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Preface

This little book is a revised and expanded version of one I wrote for the "VIII
Latin-American School of Mathematics" [29], in Portuguese, based on which
I have periodically taught a topics course over the last 18 years. As the ti-
tle suggests, it is an introductory text. It is addressed to graduate students
of mathematics in the area of differential equations/nonlinear analysis and
to mathematicians in other areas who would like to have a first exposure
to so-called variational methods and their applications to PDEs and ODEs.
Afterwards, the reader can choose from some excellent and more comprehen-
sive texts, which already exist in the literature but require somewhat more
maturity in the area.

We present a cross-section of the area of variational methods, with a min-
imum (no "pun" intended) of material, but clearly illustrating through one or
two examples each of the results that we have chosen to present. So, besides
the first motivating chapter and an appendix, there are only ten short chapters
(with three or, at most, four sections each) through which the reader is quickly
exposed to a few basic aspects of the beautiful area of variational methods
and applications to differential equations. In fact, the reader may initially
skip some of the more technical proofs of the main theorems, concentrating
instead on the applications that are given.

Chapter 1 is of a motivating nature where we present five simple ODE
problems which, from a variational point of view, illustrate existence results
in situations of "minima" and "minimax," as well as a nonexistence result in
a situation of resonance. In fact, to whet the reader's appetite, we present
through some sketches a sneak preview of the geometry of each of the five
functionals associated with the given problems. This chapter sets the stage
for the topics to be covered in the following chapters: minimization, defor-
mation results, the mountain-pass theorem, the saddle-point theorem, critical
points under constraints, a duality principle, critical points in the presence of
symmetries, and problems in which there is lack of compactness. At the end
of Chapters 2 through 6 we provide a few exercises to the reader.



x Preface

Of course there were a number of other important topics that were not
covered in this little book. Our main goal, we emphasize, was to offer the
reader a sampling of topics in critical point theory serving as a stepping stone
to a number of excellent and comprehensive texts which exist in the literature,
such as [63] (1986) by P. Rabinowitz, [55] (1989) by J. Mawhin and M. Willem,
[69] (1990) by M. Struwe, and [75] (1996) by M. Willem.

David G. Costa
University of Nevada Las Vegas
Fall 2006



Some Notations and Conventions

• IR, Z and N denote the set of real numbers, integers and nonnegative
integers.

• JRN denotes the usual N-dimensional Euclidean space.

• 0 C IRN denotes an open set (usually with a smooth boundary) ao.
• lEI denotes the Lebesgue measure of a measurable set E C IRN.

• XE is the characteristic function of the set E.

• LP(O), 1 :::; p < 00, denotes the space of measurable functions u on 0 with

norm II ullLP := (Ill lulP dx) lip < 00.

• Loo(O) denotes the space of measurable functions u with lu(x)1 :::; C a.e.
in 0 with norm II ullLoo :== inf{C ~ 0 Ilu(x)1 <C a.e. in O}.

• II· Ilx (or simply 1\. II) denotes the norm in the space X.

• (·,·)x [or (., . )x] denotes the inner-product in X.
• Co(O) [resp. CO(JRN)] denotes the space of infinitely differentiable func-

tions with compact support in 0 [resp. JRN].

• Ck (0) denotes the space of k-times continuously differentiable functions
on n [with ao assumed smooth].

• ~u denotes the Laplacian of u, L~l U X i X i •

• Cl(X,IR) is the space of continuously differentiable functionals on X.

• HJ(O) [resp. Hl(O)] is the Sobolev space obtained by completion of

Co(O) [resp. COO (0)] in the norm Ilull :== (In[l\7uI 2+ lul 2
] dx)l/2.

• W~,P(O) [resp. Wl,P(O)] is the Sobolev space obtained by completion

of Co(O) [resp. coo(~1)] in the norm Ilull :== (In[l\7uIP+ lulP ] dx)l/p,
1 < p < 00.

• Hl(JRN) [resp. Wl,p(IRN)] is the Sobolev space obtained by completion

of CO(IRN) in the norm Ilull :== (In[l\7uI 2 + lul 2
] dx)l/2 [resp. Ilull .-

(JIRoN [1\7uIP + lulP ] dx) lip], 1 :::; p < 00.



xii Some Notations and Conventions

• Lip lac (X) denotes the space of locally Lipschitzian functions on X.
• (un) denotes a sequence of functions.

• u+:== max{u, O} (resp. u- :== max{ -u, O}) denotes the positive (resp.
negative) part of u, so that u == u+ - u." .

• The arrow ~ (resp. ---+) denotes weak (resp. strong) convergence.

• Note to the Reader: In each chapter, all formulas and statements are
denoted and referred to by a simple double index x.y, where x is the
section number. However, when referring to formulas and statements from
another chapter, we use a triple index z.x.y, with z indicating the chapter
in question. In addition, we shall write Section z.x when referring to
Section x of Chapter z.
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Introduction

It is fortunate (for some of us) that many differential equation problems

D(u) == 0

can be handled by variational techniques, in other words, by considering an

associated real-valued junction

cp:X---+IR,

whose derivative is equal to D( u), and by looking for points of minimum,

maximum or minimax (e.g., saddle-like) of ip, so that our given problem reads

cp' (u) == 0 or Dcp(u) == D(u) == 0 .

1 Five Illustrating Problems

Let us start by illustrating our statement through the following five ordinary

differential equation problems:

{
u" + 1. u == sin t

2 '
u(O) == u(n) == 0

O<t<n

{
u' + u == sin t, 0 < t < n
u(O) == u(n) == 0

{
u'' + 2u == sin t, 0 < t < n
u(O) == u(n) == 0

{
u" - u3 == 0, 0 < t < n
u(O) == u(n) == 0



2 1 Introduction

{
u" +u3 == 0, 0 < t < 1r

u(O) == u(1r) == 0

Except for 5), the following statements about these problems are clear:

1) Problem (PI) has the solution Uo (t) == - 2 sin t (unique);

2) Problem (P2 ) has no solution;

3) Problem (P3 ) has the solution uo(t) == sin t (unique);

4) Problem (P4 ) has the solution Uo (t) == 0 (unique);

5) Problem (Ps) has the solution Uo (t) == 0 (not unique).

Indeed, statements 1),2) and 3) are easily checked through elementary

methods of solution for second order linear differential equations. Also, the

fact that uo(t) == 0 is a solution of both (P4 ) and (Ps) is obvious, whereas the

fact that (P4 ) has no other solution can be seen by multiplying the equation

by u and integrating by parts. We then obtain

and it readily follows that u(t) == o. What is not so obvious (unless one uses,

for instance, a phase-plane analysis) is that Problem (Ps) has other solutions

besides u(t) == 0, in fact infinitely many of them.

Now, let us note that each of the Problems (PI) - (Ps) is of the form

{
u" + f(u) == p(t) , 0 < t < 1r

u(O) == u(1r) == 0
(P)

where f(8) == ~8, 8, 28, -83,83 (respectively) and p(t) == sint, sint, sint, 0, 0

(respectively). And, if Uo (t) is a solution, then by multiplying the equation by

an arbitrary smooth function h(t) satisfying h(O) == h(1r) == 0 and integrating

by parts, we obtain

-1" u~(t)h' (t) dt +1" f( uo(t))h(t) dt = 1" p(t)h(t) dt ,

or 1" u~(t)h' (t) dt - 1" f( uo(t))h(t) dt +1" p(t)h(t) dt = 0 .

It is easy to verify that the above expression says that the directional deriva-

tive of ep at Uo (in the direction of our arbitrary h) equals zero,

D ( ). h .== 1· ep (uo + <5h) - ep (uo) == 0
ep Uo . 6~ <5 '

where .p is the functional given by
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117r 17r 17r

.p(u) :== - (u' (t))2 dt - F (u (t)) dt + P(t)u (t) dt ,
2 0 0 0

where F(s) == J; f (T )dT. Therefore, we have shown that a solution of problem

(P) is a critical point of the functional .p above.

The informal treatment above and the zero boundary condition imposed

on (P) suggests the introduction of the Hilbert space

endowed with the inner product and norm given by

(u, v) := LTC u'(t)v'(t) dt, Ilull:= (11r

(u'(t))2 dtr/2 ,

and the functional cp : X ---t JR defined by

where

'ljJ(u) := l1r

F(u(t)) dt -11r

p(t)u(t) dt .

At this point, a question that naturally arises is the following:

Question. What type of critical point is each solution Uo presented earlier?

What is the geometry of the functional cp in each problem (PI) - (Ps)?

Among other topics, the present monograph will answer this and other

related questions. It turns out that, in problems (PI) and (P4 ) , the solution

UQ is a global minimum of cp, whereas UQ is a local minimum of cp in problem

(Ps) . The (nonobvious) nonzero solutions of (Ps) mentioned earlier turn out

to be minimax points u of cp which can be obtained through the celebrated

mountain-pass theorem of Ambrosetti and Rabinowitz, and the symmetric

mountain-pass theorem of Rabinowitz [63]. On the other hand, the solution

Uo (t) == sin t in problem (P3 ) turns out to be a minimax critical point of ip

which could be obtained through the saddle-point theorem of Rabinowitz [63].

We provide below a sneak preview of an answer to our question through some

pictures (Note: The 3D-picture assigned to Problem (Ps) is somewhat mis-

leading, as the corresponding functional is not bounded from above; keep in

1 The space HJ (0, 7r) consists of all absolutely continuous functions u : [0, 7r] ~ JR
such that u(o) == u(7r) == 0 and u' E L 2 (0, rr).
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mind that all functionals are defined on an infinite-dimensional space). Inci-

dentally, the fact that the linear problem (Pz) has no solution (as indicat ed

by the slanted trough in the pictures below) is simply due to the resonant

nature of that problem, as the coefficient Al = 1 of u on the left-hand side

of (Pz) is an eigenvalue (the first) of u" + AU = 0, u(O) = u(n) = O. As

it is well known (from the Fredholm alternative), an additional condition is

needed for u" + AIU = p(t) , u(O) = u(n) = 0 to have a solution , namely,

Jo"' p(t) sintdt = 0 must hold. The right-hand side p(t) = sint of (Pz) clearly

violates this condit ion! As we shall see in Chapter 5 (also Chapter 11), there

are corresponding condit ions for nonlinear problems which were first intro-

duced by Landesman and Lazer in [49] .

Fig. 1.2. Problem (P2)
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Fig. 1.3. Problem (P3)

Fig. 1.4. Problem (P5 )
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Critical Points Via Minimization

1 Basic Results

One of the most basic minimization problems one can pose is the following:

Given a functional .p : E ~ JR. on a Hilbert space E and a closed,

convex subset C c E on which .p is bounded from below, find iu, E C

such that

.p(uo) == inf rp (u) .
uEC

Of course, the problem as stated is much too general and one should be careful

and make additional hypotheses! Nowadays, any good calculus student is

aware of the fact that a function rp : JR. ~ JR. which is bounded from below

on a closed interval C c JR. does not necessarily attain its infimum in C.
In fact, in learning the classic Weierstrass theorem, the student might have

discovered that this delicate question of attaining the infimum is intimately

connected to "continuity" of the functional rp and "compactness" of the set

C! More precisely, the result that follows is well known and standard in a

first course on Topology. For that, we recall that a functional .p : X ~ IR on

a topological space X is lower-semicontinuous (I. s.c.) if rp-l (a, (0) is open in

X for any a E JR. (that is, rp-l (-00, a] is closed in X for any a E JR.). And if

X satisfies the first countability axiom (for example, if X is a metric space),

then ip : X ~ JR. is l.s.c. if and only if rp(u) ~ liminfrp(un ) for any u E X

and sequence Un converging to ii.

Theorem 1.1. Let X be a compact topological space and rp : X ~ JR. a

lower-semicontinuous functional. Then rp is bounded from below and there

exists Uo E X such that

rp(uo) == inf rp .
x
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Proof: We can clearly write X == U~lCP-l(-n,oo). Since, by hypothesis,

each set cp-l(-n, 00) is open and X is compact, it follows that

no

X == Ucp-l(-n, oo)
n=l

for some no EN, hence cp(u) > -no for all u EX, so that .p is bounded

from below. Now, let c == infx .p > -00 and suppose, by contradiction, that

cp(u) > c for all u E X. Then,

00 1
X == Ucp-l(C+ -,00)

n
n=l

and, again, by compactness of X, there exists kEN such that cp(u) > c + 1Ik

for all u E X, hence c 2:: c + 11k, which is absurd. Therefore, the infimum c

must be attained. D

Next, given a Hilbert space E and a functional cp : E ---+ lR, we recall

that ip is weakly l.s.c. if it is l.s.c. considering E with its weak topology:

in other words, cp(u) :S liminfcp(un ) whenever Un converges weakly to u
(written u., ~ u)l. As a consequence of Theorem 1.1, we obtain the following

important result which represents a synthesis of the so-called "direct method

of the calculus of variations" .

Theorem 1.2. Let E be a Hilbert space (or, more generally, a reflexive Ba-

nach space) and suppose that a functional cp : E ---+ lR is

(i) weakly lower-semicontinuous (weakly l.s.c.),

(ii) coercive (that is, cp(u) ---+ +00 as Ilull ----t 00).

Then .p is bounded from below and there exists Uo E E such that

cp(uo) == inf cp .
E

Proof: By the coercivity hypothesis (ii), choose R > 0 such that cp(u) 2:: cp(O)
for all u E E with Ilull 2:: R. Since the closed ball BR (of radius R and center

at 0) is compact in the weak topology and, by (i), cp : BR ---+ lR is l.s.c. in

the weak topology, Theorem 1.1 implies the existence of Uo E BR such that

cp(uo) == infBn sp, hence cp(uo) == infE cp by the choice of R. D

1 Un ~ U iff (Un, h) --+ (u, h) for all h E E, where (-, .) denotes the inner product.
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Remark 1.1. In addition to the above conditions, if the given functional

rp : E -----t IR is differentiable, then any point Uo of minimum is a critical

point of ip, that is, rp' (uo) == 0 E E*. This follows from a standard calculus

argument (which the reader is invited to recall).

As another consequence of Theorem 1.1, we can now state the following

answer to the minimization problem mentioned in the beginning of this sec-

tion.

Theorem 1.3. Under the hypotheses (i), (ii) of the previous theorem, given

any closed, convex subset C c E there exists il E C such that rp( il) == infc ip,

Proof: The proof is essentially the same as that of the previous theorem,

if we replace 13R 2 by 13R n C and keep in mind that a closed, convex and

bounded subset of E is (again) weakly compact (cf. [36], sections V.3 and

V.4). D

Example. Let E be a Hilbert space, a : E x E -----t IR a continuous symmetric

bilinear form satisfying a(u,u) 2:: Qllul1 2 for all u E E (and some Q> 0) and

let l : E -----t IR be a continuous linear functional. Consider the quadratic

functional defined by

1
rp(u) == 2a(u, u) -l(u) , u E E .

Then, given any admissible set C (that is, a closed, convex subset C c E),

the classic minimization problem

rp (il) == inf cp (u )
uEC

has a unique solution. In fact, existence of il E C is guaranteed by Theorem 1.3

by noticing that the quadratic functional .p is coercive and, being continuous

and convex, is weakly l.s.c. (see Example B below). Uniqueness follows from

the strict convexity of .p in this case. In the special situation in which a(u,v) ==

(u,v) (the inner product of E), we have

1
<p(u) = 211ul12 - (u,h) , u E E ,

(where h E E represents the linear functionall, according to the Riesz-Frechet

representation theorem). By completing the square in the above expression,

that is, by writing rp(u) as

2 Similarly, in this case R > 0 is chosen so that <p(u) ~ <p(p) for all u E C with
IIull ~ R, where pEe is any fixed point.
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h

A
U u

c Ilh-tlllsllh-UII VuEC

Fig. 2.1.

we see that the point u E C has the geometric characterization of being the

projection of h onto the closed, convex set C, u == Projr-h, In other words,

uE C is such that Ilh - ull ::; Ilh - ull Vu E C.

Example A. If K : E ~ E is a completely continuous operator on a Hilbert

space E, then the functional .p : E ~ JR given below is weakly l.s.c.,

f{J(u)==(Ku,u) , uEE.

In fact, sp is weakly continuous since, in this case, K Un ---t K u strongly if

Un~ u weakly, hence f{J(un) ---t f{J(u) if Un~ u weakly. When K is a positive

symmetric operator (continuous but not necessarily completely continuous)

the above functional is convex and its lower semicontinuity in the weak topol-

ogy is then a consequence of its lower semicontinuity, as the next class of

examples shows.

Example B. If ip : E ~ JR is a convex, l.s.c. functional on a reflexive

Banach space E, then f{J is weakly l.s.c.

For the proof it is convenient to introduce the notion of epigraph of ip,

epi(f{J) == {(u, a) E E x JR I f{J (u) <a} .

Then we can use the following easily proven equivalences,

f{J is convex (resp. l.s.c., resp. weakly l.s.c.) if and only if

epi(f{J) is convex (resp. closed, resp. weakly closed),
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and recall the fact that a closed, convex subset of a reflexive Banach space

(E x lR, in this case) is weakly closed.

Example C. Let n c lRN (N 2 1) be a bounded domain and let F : nxlR -----+

lR be a function satisfying the so-called Caratheodory conditions:

(i) F(·, s) is measurable on n for every fixed s E lR,

(ii) F (x, .) is continuous on lR for almost all x E n.

(This implies that the so-called Nemytskii operator u(x) r---+ F(x, u(x)) associ-

ated with F is well defined on the space of measurable functions u : n -----+ lR

(cf. [72], Chapter 2.2)).

Now, we show that under a suitable growth condition, namely

There exist a,b > 0 and 1 < a < 2N/(N - 2) if N 2 3 (1 < a < 00 if

N == 1,2) such that (FI )

IF(x, s)1 ~ alslQ + b ,

the functional 'ljJ given by the formula

'IjJ(u) = 10 F(x, u(x)) dx

is well defined and weakly continuous on the Sobolev space HJ (n).
Indeed, the main point here is that the Sobolev space HJ is compactly

embedded in LP for any 1 <p < 2N/ (N - 2), in view of Sobolev embedding

Theorem (cf. [1]) and the growth condition (PI) which implies that the Ne-
mytskii operator F maps the space LP, for p 2: a, into the space LP/ Q in a

continuous manner (cf. the Vainberg theorem in [71]). Therefore, if Un ~ u

weakly in HJ, then Un ----t u strongly in LP (for any 1 ~ p < 2N/(N - 2))
and so, by the continuity of the Nemytskii operator just mentioned, it follows
that F(·, un) ----t F(·, u) strongly in LP/Q, hence strongly in £1 (since 0 is a

bounded domain). In other words, 'ljJ(un ) ----t 'ljJ(u) whenever Un ~ u weakly

in HJ.

2 Application to a Dirichlet Problem

Let us consider the following nonlinear Dirichlet problem

{
-~u == f(x, u) in n

u == 0 on ao ,
c.'

(P)
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where 0 c lRN (N ~ 1) is a bounded domain and I : 0 x lR ~ lR is a

Caratheodory function (that is, a function satisfying the Caratheodory con-

ditions stated in the previous section).

We shall be interested in finding weak solutions of (P), that is, functions

U E HJ(O) such that

L[\lu . \lh - f(x, u)h] dx = 0 'r/ h E HJ (0) . (2.1)

For that, we introduce the growth condition

There exist c, d > 0 and 0 ~ a < (N + 2)/(N - 2) if N ~ 3 (0 <a < 00 if

N == 1,2) such that

II(x, s)1 ~ clslCT + d

and start by proving the following basic result.

Proposition 2.1. Let I : 0 x lR~ lR be a Caraiheodon; function satisfying

condition (11)' Then, letting F(x, s) == J; I(x, r) tlr, the functional

cp(u) = r[~I\luI2 - F(x,u)] dx, u E HJ(O) ,in 2

is well defined and, in fact, <p E c1(HJ , lR) with

cp'(u)·h= L[\lU.\lh-f(x,U)h] dx=O 'r/u,hEHJ(O). (2.2)

(Therefore, U E HJ is a weak solution of (P) if and only if U is a critical point

of <p.)

Proof: We shall always consider the Sobolev space HJ endowed with the

norm

Ilull = (LI\luI2dx)1/2 ,

which is equivalent to the usual norm (11ulli2 +II\7uIII2 )1/2 in view of Poincare
inequality,

where Al > 0 is the first eigenvalue of the problem -~u == AU in 0, u == 0 on

an (cf. Exercise 3.5). Therefore, we may write

cp(u) = ~lluW - 'lj;(u) , 'lj;(u) = LF(x, u) dx ,
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and it suffices to show that 'ljJ is well defined and 'ljJ E C 1(HJ , IR) with

1jJ'(u) ° h = LJ(x, u)h dx Vu, h E HJ(f1) (2.3)

since the functional q(u) == ~ IIul1 2 is clearly of class Coo with q'(u) . h ==
J\7u· \7h dx == (u, h) Vu,h E HJ . Now, since f is a Caratheodory function

satisfying (f1)' it easily follows that F is also a Caratheodory function and it

satisfies the condition (F1 ) of the previous section (Example C). Therefore,

'ljJ : HJ ----+ IR is well defined and weakly l.s.c.

In order to show the differentiability of 'ljJ, let u E HJ be fixed and define

8(h) = 1jJ(u + h) -1jJ(u) - LJ(x, u)h dx °

Then

8(h) = L11

:tF(x, u + th) dt dx -12 f(x, u)h dx

= 11 (L [j(x, u + th) - f(x, u)]h dX) dt ,

so that, by Holder inequality, we obtain the estimate

18(h)l::;111If (o,u + th) - f(o,u)llullhIILS dt, (2.4)

where r == 2N/ (N + 2) and s == 2N/ (N - 2). (Here, we only consider the case

N 2:: 3. The cases N == 1,2 must be treated separately.) Now, in view of the

continuous Sobolev embedding HJ '---7 LS, we have that (u + th) ----t u in LS as

h ----t 0 in HJ. Therefore f(·,u+th) ----t f(·,u) in Ls/a by Vainberg theorem

[71]. And since r == 2N/(N + 2) < s[o , it follows that

fe, u + th) ----+ f(·, u) in LT ,

hence, from (2.4),

16(h)1 16(h)1 11

IihIf < C IIhII Ls < coil f (0, u + th) - f (0, u) II t» dt ---> 0

as II hII ----t 0 in view of Lebesgue dominated convergence theorem (also notice

that we used the Sobolev inequality IIhil L s ~ cllhll in the first inequality

above). We have thus shown that 'ljJ : HJ ----+ IR is (Frechet.) differentiable at

any u E HJ with derivative 'ljJ'(u) given by (2.3).
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Finally, in order to verify the continuity of 'ljJ' : HJ ~ (HJ) * == H- 1 , we

again use the Holder inequality, Sobolev embedding and the Vainberg theorem

as above to obtain

11'ljJ'(u + v) - 'ljJ'(u)IIH-I == sUPllhll~II['ljJ'(u + v) - 'ljJ'(u)] . hi

~ cllf(·, u + v) - f(·, u)IILr ~ 0

as v ---+ 0 in HJ.

(2.5)

D

Remark 2.1. Let us denote by VJcp : HJ ~ HJ the gradient of ip, which is

defined via the Riesz-Frechet representation theorem, that is, VJcp(u) E HJ is

the unique element such that cp' (u) . h == (h, VJcp(u)) for all h E HJ. Then,

it follows from (2.2), (2.3) that VJcp(u) == u - T( u), where T : HJ ~ HJ,

T(u) == VJ'ljJ(u), is a compact operator. Indeed, if Un ~ u weakly in HJ, then

Un ---+ u strongly in LSI for any 81 with 1 ~ 81 < 8 == 2N/(N - 2), in view

of the compact Sobolev embedding HJ L-+ LSI. Therefore, fixing 81 so that

a + 1 ~ 81 < 8 and arguing as in (2.5), we obtain

IIT(un ) - T(u)11 == 11'ljJ'(un ) - 'ljJ'(u)IIH-I

~ cllf(·,un ) - f(·,u)IILrI ~ 0

D

We are now in a position to prove the following existence result for prob-

lem (P) :

Theorem 2.2. Suppose that f : 0 X IR ~ IR is a Caratheodory function

satisfying conditions (fl) and (f2), where

There exists f3 < Al such that lim sUPlsl~oo !(:,s) < f3
uniformly for x E o. (f2)

Then problem (P) has a weak solution u E HJ (0).

Proof: In view of Proposition 2.1, we shall find a critical point of the func-

tional cp E C1 (HJ , IR ) given by

r.p(u) = ~llul12 - 'ljJ(u) , 'ljJ(u) = l F(x, u) dx .

As we know, q(u) == !llul12 is weakly l.s.c. and ts is weakly continuous (cf.

Example C of the previous section). Therefore, it follows that
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(a) rp is weakly l.s.c,

On the other hand, condition (12) implies (by l'H6spital's Rule)

1· 2F(x,s) /3 f 1 f nim sup 2 ::; uni orm y or x E ~!',

181-+00 S

and hence, taking /31 such that /3 < /31 < A1' we can find R1 such that

F(x, s) ::; ~/31s2 for all x E 0, lsi 2: R1. Since (11) also gives F(x, s) ::; r1 for

all x E 0, lsi::; R1 , we get

1 2
F(x,s)::; "2/31s +r1 V x E 0, V s E JR.

This implies the following estimate from below for .p,

<p(u) :::: ~ r lV'ul 2 dx - ~,61 r u2 dx - '")'llnl ,
2 in 2 in

which combined with the Poincare inequality A1 In u2 < In l\7ul 2 yields

where a == 1 - ~~ > 0 and r == r1\0 I. Therefore we also conclude that

(b) rp is coercive on HJ.

Finally, in view of (a), (b) and Theorem 1.2, it follows that there exists

Uo E HJ such that rp(uo) == infHl ip, Therefore, by Remark 1.1 and Proposi-
o

tion 2.1, UQ is a critical point of .p, D

Remark 2.2. Theorem 2.2 is essentially due to Hammerstein [46] and Dolph

[35] (see also [56], where a weak form of (j2) is assumed instead of (12))'

3 Exercises

1. Prove Remark 1.1.

2. Provide the details in Example B.

3. Let F : JR --t ]R be continuous. Show that the functional 'lj; given by the

formula

7jJ(u) = l b

F(u(x)) dx

is well defined and weakly continuous on the Sobolev space HJ (a, b). [Note

that no growth condition like (F1 ) is imposed on F.]
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4. Given 9 E £2(0), with 0 a bounded domain, the functional cp(u)
! In l\7ul 2 dx - In 9 u dx, u E HJ (0) provides an illustration of a quadratic

functional in the class considered in the Example following Theorem 1.3.

