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with love, gratitude, and admiration



True Laws of Nature cannot be linear.

Albert Einstein

. . . the progress of physics will to a large extent depend on the progress
of nonlinear mathematics, of methods to solve nonlinear equations . . . and
therefore we can learn by comparing different nonlinear problems.

Werner Heisenberg

Our present analytical methods seem unsuitable for the solution of the im-
portant problems arising in connection with nonlinear partial differential
equations and, in fact, with virtually all types of nonlinear problems in pure
mathematics. The truth of this statement is particularly striking in the field
of fluid dynamics. . . .

John Von Neumann

However varied may be the imagination of man, nature is a thousand times
richer, . . . Each of the theories of physics . . . presents (partial differential)
equations under a new aspect . . . without these theories, we should not know
partial differential equations.

Henri Poincaré

Since a general solution must be judged impossible from want of analysis,
we must be content with the knowledge of some special cases, and that all
the more, since the development of various cases seems to be the only way
to bringing us at last to a more perfect knowledge.

Leonard Euler

. . . as Sir Cyril Hinshelwood has observed . . . fluid dynamicists were di-
vided into hydraulic engineers who observed things that could not be ex-
plained and mathematicians who explained things that could not be ob-
served.

James Lighthill
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A teacher can never truly teach unless he is still learning himself. A lamp
can never light another lamp unless it continues to burn its own flame. The
teacher who has come to the end of his subject, who has no living traffic with
his knowledge but merely repeats his lessons to his students, can only load
their minds; he cannot quicken them.

Rabindranath Tagore
An Indian Poet

1913 Nobel Prize Winner for Literature

The previous two editions of my book were very well received and used as a se-
nior undergraduate or graduate-level text and research reference in the United States
and abroad for many years. We received many comments and suggestions from many
students, faculty, and researchers around the world. These comments and criticisms
have been very helpful, beneficial, and encouraging. This third edition is the result
of the input.

Another reason for adding this third edition to the literature is the fact that there
have been major discoveries of new ideas, results and methods for the solutions of
nonlinear partial differential equations in the second half of the twentieth century.
It is becoming even more desirable for mathematicians, scientists, and engineers to
pursue study and research on these topics. So what has changed, and will continue
to change, is the nature of the topics that are of interest in mathematics, applied
mathematics, physics, and engineering, the evolution of books such as this one is a
history of these shifting concerns.

This new and revised edition preserves the basic content and style of the second
edition published in 2005. As with the previous editions, this book has been revised
primarily as a comprehensive text for senior undergraduates or beginning graduate
students and a research reference for professionals in mathematics, engineering, and
other applied sciences. The main goal of the book is to develop required analytical
skills on the part of the reader, rather than to focus on the importance of more ab-
stract formulation, with full mathematical rigor. Indeed, our major emphasis is to
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provide an accessible working knowledge of the analytical and numerical methods
with proofs required in mathematics, applied mathematics, physics, and engineering.

In general, changes have been made to modernize the contents and to improve the
exposition and clarity of the previous edition, to include additional topics, comments,
and observations, to add many examples of applications and exercises, and in some
cases to entirely rewrite and reorganize many sections. There is plenty of material in
the book for a year-long course or seminar. Some of the material need not be covered
in a course work and can be left for the readers to study on their own in order to
prepare them for further study and research. This edition contains a collection of over
1000 worked examples and exercises with answers and hints to selected exercises.
Some of the major changes and additions include the following:

1. Many sections of almost all chapters have been revised and expanded to mod-
ernize the contents. We have also taken advantage of this new edition to correct
typographical errors and to include several new figures for a clear understanding
of physical explanations.

2. Several nonlinear models including the Camassa–Holm (CH) equation, the
Degasperis–Procesi (DP) equation, and the Toda lattice equation (TLE) have
been presented with their physical significance in Chapter 2. Included are also
new sections on the small-amplitude gravity-capillary waves on water of finite
and infinite depth, the energy equation and energy flux.

3. A new section on the Lorenz nonlinear system, the Lorenz attractor, and deter-
ministic chaos has been added in Chapter 6.

4. Included is a new section on the Camassa–Holm equation, the Degasperis–
Procesi equation, and the Euler–Poincaré (EP) equation in Chapter 9 to describe
the wave breaking (singular) phenomena. A new section on the derivation of the
KdV equation for the gravity-capillary wave, the gravity-capillary solitary wave
solutions, and the two-dimensional periodic flow in an inviscid, incompressible
fluid with constant vorticity has been added. Special attention is given to both
analytical and computational solutions of these problems with physical signifi-
cance.

5. A new example describing nonlinear quasi-harmonic waves and modulational
instability has been added in Chapter 10.

6. The nonlinear lattices and the Toda lattice equation have been treated in some
detail at the end of Chapter 11.

7. All tables of Fourier transforms, Fourier sine and cosine transforms, Laplace
transforms, Hankel transforms, and finite Hankel transforms have been revised
and expanded so that they become more useful for the study of partial differential
equations.

8. In order to make the book self-contained, two new appendices on some spe-
cial functions and their basic properties, Fourier series, generalized functions,
Fourier and Laplace transforms have been added. Special attention has been
given to algebraic and analytical properties of the Fourier and Laplace convo-
lutions with applications.
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9. The whole section on Answers and Hints to Selected Exercises has been revised
and expanded to provide additional help to students.

10. The entire bibliography has been revised and expanded to include new and cur-
rent research papers and books so that it can stimulate new interest in future
study and research.

11. The Index has been revised and reorganized to make it more useful for the reader.

Some of the highlights in this edition include the following:

• The book offers a detailed and clear explanation of every concept and method that
is introduced, accompanied by carefully selected worked examples, with special
emphasis given to those topics in which students experience difficulty.

• A wide variety of modern examples of applications has been selected from areas
of partial differential equations, quantum mechanics, fluid dynamics, solid me-
chanics, calculus of variations, linear and nonlinear wave propagation, telecom-
munication, soliton dynamics, and nonlinear stability analysis.

• The book is organized with sufficient flexibility to enable instructors to select
chapters appropriate for courses of differing lengths, emphases, and levels of
difficulty as chapters are significantly independent of each other.

• A wide spectrum of exercises has been carefully chosen and included at the end
of each chapter so the reader may further develop both rigorous skills in the
theory and applications of partial differential equations and a deeper insight into
the subject.

• Many new research papers and standard books have been added to the bibliogra-
phy to stimulate new interest in future study and research. The Index of the book
has also been completely revised in order to include a wide variety of topics.

• The book provides information that puts the reader at the forefront of current
research.

With the improvements and many challenging worked out problems and exer-
cises, we hope this edition will continue to be a useful textbook for students as well as
a research reference for professionals in mathematics, applied mathematics, physics,
and engineering.

It is my pleasure to express our grateful thanks to many friends, colleagues, and
students around the world who offered their suggestions and help at various stages of
the preparation of the book. Special thanks to Mrs. Veronica Chavarria for drawing
some figures, typing the manuscript with constant changes and revisions. In spite of
the best efforts of everyone involved, some typographical errors doubtless remain.
Finally, we wish to express our special thanks to Mr. Tom Grasso, Senior Editor, and
the staff of Birkhäuser, Boston, for their help and cooperation. I also wish to thank
Mr. Donatas Akmanavičius and his staff for their meticulous job in preparing the final
revised manuscript for printing the third edition. I am indebted to my wife, Sadhana,
for her understanding and tolerance while the third edition was being written.

Edinburgh, Texas Lokenath Debnath
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This is a revised and expanded version of the first edition, published in 1997. The
first edition was well received and used as a graduate level text and research refer-
ence in the United States and abroad for the last several years. I have received many
criticisms and suggestions from graduate students and faculty members around the
world. Their suggestions for improvement have been very helpful, beneficial, and en-
couraging. Most of the changes have been made in response to that input. However,
an attempt has been made to preserve the character of the first edition. I believe that
this new edition will remain a major source of linear and nonlinear partial differential
equations and provide a useful working knowledge of the most important analytical
methods of the solutions of the equations. Finding and interpreting the solutions of
these equations is a central part of the modern applied mathematics, and a thorough
understanding of partial differential equations is essential for mathematicians, sci-
entists, and engineers. The main emphasis of the book is on the development of
the required analytical skills on the part of the reader, rather than the importance of
more abstract formulation with full mathematical rigor. However, because the study
of partial differential equations is a subject at the forefront of current research, I have
made an effort to include many new ideas, remarkable observations, and new evolu-
tion equations as further research topics for the ambitious reader to pursue.

I have taken advantage of this new edition to add some recent exciting devel-
opments of the subject, to update the bibliography and correct typographical errors,
to include many new topics, examples, exercises, comments, and observations, and,
in some cases, to entirely rewrite whole sections. The most significant difference
from the first edition is the inclusion of many new sections, such as those on Sturm–
Liouville (SL) systems and some major general results including eigenvalues, eigen-
functions, and completeness of SL system, energy integrals and higher dimensional
wave and diffusion equations in different coordinate systems, solutions of fractional
partial differential equations with new examples of applications, the Euler–Lagrange
variational principle and the Hamilton variational principle with important examples
of applications, and the Hamilton–Jacobi equation and its applications. Included also
are the Euler equation and the continuity equation, which provide the fundamental
basis of the study of modern theories of water waves, Stokes’ analysis of nonlinear
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finite amplitude water waves, Whitham’s equation, peaking and breaking of water
waves, and conservation laws of the Whitham equation. This edition also contains
some recent unexpected results and discoveries including a new class of strongly
dispersive nonlinear evolution equations and compactons, new intrinsic localized
modes in anharmonic crystals, and the derivation of the Korteweg–de Vries (KdV)
equation, Kadomtsev–Petviashvili (KP) equation, Boussinesq equation, axisymmet-
ric KdV equation, and Johnson concentric equation derived from the asymptotic ex-
pansion of the nonlinear water wave equations. As an example of an application of
compactons, the solution of nonlinear vibration of an anharmonic mass–spring sys-
tem is presented. Included are the existence of peakon (singular) solutions of a new
strongly nonlinear model in shallow water described by Camassa and Holm equa-
tion, and the Harry Dym equation, which arises as a generalization of the class of
isospectral flows of the Schrödinger operator. Furthermore, asymptotic expansions
and the method of multiple scales, formal derivations of the nonlinear Schrödinger
equation, and the Davey–Stewartson nonlinear evolution equations with several con-
servation laws have been added to this edition. Several short tables of the Fourier,
Laplace, and Hankel transforms are provided in Chapter 13 for additional help to the
reader.

A systematic mathematical treatment of linear and nonlinear partial differential
equations is presented in the most straightforward manner, with worked examples
and simple cases carefully explained with physical significance. Many and varied
useful aspects, relevant proofs and calculations, and additional examples are pro-
vided in the numerous exercises at the end of each chapter. This edition contains
over 600 worked examples and exercises with answers and hints to selected exer-
cises, accompanied by original reference sources which include research papers and
other texts. There is plenty of material in the book for a year-long course. Some of
the material need not be covered in a course work and can be left for the readers to
study on their own in order to prepare them for further study and research.

It is my pleasure to express my grateful thanks to the many friends and colleagues
around the world who offered their suggestions and generous help at various stages
of the preparation of this book. I offer my special thanks to Dr. Andras Balogh for
drawing all figures, to Dr. Dambaru Bhatta for proofreading the whole book, and
to Ms. Veronica Martinez for typing the manuscript with constant changes and re-
visions. In spite of the best efforts of everyone involved, some typographical errors
doubtless remain. Finally, I wish to express my special thanks to Mr. Tom Grasso and
the staff of Birkhäuser, Boston, for their help and cooperation. I am deeply indebted
to my wife, Sadhana, for her understanding and tolerance while the second edition
was being written.

University of Texas–Pan America Lokenath Debnath
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Overview

Historically, partial differential equations originated from the study of surfaces in ge-
ometry and for solving a wide variety of problems in mechanics. During the second
half of the nineteenth century, a large number of mathematicians became actively
involved in the investigation of numerous problems presented by partial differential
equations. The primary reason for this research was that partial differential equations
both express many fundamental laws of nature and frequently arise in the mathemat-
ical analysis of diverse problems in science and engineering. The next phase of the
development of linear partial differential equations is characterized by the efforts to
develop the general theory and various methods of solutions of these linear equa-
tions. In fact, partial differential equations have been found to be essential to develop
the theory of surfaces on the one hand and to the solution of physical problems on
the other. These two areas of mathematics can be seen as linked by the bridge of
the calculus of variations. With the discovery of the basic concepts and properties
of distributions, the modern theory of the linear partial differential equations is now
well established. The subject plays a central role in modern mathematics, especially
in physics, geometry, and analysis.

Although the origin of nonlinear partial differential equations is very old, they
have undergone remarkable new developments during the last half of the twenti-
eth century. One of the main impulses for developing nonlinear partial differential
equations has been the study of nonlinear wave propagation problems. These prob-
lems arise in different areas of applied mathematics, physics, and engineering, in-
cluding fluid dynamics, nonlinear optics, solid mechanics, plasma physics, quantum
field theory, and condensed-matter physics. Nonlinear wave equations in particular
have provided several examples of new solutions that are remarkably different from
those obtained for linear wave problems. The best known examples of these are the
corresponding shock waves, water waves, solitons and solitary waves. One of the
remarkable properties of solitons is a localized wave form that is retained after inter-
action with other solitons, confirming solitons’ ‘particle-like’ behavior. Indeed, the
theory of nonlinear waves and solitons has experienced a revolution over the past



xiv Preface to the First Edition

three decades. During this revolution, many remarkable and unexpected phenomena
have also been observed in physical, chemical, and biological systems. Other ma-
jor achievements of twentieth-century applied mathematics include the discovery of
soliton interactions, the Inverse Scattering Transform (IST) method for finding the
explicit exact solution for several canonical partial differential equations, and asymp-
totic perturbation analysis for the investigation of nonlinear evolution equations.

One of the major goals of the present book is to provide an accessible working
knowledge of some of the current analytical methods required in modern mathemat-
ics, physics, and engineering. So the writing of the book was greatly influenced by
the emphasis which Lord Rayleigh and Richard Feynman expressed as follows:

In the mathematical investigation I have usually employed such methods
as present themselves naturally to a physicist. The pure mathematician will
complain, and (it must be confessed) sometimes with justice, of deficient
rigor. But to this question there are two sides. For, however important it may
be to maintain a uniformly high standard in pure mathematics, the physicist
may occasionally do well to rest content with arguments which are fairly
satisfactory and conclusive from his point of view. To his mind, exercised
in a different order of ideas, the more severe procedure of the pure mathe-
matician may appear not more but less demonstrative. And further, in many
cases of difficulty to insist upon highest standard would mean the exclusion
of the subject altogether in view of the space that would be required.

Lord Rayleigh

. . . However, the emphasis should be somewhat more on how to do the math-
ematics quickly and easily, and what formulas are true, rather than the math-
ematicians’ interest in methods of rigorous proof.

Richard P. Feynman

Audience and Organization

This book provides an introduction to nonlinear partial differential equations and
to the basic methods that have been found useful for finding the solutions of these
equations. While teaching a course on partial differential equations, the author has
had difficulty choosing textbooks to accompany the lectures on some modern topic in
nonlinear partial differential equations. The book was developed as a result of many
years of experience teaching partial differential equations at the senior undergraduate
and/or graduate levels. Parts of this book have also been used to accompany lectur-
ers on special topics in nonlinear partial differential equations at Indian universities
during my recent visit on a Senior Fulbright Fellowship. Based on my experience,
I believe that nonlinear partial differential equations are best approached through a
sound knowledge of linear partial differential equations. In order to make the book
self-contained, the first chapter deals with linear partial differential equations and
their methods of solution with examples of applications. There is plenty of mate-
rial in this book for a two-semester graduate level course for mathematics, science,
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and engineering students. Many new examples of applications to problems in fluid
dynamics, plasma physics, nonlinear optics, gas dynamics, analytical dynamics, and
acoustics are included. Special emphasis is given to physical, chemical, biological,
and engineering problems involving nonlinear wave phenomena. It is not essential
for the reader to have a thorough knowledge of the physical aspect of these topics,
but limited knowledge of at least some of them would be helpful. Besides, the book
is intended to serve as a reference work for those seriously interested in advanced
study and research in the subject, whether for its own sake or for its applications
to other fields of applied mathematics, mathematical physics, and engineering sci-
ence.

Another reason for adding this book to the literature is the fact that studies are
continually being added to the theory, methods of solutions, and applications of non-
linear partial differential equations. It is becoming even more desirable for applied
mathematicians, physicists, and engineering scientists to pursue study and research
on these and related topics. Yet it is increasingly difficult to do so, because ma-
jor articles appear in journals and research monographs of widely different natures.
Some of these occur in papers scattered widely through the vast literature, and their
connections are not readily apparent. This difficulty might be alleviated if a single
book on nonlinear partial differential equations contained a coherent account of the
recent developments, especially if written to be accessible to both graduate and post-
graduate students. The field is growing fast. It is my hope that the book will first
interest, then prepare readers to undertake research projects on nonlinear wave phe-
nomena, reaction-diffusion phenomena, soliton dynamics, nonlinear instability and
other nonlinear real-world problems, by providing that background of fundamental
ideas, results, and methods essential to understanding the specialized literature of
this vast area. The book is aimed at the reader interested in a broad perspective on
the subject, the wide variety of phenomena encompassed by it and a working knowl-
edge of the most important methods for solving the nonlinear equations. Those inter-
ested in more rigorous treatment of the mathematical theory of the subjects covered
may consult some outstanding advanced books and treatises, listed in the Bibliog-
raphy. Many ideas, principles, results, methods, examples of applications, and exer-
cises presented in the book are either motivated by, or borrowed from works cited in
the Bibliography. The author wishes to express his gratitude to the authors of these
works.

The first chapter provides an introduction to linear partial differential equations
and to the methods of solutions of these equations, and to the basic properties of
these solutions, that gives the reader a clear understanding of the subject and its
varied examples of applications.

Chapter 2 deals with nonlinear model equations and variational principles and
the Euler–Lagrange equations. Included are variational principles for the nonlinear
Klein–Gordon equation and for the nonlinear water waves.

The third and fourth chapters are devoted to the first-order quasi-linear and non-
linear equations and to the method of characteristics for solving them. Examples
of applications of these equations to analytical dynamics and nonlinear optics are
included.
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Chapters 5 and 6 deal with conservation laws and shock waves, and kinematic
waves and specific real-world nonlinear problems. The concept of weak or discon-
tinuous solutions is introduced in Section 5.4. Several sections of Chapter 6 discuss
the properties of solutions of several real-world nonlinear models that include traf-
fic flow, flood waves, chromatographic models, sediment transport in rivers, glacier
flow, and roll waves.

Chapter 7 is devoted to nonlinear dispersive waves, Whitham’s equations, and
Whitham’s averaged variational principle. This is followed by the Whitham instabil-
ity analysis and its applications to nonlinear water waves.

In Chapter 8, we study the nonlinear diffusion-reaction phenomena, and Burgers’
and Fisher’s equations with physical applications. Special attention is given to trav-
eling wave solutions and their stability analysis, similarity methods and similarity
solutions of diffusion equations.

Chapter 9 develops the theory of solitons and the Inverse Scattering Transform.
Many recent results on the basic properties of the Korteweg–de Vries (KdV) and
Boussinesq equations are discussed in some detail. Included are Bäcklund trans-
formations, the nonlinear superposition principle, the Lax formulation and its KdV
hierarchy.

The nonlinear Schrödinger equation and solitary waves are the main focus of
Chapter 10. Special attention is paid to examples of applications to fluid dynamics,
plasma physics, and nonlinear optics.

Chapter 11 is concerned with the theory of nonlinear Klein–Gordon and sine-
Gordon equations with applications. The soliton and anti-soliton solutions of the
sine-Gordon equation are described. The inverse scattering method, the similarity
method and the method of separation of variables for the sine-Gordon equation are
developed with examples.

The final chapter deals with nonlinear evolution equations and asymptotic meth-
ods. Several asymptotic perturbation methods and the method of multiple scales are
developed for the solutions of quasilinear dissipative systems, weakly and strongly
dispersive systems.

Salient Features

The book contains 450 worked examples, examples of applications, and exercises
which include some selected from many standard treatises as well as from recent re-
search papers. It is hoped that they will serve as helpful self-tests for understanding of
the theory and mastery of the nonlinear partial differential equations. These examples
and examples of applications were chosen from the areas of partial differential equa-
tions, geometry, vibration and wave propagation, heat conduction in solids, electric
circuits, dynamical systems, fluid mechanics, plasma physics, quantum mechanics,
nonlinear optics, physical chemistry, mathematical modeling, population dynamics,
and mathematical biology. This varied number of examples and exercises should pro-
vide something of interest for everyone. The exercises truly complement the text and
range from the elementary to the challenging.
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This book is designed as a new source for modern topics dealing with nonlinear
phenomena and their applications for future development of this important and useful
subject. Its main features are listed below:

1. A systematic mathematical treatment of some nonlinear partial differential equa-
tions, the methods of the solutions of these equations, and the basic properties
of these solutions is presented, that gives the reader a clear understanding of the
subject and its varied applications.

2. A detailed and clear explanation of every concept and method which is intro-
duced, accompanied by carefully selected worked examples, is included with
special emphasis being given to those topics in which students experience diffi-
culty.

3. The book presents a wide variety of modern examples of applications carefully
selected from areas of fluid dynamics, plasma physics, nonlinear optics, soliton
dynamics, analytical dynamics, gas dynamics, and acoustics to provide motiva-
tion, and to illustrate the wide variety of real-world nonlinear problems.

4. Most of the recent developments in the subject since the early 1960s appear here
in book form for the first time.

5. Included also is a broad coverage of the essential standard material on nonlinear
partial differential equations and their applications that is not readily found in
any texts or reference books.

6. A striking balance between the mathematical and physical aspects of the subject
is maintained.

7. The book is organized with sufficient flexibility so as to enable instructors to
select chapters according to length, emphasis and level of different courses.

8. A wide spectrum of exercises has been carefully chosen and included at the end
of each chapter so the reader may further develop both manipulative skills in the
applications of nonlinear equations and a deeper insight into this modern subject.

9. The book provides information that puts the reader at the forefront of current
research. An updated Bibliography is included to stimulate new interest in future
study and research.

10. Answers and hints to selected exercises with original source are provided at the
end of the book for additional help to students.

Acknowledgements

In preparing the book, the author has been encouraged by and has benefited from the
helpful comments and criticism of a number of faculty, post-doctoral and doctoral
students of several universities in the United States, Canada, and India. The author
expresses his grateful thanks to these individuals for their interest in the book. My
special thanks to Jackie Callahan and Ronee Trantham who typed the manuscript
with many diagrams and cheerfully put up with constant changes and revisions. In
spite of the best efforts of everyone involved, some typographical errors doubtless
remain. I do hope that these are both few and obvious, and will cause minimum
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confusion. Finally, the author wishes to express his special thanks to Mr. Wayne
Yuhasz, Executive Editor, and the staff of Birkhäuser for their help and cooperation.
I am deeply indebted to my wife, Sadhana, for her understanding and tolerance while
the book was being written.

University of Central Florida Lokenath Debnath
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1

Linear Partial Differential Equations

However varied may be the imagination of man, nature is
still a thousand times richer, . . . . Each of the theories of
physics . . . presents (partial differential) equations under a
new aspect . . . without these theories, we should not know
partial differential equations.

Henri Poincaré

Since a general solution must be judged impossible from
want of analysis, we must be content with the knowledge of
some special cases, and that all the more, since the
development of various cases seems to be the only way to
bringing us at last to a more perfect knowledge.

Leonard Euler

1.1 Introduction

Partial differential equations arise frequently in the formulation of fundamental laws
of nature and in the mathematical analysis of a wide variety of problems in applied
mathematics, mathematical physics, and engineering science. This subject plays a
central role in modern mathematical sciences, especially in physics, geometry, and
analysis. Many problems of physical interest are described by partial differential
equations with appropriate initial and/or boundary conditions. These problems are
usually formulated as initial-value problems, boundary-value problems, or initial
boundary-value problems. In order to prepare the reader for study and research in
nonlinear partial differential equations, a broad coverage of the essential standard
material on linear partial differential equations and their applications is required.

This chapter provides a review of basic concepts, principles, model equations,
and their methods of solutions. This is followed by a systematic mathematical treat-
ment of the theory and methods of solutions of second-order linear partial differential
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2 1 Linear Partial Differential Equations

equations that gives the reader a clear understanding of the subject and its varied ap-
plications. Linear partial differential equations of the second order can be classified
as one of the three types: hyperbolic, parabolic, and elliptic, and reduced to an ap-
propriate canonical or normal form. The classification and method of reduction are
described in Section 1.5. Special emphasis is given to various methods of solution
of the initial-value and/or boundary-value problems associated with the three types
of linear equations, each of which shows an entirely different behavior in properties
and construction of solutions. Section 1.6 deals with the solutions of linear partial
differential equations using the method of separation of variables combined with the
superposition principle. A brief discussion of Fourier, Laplace, and Hankel trans-
forms is included in Sections 1.7–1.10. These integral transforms are then applied to
solve a large variety of initial and boundary problems described by partial differential
equations. The transform solution combined with the convolution theorem provides
an elegant representation of the solution for initial-value and boundary-value prob-
lems. Section 1.11 is devoted to Green’s functions for solving a wide variety of inho-
mogeneous partial differential equations of most common interest. This method can
be made considerably easier by using generalized functions combined with appro-
priate integral transforms. The Sturm–Liouville systems and their general properties
are discussed in Section 1.12. Section 1.13 deals with energy integrals, the law of
conservation of energy, uniqueness theorems, and higher dimensional wave and dif-
fusion equations. The final section contains some recent examples of fractional order
diffusion–wave equations and their solutions.

1.2 Basic Concepts and Definitions

A partial differential equation for a function u(x, y, . . .) is a relationship between u
and its partial derivatives ux, uy, uxx, uxy, uyy, . . . , and can be written as

F (x, y, u, ux, uy, uxx, uxy, uyy, . . .) = 0, (1.2.1)

where F is some function, x, y, . . . are independent variables and u(x, y, . . .) is
called a dependent variable.

The order of a partial differential equation is defined in analogy with an ordinary
differential equation as the highest-order of a derivative appearing in (1.2.1). The
most general first-order partial differential equation can be written

F (x, y, u, ux, uy) = 0. (1.2.2)

Similarly, the most general second-order partial differential equation in two in-
dependent variables x, y has the form

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0, (1.2.3)

and so on for higher-order equations.
For example,

xux + y uy = 0, (1.2.4)
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xux + y uy = x2 + y2, (1.2.5)
uux + ut = u, (1.2.6)
u2
x + u2

y = 1 (1.2.7)

are first-order equations, and

uxx + 2uxy + uyy = 0, (1.2.8)

uxx + uyy = 0, (1.2.9)

utt − c2uxx = f(x, t) (1.2.10)

are second-order equations. Finally,

ut + uux + uxxx = 0, (1.2.11)

utt + uxxxx = 0 (1.2.12)

are examples of the third-order and fourth-order equations, respectively.
A partial differential equation is called linear if it is linear in the unknown func-

tion and all its derivatives with coefficients depend only on the independent variables.
It is called quasi-linear, if it is linear in the highest-order derivative of the unknown
function. For example, (1.2.4), (1.2.5), (1.2.8)–(1.2.10) and (1.2.12) are linear equa-
tions, whereas (1.2.6) and (1.2.11) are quasi-linear equations.

It is possible to write a partial differential equation in the operator form

Lxu(x) = f(x), (1.2.13)

where Lx is an operator. The operator Lx is called a linear operator if it satisfies the
property

Lx(au+ bv) = aLxu+ b Lxv (1.2.14)

for any two functions u and v and for any two constants a and b.
Equation (1.2.13) is called linear if Lx is a linear operator. Equation (1.2.13)

is called an inhomogeneous (or nonhomogeneous) linear equation. If f(x) ≡ 0,
(1.2.13) is called a homogeneous equation. Equations (1.2.4), (1.2.8), (1.2.9),
and (1.2.12) are linear homogeneous equations, whereas (1.2.5) and (1.2.10) are lin-
ear inhomogeneous equations.

An equation which is not linear is called a nonlinear equation. If Lx is not linear,
then (1.2.13) is called a nonlinear equation. Equations (1.2.6), (1.2.7), and (1.2.11)
are examples of nonlinear equations.

A classical solution (or simply a solution) of (1.2.1) is an ordinary function u =
u(x, y, . . .) defined on some domain D which is continuously differentiable such that
all its partial derivatives involved in the equation exist and satisfy (1.2.1) identically.

However, this notion of classical solution can be extended by relaxing the re-
quirement that u is continuously differentiable over D. The solution u = u(x, y, . . .)
is called a weak (or generalized) solution of (1.2.1) if u or its partial derivatives are
discontinuous at some or all points in D.
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To introduce the idea of a general solution of a partial differential equation, we
solve a simple equation for u = u(x, y) of the form

uxy = 0. (1.2.15)

Integrating this equation with respect to x (keeping y fixed), we obtain

uy = h(y),

where h(y) is an arbitrary function of y. We then integrate it with respect to y to find

u(x, y) =

∫
h(y) dy + f(x),

where f(x) is an arbitrary function. Or equivalently,

u(x, y) = f(x) + g(y), (1.2.16)

where f(x) and g(y) are arbitrary functions. The solution (1.2.16) is called the gen-
eral solution of the second-order equation (1.2.15).

Usually, the general solution of a partial differential equation is an expression that
involves arbitrary functions. This is a striking contrast to the general solution of an
ordinary differential equation which involves arbitrary constants. Further, a simple
equation (1.2.15) has infinitely many solutions. This can be illustrated by consider-
ing the problem of construction of partial differential equations from given arbitrary
functions. For example, if

u(x, t) = f(x− ct) + g(x+ ct), (1.2.17)

where f and g are arbitrary functions of (x− ct) and (x+ ct), respectively, then

uxx = f ′′(x− ct) + g′′(x+ ct),

utt = c2f ′′(x− ct) + c2g′′(x+ ct) = c2uxx,

where primes denote differentiation with respect to the appropriate argument. Thus,
we obtain the second-order linear equation, called the wave equation,

utt − c2uxx = 0. (1.2.18)

Thus, the function u(x, t) defined by (1.2.17) satisfies (1.2.18) irrespective of the
functional forms of f(x−ct) and g(x+ct), provided f and g are at least twice differ-
entiable functions. Thus, the general solution of equation (1.2.18) is given by (1.2.17)
which contains arbitrary functions.

In the case of only two independent variables x, y, the solution u(x, y) of the
equation (1.2.1) is visualized geometrically as a surface, called an integral surface
in the (x, y, u) space.
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1.3 The Linear Superposition Principle

The general solution of a linear homogeneous ordinary differential equation of or-
der n is a linear combination of n linearly independent solutions with n arbitrary
constants. In other words, if u1(x), u2(x), . . . , un(x) are n linearly independent so-
lutions of an nth order, linear, homogeneous, ordinary differential equation of the
form

Lu(x) = 0, (1.3.1)

then, for any arbitrary constants c1, c2, . . . , cn,

u(x) =

n∑
k=1

ckuk(x) (1.3.2)

represents the most general solution of (1.3.1). This is called the linear superposi-
tion principle for ordinary differential equations. We note that the general solution
of (1.3.1) depends on exactly n arbitrary constants.

In the case of linear homogeneous partial differential equations of the form

Lxu(x) = 0, (1.3.3)

the general solution depends on arbitrary functions rather than arbitrary constants.
So there are infinitely many solutions of (1.3.3). If we represent this infinite set of
solutions of (1.3.3) by u1(x), u2(x), . . . , un(x), . . . , then the infinite linear combi-
nations

u(x) =

∞∑
n=1

cnun(x), (1.3.4)

where cn are arbitrary constants, in general, may not be again a solution of (1.3.3)
because the infinite series may not be convergent. So, for the case of partial differ-
ential equations, the superposition principle may not be true, in general. However,
if there are only a finite number of solutions u1(x), u2(x), . . . , un(x) of the partial
differential equation (1.3.3), then

u(x) =

n∑
n=1

cnun(x) (1.3.5)

again is a solution of (1.3.3) as can be verified by direct substitution. As with linear
homogeneous ordinary differential equations, the principle of superposition applies
to linear homogeneous partial differential equations and u(x) represents a solution
of (1.3.3), provided that the infinite series (1.3.4) is convergent and the operator Lx

can be applied to the series term by term.
In order to generate such an infinite set of solutions un(x), the method of sep-

aration of variables is usually used. This method, combined with the superposition
of solutions, is usually known as Fourier’s method, which will be described in a
subsequent section.
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Another type of infinite linear combination is used to find the solution of a given
partial differential equation. This is concerned with a family of solutions u(x, k)
depending on a continuous real parameter k and a function c(k) such that

∫ b

a

c(k)u(x, k) dk or
∫ ∞

−∞
c(k)u(x, k) dk (1.3.6)

is convergent. Then, under certain conditions, this integral is again a solution. This
may also be regarded as the linear superposition principle.

In almost all cases, the general solution of a partial differential equation is of
little use since it has to satisfy other supplementary conditions, usually called initial
or boundary conditions. As indicated earlier, the general solution of a linear partial
differential equation contains arbitrary functions. This means that there are infinitely
many solutions and only by specifying the initial and/or boundary conditions can we
determine a specific solution of interest.

Usually, both initial and boundary conditions arise from the physics of the prob-
lem. In the case of partial differential equations in which one of the independent
variables is the time t, an initial condition(s) specifies the physical state of the de-
pendent variable u(x, t) at a particular time t = t0 or t = 0. Often u(x, 0) and/or
ut(x, 0) are specified to determine the function u(x, t) at later times. Such conditions
are called the Cauchy (or initial) conditions. It can be shown that these conditions
are necessary and sufficient for the existence of a unique solution. The problem of
finding the solution of the initial-value problem with prescribed Cauchy data on the
line t = 0 is called the Cauchy problem or the initial-value problem.

In each physical problem, the governing equation is to be solved within a given
domain D of space with prescribed values of the dependent variable u(x, t) given
on the boundary ∂D of D. Often, the boundary need not enclose a finite volume—
in which case, part of the boundary is at infinity. For problems with a boundary at
infinity, boundedness conditions on the behavior of the solution at infinity must be
specified. This kind of problem is typically known as a boundary-value problem, and
it is one of the most fundamental problems in applied mathematics and mathematical
physics.

There are three important types of boundary conditions which arise frequently in
formulating physical problems. These are

(a) Dirichlet conditions, where the solution u is prescribed at each point of a bound-
ary ∂D of a domain D. The problem of finding the solution of a given equation
Lxu(x) = 0 inside D with prescribed values of u on ∂D is called the Dirichlet
boundary-value problem;

(b) Neumann conditions, where values of normal derivative ∂u
∂n of the solution on

the boundary ∂D are specified. In this case, the problem is called the Neumann
boundary-value problem;

(c) Robin conditions, where ( ∂u∂n +au) is specified on ∂D. The corresponding prob-
lem is called the Robin boundary-value problem.
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A problem described by a partial differential equation in a given domain with a
set of initial and/or boundary conditions (or other supplementary conditions) is said
to be well-posed (or properly posed) provided the following criteria are satisfied:

(i) Existence: There exists at least one solution of the problem.
(ii) Uniqueness: There is at most one solution.

(iii) Stability: The solution must be stable in the sense that it depends continuously
on the data. In other words, a small change in the given data must produce a
small change in the solution.

The stability criterion is essential for physical problems. A mathematical problem
is usually considered physically realistic if a small change in given data produces
correspondingly a small change in the solution.

According to the Cauchy–Kowalewski theorem, the solution of an analytic
Cauchy problem for partial differential equations exists and is unique. However, a
Cauchy problem for Laplace’s equation is not always well-posed. A famous example
of a non-well-posed (or ill-posed) problem was first given by Hadamard. Hadamard’s
example deals with Cauchy’s initial-value problem for the Laplace equation

∇2u ≡ uxx + uyy = 0, 0 < y < ∞, x ∈ R (1.3.7)

with the Cauchy data

u(x, 0) = 0 and uy(x, 0) =

(
1

n

)
sinnx, (1.3.8)

where n is an integer representing the wavenumber. These data tend to zero uni-
formly as n → ∞.

It can easily be verified that the unique solution of this problem is given by

u(x, y) =

(
1

n2

)
sinhny sinnx. (1.3.9)

As n → ∞, this solution does not tend to the solution u = 0. In fact, solution (1.3.9)
represents oscillations in x with unbounded amplitude n−2 sinhny which tends to
infinity as n → ∞. In other words, although the data change by an arbitrarily small
amount, the change in the solution is infinitely large. So the problem is certainly
not well-posed, that is, the solution does not depend continuously on the initial data.
Even if the wavenumber n is a fixed, finite quantity, the solution is clearly unstable
in the sense that u(x, y) → ∞ as y → ∞ for any fixed x, such that sincnx �= 0.

On the other hand, the Cauchy problem (see Example 1.5.3) for the simplest
hyperbolic equation (1.5.29) with the initial data (1.5.35ab) is a well posed problem.
As to the domain of dependence for the solution, u(x, t) depends only on those values
of f(ξ) and g(ξ) for which x− ct ≤ ξ ≤ x+ ct. Similarly, the Cauchy problems for
parabolic equations are generally well posed.

We conclude this section with a general remark. The existence, uniqueness, and
stability of solutions are the basic requirements for a complete description of a phys-
ical problem with appropriate initial and boundary conditions. However, there are
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many situations in applied mathematics which deal with ill-posed problems. In re-
cent years, considerable progress has been made on the theory of ill-posed problems,
but the discussion of such problems is beyond the scope of this book.

1.4 Some Important Classical Linear Model Equations

We start with a special type of second-order linear partial differential equation for
the following reasons. First, second-order equations arise more frequently in a wide
variety of applications. Second, their mathematical treatment is simpler and easier
to understand than that of first-order equations, in general. Usually, in almost all
physical phenomena, the dependent variable u = u(x, y, z, t) is a function of the
three space variables and the time variable t. Included here are only examples of
equations of most common interest.

Example 1.4.1. The wave equation is

utt − c2∇2u = 0, (1.4.1)

where

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (1.4.2)

and c is a constant. This equation describes the propagation of a wave (or distur-
bance), and it arises in a wide variety of physical problems. Some of these problems
include a vibrating string, vibrating membrane, longitudinal vibrations of an elastic
rod or beam, shallow water waves, acoustic problems for the velocity potential for a
fluid flow through which sound can be transmitted, transmission of electric signals
along a cable, and both electric and magnetic fields in the absence of charge and
dielectric.

Example 1.4.2. The heat or diffusion equation is

ut − κ∇2u = 0, (1.4.3)

where κ is the constant of diffusivity. This equation describes the diffusion of ther-
mal energy in a homogeneous medium. It can be used to model the flow of a quantity,
such as heat, or a concentration of particles. It is also used as a model equation for
growth and diffusion, in general, and growth of a solid tumor, in particular. The diffu-
sion equation describes the unsteady boundary-layer flow in the Stokes and Rayleigh
problems and also the diffusion of vorticity from a vortex sheet.

Example 1.4.3. The Laplace equation is

∇2u = 0. (1.4.4)

This equation is used to describe electrostatic potential in the absence of charges,
gravitational potential in the absence of mass, equilibrium displacement of an elas-
tic membrane, velocity potential for an incompressible fluid flow, temperature in a
steady-state heat conduction problem, and many other physical phenomena.
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Example 1.4.4. The Poisson equation is

∇2u = f(x, y, z), (1.4.5)

where f(x, y, z) is a given function describing a source or sink. This is an inho-
mogeneous Laplace equation, and hence, the Poisson equation is used to study all
phenomena described by the Laplace equation in the presence of external sources or
sinks.

Example 1.4.5. The Helmholtz equation is

∇2u+ λu = 0, (1.4.6)

where λ is a constant. This is a time-independent wave equation (1.4.1) with λ as
a separation constant. In particular, its solution in acoustics represents an acoustic
radiation potential.

Example 1.4.6. The telegraph equation is given in a general form as

utt − c2uxx + aut + bu = 0, (1.4.7)

where a, b, and c are constants. This equation arises in the study of propagation
of electrical signals in a cable of a transmission line. Both current I and voltage V
satisfy an equation of the form (1.4.7). This equation also arises in the propagation of
pressure waves in the study of pulsatile blood flow in arteries and in one-dimensional
random motion of bugs along a hedge.

Example 1.4.7. The Klein–Gordon (or KG) equation is

�ψ +

(
mc2

�

)2

ψ = 0, (1.4.8)

where

� ≡ ∂2

∂t2
− c2∇2 (1.4.9)

is the d’Alembertian operator, h(= 2π�) is the Planck constant, and m is a constant
mass of the particle. Klein (1927) and Gordon (1926) derived a relativistic equation
for a charged particle in an electromagnetic field. It is of conservative dispersive type
and played an important role in our understanding of the elementary particles. This
equation is also used to describe dispersive wave phenomena, in general.

Example 1.4.8. The time-independent Schrödinger equation in quantum mechanics
is (

�
2

2m

)
∇2ψ + (E − V )ψ = 0, (1.4.10)

where h(= 2π�) is the Planck constant, m is the mass of the particle whose wave
function is ψ(x, y, z, t), E is a constant, and V is the potential energy. If V = 0,
(1.4.10) reduces to the Helmholtz equation.
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Example 1.4.9. The linear Korteweg–de Vries (or KdV) equation is

ut + αux + βuxxx = 0, (1.4.11)

where α and β are constants. This describes the propagation of linear, long, water
waves and of plasma waves in a dispersive medium.

Example 1.4.10. The linear Boussinesq equation is

utt − α2∇2u− β2∇2utt = 0, (1.4.12)

where α and β are constants. This equation arises in elasticity for longitudinal waves
in bars, long water waves, and plasma waves.

Example 1.4.11. The biharmonic wave equation is

utt + c2∇4u = 0, (1.4.13)

where c is a constant. In elasticity, the displacement of a thin elastic plate by small
vibrations satisfies this equation. When u is independent of time t, (1.4.13) reduces
to what is called the biharmonic equation, namely

∇4u = 0. (1.4.14)

This describes the equilibrium equation for the distribution of stresses in an elastic
medium satisfied by Airy’s stress function u(x, y, z). In fluid dynamics, this equation
is satisfied by the stream function ψ(x, y, z) in a viscous fluid flow.

Example 1.4.12. The electromagnetic wave equations for the electric field E and the
polarization P are

E0
(
Ett − c20Exx

)
+ Ptt = 0, (1.4.15)(

Ptt + ω2
0P

)
− E0ω2

pE = 0, (1.4.16)

where E0 is the permittivity (or dielectric constant) of free space, ω0 is the natural
frequency of the oscillator, c0 is the speed of light in a vacuum, and ωp is the plasma
frequency.

1.5 Second-Order Linear Equations and Method
of Characteristics

The general second-order linear partial differential equation in two independent vari-
ables x, y is given by

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G, (1.5.1)
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where A, B, C, D, E, F , and G are given functions of x and y or constants.
The classification of second-order equations is based upon the possibility of re-

ducing equation (1.5.1) by a coordinate transformation to a canonical or standard
form at a point. We consider the transformation from x, y to ξ, η defined by

ξ = φ(x, y), η = ψ(x, y), (1.5.2ab)

where φ and ψ are twice continuously differentiable and the Jacobian J(x, y) =
φxψy − ψxφy is nonzero in a domain of interest so that x, y can be determined
uniquely from the system (1.5.2ab). Then, by the chain rule,

ux = uξξx + uηηx, uy = uξξy + uηηy,

(ux)x = (ux)ξξx + (ux)ηηx

= (uξξx + uηηx)ξξx + (uξξx + uηηx)ηηx,

uxx = uξξξ
2
x + 2uξηξxηx + uηηη

2
x + uξξxx + uηηxx,

uyy = uξξξ
2
y + 2uξηξyηy + uηηη

2
y + uξξyy + uηηyy,

uxy = uξξξxξy + uξη(ξxηy + ξyηx) + uηηηxηy + uξξxy + uηηxy.

Substituting these results into equation (1.5.1) gives

A∗uξξ +B∗uξη + C∗uηη +D∗uξ + E∗uη + F ∗u = G∗, (1.5.3)

where

A∗ = Aξ2x +Bξxξy + Cξ2y ,

B∗ = 2Aξxηx +B(ξxηy + ξyηx) + 2Cξyηy,

C∗ = Aη2x +Bηxηy + Cη2y,

D∗ = Aξxx +Bξxy + Cξyy +Dξx + Eξy,

E∗ = Aηxx +Bηxy + Cηyy +Dηx + Eηy,

F ∗ = F, and G∗ = G.

Now, the problem is to determine ξ and η so that equation (1.5.3) takes the simplest
possible form. We choose ξ and η such that A∗ = C∗ = 0 and B∗ �= 0. Or, more
explicitly,

A∗ = Aξ2x +Bξxξy + Cξ2y = 0, (1.5.4)

C∗ = Aη2x +Bηxηy + Cη2y = 0. (1.5.5)

These two equations can be combined into a single quadratic equation for ζ = ξ or η

A

(
ζx
ζy

)2

+B

(
ζx
ζy

)
+ C = 0. (1.5.6)

We consider the level curves ξ = φ(x, y) = const. = C1 and η = ψ(x, y) =
const. = C2. On these curves
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dξ = ξx dx+ ξy dy = 0, dη = ηx dx+ ηy dy = 0, (1.5.7ab)

that is, the slopes of these curves are given by

dy

dx
= −ξx

ξy
,

dy

dx
= −ηx

ηy
. (1.5.8ab)

Thus, the slopes of both level curves are the roots of the same quadratic equation
which is obtained from (1.5.6) as

A

(
dy

dx

)2

−B

(
dy

dx

)
+ C = 0, (1.5.9)

and the roots of this equation are given by
dy

dx
=

1

2A

(
B ±

√
B2 − 4AC

)
. (1.5.10ab)

These equations are known as the characteristic equations for (1.5.1), and their so-
lutions are called the characteristic curves, or simply the characteristics of equation
(1.5.1). The solution of the two ordinary differential equations (1.5.10ab) defines two
distinct families of characteristics φ(x, y) = C1 and ψ(x, y) = C2. There are three
possible cases to consider.

Case I. B2 − 4AC > 0.

Equations for which B2−4AC > 0 are called hyperbolic. Integrating (1.5.10ab)
gives two real and distinct families of characteristics φ(x, y) = C1 and ψ(x, y) =
C2, where C1 and C2 are constants of integration. Since A∗ = C∗ = 0, and B∗ �= 0,
and dividing by B∗, equation (1.5.3) reduces to the form

uξη = − 1

B∗
(
D∗uξ + E∗uη + F ∗u−G∗) = H1(say). (1.5.11)

This is called the first canonical form of the hyperbolic equation.
If the new independent variables

α = ξ + η, β = ξ − η (1.5.12ab)

are introduced, then

uξ = uααξ + uββξ = uα + uβ , uη = uααη + uββη = uα − uβ ,

(uη)ξ = (uη)ααξ + (uη)ββξ = (uα − uβ)α · 1 + (uα − uβ)β · 1
= uαα − uββ .

Consequently, equation (1.5.11) becomes

uαα − uββ = H2(α, β, u, uα, uβ). (1.5.13)

This is called the second canonical form of the hyperbolic equation.
It is important to point out that characteristics play a fundamental role in the

theory of hyperbolic equations.

Case II. B2 − 4AC = 0.

There is only one family of real characteristics whose slope, due to (1.5.10ab), is
given by
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dy

dx
=

B

2A
. (1.5.14)

Integrating this equation gives ξ = φ(x, y) = const. (or η = ψ(x, y) = const.).
Since B2 = 4AC and A∗ = 0, we obtain

0 = A∗ = Aξ2x +Bξxξy + Cξ2y =
(√

Aξx +
√
Cξy

)2
.

It then follows that

B∗ = 2Aξxηx +B(ξxηy + ξyηx) + 2Cξyηy

= 2
(√

Aξx +
√
Cξy

)(√
Aηx +

√
Cηy

)
= 0

for an arbitrary value of η which is independent of ξ. For example, if η = y, the
Jacobian is nonzero in the domain of parabolicity.

Dividing (1.5.3) by C∗ �= 0 yields

uηη = H3(ξ, η, u, uξ, uη). (1.5.15)

This is known as the canonical form of the parabolic equation.
On the other hand, if we choose η = ψ(x, y) = const. as the integral of (1.5.14),

equation (1.5.3) assumes the form

uξξ = H∗
3 (ξ, η, u, uξ, uη). (1.5.16)

Equations for which B2 − 4AC = 0 are called parabolic.

Case III. B2 − 4AC < 0.

Equations for which B2 − 4AC < 0 are called elliptic. In this case, equations
(1.5.10ab) have no real solutions. So there are two families of complex character-
istics. Since the roots ξ, η of (1.5.10ab) are complex conjugates of each other, we
introduce the new real variables as

α =
1

2
(ξ + η), β =

1

2i
(ξ − η), (1.5.17ab)

so that ξ = α+ iβ and η = α− iβ.
We use (1.5.17ab) to transform (1.5.3) into the form

A∗∗uαα +B∗∗uαβ + C∗∗uββ = H4(α, β, u, uα, uβ), (1.5.18)

where the coefficients of this equation assume the same form as the coefficients
of (1.5.3). It can easily be verified that A∗ = 0 and C∗ = 0 take the form

A∗∗ − C∗∗ ± iB∗∗ = 0,

which are satisfied if and only if

A∗∗ = C∗∗ and B∗∗ = 0.
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Thus, dividing by A∗∗, equation (1.5.18) reduces to the form

uαα + uββ =
H4

A∗∗ = H5(α, β, u, uα, uβ). (1.5.19)

This is called the canonical form of the elliptic equation.
In summary, we state that equation (1.5.1) is called hyperbolic, parabolic, or

elliptic at a point (x0, y0) accordingly as

B2(x0, y0)− 4A(x0, y0)C(x0, y0) >=< 0. (1.5.20)

If it is true at all points in a given domain, then the equation is said to be hyperbolic,
parabolic, or elliptic in that domain. Finally, it has been shown above that, for the
case of two independent variables, a transformation can always be found to transform
the given equation to the canonical form. However, in the case of several independent
variables, in general, it is not possible to find such a transformation.

These three types of partial differential equations arise in many areas of mathe-
matical and physical sciences. Usually, boundary-value problems are associated with
elliptic equations, whereas the initial-value problems arise in connection with hyper-
bolic and parabolic equations.

Example 1.5.1. Show that

(a) the wave equation utt − c2uxx = 0 is hyperbolic,
(b) the diffusion equation ut − κuxx = 0 is parabolic,
(c) the Laplace equation uxx + uyy = 0 is elliptic,
(d) the Tricomi equation uxx + xuyy = 0 is elliptic for x > 0, parabolic for x = 0,

and hyperbolic for x < 0.

For case (a), A = −c2, B = 0, and C = 1. Hence, B2 − 4AC = c2 > 0 for all
x and t. So, the wave equation is hyperbolic everywhere. Similarly, the reader can
show (b) and (c). Finally, for case (d), A = 1, B = 0, C = x, hence, B2 − 4AC =
−4x < 0, = 0, or > 0 accordingly as x > 0, x = 0, or x < 0, and the result follows.

Example 1.5.2. Find the characteristic equations and characteristics and then reduce
the equation

xuxx + uyy = x2 (1.5.21)

to canonical form.
In this problem, A = x, B = 0, C = 1, B2 − 4AC = −4x. Thus, the equation

is hyperbolic if x < 0, parabolic if x = 0, and elliptic if x > 0.
The characteristics equations are

dy

dx
=

B ±
√
B2 − 4AC

2A
= ± 1√

−x
. (1.5.22ab)

Hence,
y = ±2

√
−x = const. = ±2

√
−x+ c,
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Fig. 1.1 Characteristics are parabolas for x < 0.

or equivalently,

ξ = y + 2
√
−x = const., η = y − 2

√
−x = const. (1.5.23ab)

These represent two branches of the parabolas (y−c)2 = −4x where c is a constant.
The former equation (ξ = const.) gives a branch with positive slopes, whereas the
latter equation (η = const.) represents a branch with negative slopes as shown in
Figure 1.1. Both branches are tangent to the y-axis which is the single characteristic
in the parabolic region. Indeed, the y-axis is the envelope of the characteristics for
the hyperbolic region x < 0.

For x < 0, we use the transformations

ξ = y + 2
√
−x, η = y − 2

√
−x (1.5.24ab)

to reduce (1.5.21) to the canonical form.
We find

ξx = − 1√
−x

, ξy = 1, ξxx = −1

2

1

(−x)3/2 , ξyy = 0,

ηx = +
1√
−x

, ηy = 1, ηxx =
1

2

1

(−x)3/2 , ηyy = 0,

(ξ − η) = 4
√
−x, and (ξ − η)4 = (16x)2.

Consequently, the equation

xuxx + uyy = x2

reduces to the form
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x
(
uξξξ

2
x + 2uξηξxηx + uηηη

2
x + uξξxx + uηηxx

)
+
(
uξξξ

2
y + 2uξηξyηy + uηηη

2
y + uξξyy + uηηyy

)
= x2.

Or equivalently,

x

[
uξξ

(
− 1

x

)
+ 2uξη

(
1

x

)
− uηη

(
1

x

)
− 1

2

1

(−x)3/2uξ +
1

2

1

(−x)3/2uη

]

+ [uξξ + 2uξη + uηη] = x2.

This leads to the transformed equation which is

4uξη +
1

2

1√
−x

(uξ − uη) =
1

(16)2
(ξ − η)4,

or equivalently,

uξη =
1

4
· 1

(16)2
(ξ − η)4 − 1

2

1

(ξ − η)
(uξ − uη). (1.5.25)

This is the first canonical form.
For x > 0, we use the transformations

ξ = y + 2i
√
x, η = y − 2i

√
x

so that

α =
1

2
(ξ + η) = y, β =

1

2i
(ξ − η) = 2

√
x. (1.5.26ab)

Clearly,

αx = 0, αy = 1, αxx = 0, αyy = 0, αxy = 0,

βx =
1√
x
, βy = 0, βxx = −1

2

1

x3/2
, βyy = 0.

So, equation (1.5.21) reduces to the canonical form

x
(
uααα

2
x + 2uαβαxβx + uβββ

2
x + uααxx + uββxx

)

+
(
uααα

2
y + 2uαβαyβy + uβββ

2
y + uααyy + uββyy

)
=

(
β

2

)4

,

or

uαα + uββ − 1

2

1√
x
uβ =

(
β

2

)4

uαα + uββ =
1

β
uβ +

(
β

2

)4

.

(1.5.27)

This is the desired canonical form of the elliptic equation.
Finally, for the parabolic case (x = 0), equation (1.5.21) reduces to the canonical

form
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uyy = 0. (1.5.28)

In this case, the characteristic determined from dx
dy = 0 is x = 0. That is, the y-axis

is the characteristic curve, and it represents a curve across which a transition from
hyperbolic to elliptic form takes place.

Example 1.5.3 (The Cauchy Problem for the Wave Equation). The one-dimensional
wave equation

utt − c2uxx = 0 (1.5.29)

is a special case of (1.5.1) with A = −c2, B = 0, and C = 1. Hence, B2 − 4AC =
4c2 > 0, and therefore, the equation is hyperbolic, as mentioned before. According
to (1.5.10ab), the equations of characteristics are

dt

dx
= ±1

c
, (1.5.30)

or equivalently,

ξ = x− ct = const., η = x+ ct = const. (1.5.31ab)

This shows that the characteristics are straight lines in the (x, t)-plane. The former
represents a family of lines with positive slopes, and the latter a family of lines with
negative slopes in the (x, t)-plane. In terms of new coordinates ξ and η, we obtain

uxx = uξξ + 2uξη + uηη, utt = c2(uξξ − 2uξη + uηη)

so that the wave equation (1.5.29) becomes

−4c2uξη = 0. (1.5.32)

Since c �= 0, uξη = 0 which can be integrated twice to obtain the solution

u(ξ, η) = φ(ξ) + ψ(η), (1.5.33)

where φ and ψ are arbitrary functions. Thus, in terms of the original variables, we
obtain

u(x, t) = φ(x− ct) + ψ(x+ ct). (1.5.34)

This represents the general solution provided φ and ψ are arbitrary but twice dif-
ferentiable functions. The first term φ(x − ct) represents a wave (or disturbance)
traveling to the right with constant speed c. Similarly, ψ(x + ct) represents a wave
moving to the left with constant speed c. Thus, the general solution u(x, t) is a linear
superposition of two such waves.

The typical initial-value problem for the wave equation (1.5.29) is the Cauchy
problem of an infinite string with initial data

u(x, 0) = f(x), ut(x, 0) = g(x), (1.5.35ab)

where f(x) and g(x) are given functions representing the initial displacement and
initial velocity, respectively. The conditions (1.5.35ab) imply that
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φ(x) + ψ(x) = f(x), (1.5.36)

−cφ′(x) + cψ′(x) = g(x), (1.5.37)

where the prime denotes the derivative with respect to the argument. Integrating
equation (1.5.37) gives

−cφ(x) + cψ(x) =

∫ x

x0

g(τ) dτ, (1.5.38)

where x0 is an arbitrary constant. Equations (1.5.36) and (1.5.38) now yield

φ(x) =
1

2
f(x)− 1

2c

∫ x

x0

g(τ) dτ,

ψ(x) =
1

2
f(x) +

1

2c

∫ x

x0

g(τ) dτ.

Obviously, (1.5.34) gives the so-called d’Alembert solution of the Cauchy problem
as

u(x, t) =
1

2

[
f(x− ct) + f(x+ ct)

]
+

1

2c

∫ x+ct

x−ct

g(τ) dτ. (1.5.39)

It can be verified by direct substitution that u(x, t) satisfies equation (1.5.29) pro-
vided f is twice differentiable and g is differentiable. Further, the d’Alembert so-
lution (1.5.39) can be used to show that this problem is well posed. The solu-
tion (1.5.39) consists of terms involving f(x±ct) and the term involving the integral
of g. Both terms combined together suggest that the value of the solution at position
x and time t depends only on the initial values of f(x) at points x± ct and the value
of the integral of g between these points. The interval (x − ct, x + ct) is called the
domain of dependence of (x, t). The terms involving f(x± ct) in (1.5.39) show that
waves are propagated along the characteristics with constant velocity c.

In particular, if g(x) = 0, the solution is represented by the first two terms
in (1.5.39), that is,

u(x, t) =
1

2

[
f(x− ct) + f(x+ ct)

]
. (1.5.40)

Physically, this solution shows that the initial data is split into two equal waves,
similar in shape to the initial displacement, but of half the amplitude.

These waves propagate in the opposite direction with the same constant speed c
as shown in Figure 1.2.

To investigate the physical significance of the d’Alembert solution, it is conve-
nient to rewrite the solution in the form

u(x, t) =
1

2
f(x− ct)− 1

2c

∫ x−ct

0

g(τ) dτ +
1

2
f(x+ ct)

+
1

2c

∫ x+ct

0

g(τ) dτ (1.5.41)

= Φ(x− ct) + Ψ(x+ ct), (1.5.42)
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Fig. 1.2 Splitting of initial data into equal waves.

Fig. 1.3 Graphical representation of solution

where

Φ(ξ) =
1

2
f(ξ)− 1

2c

∫ ξ

0

g(τ) dτ, (1.5.43a)

Ψ(η) =
1

2
f(η) +

1

2c

∫ η

0

g(τ) dτ. (1.5.43b)

Physically, Φ(x − ct) represents a progressive wave propagating in the positive x-
direction with constant speed c without change of shape as shown in Figure 1.3.
Similarly, Ψ(x + ct) also represents a progressive wave traveling in the negative
x-direction with the same speed without change of shape.

A more general form of the wave equation is

utt − a2(x)uxx = 0, (1.5.44)

where a is a function of x only. The characteristic coordinates are now given by
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ξ = t−
∫ x dτ

a(τ)
, η = t+

∫ x dτ

a(τ)
. (1.5.45ab)

Thus,

ux = −1

a
uξ +

1

a
uη, ut = uξ + uη,

uxx =
1

a2
(uξξ − 2uξη + uηη)− (uη − uξ)

a′(x)

a2
,

utt = uξξ + 2uξη + uηη.

Consequently, equation (1.5.44) reduces to

4uξη + a′(x)(uη − uξ) = 0. (1.5.46)

In order to express a′ in terms of ξ and η, we observe that

η − ξ = 2

∫ x dτ

a(τ)
, (1.5.47)

so that x is a function of (η − ξ). Thus, a′(x) will be some function of (η − ξ).
In particular, if a(x) = Axn, where A is a constant, so that a′(x) = nAxn−1,

and when n �= 1, result (1.5.47) gives

η − ξ = − 2

A

1

(n− 1)

1

xn−1
(1.5.48)

so that

a′(x) = − 2n

(n− 1)
· 1

η − ξ
.

Thus, equation (1.5.46) reduces to the form

4uξη −
2n

(n− 1)

1

(η − ξ)
(uη − uξ) = 0.

Finally, we find that

uξη =
n

2(n− 1)

1

(η − ξ)
(uη − uξ). (1.5.49)

When n = 1, a(x) = Ax, and a′(x) = A, substituting ξ = α
A and η = β

A can be
used to reduce equation (1.5.46) to

uαβ =
1

4
(uα − uβ). (1.5.50)

Equation (1.5.49) is called the Euler–Darboux equation which has the hyperbolic
form

uxy =
m

x− y
(ux − uy), (1.5.51)

where m is a positive integer.
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We next note that

∂2

∂x∂y

[
(x− y)u

]
=

∂

∂x

[
(x− y)

∂u

∂y
− u

]
= (x− y)uxy + (uy − ux). (1.5.52)

When m = 1, equation (1.5.51) becomes

(x− y)uxy = ux − uy

so that (1.5.52) reduces to

∂2

∂x∂y

[
(x− y)u

]
= 0. (1.5.53)

This shows that the solution of (1.5.53) is (x − y)u = φ(x) + ψ(y). Hence, the
solution of (1.5.51) with m = 1 is

u(x, y) =
φ(x) + ψ(y)

x− y
, (1.5.54)

where φ and ψ are arbitrary functions.
We multiply (1.5.51) by (x− y), and apply the derivative ∂2

∂x∂y , so that the result
is, due to (1.5.52),

(x− y)
∂2

∂x∂y
(uxy) +

(
∂

∂y
− ∂

∂x

)
(uxy) = m

(
∂

∂x
− ∂

∂y

)
uxy.

Or

(x− y)
∂2

∂x∂y
(uxy) = (m+ 1)

(
∂

∂x
− ∂

∂y

)
(uxy). (1.5.55)

Hence, if u is a solution of (1.5.51), then uxy is a solution of (1.5.51) with m replaced
by m + 1. When m = 1, the solution is given by (1.5.54), and hence, the solution
of (1.5.51) takes the form

u(x, y) =
∂2m−2

∂xm−1∂ym−1

[
φ(x) + ψ(y)

x− y

]
, (1.5.56)

where φ and ψ are arbitrary functions.

1.6 The Method of Separation of Variables

This method combined with the principle of superposition is widely used to solve
initial boundary-value problems involving linear partial differential equations. Usu-
ally, the dependent variable u(x, y) is expressed in the separable form as u(x, y) =
X(x)Y (y) where X and Y are functions of x and y, respectively. In many cases,
the partial differential equation reduces to two ordinary differential equations for X
and Y . A similar treatment can be applied to equations in three or more independent



22 1 Linear Partial Differential Equations

variables. However, the question of separability of a partial differential equation into
two or more ordinary differential equations is by no means a trivial one. In spite of
this question, the method is widely used in finding solutions of a large class of initial
boundary-value problems. This method of solution is known as the Fourier method
(or the method of eigenfunction expansion). Thus, the procedure outlined above leads
to the important ideas of eigenvalues, eigenfunctions, and orthogonality, all of which
are very general and powerful for dealing with linear problems. The following ex-
amples illustrate the general nature of this method.

Example 1.6.1 (Transverse Vibration of a String). We consider the one-dimensional
linear wave equation

utt = c2uxx, 0 < x < �, t > 0, (1.6.1)

where c2 = T ∗/ρ, T ∗ is a constant tension, and ρ is the constant line density of the
string. The initial and boundary conditions are

u(x, 0) = f(x), ut(x, 0) = g(x), 0 ≤ x ≤ �, (1.6.2ab)

u(0, t) = 0 = u(�, t), t > 0, (1.6.3ab)

where f and g are the initial displacement and initial velocity, respectively.
According to the method of separation of variables, we assume a separable solu-

tion of the form
u(x, t) = X(x)T (t) �= 0, (1.6.4)

where X is a function of x only, and T is a function of t only.
Substituting this solution into equation (1.6.1) yields

1

X

d2X

dx2
=

1

c2T

d2T

dt2
. (1.6.5)

Since the left side of this equation is a function of x only and the right-hand side is
a function of t only, it follows that (1.6.5) can be true only if both sides are equal to
the same constant value. We then write

1

X

d2X

dx2
=

1

c2T

d2T

dt2
= λ, (1.6.6)

where λ is an arbitrary separation constant. Thus, this leads to the pair of ordinary
differential equations

d2X

dx2
= λX, (1.6.7a)

d2T

dt2
= λc2T. (1.6.7b)

We solve this pair of equations by using the boundary conditions which are obtained
from (1.6.3ab) as



1.6 The Method of Separation of Variables 23

u(0, t) = X(0)T (t) = 0 for t > 0, (1.6.8)

u(�, t) = X(�)T (t) = 0 for t > 0. (1.6.9)

Hence, we take T (t) �= 0 to obtain

X(0) = 0 = X(�). (1.6.10ab)

There are three possible cases: (i) λ > 0, (ii) λ = 0, (iii) λ < 0.
For case (i), λ = α2 > 0. The solution of (1.6.7a) is

X(x) = Aeαx +Be−αx, (1.6.11)

which together with (1.6.10ab) leads to A = B = 0. This leads to a trivial solution
u(x, t) = 0.

For case (ii), λ = 0. In this case, the solution of (1.6.7a) is

X(x) = Ax+B. (1.6.12)

Then. we use (1.6.10ab) to obtain A = B = 0. This also leads to the trivial solution
u(x, t) = 0.

For case (iii), λ < 0, and hence, we write λ = −α2 so that the solution of
equation (1.6.7a) gives

X = A cosαx+B sinαx, (1.6.13)

whence, using (1.6.10ab), we derive the nontrivial solution

X(x) = B sinαx, (1.6.14)

where B is an arbitrary nonzero constant. Clearly, since B �= 0 and X(�) = 0,

sinα� = 0, (1.6.15)

which gives the solution for the parameter α

α = αn =

(
nπ

�

)
, n = 1, 2, 3, . . . . (1.6.16)

Note that n = 0 (α = 0) leads to the trivial solution u(x, t) = 0, and hence, the case
n = 0 is to be excluded.

Evidently, we see from (1.6.16) that there exists an infinite set of discrete values
of α for which the problem has a nontrivial solution. These values αn are called the
eigenvalues, and the corresponding solutions are

Xn(x) = Bn sin

(
nπx

�

)
. (1.6.17)

We next solve (1.6.7a) with λ = −α2
n to find the solution for Tn(t) as

Tn(t) = Cn cos(αnct) +Dn sin(αnct), (1.6.18)
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where Cn and Dn are constants of integration. Combining (1.6.17) with (1.6.18)
yields the solution from (1.6.4) as

un(x, t) =

[
an cos

(
nπct

�

)
+ bn sin

(
nπct

�

)]
sin

(
nπx

�

)
, (1.6.19)

where an = CnBn, bn = BnDn are new arbitrary constants and n = 1, 2, 3, . . . .
These solutions un(x, t), corresponding to eigenvalues αn = (nπ� ), are called the
eigenfunctions. Finally, since the problem is linear, the most general solution is ob-
tained by the principle of superposition in the form

u(x, t) =

∞∑
n=1

(
an cos

nπct

�
+ bn sin

nπct

�

)
sin

(
nπx

�

)
, (1.6.20)

provided the series converges and it is twice continuously differentiable with respect
to x and t. The arbitrary coefficients an and bn are determined from the initial con-
ditions (1.6.2ab) which give

u(x, 0) = f(x) =

∞∑
n=1

an sin

(
nπx

�

)
, (1.6.21)

ut(x, 0) = g(x) =

(
πc

�

) ∞∑
n=1

nbn sin

(
nπx

�

)
. (1.6.22)

Either by a Fourier series method (see Appendix B) or by direct multiplication
of (1.6.21) and (1.6.22) by sin(mπx

� ) and integrating from 0 to �, we can find an
and bn as

an =
2

�

∫ �

0

f(x) sin

(
nπx

�

)
dx, bn =

2

nπc

∫ �

0

g(x) sin

(
nπx

�

)
dx,

(1.6.23ab)
in which we have used the result

∫ �

0

sin

(
mπx

�

)
sin

(
nπx

�

)
dx =

�

2
δmn, (1.6.24)

where δmn are Kronecker deltas. Thus, (1.6.20) represents the solution where an and
bn are given by (1.6.23ab). Hence, the problem is completely solved.

We examine the physical significance of the solution (1.6.19) in the context of
the free vibration of a string of length �. The eigenfunctions

un(x, t) = (an cosωnt+ bn sinωnt) sin

(
nπx

�

)
,

(
ωn =

nπc

�

)
, (1.6.25)

are called the nth normal modes of vibration or the nth harmonic, and ωn represents
the discrete spectrum of circular (or radian) frequency or νn = ωn

2π = nc
2� , which are

called the angular frequencies. The first harmonic (n = 1) is called the fundamental
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Fig. 1.4 Several modes of vibration in a string.

harmonic and all other harmonics (n > 1) are called overtones. The frequency of
the fundamental mode is given by

ω1 =
πc

�
, ν1 =

1

2�

√
T ∗

ρ
. (1.6.26ab)

Result (1.6.26ab) is considered the fundamental law (or Mersenne law) of a stringed
musical instrument. The angular frequency of the fundamental mode of transverse
vibration of a string varies as the square root of the tension, inversely as the length,
and inversely as the square root of the density. The period of the fundamental mode is
T1 = 2π

ω1
= 2�

c , which is called the fundamental period. Finally, the solution (1.6.20)
describes the motion of a plucked string as a superposition of all normal modes of
vibration with frequencies which are all integral multiples (ωn = nω1 or νn =
nν1) of the fundamental frequency. This is the main reason for the fact that stringed
instruments produce more sweet musical sounds (or tones) than drum instruments.

In order to describe waves produced in the plucked string with zero initial veloc-
ity (ut(x, 0) = 0), we write the solution (1.6.25) in the form

un(x, t) = an sin

(
nπx

�

)
cos

(
nπct

�

)
, n = 1, 2, 3, . . . . (1.6.27)

These solutions are called standing waves with amplitude an sin(
nπx
� ), which van-

ishes at

x = 0,
�

n
,
2�

n
, . . . , �.

These are called the nodes of the nth harmonic. The string displays n loops separated
by the nodes as shown in Figure 1.4.

It follows from elementary trigonometry that (1.6.27) takes the form

un(x, t) =
1

2
an

[
sin

nπ

�
(x− ct) + sin

nπ

�
(x+ ct)

]
. (1.6.28)
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This shows that a standing wave is expressed as a sum of two progressive waves of
equal amplitude traveling in opposite directions. This result is in agreement with the
d’Alembert solution.

Finally, we can rewrite the solution (1.6.19) of the nth normal modes in the form

un(x, t) = cn sin

(
nπx

�

)
cos

(
nπct

�
− εn

)
, (1.6.29)

where cn = (a2n + b2n)
1
2 and tan εn = ( bnan

).
This solution represents transverse vibrations of the string at any point x and

at any time t with amplitude cn sin(
nπx
� ) and circular frequency ωn = nπc

� . This
form of the solution enables us to calculate the kinetic and potential energies of the
transverse vibrations. The total kinetic energy (K.E.) is obtained by integrating with
respect to x from 0 to �, that is,

Kn = K .E . =

∫ �

0

1

2
ρ

(
∂un

∂t

)2

dx, (1.6.30)

where ρ is the line density of the string. Similarly, the total potential energy (P.E.) is
given by

Vn = P .E . =
1

2
T ∗

∫ �

0

(
∂un

∂x

)2

dx. (1.6.31)

Substituting (1.6.29) in (1.6.30) and (1.6.31) gives

Kn =
1

2
ρ

(
nπc

�
cn

)2

sin2
(
nπct

�
− εn

)∫ �

0

sin2
(
nπx

�

)
dx

=
ρc2π2

4�
(ncn)

2 sin2
(
nπct

�
− εn

)
=

1

4
ρ�ω2

nc
2
n sin

2(ωnt− εn), (1.6.32)

where ωn = nπc
� .

Similarly,

Vn =
1

2
T ∗

(
nπcn
�

)2

cos2
(
nπct

�
− εn

)∫ �

0

cos2
(
nπx

�

)
dx

=
π2T ∗

4�
(ncn)

2 cos2
(
nπct

�
− εn

)
=

1

4
ρ�ω2

nc
2
n cos

2(ωnt− εn). (1.6.33)

Thus, the total energy of the nth normal modes of vibrations is given by

En = Kn + Vn =
1

4
ρ�(ωncn)

2 = const. (1.6.34)

For a given string oscillating in a normal mode, the total energy is proportional to the
square of the circular frequency and to the square of the amplitude.
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Finally, the total energy of the system is given by

E =

∞∑
n=1

En =
1

4
ρ�

∞∑
n=1

ω2
nc

2
n, (1.6.35)

which is constant because En = const.

Example 1.6.2 (One-Dimensional Diffusion Equation). The temperature distribution
u(x, t) in a homogeneous rod of length � satisfies the diffusion equation

ut = κuxx, 0 < x < �, t > 0, (1.6.36)

with the boundary and initial conditions

u(0, t) = 0 = u(�, t), t ≥ 0, (1.6.37ab)

u(x, 0) = f(x), 0 ≤ x ≤ �, (1.6.38)

where κ is a diffusivity constant.
We assume a separable solution of (1.6.36) in the form

u(x, t) = X(x)T (t) �= 0. (1.6.39)

Substituting (1.6.39) in (1.6.36) gives

1

X

d2X

dx2
=

1

κT

dT

dt
. (1.6.40)

Since the left-hand side depends only on x and the right-hand side is a function
of time t only, result (1.6.40) can be true only if both sides are equal to the same
constant λ. Thus, we obtain two ordinary differential equations

d2X

dx2
− λX = 0,

dT

dt
− λκT = 0. (1.6.41ab)

For λ ≥ 0, the only solution of the form (1.6.39) consistent with the given boundary
conditions is u(x, t) ≡ 0. Hence, for negative λ = −α2,

d2X

dx2
+ α2X = 0,

dT

dt
+ κα2T = 0, (1.6.42ab)

which admit solutions as

X(x) = A cosαx+B sinαx (1.6.43)

and

T (t) = C exp
(
−κα2t

)
, (1.6.44)

where A, B, and C are constants of integration.
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The boundary conditions for X(x) are

X(0) = 0 = X(�), (1.6.45)

which are used to find A and B in solution (1.6.43). It turns out that A = 0 and
B �= 0. Hence,

sinα� = 0, (1.6.46)

which gives the eigenvalues

α = αn =
nπ

�
, n = 1, 2, 3, . . . . (1.6.47)

The value n = 0 is excluded because it leads to a trivial solution. Thus, the eigen-
functions are given by

Xn(x) = Bn sin

(
nπx

�

)
, (1.6.48)

where Bn are nonzero constants.
With α = αn = nπ

� , we combine (1.6.44) with (1.6.48) to obtain the solution for
un(x, t) as

un(x, t) = an exp

[
−
(
nπ

�

)2

κt

]
sin

(
nπx

�

)
, (1.6.49)

where an = BnCn is a new constant. Thus, (1.6.47) and (1.6.49) constitute an in-
finite set of eigenvalues and eigenfunctions. Thus, the most general solution is ob-
tained by the principle of superposition in the form

u(x, t) =

∞∑
n=1

an exp

[
−
(
nπ

�

)2

κt

]
sin

(
nπx

�

)
. (1.6.50)

Now, the initial condition implies that

f(x) =

∞∑
n=1

an sin

(
nπx

�

)
, (1.6.51)

which determines an, in view of (1.6.24), as

an =
2

�

∫ �

0

f(x) sin

(
nπx

�

)
dx. (1.6.52)

Thus, the final form of the solution is given by

u(x, t) =

∞∑
n=1

[
2

�

∫ �

0

f
(
x′
)
sin

(
nπx′

�

)
dx′

]
exp

[
−
(
nπ

�

)2

κt

]
sin

(
nπx

�

)
.

(1.6.53)
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It follows from the series solution (1.6.53) that the series satisfies the given boundary
and initial conditions. It also satisfies equation (1.6.36) because the series is conver-
gent for all x(0 ≤ x ≤ �) and t ≥ 0 and can be differentiated term by term. Phys-
ically, the temperature distribution decays exponentially with time t. This shows a
striking contrast to the wave equation, whose solution oscillates in time t. The time
scale of decay for the nth mode is Td ∼ 1

κ (
�
nπ )

2 which is directly proportional to �2

and inversely proportional to the thermal diffusivity.

The method of separation of variables is applicable to the wave equation and
the diffusion equation, and also to problems involving Laplace’s equation and other
equations in two or three dimensions with a wide variety of initial and boundary
conditions. We consider the following examples.

Example 1.6.3 (Two-Dimensional Diffusion Equation). We consider

ut = κ(uxx + uyy), 0 < x < a, 0 < y < b, t > 0, (1.6.54)

u(x, y, t) = f(x, y) at t = 0, (1.6.55)

u(x, y, t) = 0 on ∂D, (1.6.56)

where ∂D is the boundary of the rectangle defined by 0 ≤ x ≤ a, 0 ≤ y ≤ b.
The method here is precisely the same as in the previous examples except that

we seek a solution of (1.6.54) in the form

u(x, y, z) = S(x, y)T (t) �= 0, (1.6.57)

so that S and T satisfy the equations

∂2S

∂x2
+

∂2S

∂y2
+ λS = 0, (1.6.58)

∂T

∂t
+ κλT = 0. (1.6.59)

For λ ≤ 0, the separable solution (1.6.57) with the given boundary data leads only
to a trivial solution u(x, y, t) ≡ 0. Hence, for positive λ, we solve (1.6.58), (1.6.59)
subject to the given boundary and initial conditions. Equation (1.6.58) is an elliptic
equation, and here we seek a solution S(x, y) which satisfies the boundary conditions

S(0, y) = 0 = S(a, y) for 0 ≤ y ≤ b, (1.6.60)

S(x, 0) = 0 = S(x, b) for 0 ≤ x ≤ a. (1.6.61)

We also seek a separable solution of (1.6.58) in the form

S(x, y) = X(x)Y (y) �= 0 (1.6.62)

and find that X(x) and Y (y) satisfy the equation

X ′′

X
+

Y ′′

Y
+ λ = 0,
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that is,

X ′′

X
= −μ = −

(
Y ′′

Y
+ λ

)
. (1.6.63)

Or

X ′′ + μX = 0, (1.6.64a)

Y ′′ + (λ− μ)Y = 0. (1.6.64b)

These equations have to be solved with the boundary conditions

X(0) = 0 = X(a), (1.6.65a)

Y (0) = 0 = Y (b). (1.6.65b)

The eigenvalue problem (1.6.64a), (1.6.64b) with (1.6.65a), (1.6.65b) gives the
eigenvalues

μm =

(
mπ

a

)2

, (1.6.66)

and the corresponding eigenfunctions

Xm(x) = Am sin

(
mπx

a

)
, (1.6.67)

when m = 1, 2, 3, . . . . Thus, equation (1.6.64b) becomes

Y ′′ + (λ− μm)Y = 0, (1.6.68)

which has to be solved with (1.6.65b). This is another eigenvalue problem similar to
that already considered and leads to the eigenvalues

λn − μm =

(
nπ

b

)2

(1.6.69)

and the corresponding eigenfunctions

Yn(y) = Bn sin

(
nπy

b

)
, (1.6.70)

where n = 1, 2, 3, . . . . In other words, the solution of equation (1.6.58) becomes

Smn(x, y) = Xm(x)Yn(y) = Amn sin

(
mπx

a

)
sin

(
nπy

b

)
, (1.6.71)

where Amn = AmBn are constants together with the eigenvalues

λmn = μm +

(
nπ

b

)2

=

(
m2

a2
+

n2

b2

)
π2, (1.6.72)

where m = 1, 2, 3, . . . and n = 1, 2, 3, . . . .
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With λmn as eigenvalues, we solve (1.6.59) to obtain

Tmn(t) = Bmn exp(−λmnκt), (1.6.73)

where Bmn are integrating constants.
Finally, the solution (1.6.57) can be expressed as a double series

u(x, y, t) =

∞∑
m=1

∞∑
n=1

amn sin

(
mπx

a

)
sin

(
nπy

b

)
exp(−λmnκt), (1.6.74)

where amn are constants to be determined from the initial condition so that

f(x, y) = u(x, y, 0) =

∞∑
m=1

∞∑
n=1

amn sin

(
mπx

a

)
sin

(
nπy

b

)
. (1.6.75)

To find constants amn, we multiply (1.6.75) by sin( rπxa ) and integrate the result
with respect to x from 0 to a with fixed y, so that

a

2

∞∑
n=1

amn sin

(
nπy

b

)
=

∫ a

0

f(x, y) sin

(
mπx

a

)
dx. (1.6.76)

The right-hand side is a function of y and is set equal to g(y), so that
∫ a

0

f(x, y) sin

(
mπx

a

)
dx = g(y). (1.6.77)

Then, the coefficients amn (m fixed) in (1.6.76) are found by multiplying it by
sin(nπyb ) and integrating with respect to y from 0 to b, so that

(
ab

4

)
amn =

∫ b

0

g(y) sin

(
nπy

b

)
dy, (1.6.78)

whence

amn =

(
4

ab

)∫ a

0

∫ b

0

f(x, y) sin

(
mπx

a

)
sin

(
nπy

b

)
dx dy. (1.6.79)

Thus, the solution of the problem is given by (1.6.74) where amn is represented
by (1.6.79). The method of construction of the solution shows that the initial and
boundary conditions are satisfied by the solution. Moreover, the uniform convergence
of the double series justifies differentiation of the series, and this, in turn, permits us
to verify the solution by direct substitution in the original diffusion equation (1.6.54).

Example 1.6.4 (Dirichlet’s Problem for a Circle). We consider the Laplace equation
in cylindrical polar coordinates (r, θ, z) as

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < a, 0 ≤ θ < 2π, (1.6.80)
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with the boundary condition

u(a, θ) = f(θ) for all θ. (1.6.81)

According to the method of separation of variables, we seek a solution in the form

u(r, θ) = R(r)Θ(θ) �= 0. (1.6.82)

Substituting this solution in equation (1.6.80) gives

r2
R′′

R
+ r

R′

R
= −Θ′′

Θ
= λ.

Hence,

r2R′′ + rR′ − λR = 0 and (1.6.83a)

Θ′′ + λΘ = 0. (1.6.83b)

For Θ(θ), we naturally require periodic boundary conditions

Θ(θ + 2π) = Θ(θ) for −∞ < z < ∞. (1.6.84)

Due to the periodicity condition, for λ < 0, the solution (1.6.82) leads to a trivial
solution. So, there are two cases: (i) λ = 0 and (ii) λ > 0.

For case (i), we have the solution

u(r, θ) = (A+B log r)(Cθ +D). (1.6.85)

Since log r is singular at r = 0, hence, B = 0. For u to be periodic with period
2π, C = 0. Hence, the solution u must be constant for λ = 0.

For λ > 0, the solution of equation (1.6.83b) is

Θ(θ) = A cos
√
λθ +B sin

√
λθ. (1.6.86)

Since Θ(θ) is periodic with period 2π,
√
λ must be an integer n so that λ = n2,

n = 1, 2, 3, . . . . Thus, solution (1.6.86) becomes

Θ(θ) = A cosnθ +B sinnθ. (1.6.87)

The equation (1.6.83a) is the Euler equation with λ = n2. It gives solutions of the
form R(r) = rα �= 0 so that (1.6.83a) gives

[
α(α− 1) + α− n2

]
rα = 0,

whence α = ±n. Thus, the solution for R(r) is given by

R(r) = Crn +Dr−n. (1.6.88)

Since R(r) → ∞ as r → 0 because of the term r−n, we get D = 0. Thus, the
solution (1.6.82) reduces to
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u(r, θ) = Crn(A cosnθ +B sinnθ). (1.6.89)

By the superposition principle, the solution of the Laplace equation within a circular
region including the origin r = 0 is

u(r, θ) =
1

2
a0 +

∞∑
n=1

rn(an cosnθ + bn sinnθ), (1.6.90)

where a0, an, and bn are constants to be determined from the boundary conditions,
and the first term 1

2a0 represents the constant solution for λ = 0 (n = 0).
Finally, using the boundary condition (1.6.81), we derive

f(θ) = u(a, θ) =
1

2
a0 +

∞∑
n=1

an(an cosnθ + bn sinnθ). (1.6.91)

This is exactly the Fourier series representation for f(θ), and hence, the coefficients
are given by

an =
1

πan

∫ 2π

0

f(φ) cosnφdφ, n = 0, 1, 2, 3, . . . ,

bn =
1

πan

∫ 2π

0

f(φ) sinnφdφ, n = 1, 2, 3, . . . .

Substituting the values for an and bn into (1.6.91) yields the solution

u(r, θ) =
1

2π

∫ 2π

0

f(φ) dφ

+
1

π

∞∑
n=1

(
r

a

)n ∫ 2π

0

(cosnθ cosnφ+ sinnθ sinnφ)f(φ) dφ

=
1

2π

∫ 2π

0

f(φ)

{
1 + 2

∞∑
n=1

(
r

a

)n

cosn(θ − φ)

}
dφ, (1.6.92)

where the term inside the set of braces in the above integral can be summed by
writing it as a geometric series, that is,

1 +

∞∑
n=1

(
r

a

)n

exp
{
in(θ − φ)

}
+

∞∑
n=1

(
r

a

)n

exp
{
−in(θ − φ)

}

= 1 +
r exp{i(θ − φ)}

a− r exp{i(θ − φ)} +
r exp{−i(θ − φ)}

a− r exp{−i(θ − φ)}

=
(a2 − r2)

a2 − 2ar cos(θ − φ) + r2
.

Thus, the final form of the solution is
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u(r, θ) =
1

2π

∫ 2π

0

(a2 − r2)f(φ) dφ

a2 − 2ar cos(θ − φ) + r2
. (1.6.93)

This formula is known as Poisson’s integral formula representing the solution of
the Laplace equation within the circle of radius a in terms of values prescribed on
the circle. It has several important consequences. First, we set r = 0 and θ = 0
in (1.6.93) to obtain

u(0, 0) =
1

2π

∫ 2π

0

f(φ) dφ. (1.6.94)

This states that the value of u at the center is equal to the mean value of u on the
boundary of the circle. This is called the mean value property.

We rewrite (1.6.93) in the form

u(r, θ) =

∫ 2π

0

P (r, θ − φ)f(φ) dφ, (1.6.95)

where P (r, θ − φ) is called the Poisson kernel given by

P (r, θ − φ) =
1

2π
· (a2 − r2)

a2 − 2ar cos(θ − φ) + r2
, (1.6.96)

which is zero for r = a but θ �= φ. Further,

f(θ) = lim
r→a−

u(r, θ) =

∫ 2π

0

[
lim

r→a−
P (r, θ − φ)

]
f(φ) dφ,

which implies that

lim
r→a−

P (r, θ − φ) = δ(θ − φ), (1.6.97)

where δ(x) is the Dirac delta function.

1.7 Fourier Transforms and Initial Boundary-Value Problems

The Fourier transform of u(x, t) with respect to x ∈ R is denoted by F{u(x, t)} =
U(k, t) and is defined by the integral

F
{
u(x, t)

}
= U(k, t) =

1√
2π

∫ ∞

−∞
e−ikxu(x, t) dx, (1.7.1)

where k is real and is called the transform variable. The inverse Fourier transform,
denoted by F−1{U(k, t)} = u(x, t), is defined by

F−1
{
U(k, t)

}
= u(x, t) =

1√
2π

∫ ∞

−∞
eikxU(k, t) dk. (1.7.2)

The basic properties of the Fourier transforms including the convolution are dis-
cussed in Appendix B.
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Example 1.7.1.

(a) F
{
exp

(
−ax2

)}
=

1√
2a

exp

(
−k2

4a

)
, a > 0, (1.7.3)

(b) F
{
exp

(
−a|x|

)}
=

√
2

π
· a

(k2 + a2)
, a > 0. (1.7.4)

If u(x, t) → 0, as |x| → ∞, then

F
{
∂u

∂x

}
=

1√
2π

∫ ∞

−∞
e−ikx ∂u

∂x
dx,

which, by integrating by parts, is

=
1√
2π

[
e−ikxu(x, t)

]∞
−∞ +

ik√
2π

∫ ∞

−∞
e−ikxu(x, t) dx

= ikF
{
u(x, t)

}
= ikU(k, t). (1.7.5)

Similarly, if u(x, t) is continuously n times differentiable and ∂ku
∂xk → 0, as |x| → ∞

for k = 1, 2, 3, . . . , (n− 1), then

F
{
∂nu

∂xn

}
= (ik)nF

{
u(x, t)

}
= (ik)nU(k, t). (1.7.6)

It also follows from the definition (1.7.1) that

F
{
∂u

∂t

}
=

dU

dt
, F

{
∂2u

∂t2

}
=

d2U

dt2
, . . . , F

{
∂nu

∂tn

}
=

dnU

dtn
. (1.7.7)

The definition of the Fourier transform (1.7.1) shows that a sufficient condition
for u(x, t) to have a Fourier transform is that u(x, t) is absolutely integrable on
−∞ < x < ∞. This existence condition is too strong for many practical applica-
tions. Many simple functions, such as a constant function, sinωx, and xnH(x), do
not have Fourier transforms, even though they occur frequently in applications. The
above definition of the Fourier transform has been extended for a more general class
of functions to include the above and other functions. We simply state the fact that
there is a sense, useful in practical applications, in which the above stated functions
and many others do have Fourier transforms. The following are examples of such
functions and their Fourier transforms:

F
{
H
(
a− |x|

)}
=

√
2

π

(
sin ak

k

)
, (1.7.8)

where H(x) is the Heaviside unit step function,

F
{
δ(x− a)

}
=

1√
2π

exp(−iak), (1.7.9)
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where δ(x− a) is the Dirac delta function, and

F
{
H(x− a)

}
=

√
π

2

[
1

iπk
+ δ(k)

]
exp(−iak). (1.7.10)

Theorem 1.7.1 (Convolution Theorem). If F{f(x)} = F (k) and F{g(x)} =
G(k), then

F
{
f(x) ∗ g(x)

}
= F (k)G(k). (1.7.11)

Or equivalently,

F−1
{
F (k)G(k)

}
= f(x) ∗ g(x), (1.7.12)

where f(x) ∗ g(x) is called the convolution of two integrable functions f(x) and
g(x) and is defined by

f(x) ∗ g(x) = 1√
2π

∫ ∞

−∞
f(x− ξ)g(ξ) dξ. (1.7.13)

Hence, the result (1.7.12) can also be written as

∫ ∞

−∞
f(x− ξ)g(ξ) dξ =

∫ ∞

−∞
eikxF (k)G(k) dk. (1.7.14)

It can easily be verified that the convolution has the following simple properties (see
Appendix B):

f(x) ∗ g(x) = g(x) ∗ f(x) (commutative), (1.7.15)

f(x) ∗
√
2πδ(x) = f(x) =

√
2πδ(x) ∗ f(x) (identity). (1.7.16)

The Fourier transforms are very useful in solving a wide variety of initial boundary-
value problems governed by linear partial differential equations. The following ex-
amples of applications illustrate the method of Fourier transforms.

Example 1.7.2 (The Cauchy Problem for the Linear Wave Equation). Obtain the
d’Alembert solution of the initial-value problem for the wave equation

utt = c2uxx, −∞ < x < ∞, t > 0, (1.7.17)

with the initial data

u(x, 0) = f(x), ut(x, 0) = g(x), −∞ < x < ∞. (1.7.18ab)

Application of the Fourier transform F{u(x, t)} = U(k, t) to this system gives
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d2U

dt2
+ c2k2U = 0,

U(k, 0) = F (k),

(
dU

dt

)
t=0

= G(k).

The solution of the transformed system is

U(k, t) = Aeickt +Be−ickt,

where A and B are constants of integration to be determined from the transformed
data A + B = F (k) and A − B = 1

ikcG(k). Solving for A and B, we obtain the
solution

U(k, t) =
1

2
F (k)

(
eickt + e−ickt

)
+

G(k)

2ick

(
eickt − e−ickt

)
. (1.7.19)

Thus, the inverse Fourier transform of (1.7.19) yields the solution

u(x, t) =
1

2

[
1√
2π

∫ ∞

−∞
F (k)

{
eik(x+ct) + eik(x−ct)

}
dk

]

+
1

2c

[
1√
2π

∫ ∞

−∞

G(k)

ik

{
eik(x+ct) − eik(x−ct)

}
dk

]
. (1.7.20)

We use the following results:

f(x) = F−1
{
F (k)

}
=

1√
2π

∫ ∞

−∞
eikxF (k) dk,

g(x) = F−1
{
G(k)

}
=

1√
2π

∫ ∞

−∞
eikxG(k) dk,

to obtain the solution in the form

u(x, t) =
1

2

[
f(x− ct) + f(x+ ct)

]
+

1

2c

1√
2π

∫ ∞

−∞
G(k) dk

∫ x+ct

x−ct

eikξ dξ

=
1

2

[
f(x− ct) + f(x+ ct)

]
+

1

2c

∫ x+ct

x−ct

dξ

[
1√
2π

∫ ∞

−∞
eikξG(k) dk

]

=
1

2

[
f(x− ct) + f(x+ ct)

]
+

1

2c

∫ x+ct

x−ct

g(ξ) dξ. (1.7.21)

This is the well-known d’Alembert solution of the wave equation.
In particular, if f(x) = exp(−x2) and g(x) = 0, then the d’Alembert solution

(1.7.21) reduces to

u(x, t) =
1

2

[
exp

{
−(x− ct)2

}
+ exp

{
−(x+ ct)2

}]
. (1.7.22)

This shows that the initial wave profile breaks up into two identical traveling waves
of half the amplitude moving in opposite directions with speed c.
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On the other hand, if f(x) = 0 and g(x) = δ(x), the d’Alembert solution
(1.7.21) becomes

u(x, t) =
1

2c

∫ x+ct

x−ct

δ(ξ) dξ =
1

2c

∫ x+ct

x−ct

H ′(ξ) dξ

=
1

2c

[
H(x+ ct)−H(x− ct)

]

=
1

2c

{
1 if |x| < ct,

0 if |x| > ct > 0
(1.7.23)

=
1

2c
H
(
c2t2 − x2

)
. (1.7.24)

Example 1.7.3 (The Linearized Korteweg–de Vries Equation). The linearized Korte-
weg–de Vries (KdV) equation for the free surface elevation η(x, t) in inviscid water
of constant depth h is

ηt + cηx +
ch2

6
ηxxx = 0, −∞ < x < ∞, t > 0, (1.7.25)

where c =
√
gh is the shallow water speed.

We solve equation (1.7.25) with the initial condition

η(x, 0) = f(x), −∞ < x < ∞. (1.7.26)

Application of the Fourier transform F{η(x, t)} = E(k, t) to the KdV system
gives the solution for E(k, t) in the form

E(k, t) = F (k) exp

[
ikct

(
k2h2

6
− 1

)]
.

The inverse transform gives

η(x, t) =
1√
2π

∫ ∞

−∞
F (k) exp

[
ik

{
(x− ct) +

(
cth2

6

)
k2
}]

dk. (1.7.27)

In particular, if f(x) = δ(x), then (1.7.27) reduces to the Airy integral

η(x, t) =
1

π

∫ ∞

0

cos

[
k(x− ct) +

(
cth2

6

)
k3
]
dk, (1.7.28)

which, in terms of the Airy function,

=

(
cth2

2

)− 1
3

Ai

[(
cth2

2

)− 1
3

(x− ct)

]
, (1.7.29)

where the Airy function Ai(az) is defined by

Ai(az) =
1

πa

∫ ∞

0

cos

(
kz +

k3

3a3

)
dk. (1.7.30)
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Example 1.7.4 (Dirichlet’s Problem in the Half Plane). We consider the solution of
the Laplace equation in the half plane

uxx + uyy = 0, −∞ < x < ∞, y ≥ 0, (1.7.31)

with the boundary conditions

u(x, 0) = f(x), −∞ < x < ∞, (1.7.32)

u(x, y) → 0 as |x| → ∞, y → ∞. (1.7.33)

We apply the Fourier transform with respect to x to the system (1.7.31)–(1.7.33)
to obtain

d2U

dy2
− k2U = 0, (1.7.34)

U(k, 0) = F (k), and U(k, y) → 0 as y → ∞. (1.7.35ab)

Thus, the solution of this transformed system is

U(k, y) = F (k) exp
(
−|k|y

)
. (1.7.36)

Application of the Convolution Theorem 1.7.1 gives the solution

u(x, y) =
1√
2π

∫ ∞

−∞
f(ξ)g(x− ξ) dξ, (1.7.37)

where

g(x) = F−1
{
e−|k|y} =

√
2

π

y

(x2 + y2)
. (1.7.38)

Consequently, the solution (1.7.37) becomes

u(x, y) =
y

π

∫ ∞

−∞

f(ξ) dξ

(x− ξ)2 + y2
, y > 0. (1.7.39)

This is the well-known Poisson integral formula in the half plane. It is noted that

lim
y→0+

u(x, y) =

∫ ∞

−∞
f(ξ)

[
lim

y→0+

y

π
· 1

(x− ξ)2 + y2

]
dξ

=

∫ ∞

−∞
f(ξ)δ(x− ξ) dξ, (1.7.40)

where Cauchy’s definition of the delta function is used, that is,

δ(x− ξ) = lim
y→0+

y

π
· 1

(x− ξ)2 + y2
. (1.7.41)
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Fig. 1.5 Isothermal curves representing a family of circular arcs.

This may be recognized as a solution of the Laplace equation for a dipole source at
(x, y) = (ξ, 0).

In particular, when

f(x) = T0H
(
a− |x|

)
, (1.7.42)

the solution (1.7.39) reduces to

u(x, y) =
yT0

π

∫ a

−a

dξ

(x− ξ)2 + y2

=
T0

π

[
tan−1

(
x+ a

y

)
− tan−1

(
x− a

y

)]

=
T0

π
tan−1

(
2ay

x2 + y2 − a2

)
. (1.7.43)

The curves in the upper half plane, for which the steady-state temperature is con-
stant, are known as isothermal curves. In this case, these curves represent a family
of circular arcs

x2 + y2 − αy = a2 (1.7.44)

with centers on the y-axis and fixed end points on the x-axis at x = ±a, as shown in
Figure 1.5.

Another special case deals with

f(x) = δ(x). (1.7.45)

This solution for this case follows from (1.7.39) and is given by

u(x, t) =
y

π

∫ ∞

−∞

δ(ξ) dξ

(x− ξ)2 + y2
=

y

π

1

(x2 + y2)
. (1.7.46)
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Further, we can readily reduce the solution of the Neumann problem in the half
plane from the solution of the Dirichlet problem.

Example 1.7.5 (Neumann’s Problem in the Half Plane). Find a solution of the
Laplace equation

uxx + uyy = 0, −∞ < x < ∞, y > 0, (1.7.47)

with the Neumann boundary condition

uy(x, 0) = f(x), −∞ < x < ∞. (1.7.48)

Condition (1.7.48) specifies the normal derivative on the boundary, and, physically,
it describes the fluid flow or heat flux at the boundary.

We define a new function v(x, y) = uy(x, y) so that

u(x, y) =

∫ y

v(x, η) dη, (1.7.49)

where an arbitrary constant can be added to the right-hand side. Clearly, the function
v satisfies the Laplace equation

∂2v

∂x2
+

∂2v

∂y2
=

∂2uy

∂x2
+

∂2uy

∂y2
=

∂

∂y
(uxx + uyy) = 0,

with the boundary condition

v(x, 0) = uy(x, 0) = f(x) for −∞ < x < ∞.

Thus, v(x, y) satisfies the Laplace equation with the Dirichlet condition on the
boundary. Obviously, the solution is given by (1.7.39), that is,

v(x, y) =
y

π

∫ ∞

−∞

f(ξ) dξ

(x− ξ)2 + y2
. (1.7.50)

Then, the solution u(x, y) can be obtained from (1.7.49) in the form

u(x, y) =

∫ y

v(x, η) dη =
1

π

∫ y

η dη

∫ ∞

−∞

f(ξ) dξ

(x− ξ)2 + η2

=
1

π

∫ ∞

−∞
f(ξ) dξ

∫ y η dη

(x− ξ)2 + η2
, y > 0

=
1

2π

∫ ∞

−∞
f(ξ) log

[
(x− ξ)2 + y2

]
dξ, (1.7.51)

where an arbitrary constant can be added to this solution. In other words, the solution
of any Neumann problem is uniquely determined up to an arbitrary constant.
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Example 1.7.6 (The Cauchy Problem for the Diffusion Equation). We consider the
initial-value problem for a one-dimensional diffusion equation with no sources or
sinks:

ut = κuxx, −∞ < x < ∞, t > 0, (1.7.52)

where κ is a diffusivity constant with the initial condition

u(x, 0) = f(x), −∞ < x < ∞. (1.7.53)

We solve this problem using the Fourier transform in the space variable x defined
by (1.7.1). Application of this transform to (1.7.52), (1.7.53) gives

Ut = −κk2U, t > 0, (1.7.54)

U(k, 0) = F (k). (1.7.55)

The solution of the transformed system is

U(k, t) = F (k) exp
(
−κk2t

)
. (1.7.56)

The inverse Fourier transform gives the solution

u(x, t) =
1√
2π

∫ ∞

−∞
F (k) exp

[(
ikx− κk2t

)]
dk,

which is, by the Convolution Theorem 1.7.1,

u(x, t) =
1√
2π

∫ ∞

−∞
f(ξ)g(x− ξ) dξ, (1.7.57)

where

g(x) = F−1
{
e−κk2t

}
=

1√
2κt

exp

(
− x2

4κt

)
, by (1.7.3).

Thus, solution (1.7.57) becomes

u(x, t) =
1√
4πκt

∫ ∞

−∞
f(ξ) exp

[
− (x− ξ)2

4κt

]
dξ. (1.7.58)

The integrand involved in the solution consists of the initial value f(x) and the
Green’s function (or the fundamental solution) G(x − ξ, t) of the diffusion equa-
tion for the infinite interval:

G(x− ξ, t) =
1√
4πκt

exp

[
− (x− ξ)2

4κt

]
. (1.7.59)

So, in terms of G(x− ξ, t), solution (1.7.58) can be written as
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u(x, t) =

∫ ∞

−∞
f(ξ)G(x− ξ, t) dξ, (1.7.60)

so that, in the limit as t → 0+, this formally becomes

u(x, 0) = f(x) =

∫ ∞

−∞
f(ξ) lim

t→0+
G(x− ξ, t) dξ.

The limit of G(x− ξ, t), as t → 0+, represents the Dirac delta function

δ(x− ξ) = lim
t→0+

1√
4πκt

exp

[
− (x− ξ)2

4κt

]
. (1.7.61)

It is important to point out that the integrand in (1.7.60) consists of the initial
temperature distribution f(x) and the Green’s function G(x− ξ, t) which represents
the temperature response along the rod at time t due to an initial unit impulse of heat
at x = ξ. The physical meaning of the solution (1.7.60) is that the initial temperature
distribution f(x) is decomposed into a spectrum of impulses of magnitude f(ξ) at
each point x = ξ to form the resulting temperature f(ξ)G(x − ξ, t). According to
the linear superposition principle (1.3.6), the resulting temperature is integrated to
find solution (1.7.60).

We make the change of variable

ξ − x

2
√
κt

= ζ, dζ =
dξ

2
√
κt

to express solution (1.7.58) in the form

u(x, t) =
1√
π

∫ ∞

−∞
f
(
x+ 2

√
κtζ

)
exp

(
−ζ2

)
dζ. (1.7.62)

The integral solution (1.7.62) or (1.7.58) is called the Poisson integral representation
of the temperature distribution. This integral is convergent for all time t > 0, and the
integrals obtained from (1.7.62) by differentiation under the integral sign with respect
to x and t are uniformly convergent in the neighborhood of the point (x, t). Hence,
the solution u(x, t) and its derivatives of all orders exist for t > 0.

Finally, we consider two special cases:

(a) f(x) = δ(x) and
(b) f(x) = T0H(x), where T0 is a constant.

For case (a), the solution (1.7.58) reduces to

u(x, t) =
1√
4πκt

∫ ∞

−∞
δ(ξ) exp

[
− (x− ξ)2

4κt

]
dξ

=
1√
4πκt

exp

(
− x2

4κt

)
. (1.7.63)

This is usually called Green’s function or the fundamental solution of the diffusion
equation and is shown in Figure 1.6.
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Fig. 1.6 The temperature distribution u(x, t) due to a point source for different values of
τ = 2

√
κt.

At any time t, the solution u(x, t) is Gaussian. The peak height of u(x, t) de-
creases inversely with

√
κt, whereas the width of the solution (x ∼

√
κt) increases

with
√
κt. In fact, the initially sharply peaked profile is gradually smoothed out as

t → ∞ under the action of diffusion. These are remarkable features for diffusion
phenomena.

For case (b), the initial data is discontinuous. In this case, the solution is

u(x, t) =
T0

2
√
πκt

∫ ∞

0

exp

[
− (x− ξ)2

4κt

]
dξ. (1.7.64)

Introducing the change of variable η = ξ−x

2
√
κt

, we can express solution (1.7.64) in the
form

u(x, t) =
T0√
π

∫ ∞

−x

2
√

κt

e−η2

dη =
T0

2
erfc

(
− x

2
√
κt

)

=
T0

2

[
1 + erf

(
x

2
√
κt

)]
. (1.7.65)

This shows that, at t = 0, the solution coincides with the initial data
u(x, 0) = T0. The graph of 1

T0
u(x, t) against x is shown in Figure 1.7. As t increases,

the discontinuity is gradually smoothed out, whereas the width of the transition zone
increases as

√
κt.

Example 1.7.7 (The Schrödinger Equation in Quantum Mechanics). The time-depen-
dent Schrödinger equation for a particle of mass m is

i�ψt =

[
V (x)− �

2

2m
∇2

]
ψ = Hψ, (1.7.66)

where h(= 2π�) is the Planck constant, ψ(x, t) is the wave function, V (x) is the
potential, ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the three-dimensional Laplacian, and H is
called the Hamiltonian.
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Fig. 1.7 The temperature distribution due to discontinuous initial data for different values of
τ = 2

√
κt = 0, 1, 2, 5.

If V (x) = const. = V , we seek a plane wave solution of the form

ψ(x, t) = A exp
[
i(κ · x− ωt)

]
, (1.7.67)

where A is a constant amplitude, κ = (k, l,m) is the wavenumber vector, and ω is
the frequency.

Substituting this solution into (1.7.66), we conclude that this solution is possible
provided the following relation is satisfied:

i�(−iω) = V − �
2

2m
(iκ)2, κ2 = k2 + l2 +m2,

or

�ω = V +
�
2κ2

2m
. (1.7.68)

This is called the dispersion relation for the de Broglie wave and shows that the

sum of the potential energy V and the kinetic energy (�k)2

2m equals the total energy
�ω. Further, the kinetic energy

K .E . =
1

2m
(�κ)2 =

p2

2m
, (1.7.69)

where p = �κ is the momentum of the particle. In the one-dimensional case, the
group velocity is

Cg =
∂ω

∂k
=

�κ

m
=

p

m
=

mv

m
= v. (1.7.70)

This shows that the group velocity is equal to the classical particle velocity v.
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We now use the Fourier transform method to solve the one-dimensional Schrö-
dinger equation for a free particle (V ≡ 0), that is,

i�ψt = − �
2

2m
ψxx, −∞ < x < ∞, t > 0, (1.7.71)

ψ(x, 0) = ψ0(x), −∞ < x < ∞, (1.7.72)

ψ(x, t) → 0 as |x| → ∞, t > 0. (1.7.73)

Application of the Fourier transform to (1.7.71)–(1.7.73) gives

Ψt = − i�k2

2m
Ψ, (1.7.74)

Ψ(k, 0) = Ψ0(k). (1.7.75)

The solution of this transformed system is

Ψ(k, t) = Ψ0(k) exp
(
−iαk2t

)
, α =

�

2m
. (1.7.76)

This solution is similar to (1.7.56) with κ = iα so that the inverse Fourier trans-
form gives the formal solution for the wave function ψ(x, t) similar to (1.7.58) in the
form

ψ(x, t) =
1√

4πiαt

∫ ∞

−∞
ψ0(ξ) exp

[
− (x− ξ)2

4iαt

]
dξ (1.7.77)

=
(1− i)√
8παt

∫ ∞

−∞
ψ0(ξ, 0) exp

[
i(x− ξ)2

4αt

]
dξ. (1.7.78)

This is the integral solution of the one-dimensional Schrödinger equation.

1.8 Multiple Fourier Transforms and Partial Differential
Equations

Definition 1.8.1. Under the assumptions on f(x) similar to those made for the
one-dimensional case, the multiple Fourier transform of f(x), where x = (x1,
x2, . . . , xn) is the n-dimensional vector, is defined by

F
{
f(x)

}
= F (κκκ) =

1

(2π)
n
2

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

{
−i(κκκ · x)

}
f(x) dx, (1.8.1)

where κκκ = (k1, k2, . . . , kn) is the n-dimensional transform vector and κκκ · x =
(k1x1 + k2x2 + · · ·+ knxn).

The inverse Fourier transform is similarly defined by

F−1
{
F (κκκ)

}
= f(x) =

1

(2π)
n
2

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

{
i(κκκ · x)

}
F (κκκ) dκκκ. (1.8.2)
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In particular, the double Fourier transform is defined by

F
{
f(x, y)

}
= F (k, �) =

1

2π

∫ ∞

−∞

∫ ∞

−∞
exp

{
−i(κκκ · r)

}
f(x, y) dx dy, (1.8.3)

where r = (x, y) and κκκ = (k, �).
The inverse double Fourier transform is given by

F
{
F (k, �)

}
= f(x, y) =

1

2π

∫ ∞

−∞

∫ ∞

−∞
exp

{
i(κκκ · r)

}
F (k, �) dk d�. (1.8.4)

Similarly, the three-dimensional Fourier transform and its inverse are defined by
the integrals

F
{
f(x, y, z)

}
= F (k, �,m)

=
1

(2π)
3
2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp

{
−i(κκκ · r)

}
f(x, y, z) dx dy dz,

(1.8.5)
F−1

{
F (k, �,m)

}
= f(x, y, z)

=
1

(2π)
3
2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp

{
i(κκκ · r)

}
F (k, �,m) dk d� dm.

(1.8.6)

The operational properties of these multiple Fourier transforms are similar to
those of the one-dimensional case. In particular, results (1.7.5) and (1.7.6) relat-
ing the Fourier transforms of derivatives to the Fourier transforms of given func-
tions are also valid for the higher dimensional case. In higher dimensions, they are
applied to the transforms of partial derivatives of f(x) under the assumptions that
f(x1, x2, . . . , xn) and its partial derivatives vanish at infinity.

We illustrate the multiple Fourier transform method by the following examples
of applications.

Example 1.8.1 (The Dirichlet Problem for the Three-Dimensional Laplace Equation
in the Half-Space). The boundary-value problem for u(x, y, z) satisfies the follow-
ing equation and boundary conditions:

∇2u ≡ uxx + uyy + uzz = 0, −∞ < x, y < ∞, z > 0, (1.8.7)
u(x, y, 0) = f(x, y), −∞ < x, y < ∞, (1.8.8)
u(x, y, z) → 0, as r =

√
x2 + y2 + z2 → ∞. (1.8.9)

We apply the double Fourier transform defined by (1.8.3) to the system (1.8.7)–
(1.8.9) which reduces to

d2U

dz2
− κ2U = 0 for z > 0,

U(k, �, 0) = F (k, �).

Thus, the solution of this transformed problem is
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U(k, �, z) = F (k, �) exp
(
−|κ|z

)
= F (k, �)G(k, �), (1.8.10)

where κκκ = (k, �) and G(k, �) = exp(−|κ|z), so that

g(x, y) = F−1
{
exp

(
−|κ|z

)}
=

z

(x2 + y2 + z2)
3
2

. (1.8.11)

Applying the Fourier Convolution Theorem to (1.8.10) gives the formal solution

u(x, y, z) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(ξ, η)g(x− ξ, y − η, z) dξ dη

=
z

2π

∫ ∞

−∞

∫ ∞

−∞

f(ξ, η) dξ dη

[(x− ξ)2 + (y − η)2 + z2]
3
2

. (1.8.12)

Example 1.8.2 (The Two-Dimensional Diffusion Equation). We solve the two-di-
mensional diffusion equation

ut = K∇2u, −∞ < x, y < ∞, t > 0, (1.8.13)

with the initial conditions

u(x, y, 0) = f(x, y), −∞ < x, y < ∞, (1.8.14)
u(x, y, 0) → 0, as r =

√
x2 + y2 → ∞, (1.8.15)

where K is the diffusivity constant.
The double Fourier transform of u(x, y, t), defined by (1.8.3), is used to reduce

the system (1.8.13)–(1.8.15) into the form

dU

dt
= −κ2KU, t > 0,

U(k, �, 0) = F (k, �).

The solution of this system is

U(k, �, t) = F (k, �) exp
(
−tKκ2

)
= F (k, �)G(k, �), (1.8.16)

where

G(k, �) = exp
(
−Kκ2t

)
,

so that

g(x, y) = F−1
{
exp

(
−Kκ2t

)}
=

1

2Kt
exp

[
−x2 + y2

4Kt

]
. (1.8.17)

Finally, applying the Convolution Theorem to (1.8.16) gives the formal solution

u(x, y, t) =
1

4πKt

∫ ∞

−∞

∫ ∞

−∞
f(ξ, η) exp

[
− (x− ξ)2 + (y − η)2

4Kt

]
dξ dη,

(1.8.18)

or equivalently,
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u(x, y, t) =
1

4πKt

∫ ∞

−∞

∫ ∞

−∞
f
(
r′
)
exp

{
−|r− r′|2

4Kt

}
dr′, (1.8.19)

where r′ = (ξ, η).
We make the change of variable (r − r′) =

√
4KtR to reduce (1.8.19) into the

form

u(x, y, t) =
1

π
√
4Kt

∫ ∞

−∞

∫ ∞

−∞
f
(
r+

√
4KtR

)
exp

(
−R2

)
dR. (1.8.20)

Similarly, the formal solution of the initial-value problem for the three-dimensional
diffusion equation

ut = K(uxx + uyy + uzz), −∞ < x, y, z < ∞, t > 0, (1.8.21)

u(x, y, z, 0) = f(x, y, z), −∞ < x, y, z < ∞, (1.8.22)

is given by

u(x, y, z, t) =
1

(4πKt)
3
2

∫∫∫ ∞

−∞
f(ξ, η, ζ) exp

(
− r2

4Kt

)
dξ dη dζ, (1.8.23)

where

r2 = (x− ξ)2 + (y − η)2 + (z − ζ)2.

Or equivalently,

u(x, y, z, t) =
1

(4πKt)
3
2

∫∫∫ ∞

−∞
f
(
r′
)
exp

{
−|r− r′|2

4Kt

}
dξ dη dζ, (1.8.24)

where r = (x, y, z) and r′ = (ξ, η, ζ).
Making the change of variable r′ − r =

√
4tKR, solution (1.8.24) reduces to

the form

u(x, y, z, t) =
1

π
3
2 4Kt

∫∫∫ ∞

−∞
f
(
r+

√
4KtR

)
exp

(
−R2

)
dR. (1.8.25)

This is known as the Fourier integral solution.

Example 1.8.3 (The Cauchy Problem for the Two-Dimensional Wave Equation). The
initial-value problem for the wave equation in two dimensions is governed by

utt = c2(uxx + uyy), −∞ < x, y < ∞, t > 0, (1.8.26)

with the initial data

u(x, y, 0) = 0, ut(x, y, 0) = f(x, y), −∞ < x, y < ∞, (1.8.27ab)

where c is a constant. We assume that u(x, y, t) and its first partial derivatives vanish
at infinity.
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We apply the two-dimensional Fourier transform defined by (1.8.3) to the system
(1.8.26), (1.8.27ab), which becomes

d2U

dt2
+ c2κ2U = 0, κ2 = k2 + �2,

U(k, �, 0) = 0,

(
dU

dt

)
t=0

= F (k, �).

The solution of this transformed system is

U(k, �, t) = F (k, �)
sin(cκt)

cκ
. (1.8.28)

The inverse Fourier transform gives the formal solution

u(x, y, t) =
1

2πc

∫ ∞

−∞

∫ ∞

−∞
exp(iκκκ · r) sin(cκt)

κ
F (κκκ) dκκκ (1.8.29)

=
1

4iπc

∫ ∞

−∞

∫ ∞

−∞

F (κκκ)

κ

[
exp

{
iκ

(
κκκ · r
κ

+ ct

)}

− exp

{
iκ

(
κκκ · r
κ

− ct

)}]
dκκκ. (1.8.30)

The form of this solution reveals some interesting features of the wave equation.
The exponential terms exp{iκ(κκκ·rκ ± ct)} involved in the integral solution (1.8.30)
represent plane wave solutions of the wave equation (1.8.26). Thus, the solutions
remain constant on the planes κκκ · r = const. that move parallel to themselves with
velocity c. Evidently, solution (1.8.30) represents a superposition of the plane wave
solutions traveling in all possible directions.

Similarly, the solution of the Cauchy problem for the three-dimensional wave
equation

utt = c2(uxx + uyy + uzz), −∞ < x, y, z < ∞, t > 0, (1.8.31)

u(x, y, z, 0) = 0, ut(x, y, z, 0) = f(x, y, z), −∞ < x, y, z < ∞, (1.8.32ab)

is given by

u(r, t) =
1

2ic(2π)
3
2

∫∫∫ ∞

−∞

F (κκκ)

κ

[
exp

{
iκ

(
κκκ · r
κ

+ ct

)}

− exp

{
iκ

(
κκκ · r
κ

− ct

)}]
dκκκ, (1.8.33)

where r = (x, y, z) and κκκ = (k, �,m).
For any given κκκ, the terms exp{i(κκκ · r ± κct)} represent the plane traveling

wave solution of the wave equation (1.8.31), since they remain constant on the planes
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κκκ·r = ±cκt, which move perpendicular to themselves in the direction ±κκκ at constant
speed c. Since the integral solution (1.8.33) is the weighted sum of these plane waves
at different wavenumbers κκκ, the solution represents a continuous spectrum of plane
waves propagating in all directions. It is somewhat easier to interpret solutions like
(1.8.33) as t → ∞ with (r/t) fixed. This can be done using the method of stationary
phase approximation.

In particular, when f(x, y, z) = δ(x)δ(y)δ(z), so that F (κκκ) = (2π)−
3
2 , solution

(1.8.33) becomes

u(r, t) =
1

(2π)3

∫∫∫ ∞

−∞

sin cκt

cκ
exp

{
i(κκκ · r)

}
dκκκ. (1.8.34)

In terms of the spherical polar coordinates (κ, θ, φ) where the polar axis (the z-
axis) is taken along the r direction with κκκ · r = κr cos θ, we write (1.8.34) in the
form

u(r, t) =
1

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ

∫ ∞

0

exp(iκr cos θ)
sin cκt

cκ
· κ2 sin θ dκ

=
1

2π2cr

∫ ∞

0

sin(cκt) sin(κr) dκ

=
1

8π2cr
Re

∫ ∞

−∞

[
eiκ(ct−r) − eiκ(ct+r)

]
dκ,

or

u(r, t) =
1

4πcr

[
δ(ct− r)− δ(ct+ r)

]
. (1.8.35)

For t > 0, ct+ r > 0, so that δ(ct+ r) = 0 and, hence, the solution is

u(r, t) =
1

4πcr
δ(ct− r) =

1

4πrc2
δ

(
t− r

c

)
. (1.8.36)

1.9 Laplace Transforms and Initial Boundary-Value Problems

If u(x, t) is any function defined in a ≤ x ≤ b and t > 0, then its Laplace transform
with respect to t is denoted by L{u(x, t)} = ū(x, s) and is defined by

L
{
u(x, t)

}
= ū(x, s) =

∫ ∞

0

e−stu(x, t) dt, Re s > 0, (1.9.1)

where s is called the transform variable, which is a complex number. Under certain
broad conditions on u(x, t), its transform ū(x, s) is an analytic function of s in the
half plane Re s > c.

The inverse Laplace transform is denoted by L−1{ū(x, s)} = u(x, t) and de-
fined by the complex integral
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L−1
{
ū(x, s)

}
= u(x, t) =

1

2πi

∫ c+i∞

c−i∞
estū(x, s) ds, c > 0. (1.9.2)

This integral is evaluated by using the Cauchy residue theorem for analytic functions.
For more information about the basic properties of the Laplace transforms including
the convolution, see Section B-4, pp. 758–766.

If L{u(x, t)} = ū(x, s), then (see Debnath 1995)

L
{
∂u

∂t

}
= sū(x, s)− u(x, 0), (1.9.3)

L
{
∂2u

∂tn

}
= snū(x, s)−

n∑
r=1

sn−ru(r−1)(x, 0), (1.9.4)

and so on.
Similarly, it is easy to show that

L
{
∂u

∂x

}
=

dū

dx
, L

{
∂2u

∂x2

}
=

∂2ū

∂x2
. (1.9.5ab)

The following examples are useful for applications:

L
{
f(t− a)H(t− a)

}
= exp(−sa)f̄(s), a > 0, (1.9.6)

L
{
δ(t− a)

}
= exp(−as), a > 0, (1.9.7)

L
{

erfc

(
a

2
√
t

)}
=

1

s
exp

(
−a

√
s
)
, a ≥ 0, (1.9.8)

L
{
exp(at)erf

(√
at
)}

=

√
a√

s(s− a)
, a > 0. (1.9.9)

The Laplace transforms are also very useful in finding solutions of initial-value
problems described by linear partial differential equations. The following examples
of applications illustrate the method of Laplace transforms.

Example 1.9.1 (The Inhomogeneous Cauchy Problem for the Wave Equation). We
use the joint Laplace and Fourier transform method to solve the inhomogeneous
Cauchy problem

utt − c2uxx = q(x, t), x ∈ R (i.e., −∞ < x < ∞), t > 0, (1.9.10)

u(x, 0) = f(x), ut(x, 0) = g(x) for all x ∈ R, (1.9.11ab)

where q(x, t) is a given function representing a source term.
We define the joint Laplace and Fourier transform of u(x, t) by

U(k, s) = L
[
F
{
u(x, t)

}]
=

1√
2π

∫ ∞

−∞
e−ikx dx

∫ ∞

0

e−stu(x, t) dt.

(1.9.12)

Application of the joint transform leads to the solution of the transformed prob-
lem in the form
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U(k, s) =
sF (k) +G(k) +Q(k, s)

(s2 + c2k2)
. (1.9.13)

The inverse Laplace transform of (1.9.13) gives

U(k, t) = F (k) cos(ckt) +
1

ck
G(k) sin(ckt) +

1

ck
L−1

{
ck

s2 + c2k2
·Q(k, s)

}

= F (k) cos(ckt) +
G(k)

ck
sin(ckt) +

1

ck

∫ t

0

sin ck(t− τ)Q(k, τ) dτ.

(1.9.14)

The inverse Fourier transform leads to the solution

u(x, t) =
1

2
√
2π

∫ ∞

−∞

(
eickt + e−ickt

)
eikxF (k) dk

+
1

2
√
2π

∫ ∞

−∞

(
eickt − e−ickt

)
eikx · G(k)

ick
dk

+
1√
2π

· 1

2c

∫ t

0

dτ

∫ ∞

−∞

Q(k, τ)

ik

[
eick(t−τ) + e−ick(t−τ)

]
eikx dk

=
1

2

[
f(x+ ct) + f(x− ct)

]
+

1

2c

∫ x+ct

x−ct

g(ξ) dξ

+
1

2c

∫ t

0

dτ
1√
2π

∫ ∞

−∞
Q(k, τ) dk

∫ x+c(t−τ)

x−c(t−τ)

eikξ dξ

=
1

2

[
f(x− ct) + f(x+ ct)

]
+

1

2c

∫ x+ct

x−ct

g(ξ) dξ

+
1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)

q(ξ, τ) dξ. (1.9.15)

In the case of the homogeneous Cauchy problem, q(x, t) ≡ 0, the solution of (1.9.15)
reduces to the famous d’Alembert solution (1.7.21).

Example 1.9.2 (The Heat Conduction Equation in a Semi-Infinite Medium and Frac-
tional Derivatives). Solve the equation

ut = κuxx, x > 0, t > 0, (1.9.16)

with the initial and boundary conditions

u(x, 0) = 0, x > 0, (1.9.17)

u(0, t) = f(t), t > 0, (1.9.18)

u(x, t) → 0, as x → ∞, t > 0. (1.9.19)
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Application of the Laplace transform with respect to t to (1.9.16) gives

d2ū

dx2
− s

κ
ū = 0. (1.9.20)

The general solution of this equation is

ū(x, s) = A exp

(
−x

√
s

κ

)
+B exp

(
x

√
s

κ

)
,

where A and B are integrating constants. For bounded solutions, B ≡ 0, and using
ū(0, s) = f̄(s), we obtain the solution

ū(x, s) = f̄(s) exp

(
−x

√
s

κ

)
. (1.9.21)

The Laplace inversion theorem gives the solution

u(x, t) =
x

2
√
πκ

∫ t

0

f(t− τ)τ−
3
2 exp

(
− x2

4κτ

)
dτ, (1.9.22)

which is, by setting λ = x
2
√
κτ

or dλ = − x
4
√
κ
τ−

3
2 dτ ,

=
2√
π

∫ ∞

x
2
√

κt

f

(
t− x2

4κλ2

)
e−λ2

dλ. (1.9.23)

This is the formal solution of the heat conduction problem.
In particular, if f(t) = T0 = const., the solution (1.9.23) becomes

u(x, t) =
2T0√
π

∫ ∞

x
2
√

κt

e−λ2

dλ = T0 erfc

(
x

2
√
κt

)
. (1.9.24)

Clearly, the temperature distribution tends asymptotically to the constant value T0,
as t → ∞.

We consider another physical problem that is concerned with determining the
temperature distribution of a semi-infinite solid when the rate of flow of heat is pre-
scribed at the end x = 0. Thus, the problem is to solve diffusion equation (1.9.16)
subject to conditions (1.9.17), (1.9.19), and

−k
(
∂u

∂x

)
= g(t) at x = 0, t > 0, (1.9.25)

where k is a constant called thermal conductivity.
Application of the Laplace transform gives the solution of the transformed prob-

lem

ū(x, s) =
1

k

√
κ

s
g(s) exp

(
−x

√
s

κ

)
. (1.9.26)



1.9 Laplace Transforms and Initial Boundary-Value Problems 55

The inverse Laplace transform yields the solution

u(x, t) =
1

k

√
κ

π

∫ t

0

g(t− τ)τ−
1
2 exp

(
− x2

4κτ

)
dτ, (1.9.27)

which, by the change of variable λ = x
2
√
κτ

,

=
x

k
√
π

∫ ∞

x
2
√

κt

g

(
t− x2

4κλ2

)
λ−2e−λ2

dλ. (1.9.28)

In particular, if g(t) = T0 = const., this solution becomes

u(x, t) =
T0x

k
√
π

∫ ∞

x
2k

√
κt

λ−2e−λ2

dλ.

Integrating this result by parts gives

u(x, t) =
T0

k

[
2

√
κt

π
exp

(
− x2

4κt

)
− x erfc

(
x

2
√
κt

)]
. (1.9.29)

Alternatively, the heat conduction problem (1.9.16)–(1.9.19) can be solved by using
fractional derivatives (Debnath 1995). We recall (1.9.21) and rewrite it as

∂ū

∂x
= −

√
s

κ
ū. (1.9.30)

This can be expressed in terms of a fractional derivative of order 1
2 as

∂u

∂x
= − 1√

κ
L−1

{√
sū(x, s)

}
= − 1√

κ 0

D
1
2
t u(x, t). (1.9.31)

Thus, the heat flux is expressed in terms of the fractional derivative. In particular,
when u(0, t) = const. = T0, then the heat flux at the surface is given by

−k
(
∂u

∂x

)
x=0

=
k√
κ
D

1
2
t T0 =

kT0√
πκt

. (1.9.32)

Example 1.9.3 (Diffusion Equation in a Finite Medium). Solve the diffusion equation

ut = κuxx, 0 < x < a, t > 0, (1.9.33)

with the initial and boundary conditions

u(x, 0) = 0, 0 < x < a, (1.9.34)

u(0, t) = U, t > 0, (1.9.35)

ux(a, t) = 0, t > 0, (1.9.36)

where U is a constant.
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We introduce the Laplace transform of u(x, t) with respect to t to obtain

d2ū

dx2
− s

κ
ū = 0, 0 < x < a, (1.9.37)

ū(0, s) =
U

s
,

(
dū

dx

)
x=a

= 0. (1.9.38ab)

The general solution of (1.9.37) is

ū(x, s) = A cosh

(
x

√
s

κ

)
+B sinh

(
x

√
s

κ

)
, (1.9.39)

where A and B are constants of integration. Using (1.9.38ab), we obtain the values
of A and B, so that the solution (1.9.39) becomes

ū(x, s) =
U

s
·
cosh[(a− x)

√
s
κ ]

cosh(a
√

s
κ )

. (1.9.40)

The inverse Laplace transform gives the solution

u(x, t) = UL−1

{
cosh(a− x)

√
s
κ

s cosh
√
a s
κ

}
. (1.9.41)

The inversion can be carried out by the Cauchy residue theorem to obtain the solution

u(x, t) = U

[
1 +

4

π

∞∑
n=1

(−1)n

(2n− 1)
cos

{
(2n− 1)(a− x)π

2a

}

× exp

{
−(2n− 1)2

(
π

2a

)2

κt

}]
. (1.9.42)

By expanding the cosine term, this becomes

u(x, t) = U

[
1− 4

π

∞∑
n=1

1

(2n− 1)
sin

{(
2n− 1

2a

)
πx

}

× exp

{
−(2n− 1)2

(
π

2a

)2

κt

}]
. (1.9.43)

This result can be obtained by solving the problem by the method of separation of
variables.

Example 1.9.4 (Diffusion in a Finite Medium). Solve the one-dimensional diffusion
equation in a finite medium 0 < z < a, where the concentration function C(z, t)
satisfies the equation

Ct = κCzz, 0 < z < a, t > 0, (1.9.44)
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and the initial and boundary data

C(z, 0) = 0 for 0 < z < a, (1.9.45)

C(z, t) = C0 for z = a, t > 0, (1.9.46)
∂C

∂z
= 0 for z = 0, t > 0, (1.9.47)

where C0 is a constant.
Application of the Laplace transform of C(z, t) with respect to t gives

d2C

dz2
−
(
s

κ

)
C = 0, 0 < z < a,

C(a, s) =
C0

s
,

(
dC

dz

)
z=0

= 0.

The solution of this differential equation system is

C(z, s) =
C0 cosh(z

√
s
κ )

s cosh(a
√

s
κ )

, (1.9.48)

which, by writing α =
√

s
κ ,

=
C0

s

(eαz + e−αz)

(eαa + e−αa)

=
C0

s

[
exp

{
−α(a− z)

}
+ exp

{
−α(a+ z)

}] ∞∑
n=0

(−1)n exp(−2nαa)

=
C0

s

[ ∞∑
n=0

(−1)n exp
[
−α

{
(2n+ 1)a− z

}]

+

∞∑
n=0

(−1)n exp
[
−α

{
(2n+ 1)a+ z

}]]
. (1.9.49)

Using the result (1.9.8), we obtain the final solution

C(z, t) = C0

{ ∞∑
n=0

(−1)n
[

erfc

{
(2n+ 1)a− z

2
√
κt

}

+ erfc

{
(2n+ 1)a+ z

2
√
κt

}]}
. (1.9.50)

This solution represents an infinite series of complementary error functions. The
successive terms of this series are, in fact, the concentrations at depth a − z, a + z,
3a− z, 3a + z, . . . in the medium. The series converges rapidly for all except large
values of ( κta2 ).
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Example 1.9.5 (The Wave Equation for the Transverse Vibration of a Semi-Infinite
String). Find the displacement of a semi-infinite string, which is initially at rest in
its equilibrium position. At time t = 0, the end x = 0 is constrained to move so that
the displacement is u(0, t) = Af(t) for t ≥ 0, where A is a constant. The problem
is to solve the one-dimensional wave equation

utt = c2uxx, 0 ≤ x < ∞, t > 0, (1.9.51)

with the boundary and initial conditions

u(x, t) = Af(t) at x = 0, t ≥ 0, (1.9.52)

u(x, t) → 0 as x → ∞, t ≥ 0, (1.9.53)

u(x, t) = 0 =
∂u

∂t
at t = 0 for 0 < x < ∞. (1.9.54ab)

Application of the Laplace transform of u(x, t) with respect to t gives

d2ū

dx2
− s2

c2
ū = 0, for 0 ≤ x < ∞,

ū(x, s) = Af̄(s) at x = 0,

ū(x, s) → 0 as x → ∞.

The solution of this differential equation system is

ū(x, s) = Af̄(s) exp

(
−xs

c

)
. (1.9.55)

Inversion gives the solution

u(x, t) = Af

(
t− x

c

)
H

(
t− x

c

)
. (1.9.56)

In other words, the solution is

u(x, t) =

{
Af(t− x

c ) if t > x
c ,

0, if t < x
c .

(1.9.57)

This solution represents a wave propagating at a velocity c with the characteristic
x = ct.

Example 1.9.6 (The Cauchy–Poisson Wave Problem in Fluid Dynamics). We con-
sider the two-dimensional Cauchy–Poisson problem (Debnath 1994) for an inviscid
liquid of infinite depth with a horizontal free surface. We assume that the liquid has
constant density ρ and negligible surface tension. Waves are generated on the free
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surface of water initially at rest for time t < 0 by the prescribed free surface dis-
placement at t = 0.

In terms of the velocity potential φ(x, z, t) and the free surface elevation η(x, t),
the linearized surface wave motion in Cartesian coordinates (x, y, z) is governed by
the following equation and free surface and boundary conditions:

∇2φ = φxx + φzz = 0, −∞ < z ≤ 0, x ∈ R, t < 0, (1.9.58)

φz − ηt = 0,

φt + gη = 0

}
on z = 0, t > 0, (1.9.59ab)

φz → 0 as z → −∞. (1.9.60)

The initial conditions are

φ(x, 0, 0) = 0 and η(x, 0) = η0(x), (1.9.61)

where η0(x) is a given initial elevation with compact support.
We introduce the Laplace transform with respect to t and the Fourier transform

with respect to x defined by

[
φ̃(k, z, s), η̃(k, s)

]
=

1√
2π

∫ ∞

−∞
e−ikx dx

∫ ∞

0

e−st[φ, η] dt. (1.9.62)

Application of the joint transform method to the above system gives

φ̃zz − k2φ̃ = 0, −∞ < z ≤ 0, (1.9.63)

φ̃ = sη̃ − η̃0(k),

sφ̃+ gη̃ = 0

⎫⎬
⎭ on z = 0, (1.9.64ab)

φ̃z → 0 as z → −∞, (1.9.65)

where

η̃0(k) = F
{
η0(x)

}
.

The bounded solution of equation (1.9.63) is

φ̃(k, s) = A exp
(
|k|z

)
, (1.9.66)

where A = A(s) is an arbitrary function of s.
Substituting (1.9.66) into (1.9.64ab) and eliminating η̃ from the resulting equa-

tions gives A. Hence, the solutions for φ̃ and η̃ are

[
φ̃, η̃

]
=

[
−gη̃0 exp(|k|z)

s2 + ω2
,

sη̃0
s2 + ω2

]
, (1.9.67)
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where the dispersion relation is

ω2 = g|k|. (1.9.68)

The inverse Laplace and Fourier transforms give the solutions

φ(x, z, t) = − g√
2π

∫ ∞

−∞

sinωt

ω
exp

(
ikx+ |k|z

)
η̃0(k) dk, (1.9.69)

η(x, t) =
1√
2π

∫ ∞

−∞
η̃0(k) cosωte

ikx dk,

=
1√
2π

∫ ∞

0

η̃0(k)
[
ei(kx−ωt) + ei(kx+ωt)

]
dk, (1.9.70)

in which η̃0(−k) = η̃0(k) is assumed.
Physically, the first and second integrals of (1.9.70) represent waves traveling in

the positive and negative directions of x, respectively, with phase velocity ω
k . These

integrals describe superposition of all such waves over the wavenumber spectrum
0 < k < ∞.

For the classical Cauchy–Poisson wave problem, η0(x) = aδ(x) where δ(x) is
the Dirac delta function, so that η̃0(k) = a/

√
2π. Thus, solution (1.9.70) becomes

η(x, t) =
a

2π

∫ ∞

0

[
ei(kx−ωt) + ei(kx+ωt)

]
dk. (1.9.71)

The wave integrals (1.9.69) and (1.9.70) represent the exact solution for the ve-
locity potential φ and the free surface elevation η for all x and t > 0. However, they
do not lend any physical interpretations. In general, the exact evaluation of these
integrals is almost a formidable task. So it is necessary to resort to asymptotic meth-
ods. It would be sufficient for the determination of the principal features of the wave
motions to investigate (1.9.70) or (1.9.71) asymptotically for large time t and large
distance x with (x, t) held fixed. The asymptotic solution for this kind of problem is
available in many standard books; for example, see Debnath (1994, p. 85). We state
the stationary phase approximation of a typical wave integral, for t → ∞,

η(x, t) =

∫ b

a

f(k) exp
[
itW (k)

]
dk (1.9.72)

∼ f(k1)

[
2π

t|W ′′(k1)|

] 1
2

exp

[
i

{
tW (k1) +

π

4
sgnW ′′(k1)

}]
, (1.9.73)

where W (k) = kx
t − ω(k), x > 0, and k = k1 is a stationary point that satisfies the

equation

W ′(k1) =
x

t
− ω′(k1) = 0, a < k1 < b. (1.9.74)

Application of (1.9.73) to (1.9.70) shows that only the first integral in (1.9.70)
has a stationary point for x > 0. Hence, the stationary phase approximation gives
the asymptotic solution, as t → ∞, x > 0,
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η(x, t) ∼
[

1

t|ω′′(k1)|

] 1
2

η̃0(k1) exp

[
i
{
k1x− tω(k1)

}
+

iπ

4
sgn

{
−ω′′(k1)

}]
,

(1.9.75)

where k1 = (gt2/4x2) is the root of the equation ω′(k) = x
t .

On the other hand, when x < 0, only the second integral of (1.9.70) has a station-
ary point k1 = (gt2/4x2), and hence, the same result (1.9.73) can be used to obtain
the asymptotic solution for t → ∞ and x < 0 as

η(x, t) ∼
[

1

t|ω′′(k1)|

] 1
2

η̃0(k1) exp

[
i
{
tω(k1)− k1|x|

}
+

iπ

4
sgnω′′(k1)

]
.

(1.9.76)

In particular, for the classical Cauchy–Poisson solution (1.9.71), the asymptotic rep-
resentation for η(x, t) follows from (1.9.76) in the form

η(x, t) ∼ at

2
√
2π

√
g

x3/2
cos

(
gt2

4x

)
, gt2  4x, (1.9.77)

and gives a similar result for η(x, t), when x < 0 and t → ∞.

1.10 Hankel Transforms and Initial Boundary-Value Problems

The Hankel transform of a function f(r) is defined formally by

Hn

{
f(r)

}
= f̃n(κ) =

∫ ∞

0

rJn(κr)f(r) dr, (1.10.1)

where Jn(κr) is the Bessel function of order n and assuming the integral on the
right-hand side is convergent.

The inverse Hankel transform is defined by

H−1
n

[
f̃n(κ)

]
= f(r) =

∫ ∞

0

κJn(κr)f̃n(κ) dκ, (1.10.2)

provided that the integral exists.
Integrals (1.10.1) and (1.10.2) exist for certain large classes of functions that usu-

ally occur in physical applications. In particular, the Hankel transforms of order zero
(n = 0) and of order one (n = 1) are useful for solving initial-value and boundary-
value problems involving Laplace’s or Helmholtz’s equations in an axisymmetric
cylindrical geometry.

Example 1.10.1.

(a) f̃(κ) = H0{ 1
r exp(−ar)} =

∫∞
0

exp(−ar)J0(κr) dr = 1√
κ2+a2 ,

(b) f̃(κ) = H0{ δ(r)
r } = 1,
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(c) f̃(κ) = H0{H(a− r)} =
∫ a

0
rJ0(κr) dr =

a
κJ1(aκ),

(d) f̃(κ) = H1{e−ar} =
∫∞
0

r exp(−ar)J1(κr) dr = κ

(a2+κ2)
3
2

,

(e) f̃(κ) = H1{ e−ar

r } =
∫∞
0

e−arJ1(κr) dr =
1
κ [1− a(κ2 + a2)−

1
2 ].

It can be shown (Debnath 1995) that

Hn

{(
∇2 − n2

r2

)
f(r)

}
= −κ2f̃n(κ), (1.10.3)

where

∇2f =
1

r

d

dr

(
r
df

dr

)
=

d2f

dr2
+

1

r

df

dr
, (1.10.4)

and rf(r) and rf ′(r) vanish, as r → 0 and r → ∞.
In particular, when n = 0 and n = 1, (1.10.3) reduces to special results which

are very useful for applications.

Example 1.10.2. Obtain the solution of the boundary-value problem

urr +
1

r
ur + uzz = 0, 0 ≤ r < ∞, z ≥ 0, (1.10.5)

u(r, 0) = u0 for 0 ≤ r ≤ a, u0 is a constant, (1.10.6)

u(r, z) → 0 as z → ∞. (1.10.7)

Application of the zero-order Hankel transform with respect to r to the problem
gives

d2ũ

dz2
− κ2ũ = 0,

ũ(κ, 0) = u0

∫ a

0

rJ0(κr) dr =
au0

κ
J1(aκ).

Thus, the solution of the transformed problem is

ũ(κ, z) =
au0

κ
J1(aκ) exp(−κz).

Using the inverse Hankel transform gives the formal solution

u(r, z) = au0

∫ ∞

0

J0(rκ)J1(aκ) exp(−κz) dκ. (1.10.8)

Example 1.10.3 (Axisymmetric Wave Equation). Find the solution of the free vibra-
tion of a large circular membrane governed by the initial-value problem

c2
(
urr +

1

r
ur

)
= utt, 0 ≤ r < ∞, t > 0, (1.10.9)
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u(r, 0) = f(r), ut(r, 0) = g(r), 0 ≤ r ≤ ∞, (1.10.10)

where c2 = (T/ρ) = const., T is the tension in the membrane, ρ is the surface
density of the membrane, and f(r) and g(r) are arbitrary functions.

Application of the zero-order Hankel transform ũ(κ, t) of the displacement func-
tion u(r, t) to (1.10.9), (1.10.10) gives the solution

ũ(κ, t) = f̃(κ) cos(cκt) +
g̃(κ)

cκ
sin(cκt). (1.10.11)

The inverse Hankel transform leads to the solution

u(r, t) =

∫ ∞

0

κf̃(κ) cos(cκt)J0(κr) dκ+
1

c

∫ ∞

0

g̃(κ) sin(cκt)J0(κr) dκ.

(1.10.12)

In particular, we consider the initial data

u(r, 0) = f(r) = Aa
(
r2 + a2

)− 1
2 , ut(r, 0) = g(r) = 0, (1.10.13ab)

so that g̃(κ) ≡ 0 and

f̃(κ) = Aa

∫ ∞

0

r
(
a2 + r2

)− 1
2 J0(κr) dr =

Aa

κ
e−aκ, by Example 1.10.1(a).

Thus, the formal solution (1.10.12) becomes

u(r, t) = Aa

∫ ∞

0

e−aκJ0(κr) cos(cκt) dκ

= Aa Re
∫ ∞

0

exp
[
−κ(a+ ict)

]
J0(κr) dκ

= Aa Re
{
r2 + (a+ ict)2

}− 1
2 , by Example 1.10.1(a). (1.10.14)

Example 1.10.4 (Steady Temperature Distribution in a Semi-Infinite Solid with a
Steady Heat Source). Find the solution of the Laplace equation for the steady tem-
perature distribution u(r, z) with a steady, symmetric heat source Q0q(r):

urr +
1

r
ur + uzz = −Q0q(r), 0 ≤ r < ∞, 0 < z < ∞, (1.10.15)

u(r, 0) = 0, 0 ≤ r < ∞, (1.10.16)

where Q0 is constant. This boundary condition represents zero temperature at the
boundary z = 0.

Application of the zero-order Hankel transform to (1.10.15), (1.10.16) gives

d2ũ

dz2
− κ2ũ = −Q0q̃(κ), ũ(κ, 0) = 0.
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The bounded general solution of this system is

ũ(κ, z) = A exp(−κz) + Q0

κ2
q̃(κ),

where A is a constant to be determined from the transformed boundary condition. In
this present case,

A = −Q0

κ2
q̃(κ).

Thus, the formal solution is given by

ũ(κ, z) =
Q0q̃(κ)

κ2

(
1− e−κz

)
. (1.10.17)

The inverse Hankel transform yields the exact integral solution

u(r, z) = Q0

∫ ∞

0

q̃(κ)

κ

(
1− e−κz

)
J0(κr) dκ. (1.10.18)

Example 1.10.5 (Axisymmetric Diffusion Equation). Find the solution of the axisym-
metric diffusion equation

ut = κ

(
urr +

1

r
ur

)
, 0 ≤ r < ∞, t > 0, (1.10.19)

where κ(> 0) is a diffusivity constant, with the initial condition

u(r, 0) = f(r), for 0 < r < ∞. (1.10.20)

We apply the zero-order Hankel transform to obtain

dũ

dt
+ k2κũ = 0, ũ(k, 0) = f̃(k),

where k is the Hankel transform variable. The solution of this transformed system is

ũ(k, t) = f̃(k) exp
(
−κk2t

)
. (1.10.21)

Application of the inverse Hankel transform gives

u(r, t) =

∫ ∞

0

kf̃(k)J0(kr)e
−κk2t dk

=

∫ ∞

0

k

[∫ ∞

0

lJ0(kl)f(l) dl

]
e−κk2tJ0(kr) dk,

which, interchanging the order of integration,

=

∫ ∞

0

lf(l) dl

∫ ∞

0

kJ0(kl)J0(kr) exp
(
−κk2t

)
dk. (1.10.22)
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Using a standard table of integrals involving Bessel functions, we state that

∫ ∞

0

kJ0(kl)J0(kr) exp
(
−κk2t

)
dk =

1

2κt
exp

[
− (r2 + l2)

4κt

]
I0

(
rl

2κt

)
,

(1.10.23)

where I0(x) is the modified Bessel function and I0(0) = 1. In particular, when l = 0,
J0(0) = 1, and integral (1.10.23) becomes

∫ ∞

0

kJ0(kr) exp
(
−k2κt

)
dk =

1

2κt
exp

(
− r2

4κt

)
. (1.10.24)

We next use (1.10.23) to rewrite the solution (1.10.22) as

u(r, t) =
1

2κt

∫ ∞

0

lf(l)I0

(
rl

2κt

)
exp

[
− (r2 + l2)

4κt

]
dl. (1.10.25)

We now assume that f(r) represents a heat source concentrated in a circle of
radius a and allow a → 0, so that the heat source is concentrated at r = 0 and

lim
a→0

2π

∫ a

0

rf(r) dr = 1.

Or equivalently,

f(r) =
1

2π

δ(r)

r
,

where δ(r) is the Dirac delta function.
Thus, the final solution due to the concentrated heat source at r = 0 is

u(r, t) =
1

4πκt

∫ ∞

0

δ(l)I0

(
rl

2κt

)
exp

[
−r2 + l2

4κt

]
dl

=
1

4πκt
exp

(
− r2

4κt

)
. (1.10.26)

Example 1.10.6 (Axisymmetric Acoustic Radiation Problem). Obtain the solution of
the wave equation

c2
(
urr +

1

r
ur + uzz

)
= utt, 0 ≤ r < ∞, t > 0, (1.10.27)

uz = F (r, t) on z = 0, (1.10.28)

where F (r, t) is a given function and c is a constant. We also assume that the solution
is bounded and behaves as outgoing spherical waves.

We seek a steady-state solution for the acoustic radiation potential u = eiωt ×
φ(r, z) with F (r, t) = eiωtf(r), so that φ satisfies the Helmholtz equation
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φrr +
1

r
φr + φzz +

ω2

c2
φ = 0, 0 ≤ r < ∞, z ≥ 0, (1.10.29)

with the boundary condition

φz = f(r) on z = 0, (1.10.30)

where f(r) is a given function of r.
Application of the Hankel transform H0{φ(r, z)} = φ̃(k, z) to (1.10.29),

(1.10.30) gives

φ̃zz = κ2φ̃, z > 0,

φ̃z = f̃(k), on z = 0,

where

κ =

(
k2 − ω2

c2

) 1
2

.

The solution of this differential equation system is

φ̃(k, z) = − 1

κ
f̃(k) exp(−κz), (1.10.31)

where κ is real and positive for k > ω/c and purely imaginary for k < ω/c.
The inverse Hankel transform yields the formal solution

φ(r, z) = −
∫ ∞

0

k

κ
f̃(k)J0(kr) exp(−κz) dk. (1.10.32)

Since the exact evaluation of this integral is difficult for an arbitrary f̃(k), we choose
a simple form of f(r) as

f(r) = AH(a− r), (1.10.33)

where A is a constant, and hence, f̃(k) = Aa
k J1(ak).

Thus, the solution (1.10.32) takes the form

φ(r, z) = −Aa
∫ ∞

0

1

κ
J1(ak)J0(kr) exp(−κz) dk. (1.10.34)

For an asymptotic evaluation of this integral, it is convenient to express (1.10.34)
in terms of the distance R from the z-axis, so that R2 = (r2 + z2) and z = R cos θ.
We use the asymptotic result for the Bessel function in the form

J0(kr) ∼
(

2

πkr

) 1
2

cos

(
kr − π

4

)
as r → ∞, (1.10.35)

where r = R sin θ. Consequently, (1.10.34) combined with u = exp(iωt)φ becomes
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u ∼ −Aa
√
2eiωt

√
πR sin θ

∫ ∞

0

1

κ
√
k
J1(ak) cos

(
kR sin θ − π

4

)
exp(−κz) dk.

This integral can be evaluated asymptotically for R → ∞, by using the stationary
phase approximation formula to obtain the final result

u ∼ − Aac

ωR sin θ
J1(ak1) exp

[
i

(
ωt− ωR

c

)]
, (1.10.36)

where k1 = ω/c sin θ is the stationary point. Physically, this solution represents out-
going spherical waves with constant velocity c and decaying amplitude, as R → ∞.

Example 1.10.7 (Axisymmetric Biharmonic Equation). We solve the axisymmetric
boundary-value problem

∇4u(r, z) = 0, 0 ≤ r < ∞, z > 0 (1.10.37)

with the boundary data

u(r, 0) = f(r), 0 ≤ r < ∞, (1.10.38)
∂u

∂z
= 0 on z = 0, 0 ≤ r < ∞, (1.10.39)

u(r, z) → 0 as r → ∞, (1.10.40)

where the axisymmetric biharmonic operator is

∇4 = ∇2
(
∇2

)
=

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)
. (1.10.41)

The use of the Hankel transform H0{u(r, z)} = ũ(k, z) for this problem gives

(
d2

dz2
− k2

)2

ũ(k, z) = 0, z > 0, (1.10.42)

ũ(k, 0) = f̃(k),
dũ

dz
= 0 on z = 0. (1.10.43)

The bounded solution of equation (1.10.42) is

ũ(k, z) = (A+ zB) exp(−kz), (1.10.44)

where A and B are integration constants to be determined by (1.10.43) as A = f̃(k)
and B = kf̃(k). Thus, solution (1.10.44) becomes

ũ(k, z) = (1 + kz)f̃(k) exp(−kz). (1.10.45)

The inverse Hankel transform gives the formal solution

u(r, z) =

∫ ∞

0

k(1 + kz)f̃(k)J0(kr) exp(−kz) dk. (1.10.46)
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Example 1.10.8 (The Axisymmetric Cauchy–Poisson Water Wave Problem). We con-
sider the initial-value problem (Debnath 1994) for inviscid water of finite depth h
with a free horizontal surface at z = 0 and the z-axis positive upward. We assume
that the liquid has constant density ρ with no surface tension. The surface waves
are generated in water which is initially at rest for t < 0 by the prescribed free sur-
face elevation. In cylindrical polar coordinates (r, θ, z), the axisymmetric water wave
equations for the velocity potential φ(r, z, t) and the free surface elevation η(r, t) are

∇2φ = φrr +
1

r
φr + φzz = 0, 0 ≤ r < ∞,−h ≤ z ≤ 0, t > 0, (1.10.47)

φz − ηt = 0,

φt + gη = 0

}
on z = 0, t > 0, (1.10.48ab)

φz = 0, on z = −h, t > 0, (1.10.49)

where g is the constant gravitational acceleration. The initial conditions are

φ(r, 0, 0) = 0 and η(r, 0) = η0(r), for 0 ≤ r < ∞, (1.10.50ab)

where η0(r) is the prescribed free surface elevation.
We apply the joint Laplace and the zero-order Hankel transform defined by

φ̃(k, z, s) =

∫ ∞

0

e−st dt

∫ ∞

0

rJ0(kr)φ(r, z, t) dr, (1.10.51)

to (1.10.47)–(1.10.49) so that these equations reduce to

(
d2

dz2
− k2

)
φ̃ = 0, −h ≤ z ≤ 0,

dφ̃
dz − sη̃ = −η̃0(k),

sφ̃+ gη̃ = 0

⎫⎬
⎭ on z = 0,

φ̃z = 0 on z = −h,

where η̃0(k) is the zero-order Hankel transform of η0(r).
The solutions of this system are

φ̃(k, z, s) = − gη̃0(k)

(s2 + ω2)

cosh k(z + h)

cosh kh
, (1.10.52)

η̃(k, z, s) =
sη̃0(k)

(s2 + ω2)
, (1.10.53)

where

ω2 = gk tanh(kh) (1.10.54)
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is the famous dispersion relation between frequency ω and wavenumber k for wa-
ter waves in a liquid of depth h. Physically, this dispersion relation describes the
interaction between the inertial and gravitational forces.

Application of the inverse transforms gives the integral solutions

φ(r, z, t) = −g
∫ ∞

0

kJ0(kr)η̃0(k)

(
sinωt

ω

)
cosh k(z + h)

cosh kh
dk, (1.10.55)

η(r, t) =

∫ ∞

0

kJ0(kr)η̃0(k) cosωt dk. (1.10.56)

These wave integrals represent exact solutions for φ and η for all r and t, but the
physical features of the wave motions cannot be described by them. In general,
the exact evaluation of the integrals is almost a formidable task. In order to resolve
this difficulty, it is necessary and useful to resort to asymptotic methods. It will be
sufficient for the determination of the basic features of the wave motions to eval-
uate (1.10.55) or (1.10.56) asymptotically for a large time and distance with (r/t)
held fixed. We now replace J0(kr) by its asymptotic formula (1.10.35) for kr → ∞,
so that (1.10.56) gives

η(r, t) ∼
(

2

πr

) 1
2
∫ ∞

0

√
kη̃0(k) cos

(
kr − π

4

)
cosωt dk

= (2πr)−
1
2 Re

∫ ∞

0

√
kη̃0(k) exp

[
i

(
ωt− kr +

π

4

)]
dk. (1.10.57)

Application of the stationary phase method to (1.10.57) yields the solution

η(r, t) ∼
[

k1
rt|ω′′(k1)|

] 1
2

η̃0(k1) cos
[
tω(k1)− k1r

]
, (1.10.58)

where the stationary point k1 = (gt2/4r2) is the root of the equation

ω′(k) =
r

t
. (1.10.59)

For sufficiently deep water, kr → ∞, the dispersion relation becomes

ω2 = gk. (1.10.60)

The solution of the axisymmetric Cauchy–Poisson problem is obtained by using
a prescribed initial displacement of unit volume concentrated at the origin, which
means that η0(r) = (a/2πr)δ(r), so that η̃0(k) = a

2π . Thus, the asymptotic solution
is obtained from (1.10.58) in the form

η(r, t) ∼ agt2

4π
√
2r3

cos

(
gt2

4r

)
, gt2  4r. (1.10.61)

It is noted that solution (1.10.58) is no longer valid when ω′′(k1) = 0. This case
can be handled by a modification of the asymptotic evaluation (see Debnath 1994,
p. 91).
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1.11 Green’s Functions and Boundary-Value Problems

Many physical problems are described by second-order nonhomogeneous differen-
tial equations with homogeneous boundary conditions or by second-order homoge-
neous equations with nonhomogeneous boundary conditions. Such problems can be
solved by a powerful method based on a device known as Green’s functions.

We consider a nonhomogeneous partial differential equation of the form

Lxu(x) = f(x), (1.11.1)

where x = (x, y, z) is a vector in three (or higher) dimensions, Lx is a linear par-
tial differential operator in three or more independent variables with constant coeffi-
cients, and u(x) and f(x) are functions of three or more independent variables. The
Green function G(x, ξξξ) of this problem satisfies the equation

LxG(x, ξξξ) = δ(x− ξξξ) (1.11.2)

and represents the effect at the point x of the Dirac delta function source of the point
ξξξ = (ξ, η, ζ).

Multiplying (1.11.2) by f(ξξξ) and integrating over the volume V of the ξξξ space,
so that dV = dξ dη dζ, we obtain∫

V

LxG(x, ξξξ)f(ξξξ) dξξξ =

∫
V

δ(x− ξξξ)f(ξξξ) dξξξ = f(x). (1.11.3)

Interchanging the order of the operator Lx and integral sign in (1.11.3) gives

Lx

[∫
V

G(x, ξξξ)f(ξξξ) dξξξ

]
= f(x). (1.11.4)

A simple comparison of (1.11.4) with (1.11.1) leads to the solution of (1.11.1) in the
form

u(x) =

∫
V

G(x, ξξξ)f(ξξξ) dξξξ. (1.11.5)

Clearly, (1.11.5) is valid for any infinite number of components of x. Accordingly,
the Green’s function method can be applied, in general, to any linear, constant coef-
ficient, inhomogeneous partial differential equations in any number of independent
variables.

Another way to approach the problem is by looking for the inverse operator L−1
x .

If it is possible to find L−1
x , then the solution of (1.11.1) can be obtained as u(x) =

L−1
x (f(x)). It turns out that, in many important cases, it is possible, and the inverse

operator can be expressed as an integral operator of the form

u(x) = L−1
x

(
f(ξξξ)

)
=

∫
V

G(x, ξξξ)f(ξξξ) dξξξ. (1.11.6)

The kernel G(x, ξξξ) is called the Green’s function which is, in fact, the characteristic
of the operator Lx for any finite number of independent variables.

The main goal of this section is to develop a general method of Green’s function
from several examples of applications.
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Example 1.11.1 (Green’s Function for the One-Dimensional Diffusion Equation).
We consider the inhomogeneous, one-dimensional, diffusion equation

ut − κuxx = f(x)δ(t), x ∈ R, t > 0, (1.11.7)

with the boundary conditions

u(x, 0) = 0 for x ∈ R and u(x, t) → 0 as |x| → ∞. (1.11.8ab)

We take the Laplace transform with respect to t and the Fourier transform with re-
spect to x to (1.11.7), (1.11.8ab), so that

˜̄u(k, s) =
f̃(k)

(s+ κk2)
, (1.11.9)

˜̄u(k, t) → 0 as |k| → ∞. (1.11.10)

The inverse Laplace transform gives

ũ(k, t) = f̃(k) exp
(
−κk2t

)
= f̃(k)g̃(k), (1.11.11)

where g̃(k) = exp(−κk2t), so that

g(x) = F−1
{
exp

(
−κk2t

)}
=

1√
2κt

exp

(
− x2

4κt

)
. (1.11.12)

Application of the inverse Fourier transform combined with Convolution Theo-
rem 1.7.1 gives

u(x, t) =
1√
2π

∫ ∞

−∞
eikxf̃(k)g̃(k) dκ =

1√
2π

∫ ∞

−∞
f̃(ξ)g̃(x− ξ) dξ

=
1√
4κπt

∫ ∞

−∞
f̃(ξ) exp

(
− (x− ξ)2

4κt

)
dξ

=
1√
2π

∫ ∞

−∞
f̃(ξ)G(x, t; ξ) dξ, (1.11.13)

where the Green function G(x, t; ξ) is given by

G(x, t; ξ) =
1√
4πκt

exp

[
− (x− ξ)2

4κt

]
. (1.11.14)

Evidently, G(x, t) = G(x, t; 0) is an even function of x, and at any time t, the
spatial distribution of G(x, t) is Gaussian. The amplitude (or peak height) of G(x, t)
decreases inversely with

√
κt, whereas the width of the peak increases with

√
κt.

The evolution of G(x, t) = u(x, t) has already been plotted against x for different
values of τ = 2

√
κt in Figure 1.6.
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Example 1.11.2 (Green’s Function for the Two-Dimensional Diffusion Equation).
We consider the two-dimensional diffusion equation

ut −K∇2u = f(x, y)δ(t), −∞ < x, y < ∞, t > 0, (1.11.15)

with the initial and boundary conditions

u(x, y, 0) = 0, for all (x, y) ∈ R
2, (1.11.16)

u(x, y, t) → 0 as r =
√
x2 + y2 → ∞, (1.11.17)

where K is the diffusivity constant.
Application of the Laplace transform and the double Fourier transform to the

above system gives

˜̄u(κ, s) =
f̃(k, l)

(s+Kκ2)
, (1.11.18)

where κ = (k, l).
The inverse Laplace transform gives

ũ(κ, t) = f̃(k, l) exp
(
−Kκ2t

)
= f̃(k, l)g̃(k, l), (1.11.19)

where g̃(k, l) = exp(−Kκ2t), so that

g(x, y) = F−1
{
exp

(
−Kκ2t

)}
=

1

2Kt
exp

[
− (x2 + y2)

4Kt

]
. (1.11.20)

Finally, the convolution theorem of the Fourier transform gives the formal solution

u(x, y, t) =
1

4πKt

∫∫ ∞

−∞
f(ξ, η) exp

[
− (x− ξ)2 + (y − η)2

4Kt

]
dξ dη,

(1.11.21)

=

∫ ∞

−∞

∫ ∞

−∞
f(ξξξ)G(r, ξξξ) dξξξ, (1.11.22)

where r = (x, y) and ξξξ = (ξ, η) and Green’s function G(r, ξξξ) is given by

G(r, ξξξ) =
1

(4πKt)
exp

[
−|r− ξξξ|2

4Kt

]
. (1.11.23)

Similarly, we can construct Green’s function for the three-dimensional diffusion
equation

ut −K∇2u = f(r)δ(t) for −∞ < x, y, z < ∞, t > 0, (1.11.24)

with the initial and boundary data
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u(r, 0) = 0 for −∞ < x, y, z < ∞, (1.11.25)

u(r, t) → 0 as r =
(
x2 + y2 + z2

) 1
2 → ∞, (1.11.26)

where r = (x, y, z).
Application of the Laplace transform of u(r, t) with respect to t and the three-

dimensional Fourier transform with respect to x, y, z gives the solution

u(r, t) =
1

(4πKt)
3
2

∫∫∫ ∞

−∞
f(ξξξ) exp

[
−|r− ξξξ|2

4Kt

]
dξξξ, (1.11.27)

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(ξξξ)G(r, ξξξ) dξξξ, (1.11.28)

where ξξξ = (ξ, η, ζ), and Green’s function is given by

G(r, ξξξ) =
1

(4πKt)
3
2

exp

[
−|r− ξξξ|2

4Kt

]
. (1.11.29)

In fact, the same method of construction can be used to find the Green function
of the n-dimensional diffusion equation

ut −K∇2
nu = f(r)δ(t), r ∈ Rn, t > 0, (1.11.30)

u(r, 0) = 0 for all r ∈ Rn, (1.11.31)

u(r, t) → 0 as r =
(
x21 + x22 + · · ·+ x2n

) 1
2 → ∞, (1.11.32)

where r = (x1, x2, . . . , xn) and ∇2
n is the n-dimensional Laplacian given by

∇2
n =

∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n
. (1.11.33)

The solution of this problem is given by

u(r, t) =
1

(4πKt)
n
2

∫ ∞

−∞
f(ξξξ)G(r, ξξξ) dξξξ, (1.11.34)

where ξξξ = (ξ1, ξ2, . . . , ξn) and the n-dimensional Green function G(r, ξξξ) is given
by

G(r, ξξξ) =
1

(4πKt)
n
2
exp

[
−|r− ξξξ|2

4Kt

]
. (1.11.35)

Example 1.11.3 (The Three-Dimensional Poisson Equation). We show that the solu-
tion of the Poisson equation

−∇2u = f(r), (1.11.36)

where r = (x, y, z) is given by
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u(r) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
G(r, ξξξ)f(ξξξ) dξξξ, (1.11.37)

where Green’s function G(r, ξξξ) of the operator, −∇2, is given by

G(r, ξξξ) =
1

4π

1

|r− ξξξ| . (1.11.38)

To obtain the fundamental solution, we need to solve the equation

−∇2G(r− ξξξ) = δ(x− ξ)δ(y − η)δ(z − ζ), r �= ξξξ. (1.11.39)

Application of the three-dimensional Fourier transform, defined by (1.8.5), to
(1.11.39) gives

κ2Ĝ(κκκ,ξξξ) =
1

(2π)3/2
exp(−iκκκ · ξξξ), (1.11.40)

where Ĝ(κκκ,ξξξ) = F{G(r, ξξξ)} and κκκ = (k, �,m).
The inverse Fourier transform gives the formal solution

G(r, ξξξ) =
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp

{
iκκκ · (r− ξξξ)

}dκκκ
κ2

=
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp(iκκκ ·R)

dκκκ

κ2
, (1.11.41)

where R = r− ξξξ.
We evaluate this integral using the spherical polar coordinates in the κκκ-space

with the axis along the R-axis. In terms of spherical polar coordinates (κ, θ, φ),
κκκ ·R = κR cos θ where R = |r− ξξξ|. Thus, (1.11.41) becomes

G(r, ξξξ) =
1

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ

∫ ∞

0

exp(κR cos θ)κ2 sin θ · dκ
κ2

=
1

(2π)2

∫ ∞

0

2
sin(κR)

κR
dκ =

1

4πR
=

1

4π|r− ξξξ| , (1.11.42)

provided that R > 0.
In electrodynamics, the fundamental solution (1.11.42) has a well-known inter-

pretation. Physically, it represents the potential at point r generated by the unit point
charge distribution at point ξξξ. This is what can be expected because δ(r − ξξξ) is the
charge density corresponding to a unit point charge at ξξξ.

The solution of (1.11.36) is then given by

u(r) =

∫∫∫ ∞

−∞
G(r, ξξξ)f(ξξξ) dξξξ =

1

4π

∫∫∫ ∞

−∞

f(ξξξ) dξξξ

|r− ξξξ| . (1.11.43)

The integrand in (1.11.43) consists of the given charge distribution f(r) at r = ξξξ and
Green’s function G(r, ξξξ). Physically, G(r, ξξξ)f(ξξξ) represents the resulting potentials
due to elementary point charges, and the total potential due to a given charge distri-
bution f(r) is then obtained by the integral superposition of the resulting potentials.
This is called the principle of superposition.
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Example 1.11.4 (The Two-Dimensional Helmholtz Equation). Find the fundamental
solution of the two-dimensional Helmholtz equation

−∇2G+ α2G = δ(x− ξ)δ(y − η), −∞ < x, y < ∞. (1.11.44)

It is convenient to change variables x − ξ = x∗, y − η = y∗. Consequently,
dropping the asterisks, (1.11.44) reduces to the form

Gxx +Gyy − α2G = −δ(x)δ(y). (1.11.45)

Application of the double Fourier transform Ĝ(κκκ) = F{G(x, y)} to (1.11.45)
gives the solution as

Ĝ(κκκ) =
1

2π

1

(κ2 + α2)
, (1.11.46)

where κκκ = (k, �) and κ2 = k2 + �2.
The inverse Fourier transform yields the solution

G(x, y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
exp(iκκκ · x)

(
κ2 + α2

)−1
dk d�. (1.11.47)

In terms of polar coordinates (x, y) = r(cos θ, sin θ), (k, �) = ρ(cosφ, sinφ), the
integral solution (1.11.47) becomes

G(x, y) =
1

4π2

∫ ∞

0

ρ dρ

(ρ2 + α2)

∫ 2π

0

exp
{
irρ cos(φ− θ)

}
dφ,

which, replacing the second integral by 2πJ0(rρ),

=
1

2π

∫ ∞

0

ρJ0(rρ) dρ

(ρ2 + α2)
. (1.11.48)

In terms of the original coordinates, the fundamental solution of (1.11.44) is given
by

G(r, ξξξ) =
1

2π

∫ ∞

0

ρJ0[ρ{(x− ξ)2 + (y − η)2} 1
2 ] dρ

(ρ2 + α2)
. (1.11.49)

Accordingly, the solution of the inhomogeneous equation
(
∇2 − α2

)
u = −f(x, y) (1.11.50)

is given by

u(x, y) =

∫ ∞

−∞

∫ ∞

−∞
G(r, ξξξ)f(ξξξ) dξξξ, (1.11.51)

where G(r, ξξξ) is given by (1.11.49).
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Since the integral solution (1.11.48) does not exist for α = 0, Green’s func-
tion for the two-dimensional Poisson equation (1.11.44) cannot be derived from
(1.11.48). Instead, we differentiate (1.11.48) with respect to r to obtain

∂G

∂r
=

1

2π

∫ ∞

0

ρJ ′
0(rρ) dρ

(ρ2 + α2)
,

which is, for α = 0,

∂G

∂r
=

1

2π

∫ ∞

0

1

ρ
J ′
0(rρ) dρ = − 1

2πr
.

Integrating this result gives Green’s function

G(r, θ) = − 1

2π
log r.

In terms of the original coordinates, Green’s function becomes

G(r, ξξξ) =
1

4π
log

[
(x− ξ)2 + (y − η)2

]
. (1.11.52)

This is Green’s function for the two-dimensional Poisson equation ∇2 = −f(x, y).
Thus, the solution of the Poisson equation is

u(x, y) =

∫ ∞

−∞

∫ ∞

−∞
G(r, ξξξ)f(ξξξ) dξξξ, (1.11.53)

where G(r, ξξξ) is given by (1.11.52).

Example 1.11.5 (Green’s Function of the Three-Dimensional Helmholtz Equation).
We consider the three-dimensional wave equation

[
utt − c2∇2u

]
= q(r, t), (1.11.54)

where q(r, t) is a source. If q(r, t) = q(r) exp(−iωt) represents a source oscillating
with a single frequency ω, then, as expected, at least after an initial transient period,
the entire motion reduces to a wave motion with the same frequency ω so that we can
write u(r, t) = u(r) exp(−iωt). Consequently, the wave equation (1.11.54) reduces
to the three-dimensional Helmholtz equation

−
(
∇2 + k2

)
u(r) = f(r), (1.11.55)

where k = ω
c and f(r) = c−2q(r). The function u(r) satisfies this equation on some

domain D ⊂ R
3 with boundary ∂D, and it also satisfies some prescribed boundary

conditions. We also assume that u(r) satisfies the Sommerfeld radiation condition
which simply states that the solution behaves like outgoing waves generated by the
source. In the limit as ω → 0, so that k → 0 and f(r) can be interpreted as a
heat source, equation (1.11.55) results in a three-dimensional Poisson equation. The



1.11 Green’s Functions and Boundary-Value Problems 77

solution u(r) would represent the steady temperature distribution inD due to the heat
source f(r). However, in general, u(r) can be interpreted as a function of physical
interest.

We construct a Green function G(r, ξξξ) for equation (1.11.55) so that G(r, ξξξ)
satisfies the equation

−
(
∇2 + k2

)
G = δ(x)δ(y)δ(z). (1.11.56)

Using the spherical polar coordinates, the three-dimensional Laplacian can be
expressed in terms of radial coordinate r only so that (1.11.56) assumes the form

−
[
1

r2
∂

∂r

(
r2
∂G

∂r

)
+ k2G

]
=

δ(r)

4πr2
, 0 < r < ∞, (1.11.57)

with the radiation condition

lim
r→∞

r(Gr + ikG) = 0. (1.11.58)

For r > 0, the function G satisfies the homogeneous equation

1

r2
∂

∂r

(
r2
∂G

∂r

)
+ k2G = 0, (1.11.59)

or equivalently,

∂

∂r
(rG) + k2(rG) = 0. (1.11.60)

This equation admits a solution of the form

rG(r) = Aeikr +Be−ikr, (1.11.61)

or

G(r) = A
eikr

r
+B

e−ikr

r
, (1.11.62)

where A and B are arbitrary constants. In order to satisfy the radiation condition, we
need to set A = 0, and hence, the solution (1.11.62) becomes

G(r) = B
e−ikr

r
. (1.11.63)

To determine B, we use the spherical surface Sε of radius ε, so that

lim
ε→0

∫
Sε

∂G

∂r
dS = − lim

ε→0

∫
Sε

B

r
e−ikr

(
1

r
+ ik

)
dS = 1, (1.11.64)

from which we find B = − 1
4π as ε → 0. Consequently, Green’s function takes the

form
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G(r) = −e−ikr

4πr
. (1.11.65)

Physically, this represents outgoing spherical waves radiating away from the source
at the origin. With a point source at a point ξξξ, Green’s function is represented by

G(r, ξξξ) = −exp{−ik|r− ξξξ|}
4π|r− ξξξ| , (1.11.66)

where r and ξξξ are position vectors in R
3.

Finally, when k = 0, this result reduces exactly to Green’s function for the three-
dimensional Poisson equation (1.11.36).

Example 1.11.6 (One-Dimensional Wave Equation). We first consider the one-
dimensional inhomogeneous wave equation

−
[
uxx − 1

c2
utt

]
= c−2q(x, t), x ∈ R, t > 0, (1.11.67)

with the initial and boundary conditions

u(x, 0) = 0, ut(x, 0) = 0 for x ∈ R, (1.11.68ab)

u(x, t) → 0 as |x| → ∞. (1.11.69)

The Green function G(x, t) for this problem satisfies the equation

−
[
Gxx − 1

c2
Gtt

]
= c−2δ(x)δ(t) (1.11.70)

and the same initial and boundary conditions (1.11.68ab), (1.11.69) satisfied by
u(x, t).

We apply the joint Laplace transform with respect to t and the Fourier transform
with respect to x to equation (1.11.70), so that

G̃(k, s) =
1√
2π

c−2

(k2 + s2

c2 )
, (1.11.71)

where k and s represent the Fourier and Laplace transform variables, respectively.
The inverse Fourier transform gives

G(x, s) =
1

c2
F−1

{
1√
2π

1

(k2 + s2

c2 )

}
=

1

2sc
exp

(
−s

c
|x|

)
. (1.11.72)

Finally, the inverse Laplace transform yields Green’s function with a source at
the origin

G(x, t) =
1

2c
L−1

{
1

s
exp

(
−s

c
|x|

)}
=

1

2c
H

(
t− |x|

c

)
, (1.11.73)

where H(z) is the Heaviside unit step function.
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With a point source at (ξ, τ), Green’s function has the form

G(x, t; ξ, τ) =
1

2c
H

(
t− τ − |x− ξ|

c

)
. (1.11.74)

This function is also called the Riemann function for the wave equation. The result
(1.11.74) shows that G = 0 unless the point (x, t) lies within the characteristic cone
defined by the inequality c(t− τ) > |x− ξ|.

The solution of equation (1.11.67) is

u(x, t) =

∫ ∞

−∞
dξ

∫ t

0

G(x, t; ξ, τ)q(ξ, τ) dτ,

=
1

2c

∫ ∞

−∞
dξ

∫ t

0

H

(
t− τ − |x− ξ|

c

)
q(ξ, τ) dτ, (1.11.75)

which, since H = 1 for x− c(t− τ) < ξ < x+ c(t− τ) and zero outside,

=
1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)

q(ξ, τ) dξ =
1

2c

∫∫
D

q(ξ, τ) dτ dξ, (1.11.76)

where D is the triangular domain made up of two points x ∓ ct on the x-axis and
another point (x, t) off the x-axis in the (x, t)-plane.

Thus, the solution of the general Cauchy problem described in Example 1.9.1
can be obtained by adding (1.11.75) to the d’Alembert solution (1.7.21), and hence,
it reduces to (1.9.15).

Example 1.11.7 (Green’s Function for an Axisymmetric Wave Equation). We con-
sider the two-dimensional wave equation in polar coordinates

−
[
∇2u− 1

c2
utt

]
= f(r, t), 0 < r < ∞, t > 0, (1.11.77)

where the Laplacian ∇2 in cylindrical polar coordinates without θ-dependence is
given by

∇2 ≡ 1

r

∂

∂r

(
r
∂

∂r

)
(1.11.78)

and u = u(r, t) and f(r, t) are the given functions of r and t. We also prescribe
appropriate initial conditions

u(r, 0) = 0, ut(r, 0) = 0. (1.11.79)

Green’s function G(r, t) must satisfy the equation

−
[
∇2G− 1

c2
Gtt

]
=

1

2πr
δ(r)δ(t), (1.11.80)

with the same initial conditions (1.11.79).
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We apply the joint zero-order Hankel transform with respect to r and the Laplace
transform with respect to t to (1.11.80) to obtain

G̃(κ, s) =
c2

2π(s2 + c2κ2)
, (1.11.81)

where κ and s are the Hankel and Laplace transform variables, respectively. The
inverse Laplace transform gives

G̃(κ, s) =
c

2πκ
sin(cκt). (1.11.82)

Then, the inverse Hankel transform yields the solution for G(r, t) as

G(r, t) =
c

2π
H−1

0

{
1

κ
sin(cκt)

}

=
cH(ct− r)

2π(c2t2 − r2)
1
2

=
cH(t− r

c )

2π(t2 − r2

c2 )
1
2

. (1.11.83)

This represents the Green function for the two-dimensional wave equation with a
source at (0, 0).

If this source is placed at the point r = ξξξ, the Green function satisfies the equation

−
[
∇2G− 1

c2
Gtt

]
= δ(x− ξ)δ(y − η)δ(t− τ). (1.11.84)

Introducing R = |r− ξ| and T = t− τ , we can rewrite (1.11.84) in the form

−
[
1

R
· ∂

∂R

(
R
∂G

∂R

)
− 1

c2
GTT

]
=

δ(R)

2πR
δ(T ). (1.11.85)

This is identical with (1.11.80), and hence, Green’s function is given by

G(R, T ) =
cH(T − R

c )

2π(T 2 − R2

c2 )
1
2

=
cH{(t− τ)− |r−ξ|

c }
2π{(t− τ)2 − 1

c2 |r− ξ|2} 1
2

. (1.11.86)

Example 1.11.8 (Green’s Function for the Three-Dimensional Inhomogeneous Wave
Equation). The three-dimensional inhomogeneous wave equation is given by

−
[
∇2u− 1

c2
utt

]
= f(r, t), −∞ < x, y, z < ∞, t > 0, (1.11.87)

where r = (x, y, z), and the Laplacian is given by

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (1.11.88)

The initial and boundary conditions are
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u(r, 0) = 0, ut(r, t) = 0, (1.11.89ab)

ut(r, t) → 0, as r → ∞. (1.11.90)

Green’s function G(x, t) for this problem satisfies the equation

−
[
∇2G− 1

c2
Gtt

]
= δ(x)δ(y)δ(z)δ(t), −∞ < x, y, z < ∞, t > 0,

(1.11.91)

with the same initial and boundary data (1.11.89ab), (1.11.90).
Application of the joint Laplace and Fourier transform gives

G̃(κκκ, s) =
c2

(2π)3/2
· 1

(s2 + c2κ2)
, κκκ = (k, �,m). (1.11.92)

The joint inverse transform yields the integral solution

G(x, t) =
c

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

sin(cκt)

κ
exp(iκκκ · x) dκκκ. (1.11.93)

In terms of the spherical polar coordinates with the polar axis along the vector
x, so that κκκ · x = κr cos θ, r = |x| and dκκκ = κ2 dκ sin θ dθ dφ, integral (1.11.93)
assumes the form

G(x, t) =
c

(2π)3

∫ 2π

0

dφ

∫ ∞

0

κ sin(cκt) dκ

∫ π

0

exp(iκr cos θ) sin θ dθ,

(1.11.94)

=
c

4π2ri

∫ ∞

0

(
eiκr − e−iκr

)
sin(cκt) dκ

= − c

8π2r

∫ ∞

0

(
eiκr − e−iκr

)(
eicκt − e−icκt

)
dκ

=
c

8π2r

[∫ ∞

0

{
eiκ(ct−r) + e−iκ(ct−r)

}
dκ

−
∫ ∞

0

{
eiκ(ct+r) + e−iκ(ct+r)

}
dκ

]

=
c

8π2r

[∫ ∞

−∞
eiκ(ct−r)dκ−

∫ ∞

−∞
eiκ(ct+r)dκ

]

=
2πc

8π2r

[
δ(ct− r)− δ(ct+ r)

]
. (1.11.95)

For t > 0, ct+ r > 0, and hence, δ(ct+ r) = 0. Thus,

G(x, t) =
1

4πr
δ

(
t− r

c

)
, (1.11.96)

in which the formula δ(ax) = 1
aδ(x) is used.
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If the source is located at (ξ, η, ζ, τ) = (ξξξ, τ), the desired Green function is given
by

G(x, t;ξξξ, τ) =
1

4π|x− ξξξ|

[
δ

(
t− τ − |x− ξξξ|

c

)
− δ

(
t− τ +

|x− ξξξ|
c

)]
.

(1.11.97)

It should be noted that Green’s function (1.11.96) for the hyperbolic equation is
a generalized function, whereas in the other examples of Green’s functions, it was
always a piecewise analytic function. In general, Green’s function for an elliptic
function is always analytic, whereas Green’s function for a hyperbolic equation is a
generalized function.

1.12 Sturm–Liouville Systems and Some General Results

We can generalize the method of separation of variables and the associated eigen-
value problems by considering the classical wave equation with variable coefficients

∂

∂x

(
p(x)

∂u

∂x

)
+ qu = ρ

∂2u

∂t2
, 0 < x < �, t > 0, (1.12.1)

subject to the boundary condition for t > 0

a1u+ a2u
′ = 0, x = 0; b1u+ b2u

′ = 0, x = �, (1.12.2ab)

and the initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < �, (1.12.3ab)

where p, q, and ρ are assumed to be continuous functions of x in 0 ≤ x ≤ � and a1,
a2, b1, b2 are real positive constants such that

a21 + a22 > 0 and b21 + b22 > 0.

Using the method of separation of variables as in Example 1.6.1 with u(x, t) =
X(x)T (t) �= 0 and −λ as a separation constant, we obtain

d

dx

(
p(x)

dX

dx

)
+ (q + λρ)X = 0, (1.12.4)

d2T

dt2
+ λT = 0, (1.12.5)

with the boundary conditions

a1X + a2X
′ = 0, x = 0; b1X + b2X

′ = 0, x = �, (1.12.6ab)

where the prime denotes the derivative with respect to x.
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The eigenvalue problem defined by (1.12.4) and (1.12.6ab) is called the Sturm–
Liouville (SL) system. The values of λ for which the Sturm–Liouville problem has
a nontrivial solution are called the eigenvalues, and the corresponding solutions are
called the eigenfunctions.

In terms of the operator

L =
d

dx

[
p(x)

d

dx

]
+ q(x), (1.12.7)

we can write (1.12.4) in the form, X(x) = u(x),

Lu+ λρu = 0. (1.12.8)

The Sturm–Liouville equation (1.12.8) is called regular in a closed finite interval
[a, b] if the functions p(x) and ρ(x) are positive in [a, b]. Thus, for a given λ, there ex-
ist two linearly independent solutions of a regular Sturm–Liouville equation (1.12.8)
in [a, b].

The Sturm–Liouville equation (1.12.8) in [a, b] together with two separated end
conditions

a1u(a) + a2u
′(a) = 0, b1u(b) + b2u

′(b) = 0, (1.12.9ab)

where a1, a2, b1, b2 are given real constants such that a21 + a22 > 0 and b21 + b22 > 0
is called a regular Sturm–Liouville (RSL) system.

The set of all eigenvalues λ of a regular Sturm–Liouville problem is called the
spectrum of the problem.

Example 1.12.1. Consider the regular Sturm–Liouville problem

u′′ + λu = 0, 0 ≤ x ≤ π, (1.12.10)
u(0) = 0 = u(π). (1.12.11ab)

It is easy to check that, for λ ≤ 0, this problem has no nonzero solutions. In other
words, there are no negative (λ < 0) or zero (λ = 0) eigenvalues of the problem.

However, when λ > 0, then the solutions of the equation are

u(x) = A cos
√
λx+B sin

√
λx.

The boundary conditions (1.12.11ab) give

A = 0 and B sin
(
π
√
λ
)
= 0.

Since λ �= 0, and B = 0 yields a trivial solution, we must have B �= 0, and hence,

sin
(
π
√
λ
)
= 0.

Thus, the eigenvalues are λn = n2, n = 1, 2, . . . , and the eigenfunctions are

un(x) = sinnx.

Note that λn → ∞ as n → ∞, unlike the case of self-adjoint, compact op-
erators when the eigenvalues converge to zero (see Debnath and Mikusinski 1999,
Theorem 4.9.9 and Theorem 5.10.4).
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Example 1.12.2. Consider the Cauchy–Euler equation

x2u′′ + xu′ + λu = 0, 1 ≤ x ≤ e (1.12.12)

with the end conditions

u(1) = 0 = u(e). (1.12.13ab)

The Cauchy–Euler equation can be put into the Sturm–Liouville form

d

dx

(
x
du

dx

)
+

1

x
λu = 0.

The general solution of this equation is

u(x) = C1x
i
√
λ + C2x

−i
√
λ,

where C1 and C2 are arbitrary constants.
In view of the fact that

xia = exp(ia lnx) = cos(a lnx) + i sin(a lnx),

the solution becomes

u(x) = A cos
(√

λ lnx
)
+B sin

(√
λ lnx

)
,

where A and B are new arbitrary constants related to C1 and C2. The end condition
u(1) = 0 gives A = 0, and the end condition u(e) = 0 gives

sin
√
λ = 0, B �= 0,

which leads to the eigenvalues

λn = (nπ)2, n = 1, 2, 3, . . . ,

and the corresponding eigenfunctions

un(x) = sin(nπ lnx), n = 1, 2, 3, . . . .

A Sturm–Liouville equation (1.12.8) is called singular when it is given on a semi-
infinite or infinite interval, or when the coefficient p(x) or ρ(x) vanishes, or when
one of the coefficients becomes infinite at one end or both ends of a finite interval.
A singular Sturm–Liouville equation together with appropriate linear homogeneous
end conditions is called a singular Sturm–Liouville system. The conditions imposed
in this case are not like the separated boundary conditions in the regular Sturm–
Liouville problem.
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Example 1.12.3. We consider the singular Sturm–Liouville problem involving Leg-
endre’s equation

d

dx

[(
1− x2

)
u′]+ λu = 0, −1 < x < 1, (1.12.14)

with the boundary conditions that u and u′ are finite as x → ±1.
In this case, p(x) = 1 − x2 and ρ(x) = 1, and p(x) vanishes at x = ±1. The

Legendre functions of the first kind Pn(x), n = 0, 1, 2, . . . , are the eigenfunctions
which are finite as x → ±1. The corresponding eigenvalues are λn = n(n + 1) for
n = 0, 1, 2, . . . . We note that the singular Sturm–Liouville problem has infinitely
many eigenvalues, and the eigenfunctions Pn(x) are orthogonal to each other with
respect to the weight function ρ(x) = 1.

Example 1.12.4. Another example of a singular Sturm–Liouville problem is the
Bessel equation for fixed ν

d

dx

(
x
du

dx

)
+

(
λx− ν2

x

)
u = 0, 0 < x < a, (1.12.15)

with the end conditions that u(a) = 0 and u, u′ are finite as x → 0+.
In this case, p(x) = x, q(x) = −ν2

x , and ρ(x) = x. Here p(0) = 0, q(x) is
infinite as x → 0+, and ρ(0) = 0. Therefore, the problem is singular. If λ = k2, the
eigenfunctions are the Bessel functions Jν(knx) of the first kind of order ν where
n = 1, 2, 3, . . . , and (kna) is the nth zero of Jν . The eigenvalues are λn = k2n. The
Bessel function Jν and its derivative are both finite as x → 0+. Thus, the problem
has infinitely many eigenvalues and the eigenfunctions are orthogonal to each other
with respect to the weight function ρ(x) = x.

In the preceding examples, we see that the eigenfunctions are orthogonal with
respect to the weight function ρ(x). In general, the eigenfunctions of a singular SL
system are orthogonal with respect to the weight function ρ(x), which will be proved
later on.

Another type of problem that often arises in practice is the periodic Sturm–
Liouville system:

d

dx

(
p(x)

du

dx

)
+ (q + λρ)u = 0, a ≤ x ≤ b, (1.12.16)

in which p(a) = p(b), together with the periodic end conditions

u(a) = u(b), u′(a) = u′(b). (1.12.17ab)

Example 1.12.5. Find the eigenvalues and eigenfunctions of the periodic Sturm–
Liouville system:

u′′ + λu = 0, −π ≤ x ≤ π, (1.12.18)

u(−π) = u(π), u′(π) = u′(−π). (1.12.19ab)
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Note that here p(x) = 1 and hence p(π) = p(−π). For λ > 0, the general solution
of the equation is

u(x) = A cos
√
λx+B sin

√
λx,

where A and B are arbitrary constants. Using the boundary conditions (1.12.19ab),
we obtain

2B sin
√
λπ = 0,

2A
√
λ sin

√
λπ = 0.

Thus, for nontrivial solutions, we must have

sin
√
λπ = 0, A �= 0, B �= 0.

Consequently,

λn = n2, n = 1, 2, 3, . . . .

So, for every eigenvalue λn = n2, there are two linearly independent solutions
cosnx and sinnx.

It can easily be checked that there are no negative eigenvalues of the system.
However, λ = 0 is an eigenvalue and the associated eigenfunction is the constant
function u(x) = 1. Thus, the eigenvalues are 0, {n2}, and the corresponding eigen-
functions are 1, {cosnx}, {sinnx}, where n is a positive integer.

For the regular Sturm–Liouville problem, we denote the domain of L by D(L),
that is, D(L) is the space of all complex-valued functions u defined on [a, b] for
which u′′ ∈ L2([a, b]) and which satisfy boundary conditions (1.12.9ab).

Theorem 1.12.1 (Lagrange’s Identity). For any u, v ∈ D(L), we have

uLv − vLu =
d

dx

[
p
(
uv′ − vu′)]. (1.12.20)

Proof. We have

uLv − vLu = u
d

dx

(
p
dv

dx

)
+ quv − v

d

dx

(
p
du

dx

)
− quv

=
d

dx

[
p
(
uv′ − vu′)].

Theorem 1.12.2 (Abel’s Formula). If u and v are two solutions of the equation
(1.12.8) in [a, b], then

p(x)W (u, v;x) = const., (1.12.21)

where W is the Wronskian defined by

W (u, v;x) =
(
uv′ − u′v

)
.
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Proof. Since u, v are solutions of (1.12.8), we have

d

dx

(
pu′)+ (q + λρ)u = 0,

d

dx

(
pv′

)
+ (q + λρ)v = 0.

Multiplying the first equation by v and the second equation by u, and then sub-
tracting gives

u
d

dx

(
pv′

)
− v

d

dx

(
pu′) = 0.

Integrating this equation from a to x yields

p(x)
[
u(x)v′(x)− u′(x)v(x)

]
− p(a)

[
u(a)v′(a)− u′(a)v(a)

]
= 0.

This is Abel’s formula.

Theorem 1.12.3. The Sturm–Liouville operator L is self-adjoint. In other words, for
any u, v ∈ D(L), we have

〈Lu, v〉 = 〈u, Lv〉, (1.12.22)

where 〈·, ·〉 denotes the inner product in L2([a, b]) defined by

〈f, g〉 =
∫ b

a

f(x)g(x) dx. (1.12.23)

Proof. Since all constants involved in the boundary conditions of a Sturm–Liouville
system are real, if v ∈ D(L), then v ∈ D(L).

Also since p, q and ρ are real valued, Lv = Lv. Consequently, we have

〈Lu, v〉 − 〈u, Lv〉 =
∫ b

a

(vLu− uLv) dx

=
[
p
(
vu′ − uv′

)]b
a
, by Lagrange’s identity (1.12.20).

(1.12.24)

We shall show that the right-hand side of the above equality vanishes for both the
regular and singular SL systems. If p(a) = 0, the result follows immediately. If
p(a) > 0, then u and v satisfy the boundary conditions of the form (1.12.9ab) at
x = a. That is, [

u(a) u′(a)
v(a) v′(a)

] [
a1
a2

]
= 0.

Since a1 and a2 are not both zero, we have

v(a)u′(a)− u(a)v′(a) = 0.

A similar argument can be used to the other end point x = b, so that the right-hand
side of (1.12.24) vanishes. This proves the theorem.
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Theorem 1.12.4. All eigenvalues of a Sturm–Liouville system are real.

Proof. Let λ be an eigenvalue of an SL system and let u(x) be the corresponding
eigenfunction. This means that u �= 0 and Lu = −λρu. Then

0 = 〈Lu, u〉 − 〈u, Lu〉 = (λ− λ)

∫ b

a

ρ(x)
∣∣u(x)∣∣2 dx.

Since ρ(x) > 0 in [a, b] and u �= 0, the integral is a positive number. Thus λ = λ.
This completes the proof.

Remark. This theorem states that all eigenvalues of a regular SL system are real, but
it does not guarantee that an eigenvalue exists. It has been shown by example that an
SL system has an infinite sequence of eigenvalues. All preceding examples of the SL
system suggest that λ1 < λ2 < λ3 < · · · with

lim
n→∞

λn = ∞.

All of these results can be stated in the form of a theorem as follows.

Theorem 1.12.5. The eigenvalues λn of an SL system can be arranged in the form

λ1 < λ2 < λ3 < · · · ,

and

lim
n→∞

λn = ∞, (1.12.25)

so that n refers to the number of zeros of the eigenfunctions un(x) in [a, b].
The proof of this theorem is beyond the scope of this book, and we refer to Deb-

nath and Mikusinski (2005).

Theorem 1.12.6. The eigenfunctions corresponding to distinct eigenvalues of a
Sturm–Liouville system are orthogonal with respect to the inner product with the
weight function ρ(x).

Proof. Suppose u1(x) and u2(x) are eigenfunctions corresponding to eigenvalues
λ1 and λ2 with λ1 �= λ2.

Thus,

Lu1 = −λ1ρu1 and Lu2 = −λ2ρu2.

Hence

u1Lu2 − u2Lu1 = (λ1 − λ2)ρu1u2. (1.12.26)

By Theorem 1.12.1, we have
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u1Lu2 − u2Lu1 =
d

dx

[
p
(
u1u

′
2 − u2u

′
1

)]
. (1.12.27)

Combining (1.12.26) and (1.12.27) and integrating from a to b gives

(λ1 − λ2)

∫ b

a

ρ(x)u1(x)u2(x) dx

=
[
p(x)

{
u1(x)u

′
2(x)− u2(x)u

′
1(x)

}]b
a
= 0,

by boundary conditions (1.12.9ab).
Since λ1 �= λ2, this equality shows that

∫ b

a

ρ(x)u1(x)u2(x) dx = 0.

This proves the theorem.

We consider some general results about the eigenfunction expansions and their
completeness property of an SL system.

Suppose {un(x)}∞n=1 is a set of orthogonal eigenfunctions of an SL system in
[a, b]. The inner product of these functions with respect to the weight function ρ(x)
is defined by

〈un, um〉 =
∫ b

a

ρ(x)un(x)um(x) dx, (1.12.28)

so that the square of the norm is

‖un‖2 = 〈un, un〉 =
∫ b

a

ρ(x)u2
n(x) dx. (1.12.29)

The set of orthogonal eigenfunctions of an SL system is said to be complete if any
arbitrary function f ∈ L2([a, b]) can be expanded uniquely as

f(x) =

∞∑
n=1

anun(x), (1.12.30)

where the series converges to f(x) in L2([a, b]) and the coefficients an are given by

an =
〈f(x), un(x)〉
〈un(x), un(x)〉

=
1

‖un‖2
〈f, un〉, (1.12.31)

where n = 1, 2, 3, . . . .
The expansion (1.12.30) is called a generalized Fourier series of f(x) and the

associated scalars an are called the generalized Fourier coefficients of f(x). The set
of eigenfunctions {un}∞n=1 is called orthonormal if ‖un‖ = 1. Obviously, the set of
orthonormal eigenfunctions is said to be complete, if, for every f ∈ L2([a, b]), the
following expansion holds:
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f(x) =

∞∑
n=1

anun =

∞∑
n=1

〈f, un〉un. (1.12.32)

A series of orthonormal eigenfunctions
∑∞

n=1 anun(x) is said to be convergent to
f(x) in L2([a, b]) if

lim
n→∞

∥∥f(x)− sn(x)
∥∥ = 0, (1.12.33)

where sn(x) =
∑n

r=1 arur(x) is the nth partial sum of series (1.12.32). Equiva-
lently, (1.12.33) reads as

lim
n→∞

∫ b

a

∣∣∣∣∣f(x)−
n∑

r=1

arur(x)

∣∣∣∣∣
2

ρ(x) dx = 0. (1.12.34)

This type of convergence is called the strong convergence and is entirely different
from pointwise or uniform convergence in analysis. In general, the strong conver-
gence in L2([a, b]) implies neither pointwise convergence nor uniform convergence.
However, the uniform convergence implies both strong convergence and pointwise
convergence.

We now determine the coefficients ar such that the nth partial sum sn(x) of
the series (1.12.32) represents the best approximation to f(x) in the sense of least
squares, that is, we seek to minimize the integral in (1.12.34)

I(ar) =

∫ b

a

[
f(x)−

n∑
r=1

arur(x)

]2

ρ(x) dx

=

∫ b

a

ρ(x)f2(x) dx− 2
n∑

r=1

ar

∫ b

a

ρ(x)f(x)ur(x) dx

+

n∑
r=1

a2r

∫ b

a

ρ(x)u2
r(x) dx. (1.12.35)

This is an extremal problem. A necessary condition for I(ar) to be minimum is that
the first partial derivatives of I with respect to the coefficients ar vanish.

Thus, we obtain

∂I

∂ar
=

n∑
r=1

[
−2

∫ b

a

ρurf(x) dx+ 2ar

∫ b

a

ρu2
r dx

]
= 0. (1.12.36)

Consequently,

ar =

∫ b

a

f(x)ur(x)ρ(x) dx = 〈f, ur〉. (1.12.37)

If we complete the square, the right-hand side of (1.12.35) becomes
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I(ar) =

∫ b

a

ρf2 dx+
n∑

r=1

[
ar −

∫ b

a

ρfur dx

]2

−
n∑

r=1

(∫ b

a

ρfur dx

)2

.

(1.12.38)

The right-hand side shows that I is minimum if and only if ar is given by (1.12.37).
This choice of ar gives the best approximation to f(x) in the sense of least squares.

Substituting the values of ar into (1.12.35) gives

∫ b

a

[
f(x)−

n∑
r=1

arur(x)

]2

ρ(x) dx =

∫ b

a

ρ(x)f2(x) dx−
n∑

r=1

a2r. (1.12.39)

If the series of orthonormal eigenfunctions converges to f(x), then (1.12.34) is
satisfied. Invoking the limit as n → ∞ in (1.12.39) and using (1.12.34) gives the
Parseval relation

∞∑
r=1

a2r =

∫ b

a

ρ(x)f2(x) dx = ‖f‖2, (1.12.40)

or equivalently,

∞∑
r=1

∣∣〈f, ur〉
∣∣2 = ‖f‖2. (1.12.41)

Since the left-hand side of (1.12.39) is nonnegative, it follows from (1.12.39) that

n∑
r=1

a2r ≤ ‖f‖2. (1.12.42)

Since the right-hand side of (1.12.42) is finite, the left-hand side of (1.12.42) is
bounded above for any n. Proceeding to the limit as n → ∞ gives the inequality

∞∑
n=1

a2n ≤ ‖f‖2, (1.12.43)

or equivalently,

∞∑
n=1

∣∣〈f, un〉
∣∣2 ≤ ‖f‖2. (1.12.44)

This is called Bessel’s inequality.
In Section 1.6, the method of separation of variables or the Fourier method or

the method of eigenfunction expansions has been discussed with many examples.
This is the basic method for solving partial differential equations in bounded special
domains. We now illustrate the generalized Fourier method by solving more general
Sturm–Liouville problems associated with a general wave equation and a general
diffusion equation.
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Example 1.12.6 (Solution of the Sturm–Liouville Problem Associated with the Wave
Equation). We develop the generalized Fourier method by solving a more general
Sturm–Liouville equation associated with the wave equation

∂2u

∂t2
=

1

ρ(x)

[
∂

∂x

(
p
∂u

∂x

)
+ qu

]
+ F (x, t), a ≤ x ≤ b, t > 0, (1.12.45)

with the boundary conditions (1.12.2ab) and the initial conditions (1.12.3ab), where
F (x, t) is the forcing (source) term.

In terms of the SL operator, equation (1.12.45) can be written as

utt = Lu+ F (x, t), a ≤ x ≤ b, t > 0, (1.12.46)

where

Lu =
1

ρ(x)

[
∂

∂x
(pux) + qu

]
. (1.12.47)

Following the method of separation of variables, we assume the solution of the wave
equation (1.12.45) with F = 0 in the form u(x, t) = φ(x)ψ(t) �= 0 so that equation
(1.12.45) reduces to

d2ψ

dt2
= λψ, t > 0, (1.12.48)

Lφ = λφ, a ≤ x ≤ b, (1.12.49)

where λ is a separation constant.
The associated boundary conditions for φ(x) are

a1φ(a) + a2φ
′(a) = 0, b1φ(b) + b2φ

′(b) = 0. (1.12.50ab)

Equation (1.12.49) with (1.12.50ab) is called the associated SL problem. In general,
this problem can be solved by finding the eigenvalues λn and the orthonormal eigen-
functions φn(x), n = 1, 2, 3, . . . . Using the principle of superposition, we can write
the solution of the linear equation (1.12.46) in the form

u(x, t) =

∞∑
n=1

φn(x)ψn(t), (1.12.51)

where ψn(t) are to be determined.
We further assume that the forcing term can also be expanded in terms of the

eigenfunctions as

F (x, t) =

∞∑
n=1

φn(x)fn(t), (1.12.52)

where the generalized Fourier coefficients fn(t) of F (x, t) are given by
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fn(t) = 〈F, φn〉 =
∫ b

a

F (x, t)φn(x) dx. (1.12.53)

Substituting (1.12.51) and (1.12.52) into (1.12.46) gives
∞∑

n=1

ψ̈n(t)φn(x) = L

[ ∞∑
n=1

φn(x)ψn(t)

]
+

∞∑
n=1

φn(x)fn(t)

=

∞∑
n=1

ψn(t)Lφn(x) +

∞∑
n=1

φn(x)fn(t)

=

∞∑
n=1

[
λnψn(t) + fn(t)

]
φn(x).

This leads to the ordinary differential equation

ψ̈n(t) + α2
nψn(t) = fn(t), (1.12.54)

where λn = −α2
n.

Application of the Laplace transform method leads to the solution of (1.12.54)
as

ψn(t) = ψn(0) cos(αnt) +
1

αn
ψ̇(0) sin(αnt)

+
1

αn

∫ t

0

sinαn(t− τ)fn(τ) dτ, (1.12.55)

where ψn(0) and ψ̇n(0) can be determined from the initial data (1.12.3ab) so that

f(x) = u(x, 0) =

∞∑
n=1

φn(x)ψn(0), (1.12.56)

g(x) = ut(x, 0) =

∞∑
n=1

ψ̇n(0)φn(x), (1.12.57)

which give the generalized Fourier coefficients ψn(0) and ψ̇n(0) as follows:

ψn(0) = 〈f, φn〉 =
∫ b

a

f(ξ)φn(ξ) dξ, (1.12.58)

ψ̇n(0) = 〈g, φn〉 =
∫ b

a

g(ξ)φn(ξ) dξ. (1.12.59)

Therefore, the final solution is given by

u(x, t) =

∞∑
n=1

ψn(t)φn(x)

=

∞∑
n=1

[
〈f, φn〉 cosαnt+

1

αn
〈g, φn〉 sinαnt

+
1

αn

∫ t

0

sinαn(t− τ)fn(τ) dτ

]
φn(x). (1.12.60)
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This represents an infinite series solution of the wave equation (1.12.45) with the
boundary and initial data (1.12.2ab) and (1.12.3ab) under appropriate conditions on
the initial data f(x), g(x) and the forcing term F (x, t).

