υ is smooth. In fact, Υ is a covering map, that is, a periodic coordi-
nate system on A. We will see below that Υ defines “flow box” coordinates:
coordinates that straighten out the flow in a neighborhood of the periodic
orbit containing the point ζ.

To construct the action-angle variables, let us begin by considering the
derivative of the map Υ defined in display (7.41). Diliberto’s theorem (The-
orem 5.5) states that if

b(t, ζ) :=
||f(ζ)||2

||f(ϕt(ζ))||2 e
∫ t
0 div f(ϕs(v)) ds,

a(t, ζ) :=
∫ t

0

(
2κ(s, ζ)||f(ϕs(ζ))|| − curl f(ϕs(ζ))

)
b(s, ζ) ds, (7.42)

where κ denotes the signed scalar curvature along the curve t �→ ϕt(ζ),
ζ ∈ A, then

DΥ(ρ, φ)
∂

∂φ
= f(Υ(ρ, φ)),

DΥ(ρ, φ)
∂

∂ρ
= b(φ, ψρ(v))f⊥(Υ(ρ, φ)) + a(φ, ψρ(v))f(Υ(ρ, φ)).

In other words, the matrix representation of the derivative DΥ(ρ, φ) relative
to the ordered bases {∂/∂ρ, ∂/∂φ} and {f⊥(Υ(ρ, φ)), f(Υ(ρ, φ))} is given
by

DΥ(ρ, φ) =
(

b(φ, ψρ(v)) 0
a(φ, ψρ(v)) 1

)
.

Since b does not vanish for ζ ∈ A, it follows that Υ is a local diffeomorphism
and in fact Υ is a covering map onto its image.

To express the original system (7.38) in (ρ, φ)-coordinates, note first that
there are smooth functions (u, t) �→ p(u, t) and (u, t) �→ q(u, t) such that

g(u, t) = p(u, t)f⊥(u) + q(u, t)f(u) (7.43)

for all (u, t) ∈ A×R. Thus, to change system (7.38) to the new coordinates,
we simply solve for

j(u, t)
∂

∂ρ
+ k(u, t)

∂

∂φ
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in the matrix equation (
b 0
a 1

)(
j
k

)
=

(
εp

1 + εq

)
to obtain (

j
k

)
=

(
ε 1

b p
1 + ε(q − a

b p)

)
.

It follows that system (7.39) in the new coordinates is given by

ρ̇ = ε
1

b(φ, ψρ(v))
p(Υ(ρ, φ), t),

φ̇ = 1 + ε
(
q(Υ(ρ, φ), t) − a(φ, ψρ(v))

b(φ, ψρ(v))
p(Υ(ρ, φ), t)

)
. (7.44)

To compress notation, let us write (7.44) in the form

ρ̇ = εQ(ρ, φ, t), φ̇ = 1 + εR(ρ, φ, t). (7.45)

Define a second change of coordinates by

ρ = β(I), φ = α(I)ϑ (7.46)

where I �→ α(I) and I �→ β(I) are smooth functions to be specified below.
Here, since the coordinate transformation must be invertible, we need only
assume that α(I)β′(I) �= 0. In the (I, ϑ)-coordinates, system (7.44) has the
form

İ = ε
1

β′(I)
Q(β(I), α(I)ϑ, t),

ϑ̇ =
φ̇ − ϑα′(I)İ

α(I)
(7.47)

=
1

α(I)
+ ε

( 1
α(I)

R(β(I), α(I)ϑ, t) − ϑ
α′(I)

α(I)β′(I)
Q(β(I), α(I)ϑ, t)

)
.

To specify the functions α and β we require two auxiliary functions—
the period function and the area function. To define the period function,
recall that the image of the map ρ �→ ψρ(ζ) for ρ ∈ U is a section for
the unperturbed flow on the period annulus A. The period function on A
relative to this section is the map T̃ : U → R that assigns to each ρ ∈ U
the minimum period of the solution of system (7.39) that passes through
the point φρ(ζ) ∈ A. In the “standard” case, A is an annulus whose inner
boundary is a rest point. In this case, we define the area function ζ �→ A(ζ);
it assigns to each ζ ∈ A the area enclosed by the unperturbed solution
through ζ.
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The function β is defined to be the solution of the initial value problem

dρ

dI
= ε

2π

T̃ (ρ)

1
||f(ψρ(ζ))||2 , ρ(I0) = 0 (7.48)

where in the standard case I0 = A(ζ)/(2π), and in the case where A has
a nontrivial inner boundary I0 = 0. The choice of initial condition for the
standard case agrees with tradition; a different choice of initial condition
simply results in a constant translation of the “action” variable. The func-
tion α is defined by

α(I) := −ε
T̃ (β(I))

2π
(7.49)

where ε = ±1 according to the orientation of the period annulus A.
Using the definition T (I) := T̃ (β(I)), the system (7.47) has the form

İ = εε
T (I)
2π

||f(ψρ(ζ))||2Q(β(I), α(I)ϑ, t),

ϑ̇ = −ε
2π

T (I)
− εε

( 2π

T (I)
R(β(I), α(I)ϑ, t)

+ ϑ
T ′(I)
2π

||f(ψρ(ζ))||2Q(β(I), α(I)ϑ, t)
)
. (7.50)

From equation (7.43), we have the identities

p =
1

||f ||2 〈g, f⊥〉 =
1

||f ||2 f ∧ g, q =
1

||f ||2 〈f, g〉.

In view of system (7.44), the system (7.50) can be rewritten in the form

İ = εε
T (I)
2π

E(I, ϑ)f(Υ(β(I), α(I)ϑ)) ∧ g(Υ(β(I), α(I)ϑ), t),

ϑ̇ = −ε
2π

T (I)

− εε
[ 2π

T (I)
||f(Υ(β(I), α(I)ϑ))||−2〈f, g〉 +

(
ϑ

T ′(I)
2π

||f(ψβ(I)(ζ))||2

− 2π

T (I)
a(α(I)ϑ, ψβ(I)(ζ))

)
||f(φβ(I)(ζ))||−2E(I, ϑ)f ∧ g

]
(7.51)

where

E(I, ϑ) := e− ∫ α(I)ϑ
0 div f(Υ(β(I),α(I)s)) ds.

Again, for notational convenience, let us write the first order system (7.51)
in the compact form

İ = εF (I, ϑ, t), ϑ̇ = ω(I) + εG(I, ϑ). (7.52)
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Note that both F and G are 2π-periodic in ϑ and 2π/Ω-periodic in t.
Thus, we have transformed the original perturbed system to action-angle
coordinates.

To prove that the action-angle coordinate transformation

u = Υ(β(I), α(I)ϑ) (7.53)

is canonical in case the unperturbed system is Hamiltonian, it suffices to
show the transformation is area preserving, that is, the Jacobian of the
transformation is unity. In fact, the Jacobian is

det
[(

−f2(u) f1(u)
f1(u) f2(u)

)(
a(φ, ψρ(ζ)) 1

)(
β′(I) 0
α′(I)ϑ α(I)

)]
=

||f(u)||2
||f(ψρ(ζ))||2 b(φ, ψρ(ζ)).

But, if f is a Hamiltonian vector field, then div f = 0, and

b(φ, ψρ(ζ)) =
||f(ψρ(ζ))||2

||f(u)||2 ,

as required. Moreover, in case f is the Hamiltonian vector field for the
Hamiltonian H, we have f(u) = −J gradH(u). Recall that ρ = β(I) and
define h := H(ψρ(ζ)). Then,

dI

dh
= ε

T̃ (ρ(h))
2π

.

Thus, the derivative of the action variable with respect to energy is the
normalized energy-period function, as it should be.



8
Local Bifurcation

Consider the family of differential equations

u̇ = f(u, λ), u ∈ R
n, λ ∈ R. (8.1)

In case f(u0, λ0) = 0, the differential equation with parameter value λ = λ0
has a rest point at u0 and the linearized system at this point is given by

Ẇ = fu(u0, λ0)W. (8.2)

If the eigenvalues of the linear transformation fu(u0, λ0) : R
n �→ R

n are
all nonzero, then the transformation is invertible, and by an application of
the implicit function theorem there is a curve λ �→ β(λ) in R

n such that
β(λ0) = u0 and f(β(λ), λ) ≡ 0. In other words, for each λ in the domain of
β the point β(λ) ∈ R

n corresponds to a rest point for the member of the
family (8.1) at the parameter value λ.

Recall that if all eigenvalues of the linear transformation fu(u0, λ0) have
nonzero real parts, then the transformation is called infinitesimally hyper-
bolic and the rest point u0 is called hyperbolic. Also, in this case, since the
eigenvalues of Df(u, λ) depend continuously on u and the parameter λ, if
|λ−λ0| is sufficiently small, then the rest point u = β(λ) of the differential
equation (8.1) at the parameter value λ has the same stability type as the
rest point u0 = β(λ0). In particular, if the rest point u0 is hyperbolic, then
for sufficiently small λ the perturbed rest point β(λ) is also hyperbolic.

If fu(u0, λ0) is not infinitesimally hyperbolic, then there is at least one
eigenvalue with zero real part. It turns out that the topology of the local
phase portrait of the corresponding differential equation (8.1) at this rest
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point may change under perturbation (that is, the local phase portrait at
u0 may change for λ close but not equal to λ); if it does, we will say that a
bifurcation occurs. For example, the phase portrait for a nearby differential
equation may have no rest points or several rest points in the vicinity of
the original rest point. In this chapter, we will consider such bifurcations in
case the linear transformation fu(u0, λ0) has a simple zero eigenvalue; that
is, a zero eigenvalue with algebraic (and geometric) multiplicity one, or a
pair of pure imaginary complex conjugate eigenvalues each with algebraic
multiplicity one, and we will describe some of the “generic” bifurcations
that occur under these conditions.

Although only the loss of stability at a rest point of a differential equa-
tion will be discussed, the basic results presented here can be modified to
cover the case of the loss of stability of a fixed point of a map; and in turn
the modified theory can be applied to the Poincaré map to obtain a bifur-
cation theory for periodic orbits. The extension of bifurcation theory from
rest points to periodic orbits is only the beginning of a vast subject that
has been developed far beyond the scope of this book. For example, the
loss of stability of a general invariant manifold can be considered. On the
other hand, bifurcation theory is by no means complete: Many interesting
problems are unresolved. (See the books [8] and [58] for detailed and wide
ranging results on bifurcations of planar vector fields, and [11], [57], [97],
[98], [103], [151], [208], [232], and [233] for more general bifurcation theory.)

Exercise 8.1. Prove that the eigenvalues of an n × n matrix depend continu-
ously on the components of the matrix.

8.1 One-Dimensional State Space

In this section, some of the general concepts of bifurcation theory will be
illustrated in their simplest form by an analysis of the most important bifur-
cation associated with rest points of scalar differential equations, namely,
the saddle-node bifurcation. In addition, we will discuss how bifurcation
problems arise in applied mathematics.

8.1.1 The Saddle-Node Bifurcation
Consider the family of differential equations

u̇ = λ − u2, u ∈ R, λ ∈ R (8.3)

and note that if f(u, λ) := λ − u2, then

f(0, 0) = 0, fu(0, 0) = 0, fuu(0, 0) = −2, fλ(0, 0) = 1.
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Also, the rest points for members of this family are given by λ = u2. Thus,
if λ < 0, then there are no rest points; if λ = 0, then there is one rest
point called a saddle-node (the system matrix for the linearization has a
simple zero eigenvalue); and if λ > 0, then there are two rest points given
by u = ±

√
λ, one stable and the other unstable. This family provides an

example of a saddle-node bifurcation (see Figure 1.6 for the bifurcation
diagram).

Roughly speaking, the one-parameter family (8.1) has a saddle-node
bifurcation at (u0, λ0) if its bifurcation diagram near (u0, λ0), with the
point (u0, λ0) translated to the origin, is similar to Figure 1.6. The next
proposition states the precise conditions that the bifurcation diagram must
satisfy and sufficient conditions for a saddle-node bifurcation to occur at
(u, λ) = (0, 0) in case system (8.1) is a scalar differential equation; a formal
definition and a more general theorem on saddle-node bifurcation (Theo-
rem 8.12) will be formulated and proved in Section 8.2.

Proposition 8.2. Suppose that the differential equation (8.1) is given by
a smooth (parameter-dependent) vector field (u, λ) �→ f(u, λ). If

f(0, 0) = 0, fu(0, 0) = 0, fuu(0, 0) �= 0, fλ(0, 0) �= 0,

then there is a saddle-node bifurcation at (u, λ) = (0, 0). In particular,
there is a number p0 > 0 and a unique smooth curve β in R × R given by
p �→ (p, γ(p)) for |p| < p0 such that each point in the range of β corresponds
to a rest point, and the range of β is quadratically tangent to R × {0}; that
is,

f(p, γ(p)) ≡ 0, γ(0) = γ′(0) = 0, γ′′(0) �= 0.

Moreover, the stability type of the rest points corresponding to β changes
at p = 0; that is, p �→ fu(p, γ(p)) changes sign at p = 0. Also, γ′′(0) =
−fuu(0, 0)/fλ(0, 0).

Proof. Because fλ(0, 0) �= 0, we can apply the implicit function theorem to
obtain the existence of a curve p �→ γ(p) such that γ(0) = 0 and f(p, γ(p)) ≡
0 for |p| < p0 where p0 is some positive real number. Since the derivative
of the function p �→ f(p, γ(p)) is zero, we have the identity

fu(p, γ(p)) + fλ(p, γ(p))γ′(p) = 0.

In particular,
fu(0, 0) + fλ(0, 0)γ′(0) = 0,

and, in view of the hypotheses, γ′(0) = 0. Since the second derivative of
the function p �→ f(p, γ(p)) is also zero, we have the equation

fuu(0, 0) + fλ(0, 0)γ′′(0) = 0.
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By rearrangement of this equation and by the hypotheses of the proposition,
it follows that

γ′′(0) = −fuu(0, 0)
fλ(0, 0)

�= 0.

Finally, because the derivative of the map p �→ fu(p, γ(p)) at p = 0 is the
nonzero number fuu(0, 0), this map indeed changes sign at p = 0. �

8.1.2 A Normal Form
If f satisfies all the hypotheses of Proposition 8.2, then by an application
of the preparation theorem (Theorem 5.15) this function can be factored
in the form

f(u, λ) = (a0(u) + λ)U(u, λ)

where a0(0) = 0 and U(0, 0) �= 0. Thus, the flow of the differential equation

u̇ = f(u, λ) (8.4)

is topologically equivalent to the flow of the differential equation u̇ =
a0(u) + λ on some open neighborhood of the origin by the identity homeo-
morphism. Or, if you like, the two differential equations are equivalent by
a rescaling of time (see Proposition 1.30). Moreover, taking into account
our hypotheses fu(0, 0) = 0 and fuu(0, 0) �= 0, we have that a′

0(0) = 0 and
a′′
0(0) �= 0. As a result, the function a is given by

a0(u) =
1
2
a′′
0(0)u2 + O(u3).

By the Morse lemma (see Exercise 5.63), there is a change of coordinates
u = µ(y) with µ(0) = 0 that transforms the differential equation (8.4) into
the form

ẏ =
1

µ′(y)
(λ ± y2)

where, of course, µ′(y) �= 0 because the change of coordinates is invertible.
By a final rescaling of time and, if necessary, a change in the sign of λ, we
obtain the equivalent differential equation

ẏ = λ − y2. (8.5)

The family (8.5) is a normal form for the saddle-node bifurcation: Ev-
ery one-parameter family of scalar differential equations that satisfies the
hypotheses of Proposition 8.2 at a point in the product of the phase space
and the parameter space can be (locally) transformed to this normal form
by a (nonlinear) change of coordinates and a rescaling of time. In this con-
text, the differential equation (8.5) is also called a versal deformation or a
universal unfolding of the saddle-node.
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The reader may suspect that the use of such terms as “versal deforma-
tion” and “universal unfolding” is indicative of a rich and mature underly-
ing theory. This is indeed the case. Moreover, there are a number of excel-
lent books on this subject. For example, the book of Vladimir Arnold [11]
has a masterful exposition of the “big ideas” of bifurcation theory while the
books of Martin Golubitsky and David G. Schaeffer [97] and Golubitsky,
Ian Stewart, and Schaeffer [98] contain a more comprehensive study of the
subject (see also [57] and [58]).

In the next two sections we will explore some of the philosophy of bifur-
cation theory and discuss how bifurcation problems arise in applied math-
ematics.

8.1.3 Bifurcation in Applied Mathematics
Is bifurcation theory important in applied mathematics? To discuss this
question, let us suppose that we have a model of a physical system given
by a family of differential equations that depends on some parameters. We
will consider the process that might be used to identify these parameters
and the value of the resulting model for making physical predictions.

In a typical scenario, a model has “system parameters” and “control pa-
rameters.” System parameters specify the measurements of intrinsic physi-
cal properties, whereas control parameters correspond to adjustments that
can be made while maintaining the integrity of the physical system. By
changing the control parameters in the mathematical model, we can make
predictions so as to avoid expensive physical experiments. Also, we can ex-
plore the phenomena that occur over the range of the control parameters.

Ideally, system parameters are identified by comparing predictions of the
model with experimental data. But, for a realistic model with several sys-
tem parameters, the parameter identification will almost always require a
complicated analysis. In fact, parameter identification is itself a fascinat-
ing and important problem in applied mathematics that is not completely
solved. Let us simply note that the parameter identification process will
not be exact. Indeed, if an approximation algorithm is combined with ex-
perimental data, then some uncertainty is inevitable.

Suppose the model system of differential equations that we obtain from
our parameter identification process contains a degenerate rest point for
some choices of the control parameters. Have we just been unlucky? Can we
adjust the parameters to avoid the degeneracy? What does the appearance
of a degenerate rest point tell us about our original model?

Let us first consider the case where there are no control parameters. If,
for example, our original model is given by the differential equation (8.5)
and our parameter identification process results in specifying the system
parameter value λ = 0 so that the corresponding differential equation has a
degenerate rest point, then it would seem that we have been very unlucky.
Indeed, predictions from the model with λ = 0 would seem to be quite
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unreliable. By an arbitrarily small change in the estimated value of the
system parameter, we can construct a model differential equation with two
hyperbolic rest points or no rest points at all. The choice λ = 0 for the
system parameter produces a model that is not structurally stable. On the
other hand, by arbitrarily small changes of the system parameter, we can
produce two structurally stable models with completely different qualitative
behavior (see Exercise 8.3).

Clearly, it is important to know if the choice of system parameters pro-
duces a structurally unstable model or a model that is “close” to one that
is structurally unstable; if this is the case, then it is important to analyze
the qualitative behavior of the models that are produced by small changes
in the system parameters. Whereas in the scalar model (8.5) the analysis
is transparent, it is not at all obvious how we might detect such struc-
tural instabilities in a multiparameter or multidimensional model. On the
other hand, because system parameters are viewed as fixed once they are
identified, we can theoretically avoid the structural instabilities by simply
reassigning the system parameters.

For the record, two vector fields defined on the same state space are
called topologically equivalent if there is a homeomorphism of the state
space that maps all orbits of the first vector field onto orbits of the second
vector field and preserves the direction of time along all the orbits (the time
parameterization of the orbits is ignored). Of course, if two vector fields are
topologically equivalent, then their phase portraits are qualitatively the
same. A vector field (and the corresponding differential equation) is called
structurally stable if there is an open set of vector fields in the C1 topology
that contains the given vector field, and all vector fields in this open set
are topologically equivalent to the given vector field. The idea is that the
topological type of a structurally stable vector field is not destroyed by a
small smooth perturbation (recall Exercise 1.116).

While it might seem reasonable to suspect that most models are struc-
tural stable (for instance, we might expect that the set of structurally stable
vector fields is open and dense in the C1 topology), this is not the case. On
the other hand, there is a rich mathematical theory of structural stability.
In particular, deep theorems in this subject state necessary and sufficient
conditions for a vector field to be structurally stable. An introduction to
these results is given in the book of Stephen Smale [204] and the refer-
ences therein. From the perspective of applied mathematics, the definition
of structural instability is perhaps too restrictive. A system is deemed un-
stable if its topological type is destroyed by an arbitrary C1 perturbation.
But in mathematical modeling the differential equations that arise are not
arbitrary. Rather, they are derived from physical laws. Thus, the structural
stability of a model with respect to its parameters—the subject matter of
bifurcation theory—is often a more important consideration than the C1

structural stability of the model.
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Let us now consider a model system that does contain control parame-
ters. For example, let us suppose that the original system is given by the
differential equation

u̇ = λ − au2

where a is a system parameter and λ is a control parameter. If our parame-
ter identification algorithm produces a nonzero value for the system param-
eter a, then our model is a one-parameter family of differential equations
that has a saddle-node at the control parameter value λ = 0. Moreover, if
λ = 0 is in the range of the control parameter, then this instability is un-
avoidable for all nearby choices of the system parameter. This observation
suggests the reason why bifurcation theory is important in the analysis of
models given by families of differential equations: While a nondegenerate
member of a family may be obtained by a small change of its parameter, all
sufficiently small perturbations of the family may contain members with
a degeneracy. We will discuss this essential fact in more detail in the next
section.