As we know, its unique critical point (the minimum of cp) is the weak

solution u == h E HJ (0) of the linear problem

{
-~u == g(x) in 0

u == 0 on ao;

which, in turn, is the representative via the Hiesz-Frechet theorem of the

continuous linear functional

UI---+ ~9UdX.

Consider the mapping K : £2(0) ---+ £2(0) defined by Kg == u. Show

that K is a compact, self-adjoint and positive operator on £2(0) with

ker(K) == {glKg == O} == {O}.
5. With K : £2(0) ---+ £2(0) as in the previous exercise, use the spectral

theorem to conclude that there exist sequences (/1j)JEN C (0,+00) and

(¢j)jEN C £2(0) such that

where /11 2 /12 2 ... 2 /1j > 0, limj--.+oo /1j == 0, and (cPj) is a complete

orthonormal sequence for £2(0). Therefore, £2(0) possesses an orthonor-

mal basis consisting of eigenfunctions of - ~ under the Dirichlet boundary

condition, -~cPj == AjcPj in 0, cPj == 0 on ao, with Aj == :j > O. Using

the defining relation for the operator K, namely

show that (¢j) C HJ is also an (orthogonal) basis for HJ(O) and obtain

the Poincare inequality

with the best constant C == 1
1

•

6. Let 0 C lRN (N 2 1) be a bounded, smooth domain and let f :OxlR ---+ lR

be a continuous function. Consider the following Dirichlet boundary value

problem and Neumann boundary value problem:

{
-~u == f(x, u) in 0

u == 0 on ao; (D)
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{
-~u == f(x, u) in n (N)

~~ == 0 on an.

As we know, a function u E HJ(n) [resp. u E H 1(n)] is a weak solution

of (D) [resp. (N)] if

l v«. 'Vh dx = l f(x,u)h dx V h E CJ(f!) [resp. V h E Clen)].

Let u E C2 (0) be given. Verify that

u is a classical solution of (D) [resp. (N)]
{:} u is a weak solution of (D) [resp. (N)].

7. Given a continuous function h : [0,1] ~ IR, consider the boundary value

problem

{
-u" + u3 == h(t) 0 < t < 1
u(O) == u(1) == 0 ,

(3.1)

(3.2)

and the functional <p(u) == Jo1[~lu/12 + ~u4 - hu]dt defined on the

Sobolev space HJ(O, 1).

(i) Show that the functional ip is bounded from below, hence (3.1) has a

weak solution Uo minimizing ip:

(ii) Show that Uo is the unique solution of (3.1) [Hint: The function s 1---+ 8
3

is increasing, i.e., (8f - 8~) (81 - 82) > 0 \I 81 =I- 82 in IR];
(iii) Exhibit a boundary value problem which is more general than (3.1) and

where the existence of a unique solution (minimizing the corresponding

functional) holds true;

(iv) Show that if we replace the nonlinear term u3 by -u3 in (3.1) then the

corresponding functional <p is no longer bounded from below, so that

we cannot apply the minimization principle.

8. Prove that the weak solution Uo E HJ(0,1) in the previous exercise is

actually a classical solution Uo E C5[0, 1] :== {u E C2[0, 1] I u(O) == u(1) ==

O} of problem (3.1). More generally, given f : [0,1] x IR ---+ IR continuous,

prove that any weak solution of the 1-dimensional boundary value problem

-u" == f(t,u), t E (0,1), u(O) == u(1) == 0, is automatically a classical

solution.

9. Consider the Dirichlet problem

{
- ~u == A sin u + f (x) in n

u == 0 on an,
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where A > 0, f E £2(0.) and 0. C }RN is a bounded domain. Show that, for

A < AI, the above problem has a weak solution minimizing the functional

u E Hd(0.) .

10. Consider the Dirichlet problem

{
-div (A(x)\7u) + c(x)u == f(x) in 0.

u == 0 on a0.,
(3.3)

where 0. c }RN is a bounded domain, c, f E £00(0.), and A(x) is an N x
N real symmetric matrix with components in £00(0.) which is uniformly

positive definite, i.e., A(x)~ . ~ 2: bl~12 for all x E 0., ~ E }RN (and some

b > 0).
(i) Show that the problem (3.3) is variational in the sense that its weak

solutions are the critical points of a suitable functional .p : Hfj(0.) ----+

}R.

(ii) Assume b > Ilc~~oo. Show that u E Hfj(0.) is a weak solution of (3.3)

if and only if uis a global minimum of ip,
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The Deformation Theorem

1 Preliminaries

Let .p : X -----t JR be a 0 1 functional on a Banach space X. A number c E JR

is called a critical value of .p if <.p(u) == c for some critical point u EX. The

set of all critical points at the level c is denoted by K c:

K; == {u E X I <.p' (u) == 0, <.p(u) == c} .

Also, we shall denote by <.pc the set of all points in X at levels :::; c, that is,

<.pc == {u E X I <.p(u) :::; c} .

A basic ingredient in the topological methods is the so-called deformation

theorem. Roughly, it says when (and how) we can deform <.pCl into ({JC2, for

C1 > C2 (or C1 < C2). Since X is not a Hilbert space in general and since we

are only assuming <.p to be of class C1
, we shall need to use the notion of a

pseudo-gradient, due to Palais [60].

Definition 1. A pseudo-gradient field for <.p E C 1 (X, JR) is a locally Lips-

chitzian mapping v : Y -----t X, where Y == {u E XI<.p'(U) # O}, satisfying the

following conditions:

1\v(u) II < 211 <.p' (u) II

<.p' (u) . v (u) ~ II <.p' (u) 11
2

(1.1)

(1.2)

for all u E Y. In what follows we shall use the fact that any functional

<.p E C1(X, JR) has a pseudo-gradient (see a proof in [75]).
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If X is a Hilbert space and .p E 0 1(X, lR) has a locally Lipschitzian

derivative <.p' : X --+ X*, then the gradient of sp (when restricted to Y),

\7<.p : Y --+ X, is clearly a pseudo-gradient for ip, (Recall that \7<.p : X --+ X

is defined through the Riesz-Frechet representation theorem: \7<.p(u) E X is

the unique element verifying ip' (u) . h == (h, \7<.p(u)) for all u EX.)

2 Some Versions of the Deformation Theorem

There are versions of the deformation theorem due to Palais [60, 59] and

Clark [25], among others. In all those versions the functional <.p is assumed to

satisfy some compactness condition. Here, we shall be interested in Clark's

versions, which will be stated for the general case of a Banach space X.

Our presentation follows [74] (cf. also [75]), where the starting point is a

quantitative version of the deformation theorem without a Palais-Smale type

condition on .p, a result due to Willem [74].

Theorem 2.1. Let <.p : X --+ lR be a 0 1 functional on a Banach space X.

Let 8 C X, c E lR and c, 6 > 0 be such that

4£
11<p'(u)11 ~ 8"

for all u E <p-1 [c - 2£,C+2£] n8 28 .1 Then, there exists a continuous mapping

TJ E C([O, 1] x X, X) such that, for any u E X and t E [0,1] one has:

(i) 77(0, u) == u,
(ii) 77(t, u) == u if u ~ <.p-1[C - 2£,C + 2£] n 828 ,

(iii) 77(1, <.pC+E n 8) C <.pC-E n 88,

(iv) 77(t,·) : X --+ X is a homeomorphism.

Proof: Let A == <.p-1[C - 2£,c + 2£] n 828, B == <p-1[C - e.c + £] n 88 and

Y == {u E X I <p' (u) :f. O}, so that B cAe Y. Also, let v : Y --+ X be a

pseudo-gradient for .pand consider a locally Lipschitzian mapping p : X --+ lR

such that 0 <p < 1 and

{
p == 1 in B
p == 0 in X\A.

Then, define the following locally Lipschitzian mapping f : X --+ X,

v(u)
f(u) = -p(u) Ilv(u) II .

1 Given a subset SeX and a > 0, we let Sa denote the closed a-neighborhood of
S defined by Sa == {u E X I dist(u, S) ::; a}.
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L~~~--- rp = c + 2E
_-+---- <p = c+E
__-t---- <p = c
~--+---- <p = c - E

J-+---- <p= C- 2E

Fig. 3.1.

Since Ilj(u)11 ::; 1 for all u E X , it follows that the Cauchy problem

{
dw = j(w)
dt

w(o) = u.

has (for each given u E X) a unique solution defined for all t 2': 0. Let

7] : [0,1] x X ----+ X be defined by

7](t ,u) = w(<5t, u) .

Then, it is easy to see that (i), (ii) and (iv) are satisfied. In order to verify

(iii) we note that , for t 2': 0,

Ilw(t ,u) - ull ::; 11

Ilf(w(r,u) 11dr::; t,

so that w(t , S) C Ss for all t E [0, <5], that is,

7](t ,S) C S(j for all t E [0,1] .

Also note that, for each fixed u EX, the function t 1-+ <p(w(t ,u)) is decreasing

since

:t <p(w(t ,u)) = <p'(w(t ,u)) . ~~
= <p'(w(t ,u)) . j(w(t ,u))

, v(w(t ,u))
= -p(w(t ,u))<p (w(t ,u)) . Ilv(w(t ,u))11 (2.3)

11 <p'(w(t , u)) 11 2

::; -p(w(t, u)) Ilv(w(t ,u))11

::; °,



22 3 The Deformation Theorem

where we have used (1.2) in the first inequality above. Now, let U E epC+E n S

be given. We have two cases to consider.

(a) If cp(w(i, u)) < C - E for some i E [0,8), then cp(1](l, u)) == cp(w(8, u)) ~

cp(w(i,u)) < c- E, hence 1](l,u) E cpC-E n58 in view of (2.2).

(b) In the other case we have w(t, u) E cp-l [c - E, C + E] n 58 == B Vt E [0,8],

and so, using (2.3), (1.1) and the fact that p == 1 on B, we obtain

cp(w(8,u)) = cp(u) + (Ii dd cp(w(t,u)) dt ~ cp(u) _ (Ii ~llcp'(w(t,u))11 dt
Jo t Jo 2

14E
< C + E - - -8 == C - E
- 2 8 '

where the assumption (2.1) was used in the last inequality. Therefore, in

either case (a) or (b), we have shown that 1](1, u) == w(8,u) E cpC-E n 58 if

U E epC+E n S. The proof is complete D

As a consequence of Theorem 2.1 we obtain the following first version of

the deformation theorem, due to Clark [25].

Theorem 2.2. Let .p E 0 1 (X, IR) satisfy the Palais-Smale condition:

Any sequence (un) such that cp(un) is bounded and cp' (un) ---+ °
possesses a convergent subsequence. (PS)

If C E IR is not a critical value of ip, then, for every E > °sufficiently small,
there exists 1] E 0([0,1] x X, X) such that, for any u E X and t E [0,1] one
has:

(i) 1](0, u) == u,

(ii) 1](t, u) == u if u ~ cp-l [c - 2E, C + 2E],
(iii) 1](1, cpC+E) c cpC-E,

(iv) 1](t,·): X ~ X is a homeomorphism.

Proof: There must exist constants a, {3 > °such that II cp' (u) II 2: (3 whenever

u E cp-l [c - 2a, c + 2a] since, otherwise, one would have a sequence (un)
satisfying

c - .!. ~ cp(un) ~ c +.!. , Ilcp' (un) II ~ .!. ,
n n n

so that, in view of the condition (P5), the value c would be a critical value
of ep, contradicting our assumption.

Now, the result follows from Theorem 2.1 with S == X, E E (0,a] given

and 8 == 4E/{3. D
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l1(l,U)

Fig. 3.2.

<p =c+ 2E

<p =c+ E

<p=c

<p =c-E

<p=c-2E

Remark 2.1. It is clear from the above proof that Theorem 2.2 holds true un-

der the following weaker compactness condition introduced by Brezis-Coron-

Nirenberg in [18]:

If a sequence (un) is such that cp(un) ---t c and cp' (un) ---t 0 then c is a

critical value of cpo (BCN)c

This condition may be useful in certain situations where the functional

.p is not coercive, as we shall see in the next section. For now, as a simple

example, we observe that a function cp : JR. ----t JR. which is periodic does not

satisfy (P8), but it satisfies (BC N) c for every c E JR..

Next, let us consider a second (more general) version of the deformation

theorem, also due to Clark [25].

Theorem 2.3. Let cp E C1(X,JR) satisfy the Palais-Smale condition (PS).

Given c E JR and an open neighborhood U of K c ' then, for any E > 0 suffi-

ciently small, there exists TJ E C([O,1] x X, X) such that (for any u E X and

t E [0,1]):

(i) TJ(O, u) == u,
(ii) TJ(t, u) == u if u ~ cp-l[c - 2E, C + 2E],

(iii) TJ(l, cpC+E\U) c cpC-E,

(iv) TJ(t,·): X ----t X is a homeomorphism.

Proof: Let S == X\U. Then there must exist E,6 > 0 such that Ilcp'(u)11 2:
4E/6 wherever u E cp-l [c- 2E, C + 2E] n 828 since, otherwise, one would have a

sequence (un) satisfying
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Then, in view of the condition (PS), one would have a convergent subsequence

un k ---+ U, with U E S n Ki: But this is a contradiction, since S == X\U and

K; C U. Therefore, the result follows from Theorem 2.1. D

Remark 2.2. We should note that the Palais-Smale condition (PS) implies

that the (possibly empty) critical set K c == {u E X I rp' (u) == 0 , rp(u) == c} is

a compact set. In the case K; == 0 (i.e., c is not a critical value), we can take

U == 0 in Theorem 2.3 and obtain Theorem 2.2.

3 A Minimum Principle and an Application

As a first application of the theorem of deformation, let us now obtain an

important minimum principle, which can be useful in situations where the

functional rp is not coercive (compare with Theorem 2.1.2).

Theorem 3.1. Let rp E C1(X, JR) where X is a Banach space. Assume that

(i) rp is bounded from below, c == infx ip,

(ii) rp satisfies (BCN)c'

Then there exists Uo E X such that ep(uo) == c == infx ep (hence, c is a critical

value of rp).

Proof: Let us assume, by negation, that c is not a critical value of ip, Then,

Theorem 2.2 implies the existence of E > 0 and TJ E 0([0,1] x X, X) satisfying
TJ (1,cpC+E) C cpc- E. This is a contradiction since cpc-E== 0 (as c == infx cp). D

Next, we consider an application to the following nonlinear Neumann prob-

lem

{

-~u == f(u) + p(x) in n
auan == 0 on an ,

where n c JRN (N ~ 1) is a bounded smooth domain, f : JR ----+ JR, a

continuous p-periodic function, and p E £2 (n, JR) satisfy the conditions 2

lP

f(s) ds = 0, l p(x) dx = 0 . (3.2)

2 As is well known, the second condition is necessary in the linear case f == o.
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This situation is the PDE analog of that considered in [74, Section II] for the

forced pendulum.

We are interested in finding weak solutions of (3.1), in other words, func-

tions u E HI (n) satisfying

L[\lu· vt. - f(u)h - ph] dx = 0

for all h E Hl(O). Here, the Sobolev space Hl(O) is equipped with its usual

inner product

(u,v) = L[uv+ v« . \lv] dx ,

and we will consider the functional ~ given by the formula

cp(u) = r[~I\luI2 - F(u) - pu] dx ,in 2

where, again, F(s) == J; I(T)dT.

Proposition 3.2. The functional ~ : Hl(O) ----+ ~ given above is well de-

fined. Moreover, ~ is bounded from below and is of class 0 1 with

cp'(u) . h = L[\lu· \lh - f(u)h - ph] dx

for all u, h E Hl(O) (Therefore, u E HI is a weak solution of (3.1) if and only

if u is a critical point of ~).

Proof: Since the continuous function f : IR ----+ IR is p-periodic and satisfies

(3.2), it follows that F : IR ----+ IR is also p-periodic, so that IF(s)1 S A for

some A > 0 and .p is well defined on HI (0) (More generally, and in a similar

manner to Proposition 2.2.1, the functional ~ will be well defined on H 1(O)

provided that I : 0 x IR ----+ IR is a Caratheodory function satisfying the

growth condition (11).)
Now, in order to show that ~ is bounded from below, we decompose X ==

H 1(0) as

X==XOEBXI ,

where Xl == IR == span{1} is the subspace of constant functions and X o ==

(span {1})1- == { v E X I In v dx == 0 } is the space of functions in HI (0)

with mean-value zero. Also, we observe that the following Poincare inequality

holds for functions in X o, where c is a positive constant (cf. Exercise 5 below):

L v
2

dx < eLI vV 1

2
dx V v E X 0 .
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Therefore, writing u == v +W in (3.4), with v E X o, W E Xl, we obtain

ep(u) = ep(v + w) = r[~IVvI2 - F(v + w) - pv] dxin 2

1 2
~ 211\7v11L2 - AIOI - IIpllL211vIIL2 ,

so that, in view of (3.6),

(3.7)

for some constants C, D > 0, which shows that .p is bounded from below.

Finally, we omit the proof that <p E C 1(H1 (0), JR) with the derivative

given by (3.5) since it is analogous to that of Proposition 2.2.1. D

Remark 3.1. Again, as in Remark 2.2.1, the gradient mapping \7<p : H 1 --+

H 1 is of the form \7<p(u) == u - T(u), where T : H 1 --+ H 1 is a compact

operator.

Theorem 3.3. Assume (3.2) with f E C(JR, JR) a p-periodic function and p E

£2(0, JR). Then Problem (3.1) has a weak solution u E H 1(0).

Proof: In view of the previous proposition, we shall find a critical point of

the functional ~ E 0 1 (HI, lR?) given in (3.4). To start, since (3.2) implies

that F is p-periodic and In pdx == 0, we note that the functional ~ is also

p-periodic, that is,

~(u + p) == ~(u) VuE HI .

Next, we claim that

.p satisfies (BCN)c for all c E JR .

Indeed, let (un) be such that ~(un) ~ c and ip'(un) ~ O. Write Un == Vn+Wn
with Vn E X o and ui; E Xl == JR. From (3.7) and the boundedness of <p(un ) ,

it follows that II \7Vn II L2 is bounded, hence (vn ) is bounded in HI in view of

the Poincare inequality (3.6):

(3.8)

On the other hand, letting wn E [O,p) be such that W n == wn(mod p) and

defining Un == Vn + Wn, we obtain that
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Since Ilunll is bounded, in view of (3.8) and the definition of Wn , we may

assume (passing to a subsequence, if necessary) that Un ~ U weakly in HI,

for some U E HI. And, since Un == \7~(Un) + T(un), with T a compact

operator (cf. Remark 3.1), we conclude that

Un ~ 0 +T(u)

strongly in HI, that is,

strongly in HI. Therefore, it follows that ~(u) == c and ~' (u) == 0, so that c

is a critical value of .p and our claim (*) is true.

Finally, in view of (*) and the fact that ip is bounded from below (cf.

(3.7)), we can use Theorem 3.1 to conclude that there exists Uo E HI such

that ~(uo) == infHl .p, hence Uo is a critical point of .p by Remark 2.1.1. 0

4 Exercises

1. Imitate the proof of Theorem 2.1 to show the following simple version of

the deformation theorem:

Let E be a Hilbert space and sp : E ---+ IR a functional of class 0 1 with

\7~ E Liploc(E). If \7~(u) =I- 0 Vu E E, then, for any E > 0 sufficiently

small, there exists TJ E 0([0,1] x X,X) satisfying properties (i) - (iv) of

Theorem 2.2.

2. Verify that (PS)c =? (Ce)c and (BCN)c, where (Ce)c is the following
compactness condition due to Cerami [24]:

If (un) is such that ep(un) ~ c and (1+ Ilunll)llep'(un)11 ~ 0, then (un)
has a convergent subsequence. (Ce)c

3. If dim (X) == 1, decide whether (PS)c and (Oe)c are equivalent for a

given ep : IR ---+ IR of class 0 1 (clearly, neither condition is equivalent to

(BON)c).
4. Same question if dim (X) == 2, i.e., for given 0 1 functions sp : IR2 ---+ IR.

5. Prove the Poincare inequality (3.6), that is, show that there exists c > 0

such that

k1u -ul2dx < CklV'u l2dx \:j uE HI (0,) ,

where 11 == lA, In u dx E IR is the average of u over Q. Can you guess what

is the best (smallest) constant c > O?
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The Mountain-Pass Theorem

1 Critical Points of Minimax Type

Roughly speaking, the basic idea behind the so-called minimax method is the

following:

Find a critical value of a functional .p E C l (X, IR) as a minimax (or

maximin) value c E IR of rp over a suitable class A of subsets of X:

c == inf sup ip (u) .
AEAuEA

Example A. Perhaps one of the first examples using a minimax technique is

due to E. Fischer (1905) through a well-known minimax characterization of

the eigenvalues of a real, symmetric n x n matrix M (cf. [33], pp. 31 and 47):

Ak == inf sup (Mxlx) ,
{X k - 1 } x-lXk-1,lxl=1

A-k== sup inf (Mxlx).
{Xk-l} x-lXk-l,lx!=l

Here, the eigenvalues are numbered so that A-I ~ ... ~ A-k ~ ... ~ 0 ~

... ~ Ak ~ ... ~ AI. Also we are denoting by (·1·) (resp. I ·1) the usual inner

product (resp. norm) in X == IRn, and by X j C X an arbitrary subspace of

dimension j. It should be noted that a characterization which is dual to the

above characterization also holds true, namely:

A-k == inf sup (Mxlx).
{X k } xEXk,lxl=l
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Example B. A similar characterization can be obtained for the eigenvalues

of a compact, symmetric operator T : X ----+ X on a Hilbert space X. This

is part of the so-called Hilbert-Schmidt theory.

Example C. A topological analogue of such minimax schemes was developed

by L. Lusternik and L. Schnirelman from 1925 to 1947. This is known as

the (classical) Lusternik-Schnirelman theory. It was originally based on the

topological notion of category Cat (A, X) of a closed subset A of a metric space

X. By definition, Cat (A, X) is the smallest number of closed, contractible

subsets of X which is needed to cover A (see [53, 54]).

In this context, given a functional cp E 0 1(X, JR.) over, say, a differentiable

Riemannian manifold X, the idea is to show that the following values are

critical values of ip:

Ck == inf sup cp(x) , k == 1,2, ... ,
AEAkxEA

where Ak :== {A c X I A is closed, Cat (A, X) ~ k}. For example, since

Cat iS" , sn) == 2, one obtains, for a given functional sp E 0 1 (sn , lR), that

and, in this case, C1 == inf ip, C2 == sup ip. Of course this gives us no new

information in this case since we know that inf cp and sup .p are attained on

the compact manifold S" and, therefore, are critical values of cp. However,

if 'P E C1 (sn, IR) is an even functional, one obtains more critical values, as

shown by the following classical theorem due to Lusternik (1930):

Theorem 1.1. ([53]) Let 'P E Cl(sn,IR) be given. If'P is even, then it has

at least (n + 1) distinct poirs: of critical points.

The main idea here is that an even functional on S" can be considered

as a functional on the real projective space lRpn (obtained by identification

of the antipodal points in sn), and the topology of lRpn is much richer than

that of S": In fact, it can be shown that Cat (lRpn, lRpn) == n + 1 (cf. [68]) so

that, in this case, one obtains (n + 1) critical values (possibly repeated):

Another way to interpret Lusternik's multiplicity result is to consider it

as a consequence of the symmetry of the problem (evenness of 'P, in this

1 Clearly, since ip is even, its critical points occur in pairs.
2 Moreover, if Cj == Cj+k for some j, k ~ 1, it can be shown that the category of the

critical set K; is at least k + 1.
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case). This question of multiplicity versus symmetry will be tackled in a

future chapter.

2 The Mountain-Pass Theorem

As already mentioned in the beginning of this chapter, the basic idea behind

the minimax method is to minimaximize (or maximinimize) a given func-

tional <.p over a suitable class of subsets of X. In particular, such a suitable

class can be chosen to be invariant under the deformation TJ( t, .) given in the

deformation theorem 3.2.3.
In this section we will present a first illustration of the minimax method

which has proven to be a powerful tool in the attack of many problems on dif-

ferential equations. It is the celebrated mountain-pass theorem of Ambrosetti

and Rabinowitz [9]:

Theorem 2.1. Let X be a Banach space and .p E C1(X, IR) be a functional

satisfying the Polais-Smale condition (PS) (or, more weakly, (BCN)c).3 If

eE X and 0 < r < Ilell are such that

then

a ==: max{<.p (0), <.p (e)} < inf <.p (u) ==: b ,
Ilull=r

(2.1)

c == inf sup .p([(t))
,Er tE[O,l]

is a critical value of ep with c 2: b. (Here, T is the set of paths joining the

points 0 and e, that is, r == {[ E 0([0,1], X) I [(0) == 0, [(1) == e}.)

Proof: First note that ,([0,1]) n 8Br is nonempty for any given, E r, since

,(0) == 0, ,(I) == eand 0 < r < Ilell by assumption. Therefore,

max ep (,(t )) ~ b == inf ep ,
tE[O,l] BB r

so that c ~ b.

Let us assume, by negation, that c is not a critical value. Then, by the

deformation theorem 3.2.2, there exist 0 < E< b;a (recall that a < b by (2.1)

and TJ E C([O, 1] x X,X)) such that

TJ(t, u) == u if u ~ <.p-1([c - 2E, C + 2EJ), t E [0,1] , (2.2)

3 Recall Remark 3.2.1. One could also use (Ce)c (cf. [67]).
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cp

I
I---1-------------
I
I

r r I

o

Fig. 4.1.

e

cp = b

tp = a

x

(2.3)

Now, by definition of c as an infimum over r, we can choose '"'I E T such that

max .p('"'I (t)) :::; c + t:
tE[O,l]

(2.4)

and define the path ::=y(t) == 7](1, '"'I(t)). In view of (2.2) and the fact that 2t: <
b- a, it follows that ::=y E r (indeed, ::=Y(O) == 7](1,0) == 0 and ::=Y(1) == 7](1, e) == e
since <p(0), <p(e) :::; a < b - 2t:). But, then, (2.3) and (2.4) above imply that

max <p(::=Y(t)) :::; c - t: ,
tE[O,l]

which contradicts the definition of c. Therefore, c is a critical value of ip, D

Remark 2.1. In the case u == 0 is a strict local minimum of <p and 0 -=I e E X

is such that <p(e) :::; <p(O), then Condition 2.1 is clearly satisfied. This situation

is common in many application as we shall see next (in this sense, the rough

Fig. 4.1 is typical).