Replacing the inner products by the integrals (1.12.58) and (1.12.59), and fn(τ)
by (1.12.53) and interchanging the summation and integration, we obtain the solution
in the form

u(x, t) =

∫ b

a

[ ∞∑
n=1

φn(x)φn(ξ) cosαnt

]
f(ξ) dξ

+

∫ b

a

[ ∞∑
n=1

1

αn
φn(x)φn(ξ) sinαnt

]
g(ξ) dξ

+

∫ b

a

∫ t

0

[ ∞∑
n=1

1

αn
φn(x)φn(ξ) sinαn(t− τ)

]
F (ξ, τ) dξ dτ. (1.12.61)

Example 1.12.7 (Solution of the Sturm–Liouville Problem Associated with the Dif-
fusion Equation). We consider the diffusion equation with a forcing (source) term
F (x, t) in the form

∂u

∂t
=

∂

∂x

[
p(x)

∂u

∂x

]
+ q(x)u+ F (x, t), a ≤ x ≤ b, t > 0, (1.12.62)

with boundary conditions

a1u(a, t) + a2ux(a, t) = 0, b1u(b, t) + b2ux(b, t) = 0, t > 0, (1.12.63ab)

and the initial condition

u(x, 0) = f(x), a < x < b. (1.12.64)

In terms of the SL operator L, equation (1.12.62) takes the form

ut = Lu+ F. (1.12.65)

We use the method of separation of variables to seek a solution of the equation
(1.12.62) with F = 0 in the form u(x, t) = φ(x)ψ(t) �= 0 so that the equation
(1.12.62) becomes

dψ

dt
= λψ, t > 0, (1.12.66)

Lφ = λφ, a ≤ x ≤ b, (1.12.67)

where λ is the separation constant.
The associated boundary conditions are

a1φ(a) + a2φ
′(a) = 0, b1φ(b) + b2φ

′(b) = 0. (1.12.68ab)

Equation (1.12.67) with (1.12.68ab) is called the associated SL problem, which can
easily be solved by finding the eigenvalues λn and the orthonormal eigenfunctions
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φn(x), n = 1, 2, 3, . . . . According to the linear superposition principle, we write the
solution of (1.12.67) in the form

u(x, t) =

∞∑
n=1

φn(x)ψn(t), (1.12.69)

where ψn(t) are to be determined.
We further assume that the forcing function can also be expanded in terms of the

eigenfunctions as

F (x, t) =

∞∑
n=1

fn(t)φn(x), (1.12.70)

where the Fourier coefficients fn(t) are given by

fn(t) = 〈F, φ〉 =
∫ b

a

F (ξ, t)φn(ξ) dξ. (1.12.71)

Putting (1.12.69) and (1.12.70) in equation (1.12.65) yields

∞∑
n=1

φn(x)ψ̇n(t) = L

[ ∞∑
n=1

φn(x)ψn(t)

]
+

∞∑
n=1

fn(t)φn(x)

=

∞∑
n=1

[
ψn(t)Lφn(x) + fn(t)φn(x)

]

=

∞∑
n=1

[
λnψn(t) + fn(t)

]
φn(x).

This gives an ordinary differential equation for ψn(t) as

ψ̇n(t) = λnψn(t) + fn(t). (1.12.72)

Applying the Laplace transform to this equation gives the solution

ψn(t) = ψn(0) exp(λnt) +

∫ t

0

exp
{
λn(t− τ)fn(τ) dτ

}
, (1.12.73)

where n = 1, 2, 3, . . . and ψn(0) can be determined from the initial condition

f(x) = u(x, 0) =

∞∑
n=1

φn(x)ψn(0), (1.12.74)

where the Fourier coefficients ψn(0) of the function f(x) are given by

ψn(0) = 〈f, φn〉 =
∫ b

a

f(ξ)φn(ξ) dξ. (1.12.75)

Substituting (1.12.73) in the solution (1.12.69) gives
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u(x, t) =

∞∑
n=1

[
〈f, φn〉 exp(λnt) +

∫ t

0

exp
{
λn(t− τ)fn(τ) dτ

}]
φn(x).

(1.12.76)

We next replace the inner product in (1.12.76) by (1.12.75), fn(τ) by (1.12.71)
and interchange the summation and integration to obtain the final form of the solution
in the form

u(x, t) =

∫ b

a

[ ∞∑
n=1

φn(ξ)φn(x) exp(λnt)

]
f(ξ) dξ

+

∫ t

0

∫ b

a

∞∑
n=1

[
φn(ξ)φn(x) exp

{
λn(t− τ)

}]
F (ξ, τ) dξ dτ.

(1.12.77)

Introducing a new function G defined by

G(x, ξ, t) =

∞∑
n=1

φn(ξ)φn(x)e
λnt, (1.12.78)

we can write the solution in terms of G in the form

u(x, t) =

∫ b

a

G(x, ξ, t)f(ξ) dξ

+

∫ t

0

∫ b

a

G(x, ξ, t− τ)F (ξ, τ) dξ dτ. (1.12.79)

It is noted that the first term of this solution represents the contribution from the
initial condition, and the second term is due to the nonhomogeneous term of the
equation (1.12.62).

A typical boundary-value problem for an ordinary differential equation can be
written in the operator form as

Lu = f, a ≤ x ≤ b. (1.12.80)

Usually, we seek a solution of this equation with the given boundary conditions.
One formal approach to the problem is to find the inverse operator L−1. Then the
solution of (1.12.80) can be found as u = L−1(f). It turns out that it is possible in
many important cases, and the inverse operator is an integral operator of the form

u(x) =
(
L−1f

)
(x) =

∫ b

a

G(x, t)f(t) dt. (1.12.81)

The function G is called Green’s function of the operator L. The existence of Green’s
function and its construction is not a simple problem in the case of the regular Sturm–
Liouville system.
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Theorem 1.12.7 (Green’s Function for an SL System). Suppose λ = 0 is not an
eigenvalue of the following regular SL system:

Lu ≡ d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x), a ≤ x ≤ b, (1.12.82)

with the homogeneous boundary conditions

a1u(a) + a2u
′(a) = 0, b1u(b) + b2u

′(b) = 0, (1.12.83ab)

where p and q are continuous real-valued functions on [a, b], p is positive in [a, b],
p′(x) exists and is continuous in [a, b], and a1, a2, b1, b2, are given real constants
such that a21 + a21 > 0 and b21 + b21 > 0. Thus, for any f ∈ C2([a, b]), the SL system
has a unique solution

u(x) =

∫ b

a

G(x, t)f(t) dt, (1.12.84)

where G is the Green function given by

G(x, t) =

⎧⎨
⎩

u2(x)u1(t)
p(t)W (t) if a ≤ t < x,

u1(x)u2(t)
p(t)W (t) if x < t ≤ b,

(1.12.85)

where u1 and u2 are nonzero solutions of the homogeneous system (f = 0) and W
is the Wronskian given by

W (t) =

∣∣∣∣u1(t) u2(t)
u′
1(t) u′

2(t)

∣∣∣∣ .
Proof. According to the theory of ordinary differential equations, the general solu-
tion of (1.12.82) is of the form

u(x) = c1u1(x) + c2u2(x) + up(x), (1.12.86)

where c1 and c2 are arbitrary constants, u1 and u2 are two linearly independent
solutions of the homogeneous equation Lu = 0, and up(x) is any particular solution
of (1.12.82).

Using the method of variation of parameters, we obtain the particular solution

up(x) = u1(x)v1(x) + u2(x)v2(x), (1.12.87)

where v1(x) and v2(x) are given by

v1(x) = −
∫

f(x)u2(x)

p(x)W (x)
dx, v2(x) =

∫
f(x)u1(x)

p(x)W (x)
dx. (1.12.88)

According to Abel’s formula (see Theorem 1.12.2), p(x)W (x) is a constant. Since
W (x) �= 0 in [a, b] and p(x) is assumed to be positive, the constant is nonzero.
Denoting the constant by c so that
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c =
1

p(x)W (x)
,

then

v1(x) = −
∫

cf(x)u2(x) dx and v2(x) =

∫
cf(x)u1(x) dx.

Thus, the final form of up(x) is

up(x) = −cu1(x)

∫ x

b

f(t)u2(t) dt+ cu2(x)

∫ x

a

f(t)u1(t) dt

=

∫ x

a

cu2(x)u1(t)f(t) dt+

∫ b

x

cu1(x)u2(t)f(t) dt. (1.12.89)

Consequently, if we denote Green’s function as

G(x, t) =

{
cu2(x)u1(t) if a ≤ t < x,

cu1(x)u2(t) if x < t ≤ b,
(1.12.90)

we can write

up(x) =

∫ b

a

G(x, t)f(t) dt, (1.12.91)

provided the integral exists. This follows immediately from the continuity of G. The
continuity of G is left as an exercise.

We denote the integral operator T given by (1.12.81), that is,

(Tf)(x) =

∫ b

a

G(x, t)f(t) dt. (1.12.92)

Theorem 1.12.8. The operator T defined by (1.12.92) is self-adjoint from L2([a, b])
into C([a, b]) if G(x, t) = G(t, x).

Proof. The function G(x, t) defined on [a, b]× [a, b] is continuous if
∫ b

a

∫ b

a

∣∣G(x, t)
∣∣2 dx dt < ∞.

We have

〈Tf, g〉 =
∫ b

a

∫ b

a

G(x, t)f(t)g(x) dx dt

=

∫ b

a

∫ b

a

G(x, t)f(t)g(x) dx dt

=

∫ b

a

∫ b

a

f(t) dt

∫ b

a

G(x, t)g(x) dx

=
〈
f, T ∗g

〉
,
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which shows that

(
T ∗f

)
(x) =

∫ b

a

G(t, x)f(t) dt.

Obviously, T is self-adjoint if its kernel satisfies the equality G(x, t) = G(t, x).

Theorem 1.12.9. Under the assumptions of Theorem 1.12.7, λ is an eigenvalue of L
if and only if (1/λ) is an eigenvalue of T . Furthermore, if f is an eigenfunction of L
corresponding to the eigenvalue λ, then f is an eigenfunction of T corresponding to
the eigenvalue (1/λ).

Proof. Suppose Lf = λf for some nonzero f in the domain of L. In view of the
definition of T , and Theorem 1.12.7, we have

f = L−1(λf) = T (λf).

Or equivalently, since λ �= 0,

Tf =
1

λ
f.

This means (1/λ) is an eigenvalue of T with the corresponding eigenfunction f .
Conversely, if (f �= 0) is an eigenfunction of T corresponding to the eigenvalue

λ �= 0, then

Tf = λf.

Since T = L−1, one has

f = L(Tf) = L(λf) = λL(f).

Thus, (1/λ) is an eigenvalue of L and the corresponding eigenfunction is f .

Theorem 1.12.10 (Bilinear Expansion of Green’s Function). If G(x, t) is Green’s
function for the regular SL system (1.12.82), (1.12.83ab) and the associated eigen-
value problem

Lφ = λφ, a ≤ x ≤ b, (1.12.93)

with (1.12.83ab) has infinitely many nonzero eigenvalues λn with the corresponding
orthonormal eigenfunctions φn, then G(x, t) can be expanded in terms of λn and φn

as

G(x, t) =

∞∑
n=1

(
1

λn

)
φn(x)φn(t). (1.12.94)

Proof. We assume that the solution u(x) of (1.12.82), (1.12.83ab) is given in terms
of the eigenfunctions as
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u(x) =

∞∑
n=1

anφn(x), (1.12.95)

where the coefficients an are to be determined.
We next express the given forcing function f in terms of the eigenfunctions as

f(x) =

∞∑
n=0

fnφn(x), (1.12.96)

where the coefficients fn are

fn = 〈f, φn〉 =
∫ b

a

f(t)φn(t) dt. (1.12.97)

Substituting (1.12.95), (1.12.96) into (1.12.82) yields

L

[ ∞∑
n=1

anφn(x)

]
=

∞∑
n=1

fnφn(x). (1.12.98)

But the left-hand side of (1.12.98) is

L

[ ∞∑
n=1

anφn(x)

]
=

∞∑
n=1

anL
(
φn(x)

)
=

∞∑
n=1

anλnφn(x). (1.12.99)

Equating the right-hand side of (1.12.98) and (1.12.99) yields

an =
1

λn
fn =

1

λn
〈f, φn〉 =

1

λn

∫ b

a

f(t)φn(t) dt. (1.12.100)

Consequently, (1.12.95) leads to the result

u(x) =

∞∑
n=1

1

λn

[∫ b

a

f(t)φn(t) dt

]
φn(x),

which, by interchanging the summation and integration,

=

∫ b

a

[ ∞∑
n=1

1

λn
φn(t)φn(x)

]
f(t) dt. (1.12.101)

In view of (1.12.84), Green’s function G(x, t) is then given by

G(x, t) =

∞∑
n=1

1

λn
φn(t)φn(x). (1.12.102)

This is the desired result (1.12.94).
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1.13 Energy Integrals and Higher Dimensional Equations

In this section, we discuss the energy integrals, the law of conservation of energy,
uniqueness theorems, higher dimensional wave equations, and diffusion equations.

We first derive the energy integral associated with the (1 + 1)-dimensional wave
equation problem

utt = c2uxx, a ≤ x ≤ b, t > 0, (1.13.1)

u(a, t) = 0 = u(b, t) t > 0, (1.13.2ab)

u(x, 0) = f(x), ut(x, 0) = g(x), a ≤ x ≤ b. (1.13.3ab)

Multiplying equation (1.13.1) by ut, we can rewrite the result in the form

d

dt

(
1

2
u2
t +

1

2
c2u2

x

)
− c2

∂

∂x
(utux) = 0. (1.13.4)

Integrating this equation with respect to x from a to b gives

d

dt

∫ b

a

1

2

(
u2
t + c2u2

x

)
dx = c2[utux]

b
a

= c2
[
ut(b, t)ux(b, t)− ut(a, t)ux(a, t)

]
, (1.13.5)

which is zero because ut(a, t) = 0 = ut(b, t), which follows from (1.13.2ab).
We introduce

E(t) =

∫ b

a

1

2

(
u2
t + c2u2

x

)
dx, (1.13.6)

which is called the energy integral or the total energy of the system. It follows from
(1.13.5) that

dE

dt
= 0. (1.13.7)

This implies that

E(t) = const. = E0. (1.13.8)

This means that the energy of the wave equation system is conserved.
The energy equation (1.13.8) can be used to prove the uniqueness theorem which

states that the wave equation system (1.13.1)–(1.13.3ab) has a unique solution.
Suppose that there are two solutions u(x, t) and v(x, t) of the system and set

w(x, t) = u− v.
Obviously, w(x, t) satisfies the following equation:

wtt = c2wxx, a ≤ x ≤ b, t > 0,
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w(a, t) = 0 = w(b, t), t > 0,

w(x, 0) = 0 = wt(x, 0), a < x < b.

In view of equation (1.13.5) with u = w and the law of conservation of en-
ergy (1.13.8), we obtain

dE

dt
=

d

dt

∫ b

a

(
w2

t + c2w2
x

)
dx = 0.

Since the integrand is positive, wt = 0 = wx for all x and t, hence w ≡ 0, which
means that u = v. This proves the uniqueness.

We next consider the (n+ 1)-dimensional wave equation in the form

∂2u

∂t2
= c2

(
∂2u

∂x21
+

∂2u

∂x22
+ · · ·+ ∂2u

∂x2n

)
= c2∇2

nu, (1.13.9)

where x = (x1, x2, . . . , xn) ∈ R
n, t > 0, and ∇2

n is the n-dimensional Laplacian.
Suppose e = (e1, e2, . . . , en) is a unit vector in R

n so that

e21 + e22 + · · ·+ e2n = 1. (1.13.10)

For a fixed t and a constant a, the equation

e1x1 + e2x2 + · · ·+ enxn − ct = a (1.13.11)

represents a plane in the x-space Rn. The unit vector e is normal to the above plane.
As t increases, the plane moves in the direction of e with constant speed c.

It is easy to verify that

u(x, t) = F (x · e− ct) (1.13.12)

is a solution of the wave equation (1.13.9). The value of u on the plane (1.13.11) is
equal to the constant F (a). Usually, solutions (1.13.12) of the wave equation (1.13.9)
are called plane waves. This idea of plane waves is consistent with that of the wave
equation for n = 1, 2, 3.

For n = 1 with x1 = x, equation (1.13.9) gives the (1 + 1)-dimensional wave
equation

utt = c2uxx.

Obviously, condition (1.13.10) becomes e21 = 1 which gives only two possible values
of e1 = ±1. Thus, the corresponding plane wave solutions are u(x, t) = F (x− ct)
and u(x, t) = G(x+ ct), where F and G are arbitrary C2 functions of a single vari-
able. The former represents a wave traveling in the positive x-direction with constant
speed c and the latter also represents a wave traveling in the negative x-direction with
constant speed c.

For n = 2 with x1 = x, and x2 = y, (1.13.9) become the (2 + 1)-dimensional
wave equation
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utt = c2(uxx + uyy).

In this case, there are infinitely many unit vectors (e1, e2) in R
2. For example, e =

( 1√
2
, 1√

2
) is a unit vector and the corresponding plane wave solutions are

u(x, y, t) = F

(
1√
2
x+

1√
2
y − ct

)
, (1.13.13)

where F is an arbitrary C2 function of a single variable.
For n = 3 with x1 = x, x2 = y, x3 = z, equation (1.13.9) represents the

(3 + 1)-dimensional wave equation

utt = c2(uxx + uyy + uzz).

Again there are infinitely many unit vectors e = (e1, e2, e3). For example, one
such vector is e = (1, 0, 0) and the corresponding plane wave solution is

u(x, y, z, t) = F (x− ct).

In cylindrical polar coordinates (x1 = r cos θ, x2 = r sin θ, z = z), the (3 + 1)-
dimensional wave equation is

∂2u

∂t2
= c2

[
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
+

∂2u

∂z2

]
. (1.13.14)

If u is independent of θ and z, this wave equation reduces to

∂2u

∂t2
= c2

[
1

r

∂

∂r

(
r
∂u

∂r

)]
. (1.13.15)

This is known as the cylindrical wave equation.
In spherical polar coordinates (x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ)

in R
3, the (3 + 1)-dimensional wave equation (1.13.9) takes the form

∂2u

∂t2
=

c2

r2

[
∂

∂r

(
r2
∂u

∂r

)
+

1

sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
+

1

sin2 φ

∂2u

∂θ2

]
, (1.13.16)

where 0 ≤ r ≤ ∞, 0 ≤ θ ≤ 2π, and 0 ≤ φ ≤ π. If u does not depend on θ and φ,
then (1.13.16) reduces to the form

∂2u

∂t2
=

c2

r2
∂

∂r

(
r2
∂u

∂r

)
. (1.13.17)

This is known as the equation of spherical waves.
Substituting w = ru in (1.13.17) leads to the one-dimensional wave equation

∂2w

∂t2
= c2

∂2w

∂r2
. (1.13.18)
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Every solution of this equation can be expressed as the sum of solutions of the form
F (r − ct) and G(r + ct) where F and G are arbitrary C2 functions of a single
variable. Obviously, solutions of (1.13.17) can be written as the sum of solutions of
the form

u(r, t) =
1

r
F (r − ct) and u(r, t) =

1

r
G(r + ct). (1.13.19)

These are known as spherical waves.
In general, the wave equation (1.13.9) can be expressed in spherical coordinates

in the x-space R
n in the form

∂2u

∂t2
= c2

[
1

rn−1

∂

∂r

(
rn−1 ∂u

∂r

)
+

1

r2
Δnu

]
, (1.13.20)

where Δn is a second-order partial differential operator involving derivatives with
respect to the angular coordinates.

According to usual definitions, a spherical wave is a solution of (1.13.20) which
depends only on r and t and does not depend on angular coordinates. Thus, the
equation of spherical waves is

∂2u

∂t2
= c2

[
1

rn−1

∂

∂r

(
rn−1 ∂u

∂r

)]
. (1.13.21)

We can apply the method of separation of variables to the wave equation (1.13.9)
by expressing a solution of the form u(x, t) = v(x)T (t). Substituting this separable
solution into (1.13.9) gives

1

v(x)

[
∂2v

∂x21
+

∂2v

∂x22
+ · · ·+ ∂2v

∂x2n

]
=

T̈ (t)

c2T (t)
= −λ, (1.13.22)

where −λ is a separation constant. This leads to the pair of equations

∂2v

∂x21
+

∂2v

∂x22
+ · · ·+ ∂2v

∂x2n
+ λv = 0, (1.13.23)

T̈ + λc2T = 0. (1.13.24)

Equation (1.13.23) is a famous equation of the elliptic type and is often known as the
reduced wave equation.

We consider the first important case λ = ω2(ω > 0). In this case, the general
solution of (1.13.24) is

T (t) = A cos(ωct) +B sin(ωct). (1.13.25)

The solutions of the reduced wave equation (1.13.23) can be obtained by further
separation of variables. We illustrate the method for equation (1.13.16) which takes
the form
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1

r2

[
∂

∂r

(
r2
∂v

∂r

)
+Δ3v

]
+ ω2v = 0, (1.13.26)

where

Δ3v ≡ 1

sinφ

∂

∂φ

(
sinφ

∂v

∂φ

)
+

1

sin2 φ

∂2v

∂θ2
. (1.13.27)

We seek separable solutions in the form

v(r, θ, φ) = R(r)Y (θ, φ). (1.13.28)

Substituting (1.13.28) into (1.13.26) gives

1
r2

d
dr (r

2 dR
dr ) + ω2R

R/r2
= −Δ3Y

Y
= μ, (1.13.29)

where μ is a separation constant, and the above equation becomes

Δ3Y + μY = 0, (1.13.30)

r2R′′ + 2rR′ +
(
ω2r2 − μ

)
R = 0. (1.13.31)

The partial differential equation (1.13.30) is considerably more difficult to solve.
It is useful to consider (θ, φ) as coordinates of a point on the surface of the unit
sphere S(0, 1) with the center at the origin of R3. Instead of finding all solutions
of (1.13.30), it is useful to determine only those solutions Y (θ, φ) which are defined
as C2 functions on the whole of S(0, 1). Such solutions are periodic in θ with period
2π, and at the poles of the sphere (that is, at the points where φ = 0 and φ = π) the
solutions tend to limits independent of θ. It can be shown (see Courant and Hilbert
1953, Vol. I, Chapter VII, §5) that equation (1.13.30) has nontrivial smooth solutions
satisfying these conditions only when μ is equal to one of the integral values μm =
m(m+ 1), m = 0, 1, 2, . . . . For each such value of μm, there are (2m+ 1) linearly
independent solutions of (1.13.30) denoted by

Y (k)
m (θ, φ), k = 1, 2, 3, . . . , (2m+ 1).

These solutions are known as the Laplace spherical harmonics.
For each μm, the radial equation (1.13.31) becomes

r2R′′ + 2rR′ +
{
ω2r2 −m(m+ 1)

}
R = 0. (1.13.32)

In terms of the new dependent variable w =
√
rR, equation (1.13.32) can be rewrit-

ten as

r2w′′ + rw′ +

[
ω2r2 −

(
m+

1

2

)2]
w = 0. (1.13.33)

This represents Bessel’s equation of the first kind of the order (m + 1
2 ) with ω as a

parameter, and has two linearly independent Bessel’s functions solutions
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Jm+ 1
2
(ωr) and J−(m+ 1

2 )
(ωr), (1.13.34)

where

Jν(x) =

∞∑
n=0

(−1)n
(x2 )

ν+2n

n!Γ (ν + n+ 1)
, (1.13.35)

with Γ representing the gamma function. The solutions (1.13.34) can be distin-
guished by their behavior at the origin, Jm+ 1

2
(ωr) behaves like rm+ 1

2 near r = 0,

whereas J−(m+ 1
2 )
(ωr) behaves like r−(m+ 1

2 ) near r = 0.
Consequently, for each m = 0, 1, 2, . . . , the radial equation (1.13.33) has two

linearly independent solutions,

1√
r
Jm+ 1

2
(ωr) and

1√
r
J−(m+ 1

2 )
(ωr). (1.13.36)

These solutions behave like rm and r−m−1, respectively, in the vicinity of r = 0.
Thus, the corresponding product solutions of the reduced wave equation (1.13.26)
are given by

1√
r
Jm+ 1

2
(ωr)Y (k)

m (θ, φ) and
1√
r
J−(m+ 1

2 )
(ωr)Y (k)

m (θ, φ), (1.13.37)

where m = 0, 1, 2, 3, . . . , and k = 1, 2, 3, . . . , (2m+ 1).
Thus, the method of separation of variables leads to the following solutions for

the three-dimensional wave equation:

1√
r

{
Jm+ 1

2
(ωr)

J−(m+ 1
2 )
(ωr)

}
Y (k)
m (θ, φ)

{
cos(ωct)
sin(ωct)

}
, (1.13.38)

where m = 0, 1, 2, . . . , and k = 1, 2, . . . , (2m+ 1). These solutions are oscillatory
in nature because of the harmonic dependence on time t.

On the other hand, nonoscillatory solutions of (1.13.16) correspond to the case
λ = −ω2 < 0 (ω > 0). Obviously, the two linearly independent solutions of the
time equation (1.13.24) are exp(ωct) and exp(−ωct), and the equations correspond-
ing to (1.13.26), (1.13.30), and (1.13.31) are found by replacing ω2 by −ω2. The
equation corresponding to (1.13.33) is

r2w′′ + rw′ −
[
ω2r2 +

(
m+

1

2

)2]
w = 0. (1.13.39)

This represents Bessel’s equation with purely imaginary argument and has two lin-
early independent Bessel’s functions solutions,

Im+ 1
2
(ωr) and I−(m+ 1

2 )
(ωr), (1.13.40)

where Iν(x) is the modified Bessel function of the first kind of order ν defined by
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Iν(x) =

∞∑
n=0

(x2 )
ν+2n

n!Γ (ν + n+ 1)
. (1.13.41)

We next consider the one-dimensional diffusion equation (1.6.36)–(1.6.38) to
establish an energy inequality.

Multiplying the diffusion equation (1.6.36) by u(x, t) and integrating with re-
spect to x over [0, �] gives

∫ �

0

(uut) dx = κ

∫ �

0

(uuxx) dx.

Integrating the right-hand side by parts yields
∫ �

0

(
1

2
u2

)
t

dx = [κuux]
�
0 − κ

∫ �

0

u2
x(x, t) dx

= −κ
∫ �

0

u2
x(x, t) dx, by (1.6.37ab). (1.13.42)

For mathematical reasons, we introduce another quantity E(t) by

E(t) =

∫ �

0

(
1

2
u2

)
dx, (1.13.43)

which may be called the energy at time t. Evidently, for κ > 0,

dE

dt
= −κ

∫ �

0

u2
x(x, t) dx ≤ 0. (1.13.44)

This result governing the energy is essentially a form of the entropy principle of
thermodynamics. It states that the energy E(t) is a decreasing function of time t.

Finally, integrating (1.13.44) with respect to time t over (t0, t) gives

E(t)− E(t0) = −κ
∫ �

0

∫ t

t0

u2
x(x, t) dx dt ≤ 0.

This means that ∫ �

0

u2(x, t) dx ≤
∫ �

0

u2(x, t0) dx. (1.13.45)

This may be referred to as the energy inequality.

Theorem 1.13.1 (Uniqueness). There exists a unique solution of the diffusion equa-
tion system (1.6.36)–(1.6.38).

Proof. Suppose that there are two distinct solutions u(x, t) and v(x, t) of the diffu-
sion equation system and w(x, t) = u(x, t)− v(x, t). It is easy to check that w(x, t)
satisfies the diffusion equation (1.6.36) with w(x, 0) = 0 and w(0, t) = 0 = w(�, t).
It then follows from (1.13.44) that E(t) ≤ 0. But, by definition, E(t) ≥ 0. Evidently,
E(t) ≡ 0 for t ≥ 0. This means that w(x, t) ≡ 0 for 0 ≤ x ≤ � and t ≥ 0. Thus,
u(x, t) = v(x, t). This proves the theorem.
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It follows from the derivation of the diffusion equation that heat is conducted
away from regions of high temperature. This suggests that a temperature attains its
maximum only initially or on boundaries. This is the essence and the origin of the
maximum principle, which states that the maximum value of the temperature occurs
either initially or on the boundaries.

We now prove the maximum principle for the one-dimensional diffusion equation
with the initial and boundary conditions

u(x, 0) = f(x), u(0, t) = f1(t), u(�, t) = f2(t),

and prove that a maximum of u(x, t) cannot occur at an interior point (x0, t0) of the
domain where 0 < x0 < �, 0 < t0 < T .

Theorem 1.13.2 (Maximum–Minimum Principle). If u(x, t) is continuous on the
closed rectangle D = {0 ≤ x ≤ �, 0 ≤ t ≤ T} and satisfies the diffusion equa-
tion (1.6.36) in D, then u(x, t) attains its maximum and minimum values on the
lower base t = 0 or on the vertical sides x = 0, x = � of D.

Proof. We first prove the maximum principle. The proof is by contradiction. Let M
be the maximum value of u in D. Contrary to the assertion of the theorem, assume
that the maximum value of u on the lower base and the vertical sides of D is M − ε,
where ε > 0. Suppose that u attains its maximum at a point (x0, t0) in D so that
u(x0, t0) = M . We must have 0 < x0 < � and t0 > 0. Consider the auxiliary
function

v(x, t) = u(x, t) +
ε

4�2
(x− x0)

2.

On the lower base and vertical sides of D,

v(x, t) ≤ M − ε+
ε

4
= M − 3ε

4
,

where v(x0, t0) = M . Thus, the maximum value of v in D is not attained on the
lower base and vertical sides of D. Let (x1, t1) be a point where v attains its max-
imum. We must have 0 < x1 < � and 0 < t1 < T . At (x1, t1), v must satisfy the
necessary condition for a maximum, that is, vt = 0 if t1 < T or vt = 0 if t1 = T ,
and vxx ≤ 0. Hence, at (x1, t1), vt − vxx ≥ 0.

On the other hand,

vt − vxx = ut − uxx − ε

2�2
< 0.

This is a contradiction and the maximum part is proved.
The minimum assertion becomes the maximum assertion when w = −u and w

attains a maximum where u has a minimum. Since w satisfies all assumptions of the
theorem, it must attain its maximum value on the lower base and vertical sides of D.
Consequently, u must attain its minimum value there.



1.13 Energy Integrals and Higher Dimensional Equations 109

Finally, we consider the n-dimensional diffusion equation system

ut = κ∇2
nu, x ∈ R

n, t > 0, (1.13.46)

u(x, 0) = f(x), u(x, t) → 0 as |x| → ∞, (1.13.47)

where

∇2
n ≡ ∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n
(1.13.48)

is the n-dimensional Laplacian and

x = (x1, x2, . . . , xn) ∈ R
n and |x| =

√
x21 + x22 + · · ·+ x2n.

Application of the n-dimensional Fourier transform gives the solution

u(x, t) =
1

(4πκt)n/2

∫ ∞

−∞
f(ξξξ) exp

(
−|x− ξξξ|2

4κt

)
dξξξ, (1.13.49)

where ξξξ = (ξ1, ξ2, . . . , ξn).

Example 1.13.1 (Transverse Vibration of a Thin Elastic Circular Membrane). The
transverse vibration of a thin elastic circular membrane of radius a stretched over the
rim is governed by the two-dimensional wave equation

utt = c2(uxx + uyy), (x, y) ∈ R
2, t > 0, (1.13.50)

where c2 is a constant.
In cylindrical polar coordinates, equation (1.13.50) is given by

utt = c2
(
urr +

1

r
ur +

1

r2
uθθ

)
, 0 < r < a, 0 < θ ≤ 2π, t > 0. (1.13.51)

For the membrane, the displacement vanishes along the rim, and hence, the
boundary condition is

u(a, θ) = 0. (1.13.52)

The initial conditions on the displacement and velocity are

u(r, θ, 0) = f(r, θ), ut(r, θ, 0) = g(r, θ). (1.13.53)

Using the separation of variables width u(r, θ, t) = R(r)Θ(θ)T (t) in (1.13.51)
gives

1

c2
RΘT ′′ =

(
R′′ +

R′

r

)
ΘT +

R

r2
Θ′′T, (1.13.54)

where the primes denote differentiation with respect to the argument. Dividing by
RΘT yields
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1

c2
T ′′

T
=

1

R

(
R′′ +

1

r
R′
)
+

Θ′′

r2Θ
= −k2, (1.13.55)

where −k2 is a separation constant.
Thus, equation (1.13.55) leads to

T ′′ + c2k2T = 0, (1.13.56)
1

R

(
R′′ +

1

r
R′
)
+

Θ′′

r2Θ
= −k2. (1.13.57)

Equation (1.13.57) can be further written as

r2

R

(
R′′ +

1

r
R′
)
+ k2r2 = −Θ′′

Θ
= α2, (1.13.58)

where α2 is a another separation constant.
Consequently, we obtain

r2R′′ + rR′ +
(
k2r2 − α2

)
R = 0, (1.13.59)

Θ′′ + α2Θ = 0. (1.13.60)

The general solutions of (1.13.56) and (1.13.60) are

T (t) = A cos(kct) +B sin(kct), (1.13.61)

Θ′′(θ) = C cosαθ +D sinαθ, (1.13.62)

where A, B, C, D are constants of integration.
Since the physical domain covers the entire circle, Θ and Θ′ must be periodic in

θ, and hence α must be an integer n so that Θ(θ) is a linear combination of cosnθ
and sinnθ. The radial equation (1.13.59) becomes

r2R′′ + rR′ +
(
k2r2 − n2

)
R = 0. (1.13.63)

If the displacement depends only on the radial coordinate r from the center of
the membrane and time t, then θ-dependence is absent, and hence, α = n = 0
and (1.13.63) reduces to the form

rR′′ +R′ + k2rR = 0, 0 ≤ r < a, (1.13.64)

with the boundary condition R(a) = 0, |R(0)| < ∞.
The general solution of (1.13.64) is

R(r) = C1J0(kr) + C2Y0(kr), (1.13.65)

where J0 and Y0 are Bessel functions of the first and second kinds of order zero. The
condition |R(0)| < ∞ requires C2 = 0. Since Y0 becomes unbounded at r = 0, the
boundary condition R(a) = 0 leads to the eigenvalue equation
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J0(ak) = 0, C1 �= 0, (1.13.66)

which has an infinite number of positive roots at akn = λn, n = 1, 2, 3, . . . , so that
the eigenvalues are given by

k2n =

(
λn

a

)2

, (n = 1, 2, 3, . . .). (1.13.67)

The corresponding eigenfunctions are

Rn(r) = C1nJ0

(
λnr

a

)
, (1.13.68)

with the eigenvalues k2n. The solutions are

un(r, t) =
[
an cos(cknt) + bn sin(cknt)

]
J0

(
λnr

a

)
, (1.13.69)

where an and bn are arbitrary constants. These solutions represent standing waves
with fixed shape Jn(knr) and amplitude Tn(t). Thus, these waves are similar to
those observed in the vibrating string problem where the zeros of the sine functions
are evenly spaced. However, the zeros of the Bessel functions are not evenly spaced,
and hence, the sound emitted from a drum is quite different from that of stringed
musical instruments, where the frequencies are integral multiples of the fundamental
frequency, and zeros of the solution are equally spaced. Indeed, the musical quality
of sound produced by stringed instruments is much more melodious than that of
drums.

According to the principle of superposition, the formal series solution is

u(r, t) =
∞∑

n=1

(an cos cknt+ bn sin cknt)Jn(rkn), (1.13.70)

where constants an and bn are determined by the initial conditions

f(r) = u(r, 0) =

∞∑
n=1

anJn(rkn), (1.13.71)

g(r) = ut(r, 0) =

∞∑
n=1

cknbnJ0(rkn). (1.13.72)

These are called the Fourier–Bessel series. In particular, if g(r) = 0, (1.13.72) is
satisfied when bn = 0, n = 1, 2, 3, . . . . In this case, the coefficients an are given by
the formula (1.12.31), that is,

an =
〈f(r), un(r)〉

‖un‖2
=

∫ a

0
rf(r)J0(rkn) dr∫ a

0
rJ2

0 (rkn) dr
, (1.13.73)

=
2

a2J2
1 (akn)

∫ a

0

rf(r)J0(rkn) dr. (1.13.74)

Thus, the problem is completely solved.
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Example 1.13.2 (Diffusion Equation in a Wedge-Shaped Region). The diffusion
equation in a wedged-shaped region is

ut = κ

(
urr +

1

r
ur +

1

r2
uθθ

)
, 0 ≤ r ≤ a, 0 ≤ θ ≤ α, (1.13.75)

where 0 ≤ α ≤ 2π.
With the insulated boundary, the normal derivative of u on the boundary must

vanish, that is,

ur(a, θ) = uθ(r, 0) = uθ(r, α) = 0. (1.13.76)

The initial condition is

u(r, θ, 0) = f(r, θ). (1.13.77)

Using the separation of variables, we write u(r, θ, t) = R(r)Θ(θ)T (t) so that
(1.13.75) leads to the following equations:

r2R′′ + rR′ +
(
k2r2 − ν2

)
R = 0, R′(a) = 0, (1.13.78)

Θ′′ + ν2Θ = 0, Θ′(0) = Θ′(α) = 0, (1.13.79)

T ′(t) + κk2T (t) = 0, t > 0. (1.13.80)

We also assume that R(r) is bounded at r = 0.
The equation (1.13.79) with Θ′(0) = 0 implies that

Θ(θ) = A cos(νθ), (1.13.81)

and the boundary condition at θ = α yields ν = nπ
α . This leads to the Fourier series

in θ, Bessel functions of order ν in r, and exponential functions in t. Consequently,
the eigenvalues for the Sturm–Liouville problem in r are

k2 =

(
λmn

a

)2

, (1.13.82)

and the corresponding eigenfunctions are

Rm(r) = BmJν

(
λmnr

a

)
, m = 1, 2, 3, . . . , (1.13.83)

where λmn are the positive roots of J ′
ν(x) = 0.

For n = 0, we include the constant eigenfunction 1 corresponding to the eigen-
value k = 0 in the solution. Consequently, the general solution is

u(r, θ, t) = a00 +

∞∑
n=0

∞∑
m=1

anmJν

(
λmnr

a

)
cos

(
nπθ

α

)
exp

(
−κt

a2
λ2
mn

)
.

(1.13.84)
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The initial condition (1.13.77) leads to the result

f(r, θ) = a00 +
∞∑

n=0

∞∑
m=1

anmJν

(
rλmn

a

)
cos

(
nπθ

α

)
. (1.13.85)

This Fourier–Bessel double series expansion allows us to find the coefficients

a00 =
2

αa2

∫ a

0

∫ α

0

f(r, θ)r dr dθ, (1.13.86)

a0m =
2λ2

m0

αa2λ2
m0J

2
0 (λm0)

∫ a

0

∫ α

0

f(r, θ)J0

(
rλm0

a

)
r dr dθ, (1.13.87)

and for n, m ≥ 1

anm =
4λ2

nm(λ2
nm − ν2)−1

αa2J2
ν (λnm)

∫ a

0

∫ α

0

f(r, θ)Jν

(
rλnm

a

)
cos

(
nπθ

α

)
r dr dθ.

(1.13.88)

In particular, we consider the case of α = π
2 and the initial temperature

u(r, θ, 0) = f(r, θ) = r2 cos 2θ.

Consequently,

r2 cos 2θ = a00 +
∞∑

n=0

∞∑
m=1

anmJν

(
λnmr

a

)
cos 2nθ, (1.13.89)

where ν = nπ
α = 2n. The left-hand side of (1.13.89) involves cos 2nθ only for

n = 1. Clearly, the orthogonality relations for cos 2nθ in [0, π2 ] suggest that only the
terms with n = 1 on the right-hand side will be nonzero. We cancel the cos 2nθ from
both sides of (1.13.89) to obtain

r2 =
∞∑

m=1

amJ2

(
λmr

a

)
, (1.13.90)

where a1m = am and λm1 = λm. It follows from (1.13.90) that

am =
2λ2

m

a2(λ2
m − 4)J2

2 (λm)

∫ a

0

r3J2

(
λmr

a

)
dr, (1.13.91)

where the integral on the right-hand side can be exactly evaluated so that
∫ a

0

r3J2

(
λmr

a

)
dr =

(
a

λm

)4 ∫ λm

0

x3J2(x) dx =

(
a

λm

)4

λ3
mJ3(λm).

(1.13.92)

Consequently, the final solution is

u(r, θ, t) = 2a2 cos 2θ

∞∑
m=1

λmJ3(λm)

(λ2
m − 4)J2

2 (λm)
J2

(
λmr

a

)
exp

(
−κλ2

mt

a2

)
.

(1.13.93)
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1.14 Fractional Partial Differential Equations

(a) Fractional Diffusion Equation

The fractional diffusion equation is given by

∂αu

∂tα
= κ

∂2u

∂x2
, x ∈ R, t > 0, (1.14.1)

with the boundary and initial conditions

u(x, t) → 0 as |x| → ∞, (1.14.2)[
0
Dα−1

t u(x, t)
]
t=0

= f(x) for x ∈ R, (1.14.3)

where κ is a diffusivity constant and 0 < α ≤ 1.
Application of the Fourier transform to (1.14.1) with respect to x and using the

boundary condition (1.14.2) yield

0D
α
t ũ(k, t) = −κk2ũ, (1.14.4)[

0
Dα−1

t ũ(k, t)
]
t=0

= f̃(k), (1.14.5)

where ũ(k, t) is the Fourier transform of u(x, t) defined by (1.7.1).
The Laplace transform solution of (1.14.4) and (1.14.5) yields

˜̄u(k, s) =
f̃(k)

(sα + κk2)
. (1.14.6)

The inverse Laplace transform of (1.14.6) gives

ũ(k, t) = f̃(k)tα−1Eα,α

(
−κk2tα

)
, (1.14.7)

where Eα,β is the Mittag-Leffler function defined by

Eα,β(z) =

∞∑
m=0

zm

Γ (αm+ β)
, α > 0, β > 0. (1.14.8)

Finally, the inverse Fourier transform leads to the solution

u(x, t) =

∫ ∞

−∞
G(x− ξ, t)f(ξ) dξ, (1.14.9)

where

G(x, t) =
1

π

∫ ∞

−∞
tα−1Eα,α

(
−κk2tα

)
cos kx dk. (1.14.10)

This integral can be evaluated by using the Laplace transform of G(x, t) as
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G(x, s) =
1

π

∫ ∞

−∞

cos kx dk

sα + κk2
=

1√
4κ

s−α/2 exp

[
− |x|√

κ
sα/2

]
, (1.14.11)

where

L
[
tmα+β−1E

(m)
α,β

(
±atα

)]
=

m!sα−β

(sα ∓ a)m+1
, (1.14.12)

and

E
(m)
α,β (z) =

dm

dzm
Eα,β(z). (1.14.13)

The inverse Laplace transform of (1.14.11) gives the explicit solution

G(x, t) =
1√
4κ

t
α
2 −1W

(
−ξ,−α

2
,
α

2

)
, (1.14.14)

where ξ = |x|√
κtα/2 , and W (z, α, β) is the Wright function (see Erdélyi 1955, for-

mula 18.1 (27)) defined by

W (z, α, β) =

∞∑
n=0

zn

n!Γ (αn+ β)
. (1.14.15)

It is important to note that when α = 1, the initial-value problem (1.14.1)–
(1.14.3) reduces to the classical diffusion problem, and solution (1.14.9) reduces
to the classical solution (1.7.63) because

G(x, t) =
1√
4κt

W

(
− x√

κt
,−1

2
,
1

2

)
=

1√
4πκt

exp

(
− x2

4κt

)
. (1.14.16)

The fractional diffusion equation (1.14.1) has also been solved by other au-
thors including Schneider and Wyss (1989), Mainardi (1994, 1995), Debnath (2003a,
2003b), and Nigmatullin (1986) with a physical realistic initial condition

u(x, 0) = f(x), x ∈ R. (1.14.17)

The solutions obtained by these authors are in total agreement with (1.14.9).
It is noted that the order α of the derivative with respect to time t in equa-

tion (1.14.1) can be of arbitrary real order including α = 2 so that it may be called
the fractional diffusion–wave equation. For α = 2, it becomes the classical wave
equation. Equation (1.14.1) with 1 < α ≤ 2 will be solved next in some detail.

(b) Fractional Nonhomogeneous Wave Equation

The fractional nonhomogeneous wave equation is given by

∂αu

∂tα
− c2

∂2u

∂x2
= q(x, t), x ∈ R, t > 0 (1.14.18)
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with the initial condition

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R, (1.14.19)

where c is a constant and 1 < α ≤ 2.
Application of the joint Laplace transform with respect to t and the Fourier trans-

form with respect to x gives the transform solution

˜̄u(k, s) =
f̃(k)sα−1

sα + c2k2
+

g̃(k)sα−2

sα + c2k2
+

˜̄q(k, s)

sα + c2k2
, (1.14.20)

where k is the Fourier transform variable and s is the Laplace transform variable.
The inverse Laplace transform produces the following result:

ũ(k, t) = f̃(k)L−1

{
sα−1

sα + c2k2

}
+ g̃(k)L−1

{
sα−2

sα + c2k2

}

+ L−1

{
˜̄q(k, s)

sα + c2k2

}
, (1.14.21)

which, by (1.14.12), is

= f̃(k)Eα,1

(
−c2k2tα

)
+ g̃(k)tEα,2

(
−c2k2tα

)

+

∫ t

0

q̃(k, t− τ)τα−1Eα,α

(
−c2k2τα

)
dτ. (1.14.22)

Finally, the inverse Fourier transform gives the formal solution

u(x, t) =
1√
2π

∫ ∞

−∞
f̃(k)Eα,1

(
−c2k2tα

)
eikx dk

+
1√
2π

∫ ∞

−∞
tg̃(k)Eα,2

(
−c2k2τα

)
eikx dk

+
1√
2π

∫ t

0

τα−1 dτ

∫ ∞

−∞
q̃(k, t− τ)Eα,α

(
−c2k2τα

)
eikx dk.

(1.14.23)

In particular, when α = 2, the fractional wave equation (1.14.18) reduces to the
classical wave equation (1.9.10). In this particular case, we use

E2,1

(
−c2k2t2

)
= cosh(ickt) = cos(ckt), (1.14.24)

tE2,2

(
−c2k2t2

)
= t · sinh(ickt)

ickt
=

1

ck
sin ckt. (1.14.25)

Consequently, solution (1.14.23) reduces to solution (1.9.15) for α = 2

u(x, t) =
1√
2π

∫ ∞

−∞
f̃(k) cos(ckt)eikx dk +

1√
2π

∫ ∞

−∞
g̃(k)

sin(ckt)

ck
eikx dk

+
1√
2πc

∫ t

0

dτ

∫ ∞

−∞
q̃(k, τ)

sin ck(t− τ)

k
eikx dk (1.14.26)
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=
1

2

[
f(x− ct) + f(x+ ct)

]
+

1

2c

∫ x+ct

x−ct

g(ξ) dξ

+
1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)

q(ξ, τ) dξ. (1.14.27)

We now derive the solution of the inhomogeneous fractional diffusion equation
(1.14.18) with c2 = κ and g(x) = 0. In this case, the joint transform solution
(1.14.20) becomes

˜̄u(k, s) =
f̃(k)sα−1

(sα + κk2)
+

˜̄q(k, s)

(sα + κk2)
(1.14.28)

which is inverted by (1.14.12) to obtain ũ(k, t) in the form

= f̃(k)Eα,1

(
−κk2tα

)
+

∫ t

0

(t− τ)α−1Eα,α

{
−κk2(t− τ)α

}
q̃(k, τ) dτ.

(1.14.29)

Finally, the inverse Fourier transform gives the exact solution

u(x, t) =
1√
2π

∫ ∞

−∞
f̃(k)Eα,1

(
−κk2tα

)
eikx dk

+
1√
2π

∫ t

0

dτ

∫ ∞

−∞
(t− τ)α−1Eα,α

{
−κk2(t− τ)α

}
q̃(k, τ)eikx dk.

(1.14.30)

Application of the convolution theorem of the Fourier transform gives the final
solution in the form

u(x, t) =

∫ ∞

−∞
G1(x− ξ, t)f(ξ) dξ

+

∫ t

0

(t− τ)α−1 dτ

∫ ∞

−∞
G2(x− ξ, t− τ)q(ξ, τ) dξ, (1.14.31)

where

G1(x, t) =
1

2π

∫ ∞

−∞
eikxEα,1

(
−κk2tα

)
dk (1.14.32)

and

G2(x, t) =
1

2π

∫ ∞

−∞
eikxEα,α

(
−κk2tα

)
dk. (1.14.33)

In particular, when α = 1, the classical solution of the nonhomogeneous diffu-
sion equation (1.14.18) is obtained in the form
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u(x, t) =

∫ ∞

−∞
G1(x− ξ, t)f(ξ) dξ

+

∫ t

0

dτ

∫ ∞

−∞
G2(x− ξ, t− τ)q(ξ, τ) dξ, (1.14.34)

where

G1(x, t) = G2(x, t) =
1√
4πκt

exp

(
− x2

4κt

)
. (1.14.35)

In the case of classical homogeneous diffusion equation (1.14.18), solutions (1.14.30)
and (1.14.34) are in perfect agreement with those of Mainardi (1996a, 1996b), who
obtained the solution by using the Laplace transform method together with compli-
cated evaluation of the Laplace inversion integral and the auxiliary functionM(z, α).
However, Mainardi (1996a, 1996b) obtained the solution in terms of M(z, α2 ) and
discussed the nature of the solution for different values of α. He made some com-
parison between the ordinary diffusion (α = 1) and fractional diffusion (α = 1

2 and
α = 2

3 ). For cases α = 4
3 and α = 3

2 , the solution exhibits a striking difference from
ordinary diffusion with a transition from the Gaussian function centered at z = 0 (or-
dinary diffusion) to the Dirac delta function centered at z = 1 (wave propagation).
This indicates a possibility of an intermediate process between diffusion and wave
propagation. A special difference is observed between the solutions of the fractional
diffusion equation (0 < α ≤ 1) and the fractional wave equation (1 < α ≤ 2). In
addition, the solution exhibits a slow process for the case with 0 < α ≤ 1 and an
intermediate process for 1 < α ≤ 2.

(c) Fractional-Order Diffusion Equation in Semi-Infinite Medium

We consider the fractional-order diffusion equation in a semi-infinite medium
x > 0, when the boundary is kept at a temperature u0f(t) and the initial temperature
is zero in the whole medium. Thus, the initial boundary-value problem is governed
by the equation

∂αu

∂tα
= κ

∂2u

∂x2
, 0 < x < ∞, t > 0, (1.14.36)

with

u(x, t = 0) = 0, x > 0, (1.14.37)

u(x = 0, t) = u0f(t), t > 0 and u(x, t) → 0 as x → ∞. (1.14.38)

Application of the Laplace transform with respect to t gives

d2ū

dx2
−
(
sα

κ

)
ū(x, s) = 0, x > 0, (1.14.39)

ū(x = 0, s) = u0f̄(s), ū(x, s) → 0 as x → ∞. (1.14.40)

Evidently, the solution of this transformed boundary-value problem is
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ū(x, s) = u0f̄(s) exp(−ax), (1.14.41)

where a = (sα/κ)
1
2 . Thus, the solution is given by

u(x, t) = u0

∫ t

0

f(t− τ)g(x, τ) dτ = u0f(t) ∗ g(x, t), (1.14.42)

where

g(x, t) = L−1
{
exp(−ax)

}
.

In this case, α = 1 and f(t) = 1, and the solution (1.14.41) becomes

ū(x, s) =
u0

s
exp

(
−x

√
s

κ

)
, (1.14.43)

which yields the classical solution in terms of the complementary error function (see
Debnath 1995)

u(x, t) = u0erfc

(
x

2
√
κt

)
. (1.14.44)

In the classical case (α = 1), the more general solution is given by

u(x, t) = u0

∫ t

0

f(t− τ)g(x, τ) dτ = u0f(t) ∗ g(x, t), (1.14.45)

where

g(x, t) = L−1

{
exp

(
−x

√
s

κ

)}
=

x

2
√
πκt3

exp

(
− x2

4κt

)
. (1.14.46)

(d) The Fractional Stokes and Rayleigh Problems in Fluid Dynamics

The classical Stokes problem (see Debnath 1995) deals with the unsteady bound-
ary layer flows induced in a semi-infinite viscous fluid bounded by an infinite hor-
izontal disk at z = 0 due to nontorsional oscillations of the disk in its own plane
with a given frequency ω. When ω = 0, the Stokes problem reduces to the classical
Rayleigh problem where the unsteady boundary layer flow is generated in the fluid
from rest by moving the disk impulsively in its own plane with constant velocity U .

We consider the unsteady fractional boundary layer equation for the fluid velocity
u(z, t)

∂αu

∂tα
= ν

∂2u

∂z2
, 0 < z < ∞, t > 0, (1.14.47)

with the given boundary and initial conditions

u(0, t) = Uf(t), u(z, t) → 0 as z → ∞, t > 0, (1.14.48)
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u(z, 0) = 0 for all z > 0, (1.14.49)

where ν is the kinematic viscosity, U is a constant velocity, and f(t) is an arbitrary
function of time t.

Application of the Laplace transform with respect to t gives

sαū(z, s) = ν
d2ū

dz2
, 0 < z < ∞, (1.14.50)

ū(0, s) = U f̄(s), ū(z, s) → 0 as z → ∞. (1.14.51)

Using the Fourier sine transform (see Debnath 1995) with respect to z yields

Us(k, s) =

(√
2

π
νU

)
kf̄(s)

(sα + νk2)
. (1.14.52)

The inverse Fourier sine transform of (1.14.52) leads to the solution

ū(z, s) =

(
2

π
νU

)
f̄(s)

∫ ∞

0

k sin kz

(sα + νk2)
dk, (1.14.53)

and the inverse Laplace transform gives the solution for the velocity

u(z, t) =

(
2

π
νU

)∫ ∞

0

k sin kz dk

∫ t

0

f(t− τ)τα−1Eα,α

(
−νk2τα

)
dτ.

(1.14.54)

When f(t) = exp(iωt), the solution of the fractional Stokes problem is

u(z, t) =

(
2νU

π

)
eiωt

∫ ∞

0

k sin kz dk

∫ t

0

e−iωττα−1Eα,α

(
−νk2τα

)
dτ.

(1.14.55)

When α = 1, solution (1.14.55) reduces to the classical Stokes solution

u(z, t) =

(
2νU

π

)∫ ∞

0

(
1− e−νtk2) k sin kz

(iω + νk2)
dk. (1.14.56)

For the fractional Rayleigh problem, f(t) = 1 and the solution follows from
(1.14.54) in the form

u(z, t) =

(
2νU

π

)∫ ∞

0

k sin kz dk

∫ t

0

τα−1Eα,α

(
−νk2τα

)
dτ. (1.14.57)

This solution reduces to the classical Rayleigh solution when α = 1 as
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u(z, t) =

(
2νU

π

)∫ ∞

0

k sin kz dk

∫ t

0

E1,1

(
−ντk2

)
dτ

=

(
2νU

π

)∫ ∞

0

k sin kz dk

∫ t

0

exp
(
−ντk2

)
dτ

=

(
2U

π

)∫ ∞

0

(
1− e−νtk2) sin kz

k
dk,

which, by (2.10.10) of Debnath (1995),

=

(
2U

π

)[
π

2
− π

2
erf

(
z

2
√
νt

)]
= Uerfc

(
z

2
√
νt

)
. (1.14.58)

The above analysis is in full agreement with the classical solutions of the Stokes
and Rayleigh problems (see Debnath 1995).

(e) The Fractional Unsteady Couette Flow

We consider the unsteady viscous fluid flow between the plate at z = 0 at rest
and the plate z = h in motion parallel to itself with a variable velocity U(t) in the
x-direction. The fluid velocity u(z, t) satisfies the fractional equation of motion

∂αu

∂tα
= P (t) + ν

∂2u

∂z2
, 0 ≤ z ≤ h, t > 0, (1.14.59)

with the boundary and initial conditions

u(0, t) = 0 and u(h, t) = U(t), t > 0, (1.14.60)

u(z, t) = 0 at t ≤ 0 for 0 ≤ z ≤ h, (1.14.61)

where − 1
ρpx = P (t) and ν is the kinematic viscosity of the fluid.

We apply the joint Laplace transform with respect to t and the finite Fourier sine
transform with respect to z defined by

¯̃us(n, s) =

∫ ∞

0

e−st dt

∫ h

0

u(z, t) sin

(
nπz

h

)
dz (1.14.62)

to the system (1.14.59)–(1.14.61) so that the transform solution is

¯̃us(n, s) =
P (s) 1a [1− (−1)n]

(sα + νa2)
+

νa(−1)n+1U(s)

(sα + νa2)
, (1.14.63)

where a = (nπh ) and n is the finite Fourier sine transform variable.
Thus, the inverse Laplace transform yields

ũs(n, t) =
1

a

[
1− (−1)n

] ∫ t

0

P (t− τ)τα−1Eα,α

(
−νa2τα

)
dτ

+ νa(−1)n+1

∫ t

0

U(t− τ)τα−1Eα,α

(
−νa2τα

)
dτ. (1.14.64)
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Finally, the inverse finite Fourier sine transform leads to the solution

u(z, t) =
2

h

∞∑
n=1

ũs(n, t) sin

(
nπz

h

)
. (1.14.65)

If, in particular, when α = 1, P (t) = const., and U(t) = const., then solu-
tion (1.14.65) reduces to the solution of the generalized Couette flow (see p. 277
Debnath 1995).

(f) Fractional Axisymmetric Wave–Diffusion Equation

The fractional axisymmetric equation in an infinite domain

∂αu

∂tα
= a

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, 0 < r < ∞, t > 0, (1.14.66)

is called the diffusion or wave equation accordingly as a = κ or a = c2.
For the fractional diffusion equation, we prescribe the initial condition

u(r, 0) = f(r), 0 < r < ∞. (1.14.67)

Application of the joint Laplace transform with respect to t and the Hankel transform
of zero order (see Debnath 1995) with respect to r to (1.14.66), (1.14.67) gives the
transform solution

¯̃u(k, s) =
sα−1f̃(k)

(sα + κk2)
, (1.14.68)

where k, s are the Hankel and Laplace transform variables, respectively.
The joint inverse transform leads to the solution

u(r, t) =

∫ ∞

0

kJ0(kr)f̃(k)Eα,1

(
−κk2tα

)
dk, (1.14.69)

where J0(kr) is the Bessel function of the first kind of order zero and f̃(k) is the
Hankel transform of f(r).

When α = 1, solution (1.14.69) reduces to the classical solution (1.10.22).
On the other hand, we can solve the wave equation (1.14.66) with a = c2 and the

initial conditions

u(r, 0) = f(r), ut(r, 0) = g(r) for0 < r < ∞, (1.14.70)

provided the Hankel transforms of f(r) and g(r) exist.
Application of the joint Laplace and Hankel transform leads to the transform

solution

¯̃u(k, s) =
sα−1f̃(k)

(sα + c2k2)
+

sα−2g̃(k)

(sα + c2k2)
. (1.14.71)
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The joint inverse transformation gives the solution

u(r, t) =

∫ ∞

0

kJ0(k, r)f̃(k)Eα,1

(
−c2k2tα

)
dk

+

∫ ∞

0

kJ0(k, r)g̃(k)tEα,2

(
−c2k2tα

)
dk. (1.14.72)

When α = 2, (1.14.72) reduces to the classical solution (1.10.12).
In a finite domain 0 ≤ r ≤ a, the fractional diffusion equation (1.14.66) can be

solved by using the joint Laplace and finite Hankel transform with the boundary and
initial data

u(r, t) = f(t) on r = a, t > 0, (1.14.73)

u(r, 0) = 0 for all r in (0, a). (1.14.74)

Application of the joint Laplace and finite Hankel transform of zero order (see
pp. 317, 318, Debnath 1995) yields the solution

u(r, t) =
2

a2

∞∑
i=1

ũ(ki, t)
J0(rki)

J2
1 (aki)

, (1.14.75)

where

ũ(ki, t) = (aκki)J1(aki)

∫ t

0

f(t− τ)τα−1Eα,α

(
−κk2i τα

)
dτ. (1.14.76)

When α = 1, (1.14.75) reduces to (11.4.7) obtained by Debnath (1995).
Similarly, the fractional wave equation (1.14.66) with a = c2 in a finite domain

0 ≤ r ≤ a with the boundary and initial conditions

u(r, t) = 0 on r = a, t > 0, (1.14.77)

u(r, 0) = f(r) and ut(r, 0) = g(r) for 0 < r < a, (1.14.78)

can be solved by means of the joint Laplace and finite Hankel transforms.
The solution of this problem is

u(r, t) =
2

a2

∞∑
i=1

ũ(ki, t)
J0(rki)

J2
1 (aki)

, (1.14.79)

where

ũ(ki, t) = f̃(ki)Eα,1

(
−c2k2i tα

)
+ g̃(ki)tEα,2

(
−c2k2i tα

)
. (1.14.80)

When α = 2, solution (1.14.79) reduces to the solution (11.4.26) obtained by Deb-
nath (1995).
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(g) The Fractional Schrödinger Equation in Quantum Mechanics

The one-dimensional fractional Schrödinger equation for a free particle of mass
m (see (1.7.71)) is

i�
∂αψ

∂tα
= − �

2

2m

∂2ψ

∂x2
, −∞ < x < ∞, t > 0, (1.14.81)

ψ(x, 0) = ψ0(x), −∞ < x < ∞, (1.14.82)

ψ(x, t) → 0 as |x| → ∞, (1.14.83)

where ψ(x, t) is the wave function, h = 2π� = 6.625 × 10−27 erg sec = 4.14 ×
10−21 MeV sec is the Planck constant, and ψ0(x) is an arbitrary function.

Application of the joint Laplace and Fourier transform to (1.14.81)–(1.14.83)
gives the solution in the transform space in the form

ψ̃(k, s) =
sα−1ψ̃0(k)

sα + ak2

(
a =

i�

2m

)
, (1.14.84)

where k, s represent the Fourier and the Laplace transform variables.
The use of the joint inverse transform yields the solution

ψ(x, t) =
1√
2π

∫ ∞

−∞
eikxψ̃0(k)Eα,1

(
−ak2tα

)
dk (1.14.85)

= F−1
{
ψ̃0(k)Eα,1

(
−ak2tα

)}
, (1.14.86)

which is, by the Convolution Theorem 1.7.1 of the Fourier transform,

=

∫ ∞

−∞
G(x− ξ, t)ψ0(ξ) dξ, (1.14.87)

where

G(x, t) =
1√
2π

F−1
{
Eα,1

(
−ak2tα

)}

=
1

2π

∫ ∞

−∞
eikxEα,1

(
−ak2tα

)
dk. (1.14.88)

When α = 1, solution (1.14.87) becomes

ψ(x, t) =

∫ ∞

−∞
G(x− ξ, t)ψ0(ξ) dξ, (1.14.89)

where Green’s function G(x, t) is given by

G(x, t) =
1

2π

∫ ∞

−∞
eikxE1,1

(
−ak2t

)
dk

=
1

2π

∫ ∞

−∞
exp

(
ikx− atk2

)
dk

=
1√
4πat

exp

(
− x2

4at

)
. (1.14.90)

This solution (1.14.89) is in perfect agreement with the classical solution obtained
by Debnath (1995).
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1.15 Exercises

1. Classify each of the partial differential equations below as either hyperbolic,
parabolic, or elliptic, determine the characteristics, and transform the equations
to canonical form:

(a) 4uxx + 5uxy + uyy + ux + uy = 2, (b) 2uxx − 3uxy + uyy = y,
(c) yuxx + (x+ y)uxy + xuyy = 0, (d) uxx + yuyy = 0,
(e) yuxx − 2uxy + exuyy + x2ux − u = 0, (f) uxx + xuyy = 0,
(g) x2uxx + 4yuxy + uyy + 2ux = 0, (h) 3yuxx − xuyy = 0,
(i) uxx + 2xuxy + a2uyy + u = 5, (j) y2uxx + x2uyy = 0.

2. Determine the nature of the following equations and reduce them to canonical
form:

(a) x2uxx + 4xyuxy + y2uyy = 0, (b) uxx − xuyy = 0,
(c) uxx − 2uxy + 3uyy + 24uy + 5u = 0, (d) uxx + sech4xuyy = 0,
(e) uxx + 6yuxy + 9y2uyy + 4u = 0, (f) uxx − sech4xuyy = 0,
(g) uxx + 2cosecyuxy + cosec2yuyy = 0, (h) uxx − 5uxy + 5uyy = 0.

3. For what values ofm is uxx−mxuxy+4x2uyy = 0 (a) hyperbolic, (b) parabolic,
or (c) elliptic? For m = 0, reduce to canonical form.

4. (a) Show that the nonlinear equation

u2uxx + 2uxuyuxy − u2uyy = 0

is hyperbolic for every solution u(x, y).
(b) Show that the nonlinear equation for the velocity potential u(x, y)

(
1− u2

x

)
uxx − 2uxuyuxy +

(
1− u2

y

)
uyy = 0

in certain kinds of compressible fluid flow is (i) elliptic, (ii) parabolic, or
(iii) hyperbolic for those solutions such that |∇u| < 1, |∇u| = 1, or |∇u| > 1.

5. Solve Example 1.6.2 with the boundary conditions

ux(0, t) = 0 = ux(�, t) for t > 0,

leaving the initial condition (1.6.38) unchanged.
6. Use the separation of variables to solve the Laplace equation

uxx + uyy = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b,

with u(0, y) = 0 = u(a, y) for 0 ≤ y ≤ b, and u(x, 0) = f(x) for 0 < x < a;
u(x, b) = 0 for 0 ≤ x ≤ a.

7. Show that the eigenvalues of the eigenvalue problem

utt + c2uxxxx = 0, 0 < x < �, t > 0,

u(0, t) = 0 = u(�, t) for t ≥ 0,

ux(0, t) = 0 = ux(�, t) for t ≥ 0,
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satisfy the equation

cos(λ�) cosh(λ�) = 1.

8. Solve the problem in Exercise 4 with the boundary conditions

u(x, 0) = f(x), ut(x, 0) = g(x) for 0 ≤ x ≤ �,

u(0, t) = 0 = u(�, t) for t > 0,

uxx(0, t) = 0 = uxx(�, t) for t > 0.

9. Solve Example 1.6.2 with the initial data

f(x) =

{
x if 0 ≤ x ≤ �

2 ,

�− x if �
2 ≤ x ≤ �.

10. Solve Example 1.6.1 with the initial data

(i) f(x) =

{
hx
a if 0 ≤ x ≤ a,

h(�− x)/(�− a) if a ≤ x ≤ �,
and g(x) = 0.

(ii) f(x) = 0 and g(x) =

{
u0x
a if 0 ≤ x ≤ a,

u0(�− x)/(�− a) if a ≤ x ≤ �.

11. Solve the biharmonic wave equation

utt + uxxxx = 0, −∞ < x < ∞, t > 0,

u(x, 0) = f(x), ut(x, 0) = 0 for −∞ < x < ∞.

12. Find the solution of the dissipative wave equation

utt − c2uxx + αut = 0, −∞ < x < ∞, t > 0,

u(x, 0) = f(x),

(
∂u

∂t

)
t=0

= g(x) for −∞ < x < ∞,

where α > 0 is the dissipation parameter.
13. Solve the Cauchy problem for the linear Klein–Gordon equation

utt − c2uxx + a2u = 0, −∞ < x < ∞, t > 0,

u(x, 0) = f(x),

(
∂u

∂t

)
t=0

= g(x) for −∞ < x < ∞.

14. Solve the telegraph equation

utt − c2uxx + ut − aux = 0, −∞ < x < ∞, t > 0,

u(x, 0) = f(x),

(
∂u

∂t

)
t=0

= g(x) for −∞ < x < ∞.
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Show that the solution is unstable when c2 < a2. If c2 > a2, show that the
bounded integral solution is given by

u(x, t) =
1√
2π

∫ ∞

−∞
A(k) exp

[
−k2

(
c2 − a2

)
t+ ik(x+ at)

]
dk,

where A(k) is given in terms of the transformed functions of the initial data.
Hence, deduce the asymptotic solution, as t → ∞, in the form

u(x, t) = A(0)

√
π

2(c2 − a2)t
exp

[
− (x+ at)2

4(c2 − a2)t

]
.

15. The transverse vibration of an infinite elastic beam of mass m per unit length
and bending stiffness EI is governed by

utt + a2uxxxx = 0, a2 =
EI

m
, −∞ < x < ∞, t > 0.

Solve this equation subject to the boundary and initial data

u(0, t) = 0 for all t > 0,

u(x, 0) = φ(x), and ut(x, 0) = ψ′′(x) for 0 < x < ∞.

Show that the Fourier transform solution is

U(k, t) = Φ(k) cos
(
atk2

)
−
(
1

a

)
Ψ(k) sin

(
atk2

)
.

Find the integral solution for u(x, t).
16. Solve the Lamb (1904) problem in geophysics that satisfies the Helmholtz

equation in an infinite elastic half-space

uxx + uzz +
ω2

c22
u = 0, −∞ < x < ∞, z > 0,

where ω is the frequency and c2 is the shear wave speed.
At the surface of the half-space (z = 0), the boundary condition relating the
surface stress to the impulsive point load distribution is given by

μ
∂u

∂z
= −Pδ(x) at z = 0,

where μ is one of the Lamé constants, P is a constant, and

u(x, z) → 0 as z → ∞ for −∞ < x < ∞.

Show that the solution in terms of polar coordinates is

u(x, z) =
P

2iμ
H

(2)
0

(
ωr

c2

)

∼ P

2iμ

(
2c2
πωr

) 1
2

exp

(
πi

4
− iωr

c2

)
for ωr  c2.
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17. Find the solution of the Cauchy–Poisson problem (Debnath 1994, p. 83) in
inviscid water of infinite depth which is governed by

φxx + φzz = 0, −∞ < x < ∞,−∞ < z ≤ 0, t > 0,

φz − ηt = 0,

φt + gη = 0

}
on z = 0, t > 0,

φz → 0 as z → −∞.

φ(x, 0, 0) = 0, and η(x, 0) = Pδ(x),

where φ = φ(x, z, t) is the velocity potential, η(x, t) is the free surface eleva-
tion, and P is a constant.
Derive the asymptotic solution for the free surface elevation as t → ∞.

18. Obtain the solutions for the velocity potential φ(x, z, t) and the free surface
elevation η(x, t) involved in the two-dimensional surface waves in water of
finite (or infinite) depth h. The governing equation, boundary, and free surface
conditions and initial conditions (see Debnath 1994, p. 92) are

φxx + φzz = 0, −h ≤ z ≤ 0,−∞ < x < ∞, t > 0,

φt + gη = −P
ρ p(x) exp(iωt),

φz − ηt = 0

}
z = 0, t > 0,

φ(x, z, 0) = 0 = η(x, 0) for all x and z.

19. Solve the steady-state surface wave problem (Debnath 1994, p. 47) on a run-
ning stream of infinite depth due to an external steady pressure applied to the
free surface. The governing equation and the free surface conditions are

φxx + φzz = 0, −∞ < x < ∞,−∞ < z < 0, t > 0,

φx + Uφx + gη = −P
ρ δ(x) exp(εt),

ηt + Uηx = φz

}
on z = 0 (ε > 0),

φz → 0 as z → −∞.

where U is the stream velocity, φ(x, z, t) is the velocity potential, and η(x, t)
is the free surface elevation.

20. Apply the Fourier transform to solve the initial-value problem for the dissipa-
tive wave equation

utt = c2uxx + αuxxt, −∞ < x < ∞, t > 0,

u(x, 0) = f(x), ut(x, 0) = αf ′′(x) for −∞ < x < ∞,

where α is a positive constant.
21. Use the Fourier transform to solve the boundary-value problem

uxx + uyy = −x exp
(
−x2

)
, −∞ < x < ∞, 0 < y < ∞,
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u(x, 0) = 0, for −∞ < x < ∞, u and its derivative vanish as y → ∞.
Show that

u(x, y) =
1√
4π

∫ ∞

0

[
1− exp(−ky)

] sin kx
k

exp

(
−k2

4

)
dk.

22. Solve the initial-value problem (Debnath 1994, p. 115) for the two-dimensional
surface waves at the free surface of a running stream of velocity U . The prob-
lem satisfies the following equation, boundary, and initial conditions:

φxx + φzz = 0, −∞ < x < ∞,−h ≤ z ≤ 0, t > 0,

φx + Uφx + gη = −P
ρ δ(x) exp(iωt),

ηt + Uηx − φz = 0

}
on z = 0, t > 0,

φ(x, z, 0) = η(x, 0) = 0, for all x and z.

23. Apply the Fourier transform to solve the equation

uxxxx + uyy = 0, −∞ < x < ∞, y ≥ 0,

satisfying the conditions

u(x, 0) = f(x), uy(x, 0) = 0 for −∞ < x < ∞,

and u(x, y) and its partial derivatives vanish as |x| → ∞.
24. The transverse vibration of a thin membrane of great extent satisfies the wave

equation

c2(uxx + uyy) = utt, −∞ < x, y < ∞, t > 0,

with the initial and boundary conditions

u(x, y, t) → 0 as |x| → ∞, |y| → ∞ for all t ≥ 0,

u(x, y, 0) = f(x, y), ut(x, y, 0) = 0 for all x, y.

Apply the double Fourier transform method to solve this problem.
25. Solve the diffusion problem with a source function q(x, t)

ut = κuxx + q(x, t), −∞ < x < ∞, t > 0,

u(x, 0) = 0 for −∞ < x < ∞.

Show that the solution is

u(x, t) =
1√
4πκ

∫ t

0

(t− τ)−
1
2 dτ

∫ ∞

−∞
q(k, τ) exp

[
− (x− k)2

4κ(t− τ)

]
dk.

26. Apply the triple Fourier transform to solve the initial-value problem

ut = κ(uxx + uyy + uzz), −∞ < x, y, z < ∞, t > 0,

u(x, 0) = f(x) for all x, y, z,

where x = (x, y, z).
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27. Use the double Fourier transform to solve the telegraph equation

utt + aut + bu = c2uxx, −∞ < x, t < ∞,

u(0, t) = f(t), ux(0, t) = g(t), for −∞ < t < ∞,

where a, b, c are constants and f(t) and g(t) are arbitrary functions of t.

28. Use the Fourier transform to solve the Rossby wave problem in an inviscid β-
plane ocean bounded by walls at y = 0 and y = 1, where y and x represent
vertical and horizontal directions. The fluid is initially at rest and then, at t =
0+, an arbitrary disturbance localized to the vicinity of x = 0 is applied to
generate Rossby waves. This problem satisfies the Rossby wave equation

∂

∂t

[(
∇2 − κ2

)
ψ
]
+ βψx = 0, −∞ < x < ∞, 0 ≤ y ≤ 1, t > 0,

with the boundary and initial conditions

ψx(x, y) = 0 for 0 < x < ∞, y = 0 and y = 1,

ψ(x, y, t) = ψ0(x, y) at t = 0 for all x and y.

Examine the case for ψ0n(x) =
1

α
√
2
exp{ik0x− (xa )

2}.
29. The equations for the current I(x, t) and potential V (x, t) at a point x and time

t of a transmission line containing resistance R, inductance L, capacitance C,
and leakage inductance G are

LI t + RI = −Vx, and CVt +GV = −Ix.

Show that both I and V satisfy the telegraph equation

1

c2
utt − uxx + aut + bu = 0,

where c2 = (LC)−1, a = LG+RC, and b = RG.
Solve the telegraph equation for the following cases with R = 0 and G = 0:
(a) V (x, t) = V0H(t) at x = 0, t > 0, V (x, t) → 0 as x → ∞, t > 0, where
V0 is constant.
(b) V (x, t) = V0 cosωt at x = 0, t > 0, V (x, t) → 0 as x → ∞, t > 0.

30. Solve the telegraph equation in Exercise 29 with V (x, 0) = 0 for (a) the Kelvin
ideal cable line (L = 0 = G) with the boundary data V (0, t) = V0 = const.,
V (x, t) → 0 as x → ∞ for t > 0.
(b) the noninductive leaky cable (L = 0) with the boundary conditions
V (0, t) = H(t) and V (x, t) → 0 as x → ∞ for t > 0.

31. Solve the telegraph equation in Exercise 29 with V (x, 0) = 0 = Vt(x, 0) for
the Heaviside distortionless cable (RL = G

C = const. = k) with the boundary
data V (0, t) = V0f(t) and V (x, t) → 0 as x → ∞ for t > 0, where V0 is
constant and f(t) is an arbitrary function of t. Explain the physical significance
of the solution.
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32. Solve the inhomogeneous partial differential equation

uxt = −ω sinωt, t > 0,

u(x, 0) = x, u(0, t) = 0.

33. Find the solution of the inhomogeneous equation

1

c2
utt − uxx = k sin

(
πx

a

)
, 0 < x < a, t > 0,

u(x, 0) = 0 = ut(x, 0) for 0 < x < a,

u(0, t) = 0 = u(a, t) for t > 0.

34. Solve the Stokes problem which is concerned with the unsteady boundary layer
flows induced in a semi-infinite viscous fluid bounded by an infinite horizontal
disk at z = 0 due to nontorsional oscillations of the disk in its own plane
with a given frequency ω. The equation of motion and the boundary and initial
conditions are

ut = νuzz, z > 0, t > 0,

u(z, t) = Ueiωt on z = 0, t > 0,

u(z, t) → 0 as z → ∞ for t > 0,

u(z, 0) = 0 for t ≤ 0 and z > 0,

where u(z, t) is the velocity of the fluid of kinematic viscosity ν and U is con-
stant. Solve the Rayleigh problem (ω = 0). Explain the physical significance
of both the Stokes and Rayleigh solutions.

35. Solve the Blasius problem of an unsteady boundary layer flow in a semi-infinite
body of viscous fluid enclosed by an infinite horizontal disk at z = 0. The
governing equation and the boundary and initial conditions are

∂u

∂t
= ν

∂2u

∂z2
, z > 0, t > 0,

u(z, t) = Ut on z = 0, t > 0,

u(z, t) → 0 as z → ∞, t > 0,

u(z, t) = 0 at t ≤ 0, z > 0.

Explain the significance of the solution.
36. Obtain the solution of the Stokes–Ekman problem of an unsteady boundary

layer flow in a semi-infinite body of viscous fluid bounded by an infinite hor-
izontal disk at z = 0 when both the fluid and the disk rotate with a uniform
angular velocity Ω about the z-axis. The governing boundary layer equation
and the boundary and the initial conditions are

∂q

∂t
+ 2Ωiq = ν

∂2q

∂z2
, z > 0, t > 0,

q(z, t) = aeiωt + be−iωt on z = 0, t > 0,
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q(z, t) → 0 as z → ∞ t > 0,

q(z, t) = 0 at t ≤ 0, for all z > 0,

where q = u + iv, ω is the frequency of oscillations of the disk, and a, b are
complex constants. Hence, deduce the steady-state solution and determine the
structure of the associated boundary layers.

37. Show that, when ω = 0 in Exercise 36, the steady-flow field is given by

q(z, t) ∼ (a+ b) exp

{(
−2iΩ

ν

)1/2

z

}
.

Hence, determine the thickness of the Ekman layer.
38. Solve the telegraph equation

utt − c2uxx + 2aut = 0, −∞ < x < ∞, t > 0,

u(x, 0) = 0, ut(x, 0) = g(x), −∞ < x < ∞.

39. Use the Laplace transform to solve the initial boundary-value problem

ut = c2uxx, 0 < x < a, t > 0,

u(x, 0) = x+ sin

(
3πx

a

)
for 0 < x < a,

u(0, t) = 0 = u(a, t) for t > 0.

40. Solve the diffusion equation

ut = κuxx, −a < x < a, t > 0,

u(x, 0) = 1 for − a < x < a,

u(−a, t) = 0 = u(a, t) for t > 0.

41. Use the joint Laplace and Fourier transform to solve the initial-value problem
for transient water waves which satisfies (see Debnath 1994, p. 92)

∇2φ = φxx + φzz = 0, −∞ < x < ∞,−∞ < z < 0, t > 0,

φz = ηt,

φt + gη = −P
ρ p(x)e

iωt

}
on z = 0, t > 0,

φ(x, z, 0) = 0 = η(x, 0) for all x and z,

where P and ρ are constants.
42. Show that the solution of the boundary-value problem

urr +
1

r
ur + uzz = 0, 0 < r < ∞, 0 < z < ∞,

u(r, z) =
1√

a2 + r2
on z = 0, 0 < r < ∞,
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is

u(r, z) =

∫ ∞

0

e−κ(z+a)J0(κr) dκ =
1√

(z + a)2 + r2
.

43. (a) The axisymmetric initial-value problem is governed by

ut = κ

(
urr +

1

r
ur

)
+ δ(t)f(r), 0 < r < ∞, t > 0,

u(r, 0) = 0 for 0 < r < ∞.

Show that the formal solution of this problem is

u(r, t) =

∫ ∞

0

kJ0(kr)f̃(k) exp
(
−k2κt

)
dk.

(b) When f(r) = Q
πa2H(a− r), show that the solution is

u(r, t) =
Q

πa

∫ ∞

0

J0(kr)J1(ak) exp
(
−k2κt

)
dk.

44. If f(r) = A(a2 + r2)−
1
2 , where A is a constant, show that the solution of the

biharmonic equation described in Example 1.10.7 is

u(r, z) = A
{r2 + (z + a)(2z + a)}

[r2 + (z + a)2]3/2
.

45. Solve the axisymmetric biharmonic equation for the free vibration of an elastic
disk

b2
(

∂2

∂r2
+

1

r

∂

∂r

)2

u+ utt = 0, 0 < r < ∞, t > 0,

u(r, 0) = f(r), ut(r, 0) = 0 for 0 < r < ∞,

where b2 = D
2σh is the ratio of the flexural rigidity of the disk and its mass 2hσ

per unit area.
46. Show that the zero-order Hankel transform solution of the axisymmetric prob-

lem

urr +
1

r
ur + uzz = 0, 0 < r < ∞, −∞ < z < ∞,

lim
r→0

(
r2u

)
= 0, lim

r→0
(2πr)ur = −f(z), −∞ < z < ∞,

is

ũ(k, z) =
1

4πk

∫ ∞

−∞
exp

{
−k|z − ζ|

}
f(ζ) dζ.

Hence, show that

u(r, z) =
1

4π

∫ ∞

−∞

{
r2 + (z − ζ)

}− 1
2 f(ζ) dζ.
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47. Solve the nonhomogeneous diffusion problem

ut = κ

(
urr +

1

r
ur

)
+Q(r, t), 0 < r < ∞, t > 0,

u(r, 0) = f(r), 0 < r < ∞,

where κ is a constant.
48. Solve the problem of the electrified unit disk in the (x, t)-plane with center

at the origin. The electric potential u(r, z) is axisymmetric and satisfies the
boundary-value problem

urr +
1

r
ur + uzz = 0, 0 < r < ∞, 0 < z < ∞,

u(r, 0) = u0, 0 ≤ r ≤ a,

∂u

∂z
= 0, on z = 0 for a < r < ∞,

u(r, z) → 0 as z → ∞ for all r,

where u0 is constant. Show that the solution is

u(r, z) =
2u0

π

∫ ∞

0

J0(kr)
sin ak

k
e−kz dk.

49. Solve the axisymmetric surface wave problem in deep water due to an oscilla-
tory surface pressure. The governing equations are

∇2φ = φrr +
1

r
φr + φzz = 0, 0 ≤ r < ∞, −∞ < z ≤ 0,

φt + gη = −P
ρ p(r) exp(iωt),

φz − ηt = 0

}
on z = 0, t > 0,

φ(r, z, 0) = 0 = η(r, 0), for 0 ≤ r < ∞, and −∞ < z ≤ 0.

50. Solve the Neumann problem for the Laplace equation

urr +
1

r
ur + uzz = 0, 0 < r < ∞, 0 < z ≤ ∞,

uz(r, 0) = − 1

πa2
H(a− r), 0 < r < ∞,

u(r, z) → 0 as z → ∞ for 0 < r < ∞.

Show that

lim
a→0

u(r, z) =
1

2π

(
r2 + z2

)− 1
2 .

51. Solve the Cauchy problem for the wave equation in a dissipating medium

utt + 2κut = c2
(
urr +

1

r
ur

)
, 0 < r < ∞, t > 0,

u(r, 0) = f(r), ut(r, 0) = g(r) for 0 < r < ∞,

where κ is a constant.
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52. Use the joint Laplace and Hankel transform to solve the initial boundary-value
problem

c2
(
urr +

1

r
ur + uzz

)
= utt, 0 < r < ∞, 0 < z < ∞, t > 0,

uz(r, 0, t) = H(a− r)H(t), 0 < r < ∞, t > 0,

u(r, z, t) → 0 as r → ∞ and u(r, z, t) → 0 as z → ∞,

u(r, z, t) = 0 = ut(r, z, 0),

and show that

ut(r, z, t) = −acH
(
t− z

c

)∫ ∞

0

J1(ak)J0

{
ck

√
t2 − z2

c2

}
J0(kr) dk.

53. Find the steady temperature u(r, z) in a beam 0 ≤ r < ∞, 0 ≤ z ≤ a, when
the face z = 0 is kept at temperature u(r, 0) = 0 and the face z = a is insulated
except that heat is supplied through a circular hole such that

uz(r, a) = H(b− r).

The temperature u(r, z) satisfies the axisymmetric equation

urr +
1

r
ur + uzz = 0, 0 ≤ r < ∞, 0 ≤ z ≤ a.

54. Find the integral solution of the initial boundary-value problem

urr +
1

r
ur + uzz = ut, 0 ≤ r < ∞, 0 ≤ z < ∞, t > 0,

u(r, z, 0) = 0, for all r and z,(
∂u

∂r

)
r=0

= 0, for 0 ≤ z < ∞, t > 0,

(
∂u

∂z

)
z=0

= −H(a− r)√
a2 − r2

, for 0 < r < ∞, 0 < t < ∞,

u(r, z, t) → 0 as r → ∞ or z → ∞.

55. Solve the Cauchy–Poisson wave problem (Debnath 1989) for a viscous liquid
of finite or infinite depth governed by the equations, free surface, boundary and
initial conditions

φrr +
1

r
φr + φzz = 0,

ψt = ν

(
ψrr +

1

r
ψr −

1

r2
ψ + ψzz

)
,

where φ(r, z, t) and ψ(r, z, t) represent the potential and stream functions, re-
spectively, 0 ≤ r < ∞, −h ≤ z ≤ 0 (or −∞ < z ≤ 0), and t > 0.
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The free surface conditions are

ηt − w = 0,

μ(uz − wr) = 0,

φt + gη + 2νwz = 0

⎫⎪⎬
⎪⎭ on z = 0, t > 0,

where η = η(r, t) is the free surface elevation, u = φr+ψz and w = φz− ψ
r −

ψr are the radial and vertical velocity components of liquid particles, μ = ρν
is the dynamic viscosity, ρ is the density, and ν is the kinematic viscosity of the
liquid.
The boundary conditions at the rigid bottom are

u = φr + ψz = 0,

w = φz − 1
r (rψ)r = 0

}
on z = −h.

The initial conditions are

η = a
δ(r)

r
, φ = ψ = 0 at t = 0,

where a is a constant and δ(r) is the Dirac delta function.
If the liquid is of infinite depth, the bottom boundary conditions are

(φ, ψ) → (0, 0) as z → ∞.

56. Use the joint Hankel and Laplace transform method to solve the initial bound-
ary-value problem

urr +
1

r
ur + utt − 2εut = a

δ(r)

r
δ(t), 0 < r < ∞, t > 0,

u(r, t) → 0 as r → ∞,

u(0, t) is finite for t > 0,

u(r, 0) = 0 = ut(r, 0) for 0 < r < ∞.

57. Surface waves are generated in an inviscid liquid of infinite depth due to an
explosion (Sen 1963) above it which generates the pressure field p(r, t). The
velocity potential φ(r, z, t) satisfies the Laplace equation

urr +
1

r
ur + uzz = 0, 0 < r < ∞, t > 0,

and the free surface condition

utt + guz =
1

ρ

(
∂p

∂t

)[
H(r)−H

{
r, r0(t)

}]
on z = 0,

where ρ is the constant density of the liquid, r0(t) is the extent of the blast, and
the liquid is initially at rest.
Solve this problem.
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58. Use the joint Laplace and Fourier transform to show that the solution of the
inhomogeneous diffusion problem

ut − κuxx = q(x, t), x ∈ R, t > 0,

u(x, 0) = f(x) for all x ∈ R,

can be expressed in terms of Green’s function G(x, t; ξ, τ) as

u(x, t) =

∫ t

0

dτ

∫ ∞

−∞
q(ξ, τ)G(x, t; ξ, τ) dξ +

∫ ∞

−∞
f(ξ)G(x, t; ξ, 0) dξ,

where

G(x, t; ξ, τ) =
1√

4πκ(t− τ)
exp

{
− (x− ξ)2

4κ(t− τ)

}
.

59. Find Green’s function G(x, t) of the Bernoulli–Euler equation on an elastic
foundation

EI
∂4G

∂x4
+ κG+m

∂2G

∂t2
= Wδ(x)δ(t), x ∈ R, t > 0,

with initial conditions

G(x, 0) = 0 = Gt(x, 0).

60. Solve the initial boundary-value problem

ut − κuxx = q(t)δ(x− V t), x ∈ R, t > 0,

u(x, 0) = 0 and u(x, t) → 0 as |x| → ∞,

where q(t) = 0 for t < 0 and V is constant.
61. Find the Green function satisfying the equation

Gxx +Gyy = δ(x− ξ)δ(y − η), 0 < x, ξ < a, 0 < y, η < b

G(x, y) = 0 on x = 0, and x = a; G(x, y) = 0 on y = 0 and y = b.

62. Show that the solution of the two-dimensional diffusion equation

ut − κ(uxx + uyy) = q(x, y, t);−∞ < x, y < ∞, t > 0,

with

u(x, y; 0) = 0

is

u(x, y, t) =

∫ t

0

dτ

[∫ ∞

−∞

∫
exp

{
− (x− ξ)2 + (y − η)2

4κ(t− τ)

}

× q(ξ, η, τ)√
4πκ(t− τ)

dξ dη

]
.
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63. Find the Green function for the one-dimensional Klein–Gordon equation

utt − c2uxx + d2u = p(x, t), x ∈ R, t > 0,

with the initial and boundary conditions

u(x, 0) = 0 = ut(x, 0) for all x ∈ R,

where c and d are constants.
Show that Green’s function for this problem reduces to that of the wave equa-
tion in the limit as d → 0.
Derive the Green functions for both two- and three-dimensional Klein–Gordon
equations.

64. Use the Fourier series method to solve the equation for a diffusion model

ut = κuxx, −� < x < �, t > 0,

with the periodic boundary conditions

u(−�, t) = u(�, t),

ux(−�, t) = ux(�, t)

}
t > 0,

and the initial condition

u(x, 0) = f(x), −� ≤ x ≤ �.

65. (a) Verify that

un(x, y) = exp
(
ny −

√
n
)
sinnx,

where n is a positive integer, is the solution of the Cauchy problem for the
Laplace equation

uxx + uyy = 0, x ∈ R, y > 0,

u(x, 0) = 0, uy(x, 0) = n exp
(
−
√
n
)
sinnx.

(b) Show that this Cauchy problem is not well posed.
66. Find the eigenvalues and eigenfunctions of the Sturm–Liouville problems

(a) u′′ + λu = 0, 0 < x < 1, (b) u′′ + λu = 0, 0 < x < 1,

u(0) = 0, u(1) + u′(1) = 0, u′(0) + u′(1) = 0,

(c) u′′ + λu = 0, 0 < x < 1, (d) u′′ + 2u′ + 4λu = 0, 0 < x < a,

u(0) = u(1), u′(0) = u′(1), u(0) = 0 = u(a).

67. Show that the equation

a2(x)u
′′ + a1(x)u

′ +
(
a0(x) + λ

)
u = 0,



1.15 Exercises 139

can be reduced into the Sturm–Liouville form

d

dx

[
p(x)u′]+ [

q(x) + λρ(x)
]
u = 0,

where

p(x) = exp

[∫
a1(x)

a2(x)
dx

]
, q(x) =

p(x)a0(x)

a2(x)
, ρ(x) =

p(x)

a2(x)
.

68. Reduce the given equation into the Sturm–Liouville form

(a) u′′ − 2xu′ + λxu = 0, (b) u′′ + u′ + λu = 0,

(c) xu′′ + (1− x)u′ + λu = 0 (x > 0),

(d) x2(x2 + 1)u′′ + 2x3u′ + λu = 0, x > 0.

69. Determine the Euler load and the corresponding fundamental buckling mode
of a simply supported beam of length a under an axial compressive force P
which is governed by the eigenvalue problem

y(4)(x) + λy′′ = 0, 0 < x < a,

y(0) = 0 = y′′(0), y(a) = 0 = y′′(a),

where λ = ( P
EI ) > 0.

70. Use the Fourier method to solve the Klein–Gordon problem

utt − c2uxx + d2u = 0, 0 < x < a, t > 0,

u(0, t) = 0 = u(a, t), t > 0,

u(x, 0) = f(x), ut(x, 0) = 0, 0 < x < a.

71. Use the Fourier method to solve the diffusion model

ut = uxx + 2bux, 0 < x < a, t > 0,

u(0, t) = 0 = u(a, t), t > 0,

u(x, 0) = f(x), 0 < x < a.

72. (a) Solve the vibration problem of a circular membrane governed by (1.13.56)
and (1.13.59), (1.13.60) with the boundary and initial conditions (1.13.52),
(1.13.53) when g(r, θ) = 0.
(b) Obtain the solution for the problem (a) when f(r, θ) = a2 − r2.

73. (a) Use the method of separation of variables to solve the Dirichlet problem in
the cylinder for u(r, z)

urr +
1

r
ur + uzz = 0, 0 ≤ x ≤ a, 0 ≤ z ≤ h,

u(r, 0) = 0 = u(a, z), u(r, h) = f(r).

(b) If f(r) = 1, obtain the solution.
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74. (a) Derive the differential equality

2ut

(
c2∇2u− utt

)
= 2c2

[
(utux)x + (utuy)y

]
−
[
c2
(
u2
x + u2

y

)
+ u2

t

]
t
,

associated with the wave equation

c2(uxx + uyy)− utt ≡ c2∇2u− utt = 0.

(b) Generalize the above differential equality for the (n+1)-dimensional wave
equation (1.13.9).
(c) Show that the differential equality for the (n+ 1)-dimensional wave equa-
tion can be written in the form

2ut

(
c2∇2

n − utt

)
= 2c2∇n · (ut∇nu)−

(
c2|∇nu|2 + u2

t

)
t
,

where

∇n =

(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

)
.

75. (a) Derive the energy integral

E(t) =
1

2

∫ b

a

(
u2
t + c2u2

x + d2u2
)
dx,

for the Klein–Gordon equation model

utt − c2uxx + d2u = 0, a ≤ x ≤ b, t > 0,

u(a, t) = 0 = u(b, t),

u(x, 0) = f(x), ut(x, 0) = g(x), a ≤ x ≤ b.

(b) Show that the energy is constant, that is,

E(t) = E0 = const.

(c) Use the law of conservation of energy to prove that the Klein–Gordon equa-
tion has a unique solution.

76. (a) Use the method of separation of variables to solve the spherically symmetric
wave equation (1.13.21) in three dimensions

utt = c2∇2u ≡ c2
(
urr +

2

r
ur

)
, 0 < r < a, t > 0,

u(a, t) = 0, t > 0,

u(r, 0) = f(r), ut(r, 0) = g(r), 0 < r < a.

(b) Find the solution for f(r) = 0 and g(r) = a− r.
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77. Solve the axisymmetric Dirichlet problem in a right circular cylinder

urr + r−1ur + uzz ≡ 0, 0 < r < a, 0 < z < h,

u(r, 0) = 0 = u(r, h), u(a, z) = f(z).

78. Use Example 1.6.4 to find the solution of equation (1.6.80) with the boundary
conditions

(a) u(1, θ) = 2 cos2 θ, (b) u(1, θ) = |2θ|,

(c) ur(1, θ) = 2 cos 2θ, (d) ur(1, θ) = cos θ + sin θ.

79. Apply the method of separation of variables to solve the Laplace equation in
an annular region

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < a < r < b, 0 ≤ θ ≤ 2π

with the following boundary conditions:
(a) u(a, θ) = f(θ), u(b, θ) = g(θ), 0 ≤ θ ≤ 2π.
(b) u(1, θ) = 1

2 + sin θ, u(2, θ) = 1
2 (1− 1n2 + 2 cos θ), 0 ≤ θ ≤ 2π.

(c) ur(1, θ) = 0, ur(2, θ) =
3
4 (cos θ − sin θ), 0 ≤ θ ≤ 2π.

80. In Example 1.6.1, take c = 1, � = π. If u(x, t) = 1
2 [f(x − t) + f(x + t)] +∫ x+t

x−t
g(τ) dτ , then show that

∫ π

0

(
u2
x + u2

t

)
dx =

∫ π

0

(
f ′2 + g′2

)
dx,

where f and g are real functions on 0 ≤ x ≤ π with continuous partial deriva-
tives and f(0) = f(π) = g(0) = g(π) = 0.

81. Consider the boundary-value problem for the elliptic equation

∇2u+ 1 = 0 in D =

{
(x, y)

∣∣∣∣
(
|x|
a

+
|y|
b

)
< 1

}
,

u = 0 on ∂D,

where a > b > 0.
Show that

a2b2

4(a2 + b2)
≤ u(0, 0) ≤ a2

4
.

82. Show that the Dirichlet problem

∇2u = 0, x ∈ D,

u(x) = f(x) on ∂D,

has a unique solution.
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83. Consider the Dirichlet boundary-value problem

∇2u+ 1 = 0, x ∈
{
(x, y)

∣∣∣∣
(
|x|
a

+
|y|
b

)
< 1

}
,

u = 0 on ∂D,

where a > b > 0. Use a suitable function v(x, y) = Ax2 + By2 satisfying
∇2v = 1 with (A,B) > (0, 0) to prove that

(ab)2

2(a+ b)2
≤ u(0, 0) ≤ (ab)2

2(a2 + b2)
.

84. Solve the fractional Blasius problem as stated in Exercise 35 with the governing
equation (see Debnath 2003a, 2003b)

∂αu

∂tα
= ν

∂2u

∂z2
, x ∈ R, t > 0.

85. Solve the fractional Stokes–Ekman problem as stated in Exercise 36 with the
governing equation (see Debnath 2003a, 2003b)

∂αq

∂tα
+ 2iΩq = ν

∂2q

∂z2
, x ∈ R, t > 0.

86. Apply the method of separation of variables u(x, t) = X(x)T (t) to solve the
eigenvalue problem for the dissipation wave equation

utt − c2uxx + αut = 0, 0 < x < �, t > 0,

u(0, t) = 0 = u(�, t), t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < �.

Show that
(i) X ′′ + λ2X = 0, T̈ + αṪ + λ2c2T = 0, where λ2 is a separation constant.
(ii) The eigenvalues and eigenfunctions are λn = nπ

� , Xn(x) = Bn sin(
nπx
� ),

n = 1, 2, . . . .
(iii) The general solution is

u(x, t) =

∞∑
n=1

e−
1
2αt

[
an cos

(
1

2
δnt

)
+ bn sin

(
1

2
δnt

)]
,

where δn =
√
4λ2

nc
2 − α2. Consider other cases 4λ2

nc
2 < or = α2.

87. Solve the above problem 86 with the same initial conditions and the following
boundary conditions:
(i) ux(0, t) = 0 = u(�, t), t > 0,
(ii) u(0, t) = 0 = ux(�, t), t > 0,
Find the eigenvalues, eigenfunctions, and the general solution in each case.
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88. Solve the eigenvalue problem for the telegraph equation

utt − c2uxx + aut + b = 0, 0 < x < 1, t > 0,

with the boundary and initial conditions

u(0, t) = 0, ux(1, t) + u(1, t) = 0, t > 0,

u(x, 0) = f(x) and ut(x, 0) = g(x), 0 < x < 1.

Show that the eigenvalue equation and the eigenfunctions are

tanλ = λ and Xn(x) = An sinλx,

where −λ2 is the separation constant.
89. Use the method of separation of variables to solve the problem

utt − c2uxx + αu = 0, 0 < x < 1, t > 0,

ux(0, t) = 0 = u(1, t), t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < 1.

Show that the eigenvalues and the eigenfunctions are

λn =

[
1

4
(2n− 1)2π2c2 + α

] 1
2

, Xn(x) = An cos

[
(2n− 1)

πx

2

]
,

where n = 1, 2, 3, . . . , and −λ2 is the separation constant.
Derive the general solution

u(x, t) =

∞∑
n=1

(an cosλnt+ bn sinλnt) cos

[
(2n− 1)

πx

2

]
.

Show that the solution for f(x) = x and g(x) = 0 corresponds to

an =
4

(2n− 1)π

[
(−1)n−1 − 2

(2n− 1)π

]
, bn = 0.

90. Consider the eigenvalue problem

utt − c2uxx + au = 0, 0 < x < 1, t > 0,

ux(0, t) = 0, ux(1, t) + u(1, t) = 0, t > 0, with the initial conditions

u(x, 0) = f(x) and ut(x, 0) = g(x), 0 < x < 1,

(a) Show that, for u(x, t) = X(x)T (t),

c2X ′′ − aX + λ2X = 0, T̈ + λ2T = 0;

and the eigenvalue equation is

β tanβ = 1, β =
1

c

(
λ2 − a

) 1
2 ,

where −λ2 is the separation constant.
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91. Consider the Helmholtz equation

urr +
1

r
ur +

1

r2
uθθ + ε2u = 0 for r ≤ 1,

where ε = ω
c � 1, with the boundary condition

u(1, θ) = sin θ.

Obtain the asymptotic solution in the form

u = u0 + ε2u2 +O
(
ε4
)
,

where u = O(1) on the boundary.
Show that the two-term asymptotic solution is

u(r, θ) = r sin θ +
1

8
ε2
(
r − r3

)
+O

(
ε4
)
.

92. Consider the boundary value problem for the modified Helmholtz equation

ε2∇2u = u,

with u(1, θ) = 1 and u(r, θ) → 0 as r → ∞. Show that the asymptotic solution
is given by

u = exp

(
1− r

ε

)
.

93. (a) The temperature distribution u(x, t) in a homogeneous rod of length � with
insulated endpoints is described by the initial boundary-value problem

ut = κuxx, 0 < x < �, t > 0,

ux(0, t) = 0 = ux(�, t), t > 0,

u(x, 0) = f(x), 0 < x < �.

(b) Obtain the solution from (a) for the case � = 1, f(x) = x.
94. (a) Show that the telegraph equation can be written in the form

utt − c2uxx + (p+ q)ut + pqu = 0,

where p = (G/C) and q = (R/L).
(b) Apply the transformation u = v exp[−1

2 (p+ q)t] to transform the equation
in the form

vtt − c2vxx =
1

4
(p− q)2v.

(c) When p = q, there exists an undistorted wave solution. Show that a pro-
gressive wave of the form
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u(x, t) = exp(−pt)f(x± ct)

propagate in either direction, where f is an arbitrary twice differentiable func-
tion of its argument.
(d) If u(x, t) = A exp[i(kx − ωt)] is a solution of equation as stated in (a),
show that the dispersion relation is

ω2 + i(p+ q)ω −
(
c2k2 + pq

)
= 0.

95. Consider the telegraph equation problem

ut − c2uxx + aut + bu = 0, 0 < x < l, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x) for 0 < x < l,

u(0, t) = 0 = u(l, t) for t ≥ 0,

where a and b are constants.
(a) Show that, for any T > 0

∫ t

0

(
u2
t + c2u2

x + bu2
)
t=T

dx ≤
∫ l

0

(
u2
t + c2u2

x + bu2
)
t=0

dx.

(b) Use the above integral inequality from (a) to show that the initial boundary-
value problem for the telegraph equation can have only one solution.

96. Use the solution (1.9.15) to obtain the solution of the nonhomogeneous wave
equation problem

utt − c2uxx = sin(kx− ωt), x ∈ R, t > 0,

u(x, 0) = 0 = ut(x, 0), x ∈ R.

Discuss the solution for cases
(a) c �= ω

k and (b) c = ω
k (resonance).

97. Derive the Duhamel formula for the solution of Example 1.9.2 is

u(x, t) = f(t) ∗ ∂

∂t
u0(x, t) =

∫ t

0

f(t− τ)

(
∂u0

∂τ

)
dτ

where

u0(x, t) = L−1

{
1

s
exp

(
−x

√
s

k

)}
= erfc

(
x√
4κt

)
.

98. Solve the axisymmetric unsteady viscous flow problem in a long rotating cylin-
der of radius a governed by

vt = ν

(
vrr +

1

r
vr −

v

r2

)
, 0 < r ≤ a, t > 0,

where v = v(r, t) is the tangential fluid velocity and ν is the kinematic viscos-
ity of the fluid.
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The cylinder is at rest until at t = 0+, it is caused to rotate so that the boundary
and initial conditions are

v(r, t) = aΩf(t)H(t) on r = a,

v(r, 0) = 0 for r < a,

where f(t) is a physically realistic function of time t.
Find the solution when f(t) = cosωt and examine its feature as t → ∞.

99. (a) Show that the solution of the Cauchy problem for the diffusion equation

ut = uxx, x ∈ R, t > 0,

u(0, t) =

(
2

n

)
sin

(
2n2t

)
, ux(0, t) = 0, t > 0,

is given by

un(x, t) =
1

n

[
enx sin

(
nx+ 2n2t

)
− e−nx sin

(
nx− 2n2t

)]

where n is an integer.
(b) Show that this Cauchy problem is ill-posed.

100. (a) Verify that

un(x, y) = exp
(
ny −

√
n
)
sinnx

is the solution of the Cauchy problem for the Laplace equation

uxx + uyy = 0, x ∈ R, y > 0,

u(x, 0) = 0, uy(x, 0) = n exp
(
−
√
n
)
sinnx,

where n is an integer.
(b) Show that this Cauchy problem is ill-posed.

101. (a) Verify that

un(x, y) =
1

n
e−

√
n sinnx sinhny

is the solution of the Cauchy problem for the Laplace equation in the upper
half-strip

uxx + uyy = 0, 0 ≤ x ≤ π, y > 0,

u(0, y) = 0 = u(π, y), y > 0

u(x, 0) = 0 and uy(x, 0) = e−
√
n sinnx.

(b) Show that this Cauchy problem is ill-posed.
102. Using the wave function ψ(x, t) = a(x, t) exp[ ihS(x, t)], where a and S are

real functions and the transformation u(x, t) = m−1Sx in the Schrödinger
equation (1.7.66), derive
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∂u

∂t
+ u

∂u

∂x
=

∂

∂x

[
V (x)a

]
+

�
2

2m

(
1

a
axx

)
,

∂a2

∂t
+

∂

∂x
= 0.

(Hydrodynamic analogy of quantum mechanics).
103. Consider the two-dimensional boundary value problem for the Laplace equa-

tion in the upper half plane

uxx + uyy = 0, x ∈ R, y > 0,

u(x, 0) = f(x) and uy(x, 0) = g(x), x ∈ R.

(a) If f(x) = 0 and g(x) = 0, show that u(x, y) ≡ 0 is the solution.
(b) If the boundary data is changed to u(x, 0) = 1

n cosnx and g(x) = 0,
x ∈ R, show that u(x, y) = 1

n cosnx coshny is the solution. Examine the
ill-posedness of the problem.

104. (a) Show that the solution of the Cauchy problem for the negative diffusion
equation

ut + κuxx = 0, x ∈ R, t > 0, κ > 0,

u(x, 0) = f(x), x ∈ R

is given by

u(x, t) =
1

n
exp

(
κn2t

)
sinnx.

(b) Show that this negative diffusion problem is ill-posed.
105. (a) Show that the ill posed problem 104(a) can be made well posed by adding

higher order diffusive terms, that is, the modified Cauchy problem

ut + κuxx + δuxxxx = 0, x ∈ R, t > 0 (κ, δ > 0),

u(x, 0) =
1

n
sinnx, x ∈ R

is a well posed problem.
(b) Verify that

u(x, t) =
1

n
sinnx exp

(
κn2 − δn4

)
t

is the solution of the modified Cauchy problem.
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Nonlinear Model Equations and Variational Principles

True Laws of Nature cannot be linear.

Albert Einstein

. . . the progress of physics will to a large extent depend on the
progress of nonlinear mathematics, of methods to solve
nonlinear equations . . . and therefore we can learn by
comparing different nonlinear problems.

Werner Heisenberg

Our present analytical methods seem unsuitable for the
solution of the important problems arising in connection with
nonlinear partial differential equations and, in fact, with
virtually all types of nonlinear problems in pure mathematics.
The truth of this statement is particularly striking in the field
of fluid dynamics. . .

John Von Neumann

2.1 Introduction

This chapter deals with the basic ideas and many major nonlinear model equations
which arise in a wide variety of physical problems. Included are one-dimensional
wave, Klein–Gordon (KG), sine–Gordon (SG), Burgers, Fisher, Korteweg–de Vries
(KdV), Boussinesq, modified KdV, nonlinear Schrödinger (NLS), Benjamin–Ono
(BO), Benjamin–Bona–Mahony (BBM), Ginzburg–Landau (GL), Burgers–Huxley
(BH), KP, concentric KdV, Whitham, Davey–Stewartson, Toda lattice, Camassa–
Holm (CH), and Degasperis–Procesi (DP) equations. This is followed by variational
principles and the Euler–Lagrange equations. Also included are Plateau’s problem,
Hamilton’s principle, Lagrange’s equations, Hamilton’s equations, the variational
principle for nonlinear Klein–Gordon equations, and the variational principle for
nonlinear water waves. Special attention is given to the Euler equation of motion,

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers,
DOI 10.1007/978-0-8176-8265-1_2, c© Springer Science+Business Media, LLC 2012
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the continuity equation, the associated energy equation and energy flux, linear wa-
ter wave problems and their solutions, nonlinear finite amplitude waves (the Stokes
waves), gravity waves, gravity-capillary waves, and linear and nonlinear dispersion
relations. Finally, the modern theory of nonlinear water waves is formulated.

2.2 Basic Concepts and Definitions

The most general first-order nonlinear partial differential equation in two indepen-
dent variables x and y has the form

F (x, y, u, ux, uy) = 0. (2.2.1)

The most general second-order nonlinear partial differential equation in two in-
dependent variables x and y has the form

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0. (2.2.2)

Similarly, the most general first-order and second-order nonlinear equations in
more independent variables can be introduced.

More formally, it is possible to write these equations in the operator form

Lxu(x) = f(x), (2.2.3)

where Lx is a partial differential operator and f(x) is a given function of two or
more independent variables x = (x, y, . . .). It has already been indicated in Sec-
tion 1.2 that if Lx is not a linear operator, (2.2.3) is called a nonlinear partial differ-
ential equation. Equation (2.2.3) is called an inhomogeneous nonlinear equation if
f(x) �= 0. On the other hand, (2.2.3) is called a homogeneous nonlinear equation if
f(x) = 0.

In general, the linear superposition principle can be applied to linear partial dif-
ferential equations if certain convergence requirements are satisfied. This principle is
usually used to find a new solution as a linear combination of a given set of solutions.
For nonlinear partial differential equations, however, the linear superposition princi-
ple cannot be applied to generate a new solution. So, because most solution methods
for linear equations cannot be applied to nonlinear equations, there is no general
method of finding analytical solutions of nonlinear partial differential equations, and
numerical techniques are usually required for their solution. A transformation of
variables can sometimes be found that transforms a nonlinear equation into a linear
equation, or some other ad hoc method can be used to find a solution of a particular
nonlinear equation. In fact, new methods are usually required for finding solutions
of nonlinear equations.

Methods of solution for nonlinear equations represent only one aspect of the
theory of nonlinear partial differential equations. Like linear equations, questions of
existence, uniqueness, and stability of solutions of nonlinear partial differential equa-
tions are of fundamental importance. These and other aspects of nonlinear equations
have led the subject into one of the most diverse and active areas of modern mathe-
matics.



2.3 Some Nonlinear Model Equations 151

2.3 Some Nonlinear Model Equations

Nonlinear partial differential equations arise frequently in formulating fundamental
laws of nature and in the mathematical analysis of a wide variety of physical prob-
lems. Listed below are some important model equations of most common interest.

Example 2.3.1. The simplest first-order nonlinear wave (or kinematic wave) equa-
tion is

ut + c(u)ux = 0, x ∈ R, t > 0, (2.3.1)

where c(u) is a given function of u. This equation describes the propagation of a
nonlinear wave (or disturbance). A large number of nonlinear problems governed by
equation (2.3.1) include waves in traffic flow on highways (Lighthill and Whitham
1955; Richards 1956), shock waves, flood waves, waves in glaciers (Nye 1960,
1963), chemical exchange processes in chromatography, sediment transport in rivers
(Kynch 1952), and waves in plasmas.

Example 2.3.2. The nonlinear Klein–Gordon equation is

utt − c2∇2u+ V ′(u) = 0, (2.3.2)

where c is a constant, and V ′(u) is a nonlinear function of u usually chosen as the
derivative of the potential energy V (u). It arises in many physical problems includ-
ing nonlinear dispersion (Scott 1969; Whitham 1974) and nonlinear meson theory
(Schiff 1951).

Example 2.3.3. The sine-Gordon equation

utt − c2uxx + κ sinu = 0, x ∈ R, t > 0, (2.3.3)

where c and κ are constants, has arisen classically in the study of differential ge-
ometry, and in the propagation of a ‘slip’ dislocation in crystals (Frenkel and Kon-
torova 1939). More recently, it arises in a wide variety of physical problems including
the propagation of magnetic flux in Josephson-type super conducting tunnel junc-
tions, the phase jump of the wave function of superconducting electrons along long
Josephson junctions (Josephson 1965; Scott 1969), a chain of rigid pendula con-
nected by springs (Scott 1969), propagation of short optical pulses in resonant laser
media (Arecchi et al. 1969; Lamb 1971), stability of fluid motions (Scott et al. 1973;
Gibbon 1985), in ferromagnetism and ferroelectric materials, in the dynamics of
certain molecular chains such as DNA (Barone et al. 1971), in elementary particle
physics (Skyrme 1958, 1961; Enz 1963), and in weakly unstable baroclinic wave
packets in a two-layer fluid (Gibbon et al. 1979).

Example 2.3.4. The Burgers equation is

ut + uux = νuxx, x ∈ R, t > 0, (2.3.4)

where ν is the kinematic viscosity. This is the simplest nonlinear model equation
for diffusive waves in fluid dynamics. It was first introduced by Burgers (1948) to
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describe one-dimensional turbulence, and it also arises in many physical problems
including sound waves in a viscous medium (Lighthill 1956), waves in fluid-filled
viscous elastic tubes, and magnetohydrodynamic waves in a medium with finite elec-
trical conductivity.

Example 2.3.5. The Fisher equation

ut − νuxx = k

(
u− u2

κ

)
, x ∈ R, t > 0, (2.3.5)

where ν, k, and κ are constants, is used as a nonlinear model equation to study wave
propagation in a large number of biological and chemical systems. Fisher (1936) first
introduced this equation to investigate wave propagation of a gene in a population.
It is also used to study logistic growth–diffusion phenomena. In recent years, the
Fisher equation has been used as a model equation for a large variety of problems
which include gene-culture waves of advance (Aoki 1987), chemical wave propa-
gation (Arnold et al. 1987), neutron population in a nuclear reactor (Canosa 1969,
1973), and spread of early farming in Europe (Ammerman and Cavalli-Sforva 1971).
It also arises in the theory of combustion, nonlinear diffusion, and chemical kinetics
(Kolmogorov et al. 1937; Aris 1975; and Fife 1979).

Example 2.3.6. The Boussinesq equation

utt − uxx +
(
3u2

)
xx

− uxxxx = 0 (2.3.6)

describes one-dimensional weakly nonlinear dispersive water waves propagating in
both positive and negative x-directions (Peregrine 1967; Toda and Wadati 1973;
Zakharov 1968a, 1968b; Ablowitz and Haberman 1975; and Prasad and Ravin-
dran 1977). It also arises in one-dimensional lattice waves (Zabusky 1967) and ion-
acoustic solitons (Kako and Yajima 1980). In recent years, considerable attention has
been given to new forms of Boussinesq equations (Madsen et al. 1991; Madsen and
Sorensen 1992, 1993) dealing with water wave propagation and to modified Boussi-
nesq equations (Nwogu 1993; Chen and Liu 1995a, 1995b) in terms of a velocity
potential on an arbitrary elevation and free surface displacement of water.

Example 2.3.7. The Korteweg–de Vries (KdV) equation

ut + αuux + βuxxx = 0, x ∈ R, t > 0, (2.3.7)

where α and β are constants, is a simple and useful model for describing the long
time evolution of dispersive wave phenomena in which the steepening effect of the
nonlinear term is counterbalanced by the dispersion. It was originally introduced by
Korteweg and de Vries (1895) to describe the propagation of unidirectional shallow
water waves.

It admits the exact solution called the soliton. This equation arises in many phys-
ical problems including water waves (Johnson 1980, 1997; Debnath 1994), internal
gravity waves in a stratified fluid (Benney 1966; Redekopp and Weidman 1968),
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ion-acoustic waves in a plasma (Washimi and Taniuti 1966), pressure waves in a
liquid-gas bubble (Van Wijngaarden 1968), and rotating flow in a tube (Leibovich
1970). There are other physical systems to which the KdV equation applies as a
long wave approximation, including acoustic-gravity waves in a compressible heavy
liquid, axisymmetric waves in a nonuniformly rotating fluid, acoustic waves in an-
harmonic crystals, nonlinear waves in cold plasmas, axisymmetric magnetohydrody-
namic waves, and longitudinal dispersive waves in elastic rods.

Example 2.3.8. The modified KdV (mKdV) equation

ut − 6u2ux + uxxx = 0, x ∈ R, t > 0, (2.3.8)

describes nonlinear acoustic waves in an anharmonic lattice (Zabusky 1967) and
Alfvén waves in a collisionless plasma (Kakutani and Ono 1969). It also arises in
many other physical situations.

Example 2.3.9. The nonlinear Schrödinger (NLS) equation

iut + uxx + γ|u|2u = 0, x ∈ R, t > 0, (2.3.9)

where γ is a constant, describes the evolution of water waves ((Benney and
Roskes 1969; Hasimoto and Ono 1972; Davey 1972; Davey and Stewartson 1974;
Peregrine 1983); Zakharov 1968a, 1968b; Chu and Mei 1970; Yuen and Lake 1975;
Infeld et al. 1987; Johnson 1997). It also arises in some other physical systems which
include nonlinear optics (Kelley 1965; Talanov 1965; Bespalov and Talanov 1966;
Karpman and Krushkal 1969; Asano et al. 1969; Hasegawa and Tappert 1973), hy-
dromagnetic and plasma waves (Ichikawa et al. 1972; Schimizu and Ichikawa 1972;
Taniuti and Washimi 1968; Fulton 1972; Hasegawa 1990; Ichikawa 1979; Weiland
and Wiljelmsson 1977; Weiland et al. 1978), the propagation of a heat pulse in a solid
(Tappert and Varma 1970), nonlinear waves in a fluid-filled viscoelastic tube (Ravin-
dran and Prasad 1979), nonlinear instability problems (Stewartson and Stuart 1971;
Nayfeh and Saric 1971), and the propagation of solitary waves in piezoelectric semi-
conductors (Pawlik and Rowlands 1975).

Example 2.3.10. The Benjamin–Ono (BO) equation is

ut + uux +H{uxx} = 0, (2.3.10)

where H{f(ξ, t)} = f̃(x, t) is the Hilbert transform of f(ξ, t) defined by

H
{
f(ξ, t)

}
=

1

π
P

∫ ∞

−∞

f(ξ, t) dξ

ξ − x
, (2.3.11)

where P stands for the Cauchy principal value. This equation arises in the study of
weakly nonlinear long internal gravity waves (Benjamin 1967; Davis and Acrivos
1967; and Ono 1975) and belongs to the class of weakly nonlinear models.
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Example 2.3.11. The Benjamin–Bona–Mahony (BBM) equation

ut + ux + uux − uxxt = 0, x ∈ R, t > 0, (2.3.12)

represents another nonlinear model for long water waves. The KdV equation can be
written as

ut + ux + uux + uxxx = 0, x ∈ R, t > 0. (2.3.13)

The basic mathematical difference between the BBM and KdV equations can
readily be determined by comparing the approximate dispersion relations for the
respective linearized equations. We seek a plane wave solution of both linearized
equations of the form

u(x, t) ∼ exp
[
i(ωt− kx)

]
. (2.3.14)

The dispersion relation of the linearized KdV equation is then given by

ω = k − k3. (2.3.15)

The phase and group velocities are given by

Cp =
ω

k
= 1− k2 and Cg =

dω

dk
= 1− 3k2, (2.3.16ab)

which become negative for k2 > 1. This means that all waves of large wavenum-
bers (small wavelengths) propagate in the negative x-direction in contradiction to
the original assumption that waves travel only in the positive x-direction. This is an
undesirable physical feature of the KdV equation. To eliminate this unrealistic fea-
ture of the KdV equation, Benjamin et al. (1972) proposed equation (2.3.12). The
dispersion relation of the linearized version of (2.3.12) is

ω =
k

(1 + k2)
. (2.3.17)

Thus the phase and group velocities of waves associated with this model are given
by

Cp =
ω

k
=
(
1 + k2

)−1
, Cg =

(
1− k2

)(
1 + k2

)−2
. (2.3.18ab)

Both Cp and Cg tend to zero, as k → ∞, showing that short waves do not propagate.
In other words, the BBM model has the approximate features of responding only
significantly to short wave components introduced in the initial wave form. Thus,
the BBM equation seems to be a preferable model. However, the fact that the BBM
model is a better model than the KdV model has not been fully confirmed, yet.

Example 2.3.12. The Ginzburg–Landau (GL) equation is

At + aAxx = bA+ cA|A|2, (2.3.19)

where a and b are complex constants determined by the dispersion relation of linear
waves, and c is determined by the weakly nonlinear interaction (Stewartson and Stu-
art 1971). This equation describes slightly unstable nonlinear waves and has arisen
originally in the theories of superconductivity and phase transitions.
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The complex Ginzburg–Landau equation simplifies significantly if all of the co-
efficients are real. The real Ginzburg–Landau equation has been extensively investi-
gated in problems dealing with phase separation in condensed matter physics (Ben-
Jacob et al. 1985; Van Saarloos 1989; Balmforth 1995).

Example 2.3.13. The Burgers–Huxley (BH) equation

ut + αuux − νuxx = β(1− u)(u− γ)u, x ∈ R, t > 0, (2.3.20)

where α, β ≥ 0, γ (0 < γ < 1), and ν are parameters, describes the interac-
tion between convection, diffusion, and reaction. When α = 0, equation (2.3.20)
reduces to the Hodgkin and Huxley (1952) equation which describes nerve pulse
propagation in nerve fibers and wall motion in liquid crystals (Scott 1977; Satsuma
1987a, 1987b; Wang 1985, 1986; Wang et al. 1990). Because of the complexity of the
Huxley equation, the FitzHugh–Nagumo equations (FitzHugh 1961; Sleeman 1982;
Nagumo et al. 1962) proposed simple, analytically tractable, and particularly useful
model equations which contain the key features of the Huxley model. On the other
hand, when β = 0, equation (2.3.20) reduces to the Burgers equation (2.3.4) de-
scribing diffusive waves in nonlinear dissipating systems. Satsuma (1987a, 1987b)
obtained solitary wave solutions of (2.3.20) by using Hirota’s method in soliton the-
ory.

Example 2.3.14. The Kadomtsev–Petviashvili (KP) equation

(ut − 6uux + uxxx)x + 3σ2uyy = 0, (2.3.21)

is a two-dimensional generalization of the KdV equation. Kadomtsev and Petviashiv-
ili (1970) first introduced this equation to describe slowly varying nonlinear waves in
a dispersive medium (Johnson 1980, 1997). Equation (2.3.21) with σ2 = +1 arises
in the study of weakly nonlinear dispersive waves in plasmas and also in the modula-
tion of weakly nonlinear long water waves (Ablowitz and Segur 1979) which travel
nearly in one dimension (that is, nearly in a vertical plane). Satsuma (1987a, 1987b)
showed that the KP equation has N line-soliton solutions which describe the oblique
interaction of solitons. The equation with σ2 = −1 arises in acoustics and admits un-
stable soliton solutions, whereas for σ2 = +1 the solitons are stable. Freeman (1980)
presented an interesting review of soliton interactions in two dimensions. Recently,
Chen and Liu (1995a, 1995b) have derived the unified KP (uKP) equation for surface
and interfacial waves propagating in a rotating channel with varying topography and
sidewalls. This new equation includes most of the existing KP-type equations in the
literature as special cases.

Example 2.3.15. The concentric KdV equation

2uR +
1

R
u+ 3uuξ +

1

3
uξξξ = 0 (2.3.22)

describes concentric waves on the free surface of water that have decreasing ampli-
tude with increasing radius. This is also called the cylindrical KdV equation which
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was first derived in another context by Maxon and Viecelli (1974). The inverse scat-
tering transform for equation (2.3.22) involves a linearly increasing potential which
yields eigenfunctions based on the Airy function (see Calogero and Degasperis
1978). A discussion of this equation and its solution can also be found in Johnson
(1997) and Freeman (1980).

Example 2.3.16. The nearly concentric KdV equation (or the Johnson equation)
(
2uR +

1

R
u+ 3uuξ +

1

3
uξξξ

)
ξ

+
1

R2
uθθ = 0 (2.3.23)

describes the nearly concentric surface waves incorporating weak dependence on the
angular coordinate θ. In the absence of θ-dependence, equation (2.3.23) reduces to
(2.3.22). This equation was first derived by Johnson (1980) in his study of problems
of nonlinear water waves.

Example 2.3.17. The Davey–Stewartson (DS) equations

−2ikcpAτ + aAζζ − cpcgAyy + bA|A|2 + ck2Afζ = 0, (2.3.24)(
1− c2g

)
fζζ + fyy = d

(
|A|2

)
ζ
, (2.3.25)

where a, b, c, d are functions of δk (see Davey and Stewartson 1974; Johnson
1997), describe weakly nonlinear dispersive waves propagating in the x-direction
with a slowly varying structure in both the x- and y-directions. In the absence of
y-dependence with fζ ≡ 0, the DS equations recover the NLS equation for water
waves (see Hasimoto and Ono 1972) in the form

−2ikcpAτ + aAζζ + bA|A|2 = 0. (2.3.26)

This is similar to (2.3.9).

Example 2.3.18. The Whitham (1974) nonlinear nonlocal integrodifferential equa-
tion

ηt + dηηx +

∫ ∞

−∞
K(x− ξ)ηξ(ξ, t) dξ = 0 (2.3.27)

can describe symmetric waves that propagate without change of shape and peak at a
critical height, as well as asymmetric waves that invariably break. The kernel K(x)
is given by the inverse Fourier transform of the phase velocity c(k) = ω

k in the form

K(x) = F−1
{
c(k)

}
=

1

2π

∫ ∞

−∞
eikxc(k) dk. (2.3.28)

It is a well known fact that the nonlinear shallow water equations which neglect dis-
persion altogether lead to breaking of the typical hyperbolic kind, with development
of a vertical slope and a multivalued wave profile. It is clear that the third derivative
dispersion term in the KdV equation (2.3.7) prevents wave breaking. Whitham for-
mulated his equation (2.3.27) to describe the observed phenomena of solitary and pe-
riodic cnoidal waves as well as peaking and breaking of water waves. The Whitham
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equation is a kind of generalization of the KdV equation that takes c(k) = c0 − γk2

and K(x) = c0δ(x)+ δ′′(x), c20 = gh0. The detailed analysis of Whitham’s analysis
is given in Section 7.8 in Chapter 7.

Example 2.3.19. The Camassa and Holm (CH) Equation for the free surface eleva-
tion u(x, t) over a flat rigid bottom is

ut − uxxt + 3uux = 2uxuxx + uuxx, x ∈ R, t > 0. (2.3.29)

It describes the propagation of nonlinear dispersive shallow water equation to cap-
ture the essential features of wave breaking. It is integrable in the sense that there
exists a Lax pair, and has infinitely many conservation laws. The CH equation ad-
mits stable solitary wave solutions with a peak at their crests; these waves are called
peakons. A more elaborate discussion of this equation (Camassa and Holm 1993)
and its various extensions are presented in Section 9.13.

Example 2.3.20. The Degasperis and Procesi (DP) equation is

ut − uxxt + 4uux = 3uxuxx + uuxxx, x ∈ R, t > 0. (2.3.30)

It also describes the propagation of nonlinear dispersive shallow water waves. Its
solutions are singular, leading to wave breaking. The DP equation admits a shock-
peakon solution which is significantly different from the peakon solutions of the
CH equation. Both the CH and DP equations have soliton solutions which develop
singularities in finite time (or solutions blow-up in finite time). Both the CH and DP
equations can be combined into a (1 + 1)-dimensional b-family equation for fluid
velocity u(x, t) in the form

mt + umx + bmux = 0, x ∈ R, t > 0, (2.3.31)

where m = (u− uxx) and u = g ∗m is the convolution product given by

u(x) =

∫
R

g(x− ξ)m(ξ) dξ, g(x) =
1

2
exp

(
−|x|

)
, (2.3.32)

which determines the traveling wave shape and length scale for equation (2.3.31)
and the constant b is a balance (or bifurcation) parameter. Degasperis and Procesi
(1999) showed that (2.3.31) cannot be completely integrable unless b = 2 or b = 3.
When b = 2, equation (2.3.31) reduces to the CH equation (2.3.29) and when b = 3,
(2.3.31) becomes the DP equation (2.3.30). A more detailed discussion on these
equations can be found in Section 9.13.

Example 2.3.21 (The Toda Lattice Equation in a mass–spring system). A mass–
spring lattice is an infinite chain of identical masses m interconnected by nonlinear
springs. We assume that the springs have potential V (r), where r is the increase in
distance between adjacent masses from the rest value at which the spring energy is
minimum and its force (F = −dV

dr ) is zero. If yn is the longitudinal displacement of
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the nth mass from its equilibrium position, it follows from the Newton second law
of motion that

m
d2yn
dt2

= V ′(yn+1 − yn)− V ′(yn − yn−1). (2.3.33)

With rn = (yn+1 − yn), this gives an infinite set of differential equations

mr̈n =

[
dV (rn+1)

drn+1
− dV (rn)

drn

]
−
[
dV (rn)

drn
− dV (rn−1)

drn−1

]
, (2.3.34)

where n ∈ N.
In his celebrated paper, Toda (1967a, 1967b) investigated a mass–spring lattice

system with an anharmonic potential in the form

V (r) =
a

b

(
e−br + br − 1

)
, a, b > 0. (2.3.35)

With unit masses (m = 1), equation (2.3.34) reduces to the form

r̈n = a
(
2e−brn − e−brn+1 − e−brn−1

)
. (2.3.36)

This is known as the Toda lattice equation.
In the limit as b → 0 with finite ab, equation (2.3.36) reduces to the linear

differential-difference equation

r̈n = ab(rn+1 − 2rn + rn−1). (2.3.37)

This has solutions with a long wavelength velocity of
√
ab lattice points per unit

time.
When b is not small, the Toda lattice equation (2.3.36) admits exact solitary wave

solutions of the form (see Section 11.13)

rn = −1

b
log

[
1 + sinh2 κ sech2

{
κ

(
n± t

√
ab

κ
sinhκ

)}]
, (2.3.38)

where the velocity of the lattice wave is expressed in terms of the amplitude param-
eter κ in the form

v =
sinhκ

κ

√
ab, (2.3.39)

and the minus sign in (2.3.38) implies that the Toda lattice soliton (TLS) is a com-
pression wave.

As the amplitude of the TLS is reduced to zero (by letting sinhκ approach
zero), it reduces to a solution of the linear equation (2.3.37) traveling with veloc-
ity v =

√
ab.

We close this section by mentioning the Yang–Mills field equations which seem
to be a useful model unifying electromagnetic and weak forces. They have solutions,
called instantons, localized in space and time, which are interpreted as quantum-
mechanical transitions between different states of a particle. Recently, it has been
shown that the self-dual Yang–Mills equations are multidimensional integrable sys-
tems, and these equations admit reductions to well-known soliton equations in (1+1)
dimensions, that is, the sine-Gordon, NLS, KdV, and Toda lattice equations (Ward
1984, 1985, 1986).
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2.4 Variational Principles and the Euler–Lagrange Equations

Many physical systems are often characterized by their extremum (minimum, max-
imum, or saddle point) property of some associated physical quantity that appears
as an integral in a given domain, known as a functional. Such a characterization is a
variational principle leading to the Euler–Lagrange equation which optimizes the re-
lated functional. For example, light rays travel along a path from one point to another
in a minimum time. The shortest distance between two points on a plane curve is a
straight line. A physical system is in equilibrium if its potential energy is minimum.
So the main problem is to optimize a physical quantity (time, distance, or energy) in
most real-world problems. These problems belong to the subject of the calculus of
variations.

The classical Euler–Lagrange variational problem is to determine the extremum
value of the functional

I(u) =

∫ b

a

F (x, u, u′) dx, u′ =
du

dx
, (2.4.1)

with the boundary conditions

u(a) = α and u(b) = β, (2.4.2ab)

where α and β are given numbers and u(x) belongs to the class C2([a, b]) of func-
tions which have continuous derivatives up to the second order in a ≤ x ≤ b and the
integrand F has continuous second derivatives with respect to all of its arguments.

We assume that I(u) has an extremum at some u ∈ C2([a, b]). Then we consider
the set of all variations u + εv for finite u, and arbitrary v belonging to C2([a, b])
such that v(a) = 0 = v(b). We next consider the variation δI of the functional I(u)

δI = I(u+ εv)− I(u)

=

∫ b

a

[
F (x, u+ εv, u′ + εv′)− F (x, u, u′)

]
dx

which, by the Taylor series expansion,

=

∫ b

a

[
F (x, u, u′) + ε

(
v
∂F

∂u
+ v′

∂F

∂u′

)

+
ε2

2!

(
v
∂F

∂u
+ v′

∂F

∂u′

)2

+ · · · − F (x, u, u′)

]
dx

=

∫ b

a

ε

(
v
∂F

∂u
+ v′

∂F

∂u′

)
dx+O

(
ε2
)
. (2.4.3)

Thus, a necessary condition for the functional I(u) to have an extremum (or for I(u)
to be stationary) for an arbitrary ε is

0 = δI =

∫ b

a

(
v
∂F

∂u
+ v′

∂F

∂u′

)
dx, (2.4.4)
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which, integrating the second term by parts, is

=

∫ b

a

v

[
∂F

∂u
− d

dx

(
∂F

∂u′

)]
dx+

[
v
∂F

∂u′

]b
a

. (2.4.5)

Since v is arbitrary with v(a) = 0 = v(b), the last term of (2.4.5) vanishes and
consequently, the integrand of the integral in (2.4.5) must vanish, that is,

∂F

∂u
− d

dx

(
∂F

∂u′

)
= 0. (2.4.6)

This is called the Euler–Lagrange equation of the variational problem involving one
independent variable. Using the result

d

(
∂F

∂u′

)
=

∂

∂x

(
∂F

∂u′

)
dx+

∂

∂u

(
∂F

∂u′

)
du+

∂

∂u′

(
∂F

∂u′

)
du′, (2.4.7)

the Euler–Lagrange equations (2.4.6) can be written in the form

Fu − Fxu′ − u′Fuu′ − u′′Fu′u′ = 0. (2.4.8)

This is a second-order nonlinear ordinary differential equation for u provided
Fu′u′ �= 0 and, hence, there are two arbitrary constants involved in the solution.
However, when F does not depend explicitly on one of its variables x, u, or u′,
the Euler–Lagrange equation assumes a simplified form. Evidently, there are three
possible cases:

1. If F = F (x, u), then (2.4.6) reduces to Fu(x, u) = 0, which is an algebraic
equation.

2. If F = F (x, u′), then (2.4.6) becomes

∂F

∂u′ = const. (2.4.9)

3. If F = F (u, u′), then (2.4.6) takes the form

F − u′Fu′ = const. (2.4.10)

This follows from the fact that

d

dx
(F − u′Fu′) =

dF

dx
− u′ d

dx
Fu′ − u′′Fu′

= Fx + u′Fu + u′′Fu′ − u′ d

dx
Fu′ − u′′Fu′

= u′
(
Fu − d

dx
Fu′

)
= 0 by (2.4.6).

The Euler–Lagrange variational problem involving two independent variables
is to determine a function u(x, y) in a domain D ⊂ R

2 satisfying the boundary
conditions prescribed on the boundary ∂D of D and extremizing the functional
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I
[
u(x, y)

]
=

∫∫
D

F (x, y, u, ux, uy) dx dy, (2.4.11)

where the function F is defined over the domain D and assumed to have continuous
second-order partial derivatives.

Similarly, for functionals depending on a function of two independent variables,
the first variation δI of I is defined by

δI = I(u+ εv)− I(u). (2.4.12)

In view of Taylor’s expansion theorem, this reduces to

δI =

∫∫
D

[
ε(vFu + vxFp + vyFq) +O

(
ε2
)]
dx dy, (2.4.13)

where v = v(x, y) is assumed to vanish on ∂D and p = ux and q = uy .
A necessary condition for the functional I to have an extremum is that the first

variation of I vanishes, that is,

0 = δI =

∫∫
D

(vFu + vxFp + vyFq) dx dy

=

∫∫
D

v

(
Fu − ∂

∂x
Fp −

∂

∂y
Fq

)
dx dy

+

∫∫
D

[
v

(
∂

∂x
Fp +

∂

∂y
Fq

)
+ (vxFp + vyFq)

]
dx dy

=

∫∫
D

v

(
Fu − ∂

∂x
Fp −

∂

∂y
Fq

)
dx dy

+

∫∫
D

[
∂

∂x
(vFp) +

∂

∂y
(vFq)

]
dx dy. (2.4.14)

We assume that the boundary curve ∂D has a piecewise, continuously moving tan-
gent so that Green’s theorem can be applied to the second double integral in (2.4.14).
Consequently, (2.4.14) reduces to

0 = δI =

∫∫
D

v

(
Fu − ∂

∂x
Fp −

∂

∂y
Fq

)
dx dy

+

∫
∂D

v(Fp dy − Fq dx). (2.4.15)

Since v = 0 on ∂D, the second integral in (2.4.15) vanishes. Moreover, since v is an
arbitrary function, it follows that the integrand of the first integral in (2.4.15) must
vanish. Thus, the function u(x, y) extremizing the functional defined by (2.4.11)
satisfies the partial differential equation

∂F

∂u
− ∂

∂x
Fp −

∂

∂y
Fq = 0. (2.4.16)
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This is called the Euler–Lagrange equation for the variational problem involving two
independent variables.

The above variational formulation can readily be generalized for functionals de-
pending on functions of three or more independent variables. Many physical prob-
lems require determining a function of several independent variables which will lead
to an extremum of such functionals.

Example 2.4.1. Find u(x, y) which extremizes the functional

I
[
u(x, y)

]
=

∫∫
D

(
u2
x + u2

y

)
dx dy, D ⊂ R

2. (2.4.17)

The Euler–Lagrange equation with F = u2x + u2
y = p2 + q2 is

∂

∂x

(
∂F

∂p

)
+

∂

∂y

(
∂F

∂q

)
= 0,

or
uxx + uyy = 0. (2.4.18)

This is a two-dimensional Laplace equation. Similarly, the functional

I
[
u(x, y, z)

]
=

∫∫∫
D

(
u2
x + u2

y + u2
z

)
dx dy dz, D ⊂ R

3, (2.4.19)

will lead to the three-dimensional Laplace equation

uxx + uyy + uzz = 0. (2.4.20)

In this way, we can derive the n-dimensional Laplace equation

∇2u = ux1x1 + ux2x2 + · · ·+ uxnxn = 0. (2.4.21)

Example 2.4.2 (Plateau’s Problem). Find the surface S in the (x, y, z)-space of min-
imum area passing through a given plane curve C.

The direction cosine of the angle between the z-axis and the normal to the surface
z = u(x, y) is (1 + u2x + u2

y)
− 1

2 . The projection of the element dS of the area of the

surface onto the (x, y)-plane is given by (1 + u2x + u2
y)

− 1
2 dS = dx dy. The area A

of the surface S is given by

A =

∫∫
D

(
1 + u2

x + u2
y

) 1
2 dx dy, (2.4.22)

where D is the area of the (x, y)-plane bounded by the curve C.
The Euler–Lagrange equation with F = (1 + p2 + q2)

1
2 is given by

∂

∂x

(
ux√

1 + p2 + q2

)
+

∂

∂y

(
uy√

1 + p2 + q2

)
= 0. (2.4.23)



2.4 Variational Principles and the Euler–Lagrange Equations 163

This is the equation of minimal surface, which reduces to the nonlinear elliptic partial
differential equation

(
1 + u2

y

)
uxx − 2uxuyuxy +

(
1 + u2

x

)
uyy = 0. (2.4.24)

Therefore, the desired function u(x, y) should be determined as the solution of the
nonlinear Dirichlet problem for (2.4.24). This is difficult to solve. However, if the
equation (2.4.23) is linearized around the zero solution, the square root term is re-
placed by one, and then the Laplace equation is obtained.

Example 2.4.3 (Lagrange’s Equation in Mechanics). According to the Hamilton
principle in mechanics, the first variation of the time integral of the Lagrangian
L = L(qi, q̇i, t) of any dynamical system must be stationary, that is,

0 = δI = δ

∫ t2

t1

L(qi, q̇i, t) dt, (2.4.25)

where L = T − V is the difference between the kinetic energy, T , and the potential
energy, V . In coordinate space, there are infinitely many possible paths joining any
two positions. From all these paths, which start at a point A at time t1 and end at
another point B at time t2, nature selects the path qi = qi(t) for which δI = 0.
Consequently, in this case, the Euler–Lagrange equation (2.4.6) reduces to

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0, i = 1, 2, . . . , n. (2.4.26)

In classical mechanics, these equations are universally known as the Lagrange equa-
tions of motion.

The Hamilton function (or simply Hamiltonian) H is defined in terms of the
generalized coordinates qi, generalized momentum pi =

∂L
∂q̇i

, and L by

H =
n∑

i=1

(piq̇i − L) =
n∑

i=1

(
q̇i
∂L

∂q̇i
− L(qi, q̇i)

)
. (2.4.27)

It readily follows that

dH

dt
=

d

dt

[
n∑

i=1

(piq̇i − L)

]
=

n∑
i=1

q̇i

(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
= 0. (2.4.28)

Thus, H is a constant, and hence, the Hamiltonian is the constant of motion.

Example 2.4.4 (Hamilton’s Equations in Mechanics). To derive Hamilton equations
of motion, we use the concepts of generalized momentum pi and generalized force
Fi defined by

pi =
∂L

∂q̇i
and (2.4.29a)
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Fi =
∂L

∂qi
. (2.4.29b)

Consequently, the Lagrange equations of motion (2.4.26) reduce to

∂L

∂qi
=

dpi
dt

= ṗi. (2.4.30)

In general, the Lagrangian L = L(qi, q̇i, t) is a function of qi, q̇i, and t where q̇i
enters through the kinetic energy as a quadratic term. It then follows from the defi-
nition (2.4.27) of the Hamiltonian that H = H(pi, qi, t), and hence, its differential
is

dH =
∑ ∂H

∂pi
dpi +

∑ ∂H

∂qi
dqi +

∂H

∂t
dt. (2.4.31)

Differentiating (2.4.27) with respect to t gives

dH

dt
=
∑

pi
d

dt
q̇i +

∑
q̇i

d

dt
pi −

∑ ∂L

∂qi

d

dt
qi −

∑ ∂L

∂q̇i

d

dt
q̇i −

∂L

∂t
,

or equivalently,

dH =
∑

pi dq̇i +
∑

q̇i dpi −
∑ ∂L

∂qi
dqi −

∑ ∂L

∂q̇i
dq̇i −

∂L

∂t
dt,

which, due to equation (2.4.29a), is

=
∑

q̇i dpi −
∑ ∂L

∂qi
dqi −

∂L

∂t
dt. (2.4.32)

We next equate the coefficients of the two identical expressions (2.4.31) and
(2.4.32) to obtain

q̇i =
∂H

∂pi
, − ∂L

∂qi
=

∂H

∂qi
, −∂L

∂t
=

∂H

∂t
. (2.4.33)

Using the Lagrange equations (2.4.30), the first two equations in (2.4.33) give

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.4.34ab)

These are universally known as the Hamilton canonical equations of motion.

Example 2.4.5 (Law of Conservation of Energy). The kinetic energy of a mechanical
system described by a set of generalized coordinates qi is defined by

T =

n∑
i=1

n∑
j=1

1

2
aij q̇i ˙qj , (2.4.35)

where aij are known functions of qi, and q̇i is the generalized velocity.
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In general, the potential energy V = V (qi, q̇i, t) is a function of qi, q̇i, and t.
We assume here that V is independent of q̇i. For such a mechanical system, the
Lagrangian is defined by L = T − V .

Using the above definitions, the Hamilton principle states that, between any two
points t1 and t2, the actual motion takes place along the path qi = qi(t) such that the
functional

I
(
qi(t)

)
=

∫ t2

t1

Ldt =

∫ t2

t1

(T − V ) dt, (2.4.36)

is stationary (that is, the functional is an extremum). Or equivalently, the Hamilton
principle can be stated as

δI = δ

∫ t2

t1

(T − V ) dt = 0. (2.4.37)

The integral I defined by (2.4.36) is often called the action integral of the system.
Since the potential energy V does not depend on q̇i, it follows that

pi =
∂L

∂q̇i
=

∂T

∂q̇i
=

n∑
j=1

aij q̇j ,

and the Hamiltonian H defined by (2.4.27) becomes

H =

n∑
i=1

piq̇i − L =

n∑
i=1

q̇i

(
n∑

j=1

aij q̇j

)
− L = 2T − L = T + V. (2.4.38)

This proves that the Hamiltonian H is equal to the total energy. By (2.4.28), H is a
constant, thus, the total energy of the system is constant. This is the celebrated law
of conservation of energy.

Example 2.4.6 (Motion of a Particle Under the Action of a Central Force). Consider
the motion of a particle of mass m under the action of a central force −mF (r) where
r is the distance of the particle from the center of force. The kinetic energy T is

T =
1

2
mv2 =

1

2
m
(
ẋ2 + ẏ2

)
,

which, in terms of polar coordinates,

=
1

2
m

[{
d

dt
(r cos θ)

}2

+

{
d

dt
(r sin θ)

}2]
=

1

2
m
(
ṙ2 + r2θ̇2

)
. (2.4.39)

Since F = ∇V , the potential is given by

V (r) =

∫ r

F (r) dr. (2.4.40)

Then the Lagrangian L is given by
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L = T − V =
1

2
m

[(
ṙ2 + r2θ̇2

)
− 2

∫ r

F (r) dr

]
. (2.4.41)

Thus the Hamilton principle requires that the functional

I(r, θ) =

∫ t2

t1

Ldr =

∫ t2

t1

(T − V ) dt (2.4.42)

be stationary, that is, δI = 0. Consequently, the Euler–Lagrange equations are given
by

Lr −
d

dt
Lṙ = 0 and Lθ −

d

dt
Lθ̇ = 0, (2.4.43)

or equivalently,

r̈ − rθ̇2 = −F (r) and
d

dt

(
r2θ̇

)
= 0. (2.4.44)

These equations describe the planar motion of the particle.
It follows immediately from the second equation of (2.4.44) that

r2θ̇ = const. = h. (2.4.45)

In this case, rθ̇ represents the transverse velocity of the particle and mr2θ̇ = mh is
the constant angular momentum of the particle about the center of force.

Introducing r = 1
u , we find

ṙ =
dr

dt
= − 1

u2

du

dt
= − 1

u2

du

dθ
· dθ
dt

= −hdu
dθ

,

r̈ =
d2r

dt2
= −h d

dt

(
du

dθ

)
= −hd

2u

dθ2
dθ

dt
= −h2u2 d

2u

dθ2
.

Substituting these into the first equation of (2.4.44) gives

d2u

dθ2
+ u =

1

h2u2
F

(
1

u

)
. (2.4.46)

This is the differential equation of the central orbit, and it can be solved by standard
methods.

In particular, if the law of force is the attractive inverse square F (r) = μ/r2 so
that the potential V (r) = −μ/r, the differential equation (2.4.46) becomes

d2u

dθ2
+ u =

μ

h2
. (2.4.47)

If the particle is projected initially from the distance a with velocity v at an angle
α that the direction of motion makes with the outward radius vector, then the constant
h in (2.4.45) is h = av sinα.

The angle φ between the tangent and radius vector of the orbit at any point is
given by



2.4 Variational Principles and the Euler–Lagrange Equations 167

cotφ =
1

r

dr

dθ
= u

d

dθ

(
1

u

)
= − 1

u

du

dθ
.

The initial conditions at t = 0 are

u =
1

a
,

du

dθ
= −1

a
cotα, when θ = 0. (2.4.48)

The general solution of (2.4.47) is

u =
μ

h2

[
1 + e cos(θ + ε)

]
, (2.4.49)

where e and ε are constants to be determined by the initial data.
Finally, the solution can be written as

�

r
= 1 + e cos(θ + ε), (2.4.50)

where

� =
h2

μ
=

1

μ
(av sinα)2. (2.4.51)

This represents a conic section of semilatus rectum � and eccentricity e with its axis
inclined at the point of projection.

The initial conditions (2.4.48) give

�

a
= 1 + e cos ε, − �

a
cotα = −e sin ε,

so that

tan ε =

(
�

�− a

)
cotα,

e2 =

(
�

a
− 1

)2

+
�2

a2
cot2 α = 1− 2�

a
+

�2

a2
cosec2α

= 1− 1

μ

(
2av2 sin2 α

)
+

1

μ2

(
a2v4 sin2 α

)

= 1 +

(
av sinα

μ

)2(
v2 − 2μ

a

)
. (2.4.52)

Thus, the central orbit is an ellipse, parabola, or hyperbola accordingly as e < 1,
= 1, or > 1, that is, v2 < (2μ/a), = (2μ/a), or > (2μ/a).

Example 2.4.7 (The Wave Equation of a Vibrating String). We assume that, initially,
the string of length � and line density ρ is stretched along the x-axis from x = 0 to
x = �. The string will be given a small lateral displacement, which is denoted by
u(x, t) at each point along the x-axis at time t. The kinetic energy T of the string is
given by
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T =
1

2

∫ �

0

ρu2
t dx, (2.4.53)

and the potential energy is given by

T =
T ∗

2

∫ �

0

u2
x dx, (2.4.54)

where T ∗ is the constant tension of the string.
According to the Hamilton principle

0 = δ

∫ t2

t1

Ldt = δ

∫ t2

t1

(T − V ) dt

= δ

∫ t2

t1

1

2

∫ �

0

(
ρu2

t − T ∗u2
x

)
dx dt. (2.4.55)

In this case, L = 1
2 (ρu

2
t −T ∗u2

x) which does not depend explicitly on x, t, or u, and
hence, the Euler–Lagrange equation is given by

∂

∂t
(ρut)−

∂

∂x
(T ∗ux) = 0,

or
utt − c2uxx = 0, (2.4.56)

where c2 = (T ∗/ρ). This is the wave equation of the vibrating string.

Example 2.4.8 (Two-Dimensional Wave Equation of Motion for Vibrating Mem-
brane). We consider the motion of a vibrating membrane occupying the domain
D under the action of a prescribed lateral force f(x, y, t) and subject to the homoge-
neous boundary conditions u = 0 on the boundary ∂D.

The kinetic energy T and the potential energy V are given by

T =
1

2
ρ

∫∫
D

u2
t dx dy, V =

1

2
μ

∫∫
D

(
u2
x + u2

y

)
dx dy, (2.4.57)

where ρ is the surface density, μ is the elastic modulus of the membrane, and u =
u(x, y, t) is the displacement function. The Lagrangian functional is of the form

L =

∫∫
D

L dx dy, (2.4.58)

where the Lagrangian density is given by

L =
1

2
ρu2

t −
1

2
μ
(
u2
x + u2

y

)
− uf(x, y, t). (2.4.59)

According to the Hamilton principle, the first variation of the Lagrangian L must
be stationary, that is,
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0 = δ

∫ t2

t1

Ldt = δ

∫ t2

t1

∫∫
D

[
1

2
ρu2

t −
1

2
μ
(
u2
x + u2

y

)
− uf

]
dx dy. (2.4.60)

The Euler–Lagrange equation is

∂L
∂u

− ∂

∂x
Lux − ∂

∂y
Luy − ∂

∂t
Lut = 0, (2.4.61)

or equivalently,
−f + μ(uxx + uyy)− ρutt = 0. (2.4.62)

This leads to the nonhomogeneous wave equation

μ∇2u− ρutt = f(x, y, t). (2.4.63)

This is the two-dimensional nonhomogeneous wave equation that can be solved with
the initial conditions

u(x, y, t = 0) = φ(x, y) and ut(x, y, t = 0) = ψ(x, y) at t = 0. (2.4.64)

Example 2.4.9 (Three-Dimensional Nonhomogeneous Wave Equation). In three-
dimensional wave propagation in elastic media, the traveling waves exhibit various
modes of vibration including longitudinal and transverse waves. To derive the ap-
propriate equations of motion in continuous media, we need to extend the Hamilton
principle by considering the displacement vector u = u(x, t). We use symmetric
motion given by u = u(u1, u2, u3) where ui = ui(x1, x2, x3, t), i = 1, 2, 3, and
denote the particle velocity by ut = (u1,t, u2,t, u3,t). Using this notation and tensor
summation convention, the kinetic energy T and the potential energy V are given by

T =
1

2
ρui,tui,t and V =

1

2
μui,jui,j , (2.4.65)

where ui,t =
∂ui

∂t and ui,j =
∂ui

∂xj
.

Introducing an external force term f(xi, t) so that the Lagrangian density is given
by

L =
1

2
ρui,tui,t −

1

2
μui,jui,j − uif(xi, t), (2.4.66)

the Lagrangian functional is of the form

L =

∫∫∫
D

L dxj . (2.4.67)

The generalized Hamilton principle for a three-dimensional continuum for vari-
ous modes of wave propagation described by u(xj , t) takes the form

0 = δI(u) = δ

∫ t2

t1

dt

∫∫∫
D

L dxj =

∫ t2

t1

dt

∫∫∫
D

δL dxj . (2.4.68)

This means that the function u = u(xj , t) makes the functional I(u) an extremum.
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Since L is a function of ui and ui,t, and the operator δ acts on the function ui

and ui,t, we expand L to obtain

δL =
∂L
∂ui

δui +
∂L
∂ui,t

δui,t +
∂L
∂ui,j

δui,j . (2.4.69)

We next substitute (2.4.69) into (2.4.68) and then integrate by parts with respect
to t to obtain

∫ t2

t1

∂L
∂ui,t

δui,t dt = −
∫ t2

t1

d

dt

(
∂L
∂ui,t

)
δui,t dt. (2.4.70)

Interchanging ∂
∂xj

and the δ variations in the integrals involving the spatial
derivatives of ui, it turns out that

∫∫∫
D

∂L
∂ui,j

δui,j dxj =

∫∫∫
D

∂L
∂ui,j

(
∂δui

∂xj

)
dxj ,

which, by integrating by parts, is

=
∂L
∂ui,t

δui −
∫∫∫

D

d

dxj

(
∂L
∂ui,j

)
δui dxj . (2.4.71)

Since ui vanishes at t1 and t2, the integrated term also vanishes. Using (2.4.69)–
(2.4.71) in (2.4.68) gives

0 = δI(u) = δ

∫ t2

t1

dt

∫∫∫
D

δui

[
∂L
∂ui

− d

dt

(
∂L
∂ui,t

)
− d

dxj

(
∂L
∂ui,j

)]
dxj .

(2.4.72)
This is true only if the coefficients of each of the linearly independent displacements
δui vanish. Consequently, (2.4.72) leads to the Euler–Lagrange equations of motion

∂L
∂ui

− d

dt

(
∂L
∂ui,t

)
− d

dxj

(
∂L
∂ui,j

)
= 0, (2.4.73)

where the summation over j is used.
In particular, if the Lagrangian L is of the form (2.4.66), (2.4.73) gives the non-

homogeneous wave equations

μ∇2ui − ρui,tt = f(xi, t). (2.4.74)

In the case of equilibrium, the Euler–Lagrange equations (2.4.74) reduce to the
Poisson equation

μ∇2ui = f(xi, t). (2.4.75)

We close this section by adding an important comment. Many equations in
applied mathematics and mathematical physics can be derived from the Euler–
Lagrange variational principle, the Hamilton principle, or from some appropriate
variational principle.
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2.5 The Variational Principle for Nonlinear Klein–Gordon
Equations

The nonlinear Klein–Gordon equation is

utt − c2uxx + V ′(u) = 0, (2.5.1)

where V ′(u) is some nonlinear function of u chosen as the derivative of the potential
energy V (u).

The variational principle for equation (2.5.1) is given by

δ

∫∫
L(u, ut, ux) dt dx = 0, (2.5.2)

where L is the associated Lagrangian density

L(u, ut, ux) =
1

2

(
u2
t − c2u2

x

)
− V (u). (2.5.3)

The Euler–Lagrange equation associated with (2.5.2) is

∂L

∂u
− ∂

∂x

(
∂L

∂ux

)
− ∂

∂t

(
∂L

∂ut

)
= 0, (2.5.4)

which can be simplified to obtain the Klein–Gordon equation (2.5.1).
We consider the variational principle

δ

∫∫
Ldx dt = 0, (2.5.5)

with the Lagrangian L given by

L ≡ 1

2

(
u2
t − c2u2

x − d2u2
)
− γu4, (2.5.6)

where γ is a constant. The Euler–Lagrange equation associated with (2.5.5) gives the
special case of the Klein–Gordon equation

utt − c2uxx + d2u+ 4γu3 = 0. (2.5.7)

2.6 The Variational Principle for Nonlinear Water Waves

In his pioneering work, Whitham (1965a, 1965b) first developed a general approach
to linear and nonlinear dispersive waves using a Lagrangian. It is well known that
most of the general ideas about dispersive waves have originated from the classi-
cal problems of water waves. So it is important to have a variational principle for
water waves. Luke (1967) first explicitly formulated a variational principle for two-
dimensional water waves and showed that the basic equations and boundary and free
surface conditions can be derived from the Hamilton principle.
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Fig. 2.1 A general surface gravity wave problem.

We now formulate the variational principle for three-dimensional water waves
in the form

δI = δ

∫∫
D

Ldx dt = 0, (2.6.1)

where the Lagrangian L is assumed to be equal to the pressure, so that

L = −ρ
∫ η(x,t)

−h(x,y)

[
φt +

1

2
(∇φ)2 + gz

]
dz, (2.6.2)

where D is an arbitrary region in the (x, t) space, ρ is the density of water, g is the
gravitational acceleration, and φ(x, z, t) is the velocity potential in an unbounded
fluid lying between the rigid bottom at z = −h(x, y) and the free surface z =
η(x, y, t) as shown in Figure 2.1. The functions φ(x, z, t) and η(x, t) are allowed to
vary subject to the restrictions δφ = 0 and δη = 0 at x1, x2, y1, y2, t1, and t2.

Using the standard procedure in the calculus of variations, (2.6.1) becomes

0 = −δ
∫∫

D

L

ρ
dx dt

=

∫∫
D

{[
φt +

1

2
(∇φ)2 + gz

]
z=η

δη

+

∫ η

−h

[φxδφx + φyδφy + φzδφz + δφt] dz

}
dx dt, (2.6.3)

which, integrating the z-integral by parts, is

=

∫∫
D

{[
φt +

1

2
(∇φ)2 + gz

]
z=η

δη

+

[
∂

∂t

∫ η

−h

δφ dz +
∂

∂x

∫ η

−h

φxδφ dz +
∂

∂y

∫ η

−h

φyδφ dz

]

−
∫ η

−h

(φxx + φyy + φzz)δφ dz −
[
(ηt + ηxφx + ηyφy − φz)δφ

]
z=η

+
[
(φxhx + φyhy + φz)δφ

]
z=−h

}
dx dt. (2.6.4)
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The second term within the square brackets integrates out to the boundaries ∂D
of D and vanishes if δφ is chosen to be zero on ∂D. If we take δη = 0, [δφ]z=η =
[δφ]z=−h = 0, since δφ is otherwise arbitrary; it turns out that

∇2φ = 0, −∞ < x, y < ∞, −h < z < η. (2.6.5)

Since δη, [δφ]z=η , [δφ]z=−h may be given arbitrary independent values, it follows
that

φt +
1

2
(∇φ)2 + gη = 0 on z = η, (2.6.6)

ηt + ηxφx + ηyφy − φz = 0 on z = η, (2.6.7)

φxhx + φyhy + φz = 0 on z = −h. (2.6.8)

Thus, (2.6.5)–(2.6.8) represent the well-known nonlinear system of equations for
classical water waves. Finally, this analysis is in perfect agreement with that of Luke
(1967) and Whitham (1965a, 1965b, 1974) for two-dimensional waves on water of
arbitrary but uniform depth h.

It may be relevant to mention Zakharov’s (1968a, 1968b) Hamiltonian formula-
tion. The Hamiltonian is

H =
1

2

∫ ∞

−∞

(
gη2 +

∫ η

−h

(∇φ)2 dz

)
dx. (2.6.9)

On the other hand, Benjamin and Olver (1982) have described the Hamiltonian
structure, symmetrics, and conservation laws for water waves. Olver (1984a, 1984b)
has discussed Hamiltonian and non-Hamiltonian models for water waves, and Hamil-
tonian perturbation theory and nonlinear water waves.

2.7 The Euler Equation of Motion and Water Wave Problems

The Euler equation of motion and the equation of continuity have provided the fun-
damental basis of the study of modern theories of water waves, which are the most
common observable phenomena in nature. Water wave motions are of great impor-
tance as they range from waves generated by wind or solar heating at the surface of
oceans to flood waves in rivers, from waves caused by a moving ship in a channel
to tsunami (tidal waves) generated by earthquakes, and from solitary waves on the
surface of a channel generated by a disturbance to waves generated by underwater
explosions, to mention only a few.

Making reference to Debnath’s book (1994), Nonlinear Water Waves, the Euler
equation of motion in an inviscid and incompressible fluid of constant density ρ
under the action of body force F = (0, 0,−g) where g is the constant acceleration
of gravity and the equation of continuity are given by

Du

Dt
= −1

ρ
∇p+ F, (2.7.1)
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∇ · u =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.7.2)

where x = (x, y, z) is the rectangular Cartesian coordinates and u = (u, v, w) is the
velocity vector, p is the pressure field, and

D

Dt
=

∂

∂t
+ u · ∇ =

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (2.7.3)

These equations constitute a closed system of four nonlinear partial differential
equations for four unknowns u, v, w, and p. So these equations with appropriate
initial and boundary conditions are sufficient to determine the velocity field u and
pressure p uniquely.

In the study of water waves, the body force is always the acceleration due to
gravity, that is, F = (0, 0,−g). It is convenient to write the three components of the
Euler equation in the form

Du

Dt
= −1

ρ

∂p

∂x
, (2.7.4)

Dv

Dt
= −1

ρ

∂p

∂y
, (2.7.5)

Dw

Dt
= −1

ρ

∂p

∂z
− g, (2.7.6)

and the continuity equation (2.7.2).
In cylindrical polar coordinates x = (r, θ, z) with the velocity vector u =

(u, v, w), the Euler equations and the continuity equation are given by

Du

Dt
− v2

r
= −1

ρ

∂p

∂r
, (2.7.7)

Dv

Dt
+

uv

r
= −1

ρ

1

r

∂p

∂θ
, (2.7.8)

Dw

Dt
= −1

ρ

∂p

∂z
− g, (2.7.9)

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

∂w

∂z
= 0, (2.7.10)

where
D

Dt
=

∂

∂t
+ u

∂

∂r
+

v

r

∂

∂θ
+ w

∂

∂z
. (2.7.11)

One of the fundamental properties of a fluid flow is called the vorticity, which is
defined by the curl of the velocity field so that ωωω = curlu = ∇ × u. The vorticity
vector ωωω measures the local spin or rotation of individual fluid particles. Evidently,
fluid flows in which ωωω = 0 are called irrotational. In the real world, fluid flows
are hardly irrotational anywhere; however, for many flows the vorticity is very small
almost everywhere and the fluid motion may be treated as irrotational. In problems
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of water waves, the motion of fluid is considered unsteady and irrotational which
implies that the vorticity ωωω = curlu = ∇ × u = 0. So there exists a single-valued
velocity potential φ so that u = ∇φ. The continuity equation (2.7.2) then reduces to
the Laplace equation

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0. (2.7.12)

Using the vector identity, (u · ∇)u = 1
2∇u2 − u×ωωω combined with ωωω = 0 and

u = ∇φ, the Euler equation (2.7.1) may be written in the form

∇
[
φt +

1

2
(∇φ)2 +

p

ρ
+ gz

]
= 0. (2.7.13)

This can be integrated with respect to the space variables to obtain the equation

φt +
1

2
(∇φ)2 +

p

ρ
+ gz = c(t), (2.7.14)

where c(t) is an arbitrary function of time only (∇c = 0) determined by the pres-
sure imposed at the boundaries of the fluid flow. Since only the pressure gradient
affects the flow, a function of t alone added to the pressure field p has virtually no
effect on the motion. So, without loss of generality, we can set c(t) ≡ 0 in (2.7.14).
Consequently, equation (2.7.14) becomes

φt +
1

2
(∇φ)2 +

p

ρ
+ gz = 0. (2.7.15)

This equation is known as Bernoulli’s equation (or the pressure equation), which
completely determines the pressure in terms of the velocity potential φ. Thus, the
Laplace equation (2.7.12) and (2.7.15) are used to determine φ and p, and hence the
velocity components u, v, w, and the pressure p.

In cylindrical polar coordinates x = (r, θ, z) with the velocity field u =
(φr,

1
rφθ, φz), the Laplace equation becomes

∇2φ =
1

r

∂

∂r
(rφr) +

1

r2
∂2φ

∂θ2
+

∂2φ

∂z2
= 0. (2.7.16)

We assume that the fluid occupies the region −h ≤ z ≤ 0 with the plane z =
−h as the rigid bottom boundary and the plane z = 0 as the upper (free surface)
boundary in the undisturbed state. We suppose that the upper boundary is the surface
exposed to a constant atmospheric pressure pa. Since the free surface is exposed to
the constant atmospheric pressure pa, we have p = pa on this surface. After the
motion is set up, we denote this surface by S with the equation z = η(x, y, t) where
η is an unknown function of x, y, and t that tends to zero as t → 0. The function
η(x, y, t) is referred to as the free surface elevation.

The rate of change of η, following a fluid particle, is equal to the vertical compo-
nent of ∇φ at the surface, that is,
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ηt + u · ∇η = φz on z = η.

Or equivalently, this free surface condition reads as

ηt + φxηx + φyηy − φz = 0 on z = η. (2.7.17)

This is called the kinematic free surface condition.
Since p = pa on S, after absorbing pa

ρ and c(t) into φt, equation (2.7.14) can be
rewritten as

∂φ

∂t
+

1

2
(∇φ)2 + gz = 0 on S for t ≥ 0. (2.7.18)

Since S is a free boundary surface, it contains the same fluid particles for all
times, that is, S is a material surface. Hence, it follows from (2.7.18) that

D

Dt

[
∂φ

∂t
+

1

2
(∇φ)2 + gz

]
= 0 on S for t ≥ 0.

Or equivalently, on S for t ≥ 0,
(
∂

∂t
+∇φ · ∇

)[
∂φ

∂t
+

1

2
(∇φ)2 + gz

]

= φtt + 2∇φ · ∇(φt) +
1

2
∇φ · ∇(∇φ)2 + gφz = 0. (2.7.19)

Since the bottom boundary z = −h is a rigid solid surface at rest, the condition
to be satisfied at this boundary is

∂φ

∂z
= 0 on z = −h, t ≥ 0. (2.7.20)

Thus, Laplace’s equation (2.7.12) together with the free surface boundary con-
ditions (2.7.17), (2.7.19) and the bottom boundary condition (2.7.20) determine the
velocity potential φ and the free surface elevation η. Because of the presence of the
nonlinear terms in the free surface boundary conditions (2.7.17) and (2.7.19), the de-
termination of φ and η in the general case is a difficult task. We restrict our discussion
to two particular cases because of the great importance of water wave motions.

Example 2.7.1 (Small Amplitude Water Waves). We consider plane waves propagat-
ing in the x-direction whose amplitude varies in the z-direction with the gravitational
force as the only body force. We first consider the case where the motion is linear so
that nonlinear terms in velocity components may be neglected. In this case, no dis-
tinction is made between the initial and the current states of the free surface bound-
ary, and the boundary conditions (2.7.18) and (2.7.19) are given in the linearized
forms

φt + gη = 0 on z = 0, t > 0, (2.7.21)

φtt + gφz = 0 on z = 0, t > 0. (2.7.22)
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These conditions yield

ηt = φz on z = 0, t > 0. (2.7.23)

For a plane wave propagating in the x-direction with frequency ω and wavenum-
ber k, we seek a solution for φ(x, z, t) in the form

φ = Φ(z) exp
[
i(ωt− kx)

]
, (2.7.24)

where Φ(z) is a function to be determined.
Substituting (2.7.24) in the Laplace equation (2.7.12) with no y dependence gives

an equation for Φ as
Φzz = k2Φ. (2.7.25)

The general solution of this equation is

Φ(z) = Aekz +Be−kz, (2.7.26)

where A and B are arbitrary constants. Using the boundary condition (2.7.20), we
find A exp(−kh) = B exp(kh) so that the solution (2.7.26) takes the form

Φ = C cosh k(z + h), (2.7.27)

where C = 2A exp(−kh) = 2B exp(kh) is an arbitrary constant so that the solution
(2.7.24) becomes

φ = C cosh k(z + h) exp
[
i(ωt− kx)

]
. (2.7.28)

Using (2.7.28) in (2.7.21) yields

η = a exp
[
i(ωt− kx)

]
, (2.7.29)

where a = (Cω/ig) cosh kh = max |η| is the amplitude. Thus, the solution (2.7.28)
assumes the final form

φ =

(
iag

ω

)
cosh k(z + h)

cosh kh
exp

[
i(ωt− kx)

]
. (2.7.30)

Substituting (2.7.30) into (2.7.22) gives the following dispersion relation be-
tween the frequency and wavenumber:

ω2 = gk tanh kh. (2.7.31)

Thus, the phase velocity, cp = (ωk ), can be obtained from (2.7.31) as

c2p =
ω2

k2
=

g

k
tanh(kh). (2.7.32)

This result shows that the phase velocity cp depends on the wavenumber k, depth
h, and the gravity g. Hence, water waves are dispersive in nature. This means that, as
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the time passes, the waves would disperse (spread out) into different groups such that
each group would consist of waves having approximately the same wavelength. The
quantity dω

dk represents the velocity of such a group in the direction of propagation
and is called the group velocity, cg. It follows from (2.7.31) that

cg =
dω

dk
=

(
g

2ω

)(
tanh kh+ kh sech2kh

)
, (2.7.33)

which, by using (2.7.32), is

=
1

2
cp

[
1 +

2kh

sinh 2kh

]
. (2.7.34)

Evidently, the group velocity is different from the phase velocity.
In the case where wavelength 2π/k is large compared with the depth h, such

waves are called long waves (or shallow water waves), kh � 1 so that tanh kh ≈
kh, and hence, sinh 2kh ≈ 2kh. In such a situation, results (2.7.32) and (2.7.34) give

cg = cp ≈
√
gh = c. (2.7.35)

Thus, shallow water waves are nondispersive and their speed varies as the square
root of the depth.

In the other limiting case, where the wavelength is very small compared with the
depth, such waves are called short waves (or deep water waves), kh  1. In the limit
kh → ∞, [cosh k(z+h)/ cosh kh] → exp(kz), and the corresponding solutions for
φ and η become

φ = Re

(
iag

ω

)
exp

[
kz + i(ωt− kx)

]

=

(
ag

ω

)
exp(kz) sin(kx− ωt), (2.7.36)

η = Re a exp
[
i(ωt− kx)

]
= a cos(ωt− kx). (2.7.37)

In the limit kh → ∞, tanh kh → 1 so that the dispersion relation becomes

ω2 = gk. (2.7.38)

Consequently,

cp =

(
g

k

) 1
2

=

(
gλ

kπ

) 1
2

, (2.7.39)

cg =
1

2
cp. (2.7.40)

Evidently, deep water waves are dispersive and the phase velocity is proportional to
the square root of their wavelength. Also the group velocity is equal to one-half of
the phase velocity.
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Example 2.7.2 (The Stokes’ Waves or Nonlinear Finite Amplitude Waves). We con-
sider the Stokes’ waves where the motion is nonlinear and the amplitude of the waves
is not small. We recall Bernoulli’s equation (2.7.18) and (2.7.19) and write them for
ready reference in the form

η = −1

g

[
φt +

1

2
(∇φ)2

]
z=η

, (2.7.41)

[φtt + gφz]z=η + 2[∇φ · ∇φt]z=η +
1

2

[
∇φ · ∇(∇φ)2

]
z=η

= 0. (2.7.42)

A systematic procedure can be employed to rewrite these boundary conditions
by using Taylor’s series expansions of the potential φ and its derivatives in the form

φ(x, y, z = η, t) = [φ]z=0 + η[φz]z=0 +
1

2
η2[φzz]z=0 + · · · , (2.7.43)

φz(x, y, z = η, t) = [φz]z=0 + η[φzz]z=0 +
1

2
η2[φzzz]z=0 + · · · . (2.7.44)

Substituting these and similar Taylor’s expansions into (2.7.41) gives

η = −1

g

[
φt +

1

2
(∇φ)2

]
z=0

+ η

[
−1

g

{
φt +

1

2
(∇φ)2

}
z

]
z=0

+ · · ·

= −1

g

[
φt +

1

2
(∇φ)2

]
z=0

+
1

g2

[{
φt +

1

2
(∇φ)2

}{
φt +

1

2
(∇φ)2

}
z

]
z=0

+ · · ·

= −1

g

[
φt +

1

2
(∇φ)2 − 1

g
φtφzt

]
z=0

+O
(
φ3
)
. (2.7.45)

Similarly, condition (2.7.42) gives

[φtt + gφz]z=0 + η
[
(φtt + gφz)z

]
+

1

2
η2
[
(φtt + gφz)zz

]
z=0

+ · · ·+ 2[∇φ · ∇φt]z=0 + 2η
[
{∇φ · ∇φt}z

]
z=0

+ η2
[
{∇φ · ∇φt}zz

]
z=0

+ · · ·+ 1

2

[{
∇φ · ∇(∇φ)2

}]
z=0

+
1

2
η
[{
∇φ · ∇(∇φ)2

}
z

]
z=0

+
1

4
η2
[{

∇φ · ∇(∇φ)2
}
zz

]
z=0

+ · · · = 0. (2.7.46)

We substitute (2.7.45) for η into (2.7.46) to obtain

[φtt + gφz]z=0 −
1

g

[
φt +

1

2
(∇φ)2 − 1

g
φtφzt

]
z=0

[
(φtt + gφz)z

]
z=0

+
1

2g2

[{
φt +

1

2
(∇φ)2 − 1

g
φtφzt

}2]
z=0

[
(φtt + gφz)zz

]
z=0
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+ 2
[
(∇φ) · ∇φt

]
z=0

− 2

g

[
φt +

1

2
(∇φ)2 − 1

g
φtφzt

]
z=0

[
(∇φ · ∇φt)z

]
z=0

+
1

2

[
∇φ · ∇(∇φ)2

]
z=0

− 2

g

[
φt +

1

2
(∇φ)2 − 1

g
φtφzt

]
z=0

×
[{

∇φ · ∇(∇φ)2
}
z

]
z=0

= 0. (2.7.47)

The first-, second-, and third-order boundary conditions on z = 0 are respectively
given by

(φtt + gφz) = 0 +O
(
φ2
)
, (2.7.48)

(φtt + gφz) + 2[∇φ · ∇φt]−
1

g
φt(φtt + gφz)z = 0 +O

(
φ3
)
, (2.7.49)

(φtt + gφz) + 2[∇φ · ∇φt] +
1

2

[
∇φ · ∇(∇φ)2

]

− 1

g
φt

[
φtt + gφz + 2(∇φ · ∇φt)

]
z
− 1

g

[
1

2

(
∇φ2

)
− 1

g
φtφzt

]
[φtt + gφz]z

+
1

2g2
[φt]

2
[
(φtt + gφz)zz

]
= 0 +O

(
φ4
)
, (2.7.50)

where O (·) indicates the order of magnitude of the neglected terms. These results
can be determined by the third-order expansion of plane progressive surface waves.

As indicated before, the first-order plane wave potential φ in deep water is
given by (2.7.36). Direct substitution of the first-order velocity potential (2.7.36)
in the second-order boundary condition (2.7.49) reveals that the second-order terms
in (2.7.49) vanish. Thus, the first-order potential is a solution of the second-order
boundary-value problem, and we can state that

φ =

(
ga

ω

)
ekz sin(kx− ωt) +O

(
a3
)
. (2.7.51)

Substitution of this result into (2.7.45) leads to the second-order result for η in the
form

η = a cos(kx− ωt)− 1

2
ka2 + ka2 cos2(kx− ωt) + · · ·

= a cos(kx− ωt) +
1

2
ka2 cos

{
2(kx− ωt)

}
+ · · · . (2.7.52)

The second term in (2.7.52), which represents the second-order correction to the
surface profile, is positive at the crests kx− ωt = 0, 2π, 4π, . . . , and negative at the
troughs kx − ωt = π, 3π, 5π, . . . . But the crests are steeper, and the troughs flatter
as a result of the nonlinear effect. The notable feature of solution (2.7.52) is that the
wave profile is no longer sinusoidal. The actual shape of the wave profile is a curve
known as a trochoid (see Figure 2.2), whose crests are steeper and troughs are flatter
than those of the sinusoidal wave.

Substituting the wave potential (2.7.51) in the third-order boundary condition
(2.7.50) reveals that all nonlinear terms vanish identically except one term, (12 )∇φ ·
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Fig. 2.2 The surface wave profile.

∇(∇φ)2. Thus the boundary condition for the third-order plane wave solution is
given by

φtt + gφz +
1

2
∇φ · ∇(∇φ)2 = 0 +O

(
φ4
)
. (2.7.53)

If the first-order solution (2.7.51) is substituted into the third-order boundary
condition on z = 0, the dispersion relation with second-order effect is obtained in
the form

ω2 = gk
(
1 + a2k2

)
+O

(
k3a3

)
. (2.7.54)

Note that this relation involves the amplitude in addition to frequency and wavenum-
ber. This is called the nonlinear dispersion relation and it can be expressed in terms
of the phase velocity as

cp =
ω

k
=

(
g

k

) 1
2 (
1 + k2a2

) 1
2 ≈

(
g

k

) 1
2
(
1 +

1

2
a2k2

)
. (2.7.55)

Thus the phase velocity depends on the wave amplitude, and waves of large ampli-
tude travel faster than smaller ones. The dependence of cp on amplitude is known as
the amplitude dispersion in contrast to the frequency dispersion as given by (2.7.38).

It may be noted that Stokes’ results (2.7.52), (2.7.54), and (2.7.55) can easily be
approximated further to obtain solutions for long waves (or shallow water) and for
short waves (or deep water).

We conclude this example by discussing the phenomenon of breaking of water
waves, which is one of the most common observable phenomena on an ocean beach.
A wave coming from deep ocean changes shape as it moves across a shallow beach.
Its amplitude and wavelength also are modified. The wavetrain is very smooth some
distance offshore, but as it moves inshore, the front of the wave steepens noticeably
until, finally, it breaks. After breaking, waves continue to move inshore as a series
of bores or hydraulic jumps, whose energy is gradually dissipated by means of the
water turbulence. Of the phenomena common to waves on beaches, breaking is the
physically most significant and mathematically least known. In fact, it is one of the
most intriguing longstanding problems of water waves theory.

For waves of small amplitude in deep water, the maximum particle velocity is
v = aω = ack. But the basic assumption of small amplitude theory implies that v

c =
ak � 1. Therefore, wave breaking can never be predicted by the small amplitude
wave theory. That possibility arises only in the theory of finite amplitude waves. It is
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Fig. 2.3 The steepest wave profile.

to be noted that the Stokes’ expansions are limited to relatively small amplitude and
cannot predict the wavetrain of maximum height at which the crests are found to be
very sharp. For a wave profile of constant shape moving at a uniform velocity, it can
be shown that the maximum total crest angle as the wave begins to break is 120◦; see
Figure 2.3.

The upshot of the Stokes’ analysis reveals that the inclusion of higher-order terms
in the representation of the surface wave profile distorts its shape away from the
linear sinusoidal curve. The effects of nonlinearity are likely to make crests narrower
(sharper) and the troughs flatter as depicted in Figure 2.7 of Debnath (1994). The
resulting wave profile more accurately portrays the water waves that are observed in
nature. Finally, the sharp crest angle of 120◦ was first found by Stokes.

On the other hand, in 1865, Rankine conjectured that there exists a wave of ex-
treme height. In a moving reference frame, the Euler equations are Galilean invariant,
and the Bernoulli equation (2.7.14) on the free surface of water with ρ = 1 becomes

1

2
|∇φ|2 + gz = E.

Thus, this equation represents the conservation of local energy, where the first term
is the kinetic energy of the fluid and the second term is the potential energy due to
gravity. For the wave of maximum height, E = gzmax, where zmax is the maximum
height of the fluid. Thus, the velocity is zero at the maximum height so that there
will be a stagnation point in the fluid flow. Rankine conjectured that a cusp is devel-
oped at the peak of the free surface with a vertical slope so that the angle subtended
at the peak is 120◦ as also conjectured by Stokes (1847). Toland (1978) and Am-
ick et al. (1982) have proved rigorously the existence of a wave of greatest height
and the Stokes’ conjecture for the wave of extreme form. However, Toland (1978)
also proved that if the singularity at the peak is not a cusp, that is, if there is no
vertical slope at the peak of the free surface, then the Stokes’ remarkable conjecture
of the crest angle of 120◦ is true. Subsequently, Amick et al. (1982) confirmed that
the singularity at the peak is not a cusp. Therefore, the full Euler equations exhibit
singularities, and there is a limiting amplitude to the periodic waves.

We next formulate the modern mathematical theory of nonlinear water waves. It
is convenient to take the free surface elevation above the undisturbed mean depth h
as z = η(x, y, t) so that the free surface of water is at z = H = h + η and the
horizontal rigid bottom is at z = 0 where the z-axis is vertical positive upwards.
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It is also convenient to introduce nondimensional flow variables based on a typ-
ical horizontal length scale � (which may be wavelength λ), typical vertical length
scale h, typical horizontal velocity scale, c =

√
gh (shallow water wave speed),

typical time scale ( c� ), typical vertical velocity scale (hc� ), and the typical pressure
scale ρc2. Using asterisks to denote nondimensional flow variables, we write

(x, y) = �
(
x∗, y∗

)
, z = hz∗, t =

(
�

c

)
t∗, (2.7.56)

(u, v) = c
(
u∗, v∗

)
, w =

(
hc

�

)
w∗, and p = ρc2p∗. (2.7.57)

We next introduce two fundamental parameters δ and ε defined by

δ =
h2

�2
and ε =

a

h
, (2.7.58)

where δ is called the long wavelength (or shallowness) parameter, ε is called the
amplitude parameter, and a is the typical wave amplitude. These two parameters
play a crucial role in the modern theory of water waves.

In terms of the amplitude parameter, the free surface at z = H = h + η and the
bottom boundary surface at z = 0 of the fluid can be written as the nondimensional
form

z = 1 + εη and z = 0, (2.7.59)

where (ηa ) is replaced by the nondimensional value η.
The variable pressure field P representing the deviation from the hydrostatic

pressure gρ(h− z) is given by

p = pa + gρ(z − h) + gρhP, (2.7.60)

where pa is the constant atmospheric pressure and the scale gρh of pressure is based
on the pressure at the depth z = h.

In terms of the nondimensional variables, the Euler equations (2.7.4)–(2.7.6) and
the continuity equation (2.7.2) can be written in the form, dropping the asterisks and
replacing P by p,

Du

Dt
= −∂p

∂x
,

Dv

Dt
= −∂p

∂y
, δ

Dw

Dt
= −∂p

∂z
, (2.7.61)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2.7.62)

The kinematic free surface and the dynamic free surface conditions (see Debnath
1994, pp. 6–7) are expressed in the nondimensional form, dropping the asterisks,

w = ε(ηt + uηx + vηy) on z = 1 + εη, (2.7.63)

p = εη on z = 1 + εη. (2.7.64)

The bottom boundary condition is
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w = 0 on z = 0. (2.7.65)

It follows from the free surface conditions that both w and p are proportional to
the amplitude parameter ε. In the limit as ε → 0, bothw and p tend to zero, indicating
that there is no disturbance at the free surface.

Consistent with the governing equations and the boundary conditions, we intro-
duce a set of scaled flow variables

(u, v, w, p) → ε(u, v, w, p) (2.7.66)

so that the governing equations (2.7.61) and (2.7.62) and the boundary conditions
(2.7.63)–(2.7.65) become

Du

Dt
= −∂p

∂x
,

Dv

Dt
= −∂p

∂y
, δ

Dw

Dt
= −∂p

∂z
, (2.7.67)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.7.68)

w = ηt + ε(uηx + vηy), p = η on z = 1 + εη, (2.7.69)

w = 0 on z = 0, (2.7.70)

where
D

Dt
≡ ∂

∂t
+ ε

(
u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
, (2.7.71)

and parameters δ and ε are given by (2.7.58).
In general, there are two most commonly adopted and useful approximations:

(i) ε → 0, that is, small amplitude water waves governed by the linearized equations,
and (ii) δ → 0, that is, shallow water wave equations (or long water waves). These
approximate models and their solutions constitute the classical theory of water waves
(see Debnath 1994).

In the first case, the linearized equations of water waves are obtained from
(2.7.67)–(2.7.71) in the limit as ε → 0 in the form

∂u

∂t
= −∂p

∂x
,

∂v

∂y
= −∂p

∂y
, δ

∂w

∂t
= −∂p

∂z
, (2.7.72)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.7.73)

w = ηt and p = η on z = 1, (2.7.74)

w = 0 on z = 0. (2.7.75)

In the second case, the shallow water equations (long water waves) are described
in the sense that

√
δ = (h� ) is small so that δ → 0 with fixed amplitude parameter ε.

Consequently, the governing equations and the boundary conditions are obtained
from (2.7.67)–(2.7.71) in the limit as δ → 0 in the form

Du

Dt
= −∂p

∂x
,

Dv

Dt
= −∂p

∂y
,

∂p

∂z
= 0, (2.7.76)
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∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.7.77)

w = ηt + ε(uηx + vηy) and p = η on z = 1 + εη, (2.7.78)

w = 0 on z = 0, (2.7.79)

where D
Dt is given by (2.7.71).

Finally, equations that describe small amplitude waves ε → 0 and long waves
(δ → 0) are obviously consistent with (2.7.72)–(2.7.75) for the first case, and also
with equations (2.7.76)–(2.7.79) with

∂p

∂z
= 0; p = η on z = 1 (2.7.80)

or (2.7.76)–(2.7.79) with ε → 0.
The solutions of these various approximate governing equations describe the

classical water waves (see Debnath 1994).

Example 2.7.3 (Solution of a Linearized Water Wave Problem). We consider the
propagation of a plane harmonic water wave in the x-direction in a fluid of constant
depth. With no y-dependence, the governing equations and the boundary conditions
are obtained from (2.7.72)–(2.7.75) in the form

ut = −px, δwt = −pz, ux + wz = 0, (2.7.81)

w = ηt and p = η on z = 1, (2.7.82)

w = 0 on z = 0. (2.7.83)

We assume a plane wave solution in the form

(u,w, p) =
[
u∗(z), w∗(z), p∗(z)

]
exp

[
i(ωt− kx)

]
. (2.7.84)

The free surface elevation is given by

η(x, t) = a exp
[
i(ωt− kx)

]
+ c.c., (2.7.85)

where a is a constant wave amplitude and c.c. denotes the complex conjugate. Obvi-
ously, (2.7.85) represents a plane harmonic wave whose initial form at t = 0 is given
by η(x, 0).

Substituting the solution (2.7.84) into (2.7.81) gives, dropping asterisks,

u =
k

ω
p, p′ = −iωδw, w′ = iku, (2.7.86)

where the prime denotes the derivative with respect to z.
It readily follows from (2.7.86) that

w′′ = iku′ =
ik2

ω
p′ =

(
δk2

)
w. (2.7.87)

Thus, the general solution of (2.7.87) is
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w = A exp
(√

δkz
)
+B exp

(
−
√
δkz

)
, (2.7.88)

whereA andB are arbitrary constants to be determined from (2.7.82), (2.7.83) which
give

w(1) = iωa, p(1) = a, w(0) = 0. (2.7.89)

Consequently, the solution (2.7.88) assumes the final form

w(z) = Re(iωa)
sinh(

√
δkz)

sinh(
√
δk)

. (2.7.90)

It follows from the boundary conditions that

a = p(1) =
ω

k
u(1) =

ω

ik2
w′(1) =

(
aω2

k

)√
δ coth

(
k
√
δ
)
. (2.7.91)

This leads to the dispersion relation

ω2 =

(
k√
δ

)
tanh

(
k
√
δ
)
, (2.7.92)

where
√
δ = hλ−1 which is equal to dimensional (physical) quantity (h� ) and k

√
δ

is equal to dimensional quantity kh.
As before, the dispersion relation determines the frequency ω = ω(k) and the

phase velocity

c2p =

(
ω

k

)2

=
(
k
√
δ
)−1

tanh
(
k
√
δ
)
. (2.7.93)

The group velocity cg is given by

cg =
dω

dk
=

1

2ω
√
δ

[
tanh

(
k
√
δ
)
+ k

√
δ sech2

(
k
√
δ
)]

which, by (2.7.93), is

=
1

2
cp

[
1 +

2k
√
δ

sinh(2k
√
δ)

]
. (2.7.94)

In the case of shallow water waves, k
√
δ → 0 so that tanh(k

√
δ) ≈ k

√
δ. Hence,

results (2.7.93), (2.7.94) lead to cp = cg = 1. Both the phase and group velocities
are independent of the wavelength. So, the shallow water waves are nondispersive.
In terms of the dimensional variables, the phase velocity is

cp = ±c = ±
√
gh. (2.7.95)

This confirms the choice of the velocity scale c adopted before.
For deep water waves, k

√
δ → ∞ so that tanh(k

√
δ) → 1. Consequently,

ω2 =
k√
δ
, c2p =

(
k
√
δ
)−1

, and cg =
1

2
cp. (2.7.96)



2.7 The Euler Equation of Motion and Water Wave Problems 187

Example 2.7.4 (Small Amplitude Gravity-Capillary Surface Waves on Water of
depth h). The governing equation for the two-dimensional linearized gravity-
capillary surface waves on water of constant depth h with the free surface at z = 0
are given by

∇2φ = φxx + φzz = 0, −h ≤ z < 0, t > 0, (2.7.97)

where φ(x, z, t) is the velocity potential.
Representing the free surface elevation function by η = η(x, t), the linearized

kinematic and dynamic free surface conditions are

ηt − φz = 0 on z = 0, t > 0, (2.7.98)

φt + gη − T

ρ
ηxx = 0 on z = 0, t > 0, (2.7.99)

where g is the acceleration of gravity and T is the surface tension, and ρ is the
constant density of water.

The boundary condition at the horizontal rigid bottom at z = −h

φz = 0 at z = −h. (2.7.100)

We seek the same solution (2.7.28) for φ(z, x, t) and (2.7.29) for η(x, t) so that
φ(x, z, t) assumes the same form (2.7.30). In view of (2.7.98), (2.7.99) reduces to
the form

φtt + gφz −
T

ρ
φzxx = 0 on z = 0, t > 0. (2.7.101)

Substituting (2.7.30) into (2.7.101) gives the dispersion relation for the gravity-
capillary waves in the form

ω2 = gk

(
1 +

Tk2

ρg

)
tanh kh. (2.7.102)

Or equivalently, this gives the phase velocity cp of the surface gravity-capillary waves
on water of finite depth h

c2p =
ω2

k2
=

(
g

k
+

T

ρ
k

)
tanh kh. (2.7.103)

It can easily be recognized that result (2.7.102) or (2.7.103) is exactly the same
as result (2.7.31) or (2.7.32) with g replaced by (g + ρ−1Tk2). This means that
all the properties of gravity-capillary waves can be described correctly when this
replacement is made in the results of pure gravity waves.

Introducing the Froude number F and the Bond number τ by

F =
cp√
gh

and τ =
T

gρh2
, (2.7.104)

the dimensionless form of the dispersion relation (2.7.103) is
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Fig. 2.4 The square of the Froude number, F 2, against (kh)−1.

F 2 =

(
1

kh
+ τkh

)
tanh kh. (2.7.105)

The square of the Froude number is plotted against (kh)−1 = ( λ
2πh ) for four values

of the Bond number τ = 1.3, 1
3 , 0.1, and 0.05 in Figure 2.4. This figure shows that

F 2 decreases monotonically with (kh)−1 when τ > 1
3 , and it has a minimum for

τ < 1
3 . As kh = 2π(hλ ) → 0 (or λ

h → ∞), F → 1.
In case of water of infinite depth (kh → ∞, tanh kh → 1), (2.7.102) or (2.7.103)

leads to

ω2 = gk

(
1 +

Tk2

gρ

)
or c2p =

(
g

k
+

Tk

ρ

)
. (2.7.106)

Thus, for pure surface gravity waves (T = 0, g �= 0) in deep water, (2.7.106)
reduces to (2.7.38). Similarly, for pure surface capillary waves (g = 0, T �= 0), the
dispersion relation is

ω2 =
Tk3

ρ
or c2p =

Tk

ρ
. (2.7.107)

It is convenient to write (2.7.106) as

ω2 = gk(1 + T ∗) or c2p =
g

k
(1 + T ∗), (2.7.108)

where the parameter T ∗ = (Tk2/gρ) represents the relative importance of surface
tension and gravity.

It also follows from (2.7.106) that the phase velocity cp has a minimum value at
k = km =

√
gρ/T (or T ∗ = 1) with the corresponding minimum value for cp is

(cp)m =

(
4Tg

ρ

) 1
4

(2.7.109)

at the wavelength λ = λm = 2π(T/gρ)
1
2 .

The inequality k � km is the condition for the waves to be effectively pure
gravity waves with negligible surface tension. This is equivalent to large wavelength
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Fig. 2.5 The solid curve represents the phase velocity cp for capillary-gravity waves against λ.
(From Lighthill 1978.)

λ > λm = ( 2π
km

) = 2π( T
ρg )

1
2 . The phase velocity cp in (2.7.106) for gravity-capillary

waves in deep water is shown by the solid curve in Figure 2.5 against λ with mini-
mum (cp)m attained at λ = λm. The dotted curve corresponds to (2.7.107) for pure
capillary waves (or ripples) in deep water dominated by surface tension for small
λ < λm. The dashed curve corresponds to cp = (g/k)

1
2 for pure gravity waves for

large wavelengths λ > λm.
The group velocity for gravity-capillary waves can be calculated from the disper-

sion relation (2.7.102) and is given by

cg =
g

2ω

[(
1 +

3Tk2

gρ

)
tanh kh+

(
1 +

Tk2

gρ

)
kh sech2 kh

]
(2.7.110)

=
g

2ω

[
(1 + 3T ∗) tanh kh+ (1 + T ∗)kh sech2 kh

]
. (2.7.111)

We next multiply the numerator by kcp and the denominator by ω(= kcp), then
replace ω2 by (2.7.106) to obtain

cg =
1

2
cp

(
1 + 3T ∗

1 + T ∗ +
2kh

sinh 2kh

)
. (2.7.112)

In the deep water limit, kh → ∞, the second term in (2.7.112) tends to zero, and
hence, the group velocity of gravity-capillary waves is

cg =
1

2
cp

(
1 + 3T ∗

1 + T ∗

)
. (2.7.113)

This reduces to the result (2.7.96) for pure gravity waves (T ∗ = 0) in deep water

cg =
1

2
cp =

1

2

√
g

k
, (2.7.114)
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and for pure capillary waves in deep water (g → 0 and T ∗ → ∞), the group velocity
is

cg =
3

2
cp =

3

2

(
Tk

ρ

) 1
2

. (2.7.115)

It follows from the definition of group velocity (2.7.33) that the group and phase
velocities are related by a simple formula

cg =
dω

dk
=

d

dk
(kcp) = cp + k

dcp
dk

= cp − λ
dcp
dλ

. (2.7.116)

It is clear from (2.7.116) that cg �= cp. However, if cp does not depend on the
wavelength, λ (or wavenumber, k), then cg = cp. If dcp

dk > 0, then cg > cp, and

if dcp
dk < 0, then cg < cp. If cp is minimum for some k, then dcp

dk = 0, and hence,
cg = cp. For shallow water waves, ω2 = (gh)k2 or cp =

√
gh, and then cg = cp.

In case of gravity-capillary waves in deep water, cp has a minimum for k =

kmin =
√
gρ/T , and hence, cg = (cp)m. Figure 2.5 reveals that on the left of the

minimum, dcp
dk > 0, and hence, result (2.7.116) confirms that cg > cp, whereas on

the right of the minimum, dcp
dk < 0, and hence, cg < cp.

Finally, formula (2.7.116) can also be written in the form

cg = cp

(
1− k

dcp
dω

)−1

= cp

(
1− ω

cp

dcp
dω

)−1

. (2.7.117)

This is known as the Rayleigh formula for one-dimensional dispersive waves. The
general theory of dispersive waves was developed by Whitham in 1960s that will be
discussed in Chapter 7.

Example 2.7.5 (Total Energy of Pure Gravity Waves on Water of Constant Depth).
We calculate the potential energy and the kinetic energy of pure gravity waves on
water constant depth h. The potential energy over a single wavelength λ is given by

V =
gρ

2

∫ λ

0

η2 dx =
1

4
gρa2, (2.7.118)

where the free surface elevation η given by (2.7.37) is used to obtain the above
value V .

The kinetic energy T is given by

T =
1

2
ρ

∫ λ

0

dx

∫ n

−h

(
φ2
x + φ2

z

)
dz

which can be transformed into

T = −1

2
ρ

∫
φ
∂φ

∂n
dS =

1

2
ρ

∫ λ

0

(
φ
∂φ

∂z

)
z=0

dx

which is, by using (2.7.30),
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=
1

2
ρga2

∫ λ

0

sin2(kx− ωt) dx =
1

4
gρa2λ. (2.7.119)

Hence, the total energy per unit wavelength is

E = T + V =
1

2
gρa2λ. (2.7.120)

Thus, the total energy is half kinetic and half potential.
The horizontal and vertical velocity components of water particles are

u = φx =

(
agk

ω

)
cosh k(z + h)

cosh kh
exp

[
i(ωt− kx)

]
, (2.7.121)

v = φz = i

(
agk

ω

)
sinh k(z + h)

cosh kh
exp

[
i(ωt− kx)

]
. (2.7.122)

So, it is possible to determine the actual path of a fluid particle in motion from
(2.7.121)–(2.7.122). In terms of particle displacements X and Z of a particle whose
mean motion is (x, z), we get Ẋ = u and Ż = v in which terms of the second order
are neglected. So integration gives

X =

(
agk

ω2

)
cosh k(z + h)

cosh kh
sin(ωt− kx) +X0, (2.7.123)

Z =

(
agk

ω2

)
sinh k(z + h)

cosh kh
cos(ωt− kx) + Z0, (2.7.124)

where X0 and Z0 are constants of integration, and they move the origin of X and Z.
Eliminating (ωt− kx) from (2.7.123)–(2.7.124) gives the equation of a particle path
as

(X −X0)
2

cosh2 k(z + h)
+

(Z − Z0)
2

sinh2 k(z + h)
=

a2

sinh2 kh
. (2.7.125)

This represents an ellipse with the semi-major axis in the x-direction of magnitude
a cosech kh cosh k(z+ h) and with semi-minor axis in the z-direction of magnitude
a cosech kh cosh k(z+h). Both semi-axes decrease with depth. When X0 = Z0 = 0
and z = −h, X �= 0, Z = 0, and particles oscillate along the bottom. But for a real
liquid, viscosity would prevent such oscillations.

In deep water (kh → ∞), both cosh k(z+h)/ cosh kh and cosh k(z+h)/sinh kh
tend to exp(kz); hence, (2.7.123)–(2.7.124) give

X −X0 = aekz sin(ωt− kx), (2.7.126)

Z − Z0 = aekz cos(ωt− kx). (2.7.127)

These results show that the paths of the fluid particles are circles of radius aekz .
Clearly, the radius decreases exponentially with increasing depth.
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2.8 The Energy Equation and Energy Flux

In dealing with surface gravity waves, it is important and useful to derive an equation
that describes the flow of energy in the fluid. Thus, an energy equation is obtained
by taking the scalar product of the velocity vector u with the respective terms of the
momentum equation (2.7.13), with ∇φ replaced by u so that

∂u

∂t
+∇

(
1

2
u2 +

p

ρ
+ gz

)
= 0. (2.8.1)

We take the scalar product of u with (2.8.1) and use u · u = u2 to obtain

∂

∂t

(
1

2
u2

)
+ u · ∇

(
1

2
u2 +

p

ρ
+ gz

)
= 0. (2.8.2)

Since divu = 0, we can add ( 12u
2 + p/ρ+ gz) divu to (2.8.2) and use ∂z/∂t = 0

and the formula for div(au) with any scalar a to derive, multiplying by ρ,

∂

∂t

(
1

2
ρu2 + ρgz

)
+ div

[
u

(
1

2
ρu2 + p+ gρz

)]
= 0. (2.8.3)

The terms 1
2ρu

2 and ρgz represent the kinetic and potential energies, respectively,
and equation (2.8.3) describes a balance between the rate of change of energy and
energy flux terms, including convection by the velocity and the rate of working of the
pressure. In fact, the rate of change of energy per unit volume is described in terms
of the divergence of the energy flux F

F = u

(
1

2
ρu2 + p+ gρz

)
. (2.8.4)

Equation (2.8.3) gives, writing E = 1
2ρu

2 + ρgz,

∂E

∂t
+ divF = 0. (2.8.5)

This is usually called the law of conservation of energy.
In order to see some physical meaning of (2.8.3), we integrate it over some vol-

ume V enclosed by a closed surface S. By using the Gauss divergence theorem, we
can transform the volume integral over V to a surface integral over S. Consequently,

∂

∂t

∫
V

ρ

(
1

2
u2 + gz

)
dV = −

∫
V

div

[
ρu

(
1

2
u2 +

p

ρ
+ gz

)]
dV

= −
∫
S

(
1

2
ρu2 + p+ ρgz

)
u · n dS. (2.8.6)

This represents the rate of change of the total energy in a volume V that is equal to
the amount of energy flowing out of this volume across the surface S per unit time.
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For this reason F is called the energy flux density vector. Its magnitude represents
the amount of energy passing across a unit surface area normal to the velocity field u
per unit time. We may rewrite the right-hand side of (2.8.6) as

−
∫
S

u

(
1

2
ρu2

)
· n dS −

∫
S

pu · n dS −
∫
S

ρgzu · n dS. (2.8.7)

The first term is the kinetic energy transported across S per unit time by the fluid; the
second term is the work done by the pressure forces on the fluid within the surface,
and the third term is the work done by the gravitational force acting on the system.

2.9 Exercises

1. Use the Hamilton principle to derive
(i) the Newton second law of motion, and

(ii) the equation for a simple harmonic oscillator.
2. Derive the equation of motion of an elastic beam of length �, line density ρ,

cross-sectional moment of inertia I , and modulus of elasticity E which is fixed
at each end and performs small transverse oscillations in the horizontal (x, t)-
plane.

3. Apply the variational principle

δ

∫∫
Ldx dt = 0,

where the Lagrangian L = 1
2 (u

2
xx + utux) + u3

x, to derive the equation

uxt + 6uxuxx + uxxxx = 0.

Show that this equation leads to the KdV equation when η = ux.
4. Use the variational principle

δ

∫∫ (
1− u2

t + u2
x

) 1
2 dx dt = 0

to derive the Born and Infeld (1934) equation
(
1− u2

t

)
uxx + 2uxutuxt −

(
1 + u2

x

)
utt = 0.

5. Show that the variational principle (Whitham 1967a, 1967b)

δ

∫∫ {
1

2
ψxψt +

1

2
c0ψ

2
x +

1

6
c0ψ

3
x +

1

12
c0h

2
0

(
χ2 + 2χxψx

)}
dx dt = 0

gives the coupled equations

ψxt + c0(1 + ψx)ψxx +
1

6
c0h

2
0χxx = 0, ψxx − χ = 0,

where c0 and h0 are constants.
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6. Show that the variational principle (Whitham 1967a, 1967b)

δ

∫∫∫ {
φt + αβt +

1

2

(
u2 + v2

)}
dx dy dt = 0

leads to the equations

ux + vy = 0,
Dα

Dt
+ fv = 0,

Dβ

Dt
− u = 0,

where u = φx + αβx − α, v = φy + αβy − fβ, and

−p = φt + αβt +
1

2

(
u2 + v2

)
.

7. If L = L(ω, k) where ω = −θt and k = θx, show that the variational principle
(Whitham 1965a, 1965b; Lighthill 1967)

δ

∫∫
L(ω, k) dt dx = 0

gives the Euler–Lagrange equation

∂

∂t
(Lω) =

∂

∂x
(Lk).

Show also that this equation reduces to a second-order quasi-linear partial dif-
ferential equation for θ(x, t)

Lωωθtt − 2Lωkθxt + Lkkθxx = 0.

8. Derive the Boussinesq equation for water waves

utt − c2uxx − μuxxtt =
1

2

(
u2
)
xx

from the variational principle

δ

∫∫
Ldx dt = 0,

where L ≡ 1
2φ

2
t − 1

2c
2φ2

x + 1
2μφ

2
xt − 1

6φ
3
x and φ is the potential for u where

u = φx.
9. Show that the Euler equation of the variational principle

δI
[
u(x, y)

]
= δ

∫∫
D

F (x, y, u, p, q, l,m, n) dx dy = 0

is

Fu − ∂

∂x
Fp −

∂

∂y
Fq +

∂2

∂x2
Fl +

∂2

∂x∂y
Fm +

∂2

∂y2
Fn = 0,

where

p = ux, q = uy, l = uxx, m = uxy, and n = uyy.
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10. In each of the following cases, apply the variational principle or its simple ex-
tension with appropriate boundary conditions to derive the corresponding equa-
tions:

(a) F = u2
xx + u2

yy + u2
xy ,

(b) F = 1
2 [u

2
t − α2(u2

x + u2
y)− β2u2],

(c) F = 1
2 (utux + αu2

x + βu2
xx),

(d) F = 1
2 (u

2
t + α2u2

xx),

(e) F = p(x)u′ 2 + d
dx (q(x)u

2)− [r(x) + λs(x)]u2,

where p, q, r, and s are given functions of x, and α and β are constants.
11. Derive the Schrödinger equation from the variational principle

δ

∫∫∫
D

[
�
2

2m

(
ψ2
x + ψ2

y + ψ2
z

)
+ (V − E)ψ2

]
dx dy dz = 0,

where h = 2π� is the Planck constant, m is the mass of a particle moving under
the action of a force field described by the potential V (x, y, z), and E is the total
energy of the particle.