Exercise 8.3. Consider the set S of all smooth functions defined on R endowed
with the C1([0, 1]) topology; that is, the distance between f and g in S is

‖f − g‖ = ‖f − g‖0 + ‖f ′ − g′‖0

where the indicated C0-norm is just the usual supremum norm over the unit
interval. Also, let S denote the subset of S consisting of the functions f ∈ S that
satisfy the following properties: (i) f(0) �= 0 and f(1) �= 0. (ii) If a is in the open
interval (0, 1) and f(a) = 0, then f ′(a) �= 0. Prove that each element in S is
structurally stable relative to S. Also, prove that S is an open and dense subset
of S.

8.1.4 Families, Transversality, and Jets
A structurally unstable system might occur at some parameter value in a
family of differential equations. This possibility leads to the question “Is
such a degeneracy avoidable for some family obtained by an arbitrarily
small perturbation of the given family?” We might also ask if a system in
a structurally stable family can contain a nonhyperbolic rest point.

One way to gain some insight into the questions that we have just asked,
is to construct a geometric interpretation of the space of vector fields as in
Figure 8.1. Indeed, let us consider the space of all smooth vector fields and
the subset of all vector fields that have a nonhyperbolic rest point. Suppose
that vector fields are represented heuristically by points in usual Euclidean
three-dimensional space and degenerate vector fields are represented by the
points on a hypersurface D. Since the complement of the set D is dense,
if f is a point in D, then there are points in the complement of D that



552 8. Local Bifurcation

Figure 8.1: Two families of vector fields, represented as curves, meet the
set of structurally unstable vector fields represented by hyperplanes. The
family in the left hand illustration is tangent to the hyperplane. A small
perturbation produces a family consisting entirely of structurally stable
vector fields. In contrast, all sufficiently small perturbations of the family
depicted as the curve (which might be tangent to the hyperplane) in the
right hand illustration have structurally unstable members.

are arbitrarily close to f . By analogy, if our geometric interpretation is
faithful, then there is an arbitrarily small C1 perturbation of our vector
field f that is nondegenerate; that is, the corresponding system has only
hyperbolic rest points. This is indeed the case if we restrict our vector fields
to compact domains.

Next, consider a one-parameter family of vector fields as a curve in the
space of all smooth vector fields, and suppose that this curve meets the
hypersurface D that represents the degenerate vector fields. If the curve
meets the surface so that its tangent vector at the intersection point is
not tangent to the surface—we call this a transversal intersection—then
every sufficiently small deformation of the curve will have a nonempty
transversal intersection with D. In other words, the degeneracy (depicted
by the intersection of the curve with the hypersurface) cannot be removed
by perturbation of the curve. By analogy, if our original family of vector
fields meets a “surface” corresponding to a degenerate set in the space of
all vector fields (which is infinite dimensional) and if the intersection of
the curve with this degenerate surface is transversal, then the degeneracy
cannot be removed by a small deformation of the family. This is one of the
main reasons why bifurcation theory is important in applied mathematics
when we are studying a model that is given by a family of differential
equations.

The geometric picture we have discussed gives the correct impression
for structural instabilities due to the nonhyperbolicity of rest points, the
subject of this chapter. Indeed, we will show how to make a precise inter-
pretation of this geometry for scalar vector fields. There is, however, an
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important warning: Our picture is misleading for some more complicated
structural instabilities, a topic that is beyond the scope of this book (see,
for example, [192] and [204]).

Let us identify the set of all scalar vector fields with the space of smooth
functions C∞(R, R). In view of Proposition 8.2, only a finite set of the
partial derivatives of a scalar family is required to determine the presence
of a saddle-node bifurcation. In fact, this observation is the starting point
for the construction of a finite dimensional space, called the space of k-jets,
that corresponds to the ambient space in our geometric picture.

Although the “correct” definition of the space of k-jets requires the in-
troduction of vector bundles (see, for example, [3]), we will enjoy a brief
glimpse of this theory by considering the special case of the construction
for the space C∞(R, R) where everything is so simple that the general
definition of a vector bundle can be avoided.

Consider the space R×C∞(R, R) and let k denote a nonnegative integer.
We will say that two elements (x, f) and (y, g) in the product space are
equivalent if

(x, f(x), f ′(x), f ′′(x), . . . , f (k)(x)) = (y, g(y), g′(y), g′′(y), . . . , g(k)(y))

where the equality is in the vector space R
k+2. The set of all equivalence

classes is denoted Jk(R, R) and called the space of k-jets.
Let us denote the equivalence class determined by (x, f) with the symbol

[x, f ] and define the natural projection πk of Jk(R, R) into R by πk([x, f ]) =
x. The k-jet extension of f ∈ C∞(R, R) is the map jk(f) : R → Jk(R, R)
defined by

jk(f)(u) = [u, f ].

Because πk(jk(f)(u)) ≡ u, the k-jet extension is called a section of the fiber
bundle with total space Jk(R, R), base R, and projection πk. The fiber over
the base point x ∈ R is the set {[x, f ] : f ∈ C∞(R, R)}. Also, let us define
Zk to be the image of the zero section of Jk(R, R); that is, Zk is the image
of the map ζ : R → Jk(R, R) given by ζ(u) = [u, 0].

The k-jet bundle can be “realized” by a choice of local coordinates. In
fact, the usual choice for the local coordinates is determined by the map
Φk : Jk(R, R) → R × R

k+1 defined by

Φk([u, f ]) = (u, f(u), f ′(u), . . . , fk(u)).

It is easy to check that Φk is well-defined and that we have the commutative
diagram

Jk(R, R) Φk

−→ R × R
k+1⏐⏐(πk

⏐⏐(π1

R
identity−→ R
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Figure 8.2: The sum of the tangent space to g(X) at g(p) and the tangent
space to M at g(p) is the tangent space to Y at g(p). In this case, the map
g : X → Y is transverse to the submanifold M ⊂ Y .

where π1 is the projection onto the first factor of R×R
k+1. Thus, Jk(R, R)

is identified with R × R
k+1 as a smooth manifold. Also, the set Z is given

in the local coordinates by Z := R × {0}. The jet space is the desired
finite dimensional space that incorporates all the data needed to consider
bifurcations that depend only on a finite number of partial derivatives of a
family of scalar vector fields.

We will need the concept of transversality of a map and a submanifold
(see Figure 8.2).

Definition 8.4. Suppose that g : X → Y is a smooth map and M denotes
a submanifold of the manifold Y . We say that the map g is transverse to
M at a point p ∈ X if either g(p) �∈ M , or g(p) ∈ M and the sum of the
tangent space of M at g(p) and the range of the derivative Dg(p) (both
viewed as linear subspaces of the tangent space of Y at p) is equal to the
entire tangent space of Y at g(p). The function g is said to be transverse
to the manifold M if it is transverse to M at every point of X.

The next theorem—stated here with some informality—is a far-reaching
generalization of the implicit function theorem.

Theorem 8.5 (Thom’s Transversality Theorem). The set S of maps
whose k-jet extensions are transverse to a submanifold M of the space of k-
jets is a dense subset of the space of all sufficiently smooth maps; moreover,
S is a countable intersection of open dense sets. In addition, if M is closed
in the space of k-jets, then S is open.

To make Thom’s theorem precise, we would have to define topologies on
our function spaces. The usual Cr topology is induced by the norm defined
as the sum of the suprema of the absolute values of the partial derivatives
of a function up to order r. But, this topology is not defined on the space
Cr(R, R) because some of the functions in this space are unbounded or
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have an unbounded partial derivative. To get around this problem, we can
restrict attention to functions defined on a compact domain in R, or we
can use one of the two useful topologies on Cr(R, R) called the weak and
the strong topology. Roughly speaking, if f is a function, α > 0, and K is a
compact subset of R, then a basic open set in the weak topology, also called
the compact open topology, is defined to be the set of functions g such that
the distance between f and g in the Cr-norm, relative to the compact set
K, is less than the positive number α. The strong topology is similar, but it
includes the neighborhoods defined by requiring that functions be close on
(infinite) families of compact subsets of their domains. The strong topology
is important because some of its open neighborhoods control the size of the
function and its partial derivatives “at infinity.” These topologies are the
same if the functions in Cr(R, R) are all restricted to a compact set. In
this case, the corresponding function space is the usual Banach space of Cr

functions defined on the compact set. The important observation for our
discussion is that Thom’s theorem is valid for both the weak and strong
topologies. (See the book of Morris Hirsch [120] for a precise definition of
these topologies and a proof of Thom’s theorem.)

A set is called residual if it is the (countable) intersection of open and
dense subsets. By Baire’s theorem, every residual set in a complete metric
space is dense (see [199]). Also, a property that holds on a residual set is
called generic. It turns out that even though the weak and strong topologies
on C∞(R, R) are not metrizable, the set C∞(R, R) is a Baire space with
respect to these topologies; that is, with respect to these topologies, a
countable intersection of open and dense sets is dense. Using these notions,
Thom’s transversality theorem can be restated as follows: The property of
transversal intersection is generic.

As a simple example of an application of Thom’s theorem, let us consider
the transversality of the 0-jet extensions of functions in C∞(R, R) with the
image of the zero section. Note that by the definition of transversality the 0-
jet extension of f ∈ C∞(R, R) is transversal to the image of the zero section
Z0 at u ∈ R if either j0(f)(u) �= [u, 0], or j0(f)(u) = [u, 0] and the image
of the derivative of the 0-jet extension j0(f) at u plus the tangent space to
Z0 at [u, 0] is the tangent space to J0(R, R) at [u, 0]. We will determine this
transversality condition more explicitly and use Thom’s theorem to state
a fact about the genericity of vector fields with hyperbolic rest points.

The differentiability of the map j0(f) and the properties of its deriva-
tive are local properties that can be determined in the local coordinate
representation of the jet bundle. In fact, with respect to the local co-
ordinates mentioned above, the local representative of the map j0(f) is
u �→ Φ0(j0(f)(u)). In other words, the local representation of j0(f) is the
map F : R → R × R defined by u → (u, f(u)); and, in these coordinates,
the range of the derivative of F is spanned by the vector (1, f ′(u)).

The local representation of Z0 is given by the linear manifold Z0 :=
{(x, y) ∈ R × R : y = 0}. Hence, the tangent space of Z0 at each of its
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points can be identified with Z0. Moreover, let us note that Z0, viewed as
a subspace of R × R, is spanned by the vector (1, 0).

The 0-jet extension of the function f is transverse to the zero section at
the point u ∈ R if and only if f ′(u) �= 0; it is transverse to the zero section
if it is transverse at every u ∈ R. In other words, the 0-jet extension of f is
transverse to the zero section if and only if all zeros of f are nondegenerate;
or equivalently if and only if all rest points of the corresponding differential
equation u̇ = f(u) are hyperbolic.

By Thom’s theorem, if f is in C∞(R, R), then there is an arbitrarily
small perturbation of f such that the corresponding differential equation
has only hyperbolic rest points. Moreover, the set of all scalar differential
equations with hyperbolic rest points is open.

The proof of Thom’s theorem is not trivial. But, for the simple case
that we are considering, part of Thom’s result is a corollary of the implicit
function theorem. In fact, we will show that if f has finitely many nonde-
generate zeros, then every sufficiently small perturbation of f has the same
property.

Consider the Banach space C1(R, R) consisting of all elements of C1(R, R)
that are bounded in the C1-norm. Suppose that f ∈ C1(R, R) has only
nondegenerate zeros and consider the map ρ : R × C1(R, R) → R given
by (u, f) �→ f(u). This map is smooth (see Exercise 8.8). Moreover, if
ρ(u0, f0) = 0, then we have ρu(u0, f0) = f ′(u0) �= 0. Thus, there is a map
f �→ β(f) defined on a neighborhood U of f0 in C1(R, R) with image in
an open subset V ⊂ R such that β(f0) = u0 and f(β(f)) ≡ 0. Moreover,
if (u, f) ∈ V × U and f(u) = 0, then u = β(f). In other words, every
function in the neighborhood U has exactly one zero in V . Also, there are
open subsets U0 ⊆ U and V0 ⊆ V such that for each function f in U0 we
have f ′(u) �= 0 whenever u ∈ V0. Hence, every function in U0 has a unique
nondegenerate zero in V0. If, in addition, the function f has only finitely
many zeros, then we can be sure that every perturbation of f has only
nondegenerate zeros.

Exercise 8.6. Consider the set of differential equations of the form u̇ = f(u),
where u ∈ R

n, that have a finite number of rest points, and show that the subset
of these systems with hyperbolic rest points is open and dense in the C1 topology.

We have used jet spaces to analyze the perturbations of scalar differential
equations that have only hyperbolic rest points. We will discuss differential
equations with saddle-nodes and show that the conditions required for a
saddle-node are the same as the conditions for a certain jet extension map
to be transversal to the zero section of a jet bundle.

Consider the 1-jet extensions of smooth scalar maps and the image of
the zero section Z1 ⊂ J1(R, R). If j1(f)(u) ∈ Z1, then f has a saddle-node
at u; that is, f(u) = 0 and f ′(u) = 0. Thus, to study the saddle-node
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bifurcation, we must consider families of maps in C∞(R, R). In fact, we
will identify these families as elements of the space C∞(R × R, R) where a
typical element f is given by a function of two variables (u, λ) �→ f(u, λ).

Let us define a new jet bundle with total space J (1,0)(R×R, R) consisting
of all equivalence classes of triples (u, λ, f) ∈ R × R × C∞(R × R, R) where
the triples (v, δ, f) and (w, ν, g) are equivalent if

v = w, δ = ν, f(v, δ) = g(w, ν), fu(v, δ) = gu(w, ν),

and the bundle projection is given by [u, λ, f(u, λ), fu(u, λ)] �→ (u, λ). Our
somewhat nonstandard jet space J (1,0)(R×R, R) may be viewed as a space
of families of sections of the 1-jet bundle of functions in C∞(R, R).

The (1, 0)-jet extension of f ∈ C∞(R × R, R) is the map

j(1,0)(f) : R × R → J (1,0)(R × R, R)

given by j(1,0)(f)(u, λ) = [u, λ, f(u, λ), fu(u, λ)], and the image of the zero
section Z(1,0) is the set of all equivalence classes of triples of the form
(u, λ, 0).

Let us note that the local representative of the (1, 0)-jet extension is
given by

(u, λ) �→ (u, λ, f(u, λ), fu(u, λ)).

Note also that the (1, 0)-jet extension is transverse to the zero section Z(1,0)

at a point (u, λ) where f(u, λ) = 0 and fu(u, λ) = 0 if the following obtains:
The vector space sum of
(i) the range of the derivative of the local representative of the (1, 0)-jet

extension; and
(ii) the tangent space of the local representation of Z(1,0) at (u, λ, 0, 0)

is equal to the entire space R
4. In other words, these vector subspaces are

(i) the span of the vectors

(1, 0, fu(u, λ), fuu(u, λ)) and (0, 1, fλ(u, λ), fλu(u, λ)); and

(ii) the span of the vectors (1, 0, 0, 0) and (0, 1, 0, 0).
This transversality condition is met provided that

fλ(u, λ) �= 0 and fuu(u, λ) �= 0,

exactly the conditions for a nondegenerate saddle-node bifurcation!
Just as for the case of nondegenerate zeros, the subset of all families of

smooth maps that have a saddle-node bifurcation is dense, and this set can
be identified as the countable intersection of open and dense subsets of the
space C∞(R×R, R). Moreover, by using the implicit function theorem, it is
easy to prove that if a family has a saddle-node bifurcation at some point,
then a small perturbation of this family also has a saddle-node bifurcation
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at a nearby point. Thus, by translating our criteria for saddle node bifur-
cations into the geometric language of transversality, we have developed an
approach to showing that saddle-node bifurcations can be unavoidable in
all sufficiently small perturbations of some one-parameter families of maps;
and, as a result, we have a positive answer to the question “Is bifurcation
theory important?”

In the remainder of this chapter we will not pursue the ideas that we have
discussed in this section. Rather, we will only consider sufficient conditions
to obtain nondegenerate bifurcation in one-parameter families. Transver-
sality theory can be applied in each case that we will consider to show that,
in an appropriate sense, the bifurcations are generic.

We have discussed the unavoidability of the saddle-node bifurcation in
one-parameter families of maps. This leads to the question “Are saddle-
nodes unavoidable in two-parameter families of maps?” The answer is
“yes.” In fact, nothing new happens for the saddle-node bifurcation rel-
ative to multiparameter families of maps. The reason is that the set corre-
sponding to the saddle-node has codimension one in an appropriate func-
tion space. On the other hand, bifurcation theory in families with two or
more parameters is generally much more difficult than the theory for one-
parameter families because global features of the dynamics must be taken
into account (see, for example, [57], [58], [103], and [233]).

Exercise 8.7. Formulate and prove a theorem based on the implicit function
theorem that can be used to show that a small perturbation of a family of maps
with a saddle-node bifurcation has a nearby saddle-node bifurcation.

Exercise 8.8. Prove: The map R × C1([a, b], R) �→ R given by (u, f) �→ f(u) is
smooth.

Exercise 8.9. Prove: There is a saddle-node bifurcation for some values of the
parameter λ in the family

u̇ = cos λ − u sin u.

Exercise 8.10. Draw the bifurcation diagram for the scalar family of differen-
tial equations

ẋ = λx − x2.

The bifurcation at λ = 0 is called transcritical. Prove a proposition similar to
Proposition 8.2 for the existence of a transcritical bifurcation.

Exercise 8.11. (a) Draw the bifurcation diagram for the scalar family of dif-
ferential equations

ẋ = λx − x3.

The bifurcation at λ = 0 is called the supercritical pitchfork. (b) Prove a propo-
sition similar to Proposition 8.2 for the existence of a supercritical pitchfork bi-
furcation. (c) Compare and contrast the supercritical pitchfork bifurcation with
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the subcritical pitchfork bifurcation whose normal form is

ẋ = λx + x3.

8.2 Saddle-Node Bifurcation by
Lyapunov–Schmidt Reduction

We will consider the saddle-node bifurcation for the n-dimensional family
of differential equations (8.1) given by

u̇ = f(u, λ), u ∈ R
n, λ ∈ R.

It should be clear from the previous section that sufficient conditions
for the saddle-node bifurcation to occur do not mention the solutions of
the differential equations in this family; rather, the analysis so far requires
only knowledge of the function f : R

n × R → R
n that defines the family of

vector fields associated with our family of differential equations. In view of
this fact, we say that u0 ∈ R

n is a saddle-node for f : R
n × R → R

n at λ0
if f(u0, λ0) = 0, the linear transformation fu(u0, λ0) : R

n → R
n has zero

as an eigenvalue with algebraic multiplicity one, and all other eigenvalues
have nonzero real parts. Also, a saddle-node bifurcation is said to occur
at a saddle-node u = u0 for the parameter value λ = λ0 if the following
conditions are met:

SNB1 There is a number p0 > 0 and a smooth curve p �→ β(p) in R
n ×R

such that β(0) = (u0, λ0) and f(β(p)) ≡ 0 for |p| < p0.
SNB2 The curve β has a quadratic tangency with R

n × {λ0} at (u0, λ0).
More precisely, if the components of β are defined by

β(p) = (β1(p), β2(p)),

then β2(0) = λ0, β′
2(0) = 0, and β′′

2 (0) �= 0.
SNB3 If p �= 0, then the matrix fu(β(p)) is infinitesimally hyperbolic.

Also, exactly one eigenvalue of the matrix crosses the imaginary
axis with nonzero speed at the parameter value p = 0.

The next theorem, called the saddle-node bifurcation theorem, gives suf-
ficient generic conditions for a saddle-node bifurcation to occur.

Theorem 8.12. Suppose that f : R
n × R �→ R

n is a smooth function,
u = u0 is a saddle-node for f at λ = λ0, and the kernel of the linear
transformation fu(u0, λ0) : R

n → R
n is spanned by the nonzero vector

k ∈ R
n. If fλ(u0, λ0) ∈ R

n and fuu(u0, λ0)(k, k) ∈ R
n are both nonzero and

both not in the range of fu(u0, λ0), then there is a saddle-node bifurcation
at (u, λ) = (u0, λ0) (that is SNB1, SNB2, and SNB3 are met). Moreover,
among all C∞ one-parameter families that have a saddle-node, those that
undergo a saddle-node bifurcation form an open and dense subset.
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The second derivatives that appear in the statement of Theorem 8.12
are easily understood from the correct point of view. Indeed, suppose that
g : R

n → R
n is a smooth function given by u �→ g(u) and recall that its

(first) derivative Dg is a map from R
n into the linear transformations of R

n;
that is, Dg : R

n → L(Rn, Rn). If u, v, w ∈ R
n, then the derivative of g at u

in the direction w is denoted by Dg(u)w. Consider the map u �→ Dg(u)w.
If g ∈ C2, then its derivative at u ∈ R

n in the direction v is defined by

d

dt
Dg(u + tv)w

∣∣∣
t=0

= (D2g(u)w)v = D2g(u)(w, v).