3 Two Basic Applications

Application A. Let us show that the following nonlinear Dirichlet problem

on a bounded domain n c }R3 with smooth boundary possesses a classical

nontrivial solution:

{
-~u == -» in n

u == 0 on an . (3.1)
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i l l
cp(u) == [-I\7uI 2

- _u 4
] dx

n 2 4

is well defined and of class CIon the Sobolev space HJ(0.) by Proposition

2.2.1. The critical points of cp are precisely the weak solutions of (3.1).

To begin with, we observe that since f(x, u) == u3 and 3 < ~~~ == 5, the

functional

Lemma 3.1. (a) U == 0 is a strict local minimum of ip;

(b) Given 0 i= v E HJ there exists Po such that cp(Pov) :S o.

Proof: (a) In view of the Sobolev embedding HJ C £4 we have

1 1 1
<p(u) = "2llul12 - 411ullt4 :;;. "2llul12 - Cllul14

,

hence cp(u) > 0 == cp(O) for all u with 0 < Ilull :S r, for some small r > o.
(b) Letting <5 == In v4dx for a given v E HJ with (say) Ilvll == 1, we have

1 2 1 4
cp(pv) == 2p - 4<5P -+ -(X) as p -+ (X) ,

so that the result follows. D

Theorem 3.2. ([g}) Problem (3.1) possesses a nontrivial classical solution."

Proof: We shall use the mountain-pass theorem. Since we already know that

sp E C1(HJ,lR), we now show that sp satisfies (PS).
Let (un) be such that I<P (un) I :S C, cp' (un) -+ O. Then, for all n sufficiently

large, we have

hence

that is,
1 1
411unl12 < C+ 411unll .

This implies that Ilun II is bounded, so that we may assume (by passing to

a subsequence, if necessary) that Un -+ U weakly in HJ. But then, since

\7cp(u) == u - T(u) with T a compact operator (cf. Remark 2.2.1), we obtain

4 In fact, because of the eveness of the corresponding functional <p and its su-
perquadratic nature, problem (3.1) has infinitely many solutions, as we shall see
later on.
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Therefore, Un ---+ 11 strongly in HJ and we have shown that <p satisfies (PS).
Now, Lemma 3.1 allows us to use Theorem 2.1 (with e == Pov) in order to

conclude the existence of a critical point Uo with <p(uo) == c 2: b > 0 == <p(0).

Therefore, Uo is a nontrivial weak solution of (3.1). Moreover, since both an
and f(x, u) == u3 are smooth, a bootstrap argument shows that Uo is indeed a

classic solution (cf. [2]).

Application B. This next application is a generalization of the previous one.

We consider the nonlinear Dirichlet problem (cf. [9])

{
-~u == f(x, u) in n c IRN

u == 0 on an , (3.2)

where n c IRN (N 2: 2) is a bounded smooth domain and, as usual, f :
nx IR~ IR is a Caratheodory function satisfying the growth condition (fl)
before Proposition 2.2.1 in Chapter 2. Moreover, we shall assume the following

conditions:

f(x, s) == o(lsl) as s ---+ 0, uniformly in x.

There exist JL > 2 and r > 0 such that

o< J1F (x, s) < sf (x, s ) for Is I 2: r,

uniformly in x (where we recall that F(x, s) == J; f(x, T)dT).

Condition (f3) is the so-called superquadraticity condition of Ambrosetti and

Rabinowitz.

As we know, the fact that f is a Caratheodory function satisfying (fl)
implies (cf. Proposition 2.2.1) that the functional

cp(u) = r [~IV'uI2 - F(x,u)] dxin 2
(3.3)

is well defined and is of class CIon the Sobolev space HJ(n). Next, we prove

an analogue of Lemma 3.1.

Lemma 3.3. (a)u == 0 is a strict local minimum oj ip;

(b) Given 0 i= v E Hli there exists Po such that <p(Pov) ~ o.

Proof: (a) In view of (f2), given c > 0, there exists 8 == 8(c) > 0 such that

If(x, s)1 ~ clsl for all lsi ~ 8, hence
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Now, since the growth condition (11) implies

(3.5)

we combine (3.4) and (3.5) to get

1
IF(x, s)1 ::; -:t=l sI 2 + A,lslo+1 "Is E JR, "Ix E O. (3.6)

Therefore, using (3.6) we obtain

hence

in view of Poincare's inequality Al11ulli2 ~ IIul1 2 and the Sobolev inequality

IlullLa+l ~ cllull (recall that a + 1 < ~~2). Therefore, since we can take

E < Al and assume that a > 1 in (II), the above inequality (3.7) gives

<p(u) > 0 == <p(0) for all u with 0 < Ilull ~ r, for some suitably small r > o.

(b) It is easy to see that condition (13), together with (II), implies that F
is superquadratic in the sense that there exist constants c, d > 0 such that

Therefore,

F(x, s) 2: clslJ.L - d Vs E JR., Vx E Q. (3.8)

so that, given v E Hfj with /lvll == 1 and writing 6 == cllvllifL > 0, we obtain

In particular, there exists Po > 0 such that <p(Pov) :S O. D

Remark 3.1. As we have just seen in part (b) of Lemma 3.3, condition (13)
implies (3.8) with JL > 2 (F is superquadratic) and, hence, <p(pv) ---+ -00 as

p ---+ 00 for any given 0 =F v E HJ. Therefore, the functional <p is not bounded
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from below. On the other hand, since <p(u) == ~ IIul1 2
- 'ljJ(u) where 'ljJ is a

weakly continuous functional (recall Example C in Section 2.1 of Chapter

2), then if we let (en) denote an orthonormal basis for HJ, it follows that

limn~oo 'ljJ(Ren ) == 0 for any given R > 0, so that limn~oo<p(Ren ) == ~R2.

Since R > 0 is arbitrary, we see that .p is also not bounded from above.

Theorem 3.4. ([9]) If f : 0 x IR ----t IR is a Caratheodory function satisfying

conditions (fl) - (f3), then problem (3.2) possesses a nontrivial weak solution

u E HJ.

Proof: As in Theorem 3.2, we start by showing that the functional <p given

in (3.3) satisfies the (PS) condition.

Let (un) be such that I<p (Un) I < C, <p' (Un) -t o. Then, for all n sufficiently

large, we have

hence

that is,

(-2
1

- -!.) IIu-, 11 2 < C + -!.IIUn II ,
JL JL

where (~ - ~) > 0, which implies that Ilun II is bounded. The rest of the

proof that <p satisfies (PS) is done as in Theorem 3.2. Similarly, Lemma 3.3

and Theorem 2.1 imply the existence of a nontrivial weak solution Uo E HJ

of (3.2). D

Remark 3.2. If f : "0 x IR ----t IR is assumed to be locally Lipschitzian, then

by a bootstrap argument, the weak solution Uo is a classical solution (see [9]).

Remark 3.3. We point out that the Palais-Smale condition is a compactness

condition involving both the functional and the space X in a combined man-

ner. The fact that X is infinite dimensional plays no role in requiring that

(PS) (or some other compactness condition) be satisfied in the mountain-pass

theorem. Indeed, even in a finite-dimensional space, the geometric conditions

alone are not sufficient to guarantee that the level c is a critical level (see

Exercise 2 that follows).
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4 Exercises

1. Let A < O. Show that the ODE problem

{
u" + AU + u3 == 0, 0 < t < 1r

U' (0) == u' (7r) == 0

has a solution u E C2[0, 7r] which is a mountain-pass critical point of the

corresponding functional.

2. Find a polynomial function p : IR x IR ~ IR that satisfies the geometric

conditions (2.1) of the mountain-pass theorem (so that the minimax value

c 2: b > 0 does exist), but c is not a critical level of p. (Try to find such

a polynomial p(x, y) having (0,0) as a strict local minimum and no other

critical point; if giving up, see [20].)
3. Consider the following nonlinear Neumann problem

{

-~u == f(u) + p(x) in 0
auan == 0 on ao ,

where 0 c IRN (N 2: 1) is a bounded smooth domain and the continuous

functions f : IR ~ IR (given as p-periodic) and p : n~ IR satisfy the

conditions lP f(s) ds = 0, l p(x) dx = 0 .

Recall that, as an application of (the minimum principle) theorem 3.3.1

in Chapter 3 with the Palais-Smale condition replaced by the weaker

Brezis-Coron-Nirenberg condition (BCN)c, we proved that (N) had a

solution Uo E u: (0) minimizing the corresponding p-periodic functional

ip, Clearly, by the periodicity of ip, any translated function Uk == iu, + kp,

k E Z, is also a minimizer of ip, Find another solution for (N) which is

different from the Uk'S.5

4. This is simply a calculus exercise to introduce a function which is super-

linear at infinity in the sense that

lim f(s) = +00,
Isl-+oo s

but grows slower than any power greater than 1, namely,

lim f(s) == 0
Isl-+oo IslES

5 The mountain-pass theorem also holds if b == a in (2.1) (cf. [63]).
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Indeed, just take f(s) :== F'(s), where F(s) == s2ln(1 + s2). You should

also check that

lim [sf(s) - 2F(s)] == +00 ,
Isl-+oo

which is a condition that is relevant to the next exercise.

5. Consider the Dirichlet problem

{
-~u == f(x, u) in n

u == 0 on an , (D)

where n c jRN is a bounded smooth domain and f : n x jR ----+ jR is

continuous, with f(O) == 0, f(x, s) == o(lsl) as s~ 0 (uniformly for x En),
f satisfying the growth condition (fl) in Chapter 2 and

1· . f f(x, s) \ c 1 c nim m -- > /\1, uniform y lor x E ~G,
Isl-+oo S

()

Moreover, assume that

lim [sf(x, s) - 2F(x, s)] == +00, uniformly for x En, 6
Isl-+oo

where, as usual, F(x, s) == Jos f(x, t) dt. Show that (D) has a nonzero so-

lution. [Hint: Use the Fatou lemma to verify that, in view of the above
condition, the pertinent functional satisfies the Cerami condition intro-

duced in Exercise 2 of Chapter 3.]

6 This is a nonquadraticity condition introduced in [31].
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The Saddle-Point Theorem

1 Preliminaries. The Topological Degree

In this chapter we present a second important illustration of the minimax

method, the saddle-point theorem of Rabinowitz [64]. Since its proof uses the

topological degree of Brouwer, we reserve this section for a brief presentation

of this important topological tool and its main properties. The interested

reader can see the details in [57].
Let <I> E C(U, JRn) where U c JRn is a bounded open set. Given b E

JRn \ <I> (aU), the problem consists in solving the equation

<I>(x) == b (1.1)

in U. This can be done in certain cases by using the so-called Brouwer degree

of the mapping <I> (with respect to U, at the point b), denoted by deg(<P, U, b),

which is an integer representing an algebraic count of the number of solutions

of (1.1).
First, we consider the regular case, in which <P E C 1 (U, IRn) and b E

JRn \ <I> (aU) is a regular value of <P [that is, <I>' (e) is invertible for any e E

<I> -1 (b)], and define

deg(<I>, U, b) == L sgndet[<I>'(e)] ,
~E<P-l (b)

(1.2)

where we observe that the above sum is finite in view of the inverse function

theorem.' Then the following properties hold:

1 Indeed, the fact that <p'(~) is invertible implies that each ~ E <p -1 (b) is isolated
and, therefore, q>-l(b) is a finite set since b tj. q>(8U) by assumption.
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(i) (Normalization) If I d : U ----+ jRn is the inclusion mapping, then

{
I if b E U

deg(Id,U,b) = 0 if b ~ U .

(ii) (Existence Property) If deg(<I>, U,b) =I- 0, then there exists a solution Xo E

U of (1.1).

(iii) (Additivity) If U == U1U U2 , U1n U2 == 0 and b ~ <I>(aU1)U <I> (aU2 ) , then

deg( <I> , U,b) == deg( <I> , U1,b) + deg( <I> , U2 , b).

(iv) (Continuity) If \II is close2 to <I> , then deg( \II, U, b) == deg( <I>, U, b).

(v) (Homotopy Invariance) If H E C([O, 1] x U, jRn) and b ~ H([O,1] x aU),

then

deg(H(t, .), U,b) == constant Vt E [0,1] .

(vi) (Boundary Dependence) If \II == <I> on au, then deg( W, U, b) == deg( <I>, U, b).

Remark 1.1. It is not hard to verify properties (i)-(iv), whereas (v) and

(vi) are consequences of (iv). In fact, (iv) implies that the function t ~

deg(H(t, .), U,b) is continuous, hence constant since it only takes integer val-

ues. And the homotopy H(x, t) == (1 - t)<I>(x) + t\Il(x) shows property (vi).

Next, the definition of deg(~, U, b) can be extended to a general ~ E

C(U,jRn) and bE jRn\<I>(8U) through the following steps:

(A) Given <I> E C1(U,jRn) and b E jRn\<I>(8U), not necessarily a regular value,

Sard's theorem implies the existence of a sequence (bk ) converging to b,

where each bk is a regular value of <1>; one defines deg(<I>, U,b) by showing

that the limit below exists and does not depend on the choice of (bk):

deg (<I>, U,b) == lim deg(<I>, U,bk) .
k-e cx:

(B) Given <I> E C(U,jRn) and b E jRn\<I>(au) , we consider a sequence (<I>k)
where <I>k E C1(U, jRn) is such that <I>k ~ <I> in C(U, jRn) and we define

deg(<I>, U,b) by showing that the limit below exists and does not depend

on the choice of (<I> k ) :

deg(<I>, U, b) == lim deg(<I>k' U, b) .
k----+oo

2 Here we mean C'<ciose but, in the general case to be considered, we should
understand close as CO -close.
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Finally, it follows that the degree just defined satisfies properties (i)-

(vi). We should also mention that there is a degree theory in the infinite-

dimensional case, due to Leray and Schauder (see [50, 57]) which deals with

mappings <P E C(U, X), where U c X is a bounded open subset of a Ba-

nach space X and <P is a compact perturbation of the identity, that is, of

the form <p(u) == u - T(u) with T a compact mapping. The corresponding

Leray-Schauder degree also satisfies properties (i)-(vi).

2 The Abstract Result

In this section we state and prove Rabinowitz's saddle-point theorem.

Theorem 2.1. ([64]) Let X == V EB W be a Banach space, where dim V < 00,

and let .p E C1 (X, JR.) be a functional satisfying the Palais-Smale condition

(P S). If D is a bounded neighborhood of 0 in V such that

then

a :== max c < inf ir: :== b
aD r W r ,

c :== inf m~ rp(h(u))
hEr uED

(2.1)

is a critical value of .p with c 2 b. (Here r is the class of deformations of D in

X which fix aD pointwise, that is, T == {h E C(D,X) I h(u) == u, Vu E aD }.)

Proof: We first verify that h(D) n W -=I=- 0 for any hEr. In fact, if we let
P : X ----+ V denote the projection onto V along W, then Ph E C(D, V) and

Ph(u) == Pu == u =F 0 Vu E aD. Since we can identify V with JR.n, where

n == dim V, the degree deg(Ph, D, 0) is well defined and properties (i) and

(vi) of Section 1 imply that

deg(Ph,D,O) == deg(Id,D,O) == 1.

Therefore, by property (ii) of that section, there exists Uo E D such that

Ph(uo) == 0, that is, h(uo) E W. This implies that

ma~ rp (h(u )) 2 b == inf rp ,
uED W

hence c 2 b since hEr is arbitrary.

Now, assume by negation that c is not a critical value of ip, Then, by

the deformation theorem 3.2.2, there exist 0 < E < b;a (recall that a < b by

(2.1)) and rJ E C([O, 1] x X, X) such that
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x v

Fig. 5.1.

TJ(t, u) == u if u ~ ~-l([C - 2£,C + 2£]), t E [0,1] , (2.2)

TJ(l, ~C+E) C ~C-E . (2.3)

Now, pick h E f such that

ma~~(h(u)):::;c+£
uED

(2.4)

and define h(u) == TJ(l, h(u)). By (2.2) and the fact that 2£ < b - a we have

TJ(l, h(u)) == u if u E aD [since ~laD :::; a < b - 2£], hence h E f. Then, (2.3)

and (2.4) imply that
m~~(h(u)) :::; c - £ ,
uED

which contradicts the definition of c. Therefore, c is a critical value of~. D

Remark 2.1. We should observe that Condition (2.1) is clearly satisfied when

~ is such that ~(v) ~ -00 as IIvll ~ 00, v E V, and ~(w) ~ +00 as

Ilwll ~ 00, w E W. This situation is typical in many applications.

3 Application to a Resonant Problem

We now consider a result due to Ahmad, Lazer and Paul [3] concerning the

existence of a solution for the following resonant problem

{
-~u == Aku + g(x, u) in!1 c }RN

u == 0 on 8!1 ,
(3.1)

where I] c }RN (N 2 1) is a bounded smooth domain, x; is the kt h eigenvalue

of -~u == Au in !1, u == 0 on 8!1, and we assume
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g : nX 1R ---+ 1R is continuous and uniformly bounded, say

Ig(x,s)1 ~ M "Ix E 0, "Is E 1R.

Therefore the nonlinearity f(x, s) == AkS+ g(x, s) is such that !(:,8) ~ Ak as

lsi ~ 00, hence the terminology resonant problem. Clearly, some additional

condition is necessary for the solvability of (3.1) since, as we know, even in the

linear case g(x, s) == g(x) (say, a continuous function), one has the Fredholm

alternative: (3.1) is solvable 'if and only if In gvdx == 0 for all v in the Ak-

eigenspace Nk .

Ahmad, Lazer and Paul [3] assume that g also satisfies one of the conditions

(gt) or (g:;) below:

In G(x, v(x)) dx ~ ±oo as Ilvll ~ 00, v E N k ,

where, as usual, G(x, s) == J; g(x, t)dt. More precisely, they prove the follow-

ing:

Theorem 3.1. ([3j) Under conditions (gl) and (gt) or (g:;) Problem (3.1)

has a weak solution U E HJ (0) .

Here we present the proof given by Rabinowitz [64] which uses the saddle-

point theorem and makes clear the role of conditions (gi)3. For that, we

consider the functional

cp(u) = r[~(I\7uI2 - AkU2 ) - G(x, u)] dx = ~(Lu, u) - rG(x, u) dx ,in 2 2 in
(3.2)

which, in view of (91), is clearly well defined on HJ (0), is of class C1
, and its

critical points are the weak solutions of (3.1). We also consider the following

orthogonal decomposition of X == HJ ,

where Xo == Ni: and X+ (resp. X_) is the subspace where the operator

L : HJ ~ HJ defined in (3.2) is positive (resp. negative) definite. We denote

the respective orthogonal projections by Po, P+ and P_. Then, the following

result holds true:

Proposition 3.2. Under conditions (gl) and (9:;) one has

3 In fact, it was this result of Ahmad, Lazer and Paul that led Rabinowitz to state
and prove the saddle-point theorem, which became one additional powerful tool
among the variational techniques.
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(a) ip (u) ---+ - 00 as IIu II ---+ 00, u E X - ;

(b) cp(u) ---+ +00 as lIull ---+ 00, u E X o EB X+.

Proof: (a) Let u == Pi.u E X_. Using (gl) together with the mean value

theorem for G(x, .) and the fact that L is negative definite on X _, we obtain

cp(u) = ~(LP_u,P_u) - ( G(x,P_u) dx
2 in

1
< -"2aIIP_uI12 + MIIP-ull£l

1
::::: -"2aIIP_uI12 + AIIP-ull ------. -00 as Ilull = IIP_ull ---4 00,

where, in the last inequality, we used that IlvllLI ::; cllvllL2 and the Poincare

inequali ty.

(b) Let u == Pou + Pi.u E X o EB X+. Now, using the fact that L is positive

definite on X+ and, again, (gl) combined with the mean value theorem for

G(x, '), we obtain

hence

for all u == Pou + Ps u E X o EB X+. This shows, in view of hypothesis (g:;),
that cp(u) ---+ +00 as IIul1 2 == IIPoul1 2

+ IIP+ ull2
---+ 00. D

Remark 3.1. If we assumed (gt) instead of (g:;) the conclusions of the above

proposition would be

(c) cp(u) ---+ -00 as Ilull ---+ 00, u E X_ EB X o;
(d) cp(u) ---+ +00 as lIull ---+ 00, u E X+.

Proof of Theorem 3.1 As mentioned earlier, we are going to use the saddle-

point theorem. Since we already know that cp E C 1(X,IR), we show now that

.p satisfies (PS).
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Let (Un) be such that l<p(un)I :S C and <p' (un) ---+ O. Then, for all n
sufficiently large, we have

Then, letting h == P+un in (3.4), it follows that

IIP+Unll 2: l<p'(un) . (P+un)1

2: al/P+unll2 - MIIP+unIILl

2: allP+unl 1

2
- AIIP+unll ,

so that IIP+unll must be bounded.

Next, letting h == Pi.u-, in (3.4), we obtain

-IIP_unl/ :S <p'(un) . (P_un)

:S -aIIP_unI1 2 + MI/P_unIILl

:S -aIIP_unI1 2 + AI/P_unll ,

so that liP-un 1/ must also be bounded. Therefore, we obtain

(3.5)

On the other hand, since we can write

1
ep(un) == 2(L(un - POUn),Un - POun)

-l [G(x, u) - G(x, Pou)] dx ~ l G(x, Pou) dx ,

where cp(un) is bounded together with the first two terms on the right-hand

side of the above expression (in view of (3.5)), it follows that the last term

is also bounded and, hence, because of (g:;), we can conclude that IIPoun11
is bounded. This, together with (3.5) shows that Ilun II is bounded. The

rest of the proof that <p satisfies (PS) is done as before, using the fact that

\7<p(u) == u - T(u) with T a compact operator.

Finally, Proposition 3.2 allows us to apply the saddle-point theorem with

V == X_, W == X o EB X+ to conclude the existence of a critical point of ip,

that is, a solution of (3.1). D

Remark 3.2. We point out that in the case 9 : [2 x IR ----+ IR verifies
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lim G(x, s) == +00 uniformly for x EO,
IS\-HX)

respectively

lim G(x, s) == -00 uniformly for x En,
Isl~oo

(gt)

(g3)

then condition (gt) [resp. (g:;)] is satisfied.

Indeed, following [63], let v E N k and K > 0 be given and write v == pw

with p == Ilvll and w E S n N k == {w E s; Illwll == 1 }. By (gt) there exists

a == a(K) such that G(x, s) 2: K if lsi 2: a(K) and x E n. Then, since there

exists M o such that G(x, s) 2: -Mo for all x E nand s E ]R, we can write

kG(x,pw(x)) dx 2 -Malnl + Klnp,K,wl (3.6)

where Op,K,w == {x E 0 I plw(x)1 2: a(K)}. Since S nNi. is a compact set, we

can choose p(K) sufficiently large so that 10p,K,wl 2: 101/2 for all p 2: p(K)
and w E S n N k . Thus, (3.6) implies that (gt) is satisfied.

4 Exercises

1. As can be easily checked by elementary methods, the linear resonant ODE
problem (P2) in the introduction has no solution. Why cannot Theorem

3.1 be used?

2. In view of the Fredholm alternative, if p : n --t IR is a continuous function

on a bounded, smooth domain f2 C IRN , a necessary and sufficient condi-

tion for existence of a solution to the linear problem -~u == AIU + p(x),
U == 0 on ao, is that kp(x)(h(x) dx = 0,

where cPl (x) is an eigenfunction corresponding to AI. Since both conditions

(gt) and (g:;) clearly fail in this linear case, exhibit a class of continuous

functions 9 : ]R --t ]R for which the modified nonlinear problem with

p(x)9 (s) replacing p(x) always has a solution.

3. Let 0 C ]RN (N 2: 1) be a bounded, smooth domain and consider the

Dirichlet problem

{
-~u == AIU + g(u) - h(x) In f2

U == 0 on an, (D)
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where h : 0 ----+ JR and 9 JR ----+ JR are continuous functions with 9

increasing and such that

g(-oo) <g(s) <g(+oo) 'VsEJR,

where g(±oo) :== lim8-+±00 g(s). Show that, if cPI > 0 is a AI-eigenfunction

and the following Landesman-Lazor condition [49]

is satisfied, then problem (D) has a solution. Verify that the condition

(LL) is also necessary for existence of a solution under the other given

conditions.

4. State a corresponding Neumann problem where existence of a solution can

be proved in a manner similarly to the one used in the previous exercise.

5. Show that the functional <p(u) associated with the Dirichlet problem in

Exercise 3 satisfies

as It I -t 00.

6. Consider the nonlinear Dirichlet problem

{
-~u == f(x, u) in 0

u == 0 on ao , (D)

where 0 c JRN is a bounded smooth domain and f : n x JR ----+ JR is a
continuous function such that

lim f (x, s) == A
181-+00 s '

uniformly for x EO,

where Ak < A < Ak+1 (Ak' Ak+1 being eigenvalues of -~ under Dirichlet
condition on aO). Assume further that

lim [2F(x,s) - sf(x, s)] == +00, uniformly for x EO,
181-+00

where, as usual, F(x, s) == J; f(x, t) dt. Show that (D) has a solution.

(Recall that, as in Exercise 5 of Chapter 4, the previous condition renders

the pertinent functional satisfying the Cerami condition.)



6

Critical Points under Constraints

1 Introduction. The Basic Minimization Principle
Revisited

In many variational problems one must find critical points of a given functional

cp E C 1 (X, IR) in the presence of constraints, that is, critical points of cp

restricted to a set M c X of constraints. Naturally, in order to be able

to talk about critical points of cplM, the set M must have a differentiable

structure. Typically, in the case of a finite number of constraints, M is of

the form M == {u E X I 'ljJj(u) == 0, j == 1, ... ,k} where 'ljJj E C 1(X,IR),

j == 1, ... ,k.

Before considering critical points in general, let us review the situation of

minimum described in Section 2.1, where the set M of constraints does not
need to have a differentiable structure. Then, the same ideas of the basic

minimization principle, Theorem 2.1.3, can be used to prove the following:

Theorem 1.1. Let M be a weakly closed subset of a Hilbert space (or, more

generally, a reflexive Banach space) X. Suppose a functional <p : M ~ JR is

(i) weakly lower semicontinuous (w.l.s.c),

(ii) coercive, that is, cp(u) ----t +00 as Ilull----t 00, u E M.