12. Derive the Poisson equation ∇2u = F (x, y) from the variational principle with
the functional

I(u) =

∫∫
D

[
u2
x + u2

y + 2uF (x, y)
]
dx dy,

where u = u(x, y) is given on the boundary ∂D of D.
13. Prove that the Euler–Lagrange equation for the functional

I =

∫∫∫
D

f(x, y, z, u, p, q, r, l,m, n, a, b, c) dx dy dz

is

Fu − ∂

∂x
Fp −

∂

∂y
Fq −

∂

∂z
Fr +

∂2

∂x2
Fl +

∂2

∂y2
Fm +

∂2

∂z2
Fn

+
∂2

∂x∂y
Fa +

∂2

∂y∂z
Fb +

∂2

∂z∂x
Fc = 0,

where (p, q, r) = (ux, uy, uz), (l,m, n) = (uxx, uyy, uzz), and (a, b, c) =
(uxy, uyz, uzx).

14. Derive the equation of motion of a vibrating string of length l under the action
of an external force F (x, t) from the variational principle

δ

∫ t2

t1

∫ l

0

[(
1

2
ρu2

t − T ∗u2
x

)
+ ρuF (x, t)

]
dx dt = 0,

where ρ is the line density and T ∗is the constant tension of the string.
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15. The kinetic and potential energies associated with the transverse vibration of a
thin elastic plate of constant thickness h are

T =
1

2
ρ

∫∫
D

u̇2 dx dy,

V =
1

2
μ0

∫∫
D

[
(∇u)2 − 2(1− σ)

(
uxxuyy − u2

xy

)]
dx dy,

where ρ is the surface density and μ0 = 2h3E/3(1− σ2).
Use the variational principle

δ

∫ t2

t1

∫∫
D

[
(T − V ) + fu

]
dx dy dt = 0

to derive the equation of motion of the plate

ρü+ μ0∇4u = f(x, y, t),

where f is the transverse force per unit area acting on the plate.
16. The kinetic and potential energies associated with wave motion in elastic solids

are

T =
1

2

∫∫∫
D

ρ
(
u2
t + v2t + w2

t

)
dx dy dz,

V =
1

2

∫∫∫
D

[
λ(ux + vy + wz)

2 + 2μ
(
u2
x + v2y + w2

z

)

+ μ
{
(vx + uy)

2 + (wy + vz)
2 + (uz + wx)

2
}]

dx dy dz.

Use the variational principle

δ

∫ t2

t1

∫∫∫
D

(T − V ) dx dy dz dt = 0

to derive the equation of wave motion in an elastic medium

(λ+ μ) grad divu+ μ∇2u = ρutt,

where u = (u, v, w) is the displacement vector.

17. Apply the variational principle (2.5.2) with the Lagrangian
L = 1

2 (utux − u2
xx − 2u3

x) to derive uxt − 6uxuxx + uxxxx = 0. Show that this
equation leads to the KdV equation when ux = η.

18. An inviscid and incompressible fluid flow under the conservative force field F =
−∇Ω with a potential Ω = gz, where g is the constant acceleration due to
gravity, is governed by the Euler equation (2.7.1).
(a) Show that

∂u

∂t
+∇

(
1

2
u · u+

p

ρ
+Ω

)
− u×ωωω = 0,

where ∇× u = ωωω is the vorticity vector.
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(b) Taking the scalar product of the above equation with u, derive the result

∂

∂t

(
1

2
u · u

)
+ (u · ∇)

(
1

2
u · u+

p

ρ
+Ω

)
= 0.

(c) Derive the energy equation

∂

∂t

(
1

2
ρu · u+ ρΩ

)
+∇ ·

[
u

(
1

2
ρu · u+ p+ ρΩ

)]
= 0.

Explain the significance of each term of the energy equation.
19. The three-dimensional Plateau problem is governed by the functional

I
[
u(x, y, z)

]
=

∫∫∫
D

(
1 + p2 + q2 + r2

) 1
2 dx dy dz

where p = ux, q = uy , and r = uz .
Find the Euler–Lagrange equation of this functional.

20. (a) Show that the Euler–Lagrange equation for the functional

I(u) =

∫ b

a

F (x,u,u′) dx,

where u = (u1, u2, . . . , un), ui ∈ C2[a, b], ui(a) = ai, and ui(b) = bi, i =
1, 2, . . . , n, is a system of n ordinary differential equations

Fui −
d

dx
Fu′

i
= 0, i = 1, 2, . . . , n.

(b) If F in (a) does not depend explicitly on x, then show that

F −
n∑

i=1

u′
iFu′

i
= const.

21. Consider a simple pendulum of length � with a bob of mass m suspended from
a frictionless support. Apply the Hamilton principle to the functional

I[θ(t)] =

∫ t2

t1

(T − V ) dt,

where T = 1
2m�2θ̇2 and V = mg(� − � cos θ) to derive the equation of the

simple pendulum

θ̈ + ω2 sin θ = 0, ω2 =
g

�
.

22. Derive the Euler–Lagrange equation for the functional

I(y(x)) =

∫ b

a

F (x, y, y′) dx,

where
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(a) F (x, y, y′) = u(x, y)
√

1 + y′2,

(b) F (x, y, y′) = 1√
2g
( 1+y′2

y1−y )
1
2 with y(a) = y1, y(b) = y2 < y1 (Brachis-

tochrone problem).
23. The Fermat principle in optics states that light travels from one point A(x1, y1)

to another point B(x2, y2) in an optically homogeneous medium along a path in
a minimum (least) time. The time taken for the light beam to travel from A to B
is

I
(
y(x)

)
=

∫ t2

t1

dt =

∫ x2

x1

(
dt

ds

)(
ds

dx

)
dx =

1

c

∫ x2

x1

√
1 + y′2 dx,

where c = ds
dt is the constant velocity of light.

Apply the variational principle

δI =
1

c
δ

∫ √
1 + y′2 dx = 0

to derive the Snell law of refraction of light, n sinφ = const., where n = 1
c is

the refractive index of the medium and φ is the angle made by the tangent to the
minimum path with the vertical y-axis.

24. (a) Derive the principle of least action for a conservative system

δ

∫ t2

t1

2T dt = 0,

where the time integral of 2T is called the action of the system.
(b) Explain the significance of this principle.

25. Show that the Euler–Lagrange equation of the variational principle

δI = δ

∫ b

a

F
(
x, y, y′, y′′, . . . , y(n)

)
dx = 0

is an ordinary differential equation of order 2n

Fy −
d

dx
Fy′ +

d2

dx2
Fy′′ − · · ·+ (−1)n

dn

dxn
Fy(n) = 0.

26. The electrostatic potential φ(x, y, z) is defined in terms of the electrostatic field
E so that E = −∇φ in a domain D of volume V , where φ is specified on ∂D.
Show that φ that minimizes the electric energy functional

I[φ] =
e0
2

∫∫∫
V

E2dv =
e0
2

∫∫∫
V

(∇φ)2 dv

satisfies the Laplace equation.
27. Use the Lagrangian L = T −V and the Lagrange equation to derive the Newton

laws of motion of a particle of mass m moving under a force, F = −∇V , in
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(a) one dimension,
(b) a two dimensional plane in Cartesian coordinates,
(c) a two dimensional plane in polar coordinates.

28. Seek a traveling wave solution

rn = A cos θ = A cos(ωt− kn)

of the linearized Toda lattice equation

mr̈n = (ab)(rn+1 − 2rn + rn−1),

where rn = (yn+1 − yn) and yn is the displacement of the nth mass.
Show that the dispersion relation is

ω2 =

(
4ab

m

)
sin2

(
k

2

)
.

29. Consider the Ablowitz and Ladik (AL) equation for the lattice system (1976a,
1976b)

i
dφn

dt
+ (φn+1 + φn−1)

(
1 +

γ

2
|φn|2

)
= 0.

(a) Using φn = e2itψn, show that the solution of the AL equation reduces to
that of the NLS equation

iψt + ψxx + γ|ψ|2ψ = 0,

as the ratio of anharmoncity to dispersion (γ) tends to zero.
(b) Show that the solution of the above AL equation is

φn(t) = Acn
[
β(n− vt); k

]
exp

[
−i(ωt+ αn+ φ0)

]
,

selecting the units of φn so that γ
2 = 1, the parameters A, ω and v are given by

A =
ksn(β; k)

dn(β; k)
, ω = −2cn(β; k) cosα

dn2(β; k)
, v = −2sn(β; k) sinα

β dn(β; k)
,

where 0 < β < ∞, −π ≤ α ≤ π, and 0 < k < 1.
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First-Order, Quasi-linear Equations and Method
of Characteristics

As long as a branch of knowledge offers an abundance of
problems, it is full of vitality.

David Hilbert

The advance of analysis is, at this moment, stagnant along
the entire front of nonlinear problems. That this phenomenon
is not of a transient nature but that we are up against an
important conceptual difficulty . . . yet no decisive progress
has been made against them . . . which could be rated as
important by the criteria that are applied in other, more
successful (linear!) parts of mathematical physics.
It is important to avoid a misunderstanding at this point. One
may be tempted to qualify these (shock wave and turbulence)
problems as problems in physics, rather than in applied
mathematics, or even pure mathematics. We wish to
emphasize that it is our conviction that such an interpretation
is wholly erroneous.

John Von Neumann

3.1 Introduction

Many problems in mathematical, physical, and engineering sciences deal with the
formulation and the solution of first-order partial differential equations. From a math-
ematical point of view, first-order equations have the advantage of providing a con-
ceptual basis that can be utilized for second-, third-, and higher-order equations.

This chapter is concerned with first-order, quasi-linear and linear partial differ-
ential equations and their solutions by using the Lagrange method of characteristics
and its generalizations.

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers,
DOI 10.1007/978-0-8176-8265-1_3, c© Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-8176-8265-1_3
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3.2 The Classification of First-Order Equations

The most general, first-order, partial differential equation in two independent vari-
ables x and y is of the form

F (x, y, u, ux, uy) = 0, (x, y) ∈ D ⊂ R
2, (3.2.1)

whereF is a given function of its arguments, and u = u(x, y) is an unknown function
of the independent variables x and y which lie in some given domain D in R

2,
ux = ∂u

∂x and uy = ∂u
∂y . Equation (3.2.1) is often written in terms of standard notation

p = ux and q = uy so that (3.2.1) takes the form

F (x, y, u, p, q) = 0. (3.2.2)

Similarly, the most general, first-order, partial differential equation in three inde-
pendent variables x, y, z can be written as

F (x, y, z, u, ux, uy, uz) = 0. (3.2.3)

Equation (3.2.1) or (3.2.2) is called a quasi-linear partial differential equation if
it is linear in first-partial derivatives of the unknown function u(x, y). So, the most
general quasi-linear equation must be of the form

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u), (3.2.4)

where its coefficients a, b, and c are functions of x, y, and u.
The following are examples of quasi-linear equations:

x
(
y2 + u

)
ux − y

(
x2 + u

)
uy =

(
x2 − y2

)
u, (3.2.5)

uux + ut + nu2 = 0, (3.2.6)(
y2 − u2

)
ux − xyuy = xu. (3.2.7)

Equation (3.2.4) is called a semilinear partial differential equation if its coef-
ficients a and b are independent of u, and hence, the semilinear equation can be
expressed in the form

a(x, y)ux + b(x, y)uy = c(x, y, u). (3.2.8)

Examples of semilinear equations are

xux + yuy = u2 + x2, (3.2.9)

(x+ 1)2ux + (y − 1)2uy = (x+ y)u2, (3.2.10)

ut + aux + u2 = 0, (3.2.11)

where a is a constant.
Equation (3.2.1) is said to be linear if F is linear in each of the variables u, ux,

and uy , and the coefficients of these variables are functions only of the independent
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variables x and y. The most general, first-order, linear partial differential equation
has the form

a(x, y)ux + b(x, y)uy + c(x, y)u = d(x, y), (3.2.12)

where the coefficients a, b, and c, in general, are functions of x and y, and d(x, y)
is a given function. Unless stated otherwise, these functions are assumed to be con-
tinuously differentiable. Equations of the form (3.2.12) are called homogeneous if
d(x, y) ≡ 0 or inhomogeneous if d(x, y) �= 0.

Obviously, linear equations are a special kind of the quasi-linear equation (3.2.4)
if a, b are independent of u and c is a linear function in u. Similarly, semilinear
equation (3.2.8) reduces to a linear equation if c is linear in u.

Examples of linear equations are

xux + yuy − nu = 0, (3.2.13)

nux + (x+ y)uy − u = ex, (3.2.14)

yux + xuy = xy, (3.2.15)

(y − z)ux + (z − x)uy + (x− y)uz = 0. (3.2.16)

An equation which is not linear is often called a nonlinear equation. So, the
first-order equations are often classified as linear and nonlinear.

3.3 The Construction of a First-Order Equation

We consider a system of geometrical surfaces described by the equation

f(x, y, z, a, b) = 0, (3.3.1)

where a and b are arbitrary parameters. We differentiate (3.3.1) with respect to x and
y to obtain

fx + pfz = 0, fy + qfz = 0, (3.3.2)

where p = ∂z
∂x and q = ∂z

∂y .
The set of three equations (3.3.1) and (3.3.2) involves two arbitrary parameters

a and b. In general, these two parameters can be eliminated from this set to obtain a
first-order equation of the form

F (x, y, z, p, q) = 0. (3.3.3)

Thus the system of surfaces (3.3.1) gives rise to a first-order partial differential equa-
tion (3.3.3). In other words, an equation of the form (3.3.1) containing two arbitrary
parameters is called a complete solution or a complete integral of equation (3.3.3).
Its role is somewhat similar to that of a general solution for the case of an ordinary
differential equation.

On the other hand, any relationship of the form

f(φ, ψ) = 0, (3.3.4)
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which involves an arbitrary function f of two known functions φ = φ(x, y, z) and
ψ = ψ(x, y, z) and provides a solution of a first-order partial differential equation
is called a general solution or general integral of this equation. Clearly, the general
solution of a first-order partial differential equation depends on an arbitrary func-
tion. This is in striking contrast to the situation for ordinary differential equations
where the general solution of a first-order ordinary differential equation depends on
one arbitrary constant. The general solution of a partial differential equation can be
obtained from its complete integral. We obtain the general solution of (3.3.3) from
its complete integral (3.3.1) as follows.

First, we prescribe the second parameter b as an arbitrary function of the first
parameter a in the complete solution (3.3.1) of (3.3.3), that is, b = b(a). We then
consider the envelope of the one-parameter family of solutions so defined. This en-
velope is represented by the two simultaneous equations

f
(
x, y, z, a, b(a)

)
= 0, (3.3.5)

fa
(
x, y, z, a, b(a)

)
+ fb

(
x, y, z, b(a)

)
b′(a) = 0, (3.3.6)

where the second equation (3.3.6) is obtained from the first equation (3.3.5) by partial
differentiation with respect to a. In principle, equation (3.3.5) can be solved for a =
a(x, y, z) as a function of x, y, and z. We substitute this result back in (3.3.5) to
obtain

f
{
x, y, z, a(x, y, z), b

(
a(x, y, z)

)}
= 0, (3.3.7)

where b is an arbitrary function. Indeed, the two equations (3.3.5) and (3.3.6) together
define the general solution of (3.3.3). When a definite b(a) is prescribed, we obtain
a particular solution from the general solution. Since the general solution depends
on an arbitrary function, there are infinitely many solutions. In practice, only one
solution satisfying prescribed conditions is required for a physical problem. Such a
solution may be called a particular solution.

In addition to the general and particular solutions of (3.3.3), if the envelope of
the two-parameter system (3.3.1) of surfaces exists, it also represents a solution of
the given equation (3.3.3); the envelope is called the singular solution of equation
(3.3.3). The singular solution can easily be constructed from the complete solution
(3.3.1) representing a two-parameter family of surfaces. The envelope of this family
is given by the system of three equations

f(x, y, z, a, b) = 0, fa(x, y, z, a, b) = 0, fb(x, y, z, a, b) = 0. (3.3.8)

In general, it is possible to eliminate a and b from (3.3.8) to obtain the equation of
the envelope which gives the singular solution. It may be pointed out that the singular
solution cannot be obtained from the general solution. Its nature is similar to that of
the singular solution of a first-order ordinary differential equation.

Finally, it is important to note that solutions of a partial differential equation are
expected to be represented by smooth functions. A function is called smooth if all of
its derivatives exist and are continuous. However, in general, solutions are not always
smooth. A solution which is not everywhere differentiable is called a weak solution.
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The most common weak solution is the one that has discontinuities in its first partial
derivatives across a curve, so that the solution can be represented by shock waves as
surfaces of discontinuity. In the case of a first-order partial differential equation, there
are discontinuous solutions where z itself and not merely p = ∂z

∂x and q = ∂z
∂y are

discontinuous. In fact, this kind of discontinuity is usually known as a shock wave.
An important feature of quasi-linear and nonlinear partial differential equations is
that their solutions may develop discontinuities as they move away from the initial
state. We close this section by considering some examples.

Example 3.3.1. Show that a family of spheres

x2 + y2 + (z − c)2 = r2, (3.3.9)

satisfies the first-order linear partial differential equation

yp− xq = 0. (3.3.10)

Differentiating the equation (3.3.9) with respect to x and y gives

x+ p(z − c) = 0 and y + q(z − c) = 0.

Eliminating the arbitrary constant c from these equations, we obtain the first-order,
partial differential equation

yp− xq = 0.

Example 3.3.2. Show that the family of spheres

(x− a)2 + (y − b)2 + z2 = r2 (3.3.11)

satisfies the first-order, nonlinear, partial differential equation

z2
(
p2 + q2 + 1

)
= r2. (3.3.12)

We differentiate the equation of the family of spheres with respect to x and y to
obtain

(x− a) + zp = 0, (y − b) + z q = 0.

Eliminating the two arbitrary constants a and b, we find the nonlinear partial
differential equation

z2
(
p2 + q2 + 1

)
= r2.

All surfaces of revolution with the z-axis as the axis of symmetry satisfy the
equation

z = f
(
x2 + y2

)
, (3.3.13)

where f is an arbitrary function. Writing u = x2 + y2 and differentiating (3.3.13)
with respect to x and y, respectively, we obtain

p = 2xf ′(u), q = 2yf ′(u).

Eliminating the arbitrary function f(u) from these results, we find the equation

yp− xq = 0.
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Theorem 3.3.1. If φ = φ(x, y, z) and ψ = ψ(x, y, z) are two given functions of
x, y, and z and if f(φ, ψ) = 0, where f is an arbitrary function of φ and ψ, then
z = z(x, y) satisfies a first-order, partial differential equation

p
∂(φ, ψ)

∂(y, z)
+ q

∂(φ, ψ)

∂(z, x)
=

∂(φ, ψ)

∂(x, y)
, (3.3.14)

where
∂(φ, ψ)

∂(x, y)
=

∣∣∣∣φx φy

ψx ψy

∣∣∣∣ . (3.3.15)

Proof. We differentiate f(φ, ψ) = 0 with respect to x and y, respectively, to obtain
the following equations:

∂f

∂φ

(
∂φ

∂x
+ p

∂φ

∂z

)
+

∂f

∂ψ

(
∂ψ

∂x
+ p

∂ψ

∂z

)
= 0, (3.3.16)

∂f

∂φ

(
∂φ

∂y
+ q

∂φ

∂z

)
+

∂f

∂ψ

(
∂ψ

∂y
+ q

∂ψ

∂z

)
= 0. (3.3.17)

Nontrivial solutions for ∂f
∂φ and ∂f

∂ψ can be found if the determinant of the coeffi-
cients of these equations vanishes, that is,

∣∣∣∣φx + pφz ψx + pψz

φy + qφz ψy + qψz

∣∣∣∣ = 0. (3.3.18)

Expanding this determinant gives the first-order, quasi-linear equation (3.3.14).

3.4 The Geometrical Interpretation of a First-Order Equation

To investigate the geometrical content of a first-order, partial differential equation,
we begin with a general, quasi-linear equation

a(x, y, u)ux + b(x, y, u)uy − c(x, y, u) = 0. (3.4.1)

We assume that the possible solution of (3.4.1) in the form u = u(x, y) or in an
implicit form

f(x, y, u) ≡ u(x, y)− u = 0 (3.4.2)

represents a possible solution surface in the (x, y, u)-space. This is often called an
integral surface of the equation (3.4.1). At any point (x, y, u) on the solution surface,
the gradient vector ∇f = (fx, fy, fu) = (ux, uy,−1) is normal to the solution
surface. Clearly, equation (3.4.1) can be written as the dot product of two vectors

aux + buy − c = (a, b, c) · (ux, uy,−1) = 0. (3.4.3)

This clearly shows that the vector (a, b, c) must be a tangent vector of the integral
surface (3.4.2) at the point (x, y, u), and hence, it determines a direction field called



3.4 The Geometrical Interpretation of a First-Order Equation 207

Fig. 3.1 Tangent and normal vector fields of solution surface at a point (x, y, u).

the characteristic direction or Monge axis. This direction is of fundamental impor-
tance in determining a solution of equation (3.4.1). To summarize, we have shown
that f(x, y, u) = u(x, y) − u = 0, as a surface in the (x, y, u)-space, is a solution
of (3.4.1) if and only if the direction vector field (a, b, c) lies in the tangent planes of
the integral surface f(x, y, u) = 0 at each point (x, y, u), where ∇f �= 0, as shown
in Figure 3.1.

A curve in the (x, y, u)-space whose tangent at every point coincides with the
characteristic direction field (a, b, c) is called a characteristic curve. If the parametric
equations of this characteristic curve are

x = x(t), y = y(t), u = u(t), (3.4.4)

then the tangent vector to this curve is (dxdt ,
dy
dt ,

du
dt ) which must be equal to (a, b, c).

Therefore, the system of ordinary differential equations of the characteristic curve is
given by

dx

dt
= a(x, y, u),

dy

dt
= b(x, y, u),

du

dt
= c(x, y, u). (3.4.5)

These are called the characteristic equations of the quasi-linear equation (3.4.1).
In fact, there are only two independent ordinary differential equations in the sys-

tem (3.4.5); therefore, its solutions form a two-parameter family of curves in the
(x, y, u)-space.

The projection on u = 0 of a characteristic curve on the (x, t)-plane is called a
characteristic base curve, or simply a characteristic.

Equivalently, the characteristic equations (3.4.5) in the nonparametric form are

dx

a
=

dy

b
=

du

c
. (3.4.6)

The typical problem of solving equation (3.4.1) with a prescribed u on a given
plane curve C is equivalent to finding an integral surface in the (x, y, u)-space, sat-
isfying equation (3.4.1) and containing the three-dimensional space curve Γ defined
by the values of u on C, which is the projection of Γ on u = 0.
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Remark 1. The above geometrical interpretation can be generalized for higher-order
partial differential equations. However, it is not easy to visualize geometrical argu-
ments that have been described for the case of three space dimensions.

Remark 2. The geometrical interpretation is more complicated for the case of non-
linear partial differential equations because the normals to possible solution surfaces
through a point do not lie in a plane. The tangent planes no longer intersect along one
straight line, but instead, they envelope along a curved surface known as the Monge
cone. Any further discussion is beyond the scope of this book.

We conclude this section by adding an important observation regarding the nature
of the characteristics in the (x, t)-plane. For a quasi-linear equation, characteristics
are determined by the first two equations in (3.4.5) with their slopes

dy

dx
=

b(x, y, u)

a(x, y, u)
. (3.4.7)

If (3.4.1) is a linear equation, then a and b are independent of u, and the characteris-
tics of (3.4.1) are plane curves with slopes

dy

dx
=

b(x, y)

a(x, y)
. (3.4.8)

By integrating this equation, we can determine the characteristics which represent a
one-parameter family of curves in the (x, t)-plane. However, if a and b are constant,
the characteristics of equation (3.4.1) are straight lines.

3.5 The Method of Characteristics and General Solutions

We can use the geometrical interpretation of the first-order, partial differential equa-
tion and the properties of characteristic curves to develop a method for finding the
general solution of quasi-linear equations. This is usually referred to as the method
of characteristics due to Lagrange. This method of solution of quasi-linear equations
can be described by the following result.

Theorem 3.5.1. The general solution of a first-order, quasi-linear partial differential
equation

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (3.5.1)

is
f(φ, ψ) = 0, (3.5.2)

where f is an arbitrary function of φ(x, y, u) and ψ(x, y, u) and φ = const. = c1
and ψ = const. = c2 are solution curves of the characteristic equations

dx

a
=

dy

b
=

du

c
. (3.5.3)

The solution curves defined by φ(x, y, u) = c1 and ψ(x, y, u) = c2 are called
the families of characteristic curves of equation (3.5.1).
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Proof. Since φ(x, y, u) = c1 and ψ(x, y, u) = c2 satisfy equations (3.5.3), these
equations must be compatible with the equation

dφ = φx dx+ φy dy + φu du = 0. (3.5.4)

This is equivalent to the equation

aφx + b φy + c φu = 0. (3.5.5)

Similarly, equation (3.5.3) is also compatible with

aψx + b ψy + c ψu = 0. (3.5.6)

We now solve (3.5.5), (3.5.6) for a, b, and c to obtain

a
∂(φ,ψ)
∂(y,u)

=
b

∂(φ,ψ)
∂(u,x)

=
c

∂(φ,ψ)
∂(x,y)

. (3.5.7)

It has been shown earlier that f(φ, ψ) = 0 satisfies an equation similar to
(3.3.14), that is,

p
∂(φ, ψ)

∂(y, u)
+ q

∂(φ, ψ)

∂(u, x)
=

∂(φ, ψ)

∂(x, y)
. (3.5.8)

Substituting (3.5.7) into (3.5.8), we find that f(φ, ψ) = 0 is a solution of (3.5.1).
This completes the proof.

Note that an analytical method has been used to prove Theorem 3.5.1. Alterna-
tively, a geometrical argument can be used to prove this theorem. The geometrical
method of proof is left to the reader as an exercise.

Many problems in applied mathematics, science, and engineering involve partial
differential equations. We seldom try to find or discuss the properties of a solution
to these equations in its most general form. In most cases of interest, we deal with
those solutions of partial differential equations which satisfy certain supplementary
conditions. In the case of a first-order partial differential equation, we determine the
specific solution by formulating an initial-value problem or a Cauchy problem.

Theorem 3.5.2 (The Cauchy Problem for a First-Order Partial Differential
Equation). Suppose that C is a given curve in the (x, y)-plane with its paramet-
ric equations

x = x0(t), y = y0(t), (3.5.9)

where t belongs to an interval I ⊂ R, and the derivatives x′0(t) and y′0(t) are piece-
wise continuous functions such that x′20 + y′20 �= 0. Also, suppose that u = u0(t)
is a given function on the curve C. Then, there exists a solution u = u(x, y) of the
equation

F (x, y, u, ux, uy) = 0 (3.5.10)

in a domain D of R2 containing the curve C for all t ∈ I , and the solution u(x, y)
satisfies the given initial data, that is,
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u
(
x0(t), y0(t)

)
= u0(t) (3.5.11)

for all values of t ∈ I .
In short, the Cauchy problem is to determine a solution of equation (3.5.10) in

a neighborhood of C, such that the solution u = u(x, y) takes a prescribed value
u0(t) on C. The curve C is called the initial curve of the problem, and u0(t) is called
the initial data. Equation (3.5.11) is called the initial condition of the problem.

The solution of the Cauchy problem also deals with such questions as the condi-
tions on the functions F , x0(t), y0(t), and u0(t) under which a solution exists and is
unique.

We next discuss a method for solving a Cauchy problem for the first-order, quasi-
linear equation (3.5.1). We first observe that geometrically x = x0(t), y = y0(t),
and u = u0(t) represent an initial curve Γ in the (x, y, u)-space. The curve C, on
which the Cauchy data is prescribed, is the projection of Γ on the (x, y)-plane. We
now present a precise formulation of a Cauchy problem for the first-order, quasi-
linear equation (3.5.1).

Theorem 3.5.3 (The Cauchy Problem for a Quasi-linear Equation). Suppose that
x0(t), y0(t), and u0(t) are continuously differentiable functions of t in a closed in-
terval, 0 ≤ t ≤ 1, and that a, b, and c are functions of x, y, and u with continuous
first-order partial derivatives with respect to their arguments in some domain D of
the (x, y, u)-space containing the initial curve

Γ : x = x0(t), y = y0(t), u = u0(t), (3.5.12)

where 0 ≤ t ≤ 1, and satisfying the condition

y′0(t)a
(
x0(t), y0(t), u0(t)

)
− x′0(t)b

(
x0(t), y0(t), u0(t)

)
�= 0. (3.5.13)

Then there exists a unique solution u = u(x, y) of the quasi-linear equation (3.5.1)
in the neighborhood of C : x = x0(t), y = y0(t), and the solution satisfies the initial
condition

u0(t) = u
(
x0(t), y0(t)

)
for 0 ≤ t ≤ 1. (3.5.14)

Note: Condition (3.5.13) excludes the possibility of C being a characteristic.

Example 3.5.1. Find the general solution of the first-order linear partial differential
equation

xux + yuy = u. (3.5.15)

The characteristic curves of this equation are the solutions of the characteristic
equations

dx

x
=

dy

y
=

du

u
. (3.5.16)

This system of equations gives the integral surfaces

φ =
y

x
= C1 and ψ =

u

x
= C2,
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where C1 and C2 are arbitrary constants. Thus, the general solution of (3.5.15) is

f

(
y

x
,
u

x

)
= 0, (3.5.17)

where f is an arbitrary function. This general solution can also be written as

u(x, y) = xg

(
y

x

)
, (3.5.18)

where g is an arbitrary function.

Example 3.5.2. Obtain the general solution of the linear Euler equation

xux + yuy = nu. (3.5.19)

The integral surfaces are the solutions of the characteristic equations

dx

x
=

dy

y
=

du

nu
. (3.5.20)

From these equations, we get

y

x
= C1,

u

xn
= C2,

where C1 and C2 are arbitrary constants. Hence, the general solution of (3.5.19) is

f

(
y

x
,
u

xn

)
= 0. (3.5.21)

This can also be written as
u

xn
= g

(
y

x

)
,

or equivalently,

u(x, y) = xng

(
y

x

)
. (3.5.22)

This shows that the solution u(x, y) is a homogeneous function of x and y of de-
gree n.

Example 3.5.3. Find the general solution of the linear equation

x2 ux + y2uy = (x+ y)u. (3.5.23)

The characteristic equations associated with (3.5.23) are

dx

x2
=

dy

y2
=

du

(x+ y)u
. (3.5.24)

From the first two of these equations, we find
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x−1 − y−1 = C1, (3.5.25)

where C1 is an arbitrary constant.
It follows from (3.5.24) that

dx− dy

x2 − y2
=

du

(x+ y)u
,

or equivalently,
d(x− y)

x− y
=

du

u
.

This gives
x− y

u
= C2, (3.5.26)

where C2 is a constant. Furthermore, (3.5.25) and (3.5.26) also give

xy

u
= C3, (3.5.27)

where C3 is a constant.
Thus, the general solution (3.5.23) is given by

f

(
xy

u
,
x− y

u

)
= 0, (3.5.28)

where f is an arbitrary function. This general solution representing the integral sur-
face can also be written as

u(x, y) = xyg

(
x− y

u

)
, (3.5.29)

where g is an arbitrary function, or equivalently,

u(x, y) = xyh

(
x− y

xy

)
, (3.5.30)

where h is an arbitrary function.

Example 3.5.4. Show that the general solution of the linear equation

(y − z)ux + (z − x)uy + (x− y)uz = 0 (3.5.31)

is
u(x, y, z) = f

(
x+ y + z, x2 + y2 + z2

)
, (3.5.32)

where f is an arbitrary function.
The characteristic curves satisfy the characteristic equations

dx

y − z
=

dy

z − x
=

dz

x− y
=

du

0
, (3.5.33)
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or equivalently,

du = 0, dx+ dy + dz = 0, x dx+ y dy + z dz = 0.

Integration of these equations gives

u = C1, x+ y + z = C2, and x2 + y2 + z2 = C3,

where C1, C2 and C3 are arbitrary constants.
Thus, the general solution can be written in terms of an arbitrary function f in

the form
u(x, y, z) = f

(
x+ y + z, x2 + y2 + z2

)
.

We next verify that this is a general solution by introducing three independent
variables ξ, η, ζ defined in terms of x, y, and z as

ξ = x+ y + z, η = x2 + y2 + z2, and ζ = y + z, (3.5.34)

where ζ is an arbitrary combination of y and z. Clearly, the general solution becomes

u = f(ξ, η),

and hence,

uζ = ux
∂x

∂ζ
+ uy

∂y

∂ζ
+ uz

∂z

∂ζ
. (3.5.35)

It follows from (3.5.34) that

0 =
∂x

∂ζ
+

∂y

∂ζ
+

∂z

∂ζ
, 0 = 2

(
x
∂x

∂ζ
+ y

∂y

∂ζ
+ z

∂z

∂ζ

)
,

∂y

∂ζ
+

∂z

∂ζ
= 1.

It follows from the first and the third results that ∂x
∂ζ = −1 and, therefore,

x = y
∂y

∂ζ
+ z

∂z

∂ζ
, y = y

∂y

∂ζ
+ y

∂z

∂ζ
, z = z

∂y

∂ζ
+ z

∂z

∂ζ
.

Clearly, it follows by subtracting that

x− y = (z − y)
∂z

∂ζ
, x− z = (y − z)

∂y

∂ζ
.

Using the values for ∂x
∂ζ , ∂z

∂ζ , and ∂y
∂ζ in (3.5.35), we obtain

(z − y)
∂u

∂ζ
= (y − z)

∂u

∂x
+ (z − x)

∂u

∂y
+ (x− y)

∂u

∂z
. (3.5.36)

If u = u(ξ, η) satisfies (3.5.31), then ∂u
∂ζ = 0, and hence, (3.5.36) reduces to

(3.5.31). This shows that the general solution (3.5.32) satisfies equation (3.5.31).
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Example 3.5.5. Find the solution of the equation

u(x+ y)ux + u(x− y)uy = x2 + y2, (3.5.37)

with the Cauchy data u = 0 on y = 2x.
The characteristic equations are

dx

u(x+ y)
=

dy

u(x− y)
=

du

x2 + y2
=

y dx+ x dy − u du

0
=

x dx− y dy − u du

0
.

Consequently,

d

[(
xy − 1

2
u2

)]
= 0 and d

[
1

2

(
x2 − y2 − u2

)]
= 0. (3.5.38)

These give two integrals

u2 − x2 + y2 = C1 and 2xy − u2 = C2, (3.5.39ab)

where C1 and C2 are constants. Hence, the general solution is

f
(
x2 − y2 − u2, 2xy − u2

)
= 0,

where f is an arbitrary function.
Using the Cauchy data in (3.5.39ab), we obtain 4C1 = 3C2. Therefore,

4
(
u2 − x2 + y2

)
= 3

(
2xy − u2

)
.

Thus, the solution of equation (3.5.37) is given by

7u2 = 6xy + 4
(
x2 − y2

)
. (3.5.40)

Example 3.5.6. Obtain the solution of the linear equation

ux − uy = 1, (3.5.41)

with the Cauchy data
u(x, 0) = x2.

The characteristic equations are

dx

1
=

dy

−1
=

du

1
. (3.5.42)

Obviously,
dy

dx
= −1 and

du

dx
= 1.

Clearly,
x+ y = const. = C1 and u− x = const. = C2.

Thus, the general solution is given by
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Fig. 3.2 Characteristics of equation (3.5.41).

u− x = f(x+ y), (3.5.43)

where f is an arbitrary function.
We now use the Cauchy data to find f(x) = x2 − x, and hence, the solution is

u(x, y) = (x+ y)2 − y. (3.5.44)

The characteristics x+y = C1 are drawn in Figure 3.2. The value of u must be given
at one point on each characteristic which intersects the line y = 0 only at one point,
as shown in Figure 3.2.

Example 3.5.7. Obtain the solution of the equation

(y − u)ux + (u− x)uy = x− y, (3.5.45)

with the condition u = 0 on xy = 1.
The characteristic equations for equation (3.5.45) are

dx

y − u
=

dy

u− x
=

du

x− y
. (3.5.46)

The parametric forms of these equations are

dx

dt
= y − u,

dy

dt
= u− x,

du

dt
= x− y.

These lead to the following equations:

ẋ+ ẏ + u̇ = 0 and xẋ+ yẏ + uu̇ = 0, (3.5.47ab)

where the dot denotes the derivative with respect to t.
Integrating (3.5.47ab), we obtain

x+ y + u = const. = C1 and x2 + y2 + u2 = const. = C2. (3.5.48ab)

These equations represent circles.
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Using the Cauchy data, we find that

C2
1 = (x+ y)2 = x2 + y2 + 2xy = C2 + 2.

Thus, the integral surface is described by

(x+ y + u)2 = x2 + y2 + u2 + 2.

Hence, the solution is given by

u(x, y) =
1− xy

x+ y
. (3.5.49)

Example 3.5.8. Solve the linear equation

yux + xuy = u, (3.5.50)

with the Cauchy data

u(x, 0) = x3 and u(0, y) = y3. (3.5.51ab)

The characteristic equations are

dx

y
=

dy

x
=

du

u
,

or equivalently,
du

u
=

dx− dy

y − x
=

dx+ dy

y + x
.

Solving these equations, we obtain

u =
C1

x− y
= C2(x+ y),

or

u = C2(x+ y), x2 − y2 =
C1

C2
= const. = C.

So the characteristics are rectangular hyperbolas for C > 0 or C < 0.
Thus, the general solution is given by

f

(
u

x+ y
, x2 − y2

)
= 0.

Or equivalently,
u(x, y) = (x+ y)g

(
x2 − y2

)
. (3.5.52)

Using the Cauchy data, we find that g(x2) = x2, that is, g(x) = x.
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Consequently, the solution becomes

u(x, y) = (x+ y)
(
x2 − y2

)
on x2 − y2 = C > 0.

Similarly,
u(x, y) = (x+ y)

(
y2 − x2

)
on y2 − x2 = C > 0.

It follows from these results that u → 0 in all regions, as x → ±y (or y → ±x), and
hence, u is continuous across y = ±x which represent asymptotes of the rectangular
hyperbolas x2 − y2 = C. However, ux and uy are not continuous, as y → ±x. For
x2 − y2 = C > 0,

ux = 3x2 + 2xy − y2 = (x+ y)(3x− y) → 0, as y → −x,
uy = −3y2 − 2xy + x2 = (x+ y)(x− 3y) → 0, as y → −x.

Hence, both ux and uy are continuous as y → −x. On the other hand,

ux → 4x2, uy → −4x2 as y → x.

This implies that ux and uy are discontinuous across y = x.
Combining all these results, we conclude that u(x, y) is continuous everywhere

in the (x, t)-plane, and ux, uy are continuous everywhere in the (x, t)-plane except
on the line y = x. Hence, the partial derivatives ux, uy are discontinuous on y = x.
Thus, the development of discontinuities across characteristics is a significant feature
of the solutions of partial differential equations.

Example 3.5.9. Determine the integral surfaces of the equation

x
(
y2 + u

)
ux − y

(
x2 + u

)
uy =

(
x2 − y2

)
u, (3.5.53)

with the data
x+ y = 0, u = 1.

The characteristic equations are

dx

x(y2 + u)
=

dy

−y(x2 + u)
=

du

(x2 − y2)u
, (3.5.54)

or equivalently,

dx
x

(y2 + u)
=

dy
y

−(x2 + u)
=

du
u

(x2 − y2)
=

dx
x + dy

y + du
u

0
.

Consequently,
log(xyu) = logC1,

or
xyu = C1.



218 3 First-Order, Quasi-linear Equations and Method of Characteristics

From (3.5.54), we obtain

x dx

x2(y2 + u)
=

y dy

−y2(x2 + u)
=

du

(x2 − y2)u
=

x dx+ y dy − du

0
,

whence we find that
x2 + y2 − 2u = C2.

Using the given data, we obtain

C1 = −x2 and C2 = 2x2 − 2,

so that
C2 = −2(C1 + 1).

Thus the integral surface is given by

x2 + y2 − 2u = −2− 2xyu,

or
2xyu+ x2 + y2 − 2u+ 2 = 0. (3.5.55)

Example 3.5.10. Obtain the solution of the equation

xux + yuy = x exp(−u) (3.5.56)

with the data
u = 0 on y = x2.

The characteristic equations are

dx

x
=

dy

y
=

du

x exp(−u) , (3.5.57)

or
y

x
= C1.

We also obtain from (3.5.57) that dx = eu du which can be integrated to find

eu = x+ C2.

Thus, the general solution is given by

f

(
eu − x,

y

x

)
= 0

or equivalently,

eu = x+ g

(
y

x

)
. (3.5.58)

Applying the Cauchy data, we obtain g(x) = 1− x. Thus, the solution of (3.5.56) is
given by

eu = x+ 1− y

x
,

or

u = log

(
x+ 1− y

x

)
. (3.5.59)
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Example 3.5.11. Solve the initial-value problem

ut + uux = x, u(x, 0) = f(x), (3.5.60)

where (a) f(x) = 1 and (b) f(x) = x.
The characteristic equations are

dt

1
=

dx

u
=

du

x
=

d(x+ u)

x+ u
. (3.5.61)

Integration gives
t = log(x+ u)− logC1,

or
(u+ x)e−t = C1.

Similarly, we get
u2 − x2 = C2.

For case (a), we obtain

1 + x = C1 and 1− x2 = C2, and hence, C2 = 2C1 − C2
1 .

Thus, (
u2 − x2

)
= 2(u+ x)e−t − (u+ x)2e−2t,

or equivalently,
u− x = 2e−t − (u+ x)e−2t.

A simple manipulation gives the solution

u(x, t) = x tanh t+ sech t. (3.5.62)

Case (b) is left to the reader as an exercise.

Example 3.5.12. Find the integral surface of the equation

uux + uy = 1, (3.5.63)

so that the surface passes through an initial curve represented parametrically by

x = x0(s), y = y0(s), u = u0(s), (3.5.64)

where s is a parameter.
The characteristic equations for the given equations are

dx

u
=

dy

1
=

du

1
,
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which are, in the parametric form,

dx

dτ
= u,

dy

dτ
= 1,

du

dτ
= 1, (3.5.65)

where τ is a parameter. Thus the solutions of this parametric system in general de-
pend on two parameters s and τ . We solve this system (3.5.65) with the initial data

x(s, 0) = x0(s), y(s, 0) = y0(s), u(s, 0) = u0(s).

The solutions of (3.5.65) with the given initial data are

x(s, τ) = τ2

2 + τ u0(s) + x0(s),

y(s, τ) = τ + y0(s),

u(s, τ) = τ + u0(s).

⎫⎪⎬
⎪⎭ (3.5.66)

We choose a particular set of values for the initial data as

x(s, 0) = 2s2, y(s, 0) = 2s, u(s, 0) = 0, s > 0.

Therefore, the solutions are given by

x =
1

2
τ2 + 2s2, y = τ + 2s, u = τ. (3.5.67)

Eliminating τ and s from (3.5.67) gives the integral surface

(u− y)2 + u2 = 2x,

or
2u = y ±

(
4x− y2

) 1
2 . (3.5.68)

The solution surface satisfying the data u = 0 on y2 = 2x is given by

2u = y −
(
4x− y2

) 1
2 . (3.5.69)

This represents the solution surface only when y2 < 4x. Thus, the solution does not
exist for y2 > 4x and is not differentiable when y2 = 4x. We verify that y2 = 4x
represents the envelope of the family of characteristics in the (x, t)-plane given by
the τ -eliminant of the first two equations in (3.5.67), that is,

F (x, y, s) = 2x− (y − 2s)2 − 4s2 = 0. (3.5.70)

This represents a family of parabolas for different values of the parameter s. Thus,
the envelope is obtained by eliminating s from equations ∂F

∂s = 0 and F = 0. This
gives y2 = 4x, which is the envelope of the characteristics for different s, as shown
in Figure 3.3.
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Fig. 3.3 Dotted curve is the envelope of the characteristics.

3.6 Exercises

1. (a) Show that the family of right circular cones whose axis coincides with the
z-axis

x2 + y2 = (z − c)2 tan2 α

satisfies the first-order, partial differential equation

yp− xq = 0.

(b) Show that all the surfaces of revolution, z = f(x2+y2), with the z-axis as the
axis of symmetry, where f is an arbitrary function, satisfy the partial differential
equation

yp− xq = 0.

(c) Show that the two-parameter family of curves u− ax− by− ab = 0 satisfies
the nonlinear equation

xp+ yq + pq = u.

2. Find the partial differential equation arising from each of the following surfaces:

(a) z = x+ y + f(xy), (b) z = f(x− y),
(c) z = xy + f(x2 + y2), (d) 2z = (αx+ y)2 + β.

3. Find the general solution of each of the following equations:

(a) ux = 0, (b) aux + b uy = 0, where a, b, are constant,
(c) ux + y uy = 0, (d) (1 + x2)ux + uy = 0,
(e) 2xy ux + (x2 + y2)uy = 0, (f) (y + u)ux + y uy = x− y,
(g) y2ux − xy uy = x(u− 2y), (h) yuy − xux = 1,
(i) y2up+ u2xq = −xy2, (j) (y − xu)p+ (x+ yu)q = x2 + y2.

4. Show that the general solution of the equation

ux + 2xy2uy = 0

is given by
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u = f

(
x2 +

1

y

)
,

where f is an arbitrary function. Verify by differentiation that u satisfies the
original equation.

5. Find the solution of the following Cauchy problems:
(a) 3ux + 2uy = 0, with u(x, 0) = sinx,
(b) y ux + xuy = 0, with u(0, y) = exp(−y2),
(c) xux + y uy = 2xy, with u = 2 on y = x2,
(d) ux + xuy = 0, with u(0, y) = sin y,
(e) y ux + xuy = xy, x ≥ 0, y ≥ 0 with u(0, y) = exp(−y2) for y > 0 and

u(x, 0) = exp(−x2) for x > 0,
(f) ux + xuy = (y − 1

2x
2)2, with u(0, y) = exp(y),

(g) xux + y uy = u+ 1, with u(x, y) = x2 on y = x2,
(h) uux − uuy = u2 + (x+ y)2, with u = 1 on y = 0,
(i) xux + (x+ y)uy = u+ 1, with u(x, y) = x2 on y = 0.

6. Solve the initial-value problem

ut + uux = 0

with the initial curve

x =
1

2
τ2, t = τ, u = τ.

7. Find the solution of the Cauchy problem

2xy ux +
(
x2 + y2

)
uy = 0, with u = exp

(
x

x− y

)
on x+ y = 1.

8. Solve the following equations:
(a) xux + y uy + z uz = 0,
(b) x2 ux + y2 uy + z(x+ y)uz = 0,
(c) x(y − z)ux + y(z − x)uy + z(x− y)uz = 0,
(d) yz ux − xz uy + xy(x2 + y2)uz = 0,
(e) x(y2 − z2)ux + y(z2 − y2)uy + z(x2 − y2)uz = 0.

9. Solve the equation
ux + xuy = y

with the Cauchy data

(a) u(0, y) = y2, (b) u(1, y) = 2y.

10. Show that u1 = ex and u2 = e−y are solutions of the nonlinear equation

(ux + uy)
2 − u2 = 0,

but that their sum (ex + e−y) is not a solution of the equation.
11. Solve the Cauchy problem

(y + u)ux + y uy = (x− y), with u = 1 + x on y = 1.



3.6 Exercises 223

12. Find the integral surfaces of the equation uux+uy = 1 for each of the following
initial data:
(a) x(s, 0) = s, y(s, 0) = 2s, u(s, 0) = s,
(b) x(s, 0) = s2, y(s, 0) = 2s, u(s, 0) = s,
(c) x(s, 0) = s2

2 , y(s, 0) = s, u(s, 0) = s.
Draw characteristics in each case.

13. Show that the solution of the equation

yux − xuy = 0

containing the curve x2 + y2 = a2, u = y, does not exist.
14. Solve the following Cauchy problems:

(a) x2ux − y2uy = 0, u → ex as y → ∞,
(b) y ux + xuy = 0, u = sinx on x2 + y2 = 1,
(c) xux − y uy = −1 for 0 < x < y, u = 2x on y = 3x,
(d) 2xux + (x+ 1)uy = y for x > 0, u = 2y on x = 1,
(e) xux + y uy = x2 + y2 for x > 0, y > 0, u = x2 on y = 1,
(f) y2ux + (xy)uy = x, u = x2 when y = 1,
(g) xux + y uy = xy, u = 1

2x
2 when y = x.

15. Find the solution surface of the equation
(
u2 − y2

)
ux + xy uy + xu = 0, with u = y = x, x > 0.

16. (a) Solve the Cauchy problem

ux + uuy = 1, u(0, y) = ay, where a is a constant.

(b) Find the solution of the equation in (a) with the data

x(s, 0) = 2s, y(s, 0) = s2, u
(
0, s2

)
= s.

17. Solve the following equations:
(a) (y + u)ux + (x+ u)uy = x+ y,
(b) xu(u2 + xy)ux − y u(u2 + xy)uy = x4,
(c) (x+ y)ux + (x− y)uy = 0,
(d) y ux + xuy = xy(x2 − y2),
(e) (cy − bz)zx + (az − cx)zy = bx− ay.

18. Solve the equation
x zx + y zy = z,

and find the curves which satisfy the associated characteristic equations and in-
tersect the helix x+ y2 = a2, z = b tan−1( yx ).

19. Obtain the family of curves which represent the general solution of the partial
differential equation

(2x− 4y + 3u)ux + (x− 2y − 3u)uy = −3(x− 2y).

Determine the particular member of the family which contains the line u = x
and y = 0.
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20. Find the solution of the equation

y ux − 2xy uy = 2xu

with the condition u(0, y) = y3.
21. Obtain the general solution of the equation

(x+ y + 5z)p+ 4zq + (x+ y + z) = 0 (p = zx, q = zy),

and find the particular solution which passes through the circle

z = 0, x2 + y2 = a2.

22. Obtain the general solution of the equation
(
z2 − 2yz − y2

)
p+ x(y + z)q = x(y − z) (p = zx, q = zy).

Find the integral surfaces of this equation passing through
(a) the x-axis, (b) the y-axis, and (c) the z-axis.

23. Solve the Cauchy problem

(x+ y)ux + (x− y)uy = 1, u(1, y) =
1√
2
.

24. Solve the following Cauchy problems:
(a) 3ux + 2uy = 0, u(x, 0) = f(x),
(b) a ux + b uy = c u, u(x, 0) = f(x), where a, b, c are constants,
(c) xux + y uy = c u, u(x, 0) = f(x),
(d) uux + uy = 1, u(s, 0) = αs, x(s, 0) = s, y(s, 0) = 0.

25. Apply the method of separation of variables u(x, y) = f(x)g(y) to solve the
following equations:
(a) uxuy = u2,
(b) ux + u = uy , u(x, 0) = 4e−3x,
(c) ux + 2uy = 0, u(0, y) = 3e−2y,
(d) y2u2

x + x2u2
y = (xyu)2,

(e) x2uxy + 9y2u = 0, u(x, 0) = exp( 1x ).
26. Use a separable solution u(x, y) = f(x)+g(y) to solve the following equations:

(a) u2x + u2
y = 1, (b) u2

x + u2
y = u,

(c) u2
x + uy + x2 = 0, (d) x2u2

x + y2u2
y = 1,

(e) y ux + xuy = 0, u(0, y) = y2.

27. Apply v = lnu and then v(x, y) = f(x)+g(y) to solve the following equations:
(a) x2u2

x + y2u2
y = u2,

(b) x2u2
x + y2u2

y = (xyu)2.
28. Apply

√
u = v and v(x, y) = f(x) + g(y) to solve the equation

x4u2
x + y2u2

y = 4u.
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29. Using v = lnu and v = f(x) + g(y), show that the solution of the Cauchy
problem

y2u2
x + x2u2

y = (xyu)2, u(x, 0) = ex
2

is

u(x, y) = exp

(
x2 + i

√
3

2
y2
)
.

30. Consider the eigenvalue problem for the Klein–Gordon equation

uxx =
1

c2
utt + a2u, 0 < x < 1, t > 0,

u(0, t) = 0 = u(1, t), t > 0,

u(x, 0) = 0, and ut(x, 0) = 1, 0 < x < 1.

(a) Using u(x, t) = X(x)T (t), show that

X ′′ + λ2X = 0, T̈ +
(
a2 + λ2c2

)
T = 0,

where −λ2 is a separation constant.
(b) Show that the eigenvalues and eigenfunctions are

λ = λn = nπ, Xn(x) = βn sin(nπx), n = 1, 2, . . . .

(c) Use the Fourier series to obtain the final solution

u(x, t) =

∞∑
n=1

(
2

nπωn

){
1− (−1)n+1

}
sin(ωnt) sin(nπx),

where ωn =
√
a2 + λ2

nc
2.

31. Solve the following system of equations with initial data:
(a) ut + 3uux = v − x, vt − c vx = 0, u(x, 0) = x, and v(x, 0) = x,
(b) ut + 2uux = v − x, vt − c vx = 0, u(x, 0) = x, and v(x, 0) = x.

32. Find the solution of the system of equations with initial data:
(a) ut + uux = v e−x, vt − a vx = 0,

u(x, 0) = x, and v(x, 0) = ex,
(b) ut − 2uux = v − x, vt + c vx = 0,

u(x, 0) = x, and v(x, 0) = x.
33. Solve the following Cauchy problems with initial data:

(a)
√
xux + uuy = −u2, u(x, 0) = 1, 0 < x < ∞,

(b) (x2u)ux + e−yuy = −u2, u(x, 0) = 1, 0 < x < ∞.
34. Use ξ(x, t) = x− ct and τ = μt to transform the equation

ut + cux = d unux

in the form
∂u

∂τ
+ αun ∂u

∂ξ
= 0, α = (d/μ).
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Show that the solution of the equation with u(ξ, 0) = u0 sin kξ is

u(ξ, τ) = u0 sin

[
kξ −

(
u

u0

)n(
αkun

0 τ
)]
.

35. Use the method of characteristics to solve the equations:
(a) (x+ y)ux + (x− y)uy = 0,
(b) ux − (ax+ by)uy = 0,
(c) x−1ux + y−1uy = x2 − y2,
(d) x sinxux + 1

yuy = u,
(e) yux − xuy = 0, u = y when x = a,
(f) xux + (x+ y)uy = 1

u , u = 0, when y = x2.
36. Solve the first order Fokker–Planck equation with initial condition:

ut − xux = u, u(x, 0) = f(x).
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First-Order Nonlinear Equations and Their
Applications

Physics can’t exist without mathematics which provides it
with the only language in which it can speak. Thus, services
are continuously exchanged between pure mathematical
analysis and physics. It is really remarkable that among
works of analysis most useful for physics were those
cultivated for their own beauty. In exchange, physics,
exposing new problems, is as useful for mathematics as it is a
model for an artist.

Henri Poincaré

Our present analytical methods seem unsuitable for the
solution of the important problems arising in connection with
nonlinear partial differential equations and, in fact, with
virtually all types of nonlinear problems in pure mathematics.
The truth of this statement is particularly striking in the field
of fluid dynamics. Only the most elementary problems have
been solved analytically in this field. . .

John Von Neumann

4.1 Introduction

First-order, nonlinear, partial differential equations arise in various areas of phys-
ical sciences which include geometrical optics, fluid dynamics, and analytical dy-
namics. An important example of such equations is the Hamilton–Jacobi equation
used to describe dynamical systems. Another famous example of the first-order non-
linear equations is the eikonal equation which arises in nonlinear optics and also
describes the propagation of wave fronts and discontinuities for acoustic wave equa-
tions, Maxwell’s equations, and equations of elastic wave propagation. Evidently,
first-order, nonlinear equations play an important role in the development of these
diverse areas.
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This chapter deals with the theory of the first-order nonlinear equations and their
applications. The generalized method of characteristics is developed to solve these
nonlinear equations. This is followed by several examples, as well as examples of
applications in analytical dynamics, quantum mechanics, and nonlinear optics.

4.2 The Generalized Method of Characteristics

The most general, first-order, nonlinear partial differential equation in two indepen-
dent variables x and y has the form

F (x, y, u, p, q) = 0, (4.2.1)

where u = u(x, y), p = ux, and q = uy .
It has been shown in Section 3.3 that the complete solution (integral) of (4.2.1)

is a two-parameter family of surfaces of the form

f(x, y, u, a, b) = 0, (4.2.2)

where a and b are parameters. Specifying a space curve, through which the complete
integral must pass, generates a solution surface. The equation of the tangent plane at
each point (x, y, u) of the solution surface is

p(x− ξ) + q(y − η)− (u− ζ) = 0, (4.2.3)

where (ξ, η, ζ) are running coordinates on the tangent plane. Since the given equa-
tion (4.2.1) is a relation between p and q for any solution surface, there is a family of
tangent planes corresponding to different values of p and q. We can find an equation
that represents the envelope of these planes by considering the intersection of (4.2.3)
and the tangent plane at the same point (x, y, u) corresponding to neighboring values
p+ dp and q + dq of p and q,

(p+ dp)(x− ξ) + (q + dq)(y − η)− (u− ζ) = 0. (4.2.4)

Thus, the intersection of (4.2.3) and (4.2.4) leads to the result

(x− ξ)dp+ (y − η)dq = 0. (4.2.5)

We can rewrite this equation in terms of quantities specific to the given equation by
calculating the differential of (4.2.1) with fixed x, y, and u, that is,

Fpdp+ Fqdq = 0. (4.2.6)

Eliminating dp and dq from (4.2.5) and (4.2.6) gives

(x− ξ)Fq − (y − η)Fp = 0,

or
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x− ξ

Fp
=

y − η

Fq
. (4.2.7)

The equation of the surface for which the tangent planes are the envelopes is thus
determined by eliminating p and q from (4.2.1), (4.2.3), and (4.2.7). This surface
represents a cone for nonlinear equations, called the Monge cone. We next combine
(4.2.7) with (4.2.3) to obtain

x− ξ

Fp
=

y − η

Fq
=

u− ζ

pFp + qFq
. (4.2.8)

Both (x, y, u) and (ξ, η, ζ) lie on the tangent plane, and hence, (4.2.8) represents a
line on the tangent plane to the solution surface. Further, x − ξ, y − η, and u − ζ
are direction numbers of a line on the tangent plane, and hence, a fixed direction
on each tangent plane (for particular values of p and q) is determined by (4.2.8).
This direction is determined by the vector (Fp, Fq, pFp + qFq). As p and q change,
these directions, known as the characteristic directions, determine the family of lines
(4.2.8) that generate a Monge cone at (x, y, u). To find differential equations for the
characteristics as this point moves along a solution surface, we replace x− ξ, y − η,
u− ζ by dx, dy, du, respectively, so that (4.2.8) becomes

dx

Fp
=

dy

Fq
=

du

pFp + qFq
. (4.2.9)

The system (4.2.9) represents equations for the characteristics curves of (4.2.1).
As in the case of the quasi-linear equation, equations (4.2.9) depend on the unknown
solution u(x, y), but unlike the quasi-linear case, they also depend on p and q. This
means that the characteristic curves also depend on the orientation of the tangent
planes on the Monge cone at each point. As this geometrical analysis suggests, there
is a whole (Monge) cone of characteristics, not just one characteristic, as in the quasi-
linear case. By equating the ratios in (4.2.9) with dt, we obtain the differential equa-
tions for the characteristic curves in the parametric form

dx

dt
= Fp,

dy

dt
= Fq,

du

dt
= pFp + qFq. (4.2.10)

This is a system of three equations for five unknowns x, y, u, p, and q. Thus, for
the nonlinear equation (4.2.1), the system (4.2.10) is not a closed set. We need two
more equations to close the system, and hence, it is natural to look for equations for
dp
dt and dq

dt . Since p = p[x(t), y(t)] and q = q[x(t), y(t)], we have, by the chain rule
and (4.2.10),

dp

dt
= px

dx

dt
+ py

dy

dt
= pxFp + pyFq, (4.2.11)

dq

dt
= qx

dx

dt
+ qy

dy

dt
= qxFp + qyFq. (4.2.12)

Further, u = u(x, y) is a solution of the equation (4.2.1) which gives
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dF

dx
= Fx + pFu + pxFp + qxFq = 0, (4.2.13)

dF

dy
= Fy + qFu + pyFp + qyFq = 0. (4.2.14)

We next use the fact that py = qx, which can be considered an integrability con-
dition for the solution surface, and then utilize (4.2.13), (4.2.14) in (4.2.11), (4.2.12)
to obtain

dp

dt
= −(Fx + pFu),

dq

dt
= −(Fy + qFu). (4.2.15)

Equations (4.2.10) and (4.2.15) form a closed set of five ordinary differential
equations for five unknown functions x, y, u, p, and q. They are known as charac-
teristic equations for the nonlinear equation (4.2.1). In principle, these can be solved
provided that all five unknown functions are prescribed at t = 0. Usually, as in the
case of quasi-linear equations, the Cauchy data are sufficient to specify x, y, and u
at t = 0 in terms of some parameter s on an initial curve C. It is also necessary to
determine initial values for p and q in terms of s at t = 0.

Eliminating dt from (4.2.10) and (4.2.15) gives the Charpit equations

dx

Fp
=

dy

Fq
=

du

pFp + qFq
= − dp

Fx + pFu
= − dq

Fy + qFu
. (4.2.16)

We formulate the Cauchy problem for (4.2.1) to determine the family of curves
in the parametric form

x = x(t, s), y = y(t, s), and u = u(t, s), (4.2.17)

and the values of p and q as

p = p(t, s) and q = q(t, s), (4.2.18)

where t is a running variable along a particular curve and s is a parameter which
specifies a member of the family.

We seek a solution surface u = u(x, y) with the given initial data at t = 0 as

C: x(0, s) = x0(s), y(0, s) = y0(s), and u(0, s) = u0(s), (4.2.19)

and determine the initial conditions for p(t, s) and q(t, s) at t = 0 as

p(0, s) = p0(s) and q(0, s) = q0(s), (4.2.20)

where p0(s) and q0(s) are to be determined.
A set of five quantities x0(s), y0(s), u0(s), p0(s), and q0(s) cannot all be chosen

independently, since we must observe the relation

du0

ds
=

du0

dx0

dx0
ds

+
du0

dy0

dy0
ds

= p0(s)x
′
0(s) + q0(s)y

′
0(s), (4.2.21)
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where p0(s) and q0(s) are the initial directions which determine the normal to the
solution surface and u0(s) = u(x0(s), y0(s)). The relation (4.2.21) is called the strip
condition. The initial curve x0(s), y0(s), u0(s), and the orientations of the tangent
planes p0(s) and q0(s) are referred to as the initial strip, since the initial conditions
can be viewed as the initial curve combined with the initial tangent planes attached.

Since p0(s) and q0(s) are the initial values of p(t, s) and q(t, s) at t = 0 on the
curve C, these values must satisfy the original equation, that is,

F (x0, y0, u0, p0, q0) = 0. (4.2.22)

Evidently, equations (4.2.21) and (4.2.22) determine the initial values p0(s) and
q0(s). Thus the set of five equations (4.2.10) and (4.2.15) with the initial data
(4.2.19), (4.2.20) can be solved to obtain solutions (4.2.17) and (4.2.18).

It is necessary to use the first two equations of the system (4.2.17) for finding the
parameters t and s in terms of x and y, and the result is substituted into u = u(t, s)
to obtain a solution surface u = u(x, y). The sufficient condition for expressing t
and s in terms of x and y from the first two equations of the system (4.2.17) is that
the Jacobian J is nonzero along the initial strip, that is,

J =
∂(x, y)

∂(t, s)
=

∣∣∣∣ xt yt
xs ys

∣∣∣∣ =
∣∣∣∣Fp Fq

xs ys

∣∣∣∣ �= 0, (4.2.23)

in which the first two equations of the system (4.2.10) are used, where Fp and Fq

in (4.2.23) are computed at the initial strip x0, y0, u0, p0, and q0.
Thus, the above analysis shows that if the Jacobian J �= 0 along the initial strip,

there exists a unique solution of the equation (4.2.1) passing through the given initial
curve (4.2.19). However, in general, the solution is not unique, but it is unique for a
fixed determination of the roots p and q of equations (4.2.21) and (4.2.22). However,
if J = 0 along the initial strip, then the initial-value problem has a solution if it is a
characteristic strip. Indeed, the problem may have infinitely many solutions.

The solutions x(t, s), y(t, s), and u(t, s) of the problem for fixed s give a space
curve, and p(t, s) and q(t, s) determine a tangent plane with normal vector (p, q,−1)
at each point of the space curve. The space curve together with its tangent plane
is called the characteristic strip. Similarly, the Charpit equations are known as the
characteristic strip equations.

4.3 Complete Integrals of Certain Special Nonlinear Equations

Case (i): Nonlinear equations (4.2.1) involving only p and q.

Such equations must be of the form F (p, q) = 0. Thus, the Charpit equations
(4.2.16) become

dx

Fp
=

dy

Fq
=

du

pFp + qFq
=

dp

0
=

dq

0
= dt. (4.3.1)
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The solutions of the last two equations of (4.3.1) are p = const. = a, and q = const.
on the characteristic curves. Thus, F (a, q) = 0, which leads to q = f(a).

It follows from the first two equations of the system (4.3.1) that

du = p dx+ q dy,

which gives that complete solution by integration as

u = ax+ f(a)y + b, (4.3.2)

where b is a constant of integration.

Case (ii): Equations not involving independent variables.

Such equations are of the form

F (u, p, q) = 0. (4.3.3)

Thus, the Charpit equations are

dx

Fp
=

dy

Fq
=

du

pFp + qFq
=

dp

−pFu
=

dq

−qFu
. (4.3.4)

The last equation gives q = ap where a is a constant. Substituting this result
into (4.3.3) gives F (u, p, ap) = 0 which can be solved for p = f(u, a), where f
is an arbitrary function. Hence, q = af(u, a) and the differential equation for u is

du = p dx+ q dy = f(u, a) dx+ af(u, a) dy.

Integrating this equation gives the complete integral
∫ u du

f(u, a)
= x+ ay + b, (4.3.5)

where b is a constant of integration.

Case (iii): Separable equations.

Such equations are of the form

F = G(x, p)−H(y, q) = 0. (4.3.6)

Thus, the Charpit equations are

dx

Gp
=

dy

Hq
=

du

pGp + qHq
=

dp

−Gx
=

dq

Hy
= dt.

It follows from the first and fourth of these equations that

Gx dx+Gp dp = 0.
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This gives G(x, p) = const. = a = H(y, q), and hence, p and q can be solved in
terms of x and a, and y and a, respectively, to obtain p = g(x, a) and q = h(y, a),
so that

du = p dx+ q dy = g(x, a) dx+ h(y, a) dy.

This can be integrated to obtain the complete integral

u =

∫
g(x, a) dx+

∫
h(y, a) dy + b, (4.3.7)

where b is a constant of integration.

Case (iv): Clairaut’s equation.

A first-order partial differential equation of the form

u = px+ qy + f(p, q) (4.3.8)

is called Clairaut’s equation, where f is an arbitrary function of p and q.
The associated Charpit equations are

dx

x+ fp
=

dy

y + fq
=

du

xp+ yq + pfp + qfq
=

dp

0
=

dq

0
= dt.

The last two equations imply that p = const. = a and q = const. = b. Substituting
these values in (4.3.8) gives the complete integral of (4.3.8) as

u = ax+ by + f(a, b). (4.3.9)

This represents the two-parameter family of planes. It can be verified by direct differ-
entiation that (4.3.9) satisfies Clairaut’s equation. Finally, it can also be shown that
the characteristic strips are all straight lines.

We illustrate the above cases by the following examples.

Example 4.3.1. Find the complete integral of the nonlinear equation

p2 + qy − u = 0. (4.3.10)

The associated Charpit equations are

dx

dt
= Fp = 2p,

dy

dt
= Fq = y,

du

dt
= pFp + qFq = 2p2 + qy,

dp

dt
= −(Fx + pFu) = p,

dq

dt
= −(Fy + qFu) = 0.

The last equation gives q = const. = a. Clearly, the given equation can be solved for
p as

p = (u− ay)
1
2 .

Also, we have
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dx

2p
=

dy

y
=

du

2p2 + qy
=

p dx+ q dy

2p2 + qy
,

and hence,
du = p dx+ q dy = (u− ay)

1
2 dx+ a dy,

or equivalently,
du− a dy√
u− ay

= dx.

Integrating this equation gives

2(u− ay)
1
2 = x+ b,

where b is a constant of integration.
Thus, the complete integral is given by

u(x, y) =
1

4
(x+ b)2 + ay. (4.3.11)

Example 4.3.2. Solve the Cauchy problem

p2q = 1, u(x, 0) = x. (4.3.12)

This equation corresponds to Case (i) with F = p2q − 1. Hence, dp = 0 and dq = 0
which gives p = const. = a and q = const. = c. Thus, the given equation yields
c = 1

a2 . Consequently, the complete integral is

u = ax+
1

a2
y + b. (4.3.13)

Using the initial data, we obtain

x = ax+ b,

which gives a = 1 and b = 0. Thus, the solution surface is

u(x, y) = x+ y. (4.3.14)

Example 4.3.3. Solve the Cauchy problem

p2 + q + u = 0, u(x, 0) = x. (4.3.15)

The parametric forms of the Charpit equations are

dx

dt
= 2p,

dy

dt
= 1,

du

dt
= 2p2 + q,

dp

dt
= −p, dq

dt
= −q.

The parametric forms of the initial data are

x(s, 0) = s, y(s, 0) = 0, and u(s, 0) = s.
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Differentiating u(s, 0) = s with respect to s gives p(s, 0) = 1, and then substituting
in the given equation shows that q(s, 0) = −(s + 1). The equations for p and q can
be integrated with these initial conditions to obtain

p = exp(−t), q = −(s+ 1) exp(−t). (4.3.16)

Substituting these values of p and q into the first three Charpit equations gives

dx

dt
= 2 exp(−t), dy

dt
= 1,

du

dt
= 2 exp(−2t)− (s+ 1) exp(−t).

Integrating these equations with the initial data gives

x = (s+ 2)− 2 exp(−t), y = t, u = (s+ 1) exp(−t)− exp(−2t).
(4.3.17)

Eliminating t and s gives the solution surface

u(x, y) = (x− 1)e−y + e−2y. (4.3.18)

Example 4.3.4. Find the solution of the initial-value problem

p2x+ qy = u, u(s, 1) = −s. (4.3.19)

The parametric forms of the Charpit equations are

dx

dt
= 2px,

dy

dt
= y,

du

dt
= 2p2x+ qy,

dp

dt
= p− p2,

dq

dt
= 0.

We differentiate u(s, 1) = −s with respect to s to obtain p(s, 0) = −1. Substituting
this in the given equation gives q(s, 0) = −2s. Integrating the last equation of the
Charpit system gives q(s, t) = −2s.

The equation for p can be integrated to obtain Ap(1−p)−1 = exp(t), where A is
a constant of integration. Using the initial data p(s, 0) = −1, we find that A = −2,
and hence,

p(s, t) =
et

(et − 2)
. (4.3.20)

Substituting this solution for p in the first equation of the Charpit set and integrating
with the condition x(s, 0) = s, we obtain

x(s, t) = s
(
et − 2

)2
. (4.3.21)

The equation for y can be solved with y(s, 0) = 1 and the solution is y(s, 0) =
exp(t), so that the equations of characteristics are x = s(y−2)2. They will intersect
at (0, 2).

Finally, the equation for u can be expressed in terms of t and s as

du

dt
= 2s

(
e2t − et

)
.
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Integrating this equation with u(s, 0) = −s gives the solution

u(s, t) = s exp(t)
{
exp(t)− 2

}
. (4.3.22)

In terms of x and y, the solution takes the form

u(x, y) =
xy

y − 2
. (4.3.23)

This shows that the solution u(x, y) is singular at y = 2.

Example 4.3.5. Solve the initial-value problem

p2 − 3q2 − u = 0 with u(x, 0) = x2. (4.3.24)

The characteristic strip equations are

dx

dt
= Fp = 2p,

dy

dt
= Fq = −6q,

du

dt
= 2

(
p2 − 3q2

)
= 2u, (4.3.25)

dp

dt
= −(Fx + pFu) = p,

dq

dt
= −(Fy + qFu) = q. (4.3.26)

The initial data in the parametric form are given by

x(0, s) = x0(s) = s, y(0, s) = y0(s) = 0, u(0, s) = u0(s) = s2,
(4.3.27)

and p0(s) and q0(s) are the solutions of equations (4.2.21) and (4.2.22) which be-
come

p(0, s) = p0(s) = 2s, and p20 − 3q20 = s2, (4.3.28)

and hence,
q0(s) = ∓s. (4.3.29)

Next we use p0(s) = 2s and q0(s) = −s to solve (4.3.26). It turns out that

p(t, s) = 2set and q(t, s) = −set. (4.3.30)

Substituting these results in (4.3.25) and solving the resulting equations with the
initial data (4.3.27) gives

x(t, s) = 4s
(
et − 1

)
+ s, y(t, s) = 6s

(
et − 1

)
, and u(t, s) = s2e2t.

(4.3.31)

We use the first two results in (4.3.31) to find s and t in terms of x and y as

s =
1

3
(3x− 2y) and exp(t) =

3

2

(2x− y)

(3x− 2y)
. (4.3.32)

Substituting these results into the third equation of the system (4.3.31) gives the
solution surface
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u(x, y) =

(
x− y

2

)2

. (4.3.33)

If we use the initial data p0(s) = 2s and q0(s) = s and solve the problem in a
similar way, we obtain a different solution surface

u(x, y) =

(
x+

y

2

)2

. (4.3.34)

Example 4.3.6. Solve the Clairaut equation

z = px+ qy + f(p, q) = px+ qy +
(
1 + p2 + q2

) 1
2 , (4.3.35)

with the initial data

x(0, s) = x0(s) = a cos s, y(0, s) = y0(s) = a sin s,

z(0, s) = z0(s) = 0.
(4.3.36)

The characteristic strip equations are

dx

dt
= x+

p

f
,

dy

dt
= y +

q

f
,

dz

dt
= z − 1

f
, (4.3.37)

dp

dt
= 0, and

dq

dt
= 0. (4.3.38)

We have to find the initial data p(0, s) = p0(s) and q(0, s) = q0(s) which must
satisfy the original equation and the strip condition, that is,

ap0(s) cos s+ aq0(s) sin s+
(
1 + p20 + q20

) 1
2 = 0, (4.3.39)

−ap0(s) sin s+ aq0(s) cos s = 0 (a �= 0). (4.3.40)

Clearly, equation (4.3.40) is satisfied if

p0(s) = a0(s) cos s and q0(s) = a0(s) sin s. (4.3.41)

Putting these results into (4.3.39) gives (a2 − 1)a20(s) = 1 which leads to

a0(s) = ±
(
a2 − 1

)− 1
2 = const. (a > 1). (4.3.42)

We take the negative sign for a0(s) to solve equations (4.3.37) and (4.3.38). In
fact, the latter equation gives the solutions

p(t, s) = const. = −(a2 − 1)−
1
2 cos s,

q(t, s) = const. = −(a2 − 1)−
1
2 sin s.

(4.3.43ab)

Then,
f =

(
1 + p2 + q2

) 1
2 = a

(
a2 − 1

)− 1
2 , (4.3.44)

which is used to rewrite the first two equations in (4.3.37) as
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dx

dt
= x+

p

f
= x− cos s

a
,

dy

dt
= y − sin s

a
. (4.3.45)

The solution of the first equation in (4.3.45) with x(0, s) = a cos s is given by

x(t, s) =

[(
a− 1

a

)
et +

1

a

]
cos s =

(
a2 − 1

a

)(
et +

1

a2 − 1

)
cos s.

(4.3.46)

Similarly,

y(t, s) =

[(
a− 1

a

)
et +

1

a

]
sin s =

(
a2 − 1

a

)(
et +

1

a2 − 1

)
sin s, (4.3.47)

z(t, s) = − (a2 − 1)
1
2

a

(
et − 1

)
. (4.3.48)

Or equivalently,

z − a√
a2 − 1

= −
√
a2 − 1

a

(
et +

1

a2 − 1

)
. (4.3.49)

Thus, the equation of the characteristic strip is

x2 + y2 =
(
a2 − 1

)[
z − a√

a2 − 1

]2
. (4.3.50)

This represents a cone. In general, any solution of the Clairaut equation represents
a developable surface, that is, a ruled surface which can be deformed into a plane
without stretching or tearing.

4.4 The Hamilton–Jacobi Equation and Its Applications

In analytical dynamics, the Hamilton principle function S(qi, t) characterizes the
dynamical system and satisfies the celebrated Hamilton–Jacobi equation

∂S

∂t
+H

(
qi, t,

∂S

∂qi

)
= 0, i = 1, 2, . . . , n, (4.4.1)

where qi are the generalized coordinates, t is the time variable, and H is the Hamilto-
nian of a dynamical system. This equation is a first-order, nonlinear, partial differen-
tial equation with n+1 independent variables (qi, t), and it plays a fundamental role
in the development of analytical dynamics. It follows from (4.4.1) that S is equal to
the time integral of the Lagrangian L. We have

dS

dt
=

∂S

∂t
+ q̇i

∂S

∂qi
= −H + q̇ipi = L, (4.4.2)

where pi = ∂S
∂qi

.
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Integrating (4.4.2) from t1 and t2 gives

S =

∫ t2

t1

Ldt. (4.4.3)

This shows that S is a functional which satisfies the Hamilton principle. Hamilton
realized that S is a solution of the Hamilton–Jacobi equation.

Using the conventional notation S(qi, t) = u(qi, t), ∂S
∂qi

= ∂u
∂qi

= pi, and p = St,
we rewrite equation (4.4.1) in the form

F (qi, t, pi, p) = p+H(qi, t, pi) = 0, (4.4.4)

where the dependent variable u(qi, t) does not occur in the equation.
In terms of the parameter τ , the Charpit equations associated with (4.4.4) are

given by

dqi
dτ

= Fpi =
∂H

∂pi
, (4.4.5)

dt

dτ
= Fp = 1, (4.4.6)

du

dτ
=

n∑
i=1

piFpi + pFp =

n∑
i=1

pi
∂H

∂pi
+ p, (4.4.7)

dpi
dτ

= −(Fqi + piFu) = −∂H

∂qi
, (4.4.8)

dp

dτ
= −(Ft + pFu) = −∂H

∂t
. (4.4.9)

The second equation (4.4.6) with the given initial condition t(τ) = 0 at τ = 0
gives t = τ . Thus, the independent time variable t can be used as the parameter of
the characteristics. Thus, the above system of equations reduces to the form

dqi
dt

=
∂H

∂pi
, (4.4.10)

dpi
dt

= −∂H

∂qi
, (4.4.11)

du

dt
=

n∑
i=1

pi
∂H

∂pi
+ p, (4.4.12)

dp

dt
= −∂H

∂t
. (4.4.13)

The first two equations (4.4.10), (4.4.11) constitute a set of 2n coupled, first-order,
ordinary differential equations, precisely the Hamilton canonical equations of mo-
tion, which reflect symmetry except for a negative sign. The solutions of these equa-
tions represent the characteristics of the Hamilton–Jacobi equation. They also rep-
resent the generalized coordinates and generalized momenta of a dynamical system
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whose Hamiltonian is H(qi, pi, t). The last equation (4.4.13) gives p = −H which
is used to rewrite (4.4.12) in the form

du

dt
=
∑

pi
∂H

∂pi
−H. (4.4.14)

In principle, the Hamilton system of 2n equations can be solved for qi(t) and
pi(t). If we substitute these solutions in ( ∂H∂pi

) and H in (4.4.12), the right-hand side
of (4.4.12) gives a known function of t, and then u(qi, t) can be found by integration.
A similar argument can be used to find p by integrating (4.4.13). Thus, the upshot
of this analysis is that the characteristics of the Hamilton–Jacobi equation are the
solutions of the Hamilton equations.

By using Hamilton’s equations (4.4.10), (4.4.11), the equations of motion for any
canonical function F (qi, pi, t) can be expressed in the form

dF

dt
=

n∑
i=1

(
∂F

∂qi
q̇i +

∂F

∂pi
ṗi

)
+

∂F

∂t

=

n∑
i=1

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
+

∂F

∂t

= {F,H}+ ∂F

∂t
, (4.4.15)

where {F,H} is called the Poisson bracket of two functions F and H .
If the canonical function F does not explicitly depend on time t, then Ft = 0 and

hence (4.4.15) becomes
dF

dt
= {F,H}. (4.4.16)

In addition, if {F,H} = 0, then F is a constant of motion. In fact, equation (4.4.16)
really includes the Hamilton equations, which can easily be verified by setting
F = qi and F = pi. Further, if F = H , (4.4.16) implies that H is constant.

More generally, the Poisson bracket of any two functions F and G is defined by

{F,G} =
∑
i

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
. (4.4.17)

Obviously, the Poisson bracket is antisymmetric. It also readily follows from the
definition of the Poisson bracket that

{qi, pj} = δij , (4.4.18)

{qi, qj} = 0 = {pi, pj}, (4.4.19ab)

where δij is the Kronecker delta notation. Results (4.4.18), (4.4.19ab) represent the
fundamental Poisson brackets for the canonically conjugate variables qi and pi.

It is important to point out that the sum in a Poisson bracket is taken over all
the independent variables. Partial derivatives of only two dependent variables occur
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in a given Poisson bracket, and these two variables are used in the notation for that
bracket.

To treat time t similarly to the other independent variables, we replace t by qn+1

and write (4.4.4) in the form

G(qi, qn+1, pi, pn+1) = pn+1 +H(qi, t, pi). (4.4.20)

This allows us to write the Hamilton equations in the form

dqi
dt

=
∂G

∂pi
,

dpi
dt

= −∂G

∂qi
, (4.4.21ab)

where G = G(qi, pi) and i = 1, 2, . . . , n + 1. Evidently, if G is given, equations
(4.4.21ab) represent a system of (2n+ 2) first-order, ordinary differential equations
for the unknown functions qi and pi. The main problem is to find a suitable trans-
formation under which the symmetric form of the Hamilton equations is preserved.
Such a transformation is called a canonical transformation, defined as follows.

A transformation of the form

qi = qi(q̃i, p̃i), pi = pi(q̃i, p̃i), (4.4.22ab)

where i = 1, 2, . . . , n+1, is called canonical if there exists a function G̃(q̃i, p̃i) such
that equations (4.4.21ab) transform into

dq̃i
dt

=
∂G̃

∂p̃i
,

dp̃i
dt

= −∂G̃

∂q̃i
. (4.4.23ab)

There are other mathematical expressions invariant under canonical transforma-
tions of the form (4.4.22ab). One such set is the integral invariants of Poincaré. A the-
orem of Poincaré states that the integral

J1 =

∫∫
S

∑
i

dqi dpi (4.4.24)

is invariant under the canonical transformation, where S indicates that the integral
is to be evaluated over any arbitrary two-dimensional surface in the phase space
formed by coordinates q1, q2, . . . , qn, and p1, p2, . . . , pn. It is noted that the position
of a point on any two-dimensional surface is completely specified by not more than
two parameters. We assume that u and v are two such parameters appropriate to the
surface S, so that qi = qi(u, v) and pi = pi(u, v) on this surface. It is well known
that the elementary area dqi dpi transforms to the element of area du dv according to
the relation

dqi dpi =
∂(qi, pi)

∂(u, v)
du dv, (4.4.25)

where the Jacobian determinant is given by

∂(qi, pi)

∂(u, v)
=

∣∣∣∣∣
∂qi
∂u

∂pi

∂u
∂qi
∂v

∂pi

∂v

∣∣∣∣∣ �= 0. (4.4.26)
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The integral J1 has the same value for all canonical coordinates, that is,

∫∫
S

(∑
i

dqi dpi

)
=

∫∫
S

(∑
k

dq̃k dp̃k

)
, (4.4.27)

which can also be expressed as
∫∫

S

∑
i

∂(qi, pi)

∂(u, v)
du dv =

∫∫
S

∑
k

∂(q̃k, p̃k)

∂(u, v)
du dv. (4.4.28)

Since the region of integration is arbitrary, the two integrals in (4.4.28) are equal,
provided that the two integrands are equal, that is,

∑
i

∂(qi, pi)

∂(u, v)
=
∑
k

∂(q̃k, p̃k)

∂(u, v)
. (4.4.29)

This means that the sum of the Jacobian determinants is invariant. More explicitly,
(4.4.29) can be written as

∑
i

(
∂qi
∂u

· ∂pi
∂v

− ∂pi
∂u

· ∂qi
∂v

)
=
∑
k

(
∂q̃k
∂u

· ∂p̃k
∂v

− ∂p̃k
∂u

· ∂q̃k
∂v

)
. (4.4.30)

Each side of this equation is in the form of what is called the Lagrange bracket
of two independent variables u and v defined by

(u, v) =
∑
i

(
∂qi
∂u

· ∂pi
∂v

− ∂pi
∂u

· ∂qi
∂v

)
. (4.4.31)

More generally, if Fk and Gk, k = 1, 2, . . . , n are a set of functions of a number
of independent variables, and if u and v are any two of these variables, then the
Lagrange bracket is defined by

(u, v) =
∑
k

(
∂Fk

∂u
· ∂Gk

∂v
− ∂Fk

∂u
· ∂Gk

∂v

)
. (4.4.32)

Obviously, the Lagrange bracket is antisymmetric.
We now consider the Lagrange bracket of the generalized coordinates

(qi, qj) =
∑
k

(
∂qk
∂qi

· ∂pk
∂qj

− ∂qk
∂qj

· ∂pk
∂qi

)
= 0. (4.4.33)

Since the q’s and p’s are independent coordinates, ∂pk

∂qi
= 0 and ∂pk

∂qj
= 0.

Similarly, we can show that

(pi, pj) = 0. (4.4.34)
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Finally, it can be shown that

(qi, pj) =
∑
k

(
∂qk
∂qi

· ∂pk
∂pj

− ∂qk
∂pj

· ∂pk
∂qi

)
= δij . (4.4.35)

The second term in the above sum vanishes because the q’s and p’s are indepen-
dent, but the first term is not zero because

∂qk
∂qi

= δki, and
∂pk
∂pj

= δkj , (4.4.36ab)

and hence,
(qi, pj) =

∑
k

δjkδki = δij .

Thus, (4.4.33)–(4.4.35) represent the Lagrange brackets of canonical variables
and are often referred to as the fundamental Lagrange brackets.

In contrast to Poisson brackets, the sum in a Lagrange bracket is taken over all
the dependent variables. Partial derivatives with respect to two of the independent
variables occur in a given Lagrange bracket, and these two independent variables
are utilized in the notation for the bracket.

The following observations are in order. First, the condition that the transforma-
tion be canonical can be expressed either in terms of Poisson brackets or in terms of
Lagrange brackets. Second, there exists a mathematical relation between the Poisson
and Lagrange brackets which can be found in Goldstein (1965). Third, both Poisson
and Lagrange brackets are found useful in the transition from classical mechanics
to quantum mechanics. Fourth, for more information on Hamilton–Jacobi equations,
see Qiao (2001, 2002).

Example 4.4.1 (The Hamilton–Jacobi Equation for a Single Particle). We consider
a conservative dynamical system, and write S = u − Et where u is independent of
time t and E is an arbitrary constant. We see that S is a solution of the Hamilton–
Jacobi equation (4.4.1) if u satisfies the time-independent Hamilton–Jacobi equation
in the form

H

(
qi,

∂u

∂qi

)
= E, (4.4.37)

where u is called Hamilton’s characteristic function.

We now derive the Hamilton–Jacobi equation for a single particle of mass m
moving under the influence of a conservative force field. The Hamiltonian of this
system is given by

H = T + V =
1

2m

(
p21 + p22 + p23

)
+ V (x, y, z), (4.4.38)

where V (x, y, z) is the potential energy of the particle and

pi =
∂S

∂qi
=

∂u

∂qi
, i = 1, 2, 3. (4.4.39)
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We may use Cartesian coordinates as the generalized coordinates, that is, q1 = x,
q2 = y, and q3 = z, to reduce the Hamilton–Jacobi equation (4.4.38) in the form

1

2m

[(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂u

∂z

)2]
+ V (x, y, z) = E, (4.4.40)

or equivalently,
u2
x + u2

y + u2
z = f(x, y, z), (4.4.41)

where f(x, y, z) = 2m(E − V ). This is a first-order nonlinear equation. In the
next section, we discuss the solution of this equation in the context of nonlinear
geometrical optics.

Example 4.4.2 (Simple Harmonic Oscillator). The Hamilton–Jacobi equation can
readily be applied to solve the problem of a simple harmonic oscillator. In terms of
generalized coordinates (q, p), the Hamiltonian of this conservative problem is given
by

H = T + V = E =
p2

2m
+

k

2
q2, (4.4.42)

where m is the mass and k is a positive constant.
Setting p = ∂S

∂q , the Hamilton–Jacobi equation (4.4.1) becomes

∂S

∂t
+

1

2m

(
∂S

∂q

)2

+
k

2
q2 = 0. (4.4.43)

For this conservative system, the time-independent part of S can be separated by
introducing a function u so that S(q, t) = u(q)−Et. Consequently, (4.4.43) reduces
to the form

1

2m

(
∂u

∂q

)2

+
k

2
q2 = E. (4.4.44)

Integrating this equation gives

u =
√
mk

∫ √(
2E

k

)
− q2 dq = S + Et. (4.4.45)

Since S is independent of E, we differentiate (4.4.45) with respect to E to obtain

∂u

∂E
=

√
m

k

∫
dq√

( 2Ek )− q2
= −

√
m

k
cos−1

(
q

√
k

2m

)
+ τ = t, (4.4.46)

where τ is a constant of integration. Thus, solving (4.4.46) for q yields

q(t) =

√
2E

k
cos

[
ω(t− τ)

] (
ω2 =

k

m

)
. (4.4.47)
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The momentum conjugate to q is given by

p = mq̇ = −
√
2mE sin

[
ω(t− τ)

]
. (4.4.48)

A simple calculation of L = T − V can be used to verify that S is equal to the
time integral of L.

Example 4.4.3 (Jacobi’s Principle of Least Action). For a conservative dynamical
system (H = E), the principle of least action is given by

0 = δA = δ

∫ t2

t1

2T dt

(
T =

m

2
ṡ2
)

= δ

∫ s2

s1

√
2mT ds = δ

∫ s2

s1

√
2m(E − V ) ds. (4.4.49)

This is known as the Jacobi principle of least action, and it is concerned with
the path of the system in the configuration space, rather than the motion in time.
Indeed, the time does not appear in the integrand of the integral in (4.4.49) because
V = V (q) does not depend on time. This principle in the same form as (4.4.49) is
also valid for a conservative system of particles.

Example 4.4.4 (Wave Propagation in Continuous Media). The Hamilton–Jacobi the-
ory can also be applied to problems of wave propagation in continuous media. In
a conservative dynamical system, the Hamiltonian is a constant of motion and is
identified with the total energy. For an n-dimensional configuration space where
q = (q1, q2, . . . , qn), the Hamilton function S can be expressed in terms of the char-
acteristic function u as

S(q, t) = u(q)− Et, (4.4.50)

where u is independent of time t, and the surface of constant u is fixed in the con-
figuration space. However, the surface of constant S moves with time according
to (4.4.50).

We suppose that at some time t the surface of constant S corresponds to the
surface of constant u so that at time t + dt that surface coincides with the surface
for which u = S + Edt. Obviously, during the small time interval dt, the surface of
constant S moves to a new surface u+ du. Thus, the family of surfaces, S = const.,
can be interpreted as the family of wave fronts propagating in the space. The outward
normal vector at each point on the surface S = const. represents the direction of the
phase (wave) velocity cp = ds

dt , where ds is the distance normal to the surface, and
S = a constant that moves from u to a new position U+dU in time dt. The definition
of du and (4.4.50) reveals that

du

dt
= ∇u · c = E (4.4.51)

so that the phase velocity is

cp =
ds

dt
=

E

|∇u| . (4.4.52)
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For a single particle of mass m in the configuration space q = (x, y, z), the
Hamiltonian is H = T + V = E so that the Hamilton–Jacobi equation for S is

E − V =
1

2m

(
∂u

∂qi

)2

=
1

2m
|∇u|2,

so that
|∇u|2 = 2m(E − V ). (4.4.53)

This result can be used to rewrite the phase speed (4.4.52) in the form

c =
E

|∇u| =
E√

2m(E − V )
=

E

p
. (4.4.54)

In an n-dimensional configuration space, pi = ∂u
∂qi

which is, in vector notation,

p = ∇u. (4.4.55)

Evidently, ∇u determines the normal to the surface of the constant S or u, and
hence, represents the direction of wave propagation. It also follows from (4.4.54)
that pc = E = const., which asserts that when the surfaces move slower, particles
move faster, and vice versa.

4.5 Applications to Nonlinear Optics

Light waves are electromagnetic waves which are transverse waves that can be de-
scribed by both scalar and vector potentials. For simplicity, we consider the scalar
wave equation for the electromagnetic potential φ

∇2φ− n2

c20
φtt = 0, (4.5.1)

where c0 is the speed of light in a vacuum, n = c0
c is called the refractive index of

the medium, and c is the speed of light in an optical medium. In general, n depends
on the optical density of the medium and is a function of space variables.

For constant refractive index n, equation (4.5.1) admits a plane wave solution

φ = A0 exp
[
i(k · x− ωt)

]
, (4.5.2)

where A0 is a complex wave amplitude, provided the following dispersion relation
holds: (

k2 + l2 +m2
)
=

n2ω2

c20
, k = (k, l,m). (4.5.3)

In the case of one-dimensional wave propagation problems, the wave number k = 2π
λ

is given by
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k =
nω

c0
=

ω

c
. (4.5.4)

In general, n depends on x, and the wave form is likely to be changed so that
the exact plane wave solutions may not be possible. We adopt a geometrical optics
approximation where n varies slowly with distance which is assumed to be the order
of the wavelength λ. In geometrical optics, λ is small (or k is large) where (4.5.4)
holds. Thus, the geometrical optics approximation deals with a small wavelength or
high frequency of waves. It is then natural to seek a nearly plane wave solution in the
form

φ = exp
[
A(x) + ik0

{
ψ(x)− c0t

}]
, (4.5.5)

where the wave amplitude A and the phase ψ of the wave are slowly varying func-
tions of x, and k0 is the wavenumber in the vacuum (n = 1) with k0 = nω

c0
.

Application of the gradient operator to (4.5.5) gives

∇φ = φ∇(A+ ik0ψ). (4.5.6)

∇2φ = φ
[
∇2(A+ ik0ψ) +

{
∇(A+ ik0ψ)

}2]
= φ

[
∇2A+ ik0∇2ψ + (∇A)2 − k20(∇ψ)2 + 2ik0∇A · ∇ψ

]
. (4.5.7)

Consequently, the wave equation (4.5.1) becomes

∇2A+ (∇A)2 + k20
{
n2 − (∇ψ)2

}
φ+ ik0

[
2∇A · ∇ψ +∇2ψ

]
φ = 0.

(4.5.8)

Both A and ψ are real, and hence, the real and imaginary parts of (4.5.8) must
vanish so that

2∇A · ∇ψ +∇2ψ = 0, (4.5.9)

∇2A+ (∇A)2 + k20
{
n2 − (∇ψ)2

}
= 0. (4.5.10)

The geometrical optics approximation has no effect on equation (4.5.9), but equa-
tion (4.5.10) is modified in the limit as k0 → ∞ so that it becomes

(∇ψ)2 = n2. (4.5.11)

This is known as the eikonal equation in optics, and the phase function ψ is called
the eikonal (eikon is a Greek word for image or figure). This is a first-order nonlinear
partial differential equation which plays a very important role in optics and in wave
propagation in continuous media. Physically, equation (4.5.11) determines a surface
of constant phase as wave fronts. There is a remarkable correspondence between
the eikonal equation (4.5.11) in optics and the Hamilton–Jacobi equation (4.4.40) in
classical mechanics, where n in the former equation plays a role similar to that of√
2m(E − V ) in the latter. Thus, there is a striking similarity between the eikonal

ψ and the characteristic function u in classical mechanics. It is also evident from
the Hamilton–Jacobi theory that classical mechanics may be regarded as the small
wavelength (or high frequency) limit of the geometrical optics. This relationship
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between classical mechanics and geometrical optics can be reconfirmed from the fact
that Fermat’s principle of least time follows from Jacobi’s principle of least action as
seen below:

0 = δ

∫ s2

s1

√
2m(E − V ) ds = δ

∫ s2

s1

nds = δ

∫ s2

s1

(nc) dt = δ

∫ s2

s1

c0 dt.

(4.5.12)

Example 4.5.1 (Eikonal Equation in Nonlinear Geometrical Optics). In optics, light
waves propagate in a medium along rays with a given speed c = c(x, y, z) depending
on space variables. The surfaces of constant optical phase, x0(τ) = τ , y0(τ) = τ ,
and u(x, y, z) = const., are called the wave fronts, which are orthogonal to the light
rays. The function u(x, y, z) satisfies the classical, nonlinear, first-order equation

u2
x + u2

y + u2
z = n2(x, y, z), (4.5.13)

where n = ( c0c ) is called the index of refraction.
In two space dimensions, the eikonal equation (4.5.13) takes the form

u2
x + u2

y = n2(x, y). (4.5.14)

This describes the propagation of cylindrical waves in optics, acoustics, elasticity,
and electromagnetic theory. The classical and simplest problem of wave propaga-
tion deals with shallow water waves where wave crests or troughs, or any curve of
constant phase, are the level curves expressed as

u(x, y)− at = const., (4.5.15)

with t as the time variable. As time progresses, waves propagate in the (x, y)-plane.
When n is a constant, we can apply Case (i) in Section 4.3 to find the general

solution of (4.5.14). It follows from (4.3.2) that the complete solution of (4.5.14) can
be written as

u(x, y) = anx+ n
√

1− a2y + b, (4.5.16)

where a and n are constants. Or equivalently,

u(x, y) = nx cos θ + ny sin θ + b, (4.5.17)

where a = cos θ.
With n(x, y) = const. = n, we solve (4.5.14) as the initial-value problem for

x(s, τ), y(s, τ), u(s, τ), p(s, τ), and q(s, τ) with the Cauchy data

x(0, τ) = x0(τ), y(0, τ) = y0(τ), u(0, τ) = u0(τ), (4.5.18)

p(0, τ) = p0(τ), and q(0, τ) = q0(τ), (4.5.19)

where s and τ are parameters.
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According to the general theory of first-order equations, the Charpit equations
associated with (4.5.14) are

dx

ds
= 2p,

dy

ds
= 2q,

du

ds
= 2

(
p2 + q2

)
,

dp

ds
= 0,

dq

ds
= 0.

(4.5.20)

Evidently, the last two equations in (4.5.20) give p(s, τ) and q(s, τ) which are
constant on the characteristics, that is,

p(s, τ) = const. = p0(t) and q(s, τ) = const. = q0(t). (4.5.21)

Since p and q are constant for fixed τ , the first two equations in (4.5.20) imply
that characteristics (light rays) are straight lines which can be obtained by direct
integration in the form

x(s, τ) = 2p0s+ x0(τ), y(s, τ) = 2q0s+ y0(τ). (4.5.22)

By integration, the third equation in (4.5.20) gives

u(s, τ) = 2
(
p20 + q20

)
s+ u0(τ) = 2n2s+ u0(τ). (4.5.23)

Along the characteristics (or light rays), equation (4.5.23) has the same form
as (4.5.15) with s playing the role of a scaled-time variable and where u0(τ) is
independent of time like variable s.

Eliminating p0, q0, and s from (4.5.22) and (4.5.23) gives the solution

(u− u0)
2 = n2

{
(x− x0)

2 + (y − y0)
2
}
. (4.5.24)

This represents a cone with its vertex at (x0, y0, u0). Or equivalently, taking the
positive square root, we have

u(x, y) = u0 + n
{
(x− x0)

2 + (y − y0)
2
} 1

2 . (4.5.25)

This is a three-parameter family of characteristic strips of (4.5.14), and hence, it rep-
resents the solution of the eikonal equation (4.5.14). However, the solution (4.5.25)
satisfies (4.5.14) everywhere except at the initial point (x0, y0), where ux and uy are
singular. Thus, (4.5.25) is called the singular solution which determines a cone with
its vertex at (x0, y0, u0), identical with the Monge cone through that point.

Physically, the level curves u(x, y) = const. characterize the wave fronts, where
∇u = (ux, uy) = (p, q) represents the normal vector to the wave fronts. It follows
from (4.5.20) that 2(p, q) represents the tangent vector to the characteristics or light
rays. Thus, the light rays are normal to the wave fronts. This is true even for a variable
index of refraction.
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Now, we discuss several special solutions of eikonal equation (4.5.14) with con-
stant n and the following three sets of initial data:

(i) x0(τ) = 0, y0(τ) = 0, and u0(τ) = 0.

In this case, solutions (4.5.22) and (4.5.23) reduce to the form

x = 2p0s, y = 2q0s, and u = 2n2s. (4.5.26)

Eliminating s from the first two results gives

x2 + y2 = 4
(
p20 + q20

)
s2 = 4n2s2. (4.5.27)

Therefore, the solution is

u(x, y) = n
(
x2 + y2

) 1
2 . (4.5.28)

The level curves representing the wave fronts are u(x, y) = const., which represents
a family of concentric circles. The strip condition (4.2.21) is automatically satisfied,
the given equation leads to p20 + q20 = n2, and hence, p0 and q0 are constant. Thus,
the characteristics representing the rays are given by a family of straight lines q0x−
p0y = 0 which passes through the origin. This example also confirms the fact that
rays are normal to the wave fronts.

(ii) x0(τ) = τ, y0(τ) = τ, u0(τ) = aτ.

It follows from equation (4.5.14) that

p0(τ) = n cos θ and q0(τ) = n sin θ,

for some real values of θ. In order to satisfy the strip condition (4.2.21) in which s is
replaced by τ , the result

n(cos θ + sin θ) = a (4.5.29)

must hold for some values of θ.
Consequently, solutions (4.5.22) and (4.5.23) become

x(s, τ) = 2ns cos θ + τ, y(s, τ) = 2ns sin θ + τ, (4.5.30)

u(s, τ) = 2n2s+ nτ(cos θ + sin θ). (4.5.31)

Eliminating s and τ from (4.5.30) gives

s =
(x− y)

2n(cos θ − sin θ)
and τ =

(y cos θ − x sin θ)

(cos θ − sin θ)
. (4.5.32)

Substituting the values for s and τ in (4.5.31) leads to the solution

u(x, y) = n(x cos θ + y sin θ). (4.5.33)
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In particular, when a = n, then cos θ + sin θ = 1, which implies that either
θ = 0 or θ = π

2 . Therefore, solution (4.5.33) leads to two continuously differentiable
solutions given by

u(x, y) = nx or ny. (4.5.34)

(iii) x0(τ) =
cos τ

1− cos τ
, y0(τ) =

sin τ

1− cos τ
, and u0(τ) =

n cos τ

1− cos τ
.

(4.5.35)

The first two initial conditions in (4.5.35) determine the initial curve y2 = 2x+1,
which is a parabola with its vertex at (−1

2 , 0) and its focus at (0, 0). To determine
the initial data p0(τ)and q0(τ), we need to satisfy the given equation (4.5.14) and the
strip condition as

p20(τ) + q20(τ) = n2, (4.5.36)

p0(τ)x
′
0(τ) + q0(τ)y

′
0(τ) = u′

0(τ). (4.5.37)

These equations give two sets of solutions:

(a) p0 = n, q0 = 0; (b) p0 = n cos τ, q0 = n sin τ.

For case (a), the solution can be obtained from (4.5.22) and (4.5.23) as

x(s, τ) = 2ns+ x0(τ), y(s, τ) = y0(τ), u(s, τ) = 2n2s+ u0(τ).

(4.5.38)

From the first and the third results with the data (4.5.35), we obtain the solution

u(x, y) = nx. (4.5.39)

The level curves u = const. give x = const., which is a family of straight lines
parallel to the y-axis as shown in Figure 4.1.

For case (b), the solutions are found from (4.5.22) and (4.5.23) as

x = 2ns cos τ + x0(τ), y = 2ns sin τ + y0(τ), u(s, τ) = 2n2s+ u0(τ).

After some algebraic simplification, we obtain the solution

u(x, y) = n
[(
x2 + y2

) 1
2 − 1

]
. (4.5.40)

Thus, the wave fronts represented by the level curves u(x, y) = const. are

x2 + y2 = a2. (4.5.41)

They represent concentric circles as shown in Figure 4.1.
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Fig. 4.1 The level curves (wave fronts) for solutions (4.5.39) and (4.5.41).

Example 4.5.2 (Eikonal Equation with a Point Source). We consider the initial-value
problem for the eikonal equation with a point source which moves along a straight
line in the (x, t)-plane with constant speed v. Without loss of generality, we assume
that motion is set up along the x-axis and passes through the origin when the eikonal
u = 0. We solve the equation

p2 + q2 =
1

c2
, (4.5.42)

with the Cauchy data

x(0, τ) = x0(τ) = τ, y(0, τ) = y0(τ) = 0, u(0, τ) = u0(τ) =
τ

v
,

(4.5.43)
where c is a constant. The conditions (4.5.36), (4.5.37) give

p20(τ) + q20(τ) =
1

c2
and (4.5.44a)

p20(τ) =
1

v
, (4.5.44b)

and hence,

q20(τ) = ±1

v

(
M2 − 1

) 1
2 , (4.5.45)

where M = v
c is the Mach number.

The condition (4.5.44a) is satisfied if we set p0(τ) = cos θ
c and q0(τ) = sin θ

c ,
where the new parameter θ is defined by θ = cos−1( 1

M ) which has real solutions for
θ in (0, 2π) provided the Mach number M > 1. Thus, the solutions of the present
problem can be obtained from (4.5.22) and (4.5.23) as

x(s, τ) =
2s

v
+ τ, y(s, τ) =

2s

c
sin θ =

2s

cM

(
M2 − 1

) 1
2 , (4.5.46)

u(x, τ) =
2s

c2
+

τ

v
, p(s, τ) = Mc, q(s, τ) =

1

cM

(
M2 − 1

) 1
2 . (4.5.47)
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Eliminating s and τ from the first two results in (4.5.46) and substituting them
into the first equation in (4.5.47) gives the solution

u(x, y) =
1

v

[
x+

y(M2 − 1)

M sin θ

]
=

1

v

[
x+ y

(
M2 − 1

) 1
2
]
. (4.5.48)

The other choice of θ gives a negative q0, and hence, the solution is given by

u(x, y) =
1

v

[
x− y

(
M2 − 1

) 1
2
]
. (4.5.49)

Example 4.5.3 (The Schrödinger Equation in Quantum Mechanics). The striking
feature of this example is that the optical wave equation (4.5.1) for the electromag-
netic potential reduces to the Schrödinger equation in quantum mechanics. As in-
dicated earlier, the eikonal function ψ is proportional to the characteristic function
u. If u corresponds to ψ, then S = u − Et must be equal to a constant times the
total phase of the optical wave which is given by the imaginary part of the exponent
in (4.5.5) so that

u− Et =

(
h

2π

)
k0
[
ψ(x)− c0t

]
, (4.5.50)

where ( h
2π ) is constant. This shows that the total energy E is given by

E =

(
h

2π

)
k0c0 =

(
h

2π

)
ω = �ω = hν, (4.5.51)

where ω = 2πν and h = 2π�.
Equation (4.5.51) is the fundamental equation in quantum mechanics as h is the

Planck constant. On the other hand, the wave speed c, frequency ν, and wavelength
λ are related by

c = λν =
λω

2π
. (4.5.52)

According to the Hamilton–Jacobi theory, equation (4.4.54) relates c, E, and
p. Consequently, (4.4.54) and (4.5.52) give another fundamental result in quantum
mechanics:

λ =
h

p
=

h√
2m(E − V )

. (4.5.53)

Thus, the optical wave equation for the potential φ with c = c0
n takes the form

φtt − c2∇2φ = 0. (4.5.54)

If φ = ψ(x) exp(iωt) with (4.5.52), then (4.5.54) reduces to the form

∇2ψ +
ω2

c2
ψ ≡ ∇2ψ +

4π2

λ2
ψ = 0. (4.5.55)

Using (4.5.53) and (4.4.54), we can replace the factor ( 4π
2

λ2 ) by using (4.5.53) so
that (4.5.55) becomes

∇2ψ +
2m

�2
(E − V )ψ = 0. (4.5.56)

This is the celebrated Schrödinger equation in quantum mechanics.
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4.6 Exercises

1. Solve the following first-order partial differential equations:
(a) pq = u with u(0, y) = y2,
(b) p+ q = pq with u(x, 0) = αx, where α is a constant,
(c) xp2 + yq = u with u(s, 1) = −2s, where s is a parameter,
(d) pq = xy with u(x, y) = −y at x = 0.

2. Obtain the complete integral of the following equations:
(a) pq − u2 = 0, (b) p2 + q2 = u,
(c) p2 + q + x2 = 0, (d) p2 + qy − u = 0,
(e) pq = xy, (f) x2p2 + y2q2 = u2,
(g) x2p2 + y2q2 = 4, (h) yp2(1 + x2)− qx2 = 0,
(i) 2q(u− px− qy) = 1− q2, (j) (p2 + q2)x− pu = 0.

3. Solve the following Cauchy problems:
(a) p2 − qu = 0, u(x, y) = 1 on y = 1− x,
(b) px+ qy − p2q − u = 0, u(x, y) = x+ 1 on y = 2,
(c) 2p2x+ qy − u = 0, u(x, 1) = −1

2x,
(d) 2pq − u = 0, u(x, y) = 1

2y
2 at x = 0,

(e) pq = 1, u(x, 0) = x,
(f) pq = u, u(x, y) = 1 on y = −x,
(g) u2

x + uy = 0, u(x, 0) = x,
(h) u− p2 + 3q2 = 0, u(x, 0) = x2,
(i) cux + ut + acu = 0, u(x, 0) = f(x).

4. Find the solution of the equation in the parametric form

xp+ qy − p2q − u = 0,

with the initial data

x(t, s) = s, y(t, s) = 2, u(t, s) = s+ 1, at t = 0.

5. Show that the complete integrals of the equation

xpq + yq2 = 1,

are (a) (u+ b)2 = 4(ax+ y) and (b) cx(u+ d) = x2 + c2y, where a, b, c, and
d are constants.

6. Show that the integral surfaces of the nonlinear equation

2q(u− xp)− 2y(q + x) = 0,

which are developable surfaces, are cones

(u+ ax)2 = 2y(x+ b).

7. Show that the complete integrals of the equation

2xu+ q2 = x(xp+ yq)

are (a) u + a2x = axy + bx2 and (b) x(y + cx)2 = 4(u − dx2), where a, b, c,
and d are constants.



4.6 Exercises 255

8. Find the solution of the equation in the parametric form

pq = xy, u(x, y) = −y when x = 0.

9. Show that no solution exists for the Cauchy problem

pq = u, u(x, y) = −1, y = −x.

10. Show that the solution of the Cauchy problem

u2
x + ut = 0, u(x, 0) = cx

is
u(x, t) = cx− c2t.

11. Find the solution of the following Cauchy problems:
(a) xp+ yq = xy, u(x, y) = 1

2x
2 on y = x.

(b) −xp+ yq = a (0 < x < y), u = 2x on y = 3x, where a is a constant.
(c) (p2 + q2)x = pu, u(0, s2) = 2s.
(d) u2

x + uy = 0, u(x, 0) = x.
(e) 4ut − u2

x = 4x2, u(x, 0) = 0.
12. Obtain the solution of the equation

z
(
p2 + q2

) 1
2 −

(
1− z2

) 1
2 = 0 (p = zxandq = zy),

so that the solution surface contains the line

x(0, s) = s, y(0, s) = sin θ, z0(s) = cos θ, 0 < θ <
π

2
.

13. Assuming u = u(x+ ct) = u(ξ), show that the equation

F

(
u,

∂u

∂x
,
∂u

∂t

)
= 0

reduces to the ordinary differential equation

F

(
u,

du

dξ
, c
du

dξ

)
= 0.

14. Show that the complete solution of the equation

z2
(
p2 + q2 + 1

)
= 1 (p = zx, q = zy)

is the family of cylinders of unit radius whose axis lies on the (x, y)-plane, that
is,

z2 + (x cos θ + y sin θ + b)2 = 1,

where a = tan θ and b is a constant of integration.
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15. Solve the first-order nonlinear equations:
(a) F (u, p, q, a) = (u− a)2(p2 + q2 + 1)− 1 = 0,
(b) u2(p2 + q2 + 1)− 1 = 0,
(c) p2 + q2 = 1.

16. Solve the following Cauchy problems:
(a) uux + uy = 0, u(x, 0) = x2,
(b) u2ux + uy = 0, u(x, 0) = x.
Show that the solution u(x, y) as y → 0 agrees with the initial condition in each
case.

17. Show that the complete integral of the equation

u2
(
p2 + q2 + 1

)
= 1

is
(x− a)2 + (y − b)2 + u2 = 1,

where a and b are constants.
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Conservation Laws and Shock Waves

The strides that have been made recently, in the theory of
nonlinear partial differential equations, are as great as in the
linear theory. Unlike the linear case, no wholesale
liquidation of broad classes of problems has taken place;
rather, it is steady progress on old fronts and on some new
ones, the complete solution of some special problems, and the
discovery of some brand new phenomena. The old
tools—variational methods, fixed-point theorems, mapping
degree, and other topological tools have been augmented by
some new ones. Pre-eminent for discovering new phenomena
is numerical experimentation; but it is likely that in the future
numerical calculations will be parts of proofs.

Peter Lax

5.1 Introduction

Conservation laws describe the conservation of some basic physical quantities of a
system and they arise in all branches of science and engineering. In this chapter,
we study first-order, quasi-linear, partial differential equations which become con-
servation laws. We discuss the fundamental role of characteristics in the study of
quasi-linear equations and then solve the nonlinear, initial-value problems with both
continuous and discontinuous initial data. Special attention is given to discontinuous
(or weak) solutions, development of shock waves, and breaking phenomena. As we
have observed, quasi-linear equations arise from integral conservation laws which
may be satisfied by functions which are not differentiable, and not even continuous,
but simply bounded and measurable. These functions are called weak or generalized
solutions, in contrast to classical solutions, which are smooth (differentiable) func-
tions. It is shown that the integral conservation law can be used to derive the jump
condition, which allows us to determine the speed of discontinuity or shock waves.
Finally, a formal definition of a shock wave is given.

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers,
DOI 10.1007/978-0-8176-8265-1_5, c© Springer Science+Business Media, LLC 2012
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Fig. 5.1 Volume V of a closed domain bounded by a surface S with surface element dS and
outward normal vector n.

5.2 Conservation Laws

A conservation law states that the rate of change of the total amount of material
contained in a fixed domain of volume V is equal to the flux of that material across
the closed bounding surface S of the domain. If we denote the density of the material
by ρ(x, t) and the flux vector by q(x, t), then, the conservation law is given by

d

dt

∫
V

ρ dV = −
∫
S

(q · n) dS, (5.2.1)

where dV is the volume element and dS is the surface element of the boundary
surface S, n denotes the outward unit normal vector to S as shown in Figure 5.1, and
the right-hand side measures the outward flux—hence, the minus sign is used.

Applying the Gauss divergence theorem and taking d
dt inside the integral sign,

we obtain ∫
V

(
∂ρ

∂t
+ div q

)
dV = 0. (5.2.2)

This result is true for any arbitrary volume V , and, if the integrand is continuous, it
must vanish everywhere in the domain. Thus, we obtain the differential form of the
conservation law

ρt + divq = 0. (5.2.3)

In the presence of a source (or sink) function f(x, t, ρ), the total rate at which ρ
is created (or destroyed) in the given domain is

∫
V

f(x, t, ρ) dV. (5.2.4)
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Inserting this term in (5.2.2), we obtain the integral form of the conservation law

d

dt

∫
V

ρ dV +

∫
V

divq dV =

∫
V

f(x, t, ρ) dV. (5.2.5)

An argument similar to that used before gives the differential form of the conser-
vation law corresponding to (5.2.3) as

ρt + divq = f(x, t, ρ), (5.2.6)

where the flux term, divq, usually arises from the transport of ρ in the domain, and
the source term f is often called a growth term in biological problems or a reaction
term in chemistry.

The one-dimensional version of the conservation law is

ρt + qx = f(x, t, ρ). (5.2.7)

From a mathematical or an empirical point of view, it is reasonable to assume a
functional relation between q and ρ as a constitutive equation

q = Q(ρ). (5.2.8)

Thus, equation (5.2.7) and (5.2.8) form a closed system for ρ and q. Substituting
(5.2.8) in (5.2.7) gives

ρt + c(ρ)ρx = f(x, t, ρ), (5.2.9)

where c(ρ) = dQ
dρ .

Equation (5.2.9) is universally considered the most fundamental, first-order,
quasi-linear inhomogeneous wave equation. In particular, when f ≡ 0, (5.2.9) re-
duces to what is called the kinematic wave equation

ρt + c(ρ)ρx = 0. (5.2.10)

This equation often arises in nonlinear wave phenomena when the effects of dissipa-
tion, such as viscosity and diffusion, are neglected. We next investigate the develop-
ment of shocks from the initial-value problem for u(x, t)

ut + c(u)ux = 0, −∞ < x < ∞, t > 0, (5.2.11)

u(x, 0) = f(x), −∞ < x < ∞, (5.2.12)

where c(u) and f(x) are C1(R) functions of their arguments, that is, they are smooth
functions.

The characteristic equations associated with (5.2.11) are

dt

1
=

dx

c(u)
=

du

0
.

These equations give
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Fig. 5.2 Characteristic lines of different slopes.

du

dt
= 0 and (5.2.13a)

dx

dt
= c(u). (5.2.13b)

Clearly, the solution of (5.2.13b) represents characteristics of equation (5.2.11).
Along these characteristics,

du

dt
= ux

dx

dt
+ ut = c(u)ux + ut = 0.

This means that u is constant on the characteristics which propagate with speed c(u).
The dependence of c on u produces a gradual nonlinear distortion of the wave profile
as it propagates in the medium. It also follows that c(u) is constant on the character-
istics, and therefore, the characteristics must be straight lines in the (x, t)-plane with
constant slope 1/c(u). Equations of these lines are given by

x− tc(u) = const. = A, (5.2.14)

where A is a constant, that is, x = x(t) = tc(u) +A.
If any one of these characteristics intersects that x-axis (t = 0) at x(0) = ξ, then,

by the initial condition, u(ξ, 0) = f(ξ). Thus, the equation of a typical characteristic
line (see Figure 5.2) joining two points (ξ, 0) and (x, t) is

x = ξ + tF (ξ), (5.2.15)

where F (ξ) = c(f(ξ)).
Since u(x, t) is constant on the characteristics, it follows from (5.2.15) and the

initial condition that

u(x, t) = u
(
ξ + tF (ξ), t

)
= u(ξ, 0) = f(ξ).

Thus, if a solution of the initial-value problem exists for t > 0, then the solution
can be written in the parametric form
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u(x, t) = f(ξ),

ξ = x− tF (ξ),

}
(5.2.16ab)

where F (ξ) = c(f(ξ)).
If there are two points (ξ, 0) and (η, 0), with ξ < η and

m1 =
1

F (ξ)
<

1

F (η)
= m2,

then the characteristics starting at (ξ, 0) and (η, 0) will intersect at the point P (x, t)
for t > 0. At the point of intersection P (x, t), the solution u(x, t) has two different
values f(ξ) and f(η). This means that u is double valued, and hence, the solution
is not unique at the point of intersection of the characteristics. Thus, the solution
must be discontinuous at the point of intersection. The conclusion is that if no two
characteristic lines intersect in the half plane t > 0, there exists a solution of the
initial-value problem (5.2.11), (5.2.12) as a differentiable function for all t > 0.
This can happen only if the reciprocal of the slope is an increasing function of the
intercept, that is,

F (ξ) ≤ F (η) for ξ ≤ η. (5.2.17)

In other words, the family of characteristics spreads only for t > 0 and generates a
solution of the problem that is at least as smooth as f(x). Such a solution is called
an expansive (or refractive) wave.

We now verify that (5.2.16ab) represents an analytical solution of the problem.
Differentiating (5.2.16ab) with respect to x and t, we obtain ux = f ′(ξ)ξx, ut =
f ′(ξ)ξt, 1 = {1 + tF ′(ξ)}ξx, 0 = F (ξ) + {1 + tF ′(ξ)}ξt.

Eliminating ξx and ξt gives

ux =
f ′(ξ)

1 + tF ′(ξ)
, ut = − F (ξ)f ′(ξ)

1 + tF ′(ξ)
. (5.2.18ab)

Substituting ux and ut, equation (5.2.11) is satisfied provided {1+ tF ′(ξ)} �= 0.
The solution (5.2.16ab) also satisfies the initial condition at t = 0 since ξ = x, and
hence, it is unique.

Suppose that u(x, t) and v(x, t) are two solutions. Then, on x = ξ + tF (ξ),

u(x, t) = u(ξ, 0) = f(ξ) = v(x, t).

Thus, we proved the following.

Theorem 5.2.1. The nonlinear initial-value problem given by (5.2.11), (5.2.12) has
a unique solution provided that {1 + tF ′(ξ)} �= 0 and f and c are C1(R) functions
where F (ξ) = c(f(ξ)). The solution is given by the parametric form (5.2.16ab).

Remark. When c(u) = const. = c > 0, we obtain the linear initial-value problem

ut + cux = 0, x ∈ R, t > 0, (5.2.19)
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Fig. 5.3 Parallel characteristic lines.

u(x, 0) = f(x), x ∈ R. (5.2.20)

This linear problem has a unique solution given by

u(x, t) = f(x− ct). (5.2.21)

This solution represents a traveling wave moving with constant velocity c in the
positive direction of the x-axis without any change of shape.

In this case, the characteristics x = ξ+ ct form a family of parallel straight lines
in the (x, t)-plane as shown in Figure 5.3.

• Physical Significance of Solution (5.2.16ab).

For the general nonlinear problem, the dependence of the wave speed c on u
produces a gradual nonlinear distortion of the wave as it propagates in the medium.
This means that some parts of the wave travel faster than others. When c′(u) > 0,
c(u) is an increasing function of u. In this case, higher values of u propagate faster
than lower ones. On the other hand, when c′(u) < 0, c(u) is a decreasing function
of u, and higher values of u travel slower than the lower ones. This means that the
wave profile progressively distorts itself, leading to a multi-valued solution with a
vertical slope, and hence, it breaks. In the linear case, c is constant, there is no such
distortion of the wave, and hence, it propagates without any change of shape. Thus,
there is a striking difference between the linear and nonlinear solutions.

At any compressive part of the wave, the wave speed is a decreasing function
of x, as shown in Figure 5.4. The wave profile distorts progressively to produce a
triple-valued solution for u(x, t), and hence, it ultimately breaks.

It follows from Theorem 5.2.1 that the solution of the nonlinear initial-value
problem exists provided that 1 + tF ′(ξ) �= 0. This condition is always satisfied for
a sufficiently small time t. It also follows from (5.2.18ab) that both ux and ut tend
to infinity as 1 + tF ′(ξ) → 0. This means that the solution develops a discontinuity
(singularity) when 1+ tF ′(ξ) = 0. Thus, on any characteristic for which F ′(ξ) < 0,
a discontinuity occurs at time t given by
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Fig. 5.4 Distortion of wave profile with increasing time t2 � t1 > 0.

t = − 1

F ′(ξ)
, (5.2.22)

which is positive because F ′(ξ) = c′(f)f ′(ξ) < 0. If we assume c′(f) > 0, this
inequality implies that f ′(ξ) < 0. Hence, the solution (5.2.16ab) ceases to exist for
all time if the initial data is such that f ′(ξ) < 0 for some value of ξ. Suppose that
t = τ is the time when the solution first develops a discontinuity (singularity) for
some value of ξ. Then,

τ = − 1

min−∞<ξ<∞{c′(f)f ′(ξ)} > 0. (5.2.23)

Thus, the shape of the initial curve for u(x, t) changes continuously with increasing
values of t, and the solution becomes multi-valued with a vertical slope for t ≥ τ .
Therefore, the solution breaks down when F ′(ξ) < 0 for some ξ, and such breaking
is a strikingly nonlinear phenomenon. Indeed, Whitham (1974) emphasized that:
“This breaking phenomenon is one of the most intriguing long-standing problems
of water wave theory.” In the linear theory, such breaking will never occur.

More precisely, the development of a discontinuity in the solution for t ≥ τ
can also be seen in the (x, t)-plane. If f ′(ξ) < 0, then we can find two values of
ξ = ξ1, ξ2 (ξ1 < ξ2) on the initial line (t = 0) such that the characteristics through
them have different slopes 1/c(u1) and 1/c(u2), where u1 = f(ξ1), u2 = f(ξ2), and
c(u2) > c(u1). These two characteristics will intersect at a point in the (x, t)-plane
for some t > 0. Since the characteristics carry constant values of u, the solution
ceases to be single-valued at the point of intersection. As Figure 5.4 shows, the so-
lution u(x, t) progressively distorts itself, and, at any instant of time, there exists an
interval on the x-axis where u becomes triple-valued for a given x. The end result
is the development of multi-valued solutions, and hence, it leads to breaking. This is
exactly the situation always observed on beaches when water waves break. Finally,
we conclude the above discussion by stating the remarkable fact that both the distor-
tion of the wave profile and the development of a discontinuity or a shock are typical
nonlinear phenomena.

Therefore, when 1 + tF ′(ξ) = 0, the solution develops a discontinuity known
as a shock. The analysis of a shock involves an extension of a solution to allow for
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discontinuities. It is also necessary to impose certain restrictions on the solution to
be satisfied across its discontinuity.

Example 5.2.1. Solve the nonlinear initial-value problem

ut + uux = 0, x ∈ R, t > 0, (5.2.24)

u(x, 0) =

{
(a2 − x2) if |x| ≤ a,

0 if |x| ≥ a.
(5.2.25)

In this case, c(u) = u, and the solution follows from (5.2.16ab) as

u(x, t) =

{
(a2 − ξ2) if |x| ≤ a,

0 if |x| ≥ a,

where
ξ = x− t

(
a2 − ξ2

)
.

This is a quadratic equation in ξ giving

ξ =
1

2t

[
1±

{
1− 4t

(
x− ta2

)} 1
2
]
, t �= 0.

The solution of (5.2.24) becomes, for |ξ| ≤ a,

u(x, t) =
(
a2 − ξ2

)
,

=
1

2t2
[
2xt− 1±

{
1− 4xt+ 4a2t2

} 1
2
]
, t �= 0, (5.2.26)

and, for |ξ| ≥ a,
u(x, t) = 0.

For small values of t (t → 0), only the positive sign before the radical in (5.2.26)
is acceptable so that the initial condition is satisfied. On the other hand, when t > T ,
both signs are admissible for x > a.

We next draw the characteristics in the (x, t)-plane for a = 1 in Figure 5.5.
As stated before, characteristics are straight lines with speed u. Several charac-

teristic lines intersect. At the point where two characteristics intersect, the solution
becomes double-valued, and the slope in the (x, t)-plane becomes infinite. From this
point onward, the solution is a discontinuous function of position, and it corresponds
to the onset of a shock wave. Moreover, it follows that all the characteristics, origi-
nating from (x, 0) where x > −1, intersect the characteristics starting from the point
x, where x ≥ 1, at some point or another. In particular, the two characteristics ini-
tially at x = 0 and x = 1 intersect at the point (x, t) = (1, 1). The solution would be
double-valued at (1, 1). Figure 5.6 represents the propagation of the initial parabolic
pulse with a = 1.

As t increases, the initial pulse distorts progressively. This progressive change in
the initial wave pulse is the result of the nonlinear term in the equation. In the linear
case (ut + cux = 0, c = const.) with the same initial data (5.2.25) for a = 1, the
initial parabolic pulse propagates with constant velocity c in the positive direction of
the x-axis without change of shape.
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Fig. 5.5 Characteristics of (5.2.24) with the condition for a = 1.

Fig. 5.6 Propagation of a parabolic pulse for a = 1.

Example 5.2.2. Solve the initial-value problem

ut + uux = 0, x ∈ R, t > 0,

u(x, 0) = x2, x ∈ R.

According to (5.2.16ab), the solution is given by

u(x, t) = f(ξ) = ξ2, ξ = x− tξ2.

Hence, the second equation becomes

tξ2 + ξ − x = 0.

Solving this quadratic equation in ξ, we obtain
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ξ =
1

2t

[
−1±

√
1 + 4xt

]
for t �= 0. (5.2.27)

Thus, the solution is

u(x, t) = ξ2 =

(
1

4t2

)[
−1±

√
1 + 4xt

]2

=
1

2t2
[
1 + 2xt±

√
1 + 4xt

]
, t �= 0. (5.2.28)

This solution must satisfy the initial data

x2 = u(x, 0) = lim
t→0

u(x, t).

With the positive sign before the radical in the solution (5.2.28), this limit does
not exist. With the negative sign before the radical, the limit exists by using the
L’Hospital rule twice with fixed x. Thus, the solution is

u(x, t) =
1

2t2
[
1 + 2xt−

√
1 + 4xt

]
, t �= 0. (5.2.29)

This represents a solution only in the region 1+4xt ≥ 0, which is the region between
two branches of the hyperbola xt = −1

4 in the (x, t)-plane.

Example 5.2.3. Solve the initial-value problem

ut + uux = 1, x ∈ R, t > 0, (5.2.30)

u(s, 2s) = s, s is a parameter. (5.2.31)

The characteristic equations are

dt

1
=

dx

u
=

du

1
= dτ. (5.2.32)

The initial data at τ = 0 are

x(0, s) = s, t(0, s) = 2s, u(0, s) = s. (5.2.33)

Thus, the solutions of this system (5.2.32), (5.2.33) are

x(τ, s) = τ2

2 + sτ + s,

t(τ, s) = τ + 2s,

u(τ, s) = τ + s.

⎫⎪⎬
⎪⎭ (5.2.34)

Eliminating τ from the first two results gives the characteristics in the (x, t)-plane as

(t− s)2 = 2(x− s) + s2, (5.2.35)

where s is a parameter. This represents a family of parabolas for s = 0,±1,±2, . . . .
We leave the construction of the diagram for parabolas as an exercise for the reader.
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Fig. 5.7 Compression wave with overlapping characteristics.

We first use (5.2.35) to find s and then use the second result of (5.2.34) to find τ and
s in terms of x and t. This gives

τ =

(
2x− t

t− 1

)
, s =

(t2 − 2x)

2(t− 1)
. (5.2.36)

Substituting these results into the third equation in (5.2.34) gives the integral surface
of the equation (5.2.30) as

u(x, t) =
(2x− 2t+ t2)

2(t− 1)
. (5.2.37)

Thus, the initial-value problem has the solution (5.2.37) everywhere in the (x, t)-
plane except on the straight line t = 1.

Example 5.2.4 (Initial-Value Problem with Discontinuous Initial Data). We con-
sider the initial-value problem for equation (5.2.11) with discontinuous initial data at
t = 0,

u(x, 0) =

{
u1 if x < 0,

u2 if x > 0,
(5.2.38)

and

F (x) =

{
c1 = c(u1) if x < 0,

c2 = c(u2) if x > 0,
(5.2.39)

where u1 and u2 are constants.
There are two cases: (i) u1 > u2 and (ii) u1 < u2.

Case (i) u1 > u2 with c1 > c2.

In this case, breaking will occur almost immediately, and this can be seen from
Figure 5.7. The multi-valued region starts right at the origin and is bounded by the
characteristics x = c2t and x = c1t. This corresponds to a centered compression
wave with overlapping characteristics in the (x, t)-plane.



268 5 Conservation Laws and Shock Waves

Fig. 5.8 Centered expansive wave.

Case (ii) u1 < u2 with c1 < c2.

In this case, the initial condition is expansive with c1 < c2. A continuous solution
can be found from (5.2.16ab) in which all values of F (x) in [c1, c2] are taken on
the characteristics through the origin ξ = 0. This corresponds to a centered fan of
characteristics x = ct where c1 ≤ c ≤ c2 in the (x, t)-plane so that the solution has
the explicit form (see Figure 5.8)

c =
x

t
, c1 <

x

t
< c2. (5.2.40)

Thus, the complete solution is given by

c =

⎧⎪⎨
⎪⎩
c1 if x ≤ c1t,
x
t if c1t < x < c2t,

c2 if x ≥ c2t.

(5.2.41)

Example 5.2.5. Solve the initial-value problem with discontinuous initial data

ut + uux = 0, x ∈ R, t ≥ 0; (5.2.42)

u(x, 0) =

⎧⎪⎨
⎪⎩

1 if x ≤ 0,

1− x if 0 ≤ x ≤ 1,

0 if x ≥ 1.

(5.2.43)

According to the parametric solution (5.2.16ab), we obtain the solution

u(x, t) = f(ξ) =

⎧⎪⎨
⎪⎩

1 if ξ ≤ 0,

1− ξ if 0 ≤ ξ ≤ 1,

0 if ξ ≥ 1,

(5.2.44)

u(ξ, t) = ξ + tf(ξ) =

⎧⎪⎨
⎪⎩
ξ + t if ξ ≤ 0,

ξ(1− t) + t if 0 ≤ ξ < 1,

ξ if ξ ≥ 1.

(5.2.45)
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Fig. 5.9 Characteristics and graphical representation of solution.

Fig. 5.10 Weak or generalized solution.

The solution and the characteristics are drawn in various regions, as shown in Fig-
ure 5.9. In 0 ≤ ξ ≤ 1, the solution is u(x, t) = 1−x

1−t . This is not defined at t = 1.
The characteristics are straight lines intersecting the x-axis at (ξ, 0), and u is

constant on a given characteristic line. The values of u on t = 0 are propagated
along the characteristics. As shown in Figure 5.9, the characteristics are drawn in
various regions in the (x, t)-plane. The value of u on a characteristic line originating
from a point (ξ, 0) is 1 − ξ, where 0 ≤ ξ ≤ 1, and these characteristics all intersect
at (1, 1). This means that u is multi-valued at (1, 1), and hence, the solution breaks
down at this point. It also follows from Figure 5.9 that characteristics originating
from (ξ, 0), with ξ < 0, intersect those originating from (ξ, 0), with ξ > 1. As u
has different values on these characteristics, it follows that it is not defined in the
quadrant x ≥ 1, t ≥ 1.

Figure 5.9 also suggests that the most likely weak solution is one which is dis-
continuous across some curve originating from (1, 1) with u = 1 to its left and u = 0
to its right. In conservation form, the given equation can be written as

ut +

(
1

2
u2

)
x

= 0, (5.2.46)

where the flux is 1
2u

2. It follows from this equation combined with the shock con-
dition that the slope of the shock path is 2. Thus the equation of the shock path is
t = 2x− 1, as shown in Figure 5.10.
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5.3 Discontinuous Solutions and Shock Waves

It should be pointed out that the nonlinear conservation equation

ρt + qx = 0 (5.3.1)

has been solved under two basic assumptions: (i) there exists a functional relation
q = Q(ρ), and (ii) ρ and q are continuously differentiable. When breaking occurs,
questions arise about the validity of these assumptions. To examine the development
of discontinuities or shocks, we still assume that q = Q(ρ), but will allow jump
discontinuity at x = s(t). We also assume x1 and x2 such that x1 < s(t) < x2 and
ds
dt = U(t).

Without any source (or sink), we assume that the integral form of the conserva-
tion equation (5.2.5) holds for the one-dimensional case and has the form

d

dt

∫ x2

x1

ρ dx = q(x1, t)− q(x2, t), (5.3.2)

or
d

dt

[∫ s−

x1

ρ dx+

∫ x2

s+
ρ dx

]
+ q(x2, t)− q(x1, t) = 0. (5.3.3)

This implies that

∫ s−

x1

ρtdx+ ṡρ
(
s−, t

)
+

∫ x2

s+
ρtdx− ṡρ

(
s+, t

)
+ q(x2, t)− q(x1, t) = 0, (5.3.4)

where ρ(s−, t), ρ(s+, t) are the values of ρ(x, t), as x → s from below and above,
respectively. Since ρt is bounded on x1 < x < s− and s+ < x < x2, respectively,
the integrals in (5.3.4) must vanish as x1 → s− and x2 → s+. Consequently, in the
limit,

q
(
s−, t

)
− q

(
s+, t

)
= U

{
ρ
(
s−, t

)
− ρ

(
s+, t

)}
. (5.3.5)

In terms of the conventional notation of shock dynamics, condition (5.3.5) can be
written as

[q] = U [ρ], (5.3.6)

where [q] = (q−−q+) and [ρ] = (ρ−−ρ+) denote the jump in q and ρ, respectively,
across the discontinuity x = s(t), as shown in Figure 5.11.

Result (5.3.6) is usually called the jump (shock) condition, which gives a relation
ahead (right) of and behind (left) of the discontinuity and the speed of the disconti-
nuity U(t) (reciprocal of the slope). The discontinuity in ρ that propagates along the
curve x = s(t) is known as the shock wave, and x = s(t) is simply called the shock.
In gas dynamics, (5.3.6) is known as the Rankine–Hugoniot condition for the speed
of the shock wave.

Thus, the basic problem can be written as

dρ

dt
+

dq

dx
= 0 at points of continuity, (5.3.7)
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Fig. 5.11 Discontinuity at x = s(t).

−U [ρ] + [q] = 0 at points of discontinuity. (5.3.8)

This leads to a nice correspondence:

d

dt
↔ −U [ ],

d

dx
↔ [ ] (5.3.9ab)

between the differential equation and the shock condition.
We can now generalize the concept of the solution for equation (5.3.1) to include

discontinuous solutions. This kind of extension of a solution is not a purely math-
ematical exercise, as the notion of a shock is of great significance in applied areas,
such as fluid dynamics, gas dynamics, and plasma physics. From a physical point
of view, a shock represents an idealization of a thin transition region separating two
regions where solutions of the basic flow equations can readily be determined.

Now, it is possible to find discontinuous solutions of equation (5.3.1). In any
continuous part of the solution, equation (5.3.1) is still satisfied, and the assumption
q = Q(ρ) can be retained. Thus, q− = Q(ρ−) and q+ = Q(ρ+) hold on the two
sides of a shock, and the shock condition (5.3.6) can be written as

U
(
ρ− − ρ+

)
= Q

(
ρ−

)
−Q

(
ρ+

)
. (5.3.10)

This leads to a problem of fitting shock discontinuities into the solution (5.2.16ab)
so that (5.3.10) is satisfied and multi-valued solutions can be avoided.

5.4 Weak or Generalized Solutions

We formally examine the possibility of generalizing the concept of a classical solu-
tion so as to include discontinuous and nondifferentiable functions. We now consider
the general procedure necessary to define what is usually called a weak solution of
the nonlinear, initial-value problem

ρt + qx = 0, x ∈ R, t > 0, (5.4.1)

ρ(x, 0) = f(x), x ∈ R, (5.4.2)

where q(x, t) is a continuously differentiable function on R.
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Fig. 5.12 Compression wave with overlapping characteristics.

A classical solution of the partial differential equation (5.4.1) is a smooth func-
tion ρ = ρ(x, t) which satisfies (5.4.1). We assume that ρ(x, t) is a classical solution
of (5.4.1). We consider a class of test functions φ = φ(x, t) such that φ ∈ C∞ and
it has a compact support in the (x, t)-plane. We can choose an arbitrary rectangle
D = {(x, t) : a ≤ x ≤ b, 0 ≤ t ≤ T} where φ = 0 outside D, and on the boundary
lines x = a, x = b, and t = T , as shown in Figure 5.12.

Equation (5.4.1) is multiplied by φ(x, t) and integrated over D to obtain
∫∫

D

(ρt + qx)φdx dt = 0. (5.4.3)

Integrating both terms by parts gives

∫ b

a

{
[φρ]T0 −

∫ T

0

ρφt dt

}
dx+

∫ T

0

{
[φq]ba −

∫ b

a

qφx dx

}
dt = 0,

or

−
∫ b

a

φ(x, 0)f(x) dx−
∫ b

a

∫ T

0

ρφt dt dx−
∫ b

a

∫ T

0

qφx dt dx = 0.

Thus the final form of the above equation is
∫∫

DUt≥0

(ρφt + qφx) dx dt+

∫
R

φ(x, 0)f(x) dx = 0. (5.4.4)

This holds for all test functions φ(x, t) in the half plane. Result (5.4.4) does not
involve any derivatives of ρ or q. Indeed, it remains valid even if ρ and q or their
derivatives are discontinuous.

Thus, we have proved that, if ρ(x, t) is a classical solution of the problem (5.4.1),
(5.4.2), then (5.4.4) holds for all test functions φ with compact support in the half
(x, t)-plane. The functions ρ(x, t), which satisfy (5.4.4) for all test functions φ, are
called weak or generalized solutions of the problem. This leads to the following.

Definition 5.4.1 (Weak Solution). A bounded measurable function ρ(x, t) is called
a weak solution of the initial-value problem (5.4.1), (5.4.2) with bounded and mea-
surable initial data f(x), provided that (5.4.4) holds for all test functions φ(x, t) with
compact support in the half plane.
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This is a more general definition of a solution that does not require the smooth-
ness property. To show that the concept of a weak solution is, indeed, a generalization
of a classical solution, we prove the following.

Theorem 5.4.1. If (5.4.4) holds for all test functions φ with compact support for
t > 0 and if u is smooth, then ρ is a classical solution of the initial-value prob-
lems (5.4.1) and (5.4.2).

Proof. Since φ has compact support for t > 0, then we integrate (5.4.4) by parts to
obtain ∫∫

RU t>0

(ρt + qx)φdx dt = 0. (5.4.5)

This is true for all test functions φ, and hence,

ρt + qx = 0 for x ∈ R, t > 0. (5.4.6)

We next multiply (5.4.6) by φ and integrate the resulting equation by parts over
the region D to find

∫∫
RU t>0

(ρφt + qφx) dx dt+

∫
R

φ(x, 0)ρ(x, 0) dx = 0. (5.4.7)

Subtracting (5.4.7) from (5.4.4) gives
∫
R

[
ρ(x, 0)− f(x)

]
φ(x, 0) dx = 0. (5.4.8)

This is true for all test functions φ(x, 0). Since f(x) is continuous, (5.4.8) leads to
ρ(x, 0) = f(x). This shows that ρ(x, t) is the classical solution of the initial-value
problem.

We next consider only those weak solutions ρ(x, t) which are continuously dif-
ferentiable in two parts D1 and D2 of a domain D, but with a jump discontinuity
(shock) along the dividing smooth curve Γ between D1 and D2, as shown in Figure
5.13. Suppose that the equation of Γ is x = s(t). Since ρ(x, t) has a jump dis-
continuity along this curve, x = s(t), ρ(x, t) is smooth away from Γ , and limits
ρ−(t) = ρ(s−, t) and ρ+(t) = ρ(s+, t) from the left and the right exist. The speed
of the shock wave is ṡ(t), which is the reciprocal of the slope in Figure 5.13. For any
test function φ, result (5.4.4) becomes

0 =

∫
D

∫
(ρφt + qφx) dx dt =

∫
D1

∫
(ρφt + qφx) dx dt

+

∫
D2

∫
(ρφt + qφx) dx dt. (5.4.9)

Since ρ(x, t) is smooth in D1 and in D2, for n = 1, 2, the divergence theorem
gives
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Fig. 5.13 Smooth curve Γ across which ρ(x, t) has a jump discontinuity.

∫
Dn

∫
(ρφt + qφx) dx dt =

∫
Dn

∫ [
(ρφ)t + (qφ)x

]
dx dt

=

∫
∂Dn

φ(−ρ dx+ q dt).

Because φ = 0 on the boundary ∂D, these line integrals vanish everywhere, except
on Γ . Thus,

∫
D1

φ(−ρ dx+ q dt) =

∫ p2

p1

φ
(
−ρ− dx+ q− dt

)
∫
D2

φ(−ρ dx+ q dt) = −
∫ p2

p1

φ
(
−ρ+ dx+ q+ dt

)
.

Therefore, equation (5.4.9) gives
∫
Γ

φ
(
−[ρ] dx+ [q] dt

)
= 0. (5.4.10)

This result is true for all test functions φ, and therefore, the integrand must vanish,
that is, on each point on Γ ,

ṡ[ρ] = [q]. (5.4.11)

This is the same jump condition (5.3.6). Thus, a weak solution leads to the jump
condition across a jump discontinuity.

Example 5.4.1. Solve the nonlinear Cauchy problem

ut + uux = 0, x ∈ R, t > 0, (5.4.12)

with two different sets of discontinuous initial data

(i) u(x, 0) =

{
1 if x < 0,

0 if x > 0,

(ii) u(x, 0) =

{
0 if x < 0,

1 if x > 0.
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Fig. 5.14 Initial data, characteristics, and a discontinuous solution.

The conservation law associated with equation (5.4.12) is

ut +

(
u2

2

)
x

= 0. (5.4.13)

In case (i), c(u) = u, c(u(x, 0)) is a decreasing function of x, and condition (5.2.17)
is violated. Thus, there is no continuous solution of the initial-value problem. How-
ever, there exists a discontinuous solution given by

u(x, t) =

{
0 if x < Ut,

1 if x > Ut,
(5.4.14)

which satisfies (5.4.12) for x �= Ut and (5.4.11) on the line x = Ut. Hence, (5.4.14)
is called a generalized or weak solution. This solution has a jump discontinuity along
the line x = Ut, where U is the speed of the shock wave given by

U =
(q− − q+)

(u− − u+)
=

( 12 · 02 − 1
2 · 12)

(0− 1)
=

1

2
.

The initial data, characteristics, and the weak solution are shown in Figure 5.14.
In case (ii), c(u) = u, c(u(x, 0)) is an increasing function of x, and condition

(5.2.17) is satisfied. Hence, there is a continuous solution of (5.4.12) (except at x =
t = 0) with the initial data (ii) given by

u(x, t) =

⎧⎪⎨
⎪⎩

0 if x < 0,
x
t if 0 < x < t,

1 if x > t.

(5.4.15)

A solution of the form (5.4.15) is called an expansive or refractive wave. Often this
solution in the sector 0 < x < t is referred to as a centered simple wave. The
boundary lines x = 0 and x = t of the centered simple wave are weak waves
which propagate along the characteristics, as shown in Figure 5.15. This represents
a solution of (5.4.12) for t ≥ 0 which can be verified by direct substitution,

(
x

t

)
t

+

(
x

t

)(
x

t

)
x

= − x

t2
+

x

t2
= 0.
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Fig. 5.15 Initial data, characteristics, and the continuous solution.

Fig. 5.16 Characteristics and the discontinuous solution.

The initial data, characteristics, and the solution are shown in Figure 5.15.
On the other hand, a remarkable fact involved in this nonlinear Cauchy problem

with discontinuous data (ii) is that there is also a discontinuous solution given by

u(x, t) =

{
0 if 2x < t,

1 if 2x > t.
(5.4.16)

Obviously, this represents a solution everywhere in the (x, t)-plane, except on the
line of discontinuity t = 2x. The jump condition gives the shock speed

U =
( 12 · 02 − 1

2 · 12)
(0− 1)

=
1

2
.

The characteristics and discontinuous solution are drawn in Figure 5.16.
Thus, there are at least two solutions of equation (5.4.12) with the initial data (ii),

and hence, the solution is not unique. The main question is: Which one of these solu-
tions represents a physically meaningful solution? Obviously, another mathematical
criterion is required for determining a unique weak solution. It seems that the crite-
rion for determining a physically meaningful weak solution is closely related to the
search for a criterion for an acceptable discontinuous solution. It is also clear from
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the above analysis that, in general, a discontinuous solution arises whenever char-
acteristics of a nonlinear equation intersect in the (x, t)-plane. It can be proved that
there is a unique weak discontinuous solution of the Cauchy problem which satisfies
the following inequality on the curve of discontinuity:

a
(
u−) > U > a

(
u+

)
. (5.4.17)

This is called the Lax entropy criterion. Mathematically, this criterion means that
the wave speed just behind the shock is greater than the wave speed just ahead of it.
In other words, the wave behind the shock catches up to the wave ahead of it. This
entropy criterion is a special case of the second law of thermodynamics: entropy in-
creases across a shock. Geometrically, the criterion for a unique weak discontinuous
solution can be stated as follows:

The characteristics originating on either side of the discontinuity curve, when
continued in the direction of increasing t, intersect the curve of discontinuity.

Clearly, solution (5.4.14) satisfies the entropy inequality (5.4.17), whereas solu-
tion (5.4.16) does not satisfy (5.4.17). Therefore, the former is an acceptable discon-
tinuous solution, but the latter is not. This leads to a formal definition of a shock
wave. A discontinuity which satisfies both the jump condition (5.4.11) and the in-
equality (5.4.17) on its curve of discontinuity is called a shock. The main problem
is to investigate whether every nonlinear initial-value problem has a unique weak
solution defined for all t ≥ 0 with only shock as a discontinuity. The proof of the
existence and uniqueness of a weak solution is fairly difficult and is beyond the scope
of this book, but is provided by Lax (1973).

5.5 Exercises

1. Find the solution of the initial-value problems
(a) ut + uux = 0, x ∈ R, t > 0, u(x, 0) = sinx, x ∈ R,
(b) ut + uux = 0, x ∈ R, t > 0, u(x, 0) = −x, x ∈ R.

2. Show that the equation
ut + uux = 0

gives an infinite number of conservation laws

∂

∂t
un +

∂

∂x

(
n

n+ 1
un+1

)
= 0,

where n = 1, 2, 3, . . . .
Hence, deduce the integral conservation law

∂

∂t

∫ x2

x1

undx+

(
n

n+ 1

)[
un+1(x1)− un+1(x2)

]
= 0,

where x1 and x2 are two fixed points.
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3. Show that the solution of the initial-value problem

ut + uux = 0, x ∈ R, t > 0, u(x, 0) = bx, x ∈ R,

where a and b are constants, is

u(x, t) =
abx exp(−at)

(a+ b)− b exp(−at) .

4. Find the solution of the initial-value problem

ut + uux = 0, x ∈ R, t > 0,

u(x, 0) =

{
0 if x ≤ 0,

exp(− 1
x ) if x > 0.

5. Solve the initial-value problem

ut + cux = 0, x ∈ R, t > 0,

u(x, 0) =
(
a2 + x2

)−1
, x ∈ R,

where c and a are constants.
6. Show that the solution of the Cauchy problem

ut − 2axtux = 0, x ∈ R, t > 0,

u(x, 0) = f(x), x ∈ R,

is
u(x, t) = f

(
x exp

(
at2

))
.

Draw the characteristics x = ξ exp(−at2), where ξ is a constant.
7. Show that the equation

ut + uux = 1, x ∈ R, t > 0,

has no solution such that u = 1
2 t, when t2 = 4x, and has no unique solution,

such that u = t when t2 = 2x.
8. Find a weak solution of the initial-value problem in t ≥ 0

ut + uux = 0, x ∈ R, t > 0,

u(x, 0) =

{
0 if x < 0 or x > 1,

1 if 0 ≤ x ≤ 1.

9. Find the solution of the initial-value problem in t > 0

ut + uux = 0, x ∈ R, t > 0,

u(x, 0) =

⎧⎪⎨
⎪⎩

−1 if x ≤ 0,

2x− 1 if 0 ≤ x ≤ 1,

1 if x ≥ 0.
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10. Solve the initial-value problem in t > 0

ut + uux = 0, x ∈ R, t > 0,

u(x, 0) =

⎧⎪⎨
⎪⎩

1 if x ≤ 0,

1− 2x if 0 ≤ x ≤ 1,

−1 if x ≥ 0.

11. Find the weak solution for t ≥ 0 of the initial-value problem

ut + uux = 0, x ∈ R, t > 0,

u(x, 0) =

{
−a if x ≤ 0,

2a if x > 0,

where a < 0 and a > 0.
12. Show that the solution of the initial-value problem

ut + u2ux = 0, x ∈ R, t > 0, u(x, 0) = x, x ∈ R,

is

u(x, t) =

{
x if t = 0,
1
2t (

√
1 + 4xt− 1) if t �= 0 and 1 + 4xt > 0.

13. Solve the equation
ut + uux = 0, x ∈ R, t > 0,

for two cases:

(a) u(x, 0) =

⎧⎪⎨
⎪⎩

1 if x ≤ 0,

(1− x
a ) if 0 < x < a,

0 if x ≥ a;

(b) u(x, 0) =

⎧⎪⎨
⎪⎩

0 if x ≤ 0,
x
a if 0 < x < a,

1 if x ≥ a.

Examine both cases in the limit, as a → 0.
14. Solve the initial-value problem

ut + uux = 0, x ∈ R, t > 0,

u(x, 0) =

{
1 if |x| < 1,

0 if |x| > 1.

15. Solve the initial-value problem for u = u(x, t)

ut + u2ux = 0, x ∈ R, t > 0,

u(x, 0) =
√
x, x ∈ R.
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16. Show that the solution of the initial-value problem

ut + u3ux = 0, x ∈ R, t > 0,

u(x, 0) = x
1
3 , x ∈ R,

is

u(x, t) =

(
x

1 + t

) 1
3

.

Examine the solution as t → ∞.
17. Show that the solution of the initial-value problem

ut + uux = 2t, x ∈ R, t > 0,

u(x, 0) = x, x ∈ R,

is

u(x, t) = t2 +
3x− t3

3(1 + t)
.

18. Show that the solution of the initial-value problem

ut + 3tux = u, x ∈ R, t > 0,

u(x, 0) = cosx, x ∈ R,

is

u(x, t) = et cos

(
x− 3

2
t2
)
.

19. Show that the solution of the initial-value problem

2ut + ux = 0, x ∈ R, t > 0,

u(x, 0) =

{
sinx if 0 ≤ x ≤ π,

0 otherwise

is

u(x, t) =

{
sin(x− 1

2 t) if 1
2 t ≤ x ≤ 1

2 t+ π,

0 otherwise.

20. Use the method of characteristics to solve the initial boundary-value problem

ut + ux = x, x > 0, t > 0,

u(x, 0) = sinx, x > 0,

u(0, t) = t, t > 0.

Show that the solution is

u(x, t) =

{
1
2x

2 − (x− t) if x ≤ t,

t(x− 1
2 t) + sin(x− t) if x > t.
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21. Show that the implicit solution of the equation

x2ux + uut = 1,

u = 0 on x+ t = 1, x > 0,

is (
1

2
u2 + 1− t

)
(1 + ux) = x.

22. The conservation form of the Buckley–Leverett (1942) equation for saturation,
s, for propagation of non-aqueous phase liquids (typically, hydrocarbons) and
water in porous media is

st + Fx = 0, or st + csx = 0,

where F = Vds
2/[s2 + b(1− s)2], Vd is the Darcy velocity, c = ∂F

∂s is the prop-
agation speed, and b is the shape parameter. Show that s is conserved. Explain
the features of the speed c.
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Kinematic Waves and Real-World Nonlinear Problems

. . . as Sir Cyril Hinshelwood has observed . . . fluid
dynamicists were divided into hydraulic engineers who
observed things that could not be explained and
mathematicians who explained things that could not be
observed.

James Lighthill

In every mathematical investigation, the question will arise
whether we can apply our mathematical results to the real
world.

V.I. Arnold

6.1 Introduction

This chapter deals with the theory and applications of kinematic waves to several
real-world problems, which include traffic flow on highways, flood waves in rivers,
glacier flow, roll waves in an inclined channel, chromatographic models, and sedi-
ment transport in rivers. The general ideas and essential features of these problems
are of wide applicability. Other applications of conservation laws include various
chromatographic models in chemistry and the movement of pollutants in waterways.
The propagation of traffic jams is almost similar to the shock waves that cause noise
pollution near airports and spaceports. Kinematic wave phenomena also play an im-
portant role in traveling detonation and combustion fronts, the wetting water fronts
observed in soils after rainfall, and the clanking of shunting trains. All of these prob-
lems are essentially based on the theory of kinematic waves developed by Lighthill
and Whitham (1955). Many basic ideas and important features of hyperbolic waves
and kinematic shock waves are found to originate from gas dynamics, so specific
nonlinear models which describe Riemann’s simple waves with Riemann’s invari-
ants and shock waves in gas dynamics are discussed. Considerable attention is also
given to nonlinear hyperbolic systems and Riemann’s invariants, generalized simple
waves, and generalized Riemann’s invariants.

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers,
DOI 10.1007/978-0-8176-8265-1_6, c© Springer Science+Business Media, LLC 2012
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6.2 Kinematic Waves

Classical wave motions are described by Newton’s second law of motion together
with some reasonable assumptions relating stress to displacement (as in gravity
waves), to strain (as in nondispersive longitudinal and transverse waves), or to curva-
ture (as in capillary waves and flexural waves). In contrast with the case of dynamic
waves, a class of waves is called kinematic waves when an appropriate functional re-
lation exists between the density and the flux of some physically observed quantity.
Kinematic waves are not at all waves in the classical sense, and they are physically
quite different from the classical wave motions involved in dynamical systems. They
describe, approximately, many important real-world problems including traffic flows
on highways, flood waves in rivers, roll waves in an inclined channel, and chromato-
graphic models in chemistry. Lighthill and Whitham (1955) first gave a general and
systematic treatment of kinematic waves and applications.

In many problems of one-dimensional wave propagation where there is a con-
tinuous distribution of either material or some state of the medium, we can define
a density ρ(x, t) per unit length and a flux q(x, t) per unit time. Then, we can in-
troduce a flow velocity u(x, t) by u = q/ρ. Assuming that the material (or state)
is conserved, we can stipulate that the time rate of change of the total amount in
any arbitrary interval x1 ≤ x ≤ x2 must be balanced by the net influx across x1
and x2. Physically, this states that the quantity in a small length segment changes at
a rate equal to the difference between inflow and outflow. Mathematically, this can
be formulated as

d

dt

∫ x2

x1

ρ(x, t) dx = q(x1, t)− q(x2, t) = −
∫ x2

x1

(
∂q

∂x

)
dx, (6.2.1)

or equivalently, ∫ x2

x1

(
∂ρ

∂t
+

∂q

∂x

)
dx = 0. (6.2.2)

If this result is to hold for any arbitrary interval x1 ≤ x ≤ x2, the integrand must
vanish identically, so that

∂ρ

∂t
+

∂q

∂x
= 0, (6.2.3)

provided ρ and q are sufficiently smooth functions. As stated in Chapter 5, (6.2.3) is
called the conservation law, kinematic wave equation, or the equation of continuity.

Based on theoretical or empirical grounds, we assume that there exists a relation
between q and ρ, so that we can write

q = q(ρ). (6.2.4)

Thus, equations (6.2.3) and (6.2.4) form a closed system since there are two equa-
tions with two unknown functions. Substituting (6.2.4) in (6.2.3) gives

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0, (6.2.5)
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where

c(ρ) = q′(ρ) =
∂q

∂ρ
. (6.2.6)

Similarly, multiplying (6.2.3) by c(ρ) leads to the equation

∂q

∂t
+ c(ρ)

∂q

∂x
= 0. (6.2.7)

This means that q or ρ is constant in waves propagating with velocity c(ρ) given
by (6.2.6), and hence, c(ρ) is called the wave propagation velocity. Mathematically,
equation (6.2.7) has only one system of characteristics given by

dx

dt
= c(ρ), (6.2.8)

and along each of these characteristics the flow q or the density ρ is constant. The
wave velocity c as given by (6.2.6) is the slope of the flow-density curve for fixed x.
In terms of the mean flow velocity u = q/ρ, the wave propagation velocity is given
by

c = q′(ρ) =
d

dρ
(uρ) = u+ ρ

du

dρ
. (6.2.9)

Thus, c < u when du
dρ > 0, that is, the flow velocity increases with density as in

flood waves in rivers, and c < u when du
dρ < 0, that is, it decreases with density as in

traffic flows on highways.
Further, the following observations are in order. First, there is one important dif-

ference between kinematic waves and dynamic waves. A kinematic wave has only
one wave velocity at each point, while dynamic waves possess at least two veloc-
ities (forward and backward relative to the medium). Second, kinematic waves are
nondispersive, but they suffer from a change in form due to nonlinearity (dependence
of the wave speed c on the flow q carried by the wave) exactly as do traveling sound
waves of finite amplitude. Consequently, continuous wave forms may develop dis-
continuities because the faster waves overtake the slower ones. These discontinuities
can be described as shock waves because their process of development is identical to
that of shock waves in gas dynamics.

The law of motion of kinematic shock waves can be derived from the conserva-
tion laws, as was the law governing continuous kinematic waves. If the density and
flow assume the values ρ1 and q1 on the one side, and ρ2 and q2 on the other side of
the shock wave which propagates with velocity U , then the quantity crossing it per
unit time can be written either as q1 − Uρ1 or as q2 − Uρ2. This gives the velocity
of the shock waves as

U =
(q2 − q1)

(ρ2 − ρ1)
. (6.2.10)

This represents the slope of the chord joining the two points (ρ1, q1) and (ρ2, q2) on
the density-flow curve which corresponds to the states behind and ahead of the shock
wave when it reaches a given point x. In the limit, when the shock wave become
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a continuous wave, the slope of the chord becomes the slope of the tangent, and
hence (6.2.10) reduces to (6.2.6). The development of kinematic shock waves was
described by examples with figures in Chapter 5. To avoid duplication of a similar
analysis, we simply state appropriate results whenever needed.

Another important effect, known as diffusion, is confined entirely to the inte-
rior of kinematic shock waves, where its effect is crucial in smoothing the nonlinear
steeping of the kinematic waves. The effect of diffusion is certainly small outside the
shock regions, but inside the shock regions, the effect of diffusion is very important
as a second-order approximation. Mathematically, diffusion corresponds to the in-
clusion in (6.2.7) of an additional term proportional to a second derivative of q. This
will happen if the flow-density relation involves some dependence on a derivative of
q or ρ in addition to q, ρ, and x. We assume that, for each x, q is a function of ρ and
ρt; alternatively, ρ is a function of q and qx because ρt = −qx. Substituting for ρ
in (6.2.3), we obtain

∂ρ

∂q

∂q

∂t
+

∂ρ

∂qx

∂2q

∂x∂t
+

∂q

∂x
= 0. (6.2.11)

Further, if the coefficients of the derivatives of q in (6.2.11) are approximated as
functions of q and x alone, then equation (6.2.11) becomes

∂q

∂t
+ c(ρ)

∂q

∂x
+ ν

∂2q

∂x∂t
= 0, (6.2.12)

where c = ∂q
∂ρ is the kinematic wave velocity as before and ν = c( ∂ρ

∂qx
). This is a

typical nonlinear equation representing diffusive kinematic waves. Invoking the first
approximation qt ∼ −cqx, (6.2.12) may be rewritten as

∂q

∂t
+ c(ρ)

∂q

∂x
= νc

∂2q

∂x2
. (6.2.13)

Physically, there is no difference between the two equations (6.2.12) and (6.2.13).
However, further details of the diffusion equation will be pursued in Chapter 8.

The rest of this chapter is devoted to a detailed treatment of several real-world
problems as applications of kinematic waves, Riemann’s simple waves, and Rie-
mann’s invariants and their extensions.

6.3 Traffic Flow Problems

Traffic flow on a highway is one of the most common real-world problems. Based
on the works of Lighthill and Whitham (1955) and Richards (1956), we consider the
traffic flow on a long highway under the assumptions that cars do not enter or exit the
highway at any one of its points and that individual cars are replaced by a continuous
density function. We take the x-axis along the highway and assume the traffic flows
in the positive direction. This problem can be described by three fundamental traffic
variables: the traffic density ρ(x, t), which is equal to the number of cars per unit
length at position x and at time t, the traffic flow q(x, t), the number of cars passing a
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Fig. 6.1 (a) Velocity–density curve and (b) flow–density curve.

fixed point in unit time, and the traffic velocity u(x, t), which represents the velocity
of a car. We use the theory of kinematic waves to formulate the problem in terms of
a first-order, nonlinear, partial differential equation on the basis of conservation of
cars and experimental relationships between the car velocity and traffic density. So,
the equations governing the traffic flow are

∂ρ

∂t
+

∂q

∂x
= 0, (6.3.1)

q = q(ρ), (6.3.2)

where q is some function of ρ as determined by theoretical or experimental findings
of traffic flow phenomena. The functional relation (6.3.2) seems to be reasonable in
the sense that the density of cars surrounding a given car indeed controls the speed of
that car. In fact, this relation depends on other factors including speed limits, weather
conditions, and road conditions. Several specific relations have been suggested by
Haight (1963).

On the basis of observations of traffic flow, we make a basic simplifying assump-
tion that the velocity of a car at any point along the highway depends only on the
traffic density, that is, u = U(ρ), and hence, the traffic flow q = ρU(ρ). Clearly,
u(ρ) must be a monotonically decreasing function of density ρ. If there are no cars
on the highway (corresponding to very low densities), then the car would travel at a
finite maximum speed umax, that is, U(0) = umax = um. As the density of cars in-
creases, the velocities of the cars would continue to decrease, and hence, U(ρ) = 0
as ρ → ρmax = ρm, where ρm is the maximum traffic density corresponding to
what is called bumper-to-bumper traffic. Also, it follows that du

dρ = U ′(ρ) ≤ 0. The
decreasing feature of traffic velocity is shown in Figure 6.1(a).

On the other hand, the important feature of traffic flow Q(ρ) = ρU(ρ) can
be inferred from U(ρ). Clearly, Q(ρ) → 0, as ρ → 0, and ρ → ρmax =
ρm(U(ρm) = 0). This means that the traffic flow Q(ρ) is an increasing function
of density ρ until it attains a maximum value Qmax = qM for some ρ = ρM in
0 < ρ < ρm. In general, Q(ρ) assumes a parabolic form, concave downward,
Q′′(ρ) < 0. All of these features of the flow–density curve are shown in Fig-
ure 6.1(b).

It is important to point out that, corresponding to any point on the flow–density
curve, the mean speed U = Q/ρ = tan θ of cars represents the slope of the chord
from the origin as shown in Figure 6.1(b).
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The propagation speed c = dq
dρ of density waves carrying continuous changes of

flow through the streams of cars is the slope of the tangent to the curve at that point.
This slope is smaller provided that the mean speed decreases with increased density.
Hence, we can write

c =
dq

dρ
=

d

dρ
(ρu) = u+ ρ

du

dρ
. (6.3.3)

Evidently, c < u if du
dρ < 0, and c = u only at a very low density.

Usually, under light traffic conditions, there are few cars on the highway traveling
at high speed. On the other hand, under heavy traffic conditions, there are many cars
on the road, and these cars travel slowly. So again, traffic flow would be small.

Substituting q = U(ρ) into (6.3.1) gives the first-order, nonlinear, partial differ-
ential equation for traffic flow in the form

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0, (6.3.4)

where
c(ρ) = Q′(ρ) = U(ρ) + ρU ′(ρ) (6.3.5)

represents the velocity of the density waves. Since U ′(ρ) < 0, c(ρ) < U(ρ), that
is, the velocity of these waves is always less than that of cars, and drivers experi-
ence such waves and are warned of disturbances ahead. Figure 6.1(b) shows that
c(ρ) = Q′(ρ) > 0 for all ρ in [0, ρM ), is zero at ρ = ρM , and then, is negative in
(ρM , ρm]. All these cases mean that waves propagate forward relative to the high-
way in [0, ρM ], are stationary at ρ = ρM , and then, travel backward in [ρM , ρm].
Further, discontinuous waves are likely to occur on any segment of highway when
the traffic is very heavy in front and light behind. For waves on which the traffic flow
is less dense, cars travel forward faster than, and hence tend to catch up with, those
on which the flow is more dense. When this happens, a group of continuous waves
can coalesce into discontinuous (or shock) waves.

According to the theory of characteristics of the first-order nonlinear equation,
the characteristic equations for (6.3.4) are

dt

1
=

dx

c(ρ)
=

dρ

0
, (6.3.6)

with the solution

ρ = const. on
dx

dt
= c(ρ). (6.3.7)

Since c(ρ) is constant when ρ is constant, the characteristics are straight lines in the
(x, t)-plane, and the characteristic velocity c(ρ) = Q′(ρ) is the slope of the tangent
to the curve at a point.

Actual observational data of traffic flow indicate that typical results on a single
lane highway are ρm ≈ 225 cars per mile, ρM ≈ 80 cars per mile, and qM ≈
1590 cars per hour. Thus, the maximum traffic flow qM occurs at a low speed u =
qM/ρM ≈ 20 miles per hour.
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Fig. 6.2 Multi-valued density profile at t = t2 � t1 > t0 > 0.

Next, we solve the nonlinear traffic flow equation (6.3.4) with the initial and
boundary conditions

ρ(x, 0) = f(x), x ∈ R, (6.3.8)

where f(x) vanishes outside a finite domain of x and ρ(x, t) → 0, as |x| → ∞.
This initial-value problem has already been solved in Section 5.2, and hence, we

state the result without proof. The solution is given by

ρ(x, t) = f(ξ), x = ξ + t F (ξ), (6.3.9ab)

where
F (ξ) = c

{
f(ξ)

}
= c(ρ). (6.3.10)

The velocity c(ρ) = Q′(ρ) is the slope of the traffic flow curve drawn in Fig-
ure 6.1(b), so that the density waves move forward or backward relative to the high-
way depending on whether ρ < ρM or ρ > ρM .

We consider an initial density curve ρ(x, 0) = f(x) in the form of a hump which
has a maximum ρm at some point x, as shown in Figure 6.2 so that ρm > ρ0 and
c(ρ0) < c(ρm). Thus, the point on the hump with density ρm travels slower than the
point with density ρ0. As time progresses, the density profile continues to steepen
at the back and flatten at the front, eventually leading to a multi-valued solution
which is physically inadmissible. In other words, a vertical segment develops at the
back for t2  t1. The vertical segment corresponds to a point in the (x, t)-plane at
which the density is discontinuous and, therefore, at which at least one of the partial
derivatives ρx and ρt no longer exists. Thus the distortion of the initial density profile
and the development of discontinuity as a shock are remarkable features of nonlinear
traffic flow phenomena. However, the solution incorporating the discontinuity must
satisfy conservation laws, and hence, the total number of cars in any interval (x1, x2)
represented by the integral of ρ with respect to x from x1 to x2(> x1) must be
unchanged. Thus, the shock must be inserted at that value of x which leaves the total
area under the curve unchanged, that is, at the point S such that the area ABC =
area CDE. This simple result that the two areas cut off by the vertical line through
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Fig. 6.3 (a) Initially heavier traffic ahead (ρ2 > ρ1) and (b) intersecting characteristics.

Fig. 6.4 Graphical representation of solution.

S are equal is known as Whitham’s rule. So, the Whitham rule of equal area can be
used to determine the position of the shock path for certain nonlinear equations.

We consider a situation in which traffic initially becomes heavy further along the
highway. As already indicated in Section 5.2, the solution represents a compression
wave. It is convenient to assume the initial data, as shown in Figure 6.3(a),

ρ(x, 0) =

{
ρ1 if x < 0,

ρ2 if x > 0,
(6.3.11)

where ρ1 and ρ2 are constants, 0 ≤ ρ1 < ρ2 ≤ ρmax, and hence, U1 > U2.
The density wave for the lighter travel with velocity c(ρ1) = Q′(ρ1), which is
greater than the velocity c(ρ2) = Q′(ρ2) of the heavier traffic density wave, that is,
c(ρ1) > c(ρ2). A set of characteristics using the initial data (6.3.11) is shown in Fig-
ure 6.3(b). In any situation where the traffic becomes denser further along the road,
characteristics intersect. At any point where two characteristics intersect, ρ = ρ1
and ρ = ρ2, but it is physically impossible for the traffic density to be multi-valued.
A jump occurs across a curve as a shock. The behavior of the ‘jump’ in the density ρ
in the (x, t)-plane just treated indicates that a shock should be inserted between two
regions of constant density. Since the overlapping starts at the origin, we look for a
solution of the form shown in Figure 6.4, two regions of constant density ρ separated
by a constant shock velocity given by (5.3.6). It can be shown that equation (6.3.4)
and the initial data (6.3.11) are satisfied on both sides of the shock and the condition
(5.3.6) is satisfied on the shock. Evidently, ρ = ρ1 = const. satisfies equation (6.3.4)
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Fig. 6.5 The solution with a fan centered at the origin.

and (6.3.11) for x < 0 at t = 0; similarly, ρ = ρ2 = const. for x > 0 at t = 0. The
shock condition (5.3.6) is satisfied if

U =

(
Q1 −Q2

ρ1 − ρ2

)
, (6.3.12)

that is, if the shock propagates at the constant velocity given by (6.3.12). The shock
path is a straight line through the origin in the (x, t)-plane. Thus the traffic density
ρ(x, t) satisfies all equations and initial data and is single-valued for all x and t
except across the shock.

There is another case associated with the initial data which corresponds to
ρ1 > ρ2, and hence, U1 < U2, and c(ρ1) < c(ρ2). Physically, this case represents a
situation in which the traffic initially becomes light further along the highway. Using
the initial conditions (6.3.11), characteristics are drawn in Figure 6.5. It is impor-
tant to point out that there are no characteristics within the infinite sector AOB, and
hence, no solution for the traffic density ρ(x, t). According to Section 5.4, there are
two regions, each of constant density ρ, separated by a fan centered at the origin. The
solution is given by

ρ(x, t) =

⎧⎪⎨
⎪⎩
ρ1 to the left of OA,

ρ2 to the right of OB,

ρ0, const., ρ2 < ρ0 < ρ1 on x = q′(ρ0) in the sector AOB.
(6.3.13)

The solution in the sector AOB is the characteristic form, equation (6.3.7), of the
solution of equation (6.3.4). Across OA and OB, ρ(x, t) is continuous, but ρx and ρt
are discontinuous (ρx and ρt are nonzero in the sector AOB but zero elsewhere).

Thus, the problem is solved for both cases: (i) ρ1 < ρ2 and (ii) ρ1 > ρ2. How-
ever, a remarkable fact involved in this problem with case (ii) is that there exists
another discontinuous solution which satisfies all equations and initial conditions.
This solution consists of a shock dividing two regions of constant density ρ. All
characteristics on the left of the shock are parallel, and so are those to the right of the
shock as shown in Figure 6.6.
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Fig. 6.6 Characteristics and the discontinuous solution.

For case (ii), there are at least two solutions: (a) the fan-centered solution and
(b) the shock solution. Both satisfy all equations and the initial conditions, but the
solution is not unique. The main question is to find which one of these solutions rep-
resents a physically meaningful solution. This question was answered in Section 5.4
by introducing the Lax entropy criterion (5.4.17).

Example 6.3.1 The Green Signal Problem in Front of the Traffic. We consider a
stream of cars stopped by a red signal at x = 0. The road is jammed initially be-
hind the signal and there is no traffic ahead of the signal. As soon as the signal turns
green, the stream of cars starts moving across x = 0. The initial state of the traffic is
given by

ρ(x, 0) = ρmH(−x) =
{
ρm if x < 0,

0 if x > 0,
(6.3.14)

where ρm is the maximum density and H(x) is the Heaviside unit step function.
We assume that the traffic flow q(ρ) is quadratic in the region 0 < ρ < ρm and

zero otherwise, that is,

q =
qm
ρm

(
1− ρ

ρm

)
ρ, 0 < ρ < ρm. (6.3.15)

It is noted that the maximum flow rate is 1
4qm which occurs at ρ = 1

2ρm. The velocity
of the traffic flow is u = q

ρ , that is,

u = um

(
1− ρ

ρm

)
, (6.3.16)

where um = (qm/ρm) is the maximum speed when ρ = 0. The traffic flow equation
for the density ρ(x, t) is given by

ρt + c(ρ)ρx = 0, (6.3.17)

where
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Fig. 6.7 Characteristics due to a discontinuous initial density.

c(ρ) = q′(ρ) = um

(
1− 2ρ

ρm

)
. (6.3.18)

Thus, the characteristic equations for (6.3.17) are

dt

1
=

dx

c(ρ)
=

dρ

0
,

where

dρ = 0,
dx

dt
= c(ρ) = um

(
1− 2ρ

ρm

)
. (6.3.19ab)

Thus the density ρ remains constant along a characteristic given by

dx

dt
= um

(
1− 2ρ

ρm

)
. (6.3.20)

Any characteristic that intersects the positive x-axis at x = x0 > 0 has the slope

dx

dt
= um

(
1− 2ρ

ρm

)
= um

[
1− 2ρ(x, 0)

ρm

]
= um. (6.3.21)

This gives a family of characteristics as the right-leaning straight lines, as shown in
Figure 6.7,

x = umt+ x0. (6.3.22)

On the other hand, any characteristic that intersects the negative x-axis at x =
x0 < 0 has the slope

dx

dt
= um

[
1− 2um

um

]
= −um. (6.3.23)

As shown in Figure 6.7, equation (6.3.23) gives a family of characteristics represent-
ing the left-leaning straight lines

x = −umt+ x0. (6.3.24)
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Fig. 6.8 Traffic density after the signal turns green.

In the fan-like region −umt < x < umt, all characteristics must pass through the
origin and must be straight lines. Hence, dx

dt = x
t . It follows from (6.3.20) that

x

t
= um

(
1− 2ρ

ρm

)
. (6.3.25)

Solving for ρ gives

ρ =
1

2
ρm

(
1− x

umt

)
, −umt < x < umt. (6.3.26)

At any instant, the density varies linearly in x from ρm at x = −umt to zero at
x = umt. Thus, the solution (6.3.26) for ρ(x, t) for all x at any time t is drawn in
Figure 6.8.

Example 6.3.2 The Traffic Signal Problem. We consider the same problem as in Ex-
ample 6.3.1 with the traffic flow q = 3

10 (200 − ρ)ρ, and hence, the velocity of the
traffic density waves is c(ρ) = 3

5 (100− ρ). We have to find the traffic density when
the traffic signal turns green at t = 0, so that the initial density is given by (6.3.14).
The typical value of ρm varies from 200 to 225.

According to the theory described above, the solution of the initial-value problem
is

f(x, t) = f(ξ) = ρmH(−ξ), x = ξ + c
(
f(ξ)

)
= ξ +

3

5

{
100− f(ξ)

}
t.

(6.3.27ab)

Using ρm = 200, we obtain the solution as

f(x, t) =

{
200 if ξ < 0,

0 if ξ > 0,
x =

{
−|ξ| − 60t if ξ < 0,

ξ + 60t if ξ > 0.
(6.3.28ab)

These two results can be combined to obtain the traffic density for any t > 0
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ρ(x, t) =

{
200 if x < −60t,

0 if x > 60t.
(6.3.29)

However, the solution for ρ(x, t) is not known in the interval −60t < x < 60t. The
nonexistence of the solution in this interval is somewhat unusual. It is possibly due
to the fact that the initial condition of the traffic flow is discontinuous at ξ = 0, but
the use of the conservation law (6.3.4) requires that ρ(x, t) be differentiable.

Example 6.3.3. Obtain the traffic density ρ(x, t) governed by (6.3.4) with the given
traffic flow q(ρ) = 3

10 (200− ρ)ρ and with the initial state of the traffic flow as

ρ(x, 0) = f(x) = 1− x. (6.3.30)

In this problem, the velocity of the density waves is given by

c(ρ) =
dq

dρ
=

3

5
(100− ρ). (6.3.31)

The solution of the initial-value problem is given by (6.3.9ab), that is,

ρ(x, t) = f(ξ), (6.3.32a)

x = ξ + t c
(
f(ξ)

)
, (6.3.32b)

where c{f(ξ)} = 3
5 (100− 1 + ξ) = 3

5 (99 + ξ). Solving for ξ from (6.3.32b) gives

ξ =
(x− 3

5 · 99t)
(1 + 3

5 t)
. (6.3.33)

This result can be used to eliminate ξ from (6.3.32a) so that the solution becomes

ρ(x, t) = (1− ξ) =
(1− x+ 60t)

(1 + 3t
5 )

. (6.3.34)

This traffic flow model is based on the first-order approximation, and hence, the
original assumptions that q = Q(ρ) and u = U(ρ) are not good approximations. For
a better approximation, it is reasonable to assume that q and u are functions of both
ρ and its gradient ρx. Hence, we can assume that

q = Q(ρ)− νρx, (6.3.35a)

u = U(ρ)− ν

(
ρx
ρ

)
, (6.3.35b)

where ν is a positive constant in the context of traffic flow because drivers are sup-
posed to reduce their speed to account for heavy traffic ahead. This introduces two
additional effects: (i) diffusion of the waves and (ii) response time defined by the
time lag in the response of the driver and his or her car to any changes in traffic
conditions.
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To incorporate the first effect of diffusion produced by the driver’s response to
conditions ahead, we substitute (6.3.35a) in the traffic flow equation (6.3.1), which
gives a new parabolic equation in the form

ρt + c(ρ)ρx = νρxx. (6.3.36)

This equation is known as the Burgers equation, which will be discussed in great
detail in Chapter 8. Physically, the second-order term introduced by the diffusion
will smooth out the traffic flow. In other words, the effect of diffusion tends to elimi-
nate any discontinuity involved in the solution of the original hyperbolic traffic flow
equation (6.3.4).

To incorporate the second effect, the following equation:

Du

Dt
= ut + uux = −1

τ

[
u− U(ρ) + ν

(
ρx
ρ

)]
(6.3.37)

can be introduced for the acceleration of the car where the coefficient τ is a measure
of the response time. Equation (6.3.37) is to be solved combined with the conserva-
tion law

ρt + (ρu)x = 0. (6.3.38)

For the case of small ν and τ , (6.3.37) can be approximated by the original first-order
result, that is, by u = U(ρ).

Before we solve the nonlinear problem, it would be helpful to examine the lin-
earized version of equations (6.3.37) and (6.3.38). These equations can be linearized
for small perturbations about the equilibrium state ρ = ρ0 and u = u0 = U(ρ0), so
that we can introduce ρ = ρ0 + ρ̃(x, t) and u = u0 + ũ(x, t). We substitute these
results in (6.3.37) and (6.3.38) and retain only first-order terms to obtain

τ [ũt + u0ũx] = −
[
ũ− U ′(ρ0)ρ̃+

(
ν

ρ0

)
ρ̃

]
, (6.3.39)

ρ̃t + u0ρ̃x + ρ0ũx = 0. (6.3.40)

The propagation velocity of the density wave is represented by

c0 = ρ0U
′(ρ0) + U(ρ0), (6.3.41)

and hence, U ′(ρ0) = −(u0 − c0)/ρ0 which is used in (6.3.39), (6.3.40) to eliminate
ũ, and the final form of the equation for ρ̃(x, t) is

(ρ̃t + c0ρ̃x) = νρ̃xx − τ

(
∂

∂t
+ u0

∂

∂x

)(
∂

∂t
+ u0

∂

∂x

)
ρ̃. (6.3.42)

It is noted that the first term on the right-hand side represents diffusion, whereas
the second term arises from the effect of the response time τ .

If ν and τ are very small, (6.3.42) reduces to a simple first-order equation.

ρ̃t + c0ρ̃x = 0. (6.3.43)
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The solution of this equation is ρ̃ = f(x − c0t) representing waves traveling with
speed c0. Equation (6.3.43) suggests that

∂

∂t
≈ −c0

∂

∂x
. (6.3.44)

This approximation is utilized in the right-hand side of (6.3.42), so that it reduces to
the form

(ρ̃t + c0ρ̃x) =
[
ν − τ(u0 − c0)

2
]∂2ρ̃

∂x2
. (6.3.45)

It can be inferred from this equation that the solution would be stable or unstable
depending on whether

ν > τ(u0 − c0)
2 or ν < τ(u0 − c0)

2. (6.3.46ab)

We examine the stability of the plane wave solutions of the original equa-
tion (6.3.42) without any approximation. This equation admits solutions of the form

ρ̃(x, t) = a exp
[
i(kx− ωt)

]
, (6.3.47)

provided the equation

ν(ω − u0k)
2 + i(ω − c0k)− νk2 = 0 (6.3.48)

is satisfied. Thus, the solutions would be stable if I(ω) < 0 for both roots of (6.3.48).
Finally, we observe that the right-hand side of (6.3.42) is a wave operator so that

it corresponds to factoring as

∂ρ̃

∂t
+ c0

∂ρ̃

∂x
= −τ

(
∂

∂t
+ c+

∂

∂x

)(
∂

∂t
+ c−

∂

∂x

)
ρ̃, (6.3.49)

where

c+ = u0 +

√
ν

τ
, c− = u0 −

√
ν

τ
. (6.3.50ab)

Evidently, one wave propagates with the speed c+ and the other with the speed
c− < c+. Thus, for small τ , the equation (6.3.49) can be approximated by

ρ̃t + c0ρ̃x = 0, (6.3.51)

provided c− < c0 < c+, which is exactly the stability criterion (6.3.46ab). Thus, the
conclusion is that the solution is stable provided that the condition c− < c0 < c+
holds.

6.4 Flood Waves in Long Rivers

Another application of the theory of kinematic waves dealing with flood waves in
long rivers will be presented here in some detail. We consider the propagation of
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flood waves in a long rectangular river of constant breadth. We take the x-axis along
the river which flows in the positive x-direction and assume that the disturbance
is approximately the same across the breadth. In this problem, the depth h(x, t) of
the river plays the role of density involved in the traffic flow model discussed in
Section 6.3. We denote the volume flow per unit breadth and per unit time by q(x, t).
An argument similar to that of Section 6.2 gives the kinematic wave equation for the
flow in a river as

∂h

∂t
+

∂q

∂x
= 0. (6.4.1)

Although the flow in a river is fairly complicated, we assume a simple functional
relation q = Q(h) as a first approximation to increased flow as the water level rises.
Thus, equation (6.4.1) becomes

∂h

∂t
+ c(h)

∂h

∂x
= 0, (6.4.2)

where c(h) = Q′(h) and Q(h) is essentially determined from the balance between
the gravitational force and the frictional force of the river bed. One such result for
Q(h) is the famous Chézy formula given by

Q(h) = hu, (6.4.3)

where u is the average velocity of the river flow and it is proportional to
√
h, so that

u = α
√
h, where α is a constant. The propagation velocity of flood waves, by (6.2.6),

is given by

c(h) = Q′(h) =
d

dh
(uh) = u+ h

du

dh
=

3

2
α
√
h =

3

2
u. (6.4.4)

This clearly shows that the flood waves propagate one and a half times faster than
the stream velocity.

A more general result is u = αhn for a constant α so that the volume flow is
given by

Q(h) = hu = αhn+1. (6.4.5)

Thus the propagation velocity of flood waves is

c(h) = Q′(h) = (n+ 1)u. (6.4.6)

This also confirms the fact that flood waves propagate faster than the fluid velocity
for all positive n. When n = 2

3 , (6.4.5) is called the Manning formula.
When the kinematic wave theory described in Section 5.3 is applied to flood

waves in rivers, kinematic shock waves play a major role in the forward regions of
flood waves. The general solution may be taken from Section 5.3 with shocks fitted
in as discontinuities which satisfy the condition

U =
(u2h2 − u1h1)

(h2 − h1)
. (6.4.7)
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Fig. 6.9 Monoclinal flood wave.

The process by which kinematic waves may steepen into shock waves with a
considerable change in flow in a relatively short distance has not been very clearly
described in the literature. However, the possibility that such a wave propagates down
a river, with different, uniform flows upstream and downstream of it, has been visu-
alized as a flood wave model. Such a wave is called the monoclinal flood wave (or
the steady wave profile). In fact, this is a progressing wave whose profile tends to
different constant states upstream and downstream, with lower depth downstream,
joined by a steadily falling region, as indicated schematically in Figure 6.9.

It has been suggested by Whitham (1974) that discontinuities described by the
jump conditions in hydraulic theory are in reality the turbulent bores familiar in water
wave phenomena as hydraulic jumps or breakers on a beach.

Although the above nonlinear model based on a first-order approximation, gives
a fairly good description of the flood wave phenomena, Seddon (1900) raised a num-
ber of questions about the formulation of any river flow model based solely on the
Chézy relation or its extensions. First, rivers do not have a uniformly sloping bed,
nor do they, in any way, approximate this situation. Second, the river bed constantly
varies with time, since its material is readily handled by the flow. To improve the
above model, it is reasonable to assume that the volume flow depends on both h
and x so that q = q(h, x). This relation can be combined with (6.4.1) to give a
first approximation for unsteady flows which vary slowly. Then, h(x, t) satisfies the
equation

∂h

∂x
+

∂q

∂h
· ∂h
∂x

=
∂q

∂x
. (6.4.8)

Multiplying (6.4.1) by c = ( ∂q∂h )x constant = c(h, x), we obtain

∂q

∂t
+ c(h, x)

(
∂q

∂h

)
= 0. (6.4.9)

This means that q is constant for waves traveling past the point with velocity c(h, x).
Mathematically, the equation has only one system of characteristics given by dx

dt = c,
and the flow q is constant along each of these characteristics. The wave velocity
c = c(h, x) is the slope of the density-flow curve for fixed x. This result for flood
waves is known as the Kleitz–Seddon law.
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6.5 Chromatographic Models and Sediment Transport in Rivers

In chemistry, chromatography is described as an exchange process between a solid
and a fluid. In general, the exchange process may involve particles or ions of some
substance or it may be heat exchange between the solid bed and a fluid. The gen-
eral problem is extremely complicated. However, it is possible to develop a simple
one-dimensional mathematical model for single-solute chromatography based on the
assumption of a local equilibrium. The concentration of solute per unit volume in the
fluid phase is denoted by c(x, t), and the concentration of solute in the solid phase
by n(x, t). A simple argument of the balance of influx and outflux leads to the basic
conservation equation

ε
∂c

∂t
+ ε u

∂c

∂x
+ (1− ε)

∂n

∂t
= 0, (6.5.1)

where ε is a constant fractional void volume in the bed and u is a constant interstitial
velocity of fluid through the bed. The equilibrium equation is

n = f(c), (6.5.2)

where f(c) is assumed to be positive for physical considerations, but f(c) in general
depends on temperature. Often, f(c) is called an absorption isotherm. Substituting
(6.5.2) in (6.5.1) gives

[
ε+ (1− ε)f ′(c)

]∂c
∂t

+ ε u
∂c

∂x
= 0. (6.5.3)

Introducing ν = (1−ε)
ε in (6.5.3) yields

[
1 + ν f ′(c)

]∂c
∂t

+ u
∂c

∂x
= 0. (6.5.4)

Finally, in terms of a new function defined by g(c) = c+ν f(c), equation (6.5.4)
assumes the form

g′(c)
∂c

∂t
+ u

∂c

∂x
= 0. (6.5.5)

The function g(c) is called the column isotherm. This equation is somewhat similar
to that of the traffic flow equation. So, we may skip the detailed method of solution
and state the salient features of the solution.

It is convenient to introduce nondimensional variables defined by

x∗ =
x

�
, t∗ =

ut

�
, (6.5.6ab)

where � is a characteristic length for the column. Dropping the asterisks, equa-
tion (6.5.5) becomes

g′(c)
∂c

∂t
+

∂c

∂x
= 0. (6.5.7)
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This nonlinear chromatographic equation can be solved subject to the initial and
boundary data

c(x, 0) = φ(x), c(0, t) = ψ(t), (6.5.8ab)

where φ and ψ are arbitrary functions.
It is often convenient to express the initial and boundary data in the parametric

form

x = ξ, c = φ(ξ) at t = 0, (6.5.9)

t = τ, c = ψ(τ) at x = 0. (6.5.10)

The characteristic equation of (6.5.7) is

dt

dx
= g′(c), (6.5.11)

so that g′′(c) = νf ′′(c). For convex isotherms, f ′′(c) < 0, and hence, g′′(c) < 0.
Next, we solve a particular model, called the Langmuir isotherm model, de-

scribed by

n =
Nκc

(1 + κc)
=

αc

(1 + κc)
= f(c), (6.5.12)

where N is the saturation concentration, κ is a rate constant, and α = Nκ. In this
case, the characteristic equation is

dt

dx
= g′(c) = 1 + ν f ′(c) = 1 +

να

(1 + κc)2
. (6.5.13)

We consider a particular case of (6.5.9), (6.5.10) representing a linear distribution
of solute over a finite segment of the x-axis so that

x = ξ, c =

{
c0
α ξ if 0 ≤ ξ ≤ a,

c0 if ξ ≥ a
at t = 0, (6.5.14)

t = τ, c = 0 at x = 0, (6.5.15)

where c0 is constant.
The graphs of the Langmuir isotherm and the characteristics in the (x, t)-plane

are drawn in Figure 6.10(a) and (b).
It follows from Figure 6.10(b) that all characteristics originating from the t-axis

have slope g′(0) = 1 + να, whereas those from the x-axis for ξ ≥ a are less steep
with a slope g′(c0). These two sets of characteristics yield two constant states, c = 0
and c = c0, respectively. On the other hand, the characteristics originating from the
interval 0 ≤ ξ ≤ a on the x-axis have slope between g′(0) and g′(c0), and hence,
they represent a fan or expansive wave. Thus, the solution consists of two constant
states separated by the expansion wave. For any point in the expansion wave region,
we obtain

t =
{
x− ξ(c)

}[
1 +

να

(1 + κc)2

]
, ξ(c) =

(
a

c0

)
c. (6.5.16ab)
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Fig. 6.10 (a) The Langmuir isotherm and (b) characteristics in (x, t)-plane.

In the limit as a → 0, the characteristics originating from the interval 0 ≤ ξ ≤ a
tend to translate to the left, but their slopes remain unchanged. In fact, these char-
acteristics all originate from the origin, that is, the simple waves become centered
there. In reality, this represents the elution of a uniformly absorbed column, which is
a Riemann problem. In this case (a → 0), we obtain

t

x
= g′(c) = 1 +

να

(1 + κc)2
(6.5.17)

from any point in the simple wave region, so that (κc) can be expressed as a function
of ( t

x ) only:

(κc) = −1 +
√
να

(
t

x
− 1

)− 1
2

. (6.5.18)

This result was recognized in the theory of chromatography as early as 1945.
We next consider the saturation of a clean column with the conditions

c(x, t) = 0 at t = 0 for x > 0,

c(x, t) = c0 at x = 0 for t > 0.

}
(6.5.19ab)

Obviously, the characteristics originating from the x-axis (t = 0) have slopes
g′(0) = (1+να), and they are steeper than those originating from the t-axis (x = 0),
since the slopes of the latter have slopes g′(c0) = 1 + (να)/(1 + κc0)

2. The char-
acteristics are shown in Figure 6.11. It is important to point out that there is a char-
acteristic corresponding to every concentration between 0 and c0 generating from
the origin. Three characteristics PA, PO, and PB corresponding to concentrations 0,
1
κ [−1 + {να/( t

x − 1)} 1
2 ], and c0, respectively, intersect at P . Hence, there are three

values of c at P showing the multi-valuedness of the concentration function c. This
physically unacceptable situation arises from the fact that the higher concentrations
move faster than the lower ones. The concentration wave propagating with a sloping
front leads to a compression wave which gets progressively steeper as the higher con-
centration overtakes the lower, until the wave overtops itself as shown in Figure 6.12.
Ultimately, the wave form breaks to give a multi-valued solution for c(x, t). In other
words, the solution develops a discontinuity. In contrast to linear waves, the breaking
phenomenon is typical of nonlinear waves.
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Fig. 6.11 Overlapping characteristic lines.

Fig. 6.12 Distortion of the waveform.

Another example of the application of kinematic waves was given by Kynch
(1952). The process of sedimentation of solid particles in a fluid is one of great
practical importance. It is based on an assumption that the velocity u of a particle is a
function of only the local concentration ρ of particles in its immediate neighborhood.
It is also assumed that the particles have the same size and shape. The particle flux
S = ρu represents the number of particles crossing a horizontal section per unit area
per unit time. Therefore, the particle flux S at any level determines or is determined
by the particle concentration. As ρ increases from zero to its maximum value ρm, the
velocity u decreases continuously from a finite value u to zero. The variation of S
is very complicated, but a simple model is useful for understanding the key features
of the problem. We denote the height of any level above the bottom of the column
of dispersed particles by x. Based on the argument that the accumulation of particles
between two adjacent layers at x and x+dx is the difference between the inflow and
the outflow, the continuity equation is given by

∂ρ

∂t
=

∂S

∂x
. (6.5.20)

Or equivalently,
∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0, (6.5.21)

where
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c(ρ) = −S′(ρ) = −
[
u(ρ) + ρ u′(ρ)

]
. (6.5.22)

Equation (6.5.21) is the kinematic wave equation, and its mathematical analysis
would be similar to that of Section 6.2.

Clearly, the characteristics of (6.5.21) are given by

dx

dt
= c(ρ). (6.5.23)

As ρ and, hence, c(ρ) are constant, the characteristics are straight lines.
The basic equation for the sediment transport of solid particles is similar to the

kinematic wave equation. So the results of the kinematic wave theory developed in
Section 6.2 can be applied to sediment transport phenomena. Without any further
discussion of mathematical analysis, we simply mention some key features of this
problem. Any discontinuous changes in the particle concentration can occur in two
ways: (i) a discontinuity of the first kind in the particle concentration is due to a
sudden finite change of concentration at a certain level, and (ii) a discontinuity of
the second kind is due to a very small change in the particle concentration. If ρ1 and
u1 represent the concentration and the velocity of particles above the discontinuity
and ρ2 and u2 denote the same quantities below the discontinuity, the velocity of the
shock waves U is obtained from the equation

ρ1(u1 + U) = ρ2(u2 + U), (6.5.24)

so that

U =
(u1ρ1 − u2ρ2)

(ρ2 − ρ1)
=

(S1 − S2)

(ρ2 − ρ1)
. (6.5.25)

In a diagram in the (ρ, S)-plane, velocity U represents the slope of the chord join-
ing the points (ρ1, S1) and (ρ2, S2). On the other hand, the discontinuity of the
second kind gives ρ2 − ρ1 = dρ where dρ is small so that (6.5.25) becomes
U = −dS

dρ = c(ρ). This means that the wave velocity c is equal to the shock wave
velocity between concentrations ρ and ρ+dρ. Evidently, a small change dρ, if main-
tained, is propagated through a dispersion of concentration ρ with velocity c just as
sound waves propagate through air with a definite velocity. Finally, for dispersions
where the concentration increases downward toward the bottom, the condition for the
formation of a first-order discontinuity can be expressed in the following equivalent
ways:

(a) the characteristics in the (x, t)-plane would intersect,
(b) the velocity of propagation c(ρ) increases with concentration, or
(c) the flow-concentration curve represented by S = S(ρ) in the sediment transport

phenomenon is concave to the ρ-axis.

If c(ρ) increases with ρ, small concentration changes from denser regions below
move faster upward than those in the less dense regions above and, subsequently,
overtake them. This means that the concentration gradient increases until a first-
order discontinuity is developed. On the other hand, if c(ρ) decreases with ρ, the
concentration gradient decreases, and hence, any discontinuity will be disseminated.
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6.6 Glacier Flow

A glacier is a huge mass of ice that flows over the land under its own weight. Math-
ematically, a glacier can be treated, essentially, as a one-dimensional flow system,
which continuously either gains new material by snowfall or loses it by melting and
evaporation. The following discussion on waves in glaciers is based on papers by
Nye (1960, 1963), who developed a modern theoretical analysis of glacier flow.

We consider the model of a glacier (or a large ice sheet) which rests on an inclined
plane of slope α and flows down the plane in the x-direction. We also assume that
the glacier is of unlimited extent in the direction normal to x, and α = α(x) is a
slowly varying function of x. The thickness of the glacier is assumed as h = h(x, t)
such that (hx)t � 1. Then, the surface slope β(x, t) downhill in the x-direction is
given by

β(x, t) = α− hx. (6.6.1)

We denote the volume of ice by q(x, t) at a given point x, in unit time, and in unit
breadth. This quantity q(x, t) is called a flow. The conservation of ice volume gives
the equation

∂h

∂t
+

∂q

∂x
= a(x, t), (6.6.2)

where a(x, t) is the rate of accumulation of ice at the surface, that is, the rate of addi-
tion of ice to the upper surface by snowfall and avalanching, measured as thickness
of ice per unit time. The negative value of a corresponds to melting or evaporation
of ice from the upper or lower surface of the glacier. Assuming that q is a given
function of x and h and, then, following Lighthill and Whitham (1955), we multiply
equation (6.6.2) by c = ( ∂q∂h )x to obtain the equation for the glacier flow

∂q

∂t
+ c

∂q

∂x
= ac. (6.6.3)

If a = 0, q would be constant in the characteristics, that is, there exist kinematic
waves of constant flow q traveling with velocity c. In general, c differs from the aver-
age velocity of the ice itself, which is given by u = q

h . To examine the instability of
the compression region of a glacier flow, we assume that q = q(x, h, α). Multiplying
equation (6.6.2) by c = ( ∂q∂h )x,α gives

c

(
∂q

∂x

)
+

(
∂q

∂h

)
x,α

·
(
∂h

∂t

)
= ac, (6.6.4)

or equivalently,
∂q

∂t
+ c

∂q

∂x
−
(
∂q

∂α

)
x,h

·
(
∂α

∂t

)
= ac. (6.6.5)

Using (6.6.1), that is, replacing αt by −hxt, we obtain

∂q

∂t
+ c

∂q

∂x
+ κ

∂2h

∂x∂t
= ac, (6.6.6)
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where κ = ( ∂q
∂α )x,h is called the diffusion coefficient. Substituting ht from (6.6.2)

gives the equation for q(x, t) in the form

∂q

∂t
+ c

∂q

∂x
− κ

(
∂2q

∂x2
− ∂a

∂x

)
= ac. (6.6.7)

In terms of perturbations q1 and a1, we write q = q0(x) + q1(x, t) and a =
a0(x) + a1(x, t) where q0 and a0 are the steady-state values. Since dq0

dx = a0, we
obtain the equation

∂q1
∂t

+ c
∂q1
∂x

− κ

(
∂2q1
∂x2

− ∂a1
∂x

)
= a1. (6.6.8)

This is the equation for the finite perturbation q1(x, t) produced by a change a1(x, t)
in the rate of accumulation. When κ = 0, the equation represents the equation for
q1(x, t). In view of the difficulties in collecting data on flow curves for glaciers, we
consider the shearing motion of the two-dimensional steady flow down a constant
slope. We suppose that u(y) is the velocity of the layer at a height y from the ground,
and τ(y) is the shearing stress. The appropriate stress–strain relation for ice is as-
sumed as

μ

(
du

dy

)
= τn, (6.6.9)

where n ≈ 3 or 4. Further, the appropriate law for ice slipping in its bed is

νu(0) = τm(0), (6.6.10)

where m = 1
2 (n+ 1) ≈ 2 when n = 3, and m ≈ 5

2 when n = 4. If α is the angle of
the slope and ρ is the density of ice, the shearing stress satisfies the equation

dτ

dy
= −gρ sinα (6.6.11)

with the surface condition τ(y = h) = 0. Thus, the solution of equation (6.6.11) is

τ(y) = (h− y)gρ sinα. (6.6.12)

Using this value of τ(y), we next solve the equation (6.6.9) with (6.6.10) to obtain

u(y) =
1

ν
(gρ sinα)mhm +

1

μ
· (qρ sinα)

n

(n+ 1)

[
hn+1 − (h− y)n+1

]
. (6.6.13)

The steady flow qs per unit breadth is given by

qs(h) =

∫ h

0

u(y) dy =
1

ν
(gρ sinα)mhm+1 +

(qρ sinα)nhn+2

(n+ 2)
. (6.6.14)

It is convenient to take qs(h) = AhN where A is a constant and N is approximately
in the range 3 ≤ N ≤ 5. Thus, it turns out that the wave propagation velocity is

c =
dqs
dh

= N

(
qs
h

)
= Nus, (6.6.15)

where us = qs
h is the average steady flow velocity. This shows that the kinematic

waves travel about three to five times faster than the average steady flow speed.
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Fig. 6.13 Flow configuration in an inclined channel.

6.7 Roll Waves and Their Stability Analysis

We consider an incompressible viscous fluid flowing down an inclined channel that
makes an angle α with the horizontal under the action of gravitational field g. We
consider only two-dimensional unsteady flow described by the velocity field (u, v).
Figure 6.13 exhibits the primary flow configuration.

The unsteady two-dimensional flow is governed by the Navier–Stokes equations
and the continuity equation

ut + uux + vuy = −1

ρ
px + g sinα+ ν∇2u, (6.7.1)

vt + uvx + vvy = −1

ρ
py − g cosα+ ν∇2v, (6.7.2)

ux + vy = 0, (6.7.3)

where ρ and ν are the density and the kinematic viscosity of the fluid.
With the free surface elevation y = h(x, t), the kinematic free surface condition

is given by
ht + uhx − v = 0 on y = h(x, t). (6.7.4)

The dynamic free surface conditions described by the tangential stress and the normal
stress with pressure on the free surface are given by

σxy = μ(uy + vx) = 0 on y = h(x, t), (6.7.5)

−p

ρ
+ 2 ν vy + g h cosα = 0 on y = h(x, t). (6.7.6)

The bottom boundary conditions are

u = v = 0 on y = 0. (6.7.7)

It can be shown that the primary flow field satisfying (6.7.1)–(6.7.7) exists and is
given by

u = U(y) = U0

(
2− y

h

)(
y

h

)
, (6.7.8a)

v = 0, (6.7.8b)
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u = p0(y) = gρ(h− y) cosα, h = h0, (6.7.9)

where

U0 =
1

2ν

(
gh2 sinα

)
. (6.7.10)

Based on the hydraulic approximation (that is, v is small), we integrate the conti-
nuity equation (6.7.3) with respect to y from y = 0 to y = h(x, t) and, then, combine
the result with (6.7.4) to derive

∫ h(x,t)

0

ux dx+ uhx + ht = 0. (6.7.11)

Or equivalently,

ht +
∂

∂x

∫ h(x,t)

0

u(x, y, t) dy = 0. (6.7.12)

Similarly, integrating (6.7.1) with respect to y from y = 0 to y = h and using
(6.7.3), (6.7.4), and (6.7.7) gives

∂

∂t

∫ h

0

u dy +
∂

∂x

∫ h

0

u2 dy = −1

ρ

∂

∂x

∫ h

0

p dy + gh sinα− F, (6.7.13)

where F represents the frictional force term given by

F = ν
[
uy(x, 0, t)− uy(x, h, t) + vx(x, h, t)

]
− 1

ρ
p(x, h, t)hx. (6.7.14)

In view of the hydraulic approximation, the velocity component v is small, and
hence, equation (6.7.2) has the approximate form

−1

ρ

∂p

∂y
− g cosα = 0. (6.7.15)

This can be integrated from y = 0 to y = h to obtain

p(x, y, t) = −gρ(y − h) cosα, (6.7.16)

where p(x, h, t) = 0. Consequently, (6.7.13) reduces to the form

∂

∂t

∫ h

0

u dy +
∂

∂x

∫ h

0

u2 dy = −1

2
g cosα

∂

∂x

(
h2
)
+ gh sinα− F. (6.7.17)

Using the primary flow field (6.7.9), the flow rate q is given by

q =

∫ h

0

u dy =
1

3ν
gh3 sinα. (6.7.18)

We define U as the average value of u so that q = U h, and therefore,

U =
1

3ν
(g sinα)h2. (6.7.19)
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Fig. 6.14 Roll waves in a steep channel.