Hence, if g ∈ C2, then to compute the second derivative D2g, it suffices
to compute the first derivative of the map u �→ Dg(u)w. Also, note that
the function (w, v) �→ D2g(u)(w, v) is bilinear and symmetric. The linear-
ity follows from the linearity of the first derivatives; the symmetry is a
restatement of the equality of mixed partial derivatives.

Exercise 8.13. Suppose that f : R × R × R → R × R is given by

f(x, y, λ) = (λ − x2 + xy, −2y + x2 + y2)

and u := (x, y). Show that f satisfies all the hypotheses of Theorem 8.12 at
(u, λ) = (0, 0). Draw the phase portrait of u̇ = f(u, λ) near (u, λ) = (0, 0) for
λ < 0, λ = 0, and λ > 0.

Exercise 8.14. Prove that if g ∈ C2, then D2g(u)(v, w) = D2g(u)(w, v).

We now turn to the proof of Theorem 8.12.

Proof. Assume, with no loss of generality, that u = 0 is a saddle-node for
f at λ = 0. Also, assume that zero is an eigenvalue of the linearization
fu(0, 0) : R

n → R
n with algebraic multiplicity one, and the kernel K of this

linear transformation is one-dimensional, say K = [k].
Using the Lyapunov–Schmidt reduction and linear algebra, let us choose

an (n − 1)-dimensional complement K⊥ to K in R
n whose basis is

k⊥
2 , . . . , k⊥

n .

Corresponding to these choices, there is a coordinate transformation Ψ :
R × R

n−1 → R
n given by

(p, q) �→ pk +
n∑

i=2

qik
⊥
i

where, in the usual coordinates of R
n−1, the point q is given by q =

(q2, . . . , qn). Likewise, the range R of fu(0, 0) is (n − 1)-dimensional with
a one-dimensional complement R⊥. Let Π : R

n → R and Π⊥ : R
n → R⊥

be corresponding complementary linear projections.
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With the notation defined above, consider the map � : R × R
n−1 × R →

R given by (p, q, λ) �→ Πf(Ψ(p, q), λ). Since f(0, 0) = 0, we have that
�(0, 0, 0) = 0. From equation (5.60) of the abstract formulation of the
Lyapunov–Schmidt reduction, we see that �q(0, 0, 0) is invertible as a linear
transformation R

n−1 → R
n−1. Thus, there is a function h : R × R → R

n−1

given by (p, λ) �→ h(p, λ) with h(0, 0) = 0 such that for (p, λ) in a sufficiently
small neighborhood of the origin in R

n−1 × R we have

Πf(Ψ(p, h(p, λ), λ)) ≡ 0. (8.6)

It is instructive to check the invertibility of the derivative directly. In
fact, we have

�q(0, 0, 0) = Πfu(0, 0)Ψq(0, 0).

But Ψq(0, 0) : R
n−1 → R

n is given by

Ψq(0, 0)q =
n∑

i=2

qik
⊥
i .

Hence, the range of Ψq is the complement of the Kernel fu(0, 0) previously
chosen. Also Ψq is an isomorphism onto its range. On the complement of
its kernel, fu(0, 0) is an isomorphism onto its range and Π is the identity
on this range. In other words, �q(0, 0, 0) is an isomorphism.

Viewed geometrically, the function h defines a two-dimensional surface
in R × R

n−1 × R given by {(p, h(p, λ), λ) : (p, λ) ∈ R
n × R} which lies in

the zero set of �. In addition, the (Lyapunov–Schmidt) reduced function is
τ : R × R → R⊥ defined by

(p, λ) �→ Π⊥f(Ψ(p, h(p, λ)), λ).

Of course, if (p, λ) is a zero of τ , then f(Ψ(p, h(p, λ)), λ) = 0.
We have τ(0, 0) = 0. If τλ(0, 0) �= 0, then by the implicit function theorem

there is a unique curve p �→ γ(p) in R such that γ(0) = 0 and τ(p, γ(p)) ≡ 0.
Moreover, in this case, it follows that

f(Ψ(p, h(p, γ(p))), γ(p)) ≡ 0.

In other words, the image of the function β defined by

p �→ (Ψ(p, h(p, γ(p)), γ(p))

is a curve in the zero set of f(u, λ) that passes through the point (u, λ) =
(0, 0).

To show SNB1, we will prove the inequality τλ(0, 0) �= 0. Let us note
first that

τλ(0, 0) = Π⊥(fu(0, 0)Ψq(0, 0)hλ(0, 0) + fλ(0, 0)).
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Since Π⊥ projects to the complement of the range of fu(0, 0), the last
formula reduces to

τλ(0, 0) = Π⊥fλ(0, 0).

By hypothesis, fλ(0, 0) is a nonzero vector that is not in R; therefore,
τλ(0, 0) �= 0, as required.

To prove SNB2, we will show that γ′(0) = 0 and γ′′(0) �= 0. Note first
that the derivative of the identity τ(p, γ(p)) ≡ 0 with respect to p is given
by

τp(p, γ(p)) + τλ(p, γ(p))γ′(p) ≡ 0. (8.7)

Moreover, if we set p = 0 and use the equality γ(0) = 0, then

τp(0, 0) + τλ(0, 0)γ′(0) = 0.

Next, recall that τλ(0, 0) �= 0. Also, use the definition of τ to compute

τp(p, λ) = Π⊥fu(Ψ(p, h(p, λ)), λ)
(
Ψp(p, h(p, λ)) + Ψq(p, h(p, λ))hp(p, λ)

)
,

(8.8)

and, in particular,

τp(0, 0) = Π⊥fu(0, 0)
(
Ψp(0, 0) + Ψq(0, 0)hp(0, 0)

)
.

Because Π⊥ projects to the complement of the range of fu(0, 0), it fol-
lows that τp(0, 0) = 0, and therefore γ′(0) = 0. Using this fact and equa-
tion (8.7), we obtain the equality

τpp(0, 0) + τλ(0, 0)γ′′(0) = 0.

Thus, it follows that

γ′′(0) = −τpp(0, 0)
τλ(0, 0)

.

To prove the inequality τpp(0, 0) �= 0, first use equation (8.8) and recall
that Π⊥ projects to the complement of the range of fu(0, 0) to obtain the
equality

τpp(0, 0) = Π⊥fuu(0, 0)
(
Ψp(0, 0) + Ψq(0, 0)hp(0, 0)

)2

where “the square” is shorthand for the argument of the bilinear form
fuu(0, 0) on R

n.
Next, differentiate both sides of the identity (8.6) with respect to p at

p = 0 to obtain the equation

Πfu(0, 0)
(
Ψp(0, 0) + Ψq(0, 0)hp(0, 0)

)
= 0. (8.9)
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Because Π projects to the range of fu(0, 0), equation (8.9) is equivalent to
the equation

fu(0, 0)(Ψp(0, 0) + Ψq(0, 0)hp(0, 0)) = 0,

and therefore the vector

Ψp(0, 0) + Ψq(0, 0)hp(0, 0)

is in the kernel K of fu(0, 0). But by the definition of Ψ we have Ψp(0, 0) =
k ∈ K and Ψq(0, 0)hp(0, 0) ∈ K⊥. Thus, hp(0, 0) = 0, and it follows that
τpp(0, 0) �= 0 if and only if

fuu(0, 0)(k, k) �= 0, fuu(0, 0)(k, k) �∈ R. (8.10)

This completes the proof of SNB2.
To prove SNB3, and thus complete the proof of the theorem, let us

consider the curve β of rest points given by p �→ (Ψ(p, h(p, γ(p)), γ(p)). We
must show that the matrix fu(β(p)) is invertible for small nonzero p ∈ R

and a single eigenvalue of fu(β(p)) passes through zero with nonzero speed
at p = 0. In other words, the rest points on the curve β are hyperbolic for
p �= 0, and there is a generic change of stability at p = 0. Of course, the
first condition follows from the second.

To analyze the second condition, consider the eigenvalues of fu(β(p)).
By the hypothesis of the theorem, there is exactly one zero eigenvalue at
p = 0. Thus, there is a curve p �→ σ(p) in the complex plane such that
σ(0) = 0 and such that σ(p) is an eigenvalue of fu(β(p)). Also, there is a
corresponding eigenvector V (p) such that

fu(β(p))V (p) = σ(p)V (p), (8.11)
V (0) = k.

By differentiating both sides of the identity (8.11) with respect to p at
p = 0 and simplifying the result, we obtain the equation

fuu(0, 0)(k, k) + fu(0, 0)V ′(0) = σ′(0)k

and its projection
Π⊥fuu(k, k) = σ′(0)Π⊥k.

In view of the inequality (8.10), we have that Π⊥fuu(0, 0)(k, k) �= 0, and
therefore σ′(0) is a nonzero real number. �

Exercise 8.15. Prove: With the notation as in the proof of Theorem 8.12, if
Π⊥k = 0 and n ≥ 2, then zero is an eigenvalue of fu(0, 0) with multiplicity at
least two.
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Exercise 8.16. Suppose that A : R
n → R

n is a linear transformation with
exactly one zero eigenvalue. Show that there is a nonzero “left eigenvector” w ∈
R

n such that wTA = 0. Also, show that v is in the range of A if and only if
〈v, w〉 = 0. Discuss how this exercise gives a method to verify the hypotheses of
Theorem 8.12.

Exercise 8.17. Verify the existence of a saddle-node bifurcation for the func-
tion f : R

2 × R → R
2 given by

f(x, y, λ) = (λ − x2, −y).

Exercise 8.18. Determine the bifurcation diagram for the phase portrait of
the differential equation

xẍ + aẋ2 = b

where a and b are parameters.

Exercise 8.19. [Hamiltonian saddle-node] Suppose that

u̇ = f(u, λ), u ∈ R2 (8.12)

is a planar Hamiltonian family with parameter λ ∈ R. Prove that if f(u0, λ0) = 0
and the corresponding linearization at u0 has a zero eigenvalue, then this eigen-
value has algebraic multiplicity two. In particular, a planar Hamiltonian system
cannot have a saddle-node. Define (u0, λ0) to be a Hamiltonian saddle-node at
λ0 if f(u0, λ0) = 0 and fu(u0, λ0) has a zero eigenvalue with geometric multiplic-
ity one. A Hamiltonian saddle-node bifurcation occurs if the following conditions
hold:

• There exist s0 > 0 and a smooth curve γ in R2×R such that γ(0) = (u0, λ0)
and f(γ(s)) ≡ 0 for |s| < s0.

• The curve of critical points γ is quadratically tangent to R2 × {λ0} at
(u0, λ0).

• The Lyapunov stability type of the rest points on the curve γ changes at
s = 0.

Prove the following proposition formulated by Jason Bender [24]: Suppose that
the origin in R

2 × R is a Hamiltonian saddle-node for (8.12) and k ∈ R2 is a
nonzero vector that spans the one-dimensional kernel of the linear transformation
fu(0, 0). If the two vectors fλ(0, 0) ∈ R2 and fuu(0, 0)(k, k) ∈ R2 are nonzero and
not in the range of fu(0, 0), then a Hamiltonian saddle-node bifurcation occurs
at the origin.

Reformulate the hypotheses of the proposition in terms of the Hamiltonian
for the family so that there is no mention of the vector k. Also, discuss the
Hamiltonian saddle-node bifurcation for the following model of a pendulum with
feedback control

ẋ = y, ẏ = − sin x − αx + β

(see [236]). Generalize the proposition to Hamiltonian systems on R
2n. (See [160]

for the corresponding result for Poincaré maps at periodic orbits of Hamiltonian
systems.)
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8.3 Poincaré–Andronov–Hopf Bifurcation

Consider the family of differential equations

u̇ = F (u, λ), u ∈ R
N , λ ∈ R

M (8.13)

where λ is a vector of parameters.

Definition 8.20. An ordered pair (u0, λ0) ∈ R
N × R

M consisting of a
parameter value λ0 and a rest point u0 for the corresponding member of
the family (8.13) is called a Hopf point if there is a curve C in R

N × R
M ,

called an associated curve, that is given by ε �→ (C1(ε), C2(ε)) and satisfies
the following properties:

(i) C(0) = (u0, λ0) and F (C1(ε), C2(ε)) ≡ 0.

(ii) The linear transformation given by the derivative Fu(C1(ε), C2(ε)) :
R

N → R
N has a pair of nonzero complex conjugate eigenvalues α(ε)±

β(ε) i, each with algebraic (and geometric) multiplicity one. Also,
α(0) = 0, α′(0) �= 0, and β(0) �= 0.

(iii) Except for the eigenvalues ±β(0) i, all other eigenvalues of Fu(u0, λ0)
have nonzero real parts.

Our definition says that a one-parameter family of differential equations
has a Hopf point if a single pair of complex conjugate eigenvalues, associated
with the linearizations of a corresponding family of rest points, crosses the
imaginary axis in the complex plane with nonzero speed at the parameter
value of the bifurcation point, whereas all other eigenvalues have nonzero
real parts. We will show that if some additional generic assumptions are
met, then there are members of the family (8.13) that have a limit cycle
near the Hopf point.

Let us show first that it suffices to consider the bifurcation for a planar
family of differential equations associated with the family (8.13).

Because the linear transformation given by the derivative Fu(u0, λ0) at
the Hopf point (u0, λ0) has exactly two eigenvalues on the imaginary axis,
the results in Chapter 4, especially equation (4.24), can be used to show
that there is a center manifold reduction for the family (8.13) that produces
a family of planar differential equations

u̇ = f(u, λ), u ∈ R
2, λ ∈ R

M , (8.14)

with a corresponding Hopf point. Moreover, there is a product neighbor-
hood U × V ⊂ R

N × R
M of the Hopf point (u0, λ0) such that if λ ∈ V

and the corresponding member of the family (8.13) has a bounded orbit in
U , then this same orbit is an invariant set for the corresponding member
of the planar family (8.14). Thus, it suffices to consider the bifurcation of
limit cycles from the Hopf point of this associated planar family.
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ε < 0 ε > 0

Stable limit cycle

ε = 0

Stable sink Weak focus

Figure 8.3: Supercritical Hopf bifurcation: A limit cycle emerges from a
weak focus as the bifurcation parameter is increased.

There are important technical considerations related to the smoothness
and uniqueness of the planar family obtained by a center manifold reduction
at a Hopf point. For example, let us note that by the results in Chapter 4
if the family (8.13) is C1, then the augmented family, obtained by adding
a new equation corresponding to the parameters, has a local C1 center
manifold. But this result is not strong enough for the proof of the Hopf
bifurcation theorem given below. In fact, we will require the reduced planar
system (8.14) to be C4. Fortunately, the required smoothness can be proved.
In fact, using the fiber contraction principle as in Chapter 4, together with
an induction argument, it is possible to prove that if 0 < r < ∞ and the
family (8.13) is Cr, then the reduced planar system at the Hopf point is also
Cr in a neighborhood of the Hopf point. Let us also note that whereas local
center manifolds are not necessarily unique, it turns out that all rest points,
periodic orbits, homoclinic orbits, et cetera, that are sufficiently close to
the original rest point, are on every center manifold. Thus, the bifurcation
phenomena that are determined by reduction to a center manifold do not
depend on the choice of the local center manifold (see, for example, [58]).

Let us say that a set S ⊂ R
N has radii (r1, r2) relative to a point p if

r1 ≥ 0 is the radius of the smallest R
N -ball centered at p that contains S

and the distance from S to p is r2 ≥ 0.

Definition 8.21. The planar family (8.14) has a supercritical Hopf bifur-
cation at a Hopf point with associated curve ε �→ (c1(ε), c2(ε)) if there are
three positive numbers ε0, K1, and K2 such that for each ε in the open
interval (0, ε0) the differential equation u̇ = f(u, c2(ε)) has a hyperbolic
limit cycle with radii

(K1
√

ε + O(ε), K2
√

ε + O(ε))
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relative to the rest point u = c1(ε). The bifurcation is called subcritical
if there is a similar limit cycle for the systems with parameter values in
the range −ε0 < ε < 0. Also, we say that the family (8.13) has a super-
critical (respectively, subcritical) Hopf bifurcation at a Hopf point if the
corresponding (center manifold) reduced system (8.14) has a supercritical
(respectively, subcritical) Hopf bifurcation.

To avoid mentioning several similar cases as we proceed, let us consider
only Hopf points such that the parametrized eigenvalues α±β i satisfy the
additional assumptions

α′(0) > 0, β(0) > 0. (8.15)

In particular, we will restrict attention to the supercritical Hopf bifurcation
as depicted in Figure 8.3.

Under our standing hypothesis (8.15), a rest point on the associated curve
ε �→ c(ε) of the Hopf point is a stable hyperbolic focus for the corresponding
system (8.14) for ε < 0 and an unstable hyperbolic focus for ε > 0. We will
introduce an additional hypothesis that implies “weak attraction” toward
the rest point u0 at the parameter value λ0. In this case, there is a stable
limit cycle that “bifurcates from this rest point” as ε increases through ε =
0. This change in the qualitative behavior of the system as the parameter
changes is the bifurcation that we wish to describe, namely, the supercritical
Hopf bifurcation.

Before defining the notion of weak attraction, we will simplify the fam-
ily (8.14) by a local change of coordinates and a reduction to one-parameter.
Note that, after the translation v = u−c1(ε), the differential equation (8.14)
becomes

v̇ = f(v + c1(ε), λ)

with f(0 + c1(ε), c2(ε)) ≡ 0. In particular, in the new coordinates, the
associated rest points remain at the origin for all values of the parameter
ε. Thus, it suffices to consider the family (8.14) to be of the form

u̇ = f(u, λ), u ∈ R
2, λ ∈ R, (8.16)

only now with a Hopf point at (u, λ) = (0, 0) ∈ R
2 × R and with the

associated curve c given by λ �→ (0, λ).

Proposition 8.22. If (u, λ) = (0, 0) ∈ R
2 × R is a Hopf point for the

family (8.16) with associated curve λ �→ (0, λ) and eigenvalues α(λ)±β(λ) i,
then there is a smooth parameter-dependent linear change of coordinates of
the form u = L(λ)z that transforms the system matrix A(λ) := fu(0, λ) of
the linearization at the origin along the associated curve into the Jordan
normal form (

α(λ) −β(λ)
β(λ) α(λ)

)
.
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Proof. Suppose that w(λ) = u1(λ) + u2(λ) i is a (nonzero) eigenvector for
the eigenvalue α(λ) + β(λ) i. We will show that there is an eigenvector of
the form (1

0

)
−

(v1(λ)
v2(λ)

)
i.

To prove this fact, it suffices to find a family of complex numbers c(λ) +
d(λ) i such that

(c + d i)(u1 + u2 i) =
(1

0

)
−

(v1
v2

)
i

for a family of numbers v1, v2 ∈ R where the minus sign is inserted to
determine a convenient orientation. Equivalently, it suffices to solve the
equation

cu1 − du2 =
(1

0

)
,

which is expressed in matrix form as follows:

(u1,−u2)
( c

d

)
=

(1
0

)
.

Since the eigenvectors w and w̄ corresponding to the distinct eigenvalues
α ± β i are linearly independent and

(u1,−u2)
(

1 1
−i i

)
= (w, w̄) ,

it follows that det [u1,−u2] �= 0, and therefore we can solve (uniquely) for
the vector (c, d).

Using this fact, we have the eigenvalue equation

A
((

1
0

)
− i

(
v1
v2

))
= (α + iβ)

((
1
0

)
− i

(
v1
v2

))
,

as well as its real and imaginary parts

A

(
1
0

)
= α

(
1
0

)
+ β

(
v1
v2

)
, A

(
v1

v2

)
= −β

(
1
0

)
+ α

(
v1
v2

)
. (8.17)

Hence, if

L :=
(

1 v1
0 v2

)
,

then

AL = L

(
α −β
β α

)
.
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Again, since the vectors u1 and u2 are linearly independent, so are the
following nonzero scalar multiples of these vectors(

1
0

)
,

(
v1
v2

)
.

Thus, we have proved that the matrix L is invertible. Moreover, we can
solve explicitly for v1 and v2. Indeed, using the equations (8.17), we have

(A − αI)
(

1
0

)
= β

(
v1
v2

)
.

If we now set

A =
(

a11 a12
a21 a22

)
,

then
v1 =

a11 − α

β
, v2 =

a21

β
.

Here β := β(λ) is not zero at λ = 0, so the functions λ �→ v1(λ) and λ �→
v2(λ) are smooth. Finally, the change of coordinates v = L(λ)z transforms
the family of differential equations (8.16) to ż = L−1(λ)f(L(λ)z, λ), and
the linearization of the transformed equation at z = 0 is given by(

α(λ) −β(λ)
β(λ) α(λ)

)
.