Then cp is bounded from below and there exists Uo E M such that <p(uo)
inf M ip,

Proof: The proof is essentially the same as that of Theorem 2.1.3, where we

replaced B R by the bounded, weakly closed set M R == M n B R and recalled

that a bounded, weakly closed set is weakly compact. And, as before, in view
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of the coerciveness of cp, we pick p E M and R > 0 so that cp(u) ~ cp(p) for

"u"~R,UEM. D

Remark 1.1. The special case M == X gives us Theorem 2.1.2. In this case,

as already observed in the remark following Theorem 2.1.2, any point Uo of

minimum of a C1 functional cp : X ------t IR is a critical point of cp, that is,

ip' (uo) == 0 E X*.

Remark 1.2. A typical example of a weakly closed set M c X is given by

M == {u E X I 1jJ(u) == c}, where 1jJ : X ------t IR is a weakly continuous

functional. More generally, if 1jJ : X ------t IR is a weakly l.s.c. functional, the

sets of the form 1jJc == {u E X I cp(u) S c}, c E IR, are weakly closed.

2 Natural Constraints

Now, we turn our attention to the problem of finding the critical points of

a functional .p E C1(X, IR) over a set of constraints M c X which is a dif-

ferentiable manifold. Besides the trivial case where M is an arbitrary closed

subspace of X, we will not consider a general submanifold M eX, but rather

those submanifolds of finite codimension. These correspond to situations in

which only a finite number of constraints are present. Let us recall some

definitions.

A subset M c X is a Cm-submanifold of codimension k (m, k ~ 1 integers)

if, for each Uo E M, there exists an open neighborhood U of Uo and a function
1jJ E Cm(U, IRk) such that

(i) 1jJ' (u) is surjective for every u E U,

(ii) M n U == {u E U I 1jJ (u) == O}.

In this case the tangent space to M at the point Uo E M, denoted by TuoM,

is defined as the space of all tangent vectors I' (0) to M at Uo, where I :

(-E, E) ------t M is an arbitrary C1 curve in M passing through Uo, that is,

1(0) == Uo, and such that I'(t) i- 0 Vt E (-E, E).
Finally, given a functional cp E C1(X ,IR), we say a point Uo E M is a

critical point of cplM if

d
dt cp(I(t)) It=o == 0

for every C 1 curve I : (-E, E) ------t M passing through Uo.

(2.1)
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The following result, which is well known in finite dimension (and whose

proof we omit in infinite dimension, cf. Theorem 3.1.31 in [15]), shows that a

critical point of a constrained functional is a critical point of a related uncon-

strained functional. (This is the so-called method of Lagrange multipliers.)

Theorem 2.1. Let .p E C1(X, IR) and suppose M C X is a C'<submomijold

of codimension k, say M == {u E U I 1/Jj (u) == 0, j == 1, ... ,k} where 1/Jj E

C1 (U,JR), j == 1,... ,k, U c X is an open set and 1/J~ (u ), . . . ,1/J~ (u ) are

linearly independent for each u E U. Then, if u E M is a critical point of

r,pIM, there exists :\ == (AI, ... ,Ak) E IRk such that

k

r,p' (u) == :\ . 1/J' (u) == L Aj1/Jj (u) .
j=1

(The Aj 's are called Lagrange multipliers.)

(2.2)

Next, given a submanifold M C X as above, if Uo E M is a critical point

of an unconstrained functional r,p E C 1 (X, IR), then Uo is also a critical point

of r,pIM since (2.1) is easily verified in this case (r,p'(uo) == 0 E X* implies, in

particular, that r,p' (uo).r'(0) == 0 for all tangent vectors r'(0) to M at uo). The

converse statement is not true in general. However, if a given critical point

uE M of r,pIM is also a critical point of the unconstrained functional r,p, we say

that the submanifold M is a natural constraint for the critical point uE M

(in view of (2.2), this is the case if and only if all the Lagrange multipliers

Aj == Aj (u) are equal to zero). We say that M is a natural constraint for .p if

M is a natural constraint for each critical point uof ep 1M, that is,

K(epIM) == K(ep) n M (2.3)

(cf. [45]), where we are denoting by K(0) the set of critical points of 0.
A particularly important situation occurs when a given critical point Uo of

.p E C 1(X, IR) is not a global minimum, say, a saddle-point), but it is possible

to find a submanifold M c X which is a natural constraint for .p and is such

that Uo E M is a global minimum for eplM (cf. the definition of natural

constraint in [15], Section 3.3B, where in addition M is required to contain all

critical points of ip, that is, K(r,pIM) == K(r,p)). We shall see some applications

in the next section.

1 This means that any neighborhood of UQ contains points u, v with <.p(u) < <.p(UQ) <
<.p(v).



52 6 Critical Points under Constraints

3 Applications

Application A. We consider the question of existence of T-periodic solutions

for the classic Hamiltonian system

{
X+ \7xV(t,x) == 0
x(O) == x(T) , ±(O) == ±(T) ,

where x(t) E lRn and V(t, x) satisfies

(3.1)

V : lR x lRn ----+ lR is continuous, V(·, x) is T-periodic and V(t,·) is differ-

entiable with \7xV(t,x) continuous for any t E lR, x E lRn . (VI)

Let X denote the following Sobolev space of T-periodic functions, X ==
H} == {x : lR ---+ lRn I x is abs. continuous, T-periodic and JoT 1±1 2dt < 00 },

endowed with its natural inner product

where . and I . I denote the Euclidean scalar product and norm in lRn .

Lemma 3.1. If (VI) holds, then the functional

iT 1
sp (x) == [-IX12 - V (t, x)] dt ,

a 2

is well defined and of class CIon X, with

x E X == H} (3.2)

<p'(x)·z= IT

[X . Z - V x V (t ,X) . Z] dt '<:/x,ZEX. (3.3)

Moreover, the critical points of .p are the classical C2 solutions of (3.1).

Proof: Since V is continuous on lR x lRn by (VI) and any function x E X is

absolutely continuous with JOT 1±1 2dt < 00, it is clear that the functional .p is

well defined on X. Also, the fact that .p E C 1(X,lR) with the derivative given

by (3.3) can be easily verified, so that we leave these as an exercise for the

reader (cf. Exercise 2).

Finally, the proof that the critical points of ~ are the classic C 2 solutions

of (3.1) is also standard. Indeed, if x E X is a critical point of ~, then
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which implies that x E X is a weak solution of (3.1). Since x E X is continuous

and, by (VI), \7x V is also continuous, it follows that x == v in the weak sense,

where v(t) == \7xV(t,x(t)) is also a continuous function. Therefore, the weak

solutions x(t) are classical C 2 solutions (cf. [70]). D

Remark 3.1. It should be noted that, in this case, one also has the gradient

of .p, \7cp : X -----* X, of the form \7cp(x) == x - K(x) with K : X -----* X a

compact operator. In fact, since K(x) is defined by

(K(x),z) = IT

[x + 'Vx V (t ,x )] oz dt \:jx,zEX,

the compactness of K in this case is an immediate consequence of the compact

embedding X C 0[0, T] (see Exercise 3).

Lemma 3.2. (cf. [76j) Assume the conditions (VI) and (V2 ) , where

\7xV(-t, -x) == -\7xV(t,x) Vt,x

(i. e., \7x V is an odd function of t, x). Then, the closed subspace of the odd

functions in X,

M == {x E X I x(-t) == -x(t) Vt}

is a natural constraint for ip,

Proof: Let Xo E M be a critical point of cplM, that is,

('V<p(xo) , z) = 1\£0 0 i - 'Vx V(t, xo) . z] dt = 0 \:jz EM.

Since we can decompose X == M EB M 1.., where M 1.. is the subspace of the

even functions in X, in order to show that Xo E M is a critical point of ip, it

suffices to verify that

But this is true since (V2 ) and the fact that Xo is an odd function imply that

the above integrand is an odd (T-periodic) function. D

Lemma 3.3. (Wirtinger Inequality) If x E X and JOT x dt == 0, then
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Proof: It is a consequence of the Parseval identity applied to the functions

x and ±, by noticing that the constant term in the Fourier expansion of the

function x E X is zero, since x has zero-mean value. D

Remark 3.2. Note that Wirtinger inequality is the analogue in the periodic

situation of the Poincare inequality.

Theorem 3.4. ([76j)Assume conditions (VI) - (V3 ) , where

There exist constants 0 :S a < 4:;22 and b 2:: 0 such that

Then, Problem (3.1) has a classical, odd solution, which minimizes the func-

tional cp over M == {x E X I x is odd}. If, in addition, V satisfies

then (3.1) has a unique (classical, odd) solution.

Proof: Since M is a natural constraint by Lemma 3.2, it suffices to find a

critical point of .p1M.
If x E M, we have JOT xdt == 0, so that Wirtinger's inequality (Lemma 3.3)

implies the following lower estimate for ep, where (1 - ~~:) > 0:

<p(x) 2: ~ rT

Ixl 2 dt - ~ rT

Ixl2 dt - bT
2 io 2 io
1 aT

2iT2:: -(1 - -2) 1±1 2 dt - bT \Ix E M.
2 4n a

Therefore, ep is coercive on M. Since ep is weakly l.s.c. (being the sum of a

continuous convex functional and a weakly continuous functional), Theorem

1.1 implies the existence of Xo E M such that cp(xo) == inf M ip,

Clearly Xo E M is a critical point of cplM, hence a critical point of cp (since

M is a natural constraint) and a classical solution of (3.1) by Lemma 3.1.

Finally, if (V4 ) is valid, then using the Wirtinger inequality yields

(vrcp(x) - vrcp(x) , x -x)

=iT (Ix - 5;1 2
- [\7x V(t, x) - \7x V(t, x)] . [x - xl) dt

rT
. 47r2

> io (Ix - xl 2
- T2 Ix - x1 2

) dt 2: 0
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for any x, x E M, x i=- x, so that we have uniqueness of the solution in this

case. D

Application B. Consider the following Neumann problem

{
-~u == f(u) in Sl

au == 0 on 8Slan '
(3.4)

where Sl c IR N (N ~ 1) is a bounded smooth domain and f : IR ---t IR is

0 1
, strictly increasing, such that f (0) == 0 and the limits f ± == lims---+±oo f' (s )

exist and satisfy

(3.5)

where Al is the first positive eigenvalue of the problem -~u AU in Sl,

~~ == 0 on 8Sl.
It is clear that (3.4) has the trivial solution u(x) == O. Here, using the

ideas in [45, 16], we will show that (3.4) possesses a nontrivial solution which

can be found by minimizing the functional

cp(u) = r [~I\7uI2 - F(u)] dx, where F(s) = J; f as usual, (3.6)in 2

over a suitable submanifold M of HI (Sl) which is a natural constraint for ip,

Such a solution, which is of a saddle-point type for the above functional, can

be found by other methods, e.g., Amann's reduction method [4] or, since F is

convex, by the duality method of Clarke and Ekeland [26] (we will treat this

latter method in the next chapter).

Consider the subset M of X == H 1 (fl ) defined by

M = {u E X I Lf(u) dx = 0 } .

Lemma 3.5. Under condition (3.5) one has

(i) M c X is a 0 1 submanifold of codimension 1;

(ii) u E X is a critical point of ip if and only if u E M and u is a critical

point of cplM.

Proof: (i) In view of (3.5) and the fact that f is strictly increasing, we have

o < f' (s) < 0 for all s E IR and some constant 0 > o. Therefore, the

functional

'l/J(u) = Lf(u) dx
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is of class CIon X with Frechet derivative 1jJ' : X ----+ X* given by

'ljJ'(u) . h = kf'(u)h dx Vh E X,

and satisfying 1jJ' (u) i- 0 for all u EX.

(ii) If u E X is a critical point of ip, then

<p'(u)·h= k[\lu.\lh-f(U)h] dx=O VhEX,

so that, by choosing h == 1 E X, we get In j(u)dx == 0, i.e., u E M, and thus

u is a critical point of cpIM. Conversely, if u E M is critical point of cpIM,
then by Theorem 2.1, there exists A E IR such that

ir: \lh - f(u)h] dx = >-'k f'(u)h dx Vh E X.

Therefore, by choosing h == 1 again and using the fact that In j(u)dx == 0, we

obtain A == 0 (since j is strictly increasing). This shows that u is a critical

point of ip, D

Remark 3.3. The previous lemma not only shows that M is a natural con-

straint for cp but, in fact, shows that M contains all critical points of cp (i.e.,

M is a natural constraint according to [15, Section 6.3BJ.

Next, similarly to what we did in Section 3.3, we decompose the Sobolev

space X == Hl(r!) as

X==XOEBX l , (3.7)

where Xl == JR. == span {I} is the (one-dimensional) space of the constant

functions on 0, and X o == (span {1})-1 == {v E X I In v dx == 0 } is the space

of functions in HI (0,) having mean value equal to zero. Also, we recall that

the following Poincare inequality holds for a function in X o:

(3.8)

Lemma 3.6. Under Condition (3.5), and writing u E M as u == v +C, where

v E X o, C E Xl == JR., one has

(i) InF(v+c)dx~InF(v)dx VV+CEM;

(ii) Ilvnll -t (X) as Ilvn + cnll -t 00, V n + Cn E M.
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Proof: (i) The convexity of F implies the inequality

F(s) - F(8) 2: f(8)(s - 8) VS,8 E JR.

Letting s == v(x), 8 == v(x) + c and integrating over 0 gives

kF(v) dX-kF(v+c) dX'2k f(v+c)(-c) dx=O,

since v + c EM.

(ii) Define the function 9 : X o x JR~ JR by the formula

g(v, c) = kf(v + c) dx .

(In other words, g(v, c) == 7jJ(v + c) in the notation of Lemma 3.5 (i) and

g(v, c) == 0 if and only if v+c EM.) Then, for each v E X o fixed, the function

9 (v, .) is strictly increasing since f is also. In fact, since a < f' (s) < b for all

s E JR (and some 0 < a < b), it is not hard to see that, for each v E X o, there

exists a unique c == c(v) E JR such that v + c EM.

Now, assume by contradiction that there exists a sequence V n + Cn E M

with Ilvn + Cn II ~ 00 and Ilvn II bounded. Then, we may assume that there

exists v E X o such that Vn ~ v weakly in X, Vn ~ v strongly in £1(0) and

ICnl ~ 00, say c., ~ 00. By picking a > c(v) and an integer no such that

g(v, cn) 2: g(v, a) for all n 2: no, we obtain

°< g(v, a) <g(v, cn) = k[f(v + cn) - f(vn + cn)] dx ::; bk 1v - vnl dx ,

which is absurd since the last integral approaches zero. 0

Theorem 3.7. Under Condition (3.5), Problem (3.4) possesses a nontrivial

weak solution Uo E HI (0) minimizing the functional <.p over the manifold

M == {u E H 1(0) I In f(u)dx == 0 }.

Proof: We can use Theorem 1.1 by noticing that M is weakly closed since

the functional 7jJ : H1(0) ~ JR, 7jJ(u) == In f(u)dx, is weakly continuous.

Also, the functional

is weakly l.s.c., since it is the sum of a continuous, convex functional and

a weakly continuous functional (Recall Examples Band C in Section 2.1).

Therefore, it remains to prove that cp is coercive on M.
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For that, we first observe that (3.5) implies the existence of constants

o< (3 < Al and, E IR such that

1
F(s) < 2/3s2 + 'Y "Is E R

Then, using Lemma 3.6 above we obtain, for v + e E M,

and, thus, in view of the Poincare inequality (3.8),

(3.9)

(3.10)cp(v + c) 2: ~(1 - ~) rlV'vl 2 dx - 'Ylnl ,
2 /\1 in

where (1 - f
1

) > O. Now, if Ilv + ell ---+ 00, v + eE M, then Lemma 3.6

(ii) implies that "vii ---+ 00 or, equivalently (by Poincare's inequality), that

In l\7vl 2 dx ---+ 00. But, then, (3.10) shows that 4?(v+ e) ---+ 00, so that 4? is

coercive on M.

In view of Theorem 1.1 there exists Uo E M such that 4?(uo) == inf M 4? In

order to show that Uo =1= 0, it suffices to find u E M such that 4?(u) < 0 == 4?(0).

For that, we use the other half of Condition (3.5), namely Al < j'(O), to

conclude the existence of constants J-L > Al and p > 0 such that

1 .
F (s) 2: 2 JLS2 If 1s1< p. (3.11)

Then, by choosing u == EVI + e == v+ e E M where VI is a AI-eigenfunction

and E> 0 and e> 0 are sufficiently small so that IluIILOO(n) :S p, we use (3.11)

to obtain

where we recall that In vdx == 0 since v E X o·

Application C. Next, we consider the following periodic problem

D
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{
u+ k(t)eU == h(t)

(3.12)
u(O) == u(21r) , u(O) == u(21r) ,

where h, k : 1R -----+ 1R are continuous, 21r-periodic functions, with/

(21r
i

o
h(t) dt = 0 . (3.13)

This situation is the J-dirnensional analogue (which we chose for simplicity)

of the problem of finding conformally equivalent Riemannian structures on

compact manifolds with prescribed Gauss curvature (see [15, Sections 1.lA

and 6.4B]). The problem here is to find necessary and sufficient conditions on

the periodic function k(t) for problem (3.12) to have a solution.

In what follows, we denote by X the Sobolev space X == ui; == {u : 1R -----+

1R I uis absolutely continuous, 21r - periodic and Jo21r u2 dt < oo} with its

natural inner product (., .), and consider the quadratic functional

1
21r 1

~(u) == [-u 2 + hu] dt ,
o 2

which, as easily seen, is of class Coo on X, with derivative

(21r
rp'(u) . V = io [ui! + hv] dt 'Vv EX.

In fact, we observe that the critical points of ip are the solutions of the linear

problem

{
u == h(t)
u(O) == u(21r) , u(O) == u(21r) ,

which are given by the formula

u(t) = (;t 121r

sh(s) dS) t+I t

(t - S)h(s) ds+c=uo(t)+c

(3.14)

(3.15)

(3.16)

where c E 1R is an arbitrary constant. Let us consider the following condition

on the function k,

121r

k(t)euo(t) dt < 0 ,

where uo(t) is defined in (3.15), and let us define the following subset M C X:

{21r {21r
M = {u E X I io kc" dt = 0, i

o
u dt = 0 } .

2 Note the necessity of condition (3.13) for the solvability of (3.12) when k(t) == o.
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Lemma 3.8. Assume conditions (3.13) and (3.16). Then

(i) M c X is a C l submanifold of codimension 2;

(ii) Any critical point of <pIM is (up to a constant) a solution of Problem

(3.12) .

Proof: (i) It is not hard to see (cf. Exercise 6) that M i= 0 and that the

functionals ~l, ~2 : X ----+ lR defined by

r27r

'lh(u) = Jo ke" dt , r27r

't/J2 (u) = J0 u dt ,

are of class C l (in fact, COO). Moreover, ~~ (u) and ~~ (u) are linearly inde-

pendent for any u E M. Indeed, if

[a't/J~(u) + ,B't/J~(u)] . v = a 121r
ke":» dt +,B121r

v dt = 0 Vv EX,

we obtain (3 == 0 (by choosing v == 1) and, then, also a == 0 (by choosing

v == eU O
-

U and using (3.16)). Therefore, M c X is a C l submanifold of

codimension 2.

(ii) Let u E M be a critical point of <pIM. Then, there exist AI, A2 E lR such

that

1
21r

[uv + hv] dt = A1 1
21r

keuv dt + A2121r v dt = a Vv EX,

which implies that u E X is a weak solution, hence a classical solution of the

problem -it + h == Alkeu + A2' u(O) == u(21r), u(O) == u(21r). By integrating

this last equation over [0,21r] and using (3.13) together with the fact that

Jo27r
ke" dt == 0 (as u EM), we obtain A2 == O. It necessarily follows that

Al i= 0 since, otherwise, u would be a solution of (3.14), that is, of the form

u == Uo + C, but, on the other hand, the fact that Jo
27r

ke" dt == 0 (as U E M)
contradicts (3.16). We have shown that a critical point u E M of <pIM is a

solution of the problem

-u + h == Alkeu
, u(O) == u(21r) , u(O) == u(21r) , (3.17)

where Al i= o. If we prove that Al > 0, then, by letting eC == Al and defining

U == u + C, we can verify that

:.: ke" .. 'k u hu + e == u + 1\1 e == , u(O) == u(21r) , ~(O) == ~(21r) .

In other words, U == u + C is a solution of Problem (3.12) as we wanted to

show. Finally, in order to prove that Al > 0, we write u == Uo + w in (3.17),
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multiply the resulting equation by « " and integrate over [0,27r] to obtain

(since UQ is a solution of (3.14)) that

Thus, (3.16) implies that Al > 0. D

Remark 3.4. The previous lemma shows that the manifold M is kind of a

natural constraint for the functional rp.

Theorem 3.9. Suppose that (3.13) holds true and k(t) i- 0. Then, Problem

(3.12) has a solutions if and only if k(t) changes sign and (3.16) is satisfied.

Proof: (i) If U is a solution of problem (3.12), then by integrating the cor-

responding equation over [0,27r], we obtain Jo
27r

ke" dt == 0, so that k(t) must

change sign. Moreover, writing U == Uo + W, multiplying the resulting equation

by e-W and integrating over [0,27r], we obtain (again, recalling that ito == h)

and, since w t- constant (as k(t) i- 0), we conclude that (3.16) is necessarily

satisfied.

(ii) Conversely, suppose that (3.16) is satisfied. Then, in view of Lemma 3.8,

in order to show that Problem (3.12) has a solution, it suffices to find a critical

point of <pIM. For that, we observe that the functional <p is coercive on M

since M c X o == {u E X I Jo
27r

u dt == O} and the Wirtinger inequality holds

true in X o (cf. Lemma 3.3). Indeed, we have

as Ilull ~ 00, u E X o.

Therefore, since .p is weakly l.s.c. and M is weakly closed in X, Theorem

1.1 shows the existence of Uo E M such that .p(uo) == inf M <p, so that Uo E M

is a critical point of <p 1M. D
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4 Exercises

1. Let <.p E CI(X,lR), where X is a Hilbert space, and let V be a closed

subspace of X. Suppose that UQ E V is a critical point of the constrained

functional <.pIV. If V is invariant under \J<.p (i.e., \J<.p(V) c V), verify

that UQ is a critical point of the unconstrained functional ip, (This result

is related to the principle of symmetric criticality of Palais [61], where

the set Fix (G) of fixed elements of X under the action of a group G (see

Chapter 8) is one such invariant subspace V.)
2. Show that <.p E CI(X, lR), where <.p is a functional satisfying (VI) as defined

in Lemma 3.1

3. Suppose x : [0, 1] ----t lRn is an absolutely continuous function, that is,

an antiderivative of an LI-function v : [0,1] ----t lRn . If, in addition, one

assumes that v E L2([0,1],lRn ) (i.e., v E HI([O, l],lRn ) ) , show that the

embedding HI([O, l],lRn ) c C([O, 1],lRn ) is compact. Use this fact to fill

in the details of Remark 3.1.

4. Consider the following nonlinear Dirichlet problem

{
-b.u = f(u) in n (P)

U == ° on ao ,

where 0 c ffi.N (N ~ 1) is a bounded domain and f ffi. ----t ffi. is a

CI-function satisfying the subcritical growth condition

11/(8)1 :S C181 p
-

2 + d ,

for some c, d > 0 and 2 :S p < 2N/(N - 2) if N ~ 3 (2 :S p < CX) if

N == 1,2). Let X == HJ(O) and <.p : X ----t lR be the functional associated

with problem (P). If, in addition, the function 1 satisfies the condition

1'(8) > f(8) V 8 =F 0,
8

show that the set M == {u E X\{O} I fn[l\JuI 2
- f(u)u] dx == O} c X is

a C1-submanifold of codimension 1, which is a natural constraint for <.p.
5. Provide the details in the proof of Lemma 3.3 and verify that the constant

in the Wirtinger inequality is sharp.

6. Verify that M =I- 0in Lemma 3.8 and that the functionals 1/;1, 1/;2 considered

in that lemma are of class C(X).
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A Duality Principle

1 Convex Functions. The Legendre-Fenchel Transform

A function F : IRn ------+ IR is said to be convex if, for any u, v E IRn and

A E [0,1], one has

F((l - A)U + AV) ~ (1 - A)F(u) + AF(v) .

The function F is called strictly convex if one has strict inequality when U i- v

and A i- 0,1. It is easy to verify that if F E 0 1(JR.n, JR.), then F is convex if

and only if the gradient of F, \7F : JR.n ------+ JR.n, is a monotone mapping, that

is,

(\7F(u) - \7F(v),u - v) ~ ° Vu,v E IRn ,

where we are denoting by (.,.) the usual inner product in JR.n. Moreover,

F E 0 1(JR.n, JR.) is strictly convex if and only if \7F is strictly monotone (i.e.,

the above inequality is strict whenever u -# v).

Proposition 1.1. Let F E 0 1(JR.n, JR.) be convex and such that \7F : JR.n ------+

JR.n is 1 - 1 and onto. Then, for each v E JR.n, the function u f---+ (v, u) - F(u)

is bounded from above and the formula

G(v) == sup[(u, v) - F(u)]
u

(1.1)

defines a function G : JR.n ------+ JR. such that G E 0 1(JR.n, JR.) and \7G == (\7F)-I.

Remark 1.1. G :== F* is called the Legendre-Fenchel transform of F. The

assumptions in the above Proposition 1.1 are satisfied when, for example,

F E 01(JR.n,JR.) is strictly convex and F(u)/Iul -+ 00 as lui -+ 00. Indeed,

since F is strictly convex, \7F is clearly 1 - 1. On the other hand, for each
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fixed v E JRn, the function u r--+ F (u)- (v,u) is coercive in view of the coercivity

of F(u)/Iul. Therefore, the function u r--+ F(u) - (v,u) is bounded from below

and there exists u E JRn such that F(u) - (v,u) == infu[F(u) - (v,u)]. Since

F E C 1 (JRn, JR), we necessarily have \7F(u) -v == 0, that is, \7F(u) == v.
Thus, \7F is also onto JRn.

Proof of Proposition 1.1: First, since F is of class C 1 and convex, we observe

that

F(w) 2:: F(u) + (\7F(u),w - u)

for any u, w E JRn. Indeed, the convexity of F implies that

1
~[F(u + ,x(w - u)) - F(u)] ~ F(w) - F(u)

(1.2)

for ,X E [0,1]' so that, passing to the limit as ,X ---+ °yields (1.2).

Now, if for any given v E JRn we define u :== (\7F)-1(V) and use (1.2), we

obtain

(v,w) - F(w) ~ (v,u) - F(u) Vw E JRn.