We next write the integral involved in the second term of the left-hand side
of (6.7.17) as ∫ h

0

u2 dy = aUh = aq, (6.7.20)

where a is a constant parameter. Using the primary flow field (6.7.8a) in (6.7.20)
gives a = 6

5 ≈ 1. The primary steady flow is simply caused by a balance between F
and gh sinα, that is, F = gh sinα which gives, by (6.7.19),

F = 3νUh−1. (6.7.21)

In view of (6.7.18), (6.7.20), and (6.7.21), equations (6.7.12) and (6.7.17) reduce
to

∂h

∂t
+

∂q

∂x
= 0, (6.7.22)

(
∂q

∂t
+ a

∂q

∂x

)
+

1

2
g cosα

∂

∂x

(
h2
)
= gh sinα− 3νU

h
, (6.7.23)

where q = hU . These two equations are known as the roll wave equations in hy-
draulics. Neglecting the left-hand side of (6.7.23), so that U = 1

3ν (gh
2 sinα), equa-

tion (6.7.22) becomes
∂h

∂t
+ U(h)

∂h

∂x
= 0. (6.7.24)

It follows from this analysis that roll waves can be described by the kinematic
wave equation (6.7.24), so that these waves propagate with the velocity U(h). A fa-
mous example of such waves is shown in Figure 6.14, and a beautiful photograph
of this phenomenon (see Figure 6.15) was taken from a book by Cornish (1934).
Cornish described his observations of roll waves with numerical data and several in-
teresting photographs of roll waves in a long rectangular open conduit at Merligen
which feeds water from a mountain to Lake Thun in the Alps. These photographs
clearly show the exact periodic structure of the waves, although in this particular
situation, the waves seem to be unusually long and shallow. The photograph in Fig-
ure 6.15 confirms the fact that these waves exhibit a periodic structure of a series of
discontinuous bores separated by smooth profiles. Such waves frequently occur in
sufficiently steep channels, for example, spillways in dams or in open channels, such
as that of Figure 6.14. Observational data reported by Cornish also reveals that roll
waves travel faster than the mean flow velocity.
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Fig. 6.15 Roll waves, looking downstream (The Grünbach, Switzerland). From Stoker (1957).

The Froude number F = (U2/gh) associated with this phenomenon always
exceeds the critical value 2. Subsequently, Dressler (1949) made an important con-
tribution to the subject of roll waves, and investigated how to construct nonlinear so-
lutions of roll wave equations with appropriate jump conditions to describe the roll
wave patterns. He has shown that smooth solutions can be pieced together through
discontinuous bores so that the conditions describing the continuity of mass and mo-
mentum across the discontinuity are satisfied. For more details, the reader is referred
to Dressler’s paper (1949).

We close this section by adding the stability analysis of roll waves. We introduce
small perturbations to the primary flow field as

h = h0 + η exp
[
ik(x− ct)

]
, (6.7.25)

U = U0 + u exp
[
ik(x− ct)

]
, (6.7.26)

where
U0 =

gh2
0 sinα

3ν
=

2

3
U0. (6.7.27)

Substituting (6.7.25), (6.7.26) into (6.7.22) and (6.7.23) and retaining only terms
linear in η and u leads to the following equations:(

U0 − c
)
η + h0 u = 0, (6.7.28)

−ikc
(
U0η + h0u

)
+ ika

(
U

2

0η + 2U0h0u
)
+ ikg h0η cosα

= gη sinα− 3ν

h0
u+

3νU0

h2
0

η. (6.7.29)
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Fig. 6.16 A typical continuous roll wave solution.

We next use (6.7.28) to express u in terms of η, so that equation (6.7.29) can be
written as

ik
[
−c

{
U0 −

(
U0 − c

)}
+ a

{
U

2

0 − 2U0

(
U0 − c

)}
+ gh0 cosα

]

= g sinα+
3ν

h2
0

[(
U0 − c

)
+ U0

]
. (6.7.30)

Or equivalently,

ik
[
−c2 + a

(
2c− U0

)
U0 + gh0 cosα

]
=
(
3νh−2

0

)(
3U0 − c

)
. (6.7.31)

The critical state exists for values of c which are given by

c = 3U0 = 2U0 and (6.7.32a)

c2 − a
(
2c− U0

)
U0 − (g h0) cosα = 0. (6.7.32b)

The former gives ( c
U0

) = 2, and this result can be used to express (6.7.32b) in terms
of the critical Froude number Fc = (U2

0 /gh0) as

4

(
1− 5a

9

)
Fc = cosα (6.7.33)

for various values of a. In particular, when a = 27
25 , the growth rate of the instability

can be obtained as

F > Fc =
5

8
cosα. (6.7.34)

This result can also be derived from the stability analysis of the original equa-
tions (6.7.1)–(6.7.3).

In addition to the preceding discontinuous roll wave solutions, we conclude this
section by mentioning Dressler’s continuous roll wave solutions which describe pe-
riodic, progressive waves flowing over a sloping bottom in terms of cnoidal waves,
as shown in Figure 6.16. For further mathematical details, the reader is referred to
Dressler’s (1949) paper.

6.8 Simple Waves and Riemann’s Invariants

In one of his famous papers, Riemann (1858) made a remarkable discovery which
laid the foundation for all subsequent work on the theory and applications of non-
linear plane sound waves and simple waves. Based on his general formulation, we
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discuss the mathematical analysis of the theory of simple waves and Riemann invari-
ants.

To develop the governing equations for finite-amplitude wave motions in gas
dynamics, we consider the continuity equation and momentum equations of an un-
steady compressible fluid without body forces in the form

Dρ

Dt
+ ρ(∇ · u) = 0, (6.8.1)

ρ
Du

Dt
= −∇p, (6.8.2)

where ρ is the density, u = (u, v, w) is the fluid velocity vector, p is the pressure,
and the total derivative is

D

Dt
≡ ∂

∂t
+ u · ∇. (6.8.3)

It follows from thermodynamics that density is a function of pressure and en-
tropy, that is, ρ = ρ(p, s), where s is the entropy. Hence,

dρ =

(
∂ρ

∂p

)
s

dp+

(
∂ρ

∂s

)
p

ds. (6.8.4)

For isentropic flow, s is constant, that is, ds = 0. Thus, equation (6.8.4), written in
terms of the total derivative following a fluid element, becomes

Dρ

Dt
=

1

c2
Dp

Dt
, (6.8.5)

where c is the velocity of sound, so that

c2 =
dp

dρ
. (6.8.6)

Substituting (6.8.5) into (6.8.1) gives

1

c2
Dp

Dt
+ ρ∇ · u = 0. (6.8.7)

For one-dimensional unsteady isentropic flow, equations (6.8.7) and (6.8.2) become

1

c2

(
∂p

∂t
+ u

∂p

∂x

)
+ ρ

∂u

∂x
= 0, (6.8.8)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+

∂p

∂x
= 0. (6.8.9)

Adding (6.8.8) and (6.8.9) gives
[
∂u

∂t
+ (u+ c)

∂u

∂x

]
+

1

ρc

[
∂p

∂t
+ (u+ c)

∂p

∂x

]
= 0. (6.8.10)
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Subtracting (6.8.8) from (6.8.9) yields
[
∂u

∂t
+ (u− c)

∂u

∂x

]
− 1

ρc

[
∂p

∂t
+ (u− c)

∂p

∂x

]
= 0. (6.8.11)

In general and in principle, a solution of these equations gives u = u(x, t) and
p = p(x, t). However, introducing P = p

ρc , we rewrite (6.8.10) and (6.8.11) to obtain

∂

∂t
(u+ P ) + (u+ c)

∂

∂x
(u+ P ) = 0, (6.8.12)

∂

∂t
(u− P ) + (u− c)

∂

∂x
(u− P ) = 0. (6.8.13)

According to the theory of characteristics for first-order, quasi-linear equations,
equations (6.8.12), (6.8.13) signify that

u+ P = const. along a curve C+ such that
dx

dt
= u+ c, (6.8.14)

u− P = const. along a curve C− such that
dx

dt
= u− c. (6.8.15)

These are truly remarkable results first obtained by Riemann (1858). Physically,
the curves C+ and C− in the (x, t)-plane are referred to as positive and negative
wavelets, respectively. In general, these wavelets do not travel at constant speed, but,
everywhere, they move with the local speed of sound relative to the fluid velocity.
More precisely, a curve C+ is the locus of a point (x, t) which always moves forward
(that is, in the positive x-direction) at the local wave speed c relative to the local fluid
velocity u. Similarly, a curve C− is the locus of a point in the (x, t)-plane which
always moves backward, that is, in the negative x-direction.

To gain further physical understanding of the Riemann theory, we examine an
initial-value problem. If, at time t = 0, all the fluid except that in a certain slab of the
x-axis is undisturbed, that is, u = 0 and P = 0 at t = 0, while the disturbance within
the slab may be large but, of course, with constant entropy. The main question is how
a disturbance propagates ahead of and behind the slab in the subsequent motion. We
draw Figure 6.17 in the (x, t)-plane. At t = 0, the disturbance is confined to the slab
between the points B (for back) and F (for front). To investigate the subsequent de-
velopment of the flow, we consider a large number of C+ curves shown on the figure
including those designated as CB

+ and CF
+ , which originate at t = 0 from the points

B and F , and, similarly, with the C− curves. The slope of these curves in not known
in advance because it depends on how u and c change. However, some important in-
formation about them is described below. First, equation (6.8.15) indicates that u+P
takes a constant value along each C− curve, but different for different members of
the C− family. However, CF

− and all curves ahead of it originate from the region
ahead of F , where u = P = 0. The constant value of u − P on each of these can
only be zero. Thus, we conclude that u = P ahead of CF

− . Throughout this region
ahead of CF

− , which increases progressively wider than the region ahead of the slab,
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Fig. 6.17 Riemann’s initial-value problem.

we examine how disturbances propagate. Similar arguments reveal that u = P be-
hind CB

− . Analogous arguments for the C+ curves indicate that u = −P behind CB
+

and also ahead of CF
+ . It follows from the above analysis that CF

+ must lie ahead of
CF

− , and the region ahead of CF
+ remains undisturbed with u = P = 0 because there

are no disturbances in this region. Similar comments apply to the region behind CB
− ,

that is, this region is also undisturbed with u = P = 0. Figure 6.17 also indicates
that, after some time t = td, CF

− intersects CB
+ at a point A and the region CF

−AC
B
+

remains undisturbed with u = P = 0. Evidently, during the time interval 0 < t < td,
the disturbances become disentangled, and thereafter, they propagate as two simple
waves—one forward and one backward with an undisturbed region in between. So,
the upshot of the Riemann analysis is that the disturbance initially confined to BF
becomes disentangled when t = td into a pair of simple waves propagating in oppo-
site directions (one traveling to the right and the other traveling to the left), separated
by an undisturbed region.

To give a more general formulation of the propagation of simple waves, we
rewrite the equations (6.8.8), (6.8.9) for one-dimensional, unsteady, isentropic flow
in terms of density ρ as

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (6.8.16)

∂u

∂t
+ u

∂u

∂x
+

c2

ρ

(
∂ρ

∂x

)
= 0. (6.8.17)

In matrix form, this system of equations is

A
∂U

∂x
+ I

∂U

∂t
= 0, (6.8.18)

where U , A, and I are matrices given by
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U =

(
ρ
u

)
, A =

(
u ρ

c2/ρ u

)
, and I =

(
1 0
0 1

)
. (6.8.19)

It is of interest to determine how a solution evolves with time t. Hence, we leave
the time variable unchanged and replace the space variable x by some arbitrary curvi-
linear coordinate ξ so that the semicurvilinear coordinate transformation from (x, t)
to (ξ, τ) can be introduced by

ξ = ξ(x, t), τ = t. (6.8.20)

If the Jacobian of this transformation is nonzero, we can transform (6.8.19) by
the following correspondence rule:

∂

∂t
≡ ∂ξ

∂t

∂

∂ξ
+

∂τ

∂t
· ∂

∂τ
=

∂ξ

∂t

∂

∂ξ
+

∂

∂τ
,

∂

∂x
≡ ∂ξ

∂x

∂

∂ξ
+

∂τ

∂x
· ∂

∂τ
=

∂ξ

∂x

∂

∂ξ
.

(6.8.21ab)

This rule transforms equation (6.8.18) into the form

I
∂U

∂τ
+

(
∂ξ

∂t
I +

∂ξ

∂x
A

)
∂U

∂ξ
= 0. (6.8.22)

This equation can be used to determine ∂U/∂ξ provided that the determinant of
its coefficient matrix is nonzero. Obviously, this condition depends on the nature of
the curvilinear coordinate curves ξ(x, t) = const., which has been kept arbitrary. We
assume now that the determinant vanishes for the particular choice ξ = η, so that

∣∣∣∣∂η∂t I +
∂η

∂x
A

∣∣∣∣ = 0. (6.8.23)

In view of this, ∂U/∂η will become indeterminate on the family of curves
η = const., and hence, ∂U/∂η may be discontinuous across any of the curves
η = const. This implies that each element of ∂U/∂η will be discontinuous across
any of the curves η = const. Then, it is necessary to find how these discontinuities in
the elements of ∂U/∂η are related across the curve η = const. We next consider the
solutions U which are everywhere continuous with discontinuous derivatives ∂U/∂η
across the particular curve η = const. = η0. Since U is continuous, elements of the
matrix A are not discontinuous across η = η0, so that A can be determined in the
neighborhood of a point P on η = η0. And since ∂/∂τ represents differentiation
along the curves η = const., ∂U/∂τ is continuous everywhere, and hence, it is con-
tinuous across the curve η = η0 at P .

In view of these facts, it follows that differential equation (6.8.22) across the
curve ξ = η = η0 at P gives

(
∂η

∂t
I +

∂η

∂x
A

)
P

[
∂U

∂η

]
p

= 0, (6.8.24)
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where [f ]p = f(P+) − f(P−) denotes the discontinuous jump in the quantity f
across the curve η = η0, and f(P−) and f(P+) represent the values to the imme-
diate left and immediate right of the curve at P . Since P is any arbitrary point on
the curve, ∂/∂η denotes the differentiation normal to the curves η = const., so that
equation (6.8.24) can be regarded as the compatibility condition satisfied by ∂U/∂η
on either side of and normal to these curves in the (x, t)-plane.

Obviously, (6.8.24) is a homogeneous system of equations for the two jump
quantities [∂U/∂η]. Therefore, for the existence of a nontrivial solution, the coef-
ficient determinant must vanish, that is,

∣∣∣∣∂η∂t I +
∂η

∂x
A

∣∣∣∣ = 0. (6.8.25)

However, along the curves η = const., we have

0 = dη = ηt +

(
dx

dt

)
ηx, (6.8.26)

so that these curves have the slope

dx

dt
= − ηt

ηx
= λ (say). (6.8.27)

Consequently, equations (6.8.24) and (6.8.25) can be expressed in terms of λ in the
form

(A− λI)

[
∂U

∂η

]
= 0, (6.8.28)

|A− λI| = 0, (6.8.29)

where λ represents the eigenvalues of the matrix A and [∂U/∂η] are proportional to
the corresponding right eigenvectors of A.

Since A is a 2 × 2 matrix, it must have two eigenvalues. If these are real and
distinct, integration of (6.8.27) leads to two distinct families of real curves Γ1 and Γ2

in the (x, t)-plane:

Γ1 :
dx

dt
= λr, r = 1, 2. (6.8.30ab)

The families of curves Γr are called the characteristic curves of the system (6.8.18).
Any one of these families of curves Γr may be chosen for the curvilinear coordinate
curves η = const. The eigenvalues λr have the dimensions of velocity, and the λr

associated with each family will then be the velocity of propagation of the matrix
column vector [∂U/∂η] along the curves Γr belonging to that family.

In this particular case, the eigenvalues λ of the matrix A are determined
by (6.8.29), that is, by the equation

∣∣∣∣u− λ ρ
c2/ρ u− λ

∣∣∣∣ = 0, (6.8.31)
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so that
λ = λr = u± c, r = 1, 2. (6.8.32ab)

Consequently, the families of the characteristic curves Γr(r = 1, 2) defined
by (6.8.30ab) become

Γ1 :
dx

dt
= u+ c, and Γ2 :

dx

dt
= u− c. (6.8.33ab)

In physical terms, these results indicate that disturbances propagate with the sum
of the velocities of the fluid and sound along the family of curves Γ1. In the second
family Γ2, they propagate with the difference of the fluid velocity u and the sound
velocity c.

The right eigenvectors Rr ≡
(
R(1)

r

R(2)
r

)
are solutions of the equations

(A− λrI)Rr = 0, r = 1, 2, (6.8.34)

or equivalently,

(
u− λr ρ
c2/ρ u− λr

)(
R

(1)
r

R
(2)
r

)
= 0, r = 1, 2. (6.8.35ab)

This result combined with (6.8.29) gives
(

[ρη]

[Rη]

)
=

(
R

(1)
r

R
(2)
r

)
= α

(
1

±c/ρ

)
, r = 1, 2, (6.8.36)

where α is a constant. In other words, across a wavefront in the Γ1 family of charac-
teristic curves,

[∂ρ/∂η]

1
=

[∂u/∂η]

c/ρ
, (6.8.37)

and across a wavefront in the Γ2 family of characteristic curves,

[∂ρ/∂η]

1
=

[∂u/∂η]

−c/ρ , (6.8.38)

where c and ρ have values appropriate to the wavefront.
To introduce the Riemann invariants explicitly, we form the linear combination

of the eigenvectors (±c/ρ, 1) with equations (6.8.16), (6.8.17) to obtain

± c

ρ
(ρt + ρux + uρx) +

(
ut + uux +

c2

ρ
ρx

)
= 0. (6.8.39)

We use ∂u/∂ρ = ±c/ρ from (6.8.37), (6.8.38) and rewrite (6.8.39) as

± c

ρ

[
ρt + (u± c)ρx

]
+
[
ut + (u± c)ux

]
= 0. (6.8.40)
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In view of (6.8.33ab), equation (6.8.40) becomes

du± c

ρ
dρ = 0 on Γr, r = 1, 2, (6.8.41)

or equivalently,
d
[
F (ρ)± u

]
= 0 on Γr, (6.8.42)

where

F (ρ) =

∫ ρ

ρ0

c(ρ)

ρ
dρ. (6.8.43)

Integration of (6.8.42) gives

F (ρ) + u = 2r on Γ1 and F (ρ)− u = 2s on Γ2, (6.8.44ab)

where 2r and 2s are constants of integration on Γ1 and Γ2, respectively. The quan-
tities r and s are called the Riemann invariants. As stated above, r is an arbitrary
constant on characteristics Γ1, and hence, in general, r will vary on each Γ2. Simi-
larly, s is constant on each Γ2 but will vary on Γ1. It is natural to introduce r and s as
new curvilinear coordinates. Since r is constant on Γ1, s can be treated as the param-
eter on Γ1. Similarly, r can be regarded as the parameter on Γ2. Then, dx = (u±c) dt
on Γr implies that

dx

ds
= (u+ c)

dt

ds
on Γ1, (6.8.45)

dx

dr
= (u− c)

dt

dr
on Γ2. (6.8.46)

In fact, r is constant on Γ1, and s is constant on Γ2. Therefore, the derivatives in
equations (6.8.45), (6.8.46) are partial derivatives, with respect to s and r, so that we
can rewrite them as

∂x

∂r
= (u+ c)

∂t

∂s
, (6.8.47)

∂x

∂r
= (u− c)

∂t

∂r
. (6.8.48)

These two first-order partial differential equations, in general, can be solved for x =
x(r, s) and t = t(r, s), and then, by inversion, r and s can be obtained as functions
of x and t. Once this is done, we use (6.8.44ab) to determine u(x, t) and ρ(x, t) in
terms of r and s as

u(x, t) = r − s, (6.8.49a)

F (ρ) = r + s. (6.8.49b)

When one of the Riemann invariants r and s is constant throughout the flow,
the corresponding solution is tremendously simplified. The solutions are known as
simple wave motions representing simple waves in one direction only. The generating
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mechanisms of simple waves with their propagation laws can be illustrated by the
piston problem in gas dynamics (see Example 6.8.2).

We close this section by reducing the two first-order equations (6.8.47) and
(6.8.48) to a single second-order linear hyperbolic equation. This can be done by
equating xrs and xsr which eliminates x from the system (6.8.47), (6.8.48), so that
we obtain the single equation

(u+ c)trs + (ur + cr)ts = (u− c)trs + (us − cs)tr. (6.8.50)

The coefficients of this equation are functions of r and s, and they can be deter-
mined explicitly. First, we find that ur = 1 and us = −1 from (6.8.49a). Sec-
ond, from (6.8.49b), we calculate F ′(ρ)ρr = F ′(ρ)ρs = 1, and hence, from result
(6.8.43), F ′(ρ) = c

ρ so that ρr = ρs =
ρ
c . Finally, we determine that

cr = c′(ρ)ρr =
ρ

c
· c′(ρ), cs = c′(ρ)ρs =

ρ

c
· c′(ρ). (6.8.51ab)

These results are used to simplify (6.8.50) further as

2ctrs +

(
1 +

ρ

c

dc

dρ

)
ts = −

(
1 +

ρ

c

dc

dρ

)
tr, (6.8.52)

or equivalently,

trs +
1

2c

(
1 +

ρ

c

dc

dρ

)
(tr + ts) = 0. (6.8.53)

The coefficient of (tr+ts) depends only on ρ, and hence, by (6.8.49b), it is a function
of (r + s), so that we can write it as f(r + s). More explicitly, we write

1

2c

(
1 +

ρ

c

dc

dρ

)
= f(r + s). (6.8.54)

Consequently, equation (6.8.53) reduces to the second-order hyperbolic equation

trs + f(r + s)(tr + ts) = 0. (6.8.55)

Once we can solve this equation for t = t(r, s), it can be used to solve the system
(6.8.47), (6.8.48) for x = x(r, s).

Example 6.8.1 Riemann’s Invariants for a Polytropic Gas. A polytropic gas is usually
characterized by the pressure–density law p = kργ where k and γ are constants. In
this case, the velocity of sound c is calculated by using the formula c2 = kγργ−1. It
follows from this result that

ρt =

(
2ρ

γ − 1

)
ct
c

and

(
2

r − 1

)
ccx =

c2

ρ
ρx. (6.8.56)

In view of these results, equations of motion (6.8.16), (6.8.17) assume the form
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ct + ucx +

(
γ − 1

2

)
cux = 0, (6.8.57)

ut + uux +

(
2

γ − 1

)
ccx = 0. (6.8.58)

We divide (6.8.57) by (γ − 1) and (6.8.58) by 2, and then add them and subtract
the former from the latter to obtain the following equations (Riemann 1858):

∂r

∂x
+ (c+ u)

∂r

∂x
= 0,

∂s

∂t
− (c− u)

∂s

∂x
= 0, (6.8.59ab)

where r and s are the Riemann invariants given by

r =
c

γ − 1
+

1

2
u, (6.8.60a)

s =
c

γ − 1
− 1

2
u. (6.8.60b)

Equations (6.8.60a), (6.8.60b) signify that

r =
c

γ − 1
+

1

2
u = const. on

dx

dt
= c+ u, (6.8.61)

s =
c

γ − 1
− 1

2
u = const. on

dx

dt
= c− u. (6.8.62)

Furthermore, u = r − s = const., and c = 1
2 (γ − 1)(r + s) = const. con-

firming the fact that u and c are separately constant. Consequently, the character-
istics dx

dt = c ± u = const., which represents two families of straight lines in the
(x, t)-plane. Mathematically, the characteristics exist because the governing quasi-
linear equations (6.8.57) and (6.8.58) are hyperbolic. Physically, they represent the
wavelets propagating in both directions with speed c while also connected by the
fluid with local speed u. If, as often happens, one of the Riemann invariants is con-
stant everywhere (that is, it takes the same constant value on every characteristic line
of its family), the resulting solution is said to form a simple wave.

This example simply illustrates Riemann’s original general approach to the prob-
lem. However, it should be pointed out that the Riemann invariant can be de-
rived directly from (6.8.44ab) by using (6.8.43) combined with the sound speed

c =
√

dp
dρ =

√
kγρ

1
2 (γ−1).

The solution of the equations of motion in the above simple wave assumes the
form

u(x, t) = f(ξ), ξ = x− (u+ c)t, (6.8.63)

where u(x, 0) = f(x) represents the initial data. If f(x) ≥ 0, u + c will be every-
where positive, and hence, the family of characteristics carrying the simple wave has
positive slope in the (x, t)-plane, and the wave is said to be forward progressing. The
speed of propagation of the forward progressing wave is given by
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u+ c =
1

2
(γ + 1)u+ c0, (6.8.64)

where a slightly different form of (6.8.61), that is, c = 1
2 (γ + 1)u + const., is used,

and c0 is the sound speed of a one-dimensional compressive wave which cannot re-
main continuous indefinitely, whereas a similar expansion wave can. Differentiating
(6.8.63) combined with (6.8.64) gives

∂u

∂x
= f ′(ξ)ξx =

f ′(ξ)

1 + 1
2 (γ + 1)t f ′(ξ)

, (6.8.65)

∂u

∂t
= f ′(ξ)ξt = −1

2
(γ + 1)

[
f ′(ξ)f(ξ)

1 + 1
2 (γ + 1)t f ′(ξ)

]
. (6.8.66)

Evidently, both ux and ut tend to infinity as

t → − 2

(γ + 1)f ′(ξ)
, (6.8.67)

which is positive provided that f ′(ξ) < 0, corresponding to the compressive part of
the wave profile. The discontinuity occurs first at the instant

t =
2

(γ + 1){−f ′(ξ)}max
. (6.8.68)

The solution develops a discontinuity in the form of shock waves. The gas is at rest.
From the constant value in this simple wave of the Riemann invariant, it is evident
that the greater the speed u, the greater the value of c and, therefore, of the pres-
sure p. Hence the largest velocities and pressures move most rapidly through the gas.
The peaks of velocity or pressure tend to overtake the troughs, thus, leading to the
breakdown of the uniqueness of the solution whenever the initial profile contains a
compressive part. This has already been illustrated in Chapter 5 (see Figure 5.4) for
a similar situation observed in the case of a general, nonlinear initial-value problem.
As time increases, the initial velocity (or pressure) profile is progressively distorted,
and the part of the wave profile that was initially expansive (velocity increases in the
direction of motion) tends to elongate. Ultimately, the compressive part of the wave
profile develops multiple-valuedness and then breaks at the point when it becomes
vertical. This simple analysis confirms that, in inviscid flow, a shock wave develops
in one-dimensional unsteady flow as exhibited in the photographs included in Fig-
ure 6.18, which is due to Dr. W. Bleakney and Dr. Wayland Griffith at the Palmer
Physical Laboratory, Princeton University. This photograph shows that in (a) the
density gradient is moderate, in (b) it becomes steeper, and in (c) it is clearly discon-
tinuous. The steepening effect of the waveform for the case of one-dimensional flow
is equally true for flows with cylindrical and spherical symmetry. This fundamental
result was obtained long ago by Burton (1893) by intuitive arguments and has been
confirmed by Pack (1960) by the method of characteristics.

We complete this example by adding Riemann’s original approach to an explicit
solution for the problem of polytropic gas. First, we can calculate the unknown func-
tion f(r+ s) in equation (6.8.55) to find the explicit form of this equation. First, we
use c =

√
kγρ

1
2 (γ−1) to obtain c′(ρ) and then (6.8.60a), (6.8.60b) to find F (ρ)
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Fig. 6.18 Development of shock waves at successive instants. From Lighthill (1956).

c′(ρ) =
1

2
(γ − 1)

c

ρ
and F (ρ) =

2c

(γ − 1)
. (6.8.69ab)

Thus, it follows from (6.8.54) that

f(r + s) =
1

4c
(γ + 1) =

1

2

(
γ + 1

γ − 1

)
1

(r + s)
=

n

(r + s)
, (6.8.70)

where n = 1
2 (

γ+1
γ−1 ) = const. Consequently, equation (6.8.55) reduces to the explicit

form

trs +

(
n

r + s

)
(tr + ts) = 0, (6.8.71)

where r and s are involved in this equation symmetrically. This allows us to extend
the method to (6.8.71) by introducing a new dependent variable w(r, s) so that

t(r, s) = g(r + s)w(r, s), (6.8.72)

where g is to be determined so that wr and ws vanish. We substitute (6.8.72)
into (6.8.71) to derive

g wrs +

(
g′ +

n g

r + s

)
(wr + ws) + g′

(
1 +

2n

r + s

)
w = 0. (6.8.73)

To simplify the problem further, we assume that g(r + s) = (r + s)−n, so that
(6.8.73) reduces to the canonical hyperbolic equation

wrs +
n(1− n)

(r + s)2
w = 0. (6.8.74)

Indeed, this is a telegraph equation with a variable coefficient. Following Riemann
analysis (1858), we introduce the Riemann function R(r, s, ρ, σ), which must be a
function of (r, s), and look for the Riemann function as a function of a single variable

z =
(r − ρ)(s− σ)

(r + s)(ρ+ σ)
. (6.8.75)

More explicitly, we set R(r, s, ρ, σ) = g(z) so that R satisfies (6.8.74), and hence,
g(z) can be determined. We also assume that R satisfies some additional conditions
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∂R

∂s
= 0 for r = ρ,

∂R

∂r
= 0 for s = σ, and R(ρ, σ, ρ, σ) = 1.

(6.8.76)
We next substitute R(r, s, ρ, σ) = g(z) in (6.8.74) to generate the ordinary dif-

ferential equation for g(z) in the form

z(1− z)g′′(z) + (1− 2z)g′(z)− n(1− n)g(z) = 0. (6.8.77)

This is the hypergeometric equation

z(1− z)g′′ +
[
c− (1 + a+ b)z

]
g′ − abg = 0 (6.8.78)

with a = 1− n, b = n, and c = 1.
The first two conditions in (6.8.76) are automatically satisfied by R(r, s, ρ, σ) =

g(z), and the last condition in (6.8.76) needs g(0) = 1. The solution of (6.8.78) is
the standard hypergeometric function

R(r, s, ρ, σ) = F (1− n, n, 1,−z), (6.8.79)

where F (a, b, c, z) is the hypergeometric function defined by

F (a, b, c, z) = 1 +

(
ab

c

)
z +

a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · · . (6.8.80)

For the special case in which n is an integer, a transformation

τ = (r + s)−1(tr + ts) (6.8.81)

can be used to solve the original equation (6.8.71) which becomes

τrs +

(
n+ 1

r + s

)
(τr + τs) = 0. (6.8.82)

This shows that, if a solution of (6.8.71) exists for any n, then the use of the trans-
formation (6.8.81) leads us to a solution for n+ 1. In particular, when n = 0, equa-
tion (6.8.71) reduces to the canonical hyperbolic equation

trs = 0, (6.8.83)

which gives a solution by direct integration as

t(r, s) = φ(r) + ψ(s), (6.8.84)

where φ and ψ are arbitrary functions. Using (6.8.81), the general solution of (6.8.82)
with n = 0, that is, of (6.8.71) with n = 1, is given by

τ(r, s) =
φ′(r) + ψ′(s)

(r + s)
. (6.8.85)

Similarly, for n = 2, we obtain
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τ(r, s) = (r + s)−1
{
φ′′(r) + ψ′′(s)

}
− 2(r + s)−2

{
φ′(r) + ψ′(s)

}
. (6.8.86)

In general, when n is an integer, the solution of (6.8.71) is given by

t(r, s) =
∂n−1

∂rn−1

[
φ(r)

(r + s)n

]
+

∂n−1

∂sn−1

[
ψ(s)

(r + s)n

]
, (6.8.87)

where φ(r) and ψ(s) are arbitrary functions. This result is also valid for fractional
values of n and can be expressed in terms of fractional derivatives with n = m+ α,
m a nonnegative integer, and 0 ≤ α < 1. Consequently, (6.8.87) takes the form

t(r, s) =
∂m

∂rm
· 0Dr

−(1−α)

[
φ(r)

(r + s)m+α

]
+

∂m

∂sm
· 0Ds

−(1−α)

[
ψ(s)

(r + s)m+α

]
,

(6.8.88)

where the fractional integrals (Debnath 1995) are defined by

0D
−(1−α)
r f(r) =

1

Γ (1 + α)

∫ r

0

(r − x)−αf(x) dx. (6.8.89)

Result (6.8.88) is valid for n ≥ 0 and for n < 0. Then (6.8.88) also holds if m is set
equal to zero and α = n.

We consider another special case in which n is half-integer. It is convenient to
handle this case with u and c instead of r and s as independent variables, where

u = r − s and c =
γ − 1

2
(r + s). (6.8.90ab)

Using these results, we change the variables from r, s to u, c so that equation (6.8.71)
reduces to

tuu −
(
γ − 1

2

)2(
tcc +

2n

c
tc

)
= 0. (6.8.91)

This is known as the Euler–Poisson–Darboux equation. If m is an integer and 2n =
m− 1, then equation (6.8.91) becomes

tuu −
(
γ − 1

2

)2(
tcc +

m− 1

c
tc

)
= 0. (6.8.92)

This can be treated as a wave equation in m space variables for a problem with
spherical symmetry. To check this situation, we take c =

√
x21 + x22 + · · ·+ x2m,

and write

∇2 ≡ ∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2m
, (6.8.93)

and then assume that t = t(x1, x2, . . . , xm, u) = t(c, u). With these assumptions,
we obtain

∇2t = tcc +

(
m− 1

c

)
tc. (6.8.94)
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Fig. 6.19 Simple waves generated by the motion of a piston.

Then, equation (6.8.92) reduces to the form

tuu −
(
γ − 1

2

)2

∇2t = 0. (6.8.95)

This is a wave equation where the waves travel with the speed 1
2 (γ − 1).

Example 6.8.2 The Piston Problem in a Polytropic Gas. The problem is to determine
how a simple wave is produced by the prescribed motion of a piston in the closed
end of a semi-infinite tube filled with gas.

This is a one-dimensional unsteady problem in gas dynamics. We assume that
the gas is initially at rest with a uniform state u = 0, ρ = ρ0, and c = c0. The piston
starts from rest at the origin and is allowed to withdraw from the tube with a variable
velocity for a time t1, after which the velocity of withdrawal remains constant. The
piston path is shown by a dotted curve in Figure 6.19. In the (x, t)-plane, the path of
the piston is given by x = X(t) with X(0) = 0. The fluid velocity u is equal to the
piston velocity Ẋ(t) on the piston x = X(t), which will be used as the boundary
condition on the piston.

The initial state of the gas is given by u = u0, ρ = ρ0, and c = c0 at t = 0
for x ≥ 0. The characteristic line Γ0 that bounds it and passes through the origin is
determined by the equation

dx

dt
= (u+ c)t=0 = c0,

so that the equation of the characteristic line Γ0 is x = c0t.
In view of the uniform initial state, all of the Γ2 characteristics start on the x-axis,

so that the Riemann invariants s in (6.8.60b) must be constant and have the form

2c

γ − 1
− u =

2c0
γ − 1

, (6.8.96)

or equivalently,
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u =
2(c− c0)

γ − 1
, (6.8.97a)

c = c0 +
γ − 1

2
u. (6.8.97b)

The characteristics Γ1 meeting the piston are given by

2c

γ − 1
+ u = 2r on each Γ1 :

dx

dt
= u+ c, (6.8.98)

which is, by (6.8.97a), (6.8.97b) which holds everywhere,

u = const. on Γ1 :
dx

dt
= c0 +

1

2
(γ + 1)u. (6.8.99)

Since the flow is continuous with no shocks, u = 0 and c = c0 ahead of and
on Γ0, which separates those Γ1 meeting the x-axis from those meeting the piston.
The family of lines Γ1 through the origin has the equation (dx/dt) = ξ, where
ξ is a parameter with ξ = c0 on Γ0. The Γ1 characteristics are also defined by
(dx/dt) = u+ c, so that ξ = u+ c. Hence, eliminating c from (6.8.97b) gives

u =

(
2

γ − 1

)
(ξ − c0). (6.8.100)

Substituting this value of u in (6.8.97b), we obtain

c =

(
γ − 1

γ − 1

)
ξ +

2c0
γ − 1

. (6.8.101)

If follows from c2 = γkργ−1 and (6.8.97b) with the initial data ρ = ρ0 and
c = c0 that

ρ = ρ0

[
1 +

γ − 1

2c0
u

]2/(γ−1)

. (6.8.102)

With ξ = x/t, results (6.8.100) through (6.8.102) give the complete solution of
the piston problem in terms of x and t.

Finally, the equation of the characteristic line Γ1 is found by integrating the sec-
ond equation of (6.8.99) and using the boundary condition on the piston. When a line
Γ1 intersects the piston path at time t = τ , then u = Ẋ(τ) along it, and the equation
becomes

x = X(τ) +

{
c0 +

γ + 1

2
Ẋ(τ)

}
(t− τ). (6.8.103)

Note that the family Γ1 represents straight lines with slope (dx/dt) increasing
with velocity u. Consequently, the characteristics are likely to overlap on the piston,
that is, Ẋ(τ) > 0 for any τ . If u increases, so do c, ρ, and p, so that instability
develops. This shows that shocks will be formed in the compressive part of the dis-
turbance.
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Fig. 6.20 Long surface waves in shallow water.

Example 6.8.3 Shallow Water Waves. We consider the propagation of surface waves
whose wavelength is large compared with the depth h(x), as shown in Figure 6.20. In
terms of the horizontal velocity component u = u(x, t) and the free surface elevation
η = η(x, t), shallow water equations are given by

ut + uux = −gηx, (6.8.104)[
u(η + h)

]
x
= −ηt, (6.8.105)

where g is the acceleration due to gravity. Introducing the propagation speed c =√
g(η + h), so that cx = g

2c (ηx + hx) and ct = (gηt/2c), we reformulate the pre-
ceding equations in terms of c to obtain

ut + uux + 2ccx −Hx = 0, (6.8.106)

2(ct + u cx) + c ux = 0, (6.8.107)

where H = g h(x). For the particular case in which Hx = m = const., the slope of
the bottom is constant.

Adding (6.8.106) and (6.8.107) leads to the equation
[
∂

∂t
+ (u+ c)

∂

∂x

]
(u+ 2c−mt) = 0. (6.8.108)

Similarly, subtracting (6.8.107) from (6.8.106) gives
[
∂

∂t
+ (u− c)

∂

∂x

]
(u− 2c−mt) = 0. (6.8.109)

This system of equations (6.8.108) and (6.8.109) is very similar to that of the
equations for one-dimensional sound waves (6.8.12) and (6.8.13). So, we may follow
the same analysis to investigate this problem. Equations (6.8.106), (6.8.107) state that
the functions (u±2c−mt) are constant on the two sets of characteristics C± : dx

dt =
u ± c, respectively. It may also be observed that the two families of characteristics
C± are really distinct because c =

√
g(η + h) �= 0, since we assume that η > −h,

that is, the free surface never coincides with the bottom.
In particular, for a fluid of constant depth h, Hx = 0, and the quantity m

in (6.8.108) and (6.8.109) is zero. Thus the functions (u ± 2c) are constants on the
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two families of characteristics C± : dx
dt = u ± c. Further, one of the two families

of characteristics C± consists of straight lines along each of which u and c are con-
stant. Consequently, the corresponding motion can be referred to as a simple wave.
As in the case of the initial-value problem for sound waves treated at the beginning
of this Section 6.8, the shallow water wave problem can easily be handled. The only
difference is that, in the present situation, the solution will develop what is called a
bore or hydraulic jump. In other words, the compressive part of the water waves will
always break, that is, the development of a bore or hydraulic jump in water is very
similar to the development of shock waves in gas dynamics.

Example 6.8.4 Nonlinear Wave Equation. We consider the nonlinear wave equation
in the form

utt − c2(ux)uxx = 0, (6.8.110)

where, as indicated, the velocity c depends on the slope of u. We transform this
equation into a system of two equations by introducing ut = v, and ux = w, so that
(6.8.110) reduces to the system of coupled equations

vx − wt = 0, (6.8.111)

vt − c2(w)wx = 0. (6.8.112)

We next rearrange the terms of the second equation to write the system in the matrix
form (

1 0
0 −c2(w)

)(
vx
wx

)
+

(
0 −1
1 0

)(
vt
wt

)
= 0. (6.8.113)

According to (6.8.29), the eigenvalue equation for λ is

|A− λI| =
∣∣∣∣ 1 −λ
λ −c2

∣∣∣∣ = 0. (6.8.114)

So, the eigenvalues λ are
λ = ±c, (6.8.115)

and the corresponding eigenvectors are (c ∓ 1). Consistent with the notation used
before, we obtain two families of characteristics as

C+ : λ =
dx

dt
= c; C− : λ =

dx

dt
= −c. (6.8.116)

We multiply (6.8.111) by c and then add the result with (6.8.112) to obtain

(vt + cvx)− c(wt + cwx) = 0. (6.8.117)

Similarly, we multiply (6.8.111) by c and subtract the result from (6.8.112) to get

(vt − cvx) + c(wt − cwx) = 0. (6.8.118)

We replace ±c by dx
dt in (6.8.117) and (6.8.118) to find
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dv ± c(w) dw = 0 on C±. (6.8.119)

We then write c(w) dw = dF (w) in the last equation, so that

d
[
v ± F (w)

]
= 0 on C±. (6.8.120)

This enables us to introduce Riemann invariants r and s as before by

2r = u+ F (w), 2s = v − F (w). (6.8.121ab)

We can now continue the same mathematical analysis following equations
(6.8.44ab), and so the rest is left to the reader as an exercise.

6.9 The Nonlinear Hyperbolic System and Riemann’s Invariants

One of the simplest nonlinear (or quasi-linear) hyperbolic systems of evolution equa-
tions describing wave propagation has the form

∂U

∂t
+A(U)

∂U

∂x
= 0, (6.9.1)

where

U =

(
u1

u2

)
and A =

(
a11 a12
a21 a22

)
with aij = aij(u1, u2).

In this system, the elements aij of the matrix A depend explicitly on u1 and u2, but
only implicitly on x and t through u1 and u2.

Following the discussion of Section 6.8, the real eigenvalues are the solutions of
the equation

|A− λI| = 0. (6.9.2)

The system will be called strictly hyperbolic if the eigenvalues λ1 and λ2 are real and
distinct. We denote the left eigenvectors L1 and L2 corresponding to the eigenvalues
λ1 and λ2, so that

LiAi = λiLi, i = 1, 2. (6.9.3)

Multiplication of (6.9.1) by Li from the left combined with (6.9.3) gives

Li

(
∂

∂t
+ λi

∂

∂x

)
U = 0, i = 1, 2. (6.9.4)

This shows that the operators ( ∂
∂t +λi

∂
∂x ) represent differentiation along the respec-

tive families of characteristic curves C± defined by

C± :
dx

dt
= λi. (6.9.5ab)
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We represent the differentiation along C+ by d
dξ and along C− by d

dη to transform
(6.9.4) into the form

L1
dU

dξ
= 0 along C+, (6.9.6)

L2
dU

dη
= 0 along C−. (6.9.7)

We write L1 = (L11, L12) and L2 = (L21, L22) to reduce (6.9.6) and (6.9.7) to the
form

L11
du1

dξ
+ L12

du2

dξ
= 0 along C+, (6.9.8)

L21
du1

dη
+ L22

du2

dη
= 0 along C−. (6.9.9)

We note that the eigenvectors L1 and L2 depend on u1 and u2 through the matrix
elements aij = aij(u1, u2) of A. If equations (6.9.8) and (6.9.9) are not exact, they
can always be made exact equations by multiplying by the integrating factor μ. We
next multiply by μ and integrate them to obtain

∫
μL11 du1 +

∫
μL12 du2 = r(η) along C+, (6.9.10)

∫
μL21 du1 +

∫
μL22 du2 = s(ξ) along C−, (6.9.11)

where r and s are arbitrary functions. These functions r(η) and s(ξ) are called Rie-
mann invariants of the hyperbolic system (6.9.1). However, it is not necessarily the
same constant on each C+. In other words, r, in general, will vary on C−. Similarly,
s is constant on each C−, but will usually vary on each C+. In fact, the two families
of characteristics are given by the equations

C+ :
dx

dt
= λ1; C− :

dx

dt
= λ2. (6.9.12ab)

Furthermore, r(η) = const. and s(ξ) = const. are shown in Figure 6.21 in which the
initial data for u1 and u2 are given as follows:

u1(x0, 0) = ũ1(x0), u2(x0, 0) = ũ2(x0), (6.9.13)

u1(x1, 0) = ũ1(x1), u2(x1, 0) = ũ2(x1). (6.9.14)

It can be shown that, in general, a solution can be found everywhere in the
(x, t)-plane at which the solution remains smooth. However, the families of char-
acteristics C± themselves depend on the solution; hence, it is necessary to determine
the solution and the characteristics simultaneously.

An interesting special case exists when one of the Riemann invariants s(ξ) is
identically constant, that is, s(ξ) ≡ s0. In this case, equations (6.9.10) and (6.9.11)
can be integrated to obtain
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Fig. 6.21 Characteristics C±.

f+
1 (u1) + f+

2 (u2) = r(η) along C+ (6.9.15)

and
f−
1 (u1) + f−

2 (u2) = s0 along C−, (6.9.16)

where f+
i (ui) =

∫
μL1i dui and f−

i (ui) =
∫
μL2i dui.

This demonstrates the fact that everywhere along a characteristic C+ specified
by η = η0 = const., u1 and u2 must be constant because they are the solutions of
the nonlinear system of simultaneous equations

f+
1 (u1) + f+

2 (u2) = r(η0), (6.9.17)

f−
1 (u1) + f−

2 (u2) = s0. (6.9.18)

However, solutions of this system may not be unique due to nonlinearity, and this fact
is associated with possible discontinuous solutions as shock waves. This is a typical
feature of nonlinear partial differential equations as explained earlier in various other
problems.

The solutions u1 and u2 are thus constant along the C+ characteristic specified
by setting η = η0. Hence, λ1 = λ1(u1, u2), and it follows that the characteristic must
be a straight line. When one of the Riemann invariants r or s is identically constant,
the corresponding solution is said to form a simple wave. Simple waves represent the
simplest nonconstant solutions of a nonlinear hyperbolic system (6.9.1). The impor-
tant fact that the system contains neither dispersive nor dissipative terms means that
no physical mechanism exists which can prevent the formation of a discontinuous
solution or that can permit the propagation of traveling waves.

Example 6.9.1 Riemann’s Invariants of a Linear Wave Equation. We solve the linear
initial-value problem

φtt − c2φxx = 0, x ∈ R, t > 0, (6.9.19)

with the Cauchy data

φ(x, 0) = f(x), φt(x, 0) = g(x) for x ∈ R. (6.9.20ab)

We can factorize (6.9.19) in the form
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(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
φ = 0. (6.9.21)

Introducing two new functions u(x, t) and v(x, t) defined by

u = φt and v = cφx, (6.9.22ab)

we can combine (6.9.21) with (6.9.22ab) to obtain two first-order equations
(
∂

∂t
− c

∂

∂x

)
(u+ v) = 0, (6.9.23)

(
∂

∂t
+ c

∂

∂x

)
(u− v) = 0. (6.9.24)

These equations imply that the quantities u±v remain constant along two families of
characteristics given by C± : dx

dt = ±c. Further, u+ v and u− v are two Riemann’s
invariants so that

u+ v = const. along a curve C+ such that
dx

dt
= c,

u− v = const. along a curve C− such that
dx

dt
= −c.

In other words,

u+ v = r(η) along C+ : η = x− ct, (6.9.25)

u− v = s(ξ) along C− : ξ = x+ ct, (6.9.26)

where r(η) and s(ξ) are arbitrary functions of η and ξ, respectively, to be deter-
mined from the given initial data u(x, 0) = u0(x) and v(x, 0) = v0(x). Along the
characteristics C+ : x− ct = η and C+ : x+ ct = ξ, we obtain

u+ v = r(η) = u0(η) + v0(η), (6.9.27)

u− v = s(ξ) = u0(ξ)− v0(ξ). (6.9.28)

Solving these equations gives the point of intersection of the lines C+ and C− on the
(x, t)-plane. Clearly, both u and v are functions of ξ and η only, and hence, φ is a
function of ξ and η only, by definition (6.9.22ab). Consequently, we can write

φ(x, t) = Φ(ξ) + Ψ(η) = Φ(x+ ct) + Ψ(x− ct), (6.9.29)

where Φ and Ψ are arbitrary functions to be determined from the given Cauchy data
(6.9.20ab). It turns out that

φ(x, t) =
1

2

[
f(x+ ct) + f(x− ct)

]
+

1

2c

∫ x+ct

x−ct

g(τ) dτ, (6.9.30)

where g(x) = φt(x, 0) = u0(x). This is the well-known d’Alembert solution of the
wave equation. As indicated in Chapter 3, this method of solving the wave equation
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by using the characteristic curves C± is called the method of characteristics. This
method has also been used to solve quasi-linear or nonlinear equations.

The wave equation (6.9.19) with (6.9.22ab) can be expressed in the matrix form

∂U

∂t
+A

∂U

∂x
= 0, (6.9.31)

where

U =

(
u
v

)
and A =

(
0 −c
−c 0

)
.

It has been shown that the values of u and v at the point of intersection of the
two characteristics C+ and C− can be found in terms of their initial values u(x, 0) =
u0(x) and v(x, 0) = v0(x). Furthermore, the phase velocities of the wave dx

dt = ±c
are found to determine the families of characteristics C±. It turns out that these
phase speeds are just the eigenvalues of the matrix A. To prove this, we denote the
eigenvalue by λ and the corresponding right-eigenvector by R so that

AR = λR. (6.9.32)

It follows from this equation that λ = λr = ±c (r = 1, 2) and the corresponding
right-eigenvectors are given by

R+ =

(
1
−1

)
and R− =

(
1
1

)
. (6.9.33)

To investigate the eigenstates represented by R±, we write U± = φR±, where φ =
φ(x, t) is an arbitrary scalar function of x and t. Substituting this in equation (6.9.31)
gives the equation for φ(x, t) in the form

∂φ

∂t
+ λ

∂φ

∂x
= 0. (6.9.34)

Thus, the solutions of (6.9.31) corresponding to the eigenvalues λ = ±c are

U+ = φ+(x− ct)R+ and U− = φ−(x+ ct)R−. (6.9.35ab)

They represent waves propagating to the right and left with constant velocities ±c,
respectively. According to the superposition principle, the general solution of the
linear wave equation is

U(x, t) = U+ + U− = φ+(x− ct)R+ + φ−(x+ ct)R−. (6.9.36)

When the initial condition U(x, 0) = U0(x) at t = 0 is specified, equation (6.9.36)
leads to

φ+(x)R+ + φ−(x)R− = U0(x). (6.9.37)

In principle, this equation can be solved, and hence, φ±(x) can be uniquely de-
termined, since R± are linearly independent. Note that the solution represents the
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superposition of two suitably combined eigenstates of the matrix A involved in the
equation.

To obtain equations (6.9.25) and (6.9.26) involving the Riemann invariants of the
system (6.9.31), we introduce the left eigenvectors L which satisfy the equation

LA = λL (6.9.38)

so that L± = (1,∓1). Multiplying the equation (6.9.31) by L± from the left gives

L±

(
∂

∂t
+ λ±

∂

∂x

)
U± = 0. (6.9.39)

The differential operators in (6.9.39) represent the total derivative along the charac-
teristics C+ : x− ct = ξ and the characteristics C− : x+ ct = η, corresponding to
the eigenvalues λ+ = c and λ− = −c, respectively. Thus, along the characteristics
ξ = x− ct = const. and η = x+ ct = const.,

L±U± = 0. (6.9.40)

Integrating these equations and using the eigenvectors L± = (1,∓1), we obtain the
same equations as (6.9.25) and (6.9.26).

Example 6.9.2 Steady Two-Dimensional Supersonic Fluid Flow. The equations of
motion for two-dimensional, irrotational, isentropic flow are

(
c2 − u2

)
ux − u v(uy + vx) +

(
c2 − v2

)
vy = 0, (6.9.41)

vx − uy = 0, (6.9.42)

where u and v are fluid velocities along the x-axis and y-axis, respectively, and c is
the local sound speed.

In matrix notation, the preceding equations can be expressed in the form

A1Ux +B1Uy = 0, (6.9.43)

where

A1 =

(
0 1

c2 − u2 −uv

)
, B1 =

(
−1 0
−uv c2 − v2

)
, and

U =

(
u
v

)
.

(6.9.44)

Since A−1
1 exists provided c2 − u2 �= 0, we multiply (6.9.43) by A−1

1 from the
left to obtain

Ux +AUy = 0, (6.9.45)

where
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A =

(
− 2uv

c2−u2
c2−v2

c2−u2

−1 0

)
.

The eigenvalues of the problem are the solutions of the equation |A−λI| = 0, which
has the explicit form ∣∣∣∣∣

− 2uv
c2−u2

c2−v2

c2−u2

−1 −λ

∣∣∣∣∣ = 0,

that is,

λ2 +
2uv

c2 − u2
λ+

c2 − v2

c2 − u2
= 0, (6.9.46)

which gives two roots

λ1,2 =
1

(c2 − u2)

[
−uv ± c

√
u2 + v2 − c2

]
. (6.9.47)

Clearly, the roots are real provided that q2 = u2 + v2 > c2, and hence, the equations
(6.9.41) and (6.9.42) are hyperbolic. The local Mach number is defined by M = q/c
which is greater than unity ensuring that the flow is supersonic. In supersonic flow,
the characteristics in the (x, y)-plane are defined by the equations

dy

dx
= λr, r = 1, 2. (6.9.48)

These characteristics are called the Mach lines and can be determined provided the
matrix A−1

1 is nonsingular. This simply means that |A1| �= 0 or c2 − u2 �= 0. If this
matrix is singular, then u = c, that is, the x-component of the fluid velocity is equal
to the local sound speed.

The left eigenvalues corresponding to the eigenvalues λ1,2 given by (6.9.47) are

L1 = (1, λ2) and L2 = (1, λ1). (6.9.49ab)

It follows from equations (6.9.8), (6.9.9) that the characteristics in the (u, v)-
plane are given by

Γ+ :
∂u

∂ξ
+ λ2

∂v

∂ξ
= 0; (6.9.50a)

Γ− :
∂u

∂η
+ λ1

∂v

∂η
= 0, (6.9.50b)

where ξ and η are parameters. In terms of these parameters, equation (6.9.48) can be
written as

C+ :
∂y

∂ξ
− λ1

∂x

∂ξ
= 0; (6.9.51a)

C− :
∂y

∂η
− λ2

∂x

∂η
= 0. (6.9.51b)
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Combining (6.9.50a) and (6.9.51a) or (6.9.50b) and (6.9.51b) gives

du

dv
= −dy

dx
, (6.9.52)

or equivalently,
dy

dx
· dv
du

= −1. (6.9.53)

This is the condition of orthogonality of two curves in the (x, y)-plane and (u, v)-
plane when they are represented in the same coordinate plane. More precisely, C−
and Γ+ characteristics and C+ and Γ− characteristics are mutually orthogonal.

The system of equation (6.9.1) or (6.9.45) is called reducible provided the ele-
ments of the coefficient matrix A depend explicitly only on the elements of U . The
name originates from the fact that the system can be reduced to a linear system in the
new independent variables u and v by interchanging the dependent and independent
variables. Such a transformation exists provided the Jacobian J = ux vy − uy vx is
nonzero. Thus it turns out that

∂u

∂x
= J

∂y

∂v
,

∂v

∂y
= J

∂x

∂u
,

∂v

∂x
= −J ∂y

∂u
,

∂u

∂y
= −J ∂x

∂v
. (6.9.54)

This transformation is called the hodograph transformation. For more details, the
reader is referred to Courant and Friedrichs (1948).

Example 6.9.3 Equations for the Current and Potential in a Transmission Line. We
recall the equations for the current I(x, t) and potential V (x, t) from Problem 29 in
1.15 Exercise as

It + Vx +RI = 0,

CVt + Ix +GV = 0,
(6.9.55)

In matrix notation, these become

A1Ut +A2Ux +A3U = 0, (6.9.56)

where

U =

(
I
V

)
, A1 =

(
L 0
0 C

)
, A2 =

(
0 1
1 0

)
, A3 =

(
R 0
0 G

)
.

We multiply the equation (6.9.56) by A−1
1 to obtain

Ut +AUx +BU = 0, (6.9.57)

where

A =

(
0 1

L
1
C 0

)
and B =

(
R
L 0

0 G
C

)
.

The eigenvalue equation |A − λI| = 0 gives two eigenvalues λ1,2 = ±c, where
c = (LC)−

1
2 . Clearly, the velocities of the two waves are
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C+ :
dx

dt
= λ1 = c, C− :

dx

dt
= λ2 = −c. (6.9.58ab)

The left eigenvectors L1,2 corresponding to the eigenvalues λ1,2 are given by

L1 = (cL, 1) and L2 = (cL,−1). (6.9.59ab)

For a lossless transmission line, R = G = 0, equation (6.9.57) becomes the classical
wave equation, and the Riemann invariants become

cI + V = r(η) along C+, (6.9.60a)

cI − V = s(ξ) along C−. (6.9.60b)

However, in general, R and G are nonzero quantities, and the equations correspond-
ing to (6.9.8), (6.9.9), which are obtained by multiplying (6.9.57) by L1 and L2,
are

(cL)Iξ + Vξ = −
(
RcI +

G

C
V

)
along C+, (6.9.61a)

(cL)Iη − Vη = −
(
RcI − G

C
V

)
along C−. (6.9.61b)

In general, these equations are not integrable, but they can be integrated in some spe-
cial cases. For the Heaviside distortionless cable, R

L = G
C = const. = k, equations

(6.9.61a), (6.9.61b) become

∂

∂ξ
(cLI + V ) = −R

L
(cLI + V ) along C+, (6.9.62a)

∂

∂η
(cLI − V ) = −R

L
(cLI − V ) along C−. (6.9.62b)

These equations can be integrated to obtain

cLI + V = A(η) exp

(
−R

L
ξ

)
along C+, (6.9.63a)

cLI − V = B(ξ) exp

(
−R

L
η

)
along C−. (6.9.63b)

Adding and subtracting leads to the results

I =
1

2cL

[
A(η) exp

(
−R

L
ξ

)
+B(ξ) exp

(
−R

L
η

)]
, (6.9.64)

V =
1

2

[
A(η) exp

(
−R

L
ξ

)
−B(ξ) exp

(
−R

L
η

)]
. (6.9.65)

We can identify the equations for the characteristics as ξ = x + ct and η = x −
ct, and these results can be used to reorganize the exponential factors in (6.9.64)
and (6.9.65), so that the final form of the solutions becomes
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I =
1

2cL
exp

(
−2R

L
x

)[
f(x− ct) + g(x+ ct)

]
, (6.9.66)

V =
1

2
exp

(
−2R

L
x

)[
f(x− ct)− g(x+ ct)

]
, (6.9.67)

where f and g are arbitrary functions of their arguments.
Evidently, the current and the potential represent the waveforms f +g and f −g,

respectively, which propagate along the Heaviside transmission line without change
of shape except for the attentuation factor exp(−2R

L x). However, if the condition
R
L = G

C is not satisfied, the original shape of the waveform would suffer from distor-
tion.

We close this section by adding the following comment. For the case of a ho-
mogeneous system (6.9.1) with analytic initial data, in general, a smooth solution
is possible for a finite time. However, the problem for the case of inhomogeneous
system (6.9.57) is more complicated. In general, a smooth solution of (6.9.57) does
not exist for all time. Lax (1954a, 1954b) proved the existence of solutions for a
short time and generalized the result to allow for Lipschitz continuous initial condi-
tions which arise frequently in many physical problems, including the case of a wave
propagating into a constant state.

6.10 Generalized Simple Waves and Generalized Riemann’s
Invariants

The preceding analysis for a two-element vector U can be extended to a hyperbolic
system of the general form

∂U

∂t
+A

∂U

∂x
= 0, (6.10.1)

where U is an n× 1 column vector with elements u1, u2, . . . , un, and A is an n× n
matrix with elements aij = aij(u1, u2, . . . , un) which depends on the elements of
U , and on x and t.

As a generalization of a simple wave, we take a solution U of (6.10.1) that de-
pends on only one of the elements u1, so that U = U(u1). Substituting this solution
in (6.10.1) yields (

∂u1

∂t
I +

∂u1

∂x
A

)(
dU

du1

)
= 0. (6.10.2)

This homogeneous algebraic system for the n elements of ( dU
du1

) can have only a
nontrivial solution provided that the determinant equation

|A− λI| = 0 (6.10.3)

holds, where λ = −(∂u1

∂t )/(
∂u1

∂x ). The n solutions λr (r = 1, 2, 3, . . . , n) of (6.10.3)
are simply the eigenvalues of A. We denote the right eigenvectors of A by Rr, corre-
sponding to the eigenvalues λr. If the system (6.10.1) is totally hyperbolic, then all
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the eigenvalues λr are real and distinct, and there are n linearly independent eigen-
values Rr. Hence, the family of characteristics Cr is given by

Cr :
dx

dt
= λr = −

(
∂u1

∂t

)/(
∂u1

∂x

)
, r = 1, 2, . . . , n. (6.10.4)

Or equivalently,
∂u1

∂t
dt+

∂u1

∂x
dx = 0 along each Cr,

so that du1 = 0, and hence,

u1(x, t) = const. along each Cr. (6.10.5)

Since λr = λr(u1), it follows that each member of the n families of characteris-
tics represents straight lines along which U = const. On the other hand, if (6.10.4)
is written in the form

∂u1

∂t
+ λr(u1)

∂u1

∂x
= 0, (6.10.6)

it follows that u1 is the solution of the nonlinear equation (6.10.6), and this solution
and hence U = U(u1) may or may not evolve as a discontinuous solution at a point
depending on the initial data and on the form of λr(u1).

In a linear problem in which the matrix A is independent of U , λ and R become
specific functions of x and t, and there are n wave modes whose phase velocities are
given by the eigenvalues λ1, λ2, . . . , λn. In particular, if A is a constant matrix, the
linear superposition principle enables us to obtain the general solution in terms of an
arbitrary set of functions φr(x− λrt) in the form

U(x, t) =

n∑
r=1

φr(x− λrt)Rr, (6.10.7)

where φr can be uniquely determined from the initial condition U(x, 0) = f(x) for
all x.

If we now set r = k and consider the kth generalized simple wave, equa-
tion (6.10.2) must be proportional to the corresponding kth right-eigenvector of A
with elements R(k)

1 , R
(k)
2 , . . . , R

(k)
n so that

du1

R
(k)
1

=
du2

R
(k)
2

= · · · = dun

R
(k)
n

. (6.10.8)

These equations represent a set of n first-order, ordinary differential equations which
determines the nature of the solution U across what is called the generalized λk-
simple wave. Integrating (6.10.8) gives (n − 1) linearly independent relations be-
tween the n elements of U . These (n − 1) invariant relations along members of the
kth family of characteristics Ck are called the generalized λ(k)-Riemann invariants
and are denoted by

J(k)(U) = const. for r = 1, 2, . . . , (n− 1). (6.10.9)
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These relations hold throughout the generalized λk-simple wave, and they can be
used to determine the nature of the solution provided it remains differentiable.

Each generalized λ(k)-Riemann invariant defines a manifold in the (u1, u2,

. . . , un)-space on the mth of which λm
(k) must satisfy the condition d J

(i)
(k) = 0,

which can be expressed as

∂J
(i)
(k)

∂u1
du1 +

∂J
(i)
(k)

∂u2
du2 + · · ·+

∂J
(i)
(k)

∂un
dun = 0. (6.10.10)

We consider the generalized λk-simple waves with a parameter ξ to rewrite (6.10.8)
as

du1

R
(k)
1

=
du2

R
(k)
2

= · · · = dun

R
(k)
n

= dξ. (6.10.11)

These lead to the results

dui

dξ
= R

(k)
i for i = 1, 2, . . . , n. (6.10.12)

Substituting these results into (6.10.9) gives an equivalent condition
(
∇uJ

i
(k)

)
R(k) = 0, (6.10.13)

where i = 1, 2, . . . , (n− 1) and ∇u represents the gradient operator with respect to
u1, u2, . . . , un. It is noted here that Lax (1957, 1973) utilized condition (6.10.13),
which requires the mutual orthogonality of ∇uJ

i
(k) and R(k), first to introduce the

idea of generalized λ(k)-simple waves.
In the rest of this section, we follow Jeffrey (1976) to discuss briefly the quasi-

linear hyperbolic system of equations with spatial derivative in the form of a one-
dimensional divergence

∂F (U)

∂t
+

∂G(U)

∂x
= H(U), (6.10.14)

where U is an n× 1 column vector with elements u1, u2, . . . , un, and F , G, and H
are n× 1 column vectors whose elements are functions of u1, u2, . . . , un. If the rth
element of G(U) is gr(u1, u2, . . . , un), the system of equations (6.10.14) is hyper-
bolic if the eigenvalues of the matrix

A =

⎡
⎢⎢⎢⎢⎣

∂g1
∂u1

∂g1
∂u2

. . . ∂g1
∂un

∂g2
∂u1

∂g2
∂u2

. . . ∂g2
∂un

...
...

. . .
...

∂gn
∂u1

∂gn
∂u2

. . . ∂gn
∂un

⎤
⎥⎥⎥⎥⎦ (6.10.15)

are real, and it has a complete set of linearly independent eigenvectors.
According to the general theory of Riemann simple waves and the development

of shocks, it can be shown that the system (6.10.14) has a discontinuous solution
provided that the generalized Rankine–Hugoniot shock condition
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λ̃[F ] = [G], (6.10.16)

is satisfied, where [X] denotes the discontinuous jump in the quantity X with λ̃ as
the velocity of propagation. Clearly, (6.10.16) is a nonlinear system of n algebraic
equations relating λ̃, the n elements of U− on the one side of the jump discontinu-
ity, and the n elements U+ on the other side. Due to nonlinearity, a solution of this
system may not be unique. In order to establish a unique solution of physical in-
terest from the set of mathematically possible solutions, Lax (1957) generalized the
selection principle for shock waves, which states that if the kth characteristic field
is genuinely nonlinear, a discontinuous jump solution is admissible only if the Lax
entropy criterion

λ(k)(U−) > λ̃ > λ(k)(U+) (6.10.17)

is satisfied. Physically, this is equivalent to the requirement that entropy cannot de-
crease. In fluid dynamics, this corresponds to the fact that a shock is associated with
a flow which is supersonic at the front of the shock and subsonic at the rear. This
leads to the physical fact that a hydrodynamical shock is a compressive wave, and
it also implies an irreversible condition of the system. It has already been indicated
that, in gas dynamics, this criterion is equivalent to the second law of thermodynam-
ics which states that the entropy cannot decrease. Another important fact is that, only
in very special cases, λ̃ is equal to an eigenvalue of the matrix A, and then the jump
discontinuous solution is referred to as a characteristic shock.

In conclusion, we recall the generalization of a classical solution (see Chapter 5,
Section 5.4) to a weak solution to resolve the difficulty involved in the breakdown of
differentiability in quasi-linear hyperbolic systems. In the simplest physical problem
described by the nonlinear scalar equation

∂u

∂t
+

∂

∂x

[
f(u)

]
= 0, (6.10.18)

the function u = u(x, t) is called the weak solution if, for t > 0,

∫ ∞

0

∫ ∞

−∞

[
uφt + f(u)φx

]
dx dt = 0 (6.10.19)

for every test function φ(x, t) ∈ C2 which vanishes outside some finite region of the
half plane t > 0. It has already been shown in Chapter 5, Section 5.4 that both dis-
continuous classical and weak solutions satisfy the generalized Rankine–Hugoniot
condition, and a piecewise C1 weak solution is also a piecewise C1 classical solu-
tion. However, a weak solution is not uniquely determined by the initial data. So,
the Lax entropy criterion is used to ascertain a unique and physically realistic solu-
tion. It is important to point out that weak solutions suffer from a major weakness
that a variable change in the original conservation equation leads to different weak
solutions. For more information about weak solutions and shock waves, we refer to
Smoller (1994) and Le Veque (1990).
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6.11 The Lorenz System of Nonlinear Differential Equations and
Deterministic Chaos

In an effort to make an accurate prediction of complicated weather forecasting on
Earth, Edward N. Lorenz (1917–) published a seminal paper (1963a, 1963b, 1963c)
and discovered a system of three nonlinear ordinary differential equations for the
three state variables (x(t), y(t), z(t)) that can exhibit chaotic behavior. Historically,
the Lorenz system is one of the earliest examples of chaos realized on an electronic
computer. The following are the dynamical equations of the Lorenz system

dx

dt
= σ(y − x),

dy

dt
= rx− (y + xz),

dz

dt
= xy − bz, (6.11.1)

where σ, r, and b are parameters. The right-hand sides of these equations do not
include time t, and the time derivatives on the left-hand sides are determined solely
by the state (x, y, z). Integrating the above system (6.11.1) numerically, the trajec-
tory (x(t), y(t), z(t)) of state can be determined. A set of point in the phase space
(x, y, z) where a family of trajectories for a set of initial conditions accumulates
asymptotically as t → ∞ is known as the Lorenz attractor.

Obviously, ẋ, ẏ, ż can be considered as three components of a velocity vector u
defined at the point x = (x, y, z) so that we can regard this as a dynamical system
like a fluid motion with velocity field u(x). One of the important features of such a
motion in the phase space is that the phase volume consisting of points moving with
velocity u = (ẋ, ẏ, ż) decreases steadily because the divergence of the velocity field
is negative, that is,

divu =
∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
= −(σ + 1 + b) < 0. (6.11.2)

This means that the phase volume of an attractor where the trajectories are approach-
ing decreases indefinitely. This does not necessarily imply that the attractor is made
of discrete points, but means only that the dimension of the attractor is less than
three. Thus, the dimension of the attractor becomes non-integral or fractal.

Lorenz made a serious attempt to solve an initial value problem of the system
(6.11.1) with σ = 10, r = 28, b = 8

3 , and the initial data (x(0), y(0), z(0)) =
(0, 1, 0). His numerical experiments show that the Lorenz system (6.11.1) captured a
certain new but intrinsic chaotic nature of the weather phenomena, and the long-term
weather prediction is almost impossible. It also revealed that a very small change in
initial conditions leads to a significantly large change in the solution. It is now a
well known fact that the temporal behavior of the Lorenz system is stochastic in a
true sense. In fact, its short time behavior is deterministic, but its long time evolution
is stochastic. This phenomenon is known as the deterministic chaos. Indeed, many
nonlinear dynamical systems have property similar to that of the Lorenz attractor.
Included is Figure 6.22 for a Lorenz attractor which is a representative example of
the strange attractor in nonlinear dynamics.

In stability analysis, steady state plays a fundamental role because the decay
or growth of perturbations of a steady state is usually investigated for a dynamical
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Fig. 6.22 A numerically computed solution of the Lorenz equations with a plot of z against x
with r = 28, (x(0), y(0), z(0) = (5, 5, 5)).

system. A steady state corresponds to a fixed point of a dynamical system. In case
of the Lorenz system (6.11.1), a fixed point is obtained from (ẋ, ẏ, ż) = (0, 0, 0).
Thus, it follows from system of equations (6.11.1) that x = y, rx − (y + xz) = 0,
xy − bz = 0. For r < 1, there is only one fixed point which is the origin
O : (x, y, z) = (0, 0, 0). The origin O corresponds to the static state. This is in full
agreement with the analysis of thermal convection problem in fluid dynamics where
we consider a bifurcation problem from the static state to a thermal convection-cell
state. However, for r > 1, it can be shown that there exist three fixed points: the
origin O and two points given by C1(q, q, r − 1) and C2(−q,−q, r − 1) where
q =

√
b(r − 1), and C1 and C2 are located at points of mirror symmetry with re-

spect to the vertical plane x+ y = 0.
When r > rc (rc > 1), all three fixed points are unstable, that is, there are

no stable fixed points to which the trajectory can approach. This is really a strange
phenomenon.

In order to study the stability of the origin O, we first linearize the Lorenz system
for points in the neighborhood of O so that

dx′

dt
= σ(y′ − x′),

dy′

dt
= rx′ − y′,

dz′

dt
= −bz′, (6.11.3)

where x′, y′, z′ are small perturbations to the fixed point (0, 0, 0), which are repre-
sented as (x′, y′, z′) = (x0, y0, z0)e

λt, where λ is the growth rate. Substituting these
perturbations in (6.11.3) leads to a system of linear algebraic equations in the matrix
form for the amplitude (x0, y0, z0):⎛

⎝λ+ σ −σ 0
−r λ+ 1 0
0 0 λ+ b

⎞
⎠
⎛
⎝x0
y0
z0

⎞
⎠ = 0. (6.11.4)
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For a nontrivial solution of (x0, y0, z0), the determinant of the coefficient matrix
must vanish. Thus, it gives the eigenvalue equation for the growth rate λ, that is,
∣∣∣∣∣∣
λ+ σ −σ 0
−r λ+ 1 0
0 0 λ+ b

∣∣∣∣∣∣ = (λ+ b)
[
λ2 +(σ+1)λ+σ(1− r)

]
= 0. (6.11.5)

Consequently, the eigenvalues are given by

λ = −b, λ± =
1

2

[
−(σ + 1)±

√
(σ + 1)2 + 4σ(r − 1)

]
. (6.11.6)

For positive σ and b, we draw the following conclusions:
For 0 < r ≤ 1, all three eigenvalues are real and non-positive. Hence, the fixed

(or equilibrium) point O is stable. For r > 1, two eigenvalues are real and negative,
but one eigenvalue is real and positive. Thus, O is unstable, in general.

When r = 1, it is a transition (or bifurcation) point. The fixed point O serves as
the transition point from stability to instability, and at the same transition point, new
equilibrium points begin to appear. These results are both qualitatively and quantita-
tively in agreement with the linear stability analysis of the Rayleigh–Benard convec-
tion problem in fluid mechanics.

It has been shown that the situation r > rH = 27.74 is quite complicated. It can
be shown that there exists a stable periodic orbit when r is very large. We introduce
a small parameter ε = 1√

r
and time scale t = εt′. We next substitute

x =
x′

ε
, y =

(
1

ε2σ

)
y′, z =

1

ε2

(
z′

σ
+ 1

)
, (6.11.7)

in the Lorenz system (6.11.1) so that it becomes, dropping the primes,

dx

dt
= y − εσx,

dy

dt
= −(xz + εy),

dz

dt
= xy − εb(z + σ). (6.11.8)

In the limit as r → ∞, ε → 0 so that (6.11.8) reduces to

dx

dt
= y,

dy

dt
= −xz, dz

dt
= xy. (6.11.9)

Consequently,
dx

y
=

dy

−xz =
dz

xy
= dt (6.11.10)

lead to two integrals representing a periodic orbit in the form

x2 − 2z = 2A, y2 + z2 = B2, (6.11.11)

where A and B are constants. Thus, the trajectories lie on the cylinder y2+ z2 = B2

and, in general, it is a closed orbit. It can be shown based on perturbation expansion
for small ε that there exists a stable periodic orbit when (σ+1) > (b+1). The orbit
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winds once around the z-axis for large r, this is the only orbit which persists for
all r. In the case of the Lorenz system for σ = 10 and b = 8

3 , the above condition
(σ + 1) > (b+ 1) is satisfied.

Numerical computations reveal that as r decreases, period-doubling bifurcation
will begin to occur at r = 313. Successive stages of period-doubling bifurcations will
occur as r decreases and reaches the value 214.364. At each period-doubling bifurca-
tion, the original periodic orbit becomes unstable, and new stable orbits which wind
twice as much as the original will appear. For such phenomena of period-doubling,
if rn represents the value of r at the nth bifurcation, then, in the limit as n → ∞, the
celebrated Feigenbaum constant, F , appears. More precisely,

F = lim
n→∞

(
rn−1 − rn
rn − rn+1

)
= 4.6692016609 . . . . (6.11.12)

This is known as a universal (probably transcendental) constant which often arises
in many problems in nonlinear dynamics.

In the numerical experiment of the Lorenz system with σ = 10, r = 28, and
b = 8

3 , two orbits beginning from two neighboring points near Lorenz attractor lose
their correlation after some time. Such a property of sensitive dependence on ini-
tial conditions is a characteristic feature of chaotic orbits. After some time, both
orbits trace a path on the same attractor without mutual correlation. The Lyapunov
dimension (or fractal dimension), DL, of the Lorenz attractor for the above param-
eter values is found as 2.00 < DL < 2.401. In view of the fractal dimension, the
Lorenz attractor is called a strange attractor. Historically, chaos is the revelation of
the Lorenz (strange) attractor. Chaotic flow is irregular and appears to be random in
nature, but it is deterministic. In fact, the deterministic chaos arises in many differ-
ent nonlinear physical systems. Chaos may represent a state leading to turbulence.
From a modern view point, turbulence is regarded as a highly irregular fluctuating
flow field which develops autonomously by a nonlinear mechanism of field dynam-
ics. This change in view of turbulence is mainly due to the recent development of the
theory of chaos. From 1960s, numerical experiments have confirmed the existence
of phenomena such as chaos, intermittency and period-doubling process.

As far as the Lorenz nonlinear system of equations is concerned, it represents at
best a mathematical model for the Rayleigh–Benard convection flow problem when
the Reynolds number R is only sufficiently large compared to the critical value Rc.

On the other hand, it follows from the numerical studies of the Lorenz system
of equations that a geometric model can be constructed, which can be defined by a
nonlinear map on an interval. If we follow a trajectory given by the Lorenz equations
and consider the plane z = r − 1, the trajectory will cross from the side z > r − 1
to the other side at various points on z = r − 1. The successive points on the plane
section z = r − 1 define a return map which is known as the Poincaré return map.
This shows that there is an interesting relationship between the Lorenz system of
differential equations and the nonlinear map on an interval as can be illustrated by
the famous logistic map. The logistic map is defined by the following recurrence
relation for an integer n:
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xn+1 = λf(xn) = λxn(1− xn), (6.11.13)

where xn ∈ [0, 1] and λ ∈ (0, 4]. It is to be noted that the logistic map illustrates gen-
eral features of nonlinear maps. This map is one of the simple models for the growth
of the population of a single species. With an initial population x0, equation (6.11.13)
represents a measure of the population in subsequent generations. The state xn = 0
gives the complete absence of the species, and when xn � 1, xn+1 ∼ λxn so that
the generation grows by a factor of λ. If xn is not small, the term (1−xn) is not close
to one and the full nonlinear equation (6.11.13) determines the size of the next gener-
ation. If x0 ∈ [0, 1], then 0 ≤ xn ≤ 1 for n ≥ 0. Thus, the interval [0, 1] is the phys-
ically meaningful range of the map. The fixed points of (6.11.13) satisfy xn+1 = xn
so that xn = λxn(1 − xn). So, it has two fixed points at x = 0 and x = (λ−1

λ ).
We next determine whether there are any solutions of period 2 (or 2-cycles) so that
they satisfy xn+1 = λxn(1 − xn) and xn+2 = xn = λxn+1(1 − xn+1). Thus, the
elimination of xn+1 leads to the equation for xn,

xn

(
xn − λ− 1

λ

)[
λ2x2n − λ(1 + λ)xn + (1 + λ)

]
= 0. (6.11.14)

This equation must have two fixed points. The discriminant of the quadratic factor
in (6.11.14) is λ2(λ + 1)(λ − 3) which is positive for λ > 3. So, there are fixed
points of period 2 (or 2-cycle) for λ > 3. In fact, it can be shown that the nontrivial
fixed point is stable for λ < 3, but loses stability in a bifurcation at λ = 3, where
the points of period 2 emerge and are stable. As λ increases, the points of period
2 eventually lose stability, and a stable of 4-cycle emerges. This process is known
as period-doubling, and as λ increases, it eventually leads to chaotic solutions. This
phenomenon of period-doubling has become famous in recent years. It is possible
to find the successive values λ1, λ2, λ3, . . . of the growth rate parameter at which
a bifurcation or qualitative change in the iteration xn+1 = λxn(1 − xn) occurs as
the value of λ increased further. These are the discrete values of λ at which any
sufficiently small increase in λ doubles the period of the iteration. This also leads to
a certain order underlying this period-doubling process toward chaos with the same
Feigenbaum constant F in (6.11.12).

This map takes its name from the corresponding differential equation

dx

dt
= μx(1− x), μ > 0. (6.11.15)

This equation was originally suggested by Pierre-Francois Verhulst (1804–1849) in
the study of population dynamics. It is worth noting that there are two equilibrium
(or fixed) points of (6.11.15), one at x = 0 which is unstable, and another at x = 1
which is stable. However, the behavior of (6.11.13) which is the difference equation
version of differential equation (6.11.15) is quite different.

6.12 Exercises

1. If h(x, t) is the depth of the water level above impermeable rock and if the
horizontal seepage velocity u and the slope of the water level satisfy the Darcy
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law, u = −κhx, where κ is a constant, show that the mass conservation equation
is given by

ht = κh2
x + κhhxx.

2. In Example 6.3.2, the discontinuous initial data can be approximated by contin-
uous data in the form

ρ(x, 0) = f(x) =

⎧⎪⎨
⎪⎩

200 if x < −ε,
100(1− x

ε ) if − ε < x < ε,

0 if x > ε.

Find the solution for ρ(x, t) = f(ξ), with the value of x in terms of ξ and t.
Express the solution ρ in the terms of x and t, and draw the graph of ρ(x, 0).

3. (a) Solve the traffic flow equation (6.3.4) with the flow q(ρ) = 3
10 (200 − ρ)ρ,

and with data representing a triangular hump whose center is at the origin given
by

ρ(x, 0) = f(x) =

{
25(3− |x|), if |x| ≤ 1,

50 if |x| > 1.

(b) Examine the time evolution of the density profile at three different times
t = 1

15 (1− ε), 1
15 , and 1

15 (1 + ε), for 0 < ε < 1. Show that the solution breaks
down for t = 1

15 . Draw the graph of the solution ρ(x, 1
15 ).

4. Show that any solution of the traffic flow equation

ρt + c0ρx = aρ,

where c0 and a are constants, has the form ρ(x, t) = exp(at)f(x− c0t).
5. Find the solution of the traffic flow model

ρt + c(ρ)ρx = 0,

where c(ρ) = 60− 3
5ρ, with initial data

ρ(x, 0) =

{
150{1 + 1

5 (1− |x|)} if |x| ≤ 1,

150 if |x| > 1

6. Obtain the solution of the traffic flow equation

ρt + c(ρ)ρx = 0, ρ(x, 0) = 50H(−x),

where c(ρ) = 60 + 3
5ρ.

7. For a traffic flow model with flow q = Aρ(ρm − ρ)− κρx, where A, ρm, and κ
are constants, show that the traffic density satisfies the equation

ρt +A
[
ρ(ρm − ρ)

]
x
= κρxx.

Using the nondimensional variables
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x∗ = �−1x, t∗ =

(
�

Aρm

)−1

t, and u =

(
1

2
ρm

)−1(
1

2
ρm − ρ

)
,

where � is a characteristic length scale associated with the initial data, show that
the Burgers equation, dropping the asterisks, is given by

ut + uux = vuxx,

where v = ( κ
Aρm

)/� is the dimensionless parameter which is the ratio of the
diffusion length and the characteristic length �.

8. For a traffic flow model with the quadratic flow q(ρ)in the region 0 < ρ < ρm
and zero otherwise, that is,

q

qm
=

ρ

ρm

(
1− ρ

ρm

)
, 0 < ρ < ρm,

where ρm is the maximum traffic density, show that ρ(x, t) satisfies the equation

ρt + c(ρ)ρx = 0,

where c(ρ) = um(1− 2ρ
ρm

) and um = qm
ρm

.
9. The concentration C(x, t) of a cloud of uniform sedimenting particles in a vis-

cous fluid satisfies the equation (Kynch 1952)

∂C

∂t
+ v0

∂

∂x

[
C(1− αC)

]
= 0,

where v0 and α are constants. If the bottom at x = 0 is impermeable and the
initial concentration is C0 for all x < 0, where C0 is a constant, discuss the
changes of C(x, t) for all x < 0 and t > 0.

10. Apply the method of characteristics to solve the system of equations

∂u

∂t
+

∂v

∂x
= 0,

∂v

∂t
+

∂u

∂x
= 0

with the initial data

u(x, 0) = ex and v(x, 0) = e−x.

Show that the Riemann invariants are 2r(ξ) = 2 cosh ξ and 2s(η) = 2 sinh η.
Hence, show that the solutions are

(u, v) = cosh(x− t)± sinh(x+ t).

11. The shallow water equations are

ut + uux + ghx = 0,

ht + uhx + hux = 0,
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where u = u(x, t) is the fluid velocity and h = h(x, t) is the height of the free
surface above the horizontal bottom. If u = u(h), show that

∂u

∂h
= ±

√
g

h
, u = ±2(c− c0),

where c =
√
gh, c0 =

√
gh0, and h0 is the equilibrium value of h. Find the

Riemann invariants of this system.
12. For one-dimensional anisentropic flow, the Euler equations of motion are

pt + upx + c2ρux = 0,

ut + uux +
1

ρ
px = 0,

St + uSx = 0,

where p = f(ρ, S), u is the velocity, ρ is the density, p is the pressure, and S is
the entropy. Show that this system has three families of characteristics given by

C0 :
dx

dt
= u, C+ :

dx

dt
= u+ c, and C− :

dx

dt
= u− c,

where c2 = (∂p∂ρ )x = const.
13. Show that the second-order equation

aφtt + 2bφxt + cφxx = 0,

where a, b, c are real functions of φx and φt, can be reduced to the system in the

matrix form (6.9.31) where A =
( 2b

a
c
a

−1 0

)
.

Show that eigenvalues λ are the roots of the quadratic equation a λ2 − 2bλ +
c = 0. Hence, show that the left eigenvectors are

L1,2 = (1, λ2,1),

where the indices 1 and 2 in L correspond to the indices 2 and 1 in λ, respec-
tively.

14. If a, b, and c are constants and a2 = 4b, then the linear telegraph equation

utt − c2uxx + aut + bu = 0

can be factorized into two first-order equations. Discuss the characteristics of the
two first-order equations.

15. An observer at a position x = x(t) moves with the traffic. Show that the rate of
the change of the traffic density measured by the observer is given by

dρ

dt
=

(
u− dq

dρ

)
∂ρ

∂x
,

where u is the velocity of the car.
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16. Show that equations (6.8.106) and (6.8.107) can be written as

Ut +AUx = B,

where

U =

(
u
c

)
, A =

(
u 2c
c
2 u

)
, and B =

(
Hx

0

)
.

Show that the eigenvalues are λ1,2 = u± c and the corresponding left eigenvec-
tors are L1 = (1, 2) and L2 = (1,−2). Derive the equations for the directional
derivatives of (u± 2c) along the C± characteristics. Hence, find these equations
when Hx = gh = const. = m.

17. Show that the nonlinear wave equation

c2(φx)φxx − φtt = 0,

where c is an even function of φx, can be written as

Ut +AUx = 0,

where

U =

(
u
v

)
=

(
φx

φt

)
, A =

(
0 −1

−c2 0

)
, and c = c(u).

Hence, show that the eigenvalues λ1,2 and the corresponding left eigenvectors
L1,2 are given by

λ1,2 = ∓c and L1,2 = (c,±1).

Show that the Riemann invariants are r(η) and s(ξ) given by m(u) + v = r(η)
along dx

dt = −c, and m(u) − v = s(ξ) along dx
dt = +c, where m(u) is defined

by m(u) =
∫
c(u) du.

18. Express (Jeffrey and Taniuti 1964) equations (6.8.16) and (6.8.17) in the matrix
form

Ut +AUx = 0,

where U and A are given by (6.8.19). Show that the eigenvalues λ1,2 and the
corresponding left eigenvectors are given by λ1,2 = u ± c and L1,2 = ( cρ ,±1).
Hence, show that

u+m(ρ) = r(η) along C+ :
dx

dt
= u+ c,

u−m(ρ) = −s(ξ) along C− :
dx

dt
= u− c,

where m(ρ) is defined by

m(ρ) =

∫
c(ρ)

ρ
dρ.

Discuss the simple wave solution and discontinuity at the cusp of the envelope
of characteristics.
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19. Using Example 6.8.3 in a fluid of constant depth (Hx = 0), show that the Rie-
mann invariants r and s are

u+ 2c = r(η) along characteristics C+ :
dx

dt
= u+ c,

u− 2c = s(ξ) along characteristics C− :
dx

dt
= u− c.

Hence, derive

u =
1

2
(r + s), c =

1

4
(r − s),

dx

dξ
= (u+ c)

dt

dξ
,

dx

dη
= (u− c)

dt

dη
,

C+ :
∂x

∂s
=

1

4
(3r + s)

∂t

∂s
and C− :

∂x

∂r
=

1

4
(r + 3s)

∂t

∂r
.

Use the last two results to obtain the Euler–Poisson–Darboux equation for t(r, s)
in the form

2(r − s)trs + 3(ts − tr) = 0.

20. Use Exercise 16 to show that equations (6.8.106) and (6.8.107) can be written in
the conservation form

∂

∂t

(
u
c2

)
+

∂

∂x

(
1
2u

2 + c2 −H(x)
u c2

)
= 0.

21. Show that the Tricomi equation

uxx + xuyy = 0

has the matrix form
Ux +AUy = 0,

where

u =

(
v
w

)
and A =

(
0 x
−1 0

)
.

Solve the eigenvalue equation |A − λI| = 0 to show that the Tricomi equation
is hyperbolic, parabolic, or elliptic accordingly as x < 0, x = 0, or x > 0.

22. The equations of motion for the unsteady isentropic compressible fluid flows are

∂ρ

∂t
+ div(ρu) = 0

and
∂u

∂t
+ (u · ∇)u+

1

ρ
∇p = 0,

where u = (u, v, w) is the flow field, p = p(ρ), and c2 = dp
dρ is the square of the

local sound speed. Express these equations in the matrix form
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Ut +AUx +BUy + CUz = 0,

where

U =

⎛
⎜⎜⎝

ρ
u
v
w

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

u ρ 0 0
c2/ρ u 0 0
0 0 u 0
0 0 0 u

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

v 0 ρ 0
0 v 0 0

c2/ρ 0 v 0
0 0 0 v

⎞
⎟⎟⎠ ,

and

C =

⎛
⎜⎜⎝

w 0 0 ρ
0 w 0 0
0 0 w 0

c2/ρ 0 0 w

⎞
⎟⎟⎠ .

Show that the equation of motion has the conservation form

∂F

∂t
+ divG = 0,

where

F =

⎛
⎜⎜⎝

ρ
ρu
ρv
ρw

⎞
⎟⎟⎠ and G =

⎛
⎜⎜⎝

ρu ρv ρw
p+ ρu2 ρuv ρuw
ρuv p+ ρv2 ρvw
ρuw ρvw p+ ρw2

⎞
⎟⎟⎠ .

23. In the one-dimensional case of the system of equations in Exercise 22, show that
the matrix form of the system is

Ut +AUx = 0,

where

U =

(
ρ
u

)
and A =

(
u ρ

c2/ρ u

)
.

24. Reduce the second-order nonlinear wave equation for the displacement y(x, t)
of a string

ytt = c2
(
1 + y2x

)−2
yxx

(
c2 = T ∗/ρ

)
to the first-order system of equations

ut = c2
(
1 + v2

)−2
vx, vt = ux,

where u = yt and v = yx.
Express this system in the matrix form

Ut +AUx = 0,

where

U =

(
u
v

)
and A =

(
0 −c2(1 + v2)−2

−1 0

)
.
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25. Show that the nonuniqueness of the method of reduction can be seen for the
equation

autt + cuxx + u = 0

to the system
Ut +AUx +B = 0,

when the two following equivalent substitutions are used:

(i) v = ut, w = ux and (ii) v = ut, w = ux + ux.

Show also that the equation |A− λI| = 0 gives in both cases the genuine eigen-
values λ = ±

√
−c/a, for (i) the redundant eigenvalue λ = 1, and for (ii) the

redundant eigenvalue λ = 1
2 .

26. Traffic velocity is related to the traffic density by u = u(ρ) = um exp(−ρ/ρ0),
where um is the maximum traffic velocity and ρ0 is a reference traffic density.
Solve the initial-value problem

ρt + c(ρ)ρx = 0, x ∈ R, t > 0,

ρ(x, 0) =

⎧⎪⎨
⎪⎩
ρ0 if x < 0,

ρ0(a− x) if 0 < x < a,

0 if x > a,

where c(ρ) = q′(ρ) = d
dρ [ρ u(ρ)]. Plot x against (ρ/ρ0) for 0 < ρ

ρ0
< a and a

fixed t.
27. For the one-dimensional case of the system of equations in Exercise 22, show

that
(a) the scalar conservation form of the system is

(ρu)t +
(
ρu2 + p

)
x
= 0,

(b) the matrix conservation form is

Ut +
[
F (U)

]
x
= 0,

where

U =

[
ρ
ρu

]
and F (U) =

[
ρu

ρu2 + p

]
.

(c) If ρ = ρ(u), the equations in Exercise 22 in 1D can be written in the form

dρ

du

∂u

∂t
+

(
ρ+ u

∂ρ

∂v

)
∂u

∂x
= 0,

∂u

∂t
+

(
u+

c2(ρ)

ρ

dρ

du

)
∂u

∂x
= 0.
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28. Use ut = v, ux = w to transform the Tricomi equation

xutt + uxx = 0,

in the matrix form Ut +AUx = 0, where

U =

[
v
w

]
and A =

[
0 1

x
−1 0

]
.

29. The equations for long wave approximation for nonlinear shallow water waves
are

ht + uhx + hux = 0 and ut + uux + ghx = 0,

where h is the depth of water, and u is the horizontal fluid velocity and g is the
acceleration due to gravity. Express these equations in the conservation form

(uh)t +

(
hu2 +

1

2
gh2

)
x

= 0.
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Nonlinear Dispersive Waves and Whitham’s Equations

The tool which serves as intermediary between theory and
practice, between thought and observation, is mathematics; it
is mathematics which builds the linking bridges and gives the
ever more reliable forms. From this it has come about that
our entire contemporary culture, in as much as it is based on
the intellectual penetration and the exploitation of nature,
has its foundations in mathematics. Already Galileo said: one
can understand nature only when one has learned the
language and the signs in which it speaks to us; but this
language is mathematics and these signs are mathematical
figures. . . Without mathematics, the astronomy and physics of
today would be impossible; these sciences, in their
theoretical branches, virtually dissolve into mathematics.

David Hilbert

7.1 Introduction

Historically, the study of nonlinear dispersive waves started with the pioneering work
of Stokes in (1847) on water waves. Stokes first proved the existence of periodic
wavetrains which are possible in nonlinear dispersive wave systems. He also deter-
mined that the dispersion relation on the amplitude produces significant qualitative
changes in the behavior of nonlinear waves. It also introduces many new phenomena
in the theory of dispersive waves, not merely the correction of linear results. These
fundamental ideas and the results of Stokes have provided a tremendous impact on
the subject of nonlinear water waves, in particular, and on nonlinear dispersive wave
phenomena, in general. Stokes’ profound investigations on water waves can be con-
sidered as the starting point for the modern theory of nonlinear dispersive waves.
In fact, most of the fundamental concepts and results on nonlinear dispersive waves
originated in the investigation of water waves. The study of nonlinear dispersive
waves has proceeded at a very rapid pace with remarkable developments over the
past three decades.

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers,
DOI 10.1007/978-0-8176-8265-1_7, c© Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-8176-8265-1_7
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This chapter is devoted to a general treatment of linear and nonlinear dispersive
waves. The initial-value problems of linear dispersive waves and their asymptotic
analysis are briefly described. Included are Whitham’s theory of nonlinear dispersive
waves, Whitham’s averaged variational principle, Whitham’s equation, the peaking
and breaking of waves, and Whitham’s nonlinear instability analysis and its applica-
tion to water waves.

7.2 Linear Dispersive Waves

We consider a dynamical problem so that a small disturbance φ(x, t) with reference
to the undisturbed stable state is governed by a linear partial differential equation
with constant coefficients:

P

(
∂

∂t
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
φ(x, t) = F (x, t), (7.2.1)

where P is a polynomial, and t and x = (x1, x2, x3) = (x, y, z) are independent
time and space variables. The term F (x, t) represents the action of external forces
on the dynamical system and is usually referred to as a given forcing term.

We seek a plane wave solution of the homogeneous equation

P

(
∂

∂t
,
∂

∂xi

)
φ(x, t) = 0 (7.2.2)

in the form
φ(x, t) = A exp

[
i(κκκ · x− ωt)

]
, (7.2.3)

where A is the amplitude, κκκ = (k1, k2, k3) ≡ (k, l,m) is the wavenumber vector,
and ω is the frequency. Such a solution exists provided that the dispersion relation

P (−iω, ik1, ik2, ik3) ≡ D(ω,κκκ) = 0 (7.2.4)

is satisfied.
Thus, there exists a direct relationship between the governing equation and the

dispersion relation through the obvious correspondence

∂

∂t
↔ −iω, ∂

∂xj
↔ ikj . (7.2.5ab)

This correspondence allows us to obtain the dispersion relation from the governing
equation (7.2.2), and conversely, equation (7.2.2) can be constructed from the given
dispersion relation (7.2.4).

If, in particular, the dispersion relation (7.2.4) can be solved explicitly in terms
of real roots given by

ω = Ω(κκκ) = Ω(ki), (7.2.6)

then there may be several possible roots for the frequency, corresponding to different
modes of propagation.
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The phase velocity of the waves is the velocity at which a surface of constant
phase moves. It is defined by the relation

c =
ω

κ
κ̂κκ, (7.2.7)

where κ̂κκ is the unit vector in the direction of the wavenumber vector κκκ.
Thus, for any particular wave mode ω = Ω(κκκ), the phase velocity depends on the

wavenumbers k1, k2, and k3. In other words, different waves propagate with differ-
ent phase velocities, and such waves are called dispersive provided the determinant
|∂2Ω/∂ki∂kj | �= 0. On the other hand, waves are called nondispersive if the phase
velocity does not depend on the wavenumber. For one-dimensional dispersive waves,
the determinant reduces to Ω′′(k) �= 0. However, in general, the governing disper-
sion relation for one-dimensional waves is ω = Ω(k), which may give a complex ω
for a real k. In such a case, the phase velocity depends not only on wavenumber, but
also on the amplitude of the waves. This means that the amplitude will grow or decay
in time accordingly as Im (ω) > 0 or < 0. So, the former case leads to instability.

The group velocity vector for the three-dimensional wave motion is defined by
the result

C(κκκ) = ∇κ ω =

(
∂ω

∂k
,
∂ω

∂l
,
∂ω

∂m

)
. (7.2.8)

For one-dimensional waves, the group velocity C(k) = (dω/dk).
It is noted that the group velocity plays a fundamental role in the theory of dis-

persive waves and is much more important than the phase velocity.
The following are examples of linear dispersive waves.

1. The governing dispersion relation for surface waves on water of constant depth h:

ω2 = gk tanh kh. (7.2.9)

2. The Korteweg–de Vries (KdV) equation for long water waves:

φt + c0φx + αφxxx = 0
(
c20 = gh

)
, ω = c0k − αk3. (7.2.10ab)

3. The Boussinesq equation for long water waves:

φtt − c20φxx − β2φxxtt = 0, (7.2.11a)

ω2 = c20k
2
(
1 + β2k2

)−1
. (7.2.11b)

4. The Benjamin–Bona–Mahony (BBM) equation:

φt − c0φx − αφxxt = 0, ω = −c0k
(
1 + αk2

)−1
. (7.2.12ab)

5. The Klein–Gordon equation:

φtt − c2∇2φ+ d2φ = 0, ω = ±
(
c2κ2 + d2

)1/2
. (7.2.13ab)
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6. The internal waves in a stratified ocean, governed by the equation
(
∂

∂t
+ U

∂

∂x

)2(
∂2ψ

∂x2
+

∂2ψ

∂z2

)
+N2 ∂

2ψ

∂x2
= 0,

ω = Uk ± Nk√
k2 +m2

,

(7.2.14ab)

where ψ(x, z, t) represents the stream function and

N =

{
− g

ρ0

∂ρ̄

∂z

}1/2

is a constant Brunt–Väisälä frequency.
7. The inertial waves in a rotating liquid, governed by the equation

(
∂2

∂t
+ U

∂

∂z

)
∇2χ+ f2 ∂

2χ

∂z2
= 0 (f = 2Ω), ω = iUm± fm

κ
.

(7.2.15ab)
8. The internal-inertial waves in a rotating stratified ocean, governed by the equa-

tion(
∂2

∂t2
+N2

)
∇2

hχ+

(
∂2

∂t2
+ f2

)
χzz = 0, ω2 =

f2m2 +N2(k2 + �2)

κ2
,

(7.2.16ab)
where

∇2
h = ∂2/∂x2 + ∂2/∂y2.

9. The Rossby waves in a β-plane ocean, governed by the equation

(
∇2

h−a2
)
ψt+βψx = 0

(
a2 =

f2

c20

)
, ω = − βk

k2 + �2 + a2
. (7.2.17ab)

10. The dispersion relation for the Alfvén gravity waves in an electrically conducting
liquid of constant depth h:

ω2 =
(
gk + a2k2

)
tanh kh, (7.2.18)

where a = B0/
√
4πρ is the Alfvén wave velocity.

11. The dispersion relation for electromagnetic waves in plasmas:

ω2 = ω2
p + c2k2, (7.2.19)

where ωp = (4πne2/m)1/2 is the plasma frequency, c is the velocity of light,
and n is the number of electrons (per unit volume) of mass m and charge −e.

12. The Schrödinger equation and de Broglie waves:

i�ψt = V ψ − �
2

2m
∇2ψ, ω =

�κ2

2m
+

V

�
, (7.2.20ab)

where h(= 2π�) is the Planck constant and V is a constant potential.
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The phase and the group velocities associated with these examples can readily be
calculated. For dispersive waves, the former are different from the latter.

The general solution for any dispersive wave system can then be obtained by
the Fourier superposition of the plane wave solution (7.2.3) for different wavenum-
bers (k, l,m) with the corresponding frequencies ω to satisfy the dispersion relation
(7.2.6). The solution is represented by

φ(x, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
F (κκκ) exp

[
i
{
κκκ · x−Ω(κκκ)t

}]
dκκκ, (7.2.21)

where the spectrum function F (κκκ) is determined from appropriate initial or boundary
conditions.

Although (7.2.21) is the exact solution, the principal features of the dispersive
waves cannot be described without an exact or approximate evaluation of the integral
in (7.2.21). We shall discuss this point in the next section, which is concerned with
initial-value problems.

It is relevant to mention here that, in general, the governing equations for disper-
sive waves are inherently nonlinear, and the corresponding dispersion relation is also
nonlinear in the sense that the frequency ω is not only a function of κκκ, but also of
other parameters, such as amplitude and local properties of the medium. The theory
of water waves provides an excellent example of nonlinear dispersion. In the study of
linear dispersive systems, the preceding parameters are assumed to be small, and the
governing equations for such systems are obtained by linearizing the original nonlin-
ear equations. The classical theory of water waves satisfying Laplace’s equation and
the linearized free surface conditions can again be cited as an excellent example of
the process of linearization. However, in his pioneering work based upon averaged
variational principles, Whitham (1974) gave a new description of nonlinear water
waves and a completely different approach to nonlinear dispersive waves, in general.
It has become clear from Whitham’s theory that nonlinear dispersion is much more
important than the corresponding linearized concept and plays a significant role in
the general theory of dispersive wave systems.

7.3 Initial-Value Problems and Asymptotic Solutions

We consider the initial-value problem of wave propagation in which the disturbance
φ(x, t) is given by f(x) at time t = 0. The general solution for any particular mode
of propagation with the known dispersion relation ω = Ω(κκκ) is given by the three-
dimensional integral

φ(x, t) =

∫ ∞

−∞
F (κκκ) exp

[
i
{
κκκ · x−Ω(κκκ)t

}]
dκκκ, (7.3.1)

where
∫
dκκκ represents a line, area, or volume integral, depending on the number of

dimensions n = 1, 2, or 3. At t = 0, result (7.3.1) gives
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f(x) = φ(x, 0) =

∫ ∞

−∞
F (κκκ) exp

[
i(κκκ · x)

]
dκκκ, (7.3.2)

where F (κκκ) is the generalized Fourier transform of the initial disturbance f(x), so
that

F (κκκ) =
1

(2π)n/2

∫ ∞

−∞
f(x)e−iκκκ·x dx. (7.3.3)

Thus, the spectrum function F (κκκ) can be determined from the given initial data.
Whatever the particular initial-value problem may be, the general solution can always
be represented by the integral (7.3.1). The number of wave modes of type (7.3.1)
depends on the particular problem. So, the complete solution will be the sum of
terms such as (7.3.1) with one integral for each of the solutions ω = Ω(κκκ).

Note that the physical interpretation of the integral solution (7.3.1) is not at all
obvious from its present form. On the other hand, the exact evaluation of (7.3.1) is a
difficult task. To investigate the principal features of dispersive waves, it is important
to consider the asymptotic evaluation of (7.3.1) for large x and t. It is then necessary
to resort to asymptotic methods. We next turn our attention to asymptotic evaluation
of (7.3.1) by using the method of stationary phase (Jones 1966). According to this
method, the main contribution to the integral (7.3.1) for large t is from the terms
associated with the stationary points, if any, where the phase function κκκ · x− tΩ(κκκ)
is stationary, that is, where

∂Ω(κκκ)

∂ki
=

xi
t
. (7.3.4)

It can be shown that the dominant contribution to the integral (7.3.1) will come from
those values of ki = ki(xi, t) that satisfy (7.3.4). Thus, the asymptotic solution from
one such stationary point ki is obtained in the standard form

φ(x, t) ∼ (2π)n/2F (ki)

{tn det | ∂2Ω
∂ki∂kj

|}1/2
exp

[
i

{
κκκ · x− tΩ(κκκ)− π

4
sgn

(
∂2Ω

∂k2i

)}]
,

(7.3.5)

where the summation convention is used. The complete asymptotic solution for
φ(x, t) will be the sum of terms like (7.3.5) with one term for each stationary point
ki of equation (7.3.4).

The asymptotic solution (7.3.5) can be expressed in the form of the elementary
plane wave solution

φ(x, t) ∼ Re
[
A(xi, t) exp

{
iθ(xi, t)

}]
, (7.3.6)

where Re denotes the real part, and the complex amplitude A(xi, t) and the phase
function θ(xi, t) are given by

A(xi, t) =
(2π)n/2F (ki)

[tn det | ∂2Ω
∂ki∂kj

|]1/2
exp

[
− iπ

4
sgn

(
∂2Ω

∂k2i

)]
, (7.3.7)

θ(xi, t) = κκκ · x− tΩ(κκκ), (7.3.8)

with the fact that ki(xi, t) is the solution of equation (7.3.4).
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The asymptotic solution (7.3.6) has the same form as the elementary plane wave
solution, and also represents an oscillatory wavetrain. But, in contrast to the elemen-
tary solution, (7.3.6) is not a uniform wavetrain because ki is a function of xi and t.
Moreover, the quantitiesA and ω = Ω(κ) involved in (7.3.6) are no longer constants,
but are functions of xi and t.

It follows from (7.3.7) combined with stationary phase equation (7.3.4) that

∂θ

∂xi
= ki +

{
xi − t

∂Ω

∂ki

}
∂ki
∂xi

= ki(xi, t), (7.3.9)

−∂θ

∂t
= Ω(κi)−

{
xi − t

∂Ω

∂ki

}
∂ki
∂t

= Ω(κi) = ω(xi, t). (7.3.10)

This means that ∂θ/∂xi and −∂θ/∂t still have the significance of a wavenumber
and a frequency. They are no longer constants, but functions of xi and t. Thus,
ki = ∂θ/∂xi and ω = −∂θ/∂t represent the local wavenumber and the local fre-
quency and are still governed by the dispersion relation (7.2.6). The most remarkable
difference between the asymptotic solution (7.3.6) and the elementary plane wave so-
lution (7.2.3) is that the former represents an oscillatory nonuniform wavetrain, but
the parameters A, ki, and ω are no longer constants. Indeed, they are slowly varying
functions of xi and t in the sense that ΔA � A, Δκ � κ, and Δω � ω over a
length scale 2π/κ and a time scale 2π/ω. In other words, the relative changes of
these quantities in one wavelength and in one period are very small. This point can
readily be verified by using (7.3.4) and (7.3.7).

Finally, the present asymptotic analysis reveals two remarkable consequences
concerning the dual role of the group velocity. First, a careful consideration of re-
sult (7.3.4) reveals that the local wavenumber propagates with the group velocity
∂Ω/∂ki. Second, expression (7.3.7) indicates that |A|2 is an energy-like quantity
and also propagates with the group velocity.

7.4 Nonlinear Dispersive Waves and Whitham’s Equations

To describe a slowly varying nonlinear and nonuniform oscillatory wavetrain in a
dispersive medium, we assume the existence of a one-dimensional solution in the
form (7.3.6), so that

φ(x, t) = a(x, t) exp
{
iθ(x, t)

}
+ c.c., (7.4.1)

where c.c. stands for the complex conjugate and a(x, t) is the complex amplitude
given by (7.3.7) with n = 1. The phase function θ(x, t) is given by

θ(x, t) = xk(x, t)− tω(x, t), (7.4.2)

and k, ω, and a are slowly varying functions of space variable x and time t.
Because of the slow variations of k and ω, it is reasonable to assume that these

quantities still satisfy the dispersion relation of the form
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ω = W (k). (7.4.3)

Differentiating (7.4.2) with respect to x and t, respectively, we obtain

θx = k +
{
x− tW ′(k)

}
kx, (7.4.4)

θt = −W (k) +
{
x− tW ′(k)

}
kt. (7.4.5)

In the neighborhood of stationary points defined by W ′(k) = (x/t) > 0, these
equations become

θx = k(x, t) and θt = −ω(x, t). (7.4.6ab)

These results can be used as a definition of local wavenumber and local frequency of
a slowly varying nonlinear wavetrain.

In view of (7.4.6ab), relation (7.4.3) gives a nonlinear partial differential equation
for the phase θ(x, t) in the form

∂θ

∂t
+W

(
∂θ

∂x

)
= 0. (7.4.7)

The solution of this equation determines the geometry of the wave pattern.
We eliminate θ from (7.4.6ab) to obtain the equation

∂k

∂t
+

∂ω

∂x
= 0. (7.4.8)

This is known as the Whitham equation for the conservation of waves, where k rep-
resents the density of waves and ω is the flux of waves.

Using the dispersion relation (7.4.3), equation (7.4.8) gives

∂k

∂t
+ C(k)

∂k

∂x
= 0, (7.4.9)

where C(k) = W ′(k) is the group velocity. This represents the simplest nonlinear
wave (hyperbolic) equation for the propagation of wavenumber k with group velocity
C(k).

Since equation (7.4.9) is similar to (5.2.11), we can use the analysis of Section 5.2
to find the general solution of (7.4.9) with the initial condition k = f(x) at t = 0. In
this case, the solution takes the form

k(x, t) = f(ξ), x = ξ + tF (ξ), (7.4.10ab)

where F (ξ) = C(f(ξ)). This further confirms the propagation of wavenumber k
with group velocity C. A physical interpretation of this kind of solution has already
been discussed in Section 5.2.

Equations (7.4.9) and (7.4.3) reveal that ω also satisfies the first-order, nonlinear
wave (hyperbolic) equation

∂ω

∂t
+W ′(k)

∂ω

∂x
= 0. (7.4.11)
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It follows from equations (7.4.9) and (7.4.11) that both k and ω remain constant on
the characteristic curves defined by

dx

dt
= W ′(k) = C(k) (7.4.12)

in the (x, t)-plane. Since k or ω is constant on each characteristic, the characteristics
are straight lines with slope C(k). The solution for k(x, t) is given by (7.4.10ab).

Finally, it follows from the preceding analysis that any constant value of the
phase φ propagates according to θ(x, t) = const., and hence,

θt +

(
dx

dt

)
θx = 0, (7.4.13)

which gives, by (7.4.6ab),

dx

dt
= − θt

θx
=

ω

k
= c. (7.4.14)

Thus, the phase of the waves propagates with the phase speed c. On the other hand,
equation (7.4.9) ensures that the wavenumber k propagates with group velocity
C(k) = (dω/dk) = W ′(k).

We next investigate how wave energy propagates in a dispersive medium. We
consider the following integral involving the square of the wave amplitude (energy)
between any two points x = x1 and x = x2 (0 < x1 < x2):

Q(t) =

∫ x2

x1

|A|2 dx =

∫ x2

x1

AA∗ dx (7.4.15)

= 2π

∫ x2

x1

F (k)F ∗(k)

t|W ′′(k)| dx, (7.4.16)

which, due to a change of variable x = tW ′(k), is

= 2π

∫ k2

k1

F (k)F ∗(k) dk, (7.4.17)

where xr = tW ′(kr), r = 1, 2.
When kr is kept fixed as t varies, Q(t) remains constant so that

0 =
dQ

dt
=

d

dt

∫ x2

x1

|A|2 dx =

∫ x2

x1

∂

∂t
|A|2 dx+ |A|22W ′(k2)− |A|21W ′(k1).

(7.4.18)

In the limit, as x2 − x1 → 0, this result reduces to the first-order, partial differ-
ential equation

∂

∂t
|A|2 + ∂

∂t

[
W ′(k)|A|2

]
= 0. (7.4.19)
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This represents the equation for the conservation of wave energy where |A|2 and
|A|2W ′(k) are the energy density and energy flux, respectively. It also follows
that the energy propagates with group velocity W ′(k). It has been shown that the
wavenumber k also propagates with the group velocity. Thus, the group velocity
plays a double role.

The preceding analysis reveals another important fact that (7.4.3), (7.4.8), and
(7.4.19) constitute a closed set of equations for the three functions k, ω, and A.
Indeed, these are the fundamental equations for nonlinear dispersive waves and are
known as Whitham’s equations.

7.5 Whitham’s Theory of Nonlinear Dispersive Waves

The theory of linear dispersive waves is essentially based on the Fourier super-
position principle. However, in nonlinear problems, the superposition principle is
no longer applicable to construct a more general solution for a wavetrain. It fol-
lows from the asymptotic solution (7.3.6) that the form of the elementary solution
φ = A exp(iθ), θ = κκκ · x − ωt, can still be used to describe nonlinear wavetrains
provided that A, ω, and κκκ are no longer constants but slowly varying functions of
x and t corresponding to the slow modulation of the wavetrains. For slowly varying
wavetrains, there exists a phase function θ(x, t) so that the local frequency ω(x, t)
and the wavenumber vector κκκ(x, t) = ki are defined in terms of θ by

ω(x, t) = −θt, ki = θx1 . (7.5.1ab)

In view of the slow variation of ki and ω, it seems reasonable to assume the linear
dispersion relation in the form

ω = Ω(ki). (7.5.2)

We note that, for nonlinear wavetrains, Ω may also depend on amplitude and other
parameters.

Elimination of θ from (7.5.1ab) immediately gives

∂ki
∂t

+
∂ω

∂x
= 0, (7.5.3a)

∂ki
∂xj

− ∂kj
∂xi

= 0, (7.5.3b)

where the former is a relationship between the wavenumbers and frequency. This can
be regarded as an equation of continuity for the phase.

Substitution of (7.5.2) into (7.5.3a) and use of (7.5.3b) imply

∂ki
∂t

+ Cj(k)
∂ki
∂xj

= − ∂Ω

∂xi
, (7.5.4)

where Cj = Cj(k) is called the three-dimensional group velocity, defined by
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Cj =
∂Ω

∂kj
. (7.5.5)

This represents the propagation velocity for the wavenumber ki.
An observer traveling with the local group velocity Cj(k) of the wavetrain moves

along a path in (xi, t)-space known as a ray. From the existence of the phase function
θ(xi, t) and the dispersion relation (7.5.2), it turns out that changes along rays are
given by

dki
dt

= − ∂Ω

∂xi
, (7.5.6a)

dω

dt
=

∂Ω

∂t
. (7.5.6b)

Equation (7.5.4) can also be written in the characteristic form

dki
dt

= − ∂Ω

∂xi
, (7.5.7a)

dxi
dt

=
∂Ω

∂ki
= Ci. (7.5.7b)

These are identical with Hamilton’s equations of motion for a particle with position
xi and generalized momentum ki, where Ω plays the role of the Hamiltonian. If Ω is
independent of time, that is, if ω = Ω(ki, xi), then equation (7.5.6b) implies that the
frequency ω remains constant for the wavepacket. This is identical with the impor-
tant fact that, for a dynamical system with a time-independent Hamiltonian, every
motion of the system carries a constant value of the Hamiltonian equal to the total
energy. Thus, the frequency behaves like energy and the wavenumber like momen-
tum. This remarkable analogy between classical (particle) mechanics and quantum
(wave) mechanics leads to the well-known duality exploited in quantum physics.

In a uniform medium, ∂Ω/∂xi = 0, equation (7.5.6a) or (7.5.7a) implies that
the wavenumber ki is constant on each characteristic, and the characteristics are
straight lines in the (xi, t)-space. Also, each ki propagates along the characteristics
with the constant group velocity Ci. Further, if the medium is independent of time
t, ∂Ω/∂t = 0, and then the frequency ω is constant on each characteristic. In a
nonuniform medium, equations (7.5.7a) and (7.5.7b) show significant differences.
First, ki is no longer constant, but varies at the rate −∂Ω/∂xi. Second, it propagates
along the characteristics with the variable group velocity Ci(ki, xi, t), and third, the
characteristics are no longer straight lines.

It is interesting to observe that the local dispersion relation (7.5.2) with (7.5.1ab)
gives the partial differential equation for phase θ(xi, t) in the form

∂θ

∂t
+Ω

(
∂θ

∂xi
, xi, t

)
= 0. (7.5.8)

This is the well-known Hamilton–Jacobi equation. The solution of this equation de-
termines the geometry (or the kinematics) of the wavetrain.
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The preceding kinematic theory provides no indication of changes in the am-
plitude or energy of a wavetrain or wavepacket. Whitham (1974) initiated further
study of the amplitude function (7.3.7) and the related energy density to derive a
differential equation for the amplitude and to determine the second role of the group
velocity.

For the one-dimensional case, the energy density described in (7.3.7) is propor-
tional to |A|2, so that

A2 =
2πF (k)F ∗(k)

t|Ω′′(k)| , (7.5.9)

where F ∗(k) is the complex conjugate of F (k).
The amount of energy Q(t) between two points x1 and x2 is given by

Q(t) =

∫ x2

x1

g(k)A2 dx, (7.5.10)

where g(k) is an arbitrary proportionality factor associated with the square of the
amplitude and energy.

In a new coordinate system moving with the group velocity, that is, along the
rays x = C(k)t, equation (7.5.10) reduces to the form

Q(t) = 2π

∫ x2

x1

g(k)F (k)F ∗(k) dk, (7.5.11)

where Ω′′(k) > 0 and k1 and k2 are defined by x1 = C(k1)t and x2 = C(k2)t,
respectively.

Using the principle of conservation of energy, that is, stating that the energy
between the points x1 and x2 traveling with the group velocities C(k1) and C(k2)
remains invariant, it turns out from (7.5.10) that

dQ

dt
=

∫ x2

x1

∂

∂t

{
g(k)A2

}
dx+ g(k2)C(k2)A

2(x2, t)

− g(k1)C(k1)A
2(x1, t) = 0, (7.5.12)

which is, in the limit as x2 − x1 → 0,

∂

∂t

{
g(k)A2

}
+

∂

∂t

{
g(k)C(k)A2

}
= 0. (7.5.13)

This may be treated as the energy equation. Quantities g(k)A2 and g(k)C(k)A2

represent the energy density and the energy flux, so that they are proportional to |A|2
and C(k)|A|2, respectively. The flux of energy propagates with the group velocity
C(k). Hence, the group velocity has a double role: it is the propagation velocity for
the wavenumber k and for the energy g(k)|A|2.

Thus, (7.5.3a) and (7.5.13) are known as Whitham’s conservation equations for
nonlinear dispersive waves. The former represents the conservation of wave-number
k and the latter is the conservation of energy (or more generally, the conserva-
tion of wave action). It is important to observe that, even in a uniform medium
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(∂Ω/∂xi = 0), equation (7.5.3a) or its equivalent form given by (7.5.4) is the most
fundamental hyperbolic equation, even if the original equation (7.2.1) for φ is linear
or nonhyperbolic. The conservation equations can be derived more rigorously from a
general and extremely powerful approach that is now known as Whitham’s averaged
variational principle.

7.6 Whitham’s Averaged Variational Principle

In all dynamical problems where the governing equations admit uniform, periodic,
wavetrain solutions, it is generally true that the system can be described by the
Hamilton variational principle

δ

∫∫
L(ut, uxi , u) dx dt = 0, (7.6.1)

where L is the Lagrangian and the dependent variable is u = u(xi, t).
The Euler–Lagrange equation for (7.6.1) is

∂L1

∂t
+

∂L2

∂xi
− L3 = 0, (7.6.2)

where

L1 =
∂L

∂ut
, L2 =

∂L

∂uxi

, and L3 =
∂L

∂u
. (7.6.3abc)

Equation (7.6.2) is a second-order, partial differential equation for u(xi, t). We as-
sume that this equation has periodic wavetrain solutions in the form

u = Φ(θ), θ = κκκ · x− ωt, (7.6.4ab)

whereκκκ and ω are constants and represent the wavenumber vector and the frequency,
respectively. Since (7.6.2) is a second-order equation, its solution depends on two
arbitrary constants of integration. One is the amplitude a and the other is the phase
shift. Omitting the latter constant, it turns out that a solution of (7.6.2) exists provided
that the three parameters ω, κκκ, and a are connected by a dispersion relation

D(ω,κκκ, a) = 0. (7.6.5)

In linear problems with a wavetrain solution in the form u = Φ(θ) = aeiθ, the
dispersion relation (7.6.5) does not involve the amplitude a.

For slowly varying dispersive wavetrains, the solution maintains the elementary
form u = Φ(θ, a), but ω, κκκ, and a are no longer constants, so that θ is not a linear
function of xi and t. The local wavenumber and local frequency are defined by

ki =
∂θ

∂xi
, ω = −∂θ

∂t
. (7.6.6ab)
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The quantities ω, ki, and a are slowly varying functions of xi and t corresponding
to the slow modulation of the wavetrain.

The Whitham averaged Lagrangian over the phase of the integral of the La-
grangian L is defined by

L(ω,κκκ, a,x, t) = 1

2π

∫ 2π

0

Ldθ (7.6.7)

and is calculated by assuming the uniform periodic solution u = Φ(θ, a) in L.
Whitham first formulated the averaged variational principle in the form

δ

∫∫
L dx dt = 0, (7.6.8)

to derive the equations for ω, κκκ, and a.
It is noted that the dependence of L on x and t reflects possible nonuniformity

of the medium supporting the wave motion. In a uniform medium, L is independent
of x and t, so that the Whitham function L ≡ L(ω,κκκ, a). However, in a uniform
medium, some additional variables also appear only through their derivatives. They
represent potentials whose derivatives are important physical quantities.

The Euler equations resulting from the independent variations of δa and δθ in
(7.6.8) with L = L(ω,κκκ, a) are

δa : La(ω,κκκ, a) = 0, (7.6.9)

δθ :
∂

∂t
Lω − ∂

∂xi
Lki = 0. (7.6.10)

The θ-eliminant of (7.6.6ab) gives the consistency equations

∂ki
∂t

+
∂ω

∂xi
= 0,

∂ki
∂xj

− ∂kj
∂xi

= 0. (7.6.11ab)

Thus, (7.6.9)–(7.6.11ab) represent the Whitham equations for describing the slowly
varying wavetrain in a nonuniform medium and constitute a closed set from which
the triad ω, κκκ, and a can be determined.

In linear problems, the Lagrangian L, in general, is a quadratic in u and its deriva-
tives. Hence, if Φ(θ) = a cos θ is substituted in (7.6.7), L must always take the form

L(ω,κκκ, a) = D(ω,κκκ)a2, (7.6.12)

so that the dispersion relation (La = 0) must take the form

D(ω,κκκ) = 0. (7.6.13)

We note that the stationary value of L is, in fact, zero for linear problems. In
the simple case, L equals the difference between kinetic and potential energy. This
proves the well-known principle of equipartition of energy, stating that average po-
tential and kinetic energies are equal.
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7.7 Whitham’s Instability Analysis of Water Waves

Section 7.6 dealt with Whitham’s new remarkable variational approach to the theory
of slowly varying, nonlinear, dispersive waves. Based upon Whitham’s ideas and,
especially, Whitham’s fundamental dispersion equation (7.6.10), Lighthill (1965,
1967) developed an elegant and remarkably simple result determining whether very
gradual—not necessarily small—variations in the properties of a wavetrain are gov-
erned by hyperbolic or elliptic partial differential equations. A general account of
Lighthill’s work with special reference to the instability of wavetrains on deep water
was described by Debnath (1994). This section is devoted to the Whitham instability
theory with applications to water waves.

According to Whitham’s nonlinear theory, La = 0 gives a dispersion relation
that depends on wave amplitude a and has the form

ω = ω(κκκ, a), (7.7.1)

where equations for κκκ and a are no longer uncoupled and constitute a system of par-
tial differential equations. The first important question is whether these equations are
hyperbolic or elliptic. This can be answered by a standard and simple method com-
bined with Whitham’s conservation equations (7.5.3a) and (7.5.13). For moderately
small amplitudes, we use the Stokes expansion of ω in terms of k and a2 in the form

ω = ω0(k) + ω2(k)a
2 + · · · , (7.7.2)

We substitute this result in (7.5.3a) and (7.5.13), replace ω′(k) by its linear value
ω′
0(k), and retain the terms of order a2 to obtain the equations for k and a2 in the

form

∂k

∂t
+
[
ω′(k) + ω′

2(k)a
2
]∂k
∂x

+ ω2(k)
∂a2

∂x
= 0, (7.7.3)

∂a2

∂t
+ ω′

0(k)
∂a2

∂x
+ ω′′

0 (k)a
2 ∂k

∂x
= 0. (7.7.4)

Neglecting the term O(a2), these equations can be rewritten as

∂k

∂t
+ ω′

0

∂k

∂x
+ ω2

∂a2

∂x
= 0, (7.7.5)

∂a2

∂t
+ ω′

0(k)
∂a2

∂x
+ ω′′

0a
2 ∂k

∂x
= 0. (7.7.6)

These describe the modulations of a linear dispersive wavetrain and represent a cou-
pled system due to the nonlinear dispersion relation (7.7.2) exhibiting the depen-
dence of ω on both k and a. In matrix form, these equations read

(
ω′
0 ω2

ω′′
0a

2 ω′
0

)(
∂k
∂x

∂a2

∂x

)
+

(
1 0
0 1

)(
∂k
∂t

∂a2

∂t

)
= 0. (7.7.7)

Hence, the eigenvalues λ are the roots of the determinant equation
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|aij − λbij | =
∣∣∣∣ω

′
0 − λ ω2

ω′′
0a

2 ω′
0 − λ

∣∣∣∣ = 0, (7.7.8)

where aij and bij are the coefficient matrices of (7.7.7). This determinant equation
gives the characteristic velocities

λ =

(
dx

dt

)
≡ C(k) = C0(k)± a

[
ω2(k)ω

′′
0 (k)

]1/2
+O

(
a2
)
, (7.7.9ab)

where C0(k) = ω′
0(k) is the linear group velocity, and, in general, ω′′

0 (k) �= 0
for dispersive waves. The equations are hyperbolic or elliptic depending on whether
ω2(k)ω

′′
0 (k) > 0 or < 0.

In the hyperbolic case, the characteristics are real, and the double characteristic
velocity splits into two separate velocities and provides a generalization of the group
velocity of nonlinear dispersive waves. In fact, the characteristic velocities (7.7.9ab)
are used to define the nonlinear group velocities. The splitting of the double charac-
teristic velocity into two different velocities is one of the most significant results of
the Whitham theory. This means that any initial disturbance of finite extent will even-
tually split into two separate disturbances. This prediction is radically different from
that of the linearized theory, where an initial disturbance may suffer from a distortion
due to dependence of the linear group velocity C0(k) = ω′

0(k) on the wavenumber
k, but would never split into two. Another significant consequence of nonlinearity
in the hyperbolic case is that compressive modulations will suffer from gradual dis-
tortion and steepening in the typical hyperbolic manner discussed in Chapter 6. This
leads to the multi-valued solutions, and hence, eventually, breaking of waves.

In the elliptic case (ω2, ω
′′
0 < 0), the characteristics are imaginary. This leads to

ill-posed problems in the theory of nonlinear wave propagation. Any small sinusoidal
disturbances in a and k may be represented by solutions of the form exp[ia{x −
C(k)t}], where C(k) is given by (7.7.9ab) for the unperturbed values of a and k.
Thus, when C(k) is complex, these disturbances will grow exponentially in time,
and hence, the periodic wavetrains become definitely unstable.

An application of this analysis to the Stokes waves on deep water reveals that the
associated dispersion equation is elliptic in this case. For waves on deep water, the
dispersion relation is

ω =
√
gk

(
1 +

1

2
a2k2

)
+O

(
a4
)
. (7.7.10)

This result is compared with the Stokes expansion (7.7.2) to give ω0(k) =
√
gk and

ω2(k) =
1
2k

2
√
gk. Hence, ω′′

0ω2 < 0, the velocities (7.7.9ab) are complex, and the
Stokes waves on deep water are definitely unstable. The instability of deep water
waves came as a real surprise to researchers in the field in view of the very long and
controversial history of the subject. The question of instability went unrecognized for
a long period of time, even though special efforts have been made to prove the exis-
tence of a permanent shape for periodic water waves for all amplitudes less than the
critical value at which the waves assume a sharp-crested form. However, Lighthill’s
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(1965) theoretical investigation into the elliptic case and Benjamin and Feir’s (1967)
theoretical and experimental findings have provided conclusive evidence of the in-
stability of Stokes waves on deep water.

For more details of nonlinear dispersive wave phenomena, the reader is referred
to Debnath (1994).

7.8 Whitham’s Equation: Peaking and Breaking of Waves

In 1865, Rankine conjectured that there exists a wave of extreme height. In a mov-
ing frame of reference, the Euler equations are Galilean invariant, and the Bernoulli
equation on the free surface takes the form

1

2
|∇φ|2 + gρη = E

which expresses the conservation of local energy. The first term represents the ki-
netic energy of the fluid, where φ is the velocity potential, and the second term is the
potential energy due to gravity. For the wave of extreme height, E = gρηmax, where
ηmax is the maximum height of the elevation. Thus, at the maximum height of the
fluid, the velocity is zero, and there is a stagnation point in the flow. Rankine had
conjecture that the free surface formed a cusp at the peak, that is, the tangent lines to
the free surface are vertical. Stokes (1847) also suggested that such a wave of extreme
height exists and the angle subtended at the peak is 120◦. Toland (1978) proved the
existence of a wave of extreme height and showed also that if the singularity at the
peak is not a cusp, then Stokes’ conjecture about the value of the subtended angle is
true. Subsequently, Amick et al. (1982) proved rigorously that the singularity at the
peak is not a cusp. However, the full Euler equations of motion exhibit singularities,
and also there is a limiting amplitude of the periodic waves, or of the solitary wave.
This means that the KdV approximation can only be valid for sufficiently small am-
plitudes. But the KdV equation has smooth solitary and cnoidal waves of arbitrary
amplitude.

In his pioneering work on nonlinear water waves, Whitham (1974) observed that
the neglect of dispersion in the nonlinear shallow water equations leads to the devel-
opment of multi-valued solutions with a vertical slope, and hence, eventually break-
ing occurs. It seems clear that the third derivative dispersive term in the KdV equation
produces the periodic and solitary waves which are not found in the shallow water
theory. However, the KdV equation cannot describe the observed symmetrical peak-
ing of the crests with a finite angle. On the other hand, the Stokes waves include full
effects of dispersion, but they are limited to small amplitude, and describe neither
the solitary waves nor the peaking phenomenon.

Although both breaking and peaking are without doubt involved in the governing
equations of the exact potential theory, Whitham (1974) developed a mathematical
equation that can include all these phenomena. It has been shown earlier that the
breaking of shallow water waves is governed by the nonlinear equation
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ηt + c0ηx + dηηx = 0, d = 3c0(2h0)
−1. (7.8.1)

On the other hand, the linear equation corresponding to a general linear disper-
sion relation

ω

k
= c(k) (7.8.2)

is given by the integrodifferential equation in the form

ηt +

∫ ∞

−∞
K(x− s)ηs(s, t) ds = 0, (7.8.3)

where the kernel K is given by the inverse Fourier transform of c(k):

K(x) = F−1
{
c(k)

}
=

1

2π

∫ ∞

−∞
eikxc(k) dk. (7.8.4)

Whitham combined the above ideas to formulate a new class of nonlinear nonlo-
cal equations

ηt + dηηx +

∫ ∞

−∞
K(x− s)ηs(s, t) ds = 0. (7.8.5)

This is well known as the Whitham equation which can, indeed, describe symmetric
waves that propagate without change of shape and peak at a critical height, as well
as asymmetric waves that invariably break.

Once a wave breaks, it usually continues to travel in the form of a bore as
observed in tidal waves. The weak bores have a smooth but oscillatory structure,
whereas the strong bores have a structure similar to turbulence with no coherent os-
cillations. Since the region where waves break is a zone of high energy dissipation,
it is natural to include a second derivative dissipative term in the KdV equation to
obtain

ηt + c0ηx + dηηx + μηxxx − νηxx = 0, (7.8.6)

where μ = 1
6c0h

2
0. This is known as the KdV–Burgers equation which also arises in

nonlinear acoustics for fluids with gas bubbles (Karpman 1975a).
It is convenient to rewrite the Whitham equation (7.8.5) in the form

ut + uux +

∫ ∞

−∞
K(x− s)us(s, t) ds = 0, (7.8.7)

and assume that u(x, t) is the classical solution of (7.8.7) with the property u → 0
as |x| → ∞, and the kernel K (or convolution operator) is symmetric.

We next define an integral operator K̃ by

(K̃u)(x, t) =

∫ ∞

−∞
K(x− s)u(s, t) ds, (7.8.8)

so that it is bounded and self-adjoint in the Hilbert space L2(R), i.e., 〈K̃u, v〉 =
〈u, K̃v〉 defined in Debnath and Mikusinski (1999). Also, this operator K̃ commutes
with ∂x ≡ ∂

∂x , i.e., K̃∂x = ∂xK̃.
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We next show that the Whitham equation admits solitary traveling wave solutions
in the form u(x, t) = f(x − Ut), where U is the velocity of the wave. Substituting
this into (7.8.7) gives

−Uf ′ + ff ′ + K̃0f
′ = 0, (7.8.9)

where the operator K̃0 is associated with the kernel K0(x) =
π
4 exp(−ν|x|), ν = π

2 .
It is easy to verify that, for v ∈ L2(R) ∩ C(R),

(
∂2
x − ν2

)
K̃0v = −ν2v. (7.8.10)

Integrating (7.8.9) with respect to x gives

−Uf +
1

2
f2 + K̃0f −A = 0, (7.8.11)

where A is an integrating constant. Applying the operator (∂2
x − ν2) to (7.8.11) and

using (7.8.10) yields

(
∂2
x − ν2

)(
Uf − 1

2
f2

)
+ ν2(f −A) = 0. (7.8.12)

Multiplying (7.8.12) by ∂x(Uf− 1
2f

2) = (U−f)f ′ and integrating with respect
to x gives

(U − f)2f ′2 − ν2
[(

Uf − 1

2
f2

)2

− Uf2 +
2

3
f3

]

− 2Aν2
(
Uf − 1

2
f2

)
= B, (7.8.13)

where B is also a constant of integration.
We consider the special case where A = B = 0 so that (7.8.13) can be put into

the form
(U − f)2f ′2 = ν2f2Q(f), (7.8.14)

where

Q(f) ≡ 1

4
f2 −

(
U − 2

3

)
f + U2 − U. (7.8.15)

Periodic solutions correspond to oscillations of f between two simple zeros of
Q(f). If 1 < U < 3

4 , there are two simple zeros f0 and f1 where 0 < f0 < f < f1.
Consequently, (7.8.14) can be rewritten as

(
dx

df

)2

=
(U − f)2

ν2f2Q(f)
≡ F 2(f) (say), (7.8.16)

which can be solved in 0 ≤ f ≤ f0. Integrating (7.8.16) gives

(x− x0)
2 = h2(f),

dh

df
= F (f), (7.8.17)
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where x0 is a constant of integration and f = f0 corresponds to x = x0. Equa-
tion (7.8.16) shows that the sign of (dxdf ) is constant because 0 < f0 < f < f1, and
tends to ±∞ as f → 0+ and f0 → f0 − 0. It turns out that the solution f represents
a solitary wave.

It is well known that there are infinitely many polynomial conservation laws
for the shallow water equation, the KdV equation, the Benjamin–Ono equation, and
other integrable equations. These equations are special cases of the Whitham equa-
tion. Recently, Benguria and Depassier (1989) have shown that these equations are
the only representatives of the Whitham equation that possess this property.

We next consider a few conservation laws for the Whitham equation.
The first conservation law is

I1(u) =

∫ ∞

−∞
u(x, t) dx = const., (7.8.18)

that is,
d

dt
I1(u) =

d

dt
I1(u0) = 0, u(x, 0) = u0(x). (7.8.19ab)

This is obtained directly from:

d

dt
I1(u) =

∫ ∞

−∞
ut(x, t) dx = −

∫ ∞

−∞

(
uux +

∫ ∞

−∞
K(x− s)us(s, t) ds

)
dx

= −1

2

∫ ∞

−∞

d

dx

(
u2
)
dx−

∫ ∞

−∞
dx

∫ ∞

−∞
K(x− s)us(s, t) ds

=

[(
−1

2
u2

)]∞
−∞

−
∫ ∞

−∞
us(s, t) ds

∫ ∞

−∞
K(x− s) dx

= −c0(0)
[
u(s, t)

]∞
−∞ = 0,

where

c(0) =

∫ ∞

−∞
K(z) dz. (7.8.20)

Thus it follows that
I1(u) = I1(u0) = const. (7.8.21)

This represents the conservation of mass.
The second conservation law I2(u) = const. can be derived by multiplying

(7.8.7) by u and then integrating the result with respect to x by parts so that

1

2

d

dt
I2(u) =

1

2

d

dt

∫ ∞

−∞
u2(x, t) dx = −

∫ ∞

−∞
∂x

(
u3

3

)
dx−

∫ ∞

−∞
u∂xK̃u dx

= −
〈
u, ∂xK̃u

〉
=
〈
∂xu, K̃u

〉
=
〈
u, K̃∂xu

〉
=
〈
u, ∂xK̃u

〉
= 0.

This means that İ2(u) = 0, giving I2(u) = I2(u0) = const.
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The third conserved quantity I3(u) is given by

I3(u) =

∫ ∞

−∞

(
1

3
u3 + uK̃u

)
dx. (7.8.22)

It turns out that

d

dt
I3(t) =

∫ ∞

−∞
u2ut dx+

〈
ut, K̃u

〉
+
〈
u, K̃ut

〉

= 2
〈
ut, K̃u

〉
−
∫ ∞

−∞

(
uux + K̃∂xu

)
u2 dx

= −2

〈
∂x

(
1

2
u2 + K̃u

)
, K̃u

〉
−
(
u4

4

)∞

−∞
−
〈
u2, K̃∂xu

〉

=
〈
u2, ∂xK̃u

〉
+ 2

〈
K̃u, ∂xK̃u

〉
−
〈
u2, K̃∂xu

〉

=

∫ ∞

−∞

∂

∂x

(
K̃u

)2
dx = 0.

This quantity I3(u) represents the energy. Since it is independent of time t, the
Whitham equation (7.8.7) can be written in the Hamiltonian form

∂u

∂t
+

∂

∂x

(
∂H
∂x

)
= 0 (7.8.23)

where the Hamiltonian is H = 1
2I3(u).

We next make some important comments on the possible extension of a class of
nonlinear equations. First, if we eliminate the requirement that the kernel K(x) is
even, the Whitham equation (7.8.7) can not only describe the complete dispersion,
but also dissipation processes. This extends the class of nonlinear equation under
consideration. Second, another natural extension is to generalize (7.8.7) to include
nonlocal equations with an arbitrary pseudodifferential operator so that (7.8.7) can
be replaced by the following equation:

ut + uux +K(u) = 0, (7.8.24)

where the operator K(u) is given by

K(u) =
1

2π

∫ ∞

−∞
eikxK(k)û(k, t) dk, (7.8.25)

where û(k, t) is the Fourier transform of u(x, t) defined by

û(k, t) = �
{
u(x, t)

}
=

∫ ∞

−∞
eikxu(x, t) dx. (7.8.26)

The function K(k) introduced to define the operator K(u) is called the symbol
of the operator. The dispersion relation c(k) and the symbol K(k) are related by the
result
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K(k) = ikc(k). (7.8.27)

This approach reveals a new fact that the Whitham equation represents, as par-
ticular cases, many nonlinear equations which are of special interest for physical
applications. Examples of such equations include the Kawahara (1972) equation

ut + uux + auxxx − uxxxxx = 0, (7.8.28)

where K(k) = −i(ak3+k5). This equation describes propagation of signals in elec-
tric transmission lines, long waves under ice cover in liquids of finite depth (Ilichev
and Marchenko 1989), and water waves with surface tension (Zufira 1987). Another
example is the Kuramoto–Sivashinsky equation

ut +
1

2
u2
x + uxx + auxxxx = 0 (7.8.29)

which arises in the theory of combustion to model a flame front and also in two-
dimensional turbulence (Kuramoto 1984, and Novick-Cohen and Sivashinsky 1986).

Finally, we close this section by adding some specific comments on peaking and
breaking of waves described by the Whitham equation (7.8.7) with the initial condi-
tion

u(x, 0) = u0(x). (7.8.30)

It has been shown by Whitham (1974) that if K(x) = α exp(−β|x|), where α,
β > 0 are constants, the crests of the waves of limiting amplitude have an angle
of 110◦, which is very close to the Stokes angle. Naumkin and Shishmarev (1994)
proved a theorem which states that the wave remains peaked for all time as long as
a solution exists provided the kernel K(x) in (7.8.7) is continuous and absolutely
integrable.

On the other hand, waves described by (7.8.7) and (7.8.30) break in a finite time
T provided the kernel K(x) in (7.8.7) is regular as shown by Seliger (1968).

The first study of the Cauchy problem (7.8.7) and (7.8.30) for the Whitham equa-
tion with a singular kernel K(x) was initiated by Naumkin and Shishmarev (1994).
They showed that a wave that is sufficiently steep initially at t = 0 breaks in a finite
time T provided the kernel K(x) is monotonically increasing in the neighborhood
of the singular point x = 0 and has a singularity of order |x|−α, 0 < α < 1 as
x → 0, and also if the kernel K(x) is monotonically decreasing near x = 0 and has
a singularity of order |x|−α, 0 < α < 2

3 . For a monotonically decreasing kernel, the
integral term in the Whitham equation (7.8.7) represents dissipative effects, whereas
the monotonically increasing kernel corresponds to a process of energy pumping.

Making reference to Chapter 7 of Naumkin and Shishmarev (1994) and Amick
et al. (1989), we simply state the asymptotic behavior of a solution u(x, t) of the
Cauchy problem for the nonlocal nonlinear Whitham equation, as t → ∞,

{
ut + u2

x +K(u) = 0,

u(x, 0) = u0(x),
x ∈ R, t ≥ 0, (7.8.31)

where K(u) is defined by (7.8.25) and (7.8.26).
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The asymptotic behavior of u(x, t) as t → ∞ is given by

u(x, t) ∼ Ae−λtt−1/δ

∫ ∞

0

cos(kξ)e−ωkδ

dk +O
(
e−λtt−

1
δ−μ

)
, (7.8.32)

where ξ = xt−1/δ ≥ 0, the constant A is expressed through the symbol K(k)
and the initial function u0(x), and all other quantities are defined in Naumkin and
Shishmarev (1994, p. 180).

7.9 Exercises

1. (a) For the plane wave solutions φ(x, t) = A exp{i(kx−ωt)} of the real partial
differential equation

∂φ

∂t
+ iP

(
−i ∂

∂x

)
φ = 0,

where P is an odd function, show that the dispersion relation is ω = P (k).
(b) For a wave packet described by φ(x, t) = Re[A(x, t)ψ(x, t)], where A(x, t)
represents a slowly varying complex amplitude function, and where ψ(x, t) =
exp[i(k0x−ω0t)] denotes the basic carrier wave of frequency ω0 = P (k0) for a
given wavenumber k0 �= 0, show that the amplitudeA(x, t) satisfies the equation

i
[
At + P ′(k0)Ax

]
+

1

2
P ′′(k0)Axx = 0,

where P (k) has a Taylor series expansion about k = k0.
2. The dispersion relation (Whitham 1967a) for water waves in an inviscid fluid of

arbitrary depth h0 is

ω = ω0(k) +Ω2(k)
k2E

ρc0
+O

(
E2

)
,

where ω0(k) = (gk tanh kh0)
1
2 , E = 1

2gρa
2, and

Ω2(k) =
(9T0 − 10T 2

0 + 9)

8T 3
0

− 1

kh0

[
1 +

1

4

(4C0 − c0)
2

(gh0 − C2
0 )

]
,

where T0 = tanh(kh0), c0 = ω0(k)
k0

, and C0 = dω0

dk0
. Show that the characteristic

velocities given by (7.7.9ab) are

C(k) = C0(k)±
[
ω′′
0 (k)Ω2(k)Ek

2

ρc0

] 1
2

, ω′′
0 (k) < 0.

(a) Explain the significance of the solution for Ω2(k) > 0 or < 0.
(b) If the critical value for instability is determined by the numerical value of
(kh0) for which Ω2(k) = 0, show that equations are hyperbolic or elliptic ac-
cording to whether kh0 < 1.363 or > 1.363.
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3. If the Whitham averaged variational principle is given by

δ

∫∫
L(−θt, θx) dt dx = 0,

where ω = −θt and k = θx, show that the Euler equation is

∂

∂t
Lω − ∂

∂x
Lk = 0.

Hence, or otherwise, show that the phase function θ satisfies the second-order,
quasi-linear equation

Lωωθtt − 2Lωkθtx + Lkkθxx = 0.

4. The Whitham equations for the slow modulation of the wave amplitude a and
the wavenumber k in the case of two-dimensional deep water waves are

∂

∂t

(
a2

ω0

)
+

∂

∂x

(
C
a2

ω0

)
= 0 and

∂k

∂t
+

∂ω

∂x
= 0,

where ω0 =
√
gk and C = g

2ω0
is the group velocity. Using Chu and Mei’s

(1971) dispersion relation

ω = ω0

[
1 + ε2

(
1

2
a2k2 +

{(
a

ω0

)
tt

div 2ω0a

})]
,

derive the following equations for the phase function φ(x, t), where we have
used Chu and Mei’s notation W = −2φx:

∂a2

∂t
+

∂

∂x

(
a2φx

)
= 0 and − 2

∂

∂t

(
∂φ

∂x

)
+

∂

∂x

[
−φ2

x +
a2

4
+

axx
16a

]
= 0.

Show that the second equation can be integrated with respect to x to obtain

φt +
1

2
φ2
x − 1

8
a2 − axx

32a
= 0.

Using Ψ = a exp(4iφ), show that Ψ(x, t) satisfies the nonlinear Schrödinger
equation

iΨt +
1

8
Ψxx +

1

2
Ψ |Ψ |2 = 0.

5. Show that Whitham’s equation (7.8.7) possess the conserved quantity

I4(u) =

∫ ∞

−∞
xu(x, t) dx.

6. Show that the concentric KdV equation (see Johnson 1997)

ut +
u

2t
− 6uux + uxxx = 0

has the following conservation laws:
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(a)
∫∞
−∞

√
tu dx = const.,

(b)
∫∞
−∞ tu2 dx = const.,

(c)
∫∞
−∞(

√
txu+ 6t3/2u2) dx = const.

7. Using the shallow water equations (2.7.67)–(2.7.70), derive the conservation law(
1

3
m3 + hm1

)
t

+

(
1

3
m4 + hm2 +

1

2
m2

1 +
1

3
h3

)
x

= 0,

where

mn =

∫ h

0

un dz,

(see Johnson 1997, Benney 1974, and Miura 1974).
8. Consider the KP equation

ut − 6uux + uxxx + 3vy = 0, uy = vx.

Under suitable decay conditions, show that the second equation produces three
conservation laws:
(a)

∫∞
−∞ u dx = const.,

(b)
∫∞
−∞ u dy = const.,

(c)
∫∞
−∞ v dx = const.

9. Show that the Boussinesq equations (see Hirota 1973b)

ut + hx − 3
(
h2
)
x
+ hxxx = 0, ht + ux = 0

have the conserved quantities
(a)

∫∞
−∞ u dt,

(b)
∫∞
−∞ uh dx, and

(c)
∫∞
−∞(

√
txu+ 6t3/2u2) dx.

10. Introducing the averaged Hamiltonian H by

H =
1

2π

∫ 2π

0

(
∂L

∂ut
· ut − L

)
dθ = ωJ − L,

where the wave action J is defined by

J =
1

2πω

∫ 2π

0

(
∂L

∂ut
· ut

)
dθ =

∂L
∂ω

,

show that the Whitham equations

∂k

∂t
+

∂ω

∂x
= 0 and

∂

∂t

(
∂L
∂ω

)
− ∂

∂x

(
∂L
∂k

)
= 0

can be expressed in the averaged Hamiltonian form

∂k

∂t
+

∂

∂x

(
∂H
∂J

)
= 0 and

∂J

∂t
+

∂

∂x

(
∂H
∂k

)
= 0.



8

Nonlinear Diffusion–Reaction Phenomena

The profound study of nature is the most fertile source of
mathematical discoveries.

Joseph Fourier

The research worker, in his efforts to express the fundamental
laws of Nature in mathematical form, should strive mainly for
mathematical beauty. He should take simplicity into
consideration in a subordinate way to beauty. . . . It often
happens that the requirements of simplicity and beauty are
the same, but where they clash the latter must take
precedence.

Paul Dirac

8.1 Introduction

Many physical phenomena are described by the interaction of convection and diffu-
sion and also by the interaction of diffusion and reaction. From a physical point of
view, the convection–diffusion process and the diffusion–reaction process are quite
fundamental in describing a wide variety of problems in physical, chemical, bio-
logical, and engineering sciences. Some nonlinear partial differential equations that
model these processes provide many new insights into the question of interaction
of nonlinearity and diffusion. It is well known that the Burgers equation is a simple
nonlinear model equation representing phenomena described by a balance between
convection and diffusion. The Fisher equation is another simple nonlinear model
equation which arises in a wide variety of problems involving diffusion and reaction.

To understand these physical processes, this chapter is devoted to the study of
both Burgers and Fisher equations and their different kinds of solutions with physical
significance. Special attention is given to diffusive wave solutions and traveling wave
solutions of the Burgers and Fisher equations. In addition to the standard mathemat-
ical methods used for solving the Burgers and Fisher equations, similarity methods
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are developed to find the similarity solutions of both linear and nonlinear diffusion
equations with examples of applications.

8.2 Burgers Equation and the Plane Wave Solution

We recall the differential form of the nonlinear conservation equation

∂ρ

∂t
+

∂q

∂x
= 0. (8.2.1)

To investigate the nature of the discontinuous solution or shock waves, we as-
sume a functional relation q = Q(ρ) and allow a jump discontinuity for ρ and q. In
many physical problems of interest, it would be a better approximation to assume
that q is a function of the density gradient ρx as well as ρ. A simple model is to
take

q = Q(ρ)− νρx, (8.2.2)

where ν is a positive constant. Substituting (8.2.2) into (8.2.1), we obtain the nonlin-
ear diffusion equation

ρt + c(ρ)ρx = νρxx, (8.2.3)

where c(ρ) = Q′(ρ).
We multiply (8.2.3) by c′(ρ) to obtain

ct + ccx = νc′(ρ)ρxx

= ν
{
cxx − c′′(ρ)ρ2x

}
. (8.2.4)

If Q(ρ) is a quadratic function in ρ, then c(ρ) is linear in ρ, and c′′(ρ) = 0. Conse-
quently, (8.2.4) becomes

ct + ccx = νcxx. (8.2.5)

As a simple model of turbulence, c is replaced by the fluid velocity field u(x, t)
to obtain the well-known Burgers equation as

ut + uux = νuxx, (8.2.6)

where ν is the kinematic viscosity. Thus, the Burgers equation is a balance be-
tween time evolution, nonlinearity, and diffusion. This is the simplest nonlinear
model equation for diffusive waves in fluid dynamics. Burgers (1948) first devel-
oped this equation primarily to shed light on the study of turbulence described
by the interaction of the two opposite effects of convection and diffusion. How-
ever, turbulence is more complex in the sense that it is both three dimensional
and statistically random in nature. Equation (8.2.6) arises in many physical prob-
lems including one-dimensional turbulence (where this equation had its origin),
sound waves in a viscous medium, shock waves in a viscous medium, waves in
fluid-filled viscous elastic tubes, and magnetohydrodynamic waves in a medium
with finite electrical conductivity. We note that (8.2.6) is parabolic, whereas (8.2.6)
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with ν = 0 is hyperbolic. More importantly, the properties of the solution of the
parabolic equation are significantly different than those of the hyperbolic equa-
tion.

We first solve (8.2.6) for two simple cases: (i) a linearized Burgers equation and
(ii) an equation with the linearized convective term cux, where c is a constant.

In the first case, the linearized Burgers equation

ut = νuxx, −∞ < x < ∞, t > 0, (8.2.7)

with the initial conditions at t = 0

u(x, 0) =

{
u1 if x < 0,

u2 if x > 0,
(8.2.8ab)

can readily be solved by applying the Fourier transform with respect to x. The final
solution of (8.2.7) with (8.2.8ab) for t > 0 is

u(x, t) =
1

2
(u1 + u2)−

1

2
(u1 − u2) erf

(
x

2
√
νt

)
. (8.2.9)

This shows that the presence of the diffusion term νuxx is to smooth out the ini-
tial distribution like (νt)−

1
2 . The solution (8.2.9) tends to constant values u1, as

x → −∞, and u2, as x → +∞. The absence of the diffusion term in (8.2.6)
leads to gradual nonlinear steepening, and eventually breaking. Indeed, equation
(8.2.6) combines the two opposite effects of nonlinearity and diffusion. In the ab-
sence of the diffusion term in (8.2.6), the resulting equation reduces to the first-
order, nonlinear wave equation which admits a progressively distorted wave pro-
file as a solution. Eventually this solution develops a discontinuity as a shock
wave.

In the second case, equation (8.2.6) reduces to the linear parabolic equation

ut + cux = νuxx. (8.2.10)

We seek a plane wave solution of (8.2.10) in the form

u(x, t) = a exp
{
i(kx− ωt)

}
, (8.2.11)

where Imω = −νk2 < 0, since ν > 0.
Thus, the solution (8.2.11) becomes

u(x, t) = ae−νk2t exp
[
ik(x− ct)

]
. (8.2.12)

This represents a diffusive wave with wavenumbers k and phase velocity c. The
amplitude of the wave decays exponentially with time t, and the decay time t0 =
(νk2)−1 becomes smaller as k increases with fixed ν. Thus, the waves of smaller
wavelengths decay faster than the waves of longer wavelengths. On the other hand,
for a fixed wavenumber k, the decay time decreases as ν increases so that waves
of a given wavelength attenuate faster in a medium with a larger ν. This quantity
ν may be regarded as a measure of diffusion. Finally, after a sufficiently long time
(t  t0), only disturbances of long wavelength will survive, whereas all waves of
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short wavelength will decay very rapidly. For ν < 0, the solution (8.2.12) tends to
infinity as t → ∞, and hence, it becomes unstable.

8.3 Traveling Wave Solutions and Shock-Wave Structure

To investigate the effects of nonlinear steepening and diffusion, we seek a traveling
wave solution of the Burgers equation (8.2.6) in the form

u(x, t) = u(ξ), ξ = x− Ut, (8.3.1ab)

where the wave speed U is to be determined and u(ξ) represents the wave form with
the property that it tends asymptotically to constant values u1, as ξ → −∞, and
u2, as ξ → +∞. We assume that u1 > u2. Substituting (8.3.1ab) into the Burgers
equation (8.2.6) gives the ordinary differential equation

−Uu′(ξ) + uu′(ξ)− νu′′(ξ) = 0.

Integrating this equation yields

−Uu(ξ) + 1

2
u2 − νu′(ξ) = A,

where A is a constant of integration, or equivalently,

u′(ξ) =
1

2ν

(
u2 − 2Uu− 2A

)
. (8.3.2)

Clearly, this suggests that u1 and u2 are the roots of the quadratic equation

u2 − 2Uu− 2A = 0. (8.3.3)

Hence, U and A are determined from the sum and the product of the roots u1 and u2

of (8.3.3), and therefore,

U =
1

2
(u1 + u2), A = −1

2
u1u2. (8.3.4ab)

Thus, the wave speed is the average of the two speeds of asymptotic states at infinity.
Equation (8.3.2) can now be written as

2ν
du

dξ
= u2 − 2Uu− 2A = (u− u1)(u− u2).

Integrating this equation gives
(

ξ

2ν

)
= −

∫
du

(u1 − u)(u− u2)
=

du

(u1 − u2)
log

(
u1 − u

(u− u2)

)
. (8.3.5)
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Fig. 8.1 Traveling wave solution u(ξ), ξ = x− Ut.

This leads to the solution for u(ξ) in the form

u(ξ) =
u1 + u2 exp[(

ξ
2ν )(u1 − u2)]

1 + exp[( ξ
2ν )(u1 − u2)]

(8.3.6)

= u2 +
(u1 − u2)

1 + exp[( ξ
2ν )(u1 − u2)]

. (8.3.7)

Another useful expression for u can be written from (8.3.6) in the form

u(ξ) =
1

2
(u1 + u2) +

u1 + u2 exp[(
ξ
2ν )(u1 − u2)]

1 + exp[( ξ
2ν )(u1 − u2)]

− 1

2
(u1 − u2)

=
1

2
(u1 + u2)−

1

2
(u1 − u2) tanh

[(
ξ

4ν

)
(u1 − u2)

]
. (8.3.8)

As u1 > u2, the wave profile u(ξ) decreases monotonically with ξ from the constant
value u1, as ξ → −∞, to the constant value u2, as ξ → +∞, as shown in Figure 8.1.
At ξ = 0, u = 1

2 (u1+u2). The shape of the waveform (8.3.8) is significantly affected
by the diffusion coefficient ν. This means that the presence of diffusion processes
prevents the gradual distortion of the wave profile, and so, it does not break. On the
other hand, if the diffusion term is absent (ν = 0) in (8.2.6), the wave profile will
suffer from gradual distortion and steepening, and hence, it would definitely break
with development of a shock.

Shock waves are formed as a result of a balance between the steepening effect
of the convective (nonlinear) term and the smoothing effect of the linear diffusive
terms in the equation of motion. The tendency to steepening has been demonstrated
for plane waves by many authors, including Riemann (1858), who first introduced
the most general approach.

The upshot of the above analysis is that the convection and diffusion terms in
the Burgers equation exhibit opposite effects. The former introduces a sharp discon-
tinuity in the solution profile, whereas the latter tends to diffuse (spread out) the
discontinuity into a smooth profile. In view of this property, the solution is called
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the diffusive wave. In the context of fluid flow, ν represents the kinematic viscosity
which measures the viscous dissipation.

Multiplying both numerator and denominator of (8.3.6) by exp[− ξ
2ν (u1 − u2)],

we write the solution (8.3.6) in the form

u(ξ) =
u2 + u1 exp[−( ξ

2ν )(u1 − u2)]

1 + exp[−( ξ
2ν )(u1 − u2)]

. (8.3.9)

The exponential factor in this solution indicates the existence of a thin transition
layer of thickness δ of the order ν/(u1 − u2). This thickness δ can be referred to
as the shock thickness, which tends to zero as ν → 0 for fixed u1 and u2. Also, δ
increases as u1 → u2 for a fixed ν. If δ is small compared with other typical length
scales of the problem, the rapid shock transition can satisfactorily be approximated
by a discontinuity. Thus, in the limit as ν → 0, we might expect that solutions of
(8.2.6) tend to solutions of the nonlinear equation

ut + uux = 0 (8.3.10)

together with discontinuous shock waves satisfying the jump condition

1

2

(
u2
1 − u2

2

)
= U(u1 − u2), (8.3.11)

where U is the shock speed given by

U =
1

2
(u1 + u2). (8.3.12)

This is in complete agreement with the above analysis.

8.4 The Exact Solution of the Burgers Equation

We solve the initial-value problem for the Burgers equation

ut + uux = νuxx, x ∈ R, t > 0, (8.4.1)

u(x, 0) = F (x), x ∈ R. (8.4.2)

Special attention will be given to small values of ν or to large values of Reynolds
numbers.

Hopf (1950) and Cole (1951) independently discovered a transformation that
reduces the Burgers equation to a linear diffusion equation. First, we write (8.4.1) in
a form similar to a conservation law,

ut +

(
1

2
u2 − νux

)
x

= 0. (8.4.3)
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This can be regarded as the compatibility condition for a function ψ to exist, such
that

u = ψx and (8.4.4a)

νux − 1

2
u2 = ψt. (8.4.4b)

We substitute the value of u from (8.4.4a) in (8.4.4b) to obtain

νψxx − 1

2
ψ2
x = ψt. (8.4.5)

Next, we introduce ψ = −2ν log φ so that

u = ψx = −2ν
φx

φ
. (8.4.6)

This is called the Cole–Hopf transformation, which, by differentiating, gives

ψxx = 2ν

(
φx

φ

)2

− 2ν

φ
φxx and ψt = −2ν

φt

φ
.

Consequently, (8.4.5) reduces to the linear diffusion equation

φt = νφxx. (8.4.7)

Many solutions of this equation are well known in the literature. We substitute the
given solution for φ to find solutions of the Burgers equation.

We now solve equation (8.4.7) subject to the initial condition

φ(x, 0) = Φ(x), x ∈ R. (8.4.8a)

This can be written in terms of the initial value u(x, 0) = F (x) by using (8.4.6):

F (x) = u(x, 0) = −2ν
φx(x, 0)

φ(x, 0)
. (8.4.8b)

Integrating this result gives

φ(x, 0) = Φ(x) = exp

{
− 1

2ν

∫ x

0

F (α) dα

}
. (8.4.9)

The Fourier transform method or the joint Fourier–Laplace transform technique can
be used to solve the linear initial-value problem (8.4.7), (8.4.8a), and hence, the
standard solution of this problem is

φ(x, t) =
1

2
√
πνt

∫ ∞

−∞
Φ(ζ) exp

[
− (x− ζ)2

4νt

]
dζ, (8.4.10)

where Φ(ζ) is given by (8.4.9). We then substitute the value of Φ(ζ) to rewrite
(8.4.10) in the convenient form
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φ(x, t) =
1

2
√
πνt

∫ ∞

−∞
exp

(
− f

2ν

)
dζ, (8.4.11)

where

f(ζ, x, t) =

∫ ζ

0

F (α) dα+
(x− ζ)2

2t
. (8.4.12)

Thus,

φx(x, t) = − 1

4ν
√
πνt

∫ ∞

−∞

(
x− ζ

t

)
exp

(
− f

2ν

)
dζ. (8.4.13)

Therefore, the exact solution of the Burgers initial-value problem is obtained from
(8.4.6) in the form

u(x, t) =

∫∞
−∞(x−ζ

t ) exp(− f
2ν ) dζ∫∞

−∞ exp(− f
2ν ) dζ

. (8.4.14)

This is clearly single-valued and continuous for all values of t. The physical inter-
pretation of this exact solution can hardly be given unless a suitable simple form of
F (x) is specified. In many problems, an exact evaluation of the integrals involved
in (8.4.14) is almost a formidable task. It is then necessary to resort to asymptotic
methods. We next consider the following example to investigate the formation of
discontinuities or shock waves.

Example 8.4.1. Find the solution of the Burgers initial-value problem with physical
significance for the discontinuous data

F (x) = Aδ(x)H(x), (8.4.15)

where A is a constant, δ(x) is the Dirac delta function, and H(x) is the Heaviside
unit step function.

To find the solution, first we calculate

f(ζ, x, t) = A

∫ ζ

0+

δ(α) dα+
(x− ζ)2

2t
=

{
(x−ζ)2

2t −A if ζ < 0,
(x−ζ)2

2t if ζ > 0.

Thus, the integral in the numerator of (8.4.14) is
∫ ∞

−∞

(
x− ζ

t

)
exp

(
− f

2ν

)
dζ =

∫ 0

−∞

(
x− ζ

t

)
exp

{
A

2ν
− (x− ζ)2

4νt

}
dζ

+

∫ ∞

0

(
x− ζ

t

)
exp

{
− (x− ζ)2

4νt

}
dζ

= 2ν
(
eR − 1

)
exp

(
− x2

4νt

)
,

which is obtained by substituting (x − ζ)/2
√
νt = α and writing ( A

2ν ) = R which
can be interpreted as the Reynolds number (Whitham 1974). Clearly, by small ν, we
mean large R (R  1), and the large ν corresponds to small R (R � 1).
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Similarly, the integral in the denominator of (8.4.14) gives
∫ ∞

−∞
exp

(
− f

2ν

)
dζ = 2

√
νt

[√
π +

(
eR − 1

)
erfc

(
x

2
√
νt

)]
.

So the final solution u(x, t) is obtained from (8.4.14) in the form

u(x, t) =

√
ν

t

[
(eR − 1) exp(− x2

4νt )√
π + (eR − 1)

√
π
2 erfc( x

2
√
νt
)

]
. (8.4.16)

Thus, this solution takes the similarity form

u(x, t) =

√
ν

t
g(η,R), (8.4.17)

where η = (x/2
√
νt) is the similarity variable. Two limiting cases (i) R → 0 and

(ii) R → ∞ are of interest, and they are considered below.
Case (i) In the limit as R → 0(ν → ∞), the effect of diffusion would be more

significant than that of nonlinearity. So, in this case, we can approximate eR ∼ 1+R
and erfc( x

2
√
νt
) → 0 in (8.4.16) to obtain the final solution

u(x, t) ∼ A

2
√
πνt

exp

(
− x2

4νt

)
. (8.4.18)

This is the fundamental (or source) solution of the linear diffusion equation. At any
time t, the velocity field is Gaussian. The peak height of u(x, t) decreases inversely
with

√
νt, whereas the width of the peak (x ∼

√
νt) increases with

√
νt. These are

remarkable features of diffusion phenomena.
Case (ii) In this case, R → ∞(ν → 0). So, the nonlinear effect would dominate

over diffusion, and hence, discontinuity as a shock is expected to develop. We intro-
duce the similarity variable η = x/

√
2At so that x/

√
4νt = η

√
R, and then, rewrite

the solution (8.4.16) as

u(x, t) =

√
ν

t

[
(eR − 1) exp(−Rη2)

√
π + (eR − 1)(

√
π
2 ) erfc(η

√
R)

]
, (8.4.19)

which has the similarity form

u(x, t) =

(
A

2Rt

) 1
2

g(η,R). (8.4.20)

Since R → ∞, eR − 1 can be replaced by eR, hence, (8.4.19) gives

u(x, t) =

√
ν

t

[
exp{R(1− η2)}

√
π + (

√
π
2 ) exp(R) erfc(η

√
R)

]
for all η,

∼ 0 as R → ∞ for η < 0 and η > 1.

(8.4.21)
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When R → ∞ and 0 < η < 1, we use the asymptotic result

erfc
(
η
√
R
)
∼ 1

η
√
πR

exp
(
−η2R

)

to obtain the solution from (8.4.21) as

u(x, t) =

(
2A

t

) 1
2
[

η

1 + 2η
√
πR exp{−R(1− η2)}

]
(8.4.22)

∼ η

(
2A

t

) 1
2

=
x

t
as R → ∞. (8.4.23)

It turns out that the final asymptotic solution, as R → ∞, is

u(x, t) ∼
{

x
t if 0 < x <

√
2At,

0 otherwise.
(8.4.24)

This result represents a shock wave at x =
√
2At, and the shock speed is U = dx

dt =

(A2t )
1
2 . The solution u(x, t) has a jump from zero to x

t = ( 2At )
1
2 , and hence, the

shock condition is satisfied.
Whitham (1974) investigated the structure of the shock wave solution for large

values of R. He found two transition layers: one at η = 1 and the other (weaker)
layer at η = 0. For large but finite R, (8.4.22) indicates a rapid transition from

exponentially small values in η > 1 to u ∼
√

2A
t η in η < 1. In the transition layer

η ≈ 1, solution (8.4.22) can be approximated by

u(x, t) ∼
√

2A

t

[
1 + 2

√
πR exp

{
2R(η − 1)

}]−1
. (8.4.25)

This shows that this transition layer has thickness O(R−1).
On the other hand, the second layer at η = 0 does smooth out the discontinuity

in the derivative between u ∼ 0 in η < 0 to u ∼ x
t in 0 < η < 1. It follows from

(8.4.21) that this weaker layer occurs for η = O( 1√
R
), and hence, (8.4.22) assumes

the approximate form

u(x, t) ∼ 2

√
ν

πt
· exp(−Rη

2)

erfc(η
√
R)

. (8.4.26)

This solution for large R is drawn in Figure 8.2, where
√

t
2νu is plotted against

η = x√
2νt

. This represents a triangular wave solution of the Burgers equation. As
R → ∞, the shock layer at x = 0 becomes a discontinuity of ux.
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Fig. 8.2 Triangular wave solution of the Burgers equation.

8.5 The Asymptotic Behavior of the Burgers Solution

We use the stationary phase approximation to examine the asymptotic nature of the
Burgers solution (8.4.14). We consider any typical integral

u(x, t) =

∫ b

a

F (k) exp
{
itθ(k)

}
dk, (8.5.1)

where F (k) is a given function and θ(k) = (xt )k − ω(k). Integral (8.5.1) can be
approximated asymptotically, as t → ∞ for fixed x, by

u(x, t) ∼ F (k1)

[
2π

t|θ′′(k1)|

] 1
2

exp

[
i

{
tθ(k1) +

π

4
sgn θ′′(k1)

}]
, (8.5.2)

where k1 is a stationary point determined by the solution of the equation

θ′(k) =
x

t
− ω′(k) = 0, a < k1 < b (8.5.3)

and θ′′(k1) �= 0.
According to this result, the significant contribution to integrals involved in

(8.4.14) comes from stationary points for fixed x and t, that is, from the roots of
the equation

∂f

∂ζ
= F (ζ)−

(
x− ζ

t

)
= 0. (8.5.4)

Suppose that ζ = ξ(x, t) is a solution of (8.5.4) representing a stationary point. In-
voking the stationary phase formula (8.5.2), the integrals in (8.4.14) have the asymp-
totic representation as ν → 0, in the form,

∫ ∞

−∞

(
x− ζ

t

)
exp

(
− f

2ν

)
dζ ∼

(
x− ζ

t

)[
4πν

|f ′′(ξ)|

] 1
2

exp

{
−f(ξ)

2ν

}
,

∫ ∞

−∞
exp

(
− f

2ν

)
dζ ∼

[
4πν

|f ′′(ξ)|

] 1
2

exp

{
−f(ξ)

2ν

}
.
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Therefore, the final asymptotic solution is

u(x, t) ∼ x− ξ

t
, (8.5.5)

where ξ(x, t) satisfies equation (8.5.4).
In other words, the solution assumes the asymptotic form

u = F (ξ),
ξ = x− tF (ξ).

}
(8.5.6ab)

This is identical with the solution of the Burgers equation without the diffusion term
(ν = 0). Here, the stationary point ξ corresponds to the characteristic variable in the
context of the first-order, quasi-linear equation. As discussed in Chapter 5, the wave
profile described by (8.5.6ab) suffers from gradual distortion and steepening, leads to
a multi-valued solution after a sufficiently long time, and, eventually, it breaks with
the development of discontinuity as a shock wave. When this state is reached, mathe-
matically, there will be two stationary points of (8.5.4), and then, some modification
is required to complete the asymptotic analysis. This leads to Whitham’s geometrical
rule of equal area which is equivalent to the shock condition. We shall not pursue
this analysis further, and refer to Whitham (1974) and Burgers (1974) for a detailed
discussion.

8.6 The N -Wave Solution

To find an N -wave solution of the Burgers equation, we begin with the source solu-
tion of the linear diffusion equation (8.4.7) of the form

φ(x, t) = 1 +

√
τ

t
exp

(
− x2

4νt

)
, (8.6.1)

where τ is a constant.
Substituting (8.6.1) into (8.4.6) gives the solution of the Burgers equation as

u(x, t) =

(
x

t

)
·

√
τ
t exp(−

x2

4νt )

1 +
√

τ
t exp(−

x2

4νt )
, (8.6.2)

=
x

t

[
1 +

√
t

τ
exp

(
x2

4νt

)]−1

. (8.6.3)

For any time t > 0, this solution is shown in Figure 8.3 and has the N -shaped
form. Because of this particular shape of the wave profile, it is known as the N -wave
solution of the Burgers equation. At t = t0 > 0, the profile may be taken as the initial
profile. Such N waves are observed in many physical situations including problems
governed by the cylindrical or spherical Burgers equation.
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Fig. 8.3 N -wave solution of the Burgers equation.

The area under the negative phase of the wave profile is the same as that over the
positive phase of the profile. So, the area under the positive phase of the wave profile
is given by

∫ ∞

0

u(x, t) dx = −2ν
[
log φ(x, t)

]∞
0

= 2ν log

[
1 +

√
τ

t

]
. (8.6.4)

We denote the right-hand side of (8.6.4) in the initial time t = t0 by A and then
introduce a Reynolds number R by

R =
A

2ν
= log

[
1 +

√
τ

t0

]
, (8.6.5)

so that
√

τ
t0

= (eR − 1), and solution (8.6.3) reduces to

u(x, t) =

(
x

t

)[
1 +

√
t

t0

(
eR − 1

)−1
exp

(
x2R

2At

)]−1

. (8.6.6)

When R  1, eR − 1 ∼ eR, so that (8.6.6) reduces to the form

u(x, t) ∼
(
x

t

)[
1 +

√
t

t0
exp

{
−R

(
1− x2

2At

)}]−1

. (8.6.7)

In the limit, as R → ∞ with fixed t, (8.6.7) gives the shock-wave solution of the
Burgers equation in the form

u(x, t) ∼
{

x
t if|x| <

√
2At,

0 if |x| >
√
2At.

(8.6.8)

In the limit as t → ∞, for fixed ν and τ , solution (8.6.2) takes the form

u(x, t) ∼
(
x

t

)(
τ

t

) 1
2

exp

(
− x2

4νt

)
. (8.6.9)

This corresponds to the dipole solution of the linear diffusion equation.
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Finally, in the limit as R → 0, eR − 1 ∼ R, and result (8.6.6) gives

u(x, t) ∼
(
xR

t

)√
t0
t
exp

(
−x2R

2At

)
. (8.6.10)

This is identical with (8.6.9), as expected, because R → 0 corresponds to ν → ∞.

8.7 Burgers Initial- and Boundary-Value Problem

We solve Burgers equation (8.4.1) in 0 < x < l, t > 0 with the following initial and
boundary conditions:

u(x, 0) = u0 sin

(
πx

l

)
, 0 ≤ x ≤ l, (8.7.1)

u(0, t) = u(l, t) = 0, t > 0. (8.7.2)

It follows from the Cole–Hopf transformation, that is, from (8.4.9), that

φ(x, 0) = exp

[
−
(
u0

2ν

)∫ x

0

sin

(
πα

l

)
dα

]

= exp

[
−
(
u0l

2πν

)(
1− cos

πx

l

)]
, (8.7.3)

so that boundary conditions (8.7.2) are satisfied.
The standard solution of the linear diffusion equation (8.4.7) is given by

φ(x, t) = a0 +
∞∑

n=1

an exp

(
−n2π2νt

l2

)
cos

(
nπx

l

)
, (8.7.4)

where

a0 =
1

l

∫ �

0

exp

[
−
(
u0l

2πν

)(
1− cos

πx

l

)]
dx

= exp

(
− u0l

2πν

)
I0

(
lu0

2πν

)
(8.7.5)

and

an =
2

l

∫ �

0

exp

[
−
(
lu0

2πν

)(
1− cos

πx

l

)]
cos

(
nπx

l

)
dx

= 2 exp

(
− lu0

2πν

)
In

(
u0l

2πν

)
, (8.7.6)

where the preceding integrals are evaluated by using standard integrals from Abra-
mowitz and Stegun (1972), and I0(x) and In(x) are the modified Bessel functions
of the first kind.
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Thus, the solution of the Burgers initial-boundary problem is given by

u(x, t) =

(
4πν

l

) ∑∞
n=1 nIn(

u0l
2πν ) exp(−

n2π2νt
l2 ) sin(nπxl )

I0(
u0l
2πν ) + 2

∑∞
n=1 In(

u0l
2πν ) exp(−

n2π2νt
l2 ) cos(nπxl )

. (8.7.7)

At t = 0, the value of the denominator of (8.7.7) is exp[( u0l
2πν ) cos(

πx
l )]. We use this

result combined with (8.7.1) and the value of φx(x, 0) from (8.7.3) and (8.7.4) to
verify that the solution (8.7.7) satisfies the initial condition (8.7.1). We note here that
the quantity (u0l

ν ) = R represents the Reynolds number.
The solution of the linear diffusion equation (8.4.7), subject to the initial and

boundary data (8.7.1), (8.7.2), is given by

φ(x, t) = u0 exp

(
−π2νt

l2

)
sin

(
πx

l

)
. (8.7.8)

The following conclusions are in order. First, the nonlinear solution (8.7.7) con-
tains an infinite set of higher harmonics with decreasing amplitudes, whereas the
linear solution (8.7.8) contains only the fundamental harmonic. Second, the former
solution depends on the Reynolds number R rather than the initial amplitude u0.

We next use the asymptotic expansion of the modified Bessel function

In

(
R

π

)
∼ 1√

2R
exp

(
R

π

)
, as R → ∞,

to find the asymptotic solution for u(x, t), as R → ∞,

u(x, t) ∼
(
4πν

l

)[ ∑∞
n=1 exp(−n2π2νt

l2 ) sin(nπxl )

1 + 2
∑∞

n=1 exp(−n2π2νt
l2 ) cos(nπxl )

]
. (8.7.9)

It is interesting to point out that this asymptotic solution is identical with the exact
solution. This series solution is extremely rapidly convergent for all values of (νtl2 ),
and hence, it is easy to calculate the wave form. When νt

l2  1, the term with n = 1
in (8.7.9) dominates the series, and hence, we obtain

u(x, t) ∼
(
4πν

l

)
exp

(
−π2νt

l2

)
sin

(
πx

l

)
. (8.7.10)

This represents a sinusoidal wave form with an exponentially decaying attenuation.
Thus, the ultimate decay of the solution is dominated by diffusion.

Another form of the solution (8.7.9) can be derived by using the Jacobi theta
function defined by

ϑ3(X,T ) = 1 + 2

∞∑
n=1

exp
(
−πn2T

)
cos(2nX),

where X = πx
2l and T = νπt

l2 , so that
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∂

∂X
log ϑ3(X,T ) = 2

∞∑
n=1

(−1)n
{
sinh

(
νnπ2t

l2

)}−1

sin(2nX).

In view of these results, solution (8.7.9) becomes

u(x, t) =

(
2πν

l

) ∞∑
n=1

(−1)n+1

{
sinh

(
νnπ2t

l2

)}−1

sin

(
nπx

l

)
. (8.7.11)

This is another form of the solution (8.7.9). As suggested by Cole (1951), this solu-
tion is approximately equal to

u(x, t) ∼ l

t

[
tanh

(
l − x

2νt

)
−
(
l − x

l

)]
. (8.7.12)

This does not depend on the initial amplitude. Physically, the initial sinusoidal profile
for large R suffers from a nonlinear steepening effect near x = l because of the
higher harmonics generated by convection. However, this wave form steepening may
be prevented by the effects of diffusion. As time t becomes large, this effect spreads
in the entire wave profile, leading to exponential decay of the harmonics according
to (8.7.11).

Finally, for a detailed discussion of the solution of the spatially periodic initial-
value problem with general initial conditions, we refer to a paper by Walsh (1969).

8.8 Fisher Equation and Diffusion–Reaction Process

Fisher (1936) first introduced a nonlinear evolution equation to investigate the wave
propagation of an advantageous gene in a population. His equation also describes the
logistic growth–diffusion process and has the form

ut − νuxx = ku

(
1− u

κ

)
, (8.8.1)

where ν(> 0) is a diffusion constant, k(> 0) is the linear growth rate, and κ(> 0)
is the carrying capacity of the environment. The term f(u) = ku(1− u

κ ) represents
a nonlinear growth rate which is proportional to u for small u, but decreases as u
increases, and vanishes when u = κ. It corresponds to the growth of a population u
when there is a limit κ on the size of the population that the habitat can support; if
u > κ, then f(u) < 0, so the population decreases whenever u is greater than the
limiting value κ. This interpretation suggests that the habitat can support a certain
maximum population so that

0 ≤ u(x, 0) ≤ κ for x ∈ R. (8.8.2)

In recent years, the Fisher equation (8.8.1) has been used as a basis for a wide
variety of models for the spatial spread of genes in a population and for chemical
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wave propagation. It is pertinent to mention recent work on gene-culture waves of
advance by Aoki (1987), on the propagation of chemical waves by Arnold et al.
(1987), and on the spread of early farming in Europe by Ammerman and Cavalli-
Sforva (1971, 1983). It also represents a model equation for the evolution of a neutron
population in a nuclear reactor (Canosa 1969, 1973).

The Fisher equation (8.8.1) is a particular case of a general model equation,
called the nonlinear reaction–diffusion equation, which can be obtained by intro-
ducing the net growth rate f(x, t, u) so that it takes the form

ut − νuxx = f(x, t, u), x ∈ R, t > 0. (8.8.3)

The term f is also referred to as a source or reaction term and it represents the
birth–death process in an ecological context. This equation arises in many physical,
biological, and chemical problems involving diffusion and nonlinear growth. For ex-
ample, if a chemically reacting substance is diffusing through a medium, then its
concentration u(x, t) satisfies (8.8.3), where f represents the rate of increase of the
substance due to the chemical reaction. The temperature distribution u(x, t) satisfies
(8.8.3) when a chemical reaction generates heat at a rate depending on the temper-
ature. Other problems described by (8.8.3) include the spread of animal or plant
populations and the evolution of neutron populations in a nuclear reactor, where f
represents the net growth rate.

We study the Fisher equation as a nonlinear model for a physical system involv-
ing linear diffusion and nonlinear growth. It is convenient to introduce the nondi-
mensional quantities x∗, t∗, u∗ defined by

x∗ =

(
k

ν

) 1
2

x, t∗ = kt, u∗ = κ−1u, (8.8.4)

where
√

ν
k , k−1, and κ represent the length scale, time scale, and population scale,

respectively. Using (8.8.4) and dropping the asterisks, equation (8.8.1) takes the
nondimensional form

ut − uxx = u(1− u), x ∈ R, t > 0. (8.8.5)

In the spatially homogeneous problem, the stationary states are u = 0 and u = 1,
which represent unstable and stable solutions, respectively. It is then appropriate to
look for traveling wave solutions of (8.8.5) for which 0 ≤ u ≤ 1. We seek all
solutions of (8.8.5) subject to (8.8.2) with κ = 1 such that all derivatives of u vanish
as |x| → ∞, and

lim
x→−∞

u(x, t) = 1 and lim
x→∞

u(x, t) = 0, t ≥ 0. (8.8.6)

Physically, the first condition implies that the population has its maximum value as
x → −∞, and the second condition represents zero population as x → +∞.

In their study of a nonlinear system, with applications to combustion and wave
propagation in biology and chemistry, Kolmogorov et al. (1937) proved that, for all
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initial data of the type 0 ≤ u(x, 0) ≤ 1, x ∈ R, the solution of (8.8.5) is also bounded
for all x and t, that is,

0 ≤ u(x, t) ≤ 1, x ∈ R, t > 0.

They also showed that, for the two sets of discontinuous initial data,

(i) u(x, 0) =

{
1 if x < 0,

0 if x > 0,

(ii) u(x, 0) =

⎧⎪⎨
⎪⎩
1 if x < a,

f(x) if a < x < b,

0 if x > b,

where f(x) is an arbitrary function, the solution of (8.8.5) evolves, as t → ∞, into
a shock-like traveling wave satisfying condition (8.8.6) and propagates to the right
with minimum characteristic velocity cmin = 2.

It is important to note that equation (8.8.5) is invariant under the transforma-
tion x → −x. So, it is sufficient to consider waves propagating to the right only.
Kolmogorov et al. (1937) suggested one of the best-known model equations with
dissipation in the form

ut − κuxx = F (u), (8.8.7)

where F (u) is an arbitrary function of u. This is known as the KPP equation and it
describes phenomena such as combustion, evolution of genes, and propagation of a
nerve pulse in biological systems.

The generalized KPP equation is given by

ut − u2 +K(u) = 0, (8.8.8)

when the linear pseudodifferential operator κ is defined by (7.8.25) and (7.8.26). The
equation (8.8.8) corresponds to the symbol K(k) = 1 + k2. The Cauchy condition
for (8.8.8) is

u(x, 0) = u0(x), (8.8.9)

where u0(x) ∈ L(R), which is required to ensure the stable solution (u → 0) of the
Cauchy problem for (8.8.8), (8.9.9) as t → ∞. Kolmogorov et al. (1937) proposed
a new approach to studying the asymptotic behavior of the solution of the nonlocal
KPP equation as t → ∞. This approach is essentially based on application of the
explicit form of Green’s function for the linear KPP equation. They considered the
step-decaying problem for the KPP equation, that is, the Cauchy problem with the
initial data u0(x) → a± as |x| → ∞, where a+, a− are constants with a+ �= a−. The
work of Kolmogorov et al. (1937) led to a large number of studies on the asymptotic
solutions as t → ∞ of the Cauchy problem for the KPP equation (see also Bramson
1983). Indeed, the uniform asymptotic behavior of u(x, t) with respect to ξ, as t →
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∞, is given by

u(x, t) ∼ A√
t
e−t

∫ ∞

0

e−k2

cos(kξ) dk +O
(
e−tt−1

)
, (8.8.10)

where ξ = ( |x|√
t
) ∈ R, and the constant A is expressed in terms of the symbol

K(k) and the initial function u0(k). For details, the reader is referred to Chapter 6
in Naumkin and Shishmarev (1994).

8.9 Traveling Wave Solutions and Stability Analysis

The Fisher equation (8.8.5) is one of the prototype equations which admits traveling
wave solutions. We seek a traveling wave solution of (8.8.5) in the form

u(x, t) = u(ξ), ξ = x− ct, (8.9.1)

where the wave speed c is to be determined and the waveform u(ξ) satisfies the
boundary data (8.8.6), as ξ → ∓∞. We substitute (8.9.1) into (8.8.5) to obtain the
nonlinear, ordinary differential equation

u′′(ξ) + cu′(ξ) + u(ξ)− u2(ξ) = 0. (8.9.2)

Writing du
dξ = v, equation (8.9.2) gives two first-order equations

du

dξ
= 0 · u+ v,

dv

dξ
= u(u− 1)− cv, (8.9.3ab)

or equivalently,
dv

du
=

u(u− 1)− cv

v
. (8.9.4)

This system (8.9.3ab) has a simple interpretation in the Poincaré phase plane. The
singular points of this system are the solutions of the equations

v = 0, u(u− 1)− cv = 0. (8.9.5ab)

Thus, there are two singular points (u, v) = (0, 0) and (1, 0) which represent the
steady states.

We follow the standard phase plane analysis to examine the nature of the nonlin-
ear autonomous system given by

du

dξ
= p(u, v),

dv

dξ
= q(u, v).

The matrix associated with this system at the critical point (u0, v0) is
(
pu(u0, v0) pv(u0, v0)
qu(u0, v0) qv(u0, v0)

)
.



400 8 Nonlinear Diffusion–Reaction Phenomena

Fig. 8.4 Phase plane trajectories for c > 2.

In the present problem, the matrix A at (0, 0) is

A(0, 0) =

(
0 1
−1 −c

)
.

The matrix at (1, 0) is

A(1, 0) =

(
0 1
1 −c

)
.

The eigenvalues λ of the matrix A at (0, 0) are the roots of the equation
∣∣∣∣0− λ 1
−1 −(c+ λ)

∣∣∣∣ = 0.

This equation gives the eigenvalues

λ = −1

2

[
c∓

√
c2 − 4

]
. (8.9.6)

The eigenvalues are real, distinct, and of the same sign if the discriminant D =
c2 − 4 > 0. According to the theory of dynamical systems, the origin is a stable
node for c ≥ cmin = 2, and when c = cmin = 2, it is a degenerate node. The phase
plane trajectories of equation (8.9.2) for the traveling wave front solution for c > 2
are shown in Fig. 8.4. There is a unique separatrix joining the stable node (0, 0) with
the saddle point (1, 0). If c2 < 4, the eigenvalues are complex with a negative real
part, and hence, the curve is a stable spiral, that is, u(ξ) oscillates in the vicinity of
the origin.

On the other hand, the eigenvalues λ of the matrix A at (1, 0) are the roots of the
equation ∣∣∣∣0− λ 1

1 −c− λ

∣∣∣∣ = 0.
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Fig. 8.5 Traveling wave solution.

This equation gives two eigenvalues

λ =
1

2

[
−c±

√
c2 + 4

]
. (8.9.7)

These eigenvalues are real and of opposite sign, and hence, (1, 0) is a saddle
point.

Finally, the traveling wave solution u(ξ) of the Fisher equation for c > 2, satis-
fying the boundary conditions (8.8.6), as ξ → ∓∞, is a monotonically decreasing
function of ξ when its first derivative vanishes as ξ → ∓∞. Clearly, this corresponds
to the separatrix joining the singular points (1, 0) and (0, 0), as shown in Figure 8.4.
A typical traveling wave solution u(ξ) for c ≥ 2 is shown in Figure 8.5. On the other
hand, if c < 2, there are traveling wave solutions, but they are physically unrealistic
since u(ξ) < 0 for some ξ because, in this case, u spirals around the origin. Further,
u → 0 at the leading edge with diminishing oscillations about u = 0.

We examine the stability of the traveling wave solution of (8.8.5) in the form

u(x, t) = U(ξ), ξ = x− ct, (8.9.8)

where c is the wave speed.
Such a solution is said to be asymptotically stable if a small perturbation imposed

on the system at time t = 0 decays to zero, as t → ∞. We introduce a coordinate
frame moving with the wave speed c, that is, ξ = x−ct, t = t, so that (8.8.5) reduces
to the form

ut − cuξ = uξξ + u(1− u). (8.9.9)

We look for a perturbed solution of (8.9.9) in the form

u(ξ, t) = U(ξ) + εv(ξ, t), (8.9.10)

where ε (0 < ε � 1) is a small parameter and the second term represents a small
perturbation from the given basic solution U(ξ). The perturbed state v(ξ, t) is as-
sumed to have compact support in the moving frame, that is, v(ξ, t) = 0 for |ξ| ≥ a
for some finite a > 0. We substitute (8.9.10) into (8.9.9) to find the equation for the
perturbed quantity, v, to order ε,
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vt − cvξ = vξξ + (1− 2U)v. (8.9.11)

We next seek solutions of this equation in the form

v(ξ, t) = V (ξ) exp(−λt). (8.9.12)

Substituting this solution into (8.9.11) gives the following linear eigenvalue problem:

V ′′(ξ) + cV ′(ξ) + (λ+ 1− 2U)V = 0, (8.9.13)

where the growth factor λ is considered an eigenvalue. Since the original per-
turbed state has compact support, we may take the boundary condition on V (ξ) as
V (±a) = 0. According to the general theory of eigenvalue problems, the pertur-
bation will grow in time if the eigenvalues λ are negative, and hence, the system
will become unstable. On the other hand, if the eigenvalues λ are positive, then the
perturbation will decay to zero, as t → ∞, and hence, the system is asymptotically
stable.

To reduce the problem in the standard form, we introduce a new transformation

V (ξ) = w(ξ) exp

(
−1

2
cξ

)
(8.9.14)

so that the preceding eigenvalue problem reduces to the form

w′′ + [λ− q(ξ)]w = 0,
w(−l) = w(l) = 0,

}
(8.9.15ab)

where

q(ξ) =
c2

2
− (1− 2U) ≥ 2U(ξ) > 0 for c ≥ 2. (8.9.16)

This is a standard eigenvalue problem, and all its eigenvalues are real and positive
provided c ≥ 2. This means that all small perturbations of finite extent decay ex-
ponentially to zero, as t → ∞. We conclude that the traveling wave solution of the
Fisher equation is asymptotically stable. However, the present perturbation analysis
is not completely general. The general problem has been studied by several authors
including Hoppensteadt (1975) and Larson (1978).

8.10 Perturbation Solutions of the Fisher Equation

The existence of the traveling wave solution of the Fisher equation was established
by using a geometric argument. However, it has not been possible to determine the
exact or approximate representation of the solution. We now employ the standard
perturbation method to find the asymptotic solution of the boundary-value problem
for u(ξ), which satisfies the differential system

u′′ + cu′ + u(1− u) = 0, −∞ < ξ < ∞, (8.10.1)

u(−∞) = 1, u(+∞) = 0, (8.10.2)

where c ≥ 2.
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Since equation (8.10.1) is autonomous, the solution is translation invariant. We
choose the value u(ξ) at ξ = 0 to be any number in the range of u, and hence, we take
u(0) = 1

2 , which is needed to solve the problem. We introduce a new independent
variable z = ξ

c =
√
εξ, where ε = c−2 is a small parameter, to transform (8.10.1)

and the boundary conditions into the form

εu′′(z) + u′(z) + u− u2 = 0, −∞ < z < ∞, (8.10.3)

u(−∞) = 1, u(0) =
1

2
, u(+∞) = 0. (8.10.4)

We seek a perturbation series expansion for u(z) in powers of ε as

u(z, ε) = u0(z) + εu1(z) + ε2u2(z) + · · · , (8.10.5)

where u0(z), u1(z), and u2(z) are to be determined. We substitute (8.10.5) into
(8.10.3) and set the coefficients of various powers of ε to be zero to obtain

u′
0 + u0 − u2

0 = 0, (8.10.6)

u0(−∞) = 1, u0(0) =
1

2
, u0(+∞) = 0, (8.10.7)

and

u′
1 + u1(1− 2u0) + u′′

0 = 0, (8.10.8)

u1(−∞) = u1(0) = u1(+∞) = 0. (8.10.9)

The general solution of (8.10.6) is given by

u0(z) =
(
1−Aez

)−1
,

where A = −1, since u0(0) = 1
2 .

Thus, the solution reduces to the form

u0(z) =
(
1 + ez

)−1
. (8.10.10)

We then solve (8.10.8), which becomes

u′
1 +

(
ez − 1

ez + 1

)
u1 −

ez

(1 + ez)2
= 0. (8.10.11)

This can be solved directly by elementary methods, and the solution is given by

u1(z) =
ez

(1 + ez)2
log

{
4ez

(1 + ez)2

}
. (8.10.12)

Thus, the asymptotic solution of the original problem is given by

u(z) ∼
(
1 + ez

)−1
+

ε2ez

(1 + ez)2
log

{
4ez

(1 + ez)2

}
+O

(
ε2
)
, (8.10.13)

where z = ( ξc ) =
1
c (x− ct).

This represents an asymptotic traveling wave solution for c ≥ 2. The present
problem is not a singular perturbation problem because u and du

dz tend to finite val-
ues in the limit, as ε → 0. Equation (8.10.3) has a uniform limit and the regular
perturbation method gives an accurate solution in the whole domain.
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8.11 Method of Similarity Solutions of Diffusion Equations

Birkhoff (1950) first recognized that Boltzmann’s method of solving the diffusion
equation with a concentration-dependent diffusion coefficient is based on the alge-
braic symmetry of the equation, and special solutions of this equation can be ob-
tained by solving a related ordinary differential equation. Such solutions are called
similarity solutions because they are geometrically similar. He also suggested that the
algebraic symmetry of the partial differential equations can be used to find similarity
solutions of other partial differential equations by solving associated ordinary differ-
ential equations. Thus, the method of similarity solutions became very successful in
dealing with the determination of a group of transformations under which a given
partial differential equation is invariant. The simplifying feature of this method is
that a similarity transformation of the form u(x, t) = tpv(η), η = xt−q, can be
found which can then be used effectively to reduce the partial differential equation
to an ordinary differential equation with η as the independent variable. The resulting
ordinary differential equation is relatively easy to solve. In practice, this method is
simple and useful in finding solutions of both linear and nonlinear partial differential
equations. We illustrate the method of similarity solutions by examples of applica-
tions.

Example 8.11.1 (Similarity Solutions of Linear Diffusion Equation). We consider the
classical linear diffusion equation with constant diffusion coefficient κ in the form

ut = κuxx, 0 ≤ x < ∞, t > 0, (8.11.1)

subject to the following boundary and initial conditions:

u(0, t) = 1, u(x, t) → 0 as x → ∞ for t > 0, (8.11.2ab)

u(x, 0) = 0 for 0 ≤ x < ∞. (8.11.3)

We introduce a one-parameter set of stretching transformations in the (x, t, u)-
space defined by

x̃ = aαx, t̃ = aβt, ũ = aγu, (8.11.4)

under which equation (8.11.1) is invariant, where a is a real parameter which belongs
to an open interval I containing a = 1, and α, β, and γ are the fixed constants. Usu-
ally the set of transformations in the (x, t, u)-space is denoted by Ta, and we write
the set explicitly as Ta : R3 → R

3 for each a ∈ I . The set of all such transforma-
tions {Ta} form a Lie group on R

3 with an identity element T1. This can be seen as
follows.

The set {Ta} obeys the composition (multiplication) law

TaTbx = Tabx, for all a, b ∈ I. (8.11.5)

This law is commutative because Tab = Tba. The associative law is also satisfied
since

Ta(TbTc) = Ta(Tbc) = Tabc = (Tab)Tc = (TaTb)Tc. (8.11.6)
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In view of the fact that

T1Ta = T1a = Ta1 = Ta for all a �= 0, (8.11.7)

where T1 represents the identity transformation.
Finally, we obtain

TaTa−1 = T1 = Ta−1Ta. (8.11.8)

This shows that the inverse of Ta is Ta−1 .
Clearly,

ũt̃ = aγ−βut, ũx̃ = aγ−αux, ũx̃x̃ = aγ−2αuxx, (8.11.9)

and hence,

ũt̃ − κũx̃x̃ = aγ−βut − κaγ−2αuxx = aγ−β(ut − κuxx), (8.11.10)

provided β = 2α. Hence, equation (8.11.1) is invariant under the transformation

x̃ = aαx, t̃ = a2αt, ũ = aγu, (8.11.11)

for any choice of α and γ. The quantities

v = tpu(x, t), η = xt−q, (8.11.12ab)

are invariant under Ta provided p = −(γ/β) and q = (α/β). Thus, the invariants of
the transformations are given by

v(η) = ut−γ/β = ut−γ/2α, η = xt−α/β = xt−
1
2 . (8.11.13ab)

Substituting (8.11.13ab) into the original equations (8.11.1)–(8.11.3) gives an
ordinary differential equation of the form

κv′′(η) +
1

2
ηv′(η)− γ

2α
v(η) = 0. (8.11.14)

The transformed data are then given by

u(0, t) = tγ/2αv(0) = 1 and (8.11.15a)

v(∞) = 0. (8.11.15b)

To make (8.11.15a) independent of t, we require that γ = 0. Consequently,
(8.11.14)–(8.11.15a), (8.11.15b) become

v′′(η) +

(
η

2κ

)
v′(η) = 0, (8.11.16)

v(0) = 1 and v(∞) = 0. (8.11.17ab)
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Thus, equation (8.11.1) admits the set of transformations (8.11.13ab), which re-
duces the partial differential equation (8.11.1) to the ordinary differential equation
(8.11.14). Result (8.11.13ab) is called a similarity transformation, and the new inde-
pendent variable η is called a similarity variable.

Integrating (8.11.16) yields the general solution

v(η) = A+B

∫ η

0

exp

(
− ξ2

4κ

)
dξ, (8.11.18)

where A and B are integration constants to be determined by using (8.11.17ab). It
turns out that A = 1 and B = − 1√

πκ
. Thus, the solution takes the form

v(η) = 1− 1√
πκ

∫ η

0

exp

(
− ξ2

4κ

)
dξ

= 1− 2√
π

∫ x/
√
4κt

0

exp
(
−α2

)
dα

= 1− erf

(
x√
4κt

)
= erfc

(
x√
4κt

)
, (8.11.19)

where erf(z) and erfc(z) are the standard error and complementary error functions,
respectively. The solution (8.11.19) is identical with the known solution (1.9.24)
which can be obtained by other methods. The present method of solution seems
to be simple and powerful, and hence, could be used for other partial differential
equations.

Example 8.11.2 (Similarity Solution of the Boltzmann Nonlinear Diffusion Problem).
We apply the similarity method to solve the nonlinear diffusion equation

ut = (uux)x, x ∈ R, t > 0, (8.11.20)

with the boundary and initial conditions

u(±∞, t) = 0, t > 0, (8.11.21)

u(x, 0) = δ(x), x ∈ R, (8.11.22)

and ∫ ∞

−∞
u(x, t) dx = 1 for all t > 0. (8.11.23)

We use the set of transformations (8.11.4) in (8.11.20) to obtain

ũt̃ − ũ2
x̃ − ũũx̃x̃ = aγ−βut − a2(γ−α)u2

x − a2(γ−α)uuxx

= aγ−β
(
ut − u2

x − uuxx

)
, (8.11.24)

provided γ = 2α − β. Hence the given equation (8.11.20) is invariant under the set
of transformations
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x̃ = aαx, t̃ = aβt, ũ = a2α−βu. (8.11.25)

The invariants of the set of transformations (8.11.25) are given by

v = tpu(x, t), η = xt−q, (8.11.26ab)

provided p = (β − 2α)/β and q = α/β. Therefore, equation (8.11.20) admits the
similarity transformation given by

u = t−pv(η) = t
2α−β

β v(η), η = xt−
α
β . (8.11.27ab)

To determine α and β, we use (8.11.23) to obtain

t
2α−β

β

∫ ∞

−∞
v(η) dx = t

3α−β
β

∫ ∞

−∞
v(η) dη = 1, (8.11.28)

which is independent of t provided (α/β) = 1
3 . Thus, the similarity transformations

(8.11.27ab) assume the form

u(x, t) = t−
1
3 v(η), η = xt−

1
3 . (8.11.29ab)

Putting these results into the given equation (8.11.20) gives an ordinary differential
equation for v(η)

3(vv′)′ + ηv′ + v = 0. (8.11.30)

Integrating this equation once with respect to η gives

3vv′ + ηv = A, (8.11.31)

where A is a constant of integration to be determined from the fact that the solution is
symmetric about η = 0, that is, ux(0, t) = 0, and hence, v′(0) = t2/3ux(0, t) = 0.
Thus, the constant A must be zero; hence, the resulting equation (8.11.31) can be
integrated with the boundary condition (8.11.21), that is, v(±∞) = 0, to obtain the
solution

v(η) =

{
1
6 (c

2 − η2) if |η| < c,

0 if |η| > c.
(8.11.32)

Here c is a constant of integration which can be determined from the condition
(8.11.28), and hence,

1 =

∫ ∞

−∞
v(η) dη =

∫ c

−c

v(η) dη =
2

9
c3, (8.11.33)

giving c = (92 )
1
3 .

The important point about the solution v(η) is that v′(η) does not tend to zero
continuously, as η → ∞, as was the case for the linear diffusion problem. The solu-
tion v(η) represents a parabola, which intersects the η axis at η = ±c, and its vertex
is at (0, 16c

2).



408 8 Nonlinear Diffusion–Reaction Phenomena

Thus, the final solution for u(x, t) becomes

u(x, t) =

{
1
6 t

−1(c2t
2
3 − x2) if |x| < ct

1
3 ,

0 if |x| > ct
1
3 .

(8.11.34)

This represents shock wave-like behavior with the propagating wave front at x =

xf = ct
1
3 . The wave front propagates in the medium with the speed (

dxf

dt ) = 1
3ct

− 2
3

which decreases with time t. This means that the wave slows down as t increases.
The solution (8.11.34) shows that u is zero ahead of the wave, and its derivative has a
jump discontinuity at the front. Recent studies of various nonlinear diffusion models
discussed by Murray (1993) and Okubo (1980) for insect and animal dispersal show
that grasshoppers exhibit a dispersal behavior similar to that of the above model.

Thus, the major conclusion of this analysis is that the solution of the nonlinear
diffusion problem is significantly different from the smooth fundamental solution

u(x, t) =
1√
4πκt

exp

(
− x2

4κt

)
(8.11.35)

of the linear diffusion problem with a point source at x = 0 and t = 0.

Example 8.11.3. Use the Boltzmann transformation η = 1
2 (

x√
t
) to reduce the non-

linear diffusion equation

∂u

∂t
=

∂

∂x

{
κ(u)

∂u

∂x

}
, 0 ≤ x < ∞, t > 0, (8.11.36)

with the boundary and initial data

u(0, t) = u0, t > 0; u(x, 0) = u1, 0 ≤ x < ∞, (8.11.37)

to an ordinary differential equation with the independent variable η. Hence, find the
solution of the ordinary differential equation.

Since η = 1
2xt

− 1
2 , we obtain

ut = −x

4
t−3/2

(
du

dη

)
and ux = − 1

2
√
t

(
du

dη

)
,

and hence,

∂

∂x

{
κ(u)

∂u

∂x

}
=

∂

∂x

{
κ

2
√
t

du

dη

}
=

1

4t

d

dη

(
κ
du

dη

)
.