The matrix function λ �→ L−1(λ) is also smooth at the origin. It is given
by

L−1 =
1
v2

(
v2 −v1
0 1

)
where 1/v2(λ) = β(λ)/a21(λ). But, if a21(λ) = 0, then the linearization has
real eigenvalues, in contradiction to our hypotheses. �

By Proposition 8.22, there is no loss of generality if we assume that the
differential equation (8.16) has the form

ẋ = α(λ)x − β(λ)y + g(x, y, λ),
ẏ = β(λ)x + α(λ)y + h(x, y, λ) (8.18)

where the functions g and h together with their first partial derivatives
with respect to the space variables vanish at the origin; the real functions
λ �→ α(λ) and λ �→ β(λ) are such that α(0) = 0 (the real part of the
linearization must vanish at λ = 0) and, by our standing assumption,
α′(0) > 0 (the derivative of the real part does not vanish at λ = 0); and,
by the assumption that β(0) > 0, the eigenvalues α(λ) ± iβ(λ) are nonzero
complex conjugates for |λ| sufficiently close to zero. Moreover, there is no
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loss of generality if we assume that β(0) = 1. Indeed, this normalization
can be achieved by a reparametrization of time in the family (8.18).

We will seek a periodic orbit of the family (8.18) near the origin of
the coordinate system by applying the implicit function theorem to find
a zero of the associated displacement function that is defined along the
x-axis. For this application of the implicit function theorem we have to
check that the displacement function has a smooth extension to the origin.
While it is clear that the displacement has a continuous extension to the
origin—define its value at the rest point to be zero—it is not clear that
the extended displacement function is smooth. Indeed, the proof that the
return map exists near a point p on a Poincaré section is based on the
implicit function theorem and requires that the vector field be transverse
to the section at p. But this condition is not satisfied at the origin for
members of the family (8.18) because the vector field vanishes at this rest
point.

Let us show that the displacement function for the system (8.18) is indeed
smooth by using the blowup construction discussed in Section 1.8.5. The
idea is that we can bypass the issue of the smoothness of the displacement
at the origin for the family (8.18) by blowing up at the rest point. In fact,
by changing the family (8.18) to polar coordinates we obtain the family

ṙ = α(λ)r + p(r, θ, λ), θ̇ = β(λ) + q(r, θ, λ) (8.19)

where

p(r, θ, λ) := g(r cos θ, r sin θ, λ) cos θ + h(r cos θ, r sin θ, λ) sin θ,

q(r, θ, λ) :=
1
r

(
h(r cos θ, r sin θ, λ) cos θ − g(r cos θ, r sin θ, λ) sin θ

)
.

Since (x, y) �→ g(x, y, λ) and (x, y) �→ h(x, y, λ) and their first partial
derivatives vanish at the origin, the function q in system (8.19) has a re-
movable singularity at r = 0. Thus, the system is smooth. Moreover, by
the change to polar coordinates, the rest point at the origin in the plane
has been blown up to the circle {0} × T on the phase cylinder R × T. In
our case, where β(λ) �= 0, the rest point at the origin (for each choice of
that parameter λ) corresponds to the periodic orbit on the cylinder given
by the solution r(t) ≡ 0 and θ(t) = β(λ)t. A Poincaré section on the cylin-
der for these periodic orbits, for example the line θ = 0, has a smooth
(parametrized) return map that is equivalent to the corresponding return
map on the x-axis for the family (8.18). Thus, if we blow down—that is,
project back to the plane—then the image of our transversal section is a
smooth section for the flow with a smooth return map and a smooth re-
turn time map. In particular, both maps are smooth at the origin. In other
words, the displacement function on the x-axis of the plane is conjugate
(by the change of coordinates) to the smooth displacement function defined
on the line θ = 0 in the cylinder.
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We will take advantage of the geometry on the phase cylinder: There
our bifurcation problem concerns the bifurcation of periodic orbits from
a periodic orbit rather than the bifurcation of periodic orbits from a rest
point. Indeed, Hopf bifurcation on the phase cylinder is analogous to bifur-
cation from a multiple limit cycle as in our previous discussion following
the Weierstrass preparation theorem (Theorem 5.15) on page 384.

For the generic case, we will soon see that the limit cycle, given on the
cylinder by the set {(r, θ) : r = 0} for the family (8.19) at λ = 0, has multi-
plicity three. But, unlike the general theory for bifurcation from a multiple
limit cycle with multiplicity three, the Hopf bifurcation has an essential
new feature revealed by the geometry of the blowup: The bifurcation is
symmetric with respect to the set {(r, θ) : r = 0}. More precisely, each
member of the family (8.19) is invariant under the change of coordinates
given by

R = −r, Θ = θ − π. (8.20)

While this symmetry has many effects, it should at least be clear that if
a member of the family (8.19) has a periodic orbit that does not coincide
with the set {(r, θ) : r = 0}, then the system has two periodic orbits: one
in the upper half cylinder, and one in the lower half cylinder. Also, if the
set {(r, θ) : r = 0} is a limit cycle, then it cannot be semistable, that
is, attracting on one side and repelling on the other (see Exercise 8.23).
The geometry is similar to the geometry of the pitchfork bifurcation (see
Exercise 8.11 and Section 8.4).

The general theory of bifurcations with symmetry is an important topic
that is covered in detail in the excellent books [97] and [98].

Exercise 8.23. Prove: If the set Γ := {(r, θ) : r = 0} on the cylinder is a limit
cycle for the member of the family (8.19) at λ = 0, then this limit cycle is not
semistable. State conditions that imply Γ is a limit cycle and conditions that
imply it is a hyperbolic limit cycle.

By our hypotheses, if |r| is sufficiently small, then the line {(r, θ) : θ = 0}
is a transversal section for the flow of system (8.19) on the phase cylinder.
Moreover, as we have mentioned above, there is a smooth displacement
function defined on this section. In fact, let t �→ (r(t, ξ, λ), θ(t, ξ, λ)) denote
the solution of the differential equation (8.19) with the initial condition

r(0, ξ, λ) = ξ, θ(0, ξ, λ) = 0,

and note that (because β(0) = 1)

θ(2π, 0, 0) = 2π, θ̇(2π, 0, 0) = β(0) �= 0.

By an application of the implicit function theorem, there is a product neigh-
borhood U0×V0 of the origin in R×R, and a function T : U0×V0 → R such
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that T (0, 0) = 2π and θ(T (ξ, λ), ξ, λ) ≡ 2π. Thus, the desired displacement
function δ : U0 × V0 → R is defined by

δ(ξ, λ) := r(T (ξ, λ), ξ, λ) − ξ. (8.21)

The displacement function (8.21) is complicated by the presence of the
implicitly defined return-time function T , a difficulty that can be avoided
by yet another change of coordinates. Indeed, since T (0, 0) = 2π and
θ̇(t, 0, 0) = β(0) �= 0, it follows from the continuity of the functions T
and θ̇ and the implicit function theorem that there is a product neigh-
borhood U × V of the origin with U × V ⊆ U0 × V0 such that for each
(ξ, λ) ∈ U × V the function t �→ θ(t, ξ, λ) is invertible on some bounded
time interval containing T (ξ, λ) (see Exercise 8.28). Moreover, if the inverse
function is denoted by s �→ θ−1(s, ξ, λ), then the function ρ : R×U×V → R

defined by

ρ(s, ξ, λ) = r(θ−1(s, ξ, λ), ξ, λ)

is a solution of the initial value problem

dρ

ds
=

α(λ)ρ + p(ρ, s, λ)
β(λ) + q(ρ, s, λ)

, ρ(0, ξ, λ) = ξ

and

ρ(2π, ξ, λ) = r(T (ξ, λ), ξ, λ).

If we rename the variables ρ and s to new variables r and θ, then the
displacement function δ : U × V → R as defined in equation (8.21) with
respect to the original variable r is also given by the formula

δ(ξ, λ) = r(2π, ξ, λ) − ξ (8.22)

where θ �→ r(θ, ξ, λ) is the solution of the initial value problem

dr

dθ
=

α(λ)r + p(r, θ, λ)
β(λ) + q(r, θ, λ)

, r(0, ξ, λ) = ξ. (8.23)

In particular, with respect to the differential equation (8.23), the “return
time” does not depend on the position ξ along the Poincaré section or the
value of the parameter λ; rather, it has the constant value 2π.

Definition 8.24. Suppose that (u, λ) = (0, 0) ∈ R
2 × R is a Hopf point

for the family (8.16). The corresponding rest point u = 0 is called a weak
attractor (respectively, a weak repeller) if the associated displacement func-
tion (8.22) is such that δξξξ(0, 0) < 0 (respectively, δξξξ(0, 0) > 0). In
addition, the Hopf point (u, λ) = (0, 0) is said to have multiplicity one if
δξξξ(0, 0) �= 0.
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Theorem 8.25 (Hopf Bifurcation Theorem). If the family of differ-
ential equations (8.16) has a Hopf point at (u, λ) = (0, 0) ∈ R

2 ×R and the
corresponding rest point at the origin is a weak attractor (respectively, a
weak repeller), then there is a supercritical (respectively, subcritical) Hopf
bifurcation at this Hopf point.

Proof. Let us assume that the family (8.16) is C4. By Proposition 8.22,
there is a smooth change of coordinates that transforms the family (8.16)
into the family (8.18). Moreover, because β(0) �= 0, the function

S(r, θ, λ) :=
α(λ)r + p(r, θ, λ)
β(λ) + q(r, θ, λ)

,

and therefore the family of differential equations

dr

dθ
= S(r, θ, λ), (8.24)

is as smooth as the original differential equation (8.16); that is, it is at least
in class C4.

The associated displacement function δ defined in equation (8.22) is given
by the C4 function

δ(ξ, λ) := r(2π, ξ, λ) − ξ (8.25)

where θ �→ r(θ, ξ, λ) is the solution of the differential equation (8.24) with
initial condition r(0, ξ, λ) = ξ. Moreover, each function ξ �→ δ(ξ, λ) is de-
fined in a neighborhood of ξ = 0 in R.

Since δ(0, λ) ≡ 0, the displacement function is represented as a series,

δ(ξ, λ) = δ1(λ)ξ + δ2(λ)ξ2 + δ3(λ)ξ3 + O(ξ4),

whose first-order coefficient is given by

δ1(λ) = δξ(0, λ) = rξ(2π, 0, λ) − 1

where θ �→ rξ(θ, 0, λ) is the solution of the variational initial value problem

drξ

dθ
= Sr(0, θ, λ)rξ =

α(λ)
β(λ)

rξ, rξ(0, 0, λ) = 1.

Hence, by solving the scalar first order linear differential equation, we have
that

δ1(λ) = rξ(2π, 0, λ) − 1 = e2πα(λ)/β(λ) − 1.

Moreover, since α(0) = 0, it follows that

δ(ξ, 0) = ξ2(δ2(0) + δ3(0)ξ + O(ξ2)
)
.
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Note that if δ2(0) �= 0, then δ(ξ, 0) has constant sign for sufficiently small
|ξ| �= 0, and therefore the trajectories of the corresponding system (8.19) at
λ = 0 do not spiral around the origin of its phase plane (draw a picture);
equivalently, the periodic orbit {(r, θ) : r = 0} on the phase cylinder is a
semistable limit cycle. But using the assumptions that α(0) = 0 and β(0) �=
0 and Exercise 8.23, this qualitative behavior cannot occur. In particular,
the existence of a semistable limit cycle on the phase cylinder violates
the symmetry (8.20), which carries over to the differential equation (8.23).
In fact, if θ → r(θ, ξ, λ) is a solution of equation (8.23), then so is the
function θ → −r(θ + π, ξ, λ). For all of these equivalent reasons, we have
that δ2(0) = 0.

Consider the function ∆ : R × R → R defined on the domain of the
displacement function by

∆(ξ, λ) = δ1(λ) + δ2(λ)ξ + δ3(λ)ξ2 + O(ξ3),

and note that

∆(0, 0) = e2πα(0)/β(0) − 1 = 0,

∆ξ(0, 0) = δ2(0) = 0,

∆ξξ(0, 0) = 2δ3(0) = δξξξ(0, 0)/3 �= 0,

∆λ(0, 0) = 2πα′(0)/β(0) > 0.

By Proposition 8.2, the function ∆ has a saddle-node bifurcation at ξ = 0
for the parameter value λ = 0. In particular, there is a curve ξ �→ (ξ, γ(ξ))
in R × R with γ(0) = 0, γ′(0) = 0, and γ′′(0) �= 0 such that ∆(ξ, γ(ξ)) ≡ 0.
As a result, we have that

δ(ξ, γ(ξ)) = ξ∆(ξ, γ(ξ)) ≡ 0,

and therefore if λ = γ(ξ), then there is a periodic solution of the corre-
sponding member of the family (8.18) that meets the Poincaré section at
the point with coordinate ξ.

For the remainder of the proof, let us assume that δξξξ(0, 0) < 0; the
case where δξξξ(0, 0) > 0 is similar.

By Proposition 8.2, we have the inequality

γ′′(0) = −∆ξξ(0, 0)
∆λ(0, 0)

= − β(0)
6πα′(0)

δξξξ(0, 0) > 0,

and therefore the coefficient of the leading-order term of the series

λ = γ(ξ) =
γ′′(0)

2
ξ2 + O(ξ3)

does not vanish. Hence, the position coordinate ξ > 0 corresponding to a
periodic solution is represented as follows by a power series in

√
λ :

ξ =
(

−λ
12πα′(0)

β(0)δξξξ(0, 0)

)1/2

+ O(λ). (8.26)
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Thus, the distance from the periodic orbit to the origin is of the form
K2

√
k+O(k) for some constant K2. Using the construction in the discussion

following display (8.21), it is easy to see that the function S = S(r, θ, λ) can
be restricted to a compact subset of its domain with no loss of generality
for our bifurcation analysis. By continuity, the magnitude of the partial
derivative Sr is bounded by some constant K > 0 on such a compact set.
Note that S(0, θ, λ) ≡ 0 and apply the mean value theorem to S to obtain
the inequality

|r(θ, ξ, λ)| = |ξ| +
∫ θ

0
|S(r, φ, λ)| dφ ≤ |ξ| + K

∫ θ

0
|r| dφ.

By an application of Gronwall’s inequality, we have that

|r(θ, ξ, λ)| ≤ ξe2πK

on our periodic solution. Hence, the periodic solution lies in a ball whose
radius is K1

√
k + O(k) for some constant K1, as required.

The proof will be completed by showing that the periodic solution cor-
responding to ξ given by the equation (8.26) is a stable hyperbolic limit
cycle.

Consider the Poincaré map defined by

P (ξ, λ) := δ(ξ, λ) + ξ = ξ(∆(ξ, λ) + 1)

and note that
Pξ(ξ, λ) = ξ∆ξ(ξ, λ) + ∆(ξ, λ) + 1.

At the periodic solution we have λ = γ(ξ), and therefore

Pξ(ξ, γ(ξ)) = ξ∆ξ(ξ, γ(ξ)) + 1.

Moreover, because ∆(ξ, γ(ξ)) ≡ 0, we have the identity

∆ξ(ξ, γ(ξ)) = −∆λ(ξ, γ(ξ))γ′(ξ).

Using the relations ∆λ(0, 0) > 0, γ′(0) = 0, and γ′′(0) > 0, it follows that
if ξ > 0 is sufficiently small, then γ′(ξ) > 0 and −∆λ(ξ, γ(ξ)) < 0; hence,
∆ξ(ξ, γ(ξ)) < 0 and 0 < Pξ(ξ, γ(ξ)) < 1. In other words, the periodic
solution is a hyperbolic stable limit cycle. �

While the presentation given in this section discusses the most important
ideas needed to understand the Hopf bifurcation, there are a few unresolved
issues. Note first that sufficient conditions for the Hopf bifurcation are
given only for a two-dimensional system obtained by restriction to a center
manifold, not for the original system of differential equations. In particular,
the definition of a weak attractor is only given for two-dimensional systems.
Also, we have not discussed an efficient method to determine the sign of
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the third space-derivative of the displacement function, an essential step
for practical applications of the Hopf bifurcation theorem. For a resolution
of the first issue see [151]; the second issue is addressed in the next section.

Exercise 8.26. Consider the two systems

ṙ = λr ± r3, θ̇ = 1 + ar2,

where (r, θ) are polar coordinates. Show that the + sign system has a supercritical
Hopf bifurcation and the − sign system has a subcritical Hopf bifurcation. The
given systems are normal forms for the Hopf bifurcation.

Exercise 8.27. Show that the system

ẋ = λx − y + xy2, ẏ = x + λy + y3

has a subcritical Hopf bifurcation. Hint: Change to polar coordinates and com-
pute (explicitly) the Poincaré map defined on the positive x-axis. Recall that
Bernoulli’s equation ż = a(t)z + b(t)zn+1 is transformed to a linear equation by
the change of variables w = z−n.

Exercise 8.28. Suppose that K ⊆ R and W ⊆ R
k are open sets, g : K ×W →

R is a smooth function, and T > 0. If [0, T ] ⊂ K, 0 ∈ W , and gt(t, 0) �= 0
for all t ∈ K, then there are open product neighborhoods I × U ⊆ K × W
and J × V ⊆ R × R

k with [0, T ] ⊂ I and 0 ∈ U and a smooth function h :
J × V → R such that h(g(t, u), u) = t whenever (t, u) ∈ I × U . Hint: Consider
the function G : K × W × R → R given by G(t, w, s) = g(t, w) − s and note that
G(t, w, g(t, w)) ≡ 0 and Gt(t, w, g(t, w)) �= 0. Apply the implicit function theorem
to obtain a function h such that G(h(s, w), w, s) ≡ 0 and h(g(t, w), w) = t. The
implicit function is only locally defined but it is unique. Use the uniqueness to
show that h is defined globally on an appropriate product neighborhood.

8.3.1 Multiple Hopf Bifurcation
The hypothesis in the Hopf bifurcation theorem, which states that a Hopf
point has multiplicity one, raises at least two important questions: How can
we check the sign of the third space-derivative δξξξ(0, 0) of the displacement
function? What happens if δξξξ(0, 0) = 0? The answers to these questions
will be discussed in this section.

For the second question, let us note that (in the proof of the Hopf bifurca-
tion theorem) the condition δξξξ(0, 0) �= 0 ensures that the series represen-
tation of the displacement function has a nonzero coefficient at the lowest
possible order. If this condition is not satisfied because δξξξ(0, 0) = 0, then
the Hopf point is called multiple and the corresponding Hopf bifurcation is
called a multiple Hopf bifurcation.

Let us consider the multiple Hopf bifurcation for the case of a planar
vector field that depends on a vector of parameters. More precisely, we will
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consider the parameter λ in R
M and a corresponding family of differential

equations

u̇ = f(u, λ), u ∈ R
2 (8.27)

with the following additional properties: the function f is real analytic; at
the parameter value λ = λ∗, the origin u = 0 is a rest point for the differen-
tial equation u̇ = f(u, λ∗); and the eigenvalues of the linear transformation
fu(0, λ∗) are nonzero pure imaginary numbers. Under these assumptions,
the displacement function δ is represented by a convergent power series of
the form

δ(ξ, λ) =
∞∑

j=1

δj(λ)ξj . (8.28)

Definition 8.29. The rest point at u = 0, for the member of the fam-
ily (8.27) at the parameter value λ = λ∗, is called a weak focus of order k
if k is a positive integer such that

δ1(λ∗) = · · · = δ2k(λ∗) = 0, δ2k+1(λ∗) �= 0.

It is not difficult to show—a special case is proved in the course of the
proof of the Hopf bifurcation theorem—that if δ1(λ∗) = · · · = δ2k−1(λ∗) =
0, then δ2k(λ∗) = 0. In fact, this is another manifestation of the symmetry
given in display (8.20).

The next theorem is a corollary of the Weierstrass preparation theorem
(Theorem 5.15).

Proposition 8.30. If the family (8.27) has a weak focus of order k at
u = 0 for the parameter value λ = λ∗, then at most k limit cycles appear
in a corresponding multiple Hopf bifurcation. More precisely, there is some
ε > 0 and some ν > 0 such that u̇ = f(u, λ) has at most k limit cycles in
the open set {u ∈ R

2 : |u| < ν} whenever |λ − λ∗| < ε.

While Proposition 8.30 states that at most k limit cycles appear in a
multiple Hopf bifurcation at a weak focus of order k, additional informa-
tion about the set of coefficients {δ2j+1(λ) : j = 0, . . . , k} is required to
determine precisely how many limit cycles appear. For example, to obtain
the maximum number k of limit cycles, it suffices to have these coefficients
be independent in the following sense: There is some δ > 0 such that for
each j ≤ k and each ε > 0, if |λ0 − λ∗| < δ and

δ1(λ0) = δ2(λ0) = · · · = δ2j−1(λ0) = 0, δ2j+1(λ0) �= 0,

then there is a point λ1 such that |λ1 − λ0| < ε and

δ1(λ1) = · · · = δ2j−3(λ1) = 0, δ2j−1(λ1)δ2j+1(λ1) < 0.
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The idea is that successive odd order coefficients can be obtained with
opposite signs by making small changes in the parameter vector. The reason
why this condition is important will be made clear later.