Therefore, the function w r--+ (v,w) - F(w) is bounded from above and its

supremum is attained when w == u == (\7F) -1 (v), that is,

G(v) == sup[(v,w) - F(w)] = (v, (~F)-l(v)) - F((~F)-l(V)) . (1.3)
w

In particular, one obtains the so-called Fenchel inequality,

(v,w) ~ F(w) + G(v) Vv, w E IRn. (1.4)

In order to show that G E C 1 (IRn , IR) with ~G == (\7F) -1, we fix Vo E IRn and

write Uo == (\7F)-l(VO), Uh == (\7F)-1(vO + h) to obtain, from (1.3),

Hence

(1.5)

in view of (1.2). On the other hand, using (1.4) with v == Vo + h, w == Uo gives

G(vo + h) - G(vo) 2:: (vo + h,uo) - F(uo) - G(vo) ,

hence
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G(Va + h) - G(va) 2: (h,ua) , (1.6)

since G(va) == (va, ua) - F(ua). Combining (1.5) and (1.6) we obtain

o::; G(va + h) - G(va) - (h,ua) ::; (h,Uh - ua) ,

which implies G(va+ h) - G(va) - (h,ua) == o(h) as Ihl ~ 0, since Uh - Ua ==
(\7F)-l(va + h) - (\7F)-l(va) and (\7F)-l : JRn ------t JRn is continuous by

the theorem on domain invariance (cf. [15, Theorem 5.4.11]. We have shown

that there exists \7G(va) and that \7G(va) == Ua == (\7F) -1 (va). Moreover,

\7G == (\7F) -1 is continuous, hence G E 0 1 (JRn , JR). D

Typical Example. If F(u) == 1.11u1P , with p > 1, then G(v) == 1.1v1Q, where
P Q

q == p~l is the conjugate exponent of p. In particular, F* == F if F(u) == ~ lul 2
.

Proposition 1.2. Let F1 , F2 E 0 1 (JRn, JR) be convex functions such that

\7F1 , \7F2 : JRn ------t IRn are 1 - 1 and onto. If F1 ::; F2 , then F{ 2: F;;'.

In addition, if there exist constants {3 > 0 and J E JR such that

then

1 IvI 2

F*(v»---J VvEJRn.
- {3 2

(1.7)

(1.8)

(Similarly, the above implications also hold with the inequalities ::; and 2:
exchanged. )

Proof: It is immediate from (1.1) that F1 ::; F2 implies G1 2: G2 . Also, note

that FJ(v) == 2~lv12 if F{3(u) == ~luI2, so that we obtain (1.8) from (1.7). 0

Remark 1.2. Let F E 0 1 (JRn, JR) be strictly convex and satisfy

Ct lul
2

_ 15 < F(u) < {3lul 2
+ 15 Vu E IRn

2 - - 2 ' (1.9)

where 0 < a ::; (3 and J E JR. Then, F(u)/ lui ~ 00 as lui --7 00 and F* is well

defined by Remark 1.1. Moreover, Proposition 1.2 and (1.9) above imply that
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2 A Variational Formulation for a Class of Problems

Let L : D(L) c X ~ X be a selfadjoint operator on the Hilbert space

X == L2(O;IRn), where 0 c IRN is a bounded domain. Also, let F E C1(IRn,IR)

be a function satisfying the condition

IV'F(u)1 ::; alul + b 'Vu E IRn ,

with a, b 2: 0, so that the Nemytskii operator V'F : X ~ X is well defined

and continuous. Then, the problem

Lu + V'F (u) == 0 , u E D(L) ,

has the following variational formulation:

Find the critical points of the functional

cp(u) = ~(Lu, u)x + rF(u) dx, u E D(L) .
2 in

(P)

(¢)

Here, in view of the closed graph theorem, we are considering D(L) == Z as

a Hilbert space when endowed with the graph inner product, (Ul, U2) Z ==
(Ul,U2)X + (LUI, LU2)X, 'VUl, U2 E Z. In fact, we have the following

Proposition 2.1. The functional VJ : Z ~ lR given by (¢) is of class C 1 and

VJ/(u) . h == (Lu + V'F(u), h)x 'Vu, h E Z . (2.1)

In particular, u E D( L) == Z is a solution of (P) if and only if u is a critical

point of VJ·

Proof: Let u, h E Z. Then

8(u; h) == 'P(u+ h) - 'P(u) - (Lu + V'F(u), h)x

= (Lu, h)x + ~(Lh, h)x +~ F(u + h) dx

- ~ F(u) dx - (Lu + \IF(u) ,h)x ,

that is,

8(u;h) = r F(u + h) dx - r F(u) dx - (\IF(u), h)x + ~(Lh, h)xin in 2
1

== '"'((u; h) + 2(Lh, h)x ,
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where Iry(u; h)I/IIhllx ---+ 0 as IIhll x ---+ 0, since, as we know, the functional e :
u ~ In F(u)dx is of class CIon X with 1/;' (u) . h == CvF(u), liix . Therefore,

since Ilhll z 2: Ilhllx Vh E Z, we obtain, a fortiori that Ir(u; h)I/llhll z ---+ 0 as

Ilhllz ---+ O. Also, it is clear that I(Lh, h)xl/llhllz ---+ 0 as Ilhllz ---+ 0, h E Z,

since I(Lh, h)xl < IILhllxllhllx < Ilhll~· Therefore,

Ib(u; h)I/llhll z ---+ 0

as IIhll z ---+ 0, h E Z, which shows that the Frechet derivative ip' exists and is

given by (2.1). Moreover, formula (2.1) gives the continuity of the mapping

Z :3 u ~ rp'(u) E Z*. Indeed, we have

IIrp'(u + v) - rp'(u)lIz* ~ sup IILv + \IF(u + v) - \IF(u) IIx IIhll x
Ilhllz~;)

< II Lv II x + IIvF (u + v) - vF (u) II x ---+ 0

as llvllz ---+ 0, v E Z (again, we use the continuity of X :3 u ~ 1/;'(u) E X*).D

3 A Dual Variational Formulation

In this section we introduce a variational formulation which is dual to that

considered in the previous section, and which constitutes a variant of the

duality principle due to Clarke and Ekeland for Hamiltonian systems (cf. [26]).

Our presentation will follow the work [17] of Brezis (see also [30]).

As before, L : D(L) c X ~ X is a selfadjoint operator on the Hilbert

space X == L2([2;IRn), [2 c IRN a bounded domain, and F : ~n ~ ~ is a

function of class C 1 . In addition, we now assume that

The range R(L ) of L is closed;

F is convex with \lF : IRn ~ IR 1 - 1 and onto (for example, F strictly

convex and such that F(u)/Iul ---+ 00 as lui ---+ 00, cf. Remark 1.1). (F1 )

In this case, since L is selfadjoint, assumption (L1 ) implies that we can

decompose the space X as

X == N(L) EB R(L) ,

where N(L) is the null space of L, R(L) is the range of L, and the restriction

LIR(L) : D(L) n R(L) ~ R(L) has a bounded inverse K == L -1 : R(L) ~
R(L). Moreover, in view of Proposition 1.1, assumption (F1 ) implies that the
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Legendre-Fenchel transform of F, G == F* : IRn -----+ IR, is well defined and

\lG == (\IF)-I.

Now, by making the change of variable v == \IF(u) in (P), that is, u ==
\lG(v), we obtain the equivalent problem

L(\lG(v)) + v == 0, v E R(L),

or, by applying K == L -1,

Kv + \lG(v) E N(L) , v E R(L). (P*)

(¢*)

The above problem (P*) is dual to problem (P) and, similarly to problem

(P), it has a variational formulation:

Find the critical points of the functional 'ljJ == ip" given by

'IjJ(v) = ~(Kv, v)x + ( G(v) dx , v E R(L)
2 in

(which we call the dual action of Clarke-Ekeland). In fact, in order to show

that 'ljJ is well defined, we will use the following proposition, where F : IRn
-----+

IR is assumed to satisfy a stronger condition than (F1 ) .

Proposition 3.1. Assume conditions (L 1 ) and (F2 ) , where

FECI (IRn, IR) is strictly convex and there exist constants 0 < a :::; (3,
fJ E IR, such that

0: lul
2

_ 8 < F(u) < (3lul 2
+8 Vu E jRn .

2 - - 2

Then, the functional 'ljJ : R( L) -----+ IR given by (¢*) is well defined and of class

C 1 with

'ljJ'(v) . k == (Kv + \lG(v), k)x \Iv, k E R(L).

In particular, v E R( L) is a solution of (P*) if and only if v is a critical point

of'ljJ·

Proof: In view of (F2 ) and Remark 1.2, the dual action of Clarke-Ekeland,

G == F*, is well defined and satisfies

(3.1)

In particular, the second inequality above shows that the dual action 'ljJ given

by formula (¢*) is well defined. Also, we have that G E C1 (IRn , IR) and G is
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strictly convex (i.e., V'G is strictly monotone), since FECI (lRn , lR) is strictly

convex, and V'G == (V'F)-l. Therefore, since G satisfies (3.1), we obtain from

Remark 1.1 that G* is well defined. Moreover, given u E lRn , we have

G*(u) == sup[(u, z) - G(z)] == (u, (V'G)-l(u)) - G((V'G)-l(u)) ,
z

or

G* (u) == (u,v) - G (v) , (3.2)

where v == (V'G)-l(u), i.e., u == V'G(v) == (V'F)-l(v). Comparing (3.2) with

(1.3) we conclude that G*(u) == F(u). Hence, using the first inequality in (F2 )

with u == V'G (v), it follows that

a 1~12 _ 8 ~ F(u) = G*(u) = (u,v) ~ G(v) ,

so that (since G(v) ~ -6 from (3.1))

which shows that IV'G(v)1 has linear growth in Ivl:

IV'G(v)1 ~ clvl + d . (3.3)

Finally, in view of (3.3), it is easy to check that the dual action 1jJ given in

(¢*) is of class CIon the closed subspace R(L) C X == L 2(0; JRn) and

'Ij;'(v) . k = .L [(Kv, k) + (\7G(v), k)] dx

==(Kv+V'G(v),k)x Vv,kER(L).

In particular, v E R(L) is such that 1jJ' (v) == 0 E R(L )* if and only if K v +
V'G(v) E R(L)1- == N(L), that is, if and only if v is a solution of (P*).

Remark 3.1. Note that, for v E R(L), the gradient V'1jJ(v) is given by

V'1jJ(v) == Kv + QV'G(v), where Q : X ---+ R(L) is the orthogonal projec-

tion of X onto R(L).

Remark 3.2. As we have seen above, if we assume (L1 ) and (F2 ) , then prob-

lem (P), whose variational formulation (cf. Proposition 2.1) is given by

V'P(u) == 0, u E D(L), (VF)
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is equivalent to the dual problem (P*), whose variational formulation (cf.

Proposition 3.1) is given by

V''ljJ(v) == 0, v E R(L) (VF*)

(where we recall that the dual action 'ljJ == ip" is defined in (¢*)). More

precisely, we have seen that if u E D(L) is a critical point of rp (i.e., u E D(L)

is a solution of (P)), then v == - Lu E R( L) is a critical point of 'ljJ (i.e.,

v E R( L) is a solution of (P*)). And, conversely, if v E R( L) is a critical

point of 'ljJ, then u == V'G(v) E D(L) is a critical point of rp (indeed, from

Kv + V'G(v) == w E N(L) we obtain L(Kv + V'G(v)) == 0, that is, v + Lu == 0

with u == V'G(v) == (V'F)-1 (v)).

We point out that working with the dual action 'ljJ instead of rp can be use-

ful in situations in which the functional .p is indefinite (because the quadratic

term ~(Lu,u)x neither dominates nor is dominated by the term In F(u)dx),

whereas 'ljJ becomes a coercive functional (because the term In G(v )dx domi-

nates the quadratic term ~ (Kv,v)x ). We shall see examples of such situations

in the following section.

4 Applications

In this section we first present a result due to Coron [28] on the existence of

a nontrivial solution for the problem

Lu + V'F (u) == 0, u E D (L) eX, (P)

where, as before, X == L 2(0; }Rn) and L : D(L) c X ~ X is a selfadjoint

operator. Now, we assume that the essential spectrum of L is empty, that

is, a(L) == {Aj I j E Z (or N)}, where each Aj is an isolated eigenvalue of

finite multiplicity, and that FECI (}Rn , }R) is strictly convex and satisfies

F(O) == V'F(O) == o. Clearly, in this case u == 0 is a solution of (P) and, in

fact, is the unique solution if L is a monotone operator. Therefore, we will

assume that a(L) n (-00,0) i= 0 and denote the first negative eigenvalue of L

by A-I.

Theorem 4.1. ([28}) In addition to the above conditions, if F and L satisfy

al~2 -8::;F(U)::;,81~2 +8 'v'uEJRn,withO<a::;,8<-A_l,8EJR,

(F3 )
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. . 2F(u)
lim inf -1-12- > -A-1 , (F4 )

u---+O u

N(L - A-1) c LOO(O; IRn) , where N(L - A-1) is the A-1-eigenspace

of L , (L2 )

then problem (P) has a nontrivial solution.

Here we will present a proof that uses the dual action 'ljJ of Clarke and

Ekeland and which shows that one such nontrivial solution can be found by

minimization of'ljJ over R(L), cf. [30].

Lemma 4.2. If L : D(L) C X ~ X is a selfadjoint operator on X ==

L2 (0; IRn) having an empty essential spectrum and F E C1 (IRn, IR) is a strictly

convex function satisfying (F3 ) , then the dual action 'ljJ : R(L) ~ IR is coer-

cive.

Proof: In view of the assumption on L, the range R(L) is closed and the

restriction LID(L)nR(L) ~ R(L) possesses a compact inverse K: R(L) ~
R(L). Moreover, through an eigenfunction expansion argument, K satisfies

the estimate from below

1
(Kv, v)x ::0: A-I Ilvll~ \:Iv E R(L). (4.1)

On the other hand, (F3 ) implies that G == F* is well defined, satisfies (cf.

(3.1))
1 Ivl 2 1 Ivl 2

- - - 6 < G(v) < - - + 6 \:Iv E R(L)
j3 2 - -0; 2 '

and, in view of Proposition 3.1, the dual action 'ljJ : R(L) ~ lR, given by

7jJ(v) = ~(Kv,v)x + r G(v) dx
2 in

is well defined and of class C 1
. Now, from (4.1) and (3.1) (recalled above),

we obtain

7jJ(v) ::0: ~ (A~1 + ~}lvll~ - 8101 \:Iv E R(L) .

Therefore, since 0 < {3 < - A-1' the dual action 'ljJ is coercive. D

Lemma 4.3. Assume that the selfadjoint operator L is as in the previous

lemma and satisfies the condition (L 2 ) . In addition, assume that F E

C1 (IRn, IR) is strictly convex, F(O) == \7F(O) == 0, and the conditions (F3 ) ,

(F4 ) are satisfied.1 Then, there exists p > 0 such that

1 For this lemma we do not need that f3 satisfy f3 < - A-I in (F3 ) .
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?jJ(v) < 0 for v E ~p :== {v E N(L - A-I) I Ilvllx == p} .

Proof: Condition (F4 ) implies the existence of E > 0 and A* > -A-I such

that F(u) 2: A* lul 2 /2 for lui::; E. On the other hand, there exists p' > 0 such

that I\7G(v) I ::; E for Ivl ::; p'. Therefore, since G(v) == (u, v) - F(u) with

u == \7G(v), we obtain, for Ivl ::; p', that

Now, since we clearly have that

1 2
(Kv, v)x = A-I Ilvllx

for all v E N(L - A-I), it follows from the previous estimate that

1 1 1 2
?jJ(v) ::; -(- + - )llvllx < 0

2 A-I A*

for all v E N(L - A-I) with 0 < IlvllLoo ::; p'. The proof is complete in view

of the assumption (L2 ) and the fact that N(L - A-I) is finite dimensional.D

Proof of Theorem 4.1: In view of Proposition 3.1 and Remark 3.2, it suffices

to find a critical point Va =I- 0 of the dual action ?jJ E C I (R(L), IR). Since?jJ is

coercive by Lemma 4.2 and weakly l.s.c. (cf. Examples A and C in Chapter

2), it follows that ?jJ (vo) == inf R( L) ?jJ for some Va E R( L ). Therefore, Va is a

critical point of ?jJ and, since ?jJ(va) < 0 by Lemma 4.3, we have that Va =I- O.

D

Next, we apply Theorem 4.1 to the problem of existence of aT-periodic

solution for the classical second-order Hamiltonian system

x+ \7V (x) == 0 , (HS)

where x(t) E IRn and V E C I (IRn, IR) is a strictly convex function satisfying

V(O) == \7V(O) == 0 and

. 2V(x) 47[2 .. 2V(x)
hmsup -1-12- < T2 < lim inf -1-12- .
Ixl-+oo x Ixl-+a x

(Compare with Theorem 6.3.4.) In this case one can show that, in fact, the

above system possesses a periodic solution with minimal period T.
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Theorem 4.4. {[26}} Under the above conditions, the (H S) has a periodic

solution with minimal period T, for each T > o.

Proof: Let X == L2 (0,T; ]Rn) and L : D(L) c X ---+ X be defined by

Lx==x VXED(L) ,

D(L) == {x E X Ix, x abs. continuous, x(O) == x(T), x(O) == x(T) and x EX}.
4 2·2

Then L is selfadjoint, a(L) == {- ";1 I j == 0,1,2, ... } and each A_j ==

-41f2j2 /T2 is an eigenvalue of L having finite multiplicity. The eigenfunc-

tions corresponding to A_j are given by

where 0 =I- e E ]Rn, so that condition (L2 ) is satisfied. Also, assumption (VI)
implies (F3 ) and (F4 ) . Therefore, in view of Theorem 4.1, the Hamiltonian

system (HS) possesses a nontrivial T-periodic solution Xo such that Vo ==

- Lxi, =I- 0 minimizes the dual action 1/; over R(L).
It remains to show that Vo has minimal period T. Assume, by negation,

that Vo has period !i;, where m 2: 2. If we define vo(t) == vo(t/m), we readily

obtain that Vo E R(L) (i.e., JoT vodt == 0) and

2 iT1/;(vo) == ~ (K vo,vo)x + G(vo) dt
2 0

m 2 -1
== 1/;(vo) + -2-(Kvo,vo)x ,

so that 1/; (vo) < 'l/J (vo), since m 2:: 2 and K is negative definite on R( L ). This

contradicts the fact that Vo minimizes ib. Therefore, Vo indeed has minimal

period T. D
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Critical Points under Symmetries

1 Introduction

As we have mentioned briefly in Section 4.1, the central idea behind the the

so-called Lusternik-Schnirelman theory is to obtain critical values of a given

functional c.p E C1 (X, lR) as minimax (or maximin) values of c.p over suitable

classes Ak of subsets of X,

Ck == inf sup c.p(x) , k == 1,2, ... ,
AEAkxEA

where, originally, the classes Ak were based on the topological notion of cat-

egory of Lusternik-Schnirelman.

When the problem presents symmetries, that is, when there exists some

group G acting in a continuous manner on the space X and the functional

.p is invariant under that action, then it usually happens that cp possesses

many critical points. The typical example of such a multiplicity situation is

a classical theorem of Lusternik, which guarantees the existence of at least

(n+1) distinct pairs of critical points for any functional .p E C1 (sn , lR) that is

even ([53]). Moreover, when in presence of symmetries, it is possible to choose

the classes A k by using topological notions which are more manageable than

the category.

In this section we will be considering this question of multiplicity versus

symmetry. Our presentation will follow the work [55] of Mawhin-Willem, and

we will start by introducing the notion of a G-index theory. The most well-

known examples of such theories refer to the cases where G == Z2 or G == s',
In the first case, we have the notion of genus due to Krasnoselskii [47] (also see

Coffman [27]). In the second case, we have the cohomological index of Fadell-

Rabinowitz [41] (see also Fadell-Husseini-Rabinowitz [42]) and the geometric

index of Benci [10].
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2 The Lusternik-Schnirelman Theory

Let X be a Banach space and let G be a compact topological group. Assume

that {T(g) I 9 E G} is an isometric representation of G on X, that is, for each

9 E G, T(g) : X ----+ X is an isometry and the following properties hold:

(i) T(gl + g2) == T(gl) 0 T(g2) \;/gl, g2 E G ,

(ii) T(O) == 1 (the identity on X) ,

(iii) (g,u) r--+ T(g)u is continuous.

The orbit of an element u E X is the set O(u) == {T(g)u I 9 E G}, and a

subset A c X is said to be invariant if T(g)A == A for all 9 E G, that is, if

A is a union of orbits. On the other hand, a functional <p : X ----+ JR is called

invariant if .p is constant on each orbit of X, that is, .p 0 T(g) == .p for all

9 E G. And, given invariant subsets AI, A2, a mapping R : Al ----+ A2 is said

to be equivariant if R 0 T(g) == T(g) 0 R for all 9 E G (i.e., R maps the orbit

of u pointwise onto the orbit of R(u)).

Let us denote by A the class of all closed and invariant subsets of X,

A == {A c X IA is closed and T(g)A == A \;/g E G }.

Definition. A G-index on X (w.r.t. A) is a mapping ind : A ----+ N U {oo}

satisfying the following properties (for any A, N, AI, A2 E A):

(a) ind (A) == 0 if and only if A == 0;
(b) If R : Al ----+ A2 is continuous and equivariant, then ind (AI) ::; ind (A 2);
(c) ind (AI U A2) ::; ind (AI) + ind (A2);
(d) If A E A is compact, then there exists a neighborhood N of A such that

N E A and ind (N) == ind (A).

Proposition 2.1. Let X be a Banach space, G == Z2 == {O,l}, and define

T(O) == 1, T(l) == -1 (where 1 : X ----+ X is the identity map on X). Given

any closed, symmetric (w.r.t. the origin) subset A E A, define ,(A) == kEN if

k is the smallest integer such that there exists some odd, continuous mapping

1> : A ----+ JRk\{O}. Also define ,(A) == 00 if no such mapping exists, and set

,(0) == o. Then, the mappinq v : A ----+ Nu {oo} is a Z2-index on X.

Remark. This Z2-index is called the genus and it was originally introduced

by Krasnoselskii [47]. The definition given above is due to Coffman [27] (and

it is equivalent to the original definition of Krasnoselskii).

Proof of Proposition 2.1: First, observe that A c X is Z2-invariant if and

only if u E A implies -u E A, that is, A is symmetric w.r.t. the origin in X.
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Thus A == {A c X I A is closed and - A == A }. On the other hand, given

invariant subsets AI, A2 , a mapping R : Al --+ A2 is equivariant if and only

if R is continuous and odd. Let us check properties (a) - (d) in the definition

of a G-index.

(a) This property is immediate from the definition of ,.

(b) Since there is nothing to prove if ,(A2 ) == 00, let us assume that ,(A2 ) ==
k < 00, so that there exists a continuous, odd mapping <P : A2 --+ }Rk\{O}.
Then, since the mapping <P 0 R : Al --+ }Rk\{O} is also continuous and odd,

it follows from the definition that ,(AI) :s; k.

(c) Again, there is nothing to prove if ,(AI) == (X) or ,(A2 ) == 00. Therefore,

we assume that ,(AI) == kl < (X) and ,(A2 ) == k2 < 00, so that there exist

continuous, odd mappings <Pj : A j --+ }Rkj\{O}, j == 1,2. Let Wj : X --+ }Rk j

be the continuous, odd extension of <P j, obtained by taking the odd part

Wj == ~ [<I> j (u) - <I> j ( -u)] of some extension <I> j of <P j (guaranteed by Tietze

extension theorem). Then, the mapping W: X --+ }Rk1+k2 defined by

is such that w(A I U A2 ) C }Rk1 +k2 \ {O} because Wj (Aj ) C }Rk j \ {O}. It follows

that the restriction (of W to A I U A2 )

is a continuous, odd mapping and, hence, {(AI U A2 ) :s; kl + k2 .

(d) As before, it suffices to consider the case ,(A) == k < (X) so that there

exists an odd mapping <P E C(A, JRk\{O}). Let W E C(X, JRk) be an odd

extension of <P, obtained as in (c). Since 0 ~ w(A) == <I>(A) and A is com-

pact by assumption, there exists c5 > 0 such that 0 ~ w(A b ) , where Ab :==
{u E X I dist (u, A) :s; c5}. Then, the set N == Ab is a closed neighborhood of

A, which is clearly invariant, and ,(N) :s; k by construction. On the other

hand, property (b) implies that k == ,(A) :s; ,(N) since the inclusion A C N

is obviously continuous and odd. Thus, ,(N) == ,(A) == k. D

Our next proposition provides several examples of the genus of subsets

of X.

Proposition 2.2. (i) If 0 c X is closed and 0 n (-0) == 0, then

,(0 U (-0)) == 1;

(ii) If A E A and there exists an odd homeomorphism h : A --+ Sk-I,

then ,(A) == k (in particular, ,(Sk-I) == k),.
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(iii) If A E A is such that 0 ~ A and ,(A) 2:: 2, then A has infinitely many
points.

Proof: (i) Simply take <I> : C U (-C) --t JR\{O} defined by <I>(u) == 1 if

u E C, <I>(u) == -1 if u E -C.

(ii) Since h : A --t Sk-1 is continuous and odd, we have that ,(A) ~ k.

On the other hand, if ,(A) == j < k, then there exists an odd mapping

<I> E C(A,JRj\{O}), hence an odd mapping W:== <I> 0 h-1 E C(Sk-1,JRj\{0}).
Since j < k, the mapping W (considered as a mapping taking values into JRk) is

clearly homotopic to a constant mapping Wo == uo, where 0 =F Uo E JRk\JRj, say

IUo I > 1.1 It follows from properties (v), (ii) in Section 5.1 that, necessarily

we have the degree deg(W,Bk,O) == 0, where Bi. is the unit ball in JRk. But

this contradicts the Borsuk theorem (cf. [57]): "If 0 c JRk is a bounded, open

and symmetric set with 0 E 0 and if W E C(80, JRk\ {O}) is an odd mapping,

then deg(W, 0, 0) is an odd integer."

(iii) It suffices to observe that if A E A is a set with a finite number of points

and 0 ~ A, then we can write A as a union A == C u (-C) with C n (-C) == 0,
so that ,(A) == 1 in view of (i). 0

Remark 2.1. An example of an index theory in the case G == Sl will be

presented in Chapter 9.