Equation (8.11.36) becomes

−2η
du

dη
=

d

dη

(
κ
du

dη

)
. (8.11.38)
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The given boundary conditions reduce to

u = u0, η = 0, and u = u1, as η → ∞. (8.11.39)

To find the solution, it is convenient to write (8.11.38) with ũ = u
u0

and ũ = 1
on η = 0 in the form

−2η

κ
· κ · dũ

dη
=

d

dη

(
κ
dũ

dη

)
. (8.11.40)

We solve this equation subject to the condition ũ = 0, as η → ∞. Integrating
equation (8.11.40) twice, we obtain

ũ = 1−A

∫ η

0

1

κ
exp

[
−
∫ η

0

(
2ξ

κ

)
dξ

]
dξ, (8.11.41)

where A is a constant of integration to be determined, so that

A

∫ ∞

0

1

κ
exp

[
−
∫ η

0

(
2ξ

κ

)
dξ

]
dξ = 1, (8.11.42)

in order that ũ = u1

u0
, as η → ∞, is satisfied and where κ = κ(ũ) is a known

function. The solution (8.11.41) satisfies the condition ũ = 1 on η = 0.
Considerable attention has been given to the solution of equation (8.11.36) in

both semi-infinite (0 < x < ∞) and infinite (−∞ < x < ∞) media for vari-
ous kinds of concentration-dependent diffusion coefficients. The reader is referred to
Chapter 7 of Crank’s book (1975).

Example 8.11.4 (Similarity Solution of a More General Nonlinear Diffusion Model).
We consider the following nonlinear diffusion equation:

∂u

∂t
= κ0

∂

∂x

[
un ∂u

∂x

]
, (8.11.43)

where κ0 is a constant.
We follow the analysis of Munier et al. (1981) to obtain the similarity solution of

(8.11.43). We first introduce the Kirchhoff transformation

v =

∫ u

0

tndt =
un+1

n+ 1
, n+ 1 �= 0, (8.11.44)

to express (8.11.43) in terms of v as

∂v

∂t
= κ0

[
(n+ 1)v

] n
n+1

∂2v

∂x2
= κv

n
n+1

∂2v

∂x2
, (8.11.45)

where κ = κ0(n+ 1)
n

n+1 .
We next introduce a one-parameter set of transformations

x̃ = aαx, t̃ = aβt, ũ = aγv, (8.11.46)
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to obtain

ṽt̃ − κṽ
n

n+1 ṽx̃x̃ = aγ−βvt − κa
n

n+1+γ−2αv
n

n+1 vxx

= aγ−β
(
vt − κv

n
n+1 vxx

)
, (8.11.47)

provided that

γ − β =
γn

n+ 1
+ γ − 2α, that is,

γ

β
=

(
n+ 1

n

)(
2α

β
− 1

)
. (8.11.48)

The invariants of the transformations are given by

η̃ = x̃t̃−α/β = xt−α/β = η and w̃ = ṽt̃−γ/β = vt−γ/β = w. (8.11.49)

Thus, equation (8.11.43) admits the similarity transformation in the form

v(x, t) = tγ/βw
(
xt−α/β

)
. (8.11.50)

Substituting (8.11.50) into (8.11.45) gives
(
n+ 1

n

)(
2α

β
− 1

)
w −

(
α

β

)
ηw′(η) = κw

n
n+1w′′(η). (8.11.51)

This equation can be integrated by replacing α
β = 1

n+2 , and hence, γ
β = −n+1

n+2
so that (8.11.51) reduces to

w′′(η) = −κ0w
− n

n+1

(
w +

1

n+ 1
· ηw′

)
, (8.11.52)

where κ0 = (η + 1)/κ(n+ 2). Integrating (8.11.52) once with respect to η gives

w′(η) = A− κ0ηw
1

n+1 , (8.11.53)

where A is an integrating constant. The only case in which equation (8.11.53) admits
an explicit analytic solution for w corresponds toA = 0. So, in this case, we integrate
(8.11.53) to obtain the general solution

w
n

n+1 (η) = B −
(

nκ0

n+ 1

)
η2

2
, (8.11.54)

where B is a constant of integration. Hence, the solution for v(x, t) follows from
(8.11.50) and (8.11.54) as

v
n

n+1 (x, t) = t−
n

n+2w
n

n+1
(
xt−

1
n+2

)
= Bt−

n
n+2 − 1

2

(
nκ0

n+ 1

)(
x2

t

)
. (8.11.55)

Finally, result (8.11.44) gives u(x, t) in the form

u(x, t) =
[
(n+ 1)v

] 1
n+1

= (n+ 1)
1

n+1

[
Bt−

n
n+2 − 1

2

(
nκ0

n+ 1

)
x2

t

] 1
n

. (8.11.56)
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Invoking translation and scaling in t, we obtain the final solution

u(x, t) =

[
B̃(1 + μt)−

n
n+2 − 1

2

(
nκ0

n+ 2

)
μx2

(1 + μt)

] 1
n

, (8.11.57)

where B̃ and μ are arbitrary constants. It is noted that the similarity solution in terms
of η = xt−

1
2 is possible only when α

β = 1
2 with an arbitrary n.

Example 8.11.5 (Heat Transfer in a Superfluid Helium). At a very low temperature,
helium reduces to a liquid phase (called superfluid helium or He-II) with rather un-
usual properties. One of the most remarkable properties is that heat transport in sta-
tionary He-II is described not by the linear Fourier law, but by the nonlinear Gorter–
Mellink law

q = −κ
(
∂T

∂x

) 1
3

, (8.11.58)

where q is the heat flux, κ is a kind of thermal conductivity, and T is the absolute
temperature. Combined with the heat balance equation S(∂T∂t ) + ( ∂q∂x ) = 0 and, in
suitable units, (8.11.58) gives the nonlinear heat diffusion equation

∂T

∂t
=

∂

∂x

[(
∂T

∂x

) 1
3
]
, (8.11.59)

where κ
S = 1 and S is the heat capacity per unit volume.

This equation is invariant under a one-parameter set of transformations (8.11.4)
with α = 1 provided 2γ − 3β = −4. The invariant solutions for the temperature
described by the similarity transformations are given by

T (x, t) = tγ/βv(η), η = xt−
1
β , (8.11.60)

where v(η) satisfies an ordinary differential equation

γ
d

dη

(
dv

dη

) 1
3

+ η
dv

dη
− βv = 0. (8.11.61)

This equation is also invariant under the associated transformation group

η̃ = μη and ṽ = μ−2v, 0 < μ < ∞. (8.11.62)

The clamped-flux case is of special interest because it has been investigated ex-
perimentally in connection with the stability of superconducting magnets cooled with
superfluid helium. The initial and boundary conditions for this special problem are
given by

Tx = −
(
q

κ

)3

at x = 0, and T (x, t) → 0 as x → ∞, for t > 0,

(8.11.63ab)
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T (x, 0) = 0 for x > 0. (8.11.64)

We require that γ = 1 and β = 2, so that these conditions become

v′(η) = −
(
q

κ

)3

at η = 0, and v(η) → 0, as η → ∞. (8.11.65)

In this case, the ordinary differential equation is given by (8.11.61) with γ = 1
and β = 2.

8.12 Nonlinear Reaction–Diffusion Equations

The general conservation equation in three space dimensions is

∂u

∂t
+∇ · F = f(x, t, u), (8.12.1)

where F is a general flux transport due to diffusion or some other processes and
f(x, t, u) is the source or reaction term. For the case of general diffusion processes,
we can take F = −κ∇u, so that equation (8.12.1) becomes

∂u

∂t
= ∇ · (κ∇u) + f(x, t, u), (8.12.2)

where κ = κ(x, u) is a function of x and u.
For the case of several chemicals or interacting species, the vector ui(x, t),

i = 1, 2, . . . , n, represents concentrations or densities each diffusing with its own
diffusion coefficient κi and interacting according to the vector source term f(x,u, t).
Then, equation (8.12.2) becomes

∂u

∂t
= ∇ · (κ∇u) + f(x, t,u), (8.12.3)

where κ represents a diffusivity matrix with no cross-diffusion among the species,
so that κ simply becomes a diagonal matrix. In fact, ∇u is a tensor, so that ∇ · κ∇u
becomes a vector. Equation (8.12.3) represents a system of nonlinear (or interacting
population–diffusion) equations. Turin (1952) used it as an important model for the
chemical basis of morphogenesis. Such systems have been widely investigated in the
1970s. One simple model equation as a special case of (8.12.3) is

∂u

∂t
= ∇ · (κ∇u) + f(u), (8.12.4)

where κ is a diagonal matrix.
In particular, when κ is independent of x and u, equation (8.12.4) reduces to the

form
∂u

∂t
= κ∇2u+ f(u). (8.12.5)
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Physically, the components of u represent the concentrations of certain species,
which are reacting with each other at each point and also diffusing through the
medium. Further, if f(u) = 0, (8.12.5) becomes a system of diffusion equations

∂u

∂t
= κ∇2u. (8.12.6)

This is regarded as a mathematical model of the classical kinetics of systems of
reaction. For more information, the reader is referred to Kopell and Howard (1973),
who studied plane wave solutions of reaction–diffusion equations.

In the one-dimensional case with f as a function of u only, we can write (8.12.2)
as

∂u

∂t
=

∂

∂x

[
κ(u)

∂u

∂x

]
+ f(u), (8.12.7)

where usually κ(u) = kur, and k and r are positive constants. This equation with
f ≡ 0 has been studied much more widely than that of the nonzero f . However, it is
of interest to examine equation (8.12.7) with functions f(u) with two simple zeros,
one at u = 0 and the other at u = 1.

We write another version of (8.12.7) with f(u) = aum(1−un), where a, m, and
n are positive constants in the form

∂u

∂t
= k

∂

∂x

(
ur ∂u

∂x

)
+ aum

(
1− un

)
. (8.12.8)

Pattle (1959) solved this equation without the reaction term (a = 0). On the
other hand, Newman (1980) obtained a number of traveling wave solutions u(ξ),
ξ = x − ct, for various values of r and m with n = 1. His study shows that, when
r > 0, u(ξ) = 0 at a prescribed positive value of ξ. Furthermore, when r = 0
and m = 2, the solution represents an ordinary logistic distribution. According to
Newman, this model equation can be applied to problems with growth phenomena,
and also to population genetics and combustion processes. Montroll and West (1973)
obtained a number of solutions for various problems involving diffusion and growth.

It is convenient to use nondimensional variables x∗ =
√

a
kx and t∗ = at to

rewrite (8.12.6) in nondimensional form, dropping the asterisks,

∂u

∂t
=

∂

∂x

(
ur ∂u

∂x

)
+ um

(
1− un

)
. (8.12.9)

With u(x, t) = u(ξ), ξ = x − ct, we obtain the traveling wave solution of the
equation

d

dξ

(
ur du

dξ

)
+ c

du

dξ
+ um

(
1− un

)
= 0. (8.12.10)

Several authors including Kaliappan (1984) and Murray (1993) obtained an exact
traveling wave solution of (8.12.10) for the case where r = 0 and m = 1 with the
boundary conditions

u(−∞) = 1 and u(+∞) = 0. (8.12.11)
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Making reference to Murray’s (1993) detailed analysis with r = 0 and m = 1,
we seek an exact solution of (8.12.10) in the form

u(ξ) =
1

(1 + aebξ)s
, (8.12.12)

where a, b, and s are positive constants to be determined. This solution automatically
satisfies the boundary conditions (8.12.11) at ξ = ±∞. We substitute (8.12.12) in
(8.12.10) to obtain the following results:

s =
2

n
, b =

n√
2(n+ 2)

, c =
n+ 4√
2(n+ 2)

, (8.12.13)

u(0) = u0, a = u
−n

2
0 − 1. (8.12.14)

The second derivative of solution (8.12.12) gives the point of inflection

ξi =
1

b
log

(
n

2a

)
, ui =

(
1 +

n

2

)− 2
n

. (8.12.15)

The above analysis provides a more general traveling wave solution of the power
law logistic equation with diffusion. In particular, when r = m = 0 and n = 1,
(8.12.10) reduces to the Fisher equation which was solved earlier. If we choose u0 =
1
2 , then a =

√
2 − 1, and hence, all quantities b, c, ξi, and ui can be calculated, and

solution (8.12.12) is known exactly.
If we set n = 2 in (8.12.13)–(8.12.15), then s = 1, b = 1√

2
, c = 3√

2
, a = 1,

ξi = 0, and ui =
1
2 . In this case, the solution (8.12.12) reduces to that of the ordinary

logistic equation with diffusion.
When r = 0 and m = n+ 1, equation (8.12.9) becomes

∂u

∂t
=

∂2u

∂x2
+ un+1

(
1− un

)
. (8.12.16)

Following Murray (1993), we obtain the traveling wave solution u(ξ) with ξ =
x− ct of equation (8.12.16) in the form

u(ξ) =
1

(1 + aebξ)s
, (8.12.17)

where s = 1
n , b = n√

n+1
, and c = 1√

n+1
.

When n = 1, equation (8.12.16) is further simplified, and then, s = 1, b =
c = 1√

2
, and the resulting solution obtained from (8.12.17) is in agreement with

Newman’s (1980) solution in population genetics. This solution also describes the
situation in which the reaction term is modified by the coalition growth instead of
the logistic growth.

Another interesting and useful exact solution was obtained by Murray (1993) for
the case r = m = n = 1. This case describes density-dependent diffusion with
logistic population growth, which is represented by the equation
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∂u

∂t
=

∂

∂x

(
u
∂u

∂x

)
+ u(1− u). (8.12.18)

We seek a traveling wave solution u(x, t) = u(ξ), ξ = x − ct of (8.12.18) with
u(−∞) = 1 and u(+∞) = 0. Thus, equation (8.12.18) reduces to

(uu′)′ + cu′ + u(1− u) = 0, (8.12.19)

where the prime denotes the derivative with respect to ξ.
Thus, the associated phase plane system is given by

du

dξ
= v, (8.12.20a)

u
dv

dξ
= −

[
cv + v2 + u(1− u)

]
. (8.12.20b)

In (8.12.20b), u = 0 is a singularity which can be removed by defining a new variable
ζ by d

dζ = u d
dξ , so that equations (8.12.20a)–(8.12.20b) become

du

dζ
= uv and (8.12.21a)

dv

dζ
= −

[
cv + v2 + u(1− u)

]
. (8.12.21b)

Clearly, the second equation is not singular. The singular points in the (u, v)-phase
plane are (u, v) = (0, 0), (1, 0), (0,−c). A phase plane analysis shows that (1, 0)
and (0,−c) are saddle points, whereas (0, 0) is a stable nonlinear node because of
the nonlinear term uv in (8.12.21a). Murray (1993) described the phase trajectories
of (8.12.21a)–(8.12.21b) for different values of c with graphical representations.

Basically, the model equation (8.12.18) indicates that the population disperses
to regions of lower density more rapidly as the population increases. The traveling
wave solution u(ξ)with boundary conditions u(−∞) = 1, u(+∞) = 0, and c = 1√

2
is given by

u(ξ) =

{
1− exp

(
ξ − ξc√

2

)}
H(ξc − ξ), (8.12.22)

where ξc is the wave front and H(x) is the Heaviside unit step function.
Several authors including Aronson (1980), Crank (1975), Fife (1979), Ghez

(1988), Gurney and Nisbet (1975), Gurtin and MacCamy (1977), Newman (1980),
and Shigesada (1980) have studied various problems of density-dependent diffusion
and their extensions.

The above analysis, showing the existence of the traveling wave solutions, can be
generalized to more general, nonlinear, diffusion phenomena in which the diffusion
coefficient is ur, for r �= 1, or, even more general, κ(u) in (8.12.4) with certain
conditions imposed on κ(u). In general, nonlinear reaction–diffusion interactions
radically change the mathematical and physical features of the solutions of many
biological and chemical problems.
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Further, we write out the diffusion term in (8.12.4) in full to obtain

ut = f(u) + κ′(u)u2
x + κ(u)uxx. (8.12.23)

This shows that the nonlinear diffusion term can be thought of as an equivalent
convection with velocity h′(u) = −κ′(u)ux. If the convection arises as a natural ex-
tension of a conservation law, we can derive an equation with the convection velocity
h′(u) in the form

∂u

∂t
+ h′(u)ux = f(u) + κ(u)

∂2u

∂x2
. (8.12.24)

Such equations arise in a wide variety of problems in physical, chemical, and biolog-
ical sciences. It is important to point out that the nonlinear convection in reaction–
diffusion equations can have a significant effect on the solutions. This is to be ex-
pected since there is another major transport process, namely, linear or nonlinear
convection. This process may or may not dominate over diffusion effects. However,
if the effect of diffusion is negligible compared with that of convection, convection
obviously tends to make parts of the wave form grow steeper and steeper, and solu-
tions develop discontinuities in the form of shock waves. Indeed, the development
of shock waves and the breaking of a wave form are typical nonlinear convection
phenomena.

8.13 Brief Summary of Recent Work

To understand various physical phenomena described by the interaction of diffu-
sion, convection, or relaxation, Lighthill (1956) gave a fully self-contained account
of the basic physical features of shock wave development, propagation, and decay,
the internal structure of shocks, and their confluence with the derivation of a non-
linear coupled system intermediate between the Navier–Stokes equations and the
Burgers equation. He then discussed approximate solutions of several physical prob-
lems by using graphical construction of characteristics and the method of steep-
est descent. He also showed that the Burgers equation is the appropriate one for
the investigation of weak planar-wave phenomena. Subsequently, many authors in-
cluding Blackstock (1964), Walsh (1969), Benton and Platzman (1972), Crighton
and Scott (1979), Parker (1980), Rodin (1970), Larson (1978), and Lardner (1986)
studied initial boundary-value problems for the Burgers equation and investigated
the physical significance of their solutions. It is pertinent to mention that Benton
and Platzman (1972) have also compiled an exhaustive list of the possible solu-
tions of the Burgers equation and have illustrated the physically interesting ones
by isochronal graphs. At the same time, considerable attention has been given to the
determination of self-similar solutions as intermediate asymptotics for nonlinear dif-
fusion equations (see Barenblatt and Zel’dovich 1972; Zel’dovich and Raizer 1966,
1968; Barenblatt 1979, and Newman 1983). Many generalizations of the Burgers
equation have been made by several authors including Case and Chiu (1969), Mur-
ray (1970a, 1970b, 1973), Penel and Brauner (1974), and Crighton (1979). Kriess
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and Lorenz (1989) discussed the existence and uniqueness of solutions of boundary-
value problems associated with the Burgers equation. Recent developments in the
reaction–diffusion equation in general and the Fisher equation in particular are avail-
able in papers by Johnson (1970), McKean (1975), Barenblatt (1979), Manoranjan
and Mitchell (1983), Hagstrom and Keller (1986), Gazdag and Canosa (1974), Mur-
ray (1993), Smoller (1994), Britton (1986), Grindrod (1991), Dunbar (1983), Logan
and Dunbar (1992), and Fife (1979). The Fisher equation also represents a nonlinear
model equation for the evolution of a neutron population in a nuclear reactor. Canosa
(1969, 1973) showed that the Fisher equation describes a balance between linear dif-
fusion and nonlinear local multiplication, and it admits shock-type solutions. Gazdag
and Canosa (1974) used the pseudospectral method accurately to discretize spatial
derivatives for numerically solving the Fisher equation. Tang and Webber (1991)
presented an interesting and precise numerical study of the Fisher equation by a
Petrov–Galerkin finite element method. Their analysis shows that any local initial
disturbance can propagate with a constant limiting speed as time tends to infinity.
Both the limiting wave fronts and limiting speed are determined by the system itself
and are independent of the initial states. Compared with other numerical methods,
Tang and Webber’s numerical study is more satisfactory with regard to its accuracy
and stability. Larson (1978) studied a more general Fisher equation and determined
lower and upper bounds of its solutions. Ablowitz and Zeppetella (1979) have in-
vestigated the exact solution and Painlevé transcendents. They have also shown that
equation (8.9.2) can be transformed into a simpler nonlinear equation which admits
solutions in terms of the Weierstrass ℘ function. For the generalized Fisher equation
with f(u) in place of u(1 − u), Kametaka (1976) proved the existence theorem for
the traveling wave solution when certain conditions on f(u) hold, and he investi-
gated the stability of traveling wave and transient solutions. Finally, we refer to the
work of Abdelkader (1982), who extended the results of Ablowitz and Zeppetella
(1979) for the generalized Fisher equation of the form

u′′ + cu′ + u− un = 0, 1 < n < ∞. (8.13.1)

For c = (n+ 3)/
√
(2n+ 2), 2 < c < ∞, the solution of (8.13.1) can be expressed

in terms of hyperelliptic integrals. In some special cases, the solution was obtained
by Rosenau (1982) in terms of elliptic integrals for a related equation describing
nonlinear thermal wave phenomena in a reacting medium.

8.14 Exercises

1. Determine a set of stretching transformations (8.11.4) under which the following
equations are invariant:

(a) utt = c2uxx, (b) uut + u2
x = 0,

(c) ut + uux = 0, (d) ut = κ(urr +
2
rur),

(e) uut = uxx (x > 0, t > 0), (f) c2utt + uxxxx = 0 (c2 = EI
m ).
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2. Use ξ = x−ct to reduce the reaction–diffusion equation (see Jones and Sleeman
1983)

ut − uxx = f(u)

into the form
d2u

dξ2
+ c

du

dξ
+ f(u) = 0.

Solve this ordinary differential equation with the reaction term

f(u) =

{
u on D1 : 0 ≤ u ≤ 1

2 ,

1− u on D2 : 1
2 ≤ u ≤ 1

and the boundary conditions

u(−∞) = 1 and u(+∞) = 0.

Discuss the solution for cases (i) c �= 2 and (ii) c = 2.
3. Show that the similarity transformation of the Boltzmann nonlinear equation

(8.11.20) with boundary conditions

(uux)x=0 = −a = const., u(x, t) → 0 as x → ∞, t > 0,

u(x, 0) = 0 for x > 0,

is
u(x, t) = t

1
3 v(η), η = xt−

2
3 ,

where v(η) satisfies the nonlinear ordinary differential equation

3(vv′)′ + 2ηv′ − v = 0.

4. Show that the Boltzmann equation (8.11.20) is invariant under the one-parameter
set of transformations x̃ = x exp(ατ2 ), t̃ = t+ τ , ũ = u exp(ατ), 0 < τ < ∞.
The boundary condition (Barenblatt and Zel’dovich 1972)

u(0, t) = u0 exp(t), −∞ < t < ∞,

is also invariant under the above set of transformations when α = 1. Show that
the most general invariant solution has the form

u(x, t) = exp(αt)f

[
x exp

(
−αt

2

)]
.

When α = 1, u(x, t) = exp(t)v{x exp(− t
2 )}. If it is a solution of (8.11.20),

then its image under the above set of transformations must be a solution, that is,

eατu(x, t) = v(η) exp(t+ r), η = x exp

(
ατ

2

)
exp

(
− t+ r

2

)

is also a solution.
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5. Show that the similarity solution of the Burgers equation (8.2.6) with v = 1 is

u(x, t) = (2t+ a)−2f(η), η = (2t+ a)−
1
2 x,

where f(η) satisfies the nonlinear ordinary differential equation

f ′′ − (f − η)f ′ + f = 0.

6. Show that the similarity solution of the Burgers equation (8.2.6) with ν = 1 is
given by

u(x, t) =
1√
t
f(η)− 1, η = (x+ t)t−

1
2 ,

where f satisfies the equation

f ′′ + f ′
(
η

2
− f

)
+

1

2
f = 0.

7. The Prandtl–Blasius boundary-layer problem for a flat plate can be described by
the equations

uux + vuy = νuyy,

ux + vy = 0,

with the boundary conditions

(u, v) = (0, 0) at y = 0, x > 0,

u = U as y → ∞, x > 0,

u = U at x = 0, y > 0,

where U is the incident velocity. Show that these equations are invariant under
the set of transformations

x̃ = aαx, ỹ = ay, ũ = aβu, and ṽ = a−1v,

where α−β = 2. Show also that the boundary conditions are all invariant under
the above transformations when α = 2 and β = 0. Show that the first two
boundary conditions are also invariant even if β �= 0 and the last two boundary
conditions become ũ = aβU .

8. In terms of the stream function ψ defined by (u, v) = (ψy,−ψx) with ν = 1
and U = 1, the Prandtl–Blasius equation in Exercise 7 is given by

ψyyy = ψyψxy − ψxψyy.

Show that the set of similarity transformations of this equation is

ψ(x, y) = x
1
2 f(η), η = yx−

1
2 ,



420 8 Nonlinear Diffusion–Reaction Phenomena

where f(η) satisfies the Blasius equation

2f ′′′ + ff ′′ = 0

with boundary conditions

f(0) = 0, f ′(0) = 0, and f ′(∞) = 1.

9. The Sparrow et al. (1970) problem of a flat plate with uniform suction or in-

jection is obtained by changing the variables (ξ, η) = (vω
√

x
U , y

√
U
x ) in the

Prandtl–Blasius equation in Exercise 8, where vω is the constant suction veloc-
ity. Show that ξ and η are invariant under the set of transformations introduced in
Exercise 7. Show that the similarity transformation of this problem with ν = 1
and U = 1 is given by ψ = x

1
2 f(ξ, η), where f satisfies the equation

2fηηη + ffηη = ξ(fηfξη − fξfηη)

with boundary conditions

fη(η = 0) = 0, fη(η → ∞) = 1, and f + 2ξ = −ξfξ at η = 0.

10. In Exercise 1(e), show that

v(η) = t
2α
β −1u(x, t), η = xβt−α

are invariant under (8.11.4). Using the data u(x, 0) = 0, x > 0, u(x, t) → 0,
as x → ∞, t > 0, and ux(0, t) = −q, t > 0, where q is a constant, show that
β = 1 and α = 1

3 . Hence, show that v(η) satisfies the problem

3v′′ − v(v − ηv′) = 0, 0 < η < ∞,

v′(0) = −q, and v(η) → 0 as η → ∞.

11. In Exercise 1(f), show that the quantities

v(η) = t−
γ
β u and η = xt−α/β

are invariant under (8.11.4). Hence prove that v(η) satisfies the ordinary differ-
ential equation

v′′′′ + c2
{(

α

β

)2

η2v′′ +
α

β

(
1 +

α

β
− 2γ

β

)
ηv′ +

(
γ

β
− 1

)(
γ

β

)
v

}
= 0.

Derive the equation for α
β = 1

2 = − γ
β .

12. Show that equations

(a) ut + uux + μuxxx = 0 and (b) ut + upux + μuxxx = 0

are invariant under the transformations

x̃ = aαx, t̃ = aβt, and ũ = au,

provided that α = −1
2 and β = −3

2 for equation (a), and α = −p
2 and β = −3p

2
for equation (b).
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13. Consider the nonlinear reaction–diffusion model

ut − κuxx = F (u), 0 < x < a, t > 0,

ux(0, t) = 0 = ux(a, t), t > 0,

u(x, 0) = f(x), 0 < x < a,

where the reaction term F is continuously differentiable and supu∈R |F ′(u)| =
A < ∞.
Show that the quantity

Q(t) =

∫ a

0

u2
x(x, t) dx

associated with this model satisfies the inequality

Q(t) ≤ Q(0) exp(μt), μ = 2
(
A− π2

)
.

If A < π2, show that Q(t) → 0 as t → ∞.
14. Consider the coupled model equations

ut = κ

(
ux − 2u

c
cx

)
x

, ct + ku = 0,

where u = u(x, t) is the population of an organism, c = c(x, t) is the con-
centration of a nutrient to which the organisms are attracted, and k is a positive
constant. Obtain the traveling wave solutions in the form

u = u(x− Ut) and c = c(x− Ut),

where
U(±∞) = 0, c(−∞) = 0, and c(+∞) = 1.

Draw the graph of the solutions and give a biological interpretation of the solu-
tions.

15. If av = (1 − b)(1 − u), a > 0, 0 < b < 1, show that the reaction–diffusion
system

ut − uxx = u(1− u− av), vt − vxx + buv = 0

reduces to the Fisher equation.
16. Consider a simple model of a detonation process governed by the system

ut + uux + λx = κuxx, λt = r(u, λ),

where u is a scaled temperature and λ is the mass fraction of the product species
P in a reversible chemical reaction R ↔ P with the reaction rate r = 1 −
λ − λ exp(−u−1), and where κ is a positive constant. Show that there exist
positive traveling wave solutions if the wave speed c exceeds the value of u at
+∞ (Logan and Dunbar 1992).
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17. Show that the traveling wave solution exists for the wave velocity c > 2 for the
reaction–convection system (Logan and Shores 1993a, 1993b):

ut + uux + vx = (2− u)(u− 1), vt + v = 1− v exp(u−1).

18. (a) Show that the transformation v(x, t) = exp(−αt)u(x, t) reduces the equa-
tion

vt + αv = κuxx,

into the form

ut = κuxx.

(b) Find a change of variable that reduces the diffusion equation

ut = κuxx,

into the form

vt = vxx.

19. Use the transformations

a(τ) dτ and v(ξ, t) = u

[
ξ +

∫ t

0

a(τ) dτ, t

]

to show that the equation

ut + a(t)ux = κuxx,

can be transformed into the form

vt = κvxx.

20. Using the conservation of density (8.2.1) with q = ρu and the conservation of
momentum, qt + (uq)x = 0, derive the inviscid Burgers equation

ut + uux = 0, or equivalently, ut +

(
1

2
u2

)
x

= 0.

Hence, or otherwise, show that the solution ux at any time t is

(ux)(t) =
u′
0

1 + (t− t0)u′
0

,

where u′
0 = (ux)t=t0 .
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21. The Fokker–Planck equation in non-equilibrium statistical mechanics for the
probability distribution function u(x, t) is a modified diffusion equation

ut = uxx + (xu)x, x ∈ R, t > 0.

By separation of variables u = X(x)T (t), show that

X ′′(x) + xX ′ + (1 + n)X = 0 and Ṫ + nT = 0.

where n is the separation constant.
Assuming X(x) = f(x) exp(−1

2x
2) and rescaling the independent variables

(x =
√
2ξ), show that f(ξ) = Hn(ξ) satisfies the equation

d2f

dξ2
− 2ξ

df

dξ
+ 2nf = 0.

Show that the solution u(x, t) of the Fokker–Planck equation is

u(x, t) =
∞∑

n=0

an exp

(
−nt− 1

2
x2
)
Hn

(
x√
2

)
.

Find the limiting form of the solution u(x, t) as t → ∞.
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Solitons and the Inverse Scattering Transform

True Laws of Nature cannot be linear.

Albert Einstein

. . . the great primary waves of translation cross each other
without change of any kind in the same manner as the small
oscillations produced on the surface of a pool by a falling
stone.

Scott Russell

9.1 Introduction

Dispersion and nonlinearity play a fundamental role in wave motions in nature. The
nonlinear shallow water equations that neglect dispersion altogether lead to breaking
phenomena of the typical hyperbolic kind with the development of a vertical profile.
In particular, the linear dispersive term in the Korteweg–de Vries equation prevents
this from ever happening in its solution. In general, breaking can be prevented by in-
cluding dispersive effects in the shallow water theory. The nonlinear theory provides
some insight into the question of how nonlinearity affects dispersive wave motions.
Another interesting feature is the instability and subsequent modulation of an ini-
tially uniform wave profile.

To understand these features, this chapter is devoted to the Boussinesq and
Korteweg–de Vries (KdV) equations and solitons with emphasis on the methods
and solutions of these equations that originated from water waves. Special attention
is given to the inverse scattering transform, conservation laws and nonlinear trans-
formations, Bäcklund transformations and the nonlinear superposition principle, the
Lax formulation and its KdV hierarchy, the ZS (Zakharov and Shabat) scheme, and
the AKNS (Ablowitz, Kaup, Newell, and Segur) method. Finally, we consider a new
class of solitary waves with compact support which are called compactons governed
by a two-parameter family of strongly dispersive nonlinear equations, K(m,n). In-
cluded are the existence of peakon (singular) solutions of a new strongly nonlinear
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DOI 10.1007/978-0-8176-8265-1_9, c© Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-8176-8265-1_9


426 9 Solitons and the Inverse Scattering Transform

model in shallow water described by the Camassa and Holm equation, and the Harry
Dym equation which arises as a generalization of the class of isospectral flows of
the Schrödinger operator. As an example of the application of compactons, the solu-
tion of nonlinear vibration of an anharmonic mass–spring system is presented. This
is followed by a discussion on the existence of new nonlinear intrinsic localized
modes in anharmonic crystals. Based on the rotating-wave approximation, Sievers
and Takeno (1988) discovered the s-localized modes, while Page (1990) introduced
the p-localized modes in a one-dimensional lattice model. These nonlinear localized
modes may be treated as compactons.

9.2 The History of the Solitons and Soliton Interactions

Historically, John Scott Russell first experimentally observed the solitary wave, a
long water wave without change in shape, on the Edinburgh–Glasgow Canal in 1834.
He called it the “great wave of translation” and then reported his observations at the
British Association in his 1844 paper “Report on Waves.” Thus, the solitary wave
represents, not a periodic wave, but the propagation of a single isolated symmetrical
hump of unchanged form. His discovery of this remarkable phenomenon inspired
him further to conduct a series of extensive laboratory experiments on the gener-
ation and propagation of such waves. Based on his experimental findings, Russell
discovered, empirically, one of the most important relations between the speed U
of a solitary wave and its maximum amplitude a above the free surface of liquid of
finite depth h in the form

U2 = g(h+ a), (9.2.1)

where g is the acceleration due to gravity. His experiments stimulated great interest
in the subject of water waves and his findings received a strong criticism from Airy
(1845) and Stokes (1847). In spite of his remarkable work on the existence of peri-
odic wavetrains representing a typical feature of nonlinear dispersive wave systems,
Stokes’ conclusion on the existence of the solitary wave was erroneous. However,
Stokes (1847) proposed that the free surface elevation of the plane wavetrains on
deep water can be expanded in powers of the wave amplitude. His original result for
the dispersion relation in deep water is

ω2 = gk
(
1 + a2k2 + · · ·

)
. (9.2.2)

Stokes’ theory predicts that periodic wavetrains are possible in nonlinear disper-
sive systems, and the dispersion relation involves the wave amplitude, which pro-
duces significant qualitative changes in water wave phenomena. In spite of the intro-
duction of the Stokes expansion, definite analytical proof of the existence of a solu-
tion representing permanent water waves has been a formidable task. During the first
quarter of the twentieth century, there has been a serious controversy on this issue,
and, in fact, real doubt was raised about the convergence of the Stokes expansion.
The problem was eventually resolved by Levi-Civita (1925), who proved formally
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Fig. 9.1 A solitary wave.

that the Stokes expansion for deep water waves converges provided the wave am-
plitude is very small compared with the wavelength. Almost simultaneously, Struik
(1926) extended the proof of convergence to small-amplitude waves on water of
finite depth. Subsequently, Krasovskii (1960, 1961) established the existence of per-
manent periodic waves for all values of amplitude less than the maximum value at
which the waves assume a sharp-crested form. Finally, rigorous proofs of the exis-
tence of water waves of greatest height have been given by Toland (1978) and Keady
and Norbury (1978). Despite these serious attempts to prove the existence of finite-
amplitude water waves of permanent form, the independent question of their stability
remained unattended until the 1960s except for an isolated study by Korteweg and de
Vries in (1895) on long surface waves in water of finite depth. But one of the most
remarkable discoveries made in the 1960s was that the periodic Stokes waves on suf-
ficiently deep water are definitely unstable! This result seems revolutionary in view
of the sustained attempts to prove the existence of Stokes waves of finite amplitude
and permanent form. Russell’s description of solitary waves contradicted the theo-
ries of water waves due to Airy and Stokes; they raised questions on the existence
of Russell’s solitary waves and conjectured that such waves cannot propagate in a
liquid medium without change of form. It was not until the 1870s that Russell’s pre-
diction was finally and independently confirmed by both Boussinesq (1871a, 1871b,
1872, 1877) and Rayleigh (1876). From the equations of motion for an inviscid in-
compressible liquid, they derived formula (9.2.1). In fact, they also showed that the
solitary wave profile (see Figure 9.1) z = η(x, t) is given by

η(x, t) = a sech2
[
β(x− Ut)

]
, (9.2.3)

where β2 = 3a div{4h2(h+ a)} for any a > 0.
Although these authors found the sech2 solution, which is valid only if a � h,

they did not write any equation for η that admits (9.2.3) as a solution. However,
Boussinesq did a lot more and discovered several new ideas, including a nonlinear
evolution equation for such long water waves in the form

ηtt = c2
[
ηxx +

3

2

(
η2

h

)
xx

+
1

3
h2ηxxx

]
, (9.2.4)
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where c =
√
gh is the speed of the shallow water waves. This is known as the

Boussinesq (bidirectional) equation, which admits the solution

η(x, t) = a sech2
[(
3a/h3

)1/2
(x± Ut)

]
. (9.2.5)

This represents solitary waves traveling in both the positive and negative x-directions.
More than 60 years later, in 1895, two Dutchmen, D.J. Korteweg and G. de Vries,

formulated a mathematical model equation to provide an explanation of the phe-
nomenon observed by Scott Russell. They derived the now-famous equation for the
propagation of waves in one direction on the surface water of density ρ in the form

ηt =
c

h

[(
ε+

3

2
η

)
ηX +

1

2
σηXXX

]
, (9.2.6)

where X is a coordinate chosen to be moving (almost) with the wave, c =
√
gh, ε is

a small parameter, and

σ = h

(
h2

3
− T

gρ

)
∼ 1

3
h3, (9.2.7)

when the surface tension T (� 1
3gρh

2) is negligible. Equation (9.2.6) is known as
the Korteweg–de Vries (KdV) equation. This is one of the simplest and most useful
nonlinear model equations for solitary waves, and it represents the longtime evo-
lution of wave phenomena in which the steepening effect of the nonlinear term is
counterbalanced by linear dispersion.

It is convenient to introduce the change of variables η = η(X∗, t) and X∗ =
X + (ε/h)ct which, dropping the asterisks, allows us to rewrite equation (9.2.6) in
the form

ηt =
c

h

(
3

2
ηηX +

1

2
σηXXX

)
. (9.2.8)

Modern developments in the theory and applications of the KdV solitary waves
began with the seminal work published as a Los Alamos Scientific Laboratory Report
in 1955 by Fermi, Pasta, and Ulam on a numerical model of a discrete nonlinear
mass–spring system. In 1914, Debye suggested that the finite thermal conductivity
of an anharmonic lattice is due to the nonlinear forces in the springs. This suggestion
led Fermi, Pasta, and Ulam to believe that a smooth initial state would eventually
relax to an equipartition of energy among all modes because of nonlinearity. But their
study led to the striking conclusion that there is no equipartition of energy among the
modes. Although all the energy was initially in the lowest modes, after flowing back
and forth among various low-order modes, it eventually returns to the lowest mode,
and the end state is a series of recurring states. This remarkable fact has become
known as the Fermi–Pasta–Ulam (FPU) recurrence phenomenon. Cercignani (1977)
and later on Palais (1997) described the FPU experiment and its relationship to the
KdV equation in some detail.

This curious result of the FPU experiment inspired Martin Kruskal and Norman
Zabusky to formulate a continuum model for the nonlinear mass–spring system to
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Fig. 9.2 Development of solitary waves: (a) initial profile at t = 0, (b) profile at t = π−1, and
(c) wave profile at t = (3.6)π−1. From Zabusky and Kruskal (1965).

understand why recurrence occurred. In fact, they considered the initial-value prob-
lem for the KdV equation,

ut + uux + δuxxx = 0, (9.2.9)

where δ = (h� )
2, � is a typical horizontal length scale, with the initial condition

u(x, 0) = cosπx, 0 ≤ x ≤ 2, (9.2.10)

and the periodic boundary conditions with period 2, so that u(x, t) = u(x + 2, t)
for all t. Their numerical study with

√
δ = 0.022 produced a lot of new interesting

results which are shown in Figure 9.2.
They observed that, initially, the wave steepened in regions where it had a nega-

tive slope, a consequence of the dominant effects of nonlinearity over the dispersive
term, δuxxx. As the wave steepens, the dispersive effect then becomes significant and
balances the nonlinearity. At later times, the solution develops a series of eight well-
defined waves, each like sech2 functions with the taller (faster) waves ever catching
up and overtaking the shorter (slower) waves. These waves undergo nonlinear inter-
action according to the KdV equation and then emerge from the interaction without
change of form and amplitude, but with only a small change in their phases. So, the
most remarkable feature is that these waves retain their identities after the nonlinear
interaction. Another surprising fact is that the initial profile reappears, very simi-
larly to the FPU recurrence phenomenon. In view of their preservation of shape and
the resemblance to the particle-like character of these waves, Kruskal and Zabusky
called these solitary waves, solitons, like photon, proton, electron, and other terms
for elementary particles.

Historically, the famous 1965 paper of Zabusky and Kruskal marked the birth of
the new concept of the soliton, a name intended to signify particle-like quantities.
Subsequently, Zabusky (1967) confirmed, numerically, the actual physical interac-
tion of two solitons, and Lax (1968) gave a rigorous analytical proof that the identi-
ties of two distinct solitons are preserved through the nonlinear interaction governed



430 9 Solitons and the Inverse Scattering Transform

by the KdV equation. Physically, when two solitons of different amplitudes (and
hence, of different speeds) are placed far apart on the real line, the taller (faster)
wave to the left of the shorter (slower) wave, the taller one eventually catches up
to the shorter one and then overtakes it. When this happens, they undergo a non-
linear interaction according to the KdV equation and emerge from the interaction
completely preserved in form and speed with only a phase shift. Thus, these two
remarkable features, (i) steady progressive pulse-like solutions and (ii) the preser-
vation of their shapes and speeds, confirmed the particle-like property of the waves
and, hence, the definition of the soliton. Subsequently, Gardner et al. (1967, 1974)
and Hirota (1971, 1973a, 1973b) constructed analytical solutions of the KdV equa-
tion that provide the description of the interaction among N solitons for any positive
integral N . After the discovery of the complete integrability of the KdV equation in
1967, the theory of the KdV equation and its relationship to the Euler equations of
motion as an approximate model derived from the theory of asymptotic expansions
became of major interest. From a physical point of view, the KdV equation is not
only a standard nonlinear model for long water waves in a dispersive medium, it
also arises as an approximate model in numerous other fields, including ion-acoustic
plasma waves, magnetohydrodynamic waves, and anharmonic lattice vibrations. Ex-
perimental confirmation of solitons and their interactions has been provided success-
fully by Zabusky and Galvin (1971), Hammack and Segur (1974), and Weidman and
Maxworthy (1978). Thus, these discoveries have led, in turn, to extensive theoreti-
cal, experimental, and computational studies over the last 30 years. Many nonlinear
model equations have now been found that possess similar properties, and diverse
branches of pure and applied mathematics have been required to explain many of the
novel features that have appeared.

Finally, it seems pertinent to mention the following. It is not easy to give a precise
definition of a soliton. However, the term can readily be associated with any solution
of a nonlinear partial differential equation (or system) that (i) represents a wave of
permanent form, (ii) is localized, so that it decays or approaches a constant value at
infinity, and (iii) can undergo a strong interaction with other solitons and retain its
identity. In the context of the KdV equation and other similar equations, the single-
soliton solution is usually referred to as the solitary wave, but when more than one of
them appear in a solution, they are called solitons. In other words, a soliton is a soli-
tary wave when it is infinitely separated from any other soliton. Also, for equations
other than the KdV equation, the solitary-wave solution may not be a sech2 function,
but a sech or tan−1(eαx) profile. In fact, some nonlinear equations have solitary-
wave solutions but not solitons, whereas others (like the KdV equation) have solitary
waves that are solitons. Indeed, the soliton has formed a new paradigm in mathemat-
ical physics. In recent years, the concept of the soliton has been used in a very broad
sense. For example, the nonlinear Schrödinger equation (NLS), describing waves in
plasmas, in superconductors, and in nonlinear optics, etc., yields the envelope soliton
solution which has the form of a sech profile modulating a monochromatic carrier
wave. Unlike the KdV solitons, an NLS soliton does not depend on the amplitude.
Physically, the former is called a low-frequency soliton, whereas the latter is called
a high-frequency soliton (Makhankov 1978). Another important model equation, the
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Fig. 9.3 A shallow water wave model.

sine-Gordon (SG) equation, is used to describe nonlinear wave motions in the uni-
fied theory of elementary particles, magnetic flows, and dislocations in crystals. This
equation admits SG soliton solutions that are called either kinks or antikinks, whose
velocities do not depend on the wave amplitude.

9.3 The Boussinesq and Korteweg–de Vries Equations

We consider an inviscid liquid of constant mean depth h and constant density ρ with-
out surface tension. We assume that the (x, y)-plane is the undisturbed free surface
with the z-axis positive upward. The free surface elevation above the undisturbed
mean depth h is given by z = η(x, y, t), so that the free surface is at z = H = h+ η
and z = 0 is the horizontal rigid bottom (see Figure 9.3).

It has already been recognized that the parameters ε = a/h and κ = ak, where
a is the surface wave amplitude and k is the wavenumber, must both be small for the
linearized theory of surface waves to be valid. To develop the nonlinear shallow water
theory, it is convenient to introduce the following nondimensional flow variables
based on a different length scale h (which could be the fluid depth):

(
x∗, y∗

)
=

1

l
(x, y), z∗ =

z

h
, t∗ =

(
ct

l

)
, η∗ =

η

a
,

φ∗ =

(
h

alc

)
φ,

(9.3.1)

where l is a typical horizontal length scale, and c =
√
gh is the typical horizontal

velocity (or shallow water wave speed).
We next introduce two fundamental parameters to characterize the nonlinear

shallow water waves:

ε =
a

h
and δ =

h2

l2
, (9.3.2ab)

where ε is called the amplitude parameter and
√
δ is called the long wavelength or

shallowness parameter.
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In terms of the preceding nondimensional variables and the parameters, the basic
equations for water waves (Debnath 1994, equations (1.6.5)–(1.6.8)) can be written
in the nondimensional form, dropping the asterisks:

δ(φxx + φyy) + φzz = 0, (9.3.3)
∂φ

∂t
+

ε

2

(
φ2
x + φ2

y

)
+

ε

2δ
φ2
z + η = 0 on z = 1 + εη, (9.3.4)

δ
[
ηt + ε(φxηx + φyηy)

]
− φz = 0 on z = 1 + εη, (9.3.5)

φz = 0 on z = 0. (9.3.6)

It is noted that the parameter κ = ak does not enter explicitly in equations
(9.3.3)–(9.3.6), but an equivalent parameter γ = a/l is associated with ε and δ
through γ = (a/h) · (h/l) = ε

√
δ.

If ε is small, the terms involving ε in (9.3.4), (9.3.5) can be neglected to recover
the linearized free surface conditions. However, the assumption that δ is small might
be interpreted as the characteristic feature of the shallow water theory. So, we expand
φ in terms of δ without any assumption about ε, and write

φ = φ0 + δφ1 + δ2φ2 + · · · , (9.3.7)

and then substitute in (9.3.3)–(9.3.5). The lowest-order term in (9.3.3) is

φ0zz = 0, (9.3.8)

which, with (9.3.6), yields φ0z ≡ 0, for all z, or φ0 = φ0(x, y, t), which indicates
that the horizontal velocity components are independent of the vertical coordinate z
in lowest order. Consequently, we use the notation

φ0x = u(x, y, t) and φ0y = v(x, y, t). (9.3.9ab)

The first- and second-order terms in (9.3.3) are given by

φ0xx + φ0yy + φ1zz = 0, (9.3.10)

φ1xx + φ1yy + φ2zz = 0. (9.3.11)

Integrating (9.3.10) with respect to z and using (9.3.9ab) gives

φ1z = −z(ux + vy) + C(x, y, t), (9.3.12)

where the arbitrary function C(x, y, t) becomes zero because of the bottom boundary
condition (9.3.6). Integrating the resulting equation (9.3.12), again with respect to z
and omitting the arbitrary constant, we obtain

φ1 = −z2

2
(ux + vy), (9.3.13)

so that φ1 = 0 at z = 0 and u and v are then the horizontal velocity components at
the bottom boundary.
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We next substitute (9.3.13) in (9.3.10), (9.3.11), and then integrate with condition
(9.3.6) to determine the arbitrary function. Consequently,

φ2z =
1

6
z3
[(
∇2u

)
x
+
(
∇2v

)
y

]
, φ2 =

1

24
z4
[(
∇2u

)
x
+
(
∇2v

)
y

]
,

(9.3.14ab)

where ∇2 is the two-dimensional Laplacian.
We next consider the free surface boundary conditions retaining all terms up to

order δ, ε in (9.3.4), and δ2, ε2, and δε in (9.3.5). It turns out that

φ0t −
δ

2
(utx + vty) + η +

1

2
ε
(
u2 + v2

)
= 0, (9.3.15)

δ
[{
ηt + ε(uηx + vηy)

}
+ (1 + εη)(ux + vy)

]
=

δ2

6

[(
∇2u

)
x
+
(
∇2v

)
y

]
.

(9.3.16)

Differentiating (9.3.15) first with respect to x and then with respect to y gives
two equations:

ut + ε(uux + vvx) + ηx − 1

2
δ(utxx + vtxy) = 0, (9.3.17)

vt + ε(uuy + vvy) + ηy −
1

2
δ(utxy + vtyy) = 0. (9.3.18)

Simplifying (9.3.16) yields

ηt +
[
u(1 + εη)

]
x
+
[
v(1 + εη)

]
y
=

δ

6

[(
∇2u

)
x
+
(
∇2v

)
y

]
. (9.3.19)

Equations (9.3.17)–(9.3.19) represent the nondimensional shallow water equa-
tions.

Using the fact that φ0 is irrotational, that is, uy = vx and neglecting terms O(δ)
in (9.3.17)–(9.3.19), we obtain the fundamental shallow water equations

ut + ε(uux + vux) + ηx = 0, (9.3.20)

vt + ε(uvx + vvy) + ηy = 0, (9.3.21)

ηt +
[
u(1 + εη)

]
x
+
[
v(1 + εη)

]
y
= 0. (9.3.22)

This system of three, coupled, nonlinear equations is closed and admits some
interesting and useful solutions for u, v, and η. It is equivalent to the boundary-layer
equations in fluid mechanics. Finally, it can be linearized when ε � 1 to obtain the
following dimensional equations:

ut + gηx = 0, vt + gηy = 0, ηt + h(ux + vy) = 0. (9.3.23abc)

Eliminating u and v from these equations gives

ηtt = c2(ηxx + ηyy). (9.3.24)
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This is a well-known two-dimensional wave equation. It corresponds to the nondis-
persive shallow water waves that propagate with constant velocity c =

√
gh. This

velocity is simply the linearized version of
√
g(h+ η). The wave equation has the

simple d’Alembert solution representing plane progressive waves

η(x, y, t) = f(k1x+ l1y − κ1ct) + g(k2x+ l2y − κ2ct), (9.3.25)

where f and g are arbitrary functions and κ2
r = (k2r + l2r), r = 1, 2.

We consider the one-dimensional case retaining both ε and δ order terms
in (9.3.17)–(9.3.19) so that these equations reduce to the Boussinesq equations
(1871a, 1871b, 1872)

ut + εuux + ηx − 1

2
δutxx = 0, (9.3.26)

ηt +
[
u(1 + εη)

]
x
− 1

6
δuxxx = 0. (9.3.27)

On the other hand, equations (9.3.20)–(9.3.22), expressed in dimensional form,
are

ut + uux + vuy + gHx = 0, (9.3.28)

vt + uvx + vvy + gHy = 0, (9.3.29)

Ht + (uH)x + (vH)y = 0, (9.3.30)

where H = (h+ η) is the total depth and Hx = ηx, since the depth h is constant.
In particular, the one-dimensional version of the shallow water equations follows

from (9.3.28)–(9.3.30) and is given by

ut + uux + gHx = 0, (9.3.31)

Ht + (uH)x = 0. (9.3.32)

This system of approximate shallow water equations is analogous to the exact
governing equations of gas dynamics for the case of a compressible flow involving
only one space variable (Riabouchinsky 1932).

It is convenient to rewrite these equations in terms of the wave speed c =
√
gH

by using dc = (g/2c) dH , so that they become

ut + uux + 2ccx = 0, (9.3.33)

2ct + cux + 2ucx = 0. (9.3.34)

The standard method of characteristics can easily be used to solve (9.3.33) and
(9.3.34). Adding and subtracting these equations allows us to rewrite them in the
characteristic form

[
∂

∂t
+ (c+ u)

∂

∂x

]
(u+ 2c) = 0, (9.3.35)
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[
∂

∂t
+ (c− u)

∂

∂x

]
(u− 2c) = 0. (9.3.36)

Equations (9.3.35), (9.3.36) show that u + 2c propagates in the positive x-direction
with velocity c+u, and u−2c travels in the negative x-direction with velocity c−u,
that is, both u+ 2c and u− 2c propagate in their respective directions with velocity
c relative to the water. In other words,

u+ 2c = const. on curves C+ on which dx
dt = u+ c,

u− 2c = const. on curves C− on which dx
dt = u− c,

}
(9.3.37ab)

where C+ and C− are characteristic curves of the system of partial differential equa-
tions (9.3.31), (9.3.32). A disturbance propagates along these characteristic curves at
speed c relative to the flow speed. The quantities u ± 2c are called the Riemann in-
variants of the system, and a simple wave is propagating to the right into water of
depth h, that is, u− 2c = c0 =

√
gh. Then, the solution is given by

u = f(ξ), x = ξ +

(
c0 +

3

2
u

)
t, (9.3.38)

where u(x, t) = f(x) at t = 0. However, we note that

ux =

(
1− 3

2
uxt

)
f ′(ξ),

giving

ux =
2f ′(ξ)

2 + 3tf ′(ξ)
. (9.3.39)

Thus, if f ′(ξ) is anywhere less than zero, ux tends to infinity as t → −2/(3f ′). In
terms of the free surface elevation, solution (9.3.38) implies that the wave profile
progressively distorts itself, and, in fact, any forward-facing portion of such a wave
continually steepens, or the higher parts of the wave tend to catch up with lower parts
in front of them. Thus, all of these waves, carrying an increase of elevation, invariably
break. The breaking of water waves on beaches is perhaps the most common and the
most striking phenomenon in nature.

An alternative system equivalent to the nonlinear evolution equations (9.3.26),
(9.3.27) can be derived from the nonlinear shallow water theory, retaining both ε and
δ order terms with δ < 1. This system is also known as the Boussinesq equations
which, in dimensional variables, are given by

ηt +
[
(h+ η)u

]
x
= 0, (9.3.40)

ut + uux + gηx =
1

3
h2uxxt. (9.3.41)

They describe the evolution of long water waves that move in both positive and
negative x-directions. Eliminating η and neglecting terms smaller than O(ξ, δ) gives
a single Boussinesq equation for u(x, t) in the form
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utt − c2uxx +
1

2

(
u2
)
xt

=
1

3
h2uxxtt. (9.3.42)

The linearized Boussinesq equation for u and η follows from (9.3.40) and (9.3.41)
as [

∂2

∂t2
− c2

∂2

∂x2
− 1

3
h2 ∂4

∂x2∂t2

](
u
η

)
= 0. (9.3.43)

This is in perfect agreement with the infinitesimal wave theory result expanded for
small kh. Thus, the third derivative term in 9.3.41) may be identified with the fre-
quency dispersion.

Another equivalent version of the Boussinesq equation is given by

ηtt − c2ηxx =
3

2

(
η2

h

)
xx

+
1

3
h2ηxxxx. (9.3.44)

There are several features of this equation. It is a nonlinear partial differential equa-
tion that incorporates the basic idea of nonlinearity and dispersion. Boussinesq ob-
tained three invariant physical quantities, Q, E, and M , defined by

Q =

∫ ∞

−∞
η dx, E =

∫ ∞

−∞
η2 dx, M =

∫ ∞

−∞

[
η2x − 3

(
η

h

)3]
dx,

(9.3.45)
provided that η → 0 as |x| → ∞. Evidently, Q and E represent the volume and the
energy of the solitary wave. The third quantity, M , is called the moment of instability,
and the variational problem, δM = 0 with E fixed, leads to the unique solitary-
wave solution. Boussinesq also derived the results for the amplitude and volume of
a solitary wave of given energy in the form

a =
3

4

(
E3/2

h

)
, Q = 2hE1/3. (9.3.46ab)

The former result shows that the amplitude of a solitary wave in a channel varies
inversely as the channel depth h.

The Boussinesq equation can then be written in the normalized form

utt − uxx − 3

2

(
u2
)
xx

− uxxxx = 0. (9.3.47)

This particular form is of special interest because it admits inverse scattering formal-
ism. Equation (9.3.47) has steady progressive wave solutions in the form

u(x, t) = 4k2f(X), X = kx− ωt, (9.3.48)

where the equation for f(X) can be integrated to obtain

fXX = 6A+ (4− 6B)f − 6f2, (9.3.49)

where A is a constant of integration and
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ω2 = k2 + k4(4− 6B). (9.3.50)

For the special case A = B = 0, a single solitary-wave solution is given by

f(X) = sech2(X −X0), (9.3.51)

where X0 is a constant of integration. This result can be used to construct a solution
for a series of solitary waves, spaced 2σ apart, in the form

f(X) =

∞∑
n=−∞

sech2(X − 2nσ). (9.3.52)

This is a 2σ periodic function that satisfies (9.3.49) for certain values of A and B.
We next assume that ε and δ are comparable, so that all terms O(ε, δ) in (9.3.17)–

(9.3.19) can be retained. For the case of the two-dimensional wave motion
(v ≡ 0 and ∂/∂y ≡ 0), these equations become

ut + ηx + εuux − 1

2
δutxx = 0, (9.3.53)

ηt +
[
u(1 + εη)

]
x
− 1

6
δuxxx = 0. (9.3.54)

We now seek steady progressive wave solutions traveling in the positive x-
direction only, so that u = u(x − Ut) and η = η(x − Ut). With the terms of
zero order in ε and δ and U = 1, we assume a solution of the form

u = η + εP + δQ, (9.3.55)

where P and Q are unknown functions to be determined. Consequently, equations
(9.3.53), (9.3.54) become

(η + εP + δQ)t + ηx + εηηx − 1

2
δηtxx = 0, (9.3.56)

ηt +
[
(1 + εη)(η + εP + δQ)

]
x
− 1

6
δηxxx = 0. (9.3.57)

These equations must be consistent so that we stipulate for the zero order

ηt = −ηx, P = −1

4
η2, Q =

1

3
ηxx = −1

3
ηxt. (9.3.58)

We use these results to rewrite both (9.3.56) and (9.3.57) with the assumption
that ε and δ are of equal order and small enough for their products and squares to be
ignored, so that the ratio (ε/δ) = (al2/h3) is of order one. Consequently, we obtain
a single equation for η(x, t) in the form

ηt +

(
1 +

3

2
εη

)
ηx +

1

6
δηxxx = 0. (9.3.59)
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This is now universally known as the Korteweg and de Vries equation as they discov-
ered it in their 1895 seminal work. We point out that (ε/δ) = al2/h3 is one of the
fundamental parameters in the theory of nonlinear shallow water waves. Recently,
Infeld (1980) considered three-dimensional generalizations of the Boussinesq and
Korteweg–de Vries equations.

Example 9.3.1 (Ion-Acoustic Waves and the KdV Equation). A high temperature
plasma is a fully ionized gas consisting of electrons and ions that are governed by
the equations of continuity and momentum combined with the classical Maxwell
equations. Using the subscripts e and i for quantities related to electrons and ions and
neglecting dissipation due to collisions, we write the following equations of motion
for plasma.

The equation of continuity is

∂nj

∂t
+∇ · (njuj) = 0, (9.3.60)

where nj(j = e, i) is the density and uj is the flow velocity.
The equation of motion is

mjnj

[
∂uj

∂t
+ (uj · ∇)uj

]
= −∇pj + njqj

[
E+

1

c
(uj ×B)

]
. (9.3.61)

The Maxwell equations are given by

∇ ·E = 4π(qini + qene), ∇ ·B = 0, (9.3.62ab)
∂B

∂t
+ c(∇×E) = 0, −∂E

∂t
+ c(∇×B) = 4π(qiniui + qeneue).

(9.3.63ab)

The equation of state is given by

pj = njTj . (9.3.64)

In the above equations, E is the electric field, B is the magnetic field, T is the product
of the Boltzmann constant and the temperature, q and m are the charge and mass,
respectively, and c is the speed of light.

For an electrostatic wave, that is, for a one-dimensional longitudinal wave
(∇×E = 0, B = 0), we set qi = −qe ≡ e to obtain

∂nj

∂t
+

∂

∂x
(njuj) = 0, (9.3.65)

∂uj

∂t
+ uj

∂uj

∂x
= ± e

mj
E − 1

mjnj

∂

∂x
(Tjnj), (9.3.66)

∂E

∂x
= 4πe(ni − ne),

∂E

∂t
= 4πe(neue − niui). (9.3.67ab)

The motion of the cold ions in a hot electron gas with the classical Boltzmann
distribution is governed by the simplified form of equations (9.3.60)–(9.3.64). In
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this case, with me → 0 and Te = const. with Te  Ti, it follows from equations
(9.3.65)–(9.3.67ab) that

eE =
Te

ne

∂ne

∂x
, (9.3.68)

∂ni

∂t
+

∂

∂x
(niui) = 0, (9.3.69)

∂ui

∂t
+ ui

∂ui

∂x
=

e

mi
E − 1

mini

∂

∂x
(niTi), (9.3.70)

∂E

∂x
= 4πe(ni − ne). (9.3.71)

These are the governing equations for quantities ni, ui, E, and ne if Ti is a given
constant or, by the adiabatic law, so that (niTi) is proportional to nγ

i . Introducing
the electrostatic potential φ, so that E = −φx, equation (9.3.69) gives the Boltz-
mann distribution for electrons ne = n0 exp(

eφ
Te
), where n0 is the number density of

electrons (or ions) in the unperturbed state.
To examine the motion of the cold ions in a hot electron gas with the Boltzmann

distribution, we use equations (9.3.68) and (9.3.69). It is convenient to nondimen-
sionalize the physical quantities as follows:

n∗
j =

nj

n0
, u∗

j =
uj

cs
, E∗ =

eE√
meTe

ωpe,

φ∗ =
eφ

Te
, x∗ =

x

λDe
, t∗ = tωpi,

where ωpe = (4πn0/me)
1
2 e is the electron plasma frequency,

λDe = ω−1
pe (Te/me)

1
2 is the electron Debye length, ωpi = ωpe(me/mi)

1
2 is the

ion plasma frequency, ni = n0 = const., and cs = λDe · ωpi = (Te/mi)
1
2 . Conse-

quently, omitting the asterisks, equations (9.3.69)–(9.3.71) reduce to nondimensional
form

∂ni

∂t
+

∂

∂x
(niui) = 0, (9.3.72)

∂ui

∂t
+ ui

∂ui

∂x
= −∂φ

∂x
, (9.3.73)

∂2φ

∂x2
= exp(φ)− ni. (9.3.74)

Substituting ni = 1 + n′
i exp[i(kx− ωt)] and (ui, φ) = (u′

i, φ
′) exp[i(kx− ωt)] in

the above equations gives the linear dispersion relation

ω2 = k2
(
1 + k2

)−1
. (9.3.75)

For long waves (k2 � 1), equation (9.3.75) reduces to

ω ≈ k

(
1− 1

2
k2
)
. (9.3.76)
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Under the assumption of a quasi-neutral state, ni = ne = exp(φ) so that φ =
log(ni), the equation of motion (9.3.73) becomes

∂ui

∂t
+ ui

∂ui

∂x
= − 1

ni

∂ni

∂x
. (9.3.77)

This is identical to the equation of motion for a gas with unit sound velocity (cs = 1).
Physically, this means that electrons exert a pressure on ions through the electric field
E = −φx, and hence, waves described by the above dispersion relation are called
ion-acoustic waves. As the waves steepen by the inertia term, φxx(= ne−ni) cannot
be neglected. Consequently, a soliton is generated by the dispersion involved with the
deviation from the quasi-neutral state (the second term of the dispersion relation).

To obtain the soliton solution of the above system, we look for a stationary wave
solution with ξ = x− ct and the boundary conditions

ni → 1, u2 → 0, φ → 0,
∂φ

∂ξ
→ 0, as |ξ| → ∞. (9.3.78)

It turns out that φ(ξ, t) satisfies the nonlinear equation

1

2

(
∂φ

∂ξ

)2

= exp(φ) + c
(
c2 − 2φ

) 1
2 −

(
c2 + 1

)
. (9.3.79)

This gives the value of c2 when ∂φ
∂ξ = 0 at φ = φm, so that

c2 =
{1− exp(φm)}2

2{exp(φm)− (1 + φm)} . (9.3.80)

We assume that φm � 1, so that c − 1 = δλ � 1. Consequently, equation (9.3.79)
reduces to the form (

∂φ

∂ξ

)2

=
2

3
φ2(3δc− φ). (9.3.81)

Integrating this equation gives a soliton solution of the form

φ(x, t) = 3(δc) sech2
[√

δc

2
(x− ct)

]
. (9.3.82)

This represents a KdV soliton when the amplitude is finite, but small. As the ampli-
tude of the potential tends to φm = 1

2c
2, that is, eφm = 1

2mic
2, the ions cannot pass

the potential and so will be reflected. As a result, ion orbits will intersect, and hence,
the cold ion approximation ceases to be valid. Accordingly, the maximum ampli-
tude of the soliton is given by φm = 1

2c
2, and, from equation (9.3.80), we obtain

φm ∼ 1.3, and hence, c ∼ 1.6. This reveals that the maximum Mach number of the
soliton is 1.6 as predicted by Sagdeev (1966).

Example 9.3.2 (Derivation of the KdV Equation from the Euler Equations). We
discussed this problem at the beginning of this section by using the Laplace equation
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for the velocity potential under the assumption that δ = O(ε) as ε → 0. Here we
follow Johnson (1997) to present another derivation of the KdV equation from the
Euler equation in (1 + 1) dimensions. This approach can be generalized to derive
higher dimensional KdV equations.

We consider the problem of surface gravity waves which propagate in the positive
x-direction over stationary water of constant depth. The associated Euler equations
(2.7.67) and the continuity equation (2.7.68) in (1 + 1) dimensions are given by

ut + ε(uux + wuz) = −px, (9.3.83)

δ
[
wt + ε(uwx + wwz)

]
= −pz, (9.3.84)

ux + wz = 0. (9.3.85)

The free surface and bottom boundary conditions are obtained from (2.7.69), (2.7.70)
in the form

w = ηt + εuηx, p = η on z = 1 + εη, (9.3.86)

w = 0 on z = 0. (9.3.87)

It can easily be shown that, for any
√
δ as ε → 0, there exists a region in the (x, t)-

space where there is a balance between nonlinearity and dispersion which leads to
the KdV equation. The region of interest is defined by a scaling of the independent
flow variables as

x →
√

δ

ε
x and t →

√
δ

ε
t, (9.3.88)

for any ε and
√
δ. In order to ensure consistency in the continuity equation, it is

necessary to introduce a scaling of w by

w →
√

ε

δ
w. (9.3.89)

Consequently, the net effect of the scalings is to replace δ by ε in equations
(9.3.83)–(9.3.87) so that they become

ut + ε(uux + wuz) = −px, (9.3.90)

ε
[
wt + ε(uwx + wwz)

]
= −pz, (9.3.91)

ux + wz = 0, (9.3.92)

w = ηt + εuηx, and p = η on z = 1 + εη, (9.3.93)

w = 0 on z = 0. (9.3.94)

In the limit as ε → 0, the first-order approximation of equations (9.3.90) and
(9.3.93) gives

η = p, 0 ≤ z ≤ 1, and ut + ηx = 0. (9.3.95)

It then follows from (9.3.92) that w = −zux which satisfies (9.3.94). The bound-
ary condition (9.3.93) leads to ηt + ux = 0 on z = 1, which can be combined with
(9.3.95) to obtain the linear wave equation
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ηtt − ηxx = 0. (9.3.96)

For waves propagating in the positive x-direction, we introduce the far-field variables

ξ = x− t and τ = εt, (9.3.97)

so that ξ = O(1) and τ = O(1) give the far-field region of the problem. This is the
region where nonlinearity balances the dispersion to produce the KdV equation.

With the choice of the transformations (9.3.97), equations (9.3.90)–(9.3.94) can
be rewritten in the form

−uξ + ε(uτ + uuξ + wuz) = −pξ, (9.3.98)

ε
[
−wξ + ε(wτ + uwξ + wwz)

]
= −pz, (9.3.99)

uξ + wz = 0, (9.3.100)

w = −ηξ + ε(ητ + uηξ), p = η on z = 1 + εη, (9.3.101)

w = 0 on z = 0. (9.3.102)

We seek an asymptotic series expansion of the solutions of the system (9.3.98)–
(9.3.102) in the form

η(ξ, τ, ε) =

∞∑
n=0

εnηn(ξ, τ), q(ξ, τ, z; ε) =

∞∑
n=0

εnqn(ξ, τ, z), (9.3.103)

where q (and the corresponding qn) denotes each of the variables u, w, and p.
Consequently, the leading-order problem is given by

u0ξ = p0ξ, p0z = 0, u0ξ + w0z = 0, (9.3.104)

p0 = η0, w + η0ξ = 0 on z = 1, (9.3.105)

w = 0 on z = 0. (9.3.106)

These leading-order equations give

p0 = η0, u0 = η0, w0 + zη0ξ = 0, 0 ≤ z ≤ 1, (9.3.107)

with u0 = 0 whenever η0 = 0. The boundary condition on w0 at z = 1 is automati-
cally satisfied.

Using the Taylor series expansion of u, w, and p about z = 1, the two surface
boundary conditions on z = 1+ εη are rewritten on z = 1, and hence, take the form

p0 + εη0p0z + εp1 = η0 + εη1 +O
(
ε2
)

on z = 1, (9.3.108)

w0 + εη0w0z + εw1 = −η0ξ − εη1ξ + ε(η0τ + u0η0ξ) +O
(
ε2
)

on z = 1. (9.3.109)

These conditions are to be used together with (9.3.98), (9.3.99), and (9.3.102).
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The equations in the next order are given by

−u1ξ + u0τ + u0u0ξ + w0u0z = −p1ξ, p1z = w0ξ, (9.3.110)

u1ξ + w1z = 0, (9.3.111)

p1 + η0p0 = η1, w1 + η0 + w0z = −η1ξ + η0τ + u0η0ξ on z = 1,

(9.3.112)

w1 = 0 on z = 0. (9.3.113)

Noting that
u0z = 0, p0z = 0, and w0z = −η0ξ, (9.3.114)

we obtain

p1 =
1

2

(
1− z2

)
η0ξξ + η1, (9.3.115)

and therefore,

w1z = −u1ξ = −p1ξ − u0τ − u0u0ξ

= −
[
η1ξ +

1

2

(
1− z2

)
η0ξξξ + η0τ + η0η0ξ

]
. (9.3.116)

Finally, we find

w1 = −
[
η1ξ + η0τ + η0 + η0ξ +

1

2
η0ξξξ

]
z +

1

6
z3η0ξξξ, (9.3.117)

which satisfies the bottom boundary condition on z = 0.
The free surface boundary condition on z = 1 gives

(w1)z=1 = −
(
η1ξ + η0τ + η0η0ξ +

1

2
η0ξξξ

)
+

1

6
η0ξξξ

= −η1ξ + η0τ + 2η0η0ξ, (9.3.118)

which yields the equation for η0(ξ, τ) in the form

η0τ +
3

2
η0η0ξ +

1

6
η0ξξξ = 0. (9.3.119)

This is the Korteweg–de Vries (KdV) equation, which describes nonlinear plane grav-
ity waves propagating in the x-direction. It will be described in Section 9.7 that the
exact solution of the general initial-value problem for the KdV equation can be ob-
tained, provided the initial data decay sufficiently rapidly as |ξ| → ∞. We may raise
the question of whether the asymptotic expansion for η (and hence, for the other flow
variables) is uniformly valid as |ξ| → ∞ and as τ → ∞. For the case of τ → ∞,
this question is difficult to answer because the equations for ηn(n ≥ 1) are not easy
to solve. However, all the available numerical evidence suggests that the asymptotic
expansion of η is indeed uniformly valid as τ → ∞ (at least for solutions which
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satisfy η → 0 as |ξ| → ∞). From a physical point of view, if the waves are allowed
to propagate indefinitely, then other physical effects cannot be neglected. In the case
of real water waves, the most common physical effects include viscous damping. In
practice, the viscous damping seems to be sufficiently weak to allow the dispersive
and nonlinear effects to dominate before the waves eventually decay completely.

It is well known that the KdV equation describes nonlinear plane waves which
propagate only in the x-direction. However, there are many physical situations in
which waves move on a two-dimensional surface. So it is natural to include both x-
and y-directions with the appropriate balance of dispersion and nonlinearity. One of
the simplest examples is the classical two-dimensional linear wave equation

utt = c2(uxx + uyy), (9.3.120)

which describes the propagation of long waves.
This equation has a solution in the form

u(x, t) = a exp
[
i(ωt− k · x)

]
, (9.3.121)

where a is the wave amplitude, ω is the frequency, x = (x, y), and the wavenumber
vector is k = (k, �).

The dispersion relation is given by

ω2 = c2
(
k2 + �2

)
. (9.3.122)

For waves that propagate predominantly in the x-direction, the wavenumber
component � becomes small so that the approximate phase velocity is given by

cp = c

(
1 +

1

2

�2

k2

)
as � → 0. (9.3.123)

Example 9.3.3 (The Kadomtsev–Petviashvili (KP) Equation or Two-Dimensional
KdV Equation). It follows from (9.3.123) that the phase velocity suffers from a small
correction provided by the wavenumber component � in the y-direction. In order to
ensure that this small correction is the same order as the dispersion and nonlinear-
ity, it it necessary to require � = O(

√
ε) or �2 = O(ε). This requirement can be

incorporated in the governing equations by a scaling of the flow variables as

y →
√
εy and v →

√
εv, (9.3.124)

and using the same far-field transformations as (9.3.97).
Consequently, equations (2.7.67)–(2.7.71) with the parameters δ replaced by ε

reduce to the form

−uξ + ε(uτ + uuξ + εvuy + wuz) = −pξ, (9.3.125)

−vξ + ε(vτ + uvξ + εvvy + wvz) = −py, (9.3.126)

−ε
[
−wξ + ε(wτ + uwξ + εvwy + wwz)

]
= −pz, (9.3.127)

−uξ + εvy + wz = 0, (9.3.128)
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w = −ηξ + ε(ητ + uuξ + εvηy), and p = η on z = 1 + εη, (9.3.129)

w = 0 on z = 0. (9.3.130)

We seek the same asymptotic series solution (9.3.103) valid as ε → 0 without
any change of the leading order problem except that the flow variables involve y so
that

p0 = η0, u0 = η0, w0 = −zη0ξ, 0 ≤ z ≤ 1, (9.3.131)

v0ξ = η0y. (9.3.132)

At the next order, the only difference from Example 9.3.2 is in the continuity
equation which becomes

w1z = −u1ξ − v0y. (9.3.133)

This change leads to the following equation:

w1 = −
(
η1ξ + η0τ + η0η0ξ +

1

2
η0ξξξ + v0y

)
z +

1

6
z3η0ξξξ. (9.3.134)

Using equation (9.3.132), the final result is the equation for the leading-order
representation of the surface wave in the form

2η0τ + 3η0η0ξ +
1

3
η0ξξ + v0y = 0. (9.3.135)

Consequently, differentiating (9.3.135) with respect to ξ and replacing v0ξ by η0y
give the evolution equation for η0(ξ, τ, y) in the form

(
2η0τ + 3η0η0ξ +

1

3
η0ξξξ

)
ξ

+ η0yy = 0. (9.3.136)

This is the two-dimensional or, more precisely, the (1 + 2)-dimensional KdV
equation. Obviously, when there is no y-dependence, (9.3.136) reduces to the KdV
equation (9.3.119). The two-dimensional KdV equation is also known as the Kadomt-
sev–Petviashvili (KP) equation (Kadomtsev and Petviashvili 1970). This is another
very special completely integrable equation, and it has an exact analytical solution
that represents obliquely crossing nonlinear waves. Physically, any number of waves
cross obliquely and interact nonlinearly. In particular, the nonlinear interaction of
three waves leads to a resonance phenomenon. Such an interaction becomes more
pronounced, leading to a strongly nonlinear interaction as the wave configuration is
more nearly that of parallel waves. This situation can be interpreted as one in which
the waves interact nonlinearly over a large distance so that a strong distortion is pro-
duced among these waves. The reader is referred to Johnson’s (1997) book for more
detailed information on oblique interaction of waves.

We now consider the Euler equations (2.7.4)–(2.7.6) and the continuity equation
(2.7.2) in cylindrical polar coordinates (r, θ, z). It is convenient to use the nondi-
mensional flow variables, parameters, and scaled variables similar to those defined



446 9 Solitons and the Inverse Scattering Transform

by (2.7.56), (2.7.57), and (2.7.66) with r = �r∗ where r∗ is a nondimensional vari-
able so that the polar form of Euler equations (2.7.4)–(2.7.6), continuity equation
(2.7.2), and the boundary conditions (2.7.64), (2.7.65) in nondimensional form be-
come

Du

Dt
− εv2

r
= −∂p

∂r
,

Dv

Dt
+

εuv

r
= −1

r

∂p

∂θ
, δ

Dw

Dt
= −∂p

∂z
, (9.3.137)

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

∂w

∂z
= 0, (9.3.138)

w = ηt + ε

(
uηr +

v

r
ηθ

)
, and p = η on z = 1 + εη, (9.3.139)

w = 0 on z = 0, (9.3.140)

where
D

Dt
≡ ∂

∂t
+ ε

(
u
∂

∂r
+

v

r

∂

∂θ
+ w

∂

∂z

)
, (9.3.141)

and ε and δ are defined by (2.7.58).
For the case of axisymmetric wave motions ( ∂

∂θ ≡ 0), the governing equations
become

ut + ε(uur + wuz) = −pr, (9.3.142)

δ
[
wt + ε(uwr + wwz)

]
= −pz, (9.3.143)

ur +
u

r
+ wz = 0, (9.3.144)

w = ηt + εuηr, and p = η on z = 1 + εη, (9.3.145)

w = 0 on z = 0. (9.3.146)

In the limit as ε → 0, the linearized version of equations (9.3.137)–(9.3.141)
become

ut = −pr, vt = −1

r
pθ, δwt = −pz, (9.3.147)

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

∂w

∂z
= 0, (9.3.148)

w = ηt, and p = η on z = 1, (9.3.149)

w = 0 on z = 0, (9.3.150)

For long waves (δ → 0), equations (9.3.147)–(9.3.150) lead to the classical wave
equation

ηtt = ηrr +
1

r
ηr +

1

r2
ηθθ. (9.3.151)

For axisymmetric surface waves, the wave equation (9.3.151) becomes

ηtt = ηrr +
1

r
ηr. (9.3.152)

This can be solved by using the Hankel transform (see Example 1.10.3).
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It is convenient to introduce the characteristic variable ξ = r − t for outgoing
waves and R = αr so that α → 0 corresponds to large radius r. In other words,
R = O(1), as α → 0, gives r → ∞. The equation (9.3.152) reduces to the following
form

2ηξR +
1

R
ηξ = α

(
ηRR +

1

R
ηR

)
= 0. (9.3.153)

In the limit as α → 0, it follows that
√
Rηξ = g(ξ), (9.3.154)

where g(ξ) is an arbitrary function of ξ.
For outgoing waves, the correct solution takes the form for α → 0 (r → ∞),

η =
1√
R

∫
g(ξ) dξ =

1√
R
f(ξ), (9.3.155)

where η = 0 when f = 0.
This shows that the amplitude of waves decays as the radius r → ∞(R → ∞).

This behavior is totally different from the derivation of the KdV equation where the
amplitude is uniformly O(ε). In the present axisymmetric case, the amplitude de-
creases as the radius r increases so that there is no far-field region where the balance
between nonlinearity and dispersion occurs. In other words, the amplitude is so small
that nonlinear terms play no role at the leading order. However, there exists a scaling
of the flow variables which leads to the axisymmetric (concentric) KdV equation as
shown by Johnson (1997).

We recall the axisymmetric Euler equations of motion (9.3.142)–(9.3.146) and
introduce scalings in terms of large radial variable R,

ξ =
ε2

δ
(r − t) and R =

ε6

δ2
r. (9.3.156)

We next apply the transformations of the flow variables

(η, p, u, w) =
ε3

δ

(
η∗, p∗, u∗,

ε2

δ
w∗

)
, (9.3.157)

where large distance/time is measured by the scale (δ2/ε6) so that

(
δ2

ε6

)− 1
2

=

(
ε3

δ

)
,

which represents the scale of the amplitude of the waves. It is important to point out
that the original wave amplitude parameter ε can now be interpreted based on the
amplitude of the wave for r = O(1) and t = O(1). Consequently, the governing
equations (9.3.142)–(9.3.146) become, dropping the asterisks in the variables,

−uξ + α(uuξ + wuz + αuuR) = −(pξ + αpR), (9.3.158)
α
[
−wξ + α(uwξ + wwz + αuwR)

]
= −pz, (9.3.159)
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uξ + wz + α

(
uR +

1

R
u

)
= 0, (9.3.160)

w = −ηξ + α(uηξ + αuηR), p = η on z = 1 + αη, (9.3.161)

w = 0 on z = 0, (9.3.162)

where α = (δ−1ε4) is a new parameter. These equations are similar in structure to
those discussed above with parameter ε, which is now replaced by α in (9.3.158)–
(9.3.162) so that the limit as α → 0 is required. This requirement is satisfied (for
example, ε → 0 with δ fixed), and the scaling introduced by (9.3.156) describes the
region where the appropriate balance occurs so that the wave amplitude in this region
is O(α).

We now seek an asymptotic series solution in the form

q(ξ, R, z) =
∞∑

n=0

αnqn(ξ, R, z), (9.3.163)

where q represents each of η, u, w, and p.
In the leading order, we obtain the familiar equations

p0 = η0, u0 = η0, w0 = −zη0ξ, 0 ≤ z ≤ 1. (9.3.164)

It follows from the continuity equation (9.3.160) that

w1z = −u1z −
(
u0R +

1

R
u0

)
. (9.3.165)

Without any more algebraic calculation, it turns out that η0(ξ, R) satisfies the
nonlinear evolution equation

2η0R +
1

R
η0 + 3η0η0ξ +

1

3
η0ξξξ = 0. (9.3.166)

This is usually referred to as the axisymmetric (concentric) KdV equation which
includes a new term R−1η0. We may use the large time variable τ = (δ−2ε6)t so
that R = τ + αξ ≈ τ (see Johnson 1997 or 1980).

Example 9.3.4 (Derivation of Johnson’s Evolution Equation). Johnson (1980) de-
rived a new concentric KdV equation which incorporates weak dependence on the
angular coordinate θ. In the derivation of KP equation (9.3.136),

√
ε was chosen

as the scaling parameter in the y-direction. Similarly, the appropriate scaling on the
angular variable θ may be chosen as

√
α. In the derivation of the concentric KdV

equation (9.3.166), the parameter α plays the role of ε which is used as the small
parameter in the asymptotic solution of the KdV equation.

Following the work of Johnson (1980), we choose the variables ξ and R defined
by (9.3.156) and the scaled θ variable as

θ =
√
α θ∗ =

(
δ−1ε2

)
, (9.3.167)
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which introduces a small angular deviation from purely concentric effects. We also
use the scaled velocity component in the θ-direction as

v =
(
δδ−

1
2 ε5

)
v∗, (9.3.168)

so that the scalings on u = φr and v = 1
rφθ are found to be consistent.

Invoking (9.3.156), (9.3.157) combined with (9.3.167), (9.3.168), and dropping
the asterisk from all variables the governing equations (9.3.137)–(9.3.140) can be
expressed in the following form:

−uξ + α

[
uuξ + wuz + α

(
uuR +

v

R
uθ

)]
− α3

R
v = −(pξ + αpR), (9.3.169)

−vξ + α

[
uvξ + wvz + α

(
uvR +

1

R
vvθ

)]
+

α2uv

R
= − 1

R
pθ, (9.3.170)

α

[
−wξ + α

(
uwξ + wwz + αuwR +

α

R
vwθ

)]
= −pz, (9.3.171)

uξ + wz + α

[
uR +

1

R
(u+ vθ)

]
= 0, (9.3.172)

w = −ηξ + α

[
uηξ + α

(
uηR +

1

R
vηθ

)]
, and p = η, on z = 1 + αη,

(9.3.173)

w = 0 on z = 0. (9.3.174)

An asymptotic solution similar to that of (9.3.163) gives the same result (9.3.164)
at the leading order with

v0ξ = R−1η0θ. (9.3.175)

At the next order, the continuity equation (9.3.172) produces a different result in
the form

w1z = −
[
u1ξ + u0R +

1

R
(u0 + v0θ)

]
. (9.3.176)

Omitting some algebraic calculations, it turns out that (9.3.176) leads to a KdV
type equation

2η0R +
1

R
η0 + 3η0η0ξ +

1

3
η0ξξξ +

1

R
v0θ = 0. (9.3.177)

Eliminating v0θ from (9.3.177) with the help of (9.3.175) gives the equation in
the form (

2η0R +
1

R
η0 + 3η0η0ξ +

1

3
η0ξξξ

)
ξ

+
1

R2
η0θθ = 0. (9.3.178)

This is known as Johnson’s equation, as it was first derived by Johnson (1980). In
the absence of the θ-dependence, equation (9.3.178) reduces to the concentric KdV
equation (9.3.166).
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Example 9.3.5 (Transformation of the KP Equation to the Concentric KdV Equa-
tion). Replacing τ by t and ξ by x, we rewrite the KP equation (9.3.136) in the form

(
2ηt + 3ηηx +

1

3
ηxxx

)
x

+ ηyy = 0. (9.3.179)

We apply the transformations

η = h(x∗, t), x∗ = x+
1

2

y2

t
(9.3.180)

to equation (9.3.179) to obtain, dropping the asterisk,
(
2ht −

(
y

t

)2

hx + 3hhx +
1

3
hxxx

)
x

+
1

t
hx +

(
y

t

)2

hxx = 0. (9.3.181)

Integrating this equation with respect to x and using the decay condition for
x → ∞ gives the concentric KdV equation for h(x, t)

2ht +
1

t
h+ 3hhx +

1

3
hxxx = 0. (9.3.182)

This equation is similar to (9.3.166) in which R, ξ are replaced by t and x, re-
spectively.

Example 9.3.6 (Transformation of Johnson’s Equation to the KdV Equation). We re-
call Johnson’s equation (9.3.178)

(
2ηR +

1

R
η + 3ηηξ +

1

3
ηξξξ

)
ξ

+
1

R2
ηθθ = 0. (9.3.183)

We use cylindrical polar coordinates (x = r cos θ, y = r sin θ) in the limit as
θ → 0. We write

r − t ∼ x

(
1 +

1

2

y2

x2

)
− t = x

(
1 +

1

2
θ2
)
− t

so that

x− t ∼ r − t− 1

2
rθ2 =

δ

ε2

(
ξ − 1

2
Rθ∗2

)
.

We next apply the transformations

h = η(ζ, R), ζ = ξ − 1

2
Rθ∗2

to equation (9.3.178) and integrate the resulting equation with respect to ξ to obtain
the equation

2hR + 3hhζ +
1

3
ηζζζ = 0. (9.3.184)

This is the usual KdV equation where R = τ + αξ may be replaced by τ as
α → 0 and R may be interpreted as the time variable.
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Example 9.3.7 (Derivation of the Boussinesq Equation from the Euler Equations).
We consider another example of weakly nonlinear and weakly dispersive waves

which propagate in both the positive and negative x-directions. We use the Euler
equations (9.3.83)–(9.3.87) with the scaling which replaces δ by ε so that

ut + ε(uux + wuz) = −px, (9.3.185)

ε
[
wt + ε(uwx + wwz)

]
= −pz, (9.3.186)

ux + wz = 0, (9.3.187)

w = ηt + εηηx, and p = η on z = 1 + εη, (9.3.188)

w = 0 on z = 0. (9.3.189)

We seek as usual an asymptotic expansion of solutions in integral powers of ε as
ε → 0. At the leading order O(1), we obtain

p0 = η0, u0t = −η0x, w0 = −zu0x, u0x = −η0t, 0 ≤ z ≤ 1. (9.3.190)

Consequently, η0 satisfies the classical wave equation

η0tt − η0xx = 0. (9.3.191)

In this problem, we seek solutions that are valid for x = O(1) and t = O(1).
At the next order O(ε), we find

p1 = −1

2

(
1− z2

)
u0xt + η1 (9.3.192)

so that

u1t + u0u0x =
1

2

(
1− z2

)
u0xxt − η1x. (9.3.193)

And the equation
w1z = −u1x (9.3.194)

leads to the following form:

w1zt = −u1xt = η1xx − 1

2

(
1− z2

)
u0xxxt + (u0u0x)x. (9.3.195)

Integrating this equation with respect to z gives

w1t = z

[
(u0u0x)x + η1xx − 1

2
u0xxxt

]
+

1

6
z3u0xxxt. (9.3.196)

This satisfies w1t = 0 or w1 = 0 on z = 0. Differentiating with respect to t, the
free surface boundary condition on z = 1 yields

(w1 + η0w0z)t = (η1t + u0η0x)t. (9.3.197)
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Thus,

(u0u0x)x + η1xx − 1

3
u0xxxt − (η0u0x)t = η1tt + (u0η0x)t, (9.3.198)

which becomes, by using (9.3.190),

η1tt − η1xx −
(
u2
0 +

1

2
η20

)
xx

− 1

3
η0xxx = 0. (9.3.199)

Combining (9.3.191) and (9.3.199) gives a single equation for η = η0 + εη1 +
O(ε2) in the form

ηtt − ηxx − ε

[
1

2
η2 +

(∫ x

−∞
ηt dx

)2]
xx

− ε

3
ηxxxx = O

(
ε2
)
, (9.3.200)

where we have used
u0 = −

∫ x

−∞
η0 dx

under the assumption that u0 → 0 as x → ∞.
Equation (9.3.200) or equation (9.3.200) with zero on the right-hand side is re-

ferred to as the Boussinesq (1871a, 1871b) equation. This equation describes weakly
nondispersive waves which propagate in both the positive and negative x-directions.

Finally, invoking the transformation η∗ = η − εη2 and the definition

x∗ = x+ ε

∫ x

−∞
η(x, t, ε) dx,

the equation for η∗(x∗, t, ε) takes the form, dropping the asterisk,

ηtt − ηxx − 3

2
ε
(
η2
)
xx

− 1

3
εηxxxx = O

(
ε2
)
. (9.3.201)

This equation or this equation with zero on the right-hand side is the usual form of the
Boussinesq equation, which is found to be completely integrable for any positive ε.
Using the transformations

η → −2

ε
η, x →

√
ε

3
x, and t →

√
ε

3
t,

equation (9.3.201) reduces to the standard version of the Boussinesq equation as

ηtt − ηxx + 3
(
η2
)
xx

− ηxxxx = 0. (9.3.202)

Example 9.3.8 (Derivation of the KdV Equations for Gravity–Capillary Waves).
The two-dimensional exact nonlinear gravity-capillary waves in water of finite depth
h are governed by the following equations for the velocity potential φ(x, z, t) and
the free surface elevation η(x, t):

∇2φ = φxx + φzz = 0, 0 < z < h+ η, (9.3.203)

ηt + φxηx − φz = 0 on z = h+ η, (9.3.204)
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φt + gη +
1

2

(
φ2
x + φ2

z

)
− T

ρ

ηxx
(1 + η2x)

3/2
= B on z = h+ η, (9.3.205)

φz = 0 on z = 0, (9.3.206)

where the origin of coordinates is at z = 0, T is the surface tension, ρ is the constant
density of water, and B is a constant.

In terms of nondimensional flow variables defined by (9.3.1) and two fundamen-
tal parameters ε and δ to characterize the nonlinear shallow gravity–capillary waves,
equations (9.3.203)–(9.3.206) can be written, dropping the asterisks, in the nondi-
mensional form:

δφxx + φzz = 0, 0 < z < 1 + εη, (9.3.207)

δ(ηt + εφxηx)− φz = 0 on z = 1 + εη, (9.3.208)

φt + η +
ε

2

(
φ2
x +

1

δ
φ2
z

)
− τδηxx

(1 + ε2δη2x)
3/2

= 0 on z = 1 + εη, (9.3.209)

φz = 0 on z = 0, (9.3.210)

where τ = ( T
gρh2 ) is the Bond number.

Following Vanden-Broeck (2010), we seek series expansion of φ(x, z, t) in pow-
ers of z in the form

φ(x, z, t) =

∞∑
n=0

znfn(x, t). (9.3.211)

Substituting (9.3.211) into (9.3.207) and (9.3.210) gives

fn = 0, for n = 1, 2, 3, . . . , (9.3.212)

fn = − δ

n(n− 1)

∂2fn−2

∂x2
, n = 2, 4, 6, . . . . (9.3.213)

Solving (9.3.213) recursively yields

φ =

∞∑
n=0

(−1)nδn
zn

(2n)!

∂2nf

∂x2n
, where f = f0. (9.3.214)

Substituting (9.3.214) into the free surface conditions (9.3.208)–(9.3.209) yields

ηt +
[
(1 + εη)fx

]
x
− δ

[
1

6
(1 + εη)3fxxxx +

ε

2
(1 + εη)2ηxfxxx

]

+O
(
δ2
)
= 0, (9.3.215)

ft + η +
1

2
εf2

x − δ

2
(1 + εη)2

(
fxxt + εfxfxxx − εf2

xx

)
− τδηxx

(1 + ε2δη2x)
3/2

+O
(
δ2
)
= 0, (9.3.216)

Dropping all terms of order δ and then differentiating (9.3.216) with respect to x
gives
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[
ηt + (1 + εη)fx

]
x
= 0, (9.3.217)

fxt + ηx + εfxfxx − (τδ)ηxxx = 0. (9.3.218)

Equations (9.3.217)–(9.3.218) represent the shallow water equations for the gravity–
capillary waves. These define a hyperbolic system of partial differential equations
which does not admit traveling wave solutions.

The major result of this analysis is that the KdV equation for gravity–capillary
waves can be obtained from (9.3.217)–(9.3.218) for waves moving to the right. To
the lowest order in ε and δ, that is, to the order ε0 and δ0, these two equations become

ηt + fxx = 0 and fxt + ηx = 0. (9.3.219)

Thus, the solution moving to the right is

η = fxx, ηt + ηx = 0. (9.3.220)

We assume solutions to order ε and δ in the form

fx = η + εP + δQ+O
(
ε2 + δ2

)
, (9.3.221)

where P and Q are unknown functions of η and its derivatives. Consequently, equa-
tions (9.3.115)–(9.3.116) reduce to

ηt + ηx + ε(Px + 2ηηx) + δ

(
Qx − 1

6
ηxxx

)
= 0, (9.3.222)

ηt + ηx + ε(Pt + ηηx) + δ

(
Qt −

1

2
ηxxt

)
− δτηxxx = 0. (9.3.223)

Since ηt = −ηx + O(ε, δ), replacing the t-derivatives by minus the x-derivatives in
the first order terms in (9.3.223) gives

ηt + ηx + ε(−Px + ηηx) + δ

(
−Qx +

1

2
ηxxx

)
− δτηxxx = 0. (9.3.224)

Equations (9.3.222)–(9.3.224) must be consistent so that the coefficients of ε and δ
in these equations are the same. Consequently,

2Px = −ηηx, 2Qx =

(
2

3
− τ

)
ηxxx. (9.3.225)

Integrating (9.3.225) with respect to x gives

P = −1

4
η2 and Q =

(
1

3
− 1

2
τ

)
ηxx. (9.3.226)

Substituting the values for Px and Qx into (9.3.224) gives the KdV equation for
gravity–capillary waves in the form
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ηt +

(
1 +

3

2
εη

)
ηx +

1

6
(1− 3τ)δηxxx = 0. (9.3.227)

In terms of dimensional variables, the KdV equation (9.3.227) reduces to the form

ηt + c

(
1 +

3

2h
η

)
ηx +

ch2

6
(1− 3τ)ηxxx = 0, (9.3.228)

where c =
√
gh is the shallow water wave velocity and the total depth of water is

h + η. It is important to point out that, in the absence of surface tension (T = 0,
τ = 0), equation (9.3.228) reduces to the celebrated KdV equation (9.3.1).

We next seek a traveling wave solution of (9.3.228) in the form

η(X) = hζ(X), X = x− Ut, (9.3.229)

where η(X) represents a wave moving to the right with constant velocity U . Substi-
tuting (9.3.229) into (9.3.228) gives the ordinary differential equation

h(c− U)ζ ′ +

(
3c

2

)
hζζ ′ +

1

6
ch2(1− 3τ)hζ ′′′ = 0, (9.3.230)

where the primes denote the derivatives with respect to X .
Integrating (9.3.230) with respect to X yields

(
1− U

c

)
ζ +

3

4
ζ2 +

h2

6
(1− 3τ)ζ ′′ = A, (9.3.231)

where A is a constant of integration.
Multiplying (9.3.231) by ζ ′ and integrating again gives

ζ3 + 2

(
1− U

c

)
ζ2 +

h2

3
(1− 3τ)ζ ′2 = 4Aζ +B, (9.3.232)

where B is another constant of integration.
We consider a special case when ζ and its derivatives tend to zero at infinity

(X → ±∞). Hence, A = B = 0 so that (9.3.232) gives

(
dζ

dX

)2

=
3

h2
1

ζ2(a− ζ), h2
1 = h2(1− 3τ), (9.3.233)

where

a = 2

(
U

c
− 1

)
. (9.3.234)

The right-hand side of (9.3.233) vanishes at ζ = 0 and ζ = a, and the exact solution
of (9.3.233) can be written in the integral form

X −X0 =

(
h2
1

3

) 1
2
∫ ζ

0

dζ

ζ
√
a− ζ

, (9.3.235)
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which is, by substitution ζ = a sech2 θ,

X −X0 =

(
h2
1

3a

) 1
2

θ, (9.3.236)

where X0 is an integrating constant, Thus, the solution is

ζ(X) = a sech2
[(

3a

4h2
1

) 1
2

(X −X0)

]
. (9.3.237)

The solution ζ(X) increases from ζ = 0 as X → −∞ so that it attains a maximum
value ζ = ζmax = a at X = 0, and then decreases symmetrically to ζ = 0 as
X → ∞. These features imply that X0 = 0 so that

ζ(X) = a sech2
[(

3a

4h2
1

) 1
2

X

]
. (9.3.238)

When τ < 1
3 and a > 0, (9.3.238) represents a wave of elevation traveling with

the speed U given by (9.3.234), that is,

U = c

(
1 +

a

2

)
> c. (9.3.239)

When τ > 1
3 and a < 0, the solution ζ(X) in(9.3.238) is a wave of depression

moving with speed U < c. Therefore, the final solution is

η(x, t) = η0 sech
2

[(
3η0

4h3(1− 3τ)

) 1
2

(x− Ut)

]
, (9.3.240)

where the range in η is η0 = ah1. As explained in Section 9.4, η(x, t) represents
capillary solitary wave solution of the KdV equation (9.3.227) for any positive con-
stant η0. Since η(X) > 0 for all X , the solution is a wave of elevation which is sym-
metrical about X = 0. It propagates in the medium without change of shape with ve-
locityU which is directly proportional to the amplitude η0. The width, [ 3η0

4h3(1−3τ) ]
− 1

2

of the solution is inversely proportional to
√
η0.

It is important to point out that, when τ = 1
3 , solution (9.3.238) shows that

( dζ
dX ) becomes unbounded. This is due to the fact that the linear dispersive term

in (9.3.238) disappears when τ = 1
3 . Furthermore, equation (9.3.228) is derived

under the assumption that ε and δ are both small and of the same order of magnitude,
that is, ε = δ = α, where 0 < α � 1. This assumption has successfully been
used in the expansion procedure to derive (9.3.228). However, to derive the evolution
equation valid near τ = 1

3 , it is necessary to include higher order dispersive terms.
This can be achieved by making use of ε = α2 and δ = α and using the expansion
near 1

3 in the form

τ =
1

3
+ ατ1 + α2τ2 + · · · . (9.3.241)
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Fig. 9.4 A solitary wave with monotonic decay to a constant level.

Fig. 9.5 (a) An elevation solitary wave with a decaying oscillatory tail. (b) A depression soli-
tary wave with a decaying oscillatory tail.

Invoking such expansion procedure, the fifth order KdV equation for gravity–
capillary waves can be derived in the form

ηt + c

(
1 +

3

2h
η

)
ηx +

ch2

6
(1− 3τ)ηxxx +

ch4

90
ηxxxxx = 0. (9.3.242)

We close this section by adding the following comments based on Vanden-
Broeck’s (2010) computational results of gravity–capillary solitary waves. When
0 < τ < 1

3 , there are no fully nonlinear solutions of small amplitude consistent
with (9.3.240). However, there are fully nonlinear solutions characterized by infi-
nite train of ripples in the far field. Such waves are often referred to as generalized
solitary waves with a series of ripples of constant amplitude in the far field.

The above analysis further reveals that there are three different kinds of capillary
solitary waves. The first kind is a solitary wave with a free-surface elevation that
tends monotonically to a constant level in the far field as shown in Figure 9.4. The
solution (9.3.238) or (9.3.240) is an example of this kind.

The solitary wave of the second kind represents a free-surface elevation (or de-
pression) wave profile which tends to a constant level in the far field with a decaying
oscillatory tail as shown in Figures 9.5(a) and 9.5(b).
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Fig. 9.6 A solitary wave with oscillations of constant amplitude.

The third kind of solitary wave represents a free-surface wave profile that does
not tend to a constant level, but is characterized by oscillations of constant amplitude
in the far field as shown in Figure 9.6. This is often called the generalized solitary
wave. Such waves occur when gravity and surface tension are included.

The existence of solitary waves as shown in Figures 9.5(a) and 9.5(b) is related
to the minimum in Figure 2.4 in Chapter 2 for τ < 1

3 . The profiles in Figures 9.5(a)
and 9.5(b) look like waves of slowly varying amplitude. However, those waves can-
not be expected to be steady unless the phase and group velocities are equal. This
is exactly what happens at the minimum in Figure 2.4. This reveals an intuitive ex-
planation why the branches of solitary waves decaying tails bifurcate from the min-
imum value of the Figure 2.4. Numerical computations of several authors including
Vanden-Broeck (2010), Vanden-Broeck and Dias (1992), and others confirmed the
existence of such waves.

On the other hand, numerical results of Vanden-Broeck (2010) and Champneys
et al. (2002) show that the multiple branches of periodic solutions approach gener-
alized solitary waves (see Figure 9.6) as λ

h = 2π
kh → ∞. In other words, moving

from one branch to the next includes two crests or two troughs. In the limit, as
λ
h =→ ∞, this produces a generalized solitary wave with an infinite number of
crests and troughs. Thus, these ripples in the tail of the generalized solitary waves
seem to be physically unrealistic because they occur on both sides, and hence, they
do not satisfy the radiation conditions at infinity. This unrealistic feature has been
rigorously confirmed with a negative answer for all τ close to 1

3 by several authors
including Vanden-Broeck (2010) and Champneys et al. (2002).

Further, numerical computations of fully nonlinear solutions predicted by the
steady KdV equation (9.3.227) for τ < 1

3 show inaccurate answer in the sense that
the solutions do not have flat free profiles in the far field as shown in Figure 9.4, but
are generalized solitary waves as in Figure 9.6. The fifth order KdV equation also
predicts the generalized solitary waves shown in Figure 9.6 when their amplitude is
small and τ is close to 1

3 .

9.4 Solutions of the KdV Equation: Solitons and Cnoidal Waves

To find solutions of the KdV equation, it is convenient to rewrite it in terms of di-
mensional variables as

ηt + c

(
1 +

3

2h
η

)
ηx +

ch2

6
ηxxx = 0, (9.4.1)
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where c =
√
gh, and the total depth H = h + η. The first two terms (ηt + cηx)

describe wave evolution at the shallow water speed c, the third term with coefficient
(3c/2h) represents a nonlinear wave steepening, and the last term with coefficient
(ch2/6) describes linear dispersion. Thus, the KdV equation is a balance between
time evolution, nonlinearity, and linear dispersion. The dimensional velocity u is
obtained from (9.3.55) with (9.3.58) in the form

u =
c

h

(
η − 1

4h
η2 +

h

3
ηxx

)
. (9.4.2)

We seek a traveling wave solution of (9.4.1) in the frame X so that η = η(X)
and X = x−Ut with η → 0, as |x| → ∞, where U is a constant speed. Substituting
this solution in (9.4.1) gives

(c− U)η′ +
3c

2h
ηη′ +

ch2

6
η′′′ = 0, (9.4.3)

where η′ = dη/dX . Integrating this equation with respect to X yields

(c− U)η +
3c

4h
η2 +

ch2

6
η′′ = A, (9.4.4)

where A is an integration constant.
We multiply this equation by 2η′ and integrate again to obtain

(c− U)η2 +

(
c

2h

)
η3 +

(
ch2

6

)(
dη

dX

)2

= 2Aη +B, (9.4.5)

where B is also a constant of integration.
We now consider a special case when η and its derivatives tend to zero at infinity

and A = B = 0, so that (9.4.5) gives

(
dη

dX

)2

=
3

h3
η2(a− η), (9.4.6)

where

a = 2h

(
U

c
− 1

)
. (9.4.7)

The right-hand side of (9.4.6) vanishes at η = 0 and η = a, and the exact solution
of (9.4.6) is given by

η(X) = a sech2(bX), b =

(
3a

4h3

)1/2

. (9.4.8ab)

Thus,

η(x, t) = a sech2
[(

3a

4h3

)1/2

(x− Ut)

]
, (9.4.9)
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where the velocity of the wave is

U = c

(
1 +

a

2h

)
. (9.4.10)

This is an exact solution of the KdV equation for all a/h; however, the equation is
derived with the approximation (a/h) � 1. The solution (9.4.9) is called a soliton
(or solitary wave) describing a single hump of height a above the undisturbed depth
h and tending rapidly to zero away from X = 0. The solitary wave propagates to the
right with velocity U(> c), which is directly proportional to the amplitude a and has
width b−1 = (3a/4h3)−1/2, that is, b−1 is inversely proportional to the square root
of the amplitude a. Another significant feature of the soliton solution is that it travels
in the medium without change of shape, which is hardly possible without retaining
δ-order terms in the governing equation. A solitary wave profile has already been
shown in Figure 9.1.

In the general case, when both A and B are nonzero, (9.4.5) can be rewritten as

h3

3

(
dη

dX

)2

= −η3 + 2h

(
U

c
− 1

)
η2 +

2h

c
(2Aη +B) ≡ F (η), (9.4.11)

where F (η) is a cubic with simple zeros.
We seek a real bounded solution for η(X), which has a minimum value zero and

a maximum value a and oscillates between the two values. For bounded solutions,
all three zeros η1, η2, η3 must be real. Without loss of generality, we set η1 = 0 and
η2 = a. Hence, the third zero must be negative so that η3 = −(b−a) with b > a > 0.
With these choices, F (η) = η(a− η)(η− a+ b), and equation (9.4.11) assumes the
form

h3

3

(
dη

dX

)2

= η(a− η)(η − a+ b), (9.4.12)

where

U = c

(
1 +

2a− b

2h

)
, (9.4.13)

which is obtained by comparing the coefficients of η2 in (9.4.11) and (9.4.12).
Writing a− η = p2, it follows from equation (9.4.12) that

(
3

4h3

)1/2

dX =
dp

[(a− p2)(b− p2)]1/2
. (9.4.14)

Substituting p =
√
aq in (9.4.14) gives the standard elliptic integral of the first

kind (see Dutta and Debnath 1965)

(
3b

4h3

)1/2

X =

∫ q

0

dq

[(1− q2)(1−m2q2)]1/2
, m =

(
a

b

)1/2

, (9.4.15)

and then, function q can be expressed in terms of the Jacobian sn function
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Fig. 9.7 A cnoidal wave.

q(X,m) = sn

[(
3b

4h3

)1/2

X,m

]
, (9.4.16)

where m is the modulus of sn(z,m).
Finally,

η(X) = a

[
1− sn2

{(
3b

4h3

)1/2

X

}]
= acn2

[(
3b

4h3

)1/2

X

]
, (9.4.17)

where cn(z,m) is also the Jacobian elliptic function with a period 2K(m), where
K(m) is the complete elliptic integral of the first kind defined by

K(m) =

∫ π/2

0

(
1−m2 sin2 θ

)−1/2
dθ, (9.4.18)

and cn2(z) + sn2(z) = 1.
It is important to note that cnz is periodic, and hence, η(X) represents a train

of periodic waves in shallow water. Thus, these waves are called cnoidal waves with
wavelength

λ = 2

(
4h3

3b

)1/2

K(m). (9.4.19)

The upshot of this analysis is that solution (9.4.17) represents a nonlinear wave
whose shape and wavelength (or period) all depend on the amplitude of the wave.
A typical cnoidal wave is shown in Figure 9.7. Sometimes, the cnoidal waves with
slowly varying amplitude are observed in rivers. More often, wavetrains behind a
weak bore (called an undular bore) can be regarded as cnoidal waves. Two limiting
cases are of special physical interest: (i) m → 0 and (ii) m → 1.

In the first case, sn z → sin z, cn z → cos z as m → 0 (a → 0). This corre-
sponds to small-amplitude waves where the linearized KdV equation is appropriate.
So, in this limiting case, the solution (9.4.17) becomes

η(x, t) =
1

2
a
[
1 + cos(kx− ωt)

]
, k =

(
3b

h3

)1/2

, (9.4.20)

where the corresponding dispersion relation is

ω = Uk = ck

(
1− 1

6
k2h2

)
. (9.4.21)

This corresponds to the first two terms of the series expansion of (gk tanh kh)1/2.
Thus, these results are in perfect agreement with the linearized theory.
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In the second limiting case, m → 1(a → b), cnz −→ sech z. Thus, the cnoidal
wave solution tends to the classical KdV solitary-wave solution where the wave-
length λ, given by (9.4.19), tends to infinity because K(a) = ∞ and K(0) = π/2.
The solution identically reduces to (9.4.9) with (9.4.10).

We next report the numerical computation of the KdV equation (9.4.1) due to
Berezin and Karpman (1966). In terms of new variables defined by

x∗ = x− ct, t∗ = t, η∗ =
3c

2h
η, (9.4.22)

omitting the asterisks, equation (9.4.1) becomes

ηt + ηηx + βηxxx = 0, (9.4.23)

where β = ( 16 )ch
2.

We examine the numerical solution of (9.4.23) with the initial condition

η(x, 0) = η0f

(
x

�

)
, (9.4.24)

where η0 is constant and f(ξ) is a nondimensional function characterizing the initial
wave profile. It is convenient to introduce the dimensionless variables

ξ =
x

�
, τ =

η0t

�
, u =

η

η0
(9.4.25)

so that equations (9.4.23) and (9.4.24) reduce to

uτ + uuξ + σ−2uξξξ = 0, (9.4.26)

u(ξ, 0) = f(ξ), (9.4.27)

where the dimensionless parameter σ is defined by σ = �(η0

β )
1
2 .

Berezin and Karpman (1966) obtained the numerical solution of (9.4.26) with
the Gaussian initial pulse of the form u(ξ, 0) = f(ξ) = exp(−ξ2) and values of the
parameter σ = 1.9 and σ = 16.5. Their numerical solutions are shown in Figure 9.8.

As shown in Figure 9.8 for case (a), the perturbation splits into a soliton and a
wavepacket. In case (b), there are six solitons. It is readily seen that the peaks of the
solitons lie nearly on a straight line. This is due to the fact that the velocity of the
soliton is proportional to its amplitude, so that the distances traversed by the solitons
would also be proportional to their amplitudes.

Zabusky’s (1967) numerical investigation of the interaction of two solitons re-
veals that the taller soliton, initially behind, catches up to the shorter one, they un-
dergo a nonlinear interaction and, then, emerge from the interaction without any
change in shape and amplitude. The end result is that the taller soliton reappears in
front and the shorter one behind. This is essentially strong computational evidence
of the stability of solitons.
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Fig. 9.8 The solutions of the KdV equation u(x, t) for large values of t with the values of the
similarity parameter σ: (a) σ = 1.9, (b) σ = 16.5. From Berezin and Karpman (1966).

Using the transformation

x∗ = εβ(x− ct), t∗ = ε3t, η∗ =
(
αε2

)−1
η

with αβ(= 3c/2h) = 6 and β3(= ch2/6) = 1, we write the KdV equation (9.4.1)
in the normalized form, dropping the asterisks,

ηt + 6ηηx + ηxxx = 0. (9.4.28)

We next seek a steady progressive wave solution of (9.4.28) in the form

η = 2k2f(X), X = kx− ωt. (9.4.29)

Then, the equation for f(X) can be integrated once to obtain

f ′′(X) = 6A+ (4− 6B)f − 6f2, (9.4.30)

where A is a constant of integration and the frequency ω is given by

ω = k3(4− 6B). (9.4.31)

A single-soliton solution corresponds to the special case A = B = 0 and is given
by

f(X) = sech2(X −X0), (9.4.32)

where X0 is a constant.
Thus, for a series of solitons spaced 2σ apart, we write

f(X) =

∞∑
n=−∞

sech2(X − 2nσ). (9.4.33)

This is a 2σ periodic function that satisfies (9.4.30) for some A and B.
The general elliptic function solution of (9.4.28) can be obtained from the integral

of (9.4.30), which can be written as
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f2
X = −4C + 12Af + (4− 6B)f2 − 4f3, (9.4.34)

where C is a constant of integration. Various asymptotic and numerical results lead
to the relations (see Whitham 1984)

C = −1

2

dA(σ)

dσ
=

1

4

d2B(σ)

dσ2
, (9.4.35ab)

and the cubic in (9.4.34) can be factorized as

−C + 3Af +

(
1− 3

2
B

)
f2 − f3 = (f1 − f)(f − f2)(f − f3), (9.4.36)

where fr(σ) (r = 1, 2, 3) are determined from A(σ), B(σ), and C(σ). If we set
f1 > f2 > f3 and, then, the periodic solution oscillates between f1 at X = 0 and f2
at X = σ, one particular form of the solution is given by

f(X) = f2 + (f1 − f2)cn
2
(√

(f1 − f3)X
)
, (9.4.37)

where the modulus m of cn(z,m) is given by

m2 =

(
f1 − f2
f1 − f3

)
. (9.4.38)

Thus, it follows from (9.4.33) and (9.4.37) that the following identity holds:

f2 + (f1 − f2)cn
2
(√

(f1 − f3)X
)
=

∞∑
n=−∞

sech2(X − 2nσ), (9.4.39)

which can be verified by comparing the periods and poles of the two sides.
It is interesting to point out that there is also a theta function representation of

the periodic solution of the KdV equation. The solution may be written in the form

f(X) =
∂2

∂X2
logΘ(X), (9.4.40)

where Θ(X) is a slight modification of the theta function ϑ4(z, q) in Dutta and Deb-
nath’s (1965) notation, the imaginary period τ in q = exp(iπτ) has been set equal
to (2iσ/π) so that q = exp(−2σ), and the independent variable z is changed to
(iX + π/2) and

Θ(X) =

∞∑
n=−∞

exp
(
−2nX − 2n2σ

)
. (9.4.41)

A simple direct proof of (9.4.40) is not obvious. However, it is equivalent to (9.4.33),
which can be verified by using Jacobi’s infinite product formula for the theta func-
tions (Dutta and Debnath 1965, p.108). With the appropriate modification in (9.4.29),
the product representation of Θ(X) is
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Θ(X) = G

∞∏
r=1

(
1 + e2X−(2r−1)2σ

) ∞∏
r=1

(
1 + e−2X−(r−1)2σ

)
. (9.4.42)

Thus, the series representation (9.4.41) follows from the preceding analysis by re-
placing X by X + σ.

There is a similar situation for the modified KdV equation in the normalized form

vr + 3v2vx + vxxx = 0. (9.4.43)

If we seek a steady progressive solution in the form

v =
√
2kf(X), X = kx− ωt, (9.4.44)

then f(X) satisfies the equation

FXX = 2A+ (2B + 1)f − 2f3, (9.4.45)

where A is a constant of integration and

2B =

(
ω

k3
− 1

)
. (9.4.46)

A single soliton corresponding to the special case A = B = 0 is given by

f(X) = sech(X −X0), (9.4.47)

and hence, a series of solitons spaced 2σ apart is given by

f(X) =

∞∑
n=−∞

exp(X − 2nσ). (9.4.48)

This is, indeed, an exact solution. The required identity between the series of the sech
function is found by substituting (9.4.48) into (9.4.45). It follows from Whitham’s
argument (1974) that

A = 0, B = 6

∞∑
s=1

cosh(2sσ)

sinh2(2sσ)
. (9.4.49)

Integrating (9.4.45) once gives

f2
X = −C + (2B + 1)f2 − f4 ≡

(
f2
1 − f2

)(
f2 − f2

2

)
, (9.4.50)

where C is a constant of integration and f1 ≥ f ≥ f2. This equation admits the
periodic solution

f(X) = f1 dn(f1X,m), (9.4.51)

where the modulus m of the elliptic function is

m2 =
(
f2
1 − f2

2

)
/f2

1 , (9.4.52)
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and (9.4.48) gives an identity for the dn function in terms of a sum of the sech
functions. The relation between σ and m is given by σf1(σ) = K(m).

Finally, the higher-order modified KdV equation

vt + (p+ 1)vpvx + vxxxx = 0, p > 2, (9.4.53)

admits single-soliton solutions in the form

v(x, t) = a sech2/p(kx− ωt). (9.4.54)

However, in view of the fractional powers of the sech function, it seems, perhaps,
unlikely that there will be any simple superposition formula.

9.5 The Lie Group Method and Similarity Analysis of the KdV
Equation

The KdV equation describes the generation and propagation of moderately small-
amplitude shallow water waves and many other important phenomena, where a small
nonlinearity is combined with a cubic dispersion relation. In many physical situa-
tions, its similarity solutions become important.

A simple transformation

x −→ cx, t −→ bt, and 1 + u −→ au, (9.5.1)

can be used to transform the KdV equation

ut + ux + uux + uxxx = 0 (9.5.2)

into the general form

ut +

(
ab

c

)
uux +

b

c3
uxxx = 0, (9.5.3)

where a, b, c are nonzero real constants. With suitable choices of the constants, this
equation reduces to the standard form (9.4.28), which is invariant under the transfor-
mation Ta defined by

x̃ = ax, t̃ = a3t, ũ = a−2u (9.5.4)

for a nonzero real a. The set of all such transformations {Ta} forms an infinite Lie
group with parameter a with the composition (multiplicative) law TaTb = Tab. This
law is commutative. Also, the associative law is satisfied since

Ta(TbTc) = TaTbc = Tabc = TabTc = (TaTb)Tc.

In view of the fact that
T1Ta = T1a = Ta1 = Ta

for all a �= 0, T1 represents the identity transformation.
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Finally, we find that
TaTa−1 = T1 = Ta−1Ta.

This confirms that Ta−1 is both a left-hand and right-hand inverse of Ta.
The fact that the KdV equation (9.4.28) with 6 replaced by −6 is invariant under

a continuous (or Lie) group of transformations Ta suggests that we can seek invariant
properties of the solutions. In fact, the quantities

u(x, t) = tpf(ξ), ξ = xtq (9.5.5ab)

are invariant under the transformation Ta provided p = −2
3 and q = −1

3 . It is also
easy to check that, if u(x, t) = −(3t)2/3f(ξ) where ξ = x(3t)−1/3, then f(ξ)
satisfies the ordinary differential equation

f ′′′ + (6f − ξ)f ′ − 2f = 0. (9.5.6)

Another substitution of f = λ(dV/dξ)− V 2 in (9.5.6), where V = V (ξ) and λ is a
constant to be determined, yields a Painlevé equation of the second kind

V ′′ − ξV − 2V 3 = 0. (9.5.7)

This equation gives a solution describing a wave profile that decays as ξ → +∞
and oscillates as ξ → −∞. The presence of a Painlevé equation, for which each
movable singularity is a pole, is not accidental. It is believed that there is a direct
correspondence between the appearance of a Painlevé equation for a given partial
differential equation and the existence of an inverse scattering transform (and hence,
soliton solutions) for that equation.

Zakharov and Shabat (1974) proved an exact reduction of the Boussinesq equa-
tion

utt − uxx − 1

2

(
u2
)
xx

− 1

4
uxxxx = 0 (9.5.8)

to an ordinary differential equation by looking for a traveling wave solution

u(x, t) = f(x− Ut) = f(X), (9.5.9)

where f(X) satisfies

(
1− U2

)
f ′′ +

1

2

(
f2
)′′

+
1

4
f ′′′′ = 0. (9.5.10)

This can be integrated twice to obtain the following Painlevé equations, depend-
ing on the constants of integration:

f ′′ + 2f2 +A = 0, f ′′ + 2f2 +X = 0. (9.5.11ab)

In general, certain partial differential equations admit similarity solutions in the
form

u(x, t) = t−αf
(
xt−β

)
, (9.5.12)
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where α and β are constants and f satisfies an ordinary differential equation. The
equation is invariant under the transformation Ta:

x̃ = aβx, t̃ = at, ũ = a−αu, (9.5.13)

where a is a scalar. The set of all such transformations Ta also forms a continuous
group.

It can easily be verified that the normalized KdV equation

ut + 6uux + uxxx = 0 (9.5.14)

has the similarity solution

u(x, t) = (3t)−2/3f(ξ), ξ = x(3t)−1/3. (9.5.15ab)

Substituting (9.5.15ab) in (9.5.14) gives the following ordinary differential equa-
tion for f(ξ) in the form

f ′′′ + (6f − ξ)f ′ − 2f = 0. (9.5.16)

In the limit as ξ → ∞, solutions of equation (9.5.16) tend to solutions of the lin-
earized equation

f ′′′ − 2f − ξf ′ = 0. (9.5.17)

This equation admits a solution f(ξ) = Ai′(ξ), where Ai′(ξ) is the Airy func-
tion. The other two solutions Bi′(ξ), which is exponentially large, and Gi′(ξ) ∼
−(πz2)−1 do not decay exponentially (Abramowitz and Stegun 1972, pp. 446–450).
Thus we set the boundary condition

f(ξ) ∼ aAi′(ξ), as ξ → ∞, (9.5.18)

where a is an amplitude parameter.
The numerical computation of Berezin and Karpman (1966) suggests that, when

a is small enough, f(ξ) is oscillatory, as ξ → −∞, but otherwise, f(ξ) may develop
singularities. Rosales (1978) showed that there exists a critical value a1 of a which
separates the oscillatory nature from the singular solutions. For |a| = a1, f(ξ) ∼ 1

2ξ
as ξ → −∞. For |a| = a1, f(ξ) becomes oscillatory, as ξ → −∞. On the other
hand, when a > a1, f(ξ) develops a singularity.

Some special nonlinear evolution equations admit solutions that are rational func-
tions of the independent variables. For example, u(x, t) = (x/t) is a rational solution
of the equation

ut + uux = 0. (9.5.19)

It turns out that the KdV equation (9.4.28) with the coefficient 6 replaced by −6
also has a simple rational solution. Assuming that u = u(x) and u, u′, u′′ → 0, as
|x| → ∞, the resulting KdV equation u′′′ − 6uu′ = 0 can be integrated twice to
obtain u

′2 = 2u3, which admits the rational solution

u(x, t) = 2x−2. (9.5.20)
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This is singular at x = 0. It can also be shown that equation (9.4.28) with the coeffi-
cient 6 replaced by −6 has a rational solution in the form

u(x, t) =
6x(x3 − 24t)

(x3 + 12t2)
. (9.5.21)

This is also singular on x3 + 12t2 = 0. It is conjectured that all rational solutions of
the KdV equation are singular!

Zabusky (1967) showed that the modified KdV equation

ut + 6u2ux + uxxx = 0 (9.5.22)

has the rational solution

u(x, t) = A− (4A)/
{
4A2

(
x− 6A2t

)2
+ 1

}
, (9.5.23)

where A is a real constant.

9.6 Conservation Laws and Nonlinear Transformations

An equation of the form
∂T

∂t
+

∂X

∂x
= 0 (9.6.1)

is called a conservation law, where T and X are known as the density and the flux,
respectively, and neither T nor X involve derivatives with respect to t. If both T
and X are integrable on (−∞,∞), so that X tends to a constant as |x| → ∞, then
equation (9.6.1) can be integrated to obtain

d

dt

[∫ ∞

−∞
T dx

]
= 0, or equivalently, (9.6.2a)

∫ ∞

−∞
T dx = const. (9.6.2b)

The integral (9.6.2b) is usually called a constant of motion, provided t is interpreted
as a time-like variable.

It is convenient to write the KdV equation in the standard form that is much used
for the development of the theory of solitons,

Ku ≡ ut − 6uux + uxxx = 0. (9.6.3)

This is already in conservation form with

T = u and X = uxx − 3u2. (9.6.4ab)

Hence, if T and X are integrable, and u satisfies (9.6.3), then
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∫ ∞

−∞
u dx = const., (9.6.5)

which applies to all solutions provided that u and its gradients tend to zero as
|x| → ∞. Thus, the first constant of motion is simply the spatial integral of u.

The second conservation law for (9.6.3) can be obtained by multiplying it by u,
so that

∂

∂t

(
1

2
u2

)
+

∂

∂x

(
uuxx − 1

2
u2
x − 2u3

)
= 0. (9.6.6)

Thus, ∫ ∞

−∞

1

2
u2 dx = const. (9.6.7)

for all solutions of the KdV equation which vanish fast enough at infinity. Thus, both
u and u2 are conserved densities for the motion associated with the KdV equation.

We know that the KdV equation describes a certain class of nonlinear water
waves. In fact, u is associated with the free surface elevation function which, in
turn, is also proportional to the velocity in the x-direction. Thus, equation (9.6.5)
describes the conservation of mass, and (9.6.7) the conservation of horizontal mo-
mentum for water waves within the scope of a shallow water approximation theory.
This immediately suggests that there should be a corresponding conserved density
that could be associated with the energy of water waves. Indeed, this is true and can
be confirmed by adding 3u2 × (9.6.3) to ux ×{(∂/∂x)(9.6.3)} so that the resulting
equation can be rewritten as

∂

∂t

(
u3+

1

2
u2
x

)
+

∂

∂x

(
−9

2
u4+3u2uxx−6uu2

x+uxuxxx−
1

2
u2
xx

)
= 0. (9.6.8)

This gives a third constant of motion,
∫ ∞

−∞

(
u3 +

1

2
u2
x

)
dx = const. (9.6.9)

Then, by using very laborious methods, Miura et al. (1968) obtained eight more
conservation laws for the KdV equation. They then conjectured that there exist an
infinite number of polynomial conservation laws for the KdV equation. At the same
time, a question was raised: Is the existence of soliton solutions of the KdV equation
closely related to the existence of an infinite number of conservation laws? Miura
et al. (1968) developed an ingenious method of determining an infinite number of
conservation laws by introducing the Miura transformation,

u = v2 + vx. (9.6.10)

This is similar to the Cole–Hopf transformation used in the Burgers equation which
can be reduced to the linear diffusion equation.

A direct substitution of (9.6.10) in (9.6.3) gives

2vvt + vxt − 6
(
v2 + vx

)
(2vvx + vxx) + 6vxvxx + 2vvxxx + vxxxx = 0,



9.6 Conservation Laws and Nonlinear Transformations 471

which can then be put into the form
(
2v +

∂

∂x

)
Mv = 0,

where the operator M is defined by

Mv ≡ vt − 6v2vx + vxxx = 0. (9.6.11)

This is called the modified KdV (mKdV) equation. Thus, if Mv = 0, then u satisfies
the KdV equation (9.6.3). In contrast to the Cole–Hopf transformation, the Miura
transformation reduces one nonlinear equation to another nonlinear equation, nei-
ther of which can easily be solved. However, the Miura transformation establishes a
connection between the KdV equation and the Sturm–Liouville problem, and hence,
it leads to the inverse scattering method for the exact solution of the initial-value
problem for the KdV equation.

Another remarkable fact about the Miura transformation is that there exists an
infinite number of conservation laws. It is now convenient to work with w, rather
than v, where v = 1

2ε
−1+ εw and ε is an arbitrary real parameter. Consequently, the

Miura transformation becomes

u =
1

4
ε−2 + w + εwx + ε2w2. (9.6.12)

Since any arbitrary constant can be incorporated in the solution for u, we just
write

u = w + εwx + ε2w2. (9.6.13)

This is known as the Gardner transformation. It is important to note that, since v
exists, so does w.

Substitution of (9.6.13) in (9.6.3) gives

0 = ut − 6uux + uxxx

= wt + εwxt + 2ε2wwt − 6
(
w + εwx + ε2w2

)(
wx + εwxx + 2ε2wwx

)
+ wxxx + εwxxxx + 2ε2(wwx)xx

=

(
1 + ε

∂

∂x
+ 2ε2w

){
wt − 6

(
w + ε2w2

)
wx + wxxx

}
.

Thus, w satisfies the Gardner equation

wt − 6
(
w + ε2w2

)
wx + wxxx = 0 (9.6.14)

for all ε. We note that, when ε = 0, this equation becomes the KdV equation with
w = u.

Another interesting fact is that equation (9.6.14) is already in the conservation
form

∂w

∂t
+

∂

∂x

(
wxx − 3w2 − 2ε2w3

)
= 0, (9.6.15)
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with w as the conserved density, that is,
∫ ∞

−∞
w dx = const. (9.6.16)

To obtain an infinite number of conservation laws for the KdV equation, we use
the arbitrary parameter ε. Since w → u as ε → 0, we write an asymptotic expansion
of w(x, t, ε) in ε:

w ∼
∞∑

n=0

εnwn(x, t) as ε → 0. (9.6.17)

Treating the constant in (9.6.16) similarly, as a power series in ε, and using (9.6.17),
we obtain an infinite number of constants of motion. Finally, we substitute (9.6.17)
in the Gardner transformation (9.6.13) and, then, equate coefficients of εn, for each
n = 0, 1, 2, . . . . It is then easy to see that

w0 = u, w1 = −w0x = −ux, w2 = −w1x = −w2
0 = uxx − u2,

w3 = −w2x − 2w0w1 = −
(
uxx − u2

)
x
+ 2uux,

w4 = w3x − 2w0w1 − w2
1 = −

{
2uux −

(
uxx − u2

)
x

}
x
− 2u

(
uxx − u2

)
− u2

x,

and so on.
In particular, the integrals which are generated by w0, w2, and w4 become the

first three integrals (9.6.5), (9.6.7), and (9.6.9), respectively. On the other hand, w1

and w3 are exact differentials in x, and hence, the corresponding integrals
∫ ∞

−∞
wn dx = const. (9.6.18)

will not give us any useful result. In other words, if n is even, then (9.6.18) generates
an infinite set of conservation laws, and, if n is odd, wn is an exact differential and,
hence, does not lead to any conservation law.

Much of the significant work on the theory of the KdV equation was initiated by
the publication of several papers of Gardner et al. (1967, 1974).

We close this section by including a few conservation laws for the Boussinesq
equation, the KP equation, and shallow water equations.

It is convenient to introduce ηt = −ux in the Boussinesq equation (9.3.202) so
that it becomes

−utx − ηxx + 3
(
η2
)
xx

− ηxxxx = 0. (9.6.19)

Integrating this equation with respect to x and invoking the decay conditions as
|x| → ∞, the Boussinesq equation (9.3.202) can be rewritten as the pair of equations

ηt = −ux, ut + ηx −
(
3η2

)
x
+ ηxxx = 0. (9.6.20)

Consequently, it turns out that
∫ ∞

−∞
ηt dx = −[u]∞−∞,

∫ ∞

−∞
ut dx =

[
3η2 − η − ηxx

]∞
−∞.
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Thus, we obtain the conservation of mass in the form∫ ∞

−∞
η dx = const., (9.6.21)

and the conservation of momentum as∫ ∞

−∞
ut dx = const. (9.6.22)

We next recall the KP equation (9.3.135) in the form

6ut + 9uux + uxx + 3vy = 0, vx = uy. (9.6.23)

Integrating the second equation with respect to x and invoking the decay condi-
tions at infinity gives

∂

∂y

(∫ ∞

−∞
u dx

)
= 0, and hence,

∫ ∞

−∞
u dx = c(t). (9.6.24)

Physically, the N -soliton solution of the KP equation describes the interaction of
waves so that the function c(t) represents a constant and (9.6.24) is also a constant.
Consequently, ∫ ∞

−∞
u dx = const. (9.6.25)

A similar argument leads to the result∫ ∞

−∞
v dy = const. (9.6.26)

The above results are similar to (9.6.21), (9.6.22).
Integrating the first equation in (9.6.23) yields

∂

∂t

[∫ ∞

−∞
u dx

]
+
[
uxx − 3u2

]∞
−∞ + 3

∂

∂y

[∫ ∞

−∞
v dx

]
= 0. (9.6.27)

Using (9.6.25) and suitable decay conditions at infinity gives another conserva-
tion law ∫ ∞

−∞
v dx = const. (9.6.28)

Clearly, (9.6.26)–(9.6.28) represent momentum conservation laws.
Finally, we derive the conservation laws for shallow water waves. We recall shal-

low water equations (2.7.67)–(2.7.70) in (1 + 1) dimensions with δ → 0 and ε = 1
so that 1 + εη = h(x, t). Consequently, these equations become

ut + uux + wuz + hx = 0, (9.6.29)

ux + wz = 0, (9.6.30)

w = ht + uhx on z = h, and w = 0 on z = 0. (9.6.31)

Integrating (9.6.30) with respect to z from 0 to h gives
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∫ h

0

ux dz + [w]h0 =
∂

∂x

[∫ h

0

u dz

]
+ ht = 0. (9.6.32)

Making use of suitable decay conditions, we obtain the law of mass conservation as
∫ ∞

−∞
h(x, t) dx = const. (9.6.33)

We next multiply (9.6.30) by u and add the result to (9.6.29) to find

ut + 2uux + (uw)z + hx = 0. (9.6.34)

Integrating this equation with respect to z from 0 to h so that

∂

∂t

(∫ h

0

u dz

)
+

∂

∂x

(
1

2
h2 +

∫ h

0

u2 dz

)
= 0, (9.6.35)

leads to the law of conservation of momentum as

∫ ∞

−∞

(∫ h

0

u dz

)
dx = const. (9.6.36)

Multiplying (9.6.29) by u, we obtain
(
1

2
u2

)
t

+

(
1

3
u3

)
x

+

(
1

2
u2w

)
z

− 1

2
u2wz + (uh)x − hux = 0. (9.6.37)

We substitute wz and ux from (9.6.30) and use the fact that h = h(x, t) to obtain
(
1

2
u2

)
t

+

(
uh+

1

2
u3

)
x

+

(
1

2
wu2 + hw

)
z

= 0. (9.6.38)

Integrating this result with respect to z and interchanging differentiation under
the integral sign gives

[
1

2

(
h2 +

∫ h

0

u2 dz

)]
t

+

[∫ h

0

(
uh+

1

3
u3

)
dz

]
x

= 0. (9.6.39)

This result is in the conservation form and yields the law of conservation of
energy ∫ ∞

−∞

(
h2 +

∫ h

0

u2 dz

)
dx = const. (9.6.40)

9.7 The Inverse Scattering Transform (IST) Method

Historically, Gardner et al. (1974) formulated an ingenious method for finding the
exact solution of the KdV equation. This novel method has been generalized to solve
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several other nonlinear equations. In this section, we describe the inverse scattering
transform for the KdV equation. The exact solution of the KdV equation is obtained
by associating its solution with the potential of a time-independent Schrödinger equa-
tion. The next step is the solution of the quantum mechanical problem with the ini-
tial value for the KdV equation taken as the potential. This involves calculations
of the discrete (bound) eigenfunctions, their normalization constants and eigenval-
ues, and the reflection and transmission coefficients of the continuous (unbounded)
states. These results are collectively known as the scattering data of the Schrödinger
equation. The next step is to determine the evolution of the scattering data for any
potential that evolves, according to the KdV equation, from a prescribed initial func-
tion. Both discrete and continuous eigenvalues are found to be invariant under such
changes, and the normalization constants and the reflection and transmission coef-
ficients evolve according to simple exponential laws. The final step of the method
deals with the determination of the potential for any time t from the inversion of the
scattering data.

The main problem is to find the exact solution of the general initial-value problem
for the KdV equation

ut − 6uux + uxxx = 0, x ∈ R, t > 0, (9.7.1)

with the initial condition

u(x, 0) = u0(x), x ∈ R, (9.7.2)

where u0(x) satisfies certain fairly weak conditions so that the solution u(x, t) exists
for all x and t.

We begin with the Miura (1968) transformation defined by

u = v2 + vx, (9.7.3)

where v = v(x, t). Substituting (9.7.3) in (9.7.1) gives

2vvt + vxt − 6
(
v2 + vx

)
(2vvx + vxx) + 6vxvxx + 2vvxxx + vxxxx = 0.

This can be rearranged to obtain equation
(

∂

∂x
+ 2v

)(
vt − 6v2vx + vxxx

)
= 0. (9.7.4)

Thus, if v is a solution of the modified KdV equation, then (9.7.3) defines a solution
of the KdV equation. We note here that, if u is given, equation (9.7.3) represents the
Riccati equation for v, so that the transformation

v =
ψx

ψ
, (9.7.5)

where ψ(x, t) is a nonzero differentiable function, reduces (9.7.3) to the form
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ψxx − uψ = 0. (9.7.6)

The function u involved in (9.7.6) is a solution of the KdV equation (9.7.1). We
further note that KdV equation (9.7.1) is Galilean invariant, that is, it is invariant
under the transformation x̃ = x + 6λt, ũ = u + λ, where λ ∈ R, so that we can
replace u by u− λ to obtain a second-order linear equation

Lψ = λψ, (9.7.7)

where the operator L is given by

L ≡ − ∂

∂x2
+ u. (9.7.8)

This is the Schrödinger equation for ψ with the potential u(x, t) and eigenvalue
λ = λ(t) which depends on t because of the parametric dependence on t. How-
ever, this Schrödinger equation for ψ is different from the one in quantum mechanics
because the potential u(x, t) is not known and it is the solution of the KdV equation.
So, the method of solution (9.7.7) is not so simple. However, it is well known that
equation (9.7.7) admits two distinct kinds of solutions recognized as bound states,
where ψ → 0 exponentially as |x| → ∞, and scattering states, where ψ oscillates
with x at infinity. Since both u and λ depend on t, the eigenfunctions ψ(x, t) also
depend on t. The quantity t involved in (9.7.7) cannot be regarded as time, but simply
as a parameter, so that u = u(x, t) represents a family of potentials. At t = 0, the
initial condition is given by u(x, 0) = u0(x), and hence, the problem is first to solve
the one-dimensional Schrödinger equation for the known potential u0(x),

−
[
∂2

∂x2
− u0(x)

]
ψ(x, t) = λ(t)ψ(x, t). (9.7.9)

This will determine how the eigenfunctions and eigenvalues evolve as potential
changes from the given data according to the KdV equation (9.7.1). The potential
u(x, t) for any t > 0 can then be determined from the scattering data at time t by the
inverse scattering transformation.

To determine the eigenvalues λ(t), we first differentiate (9.7.7) with respect to x
to obtain

ψxxx − uxψ − (u− λ)ψx = 0,

and then with respect to t to derive

ψxxt − (ut − λt)ψ − (u− λ)ψt = 0. (9.7.10)

The quantity ut can be eliminated from (9.7.10) by means of (9.7.1) so that (9.7.9)
becomes

(−L+ λ)ψt + (uxxx − 6uux)ψ + λtψ = 0, (9.7.11)

where the term (uxxxψ) can be obtained from the result

(uxψ)xx = uxxxψ + uxψxx + 2uxxψx. (9.7.12)
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We solve this equation for (uxxxψ) so that the resulting expression can be expressed
by the original Schrödinger equation in the form

uxxxψ = (uxψ)xx − uxψxx − 2uxxψx = (−L+ λ)(uxψ)− 2uxxψx. (9.7.13)

Substituting this result in (9.7.11) yields

(−L+ λ)(ψt + uxψ)− 2(3uuxψ + uxxψx) + λtψ = 0. (9.7.14)

To replace the quantity (3uuxψ + uxxψx), we rewrite the term uxxψx by first using
the identity

(uψx)xx = uxxψx + 2uxψxx + uψxxx. (9.7.15)

The quantity ψxx in the second term on the right-hand side of (9.7.15) can be elimi-
nated by using the Schrödinger equation, andψxxx in the third term can be eliminated
by the x-derivative of the Schrödinger equation, so that (9.7.15) becomes

(uψx)xx = uxxψx + 2ux(u− λ)ψ + u
[
uxψ + (u− λ)ψx

]
= uxxψx − 2λuxψ + 3uuxψ + (u− λ)uψx. (9.7.16)

We next solve for (3uuxψ + uxxψx) by means of the Schrödinger equation and its
x-derivatives, so that

3uuxψ + uxxψx = 3uuxψ + (uψx)xx + 2λuxψ − 3uuxψ − (u− λ)uψx

= (−L+ λ)(uψx) + 2λuxψ

= (−L+ λ)(uψx) + 2λ
[
ψxxx − (u− λ)ψx

]
= (−L+ λ)(uψx + 2λψx). (9.7.17)

Substituting (9.7.17) in (9.7.14) gives

(−L+ λ)
[
ψt + uxψ − 2(u+ 2λ)ψx

]
+ λtψ = 0. (9.7.18)

We next introduce a new quantity Ψ defined by

Ψ = ψt + uxψ − 2(u+ 2λ)ψx, (9.7.19)

which, by replacing (uxψ) with the derivative of (9.7.7) with respect to x, is

= ψt + ψxxx − 3(u+ λ)ψx. (9.7.20)

In view of (9.7.19), equation (9.7.18) assumes the form

(−L+ λ)Ψ = −λtψ. (9.7.21)

Equations (9.7.19)–(9.7.21) are the main results for determining the behavior of all
quantities involved in the scattering problem as the potential evolves according to the
KdV equation.
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As stated earlier, the solution of the inverse scattering problem requires a priori
knowledge of the scattering data. This includes the discrete eigenvalues, the normal-
ized coefficients for the eigenfunctions, and the reflection and transmission coeffi-
cients. We first consider the discrete spectrum of eigenvalues (bound states).

In view of the fact that u(x, t) decays rapidly as |x| → ∞ for all t, the
Schrödinger equation (9.7.7) admits a finite number of discrete eigenstates with neg-
ative energy λn = −κ2

n, n = 1, 2, . . . , N , and a continuous spectrum of positive
energy (λ = κ2 > 0). The corresponding discrete eigenfunctions ψn belong to the
Hilbert spaceL2(R). To determine the evolution of the eigenvalues, equation (9.7.21)
is multiplied by ψn, and we use (9.7.7) to simplify the result to obtain

−λntψ
2
n(x) = ψn(x)(−L+ λn)Ψ = ψnΨxx − Ψψnxx

=
∂

∂x

[
ψn

∂Ψ

∂x
− Ψ

∂ψn

∂x

]
. (9.7.22)

Integrating this equation with respect to x over (−∞,∞) gives

−λnt

∫ ∞

−∞
ψ2
n(x) dx =

[
ψn

∂Ψ

∂x
− Ψ

∂ψn

∂x

]∞
−∞

. (9.7.23)

Normalizing the eigenfunctions ψn(x) of the bound states by

‖ψn‖ =

[∫ ∞

−∞
ψ2
n(x) dx

] 1
2

= 1 (9.7.24)

and using the fact that ψn(x) and its spatial derivatives vanish as x → ±∞, we
conclude that the right-hand side of (9.7.23) vanishes so that

dλn

dt
= 0, (9.7.25)

that is, for a potential u(x, t) that evolves with t according to the KdV equation, the
eigenvalues of the bound states are invariant with respect to t : λn(t) = λn(0) for
n = 1, 2, . . . , N . The invariance of the discrete eigenvalues represented by (9.7.25)
has several important consequences. First, equation (9.7.21) with λnt(t) = 0 implies
that Ψn represents the discrete eigenfunctions of the Schrödinger equation (9.7.21)
with the eigenvalues λ = λn. Second, it follows that (9.7.21) combined with (9.7.19)
leads to the equation

ψnt + uxψn − 2
(
u− 2κ2

n

)
ψnx = 0. (9.7.26)

This can be regarded as a time evolution equation for ψn(x, t). The bounded solution
for the nth eigenfunction can then be represented from its asymptotic behavior in the
form

ψn(x, t) ∼ cn(t) exp(−κnx), as x → +∞, (9.7.27)

where the real constants cn are determined by the normalized condition (9.7.24).
Substituting this asymptotic form (9.7.27) in (9.7.26) and imposing a major restric-
tion u(x, t) → 0 as |x| → ∞ leads to the equation for cn(t) in the form
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Fig. 9.9 Sketch representing the scattering by a potential u.

d

dt
cn(t)− 4κ3

ncn(t) = 0. (9.7.28)

This equation admits solutions given by

cn(t) = cn(0) exp
(
4tκ3

n

)
, (9.7.29)

where cn(0), n = 1, 2, . . . , N are the normalization constants determined at
t = 0. Thus, the asymptotic representation of ψn(x, t) is explicitly given by (9.7.27)
with (9.7.29). As a passing remark, we note that the imposed restriction on u(x, t)
limits the theory of the KdV soliton and eliminates solutions corresponding to other
nonlinear waves.

For a continuous spectrum of eigenvalues (unbounded states), the eigenvalue λ =
k2 > 0, where k may take any real value. We visualize the wave function ψ as the
spatially dependent part of a steady plane wave impinging on the potential u from
x → +∞ for the time-dependent Schrödinger equation. Physically, there will be
an interaction of the plane wave with the potential allowing for the existence of
scattering states that can be treated as the linear combination of a transmitted wave
exp(−ikx) at x = −∞ of amplitude a(k) and a reflected wave exp(ikx) at x = +∞
of amplitude b(k). In other words, the wave function for the continuous spectrum has
asymptotic behavior in the form

ψ(x) ∼ exp(−ikx) + b(k) exp(ikx) as x → ∞, (9.7.30a)

ψ(x) ∼ a(k) exp(−ikx) as x → −∞, (9.7.30b)

where a(k) and b(k) are called the transmission and reflection coefficients, respec-
tively, and can be determined uniquely from the initial data. The term exp(−ikx)
of unit amplitude in (9.7.30a) is a traveling wave from x = +∞. In general, both
a(k) and b(k) are complex functions of a real variable k. A sketch representing the
scattering by a potential u is shown in Figure 9.9.

We next consider two distinct eigenfunctions for the same potential u so that

ψ′′
m −

(
κ2
m + u

)
ψm = 0 and ψ′′

n −
(
κ2
n + u

)
ψn = 0, (9.7.31ab)

where the primes denote derivatives with respect to x.
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Clearly,

(
κ2
m − κ2

n

)
ψmψn =

(
ψnψ

′′
m − ψmψ

′′
n

)
=

d

dx
W (ψn, ψm), (9.7.32)

where W is the Wronskian of ψn and ψm.
Integrating (9.7.32) gives, for m �= n,

(
κ2
m − κ2

n

) ∫ ∞

−∞
ψmψn dx =

[
W (ψn, ψm)

]∞
−∞ = 0, (9.7.33)

because ψn, ψm → 0 as |x| → ∞. This shows that ψm, ψn are orthogonal. The con-
tinuous eigenfunction ψ is also orthogonal to each discrete eigenfunction ψm. Thus,
the discrete and continuous eigenfunctions together form a complete orthogonal set,
and hence, any function ψ ∈ L2(R) can be represented as a linear combination of all
the ψm’s plus an integral of ψ(x, k) over all k.

If φ and ψ are two solutions of (9.7.7) with the same value of λ = k2(> 0), then
equation (9.7.7) implies that the derivative of W is zero, that is, W (φ, ψ) is constant.
With an additional restriction that φ is proportional to ψ, it turns out that W (φ, ψ) =
0 for all x. Denoting ψ∗ as the complex conjugate of the continuous eigenfunction ψ,
we can compute W (ψ, ψ∗) at both x = ±∞ and, then, use (9.7.30a) and (9.7.30b)
to obtain

W
(
ψ, ψ∗) = 2ikaa∗ = 2ik

(
1− bb∗

)
. (9.7.34)

Or equivalently,
|a|2 + |b|2 = 1. (9.7.35)

This is a statement of the conservation of energy in the theory of scattering.
A procedure similar to the case of the discrete spectrum can be employed to

determine the scattering coefficients. Integrating (9.7.21) once with respect to x gives

Ψψx − ψΨx = g(t; k), (9.7.36)

where Ψ is defined by (9.7.19) and g(t; k) is an arbitrary function resulting from
integration. For the continuous eigenfunction, ψ(x, k; t) is given by (9.7.30b), and
hence, the asymptotic result for Ψ follows from (9.7.19):

Ψ ∼
(
at + 4iak3

)
e−ikx as x → −∞. (9.7.37)

Consequently,
(Ψψx − ψΨx) → 0 as x → −∞. (9.7.38)

Obviously, g(t; k) = 0 for all time t, and (9.7.36) can be integrated to obtain

(Ψ/ψ) = h(t; k), or equivalently, Ψ = ψh, (9.7.39)

where h is another arbitrary function of integration. The use of asymptotic results for
ψ and Ψ as x → −∞ in (9.7.39) yields the equation
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da

dt
+ 4iak3 = ha. (9.7.40)

Similarly, we next use (9.7.30a) and the asymptotic form of Ψ , as x → −∞, in the
form

Ψ ∼ db

dt
eikx + 4ik3

(
eikx − be−ikx

)
(9.7.41)

in (9.7.39) to obtain

db

dt
eikx + 4ik3

(
e−ikx − beikx

)
= h

(
e−ikx + beikx

)
. (9.7.42)

Thus, it follows from the linear independence of eikx and e−ikx that

db

dt
− 4ik3b = hb and h = 4ik3, (9.7.43ab)

and therefore, equation (9.7.40) gives

da

dt
= 0. (9.7.44)

Finally, the solutions for a and b are given by

a(k; t) = a(k; 0) and b(k; t) = b(k; 0) exp
(
8ik3t

)
, t > 0. (9.7.45)

This completes the determination of the scattering data S(t), which are summarized
as follows:

κn = const.; cn(t) = cn(0) exp(4κ
3
nt),

[1ex]a(k; t) = a(k; 0); b(k; t) = b(k; 0) exp(8ik3t),

}
(9.7.46)

where cn(0), a(k; 0), and b(k; 0) are determined from the initial condition for the
KdV equation.

The simplest approach to solving the inverse scattering problem involves the in-
tegral representation of solutions of the Schrödinger equation (9.7.7) with λ = k2,

Lψ = k2ψ. (9.7.47)

It is convenient to introduce the following integral representation of the solution
of (9.7.47),

φk(x) = exp(ikx) +

∫ ∞

x

K(x, z) exp(ikz) dz, (9.7.48)

φ−k(x) = exp(−ikx) +
∫ ∞

x

K(x, z) exp(−ikz) dz. (9.7.49)

These are called the Jost solutions, which have the following property:

lim
x→∞

φ±k(x) = exp(±ikx). (9.7.50)
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As already stated earlier, when k is real, the eigenfunctions are continuous (un-
bounded) states, since λ > 0. On the other hand, if k is purely imaginary, so that
k = iκ, where κ is real, then λ < 0, and the eigenfunctions correspond to dis-
crete (bound) states. Henceforth, we adopt k for continuous states and iκ for discrete
states.

Substituting φ±k(x) in (9.7.47) leads to the inhomogeneous wave equation

∂2K

∂x2
− ∂2K

∂z2
= uK, (9.7.51)

and K(x, z) is related to the potential u(x, t) by

u(x, t) = −2
d

dx
K(x, x), (9.7.52)

where K(x, z) satisfies the following conditions:

lim
z→±∞

K(x, z) = 0 and lim
z→±∞

∂K(x, z)

∂z
= 0. (9.7.53ab)

Because φk(x) and φ−k(x) are linearly independent, they can be treated as fun-
damental solutions of the original equation (9.7.47). Hence, the general solution
of (9.7.47) corresponding to the eigenvalue k can be written as a linear combina-
tion of these two solutions. In particular, we examine the solution ψk(x) of (9.7.47)
with asymptotic behavior ψk(x) ∼ exp(−ikx), as x → −∞. After some algebraic
manipulation, it can be shown that ψk(x) is given by

ψk(x) =
1

a(k)
φ−k(x) +

b(k)

a(k)
φk(x). (9.7.54)

Substituting results for φ+k(x) from (9.7.48) and (9.7.49) in (9.7.54) yields

a(k)ψk(x) = exp(−ikx) +
∫ ∞

x

K(x, z) exp(−ikz) dz

+ b(k)

[
exp(ikx) +

∫ ∞

x

K(x, z) exp(ikz) dz

]
. (9.7.55)

Multiplying this equation by (2π)−1 exp(iky), where y > x, and integrating with
respect to k gives the following result:

1

2π

∫ ∞

−∞
a(k)ψk(x) exp(iky) dk

=
1

2π

∫ ∞

−∞
exp

{
ik(y − x)

}
dk

+

∫ ∞

x

K(x, z)

[
1

2π

∫ ∞

−∞
exp

{
ik(y − z)

}
dk

]
dz
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+
1

2π

∫ ∞

−∞
b(k) exp

{
ik(x+ y)

}
dk

+

∫ ∞

x

K(x, z)

[
1

2π

∫ ∞

−∞
b(k) exp

{
ik(y + z)

}
dk

]
dz

= K(x, y) +B(x+ y) +

∫ ∞

x

K(x, z)B(y + z) dz, (9.7.56)

in which the following results are used:

B(x) =
1

2π

∫ ∞

−∞
b(k) exp(ikx) dk (9.7.57a)

and
1

2π

∫ ∞

−∞
exp

[
ik(y − z)

]
dk = δ(y − x) = 0, y > x. (9.7.57b)

Clearly, the function B(x) represents the Fourier transform of the reflection coeffi-
cient b(k) and is a known quantity. The right-hand side of (9.7.55) has terms involv-
ing only an unknown K, which is to be determined. In order to determine K, we
first simplify the left-hand side of (9.7.56) by using the theory of residues of analytic
functions. Without any further details, it turns out from the residue computation from
the simple pole of a(k) at k = iκ with ψiκ(x) = cκφiκ(x) that the left-hand side
of (9.7.56) gives

1

2π

∫ ∞

−∞
a(k)ψk(x) exp(iky) dk

= −c2κ exp
{
−κ(x+ y)

}
−
∫ ∞

−∞
c2κK(x, z) exp

{
−κ(y + z)

}
dz. (9.7.58)

There is a corresponding contribution to this equation from every bound state of the
potential. Therefore, if there are N discrete states, (9.7.58) has to be modified by
including a summation over the individual states. Finally, we combine this with re-
sult (9.7.56) and incorporate the t-dependence of each quantity to obtain the integral
equation for K(x, y; t) in the form

K(x, y; t) +B(x+ y; t) +

∫ ∞

x

K(x, z; t)B(y + z; t) dz = 0, (9.7.59)

where B(x, t) is now given by

B(x, t) =
N∑

n=1

c2n(t) exp(−κnx) +
1

2π

∫ ∞

−∞
b(k, t) exp(ikx) dk. (9.7.60)

Equation (9.7.59) with the kernel B(x, t) given by (9.7.60) is known as the
Gelfand–Levitan–Marchenko (GLM) linear integral equation. The solutionK(x, y; t)
of this integral equation is related to the potential u(x, t) by the following result:
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u(x, t) = −2
d

dx
K(x, x; t). (9.7.61)

This is the exact solution of the original KdV equation. However, it does not ad-
mit any physical interpretation; that can be achieved from the following asymptotic
analysis and examples.

For future reference, it is convenient to write the final explicit formula for B(x, t)
as

B(x, t) =

N∑
n=1

c2n(0) exp
(
8κ3

nt− κnx
)

+
1

2π

∫ ∞

−∞
b(k, 0) exp

(
8ik3t+ ikx

)
dk. (9.7.62)

In general, it is not possible to solve the integral equation (9.7.59) except for
the reflectionless potentials (b(k) = 0). For the general case, the longtime solution
represents N solitons traveling with various speeds to the right, and an oscillatory
wavetrain with amplitude decreasing with time can be found to follow the series of
solitons.

For a given initial potential energy function, the eigenvalues κn are constants for
all time. Physically, this means that bound-state energy levels are completely spec-
ified and remain unchanged while varying the potential through the KdV equation.
Another remarkable fact to observe is that the number of solitons that eventually
develops is exactly the number of bound states. Of course, this number depends on
the initial state u(x, 0) = u0(x), which is sufficient for determining the number of
developing solitons.

This completes the description of the inverse scattering transform method for
solving the KdV equation. In summary, two distinct steps are involved in the method:
(i) the solution of the Schrödinger equation (the Sturm–Liouville problem) for a
given initial condition, u(x, 0) = u0(x), from which we determine the scattering
data S(t), and (ii) the solution of the GLM linear integral equation. Even though
these two steps may not be technically easy to handle, in principle, the problem is
solved. The effectiveness of the method can be best exemplified by many simple but
nontrivial examples.

The power and success of the inverse scattering transform method for solving
the KdV equation can be attributed to several facts. First, the most remarkable result
of the method is the fact that the discrete eigenvalues of the Schrödinger equation
do not change as the potential evolves according to the KdV equation. Second, the
method has reduced solving a nonlinear partial differential equation to solving two
linear problems: (i) a second-order ordinary differential equation and (ii) an integral
equation. Third, the eigenvalues of the ordinary differential equation are constants,
and this leads to a major simplification in the evolution equation for ψ. Fourth, the
time evolution of the scattering data is explicitly determined from the asymptotic
form of ψ, as |x| → ∞. So, this information allows us to solve the inverse scattering
problem, and hence, to find the final solution of the KdV equation. The method is
presented schematically in Figure 9.10.
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Fig. 9.10 The IST method for the KdV equation.

We now illustrate the method for the reflectionless case (b(k) = 0) with initial
profiles given by the following examples.

Example 9.7.1 (Single-Soliton Solution). We consider a particular case where the po-
tential has a single bound state with the eigenvalue λ = −κ2

1, normalized constant
c0, and with zero reflection coefficient (b(k, t) ≡ 0) for all continuous states k. In
this case, B is obtained from (9.7.62) in the form

B(x, t) = c20(0) exp
(
8κ3

1t− κ1x
)
= c20 exp

(
8κ3

1t− κ1x
)
. (9.7.63)

The associated GLM equation (9.7.60) can be solved by assuming a separable kernel

K(x, y; t) =

N∑
n=1

Kn(x, t) exp(−κny), (9.7.64)

which, in this case (N = 1), becomes

K(x, y; t) = K1(x, t) exp(−κ1y). (9.7.65)

The GLM equation (9.7.60) with (9.7.65) is given by

K(x, y; t) + c20 exp
{
8κ3

1t− κ1(x+ y)
}

+ c20 exp
(
8κ3

1t− κ1y
) ∫ ∞

x

K(x, z; t) exp(−κ1z) dz = 0. (9.7.66)

Substituting (9.7.65) in (9.7.66) and performing the integration over z leads to an
algebraic equation for K1(x, t),

K1(x, t) exp(−κ1y) + c20 exp
{
8κ3

1t− κ1(x+ y)
}

+
c20
2κ1

exp
(
8κ3

1t− κ1y − 2κ1x
)
K1(x, t) = 0. (9.7.67)

This equation solved for K1(x, t) can be written in the form

K1(x, t) = −κ1 exp
(
4κ3

1t+ κ1x0
)
sech

[
κ1

(
x− x0 − 4κ2

1t
)]
, (9.7.68)
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where x0 is defined by

x0 = (2κ1)
−1 log

(
c20
2κ1

)
. (9.7.69)

We substitute (9.7.68) in (9.7.65) to obtain the solution for K(x, y; t). Consequently,
the solution (9.7.61) of the KdV equation becomes

u(x, t) = −2κ2
1 sech

2
[
κ1(x− Ut)− κ1x0

]
, (9.7.70)

where U = 4κ2
1. This represents a single-soliton solution of amplitude −2κ2

1 travel-
ing to the right with speed U = 4κ2

1 and centered initially at the point x0.

Example 9.7.2 (N-Soliton Solution for a sech2 Potential). We investigate the scatter-
ing problem for the class of sech2 potentials given by

u(x, 0) = u0(x) = −U sech2 x, (9.7.71)

where U is a constant.
The associated Schrödinger equation is

ψxx +
(
λ+ U sech2 x

)
ψ = 0. (9.7.72)

We introduce a change of variable by y = tanhx so that −1 < y < 1 for −∞ <
x < ∞. In terms of y, the potential (9.7.71) becomes

U sech2 x = U
(
1− tanh2 x

)
= U

(
1− y2

)
,

and the second derivative in terms of y is given by

d2

dx2
=

dy

dx

d

dy

(
dy

dx

d

dy

)
=
(
1− y2

) d

dy

[(
1− y2

) d

dy

]
.

Consequently, equation (9.7.72) gives the associated Legendre equation

d

dy

[(
1− y2

)dψ
dy

]
+

[
U +

λ

1− y2

]
ψ = 0. (9.7.73)

We set U = N(N + 1), where N is a positive integer, and then, consider only
the bound states (b(k, t) = 0 for all k). Physically, this means that the incident wave
is totally reflected, and hence, the associated potential is referred to as reflection-
less. If λ = −κ2 < 0, then only bounded solutions for −1 ≤ y ≤ 1 occur when
κn = n, n = 1, 2, . . . , N , and the corresponding discrete eigenfunctions are given
by ψn(x) = AnP

n
N (tanhx), where the associated Legendre functions Pn

N (y) are
defined by

Pn
N (y) = (−1)n

(
1− y2

)n/2 dn

dyn
PN (y) and PN (y) =

1

N !2N
dN

dyN
(
y2 − 1

)N
.

(9.7.74ab)
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PN (y) is the Legendre polynomial of degree N , and the constants of proportion-
ality An are determined from the normalization condition (9.7.24). The asymptotic
representation of the discrete eigenfunctions has the form

ψn(x) ∼ cn(t) exp(−nx) as x → +∞, (9.7.75)

where
cn(t) = cn(0) exp

(
4n3t

)
(9.7.76)

and cn(0) are also determined from the normalization condition.
The function B(x; t) involved in the GLM integral equation (9.7.60), therefore,

is given by

B(x; t) =

N∑
n=1

c2n(0) exp
(
8n3t− nx

)
. (9.7.77)

Finally, the GLM equation can easily be solved, and hence, the N -soliton solu-
tion assumes the asymptotic form

u(x, t) ∼ −
N∑

n=1

(
2n2

)
sech2

{
n
(
x− 4n2t

)
∓ εn

}
as t → ±∞, (9.7.78)

where the quantities εn are known phases.
Clearly, a reflectionless potential with N bound states corresponds to pure N -

solitons ordered according to their amplitudes. As t → ∞, the tallest (hence, the
fastest) soliton is at the front, followed by a series of progressively shorter (therefore,
slower) ones behind. All N solitons interact at t = 0 to form the single sech2 profile,
which was prescribed as the initial condition at that instant.

In particular, when N = 1, U = 2 and κ = κ1 = 1. The corresponding eigen-
function is given by

ψ1(x) = A1P
1
1 (tanhx) = −A1 sechx,

where the constant A1 is determined from the condition (9.7.24), which gives 2A2 =
1 or A = ±(1/

√
2). So, the asymptotic nature of the above solution is

ψ1(x) ∼
√
2e−x as x → ∞.

Therefore, c1(0) =
√
2, and c1(t) =

√
2 exp(4t), and the function B(x; t) =

2 exp(8t− x).
Finally, the associated GLM equation

K(x, z; t) + 2 exp
[
8t− (x+ z)

]
+ 2

∫ ∞

x

K(x, y; t) exp
[
8t− (y + z)

]
dy = 0

gives the solution
K(x, z; t) = F (x; t) exp(−z),

for some function F (x; t) that satisfies the equation
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F + 2 exp(8t− x) + 2F exp(8t)

∫ ∞

x

e−2y dy = 0.

This can readily be solved to find the function F expressed as

F (x; t) =
−2e8t−x

1 + e8t−2x
.

Thus, the final solution is given by

u(x, t) = 2
∂

∂x

(
2e8t−2x

1 + e8t−2x

)
= − 8e2x−8t

(1 + e2x−8t)
= −2 sech2(x− 4t). (9.7.79)

This represents the single-soliton solution of amplitude −2 and speed 4.
Similarly, the two-soliton solution can be obtained from the initial profile (9.7.71)

with N = 2, so that
u(x, 0) = −6 sech2 x. (9.7.80)

This initial condition is then evolved in time according to the KdV equation, and
the solution consists of two solitons where the taller one catches up to the shorter
one. They undergo a nonlinear interaction according to the KdV equation and, then,
emerge from the interaction unchanged in waveform and amplitude. Eventually, the
taller soliton reappears to the right and passes away from the shorter one as t in-
creases. The wave profile u(x, t) with the initial condition (9.7.80) is plotted in Fig-
ure 9.11 as a function of x for different values of time: (a) t = −0.5, (b) t = −0.1,
(c) t = 0.0, (d) t = 0.1, and (e) t = 0.5.

Similarly, the three-soliton solution (N = 3) with u(x, 0) = −12 sech2 x is
shown in Figure 9.12 for different values of t: (a) t = 0.0, (b) t = 0.05, and (c) t =
0.2, where evolving solitons have amplitudes 18, 8, and 2, respectively.

Finally, to obtain the soliton solution, we examine the asymptotic behavior of
the exact solution u(x, t) for large x and t by considering only B(x, t) given by
(9.7.62). For large t and x ∼ 4κ2

N t, where κN is the largest eigenvalue (κ1 < κ2 <
· · · < κN ), the N th term in the series in (9.7.62) dominates over all other terms, and
the significant contribution to the integral in (9.7.62) dominates over all other terms.
This contribution to the integral in (9.7.62) can be found from the stationary phase
approximation (Segur 1973) in the form t−1/3 as t → ∞. Thus, it turns out that

B(x, t) ∼ α exp(−κNx), (9.7.81)

where
α = c2N (0) exp

(
8κ3

N t
)
.

With this value of B and y = x, the associated GLM equation becomes

K(x, x, t) + α exp(−2κNx)

+ α exp(−κNx)

∫ ∞

x

exp(−κNz)K(x, z, t) dz ∼ 0. (9.7.82)

This can be easily solved by writing
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Fig. 9.11 The two-soliton solution. From Drazin and Johnson (1989).

Fig. 9.12 The three-soliton solution. From Drazin and Johnson (1989).



490 9 Solitons and the Inverse Scattering Transform

K(x, z, t) = F (x, t) exp(−κNz), (9.7.83)

where F satisfies

F + α

[
e−κNx + F

∫ ∞

x

e−2κNz dz

]
= 0. (9.7.84)

Result (9.7.84) gives

F =
[
−α exp(−κNx)

]/[
1 +

α

2κN
exp(−2κNx)

]
. (9.7.85)

Substituting (9.7.83) in (9.7.61) gives

u(x, t) ∼ −2κ2
N sech2

[
κN (x− x0)− 4κ3

N t
]
, (9.7.86)

where c2N (0)/2κN = exp(2κNx0). Obviously, (9.7.86) asymptotically represents
a soliton of amplitude 2κ2

N and velocity 4κ2
N . If, instead of large t, we consider

x ∼ 4κ2
N t for any arbitrary n, the significant term in the series involved in (9.7.86)

is the nth term, and then, a soliton of amplitude 2κ2
n and speed 4κ2

n would emerge.
Thus, the upshot of this analysis is that the initial (potential well) profile disintegrates
into N solitons corresponding to discrete eigenvalues of the associated Schrödinger
equation. A further elaborate mathematical analysis of the integral in (9.7.62) reveals
a complete solution consisting of a series of N solitons preceded by an oscillatory
trail of amplitude decreasing with time. This disintegration process of an initial pro-
file into a series of solitons is usually called fission.

Examples 9.7.1 and 9.7.2 illustrate the reflectionless (b(k) = 0) initial profiles.
We now give examples for the nonzero reflection coefficient (b(k) �= 0).

Example 9.7.3 (A Soliton Solution Associated with the Dirac Delta Function Initial
Profile). In this case, we use the initial condition as

u(x, 0) = −u0δ(x), (9.7.87)

where u0 is a positive constant. For a discrete eigenstate, λ1 = −κ2
1, where κ1 =

1
2u0 and the corresponding eigenfunction is given by

ψ1(x) =

{√
κ1 exp(−κ1x) if x > 0,

√
κ1 exp(+κ1x) if x < 0.

(9.7.88ab)

The continuous eigenfunction for k =
√
λ exists and can be written as

b(k) = − u0

(u0 + 2ik)
. (9.7.89)

We can then use the time evolution of the scattering data

c1(t) =
√
κ1 exp

(
4κ3

1t
)

and b(k, t) = − u0

(u0 + 2ik)
exp

(
8ik3t

)
. (9.7.90ab)
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Fig. 9.13 (a) Initial profile and (b) solution at a later time.

The function B(x, t) can be represented as

B(x, t) = κ1 exp
(
8κ3

1t− κ1x
)
− u0

2π

∫ ∞

−∞

exp(8ik3t+ ikx)

(u0 + 2ik)
dk. (9.7.91)

However, the function K(x, y; t) cannot easily be determined from (9.7.59). But
the asymptotic solution for u(x, t) for the single soliton associated with the discrete
eigenvalue κ1 = 1

2u0 and fixed (x− u2
0t) is given by

u(x, t) ∼ −1

2
u2
0 sech

2

{
1

2
u0

(
x− u2

0t− ε1
)}

, as t → ∞, (9.7.92)

where the phase change is given by exp(2κ1ε1) = c20(0)/2κ1.
In fact, the asymptotic solution (9.7.92) is made up of the contribution to B(x, t)

from the first term in (9.7.91), and the integral term vanishes where asymptotic so-
lution (9.7.92) is valid. The initial profile represented by the delta function is shown
in Figure 9.13(a), and the solution u(x, t) for a subsequent time is plotted in Fig-
ure 9.13(b).

Finally, if the amplitude u0 of the initial profile is negative, there is no discrete
eigenvalue, and hence, there is no soliton. And only dispersive waves exist in the
solution for t > 0. As shown above, if u0 > 0, there is only one eigenvalue κ1 = u0

2 ,
and hence, a single soliton with amplitude 2κ2

1 = 1
2u

2
0 is generated.

Example 9.7.4 (Solitons Associated with Negative sech2 Initial Profiles). We use the
method described by Crandall (1991) to examine the development of solitons and a
dispersive wave associated with a class of potentials given by

u(x, 0) = u0(x) = −U sech2 x. (9.7.93)
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Fig. 9.14 The time evolution of the solution at three different times. From Drazin and Johnson
(1989).

According to the general theory of solitons, the total number of discrete eigenvalues
for general U is given by

ℵ =

[(
U +

1

4

) 1
2

− 1

2

]
+ 1, (9.7.94)

where [·] denotes the integral part and, if {(U + 1
4 )

1
2 − 1

2} is an integer, then the +1
is omitted.

For U = 4, ℵ = 2, and hence, there are two discrete eigenvalues, and therefore,
a solution with two solitons. Moreover, U = 4 cannot be written as N(N + 1) for
integral N , and the solution also includes a dispersive wave. Finally, the solution
of the KdV equation is determined by numerical integration. The end result is that
there are contributions from both the discrete and continuous states to the function
B(x+ t) in equation (9.7.60). The effect of the different contributions is seen in the
time evolution of the solution, which reveals the appearance of two solitons moving
to the right and a dispersive wavetrain traveling to the left, as shown in Figure 9.14.

We close this section by adding a brief discussion on the number of solitons as-
sociated with an initial profile u(x, 0) = u0(x). The solution depends on the discrete
eigenvalues of the associated Schrödinger equation. We discuss this point by citing
some specific examples.
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For the case u0(x) = −a sech2(bx), the number of eigenvalues is given by
(Landau and Lifshitz 1959, p. 70)

κn =
1

2
b

[(
1 +

4a

b2

)1/2

− (2n− 1)

]
≥ 0, (9.7.95)

where the number of eigenvalues is determined by the parameter P defined by

P =

∫ ∞

−∞

∣∣u0(x)
∣∣1/2 dx. (9.7.96)

For the sech2 profile, P = πb
√
a. The number of solitons is given by

N = largest integer ≤ 1

2

[(
1 +

4P 2

π2

)1/2

+ 1

]
. (9.7.97)

This shows that the number of solitons depends on the parameter P , which, in this
case, is proportional to b

√
a. For the delta function case,

u0(x) = −aδ(x) = −a lim
n→∞

√
n

π
exp

(
−nx2

)
, (9.7.98)

and P → 0 as n → ∞, and hence, there is only one soliton consistent with (9.7.97).
In the other limit as P → ∞, the formula (9.7.97) gives

N ∼ P

π
. (9.7.99)

Thus, the result (9.7.97) shows that there is always one soliton for small P , and as
P increases (P → ∞), the number of solitons increases. Furthermore, when the
initial disturbance is large (P → ∞), there are many closely spaced eigenvalues that
satisfy the famous Bohr–Sommerfeld rule

∮
p dx =

∮ [
λ− u0(x)

]1/2
dx = 2π

(
n+

1

2

)
. (9.7.100)

Thus, the number of solitons (the largest value of n for λ = 0) is given by

N ∼ 1

π

∫ ∞

−∞

∣∣u0(x)
∣∣1/2 dx =

P

π
. (9.7.101)

This ensures the validity of the result obtained in the previous examples. Another
approximate formula for the number of solitons with amplitudes in (a, a + da) was
first obtained by Karpman (1967) in the form

N(a) =
1

8π

∮ [∣∣u0(x)
∣∣− a

2

]−1/2

dx. (9.7.102)
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This is over the range 0 < a < 2u0m = 2|u0|max, where u0m is the largest value of
|λ| for the bound states in (9.7.100), since the range of κ is 0 < κ <

√
u0m. Hence,

the total number of solitons is given by

N =

∫ 2u0m

0

N(a) da =
1

π

∫
|u0|1/2 dx. (9.7.103)

This is in agreement with (9.7.101). Thus, the dependence of P on the size (a and b)
of a soliton suggests another general result:

Q =

∫ ∞

−∞
|u|1/2 dx. (9.7.104)

Physically, this represents an interesting measure of soliton shapes for a single soli-
ton, and (9.7.104) can easily be computed to obtain Q ∼

√
2π, which is independent

of the amplitude κN . Since solitons here are of unit size, Q =
√
2πN for a series of

N solitons. This shows that there is a Planck constant for solitons!
It is worth noting here that the parameter P is the value of the integral in the

initial disturbance. For large P , N ∼ P/π, and for large time t,

Q =
√
2πN ∼

√
2P. (9.7.105)

This describes the close connection between the initial P and the final Q.

9.8 Bäcklund Transformations and the Nonlinear Superposition
Principle

Historically, Bäcklund transformations were developed in the 1880s to study the re-
lated theories of differential geometry and differential equations. They occurred as an
extension of contact transformations, which transform surfaces with a common tan-
gent at a point in one space into surfaces in another space, which also have a common
tangent at the corresponding point. One of the earliest Bäcklund transformations was
found for the sine-Gordon equation, uxt = sinu. This equation originally arose in
differential geometry in connection with the theory of surfaces of constant negative
curvature. However, the study of these transformations had been dormant until the
recent work on solitons in the 1970s. It has been recognized that partial differential
equations admit soliton-like solutions if and only if they admit Bäcklund transforma-
tions. Indeed, there is a close relationship between the inverse scattering transform
(IST) and a Bäcklund transformation (BT), in the sense that the scattering problem
and the associated time dependence that constitute an IST also constitute a BT. In
other words, every evolution equation solvable by an IST has a corresponding BT,
and, conversely, the existence of BTs always or almost always implies integrability
by the IST.

Another approach to deriving conservation laws and the inverse scattering prob-
lem is through the use of the Bäcklund transformations. For second-order partial
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differential equations, the Bäcklund transformation consists of a pair of first-order
partial differential equations relating the solutions of the given equation to another
solution of the same equation or to a solution of another second-order equation. In
general, a Bäcklund transformation for a second-order partial differential equation
for a dependent variable u(x, t) is defined by the pair of equations

wx = P (w, u, ux, ut, x, t),

wt = Q(w, u, ux, ut, x, t),

}
(9.8.1ab)

where P and Q are functions of the variables indicated, but not of the derivatives
of w. A new equation for w is obtained from the consistency condition.

One of the simplest Bäcklund transformations is the pair of the Cauchy–Riemann
equations in complex analysis

ux = vy and uy = −vx, (9.8.2ab)

for the Laplace equations

uxx + uyy = 0 and vxx + vyy = 0. (9.8.3ab)

Thus, if v(x, y) = xy is a simple solution of the Laplace equation, then u(x, y) can
be determined from ux = x and uy = −y. Therefore, u(x, y) = 1

2 (x
2 − y2) is

another solution of the Laplace equation.
In connection with the Miura transformation (9.6.10), it has been shown that, if v

is a solution of the modified KdV equation (9.6.11), then u is a solution of the KdV
equation (9.6.3). Since it is possible to eliminate higher derivatives from (9.6.11) by
using (9.6.10), we can treat (9.6.10) and (9.6.11), written in the form

vx = u− v2 and vt = 6v2vx − vxxx, (9.8.4ab)

as a Bäcklund transformation for the KdV equation (9.6.3).
Wahlquist and Estabrook (1973, 1975, 1976) have developed a more convenient

and useful Bäcklund transformation for solutions of the KdV equation. Since the
KdV equation is Galilean invariant, we replace v in (9.6.11) by u − λ, where λ is
a real parameter. Using u = λ + v2 + vx, we rewrite the modified KdV equation
(9.6.11) in the form

vt − 6
(
v2 + λ

)
vx + vxxx = 0, (9.8.5)

so that u satisfies the KdV equation (9.6.3). Clearly, both v and −v satisfy (9.8.5).
This leads us to construct two functions u1 and u2, corresponding to v and −v, in
the form

u1 = λ+ v2 + vx, u2 = λ+ v2 − vx (9.8.6ab)

for a given λ and v.
Consequently,

u1 − u2 = 2vx, u1 + u2 = 2
(
λ+ v2

)
. (9.8.7ab)
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It is convenient to define a new potential function wi such that ui = ∂wi/∂x,
i = 1, 2. Thus, equations (9.8.7ab) reduce to the following pair of equations:

w1 − w2 = 2v, (9.8.8)

(w1 + w2)x = 2λ+
1

2
(w1 − w2)

2, (9.8.9)

where any arbitrary function of t in (9.8.8) has been incorporated in wi without
changing ui. We next use (9.8.7ab) and (9.8.8) in order to transform (9.8.5) into the
form

(w1 − w2)t = 3
(
w2

1x − w2
2x

)
− (w1 − w2)xxx. (9.8.10)

Thus, the upshot of this analysis is that equations (9.8.9) and (9.8.10) constitute a
pair of auto-Bäcklund transformations of the KdV equation, where the former is the
x part and the latter is the t part.

We next illustrate the method by solving (9.8.9), (9.8.10) for w1 with w2 = 0 for
all x and t. The resulting equations for w1 become

w1x = 2λ+
1

2
w2

1 and (9.8.11a)

w1t = 3w2
1x − w1xxx, (9.8.11b)

where the former gives

w1xxx =
∂

∂x
(w1w1x) = w2

1x + w2
1w1x, (9.8.12)

and hence, (9.8.11b) can be written, by using (9.8.11a) again and λ = κ2, as

w1t + 4κ2w1x = 0. (9.8.13)

This equation admits the general solution

w1(x, t) = f
(
x− 4κ2t

)
, (9.8.14)

where f is an arbitrary function.
On the other hand, (9.8.11a) can readily be integrated to obtain the solution

w1(x, t) = −2κ tanh
[
κx+ α(t)

]
, (9.8.15)

where α(t) is an arbitrary function of t. For consistency of the solutions (9.8.14) and
(9.8.15), we require that α(t) = −4κ(κ2t − x0), where x0 is an arbitrary constant.
Thus, the Bäcklund transformations give the final solution

w1(x, t) = −2κ tanh
[
κ
(
x− x0 − 4κ2t

)]
, (9.8.16)

and hence, it follows from u1 = w1x that

u1(x, t) = −2κ2 sech2
[
κ
(
x− x0 − 4κ2t

)]
. (9.8.17)

This is the soliton solution of the KdV equation (9.6.3).
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All of this illustrates how the Bäcklund transformations can be used to obtain the
soliton solution of the KdV equation. However, the procedure just demonstrated re-
quires two integrations, one with respect to x and the other with respect to t. Instead
of the process of integration involving arbitrary functions, Wahlquist and Estabrook
(1973) developed an elegant method, based on the theory of differential forms, for
determining solutions of the KdV equation to obtain a one-parameter family of Bäck-
lund transformations. In this method, two distinct solutions w1 and w2 are generated
from the Bäcklund transformations by using the same given solution w with two dif-
ferent values λ1 and λ2 of λ. Thus, equation (9.8.9) can be written in two different
forms,

(w1 + w)x = 2λ1 +
1

2
(w1 − w)2, (9.8.18a)

(w2 + w)x = 2λ2 +
1

2
(w2 − w)2. (9.8.18b)

It is now possible to construct another solution w12 from w1 and λ2 and, similarly,
a solution w21 from w2 and λ1, so that

(w12 + w1)x = 2λ2 +
1

2
(w12 − w1)

2, (9.8.19a)

(w21 + w2)x = 2λ1 +
1

2
(w21 − w2)

2. (9.8.19b)

We next use Bianchi’s theorem of permutability for the Bäcklund transformations in
differential geometry, which states that w12 = w21. Now, we subtract the difference
of equations (9.8.18ab) from the difference of equations (9.8.19ab) and use the iden-
tity w12 = w21, so as to produce zero on the left-hand side of the resulting equation:

0 = 4(λ2 − λ1) +
1

2

[
(w12 − w1)

2 − (w21 − w2)
2 − (w1 − w)2 + (w2 − w)2

]
,

whence the solution for w12(= w21) is given by

w12 = w − 4(λ1 − λ2)

(w1 − w2)
. (9.8.20)

Thus, it is now possible to find solutions of the KdV equation in a straightforward
manner. Equation (9.8.20) is a purely simple algebraic expression, known as the non-
linear superposition principle, for constructing solutions. It is possible to generalize
superposition formula (9.8.20) and use the procedure to construct multisoliton solu-
tions.

A process similar to the two-soliton solution can be generalized to obtain a three-
soliton solution of the KdV equation:

w123 = w1 −
4(λ2 − λ3)

w12 − w13

=
λ1w1(w2 − w3) + λ2w2(w3 − w1) + λ3w3(w1 − w2)

λ1(w2 − w3) + λ2(w3 − w1) + λ3(w1 − w2)
. (9.8.21)

This represents the nonlinear superposition principle for the three-soliton solution.
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Thus, the multisoliton can be produced by continuing this process and setting

ws = −4κ2
s sech

2
[√

2κs

(
x− 8κ2

st− xs
)]
, (9.8.22)

where xs is constant.
In particular, when w = 0, w1 and w2 represent bounded and unbounded solu-

tions corresponding to bounded and unbounded solitons for u expressed as

u1 = −4κ2 sech2
[√

2κ
(
x− 8κ2t− x0

)]
(9.8.23)

and
u2 = −4κ2cosech2

[√
2κ
(
x− 8κ2t− x0

)]
. (9.8.24)

Although solution (9.8.24) is not of physical interest, it is essential for the con-
struction of a bounded solution for w12, which, in the present case, represents a
two-soliton solution.

Example 9.8.1 (Two-Soliton Solution). We apply the nonlinear superposition princi-
ple (9.8.20) to derive the two-soliton solution of the KdV equation. We take

w0 = 0, w1 = −2 tanh(x− 4t), w2 = −4 coth(2x− 32t), (9.8.25)

so that λ1 = 1 and λ2 = −4. Consequently, (9.8.20) becomes

w12 = − 6

{2 coth(2x− 32t)− tanh(x− 4t)} . (9.8.26)

The corresponding solution of the KdV equation follows from the result

u12 =
∂

∂x
w12 = −6{4cosech2(2x− 32t) + sech2(x− 4t)}

{2 coth(2x− 32t)− tanh(x− 4t)}2

= − 6{4 cosh2(x− 4t) + sinh2(2x− 32t)}
{2 cosh(2x− 32t) cosh(x− 4t)− sinh(2x− 32t) sinh(x− 4t)}2

= −12{3 + 4 cosh(2x− 8t) + cosh(4x− 64t)}
{3 cosh(x− 28t) + cosh(3x− 36t)}2 . (9.8.27)

This represents the two-soliton solution associated with the initial profile (9.7.80).
The numerical values of (9.8.27) for five different times: (a) t = −0.5, (b) t = −0.1,
(c) t = 0.0, (d) t = 0.1, and (e) t = 0.5 plotted as a function of x give the same
wave profile u(x, t) as in Figure 9.11.

We close this section by citing some related work on the use of Bäcklund trans-
formations in finding N -soliton solutions of several nonlinear evolution equations in
Wronskian form. Several authors, including Freeman (1984) and Nimmo and Free-
man (1983) used this method to obtain N -soliton solutions of KdV, modified KdV,
sine-Gordon, KP, Boussinesq, nonlinear Schrödinger equations, and other partial dif-
ferential difference equations. However, it seems that the scope of this approach is
still not yet fully understood.
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9.9 The Lax Formulation and the Zakharov and Shabat Scheme

In his 1968 seminal paper, Lax developed an elegant formalism for finding isospec-
tral potentials as solutions of a nonlinear evolution equation with all of its integrals.
This work deals with some new and fundamental ideas and deeper results and their
application to the KdV model. This work subsequently paved the way to general-
izations of the technique as a method for solving other nonlinear partial differential
equations. Introducing the Heisenberg picture, Lax developed the method of inverse
scattering based upon an abstract formulation of evolution equations and certain
properties of operators on a Hilbert space, some of which are familiar in the context
of quantum mechanics. His formulation has the feature of associating certain nonlin-
ear evolution equations with linear equations which are analogs of the Schrödinger
equation for the KdV equation.

To formulate Lax’s method, we consider two linear operators L and M . The
eigenvalue equation related to the operator L corresponds to the Schrödinger equa-
tion for the KdV equation. The general form of this eigenvalue equation is

Lψ = λψ, (9.9.1)

where ψ is the eigenfunction and λ is the corresponding eigenvalue. The operator
M describes the change of the eigenvalues with the parameter t, which usually rep-
resents time in a nonlinear evolution equation. The general form of this evolution
equation is

ψt = Mψ. (9.9.2)

Differentiating (9.9.1) with respect to t gives

Ltψ + Lψt = λtψ + λψt. (9.9.3)

We next eliminate ψt from (9.9.3) by using (9.9.2) and obtain

Ltψ + LMψ = λtψ + λMψ = λtψ +Mλψ = λtψ +MLψ, (9.9.4)

or equivalently,
∂L

∂t
ψ = λtψ + (ML− LM)ψ. (9.9.5)

Thus, eigenvalues are constant for nonzero eigenfunctions if and only if

∂L

∂t
= −(LM −ML) = −[L,M ], (9.9.6)

where [L,M ] = (LM −ML) is called the commutator of the operators L and M ,
and the derivative on the left-hand side of (9.9.6) is to be interpreted as the time
derivative of the operator alone. Equation (9.9.6) is called the Lax equation and the
operators L and M are called the Lax pair. It is the Heisenberg picture of the KdV
equation. The problem, of course, is how to determine these operators for a given
evolution equation. There is no systematic method of solution of this problem. For
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a negative integrable hierarchy and in order to find a Lax pair from a given spectral
problem, Qiao (1995) and Qiao and Strampp (2002) suggested a general approach to
generate integrable equations.

We consider the initial-value problem for u(x, t) which satisfies the nonlinear
evolution equation system

ut = N(u), (9.9.7)

u(x, 0) = f(x), (9.9.8)

where u ∈ Y for all t, Y is a suitable function of space, and N : Y → Y is a
nonlinear operator that is independent of t but may involve x or derivatives with
respect to x.

We must assume that the evolution equation (9.9.7) can be expressed in the Lax
form

Lt + (LM −ML) = Lt + [L,M ] = 0, (9.9.9)

where L and M are linear operators in x on a Hilbert space H and depend on u and
Lt = ut is a scalar operator. We also assume that L is self-adjoint so that (Lφ, ψ) =
(φ, Lψ) for all φ and ψ ∈ H with (·, ·) as an inner product.

We now formulate the eigenvalue problem for ψ ∈ H:

Lψ = λ(t)ψ, t ≥ 0, x ∈ R. (9.9.10)

Differentiating with respect to t and making use of (9.9.9), we obtain

λtψ = (L− λ)(ψt −Mψ). (9.9.11)

The inner product of ψ with this equation yields

(ψ, ψ)λt =
(
(L− λ)ψ, λt −Mψ

)
, (9.9.12)

which is, since L− λ is self-adjoint, given by

(ψ, ψ)λt = (0, ψt −Mψ) = 0.

Hence, λt = 0, confirming that each eigenvalue of L is a constant. Consequently,
(9.9.11) becomes

L(ψt −Mψ) = λ(ψt −Mψ). (9.9.13)

This shows that (ψt − Mψ) is an eigenfunction of the operator L with the eigen-
value λ. It is always possible to redefine M by adding the product of the identity
operator and a suitable function of t, so that the original equation (9.9.9) remains
unchanged. This leads to the time evolution equation for ψ as

ψt = Mψ, t ≥ 0. (9.9.14)

Thus, we have the following.
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Theorem 9.9.1. If the evolution equation (9.9.7) can be expressed as the Lax equa-
tion

Lt + [L,M ] = 0, (9.9.15)

and if (9.9.10) holds, then λt = 0 and ψ satisfies (9.9.14).

It is not yet clear how to find the operators L and M that satisfy the preceding
conditions. To illustrate the Lax method, we choose the Schrödinger operator L in
the form

L ≡ − ∂2

∂x2
+ u, (9.9.16)

so that Lψ = λψ becomes the Sturm–Liouville problem for the self-adjoint opera-
tor L. With this given L, the problem is to find the operator M . Based on the theory
of a linear unitary operator on a Hilbert space H , the linear operator M can be cho-
sen as antisymmetric, so that (Mφ,ψ) = −(φ,Mψ) for all ψ, φ ∈ H . So, a suitable
linear combination of odd derivatives in x is a natural choice for M . It follows from
the inner product that

(Mφ,ψ) =

∫ ∞

−∞

∂nφ

∂xn
ψ dx = −

∫ ∞

−∞
φ
∂nψ

∂xn
dx = −(φ,Mψ), (9.9.17)

provided M = ∂nφ/∂xn for odd n, and φ, ψ, and their derivatives with respect to
x tend to zero, as |x| → ∞. Moreover, we require that M has sufficient freedom in
any unknown constants or functions to make Lt + [L,M ] a multiplicative operator,
that is, of degree zero. For n = 1, the simplest choice for M is M = c(∂/∂x),
where c is a constant. It then follows that [L,M ] = −cux, which is automatically a
multiplicative operator. Thus, the Lax equation is

Lt + [L,M ] = ut − cux = 0, (9.9.18)

and hence, the one-dimensional wave equation

ut − cux = 0 (9.9.19)

has an associated eigenvalue problem with the eigenvalues that are constants of mo-
tion.

The next natural choice is

M = −a ∂3

∂x3
+A

∂

∂x
+

∂

∂x
A+B, (9.9.20)

where a is a constant, A = A(x, t), and B = B(x, t), and the third term on the right-
hand side of (9.9.20) can be dropped, but we retain it for convenience. It follows from
an algebraic calculation that

[L,M ] = auxxx −Axxx −Bxx − 2uxA

+(3auxx − 4Axx − 2Bx)
∂

∂x
+ (3aux − 4Ax)

∂2

∂x2
.
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This would be a multiplicative operator if A = 3
4au and B = B(t). Consequently,

the Lax equation (9.9.15) becomes

ut −
3

2
auux +

a

4
uxxx = 0. (9.9.21)

This is the standard KdV equation if a = 4. The operator M defined by (9.9.20)
reduces to the form

M = −4
∂3

∂x3
+ 3

(
u
∂

∂x
+

∂

∂x
u

)
+B(t). (9.9.22)

Hence, the time evolution equation for ψ can be simplified by using the Sturm–
Liouville equation, ψxx − (u− λ)ψ = 0, as

ψt = 4(λψ − uψ)x + 3ψx + 3(uψ)x +Bψ

= 2(u+ 2λ)ψx − uxψ +Bψ. (9.9.23)

We close this section by adding several comments. First, any evolution equations
solvable by the IST, like the KdV equation, can be expressed in Lax form. How-
ever, the main difficulty is that there is no completely systematic method of finding
whether or not a given partial differential equation produces a Lax equation and, if
so, how to find the Lax pair L and M . Indeed, Lax proved that there is an infinite
number of operators, M , one associated with each odd order of ∂/∂x, and hence, an
infinite family of flows ut under which the spectrum of L is preserved. Second, it is
possible to study other spectral equations by choosing alternative forms for L. Third,
the restriction that L and M should be limited to the class of scalar operators could
be removed. In fact, L and M could be matrix operators. The Lax formulation has
already been extended for such operators. Fourth, Zakharov and Shabat (1972, 1974)
published a series of notable papers in this field extending the nonlinear Schrödinger
(NLS) equation and other evolution equations. For the first time, they have also gen-
eralized the Lax formalism for equations with more than one spatial variable. This
extension is usually known as the Zakharov and Shabat (ZS) scheme which, essen-
tially, follows the Lax method and recasts it in a matrix form, leading to a matrix
Marchenko equation. Finally, we briefly discuss the ZS scheme for non-self-adjoint
operators to obtain N -soliton solutions for the NLS equation. Zakharov and Shabat
introduced an ingenious method for any nonlinear evolution equation

ut = Nu, (9.9.24)

to represent the equation in the form

∂L

∂t
= i[L,M ] = i(LM −ML), (9.9.25)

where L and M are linear differential operators including the function u in the coef-
ficients and L refers to differentiating u with respect to t in the expression for L.
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We consider the eigenvalue problem

Lφ = λφ. (9.9.26)

Differentiation of (9.9.26) with respect to t gives

iφ

(
∂λ

dt

)
= (L− λ)(iφt −Mφ). (9.9.27)

If φ satisfies (9.9.26) initially and changes in such a manner that

iφt = Mφ, (9.9.28)

then φ always satisfies (9.9.26). Equations (9.9.26) and (9.9.28) are the pair of equa-
tions coupling the function u(x, t) in the coefficients with a scattering problem. In-
deed, the nature of φ determines the scattering potential in (9.9.26), and the evolution
of φ in time is given by (9.9.28).

Although this formulation is quite general, the crucial step, still, is to factor L ac-
cording to (9.9.25). Zakharov and Shabat (1972) introduced 2×2 matrices associated
with (9.9.25) as follows:

L = i

[
1 + α 0

0 1− α

]
∂

∂x
+

[
0 u∗

u 0

]
, (9.9.29)

M = −α
[
1 0

0 1

]
∂2

∂x2
+

[ |u|2
1+α iu∗

x

−iux
−|u|2
1−α

]
, (9.9.30)

and the NLS equation for complex u(x, t) is given by

iut + uxx + γ|u|2u = 0, (9.9.31)

where
γ = 2/

(
1− α2

)
.

Thus, the eigenvalue problem (9.9.26) and the evolution equation (9.9.28) complete
the inverse scattering problem. The initial-value problem for u(x, t) can be solved for
a given initial condition u(x, 0). It seems clear that the significant contribution would
come from the point spectrum for large times (t → ∞). Physically, the disturbance
tends to disintegrate into a series of solitary waves. The mathematical analysis is
limited to the asymptotic solutions so that |u| → 0 as |x| → ∞, but a series of
solitary waves is expected to be the end result of the instability of wavetrains to
modulations.

In general, to date, there is no completely systematic method of determining
the linear scattering problem associated with a given nonlinear evolution equation.
However, one systematic method is the prolongation structure method, which was
introduced by Wahlquist and Estabrook (1975, 1976) using the knowledge of Lie al-
gebra. This method was found to be very useful for several nonlinear evolution equa-
tions. Dodd and Gibbon (1997) successfully developed the prolongation structure
of a higher-order KdV equation. Subsequently, several authors including Dodd and
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Fordy (1983, 1984), Fordy (1990), and Kaup (1980) used the prolongation method
for finding the scattering problem of a given nonlinear evolution equation.

Finally, we close this section by including another commutative representation
of (9.9.9), so that the theory can be extended to other nonlinear evolution equations.
It has already been demonstrated that the Schrödinger equation

Lψ = k2ψ (9.9.32)

plays a fundamental role in solving the KdV equation. It has also been seen that if
the potential u in this equation varies in time according to the KdV equation, then ψ
satisfies a linear equation:

ψt = −4ψxxx + 6uψx + 3uxψ. (9.9.33)

A necessary condition for these equations to be compatible for all λ is that u(x, t)
satisfies the KdV equation (9.9.1). This can be seen as follows.

We first transform the Schrödinger equation (9.9.32) into two first-order equa-
tions by introducing a new function φ so that

ψx = ikψ + φ and φx = −ikφ+ uψ. (9.9.34ab)

We can use (9.9.34ab) to eliminate all x-derivatives from (9.9.33), which then re-
duces to the form

ψt = 4ik3ψ + 4k2φ+ 2ikψ − uxψ + 2uφ. (9.9.35)

Using (9.9.34ab), equation (9.9.35) leads to an equation for φ in the form

φt = −4ik3φ+ 4k2uφ+ 2ikuxψ − 2ikuφ+
(
2u2 − uxx

)
ψ + uxφ. (9.9.36)

Introducing a column vector Ψ =
(ψ

φ

)
, we can reformulate the system of equations

(9.9.34ab)–(9.9.36) in a compact form,

Ψx = A(x, t;λ)Ψ and (9.9.37a)

Ψt = B(x, t;λ)Ψ, (9.9.37b)

where λ is a complex parameter and A(x, t;λ) and B(x, t;λ) are 2 × 2 matrices in
the form

A =

(
iλ 0
0 −iλ

)
+

(
0 1
u 0

)
, (9.9.38)

B = 4iλ3

(
1 0
0 −1

)
+ 4λ2

(
0 1
u 0

)
+ 2iλ

(
u 0
ux −u

)

+

(
−ux 2u

2u2 − uxx ux

)
, (9.9.39)

and A and B depend on x and t through u(x, t).
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Differentiating (9.9.37a) with respect to t and (9.9.37b) with respect to x leads
to the compatibility equation

∂A(λ)

∂t
− ∂B(λ)

∂x
+
[
A(λ), B(λ)

]
= 0. (9.9.40)

This is a new commutative representation which can be used to extend the KdV
theory to other nonlinear equations. If we consider the case where A and B are
polynomial in λ, then the left-hand side of (9.9.40) is also a polynomial in λ. Since
equation (9.9.40) is true for all values of λ, all coefficients of this polynomial equa-
tion must be identically zero. We next substitute (9.9.38) and (9.9.39) in (9.9.40) to
obtain all coefficients which vanish except for the constant term. This means that the
left-hand side of (9.9.40) reduces to the matrix(

0 0
ut − 6uux − uxxx 0

)
,

which vanishes, so that u(x, t) satisfies the KdV equation.
We illustrate the above method by examples.

Example 9.9.1 (Nonlinear Schrödinger Equation). We consider the form of the 2×2
matrix as

A =

(
iλ 0
0 −iλ

)
+

(
0 iq
ir 0

)
, (9.9.41)

where q = q(x, t) and r = r(x, t) are complex-valued functions of x and t. We
chose the matrix B(λ) so that (9.9.40) yields certain partial differential equations for
q and r. We assume the matrix B(λ) as

B = 2iλ2

(
1 0
0 −1

)
+2iλ

(
0 q
r 0

)
+

(
0 qx

−rx 0

)
− i

(
rq 0
0 −rq

)
. (9.9.42)

Substituting these matrices A and B in (9.9.40) gives a system of equations

irt + rxx + 2qr2 = 0, (9.9.43a)

iqt + qxx + 2rq2 = 0. (9.9.43b)

We next write r = q or r = −q in the above equations to obtain

irt + rxx ± 2|r|2r = 0. (9.9.44ab)

These are known as the nonlinear Schrödinger equations.

Example 9.9.2 (The KdV and Modified KdV Equations). We use the same A as
in (9.9.41) and choose B as

B = −4iλ3

(
1 0
0 −1

)
− 4iλ2

(
0 q
r 0

)
+ 2λ

(
rq −iqx
irx −rq

)

+

(
qrx − rqx iqxx + 2irq2

irxx + 2iqr2 −qrx − rqx

)
, (9.9.45)
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so that equation (9.9.40) becomes

qt + 6rqqx + qxxx = 0, (9.9.46a)

rt + 6qrrx + rxxx = 0. (9.9.46b)

We assume that q and r are real functions of x and t. When r = −1, (9.9.46a) is the
famous KdV equation.

When r = q or r = −q, equations (9.9.46a) and (9.9.46b) give

rt ± 6r2rx + rxxx = 0. (9.9.47ab)

These are the modified KdV equations.

Example 9.9.3 (The sine-Gordon Equation). We choose r = q = 1
2ux, the same

matrix A as in (9.9.41), and the matrix B as

B(λ) = (4iλ)−1

(
cosu −i sinu
i sinu − cosu

)
,

so that equation (9.9.40) leads to the sine-Gordon equation

uxt = sinu. (9.9.48)

Example 9.9.4 (The sinh-Gordon Equation). We substitute r = −q = −1
2ux, the

same matrix A as in (9.9.41), and

B(λ) = (4iλ)−1

(
coshu −i sinhu

−i sinhu − coshu

)
,

in (9.9.40) to obtain the sinh-Gordon equation

uxt = sinhu. (9.9.49)

9.10 The AKNS Method

In 1974, Ablowitz, Kaup, Newell, and Segur (AKNS) generalized the ZS scheme
so that their method can be applied to solve many other evolution equations. We
briefly outline the AKNS scheme below without all the technical details. We begin
this discussion by considering the pair of linear equations

ux = Au and (9.10.1a)

ut = Bu, (9.10.1b)

where u is an n-dimensional vector and A and B are n × n matrices. Then differ-
entiating (9.10.1a) with respect to t and (9.10.1b) with respect to x and equating the
results leads to the equation
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∂A

∂t
− ∂B

∂x
+ [A,B] = 0. (9.10.2)

This is essentially equivalent to the Lax equation (9.9.15). It turns out that, given A,
there is a simple deductive method to find a B so that (9.10.2) contains a nonlinear
evolution equation. For (9.10.2) to be effective, the operator A should have a parame-
ter which plays the role of an eigenvalue, say ζ, which satisfies the condition ζt = 0.
Further, a solution of the related nonlinear evolution equation in an infinite inter-
val can be obtained when the associated scattering problem is such that the inverse
scattering method can be carried out. Although there are many nonlinear evolutions
which satisfy (9.10.2), at this time, a complete scattering method for many of the
associated equations (9.10.1a) has not yet been successfully developed.

As an example, we consider a 2× 2 eigenvalue problem for the pair of equations

ψ1x = −iζψ1 + qψ2, (9.10.3a)

ψ2x = iζψ2 + rψ1, (9.10.3b)

that is,
ψx = Aψ, Bψ = −iζψ, (9.10.4ab)

where ψ =
(
ψ1

ψ2

)
, A =

(−iζ q

r iζ

)
, and B =

( ∂
∂x −q

r − ∂
∂x

)
. The bounded functions q(x)

and r(x), not necessarily real, are potentials, and ζ is the eigenvalue. It can easily be
shown that there is a direct link between the pair (9.10.3a), (9.10.3b) and the original
Schrödinger equation. Differentiating (9.10.3b) with respect to x gives

ψ2xx = iζψ2x + rxψ1 + rψ1x, (9.10.5)

provided that rx exists. Using (9.10.3ab), equation (9.10.5) can be simplified to ob-
tain

ψ2xx = iζψ2x + rxψ1 + r(−iζψ1 + qψ2)

= iζψ2x +
1

r
(rx − iζr)(ψ2x − iζψ2) + qrψ2.

Or equivalently,

ψ2xx −
(
rx
r

)
ψ2x −

{
qr − iζ

(
rx
r

)
− ζ2

}
ψ = 0. (9.10.6)

When r = −1, this equation reduces to the Schrödinger equation for ψ2

Lψ2 + ζ2ψ2 = 0, (9.10.7)

with q = −u and λ = ζ2. Thus the system of equations (9.10.4ab) recovers the
scattering equation required for solving the KdV equation. The choice r = −1 turns
out to be a degenerate case since, for all other evolution equations, we assume that
both q(x) and r(x) decay sufficiently rapidly as |x| → ∞. This ensures the existence
of ψ for x ∈ R.
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We close this section by adding the following comments. Both the ZS and AKNS
methods are applicable to KdV and NLS equations and to mKdV and SG equations.
Although the two methods overlap, the remarkable difference is that the ZS method
is described solely in terms of operators, whereas the AKNS method is expressed in
terms of the scattering theory.

9.11 Asymptotic Behavior of the Solution of the KdV–Burgers
Equation

The KdV–Burgers (KdVB) equation

ut + 2uux + βuxxx − νuxx = 0, (9.11.1)

where β and ν(> 0) are constants, combines nonlinearity, linear dispersion and dis-
sipation. This equation describes physical phenomena such as weak shock waves in
plasmas, propagation of waves in a liquid-filled elastic tube, and the evolution of
liquid–gas mixtures.

We consider the asymptotic behavior of the solution of the Cauchy problem for
the KdVB equation (9.11.1) with the initial condition u(x, 0) = u0(x), x ∈ R, as
t → ∞. If the initial function u0(x) decreases sufficiently rapidly at infinity, the
uniform asymptotic behavior of this Cauchy problem, as t → ∞, is given by

u(x, t) ∼ A√
t
exp

(
−x2

4t

)
+O

(
1

t

)
, (9.11.2)

with respect to ξ = |x|
2
√
t
≥ 0, where the constant A depends explicitly on u0(x). The

Cauchy problem for (9.11.1) was investigated by several authors. Bona and Schon-
bek (1985) proved the existence of traveling wave solutions of (9.11.1) and consid-
ered their limiting behavior as a → 0 or b → 0. Jeffrey and Xu (1989) found two
exact traveling wave solutions of (9.11.1). On the other hand, Avilov et al. (1987)
have investigated the step-decaying problem for the KdVB equation by numerical
methods. Their study deals with the asymptotic behavior, as t → ∞, of the solution
of the Cauchy problem for (9.11.1) with a sufficiently smooth initial condition u0(x)
tending to ±1 as |x| → ∞.