Before we discuss the multiple Hopf bifurcation in more detail, let us
turn to the computation of the coefficients of the displacement function.
To include the general case where the vector field depends on a vector of
parameters, and in particular to include multiparameter bifurcations, we
will consider an analytic family of differential equations of the form

ẋ = εx − y + p(x, y), ẏ = x + εy + q(x, y) (8.29)

where p and q together with their first order partial derivatives vanish at
the origin. Moreover, the coefficients of the Taylor series representations of
p and q at the origin are considered as parameters along with the parameter
ε that is the real part of the eigenvalues of the linearization at the origin. We
will show how to compute the Taylor coefficients of the Taylor series (8.28)
corresponding to the displacement function for the system at ε = 0. As a
convenient notation, which is consistent with the notation used in the Hopf
bifurcation theorem, let us consider the displacement function at the origin
for the family (8.29) to be the function given by (ξ, ε) �→ δ(ξ, ε) where the
additional parameters are suppressed.

Set ε = 0 in system (8.29), change to polar coordinates, and consider the
initial value problem (similar to the initial value problem (8.23))

dr

dθ
=

r2A(r, θ)
1 + rB(r, θ)

, r(0, ξ) = ξ (8.30)

where ξ is viewed as the coordinate on the Poincaré section corresponding
to a segment of the line {(r, θ) : θ = 0}. The solution r is analytic and it is
represented by a series of the form

r(θ, ξ) =
∞∑

j=1

rj(θ)ξj . (8.31)

As we proceed, note that only the first few terms of this series are required
to determine δξξξ(0, 0). Therefore, the analyticity of the family (8.30) is not
necessary to verify the nondegeneracy condition for the Hopf bifurcation.

In view of the initial condition for the solution of the differential equa-
tion (8.31), it follows that r1(θ) ≡ 1 and rj(0) = 0 for all j ≥ 2. Hence,
if the series (8.31) is inserted into the differential equation (8.30) and like
powers of ξ are collected, then the sequence {rj(θ)}∞

j=2 of coefficients can
be found recursively.

Since r1(θ) ≡ 1, the displacement function has the representation

δ(ξ, 0) = r(2π, ξ) − ξ = r2(2π)ξ2 + r3(2π)ξ3 + O(ξ4).
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Also, since δ2(0) = 0, it follows that r2(2π) = 0, and therefore

δ(ξ, 0) = r3(2π)ξ3 + O(ξ4). (8.32)

Thus, we have proved that

δξξξ(0, 0) = 3!r3(2π). (8.33)

Since the coefficient r3(2π) can be computed using power series, formula (8.33)
gives a method to compute the derivative δξξξ(0, 0) (see Exercise 8.32 and
the formula (8.43)).

Exercise 8.31. In the context of Definition 8.29, show that if δ1(λ∗) = · · · =
δ2k−1(λ∗) = 0, then δ2k(λ∗) = 0.

Exercise 8.32. Find an expression for r3(2π) in terms of the Taylor coefficients
of the functions p and q in equation (8.29). Hint: Only the coefficients of order
two and three are required.

The method proposed above for determining the Taylor coefficients of
the displacement function has the advantage of conceptual simplicity; its
disadvantage is the requirement that a differential equation be solved to
complete each step of the algorithm. We will describe a more computation-
ally efficient procedure—introduced by Lyapunov—that is purely algebraic.
The idea of the procedure is to recursively construct polynomial Lyapunov
functions for the system (8.29) that can be used to determine the stability
of the rest point at the origin.

To implement Lyapunov’s procedure, let

p(x, y) =
∞∑

j=2

pj(x, y), q(x, y) =
∞∑

j=2

qj(x, y)

where pj and qj are homogeneous polynomials of degree j for each j =
2, . . . ,∞; let V denote the proposed Lyapunov function represented for-
mally as the series

V (x, y) =
1
2
(x2 + y2) +

∞∑
j=3

Vj(x, y) (8.34)

where each Vj is a homogeneous polynomial of degree j; and let

X(x, y) := (−y + p(x, y))
∂

∂x
+ (x + q(x, y))

∂

∂y

denote the vector field associated with the system (8.29).
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Exercise 8.33. Suppose that V , in display (8.34), is an analytic function. Show
that there is a neighborhood U of the origin such that V (x, y) > 0 for (x, y) ∈
U \ (0, 0).

To determine the stability of the rest point at the origin for the sys-
tem corresponding to the vector field X, let us begin by defining the Lie
derivative of V in the direction of the vector field X by

(LXV )(x, y) =
d

dt
V (ϕt(x, y))

∣∣∣
t=0

= gradV (x, y) · X(x, y)

where ϕt denotes the flow of X. Also, let us recall the discussion of Lya-
punov’s direct method in Section 1.7. In particular, using the language of
Lie derivatives, recall that if V (x, y) > 0 and LXV (x, y) ≤ 0 on some punc-
tured neighborhood of the origin, then V is called a Lyapunov function for
system (8.29) at (x, y) = (0, 0), and we have the following theorem:

Theorem 8.34. If V is a Lyapunov function at (x, y) = (0, 0) for the
system (8.29) at ε = 0 and LXV (x, y) < 0 for each point (x, y) in some
punctured neighborhood of the origin, then the rest point at the origin is
asymptotically stable.

Lyapunov’s idea for applying Theorem 8.34 to the system (8.29) at ε = 0
is to construct the required function V recursively. We will explain this
construction and also show that it produces the coefficients of the Taylor
series of the displacement function.

Define Hn to be the vector space of all homogeneous polynomials of
degree n in the variables x and y. Also, consider the vector field on R

2

given by R(x, y) = (x, y,−y, x), and observe that if V is a function defined
on R

2, then the Lie derivative LRV can be viewed as the action of the
linear differential operator LR, defined by

LR := −y
∂

∂x
+ x

∂

∂y
,

on V . In particular, LR acts on the vector space Hn as follows:

(LRV )(x, y) = −yVx(x, y) + xVy(x, y)

(see Exercise 8.35).

Exercise 8.35. Prove that Hn is a finite dimensional vector space, compute
its dimension, and show that the operator LR is a linear transformation of this
vector space.
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Using the definition of the Lie derivative, we have that

LXV (x, y) =
(
x +

∞∑
j=3

Vjx(x, y)
)(

− y +
∞∑

j=2

pj(x, y)
)

+
(
y +

∞∑
j=3

Vjy(x, y)
)(

x +
∞∑

j=2

qj(x, y)
)

where the subscripts x and y denote partial derivatives. Moreover, if we
collect terms on the right hand side of this identity according to their
degrees, then

LXV (x, y) = xp2(x, y) + yq2(x, y) + (LRV3)(x, y) + O((x2 + y2)2)

where xp2(x, y) + yq2(x, y) ∈ H3.

Proposition 8.36. If n is an odd integer, then LR : Hn → Hn is a linear
isomorphism.

Assuming for the moment the validity of Proposition 8.36, it follows that
there is some V3 ∈ H3 such that

(LRV3)(x, y) = −xp2(x, y) − yq2(x, y).

Hence, with this choice of V3, the terms of order three in the expression for
LXV vanish, and this expression has the form

LXV (x, y) = xp3(x, y) + yq3(x, y) + V3x(x, y)p2(x, y) + V3y(x, y)q2(x, y)

+ (LRV4)(x, y) + O((x2 + y2)5/2).

Proposition 8.37. If n is an even integer, say n = 2k, then the linear
transformation LR : Hn → Hn has a one-dimensional kernel generated by
(x2 + y2)k ∈ Hn. Also, the homogeneous polynomial (x2 + y2)k generates a
one-dimensional complement to the range of LR.

Assuming the validity of Proposition 8.37, there is a homogeneous poly-
nomial V4 ∈ H4 such that

LXV (x, y) = L4(x2 + y2)2 + O((x2 + y2)5/2) (8.35)

where L4 is a constant with respect to the variables x and y.
Equation (8.35) is useful. Indeed, if L4 �= 0, then the function

V (x, y) =
1
2
(x2 + y2) + V3(x, y) + V4(x, y) (8.36)

determines the stability of the rest point at the origin. More precisely, if
L4 < 0, then V is a Lyapunov function in some sufficiently small neigh-
borhood of the origin and the rest point is stable. If L4 > 0, then the rest
point is unstable (to see this fact just reverse the direction of time).
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Remark 3. These stability results do not require the vector field X to be an-
alytic. Also, the formal computations with the series V are justified because
the Lyapunov function (8.36) that is a requisite for applying Theorem 8.34
turns out to be a polynomial.

It should be clear that if L4 = 0, then by the same procedure used
to obtain L4 we can produce a new V such that the leading term of the
expression for LXV is L6(x2 + y2)3, and so on. Moreover, we have a useful
stability theorem.

Theorem 8.38. If L2n = 0, n = 2, . . . , N , but L2N+2 �= 0, then the
stability of the rest point at the origin is determined: If L2N+2 < 0, then
the rest point is stable. If L2N+2 > 0, then the rest point is unstable.

The constant L2k is called the kth Lyapunov quantity. By Theorem 8.38
and the algorithm for computing these Lyapunov quantities, we have a
method for constructing Lyapunov functions at linear centers of planar
systems. If after a finite number of steps a nonzero Lyapunov quantity is
obtained, then we can produce a polynomial Lyapunov function and use it
to determine the stability of the rest point.

What happens if all Lyapunov quantities vanish? This question is an-
swered by the Lyapunov center theorem [144]:

Theorem 8.39 (Lyapunov Center Theorem). If the vector field X is
analytic and L2n = 0 for each integer n ≥ 2, then the origin is a cen-
ter. Moreover, the formal series for V is convergent in a neighborhood of
the origin and it represents a function whose level sets are orbits of the
differential equation corresponding to X.

Exercise 8.40. Write a program using an algebraic processor that upon input
of system (8.29) and an integer N outputs L2n, n = 2, . . . , N . Use your program
to compute L4 for the system (8.29) in case the coefficients of p and q are regarded
as parameters. Hint: Look ahead to page 590.

We will prove Propositions 8.36 and 8.37 on page 584. But, before we do
so, let us establish the relationship between the Taylor coefficients of the
displacement function and the Lyapunov quantities.

Proposition 8.41. Suppose that ξ �→ δ(ξ, 0) is the displacement function
for the system (8.29) at ε = 0, and L2n for n ≥ 2, are the corresponding
Lyapunov quantities. If k is a positive integer and L2j = 0 for the integers
j = 1, . . . , k − 1, then

∂2k−1δ

∂ξ2k−1 (0, 0) = (2k − 1)!2πL2k.

In particular, δξξξ(0, 0) = 3!2πL4.
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Proof. We will prove only the last statement of the theorem; the general
proof is left as an exercise.

By equation (8.33), we have that δξξξ(0, 0) = 3!r3(2π). Thus, it suffices
to show that r3(2π) = 2πL4.

In polar coordinates, the polynomial

V (x, y) =
1
2
(x2 + y2) + V3(x, y) + V4(x, y)

in display (8.36) is given by

V := V (r cos θ, r sin θ) =
1
2
r2 + r3V3(cos θ, sin θ) + r4V4(cos θ, sin θ).

Define ρ =
√

2V and let r := r(θ, ξ) denote the (positive) solution of the
initial value problem (8.30). If we also define vj(θ) := 2Vj(cos θ, sin θ) for
j = 3, 4, then we have

ρ = (r2(1 + v3(θ)r + v4(θ)r2))1/2

= r(1 +
v3(θ)

2
r + φ(θ)r2 + O(r3)) (8.37)

where φ(θ) = v4(θ)/2 − (v3(θ))2/8. Moreover, if r ≥ 0 is sufficiently small,
then ρ is represented as indicated in display (8.37).

Define
∆(ξ) := ρ(2π, ξ) − ρ(0, ξ),

and use the initial condition r(0, ξ) = ξ together with equation (8.37), to
express ∆ in the form

∆(ξ) = r(2π, ξ)(1 +
v3(2π)

2
r(2π, ξ) + φ(2π)r2(2π, ξ))

− ξ(1 +
v3(0)

2
ξ + φ(0)ξ2) + O(ξ4) + O(r4(2π, ξ)).

Also, since vj(0) = vj(2π), we have the equation

∆(ξ) = r(2π, ξ)(1 +
v3(0)

2
r(2π, ξ) + φ(0)r2(2π, ξ))

− ξ(1 +
v3(0)

2
ξ + φ(0)ξ2) + O(ξ4) + O(r4(2π, ξ)).

Using formula (8.31), namely,

r(2π, ξ) = ξ + r3(2π)ξ3 + O(ξ4),

it is easy to show that

∆(ξ) = r3(2π)ξ3 + O(ξ4). (8.38)
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Also, using a direct computation, we have

∆(ξ) = ρ(2π, ξ) − ρ(0, ξ)

=
∫ 2π

0

dρ

dθ
(θ, ξ) dθ =

∫ 2π

0

1
ρ

dV

dθ
dθ =

∫ 2π

0

1
ρ

dV

dt

dt

dθ
dθ

=
∫ 2π

0

1
r(1 + 1

2v3(θ)r + O(r2))
(L4r

4 + O(r6))
1

1 + rB(r, θ)
dθ

=
∫ 2π

0
L4r

3 + O(r4) dθ

=
∫ 2π

0
L4(ξ + r3(θ)ξ3 + O(ξ4))3 + O(ξ4) dθ

= 2πL4ξ
3 + O(ξ4).

By equating the last expression for ∆ to the expression in display (8.38),
it follows that r3(2π) = 2πL4, as required. �

Exercise 8.42. Our definition of the Lyapunov quantities depends on the basis
for the complement of the range of LR : Hn → Hn for each even integer n. If a
different basis is used, “Lyapunov quantities” can be defined in a similar manner.
Describe how these quantities are related to the original Lyapunov quantities.

Exercise 8.43. Describe all Hopf bifurcations for the following equations:

1. ẋ = y, ẏ = −x + εy − ax2y where a ∈ R.

2. ẋ = εx − y + p(x, y), ẏ = x + εy + q(x, y) where p and q are homogeneous
quadratic polynomials.

3. ẍ + ε(x2 − 1)ẋ + x = 0 where ε ∈ R.

4. ẋ = (x − βy)x + εy, ẏ = (x2 − y)y where β, ε ∈ R.

Propositions 8.36 and 8.37 can be proved in a variety of ways. The proof
given here uses some of the elementary ideas of Lie’s theory of symmetry
groups for differential equations (see [178]). The reader is encouraged to
construct a purely algebraic proof.

Proof. Recall that the operator LR : Hn → Hn defines Lie differentiation
in the direction of the vector field given by R(x, y) = (x, y,−y, x). Geomet-
rically, the vector field R represents the infinitesimal (positive) rotation of
the plane centered at the origin. Its flow is the linear (positive) rotation
given by

ϕt(x, y) = etA

(
x
y

)
=

(
cos t − sin t
sin t cos t

)(
x
y

)
(8.39)
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where

A :=
(

0 −1
1 0

)
.

If f : R
2 → R denotes a smooth function and z := (x, y), then we have

LRf(z) =
d

dt
(f(ϕt(z)))

∣∣∣
t=0

.

A fundamental proposition in Lie’s theory is the following statement: If
h is an infinitesimally invariant function with respect to a vector field X
(that is, LXh = 0), then h is constant along integral curves of X. This
simple result depends on the group property of the flow of X.

To prove Lie’s proposition in our special case, first define h(t, z) =
f(ϕt(z)) and compute

d

dt
h(t, z)

∣∣∣
t=s

= lim
τ→0

1
τ

[h(s + τ, z) − h(s, z)]

= lim
τ→0

1
τ

[f(ϕτ (ϕs(z))) − f(ϕs(z))]

= LRf(ϕs(z)). (8.40)

If s �→ LRf(ϕs(z)) vanishes identically (that is, f is infinitesimally invari-
ant), then the function t �→ h(t, z) is a constant, and therefore f(ϕt(z)) =
f(z) for each t ∈ R. For our special case where LR : Hn → Hn and H ∈ Hn

we have the following corollary: The homogeneous polynomial H is in the
kernel of LR if and only if H is rotationally invariant.

If n is odd and H ∈ Hn is in the kernel of LR, then

H(x, y) = H(ϕπ(x, y)) = H(−x,−y) = (−1)nH(x, y) = −H(x, y),

and therefore H = 0. In other words, since Hn is finite dimensional, the
linear operator LR is invertible.

If n is even and H ∈ Hn is rotationally invariant, then

H(cos θ, sin θ) = H(1, 0), 0 ≤ θ < 2π.

Moreover, since H ∈ Hn is homogeneous, we also have that

H(r cos θ, r sin θ) = rnH(1, 0);

in other words, H(x, y) = H(1, 0)(x2 + y2)n/2. Thus, the kernel of LR

is one-dimensional and it is generated by the homogeneous polynomial
(x2 + y2)n/2.

We will show that the polynomial (x2 + y2)n/2 generates a complement
to the range of LR. Because the kernel of LR is one-dimensional, its range
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has codimension one. Thus, it suffices to show that the nonzero vector
(x2 + y2)n/2 is not in the range.

If there is some H ∈ Hn such that LRH(x, y) = (x2 + y2)n/2, then
choose z = (x, y) �= 0 and note that LRH(ϕt(z)) = ||z||n �= 0. By the
formula (8.40), the function t �→ H(ϕt(z)) is the solution of the initial
value problem

u̇ = ||z||n, u(0) = H(z),

and therefore H(ϕt(z)) = ||z||nt+H(z). Since t �→ H(ϕt(z)) is 2π-periodic,
it follows that ||z|| = 0, in contradiction. �

We have just developed all the ingredients needed to detect (multiple)
Hopf bifurcation from a weak focus of finite order for a family of the form

ẋ = λ1x − y + p(x, y, λ), ẏ = x + λ1y + q(x, y, λ) (8.41)

where λ = (λ1, . . . , λN ) is a vector-valued parameter. For simplicity, let
us assume that the coefficients of the Taylor series at the origin for the
functions (x, y) �→ p(x, y, λ) and (x, y) �→ q(x, y, λ) are polynomials in
the components of λ. Also, let us recall that the Lyapunov quantities are
computed at the parameter values where λ1 = 0. Thus, as a convenient
notation, let Λ = (0, λ2, . . . , λN ) be the vector variable for points in this
hypersurface of the parameter space so that the Lyapunov quantities are
functions of the variables λ2, . . . , λN . Moreover, if k is a positive integer
and for some fixed Λ∗ in the hypersurface we have L2j(Λ∗) = 0 for j =
2, . . . , k−1, and L2k(Λ∗) �= 0, then by Proposition 8.30 at most k −1 limit
cycles appear near the origin of the phase plane for the members of the
family corresponding to parameter values λ with |λ−Λ∗| sufficiently small.

If L2k(Λ∗) = 0 for each integer k ≥ 2, then the theory discussed so far
does not apply because the bifurcation point does not have finite multi-
plicity. To include this case, the rest point at the origin is called an infinite
order weak focus if the Taylor coefficients of the displacement function at
the origin are such that δj(Λ∗) = 0 for all integers j ≥ 1. We will briefly
discuss some of the beautiful ideas that can be used to analyze the bifur-
cations for this case (see for example [23], [42], [197], and [240]).

The starting point for the general theory is the observation encoded in
the following proposition.

Proposition 8.44. The Lyapunov quantities for an analytic family are
polynomials in the Taylor coefficients of the corresponding analytic family
of vector fields.

Hence, each Lyapunov quantity can be computed, in principle, in a finite
number of steps. The proof of the proposition starts on page 589.

As we have seen, the Lyapunov quantities are closely related to the Taylor
coefficients of the displacement function. Thus, there is good reason to
believe that the problem of the appearance of limit cycles at an infinite
order weak focus can be approached by working with polynomials.
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Let us recall that the displacement function for the family (8.41) has the
form

δ(ξ, λ) = δ1(λ)ξ +
∞∑

j=2

δj(λ)ξj

where δ1(λ) = e2πλ1 − 1. Moreover, if the rest point at the origin is an
infinite order weak focus at λ = Λ∗, then δj(Λ∗) = 0 for each integer j ≥ 1.

Two analytic functions are said to define the same germ, at a point in
the intersection of their domains if they agree on an open set containing
this point; or equivalently if they have the same Taylor series at this point.
The set of all germs of analytic functions of the variables λ1, . . . , λN at the
point Λ∗, that is, convergent power series in powers of

λ1, λ2 − λ∗
2, . . . , λN − λ∗

N ,

has (by the Hilbert basis theorem) the structure of a Noetherian ring (see,
for example, [29]). Therefore, the chain of its ideals

(δ1) ⊆ (δ1, δ2) ⊆ (δ1, δ2, δ3) ⊆ · · · ,

must stabilize. More precisely, there is an ideal

(δ1, δ2, δ3, . . . , δK)

that contains all subsequent ideals in the chain; in other words, there is
an ideal generated by a finite initial segment of Taylor coefficients of the
displacement function that contains all of the Taylor coefficients. Hence,
for each positive integer J , there is a set of analytic functions {µJk(λ) :
k = 1, . . . , K} such that

δJ(λ) =
K∑

k=1

µJk(λ)δk(λ). (8.42)

By using the representation (8.42) and a formal calculation, it is easy to
obtain the following series expansion for the displacement function:

δ(ξ, λ) = δ1(λ)ξ(1 +
∞∑

j=K+1

µj1(λ)ξj−1)

+ δ2(λ)ξ2(1 +
∞∑

j=K+1

µj2(λ)ξj−2)

+ · · · + δK(λ)ξK(1 +
∞∑

j=K+1

µjK(λ)ξj−K).