3 The Basic Abstract Multiplicity Result

In this section we will state and prove the basic multiplicity result in the

Lustcrnik-Schnirelrnan theory in the presence of symmetries. For that, we

will need a deformation theorem which preserves the symmetries, that is, a

deformation TJ E C([0, 1] x X, X) as in Chapter 3 satisfying the additional

condition that TJ(t,') : X --t X is equivariant for each t E [0,1]. On the other

hand, the existence theorem of an equivariant deformation will be based on

the notion of an equivariant pseudo-gradient for an invariant functional <p E

C1 (X, JR), whose existence will be established after two preliminary lemmas

(cf. [55]).

Lemma 3.1. Let CP E 0 1 (X, JR) be an invariant functional. Then, for any

9 E G and u, hEX, one has:

1 We are identifying the points x E ~j with (x,O) E ~k, where 0 is the origin in
~k-j.
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(i) sp' (T(g)u) . h == <p' (u) .T( -g)h;

(ii) II<p'(T(g)u) II == 1/<p'(u)ll·

Proof: Since each T(g) : X ----+ X is a surjective isometry (i.e., a unitary

mapping) with inverse T( -g), (ii) follows readily from (i). So, it suffices to

check (i). Indeed, the invariance of <p and the definition of <p' (v) . k imply

rp'(T(g)u) . h = lim ~[rp(T(g)(u + tT( -g)h)) - rp(T(g)u)]
t-+O t

. 1
== lim - [<p(u + tT( -g)h) - <p(u)] ,

t-+O t

which proves (i). D

Lemma 3.2. Let w : Y ----+ X be a locally Lipschitzian mapping, where X

and Yare metric spaces. Given a compact subset A c Y there exists b > 0

such that w is (globally) Lipschitzian on A<5 == {u E Y I dist (u, A) ::; b}.

Proof: We leave it as an exercise for the reader (or see [55]). D

Proposition 3.3. An invariant functional .p E C1(X, lR) possesses an equiv-

ariant pseudo-gradient, that is, a locally Lipschitzian mapping v : Y ----+ X,

where Y == {u E X 1 <p'(U) i= O}, satisfying:

(i) II v (u ) II < 211 <p' (u)II ;
(ii) cp' (u) . v (u) ~ II ip' (u ) 11

2
;

(iii) v is equivariant.

Proof: We show the existence of an equivariant pseudo-gradient (for rp) start-

ing from a corresponding pseudo-gradient w, whose existence shall be assumed

without a proof, as in Section 3.1. Indeed, define

v(u) = fc T( -g)w(T(g)u) dg, u E Y ,2

where dg is the Haar measure on G, normalized so that fG dg == 1 (see [48]).

We have:

Itv(u)tl < fc Itw(T(g)u)lt dg:S: fc 2tlrp'(T(g)u)tt dg = 2tlrp'(u)tl ,

2 In the case G == Z2 with T(O) == I, T(l) == -I, we observe that v(u) is simply the
odd part of w(u), i.e., v(u) == ~ [w(u) - w(-u)].
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where we used Lemma 3.1 (ii) in the last equality. This proves item (i).

Next, we observe that

rp'(u)· v(u) = fc rp'(u)· [T(-g)w(T(g)u)] dg

= fc rp' (T(g)u) .w(T(g)u) dg

2': fc Ilrp'(T(g)u)112 dg = Ilrp'(u)11 2 ,

where we used Lemma 3.1 (i) and (ii), respectively, in the second and last

equality. This proves item (ii).
The proof that v(u) is an equivariant pseudo-gradient follows from

v(T(g)u)) = fc T( -g)w(T(g + g)u) dg

= fc T(g)T(-g-g)w(T(g+g)u) dg=T(g)v(u) ,

where we used the translation invariance of the Haar measure in the last

equality above.

Finally, we show that v is locally Lipschitzian. For fixed U E Y, let A ==
{T(g)u I 9 E G} be the orbit of u and 8 >°be given by Lemma 3.2, so that w is

Lipschitzian on A 8 , with (say) constant l. Then, for arbitrary Ul, U2 E A 8 (u),
we have

Ilv(UI) - v(u2)11 ::::; [llw(T(g)ud - w(T(g)U2)11 dg

::::; [lIIT(g)UI - T(g)U211 dg = lilul - u211 . D

Theorem 3.4. (Theorem of the Equivariant Deformation) Let .p E 0 1(X, lR)

be an invariant functional satisfying the Palais-Smale condition (PS). Ij U is

an invariant open neighborhood of K c ' c E lR, then, for all E sufficiently small,

there exists T/ E 0([0,1] x X, X) such that (for any u E X and t E [0,1]):

(i) T/(O,u)==u,
(ii) T/(t, u) == u if u ~ rp-1[C - 2E, C + 2E] ,

(iii) T/(1, rpC+E \ U) C rpC-E ,

(iv) TJ(t,·): X ~ X is an equivariant homeomorphism.

Proof: The only difference between this result and Theorem 3.2.3 is that

we must show that the deformation TJ( t, .) can be chosen to be equivariant in
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this case in which both the functional sp and the neighborhood U :=> K c are

invariant.

Indeed, since .p is invariant, we may assume by the previous proposition

that ip has an equivariant pseudo-gradient v. Moreover, the invariance of the

neighborhood U :=> K c allows us to choose the cut-off function p : X -----t JR
(used in the proof of Theorem 3.2.1) to be invariant. It suffices to take

dist(u, X\A)
p(u) == -------

dist(u, X\A) + dist(u, B)

and recall that each T(g) is an isometry. Then, the vector field f(u)
-p(u)v(u)/llv(u)11 is equivariant and, in view of the uniqueness of solution

for the Cauchy problem ~~ == f(w), w(O) == u, we conclude that w(t,') and

TJ(t, .) == w(r5t, .) are equivariant mappings (indeed, if w(t, u) is the solution

of the above Cauchy problem then wg(t) :== T(g)w(t, u) is the solution of the

Cauchy problem with initial condition wg(O) == T(g)u, that is, T(g)w(t, u) ==
w(t, T(g)u)). D

Now we will assume that, besides an isometric representation {T(g)} of G

in X, we also have a G-index ind : A -----t N U { (X) }. Then, we can "classify"

the compact, invariant subsets of X by defining, for each j == 1,2, ... , the

class

A j == {A c X I A is compact, invariant and ind (A) 2: j } .

And, for a given functional cp : X -----t JR, we define Cj == Cj ( cp), j == 1, 2, ... ,

by the formula

Cj == inf max <p(u) .
AEA j uEA

(3.1)

(Note that we may have Cj == -00.) Since Al :=> A2 :=> "', we clearly have

Theorem 3.5. (Basic Abstract Multiplicity Theorem) Let .p E 0 1 (X, JR) be

an invariant functional satisfying (PS). If Cj > -(X) for some j 2: 1, then Cj

is a critical value of .p, More generally, if Ck == Cj == C > -(X) for some k 2: i,
then ind(Kc ) 2: k - j + 1.

Proof: First, we observe that K; is an invariant set, since cp is an invariant

functional, and K; is compact in view of the Palais-Smale condition. We now

show that if Ck == Cj == C > -(X) for some k 2: j, then ind (Kc ) 2: k - j + 1.
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Let N ~ K; be a closed, invariant neighborhood such that ind (N)
ind (K c ) , whose existence is implied by property (d) in the definition of G-

index. Then the interior U :== int (N) of N is an open, invariant neighborhood

of K c ' so that we may apply Theorem 3.4 to conclude the existence of E > 0

and TJ E C([O, 1] x X, X) satisfying properties (i)-( iv) of that theorem.

Now, by definition of C == Ck, take A E Ak such that max a c.p ::; c + E and

define the compact set B == A\U. Then, properties (b), (c) in the definition

of a G-index imply that

k ::; ind (A)

::; ind (B) + ind (N)

== ind (B) + ind (Kc ) •

(3.2)

And, since B c c.pC+E\U, we obtain that C == TJ(l, B) c c.pC-E by Theorem 3.4.

On the other hand, since TJ(l,·) is an equivariant mapping and B is a

compact, invariant set, it follows that the set C is also compact and invariant.

And, as we just saw, max.: .p ::; C - E. Therefore, by definition of Cj, we

necessarily have ind (C) ::; j - 1. Moreover, by property (b) in the definition

of a G-index, we have

ind (B) ::; ind (C) ::; j - 1 . (3.3)

Finally, (3.2) and (3.3) imply that ind (Kc ) ~ k - j + 1, as we wished to show.
D

One of the consequences of the above result is the following theorem due

to Clark:

Theorem 3.6. ([25j) Let c.p E C1 (X, IR) be an even functional satisfying the

Palais-Smale condition (PS). Suppose that

(i) .p is bounded from below;

(ii) There exists a compact, symmetric set K E A such that ,(K) == k and

sup c < c.p(0) .
K

Then, ip possesses at least k distinct pairs of critical points with corresponding

critical values less than c.p(0).

Proof: Consider the Cj'S defined in (3.1) where, in the present situation,

A j == {A c X I A is compact, symmetric and ,(A) 2 j }:
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Then, (i) implies that Cl == infx <p > -00 and (ii) implies that Ck < <p(O) .
Therefore, by Theorem 3.5, each Cj is a critical value of ip, If all the Cj's

(j == 1, ... ,k) are distinct we obtain at least k pairs of critical points with

values less that <p(O). On the other hand, if Ci == Cj == C for some 1 ::; i < j ::; k,
then ,(Kc ) 2:: j - i +1 2:: 2 and, since 0 ~ K; (as C ::; Ck < <p(O)), Proposition

2.2 (iii) implies that K; possesses infinitely many points in this case. D

4 Application to a Problem with a Z2-Symmetry

Let us again consider the Dirichlet problem (cf. Application A, Section 4.3)

{
-~u == u3 in 0

u == 0 on an , (4.1)

where 0 C JR3 is bounded domain with smooth boundary. As we know, the

functional

(4.2)

is well defined and of class CIon the Sobolev space X == HJ, and its critical

points are precisely the solutions of (4.1). In Section 4.3 we found a nontrivial

solution through the mountain-pass theorem. We now show that, in fact, (4.1)

has an infinite number of solutions (cf. Ambrosetti-Rabinowitz [9]).

Theorem 4.1. Problem (4.1) has infinitely many (classical) solutions.

The original proof of Ambrosetti and Rabinowitz uses a symmetric version

of the mountain-pass theorem. Here, we shall present another proof (cf. Cas-

tro [22]) which uses Clark's Theorem 3.6 applied to an associated functional

1jJ, which is bounded from below and whose set of critical points is related to

the set of critical points of ip, For that, consider the functional

7jJ(u) = (lIVUI2dX) 3 -l u4 dx = IIul1 6 ~ Ilull£,4 , (4.3)

which, similarly to .p, is well defined and of class CIon the space X == HJ (0),

with derivative given by

7jJ'(u) . v = 611ul14l v«. Vv dx - 4l u3v dx, Vu,v EX. (4.4)

Then we have that
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(4.5)

where T : X ----+ X is the compact operator defined by (T( u), v) == 4 Io u3vdx
VU,v EX.

Lemma 4.2. (i) 'l/J is bounded from below;

(ii) 'l/J satisfies the Palais-Smale condition (P S).

Proof: (i) In view of the Sobolev embedding X == HJ c L4 , we have

so that 'l/J is bounded from below.

(ii) Let (un) C X be such that 1'l/J(Un)I ::; C, V''l/J(un) -+ 0 in X. Then,_

(4.6)

(4.7)

and from (4.6) we conclude that Ilun II is bounded. So, we may assume (passing

to a subsequence, if necessary) that there exist u E X and a ~ 0 such that

Un ~ U weakly in X and Ilun II -+ a. If a == 0 there is nothing to prove. If

a> 0, then Ilun II > 0 for all n sufficiently large and we can write

Therefore, we conclude from (4.7) that Un -+ 6~4 [0+ T(u)]. D

Lemma 4.3. If 0 =F U E X is a critical point oj sb, then v == V6fl:11 2 is a
critical point of ip,

Proof: A function 0 =1= U E X is a critical point of 'l/J if and only if U =1= 0 is

a weak solution of the problem 611uI1 4~u + 4u3 == 0 in 0, U == 0 on ao, that
. 6V6lluI16[A + 3]-0· n -0 an h - 2u TherefIS, 2 uV V - In ~G, v - on ~G, were v - V6lluI1 2 ' erelore,

v = V'6fl:11 2 is a critical point of ip, 0

Proof of Theorem 4.1: As we mentioned earlier, we will apply Clark's Theorem

3.6 to the functional 'l/J defined in (4.3). By Lemma 4.2 we know that 'l/J satisfies

condition (PS) and

(i) 'l/J is bounded from below.
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Next, given an arbitrary kEN, we will show that

(ii) there exists a compact, symmetric set K E A such that ,(K) == k and

sup 1fJ < 0 .
K

In fact, let Xk == span {¢1, ... ,¢k} be the subspace spanned by the first k

eigenfunctions of the eigenvalue problem -~u == AU in n, u == 0 on an. Then,

since X k is finite dimensional and X k C £4, there exists a > 0 such that

Therefore, we obtain

so, for 0 < Ilulli4 ::; 2~ == J2
, it follows that

Now, if we define the set K == {u E X k I a2D ::; Ilullx ::; aJ}, then K E A
and sUPK1fJ < O. Moreover, since X k is isomorphic to ]Rk, we may identify K

with a annulus Kin ]Rk, and the inclusions Sk-1(b) eKe ]Rk\{O} (for some

b > 0) show that ,(K) == k. Therefore, condition (ii) is satisfied and Clark's

theorem implies the existence of at least k distinct pairs of critical points for

the functional e. Since k is arbitrary, we obtain infinitely many critical points
for'ljJ.

Finally, in view of Lemma 4.3, we conclude that the functional .p possesses,

together with ib, infinitely many critical points. And, as we know, each critical

point of r..p is a classical solution of problem (4.1). D
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Problems with an Sl_Sy lllllletry

1 A Geometric Sl-index

In this chapter we present an index theory for the case in which G == SI. It is

an extension (cf. [55]) of the geometric SI-index due to Benci [10]. Also see

Fadell-Rabinowitz [41].

Let X be a Banach space and suppose that {T( B) I BE SI } is an isometric

representation of SI in X. As before, we denote by A the class of all closed

subsets of X which are invariant under the given representation, that is,

A == {A c X I A is closed and T(B)A == A VB E SI }.

Proposition 1.1. Given A E A, define ind (A) == k if k is the smallest integer

for which there exists a mapping <t> E C (A, C k \ {O}) and an integer n E N\ {O}
satisfying the relation

it>(T(B)u) == ei n B<t>(u) VB E 51, Vu EX. (1.1)

Moreover, define ind (A) == 00 in case no such mapping exists, and define

ind (0) == o. Then, ind : A ----+ N U {oo} is an 5 1 -index on X.

Proof: We must verify properties (a)-(d) presented in Section 8.2:

(a) This property is immediate.

(b) We may assume ind (A2 ) < 00, so that there exists a continuous mapping

it> : A 2 ----+ Ck
\ {O} and some n E N\{O} satisfying the relation (1.1). From

this and the fact that R : Al ----+ A2 is an equivariant mapping, we conclude

that \lJ == it> 0 R : Al ----+ Ck \ {O} is also continuous and satisfies (1.1). Thus,

ind (AI) :::; k == ind (A2 ) .
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(c) As before, we may assume that ind (AI) == kl < 00 and ind (A2 ) == k2 <
00. Therefore, there exist continuous mappings <I>j : A j ----+ Ckj \ {O} and

nj E N\{O}, j == 1,2, satisfying the relation (1.1). Let <I>j : X ----+ Ckj be

a continuous extension of <I>j obtained by the Tietze extension theorem and

define

1 127r

Wj (u) == - e- in j () <I>j (T (0)u) dO, j == 1, 2.
27r 0

Then Wj : X ----+ Ckj is a continuous extension of <I>j satisfying (1.1) and,

defining

W(u) == (w1(u)n2 , W2 (u)n 1
) , U EX,

we obtain w(A l u A2 ) C Ck1+k2 \ {O} (since Wj (Aj ) == <I>j (Aj ) C Ckj \ {O}) so

that

Therefore, we have that W E C(A I U A2 ,Ck l+k 2\ {O}) and W satisfies (1.1)

with n == nln2, and it follows that ind (AI U A2 ) ::; kl + k2 .

(d) Let ind (A) == k < 00 and consider <I> E C(A, Ck
\ {O}) and n E N\{O}

satisfying (1.1). As above, since 0 ~ w(A) == <I>(A) and A is compact by

assumption, there exists <5 > 0 such that 0 ~ w(A8 ) , where A8 :== {u E

X I dist(u, A) :S b}. Then, the set N == A8 is a closed neighborhood of

A, which is invariant, and ind (N) ::; k by construction. And, since the

inclusion A c N is an equivariant mapping, it follows from property (b) that

k == ind (A) ::; ind (N) . Therefore, ind (N) == ind (A) == k. D

Next, let us denote by Fix (81 ) the (closed) invariant subspace of all ele-

ments in X which are fixed by the representation {T(O)}, that is,

Fix (81
) == {u E X I T(O)u == u VB E 8 1

} .

So, u E Fix (51) if and only if the 5 1-orbit O(u) consists of the singleton

{u}. In this case, we necessarily have that ind (u) == 00 since (1.1) cannot be

verified with <I> (u) =I- o. Indeed, in this case (1.1) becomes

hence <I>(u) == o. On the other hand, one has the following

Proposition 1.2. ([55}) If u ~ Fix(81 ) , then ind (O(u)) == 1.
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Proof: Since u ~ Fix (Sl), the continuous mapping JR:1 B r--+ T(B)u E X has

minimal period T > 0, i.e., T == 2: for some n E N\{O}. Therefore, if we

define <P E C(O(u),C\{O}) by the formula

<p(T(B)u) == ein 8
,

we see that ind (O(u)) == 1. D

Remark 1.1. It follows from the above proposition that if A == O(U1) U

... U O(Uk) with Uj ~ Fix(Sl) Vj == 1, ... k, then ind(A) == 1. Therefore, if

A E A is such that An Fix(Sl) == 0 and ind(A) 2: 2, then the set A contains

necessarily infinitely many orbits (compare with Proposition 8.2.2 (iii), where

Fix(Z2) == {O}).

Remark 1.2. If Y c X is a closed, invariant subspace with a topological

complement, then Y possesses a topological complement which is also invari-

ant. Indeed, it is enough to take Z == Q(X) where

1 127f

Qu== - T(-B)(I -P)T(B) udB,
27r 0

and P : X ----+ Y is the projection onto Y.

uEX,

In the next section we will prove a multiplicity result for the case of the

above Sl-index. For that, we will need other properties of this Sl-index,

whose detailed proofs can be found in [55, 41] and shall be omitted here. Let
us then present the necessary properties.

Suppose Z C X is a finite-dimensional, invariant subspace such that Z n
Fix (Sl) == {O}. Then, dim Z == 2N is even and there exists an isomorphism

J : Z ----+ CN such that, in Z, T(B) is given by the formula

(1.2)

where

(1.3)

for all BE Sl, (== ((1, ... ,(N) E eN and some kj E N\{O}, j == 1, ... ,N.

Proposition 1.3. (cf. [55}) (i) Let Y C X be a finite-dimensional, invariant

subspace and let A C X be a closed, invariant subspace. If Fix(Sl) C Y and

AnY == 0, then codim Y is even and
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1
ind (A) < 2"codim Y ;

(ii) Let Z c X be a finite-dimensional, invariant subspace and let D c Z be

an open neighborhood of 0 which is invariant. If Z n Fix(51 ) == {O}, then

dim Z is even and
1

ind (aD) == 2" dim Z .

Proof: (i) Let Z be an invariant, topological complement of Y (cf. Remark

1.2). Then dim Z == 2N and T(B) is defined on Z by (1.2) and (1.3). Consider

the continuous mapping <I> == <I> 0 J : Z\ {O} ----+ CN \ {O}, where

n n

<I>(() == .c.... ,(~N), (E CN\{O} ,

and n is the minimum common multiple of k1 , ... ,kN given in (1.3). Then,

in view of (1.2) and (1.3), we have that <I> satisfies property (1.1). Therefore,

1 1
ind(Z\{O})::; 2" dim Z == 2"codim Y .

On the other hand, since AnY == 0, we obtain P(A) C Z\{O} where P :

X ----+ Z is the projection onto Z along Y. Therefore, since P is equivariant

(because Y and Z are invariant). Property (b) in the definition of a G-index

(Section 8.2) implies that

ind (A) ::; ind (Z\{O}) . (1.5)

Combining (1.4) and (1.5) we obtain ind (A) ::; ~codim Y.

(ii) Let Y be an invariant, topological complement of Z. Then, since

Z n Fix (51) == {O}, we obtain Fix (51) C Y. Moreover, we have m: n Y == 0.
Therefore, part (i) above implies that ind (aD) ::; ~codim Y == ~ dim Z. On

the other hand, we have ind (aD) 2: ~ dim Z (cf. [55]). Thus, ind (aD) ==
~ dim Z. D

2 A Multiplicity Result

We now present a multiplicity result in the case of an 5 1-index (cf. [30]).

Theorem 2.1. Let .p E C1(X, IR) be an invariant functional satisfying the

Palais-Smale condition (P5). Suppose Y, Z c X are closed, invariant sub-

spaces such that codim Y < dim Z and
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(i) infy'P == a > -00;

(ii) sUPaDr'P == b < +00 for some r > 0, where 8Dr == {u E Z Illull == r};
(iii) 'P (u) > b whenever 'P'(u) == 0, u E Fix (81

) ;

(iv) Fix (81 ) c Y, Z n Fix (81 ) == {O}

Then, there exist at least m == ~ (dim Z - codim Y) distinct orbits of critical

points of 'P outside Fix (81 ) with critical values in the interval [a, b].

Proof: Let p == ~codim Y. If j 2: p + 1 then (i) implies

-00 < a :S Cj == inf sUP'P ,
AEAj A

(2.1)

since AnY i= 0 for any A E Aj (Indeed, if A E A j is such that AnY == 0
then (iv) and Proposition 1.3 (i) imply that ind (A) :S ~codim Y == p, hence

j :S ind (A) :S p).
Let q :== ~ dim Z and consider the open ball in Z, Dr == {u E Z IIlull < r},

so that ind (8D r ) == q, in view of (iv) and Proposition 1.3 (ii). If j :S q, then

(ii) implies

Cj == inf sUP'P:S sUP'P == b < +00 .
AEAj A aDr

(2.2)

Therefore, combining (2.1) and (2.2) gives a :S Cj :S b for each j == p +
1, ... ,q, that is,

-00 < a :S Cp+1 :S ... :S cq :S b < +00 .

It follows from Theorem 8.3.5 that each Cj (j == p+ 1, ... ,q) is a critical value

of 'P. If all of these cjs are distinct we obtain at least m == q - p distinct orbits

of critical points of 'P, which lie outside Fix (51) in view of (iii). On the other

hand, if c, == Cj for some p + 1 ~ i < j ~ q, then ind (Kc ) 2: j - i + 1 2: 2

and, since K; n Fix (51) == 0 by (iii), we conclude from Remark 1.1 that K;
has infinitely many orbits in this case. D

Remark 2.1. The first result of the above type is due to Clark [25], where the

group Z2 is considered (cf. Theorem 8.3.6). When Y == X and Fix(81 ) == {O},
the above Theorem 2.1 is due to Ekeland and Lasry [38]. Also see [11] for

situations in which dim Fix (81 ) is finite.

Remark 2.2. Since the critical values Cj obtained in Theorem 2.1 belong to

the interval [a, b], where a == infy'P, b == maxaDr 'P, it suffices that a local
(P5) condition be satisfied.
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3 Application to a Class of Problems

In this section we will apply the multiplicity theorem of the previous section to

a class of variational problems (cf. Costa-Willem [30]). The abstract context

is the following.

Let V be a closed subspace of the Hilbert space L 2(0; JRN) and consider

the equation

Lu == \1F (u) (*)
in V, where F E Cl (JRN, JR) and L : D(L) n V ------+ V is an unbounded

selfadjoint operator. Assume the following hypotheses:

The spectrum a(L) of L consists of isolated eigenvalues of finite multiplicity,

... < A-I < Ao == 0 < Al < ... ,

and the corresponding eigenfunctions belong to Loo(O; JRN) ;

There exist 0 ::; An < I < x.,1, a > 0 and 0 < 6 < min {, - An, An+1 - I }

such that

1\1F(u) - ,ui::; 61ul + a ;

F is strictly convex, F(O) == 0, \1F(O) == 0 and \1F(u) E V for all u E V ;

(h3 )

[Note that, from the arguments used in Example C of Chapter 2.1, con-
ditions (h2 ) and (h3 ) imply that \7F maps V continuously into V.]

\lF : V ------+ V and L : D (L) n V ------+ V are equivariant under the isometric

representation {T( 8)} of SI, that is, \lF(T(8)u) == T( 8)\lF(u),

T(8)D(L) c D(L) and LT(8)u == T(8)Lu. (h4 )

Note that (h4 ) implies that Fix (SI) is an invariant subspace under the

operator L and the restriction Lo of L to Fix (SI) is an equivariant selfadjoint

operator with spectrum a(Lo) C a(L).

Theorem 3.1. ([3D}) Assume the above hypotheses together with

1· . f 2F(u) \ > \ .
LHl In lul---+O~ > An+k _ An+l ,
{AI, ... ,An+k} n a(Lo) == 0 ;
u == 0 is the only solution of (*) in Fix(SI).

Then, there exist at least

1 n-i-k:

m ="2 ~ dim N(L - Aj)
j=n+l

distinct orbits of solutions of (*) outside Fix(SI ).
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Remark 3.1. If O'(Lo) c (-00,0], then (h6 ) is satisfied in view of (hI)' More-

over, (h3 ) implies (h7 ) since, in this case, \7F - La is strictly monotone on

D(Lo).

For the proof of Theorem 3.1 we will need some preliminary facts.

Let X be the orthogonal complement of N(L) in V. From (hI), the oper-

ator - L : D(L) n X -----+ X possesses a compact inverse K : X -----+ X.

On the other hand, since F(O) == 0, we have F(u) == fo1 (\7F(tu), u) dt, and

it follows from (h2 ) that, given 6 < 61 < min {I - An, An+1 - I }, there exists

Ql > 0 such that

Therefore, in view of (h3 ) and Remark 7.1.2, the Legendre-Fenchel transform

G == F* is a strictly convex function of class Cl satisfying

1 Ivl 2 1 Ivl 2
N

---- - Ql < G(v) < ---- + Ql \;/v E ffi.. (3.1)
I + 61 2 - - I - 61 2

And, by Proposition 7.3.1, we can define the dual action ({J E C l (X , ffi. ) of

Clarke-Ekeland by the formula

cp(v) = ~(Kv, v)v +l G(v) dx .