In their study of ion-acoustic waves with Landau damping, Otto and Sudan
(1971) and, in his work on weak shock waves and solitons, Ostrovsky (1976) in-
troduced a new nonlinear dispersive equation of the form

ut + u2
x + uxxx + λu+

μ

(2π)3/2

∫ ∞

−∞

sgn(x− ξ)√
|x− ξ|

uξ(ξ, t) dξ = 0, (9.11.3)

where λ and μ are nonnegative constants. This equation is now known as the Otto–
Sudan–Ostrovsky (OSO) equation, and it describes the nonlinear acoustic effects
in the mixture of a gas and liquid bubbles. This equation is a special case of the
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Whitham equation (7.8.31), and the symbol K(k) of the operator in (7.8.31) is given
by

K(k) = λ+ μ
√

|k| − ik3. (9.11.4)

Evidently, when λ = μ = 0, the OSO equation (9.11.3) reduces to the KdV
equation. On the other hand, the case μ = 0 and λ > 0 corresponds to the KdV
equation with linear dissipation. Several authors including Herman (1990), Kaup
and Newell (1978), Karpman and Maslov (1978), and Ko and Kuehl (1980) studied
the OSO equation with λ as a small positive parameter and μ = 0. They used the
theory of perturbation and the inverse scattering method to solve this equation with
only soliton initial conditions and small values of λ. However, the situation with
sufficiently general initial perturbations and finite λ seems to be unresolved. In the
case μ = 0, the asymptotic behavior, as t → ∞, of the solution of (9.11.3) has an
oscillatory character. More detailed asymptotic behavior is available in Chapter 7 of
Naumkin and Shishmarev’s book (1994).

9.12 Strongly Dispersive Nonlinear Equations and Compactons

Rosenau and Hyman (1993) first discovered a new class of solitary waves with com-
pact support, called compactons. This new class of solutions is governed by a two-
parameter family of strongly dispersive nonlinear equations, denoted by K(m,n),

ut + a
(
um

)
x
+ b

(
un

)
xxx

= 0, m > 0, 1 < n ≤ 3, (9.12.1a)

ut − a
(
um

)
x
+ b

(
un

)
xxx

= 0, m > 0, 1 < n ≤ 3, (9.12.1b)

for certain values of m and n, where a and b are positive real constants. Thus, com-
pactons are defined as solitons with compact support. In other words, they are soli-
tons with finite wavelength or solitons that are free from exponential trails or wings.
Unlike the standard KdV soliton, which narrows as the amplitude (speed) increases,
the width of a compacton is independent of the amplitude, but its speed depends on
its height. Since dispersion increases with amplitude, at high amplitudes, dispersion
is more dominant than in the KdV equation, and hence, it can more effectively coun-
terbalance the effect of nonlinear steepening. Numerous numerical experiments of
Rosenau and Hyman (1993) confirmed that, when two or more compactons collide,
they undergo a nonlinear elastic interaction according to (9.12.1a) and emerge from
the interaction with the original form unchanged.

Equation (9.12.1a) with (+a) is called the focusing branch and admits traveling
solitary-wave solutions. On the other hand, equation (9.12.1b) with (−a) is referred
to as the defocusing branch and admits solitary-wave solutions with cusps or infinite
slopes. Thus, equations (9.12.1a), (9.12.1b) represent two nonlinear models with en-
tirely different physical structures.

We follow Rosenau and Hyman (1993) to find the solution of K(2, 2) with a =
b = 1, that is, the equation

ut +
(
u2
)
x
+
(
u2
)
xxx

= 0. (9.12.2)
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Fig. 9.15 A compacton.

We seek a traveling wave solution u = u(ξ), ξ = x− ct of (9.12.2) and integrate
the resulting equation twice to obtain the following nonlinear ordinary differential
equation: (

∂u

∂ξ

)2

+
1

4
u2 − 1

3
cu+

c1
u2

= c2, (9.12.3)

where c1 and c2 are integration constants. Putting c1 = c2 = 0 leads to the solution

u(x, t) =

{
( 4c3 ) cos

2[ 14 (x− ct)] if |x− ct| ≤ 2π,

0 otherwise.
(9.12.4)

This solution is referred to as a compacton and is shown in Figure 9.15.
Although the second derivative of the compacton solution is discontinuous at its

edges, it represents a solitary wave with compact support because the third derivative
acts on u2 which has smooth derivatives everywhere including the edges. It has al-
ready been indicated that dispersion increases with amplitude, and is more dominant
at higher amplitude than the KdV soliton. Hence, it can more effectively counter-
balance the steepening effects of nonlinearity, so the result is a solitary wave with
compact support, or compacton.

In general, there are three distinct traveling wave solutions of (9.12.3). When
c1 �= 0, the solutions represent waves that can be described by elliptic functions.
When c1 = 0, there exists a singular trajectory that describes a trigonometric wave
solution with period 4π and its amplitude depends on the constant c2. For c2 = 0, the
solution u(x, t) is nonnegative and represents a series of compactons. In view of the
degeneracy of K(2, 2) at u = 0, these compactons do not interact with each other,
and therefore, can be separated.

It was also shown by Rosenau and Hyman (1993) that, for a class of general
K(m,n) equations, the compacton solution exists only for 1 < n ≤ 3, and the
singular dispersion at u = 0 plays a major role in the compactification. The upper
limit (n ≤ 3) is necessary for the existence of compacton solutions in the classical
sense.
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Fig. 9.16 The interaction of three K(2, 2) compactons with speeds c = 2, 1.5, and 1 starting
with centers at x = 10, 15, and 40. Rosenau and Hyman (1993).

Based on hundreds of numerical experiments, Rosenau and Hyman (1993) have
confirmed that, like solitons, two or more compactons physically interact with each
other, and they always remain unchanged after collision except for a slight phase
shift. Figure 9.16 exhibits the interaction of three compactons with speeds c = 2,
1.5, and 1 and their identities before and after collision.

It was shown by Oron and Rosenau (1989) that K(m,n) type equations arise
in the study of nonlinear dispersion in the formation of localized patterns in liquid
drops. In their study of a nonlinear model describing new modes of motion of the free
surface of a liquid, Ludu and Draayer (1998) demonstrated the existence of localized
multiple patterns and nonlinear oscillations which include compactons, solitons, and
cnoidal waves as traveling nonaxially symmetric shapes. Subsequently, Ludu et al.
(2000) proposed a generalized similarity analysis of nonlinear dispersive equations
to find a qualitative description of localized solutions. Their study reveals that com-
pactons fulfill both characteristics of solitons and wavelets with possible new appli-
cations to the physics of droplets, bubbles, traveling patterns, fragmentation, fission,
and inertial fusions. Dusuel et al. (1998) made an interesting analytical, numerical,
and experimental study of physical systems modeled by a nonlinear Klein–Gordon
equation with anharmonic coupling, and showed the existence of compactons. In a
real physical system, they have also investigated the existence and stability of com-
pactons and kinks consisting of a chain of identical pendulums that are nonlinearly
coupled and experience a double-well on-site potential.

In general, compacton solutions of K(m,n) equations for any m �= n are not yet
known. We closely follow the method of solution due to Rosenau and Hyman (1993)
and assume the general solution of the K(n, n) equation given by (9.12.1a) in the
form

u(x, t) = A
[
sin

{
k(x− ct)

}] 2
n−1 , (9.12.5)

or in the form
u(x, t) = A

[
cos

{
k(x− ct)

}] 2
n−1 , (9.12.6)

where A and k are constants to be determined.
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Substituting these solutions into (9.12.1a) and solving the resulting equations for
A and k yields

A =

⎧⎨
⎩

( 2nc
a(n+1) )

1
n−1 if n is even,

±( 2nc
a(n+1) )

1
n−1 if n is odd,

(9.12.7ab)

and

k = ± (n− 1)

2n

√
a

b
. (9.12.8)

Consequently, the general compacton solutions are:
(i) For even n,

u(x, t) =
[√

A sin
{
k(x− ct)

}] 2
n−1H

(
k|x− ct| − 2nπ

)
(9.12.9)

and
u(x, t) =

[√
A cos

{
k(x− ct)

}] 2
n−1H

(
k|x− ct| − nπ

)
, (9.12.10)

where H(|x| − a) = 1, for |x| ≤ a, and zero for |x| > a.
(ii) For odd n,

u(x, t) = ±
[√

A sin
{
k(x− ct)

}] 2
n−1H

(
k|x− ct| − 2nπ

)
(9.12.11)

and

u(x, t) = ±
[√

A cos
{
k(x− ct)

}] 2
n−1H

(
k|x− ct| − nπ

)
. (9.12.12)

Similarly, we seek a solution of the one-dimensional defocusing branch of
K(n, n) equation (9.12.1b) in the form

u(x, t) = A
[
sinh

{
k(x− ct)

}] 2
n−1 , (9.12.13)

or
u(x, t) = A

[
cosh

{
k(x− ct)

}] 2
n−1 , (9.12.14)

where A and k are constants to be determined.
Substituting these solutions in (9.12.1b) and solving the resulting equations for

A and k gives the solutions for the sinh-profile, where A and k are given by

A =

⎧⎨
⎩

( 2nc
a(n+1) )

1
n−1 if n is even,

±( 2nc
a(n+1) )

1
n−1 if n is odd,

(9.12.15ab)

and

k = ± (n− 1)

2n

√
a

b
. (9.12.16)

For the cosh-profile, we obtain

A =

⎧⎨
⎩

−( 2nc
a(n+1) )

1
n−1 , if n is even,

±( −2nc
a(n+1) )

1
n−1 if n is odd.

(9.12.17ab)

Consequently, the general solutions are given as follows:
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(i) For even n,

u(x, t) =
[√

|A|sinh
{
|k|(x− ct)

}] 2
n−1 (9.12.18)

and
u(x, t) = −

[√
|A|cosh

{
|k|(x− ct)

}] 2
n−1 . (9.12.19)

(ii) For odd n,

u(x, t) = ±
[√

|A|sinh
{
|k|(x− ct)

}] 2
n−1 , c > 0, (9.12.20)

and

u(x, t) = ±
[√

−|A|cosh
{
|k|(x− ct)

}] 2
n−1 , c < 0. (9.12.21)

With regard to the compactons, it has been shown by Rosenau and Hyman (1993)
and Rosenau (1997) that equations K(m,n) for m,n = 2, 3 admit a finite number
of local conservation laws. Extensive numerical experiments for m = n = 2, 3
reveal that many of these compactons have a remarkable particle-like robustness that
goes far beyond what could be expected from four local conservation laws. Probably,
there exist nonlocal conservation laws which play an important role in compacton
dynamics.

As an example of an application of compactons, we consider a vibration of an
anharmonic mass–spring system consisting of N initially equally spaced (h � 1)
mass points m. The potential part of the associated Hamiltonian is

H =

N∑
n=1

1

h
(yn+1 − yn)Pn(y), (9.12.22)

where Pn(y) = 1
N αNy

N , αN is an anharmonic parameter. For a mixed potential
P (y) = 1

2α2y
2 + 1

3α3y
3, α2 and α3 are anharmonic parameters with small α3.

For the purely quartic potential, Rosenau (1994) obtained the nonlinear Boussinesq
equation of motion in the continuum limit with yx = u, ε = 1

12h
2,

utt =
(
α3u+ α3u

2
)
xx

+ εα2uxxxx + 2εα3

[
q

(
1

2

)]
xx

, (9.12.23)

where
q(ω) = u1−ω

(
uωux

)
x
. (9.12.24)

Rosenau showed that equation (9.12.23) admits both compacton and usual soliton
solutions. For the purely quartic potential in normalized units, the equation of motion
becomes

utt =
(
u3
)
xx

+
[
u
(
u2
)
xx

]
xx
. (9.12.25)

This is clearly a purely cubic nonlinear dispersion equation and fundamentally
different from the weakly nonlinear models in that it is nonlinear in the highest-order
derivatives, 2u2uxxxx. Among other features, this equation also admits compacton
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solutions in the form
√
2c cos(x−ct). In addition, it also supports compact breathers

of the form u = Q(t)Z(x), where Q(t) satisfies the nonlinear ordinary differential
equation in the form

Q′′(t) + κ2Q3(t) = 0, (9.12.26)

where κ is a separation constant. This equation gives the periodic Jacobi elliptic
function solution

Q(t) = cn

(
κt,

1√
2

)
. (9.12.27)

The function Z(x) satisfies the equation
[
Z
(
Z2

)
xx

]
xx

+
(
Z3

)
xx

+ κ2Z = 0, (9.12.28)

which admits the following compacton solution:

Z(x) =

{√
8κ cos( 12x) if |x| ≤ π,

0 otherwise.
(9.12.29)

Although many properties of compacton solutions are not yet known, extensive nu-
merical studies indicate that a compacton’s smoothness at the edge is not informative
of its stability. These numerical experiments also show that the low-order dispersion
is unable to stabilize the compacton, which decomposes immediately into a series of
waves.

The nonlinear model equation

ut +

[
δu+

3

2
γu2 + q(ω)

]
x

+ νutxx = 0, (9.12.30)

where δ, γ, ω, and ν are constants, admits compacton solutions, and, for 2ω = νγ =
1, it has a bi-Hamiltonian structure. Rosenau (1994) also proved that the infinite se-
quence of commuting flows generates an integrable, compacton supporting variant
of the Harry Dym equation. In summary, the equation governing the motion of a
mass–spring system is a prototype of compacton generating equations. With appro-
priate scalings, the resulting nonlinear model can be applied to study the motion of
ion-acoustic waves and the flow of a two-layer liquid. This model also admits com-
pacton solutions.

We next discuss physical solid models that are inherently discrete where the lat-
tice spacing represents a fundamental physical parameter. Such discrete models ad-
mit compacton solutions, that is, soliton solutions with finite wavelength. Soliton-
type equations can be derived from such discrete models in which expansions of the
wave amplitude and the inverse pulse width normally require a scaling procedure. In
other words, the continuum limit approach produces the condition of the slowly vary-
ing wave envelope which is consistent with the effect of weak dispersion balanced
by a weak nonlinearity. As soon as we deal with compactons instead of typical soli-
tons, the continuum limit approximation can hardly be justified because higher-order
derivative terms are numerically small.
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We closely follow Kivshar (1993) to consider a one-dimensional lattice model in
which each atom interacts with its nearest neighbors by purely anharmonic forces.
If un(t) is the nondimensional displacement function of the nth atom from its equi-
librium position, and the atoms interact through quartic anharmonic potentials, the
equation of motion for the nth atom is given by

d2un

dt2
=
[
(un+1 − un)

3 + (un−1 − un)
3
]
, (9.12.31)

where nondimensional units are employed.
In the continuum limit, the particle number is treated as a continuous variable,

and the long wavelength excitation of the nonlinear model equation (9.12.31) can be
written as

vtt =
(
v3
)
xx

+ · · · , (9.12.32)

where x = av, a(= 1) is the space of the lattice, and v = (un+1−un) is assumed to
be a slowly varying function. For short wavelength excitations, the continuum limit
approximation can be applied to the wave envelope φn(x, t) defined by the relation
un = (−1)nφn(x, t) so that equation (9.12.31) takes the form

φtt + 16φ3 + 6φ
(
φ2
)
xx

+ · · · = 0. (9.12.33)

Using the method of solution due to Rosenau and Hyman (1993), equations
(9.12.32) and (9.12.33) can be solved to describe compacton solution properties.
However, these nonlinear evolution equations have higher-order dispersive terms that
can be neglected because these terms are numerically small for constant-width so-
lutions. Thus, these nonlinear discrete models seem to be natural models for the
description of compacton solutions. We assume that φn is independent of time t and
then seek standing oscillatory solutions of (9.12.31) in the form

un(t) = (−1)nφnF (t). (9.12.34)

Substituting (9.12.34) into (9.12.31) gives two separable nonlinear equations in
the form

d2F

dt2
+ aF 3 = 0, (9.12.35)

(φn+1 + φn)
3 + (φn−1 + φn)

3 = aφn, (9.12.36)

where a is a separation constant. Clearly, equation (9.12.35) admits the Jacobi elliptic
function solution in the form

F (t) = Acn(ωt, k), (9.12.37)

where ω =
√
aA, A is the amplitude, and k = 1√

2
.

Assuming a quasi-linear solution with finite wavelength, the method of Rosenau
and Hyman (1993) can be used to seek a solution of (9.12.36) in the form
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φn =

{
cos{θ(n− n0)} if |(n− n0)θ| < π

2 ,

0 otherwise.
(9.12.38)

Substituting (9.12.38) into (9.12.37) gives two relations,

tan2
(
θ

2

)
=

1

3
, that is, θ =

π

3
, and a =

27

4
. (9.12.39)

Consequently, the general compacton solution of the lattice equation (9.12.31) is
given by

un(t) =

{
(−1)nA cos{θ(n− n0)}cn(ωt, 1√

2
) if |n− n0| < 3

2 ,

0 otherwise.
(9.12.40)

If the amplitude of the compacton is taken as an independent parameter, the fre-
quency ω of the compacton can be defined in terms of amplitude A by

ω2 = aA2. (9.12.41)

This is identified as the nonlinear dispersion relation.
It is evident that the arbitrary parameter n0 represents the center of the com-

pacton (9.12.40) so the n0 = 0 corresponds to the compacton center at the particle
site (n = 0). The corresponding compacton pattern is shown in Figure 1(a) given
by Kivshar (1993). With only three lattice spacings, the compacton mode involves
only three neighboring particles oscillating with opposite phases. At n0 = 0, the
solution (9.12.40) can be rewritten as

un(t) = A

(
. . . , 0,−1

2
, 1,−1

2
, 0, . . .

)
cn

(
ωt,

1√
2

)
. (9.12.42)

This describes the mode pattern through the amplitude of the oscillating particles.
On the other hand, when the compacton is centered just between the neighboring
particle sites, that is, at n0 = 1

2 , only two neighboring particles oscillate and the
other remain at rest as shown in Figure 1(b) by Kivshar (1993). The mode pattern
solution is obtained in the form

un(t) =

√
3

2
A(. . . , 0,−1, 1, 0, . . .)cn

(
ωt,

1√
2

)
, (9.12.43)

where
√
3
2 A is used as a renormalized amplitude of this mode in order to conserve

the total energy. Indeed, solution (9.12.40) describes an infinite family of different
localized modes that are characterized by a particular value of n0 ∈ (0, 12 ). Such a
compacton solution has been discovered for a chain of particles with quartic inter-
atomic potentials, and can naturally be used to explain the existence of new intrin-
sic localized modes in anharmonic crystals. Indeed, in their pioneering work, Siev-
ers and Takeno (1988) and Page (1990) discovered these new modes based on the
rotating-wave approximation (RWA) in which only a single frequency component
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was included in the time dependence. More precisely, the model is described by the
equation

mẅn = k2(wn+1+wn−1−2wn)+k4
[
(wn+1−wn)

3+(wn−1−wn)
3
]
, (9.12.44)

where k2 and k4 are the nearest neighbor harmonic and anharmonic force constants.
Using the RWA approximation with only the first harmonic contribution, Sievers and
Takeno (1988) obtained what is called the odd-parity s-mode with the displacement
function

wn(t) = A

(
. . . , 0,−1

2
, 1,−1

2
, 0, . . .

)
cosΩt, (9.12.45)

where A is the amplitude and Ω is the frequency of the mode above the cutoff fre-
quency Ω2

m = (4k2/m) of the linear spectrum band. The solution (9.12.45) is, in-
deed, the approximate solution of (9.12.44) in the limit as (k4A2/k2) → ∞. Subse-
quently, Page (1990) discovered another type of intrinsic localized mode, the even-
parity p-mode with the displacement function

wn(t) = A(. . . , 0,−1, 1, 0, . . .) cosΩt. (9.12.46)

In the above limiting case k4A
2  k2, the contribution of the nonlinear interac-

tion between particles in the model (9.12.44) is much more significant than that of a
linear coupling term, so that this model can be treated as model (9.12.31) for the dis-
placement function un = wn

√
k4/m which is perturbed by a small linear coupling

term. That is why the approximate solutions (9.12.45) and (9.12.46) are very close
to the exact solutions (9.12.42) and (9.12.43), respectively. It is pertinent to point out
another striking feature of the localized modes in the model (9.12.44) compared to
the compacton solution (9.12.40) for the purely anharmonic lattice model described
by (9.12.31). Based on a perturbation theory, Sandusky et al. (1992) have demon-
strated that the odd-parity s-mode is unstable against certain velocity and displace-
ment perturbations, whereas the even-parity p-mode is absolutely stable against sim-
ilar perturbations. For positive anharmonicity, both of these modes have amplitude-
dependent frequencies above the maximum phonon frequency. Furthermore, the un-
stable odd-parity mode is observed to evolve into several different kinds of mov-
ing localized modes. For certain perturbations the odd-parity mode evolves into a
mode which smoothly travels from site to site with a constant speed. These travel-
ing modes exist over a wide range of anharmonicity and can become trapped as the
anharmonicity increases. As they travel, these modes have a nonconstant phase dif-
ference between adjacent relative displacements. Based on the phenomenon of the
Peierls–Nabarro potential to the localized mode, Claude et al. (1993) explained this
instability of the s-mode. On the other hand, the existence of the exact compacton
solution (9.12.40) with arbitrary n0 suggests that the Peierls–Nabarro potential is
absent for the compactons and they, therefore, move freely in the lattice provided the
interatomic coupling is purely anharmonic in nature.

As has been demonstrated by Sievers and Takeno (1988), for sufficiently strong
anharmonicity, stable odd-parity localized excitations are possible at any lattice site
with a frequency given by
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ω2 ≈ 3

m

(
k2 +

27

16
k4A

2

)
, (9.12.47)

where m is the mass of the atom and A is the amplitude of oscillations of the cen-
tral atom in the mode pattern (9.12.45). The above analysis also reveals that anhar-
monicity is fully responsible for the existence of the new intrinsic localized modes
in anharmonic quantum crystals at finite temperature. Furthermore, the general com-
pacton solution can describe well two new intrinsic localized modes obtained in the
framework of the RWA approximation. Indeed, the compacton (9.12.40) gives the
s-mode pattern when it is centered at the particle site, and it reproduces the p-mode
pattern when the compacton (9.12.40) is centered in between the nearest particle
sites.

We close this section by stating higher dimensional focusing branches (+a) and
defocusing branches (−a) of K(n, n) equations:

ut + a
(
un

)
x
+ b

(
un

)
xxx

+ c
(
un

)
yyy

= 0, (9.12.48)

ut + a
(
un

)
x
+ b

(
un

)
xxx

+ c
(
un

)
yyy

+ d
(
un

)
zzz

= 0, (9.12.49)

ut − a
(
un

)
x
+ b

(
un

)
xxx

+ c
(
un

)
yyy

= 0, (9.12.50)

ut − a
(
un

)
x
+ b

(
un

)
xxx

+ c
(
un

)
yyy

+ d
(
un

)
zzz

= 0, (9.12.51)

where n > 1 and a > 0.
For methods of solution of these equations, the reader is referred to Rosenau and

Hyman (1993) and Wazwaz (2002).

9.13 The Camassa–Holm (CH) and Degasperis–Procesi (DP)
Nonlinear Model Equations

From a physical point of view, it is evident that nonlinearity produces the steepening
effects which are counterbalanced by the smoothing effects of dispersion. These ef-
fects play a major role in wave peaking and breaking and other physical features of
wave phenomena including a variety of weakly singular patterns. In order to under-
stand the major role of these effects, several strongly nonlinear and dispersive models
have been developed without a full resolution of the problems, despite over 150 years
of progress. Recently, Camassa and Holm (1993) and Camassa et al. (1994) first de-
veloped a new, strongly nonlinear, completely integrable model by using asymptotic
expansions of the Euler equations for an inviscid incompressible fluid flow in the
shallow water regime. Their model is governed by the nonlinear dispersive equation

ut − utxx + 3uux = 2uxuxx + uuxxx, x ∈ R, t > 0, (9.13.1)

where u(x, t) is the free surface elevation over a flat rigid bottom. In fact, Fokas and
Fuchssteiner (1981) derived (9.13.1) much earlier as an abstract bi-Hamiltonian par-
tial differential equation with infinitely many conservation laws (also see McKean
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Fig. 9.17 A peakon, or singular solution.

2003). On the other hand, Johnson (2002) gave an alternative derivation of the CH
model equation. In fact, Camassa and Holm discovered that their equation is formally
integrable in the sense that there exists a Lax pair. Further, the CH model equation
has solitary wave solutions which retain their shape and velocity after nonlinear in-
teraction with waves of the same kind, and they are solitons. The most fundamental
feature of the CH equation is that it has not only solutions that are global in time but
also possesses wave breaking (singular) solutions. In other words, the CH equation
has smooth solutions that develop singularities in finite time (or solutions blow-up in
finite time). It can be shown that the regular peakon solutions of the CH equation are
given by

u(x, t) = c exp
(
−|x− ct|

)
, (9.13.2)

where c is the velocity of the wave. These are stable solutions (see Constantin and
Strauss 2000), and are not classical solutions because they have a peak at their
crests and are called weak solutions. These solutions are called peakons, as shown
in Figure 9.17. Indeed, the CH solitary waves lead to breaking, the solution remains
bounded but its slope becomes unbounded in finite time (see Constantin and Escher
1998a, 1998b, 1998c). It has recently been shown that the CH equation is locally
well-posed in the Sobolev space Hs(R) for s > 3

2 , with solutions depending contin-
uously on initial data, and has global conservative solutions in H1(R).

The peakons have to be understood as weak solutions, as it is suitable to rewrite
the CH equation (9.13.1) in the nonlocal conservation law form

(ut + uux) + ∂x
(
1− ∂2

x

)−1
(
u2 +

1

2
u2
x

)
= 0. (9.13.3)

Several authors including Dullin et al. (2003) dealt with the traveling wave solu-
tions of a generalized version of the CH equation and found its solutions in an im-
plicit form. Qiao and Zhang (2006) also discussed all possible explicit solutions of
the CH equation (9.13.1) with the boundary condition u → A = const. as |x| → ∞.
When A = 0, they found the regular peakon solutions, and, when A �= 0, both
new peaked solitons and a new kind of smooth solitons that can be expressed in
terms of trigonometric and hyperbolic functions. Using the traveling wave solution
as u(x, t) = η(ξ), ξ = x − ct, with c being the wave velocity, and substituting it
in (9.13.1) yields

(η − c)
(
η − η′′

)′
+ 2η′

(
η − η′′

)
= 0, (9.13.4)

where η′ = dη
dξ .

The CH equation (9.13.1) has peakon solution of the form

u(x, t) = η(ξ) = c exp
(
−|x− ct− ξ0|

)
,
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where ξ0 = (x0 − ct0), η(ξ0) = c, η(±∞) = 0, η′(ξ0−) = c, η′(ξ0+) = −c,
η′(ξ0−) and η′(ξ0+) denote the left-hand derivative and the right-hand derivative of
η at ξ0, respectively.

It can be verified that the CH equation (9.13.1) has the weak traveling wave
solution

u(x, t) = c exp
(
−|x− ct− ξ0|

)
− sinh

(
|x− ct− ξ0|

)
, (9.13.5)

where d and ξ0 are arbitrary real constants.
In particular, when A = 0, d = 0, and ξ0 = 0, (9.13.5) reduces to the regular

peakon solution (9.13.2) that was originally found by Camassa et al. (1994).
When A �= 0, both new peaked solitons and a new kind of smooth solitons which

can be expressed in terms of trigonometric and hyperbolic functions emerge.
On the other hand, Degasperis and Procesi (1999) discovered a new nonlinear

dispersive equation, known as the DP equation, in the form

ut − uxxt + 4uux = 3uxuxx + uuxxx, x ∈ R, t > 0. (9.13.6)

Both CH and DP equations represent models for the propagation of nonlinear shallow
water waves which capture the essential features of wave breaking phenomena. The
solution of the DP equation is similar to that the CH equation. In particular, their
solutions are singular, leading to wave breaking, that is, they are bounded, but their
slopes become unbounded in finite time. Escher et al. (2006) examined weak global
solutions and the blow-up feature of the DP equation. The asymptotic analysis and
numerical simulations confirmed that the DP equation admits smooth solitons and
cusp solitons.

Vakhnenko and Parkes (2004) discussed periodic and solitary-wave solutions of
the DP equation, and Lenells (2005) investigated the traveling solitary wave solutions
of the DP equation. On the other hand, Zhang and Qiao (2007) studied cusp soliton
and smooth soliton solutions of the DP equation (9.13.6) with the non-homogeneous
boundary conditions u(x, t) → A �= 0 as |x| → ∞. They also found by direct cal-
culation that the DP equation (9.13.6) admits a new stationary cusp soliton solution
in the form

u(x, t) =
{
1− exp

(
−2|x|

)} 1
2 ∈ W 1,1

loc , (9.13.7)

for any x �= 0.
If u ∈ H1, the DP equation (9.13.6) can equivalently be expressed into the fol-

lowing nonlocal conservation law form

L(u) = ut + uux + ∂x
(
1− ∂2

x

)−1
(
3

2
u2

)
= 0. (9.13.8)

However, if u /∈ H1, (9.13.8) is no longer equivalent to the DP equation (9.13.6).
The cusp soliton solution does not satisfy (9.13.8) because L(u) = sgnx exp(−|x|).
This means that it is impossible to find the cusp soliton solution of the DP equation
(9.13.6) through its nonlocal conservation form (9.13.8).
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The DP equation has not only peakon solitons (9.13.2), but also a shock peakon
solution in the form

u(x, t) = − 1

(t+ k)
sgn(x)e−|x|. (9.13.9)

This represents a significantly different solution from that of the CH equation.
The shock-peakon solutions (see Lundmark 2007) can be observed by substi-

tuting (x, t) → (εx, εt) to (9.13.6) and letting ε → 0 so that it yields the inviscid
derivative Burgers equation as

(ut + uux)xx = 0, (9.13.10)

which produces shock waves.
On the other hand, the celebrated KdV equation is an integrable model for non-

linear shallow water waves and the dispersive effect incorporated into the KdV model
prevents breaking. In contrast to the KdV model, the CH and DP model equations
capture the essential features of wave breaking. But they do not shed light on the
breaking process or what happens after breaking which are the most fundamental
features of water waves for which there appears to be no satisfactory mathematical,
physical, or computational theory for a long period of time.

In recent years, Holm and Staley (2003) investigated the following family of
(1 + 1)-dimensional nonlinear viscous equation for the fluid velocity u(x, t) in the
form

mt + umx + buxm = νmxx, (9.13.11)

where u = g ∗m is the convolution defined by

u(x) =

∫
R

g(x− ξ)m(ξ) dξ, (9.13.12)

which relates velocity u to momentum density m with the kernel g(x) over R. The
kernel g(x) is chosen to be the Green’s function for the Helmholtz operator (1− ∂2

x)
on the line, that is, g(x) = 1

2 exp(−|x|). This means that m = (u−uxx). The family
of equations (9.13.11) is characterized by the kernel g(x) and the real nondimen-
sional parameter b which is the ratio of the stretching term (buxm) to the convective
term (umx) in (9.13.11). The parameter b is also the number of covariant dimensions
associated with m, and ν (> 0) is the viscosity coefficient associated with m. It is to
be noted that the kernel g(x) determines the traveling wave shape and length scale
for equation (9.13.11), whereas the constant b represents a balance (or bifurcation)
parameter for the nonlinear solution. The quadrative terms in (9.13.11) describe the
balance in fluid convection between nonlinear transport and amplification due to b-
dimensional stretching term. In a recent work on soliton dynamics, it is shown that
equation (9.13.11) for ν = 0 and b �= −1 is included in the family of shallow wa-
ter equations at quadratic order accuracy that are asymptotically equivalent under
Kodama transformations (see Dullin et al. 2003).

In the absence of viscosity (ν = 0), equation (9.13.11) reduces to (1 + 1)-
dimensional b-family equations in the form
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mt + umx + bmux = 0, u = g ∗m. (9.13.13)

Using the method of asymptotic integrability, Degasperis and Procesi (1999) showed
that equation (9.13.13) cannot be completely integrable unless b = 2 or b = 3.
When b = 2, equation (9.13.13) becomes the CH equation (9.13.1). When b = 3,
equation (9.13.13) reduces to the DP equation (9.13.6). It is shown by Dullin et al.
(2003) that the DP equation can be derived from the shallow water elevation equation
by an appropriate Kodama transformation. Lundmark and Szmigielski (2003) used
the universe scattering method for finding n-peakon solutions of the DP equation,
and Holm and Staley (2003) used numerical method to study stability of solitons
and peakons. Recently, Gui et al. (2008) investigated the local well-posedness for
the peakon b-family of equation (9.13.13) that includes both the CH and the DP
equations as special cases and found the precise blow-up feature of strong solutions
of (9.13.13) with certain initial conditions.

Among the singular entities, the peakon, a soliton with a finite discontinuity in
gradients at its crests, is perhaps the weakest nonanalytic solution ever observed. The
peakon solutions have been known for some time (see Fuchssteiner 1981). Camassa
and Holm (1993) proved the integrability of equation

ut − uxxt = bux + 3uux −
(
uuxx +

1

2
u2
x

)
x

. (9.13.14)

Even if b = 0 in (9.13.14), it admits peakon solutions u(x, t) = c exp(−|x+ ct|)
which are obtained as a solution of the equation

(c− u)
(
u2
ξ − u2

)
= 0, ξ = x+ ct. (9.13.15)

If b �= 0, equation (9.13.14) yields soliton solutions which are analytic functions.
Another nonlinear model due to Camassa and Holm (1993) is described by the

equation

(u ± uxx)t = bux +
1

2

[(
u2 ± u2

x

)
(u ± uxx)

]
x
. (9.13.16)

This equation also admits peakon solutions if b > 0. When b < 0, ordinary solitons
emerge, but if b = 0, no solitons are possible. For a detailed discussion of this
equation (9.13.16) and its peakon solutions, the reader is referred to Rosenau (1997).

It is important to note that the singular solutions of the Camassa–Holm equation
look very similar to Stokes’ wave of extreme height, but they only appear in the rest
frame of reference. This equation is not Galilean invariant.

Another generalized version of the Camassa–Holm equation is

ut − uxxt + 3uux + 2κux = 2uxuxx + uuxxx, (9.13.17)

where κ is a real constant. It has many conservation laws and it has peakon solu-
tion when κ = 0; and its solitary wave solution is stable for κ > 0. The local
well-posedness, global existence, blow-up phenomena, and the well-posedness of
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global weak solutions of (9.13.17) have been discussed by many authors including
Constantin and Escher (1998a, 1998b, 1998c), and Constantin and McKean (1999).
Bressan and Constantin (2007) obtained the sharpest results for equation (9.13.17)
for the global existence and blow-up solutions. Parker (2004, 2005a, 2005b) and
Ohta et al. (2008) constructed soliton solutions of equation (9.13.17).

For κ �= 0, the soliton solution of (9.13.17) for the initial value problem is repre-
sented graphically by Camassa and Holm (1993). Indeed, the solution for the Gaus-
sian initial condition breaks up into a series of ordered solitons as time progresses.
Thus, the soliton train eventually wraps around the periodic domain so that the lead-
ing solitons overtake the slower emergent solitons from behind after interaction that
causes phase shifts. Hence, the CH equation (9.13.17) represents a model of unidi-
rectional propagation of shallow water waves over a flat bottom. It also arises as a
model equation for the axially symmetric waves in a hyperelastic rod. The analysis of
the CH equation has provided a challenge and a source of inspiration for many new
developments in nonlinear water waves, integrable systems, asymptotics, geometry
and Lie groups.

Camassa and Holm (1993) discovered the peakon solitary traveling wave solution
of (9.13.17) for nonlinear shallow water waves in the form

u(x, t) = c exp

[
−
(
|x− ct|

α

)]
, (9.13.18)

where the fluid velocity u(x, t) is a function of position x in R and time t. The
peakon solitary wave moves with a velocity equal to its maximum height, at which it
has a sharp peak with jump in derivative. So, peakons can be obtained after solving
the initial value problem for a partial differential equation derived by an asymptotic
expansion of the Euler equations using the small parameters of shallow water wave
dynamics. In fact, peakons are nonanalytic solitons that are the superposition of N -
soliton solutions as

u(x, t) =
1

2

N∑
n=1

pn(t) exp
[
−
∣∣x− qn(t)

∣∣/α], (9.13.19)

where the discrete sets {pn(t)} and {qn(t)} of peakon parameters satisfy the canoni-
cal Hamiltonian equations. They also arise in the absense of linear dispersion (κ = 0)
in (9.13.17). Each term in (9.13.19) is a soliton with a sharp peak at its maximum.
Expressed using its momentum m = (1 − α2∂2

x)u, the peakon velocity solution
(9.13.19) of dispersionless CH equation becomes a sum of delta functions, supported
on a set of points traveling on the real axis. In other words, the peakon velocity
(9.13.19) implies

m(x, t) = α
N∑

n=1

pn(t)δ
(
x− qn(t)

)
, (9.13.20)

due to the fact that (1−α2∂2
x) exp(−

|x|
α ) = 2αδ(x). These solutions satisfy (9.13.17)

for the zero dispersion parameter (κ = 0).
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Substituting the peakon solution (9.13.19) and (9.13.20) into the dispersionless
CH equation

mt + umx + 2mux = 0, m = u− α2uxx, (9.13.21)

gives the celebrated Hamilton’s canonical equations for the discrete set of peakon
parameters pn(t) and qn(t) as

q̇n(t) =
∂HN

∂pn
and ṗn(t) = −∂HN

∂qn
, (9.13.22)

where the Hamiltonian HN is given by

HN =
1

4

N∑
n,m=1

pnpm exp

(
−|qn − qm|

α

)
, (9.13.23)

n,m = 1, 2, . . . , N .
In their recent work of weakly nonlinear analysis combined with the variational

principle for Euler equations, Holm and Staley (2003) made a two-dimensional gen-
eralization of the dispersionless CH equation (9.13.21). This generalization is known
as the Euler–Poincaré (EP) equation for the Lagrangian consisting of the kinetic en-
ergy

K =
1

2

∫ [
|u|2 + α2(divu)2

]
dx dy, (9.13.24)

where u = (u, v) is a two-dimensional fluid velocity vector. They have shown that
evolution generated by the kinetic energy in Hamilton’s principle results in geodesic
motion with respect to the velocity norm ‖u‖ which is provided by the Lagrangian
of the kinetic energy. The EP equation produced by any choice of kinetic energy
norm without imposing incompressibility is called “EPDiff ” for the Euler–Poincaré
equation for geodesic motion on the diffeomorphisms. Thus, the EPDiff equation
given by Holm and Staley (2003) is

(
∂

∂t
+ u · ∇

)
m+∇uT ·m+m(divu) = 0, (9.13.25)

where m = δK
δu is the momentum density, K = 1

2‖u‖2 is the kinetic energy which
defines a norm in the fluid velocity ‖u‖. Clearly, this equation has no contribution
from either the pressure, or the potential energy. However, this equation conserves
the velocity norm ‖u‖ given by the kinetic energy. In fact, its evolution describes
geodesic motion on the diffeomorphisms with respect to this norm. There is an alter-
native way of expressing the EPDiff equation (9.13.25) in either two or three dimen-
sions as

∂m

∂t
− u× curlm+∇(u ·m) +m(divu) = 0. (9.13.26)

Remarkably, all three differential operators—gradient, divergence, and curl—are
present in this form of EPDiff equation. For the kinetic energy Lagrangian K given
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by (9.13.24) which is a norm for an irrotational flow (curlu = 0), (9.13.25) is the
EPDiff equation with the momentum m = δK/δu = u− α2∇(divu).

It is important to point out that the EPDiff equation (9.13.25) has many other
interpretations beyond applications in fluid flows. However, the stability problem for
EPDiff singular momentum solutions has not yet been solved, even through the sta-
bility of the peakon in one dimension was proved by Constantin and Strauss (2000).

On the other hand, Degasperis and Procesi (1999) derived another generalized
form of the shallow water model equation

ut − uxxt + 2κux + 4uux = 3uxuxx + uuxxx, (9.13.27)

Like (9.13.17), Degasperis et al. (2002) proved that (9.13.27) is also completely inte-
grable and has the Lax pair formulation. It admits an infinite number of conservation
laws and its solitary waves interact like solitons (see Matsuno 2005a, 2005b).

Recently, Constantin and Lannes (2009) derived a generalized version of equa-
tions (9.13.17) and (9.13.18) in the form

ut − ux +
3

2
εuux + δ(αuxxx + βuxxt) = εδ(auxuxx + buuxxx), (9.13.28)

where ε and δ are defined by (9.3.2ab), α, β, a, and b satisfy certain conditions.
They also proved the large time well-posedness on a time scale O(|ε|−1) provided
the initial value u0 belongs to Hs for s > 5

2 . They also discussed the wave breaking
phenomena. Using suitable transformations, equation (9.13.28) can be transformed
into the form

ut − uxxt + 2κux + αuux = auxuxx + buuxxx, (9.13.29)

where κ, α, a, and b are constants. Obviously, (9.13.29) is a generalization of both
equations (9.13.17) and (9.13.27). The major difference between (9.13.29) for the
case a �= 2b and the CH equation (9.13.17) is that equation (9.13.29) does not have
the conservation law

I =

∫
R

(
u2 + u2

x

)
dx (9.13.30)

which plays a major in the investigation of the CH equation (9.13.17). Recently, Lai
and Wu (2011) investigated local existence and uniqueness of solution for the gen-
eralized equation (9.13.29). They also proved the local well-posedness of solutions
of (9.13.29) in the Sobolev space Hs(R) for s > 3

2 .
We close this discussion by simply stating two other strongly nonlinear models,

the nonlinear shallow water model, and the Harry Dym equation (see Kruskal 1975,
Leo et al. 1983),

ut =
(
u− 1

2

)
xxx

, (9.13.31)

which arises as a generalization of the class of isospectral flows of the Schrödinger
operator. They lead to essentially new scattering problems, which have not yet been
fully explored. There is another version of Harry Dym equation,

ut =
1

2

(
D3 − 4D

)
u− 1

2 , D ≡ ∂

∂x
, (9.13.32)

with an extra transport term.
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A recent literature search also suggests that there is a class of hierarchies con-
taining the KdV hierarchy that are obtained from the isospectral problem

D2 + k2u(x)− q(x). (9.13.33)

These include the KdV flows, the negative KdV flows, the Harry Dym equation, and
the Camassa–Holm equation (see Qiao 2003).

Almost all studies of steady and unsteady water waves are based on the assump-
tion that flows are irrotational (that is, curlu = 0). In general, this is a good assump-
tion. However, vorticity is generated at the free surface by wind stress or current, or
by friction at the rigid bottom boundary. In fact, a very thin vorticity (or shear) layer
is produced at the free surface or at the bottom boundary. In recent years, consider-
able attention has been given to study water waves by assuming for simplicity that
vorticity is constant in the fluid flows. Simmen and Saffman (1985) first investigated
numerical solutions for periodic waves in deep water with constant vorticity. Their
study showed that the waves have either a limiting configuration with a 120◦ angle
at the crests or a trapped bubble at their troughs.

Following Simmen and Saffman (1985), we consider a two-dimensional periodic
waves in an inviscid incompressible fluid of infinite depth. The flow is assumed to be
rotational and described by a constant vorticity, Ω. We take a frame of reference with
the x-axis along the mean water level and in which the flow is steady with gravity is
in the negative y-axis. We assume that the steady flow is symmetric with respect to
the y-axis. The flow can be described in terms of a stream function ψ(x, y) satisfying

∇2ψ = Ω (9.13.34)

in the flow domain.
We reduce the problem to one governed by the Laplace equation by subtracting

a particular solution of (9.13.34). Thus, if we write

ψ = Ψ +
Ω

2
y2 − cy, (9.13.35)

then
∇2Ψ = 0 (9.13.36)

with the requirement that Ψ → 0 as y → −∞. This defines the quantity c in (9.13.35)
uniquely and c is referred to as the wave velocity. In terms of the dimensionless
variables by choosing λ as the unit length and c as unit velocity, the dimensionless
equation (9.13.35) becomes

ψ = Ψ +
ω

2
y2 − y, (9.13.37)

where ω is the dimensionless vorticity defined by

ω =

(
Ωλ

c

)
. (9.13.38)
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The function w(z) = u− iv = Ψy + iΨx is an analytic function of z = x+ iy, and
the fluid velocity vector is (u+ ωy − 1, v). The function w(z) vanishes at infinity.

Vanden-Broeck’s (1996a, 1996b) numerical analysis first confirmed the results
of Simmen and Saffman (1985). He then found that there are solution branches that
bifurcate from the uniform shear flow (u, v) = (0, 0). As we move along the solution
branches, the waves ultimately attain limiting configurations with a 120◦ angle at the
crests or a trapped bubble at their troughs. Furthermore, new families of solutions
can also be constructed.

Several authors including Teles da Silva and Peregrine (1998), Pullin and
Grimshaw (1988), and Vanden-Broeck (1994, 1995) obtained numerical solutions
for solitary waves with constant vorticity. They formulated the problem in terms of a
stream function ψ such that

∇2ψ = −ω, (9.13.39)

where the flow is rotational and characterized by a constant vorticity Ω so that ω =
(Ωh/c) is the nondimensional vorticity, h is the depth of the fluid, and c is the wave
velocity. These authors reduced the problem to the Laplace equation ∇2Ψ = 0 by
subtracting a particular solution of (9.13.39), that is, ψ = Ψ − {ω

2 y
2 − (1 + ω)y}.

Thus, w(z) = u − iv = Ψy + iΨx is an analytic function of z = x + iy, where the
fluid velocity vector is {u− ω(y − 1) + 1, v}. They require the kinematic condition
that v = 0 on the bottom by reflecting the flow in the bottom. The function w(z)
vanishes at infinity.

This problem is then numerically investigated using the flow variables non-
dimensional by choosing h as the unit length and c as the unit velocity. The flow
is then described by the above parameter ω, and two other parameters

G =

(
gh

c2

)
and a =

η

h
, (9.13.40)

where η is the elevation of the wave crests above the level of the free surface. Clearly,
G is the nondimensional gravitational parameter, and a is the amplitude parameter.
When ω = 0, the flow becomes irrotational. The above authors numerically exam-
ined solutions for various values of the parameters ω, G, and a. Their solitary wave
solutions are solution branches that bifurcate from the trivial solution (u = v = 0
and a = 0) at the critical values G = 1 + ω which is obtained by Benjamin (1962).
He studied asymptotic solutions for solitary waves of small amplitude. His analysis
showed that, for each value of ω, there is a one-parameter family of solutions that
bifurcates from the uniform shear flow at the critical value G = 1 + ω. He also
found an asymptotic solution for small values of the parameter a and obtained the
following relation between G, ω, and a:

G = 1 + ω − a

(
1 + ω +

ω2

3

)
. (9.13.41)

Vanden-Broeck (1994, 1995) and others generalized Benjamin’s results for waves
of finite amplitude. They obtained some solution branches which are not associated
with Benjamin’s solutions and have shown that their numerical values agree with
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(9.13.41) as a → 0. As they progress along the solution branches, there exists a
critical value ωc ≈ −0.32 of ω so that different limiting configurations occur for
ω > ωc and ω < ωc. For ω < ωc, they found that the solution branches which
bifurcate from a uniform shear flow at the critical value G = 1 + ω do not have
limiting configuration with 120◦ angle at the crests. In the limit as G → 0, the
solution branches eventually tend to closed regions of constant vorticity in contact
with the bottom boundary if G is allowed to become negative. For ω > ωc, the
solution branches that bifurcate from a uniform shear flow at the critical values G =
1 + ω have limiting configuration with 120◦ angle at their crests (see Teles Da Silva
and Peregrine 1988 and Pullin and Grimshaw 1988).

As a concluding remark, it is necessary to point out that the boundary integral
equation method is used by Vanden-Broeck (1996a, 1996b) to compute periodic
waves with constant vorticity and to find the solution in the limit as G → 0. This
computational results reveal that there are solution branches that tend to configura-
tions with a closed region of fluid in rigid body rotation as G → 0. Further, there are
solitary waves with circular closed regions at their crests. Since the solitary waves
can be considered as the limit of periodic waves as (λ/h) → ∞, Vanden-Broeck’s
(1996a, 1996b) numerical analysis strongly suggest that configurations with circular
regions at the wave crests are a general feature of waves in water of finite depth.

9.14 Exercises

1. Show that (xu+ 3tu2) is a conserved density for the KdV equation (9.7.1).
2. Find three conservation laws for the mKdV equation (Miura et al. 1968).

ut − 6u2ux + uxxx = 0, x ∈ R,

which involve u, u2, and u4, respectively.
3. Show that the three conservation laws for the BBM equation

ut − uux − uxxt = 0

are

(i) ut −
(
uxt +

1

2
u2

)
x

= 0,

(ii)
1

2

(
u2 + u2

x

)
t
−
(
uuxt +

1

3
u3

)
x

= 0,

and

(iii)

(
1

3
u3

)
t

+

(
u2
t − u2

xt − u2uxt −
1

4
u4

)
x

= 0.

4. Show that the mKdV equation

ut + 6u2ux + uxxx = 0
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is invariant under the transformation

x̃ = ax, t̃ = a3t, ũ = a−1u (a �= 0).

Hence introduce u(x, t) = t−1/3f(xt−1/3) to show that f(ξ) satisfies the non-
linear ordinary differential equation

f ′′ − 1

3
ξf + 2f3 = 0, ξ = xt−1/3,

provided that f → 0 at infinity.
5. Investigate a similarity solution of the cylindrical KdV equation

2ut +
1

t
u− 3uux +

1

3
uxxx = 0

in the form u(x, t) = −1
3 (

2
t2 )

1
3 f{x(2t)−1/3}. Show that v(ξ) satisfies the equa-

tion
v′′ − ξv + v3 = 0,

where f = v2 and ξ = x(2t)−1/3.

6. Show that the NLS equation

iut + uxx + γu|u|2 = 0,

where γ is a real constant, is invariant under each of the group transformations

(i) x̃ = ax, t̃ = a2t, ũ = a−1u (a �= 0),

(ii) x̃ = x+ a, t̃ = t, ũ = u.

Show that a similarity solution of the form u(x, t) = tpf(ξ), ξ = xtq exists for
suitable values of p and q. Hence, find the equation for f(ξ).

7. Show that the Kadomtsev–Petviashvili equation (Freeman 1980)

(ut − 6uux + uxxx)x + 3uyy = 0

has the soliton solution

u(x, y, t) = −1

2
k2 sech2

[
1

2
(kx+ �y − ωt)

]
,

where ω = k3 + (3�2/k).
8. Apply the inverse scattering transform method to solve the initial-value prob-

lem for the KdV equation (9.7.1) with u(x, 0) = 2 sech2 x. Hence, determine
the time development of the solution from the above initial data by numerical
integration with a program given by Crandall (1991).
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9. Use the Bäcklund transformations

vx = u− v2 and vt = −uxx + 2(uvx + uxv)

to show that u satisfies the KdV equation

ut − 6uux + uxxx = 0,

and that v satisfies the mKdV equation

vt − 6v2vx + vxxx = 0.

10. Apply the Bäcklund transformations

vx = − 1

2ν
(uv) and vt =

v

4ν

(
u2 − 2vux

)

to show that u and v satisfy the Burgers and diffusion equations

ut + uux = νuxx and vt = νuxx.

11. Show that the Kadomtsev and Petviashivili (1970) equation

(ut − 6uux + uxxx)x + 3uyy = 0

can be derived by selecting the Lax pair

L = − ∂2

∂x2
+

∂

∂y
+ u and M = −4

∂3

∂x3
+ 6u

∂

∂x
+ 3ux + 3

∫ x

uy dx.

12. Show that the operator M for the KdV equation is

M = −4
∂3

∂x3
+ 6u

∂

∂x
+ 3

∂u

∂x
.

13. Using Mathematica, or otherwise, show that the Lax equation (9.9.6) with

L =
∂3

∂x3
+ u

∂

∂x
,

M = 9
∂5

∂x5
+ 15u

∂3

∂x3
+ 15

∂u

∂x

∂

∂x
+

(
5u2 + 10

∂2u

∂x2

)
∂

∂x

reduces to the equation

∂u

∂t
=

∂5u

∂x5
+ 5u

∂3u

∂x3
+ 5

∂u

∂x
· ∂

2u

∂x2
+ 5u2 ∂u

∂x
.

For q = ar− 1, and matrices A and B given by (9.9.41) and (9.9.45), show that
(9.9.40) leads to the nonlinear equation

rt + rxxx − 6rrx + 6ar2rx = 0.
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14. If the operator M in the Lax equation (9.9.15) is

M = −αD2n+1 +

n∑
m=1

(
UmD

2m−1 +D2m−1Um

)
+A(t),

where α is a constant, um = um(x, t), and A(t) is an arbitrary function, show
that the Lax equation reduces to the KdV equation (9.9.21) for n = 1, and, for
n = 2, it becomes the fifth-order KdV equation

ut + 30u2(Du)− 20(Du)
(
D2u

)
− 10u

(
D3u

)
+D5u = 0.

15. If the phase velocity of nonlinear water waves is

c(k) =

[(
g

k

)
tanh kh

] 1
2

=
√
gh

{
1− 1

6
k2h2 + o

(
k2h2

)}
as kh → 0,

show that these waves are described by the Whitham equation

ut + uux +

∫ ∞

−∞
K(x− ξ)

(
∂u

∂ξ

)
dξ = 0,

where the kernel K is determined from the linear theory as the Fourier transform
of c(k),

K(x) =
1

2π

∫ ∞

−∞
c(k) exp(ikx) dk.

16. Show that the Boussinesq equation

utt − uxx + 3
(
u2
)
xx

− uxxxx = 0

has the following conservation laws:
(a)

∫∞
−∞ u dx = const. (conservation of mass),

(b)
∫∞
−∞ ut dx = const. (conservation of momentum).

17. Show that the solitary wave solution of the Boussinesq equation

utt − uxx + 3
(
u2
)
xx

− uxxxx = 0

is
u(x, t) = a sech2

[
b(x− ct) + d

]
,

for suitable relations between the constants a, b, c, and d. Verify that the Boussi-
nesq wave propagates in either direction.

18. Show that the KP equation

(ut − 6uux + uxxxx)x + 3uyy = 0

has the solitary wave solution

u(x, y, t) = a sech2(kx+ ly − ωt+ α)

for suitable relations between the constants a, k, l, ω, and α.
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19. Show that the KdV equation

2ut + 3uux +
1

3
uxxx = 0

has the following conservation laws (see Johnson 1997):
(a)

∫∞
−∞ u dx = const. (conservation of mass),

(b)
∫∞
−∞(u3 − 1

3u
2
x) dx = const. (conservation of energy),

(c)
∫∞
−∞ u2 dx = const.,

(d)
∫∞
−∞( 454 u

4 − 15uu2
x + u2

xx) dx = const.
20. (a) Show that the CH equation (9.13.1) can be expressed in the nonlocal conser-

vation law form (see Bressan and Constantin 2007)

ut +

(
u2

2

)
x

+ ∂x
(
1− ∂2

x

)−1
(
u2 +

1

2
u2
x

)
= 0.

(b) Verify that the equation in Exercise 20(a) is equivalent to

ut +

(
u2

2

)
x

+ Px = 0,

where P is defined as a convolution

P =
1

2
exp(−|x|) ∗

(
u2 +

1

2
u2
x

)
.

(c) Differentiate the equation in Exercise 20(b) with respect to x to obtain

uxt + uuxx + u2
x −

(
u2 +

1

2
u2
x

)
+ P = 0.

(d) Derive two conservation laws with source term
(
u2

2

)
t

+

(
u3

3
+ uP

)
x

= uxP,

(
u2
x

2

)
t

+

(
uu2

x

2
− u3

3

)
x

= −uxP.

Hint: Multiply the equation in Exercise 20(b) by u and the equation in Exer-
cise 20(c) by ux to derive the two conservation law.
(e) Show that the total energy for regular solutions is

E(t) =

∫
R

(
u2 + u2

x

)
dx,

is constant in time.
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21. (a) Consider the Cauchy problem for the dispersive DP equation with m = u−
uxx (see Guo 2009):

mt + umx + 3uxm+ γmx = 0, x ∈ R, t > 0,

m(x, 0) = u0(x)− u0xx(x),

where γ is a real constant. If p(x) = 1
2 exp(−|x|), x ∈ R, show that

(
1− ∂2

x

)−1
f = p ∗ f for all f ∈ L2(R),

and
p ∗m = u.

Using these results, verify that the Cauchy problem can be written in the form

ut + uux + ∂xp ∗
(
3

2
u2

)
+ γux = 0, x ∈ R, t > 0

u(x, 0) = u0(x).

(b) Show that the Cauchy problem in Exercise 21(a) with the initial data u0(x)
has a unique global solution u(x, t) which is the sum of a peakon and an an-
tipeakon solution in the form

u(x, t) = p1(t) exp
(
−
∣∣x− q1(t)

∣∣)+ p2(t) exp
(
−
∣∣x− q2(t)

∣∣),
for some pi, qi ∈ W 1,∞

loc (R), i = 1, 2.
22. Show that u(x, t) = (c− γ) exp(−|x− ct|)(c �= γ) is a global weak solution of

the dispersive DP equation given in Exercise 21(a).



10

The Nonlinear Schrödinger Equation and Solitary
Waves

. . . Schrödinger and I both had a very strong appreciation of
mathematical beauty, and this appreciation of mathematical
beauty dominated all our work. It was a sort of act of faith
with us that any equations which describe fundamental laws
of Nature must have great mathematical beauty in them. It
was like a religion with us. It was a very profitable religion to
hold, and can be considered the basis of much of our success.

Paul Dirac

. . . the progress of physics will to a large extent depend on the
progress of nonlinear mathematics, of methods to solve
nonlinear equations . . . and therefore we can learn by
comparing different nonlinear problems.

Werner Heisenberg

10.1 Introduction

It has already been indicated in Section 2.3 that the nonlinear Schrödinger (NLS)
equation arises in a wide variety of physical problems in fluid mechanics, plasma
physics, and nonlinear optics. The most common applications of the NLS equation
include self-focusing of beams in nonlinear optics, modeling of propagation of elec-
tromagnetic pulses in nonlinear optical fibers which act as wave guides, and stabil-
ity of Stokes waves in water. Some formal derivations of the NLS equation have
been obtained by several methods which include the multiple scales expansions, the
asymptotic method, Whitham’s (1965a, 1965b) averaged variational equations, and
Phillips’ (1981) resonant interaction equations. Zakharov and Shabat (1972) devel-
oped an ingenious inverse scattering method to show that the NLS equation is com-
pletely integrable. The NLS equation is of great importance in adding to our funda-
mental knowledge of the general theory of nonlinear dispersive waves.

It is now well known that the Korteweg–de Vries equation and the nonlinear
Schrödinger equation are the lowest-order nontrivial consequences of a perturbation
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DOI 10.1007/978-0-8176-8265-1_10, c© Springer Science+Business Media, LLC 2012
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approximation for weakly and strongly nonlinear dispersive wave systems, respec-
tively. This chapter is devoted to the nonlinear Schrödinger equation and its solitary
wave solutions. Several properties of the nonlinear Schrödinger equation including
envelope solitons and recurrence phenomenon are discussed. Attention is given to
conservation laws for the nonlinear Schrödinger equation. Some examples of appli-
cations to fluid dynamics, plasma physics, and nonlinear optics are included. Based
on an ingenious method of Zakharov and Shabat (1972), the inverse scattering trans-
form for the nonlinear Schrödinger equation is described in some detail.

10.2 The One-Dimensional Linear Schrödinger Equation

We consider the following Fourier integral representation of a quasi-monochromatic
plane wave solution:

φ(x, t) =

∫ ∞

−∞
F (k) exp

[
i
{
kx− ω(k)t

}]
dk, (10.2.1)

where the spectrum function F (k) is determined from the given initial or boundary
conditions and has the property F (−k) = F ∗(k), and ω = ω(k) is the dispersion
relation. We assume that the initial wave is slowly modulated as it propagates in
a dispersive medium. For such a quasi-monochromatic wave, most of the energy
is confined in the neighborhood of a specified wavenumber k = k0, so that the
spectrum function F (k) has a sharp peak around k0 with a narrow wavenumber
width (k − k0) = δk = O(ε), and the dispersion relation ω(k) can be expanded
about k0 as follows:

ω = ω0 + (δk)ω′
0 +

1

2
(δk)2ω′′

0 + · · · , (10.2.2)

where ω0 = ω(k0), ω′
0 = ω′(k0), and ω′′

0 = ω′′(k0).
Substituting (10.2.2) in (10.2.1) gives

φ(x, t) = ψ(x, t) exp
[
i{k0x− ω0t}

]
+ c.c., (10.2.3)

where c.c. stands for the complex conjugate and ψ(x, t) is the complex amplitude
defined by

ψ(x, t) =

∫ ∞

0

F (k0 + δk) exp

{
i(x− ω′

0t)δk − 1

2
iω′′

0 (δk)
2t

}
d(δk), (10.2.4)

where it has been assumed that ω(−k) = −ω(k). Since (10.2.4) depends on
(x− ω′

0t)δk and (δk)2t where δk = O(ε) is small, the amplitude ψ(x, t) is a slowly
varying function of x∗ = (x− ω′

0t) and t. We next introduce slow variables ξ and τ
defined by

ξ = ε(x− ω′
0t) and τ = ε2t, (10.2.5ab)

so that the wave field assumes the form
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φ(x, t) = A(ξ, τ) exp
[
i(k0x− ω0t)

]
+ c.c., (10.2.6)

where the modulated wave amplitude is given by

A(ξ, t) =

∫
F (k0 + δk) exp

[
i

{
δk(x− ω′

0t)−
1

2
ω′′
0 (δk)

2t

}]
d(δk)

=

∫
F (k0 + ε) exp

[
i

(
ξ − 1

2
ω′′
0 τ

)]
d(ε). (10.2.7)

In the expression for the wave field (10.2.6), k0, and hence, ω0 = ω(k0) are chosen
to be constants, and all slow variations of the wavetrain are included in A(ξ, τ).

A simple computation gives

Aτ = −1

2
iω′′

0A and Aξξ = −A (10.2.8ab)

so that the modulated wave amplitude A(ξ, τ) satisfies the linear Schrödinger equa-
tion

iAτ +
1

2
ω′′
0Aξξ = 0. (10.2.9)

10.3 The Nonlinear Schrödinger Equation and Solitary Waves

We show below that the nonlinear modulation of a quasi-monochromatic wave is de-
scribed by the nonlinear Schrödinger equation. To take into account the nonlinearity
and the modulation in the far-field approximation, the wavenumber k and frequency
ω in the linear dispersion relation are replaced by k− i ∂

∂x and ω+ i ∂
∂t , respectively.

It is convenient to use the nonlinear dispersion relation in the form

D

(
k − i

∂

∂x
, ω + i

∂

∂t
, |A|2

)
A = 0. (10.3.1)

We consider the case of a weak nonlinearity and a slow variation of the ampli-
tude, and hence, the amplitude A is assumed to be a slowly varying function of space
and time. We next expand (10.3.1) with respect to |A|2, −i ∂

∂x , and i ∂
∂t to obtain

D(k, ω, 0)− i

(
Dk

∂

∂x
−Dω

∂

∂t

)
A

− 1

2

(
Dkk

∂2

∂x2
− 2Dkω

∂2

∂x∂t
+Dωω

∂2

∂t2

)
A

+
∂D

∂|A|2 |A|
2A = 0, (10.3.2)

where the first term D(k, ω, 0) = 0 is due to the linear dispersion equation.
Introducing the transformation x∗ = x− Cgt, t∗ = t, assuming that A = O(ε),

∂
∂x∗ = O(ε), and ∂

∂t∗ = O(ε2), retaining all terms up to O(ε3), and dropping the
asterisks, we find that



538 10 The Nonlinear Schrödinger Equation and Solitary Waves

i
∂A

∂t
+ p

∂2A

∂x2
+ q|A|2A = 0, (10.3.3)

where

p =
1

2

(
dCg

dk

)
, q =

1

Dω

(
∂D

∂|A|2

)
, (10.3.4)

and the following results:

Cg = −Dω

Dk
,

dCg

dk
=
(
Dkk + 2CgDωk + C2

gDωω

)
/Dω, (10.3.5)

have been used.
Equation (10.3.3) is known as the nonlinear Schrödinger (NLS) equation. More

explicitly, if the nonlinear dispersion relation is given by

ω = ω
(
k, a2

)
, (10.3.6)

and if we expand ω in a Taylor series about k = k0 and |a|2 = 0, we obtain

ω ≈ ω0 + (k − k0)ω
′
0 +

1

2
(k − k0)

2ω′′
0 +

(
∂ω

∂|a|2

)
|a|2=0

|a|2. (10.3.7)

Replacing (ω−ω0) by i( ∂
∂t ), k− k0 by −i( ∂

∂x ), and assuming that the resulting
operators act on the amplitude function a(x, t), it turns out that

i(at + ω′
0ax) +

1

2
ω′′
0axx + γ|a|2a = 0, (10.3.8)

where

γ = −
(

∂ω

∂|a|2

)
|a|2=0

= const. (10.3.9)

Equation (10.3.8) is known as the nonlinear Schrödinger equation. If we choose
a frame of reference moving with the linear group velocity ω′

0, that is, ξ = x − ω′
0t

and τ = t, the term involving axwill drop out from (10.3.8), and therefore, the
amplitude a(x, t) satisfies the normalized nonlinear Schrödinger equation

iaτ +
1

2
ω′′
0aξξ + γ|a|2a = 0. (10.3.10)

The corresponding dispersion relation is given by

ω =
1

2
ω′′
0k

2 − γa2. (10.3.11)

According to the stability criterion established by Whitham (1974), the wave modu-
lation is stable if γω′′

0 < 0 or unstable if γω′′
0 > 0.

To study the solitary wave solution, it is convenient to use the NLS equation in
the standard form

iψt + ψxx + γ|ψ|2ψ = 0, −∞ < x < ∞, t > 0. (10.3.12)
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We then seek waves of permanent form by assuming the solution

ψ = f(X)ei(mX−nt), X = x− Ut, (10.3.13)

for some functions f and constant wave speed U to be determined, and where m, n
are constants.

Substitution of (10.3.13) in (10.3.12) gives

f ′′ + i(2m− U)f ′ +
(
n−m2

)
f + γ|f |2f = 0. (10.3.14)

We eliminate f ′ by setting 2m − U = 0, and then write n = m2 − α, so that f
can be assumed real. Thus, equation (10.3.14) becomes

f ′′ − αf + γf3 = 0. (10.3.15)

Multiplying this equation by 2f ′ and integrating, we find that

f ′2 = A+ αf2 − γ

2
f4 ≡ F (f), (10.3.16)

where F (f) ≡ (α1 − α2f
2)(β1 − β2f

2), so that α = −(α1β2 + α2β1), A = α1β1,
γ = −2(α2β2), and the α’s and β’s are assumed to be real and distinct.

Evidently, it follows from (10.3.16) that

X =

∫ f

0

df√
(α1 − α2f2)(β1 − β2f2)

. (10.3.17)

Setting (α2/α1)
1/2f = u in this integral, we deduce the following elliptic inte-

gral of the first kind (Dutta and Debnath 1965):

σX =

∫ f

0

df√
(1− u2)(1− κ2u2)

, (10.3.18)

where σ = (α2β1)
1/2 and κ = (α1β2)/(β1α2).

Thus, the final solution can be expressed in terms of the Jacobian elliptic func-
tion

u = sn(σX, κ). (10.3.19a)

Thus, the solution for f(X) is given by

f(X) =

(
α1

α2

)1/2

sn(σX, κ). (10.3.19b)

In particular, when A = 0, α > 0, and γ > 0, we obtain a solitary wave solution.
In this case, (10.3.16) can be rewritten

√
αX =

∫ f

0

{
f2

(
1− γ

2α
f2

)}− 1
2

df. (10.3.20)
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Substitution of (γ/2α)1/2f = sech θ in this integral gives the exact solution

f(X) =

(
2α

γ

)1/2

sech
[√

α(x− Ut)
]
. (10.3.21)

This represents a solitary wave that propagates without change of shape with constant
velocity U . Unlike the solution of the KdV equation, the amplitude and the velocity
of the wave are independent parameters. It is noted that the solitary wave exists only
for the unstable case (γ > 0). This means that small modulations of the unstable
wavetrain lead to a series of solitary waves.

The well-known nonlinear dispersion relation for deep water waves is

ω =
√
gk

(
1 +

1

2
a2k2

)
. (10.3.22)

Therefore,

ω′
0 =

ω0

2k0
, ω′′

0 =
ω0

4k20
, and γ = −1

2
ω0k

2
0, (10.3.23)

and the NLS equation for deep water waves is obtained from (10.3.8) in the form

i

(
at +

ω0

2k0
ax

)
− ω0

8k20
axx − 1

2
ω0k

2
0|a|2a = 0. (10.3.24)

The normalized form of this equation in a frame of reference moving with the linear
group velocity ω′

0 is

iat −
(
ω0

8k20

)
axx − 1

2
ω0k

2
0|a|2a = 0. (10.3.25)

Since γω′′
0 = (ω2

0/8) > 0, this equation confirms the instability of deep water waves.
This is one of the most remarkable recent results in the theory of water waves.

We next discuss the uniform solution and the solitary wave solution of the NLS
equation (10.3.25). We look for solutions in the form

a(x, t) = A(X) exp
(
iγ2t

)
, X = x− ω′

0t, (10.3.26)

and substitute this in equation (10.3.25) to obtain the following equation:

AXX =
8k20
ω0

(
γ2A+

1

2
ω0k

2
0A

3

)
. (10.3.27)

We multiply this equation by 2AX and, then, integrate to find

A2
X = −

(
A4

0m
′2+

8

ω0
γ2k20A

2+2k40A
4

)
=
(
A2

0−A2
)(
A2−m′2A3

0

)
, (10.3.28)

where A4
0m

′2 is an integrating constant, 2k40 = 1, m′ 2 = 1 − m2, and A2
0 =

4γ2/ω0k
2
0(m

2 − 2), which relates A0, γ, and m.
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Finally, we rewrite (10.3.28) as

A2
0 dX =

dA

[(1− A2

A2
0
)(A

2

A2
0
−m′2)]1/2

, (10.3.29a)

or equivalently,

A0(X −X0) =

∫ t ds

[(1− s2)(s2 −m′2)]1/2
, s = (A/A0). (10.3.29b)

This can readily be expressed in terms of the Jacobi dn function (Dutta and Debnath
1965):

A = A0dn
[
A0(X −X0),m

]
, (10.3.30)

where m is the modulus of the dn function.
In the limit, m → 0, dnz → 1, and γ2 → −1

2ω0k
2
0A

2
0. Hence, the solution

becomes

a(x, t) = A(t) = A0 exp

(
−1

2
iω0k

2
0A

2
0t

)
. (10.3.31)

On the other hand, when m → 1, dnz → sech z, and γ2 → −1
4ω0k

2
0A

2
0. There-

fore, the solitary wave solution is

a(x, t) = A0 exp

(
− i

4
ω0k

2
0A

2
0t

)
sech

[
A0(x− ω′

0t−X0)
]
. (10.3.32)

10.4 Properties of the Solutions of the Nonlinear Schrödinger
Equation

We discuss several important properties of the nonlinear Schrödinger equation in the
form

iuτ + βuξξ + γ|u|2u = 0, (10.4.1)

where β and γ are real constants. When β = 1
2ω

′′
0 , this equation reduces to (10.3.10).

Simple solutions of equation (10.4.1) can always be obtained. However, the na-
ture of the solutions depends on the signs of β and γ. If they are of the same sign, that
is, if βγ > 0, the solution of (10.4.1), which tends to zero as |ξ| → ∞, represents a
solitary wave solution

u(ξ, t) =

√
−2ν

γ
sech

[√
−ν
β

ξ

]
exp(−iντ), (10.4.2)

where ν is a constant parameter.
It follows from the Galilean invariance of the Schrödinger equation that equation

(10.4.1) is also invariant under the following transformations:

ξ̃ = ξ − Uτ, τ̃ = τ, ũ = u exp

{
− iU

2β

(
ξ − 1

2
Uτ

)}
, (10.4.3)
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Fig. 10.1 An envelope soliton.

where U is another constant. Thus, equation (10.4.1) admits a solitary wave solution
in the form

u(ξ, τ) =

(
−2ν

γ

) 1
2

sech

[√
−ν
β

ξ̃

]
exp

[
i

(
U

2β

)
− i

2

{(
U

2β

)2

+2ν

}
τ

]
, (10.4.4)

where ν and U are independent constants. These solutions decrease very rapidly as
|ξ| → ∞, so that they may be considered to represent solitary waves which are sim-
ilar to KdV solitons. However, unlike the KdV equation, the nonlinear Schrödinger
equation does not admit a soliton solution corresponding to a steady wave propagat-
ing with a constant velocity. In fact, the plane wave part represented by the exponen-
tial function and the amplitude of the sech profile propagate with different velocities.
In this sense, the solution (10.4.4) is called the envelope soliton, as shown by Fig-
ure 10.1.

It was first shown numerically by Yajima and Outi (1971) that, like the KdV soli-
ton, the envelope soliton behaves like a particle. This was also proved analytically by
Zakharov and Shabat (1972) by the inverse scattering method. An excellent exper-
imental agreement with the sech-soliton solution (10.4.4) was found by Hammack
as reported by Ablowitz and Segur (1979). Hammack’s experimental findings are
shown in Figure 7.2 in Debnath (1994, p. 363).

On the other hand, if u tends to a constant value u0 at infinity, then the plane
wave solution exists in the form

u(ξ, τ) = u0 exp
[
i(�ξ − δτ)

]
, (10.4.5)

where
δ =

(
β�2 − γu2

0

)
. (10.4.6)

However, the plane wave solution is modulationally unstable. This can be shown
by introducing two real functions ρ and σ through the expression

u =
√
ρ exp

[(
i

2β

)∫
σ dξ

]
. (10.4.7)
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Substituting this expression in (10.4.1) gives

∂ρ

∂τ
+

∂

∂ξ
(ρσ) = 0 (10.4.8)

and
∂σ

∂τ
+ σ

∂σ

∂ξ
= 2βγ

∂ρ

∂ξ
+ β2 ∂

∂ξ

[
1
√
ρ

∂

∂ξ

(
1
√
ρ

∂ρ

∂ξ

)]
. (10.4.9)

Since βγ > 0, in the long wavelength approximation, equations (10.4.8), (10.4.9)
are equivalent to a hydrodynamic system with negative pressure. In other words,
the system becomes elliptic. Thus, we consider that the perturbations modulate a
constant amplitude ρ0 and phase σ0 so that

(ρ, σ) = (ρ0, σ0) + (δρ, δσ) exp
{
i(κξ −Ωτ)

}
. (10.4.10ab)

Substituting these perturbations in equations (10.4.8), (10.4.9) leads to an equa-
tion for the growth rate Ω in terms of the wavenumber κ as

Ω = −σ0κ± (−2βγρ0)
1
2κ+O

(
κ3
)
. (10.4.11)

This shows that the perturbation grows exponentially as t → ∞ for small wavenum-
bers κ, provided that ρ0 is finite.

On the other hand, if βγ > 0, that is, β and γ are of opposite signs, there exists
a stable plane wave solution. In this case, the system of equations (10.4.8), (10.4.9)
can be reduced to the KdV equation. This follows from the expansion of ρ and σ in
terms of the small parameter ε about the constant state, so that we can write

ρ = ρ0 + ερ1 + ε2ρ2 + · · · and σ = σ0 + εσ1 + ε2σ2 + · · · . (10.4.12ab)

These results combined with the transformation

ξ̃ =
√
ε
[
ξ −

{
σ0 + (−2βγρ0)

1
2

}
τ
]
, τ̃ = ετ (10.4.13)

reduce the system (10.4.8), (10.4.9) to the KdV equation for ρ1 and σ1.
Thus, when βγ > 0, the above solution is often called a bright soliton (or en-

velope soliton). The bright pulse arises when |u|2 increases from a finite value at
infinity and, subsequently, returns to the same value. When βγ < 0, the solution
is of the expansive type in which |u|2 decreases from a finite value at infinity and
subsequently returns to the same state. This is often called a dark soliton (or dark
pulse).

So far, the self-modulation of a single mode governed by the dispersion relation
has been described. However, when different modes with amplitudes of the same or-
der O(ε) coexist and undergo mutual interactions and self-modulation, it is possible
to split the system of equations into independent nonlinear Schrödinger equations
similar to the case of long waves (Oikawa and Yajima 1974a, 1974b). Consequently,
envelope solitons associated with various modes, moving separately at the begin-
ning, preserve their identities and, then, propagate as envelope solitons, even after
the mutual interactions.
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Zakharov and Shabat (1972) discovered that the inverse scattering method gives
an exact solution of the initial-value problem for the nonlinear Schrödinger equation.
Based on the initial data, which tend to zero rapidly at infinity, their remarkable
analysis can be summarized as follows.

(i) An initial wave envelope pulse of arbitrary shape eventually disintegrates into
a number of solitons of shorter scales and an oscillatory tail. Each soliton is a
permanent, progressive wave. The number and structure of these solitons and
the nature of the tail are completely described by the initial data.

(ii) These soliton solutions are definitely stable in the sense that they undergo non-
linear interaction and, then, emerge from the interaction without permanent
changes except for a possible change in position and phase.

(iii) The oscillatory tail is relatively small and disperses linearly with amplitude
which decays like t−

1
2 , as t → ∞.

Another significant property of the solutions of the nonlinear Schrödinger equa-
tion is the recurrence phenomenon. In a conservative system, the existence of in-
variants plays a fundamental role in establishing recurrence phenomena, as shown
by Gibbons et al. (1977) and by Thyagaraja (1979, 1981, 1983). As demonstrated by
these authors, the recurrence phenomenon is typical only for bounded or periodic do-
mains. Thyagaraja considered the initial-value problem for the nonlinear Schrödinger
equation

iψt = ψxx + γ|ψ|2ψ (10.4.14)

in the periodic domain 0 ≤ x ≤ 1 with periodic boundary conditions and a real con-
stant γ which can be positive or negative. In many physical problems, γ is positive.
We assume the periodic boundary conditions

ψ(0, t) = 0 = ψ(1, t) for t > 0, (10.4.15)

or
ψx(0, t) = 0 = ψx(1, t) for t > 0, (10.4.16)

and the initial condition

ψ(x, 0) = Ψ(x) for all x ∈ [0, 1]. (10.4.17)

Without proof, we assume that this initial-boundary problem for equation
(10.4.14) possesses a smooth solution which is uniquely determined by the initial
data Ψ(x). To investigate the qualitative properties of the solution, Thyagaraja de-
rived certain a priori bounds involving the integral invariants associated with equa-
tion (10.4.14). Two invariants of the problem which are constants of the motion are
given by

I(t) =

∫ 1

0

∣∣ψ(x, t)∣∣2 dx, (10.4.18)

and

J(t) =

∫ 1

0

∣∣ψx(x, t)
∣∣2 dx− γ

2

∫ 1

0

∣∣ψ(x, t)∣∣4 dx. (10.4.19)
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However, Zakharov and Shabat (1972) proved that this problem has an infinite set of
integral invariants, provided ψ(x, t) is sufficiently smooth. We consider any function
ψ(x, t), not necessarily a solution of (10.4.14), which is defined for |t| > 0 and
sufficiently smooth. We assume that ψ(x, t) satisfies the given boundary conditions
and evolves in time, so that functions I(t) and J(t), defined by (10.4.18), (10.4.19),
are constants in time. We then find bounds of the Rayleigh quotient Q(t) defined by

Q(t)I(t) =

∫ 1

0

∣∣ψx(x, t)
∣∣2 dx. (10.4.20)

Denoting I(0) = I0 and J(0) = J0, we find that

Q(t) <
J0
I0
, (10.4.21)

provided that γ < 0.
For γ > 0, we assume that |ψ(x, t)|2 is minimal at x = x0 for any t, and hence,

we obtain ∣∣ψ(x, t)∣∣2 =
∣∣ψ(x0, t)∣∣2 + 2

∫ x

x0

ψψx dx, (10.4.22)

which leads to the inequality

∣∣ψ(x, t)∣∣2 ≤
∣∣ψ(x0, t)∣∣2 + 2

∫ 1

0

ψψx dx. (10.4.23)

Obviously,

∣∣ψ(x0, t)∣∣2 ≤
∫ 1

0

∣∣ψ(x0, t)∣∣2 dx ≤
∫ 1

0

∣∣ψ(x, t)∣∣2 dx,
and the Schwarz inequality

∫ 1

0

∣∣ψψ0

∣∣ dx ≤ I(t)
√
Q(t).

Multiplying (10.4.23) by |ψ(x, t)|2 and integrating gives

∫ 1

0

∣∣ψ(x, t)∣∣4 dx ≤ I2 + 2I2
√
Q(t). (10.4.24)

Substituting in (10.4.19) yields the quadratic inequality

Q(t) ≤
(
J0
I0

)
+

(
γ

2

)
I0 + γI0

√
Q(t). (10.4.25)

Finally, (10.4.23) can be reorganized to obtain

∣∣ψ(x, t)∣∣2 ≤ I0 + 2I0
√
Q(t). (10.4.26)
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Since, Q(t) ≥ 0 by definition, it is easy to solve the inequality (10.4.25) and
obtain the following results:

Q(t) ≤ M2(I0, J0, γ), (10.4.27)

‖ψ‖2∞ ≡ max
0≤x≤1

∣∣ψ(x, t)∣∣2 ≤ I0(1 + 2M), (10.4.28)

where M is the positive root of the quadratic equation

M2 − γI0M −
{(

J0
I0

)
+

(
γ

2

)
I0

}
= 0. (10.4.29)

To examine the major implications of the a priori bounds in (10.4.27), (10.4.28),
we introduce the concept of Lagrangian stability. A solution ψ(x, t) of (10.4.14)
is said to be Lagrangian stable if there exists a constant K independent of t, but
possibly dependent on the initial data such that

∥∥ψ(x, t)∥∥2∞ = max
0≤x≤1

∣∣ψ(x, t)∣∣2 ≤ K, (10.4.30)

for all |t| ≥ 0.
Clearly, it follows from (10.4.28) with K = I0(1+2M) that any solution ψ(x, t)

is Lagrangian stable.
To give an interpretation of the inequality (10.4.27), we expand ψ(x, t) in a

Fourier series in x, so that

ψ(x, t) =

∞∑
n=−∞

an(t) exp(2nπix), (10.4.31)

where

I0 =
∞∑

n=−∞

∣∣an(t)∣∣2 and Q(t) =

(
4π2

I0

) ∞∑
n=−∞

n2
∣∣an(t)∣∣2. (10.4.32)

In analogy with quantum physics, we may interpret Q(t)/4π2 as the instantaneous
average of n2, and (M/2π) can be interpreted as an upper bound to the rms value
of n, the number of modes carrying the “wave energy” I0. The quantity ( 1

2π )
√
Q is

called the number of effective modes and is denoted by Neff . The inequality (10.4.27)
says that Neff is bounded by (M2π ), which depends only on the initial values of I0 and
J0 of the integral invariants and on the interaction strength γ. Thus, we have proved
that every motion described by equation (10.4.14) with given I0 and J0 can be as-
signed Neff as a measure of the number of effective modes. It is then straightforward
to apply Birkhoff’s theorem (1927) to conclude that, in general, dynamical systems
with a finite number of degrees of freedom and bounded motions are “generically”
recurrent.

It is interesting to compare the results of this analysis with numerical simulations
and experiments. Yuen and Ferguson (1978a, 1978b) investigated spatially periodic
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solutions of (10.4.14). They numerically evolved initial data for which the linearized
form of (10.4.14) is unstable to the modulational instability of Benjamin and Feir
(1967). The longtime behavior of these solutions reveals that the energy is shared ef-
fectively between a finite number of wave modes. The number depends on the initial
data. Moreover, the solution reconstructed itself after appearing to show a tendency
to break up due to linear instability (Yuen and Lake 1980). Both the failure of the
energy to thermalize and the tendency to recur have been known since the classic
work of Fermi et al. (1955). They observed a remarkable recurrence phenomenon,
known as the Fermi–Pasta–Ulam (FPU) recurrence. Initially, if energy is given to
the lowest mode with the lowest frequency, then several higher modes are excited by
the nonlinear effects, but after a suitable lapse of time during which a flowing back
and forth among several low-order modes takes place, the energy eventually returns
to the mode comprising the initial state. In other words, the system does not approach
thermal equilibrium by the principle of the equipartition of energy due to the nonlin-
ear effects, but the FPU recurrence is observed, and consequently, the nonergodicity
of the system can be demonstrated. Subsequently, Zabusky and Kruskal (1965) and
Fornberg and Whitham (1978) reported similar observations. From a series of com-
putational and experimental works by Yuen and Lake (1975) and Lake et al. (1977),
it has been confirmed that recurrence is a generic phenomenon for any physical prob-
lem described by the nonlinear Schrödinger equation. At the same time, the above
mathematical analysis is now accepted as conclusive evidence of the FPU recurrence
phenomenon.

For a long time it was mistakenly thought that the recurrence property of the
NLS equation is attributable to the fact that it admits a multisoliton solution and can
be solved exactly by the inverse scattering method. However, the above discussion
shows, beyond any doubt, that the recurrence of solutions has nothing to do with
soliton solutions or exact integrability.

10.5 Conservation Laws for the NLS Equation

Zakharov and Shabat (1972) proved that equation (10.3.12) has an infinite number
of polynomial conservation laws. These have the form of an integral, with respect
to x, of a polynomial expression in terms of the function ψ(x, t) and its derivatives
with respect to x. These laws are somewhat similar to those already proved for the
KdV equation. Therefore, the proofs of the conservation laws are based on similar
assumptions used in the context of the KdV equation (see Section 9.6).

We prove here three conservation laws for the NLS equation (10.3.12):
∫ ∞

−∞
|ψ|2 dx = const. = C1, (10.5.1)

∫ ∞

−∞
i
(
ψψx − ψψx

)
dx = const. = C2, (10.5.2)

∫ ∞

−∞

{(
|ψx|2

)
− 1

2
γ|ψ|4

}
dx = const. = C3. (10.5.3)
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We multiply (10.3.12) by ψ and its complex conjugate by ψ and subtract the
latter from the former to obtain

i
d

dt

(
ψψ

)
+

d

dx

(
ψxψ − ψxψ

)
= 0, (10.5.4)

where the bar denotes the complex conjugate.
Integration with respect to x in −∞ < x < ∞ gives

i
d

dt

∫ ∞

−∞
|ψ|2 dx = 0.

This proves result (10.5.1).
We multiply (10.3.12) by ψx and its complex conjugate by ψx and, then, add the

resulting expressions to obtain

i
(
ψtψx − ψtψx

)
+
(
ψxxψx + ψxxψx

)
+ γ|ψ|2

(
ψψx + ψψx

)
= 0. (10.5.5)

We differentiate (10.3.12) and its complex conjugate with respect to x, multiply
the former by ψ and the latter by ψ, and then, add them together. This leads to the
result

i
(
ψψxt − ψψxt

)
+
(
ψxxxψ + ψxxxψ

)
+ γ

[
ψ
(
|ψ|2ψ

)
x
+ ψ

(
|ψ|2ψ

)
x

]
= 0. (10.5.6)

If we subtract (10.5.6) from (10.5.5) and then simplify, it turns out that

i
d

dt

(
ψψx − ψψx

)
=

d

dx

(
ψxψx

)
+

d

dx

(
ψψxx + ψψxx

)

− d

dx

(
ψxψx

)
+ γ

d

dx

(
ψψ

)2

=
d

dx

(
ψψxx + ψψxx

)
+ γ

d

dx
|ψ|4.

Integrating this result with respect to x yields

d

dt

∫ ∞

−∞
i
(
ψψx − ψψx

)
dx = 0.

This proves result (10.5.2).
We multiply (10.3.12) by ψt and its complex conjugate by ψt and add the result-

ing equations to derive

(
ψtψxx + ψxxψt

)
+ γ

(
ψ2ψψt + ψ

2
ψψt

)
= 0,

or equivalently,

d

dx

(
ψtψx + ψtψx

)
− d

dx

(
ψxψx

)
+

γ

2

d

dt

(
ψ2ψ

2)
= 0.
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Integrating this result with respect to x gives

d

dt

∫ ∞

−∞

[
|ψx|2 −

γ

2
|ψ|4

]
dx =

∫ ∞

−∞

d

dx

(
ψtψx + ψtψx

)
dx = 0. (10.5.7)

This gives (10.5.3).
The preceding three conservation integrals have a simple physical meaning. In

fact, the constants of motion C1, C2, and C3 are related to the number of particles,
the momentum, and the energy of a system governed by the nonlinear Schrödinger
equation.

The analysis of this section reveals several remarkable features of the nonlinear
Schrödinger equation. This equation can also be used to investigate instability phe-
nomena in many other physical systems. Like the various forms of the KdV equa-
tion, the NLS equation arises in many physical problems, including nonlinear water
waves and ocean waves, waves in plasma, propagation of heat pulses in a solid, self-
trapping phenomena in nonlinear optics, nonlinear waves in a fluid-filled viscoelastic
tube, and various nonlinear instability phenomena in fluids and plasmas.

Whitham’s equations for the slow modulation of the wave amplitude a and the
wavenumber k in the case of two-dimensional deep water waves are given by

∂

∂t

(
a2

ω0

)
+

∂

∂x

(
C
a2

ω0

)
= 0, (10.5.8)

∂k

∂t
+

∂ω

∂x
= 0, (10.5.9)

where ω0 =
√
gk is the first-order approximation for the wave frequency ω and

C = (g/2ω0) is the group velocity.
Chu and Mei (1970, 1971) observed that certain terms of the dispersive type,

neglected in Whitham’s equations to the same order of approximation, must be in-
cluded to extend the validity of these equations. Whitham’s theory is based on the
direct use of Stokes’ dispersion relation for a uniform wavetrain,

ω = ω0

(
1 +

1

2
ε2a2k2

)
, (10.5.10)

whereas Chu and Mei added terms of higher derivatives and dispersive type to the
expression for ω, so that

ω = ω0

[
1 + ε2

(
1

2
a2k2 +

{(
a

ω0

)
tt

÷ 2ω0a

})]
. (10.5.11)

They used the expression (10.5.11) to transform (10.5.8), (10.5.9) in a frame of
reference moving with the group velocity C and obtained the following nondimen-
sional equations:

∂a2

∂t
+

∂

∂x

(
a2φx

)
= 0, (10.5.12)
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−2
∂2φ

∂x∂t
+

∂

∂x

[
−φ2

x +
a2

4
+

axx
16a

]
= 0, (10.5.13)

where we have used Chu and Mei’s result W = −2φx and φ is a small phase varia-
tion. Integrating (10.5.13) with respect to x and setting the constant of integration to
be zero gives

φt +
1

2
φ2
x − 1

8
a2 − axx

32a
= 0. (10.5.14)

A transformation Ψ = a exp(4iφ) is used to simplify (10.5.12) and (10.5.14),
which reduces to the nonlinear Schrödinger equation

iΨt +
1

8
Ψxx +

1

2
Ψ |Ψ |2 = 0. (10.5.15)

This equation has also been derived and exploited by several authors, including Ben-
ney and Roskes (1969), Hasimoto and Ono (1972), and Davey and Stewartson (1974)
to examine the nonlinear evolution of Stokes’ waves on water.

An alternative way to study nonlinear evolution of two- and three-dimensional
wavepackets is to use the method of multiple scales in which the small parameter ε is
explicitly built into the expansion procedure. The small parameter ε characterizes the
wave steepness. This method has been employed by several authors in various fields
and has also been used by Hasimoto and Ono (1972) and Davey and Stewartson
(1974).

10.6 The Inverse Scattering Method for the Nonlinear
Schrödinger Equation

Zakharov and Shabat (1972) developed an ingenious method for solving the nonlin-
ear Schrödinger equation in the form

iut + uxx + 2|u|2u = 0 (10.6.1)

by considering the spectral problem

v1x = −iζv1 + qv2, (10.6.2)

v2x = iζv2 + rv1. (10.6.3)

In matrix notation, they take the form

vx =

(
−iζ q
r iζ

)
v, or

(
∂
∂x −q
r − ∂

∂x

)
v = −iζv, (10.6.4ab)

where v is the vector
(
v1
v2

)
, bounded functions q(x) and r(x) (not necessarily real)

are potentials, and ζ is the eigenvalue.
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The most general linear time dependence is given by

v1t = Av1 +Bv2, (10.6.5)

v2t = Cv1 +Dv2, (10.6.6)

where A, B, C, and D are scalar functions independent of v1 and v2 to be deter-
mined.

To establish the relation between the pair of equations (10.6.2) and (10.6.3) and
the Schrödinger scattering problem, we first differentiate (10.6.3) with respect to x
to obtain

v2xx = iζv2x + rxv1 + rv1x, (10.6.7)

provided that rx exists. By equations (10.6.2) and (10.6.3), equation (10.6.7) be-
comes

v2xx = iζv2x + rxv1 + r(−iζv1 + qv2)

= iζv2x +
1

r
(rx − iζr)(v2x − iζv2) + rqv2,

or equivalently,

v2xx − rx
r
v2x −

(
qr − iζ

rx
r

− ζ2
)
v2 = 0. (10.6.8)

The special choice r = −1 gives the Schrödinger scattering problem for v2

v2xx +
(
ζ2 + q

)
v2 = 0. (10.6.9)

When ζ2 = λ and q = −u, the system (10.6.4ab) reduces to the time-independent
Schrödinger equation required for solving the KdV equation which was discussed in
Chapter 9.

To determine the coefficients involved in (10.6.5), (10.6.6), we use cross-differen-
tiation of (10.6.2), (10.6.3) and (10.6.5), (10.6.6) combined with the assumption that
the eigenvalues are invariant in time (ζt = 0), that is, (vjx)t = (vjt)x for j = 1, 2,
leading to the following equations for A, B, C, and D:

Ax = qC − rB,

Bx + 2iζB = qt − (A−D)q,

Cx − 2iζC = rt + (A−D)r,

−(D)x = qC − rB.

Without loss of generality, we can take −D = A so that the preceding system of
equations becomes

Ax = qC − rB, (10.6.10)

Bx + 2iζB = qt − 2Aq, (10.6.11)

Cx − 2iζC = rt + 2Ar. (10.6.12)
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Since the Schrödinger equation is second order in x, we may expect that the series
expansions in ζ for A, B, and C include only terms through ζ2, and so, we write an
exact truncated power series

A =

2∑
n=0

Anζ
n, B =

2∑
n=0

Bnζ
n, C =

2∑
n=0

Cnζ
n. (10.6.13)

Substituting these expressions in (10.6.10)–(10.6.12) and equating coefficients
of powers of ζ gives An, Bn, and Cn where n = 0, 1, 2. The coefficients of ζ3 in
(10.6.11) and (10.6.12) give B2 = C2 = 0. For coefficients of ζ2, equation (10.6.10)
yields A2 = a2 = const. Equations (10.6.11) and (10.6.12) give (B1, C1) =
ia2(q, r). For the coefficients ζ, equation (10.6.10) gives A1 = a1 = const. For
simplicity, we set a1 = 0. However, if a1 �= 0, a more general evolution equation
can be obtained. Then, (10.6.11), (10.6.12) give (B0, C0) =

1
2a2(−qx, rx). Finally,

for the coefficients ζ0, (10.6.10) gives A0 = 1
2a2qr + a0, where a0 is a constant

which is set equal to zero. Consequently, equations (10.6.11) and (10.6.12) for coef-
ficients of ζ0 give

−1

2
a2qxx = qt − a2q

2r, (10.6.14)

1

2
a2rxx = rt + a2qr

2. (10.6.15)

This represents a coupled pair of nonlinear evolution equations. In particular, when
r = ±q∗, equations (10.6.14) and (10.6.15) are compatible provided that a2 = ia,
where a is real. If we take a = 2, we obtain the equation

iqt = qxx ± 2q2q∗. (10.6.16)

This equation with the positive sign is called the nonlinear Schrödinger equation
which admits a special soliton solution, while the equation with the negative sign
does not give any soliton solution for potentials decaying rapidly as x → ∞ since
the spectral operator in (10.6.2) and (10.6.3) is self-adjoint (or Hermitian).

10.7 Examples of Physical Applications in Fluid Dynamics and
Plasma Physics

Example 10.7.1 (The Nonlinear Schrödinger Equation for Deep Water and the Ben-
jamin–Feir Instability). One of the simplest solutions of the nonlinear Schrödinger
equation (10.3.25) is given by (10.3.31), that is,

A(t) = A0 exp

(
−1

2
iω0k

2
0A

2
0t

)
, (10.7.1)

where A0 is a constant. This essentially represents the fundamental component of
the Stokes wave. We consider a perturbation of (10.7.1) and express it in the form
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a(x, t) = A(t)
[
1 +B(x, t)

]
, (10.7.2)

where B(x, t) is the perturbation function. Substituting this result in (10.3.25) gives

i(1 +B)At + iABt −
(
ω0

8k20

)
ABxx

=
1

2
ω0k

2
0A

2
0

[
(1 +B) +BB∗(1 +B)

+ (B +B∗)B + (B +B∗)
]
A, (10.7.3)

where B∗(x, t) is the complex conjugate of the perturbed function B(x, t). Neglect-
ing the squares of B and simplifying, equation (10.7.3) reduces to

iBt −
(
ω0

8k20

)
Bxx =

1

2
ω0k

2
0A

2
0(B +B∗). (10.7.4)

We look for a solution for the perturbed quantity B(x, t) in the form

B(x, t) = B1 exp(Ωt+ i�x) +B2 exp(Ω
∗t− i�x), (10.7.5)

where B1 and B2 are complex constants, � is a real wavenumber, and Ω is a growth
rate (possibly a complex quantity) to be determined. Substituting the solution for B
in (10.7.4) yields a pair of coupled equations:

(
iΩ +

ω0�
2

8k20

)
B1 −

1

2
ω0k

2
0A

2
0(B1 +B∗

2) = 0, (10.7.6)

(
iΩ∗ +

ω0�
2

8k20

)
B2 −

1

2
ω0k

2
0A

2
0(B

∗
1 +B2) = 0. (10.7.7)

We take the complex conjugate of (10.7.7) to transform it into the form
(
−iΩ +

ω0�
2

8k20

)
B∗

2 − 1

2
ω0k

2
0A

2
0(B1 +B∗

2) = 0. (10.7.8)

The pair of linear homogeneous equations (10.7.6) and (10.7.8) for B1 and B∗
2 ad-

mits a nontrivial eigenvalue for Ω provided
∣∣∣∣∣∣
iΩ + ω0�

2

8k2
0
− 1

2ω0k
2
0A

2
0 −1

2ω0k
2
0A

2
0

−1
2ω0k

2
0A

2
0 iΩ + ω0�

2

8k2
0
− 1

2ω0k
2
0A

2
0

∣∣∣∣∣∣ = 0, (10.7.9)

which is equivalent to

Ω2 =
1

2

(
ω0�

2k0

)2(
k20A

2
0 −

�2

8k20

)
. (10.7.10)

The growth rate Ω is purely imaginary or real (and positive) depending on whether
�2 > 8k40A

2
0 or �2 < 8k40A

2
0. The former case represents a wave solution for B,
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and the latter corresponds to the Benjamin–Feir (or modulational) instability with a
criterion in terms of the nondimensional wavenumber �̃ = (�/k0) as

�̃2 < 8k20A
2
0. (10.7.11)

Thus, the range of instability is given by

0 < �̃ < �̃c = 2
√
2k0A0. (10.7.12)

Since Ω is a function of �̃, the maximum instability occurs at �̃ = �̃max = 2k0A0,
with a maximum growth rate given by

(ReΩ)max =
1

2
ω0k

2
0A

2
0. (10.7.13)

To establish the connection with the Benjamin–Feir instability, we have to find
the velocity potential for the fundamental wave mode multiplied by exp(kz). It turns
out that the term proportional to B1 is the upper sideband, whereas that proportional
to B2 is the lower sideband. The main conclusion of the preceding analysis is that
Stokes water waves are definitely unstable.

Example 10.7.2 (The Nonlinear Klein–Gordon Equation). We consider the nonlin-
ear Klein–Gordon equation in the form

ψtt − (ψxx + ψyy) +m2ψ + γψ3 = 0, x ∈ R, 0 ≤ y ≤ a, (10.7.14)

where m and γ are constants. We assume the boundary conditions

ψ = 0 for y = 0 and y = a. (10.7.15)

For the linear case, we assume

ψ(x, y, t) = Ψ(y) exp
[
i(kx− ωt)

]
(10.7.16)

to obtain

Ψ(y) = A sin(αy) +B cos(αy), α2 = ω2 − k2 −m2. (10.7.17)

Since B = 0 by (10.7.15), from the boundary conditions, we obtain

α2 = ω2 − k2 −m2 =

(
nπ

a

)2

, n = 1, 2, 3, . . . , (10.7.18)

so that the group velocity C = ω′(k) = ω
k and ω = ω(k, n). Hence, there exist

various modes dependent on n. We consider a wave with n = 1, and its amplitude
varies slowly due to nonlinearity, so that slow variables ξ and τ defined by (10.2.5ab)
can be used. We next assume the following form of the solution:
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ψ =

∞∑
m=1

εmψ(m),

ψ(m) =

∞∑
�=−∞

ψ
(m)
� (ξ, τ, y) exp

[
i�(kx− ωt)

]
.

(10.7.19ab)

Retaining only terms of the first order in ε, we obtain

ψ
(1)
1 = φ(ξ, τ) sin(αy), ψ

(1)
� = 0, |�| �= 1, (10.7.20)

and the second-order terms in ε give

2i�(k − ωC)
∂ψ

(1)
�

∂ξ
+

∂2ψ
(2)
�

∂2y
+
(
�2ω2 − �2k2 −m2

)
ψ
(2)
� = 0, (10.7.21)

where the first term vanishes because C = k
ω so that ψ(2)

� = 0 for |�| �= 1. For � = 1,
the terms of the third order in ε yield

∂2ψ
(3)
1

∂y2
+ α2ψ

(3)
1 +

[
2iω

∂φ

∂τ
+
(
1− C2

)∂2φ

∂ξ2

]
sin(αy)

− 3γ|φ|2φ sin3(αy) = 0. (10.7.22)

Multiplying this equation by sin(αy) and integrating with respect to y from 0 to a
causes the first and second terms to vanish. Consequently, equation (10.7.22) gives

iφτ +

(
ω2 − k2

2ω3

)
φξξ −

9γ

8ω
|φ|2φ = 0. (10.7.23)

This is a nonlinear Schrödinger equation for the amplitude φ(ξ, τ). Since ω2 −
k2 > 0, a modulational instability occurs when γ > 0. Denoting the initial am-
plitude by A0, the solitary wave solution is given by

ψ
(1)
1 (ξ, τ, y) = A0 sin(αy) exp

[(
9γA2

0

16ω

)
(iτ)

]

× sech

[
Aω

{
− 9γ

8(ω2 − k2)

} 1
2

ξ

]
. (10.7.24)

Example 10.7.3 (Motion of a Vortex Filament and the Nonlinear Schrödinger Equa-
tion). The motion of a very thin isolated vortex filament X = X(x, t) of radius ε
in an incompressible unbounded fluid by its own induction was described asymptot-
ically by Hasimoto (1972) in the form

∂X

∂t
= Gκb, (10.7.25)

where s is the length measured along the filament, t is the time, κ is the curvature, b
is the unit vector along the binormal, and G is the coefficient of local induction
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G =

(
Γ

4π

)[
log

(
ε−1

)
+O(1)

]
, (10.7.26)

which is proportional to the circulation Γ of the filament and may be treated as con-
stant if the slow variation of the logarithm is compared with that of its argument. The
local motion is approximated by that of a thin circular ring with the same curvature.
Under this approximation, the tangential motion along the filament due to stretching
is neglected, even though it is very important in many cases. Introducing a suitable
choice of the units of length and time transforms (10.7.25) into the nondimensional
form

Ẋ = κb, (10.7.27)

where the dot denotes a partial derivative with respect to time. We next include the
equations of differential geometry, that is, the Serret–Frenet formulas for the tangent
vector t, the principle normal vector n, and the binormal b (t = n×b and t, n, and
b form a right-handed system),

t′ = κn, n′ = τb− κt, and b′ = −τn, (10.7.28)

where a prime denotes a partial derivative with respect to arc length s, κ is the cur-
vature, and τ is the torsion of the curve. When κ and τ are specified at each point of
the curve, the shape of the curve, except for its location, is uniquely determined.

We prove that the complex function

ψ(s, t) = κ(s, t) exp

[
i

∫ s

0

τ(s′, t) ds′
]
,

which contains both κ and τ , and hence, completely determines the shape of the
filament and satisfies the nonlinear Schrödinger equation. We first combine the last
two of the Serret–Frenet formulas (10.7.28) into the complex form

(n+ ib)s + iτ(n+ ib) = −κt. (10.7.29)

Introducing

N = (n+ ib) exp

[
i

∫ s

0

τ ds′
]
, ψ = κ exp

[
i

∫ s

0

τ ds′
]
, (10.7.30ab)

we obtain
N′ = −ψt, (10.7.31)

and the first equation of (10.7.28) becomes

t′ =
1

2

(
ψ∗N+ ψN∗), (10.7.32)

where the asterisk denotes the complex conjugate.
This displacement of the position vector along the filament gives a unit tangent

vector to the curve, that is,
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Xs = t. (10.7.33)

To find the time derivatives of t and N, we proceed as follows:

∂t

∂t
=

∂

∂t
(Xs) = (κb)s = κsb− κτn. (10.7.34)

Since

κsb− κτn = Re
[
κs(b+ in) + iκτ(b+ in)

]
= Re

[
i(κs + iκτ)(n− ib)

]

= Re
[
iψsN

∗] = i

2

(
ψsN

∗ − ψ∗
sN

)
, (10.7.35)

∂

∂t
t =

1

2
i
(
ψsN

∗ − ψ∗
sN

)
. (10.7.36)

In general, the time derivative of N is a linear combination of N, N∗, and t, and
hence, we can write (

∂N

∂t

)
= αN+ βN∗ + γt, (10.7.37)

where α, β, and γ are constants to be determined. It follows from the definition of
N and the fact that t, n, and b are orthogonal that

N ·N = t ·N = 0 and N ·N∗ = 2. (10.7.38)

We take the dot product of (10.7.37) with each of N, N∗, and t to derive

2β = N · ∂N
∂t

=
1

2
(N ·N) = 0, 2α = N∗ · ∂N

∂t
. (10.7.39)

Consequently,

2(α+ α∗) =
∂

∂t

(
N ·N∗) = 0, (10.7.40)

and hence, α must be purely imaginary, so that α = iR, where R is real. Finally,
since ∂

∂t (N · t) = 0,

γ = t · ∂N
∂t

= −N · ∂t
∂t

= − i

2
N ·

(
ψsN

∗ − ψ∗
sN

)
, (10.7.41)

so that γ = −iγs. It turns out that

∂N

∂t
= i(RN− ψst). (10.7.42)

The time derivative of (10.7.31) and the s derivatives of (10.7.42) give

Nst =
i

2

(
ψψ∗

sN− ψψsN
∗)− t

∂ψ

∂t
, (10.7.43)

Nts = N

(
iRs −

i

2
ψsψ

∗
)
− i

2
ψψ∗

sN− i(Rψ + ψss)t. (10.7.44)
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Equating the components of these two expressions yields

∂R

∂s
=

1

2
(ψ∗ψs + ψψ∗

s) (10.7.45)

and
∂ψ

∂t
− i

∂2ψ

∂s2
− iRψ = 0. (10.7.46)

Integrating (10.7.45) gives the value of R as

R =
1

2

[
ψψ∗ +A(t)

]
, (10.7.47)

where A(t) arises due to integration. Substituting the value of R in (10.7.46) leads
to the nonlinear Schrödinger equation

iψt + ψss +
1

2

[
|ψ|2 +A(t)

]
ψ = 0, (10.7.48)

where A(t) can be eliminated by the transformation

u =
1

2
ψ exp

[
− i

2

∫ t

0

A(t′) dt′
]
. (10.7.49)

This transformation is nothing but a shift of the origin of integration in (10.7.30ab).
Therefore, without loss of generality, we may set A = 0 in (10.7.48). Consequently,
(10.7.48) reduces to the standard NLS equation

iψt + ψss +
1

2
|ψ|2ψ = 0. (10.7.50)

We obtain a solitary wave solution which propagates steadily with a constant
velocity c along the filament which is a straight line at infinity, that is,

κ → 0 as s → ∞. (10.7.51)

Thus, in the frame of reference, κ and τ are functions of ξ = s− ct, that is,

ψ = κ(ξ) exp

[
i

∫ s

0

τ(ξ) ds′
]
. (10.7.52)

The real and imaginary parts of (10.7.48) give, respectively,

−cκ
[
τ(ξ)− τ(−ct)

]
= κ′′ − κτ2 +

1

2
κ
(
κ2 +A

)
(10.7.53)

and
cκ′ = 2κ′τ + κτ ′. (10.7.54)

Integrating (10.7.54) and using (10.7.51) to determine the constant of integration
gives (c − 2τ)κ = 0, which yields τ = τ0 = 1

2c since κ �= 0. This means that the
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torsion is constant along the vortex filament and the velocity of propagation along
the filament is twice the torsion. The shape of the vortex filament corresponding to
the single solitary wave of the NLS equation, τ = 1, κ = 2 sech s, is shown in
Figure 10.2. Several other figures have been presented by Hasimoto (1972).

Finally, we use (10.7.51) to integrate (10.7.53) so that the solution becomes

κ(ξ, t) = 2ν sech(νξ) = 2ν sech
[
ν(s− ct)

]
, (10.7.55)

provided that A is a constant related to τ0 and ν by A = 2(τ20 − ν2). The actual
shape of the filament is obtained from (10.7.55) by setting τ0 = 1

2c. Physically,
the solution represents a helical curve of constant torsion τ0 with a curvature κ that
decreases from a maximum value 2ν at the point s = ct to zero, as |s| → ∞. This
single loop of helical motion moves along the vertex line with a velocity c = 2τ0.

Example 10.7.4 (Langmuir Solitons and Their Instability). We consider one-dimen-
sional Langmuir waves propagating in a plasma of cold ions and hot electrons. We
assume that the electrons respond adiabatically to high frequency motions. Using
the standard notation for various quantities, which are similar to those involved in
Example 9.3.1, the equations of motion for the electrons are given by

∂ne

∂t
+

∂

∂x
(neue) = 0, (10.7.56)

∂ue

∂t
+ ue

∂ue

∂x
= − eE

me
−
(
3v2Te

ne

)
∂ne

∂x
, (10.7.57)

∂E

∂x
= 4πe(ni − ne). (10.7.58)

We decompose the various quantities into a high-frequency part and a low-
frequency part characterized by the time scales ω−1

pe and ω−1
pi , respectively, so that

ne = n0 + n� + neh, ni = n0 + n�, E = Eh + E�, (10.7.59)

where neh and Eh refer to the high-frequency perturbations and n� and E� denote
the low-frequency perturbations. Assuming charge neutrality in the low-frequency
motions, equations (10.7.56)–(10.7.58) reduce to the form

∂neh

∂t
+

∂

∂x

{
(n0 + n�)ue

}
= 0, (10.7.60)

∂ue

∂t
= −eEh

me
− 3v2Te

(n0 + n�)

∂neh

∂x
, (10.7.61)

∂Eh

∂x
= −4πeneh. (10.7.62)

Eliminating ue from (10.7.60) and (10.7.61) gives

∂2neh

∂t2
− (n0 + n�)

[(
e

me

)
∂Eh

∂x
+

3v2Te

(n0 + n�)

∂2neh

∂x2

]
= 0, (10.7.63)
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Fig. 10.2 (a) Shape of the vortex filament, (b) projection of the curve on the (x, z)-plane, and
(c) projection of the curve on the (x, y)-plane.
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which is, by (10.7.62),

∂2Eh

∂t2
+ ω2

pe

(
1 +

n�

n0

)
Eh − 3v2Te

∂2Eh

∂x2
= 0, (10.7.64)

where

ω2
pe =

4πe2n0

me
.

Equation (10.7.64) describes the trapping of a Langmuir wavepacket in density
cavities. We assume that Eh can be decomposed into a fast time-varying component
and a slow modulation, that is, we seek a solution in the form

Eh(x, t) = E(x, t) exp(−iωpet), (10.7.65)

where E(x, t) has a slow modulation in time t. Substituting (10.7.65) in (10.7.64)
gives an equation for the modulation function E(x, t),

iωpe
∂E
∂t

+
3

2
v2Te

∂2E
∂x2

=
1

2

(
ω2
pe

n�

n0

)
E . (10.7.66)

This equation is based on the hypothesis that the effects of nonlinearity and finite
temperature appear as corrections of the same order to the linear dispersion relation
of cold plasmas near cutoff values of the wavenumber.

Based on the assumption that electrons respond isothermally to low-frequency
motions, the low-frequency motions of plasma are given by

e

me
E� = − v2Te

(n0 + n�)

∂n�

∂x
− ve

∂ue

∂x
, (10.7.67)

∂n�

∂t
+

∂

∂x

[
(n0 + n�)ui

]
= 0, (10.7.68)

∂ui

∂t
− e

mi
E� = 0, (10.7.69)

where electron inertia is ignored.
Eliminating ui from (10.7.68), (10.7.69) yields

∂2n�

∂t2
+

∂

∂x

[
(n0 + n�)

e

me
E�

]
= 0. (10.7.70)

We next use (10.7.67) to eliminate E� from (10.7.70), so that equation (10.7.70)
becomes

∂2n�

∂t2
− c2s

∂2n�

∂x2
=

(
n0me

mi

)
∂

∂x

(
ue

∂ue

∂x

)
. (10.7.71)

Averaging over the time scale ω−1
pe , the low-frequency contribution of (ue

∂ue

∂x ) is
given by
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〈
ue

∂ue

∂x

〉
=

1

4

∂

∂x

(〈
|ue|2

〉)
=

(
e

2ωpempe

)2
∂

∂x

(
|Eh|2

)

= (16πmen0)
−1 ∂

∂x

(
|E|2

)
. (10.7.72)

This represents the fast time-averaged low-frequency ponderomotive force generated
by the self-interaction of the high-frequency part of the electric field. This force
moves the electrons out of the plasma regions where the electric field has a local
maximum. In view of (10.7.72), equation (10.7.71) takes the form

∂2n�

∂t2
− c2s

∂2n�

∂x2
=

1

16πmi

∂2

∂x2
(
|E|2

)
. (10.7.73)

This equation describes the formulation of density cavities due to the ponderomotive
force related to the electric field.

It is convenient to use the nondimensional quantities defined by

x∗ =
x

λD
, t∗ = ωpet, n∗

� =
n�

n0
, and E∗ =

E

4
√
πn0KTe

.

In terms of these dimensionless quantities, dropping the asterisks, equations (10.7.66)
and (10.7.73) represent Zakharov’s equations

iε
∂E
∂t

+
3

2

∂2E
∂x2

=
1

2
n�E , (10.7.74)

∂2n�

∂t2
− ∂2n�

∂x2
=

1

4

∂2

∂x2
(
|E|2

)
, (10.7.75)

where ε = (me

mi
)

1
2 .

We seek a stationary wave solution of this system as

n�, E ∼ φ(x−Mt) = φ(ξ), (10.7.76)

so that equation (10.7.75) reduces to

4n�

(
1−M2

)
= −|E|2. (10.7.77)

Using (10.7.77), equation (10.7.74) gives the nonlinear Schrödinger equation

iεEt +
3

2
Exx + γ|E|2E = 0, (10.7.78)

where γ = 1
8 (1−M2)−1.

We write

E(x, t) = ψ(ξ) exp

[
i

(
εMx

3
− ωt

)]
(10.7.79)
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in (10.7.78) so that ψ satisfies the equation

ψ′′ − 2

3

(
M2

6
− εω

)
ψ +

2

3
γψ3 = 0. (10.7.80)

This nonlinear equation admits a solution in the form

ψ(ξ) =
1

8

[
1

2γ

(
M2

6
− εω

)] 1
2

sech

[{
2

3

(
M2

6
− εω

)} 1
2

ξ

]
, (10.7.81)

so that (10.7.79) gives the explicit representation of E(x, t). Physically, the solu-
tion represents envelope solitons only at subsonic speeds (M < 1). These envelope
solitons travel faster, but become smaller and narrower as M increases. Schmidt
(1975) investigated the instability and collapse of Langmuir solitons in some de-
tail and found that the envelope solitons of Zakharov’s equations are stable to one-
dimensional perturbations, but unstable to two-dimensional perturbations. Consider-
able research on envelope solitons was done by several authors including Karpman
(1971, 1975a, 1975b), Gibbons et al. (1977), Rowland et al. (1981), and Infeld and
Rowlands (1990).

Example 10.7.5 (Motion of an Electron Fluid). The basic equations of motion for the
one-dimensional adiabatic motion of an electron fluid are

∂n

∂t
+

∂

∂x
(nu) = 0, (10.7.82)

∂u

∂t
+ u

∂u

∂x
+

1

mn

∂

∂x
(nT )− e

m

∂φ

∂x
= 0, (10.7.83)

d

dt

(
n−2T

)
= 0, (10.7.84)

−∂2φ

∂x2
+ 4πe(n− n0) = 0, (10.7.85)

where n and u are the density and the flow velocity, respectively, φ is the electrostatic
potential, and T is the electron temperature.

Eliminating T from (10.7.83), (10.7.84) gives

∂u

∂t
+ u

∂u

∂x
+

(
3T0

mn2
0

)(
n
∂n

∂x

)
− e

m

∂φ

∂x
= 0, (10.7.86)

where n0 and T0 are the average values of n and T , respectively.
We introduce the transformation of variables

ξ = ε(x− Ct), τ = ε2t, and θ = kx− ωt, (10.7.87)

where ε is a small parameter and C is a constant to be determined. We expand n, u,
and φ in powers of ε as

n = n0 + εn(1)(ξ, τ, θ) + ε2n(2)(ξ, τ, θ) + · · · . (10.7.88)
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Substituting
φ(1) = ψ(ξ, τ) exp(iθ) + c.c. (10.7.89)

from the first-order equation, we obtain the dispersion relation

ω2 = ω2
p +

(
3T0

m

)
k2, (10.7.90)

where ωp = (4πe2n0/m)
1
2 .

The compatibility condition of the second-order equation gives

C =
∂ω

∂k
=

(
3T0k

mω

)
. (10.7.91)

Similarly, the compatibility condition of the third-order equation yields

i
∂ψ

∂τ
+

3

2

(
T0ω

2
p

mω3

)
∂2ψ

∂ξ2
−
(
e

m

)2(
T0k

6

mωω6
p

)(
16ω2 − ω2

p

)
|ψ|2ψ

+

(
ω

n0

)
R(ξ, τ)ψ = 0, (10.7.92)

where R is an arbitrary function of ξ and τ . If R is independent of ξ, equation
(10.7.92) reduces to the form

i
∂ψ

∂ζ
+ α

∂2ψ

∂η2
+ β|ψ|2ψ + iγψ = 0, (10.7.93)

where η = ε(ξ − Ct) = εξ − Cτ , ζ = ε2t = ετ , and α, β, and γ are known
constants given by Sanuki et al. (1972). In this case, αβ < 0, and γ is a damp-
ing coefficient. Equation (10.7.93) is called the generalized nonlinear Schrödinger
equation since it is modified by including the Landau damping. Sanuki et al. (1972)
derived the equation (10.7.93) based on the Vlasov equation to describe the slow,
nonlinear modulation of the amplitude of plasma waves including the effects of Lan-
dau damping.

Example 10.7.6 (Nonlinear Quasi-Harmonic Waves and Modulational Instability).
We derive equations for quasi-harmonic waves in a nonlinear medium from the

nonlinear Klein–Gordon equation

utt − c2uxx + d2u+ σu3 = 0, (10.7.94)

where c, d, and σ are constants. We seek a quasi-harmonic wave solution of (10.7.94)
with a slowly varying complex amplitude A(x, t) in the form

u(x, t) = A(x, t) exp
[
i(ω0t− k0x)

]
+ c.c., (10.7.95)

with frequency ω0 and wave number k0 chosen so as to satisfy the dispersion relation
of the linear equation (10.7.94) with σ = 0
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ω2 = d2 + c2k2. (10.7.96)

We next calculate the second-order derivatives and the cubic term in (10.7.94) so
that

utt =
(
Att + 2iω0At − ω2

0A
)
eiθ0 + c.c.,

uxx =
(
Axx − 2ik0Ax − k20A

)
eiθ0 + c.c.,

u3 = A3e3iθ0 +A∗3e−3iθ0 + 3A|A|2eiθ0 + 3A∗|A|2e−iθ0 ,

where θ0 = ω0t − k0x. Substituting these expressions into (10.7.94) and equating
the coefficients of exp(iθ0) yields an equation for the complex amplitude A(x, t)

i(At + cgAx) +
1

2ω0

(
Att − c2Axx

)
+ α|A|2A = 0, (10.7.97)

where cg = c2(k0/ω0) = (dωdk )k=k0 is the group velocity and α = ( 3σ
2ω0

) is the
coefficient of cubic nonlinear term.

We use the variables ξ = x − cgt, τ = t in (10.7.97) so that the wave envelope
varies slowly in the reference frame moving with the group velocity and equation
(10.7.97) reduces to the nonlinear Schrödinger equation

iAτ − βAξξ + α|A|2A = 0, (10.7.98)

where β = c2g − c2 = 1
2 (

d2ω
dk2 ) represents the dispersion parameter.

We next use the transformation A = a exp(iφ) to obtain the system of equations
for the real variables a = a(ξ, t) and φ = φ(ξ, t) in the form

φt − βφ2
ξ + βa−1aξξ = αa2, (10.7.99)

at − β(2aξφξ + aφξξ) = 0. (10.7.100)

We next use a new variable U = −2βφξ proportional to the variation of the wave
number. This leads to the system of equations

Ut + UUξ = −q(a2)ξ + 2β2 ∂

∂ξ

(
1

a
aξξ

)
, (10.7.101)

(a2)t + (a2U)ξ = 0, (10.7.102)

where q = 2αβ = α(d
2ω

dk2 ) is the product of the dispersion and nonlinear parame-
ters. The instantaneous frequency ω and local wavenumber k of the modulated wave
(10.7.95) are

ω = ω0 + φt, k = k0 − φξ = k0 +
1

2β
U(ξ, t). (10.7.103)

It follows from (10.7.98)–(10.7.102) that the properties of nonlinear envelope
waves are described by the relation between the dispersion parameter β and the non-
linear parameter α. We can use the analysis of nonlinear geometrical optics to study
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nonlinear envelope waves. We consider only slow modulation so that the term with
the third derivative corresponding to the group dispersion may be neglected. Conse-
quently, the modulation equations (10.7.101)–(10.7.102) assume the hydrodynamic
form

Ut + UUξ = −q
(
a2
)
ξ
,

(
a2
)
t
+
(
Ua2

)
ξ
= 0. (10.7.104)

This reveals that, unlike linear theory, the frequency modulation depends on the vari-
ation of amplitude even in the geometrical approximation.

We now investigate the modulational instability, that is, the behavior of small per-
turbations of the amplitude and the frequency of a stationary harmonic wave speci-
fied by the constant values a = a0 and U = U0 = 0. We next examine the instability
of the monochromatic wave by linearizing the system (10.7.103) in the neighbor-
hood of stationary values and then putting a = a0 + a′(ξ, τ) and U = U ′(ξ, τ) so
that a′/a0 � 1 and U ′ � 1. These allow us to obtain a linear system

U ′
τ + 2qa0a

′
ξ = 0, a′τ +

1

2
a0U

′
ξ = 0. (10.7.105)

We seek solutions of (10.7.104) in the form of harmonic waves a′, U ′ ∼
exp[i(Ωτ − κξ)] for the real wave number κ. This leads to the dispersion relation of
the wave envelope in the form

Ω2 = qa20κ
2, or Ω = ±√

q(a0κ). (10.7.106)

Thus, if q > 0, the frequency Ω has two real values, that is, the system (10.7.103)
is hyperbolic and the velocity of wave propagation takes two possible real values
±√

qa0. Consequently, the small perturbation may be represented as a superposition
of slow and fast waves, and the wave is stable in this case.

On the other hand, if q < 0, the system (10.7.103) is elliptic and the fre-
quencies are imaginary, and any small initial perturbation will grow in time as
exp(

√
|q|a0τ) → ∞ as τ → ∞, that is, a small perturbation becomes unstable and

self-modulation occurs. Physically, the effect of the self-modulation is described by
the growth of the sideband components of the wave spectrum into which the energy
is transferred from the main component. Thus, the modulational instability occurs
provided the nonlinear parameter α and the dispersion parameter β have opposite
signs, that is, this product

q = 2αβ = α
d2ω

dk2
< 0. (10.7.107)

This is known as the Lighthill Criterion for modulational instability, and it means
that the dispersive and nonlinear effects compensate each other so that the spec-
tral components corresponding to modulation interact synchronously with the carrier
wave and grow.

There are many physical examples of self-modulation. For example, self-modul-
ation occurs for nonlinear Stokes waves on the surface of deep water, and eventually
leads to their decomposition into wave packets. Such phenomena have been observed
in a plasma and in electromagnetic waves. The modulational instability also occurs
for flexural waves in thin rods and plates.
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10.8 Applications to Nonlinear Optics

Nonlinear optics deals with the study of how high intensity light interacts with and
propagates through matter. The discovery of laser (light amplification by stimulated
emission of radiation) in 1960 led to a remarkably exciting development in the field
of nonlinear optics. When a strong laser beam propagates in a medium, it may happen
that the refractive index of the medium may change due to various effects produced
by the interaction of the beam with the medium. In fact, it is found that the refractive
index n is a function of the intensity of the light. One of the most interesting topics
in nonlinear optics is the self-focusing of beams which can be described by the non-
linear Schrödinger equation. Evidently, this equation and its solitary wave solution
play a fundamental role in this new, rapidly growing field of nonlinear optics.

We start with the classical theory for the propagation of light based on the
Maxwell equations which, for the first time, combine a unified treatment of elec-
tric and magnetic fields. The Maxwell equations for the electric and magnetic fields
E and H and the electric and magnetic induction fields D and B are

∇×E = −∂B

∂t
, (10.8.1a)

∇×H =
∂D

∂t
+ j, (10.8.1b)

∇ ·D = ρ, (10.8.2a)

∇ ·B = 0, (10.8.2b)

where ρ and j are electric charge and current densities, respectively. The law of
conservation of charge is associated with the Maxwell equations. Adding the time
derivative of (10.8.2a) with the divergence of (10.8.1b) gives

∂ρ

∂t
+∇ · j = 0. (10.8.3)

Integrating this equation over an entire volume V yields

∂

∂t

∫
V

ρ dV = −
∫
V

∇ · j dV = −
∫
S

j · n dS. (10.8.4)

This expresses the fact that an increase or decrease of charge in a given volume V is
affected by the transport of charge, that is, the flow of current, through the boundaries
of V . Since we deal with dielectrics in which there are no free charges and in which
no current flows, we get ρ = 0 and j = 0. Equations (10.8.1a), (10.8.1b), (10.8.2a),
(10.8.2b) combined with constitutive relations connecting B, H, D, and E represent
the field equations. The constitutive equations are

B = μH, D = ε0E+P = εE, (10.8.5ab)

where μ = (ε0c
−2) and ε (both of which are constants) are called the magnetic

permeability and dielectric constants, respectively, and c is the speed of light in a
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vacuum. The vector P is called the polarization, and it is zero in a vacuum. When
light propagates in a dielectric medium, the electric field causes distortion in the
atomic structure, generating local dipole moments, and thereby induces a polariza-
tion field P which depends on the electric field E. For small to moderate values of
the electric field amplitude and if there is no resonance between the electric field and
the medium, P is a linear function of E. In an isotropic medium which responds
instantaneously to the electric field, P = ε0χE, where χ is called the electric sus-
ceptibility.

Taking the curl of (10.8.1a) and utilizing (10.8.1b) and (10.8.2a) gives

∇2E− 1

c2
∂2E

∂t2
−∇(∇ ·E) =

(
ε0c

2
)−1 ∂2P

∂t2
. (10.8.6)

This represents the propagation of the electric field, valid for both linear and nonlin-
ear wave propagation. Since P = ε0χE, and χ is a constant, (10.8.6) reduces to the
wave equation

∇2E−
(
n

c

)2
∂2E

∂t2
= 0, (10.8.7)

where n =
√
1 + χ(> 1) is a nondimensional quantity called the refractive index

of the medium. Equation (10.8.7) shows that the electric field E propagates with the
velocity (c/n).

We seek singly polarized, linear plane wave solutions of equation (10.8.6) in the
form

E(x, t) = ê
[
A exp(iθ) + c.c.

]
, (10.8.8)

where ê is a unit vector in the direction of polarization of E, A is a complex ampli-
tude, θ = k ·x−ωt, k = (k, �,m), and c.c. stands for the complex conjugate. These
waves are called monochromatic waves because they contain only one wavevector
k and one frequency ω. Such solutions (10.8.8) exist for A �= 0, provided that the
dispersion relation

D(k, ω)A =

[(
k2 + �2 +m2

)
−
(
nω

c

)2]
A = 0 (10.8.9)

is satisfied.
For nonlinear dispersive media, D also depends on the wave amplitude. In gen-

eral, D = 0 can be solved for any one of the variables, k, �, m, and ω in terms of the
other three. In optics, it is customary to solve for the wavenumber in terms of fre-
quency because the refractive index n depends on the frequency, that is, n = n(ω).
For linear or nonlinear waves, the dispersion equation (10.8.9) is algebraic. For
wavepackets in a linear dispersive media, (10.8.9) is a linear partial differential equa-
tion for A that describes how the wavepacket envelope A moves with the group ve-
locity and is modified by dispersion and diffraction. However, for wavepackets in
a nonlinear dispersive medium, (10.8.9) represents a nonlinear partial differential
equation for the complex wave envelope A. For the simplest nontrivial case, A satis-
fies the nonlinear Schrödinger equation, which is a very basic equation in nonlinear
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optics. Moreover, the dispersion relation is one of the most fundamental concepts in
the theory of wave propagation.

The dispersion relation (10.8.9) is also valid when the refractive index of the
medium varies slowly, that is, ∇n = O(nL ) �

n
λ , where L is the distance over which

n changes. We assume that the electric susceptibility χ, and hence, the refractive
index n are slowly varying functions of the space variable x, and we also suppose
that E = ŷE is polarized in the y-direction. This implies that equation (10.8.7) holds
for the scalar field E(x, z, t). We seek a solution

E(x, z, t) = A exp(iθ) + c.c.+ εE1, (10.8.10)

where k = (k,m) = ∇θ and ω = −θt denote the wavevector and frequency of the
electromagnetic wave, and ε = λ

L � 1.
Since n varies slowly with x, that is, n = n(X = εx), where ε = λ

L � 1,
hence, k and ω also vary slowly. If ω is assumed to be constant, and since k = θx
and m = θz , then kz = mx holds. Since k is independent of z, we require that m
also be constant, and hence, only the wavenumber k can change in the direction of
variable refractive index. Substituting the solution (10.8.10) in equation (10.8.7) and
assuming that n, A, and k are slowly varying functions of x, that is, functions of X ,
gives the dispersion relation (10.8.9) to leading order

D(k, 0,m, ω)A =

[(
k2 +m2

)
− n2(X)ω2

c2

]
A = 0. (10.8.11)

We also find that

O(ε) : ∇2E1 −
(
n

c

)2
∂2E

∂t2
=

(
−2ik

∂A

∂X
− i

dk

dX
A

)
eiθ + c.c. (10.8.12)

To eliminate solutions of E1 that grow like z exp(±iθ), we must set

2k
dA

dX
+

dk

dX
·A = 0, (10.8.13)

or (
kA2

)
= const. =

(
k0A

2
0

)
. (10.8.14)

Therefore, k(x) and A(x)are given by

k(x) = 2

[
n2(X)

ω2

c2
−m2

] 1
2

, A(x) =

(
k0
k

) 1
2

A0, (10.8.15ab)

provided that k �= 0.
Equation (10.8.14) is called the eikonal equation, and it represents the con-

servation of wave action. This method of analysis was first proposed by Wentzel,
Kramers, Brillouin, and Jeffrey and is known as the WKBJ method. Initially, with
(nωc ) > m, the wave cannot propagate, and k > 0. However, if (n0ω

c ) < m, there
exists a point x, called a caustic, at which n(x1) · ω

c = m and k = 0. At this
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point, the light rays turn around and the electromagnetic wave is reflected back to
the medium with k = −

√
[(nωc )2 −m2]. The exact nature near x = x1 cannot be

determined by the WKBJ method because k → 0, the amplitude A increases like
O(k−

1
2 ), and the WKBJ method fails. In this case, we can approximate n2 locally

by {n2(x1)− a(x− x1)} and seek a solution of the form

E(x, t) = B(x) exp
[
i(kz − ωt)

]
+ c.c., k =

ωn0

c
. (10.8.16)

It turns out that B(x) satisfies the Airy differential equation

Bxx −
(
ω

c

)2

a(x− x1)B = 0. (10.8.17)

When x > x1, we obtain a solution of (10.8.17) which decays exponentially.
On the other hand, when x < x1, the solution of (10.8.17) has two components:
one corresponds to an incoming wave with the wavenumber (−k, 0,m), where k =

−{(nωc )2−m2} 1
2 and the amplitude is given by (10.8.15ab), and the other represents

the reflected wave with the wavenumber (k, 0,m). This reveals the fact that light rays
turn toward regions of higher refractive index and turn away from regions of lower
refractive index. This fact is widely used in the theory of the propagation of light
in dielectric materials and has tremendous ramifications. First, the correction to the
refractive index is an increasing function of the field intensity, that is,

n = n0 + n2|A|2 = n0

(
1 +

n2

n0
|A|2

)
, n2 > 0. (10.8.18)

If the medium is linear, then n2 = 0. The electromagnetic waves are governed by
the standard linear wave equation. So the quantity δ = n2

n0
|A|2 measures the strength

of nonlinearity, and produces what is called the Kerr effect. When light propagates in
a Kerr dielectric medium, the light continues to focus in regions of greatest intensity.
This instability is called the self-focusing instability in optics, and it is widespread in
nature. In certain cases, a wavetrain of amplitude which is uniform in space and time
becomes unstable, and light intensity concentrates in collapsing filaments. If there is
only one transverse direction, a balance between diffraction and nonlinearity leads
to the formation of solitons. Hasegawa and Tappert (1973) proved, mathematically,
that an optical pulse in a dielectric fiber forms an envelope soliton, that is, the pulses
of light either do not change shape or change shape periodically. Mollenauer et al.
(1986) demonstrated this effect experimentally. An interesting discussion of these
developments has been given by Hasegawa (1990). In two transverse dimensions,
the collapse is no longer confined, and the light filament continues to intensify.

In reality, light waves are not exactly monochromatic. They usually consist of a
linear combination of plane waves whose wavevectors and frequencies are confined
to a narrow band of order ε about some central values k0 and E0, where 0 < ε ≤ 1.
Such plane waves are called wavepackets represented in the form

E = ê
[
A(x, t) exp

{
i(k0 · x− ωt) + c.c.

}]
+O(ε), (10.8.19)
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combined with the dispersion relation

D(k0, �0,m0, ω0) = 0, (10.8.20)

where the wave amplitude A(x, t) is a slowly varying function of space and time,
that is,

∂A

∂x
= ε|k0|2A � |k0|A. (10.8.21)

We introduce the notions of local wavevector k and local frequency ω, and write
the complex amplitude in the polar form A = a exp(iφ), where a and φ are real.
Then the phase of the leading order contribution to the electric field is given by

θ = k0 · x− ω0t+ φ(x, t), (10.8.22)

so that

k = ∇θ = k0 +∇φ and ω = −θt = ω0 − φt. (10.8.23ab)

Evidently,
∂k

∂t
+∇ω = 0. (10.8.24)

This represents the conservation of wavenumbers.
We consider the evolution of the wavepackets (10.8.19), with k0 = (0, 0,m0)

and ê = (0, 1, 0) of an electric field E that satisfies equation (10.8.7). For simplicity,
we first consider the case of constant n. Substituting (10.8.19) in (10.8.7) gives

2im0
∂A

∂z
+

∂2A

∂z2
+

∂2A

∂x2
+ 2iω0

∂A

∂t
−
(
n

c

)2
∂2A

∂t2
= 0, (10.8.25)

where m0 = (nω0

c ). Since each derivative is of order ε, the dominant terms in
(10.8.25) are the first and the fourth, so, to the leading order, (10.8.25) yields

Az +

(
n

c

)
At = 0. (10.8.26)

Thus, to a first-order approximation, A is a function of {t − (nc )z} and is constant
when {t− (nc )z} is constant, that is, in a frame of reference moving with the group
velocity

Cg = ∇kω =

(
0, 0,

c

n

)
. (10.8.27)

In view of (10.8.26), it turns out that Azz = (nc )
2Att, and so, to order ε3, equa-

tion (10.8.25) becomes

∂A

∂z
+

(
n

c

)
∂A

∂t
−
(

i

2m0

)
∂2A

∂x2
= 0. (10.8.28)

This is usually known as the paraxial equation because the rays, the normals to
the planes of constant phase, of all the plane waves in the wavepacket are nearly
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parallel. Invoking the change of variables to a frame of reference moving with the
group velocity, z = z, τ = {t− (nc )z}, equation (10.8.28) assumes the form

Az −
(

i

2m0

)
Axx = 0. (10.8.29)

This equation describes the dispersion of a wavepacket in the transverse direction.
Such a phenomenon in optics is called wave diffraction.

We next recall the dispersion relation (10.8.9) with constant refractive index
which was originally derived by using A exp{i(k · x − ωt)} in (10.8.7). If, in-
stead of substituting a plane wave for E, we insert the wavepacket (10.8.19) with
k0 = (0, 0,m0), we obtain a modified dispersion relation,

D

(
−i ∂

∂x
,−i ∂

∂y
,m0 − i

∂

∂z
, ω0 + i

∂

∂t

)
A(x, y, z, t) = 0. (10.8.30)

This is an equation for the slowly varying wave envelope A.
We now utilize the frequency dependence of the refractive index, and use D =

(k2 + �2 +m2)− {n(ω)ω
c }2, so that equation (10.8.30) becomes

[(
−i ∂

∂x

)2

+

(
−i ∂

∂y

)2

+

(
m0 − i

∂

∂z

)2

− 1

c2

{
n

(
ω0 + i

∂

∂t

)(
ω0 + i

∂

∂t

)}2]
A(x, t) = 0. (10.8.31)

To first order, we recover the dispersion relation for the plane waves

m2
0 = n2(ω0)

ω2
0

c2
. (10.8.32)

To the order of ε, we obtain the equation

∂A

∂z
+

[
∂

∂ω

{
ωn(ω)

c

}]
ω=ω0

∂A

∂t
= 0. (10.8.33)

This is consistent with the fact that, to the leading order, the wave envelope A of a
wavepacket propagates with the group velocity Cg, where C−1

g = (∂m∂ω )0.
Next, we expand (10.8.30) to order ε2 and retain all terms up to second derivative

to obtain the equation

(2im0)Az +Axx +

(
2i

c2

)
ω0n(ω0)

{
∂

∂ω
(nω)

}
0

At +Azz

− 1

c2

[{
∂

∂ω
(nω)

}2

0

+ (n0ω0)

{
∂

∂ω2
(nω)

}
0

]
Att = 0. (10.8.34)
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Using (10.8.33), we can simplify (10.8.34) in the form

Az +

(
2m

2ω

)
0

At +
1

2

[(
∂2m

∂k2

)
0

Axx +

(
∂2m

∂�2

)
0

Ayy +

(
∂2m

∂ω2

)
0

]
Att = 0.

(10.8.35)
We now incorporate the effects of small variations of the refractive index to the

order ε2 in (10.8.35) by replacing n in (10.8.31) by (n+ δn). Consequently, an extra
term c−2(2nω2

0δn)A will be included in equation (10.8.34), and, if we divide across
by (2im0), an additional term −iδn(ω0

c )A = −i( δnn )m0A is generated in (10.8.35),
and this term becomes −i(∂m∂n )0δnA. Thus, equation (10.8.35) reduces to the form

Az +

(
∂m

∂ω

)
0

At +
i

2

[(
∂2m

∂k2

)
0

Axx +

(
∂2m

∂�2

)
0

Ayy +

(
∂2m

∂ω2

)
0

Att

− i

(
∂m

∂n

)
(δn)

]
A = 0. (10.8.36)

This equation is widely used in nonlinear optics.
Finally, we derive the nonlinear Schrödinger equation for the evolution of a

wavepacket envelope A(x, t) in a dispersive medium with a nonlinear refractive in-
dex n given by (10.8.18). The nonlinear dispersion relation is then given by

D
(
k, �,m, ω, |A|2

)
A =

{(
k2 + �2 +m2

)
−
(
nω

c

)2}
A = 0. (10.8.37)

For a wave amplitude A of order ε, so that Azz = O(ε3), |A|2A = O(ε3), and
hence, the variation of δn in refractive index is of order ε2, the resulting equation
for the wave envelope A is the same as (10.8.36) with δn = n2|A|2. To include
the effects of slow variations of space variables and amplitude, we replace δn in
(10.8.36) by δn(x, y) + n2|A|2, so that dropping the subscripts zero on m and the
coefficients, equation (10.8.36) becomes

Az +

(
∂m

∂ω

)
At +

i

2

[(
∂2m

∂k2

)
Axx +

(
∂2m

∂�2

)
Ayy +

(
∂2m

∂ω2

)
Att

]

−
(
im

n

)(
δn+ n2|A|2

)
A = 0. (10.8.38)

Or equivalently,

Az+

(
∂m

∂ω

)
At+

i

2
(αAxx+βAyy+γAtt)−

(
im

n

)(
δn+n2|A|2

)
A = 0, (10.8.39)

where the three coefficients of dispersive terms are

α =
∂2m

∂k2
, β =

∂2m

∂�2
, and γ =

∂2m

∂ω2
. (10.8.40)
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If the associated carrier wave is proportional to exp{i(k · x− ωt)}, where

k = (0, 0,m) and m =
n(ω)n

c
, (10.8.41)

then
∂m

∂ω
=

1

c

∂

∂ω
(nω) and α = β = − 1

m
. (10.8.42)

Thus, the resulting nonlinear Schrödinger equation becomes

Az +

{
1

c

∂

∂ω
(nω)

}
At −

i

2m
(Axx +Ayy) +

{(
i

2c

)
∂2

∂ω2
(nω)

}
Att

−
(
im

n

)(
δn+ n2|A|2

)
A = 0. (10.8.43)

The above analysis reveals that the NLS equation (10.8.39) or (10.8.43) describ-
ing the self-focusing of light beams is the fundamental equation in nonlinear optics.

In particular, if A is independent of x, y, and t, and δn ≡ 0, the solution of the
resulting equation (10.8.39) is given by

A(z) = A0 exp

[
im

(
n2

n

)
|A0|2z

]
. (10.8.44)

This solution can be used to determine the wavenumber of the electric field
E = Ê[A(z) exp{i(mz − ωt)} + c.c.]. The value of this wavenumber is equal
to m(1 + n2

n |A|2) or ω
c (n+ n2|A|2). According to the theory of the NLS equation,

it also reveals that, if the product of (mn2) with any one of three dispersive coeffi-
cients α, β, or γ (that is, α = β = − 1

m and (mn2)(− 1
m ) = −n2) is negative, then

the amplitude-modulated solution (10.8.44) is definitely unstable.
In particular, if the wavepacket envelope A is independent of t with α = β =

− 1
m , equation (10.8.39) becomes

Az −
i

2m
(Axx +Ayy)−

(
im

n

)(
δn+ n2|A|2

)
A = 0. (10.8.45)

Further, if we assume that δn = 0, this equation reduces to the form

iAz +
1

2m
(Axx +Ayy) +

(
m

n

)
n2|A|2A = 0. (10.8.46)

If, initially, the field envelope A = A0(z) is independent of x and y, then a
small perturbation δA confined at some point causes the refractive index n2|A|2 to
increase there. The light rays from the neighboring regions continue to focus toward
this region, enhancing the intensity more and more there. As more light focuses
there, the refractive index becomes even higher, and even more light converges. Thus,
the effect of an increased refractive index leads to focusing instability in nonlinear
optics. However, this instability is not confined to transverse modulations. We now
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derive the nonlinear Schrödinger equation for a concentrated wave mode traveling in
a waveguide, and, for this model, there is no transverse dispersion but only dispersion
in the direction of the wave propagation. So, if we suppose thatA(z, t) is independent
of x and y with the fact that δn = 0, then (10.8.39) becomes

Az +

(
∂m

∂ω

)
At +

i

2

(
∂2m

∂ω2

)
Att − im

(
n2

n

)
|A|2A = 0. (10.8.47)

Obviously, the focusing instability occurs provided that the product (∂
2m

∂ω2 )×
(−mn2

n ) = −γmn2

n is positive. For the diffraction case, the product is (n2

n ) whose
sign depends on that of n2. In this case of wave propagation in an optical fiber, it
can be shown that n2 > 0 only if γ < 0. However, in general, γ can be positive
or negative in the neighborhood of resonance where the real part of the suscepti-
bility depends on frequency. These situations are referred to as normal dispersion
and anomalous dispersion, respectively. According to the general theory of the NLS
equation, there exists a stable soliton solution of (10.8.47) in nonlinear optical fibers.
Two solitons of different frequencies have different group velocities and pass through
each other without distortion. However, if two solitons have the same frequency, and
hence, the same velocity, they undergo a periodic oscillation.

There is a remarkable change in the properties of solutions of (10.8.39) when
two transverse dimensions and time are included. In the defocusing case n2 < 0
(n2γ > 0), uniform wavetrain solutions are neutrally stable. In fact, deformations
in the uniform wavetrains, in which intensity diminishes locally, neither grow nor
decay, but evolve as solitons of a different nature. These solitons are called dark
solitons because they have intensities lower than those of the ambient wavetrains.

We close this section by adding some brief comments on recent applications of
nonlinear optics to modern technology. The use of lasers ranges from high-density
data storage on optical disks to greatly improved surgical techniques in ophthalmol-
ogy, neurosurgery, and dermatology. The discovery of optical fibers led to a revolu-
tionary growth in modern telecommunications. There has been a tremendous impact
of optical fibers on the fundamental study of nonlinear optical interactions. Once
high-quality, low-loss, single-mode fibers became available in the 1980s, the num-
ber of possible new applications has grown in a remarkable fashion. Soliton lasers,
modulational instability lasers, SBS lasers, and various kinds of optical devices were
built, and the open cavity resonator marked the critical breakthrough in the design
of working lasers. It is clear that nonlinear optics is likely to revolutionize future
telecommunications and computer technology.

10.9 Exercises

1. (a) Show that the dispersion relation (7.2.11b) for the Boussinesq equation
(7.2.11a) in the long-wave approximation (k → 0) is given by

ω = ω(k) = c0k

(
1− 1

2
β2k2

)
.
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(b) Hence, show that the Fourier integral representation around k0 = 0 is ap-
proximately equal to

φ(x, t) ∼
∫
δk

F (δk) exp

[
i

{
δk(x− ct) +

1

2
cβ2(δk)3t

}]
d(δk).

(c) Introduce the slow variables ξ = ε(x − ct) and τ = ε3t, where δk = 0(ε),
and then show that the long wave field φ(x, t) = A(ξ, τ) satisfies the linearized
KdV equation

Aτ +
1

2
cβ2Aξξξ = 0.

2. Show that the NLS equation

iut + uxx + |u|2u = 0

has the combined rational and oscillatory (Peregrine 1983) solution

u(x, t) =
{
1− 4(1 + 2it)/

(
1 + 2x2 + 4t2

)}
exp(it).

3. Show that the NLS equation in Exercise 2 has the Ma solitary wave solution (Ma
1979; Peregrine 1983) of the form

u(x, t) = a exp
(
ia2t

){
1 + 2m(m cos θ + in sin θ)/f(x, t)

}
for all real a and m, where n2 = (1 + m2), θ = 2mna2t, and f(x, t) =
n cosh(ma

√
2x) + cos θ.

4. Seek a traveling wave solution of the NLS equation in Exercise 2 in the form

u(x, t) = r exp
{
i(θ + ωt)

}
,

where r(x− ct) and θ(x− ct) are real functions and c and ω are real constants.
Prove that

θ′ =
1

2

(
c+

A

R

)
and (R′)2 = −2F (R),

where R = r2, F (R) = R3 − 2(ω − 1
4c

2)R2 + BR + A, and A and B are
arbitrary real constants of integration. Hence, show that there exists a solitary
wave solution of the form

u(x, t) = a exp

[
i

{
1

2
c(x− ct) + ωt

}]
sech

[
a√
2
(x− ct)

]
,

for all a2 such that

a2 = 2

(
ω − 1

4
c2
)
> 0.

5. Following the same method as given in Exercise 4, show that there exists a soli-
tary wave solution (Zakharov and Shabat 1973) of the NLS equation

iut + uxx − |u|2u = 0

with r2(ξ) = m − 2κ2 sech2(κξ) and c tan{θ(ξ)} = −2κ tanh(κξ) for all c,
where ξ = x− ct, ω = −m, and κ = 1

2 (2m− c2)
1
2 > 0.
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6. Show that an auto-Bäcklund transformation (Konno and Wadati 1975) for the
NLS equation

iut + uxx + 2|u|2u = 0

is the following pair of equations:

ux + vx = (u− v)
{
4λ2 − |u+ v|2

} 1
2 ,

ut + vt = i(ux − vx)
{
4λ2 − |u+ v|2

} 1
2

+
1

2
i(u+ v)

{
|u+ v|2 + |u− v|2

}
,

where u and v satisfy the equation. Hence, find the solitary wave solution of this
NLS equation by setting v = 0 for all x and t.

7. Derive the NLS equation for the local amplitude A(x, y, t) from the resonant
interaction equations (Phillips 1981; Debnath 1994) in the form

At + i

(
ω0

2k0

)
Ax + i

(
ω0

8k20

)
Axx − i

(
ω0

4k20

)
Ayy =

∫
ḃ exp(iθ) dk.

8. If m = [{n2(ω)(ω
2

c2 )} − (k2 + �2)]
1
2 , show that

∂m

∂k
=

∂m

∂�
= 0,

∂2m

∂k2
=

∂2m

∂�2
= − 1

m0
,

∂m

∂ω
=

[
∂

∂ω

(
nω

c

)]
0

,
∂2m

∂ω2
=

[
∂2

∂ω2

(
nω

c

)]
0

,

where the derivatives are computed at k = � = 0, m = m0 = n(ω0)(
ω0

c ).
9. Show that the solution

A(z) = A0 exp
(
iγ|A0|2z

)

of the nonlinear Schrödinger equation

Az − iα(Axx +Ayy) = iγA2A∗

is unstable. Also show that the maximum growth rate occurs for k = |A0|
√
γ/α.

10. Obtain the solution of the De Broglie wave problem for an electron of mass m
in a constant electric field E along the x-axis. The motion of the electron is
described by the wave function ψ(x, t) that satisfies the Schrödinger equation

i�ψt =

[
V (x)− �

2

2m

∂2

∂x2

]
ψ,

where � is the Planck constant and V (x) = xE is the potential energy of the
electron.
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Nonlinear Klein–Gordon and Sine-Gordon Equations

As long as a branch of science affords an abundance of
problems, it is full of life; want of problems means death or
cessation of independent development. Just as every human
enterprise prosecutes final aims, so mathematical research
needs problems. Their solution steels the force of the
investigator; thus he discovers new methods and view points
and widens his horizon.

David Hilbert

The enormous usefulness of mathematics in the natural
sciences is something bordering on the mysterious and there
is no rational explanation for it. It is not at all natural that
“laws of nature” exist, much less that man is able to discover
them. The miracle of the appropriateness of the language of
mathematics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor deserve.

Eugene Wigner

11.1 Introduction

This chapter deals with the theory and applications of nonlinear Klein–Gordon (KG)
and sine-Gordon (SG) equations. Special emphasis is given to various methods of
solutions of these equations. The Green function method combined with integral
transforms is employed to solve the linear Klein–Gordon equation. The Whitham
averaging procedure and the Whitham averaged Lagrangian principle are used to dis-
cuss solutions of the nonlinear Klein–Gordon equation. Included are different ways
of finding general and particular solutions of the sine-Gordon equation. Special at-
tention is given to solitons, antisolitons, breather solutions and the energy associated
with them, interaction of solitons, Bäcklund transformations, similarity solutions,
and the inverse scattering method. Significant features of these methods and solu-
tions are described with other ramifications.
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11.2 The One-Dimensional Linear Klein–Gordon Equation

The one-dimensional, inhomogeneous, Klein–Gordon equation is given by

utt − c2uxx + d2u = p(x, t), x ∈ R, t > 0 (11.2.1)

with the initial boundary conditions

u(x, 0) = 0 = ut(x, 0) for x ∈ R, (11.2.2ab)

u(x, t) → 0 as |x| → ∞, t > 0, (11.2.3)

where c and d are constants.
The Green function G(x, t) associated with this problem satisfies the equation

Gtt − c2Gxx + d2G = δ(x)δ(t), x ∈ R, t > 0, (11.2.4)

with the same initial and boundary conditions.
Application of the joint Laplace and Fourier transform (Debnath 1995) gives

G̃(k, s) =

(
1√
2π

)
1

(s2 + α2)
, (11.2.5)

where α = (c2k2 + d2)
1
2 .

The inverse Laplace transform yields

G̃(k, t) =
1√
2π

(
sinαt

α

)
. (11.2.6)

Finally, the inverse Fourier transform leads to the solution

G(x, t) =
1

c

1

2π

∫ ∞

−∞

(
k2 +

d2

c2

)− 1
2

sin

[
ct

√
k2 +

d2

c2

]
exp(ikx) dk

=
1

2c
J0

[
d

c

√
c2t2 − x2

]
H
(
ct− |x|

)

=

{
1
2cJ0[

d
c

√
c2t2 − x2] if |x| < ct,

0 if |x| > ct.
(11.2.7)

In the limit as d → 0, this result is in perfect agreement with the solution for the
standard wave equation.

If the source is located at (ξ, τ), Green’s function assumes the form

G(x, t; ξ, τ) =

{
1
2c J0[

d
c {c2(t− τ)2 − (x− ξ)2} 1

2 ] if |x− ξ| < c(t− τ),

0 if |x− ξ| > c(t− τ).

(11.2.8)

In terms of the Heaviside functions, Green’s function can be expressed as
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G(x, t; ξ, τ) =
1

2c
J0

[
d

c

{
c2(t− τ)2 − (x− ξ)2

} 1
2

]
H
[
x+ ct− (ξ + ct)

]

×H
[
ξ + ct− (x+ cτ)

]
. (11.2.9)

In the limit as d → 0, this result reduces to that for the wave equation.
The solution of the Klein–Gordon equation (11.2.1) with the initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x), x ∈ R, (11.2.10)

can be expressed in terms of Green’s function as

u(x, t) =

∫ t

0

∫ ∞

−∞
p(ξ, τ)G(x, t; ξ, τ) dξ dτ

+

∫ ∞

−∞

[
g(ξ)G(x, t; ξ, 0)− f(ξ)Gτ (x, t; ξ, 0)

]
dξ. (11.2.11)

We note that, in the double integral in (11.2.11), G = 0 for τ > 1, and hence, the
limit in the τ integral extends only up to t. Also, it follows from (11.2.8) that G is
nonzero when |x−ξ| < c(t−τ), which is equivalent to x−c(t−τ) < ξ < x+c(t−τ).
Consequently, the double integral in (11.2.11) becomes

∫ t

0

dτ

∫ ∞

−∞
p(ξ, τ)G(x, t; ξ, τ) dξ

=
1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)

p(ξ, τ)J0

[
d

c

{
c2(t− τ)2 − (x− ξ)2

} 1
2

]
dξ. (11.2.12)

Similarly, since the product of the Heaviside functions vanishes outside the interval
(x− ct, x+ ct), we find that

∫ ∞

−∞
g(ξ)G(x, t; ξ, 0) dξ =

1

2c

∫ x+ct

x−ct

g(ξ)J0

[
d

c

{
c2t2 − (x− ξ)2

} 1
2

]
dξ.

(11.2.13)
It follows from direct integration that

[
Gτ (x, t; ξ, τ)

]
τ=0

= −
(
td

2

)
J ′
0[

d
c

√
c2t2 − (x− ξ)2]√

c2t2 − (x− ξ)2

×H(x+ ct− ξ)H(ξ − x+ ct)

+
1

2
J0

[
d

c

√
c2t2 − (x− ξ)2

]

×
{
δ(x+ ct− ξ)H(ξ − x+ ct)

+ δ(ξ − x+ ct)H(x+ ct− ξ)
}
.

In view of this result, the second term within the square bracket of (11.2.11) becomes
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−
∫ ∞

−∞
f(ξ)Gτ (x, t; ξ, 0) dξ

= −
(
t d

2

)∫ x+ct

x−ct

J1[
d
c

√
c2t2 − (x− ξ)2]√

c2t2 − (x− ξ)2
f(ξ) dξ

+
1

2

∫ ∞

−∞
J0

(
d

c

√
c2t2 − (x− ξ)2

){
δ(x+ ct− ξ)H(ξ − x+ ct)

+ δ(ξ − x+ ct)H(x+ ct− ξ)
}
f(ξ) dξ

= −
(
t d

2

)∫ x+ct

x−ct

J1[
d
c

√
c2t2 − (x− ξ)2]√

c2t2 − (x− ξ)2
f(ξ) dξ

+
1

2

[
f(x− ct) + f(x+ ct)

]
, (11.2.14)

in which the property of the delta function with H(2ct) = 1 is used.
Combining (11.2.12), (11.2.13), and (11.2.14), the final form of solution (11.2.11)

is given by

u(x, t) =
1

2

[
f(x− ct) + f(x+ ct)

]

+
1

2c

∫ x+ct

x−ct

J0

[(
d

c

)√
c2t2 − (x− ξ)2

]
g(ξ) dξ

−
(
td

2

)∫ x+ct

x−ct

J1[
d
c

√
c2t2 − (x− ξ)2]√

c2t2 − (x− ξ)2
f(ξ) dξ

+
1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)

J0

[(
d

c

)√
c2(t− τ)2 − (x− ξ)2

]
p(ξ, τ) dξ.

(11.2.15)

If d = 0, this solution reduces to that for the Cauchy problem for the inhomogeneous
wave equation.

11.3 The Two-Dimensional Linear Klein–Gordon Equation

The two-dimensional, linear, inhomogeneous, Klein–Gordon equation is

utt − c2(uxx + uyy) + d2u = p(x, y, t), −∞ < x, y < ∞, t > 0. (11.3.1)

The initial and boundary conditions are

u(x, y, 0) = 0 = ut(x, y, 0) for all x and y, (11.3.2)

u(x, y, t) → 0 as r =
√
x2 + y2 → ∞, t > 0. (11.3.3)

The Green function G(x, y, t) for the two-dimensional Klein–Gordon equation
satisfies the equation
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Gtt − c2(Gxx +Gyy) + d2G = δ(x)δ(y)δ(t), −∞ < x, y < ∞, t > 0,

(11.3.4)

with the conditions

G(x, y, 0) = 0 = Gt(x, y, 0) for all x and y, (11.3.5)

G(x, y, t) → 0 as
(
x2 + y2

)
→ ∞, t > 0. (11.3.6)

In terms of polar coordinates (r, θ) without θ-dependence, equation (11.3.4) be-
comes

Gtt − c2
(
Grr +

1

r
Gr

)
+ d2G =

δ(r)δ(t)

2πr
, r > 0, t > 0. (11.3.7)

Application of the joint Laplace and Hankel transform of order zero gives

˜̄G(κ, s) =
1

2π
· 1

(s2 + c2κ2 + d2)
, (11.3.8)

whence, the inverse Laplace transform yields

G̃(κ, t) =
1

2π
· sin(αt)

α
, α =

(
c2κ2 + d2

) 1
2 . (11.3.9)

Finally, the inverse Hankel transform leads to the solution

G(r, t) =
1

2πc

∫ ∞

0

κJ0(κr)

(
κ2 +

d2

c2

)− 1
2

sin

[
ct

{
κ2 +

d2

c2

} 1
2
]
dκ,

(11.3.10)

which, by using the standard table of Hankel transforms, is

=
1

2πc

cos[(dc )
√
c2t2 − r2]√

c2t2 − r2
H(ct− r)

=
1

2πc2
·
(
t2 − r2

c2

)− 1
2

cos

[
d

√
t2 − r2

c2

]
H

(
t− r

c

)
. (11.3.11)

If the source is located at (ξ, η, τ) instead of the origin, Green’s function assumes the
form

G(x, y, t; ξ, η, τ) =
1

2πc2
·
(
T 2 − R2

c2

)− 1
2

cos

[
d

√
T 2 − R2

c2

]
H

(
T − R

c

)
,

(11.3.12)

where T = t− τ and R2 = (x− ξ)2 + (y − η)2.
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11.4 The Three-Dimensional Linear Klein–Gordon Equation

The Green function G(x, t) for the three-dimensional Klein–Gordon equation satis-
fies the equation

Gtt − c2∇2G+ d2G = δ(x)δ(y)δ(z)δ(t), −∞ < x, y, z < ∞, t > 0,

(11.4.1)

with the conditions

G(x, 0) = 0 = Gt(x, 0) for all x, y, z, (11.4.2)

G(x, 0) → 0 as |x| → ∞, (11.4.3)

where x = (x, y, z).
The application of the joint Laplace and the triple Fourier transform (Debnath

1995) to this problem gives

˜̄G(κ, s) =
1

(2π)3/2
· 1

(s2 + c2κ2 + d2)
, (11.4.4)

where κ = (k, l,m).
The joint inverse transform gives the solution

G(x, t) =
1

(2π)3/2

∫∫∫ ∞

−∞
exp

{
i(κκκ · x)

} sinαt
α

dκκκ, (11.4.5)

where α = (c2κ2 + d2)
1
2 .

Introducing spherical polar coordinates in the κ-integral and taking the polar axis
along the direction of the vector x so that κκκ · x = κr cos θ, |x| = r, θ is the polar
angle, and κκκ = κ2dκ sin θ dθ dφ, we obtain

G(x, t) =
1

(2π)3

∫ 2π

0

dφ

∫ ∞

0

sinαt

α
κ2 dκ

∫ π

0

exp(iκr cos θ) sin θ dθ

=
1

(2π)2r

∫ ∞

0

sin(αt) · κ sin(κr)dκ
α

= − 1

(2π2r)

∫ ∞

0

sinαt

α
· ∂

∂r
cos(κr) dκ. (11.4.6)

Because integral (11.4.6) is an even function of κ, and ∂
∂r can be written outside the

integral, we now obtain

G(x, t) = − 1

4π2rc
· ∂

∂r

∫ ∞

−∞
exp(iκr)

(
κ2 +

d2

c2

)− 1
2

sin

[
ct

√
κ2 +

d2

c2

]
dκ

= − 1

4πrc
· ∂

∂r
J0

(
d

c

√
c2t2 − r2

)
H
(
c2t2 − r2

)
(11.4.7)

in which the standard table of the Fourier transforms is used.
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Finally, we carry out the differentiation and use the identity J ′
0(kr) = −kJ1(kr)

and J0(0) = 1 to obtain the Green function

G(x, t) =
1

2π

[
δ
(
c2t2 − r2

)
−
(
d

2c

)
J1(

d
c

√
c2t2 − r2)√

c2t2 − r2
H
(
c2t2 − r2

)]
.

(11.4.8)

In the limit as d → 0, this result is in perfect agreement with that for the three-
dimensional wave equation.

11.5 The Nonlinear Klein–Gordon Equation and Averaging
Techniques

Whitham (1965a, 1965b) has successfully extended the averaging procedure for the
study of nonlinear ordinary differential equations associated with oscillation prob-
lems to partial differential equations involved in nonlinear dispersive waves. The
procedure that he developed was to average over local oscillations and then to ob-
tain partial differential equations describing the slow variations of the basic wave
parameters, such as wavenumber, frequency, and amplitude. In all problems where
the equations admit locally uniform periodic wavetrains as solutions of the form
u(x, t) = u(θ), where θ = κκκ · x− ωt is the phase function, u(θ) is a periodic func-
tion of θ, and k and ω are the wavenumber vector and frequency, respectively. In
linear wave problems, u(x, t) = a cos θ, which is sinusoidal.

According to the Whitham theory of slowly varying wavetrains, the solution of
the form u = u(θ, a) is maintained, where a is not a constant and θ is not a linear
function of x and t. The parameters ω, κκκ, and a are assumed to be slowly varying
functions of x and t corresponding to the slow modulation of the wavetrains. In other
words, we allow gradual changes in ω, κκκ, and a, assuming them to be noticeable
only at distances much larger than κ−1 and after times much longer than ω−1. This
is usually known as the geometrical optics approximation. Even though the wave
parameters evolve, the general functional form of u is retained in this approach.

We consider the (1 + 1)-dimensional, nonlinear Klein–Gordon equation

utt − uxx + V ′(u) = 0, (11.5.1)

where V (u) is a general nonlinear function of u, but not its derivatives, and the prime
denotes the derivative with respect to u.

We now multiply (11.5.1) by ut and ux and reorganize the terms to derive the
following conservation equations:

[
1

2

(
u2
t + u2

x

)
+ V

]
+ [−utux]x = 0, (11.5.2)

[−utux]t +

[
1

2

(
u2
t + u2

x

)
− V

]
x

= 0. (11.5.3)
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We look for a stationary wave solution of (11.5.1) in the form

u = u(ξ), ξ = x− ct (11.5.4ab)

so that integration of the resulting equation gives

1

2

(
c2 − 1

)
u2
ξ + V (u) = A, (11.5.5)

where A is an integration constant related to the amplitude of the waves. So, it fol-
lows from equation (11.5.5) that (11.5.1) admits stationary wave solutions of the
form

u2
ξ = f(u, c, A). (11.5.6)

Based on the phase plane analysis with the phase diagrams of uξ(ξ), it can be
shown that periodic wave solutions exist for all V (u) with a minimum. So we assume
that (11.5.6) admits a solution of the form u = u(ξ, c, A) so that (11.5.6) gives

(
du

dξ

)
=

[
2

(c2 − 1)

{
A− V (u)

}] 1
2

, (11.5.7)

in which we assumed that c2 > 1 and A > V (u). Or equivalently,

ξ =

√
1

2

(
c2 − 1

) ∫ {
A− V (u)

}− 1
2 du. (11.5.8)

Clearly, the solution is oscillatory between two consecutive zeros, say u1(c, A) and
u2(c, A) with u2 > u1 of the function f(u, c, A) between which it is positive
definite. The positive definiteness between u1 and u2 is a necessary condition to
ensure that (dudξ ) is real. We suppose that ξ1 and ξ2 are the values of ξ at which
u(ξ1, c, A) = u1(c, A) and u(ξ2, c, A) = u2(c, A).

Using the analogy of the linear waves, we define the wavelength λ for nonlinear
waves by

λ = λ(c, A) = 2

∫ ξ2

ξ1

dξ = 2

∫ u2

u1

du

uξ
=

√
1

2

(
c2 − 1

) ∫ u2

u1

du√
A− V (u)

.

(11.5.9)

Similarly, the wavenumber k = k(c, A), the frequency ω = ω(c, A), and the
periodic time T = T (c, A) are defined by

k =
2π

λ(c, A)
, ω = ω(c, A) = ck(c, A), T = T (c, A) =

2π

ω(c, A)
.

(11.5.10)

In direct analogy with the theory of linear waves, it is possible to find a general
solution by considering c and A as slowly varying functions of x and t.
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We now describe the Whitham averaging method to eliminate the rapid fluctua-
tions in the field functions taking place at the smaller space scale x ∼ λ and time
scale t ∼ T ′. The significant changes of order O(1) in k, ω, and a take place over
the length and time scales of the order of L = O(x) and T = O(t), respectively.
The above discussion indicates the function of intermediate scales X and τ , so that
λ � X � L and T ′ � τ � T . We now define the local average f(x, t) of f(x, t)
at any point x for a fixed t by the relation

f(x, t) =
1

2X

∫ x+X

x−X

f(x′, t) dx′. (11.5.11)

To develop the averaging method, Whitham used the conservation form of the
dynamical equation as

∂ρ

∂t
+∇ · qi = 0, i = 1, 2, . . . , n. (11.5.12)

Obviously,

(
∂ρ

∂t

)
=

1

2X

∫ x+X

x−X

∂

∂t
ρ(x′, t) dx′ =

∂ρ

∂t
, (11.5.13)

(
∂q

∂x

)
=

1

2X

∫ x+X

x−X

∂

∂x′
q(x′, t) dx′ =

1

2X

[
q(x+X, t)− q(x−X, t)

]

=
∂

∂x

[
1

2X

∫ x+X

x−X

q(x′, t) dx′
]
=

∂q

∂x
. (11.5.14)

Taking the average of (11.5.12) gives

∂

∂x
ρ(x, t, c, A) +∇ · qi(x, t, c, A) = 0. (11.5.15)

The average quantities ρ and qi in (11.5.15) still depend explicitly on x and t.
To eliminate this explicit dependence, we consider the fact that, since X  λ, the
interval (x−X,x+X) contains a large number of waves over which k, ω, etc. are
nearly constant. In this case, we can replace ρ and qi by 〈ρ(c, A)〉 and 〈qi(c, A)〉,
respectively, which are the averages over one wavelength by keeping k, ω, etc. con-
stant on (x − X, x + X). When this approximation is made, the errors introduced
are of the order of λ

X (� 1) and X
L (� 1), which are very small. We now define the

global average 〈f(c, A)〉 of f(x, t) over a wavelength by

〈
f(c, A)

〉
=

1

λ

∫ x+λ

x

f(x′, t) dx′ =
1

λ

∫ λ

0

f(X, t) dX, x′ = x+X,

=
1

λ

∫ x+λ

x

f(u, c, A) dX, (11.5.16)

where the integrand depends on u.



588 11 Nonlinear Klein–Gordon and Sine-Gordon Equations

In view of the average defined by (11.5.16), the averaged conservation equation
is obtained from (11.5.12) as

∂

∂t

〈
ρ(c, A)

〉
+∇ ·

〈
qi(c, A)

〉
= 0, (11.5.17)

where c and A are slowly varying functions of x and t. It is noted that the terms
in (11.5.17) become of the order of λ

L (�1) upon differentiation. The average
〈f(c, A)〉 defined by (11.5.16) plays an important role in the study of nonlinear
waves.

In direct analogy with the adiabatic invariant I =
∮
p dq in the Hamiltonian

mechanics, it is expedient to introduce a new function

W (c, A) =

∮
uξ du, (11.5.18)

which enables us to express the wavenumber, frequency, and other parameters in-
volved in the wave in terms of the first-order partial derivatives of W with respect
to c and A. Furthermore, in many situations, the system of equations involving these
partial derivatives of W turns out to be hyperbolic. Consequently, the characteristics
of this hyperbolic system define the characteristic speeds associated with the wave.
These remarkable features will be discussed further in the context of the Klein–
Gordon equation.

In view of the result (11.5.7) for the Klein–Gordon equation, it is convenient to
introduce the function W (c, A) given by

2πW (c, A) =
(
c2 − 1

) ∮
uξ · du =

√
2
(
c2 − 1

) ∮ {
A− V (u)

} 1
2 du

=
√(

c2 − 1
)
G(A), (11.5.19)

where G(A) is another new function defined by

G(A) =

∮ [{
A− V (u)

}] 1
2 du, (11.5.20)

which is independent of c, but depends only on A. Obviously,

G′(A) =
1

2

∮
du√

A− V (u)
=

1√
c2 − 1

∮
dξ =

λ√
c2 − 1

, (11.5.21)

in which (11.5.9) is used, and

G′′(A) = − 1

2
√
2

∮
du

{A− V (u)}3/2 = − 1

2
√
2

∮
1

{A− V (u)}3/2

(
du

dξ

)
dξ

=
1

(c2 − 1)3/2

∫ λ

0

(
du

dξ

)
< 0, (11.5.22)

in which (11.5.7) is again utilized.
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Further, it follows from (11.5.19) and (11.5.21) that

2π

(
∂W

∂A

)
=
√(

c2 − 1
)
G′(A) = λ =

2π

k
. (11.5.23)

This shows that the wavenumber k can be defined by the relation

k

(
∂W

∂A

)
= 1. (11.5.24)

We use (11.5.16) to calculate the average values of all quantities involved in
equations (11.5.2) and (11.5.3) as follows:
〈
1

2

(
u2
t + u2

x

)〉
=

〈
1

2

(
c2 + 1

)
u2
ξ

〉
=

1

2

(
c2 + 1

) ∮ 1

λ
u2
ξ dξ

=
1

4π

(
c2 + 1

) ∮
kuξ du =

1

2

(
c2 + 1

c2 − 1

)
kW (c, A), (11.5.25)

in which (11.5.19) is used. Furthermore, we find that

〈−utux〉 =
〈
cu2

ξ

〉
=

c

(c2 + 1)
kW, (11.5.26)

〈
V (u)

〉
=

〈
A− 1

2

(
c2 + 1

)
u2
ξ

〉
= A− 1

2
kW. (11.5.27)

Differentiating (11.5.19) partially with respect to c gives

∂W

∂c
=

c

(c2 + 1)
W. (11.5.28)

We substitute the above average values in (11.5.2) and (11.5.3) and then utilize
results (11.5.24) and (11.5.28) to derive the following averaged conservation equa-
tion:

∂

∂t

[
k(cWc +AWA −W )

]
+

∂

∂x

[
kc(cWc +AWA −W )− cA

]
= 0, (11.5.29)

∂

∂t
[kWc] +

∂

∂x
[ckWc −A] = 0, (11.5.30)

where, in writing the second term in (11.5.29), we have added kcAWA and sub-
tracted its equivalent expression cA.

We next calculate partial derivatives of various terms in (11.5.29) and collect the
coefficients of c, A, and W to obtain

c

[
∂

∂t
(kWc) +

∂

∂x
(ckWc −A)

]
+A

[
∂

∂t
(kWA) +

∂

∂x
(ckWA − c)

]

−W

[
∂k

∂t
+

∂

∂x
(ck)

]
= 0. (11.5.31)
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The first term in this equation vanishes due to (11.5.30), the second term also van-
ishes since kWA = 1, and hence, finally, we obtain

∂k

∂t
+

∂

∂x
(ck) = 0, (11.5.32)

which is, introducing the frequency ω = ck,

∂k

∂t
+

∂ω

∂x
= 0. (11.5.33)

Or equivalently,
∂k

∂t
+ ω′(k)

∂k

∂x
= 0. (11.5.34)

This is the fundamental kinematic equation of the wave. Thus, along the characteris-
tics dx

dt = ω′(k), the wavenumber k (and hence, frequency ω) is conserved.
Substitution of k = W−1

A in (11.5.32) yields

∂WA

∂t
+ c

∂WA

∂x
−WA

∂c

∂x
= 0. (11.5.35)

Similarly, expanding (11.5.30) combined with (11.5.24) leads to the result

∂Wc

∂t
+ c

∂Wc

∂x
−WA

∂A

∂x
= 0. (11.5.36)

Finally, the two independent averaged conservation equations (11.5.35), (11.5.36)
can be expressed in the form

DWA

Dt
−WA

∂c

∂x
= 0, (11.5.37)

DWc

Dt
−WA

∂A

∂x
= 0, (11.5.38)

where the total derivative is defined by

D

Dt
=

∂

∂t
+ c

∂

∂x
. (11.5.39)

To determine the characteristics and characteristic speeds, we use (11.5.32) and
(11.5.28) and, then, replace W in terms of G to express (11.5.37), (11.5.38) in terms
of c and A as

G′′At + cG′′Ax +
cG′

(c2 − 1)
ct +

cG′

(c2 − 1)
cx = 0, (11.5.40)

cG′At +G′Ax − G

(c2 − 1)
ct −

cG

(c2 − 1)
cx = 0. (11.5.41)

These equations admit the following two characteristics C±, so that
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C+ :
dx

dt
=

(
1 + cα

c+ α

)
and C− :

dx

dt
=

(
1− cα

c− α

)
, (11.5.42ab)

where

α =

(
−GG′′

G′2

) 1
2

. (11.5.43)

The associated compatibility relations are given by

dc

(c2 − 1)
−
(
−G′′

G

) 1
2

dA = 0 along C+, (11.5.44)

dc

(c2 − 1)
+

(
−G′′

G

) 1
2

dA = 0 along C−. (11.5.45)

These relations define two Riemann invariants

r =

∫ c

c0

dc

(c2 − 1)
−
∫ A

A0

(
−G′′

G

) 1
2

dA, (11.5.46)

s =

∫ c

c0

dc

(c2 − 1)
+

∫ A

A0

(
−G′′

G

) 1
2

dA. (11.5.47)

Equations (11.5.42ab) reveal that there are two characteristic speeds (1 ± cα)/
(c±α). If we consider a wavetrain which is initially uniform with c = c0 andA = A0

outside some finite region, then, after some interaction period, the disturbance splits
into two simple waves separated by a domain of constant values of c and A. In one
simple wave, the characteristics C+ are straight lines which carry constant values of
r, and the other Riemann invariant is constant everywhere. On the other hand, in the
second simple wave, r has the same value everywhere, and s is constant along the
characteristics C−, which are straight lines. Between these two simple waves, c and
A assume constant values. Since the wavenumber and amplitude are expressible in
terms of c and A, the qualitative features similar to those as stated above are also
applicable to them.

The energy propagation speed is then obtained from (11.5.29) as the ratio of
energy flux to energy density and has the form

kc(cWc +AWA −W )− cA

k(cWc +AWA −W )

=
kc(cWc −W ) + cA− cA

k(cWc −W ) +A

(
by (11.5.24)

)

=
c(cWc −W )

(cWc −W ) + A
k

=
cW

W + (c2 − 1)(Ak )

(
by (11.5.28)

)
,

which, by results (11.5.19) and (11.5.21), is

=
cG

G+ (c2 − 1)AG′ . (11.5.48)
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This is another important new speed which is definitely not one of the two char-
acteristic speeds. This new speed does not seem to have a simple physical interpre-
tation. Thus, in the present fully nonlinear case, there exist three important speeds—
two characteristic speeds and one energy propagation speed. Clearly, one of them
should be interpreted as the group velocity.

11.6 The Klein–Gordon Equation and the Whitham Averaged
Variational Principle

The Lagrangian density of the Klein–Gordon equation (11.5.1) is given by

L =
1

2

(
u2
t − u2

x

)
− V (u). (11.6.1)

We seek a progressive, periodic wave solution of the nonlinear Klein–Gordon
equation (11.5.1) in the form

u = u(θ), θ = kx− ωt, (11.6.2)

where the local wavenumber and local frequency are given by k = θx and ω = −θt,
respectively. Substituting (11.6.2) in equation (11.5.1) gives

(
ω2 − k2

)
uθθ + V ′(u) = 0, (11.6.3)

which gives the integral

1

2

(
ω2 − k2

)
u2
θ + V (u) = A, (11.6.4)

where A is a constant of integration. This equation can be solved by a quadrature for
a suitable form of V (u) and has a solution, periodic in θ, given by

θ =

{
1

2

(
ω2 − k2

)} 1
2
∫

du√
A− V (u)

. (11.6.5)

Since u is a periodic function with period 2π, we require that

2π =

{
1

2

(
ω2 − k2

)} 1
2
∮

du√
A− V (u)

, (11.6.6)

where
∮

denotes integration over a complete period. Result (11.6.6) represents a
relation between ω, k, and A, and hence, it represents the dispersion relation.

According to the Whitham theory, the wave parameters k, ω, and A are slowly
varying functions of x and t corresponding to the slow modulation of the wave.
These parameters can then be determined from the averaged Lagrangian defined by
Whitham (1965a, 1965b) as
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L =
1

2π

∫ 2π

0

Ldθ, (11.6.7)

where L is given by (11.6.1) which is simplified by using (11.6.2) so that

L =
1

2

(
ω2 − k2

)
u2
θ − V (u) =

(
ω2 − k2

)
u2
θ −A. (11.6.8)

Substituting (11.6.8) in (11.6.7) gives

L(ω, k,A) = 1

2π

(
ω2 − k2

) ∫ 2π

0

(
∂u

∂θ

)2

dθ − A

2π

∫ 2π

0

dθ

=
1

2π

(
ω2 − k2

) ∫ 2π

0

(
∂u

∂θ

)
du−A,

which is, by (11.6.4),

=
1

2π

{(
ω2 − k2

)} 1
2

∮ √
A− V (u) du−A

=
1

2π

(
ω2 − k2

) 1
2G(A)−A, (11.6.9)

where G(A) is defined by (11.5.20).
According to the Whitham theory, wave parameters ω, k, and A are determined

from the averaged variational principle

δ

∫∫
L(ω, k,A) dx dt = 0, (11.6.10)

where ω and k are related by ω = −θt and k = θx, and hence, they cannot be varied
independently. The variational equations from variations δA and δθ in (11.6.10) are
given by

δA :
∂L
∂A

= 0, (11.6.11)

δθ :
∂L
∂θ

=
∂

∂t

(
∂L
∂θt

)
+

∂

∂x

(
∂L
∂θx

)
= − ∂

∂t
(Lω) +

∂

∂x
(Lk) = 0. (11.6.12)

Thus, by (11.6.9), equation (11.6.11) becomes

1

2π

(
ω2 − k2

) 1
2G′(A) = 1, (11.6.13)

or equivalently,

k =
2π√

(c2 − 1)G′(A)
, ω = ck =

2πc√
(c2 − 1)G′(A)

. (11.6.14ab)

In terms of G(A), we can express kt + ωx = 0 in the form
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∂

∂t

[
1√

c2 − 1G′(A)

]
+

∂

∂x

[
c√

c2 − 1G′(A)

]
= 0. (11.6.15)

Similarly, the amplitude equation (11.6.12) can be expressed as

∂

∂t

[
cG(A)√
c2 − 1

]
+

∂

∂x

[
G(A)√
c2 − 1

]
= 0. (11.6.16)

The Whitham Lagrangian formulation is relatively more simple than the aver-
aging procedure discussed in the previous section. Indeed, the averaged Lagrangian
is a useful quantity in nonlinear theory whenever it is available. It is also important
to point out that the present analysis is applied to slowly varying nonlinear waves.
However, the variational method is applicable to weak nonlinear waves and also to
all nonlinear wavetrains.

In particular, for the linear Klein–Gordon equation, V ′(u) = u so that V (u) =
1
2u

2. Hence the function G(A) defined by (11.5.20) can easily be computed by using
the linear solution for u = −a cos θ where 2A = a2. It turns out that G(A) = 2πA
so that G′(A) = 2π. Consequently, the averaged Lagrangian L can be obtained
explicitly from (11.6.9) as

L =
[(
ω2 − k2

) 1
2 − 1

]
A, A =

1

2
a2, (11.6.17)

so that the linear dispersion relation is LA = 0, that is,

ω2 − k2 = 1. (11.6.18)

This is independent of the amplitude A, as expected in the linear theory. This also
confirms the fact that the Whitham variational method is applicable to both linear
and nonlinear wave propagation problems.

11.7 The Sine-Gordon Equation: Soliton and Antisoliton
Solutions

The sine-Gordon equation has a long history that begins in the latter part of the nine-
teenth century when this equation was discovered in differential geometry in con-
nection with the theory of surfaces of constant negative curvature. Various methods
for finding particular solutions of this equation were developed at that time. One of
the methods is known as the Bäcklund transformations, which will be considered in
a subsequent section. Other methods include traveling wave solutions, the similarity
method, the inverse scattering method, and the method of separation of variables,
which deals with the representation of solutions as functions of independent vari-
ables. All of these methods will be discussed in subsequent sections.

It has already been indicated in Chapter 2 that the sine-Gordon equation is one of
the basic nonlinear evolution equations and has recently been employed to describe
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various important nonlinear physical phenomena. The standard form of this equation
is

∂2u

∂X2
− 1

c2
∂2u

∂T 2
= sinu. (11.7.1)

In terms of the characteristic coordinate transformations

x = ±1

2
(X − cT ), t =

1

2
(X + cT ), (11.7.2ab)

equation (11.7.1) takes the following form:

uxt = sinu. (11.7.3)

Thus, the two forms (11.7.1) and (11.7.3) of the sine-Gordon equation are inter-
changeable. The equation is invariant under u → u + 2nπ, where n = ±1,±2,
±3, . . . . The transformation u → u + (2n + 1)π leads to the replacement of sinu
by − sinu in the equation.

The linearized form of equation (11.7.1) is given by

uXX − c−2uTT = u. (11.7.4)

A plane wave solution of the form u(X,T ) = A exp[i(kX − ωT )] exists pro-
vided the dispersion relation

ω2 = c2
(
1 + k2

)
(11.7.5)

is satisfied. This shows that ω is real for all real k, and the equilibrium solution
u = 0 of (11.7.1) is stable. On the other hand, if u = ũ+ π for a small perturbation
ũ, (11.7.1) can be linearized to obtain

ũXX − c−2ũTT = −ũ. (11.7.6)

A plane wave solution of the form ũ(X,T ) = A exp[i(kX − ωT )] also exists,
provided the dispersion relation

ω2 = c2
(
k2 − 1

)
(11.7.7)

is satisfied. Hence ω2 < 0, if 0 ≤ k2 < 1, and ũ(X,T ) will grow exponentially in
time T , that is, the equilibrium solution u = π is definitely unstable. Physically, this
is quite natural because, when the term uXX is absent (that is, when k = 0), the sine-
Gordon equation (11.7.1) reduces to the equation of a simple pendulum representing
finite oscillations. Thus, the question of stability or instability is an important feature
of the equilibrium solutions of the sine-Gordon equation.

We next discuss the single-soliton solutions of the sine-Gordon equation

∂2u

∂x2
− 1

c2
∂2u

∂t2
= sinu. (11.7.8)
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We seek a solution of the form u(x, t) = φ(x − Ut) = φ(ξ) which corresponds
to a wave traveling with a velocity U and, then, substitute in (11.7.8) to obtain an
ordinary differential equation for φ(ξ) in the form

d2φ

dξ2
− V 2 d

2u

dξ2
= sinφ, (11.7.9)

where V 2 = U2

c2 . Dividing both sides by (1− V 2) and multiplying by φ′(ξ) gives

φ′(ξ)φ′′(ξ) =

(
sinu

1− V 2

)
φ′(ξ). (11.7.10)

Or equivalently,
d

dξ

[
1

2

(
dφ

dξ

)2

+
cosu

1− V 2

]
= 0, (11.7.11)

that is,
1

2

(
dφ

dξ

)2

+
cosu

(1− V 2)
= B = const. (11.7.12)

Solving for φ′(ξ) gives a first-order, ordinary differential equation for φ(ξ)

dφ

dξ
=

(
2A− 2 cosφ

1− V 2

) 1
2

. (11.7.13)

We can separate the variables and, then, integrate to obtain

∫ φ

φ0

dψ√
A− cosψ

=

(
2

1− V 2

) 1
2
∫ ξ

ξ0

dη, (11.7.14)

where A = B
√
1− V 2. This result depends on the two parameters V (or U =

cV ), the velocity of the soliton, and B, an integrating constant. Thus, the stable
solutions represent solitary waves, periodic waves, or a monotonically increasing
function of ξ (Scott 1969) depending on the sign and magnitudes of U and A. When
A = 1, a solitary wave solution exists for any velocity, so that 0 < |V | < 1 (or 0 <
|U | < c). In this case, we use the trigonometric identities 1 − cosφ = 2 sin2( 12φ)

and d
dφ [log tan(

1
4φ)] = (2 sin 1

2φ)
−1 to simplify both sides of (11.7.14), so that

(
2

1− V 2

) 1
2

(ξ − ξ0) =
√
2

∫ φ

φ0

dψ

2 sin 1
2ψ

=
√
2 log

[
tan( 14φ)

tan( 14φ0)

]
. (11.7.15)

This leads to the solution for φ(ξ) as

φ(ξ) = 4 tan−1

{
α exp

(
ξ − ξ0√
1− V 2

)}
, (11.7.16)
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Fig. 11.1 The soliton and antisoliton solutions.

where α = tan( 14φ0) and ξ0 are constants of integration which can be incorporated
in several ways. We choose α = 1 and ξ0 = 0 to obtain one simple solitary wave
solution for u(x, t) in the form

u(x, t) = 4 tan−1

{
exp

(
x− V t√
1− V 2

)}
. (11.7.17)

This is called the soliton (or kink) solution of the sine-Gordon equation and repre-
sents a continuous profile with u → 0 as x → −∞, and u → 2π as x → +∞, shown
in Figure 11.1. The soliton propagates in the positive x-direction with velocity V .

Another solution can be obtained from (11.7.15) in the form

u(x, t) = 4 tan−1

[
exp

(
− x− V t√

1− V 2

)]
= 4 cot−1

[
exp

(
x− V t√
1− V 2

)]
.

(11.7.18)

This is called the antisoliton (or antikink). This solution profile travels in the nega-
tive x-direction with velocity V . It represents a continuous profile with u → 2π as
x → −∞, and u → 0 as x → +∞, also shown in Figure 11.1.

The partial derivatives of u(x, t), that is, ux and ut, also represent solitary waves
which are given by

ux(x, t) = φ′(x− Ut) and ut(x, t) = −Uφ′(x− Ut), (11.7.19ab)

where φ′(ξ) is obtained from (11.7.16) as

φ′(ξ) =
4 tan( 14φ)√

1− V 2{1 + tan2( 14φ)}
=

2sech{(x− V t)/
√
1− V 2}√

1− V 2

in which tan( 14φ) is replaced by exp( x−V t√
1−V 2 ).

If A �= 1, other types of solutions of the sine-Gordon equation can be obtained.
In particular, when V > 1 and |A| < 1, the integral in (11.7.14) with φ0 = 0 and
ξ0 = 0 can be written as
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ξ =

(
1− V 2

2

) 1
2
∫ φ

0

dψ√
(1− cosψ)− (1−A)

=

(
1− V 2

2

) 1
2
∫ φ

0

dψ
√
2
√

sin2 ψ
2 −m2

, m2 =
1

2
(1−A),

which, substituting s = 1
m sin(ψ2 ), is

=
(
V 2 − 1

) 1
2

∫ s

0

ds√
1− s2

√
1− s2m2

. (11.7.20)

This can be expressed in terms of Jacobi’s elliptic function (Dutta and Debnath 1965)
as

s =
1

m
sin

(
φ

2

)
= sn

(
ξ√

V 2 − 1
,m

)
, (11.7.21)

where m is the modulus of Jacobi’s elliptic function sn(z,m). Thus, the final solu-
tion is given by

u(x, r) = φ(ξ) = 2 sin−1

[
msn

(
ξ√

V 2 − 1
,m

)]
. (11.7.22)

11.8 The Solution of the Sine-Gordon Equation by Separation
of Variables

The form of the solution (11.7.17) suggests that the transformation

v(x, t) = tan

(
1

4
u

)
(11.8.1)

can be used to transform the sine-Gordon equation

uxx − utt = sinu (11.8.2)

into the form
(
1 + v2

)
(vxx − vtt − v)− 2v

(
v2x − v2t − v2

)
= 0, (11.8.3)

in which the trigonometric identity sinu = 4v(1− v2)/(1 + v2)2 has been utilized.
We seek solutions by the separation of variables in the form

v(x, t) = tan

(
1

4
u

)
=

φ(x)

ψ(t)
, (11.8.4)

for some functions φ(x) and ψ(t) to be determined. Substituting (11.8.4) in equation
(11.8.3) and using the identity sin 4θ = 4 tan θ(1−tan2 θ)/(1+tan2 θ)2, we obtain
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(
φ2 + ψ2

)(φxx

φ
+

ψtt

ψ

)
− 2

(
φ2
x + ψ2

t

)
=
(
φ2 − ψ2

)
. (11.8.5)

Differentiating this equation with respect to x and t enables us to separate the vari-
ables so that

1

(φφx)

(
φxx

φ

)
x

= − 1

(ψψt)

(
ψtt

ψ

)
t

= −4κ2, (11.8.6ab)

where −4κ2 is a separation constant. Each of these ordinary differential equations
(11.8.6ab) can be integrated twice to find

φ′2 = −κ2φ4 + aφ2 + b and ψ2 = κ2ψ4 + cψ2 + d. (11.8.7ab)

Substituting these equations in (11.8.5) reveals that a− c = 1 and b+ d = 0. Setting
a = m2 and b = n2, we obtain

φ2
x = −κ2φ4 +m2φ2 + n2 and ψ2

t = κ2ψ4 +
(
m2 − 1

)
ψ2 − n2, (11.8.8ab)

where m and n are integration constants. In general, these equations can be solved
in terms of elliptic functions. However, we solve these equations for the following
special cases of interest:

Case 1. κ = n = 0 and m > 1.

In this case, equations (11.8.8ab) take the form

φx = ±mφ and ψt = ±
√
m2 − 1ψ, (11.8.9ab)

which give exponential solutions

φ(x) = a1 exp(±mx) and ψ(x) = a2 exp
(
±
√
m2 − 1 t

)
, (11.8.10ab)

where a1 and a2 are integration constants. Thus, the solution (11.8.4) becomes

u(x, t) = 4 tan−1

[
α exp

(
± x± Ut√

1− U2

)]
, (11.8.11)

where α = a1

a2
and U =

√
m2−1
m (or m = (1− U2)−

1
2 ) are constants.

Evidently, one of these solutions (11.8.11)

u(x, t) = 4 tan−1
[
α exp

{
m(x− Ut)

}]
(11.8.12)

is identical with (11.7.17) for α = 1, and hence, it represents the soliton (or kink)
solution of the sine-Gordon equation. On the other hand, from (11.8.11), another
solution can be found in the form

u(x, t) = 4 tan−1
[
α exp

{
−m(x− Ut)

}]
= 4 cot−1

[
1

α
exp

{
m(x− Ut)

}]
.

(11.8.13)
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This is also identical with (11.7.18) for α = 1 and represents the antisoliton (or
antikink) solution of (11.8.2).

Furthermore, ux and ut also represent solitary wave solutions given by

ux(x, t) = ±2m sech
[
m(x± Ut) + logα

]
(11.8.14)

and
ut(x, t) = ±2

√
m2 − 1 sech

[
m(x± Ut) + logα

]
. (11.8.15)

Two other choices in sign in (11.8.11) represent antisoliton (or antikink) solutions of
the sine-Gordon equation.

Case 2. κ = 0, m2 > 1, and n �= 0.

In this case, solutions of (11.8.8ab) are obtained by integration in terms of hyper-
bolic functions as

φ(x) = ±
(
n

m

)
sech(mx+ a1),

ψ(t) =
n√

m2 − 1
cosh

(√
m2 − 1 t+ a2

)
,

(11.8.16)

where a1 and a2 are integrating constants. Thus, the solution is given by

u(x, t) = ± tan−1

[
U sinh(mx+ a1)

cosh(
√
m2 − 1t+ a2)

]
. (11.8.17)

Since this result is made up of the ratio (φ/ψ), it does not depend on n. In particular,
when a1 = a2 = 0, solution (11.8.17) can be expressed in the form

u(x, t) = ±4 tan−1

[
U sinh(mx)

cosh(mUt)

]
, 0 < U2 < 1. (11.8.18)

This solution was first discovered by Perring and Skyrme (1962) based on numerical
calculations for two interacting solitons. They verified analytically that (11.8.18) is,
indeed, the exact solution, and it describes the interaction of two solitons similar to
those of the KdV solitons, where solitons emerge from the interaction only with a
slight change of phase. To show that the solution describes the interaction of two
equal solitons, we investigate it asymptotically as t → ±∞. Expressing sinh(mx)
in terms of a sum of two exponentials, we first note that

cosh(mUt) ∼ 1

2
exp

(
mU |t|

)
as t → ±∞.

In view of these results, it follows at once that

v(x, t) ∼ U exp
{
m(x+ Ut)

}
− U exp

{
−m(x− Ut)

}
as t → −∞.

(11.8.19)
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Fig. 11.2 Interaction of two equal solitons (11.8.18) for U > 0. (a) t → −∞, (b) t = 0, and
(c) t → +∞. From Drazin (1983).

Solution (11.8.19) is uniformly valid for all x and represents two distinct solitons
approaching one another at equal but opposite speed U , as shown in Figure 11.2.
More precisely, in the limit as x → −∞ and t → −∞, the solution becomes

u(x, t) ∼ −4 tan−1
[
U exp

{
−m(x− Ut)

}]
. (11.8.20)

Solution (11.8.20) represents a pulse moving in the positive x-direction, as u(x, t)
increases from −2π to 0, as x passes through the value Ut.

As x → +∞ and t → −∞, the solution reduces to the form

u(x, t) ∼ 4 tan−1
[
U exp

{
−m(x+ Ut)

}]
. (11.8.21)

This also represents a pulse traveling in the negative x-direction, as u(x, t) increases
from 0 to 2π, as x passes through the value −Ut. At t = 0, two pulses suffer from
an interaction. All of these results are shown in Figure 11.2.

Similarly, as t → ∞, the asymptotic solution is given by

v(x, t) ∼ −U exp

(
− x+ Ut√

1− U2

)
+ U exp

(
− x− Ut√

1− U2

)
. (11.8.22)

In other words, as x → −∞ and t → +∞, this asymptotic solution is

u(x, t) ∼ −4 tan−1

[
U exp

(
− x+ Ut√

1− U2

)]
. (11.8.23)



602 11 Nonlinear Klein–Gordon and Sine-Gordon Equations

As x → +∞ and t → +∞, this asymptotic solution for u(x, t) is given by

u(x, t) ∼ 4 tan−1

[
U exp

(
x− Ut√
1− U2

)]
. (11.8.24)

Since u varies from −2π to +2π as x changes from −∞ to +∞, the corresponding
solution is called a 4π pulse.

Finally, the only visible evidence of the interaction remaining, as t → +∞, is a
longitudinal displacement of each soliton. To show this, we observe the exponential
form of the solution

±U exp
[
±m(x+ Ut)

]
= ± exp

[
±m

(
x+ Ut± 1

2
γ

)]
, (11.8.25)

where γ = 2
√
1− U2 log(U−1) represents the displacement of each soliton which

is retarded by the interaction.
The above soliton solutions produce ux and ut. Clearly, for U > 0, we find

ux(x, t) =
4U cosh(mx) cosh(mUt)√

1− U2[sinh2(mx) + cosh2(mUt)]
. (11.8.26)

This represents the interaction of two hump-shaped solitons as shown in Figure 11.3.
This also shows, more clearly, the interaction of two solitons for t → ±∞.

Case 3. κ �= 0, n = 0, and m2 > 1.

In this case, the solution u(x, t) is given by

u(x, t) = −4 tan−1

[
m√

m2 − 1
· sinh(

√
m2 − 1 t+ a2)

cosh(mx+ a1)

]
. (11.8.27)

This result is somewhat similar to that of (11.8.17), and can be interpreted phys-
ically with a given boundary condition ux(0, t) = 0 for all time t. It represents a
soliton moving toward the boundary and reflected back as an antisoliton, and hence,
solution (11.8.27) represents an interaction of a soliton with an antisoliton.

In the limit as m → 1, solution (11.8.27) reduces to the form

u(x, t) ∼ −4 tan−1
[
(t+ a2)sech (x+ a1)

]
. (11.8.28)

Case 4. κ �= 0, n = 0, and m2 < 1.

This case gives a new solution which can be obtained from

u(x, t) ∼ −4 tan−1

[
m√

1−m2
· sinh(ωt+ a2)

cosh(mx+ a1)

]
, (11.8.29)

where ω =
√
1−m2 = mU . This is known as the breather solution of the sine-

Gordon equation and represents a pulse-type structure of a soliton. For fixed x, the
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Fig. 11.3 Interaction of two hump-shaped solitons for (a) t → −∞, (b) t = 0, and (c) t →
+∞ with amplitude A = 2U/

√
1− U2. From Drazin (1983).

solution is a periodic function of time t with frequency ω =
√
1−m2. For m = 0.8,

the breather solution as a function of x is shown in Figure 11.4.
The case for m � 1 corresponds to a small-amplitude breather solution. This

can be derived from (11.8.29) by expanding the inverse tangent function for small m
and retaining only the first term. This leads to a limiting solution in the form

u(x, t) ∼ 2im sech(mx) exp

[
i

(
1− m2

2

)
t

]
+ c.c., (11.8.30)

= A(x, t) exp(it), (11.8.31)

where A(x, t) = 2im sech(mx) exp( itm
2

2 ). It can easily be verified that A(x, t)
satisfies the (1 + 1)-dimensional nonlinear Schrödinger equation

2iAt −Axx − |A|2A = 0, (11.8.32)

where the term Att = O(m4) has been neglected.
Finally, more general solutions of equations (11.8.8ab) can be found in terms of

elliptic functions. It is also of interest to investigate the solutions of the sine-Gordon
equation confined to a finite region of space by boundaries. It turns out that the
oscillations of the soliton’s position closely resemble those of a particle confined by
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Fig. 11.4 Breather solution of (11.8.2) for m = 0.8.

an external potential. This confirms the fact that solitons behave like elastic particles.
For details, the reader is referred to De Leonardis and Trullinger (1980) and Newell
and Kaup (1978).

It may be noted that a variety of solutions of the sine-Gordon equation have been
studied by Lamb (1973, 1980).

Example 11.8.1 (Energy of a Soliton, an Antisoliton, and a Breather). We consider
the energy associated with the soliton and the antisoliton of the sine-Gordon equation

uxx − utt = sinu. (11.8.33)

The Lagrangian density of this equation is given by

L =
1

2

(
u2
t − u2

x

)
− (1− cosu). (11.8.34)

The Hamiltonian density has the form

H = ut

(
∂L
∂ut

)
− L, (11.8.35)

which, due to (11.8.34), is

=
1

2

(
u2
t + u2

x

)
+ (1− cosu). (11.8.36)

For the single-soliton solution

u(x, t) = 4 tan−1
[
exp

{
m(x− Ut)

}]
, (11.8.37)

where m = (1− U2)−
1
2 , we obtain the Hamiltonian density H and energy E as

H = 4m2 sech2
{
m(x− Ut)

}
, (11.8.38)
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E =

∫ ∞

−∞
H dx = 8m. (11.8.39)

For the antisoliton solution

u(x, t) = 4 tan−1
[
exp

{
−m(x− Ut)

}]
, (11.8.40)

the energy E is also equal to 8m. This shows that the solution represents the elastic
interaction of a soliton and an antisoliton, each of which has energy 8m.

For the soliton–antisoliton solution (11.8.27), we find that

H =

(
8m2

κ

)
· sech2{mx(p+ q tanh2mx)}

(1 + rsech2mx)2
, (11.8.41)

where κ2 = m2 − 1 > 0, p = κ2 + (1 + κ2)sech2(κt), q = m2 sinh2(κt), and
r = (mκ )

2 sinh2(κt). In this case, it is easy to check that the energy E = 16m,
where m > 1.

Finally, the breather solution is given by (11.8.29). The associated energy is
E = 16m, where m > 1. The energy is, thus, equal to the sum of energies of two
free solitons (or antisolitons) and leads to the physical interpretation of the breather
as a bound state composed of a pair of a soliton and an antisoliton.

11.9 Bäcklund Transformations for the Sine-Gordon Equation

We consider the characteristic form of the sine-Gordon equation

uxt = sinu. (11.9.1)

In 1880, Bäcklund discovered the transformation as the pair of equations

1

2
(u− v)x = a sin

1

2
(u+ v), (11.9.2a)

1

2
(u+ v)t =

1

a
sin

1

2
(u− v), (11.9.2b)

where a is a nonzero arbitrary real constant. This pair of equations is called the Bäck-
lund transformations of (11.9.1). The cross-differentiation of (11.9.2a), (11.9.2b)
gives

1

2
(u− v)tx =

a

2
(u+ v)t cos

1

2
(u+ v) = sin

1

2
(u− v) cos

1

2
(u+ v), (11.9.3)

1

2
(u+ v)xt =

1

2a
(u− v)x cos

1

2
(u− v) = sin

1

2
(u+ v) cos

1

2
(u− v). (11.9.4)

Adding and subtracting these equations, we obtain

uxt = sinu and vxt = sin v. (11.9.5ab)
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Evidently, the Bäcklund transformations (11.9.2a), (11.9.2b) relate two solutions u
and v that satisfy the same equation (11.9.1). Since both u and v satisfy the same
sine-Gordon equation, the pair (11.9.2a), (11.9.2b) is referred to as an auto-Bäcklund
transformation for (11.9.1). The auto-Bäcklund transformation can be used to con-
struct a sequence of solutions of the sine-Gordon equation beginning with any given
solution.

We next use (11.9.2a), (11.9.2b) to solve the sine-Gordon equation (11.9.1). Ob-
viously, u(x, t) = 0 is a trivial solution of (11.9.1) for all x and t. We use this solution
to construct a nontrivial solution. We set v = 0, so that the Bäcklund transformation
(11.9.2a), (11.9.2b) becomes

ux = 2a sin

(
1

2
u

)
, ut =

2

a
sin

(
1

2
u

)
. (11.9.6ab)

Integrating these equations gives

2ax =

∫ u

cosec

(
1

2
u

)
du = 2 log

∣∣∣∣tan
(
1

4
u

)∣∣∣∣+A(t), (11.9.7)

2t

a
=

∫ u

cosec

(
1

2
u

)
du = 2 log

∣∣∣∣tan
(
1

4
u

)∣∣∣∣+B(x), (11.9.8)

where A(t) and B(x) are arbitrary functions involved as a result of integration. It
follows from (11.9.7) and (11.9.8) that

tan

(
u

4

)
= α exp

(
ax+

t

a

)
, (11.9.9)

where α is a constant. Or equivalently,

u(x, t) = 4 tan−1

[
α exp

(
ax+

t

a

)]
. (11.9.10)

This represents a new solution of the sine-Gordon equation (11.9.1) and it describes
a soliton (or kink) solution.