While it is certainly not obvious that this formal rearrangement of the
Taylor series of the displacement function is convergent, this result has been
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proved (see, for example, [42] and the references therein). By an inspection
of this series, it is reasonable to expect and not too difficult to prove that
if |ξ| and |λ−λ∗| are sufficiently small, then the appearance of limit cycles
is determined by an analysis of the zero set of the function

B(ξ, λ) := δ1(λ)ξ + δ2(λ)ξ2 + · · · + δK(λ)ξK .

In particular, because B is a polynomial of degree K in the variable ξ, the
displacement function δ cannot have more than K “local” zeros.

It turns out that, by the symmetry of the problem, only the odd order
Taylor coefficients of the displacement function are important. In fact, there
is some positive integer k such that the initial segment of Taylor coefficients
given by (δ1, δ3, δ5, . . . , δ2k+1) generates the ideal of all Taylor coefficients.
In this case, the multiple bifurcation point is said to have order k. Of course,
the reason for this definition is that at most k local limit cycles can appear
after perturbation of a bifurcation point of order k. Indeed, let us note that
the origin ξ = 0 accounts for one zero of the displacement function and each
limit cycle accounts for two zeros because such a limit cycle must cross both
the positive and the negative ξ-axis. Since the displacement function has
at most 2k + 1 zeros, there are at most k local limit cycles.

As mentioned previously, additional conditions must be satisfied to de-
termine the exact number of limit cycles. For example, let us suppose that
the function

B1(λ, ξ) := δ1(λ) + δ2(λ)ξ + · · · + δ2k+1(λ)ξ2k

is such that δ2k+1(Λ1) > 0 and δj(Λ1) = 0 for j = 1, . . . , 2k. For example,
this situation might arise if we found that L2j(Λ1) vanishes for j = 1, . . . k
and then noticed that the value of the polynomial L2k+2 at Λ1 is positive.
At any rate, if there is a parameter value Λ2 so that

δ2k+1(Λ2) > 0, δ2k(Λ2) < 0, δj(Λ2) = 0

for j = 1, . . . , 2k − 1, and |Λ2 − Λ1| is sufficiently small, then the function
ξ �→ B1(ξ,Λ2) will have two zeros near ξ = 0, one positive zero and one
zero at the origin. By continuity, if |Λ3 − Λ2| is sufficiently small, then the
corresponding function at the parameter value Λ3 also has continuations
of these zeros. Moreover, if there is a choice of Λ3 in the required open
subset of the parameter space such that δ2k−1(Λ3) > 0, then B1(ξ,Λ3) has
three zeros, and so on. Well, almost. We have used Λj for j = 1, 2, 3, . . .
to indicate that λ1 = 0. But, at the last step, where δ1(λ) = e2πλ1 − 1 is
adjusted, we can take a nonzero value of λ1.

To implement the theory just outlined, we must compute some finite set
of Taylor coefficients, say {δj : j = 1, . . . , 2k + 1}, and then prove that the
ideal generated by these Taylor coefficients contains all subsequent Taylor
coefficients. This is a difficult problem that has only been solved in a few
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special cases. The most famous result of this type was proved by Nikolai
N. Bautin [23] for quadratic systems—that is, for

ẋ = εx − y + p(x, y), ẏ = x + εy + q(x, y)

where p and q are homogeneous quadratic polynomials and where λ is the
vector consisting of ε and the coefficients of p and q. In this case, Bautin
showed that the ideal of all Taylor coefficients is generated by (δ1, δ3, δ5, δ7).
Thus, at most three limit cycles can bifurcate from the origin. Moreover,
it is possible to construct an example where three limit cycles do appear
(see [23] and [240]).

From the above remarks, it should be clear that it is not easy to count
the exact number of limit cycles of a polynomial system. Indeed, this is the
content of Hilbert’s 16th problem: Is there a bound for the number of limit
cycles of a polynomial system in terms of the degrees of the polynomials
that define the system? This problem is not solved, even for quadratic sys-
tems. The best result obtained so far is the following deep theorem of Yulij
Il’yashenko [126] and Jean Ecalle [79].

Theorem 8.45. A polynomial system has at most a finite number of limit
cycles.

(See the book of Il’yashenko [126] and the review [36] for a mathematical
history of the work on Hilbert’s problem, and see [187] for a complete
bibliography of quadratic systems theory.)

The remainder of this section is devoted to the promised proof that
the Lyapunov quantities for an analytic system are polynomials in the
Taylor coefficients of the vector field corresponding to the system and to
a description of an algorithm that can be used to compute the Lyapunov
quantities.

Consider the vector field

X(x, y) := (−y
∂

∂x
+ x

∂

∂y
) +

( ∞∑
j=2

pj(x, y)
∂

∂x
+

∞∑
j=2

qj(x, y)
∂

∂y

)

where pj , qj ∈ Hj for each integer j ≥ 1. Also, let

V (x, y) :=
1
2
(x2 + y2) +

∞∑
j=3

Vj(x, y)
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where Vj ∈ Hj for each j ≥ 1. The Lie derivative of V in the direction X
is given by

LXV =
∞∑

j=3

LRVj + x

∞∑
j=2

pj + y

∞∑
j=2

qj +
∞∑

j=2

pj

∞∑
j=3

Vjx +
∞∑

j=2

qj

∞∑
j=3

Vjy

=
∞∑

j=3

LRVj +
∞∑

j=2

(xpj + yqj) +
∞∑

j=2

( j−2∑
i=0

pj−iV(i+3)x + qj−iV(i+3)y
)

= LRV3 + xp2 + yq2 +
∞∑

j=4

(
LRVj + xpj−1 + yqj−1

+
j−4∑
i=0

pj−i−2V(i+3)x + qj−i−2V(i+3)y
)
.

For each even integer j ≥ 2, let Πj : Hj → Hj denote the linear projec-
tion whose kernel is the range of the operator LR and whose range is our
one-dimensional complement to the range of the operator LR; that is, the
subspace of H2j generated by the vector (x2 + y2)j . Also, for each integer
j ≥ 4, define Hj ∈ Hj by

Hj := xpj−1 + yqj−1 +
j−4∑
i=0

(
pj−i−2V(i+3)x + qj−i−2V(i+3)y

)
so that

LXV = LRV3 + xp2 + yq2 +
∞∑

j=4

(
LRVj + Hj

)
.

The following algorithm can be used to compute the Lyapunov quantities:

Input (k, p2, . . . , p2k−1, q2, . . . , q2k−1)
V3 := −L−1

R (xp2 + yq2)
For j from 4 to 2k do

If j is odd, then Vj := −L−1
R (xpj−1 + yqj−1 + Hj)

If j is even, then
Lj := Πj(Hj)/(x2 + y2)j/2

Vj := −L−1
R

(
Hj − Lj(x2 + y2)j/2

)
End for loop;
Output (L4, L6, . . . , L2k).

To implement the algorithm, it is perhaps best to first choose a basis for
each vector space Hj and then to represent the linear transformations Πj

and LR in this basis (see Exercise 8.47).
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Remark 4. The value of L4 in case

pj(x, y) =
j∑

i=0

aj−i,ix
j−iyi, qj(x, y) =

j∑
i=0

bj−i,ix
j−iyi

is given by

L4 =
1
8
(a20a11 + b21 + 3a30 − b02b11

+ 3b03 + 2b02a02 − 2a20b20 − b20b11 + a12 + a02a11). (8.43)

The sign of this quantity is the same as the sign of the third Taylor coef-
ficient of the displacement function. Thus, the sign of L4 can be used to
determine the stability of a weak focus as required in the Hopf bifurcation
theorem.

Finally, we will show that if k is a positive integer, then the Lyapunov
quantity L2k is a polynomial in the Taylor coefficients of p and q at the
origin. To prove this fact, note that

LRV2k + H2k − L2k(x2 + y2)k = 0.

Moreover, the linear flow of the vector field R is given by

ϕt(x, y) = etA

(
x
y

)
where A =

(
0 −1
1 0

)
,

and, by Exercise 8.46, the projection Π2k is represented by

Π2kH(x, y) =
1
2π

∫ 2π

0
H(ϕt(x, y)) dt. (8.44)

Since the rotationally invariant elements of H2k are in the complement
of the range of LR, the composition Π2kLR is equal to the zero operator,
and therefore

L2k(x2 + y2)k = Π2kH2k(x, y).

In particular, the desired Lyapunov quantity is given by the integral

L2k =
1
2π

∫ 2π

0
Hk(cos t, sin t) dt.

Hence, by inspection of the algorithm for computing the Lyapunov quanti-
ties, it is clear that L2k is a polynomial in the coefficients of the polynomials

p2, . . . , p2k−1, q2, . . . , q2k−1.
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Exercise 8.46. Demonstrate that the representation (8.44) is valid by showing:
a) Π2k is linear, b) Π2kH is rotationally invariant, and c) Π2k(x2 + y2)k = (x2 +
y2)k.

Exercise 8.47. Prove the following statements. The set B := {xn−iyi | i =
0, . . . , n} is a basis for Hn and LR has the following (n + 1) × (n + 1) matrix
representation with respect to the given (ordered) basis:

LR =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0 · · ·
−n 0 2 0 0 · · ·
0 1 − n 0 3 0 · · ·
0 0 2 − n 0 4 · · ·
· · · · · · · ·

⎞
⎟⎟⎟⎟⎠ .

The kernel of LR on H2k, for k ≥ 2, is generated by the vector

K = (Bk,0, 0, Bk,1, 0, Bk,2, . . . , 0, Bk,k)

where the numbers

Bk,j =
k!

j!(k − j)!

are the binomial coefficients, and

{(a1, . . . , a2k, 0) : (a1, . . . , a2k) ∈ R
2k}

is a vector space complement of the kernel. The operator LR on H2k is represented
by the matrix (�1, . . . , �2k+1) partitioned by the indicated columns. The matrix
representation for LR, restricted to this complement of the kernel, is given by
(�1, . . . , �2k, 0). Consider V, H ∈ H2k and the associated matrix equation

(�1, . . . , �n, K)V = H,

where the matrix is partitioned by columns and H is represented in the basis B.
The matrix is invertible. If the solution V is given by the vector (a1, . . . , a2k, L),
then H is given by H =

∑2k
j=1 aj�j +LK where L is the corresponding Lyapunov

quantity. The projection Π2k is given by Π2k(H) := LK.

Exercise 8.48. Determine the stability of the rest point at the origin for the
system

ẋ = −y − x2 + xy, ẏ = x + 2xy.

Exercise 8.49. Discuss the Hopf bifurcation for the following systems:

1. ẋ = εx − y − x2 + xy, ẏ = x + εy + 2xy.

2. ẋ = εx − y − x2 + εxy, ẏ = x + εy + 2y2.

3. ẋ = x(x − βy) + εy, ẏ = y(x2 − y).

Exercise 8.50. (a) Show that the system

u̇ = v, v̇ = −u − 1√
5
(2u2 + 3uv − 2v2)

has a center at the origin. Hint: Use Exercise 1.134 and separate variables to find
a first integral. (b) Show by computation that the Lyapunov quantities L2, L4,
and L6 all vanish.
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Exercise 8.51. Consider the quadratic system in Bautin normal form:

ẋ = λ1x − y − λ3x
2 + (2λ2 + λ5)xy + λ6y

2,

ẏ = x + λ1y + λ2x
2 + (2λ3 + λ4)xy − λ2y

2.

Find the corresponding Lyapunov quantities L2, L4, and L6. Construct a curve in
the parameter space with a supercritical Hopf bifurcation. Construct a quadratic
system with two limit cycles surrounding the origin and a quadratic system with
three limit cycles surrounding the origin. (If you need help, see [43] or [183, p.
449].)

Exercise 8.52. The family

θ̈ + sin θ − Ωcos θ sin θ = Iθ̇,

where Ω and I are real parameters, is a simple model in dimensionless form of
a whirling pendulum with a feedback control. Discuss the existence of a Hopf
bifurcation for the rest point at the origin in the phase plane at the control
coefficient value I = 0. How does the existence of a Hopf bifurcation depend on
the rotation speed Ω? Draw the bifurcation diagram.

Exercise 8.53. Consider the following model for the dimensionless concentra-
tions x and y of certain reacting chemicals

ẋ = a − x − 4xy

1 + x2 , ẏ = bx
(
1 − y

1 + x2

)
,

and the curve C in the first quadrant of the (a, b)-parameter space given by
b = 3a/5−25/a. Prove that a supercritical Hopf bifurcation occurs when a curve
in the parameter space crosses C from above. This exercise is taken from [218, p.
256] where the derivation of the model and typical phase portraits are described.

Exercise 8.54. [Normal Forms] The computation of Lyapunov quantities is
a special case of a procedure for simplifying vector fields near a rest point. To
describe the procedure, called reduction to normal form, suppose that ẋ = f(x)
is a smooth system on R

n with a rest point at the origin. Let A := Df(0) and
expand f in its Taylor series to order k at the origin to obtain the representation

f(x) = Ax +
k∑

j=2

fj(x) + O(|x|k+1)

where fj is the jth-order term of the expansion, whose components are homoge-
neous polynomials of degree j. To simplify the differential equation, we first sim-
plify the linear terms to Jordan normal form via a linear transformation x = By.
(a) Show that the transformed system is given by

ẏ = B−1ABy +
k∑

j=2

B−1fj(By) + O(|y|k+1),

which is equivalent to the differential equation

ẋ = Jx +
k∑

j=2

f1
j (x) + O(|x|k+1)
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where J := B−1AB and f1
j := B−1 ◦ fj ◦ B.

(b) To simplify the quadratic terms, consider a transformation of the form x =
y +h(y) where h has quadratic homogeneous polynomial components. Show that
this transformation is invertible in a neighborhood of the origin.
(c) Show that the change of variables in part (b) transforms the differential
equation to the form

ẏ = (I + Dh(y))−1(J(y + h(y)) +
k∑

j=2

f1
j (y + h(y)) + O(|y|k+1),

which gives (to second order)

ẏ = Jy + (Jh(y) − Dh(y)Jy) + f1
2 (y) + O(|y|3).

(d) Note that in part (c) the previously simplified first order term is not changed
by the coordinate transformation. Also, define Hj to be the transformations of
R

n whose components are homogeneous polynomials of degree j. Consider the
operator LJ (the Lie derivative in the direction J) where J is viewed as a vector
field. Prove that LJ : H2 → H2, LJ is linear, and (LJh)(y) = Dh(y)Jy − Jh(y).
(e) Define R to be the range of LJ and choose a complement K of the linear
subspace R in H2. The element f1

2 ∈ H2 can be represented in the form f1
2 =

R1
2 + K1

2 where R1
2 ∈ R and K1

2 ∈ K. Solve the equation LJh = R1
2 for h and

show that this choice leads to the transformed differential equation

ẏ = Jy + f2
2 (y) +

k∑
j=3

f2
j (y) + O(|y|k+1)

where f2
2 ∈ K. At this point the original differential equation is in normal form

to order two.
(f) Show that the transformation to normal form can be continued to order k.
Hint: At each order j there is a transformation of the from x = y + h(y) where
h ∈ Hj such that after this transformation the terms of order less than j remain
unchanged and the new differential equation is in normal form to order j; that
is, the jth order term is in a space complementary to the range of LJ in Hj .
(g) Suppose that n = 2 and

A =
(

0 −1
1 0

)
.

determine a normal form for an arbitrary planar system of the form ẋ = Ax+F (x)
where F (0) = DF (0) = 0 and F is smooth.
(h) Show that with appropriate choices of complementary subspaces the normal
form for part (g) is given by

ṙ =
k∑

j=1

a2j+1r
2j+1, θ̇ = 1 +

k∑
j=1

b2jr
2j .

(i) Repeat part (h) for the matrix

A =
(

α −β
β α

)
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to obtain the normal form for the Hopf bifurcation. With appropriate choices, its
polar coordinate representation is

ṙ = αr +
k∑

j=1

a2j+1r
2j+1, θ̇ = β +

k∑
j=1

b2jr
2j

(cf. Exercise 8.26). Note: There is an extensive literature on normal forms (see,
for example, [58], [103], [171], [201], and [233]).

8.4 Dynamic Bifurcation

In this section we will introduce dynamic bifurcation theory and discuss
an important delay phenomenon associated with slow passage through a
bifurcation point. Previously we considered qualitative changes in the phase
portraits for members of a family of differential equations such as

u̇ = f(u, λ), u ∈ R
n, λ ∈ R

for different values of the parameter λ. This is called static bifurcation
theory; the parameter is changed in our analysis, but it does not change
with time. While static bifurcation theory might seem to give correct results
when the parameter is varied slowly with time—maybe the parameter is
changed by moving a control dial, new phenomena may occur that are
not explained by static bifurcation theory. We will analyze some of these
phenomena associated with bifurcations in systems such as

λ̇ = εg(u, λ, ε), u̇ = f(u, λ, ε)

where the dynamic parameter λ is viewed as a dependent variable and ε is
a (small) parameter. This subject is called dynamic bifurcation theory.

Let us begin by formulating and proving a proposition about certain
maps associated with autonomous planar systems. Consider a differential
equation u̇ = X(u) on R

2 with flow ϕt and two curves Σ and Σ′ in R
2 that

are both transverse to the vector field X (that is, X is never tangent to
either curve). The differential equation induces a section map P : Σ → Σ′

if there is a smooth function T : Σ → R such that the function P defined
on Σ by P (σ) = ϕT (σ)(σ) has values in Σ′.

Proposition 8.55. Suppose that

ẋ = f(x, y), ẏ = yg(x, y)

is a C1 differential equation on R
2; a, b ∈ R with a < b; Σb := {(x, y) ∈

R
2 : x = b}; and, for each δ > 0, Σδ

a := {(x, y) ∈ R
2 : x = a and |y| < δ}.

If f(x, 0) > 0 for all x in the closed interval [a, b] and δ > 0 is sufficiently
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small, then the differential equation induces a section map P from Σδ
a to

Σb such that, in the usual local coordinate on Σδ
a given by (a, η) �→ η,

P ′(0) = e
∫ b

a
g(x,0)
f(x,0) dx.

Proof. Let t �→ (x(t, η), y(t, η)) denote the family of solutions of the dif-
ferential equation with the initial conditions

x(0, η) ≡ a, y(0, η) ≡ η.

Since the x-axis is invariant, y(t, 0) ≡ 0. Also, since f(x, 0) > 0 on the inter-
val [a, b], there is a number T0 > 0 such that x(T0, 0) = b and ẋ(T0, 0) > 0.
Hence, by the implicit function theorem, there is some number δ > 0 and a
smooth function T : [−δ, δ] → R such that T (0) = T0 and x(T (η), η) ≡ b for
all η ∈ [−δ, δ]. It follows that the desired section map (in local coordinates)
exists and is given by

P (η) = y(T (η), η).

Moreover, by using the identity ẏ(t, 0) ≡ 0, the derivative of the section
map at η = 0 is given by

P ′(0) = ẏ(T (0), 0)T ′(0) + yη(T (0), 0) = yη(T (0), 0).

Note that

xη(0, η) ≡ 0, yη(0, η) ≡ 1

and t �→ (xη(t, η), yη(t, η)) is the solution of the variational initial value
problem

u̇ = fx(x(t, η), y(t, η))u + fy(x(t, η), y(t, η))v,

v̇ = y(t, η)gx(x(t, η), y(t, η))u
+ [y(t, η)gy(x(t, η), y(t, η)) + g(x(t, η), y(t, η))]v,

u(0) = 0,

v(0) = 1.

After evaluation at η = 0, the second equation decouples from the system,
and it follows immediately that

P ′(0) = v(T (0)) = e
∫ T (0)
0 g(x(s,0),0) ds

where ẋ(t, 0) = f(x(t, 0), 0), x(0, 0) = 0, and x(T (0), 0) = b. By introducing
the new variable ξ = x(s, 0), we have dξ = f(ξ, 0) ds and

P ′(0) = e
∫ b

a
g(ξ,0)
f(ξ,0) dξ,

as required. �
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Let us now consider real numbers a < b and a family of differential
equations on R

2 given by

ẋ = εF (x, y, ε), ẏ = yG(x, y, ε) (8.45)

where ε is the parameter and F (x, 0, 0) > 0 whenever x ∈ [a, b]. If |ε| is
sufficiently small, then F (x, 0, ε) > 0 whenever x ∈ [a, b]. Hence, using the
notation of Proposition 8.55, if ε > 0 is sufficiently small, then

P ′(0, a, b, ε) = e
∫ b

a
G(ξ,0,ε)
εF (ξ,0,ε) dξ.