Lemma 3.2. (i) If v E X is a critical point of ({J, then u == \7G(v) is a

solution of (*). Moreover, if Ul == \7G (VI) and U2 == \7G (V2) belong to the
same orbit, then so do VI and V2;

(ii) cp satisfies the Palais-Smale condition (PS);

(iii) There exist A* > An+k and E > 0 such that

G(v) < ~ff
- A* 2

for all v E ffi.N with Ivl :::; E.

Proof: (i) We have already seen in Section 7.3 that, if v E X is a critical

point of cp, then u == \7G(v) E D(L) is a solution of (*) (cf. Remark 7.3.2).

Now, if Ul and U2 belong to the same orbit, then U2 == T(O)Ul for some 0 E SI

and, therefore, in view of (h4 ) and the fact that \7G == (\7F)-I, we obtain

that is, VI and V2 belong to the same orbit;
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(ii) Let (vm ) C X be such that rp/(vm ) -+ 0, that is,

where P is the orthogonal projection onto N(L). Defining U m == PV'G(vm ) -

K Vm, we obtain by duality that Vm == V'F( Um+ fm), or LUm == V'F( Um+ fm),

since LUm == Vm . Now, assumption (h2 ) implies

IIUmllv :S II(L -,)-111{6(llumllv + Ilfmllv) +alf21 + ,llfmllv}

where II (L -,)-111 == max{(,- An )- I , (An +l _,)-1} < 6-1. Therefore, since

Ilfmllv -+ 0, we obtain that lIumllv is bounded. In view of the linear growth

of V'F and V'G (cf. (3.3) in the proof of Proposition 7.3.1), we conclude that

Vm == V'F(u m + fm) and V'G(vm) are also bounded in V. Therefore, passing

to a subsequence if necessary, we may assume that Vm ~ v weakly in X and

PV'G (vm ) -+ wEN(L), since N (L) is finite dimensional by (hI). Since K is

a compact operator, we obtain that K Vm -+ K v in X, so that

Therefore, Vm -+ v in X.

(iii) The proof follows from assumption (hs) and was already done during the

proof of Lemma 7.4.3. Indeed, (hs) implies that there exist 6 > °and A* >
An+k such that IF(u)1 ~ ~A*luI2 for lui :S 6. On the other hand, there exists

E > 0 such that IV'G(v)1 :S c5 for Ivi :S E. Therefore, since G(v) == (u, v) - F(u)
with u == V'G(v), we obtain for Ivl :S E that

G(v) :S maxlul::;8{(U, V) - ~A*luI2}

< {() 1 \ * I 1
2 } - 1 Ivl

2

_ maxu u, v - '2/\ U - A* -2- .

Proof of Theorem 3.1: We will apply Theorem 2.1 to the dual action rp E

C l (X, lR), which is invariant by assumption (h4 ) and satisfies (PS) by Lemma

3.2(ii) above. Let us define the following subspaces of X:

Y == [N(L - AO) EB EB N(L - An)].l ,

Z == N(L - AI) EB EB N(L - An+k) .

Then, we have Fix (51)nX c Y and Z nFix (51) == {O} in view of assumption

(h6 ) , so that condition (iv) of Theorem 2.1 is satisfied.

Now, through eigenfunction expansion of the elements of Y, we obtain the

estimate
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1 2
(Kv,v)v ~ --,-llvllv '\Iv E Y ,

/\n+1

which, combined with (3.1), gives

Therefore, since r + 61 < An +1, it follows that .p is bounded from below on Y

and condition (i) of Theorem 2.1 is satisfied.

In order to verify condition (ii), we again use eigenfunction expansion to

obtain the following estimate in Z,

1 2
(Kv,v)v:::; --,-lIvllv '\Iv E Z ,

/\n+k

so that Lemma 3.2 (iii) above gives

1 ( 1 1 ) 2rp(v) :::; - -- + -; Ilvllv < 0
2 An+k A

for all v E Z with 0 < IlvllLoo :::; E. Since Z is finite dimensional, there

exists r > 0 such that sUPaD
r

.p == b < 0, where Dl); == {v E Z I IIvll == r}.
Therefore, condition (ii) of Theorem 2.1 is also satisfied.

Finally, if v E Fix(51
) is a critical point of .p, then u == \7G(v) E D(L) is

a solution of (*) (cf. Lemma 3.2) and, by the equivariance of \7G == (\7F)-l

(assumption (h4 ) ) , it follows that also u E Fix (51). Therefore, (h7 ) implies

u == 0, so that v == \7F(u) == 0 and r.p(v) == O. This shows that condition (iii)

of Theorem 2.1 is satisfied. Therefore, that theorem gives the existence of at

least
1 Ij=n+k

- (dim Z - codim Y) == - '"""" dim N(L - Aj)
2 2 c:

j=n+1

distinct orbits of critical points of .poutside Fix (51). And these distinct orbits

give rise to distinct solutions of (*) outside Fix (51) in view of Lemma 3.2 (i).

The proof is complete. D

4 A Dirichlet Problem on a Plane Disk

Next we illustrate Theorem 3.1 by considering the Dirichlet problem

{
-~u == g(u) in n

u == 0 on an . (4.1)



96 9 Problems with an Sl-Symmetry

where 0 is the unit disk in lR2
• Other applications can be found in [30].

Let A be the operator -~ on the space V == L 2(0, lR) with Dirichlet

boundary condition, that is, D(A) == H2 (0 ) n HJ(O) and Au == -~u 'rIu E

D(A). The eigenvalues of A are of the form J-l == v2, where v is a positive

zero of some Bessel function of the first kind, I n , n == 0,1,2 ... (see Courant-

Hilbert [34], Vol. II). If n 2: 1, the corresponding eigenfunctions are given in

polar coordinates (r,0) by

Jn (vr ) cos nO, Jn (vr) sin nO .

If v is a zero of Jo, then Jo(vr) is a (radially symmetric) eigenfunction cor-

responding to the eigenvalue J-l == v 2. Therefore, if we denote the spectrum

of A by a(A) == {J-l1, J-l2,"'}' with 0 < J-l1 < J-l2 < "', then each eigenvalue

is either simple or of even multiplicity: in fact, the nonsimple eigenvalues are

double, since a result of C. Siegel (cf. [73], pg. 485) implies that the positive

zeros of Jn 1 and Jn 2 are distinct if n1 i=- n2.

Theorem 4.1. ([3D}) Let 9 : lR~ lR be continuous with g(O) == 0 and assume

that

/-lp<g(u)-g(v) Vu#v
u-v

and g(u) </-l Vu#O,
u q

(4.2)

1· . fg(u) <1' g(u) < 1" fg(u)J-ln < Hfl Lfl -- _ IffiSUp -- < /1n+1 _ J-ln+k < Hfl Lfl -- ,
lul~oo u lul~oo u lul~o u

(4.3)

where J-lp ::; J-ln, J-ln+k < l'« and {J-lP+1, ... ,J-lq-1}n{J-l > 0 I Jo(y1i) == O} == 0. 1

Then, Problem (4.1) possesses at least k weak solutions which are non-radially

symmetric and geometrically distinct (two solutions are geometric distinct if

one is not a rotation of the other).

Proof: Denote by L the operator A - J-lp on the space V == £2(0, lR)

with Dirichlet boundary condition, and define F(u) E C1 (lR, lR) by F(u) ==

Iou g(s) ds - ~J-lpU2 and f == F'. Then, assumption (4.2) and the fact that

g(O) == 0 imply (h3) and, since a(L) == {J-lj - J-lp I j == 1,2, ... }, we also obtain

(h2 ) and (hs) from (4.3).

On the other hand, consider the isometric representation of 8 1 on V de-

fined by the rotations in 0, that is,

(T(O)u)(x) == u(R(O)x) ,

1 It follows that the eigenvalues crossed by g(u) are all double.
u
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where R(B)x == R(B) (Xl, X2) == (Xl COSB- X2 sin B, Xl sin B+X2 cos B). Then, it

is clear that Land F' are equivariant, so that (h4 ) is also satisfied. And, since

Fix (81
) is the space of radially symmetric function, condition (h6 ) is satisfied

because each Aj == /Lj+p - /Lp, j == 1, ... ,q - 1- p, is a double eigenvalue of L.
Finally, in order to verify (h7 ) , we observe that (4.2) implies that fSu

) <
/Lq - J-Lp for all u =I- 0, that is,

Therefore, if u =I- 0 is a radially symmetric solution of (4.1), we obtain

IIf(u)lli2 < (J-Lq - J-Lp)(f(u), U)L2 == (J-Lq - J-Lp)(Lu, U)L2

::; II Lu lli 2== Ilf(u)IIi2 .

This absurdity implies that (h7 ) is also satisfied.

Therefore, Theorem 3.1 guarantees the existence of at least k nonradially

symmetric and geometrically distinct weak solutions of Problem (4.1). D



10

Problems with Lack of Compactness

1 Introduction

In this chapter and the next we will present two examples of situations in which

the variational problem under consideration lacks some desirable compactness

properties. Typically, lack of compactness is due to the action of a group under

which the pertinent functional is invariant. For example, an autonomous

semilinear elliptic equation in the whole space JRN,

-~u+u==h(u), (1.1)

is invariant under the group of translations u(-) f---t u(· + z), z E JRN. We will

be considering one such situation in this chapter.

Now, in case Problem (1.1) is posed in a bounded domain n c JRN, N 2: 3,

a lack of compactness can happen when, for example, the nonlinearity h(u)
has a critical growth at the limiting exponent q == 2* - 1 :== (N + 2)j(N - 2)

for the Sobolev embedding HI (JRN) ~ £2* (JRN).

Both situations and generalizations have been extensively considered in

the literature through the use of the concentration-compactness method of P.-

L. Lions [51, 52]. The reader is invited to learn how this method is used in the

above original papers. In this chapter, when considering our example in the

whole space JRN, we shall neither use the concentration-compactness method

per se, nor shall we be concerned with making the best possible assumptions

on h. Instead, we will impose additional restrictions on the nonlinearity h

which will allow us to consider the associated Nehari set

M={UEH 1(JRN) I r (lV'uI 2+u2)dx= r h(u)udx}
J~N J~N

as a CI-submanifold of HI (JRN) (of codimension 1), which is a natural con-

straint for our functional in the sense that the critical points of the restriction
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<pIM are precisely the critical points of ip. In particular, we can find a solution

of Problem (1.1) via global minimization on M (as in Chapter 6). Such a so-

lution is called a ground-state solution since it has the least possible nonzero

energy <.p(u).
We point out that, in fact, all that is needed in order to obtain a solution

of Problem (1.1) through constrained minimization is to have h subcritical

satisfying H( () > ~(2 for some ( > 0 (cf. the original paper [14, Part I] of

Berestycki and Lions). Under these minimal assumptions, a solution of (1.1)

is found in [14] through the constrained minimization problem of finding the

global minimum of

restricted to

We start with preliminary results involving two beautiful lemmas due to

Brezis and Lieb [19] and to Lions [51], respectively, and which deal with the

question of when a weakly convergent LP-sequence is strongly convergent. As

usual, in what follows we will be denoting by 2* the limiting exponent in the

Sobolev embedding HI (JRN) <:--+ LP(JRN), 2 < p < 2*, namely, 2* == 2N/(N-2)
if N ~ 3 and 2* == 00 if N == 1,2.

2 Two Beautiful Lemmas

As is well known, given a domain 0 C JRN and a bounded sequence (un)
of functions in LP(O) (1 < P < (0) one can extract a subsequence (still

denoted by Un, for simplicity) which converges weakly and pointwisely to

some U E LP(O). In addition the Fatou lemma gives

with equality occurring if and only if Un converges strongly to U in LP(O).
As it turns out, Brezis and Lieb obtained a refinement of the Fatou lemma

in [19] by showing that the difference Ilunllip - lIullip behaves exactly like
llun- ulltp as n ~ 00. In other words, they found the missing term in the
inequality of the Fatou lemma by proving that
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Their proof essentially uses the fact that the continuous function H(s) :== IslP
satisfies the following property:

VE > 0 3CE > 0 with IH(s + t) - H(s)1 :s; EH(s) + CEH(t) Vs, t E IR .
(2.1)

Indeed, as mentioned in [19], the result holds for more general functions and

we shall state it here in a more general form.

Brezis-Lieb Lemma. Let H: IR ---t [0,(0) be continuous and satisfy (2.1).

Suppose a sequence (un) of measurable functions in 0 satisfies Un -+ U a.e.,

sUPn Jo H(u n) < 00 and Jo H(u) < 00. Then sUPn Jo ni«; - u) < 00 and

kIH(un) - H(u) - H(un - u)1 -----+ 0 as n ----; 00.

Proof: We first note that when (un) is a bounded sequence in LP(O) the

above conditions are automatically satisfied with H(s) .- IslP (and for a

suitable subsequence of (un)).
In view of condition (2.1) one has the estimate

so that, with E == 1/2,

which shows that K :== sup., In H(un - u) < 00 in view of the assumptions.
Moreover, one has the estimate

so that In hn,E -+ 0 as n -+ 00 by the Lebesgue theorem. Therefore, since

we obtain

lim sup r IH(un) - H(u) - H(un - u)1 :::; KE .
n---+oo in

The result follows since E > 0 was arbitrary. D

Remark 2.1. As pointed out in [19], condition (2.1) is satisfied by general

convex functions. On the other hand, let H : JR ---t JR be continuous and
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satisfy H(s) > 0 for s i- O. And suppose that H(s) behaves asymptotically as

pure powers as lsi ---+ 0 and as lsi ---+ 00 in the sense that, for some 0 < p, q <
00, one has

. H(s) . H(s)
lim -'-1- == lo > 0 and lim -1-1- == loo > 0 .181-+0 s P 181-+00 S q

Then it can be shown (cf. [32]) that H(s) also satisfies condition (2.1).

Next, we consider a lemma by Lions [51] which gives conditions guarantee-

ing strong LP-convergence of a weakly convergent LP-sequence arising from a

bounded HI-sequence of functions.

Lions Lemma. Suppose Un E HI (~N) is a bounded sequence satisfying

lim (sup r IUn IP dX) == 0
n-+oo yEIRN 1Br(y)

for some p E [2,2*) and r > 0, where Br(y) denotes the open ball of radius r

centered at y E ~N. Then, Un ----+ 0 strongly in Lq(~N) for all 2 < q < 2*.

Proof: We only consider the case N 2:: 3 and reproduce the proof as given

in [75]. Let p < s < 2* be given and consider () E (0, 1) defined by

1 1-() ()
-==--+-.
s p 2*

Then, writing B == B; (y) for short and using Holder's inequality together

with the Sobolev embedding, we have

IluIILS(B) < Ilull~~~B)llull~2*(B)
()

::::; Cllull~~~B) (fB(luI2 + lV'uI 2
) dx) '2 ,

hence
r luis dx ::::; CSllulls(l-,IJ) r(lul 2 + lV'uI2 ) dxliJ LP(B) t.

by picking () == ~. Next, if we consider a covering of ~N by balls B == Br(y)
of radius r as above, so that each point in ~N is contained in (N + 1) such

balls (at most), we obtain the following estimate
s(1-()

r luis dx < (N + l)C S sup ( r lulP dX) -P- r (lul 2 + lV'uI 2 ) dx ,
lIRN yEIRN 1Br(y) lIRN

which shows by the given assumption that Urn ----+ 0 in LS(~N). Therefore,

since 2 < s < 2*, we conclude (again by the Holder and Sobolev inequalities)

that Urn ----+ 0 in Lq(~N) for 2 < q < 2*. D
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3 A Problem in jRN

As a first application of a problem lacking compactness, we consider a sub-

critical elliptic problem in all of IRN :

(3.1)

In the literature, such an equation is called a field equation in the positive

mass case (because of the term u in the left-hand side of the equation), an

important example being that when h(u) is a pure power. Below we list some

of the assumptions on the nonlinearity h(s) that will be made in the course

of this section, where we will always be assuming that N 2: 3. As usual,

we denote H (s) == J; h(t) dt and, for simplicity of notation, all integrals are

understood as taken over all of IRN, unless otherwise stated:

h E Cl(~) satisfies h(O) = 0, 1imlsl->o 1~~1~)1 < +00 for some fJ > 0, and

lim sup Ilhll~~)21 < +00 for some 2 < P < 2* ;
181-+00 S

H(s) and [sh(s) - 2H(s)] are strictly convex functions with

. H(s)
lim -- == +00.

181-+00 s2

Remark 3.1. In view of (hl ) we note that the functional

is well defined and of class C 2 on HI Cffi.N ) , with its critical points being pre-

cisely the solutions of (3.1). Moreover, Problem (3.1) has the trivial solution

u == 0 and lacks compactness in the sense that, for any nontrivial solution v,

the sequence vn(x) :== v(x + zn) with Zn E JRN satisfying IZnl --t 00 (so that

Ilvnll == Ilvll and Vn ~ 0 weakly in Hl(JRN)) has the property that

but no subsequence of V n converges strongly in Hl(JRN) . In particular, (jJ

does not satisfy (PS)c for c == (jJ(v).

Remark 3.2. Since we are assuming h(O) == 0 it is not hard to see that (h2 )

implies (in fact, is equivalent to):
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(h2) h(s) is strictly increasing with limlsl-too H(s)/S2 == +00 and

h(s) 2H(s)
h' (s) > - > -- > 0 Vs yf 0 .

S S2

In particular, any such h is superlinear in the sense that limls!-too h(s)/s ==

+00 (in fact, limls!-too h'(s) == +(0), and we also have that

h'(S)S2_h(s)s>O ifsyfO.

Remark 3.3. A typical example of a function satisfying (hI) and (h2) is the

pure power s 1---+ alslp
-

2s, with 2 < P < 2* and some a > 0 or, more generally,

the function

with 2 < p, q < 2* and a, b > O. Still another example of a function (with a

much slower growth) but satisfying the same conditions above is given by

h(s) == H'(s) , H(s) == s2ln (1 + s2) .

On the other hand, the first two examples satisfy the stronger superlinear

Ambrosetti-Rabinowitz (global) condition

sh(s) ~ (}H(s) > 0 for s i- 0 (and some () > 2)

whereas the last one does not.

Under some suitably mild condition on h (say h continuous with Ih(s)I <
Aisl + Blslp-1 for some A, B > 0 and 2 < P S 2N/(N - 2) if N ~ 3), we can

define the so-called N ehari set

Of course, we may have M == 0. However, if U E HI(JR..N) is a nonzero weak

solution of (3.1) then U E M.

Lemma 3.1. Assume (hI). Iflimlsl-tooh(s)/s == +00 (h is superlinear) and
)'(s) :== sh(s) - 2H(s) is a strictly convex function, then

(i) M i- 0 is a C'<submanijold of HI (JR..N) of codimension 1 and 0 tf. M;

(ii) M is a natural constraint for ip, that is, 0 i- u E HI (JRN) is a critical

point of <p if and only if u E M and u is a critical point of <pIM.



3 A Problem in jRN 105

Proof: (i) In view of (hI), the functional e is clearly of class C 2 on HICffi.N ) .

Let 0 -I- v E HI (IRN) and consider the function 0 < t r-+ 1/J (tv) . Again, in

view of (hI) and Sobolev embedding we claim that 1/J(tv) > 0 for t > 0 small.

Indeed, we have

Ijh(tv)tv dxl < Et
2}v12dx + p ~ 1CEltJP }v1P dx

<Et
2
11v l1

2 + DEltIPllv/lP

so that, by picking 0 < E < 1, we obtain

for all t > 0 sufficiently small.

Similarly, it is not hard to see that the superlinearity of h together with

the fact that h(8)8 ~ 0 imply that limt---+oo 1/J (tv) == - ex). Therefore, there

exists t such that tv E M. In particular, M -I- 0.
Next, from the strict convexity of ,(8) == 8h(8) - 2H(8) we have

" (8) == 8h' (8) - h (8) < 0 if s < 0 ,

,'(8) == sh' (8) - h(8) > 0 if 8 > 0 ,

hence

h'(s) > h(s) Vs#-O .
8

We claim that 1/J' (u) -I- 0 for all u EM. Indeed, if u E M is such that

1/J'(u) . w = 2(u,w) - jh(U)W dx - jh'(U)UW dx = 0

for all W E HI(IR N ) , then, by picking w == u, it follows that

so that

(3.2)

211uI1 2 > 2 jh(U)U dx ,

in view of (3.2). This is in contradiction with the fact that u E M. Therefore,

M is a CI-submanifold of HI (IRN ) of codimension 1.

We now show that 0 ~ M. As before, (hI) and Sobolev embedding imply,

for u E M and E > O~
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IIuI1 2
= jh(U)U dx <E }u12

dx + p ~ 1c. }uIP dx

<Ellul1 2 + DEllullP

where DE > O. By taking (say) E == 1/2 and recalling that u =1= 0 by definition

of M, we obtain
1Ilullp

-
2 2: -- > 0 Vu EM.

2DI / 2

Therefore, 0 t/:. M.

(ii) Let 0 =1= u E HI (JRN) be a critical point of ip. Then,

<p'(u) .W= (u,w) - jh(U)W dx = 0 't/w E H 1(JRN
) ,

and choosing w == u yields

IIuI1 2
- !h(U)U dx = 0 ,

that is, u E M. Conversely, if u E M is a critical point of cpIM, then

cp' (u) == A~' (u )

for some Lagrange multiplier A E JR, that is,

(u,W) - !h(U)W dx =,A [2(U,w) - !h(U)W dx - !h'(U)UW dX]

for all W E HI(JRN). Once again, choosing w == u and recalling that u E M
we obtain

o= 2,Allu11 2 -,A [!h(U)U dx + !h'(u)u2
- ,

2,Allu11 2 = ,A [!h(U)U dx + !h'(u)u2 dX] .

Since the above expression in square brackets is greater than 2Jh(u)u dx by

(3.2), we necessarily must have A == 0 in order not to contradict the fact that

u E M. Thus u is a critical point of ip. D

Lemma 3.2. Under the assumptions in Lemma 3.1, define

c, :== inf sp (v) .
vEM

Then, c, > 0 and c, is the ground-state level for Problem (3.1), that is,

c, == inf{ cp(u) I u =1= 0 is a solution of Problem (3.1) } .
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Proof: We start by observing that the functional .p has mountain-pass ge-

ometry, that is,

(i) There exists a, 8 > 0 such that <p(u) 2: a if Ilull == 8;

(ii) There exists Vo E HI (JRN) such that Ilvoll > 8 and <p(vo) :S o.

Indeed, as in Lemma 3.1, using (hI) and Sobolev inequality yields (with 0 <
£ < 1)

Therefore (i) holds true with Ilull == 8 > 0 sufficiently small so that the right-

hand side a == (1 - £)82 / 2 - D E8P of the above inequality is positive.

Similarly, as in Lemma 3.1, we obtain (ii) from the fact that, for each

o i= v E HI(JRN), we have

lim <p(tv) == -00 .
t-HX)

Moreover, as also observed before, the strict convexity of [h(s)s-2H(s)] gives

hi(s) > h(s) Vs f. 0 .
s

This in turn means that the function s f---+ h(s)/ s is strictly decreasing on

(-00,0] and strictly increasing on [0,(0). Therefore, for each fixed Ilwll == 1,

the real-valued function

o< t f--+ <p(tw) = ~e - !H(tw) dx

has a unique critical point i == i(w) > 0 (its global maximum). And since

i == jh(iw)w dx, we can characterize the Nehari manifold as follows:

M == { i(w)w I Ilwll == 1 } .

Next, letting r :== { 1 E C([O, 1], HI(JRN)) 11(0) == 0, <P(1(1)) < 0 }, it

follows from (i), (ii) that the mountain-pass level of <p

eM P :== inf sup <p(1(t))
rEf O:::;t:::;1

is positive. In particular,

In fact, in our present case, we have the equality
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since, by arguments similar to those we have been using so far, it is not hard to

show that for any admissible path, E r one has ,eE) E M for some 0 < f < 1.

D

Lemma 3.3. Assume (hI)' Then any minimizing sequence (un) for c, is

bounded.

Proof: Let Un E M be a minimizing sequence for c*:

(3.3)

(3.4)

Claim: There exists C > 0 such that Ilunll ~ C Vn E N. Suppose by contra-

diction that (for some subsequence, still labeled Un for simplicity) we have

tn :== Ilunll ~ 00. Picking 6 > 2, and letting V n :== yf5C;un / tn , it follows that

Ilvn 11 2 == 6c* and there exists v E HI (IRN ) such that

{

Vn ~ v weakly in HI (IRN )

vn ~ v strongly in LiocCIRN
) (for any 2 ~ q < 2*)

V n ~ v a.e. in IRN .

Sub-Claim: v =I o.
Indeed, since (vn ) is bounded in HI(IRN ) , we consider the quantity

(3.5)

If a == 0, then Lions lemma says (passing to a subsequence, if necessary) that

Vn ----t 0 strongly in Lq(IRN ) for all 2 < q < 2* and, since (hI) implies

we obtain JH(vn ) dx ~ CE+o(l), where C == 6c*/2. Since E > 0 was arbitrary

we conclude that

(3.6)

On the other hand, since Un belongs to M and V n == TnUn, we have that
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which is in contradiction with (3.6) since fJ > 2 by our choice. Therefore, we

must have a > 0 in (3.5), so that

(3.7)

for n large, where vn(x) :== vn(x + zn) for some Zn E ]RN, that is,

where we recall that we are still assuming (by contradiction) that t-: == Ilun II ---+

00. Therefore, since Ilvn II == Ilvn II is bounded, passing to a subsequence (if

necessary), we have that

{

-: ~ vweakly in H 1(]RN)

vn ---+ v strongly in Lioc(]RN) (for any 2 ::; q < 2*)

vn ---+ va.e. in]RN.

where v# 0 in view of (3.7).

Next, we divide (3.4) by t; to get

~ - jH(Un ) dx = 0(1)
2 t; ,

or, by translation invariance,

~ - jH(Un ) dx = 0(1)
2 t~ ,

or still, in view of (3.8),

jH (Un ) ---2 d == 6c* (1)
---2 V n X + 0 .
Un 2

(3.9)

However, since limlsl-too H(s)j s2 == +00 by (h2 ) and since v# 0, we conclude

by the Fatou lemma that

which is in clear contradiction with (3.9).