Returning to the original sine-Gordon equation (11.7.1) with x = 1
2 (X − cT )

and t = 1
2 (X + cT ), we obtain

u(X,T ) = 4 tan−1

[
α exp

{
a

2
(X − cT ) +

1

2a
(X + cT )

}]

= 4 tan−1
[
α exp

{
±m(X − UT )

}]
, (11.9.11)

where 1
2 (a+

1
a ) = m = (1− U2)−

1
2 , |U | < 1, and c

2 (a−
1
a ) = Um so that

a = m

(
1 +

U

c

)
and U = c

(
a2 − 1

a2 + 1

)
.

Thus the solution (11.9.11) represents a soliton (or kink) and an antisoliton (or
antikink) corresponding to the positive or negative sign in (11.9.11). These solutions
are of width m, and they propagate with the constant velocity U .
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We next construct a new soliton solution representing two interacting solitons by
means of a purely algebraic method from a known solution u0. We first replace u and
v by u1 and u2, respectively, in (11.9.2a), (11.9.2b), and, then, obtain two solutions
corresponding to two arbitrary constants a = a1 and a = a2 with a1 �= a2. Using
these solutions, we seek two more solutions u3 and u4 corresponding to parameters
a = a2 and u2 with a = a1 and u2, respectively. According to the above procedure,
we obtain four relations from (11.9.2a), (11.9.2b):

∂u1

∂x
=

∂u0

∂x
+ 2a1 sin

1

2
(u1 + u0), (11.9.12)

∂u2

∂x
=

∂u0

∂x
+ 2a2 sin

1

2
(u2 + u0), (11.9.13)

∂u3

∂x
=

∂u1

∂x
+ 2a2 sin

1

2
(u3 + u1), (11.9.14)

∂u4

∂x
=

∂u2

∂x
+ 2a1 sin

1

2
(u4 + u2). (11.9.15)

We set u3 = u4 = v2 in (11.9.14) and (11.9.15) and choose suitable values
for integrating constants. Then, subtracting the resulting expressions (11.9.15) from
(11.9.12), and (11.9.14) from (11.9.13), we obtain

a1

[
sin

1

2
(v2 + u2)− sin

1

2
(u1 + u0)

]
= a2

[
sin

1

2
(v2 + u1)− sin

1

2
(u2 + u0)

]
.

This result can be simplified by using the standard formula for the difference of two
sine functions to obtain

a1 sin

[
1

4

{
(v2 − u0)− (u1 − u2)

}]
= a2 sin

[
1

4

{
(v2 − u0) + (u1 − u2)

}]
.

Further simplification of this result gives

tan

{
1

4
(v2 − u0)

}
=

(
a1 + a2
a1 − a2

)
tan

{
1

4
(u1 − u2)

}
, (11.9.16)

or equivalently,

v2 = 4 tan−1

[(
a1 + a2
a1 − a2

)
tan

{
1

4
(u1 − u2)

}]
+ u0. (11.9.17)

This gives a new solution in terms of given solutions u0, u1, and u2 and it can be
regarded as the nonlinear superposition principle for the sine-Gordon equation. It is
important to point out that the same solution (11.9.17) can be derived from (11.9.2b).
It is also possible to continue this procedure many times, and hence, this leads to an
n interacting soliton solution vn from an (n−1)-soliton solution vn−1. In particular,
the solution for two interacting solitons can be obtained in the form

tan

(
1

4
v2

)
=

(
a1 + a2
a1 − a2

)
sinh[ 12 (ξ1 − ξ2)]

cosh[ 12 (ξ1 + ξ2)]
, (11.9.18)
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where

ξr = ±
(
1 + U2

r

)− 1
2 (X − UT ), ar = ±

[
(1− Ur)/(1 + Ur)

] 1
2 , r = 1, 2,

and solutions (11.9.11) and (11.9.16) have been used.
We next set U1 = −U2 = U to reduce the solution (11.9.18) to the form

tan

(
1

4
v2

)
=

U sinh(mX)

cosh(mUt)
. (11.9.19)

This is exactly the same result (11.8.18) obtained by Perring and Skyrme (1962). It
was already investigated as the asymptotic behavior of (11.9.19), as t → ±∞, in
Section 11.8. The asymptotic solution describes the interaction of two-soliton solu-
tions.

11.10 The Solution of the Sine-Gordon Equation by the Inverse
Scattering Method

We use the characteristic form of the sine-Gordon equation (11.9.1). Following Lamb
(1980), we describe the method of solution of (11.9.1) by the inverse scattering ap-
proach. The essence of this approach is to relate equation (11.9.1) to a pair of linear
scattering equations for v1 and v2,

∂v1
∂x + iζv1 = −1

2uxv2,

∂v2
∂x − iζv2 = 1

2uxv1.

}
(11.10.1ab)

These equations, together with the conditions that v1 and v2 are bounded as x →
±∞, may be considered as a problem of determining the eigenvalue ζ for a given
function q = −1

2ux called the potential corresponding to a solution u(x, t) of
(11.9.1).

We note that, if v1 and v2 are bounded and q → 0 sufficiently rapidly as
x → ±∞, then v1 ∼ a1 exp(−iζx) and v2 ∼ a2 exp(iζx), as x → ±∞. So, there
exists an unbounded state if and only if ζ is real. If ζ is taken as a fixed, real number,
then ζt = 0. Differentiating (11.10.1ab) with respect to t, integrating with respect to
x, and then, combining with equation (11.9.1) gives the evolution equations for the
vector eigenfunctions (v1, v2) in the form

∂v1
∂t = i

4ζ (v1 cosu− v2 sinu),

∂v2
∂t = i

4ζ (v1 sinu+ v2 cosu).

}
(11.10.2ab)

Since the solution u is related to q through q = −1
2ux so that

u(x, t) = −2

∫ x

−∞
q(ξ, t) dξ, (11.10.3)
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it follows that u → 0 as x → −∞. Hence, equations (11.10.2ab) give

v1t ∼
i

4ζ
v1, (11.10.4a)

v2t ∼ − i

4ζ
v2 as x → −∞. (11.10.4b)

The form of the equations (11.10.2ab) as x → +∞ depends on the value of u(x, t)
as x → +∞. The only cases that can be solved without any problem are those in
which u(x, t) → 2nπ as x → +∞.

From (11.10.4a) v1 is either zero or tends to exp(− it
4ζ ) as x → −∞. Similarly,

(11.10.4b) shows that v2 is either zero or tends to exp(− it
4ζ ) as x → −∞. We then

consider the solution that is proportional to the fundamental solutions given by

φ1(x, k) = exp(−ikx) +
∫ x

−∞
A1(x, ξ) exp(−ikξ) dξ (11.10.5)

and

φ2(x, k) =

∫ x

−∞
A2(x, ξ) exp(−ikξ) dξ, (11.10.6)

where A1 and A2 represent the scattering (or wake) and the reflected particles. Then,

v =

(
v1
v2

)
∼ exp

(
it

4ζ

)(
1
0

)
exp(−iζx) as x → −∞. (11.10.7)

The form of the solution can be represented as a linear combination of two linearly
independent solutions, that is,

v ∼ exp

(
it

4ζ

)[
c11

(
0
1

)
exp(iζx) + c12

(
1
0

)
exp(−iζx)

]
as x → +∞.

(11.10.8)

Consequently, in the limit as x → +∞,

v1 ∼ c11(ζ, t) exp[i(
t
4ζ − ζx)],

v2 ∼ c12(ζ, t) exp[i(
t
4ζ + ζx)],

}
(11.10.9ab)

where the time dependence of c11 and c12 is found from (11.10.2ab) in the limit as
x → +∞. Since we consider the case where u → 2nπ as x → +∞,

v1t ∼
i

4ζ
v1, v2t ∼ − i

4ζ
v2 as x → +∞. (11.10.10ab)

Following the method used for the modified KdV equation, it turns out that

c11(ζ, t) = c11(ζ, 0) exp

(
− it

2ζ

)
, c12(ζ, t) = c12(ζ, 0).
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Using the notation

RR(ζ, t) = c11(ζ, t)/c12(ζ, t) and mL�(k�, t) = −ic11(k�, t)/c12(k�, t),

we find the following result:

ΩR(z, t) =
1

2π

∫ ∞

−∞
RR(ζ, 0) exp

[
−i

(
t

2ζ
− ζz

)]
dζ

−
N∑
�=1

mR�(k�, 0) exp

[
−i

(
t

2k�
− k�z

)]
. (11.10.11)

Similarly, we can derive

ΩL(z, t) =
1

2π

∫ ∞

−∞
RL(ζ, 0) exp

[
−i

(
t

2ζ
− ζz

)]
dζ

−
N∑
�=1

mL�(k�, 0) exp

[
−i

(
t

2k�
− k�z

)]
. (11.10.12)

A procedure similar to that used for the modified KdV equation can be employed
to determine the pure soliton solutions without any difficulty. Making reference to
Lamb (1980), the multisoliton solutions are then given by

u(x, t) = −4 tan−1

[
Im|I − iM |
Re|I − iM |

]
, (11.10.13)

where I is a unit matrix of order N , N is the number of zeros of c12(ζ, 0) in the
upper half-plane, and M is an N ×N matrix with time-dependent elements

MLj(kj , t) = mLj(kj , 0) exp

(
it

2kj

)
. (11.10.14)

Here, we consider the simplest case which deals with a single pole on the imagi-
nary axis at k1 = 1

2 ia1 so that

mL1(k1, t) = mL1(k1, 0) exp

(
t

a1

)
(11.10.15a)

and

ML1 =
1

a
mL1(k1, 0) exp

(
a1x+

t

a1

)
. (11.10.15b)

Consequently, the single-soliton solution is derived from (11.10.13) as

u(x, t) = 4 tan−1

[
exp

(
a1x+

t

a1
+ γ

)]
, (11.10.16)

where γ = log[ 1a · mL1(k1, 0)]. This solution is identical to (11.8.11) which was
found earlier by a different, but simpler approach.
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Finally, the solution of the sine-Gordon equation representing the interaction of
two solitons can also be obtained from two poles on the imaginary axis. This case
is similar to that of the multisoliton solution of the KdV equation. Here, we set
kr = 1

2 iar, r = 1, 2. Then the expression |I − iML| takes the form

Re|I − iML| = 1− mL1mL2

a1a2

(
a1 − a2
a1 + a2

)2

exp
{
(a1 + a2)x

}
, (11.10.17)

Im|I − iML| = −
[
mL1

a1
exp(a1x) +

mL2

a2
exp(a2x)

]
. (11.10.18)

Consequently, the two-soliton solution takes the form

u(x, t) = −4 tan−1

[(
a1 + a2
a1 − a2

)
cosh 1

2 (u1 − u2)

sinh 1
2 (u1 + u2)

]
, a1 > a2, (11.10.19)

where

ur =

(
arx+

t

ar
+ γr

)
, exp(γr) =

(
a1 − a2
a1 + a2

)[
mLr(k, 0)

ar

]
. (11.10.20)

The above solutions are those special solutions which evolve into pure multisoliton
solutions.

11.11 The Similarity Method for the Sine-Gordon Equation

To obtain a similarity solution for the characteristic form of the sine-Gordon equation
(11.9.1), we assume that this equation is invariant under a group of transformations

x̃ = aαx, t̃ = aβt, and ũ = aγu, (11.11.1)

for suitable values of constants α, β, and γ. It follows that

ũx̃t̃ − sin ũ = aγ−α−βuxt − sin
(
aγu

)
= uxt − sinu, (11.11.2)

provided that γ = 0 and α = −β. This shows that equation (11.9.1) admits similarity
transformations given by

u(x, t) = v(η), η = xt−α/β = xt. (11.11.3)

Using ∂
∂x = t d

dη , ∂
∂t = x d

dη , equation (11.9.1) reduces to the ordinary differential
equation

ηv′′(η) + v′(η) = sin v, (11.11.4)

where the prime denotes differentiation with respect to η.
We next introduce a new dependent variable w = exp(iv) in (11.11.4) to derive

an equation for w in the form
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Fig. 11.5 Similarity solution of (11.11.4). From Lamb (1980).

w′′ − w′2

w
+

1

2η

(
2w′ − w2 + 1

)
= 0. (11.11.5)

Equation (11.11.5) is a special case of the equation that defines the Painlevé equation
of the third kind (Davis 1962, p. 185). However, it is normally not easy to find a
solution of (11.11.5); hence, it is necessary to use numerical integration to do so.
An example of such a solution is given by Lamb (1980) with a phase plane analysis
and graphical representations of functions v and v′ = −2q

t = ux

t by (11.11.3).
The numerical solutions for v and v′ shown in Figure 11.5 satisfy the conditions
v(0) = 0.1 and v′(0) = sin v(0), giving a solution that is finite at η = 0.

11.12 Nonlinear Optics and the Sine-Gordon Equation

McCall and Hahn (1967, 1969) discovered a remarkable new wave mode which prop-
agates in a two-level atomic system without attenuation. When a sufficiently intense
electromagnetic wave is incident on the system as a short pulse, then the number of
atoms in the excited state in the leading part of the pulse exceeds that in the ground
state due to the absorption of the electromagnetic wave. However, the electromag-
netic wave in the rear part of the pulse is again emitted due to induced emission
so that the system transmits a pulse without absorption. This is called self-induced
transparency (SIT).
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In SIT, a medium transmits a light pulse at the resonant frequency without reso-
nance absorption. When an electromagnetic wave is incident on a two-level atomic
system, an ensemble of atoms has a ground state of energy E1 and an excited state
of energy E2. If the frequency of the wave is equal to the transition frequency
ω0 = (E2 − E1)/�, the transition from the ground state to the excited state occurs
due to the resonance absorption of the electromagnetic wave. If the present system
is composed of a large number of atoms, the atoms excited to the higher level lose
energy by collision with atoms and the slow irreversible decay of the number of ex-
cited atoms to lower levels. However, the remarkable fact is that the pulse propagates
as a soliton without attenuation of energy.

To describe the self-induced transparency phenomena, we may regard the elec-
tromagnetic wave as a modulated, circularly polarized plane wave traveling along
the x-axis so that the electric field E(x, t) is represented by

E(x, t) = E(x, t)
(̂
j cos θ + k̂ sin θ

)
, (11.12.1)

where θ = (kx − ωt) + ψ(x), k = nω
c , is the refractive index determined by the

linear dispersion relation of the medium, the amplitude E(x, t) and the phase ψ(x)
vary slowly compared with that of the carrier wave, that is,∣∣∣∣∂E∂x

∣∣∣∣ � |kE|,
∣∣∣∣∂E∂t

∣∣∣∣ � |ωE|, (11.12.2)

and similar results hold for ψ(x).
The electric field E(x, t) can be obtained from the Maxwell equations and satis-

fies the wave equation

∂2E

∂x2
−
(
n

c

)2
∂2E

∂t2
=

(
4π

c2

)
∂2P

∂t2
, (11.12.3)

where P(x, t) is the polarization of the medium caused by the electromagnetic wave.
If the equation for P(x, t) is given, this equation combined with (11.12.1) forms a
closed system for two unknowns E and ψ.

We assume that the medium is made up of N two-level atoms and the transition
frequencies ω0 of individual atoms are not all the same but are distributed about
the frequency ω0 of the incident wave field in accordance with the spectral density
function f(Δω), which is normalized by the conditions

Δω = (ω0 − ω) and
∫ ∞

−∞
f(Δω) d(Δω) = 1. (11.12.4)

Consequently, the polarization of the medium reduces to

P(x, t) = N

∫ ∞

−∞
f(Δω)p(Δω, x, t) d(Δω), (11.12.5)

where p(Δω, x, t) is the polarization of a two-level atom induced by the electro-
magnetic wave and p(Δω, x, t) satisfies the slow-variation conditions of (11.12.2).
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Thus, when the polarization p consists of two components, one is in phase with the
carrier wave of the electric field E(x, t) and the other is out of phase, so that it can
be expressed as

p(Δω, x, t) = u(Δω, x, t)
(̂
j cos θ + k̂ sin θ

)
+ v(Δω, x, t)

(̂
j sin θ − k̂ cos θ

)
, (11.12.6)

where u and v correspond to the modulations of the electric field and become slowly
varying functions of x and t.

Therefore, the problem reduces to determining the equations for u and v, which
can be obtained from the Schrödinger equation for a two-level atom in the incident
electric field. Invoking the electric dipole approximation and neglecting relaxation
effects of the excited states, McCall and Hahn (1969) derived the following equations
for u and v:

∂u

∂t
= vΔω, (11.12.7)

∂v

∂t
= −uΔω −

(
κ2

ω

)
EW, (11.12.8)

∂W

∂t
= vEω, (11.12.9)

where u and v are usually called the dispersive and absorptive components of the
electric dipole, respectively, κ = (2p/�), p is the magnitude of the electric dipole
moment, and W is the energy of the two-level atom, that is, W = −1

2�ω0 in the
ground state and W = 1

2�ω in the excited state. Moreover, we assume that all two-
level atoms are in the ground state until the dipole transitions occur.

Thus, equations (11.12.3) and (11.12.7)–(11.12.9) constitute a closed system for
u, v, W , and E. Since u, v, and E are slowly varying functions corresponding to
the modulation of p, we derive equations for the modulational quantities E and ψ
from (11.12.3). Substituting (11.12.1), (11.12.5), and (11.12.6) in equation (11.12.3)
and using the slow-variation conditions (11.12.2), we derive the following equations
for E and ψ:

∂E
∂x

+
n

c

∂E
∂t

= −2πωN

nc

∫ ∞

−∞
vf(Δω) d(Δω), (11.12.10)

E ∂ψ
∂x

=
2πωN

nc

∫ ∞

−∞
uf(Δω) d(Δω). (11.12.11)

Thus, we conclude that five equations (11.12.7)–(11.12.11) for u, v, W , E , and ψ
describe the self-induced transparency phenomena. In particular, if all the transition
frequencies of N two-level atoms are identical, so that f(Δω) = δ(Δω) and the
frequency ω of the electromagnetic wave is equal to that frequency (Δω = 0), equa-
tions (11.12.7)–(11.12.11) can be reduced to the sine-Gordon equation. To show this,
we can set u ≡ 0 and ψ ≡ 0 because of (11.12.7) and (11.12.11). Consequently, the
system of equations (11.12.8)–(11.12.10) assumes the form
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∂v

∂t
= −

(
κ2

ω0

)
EW, (11.12.12)

∂W

∂t
= ω0vE , (11.12.13)

∂E
∂x

+
n

c

∂E
∂t

= −2πω0N

nc
v. (11.12.14)

Introducing a new function φ(x, t) by

φ(x, t) = κ

∫ t

−∞
E(x, τ) dτ (11.12.15)

from (11.12.12), (11.12.13), we can write v(x, t) and W (x, t) in the form

v(x, t) = p sin
{
φ(x, t)

}
, (11.12.16a)

W (x, t) = W0 cos
{
φ(x, t)

}
, (11.12.16b)

where W0 = −�ω0

2 , and we have used the boundary condition that W (x, t) =
−1

2�ω0, as t → −∞, that is, all the two-level atoms are in the ground state. Us-
ing equations (11.12.15) and (11.12.16a), equation (11.12.14) reduces to the sine-
Gordon equation

φxx +
1

c′
φtt = −γ2 sinφ, (11.12.17)

where c′ = c
n and γ2 = (πNω0�)/nc.

Using a suitable transformation of variables, equation (11.12.17) can be reduced
to the canonical form of the sine-Gordon equation,

φxx − φtt = sinφ. (11.12.18)

11.13 Nonlinear Lattices and the Toda-Lattice Soliton

We follow Toda (1967) and write the Toda lattice equation (2.3.36) with unit mass
(m = 1) as the first-order system

dsn
dt

= ae−brn − a = f(r), (11.13.1)

drn
dt

= 2sn − sn+1 − sn−2. (11.13.2)

We note that

s̈n = −abe−brn
drn
dt

= −b
(
a+

dsn
dt

)(
drn
dt

)

so that
s̈n

b(a+ ṡn)
= sn+1 − 2sn − 2sn−1, (11.13.3)

where the dot denotes the derivative with respect to time t.
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We next seek a traveling wave solution

sn(t) = f(θ), θ = ωt− αn (11.13.4)

so that f(θ) satisfies the equation

ω2f ′′

b(a+ ωf ′)
= f(θ + α)− 2f(θ) + f(θ − α). (11.13.5)

In order to find f(θ), Toda suggested the identity involving elliptic functions

dn2(θ + α)− dn2(θ − α) = −2k2
d

dα

[
sn θ cn θ dn θsn2 α

1− k2sn2 θ sn2 α

]
, (11.13.6)

where k is the modulus of the Jacobi elliptic functions. Using the Jacobi Epsilon
function defined by

E(θ) =

∫ θ

0

dn2x dx, (11.13.7)

equation (11.13.6) is integrated to obtain

E(θ + α)− 2E(θ) + E(θ − α) = −2k2
sn θ cn θ dn θ sn2α

(1− k2 sn2 θ sn2 α)
. (11.13.8)

This is close to equation (11.13.5). We further note that E′(θ) = dn2 θ = 1 −
k2 sn2 θ and E′′(θ) = −2k2 snθ cn θ dn θ so that (11.13.8) can be written as

E′′(θ)

β + E′(θ)
= E(θ + α)− 2E(θ) + E(θ − α), (11.13.9)

where β = 1
sn2α−1. The function E(θ) is not a periodic function, but it is associated

with the periodic Jacobi zeta function

Z(θ) ≡ E(θ)− E(k)

K(k)
θ, (11.13.10)

where K(k) = K and E(k) = E are complete elliptic integrals of the first and
second kind, respectively, and 2K is the period of Z(θ).

We next normalize the phase so a period corresponds to a unit increase in θ and
write ṡn(t) in the form

ṡn(t) =
(2Kω)2

b

[
dn2

{
2K(ωt− αn); k

}
− E

K

]
. (11.13.11)

Thus, it follows from (11.13.1)–(11.13.2) that

rn(t) = −1

b
log

(
1 +

ṡn
a

)
. (11.13.12)
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In the limit as k → 1, E(k) → 1 and K(k) → ∞ and dn(z, k) → sech(z) so
that the solitary wave solution is

rn(t) = −1

b
log

[
1 + sinh2 κ sech2

(
κn± t

√
ab sinhκ

)]
, (11.13.13)

where κ is defined in such a way that

2Kα → κ, 2Kω →
√
ab sinhκ. (11.13.14)

It follows from (11.13.13) that the velocity of the localized lattice wave can be
expressed in terms of the amplitude parameter κ as

v =
√
ab

sinhκ

κ
. (11.13.15)

The above analysis of the Toda lattice problem leads to the following conclusions:

1. The solution (11.13.13) represents the Toda lattice soliton. The minus sign in
(11.13.13) indicates that the Toda lattice soliton (TLS) is a compression wave.

2. The amplitude of the TLS tends to zero as sinhκ → 0 so that it reduces to a
solution of the linear equation (2.3.37) moving with the velocity v =

√
ab.

3. The velocity of a TLS is greater than that of small amplitude waves.
4. All these results of this analysis hold for all forms of the Toda potential from the

linear limit of (2.3.37) to the hard sphere limit as b → ∞, while ab remains finite.
5. It also follows from (2.3.33)–(2.3.34) that Toda’s infinite chain of unit masses

linked by the potential (2.3.35) is governed by the differential equation (2.3.34).
The transformation

rn(t) = −1

b
log

(
1 + Vn(t)

)
(11.13.16)

reveals than Vn satisfies the equation

d2

dt2
log(1 + Vn) = ab(Vn+1 − 2Vn + Vn−1). (11.13.17)

This represents that propagation of voltage through a nonlinear lattice filter. Intro-
ducing the time scale τ = t

√
ab, Hirota (1973a, 1973b) showed that

Vn(t) =
d2

dτ2
fn(τ), (11.13.18)

where

fn(τ) =
∑
μ=0,1

exp

[
(N)∑
i<j

Bijμiμj +

N∑
i=1

μiXi

]
,

Xi = ωiτ − κin+ γi,

ωi = ±2 sinh

(
κi

2

)
, κi, γi are constants,

exp(Bij) = − (ωi − ωj)
2 − 4 sinh2[(κi − κj)/2]

(ωi + ωj)2 − 4 sinh2[(κi + κj)/2]
.

(11.13.19)
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The results show that collisions of Toda solitons can be described by the N -
soliton solutions given by (11.13.18) and (11.13.19).

In 1970s, it has been realized that a mass–spring lattice is completely integrable
for the special form of the interaction potential (2.3.35) discovered by Toda (1967a,
1967b). However, even though exact integrability is lost for any other potential, it is
still possible to obtain solitary wave solution of equation (2.3.34) in the form

rn(t) = R(n− vt) = R(z), (11.13.20)

with R(z) → 0 as |z| → ∞ so that equation (2.3.34) reduces to the form

v2R′′(z) = V ′[R(z + 1)
]
− 2V ′[R(z)

]
+ V ′[R(z − 1)

]
. (11.13.21)

This is a general equation for long lattice solitary waves, where R(z) = rn(t) is
the separation of adjacent lattice sites and V [R(z)] is the associated spring potential.
Several authors have suggested methods for finding numerical or analytical approx-
imation for lattice solitary waves (LSW). Eilbeck and Flesch (1990) have shown
how to obtain fairly accurate numerical solutions of such equations (11.13.21) based
on pseudospectral methods. They found R(z) as a finite Fourier cosine series of n
terms over a finite interval. On the other hand, Duncan et al. (1993) have devel-
oped a rather general approach based on Fourier transform analysis. They defined
the Fourier transform of F (z) = V ′[R(z)] by

F̃ (k) = F
{
F (z)

}
=

∫ ∞

−∞
e−ikzF (z) dz, (11.13.22)

and similarly, R̃(k) = F{R(z)}. Thus, the Fourier transform of (11.13.21) is

v2R̃(k) =

(
4

k2
sin2

k

2

)
F̃ (k) ≈

(
1 +

k2

12

)−1

F̃ (k). (11.13.23)

This leads to the differential equation

v2
(
1− 1

12

d2

dz2

)
R(z) = V ′[R(z)

]
. (11.13.24)

Or equivalently,

R′′(z) =
12

v2
(
v2R(z)− V ′[R(z)

])
. (11.13.25)

This equation can be integrated in terms of elliptic or hyperbolic functions for differ-
ent forms of the function V ′[R(z)].

For a potential of the form

V (r) =
1

2
r2 +

ar3

3
, (11.13.26)

Collins (1981) has obtained an approximate inversion of the different operator on the
right-hand side of equation (11.13.21). We follow Duncan et al. (1993) with potential
(11.13.26) to find equation (11.13.25) in the form
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R′′(z) =
12

v2
(
v2 − 1

)
R(z)−

(
12a

v2

)
R2. (11.13.27)

We use a method similar to that of the KdV equation in Section 9.4 to find the
solitary wave solution of (11.13.27) in the form

R(z) = rn(t) =

(
3

2a

)(
v2 − 1

)
sech2

[
(n− vt)

√
3
(
v2 − 1

)
/v2

]
. (11.13.28)

Thus, this LSW can be either compressive for a < 0 or expansive for a > 0. In both
cases, the velocity of the LSW is greater than unity, the wave velocity in the low-
amplitude limit. In the limit as v2 → 1+ with a < 0, the solution (11.13.28) tends
to the Toda lattice soliton (11.13.13). On the other hand, as v2 → 1+, the amplitude
of the LSW (11.13.28) tends to zero so that its width increases without bound. This
means that (11.13.28) represents a large solitary waves that extend over many lattice
spacings.

For more information about the existence of solitary waves on mass–spring lat-
tices for a wider classes of potential functions and about the two-dimensional Toda
lattice, the reader is referred to Scott (2003), Biondini and Wang (2010).

11.14 Exercises

1. Use the Fourier transform method to show that the Fourier transform solution of
the (n+ 1)-dimensional, inhomogeneous, Klein–Gordon equation

∂2u

∂t2
− c2

(
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n

)
u+ d2u = q(x, t), x ∈ R

n, t > 0,

with the Cauchy data

u(x, 0) = f(x) and ut(x, 0) = g(x) for all x ∈ R
n

is

U(k, t) = F (k) cos
(
t
√
c2|k|2 + d2

)

+
G(k)√

c2|k|2 + d2
sin

(
t
√
c2|k|2 + d2

)

+

∫ t

0

sin(τ
√
c2|k|2 + d2)√

c2|k|2 + d2
Q(k, t− τ) dτ,

where U(k, t) = F{u(x, t)}, x = (x1, x2, . . . , xn), and k = (k1, k2, . . . , kn).
2. Show that the energy integral associated with the Klein–Gordon equation in Ex-

ercise 1 is given by

E(t) =

∫ (
|ut|2 + c2|∇u|2 + d2|u|2

)
dx.

Show that E(t) is independent of t.
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3. Seek a similarity solution of the Klein–Gordon equation

utt − uxx = u3

in the form u(x, t) = tmf(xtn) for suitable values of m and n. Show that f(z)
satisfies the equation

(
z2 − 1

)
f ′′ + 4zf ′ + 2f = f3, where z = xt−1.

4. If V (u) involved in the Klein–Gordon equation (11.5.1) is given (Whitham
1974) by

V (u) =
1

2
u2 + bu4 + · · · ,

derive the result

u(θ) = a cos θ +
1

8
a3b cos 3θ + · · · as a → 0,

where the nonlinear dispersion relation is given by

ω2 = 1 + k2 + 3a2b+ · · · as a → 0

and the nonlinear amplitude is

A =
1

2
a2 +

9

8
a4b+ · · · as a → 0.

5. Verify that

u(x, t) = 4 tan−1

[
α exp

{
x− Ut√
1− U2

}]

is a solution of the sine-Gordon equation (11.8.2), where α and U are constants.
6. Show that

u(x, t) = 4 tan−1

[
U cosh{x/

√
1− U2}

sinh{Ut/
√
1− U2}

]

is an exact antisoliton solution of the sine-Gordon equation, where 0 < |U | < 1.
Examine the asymptotic nature of u(x, t), as t → ±∞, with physical signifi-
cance.

7. Show that the transformations

ξ =
1

2

(
x− t

c

)
, η =

1

2

(
x+

t

c

)

transform the equation
uxx − c2utt = sinu

into the form
uξη = sinu.
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8. (a) Show that the sine-Gordon equation

uxx − utt = sinu

is invariant under the transformations x̃ = m(x − Ut) and t̃ = m(x − Ut),
where m = (1− U2)−

1
2 and −1 < U < 1.

(b) Hence or otherwise, derive that

u(x, t) = 4 tan−1

[
(1− β2)

1
2

β

sin{αβ(t− Ux− t0)}
cosh{α(1− β2)

1
2 (x− Ut− x0)}

]

is a solution of the sine-Gordon equation, where β �= 0, x0, t0, and U are real
constants, −1 < β < 1, and −1 < U < 1.

9. (a) Use the Bäcklund transformation (11.9.2a), (11.9.2b) to show that four solu-
tions ur (r = 1, 2, 3, 4) satisfy the relation

tan

{
1

4
(u4 − u1)

}
=

(
a1 + a2
a1 − a2

)
tan

{
1

4
(u2 − u3)

}
,

where a1 and a2 are nonzero constants.
(b) Apply the relation in (a) to obtain a soliton solution of the sine-Gordon equa-
tion by setting u1 = 0, and u2 and u3 as different soliton solutions.

10. Examine the asymptotic nature of the two-soliton solution (11.10.19), as t →
±∞.

11. Derive the solitary wave solution of the sinh-Gordon equation

uxt = sinhu.

12. (a) Use the similarity solution of the sine-Gordon equation (11.9.1) of the form
u(x, t) = f(xtn) for suitable n to show that w(z) = exp{if(z)} yields a
Painlevé equation for w(z).
(b) Use the same method as in (a) to discuss the sinh-Gordon equation in Exer-
cise 11.

13. Verify the following conservation laws (Lamb 1971) for equation (11.9.1):(
1

2
u2
t

)
x

− (1− cosu)t = 0, (1− cosu)x −
(
1

2
u2
x

)
t

= 0,

(
1

6
u6
t −

2

3
u2
tu

2
tt +

8

9
u3
tuttt +

4

3
u2
ttt

)
x

+

{(
1

9
u4
t −

4

3
u2
tt

)
cosu

}
t

= 0,

(
1

4
u4
t − u2

tt

)
x

+
(
u2
t cosu

)
t
= 0.

14. Using the Lagrangian density

L =
1

2

(
u2
t − u2

x

)
− V (u),

where V ′(u) = sinu, derive the sine-Gordon equation

uxx − utt = sinu.
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15. Show that the bilinear form of the sine-Gordon equation in Exercise 14 is the
pair of equations

(
D2

x −D2
t − 1

)
(φ · ψ) = 0 and

(
D2

x −D2
t

)
(φ · φ− ψ · ψ) = 0,

where u = 4 tan−1(ψφ ).
16. Consider the dissipative wave equation

utt − c2∇2u+ νut = 0,

where ν(> 0) is the coefficient of dissipation. Show that the energy is decreas-
ing:

dE

dt
= −ν

∫∫∫
u2
t dx ≤ 0.

17. Use u(x, t) = exp(−at)v(x, t) to transform the one-dimensional dissipative
wave equation in Exercise 16. For ν = a2, show that the transformed equation
is the Klein–Gordon equation with imaginary mass (ia).

18. Solve the fractional Klein–Gordon equation (Debnath and Bhatta 2004)

∂αu

∂tα
− c2uxx + d2u = p(x, t), x ∈ R, t > 0 (1 < α ≤ 2),

u(x, 0) = 0 = ut(x, 0), x ∈ R,

u(x, t) → 0 as |x| → ∞, t > 0.

19. Solve the initial-value problem for the KG equation

utt − c2uxx + d2u = 0, x ∈ R, t > 0,

u(x, 0) = 0, ut(x, 0) = δ(x), x ∈ R.
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Asymptotic Methods and Nonlinear Evolution
Equations

The organic unity of mathematics is inherent in the nature of
this science, for mathematics is the foundation of all exact
knowledge of natural phenomena.

David Hilbert

It seems to be one of the fundamental features of nature that
fundamental physics laws are described in terms of great
beauty and power.
As time goes on, it becomes increasingly evident that the
rules that the mathematician finds interesting are the same as
those that nature has chosen.

Paul Dirac

12.1 Introduction

Many physical systems involving nonlinear wave propagation include the effects
of dispersion, dissipation, and/or the inhomogeneous property of the medium. The
governing equations are usually derived from conservation laws. In simple cases,
these equations are hyperbolic. However, in general, the physical processes involved
are so complex that the governing equations are very complicated, and hence, are not
integrable by analytic methods. So, special attention is given to seeking mathematical
methods which lead to a less complicated problem, yet retain all of the important
physical features. In recent years, several asymptotic methods have been developed
for the derivation of the evolution equations which describe how some dynamical
variables evolve in time and space. So, we begin this chapter with one simple method
of construction of the linear evolution equation from a given frequency–wavenumber
dispersion relation of the form

ω = f(k). (12.1.1)

This relation is multiplied by −iU(k) exp[i(kx−ωt)] and integrated with respect to
the wavenumber k from −∞ to ∞ to obtain the equation
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∂u

∂t
= L(u) = −i

∫ ∞

−∞
f(k)U(k) exp

[
i(kx− ωt)

]
dk, (12.1.2)

where L(u) represents an operator and U(k) is an arbitrary function which is related
to the function u(x, t) by the inverse Fourier transform

u(x, t) =

∫ ∞

−∞
U(k) exp

[
i(kx− ωt)

]
dk. (12.1.3)

Equation (12.1.2) represents the fundamental result that determines the structure
of the evolution equation. In particular, if f(k) is a polynomial in k, then L(u) is a
differential operator. More explicitly, if

f(k) = ck − iγk2 − α3k
3 − · · · − αnk

n, (12.1.4)

where c, γ, α3, . . . , αn are arbitrary constants, then (12.1.2) gives the explicit evolu-
tion equation

∂u

∂t
+ c

∂u

∂x
− γ

∂2u

∂x2
+ α3

∂3u

∂x3
+ · · ·+ αn

∂nu

∂xn
= 0. (12.1.5)

If α3 = α4 = · · · = αn = 0, (12.1.5) reduces to the linear Burgers equation. When
αn ≡ 0 for n ≤ 4, equation (12.1.5) represents the linear KdV–Burgers equation. On
the other hand, if γ = −iν for real ν and αn = 0 for n ≤ 3, then (12.1.5) reduces to
the linear Schrödinger equation.

The above analysis reveals that the polynomial dispersion relation corresponds to
systems governed by evolution equations of the differential type. On the other hand,
if the dispersion relation has a transcendental form, the corresponding evolution is of
integro-differential type. However, there is no such simple method of construction of
evolution equations from a given nonlinear dispersion relation. For nonlinear prob-
lems, asymptotic methods are employed to construct evolution equations. The linear
part of the associated evolution equation can be recovered from (12.1.2). So, the
rest of this chapter is devoted to deriving evolution equations for various nonlinear
systems by asymptotic methods.

The idea of a far-field asymptotic behavior of a physical system originated from
the properties inherent in a given evolution equation which do not depend, in any
sensitive manner, on the details of the initial conditions. Thus, such properties are
generally observed after a sufficiently long period of time for a large class of initial
conditions. In this sense, it is not truly useful to study the initial-value problems in
detail. Rather, it is more useful to investigate the asymptotic behavior of a physi-
cal system in the limit as time goes to infinity. In many situations, these far-field
solutions merely represent the simple waves described in Chapter 6.

Included here are reductive perturbation methods for describing weakly disper-
sive systems, strongly dispersive systems, and quasi-linear dissipative systems. The
perturbation method due to Ostrovsky and Pelinovsky (1971) is developed in Sec-
tion 12.6 for a general system of first-order nonlinear partial differential equations
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that can be applied to both conservative and nonconservative systems. The Gardener–
Morikawa transformation is introduced in Section 12.4 to derive a fairly general non-
linear evolution equation. This is followed by several examples of applications, in-
cluding nonlinear oscillations of an elastic string with dispersive effects, the Burgers
equation in gas dynamics, the KdV equation for ion-acoustic waves, and nonlinear
shallow water waves on an uneven bottom. In Section 12.5, the reductive perturba-
tion method is also applied to describe strongly nonlinear dispersive systems and
the generalized nonlinear Schrödinger equation. The method of multiple scales and
asymptotic analysis are introduced in Sections 12.7 and 12.8 and used to derive both
the nonlinear Schrödinger and the KdV equations from nonlinear dispersive systems.
Special attention is given to the asymptotic method that has been utilized for the
derivation of the nonlinear Schrödinger equation and the Davey–Stewartson equa-
tions with direct applications to the instability of Stokes waves in water. Several con-
servation laws for the Davey–Stewartson equations are also derived in Section 12.9.

12.2 The Reductive Perturbation Method and Quasi-linear
Hyperbolic Systems

Historically, this method was first formulated by Taniuti and his collaborators (Taniuti
and Wei 1968; Taniuti and Washimi 1968; Kakutani et al. 1968; Taniuti and Yajima
1969; Asano and Ono 1971; Taniuti 1974) in a more general form applicable to both
weakly dispersive and weakly dissipative systems.

We first consider a first-order, quasi-linear totally hyperbolic system of equations

Ut +A(U)Ux = 0, (12.2.1)

where U is a column vector with n components u1, u2, . . . , un and A is an n × n
matrix. Such a system of equations has already been investigated in connection with
simple waves.

We expand the vector U about a constant state solution U (0) of (12.2.1) in terms
of a small parameter ε which represents the smallness of the amplitude of U in the
form

U = U (0) + εU (1) + ε2U (2) + · · · . (12.2.2)

Since the amplitude is small, the solution of (12.2.1) can be approximated by the
linearized form of the system in which A(U) is replaced by A(U (0)). As the system
is totally hyperbolic, there are n real distinct eigenvalues λ(r) of A(U), and hence,
there are n constant eigenvalues λ

(r)
0 of A(U (0)), where r = 1, 2, . . . , n. In the

linear case, the characteristics are straight lines. On the other hand, for a nonlinear
system, as time evolves, characteristics will no longer be parallel lines, and hence,
after a sufficiently long time, characteristics intersect and lead to the breakdown of
differentiability. To investigate the process more explicitly, we expand the jth family
of characteristics of (12.2.1) in powers of ε,

dx

dt
= λ(j), (12.2.3)
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and, then, retain only terms of order ε to obtain

dx′

dt
= ε

n∑
r=1

u(1)
r

[
∂λ(j)

∂u
(j)
r

]
U=U(0)

= εU (1)∇uλ
(j)
0 , (12.2.4)

where x′ = x − tλ
(j)
0 , so that the coordinate system moves with speed λ

(j)
0 , λ(j)

0 =

λ(j)(U (0)), u(1)
r is the rth element of the vector U (1), and ∇u is the gradient operator

with respect to u
(1)
1 , u(1)

2 , . . . , u(1)
n .

It follows from result (12.2.4) that the characteristics suffer from deviation from
parallel straight lines by an amount of the order ε. Using the time scale εt, the phase
velocity dx′

d(εt) , moving with the speed λ(j)
0 in the reference frame, reduces to the order

of unity. Hence, for small t � ε−1, the phase velocity can be well approximated
by the phase velocity for the linear case. However, for large time scales, t ∼ ε−1,
the characteristics deviate significantly from those found in the linear case, even if
the amplitude is very small (ε � 1). Consequently, the far-field solutions can be
described by using the stretched time scale t ∼ ε−1.

It also follows from (12.2.4) that ∇uλ
(j)
0 is constant, and hence, U is a function

of x′ and εt. Consequently, the time derivative of U (1) is of the order ε and becomes
small. This means that x′ is constant and U (1) varies slowly with time along the
linear parallel equiphase straight lines. All of these lead to the use of the following
transformations for the far-field solutions of (12.2.1):

x′ = x− λ
(j)
0 t, t′ = εt. (12.2.5ab)

Clearly, ∂
∂x = ∂

∂x′ and ∂
∂t = ε ∂

∂t′−λ
(j)
0

∂
∂x′ . Hence, we use (12.2.1), (12.2.2) together

with the expansion of the matrix A as

A = A0 + εU (0)∇uA0 + · · · , (12.2.6)

where A0 = A(U (0)). Thus, we obtain the following system of perturbation equa-
tions:

O(ε) :
[
λ
(j)
0 I −A0

]
U

(1)
x′ = 0, (12.2.7)

O(ε2) :
[
−λ(j)

0 I +A0

]
U

(2)
x′ + U

(1)
t′ +

(
U (1)∇uA0

)
U

(1)
x′ = 0. (12.2.8)

Equation (12.2.7) shows that U (1)
x′ must be proportional to a right-eigenvector

R
(j)
0 of A0 corresponding to the eigenvalue λ(j)

0 . Integrating (12.2.7) with respect to
x′ gives the solution

U (1) = φ
(1)
j R

(j)
0 + V

(1)
j (t′), (12.2.9)

where φ(1)
j = φ

(1)
j (x′, t′) is a function of x′ and t′ and V

(1)
j (t′) are vector functions

of t′ only that arise from integration and so can be determined by the boundary
conditions. However, functions φ(1)

j (x′, t′) cannot be determined from (12.2.9), and
we have to consider (12.2.8) to find them. Equation (12.2.8) is an algebraic equation
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for U (2)
x′ , with a multiplying factor (−λ(j)

0 I+A0). If λ(j)
0 is an eigenvalue of A0, the

eigenvalue equation is given by

∣∣A0 − λ
(j)
0 I

∣∣ = 0. (12.2.10)

If L(j)
0 is a left-eigenvector of A0 corresponding to the eigenvalue λ(j)

0 , then

L
(j)
0

(
−λ(j)

0 I +A0

)
= 0. (12.2.11)

Thus, a necessary and sufficient condition for the existence of the solution of (12.2.8)
is

L
(j)
0

[
U

(1)
t′ + (U (1)∇uA0)U

(1)
x′

]
= 0. (12.2.12)

Without loss of generality, we set V (1)
j (t′) ≡ 0 in (12.2.9) so that the result-

ing equation (12.2.9) can be substituted in (12.2.12) to obtain the nonlinear partial
differential equation for φ(1)

j (x′, t′) in the form

∂

∂t′
φ
(1)
j + αj

∂

∂x′
φ
(1)
j = 0, (12.2.13)

where αj is given by

αj = L
(j)
0

[
R

(j)
0 ∇uA0

]
R

(j)
0 /L

(j)
0 R

(j)
0 , (12.2.14)

which, after some simplification, reduces to

αj =
[
∇uλ

(j)
0

]
R

(j)
0 . (12.2.15)

Thus, the present asymptotic analysis allows us to derive (12.2.13), which rep-
resents the basic scalar evolution equation describing the far-field behavior of the
jth (column vector) mode of wave propagation of the hyperbolic system (12.2.1).
Further, to the order of ε, the solution of (12.2.1) can be written as

U = U (j) + εφ
(1)
j R

(j)
0 , (12.2.16)

where φ(1)
j is a solution of (12.2.13).

Evidently, the characteristic equation of (12.2.13) is

dx′

dt′
= αjφ

(1)
j , (12.2.17)

which ensures the existence of the far-field behavior, provided that αj �= 0. The solu-
tion (12.2.16) represents simple waves already discussed in Chapter 6 that describe
the far-field behavior of (12.2.1) until a discontinuity is developed in the form of
shock waves.

The present method of analysis is called the reductive perturbation method be-
cause it reduces the determination of the far-field behavior of a system to the solution
of a scalar, nonlinear evolution equation, such as (12.2.13).
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Finally, we close this section by adding a remark on the nonuniqueness of the
far-field solution of hyperbolic equations. Equation (12.2.13) is invariant under the
transformation

x̃ = x′, t̃ = ε−1t′, φ̃(1) = εφ(1). (12.2.18)

However, this transformation is not unique because equation (12.2.13) is also invari-
ant under the following transformation:

x̃ = ε−ax, t̃ = ε−(a+1)t′, φ̃(1) = εφ(1), (12.2.19)

where a is an arbitrary constant. This transformation can be found from (12.2.5ab),
and the corresponding transformation

ξ = εa(x− λ0t), τ = ε(a+1)t, (12.2.20)

leads to equation (12.2.13). This transformation was first introduced by Gardner and
Morikawa (1960) for a solitary wave in a plasma propagating normally across a
magnetic field and is known as the Gardner–Morikawa transformation. Since a is
arbitrary, solutions vary more slowly over space and time for large values of a than
they do for smaller values. Thus, the far-field solutions are not determined uniquely
for hyperbolic equations. The breaking time tB after which smooth solutions cease
to exist is determined by the initial conditions, so that, in the case of hyperbolic
systems, the time scale for the far-field solution must be less than tB . Thus, the
concept of a far-field solution for the hyperbolic case is not meaningful unless tB is
sufficiently large. It is possible that a discontinuity (or shock) is developed before an
initial disturbance breaks up into simple waves.

The above asymptotic method can be applied to physical systems with dissipative
terms which prevent breaking. So, smooth solutions exist for all time for dissipating
systems, so that tB → ∞, unlike the case of hyperbolic equations. This leads us to
consider an arbitrarily long time evolution of a solution. For example, in the case
of a perfect gas, the viscosity begins to act effectively as the sound wave steep-
ens, and these two effects, the nonlinearity leading to breaking and the dissipation
that causes smoothing, balance one another to produce smooth solutions. As a re-
sult, shock waves are developed and propagated as already described by the Burgers
equation in Chapter 8.

12.3 Quasi-linear Dissipative Systems

We now apply the reductive perturbation method to solve a general dissipative system
which becomes totally hyperbolic when the dissipative terms are neglected. Using
the same notation as in (12.2.1), we consider the system of dissipative equations
described by

Ut +A(U)Ux +K1(K2Ux)x = 0, (12.3.1)

where K1 and K2 are n×n matrices which are functions of U and the eigenvalues of
A(U) are all real and distinct because of the first-order hyperbolic system embedded
in the system of equations (12.3.1).



12.3 Quasi-linear Dissipative Systems 629

We now adopt a frame of reference that moves with a constant velocity λ0 which
is equal to one of the eigenvalues of the matrix A0 = A(U (0)) associated with the
constant state U (0). We assume that the dispersion relation for small wavenumbers k
of the linearized system about U (0) is given by

ω = λ0k + iμk2 + · · · , (12.3.2)

where μ < 0. It can be anticipated that equation (12.3.1) can be reduced to the
Burgers equation by the Gardner–Morikawa transformation (12.2.20) with a = 1. In
view of this transformation, equation (12.3.1) admits approximate solutions which
vary slowly over space and more slowly with time due to weak nonlinearity and
weak dissipating effects. With ξ = ε(x − λ0t) and τ = ε2t, we apply the same
perturbation solution (12.2.2) and use the following results:

∂

∂x
= ε

∂

∂ξ
,

∂2

∂x2
= ε2

∂2

∂ξ2
,

∂

∂t
= −ελ0

∂

∂ξ
+ ε

∂

∂τ
, (12.3.3)

in the original equation (12.3.1). Then, equating the lowest-order terms O(ε2) gives

(λ0I −A0)U
(1)
ξ = 0, (12.3.4)

so that integration of this result gives

U (1) = φ(1)(ξ, τ)R0, (12.3.5)

where the scalar function φ(1) is to be determined, R0 is a right-eigenvector of
A0 corresponding to the eigenvalue λ0, and the boundary condition U (1) → 0, as
ξ → ∞, has been utilized. It is noted that (12.3.5) is not affected by the dissipative
term to this order of approximation.

Using the same argument as before, we obtain the following equation to the order
O(ε3):

(−λ0I +A0)U
(2)
ξ + U (1)

τ + U (1)∇uA0U
(1)
ξ +K0U

(1)
ξξ = 0, (12.3.6)

where K0 = (K1K2)U=U(0) .
Multiplying from the left by a left-eigenvector L0 corresponding to the eigen-

value λ0 and using the same argument as in Section 12.2 yields the necessary and
sufficient condition for the existence of solutions for U (2)

ξ as

L0

[
U (1)
τ + U (1)∇uA0U

(1)
ξ +K0U

(1)
ξξ

]
= 0. (12.3.7)

Substituting U (1) from (12.3.5) in (12.3.7) gives the following quasi-linear,
second-order equation for φ(1)(ξ, τ) ≡ φ(ξ, τ):

φτ + αφφξ + μφξξ = 0, (12.3.8)

where
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α = (∇uλ0)R0 and (12.3.9a)

μ =
L0K0R0

L0R0
. (12.3.9b)

Thus, the scalar function φ(ξ, τ) satisfies the Burgers equation (12.3.8), provided
that μ < 0. This equation governs the far-field behavior of the system (12.3.1),
corresponding to the characteristic field λ0 of the hyperbolic part of the system.
Finally, the solution of system (12.3.1) to the order O(ε) is given by

U = U (0) + εφ(1)(ξ, τ)R0. (12.3.10)

Thus, φ(1)(ξ, τ) ≡ φ(ξ, τ) satisfies a nonlinear evolution equation (12.3.8) which
determines the far-field behavior corresponding to the characteristic field λ0.

12.4 Weakly Nonlinear Dispersive Systems and
the Korteweg–de Vries Equation

The dispersion relation for nonlinear waves represents an algebraic equation for the
frequency ω, wavenumber k, and amplitude a2 : ω = ω(k, a2). If the amplitude
is small, the dispersion relation is usually determined by the linearized equation, so
that both the phase and group velocities are functions of the wavenumber k only. The
dispersion is said to be weak if the group velocity of the wave is almost constant in
a certain range of frequencies, and such that |∂ω∂k |  |∂2ω

∂k2 |. The Korteweg–de Vries
(KdV) equation is a classic example of weak dispersion. However, if this inequality
is not valid, the dispersion is said to be strong. The nonlinear Schrödinger (NLS)
equation is a famous example of strong dispersion.

We develop the reductive perturbation method to solve a general weakly nonlin-
ear dispersive system in a homogeneous medium given by

Ut +AUx +

[
s∑

β=1

p∏
α=1

(
Hβ

α

∂

∂t
+Kβ

α

∂

∂x

)]
U = 0, p ≥ 2, (12.4.1)

where U is a column vector of n components u1, u2, . . . , un(n ≥ 2), and A, Hβ
α ,

and Kβ
α are n× n matrices, which are functions of U . For suitable Hβ

α and Kβ
α , the

nonlinear system can be dispersive because the highest spatial derivative is of order
three, and it is weakly dispersive because it does not contain an (n×1) column vector
of the form B(U) on the left-hand side of (12.4.1). Further, we can take into account
the nonhomogeneity of the medium by adding an extra term BVx on the left-hand
side of equation (12.4.1).

We first consider a solution of (12.4.1) representing small derivations around a
steady equilibrium state U0 in the form

U = U0 + U1 exp
[
i(kx− ωt)

]
. (12.4.2)
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Substituting (12.4.2) in (12.4.1) and retaining only the first power of U1 gives
[(

−ω

k

)
I +A0 + (ik)p−1

s∑
β=1

p∏
α=1

(
Kβ

α0 −
ω

k
Hβ

α0

)]
U1 = 0, (12.4.3)

where the zero subscript denotes the value when U = U0. Thus, equation (12.4.3)
leads to the dispersion relation

∣∣∣∣∣
(
−ω

k

)
I +A0 + (ik)p−1

s∑
β=1

p∏
α=1

(
Kβ

α0 −
ω

k
Hβ

α0

)∣∣∣∣∣ = 0. (12.4.4)

For the case of long waves, that is, for small k, equation (12.4.3) can be solved by
the method of successive approximations. The zeroth-order approximation is given
by (

−ω

k
I +A0

)
U10 = 0. (12.4.5)

Obviously, the zeroth-order dispersion relation is of order n in (ωk ). We assume that
λ0 is a nondegenerate eigenvalue of A0 with L0 and R0 as corresponding left- and
right- eigenvectors, respectively. To this approximation, we find

ω

k
= λ0, U10 = R0 or some scalar multiple of R0. (12.4.6)

Then we obtain the next approximation by substituting λ0 for ω
k and R0 for U1 in

the neglected terms. Consequently,
[(

−ω

k

)
I +A0 + (ik)p−1

s∑
β=1

p∏
α=1

(
Kβ

α0 − λ0H
β
α0

)]
R0 = 0, (12.4.7)

so that the multiplication of this equation by L0 yields

ω

k
= λ0 +

(ik)p−1L0

L0R0

[
s∑

β=1

p∏
α=1

(
Kβ

α0 − λ0H
β
α0

)]
R0. (12.4.8)

Proceeding in this manner gives a higher-order approximation to (ωk ) as

ω

k
= λ0 + C1k

p−1 + C2k
2(p−1) + · · · , (12.4.9)

where the coefficient C1 is given by

C1 = (L0R0)
−1

[
ip−1L0

{
s∑

β=1

p∏
α=1

(
Kβ

α0 − λ0H
β
α0

)}
R0

]
, (12.4.10)

and similarly for C2. In this system, it is necessary to assume that C1 �= 0.
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Neglecting the third term in the original equation (12.4.1), the characteristic
curves of the reduced equation can be expressed in the form

dx

dt
= λ0 + ελ1 +O

(
ε2
)
, (12.4.11)

where ε is a small nonzero parameter which determines the effects of nonlinearity.
A simple comparison of (12.4.9) with (12.4.11) leads to the fact that there can

be a coupling between nonlinearity and dispersion (or dissipation) at the order of ε,
provided that

k ∼ εa, a = (p− 1)−1. (12.4.12)

This means that εa times the wavelength is of order unity, so that we can define the
moving coordinate ξ by

ξ = εa
(
x− λ0t

)
, (12.4.13)

in which the wave can be described when nonlinearity is weak and the wavelength is
long. Differentiating (12.4.13) with respect to x gives

dξ

dx
= εa

[
1− λ0

(
dx

dt

)−1]

= εa
[
1− λ0

λ0 + ελ1 +O(ε2)

]
= εa+1

[
λ1

λ0
+O(ε)

]
, (12.4.14)

or equivalently,

dξ

dη
=

λ1

λ0
+O(ε), (12.4.15a)

η = εa+1x. (12.4.15b)

This allows us to introduce a stretched variable η by (12.4.15b) so that dξ
dη = O(1).

Similarly, differentiating (12.4.13) with respect to t gives

dξ

dt
= εa+1

[
λ1 +O(ε)

]
. (12.4.16)

This enables us to define another stretched variable τ by

τ = εa+1t (12.4.17)

such that dξ
dτ = O(1).

We thus obtain two sets of stretched variables: (i) ξ, η and (ii) ξ, τ . Using the first
set defined by (12.4.13) and (12.4.15b) gives the characteristics in terms of these
stretched variables in the form

dx

dt
= λ0 + ελ0

dξ

dη
. (12.4.18)

The first set of stretched variables can be used to deal with an initial-value problem.
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Similarly, the characteristics associated with the second set ξ, τ are given by

dx

dt
= λ0 +

dξ

dτ
. (12.4.19)

The second set of stretched variables introduces the Gardner–Morikawa transforma-
tion and can usually be applied to deal with boundary-value problems.

It is clear from the above analysis that the scale of coordinate stretching is
uniquely determined by the given governing equation (12.4.1). The reduction per-
turbation analysis has been developed by Taniuti and Wei (1968) for the case of a
homogeneous medium and, subsequently, modified by Asano and Ono (1971) to ac-
count for moderate nonhomogeneity. When the medium is not homogeneous, as is
the case with most physical systems, the interaction of the wave with the nonho-
mogeneity also becomes important. To state the stretched variable transformations
associated with a nonhomogeneous medium, we briefly outline the basic ideas of
Asano and Ono (1971) as follows:

The steady state of the system of (12.4.1) with the term BVx on the left-hand
side, denoted by the zero subscript, is described by

A0U0x +

s∑
β=1

p∏
α=1

(
Kβ

α0

∂

∂x

)
U0 +B0Vx = 0. (12.4.20)

This arises from a more general system of equations for weakly nonlinear waves in
a homogeneous medium.

With the assumption that U0 and V are slowly varying functions of x, the
stretched variable η can be defined by (12.4.15b) with a = (p − 1)−1. We can also
determine the order of ε from the slow variations of U0 and V with x. To account
for the nonhomogeneity of the medium, we introduce the stretched variable ξ and η
redefined by the following relations:

ξ = εa
[∫

λ−1
0 dx− t

]
and η = εa+1x, (12.4.21ab)

where λ0 is a nondegenerate eigenvalue of the matrix A0, equal to the velocity of the
linear wave. In terms of stretched coordinates, equation (12.4.20) becomes

A0U0η +B0Vη = 0, (12.4.22)

where the terms of the order εp are ignored.
The reader is referred to Asano and Ono (1971) or Bhatnagar (1979) for a com-

plete analysis. However, we simply state the final evolution equation for φ(ξ, η) in
the form

φη + (α1φ+ α2)φξ + β1φξξ...ξ + γ1φ+ γ2 = 0, (12.4.23)

where the partial derivatives in the third term of (12.4.23) occur p times,
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U1 = R0φ(ξ, η) +W (η),

α1 = (λ2
0L0R0)

−1L0{(∇U ·A)0 ·R0}R0,

α2 = (λ2
0L0R0)

−1L0{(∇U ·A)0 ·W}R0,

β1 = (λ0L0R0)
−1L0

[
s∑

β=1

p∏
α=1

(
−Hβ

α0 +
1

λ0
Kβ

α0

)]
R0,

γ1 = (λ0L0R0)
−1
[
λ0L0R0 + L0

{
(∇UA)0R0

}
U0η + L0

{
(∇UB)0R0

}
Vη

]
,

γ2 = (λ0L0R0)
−1
[
λ0L0Wη + L0

{
(∇UA)0W

}
U0η + L0

{
(∇UB)0W

}
Vη

]
,

and W is an arbitrary function of η alone.
Following Taniuti and Wei (1968), we outline the fundamental ideas of the re-

ductive perturbation method for a systematic reduction of a fairly general nonlinear
system of equations (12.4.1) to a single, tractable, nonlinear evolution equation de-
scribing the far-field behavior.

We introduce the Gardner–Morikawa transformation

ξ = εa(x− λt), τ = εa+1t, a = (p− 1)−1, (12.4.24)

and assume expansions about a constant solutionU (0) in terms of the small parameter
ε of the form

U = U (0) + εU (1) + ε2U (2) + · · · , (12.4.25)

A =

∞∑
j=0

εjAj , Hβ
α =

∞∑
j=0

εjHβ
αj , Kβ

α =

∞∑
j=0

εjKβ
αj . (12.4.26)

Substituting (12.4.25), (12.4.26) in (12.4.1) and using (12.4.24) enables us to rewrite
(12.4.1) in terms of derivatives with respect to ξ and τ . Equating the coefficients of
like powers in ε to zero yields

O
(
εa+1

)
: (−λI +A0)

∂U (1)

∂ξ
= 0, (12.4.27)

O
(
εa+2

)
: (−λI +A0)

∂U (2)

∂ξ
+

∂U (1)

∂τ
+
[
U (1) · (∇UA)0

]∂U (1)

∂ξ

+

s∑
β=1

p∏
α=1

(
−λHβ

α0 +Kβ
α0

)∂pU (1)

∂ξp
= 0, (12.4.28)

where, again, ∇U denotes the gradient operator with respect to U , (U0 · ∇U ) repre-
sents the operator

∑n
i=1 ui

∂
∂ui

, and A1 is written as

U (1) · (∇UA)U=U(0) ≡ U (1) · (∇UA)0.

Introducing a right-eigenvector R0 of A0 corresponding to the eigenvalue λ,
so that (A0 − λI)R0 = 0 and integrating (12.4.27) with the boundary conditions
U (1) → 0, as ξ → ∞, gives
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U (1) = φ(1)(ξ, τ)R0 + V1(τ), (12.4.29)

where φ(1) is one of the components of U (1), and V1(τ) is an arbitrary vector-valued
function of τ to be determined from the given boundary condition for U (1). Since
U (1) → 0 as ξ → ∞, V1(τ) = 0, and the solution (12.4.29) becomes

U (1) = φ(1)(ξ, τ)R0. (12.4.30)

To solve for ∂
∂ξU

(2), a compatibility condition is required. To find this condi-
tion, we multiply (12.4.28) on the left by a left eigenvector L0 and use the fact that
L0(−λI +A0) = 0 to obtain

L0
∂U (1)

∂τ
+ L0 ·

[
U (1) · (∇UA)0

]∂U (1)

∂ξ

+ L0 ·
s∑

β=1

p∏
α=1

(
−λHβ

α0 +Kβ
α0

)∂pU (1)

∂ξp
= 0. (12.4.31)

Substituting (12.4.30) in this compatibility condition and dropping the superscript
(1) leads to the nonlinear evolution equation for φ(1)(ξ, τ) of the form

∂φ

∂τ
+ α1φ

∂φ

∂ξ
+ β1

∂pφ

∂ξp
= 0, (12.4.32)

where α1 and β1 are constants defined by

α1 = L0 ·
[
R0(∇UA)0

]
/(L0R0), (12.4.33)

β1 = L0 ·
s∑

β=1

p∏
α=1

(
−λHβ

α0 +Kβ
α0

)
R0/(L0R0). (12.4.34)

When p = 3, equation (12.4.32) reduces to the KdV equation, whereas for p = 2,
(12.4.32) becomes the Burgers equation. Thus, the far field of the general nonlin-
ear system (12.4.1) associated with the λ characteristics field satisfies the nonlinear
equation (12.4.32), which admits the solution to the order O(ε) in the form

U = U (0) + εφ(ξ, τ)R0. (12.4.35)

Taniuti and Wei (1968) have shown that the reduction perturbation method can be
extended to the exceptional case in which the eigenspace of A0 comprises invariant
subspaces. Su and Gardner (1969) derived both the KdV equation and the Burgers
equation by using a similar perturbation technique.

Finally, we describe far-field behavior by the modified KdV (mKdV) equation.
The above analysis reveals that if the characteristic field associated with the hyper-
bolic part of system (12.4.1) is exceptional (linearly degenerate), then the nonlinear
term in the KdV equation (12.4.32) vanishes (α1 = 0), and hence, (12.4.32) becomes
linear. Such a linear equation cannot describe inherently nonlinear, far-field behav-
ior, and hence, it is necessary to introduce a different scaling to retain the effects of
weak nonlinearity on the far-field behavior.
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We consider the situation in which the KdV equation can be replaced by the
modified KdV equation in the form

ut + usux + μuxxx = 0 (12.4.36)

as the appropriate far-field equation. This equation is invariant under the transforma-
tions

x̃ = εαx, t̃ = εβt, ũ = εu, (12.4.37)

provided that α = − s
2 and β = −3s

2 .
The solution of (12.4.36) is exceptional with respect to the characteristics field

related to its hyperbolic part if the solution is expanded about u = 0. This follows
from the fact that λ = us, so (∇uλ)u=0 = (sus−1)u=0 = 0. Using the standard
argument, it can be shown that the solution of (12.4.32) is also invariant under the
transformation (12.4.37). So, if the characteristic field corresponding to the eigen-
value λ of A(U) in (12.4.1) is exceptional, we can expand about a constant state
U (0) after the change of variables ξ = εs/2(x−λ0t) and τ = ε3s/2t and, then, write

U = U (0) + εU (1) + ε2U (2) + · · · . (12.4.38)

Following the same argument used before, it can be shown that far-field behavior
can be described by the modified KdV equation

φτ + α1φ
sφξ + μφξξξ = 0, (12.4.39)

where α1 �= 0.
A wide variety of physical problems in plasma physics, nonlinear optics, and

solid and fluid dynamics have been investigated by the reductive perturbation method
or its extensions. The reader is referred to extensive references cited in several
books and review articles by Jeffrey and Kakutani (1972), Taniuti (1974), Jeffrey
and Kawahara (1982), Jeffrey and Engelbrecht (1994), Asano (1970), Asano et al.
(1969, 1970), Asano and Ono (1971), and Kakutani (1971a, 1971b) who have investi-
gated nonlinear wave propagation problems in inhomogeneous media. Asano (1974)
examined the effects of weak dissipation or instability on nonlinear waves. The per-
turbation method has been generalized to allow for wave modulation in a system
of nonlinear integro-partial differential equations by Taniuti and Yajima (1973). On
the other hand, Nozaki and Taniuti (1973) and Oikawa and Yajima (1973, 1974a,
1974b) have considered the nonlinear interaction of three monochromatic waves and
the interactions of solitary waves and nonlinear modulating waves.

In addition, we may mention that a similar reduction perturbation theory has
been developed in other contexts, for example, in studying the behavior of the partial
differential equations in the neighborhood of a critical point and in describing the
complete history of a pulse with a curved wave front. Relevant references include
Kulikovskii and Slobodkina (1967), Bhatnagar and Prasad (1971), and Prasad (1973,
1975). We next illustrate the method by examples.
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Example 12.4.1 (Oscillations of Nonlinear Elastic String with Dispersive Effects).
This example is taken from Taniuti and Nishihara (1983). The transverse displace-
ment y(x, t) of such a string of infinite length is governed by the nonlinear equation

ytt − c2yxx − σ2yxxxx = 0, (12.4.40)

where c2 = (1 + y2x)
−3/2 and σ is a real constant. Equation (12.4.40) can be

linearized when c ∼ 1, and hence, it admits a plane wave solution y(x, t) =
A exp[i(kx− ωt)], provided that the dispersion relation

ω2 = k2 − σ2k4 (12.4.41)

is satisfied. For appropriate long waves (large wavelength or small wavenumber),
ω2 > 0, and so ω(k) is real, which confirms that the waves are dispersive.

We now write yt = u and yx = υ, so that equation (12.4.40) can be replaced by
a system of equations like (12.4.1) which has the form

Ut +AUx +KUxxx = 0, (12.4.42)

where

U =

(
u

v

)
, A =

(
0 −c2
−1 0

)
, and K =

(
0 −σ2

0 0

)
.

The eigenvalues of the matrix A are λ(±) = ±c, and hence, it follows that λ±
0 = ±1,

for oscillations about the equilibrium position in which u = 0, whereas L±
0 =

(±1, 1) and R
(±)
0 = (1,±1)T =

(
1
∓1

)
, so that ∇uλ

(±) = (0, 0). Consequently,

[∇uλ
(±)]0R

(±)
0 = 0, which confirms that each of the two characteristic fields asso-

ciated with (12.4.42) is exceptional. The appropriate far-field equation in the present
case satisfies the modified KdV equation

φτ − 3

4
φ2φξ +

σ2

2
φξξξ = 0. (12.4.43)

When both dissipation and weak dispersion are present in a physical system,
the far-field behavior is governed by the KdV–Burgers equation. This equation can-
not be derived by the standard reductive perturbation method. However, the neces-
sary generalization of the method was given by Cramer and Sen (1992), including
the case in which α in (12.3.9a) can change sign in a continuous manner, as the
equilibrium solution U (0) is varied. This has led to the systematic study of non-
linear systems with positive or negative nonlinear terms depending on α > 0 or
α < 0.

Example 12.4.2 (Gas Dynamics and the Burgers Equation). For an ideal gas (p =
RρT ), the conservation laws for mass, momentum, and energy are given by the fol-
lowing equations:

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (12.4.44)
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∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
− ν

ρ

∂2u

∂x2
= 0, (12.4.45)

∂p

∂t
+ γp

∂u

∂x
+ u

∂p

∂x
− κ(γ − 1)

R

∂

∂x

[
1

ρ

(
∂p

∂x

)
− p

ρ2

(
∂ρ

∂x

)]

+ ν(γ − 1)

[
u
∂2u

∂x2
− ∂

∂x
(uux)

]
= 0, (12.4.46)

where ρ is the density, p is the pressure, u is the flow velocity, ν is the kinematic
viscosity, κ is the thermal conductivity, and R and γ are gas constants.

This system of equations can be expressed in the matrix form equation (12.4.1)
with s = p = 2 if U , A, and K are given as follows:

U =

⎛
⎝ρ
u
p

⎞
⎠ , A =

⎛
⎝u ρ 0
0 u ρ−1

0 γp u

⎞
⎠ ,

K1
1 =

⎛
⎝ 0 0 0

0 0 0
κ(γ − 1)R−1 −ν(γ − 1) −κ(γ − 1)R−1

⎞
⎠ ,

K1
2 =

⎛
⎝p/ρ2 0 0

0 u 0
0 0 ρ−1

⎞
⎠ , K2

1 =

⎛
⎝0 0 0
0 −ν

ρ 0

0 ν(γ − 1)u 0

⎞
⎠ ,

K2
2 =

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ .

The eigenvalues of matrix A are u, u± (γpρ )
1
2 so that they reduce to 0 and ±1 for the

constant state U (0) = (1, 0, γ−1). The eigenvectors L0 and R0 for a wave moving
with velocity λ0 = 1 are given by L0 = (0, 1, 1) and R0 = (1, 1, 1). This leads to
the Burgers equation

∂ρ(1)

∂τ
+ α1ρ

(1) ∂ρ
(1)

∂ξ
+ β1

∂ρ(1)

∂ξ2
= 0, (12.4.47)

where ρ(1) is the first-order term of the expansion ρ = 1+ ερ(1)+ · · · , the boundary
condition U → U (0) as x → ∞ has been assumed, and

α1 =
1

2
(γ + 1) and β1 =

1

2

[
(γR)−1κ(γ − 1)2 + ν

]
.

Example 12.4.3 (Ion-Acoustic Waves and the KdV Equation). The motion of cold
ions in a hot electron gas with the Boltzmann distribution law is governed by the
equations

∂ni

∂t
+

∂

∂x
(niui) = 0, (12.4.48)
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(
Te

ne

)(
∂ne

∂x

)
= eE, (12.4.49)

∂ui

∂t
+ ui

∂ui

∂x
=

(
e

mi

)
E − 1

mini

∂

∂x
(niTi), (12.4.50)

∂E

∂x
= 4πe(ni − ne), (12.4.51)

where the subscripts i and e refer to quantities related to ions and electrons, respec-
tively, nj (j = i, e) is the density, uj (j = i, e) is the flow velocity, Tj is the product
of the Boltzmann constant and the temperature, e is the charge of the ions, −e is the
charge of the electrons, and E is the electric field.

To apply the reductive perturbation method to this system of ion-acoustic waves,
we eliminate ni and E from equations (12.4.48)–(12.4.51) to obtain

∂ui

∂t
+ ui

∂ui

∂x
+

1

ne

∂ne

∂x
= 0, (12.4.52)

∂ue

∂t
+

∂

∂x
(neni)−

∂

∂x

(
∂

∂x
+ ui

∂

∂x

)[
n−1
e

(
∂ne

∂x

)]
= 0. (12.4.53)

This system of equations corresponds to system (12.4.1) with p = 3 and s = 1. The
associated matrices U , A, H , and K are given by

U =

(
ne

ni

)
, A =

(
ui ne

n−1
e ui

)
,

H1 = 0, K1 =

(
−1 0
0 0

)
, H2 =

(
1 0
0 0

)
,

K2 =

(
ui 0
0 0

)
, H3 = 0, and K3 =

(
n−1
e 0
0 0

)
.

For U (0) =
(
1
0

)
, the eigenvalues of A0 are λ0 = ±1. For the case of λ0 = 1, we

obtain

L0 = (1, 1) R0 =

(
1

1

)
, and ∇uλ0 = (0, 1).

Thus, from (12.4.33) and (12.4.34), it turns out that α1 = 1, and β1 = 1
2 , and the

density of electrons n(1)
e to the first-order approximation satisfies the KdV equation

∂n
(1)
e

∂τ
+ n(1)

e

∂n
(1)
e

∂ξ
+

1

2

∂3n
(1)
e

∂ξ3
= 0. (12.4.54)

In thermodynamic equilibrium at a constant temperature, electrons must satisfy the
Boltzmann distribution law ne = n0 exp(

eφ
Te
), where n0 is the number density of

electrons in the undisturbed state and φ is the electrostatic potential associated with
the wave motions. Expanding exp( eφTe

), we can obtain n
(1)
e = φ(1), and hence, the

soliton solution of the KdV equation agrees with the solution for φ(1).
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Example 12.4.4 (Nonlinear Shallow Water Waves on an Uneven Bottom). For long
waves on a beach, Peregrine (1967) derived the following system of coupled equa-
tions:

∂u

∂t
+ (u · ∇)u+∇h+

1

6
H2 ∂

∂t
∇(∇ · u)

− 1

2
H

∂

∂t
∇
[
∇ · (Hu)

]
= 0, (12.4.55)

∂h

∂t
+∇ ·

[
(H + h)u

]
= 0, (12.4.56)

where u is the horizontal velocity averaged over the vertical direction, h is the wave
amplitude, and H is the depth of still water, which depends only on the horizontal
coordinates.

For the motion of water in the x-direction only, Peregrine’s equations become

ht + uhx + (H + h)ux + uHx = 0, (12.4.57)

ut + uux + hx − 1

2
H(Hut)xx +

1

6
H2utxx = 0. (12.4.58)

It is noted here that only the first-order x- and t-derivatives are involved in equa-
tion (12.4.57), whereas equation (12.4.58) contains the third-order derivatives in
which the x-derivative is repeated twice, but the t-derivative occurs only once. These
comments are useful for choosing the matrices Hβ

α and Kβ
α in the original equation

(12.4.1). In this problem, p = 3 and equations (12.4.57), (12.4.58) can be expressed
in the form (12.4.1) with an extra term BVx on its left side by choosing s = 1 and

U =

(
h

u

)
, A =

(
u H + h
1 u

)
, V = H, B =

(
u

0

)
,

H1
1 = H1

2 = 0, H1
3 =

(
0 H
0 1

)
,

K1
1 =

(
0 0

−1
2H

1
6H

2

)
, K1

2 = I, K1
3 = 0.

For the equilibrium state h = u = 0, we have the matrix

A0 =

(
0 H
1 0

)
, and hence, λ0 = ±

√
H.

A left-eigenvector L0 and a right-eigenvector R0 are given by

L0 = (1, λ0) and R0 =

(
H

λ0

)
.

To write the nonlinear evolution equation (12.4.23), we calculate its coefficients α1,
β1, and γ1 for λ0 =

√
H as



12.5 Strongly Nonlinear Dispersive Systems and the NLS Equation 641

α1 =
3

2
H− 1

2 , β1 =
1

6

√
H,

γ1 =
5

4

1

H

(
dH

dη

)
, and γ2 = 0.

(12.4.59)

Consequently, the KdV equation for ψ = H5/4φ assumes the form

ψη +

(
3

2
H−7/4

)
ψψξ +

(
1

6

√
H

)
ψξξξ = 0, (12.4.60)

where the coefficients of this equation are functions of η only.

12.5 Strongly Nonlinear Dispersive Systems and the NLS
Equation

We consider a general, strongly nonlinear, dispersive system that can be described
by the equation

Ut +AUx +B +

[
s∑

β=1

p∏
α=1

(
Hβ

α

∂

∂t
+Kβ

α

∂

∂x

)]
U = 0, (12.5.1)

where U is a column vector with the n components u1, u2, . . . , un (n ≥ 2), A, Hβ
α ,

and Kβ
α are n× n matrices, and B is a column vector of n components, all of which

are functions of U . We make an important assumption that the linear dispersion re-
lation of (12.5.1) admits strong dispersion because of the term B. For simplicity, we
consider the problem of nonlinear wave modulation based on a system of equations
without the last term in (12.5.1), so that (12.5.1) gives the first-order equation

Ut +AUx +B = 0. (12.5.2)

Many physical problems exhibiting strong dispersion are described by this equation.
A constant equilibrium solution U = U0 of this equation is required to satisfy the
algebraic equation

B(U0) = 0. (12.5.3)

We assume here that a constant solution U0 exists and that a plane wave solution of
infinitesimal amplitude is superimposed on the constant state, so that

U = U0 + (δUk) exp
[
i(kx− ωt)

]
+ c.c., (12.5.4)

where c.c. stands for the complex conjugate of the preceding expression. Substitut-
ing (12.5.4) in (12.5.2) and linearizing with respect to δUk gives the linear dispersion
relation

| ∓ iωI ± ikA0 +∇uB0| = 0, (12.5.5)

where I is the unit matrix, A0 and B0 are matrices evaluated at U = U0, and ∇U

is the gradient in U space. Relation (12.5.5) determines ω as a function of k, and
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hence, we assume that ω is given by a single real root of (12.5.5). We then introduce
a matrix Wm defined by

Wm = ∓imωI ± imkA0 +∇uB0. (12.5.6)

To consider the modulation of a linear plane wave, we introduce the slow vari-
ables ξ and τ as

ξ = ε(x− λt) and τ = ε2t, (12.5.7ab)

where λ = (dωdk ) is the group velocity. The main objective here is to investigate how
such a plane wave is modulated by nonlinear effects. We assume that the solution of
(12.5.2) is of the form

U = U0+

∞∑
n=1

εnUn, Un =

∞∑
m=−∞

U (m)
n (ξ, τ) exp

[
im(kx−ωt)

]
, (12.5.8ab)

where Un is assumed to be real, so that U
(m)
n is equal to its complex conju-

gates U (m)∗
n .

We consider modulation of the plane carrier wave with wavenumber k and fre-
quency ω. We may set U (m)

1 = 0 except for m = ±1. Substituting (12.5.8ab) into
(12.5.2) and using (12.5.7ab) leads to the following perturbation equations:

O(ε) : WmU
(m)
1 = 0, (12.5.9)

O
(
ε2
)
:WmU

(m)
2 + (−λI +A0)

(
∂U

(m)
1

∂ξ

)

+

〈
U1 · ∇UA0

∞∑
r=−∞

irkU
(r)
1 exp

[
ir(kx− ωt)

]〉(m)

+
1

2
∇U∇U : 〈U1U1〉(m) = 0, (12.5.10)

O
(
ε3
)
:WmU

(m)
3 + (−λI +A0)

∂U
(m)
2

∂ξ
+

∂U
(m)
1

∂τ

+

〈
U1 · ∇UA0

∂U1

∂ξ

〉(m)

+

〈
U1 · ∇UA0

∑
r

irkU
(r)
2 Z(r)

〉(m)

+
1

2

〈
U1U1 : ∇U∇UA0

∑
r

irkU
(r)
1 Z(r)

〉(m)

+

〈
U2 · ∇UA0

∑
r

irkU
(r)
1 Z(r)

〉(m)

+∇U∇UB0 : 〈U1U2〉(m)

+
1

6
∇U∇U∇UB0 : 〈U1U1U1〉(m) = 0, (12.5.11)
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where 〈·〉(m)represents the coefficient of the mth harmonic and

Z(r) ≡ exp
[
ir(kx− ωt)

]
.

Thus, from (12.5.9), we obtain

U
(m)
1 = φ1(ξ, τ)R for |m| = 1, (12.5.12)

where φ1 is a complex function of slow variables ξ and τ to be determined and R is
a right-eigenvector of W1 corresponding to the eigenvalue λ so that

W1R = 0, (12.5.13)

whereas, for |m| �= 1,
U

(m)
1 = 0. (12.5.14)

The third and fourth terms in equation (12.5.10) result from self-interaction of the
fundamental harmonic U (1)

1 exp[i(kx−ωt)], and they do not vanish only for |m| = 2
and for the slow mode m = 0. This implies that the second harmonic and the slow
mode exist for the second order of ε. Thus, for m = 1, we simplify (12.5.10) by
using (12.5.12) and (12.5.14) to obtain the equation

W1U
(1)
2 + (−λI +A0)R

(
∂φ1

∂ξ

)
= 0. (12.5.15)

Since detW1 = 0, equation (12.5.15) admits a solution for U (1)
2 provided that the

compatibility condition
L(−λI +A0)R = 0 (12.5.16)

is satisfied, where L is a left-eigenvector corresponding to λ, so that

LW1 = 0. (12.5.17)

Differentiating (12.5.13) with respect to k and using (12.5.6) gives

i(−λI +A0)R+W1

(
∂R

∂k

)
= 0. (12.5.18)

Multiplying this equation by L from the left and using (12.5.17) yields the
compatibility condition (12.5.16). Then, it follows from (12.5.15) combined with
(12.5.18) that

U
(2)
1 = φ(2)(ξ, τ)R− i

(
∂φ(1)

∂ξ

)(
∂R

∂k

)
, (12.5.19)

where φ(2) is a complex function of ξ and τ .
Solving equation (12.5.10) for U (0)

2 and U
(±2)
2 , when m = 0 and m = ±2, we

obtain solutions in the forms
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U
(0)
2 = −W−1

0

[
ik(∇UA0 ·R∗ − c.c.)

+
1

2
(∇U∇UB0 : R∗R+ c.c.)

]∣∣φ(1)
∣∣2, (12.5.20)

U
(2)
2 = −W−1

2

[
ik(∇UA0 ·R)R+

1

2
∇U∇UB0 : RR

]{
φ(1)

}2
. (12.5.21)

The nonzero terms in the summation over r in the third-order equation (12.5.11)
are only U

(±1)
1 , U (±1)

2 , U (0)
2 , and U

(±2)
2 . However, for m = 1, there is no contribu-

tion from the term U
(±1)
2 due to the fact that

〈
Z(1)Z(r)

〉(1)
= δ(r) and

〈
Z(−1)Z(r)

〉(1)
= δ(r − 2),

and hence, we note that, for |m| = 1, the nonlinear terms in (12.5.11) do not con-
tain φ(2). If we multiply equation (12.5.11) for |m| = 1 by L from the left and use
equations (12.5.12)–(12.5.14) and (12.5.19)–(12.5.21), we can eliminate all terms
containing φ(2) because the first and the second terms vanish by equations (12.5.17)
and (12.5.16). Consequently, all terms involving φ(2) vanish, and hence, we obtain
the equation for φ(1) in the form

i
∂φ(1)

∂τ
+ p

∂2φ(1)

∂ξ2
+ q

∣∣φ(1)
∣∣2φ(1) = 0, (12.5.22)

where the coefficients p and q are given by

p =
1

(L ·R)
· L(−λI +A0) ·

∂R

∂k
, (12.5.23)

q = − iL

(L ·R)

[
ik

{
2(∇uA0 ·R∗)R

(2)
2 −

(
∇uA0 ·R(2)

2

)
R∗

+
(
∇uA0 ·R(2)

0

)
R+ (∇u∇uA0 : RR∗)R− 1

2
(∇u∇uA0 : RR)R∗

}

+∇u∇uB0 :
(
RR

(2)
0 +R∗R

(2)
2

)
+

1

2
∇u∇u∇uB0 : RR∗R

]
, (12.5.24)

where R(2)
2 and R

(2)
0 are constant column vectors defined by

U
(2)
2 = R

(2)
2

{
φ(1)

}2
and U

(2)
0 = R

(2)
2

∣∣φ(1)
∣∣2 (12.5.25ab)

and are given by

R
(2)
2 = −W−1

2

[
ik(∇uA0 ·R)R+

1

2
∇u∇uB0 : RR

]
, (12.5.26)

R
(2)
0 =−W−1

0

[
ik
{
(∇uA0 ·R∗)R− c.c.

}

+
1

2
(∇u∇uB0 : R∗R) + c.c.

]
. (12.5.27)
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We next show that p = 1
2ω

′′ as follows. Differentiating (12.5.18) with respect to
k gives

−iω′′R+ 2i(−λI +A0)
∂R

∂k
+W1

∂2R

∂k2
= 0. (12.5.28)

This is multiplied by L from the left to obtain, by (12.5.17),

−iω′′(L ·R) + 2iL(−λI +A0) ·
(
∂R

∂k

)
= 0, (12.5.29)

which gives p = 1
2ω

′′ from (12.5.23). We then derive the generalized nonlinear
Schrödinger equation

−iφτ +
1

2
ω′′φξξ + q|φ|2φ = 0, (12.5.30)

where φ is a function of ξ = ε(x − ω′t) and τ = ε2t, and q is not necessarily real.
In particular, when q is real, (12.5.30) is called the nonlinear Schrödinger equation.
Asano (1974) obtained the most general form of this equation for the case of three-
dimensional modulation of nonlinear waves as

iφt +
1

2

∑
i,j

(
∂2ω

∂ki∂kj

)(
∂2φ

∂ξi∂ξj

)
+ q|φ|2φ+ iγφ = 0, (12.5.31)

where ki(i = 1, 2, 3) and ω denote the components of the wavevector and the fre-
quency of the plane carrier wave, respectively, and ξi = ε{xi − ( ∂ω

∂ki
)t}. The last

term iγφ is involved to incorporate weak dissipation and/or unstable effects.
Equation (12.5.30) can be solved exactly. The transformations

ξ = X,
1

2
ω′′τ = T, and ψ =

∣∣∣∣ qω′′

∣∣∣∣
1
2

φ

are used to put it into the canonical form

i
∂ψ

∂T
+ ψXX + 2σ|ψ|2ψ = 0, (12.5.32)

where σ = sgn( q
ω′′ ). This canonical equation has been solved in Chapter 10 by the

inverse scattering method. For σ = +1, the asymptotic solution of the initial-value
problem for (12.5.32) represents a sequence of envelope solitons

ψ(X,T ) = 2η sech
{
2η(X + 4νT −X0)

}
× exp

[
−2iνX − 4i

(
ν2 − η2

)
− iφ0

]
(12.5.33)

and radiation modes, where η and ν are parameters to be determined from the initial
conditions.



646 12 Asymptotic Methods and Nonlinear Evolution Equations

12.6 The Perturbation Method of Ostrovsky and Pelinovsky

Whitham’s theory of averaged Lagrangian principles has been a major contribution
to the field of nonlinear dispersive waves. This theory is of great interest from the
viewpoint of its mathematical generality and physical clarity. Based on his averaged
Lagrangian principles, Whitham derived his fundamental equations for describing
slowly varying nonlinear dispersive waves. This method is directly applicable to a
conservative system for which the Lagrangian is known. However, the determination
of the Lagrangian is not always an easy problem. Furthermore, Whitham’s theory
cannot be applied readily to nonconservative dynamical systems.

To extend Whitham’s theory, Ostrovsky and Pelinovsky (1971, 1972) have devel-
oped an asymptotic perturbation method for a general system of first-order nonlinear
partial differential equations that can be applied to both conservative and noncon-
servative systems. They also considered a dynamical system which can be described
by nonlinear partial differential equations of the Lagrangian type that include dissi-
pation. Ostrovsky and Pelinovsky (1972) also showed that the equations of the first
approximation can be deduced from the generalized Hamilton variational principle.
This section deals with the perturbation method due to Ostrovsky and Pelinovsky.

We consider a system of first-order nonlinear partial differential equations

M(ξ, τ, u, ux, ut) = εN(ξ, τ, u, ux, ut), (12.6.1)

where u(x, t) is an n-dimensional column vector function, operators M and N de-
note sets of nonlinear functions ξ = εx and τ = εt, ξ and x are three-dimensional
vectors, and the parameter ε characterizes the deviation from the stationary and uni-
form state of the medium. We also assume that operators M and N are sufficiently
smooth in terms of their arguments.

For ε = 0 and for constants ξ and τ , the system of equations (12.6.1) is assumed
to have stationary plane wave solutions in the form

u = U(θ) and θ = κ · x− ωt. (12.6.2ab)

These solutions can be determined from the ordinary differential equations

M
{
ξ, τ, U(θ),−ωUθ, κUθ

}
= 0, (12.6.3)

where ξ and τ are assumed to be constants. It is noted that solutions of (12.6.3)
depend on m(≤ n) arbitrary constants of integration θ0, A = (A2, A3, . . . , Am)
and on the parameters ξ, τ , κ, and ω. We also assume that the frequency ω, the
wavenumber vector κ, and constant A satisfy the dispersion relation

ω = ω(κ,A), (12.6.4)

and that they will be chosen so that u = U(θ) is a periodic function of θ with period
2π. The nonlinear wave profile is then determined from the basic equation (12.6.3)
and may, in general, be different from a sinusoidal shape.
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We now look for a solution in the form of the asymptotic series

u = U(θ,A, ξ, τ) +

∞∑
n=1

εnu(n)(x, t), (12.6.5)

θ = θ(0)(x, t, ξ, τ) +

∞∑
n=1

εnθ(n)(ξ, τ), (12.6.6)

A(ξ, τ) =

∞∑
n=0

εnA(n)(ξ, τ), (12.6.7)

κ(ξ, τ) = θx, and ω(ξ, τ) = −θt (12.6.8ab)

so that
∂κ

∂t
+

∂ω

∂x
= 0. (12.6.9)

We also expand operators M and N in an asymptotic series to obtain

M = M (0)(U,−ωUθ, κUθ)

+ ε

[
∂M (0)

∂U
u(1) +

∂M (0)

∂Ux

(
Uξ + u(1)

x

)
+

∂M (0)

∂Ut

(
Uτ + u

(1)
t

)]

+O
(
ε2
)
, (12.6.10)

εN = εN (0)(U,−ωUθ,κUθ) +O
(
ε2
)
, (12.6.11)

where each term of the form (∂M
(0)

∂U )U represents a product of a square matrix and
a column vector.

We substitute (12.6.5)–(12.6.11) in (12.6.1) and equate coefficients of similar
powers of ε to obtain

P

(
θ, ξ, τ,

∂

∂t
,
∂

∂x

)
u(r) = Q(n), (12.6.12)

where n = 1, 2, 3, . . . ,

P ≡ ∂M (0)

∂U
+

∂M (0)

∂Ut
· ∂

∂t
+

∂M(0)

∂Ux
· ∂

∂x
, (12.6.13)

Q(1) ≡ N (0) − ∂M (0)

∂Ut
· ∂U
∂τ

− ∂M (0)

∂Ux
· ∂U
∂ξ

, (12.6.14)

and similar expressions for Q(2), Q(3), . . . .
To determine functions θ and A to any desired approximation, we have to solve a

system of nonhomogeneous, linear, partial differential equations with periodic coeffi-
cients and nonhomogeneous terms, which are also periodic in θ. Using the following
results:

∂

∂x
≡ κ

∂

∂θ
and

∂

∂t
≡ −ω ∂

∂θ
(12.6.15ab)
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in equation (12.6.12), the solution u(n) can be represented in the form

u(n) = R

∫ θ

0

R−1Q(n) dθ′, (12.6.16)

where R is a matrix consisting of vectors of the system of solutions of the variational
equations

P

(
θ, ξ, τ, ω,κ,

∂

∂θ

)
φ = 0, (12.6.17)

and R−1 is the inverse of the matrix R. It should be pointed out that the set of m
particular vectors is found in terms of U as follows:

R1 =
∂U

∂θ
, and Rs =

∂U

∂As
, s = 2, 3, . . . ,m. (12.6.18)

Clearly, R1 is a periodic function of θ, and Rs can be expressed in the form

Rs =
∂U

∂As
+Bsθ

∂U

∂θ
, (12.6.19)

where Bs is an arbitrary constant to be determined from the dependence of κ and ω
on the amplitude A.

The remaining (n−m) vectors can be expressed as

R� = exp(λ�θ)f�(θ), (12.6.20)

where f�(θ) is a periodic function with period 2π.
We assume that the characteristic exponent λ� has no positive real part and, if

Reλ� = 0, then, Imλ� �= 0, ±1, . . . . Substituting R and R−1 in (12.6.16) yields

u(n) = Uθ

∫ θ

0

[
Uθ′Q(n) +

m∑
r=2

∫ θ′

0

UArQ
(n) dθ′′

]
dθ′

+

m∑
r=2

UAr

∫ θ

0

UArQ
(n) dθ′

+

n∑
s=m+1

fs exp(λsθ)

∫ θ

0

exp(−λsθ
′)
(
f∗
sQ

(n)
)
dθ′. (12.6.21)

The last term of (12.6.21) is bounded for all θ due to the nature of λ. In order for u(n)

to remain bounded as a function of θ, it must satisfy the orthogonality conditions
∫ 2π

0

UArQ
(n) dθ = 0 and (12.6.22a)

∫ 2π

0

UθQ
(n) dθ = 0, (12.6.22b)

for n = 1, 2, . . . and r = 2, 3, . . . ,m.
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The equations of the first-order approximation can be obtained in a different
form. We multiply equation (12.6.1) by UA, integrate over θ, and then, subtract equa-
tion (12.6.22a) from the resulting integral expression to obtain

∫ 2π

0

M(ξ, τ, U, Ux, Ut)UAr dθ = ε

∫ 2π

0

N(ξ, τ, U,−ωUθ,κUθ)UAr dθ.

(12.6.23)
Similarly, multiplying (12.6.1) by Uθ, integrating over θ, and subtracting equa-

tion (12.6.22b) from the integrated result gives

∫ 2π

0

M(ξ, τ, U, Ux, Ut)Uθ dθ = ε

∫ 2π

0

N(ξ, τ, U,−ωUθ,κUθ)Uθ dθ. (12.6.24)

The three equations (12.6.9), (12.6.23), and (12.6.24) form a closed set for the
unknown functions κ, ω, and A. It is necessary to solve the second-order approxi-
mation equations to determine the phase function θ of order O(ε).

In their paper, Ostrovsky and Pelinovsky (1972) have shown that equations of the
first-order approximation can be derived from the generalized Hamilton variational
principle in the averaged form. They examined the system of equations

∂

∂t

(
∂L
∂ut

)
+

∂

∂x

(
∂L
∂ux

)
− ∂L

∂u
= φ, (12.6.25)

φ = φ(0) + εφ(1) +O
(
ε2
)
, (12.6.26)

where L is the Lagrangian density, φ is the density of the nonconservative term,
u(x, t) is an n-dimensional vector function, and ε is a small parameter. We assume
that L and φ are sufficiently smooth functions of u, ut, ux and also of slow variables
ξ ≡ εx and τ = εt.

Equation (12.6.25) can be derived from the generalized Hamilton variational
principle ∫∫

(δL+ δW ) dx dt = 0, (12.6.27)

where δW = φδu.
We conclude the perturbation analysis of Ostrovsky and Pelinovsky by adding a

couple of comments. First, this analysis is valid for nonlinear systems with arbitrary,
but not necessarily, weak nonlinearity. Second, the reader is referred to the work
of Ostrovsky and Pelinovsky (1971, 1972) and Gorschkov et al. (1974) for further
information.

12.7 The Method of Multiple Scales

Multiple scales or, more precisely, scales of different orders arise in many physical
problems because different physical effects usually manifest themselves over differ-
ent length and time scales. Naturally, the concept of multiple scales is involved, ex-
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plicitly or implicitly, in almost all asymptotic perturbation methods. Hence, it seems
to have wide applicability to many problems that involve physical phenomena which
occur in relation to various scales. Although the method of multiple scales covers a
wide variety of perturbation procedures, the method will be formulated here in the
context of nonlinear wave propagation.

Historically, Sturrock (1957) first introduced the method of multiple scales or,
more precisely, the derivative expansion method for an investigation of nonlinear
effects in electron plasmas. Nonlinear effects are analyzed by the above perturba-
tion procedure to study the incoherent interaction which is responsible for spectral
decay, that is, for the redistribution of energy in wavenumber space—the break-
down of organized large-scale motion into disorganized small-scale motion. Subse-
quently, Sandri (1963, 1965, 1967) used the method of multiple scales that com-
pletely separates the different time scales exhibited by the evolution of a gas to
provide the foundation of nonequilibrium statistical mechanics. Several other au-
thors including Stuart (1960), Watson (1960), Hasimoto and Ono (1972), Frieman
(1963), Nayfeh (1965a, 1965b, 1971, 1973), Nayfeh and Hassan (1971), and Kawa-
hara (1973, 1975a, 1975b) successfully applied the derivative expansion method
to solve different problems in fluid mechanics and plasma physics. These authors
showed that a systematic application of the derivative expansion method can ef-
fectively take into account the full effect of amplitude modulation of a quasi-
monochromatic wave, and thereby can lead to the nonlinear Schrödinger equation.
It has also been shown that the derivative expansion can be applied successfully
to problems with long-wave approximation, which leads to the Korteweg–de Vries
equation.

We consider the nonlinear partial differential equation

L

(
∂

∂t
,
∂

∂x
, λ

)
u(x, t) = N

(
∂

∂t
,
∂

∂x
, μ

)
u2(x, t), x ∈ R, t > 0, (12.7.1)

where L and N are differential operators and λ, μ are fixed parameters. We introduce
the sets of independent variables x0, x1, x2, . . . , xm and t0, t1, t2, . . . , tm defined
by

xn = εnx and tn = εnt, (12.7.2ab)

where ε is a small parameter characterizing the smallness of the associated terms.
Consequently, the dependent variable u(x, t) can be regarded as a function of these
new variables so that u(x, t) = u(x0, x1, . . . , xm, t0, t1, . . . , tm).

Since the method is called the derivative expansion method, it is appropriate to
introduce expansions of the derivative operators:

∂

∂x
=

m∑
n=0

εn
∂

∂xn
and

∂

∂t
=

m∑
n=0

εn
∂

∂tn
. (12.7.3ab)

Using these expansions in (12.7.1) leads to the following results:
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L

(
∂

∂t
,
∂

∂x
, λ

)
=

m∑
n=0

εnLn

(
∂

∂t0
,
∂

∂t1
, . . . ,

∂

∂tm
,
∂

∂x0
,
∂

∂x1
, . . . ,

∂

∂xm
, λ

)

+O
(
εm+1

)
,

N

(
∂

∂t
,
∂

∂x
, μ

)
=

m∑
n=0

εnNn

(
∂

∂t0
,
∂

∂t1
, . . . ,

∂

∂tm
,
∂

∂x0
,
∂

∂x1
, . . . ,

∂

∂xm
, μ

)

+O
(
εm+1

)
.

(12.7.4ab)

We also assume that u(x, t) has the asymptotic representation

u(x0, x1, . . . , xm, t0, t1, . . . , tm)

=

m∑
n=1

εnun(x0, x1, . . . , xm, t0, t1, . . . , tm) +O
(
εm+1

)
. (12.7.5)

In general, u(x, t) can be expanded in terms of another small parameter δ which
measures the degree of nonlinearity of the wave field, and it is assumed that the
new parameter is related to ε. For simplicity, however, u(x, t) has been expanded in
powers of ε.

We next substitute (12.7.4ab) and (12.7.5) in equation (12.7.1) and then equate
coefficients of like powers of ε to obtain a system of perturbation equations from
which it is possible to determine the functions un successively. The underlying as-
sumption is that each perturbed quantity un must be nonsecular (bounded) at each
stage of the perturbation process. Thus, the method of multiple scales can be applied
effectively to a general dispersive wave system with or without small dissipation. In
the rest of this section, we follow Jeffrey and Kawahara (1982) to illustrate the gen-
eral method of multiple scales by applying it to the nonlinear Boussinesq equation

utt − c2uxx − λuxxtt =
1

2

(
u2
)
xx
, (12.7.6)

where c and λ are fixed constants. The dispersion relation for the linearized Boussi-
nesq equation is given by

D(ω, k) ≡ c2k2 − ω2 − λk2ω2 = 0. (12.7.7)

Comparing the Boussinesq equation (12.7.6) with (12.7.1) yields

L ≡ ∂2

∂t2
− c2

∂2

∂x2
− λ

∂4

∂x2∂t2
, N ≡ 1

2

∂2

∂x2
, (12.7.8ab)

so that equation (12.7.6) can be written symbolically as

L[u] = N
[
u2
]
. (12.7.9)

In view of the power series expansions (12.7.4ab), the first few operators are
given by



652 12 Asymptotic Methods and Nonlinear Evolution Equations

L0 ≡ ∂2

∂t20
− c2

∂2

∂x20
− λ

∂4

∂x20∂t
2
0

,

L1 ≡ 2
∂2

∂t0∂t1
− 2c2

∂2

∂x0∂x1
− 2λ

(
∂4

∂t0∂t1∂x20
+ 2

∂4

∂t20∂x0∂x1

)
,

L2 ≡ ∂2

∂t21
+ 2

∂2

∂t0∂t2
− c2

(
∂2

∂x21
+ 2

∂2

∂x0∂x2

)
− λ

(
∂4

∂t20∂x
2
1

+ 2
∂4

∂t20∂x0∂x2

+ 4
∂4

∂t0∂t1∂x0∂x1
+

∂4

∂t21∂x
2
0

+ 2
∂4

∂t0∂t2∂x20

)
,

and

N0 ≡ 1

2

∂2

∂x20
, N1 ≡ ∂2

∂x0∂x2
, and N2 ≡ 1

2

∂2

∂x21
+

∂2

∂x0∂x2
.

Utilizing these operators, equation (12.7.9) reduces to a system of perturbation equa-
tions in the form:

O(ε) : Lu1 = 0, (12.7.10)

O
(
ε2
)
: L0u2 + L1u1 = N0u

2
1, (12.7.11)

O
(
ε3
)
: L0u3 + L1u2 + L2u1 = N0[2u1u2] +N1u

2
1, (12.7.12)

O
(
ε4
)
: L0u4 + L1u3 + L2u2 + L3u1

= N0

[
u2
2 + 2u1u3

]
+N1[2u1u2] +N2u

2
1. (12.7.13)

We consider a strongly dispersive wave system, and it is necessary to take into
account nonlinear modulation of the wavetrain; that is, amplitude and phase suffer
from a slow variation over a localized region in space. Consequently, it is reasonable
to assume that the first-order perturbation solution of the first equation (12.7.10) has
the form

u1 = A(x1, x2, . . . , xm, t1, t2, . . . , tm) exp(iθ) + c.c., (12.7.14)

where θ = (kx0−ωt0), the amplitude A is a complex function of the slow variables,
and c.c. represents the complex conjugate of the preceding expression. Moreover, k
and ω satisfy the dispersion relation (12.7.7).

Invoking (12.7.14) in the second equation (12.7.11) of the perturbation system
yields

L0u2 = −i
(
∂D

∂ω

∂A

∂t1
− ∂D

∂k

∂A

∂x1

)
exp(iθ)− 2k2A2 exp(2iθ) + c.c., (12.7.15)

where

∂D

∂ω
= −2

(
1 + λk2

)
ω,

∂D

∂k
= 2

(
c2 − λω2

)
k. (12.7.16ab)

To determine u2 from (12.7.15), it is necessary to integrate it, so that the result
produces what is called a secular (unbounded) term, that is, the term grows without
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bound, as time t → ∞, due to the form of L0 and exp(iθ) in the first term on
the right-hand side of (12.7.15). This means that such a solution for u2 will not
be uniformly valid as t → ∞, no matter how small ε may be. To eliminate the
nonuniformity in the perturbation expansion, the coefficient of exp(iθ) in (12.7.15)
must vanish identically. This leads to the following condition for nonsecularity:

∂A

∂t1
+ Cg(k)

∂A

∂x1
= 0, (12.7.17)

where

Cg(k) =
∂ω

∂k
= −Dk

Dω
(12.7.18)

represents the group velocity of the linearized problem.
Consequently, the uniformly valid solution for u2 can be obtained from (12.7.15)

in the form

u2 = − 2(kA)2

D(2ω, 2k)
exp(2iθ) + F (x1, x2, . . . , xm, t1, t2, . . . , tm) exp(iθ) + c.c.

+G(x1, x2, . . . , xm, t1, t2, . . . , tm), (12.7.19)

where F and G are complex and real functions, respectively, of higher-order scales
that can be found from higher-order perturbations.

Substituting u1 and u2 in equation (12.7.12) leads to another nonsecular
(bounded) condition

i

(
∂D

∂ω
· ∂A
∂t2

− ∂D

∂k
· ∂A
∂x2

)

− 1

2

(
∂2D

∂ω2
· ∂

2A

∂t21
− 2

∂2D

∂k∂ω
· ∂2A

∂x1∂t1
+

∂2D

∂k2
· ∂

2A

∂x21

)

+ k2
{
− 2k2

D(2ω, 2k)
A2A∗ +GA

}

+ i

(
∂D

∂ω

∂F

∂t1
− ∂D

∂k

∂F

∂x1

)
= 0, (12.7.20)

and its complex conjugate relation.
The variation of G follows from the nonsecular condition obtained from the

fourth equation (12.7.13) of the perturbation system, and hence, it turns out that

∂2G

∂t21
− c2

∂2G

∂x21
=

∂2(AA∗)

∂x21
. (12.7.21)

If A and G depend only on x1 and t1 through ξ = x1 −Cgt1, that is, if they are con-
sidered in a coordinate system moving with the group velocityCg, equation (12.7.21)
can be integrated with respect to ξ and then solved to obtain

G(ξ, x2, . . . , xm, t2, t3, . . . , tm) =
(
C2

g − c2
)−1

AA∗ + α, (12.7.22)
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provided that Cg �= c and α = α(x2, x3, . . . , xm, t2, t3, . . . , tm) is a slowly varying
function of higher-order slow variables to be determined from the initial and bound-
ary conditions. However, if Cg = c, the resonant interaction between short and long
waves occurs, and this case can be handled separately.

To obtain an equation for the amplitude A, it is necessary to find F involved
in (12.7.20). Since F is a coefficient of a secular term involved in u2 and thus is
an unbounded term proportional to exp(iθ), it follows that F is associated with the
unbounded terms of the higher-order solutions un. It is possible to show that these
unbounded (resonant) terms can be transferred to the lower-order solution u1 and
the transferred quantity then can be considered as a new amplitude A. Therefore, the
last term in (12.7.20) may be dropped. Finally, using (12.7.17) and (12.7.22) in the
nonsecular condition (12.7.20) yields

i

(
∂A

∂t2
+ Cg

∂A

∂x2

)
+

1

2
C ′

g(k)
∂2A

∂ξ2

+

(
k2

Dω

)[(
1

C2
g − c2

+
1

6λω2

)
|A|2A+ αA

]
= 0, (12.7.23)

where A = A(ξ, x2, . . . , xm, t2, t3, . . . , tm), α is independent of ξ, and hence,
(12.7.22) indicates that α can be treated as a constant with respect to the ξ coor-
dinate.

In a frame of reference moving with group velocity Cg and the coordinate trans-
formations defined by

ξ =
1

ε
(x2 − Cgt2) = (x1 − Cgt1) = ε(x2 − Cgt) and

τ = t2 = εt1 = ε2t,
(12.7.24ab)

we can express equation (12.7.23) in the following canonical form of the nonlinear
Schrödinger equation:

i
∂A

∂τ
+

1

2
C ′

g(k)
∂2A

∂ξ2
+

(
k2

Dω

)[(
1

C2
g − c2

+
1

6λω2

)
|A|2A+αA

]
= 0. (12.7.25)

Thus, the upshot of this perturbation analysis is that the amplitude modulation
A(ξ, τ) for a strongly dispersive system satisfies the nonlinear Schrödinger equation.

We close this section by adding some relevant comments on the asymptotic ex-
pansion in terms of another small parameter δ. First, the coordinate transformations
defined by (12.7.24ab) are nothing but the Gardner–Morikawa transformations that
have been used in the reductive perturbation analysis. Second, u(x, t) has a more
general asymptotic expansion in the form

u(x, t) =

∞∑
n=1

δnun(x0, x1, . . . , xm, t0, t1, . . . , tm), (12.7.26)

where δ is a new small parameter characterizing the smallness of terms that measure
the degree of nonlinearity. Several cases arise depending on the relative importance
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of δ and ε. The case δ = ε has already been discussed above. The case δ = ε2 corre-
sponds to the dispersive wave systems dominated by linear propagation of envelopes.
This case can be analyzed similarly to the case of δ = ε, and hence, the wave ampli-
tude A satisfies the linear equation similar to (12.7.25) without the nonlinear term
|A|2A. In the case δ =

√
ε, the nonlinear interaction dominates, and hence, the non-

linear term occurs in the first nonsecular condition. A similar analysis leads to the
following equation:

i

(
∂A

∂t1
+ Cg

∂A

∂x1

)
+

(
k2

Dω

)[
1

6λω2
|A|2A+ αA

]
= 0, (12.7.27)

where A and α are functions of slow scales x1, x2, . . . , xm, t1, t2, . . . , tm. The inde-
pendent variables in (12.7.27) are the first-order slow variables x1 and t1. The slowly
varying function α can be found with the aid of the same equation (12.7.21) that
was obtained from the higher-order perturbation analysis. Thus, α can be treated as
a function of slow variables x2, x3, . . . , xm, t2, t3, . . . , tm to be determined from
the prescribed boundary and/or initial conditions. Hence, the amplitude equation
(12.7.27) in the nonsecular condition remains valid for the first-order slow variables.
Additional slower variables x2, t2, x3, t3, . . . in (12.7.27) can be treated as slow
parameters for this order of approximation.

Inoue and Matsumoto (1974) applied the method of multiple scales to a general
system of equations of the form

A(U)
∂U

∂t
+B(U)

∂U

∂x
+ C(U) = 0, (12.7.28)

where U is a column vector with n components u1, u2, . . . , un, A and B are n × n
matrices, and C is a column vector.

According to the method of multiple scales, we introduce a new set of indepen-
dent variables as

xn = εnx and tn = εnt, (12.7.29ab)

where n = 0, 1, 2, . . . ,m and, then, the dependent variable U is expanded in the
form

U = U0 +

m+1∑
n=1

εnUn(x0, x1, . . . , xm, t0, t1, . . . , tm) +O
(
εm+2

)
, (12.7.30)

where U0 is a constant solution vector which satisfies the compatibility condition

C(U0) = 0. (12.7.31)

Invoking the asymptotic expansion of the derivatives into multiple scale indepen-
dent variables, as in (12.7.3ab), the perturbation analysis for the general system of
equations can be carried out without any difficulty. However, we will not pursue the
analysis further. For more details of perturbation analysis, the reader is referred to
Inoue and Matsumoto (1974) and Jeffrey and Kawahara (1982).
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In passing we may mention that other investigators (Leibovich and Seebass 1972)
have also applied the method of multiple scales in deriving the KdV and Burgers
equations. Prasad and Ravindran (1977) have developed a more general method to
derive similar model equations for the propagation of nonlinear curved waves in
several dimensions.

12.8 Asymptotic Expansions and Method of Multiple Scales

As we have seen in this chapter, the method of asymptotic expansion is fairly direct
and requires no deep knowledge of the theory of the subject. Despite the long history
of the subject, the method has not been free from controversy, mainly over the inter-
pretation of divergent series which may arise in applied mathematics. The method is
very successful and is often used based on the assumption that a solution of the given
equation exists as a suitable asymptotic expansion with respect to the relevant small
parameter.

This section deals with examples of applications of asymptotic methods to the
solution of partial differential equations in the context of problems in wave propaga-
tion.

We again use the Boussinesq equation (12.7.6) to illustrate this method. The
dispersion relation for this equation shows that ω → 0 in the long-wavelength limit
as k → 0. It is then evident from the expansions (12.7.4ab) that both operators ∂

∂x0

and ∂
∂t0

can be removed so that L0 = L1 = N0 = N1 = 0. Consequently, the
system of operators (12.7.4ab) reduces to

L2 ≡ ∂2

∂t21
− c2

∂2

∂x21
, (12.8.1)

L3 ≡ 2
∂2

∂t1∂t1
− 2c2

∂2

∂x1∂x2
, (12.8.2)

L4 ≡ ∂2

∂t22
+ 2

∂2

∂t1∂t3
− c2

(
∂2

∂x22
+ 2

∂2

∂x1∂x3
− λ

∂4

∂t21∂x
2
1

)
, (12.8.3)

and

N2 ≡ 1

2

∂2

∂x21
and N3 ≡ ∂2

∂x1∂x2
. (12.8.4ab)

We write the asymptotic expansion for u(x, t) in the form

u(x, t) =

M∑
n=1

δnun(x1, x2, . . . , xm, t1, t2, . . . , tm) +O
(
δM+1

)
. (12.8.5)

Several possible cases arise depending on the relative importance of dispersion
and nonlinearity in this problem.
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Case (i): δ = ε2.

In this case, the Boussinesq equation reduces to the following coupled system:

O
(
ε4
)
: L2u1 = 0, (12.8.6)

O
(
ε5
)
: L3u1 = 0, (12.8.7)

O
(
ε6
)
: L2u2 + L4u1 = N2u

2
1. (12.8.8)

Equation (12.8.6) yields the linear wave equation
(
∂2

∂t21
− c2

∂2

∂x21

)
u1 = 0. (12.8.9)

This admits a solution for u1which is a function of ξ1 = x1 − ct1 for waves propa-
gating to the right, or of ξ2 = x1 + ct1 for waves traveling to the left with constant
velocity c. Using these results in (12.8.7) combined with terms of order O(ε5) yields

(
∂

∂t2
+ c

∂

∂x2

)
∂

∂ξ1

{
u1(ξ1, x2, . . . , xm, t2, t3, . . . , tm)

}
= 0. (12.8.10)

This equation is satisfied if u1 depends on x2 and t2 through ξ2 = x2 − ct2, and
hence, equation (12.8.8) reduces to the form

(
∂2

∂t21
− c2

∂2

∂x21

)
u2 −

(
2c

∂2

∂ξ1∂t3
+ 2c2

∂2

∂ξ1∂x3
+ λc2

∂4

∂ξ41

)
u1 =

1

2

∂2u2
1

∂ξ21
.

(12.8.11)

Finally, we assume that u2 depends on x1 and t1 through ξ1 = x1 − ct1 so that
equation (12.8.11) with u1 = φ takes the form

∂φ

∂t3
+ c

∂φ

∂x3
+

1

2
(λc)

∂3φ

∂ξ31
+

1

2c

(
φ
∂φ

∂ξ1

)
= 0, (12.8.12)

in which integration is carried out with respect to ξ1.
In a frame of reference moving with the phase velocity c of long waves, that is, by

setting ξ3 = x3−ct3, τ = t3 and, then, replacing ξ1 by ξ, equation (12.8.12) reduces
to the canonical form of the KdV equation in terms of the independent variables ξ
and τ

∂φ

∂τ
+

1

2c

(
φ
∂φ

∂ξ

)
+

1

2
(λc)

∂3φ

∂ξ3
= 0. (12.8.13)

This reveals the fact that, when deriving the KdV equation, the frame of reference
moves with the phase velocity but not with the group velocity of the wave.

Case (ii): δ = ε3.

In this case, the asymptotic expansion enables us to derive an equation similar to
(12.8.12) without the nonlinear term.
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Case (iii): δ = ε.

In this case, we obtain a nonlinear equation without a dispersive term in the form

∂φ

∂t2
+ c

∂φ

∂x2
+

1

2c

(
φ
∂φ

∂ξ

)
= 0. (12.8.14)

Obviously, the independent variables are the lower-order scales x2 and t2 in equation
(12.8.14).

Example 12.8.1 (The Korteweg–de Vries (KdV) Equation). We consider the nonlin-
ear partial differential equation (Johnson 1997)

utt − uxx = ε(u2 + uxx)xx, x ∈ R, t ≥ 0, (12.8.15)

where ε is a small parameter that represents the characteristics of both small ampli-
tude and long waves.

We seek a solution of (12.8.15) in terms of the small parameter ε as

u(x, t; ε) =
∞∑

n=0

εnun(x, t) as ε → 0, (12.8.16)

where both x and t are O(1). We assume that equation (12.8.15) is to be solved with
the appropriate initial condition at t = 0.

We substitute (12.8.16) in (12.8.15), collect together like powers of ε, and then
set equal to zero for each coefficient of εn. Consequently, (12.8.16) is a solution of
(12.8.15) provided

u0tt − u0xx = 0, (12.8.17)

u1tt − u1xx =
(
u2
0 + u0xx

)
xx
. (12.8.18)

Clearly, the d’Alembert solution of (12.8.17) is given by

u0(x, t) = f(x− t) + g(x+ t), (12.8.19)

where f and g are arbitrary functions of their arguments.
For simplicity, we assume that the initial data is such as to generate only the wave

traveling to the positive x-direction so that

u(x, 0; ε) = f(x), ut(x, 0; ε) = −f ′(x). (12.8.20)

With u0 = f(x− t) as the solution, equation (12.8.18) becomes

u1tt − u1xx =
(
f2 + f ′′)′′, (12.8.21)

where the prime denotes the derivative with respect to (x− t). We next introduce the
characteristic variables ξ, η for (12.8.21)

ξ = x− t, η = x+ t, (12.8.22)
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so that
−4u1ξη =

(
f2 + f ′′)′′, (12.8.23)

and hence,

u1(ξ, η) = −1

4
η
(
f2 + f ′′)′ +A(ξ) +B(η), (12.8.24)

where f = f(ξ), and the arbitrary functions A and B are determined from the initial
data (12.8.20) with the following requirements for u1(x, t):

u1(x, 0) = 0 = u1t(x, 0). (12.8.25)

Consequently, we have

u1(ξ, η) =
1

4

[
(ξ − η)

{
f2(ξ) + f ′′(ξ)

}′ − f2(ξ)− f ′′(ξ) + f2(η) + f ′′(η)
]
,

and therefore,

u1(x, t) =
1

4

[
F (x+ t)− F (x− t)

]
− 1

2
tF ′(x− t), (12.8.26)

where F = f2 + f ′′.
Thus, the asymptotic expansion is

u(x, t; ε) = f(x− t)− ε

4

[
2tF ′(x− t) + F (x− t)− F (x+ t)

]
. (12.8.27)

If f has compact support, or at least for f(x) → 0 sufficiently rapidly as
x → ±∞, the asymptotic result (12.8.27) is not uniformly valid for εt = O(1).
We now investigate the solution of (12.8.15) using the transformations

ξ = x− t = O(1), τ = εt = O(1) as ε → 0. (12.8.28)

It is noted that the asymptotic expansion (12.8.27) would be nonuniform (break-
ing down) for any values of ξ where the first, second, or third derivative of f(ξ)
is not defined. The solution (12.8.27) is also nonuniform for any t, no matter how
well behaved f(ξ) may be. Furthermore, the solution is of no physical interest for a
constant value of f .

In wave propagation problems, the region where a large time (or distance) vari-
able τ is involved is called the far-field region, and the region where t = O(1) is
then referred to as the near-field region. We also observe that, for ξ = x− t = O(1),
t = O(ε−1) implies that x = O(ε−1).

We next apply the transformation (12.8.28) to equation (12.8.15) and use the fact
that

∂

∂x
=

∂

∂ξ
· ∂ξ
∂x

+
∂

∂τ
· ∂τ
∂x

=
∂

∂ξ
,

∂

∂t
=

∂

∂ξ
· ∂ξ
∂t

+
∂

∂τ
· ∂τ
∂t

= ε
∂

∂τ
− ∂

∂ξ
,
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so that the equation for u(x, t; ε) = U(ξ, τ ; ε) reduces to the form

εUττ − 2Uτξ =
(
U2 + Uξξ

)
ξξ
. (12.8.29)

We seek an asymptotic solution of this equation in the form

U(ξ, τ ; ε) =

∞∑
n=0

εnUn(ξ, τ) as ε → 0, (12.8.30)

where ξ = O(1) and τ = O(1).
Thus, U0(ξ, τ) satisfies the equation

2U0τξ +
(
U2
0 + U0ξξ

)
ξξ

= 0, (12.8.31)

or equivalently,
2(U0τ + U0U0ξ) + U0ξξξ = 0, (12.8.32)

where decay conditions are imposed as ξ → ±∞.
This is one form of the Korteweg–de Vries equation. The solution of this equation

satisfying the matching condition

U0 → f(ξ) as τ → 0

corresponds to the initial-value problem for equation (12.8.32). Such a solution ex-
ists, provided f(ξ) decays sufficiently rapidly as ξ → ±∞. The inverse scattering
method was used to obtain the solution in Chapter 9. The solution for U0(ξ, τ) rep-
resents a one-term uniformly valid asymptotic expansion for τ ≥ 0 and τ = O(1) as
ε → 0.

Finally, the next term in the expansion (12.8.30) satisfies the equation

2U1τξ + 2(U0U1)ξξ + U1ξξξξ = U0ττ ,

or equivalently,

2U1τ + 2(U0U1)ξ + U1ξξξ = −
(
U2
0 + U0ξξ

)
τ
, (12.8.33)

where equation (12.8.32) was used for U0τ and the decay conditions have been im-
posed as ξ → ±∞. The mathematical analysis hereafter is not particularly simple.
However, the solution for U1 is found by writing U1 = U0ξV (ξ, τ), which can be
investigated to check whether the asymptotic expansion (12.8.30) is valid as τ → ∞.
This involves a lengthy and somewhat complicated discussion if the general term Un

is to be included. We will not pursue this problem further. We conclude by making a
final statement that the far-field asymptotic expansion of the solution for problems of
this type is usually uniformly valid, provided f(x) is sufficiently smooth and decays
to zero sufficiently rapidly at infinity.

Finally, we describe the method of multiple scales to solve another example
which is typical of some problems in water waves.
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Example 12.8.2 (The Nonlinear Schrödinger equation). We consider the nonlinear
partial differential equation (Johnson 1997)

utt − c2uxx − u+ ε(uux)x = 0, (12.8.34)

where ε is a small parameter. For ε = 0 this equation admits traveling wave solutions
in the form

u(x, t) = A exp
[
i(ωt− kx)

]
+ c.c., (12.8.35)

where c.c. represents the complex conjugate, and A is the complex amplitude of the
wave.

Substituting (12.8.35) in (12.8.34) with ε = 0 gives the dispersion relation

ω2 = c2k2 − 1, (12.8.36)

which admits a real solution for ω if |ck| > 1. We assume ck > 1 so that there are
two possible phase velocities of the wave given by

cp =
ω

k
= ±

√
c2 − k−2. (12.8.37)

For a given k and a phase velocity cp, there exists a harmonic wave solution of equa-
tion (12.8.34) which evolves slowly on suitable scales. It is convenient to introduce
slow variables

ζ = ε(x− cgt), τ = ε2t, (12.8.38)

where the group velocity cg is, in general, not equal to the phase velocity cp and is
known at this point. In addition, introducing a new variable

ξ = x− cpt,

and using the following identities:

∂

∂x
=

∂

∂ξ
+ ε

∂

∂ζ
,

∂

∂t
= −cp

∂

∂ξ
− εcg

∂

∂ζ
+ ε2

∂

∂τ
,

in the original equation (12.8.34) with c = 1 for u(x, t; ε) = U(ξ, ζ, τ ; ε) reduces to
the form

(
c2p − 1

)
Uξξ − U + 2ε(cpcg − 1)Uξζ + ε2

[(
c2g − 1

)
Uζζ − 2cpUξτ

]
+ ε(UUξ)ξ + ε2

[
(UUξ)ζ + (UUζ)ξ

]
= O

(
ε3
)
, (12.8.39)

where only terms O(ε2) are retained in the above equation. Thus, the function
U(x, t; ε) is now treated as a function of the new variables ξ, ζ, τ . In view of the
scales O(1), O(ε−1), and O(ε−2), the method adopted here is called the method of
multiple scales.

We now seek a solution in the form of the asymptotic expansion

U(ξ, ζ, τ ; ε) =
∞∑

n=0

εnUn(ξ, ζ, τ) as ε → 0, (12.8.40)

where ξ, ζ, and τ are all O(1).
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Consequently, U0 satisfies the linear equation
(
c2p − 1

)
U0ξξ − U0 = 0. (12.8.41)

We seek a solution in the form

U0(ξ, ζ, τ) = A01(ζ, τ)e
ikξ + c.c. (12.8.42)

with

c2p =

(
1− 1

k2

)
, k > 1, (12.8.43)

where the first subscript in A01 represents the term ε0, and the second term is related
to the choice Em = exp(imkξ), m = 1, 2, . . . .

At the next order ε1, we find the nonlinear equation
(
c2p − 1

)
U1ξξ − U1 = 2(1− cpcg)U0ξζ + (U0U0ξ)ξ

= (1− cpcg)(ikA01E + c.c.)−
(
2k2A2

01E
2 + c.c.

)
,

(12.8.44)

and U1 is a harmonic function only if cpcg−1 = 0, which determines cg. If we do not
make this choice for cg, then U1 includes a particular integral proportional to (ξE)
which would lead to the nonuniform asymptotic expansion (12.8.40) as |ξ| → ∞.
Terms like (ξE) are called secular, while a uniform solution in ξ is possible only
if harmonic terms in ξ are allowed in the solution for U1. The amplitude A01 of the
wave moves with the group velocity cg which satisfies the condition cpcg = 1, which
can also be verified from the definition of the group velocity

cg =
dω

dk
=

d

dk
(kcp) with (12.8.43).

Thus, the solution for U1(ξ, ζ, τ) can be written as

U0(ξ, ζ, τ) = A11(ζ, τ)E +
2k2A2

01

4k2(1− c2p)− 1
E2 + c.c.

= A11(ζ, τ)E +
2

3
k2A2

01E
2 + c.c., (12.8.45)

where A11 is the amplitude of the fundamental wave E = exp(ikξ). It is noted that
U1 includes a higher harmonic E2 and its complex conjugate E−2.

With the condition cpcg = 1, we obtain the equation for U2(ξ, ζ, τ) as
(
c2p − 1

)
U2ξξ − U2 =

(
1− c2g

)
U0ζζ + 2cpU0ξτ

−
(
U2
0

)
ξζ

− (U0U1)ξξ. (12.8.46)

We impose the condition that the solution for U2 must contain terms harmonic in ξ
so that any terms in E1 involved in the forcing terms in (12.8.46) must vanish. Such
terms can arise only from the equation
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(
1− c2g

)
U0ζζ + 2cpU0ξτ − (U0U1)ξξ

=
(
1− c2g

)
[A01ζζE + c.c.] + 2cp

[
(ikE)A01τ + c.c.

]

− ∂2

∂ξ2

[(
A01E +A01E

−1
)

+

{
2

3
k2
(
A2

01E
2 +A

2

01E
−2
)
+A11E +A11E

−1

}]
, (12.8.47)

where the bar denotes the complex conjugate. The coefficient of E involved in this
expression must vanish (and, of course, its conjugate forE−1) to satisfy the condition
imposed on U2 so that

(2ikcp)A01τ +
(
1− c2g

)
A01ζζ +

2

3
k4A01|A01|2 = 0, (12.8.48)

where all the other terms generate higher harmonics in U2, which is acceptable for
uniformity in the asymptotic solution as |ξ| → ∞. This equation (12.8.48) is well
known as the nonlinear Schrödinger (NLS) equation, which describes the nonlinear
evolution of the wave amplitude.

12.9 Derivation of the NLS Equation and Davey–Stewartson
Evolution Equations

This section deals with two derivations that lead to a description of the evolution of
wavepackets for surface gravity waves on water of finite depth. We use an asymptotic
method to derive first the (1 + 1)-dimensional nonlinear Schrödinger equation and
then (2 + 1)-dimensional Davey–Stewartson equations.

Example 12.9.1 (Derivation of the NLS Equation from the Laplace Equation for the
Velocity Potential). We recall the governing equation (9.3.3)–(9.3.6) for nonlinear
water waves with no y-dependence in the form

φzz + δφxx = 0, (12.9.1)

φt + η +
1

2
ε(φ2

x + δ−1φ2
z) = 0 on z = 1 + εη, (12.9.2)

φz = δ(ηt + εφxηx) on z = 1 + εη, (12.9.3)

φz = 0 on z = 0, (12.9.4)

where parameters δ and ε are given by (9.3.2ab).
We next introduce the new variables

ξ = x− cpt, ζ = ε(x− cgt), τ = ε2t, (12.9.5)

where cp and cg are to be determined.
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In view of the transformations (12.9.5), equations (12.9.1)–(12.9.4) reduce to

φzz + δ
(
φξξ + 2εφξζ + ε2φζζ

)
= 0, (12.9.6)

ε2φτ + η −
(
εcgφζ + cpφξ) +

ε

2

[
δ−1φ2

z + (φξ + εφζ)
2
]
= 0

on z = 1 + εη, (12.9.7)

φz = δ
[
ε2ητ − (cpηξ + εcgηζ) + ε(φξ + εφζ)(ηξ + εηζ)

]
on z = 1 + εη, (12.9.8)

φz = 0 on z = 0. (12.9.9)

We seek an asymptotic solution of this system in the form

φ =

∞∑
n=0

εnφn(ξ, ζ, τ, z), η =

∞∑
n=0

εnηn(ξ, ζ, τ) as ε → 0, (12.9.10)

which are periodic functions in ξ.
In the leading order O(1), the problem is given by

φ0zz + δφ0ξξ = 0, (12.9.11)

η0 − cpφ0ξ = 0, φ0z = −δcpη0ξ on z = 1, (12.9.12)

φ0z = 0 on z = 0. (12.9.13)

We seek the solution of this leading order system as

φ0 = f0(ζ, τ) + Φ0(z, ζ, τ)E + c.c., η0 = A0(ζ, τ)E + c.c., (12.9.14)

where E = exp(ikξ) and c.c. denotes the complex conjugate of the terms in E.
Clearly, the above solution describes a harmonic wave of wavenumber k propagating
with the velocity cp.

Evidently, the Laplace equation (12.9.11) with (12.9.14) becomes

Φ0zz = δk2Φ0. (12.9.15)

The solution of (12.9.15) with the bottom boundary condition (12.9.13) is

Φ0 = F0(ζ, τ) cosh
(√

δkz
)
, (12.9.16)

where the function F0 = F0(ζ, τ) is to be determined.
The two surface boundary conditions (12.9.12) yield

√
δkF0 sinh

√
δk = −iδkcpA0, ikcpF0 cosh

√
δk = A0, (12.9.17)

which give

c2p =
tanh

√
δk√

δk
, F0 = −

(
iA0

kcp

)
sech

(√
δk
)
. (12.9.18ab)
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Thus, solution (12.9.16) becomes

Φ0 = −i
√
δcpA0

cosh(
√
δkz)

sinh(
√
δk)

, (12.9.19)

where the wave amplitude A0 = A0(ζ, τ) is to be determined.
At the next order O(ε), we proceed to collect all terms and use the surface bound-

ary conditions on z = 1 to obtain

φ1zz + δ(φ1ξξ + 2φ0ξζ) = 0, (12.9.20)

η1 − cgφ0ζ − cp(φ1ξ + φ0ξz) +
1

2

(
δ−1φ2

0z + φ2
0ξ

)
= 0

on z = 1, (12.9.21)

φ1z + η0φ0zz = δ(φ0ξη0ξ − cgη0ζ − cpη1ξ) on z = 1, (12.9.22)

φ1z = 0 on z = 0. (12.9.23)

It is evident that the nonlinearity of the surface boundary conditions generates terms
E0, E2, and E−2 from equations (12.9.20)–(12.9.23). The nonlinear interactions
produce higher harmonics E2, E−2 and their complex conjugates in addition to the
fundamental harmonics E1 with E−1 introduced by (12.9.14). We seek a periodic
solution in ξ and remove all secular terms that contribute to the nonperiodic terms
to the solution. In order to carry out this program further, we employ the asymptotic
procedure similar to that used in Examples 12.8.1 and 12.8.2. Thus, we write

φm =

m+1∑
n=0

ΦmnE
n + c.c., ηm =

m+1∑
n=0

AmnE
n + c.c., (12.9.24)

where m = 1, 2, 3, . . . , Φmn(z, ζ, τ) and Amn(ζ, τ) are yet to be determined, and
c.c. refers only to terms En, n = 1, 2, 3, . . . . The terms corresponding to n = 0 are
not harmonic (or oscillatory) solutions, but they are periodic. At each higher order in
ε, higher-order harmonics are produced so that E2 appears first at O(ε), E3 first at
O(ε2), and so on.

The Laplace equation (12.9.20) for φ1 yields

Φ10zz = 0, Φ12zz − 4δk2Φ12 = 0 (12.9.25)

and
Φ11zz − δk2Φ11 + 2iδkΦ0ζ = 0. (12.9.26)

These equations have solutions satisfying the bottom boundary condition
(12.9.23) as

Φ10 = F10(ζ, τ), Φ12 = F12(ζ, τ) cosh
(
2
√
δkz

)
, (12.9.27)

Φ11 = F11(ζ, τ) cosh
(√

δkz
)
− i

√
δF0ζz sinh

(√
δkz

)
, (12.9.28)

where F1n(ζ, τ) are arbitrary functions of ζ and τ . These solutions are then utilized
in the two free surface boundary conditions (12.9.21), (12.9.22) to obtain six equa-
tions arising from coefficients of E0, E1 and E2. Equation (12.9.21) gives
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E0 : − cgf0ζ + i
√
δk2cp(A0F 0 +A0F0) sinh

√
δk

+A10 + k2F0F 0

(
sinh2

√
δk + cosh2

√
δk
)
= 0, (12.9.29)

E1 : − cgF0ζ cosh
√
δk − ikcp

(
F11 cosh

√
δk − i

√
δF0ζ sinh

√
δk
)

+A11 = 0, (12.9.30)

E2 : − ikcp
(
2F12 cosh 2

√
δk +

√
δkA0F0 sinh

√
δk
)

+A12 −
1

2
k2F 2

0 = 0, (12.9.31)

and similarly, equation (12.9.22) leads to

E0 : (A0F 0 +A0F0)δk
2 cosh

√
δk

= δk2(A0F 0 +A0F0) cosh
√
δk, (12.9.32)

E1 :
√
δkF11 sinh

√
δk − i

√
δF0ζ

(
sinh

√
δk +

√
δk cosh

√
δk
)

= −δ(cgA0ζ + ikcpA11), (12.9.33)

E2 : 2
√
δkF12 sinh 2

√
δk + δk2A0F0 cosh

√
δk

= −δ
(
2ikcpA12 + k2A0F0 cosh

√
δk
)
, (12.9.34)

where the bar denotes the complex conjugate.
It is noted that (12.9.32) is identically satisfied and that with result (12.9.18ab)

and for Φ0 used in equation (12.9.29), we find

A10 = − 2
√
δk

sinh 2
√
δk

A0A0 + cgf0ζ . (12.9.35)

Equation (12.9.30) leads us directly to obtain

A11 = cgF0ζ cosh
√
δk + ikcp

(
F11 cosh

√
δk − i

√
δF0ζ sinh

√
δk
)
. (12.9.36)

If this result (12.9.36) is utilized in equation (12.9.33), we see that F11 can-
cels identically. If we next use the result for cp in (12.9.18a) first and then F0 from
(12.9.18b) in (12.9.33), it turns out that A0ζ also cancels and the result becomes

cg =
1

2
cp
(
1 + 2

√
δk cosech 2

√
δk
)
. (12.9.37)

This is the group velocity for water waves.
Finally, we use (12.9.18ab) to solve (12.9.31) and (12.9.34) for F12 and A12 so

that

F12 = −
(
3i

4

)
δkcpA

2
0

sinh4(
√
δk)

,

A12 =

√
δk cosh(

√
δk)

2 sinh3(
√
δk)

(
2 cosh2

√
δk + 1

)
A2

0,

(12.9.38)

where A0 = A0(ζ, τ) is to be determined.
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In the next order O(ε2), equation (12.9.6) and the expansion of the free surface
boundary conditions (12.9.7), (12.9.8) give

φ2zz + δ(φ2ξξ + 2φ1ξζ + φ2ζζ) = 0, (12.9.39)

φ0τ − cgη0φ0ζz − cp

(
φ1ζ + φ2ξ + η0φ1ξz + η1φ0ξz +

1

2
η20φ0ξzz

)
+ η2

+ δ−1(η0φ0zz + φ1z)φ0z + (η0φ0ξz + φ1ξ + φ0ζ)φ0ξ = 0

on z = 1, (12.9.40)

φ2z + η0φ1zz +
1

2
η20φ0zzz + η1φ0zz − δ−1

[
η0τ − (cgη1ζ + cpη2ξ)

+ (η1ξ + η0ζ)φ0ξ + (η0φ0ξz + φ1ξ + φ0ζ)η0ξ
]
= 0 on z = 1, (12.9.41)

and
φ2z = 0 on z = 0. (12.9.42)

It is important to point out that the periodic solution adopted in (12.9.24) is now
utilized for m = 2 so that the higher harmonics E3 now appears for the first time in
this analysis. Consequently, equation (12.9.39) then yields

Φ20zz + δf0ζζ = 0, Φ21zz − δk2Φ21 + δ(2ikΦ11ζ + Φ0ζζ) = 0, (12.9.43)

and so on. The solution for Φ21(z, ζ, τ) satisfying the bottom boundary condition
(12.9.42) then becomes

Φ21 = F21 cosh
√
δkz −

√
δ

(
iF11ζ +

1

2k
F0ζζ

)
z sinh

√
δkz

+
1

2
δF0ζζ

(
z

k
√
δ
sinh

√
δkz − z2 cosh

√
δkz

)
. (12.9.44)

The free surface boundary condition (12.9.41) reduces to, for terms E1,

Φ21z +A0Φ12z +
1

2

(
A2

0Φ0zzz + 2A0A0Φ0zzz

)
+A10Φ0zz +A12Φ0zz

= δ
[
A0τ − (cgA11ζ + ikcpA21) + 2k2A12Φ0zz − k2A0

(
A0Φ0z −A0Φ0z

)
+ k2A0(A0Φ0z + 2Φ12)

]
on z = 1. (12.9.45)

The free surface boundary condition (12.9.40) on z = 1 gives, for terms E1,

Φ0τ − cgΦ11ζ − ik
{(
cpΦ21 + 2cpA0Φ12z

)
+ cp(A10Φ0z −A12Φ1z)

}

− 1

2
ikcp

(
2A0A0Φ0zz −A2

0 Φ0zz

)
+A21

+ δ−1
[(
A0Φ0zz +A0Φ0zz

)
Φ0z + (A0Φ0zz + Φ12z)Φ0z

]
− k2

(
A0Φ0z −A0Φ0z

)
Φ0 + k2(A0Φ0z + 2Φ12)Φ0 = 0. (12.9.46)
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Clearly, the equation for A0 arises from the terms which occur after elimination
of secular terms at E1. The procedure is relatively simple to describe, but rather te-
dious to discuss. However, we can eliminate A12 from (12.9.45) and (12.9.46), and
then introduce the functions obtained before including Φ21 from (12.9.44). Simpli-
fying the result so that F21 cancels identically due to the definition of cp, and A11

(or F11) also cancels after substitution of cg from (12.9.37), the final equation for
A0(ζ, τ) can be obtained in the form

−2ikcpA0τ + αA0ζζ + β|A0|2A0 = 0, (12.9.47)

where

α = c2g − (1− s tanh s)sech2s = −(kcp)
d2

dk2
(kcp), ω(k) = kcp, (12.9.48)

and

β =
(
k2c−2

p

)[1
2

(
1 + 9 coth2 s− 13 sech2 s− 2 tanh4 s

)

−
(
1− c2g

)−1(
2cp + cg sech

2 s
)2]

, (12.9.49)

with s =
√
δk.

Equation (12.9.47) is well known as the nonlinear Schrödinger (NLS) equation
for the evolution of nonlinear water waves, and it is one of the completely integrable
types of equations. It is easy to check that α > 0 for all s = k

√
δ, but β changes its

sign from positive to negative as s decreases its value across s = k
√
δ ≈ 1.363. It

is important to point out that the nature of the solutions of (12.9.47) depend on the
signs of α and β. Indeed, the condition βα−1 > 0 (αβ > 0) ensures the existence
of a solitary wave solution of the NLS equation (12.9.47), and the soliton decays to
zero at infinity. There exists some experimental and numerical evidence in support
of the solitary wave solution. On the other hand, when

β

α
< 0 (αβ < 0),

no such solitary wave solution exists. In other words, the solution grows exponen-
tially as τ → ∞, that is, the solution becomes unstable.

Example 12.9.2 (Derivation of the Davey–Stewartson (DS) Equations). Example
12.9.1 deals with the NLS equation which describes the modulation of the ampli-
tude of the nonlinear water waves propagating only in one direction. We closely
follow Davey and Stewartson (1974) to consider the two-dimensional problem of the
propagation of a plane wave. This two-dimensional problem incorporates slow (or
weak) dependence on both x- and y-coordinates with the fast oscillations only in
the x-direction. We present the evolution of wavepackets that will propagate in the
x-direction with slowly varying structure in both x- and y-directions. However, the
group velocity is still associated with the wave propagation in the x-direction.
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We recall governing equations (9.3.3)–(9.3.6) and then introduce the variables

ξ = x− cpt, ζ = ε(x− cgt), y∗ = εy, τ = ε2t. (12.9.50)

Consequently, equations (9.3.3)–(9.3.6) become, dropping the asterisk in y∗,

φzz + δ
[
φξξ + 2εφξζ + ε(φζζ + φyy)

]
= 0, (12.9.51)

ε2φτ − εcgφζ − cpφξ + η +
1

2
ε

[
1

δ
φ2
z + (φξ + εφζ)

2 + εφ2
y

]
= 0

on z = 1 + εη, (12.9.52)

φz = δ
[
ε2ητ − (εcgηζ + cpηξ) + ε(φξ + εφζ)(ηξ + εηζ) + ε3φyηy

]
on z = 1 + εη, (12.9.53)

and
φz = 0 on z = 0. (12.9.54)

Proceeding to collect all terms not larger than O(ε2), the only contribution from
the y-dependence will come from the term φyy in the Laplace equation (12.9.51). All
other terms involving derivatives of y produce new nonlinear interactions that will
arise first at O(ε3). We can use the calculation similar to that already presented in
Example 12.9.1 for the nonlinear Schrödinger equation. Thus, we avoid the details
here and present only major steps to derive a pair of Davey–Stewartson equations.

We seek asymptotic solutions in the form

φ = f0(ζ, y, τ) +

∞∑
m=0

εm

[
m+1∑
n=0

Φmn(z, ζ, y, τ)E
n + c.c.

]
, (12.9.55)

η =

∞∑
m=0

εm

[
m+1∑
n=0

Amn(ζ, y, τ)E
n + c.c.

]
, (12.9.56)

where E = exp(ikξ) and A00 = 0 so that the first-order approximation to the
surface gravity waves is purely harmonic. We expect results already obtained for all
the terms at O(ε0) and O(ε). The main differences will appear at O(ε2), and the
problem at ε2E0 yields an equation for f0,

(
1− c2g

)
f0ζζ + f0yy = − 1

c2p

(
2cp + cg sech

2
√
δk
)(
|A0|2

)
ζ
, (12.9.57)

where A0 = A01 is given.
The free surface boundary conditions for the terms ε2E give

−2ikcpA0τ + αA0ζζ − cpcgA0yy

+
1

2

(
k2c−2

p

)(
1 + 9 coth2 s− 13 sech2 s− 2 tanh4 s

)
A0|A0|2

+ k2
(
2cp + cg sech

2 s
)
A0f0ζ = 0, (12.9.58)

where s =
√
δk.
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These two equations (12.9.57), (12.9.58) are called the Davey–Stewartson (DS)
equations for the modulation of two-dimensional harmonic waves.

Using α, β given by (12.9.48) and (12.9.49) and introducing a new parameter γ
by

γ = 2cp + cg sech
2 s, (12.9.59)

the Davey–Stewartson equations can be written in a compact form

(
1− c2g

)
f0ζζ + f0yy = −

(
γ

c2p

)(
|A0|2

)
ζ
, (12.9.60)

− 2ikcpA0τ + αA0ζζ − cpcgA0yy

+

[
β +

γ2k2

c2p(1− c2g)

]
A0|A0|2 + γk2A0f0ζ = 0. (12.9.61)

It is noted here that γ > 0 and cpcg > 0. For no y-dependence, equation (12.9.60)
becomes after integration

(
1− c2g

)
f0ζ = −

(
γ

c2p

)
|A0|2. (12.9.62)

This equation (12.9.62) describes the mean drift generated by the nonlinear in-
teraction of the wave motion. This is usually called the Stokes drift.

In the absence of y-dependence with the assumption that f0ζ = 0, and hence,
A0 ≡ 0, equation (12.9.61) reduces to the NLS equation

−2ikcpA0τ + αA0ζζ + β|A0|2A0 = 0. (12.9.63)

This is identical with the NLS equation (12.9.47).
It has been an interesting exercise to present several conservation laws for the

nonlinear Schrödinger equation in Section 10.5. However, the derivation of the con-
servation laws for the Davey–Stewartson equations is not easy because these equa-
tion are coupled and depend on the three variables τ , ζ, and y. In order to derive a few
conservation laws, it is convenient to rewrite the DS equations (12.9.60), (12.9.61)
by replacing τ by t, ζ by x, f0 by f , and A0 by A so that they read as

afxx + fyy − b
(
|A|2

)
x
= 0, (12.9.64)

−icAt + dAxx − eAyy + hA|A|2 +Afx = 0, (12.9.65)

where a, b, c, d, e, and h are real constants and f is a real function.
Equation (12.9.64) is already in the conservation form

∂

∂x

(
afx − b|A|2

)
+

∂

∂y
(fy) = 0, (12.9.66)

which gives
∂

∂x

[∫ ∞

−∞

(
afx − b|A|2

)
dy

]
+ [fy]

∞
−∞ = 0. (12.9.67)
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Under the decay conditions as |x| → ∞, this equation takes the form

a
∂

∂x

(∫ ∞

−∞
f dy

)
= b

∫ ∞

−∞
|A|2 dy = g(t), (12.9.68)

where g(t) is an arbitrary function of t. If, for some appropriate value of x, the left-
hand side of (12.9.68) vanishes, then g(t) = 0 for all t. Consequently, (12.9.68)
gives

a

(∫ ∞

−∞
fdy

)
= b

∫ ∞

−∞

∫ ∞

−∞
|A|2 dx dy = const. (12.9.69)

This leads to another conservation law
∫ ∞

−∞
f dy = const. (12.9.70)

We next take the complex conjugate of (12.9.65) to obtain

icAt + dAxx − eAyy + hA|A|2 +Afx = 0. (12.9.71)

We next multiply (12.9.71) by A and (12.9.65) by A and then subtract the latter
result from the former result to find

ic
∂

∂x

(
AA

)
+ d

∂

∂x

(
AAx −AAx

)
+ e

∂

∂y

(
AAy −AAy

)
= 0. (12.9.72)

This leads to the following results in the conservation form:

ic
∂

∂t

[∫ ∞

−∞
|A|2 dx

]
+ e

∂

∂y

[∫ ∞

−∞

(
AAy −AAy

)
dx

]
= 0 (12.9.73)

and

ic
∂

∂t

[∫ ∞

−∞
|A|2 dy

]
+ d

d

dx

[∫ ∞

−∞

(
AAx −AAx

)
dy

]
= 0, (12.9.74)

provided decay conditions are satisfied as |x| → ∞ for fixed y, and as |y| → ∞
for fixed x. This means that waves at infinity are not parallel to either the x- or y-
directions. Moreover, if decay conditions hold for |x| → ∞ and |y| → ∞, that is,
the solution decays sufficiently rapidly as (x2 + y2) → ∞, it turns out that

∫ ∞

−∞

∫ ∞

−∞
|A|2 dx dy = const. (12.9.75)

This represents a conserved quantity that arises for a certain class of solutions. This
is usually referred to as the law of conservation of mass.

Finally, we close this section by representing one of the most direct applications
of the NLS and DS equations. This application deals with the stability of the Stokes
waves. We recall the NLS equation (12.9.47) and rewrite it in the form
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−2ikcpA0τ + αA0ζζ + βA0|A0|2 = 0, (12.9.76)

where α and β are given by (12.9.48) and (12.9.49).
We seek a nonlinear plane wave solution of (12.9.76) in the form

A0(ζ, τ) = A exp
[
i(mζ − στ)

]
, (12.9.77)

where the amplitude A is a complex constant and the wavenumber m is real. This
solution exists provided σ satisfies the dispersion relation

2kcpσ = β|A|2 − αm2, (12.9.78)

where cp, α, and β are functions of the wavenumber k(> 0) of the primary wave
described by (12.9.14) and m(> 0) is the wavenumber of the modulation. Thus, the
primary wave solution becomes

η0 = A exp
{
i(kx− ωt+mζ − στ)

}
+ c.c., (12.9.79)

where τ = ε2t and σ is given by (12.9.78) with m = 0.
The solution (12.9.79) represents the Stokes wave of constant amplitude A and

wavenumber k with the dispersion relation

2kcpσ = β|A|2. (12.9.80)

Thus, the Stokes wave assumes the form

η0(x, t) = A exp
[
i
{
kx−

(
ω + ε2σ

)
t
}]
. (12.9.81)

We next employ the NLS equation to examine the stability of the Stokes wave.
The NLS equation describes the modulation of the amplitude of the harmonic wave
represented by exp(ikx). We seek a solution which is a small perturbation of the
nonlinear plane wave solution (12.9.81) so that

A0 = A(1 + μa) exp
[
i(−στ + μθ)

]
, (12.9.82)

where a = a(ζ, τ) and θ = θ(ζ, τ) are real perturbation functions and μ is a param-
eter with the dispersion relation (12.9.80).

Substituting (12.9.82) into the original NLS equation (12.9.76) gives, dropping
the exponential term in (12.9.82),

−2ikcp
[
μaτ + i(1 + μa)(μθτ − σ)

]
+ α

[
μaζζ + 2iμ2aζθζ + μ(1 + μa)

(
iθζζ − μθ2ζ

)]
+ β(1 + μa)3|A|2 = 0. (12.9.83)

The leading terms O(1) as μ → 0 cancel due to (12.9.80), and hence, the main
perturbation terms O(μ) are given by

−2ikcp
[
aτ + i(θτ − σ)

]
+ α(aζζ + iθζζ) + 3β|A|2a = 0. (12.9.84)
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In view of the fact that a and θ are real functions, we use (12.9.80) to eliminate
σ from (12.9.84) so that

2kcpθτ + αaζζ + 2β|A|2a = 0, (12.9.85)

−2kcpaτ + αθζζ = 0. (12.9.86)

This is a pair of linear partial differential equations with constant coefficients. We
seek a solution of the form

(
a

θ

)
=

(
a0
θ0

)
exp

[
i(κζ −Ωτ)

]
+ c.c., (12.9.87)

where a0, θ0, κ(> 0), and Ω are constants. This solution exists, provided the disper-
sion relation for Ω

(2kcpΩ)2 = α2κ2

[
κ2 − 2

(
β

α

)
|A|2

]
(12.9.88)

is satisfied. Or equivalently,

(2kcpΩ) = (ακ)

[
κ2 − 2

(
β

α

)
|A|2

] 1
2

. (12.9.89)

Some new and striking conclusions can be drawn from (12.9.89). If βα−1 > 0
(αβ > 0), then Ω is imaginary for some wavenumber κ, provided

0 < κ <
√
2|A|

√
β

α
. (12.9.90)

In this case, the amplitude modulation grows exponentially as τ → ∞. This means
that the Stokes wave is definitely unstable for a range of wavenumbers κ given by
(12.9.90). On the other hand, if βα−1 < 0 (αβ < 0), Ω is real for all values of
the wavenumber κ. This implies that the amplitude modulation persists, but does not
grow. In other words, the Stokes wave is neutrally stable for all values of κ.

Another most simple and direct interpretation of the instability phenomenon of
the Stokes wave can be given by writing the leading order fundamental wave mode
at t = 0 as

η0 = A(1 + μa) exp
[
i(kx+ μθ)

]
+ c.c., (12.9.91)

which is, by using (12.9.87) with ζ = ε(x− cgt) at t = 0,

= A exp
[
i(kx+ μθ)

]
+Aμa0 exp

[
i(k + εκ)x+ iμθ

]
+ c.c. (12.9.92)

as μ → 0 for fixed x and ε.
Evidently, the perturbation to the fundamental mode has the term μa0 which

has a wavelength k + εκ that is close to k. This means that a perturbation with a
wavenumber close to that of the fundamental mode will produce an unstable solution
whenever βα−1 > 0. Thus, it is impossible to generate stable waves with a precisely



674 12 Asymptotic Methods and Nonlinear Evolution Equations

fixed wavenumber both in nature and in the laboratory. In other words, a wave with
a small deviation from a fixed wavenumber k would always occur and lead to the
instability phenomenon. This kind of instability is associated with a small change in
the wavenumber of the fundamental mode and is now well known as the Benjamin–
Feir (1967) side-band instability. It is often observed in nature that a set of plane
waves gradually breaks down along the wave fronts into a series of wave groups.

12.10 Exercises

1. The simplest equation for compressible fluid flows is a 2× 2 matrix of the conti-
nuity and momentum equations in two independent variables x and t, that is,

Ut + Fx = S, or equivalently, Ut +AUx = S,

where

A =

[
∂F1

∂u1

∂F1

∂u2

∂F2

∂u1

∂F2

∂u2

]
and S =

[
0
S2

]
.

(a) Find the matrix A and its eigenvalues for the inviscid Burgers equation. Show
that the conservation laws are not hyperbolic.
(b) For compressible flows of velocity u, define the density u1 and the momentum
u2 = uu1, F1 = uu1 = u2, F2 = uu2 + P = u2

2/u1 + P , where P = P (u1) is
the pressure, write the conservation equation in the matrix form

Ut +AUx = S,

and find the matrix A, its eigenvalues, eigenvectors, and the Riemann invariants.
(c) Write the conservation matrix equation for the n× n matrix A.
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Tables of Integral Transforms

In this chapter, we provide a set of short tables of integral transforms of the func-
tions that are either cited in the text or are in most common use in mathematical,
physical, and engineering applications. For exhaustive lists of integral transforms,
the reader is referred to Erdélyi et al. (1954), Campbell and Foster (1948), Ditkin
and Prudnikov (1965), Doetsch (1970), Marichev (1983), Debnath (1995), Debnath
and Bhatta (2007), and Oberhettinger (1972).

13.1 Fourier Transforms

f(x) F (k) = 1√
2π

∫∞
−∞ exp(−ikx)f(x) dx

1 f(ax+ b) 1
|a| exp(

ibk
a
)F ( k

a
)

2 eibxf(ax) 1
|a|F ( k−b

a
)

3 f (n)(x) (ik)nF (k)

4 xnf(x) inF (n)(k)

5 f(−x) F (k)

6 f(x) F (−k)

7 f(x) ∗ g(x)
= 1√

2π

∫∞
−∞ f(x− ξ)g(ξ) dξ

F (k)G(k)

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers,
DOI 10.1007/978-0-8176-8265-1_13, c© Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-8176-8265-1_13


676 13 Tables of Integral Transforms

f(x) F (k) = 1√
2π

∫∞
−∞ exp(−ikx)f(x) dx

8 If ft(x) = 1√
4πκt

exp(− x2

4κt
),

ft(x) ∗ fs(x)
Fs+t(k)

9 f(x)g(x) F (k) ∗G(k)

10 f(x) cos ax 1
2
[F (k − a) + F (k + a)]

11 f(x) sin ax 1
2i
[F (k − a)− F (k + a)]

12 F (x) f(−k)

13 xn eiax 1√
2π

inδ(n)(k − a)

14 χ[−a,a](x) = H(a− |x|)
√

2
π
( sin ak

k
)

15 (1− |x|
a
)H(1− |x|

a
) a√

2π
(ak

2
)−2 sin2(ak

2
)

16 exp(−a|x|), a > 0 (
√

2
π
)a(a2 + k2)−1

17 x exp(−a|x|), a > 0 (
√

2
π
)(−2aik)(a2 + k2)−2

18 exp(−ax2), a > 0 1√
2a

exp(− k2

4a
)

19 (x2 + a2)−1, a > 0
√

π
2

exp(−a|k|)
a

20 x(x2 + a2)−1
√

π
2
(−ik

2a
) exp(−a|k|)

21

{
c if a ≤ x ≤ b,

0 otherwise
ic√
2π

1
k
(e−ibk − e−iak)

22 |x| exp(−a|x|), a > 0
√

2
π
(a2 − k2)(a2 + k2)−2

23 sin ax
x

√
π
2
H(a− |k|)

24 exp{−x(a− iω)}H(x) 1√
2π

i
(ω−k+ia)

25 (a2 − x2)−
1
2H(a− |x|)

√
π
2
J0(ak)

26 sin[b(x2+a2)
1
2 ]

(x2+a2)
1
2

√
π
2
J0(a

√
b2 − k2)H(b− |k|)
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f(x) F (k) = 1√
2π

∫∞
−∞ exp(−ikx)f(x) dx

27 cos(b
√

a2−x2)

(a2−x2)
1
2

H(a− |x|)
√

π
2
J0(a

√
b2 + k2)

28 e−axH(x), a > 0 1√
2π

(a− ik)(a2 + k2)−1

29 1√
|x|

exp(−a|x|), a > 0 (a2 + k2)−
1
2 [a+ (a2 + k2)

1
2 ]

1
2

30 δ(n)(x− a), n = 0, 1, 2, . . . 1√
2π

(ik)n exp(−iak)

31 exp(iax)
√
2π δ(k − a)

32 xn sgnx
√

2
π

n!
(ik)n+1

33 1
√
2πδ(k)

34 x
√
2πiδ′(k)

35 xn
√
2πinδ(n)(k)

36 x−1 −i
√

π
2
sgn k

37 x−n −i
√

π
2
[ (−ik)n−1

(n−1)!
sgn k]

38 cos(ax2), a > 0 1
2
√
a
[cos( k

2

4a
) + sin( k

2

4a
)]

39 sin(ax2), a > 0 1
2
√
a
[cos( k

2

4a
)− sin( k

2

4a
)]

13.2 Fourier Sine Transforms

f(x) Fs(k) =
√

2
π

∫∞
0

sin(kx)f(x) dx

1 exp(−ax), a > 0
√

2
π
k(a2 + k2)−1

2 x exp(−ax), a > 0
√

2
π
(2ak)(a2 + k2)−2

3 xα−1, 0 < α < 1
√

2
π
k−αΓ (α) sin(πα

2
)

4 1√
x

1√
k
, k > 0
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f(x) Fs(k) =
√

2
π

∫∞
0

sin(kx)f(x) dx

5 xα−1e−ax, α > −1, a > 0

√
2
π
Γ (α)r−α sin(αθ), where

r = (a2 + k2)
1
2 , θ = tan−1( k

a
)

6 x−1e−ax, a > 0
√

2
π
tan−1( k

a
), k > 0

7 x exp(−a2x2) 2−3/2( k
a3 ) exp(− k2

4a2 )

8 erfc(ax)
√

2
π

1
k
[1− exp(− k2

4a2 )]

9 x(a2 + x2)−1
√

π
2
exp(−ak), a > 0

10 x(a2 + x2)−2
√

π
2
( k
2a
) exp(−ak), (a > 0)

11 H(a− x), a > 0
√

2
π

1
k
(1− cos ak)

12 x−1J0(ax)

{√
2
π
sin−1( k

a
) if 0 < k < a,√

π
2

if a < k < ∞

13 x(a2 + x2)−1J0(bx),
a > 0, b > 0

√
π
2
e−akI0(ab), a < k < ∞

14 J0(a
√
x), a > 0

√
2
π

1
k
cos(a

2

4k
)

15 (x2 − a2)ν−
1
2H(x− a),

|ν| < 1
2

2ν−
1
2 ( a

k
)νΓ (ν + 1

2
)J−ν(ak)

16 x1−ν(x2 + a2)−1Jν(ax),
ν − 3

2
, a, b > 0

√
π
2
a−ν exp(−ak)Iν(ab),

a < k < ∞

17 x−νJν+1(ax), ν > − 1
2

k(a2−k2)
ν− 1

2

2
ν− 1

2 aν+1Γ (ν+ 1
2
)
H(a− k)

18 erfc(ax)
√

2
π

1
k
[1− exp(− k2

4a2 )]

19 x−α, 0 < α < 2 Γ (1− α)kα−1 cos(απ
2
)

20 (ax− x2)α− 1
2H(a− x),

α > − 1
2

√
2Γ (α+ 1

2
)( a

k
)α sin(ak

2
)Jα(

ak
2
)
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13.3 Fourier Cosine Transforms

f(x) Fc(k) =
√

2
π

∫∞
0

cos(kx)f(x) dx

1 exp(−ax), a > 0 (
√

2
π
)a(a2 + k2)−1

2 x exp(−ax), a > 0 (
√

2
π
)(a2 − k2)(a2 + k2)−2

3 exp(−a2x2) 1

a
√
2
exp(− k2

4a2 )

4 H(a− x)
√

2
π
( sin ak

k
)

5 xa−1, 0 < a < 1
√

2
π
Γ (a)k−a cos(aπ

2
)

6 cos(ax2) 1
2
√
a
[cos( k

2

4a
) + sin( k

2

4a
)]

7 sin(ax2), a > 0 1
2
√
a
[cos( k

2

4a
)− sin( k

2

4a
)]

8 (a2 − x2)ν−
1
2H(a− x), ν > − 1

2
2ν−

1
2 Γ (ν + 1

2
)( a

k
)νJν(ak)

9 (a2 + x2)−1J0(bx), a, b > 0
√

π
2
a−1 exp(−ak)I0(ab),

b < k < ∞

10 x−νJν(ax), ν > − 1
2

(a2−k2)
ν− 1

2 H(a−k)

2
ν− 1

2 aνΓ (ν+ 1
2
)

11 (x2 + a2)−
1
2 exp[−b(x2 + a2)

1
2 ] K0[a(k

2 + b2)
1
2 ], a > 0, b > 0

12 xν−1e−ax, ν > 0, a > 0
√

2
π
Γ (ν)r−ν cosnθ, where

r = (a2 + k2)
1
2 , θ = tan−1( k

a
)

13 2
x
e−x sinx

√
2
π
tan−1( 2

k2 )

14 sin[a(b2 − x2)
1
2H(b− x)]

√
π
2
(ab)(a2 + k2)−

1
2

× J1[b(a
2 + k2)

1
2 ]

15 (1−x2)

(1+x2)2

√
π
2
k exp(−k)

16 x−α, 0 < α < 1
√

π
2

kα−1

Γ (α)
sec(πα

2
)

17 ( 1
a
+ x)e−ax

√
π
2

2a2

(a2+k2)2
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f(x) Fc(k) =
√

2
π

∫∞
0

cos(kx)f(x) dx

18 log(1 + a2

k2 ), a > 0
√
2π (1−e−ak)

k

19 log(a
2+x2

b2+x2 ), a, b > 0
√
2π (e−bk−e−ak)

k

20 a(x2 + a2)−1, a > 0
√

π
2
exp(−ak), k > 0

13.4 Laplace Transforms

f(t) f(s) =
∫∞
0

exp(−st)f(t) dt

1 e−atf(t) f̄(s+ a)

2 f(at) 1
|a| f̄(

s
a
)

3 f (n)(t) snf(s)−
n∑

r=1

sn−rf (r−1)(0)

4
∫ t

0
f(τ) dτ 1

s
f̄(s)

5 tnf(t) (−1)n dn

dsn
f(s)

6 f(t− a)H(t− a) exp(−as)f(s)

7 (f ∗ g)(t) =
∫ t

0
f(t− τ)g(τ) dτ f(s)g(s)

8 tn−1

(n−1)!
∗f(t) =

∫ t

0

(t−τ)n−1

(n−1)!
f(τ) dτ f̄(s)

sn

9 [t] = greatest integer = largest
integer that, is less than or equal to t

1
s
(es − 1)−1

10 f(t) is periodic with period a (1− e−as)−1
∫ a

0
e−stf(t) dt

11 f(t) = H(t)− 2H(t− a)
+ 2H(t− 2a)
− 2H(t− 3a) + · · ·

1
s
tanh(as

2
)

12 tn, n = 0, 1, 2, 3, . . . n!
sn+1
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f(t) f(s) =
∫∞
0

exp(−st)f(t) dt

13 eat 1
s−a

14 tne−at Γ (n+1)

(s+a)n+1

15 ta, a > −1 Γ (a+1)

sa+1

16 eat cos bt s−a
(s−a)2+b2

17 eat sin bt b
(s−a)2+b2

18 1√
t

√
π
s

19 2
√
t 1

s

√
π
s

20 t−1/2 exp(−a
t
)

√
π
s
exp(−2

√
as)

21 t−3/2 exp(−a
t
)

√
π
a
exp(−2

√
as)

22 1√
πt
(1 + 2at)eat s

(s−a)
√
s−a

23 1

2
√
πt3

(ebt − eat)
√
s− a−

√
s− b

24 exp(a2t) erf(a
√
t) a√

s(s−a2)

25 exp(a2t) erfc(a
√
t) 1√

s(
√
s+a)

26 1√
πt

+ a exp(a2t) erf(a
√
t)

√
s

(s−a2)

27 1√
πt

− a exp(a2t) erfc(a
√
t) 1√

s+a

28 exp(−at)√
b−a

erf(
√
(b− a)t) 1

(s+a)
√
s+b

29
1

2
eiωt[exp(−λz) erfc(ζ −

√
iωt)

+ exp(λz) erfc(ζ +
√
iωt)]

where ζ = z/2
√
νt, λ =

√
iω
ν

(s− iω)−1 exp(−z
√

s
ν
)

30 1
2
[exp(−ab) erfc( b−2at

2
√
t
)

+ exp(ab) erfc( b+2at
2
√
t
)]

exp[−b(s+ a2)
1
2 ]

31 J0(at) (s2 + a2)−
1
2
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f(t) f(s) =
∫∞
0

exp(−st)f(t) dt

32 I0(at) (s2 − a2)−
1
2

33 tα−1 exp(−at), α > 0 Γ (α)(s+ a)−α

34 t−1Jν(at) ν−1aν(
√
s2 + a2 + s)−ν ,

Re ν > − 1
2

35 J0(a
√
t) 1

s
exp(−a2

4s
)

36 ( 2
a
)νtν/2Jν(a

√
t) s−(ν+1) exp(−a2

4s
), Re ν > − 1

2

37 a
2t

√
πt

exp(−a2

4t
) exp(−a

√
s), a > 0

38 1√
πt

exp(−a2

4t
) 1√

s
exp(−a

√
s), a ≥ 0

39 exp(−a2t2

4
)

√
π
a

exp( s2

a2 ) erfc( s
a
), a ≥ 0

40 (t2 − a2)−
1
2H(t− a) K0(as), a > 0

41 δ(n)(t− a), n = 0, 1, . . . sn exp(−as)

42 tmα+β−1E
(m)
α,β (± at),

m = 0, 1, 2, . . .

m!sα−β

(sα∓a)m+1

43
√
π

Γ (ν+ 1
2
)
( t
2a
)νJν(at) (s2 + a2)−(ν+ 1

2
), Re ν > − 1

2

44 1
2
e−ct[exp(−a

√
b− c)

× erfc{ a√
4t

−
√

(b− c)t}
− exp(a

√
b− c)

× erfc{ a√
4t

+
√

(b− c)t}]

exp(−a
√
s+b)

(s+c)
√

(s+b)

45 1
2
e−ct[exp(−a

√
b− c)

× erfc{ a√
4t

− t
√
b− c}

− exp(a
√
b− c)

× erfc{ a√
4t

+ t
√
b− c}]

exp(−a
√
s+b)

(s+c)

46 e−bt[
√

4t
π
exp(−a2

4t
)

− a erfc( a√
4t
)]

exp(−a
√
s+b)

(s+b)3/2
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f(t) f(s) =
∫∞
0

exp(−st)f(t) dt

47 e−bt[(t+ 1
2
a2) erfc( a√

4t
)

−
√

ta2

π
exp(−a2

4t
)]

exp(−a
√
s+b)

(s+b)2

48 exp(ab+ a2t) erfc(a
√
t+ b

2
√
t
) e−b

√
s

√
s(a+

√
s)

, b ≥ 0

49 Ln(t) =
et

n!
dn

dtn
(tne−t) 1

s
(1− 1

s
)n

50 n!
(2n)!

√
πt
H2n(

√
t) (1−s)n

s
n+1

2

51 f(t)g(t) 1
2πi

[f̄(s) ∗ ḡ(s)]

13.5 Hankel Transforms

f(r) Order n f̃n(κ) =
∫∞
0

rJn(κr)f(r) dr

1 f(ar) 0 1
a2 f̃n(

κ
a
), a > 0

2 f ′(r) 1 −κf̃0(κ)

3 ∇2f = 1
r

d
dr
( df
dr
) 0 −κ2f̃0(κ)

4 (∇2 − n2

r2
)f >−1 −κ2f̃n(κ)

5 H(a− r) 0 a
κ
J1(aκ)

6 exp(−ar) 0 a(a2 + κ2)−
3
2

7 1
r
exp(−ar), a > 0 0 (a2 + κ2)−

1
2

8 (a2 − r2)H(a− r) 0 4a
κ3 J1(aκ)− 2a2

κ2 J0(aκ)

9 a(a2 + r2)−
3
2 0 exp(−aκ)

10 1
r
cos(ar) 0 (κ2 − a2)−

1
2H(κ− a)
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f(r) Order n f̃n(κ) =
∫∞
0

rJn(κr)f(r) dr

11 1
r
sin(ar) 0 (a2 − κ2)−

1
2H(a− κ)

12 1
r2
(1− cos ar) 0 cosh−1( a

κ
)H(a− κ)

13 1
r
J1(ar) 0 1

a
H(a− κ), a > 0

14 Y0(ar) 0 ( 2
π
)(a2 − κ2)−1

15 K0(ar) 0 (a2 + κ2)−1

16 δ(r)
r

0 1

17 δ(r − a) >−1 aJn(aκ)

18 (r2 + b2)−
1
2

× exp{−a(r2 + b2)
1
2 }

0 (κ2 + a2)−
1
2 exp{−b(κ2 + a2)

1
2 }

19 (r2 + a2)−
1
2 0 1

κ
exp(−aκ)

20 exp(−ar) 1 κ(a2 + κ2)−3/2

21 sin ar
r

1 aH(κ−a)

κ(κ2−a2)
1
2

22 1
r
exp(−ar) 1 1

κ
[1− a

(κ2+a2)
1
2
]

23 1
r2

exp(−ar) 1 1
κ
[(κ2 + a2)

1
2 − a]

24 rnH(a− r) >−1 1
κ
an+1Jn+1(aκ)

25 rn exp(−ar), Re a > 0 >−1 1√
π

2n+1Γ (n+ 3
2
)aκn

(a2+κ2)
n+3

2

26 rn exp(−ar2) >−1 κn

(2a)n+1 exp(−κ2

4a
)

27 ra−1 >−1
2aΓ [ 1

2
(a+n+1)]

κa+1Γ [ 1
2
(1−a+n)]

28 rn(a2 − r2)m−n−1

×H(a− r)

>−1 2m−n−1Γ (m− n)amκn−mJm(aκ)

29 rm exp(−r2/a2) >−1 κnam+n+2

2n+1Γ (n+1)
Γ (1 + m

2
+ n

2
)

× 1F1(1+
m
2
+ n

2
; n+1; − 1

4
a2κ2)
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f(r) Order n f̃n(κ) =
∫∞
0

rJn(κr)f(r) dr

30 1
r
Jn+1(ar) >−1 κna−(n+1)H(a− κ), a > 0

31 rn(a2 − r2)mH(a− r),
m > −1

>−1 2manΓ (m+ 1)( a
κ
)m+1

× Jn+m+1(aκ)

32 1
r2
Jn(ar) > 1

2

{
1
2n

(κ
a
)n if 0 < κ ≤ a,

1
2n

( a
κ
)n if a < κ < ∞

33 rn

(a2+r2)m+1 , a > 0 >−1 (κ
2
)m an−m

Γ (m+1)
Kn−m(aκ)

34 exp(−p2r2)Jn(ar) >−1 (2p2)−1 exp(−a2+κ2

4p2
)In(

aκ
2p2

)

35 1
r
exp(−ar) >−1 ((κ2+a2)

1
2 −a)n

κn(κ2+a2)
1
2

36 rn

(r2+a2)n+1 >−1 (κ
2
)n K0(aκ)

Γ (n+1)

37 rn

(a2−r2)
n+1

2
H(a− r) <1 1√

π
(κ
2
)nΓ ( 1

2
− n)( sin aκ

κ
)

38 r−1 exp(−ar2) 1 1
κ
[1− exp(−κ2

4a
)]

39 r−1 sin(ar2), a > 0 1 1
κ
sin(κ

2

4a
)

40 r−1 cos(ar2), a > 0 1 1− cos(κ
2

4a
)

41 exp(−ar), a > 0 >−1
(a+n

√
κ2+a2)

(κ2+a2)3/2
( κ

a+
√

a2+κ2
)n

42 exp(−ar2)J0(br) 0 a
2
exp(−κ2−b2

4a
)I0(

bκ
2a
)

43 H(a−r)√
a2−r2

0
√

aπ
2κ

J 1
2
(aκ), a > 0

44 rnH(a−r)√
a2−r2

>−1
√

π
2κ

an+ 1
2 Jn+1(aκ), a > 0

45 r−2 sin r 0 sin−1( 1
κ
), κ > 1

46 exp(−ar2) 0 1
2a

exp(−κ2

4a
)

47 r exp(−ar2) 0 κ
4a2 exp(−κ2

4a
)
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f(r) Order n f̃n(κ) =
∫∞
0

rJn(κr)f(r) dr

48 If a = σ + iω in 46,

f(r) = e−σr2 cos(ωr2)

0 2Ω exp(−σΩκ2)
×{σ cos(ωΩκ2)+ω sin(ωΩκ2)},
where Ω = [4(σ2 + ω2)]−1

49 f(r) = e−σr2 sin(ωr2) 0 2Ω exp(−σΩκ2)
×{−ω cos(ωΩκ2)
+σ sin(ωΩκ2)},
where Ω = [4(σ2 + ω2)]−1

50 δ(ar − b) = 1
a
δ(r − b

a
),

a > 0
>−1 b

a2 Jn(
bκ
a
), a > 0

51 δ(m)(ar − b), a > 0 > −1 (−1)mκm−1

a2

× [ b
a
J
(m)
n ( bκ

a
) +mJ

(m−1)
n ( bκ

a
)]

52 rn

(r2+a2)m+1 >−1 (κ
2
)m an−m

Γ (m+1)
Kn−m(aκ)

53 rm−nJm(ar) >−1 am2m−n+1(κ2−a2)n−m−1

κnΓ (n−m)
, κ > a

13.6 Finite Hankel Transforms

f(r) Order n f̃n(ki) =
∫ a

0
rJn(rki)f(r) dr

1 c, where c is a constant 0 (ac
ki
)J1(aki)

2 (a2 − r2) 0 4a
k3
i
J1(aki)

3 (a2 − r2)−
1
2 0 k−1

i sin(aki)

4 J0(αr)
J0(αa)

0 − aki

(α2−k2
i )
J1(aki)

5 1
r

1 k−1
i {1− J0(aki)}

6 r−1(a2 − r2)−
1
2 1 (1−cos aki)

(aki)

7 rn >−1 an+1

ki
Jn+1(aki)

8 Jν (αr)
Jν (αa)

>−1 aki

(α2−k2
i )
J ′
ν(aki)
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f(r) Order n f̃n(ki) =
∫ a

0
rJn(rki)f(r) dr

9 r−n(a2 − r2)−
1
2 >−1 π

2
{Jn

2
(aki

2
)}2

10 rn(a2 − r2)−(n+ 1
2
) < 1

2

Γ ( 1
2
−n)√

π2n
kn−1
i sin(aki)

11 rn−1(a2 − r2)n− 1
2 >− 1

2

√
π
2
Γ (n+ 1

2
)( 2

ki
)na2nJ2

n(
aki
2
)



A

Some Special Functions and Their Properties

The main purpose of this appendix is to introduce several special functions and to
state their basic properties that are most frequently used in the theory and applica-
tions of ordinary and partial differential equations. The subject is, of course, too vast
to be treated adequately in so short a space, so that only the more important results
will be stated. For a fuller discussion of these topics and of further properties of these
functions the reader is referred to the standard treatises on the subject.

A-1 Gamma, Beta, and Error Functions

The gamma function (also called the factorial function) is defined by a definite inte-
gral in which a variable appears as a parameter

Γ (x) =

∫ ∞

0

e−ttx−1 dt, x > 0. (A-1.1)

The integral (A-1.1) is uniformly convergent for all x in [a, b] where 0 < a ≤
b < ∞, and hence, Γ (x) is a continuous function for all x > 0.

Integrating (A-1.1) by parts, we obtain the fundamental property of Γ (x)

Γ (x) =
[
−e−ttx−1

]∞
0

+ (x− 1)

∫ ∞

0

e−ttx−2 dt

= (x− 1)Γ (x− 1) for x− 1 > 0.

Then we replace x by x+ 1 to obtain the fundamental result

Γ (x+ 1) = x Γ (x). (A-1.2)

In particular, when x = n is a positive integer, we make repeated use of (A-1.2)
to obtain

Γ (n+ 1) = nΓ (n) = n(n− 1)Γ (n− 1) = · · ·
= n(n− 1)(n− 2) · · · 3 · 2 · 1Γ (1) = n!, (A-1.3)

where Γ (1) = 1.

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers,
DOI 10.1007/978-0-8176-8265-1, c© Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-8176-8265-1
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We put t = u2 in (A-1.1) to obtain

Γ (x) = 2

∫ ∞

0

exp
(
−u2

)
u2x−1 du, x > 0. (A-1.4)

Letting x = 1
2 , we find

Γ

(
1

2

)
= 2

∫ ∞

0

exp
(
−u2

)
du = 2

√
π

2
=

√
π. (A-1.5)

Using (A-1.2), we deduce

Γ

(
3

2

)
=

1

2
Γ

(
1

2

)
=

√
π

2
. (A-1.6)

Similarly, we can obtain the values of Γ (52 ), Γ (
7
2 ), . . . , Γ (

2n+1
2 ).

The gamma function can also be defined for negative values of x by the rewritten
form of (A-1.2) as

Γ (x) =
Γ (x+ 1)

x
, x �= 0,−1,−2, . . . . (A-1.7)

For example,

Γ

(
−1

2

)
=

Γ ( 12 )

−1
2

= −2 Γ

(
1

2

)
= −2

√
π, (A-1.8)

Γ

(
−3

2

)
=

Γ (−1
2 )

−3
2

=
4

3

√
π. (A-1.9)

We differentiate (A-1.1) with respect to x to obtain

d

dx
Γ (x) = Γ ′(x) =

∫ ∞

0

d

dx

(
tx
)e−t

t
dt

=

∫ ∞

0

d

dx

[
exp(x log t)

]e−t

t
dt =

∫ ∞

0

tx−1(log t)e−t dt. (A-1.10)

At x = 1, this gives

Γ ′(1) =

∫ ∞

0

e−t log t dt = −γ, (A-1.11)

where γ is called the Euler constant and has the value 0.5772.
The graph of the gamma function is shown in Figure A.1.
The volume, Vn, and the surface area, Sn, of a sphere of radius r in n-dimensional

space R
n are given by

Vn =
{Γ ( 12 )}nrn

Γ (n2 + 1)
, Sn =

2{Γ ( 12 )}nrn−1

Γ (n2 )
.

Thus, dVn

dr = Sn.



A-1 Gamma, Beta, and Error Functions 691

Fig. A.1 The gamma function.

In particular, when n = 2, 3, . . . , we get V2 = πr2, S2 = 2πr; V3 = 4
3πr

3,
S3 = 4πr2; etc.

Using (A-1.2) and (A-1.5), we obtain the following results:

V2m =
πmr2m

m!
, S2m =

2πmr2m−1

(m− 1)!
,

V2m+1 =
2(2π)mr2m+1

1.3.5 · · · (2m+ 1)
, S2m+1 =

22m+1m!πmr2m

(2m)!
.

Legendre Duplication Formula

Several useful properties of the gamma function are recorded below for reference
without proof. We begin with

22x−1Γ (x)Γ

(
x+

1

2

)
=

√
πΓ (2x). (A-1.12)

In particular, when x = n (n = 0, 1, 2, . . .),

Γ

(
n+

1

2

)
=

√
π (2n)!

22n n!
. (A-1.13)

The following properties also hold for Γ (x):

Γ (x)Γ (1− x) = π cosecπx, x is a noninteger, (A-1.14)

Γ (x) = px
∫ ∞

0

exp(−pt) tx−1 dt, (A-1.15)

Γ (x) =

∫ ∞

−∞
exp

(
xt− et

)
dt. (A-1.16)
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Γ (x+ 1) ∼
√
2π exp(−x)xx+ 1

2 for large x, (A-1.17)

n! ∼
√
2π exp(−n)xn+ 1

2 for large n. (A-1.18)

The latter formulas are known as Stirling approximation of Γ (x+1) for large x and
of n! for large n.

The incomplete gamma function, γ(x, a), is defined by the integral

γ(a, x) =

∫ x

0

e−tta−1 dt, a > 0. (A-1.19)

The complementary incomplete gamma function, Γ (a, x), is defined by the integral

Γ (a, x) =

∫ ∞

x

e−t ta−1 dt, a > 0. (A-1.20)

Thus, it follows that
γ(a, x) + Γ (a, x) = Γ (a). (A-1.21)

The beta function, denoted by B(x, y), is defined by the integral

B(x, y) =

∫ t

0

tx−1(1− t)y−1 dt, x > 0, y > 0. (A-1.22)

The beta function B(x, y) is symmetric with respect to its arguments x and y,
that is,

B(x, y) = B(y, x). (A-1.23)

This follows from (A-1.22) by the change of variable 1− t = u, that is,

B(x, y) =

∫ 1

0

uy−1(1− u)x−1 du = B(y, x).

If we make the change of variable t = u/(1 + u) in (A-1.22), we obtain another
integral representation of the beta function

B(x, y) =

∫ ∞

0

ux−1(1 + u)−(x+y) du =

∫ ∞

0

uy−1(1 + u)−(x+y) du. (A-1.24)

Putting t = cos2 θ in (A-1.22), we derive

B(x, y) = 2

∫ π/2

0

cos2x−1 θ sin2y−1 θ dθ. (A-1.25)

Several important results are recorded below for ready reference without proof:

B(1, 1) = 1, B

(
1

2
,
1

2

)
= π, (A-1.26)

B(x, y) =

(
x− 1

x+ y − 1

)
B(x− 1, y), (A-1.27)
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Fig. A.2 The error function and the complementary error function.

B(x, y) =
Γ (x)Γ (y)

Γ (x+ y)
, (A-1.28)

B

(
1 + x

2
,
1− x

2

)
= π sec

(
πx

2

)
, 0 < x < 1. (A-1.29)

The error function, erf(x), is defined by the integral

erf(x) =
2√
π

∫ x

0

exp
(
−t2

)
dt, −∞ < x < ∞. (A-1.30)

Clearly, it follows from (A-1.30) that

erf(−x) = − erf(x), (A-1.31)
d

dx

[
erf(x)

]
=

2√
π
exp

(
−x2

)
, (A-1.32)

erf(0) = 0, erf(∞) = 1. (A-1.33)

The complementary error function, erfc(x), is defined by the integral

erfc(x) =
2√
π

∫ ∞

x

exp
(
−t2

)
dt. (A-1.34)

Clearly, it follows that

erfc(x) = 1− erf(x), (A-1.35)

erfc(0) = 1, erfc(∞) = 0. (A-1.36)

The graphs of erf(x) and erfc(x) are shown in Figure A.2.

erfc(x) ∼ 1

x
√
π
exp

(
−x2

)
for large x. (A-1.37)

Closely associated with the error function are the Fresnel integrals, which are
defined by
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Fig. A.3 The Fresnel integrals C(x) and S(x).

C(x) =

∫ x

0

cos

(
πt2

2

)
dt and S(x) =

∫ x

0

sin

(
πt2

2

)
dt. (A-1.38)

These integrals arise in diffraction problems in optics, in water waves, in elasticity,
and elsewhere.

Clearly, it follows from (A-1.38) that

C(0) = 0 = S(0), (A-1.39)

C(∞) = S(∞) =
π

2
, (A-1.40)

d

dx
C(x) = cos

(
πx2

2

)
,

d

dx
S(x) = sin

(
πx2

2

)
. (A-1.41)

It also follows from (A-1.38) that C(x) has extrema at the points where x2 =
(2n+1), n = 0, 1, 2, 3, . . . , and S(x) has extrema at the points where x2 = 2n, n =
1, 2, 3, . . . . The largest maxima occur first and are found to be C(1) = 0.7799 and
S(

√
2) = 0.7139. We also infer that both C(x) and S(x) are oscillatory about the

line y = 0.5. The graphs of C(x) and S(x) for non-negative real x are shown in
Figure A.3.

We prove further properties of the Gamma and the Beta functions. We first prove
that

∫ π/2

0

sin2p−1 x cos2q−1 x dx =
1

2
B(p, q). (A-1.42)

We put sin2 x = t so that the left hand side of the above integral becomes

1

2

∫ π/2

0

sin2p−2 x cos2q−2 x · 2 cosx sinx dx

=
1

2

∫ 1

0

tp−1(1− q)q−1 dt =
1

2
B(p, q). (A-1.43)

We next prove that
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Γ (2p)Γ

(
1

2

)
= 22p−1Γ (p)Γ

(
p+

1

2

)
. (A-1.44)

We have
∫ π/2

0

sin2p 2x dx =
1

2

∫ π

0

sin2p θ dθ = 2

∫ π/2

0

1

2
sin2p θ dθ, (2x = θ).

Putting q = 1
2 in (A-1.42) with x = 2θ gives

B

(
p+

1

2
,
1

2

)
= 2

∫ π/2

0

sin2p x dx = 2

∫ π/2

0

sin2p 2θ dθ

= 22p+1

∫ π/2

0

sin2p θ cos2p θ dθ

= 22pB

(
p+

1

2
, p+

1

2

)
,

which is, using (A-1.28) and (A-1.2),

Γ (p+ 1
2 )Γ (

1
2 )

Γ (p+ 1)
= 22p

Γ (p+ 1
2 )Γ (p+

1
2 )

Γ (2p+ 1)
= 22p

Γ (p+ 1
2 )Γ (p+

1
2 )

2pΓ (2p)
,

or equivalently,

Γ (2p)Γ

(
1

2

)
= 22p−1Γ (p)Γ

(
p+

1

2

)
.

We next define

f(n, t) =

{
(1− t

n )
ntx−1 if 0 ≤ t ≤ n,

0 if t ≥ n.
(A-1.45)

Using

lim
n→∞

(
1− x

n

)n

= e−x,

we obtain, for fixed t,

lim
n→∞

f(n, t) = lim
n→∞

(
1− t

n

)n

tx−1 = e−t tx−1. (A-1.46)

Hence, for x > 0,

Γ (x) =

∫ ∞

0

e−ttx−1 dt =

∫ ∞

0

lim
n→∞

f(n, t) dt

= lim
n→∞

∫ n

0

(
1− t

n

)n

tx−1 dt,
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which is, putting t
n = z,

= lim
n→∞

nx

∫ 1

0

(1− z)nzx−1 dz

= lim
n→∞

nx

{[
(1− z)n · z

x

x

]1
0

+ n

∫ 1

0

(1− z)n−1 z

x
dz

}

= lim
n→∞

nx ·
(
n

x

)∫ 1

0

(1− z)n−1zx dz

= lim
n→∞

nx n · (n− 1) · · · 1
x · (x+ 1) · · · (n+ x− 1)

∫ 1

0

zn+x−1 dz

= lim
n→∞

nx n!

x(x+ 1) · · · (x+ n)
. (A-1.47)

This is the celebrated Gauss formula.
We next prove that, for 0 < x < 1,

Γ (x)Γ (1− x) =
π

sinπx
. (A-1.48)

Since x and x − 1 are positive and not integers, we use the Gauss formula (A-1.47)
so that

Γ (x)Γ (1− x) = lim
n→∞

nxn!

x(x+ 1) · · · (x+ n)

n1−xn!

(1− x)(1− x+ 1) · · · (1− x+ n)

= lim
n→∞

1

x
· (n!)2n

(1 + x)(1− x) · · · (n+ x)(n− x)(n+ 1− x)

= lim
n→∞

1

x

(n!)2

(1− x2)(4− x2) · · · (n2 − x2)
· 1

{1 + 1−x
n }

=
1

x
lim
n→∞

1

(1− x2)(1− x2

22 ) · · · (1−
x2

n2 )

=
1

x
lim
n→∞

{ ∞∏
n=1

(
1− x2

n2

)}−1

,

which is, by the product formula for the sine function,

=
1

x
· xπ

sinπx
=

π

sinπx
.

Finally, we show that the (2n)th order moment of the standard normal probability
density function

1√
2π

exp

(
−x2

2

)
(A-1.49)

is
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E
(
X2n

)
=

2n√
π
Γ

(
n+

1

2

)
. (A-1.50)

We have

E
(
X2n

)
=

1√
2π

∫ ∞

∞
x2n exp

(
−x2

2

)
dx

=

√
2

π

∫ ∞

0

x2n exp

(
−x2

2

)
dx,

(
x2

2
= t

)

=

√
2

π

∫ ∞

0

(2t)n exp(−t)(2t)− 1
2 dt

=
1√
π
2n

∫ ∞

0

tn−
1
2 e−t dt =

1√
π
2nΓ

(
n+

1

2

)
.

Using Γ (x+ 1) = xΓ (x) and Γ (12 ) =
√
π, we obtain

E
(
X2n

)
= (2n− 1)(2n− 3) · · · 5 · 3 · 1. (A-1.51)

A random variable X with values in (0, 1) has the Beta distribution if its density
function is, for some p, q > 0,

f(x) =
1

B(p, q)
xp−1(1− x)q−1, 0 < x < 1; (A-1.52)

E
(
Xn

)
=

1

B(p, q)

∫ 1

0

xnxp−1(1− x)q−1 dx =
B(n+ p, q)

B(p, q)
. (A-1.53)

When n = 1,

E(X) =
B(p+ 1, q)

B(p, q)
=

p

p+ q
. (A-1.54)

A random variable with values in (0,∞) has the Gamma distribution if, for some
p > 0 and q > 0,

f(x) =
qp

Γ (p)
xp−1e−qx. (A-1.55)

A-2 Bessel and Airy Functions

The Bessel function of the first kind of order v (non-negative real number) is denoted
by Jv(x) and defined by

Jv(x) = xv
∞∑
r=0

(−1)rx2r

22r+vr! Γ (r + v + 1)
. (A-2.1)

This series is convergent for all x.
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The Bessel function y = Jv(x) satisfies the Bessel equation

x2y′′ + xy′ +
(
x2 − v2

)
y = 0. (A-2.2)

When v is not a positive integer or zero, Jv(x) and J−v(x) are two linearly
independent solutions so that

y = AJv(x) +BJ−v(x) (A-2.3)

is the general solution of (A-2.2), where A and B are arbitrary constants.
However, when v = n, where n is a positive integer or zero, Jn(x) and J−n(x)

are no longer independent, but are related by the equation

J−n(x) = (−1)nJn(x). (A-2.4)

Thus, when n is a positive integer or zero, equation (A-2.2) has only one solution
given by

Jn(x) =

∞∑
r=0

(−1)r

r!(n+ r)!

(
x

2

)n+2r

. (A-2.5)

A second solution, known as Neumann’s or Webber’s solution, Yn(x) is given by

Yn(x) = lim
v→n

Yv(x), (A-2.6)

where

Yv(x) =
(cos vπ)Jv(x)− J−v(x)

sin vπ
. (A-2.7)

Thus, the general solution of (A-2.2) is

y(x) = A Jn(x) +B Yn(x), (A-2.8)

where A and B are arbitrary constants.
In particular, from (A-2.5),

J0(x) =

∞∑
r=0

(−1)r

(r!)2

(
x

2

)2r

, (A-2.9)

J1(x) =

∞∑
r=0

(−1)r

r!(r + 1)!

(
x

2

)2r+1

. (A-2.10)

Clearly, it follows from (A-2.9) and (A-2.10) that

J ′
0(x) = −J1(x). (A-2.11)

Bessel’s equation may not always arise in the standard form given in (A-2.2), but
more frequently as

x2y′′ + xy′ +
(
k2x2 − v2

)
y = 0 (A-2.12)
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with the general solution

y(x) = AJv(kx) +BYv(kx). (A-2.13)

The recurrence relations are recorded below for easy reference without proof:

Jv+1(x) =

(
v

x

)
Jv(x)− J ′

v(x), (A-2.14)

Jv−1(x) =

(
v

x

)
Jv(x) + J ′

v(x), (A-2.15)

Jv−1(x) + Jv+1(x) =

(
2v

x

)
Jv(x), (A-2.16)

Jv−1(x) − Jv+1(x) = 2J ′
v(x). (A-2.17)

We have, from (A-2.5),

xnJn(x) =
∞∑
r=0

(−1)r2−(n+2r)

r!(n+ r)!
x2n+2r.

Differentiating both sides of this result with respect to x and using the fact that
2(n+ r)/(n+ r)! = 2/(n+ r − 1)!, it turns out that

d

dx

[
xnJn(x)

]
=

∞∑
r=0

(−1)r2−(n+2r+1)

r!(n+ r − 1)!
x2n+2r−1 = xnJn−1(x). (A-2.18)

Similarly, we can show

d

dx

[
x−nJn(x)

]
= −x−nJn+1(x). (A-2.19)

The generating function for the Bessel function is

exp

[
1

2
x

(
t− 1

t

)]
=

∞∑
n=−∞

tnJn(x). (A-2.20)

The integral representation of Jn(x) is

Jn(x) =
1

π

∫ π

0

cos(nθ − x sin θ) dθ. (A-2.21)

The following are known as the Lommel integrals:
∫ a

0

xJn(px)Jn(qx) dx

=
a

(q2 − p2)

[
p Jn(qa)J

′
n(pa)− q Jn(pa) J

′
n(qa)

]
, p �= q, (A-2.22)
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Fig. A.4 Graphs of y = J0(x), J1(x), and J2(x).

and ∫ a

0

xJ2
n(px) dx =

a2

2

[
J ′2
n (pa) +

(
1− n2

p2a2

)
J2
n(pa)

]
. (A-2.23)

When n = ±1
2 ,

J 1
2
(x) =

√
2

πx
sinx, J− 1

2
(x) =

√
2

πx
cosx. (A-2.24)

A rough idea of the shape of the Bessel functions when x is large may be obtained
from equation (A-2.2). Substitution of y = x−

1
2u(x) eliminates the first derivative,

and hence, gives the equation

u′′ +

(
1− 4n2 − 1

4x2

)
u = 0. (A-2.25)

For large x, this equation approximately becomes

u′′ + u = 0. (A-2.26)

This equation admits the solution u(x) = A cos(x+ ε), that is,

y =
A√
x
cos(x+ ε). (A-2.27)

This suggests that Jn(x) is oscillatory and has an infinite number of zeros. It also
tends to zero as x → ∞. The graphs of Jn(x) for n = 0, 1, 2 and for n = ±1

2 are
shown in Figures A.4 and A.5, respectively.

An important special case arises in particular physical problems when k2 = −1
in equation (A-2.12). we then have the modified Bessel equation

x2y′′ + xy′ −
(
x2 + v2

)
y = 0, (A-2.28)

with the general solution

y = AJv(ix) +BYv(ix). (A-2.29)
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Fig. A.5 Graphs of J 1
2
(x) and J− 1

2
(x).

Fig. A.6 Graphs of y = Y0(x), Y1(x), and Y2(x).

We now define a new function

Iv(x) = i−vJv(ix), (A-2.30)

and then use the series (A-2.1) for Jv(x) so that

Iv(x) = i−v
∞∑
r=0

(−1)r

r!Γ (r + v + 1)

(
ix

2

)v+2r

=

∞∑
r=0

1

r!Γ (r + v + 1)

(
x

2

)v+2r

.

(A-2.31)

Similarly, we can find the second solution, Kv(x), of the modified Bessel equation
(A-2.28). Usually, Iv(x) and Kv(x) are called modified Bessel functions and their
properties can be obtained in a similar way to those of Jv(x) and Yv(x). The graphs
of Y0(x), Y1(x), and Y2(x) are shown in Figure A.6.

We state a few important infinite integrals involving Bessel functions which arise
frequently in the application of Hankel transforms.

∫ ∞

0

exp(−at)Jv(bt)tv dt =
(2b)vΓ (v + 1

2 )√
π(a2 + b2)v+

1
2

, v > −1

2
, (A-2.32)

∫ ∞

0

exp(−at)Jv(bt)tv+1 dt =
2a(2b)vΓ (v + 3

2 )√
π(a2 + b2)v+

3
2

, v > −1, (A-2.33)
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Fig. A.7 The Airy function.

∫ ∞

0

exp
(
−a2t2

)
Jv(bt)t

v+1 dt =
bv

(2a2)v+1
exp

(
− b2

4a2

)
, v > −1,

(A-2.34)∫ ∞

0

exp
(
−a2t2

)
Jv(bt)Jv(ct)t dt =

1

2a2
exp

(
−b2 + c2

4a2

)
Iv

(
bc

2a2

)
,

v > −1, (A-2.35)∫ ∞

0

t2μ−v−1 Jv(t) dt =
22μ−v−1Γ (μ)

Γ (v − μ+ 1)
, 0 < μ <

1

2
, v > −1

2
.

(A-2.36)

The Airy function, y = Ai(x), is the first solution of the differential equation

y′′ − xy = 0. (A-2.37)

The second solution is denoted by Bi(x). Then these functions are expressed in terms
of the Bessel and modified Bessel functions in the form

Ai(x) =

√
x

3

[
I− 1

3

(
2

3
x3/2

)
− I 1

3

(
2

3
x3/2

)]
=

1

π

√
x

3
K 1

3
(ξ), (A-2.38)

Bi(x) =

√
x

3

[
I− 1

3

(
2

3
x3/2

)
+ I 1

3

(
2

3
x3/2

)]
=

√
x

3
Re

[
e

iπ
6 H 1

3
(−iξ)

]
,

(A-2.39)

where ξ = 2
3x

3/2. The integral representation of Ai(x) is

Ai(x) =
1

π

∫ ∞

0

cos

(
1

3
t3 + x t

)
dt. (A-2.40)

The graph of y = Ai(x) is shown in Figure A.7 using the values of Ai(x) at x = 0
and x → ∞:

Ai(0) =
1√
3
Bi(0) =

1

33/2Γ ( 23 )
= 0.355028,

[
Ai(x),Bi(x)

]
→ [0,∞] as x → ∞.



A-3 Legendre and Associated Legendre Functions 703

Similarly, the graph of y = Bi(x) can be drawn.
The integral representation of Bi(x) is

Bi(x) =
1

π

∫ ∞

0

[
exp

(
xt− t3

3

)
+ sin

(
xt+

t3

3

)]
dt. (A-2.41)

A slightly more general integral representation of Ai(ax) is

Ai(ax) =
1

πa

∫ ∞

0

cos

(
xt+

t3

3a3

)
dt. (A-2.42)

When a = 1, this reduces to (A-2.40).
The general power series solution of the Airy equation (A-2.37) is given by

y(x) = a0

[
1 +

x3

2 · 3 +
x6

2 · 3 · 5 · 6 + · · ·+ x3n

2 · 3 · · · (3n− 1)(3n)
+ · · ·

]

+ a1

[
x+

x4

3 · 4 +
x7

3 · 4 · 6 · 7 + · · ·+ x3n+1

3 · 4 · · · (3n)(3n+ 1)
+ · · ·

]

(A-2.43)

= a0

[
1 +

∞∑
n=1

x3n

3 · 4 · · · (3n− 4)(3n− 3)(3n− 1)(3n)

]

+ a1

[
x+

∞∑
n=1

x3n+1

3 · 4 · · · (3n− 3)(3n− 2)(3n)(3n+ 1)

]
, (A-2.44)

where a0 and a1 are arbitrary constants of integration.
Finally, the asymptotic representations of Ai(x) and Bi(x) are given by

Ai(x) ≈ 1

2
√
πx1/4

exp

(
−2

3
x3/2

)
as x → +∞, (A-2.45)

Bi(x) ≈ 1√
πx1/4

exp

(
3

2
x3/2

)
as x → ∞. (A-2.46)

A-3 Legendre and Associated Legendre Functions

The Legendre polynomials, Pn(x), are defined by the Rodrigues formula

Pn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
. (A-3.1)

The first seven Legendre polynomials are

P0(x) = 1,

P1(x) = x,
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P2(x) =
1

2

(
3x2 − 1

)
,

P3(x) =
1

2

(
5x3 − 3x

)
,

P4(x) =
1

8

(
35x4 − 30x2 + 3

)
,

P5(x) =
1

8

(
63x5 − 70x3 + 15x

)
,

P6(x) =
1

16

(
231x6 − 315x4 + 105x2 − 5

)
.

The generating function for the Legendre polynomials is

(
1− 2xt+ t2

)− 1
2 =

∞∑
n=0

tnPn(x). (A-3.2)

This function provides more information about the Legendre polynomials. For
example,

Pn(1) = 1, Pn(−1) = (−1)n, (A-3.3)

P2n(0) = (−1)n
1 · 3 · 5 · · · (2n− 1)

2nn!
= (−1)n

(2n− 1)!!

(2n)!!
, (A-3.4)

P2n+1(0) = 0, n = 0, 1, 2, . . . , (A-3.5)

Pn(−x) = (−1)nPn(x),
dn

dxn
Pn(x) =

(2n)!

2nn!
, (A-3.6)

where the double factorial is defined by

(2n− 1)!! = 1 · 3 · 5 · · · (2n− 1) and (2n)!! = 2 · 4 · 6 · · · (2n).

The graphs of the first four Legendre polynomials are shown in Figure A.8.
The recurrence relations for the Legendre polynomials are

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), (A-3.7)

P ′
n+1(x)− P ′

n−1(x) = (2n+ 1)Pn(x), (A-3.8)(
1− x2

)
P ′
n(x) = nPn−1(x)− nxPn(x), (A-3.9)(

1− x2
)
P ′
n(x) = (n+ 1)xPn(x)− (n+ 1)Pn+1(x). (A-3.10)

The Legendre polynomials, y = Pn(x), satisfy the Legendre differential equation
(
1− x2

)
y′′ − 2x y′ + n(n+ 1)y = 0. (A-3.11)

If n is not an integer, both solutions of (A-3.11) diverge at x = ±1.
The orthogonal relation is

∫ 1

−1

Pn(x)Pm(x) dx =
2

(2n+ 1)
δnm. (A-3.12)
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Fig. A.8 Graphs of y = P0(x), P1(x), P2(x), and P3(x).

The associated Legendre functions are defined by

Pm
n (x) =

(
1−x2

)m
2
dm

dxm
Pn(x) =

1

2nn!

(
1−x2

)m
2
dm+n

dxm+n

(
x2−1

)n
, (A-3.13)

where 0 ≤ m ≤ n.
Clearly, it follows that

P 0
n(x) = Pn(x), (A-3.14)

Pm
n (−x) = (−1)n+mPm

n (x), P−m
n (x) = (−1)m

(n−m)!

(n+m)!
Pm
n (x). (A-3.15)

The generating function for Pm
n (x) is

(2m)!(1− x2)
m
2

2mm!(1− 2tx+ t2)m+ 1
2

=

∞∑
r=0

Pm
r+m(x)tr. (A-3.16)

The recurrence relations are

(2n+ 1)xPm
n (x) = (n+m)Pm

n−1(x) + (n−m+ 1)Pm
n+1(x), (A-3.17)

2
(
1− x2

) 1
2
d

dx
Pm
n (x) = Pm+1

n (x)− (n+m)(n−m+ 1)Pm−1
n (x). (A-3.18)

The associated Legendre functions Pm
n (x) are solutions of the differential equation

(
1− x2

)
y′′ − 2xy′ +

[
n(n+ 1)− m2

(1− x2)

]
y = 0. (A-3.19)

This reduces to the Legendre equation when m = 0.
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Listed below are a few associated Legendre functions with x = cos θ:

P 1
1 (x) =

(
1− x2

) 1
2 = sin θ,

P 1
2 (x) = 3x

(
1− x2

) 1
2 = 3 cos θ sin θ,

P 2
2 (x) = 3

(
1− x2

)
= 3 sin2 θ,

P 1
3 (x) =

3

2

(
5x2 − 1

)(
1− x2

) 1
2 =

3

2

(
5 cos2 θ − 1

)
sin θ,

P 2
3 (x) = 15x

(
1− x2

)
= 15 cos θ sin2 θ,

P 3
3 (x) = 15

(
1− x2

)3/2
= 15 sin3 θ.

The orthogonal relations are

∫ 1

−1

Pm
n (x)Pm

t (x) dx =
2

(2�+ 1)
· (�+m)!

(�−m)!
δn�, (A-3.20)

∫ 1

−1

(
1− x2

)−1
Pm
n (x)P �

n(x) dx =
(n+m)!

m(n−m)!
δm�. (A-3.21)

A-4 Jacobi and Gegenbauer Polynomials

The Jacobi polynomials, P (α,β)
n (x), of degree n are defined by the Rodrigues for-

mula

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn
[
(1− x)α+n(1 + x)β+n

]
, (A-4.1)

where α > −1 and β > −1.
When α = β = 0, the Jacobi polynomials become Legendre polynomials, that

is,
Pn(x) = P (0,0)

n (x), n = 0, 1, 2, . . . . (A-4.2)

On the other hand, the associated Laguerre functions arise as the limit

Lα
n(x) = lim

β→∞
P (α,β)
n

(
1− 2x

β

)
. (A-4.3)

The recurrence relations for P (α,β)
n (x) are

2(n+ 1)(α+ β + n+ 1)(α+ β + 2n)P
(α,β)
n+1 (x)

= (α+ β + 2n+ 1)
[(
α2 − β2

)
+ x(α+ β + 2n+ 2)(α+ β + 2n)

]
P (α,β)
n (x)

− 2(α+ n)(β + n)(α+ β + 2n+ 2)P
(α,β)
n−1 (x), (A-4.4)

where n = 1, 2, 3, . . . , and
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P (α,β−1)
n (x)− P (α−1,β)

n (x) = P
(α,β)
n−1 (x). (A-4.5)

The generating function for Jacobi polynomials is

2(α+β)R−1(1− t+R)−α(1 + t+R)−β =

∞∑
n=0

P (α,β)
n (x)tn, (A-4.6)

where R = (1− 2xt+ t2)
1
2 .