Consider the orbit of system (8.45) starting at the point (a, η), for |η|
small, and note that if P ′(0, a, b, ε) < 1, then this orbit meets Σb at a point
(b, σ) where |σ| < |η|; that is, the orbit is attracted toward the x-axis.
On the other hand, if P ′(0, a, b, ε) > 1, then the orbit is repelled from the
x-axis. The critical value P ′(0, a, b, ε) = 1 occurs if and only if∫ b

a

G(ξ, 0, ε)
F (ξ, 0, ε)

dξ = 0. (8.46)

For system (8.45) with ε = 0, the x-axis is an invariant set consisting
entirely of rest points. Moreover, the linearized system at the rest point
(x, 0) has the system matrix(

0 0
0 G(x, 0, 0)

)
.

Note that if G(x, 0, 0) < 0, then the one-dimensional stable manifold of the
rest point is normal to the x-axis and solutions starting on this manifold
are attracted to the rest point exponentially fast. On the other hand, if
G(x, 0, 0) > 0, then the rest point has a one-dimensional unstable manifold
and solutions are repelled. The rest point (x, 0) is called a turning point if
G(x, 0, 0) = 0.

Let us assume that a < c < b and (c, 0) is a turning point such that
G(x, 0, 0) < 0 for x < c and G(x, 0, 0) > 0 for x > c. Using what we have
proved about the derivative of the section map, it is clear that if ε > 0 is
sufficiently small, then a solution starting near the x-axis at a point (x, y)
with x < c will be attracted (in a very short time) to the vicinity of the x-
axis, drift slowly along the x-axis at least until its first component is larger
than c, and eventually it will be repelled (in a very short time) from the
vicinity of the x-axis. The next (somewhat imprecise) theorem—we have
not defined the concept “leaves the vicinity”—identifies the point on the
x-axis where the solution leaves.

Theorem 8.56. For system (8.45), suppose that a < c and (c, 0) is a
turning point such that G(x, 0, 0) < 0 for x < c and G(x, 0, 0) > 0 for x > c,
and η �= 0 is such that the family of solutions t �→ (x(t, a, ε), y(t, a, ε)) with
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Figure 8.4: The solution in phase space (y versus µ) for system (8.47) with
ε = 0.02 and initial conditions µ = −1 and y = 2.

x(0, a, ε) = a and y(0, a, ε) = η is defined for sufficiently small |ε|. Then,
as ε approaches zero from above, the point on the x-axis where the solution
leaves the vicinity of the x-axis approaches (b, 0), where b is the smallest
number larger than c that satisfies the equation (8.46).

Proof. The solution will be repelled from the x-axis near (b, 0) whenever
the derivative of the section map P ′(0, a, b, ε) is positive. The sign of this
derivative is determined by the integral equation (8.46). If b satisfies the
equation, then the orbit is repelled from the vicinity of the x-axis after t
increases past the time T when x(T ) = b. But, the derivative at such a
point can be made arbitrarily large for sufficiently small ε > 0. �

To apply Theorem 8.56, let us first consider the static supercritical pitch-
fork bifurcation whose normal form is given by the family

ẏ = y(µ − y2).

The point y = 0 is a rest point for every member of the family. If the
parameter µ is negative, then this rest point is stable; if µ is positive, it is
unstable. Moreover, a pair of stable rest points y = ±√

µ exist for µ > 0.
Imagine that the parameter µ is slowly changed from a negative value to a

positive value. The steady state of the system would be expected to change
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from the stable steady state y = 0, for negative values of the parameter µ,
to one of the new stable steady states y = ±√

µ as soon as µ is positive.
To test the validity of this scenario, suppose that ε > 0 is small and the
state of the system is governed by the differential equation

µ̇ = ε, ẏ = y(µ − y2) (8.47)

so that the “parameter” µ changes slowly with time. By an application
of formula (8.46), the solution starting at the point (−µ0, y0) is attracted
to the y-axis. It drifts along this invariant set—that is, it stays near the
“steady state” y = 0—until µ ≈ µ0. Then, it leaves the vicinity of this
invariant set and approaches one of the new stable “steady states.” Of
course, system (8.47) has no rest points. But, the µ-axis is an invariant
set for the dynamic bifurcation system; it corresponds to the rest points at
y = 0 for the “static system” (ε = 0). Also, there are orbits of the dynamic
bifurcation system that lie near the parabola given by µ = y2.

In contrast to the static bifurcation scenario, the dynamic bifurcation is
delayed; a solution t �→ (µ(t), y(t)), which starts near the µ-axis at time
t = 0 and whose first component eventually increases through the critical
value µ = 0, does not immediately approach a stable steady state (that
is, one of the invariant sets near the graphs of the functions µ �→ ±√

µ).
Rather, the solution remains near the “unstable” µ-axis until µ(t) exceeds
−µ(0), a value that can be much larger than the static bifurcation value
µ = 0 (see Figure 8.4).

The existence of a subcritical pitchfork bifurcation in a physical sys-
tem often signals the possibility of a dramatic change in the dynamics. To
see why, consider first the corresponding normal form dynamic bifurcation
system

µ̇ = ε, ẏ = y(µ + y2). (8.48)

A solution of system (8.48) starting near the negative µ-axis at (−µ0, y0) is
attracted toward the invariant µ-axis, and it remains nearby until µ ≈ µ0.
But, in contrast to the supercritical pitchfork bifurcation, when µ > µ0
the magnitude of this solution grows rapidly without being bounded by
the ghosts of the corresponding static bifurcation’s stable steady states.
Thus, such a solution would be expected to move far away from equilibrium
toward some distant attractor.

Two simple examples of slow passage through a bifurcation, where the
bifurcation parameter is a linear function of time, have just been discussed.
The main feature of these examples is the existence of two time-scales: fast
attraction and slow passage. Indeed, recognition of the existence of different
time scales in a dynamical problem is often the key to understanding seem-
ingly exotic phenomena. As a final example of this type, we will see that
slow passage through a subcritical pitchfork bifurcation coupled with an
appropriate nonlinear change in the bifurcation parameter can be viewed
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Figure 8.5: A plot of x versus t for system (8.49) with parameter values
a = 0.7, η = 0.1, and ω = 3 and initial conditions (x, y, u) = (1, 0,−0.5).

as an explanation for “bursting,” a dynamical behavior observed, for ex-
ample, in the electrical behavior of neurons (see [131]).

Let us consider the system

ż = (u + iω)z + 2z|z|2 − z|z|4,
u̇ = η(a − |z|2) (8.49)

where z = x + iy is (for notational convenience) a complex state variable
and a, ω, and η are real parameters. The behavior of the state variable
x versus t for a typical solution of system (8.49) with the parameter η
small and 0 < a < 1 is depicted in Figure 8.5. Note that the state of
the system seems to alternate between periods of quiescence followed by
bursts of oscillations. To reveal the underlying mechanism that produces
this behavior, let us change to polar coordinates z = reiθ and note that
the angular variable decouples in the equivalent system

u̇ = η(a − r2),
ṙ = ur + 2r3 − r5,

θ̇ = ω. (8.50)
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Figure 8.6: Plot (r versus u) of the limit cycle for system (8.50) with pa-
rameters a = 0.7 and η = 0.1 together with the line r = 0 and the curve
u + 2r2 − r4 = 0.

Hence, we can determine the dynamical behavior of system (8.49) by ana-
lyzing the phase portrait of the two-dimensional subsystem for the ampli-
tude r and the “bifurcation variable” u.

System (8.50) resembles our normal form model (8.48) for the subcritical
pitchfork bifurcation. At least we can recognize the subcritical pitchfork
bifurcation for the system

u̇ = ηa, ṙ = r(u + 2r2).

Here, η plays the role of ε and u plays the role of µ. By an analysis of
the corresponding static subcritical pitchfork bifurcation for system (8.50),
that is, the bifurcations of rest points for the system

ṙ = ur + 2r3 − r5 (8.51)

where u is the bifurcation parameter, we see that for u > 0 there are two
stable steady states which are not associated with the pitchfork bifurcation;
they exist because of the additional term r5 in the equation for the rest
points of the differential equation (8.51). With the addition of the dynamic
bifurcation parameter, given by the first equation of system (8.50), the
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delay phenomenon described in this section will occur. Solutions will be
attracted to the u-axis, pass through the bifurcation value u = 0, and then
move rapidly away from the u-axis. But, for system (8.50), after such a
solution is repelled from the u-axis, it is attracted to the ghost of the static
stable steady states, that is, the curve u + 2r2 − r4 = 0. In addition, in
transit from the vicinity of the u-axis to the vicinity of this curve, the u
component of the velocity vector changes sign. Thus, the solution moves
slowly near the curve u + 2r2 − r4 = 0 at least until its first component
is negative. After this, the solution eventually leaves the vicinity of this
curve and is rapidly attracted toward the u-axis. Thus, there is a hysteresis
effect that accounts for the oscillatory behavior of the system as depicted
in Figure 8.6. The bursting phenomena are now easy to understand: The
angle θ is changing with constant frequency corresponding to the oscillatory
nature of the system. At the same time, the amplitude of the oscillation is
changing on two time-scales. The amplitude is almost zero as a solution on
the limit cycle moves “slowly” along the u-axis or along the ghost of the
static stable steady state curve given by u+2r2 −r4 = 0. The speed in this
slow regime is directly proportional to the the value of ηa. On the other
hand, the amplitude of the oscillation changes rapidly during the intervals
of time while the solution is attracted or repelled from the u-axis.

Exercise 8.57. Predict the behavior of the solution of the system

µ̇ = ε, ẏ = y(sin(µ) + y2 − y4)

with the initial condition (µ, y) = (−1, 1/2) under the assumption that ε > 0 is
small.

Exercise 8.58. Find the general solution of the differential equation

ẏ = y(εt − y2)

corresponding to system (8.47). Can you explain the behavior of the solution
depicted in Figure 8.4? Hint: The differential equation is a form of Bernoulli’s
equation.

Exercise 8.59. Study systems (8.49) and (8.50) analytically and numerically
for various values of the parameters. How does the character of the bursting
change as a is increased from a = 0 to a = 1 (statically) for fixed values of η and
ω? (The answer is in [131].) Prove that the planar system, consisting of the first
two equations of system (8.50), has a limit cycle.

Exercise 8.60. Show that slow passage through a subcritical pitchfork bifur-
cation for system (8.50) corresponds to slow passage through a Hopf bifurcation
for system (8.49).
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Providence: Amer. Math. Soc.

[22] Bates, L. M. and R. H. Cushman (1997). Global Aspects of Classical
Integrable Systems. Boston: Birkhäuser-Verlag.
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Birkhäuser-Verlag.

[30] Byrd, P. F. and M. D. Friedman (1971). Handbook of Elliptic Integrals
for Engineers and Scientists, 2nd ed. Berlin: Springer-Verlag.
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de Janerio: IMPA.



References 617

[210] Sotomayor, J. (1990). Inversion of smooth mappings. Z. Angew.
Math. Phys. 41, 306–310.

[211] Sotomayor, J. (1996). Private communication. Lleida Spain.

[212] Spanier, E. H. (1981). Algebraic Topology, corrected reprint. New
York: Springer-Verlag.

[213] Spivak, M. (1965). Calculus on Manifolds. New York: W. A. Ben-
jamin, Inc.

[214] Sternberg, S. (1969). Celestial Mechanics, Parts I and II. New York:
W. A. Benjamin, Inc.

[215] Stoker, J. J. (1950). Nonlinear Vibrations. New York: John Wiley &
Sons.

[216] Strang, G. and G. J. Fix (1973). An Analysis of the Finite Element
Method. Englewood Cliffs: Prentice–Hall, Inc.

[217] Strauss, W. A. (1992). Partial Differential Equations: An Introduc-
tion. New York: John Wiley & Sons.

[218] Strogatz, S. (1994). Nonlinear Dynamics and Chaos. Reading:
Addison–Wesley Pub. Co.

[219] Takens, F. (1974). Singularities of vector fields. Publ. Math. IHES
43, 47–100.

[220] Temam, R. (1988). Infinite-dimensional Dynamical Systems in Me-
chanics and Physics. New York: Springer-Verlag.

[221] Trotter, H. F. (1959). On the product of semi-groups of operators.
Proc. Amer. Math. Soc. 10, 545–551.

[222] van der Pol, B. (1926). On relaxation oscillations. Phil. Mag. 2, 978–
992.

[223] van der Pol, B. and J. van der Mark (1927). Frequency demultiplica-
tion. Nature. 120, 363–364.

[224] van der Pol, B. and J. van der Mark (1929). The heartbeat considered
as a relaxation oscillation and an electrical model of the heart. Arch.
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periodic orbits of, 501–509
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equation, 508
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phase portrait, 492
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action variable, 513
action-angle variables, 255

and averaging, 512
and Diliberto’s theorem, 540
and time map, 513
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adjoint representation, 172
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and fundamental problem
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systems, 515

and integrable systems, 512
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and slow evolution
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general invalidity of, 529
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partial, 523
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planar forced oscillator, 531
principle, 516
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theorem, 517
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transient chaos, 537

Baire space, 555
Baire’s theorem, 555
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Hopf, 565–591
order k, 588
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and applied
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state space, 546–558
static, 595



Index 621

transcritical, 558
big O notation, 370
bilinear form

coercive, 305
continuous, 304

binary system
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and celestial mechanics, 241
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of dynamics, 255
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Delaunay elements, 249
diamagnetic Kepler problem
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equations of motion, 240–248
Euler angles, 244
harmonic oscillator

model, 247
invariant tori, 247, 254
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ellipse, 248
equation, 255
third law, 249

osculating plane, 244
perturbed, 249
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planet, 257–262
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birational map, 64
blow up

in finite time, 3, 4
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at rest point, 74–79
of singularity, 73–75, 570

blue sky catastrophe, 12
Bogoliubov, N., 367
boundary layer, 487–490

singular
perturbation, 490

boundary value problem
at boundary layer, 489
Dirichlet, 286
Neumann, 287
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branch point, 422
Brouwer fixed point
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bump function, 236, 340
bundle map, 127
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Cr

function, 47
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theorem, 468
center, 21, 26

linear, 26
center manifold, 36, 324, 341
center-stable manifold, 341
central projection, 76
chain rule, 108
change of coordinates, 61
chaos

chaotic attractor, 453
informal definition, 452
theory, 449

Melnikov method, 449
transverse homoclinic

points, 465–479
transient, 453

chaotic attractor, 500
Chapman–Kolmogorov
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characteristic

exponent, 192
multiplier, 191
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of PDE, 317

charged particle
and Lorentz force, 239
motion of, 239
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Cherkas, L., 105
Christoffel symbols, 234
Clairaut’s relation, 235
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Cole, J., 367
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at infinity, 76
polynomial vector field, 78

complete
elliptic integral, 505
forward orbit, 92

completely integrable, 442
complex

potential, 487
solution, 155

configuration space, 38, 230
connecting orbit, 94
conservation law, 317, 321
constitutive laws, 237
continuable periodic orbit, 371
continuation

point, 371, 384, 388, 412
subharmonic, 395, 396, 414,

416, 418, 420, 421
theory, 367–448

and entrainment for
van der Pol, 434

Arnold tongue, 401, 422
autonomous

perturbations, 376
entrainment, 417
for multidimensional

oscillators, 417
forced oscillators, 442
forced van der Pol, 398
from rest points, 393
isochronous period

annulus, 394
limit cycles, 417
Lindstedt series, 425
Lyapunov–Schmidt

reduction, 409–412
Melnikov function, 389, 416

nonautonomous
perturbations, 390

normal nondegeneracy, 407
perihelion of Mercury, 425
regular period annulus, 406
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unforced van der Pol, 368

continuity equation, 286, 481
continuous dependence

of solutions, 3
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constant, 121
definition of, 121
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mapping theorem, 121
principle, 121–133, 304
uniform, 123

convection, 286
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map, 45
system, 47
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polar, 66
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polar, 65–70
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curve, 34
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determining equations, 432
detuning parameter, 390, 421, 422,

424
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problem, 263–268

diffeomorphism, 46
differentiable function, 46, 108
differential

1-form, 71
of function, 71

differential equation
ABC, see ABC system
autonomous, 6
Bernoulli’s, 61
binary system, 240
Burgers’s, 321
charged particle, 239
continuity, 286, 481
coupled pendula, 269
diffusion, 286
Duffing’s, 311, 464
Euler’s

fluid motion, 482
rigid body, 42

Euler–Lagrange, 226
Falkner–Skan, 490
Fermi–Ulam–Pasta, 273
Fisher’s, 312
for fluids, see fluid dynamics
for projectile, 100
harmonic oscillator, 11
heat, 286
Hill’s, 206
inverted pendulum, 279
Lorenz, 454
Loud’s, 395
Mathieu, 201
Maxwell’s, 236
Navier–Stokes, 481
Newton’s, 32, 38, 237
nonautonomous, 6
order of, 6
ordinary, 1
pendulum, see pendulum
Picard–Fuchs, 508
quadratic, 91
reaction diffusion, 286
Riccati, 209

singular, 81
solution of, 2
spatial oscillator, 240
van der Pol, 2, 6, 105, 107,

368, 463, 521
variational, 88
Volterra–Lotka, 49

diffusion, 286
equation, 286
rates, 529

diffusivity constant, 286
Diliberto, S., 381
Diliberto’s theorem, 380
Diophantine condition, 521
dipole potential, 73
directional derivative, 226
Dirichlet problem, 286
discrete dynamical system, 348
discriminant locus, 403
displacement function, 84, 370, 392
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divergence

and Bendixson’s criterion, 102
and Diliberto’s theorem, 380
and limit cycles, 98, 105
and volume, 153

double-well potential, 41
drift velocity, 239
Duffing equation

forced, 196
Dulac

criterion, 104
function, 104, 105

Dulac function, 103
Dulac’s criterion, 102
dynamic bifurcation theory, 595
dynamics

one dimensional, 84
quadratic family, 84

Ecalle’s theorem, 589
eccentric anomaly, 252
eigenvalue

definition of, 155
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multipliers, 192, 201
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and generic bifurcation, 546
and Hopf bifurcation, 565
and hyperbolic

fixed points, 348
and hyperbolicity, 26
and index of singularity, 447
and invariant manifolds, 324
and Lyapunov exponents, 204
and normal modes, 274
and perturbation series, 398
and spectrum, 289
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of periodic orbits, 214, 534
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of time-periodic

systems, 194, 197
and stability for PDE, 288
continuity of, 546
of derivative of
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stability, 177

eigenvector
definition of, 155

Einstein, A., 425
elliptic functions

integrals, 504
Jacobi, 505

elliptic modulus, 505
elliptic sector, 81
energy method

for PDE, 292
energy surface, 39

regular, 39, 512
entrainment, 400, 417–424, 434–

436, 537
domain, 399, 421

equation
Ważewski’s, 65

also, see differential equation
continuity, 154, 286
Duffing

forced, 196
Duffing’s, 311
Falkner–Skan, 490
Fisher’s, 312
functional, 342, 349
Hamilton–Jacobi, 317
Kepler’s, 252, 255
Korteweg-de Vries, 316
Lyapunov’s, 186
Newton’s, 294
spring, 368
van der Pol, 107, 368, 521
Vinograd, 80

equilibrium point, 10
ergodic, 358
Euclidean norm

matrix, 107
Euclidean space, 71
Euler’s equations

fluid dynamics, 482
rigid body motion, 42

Euler–Lagrange equation, 226–233
and extremals, 227
and Hamilton’s principle, 228
and Lagrangian, 228
of free particle, 228

evaluation map, 113
evolution

family, 16, 151
group, 151

existence theory, 1–4, 135–144
by contraction, 137
by implicit function

theorem, 136
maximal extension, 141
smoothness by fiber

contraction, 140
exponential map, 159
extremal, 227

Falkner–Skan equation, 490
family of differential equations, 2
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Farkas, M., 367
fast

time, 81
variable, 523

Feigenbaum number, 84
Fermi, E., 273
Fermi–Ulam–Pasta

oscillator, 273–277
experiments, 277
normal modes, 276

Feynman, R., 236
fiber

contraction, 127
contraction theorem, 127
of tangent bundle, 55
of trivial bundle, 127