Finally, since either case a == 0 or a > 0 leads to a contradiction, we

conclude that (un) is bounded in H 1(]RN). D

Our next result yields a bounded Palais-Smale sequence for e.p at the level c..
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Lemma 3.4. Assume (hI). Given any minimizing sequence (un) [or c., there

exists another minimizing sequence (vn ) such that II \7<.p(vn ) II == o(1).

Proof: Let (un) be a minimizing sequence for c*. Then, (un) is bounded by

Lemma 3.3 and, in view of the Ekeland variational principle [37] (see Appendix

and Corollary A.3), there exists another minimizing sequence (vn ) for c, such

that

and

Ilvn - Un II == 0(1) (3.10)

where PTvM denotes the orthogonal projection onto the tangent space to M

at v E M, that is, PTvMh :== h - (h, Nv)Nv, where h E H1(JRN) and N; :==

11~~i~jll is a unit normal to M at v. Clearly (3.10) implies that (vn ) is also a
bounded sequence. The rest of the proof is somewhat technical and consists

in showing that

for some other bounded minimizing sequence (vn ) , as required. We start with

the following

Claim 1: 11\7<p(vn)1I and 11\7'ljJ(Vn) II are bounded.

Indeed, let 2t == 2N/(N + 2) be the conjugate exponent of 2* and let
A == (-~ + 1)-1 : L2t C H- 1 ~ HI C L2* be the bounded linear operator

defined by (Af, z) :== (f, Z)2 Vz E HI. Then, we have

\7<p(u) == u - A(h(u)) ,

\71/J(u) == 2u - A(h(u) + h'(u)u) ,

so that (hI) yields

Similarly, we have

IIA(h'(u)u)11 :::; C(llull + lIuIIP -
1

) .

Therefore, Claim 1 follows since Ilvn II is bounded.

Next, taking the inner-product of PTvnM\7<P(Vn) with \7<p(vn) and keeping

in mind that 1I\7<p(vn)1I is bounded, we obtain
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that is,

(3.12)

Similarly, taking the inner-product of PT vn M \Jr..p(vn) with Vn and recalling

that (\Jr..p(vn),vn) == 'ljJ(vn) == 0 (since Vn EM), we obtain

or

(3.13)

where An is bounded from below away from zero by the previous claim.

Claim 2: en > 0 is bounded from below away from zero.

Indeed, since IIvnl1
2 == jh(vn)vn dx, we can write

Now, as in Lemma 3.3, we consider the quantity

(3.14)

(3.15)

and rule out the possibility ex == 0 as it would lead to the contradiction

limJH(vn) dx == lim Jh(vn)vn dx == 0 and limr..p(vn) == O. Thus, we must

have ex > 0 and

r Ivnl
2 dx '2 ~ > 0

} Bl(O) 2

for n large, where vn(x) :== vn(x+zn) for some Zn E ]RN. As usual, by passing

to a subsequence, if necessary, it follows that

{

vn ~ v weakly in H 1(JRN)

vn ~ v strongly in Lioc(JRN) (for any 2 ::; q < 2*)

vn ~ va.e. in ]RN.

(3.16)
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where vi- 0 in view of (3.15). Since we have

by translation invariance then, by assuming that Cn == 0(1), we would obtain

by Remark 3.2 and the Fatou lemma that v == 0, a contradiction. Thus, Cn

is bounded from below away from zero and Claim 2 is proved.

Finally, since both An and Cn are bounded from below away from zero,

we conclude from (3.13) that

and, from (3.12) and translation invariance, that

We have obtained a minimizing sequence (vn ) c M for c, such that

II\7cp(vn ) II == 0(1), that is, a Palais-Smale sequence for .p at the level

c, :== inf v EM cp(v). D

We are now ready for the main existence result of this section.

Theorem 3.5. Assume (hI), (h2 ) . Then c, == infv E M ep(v) > 0 is attained.

In fact, there exists a minimizing sequence (vn ) that converges weakly to a

minimizer of c*. In particular, Problem (3.1) has a nonzero solution v E

HI (IRN ) n C2 (IRN ) .

Proof: Let (un) be a minimizing sequence for c*. In view of Lemma 3.3 and

Lemma 3.4, there exists another minimizing sequence (vn ) c M satisfying

(3.16). In particular, we have

hence

~ jh(V)V - 2H(V)] dx ~ c,

by convexity of [sh(s) - 2H(s)] (cf. (h2 ) ) . In addition, since

(3.17)
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for all () E C~(lRN), and keeping (hI) and (3.16) in mind, we obtain from
q

the Vainberg theorem [72], Chapter 2.2, that h(vn ) ~ h(v) in it: (IR.N ) for

p - 1 ::; q < 2* and, hence, that

<p' (v) . () == 0 ,

for all () E C~ (IR.N ) . Therefore, we conclude that v i=- 0 is a (weak, hence

strong) solution of (3.1), and it follows that vEM. In particular, by definition

of c, and from (3.17) we also conclude that <p(v) == c*. D
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Lack of Compactness for Bounded n

In this chapter we present a simple situation of a variational problem on a

bounded domain 0 C ffi.N for which the corresponding functional does not

satisfy the Palais-Smale condition (PS)c at certain levels c E ffi.. We are

referring to the so-called strongly resonant problems, a terminology introduced

in Bartolo-Benci-Fortunato [8] for a resonant problem where the nonlinearity

g(s) was such that limlsl-+oo g(s) == 0 and limlsl-+oo G(s) == f3 < 00. Such

problems did not fall under the Landesman-Lazer [49] or the Ahmad-Lazor-

Paul [3] framework. In [8], the authors used the weaker version of (PS) due to

Cerami [24] in order to handle those problems (see condition (Ce) introduced

in Exercise 2 at the end of Chapter 3). Here, we introduce a large class of

strongly resonant problems and show that the standard (PS) condition can be

used to handle such problems by determining the exact levels c E ffi. where it

fails. We follow [7].

1 (PS)c for Strongly Resonant Problems

Let us consider the Dirichlet problem

{
-~u == AkU + g(x, u)

U == 0 on ao ,
in 0

(1.1)

where 0 is a bounded domain in ffi.N, N ~ 3, Ak is an eigenvalue of -~ in 0

with a Dirichlet boundary condition and 9 : 0 x ffi. ~ ffi. is a Caratheodory

function with subcritical growth. We call (1.1) a strongly resonant problem

(at Ak) if the following conditions hold:

Ig(x,s)1 ::; h(x) for some h : Lq(O), q ~ ~~2' and g(x,s) ~ 0 as Isl-t
00, a.e. in 0; (91)
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IG(x,s)1 ~ h1 (x) for some hI E L 1(0), and G(x,s) -----7 G±(x) as s ~

±oo, a.e. in O. (g2)

We remark that (gl), (g2) hold if, for example, limlsl~oo g(x, s) == 0 and

limlsl~ooG(x, s) == Goo E (-00, +(0), uniformly for x E O. Such a situation is

in sharp contrast with the one considered by Ahmad-Lazer-Paul (see Section

3 of Chapter 5), in which one had G± == +00 (or G± == -(0). Indeed, the

following lemma characterizes the values c E ffi. at which the functional

cp(u) = ~ { (lV'uI 2
- AkU2) dx - ( G(x, u) dx

2 in in (1.2)

== q(u) - N(u) , u E HJ(O)

corresponding to (1.1) satisfies (PS)c. Moreover, it explains why (PS)c holds

true for all c E ffi. in the Ahmad-Lazer-Paul situation.

Lemma 1.1. Assume (gl), (g2). Then, <p satisfies (PS)c if and only if

c~ r, :== {- ( G+(x) dx - ( G_(x) dx I v E Nk , Ilvll = I} ,
i[v>o] i[v<o]

where IIvll 2 == In l\7vl 2 dx, as usual, and Ni;
eigenspace associated with Ak.

N (L - Ak) denotes the

Proof: Let us denote by X+, X- the subspaces of X :== HJ(O) where the

quadratic form q is positive definite, negative definite, respectively, and write

X O == Nv; so that

Since 9 has subcritical growth, the functional ep satisfies (PS)c if and only

if any sequence {un} C HJ such that

(i) <p(un) -----7 C,

(ii) <p' (un) -----7 0,

has a bounded subsequence. Let us assume that {un} satisfies (i), (ii), but

(iii) IIUn II -----7 00,

and prove that c E f k. Writing Un == U~ +U;;:- +u~, where u~ E X+, u;;:- E X-,
u~ E X O == Ni: and using (ii), we have!

1 We note that, in this chapter, the notations u+ and u- do not stand for the
positive and negative parts of u.
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where En == 11<p'(un)IIH-l ---+ O. Using (91) and the fact that q' :s 2N/(N -2),

if N 2: 3 (where q' == q/ (q - 1) denotes the conjugate exponent of q), we can

estimate the integral term above as

in view of the Holder and Sobolev inequalities. Therefore, (1.3) gives

so that {u~} is bounded in HJ. Similarly, we show that {u;;,} is also bounded.

Thus, by (iii), we must have Ilu~11 ----t 00 and, letting Un :== un/llu~ll, it follows

that Un ---+ V E Ni. with IIvll == 1. Without loss of generality, we may assume

that un(x) ---+ v(x) a.e. in Sl. Therefore,

un(x) ---+ +00 a.e. in [v > 0] :== {x E Sl I v(x) > O} ,

un(x) ---+ -00 a.e. in [v < 0] :== {x E Sl I v(x) < O} .

Next, by (92), we can apply the Lebesgue theorem to the sequence

G(x, un(x)) to obtain

lim {G(x,un(x))dx= { G+(x)dx+ { G_(x)dx.
n~oo in i.- i.:

Therefore, in order to show that c E f k , it suffices to verify that Ilu;11 ---+ o.
For that, we prove that the integral term in (1.3) (as well as the corresponding

integral term in 1(\7<p(un),u;;,) I) goes to zero.

Indeed, using the Holder inequality and Sobolev embedding as in (1.4), we

obtain (with q ~ 2N/(N + 2) if N ~ 3)

and, since g(x, un(x)) ---+ 0 a.e in n with Ig(x, un(x))1 s h(x) a.e in Sl in

view of (gl), an application of the Lebesgue theorem once more implies the

desired result that c E f k if (i)-( iii) hold.

On the other hand, we also observe that <p does not satisfy (PS)c if c E fk.

Indeed, taking v E Ni: Ilvll ==.1, we have
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<p(tv) = -lG(x, tv(x)) dx ,

(\7<p(tv), h) =-l g(x, tv(x))h(x) dx 1

for any t E JR and h E HJ. Letting t ---+ +00 and using (gl), (g2) together

with the same arguments above, we conclude that

<p(tv) ------t - ( G+(x) dx - { G_(x) dx ,
J[v>O] J[v<O]

'P'(tv) ----t 0 . D

Remark 1.1. Note that in the special case when G±(x) == G± (constants)

and Ak is a simple eigenvalue, say Ni. == span{ 'Pk} with II'Pk II == 1, the set f k
has only two values (or perhaps one, if they coincide):

where Qk == 1['Pk > 0]1, (3k == 1['Pk < 0]1· Moreover, if k == 1, we get

where we are denoting the measure of a set S by lSI.

2 A Class of Indefinite Problems

In preparation for our existence result in the next section concerning a class

of strongly resonant problems, we present in this section some preliminary

results involving an elliptic problem with an indefinite linear part and an al-

most monotone nonlinearity. More precisely, we consider our previous Prob-

lem (1.1) in a bounded domain 0 C JRN where the nonlinearity g(x, u) is a

Caratheodoru subcritical function satisfying the lower estimate

(g(x, s) - g(x, t))(s - t) 2: -6(s - t)2, a.e. x E f2, Vs, t E JR, (go)

for some 0 < 6 < Ak - Ak-I, k 2: 2 (if k == 1 we only assume that Al > 6 > 0).

Here we are numbering the eigenvalues of (-~, HJ (0)) allowing repetition,

but the above consecutive indices are taken such that Ak-I < Ak.

Remark 2.1. Note that (go) simply means that the right-hand side f(x, u) ==
AkU +g(x, u) of (1.1) is a monotone function which does not interact with the
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eigenvalues AI, ... Ak-I. Therefore, in the present situation, it is natural to use

the so-called Liapunov-Schmidt decomposition method to study our problem.

As we shall see, this will reduce our pertinent indefinite functional

cp(u) =! r [(IV'uI 2
- AkU2) - G(x,u)] dx = !(Lu,u) - rG(x,u)dx2in 2 in

(2.1)

on X :== HJ (0) to another functional7jJ(v) on a closed subspace V of X whose

critical points are in a one-to-one correspondence with the critical points of

cp(u). In addition, for the class of strongly resonant problems to be considered

in the next section, the reduced functional 7jJ(v) will turn out to be bounded

from below.

For our preliminary results, let us consider the previous orthogonal de-

composition X == X- EB X O EB X+, where X O == Ni. == N(L - Ak) is the kernel

of the operator L : HJ(O) ---t HJ(O) defined in (2.1), and X+ (resp. X-)

denotes the subspace where L is positive definite (resp. negative definite).

We denote the respective orthogonal projections by Po, P+ and P_. Finally

we will let

V == X O EB X+, W == X- ,

so that X == V EB W, and we will write Pv == Po + P+, Pw == P_ for the

corresponding orthogonal projections.

Lemma 2.1. Assume (go). Then, for each v == uo + U+ E V, the functional

W :3 W r----t -cp(w + v) is u-conuex on W, that is, the mapping

W r----t -PwV'cp(w + v)

is strongly u-tnonotone on W, where J-l == ~k-8 - 1 > o.
/\k-l

Proof: We want to show that

Indeed, in view of (2.1) and (go), we have

(\7cp(WI +v) - V'cp(W2 +v), WI - W2)

= (L(WI +V)-L(W2+V),WI- W2)-k[g(X,WI +v)~g(X,W2+V)](WI-W2)dx

= k[(V'(WI +v) - V'(W2+V)) .(V'(WI -W2)) -Ak ((WI +v) - (W2+V) )(WI -W2)]dx
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-in [g(X, WI + v) - g(X, W2 +V)](WI - W2) dx

< IlwI - w211 2- Ak in IWI - w212dx + 8in IWI - w212
dx

= IIWI - w211 2 - (Ak - 8)in IWI - w21 2dx

(
Ak - 6) 2 2:s; 1 - -- II WI - w211 == -ttllWl - W211
Ak-l

where, in the last inequality, we used the fact that In l\7wl 2 :s; Ak-l In IwI 2

for all w E W == X _ . D

Now, in view of Lemma 2.1 and a classical result for tt-monotone maps

(see [4, 22]), for each v E V there exists a unique w == O(v) E W such that

Pw \7<p(0(v) + v) == 0 .

Moreover, it is shown in [4, 22] that the map V ::1 v f------+ O(v) E W is continu-

ous, the functional

1/;(v) == <p(O(v) + v) == sup <p(w + v)
wEW

is of class C 1 (together with rp), and

"Vrp(u) == 0 if and only if u == B(v) + v and "V1jJ(v) == 0 . (2.2)

Remark 2.2. Unlike in the usual Liapunov-Schmidt reductions, note that

our reduced functional to is defined on the infinite-dimensional space V.

Lemma 2.2. The reduced[unctiotial sb : V ----+ ffi. is weakly l.s.c ..

Proof: It suffices to observe that

1jJ(.) == sup <p(w + .)
wEW

is the supremum of the family {<p(w+·) I W E W} and each functional <p(w+·)
is weakly lower-semicontinuous on V. D

Lemma 2.3. If <p : X ----+ ffi. satisfies (PS)c for some c E ffi., then also

1jJ : V ----+ ffi. satisfies (PS)c.
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Proof: Let Vn E V be such that

Letting ui.; :== B(vn ) , this means that

Since by definition Pw\l~(wn+ vn) == 0, it follows that

and hence, up to a subsequence, we have that

for some Woo E W, Voo E V.

3 An Application

D

Still considering our original Problem (1.1) with the nonlinearity 9 being al-

most monotone (i.e., satisfying condition (go)), we observe that the functional

U f-------' -N(u) = - LG(x, u) dx (3.1)

is bounded from below whenever limsuPs----t±oo G(x.s) < +00 uniformly a.e.

x E O. In fact, we are going to assume that 9 : 0- x IR -----t IR is continuous

and satisfies

limlsl----too g(x, s) == 0 uniformly for a.e. x EO,

limlsl----too G(x, s) == 0 uniformly for a.e. x EO,

so that Problem (1.1) is a strongly resonant problem at the eigenvalue Ak.

Lemma 3.1. Assume 9 satisfies (go) (i.e., 9 is almost monotone).

(i) If g(x, 0) == 0, then 'ljJ(0) == 0;

(ii) If (g2) holds, then 'ljJ(uo) -----t 0 as Iluo II ~ 00, uO E XO == Nk .

Proof: (i) Since u == 0 is a solution of Problem (1.1), we have by (2.2) that

\l~(0) == 0, hence v == 0, B(O) == o. In particular, 'ljJ(0) == o.

(ii) Let us recall the definition of N(u) and the quadratic form q(u) in (1.2).
Then
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since q(un) == O. On the other hand, we have

7jJ(un) == sup cp(w + un) 2: cp(uo).
wEW

Therefore, it follows from (3.2) that

hence

(3.3)

which shows that Iq(O(uO))1 is bounded in view of (92). Since -q is coercive

on W, we conclude that

(3.4)

Next, we prove the following

Claim: limlluoll---+oo N(O(uO) + un) == limlluoll---+oo N(uO) == o.
Indeed, assuming Ilu~11 ----+ 00, we have in view of (3.4) that

hence

IIO(u~) + u~ II ----+ 00 .

Letting Vn :== (O(u~) + u~)/IIO(u~) + u~11 E WEB N(L - Ak) and recalling that

W EBN(L- Ak) is finite dimensional, we may assume (passing to a subsequence,

if necessary) that Vn ----+ v for some v E WEB N(L - Ak) with Ilvll == 1. Thus

v(x) ¢.0 a.e. and O(u~) + u~ ----+ +00 on [v > 0] (resp. O(u~) + u~ ----+ -00
on [v < 0]). In view of (92), an application of Lebesgue's theorem gives

limlluoll---+oo N(O(uO) +uO) == O. Similarly, we show that limlluoll---+oo N(uO) == 0,

which proves the claim.

Finally, from (3.3), (3.2), and the above claim we conclude that

lim 7jJ(un) == 0 .
Iluoll---+oo

Now, for each r > 0, let us denote by Or the cylinder in V given by

D
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and define

m r :== inf 7/;(v) .
»cc;

We note that

where the above quadratic term is coercive on X+ and the latter nonlinear

term is uniformly bounded in view of assumption (g2). Therefore,7/; is coercive

on each Or and, since 7/; is weakly lower-semicontinuous by Lemma 2.2 , it

follows that

m r :== inf 7/;(v) > -00
»e.o;

and, in fact, m; is attained. Also note that

m :== inf 7/;(v) > -00
vEV

and, clearly,

m < in; for all r > o.

We are now ready to prove the main existence result of this section.

(3.5)

Theorem 3.2. Let g(x, 0) == 0, so that u == 0 is a solution of (1.1). If (go),
(gl), and (g2) hold then (1.1) has a nonzero solution u E HJ .

Proof: In view of Lemma 1.1 the functional c satisfies (PS)c for all c =1= O. It

follows from Lemma 2.3 that the reduced functional to : V ---+ IR also satisfies

(PS)c for all c =1= 0 and, from Lemma 3.1(i), that

m ~ 7/J(0) == 0 .

Case 1: m < o. In this case, since 7/J satisfies (PS)m, we have that m < 0 ==

7/J(O) is a critical value of 7/J, that is, there exists v E V such that

7/;(v) == m < 0 , \l7/J(v) == 0 .

In particular, v =1= 0 since 7/J(O) == 0 by Lemma 3.1(i). It follows from (2.2)

that

\l4J(O(v) + v) == 0 ,

that is, U == O(v) + v =1= 0 is a solution of (1.1).

Case 2: m == O. In this case fix R > 0 and note that, by (3.5), we have
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If tnn == 0, then 1jJ(~) == 0 for some VR == u~ + u~ E CR. Since we are

assuming in this case that m == inf v E v 1jJ(v) == 0, we conclude that VR # 0

is a critical point of 1jJ and, as in Case 1, that UR == (}(VR) +VR is a nonzero

solution of (1.1).

On the other hand, let us assume that ttin > o. Then, by Lemma 3.1(ii),

there exists uo E N k such that Iluoll > Rand

Consider the class of all paths in V joining 0 and uO, Le.,

and define

C:== inf max 1jJ(1 (t)) .
,Er tE[O,l]

Clearly 1([0,1]) nCR # 0 for any 1 E f and, hence,

Since 1jJ satisfies (PS)c, it follows as in the proof of the mountain-pass theorem

that is> 0 is a critical value of ib, that is,

1jJ(v) == nin > 0 , \l1jJ(v) == 0

for some 0 # v E V. Therefore, as in Case 1, we conclude that u == O(v) + v
is a nonzero solution of (1.1). D

Remark 3.1. We point out that the above proof shows more than existence

of a nonzero solution U E HJ for problem (1.1). Namely, it shows that

(i) either (1.1) has a solution U E HJ at an energy level c == <p(u) # 0 ,

(ii) or else, (1.1) has uncountably many solutions U r E HJ, r > 0, at the zero

energy level c == <p(ur ) == o.
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Appendix

1 Ekeland Variational Principle

In this appendix we present a beautiful result, due to 1. Ekeland, that gives

the most information one can get from a lower-semicontinuous function <p :

M ---t ffi. U { +oo} which is bounded from below on a complete metric space. It

is his celebrated variational principle [37], which has far reaching applications

in various areas of analysis and, among other things, explains the significance

of the Palais-Smale condition.

Ekeland Variational Principle. Let (M, d) be a complete metric space and

.p : M ---t ffi. U { +oo} be a lower-semicontinuous function which is bounded

from below. Suppose E > 0 and it are such that

<p (it) ::; inf <p + E.
M

Then, given any A> 0, there exists u).. E M such that

and

Proof: Writing d).. == ~ for simplicity, it is easy to see that

(1.1)

(1.2)

(1.3)

(1.4)
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«< v if and only if cp(U):S cp(v) - Ed)..(u,v)

defines a partial order on M. Then, letting U1 == U, let us define recursively a

nonincreasing sequence of subsets of M,

by setting

Sl :== {u E M Iu:S U1}

S2 :== {u E M Iu :S U2} where U2 E Sl satisfies cp(U2) :S inf .p + ~ ,
8 1 2

and so on,

Sn := {u E M IU :S un} where Un E Sn-l satisfies ep(un):S inf .p+ nf_l.
8 n - 1 2

Claim: (i) Each Sn is closed; (ii) diam (Sn) ~ 0 as n ~ 00. Indeed:

(i) If Wk ~ W E M and Wk E Sn, then Wk :S Un and

by the lower-semicontinuity of ip, hence W E S«.

(ii) If W E Sn, then W :S u., and, by the choice of Un, it follows that

and
E

cp(un) ~ cp(w) + 2n- 1 .

These two last inequalities imply that

so that limn-too diam (Sn) == O. Since M is complete, one has

00

for a unique u).. E M. Now, we claim that u).. satisfies (1.2), (1.3) and (1.4).

Indeed, (1.2) is obvious and, by uniqueness of u).., one has U i u).. for all

U =I U)... In other words, one has
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which shows that (1.4) holds true. Finally, (1.3) follows by passing to the

limit in the inequality

n-1 n-1

d).,(u, un) < L d).,(Uj, UHt} < L ;j .
j=l j=l

D

A useful choice of Aoccurs when A== vIE, namely, one has the following:

Corollary A.I Let (M, d) be a complete metric space and cp : M ---+

IR U { +oo} be a lower-semicontinuous function which is bounded from below.

Suppose E > 0 and u are such that

Then, there exists fJ E M such that

cp(fJ) :s; cp(u) ,

d(fJ, u) :s; vIE ,
and

cp(fJ) < cp(u) + vIE d(fJ, u) V u =1= fJ .

When M has a linear structure, say M is a Banach space X, and .p is
differentiable, one obtains the following consequence of Ekeland variational

principle:

Corollary A.2 Let X be a Banach space and cp : X ---+ IR be a differentiable

functional which is bounded from below. Given a minimizing sequence Un for

ip, there exists another minimizing sequence V n such that

(1.5)

(1.6)

and

(1.7)
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Proof: By applying the previous corollary with En == max{ *', cp(Un ) - c},

where c == infx ip, we obtain (1.5) and (1.6) readily, as well as the inequality

Now, the choice U == Vn + th with Ilhll == 1 and t > 0 yields

cp(Vn + th) - cp(vn ) > -t~,

so that, dividing by t and letting t ---+ 0 one gets

for all hEX with Ilhll == 1. This clearly implies (1.7). D

A particular situation which we used in Chapter 10 involved a C1_

functional on a Hilbert space E, and a closed C1-submanifold M c E of

codimension 1 defined by a level set of another C1-funct ional on E. Namely:

Corollary A.3 Let cp E C1(E, IR) (E a Hilbert space) and let M == {u E

E I~(u) == O}1, where ~ E C 1(E, IR) with \l~(u) -I- 0 for all U E M. Assume

that cp is bounded from below on M, and let Un E M be a minimizing sequence

for cplM. Then, there exists another minimizing sequence Vn E M such that

(1.8)

(1.9)

and

(1.10)

as n ---+ 00.

Proof: As before, by applying Corollary A.1 with En == max{ *', cp(Un ) - c},

where now c == inf M cp, we readily obtain (1.8) and (1.9), as well as the

inequality

(1.11)

Now, for each Vn E M and each tangent vector h E TvnM, we have a mapping

1 : (-1,1) ------7 M such that 1(0) == Vn and 1'(0) == h. From (1.11) with

U == 1(t), we obtain

1 Actually, in Chapter 10, we removed an isolated point (u == 0) from M.
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cp(,(t)) - cp(vn ) >-~ 1I,(t) - vnll ,

so that, dividing by t > 0 and letting t --+ 0 one gets

Therefore, from this it follows that

and (1.10) also holds true. D

Remark 1.1. Given v E M, we note that \7(cpIM)(v) is the projection of

\7cp(v) over the tangent space TvM, that is,

\71/J(v) \71/J(v)
\7(ipIM)(v) = \7ip(v) - (\7ip(v), 11\7'ljJ(v) II ) 11\7'ljJ(v) II .
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