The Jacobi polynomials, y = P
(α,β)
n (x), satisfy the differential equation

(
1− x2

)
y′′ +

[
(β − α)− (α+ β + 2)x

]
y′ + n(n+ α+ β + 1)y = 0. (A-4.7)

The orthogonal relation is

∫ 1

−1

(1− x)α(1 + x)βP (α,β)
n (x)P (α,β)

m (x) dx =

{
0 if n �= m,

δn if n = m,
(A-4.8)

where

δn =
2α+β+1Γ (n+ α+ 1)Γ (n+ β + 1)

n!(α+ β + 2n+ 1)Γ (α+ β + n+ 1)
. (A-4.9)

When α = β = v − 1
2 , the Jacobi polynomials reduce to the Gegenbauer polynomi-

als, Cv
n(x), which are defined by the Rodrigues formula

Cv
n(x) =

(−1)n

2nn!

(
1− x2

)v− 1
2
dn

dxn
[(
1− x2

)v+n− 1
2
]
. (A-4.10)

The generating function for Cv
n(x) of degree n is

(
1− 2x t+ t2

)−v
=

∞∑
n=0

Cv
n(x) t

n, |t| < 1, |x| ≤ 1, v > −1

2
. (A-4.11)

The recurrence relations are

(n+ 1)Cv
n+1(x)− 2(v + n)xCv

n(x) + (2v + n− 1)Cv
n−1(x) = 0, (A-4.12)

(n+ 1)Cv
n+1(x)− 2vCv+1

n (x) + 2vCv+1
n−1(x) = 0, (A-4.13)

d

dx

[
Cv

n(x)
]
= 2vCv+1

n+1(x). (A-4.14)

The differential equation satisfied by y = Cv
n(x) is

(
1− x2

)
y′′ − (2v + 1)xy′ + n(n+ 2v)y = 0. (A-4.15)

The orthogonal property is

∫ 1

−1

(
1− x2

)v− 1
2Cv

n(x)C
v
m(x) dx = δnδnm, (A-4.16)
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where

δn =
21−2vnΓ (n+ 2 v)

n!(n+ v)[Γ (v)]2
. (A-4.17)

When v = 1
2 , the Gegenbauer polynomials reduce to Legendre polynomials, that is,

C
1
2
n (x) = Pn(x). (A-4.18)

The Hermite polynomials can also be obtained from the Gegenbauer polynomials as
the limit

Hn(x) = n! lim
v→∞

v−n/2Cv
n

(
x√
v

)
. (A-4.19)

Finally, when α = β = 1
2 , the Gegenbauer polynomials reduce to the well-known

Chebyshev polynomials, Tn(x), which are defined by a solution of the second order
difference equation

un+2 − 2x un+1 + un = 0, |x| ≤ 1, (A-4.20)

u(0) = u0 and u(1) = u1. (A-4.21)

The generating function for Tn(x) is

(1− t2)

(1− 2x t+ t2)
= T0(x) + 2

∞∑
n=1

Tn(x)t
n, |x| ≤ 1, t < 1. (A-4.22)

The first seven Chebyshev polynomials of degree n of the first kind are

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x,

T6(x) = 32x6 − 48x4 + 18x2 − 1.

The graphs of the first four Chebyshev polynomials are shown in Figure A.9.
The Chebyshev polynomials y = Tn(x) satisfy the differential equation

(
1− x2

)
y′′ − xy′ + n2y = 0. (A-4.23)

It follows from (A-4.22) that Tn(x) satisfies the recurrence relations

Tn+1(x)− 2xTn(x) + Tn−1(x) = 0, (A-4.24)

Tn+m(x)− 2Tn(x)Tm(x) + Tn−m(x) = 0, (A-4.25)(
1− x2

)
T ′
n(x) + nxTn(x)− nTn−1(x) = 0. (A-4.26)
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Fig. A.9 Chebyshev polynomials y = Tn(x).

The parity relation for Tn(x) is

Tn(−x) = (−1)n Tn(x). (A-4.27)

The Rodrigues formula is

Tn(x) =

√
π(−1)n(1− x2)

1
2

2n(n− 1
2 )!

· dn

dxn
[(
1− x2

)n− 1
2
]
. (A-4.28)

The orthogonal relation for Tn(x) is

∫ 1

−1

(
1− x2

)− 1
2Tm(x)Tn(x) dx =

⎧⎪⎨
⎪⎩

0 if m �= n,
π
2 if m = n,

π if m = n = 0.

(A-4.29)

The Chebyshev polynomials of the second kind, Un(x), are defined by

Un(x) =
(
1− x2

)− 1
2 sin

[
(n+ 1) cos−1 x

]
, −1 ≤ x ≤ 1. (A-4.30)

The generating function for Un(x) is

(
1− 2x t+ t2

)−1
=

∞∑
n=0

Un(x)t
n, |x| < 1, |t| < 1. (A-4.31)

The first seven Chebyshev polynomials Un(x) are given by

U0(x) = 1,
U1(x) = 2x,
U2(x) = 4x2 − 1,
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U3(x) = 8x3 − 4x,

U4(x) = 16x4 − 12x2 + 1,

U5(x) = 32x5 − 32x3 + 6x,

U6(x) = 64x6 − 80x4 + 24x2 − 1.

The differential equation for y = Un(x) is
(
1− x2

)
y′′ − 3xy′ + n(n+ 2)y = 0. (A-4.32)

The recurrence relations are

Un+1(x)− 2xUn(x) + Un−1(x) = 0, (A-4.33)(
1− x2

)
U ′
n(x) + nxUn(x)− (n+ 1)Un−1(x) = 0. (A-4.34)

The parity relation is
Un(−x) = (−1)nUn(x). (A-4.35)

The Rodrigues formula is

Un(x) =

√
π(−1)n(n+ 1)

2n+1(n+ 1
2 )!(1− x2)

1
2

dn

dxn
[(
1− x2

)n+ 1
2
]
. (A-4.36)

The orthogonal relation for Un(x) is

∫ 1

−1

(
1− x2

) 1
2 Um(x)Un(x) dx =

π

2
δmn. (A-4.37)

A-5 Laguerre and Associated Laguerre Functions

The Laguerre polynomials Ln(x) are defined by the Rodrigues formula

Ln(x) = ex
dn

dxn
(
xn e−x

)
, (A-5.1)

where n = 0, 1, 2, 3, . . . .
The first seven Laguerre polynomials are

L0(x) = 1,

L1(x) = 1− x,

L2(x) = 2− 4x+ x2,

L3(x) = 6− 18x+ 9x2 − x3,

L4(x) = 24− 96x+ 72x2 − 16x3 + x4,

L5(x) = 120− 600x+ 600x2 − 200x3 + 25x4 − x5,

L6(x) = 720− 4320x+ 5400x2 − 2400x3 + 450x4 − 36x5 + x6.
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The generating function is

(1− t)−1 exp

(
x t

1− t

)
=

∞∑
n=0

tn Ln(x). (A-5.2)

In particular,
Ln(0) = 1. (A-5.3)

The orthogonal relation for the Laguerre polynomial is∫ ∞

0

e−xLm(x)Ln(x) dx = (n!)2δnm. (A-5.4)

The recurrence relations are

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x), (A-5.5)

xL′
n(x) = nLn(x)− nLn−1(x), (A-5.6)

L′
n(x) = L′

n−1(x)− Ln−1(x). (A-5.7)

The Laguerre polynomials, y = Ln(x), satisfy the Laguerre differential equation

xy′′ + (1− x)y′ + ny = 0. (A-5.8)

The associated Laguerre polynomials are defined by

Lm
n (x) =

dm

dxm
Ln(x) for n ≥ m. (A-5.9)

The generating function for Lm
n (x) is

(1− z)−(m+1) exp

(
− x z

1− z

)
=

∞∑
n=0

Lm
n (x)zn, |z| < 1. (A-5.10)

It follows from this that

Lm
n (0) =

(n+m)!

n!m!
. (A-5.11)

The associated Laguerre function satisfies the recurrence relation

(n+ 1)Lm
n+1(x) = (2n+m+ 1− x)Lm

n (x)− (n+m)Lm
n−1(x), (A-5.12)

x
d

dx
Lm
n (x) = nLm

n (x)− (n+m)Lm
n−1(x). (A-5.13)

The associated Laguerre function, y = Lm
n (x), satisfies the associated Laguerre

differential equation
xy′′ + (m+ 1− x)y′ + ny = 0. (A-5.14)

The Rodrigues formula for Lm
n (x) is

Lm
n (x) =

exx−m

n!

dn

dxn
(
e−xxn+m

)
. (A-5.15)

The orthogonal relation for Lm
n (x) is∫ ∞

0

e−xxmLm
n (x)Lm

l (x) dx =
(n+m)!

n!
δn l. (A-5.16)
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A-6 Hermite Polynomials and Weber–Hermite Functions

The Hermite polynomials Hn(x) are defined by the Rodrigues formula

Hn(x) = (−1)n exp
(
x2
) dn

dxn
[
exp

(
−x2

)]
, (A-6.1)

where n = 0, 1, 2, 3, . . . .
The first seven Hermite polynomials are

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12,

H5(x) = 32x5 − 16x3 + 120x,

H6(x) = 64x6 − 480x4 + 720x2 − 120.

The generating function is

exp
(
2xt− t2

)
=

∞∑
n=0

tn

n!
Hn(x). (A-6.2)

It follows from (A-6.2) that Hn(x) satisfies the parity relation

Hn(−x) = (−1)nHn(x). (A-6.3)

Also, it follows from (A-6.2) that

H2n+1(0) = 0, H2n(0) = (−1)n
(2n)!

n!
. (A-6.4)

The recurrence relations for Hermite polynomials are

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0, (A-6.5)

H ′
n(x) = 2xHn−1(x). (A-6.6)

The Hermite polynomials, y = Hn(x), are solutions of the Hermite differential equa-
tion

y′′ − 2xy′ + 2ny = 0. (A-6.7)

The orthogonal property of Hermite polynomials is
∫ ∞

−∞
exp

(
−x2

)
Hn(x)Hm(x) dx = 2nn!

√
πδmn. (A-6.8)

With repeated use of integration by parts, it follows from (A-6.1) that
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∫ ∞

−∞
exp

(
−x2

)
Hn(x)x

mdx = 0, m = 0, 1, . . . , (n− 1), (A-6.9)

∫ ∞

−∞
exp

(
−x2

)
Hn(x)x

n dx =
√
πn!. (A-6.10)

The Weber–Hermite function, or simply Hermite function,

y = hn(x) = exp

(
−x2

2

)
Hn(x) (A-6.11)

satisfies the Hermite differential equation

y′′ +
(
λ− x2

)
y = 0, x ∈ R, (A-6.12)

where λ = 2n+ 1. If λ �= 2n+ 1, then y is not finite as |x| → ∞.
The Hermite functions {hn(x)}∞0 form an orthogonal basis for the Hilbert space

L2(R) with weight function 1. They satisfy the following fundamental properties:

h′
n(x) + xhn(x)− 2nhn−1(x) = 0,

h′
n(x)− xhn(x) + hn+1(x) = 0,

h′′
n(x)− x2hn(x) + (2n+ 1)hx = 0,

F
{
hn(x)

}
= h̃n(k) = (−i)nhn(k).

The normalized Weber–Hermite functions are given by

ψn(x) = 2−n/2π− 1
4 (n!)−

1
2 exp

(
−x2

2

)
Hn(x). (A-6.13)

Physically, they represent quantum-mechanical oscillator wave functions. The graphs
of these functions are shown in Figure A.10.

A-7 Mittag-Leffler Function

Another important function that has widespread use in fractional calculus and frac-
tional differential equation is the Mittag-Leffler function. The Mittag-Leffler function
is an entire function defined by the series

Eα(z) =

∞∑
n=0

zn

Γ (αn+ 1)
, α > 0. (A-7.1)

The graph of the Mittag-Leffler function is shown in Figure A.11.
The generalized Mittag-Leffler function, Eα,β(z), is defined by

Eα,β(z) =

∞∑
n=0

zn

Γ (αn+ β)
, α, β > 0. (A-7.2)
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Fig. A.10 The normalized Weber–Hermite functions.

Fig. A.11 Graph of the Mittag-Leffler function Eα(x).

Also the inverse Laplace transform yields

L−1

{
m!sα−β

(sα+̄a)m+1

}
= tαm+β−1E

(m)
α,β

(
±atα

)
, (A-7.3)

where

E
(m)
α,β (z) =

dm

dzm
Eα,β(z). (A-7.4)
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Obviously,

Eα,1(z) = Eα(z), E1,1(z) = E1(z) = ez. (A-7.5)

A-8 The Jacobi Elliptic Integrals and Elliptic Functions

The parametric equation of an ellipse is given by

x = a sin θ, y = b cos θ, (a > b), 0 ≤ θ ≤ φ. (A-8.1)

Using the arclength formula from calculus, the length of the elliptic arc (A-8.1) is

ds2 = dx2 + dy2 =
(
a2 cos2 θ + b2 sin2 θ

)
dθ2

= a2
(
1− a2 − b2

a2
sin2 θ

)
dθ2 = a2

(
1−m2 sin2 θ

)
dθ2, (A-8.2)

where e = m = (a
2−b2

a2 )
1
2 < 1 is the eccentricity of the ellipse.

Consequently, (A-8.2) gives the length of the elliptic arc

s =

∫ s

0

ds = a

∫ φ

0

√
1−m2 sin2 θ dθ. (A-8.3)

This integral cannot be evaluated in terms of elementary functions. Because of its
origin, it is called an elliptic integral. In general, there are three classes of elliptic
integrals, called elliptic integrals of the first, second and third kinds, and they defined
by

F (φ,m) =

∫ φ

0

dθ√
1−m2 sin2 θ

, (A-8.4)

E(φ,m) =

∫ φ

0

√
1−m2 sin2 θ dθ, (A-8.5)

Π(φ,m, n) =

∫ φ

0

dθ

(1 + n2 sin2 θ)
√

1−m2 sin2 θ
, (m �= n), (A-8.6)

where the parameter φ is called the amplitude, φ = am(F,m) so that am(0,m) = 0
and m (0 < m < 1) is called the modulus. When φ = π

2 , (A-8.4)–(A-8.6) are
referred to as complete elliptic integrals of the first, second and third kinds, and
they are denoted by special symbols: K(m) = F (π2 ,m), E(m) = E(π2 ,m) and
Π(m,n) = Π(π2 ,m, n).

Putting x = sin θ, 0 ≤ θ ≤ φ, the first, second and third elliptic integrals can be
written in equivalent forms as

F (φ,m) =

∫ sinφ

0

dx√
(1− x2)(1−m2x2)

, (A-8.7)
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E(φ,m) =

∫ sinφ

0

√
1−m2x2√
1− x2

dx, (A-8.8)

Π(φ,m, n) =

∫ sinφ

0

dx

(1 + n2x2)
√
(1− x2)(1−m2x2)

. (A-8.9)

Using (A-8.7)–(A-8.9), the Jacobi elliptic functions, sn(u,m), cn(u,m) and
dn(u,m), are defined by

sn(u,m) = sinφ, (A-8.10)

cn(u,m) = cosφ =
(
1− sn2 u

) 1
2 , (A-8.11)

dn(u,m) =
(
1−m2 sin2 φ

) 1
2 =

(
1−m2 sn2 u

) 1
2 (A-8.12)

so that

sn(−u) = − sn u, cn(−u) = cn u, dn(−u) = dn u, (A-8.13)

sn(0) = 0, and cn(0) = dn(0) = 1. (A-8.14)

The following limiting results also hold

lim
m→0

sn(u,m) = sinu, lim
m→0

cn(z,m) = cosu,

lim
m→0

dn(z,m) = 1,
(A-8.15)

lim
m→1

sn(u,m) = tanhu, lim
m→1

cn(u,m) = sechu,

lim
m→1

dn(u,m) = sechu.
(A-8.16)

Making reference to Dutta and Debnath (1965) without proof, we state the fol-
lowing basic properties of the Jacobi elliptic functions:

sn2 u+ cn2 u = 1, dn2 u+m2 sn2 u = 1, dn2 u−m2 cn2 u = 1−m2,

(A-8.17)
d

du
sn u = cn u dn u,

d

du
cn u = − sn u dn u, (A-8.18)

and

d

du
dn u = −m2 sn u cn u. (A-8.19)

Putting sn(u,m) = x in the first result in (A-8.18) gives the differential equation

dx

du
=
√(

1− x2
)(
1−m2x2

)
, (A-8.20)

so that it leads to the Legendre normal form for the sn-function

u =

∫ sn(u,m)

0

dx√
(1− x2)(1−m2x2)

. (A-8.21)
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Similarly, it follows from (A-8.18)–(A-8.19) that the Legendre normal forms for cn
and dn functions are

u =

∫ 1

cn(u,m)

dx√
(1− x2)(m′2 +m2x2)

, (A-8.22)

u =

∫ 1

dn(u,m)

dx√
(1− x2)(x2 −m′2)

, (A-8.23)

where m′ =
√
1−m2 is called the complementary modulus of the elliptic integral.

The complete elliptic integrals are then given by

K(m) = F

(
π

2
,m

)
= K ′(m′), E(m) = E

(
π

2
,m

)
= E′(m′). (A-8.24)

The limiting values of K(m) and E(m) are given as follows:

lim
m→0

K(m) = K(0) =
π

2
, lim

m→0
E(m) = E(0) =

π

2
, (A-8.25)

lim
m→1

K(m) = K(1) = ∞, lim
m→1

E(m) = E(1) = 1. (A-8.26)

Finally, the addition theorems for sn , cn , and dn functions are

sn(u+ v) =
sn u cn v dn v + sn v cn u dn u

(1−m2 sn2 u sn2 v)
, (A-8.27)

cn(u+ v) =
cn u cn v − sn u dn u sn v dn v

(1−m2 sn2 u sn2 v)
, (A-8.28)

dn(u+ v) =
dn u dn v −m2 sn u cn u sn v cn v

(1−m2 sn2 u sn2 v)
, (A-8.29)

where sn(u + 4K) = sn u, cn(u + 4K) = cn u, and dn(u + 2K) = dn u so
that sn and cn are periodic functions of period 4K, and dn is a periodic function of
period 2K.



B

Fourier Series, Generalized Functions, and Fourier
and Laplace Transforms

The main purpose of this appendix is to discuss Fourier series and generalized func-
tions, and to state their basic properties that are most frequently used in the theory and
applications of ordinary and partial differential equations. The subject is, of course,
too vast to be treated adequately in so short a space, so that only the more important
results will be stated. Included are basic properties of Fourier and Laplace transforms
which are used in finding solutions of ordinary and partial differential equations. For
a fuller discussion of these topics and of further properties of these functions the
reader is referred to the standard treatises on the subjects including Debnath and
Bhatta (2007).

B-1 Fourier Series and Its Basic Properties

If f(x) is a periodic function of period 2π defined in (−π, π), then f(x) can be
represented as an infinite series in terms of trigonometric functions in the form

f(x) =
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx). (B-1.1)

This is known as the Fourier Series. If we assume that the infinite series is term-by-
term integrable on (−π, π), then

∫ π

−π

f(x) dx =

∫ π

−π

[
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

]
dx = πa0

so that

a0 =
1

π

∫ π

−π

f(x) dx. (B-1.2)

Multiplying both sides of (B-1.1) by cosmx and integrating the resulting series from
−π to π gives

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers,
DOI 10.1007/978-0-8176-8265-1, c© Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-8176-8265-1
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∫ π

−π

f(x) cosmxdx

=

∫ π

−π

[
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

]
cosmxdx = πan, m = n.

Thus,

an =
1

π

∫ π

−π

f(x) cosnx dx. (B-1.3)

Similarly, multiplying (B-1.1) by sinmx and integrating over (−π, π) gives

bn =
1

π

∫ π

−π

f(x) sinnx dx. (B-1.4)

The Fourier coefficients an and bn given by (B-1.2)–(B-1.4) are known as the Euler–
Fourier formulas.

If f(x) is an even function of x defined on [−π, π], then

an =
1

π

∫ π

−π

f(x) cosnx dx

=
2

π

∫ π

0

f(x) cosnx dx, n = 0, 1, 2, . . . , (B-1.5)

bn =
1

π

∫ π

−π

f(x) sinnx dx = 0, n = 1, 2, 3, . . . . (B-1.6)

Hence, the Fourier series of an even function f(x) can be written as

f(x) =
1

2
a0 +

∞∑
n=1

an cosnx, (B-1.7)

where an are given by (B-1.5).
Similarly, if f(x) is an odd function of x on (−π, π), the Fourier series of an odd

function is given by

f(x) =

∞∑
n=1

bn sinnx, (B-1.8)

where an = 0 for all n, and bn are given by

bn =
1

π

∫ π

−π

f(x) sinnx dx

=
2

π

∫ π

0

f(x) sinnx dx, n = 1, 2, 3, . . . . (B-1.9)
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Fig. B.1 The function f(x) and its extension.

Fig. B.2 Graph of f(x) = x2 and its extension.

Example B-1.1. The Fourier series of f(x) (see Figure B.1)

f(x) =

{
0 if − π < x < 0,

x if 0 ≤ x < π

is given by (B-1.1), where

a0 =
1

π

∫ π

−π

f(x) dx =
1

π

∫ π

0

x dx =
π

2
,

an =
1

π

∫ π

−π

f(x) cosnx dx =
1

π

∫ π

0

x cosnx dx =
1

πn2

[
(−1)n − 1

]
,

bn =
1

π

∫ π

0

x sinnx dx = − 1

n
(−1)n.

Hence, the Fourier series of f(x) is

f(x) =
π

4
−

∞∑
n=1

[
2

π(2n− 1)2
cos(2n− 1)x+

(−1)n

n
sinnx

]
. (B-1.10)

Example B-1.2. The Fourier series of the (see Figure B.2) function

f(x) = x2, −π ≤ x ≤ π with f(x± 2nπ) = f(x), n = 1, 2, 3, . . . ,
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Fig. B.3 The triangular wave function and its extension.

is

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx. (B-1.11)

Since f(x) is even, bn = 0 for all n ≥ 1, it turns out that

a0 =
1

π

∫ π

−π

x2 dx =
2

π

∫ π

0

x2 dx =
2π2

3
,

an =
1

π

∫ π

−π

x2 cosnx dx =
2

π

∫ π

0

x2 cosnx dx

=
4

n2
(−1)n, n ≥ 1.

Example B-1.3. The triangular wave function (see Figure B.3)

f(x) = |x| =
{
−x if − π ≤ x < 0,

x if 0 ≤ x < π,

with f(x± 2πn) = f(x) has the Fourier cosine series representation

f(x) =
π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos(2n− 1)x. (B-1.12)

In this case, f(x) is even, thus, bn = 0 for all n ≥ 1, and

a0 =
1

π

∫ π

−π

|x| dx =
2

π

∫ π

0

x dx = π,

an =
1

π

∫ π

−π

|x| cosnx dx =
2

π

∫ π

0

x cosnx dx

=
2

πn2

[
(−1)n − 1

]
,

and so

an =

{
0 if n is even,

− 4
πn2 if n is odd.
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Fig. B.4 The sawtooth wave function.

Example B-1.4. The sawtooth wave function (see Figure B.4)

f(x) = x, −π < x < π,

with f(x) = f(x± 2nπ), n = 1, 2, 3, . . . , has the Fourier sine series expansion

f(x) = 2

∞∑
n=1

(−1)n+1 sinnx

n
. (B-1.13)

In this case, f(x) is odd and hence, an = 0 for all n ≥ 0, and

bn =
1

π

∫ π

−π

x sinnx dx =
2

π

∫ π

0

x sinnx dx =
2

n
(−1)n+1.

Example B-1.5. The Fourier series representation of the square wave function (see
Figure B.5) defined by

f(x) = sgn(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 0 < x ≤ π,

0 if x = 0,

−1 if − π ≤ x < 0

is given by

f(x) =
4

π

∞∑
n=1

1

(2n− 1)
sin(2n− 1)x. (B-1.14)

Obviously, f(x) is odd, and hence, an = 0 for all n ≥ 0, and bn is given by

bn =
1

π

∫ π

−π

sgnx sinnx dx =
2

π

∫ π

0

sinnx dx

=
2

π

[
1− (−1)n

n

]
=

{
0 if n is even,
4
nπ if n is odd.
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Fig. B.5 The square wave function and its extension.

Fig. B.6 The triangular wave function and its extension.

Example B-1.6. The triangular wave function (see Figure B.6) f(x) on [−π, π] is
given by

f(x) =

{
π + x if − π ≤ x ≤ 0,

π − x if 0 ≤ x ≤ π.

Since f(x) is even, bn = 0 for n ≥ 1, and

a0 =
1

π

∫ π

−π

f(x) dx =
2

π

∫ π

0

(π − x) dx = π,

an =
2

π

∫ π

0

(π − x) cosnx dx =
2

π

[
1

n2

(
1− (−1)n

)]

=
2

πn2
·
{
0 if n is even,

2 if n is odd.

Thus, the Fourier series for f(x) is

f(x) =
a0
2

+

∞∑
n=1

an cosnx

=
π

2
+

4

π

∞∑
n=1

1

(2n− 1)2
cos(2n− 1)x. (B-1.15)
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If f(x) is a periodic function of period 2l and is defined on [−l, l], then the
Fourier representation of f(x) is

f(x) =
a0
2

+

∞∑
n=1

[
an cos

(
nπx

l

)
+ bn sin

(
nπx

l

)]
, (B-1.16)

where a0, an, and bn are given by the Euler–Fourier formulas:

a0 =
1

l

∫ l

−l

f(x) dx, (B-1.17)

an =
1

l

∫ l

−l

f(x) cos

(
nπx

l

)
dx, (B-1.18)

bn =
1

l

∫ l

−l

f(x) sin

(
nπx

l

)
dx. (B-1.19)

If f(x) is an even function of period 2l defined on [−l, l], then

f(x) =
a0
2

+

∞∑
n=1

an cos

(
nπx

l

)
, (B-1.20)

where bn = 0, n ≥ 1, and

an =
2

l

∫ l

0

f(x) cos

(
nπx

l

)
dx, n = 0, 1, 2, . . . . (B-1.21)

If f(x) is an odd function of period 2l, then

f(x) =
∞∑

n=1

bn sin

(
nπx

l

)
, (B-1.22)

where an = 0, n ≥ 0, and

bn =
2

l

∫ l

0

f(x) sin

(
nπx

l

)
dx. (B-1.23)

The functions f(x) in all Examples B-1.1–B-1.6 can be defined on [−l, l] and
the corresponding Fourier series can be obtained directly by calculating Fourier co-
efficients an and bn, or by using the transformation x = πt

l . In Example B-1.1, the
Fourier series on [−l, l] is

f(x) =
l

4
− l

π

∞∑
n=1

[
2

π(2n− 1)2
cos

(2n− 1)πx

l
+

(−1)n

n
sin

(
nπx

l

)]
.

(B-1.24)

In Example B-1.2, the Fourier series on [−l, l] is given by
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f(x) =
l2

3
+

4l2

π2

∞∑
n=1

(−1)n

n2
cos

(
nπx

l

)
. (B-1.25)

In Example B-1.3, the Fourier series on [−l, l] is

f(x) =
l

2
−
(
4l

π2

) ∞∑
n=1

1

(2n− 1)2
cos

{
(2n− 1)

xπ

l

}
. (B-1.26)

When l = π, this reduces to (B-1.12).
In Example B-1.4, the Fourier series on [−l, l] is

f(x) =
2l

π

∞∑
n=1

(−1)n+1

n
sin

(
nπx

l

)
. (B-1.27)

In Example B-1.5, the Fourier series of sgn(x) on [−l, l] is

sgn(x) =
4

π

∞∑
n=1

1

(2n− 1)
sin

{
(2n− 1)

xπ

l

}
. (B-1.28)

In Example B-1.6, the Fourier series on [−l, l] is

f(x) =
l

2
+

4l

π2

∞∑
n=1

1

(2n− 1)2
cos(2n− 1)

πx

l
. (B-1.29)

It is sometimes convenient to represent a function f(x) by a Fourier series in
complex form. This expansion can easily be derived from the Fourier series (B-1.1),
that is,

f(x) =
a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx)

=
a0
2

+

∞∑
n=1

[
1

2
an
(
einx + e−inx

)
+

bn
2i

(
einx − e−inx

)]

=
a0
2

+

∞∑
n=1

[
1

2
(an − ibn)e

inx +
1

2
(an + ibn)e

−inx

]

= c0 +

∞∑
n=1

(
cne

inx + c−ne
−inx

)
=

∞∑
n=−∞

cne
inx,

where

c0 =
a0
2

=
1

2π

∫ π

−π

f(x) dx,

cn =
1

2
(an − ibn) =

1

2π

∫ π

−π

f(x)(cosnx− i sinnx) dx

=
1

2π

∫ π

−π

f(x)e−inx dx,
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c−n =
1

2
(an + ibn) =

1

2π

∫ π

−π

f(x)(cosnx+ i sinnx) dx

=
1

2π

∫ π

−π

f(x)einx dx = cn.

Thus, we obtain the Fourier series of f(x) in complex form

f(x) =

∞∑
n=−∞

cne
inx, −π < x < π, (B-1.30)

where the Fourier coefficients cn are given by

cn =
1

2π

∫ π

−π

f(x)e−inx dx. (B-1.31)

Multiplying (B-1.30) by 1
2πf(x) and integrating from −π to π gives

1

2π

∫ π

−π

f2(x) dx =

∞∑
n=−∞

cn
1

2π

∫ π

−π

f(x)einx dx

=

∞∑
n=−∞

cn · c−n

=

∞∑
n=−∞

cncn =

∞∑
n=−∞

|cn|2. (B-1.32)

Thus, (B-1.32) is known as the Parseval formula for a complex Fourier series.
We next consider the nth partial sum

sn(x) =
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx), (B-1.33)

of the Fourier series for f(x) in (B-1.1) defined on [−π, π]. If
∫ π

−π
f2(x) dx exists

and is finite, then

0 ≤
∫ π

−π

[
f(x)− sn(x)

]2
dx

=

∫ π

−π

f2(x) dx− 2

∫ π

−π

f(x)sn(x) dx+

∫ π

−π

s2n(x) dx. (B-1.34)

It follows from the definition of the Fourier coefficients (B-1.2)–(B-1.4) and the
orthogonality of the cosine and sine functions that

∫ π

−π

f(x)sn(x) dx =

∫ π

−π

f(x)

[
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)

]
dx

=
πa20
2

+ π

n∑
k=1

(
a2k + b2k

)
.
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Similarly, it turns out that

∫ π

−π

s2n(x) dx =

∫ π

−π

[
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)

]2

dx

=

∫ π

−π

a20
4
dx+

n∑
k=1

[
a2k

∫ π

−π

cos2 kx dx+ b2k

∫ π

−π

sin2 kx dx

]

=
πa20
2

+ π

n∑
k=1

(
a2k + b2k

)
.

Consequently, (B-1.34) reduces to

0 ≤
∫ π

−π

[
f(x)− sn(x)

]2
dx

=

∫ π

−π

f2(x) dx−
[
πa20
2

+ π

n∑
k=1

(
a2k + b2k

)]
. (B-1.35)

This leads to the inequality

a20
2

+

n∑
k=1

(
a2k + b2k

)
≤ 1

π

∫ π

−π

f2(x) dx, (B-1.36)

and since the right-hand side of (B-1.36) is independent of n, it follows in the limit
as n → ∞ that

a20
2

+
∞∑
k=1

(
a2k + b2k

)
≤ 1

π

∫ π

−π

f2(x) dx. (B-1.37)

This is known as the Bessel inequality for a Fourier series.
Since the left-hand side of (B-1.36) is non-decreasing and is bounded above, the

series

a20
2

+

∞∑
k=1

(
a2k + b2k

)
(B-1.38)

converges. Thus, the necessary condition for the convergence of the series (B-1.38)
is that

lim
k→∞

ak = 0 and lim
k→∞

bk = 0. (B-1.39)

That is,

lim
k→∞

∫ π

−π

f(x) cos kx dx = 0, lim
k→∞

∫ π

−π

f(x) sin kx dx = 0. (B-1.40)

These results are known as the Riemann–Lebesgue Lemma.
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The Fourier series is said to converge in the mean to f(x) when

lim
n→∞

∫ π

−π

[
f(x)− sn(x)

]2
dx = 0. (B-1.41)

If the Fourier series converges in the mean to f(x), then

a20
2

+

∞∑
n=1

(
a2n + b2n

)
=

1

π

∫ π

−π

f2(x) dx. (B-1.42)

This is called Parseval’s relation, and it is one of the fundamental results in the
theory of Fourier series. This relation can formally be derived from the convergence
of the Fourier series to f(x) on [−π, π]. In other words, if

f(x) =
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx), (B-1.43)

where a0, an, and bn are given by (B-1.2)–(B-1.4), we multiply by (B-1.43) by
1
πf(x) and integrate the resulting expression from −π to π to obtain

1

π

∫ π

−π

f2(x) dx

=
a0
2π

∫ π

−π

f(x) dx

+

∞∑
n=1

[
1

π
an

∫ π

−π

f(x) cosnx dx+
1

π
bn

∫ π

−π

f(x) sinnx dx

]
. (B-1.44)

Replacing all integrals on the right hand side of (B-1.44) by the Fourier coefficients
gives the Parseval relation (B-1.42).

If two (2π)-periodic integrable functions f(x) and g(x) defined on [−π, π] have
the Fourier series expansions

f(x) =
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx), (B-1.45)

g(x) =
1

2
α0 +

∞∑
n=1

(αn cosnx+ βn sinnx), (B-1.46)

where a0, an, and bn are given by (B-1.1)–(B-1.3), and α0, αn, and βn are given
by results similar to those of (B-1.1)–(B-1.3), then the following Parseval’s relations
hold

1

π

∫ π

−π

[
f(x) + g(x)

]2
dx =

1

2
(a0 + α0)

2 +

∞∑
n=1

[
(an + αn)

2 + (bn + βn)
2
]
,

(B-1.47)
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1

π

∫ π

−π

[
f(x)− g(x)

]2
dx =

1

2
(a0 − α0)

2 +

∞∑
n=1

[
(an − αn)

2 + (bn − βn)
2
]
.

(B-1.48)

Subtracting (B-1.48) from (B-1.47) yields

1

π

∫ π

−π

f(x)g(x) dx =
1

2
a0α0 +

∞∑
n=1

(anαn + bnβn). (B-1.49)

This is a general Parseval relation for the product function f(x)g(x). When f = g,
(B-1.49) reduces to (B-1.42).

In the context of the complex Fourier series expansion (B-1.30) of a (2π)-
periodic function f(x), we can replace the Fourier coefficient cn by f̂(n) so that

cn = f̂(n) =
1

2π

∫ π

−π

e−inxf(x) dx. (B-1.50)

The concept of convolution of two (2π)-periodic integrable functions f and g on
R arises naturally, so that we define their convolution (f ∗ g)(x) on [−π, π] by

(f ∗ g)(x) = 1

2π

∫ π

−π

f(x− t)g(t) dt. (B-1.51)

Physically, the convolution (f ∗ g)(x) represents an integral output of the two func-
tions f and g in contrast to the ordinary pointwise product (output) f(x)g(x).
Clearly, the convolution is commutative, that is,

(f ∗ g)(x) = 1

2π

∫ π

−π

f(ξ)g(x− ξ) dξ = (g ∗ f)(x). (B-1.52)

Another interpretation of a convolution is that it represents an average (or mean)
value. In particular, if g = 1 in (B-1.52), then f ∗ g is constant and is equal to

(f ∗ 1)(x) = 1

2π

∫ π

−π

f(ξ) dξ. (B-1.53)

This means that (f ∗ 1)(x) represents the average value of f(x) on [−π, π].
In addition to commutativity, the convolution satisfies the following algebraic

and analytic properties for any constant α and β:

f ∗ (αg + βh) = α(f ∗ g) + β(f ∗ h) (Distributive), (B-1.54)

(f ∗ g) ∗ h = f ∗ (g ∗ h) (Associative), (B-1.55)

(f ∗ g)(x) is continuous (Continuity), (B-1.56)

f̂ ∗ g(n) = f̂(n)ĝ(n) (Convolution). (B-1.57)
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To prove (B-1.57), we use the definition

f̂ ∗ g(n) = 1

2π

∫ π

−π

(f ∗ g)(x)e−inx dx

=
1

2π

∫ π

−π

e−inx

[
1

2π

∫ π

−π

f(t)g(x− t) dt

]
dx

=
1

2π

∫ π

−π

e−intf(t)

[
1

2π

∫ π

−π

e−in(x−t)g(x− t) dx

]
dt, x− t = s

=
1

2π

∫ π

−π

e−intf(t) dt

[
1

2π

∫ π

−π

g(s)e−ins ds

]

= f̂(n)ĝ(n).

The nth partial sum of a complex Fourier series (B-1.30) is

sn(x) =

n∑
k=−n

cke
ikx =

n∑
k=−n

eikx
[
1

2π

∫ π

−π

f(t)e−ikt dt

]

=
1

2π

∫ π

−π

f(t)

[
n∑

k=−n

eik(x−t)

]
dt

=
1

2π

∫ π

−π

f(t)Dn(x− t) dt, (B-1.58)

= Dn(x) ∗ f(x), (B-1.59)

where Dn(x) is called the Dirichlet kernel defined by

Dn(x) =

n∑
k=−n

eikx = 1 +

n∑
k=1

(
eikx + e−ikx

)

= 1 +

n∑
k=1

2 cos kx. (B-1.60)

We next make the following observations regarding the genesis of the convolution in
the theory of Fourier. The convolution (Dn∗f)(x) arises in the nth partial sum sn(x)
of the Fourier series of f(x). Thus, the problem of understanding sn(x) reduces to
that of (Dn ∗ f)(x).

It follows from (B-1.60) that

1

2
Dn(x) sin

x

2
=

1

2
sin

x

2
+ sin

x

2
(cosx+ cos 2x+ · · ·+ cosnx)

=
1

2
sin

x

2
+

1

2

[(
sin

3x

2
− sin

x

2

)
+

(
sin

5x

2
− sin

3x

2

)

+ · · ·+
(
sin

(
n+

1

2

)
x− sin

(
n− 1

2

)
x

)]

=
1

2
sin

(
n+

1

2

)
x.
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Fig. B.7 Graph of Dn(x = θ) against (x = θ).

Thus, the exact form of the Dirichlet kernel is

Dn(x) =
sin(n+ 1

2 )x

sin x
2

. (B-1.61)

This reveals that the denominator of the Dirichlet kernel Dn(x) vanishes at the
points x = 2πmwhich are removable points of discontinuity. Furthermore, it follows
from (B-1.60) that Dn(x) is an even function with period 2π and satisfies

∫ π

−π

Dn(x) dx = 2π. (B-1.62)

The graph of Dn(x = θ) is shown in Figure B.7. It looks very similar to that of
the diffusion kernel as shown in Figure 1.6 in Chapter 1 except for its symmetric
oscillatory trail in both positive and negative θ-axes.

It follows from (B-1.58), by putting t−x = ξ and noting that Dn(ξ) is even, that

sn(x) =
1

2π

∫ π−x

−π−x

f(x+ ξ)Dn(ξ) dξ

=
1

2π

∫ π

−π

f(x+ ξ)Dn(ξ) dξ. (B-1.63)

We close this section by stating the Pointwise Convergence Theorem: If f(x) is
a piecewise smooth and periodic function with period 2π on [−π, π], then, for any x
in (−π, π),

lim
n→∞

sn = lim
n→∞

[
a0
2

+
n∑

k=1

(ak cos kx+ bk sin kx)

]

=
1

2

[
f(x+ 0) + f(x− 0)

]
, (B-1.64)
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or equivalently,

a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx) =
1

2

[
f(x+) + f(x−)

]
, (B-1.65)

where

ak =
1

π

∫ π

−π

f(x) cos kx dx, k = 0, 1, 2, 3, . . . , (B-1.66)

bk =
1

π

∫ π

−π

f(x) sin kxdx, k = 1, 2, 3, . . . . (B-1.67)

We refera to Myint-U and Debnath (2007) for its proof.
Another remarkable feature of Fourier series of a function at its ordinary points

of discontinuity deals with the behavior of its nth partial sums sn(x) as n → ∞. At
points where f(x) is continuous, the nth partial sums sn(x) approach smoothly the
value f(x) as n → ∞. However, for the functions f(x) = x in Example B-1.4 or
f(x) = sgnx in Example B-1.5, the graphs of their partial sums exhibit a large error
in the neighborhood of points of discontinuity at x = 0 and x = ±π independent
of the number of terms in their partial sums. In other words, the partial sums do not
converge smoothly to the mean value. Instead, they overshoot the mark at each end of
the jumps of the function. The explanation of this phenomenon was first provided by
J.W. Gibbs (1839–1903) in 1899, who showed that overshooting was not the result
of computational errors. This feature is typical for the Fourier series of a function at
the points of discontinuity, and is now universally known as the Gibbs phenomenon.

One of the most effective and useful applications of Fourier series deals with
the summation of infinite series in closed form which is one of the major problems
in mathematics. We shall use Examples B-1.1–B-1.6 to derive the sums of many
important numerical series.

Substituting x = 0 in (B-1.10) gives the numerical series

0 = f(0) =
π

4
− 2

π

∞∑
n=1

1

(2n− 1)2
.

Hence,
∞∑

n=1

1

(2n− 1)2
=

π2

8
,

or equivalently,

1

12
+

1

32
+

1

52
+

1

72
+ · · · = π2

8
. (B-1.68)

This can be used to obtain another numerical series

S =
1

12
+

1

22
+

1

32
+

1

42
+ · · ·+ 1

n2
+ · · · = π2

6
. (B-1.69)
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In fact,

S =

(
1

12
+

1

32
+

1

52
+ · · ·

)
+

1

4

(
1

12
+

1

22
+

1

32
+

1

42
+ · · ·

)

=
π2

8
+

1

4
S.

Thus, S(1− 1
4 ) =

π2

8 , which gives (B-1.69).
Putting x = 0 in (B-1.11) leads to the numerical series

0 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
,

or equivalently,

∞∑
n=1

(−1)n+1

n2
=

π2

12
.

Thus,

1

12
− 1

22
+

1

32
− 1

42
+ · · · = π2

12
. (B-1.70)

Substituting x = π
2 in the series (B-1.13) gives

π

2
= 2

∞∑
n=1

(−1)n+1

n
sin

nπ
2

= 2

(
sin π

2

1
−

sin 2π
2

2
+

sin 3π
2

3
−

sin 4π
2

4
+ · · ·

)

= 2

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
.

Therefore,

1− 1

3
+

1

5
− 1

7
+ · · · = π

4
. (B-1.71)

This is celebrated Leibniz series for π discovered by Leibniz in 1673. It is also known
as the Gregory series independently discovered by James Gregory (1638–1675) in
around 1670.

Putting x = π
4 in (B-1.13) gives another numerical series

π

8
=

1√
2

(
1 +

1

3
− 1

5
− 1

7
+

1

9
+

1

11
− · · ·

)
− 1

2

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
.

In view of (B-1.71), this leads to the following series
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1 +
1

3
− 1

5
− 1

7
+

1

9
+

1

11
− · · · = π

2
√
2
. (B-1.72)

Subtracting (B-1.70) from (B-1.69) yields

1

22
+

1

42
+

1

62
+

1

82
+ · · · = π2

24
. (B-1.73)

In Example B-1.2, the Fourier series for f(x) = x2 is given by (B-1.11). It
follows from the Parseval relation (B-1.42) that

1

π

∫ π

−π

x4 dx =
2π4

9
+

∞∑
n=1

a2n =
2π4

9
+

∞∑
n=1

16

n4
,

or equivalently,

2π4

5
=

2π4

9
+

∞∑
n=1

16

n4
.

Thus,

∞∑
n=1

1

n4
=

π4

90
. (B-1.74)

If we apply the Parseval formula (B-1.42) to Example B-1.3, we can derive the fol-
lowing numerical series

∞∑
n=1

1

(2n− 1)4
=

π4

96
. (B-1.75)

A similar calculation can be used for the Fourier series of f(x) = x(π − x),
0 < x < π, in the form

f(x) =
8

π

(
sinx

13
+

sin 3x

33
+

sin 5x

53
+ · · ·

)
. (B-1.76)

Therefore, we can show that

1

13
− 1

33
+

1

53
− 1

73
+ · · · = π3

32
, (B-1.77)

∞∑
n=1

1

n6
=

π6

945
. (B-1.78)

In 1.15 Exercises, Problem 10, the initial conditions are f(x) and g(x) = 0
defined on 0 ≤ x ≤ l by

f(x) =

{ 2hx
l if 0 ≤ x ≤ l

2 ,

2h(l−x)
l if l

2 ≤ x ≤ l,
(B-1.79)
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where the midpoint of the string of length l is held at a vertical distance h from the
equilibrium position for t < 0 and released at time t = 0.

We expand f(x) in a Fourier sine series (an ≡ 0) so that

f(x) =

∞∑
n=1

bn sin

(
nπx

l

)
, (B-1.80)

where

bn =
2

l

∫ l

0

f(x) sin

(
nπx

l

)
dx

=
2

l

[∫ l/2

0

(
2hx

l

)
sin

(
nπx

l

)
dx+

∫ l

l/2

2h(l − x)

l
sin

(
nπx

l

)
dx

]
,

which is, integrating by parts,

=
4h

l2

[(
− l

nπ

)
x cos

(
nπx

l

)∣∣∣∣
l/2

0

−
∫ l/2

0

cos

(
nπx

l

)
dx

+ (l − x) cos
nπx

l

∣∣∣∣
l

l/2

+

∫ l

l/2

cos
nπx

l
dx

]

=

(
8h

n2π2

)
sin

(
nπ

2

)
. (B-1.81)

Thus, when h = 1 and l = π, the Fourier sine series on the interval 0 < x < π for
the function f(x) is given by

f(x) =
8

π2

(
sinx− 1

32
sin 3x+

1

52
sin 5x− · · ·

)
. (B-1.82)

Thus, the Fourier sine series for f(x) = x on 0 < x < π
2 is

x =
4

π

(
sinx− 1

32
sin 3x+

1

52
sin 5x− · · ·

)
. (B-1.83)

Putting x = π
2 in (B-1.83) gives the numerical series

π2

8
=

1

12
+

1

32
+

1

52
+

1

72
+ · · · . (B-1.84)

The Fourier sine series (B-1.83) for x can be integrated from x to π
2 term-by-term

so that

1

2

(
π2

4
− x2

)
=

4

π

(
cosx− 1

33
cos 3x+

1

53
cos 5x− · · ·

)
. (B-1.85)

Substituting x = 0 into (B-1.85) gives the numerical series
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1

13
− 1

33
+

1

53
− 1

73
+ · · · = π3

32
. (B-1.86)

Integrating (B-1.85) with respect to x from 0 to x leads to

1

2

(
π2

4
x− x3

3

)
=

4

π

(
sinx− 1

34
sin 3x+

1

54
sin 5x− · · ·

)
. (B-1.87)

Putting x = π
2 in (B-1.87) yields the numerical series

1

14
+

1

34
+

1

54
+

1

74
+ · · · = π

8
· π

3

12
=

π4

96
. (B-1.88)

Integrating (B-1.87) again from x to π
2 gives

π2

16

[(
π

2

)2

− x2
]
− 1

24

[(
π

2

)4

− x4
]

=
4

π

(
cosx− 1

35
cos 3x+

1

55
cos 5x− · · ·

)
. (B-1.89)

Substituting x = 0 in (B-1.89) gives the numerical series

1

15
− 1

35
+

1

55
− 1

75
+ · · · = 5π5

1536
. (B-1.90)

Integrating (B-1.89) again from 0 to x yields a new numerical series
(
π4

64
x− π2

48
x3 − π4

384
x+

1

120
x5
)

=
4

π

(
sinx− 1

36
sin 3x+

1

56
sin 5x− · · ·

)
. (B-1.91)

Putting x = π
2 in (B-1.91) leads to another numerical series

1 +
1

36
+

1

56
+

1

76
+ · · · = π6

960
. (B-1.92)

We consider applications of Fourier series to differential equations. As a simple
application, we discuss the periodic solution of a non-homogeneous simple harmonic
oscillator

ẍ+ ω2x = f(t), (B-1.93)

where the forcing function f(t) has a Fourier series expansion

f(t) =
1

2
A0 +

∞∑
n=1

(An cosnt+Bn sinnt), (B-1.94)

the coefficients A0, An, and Bn are known.
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We seek a uniformly convergent Fourier series solution of (B-1.93) in the form

x(t) =
1

2
a0 +

∞∑
n=1

(an cosnt+ bn sinnt). (B-1.95)

Differentiating (B-1.95) term by term and assuming the series for ẋ(t) and ẍ(t) con-
verge uniformly, substituting in (B-1.93) gives

∞∑
n=1

(
−n2 + ω2

)
an cosnt+

a0
2
ω2
0 +

∞∑
n=1

(
−n2 + ω2

)
bn sinnt

=
1

2
A0 +

∞∑
n=1

(An cosnt+Bn sinnt). (B-1.96)

Consequently, equating the coefficients, we obtain

a0 =
A0

ω2
, an =

An

ω2 − n2
, bn =

Bn

ω2 − n2
.

Thus, the solution of (B-1.93) is given by

x(t) =
A0

2ω2
+

∞∑
n=1

(An cosnt+Bn sinnt)

ω2 − n2
(B-1.97)

provided ω �= n. However, if ω2 = n2 for some integer n, the solution becomes
unbounded. This phenomenon is known as resonance. If damping is included in
equation (B-1.93), the solution will remain bounded.

However, when ω2 = n2, we can write

g(t) = f(t)−Aω cosωt+Bω sinωt,

and then we can solve separately ẍ + ω2x = g(t) and ẍ + ω2x = Aω cosωt +
Bω sinωt. The second equation gives rise to the non-periodic solutions
(At+B) cosωt and (A′t+B′) sinωt. The sum of the solutions of the two equations
gives a solution of the original equation. Equation (B-1.93) can be solved by the use
of integrating factor in the form

x(t) = exp(−iωt)
∫ t

0

exp(2iωτ)

[∫ τ

0

eiωxf(x) dx

]
dτ. (B-1.98)

We next apply the method of Fourier series to solve the damped harmonic oscil-
lator governed by

ẍ+ kẋ+ ω2x = f(t), (B-1.99)

where kẋ (k > 0) is the damping term.
If f(t) is periodic with period 2π and has the same Fourier series expan-

sion (B-1.94), then we can find a Fourier series solution of (B-1.95) by differentiating
and substituting in (B-1.99) so that equation (B-1.99) takes the form
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∞∑
n=1

(
−n2an + nkbn + ω2an

)
cosnt+

(
ω2a0
2

)

+

∞∑
n=1

(
−n2bn − nkan + ω2bn

)
sinnt

=
1

2
A0 +

∞∑
n=1

(An cosnt+Bn sinnt). (B-1.100)

Equating the coefficients from both sides gives a0 = A0

ω2 and
(
ω2 − n2

)
an + nkbn = An,

−nkan +
(
ω2 − n2

)
bn = Bn.

Solving for an and bn gives

an =

∣∣∣∣An nk
Bn ω2 − n2

∣∣∣∣∣∣∣∣ω
2 − n2 nk
−nk ω2 − n2

∣∣∣∣
=

1

D

[(
ω2 − n2

)
An − nkBn

]
, (B-1.101)

bn =

∣∣∣∣ω
2 − n2 An

−nk Bn

∣∣∣∣∣∣∣∣ω
2 − n2 nk
−nk ω2 − n2

∣∣∣∣
=

1

D

[(
ω2 − n2

)
Bn + nkAn

]
, (B-1.102)

where

D =
(
ω2 − n2

)2
+ n2k2. (B-1.103)

Thus, the coefficients a0, an, and bn of the Fourier series solution (B-1.95) of the
damped simple harmonic equation (B-1.99) are given by (B-1.101)–(B-1.102), and
the solution represents the periodic response. There may be a transient response de-
pending on the initial conditions, and the transient solution will eventually decay as
t → ∞. Because of the presence of the damping term, there will be no resonance
when n = ω.

We close this section by adding an example of an application of Fourier series to
a simple boundary value problem

d2u

dx2
= λu = f(x), 0 < x < l, (B-1.104)

u(0) = 0 = u(l), (B-1.105)

where λ is a given parameter.
For simplicity, we assume that f(x) has a Fourier sine series expansion

f(x) =

∞∑
n=1

bn sin

(
nπx

l

)
, 0 < x < l, (B-1.106)
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where bn are known. We seek the Fourier sine series solution of the boundary value
problem (B-1.104)–(B-1.105) in the form

u(x) =
∞∑

n=1

Bn sin

(
nπx

l

)
, 0 < x < l. (B-1.107)

We assume that this series may be differentiated twice to give

d2u

dx2
=

∞∑
n=1

(
−n2π2

l2

)
Bn sin

(
nπx

l

)
, 0 < x < l.

We substitute u(x) and u′′(x) into (B-1.104) to obtain

∞∑
n=1

(
−n2π2

l2
+ λ

)
Bn sin

(
nπx

l

)
=

∞∑
n=1

bn sin

(
nπx

l

)
, 0 < x < l.

Consequently, the coefficients Bn are given by

Bn =

(
λ− n2π2

l2

)−1

bn, (B-1.108)

provided λ �= (nπl )2.
If λ = (nπl )2 for all or some values of positive integer n, then Bn cannot be

determined, and hence no solution exists unless Bn ≡ 0.
Thus, the Fourier series solution of the boundary value problem is

u(x) =

∞∑
n=1

(
l2bn

λl2 − n2π2

)
sin

(
nπx

l

)
, (B-1.109)

where the zero denominator must be handled separately.

B-2 Generalized Functions (Distributions)

The most widely known example of a generalized function is the Dirac delta function
δ(x) which was first introduced by P.M.M. Dirac in 1920s as a mathematical device
in the formulation of quantum mechanics. The Dirac delta function δ(x) is defined
by

δ(x) = 0 for all x �= 0, and

∫ ∞

−∞
δ(x) dx = 1. (B-2.1)

In the ordinary sense, δ(x) cannot be considered as a function because if a func-
tion vanishes everywhere except at a single point x = 0, then its integral over any
interval must be zero, so that integrating it over an interval including the origin can-
not be equal to one. However, from the physical point of view, the delta function
is the natural mathematical quantity which can be used to describe many of the ab-
stractions which arise in physical sciences. For example, the mass-density function
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Fig. B.8 The sequence of delta functions, δn(x).

is zero everywhere except at x = 0, where it is infinite because a finite mass is con-
centrated in zero length, and it is so infinitely large here that the integral is non-zero
even through the integrand is positive over an infinitesimally small region only. This
makes sense physically, though it is mathematically absurd. So the delta function
δ(x) can be used as the mass-density function ρ(x) describing the mass distribution
per unit length of a rod at a point x. Similarly, the point charge, the impulsive force,
the point dipole, and the frequency response of an undamped harmonic oscillator are
all aptly represented by the delta function or other generalized functions.

In general, the generalized functions play a major role in Fourier analysis and in
the theory of partial differential equations. The function f(x) = 1 has no Fourier
transform in the ordinary Fourier transform theory, but it has Fourier transform√
2πδ(k) in the generalized function theory. Thus, the generalized functions remove

difficulties which existed in the classical Fourier analysis. There is a beautiful anal-
ogy with the way in which the use of complex numbers helps in the solution of
quadratic equations as within the realm of real numbers only certain quadratic equa-
tions have no solutions.

Sometimes, the Dirac delta function δ(x) is defined by its fundamental property

∫ ∞

−∞
f(x)δ(x− a) dx = f(a), (B-2.2)

where f(x) is any continuous function in any interval containing the point x = a.
Although there are no ordinary functions which have the properties required of

the delta function, we may approximate δ(x) in one dimension by a sequence of
ordinary functions

δn(x) =

√
n

π
exp

(
−nx2

)
, n = 1, 2, 3, . . . . (B-2.3)
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Clearly, δn(x) → 0 as n → ∞ for any x �= 0 and δn(0) → ∞ as n → ∞ as
shown in Figure B.8. Also, for all n = 1, 2, 3, . . . ,

∫ ∞

−∞
δn(x) dx = 1

and

lim
n→∞

∫ ∞

−∞
δn(x) dx =

∫ ∞

−∞
δ(x) dx = 1,

as expected. Thus, the delta function can be considered as the limit of a sequence of
ordinary Gaussian functions, and we write

δ(x) = lim
n→∞

√
n

π
exp

(
−nx2

)
. (B-2.4)

As mentioned in Chapter 1, the major problem of finding the solution of inho-
mogeneous partial differential equations deals with the construction of the Green’s
function in each case. This problem becomes easier by the use of a generalized func-
tion together with the methods of Fourier and Laplace transforms. In spherical polar
coordinates (r, θ, φ), the Laplacian is

∇2ψ(r) =
1

r2
d

dr

(
r2

dψ

dr

)
, (B-2.5)

which is independent of θ and φ. If ψ(r) = 1
r , then ∇2ψ(r) = 0 for all r �= 0. At

r = 0, ∇2ψ(r) does not exist. By the divergence theorem (or Gauss’ theorem)
∫
V

∇2

(
1

r

)
dV =

∫
V

div∇
(
1

r

)
dV =

∫
S

∇
(
1

r

)
· ndS, (B-2.6)

where V is the volume of a sphere of radius a and center at r = 0 so that
[
∇
(
1

r

)]
r=a

= êr

[
d

dr

(
1

r

)]
r=a

= − êr
a2

, (B-2.7)

where êr is the direction of the outward normal n to the surface of the sphere. It
follows from (B-2.6) that

∫
V

∇2

(
1

r

)
dV = − 1

a2

∫
S

êr · nds = −4π. (B-2.8)

Thus, the Laplacian ∇2( 1r ) is a function of r which has the following fundamen-
tal properties:

(i) It vanishes for r �= 0.
(ii) It is not defined at r = 0.

(iii) And its integral over any sphere with center at r = 0 is −4π.
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All of these lead to the result

∫
V

∇2

(
1

r

)
dV =

{
−4π if V contains r = 0,

0 if V does not contain r = 0.
(B-2.9)

This may be written in the compact form

∇2

(
1

r

)
= −4πδ(r), (B-2.10)

where δ(r) is the Dirac delta function with the property

∫
V

δ(r) dV =

{
1 if V contains r = 0,

0 otherwise.
(B-2.11)

This result is a special case of the general definition of the vector form of the delta
function

∫
V

f(r)δ(r− a) dr =

{
f(a) if V contains the point a,

0 otherwise,
(B-2.12)

obtained by setting f(r) = 1 and a = 0 in (B-2.12).
For the results (B-2.11) and (B-2.12) to be valid, it is certainly sufficient that

the functions be continuous and infinitely differentiable everywhere. Result (B-2.12)
reduces to (B-2.2) in one dimension.

We would not go into great detail, but refer to the famous books of Lighthill
(1958) and Jones (1982) for the introduction to the subject of generalized functions.

A good function, g(x), is a function in C∞(R) that decays sufficiently rapidly so
that g(x) and all of its derivatives decay to zero faster than |x|−N as |x| → ∞ for all
N > 0. In other words, suppose that for each positive integer N and n,

lim
|x|→∞

xNg(n)(x) = 0, (B-2.13)

then g(x) is called a good function.
Usually, the class of good functions is represented by S. The good functions play

an important role in Fourier analysis because the inversion, convolution, and differ-
entiation theorems as well as many others take simple forms with no problem of
convergence. The rapid decay and infinite differentiability properties of good func-
tions lead to the fact that the Fourier transform of a good function is also a good
function.

Good functions also play an important role in the theory of generalized functions.
A good function of bounded support is a special type of good function that also plays
an important part in the theory of generalized functions. Good functions also have
the following important properties. The sum (or difference) of two good functions is
also a good function. The product and convolution of two good functions are good
functions. The derivative of a good function is a good function; xn g(x) is a good
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function for all non-negative integers n whenever g(x) is a good function. A good
function belongs to Lp (a class of pth power Lebesgue integrable functions) for every
p in 1 ≤ p ≤ ∞. The integral of a good function is not necessarily good. However,
if φ(x) is a good function, then the function g defined for all x by

g(x) =

∫ x

−∞
φ(t) dt

is a good function if and only if
∫∞
−∞ φ(t) dt exists.

Good functions are not only continuous, but are also uniformly continuous on
R and absolutely continuous on R. However, a good function cannot necessarily be
represented by a Taylor series expansion on every interval. As an example, consider
a good function of bounded support

g(x) =

{
exp[−(1− x2)−1] if |x| < 1,

0 if |x| ≥ 1.

The function g is infinitely differentiable at x = ±1, as it must be in order to be
good. It does not have a Taylor series expansion in every interval because a Taylor
expansion based on the various derivatives of g at any point x satisfying |x| > 1
would lead to zero value for all x.

For example, exp(−x2), x exp(−x2), (1 + x2)−1 exp(−x2), and sech2x are
good functions, while exp(−|x|) is not differentiable at x = 0, and the function
(1 + x2)−1 is not a good function as it decays too slowly as |x| → ∞.

A sequence of good functions, {fn(x)}, is called regular if, for any good function
g(x),

lim
n→∞

∫ ∞

−∞
fn(x)g(x) dx (B-2.14)

exists. For example, fn(x) = 1
nφ(x) is a regular sequence for any good function

φ(x), since

lim
n→∞

∫ ∞

−∞
fn(x)g(x) dx = lim

n→∞

1

n

∫ ∞

−∞
φ(x)g(x) dx = 0.

Two regular sequences of good functions are equivalent if, for any good function
g(x), the limit (B-2.14) exists and is the same for each sequence.

A generalized function, f(x), is a regular sequence of good functions, and two
generalized functions are equal if their defining sequences are equivalent. General-
ized functions are, therefore, only defined in terms of their action on integrals of
good functions if

〈f, g〉 =
∫ ∞

−∞
f(x)g(x) dx = lim

n→∞

∫ ∞

−∞
fn(x)g(x) dx = lim

n→∞
〈fn, g〉 (B-2.15)

for any good function g(x), where the symbol 〈f, g〉 is used to denote the ac-
tion of the generalized function f(x) on the good function g(x), or 〈f, g〉 repre-
sents the number that f associates with g. If f(x) is an ordinary function such that
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(1 + x2)−Nf(x) is integrable on (−∞,∞) for some N , then the generalized func-
tion f(x) equivalent to the ordinary function is defined as any sequence of good
functions {fn(x)} such that, for any good function g(x),

lim
n→∞

∫ ∞

−∞
fn(x)g(x) dx =

∫ ∞

−∞
f(x)g(x) dx. (B-2.16)

For example, the generalized function equivalent to zero can be represented by either
of the sequences {φ(x)

n } and {φ(x)
n2 }.

The unit function, I(x), is defined by∫ ∞

−∞
I(x)g(x) dx =

∫ ∞

−∞
g(x) dx (B-2.17)

for any good function g(x). A very important and useful good function that defines
the unit function is {exp(− x2

4n )}. Thus, the unit function is the generalized function
that is equivalent to the ordinary function f(x) = 1.

The Heaviside function, H(x), is defined by∫ ∞

−∞
H(x)g(x) dx =

∫ ∞

0

g(x) dx. (B-2.18)

The generalized function H(x) is equivalent to the ordinary unit function

H(x) =

{
0 if x < 0,

1 if x > 0,
(B-2.19)

and since generalized functions are defined through the action on integrals of good
functions, the value of H(x) at x = 0 does not have significance here.

The sign function, sgn(x), is defined by
∫ ∞

−∞
sgn(x)g(x) dx =

∫ ∞

0

g(x) dx−
∫ 0

−∞
g(x) dx (B-2.20)

for any good function g(x). Thus, sgn(x) can be identified with the ordinary function

sgn(x) =

{
−1 if x < 0,

+1 if x > 0.
(B-2.21)

In fact, sgn(x) = 2H(x)− I(x), which can be seen as follows:∫ ∞

−∞
sgn(x)g(x) dx =

∫ ∞

−∞

[
2H(x)− I(x)

]
g(x) dx

= 2

∫ ∞

−∞
H(x)g(x) dx−

∫ ∞

−∞
I(x)g(x) dx

= 2

∫ ∞

0

g(x) dx−
∫ ∞

−∞
g(x) dx
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=

∫ ∞

0

g(x) dx−
∫ 0

−∞
g(x) dx.

The following results are also true

xδ(x) = 0, (B-2.22)

δ(x− a) = δ(a− x). (B-2.23)

Result (B-2.23) shows that δ(x) is an even function.
Clearly, the result

∫ x

−∞
δ(y) dy =

{
1 if x > 0,

0 if x < 0

}
= H(x)

shows that
d

dx
H(x) = δ(x). (B-2.24)

The Fourier transform of the Dirac delta function is

F
{
δ(x)

}
=

1√
2π

∞∫

−∞

e−ikxδ(x) dx =
1√
2π

. (B-2.25)

Hence,

δ(x) = F−1

{
1√
2π

}
=

1

2π

∫ ∞

−∞
eikx dk. (B-2.26)

This is an integral representation of the delta function extensively used in quantum
mechanics. Also, (B-2.26) can be rewritten as

δ(k) =
1

2π

∫ ∞

−∞
eikx dx. (B-2.27)

The Dirac delta function, δ(x), is defined so that for any good function g(x),

〈δ, g〉 =
∫ ∞

−∞
δ(x)g(x) dx = g(0). (B-2.28)

Derivatives of generalized functions are defined by the derivatives of any equiv-
alent sequences of good functions. We can integrate by parts using any member of
the sequences and assuming g(x) vanishes at infinity. We can obtain this definition
as follows:

〈
f ′, g

〉
=

∫ ∞

−∞
f ′(x)g(x) dx

=
[
f(x)g(x)

]∞
−∞ −

∫ ∞

−∞
f(x)g′(x) dx = −

〈
f, g′

〉
. (B-2.29)

The derivative of a generalized function f is the generalized function f ′ defined by
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〈
f ′, g

〉
= −

〈
f, g′

〉
(B-2.30)

for any good function g.
The differential calculus of generalized functions can easily be developed with

locally integrable functions. To every locally integrable function f , there corresponds
a generalized function (or distribution) defined by

〈f, φ〉 =
∫ ∞

−∞
f(x)φ(x) dx, (B-2.31)

where φ is a test function on R → C with bounded support (φ is infinitely differen-
tiable and such that its derivatives of all orders exist and are continuous).

The derivative of a generalized function f is the generalized function f ′ defined
by 〈

f ′, φ
〉
= −

〈
f, φ′〉 (B-2.32)

for all test functions φ. This definition follows from the fact that

〈
f ′, φ

〉
=

∫ ∞

−∞
f ′(x)φ(x) dx

=
[
f(x)φ(x)

]∞
−∞ −

∫ ∞

−∞
f(x)φ′(x) dx,= −

〈
f, φ′〉

which was obtained from integration by parts and using the fact that φ vanishes at
infinity.

It is easy to check that H ′(x) = δ(x), for

〈
H ′, φ

〉
=

∫ ∞

−∞
H ′(x)φ(x) dx = −

∫ ∞

−∞
H(x)φ′(x) dx

= −
∫ ∞

0

φ′(x) dx = −
[
φ(x)

]∞
0

= φ(0) = 〈δ, φ〉.

Another result is
〈
δ′, φ

〉
= −

∫ ∞

−∞
δ(x)φ′(x) dx = −φ′(0).

It is easy to verify that
f(x)δ(x) = f(0)δ(x).

We next define |x| = xsgn(x) and calculate its derivative as follows. We have

d

dx
|x| = d

dx

{
xsgn(x)

}
= x

d

dx

{
sgn(x)

}
+ sgn(x)

dx

dx

= x
d

dx

{
2H(x)− I(x)

}
+ sgn(x)

= 2xδ(x) + sgn(x) = sgn(x), (B-2.33)

which is true since sgn(x) = 2H(x)− I(x) and xδ(x) = 0.
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Similarly, we can show that

d

dx

{
sgn(x)

}
= 2H ′(x) = 2δ(x). (B-2.34)

Theorem B-2.1. The Fourier transform of a good function is a good function.

Proof. The Fourier transform of a good function f(x) exists and is defined by

F
{
f(x)

}
= F (k) =

1√
2π

∫ ∞

−∞
e−ikxf(x) dx. (B-2.35)

Differentiating F (k) n times and integrating N times by parts, we get

∣∣F (n)(k)
∣∣ ≤

∣∣∣∣ (−1)N

(−ik)N
1√
2π

∫ ∞

−∞
e−ikx dN

dxN
{
(−ix)nf(x)

}
dx

∣∣∣∣
≤ 1

|k|N
1√
2π

∫ ∞

−∞

∣∣∣∣ d
N

dxN
{
xnf(x)

}∣∣∣∣ dx.

Evidently, all derivatives tend to zero as fast as |k|−N as |k| → ∞ for any N > 0,
and hence F (k) is a good function.

Theorem B-2.2. If f(x) is a good function with the Fourier transform (B-2.35), then
the inverse Fourier transform is given by

f(x) =
1√
2π

∫ ∞

−∞
eikxF (k) dk. (B-2.36)

Proof. For any ε > 0, we have

F
{
e−εx2

F (−x)
}
=

1

2π

∫ ∞

−∞
e−ikx−εx2

{∫ ∞

−∞
eixtf(t) dt

}
dx.

Since f is a good function, the order of integration can be interchanged to obtain

F
{
e−εx2

F (−x)
}
=

1

2π

∫ ∞

−∞
f(t) dt

∫ ∞

−∞
e−i(k−t)x−εx2

dx,

which is, by a similar calculation as that used in Example 1.7.1 in Chapter 1,

=
1√
4πε

∫ ∞

−∞
exp

[
− (k − t)2

4ε

]
f(t) dt.

Using the fact that

1√
4πε

∫ ∞

−∞
exp

[
− (k − t)2

4ε

]
dt = 1,

we can write
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F
{
e−εx2

F (−x)
}
− f(k) · 1

=
1√
4πε

∫ ∞

−∞

[
f(t)− f(k)

]
exp

[
− (k − t)2

4ε

]
dt. (B-2.37)

Since f is a good function, we have
∣∣∣∣f(t)− f(k)

t− k

∣∣∣∣ ≤ max
x∈R

∣∣f ′(x)
∣∣.

It follows from (B-2.37) that

∣∣F{e−εx2

F (−x)
}
− f(k)

∣∣
≤ 1√

4πε
max
x∈R

∣∣f ′(x)
∣∣
∫ ∞

−∞
|t− k| exp

[
− (t− k)2

4ε

]
dt

=
1√
4πε

max
x∈R

∣∣f ′(x)
∣∣4ε

∫ ∞

−∞
|α|e−α2

dα → 0

as ε → 0, where α = t−k
2
√
ε
.

Consequently,

f(k) = F
{
F (−x)

}
=

1√
2π

∫ ∞

−∞
e−ikxF (−x) dx

=
1√
2π

∫ ∞

−∞
eikxF (x) dx

=
1

2π

∫ ∞

−∞
eikx dx

∫ ∞

−∞
e−iξxf(ξ) dξ.

Interchanging k with x, this reduces to the celebrated Fourier integral formula

f(x) =
1

2π

∫ ∞

−∞
eikx

[∫ ∞

−∞
e−ikξf(ξ) dξ

]
dk. (B-2.38)

Hence, the theorem is proved.

Example B-2.1. The Fourier transform of a constant function c is

F{c} =
√
2πcδ(k). (B-2.39)

In the ordinary sense,

F{c} =
c√
2π

∫ ∞

−∞
e−ikx dx

is not a well defined integral; it diverges. However, it can be treated as a generalized
function, namely taking c = cI(x) and considering {exp(− x2

4n )} as an equivalent
sequence to the unit function I(x) gives
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Fig. B.9 Graph of the function fa(x).

F
{
c exp

(
−x2

4n

)}
=

c√
2π

∫ ∞

−∞
exp

(
−ikx− x2

4n

)
dx,

which, by Example 1.7.1, is

= c
√
2n exp

(
−nk2

)
=

√
2πc

√
n

π
exp

(
−nk2

)
,

=
√
2πcδn(k) →

√
2πcδ(k) as n → ∞,

since {δn(k)} = {
√

n
π exp(−nk2)} is a sequence equivalent to the delta function

defined by (B-2.4).

Example B-2.2. Show that

F
{
e−axH(x)

}
=

1√
2π(ik + a)

, a > 0. (B-2.40)

We have, by definition,

F
{
e−axH(x)

}
=

1√
2π

∫ ∞

0

exp
{
−x(ik + a)

}
dx =

1√
2π(ik + a)

.

Example B-2.3. By considering the function (see Figure B.9)

fa(x) = e−axH(x)− eaxH(−x), a > 0, (B-2.41)

find the Fourier transform of sgn(x). In Figure B.9, the vertical axis (y-axis) repre-
sents fa(x) and the horizontal axis represents the x-axis.
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We have, by definition,

F
{
fa(x)

}
= − 1√

2π

∫ 0

−∞
exp

{
(a− ik)x

}
dx+

1√
2π

∫ ∞

0

exp
{
−(a+ ik)x

}
dx

=
1√
2π

[
1

a+ ik
− 1

a− ik

]
=

√
2

π
· (−ik)
a2 + k2

.

In the limit as a → 0, fa(x) → sgn(x) and then

F
{
sgn(x)

}
=

√
2

π
· 1

ik
. (B-2.42)

B-3 Basic Properties of the Fourier Transforms

The Fourier transform of f(x), F{f(x)} = F (k), is defined by (1.7.1) and its in-
verse F−1{F (k)} = f(x) is defined by (1.7.2).

We state the following properties of the Fourier transform:

(a) (Shifting)

F
{
f(x− a)

}
= e−iakF

{
f(x)

}
, (B-3.1)

(b) (Scaling)

F
{
f(ax)

}
=

1

|a|F
(
k

a

)
, (B-3.2)

(c) (Conjugate)

F
{
f(−x)

}
= F

{
f(x)

}
, (B-3.3)

(d) (Translation)

F
{
eiaxf(x)

}
= F (k − a), (B-3.4)

(e) (Duality)

F
{
f(x)

}
= F (k), and F

{
F (x)

}
= f(−k), (B-3.5)

(f) (Composition)∫ ∞

−∞
F (k)g(k)eikx dk =

∫ ∞

−∞
f(ξ)G(ξ − x) dξ, (B-3.6)

where

F (k) = F
{
f(ξ)

}
and G(ξ) = F

{
g(k)

}
.

(g) (Riemann–Lebesgue Lemma) If F{f(x)} = F (k), then

lim
|k|→∞

F (k) = 0. (B-3.7)
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(h) (Poisson Summation Formula)

∞∑
n=−∞

f(2πn) =

(√
2π

2a

) ∞∑
n=−∞

F

(
nπ

a

)
. (B-3.8)

When a = π,

∞∑
n=−∞

f(2πn) =
1√
2π

∞∑
n=−∞

F (n). (B-3.9)

When 2a = 1, formula (B-3.8) becomes
∞∑

n=−∞
f(n) =

√
2π

∞∑
n=−∞

F (n). (B-3.10)

The convolution (f ∗ g)(x) of two integrable function f(x) and g(x) is defined by
(1.7.13) and the convolution Theorem 1.7.1 states that

F
{
(f ∗ g)(x)

}
= F (k)G(k), (B-3.11)

or equivalently,

F−1
{
F (k)G(k)

}
= (f ∗ g)(x). (B-3.12)

Proof. We have

F
{
(f ∗ g)(x)

}
=

1√
2π

∫ ∞

−∞
e−ikx

[
(f ∗ g)(x)

]
dx,

which is, by definition of the convolution,

=
1

2π

∫ ∞

−∞
e−ikx

[∫ ∞

−∞
f(x− ξ)g(ξ) dξ

]
dx

=
1

2π

∫ ∞

−∞
e−ikξg(ξ) dξ

∫ ∞

−∞
e−ik(x−ξ)f(x− ξ) dξ

=
1

2π

∫ ∞

−∞
e−ikξg(ξ) dξ

∫ ∞

−∞
e−ikηf(η) dη, (x− ξ = η)

= F (k)G(k).

This completes the proof.

It is often convenient to delete the factor 1√
2π

in the definition of convolution
(1.7.13) as this factor does not have any effect on the properties of the convolution.
The convolution has the following algebraic properties:

f ∗ g = g ∗ f (Commutative), (B-3.13)

f ∗ (g ∗ h) = (f ∗ g) ∗ h (Associative), (B-3.14)
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(αf + βg) ∗ h = α(f ∗ h) + β(g ∗ h) (Distributive), (B-3.15)

f ∗ δ = f = δ ∗ f (Identity), (B-3.16)

where α and β are any two constants, and δ(x) is the Dirac delta function.

(f ∗ g)(x) = (f ∗ g)(x), (B-3.17)

x
[
(f ∗ g)(x)

]
=
[
xf(x)

]
∗ g(x) +

[
f(x) ∗ xg(x)

]
, (B-3.18)

f(ax+ b) ∗ g(ax+ c) =
1

|a|h(ax+ b+ c), (B-3.19)

where h(x) = (f ∗ g)(x).
In particular,

f(x+ b) ∗ g(x+ c) = h(x+ b+ c). (B-3.20)

If a1, a2, b1, b2 are any constants and f1 ∗ g1, f1 ∗ g2, f2 ∗ g1, and f2 ∗ g2 exist, then

(a1f1 + a2f2) ∗ (b1g1 + b2g2) = a1b1(f1 ∗ g1) + a1b2(f1 ∗ g2)
+ a2b1(f2 ∗ g1) + a2b2(f2 ∗ g2). (B-3.21)

To prove (B-3.14), we have

[
f ∗ (g ∗ h)

]
(x) =

∫ ∞

−∞
f(x− ξ)(g ∗ h)(ξ) dξ

=

∫ ∞

−∞
f(x− ξ) dξ

∫ ∞

−∞
g(ξ − t)h(t) dt

=

∫ ∞

−∞

[∫ ∞

−∞
f(x− ξ)g(ξ − t) dξ

]
h(t) dt, (ξ − t = η)

=

∫ ∞

−∞

[∫ ∞

−∞
f(x− t− η)g(η) dη

]
h(t) dt,

=

∫ ∞

−∞
(f ∗ g)(x− t)h(t) dt =

[
(f ∗ g) ∗ h

]
(x).

To prove (B-3.18), we apply the Fourier transform to the left hand side so that

F
{
x(f ∗ g)(x)

}
=

∫ ∞

−∞
e−ikxx(f ∗ g)(x) dx

=

∫ ∞

−∞
xe−ikx dx

∫ ∞

−∞
f(x− ξ)g(ξ) dξ

=

∫ ∞

−∞
(x− ξ + ξ)e−ikx dx

∫ ∞

−∞
f(x− ξ)g(ξ) dξ

=

∫ ∞

−∞
(x− ξ)e−ikx dx

∫ ∞

−∞
f(x− ξ)g(ξ) dξ
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+

∫ ∞

−∞
e−ikx dx

∫ ∞

−∞
f(x− ξ)ξg(ξ) dξ

=

∫ ∞

−∞
e−ikx dx

∫ ∞

−∞
(x− ξ)f(x− ξ)g(ξ) dξ

+

∫ ∞

−∞
e−ikx dx

∫ ∞

−∞
f(x− ξ)ξg(ξ) dξ

=

∫ ∞

−∞
e−ikx

[
xf(x) ∗ g(x)

]
dx

+

∫ ∞

−∞
e−ikx

[
f(x) ∗ xg(x)

]
dx

= F
[
xf(x) ∗ g(x)

]
+ F

[
f(x) ∗ xg(x)

]
.

We next apply F−1 to obtain result (B-3.18).
To prove (B-3.19), we apply the Fourier transform to its left-hand side and use

the convolution theorem so that

F
{
f(ax+ b) ∗ g(ax+ c)

}
= F

{
f(ax+ b)

}
F
{
g(ax+ c)

}

=
1

|a| exp
(
ikb

a

)
F

(
k

a

)
· 1

|a| exp
(
ikc

a

)
G

(
k

a

)

=
1

|a|2 · exp
[
ik(b+ c)

a

]
H

(
k

a

)
, since H(k) = F (k)G(k)

=
1

|a|F
{
h(ax+ b+ c)

}
.

We next apply F−1 to both sides to obtain (B-3.19).

Theorem B-3.1 (General Parseval’s Relation). If F{f(x)} = F (k) and F{g(x)}
= G(k), then ∫ ∞

−∞
f(x)g(x) dx =

∫ ∞

−∞
F (k)G(k) dk. (B-3.22)

Proof. We proceed formally to obtain∫ ∞

−∞
f(x)g(x) dx =

1

2π

∫ ∞

−∞
dx

∫ ∞

−∞
eikxF (k) dk

∫ ∞

−∞
e−ilxG(l) dl

=

∫ ∞

−∞
F (k) dk

∫ ∞

−∞
G(l) dl

1

2π

∫ ∞

−∞
ei(k−l)x dx

=

∫ ∞

−∞
F (k) dk

∫ ∞

−∞
G(l)δ(k − l) dl

=

∫ ∞

−∞
F (k)G(k) dk.

Thus, the proof is complete.



B-3 Basic Properties of the Fourier Transforms 755

In particular, if f(x) = g(x), then∫ ∞

−∞
f(x)f(x) dx =

∫ ∞

−∞
F (k)F (k) dk,

or equivalently, ∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|F (k)|2 dk. (B-3.23)

This is well known as the Parseval relation.
The function space L2(R) of all complex-valued Lebesgue square integrable

functions with the inner product (f, g) defined by

(f, g) =

∫ ∞

−∞
f(x)g(x) dx (B-3.24)

is a complex Hilbert space with the norm ‖f‖2 defined by

‖f‖2 =
√

(f, f) =

(∫ ∞

−∞

∣∣f(x)∣∣2 dx
) 1

2

. (B-3.25)

In terms of this norm, the Parseval relation (B-3.23) takes the form

‖f‖2 = ‖F‖2 = ‖Ff‖2. (B-3.26)

This means that the Fourier transform is a unitary transformation on the Schwartz
space S(R) which consists of the set of all infinitely differentiable functions f so
that f and all its derivatives are rapidly decreasing in the sense that

sup
x∈R

|x|m
∣∣f (n)(x)

∣∣ < ∞ for every m,n ≥ 0.

Physically, the quantity ‖f‖2 is a measure of energy and ‖F‖2 represents the power
spectrum of f .

The following examples of the Fourier transforms are useful in applied mathe-
matics (see Debnath and Bhatta 2007).

If χ[−a,a](x) is the characteristic function of [−a, a] defined by

χ[−a,a](x) = H
(
a− |x|

)
=

{
1 if |x| < a,

0 if |x| > a,
(B-3.27)

then

F
{
χ[−a,a](x)

}
= Fa(k) =

√
2

π

(
sin ak

k

)
. (B-3.28)

If

f(x) =

(
1− |x|

a

)
H

(
1− |x|

a

)
, (B-3.29)
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then

F
{
f(x)

}
=

a√
2π

(
ak

2

)−2

sin2
(
ak

2

)
. (B-3.30)

The following analytic properties of the convolution also hold:

d

dx

[
(f ∗ g)(x)

]
=
(
f ′ ∗ g

)
(x) =

(
f ∗ g′

)
(x), (B-3.31)

d2

dx2
[
(f ∗ g)(x)

]
=
(
f ′ ∗ g′

)
(x) =

(
f ′′ ∗ g

)
(x), (B-3.32)

(f ∗ g)(m+n)(x) =
(
f (m) ∗ g(n)

)
(x), (B-3.33)∫ ∞

−∞
(f ∗ g)(x) dx =

∫ ∞

−∞
f(ξ) dξ

∫ ∞

−∞
g(η) dη, (B-3.34)

(f ∗ χ[a,b])(x) =

∫ b

a

f(x− ξ) dξ =

∫ x−a

x−b

f(η) dη, (B-3.35)

F
{
f(x)g(x)

}
= (F ∗G)(k) =

1√
2π

∫ ∞

−∞
F (k − ξ)G(ξ) dξ, (B-3.36)

f(x) = (f ∗ δ)(x) = F−1
{
F (k)

}
. (B-3.37)

To prove (B-3.31), we have

(f ∗ g)′(x) = d

dx

∫ ∞

−∞
f(x− ξ)g(ξ) dξ =

∫ ∞

−∞
f ′(x− ξ)g(ξ) dξ

=
(
f ′ ∗ g

)
(x).

To prove (B-3.33), we first apply the Fourier transform to the left-hand side and
then use the convolution Theorem 1.7.1 so that

F
{
(f ∗ g)m+n(x)

}
= (ik)m+nF

{
(f ∗ g)(x)

}
= (ik)m+nF (k)G(k)

=
[
(ik)mF (k)

][
(ik)nG(k)

]
= F

{
f (m)(x)

}
F
{
g(n)(x)

}
= F

{(
f (m) ∗ g(n)

)
(x)

}
.

The use of the inverse Fourier transform proves the result (B-3.33).
To prove that the integral of the convolution satisfies (B-3.34), we have
∫ ∞

−∞
(f ∗ g)(x) dx =

∫ ∞

−∞

[∫ ∞

−∞
f(x− ξ)g(ξ) dξ

]
dx

=

∫ ∞

−∞
g(ξ)

[∫ ∞

−∞
f(x− ξ) dξ

]
dξ, (x− ξ = η)

=

∫ ∞

−∞
g(ξ) dξ

∫ ∞

−∞
f(η) dη.

We next prove (B-3.36) which is a dual result of (B-3.11) as follows. We have
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F
{
f(x)g(x)

}
=

1√
2π

∫ ∞

−∞
e−ikxf(x)g(x) dx,

which is, by replacing g(x) by its inverse Fourier transform formula,

=
1√
2π

∫ ∞

−∞
e−ikxf(x) dx

1√
2π

∫ ∞

−∞
eik

′xG
(
k′
)
dk′

=
1√
2π

∫ ∞

−∞
G
(
k′
)
dk′ · 1√

2π

∫ ∞

−∞
e−ix(k−k′)f(x) dx

=
1√
2π

∫ ∞

−∞
F
(
k − k′

)
G
(
k′
)
dk′

= (F ∗G)(k).

Thus, the results (B-3.11) and (B-3.36) represent a duality since the Fourier trans-
form of the convolution product of two functions is equal to the ordinary product of
their Fourier transforms, and the Fourier transform of the ordinary product of two
functions is equal to the convolution product of their Fourier transforms.

If the diffusion kernel function Gt(x) is

Gt(x) =
1√
4πκt

exp

(
− x2

4κt

)
, (B-3.38)

then

(Gt ∗Gs)(x) = Gt+s(x). (B-3.39)

To prove (B-3.39), we apply the Fourier transform without the factor 1√
2π

. This

means that F{exp(−ax2)} =
√

π
a exp(−k2

4a ). Consequently,

F
{
(Gt ∗Gs)(x)

}
= F

{
Gt(x)

}
F
{
Gs(x)

}
= exp

(
−κk2t

)
exp

(
−κk2s

)
= exp

[
−k2κ(t+ s)

]
= F

{
Gt+s(x)

}
.

The inverse Fourier transform gives the result.
If g(x) = 1

2aH(a − |x|), then (f ∗ g)(x) is the average value of f(x) on
[x− a, x+ a].

Using the value of g(x) gives

(f ∗ g)(x) =
∫ ∞

−∞
f(x− ξ)g(ξ) dξ =

1

2a

∫ a

−a

f(x− ξ) dξ

=
1

2a

∫ x+a

x−a

f(η) dη.

We close this section by adding an application of the convolution to the solu-
tion of the wave equation in Example 1.7.2. The solution of the Fourier transform
U(k, t) = F{u(x, t)} of the transformed wave equation (1.7.17) is given by
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U(k, t) = A cos ckt+B sin ckt, (B-3.40)

where

U(k, 0) = F (k) and

(
dU

dk

)
t=0

= G(k). (B-3.41)

Consequently, the use of (B-3.41) gives

U(k, t) = F (k) cos ckt+
G(k)

ck
sin ckt. (B-3.42)

Using the results

F
{
δ(x− ct) + δ(x+ ct)

}
=

√
2

π
cos(ckt),

F
{
χ[−ct,ct](x)

}
= F

{
H
(
ct− |x|

)}
=

√
2

π

(
sin ckt

k

)
,

applying the inverse Fourier transform to (B-3.42) gives the solution

u(x, t) = F−1
{
F (k) cos ckt

}
+

1

c
F−1

{
G(k)

sin ckt

k

}
.

Application of the convolution Theorem 1.7.1 gives the solution

u(x, t) = f(x) ∗
√

π

2

[
δ(x− ct) + δ(x+ ct)

]

+
1

c

[
g(x) ∗

√
π

2
χ[−ct,ct](x)

]
(B-3.43)

=
1

2

∫ ∞

−∞
f(x− ξ)

{
δ(ξ − ct) + δ(ξ + ct)

}
dξ

+
1

2c

∫ ∞

−∞
g(x− ξ)χ[−ct,ct](ξ) dξ

=
1

2

[
f(x− ct) + f(x+ ct)

]
+

1

2c

∫ ct

−ct

g(x− ξ) dξ, (x− ξ = α)

=
1

2

[
f(x− ct) + f(x+ ct)

]
+

1

2c

∫ x+ct

x−ct

g(α) dα. (B-3.44)

This is identical with the d’Alembert solution of the wave equation.

B-4 Basic Properties of Laplace Transforms

The Laplace transform of a continuous or piecewise continuous function f(t) for
t > 0 is denoted by L{f(t)} = f(s), and it defined by (1.9.1) and the inverse
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Laplace transform, L−1{f(s)} = f(t), is defined by (1.9.2). In this section, some
basic properties of the Laplace transform are presented. For more information, the
reader is referred to Debnath and Bhatta (2007):

L
{
eatf(t)

}
= f(s− a) (shifting), (B-4.1)

L
{
f(at+ b)

}
=

1

|a| exp
(
b

a
s

)
f

(
s

a

)
(scaling), (B-4.2)

L
{
tnf(t)

}
= (−1)n

dn

dsn
f(s), n ≥ 1, (B-4.3)

L
{
f(t)

t

}
=

∫ ∞

s

f(s) ds, (B-4.4)

L
{∫ t

0

f(τ) dτ

}
=

f(s)

s
. (B-4.5)

If L{f(t)} = f(s), then

L−1

{
f(s)

s

}
=

∫ t

0

f(τ) dτ, (B-4.6)

L−1

{
f(s)

s2

}
=

∫ t

0

{∫ t1

0

f(τ) dτ

}
=

∫ t

0

(t− τ)f(τ) dτ. (B-4.7)

In general,

L−1

{
f(s)

sn

}
=

∫ t

0

∫ t1

0

∫ t2

0

· · ·
∫ tn−1

0

f(τ) dτ dt1 · · · dtn−1

=

∫ t

0

(t− τ)n−1

(n− 1)!
f(τ) dτ. (B-4.8)

If f(t) is a periodic function with period T and L{f(t)} exists, then

L
{
f(t)

}
=
(
1− e−sT

)−1
∫ T

0

e−stf(t) dt. (B-4.9)

For example, if f(t) is a square wave function with period 2a defined by

f(t) = H(t)− 2H(t− a) + 2H(t− 2a)− 2H(t− 3a) + · · · , (B-4.10)

then the Laplace transform of f(t) is

f(s) =
1

s
tanh

(
as

2

)
. (B-4.11)

Clearly, the graph of f(t) shows that f(t) = 1 if 0 < t < a and f(t) = −1 if
0 < a < t < 2a. Thus, result (B-4.9) can be used to find
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f(s) =
(
1− e−2as

)−1
∫ 2a

0

e−stf(t) dt

=
(
1− e−2as

)−1
[∫ a

0

e−stdt−
∫ 2a

a

e−st dt

]

=
(
1− e−2as

)−1 · 1
s

(
1− 2e−sa + e−2as

)

=
1

s

(1− e−as)2

(1− e−2as)
=

1

s

(1− e−sa)

(1 + e−sa)
=

1

s
tanh

(
as

2

)
.

Theorem B-4.1 (Convolution Theorem). If f(t) ∗ g(t) is the Laplace Convolution
of f(t) and g(t) defined by

f(t) ∗ g(t) = (f ∗ g)(t) =
∫ t

0

f(t− τ)g(τ) dτ, (B-4.12)

and if L{f(t)} = f(s) and L{g(t)} = g(s), then

L
{
f(t) ∗ g(t)

}
= L

{
f(t)

}
L
{
g(t)

}
= f(s)g(s), (B-4.13)

or equivalently,

L−1
{
f(s)g(s)

}
= f(t) ∗ g(t). (B-4.14)

To prove the convolution theorem, we have

L
{
f(t) ∗ g(t)

}
=

∫ ∞

0

e−st

[∫ t

0

f(t− τ)g(τ) dτ

]
dt,

=

∫ ∞

0

∫ t

0

[
e−s(t−τ)f(t− τ) · e−sτg(τ) dτ

]
dt,

which is, reversing the order of integration,

=

∫ ∞

0

[∫ ∞

τ

e−s(t−τ)f(t− τ) dt

]
e−sτg(τ) dτ,

=

∫ ∞

0

e−sxf(x) dx

∫ ∞

0

e−sτg(τ) dτ, (t− τ = x)

= L
{
f(t)

}
L
{
g(t)

}
= f(s)g(s).

In case of the Laplace transform, we proved the convolution theorem (B-4.12)
and now we prove the dual result

L
{
f(t)g(t)

}
=

1

2πi
f̄(s) ∗ ḡ(s), (B-4.15)

where

f(t) =
1√
2πi

∫ c1+i∞

c1−i∞
estf̄(s) ds, g(t) =

1√
2πi

∫ c2+i∞

c2−i∞
estḡ(s) ds,

c1, c2 > 0.
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We have, by definition and replacing g(t) by its inverse Laplace transform,

L
{
f(t)g(t)

}
=

∫ ∞

0

e−stf(t)g(t) dt

=

∫ ∞

0

e−stf(t) dt · 1

2πi

∫ c2+i∞

c2−i∞
eztḡ(z) dz

=
1

2πi

∫ c2+i∞

c2−i∞
ḡ(z) dz

∫ ∞

0

e−t(s−z)f(t) dt

=
1

2πi

∫ c2+i∞

c2−i∞
f̄(s− z)ḡ(z) dz, Re(s− z) ≥ c1

=
1

2πi
f̄(s) ∗ ḡ(s), Re s ≥ c1 + c2.

Like the above duality property for the Fourier transform, results (B-4.12) and
(B-4.16) represent the duality property for the Laplace transform.

The following properties of the Laplace convolution (B-4.12) also hold:

L
{
(f ∗ g)′(t)

}
= L

{(
f ′ ∗ g

)
(t)

}
+ f(0)g(s) = sf(s)g(s), (B-4.16)

where the prime denotes the derivative with respect to t.
Similarly,

L
{
(f ∗ g)′(t)

}
= L

{(
f ∗ g′

)
(t)

}
+ g(0)f(s) = sf(s)g(s). (B-4.17)

Results similar to (B-4.16)–(B-4.17) can be proved for the second and the higher
derivatives of (f ∗ g)(t).

The Duhamel formulas follow from (B-4.16) and (B-4.17) as

L−1
{
sf(s)g(s)

}
= f(0)g(t) +

∫ t

0

g(t− τ)f ′(τ) dτ, (B-4.18)

or equivalently,

L−1
{
sf(s)g(s)

}
= g(0)f(t) +

∫ t

0

f(t− τ)g′(τ) dτ. (B-4.19)

If fp(t) = tp−1e−t, t > 0, then direct differentiation gives

f ′
p(t) = (p− 1)fp−1(t)− fp(t). (B-4.20)

It also follows that fp(t) ∗ fq(t) exists for all p, q > 0 and satisfies the following
identities

(fp ∗ fq)(t) = B(p, q)fp+q(t) (B-4.21)

(fp ∗ fq)′(t) = B(p, q)
[
(p+ q − 1)fp+q−1(t)− fp+q(t)

]
(B-4.22)

(fp ∗ fq)′(t) = f ′
p ∗ fq(t) =

[
(p− 1)fp−1(t)− fp(t)

]
∗ fq(t), (B-4.23)

= (p− 1)B(p− 1, q)fp+q−1(t)−B(p, q)fp+q(t), (B-4.24)

where B(p, q) are the Beta function of p and q.
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To prove (B-4.21), we have

(fp ∗ fq)(t) =
∫ t

0

fp(t− τ)fq(τ) dτ

=

∫ t

0

(t− τ)p−1e−(t−τ)τ q−1e−τ dτ, (t− τ = tu)

= e−ttp+q−1

∫ 1

0

up−1(1− u)q−1 du,

= B(p, q)e−ttp+q−1 = B(p, q)fp+q(t).

Then

(fp ∗ fq)′(t) = B(p, q)f ′
p+q(t) = B(p, q)

[
(p+ q − 1)fp+q−1(t)− fp+q(t)

]
.

The Laplace convolution (B-4.12) also satisfies the properties similar to (B-3.13).
In particular,

L
{
(f1 ∗ f2 ∗ · · · ∗ fn)(t)

}
= f1(s)f2(s) · · · fn(s). (B-4.25)

L
{
f∗n(t)

}
=
{
f(s)

}n
, (B-4.26)

where f∗n is the nth convolution product defined by

f∗n(t) = (f ∗ f ∗ · · · ∗ f)(t). (B-4.27)

In general, mathematical operations such as addition, f(x)+g(x), multiplication,
f(x)g(x), and composition, f(g(x)), for two functions f(x) and g(x) form a new
function or an ordinary output. On the other hand, the convolution f(x) ∗ g(x) rep-
resents the integral output of two functions f and g, and it plays a central role in the
subjects, such as Fourier series, Fourier transforms, number theory, harmonic anal-
ysis, probability theory, and almost any integral transform. We have already stated
the convolution Theorem 1.7.1 for the Fourier transform, and the convolution The-
orem B-4.1 for the Laplace transform of two functions. Obviously, these theorems
can be generalized to obtain a relation between the n-fold convolution of n functions
and the product of the transforms of these functions.

We next establish a nice connection between the Weierstrass transform and the
two-sided Laplace transform of f(ξ) on −∞ < ξ < ∞ defined by

L
{
f(ξ)

}
= f(s) =

∫ ∞

−∞
e−sξf(ξ) dξ (B-4.28)

which is the Fourier transform of f(ξ) for s = ik so that

L
{
f(ξ)

}
= f(s) =

√
2πF

{
f(ξ)

}
(ik) =

√
2πF (ik). (B-4.29)

Thus, the two-sided Laplace transform of f(ξ) = exp(− ξ2

4a ) is given by
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L
{
exp

(
− ξ2

4a

)}
=

√
2πF

{
e−

ξ2

4a

}
(ik = s)

=
√
4πa exp

(
as2

)
. (B-4.30)

In Example 1.7.6 in Chapter 1, the solution of the Cauchy problem for the diffu-
sion equation is given by

u(x, t) =

∫ ∞

−∞
f(ξ)G(x− ξ) dξ = f(x) ∗G(x), (B-4.31)

where the diffusion kernel G(x) is given by

G(x) =
1√
4πκt

exp

(
− x2

4κt

)
. (B-4.32)

The above results (B-4.31)–(B-4.32) are used to introduce the Weierstrass trans-
form of f(ξ) with positive parameter t in the form

W
{
f(ξ)

}
(x) = F (x) =

∫ ∞

−∞
f(ξ)G(x− ξ) dξ, (B-4.33)

where G(x), or, more precisely, Gt(x), is the kernel of the Weierstrass transform
defined by (B-4.33).

We next expand the kernel Gt(x − ξ) to express the Weierstrass transform
(B-4.33) of f(ξ) in terms of the two-sided Laplace transform (B-4.28) so that
(B-4.33) reduces to

F (x) = W
[
f(ξ)

]
(x)

=
exp(− x2

4κt )√
4πκt

∫ ∞

−∞
exp

[
−
(
− x

2κt

)
ξ

]
exp

(
− ξ2

4κt

)
f(ξ) dξ

=
exp(− x2

4κt )√
4πκt

L
{
exp

(
− ξ2

4κt

)
f(ξ)

}(
− x

2κt

)
, (B-4.34)

where L is the two-sided Laplace transform (B-4.28).
We use (B-4.32) with κt = a and (B-4.30) to derive the inverse Weierstrass

transform so that

eas
2

=
1√
4πa

∫ ∞

−∞
e−sξ exp

(
− ξ2

4a

)
dξ. (B-4.35)

Replacing s by the operator D = d
dx and using the fact that

e−ξDf(x) =

∞∑
k=0

(−ξ)kDkf(x)

k!
= f(x− ξ), (B-4.36)

equation (B-4.35) becomes
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eaD
2

f(x) =
1√
4πa

∫ ∞

−∞

[
e−ξDf(x)

]
exp

(
− ξ2

4a

)
dξ

=
1√
4πa

∫ ∞

−∞
f(x− ξ) exp

(
− ξ2

4a

)
dξ

=
1√
4πa

∫ ∞

−∞
exp

[
− (x− ξ)2

4a

]
f(ξ) dξ

=

∫ ∞

−∞
G(x− ξ)f(ξ) dξ = F (x). (B-4.37)

This gives the formula for the inverse Weierstrass transform

f(x) = e−aD2

F (x), x ∈ R. (B-4.38)

The celebrated Riemann–Liouville fractional integral of order α of a function
f(t) is usually defined by

D−αf(t) =0 D
−α
t f(t) =

1

Γ (α)

∫ t

0

(t− x)α−1f(x) dx, Reα > 0. (B-4.39)

Clearly, D−α is a linear integral operator, and (B-4.39) can be expressed in terms of
the convolution product

D−αf(t) = f(t) ∗ g(t), (B-4.40)

where g(t) = tα−1

Γ (α) and g(s) = L{g(t)} = s−α. Using the Laplace convolution
theorem to (B-4.40) gives

L
{
D−αf(t)

}
= L

{
f(t) ∗ g(t)

}
= L

{
f(t)

}
L
{
g(t)

}
= s−αf(s), (B-4.41)

or equivalently,

D−αf(t) = L−1
{
s−αf(s)

}
. (B-4.42)

This can be used to evaluate the fractional integral of a given function f(t). For
example, if f(t) = tβ , then

D−αtβ = L−1

{
Γ (β + 1)

sα+β+1

}
=

Γ (β + 1)

Γ (α+ β + 1)
tα+β . (B-4.43)

Another consequence of (B-4.39) for the fractional derivative, D−αf(t), is that
it can be defined as the solution φ(t) of the integral equation

D−αφ(t) = f(t) (B-4.44)

so that its Laplace transform gives
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φ(s) = sαf(s). (B-4.45)

Consequently, the inverse Laplace transform yields

φ(t) = D−αf(t) = L−1
{
sαf(s)

}
(B-4.46)

=
t−α−1

Γ (−α) ∗ f(t) =
1

Γ (−α)

∫ t

0

(t− x)−α−1f(x) dx. (B-4.47)

This is known as the Cauchy integral formula for the fractional derivative of f(t).
In fact, (B-4.46) can often be used to obtain the fractional derivative of f(t). For
example, if f(t) = tβ then

Dαtβ = L−1

{
Γ (β + 1)

sβ−α+1

}
=

Γ (β + 1)

Γ (β − α+ 1
t(β−α). (B-4.48)

In general, the Laplace convolution integral equation is of the form

f(t) = h(t) + λ

∫ t

0

g(t− τ)f(τ) dτ, (B-4.49)

where λ is a given constant parameter, f(t) is the unknown function, h(t) and g(t)
are given functions.

Applications of the Laplace transform to (B-4.49) combined with the convolution
theorem yields

f(s) =
h(s)

1− λg(s)
. (B-4.50)

The inverse Laplace transform gives the formal solution of f(t) in the form

f(t) = L−1

{
h(s)

1− λg(s)

}
. (B-4.51)

For example, the Abel integral equation of the first kind in the form

∫ t

0

(t− τ)α−1f(τ) dτ = g(t), (B-4.52)

or equivalently,

tα−1 ∗ f(t) = g(t), (B-4.53)

can be solved by application of the Laplace transform so that

f(s) =
1

Γ (α)
sαg(s) =

1

Γ (α)
s
[
sα−1g(s)

]
. (B-4.54)

This leads to the solution
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f(t) =
1

Γ (α)

1

Γ (1− α)

d

dt

∫ t

0

(t− τ)−αg(τ) dτ. (B-4.55)

The Abel integral equation of the second kind is given by

f(t) +
λ

Γ (α)

∫ t

0

(t− τ)α−1f(τ) dτ = g(t), α > 0, (B-4.56)

where λ is a real or complex parameter and g(t) is a given function.
Application of the Laplace transform to (B-4.56) leads to the solution

f(s) =

(
sα

sα + λ

)
g(s) =

[
s · sα−1

sα + λ
· g(s)

]
, (B-4.57)

so that the inverse Laplace transform gives the solution of (B-4.56) as

f(t) =
d

dt

∫ t

0

Eα,1

(
−λτα

)
g(t− τ) dτ, (B-4.58)

where the Mittag-Leffler function, Eα,β(z), is given by

Eα,β(z) =

∞∑
n=0

zn

Γ (nα+ β)
, α, β > 0. (B-4.59)
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Answers and Hints to Selected Exercises

1.15 Exercises

1. (a) A = 4, B = 5, C = 1, B2 − 4AC = 9 > 0. Hyperbolic, dy
dx =

B±
√
B2−4AC
2A = 1, 1

4 . Integrating gives y − x = c1 and y = 1
4x + c2,

uξη = 1
3 (uη − 8

3 ); α = ξ + η, β = ξ − η, uαα − uββ = 1
3 (uα − uβ − 8

3 ).

(b) A = 2, B = −3, C = 1, B2 − 4AC = 1 > 0. Hyperbolic, dy
dx = −1

2 , −1.

Integrating gives x+ 2y = c1, x+ y = c2; uξη = η − ξ.

(c) Hyperbolic, ξ = y2 − x2 = c1, η = y − x = c2; uξη +
1
ηuξ = 0.

(d) Hyperbolic for y < 0 and elliptic for y > 0. Parabolic for y = 0.

For the hyperbolic case, ξ = x+ 2
√−y, η = x− 2

√−y, y = −1
4 (x− c)2, and

uξη = 1
2(ξ−η) (uη − uξ).

For the elliptic case, α = x, β = 2
√
y; uαα + uββ = 1

βuβ .

(e) Elliptic for y > e−x, parabolic for y = e−x, and hyperbolic for y < e−x.

(f) Hyperbolic for x < 0 and elliptic for x > 0.

For x < 0; ξ, η = 3
2y ± (−x)3/2, (y − c) = ±2

3 (−x)3/2 (cubic parabolas).

uξη = 1
6(ξ−η) (uξ − uη).

For x > 0, α = 3
2y, β = −x3/2; uαα + uββ + ( 1

3β )uβ = 0, where α and β

satisfy the Beltrami equations βx = −
√
x αy , βy = 1√

x
αx.

(g) Hyperbolic for |x| < 2|y|, elliptic for |x| > 2|y|, and parabolic for |x| = 2|y|.

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers,
DOI 10.1007/978-0-8176-8265-1, c© Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-8176-8265-1
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(h) Hyperbolic in the first and third quadrants, elliptic in the second and fourth

quadrants.

(i) Elliptic for |x| < a, parabolic for |x| = a, and hyperbolic for |x| > a.

(j) ξ = y2, η = x2; 2ξη(uξξ + uηη) + ηuξ + ξuη = 0.

2. (d) Elliptic for all x and y. In this case, the characteristics equations are dy
dx =

±i sech2 x so that the characteristics are y∓ i tanhx = constant so that α = y,

β = tanhx. Thus, the canonical form of the given equation is uαα + uββ =

2β(1− β2)−1uβ .

(f) Hyperbolic for all x and y. The characteristic equations are dy
dx = ±sech2x

so that the characteristics are y ∓ tanhx = const., ξ = y + tanhx, and η =

y − tanhx. Thus, the canonical form of the given equation is uξη = (η − ξ)×

(uξ − uη){4− (ξ − η)2}−1.

(g) dy
dx = cosec y; ξ = x+ cos y, η = y; uηη = sin2 η cos ηuξ.

4. (a) A = u2, B = 2uxuy , C = −u2. Hence, B2 − 4AC = 4(u2
xu

2
y + u4) > 0

for all u(x, y). Hyperbolic for all u(x, y).

(b) |∇u| =
√
u2
x + u2

y . A = 1 − u2
x, B = −2uxuy , C = 1 − u2

y . Hence,

B2−4AC = −4+4(u2
x+u2

y) = −4+4(Δu)2 > 0, = 0, or < 0 for |Δu| > 1,

= 1, or, < 1.

5. αn = (nπ� ), n = 0, 1, 2, 3, . . . ; un(x, t) = an exp(−α2
nkt) cos(

nπx
� ), and

u(x, 0) = a0 +
∑∞

n=1an cos(
nπx
� ) is the cosine Fourier series, where a0 =

1
�

∫ �

0
f(x) dx and an = 2

�

∫ �

0
f(x) cos(nπx� ) dx.

6. For λ = −α2, u(x, y) = (A cosαx+B sinαx)(C coshαy +D sinhαy),

A = 0, and α = nπ
a , n = 1, 2, 3, . . . ; C

D = − tanhαb, and u(x, y) =

∑∞
n=1an sin(

nπx
a ) sinh nπ(b−y)

a , where an = (sinh nπb
a )−1( 2a )

∫ a

0
f(x) ×

sin(nπxa ) dx.

7. Hint: We assume u(x, t) = X(x)T (t) �= 0 and substitute in the given equation

to obtain XT ′′(t) + c2TX ′′′′(x) = 0, or equivalently, − 1
c2

T ′′

T = X′′′′

X = λ4.
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We have X ′′′′ = λ4X , T ′′ = −λ4c2T , where λ4 is a separation constant. Thus,

X(x) = A coshλx+B cosλx+ C sinhλx+D sinλx,

T (t) = E cos(λ2ct) + F sin(λ2ct), B = −A, D = −C,

X(x) = A(coshλx− cosλx) + C(sinhλx− sinλx).

From conditions X(�) = 0 = X ′(�), we obtain

∣∣∣∣∣∣
cosλ�− cosλ� sinhα�− sinα�

sinhλ�+ sinλ� coshα�− cosα�

∣∣∣∣∣∣ = 0 =⇒ cosλ� coshλ� = 1.

8. We seek a nontrivial separable solution u(x, t) = X(x)T (t) so that sinα� = 0,

α = (nπ� ), n = 1, 2, 3, 4, . . .; sinhα� �= 0. u(x, t) =
∑∞

n=1[an cos{(nπ� )2ct}+

bn sin{(nπ� )2ct}] sin(nπx� ).

9. an = 0 for all even n, an = ( 4�
n2π2 ), n = 1, 5, 9, . . . , and an = −( 4�

n2π2 ),

n = 3, 7, 11, . . . .

Thus, u(x, t) =
∑∞

n=1an exp(−n2π2κt
�2 ) sin(nπx� ).

11. Application of the Fourier transform, F{u(x, t)} = U(k, t), to the problem

gives d2U
dt2 + k4U = 0, U(k, 0) = F (k), and Ut(k, 0) = 0. Thus, the solu-

tion of the transformed system is U(k, t) = F (k) cos(k2t). Consequently, the

inverse Fourier transform together with the Fourier convolution yields the so-

lution u(x, t) = F−1{F (k) cos(k2t)} = 1√
2π

∫∞
−∞ f(x − ξ)h(ξ, t) dξ, where

F−1{cos(k2t)} = 1√
2t
cos(x

2

4t − π
4 ) = h(x, t).

12. Apply the joint Fourier and Laplace transforms (1.9.12) to obtain U(k, s) =

(s+α)F (k)+G(k)
(s2+sα+c2k2) . Application of the joint inverse transforms combined with the

convolution of the Fourier transform gives the solution for u(x, t).

13. u(x, t) = 1√
2π

∫∞
−∞{A(k) exp[i(kx+ ωt)] +B(k) exp[i(kx− ωt)]} dk, where

ω =
√
c2k2 + a2, and A(k) = 1

2 [F (k) + 1
iωG(k)], and B(k) = 1

2 [F (k) −
1
iωG(k)].
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15. Hint: F−1
{ cos
sin

(atk2)
}
= 1

2
√
at
[cos( x2

4at )± sin( x2

4at )].

17.

φ(x, z, t) = − P

2π

∫ ∞

−∞

sinωt

ω
exp

(
ikx+ |k|z

)
dk, ω2 = g|k|,

η(x, t) =
P

2π

∫ ∞

−∞
cosωt exp(ikx) dk ≈ Pt

2
√
2π

·
√
g

x3/2
cos

(
gt2

4x

)

for gt2  4x.

19.

φ(x, z, t) =
iP exp(εt)

2πρ

∫ ∞

−∞

(Uk − iε) exp(|k|z + ikx)

(Uk − iε)2 − g|k| dk,

η(x, t) =
P exp(εt)

2πρ

∫ ∞

−∞

|k| exp(ikx) dk
(Uk − iε)2 − g|k| .

23. Using the Fourier transform, U(k, y) = F{u(x, y)}, gives the solution of the

transformed system in the form U(k, y) = F (k) cos(k2y). The inverse Fourier

transform together with the Fourier convolution gives the solution u(x, y) =

1√
4πy

∫∞
−∞ f(x− ξ) cos( ξ

2

4y − π
4 ) dξ.

24.

u(x, y, t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
F (k, �) cos

{
c
(
k2 + �2

) 1
2 t
}

× exp
{
i(kx+ �y)

}
dk d�.

25. Application of the joint Laplace and Fourier transform gives Ū(k, s) =

(s + κk2)−1Q̄(k, s). The use of the inverse Laplace transform combined with

the convolution theorem yields

U(k, t) = exp
(
−κk2t

)
∗Q(k, t)

=

∫ t

0

exp
[
−κk2(t− τ)

]
Q(k, τ) dτ.



1.15 Exercises 771

Application of the inverse Fourier transform and its convolution theorem gives

u(x, t) =

∫ t

0

F−1
{
P (k, t− τ)Q(k, τ)

}
dτ

=

∫ t

0

p(x, t− τ) ∗ q(x, τ) dτ

=
1√
2π

∫ t

0

[∫ ∞

−∞
p(x− ξ, t− τ)q(ξ, τ) dξ

]
dτ

=
1√
4πκ

∫ t

0

(t− τ)−
1
2 dτ

∫ ∞

−∞
q(ξ, τ) exp

[
− (x− ξ)2

4κ(t− τ)

]
dξ,

where p(x, τ) = F−1{exp(−κk2τ)} = 1√
2κτ

exp(− x2

4κτ ).

27. u(x, t) = 1
2π

∫∞
−∞{F (k) cos(xα)+G(k)

α sin(xα)}eikt dk, where α2 = α2(k) =

1
c2 (k

2 − iak − b).

28. Hint: Seek a solution of the formψ(x, y, t) = φn(x, t) sin(nπy) withψ0(x, y) =

ψ0n(x) sin(nπy), so that φn(x, t) satisfies the equation ∂
∂t [

∂2φn

∂x2 − α2φn] +

β ∂φn

∂x = 0, whereα2 = (nπ)2+κ2. Apply the Fourier transform of φn(x, t) with

respect to x, and use Ψn(k, 0) = F{ψ0n(x)}. φn(x, t) =
1√
2π

∫∞
−∞ Ψn(k, 0)×

exp[i{kx− ω(k)t}] dk, where ω(k) = −βk(k2 + α2)−1.

29. Divide the first equation by L and the second equation by C to obtain the third

and the fourth equations It+ R
L I = − 1

LVx, and Vt+
G
CV = − 1

C Ix. Differentiate

the third equation with respect to time t and replace Vt and Vx on the right-

hand side to derive a second order equation telegraph equation for I in the form

Itt − c2Ixx + (p + q)It + pqI = 0, where c2 = (LC)−1, p = R
L , and q = G

C .

Similar calculation can be used to obtain the same equation for V . Thus, u = I

or V satisfies the above telegraph equation with coefficients c2, p, and q, or with

coefficients c2, a, and b.

30. (a) V (x, t) = V0 erfc( x
2
√
κt
), κ = a−1 = (RC)−1. I(x, t) = Vo

R
1√
πκt

×

exp(− x2

4κt ).

(b) V (x, t) = 1
2e

−x
√
b erfc{x

2

√
a
t +

√
bt
a }+

1
2e

−x
√
b erfc{x

2

√
a
t −

√
bt
a }.
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31. V (x, t) = V0 exp(−kx
c )f(t− x

c )H(t− x
c ).

32. u(x, t) = x cosωt.

33. u(x, t) = k
(πc)2 [1− cos(πcta )] sin(πxa ).

34. u(z, t)U exp[iωt− ( ω
2ν )

1
2 (1 + i)z], u(z, t) = Uerfc( z

2
√
νt
).

35. u(z, t) = Ut[(1 + 2ζ2)erfc(ζ)− 2ζ√
π
exp(−ζ2)], ζ = z

2
√
νt

.

36.

q(z, t) =
a

2
eiωt

[
e−λ1zerfc

{
ζ −

[
it(2Ω + ω)

] 1
2
}

+ eλ1zerfc
{
ζ +

[
it(2Ω + ω)

] 1
2
}]

+
b

2
e−iωt

[
e−λ2zerfc

{
ζ −

[
it(2Ω − ω)

] 1
2
}

+ eλ2zerfc
{
ζ +

[
it(2Ω + ω)

] 1
2
}]
,

where λ1,2 = { i(2Ω±ω)
ν } 1

2 . Thus,

q(z, t) ∼ a exp(iω − λ1z) + b exp(−iωt− λ2z), δ1,2 =

{
ν

|2Ω ± ω|

} 1
2

.

43. (b) Hint: f̃(k) = ( Q
πak )J1(ak).

45. u(r, t) =
∫∞
0
k f̃(k) cos(btk2)J0(kr) dk.

If f(r) = exp(− r2

a2 ), then f̃(k) = a2

2 exp(−a2k2

4 ).

Using the self-reciprocity of the Hankel transform gives the solution

u(r, t) =
1

2
a2H0

[
exp

(
−a2k2

4

)
cos

(
btk2

)]
(r)

= a2Ω(t) exp
[
−a2Ω(t)r2

][
a2 cos

(
4btΩ(t)r2

)
+ 4bt sin

(
4btΩ(t)r2

)]
,

where Ω(t) = (a4 + 16b2t2)−1.

48. Hint: The solution of the dual integral equations

∫ ∞

0

kJ0(kr)A(k) dk = u0, 0 ≤ r ≤ a,

∫ ∞

0

k2J0(kr)A(k) dk = 0, a < r < ∞,

is given by A(k) = (2u0

π ) sin(ak)k2 .
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49. Hint: See Debnath (1994, pp. 103–105).

50. u(r, z) = ( 1
πa )

∫∞
0

k−1J1(kr)J0(kr) exp(−kz) dk.

52. Hint: L−1[(s2 + a2)−
1
2 exp{−k(s2 + a2)

1
2 }] = H(t− k)J0(a

√
t2 − k2).

Application of the joint Laplace and Hankel transforms

˜̄u(k, z, s) =

∫ ∞

0

rJ0(kr) dr

∫ ∞

0

e−stu(r, z, t) dt

to the given equation and the general boundary condition uz(r, 0, t) = f(r, t) =

H(a− r)g(t) gives

d2 ˜̄u

dz2
− 1

c2
(
s2 + k2c2

)
˜̄u = 0, ˜̄uz(k, 0, s) =

a

k
J1(ak)ḡ(s).

The bounded solution of the equation is

˜̄u(k, z, s) = ˜̄A(k, s) exp

[
−z

c

√
s2 + c2k2

]

with ˜̄A(k, s) = −
(
ac

k

)
ḡ(s)J1(ak)√
s2 + c2k2

.

Thus, ˜̄u(k, z, s) = −(ack ) J1(ak)√
s2+c2k2 ḡ(s) exp[− z

c

√
s2 + c2k2].

The inverse Laplace transform gives

ũ(k, z, t) = −
(
ac

k

)
J1(ak)L−1

[
g(s)√

s2 + c2k2
exp

(
−z

c

√
s2 + c2k2

)]

= −ac

k
J1(ak)

∫ t

0

g(t− τ)H

(
τ − z

c

)
J0

(
ck

√
τ2 − z2

c2

)
dτ.

The inverse Hankel transform leads to the final solution

u(r, z, t) = (−ac)
∫ ∞

0

J0(kr)J1(ak) dk

∫ t

0

g(t− τ)H

(
τ − z

c

)

× J0

[
k
√(

c2τ2 − z2
)]

dτ.
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This, for g(t) = δ(t), becomes

u(r, z, t) = (−ac)H
(
t− z

c

)∫ ∞

0

J0(kr)J1(ak)J0
[
k
√
c2t2 − z2

]
dk.

53. u(r, z) = b
∫∞
0
k−1( sinh kz

cosh ka )J1(bk)J0(kr) dk.

54. Hint: H0[(a
2 − r2)−

1
2H(a− r)] = sin(ak)

k , and

L−1
[{√

s(
√
s− a)

}−1
exp

(
−k

√
s
)]

= exp
(
−ak − a2t

)
erfc

(
k

2
√
t
− a

√
t

)
.

55. Hint: Use the joint Hankel and Laplace transform method.

57. Use the Hankel transform and derive

u(r, z, t) =
1

ρ

∫ ∞

0

k exp(kz)J0(kz)

[∫ ∞

0

{∫ r0(t)

0

αp(α, τ)

× J0(kα) dα

}
cos

{
ω(t− τ)

}
dτ

]
,

where ω2 = gk.

59. Hint: Use the joint Laplace and Fourier transform.

G(x, t) =
W

2πm

∫ ∞

−∞

sinαt

α
exp(ikx) dk, α =

(
a2k4 + ω2

) 1
2 ,

where a2 = EI
m and ω2 = κ

m .

61. Hint: Set

G(x, y; ξ, η) =
∞∑

m=1

∞∑
n=1

amn sin

(
mπx

a

)
sin

(
nπy

b

)

in the original equation to find amn from

[(
mπ

a

)2

+

(
nπ

b

)2](
ab

4

)
amn = sin

(
mπξ

a

)
sin

(
nπη

b

)
.
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62. Apply the joint Laplace and double Fourier transform.

63. Hint: Gtt − c2Gxx + d2G = δ(x)δ(t).

The joint Laplace and Fourier transform gives

˜̄G(k, s) =
1√
2π

1

(s2 + α2)
, α =

(
c2k2 + d2

) 1
2 .

The inverse transforms give

G(x, t) =
1

2πc

∫ ∞

−∞

(
k2 +

d2

c2

)− 1
2

sin

{
ct

√
k2 +

d2

c2

}
exp(ikx) dk

=

(
1

2c

)
J0

[
d

c

√
c2t2 − x2

]
H
(
ct− |x|

)
.

64. Hint: Eigenvalues are λn = (nπ� )2, n = 0, 1, 2, 3, . . . . Eigenfunctions are

Xn(x) = An cos(
nπx
� ) +Bn sin(

nπx
� ).

Thus,

u(x, t) =

∞∑
n=0

Xn(x)Tn(t) =

∞∑
n=0

un(x, t)

=
1

2
a0 +

∞∑
n=1

[
an cos

(
nπx

�

)
+ bn sin

(
nπx

�

)]
exp

(
−nπkt

�

)
,

f(x) = u(x, 0) =
a0
2

+

∞∑
n=1

[
an cos

(
nπx

�

)
+ bn sin

(
nπx

�

)]
,

where

an =
1

�

∫ �

−�

f(ξ) cos

(
nπξ

�

)
dξ, n = 0, 1, 2, . . . ,

bn =
1

�

∫ �

−�

f(ξ) sin

(
nπξ

�

)
dξ, n = 1, 2, 3, . . . .

65. (b) Initial data tend to zero as n → ∞, but the solution

un(x, y) → ∞ as n → ∞.
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66. (a) Hint: λ = 0, u(x) = A+Bx with the boundary conditions leads to the trivial

solution.

If λ < 0, u(x) = A cosh kx + B sinh kx(λ = −k2). The first boundary con-

dition gives A = 0, and the second boundary condition yields k = − tanh k.

The graphical representation of y = −k and y = tanh k shows that there is

no intersection of these curves for k > 0. Hence, there are no negative eigen-

values. For λ = k2 > 0, u(x) = A cos kx + B sin kx. The boundary con-

ditions give A = 0, and B �= 0, k = − tan k. The graphical representation

of y = −k and y = tanh k shows that there is an infinite number of values

k = kn (n = 1, 2, 3, . . .) so that there is an infinite number of eigenvalues

λ = k2n ≈ 1
4 (2n + 1)2π2 for large n. The corresponding eigenfunctions are

un(x) = sin knx, where n = 1, 2, 3, . . . .

(b) λn = k2n = (nπ)2, un(x) = An cosnπx, n = 0, 1, 2, . . . .

(c) λn = k2n = (2nπ)2, un(x) = {sin 2πnx, cos 2πnx}, (n = 0, 1, 2, . . .)

are eigenfunctions. To each eigenvalue, there correspond two eigenfunctions.

Eigenvalues are degenerate.

(d) For 1− 4λ = 0, or > 0, only trivial solutions.

For 1 − 4λ = −k2 < 0, we obtain eigenvalues λn = 1
4 (1 + n2π2

a2 ) and eigen-

functions un(x) = Bne
−x sin knx, (kn = nπ

a , n = 1, 2, 3, . . .).

67. Hint: Multiply the equation by p(x)
a2(x)

so that

p(x)u′′ + p′(x)u′ +
[
q(x) + λρ(x)

]
u = 0,

where p′(x) = p(x)a1(x)
a2(x)

, q(x) = p(x)a0(x)
a2(x)

, and ρ(x) = p(x)
a2(x)

.

69. Hint: λ = k2 > 0. The general solution is

y(x) = A+Bx+ C cos kx+D sin kx.

The first boundary conditions at x = 0 give A = C = 0.



1.15 Exercises 777

The remaining boundary conditions at x = a give

Ba+D sin ka = 0, k2D sin ak = 0.

For nontrivial solutions, B = C, D �= 0, k = nπ
a .

Thus, λn = n2π2

a2 , and yn(x) = Dn sin(
nπx
a ).

The critical buckling loads are Pn = EI(n
2π2

a2 ). The Euler load is the largest

load which the beam can withstand before possible buckling: P1 = π2

a2 (EI).

The corresponding fundamental bucking mode is y1(x) = D1 sin(
πx
a ).

71. X ′′ + 2bX ′ + k2X = 0, Ṫ + k2T = 0, where −k2 is a separation constant.

m = −b± iα, α2 = k2 − b2 > 0.

X(x) = exp(−bx)(A cosαx + B sinαx). Using boundary conditions, we ob-

tain A = 0, sinαa = 0, B �= 0, α = (nπa ), n = 1, 2, 3, . . . .

Hence, T (t) = C exp(−k2t). Thus, the final solution is

u(x, t) =

∞∑
n=1

an exp
(
−k2nt− bx

)
sinαnx, k2n = b2 + α2

n.

72. (a) Eigenvalues are k2 = (λa )
2 and eigenfunctions are

R(r) = AJn

(
λr

a

)
, Jn(ka) = 0,

T (t) = B cos

(
λct

a

)
+ C sin

(
λct

a

)
, Θ(θ) = D cosnθ + E sinnθ,

u(r, θ, t) =

∞∑
n=0

∞∑
m=0

(amn cosnθ + bnm sinnθ)Jn

(
λmnr

a

)
cos

(
λmnct

a

)
,

where λmn are positive roots of Jn(x) = 0.

f(r, θ) =
∞∑

n=0

∞∑
m=0

(anm cosnθ + bnm sinnθ)Jn

(
λmnr

a

)
, where

a0n =
1

πa2J2
1 (λn0)

∫ a

0

∫ π

−π

f(r, θ)J0

(
λm0r

a

)
r dr dθ and n ≥ 1,
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(anm, bnm) =
2

πa2J2
n+1(λmn)

∫ π

−π

∫ a

0

f(r, θ)Jn

(
λmnr

a

)

× (cosnθ, sinnθ)r dr dθ.

The set of frequencies is {πc
a λmn : n ≥ 0,m ≥ 1}.

(b) Since f is independent of θ, so is u. The solution is

u(r, t) =

∞∑
m=1

amJ0

(
λmr

a

)
cos

(
λmct

a

)
, λm = λm0,

f(r) =
(
a2 − r2

)
= u(r, 0) =

∞∑
m=1

amJ0

(
λmr

a

)

so that am = 8a2

λ3
mJ1(λm) .

73. (a) Hint: Use u(r, z) = R(r)Z(z) so that

r2R′′ + rR′ + k2r2R = 0, R(a) = 0; Z ′′ = k2Z, Z(0) = 0.

The eigenvalues of this Sturm–Liouville problem are k2n = (λn/a)
2 with the

corresponding eigenfunctionsRn(r) = J0(
λnr
a ), where λn are the positive roots

of J0(x) = 0.

Thus, Zn(z) = sinh( zλn

a ). u(r, z) =
∑∞

n=1anJ0(
rλn

a ) sinh( zλn

a ), and g(r) =

u(r, h) =
∑∞

n=1 an sinh(
hλn

a )J0(
rλn

a ), where bn = an sinh(
hλn

a ) =
∫ a

0
rg(r)J0(

rλn

a ) dr.

(b) an = cosech( rλn

a )
∫ a

0
rJ0(

rλn

a ) dr =
2cosech(hλn

a )

λnJ1(λn)
.

Hence, the solution u(r, z) follows.

74. (a) Hint: Multiply the left-hand side of the wave equation by 2ut, and the re-

sulting expression follows from performing the indicated differentiations on the

right-hand side of the differential equality.

(b)

2ut

(
c2∇2

nu− utt

)
= 2c2

[
(utux1)x1 + (utux2)x2 + · · ·+ (utuxn)xn

]

− c2
[(
u2
x1

+ u2
x2

+ · · ·+ u2
xn

)
+ u2

t

]
t
.
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(c) Perform the indicated differentiation on the right-hand side of (b) so that (c)

can be obtained.

75. Hint: (a) In the context of a stretched string, −d2u can be interpreted as an

additional spring force normal to the string.

Multiply the Klein–Gordon equation by ut to obtain

ututt − c2utuxx + d2utu = 0,

1

2

∂

∂t

(
u2
t

)
+

c2

2

∂

∂x

(
u2
x

)
− c2

∂

∂x
(utux) +

1

2
d2
(
u2
)
= 0.

(c) Assume w = u− v and u, v or (ux, vx) are given at x = a, b.

wtt = c2wxx, a ≤ x ≤ b,

w(x, 0) = 0 = wt(x, 0); w(orwx) = 0 at x = a, b.

Using (b), E(t) = E0 = 0, and noting w(x, 0) = 0 implies wx(x, 0) = 0.

Therefore, E(t) = 1
2

∫ b

a
(w2

t + c2w2
x + d2w2) dx = 0.

Since the integrand is positive, w ≡ 0.

76. (a) Hint: Seek a separable solution u(r, t) = R(r)T (t) so that

r2R′′ + 2rR′ + k2r2R = 0, T ′′ + c2k2T = 0,

R(r) =
1√
r

[
A1J 1

2
(kr) +B1Y 1

2
(kr)

]
,

T (t) = C cos(ckt) +D sin(ckt) =
1

r
(A sin kr +B cos kr).

We assume that R(r) is finite at r = 0, and hence, B = 0.

The eigenvalues are k = kn = nπ
a , n = 1, 2, . . . .

u(r, t) =
∑∞

n=1(an cos cknt+ bn sin cknt)
1
r sin(

nπr
a ).

The initial conditions u(r, 0) = f(r) and ut(r, 0) = g(r) can be satisfied by the

Fourier series expansion of rf(r) and rg(r) on (0, a).

(b) an = 0, b2n = 0, b2n−1 = 8a3

cπ4(2n−1)4 .
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77. We seek a separable solution u(r, z) = R(r)Z(z) so that r2R′′+rR′−k2r2R =

0, and Z ′′ + k2Z = 0 with Z(0) = Z(h) = 0. k2 = n2π2

h2 and Z(z) =

an sin(
nπz
h ). We assume R(r) is finite at r = 0, and hence R(r) = anI0(

nπr
h ),

and thus, the solution is u(r, z) =
∑∞

n=1 anI0(
nπr
h ) sin(nπzh ). We have f(z) =

∑∞
n=1 anI0(

nπa
h ) sin(nπza ) so that an = [I0(

nπa
h )]−1 2

h

∫ h

0
f(z) sin(nπzh ) dz.

78. (a) Hint: u(1, θ) = a0

2 +
∑∞

n=1(an cosnθ + bn sinnθ) = 1 + cos 2θ.

a0 = 2, a2 = 1, an = 0, n �= 0, 2.

bn = 0 for all n, u(r, θ) = 1 + r2 cos 2θ.

(b) a0 = 1
π

∫ π

−π
|2θ| dθ = 2

π [−
∫ 0

−π
θdθ +

∫ π

0
θdθ] = 2π.

an = 1
π

∫ π

−π
|2θ| cos θ dθ = − 8

πn2 for odd n, and 0 for even n.

bn = 1
π

∫ π

−π
|2θ| sinnθ dθ = 0.

Thus, u(r, θ) = π − 8
π

∑∞
n=0(2n+ 1)−2r2n+1 cos(2n+ 1)θ.

(c) Hint:
∑∞

n=1(an cosnθ + bn sinnθ) = 2 cos 2θ.

a2 = 1, an = 0, n �= 2; bn = 0 for all n.

Therefore, u(r, θ) = a0

2 + r2 cos 2θ.

(d) u(r, θ) = a0

2 + r(cos θ + sin θ).

79. (a) Hint: Seek a separable solution u(r, θ) = R(r)Θ(θ) �= 0 so that

r2R′′(r) + rR′(r)− λ2R = 0, Θ′′(θ) + λ2Θ(θ) = 0.

Since u(r, θ) is periodic with period 2π, so is Θ(θ).

Eigenvalues: λn = λ = n, n = 1, 2, . . . .

The solution of the Cauchy–Euler equation for R(r) is

n = 0: R0(r) =
1

2
(A0 +B0 ln r),

n ≥ 1: Rn(r) = Anr
n +Bnr

−n, Θn(θ) = Cn cosnθ +Dn sinnθ,

u(r, θ) =
1

2
(a0 + b0 ln r) +

∞∑
n=1

(
anr

n + bnr
−n

)
cosnθ

+
(
cnr

n + dnr
−n

)
sinnθ.
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The Fourier coefficients for r = a are

(a0 + b0 ln a) =
1

π

∫ π

−π

f(θ) dθ,

(
ana

n + bna
−n

)
=

1

π

∫ π

−π

f(θ) cosnθ dθ,

(
cna

n + dna
−n

)
=

1

π

∫ π

−π

f(θ) sinnθ dθ.

The process is similar, when r = b gives the Fourier coefficients.

(b) Use the same method described in Exercise 76(a) to find

r = 1: a0 = 1, an + bn = 0, n ≥ 1; c1 + d1 = 1,

cn + bn = 0, n > 1.

r = 2: b0 = −1, 2a1 +
b1
2

= 1, 2nan + 2−nbn = 0 for n > 1,

2ncn + 2−ndn = 0, n ≥ 1; a1 =
2

3
, b1 = −2

3
,

c1 = −1

3
, d1 =

4

3
,

u(r, θ) =
1

2
(1− ln r) +

2

3

(
r − r−1

)
cos θ − 1

3

(
r − 4r−1

)
sin θ.

(c) Use the solution obtained in Exercise 76(a) with the given boundary condi-

tions.

r = 1: b0 = 0, an − bn = 0, n ≥ 1; cn − dn = 0, n ≥ 1,

r = 2: b0 = 0, a1 −
1

4
b1 =

3

4
, c1 −

1

4
d1 =

3

4
.

Thus, a1 = b1 = 1 and c1 = d1 = −1.

Hence, the solution is u(r, θ) = a0

2 + (r + r−1) cos θ − (r + r−1) sin θ.

81. Define v(x, y) = 1
4 (x

2 + y2) so that ∇2φ = 1 and assume w = u + v so that

∇2w = 0, w = v on ∂D, and w(0, 0) = u(0, 0). Use the result min∂Dv ≤

u(0, 0) ≤ max∂Dv.
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Max v = a2

4 and the minimum of v = r2

4 , where r is determined from the

circle x2 + y2 = r2 which touches ∂D: x
a + y

b = 1, (x > 0, y > 0).

Since (x, y) = ( r
2

4 ,
r2

4 ), one has r2 = a2b2(a2 + b2)−1.

82. Hint: We take v = u1 − u2 where u1 and u2 are solutions of ∇2u = 0 on D.

∇2v = 0 for x ∈ D and v(x) = 0 on ∂D.

By the min–max principle, v attains its maximum and minimum on ∂D so that

0 ≤ v ≤ 0 for x ∈ D, and hence, v = 0 on D.

91. Hint: At the leading order ∇2u0 = 0, u0(1, θ) = sin θ.

Seek a separable solution u0 = f(r) sin θ so that f ′′+ 1
rf

′− 1
r2 f = 0, f(1) = 1.

The solution is f(r) = Ar + Br−1. For the bounded solution, B ≡ 0. Hence

f(r) = r, and u0 = r sin θ. At O(ε2), u2 satisfies the equation ∇2u2 =

−r sin θ, u2(1, θ) = 0. For the separable solution u2 = g(r) sin θ, g(r) satis-

fies g′′ + 1
r g

′ − 1
r2 g = − r

A , g(1) = 0. Using the variation of parameters, the

bounded solution is g(r) = 1
8 (r − r3).

92. Hint: u = 0 satisfies the given equation and the far field boundary condition, but

not the boundary condition at r = 1. We need a boundary layer near r = 1 so that

we can define r = 1 + εr′ with r′ = O(1) in the boundary layer for ε � 1. At

the leading order ur′r′ − u = 0, which gives solution u = A(θ)er
′
+B(θ)e−r′ .

This matches with the far field if A ≡ 0 and satisfies the condition at r′ = 0

when B = 1. Thus the inner solution and a composite solution are valid at the

leading order for r ≥ a. Hence the solution follows.

93. Hint: Seek a separable solution u(x, t) = X(x)T (t) �= 0, where X(x) and

T (t) satisfy X ′′ + λX = 0, 0 < x < �, X ′(0) = 0 = X ′(�), and T ′(t) +

λκT = 0, t > 0. The eigenvalues are λn = (nπ� )2 and the eigenfunctions are

Xn(x) = An cos(
nπx
� ), n = 0, 1, 2, . . . . Thus, the solution is

u(x, t) = a0 +

∞∑
n=1

an cos
nπx

�
exp

(
−κn2π2

�2
t

)
,
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f(x) = u(x, 0) = a0 +

∞∑
n=1

an cos
nπx

�
, where a0 =

1

�

∫ �

0

f(x) dx,

an =
2

�

∫ �

0

f(x) cos

(
nπx

�

)
dx, n = 1, 2, 3, . . . .

(b) a0 = 1
2 , an = 2

n2π2 [(−1)n − 1].

96. The solution follows from (1.9.15), when q(ξ, τ) = sin(kξ − ωτ).

In case (a), when c �= ω
k ,

u(x, t) =
(
k2c2 − ω2

)−1
sin(kx− ωt)

+ (kc− ω)
[
2kc

(
ω2 − k2c2

)]−1
sin(kt+ kct)

+ (kc+ ω)
[
2kc

(
ω2 − k2c2

)]−1
sin(kt− kct).

Thus, the solution consists of three sinusoidal waves that propagate with differ-

ent amplitudes and with velocities ±c and the phase velocity (ω/k).

In case (b), when c = ω
k , the solution is given by

u(x, t) =
1

4
sin(x− t)− 1

4
sin(x+ t) +

t

2
cos(x− t).

Thus, the solution consists of two harmonic waves that propagate with ve-

locities ±1 and another harmonic wave whose amplitude grows linearly with

time t.

98. Use the joint Laplace and finite Hankel transform of order one defined by

V̄ (km, s) =

∫ a

0

rJ1(rkm) dr

∫ ∞

0

e−stv(r, t) dt,

where V̄ (km, s) is the Laplace transform of V (km, t), and km are the roots of

the equation J1(akm) = 0.

The solution of the transformed system is
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V̄ (km, s) =
a2νkmΩf̄(s)J ′

1(akm)

(s+ νk2m)
.

(See Myint-U and Debnath 2007, Chapter 12, p. 507.)

The solution is

v(r, t) = −2νΩ

∞∑
m=1

kmJ1(rkm)

J ′
1(akm)

∫ t

0

f(t− τ) exp
(
−νk2mτ

)
dτ.

When f(t) = cosωt, the solution is given by

v(r, t) = −2νΩ

∞∑
m=1

kmJ1(rkm)

J ′
1(akm)

∫ t

0

cosω(t− τ) exp
(
−νk2mτ

)
dτ.

When ω = 0, the solution becomes

v(r, t) = rΩ − 2Ω

∞∑
m=1

J1(rkm) exp(−νtk2m)

kmJ2(akm)
.

In the limit as t → ∞, the transients die out and the ultimate steady-state is

attained as the rigid body rotation about the axis of the cylinder.

99. (b) The Cauchy data tend to zero as n → ∞. But, for t > 0, the solution

un(x, t) → ∞ as n → ∞ for certain values of x and t. So, the problem is

ill-posed.

100. (b) The initial data tend to zero as n → ∞. However, for y �= 0, the solution

un(x, y) → ∞ as n → ∞. Thus, the problem is not well-posed.

101. (b) For y �= 0, the amplitude of the solution tends to infinity as n → ∞ due

to the factor sinh(ny), even though the initial data uy(x, 0) = exp(−
√
n)×

sinnx → 0 as n → ∞. However, the solution un(x, y) and all of its derivatives

tend to zero as n → ∞ uniformly throughout the half-strip in the (x, y) plane.

102. Without the last term in the first equation, the equation is known as the Eu-

ler equation. The second equation is the continuity equation for a certain vir-
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tual fluid. The square of the amplitude a2 plays the role of density ρ and

aV (x) plays the role of pressure. The second term on the right-hand side of

the first equation plays the role of dispersion. Thus, the transformation of the

Schrödinger equation into two equations in fluid dynamics is usually referred

to as the hydrodynamic analogy of quantum mechanics.

103. (b) uxx = −n cosnx coshny, uyy = n cosnx coshny, and hence, uxx +

uyy = 0. The boundary data is changed by only a small amount as u(0, y) → 0

as n → ∞. Yet the solution u(x, y) is changed from zero by a large amount.

Along the line x = 0, the solution is u(0, y) = 1
n coshny → ∞ as

y → ∞. Thus, a small change of the boundary data produces a large change in

the solution. So, the problem is ill-posed.

104. (a) We have ut = κn2 exp(κn2t) sinnx and uxx = −n2 exp(κn2t) sinnx,

and hence, ut + κuxx = 0.

(b) Thus, u(x, 0) = 1
n sinnx → 0 as n → ∞, yet u(x, t) → ∞ as n → ∞ for

any positive t. Hence, the problem is ill-posed.

105. (b) It is easy to verify that u(x, t) = 1
n sinnx exp(κn2−δn4)t is the solution of

the equation. It also satisfies the initial condition. The solution is well behaved

for large n, and also it is bounded for all n for any finite t. However, the solution

is unstable as n → 0. For small δ, the negative diffusion equation is obviously

ill-posed.

2.9 Exercises

1. (i) Hint: 0 = δ
∫ t2
t1
(T − V ) dt =

∫ t2
t1
(δT − δV ) dt =

∫ t2
t1
(mṙ · δṙ+ F · δr) dt.

(ii) 0 = δ
∫ t2
t1
( 12mẋ2 − 1

2mω2x2) dt, or ẍ+ ω2x = 0.

2. Hint: Apply the variational principle

δ

∫ t2

t1

(T − V ) dt = 0, where T =
1

2
ρ

∫ �

0

ẏ2 dx and

V =
1

2

∫ �

0

EIy′′2 dx.
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Thus, ρÿ + EIy(iv) = 0.

3. ηt + 6ηηx + ηxxx = 0.

10. (a) We have ∇4u = 0 (biharmonic equation).

(b) utt − α2∇2u+ β2u = 0 (Klein–Gordon equation).

(c) φt + αφx + βφxxx = 0 (φ = ux, KdV equation).

(d) utt + α2uxxxx = 0 (elastic beam equation).

(e) d
dx (pu

′) + (r + λs)u = 0 (Sturm–Liouville equation).

11. ( �
2

2m )∇2ψ + (E − V )ψ = 0.

14. utt − c2uxx = F (x, t), c2 = T∗

ρ .

18. Hint: (a) Use the vector identity

(u · ∇)u = ∇( 12u · u)− u× (∇× u).

(b) Use the fact that u · (u×ωωω) = 0 to get the desired result.

(c) Use ∇ · u = 0 and add the following result:

(12u · u + p
ρ + Ω)(∇ · u) = 0 to the equation in (b) to find ∂

∂t (
1
2u · u) + ∇ ·

[u( 12u · u+ p
ρ +Ω)] = 0, where (u · ∇)φ+ (u · ∇)φ = ∇ · (φu)·

Adding a zero contribution ∂Ω
∂t gives the energy equation.

The first term represents the rate of change of the total energy (kinetic and po-

tential), and the second term describes the energy flow carried by the velocity

combined with the contribution from the rate of working of the pressure forces.

19. Hint: Follow Example 2.4.2 to obtain

(
1 + q2 + r2

)
px +

(
1 + p2 + r2

)
qy +

(
1 + p2 + q2

)
rz

− 2(pqpy + qrqz + rprx) = 0.

22. (a) uy − uxy
′ − uy′′

1+y′2 = 0, (b) y′2 = 1−A2(y1−y)
A2(y1−y) .

24. (a) Hint: For a conservative system, T + V = C.

Putting V = C − T in (2.4.25) gives the principle of least action.



2.9 Exercises 787

(b) The principle of least action asserts that time action is stationary for any

conservative system.

27. (a) In one dimension, the Lagrangian is L = T − V = 1
2mẋ2 − V (x) so that

∂L
∂x = −∂V

∂x and ∂L
∂ẋ = mẋ. The Euler–Lagrange equation is ∂L

∂x − d
dt (

∂L
∂ẋ ) = 0,

or equivalently, mẍ = −∂V
∂x = F . This is Newton’s law of motion.

(b) The Lagrangian L = T − V = 1
2m(ẋ2 + ẏ2) − V (x2 + y2). The Euler–

Lagrange equations are d
dt (

∂L
∂ẋ ) = ∂L

∂x and d
dt (

∂L
∂ẏ ) = ∂L

∂y . In this case, these

equations give mẍ = −∂V
∂x and mÿ = −∂V

∂y . In this formulation, conserved

quantities are not obvious.

(c) In polar coordinates (r, θ), x = r cos θ, y = r sin θ, ẋ = ṙ cos θ − rθ̇ sin θ,

ẏ = ṙ sin θ + rθ̇ sin θ. Thus, x2 + y2 = r2 and ẋ2 + ẏ2 = ẋ2 + r2θ̇2. Thus,

the Lagrangian becomes L = 1
2m(ṙ2 + r2θ̇2) − V (r2). The Euler–Lagrange

equations are d
dt (

∂L
∂ṙ ) =

∂L
∂r , or, dpr

dt = mr̈ = mrθ̇2 − ∂V
∂r , d

dt (
∂L
∂θ̇

) = ∂L
∂r , or,

dpθ

dt = d
dt (mr2θ̇) = 0 because ∂L

∂r = −∂V
∂r +mrθ̇2, ∂L

∂θ̇
= 0, and pr = ∂L

∂ṙ =

mṙ, pθ = ∂L
∂θ̇

= mr2θ̇. Since dpθ

dt = 0, one gets mr2θ̇ = constant which shows

that the angular momentum is conserved and the radial equation of motion is

mr̈ = mrθ̇2 − ∂V
∂r . The first term in the radial equation on the right-hand side

represents the centrifugal force, while the second term gives the dynamical radial

force.

28. In the linearized limit, f(r) = ae−brn − a ≈ −abrn so that the nonlinear Toda

lattice equation mr̈ = 2f(rn)−f(rn−1)−f(rn+1) becomes mr̈n = ab(rn+1+

rn−1 − 2rn). Substituting the traveling wave solution into the linearized Toda

lattice equation gives mω2 cos θ = 2ab cos θ(1 − cos k) = 4ab sin2 k
2 . Thus,

the dispersion relation is ω2 = 4ab
m sin2 k

2 , where k corresponds to the discrete

wavenumber that is similar to the continuous wavenumber.



788 C Answers and Hints to Selected Exercises

3.6 Exercises

2. (a) xp− yq = x− y, (d) yp− xq = y2 − x2.

3. (a) u = f(y), (b) u = f(bx− ay), (c) u = f(ye−x),

(d) u = f(y − tan−1 x), (e) u = f(x
2−y2

x ),

(f) x+u
y = C1, (u+ y)2 − x2 = C2, f(x+u

y , (u+ y)2 − x2) = 0,

x2 + y2 = C1, y(u− y) = C2,

(g) We have dx
y2 = − dy

xy = du
xu−2xy = d(u−y)

x(u−y) , u = y + y−1f(x2 + y2),

(h) u+ log x = f(xy), (i) f(x2 + u2, y3 + u3) = 0.

5. (a) u = sin(x− 3
2y), (b) u = exp(x2 − y2),

(c) u = xy + f( yx ), u = xy + 2− ( yx )
3, (d) u = sin(y − 1

2x
2).

(e) u =

⎧⎪⎨
⎪⎩

1
2y

2 + exp[−(x2 − y2)] for x > y,

1
2x

2 + exp[−(y2 − x2)] for x < y.

(f) Hint: y = 1
2x

2 + C1, u = C2
1x+ C2,

u = x(y − 1
2x

2)2 + f(y − 1
2x

2), u = x(y − 1
2x

2)2 + exp(y − 1
2x

2).

(g) y
x = C1 and u+1

y = C2, C2 = 1 + 1
C2

1
, u = y + x2

y − 1, y �= 0.

(h) Hint: x+ y = C1, dy
−u = du

u2+C2
1

, u2 + C2
1 = C2 exp(−2y).

From the Cauchy data, it follows that 1 + C2
1 = C2, and hence,

u =
[{
1 + (x+ y)2

}
e−2y − (x+ y)2

] 1
2 .

(i) dy
dx − y

x = 1, d
dx (

y
x ) =

1
x which implies that x = C1 exp(

y
x ).

u+1
x = C2, f(u+1

x , x exp(− y
x )) = 0.

Initial data imply x = C1 and x2+1
x = C2. Hence C2 = C1 +

1
C1

.

u+1
x = x exp(− y

x ) +
1
x exp( yx ). Thus, u = x2 exp(− y

x ) + exp( yx )− 1.

6. We find u2 − 2ut+ 2x = 0, and hence, u = t±
√
t2 − 2x.

7. u(x, y) = exp( x
x2−y2 ).
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8. (a) u = f( yx ,
z
x ), (b) Hint: u1 = x−y

xy = C1, d(x−y)
x2−y2 = dz

z(x+y) gives u = x−z
z =

C2, u = f(x−y
xy , x−y

z ). (c) φ = (x+ y + z) = C1.

Hint: ( dx
z )

y−z =
( dy

y )

z−x =
( dz

z )

x−y =
dx
x + dy

y + dz
z

0 = d log(xyz)
0 , ψ = xyz = C2,

u = f(x+ y + z, xyz) is the general solution.

(d) Hint: x dx+ y dy = 0, x2 + y2 = C1, z dz = −(x2 + y2)y dy = −C1y dy,

z2 + (x2 + y2)y2 = C2, u = f(x2 + y2, z2 + (x2 + y2)y2).

(e) x−1dx
y2−z2 = y−1dy

z2−x2 = z−1dz
y2−x2 = d(log xyz)

0 . Thus, u = f(x2 + y2 + z2, xyz) is a

general solution.

9. (a) Hint: y − x2

2 = C1, u = xy − x3

3 + C2, φ(u− xy + x3

3 , y −
x2

2 ) = 0.

u = xy − x3

3 + f(y − x2

2 ), u = xy − x3

3 + (y − x2

2 )2.

(b) u = xy − 1
3x

3 + y − x2

2 + 5
6 .

11. x+u
y = C1, u2 − (x− y)2 = C2, u2 − 2u

y − (x− y)2 − 2
y (x− y) = 0.

Thus, u = 2
y + (x− y), y > 0.

12. (a) x = τ2

2 + τs+ s, y = τ + 2s, u = τ + s = (2x−2y+y2)
2(y−1) .

(b) x = τ2

2 + τs + s2, y = τ + 2s, u = τ + s, (y − s)2 = 2x − s2, a set of

parabolas.

(c) x = 1
2 (τ + s)2, y = u = τ + s.

13. Hint: The initial curve is a characteristic, and hence, no solution exists.

14. (a) u = exp( xy
x+y ), (b) u = sin[(x

2−y2+1
2 )

1
2 ],

(c) dx
x = dy

−y = du
−1 gives xy = c1 and u − ln y = c2 = f(xy). Hence, 2x −

ln(3x) = f(3x2). Or, f(t) = 2
√

t
3 − ln(

√
3t). Thus, u = 2(xy3 )

1
2 + 1

2 log(
y
3x ),

(e) dx
d = dy

y = du
x2+y2 gives x

y = c1, and xdx+ydy
x2+y2 = du

x2+y2 yields 2u =

x2 + y2 + c2. Or, 2u = x2 + y2 + f(xy ). Hence, f(x) = x2 − 1. Thus, 2u =

x2 + y2 + x2

y2 − 1.

(f) dx
y2 = dy

xy = du
x gives x2 − y2 = c1 and u− ln y = c2 = f(x2 − y2). Hence,

f(t) = t+ 1. Thus, u = ln y + (x2 − y2) + 1.
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(g) dx
x = dy

y = du
xy gives dy

x = c1 and du = ydx = (c1x)dx, u = c1x
2

2 + c2 =

xy
2 + c2. u = xy

2 + f( yx ). Hence, f(1) = 0. Thus, u = xy
2 + f( yx ), where f is

an arbitrary function such that f(1) = 0.

15. xdx
x(u2−y2) = ydy

xy2 = udu
−xu2 = xdx+ydy+udu

0 , and hence, x2 + y2 + u2 = c1.

And dy
y = −du

u gives uy = c2. Thus, x2 + y2 + u2 = f(uy), and hence,

3u2 = f(u2). Thus, 3uy = u2 + x2 + y2.

16. (a) x(s, τ) = τ , y(s, τ) = τ2

2 + aτs + s, u(s, τ) = τ + as. τ = x, s = (1 +

ax)−1(y− 1
2x

2)a, and hence, u(x, y) = x+as = (1+ax)−1{x+a(y+ 1
2x

2)},

singular at x = − 1
a .

(b) y = u2

2 + f(u− x), 2y = u2 + (u− x)2, u(0, y) =
√
y.

17. (a) Hint: d(x+y+u)
2(x+y+u) = d(y−u)

−(y−u) = d(u−x)
−(u−x) , (x + y + u)(y − u)2 = c1 and

(x+ y + u)(u− x)2 = c2.

(b) Hint: dx
x = dy

−y . Hence, xy = a. dx
xu(u2+a) = du

x4 . So, dx
du = u(u2+a)

x3 giving

x4 = u4 + 2au2 + b and, thus, x4 − u4 − 2u2xy = b.

(c) dx
x+y = dy

x−y = dy
0 (exact equation). u = f(x2 − 2xy − y2).

(d) f(x2 − y2, u− 1
2y

2(x2 − y2)) = 0.

(e) f(x2 + y2 + z2, ax+ by + cz) = 0.

18. Hint: dx
x = dy

y = dz
z , and hence, x

z = c, y
z = d. x2+y2 = a2 and z = tan−1( yx )

give (c2 + d2)z2 = a2 and z = b tan−1(dc ). c = (az ) cos θ, d = (az ) sin θ, and

z = b tan−1(tan θ) = bθ. Thus, the curves are x b θ = az cos θ and y b θ =

az sin θ.

19. Hint: (dx−2dy)
9u = du

−3(x−2y) . F{x + y + u, (x − 2y)2 + 3u2} = 0. Thus,

(x− 2y)2 + 3u2 = (x+ y + u)2.

20. F (x2 + y, yu) = 0, (x2 + y)4 = yu.

21. Hint: x − y + z = c1, dz
−(x+y+z) = (dx+dy+dz)

8z , and hence, 8z2 + (x +

y + z)2 = c2. F{(x− y + z), 8z2 + (x+ y + z)2} = 0.

c21 + c2 = 2a2, or (x− y + z)2 + (x+ y + z)2 + 8z2 = 2a2.
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22. F (x2 + y2 + z2, y2 − 2yz − z2) = 0.

(a) y2 − 2yz − z2 = 0, two planes are y = (1±
√
2)z.

(b) x2 + 2yz + 2z2 = 0, a quadric cone with vertex at the origin.

(c) x2 − 2yz + 2y2 = 0, a quadric cone with vertex at the origin.

23. Use the Hint of 17(c).

dx
dt = x+ y, dy

dt = x− y, d2x
dt2 = 2x.

(dxdt )
2 = 2x2 + c. When x = 0 = y, dx

dt =
√
2x.

√
2 u = lnx+ x2 − 2xy + 2y.

24. (a) a = f(x+ 3
2y).

(b) x = at+ c1, y = bt, u = c2e
ct, c2 = f(c1), u(x, y) = f(x− a

b y) exp(
cy
b ).

(c) u = f( x
1−y )(1− y)c.

(d) x = 1
2 t

2 + αst+ s, y = t, and u = y + 1
2α(αy + 1)−1(2x− y2).

26. (a) Hint: (f ′)2 = 1− (g′)2 = λ2; f ′(x) = λ and g′(y) =
√
1− λ2.

f(x) = λx+ c1 and g(y) = y
√
1− λ2 + c2. u(x, y) = λx+ y

√
1− λ2 + c.

(b) Hint: (f ′)2 + (g′)2 = f(x) + g(y) or (f ′)2 − f(x) = g(y)− (g′)2 = λ.

Hence, (f ′)2 = f(x) + λ and (g′) =
√
g(y)− λ.

Or, df√
f+λ

= dx and dg√
g−λ

= dy.

f(x) + λ = (x+c1
2 )2 and g(y)− λ = (y+c2

2 )2.

u(x, y) = (x+c1
2 )2 + (y+c2

2 )2.

(c) Hint: (f ′)2 + x2 = −g′(y) = λ2.

Or, f ′(x) =
√
λ2 − x2, and g(y) = −λ2y + c2.

Putting x = λ sin θ, we obtain

f(x) = 1
2λ

2 sin−1(xλ ) +
x
2

√
λ2 − x2 + c1,

u(x, y) = 1
2λ

2 sin−1(xλ ) +
x
2

√
λ2 − x2 − λ2y + (c1 + c2).

(d) Hint: x2(f ′)2 = λ2 and 1− y2(g′)2 = λ2.

Or, f(x) = λ lnx+ c1 and g(y) =
√
1− λ2 ln y + c2.

27. (a) Hint: v = lnu gives vx = 1
u · ux, vy = 1

u · uy .
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x2(ux

u )2 + y2(
uy

u )2 = 1.

Or, x2v2x + y2v2y = 1 gives x2(f ′)2 + y2(g′)2 = 1.

x2{f ′(x)}2 = 1− y2(g′)2 = λ2.

Or, f(x) = λ lnx+ c1 and g(y) =
√
1− λ2(ln y) + c2.

Thus v(x, y) = λ lnx+
√
1− λ2(ln y) + ln c, (c1 + c2 = ln c).

u(x, y) = cxλy
√
1−λ2

.

(b) Hint: v = u2 and v(x, y) = f(x) + g(y) may not work.

Try u = u(s), s = λxy, so that ux = u′(y) · (λy) and uy = u′(s) · (λx).

Consequently, 2λ2( 1u
du
ds )

2 = 1.

Or, 1
u

du
ds = 1√

2
1
λ . Hence, u(s) = c1 exp(

s
λ
√
2
).

Thus, u(x, y) = c1 exp(
xy√
2
).

28. Hint: vx = 1
2

ux√
u

, vy = 1
2

uy√
u

. This gives x4(f ′)2 + y2(g′)2 = 1.

Or, x4(f ′)2 = 1− y2(g′)2 = λ2.

Or, x4(f ′)2 = λ2 and y2(g′)2 = 1− λ2.

Hence, f(x) = −λ
x + c1 and g(y) =

√
1− λ2 ln y + c2.

Thus, u(x, y) = (−λ
x +

√
1− λ2 ln y + c)2.

29. Hint: vx = ux

u , vy =
uy

u . v2
x

x2 +
v2
y

y2 = 1, and v = f(x) + g(y).

Or, (f ′)2

x2 = 1− 1
y2 (g

′)2 = λ2.

f ′(x) = λx, and g′(y) =
√
1− λ2y.

Or, f(x) = λ
2x

2 + c1, and g(y) = 1
2y

2
√
1− λ2 + c2.

v(x, y) = λ
2x

2 + y2

2

√
1− λ2 + c = lnu.

u(x, y) = c exp[λ2x
2 + y2

2

√
1− λ2], c1 + c2 = ln c.

ex
2

= u(x, 0) = ce
λ
2 x2

, which gives c = 1 and λ = 2.

31. (b) v(x, t) = x+ at, u(x, t) = 6x+3at2+5at3

6(1+2t) .

32. (a) We have vt − avx = 0, v(x, 0) = ex. So, dt
1 = dx

−a = dv
0 gives dv = 0,

or, v = const. = c1. Also, dx + a dt = 0 yields x + at = const. = c2. Thus,
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v = f(x + at), and ex = v(x, 0) = f(x). Or, v = ex+at. The first equation

becomes ut + uux = e−xv = eat. This gives dt
1 = dx

u = du
eat .

Or, u− eat

a = c1. Thus, dx = udt = ( e
at

a + c1)dt.

Or, x = eat

a2 + c1t+ c2 = eat

a2 + (u− eat

a )t+ c2 = eat

a2 + ut− teat

a + c2.

Or, x− ut+ t
ae

at − eat

a2 = c2. Thus, u(x, t)− eat

a = f(x− ut+ t
ae

at − eat

a2 ).

Hence, u− 1
ae

at = c1 and u(x, t)− 1
ae

at = f(x− ut+ t
ae

at − 1
a2 e

at).

Using the initial condition gives x− 1
a = f(x− 1

a2 ), or f(x) = (x+ 1
a2 − 1

a ).

Hence, u(x, t) = 1
ae

at + (x− ut+ t
ae

at − 1
a2 e

at + 1
a2 − 1

a ).

Thus, u(x, t) = (1 + t)−1[x+ ( 1a + t
a − 1

a2 )e
at + ( 1

a2 − 1
a )].

33. (a) We have dx√
x
= dy

u = du
−u2 leads to 2

√
x− 1

u = C1 and y = − ln(C2u).

At (x0, 0), u = 1 so that C1 = 2
√
x0 − 1 and C2 = 1. Thus, u−1 = 2(

√
x −

√
x0) + 1 and u = e−y, y = lnu−1 = ln[2(

√
x−√

x0) + 1].

(b) We have dx
ux2 = dy

e−y = du
−u2 so that 1

x = lnu+ C1 and ey = 1
u + C2.

At (x0, 0), u = 1, that is, C2 = 0 and u = e−y .

Hence, C1 = 1
x0

. Thus, lnu = ( 1x − 1
x0
) and y = 1

x0
− 1

x .

34. For any function u(ξ, τ), we have ∂nu
∂xn = ∂nu

∂ξn , ∂u
∂t = μ∂u

∂τ − c∂u∂ξ ,

utt = μ2uττ − 2μcuξ,τ + c2uξξ, etc.

Thus, the equation assumes the form uτ + (αun)uξ = 0. We have dτ
1 = dξ

αun =

du
0 or du

dτ = 0 and dξ
dτ = αun. Thus, u = const. = C1 and ξ = αunτ + C2.

Then the general solution is f(u, ξ − αunτ) = 0, or u = φ(ξ − αunτ) which

is a Riemann simple wave. Hence, u(ξ, 0) = φ(ξ) = u0 sin kξ. Thus, u(ξ, τ) =

u0 sin[kξ − ( u
u0
)n(αkun

0 τ)].

35. (a) We have dx
x+y = dy

x−y = du
0 . So, u = const. = c1. Hence, dy

dx = x−y
x+y . This is

an exact equation and hence, f(x, y) = c2, or, x2 − 2xy − y2 = c2.

Thus, the general solution is u = f(x2 − 2xy − y2), f is an arbitrary function.
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(b) We have dx
1 = dy

−(ax+by) = du
0 . Thus, u = const. = c1. Hence, dy

dx + by =

−ax, giving y(b2y − abx + a) = c2. Hence, u = f(y(b2y − abx + a)) is the

general solution.

(c) We have dx
x−1 = dy

y−1 = du
x2−y2 . Hence, x2−y2 = c1. du

dx = x(x2−y2) = c1x

giving u = 1
2c1x

2 + c2. Thus, u− 1
2x

2(x2 − y2) = c2 and u− 1
2x

2(x2 − y2) =

f(x2 − y2).

(e) We find that dx
y = dy

−x = du
0 . This gives x2 − y2 = C1 and u = C2. So,

u = f(x2 + y2). Hence, y = f(a2 + y2) = f(t), a2 + y2 = t. Therefore,

f(t) =
√
t− a2. Thus, u = f(x2 + y2) =

√
x2 + y2 − a2.

(f) We find that dx
x = dy

x+y = udu, or, du
dx = 1

xu , or u2

2 − log x = c1. Thus,

dy
dx = x+y

x , and hence, y
x = log x + c2. So, y

x − log x = f(u
2

2 − log x). Thus,

x − log x = f(− log x). Putting t = − log x, f(t) = t − e−t. Thus, y
x =

u2

2 − x exp(−u2

2 ).

36. (a) We have, dt
1 = dx

−x = du
u gives t+ lnx = C1 and xu = C2.

Or, g(xu, t+ lnx) = 0, or, u = 1
xh(t+ lnx) is the general solution, where h is

an arbitrary function. Hence, u(x, 0) = f(x) = 1
xh(lnx), or, h(lnx) = xf(x),

that is, h(x) = exf(ex). Thus, u(x, t) = etf(xet).

4.6 Exercises

1. (a) 16u = (x+ 4y)2, (b) u = α(x+ y).

2. (a)
√
a log u = x+ ay + b, (b) 2

√
u(1 + a2) = x+ ay + b,

(d) u = ay + 1
4 (x+ b)2, (g) u = a log x+ (4− a2)

1
2 log y + b,

(h) u = a(1 + x2)
1
2 + 1

2 (ay)
2 + b.

3. (a) log u = x+ y − 1, (c) u = xy
2(y−2) which is singular at y = 2,

(e) u(x, y) = x+ y, (f) 4u = (x+ y + 2)2.

(i) u = exp(−act)f(x− ct). Use equation (4.2.19)

x(τ, 0) = x0(τ) = τ , t(τ, 0) = 0, u(τ, 0) = f(τ).
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4. Hint: At s = 0, p(t, x) = q(t, s) = 1, then, p(t, s) = q(t, s) = 1.

x(t, s) = (t− 2)es + 2, y(t, s) = 1 + es,

u(t, s) = (t− 1)es + 2, u(x, y) = x+ y − 1.

8. Hint: x(0, s) = 0, y(0, s) = s, u(0, s) = −s.

x(t, s) = − sinh t, y(t, s) = s cosh t,

u(t, s) = − s
2 (1 + cosh t), u(x, y) = −y(x2 + 1)

1
2 .

10. Hint: Characteristics are x − 2ct = s where s is a parameter. The points on

the characteristic lines travel with speed 2c, whereas points on the wave profile

u = c(x − ct) move with speed c. The wave profile u is not constant on the

characteristic lines.

11. (a) u = 1
2xy + f( yx ) where f is an arbitrary function such that f(1) = 0.

(b) Characteristics are xy = const. (a family of hyperbolas).

u = a log y + f(xy), u = a
2 log(

y
3x ) + 2(xy3 )

1
2 .

(c) At t = 0, p = 0, q = 1
s ; sp = tanh( ts ), sq = sech( ts ).

x(s, t) = −2s2 tan( ts ) sech( ts ), y(s, t) = 2s2 sech2( ts )− s2.

u(s, t) = 2s sech( ts ), (u
2 − 2y)2 = 4(x2 + y2).

(d) u(x, y) = x− y, (e) u(x, t) = x2 tan t.

12. Hint: Write the characteristic strip equations dx
dt = Fp, . . . . Since 1

p
dp
dt = 1

q
dq
dt ,

p and q are proportional to each other. The initial data p0(s) and q0(s) are

the solutions of p0(s) = 0 and (p20 + q20)
1
2 = tan θ so that p0(s) = 0

and q0(s) = tan θ. Since p0(s) = 0, the constant of proportionality must be

zero, and so p(t, s) = 0. We then find x(t, s) = s and z(t, s) = cos(θ − t).

Then dq
dt = −[q2 + q cos(θ − t)] gives q(t, s) = tan(θ − t) y(t, s) =

− sin(θ − t) + 2 sin θ, or equivalently, (y − 2 sin θ)2 + z2 = 1, which rep-

resents a cylinder.

14. Hint: (dzdξ ) = ± 1
z (

1−z2

1+a2 )
1
2 ,

d(1− z2)
1
2 = ±d( x+ay√

a2+1
) = ±d(x cos θ + y sin θ).
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15. (a) Hint: dp
dq = p

q gives p = c1q.

dx
dt + (u− a)dpdt + pdu

dt = 0, or dx+ (u− a) dp+ p du = 0,

or d(x+ (u− a)p) = 0 gives x+ p(u− a) = const.

Similarly, y + q(u− a) = const.

These equations and F = 0 give the integral surfaces

x2 + y2 + (u− a)2 − 1 = 0, u(x, t) = (x−ct)
1+t(x−ct) .

(b) Hint: dx
dt = 2pu2, dy

dt = 2qu2, du
dt = 2(1− u2),

dp
dt = −2p

u , and dq
dt = −2q

u .

(ṗu+ u̇p) = d
dt (up) = −2pu2, d

dt (uq) = −2qu2.

Consequently, dx
dt = 2pu2 = − d

dt (up) and dy
dt = − d

dt (uq), and hence,

(x − a)2 + (y − b)2 = u2(p2 + q2) = 1 − u2, where a and b are con-

stants.

(c) (x−x0)
2 +(y− y0)

2 = (u−u0)
2, where x0, y0, and u0 are constants. This

is a three-parameter family of solutions. Use equation (4.3.1).

16. (a) u(x, y) =

⎧⎪⎨
⎪⎩
x2 if y = 0,

(2y2)−1(1 + 2xy −
√
1 + 4xy) if y �= 0.

(b) u(x, y) =

⎧⎪⎨
⎪⎩
x if y = 0,

(2y)−1(
√
1 + 4xy − 1) if y �= 0.

5.5 Exercises

1. (a) u(x, t) = sin ξ, ξ = x− t sin ξ.

(b) u(x, t) = x
1−t , u → ∞ as t → 1.

2. Hint: (u)t + ( 12u
2)x = 0. Multiplying it by nun−1 gives the first result.

4. ξ = x− t exp(−1
ξ ) for x > 0; u(x, t) = exp(−1

ξ ).

6. The characteristic diagram in the (x, t)-plane shows that the initial signal f(x)

is focused along the characteristics to a region near x = 0 as t increases.
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7. u = t+A, x = ut− t2

2 +B, where A and B are constants.

8. Hint: Shock t = 2(x − 1) from (1, 0) to (2, 2) and shock x =
√
2t from (2, 2).

u = 0 for x < 0, and, when x ≥ 0, u = x
t to the left of t = x and x =

√
2t,

u = 0 to the right of shocks, and u = 1 in a triangular region bounded by t = 0,

t = x, and t = 2(x− 1).

9. u = −1 to the left of the line t + x = 0, and u = 1 to the right of the line

x− t = 1. Between these lines, u = (2x− 1)/(1 + 2t).

10. Characteristics from 0 ≤ x ≤ t, t = 0 intersect at (12 ,
1
2 ). Characteristics from

x ≤ 0, x ≥ 1 also intersect in the region t ≥ 1
2 , and hence, no single-valued

solution. Shock parallel to the t-axis from (12 ,
1
2 ).

We find u(x, t) = (2x−1)/(1−2t) in the triangular region bounded by x−t = 0,

x+ t = 1, t = 0.

u(x, t) =

⎧⎪⎨
⎪⎩

+1 to the left of shock,

−1 to the right of shock.

11. When a < 0, shock along the line at = 2x, −a to the left of shock, 2a to the

right. When a > 0, −a to the left of the line x = −at and 2a to the right of the

line x = 2at. Between these lines, u = (xt ).

15. Hint: Here c(u) = u2, f(x) =
√
x, dt

1 = dx
c(u) =

du
0 .

Thus, du = 0 gives u(x, t) = const. on the characteristics.

u(x, t) = f(ξ) =
√
ξ.

ξ = x− tF (ξ) = x− tc(f(ξ)) = x− tc(
√
ξ) = x− tξ.

Thus, ξ = x
1+t . Hence, u(x, t) = ( x

1+t )
1
2 .

16. c(u) = u3, f(x) = x
1
3 , we have dt

1 = dx
u3 = du

0 .

u(x, t) = const. on the characteristics.

Thus, u(x, t) = f(ξ) = ξ
1
3 .

ξ = x− tF (ξ) = x− tc(f(ξ)) = x− tc(ξ
1
3 ) = x− tξ.

Hence, ξ = x
1+t and u(x, t) = ( x

1+t )
1
3 .
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17. c(u) = u, f(x) = x; dt
1 = dx

u = du
2t gives du

dt = u and du
dt = 2t. Hence,

u = t2 +A on the characteristic curve x = x(t) joining (x, t) and (ξ, 0).

Also, dx
dt = [u(x, t)− t2] + t2 = [u(ξ, 0)− 0] + t2 = ξ + t2 with ξ = x(0).

The equation of the characteristic curve is x(t) = ξt + t3

3 + B with x(0) = ξ.

x(t) = ξ(1 + t) + t3

3 . u(x(0), 0) = u(ξ, 0) = f(ξ) = ξ.

Thus, A = ξ, u(x, t) = t2 + ξ = t2 + 3x−t3

3(1+t) .

18. Hint: dt
1 = dx

3t = du
u , u(x, 0) = f(x) = cosx.

Or, dx
dt = 3t and du

u = dt. Or, x = 3
2 t

2 +A and u(x, t) = Bet.

B = u(ξ, 0) = cos ξ, with x(0) = ξ. Then A = ξ and x− 3
2 t

2 = ξ.

Consequently, u(x, t) = et cos ξ = et cos(x− 3
2 t

2).

19. Hint: dt
2 = dx

1 = du
0 , and hence u(x, t) = const. on the characteristic curve

dx
dt = 1

2 , or equivalently, x = t
2 +A.

If x(0) = ξ, then x = ξ + t
2 .

u = (x, t) = const. = u(ξ, 0) =

⎧⎪⎨
⎪⎩

sin ξ if 0 ≤ ξ ≤ π,

0 otherwise.

Or equivalently, u(x, t) =

⎧⎪⎨
⎪⎩

sin(x− t
2 ) if 0 ≤ x− 1

2 t ≤ π,

0 otherwise.

20. Hint: dt
1 = dx

1 = du
x gives x = t+A, and hence, x = t+ ξ, if x(0) = ξ.

du
dt = x(t) = t+ ξ, and hence, u(x, t) = 1

2 t
2 + ξt+B.

Or, B = u(x, t)− 1
2 t

2 − ξt = u(ξ, 0) = sin ξ.

If x > t, u(x, t) = 1
2 t

2 + t(x− t) + sin(x− t).

If (x, t) lies above the line x = t, characteristic passing through this point

never reaches the x-axis, but it reaches the t-axis so that the boundary condi-

tion u(0, t) = t can be used (the initial condition cannot be used in this case,

x < t). For x < t, du
dt = x = t− η or η = t− x.

Integrating gives u(x, t) = 1
2 t

2−ηt+B. Using the boundary condition, we find

B = u(x, t)− 1
2 t

2 + ηt = u(0, η)− 1
2η

2 + η2 = η + 1
2η

2.
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With η = t− x, the solution is given by

u(x, t) = 1
2 t

2 − (t− x)t+ (t− x) + 1
2 (t− x)2 = 1

2x
2 + t− x.

On x = t, u(x, t) = t2

2 .

21. We have dx
x2 = dt

u = du
1 = dz gives dx

dz = x2, du
dz = 1, dt

dz = u, whence

x = (a − z)−1, u = z + b, t = 1
2z

2 + bz + c, when a, b, and c are constants.

The characteristic equation originating from the initial curve at x = s, t = 1 −

s(z = 0) is x = ( s
1−sz ), u = z(b = 0), t = 1

2z
2 + 1− s.

For each x, t, the solution u depends on the parameters s and z. Eliminating

s and z gives the answer as follows: s = 1
2z

2 + 1 − t = ( 12u
2 + 1 − t) and

s = x
1+zx = ( x

1+ux ). Thus, ( 12u
2 + 1− t)(1 + ux) = x.

22. The Darcy law for water is Vd = −KHx, K is the hydraulic conductivity and

H is the hydraulic head, H = p
gρ + z + v2

2g ≈ p
gρ + z for small (v2/2g), p is

the pressure, g is the acceleration to gravity, and ρ is the density. The Darcy law

describes the assumption that water flows slowly in the soil pores for the head

loss to be proportional to the velocity.

The characteristic equations associated with Buckley–Leverett equation are

dt
1 = dx

c = ds
0 . Or equivalently, ds

dt = 0, and hence, s = const. and it is a

conserved quantity. Hence, dx
dt = c is the speed at which the interface between

water and hydrocarbon moves. Thus, c = ∂F
∂s = 0 when s = 0 and s = 1, and c

attains its maximum when 0 < s < 1. The case c = 0 for s = 0 reflects a well

known property of hydrocarbons as non-wetting liquids, the mobility of which

is very low for small water saturation.

6.12 Exercises

1. Hint: Use ht + (uh)x = 0.
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2. ρ(x, t) = f(ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

200 if ξ < −ε,

100(1− ξ
ε ) if − ε < ξ < ε,

0 if ξ > ε,

x = ξ + [60− 3
5f(ξ)]t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ − 60t if ξ < −ε,

(60t− ε)( ξε ) if − ε < ξ < ε,

ξ + 60t if ξ > ε,

ρ(x, t) =

⎧⎪⎨
⎪⎩

200 if x < −(60t+ ε),

100(1− x
60t+ε ) if − (60t+ ε) < x < 60t+ ε.

The graph of ρ(x, 0) is linearly increasing in x from −ε to +ε.

3. (a) ρ = f(ξ) =

⎧⎪⎨
⎪⎩

25(3− |ξ|) if |ξ| ≤ 1,

50 if |ξ| ≥ 1,

and

x =

⎧⎪⎨
⎪⎩
ξ = 15(1 + |ξ|)t if |ξ| ≤ 1,

ξ + 30t if |ξ| ≥ 1.

(b) For t < 1
15 , we eliminate ξ from the above solution to obtain

ρ(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

25(3 + x−15t
1−15t ) if − 1 + 30t ≤ x ≤ 15t,

25(3− x−15t
x+15t ) if 15t ≤ x ≤ 1 + 30t,

50 if |x− 30t| ≥ 1.

The solution ρ(x, t) for t = 1
15 (1 − ε) can be found from the result given in

Exercise 3(a). Use results in 3(a) to find ρ and x for t = 1
15 .

ρ =

⎧⎪⎨
⎪⎩

25(3− |ξ|) if |ξ| ≤ 1,

50 if |ξ > 1|,
and
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x =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 + ξ if ξ > 1orξ < −1,

1 + 2ξ if 0 ≤ ξ ≤ 1,

1 if − 1 ≤ ξ < 0.

Use these results to draw a graph of ρ(x, 1
15 ).

4. Hint: Use u = x− c0t and v = t as independent variables.

12. Hint: The equation in matrix form is

⎛
⎜⎜⎜⎜⎝

u c2ρ 0

1
ρ u 0

0 0 u

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

px

ux

Sx

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

pt

ut

St

⎞
⎟⎟⎟⎟⎠ = 0.

The eigenvalues are the roots of the equation

∣∣∣∣∣∣∣∣∣∣

u− λ c2ρ 0

1
ρ u− λ 0

0 0 u− λ

∣∣∣∣∣∣∣∣∣∣
= 0 which gives λ =

dx

dt
= u, u± c.

13. Hint: du+ λ2,1 dv = 0 along the characteristics C1 and C2, respectively.

a(du)2 + 2b du dv + c(dv)2 = 0, which corresponds to the characteristics

dx = λ dt, a(dx)2 − 2b dx dt+ c(dt)2 = 0.

14. Hint: Along the characteristics C+: η = x− ct = const. and du+

dt + 1
2au+ = 0

with the solution u+(t) = u+(0) exp(−1
2at) with η = x − ct and u−(t) =

u−(0) exp(−1
2at) with ξ = x+ ct.

15. Hint: ρ = ρ(x(t), t), dρ
dt = ∂ρ

∂t + dx
dt · ∂ρ

∂x , and then use equations (6.3.1) and

(6.3.2).

16. Hint: λ1,2 = u± c, L1,2 = (1,±2).

( ∂
∂t + λ1

∂
∂x )(u+ 2c) = Hx along C+:

dx
dt = u+ c,

( ∂
∂t + λ2

∂
∂x )(u− 2c) = Hx along C−:

dx
dt = u− c.
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18. Hint: See Jeffrey and Taniuti (1964, pp. 72, 73).

19. Hint: Equate xsr and xrs to derive the Euler–Poisson–Darboux equation.

22. Hint: The first equation can be written as ∂ρ
∂t + div(ρu, ρv, ρw) = 0.

The first and second equations can be combined to find the result

∂

∂t

⎛
⎜⎜⎜⎜⎝

ρu

ρv

ρw

⎞
⎟⎟⎟⎟⎠+ div

⎛
⎜⎜⎜⎜⎝

p+ ρu2 ρuv ρuw

ρuv p+ ρv2 ρvw

ρuw ρvw p+ ρw2

⎞
⎟⎟⎟⎟⎠ = 0.

The above two results lead to the desired conservation form.

25. For (i), A =

⎛
⎜⎜⎜⎜⎝

0 c
a 0

−1 0 0

0 0 1

⎞
⎟⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎝

u
a

0

−v − w

⎞
⎟⎟⎟⎟⎠.

For (ii), A =

⎛
⎜⎜⎜⎜⎝−1

− c
a

c
a 0

− c
a

c
a 0

0 0 1
2

⎞
⎟⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎝

u
a

u
a

−v
2 − w

2

⎞
⎟⎟⎟⎟⎠,

and thus, for both cases (i) and (ii),

U =

⎛
⎜⎜⎜⎜⎝

v

w

u

⎞
⎟⎟⎟⎟⎠ .

26. Characteristics drawn from the negative x-axis are vertical lines x = const.,

and along these characteristics, ρ = ρ0 and ρ(x, t) = ρ0 for x < 0, t > 0.

Characteristics drawn from points x > a satisfy ẋ(t) = c(ρ(x, 0), 0) =

c(0) = ρm. If x > a+ ρmt, t > 0, ρ(x, t) = 0.

If 0 < x < a, ρ(x, t) = f(x− tc(ρ)) = ρ0[a− {x− tρm(1− ρ
ρ0
) exp(− ρ

ρ0
)}].

Hence, x = (a− ρ
ρ0
) + ρm(a− ρ

ρ0
)t exp(− ρ

ρ0
).
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27. (a) This system of two equations is known to be hyperbolic. The first equa-

tion is already in the one-dimensional divergence form because it becomes ρt +

(ρu)x = 0. The one-dimensional form of the second equation is not in diver-

gence form, but it is multiplied by ρ and added to u times the first equation to

obtain the conservation form (ρu)t + (ρu2 + p)x = 0.

(c) We have ρt + (ρu)x = 0, or equivalently, ∂ρ
∂u

∂u
∂t + (ρxu+ ρux) = 0.

Thus, dρ
du · ∂u

∂t + (ρ+ u dρ
du )(

∂u
∂x ) = 0. It follows that ∂u

∂t + (uux) +
1
ρ
∂p
∂x = 0, or

equivalently, ∂u
∂t + (uux + 1

ρ
∂p
∂x ) = 0.

Thus, ∂u
∂t + (u+ c2(ρ)

ρ
dρ
du )

∂u
∂x = 0.

28. We have xvt+wx = 0 and close the system by using vx = wt. Thus, the Tricomi

equation becomes Ut + AUx = 0, where U =
[ v

w

]
and A =

[ 0 1
x

−1 0

]
. This has

eigenvalues λ2 = − 1
x for x �= 0.

When x < 0, the eigenvalue are real and distinct, and the system is hyperbolic.

When x > 0, the system is elliptic, and the system is parabolic when x = 0.

29. The first equation is in conservation form: ht + (uh)x = 0. Multiply the sec-

ond equation by h and add the result to u times the first equation to obtain the

conservation form.

7.9 Exercises

5. Hint:

İ4 =

∫ ∞

−∞
xut dx = −

∫ ∞

−∞
x ∂x

(
u2

2
+ K̃u

)
dx

=

∫ ∞

−∞

(
1

2
u2 + K̃u

)
dx =

1

2
I2(u) +

∫ ∞

−∞
dx

∫ ∞

−∞
K(x− s)u(s, t) ds

=
1

2
I2(u) + c(0)I1(u).

Integrating with respect to t gives I4(u)− 1
2 t I2(u)− tc(0)I1(u) = const.
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6. Hint: (a) Multiply the given equation by
√
t to get

(√
tu
)
t
+
[√

t
(
uxx − 3u2

)]
x
= 0.

(b) Multiply the given equation by 2tu to obtain

(
tu2

)
t
+
[
t
(
2uuxx − u2

x − 4u3
)]

x
= 0.

7. Hint: Multiply equation (2.7.67) by u and follow the procedure described by

Benney (1974) and Miura (1974) to obtain

(
1

3
u3

)
t

+

(
1

4
u4

)
x

+ wu2uz + u2hx = 0,

or equivalently, ( 13u
3)t + ( 14u

4 + u2h)x + ( 13u
3w)z − 1

3u
3wz − 2huux = 0.

Multiply equation (2.7.67) by h to obtain

(hu)t − uht + huuxx + hwuz +
1

2

(
h2
)
x
= 0.

This equation is added to the previous equation to generate

(
hu+

1

3
u3

)
t

+

(
u2h+

1

4
h4 +

1

2
h2

)
x

+
1

3

(
u3w

)
z
− huux

+ hwuz − huux − uht = 0.

Write m =
∫ h

0
u dz so that ht +mx = 0, and then

(
hu+

1

3
u3

)
x

+

(
hu2 + um+

1

3
u4 +

1

2
h2

)
x

+

[
w

(
hu+m+

1

3
u3

)]
z

= 0.

This gives the answer.
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8. Hint: (a) (
∫∞
−∞ u dx)y = 0, and hence,

∫∞
−∞ u dx = c(t).

Under suitable conditions, c(t) is a constant, and hence, it can be set equal to

zero. To prove (c), we find

(∫ ∞

−∞
u dx

)
t

+
[
uxx − 3u2

]∞
−∞ + 3

[∫ ∞

−∞
v dx

]
y

= 0.

Both (b) and (c) represent the conservation of momentum in both x- and y-

directions.

10. It follows from the definition of H that ∂H
∂J = ω, which means that the frequency

of the modulated wave is determined by the partial derivative of H with respect

to the wave action J . Thus, ∂k
∂t + ∂ω

∂x = 0 reduces to the Hamiltonian form

∂k
∂t +

∂
∂x (

∂H
∂J ) = 0. We next replace Lω by J in the Whitham equation to obtain

∂J
∂t + ∂

∂x (
∂H
∂k ) = 0 because ∂H

∂k = −∂L
∂k . Thus, the above equation describes

conservation of the wave action J , and ∂H
∂k represents the density of its flux.

The quantity I =
∫∞
−∞J dx is conserved in a localized wave packet. It is noted

that variables J and k are introduced to describe the modulated wave, and they

play the role similar to the canonical variables of the action-angle in classical

mechanics.

8.14 Exercises

1. (a) α = β = 1 and γ = 2, (b) β = 2α,

(c) γ = α− β, (d) β = 2α.

2. In D1 and for c ≥ 2, u(ξ) = A exp(m1ξ) + B exp(m2ξ), where m1, m2 =

1
2 [−c1 ±

√
c2 − 4]. In D2, u(ξ) = 1+A1 exp(n1ξ) +B1 exp(n2ξ), where n1,

n2 = 1
2 [−c ±

√
c2 + 4].

To determine A, B, A1, and B1, we use the facts that (i) u(0) = 1
2 , (ii) the values

of u′(0) in D1 and D2 are equal, and (iii) u(−∞) = 1 and u(∞) = 0. In D1,
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for ξ > 0, we have

u(ξ) =
1

4
√
c2 − 4

[{√
c2 − 4 + 2c−

√
c2 + 4

}
exp(m1ξ)

+
{√

c2 − 4− 2c+
√
c2 + 4

}
exp(m2ξ)

]
.

In D2, for ξ < 0, we find u(ξ) = 1− 1
2 exp(n1ξ).

When c = 2, we find solutions in D1 and in D2.

In D1, for ξ > 0, u(ξ) = 1
2 exp(−ξ)+(1− 1√

2
)ξ exp(−ξ), and in D2, for ξ < 0,

u(ξ) = 1− 1
2 exp[(

√
2− 1)ξ].

8. Hint: ψ̃ = aβ+1ψ, and set β = 0 to find the similarity solutions.

9. Hint: The boundary conditions are u(η = 0) = 0 and u(η → ∞) = 1,

v(η = 0) = vω.

11. v′′′′ + c2

4 (η
2 v′′ + 5 η v′ + 3v) = 0.

Hint: ηt = −(αβ )
η
t , ut =

1
β t

γ
β−1(γv − α η v′),

utt = t
γ
β−2{(αβ )2η2v′′ +

α
β (−

2γ
β + α

β + 1)η v′ + ( γβ − 1)( γβ )v},

ux = t
γ
β− 1

2 v′, uxxxx = t
γ
β−2v′′′′.

13. Hint:

Q̇(t) = 2

∫ a

0

uxuxt dx = 2[uxut]
a
0 − 2

∫ a

0

uxxut dx

= −2

∫ a

0

uxx

(
uxx + F (u)

)
dx

= −2

∫ a

0

u2
xx dx+ 2

∫ a

0

u2
xF

′(u) dx.

Using the boundary condition gives the Poincaré inequality

∫ a

0

u2
xx dx ≥ π2

∫ a

0

u2
x dx

and
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∫ a

0

u2
xF

′(u) dx ≤
∫ a

0

u2
x

∣∣F ′(u)
∣∣ dx ≤ A

∫ a

0

u2
x dx,

Q̇(t) ≤ 2
(
A− π2

)
Q(t) = μQ(t).

Integrating from 0 to a gives the inequality.

14. See Murray (1997), p. 357.

20. Combining ut + (ρu)x = 0 with (ρu)t + (ρu2)x = 0 gives ut + uux = 0.

Or in other words, ut + ( 12u
2)x = 0. The characteristic equations are dt

1 =

dx
u = du

0 , which leads to u = const. for dx
dt = u. Thus, u is invariant, and ρ

and ρu are conserved quantities. Writing U = u and F = 1
2u

2 = 1
2U

2 gives

Ut + Fx = 0. Or equivalently, Ut + FUUx = 0, that is, Ut + cUx = 0, where

c = ∂F
∂U = U = u is the propagation velocity. Differentiating the inviscid

Burgers equation ut + uux = 0 with respect to x gives (ux)t + u(ux)x =

−u2
x. Thus, the characteristic equations for ux are dt

1 = dx
u = dux

−u2
x

, that is,

d
dtux = −u2

x for dx
dt = u. Integrating gives − 1

ux
= −t + A, where A is a

constant. When t = t0, (ux) = u′
0, and A = t0− 1

u′
0

. Thus, the solution becomes

(ux)(t) = u′
0[1 + (t− t0)u

′
0]

−1.

9.14 Exercises

20. Hint: Add two equations in 20(d) and integrate the result to show dE
dt = 0.

21. Hint: If u0(x) = (c1 − γ) exp(−|x − x1|) + (c2 − γ) exp(−|x − x2|), x ∈ R

with c1 < γ, c2 > γ and x1 < x2, verify that

m0 = u0 − u0xx = 2c1δ(x− x1) + 2c2δ(x− x2),

where δ(x) is the Dirac delta function.

22. Hint: u(x, t) is a solution of
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∫ T

0

∫
R

(uφt + F (u)φx) dx dt+

∫
R

u(x, 0)φ(x, 0) dx = 0,

for any T > 0 and φ ∈ C∞
0 ([0, T ] × R) with F (u) = 1

2u
2 + p ∗ ( 32u2) + γu,

where p(x) is defined in 21(a). (See Guo 2009.)

10.9 Exercises

10. We seek the solution ψ(x, t) = Ψ(x)e−iωt where ω = (E/�) is the frequency

of the De Broglie wave and the function Ψ(x) satisfies the equation

Ψ ′′(x) +

(
2mE

�2

)
(1− x)Ψ = 0.

Making the change of variable z = −(1 − x)(2mE/�2)
1
3 reduces the equation

into the form Ψ ′′ − zΨ = 0. The bounded solution at |z| → ∞ can be expressed

in terms of the Airy function

Ψ(z) = CAi(z) = C

∫ ∞

0

cos

(
sz +

s3

3

)
ds,

where C is a constant. Thus, the solution describing the behavior of the electron

is ψ(z, t) = CAi(z) exp(−iωt). The function |ψ|2 describes the probability of

the electron at a point z. For z > 0, the probability drops to zero suddenly as if

there were an obstacle reflecting the electron at z = 0 which is referred to as the

turning point. For z < 0, the solution ψ(z, t) represents a nonuniform standing

wave. Using the asymptotic expansion of Ai(z) for |z| → ∞, in the form

Ai(z) ∼

⎧⎪⎪⎨
⎪⎪⎩

1
√
πz

1
4
exp(−2

3z
3/2), when z → ∞,

1
√
πz

1
4
cos( 23 |z|3/2 +

π
4 ), when z → −∞.
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The solution for ψ(z, t) can be written as the superposition of two progressive

waves in the form

ψ(z, t) ∼ C
4
√
z

{
exp

[
−i

(
ωt+

2

3
|z|3/2 − π

4

)]

+ exp

[
−i

(
ωt− 2

3
|z|3/2 + π

4

)]}
.

This represents the De Broglie wave for the particle in free space.

11.14 Exercises

6. Hint: φ(x, t) = tan(u4 ),

φ(x, t) ∼ ±U exp

{
± x+ Ut√

1− U2

}
∓ U exp

{
∓ x− Ut√

1− U2

}
as t → ∓∞.

Note that ∓U exp(θ) = ± exp{θ + 1
2

γ√
1−U2 }, where γ

2 = 1(1− U)
1
2 logU .

14. (b) u4 = 4 tan−1[(a1+a2

a1−a2
) tan{ 1

4 (u2 − u3)}] for any solutions u2, u3.

tan

(
ur

4

)
= exp(θr), θr = (arx+ a−1

r t+ εr), r = 2, 3.

15. Hint: Use ux(x, t) instead of u(x, t).

22. vtt − c2vxx − a2v = 0.

24. u(x, t) = 1
2cJ0[d

√
t2 − x2

c2 ]H(ct− |x|).

12.10 Exercises

1. (a) The continuity and the momentum equations for the inviscid Burgers equa-

tion can be written in the matrix form Ut + AFx = 0 by defining U =
[

ρ
ρu

]
=

[
u1

u2

]
, F =

[
F1

F2

]
=
[

ρu

ρu2

]
=
[

u2

u2
2/u1

]
.

Thus, A =
[ ∂F1

∂u1

∂F1
∂u2

∂F2
∂u1

∂F2
∂u2

]
=
[

0 1
−(

u2
u1

)2
2u2
u1

]
=
[

0 1
−u2 2u

]
.
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The eigenvalues of A are the roots of 0 = |A − λI| =
∣∣ −λ 1
−u2 2u−λ

∣∣ = λ2 −

2uλ+ u2. Thus, A has two equal eigenvalues (λ = u, u) which are not distinct.

Hence, the system is not hyperbolic.

(b) A =
[ ∂F1

∂u1

∂F1
∂u2

∂F2
∂u1

∂F2
∂u2

]
=
[

0 1
∂P
∂u1

−(
u2
u1

)2
2u2
u1

]
=
[

0 1
c2−u2 2u

]
, where c =

√
∂P
∂u1

. The

eigenvalues are real and distinct roots of |A− λI| = 0.

Or, |A− λI| =
∣∣ −λ 1
c2−u2 2u−λ

∣∣ = 0, that is, λ = λ1, λ2 = u∓ c.

The corresponding eigenvectors are
[

1
u−c

]
and

[
1

u+c

]
, and a new matrix B can

be defined by B =
[

1 1
u−c u+c

]
, and hence, B−1 = 1

2c

[
c+u −1
c−u 1

]
with B−1AB =

diagonal matrix, D =
[
u−c 0
0 u+c

]
=
[
λ1 0
0 λ2

]
.

The Riemann invariants are dR = B−1dU , and hence, dR1 = ( 12 + u
2c )dU1 −

1
2dU2 and dR2 = ( 12 − u

2c )dU1 +
1
2dU2, where the matrix R =

[
R1

R2

]
.

(c) The 2 × 2 matrix system can be generalized for an n × n system as Ut +

Fx = S. Or equivalently, Ut +AUx = S, where U , F , and S are n× 1 matrices

given by

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

...

un

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

...

Fn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S1

S2

...

Sn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

A is the n× n Jacobian matrix of F :

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂u1

∂F1

∂u2
· · · ∂F1

∂un

∂F2

∂u1

∂F2

∂u2
· · · ∂F2

∂un

...
...

. . .
...

∂Fn

∂u1

∂Fn

∂u2
· · · ∂Fn

∂un

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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A hyperbolic system of conservation laws is a system of conservation laws with

the following properties: (i) The components of F and S are functions of com-

ponents of U and possibly of x and t, but F does not contain any derivative of

U with respect to x and t, and (ii) the matrix A has n real and distinct eigen-

values which are roots of |A − λI| = 0. The theory of hyperbolic systems

of conservation laws with many examples of applications is available in many

books including Defermos (2000), Holden and Risebro (2002), Jeffrey (1976),

Lax (1973, 2006), Serre (2000), Sharma (2010), and Zheng (2001).
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Fan, 291, 301
Fan centered, 291, 292
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Fisher equation, 152, 396
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Flood wave, 297–299
Flux, 284, 469
Flux transport, 412
Focusing branch, 509
Focusing instability, 574
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Forcing term, 356
Fordy, 504
Fourier, 381
Fourier cosine transforms, 679
Fourier integral formula, 749
Fourier integral solution, 49
Fourier method, 5, 22
Fourier series, 719–731, 733, 736, 739
Fourier sine transforms, 677
Fourier transform, 34, 46, 360, 675, 751
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Fractional derivative, 55, 764
Fractional diffusion equation, 114, 118, 122
Fractional partial differential equations, 114
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Fractional Schrödinger equation, 124
Fractional Stokes problem, 119

Fractional Stokes–Ekman problem, 142
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Fractional wave equation, 116, 118, 122, 123
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Gaussian, 742
generalized, 740, 744, 747
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Mittag-Leffler, 114, 713, 766
modified Bessel, 700
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square wave, 723, 759
theta, 464
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Index 853

Weber–Hermite, 712, 713
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Fundamental solution, 42, 43, 389, 408
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Gamma distribution, 697
Gamma function, 689
Gardner, 430, 472, 474, 635
Gardner equation, 471
Gardner transformation, 471
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Gaussian function, 742
Gazdag, 417
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General solution, 4, 204
Generalized Fourier coefficients, 89, 93
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Gordon, 9
Gorschkov, 649
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Hamilton principle function, 238
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Hankel transform, 61, 446, 683
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Hilbert transform, 153
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Hodgkin and Huxley equation, 155
Hodograph transformation, 336
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Index of refraction, 248
Infeld, 563
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Integrability condition, 230
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Internal–inertial wave equation, 358
Inverse Fourier transform, 34, 46
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Inverse Laplace transform, 51
Inverse scattering transform, 475, 476, 478
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Kadomtsev, 155
Kadomtsev–Petviashvili (KP) equation, 155,
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Kirchhoff transformation, 409
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Kodama transformation, 522
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KPP equation, 398
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Kriess, 416
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Method of multiple scales, 656, 661
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Miura transformation, 470
Modes, 25
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Pasta, 428, 547
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Peakon solitary traveling wave, 523
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Peierls–Nabarro potential, 517
Pelinovsky, 624, 646
Penel, 416
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Peregrine equation, 640
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Phase function, 360
Phase velocity, 177, 245, 661
Phillips, 577
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Scattering equation, 608
Scattering state, 476, 479
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Schimizu, 153
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Schwartz space, 755
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Self-induced transparency (SIT), 612
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Shock wave, 205, 264, 270, 288, 321
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Similarity transformation, 406
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Simple wave, 311, 314, 318
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Skyrme, 151
Sleeman, 155
Slobodkina, 636
Smoller, 341, 417
Smooth function, 204
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Solitary wave, 429, 430, 436, 457, 540–542,
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complete, 203
discontinuous, 261, 275–277
general, 4, 204
generalized, 3, 257, 271, 272, 275
particular, 204
singular, 204, 249
weak, 3, 257, 271–274, 341

Sorensen, 152
Source solution, 389
Source term, 259, 397
Sparrow, 420
Special functions, 689
Spectrum, 83
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431, 434
Spherical waves, 103
Square wave function, 723, 759
Stable node, 400
Standing wave, 25
Stationary phase method, 60, 69, 391
Stationary point, 60, 67, 360, 391
Stewartson, 153, 154, 156, 550
Stirling approximation, 692
Stokes, 355, 426
Stokes’ analysis, 182
Stokes expansion, 182, 369
Stokes problem, 119, 131
Stokes wave, 179, 552
Stokes–Ekman problem, 131, 142
Strange attractor, 345
Stretched variable, 632
Stretching transformation, 404
Strong convergence, 90
Stuart, 154
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Su, 635
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linear, 5, 6
nonlinear, 497

Supersonic flow, 334, 341
Surface area of a sphere in n-dimension, 690
Surface wave problem, 128, 134
Symmetric, 692

Takeno, 516, 517
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Three-soliton solution, 488
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Toda, 152, 158, 615
Toda lattice equation, 157, 158
Toda lattice soliton, 158, 615, 618
Toland, 182
Traffic flow, 286, 287
Traffic flow equation, 286, 287
Traffic signal problem, 294
Transform
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Fourier, 34, 46, 360, 675, 751
Fourier cosine, 679
Fourier sine, 677
Hankel, 61, 446, 683
Hilbert, 153
inverse scattering, 475, 476
Laplace, 51, 59, 680, 762
Weierstrass, 763

Transition layer, 386
Transition region, 271
Translation, 751
Transmission coefficient, 479
Transmitted wave, 479
Transverse vibration of string, 22
Traveling wave solution, 50, 384
Triangular wave function, 390, 722, 724
Tricomi equation, 14, 351, 354
Trochoid, 180
Trullinger, 604
Turin, 412

Two-sided Laplace transform, 762
Two-soliton solution, 488, 497, 498
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Unitary transformation, 755

Van Saarloos, 155
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Vortex filament, 555
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Wadati, 152, 577
Wahlquist, 495, 497, 503
Walsh, 396, 416
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Washimi, 153, 625
Water wave equation, 173, 184, 185, 432,

434
Watson, 650
Wave

Alfvén gravity, 358
capillary solitary, 456
cnoidal, 458, 461
compression, 262, 302
de Broglie, 45, 358, 577
diffusive, 383, 386
dispersive, 357
electromagnetic, 10
expansive, 261, 275
flood, 297, 298
generalized simple, 338–340
generalized solitary, 457, 458
gravity, 358
gravity–capillary, 187, 452
incident, 486
inertial, 358
internal, 358
internal-inertial, 358
ion-acoustic, 438, 440, 638
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kinematic, 151, 259
N , 392
nondispersive, 178, 357
reflected, 479
refractive, 261, 275
roll, 309
Rossby, 130, 358
shallow water, 178, 640
shock, 205, 264, 270, 288, 321
simple, 275, 311, 314, 318, 320
solitary, 429, 430, 436, 457, 540–542
standing, 25
Stokes, 179, 552
transmitted, 479
water, 176, 357

Wave diffraction, 572
Wave energy, 546
Wave equation, 4, 8, 17, 22, 36, 49, 50, 52,

58, 62, 78–80, 92, 101–104, 115, 122,
126, 140, 151, 167–170, 444, 613

Wave front, 245
Wave propagation velocity, 285
Wavepacket, 570
Weak solution, 3, 257, 271–274, 341, 519
Webber, 417
Webber solution, 698
Weber–Hermite function, 712, 713
Wei, 625
Weidman, 152
Weierstrass transform, 763

Weiland, 153
Well posed problem, 7, 18, 147
Wentzel, 569
West, 413
Whitham, 151, 171, 173, 193, 286, 299, 359,

371, 377
Whitham averaged Lagrangian, 368, 592
Whitham averaged variational principle,

367, 368, 378
Whitham equation, 157, 193, 364, 366, 368,

372, 375–378, 531, 549, 593
Whitham rule, 290, 392
Wigner, 579
Wiljelmsson, 153
WKBJ method, 569
Wright function, 115
Wronskian, 480
Wyss, 115

Yajima, 152
Yang–Mills equation, 158
Yuen, 153, 546

Zabusky, 152, 428–430, 462, 469, 547
Zakharov, 152, 173, 502, 535, 542, 544, 545,

547, 550, 576
Zakharov equation, 562
Zakharov–Shabat (ZS) scheme, 502
Zel’dovich, 416, 418
Zeppetella, 417
Zufira, 376
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