Fife, P., 316
first integral, 40, 229, 321, 436

in involution, 440
first variational equation, 379
fixed point, 121, 348

globally attracting, 121
Floquet

exponent, 192
normal form, 190
theorem, 187
theory, 187–202

and limit cycles, 196
and matrix exponential, 188
and periodic solutions, 198
and resonance, 196
characteristic exponents, 192
characteristic multipliers, 191
Marcus–Yamabe

example, 197
monodromy operator, 190
reduction to constant

system, 194
flow, 15

complete, 14
flow box theorem, 61
fluid dynamics, 479–509

ABC flow, see ABC system
Bernoulli’s

equation, 485

law, 486
boundary conditions, 481
continuity equation, 481
corner flow, 487
equations of motion, 480
Euler’s equations, 482
Falkner–Skan equation, 489
flow in a pipe, 482
Navier–Stokes

equations, 480
plug flow, 484
Poiseuille flow, 485
potential flow, 485
Reynold’s number, 481
stream function, 486

foliation, 224
forced oscillator, 442–448
formal solution, 291
formula

Lie–Trotter product, 167
Liouville’s, 152, 154
nonlinear variation of param-

eters, 181
variation of parameters, 179

forward orbit, 92, 98
Fréchet differentiable, 108
Fredholm

index, 409
map, 409

frequency, 368
function

Bessel, 256
bifurcation, 414, 420
contraction, 121
differentiable, 46
displacement, 84
Dulac, 104
exponential, 159
Lipschitz, 138, 182
local representation, 46
Lyapunov, 93, 186, 580
Melnikov, 416, 453
period, 447
real analytic, 3, 47
regulated, 115
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separation, 455
simple, 115
smooth, 1, 47
subharmonic bifurcation, 420
uniform contraction, 123

functional equation, 342, 349
fundamental

matrix, 150
set, 150

Galërkin
approximation, 300, 322
method, 299
principle, 301

general linear group, 58, 160
generic, 159, 546, 555, 559
geodesic, 71, 234
germ

of analytic function, 587
global stability, 33, 103
Golubitsky, M., 549
Gröbner basis, 401
gradient

in cylindrical coordinates, 73
omega-limit set of, 102
system, 42, 70
with respect to Riemannian

metric, 72
graph of function, 43
Gronwall

inequality, 146
specific Gronwall lemma, 147

Guckenheimer, J., 367

Hölder continuous, 365
Hale, J., 367
Hamilton–Jacobi equation, 317
Hamiltonian, 229

classical, 38
system, 38, 70, 72, 241, 403

completely integrable, 442
integral of, 40

Hamilton’s principle, 228
harmonic, 375

function, 486

solution, 391, 399
and entrainment, 402

harmonic oscillator, 11, 31, 38, 368
action-angle variables, 512
and motion of Mercury, 426
and motion of moon, 206
and secular perturbation, 429
model for binary system, 247
perturbed, 390
phase portrait of, 369

Hartman–Grobman theorem, 27,
347–358

for diffeomorphisms, 348
for differential equations, 354
statement of, 349
using Lie derivative, 358

Hayashi, C., 367
heat equation, 286
heteroclinic

cycle, 493
orbit, 59, 449

Hilbert basis theorem, 587
Hilbert space basis, 301
Hilbert’s 16th problem, 91, 589
Hill’s equation, 206–208

and trace of monodromy
matrix, 208

characteristic multipliers
of, 206

Lyapunov’s theorem on
stability, 208

stability of zero solution, 207
Hill, G., 206
Hirsch, M., 555
Holmes, P., 367
homoclinic

manifold, 469
orbit, 59, 268, 449
tangle, 453

homogeneous linear system, 145,
148

Hopf bifurcation, 405, 565–591
and Lyapunov quantities, 582
and polynomial ideals, 587
at weak focus, 577
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finite order, 586
infinite order, 586
multiple, 576, 577
multiplicity one, 572
order k, 588
point, 565
subcritical, 566
supercritical, 566
theorem, 573

hyperbolic
fixed point, 348
linear transformation, 26
periodic orbit, 378, 382, 384
rest point, 26, 545
saddle, 26
sink, 26
source, 26
theory, 323–366

hyperbolic toral
automorphism, 358

ideal
of Noetherian ring, 587

Il’yashenko’s theorem, 589
implicit function theorem, 134–135

and continuation, 370, 374
and existence

of ODE, 136
and inverse function

theorem, 63
and persistence, 382
and Poincaré map, 83, 377
and regular level sets, 50
and separation function, 456
proof of, 134
statement of, 50

index
Fredholm, 409
of rest point, 107
of singularity, 447
of vector field, 107

inertia matrix, 42
inertial manifold, 299
infinite dimensional

ODE, 286–299

infinite order weak focus, 586
infinitesimal

displacement, 418
hyperbolicity, 26
invariant, 585

infinitesimally
hyperbolic, 211, 545
hyperbolic matrix, 177

initial
condition, 2
value problem, 2, 135

integral curve, 2
invariant

function, 321
infinitesimal, 585
manifold, 34–40, 49, 323–347

applications of, 345–347
linear, 49

set, 34
sphere, 59
submanifold, 56

invariant foliation, 224
inverse function theorem, 62
isochronous period annulus, 394
isolated rest point, 59
isospectral, 172

Jacobi elliptic function, 505
Jacobi identity, 172
jet

extension, 553
space, 553
theory of, 553–557

Jordan canonical form, 157, 166
Jordan curve theorem, 94

Kepler
equation, 252, 255
motion, see binary system
system, 241

Kevorkian, J., 367
Khaiken, S., 367
Kolmogorov, A., 316
Korteweg-de Vries equation, 316

Lagrangian, 226, 269
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Laplace transform, 164
Lax pair, 173
Legendre transformation, 229
level set

regular, 50
Levi, M., 278
Liénard

system, 105
transformation, 105

Lie
algebra, 58, 172
bracket, 440
derivative, 358, 441, 580, 590
group, 58, 172
infinitesimal invariant, 585
Trotter formula, 167

limit cycle
and asymptotic period, 220
and asymptotic phase, 221,

224
definition of, 95
globally attracting, 98
infinitely flat, 387
multiple, 384, 387
semistable, 571
stability of, 220
time-periodic

perturbation of, 376
uniqueness of, 98, 105

limit set, 91–104
alpha-, 92
compact, 93
connected, 93
invariance of, 92
omega-, 92

Lindstedt series, 425–433
and forced oscillators, 433
and perihelion

of Mercury, 432
and period of van der Pol

oscillator, 434
divergence of, 431
truncation of, 431

Lindstedt, A., 425
line of nodes, 244

linear center, 26
linear system

Chapman–Kolmogorov
identities, 151

constant coefficients, 154–169
and Jordan

canonical form, 164
and matrix

exponential, 158–166
fundamental matrix, 156,

164
Lax pairs, 172
Lie Groups, 172
Lie–Trotter formula, 167
solutions of, 155

evolution family, 151
extension, 148
fundamental matrix, 150
fundamental set

of solutions, 150
homogeneous, 145–169
Liouville’s formula, 152, 154
matrix solution, 150
nonconstant coefficients

and matrix exponential, 171
on infinite dimensional

space, 174
principal fundamental

matrix, 150
stability of, 174–178

and eigenvalues, 178
and hyperbolic

estimates, 174
and infinitesimal

hyperbolicity, 177
state transition matrix, 151
superposition, 149–153

linearity
of differential equations, 149

linearization, 23
of a vector field, 23

linearized
stability, 24, 178, 179

Liouville’s formula, 152, 154, 383
Lipschitz function, 138, 182
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Lipschitz inverse function theorem,

358
little o notation, 152
Liu, W., 173
local

coordinate, 377
property, 25
versus global, 82

Lorentz force, 237
Lorenz system, 33, 454
Loud’s

system, 395
theorem, 395

Lyapunov
algorithm, 579, 590
center theorem, 582
direct method, 22, 28, 580
equation, 186
exponent, 202–205
function, 28, 32, 93, 186, 580
indirect method, 22
linearized stability

theorem, 183, 186
quantities

are polynomials, 589
quantity, 582
stability, 21, 28–31
stability theorem, 29
stability theorem

for Hill’s equation, 208
Lyapunov–Perron

method, 325
operator, 331

Lyapunov–Schmidt
reduction, 409–412, 418

manifold, 45
abstract definition, 47
center, 323
invariant, 34, 323–347
invariant linear, 49
linear, 48
smooth, 43–51
stable, 35, 323

submanifold, 44
map

adjoint representation, 172
bundle, 127
contraction, 121
coordinate, 45
exponential, 159
fiber contraction, 127
Poincaré, 83, 212
return, 83
uniform contraction, 123

Marcus–Yamabe example, 197
mass matrix, 310
Mathieu equation, 201
matrix

infinitesimally
hyperbolic, 177

solution of linear system, 150
Maxwell’s laws, 236
mean anomaly, 252
mean value theorem, 113, 114, 120
Melnikov, V. K.

and separation function, 456
function, 453

autonomous, 389
for ABC flows, 494
for periodically forced

pendulum, 467
homoclinic loop, 466
homoclinic points, 465
meaning of, 416
push detected, 415
subharmonic, 416

integral, 458, 464
method, 449

minimal surface area, 236
Minorsky, N., 367
Mitropolsky, Y., 367
momentum, 237
monodromy operator, 191
Morse’s lemma, 446
motion, 228
multiple Hopf bifurcation, 576
multiplicity

of limit cycle, 384
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Murdock, J., 367

Navier–Stokes equations, 481
Nayfey, A., 367
nearest neighbor coupling, 273
Neumann problem, 287
Newton’s

equation, 294
law, 6, 237
polygon, 404

Newton’s method, 64
Newtonian to Lagrangian

mechanics, 265
Noether’s theorem, 230
Noetherian ring, 587
nonautonomous differential

equation, 6
nonautonomous ODE, 152
nonlinear system

stability of, 179–185
and linearization, 183
and Lipschitz condition, 181
and Lyapunov functions, 186
Poincaré–Lyapunov

theorem, 185
stability of periodic orbits, 212

nonlinear variation of parameters,
181

norm
Cr, 109
Euclidean, 3

matrix, 107
operator, 109
supremum, 109

normal form, 548, 593
normal modes, 271, 272
normally hyperbolic

manifold, 417
torus, 400, 417

normally nondegenerate, 407, 418

ODE, see ordinary differential
equation

omega
limit point, 92

limit set, 92
omega lemma, 113
one-dimensional dynamics, 84
orbit, 2

connecting, 94
heteroclinic, 59, 449
homoclinic, 449
saddle connection, 449

order k bifurcation, 588
order of differential equation, 6
ordinary differential

equation, 1, 135
infinite

dimensional, 286–299
oscillator

harmonic, 368
van der Pol, 2, 6, 105, 107,

368–373
osculating plane, 243

PAH curve, 404
Palais, R., 277
partial averaging, 523
partial differential

equations, 284–320
as infinite dimensional

ODE, 286–299
Burgers’s equation, 321
energy method, 292
first order, 316–320

characteristics, 317
fluids, see fluid dynamics
Fourier series, 291
Galërkin

approximation, 299–311
heat equation, 286
linearization, 288
reaction diffusion, 284
reaction-diffusion-convection,

285
rest points of, 294

period function, 295
traveling wave, 312–316

Fisher’s model, 312
passage through resonance, 525
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Pasta, J., 273
pendulum

and Galileo, 507
and Hamiltonian, 40
at resonance, 525
coupled, 269–272

beats, 272
normal modes, 271
small oscillation of, 270

inverted, 278–284
stability of, 279

mathematical, 27
period function, 506
periodically forced, 466
phase modulated, 528
whirling, 593
with oscillating support, 201
with torque, 98, 525

periastron
argument of, 252

perihelion of Mercury, 425
period

annulus
definition of, 246, 387
drawing of, 246
isochronous, 394
regular, 409

function, 389, 447
of periodic orbit, 15

periodic orbit
and time-periodic

perturbations, 390–417
asymptotic stability of, 214
asymptotically stable, 22
continuable, 371
continuation, see continuation
continuation of, 367–448
definition of, 10
existence by averaging, 532
hyperbolic, 382, 384, 407, 408,

417, 421
limit cycle

and asymptotic period, 220
and asymptotic phase, 221,

224

asymptotic stability, 217
of inhomogeneous linear

system, 210
persistence of hyperbolic, 382
persistent, 371
stability

and eigenvalues of Poincaré
map, 214

stable
definition of, 22

periodic solution, 82–104
perturbation theory,

see continuation
Petrovskii, I., 316
phase

curve, 2
cylinder, 69, 391
flow, 14

notations for, 15
locked, 402
plane, 369
portrait, 10
shift, 422

and Arnold tongue, 424
space, 10, 39, 230

physics
classical, 236–268
constitutive laws, 237

Picard–Fuchs equation, 508
Piskunov, N., 316
pitchfork bifurcation, 13, 558
plug flow, 484
Poincaré

and fundamental problem
of dynamics, 255

compactification, 76
geometric theory of, 82
index, 107
map, 82–90, 211, 212, 377,

391
and displacement

function, 84
and period orbits, 84
example of, 85
linearized, 397
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metric, 235
plane, 72, 235
section, 83, 212, 377, 391
sphere, 76

Poincaré, H., 76, 80, 82, 458
Poincaré–Andronov–Melnikov

function, 389
Poincaré–Bendixson theorem, 94,

101
Poiseuille flow, 485
polar coordinates, 65

removable singularity, 68
system of, 66

polynomial systems, 76
positive branches, 385
positively invariant, 94
Preparation theorem, 384
principal fundamental

matrix, 150, 194, 372
principle

averaging, 511, 516
contraction, 121–133
determinism, 4
Galërkin, 301
Hamilton’s, 228
linearized stability, 24, 179,

186, 289
of superposition, 149

problem
critical inclination, 262
diamagnetic Kepler, 263
diffusion in multifrequency

systems, 529
fundamental problem of

dynamics, 255
Hilbert’s 16th, 91, 589
initial value, 135
open problem, 59
periodic orbits

of ABC flows, 504
structural stability

of gradients, 59
Puiseux series, 404
punctured plane, 66
push forward

of vector field, 60

quadratic family, 84
quadratic system, 91
quadrature

reduced to, 39
quasi-periodic solution, 200, 400

radii
of set, 566

Rayleigh, Lord, 368
reaction-diffusion models, 284
real analytic, 3
rectification lemma, 61
recurrence relation, 274
reduced displacement

function, 371
reduction, 232, 371
regular

level set, 50
point, 61

regular perturbation theory, 374
regulated

function, 115
integral of, 118

reparametrization
of time, 16–19

complete, 18
geometric interpretation, 17

rescaling, 18
and diamagnetic Kepler

problem, 267
and small parameter, 259
binary system, 240
coupled pendula, 270
in Falkner–Skan

equation, 489
in Fisher’s equation, 312
in Navier–Stokes

equations, 481
inverted pendulum, 279

residual set, 555
resonance

(m : n), 390
and averaging, 515
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capture into, 526
definition of, 515
layer, 523
manifold, 522
passage through, 525
relation, 390
zone, 422

resonant
definition of, 515

rest point, 10, 403
basin of attraction, 33
hyperbolic, 26
isolated, 59, 75
location of, 23
nondegenerate, 26
semi-hyperbolic, 81, 347

return
map, 83, 370
time map, 83, 377, 378

reversible, 28, 383
Reynold’s number, 321, 481
Riccati equation, 170, 209

cross ratio, 170
Riemannian metric, 71
rigid body motion, 42, 106
Robbin, J., 136
Roberts, A., 347
roll up, 402

saddle connection, 449
breaking of, 59, 455
separation function, 455

saddle-node, 547, 559
bifurcation, 14, 547, 559, 574

at entrainment
boundary, 422

bifurcation
theorem, 547, 559

Hamiltonian, 564
scalar curvature, 380
Schaeffer, D., 549
Schecter, S., 455
Schwarzschild, K., 425
second variational

equation, 388

section, 83
secular term, 429
semi-flow, 293
semi-group, 293
semi-hyperbolic, 81, 347
semistable

limit cycle, 571
rest point, 13

separation function, 455, 456
time-dependent, 456

separatrix splitting
autonomous

perturbations, 454–464
nonautonomous

perturbations, 465–479
shock waves, 321
shooting, 90, 490
simple function, 115

integral of, 116
simple zero, 371
singular

differential equation, 81
perturbation, 82, 490

singularity
index of, 447
nondegenerate, 446

sink, 21, 314
slow

manifold, 81
time, 81, 417, 524
variable, 523

Smale, S., 550
Smale–Birkoff theorem, 451
small denominator, 521
smooth

function, 1, 47
manifold, 43

solution
of ODE, 2
stable, 21
unstable, 22

Sotomayor, J., 140
source, 22
space of k-jets, 553
spectral
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gap, 325
mapping theorem, 194
radius, 215

spectrum, 289
spherical coordinates, 67, 76
spring equation, 368
stability, 373

by linearization, 20–27
global, 33, 103
Lyapunov’s method, 28–31
periodic orbit, 212

stable
eigenspace, 35
in the sense of

Lyapunov, 21
manifold, 35, 402
steady state, 13
subharmonic, 397
subspace, 35

stable manifold, 36, 324
state space, 10, 39, 230
state transition matrix, 151
static bifurcation theory, 595
steady state, 10

stable, 13, 21
Stewart, I., 549
stiffness matrix, 307
Stoker, J., 367
straightening out theorem, 61
strain, 235
stream

function, 486
line, 486

strong solution
of PDE, 302

strong topology, 555
structural stability, 59, 550

and heteroclinic orbit, 59
of vector field, 59
open problem, 59

subharmonic, 391, 392
bifurcation function, 420
continuation point, 395, 414
stable, 397

submanifold, 44

open sets of, 45
superposition, 149
supremum norm, 109
surface of revolution, 234
symmetry, 232
symplectic form, 72, 439

and Hamiltonian systems, 72
synchronization domain, 399
system of differential equations, 2

tangent
bundle, 55

fiber of, 55
map, 55
space, 52–57

definition of, 53
geometric definition, 58
of invariant manifold, 52
of submanifold, 53

Taylor’s theorem, 120
tent map, 85
theorem

asymptotic stability, 25
averaging, 517

periodic orbits, 532
Baire’s, 555
Bautin’s, 589
Bautin’s Dulac function, 104
Bendixson’s, 102
Brouwer fixed point, 85, 89,

102
Cauchy’s, 468
chain rule, 108
continuous dependence, 3
contraction mapping, 121
Diliberto’s, 380
Dulac’s, 102
Dulac’s criterion, 104
Ecalle’s, 589
existence and uniqueness, 3,

135, 137
extension, 3
fiber contraction, 127
Floquet’s, 187
flow box, 61
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Gronwall’s, 146
Hartman–Grobman, 27, 349,

354, 359
Hilbert basis, 587
Hopf bifurcation, 573
Il’yashenko’s, 589
implicit function, 50, 134, 370
inverse function, 62
Jordan curve, 94
Lax–Milgram, 305
Lie’s, 585
Lie–Trotter, 167
Liouville’s, 152, 154, 383
Lipschitz inverse function, 358
Loud’s, 395
Lyapunov

center, 582
instability, 31
linearized stability, 186
on Hill’s equation, 208
stability, 29

mean value, 113, 114, 120
Morse’s lemma, 446
Noether’s, 230
omega lemma, 113
Poincaré–Bendixson, 94, 101
saddle-node bifurcation, 547,

559
Smale–Birkoff, 451
specific Gronwall, 147
spectral mapping, 194
Taylor’s, 120
Thom’s transversality, 554–

555
transport, 154
uniform contraction, 123
Weierstrass preparation, 384,

577
Yorke’s, 107

thermalization, 277
Thom’s transversality

theorem, 554–555
time t map, 348
time map

and action-angle
variables, 513

time-dependent
separation function, 456

time-dependent vector field, 152
topological equivalence, 550
topology

strong, 555
weak, 555

toral automorphism, 358
torus

normally hyperbolic, 400, 417
trajectory, 2
transcritical bifurcation, 558
transient chaos, 453, 537
transport theorem, 154
transversal, 552
transversality

of map to submanifold, 554
of vector to manifold, 83

transverse homoclinic point, 451
traveling wave, 312
trivial bundle, 127
trivial solution, 145
Trotter product formula, 167
turning point, 597
two-body problem, see binary sys-

tem

Ulam, S., 273
ultrasubharmonic, 391, 392
uniform contraction

mapping, 123
theorem, 123

unit
in algebra of functions, 384

unit sphere, 76
universal unfolding, 548
unperturbed system, 369
unstable steady state, 13

van der Mark, J., 368
van der Pol oscillator, 2, 368–373,

521
continuation theory, 371
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Melnikov integral for, 463
periodic solution of, 369
weakly damped, 390

van der Pol, B., 368
variation of

curves, 226, 455
parameters, 179, 372

nonlinear, 181
variational equation, 88, 371, 379,

381, 388, 395, 408, 420
solution of planar, 380

vector field, 8
base point, 52
conservative, 187
principal part, 52

velocity profile, 487
Vinograd’s system

and asymptotic stability, 80
viscous damping, 42
Vitt, E., 367
Volterra–Lotka system, 49

weak
attractor, 572

multiplicity of, 572
focus, 577

infinite order, 586
repeller, 572

weak solution
of PDE, 302

weak topology, 555
Weierstrass

polynomial, 384, 385
preparation theorem, 384, 577

Wiggins, S., 367
Wronskian, 206

Yorke
J., 107

Yorke’s theorem, 107

zero solution, 145



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




